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Preface 

We see an ever-increasing move toward inter and trans-disciplinary attacks upon 
problems in the real world [. .]. The system scientist has a central role to play in 
this new order, and that role is to first of all understand ways and means of how 
to encode the natural world into “good” formal structures. 

-John L. Casti (1992) 

Contemporary systems which have become increasingly complex, constitute 
generally problems of an interdisciplinary nature. Such systems are usually 
endowed with various types of uncertainties in the system parameters, system 
structure, and in the environment in which such systems operate. With an 
increase in complexity of the systems considered, with either very small or 
very large amounts of data available, the representation of uncertainty in 
a) mathematical model becomes of vital importance. Fuzzy mathematical 
concepts such as fuzzy sets, fuzzy logic and similarity relations represent one 
of the most influential currents in engineering and operational research’ and 
is expected to play an increasingly important role in the representation of 
uncertainty, systems modelling and data analysis. 

1 Operati .onal research (or Operat ‘ions Research) is the application of scientific 
business man agement providing a qu antitative basis for complex decisions. 

principles to 

ix 
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Intended as a guide to system modelling, system identification and decision 
making (i. e. classification, prediction and control), various on-the-surface un- 
connected methodologies are presented. To cope with uncertainties, several 
methods based on probability theory, fuzzy mathematics and possibility the- 
ory are introduced. Presupposing little familiarity with system theory, the 
book endeavors to steer the reader through a number of concepts intercon- 
nected by fuzzy mathematics. For most of the theory presented in this book, 
I cannot claim that the given material is novel or that its arguments have 
great originality. Indeed, much of what I say draws on the insight of promi- 
nent researchers in the various areas addressed. However, in drawing together 
separately developed concepts, restating the case from a systems engineering2 
perspective, I hope to show the continuing vitality and attractiveness of fuzzy 
mathematics in face of new challenges appearing in science and engineering. 

Textbooks on fuzzy systems, system theory, time-series and data analysis 
traditionally describe a theoretical framework or particular methodology and 
then apply these concepts to problems. I believe that such a strategy is not 
optimal, nor does it seem adequate to deal with the current challenges in sci- 
ence and engineering. Researchers in system and control theory have, over the 
last few decades, “zoomed in” on certain aspects of the theory, refined their 
mathematical tools to tremendous depths, and at the same time established 
various schools of thought. The subsequent accumulation of a vast amount 
of theoretical material within any particular area has condemned young re- 
searchers to specialize in a particular technique whereby they tend to lose 
the ‘big picture’. Such overspecialization in training often makes it more 
difficult to choose an adequate framework within which to work. I contend 
that starting from the problem at hand, with the available information and 
an understanding of the uncertainty involved, we require knowledge of more 
than one methodology and how the different theoretical frameworks can be 
related. We shall therefore start in this book with system models and the 
information available to build them. Uncertainty is considered by formaliz- 
ing the intuitive concept 
quantitative measures of 

of ‘expectation’, from which we subsequently derive 
uncertainty (statistics, fuzzy measures). Fuzzy sets 

and fuzzy relations will emerge ‘naturally’ from considering the application of 
theories (models) to observations (data). To relate formal models to sampled 
data, we have to generalize set-operations (as the basis for comparisons) and 
transitivity (as the basis for reasoning). 

In the spirit of John Casti’s view quoted above, control engineers should 
be prepared to move ‘up-scale’ and consider large-scale systems. Leaps in the 

2Systems engineering is a generic term used to describe the branch of engineering which is 
interdisciplinary in nature and is concerned with the integration and interfacing of differing 
techniques (technologies) to analyze (develop) complex systems. 
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technology for data acquisition, storage and processing make it not necessarily 
feasible but necessary to deal with complex or large-scale phenomena3. As 
t,he complexity of systems increases and the nature and the quality of the data 
varies, the formalization and quantification of uncertainty becomes increas- 
ingly important. It is the aim of fuzzy mathematics and possibility theory to 
be precise about uncertainty by: 

D combining quantitative data and qualitative information; 

D integrating functional and rule-based models; 

D complementing statistical with fuzzy mathematical concepts. 

This book introduces fuzzy systems sympathetically explaining its philosoph- 
ical implications and practical applications. There are four main themes or 
arguments running through the book: 

1. Reformulating 
sibility theory. 

systems theory to take account of fuzzy systems and pos- 

2. Introducing data engineering as the discipline, which for a given set 
of complex, uncertain data, extracts information by detecting pattern, 
and thereby turns information into the evidence used in decision making 
(classification, prediction and control). 

3. The quest for a methodology which enables us to combine quantitative 
formal analysis with qualitative context-dependent expert knowledge. 

4. That when solving a real-world problem, (matching observations with a 
model) an empirical approach (implying heuristics)4 is perfectly accept- 
able. Certainty is a myth; there is no single ‘correct’ methodology. 

My philosophy or motivation for this book is similar to what I believe has 
been the primary interest of people like N. Wiener (Cybernetics), M. Mesarovic 
(Abstract Systems Theory), H. Haken (Synergetics) , R. Rosen (Anticipatory 
Systems) and J. Casti (Complexification). We are primarily interested in the 
overall properties of systems and the character of the models used to cap- 
ture the behavior of these systems or processes. An important aspect of our 
approach includes understanding the constraints of our enquiries. 

As for terminology, I am reluctant to use the terms ‘system theory’ or 
‘control theory’ as they may suggest abstraction or unrelatedness to the prac- 
t,ise of solving ‘real-world’ problems. On the other hand, we may follow the 

31f we define a large-scale system as one described in ‘fine-grain’ terms, complexity is only 
relative to the scale employed. 
4The term emp’r z ical means based or acting on observation or experiment, not on theory; 
deriving knowledge from experience. The term heuristic means allowing or assisting to 
discover, proceeding to a solution by trial and error. 



xii PREFACE 

advice of mathematician David Hilbert, who once commented that “there is 
nothing more practical than a good theory”. The terms ‘systems engineering’ 
and ‘control engineering’ have subsequently been used to emphasize the more 
applied side of modelling, estimation, filtering and control. However, this still 
reflects some kind of separation. Somewhat surprisingly, probability theory 
and statistics are often mistaken as synonymous whereas they could not be 
more ‘apart’ conceptually - for any real-world problem, probabilistic models 
are an abstraction through which we generalize. Whereas some in many cases 
modelling, as a generalization, has been the main purpose, we call ‘data en- 
gineering’ the practice of matching data with models, or more generally with 
the art of turning data into information. Data engineering is then related to 
possibility theory with the latter providing the conceptual framework for the 
former and thus constitutes the ‘toolbox’ which allows reasoning about data 
in the presence o-f uncertainty. 

There have been many approaches to modelling, identification, control, 
forecasting and decision making5, and the literature is full of detailed exposi- 
tions of these individual techniques which usually lend themselves to specific, 
mostly well understood problems in science and engineering. While over the 
last few decades researchers have focused on refining these approaches and 
with respect to specific problems, I am convinced that current challenges - 
for example, in business process analysis, financial forecasting, and molecu- 
lar biology - require us to “zoom out” to consider principles, paradigms and 
methodologies from a global or more abstract point of view. As we shall 
see, various methodologies, often perceived as distinct or competitive, are in 
fact closely related (i.e. complementary). Having knowledge of formal rela- 
tionships and semantic differences we are now in the position to choose the 
appropriate representation for a given problem. 

For example, in molecular biology, sequences of nucleotides (describing 
genomes) and amino acids (describing proteins) form the basic “information 
units” from which scientists try to extract patterns. Such patterns hint at 
relationships between often numerous variables. These relationships may be 
time-dependent, they may be ‘logical’ in nature (truth relations), or they 
simply state some unqualified form of coexistence or association (mapping). 
Reasonably accurate formal and possibly dynamic models may not be realis- 
tic yet but’ one can safely assume that no one single modelling paradigm will 
be sufficient to capture all the aspects of any given system. Instead it will 
be important to understand the principle ideas of formal mathematical mod- 
elling, the encoding of time and the formulation of states and relationships. 

5As we shall s ee, the purpose of a model is, if initially for understanding hidden relation- 
ships, ultimately for decision making. Forecasting, prediction, control, classification and 
prioritization are only examples of decision making for which, assuming a minimum degree 
of rationality, we require a model. 



PREFACE ‘=’ XIII 

A specific approach is then selected among well-understood principles such 
as finite automaton, black-box model, rule-based system, and so forth. The 
choice will not just depend upon the nature of these complex relationships 
but also upon how we perceive and we wish to use them. For this reason, we 
shall not be at all concerned with the intrinsic aspects of models. We will 
not consider, for instance, approximation and forecasting accuracy but will 
instead focus on the global properties, the relationships and similarities be- 
tween different approaches. Hopefully, the reader will be surprised how closely 
related, or similar, many concepts usually considered as distinct actually are. 
Apart from a ‘natural’ and desirable specialization in order to study any par- 
ticular approach in greater detail, to gain a better understanding of it, there 
is an unpleasant tendency in systems and control theory to emphasize differ- 
ences, usually by pointing out advantages (w.r.t. particular properties), “to 
rubbish” other ideas in order to get your own approach considered as ‘new’ 
(publishable). Th is unnecessary obsession with separation, is partly fueled 
by the way funding is provided for research - which requires the researcher 
t,o speculate about (fairly specific) applications and to claim advantages over 
other concepts. This entails that, in order to be %uccessful’, one has to focus 
on one particular approach (knowledge and time are limited) and constantly 
point out differences rather than seeking synergy or integration (which re- 
quires a broader knowledge base, more time, and does not lead immediately 
to applications.). 

In modern systems theory and its applications as described above, the 
physical structure of the system under consideration is of secondary interest. 
Instead, a model is intended to appropriately represent the behavior of the sys- 
tem under consideration. We therefore require methodologies and paradigms 
which provide interpretability in addition to accuracy. Accuracy is thereby un- 
derstood not as the ability to provide a numerical value which minimizes (for 
example) the mean-square-error, but rather as the ability to be precise and 
honest about uncertainty. The forecast of a conventional time-series model, 
based on various simplifying assumptions, is not necessarily more accurate 
t,han the forecast of a rule-based fuzzy system generating a possibility distri- 
bution. A fuzzy set may be more precise than a real number! 

In this book, WC are concerned with the fundamental aspects of data anal- 
ysis, system modelling and uncertainty calculi. It is organized as follows: 
Key concepts in modelling, identification and clustering, including their fuzzy 
mathematical extension, are reviewed. Standard paradigms to modelling and 
identification are discussed with the conclusion that a particular mathemati- 
cal framework is a matter of preference with any experimentally verifiable ap- 
proach being valid. The combination of classical state-space approaches and 
fuzzy systems, suggests a new paradigm for a propositional calculus of sys- 
tems. Subsets of the state-space are identified with logical propositions. The 
motivation behind the proposed methodology is to put together two streams 
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of ideas: a) fuzzy clustering inducing fuzzy equivalence classes with respect to 
generalized equivalence relations and b) the question of finding characteristics 
of non-transitive systems using propositional logical systems. 

Typing this book, clustered into clearly separated sections forming an or- 
dered sequence, reflected the struggle of my mind with its content - we tend to 
impose a linear ordering (subsequent sections) on issues where we know a web- 
like structure is more realistic. We also tend to reduce problems into smaller 
(linear) subproblems (chapter, section, subsection), such that the whole is 
represented as the sum of its parts. Generating such hierarchical structures, 
free of interconnections suggests dichotomies where, in fact, the whole is more 
than the sum of its parts. Unable to overcome the two-dimensional world of 
paper, screens and the linear order of words, I have avoided clearly separated 
chapters and encourage the reader to skip forward and backward as he or she 
goes along reading the book in the usual way. However, this is not intended as 
an excuse for neglect to structure in the layout of this book. Although I con- 
cede that the spread of arguments across various sections may at first appear 
a little confusing (and perhaps even daunting to some), I believe this struc- 
ture to be a necessary evil and that it will eventually prove very rewarding. 
I fully accept that it is the responsibility of the author to control the process 
of forming thoughts into words, and then transcribing them onto paper as 
text, to be recreated in someone else’s mind. It is astonishing how precisely 
we can communicate experiences verbally but are unable to formalize them. 
Instead of providing a mathematical concept in textual form it sometimes 
appears more convenient to focus just on the math. For example, instead of 
describing the context in which data are generated in order to understand 
what it means if they are correlated, we ‘simply’ establish a functional rela- 
tionship where semantics seems of little importance... that is, until we try to 
learn something from data which we did not know already! The fact that the 
mathematical world is embodied in percepts while existing in independence 
from them, is often used as an excuse to “let the equations speak”. It is true 
that mathematical truth is likewise manifest in, but independent of, any ma- 
terial embodiment and is thus outside the perceptual categories of space, time 
and causality. However, I find this only initially satisfying since we quickly 
realize that we use mathematics to describe aspects of the phenomenal world 
and that syntactic rules cannot be independently discussed from semantics 
(i.e. the meaning and interpretation of the context which the mathematics 
is intended to describe). Therefore by suggesting formal equivalence or sim- 
ilarity we may forget that the mathematics is about “something”, that is, 
that the propositions express percepts or qualities. A fact or datum by it- 
self is essentially meaningless; it is only the interpretation assigned to it that 
has significance. On the other hand we are informally free to interpret these 
propositions in any way that we want. It therefore seems to me that in order 
to make the struggle for completeness, consistency and clarity bearable, we 
need to turn confusion into a wonder for diversity and complexity. 
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Although the material of this book has been taught to students studying 
control theory, I hope it is of interest across the engineering disciplines, math- 
ematics, and the sciences. This book is dedicated to those whose minds cross 
boundaries. 

Mtrnchester, April 2001 
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Introduction 

Scientific theories deal with concepts - not reality. Formula and theories are so 
formulated as to correspond in some ‘useful’ way to the real world. The quest for 
precision is analogous to the quest for certainty and both - precision and certainty 
are impossible to attain. 

-Karl Popper 

Control theory evolved within systems theory and from cybernetics by fo- 
cussing on closed-loop (feedback) control of engineering systems. Mathemat- 
ical control theory has made considerable progress not only with respect to 
linear time-invariant systems but also in the analysis of nonlinear systems. As 
a result of the progress, researchers have become specialists in usually a fairly 
narrow view of how to model and control a system. Current challenges in 
science and engineering seem to require a different breed of researchers. I be- 
lieve it is again time to take a broader look at (dynamic) systems and students 
studying control theory should be in a good position to play a useful role in 
Science and Engineering: For a control engineer, ‘Model-Predictive Control’ 
is what in General Systems Theory is described by anticipatory systems; ‘Op- 
timal Control’ describes goal seeking systems and possibly most general, any 
control system is, in fact, successive decision making in the context of policy 
~mnking . 

Within engineering, models have long been used to predict the temporal 
evolution of the attributes of a physical system. The successful application of 

xix 
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Newton’s laws in describing physical systems by means of differential equa- 
tions has lead to a focus on simulation and the transfer of these principles 
to other areas such as biology, social sciences, operations research, economics 
and so forth. We now realize that owing to complexity, and although ‘in 
principle’ possible, classical modelling is not a practical way forward. With 
complexity I mean in this context the problem of multi-variable, multi-level 
interconnected - ‘complex’ systems for which formal models if applicable (sig- 
nificant) to a larger class of processes are not specific (precise) enough for a 
particular problem and if accurate for a particular problem they are usually 
not generally applicable. 

So if models, describing the physical structure, of a system are not a com- 
plete solution, what else can be done to improve our chances to obtain law-like 
formal models for some aspects of the real world? In molecular biology, com- 
plexity defeats physical modelling of even comparatively simple processes. 
Similarly, in operations research there is considerable interest in models of 
business processes but one goes hardly further than using simple flowcharts. 
Both domains, however, are currently accumulating vast amounts of data 
stored in databases creating new business in the areas of data mining and 
data warehousing. 

Analysis 

Law Explanation: 

1 
theory, subsidiary assumption(s), data 

1 
Inferential Formal Modelling 

} -+ law 

Fig. 1. I Descriptive vs. law-like explanation in system analysis [Bun98]. 

Figure I.1 outlines the two main modes of system analysis: Fact Expla- 
nation, that is, the descriptive analysis of empirical data (e.g., density and 
parameter estimation) and Law ExpZanation, that is, using context-dependent 
theoretical knowledge to describe functional relationships between variables 
representing the system under consideration. The purpose of the latter is usu- 
ally to explain mechanisms (relationships between variables) of the system, 
assuming the model describes a part of the real-world accurately - “as it is”. 
I contend that progress could be made if we instead focus on models that 
describe a system - “as observed”. Focusing on observations and context- 
dependent knowledge requires us to go beyond conventional statistics and 
systems theory, to combine different paradigms in a pragmatic fashion and to 
generalize uncertainty techniques. Fuzzy mathematics, possibility theory and 
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data engineering are the vehicles I promote in this book as a tentative way 
forward. 

It is my view that a priori knowledge is vital for the analysis of com- 
plex systems and should therefore be integrated into systems analysis. This 
statement may, at first, seem nonsense as decades have been spent with the 
objective to abolish the need for a priori knowledge in multi-variate analy- 
sis. I believe that further advances in systems engineering will depen d on the 
success to integrate all kinds of knowledge into the tools used for the analysis 
of complex systems. This book drafts a formal framework in which such a 
synergy of data and knowledge engineering could take place. The philosophy 
of such a program is outlined in Figure 1.2. It is assumed that data sets alone 
would not provide sufficient information for decision making in the presence 
of uncertainty (i.e. forecasting, control and classification). The dilemma that 
even the most sophisticated mathematical techniques for identification and es- 
timation still require substantial knowledge and understanding of the process 
under consideration, is reflected in Norbert Wiener’s complaint (From ‘Cy- 
bernetics: or Control and Communication in the Animal and the Machines’, 
1961): 

“I may remark parenthetically that the modern apparatus of the the- 
ory o,f small samples, once it goes beyond the determination of its own 
specially defined parameters and becomes a m ethod for positive statis- 
tical in,ference in new cases, does not inspire me with any confidence 
unless it is applied by a statistician by whom 
dynam its of the situation are either explicitly 

the main 
known or 

elements of the 
implicitly felt. ” 

In this book we shall present various methodologies which, in combination, 
should help us to improve our ability to turn numerical data into knowledge. 
If only a relatively small number of numerical data are available, we are forced 
to make assumptions about regions of the data space we have no numerical 
evidence for. This form of eztrupolation, can often be guided by rule-based 
expert or operator experience. More recently, the area of ‘Data Mining’ has 
attempted to extract new knowledge from large volumes of multi-variate data. 
In t,hese applications the amount of data available are often very large and 
we are required to find a 
of distribution capturing 

form of abstraction to replace samples by some kind 
propert ies of the underlying variable(s). We should 

note that in both cases the data available usually do not satisfy statistical 
assumptions of repeated trials under fixed conditions and therefore distribu- 
tions used in abstraction and extrapolation become (fuzzy) restrictions of the 
underlying (sub) spaces. Despite all the progress made in data analysis, we 
must admit that even today we have to have a good idea of what we are look- 
ing for in searching data and that a good knowledge of the context in which 
data are generated is indispensable. More general, I shall‘claim that there are 
fundamental limits in analyzing systems. The success in modelling complex 
systems depends therefore very much on our ability to formalize and combine 
the various distinct forms of uncertainty relevant to systems engineering (i. e. 
randomness, fuzziness, vagueness, ambiguity, and imprecision). 
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So far the two branches of quantitative analysis (e.g., time-series analysis) 
and qualitative knowledge processing (e.g., expert systems) have been devel- 
oped separately. I believe that the search for pattern in data with the aim 
to make decisions would benefit from the integration of context-dependent 
knowledge into quantitative multi-variate analysis. Economic forecasting is 
an example, illustrating the fact that though there may well be cycles which 
can be extracted from data sets, (rule-based) knowledge of the political con- 
text provides valuable information on trends as well? 

data sets M multi-variate 

1 (measurement) I- data analysis 

4 
I 

decisions 

Fig. 1.2 The combination of quantitative and qualitative analysis. 

1.1 OVERVIEW OF THE REMAINING CHAPTERS 

We start by introducing the notion of a (dynamic) system and the represen- 
tation of such systems for purposes of analysis. Next, various techniques of 
coping with uncertainty are addressed (including least-squares criterion, max- 
imum likelihood estimation, stochastic processes and so forth). Then, system 
identification (viewed as learning from data) is considered, utilizing a proba- 
bilistic approach (estimates of kernel densities and function approximation). 
This is followed by discussions of specifying propositions as subsets in the data 
space; system identification in the context of fuzzy system formulation and 
as random-set modelling; fuzzy inference engines; fuzzy classification; fuzzy 
control; and fuzzy mathematics. At the end, several appendices are provided. 

61n stock market forecasting, the proposed methodology corresponds to a fusion of technical 
analysis and fundamental analysis (as the two main broad groups of approaches to predict- 
ing changes in security investments). Technical analysis is based on the premise that there 
are identifiable trends in the past data. Technical analysts, often called ‘chartists’, search 
data for turning points, business cycles and trends. Fundamental analysis uses information 
from annual reports, financial and business news and so forth. to estimate the ‘intrinsic 
value’ of a given security. 
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In Section 1, I discuss classical modelling as the process which specifies a 
set of functions. Learning from data is subsequently described as the infer- 
ence of some dependency - choosing an ‘appropriate’ function from a given 
set of functions. Section 3 outlines the classical parametric approach to sys- 
tem identification: We try to identify a functional dependency, linear in its 
parameters, which is a reasonable approximation to the desired function. The 
motivation for this philosophy comes from the Weierstrass theorem, accord- 
ing to which any continuous function can be approximated on an interval by 
polynomials. 

A critical discussion of the classical and fuzzy systems approaches, suggests 
a very different philosophy of modelling: a propositional calculus of (dynamic) 
systems, based on discrete sampling of a compact (T + m)-dimensional mani- 
fold E embedded in a vector space Iw’+” .7 Then, sampled data induce clusters, 
hence partitions, in the multi-variate data space. The approach is motivated 
by two developments: The logic of quantum mechanics as described in the 
1930s by Birkhoff and Von Neumann and fuzzy clustering in a multi-variate 
data space. 

Birkhoff and Von Neumann showed that for a mathematical description 
of a physical system one can expect to find a calculus of propositions which 
is formally indistinguishable from the calculus of linear (function) subspaces. 
Fuzzy clustering, on the other hand has been successful in pattern recogni- 
tion ‘due to the introduction of fuzzy partition spaces. I combine both ideas 
by describing the underlying mathematical problem as the description of a 
generalized equivalence relation by the set of its clusters in the same way 
as equivalence relations are uniquely determined by their sets of equivalence 
classes. Fuzzy clustering is introduced in Section 4. 

In Section 7, I argue that identification of system models from data will 
inevitably induce similarity relations, that is, uncertainty is certain! I then 
set out to explore the algebraic structure of the data-induced quotient with 
respect to similarity relations, in order to describe a (fuzzy) propositional 
calculus for dynamic systems. The advantage of such an approach is that 
quantitative time-series analysis can easily be merged with a qualitative anal- 
ysis of the context in which reasoning takes place. Such combined strategy 
should improve our predictions or at least increase confidence in forecasts 
about the evolution of a system. The structure of reasoning can be summa- 
rized as follows: 

7I use the te rm manifold in general to describe a collection of objects of a set. For some 
dynamical systems, the data space turns out not to be a vector space but is instead some 
type of topological space. For example, hypersurfaces in R r+m or affine subsets of a vector 
space are manifolds. 
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1 Systems -+ modelling -+ identification --+ regression -+ clustering -+ 
uncertainty, non-transitivity --+ equivalence relations --+ quotient --+ cat- 
egories --+ algebras -+ (fuzzy) logics -+ approximate reasoning + synergy 
of quantitative and qualitative analysis. 

Combining system identification and rule-based systems (Section 5 and 
Section 7.2), we can achieve a synergy of quantitative models (using product 
space clustering) and qualitative information (using approximate reasoning). 
Fuzzy models which can be constructed from fuzzy clustering are described 
in Section 5. 

I will demonstrate how probability theory, statistics, are complemented by 
fuzzy mathematics and possibility theory in the field which we refer to as Data 
Engineering. . A good example for this view is the following chain of formal 
relationships which we show to be equivalent or at least closely related: 

The least-squares principle (Sec.2.1) -+ Fourier series (Sec.2.1.2) -+ ker- 
nel density estimation (Sec.3.2) --+ universal, basis function approxima- 
tion (Sec.3.3) -+ fuzzy rule-based systems (Sec.5). 

Virtually all the material is derived from, or directly related to, two fun- 
damental concepts: The formulation of a system using some dependent vari- 
able(s), denoted y, as a function of the independent variable(s) x: 

Secondly, the expectation operator forms the basis for describing (measuring) 
(un)certainty in systems and data: 

The text is self-contained to the extent that I have tried to explain briefly all 
concepts involved with secondary material presented in the appendices. The 
interested reader will not, however, be able to avoid some decision making for 
further reading. Sections in this book are closely connected and some themes 
run across more than one section. In an attempt to keep the flow of the main 
arguments, examples often contain extensions and new material not covered 
in the preceding sections. A summary of how a system can be modelled, using 
various paradigms introduced in this book, is given in Section 12. 

1.2 SUMMARY OF KEY CONCEPTS AND IDEAS 

Section 1: System Analysis 

cl Scientific theories deal with concepts, not with reality. 
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System theory used mathematical concepts to describe aspects of the ‘real- 

A formal model is a graph, 
characterizing a system or 

i.e. a subset of a product space formed by variables 
process. 

An observable 
measured. 

is some characteristic of a system which can, in principle, be 

A state is a specification of a system or process at a specific instant. 

A dynamic system or process is a system in which the state changes with time. 

Differential equations are a common way to encode dynamics. 

There are many alternative and equally valid ways to represent a system... 

Section 2: Uncertainty Techniques 

The expectation operator is a generic concept to summarize information in 
an underlying universe of discourse. 

Averaging information leads to probability measures and statistics. 

Aggregating information leads to fuzzy measures and possibility measures in 
particular. 

Matching data with a (parametric) model, a criterion for how well the data 
are fitted is required. 

The least-squares criterion provides optimal parameter estimates for linear 
models. 

A geometric (vector) representation of the regression problem shows that the 
optimal solution implies orthogonality. 

The Fourier series is an example for function approximation using the orthog- 
onality principle. 

The least-squares principle does not require a statistical framework to make 
sense. 

Maximum likelihood estimation is a statistical framework for parameter esti- 
mation. 

Stochastic processes are a probabilistic framework to study time-series. 

The Kalman-Bucy filter is a good example how a probabilistic framework, 
orthogonality and the expectation operator can be used to develop a new 
concept to model data. 

Section 3: Learning from Data: System Identification 

Cl The identification of a model is an approximation of the function which relates 
independent [e.g., input-) and dependent (e.g., output-) variables. 

Cl Linear parametric regression, employing the least-squares principle, is an ef- 
ficient tool to identify parameters from data - to learn linear functional rela- 
tionships. 

Cl In a probabilistic framework data are assumed to be distributed according to 
some unknown probability density function. 
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Cl Statistical learning can be seen as a generalization of density estimation. 

Cl Like the Fourier series, Kernel density estimation provides another example 
of the approximation of an unknown function by means of so-called basis 
functions. 

Section 4: Propositions as Subsets of the Data Space 

A more general concept to represent data sampled from a system is that of a 
data space. 

System properties and behavior are reflected by clusters of data. 

Clusters may be interpreted as linear submodels of an overall nonlinear system. 

Clusters may also be interpreted as if-then rules relating properties of the 
variables that form the data space. 

Fuzzy clustering provides least-squares solutions to identify clusters, to parti- 
tion the data space into clusters or classes. 

Fuzzy boundaries between clusters are differentiable functions and hence are 
computationally attractive. 

For many real-world problems a fuzzy partitioning of the underlying space is 
more realistic than ‘hard clustering’. 

Section 5: Fuzzy Systems and Identification 

Fuzzy clustering provides an effective way to identify fuzzy rule-based models 
from data. 

Various fuzzy model structures exist and can be distinguished in terms of 
their simplicity, interpretability and suitability in diverse problems such as 
classification, prediction and control. 

Fuzzy systems are equivalent to the basis function expansion model. 

Fuzzy clustering does not make assumptions about the randomness but can 
be related to regression analysis. 

Fuzzy c-regression models yield simultaneous estimates for the parameters of 
c-regression models. 

Section 6: Random-Set Modelling and Identification 

Random sets can be viewed multi-valued maps or random variables. 

For very small data sets, local uncertainty models (random subsets) can be1 
used to generalize information in the data space. 

The estimation of coverage functions of random sets yields possibility distri- 
bu tions. 

While probabilities describe whether or not an events occurs, possibility de- 
scribes the degree of confidence or feasibility to which some condition exists. 

A random-set approach to identification leads to qualitative predictions. 

Qualitative predictions are fuzzy restrictions and may therefore provide a 
mechanism to combine quantitative data analysis with rule-based systems 
describing aualitative exDert knowledge. 
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Section 7: Certain Uncertainty 

Scientific investigation relies on two principal concepts: comparing and rea- 
soning. 

Mathematical formulations of distance and transitivity are at the core of the 
modelling problem. 

The Poincare paradox describes the indistinguishability of individual elements 
in non-mathematical continua and hence proves that uncertainty is certain. 

Taking account of uncertainty leads to similarity (fuzzy) relations. 

Fuzzy concepts therefore occur ‘naturally’ from fundamental analysis. 

Fuzzy relations motivate approximate reasoning. 

Approximate reasoning is a concept to capture qualitative (context-dependent) 
expert knowledge. 

Section 8: Fuzzy Inference Engines 

Cl There are various distinct ways to realize a fuzzy rule-based system, distin- 
guished by the way rules are combined and the inference engine employed. 

Cl Fuzzy systems are nonlinear mappings. 

Cl Fuzzy systems are universal function approximators. 

Section 9: Fuzzy Classification 

Cl Fuzzy clustering groups unlabelled data into a fixed number of classes and 
hence can be used to design classifiers. 

Cl Specific fuzzy classifiers can be shown to be formally equivalent to optimal 
statistical classifiers. 

0 If-then rule-based fuzzy classifiers provide an intuitive framework to interpret 
data. 

Section 10: Fuzzy Control 

Cl Fuzzy rule-based systems can also be used to devise control laws. 

Cl Fuzzy control can be particularly useful if no linear parametric model of the 
process under control is available. 

0 Fuzzy control is not ‘model-free’ as a good understanding of the process dy- 
namics may be required. 

Cl Fuzzy control lacks of design methodologies. 

Cl Fuzzy controllers are easy to understand and simple to implement. 

Section 11: Fuzzy Mathematics 

Cl Fuzzy concepts are ‘natural’ generalizations of conventional mathematical con- 
cep ts. 

Cl Probability and possibility are complementary. 

Cl Possibility theory is the attempt to be precise about uncertainty, to related 
statistical objects with rule-based and fuzzy concepts. 
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1.3 SYMBOLS AND NOTATION 

The notation used generally follows the usual conventions in the literature. 
Matrices are denoted by bold capital letters while, x can have different mean- 
ings: small bold letters describe random or fuzzy variables, vectors and combi- 
nations of them. x is also used to denote the regressor vector and xj describes 
a vector of measured values for the variables in the regressor vector. Indices 
are generally used with equivalent meaning; j is primarily used to index mea- 
surements mj while i is used to index rules, regressors, and so forth. t denotes 
(continuous-) time, i!l, or k discrete-time. Dependence on time is usually de- 
scribed by using brackets x(k). X denotes a space which may also be of 
dimension greater than one. For example, X = Xi x . . l x X,. If subspaces 
are identified with the real line, IR, we may write X = IV to denote the 
r-dimensional Euclidean space. Calligraphic letters such as B are used to rep- 
resent sets of sets. In few cases the same symbol is used in different contexts. 
For example, o is used to denote the standard deviation of a random-variable; 
ox Y denotes the covariance between x and y, while OR denotes a o-algebra 
0n’R. 

3 

v 
. - - 
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; = {Cj} 
X 
u 
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“for which” or “given”. 
“there exists”. 
“for all” . 
“defined”. 
“approximately”. 
“if and only if” (iff) . 
“therefore” . 
“maps to”. 
“implies” ,. material implication. 
“maps from to”, general mapping. 

system. 
formal model. 
observable. 
dynamic or flow. 
trajectory. 
orbit. 
manifold, data space. 
observation in Z 
set of subsets in Z 
state-space, regressor 
input 
outpu 

space. 
.t space. 

space, set of abstract states. 
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T, s 
#{ > . 
0 

* 

less or equal. 
partial ordering. 
subsethood. 
elementhood. 
union. 
intersection. 
disjunction. 
conjunction. 
negation. 
complement. 
triangular (t-)norm and t-conorm. 
cardinality, size, count. 
compositional operator. 
binary operation. 
estimate. 
optimal value. 
any other value. 
derivative. 

general set. 
sequence. 
set of real numbers, real line. 
vector. 
vector space. 
transposed. 
vector norm. 
distance, metric. 
distance xi IQ - yil between x and y. 
Euclidean norm. 
absolute value. 
determinant of matrix A. 
logarithm to base e. 
logarithm to base 2. 
gradient. 
power class, set of (crisp) sets. 
set of fuzzy sets. 
Bore1 algebra. 
Topology. 
cl-monoid. 
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Laplace operator. 

xxx 

S 

x 

j  

29 

A 
@ 
F 
G 

x-transform operator. 
complex number, imagi 
damping factor. 
unit delay. 
state-transition matrix. 
system matrix. 
gain matrix. 

.nary part. 

regressor vector, random variable. 
sequence of random variables. 
measurement of x. 
measurement vector, data matrix. 
output matrix (vector). 
regressor matrix. 
weighting matrix. 
prediction error. 
ARX, ARMA, and TS-model parameters. 
lag. 
parameter (vector). 

expectation operator. 
crisp set indicator function. 
fuzzy set membership function, fuzzy restriction. 
probability measure. 
probability distribution, density function. 
possibility measure. 
possibility distribution. 
cumulative distribution function. 
fuzzy measure. 
elementary outcomes. 

( > co variance. 
mean. 
correlation. 
multiple correlation coefficient. 
normal or Gaussian distribution. 
loss, risk functional. 
kernel function. 
basis function. 
likelihood function. 
risk function. 
log-likelihood function. 
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d 

nu ) nY 

nR 

%J 
%a 

nn 
LA k 
s 
& 

general limit. 
number of outputs. 
number of regressor variables. 
number of data. 
number of parameters. 
NARX system order. 
number of rules. 
number of projected subsets. 
number of nearest neighbors. 
order of MA model. 
indices. 
threshold tolerance. 
noise, disturbance. 

regression function, hypersurface. 
graph. 
fuzzy graph. 
fuzzy mapping. 
classifier. 
natural map. 
multi- or set-valued mapping. 
Sugeno or fuzzy integral. 
level-set, a-cut. 
co-domain for fuzzy restrictions. 
range. 
rule, relation, set. 
equivalence relation. 
similarity relation. 
equivalence class. 
quotient (set), factor set. 
partition induced by E,. 
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PC > 
cX[() = c IL ,..,c c ( ‘I 
Jw 
U 
J 

C 

WTW 
Mhc, M.f c 

F(i) 

V Cd 

I 
T 
R 
Y 
S 
c 

r) 
bd 

MO 

rule fulfillment. 
cluster prototypes. 
eigenvalue, eigenvector . 
partition matrix Uij E U. 
objective or cost function. 
loop counter. 
number of clusters. 
weighting, weights. 
hard, fuzzy partition space. 
fuzzy covariance matrix. 
set of real c x d matrices. 
identity matrix. 
transformation matrix. 
correlation matrix. 
matrix with pi as diagonal elements. 
autocorrelation matrix. 
covariance matrix. 
mean vector. 
set of d x d positive definite matrices. 
set of typical points. 
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System Analysis 

Cl Scientific theories deal with concepts, not with reality. . 

Cl Systems theory uses mathematical concepts to describe aspects of 
the ‘real- world ‘. 

Cl A formal model is a graph, i.e. a subset of a product space formed 
by variables characterizing a system or process. 

Cl An observable is some characteristic of a system which can, in principle, 
be measured. 

Cl A state is a specification of a system or process at a specific instant. 

Cl A dynamic system or process is a system in which the state changes 
with time. 

Cl Differential equations are a common way to encode dynamics. 

Cl There are many alternative and equally valid ways to represent a system... 

So far as the laws of mathematics refer to reality, they are not certain. And so 
far as they are certain, they do not refer to reality. 

-Albert Einstein 

System theory uses mathematical concepts to describe physical, natural or 
social systems in order to gain an understanding of the processes involved. It 
is important to realize that [PapSl]: %cientific theories deal with concepts, 
not wit,h realit,y. All theoretical results are derived from certain axioms by 
&duct ive logic. In physical sciences, the theories are so formulated as to 

I 
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Phenomenal World Mathematical World 

ambience 

NATURAL 

SYSTEM 

causal entailment (observation, measurement) 

the self 

inferential entailment 

Fig. 7.7 The modelling relation between a natural system G and a formal system %K If 
the modelling relation brings both systems into congruence by suitable modes of encoding 
and decoding, it describes a Natural Law. In this case ‘3n is a model of G, that is, G is a 
realization of L?YL (Picture adopted from R. Rosen [Cas92]). 

correspond in some useful sense to the real world, whatever that may mean. 
However, this correspondence is approximate, and the physical justification 
of all theoretical conclusions is based on some from of inductive reasoning.” 
This means that the model under consideration is a formal model, it does not 
pretend to model reality adequately and hence model assumptions are in a 
sense arbitrary, that is, the model builder can freely decide which model char- 
acteristics he chooses. Hereafter, a system 6 is understood, very generally, 
as a part of the “external world” we wish to describe by means of a formal 
model 92. The situation is illustrated in Figure 1.1. 

Let us first consider a simple example. Assume we are observing three 
variables (attributes) denoted by ~1, x2 and x3 taking values from the sets 
X1 = {1,2,3,4}, X2 = {1,2,3,4}, and X3 = {2,&l&32}, respectively. An 
experiment generates the following measurements: 

ml = (l,l, 1), m2 = (2,2, s>, ms = (3,3, Is>, m4 = (4,4,32). 

The process or system under consideration is therefore represented by the 
collection of all pairs 

M= {mj} j = l,...,d. (1 1) . 

Though M can be considered as a model, representing the system under 
consideration, a more general and constructive description would be desirable. 
From the observations we may consider the following equation as a law that 
describes the generation of the observations above: 

xg = xy + x; . (1 2) . 
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If variables ~1, x2 take their values in the sets Xi and X2, equation (1.2) gives 
the values for x3. We may say that x3 is a function of xi and x2, denoted 
x3 = f(xi, x2). An equivalent alternative to the functional description (1.2) 
is to describe the model by a set of ordered pairs, generalizing (1.1): 

F= (%x2,x3) : x3 = f(xl,x2) l 

> 

This simple example captures most aspects of the problem we will consider 
hereafter. To arrive at a formal model which represents (is a model of) the 
phenomenon under consideration it is necessary to: 

D Select variables (attributes) to be observed. 

D Specify the range of values observed variables can take. 

D Sample or measure data (ordered pairs) in an experiment. 

D Identify a formal model F C XI x l l l x X,. 

D Give an encoding (constructive formulation) f(*) representing the sys- 
tem under consideration. For example, the relation, rule, correspon- 
dence or mapping f ( l ) can be a regression model, differential equations, 
many-valued logical functions, a probability density and so forth. 

Observed variables may, of course, be time functions over the time interval 
{t : tr < t 2 t2) of experimentation. - Typically one variable will be of partic- 
ular interest and is therefore considered as dependent on the other variables. 
We will denote this situation by describing the model as the composite of two 
spaces X (referring to independent variables), U (referring to inputs) and Y 
(outputs or dependent variables), that is, F c U x Y. Since in general, F 
is a, proper relation, for any given input there might be many outputs. This 
violates the classical view on causality and motivates the introduction of the 
concept of state. Once a formal mathematical model is obtained we can: 

D Study the properties of the system (model) using deductive methods or 
simulation. 

D Interpret the meaning of the derived properties in the context of the 
experimental evidence. 

D Using the model, forecasts or classifications can be used in decision 
making, specifically control and prioritization. 

Figure 1.2 outlines the process of system analysis in the way it is considered 
in subsequent sections. 

What follows is a more formal treatment of 
We first introduce the basic notions of state and 

the aspects discussed above. 
observable as discussed by R. 



4 SYSTEM ANALYSIS 

SYSTEM ,‘PROCESS ‘zF”’ G 

G - - DECISION MAKING 
prioritization 

IDENTIFICAT 

f 

ION 

Fig. 1.2 System Analysis. 

Rosen’. Instead of trying to model the internal physical structure of a system, 
we describe formalism to represent the process of ‘recognition’, ‘measurement’, 
‘discrimination’ and ‘classification’ - related to observed quantities. It is the 
dynamical behavior of these ‘observables’ that provides the basis for learning 
about the original system G. In some sense, we therefore assume that either, 
as suggested above, we cannot know principally the exact inner structure of 
G, or complexity suggests a more pragmatic approach to modelling. 

Intuitively, an observable of a system is some characteristic of a system 
which can, in principle, be measured, and a state is a specification of what 
our system is like at a specific instant of time. The basic philosophy on which 
this view rests is summarized by the following two propositions: 

1. Observable events can be represented by the evaluation of factors on 
abstract states. 

2. An observable can be regarded as a mapping from states to real numbers. 

Assume the system under consideration exists in a (finite, infinite or un- 
countable) set of distinct, abstract states X = (~1, x2, . . .}, for example, 
X = {x1 = “OFF”, x2 = “ON”}. We may not be able to determine which 
of t,hese states G is in. This uncertainty will depend on various factors such 

’ R Rosen’s work established a considerable advance to classical modelling and simulation in . 
which physical models, successfully employed in engineering, were less successfully applied 
to science. The reasons why Rosen’s ideas, which, though a major advance in theory, have 
not had the impact they deserve, may be seen in their abstract nature. A good summary 
of Rosen’s work can be found in [Cas92]. 
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as the nature of the information available, the quality of the model, assump- 
Cons made and so on. Observing the system we assume that the system is 
characterized by a set of observables (maps) c, which associate a number or 
point with each state x E X of G. Hence, a state is not an intrinsic property 
of the system itself but rather a mathematical construct, depending upon the 
way we analyze and model G. We therefore assume, that the system G under 
consideration, consists of an abstract state-space and a finite set of observables 

[jZ X + IR +1,2 ,..., n+m+l. 

In principle, we would require an infinite number of observables in order to 
observe the system G completely. In practice, we however assume the system 
is sufficiently described by a finite set of observables: 

G = (X,&,52, l l l &2+m+z) l 

1 .I UNCERTAINTY 

To compare observables with respect to the information they convey, let X 
be a set of states, and consider the observable 

The encoding of an observable as a mapping c: X --+ R from a set X of 
abstract states into the real numbers IR implies that an observation represents 
a description, or encoding, of that state. In most experimental contexts we 
will find that an observable t on X induces an equivalence relation 

Et(x, x’) = 1 if and only if t(x) = ((x’) 

and hence equivabence classes [x& for which elements in X are indistinguish- 
able w.r.t. 6: 

[“IF = {x’ : W) = I(x)} ’ 

The set of equivalence classes on X is called quotient set and is denoted by 
X/Et. Therefore, what we actually observe is usually not X but the set 
of reduced states X/E<. Equivalence relations will play an important role 
throughout what follows. We shall return to the problem of system uncer- 
tainty and equivalence relations in Section 7. 

1.2 THE ART OF MODELLING: LINKAGE 

The relation Et specifies the extent to which the elements of X can be resolved 
by the observable [. In other words, Et specifies these distinct elements of 
X which result in the same observation. Thus, as far as t is concerned, the 
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replacement of any state z by another state in the same equivalence class 
is not un observable event. In fact, using only one observable [, what we 
actually observe is not the state set X, but rather the quotient set X/Et. 
For us, then, this quotient set would be the set of states of our system. Now, 
consider two observables c and 6’ and let 2 be the set of EC! equivalence 
classes that intersect [z&. Intuitively, the observables provide two independent 
descriptions of the same system and we are interested in how these descriptions 
are to be compared. Using Rosen’s terminology, we say 

1. [’ is totally linked to c at [z& if 2 is a single c’ equivalence class (Et 
implies Et, ) . 

2. c’ is partially Zinked to t at [z& if 2 is more than one <’ equivalence 
class but not all of the quotient set X/Ret. 

3. t’ is unlinked to c at [CC]< if 2 = X/Ep 

We shall discuss three cases for which two factors are ‘unlinked’, ‘linked’ 
and ‘partially linked’. We assumed that an observable takes its values in Iw. 
Let us for the sake of simplicity in notation, denote the range of values by X 
such that an observable is a mapping from X to X: 

We first consider the illustration in Figure 1.3 defining two factors ( and c’ 
which partition X in different ways. 

Fig. 1.3 Example of two totally unlinked factors c and I’. The grey area on the left is the 
equivalence class [z]< generated by c on X. 

The concept of linkage between factors ( and [’ becomes plausible by as- 
suming a given [xl5 in X/Et and subsequently to discuss which t/-equivalence 
classes intersect with [x&. From Figure 1.3, we find that factor <’ splits the 
classes of EC such that t’ can distinguish between values, indistinguishable 
via [. We say that the greater the extent of the splitting of [xl< by [‘, the 
more unlinked t’ is to t at [x1(. We find that 
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D The whole of X/Et!, i.e. both t/-classes intersect with [+: t’ is said 
to be unlinked to t at [xl<. 

D c’ is unlinked to t at each [z&; every EC-class intersects every Et+class 
and conversely: t’ is said to be totally unlinked to [. 

Having fixed some value Z in c(X), I’ ( ) z is not arbitrary in c’(X); the coor- 
dinates f(z), g(z) of x E X are not independently variable in X/Et, X/E</, 
respectively. 

X/E<, = X/EC 

Fig. 1.4 Two examples of two totally linked factors [ and <’ such that Et refines I+. 

Figure 1.4 illustrates the second extreme: total linkage. We make the 
following observations: 

D Only a single c’-class intersects with [x]~: c’ is said to be linked to 5 at 

lx-&* 

D Since <’ is linked to < at each [x]~, every class of EC intersects exactly 
one class of Eel, namely, the one which contains it: [’ is said to be totally 
linked to c. 

If <’ and t are totally linked, E[ is said to refine Et/, c’ does not split the 
classes of EC and no new information is obtained from an additional factor <‘. 
The coordinates t(x) and [‘( x are independently variable in X/Et, X/Et/ ) 
respectively. That is, having fixed some value or: in t(X) we may find avalue 
in X such that t(x) = or: and c’(x) is arbitrary in c’(X). 

In general, let EC, Et/ be equivalence relations on a set X. Et is said to be 
a1 refinement of Et/ if EC (x1, x2) implies Et! (xl, x2). In terms of equivalence 
class, t,his means that every Et-equivalence class is a subset of some Et+ 
equivalence class or in other words, Et refining Et/ means that elementsof 
the partition from EC/ are further partitioned by EC and blocks of the Et) 
partition can be obtained from the set-theoretic union of Et-blocks. If Et is 
a1 refinement of EC/, then there is a unique mapping 
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which makes the following diagram commute: 

pyx\ PEp 

h 

WE< * Xl% 

Thus the value of I’ on x in X is completely determined by the value of c 
on that x through the relation c’(x) = h(l(z)). That is, I’ is a function of 
[ and 5’ does actually not need to be measured. Next, let us assume that 
t, [’ : X -+ (0, 1) are defined such that their values are equal to one if x is on 
the right of the line which partitions X and zero otherwise. We then have the 
situation depicted on the right in Figure 1.5 where we find that: 

D For x1, only one (‘-class intersects with [x]~ but not all of X/E,/. That 
is, 6’ is linked to [ at [x][. 

D For x2, both [‘-classes intersect with [xl< and hence t’ is unlinked to c 

at [“I<* 

We also note that the linkage relationship between < and {’ is not symmetric, 
that is, the linkage of <’ to < at [x& can be different from the linkage of [ to 

I 

cJ-9 = O r(x) = 1 1 c(x) = 1 
C’(x) = 0 <‘(x) = 0 ; <‘(x)=1 

Fig. 1.5 Two examples of partial linkage between factors. 

Before concluding this subsection, we look at another illustration of linkage. 
From Figure 1.6, we have the following equivalence classes for e and I’ from 
which we find that [ and c’ are totally unlinked. 

[Xl]< = {Xl, 22) [Xl]<’ = {Xl, 23) x/E< = {{%x2}, (23~x4)) 

[X2]< = (217 22) [X2&’ = (22,x4} X/E<, = {(21,x3}, {x2,x4}} 

[x3& = {x3,x4} [X3]</ = {Xl, x3) 

[X4]< = (X3, x4) [x4]<! = (22, x4} X/E&$, = {-w, {x2>, -@3L {x4)} 
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Fig. 1.6 Example of two totally unlinked factors c and [‘. 

In Figure 1.7, we find an example of total linkage. The equivalence classes 
and quotient sets are as follows: 

Fig. 7.7 Example of two totally linked factors c and c’. 

Finally we look at an example of partial linkage, illustrated in Figure 1.8. 
The equivalence classes and quotient sets are: 

[“l][ = {a, zz> [“l]F’ = @l} x/Et = {{%~2},{~3~24}} 

[X2]< = {Xl 7 22) [X2]</ = {z2,23) X/Et! = ((21)~ (~2~~3)~ {x4)} 

[X3]< = {x3,24} [Zg]y = {x2,23} 

[X4]< = (~37~4) [2q]E/ = (x4) X/E<<’ = {{d, {~a>, {x3>, (241) 

With respect to the linkage of <’ to < we find that for all x in X, t’ is partially 
linked to t at [xl< since it intersects with more than one J/-class but not all 
of X/EEL The linkage of < to 6’ at [xl<, is, however, different: 

* D Linkage at [x&. Intersects with a single t-class. 

D Unlinked at [x2&, and [x3&,: Intersections with all of X/Et. 

D Linkage at [x4]<, . 
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Fig. 1.8 Example of partial linkage between c and <‘. 

The aim of a product space representation is to obtain for a given J: E X a 
unique representation in form of ‘coordinates’: 

The expectation is therefore that two observables provide a more comprehen- 
sive description of elements of X. Considering a pair of observables (<, c’), 
as if they describe one, we would say that two abstract states are equivalent 
if neither e nor <’ can distinguish between them. That is, if the pair (<, {‘) 
imposes a single equivalence relation Et<’ on X, where Etc/ holds if and only 
if c(xi) = c(xz) and <‘(xl) = t/(x2)* Th e equivalence classes of this new re- 
lation Ett 1 are formed from the intersections of the equivalence classes of EE 
with Et/. We then can form the quotient set X/E,<, and given an equivalence 
class in X/Eet 1 we can associate with it a unique pair of numbers (c(x), c’(x)) 
for any abstract state x in that class. Thus X/E~~I is a new description of X, 
playing the same role as the the state descriptions X/Et and X/Et/ but finer 
than either of them. X/Et,1 assumes the role of what is usually called the 
phase space or state-space, with c and c’ playing now the role of state vari- 
ables. The case for two observables can be generalized to an arbitrary family 
of observables, in which case the symbol n is used to denote the product. 

The linkage relation between observables c and t’ can be represented ge- 
ometrically in the two-dimensional ‘state-space’ + c(X) x c’(X) as a curve, 
that is, as a relation 

in which t’(x) can be considered as the independent variable. More general 
relationships between observables are described in the equation of state 

f (e i l,***, t n+m+l) =o i = 1,2 )...) T-n. (I 4) . 

We note that an equation of state establishes a deterministic relationship 
between observables but not necessarily conveys information about causal 
links. In [Cas92] the following example is given: Let 6 be a closed vessel 
containing an ideal gas. Take X to be the positions and velocities of the 
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molecules making up the gas, and define the three observables for properties 
of the gas 

P(X) = pressure when in state z:, 

v(x) = volume when in state x, 

T(x) = temperature when in state x . 

Then the ideal gas law asserts the single equation of state 

specifically .f(p, 21, t) = pv - t . 

Observables whose values remain fixed for every state x C X are called 
parameters, & (2) = &. For I parameters we write i = n + m + 1,n + m + 
2,..., n + ml -I- I, 

If in addition m observables &+I, &+2, . . . , <n+m are functions of the 
ing observables [I, 62,. . . , &, we use the notation 

remain- 

and obtain for the equation of state, 

f  (u;  0) = Y l (1 5) 

.  

We may then interpret the independent observables u, as inputs to the system 
and dependent observables y as the resulting outputs. We can think that the 
inputs somehow ‘determine’2 the outputs. Before considering other model 
structures, let us consider the fundamental question of how to decide whether 
two descriptions f(u; 0) and f(u; 0’) of G are equivalent, that is, contain the 
same information. We note that f(u; 0) is, in fact, a family of models, indexed 
by & Then the two maps 

f e : U-+Y and fel : U --+ Y I 

where U and Y are the input and output spaces, respectively, are considered 
to be equivalent if there exist bijections (one-to-one and onto)3 

se,@ : u-+u and he ,el : Y-+Y, 

“We should emp h a size that causation is not mirrored by a functional representation such 
as y = f(u). Causal connections are essentially asymmetrical but y = f(u) can be inverted 
to yield u = f-l(y), so that the relative places of the ‘cause’, and of the ‘effect’ can be 
exchanged. 
3 An overvie w of different types of mappings is provided in Appendix 13.1. 
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which enable us to transj~rm fe into fel, that is, the following diagram com- 
mutes: 

fe 
u *Y 

Qe,e’ 
I _I 

he,e1 

f 8’ 
u Y 

This diagram is called commutative diagramm since the maps satisfy the fol- 
lowing relation: 

fel O  Se,el = he,61 0 fe l 

An important conclusion is that only those properties of 9R which remain 
invariant under such transformation, are intrinsic properties of the system 6. 
The symbol o denotes the composition of two functions defined as follows: 
Given any two functions g and h, when the codomain of g is the domain of h 
as in 9 h 

U-X-Y 

the composite function h o g is defined as the set of ordered pairs 

{ (UJ) : u E U,g E Y, and 3 x E X with (u, 2> E g and (w, y) E h} . (1.6) 

Illustrating the composition with the commutative diagram 

U-X 

\I 
%I 

h 

9 

Y 

we can interpret the composition as the rule “first apply g, then apply h”, 

(h O 9K4 = h(d4L f ormalizing the idea of two operations carried out in 
succession. We may therefore use the composition of mappings as a means to 
describe dynamics - changes in the ‘state’ of a system. 

We have outlined the general framework of system analysis, (Figures 1.1 
and 1.2)) and are now in the position to discuss various more specific math- 
ematical models. State equation (1.5) suggests a model of 6 where f(v) is 
a mapping that relates the inputs u directly to the outputs y of the system 
without considering ‘inner states’: 

Then any specific model describes a gruph F of the mapping which represents 
system 6: 

FcUxY. (18) . 
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Modelling refers to the task of relating observations with the mapping de- 
scribed by the set F. Figure 1.9 illustrates the concept of a graph, where the 
function f : X --+ IR is defined by the set of ordered triples (~1, ~2, f(ur , ~2)) 
such that each triple is belonging to lR3 forming a surface F = ( (~1, ~2, y) E 
R3 : y = f(ur, ZQ)}. As we shall see shortly further below, the result of the 
operation f is not always a real number and one then refers to f as a mupping. 
For example, in (1.9) below, the vector-valued function f : Iw” -+ Iw” takes 
the vector u E Iw” to a unique vector f(u) E Iwm. 

Y 

Fig. 1.9 Graph of f : U -+ R, with U C R2. 

Now, let us assume we are given the input-output relation, characterized 
by observations of the inputs and outputs. We then wish to study the internal 
properties of the system. More specifically, let the input-output relation be 
given by 

f . . ti + 9 (1% . 

U(k) H Y(W > 

where the system maps an input sequence u(k) to an output sequence y(k): 

u(k) t (UO,Ul,* l l 7%) uj E u, u(k) E 6 (1.10) 

Y(k) t (Yl,Yad%-) Yj E ye y(k) E F l (1.11) 

An internal model is then realized by the introduction of a state-space X2 
where the transition map g: 17 -+ X (onto) and the output map h: 2 -+ Y 
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(one-to-one) are given as: 

As the mapping refers to sequences, 6, 2, and ? denote finite-dimensional 
vector spaces (linear manifolds) whose elements are sequences of vectors. If 
the system has n independent inputs and m independent outputs, we assume 

u c IFS? and YCIECY 

The input-output relation provides us with a global model of 6: 

i?&= 
( m  f )  l (1.13) 

Given the input-output relation f : 7? --+ ?, in order to construct a more 
detailed - internal model of the system, our task is to construct a state-space 
2, an initial state x(O), transition map g: 6 -+ 2, and output map h: Yf -+ ? 
so that the diagmm 

f 

commutes. The state-vector x(k) can be thought of being in an r-dimensional 
Euclidean space where r is the number of components in vector x(k). Then, 
the state-vector x(k) describes, as a function of time, a curve (trajectory) 
in the r-dimensional state-space. Though this state-space representation is 
a mathematical operator that maps a sequence of inputs into a sequence of 
outputs, the canonical model 

9x1= (K 9, h, x(o)) (1.14) 

is, in fact, an interwE model. Assuming a linear map f in (1.13) we can write 
the input-output relationship in terms of the input and output sequences u( Ic), 

Y@> as 

k-l 

Y(k) = x A@ - Mj> k = 1,2,. . . A(i) E RnzXn . 
j=O 

Consequently, the matrix sequence (Al, AZ, . . .) describes the behavior of the 
system and is an equivalent description of the abstract map f in (1.13). The 
behavior sequence (Al, AZ, . . .) is usually termed the external description of 
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the system. It can be shown that we can construct a canonical internal de- 
scription of the system from the sequence. As shown in the next section we 
need to find matrices F E IEV’ XT) G E IEVx”, and H E IEV xm such that 

A(k) = HFk-lG k = 1,2,. . . 

An important issue is to determine the system dimension, r, for which the 
sequence (Al, AZ, . . .) is uniquely determined. In the next section, we will see 
that processes modelled by differential equations lead directly to the system- 
theoretic concept of a state-space 2 for an internal model. This so-called 
state-space approach is commonly used in systems theory, control engineering 
a)nd will form the basis for the Kalman-Bucy filter in Section 2.3. A dynamical 
system can then be represented in the state-space IR’ by 

x(k + 1) = Fx(k) + Gu(k) x(0) = 0, x(k) E Iw’, ii = O,l, * . . 

Y(k) = Hx(W 

Apart from the state-space model being suitable to model dynamic systems, 
we shall see in Section 2.3 that the concept of mapping sequences fits well the 
formulation of stochastic processes as sequences of random variables. 

1.3 DYNAMIC SYSTEMS 

All models divide naturally...into two 5 priori parts: one is kinematics, whose 
aim is to parameterize the forms of the states of the process under consideration, 
and the other is dynamics, describing the evolution in time of these forms. 

-Rene Thorn 

A dynamical system is one which changes in time; what changes is the state 
of the system. The principle of ‘mathematical causation’ states that there 
exists some ‘law of propagation’ which describes how the state of the system 
evolves. Formally, a dynamical system consists of a pair (X, T) where X is a 
topological space, and T = {Tt}tER+ is a collection of maps indexed by the 

set R+ of non-negative reals denoting time4. The state-space X is usually a 
manifold or topological vector space. The dynamic or flow T on X is made 
up of transformations (maps) 

“The passage of time implies the ideas “before” and “after” 
t” for the binary relation’ 

stated 
luw t < t’ and t’ < t” imply t< <. 

formally in the transitive 
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where both the set of abstract states X and the time set can be either con- 
tinuous or discrete and each domain Xt is an open subsets of X. The map 

T : {(t,x) E JR+ x x: x E x,} + x (1.15) 

(t,x) - Z(x) 

is usually assumed to be continuous and determinism is defined as follows. 
For each x E X, define the set 

I(x) = {t E Et+ : x E Xt} . 

If t E I(x) and s E I(Tt(x)), then s + t E I(x) and 

Ts (G(x)) = Ts+t(x) 

while 
vx E x,  T*(x) = x l 

When T is understood, we write Ti(x) G x(t). The map 

I(x) + x (1.16) 

t-x 

is the trajectory of x E X. Its image is the orbit O(x). The previous section 
introduced the concept of an observable of a system encoded as a mapping 
e: X -+ R from a set X of abstract states into the real numbers R. Given any 
mapping between sets, we can define an equivalence relation Et on its domain, 
by posing that Et (xi, x2) holds if c(xl> = J(xz). Hence if two abstract states 
x1 and x2 generate the same observation they are indistinguishable to the 
measurement. Given an observable 5 on X, we say that < is compatible with 
YZ’t if the dynamic preserves the equivalence classes under [, that is, for any two 
states x and x’ such that s(z) = t’ (x), we have Tf (x) = Tf (x’) for all t f R. 
Let I’ be another observable on X, then both observables are observing the 
same system if there exists a mapping 

such that the diagram 
y4E) t 

XIJ% + w% 

commutes for all t E R. Now consider the situation in which the observables 
[ and t’, through their evaluations on abstract states, are themselves the en- 
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codings of two formal models. As we have seen, the linkage5 between these 
t,wo observa.bles describes how much we learn about l(z) when c(x) is known. 
In this sense, the linkage between the observables also measures the extent to 
which the two formal models are equivalent. If, for example, EE = EC, that is, 
every equivalence class in X/E is also an equivalence class for X/Et and there 
exists an isomorphism between the two formal representations. Or, stated in 
other words, with our formal models we describe what we observe rather than 
the actual process. For many physical and engineering systems, we may get 
the impression to model with differential equations (e.g., Newtons’ laws of 
physics) the actual process “as it is”. The subsequent success of such physical 
models in engineering has led to a focus on simulation and and modelling in 
the sense of differential equations. Current challenges in the study of com- 
plex large-scale systems, in engineering and biology, however demonstrate the 
limits of this methodology and suggest a focus on “what we observe”. For 
exa.mple, in molecular biology, the modelling of dynamic physical processes 
within a cell are too complex to obtain a sufficiently accurate model of cell in- 
teraction. On the other hand, vast amounts of experimental data are available 
t,hat describe genes and proteins and their ‘function’. What seems therefore 
required is a focus on input-output patterns, on what we can observe, and 
building models that match data with models - identify models from data. In 
this section, we first review the conventional engineering perspective to mod- 
elling dynamic systems before we start to discuss the identification of models 
from numerical data and subsequently return to our quest for new modelling 
paradigms. 

A finite number of states leads to concepts such as finite-state machines or 
Markov chains. A finite-state machine or automaton is a triple of finite sets 
X, U and Y, and a pair of mappings 

9 : XxUxK--+X h: XxK+Y, (1.17) 

where K is the set of integers K = (0, 1,2, . . .}. The elements of X are 
considered as the states of 6; the elements of U are the inputs to 6; and 
the elements of Y are the outputs of 6. Time t is assumed to range over K, 
k E K, with the state, input and output of 6 at time tk denoted by z(k), 
u@>, and YW, respectively. The mappings g and h relate the state at time 
tk+l and the output at time tk to the state and the input at time tk (see 

SThe concept of linkage is due to R. Rosen [Ros85] who developed formal models for 
anticipatory systems. An anticipatory system is one in which a present change of state 
depends upon future circumstances, rather than merely on the present or past. The latter 
systems, that react on the present or past, are then called reactive. The feedback control 
systems, presented in later sections of this book are reactive. Rosen noted that not only in 
biology many systems are anticipatory, that is their current behavior (decisions) are based 
on possible future outcomes. 
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Figure 1.10): 

x@ + 1) = g(xW74~)) 
YW = h(z(lc)) 

: state-transition map . 

: output map . 

(1.18) 

x(o) 

x(k> 4 
YW 

97h 

x(lc + 1) 

a 

Fig. 1.10 A finite-state machine, 

The finite-state machine is therefore a discrete-time dynamical system such 
that for each state, a number of different transitions may occur. Furthermore, 
it is assumed that there is a possibility for control action through a supervi- 
sor which, at any given point in time, may influence transitions. It is then 
natural to consider the problem of designing such a supervisor satisfying cer- 
tain specifications. Intuitively, one would require the supervisor to prohibit 
the occurrence of certain (undesirable) sequences of events, while at the same 
time allowing some other (desirable) sequences of events to occur. Such a 
discrete-event dynamical system is very similar to a discrete-time Markov 
chain, except that there are no assumptions about the probabilities of the 
state-transitions. For this reason, the supervisor design problem is a little 
different from the traditional problems of Markov decision theory, for which 
dynamic programming provides a solution. 

Modelling with Differential Equations 

There are numerous phenomena in which the rate of change of some quantity is 
proportional to the quantity itself and consequently, the differential equation 
s!x 
dx = y where y = eax has served as a model for many biological, chemical 
and physical systems or processes. Depending on whether a is positive or 
negative, we obtain models of exponential growth or decay. To name only few 
examples, 

D If money is compounded continuously at an annual interest rate a, the 
balance grows exponentially in time. 

D The death rate of bacteria under the action of a disinfectant or heat, 
follows an exponential function. Note, however, that the bacteria do not 
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Fig* 7. I I Law of the (average) rate of radioactive decay. 

actually 
(I, provid 

. 
die 
es a 

exponentially 
good model, 

but the exponential function with parameter 
i.e. fits the experimental data well. 

D When sound waves travel through air (or any other medium) their in- 
t,ensity is governed by the simple first order differential equation where y 
denotes the intensity and x the distance travelled. A similar law, known 
as Lambert’s law, holds for the absorption of light in a transparent 
medium. 

D The rate of decay of a radioactive substance is at every moment propor- 
tional to its mass. If we denote the mass by x, the model of this process 
is the differential equation (linkage relation) 

dx -- - 
dt 

-a-x. 

Integrating the differential equation we obtain the solution x(t) = x(O). 
--nt, where x(0) is the initial mass of the substance. The solution is 

zf the general form of an equation of state (1.4), f(x,x(O),a, t) = 0. 
(The law of the (average) rate of radioactive decay is derived on the as- 
sumption of the mutual independence (or randomness) of the successive 
individual disintegrations). 

The only function which is equal to its own derivative is the exponential func- 
tion: if y = eax, then $J = eas. If we solve this simplest of differential 

GL equations, dx = ay, we get the solution y = e’“, where a is an arbitrary 
constant. The solution is a family of exponential curves each corresponding 
to a, different value of a. The solutions for various values of a are plotted in 
Figure 1.11. 

Newton’ s particle mechanics provides probably the most convincing case for 
differential equations and state variables. Consider the si .mplest mechanical 
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system - a single particle moving on a line under the action of a constant force 
F. The motion is governed by Newton’s Second Law, which defines the force 
F acting on a mass point m to be the rate of change of momentum (m . v): 

d(m 9 V) 
F=- 

dt 7 

where v denotes velocity which, in turn, is defined as rate of change of position 
or displacement from some origin of coordinates: 

In order to apply this formulation to an actual system, we must have an inde- 
pendent characterization of the force, expressed in terms of varying quantities 
x and v. For instance, with parameter a, 

F(x,v) = -a. x . 

We thus obtain the equation of motion 

d2x -= 
m  l dt2 

-a-x, 

which may be solved for the displacement x as an explicit function of time as 
shown above. The single second-order equation can be written as a pair of 
first-order equations: 

dx 
dt 

=V 

d(m s v) -=-a-x. 
dt 

According to Newton’s Laws, a system of particles is then sufficiently charac- 
t,erized by the displacement and momentum of the particles. Knowing these 
displacements and momenta at an instant of time thus suffices to specify the 
state of the system completely at that instant, and hence the positions and 
their associated momenta are said to constitute a set of state variables (ob- 
servables) for the system. Furthermore, together with a set of initial values 
of the state variables, the system behavior is determined for all time. We say 
that the system is deterministic. 

At this point we should briefly remind ourselves of the concept of observ- 
ables introduced earlier. For the simple mechanical system we therefore have 
two observables providing measurements of the position x and its derivative. 
Figure 1.12 provides an illustration of how these two observables describe the 
system. Specifically, only one observable would not be sufficient as it would 
only lead to one of the horizontal or vertical lines. Only with both observables 
we can uniquely identify a point in the product space. 
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Fig. 1.12 Example of two observables describing a simple mechanical system following 
Newton’s Law. 

The system of first-order equations can be generalized to the case where 
*Xl,. . .) xT represents a family of physical magnitudes which characterize the 
states of any given system such as chemical processes where xj may represent 
the concentrations of reactants. Causality is assumed with the assumption 
that the rates at which these quantities are changing, at any instant of time, 
depends only on the present state. We may then write a set of first-order 
differential equations in the form 

dxi -- 
dt - 

fi (Xl, l l l 92,) ’ (1.19) 

The mathematical object represented by equation (1.19), has been applied to 
virtually all areas of scientific investigation. For spatial or distributed systems, 
equation (1.19) is generalized by an additional variable such that the equations 
of motion become partial differential equations instead of ordinary differential 
equations. In many engineering problems it is more appropriate to pass from 
t,he continuous-time parameter in (1.19) to a discrete-valued time parameter 
such that the resulting equations of motion become difference equations. If, 
in addition, the set of states that such a system can occupy is discrete, the 
system is described as an automaton as already introduced above. 

For more than one variable we therefore describe a dynamic system by a 
finite-dimensional system of first-order differential equations 

dx -- 
dt 

-h=Fx, (1.20) 

where F is a T x T matrix with constant coefficients and 

X= [Xl). . . , xJ1 E IIr . 
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Equation (1.20) can be described as a mapping as follows: Let f : Iw’ -+ IV be 
defined by f(x> = Fx, with F E IV”, then any vector x = [XI,. . . ,x~]~ E II%’ 
is mapped to a vector f(x) = (fi(x), . . l Jr(x)) E II!%’ with 

fi(X) = kaijxj 7 
j=l 

where aij are the elements of the ith row of matrix F. Thus F is a represen- 
tation of the mapping f. The general solution of (1.20), for all t, is obtained 
by integrating (1.20) to obtain a family of solution curves, called trajectories, 

drawn on the manifold6 2: 

x(t> = x(0) l eFet XEllr. 

The dynamic system is then described by a linear difference equation 

x(k + 1) = Fx(k) , 

where F is a T x T matrix with constant coefficients, k = O,l,. . . and the 
general solution is denoted by 

x(k) = F’“x(0) . 

Previous formulation may be generalized to the time varying vector differen- 
tial equation 

F = F(t) x(t) , 

where x(t) E IEV and F(t) E IEY”. The solution to this equation is then given 
as 

x(t) = qt; to)@) > 

where +(t; to) -L eFt denotes the (n on-singular) state-transition matrix. Now 
considering the linear time-invariant mapping 

f : IE?r + Rim 

x e y=Fx, 

where F is a r x r non-singular matrix, that is, its determinant is not equal 
to zero, and 

f ( x ( t ) )  = [ f l ( x ( t ) ) , * * * , f r ( xo ) ]  E EC l 

For a given vector y a problem arising is to solve the set of r equations given 
by Fx = y for x. The solution is given by x = F-‘y where the inverse matrix 

GThe r-dimensional manifold x s a space i .n which it is possible to set up a 
system near each point such that locally the space lo oks like a subset of II%‘. 

coordinate 
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F-l exists only if F is non-singular. The equation x = F-ly defines the 
inverse mapping 

f 
-1 

: Iwm + lRr 

Y - x = F-‘y . 

Fig. 1.13 Composite output map. 

We should also note that the system 

is, in fact, a composition of two mappings 

x:R + IEr f : lr + lEtm 

t e x(t) x t-) f( > x . 

Such composite rn~~~~~g, applying first x: R -+ Iw” followed by f : IFV -+ Iw” , 
is denoted as f 0 x, that is, 

(f ox) : R + IFr 
t * (f O x>(t) A f (x(t,) l 

The same information is given in the following commutative diagram and is 
also illustrated in Figure 1.13. 

X 

A system is called invertible, if the output uniquely determines the input. 
That is, if a system is represented by a mapping y = f(x), there must exist a 
map g such that x = g( f (x)). Throughout this text, I emphasize formulations 
of systems as some kind of mapping and dynamics as compositions. The 
general motivation is this. Suppose that E is a space on which we have 
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various structures - relations, binary operations, unary operations such as 
complements in Boolean algebras and so on. If Z’ is another space with 
corresponding structures, then the system Z with its operations is isomorphic 
to the system Z’ if there is a one-to-one mapping from Z onto Z’ preserving 
these structures. A homomorphism just preserves the structure, that is, it is 
not required to be one-to-one. 

State-Space Modelling 

Considering a linear functional relationship between n inputs, u(t) E Iw”, and 
nz outputs, y E EP, the input-output model 

k-l 

Y(k) = EA(k - j>w k = 1,2,. . . A(i) E Rmxn 
j=O 

can be shown to be equivalent to the (discrete-time) dynamical system de- 
scribed by 

x(k + 1) = Fx(k) + Gu(k) 

Y(k) = Hx(k) 7 

(1.21) 

where x(k) E RY, u(k) E Iw”, and y(k) E 1w”. In other words, the internal 
model ZYZ1 and global model mG are equivalent if and only if 

A(k) = HFk-lG b’k= 1,2,... . 

Since there are many models !3Xr = (F, G,H) satisfying this relation, the 
notions of reachability and observability are introduced (see e.g. [Cas92] for 
more details). The elements of the state-space may be thought of as being 
points in IK’ but in general, we can view a state x to represent an encoding of 
the input u in the most compact form that is consistent with the generation 
of output y via the map f. In other words, a state describes an equivalence 
class [u]~ of inputs, where we regard two inputs u,u’ as equivalent if they 
generate the same output under f, i.e. u ti u’ if and only if f(u) = f(u’). 
Thus, a model may be seen as an encoding u --+ x = [Ulf, the output of which 
corresponds to a 
the concept of lo 

specific input. 
cal uncertainty 

In Section 6 we pick this 
models in the data space 

idea up to develop 
- r U. 

As stated before, in the state-space model, the relationship between the 
input and output signals is written as a system of first order differential or 
difference equations using an auxiliary state-vector. The state-space represen- 
tation is especially useful in that physical dependencies can easily be incorpo- 
rated into the model 7. For example, consider the following continuous-time 

7Note that d ifferential equations by themselves do not reflect causation; they do not state 
that changes are produced by anyth ing, but on1 .y that they are either accompanied or fol- 
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Fig. 1.14 Matrix block diagram of the general linear continuous-time dynamic system. 

model, represented by a state equation and an output equation: 

k(t) = F(t)x(t) + G(t)u(t) (1.22) 

Y(t> = W)x(t) 7 (1.23) 

where x denotes the state of the system. By a state, it is meant some qualita- 
tive information (a set of numbers, a function, etc.) which is the least amount 
of data one has to know about the past behavior of the system in order to 
predict its future behavior. The components xj of r-vector x are called state 
variables. u(t) is an n-vector (n 5 r) representing the inputs to the system. 
F(t) and G(t) are T x T and T x n matrices, respectively. If all coefficients 
of F(t), G(t) and H(t) are constants, the system is time-invariant. y(t) is a 
?n-vector denoting the outputs of the system; H(t) is an T x m/ matrix where 
rn < r. - The matrix F represents the dynamics and is therefore frequently 
called system matrix. Matrix G describes the constraints on affecting the 
state of the system by the input, and H the constraints on observing the 
st,ate of the system from outputs. Figures 1.14 and 1.15 show the general ma- 
trix block diagram of a state-space model for continuous- and discrete-time, 
respectively. 

The solution to (1.22) can be written in the form 

s t x(t) = qt; to)x(to) + @(t; r)G(r)u(r)dr , (1.24) 
to 

where *(t; to> = eF(t--to) is called the transition matrix of (1.22). Equation 
(1.24) should be read as describing the system evolving from the initial state 
x(to) at time to under the action of u(t). 

ZOWX! by certain other changes. Considering dx/dt = f(t) or dx = f(t)dt, it merely asserts 
l,hat, the variation dx undergone during the time interval dt, equals f(t)dt. The causal 
problem is not a syntactic but a semantic one; it has to do with the interpretation rather 
t,han with the formulations and representations of theories. 
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UCk> x(k + 1) 
unit 

x(k) Y(k) 

) W) ’ 
’ delay 

> Wk) 
4 

1 *(k + 1; k) < 
, 

Fig. 1.15 Matrix block diagram of the general linear discrete-time dynamic system. 

In canonical-variable or normal-form representation of a system, the matrix 
F turns out to be a diagonal matrix with the r poles Xi of the system as its 
diagonal elements. Let us view the equation 

Fx = y 

as a transformation of vector x to vector y by matrix operator F. The question 
we would like to answer is whether there exists a vector x such that a matrix 
operator F transforms it to a vector Xx (A is a constant), that is, to a vector 
having the same direction in state-space as the vector x. Such a vector x, is 
a solution of the equation 

Fx = Xx , 

which can be rewritten as 
(F - X1)x = 0 . (1.25) 

This set of homogenous equations has a non-trivial solution if and only if 

IF-XII =o. 

This equation may be expressed in expanded form as 

q(V = Xr + aJrA1 + a2XrB2 + . l . + a, = 0 . 

The values of X for which the equation is satisfied are called eigenvahes of 
matrix F and the last equation is called the characteristic equation corre- 
sponding to matrix F. The eigenvalues of F are identical to the poles of the 
transfer function of the system. The associated vector x for which a solution 
exists is then called an eigenvector. 

The motion of the dynamical system (its changing state) describes a trajec- 
tory in the state-space. Let us briefly consider the notion of a space. Consider 
the vector x = [xi, 221T E IR2, which we can associate with a point, where 
~1 and ~2 are its Cartesian coordinates (see Figure 1.16). Then IR2 may be 
thought of as the set of all points in the real plane. Since each point with 
coordinates (21, ~2) can be associated with a unique vector x, an alternative 
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interpretation of IR2 is as the set of all vectors from the origin to points. The 
state variables 11;i and x2 of a dynamical system are sometimes referred to as 
phase coordinates and IX2 as the phase-plane. Any set of elements is called 
a ‘space’ rather than a ‘set’ when some operations on the elements of the set 
are defined. In other words, a set associated with some structure is called a 
space. The behavior of a second-order system in time is therefore a path or 
trajectory of a point in IEX2 with x(t> = (xi(t), x2(t)) varying with time. 

x2 

x2 ------- 

- 

I 
I 

0 ’ Xl x1 

Fig. 1.16 
and x:2. 

A vector x = (x1, ~2) in R2 represented as a point with Cartesian coordinates ~1 

With respect to the discrete-time system (1.21) let us first consider the 
time-invariant case and the homogeneous equation where x(k) = 0: 

x(k + 1) = Fx(k) 

with solution 

where 

x(k) = Qi(k ~o>x(~o> 7 

@(Ii; ko) = F@-‘“O) . 

Then, for the time-variant homogeneous equation (1.21) the solution is given 

k-l 

x(k) = <P(k; rco>x(ko) + x @(k;j + l)G(j)x(j) 9 

j=ko 

With ko = 0, instead of (1.21), we write 

x(k + 1) = <P(k + 1; k)x(k) + G(k+o) (1.26) 

Y(k) = H(le)x(k) ’ (1.27) 

If the system is time-invariant we can express + analytically in terms of the 
eigenvalues of F. 

In Section 2.3, we use the state-space representation (1.26) in modelling 
stochastic processes. This is followed by a formulation where the encoding of 
dynamics is transformed into a static regression problem by choosing past or 
delayed values of y and x to define the axes of E 
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1.4 EXAMPLE: COUPLED TANKS MODEL 

In this example we consider a scaled laboratory model of two coupled tanks 
used to test control algorithms. The coupled tanks apparatus consists of a 
transparent perspex container divided into two tanks by a center partition. 
Water is pumped from the reservoir into the first tank by a variable speed 
pump. Holes at the base of the partition allow fluid flow between the two 
tanks. Some or all of the holes can be blocked using the rubber bungs provided 
to change the degree of coupling between the two tanks. The water which flows 
into the second tank is allowed to drain out through an adjustable tap. The 
control input is the pump drive voltage. The sensed output is the water depth 
in tank 2. 

Development of the Model 

Figure 1.17 shows the diagram of the coupled tanks apparatus used for mod- 
elling purposes, where: 

Q i is the fluid flow rate into tank 1 (from the reservoir). 
Q 12 is the fluid flow rate from tank 1 into tank 2. 
Q 0 is the fluid flow rate out of tank 2 (to the reservoir). 
vl is the volume of fluid in tank 1. 
v-2 is the volume of fluid in tank 2. 
Hl is the level of fluid in tank 1. 
H2 is the level of fluid in tank 2. 
A is the cross-sectional area of each tank. 

A 
Drain tap 

_ 
4 

Cross-sectional area = a0 

Discharge coefficient = CL, 

H, Q,, H2 Qo ” s 

Tank 1 

Volume of fluid = V, 

Cross-sectional area = A 

Inter-tank hole Tank 2 

Cross-sectional area = a ,* Volume of fluid = V2 

Discharge coefficient = C, Cross-sectional area = A 
11 

Fig. 1. I7 Diagram of the coupled tanks apparatus for modelling purposes. 
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The dynamic equations of the system may be derived by taking flow bal- 
ances about each tank. For the first tank we have: 

dVl Qi - Q12 = - dt 
(1.28) 

A 
dH 1 - - 
dt l 

(1.29) 

For the second tank: 
dV 

Q12 - Qo = e-z dt 
(1.30) 

dH 2 - - A 
dt 

. (1.31) 

The inter-tank holes and drain tap are assumed to behave like orifices. The 
characteristic equation for an orifice gives (N.B. the square root of the differ- 
ence between the levels of the fluid in tank 1 and tank 2 makes the system 
nonlinear) 

Q12 = CdlZQ2jp9 (Hl - H2) (1.32) 

Q 0 = CdoaoJ2g (H2 - HO) ) (1.33) 

where 

Cdlz is the discharge coefficient of the inter-tank holes. 

c& is the discharge coefficient of the drain tap. 
a12 is the combined cross-sectional area of the inter-tank holes. 
a0 

HO 

9 

is the cross-sectional area of the drain tap. 
is the height of the drain tap. 
is the gravitational acceleration constant. 

Linear Model 

The above equations describe the system in their true nonlinear form. For 
control system analysis and design it is necessary to linearize these equations 
by considering small variations qi in Qi, ~2 in Q2, hr in HI, and I22 in Hz. 
The linear equations are 

dh 1 h 
-Ahl+ 

h 1 - - 
dt 2 h2 + -p (1.34) 

dh2 h h + k2 -h,-p 
dt = A A h2 7 (1.35) 

(1.36) 

(1.37) 
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Taking the Laplace transform gives: 

G(s) - 
-  $$ = [LL2] s2 + ,$2;;;k2q s + 1 l 

(1.38) 

The denominator can be factorized giving time constants Tr and Y’2: 

1 
G 

G(s) = (sTl + 1) (sT2 + 1) ’ 
(1.39) 

Steady-state Operating Conditions 

To determine theoretical values for the model we assume a steady-state oper- 
ating condition with a pump flow rate of 900cm3 amin (Qi = 900cm3 l mir?) . 
Since this is a steady-state condition the inter-tank flow rate and drain tap 
flow rates will also be 900cm3 l min-‘. Therefore: 

Qi = Q12 = Qo = 900 cm3 l min-l . (1.40) 

We will use the coupled tanks apparatus with the largest two inter-tank 
holes plugged (leaving the smallest two unplugged). The smallest two inter- 
tank holes are 0.635cm and 0.317cm in diameter. The drain tap orifice is 
equivalent to an orifice 0.635cm in diameter. Therefore: 

cm2 . 

(1.41) 

(1.42) 

The inter-tank hole, and drain tap discharge coefficients are: 

c&2 = 0.6 (1.43) 

C& = 0.6 . (1.44) 

Other constants are: 

9 = 9.8 mK2 (1.45) 

HO = 3cm (1.46) 

A = 100 cm2 . (1.47) 

The steady-state fluid levels HI and H2 can now be calculated using equations 
(1.32) and (1.33). 



2 

0 

cl 

cl 

cl 

cl 

cl 

El 

cl 

cl 

cl 

Uncertainty Techniques 

The expectation operator is a generic concept to summarize information. 

Averaging information leads to probability measures and statistics. 

Aggregating information leads to fuzzy measures and possibility measures. 

The least-squares criterion provides optimal parameter estimates for linear 
models. 

A geometric representation of the regression problem shows that the 
optimal solution implies orthogonality. 

The Fourier series is an example using the orthogonality principle. 

The least-squares principle does not require a statistical framework to make 
sense. 

Maximum likelihood estimation is a statistical framework for parameter 
estimation. 

Stochastic processes are a probabilistic framework to study time-series. 

The Kalman-Bucy filter is a good example of how a probabilistic framework 
can be used to develop a new concept to model data. 
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It follows that the word probability, in its mathematical acceptance, has refer- 
ence .to the state of our knowledge of the circumstances under which an event 
may happen or fail. With the degree of information we possess concerning the 
circumstances of an event, the reason we have to think that it will occur, or, to 
use a single term, our eqectation of it will vary. Probability is the expectation 
founded upon partial knowledge. 

-George Boole 

In the analysis of complex systems we can expect neither data nor models 
to be precise and free of uncertainty. This section introduces the expectation 
operator as a generic tool to extract information from variables (i.e. signals 
a#nd data). The expectation of any function h with respect to some function 
g both defined on a space, say Y, is given by 

‘The expectation operator may be used in two ways to summarize information: 
(a) averaging data to obtain a single measure if the data are uncertain, in 
particular if they are random; b) aggregating information to obtain a consensus 
between similar pieces of information. The former is primarily dealt with in 
Probability Theory [PapSI], whereas the latter is considered in Possibility 
Theory [NW97, Wo198]. 

If data are considered to be random, the uncertainty of outcomes in Y is 
characterized by some probability distribution or density p(y) which quantifies 
t,he ‘likelihood’ of whether any particular value in Y will, on average, occur or 
not. In a probabilistic setting, it is common practice to associate the outcomes 
in Y with a random variable, denoted y. For some event, represented by 
subset A c Y, the expectation of the characteristic function 5 specifying 
subset A, is defined as the probability of event A: 

s 
+m 

E[b] = CA(Y) P(y> dY where b(Y) = 
1 ifyEA, 

-co - - J AP(Y) dY (2 2) . 

G Pr(A) . 

In this context, two kinds of measures are of particular importance: measures 
of centraE tendency and dispersion of values of variable y. A measure of central 
tendency is the mean value defined by 

E[Yl 
- - 

s 
Y l P(Y) dY 

Y 

-7p (2 3) . 
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From (2.3)) the dispersion of data in Y, around 7, is quantified by the variance 

WY - VI21 = J (Y - VI2 l P(Y) dY 
Y  

t u; . (2 4) . 

The square root of (2.4) is called standard deviation. From (2.4), considering 
two variables x and y we define the covariance between the two variables as 

gx,y G EN x -  %JCY -  71y)] l (2 5) 

.  

If 0x y = 
of this is 

0, then x and y are said 
the correlation coeficient 

to be ‘in dependent ’ . A bounded measure 

. %Y 
PX,Y = - where -l<p<l. - - 

ox l Uy 

(2 6) . 

Mean and variance are two important quantities providing a rough summary 
of the form of the probability distribution. This description is certainly not 
unique as one could construct many distributions, all of which have the same 
values of q and 02, but with their shapes differing in other respects. In order to 
characterize distributions with values such as 
way, the concept of moments is introduced. 

7 and 0 in a more comprehensive 

A ‘problem’ is that the concepts presented so far are abstract, theoretical 
models for what happens ‘in general’. Considering actual data sets we need 
t,o estimate the defined measures by some ‘sample statistics’. Given a finite 
set of data’, M = {mj = zj}, j = 1,. . . , d, we may, for example, use the 
following estimators of (2.3) and (2.4): 

1 d 
fi=iC Xj 

j=l 

h 
u2 

1 d 
In 

A 2 - -- 
d 

Xj - 4 
j=l 

or the unbiased2 estimator 

h 
u2 

j=l 

(2 7) . 

(2 s> . 

(2 9) . 

‘In subsequent sections, the set of training data M is a set of objects (vectors) rnj. For 
example, m = (x, y), where x is a vector of regressors and y denotes the dependent variable. 
For single-valued outcomes we write rnj = zj. 
2Unbiasedness means that the expectation of the estimator, i.e. sample mean 6 (sample 
variance e2), is the mean q (variance a2). A proof can be found in Appendix 13.5. 
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Note that the expectation operator is not exclusive to probability theory. 
Viewing the product in the definition of (2.2) as describing a weighting of 
values y with their likelihood p(y) and the integral as a means to summarize 
the information across Y, we can generalize the definition of the expectation 
operator (2.1) in two ways: considering fuzxy events PA : Y -+ [0, l] and gen- 
eralizing the Riemann integral to the fuxxy integral. Let (Y = IEX, F(Y), PT) 
be a probability space with the event space F(Y) and sample space Y and a 
probability measure Pr : F(Y) + [0, 11. The fuzzy set A = {(y, PA(y)) 1 y  E 
Y} E F(Y), where p: Y -+ [O,l], is called a fuxxy event in Y and the proba- 
bility of the fuzzy event A is defined as the expectation of PA: 

%A] = s b&d dpr 
J 

+oO - - b&d P(Y) dy 
+ Pi;) . 

(2.10) 

Equation (2.10) evaluates the degree with which space Y has the fuzzy prop- 
erty A. The corresponding experiment is a random selection of elements y 
more or less belonging to A. At each trial a membership value PA (yj) is 
provided and 

d 
Cj PA(Yj) 

Pr(A) = lim d , 
d--+oo 

where d denotes the number of trials. 

In (2.1)) the Riemann integral accumulates the ‘evidence’ g(y) of elements 
in y weighted by h(y). Intuitively we may generalize this idea by replacing the 
Riemann integral (sum) and the weighting (product) with two more general 
methods leading to the fuxxy integral: 

Jw(*)l t f h(Y) O 9(Y) 7 
Y 

where the mapping g: F(Y) ---+ [0, oo is referred to as a f~xxy measure gen- ) 
eralizing the concept of a probability measure. The integral is sometimes 
referred to as the Sugeno integral since the concept was introduced by Mi- 
chio Sugeno. If g(A) is considered as a degree of confidence of event A, for 
consistency, g should be monotone in the sense of set-inclusion: 

If A implies B (i.e. A C B), then g(A) 5 g(B) . 

The axiom of additivity for probabilities is relaxed as follows: 

IfAnB=@, theng(AUB)=g(A)*g(B) l (2.12) 



Probability measures are recovered for * = +. Using * = max, we obtain 
possibility measures. Accordingly, the probability distribution function p() 
is replaced by a possibility distribution x () on Y, defined as a m 
the reference set Y into the unit-interval , that is, 

apping from 

7r : Y + [o, l] , 

where n(y) is interpreted as the degree of possibility that y E Y coincides 
with an existing but inaccessible value. For a given fuxxy event represented 
by fuzzy set A with membership function, PA : Y -+ [0, 11, the expectation of 
PA defines the possibility of event A: 

= suP { b&d A n(Y) } 
YEY 

(2.13) 

+ II(A) . 

For ‘crisp’ events, where [A : Y -+ (0, l}, 

rw) = supn(y) . (2.14) 
YEA 

Thus, while in (2.2) evidence is accumulated - the probability is determined 
by measuring the area of p(y) valid w.r.t. A, in (2.14) we pick only the most 
favorable element in Y. The difference is illustrated in Figure 2.1. In contrast 
to the ‘frequentist interpretation’ of probability, describing whether or not an 
event will occur on average, the notion of a degree of possibility is usually 
used to describe degrees of feasibility to which some condition exists. The 
relationship between possibilities and probabilities will be further discussed 
in subsequent sections. A more detailed account on how expectation, integrals, 
probabilities and possibilities are motivated and formalized, can be found in 
Appendix 13.4. The relationship between probability and possibility measures 
is further discussed in Section 6. In Section 11, a bijective transformation 
between both domains is introduced. 

There are three important ideas to be remarked in this section. First, 
fuzzy measures (e.g., possibility measure) are obtained as an expectation us- 
ing a nonlinear generalization of the Lebesgue integral. We shall use the 
statistics and measures introduced here throughout as a tool to quantify un- 
certainty. Other techniques for parameter estimation will be introduced as 
required in any particular context. Second is the need to accumulate or aggre- 
gate (weighted) information into a single object. This operation, formalized 
by some integral, is applied to a space, general set or over time (sequence 
of sampled data). Finally, a criterion is necessary to quantify the overall 
properties of such space, set or sequence. In (2.Q the variability of data is 
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Fig. 2.1 The probability and possibility of event A. 

described as the proximity to (similarity with) a reference value. The distance 
(z - q) of a value x to the mean 7 is squared to eliminate the effect of nega- 
tive values in accumulating individual qualifications into an overall measure. 
The ‘squares criterion’ is fundamental to systems and data analysis. The 
least-squares criterion is commonly used to describe the objective function in 
system identification. It will be introduced in the following section and will 
play a prominent role throughout this book. 

2.1 THE LEAST-SQUARES CRITERION 

You’ve got to draw the line somewhere. 
.as they say. 

In this section, we introduce a technique which allows us to identify system 
models, as discussed in Section 1, from sampled data. The most commonly 
used criterion to quantify the quality of the model fitting the data is called 
‘least-squares’ criterion. It is the basis for regression analysis, hence system 
identification and plays an important role in fuzzy clustering. The geomet- 
rical representation of a least-squares solution provides us with an intuitive 
approach to fuzzy models as universal approximators of a nonlinear regres- 
sion surface, that is, the unknown nonlinear function y = f(x) represents a 
nonlinear (hyper)surface in the product space X x Y c lR’+l. 

The theory of regression is concerned with prediction of a variable z+ on 
the basis of information provided by variables x. Let x A [xl, x2 . . . , XJ be 
the regression vector over some domain X = (Xl x . l l x X,) c 1w’ , called 
the regressor space. The aim then is to identify the static dependence of a 
dependent or response variable, y E Y c R , called the regressand, on the 
independent variables x, called regressors. The concept of system modelling 
for regression analysis is summarized in Figure 2.2. 



THE LEAST-SQUARES CRITERION 37 

Fig. 2.2 Systems modelling for regression analysis. 

The assumption is that y z f(x; 0), where 
captures the dependence of y on x. The aim 

the deterministic function f ( l ) 
of the identification algorithm 

is to construct a function f(x; e>, from a finite set of data M = {mj}, in 
order to find an appropriate representation of f(x). For example, considering 
input-output models, using an autoregressive model structure, the system is 
described by a finite number of past inputs and outputs: 

X& [Y w 7 . . . , y(k - ny + 1), U(k), . . - , U(k - WA + 91T l 

Linear parametric regression, using the least-squares criterion, provides solu- 
tions for linear functions f(e) as discussed in conventional system identification 
[Lju87]. Note that y and x may not be related to time at all. On the other 
hand, y may depend only on time, y = f(t), or y is dependent on some 
variables which themselves vary in time. 

In general, the problem is to find a function of the regressors f(x; 0), called 
regression function, such that the difference, L (y, f(x; 0)), called loss becomes 
small so that y = f(x; 0) is a good prediction of y. Therefore the regression 
model takes the form 

Y = f  (xi 0) l 
(2.15) 

If y and x are described within a stochastic framework, one could, for exam- 
ple, minimize the expected value of the loss, called the risk functional [CM98, 
Vap98] : 

EW = [ PC% Y) dXdY l 

A common loss function for regression is the squared error (Lz): 

(2.16) 

L(Y,fW)) = (Y -fwQ2 l 
(2.17) 
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In this case, the function f that minimizes (2.17) is the conditional expectation 
of y given x1,x2,. . . ,xT 

f(x; e> = E[YlT 01 
called the regression of y on x. In linear parametric regression, y  is fit to a 
linear combination of the xi 

f cx; e) = elxl + 02x2 + l l .  + erx, (2.18) 

with vector 8 = [Oi, 02, . . . , &IT written in vector notation 

jyx;B) = XT8 . 

. . . . . . . ...@ 
I I - 

TI = 

I 

/ I 

=XxY 

I I 
I I Xl . 
I * 

I :*; 

.w 

Fig. 2.3 Data in the regression space. 

Since only a finite set of sampled data M = {mj} is available with 

mj = [XT, yjlT (2.19) 

A [rnlj,.. ’ 7 m(,+l)jl T E IExr+l , 

the variance in (2.17) is replaced by the sample variance 

i & (Yj - f  (xj))2 7 
j=l 

where 
[mlj, -0 .,TTZrj]T -Xj E IIX' . (2.20) 

In the linear case (2.18), we therefore minimize the variance of the residuals 

h 
CT2 

1 d 
e=- d EC Yj - xp)” 

j=l 

(2.21) 
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instead of (2.17). In (2.21), using XT@ as the prediction of 6, 

y-G&e (2.22) 

is called the prediction error which we aim to minimize. Considering a time- 
series, that is, y and e depend on time, the variable e(k) thus represents that 
part of the output y(k) that cannot be predicted from past data. For this 
reason it is also called the innovation at time tk. A suitable 0 to choose is 
the minimizing argument of (2.21) : 

1 d 
~=argmin-;i~(yj-X~O)2, 

j=l 

(2.23) 

called the least-squares estimate. Based on previous observations, we would 
thus use 

9 = XT8 (2.24) 

as a predictor function. Since the loss (2.21) is a quadratic function of 8, it 
can be minimized analytically. The necessary condition for the minimum of 
(2.23) is that all derivatives with respect to the parameters Bi vanish: 

+ &z, - Yj)=O 

as,2 
d 

-- - a8 2 
2 xX2 l (81x1 + ’ l l + OrXr -  Yj)=O 

j=l 

. 

a&,2 d 
-- - de 2c Xr l (0121 + ’ w l + OrXr -  Yj)=O l 

r  j=l 

These conditions can be rewritten in the form of so-called normal equations: 

That is, all 8 that satisfy 

xjYj (2.25) 
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yield a global minimum of (2.23). If the matrix on the left is invertible, we 
have -1 h 8 ld T - - [ 1 2 x XjXj ’ j=l 1 d 

2 x xjYj l j=l (2.26) 

Rewritten in matrix notation, we define the following d x 1 vector and d x T 
matrix 

Yl 
Y2 

Y= 

II 

. . 

Yi 

i 

T’ 
x1 

T  

X= 
X2 

. 

1 
. 
‘T 

xd 

. (2.27) 

(2.28) 

where [XTX]-lXT is known as the Moore-Penrose pseudoinverse and (2.29) 
thus gives the solution to the overdetermined (d > r) system of linear equa- 
tions 

Y=X8. (2.30) 

To ensure that XTX is invertible, one needs to choose inputs to the system 
so that it is “sufficiently excited”. If data are to be weighted, we introduce 
the weighting matrix 

Wl 0 

w= 

[ 1 

l . . (2.31) 

0 Wd 

and write for (2.26) and (2.29), 

e = [XTWX]-lXTwY 

- - WjXjYj . 

(2.32) 

Note that the least-squares fitting makes sense without a probabilistic for- 
mulation. However, in order to study properties of least-squares estimates, 
usually a stochastic framework is used [Lju87]. Then, typical assumptions 
are that the sequence of regressors (X(/C)) is deterministic, the output of the 
system is a random variable that takes on real values and can be interpreted 
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as the sum of a deterministic function and a random error with zero mean, 
leading to the time-series model 

YF + 1) = f  (x(k); 0) + E(k) ) 

where E(IC) is assumed to be a sequence of independent, identically distributed 
random variables with zero mean. In a statistical framework, the assumption 
is that there exists a population random variable y such that E[yJ = f(xj), 
and for the residuals ej, E[ej] = 0. Hence, the deterministic function is the 
mean of the output conditional probability 

f(x) = /Y P(YlX) dY ’ (2.33) 
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Fig. 2.4 Data scatter plot and least-squares line fit. 

From a geometrical perspective, the unknown nonlinear function y = f(x) 
represents a (non)linear hypersurface in the product space X x Y c R?, 
called regression surface. Based on the assumptions that an accurate repre- 
sentation of the dependency y = f (x) is nonlinear, in sections 4 and 5 this 
hypersurface is decomposed into a set of linear (fuzzy) submodels. The ge- 
ometrical view on regression is based on the vector representation. Let us 
consider three data points ml = (-4,0), m2 = (1,3), ms = (3,6) with a 
regression line fitted through the data as shown in Figure 2.4. The model in 
vector-matrix notation, Y = X8+ E, where E = Y - Y denotes the residuals, 
is defined by 
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The fitted regression line is a vector denoted by y. The columns of X are 
sequences of sampled values from zi and ~2 and are therefore also vectors, 
denoted by xi and x2, 

y = 61 l x1 + 62 l x2 or [ii] =&a [i] +g2’ [;] l (2.34) 

Considering variables as vectors in a space defined by observations on the 
axes, we obtain the representation of Figure 2.5. Algebraically, our problem 
is to find a vector that is a linear combination of the vectors xi and x2, and 
geometrically this means, we must select an optimum fit, y*, somewhere on 
the plane generated by xi and x2. It is the fact that the two variables generate 
a plane which is the basis for the geometrical view leading to hypersurfaces. 
To determine the point or vector on this plane which best fits, that is, is 
closest to the observed y according to the least-squares criterion, we have to 
drop a perpendicular from y onto the plane. 

observation 3 

observation 2 

observation 1 

Fig. 2.5 Geometrical representation of a least-squares fit. 

If the regressors are orthogonal, as in Figure 2.7, and we denote by y& yh 
the perpendicular projections of y onto xi and x2, we have y* = yi’ + y!& 
comparing this with (2.34), we can find simple formulas for 01 and 02. For 
only two vectors y and x, the perpendicular (orthogonal) projection of y onto 
x is a scalar multiple of x: 

y’=u*x (2.35) 
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with the problem to determine a such that the inner product (y - a-x) l x 
is zero, that is, the angle between the two vectors is 90” (see Figure 2.6). 

0 any other projection of y onto x. 
0 0 

Fig. 2.6 Orthogonal projection y’ of y  onto x. 

43 

- - 0 

Hence, 

Y'X a=---- 
x*x ' 

(2.36) 

Substituting (2.36) into (2.35) we have as the projection y’ of y onto x 

Y'X y'= - ( > l x . 
x*x 

From (2.37), inserted into y* = yi + yb, the optimal fit is given as 

Comparing (2.38) with (2.34), we obtain the parameter estimates as 

h 

8 

Y l xi 

i=, .  

xi l xi 

(2.37) 

(2.38) 

(2.39) 

In Section 2.1.2, the least-squares criterion is generalized to a function ap- 
proximation problem for which the concept of orthogonal functions plays an 
important role. The Fourier series will serve as an example of a set of orthog- 
onal functions. Further, in Section 2.3, the geometrical view of sequences of 
random variables as vectors and their orthogonality to ensure optimality is 
used to of how the derive the Kalman-Bucy filter as a powerful demonstration 

of expectation can be used in system analysis. concept 
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Fig. 2.7 Vector representation of least-squares regression. 

2.1 .l Example: Regression Line 

The example of a regression line or ‘straight-line-fit’ provides a solution for 
the linear parametric model (2.18) simplified to 

y = &Xl +&$x2 
4 e1 + e22 . (2.40) 

With xl = 1, we write x for x2 and use the subscripts for indices of measured 
values of x. We have the following matrices: 

XT 
[ 

1 - - 
Xl 

1 
x2 

. . . 

. . . 
1 

xd I 

and for the normal equations (2.28) and the parameter estimate (2.29): 

d 

c X 

d 

c X 

c X 

c X2 1 

Considering the two variables y and x, (2.40) defines a straight-line fit through 
the scatter plot of data for y and x. The slope of the line is determined by 
parameter e2 : 

6, d):zy ->:zcY - - 
d): x2 -  (cx)2 l 

(2.41) 
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The result suggests that the regression line (2.40) describes also in some way 
the correlation between the two variables x and y. Then there should be a 
relationship to the correlation coefficient (2.6) defined earlier. In a scatter 
diagram, the ‘cloud’ of data is characterized by the estimates of mean values 
and standard deviation of both variables. More specifically, we can draw the 
a-line through the point of averages (& qy) with a slope defined by &,/&. In 
Figure 2.8, the o-line and least-squares fit of the regression line, together with 
95% confidence intervals3, are shown for the following set of data [FPP97]: 

x 300 351 355 421 422 434 448 471 490 528 

Y 2 2.7 2.72 2.69 2.98 3.09 2.71 3.2 2.94 3.73 

The point of averages is found at (&, Gg) = (422,2.876), 6: = 65.95, 6: = 
0.42, and 8r = 0.56,& = 0.0055. Replacing the covariance and standard 

1 

/Yg. 2.8 Regression line (solid), a-line (dotted), 95% confidence interval (dashed). 

deviations of x and y by their estimators 

* d Id 2̂ 
ox= - 

d In Xj-x 7 rl) 
j=l 

where 
1 d 

jjx = - 
d z Xj 7 

j=l 

3A 95% confidence interval means that we are confident of finding the values in the interval 
3120 around the regression line. That is, a 95% confidence level means we expect the values 
to be in the interval 3120 95% of the time. 
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we obtain the following estimate for the correlation coefficient: 

(2.42) 

The numerator already matches the one in (2.41), and we find that if we 
multiply & by &y/6x, the slope of the o-line, we have found the slope of the 
regression line coinciding with 62: 

d):XY-~~~Y d):zY-D):Y - - 
dC(x-ijx)2 = dxx2 -2d2ij;+d):fj; 

d):XY-CX):Y - - 
d): X2 _ 2^2 

0 2 

- - d):XY-D):Y 

d): x2 - (Xx)" 
- -02 . 

If the correlation coefficient px,y is near +1 we say that x is favorably 
relevant to y and conversely, whereas if px, y is near - 1 we say that x and 
y are unfavorably relevant to one another. If px y is exactly +1 or -1, we 
obtain, as a special case, the linear relation y = 02; + 01. Note, however, that 
variables that are functionally related among each other are correlated but 
not conversely: if the correlation coefficient is near +l or - 1, we may suspect 
the existence of a law, but this is all. 

2.1.2 Example: Fourier Series 

As the previous of a straight-line fit illustrated, the least-squares criterion 
may in general be used to fit functions to data. Or, in other words, consider 
a function y = f(t> which we try to approximate by some $ = f(t; 0) using 
parameter 0. The error of approximation, given by 

s 
+a (f(t) - f(t;e))” dt -03 

is to be minimized using 0. This is the least-squares cost function (2.17). Now, 
let y = f(t) only be specified by a sequence f (tk) sampled at equal distances 
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of time i!l, where /C = 1,2,3, . . . . We define a class of functions f (i!k ; 0)) indexed 
by 0, to minimize the quadratic error 

2 (f (tk) - f (tk; e,)2 l 

k=l 

A general linear form of this approximation is 

(2.43) 
i=l 

a linear combination of a set of functions ($1, $2, . . . , +T) with T parameters 
e1,e 2,.**, 0, used to minimize the quadratic error. A well-known example is 

q$i = ti with i = 1,2,...,r 

such that 

f (t; 8) = el + e2t + e3t2 + l l l + e,tr 

is the least-squares polynomial of order T. In the general case the quadratic 
error takes the form 

$ (& - g 6$ l $!&k) 2 G & where (b&k) G &k, and f(tk) A yk for short. 
n - 

(2.44) 
To obtain a minimum, we take the partial derivatives with respect to Oj and 
set these equal to zero 

8 L2 
d 

- - -2 x $jk l -  

de 
j k=l 

leading to 

=O, 

The number of solutions for (2.45) depends on the nature of the set of functions 
{&} as well as the sampled sequence (yk). If the number of samples, d, is 
larger than the number of functions, T, the quadratic error will be different 
from zero. For d = T, we usually have one solution for which the error is 
zero. For d < T we have various solutions. For a reasonable approximation, 
we consider the minimal mean quadratic error which we obtain by extracting 
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Lz/d from equation (2.44): 

.  (2.46) 

Using the fact that 

kc1 i=l k=l 

j = 192,. . . ,T 

we obtain 

L min 1 d --- - 
d d x 

k=l 

Y: - %k f: ei l +ik + 2 ej l yk l 4jk 

i=l j=l 

- - f g yk (Yk - $ ‘i l YLL) 
- = 

(2.47) 

as a general equation of the mean quadratic error. 

Looking at the form of the set of functions 4 in (2.45)) it appears partic- 
ularly useful if (2.45) could be solved explicitly for the coefficients 0 without 
solving the system of T x T equations beforehand. It turns out that if the set 
of functions 4 is orthogonal, we obtain such a simple solution of (2.45). If we 
view the sampled sequence (?.& = f(tk)) of function f(tk) as a vector 

Y = [Yl,Y2,-dd] 

and denote the prediction error (2.22), f(tk) - f (tk; e), by e, 

e= [el,e2,-ved] 

then we find the minimum for (2.47) if the two vectors are orthogonal, that 
is, their inner product is zero: 

d 

y-e= 
x 

yk l ek = 0 .  (2.48) 
k=l 

Orthogonality of functions is defined analogously. Two functions g(e) and h(e) 
are orthogonal in the interval [a, b] iff 

s b 
g(t) l h(t) dt = 0 . (2.49) 

a 
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Then, the T functions &, i = 1,2,. . . , T are orthogonal over a set of d points 

tk, k = i,2,. . . , d if they are pairwise orthogonal, that is, 

i # j .  (2.50) 
k=l 

Then, in (2.45), only diagonal elements in the T x T matrix are different from 
zero and we have from (2.45) the solutions 

5 Yk ’ 6jk 

e k=l 
j= 

LP 
2 

k=l 
jk 

Note that the denominator is different from zero, as long as at least one 

j = 1,2 ,...) T. (2.51) 

4 
jk is different from zero. In conclusion, we find a simple solution to the 

least-squares problem if the functions & are orthogonal. That is, our approx- 
imation problem has a simple solution if the approximation f ( t ;  0) is a linear 
combination of orthogonal functions. 

Up to now our discussion has been generally about fitting a function f (tk; 0) 
through a set of points f (tk) so as to get a good approximation of y = f(t). 
Probably the best known example for a specific pair of orthogonal functions 
leads to the Fourier series. The principle idea is to decompose a periodic 
function f(t) into a linear combination of harmonics of a certain ‘fundamental 
frequency’ w0 : 

f(t) & $ + 2 ((-& 
l cos(iwot) + bi - sin@&)) . 

i=l 

(2.52) 

In equation (2.52) the fundamental frequency wg is chosen such that the du- 
ration of one period of f(t) equals 27r/w 0, and the ai, bi are coefficients of 
the least-squares. Without loss of generality it is usually assumed that the 
sequence of d points is sampled at tl, = 2 + s = 9, k = 1,2,. . . , d. 
The orthogonality of the sin(.) and cos() terms in (2.52) is given if and only 
if the number of samples d is at least twice as large as the highest order of 
harmonics nh. In this case, the coefficients ai and bi in (2.52) are related to 
the solution (2.51) as follows: 

f: $j”, = 2 cos2(iWOtk) 
k=l k=l 

i = o,l,. . . ,nh 

or & +j”, =e sin2(iw&) i= l,&...,nh 

k=l k=l 
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and from (2.51) the least-squares solution for the Fourier coefficients is 

2 d ai = - 
d 

x yk*cos(iw(-&) i=O,l,.. l ,nh 

k=l 

b 
2 d 

i=- 
d 

x yk l sin&&) i = 1,2,. . vnh l 

k=l 

The extension of the Fourier series leads to the Fourier integral and conse- 
quently to the Fourier transform and Laplace transform. The key idea is that 
with the Fourier series (2.52) we have expressed the time domain signal f(t) 
in terms of its frequency domain components. Analyzing signals and systems 
as a function of frequency rather than time, opens up an alternative frame- 
work for systems analysis, which has been very successful in engineering. The 
practicality of such frequency domain analysis is given by the fact that some 
operations, nonlinear in the time domain, turn out to be linear operations 
in the frequency domain. A brief summary of integral transforms is given in 
Appendix 13.7. 

2.2 MAXIMUM LIKELIHOOD ESTIMATION 

An idea which can 
becomes a method. 

be used once is a trick. I f  it can be used more than once it 

-G. Polya and S. Szegij (1971) 

This section introduces an alternative statistical framework for parameter 
estimation. The maximum likelihood (ML) approach, due to R. A. Fisher, 
suggests to examine the likelihood function of the sample values and to take 
as the estimates of the unknown parameters those values that maximize the 
likelihood function. 

Let M = {(xj, yj)} also denoted {mj}, (2.19), be a set of d sampled data 
pairs; the rnj modelled as outcomes of independent random variables. It is 
assumed that the data observed is drawn from a distribution with distribution 
or density p(MlO) parameterized by 0 = [Oi, . . . , O,]? The key idea in ML 
estimation is to determine the parameter(s) 8 for which the probability of 
observing the outcome M is as high as possible. The function 

e (0; ml, m2, l l l 7 md) = P(MlO> (2.53) 

is the likelihood function. The ML-estimate of the parameter(s) is that value 
of parameters which maximizes the likelihood function 

&,n, = argmax e(8; M) . 
e 

(2.54) 
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Since the argument, maximizing e, is of importance - not the actual value of 
the function at that point, it is common to ignore constants in the likelihood 
function that do not depend upon the parameter(s). In many applications 
it is more convenient to consider the logarithm of the likelihood function4, 
called the log-likelihood function: 

C (e;M) k In !(B;M) . (2.55) 

Since the logarithm is monotonically increasing, maximizing the log-likelihood 
is equivalent to maximizing the likelihood. If the function C is continuously 
differentiable, a necessary (but not sufficient) condition to maximize the (log) 
likelihood is for the gradient to vanish at the value 0 that is the ML value: 

Vee(e=e~L~M)=Velnq8=e~L)M)=o, (2.56) 

[ 

a a a 1 
T 

v*= - -;-•,- ae, 7 de2 de, 
. 

2.2.1 Example: ML-Estimates for the Normal Distribution 

A simple example for the ML approach is estimating the parameters q and g2 
of the normal distribution from a finite set of training data M = {mj = xj}. 
The basic assumption is that the observed d samples were generated according 
to the normal distribution 

1 
P(T %a) = - 

_ (-d2 

a&F 
e 2a2 . 

The likelihood function takes the form 

e(e; M )  = P(3-h) l P(Q) l l . . . Pbd) 

d 

Hence, the log-likelihood function is 

C(0; M) = Pr(Mlq, a2) 

d 
d 

- - -5 ln(2r) - d ln(0) - & x (Xj - ?7)2 l 

j=l 

4For ex ample, i f one estimates a parameter of an exponential probability law, taking the 
natural logarit h m simplifies the maximization to taking the derivative of a sum of values. 

(2.57) 

(2.58) 

(2.59) 
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We maximize the log-likelihood function by taking the partial derivatives, and 
equating these to zero 

dC 1 d --- 
E( dq- - o2 j 

Xj - 54 =0 
1 1 

dC d Id ---- 
da2 - 2a2 

+ 2a4 x (Xj -  q)2 = 0 l 

j=l 

From (2.60) and (2.61) we obtain the ML-estimates as 

For more complicated like1 ihood functions numerical methods are required 
for an iterative optimization. A well-established example is the Expectation 
Maximization (EM) algorithm introduced by A. Dempster to problems with 
a many-to-one mapping from an underlying distribution to the distribution 
governing the observations. 

(2.60) 

(2.61) 

h 
o2 

1 d 
X( 

A 2 -- - 
d 

Xj- . rl) (2 f9 . 
j=l 

2.2.2 The EM Algorithm 

A common task in data analysis or signal processing is the estimation of the 
parameters of a probability distribution function. In many practical situa- 
tions this is a non-trivial problem because direct access to the data necessary 
to estimate the parameters is impossible; some of the data are missing. Such 
difficulties arise when an observed outcome is a result of an accumulation 
of simpler out comes. The Expectation Maximization (EM) algorithm, in- 
troduced by A.P. Dempster, is commonly used to estimate parameters of a 
mixture or missing data model via the maximum likelihood principle. The 
algorithm is ideally suited to problems where there is a many-to-one mapping 
from an underlying distribution to the distribution governing the observation. 

The EM-algorithm 2.1 consists of two major steps: an expectation step, 
followed by a maximization step. The expectation is with respect to the un- 
known underlying variables, using the current estimate of the parameters and 
conditioned upon the observations. The maximization step then provides a 
new estimate of the parameters. These two steps are iterated until conver- 
gence. Section 3.4 provides an example for the EM-algorithm used to identify 
mixture density models. 
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Set loop counter 1 = 0; choose the termination tolerance 6 > 0 and initialize 
paranieter(s) 0(O). 

Repeat for 1 = 1,2,. . .: 

Step 1: E-Step: Estimate unobserved information using 0@-? The unobserved 
probability density function is 

where 0 E 0 is the set of parameters of the density. Because we do not 
have the information of x to maximize lnp(m; 0), we instead maximize the 
expectation of lnp(x; 0) given the data M and our current estimate of 8: 

E[lnp(x. e)(m e@)] 2 Q(e)ecl,) ) 3 - . 

Step 2: M-Step: Compute the ML-estimate of parameter(s) 0(‘+l) using informa- 
tion estimated from the E-step: 

dz+l) = arg max &(0l&)) . 
e 

Analytically, the ML-estimate is obtained by taking the derivative of 
lnp(x; 0) with respect to 0, equating it to zero, and solving for 0. 

Until ecz) - ecz-l) < 6 . 
II II 

Algdthm 2. I The EM-algorithm. 

2.3 STOCHASTIC PROCESSES 

A random variable is neither random nor variable 
- it is simply a function. 

A time-series is a sequence of observations taken sequentially in time. Time- 
series analysis is concerned with techniques for the analysis of the dependence 
among observations and thus to build dynamic models for time-series data. A 
model that describes the probability structure of a sequence of observations 
is called stochastic process. It is assumed that the generating mechanism is 
probabilistic and that the observed series (91, ~2, . . . , yd) is a realization of a 
stochastic process (~1, ~2, . . . , yd) G ?(I!)~. 

Considering a signal that varies over time, we write y(t) to denote observa- 
tions changing over time. Then at discrete instances of time, tk, y(tk) G y(k) 

5We use the notation ? to denote a vector space in general and F(t) to denote a vector space 
induced by the sequence of random variables y(O), . . . , y(t) up to time t. This notation will 
prove useful in deriving the Kalman-Bucy filter. 
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Rg. 2.9 Stochastic process y(t, w) as t-dependent random variable. 

is a random variable 

Y :n + Y 

w H Y( > w . 

Consequently, for each t, the random variable y(t) has a probability density 
function and hence mean and variance as functions of time, given by 

a;(t) = E [(Y(t) - v-y(q2] = .l’+m (Y - v-)2P(Y$) dY ’ 
-cm 

Considering a discrete-time process, that is, values are sampled at equally 
spaced instances of time tk, a stochastic process is then a sequence of random 
variables 

where k E K is an index set. A stochastic process can be viewed as a t- 
dependent random variable (Figure 2.9)) as a joint function of t and w (Fig- 
ure 2.10) or for every w E 52 the mapping from K into Y is called a realization 
(or sample function) of the process (Figure 2.11). The collection of all pos- 
sible realizations is called ensemble. As we are dealing with a collection of 
random variables, one at each time point, the stochastic process is charac- 
terized by its joint distributions. Individual distributions for any instant of 
time are then referred to as marginal distributions. The problem is that, in 
general, we cannot construct the joint distribution from its marginals since 
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these functions tell us nothing about the joint variation. So, in principle, a 
stochastic process is a non-countable sequence of random variables, one for 
each tk. In general, it seems necessary to consider an infinite-dimensional 
probability distribution. Fortunately, it can be shown, that if we are given 
the joint . probability distribution for d values we should have sufficient infor- 
mation to enable us to calculate the 
the complete overall behavior of the 

probability of any event associated with 
process. 

Fig. 2.70 Stochastic process y(t, w) as a joint function oft and w. 

A fundamental assumption of time-series analysis is that the value of the 
series at time tk, y(k), depends only on its previous values (deterministic part) 
and on a random disturbance (stochastic part). Furthermore, this dependence 
is assumed to be linear, leading to a class of linear models called autoregressive 
moving average (ARMA) models. An ARMA model of order ny and nd, 
AR.MA(n+d), is defined by 

%/ 

Y(k) = x ai l y(k -  i) + 2 bi l E(k - i + 1) ) (2.62) 
i=l i=l 

where {ai} and {bi} are the coefficients of the autoregressive (AR) and moving 
average (MA) parts, respectively. The disturbance {I} is white noise with 
zero mean and variance a2 usually assumed normally distributed. In general, 
a white noise process {E:(t)} is defined by 

q&(t)] = 0 
E[E2(t)] = tT2 v t 

E[&(t)&(t + T)] = 0 if 7>0. 

In other words, a white noise process is a sequence of uncorrelated random 
variables. 
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Fig. 2. I I Realization of the stochastic process y(t, w), w-dependent random variable. 

Consider a stochastic process u(t), as an input to a system, with output y 
where the system is specified in terms of the mapping f 

Y=f(U) l 
(2.63) 

The system is deterministic if it operates only on the variable t, treating u 
(‘selecting realizations’) as a parameter. This implies that if two realizations 
of the input are identical in t, then the corresponding realizations of the output 
are also identical in t. The system is called stochastic if f operates on both 
variables t and w. Hereafter we shall only consider deterministic systems. For 
any linear system E[f(u(t))] = f(E[u(t)]). 

In order to make any kind of statistical inference from a single realization 
of a stochastic process, we are forced to make simplifying assumptions. The 
most important restriction leads to the class of stationary processes. It is 
assumed that the process is in some steady-state mode or equilibrium, that 
is, for these processes statistical properties do not change in time, the prob- 
ability distributions are time-invariant, p(y; t> = p(y>. In practice, a much 
weaker definition of stationarity, called second-order or weak stationarity, is 
employed. Stationarity up to order 2 implies that E[y(t)] = q, a constant 
independent of time and the variance of y(t) is equal to a2, also a constant, 
independent of time and E[c(t)c(t + T)] is a function of r only. 

By definition, stationarity implies that the process has a constant mean 7. 
The fact that the covariance of a stationary process is only a function of the 
time difference r (called lag) allows the introduction of two important func- 
tions used to characterize stochastic processes: the uutocovuriunce function 

of Y (t> 

~,,,(7) = JqY(t) - rl) (y(t + 7) - f-I)1 (2.64) 
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and the autocorrelation of y(t) is the expected value of the product y(t) l y(t+ 

r), leading to the autocorrelation function 

( > PY,YW = 5 = EKYW - rl)(Y@ + 7) - 41 (2.65) 
3 JWYW - d21 WY@ + 4 - 77j21 l 

For each r, pY,Y (7) defines the correlation coefficient between pairs of values 
of y(t) separated by an interval of length r. Since the expectation operator is 
a theoretical construct, estimators are required to implement these functions 
for finite sequences of measured data. Given d observations (yr ,y2, . . . , v.J~) of 
a process y(t), and assuming stationarity, the sample mean 

rl( > 
1 d ^r =- 
d x Yj 

j=l 

is used to estimate the sample autocovariance sequence 

Yj+r -  4) (Yj -  7j) l 

j=l 

That is, the expectation is replaced by an average 
times. It should be noted that ?j and y are ran 
pie autocorrelation sequence j&(r) is defined to 
covariance sequence 

&Y,Y r  (  > 

@Y,YW = m  l 

3 

over 
dom 
be tl 

the series at different 
variables. The sam- 
le normalj .zed sample 

(2.66) 

(2.67) 

As in Section 1, a sequence is a vector and so is the sequence of random 
variables up to time t, y(t) = (y(O), . . . ,y(t)), (1.11). The set of all linear 
combinations of these random variables forms a vector space (linear manifold), 
p(t), which is a finite-dimensional subspace of the space of all observations. 
The scalar product of any two vectors (sequences), say x(t) and y(t), then 
defines the covariance ox y. Then the autocovariance, given by the Euclidean 
norm, corresponds to the length of the vector: 

DY,Y = llYM12 ' 

The angle between two vectors x(t) and y(t) is given by 

cos(a) = 
%Y 

Ilx(t)ll l IIYWII 
%Y - - . (2.68) 

ax,, ’ OY,Y 

From this, two sequences are uncorrelated if their vectors are orthogonal. 
terms of expectations, a stochastic process is uncorrelated if 

In 

E[Y(t)Y@ + 41 = E[YWl l E[Y@ + 41 r>l. - (2.69) 
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If in addition 

E[YwY(t + 4 = 0 I (2.70) 

then the stochastic process is said to be orthogonal. 
vector x is a vector of random variables 

In general, a random 

X= [x192, l l l ,XJ ) (2.71) 

characterized by a probability distribution function 

Pr(xl,...,x,) = Pr(xl <x~,-~~,x, <X,> l 

-  -  

The mean of the random vector x is then defined by 

rl, = Jqxl 

qi = J XiPi(Xi)dXi 7 

where pi(xi) is the marginal density of the ith component 
set of parameters is that which indicates the dispersion 
The covariance matrix of x is defined by 

Xl - r)l 

=E : i[ 1 . [Xl - 771 l ’ ’ %I - rln] 

Xn-Th 

(2.72) 

of x. An important 
of the distribution. 

I (Xl - rll)(Xl -71) l *’ (Xl - Th)(Xn - Q-b) 

=E . . . . . . 

( %a- %2)(x1 -rll) l ** (%a -rln>(xn -rln> 

[ E[(Xl - r7l)(Xl - rll)] 

ll< 
l ** E[(xl - rldxn - rln>l 

. - - . 
EE( T--b- vi (Xl - rll >I . . . E[( Xr~-Vn)(~n-r/n)l 

Cln 
. 
. 1 . . 

&an 

The components aij of this matrix are 

Cij = EE( Xi- i rl >( Xj- j rl >3 i,j = I,...+. 

1 (2.73) 

The diagonal components of the covariance matrix are the variances of indi- 
vidual random variables, and the off-diagonal components are the covariances 
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of two random variables xi and xj. The covariance matrix is symmetric and 
can be rewritten in the following form: 

c = E[XXT] - E[x]?jT - qE[xT] + 7pjT 
= s - ?)?jT , 

where 

(2.74) 

p[xlxl] l -  l E[wGJ 

. (2.75) s 1 E[xxT] = 
I 

: 
. 

l . . ; 1 
Equation (2.74) describes the relationship between the covariance and auto- 
correlation matrices, demonstrating that both essentially contain the same 
amount of information. The matrix S of (2.75) is called the autocorrelation 
matrix of x. We can then replace the elements in (2.73) by the variances a:, 
standard deviations and correlation coefficients pij : 

Gi = *; and Cij = PijOiOj . 

We can then express C as a combination of two matrices: 

where 

1 
01 
0 

Y= . . 

0 

0 
02 

0 

. . . 

G-k 1 

C=YRY 

and R = . . . . . . . . 
pi2 l - -  1 

(2.76) 

(2.77) 

. (2.78) 

Matrix R is called correhtion matrix. In contrast to variance or standard 
deviation which depend on the scales of coordinate systems, the correlation 
matrix captures the relationship between random variables independent of 
scale. 

The basic ideas of random variables, random vectors and the parameters 
characterizing them, have been developed into a comprehensive framework to 
analyze signals and systems, in particular, with respect to filtering and control. 
Consider a signal x(t) and noise E(t) where only the sum y(t) = x(t) + E(t) 
can be observed. In a stochastic framework the (real-valued) variables y, x, 
E are considered as random variables” y, x and c. Sampling the signal gives 
a realization of the sequence of random variables (y(O), y(l), . . . , y(t)). The 

6Note that we u se bold letters to describe random variables as well as vector(s). See also 
Figure 2.12. 
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Xl x2 Xn 

Fig. 2.12 Vector-valued random variable x. For simplicity some results 
derived for single-valued random variables but can be extended to vectors. 

in this are 

objective is, on the basis of observations, to make some inference about the 
value of the signal at t = t’, where the following cases can occur7: 

t’<t: - data smoothing ~~nterpolat~on) 

t’=t : filtering 

tbt: prediction 

For 
valued 

any given sequence 
) random variable y (t 

of measured values (yr ,y2, . . . 1 Yd) of the (real- 
), the conditional probability distrib ution function 

Pr(x(t) 5 d 1 Y(o) = it/l, l l l 3 y(t) = yd) 

represents all information about random variable x(t) obtained from the mea- 
surements of random variables y(O), . . . ,y(t). Any statistical estimate of ran- 
dom variable x will be some function of this conditional distribution and 
hence be a function of random variables y(O), . . . , y(t). The estimate itself 
will therefore be a random variable too and the quality of the estimate Iz(t’(t) 
is quantified by a loss function L(a) where L(a) is positive, L(0) = 0, and is a 
non-decreasing function of the estimation error x(t’) - Iz(t’). Commonly, the 
estimate is required to minimize the average loss 

E[L(x(t’) - k(t’))] = E[E[L(x(t’) - ;i:(t’)) 1 y(O), . . . ,  y ( t ) ] ]  l 

7All three cases of data smoothing 
Kalman as the estimation problem. 

9 filtering and prediction were summ arized by R. E. 
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Since the first expectation 
may only’ minimize 

on the right-hand side does not depend on ji: we 

Making some assumptions about the properties of the stochastic processes 
x(t), y(t) and e(t), one can show that the random variable ii(t’lt) which 
minimizes the average loss is the conditional expectation 

jqt’It> = E[x(t’) I  Y (O) ,  l -’ ,YW] l 

One of the most significant application of these ideas to engineering was pre- , 
sented by R. E. Kalman and R. S. Bucy. On the basis of expectations alone, 
without actually calculating any integrals, using the geometric view and the 
orthogonality condition, they were able to derive an optimal (least-squares) 
estimate of x(t’) as an orthogonal projection of x(t’) onto the vector space 
F(t) formed by the random variables y(O), . . . ,y(t) (up to time t) and their 
linear combinations 

x &Y(i) l 

i=to 

Let eta,..., et be an orthogonal basis, that is, any vector (sequence) in ?(t) 

is given by Cl=,, ai. We denote these vectors in i’(t) by 

i=to 

Any vector x(t), not necessarily in p(t), can be decomposed into two parts: a 
part x(t) E F(t) and a part 2(t) orthogonal to g(t), i.e. orthogonal to every 
vector in g(t): 

x(t) = x(t) + x(t) 

= 2 E[X(t) l ei] l ei + x ( t )  ,  

i=t() 

(2.79) 

where x(t) is called the orthogonal projection of x(t) on g(t). In the next 
section we will derive the equations leading to what is known as the Kalman 
filter as an example of how to use expectations and the geometrical view of 
sequences. 
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2.3.1 Example: Kalman-Bucy Filtering 

The assumption of randomness is another mode of abstraction, a constraint which 
will be satisfied in certain kinds of situations and which will fail to be satisfied 
in others. 

-Robert Rosen 

In this section, we derive in detail the basic equations of the Kalman-Bucy 
filter as presented in the first paper [Kal60] that initiated decades of research 
in extending its basic ideas. The Kalman filtering approach may be briefly 
summarized as follows: 

Prior to Kalman’s paper, Wiener’s work in time-series analysis led to 
complex integral equations. Kalman and Bucy converted the problem 
into a nonlinear differential equation whose solution yields the covari- 
ante matrix of the minimum filtering error. This matrix contains all 
information required in designing an optimal filter. 

A (“random”) signal is modelled as a dynamic system excited by white 
noise. 

The optimal filter generates a best linear estimate of the actual (noise- 
free) signal. 

The variance equations are of Ricatti type which occur in the calculus of 
variations and are closely related to the canonical differential equations 
of Hamilton. This establishes some duality between estimation and 
control theory. 

Kalman’s ideas established a novel, mathematically more tractable and ele- 
gant approach to prediction and filtering by using conditional distributions 
and expectations. We derive his equations as an example of how the geo- 
metrical perspective - viewing sequences of random variables as vectors, and 
orthogonality - ensuring optimality can be used effectively. The overall struc- 
ture of the Kalman-Bucy filter - the signal model and the filter itself, are 
illustrated in Figure 2.13. 

For the signal, we consider the dynamic model (1.26) illustrated in Fig- 
ure 1.15, where the input u(k) to the system is assumed to be an independent 
Gaussian vector-valued stochastic process with zero mean and covariance ma- 
trix Q(k): 

E[u(k)] = 0 v k 

E[u(k)u'(k + T)] = 0 if 7 > 0 

E[u(+o)l = Q (k )  l 
(2.80) 
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g(k(k - 1) 
k( 

r I-- 

) G*(k) 

-I--II---- 
i 
L 

signal model 1 11 
------e-------m------- 

Fig. 2.13 Matrix block diagram of the Kalman-Bucy filter. 

Here, X(/C) is an r-vector, and y(k) is an m-vector. Here the elements of matrix 
G(k) are all equal to one. Given the observed values of y(O), . . . , y(k), we aim 
to find an estimate X*(/C + l[k) of x(k) w ic minimizes the expected loss. h h 
From the previous section and the geometrical view of least-squares estimation 
in Section 2.1, the solution to the filtering problem is the orthogonal projection 
of x(k) onto the linear manifold ?(Ic) generated by the observed sequence of 
random variables: 

x*p + Ilk) = E[x(le + l ) Iy (O) ,  l ’ l J (k) ]  (2.81) 

= E[x(lc + l)p$)] 

= x(k + II/C) E P(lc) ! 

In other words, x is that linear function of random variables y(O), . . . , y(k) 
which minimizes a quadratic loss function. Vector y(k) is composed of two 
parts, y(klk - 1) E ?(!c - 1) an d residual y(lcllc - 1) orthogonal to ?(I? - 1): 

y(k) = jqklk - 1) +y(lclk - 1) l (2.82) 
NH -- 
d(k) &(k) EP(k-1) 

The orthogonal spaces ?(lc - 1) (known from, or induced by, (y(O), . . . , y(lc - 
1))) and ?(lc) make up F(k). The component of y(k) lying in ?(lc - l), 
denoted by y(k[Iz - l), using (1.27)) is specified by 

y(klk - 1) = H(k)x*(!+ - 1) inserted into (2.82) leads to 

jqklk - 1) = y(k) - y(klk - 1) 

= y(k) - H(k)x*(k(k - 1) l (2.83) 

Equation (2.83) describes the “not expected” part of the measurement. As- 
suming by induction that x*(k(k - 1) is known, from (2.81) and (2.82) we 
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have 

from 71.26) 

(2.84) 

In (2.84), u(k) is independent of u(k - l), u(k - 2), . . . . Hence from (1.26), 
(1.27) is also independent of y(O), . . . ,y(k) and ?(k - 1) - u(k) is orthogonal 
to ?(k - l), and therefore 

x*(k + lpc) = %(k + 1; k)x*(kp - 1) + E[x(k + l)lP@)] ) (2.85) 

where the term E[x(k + l)]?‘(k)] is assumed to be a linear operation on 
E@lk - 1). Introducing the gain (matrix) G*(k) of the optimal filter (cf. 
Figure 2.13), 

E[x(k + l)]?(k)] = G*(k)y(k]k - 1) . (2.86) 

Combining (2.83), (2.84) and (2.86), 

x*(k + 11/c) = G(k + 1; k)x*(klk - 1) + G*(k) [y(k) - H(k)x*(+ - 1)] 

= @(k + 1; k)x*(k~k - 1) + G*(k)y(k) - G*(k)H(k)x*(klk - 1) 

= p(” + 1; k) - G*(k)H(k;]x*(klk - 1) + G*(k)y(k) . (2.87) 

;a* (li+l;k) 

With the new notation, 

+*(k + 1;k) f ia(k + 1;k) - G*(k)H(k) , (2.88) 

the optimal state estimate, given p(k), is 

+*(k + I$) = +*(k + l;k)x*(k(k - 1) + G*(k)y(k) . (2.89) 

From (2.89), it becomes apparent that signal and filter are governed by the 
same model structure (1.26) and x*(k]k - 1) is the state of the optimal fil- 
ter while the observations y(k) are the inputs to the optimal filter (see Fig- 
ure 2.13). Next, we consider the estimation error 

x@ + Ilk) = x(/k + 1) - x*(k + lpi) 

= 4e(k + 1; k)x(k) + u(k) -[a*(/~ + 1; k)x*(k(k - 1) + G*(k)y(ky 
\ v / v 

from (1.26) from (2.89) 

= q/c + 1; k)x(k) + u(k) - **(Ii + 1; qx*(klk - 1) 

- G*(k) H(k)x(k) l 

\  /  

from (1.27) 
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Since x*(klk - 1) = x(k) - %(lc(k - l), 

5qk + Ilk) = @(k + 1; k)x(k) + u(k) - @*(k + 1; k)x(k) 

+ +*(k + 1; k)%(k(k - 1) - G*(k)H(k)x(k) 

= **(k + 1; k)%(klk - 1) + u(k) + @(k + 1; rc>x(Q 

- [+(k + 1; k) - G*(k)H(k)]x(k) - G*(k)H(k)x(k) 

+ q/c + 1; k)x(k) - +(k + 1; k)x(k) + G*(k)H(J+@) 

- G*(k)H(k)x(k) . 

These re-arrangements and substitutions lead eventually to 

%(k + 11/k) = **(k + 1; k)%(klk - 1) + u(k) l (2.90) 

Equation (2.90) shows that the estimation error is governed by a linear dy- 
namic system with transition matrix %*. Next, we derive an expression for 
the covariance matrix of the error %(k + lik). Inserting (2.88) into (2.90), we 
obtain 

,(k + Ilk) = [+(k + 1; k) - G*(k)H(k)]x(klk - 1) + u(k) (2.91) 

= *(Ii + 1; k)%(klk - 1) - G*(k)H(k)%(klk - 1) + u(k) 

= ia(k + 1; k)x(klk - 1) - G*(k)y(klk - 1) + u(k) . (2.92) 

Using (2.92), the covariance of the error is specified by 

P(k + 1) + E[%(k + llk)P(k + lp)] 

= ~[x(k + +)(%(k + 1; k)x(klk - 1) - G*(Qj@lk - 1) + u(k))?‘]. 

(2.93) 

From the definition of optimality, that is, x*(k+ l(k) f %(k+ Ilk) E k;(k), the 
optimal estimate is the orthogonal projection of x(k+ 1) onto p(k). Therefore, 

E [qlc + llk)jqi)] = 0 Vi=O,...,k 

and hence 

E [,(k + lpqjqk - l)] = 0 (2.94) 

simplifies (2.93) to 

P(lc + 1) = E [k(k + llk)(G(k + 1; k)%(klk - 1) + I@))~] . 
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Replacing ji;(k + Ilk) by (2.91) in the last equation, 

P(/c+ 1) = E {(+(k+ I$)- G*(k)H(~))~(+ - 1) +u(k)} 
[ 

= E {+*(k + 1; k)ji;(klk - 1) + u(k)} 
[ 

l {jF(klk - l)aF(k + 1; k) + UT(k)} 1 
= E @*(Ii + 1; k)Si(klk - l)5iT(klk - l)@(k + 1; k) 

+ **(Ii + 1; k)x(kp - l)lP(k) 

+ u(k)5iT(klk - lp#F(k + 1; k) +u(k)lP(k)] . 
\ v / 

-+O 

Leading to 

p(k + 1) = e*(k + 1; k)E[5i(klk - l)jlT(k/k - I)]@@ + 1; k) + Q(k) 

or 

p(k + 1) = @*(k + l;k)p(k)@(k + I$)+ Q(k) . (2.95) 

Terms involving the product of u(k) and %(A@ - 1) vanish since u(k) is inde- 
pendent of x(k) and therefore of %(klk - 1). Independence implies uncorre- 
latedness, that is, 

since E [u( k)] = 0, by definition. If, in the derivation of P(k + l), we use 
(2.90), replacing both terms X(k + ilk) instead of using (2.91) for one and 
(2.90) for the other, we have 

P(k + 1) = E[i(k + llk)xT(k + Ilk)] 

= E { +*(k + 1; k)X(klk - 1) + u(k)} 
[ 

l {Gyklk - l)a*yk + 1;k) + UT(k)}] l 
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!Multiplying the terms within the curly brackets gives us 

P(k +l) = E 
[ 
a*@ +l;k)ji;(klk - l)P(k)k -l)%*T(lc + 1;q 

+ **(k + 1; kpi(k(k - l)UT(k)U(k)XT(kpc - 1p*ylc + 1; Ic) 

+ wu*(k)] 

= a*@ + 1; k)E[x(kp - l)x*(kp - l)]***(k + 1; k) 

+ E[**(k + 1; I+qqrc - l)u*(k)] 

+ u(lc)xT(klk - I)***@ + 1; kg +E[u(lc)uT(k)] 
\ * / 

--+O 

= a*(k + 1; k)P(k)+**(k + 1Jk) + Q(k) . (2.96) 

What remains to be found is an expression for the gain G*(k) of the optimal 
filter. First note that we found two equivalent recursive expressions (2.95) 
and (2.96) for P(k + 1): 

p(k + I) = [qk + I$)- G*(k)H(Q]p(k)**(k + W) + Q(k) (2.95) 
= [@(k + 1; k) - G*(k)H(k)] 

- p(lc)(ip(k + 1; k) - G*(k)H(k))* + Q(k) . (2.96) 

For both expressions to hold true, 

[+(k + 1; k) - G*(k)H(k)]P(k)H*(k)H(k)* = 0 

i.e. [+(k + 1; k)P(k)H*(k) - G*(k)H(k)P*(k)H*(k)] G**(k) = 0 . 

Therefore, we obtain for the optimal gain the expression 

G*(k) = +(k + 1; k)P(k)H*(k) [H(k)P(k)H*(k)] -’ . (2.97) 

For more details and extensions of the Kalman-Bucy filter, the reader is re- 
ferred to the vast literature available on the subject. Part of the impact 
Kalman’s original paper had, comes from the fact that though conceptually 
very different to the filtering problem described here, Kalman identified a 
dual optimal control problem which merely requires a change of interpreta- 
tion with most equations remaining unchanged. Consequently almost every 
introductory book on control engineering will mention Kalman filtering. 



3 
Learning from Data: 
System Identijkation 

Cl The identification of a model is an approximation of the function which 
relates independent (e.g., input-) and dependent (e.g., output-) variables. 

Cl Linear parametric regression, employing the least-squares principle, is an 
efficient tool to identify parameters from data - to learn linear functional 
relationships. 

Cl In a probabilistic framework data are assumed to be distributed according 
to some unknown probability density function. 

Cl Statistical learning can be seen as a generalization of density estimation. 

0 Like the Fourier series, Kernel density estimation provides another example 
of the approximation of an unknown function by means of so-called basis 
functions. 

That all our knowledge begins with experience, there is indeed no doubt . . . but 
although our knowledge originates with experience, it does not all arise out of 
experience. 

-1mmanuel Kant 

In order to use regression techniques in identifying models from data, we now 
introduce a vector of independent variables. Let the observables &, . . . , & be 
maps from the set of abstract states fi into an n-dimensional manifold 3, that 
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where m = 1 (single-output system) and the vector of independent variables 
be denoted by 

xt [%~2,**4b] l 

We can now 
of the input 

for short. In Section 1 we have seen that a formal model E)Jz of a system 
described bY some mapping f ( l ) which relates variables x with y: 

describe the manifold E or data 
and output spaces 

space as the Cartesian product 

Z=XxY where x-x1 xX2,x-*xX, 

6 is 

f:X -+ Y (3 1) . 

X Y* 

A specific model thus describes a graph F c X x Y, (1.8)) of the mapping 
which represents system 6. In time-series analysis, y refers to the output 
whereas x describes some inputs and the vector of variables E is used to denote 
all other factors that affect the output but whose values are not observed 
or controlled. Uncertainty in the output reflects the lack of knowledge of 
the unobserved factors E. In this context, we express the transformation Tt, 
(1.15), by the dynamical law 

Y@ + 1) = fW> ? XEX, 

describing y at time tk+r depending upon previous states of observables which 
are summarized in vector x. It will be this class of systems we focus upon in 
subsequent sections. 

The identification of a model !3R is an approximation of f : X + Y, based 
on a sampled set of training data, that is, measurements rnj = (xj, yj), 

j = 1,2,. . . , d of the observations or objects o.~ The identified dependency 
between x and y is described by means of a parameter vector 0, that is, we 
assume that f (0) is an appropriate representation of 6 and using a finite set 
of sampled data we implement a function f(x; 0) which we hope is as close to 
f(x) as desirable. Learning, in general, means the selection of a set of func- 
tions f(x; O), where 8 is a set of abstract parameters used only to index the 
set of functions. It follows that the most general form of prediction concerning 

‘A mapping or function f on X to Y is a set F C X x Y of ordered pairs which for each 
x E X contains exactly one ordered pair (x, y). X is called the domain and Y the codomain 
of f. Visualizing X and Y as “spaces” of some sort, X x Y is called Cartesian product space. 
Since F is a subset of the product space which meets each “vertical” subspace (2) x Y in 
exactly one point, it describes a curve and is therefore often called the graph of the function. 
2 With resp ect to dynamic systems, o may be regarded as the state of the system and E as 
the state-space. On the other hand, in clustering o is an abstract object. Since regression 
and clustering are generic tools for pattern recognition, we refer to o as an ‘observation’. 
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6 is that the ‘point’ o, determined by measurements, will lie in some subset 
AofZ. 

In linear parametric regression, the set of functions is specified as a poly- 
nomial of fixed degree, and the set of functions implemented is 

such that an appropriate set of & can be found using least-squares (2.29). 
For example, considering input-output “black-box” models, using an autore- 
gressive model structure, the system is described by a finite number of past 
inputs and outputs: 

X& [Y (ICI 7 . . . , y(k - n3 + 1), u(k), . . l , U(k - W.h + UT l 

(3 3) l 

Considering system identification [Lju87], this leads to the ARX (AutoRe- 
gressive with exogenous input) model structure: 

nY 
y&+1)=X &*y(k-i+l)+g e72y+i*‘L1(bi+l)’ 

(3 4) l 

i=l i=l 

Equation (3.4) is commonly called the predictor for model 

nY 

Y(k) = x ai l y(k -  i) + 2 bi .  u(k -  i) ,  

i=l i=l 

where the adjustable parameters are denoted 0 = [al,. l l b 1 T 
? nu 

andr = ny+nu. In Sections 4 and 5 we describe fuzzy models which approx- 
imate a nonlinear regression surface by linear submodels. These models can 
be described as NARX (Nonlinear AutoRegressive with exogenous3 input) 
models which establish a relation between the past input-output data and the 
predicted output 

Y(k + 1) = f(x, k) + 44 
= f(YWY l l 

. , y(k - ny + l),u(k), . . . ,+ - nu + 1)) + E(k) y 
(3 5) . 

where k denotes discrete time samples, n, and ny are integers related to the 
system’s order and f is some nonlinear mapping. 

“Variables i n models for forecasting are usually classified as endogenous or exogenous. 
Endogenous variables are those values the model is built to explain, while the exogenous 
variables are those that are not determined by the model but nonetheless impact on it. 
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3.1 THE PROBABILISTIC PERSPECTIVE 

Due to non-observed and uncontrolled variables, the knowledge of observed 
values x does not uniquely specify the output y. The consequence is some 
uncertainty in y. This leads to the formulation of a ‘statistical dependency’ 
between x and y. 

A stochastic framework describes the x E IR’ as random vectors drawn 
independently from a fixed probability density p(x) which is unknown. The 
system under study produces a value y for every input vector x according 
to the fixed conditional density p(y(x) which is unknown. The problem of 
learning is to select a function that best approximates the system’s response. 
The training data M = {mj}, rnj = (xj, yj) are assumed to be independent4 
and identically distributed, following the joint probability density function 

PC% Y> = PC4 l P(Yl4 7 (3 6) . 

where (x, y) E X x Y. A finite sample from this distribution is denoted by 
{mj}, j = 1,2,. . . , d. Consider the regression model 

Y = f(x) +E 7 (3 7) . 

where E is some zero mean random noise5. Then, we find 

f(x)  = /Y l P(Yl4 dY (3 8) . 

such that the graph (1.8) of the mapping which describes the system is spec- 
ified by 

F = {  ( f (x>,x)  :  f ( x )  = w9) l (3 9) 

.  

Within a stochastic framework, in order to estimate f(x; O), one minimizes 
the expected value of the loss 

WI = 
s 

L(Y, f(x; e>> P(X,Y) dXdY (2.16) 

where p(x, y) is unknown. Hence, density estimation is the most important 
learning problem and is therefore further discussed in the next section. 

*The assumption of independence is based on the view that microscopic phenomena have 
much smaller time constants’ and therefore can be seen as independent of the primary signal. 
5 Assuming the process is linear with noise being added to the signal, probability distribu- 
tions are usually assumed to be Gaussian with the following argument. Macroscopic random 
effects are thought of as a superposition of microscopic random effects. Under the central 
limit theorem the accumulated effect tends to be Gaussian regardless the distribution of 
the microscopic effects. 
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At this point, it might be useful to clarify some terminology. Learning 
is probably the most general 
known mapping (dep endency 

term 

>Y 
- - 

descri bing methods that estimate the un- 

f( > X between a system’s inputs and out- 
puts from a finite set of training data, that is, input-output samples mj. 
Common learning tasks are classification, regression, density estimation, and 
clustering. We use the terms ‘learning’ and ‘system identification’ interchange- 
ably, though system identification is usually associated with linear parametric 
regression [Lju87]. In a probabilistic setting, all these tasks learn, that is, es- 
timate f(x; 0), by minimizing the risk functional E[L], (2.16). In each case, 
however, the loss function and the output differ. In statistical learning theory 
[Vap98, CM981 the general predictive learning problem is formalized as fol- 
low 
we 

s: Let M = {mj}, and m = (x, y) denote and input-output pair of which 
are given d samples as training data. The data are assumed to be dis- 

tributed according to some unknown probability density function p(m). The 
objective of predictive learning is to find a loss function Q(m, 0)) 0 E 0 that 
minimizes the risk functional 

R(8) A 
s 

Qb-0) dW-4 

= 
s 

Q(m,e> h-4 dm 7 (3.10) 

where 
Q(m, 0) t L(Y, fk e,) (3.11) 

denotes the loss function as applicable for any of the learning problems (clas- 
sification, regression, density estimation, and clustering). In regression (2.i6), 
we used the least-squares principle, that is, the quadratic loss 

Q(m,8> = (Y -  f (x;e)>” l 

(2.17) 

At the root of statistical learning theory is the idea to estimate the risk func- 
tional (3.10), by taking an average of the risk over the training data: 

d 

(3.12) 

As the optimal estimate, obtained by minimizing the risk functional (3.10), 
depends on the cumulative distribution function F(m), p(m), respectively. 
One usually therefore first has to estimate the unknown probability density 
function from the available data M and then find an optimal estimate for 
f(x; 0). Alternatively, twe use the estimated risk (3.12) as a substitute for the 
unknown true risk. This approach is called the Empirical Risk Minimization 
(ERM) inductive principle. The main claim of statistical learning theory is 
that the ERM inductive principle is not only a general framework for learn- 
ing but also should be preferred to density estimation in case of small, finite 
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samples. With ERM the goal is to find values for 6 that minimize the em- 
pirical risk. Then, the solution to the learning problem is the approximating 
function of f (x; 0)) minimizing (3.12) with respect to the parameters. A non- 
linear parameterization of a set of approximating functions f(x; 0) leads to a 
nonlinear optimization problem. One commonly used optimization approach 
is the EM-algorithm. As parameters are estimated iteratively, the value of the 
empirical risk is minimized. As illustrated in Figure 3.1, in [CM98], predictive 
learning is described as a two-step inference: 

1. Induction: Learning (estimation) of unknown dependency from data. 

2. Deduction: Using the identified model for prediction. 

Such conventional formulation of identification algorithm implies that we are 
estimating the unknown function f(e) everywhere in E, that is, for all pos- 
sible input values. Such global function approximation has obvious disad- 
vantages and has led to various concepts that support ‘localized predictive 
learning’. For instance, in [CM98], the trunsductive approach of support vec- 
tor machines, rooted in statistical learning theory, is outlined. The ideas put 
forward in Section 4 and Section 6, will also support localized modelling and 
prediction - though motivated by a very different philosophy. 

transduction 

I deduct 

Fig. 3. I Predictive learning [CM98]. 

I shall argue that the nature of the uncertainty involved in describing G 
can have different forms (fuzziness, randomness, ambiguity, vagueness, im- 
precision) depending on the nature of the system, the nature of the data, 
necessary assumptions and personal preference for a particular mathematical 
framework. It is therefore important to note that a statistical/probabilistic 
formulation is not the only valid framework. It is surprising that despite the 
number of assumptions required, the number of parameters not estimated but 
chosen, numerical compromises and the consequences of our foregoing discus- 
sion we still find statements in the literature such as “Probability measures 
are adequate for describing uEZ types of uncertainty.” or 
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“ln contrast to the classical statistics [..] using various types of a priori 
information, the new theory [..I does not rely on a priori knowledge 
about a problem to be solved.” 

One can only have the impression that there exists an unreasonable respect 
for statistics and probabilistic modelling which may inhibit creativity in the 
progress of systems theory. In subsequent sections, I try to demonstrate that 
fuzzy mathematical objects occur naturally; that is, not by applying some 
extension principle to mathematical objects but by necessary generalization 
when considering uncertainty in systems engineering. In combination, fuzzy 
mathematics, statistics and possibility theory should provide us with a flexible 
set of tools, necessary to analyze complex systems. 

3.2 KERNEL DENSITY ESTIMATION 

The previous sections highlighted the importance of density estimation to sta- 
tistical learning theory. In this section, we first introduce the problem with 
Parzen’s kernel estimators, and then extend the results to function approxi- 
mation in general. 

The most basic approach to density estimation is the histogram. Its main 
disadvantage is that it is discontinuous and has two parameters (the number 
of bins, and bin width) which heavily depend on the nature and number 
of data available. E. Parzen [Par621 suggested a class of smooth estimates 
of probability density functions which we now discuss in more detail. ‘Let 
x1,x2,*-, xd be independent random variables identically distributed with 
cumulative distribution function 

F(x’) = Pr(x 5 x’) 

s 

X1 

- - P(X) dx ’ 
-cm 

(3.13) 

Given a set of training data xi,. . . , xd, an empirical estimate of (3.13) is 

I;‘( > 
1 d 2’ =- 
d 

x c(Xj < x’> 3 - 
j=l 

(3.14) 

where c(o) is the indicator function taking the values 0 and 1 depending on 
whether the argument is false or true. The estimator (3.14) is itself a bino- 
mially distributed random variable with mean E[.E;(x)] = F(x) and variance 
equal to SF(x). (1 -F(x)). F rom (3.14), a simple candidate to estimate p(x) 

PC > X̂ - - 
%‘(x + h) - 8’(x - h) 

2.h 
(3.15) 
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where h is a suitably chosen positive number. Introducing the kernel function 
K(a) defined by 

(3.16) 

we can rewrite (3.15) as a weighted average over the sample distribution func- 
tion: 

$(x)=/r; K(q) dp(x’) 

(3.17) 

Equation (3.17) is usually referred to as kernel estimator. Apart from the 
naive kernel estimator (3.16), a Gaussian kernel estimator is frequently used: 

(3.18) 

To illustrate density estimation, we use the well-known data set of obser- 
vations of eruptions of the Old Faithful geyser [Si186]. Figure 3.2 shows the 
results for the ‘naive’ estimator (3.16) and the Gaussian estimator (3.18) with 
h = 0.5. 

2 4 6 
naive kernel estimator 

0.3 

52 
EO.2 

0.1 

Rg. 3.2 Kernel density estimates for the ‘Old Faithful’ data set. 

Multi-variate kernel estimators are straightforward generalizations of the 
univariate case. Using the same kernel in each dimension but with a different 
smoothing parameter for each dimension the estimate is defined pointwise as 

h 

PM 
- - 

i 1 

dh 1 h, 
. . . 

Xi - Xij 

h i 
(3.19) 

where x = [XI, . . . , xr] T E IEY and the data xij come from a T x d matrix. 
Geometrically, the estimate places a probability mass of size l/d centered 
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on each sample point, exactly as in the univariate case. In Section 9.1 we 
will demonstrate the equivalence of fuzzy and statistical classifiers where the 
optimal Bayesian classifier uses a multi-variate kernel density estimate. 

3.3 BASIS FUNCTION APPROXIMATION 

Returning from basic density estimation to the more general estimation of 
the mapping y = f(x), we can make the following useful observation. In a 
stochastic framework, the estimation of the density p(x, y) is the most impor- 
tant learning task since it is essential to minimizing the risk functional R(O), 
(3.10). A loss function for density estimation is 

L(f(x; 0)) = - lnf(m; 0) . (3.20) 

Inserting (3.20) into (3.10) gives the risk functional 

R(8) = 
s 

- In f (x; 6$(x) dx . (3.21) 

8 is an Z-dimensional vector in 0 c II?? and it is assumed that the unknown 
density is captured by this parameterized class of functions. Given a set of 
independent identically distributed training data M = {mj}, j = 1, . . . , d, 
the likelihood function (2.53) describes the probability of the data set M 
conditioned on 8: 

d 

Pr(Mle) = n f (Illj; 0) 

j=l 

= e(e; M) . (2.53) 

As shown in Section 2.2, a maximum likelihood estimate is obtained by max- 
imizing the log-likelihood function, (2.55), L(0; M) = In e(8; M) which is 
equivalent to minimizing the risk functional (3.21). 

Estimating the density of x, the output represents the density and hence 
f(x; S), 8 f 0 becomes a set of densities. With respect to the more general 
learning problem, the representation of the kernel estimator, (3.17) suggests 
a generalization called basis function approximation: 

i=l 

which is a linear combination of so-called basis functions &. The & are 
weights which sum up to one for some fixed r. Equation (3.22) describes a 
large class of approximating functions we can choose from in order to model 
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the mapping y = f(x). Alg b e raic polynomials lead to the linear regression 
models introduced in Section 2.1: 

f  (x ;  tq = 2 oi l xi .  (2.18) 
i=l 

In Section 2.1.2, the Fourier series was derived with the same objective - to 
find a good approximation of f(t) using a linear combination of trigonometric 
functions 

(2.43) 

. cos(iw&) + bi l sin@&)) . (2.52) 
i=l 

From density estimation, we have seen that basis function approximation 
(3.22) not only provides linear models but also generalizes to nonlinear uni- 
versal approximator. This class of universal approximators also includes some 
neural network approaches (such as Radial Basis Function (RBF) networks) 
and 
this 

in Section 5 we will show that fuzzy models are another example from 
class. 

3.4 EXAMPLE: EM ALGORITHM FOR MIXTURE-DENSITY 
ESTIMATION 

In this section, we introduce the Expectation Maximization (EM) algorithm 
as a tool to estimate parameters of a mixture of probability density functions 
via the maximum likelihood method (Section 2.2). 

Let M = {ml,mz,..., md} denote data which are assumed to be gener- 
ated independently from some unknown mixture of density functions. This 
unknown mixture is estimated using the following general class of approxi- 
mating functions: 

where the 8i are the parameters of the individual densities in the mixture and 
the wi are weights summing up to one. From Section 2.2 on ML-estimation 
we know that the best estimator is the mixture density (chosen from the class 
(3.23)) maximizing the log-likelihood function. This density is denoted as 

where 2 0 pri =I. (3.24) 
i=l 
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Individual densities in the mixture are indexed by i and parameterized by &. 
In (3.24), pT(Z) denotes the probability that a given data sample came from 
density i. Hence, the log-likelihood function for (3.24) is 

d .c 
(0; M) = C In >: Pr(i) l p(mjli, &) . 

j=l i=l 

(3.25) 

According to the maximum likelihood principle, we should use the parameters 
8 that maximize (3.25). This is numerically difficult to achieve and it would be 
easier if the data were labelled, that is, if it would be known which component 
of the mixture generated any given data point. In this case, uij E U would 
denote whether sample j originated from density component i and the log- 
likelihood function for complete information would be 

(8;MJJ) = 22 Uij l lnJI(IIIj(Uj, Oi> . Pr(Uj) l (3.26) 

Given the complete information, the maximization problem could be split 
into a set of simpler problems, estimating densities independently using the 
associated data samples selected by uij E U. However, we assumed that the 
data are unlabelled, meaning the the uij are unknown and we have to operate 
with incomplete data. Since it is impossible to work with (3.26) directly, A.P. 
Dempster showed that we can use the expected value of (3.26) instead. That 
is, it can be shown that if a certain value of parameter 0 increases the expected 
value of (3.26), then the log-likelihood function (3.26) will also increase. This 
leads to the formulation of the EM-algorithm (see Section 2.2.2) which we 
here state for density estimation and basis function approximation in general. 
Iterating with loop counter I, the two steps characterizing the EM-algorithm 

l E-Step: Compute the expectation of the complete data log-likelihood 
function f(x; w, 0) 

&(e,@(‘)) = CCpij . (In& (mj,O,o> + ln@) 7 (3.27) 
j=1 i=l 

where pij is the probability that density i generated data point j, cal- 
culated by 

Pij A E[UijlIIlj] 

(3.28) - 
C 

c 
(I) 

wk l 

k=l 
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l M-Step: Find the parameters w(‘+‘) and O(‘+l) that maximize the 
expected complete data log-likelihood: 

w(z+l) 1 

d 

-- 
i 

- 
d x Pij (3.29) 

j=l 

d 
&+1) 

i = argmax 
f-h x pij l lnq$ (IIlj~O~z)) . (3.30) 

j=l 

A common assumption on the density functions of the mixtures is that 
they are Gaussian; each density described by a mean value Q and covariance 
matrix XT1 with variance a; on the diagonal. In this case, the approximating 
density function f(x) is 

f(x)  = ewi l 

i=l 

- 
e (3.31) 

where the wi are unknown weights. Hence, for the Gaussian mixture model 
the expectation and minimization steps are: 

l E-Step: Compute pij = E[uij]mj, e(‘)] as 

Pij = 

II (1) 2 Xi-rl. 
((q-L> (1) . e- II 

2(4”’ 

(3.32) 

l M-Step: Estimate new weights and parameters of the Gaussians: 

W(ltl) _ IL 
d 

i -- 
d Pij T (3.33) 

j=l 

d 

CP ij l mj 
rl(z+l) _ j=l 

i 
- 

d 7 (3.34) 

CP . . 
j=l 2J 

. (3.35) 

CP ij 
j=l 
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3.5 DISCUSSION: MODELLING AND IDENTiFICATION 

Truth can never be told so as to be understood, and not believ’d. 
-William Blake 

With finite data we cannot expect to find f(x; 0) exactly. To obtain a useful 
solution, one needs to incorporate prior knowledge in addition to data; the 
joint density p(x, y) is not known. However, density estimation requires, in 
general, a large number of samples, but even more with respect to the order 
of Z ( a ro p bl em called the curse of dimensionaZity6). Similarly, the notion 
of minimizing expected risk implies large numbers of samples to have the 
averaging as a good approximation of the expectation. 

A stochastic framework usually assumes stationarity, that is, the process is 
assumed to be in a particular state of statistical equilibrium. Strict station- 
arity is the assumption that statistical properties of process do not change 
over time, that is, the joint probability distribution p(x, y) of any set of ob- 
servations must be unaffected by shifting all the times of observation forward 
or backward by any integer amount. The concept of stationarity is a math- 
ematical convenience as it allows us to estimate properties (mean, variance) 
of the distribution, associated with a particular observation/instant of time, 
by averaging over time, that is, the sequence of observations. Similarly, the 
assumption of ergodicity allows us to replace ensemble averages by their corre- 
sponding time averages. A process is then called ‘ergodic’. For some practical 
problems, the assumption of each observation (sequentially in time) being in- 
dependent, identically distributed random variables may appear somewhat 
unrealistic or non-intuitive. 

We can conclude, that a stochastic framework may appear more rigor- 
ous, thus more desirable than heuristic approaches but the many assumptions 
made (linearity, large samples, stationarity, ergodicity, independent identically 
distributed Gaussian variables) and the necessity to include prior knowledge, 
make any nonlinear, possibly heuristic, approach appear equally useful. The 
main advantage of a stochastic framework is that it provides a rich set of 
mathematical tools for an analysis on paper. 

In subsequent sections, I outline a fuzzy mathematical perspective which 
clusters trainmg data in M, in the product space Z As a consequence the re- 
gression concept in system identification finds its analogy in clustering. Using 
fuzzy clustering algorithms, local linear submodels are represented by fuzzy 

6The phrase ‘curse of dimensionality’ was first coined by R. Be1 lman to descri 
nential grow th in combinatorical optimization as the dimension increases. 

be the expo- 
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sets (fuzzy relations, possibility distributions), allowing an interpretation of 
cluster as (fuzzy) propositions. These ideas are described in greater detail in 
Section 4. 

Fuzzy clustering divides the available data into groups in which local lin- 
ear relations exist between regressors and the regressand: y = fi (x; ei> + Q, 
where each 8i is a vector of parameters to be determined, and each pi is 
a random vector with zero mean vector and some covariance matrix. The 
principle of fuzzy identification by product space clustering is therefore to ap- 
proximate a nonlinear regression problem by decomposing it into several local 
linear submodels. The obtained fuzzy partition matrix is subsequently used 
to define an if-then rule-based fuzzy model. The decomposition of a global 
nonlinear mapping into a set of locally linear models is based on a geometri- 
cal interpretation of the regression problem. The unknown nonlinear function 
Y = f(x), (34, P re resents a nonlinear regression (hyper)surface in the prod- 
uct space X x Y C Iw’+‘. Fuzzy clustering as a method to identify fuzzy 
if-then rule-based systems from data is introduced in Section 4. The concep- 
tual relationship between multiple or switching regression models and fuzzy 
clustering, attributed to Hathaway and Bezdek, is reviewed in Section 5.7. 

A rule-based fuzzy model has a number of advantages in comparison with 
global nonlinear models, such as neural networks. The model structure is easy 
to understand and is in some cases interpretable. Various types of knowledge 
can be integrated in the model, including statistical objects and empirical 
knowledge. Furthermore, fuzzy models allow, in principle, for input data 
being imprecise (intervals) or vague (fuzzy sets). 

Typical structures for fuzzy models are the so-called ‘Takagi-Sugeno Model’, 
‘Linguistic Model’, and the ‘Relational Model’. In Sections 5, 6 and Section 
7.2, we describe fuzzy models which generalize the graph F, (1.8), of the - 
mapping f : X --+ Y into a fuzzy graph F. 



Propositions as Subsets of 
the Data Space 

Cl A more general concept to represent data sampled from a system is that 
of a data space. 

Cl System properties and behavior are reflected by clusters of data. 

Cl Clusters may be interpreted as linear submodels of an overall nonlinear 
system. 

0 Clusters may also be interpreted as if-then rules relating properties of the 
variables that form the data space. 

Cl Fuzzy clustering provides least-squares solutions to identify clusters, to 
partition the data space into clusters or classes. 

Cl Fuzzy boundaries between clusters are differentiable functions and hence 
are computationally attractive. 

Cl For many real-world problems a fuzzy partitioning of the underlying space 
is more realistic than ‘hard clustering’. 

For the things we have to learn before we can do them, we learn by doing them. 
-Aristotle 

An alternative view of a ‘functional’ representation of the system 6, is to 
identify subsets of the data space E = X x Y, with propositions in order to 
formulate a calculus of ‘logical’ propositions that leads to a rule-based repre- 
sentation of the data. Modelling dynamic systems, time-series data may then 
be transformed to points in the data space. Choosing variables, representing 
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the axis of Z carefully, the data may exhibit ‘pattern’ (clusters) in E (see 
Figure 4.1). 

time 

Fig. 4-l From time-series data to the data space representation. 

0 
0 

0 

x2 

/ 

0 

0 
Xl 

data space X x Y 

11, as in previous sections, x = [Xl,. . . , XT] T and y are characterizing the 
system 6, then the most general form of prediction concerning 6 is that the 
point (21,22,. . . ,2,,y) E E, determined by actually measuring x and y, will 
lie in a subset A of the (21,. . . , xr, y)-spaces. Hence, we call subsets of space Z 
‘experimental propositions’ concerning 6. The state-space is however a math- 
ematical concept which needs to be related to some ‘experimental reality’. In 
general, (i.e., not only in quantum theory) a one-to-one correspondence of 
measurements and knowledge of the state of 6 is unattainable. Such cer- 
tain uncertainty motivates some calculus of experimental propositions that 
generalizes relations of points in Iwn to (fuzzy) subsets. We are going to use 
notions of equivalence relations and equivalence classes to explain clustering. 
The reason is that, although no proofs are provided, the connection to fuzzy 
systems and uncertainty modelling is intuitive. 

Fuzzy Clustering 

Feature Analysis System Identification Classifier Design 

Rule-Extraction Prediction & Control Classification 

Fig. 4.2 Numerical pattern recognition. 

The following section describes clustering techni .ques to id entify subsets of 
the data space from sampled data. Clustering is a generic tool for pattern 
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recognition - the search for structure in data, with a wide range of applica- 
tions including fuzzy-system identification, classification and image analysis 
(see Figure 4.2). As cluster analysis is concerned with methods that identify 
pattern in data, it can form the basis for a refined analysis of dependency 
relationships. Using a proximity measure between objects (points) in Z, pat- 
tern in data are found by partitioning the set of objects into separate clusters 
(classes). Clusters form connected (dependent) regions of a multi-dimensional 
space E in which objects (sampled data) are clustered with varying density 
across the space E Let the data space E be non-empty and define by C = {Ci} 
the “cluster space” describing the outcome of clustering, that is, a set of 
clusters (classes) Ci with which elements o E Z are to be associated. By 
identifying these clusters, partitioning E, the algorithms implicitly identify a 
function 

f . . z + C) 

which for any observation (object) o E Z assigns a set Ci E C of possible 
results. The ‘correct’ function f is identified (learned from a set of training 
data) by specifying an objective function or mapping 

which measures the quality or error we aim to optimize. 

Let an observation consist of n measured variables describing an object 
o E BP. The set of d measurements rnj = [VQ, . . . , rn,jlT of o forms a n x d 
data matrix1 M: 

mnl mn2 ’ l l mnd 

For instance, with regard to the model structure, defined by (3.3) and (3.5), 
we consider the following regressor variables: 

y(k + 1) = f (y(q,y(h - l),Y@ - 2)+(k)) l 

We therefore have for the regression vector 

‘As clustering has wide-ranging applications various sets of notation are in use. Often, 
rnj E M are referred to as objects or feature vectors. Since clustering algorithms attempt 
to organize unlabelled feature vectors into ‘natural groups’, clustering is also called ‘unsu- 
pervised learning’ and columns of the obtained partition matrix U are referred to as ‘label 
vectors’. 
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Since the data are provided in pairs {(u(j), y(j))}, j = 1, . . . , d, we have 

Y(2) Y(l) G9 
Y(3) Y(2) UC41 

. . . . . . 

y(d 11) y(d 12) y(d 13) u(d- 1) 

From X and y we form the data matrix MT = [X, y], with n = T + 1, suitable 
for fuzzy clustering: 

M= 

‘y(3) Y(4) l l l Y(d -  1)’ 

y(2) Y(3) l l .  Y(d -  2) 

y(1) Y(2) l l l Y@- 3) 

u(3) u(4) l l l u(d -  1) 

Y(4) Y(5) l * -  Y(d) 
I  

. 

Note that y and each variable in x represent an axis of the product space 
5 Here we consider intrinsic partitional classification as opposed to hierar- 
chical clustering 2. Whereas hierarchical clustering leads to a nested sequence 
of partitions by imposing the ultra-metric on the set of objects, frequently 
visualized as a dendrogram, partitional clustering aims at a single partition. 
We obtain such a partition for a fixed number of clusters by minimizing a 
clustering criterion, for example, ‘squared errors’ (4.8). 

Given a set of d objects mj, that is, points in the n-dimensional space 
E c Tw”, we wish to partition them into c clusters by means of a (reflexive, 
symmetric, transitive) equivalence relation, that is, the map 

or, informally, the subset of E x E defined by { (o,o’) : E(o, 0’) = l}. Given 
M, a clustering algorithm generates a partition matrix 

E@(l), m2) l l l E(c(l), md) 
. . . . . . . . . . . 

E(h), ma) l l l E(c@), md) 1 (4 2) 
An element uij E U is the equivalence of any mj with the cluster prototype 
c E C or, in other words, it is the membership in the ith cluster, that is, 
the membership in [c@)]~ . Let the prototypes of the clusters be denoted by 

2For an ove rview of clustering and a description of the single-linkage algorithm see Appendix 
13.3. 
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C = [c(l), . . . , &)I, where &) is commonly defined as the centroid - the mean 
vector 

d 

c Uij l lllj 

.(i) _ j=l - 
d 

c Uij 
j=l 

i = 1,2,. . . ,c . (4 3) . 

In general, for any cc’) E E the equivalence relation E induces the equivalence 
class 

[LqE t { 0 : 0 E E, E(&), 0) = 1} . (4 4) . 

With c@) on both sides, equation (4.4) suggests the need for an iterative so- 
lution to the clustering problem. Hence, a cluster, [&&, describes the set of 
elements mj E E satisfying equivalence relation E. The collection of equiva- 
lence classes {[c@)]~} f orms a hard-c-partition, a field or more specifically a 
quotient or factor set, ZJE, of E by E: 

Z/E k { [&} . (4 5) . 

The natural map of E onto Z/E is defined as 

. I 
@J = . -+ E/E (4 6) . 

0 e [ 1 0’ E . 

The natural map associates an element with the equivalence class it is in. It 
is thus a classifier which in condition monitoring could be used to identify 
and classify faults within a system. 

4.1 HARD-C-MEANS CLUSTERING 

Let M= {m1,m2,.*., md} be a finite set and 2 < c < d be an integer. Then 
the hard partitioning space for M is the set 

Mhc = UEvcd: uij E {O,l},V(i,j); euij = 1; 0 < euij < d,Vi . 
i=l j=l 

(4 7) 

where uij E U and vCd is the vector space of real c x d matrices - the set 
of admissible solutions for the (hard) clustering problem. The partition (4.2) 
requires the definition of the cluster center (4.3) and vice versa. For this rea- 
son clustering algorithms iteratively optimize a clustering criterion (objective 
function, cost function) such as 

Jhc(M;U,C) =kkuij dk (mj,CCi)) , 
i=l j=l 

(4 8) . 
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where U E Mhc and di (mj, &)) is the distance, proximity, of object rnj 
with respect to prototype &I, calculated by the squared inner-product norm 

= mj ( 
- c(i))TA(mj - cCi)) , (4 9) . 

If the positive definite matrix A is the identity matrix I (ones on the di- 
agonal and all other elements zero), the distance measure induced on Iwn, 
is the Euclidean metric (Lz norm). The ‘Mahalonobis norm’ is obtained 
by choosing A to be the inverse of the n x n sample covariance matrix 
l/~~~-i (mj - ijm)(mj - Q,)T of M, where Qrn is the sample mean (2.7) - 
of the data. Whereas the Euclidean norm imposes hyperspherical clusters on 
IEV” , the Mahalonobis norm generates hyperellipsoidal clusters. 

Fig. 4.3 Options for cluster labels. 

From (4.8), the objective is to minimize the ‘within-cluster-overall-variance’, 
where the ‘within-cluster variance’ is the squared error with respect to the 
prototypical c . (‘1 The iterative algorithm starts with an initial partition and 
assigns objects to clusters so as to optimize the objective function (4.8). If the 
value of the objective function obtained is sufficiently small, the clustering is 
assumed to be valid: 

(U,C) = arg min 
A& XWdXCXV~~ 

Jl-Lc(M; u, CA) 7 

where Vdd is the set of d x d positive definite matrices. Clustering the data 
assigns a ZabeE to each object rnj. The label is the jth column from U de- 
scribing its membership of rnj in the c clusters (classes). In hard-c-means 
clustering only one element of the label vector can be equal to one and all 
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other elements must be zero. Obvious generalizations are shown in Figure 4.3 
a,nd followed up further below. 

Each hard-c-partition U of M induces on Z x Z a unique hard equivalence 
relation E, the elements of which are defined by eij = 
t,o the same hard subset of U, and eij = 0 otherwise: 

1 iff rni and mj belong 

1 iff mj-l,...,d E [C(i'l"'*'c)]E - 
eij = 

0 otherwise . 

The (hard) equivalence relation E satisfies the following conditions: 

e- 22 = 1, 1 < i < d (reflexivity) 

eij = eji, 1 < i # j < d - - (symmetry) 

if eij = 1 and ejk = 1, then eik = 1 V(i, j, Ic) (transitivity). 

Hard clustering has been criticized with various examples in which objects 
should have partial membership in clusters in order to achieve a realistic 
(fuzzy) partitioning in the given context (see example 4.3 below). But there 
are not only conceptual reasons to introduce fuzzy partitions. A problem 
with the hard-c-partition is that the space &!hC is too large to search for an 
optimal partition. The number of distinct ways to partition the data space 
into c non-empty subsets is 

The problem is due to the discrete nature of the characteristic function taking 
thC Uij as its values. If the uij are continuous, taking any value in the unit- 
interval [0, 11, then we can determine the derivatives of some objective function 
J(a) with respect to uij in order to analytically derive an optimal solution. 
Many of those problems were solved with the introduction of fuzzy partition 
spaces (which are differentiable). The study of least-squares solutions to fuzzy 
objective functions has been largely progressed by J. Bezdek [BezH]. 

4.2 LEAST-SQUARES FUNCTIONALS: FUZZY CLUSTERING 

The generalization of the hard-c-partition to a fuzzy partition follows directly 
by allowing degrees of membership in the unit-interval. From (4.7) the fuxxy 
partition space of M is the set 

d 

l&c = uEvcd: Uij E [O,l],V(i,j); 2Uij = 1; 0 < 'T;7Uij < d,vi l 

i=l j=l 

(4.10) 
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Other partition spaces may be obtained by relaxing the condition that the 
sum of membership values across cluster must add up to one [Bab98]. The 
objective function (4.8) is generalized into the fuzzy-c-means functional 

Jf,(M; U, C) = k k (uijjw di (mj, c@)) , 
i=l j=l 

(4.11) 

where U E I& is a fuzzy partition of M and w E [l, 00) is a weighting 
exponent which determines the fuzziness of the resulting clusters. For w + 1, 
the clusters tend to be crisp, hard, i.e. either uij + 1 or uij --+ 0, for 
w + 00 we have uij + l/c. A typical value for w is 2. The objective 
function (4.11) minimizes the sum over the quadratic distances of the data 
to the prototypes weighted by their membership degrees and is therefore a 
least-squares criterion. Hence, the value of (4.11) can be seen as a measure 
of the total variation of mj from c @). The minimization of the c-means 
functional represents a nonlinear optimization problem that can be solved by 
a variety of methods. The most popular method is an iteration through the 
first-order stationary conditions of the functional (4.11)) known as the fuzzy- 
c-means algorithm [Bez81, Bab98, HKKR99]. To obtain necessary conditions 
for (local) minima we somehow have to take partial derivative of (4.11). In 
[Bez81], the constraint & uij = 1 is added to the objective function by 
means of Lagrange multipliers3 to obtain an expression like 

k k (uij)“d% (mj, C(i) 
i=l j=l 

We can then relax the search space for U to allow 0 < C,“=, uij < d so that 
minimization can be done on uncoupled columns of-U. This leads to the 
Lagrangian 

Lj(X,uj) =k(uij)wdfj -A 
i=l 

where we write d$ A di (mj, c ci)) for short and uj denotes the jth column 
of U. Stationary points are found for this expression by setting the gradient 
equal to zero. Therefore, the following partial derivatives must be zero: 

(4.12) 

(4.13) 

3 Lagrange multipliers are a sequence of real numbers X such that a point ~0 that minimizes 
J(x) subject to 91 = 0,. . . ,gm = 0 will be a stationary point of the Lagrungiun L(X, 2> = 
J(X) + CE, Xigi(x). 
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From (4.13), 
1 

From (4.12) set equal to zero, and (4.14), we have 

and thus 
1 

x 

0 

W- 1 
- - - 

W 

Inserting (4.15) into (4.14), 

ust = 

1 
C 

c 

i=l 

1 ( > ct 

(4.14) 

(4.15) 

Or switching back to our usual notation, within an optimization loop, we 
would determine for any given object mj the degree of membership in the ith 
cluster by 

1 
1 (4.16) 

and 

.(i) _ j=l - 

ih > 

) l<i<c. - - 
W 

Uij 

j=l 

(4.17) 

In equation (4.16), it is possible that 3i : dA (mj, c@)) = 0 for some mj and 
one or more cluster prototypes cc’), s E S c { 1,2, . . . , c}. This problem, for 
which the new uij is undefined, is called a singularity. To fix it, we assign to 
each uij, i E SC the value 0 subject to the constraint CsES usk = 1, Vj. The 
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solution, (4.16) and (4.17) also satisfies the constraints given in (4.10). The 
fact that the &) are determined as the (membership) weighted mean of the 
data gives the name fuzzy-c-means. Algorithm 4.1 is terminated if changes 
in the partition matrix are negligible, that is, if for some convenient matrix 
norm llU(‘) - U(‘-l) ]I < S Examples for such a criterion are . 

+ max (I $) _ &-1) ij ij I> . ij 
Fix c, 2 < c < d, and choose any inner-product norm metric for IEP, the termination 
toleranced > 0, e.g., between 0.01 and 0.001, and fix w, 1 < w < 00, e.g., 2. - 
Initialize U(O) E Mfc, (e.g., randomly). 

Repeat for 1 = 1,2,...: 

Step 1: Compute cluster prototypes: 

Step 2: Compute distances: 

Step 3: Update the partition matrix: 

Ifhi (mj,C/")) >Oforl<i<c,l<j<d, _ _ _ _ 

10 _ 1 
u.. - 

23 
2 (di(mj, C(i))/di(mj, CC”))) 1’(w-1) 

k=l 

otherwise 

(‘I = 0 if d u. f =&I A (mj, ci’)) > 0, and ~15’ E [0, l] with 2 ~15’ = 1 . 
i=l 

Until (1 UQ) - W-l) (I < 6 . 

Algdthm 4.7 Fuzzy-c-means algorithm (FCM). 

The generalization of the binary set-membership E(o, 0’) E (0, I} to a 
ruzzy set-membership function @o, 0’) E [0, l] reformulates the clustering 
problem as follows: The problem consists of characterizing a fuzzy equivalence 
relation, also called similarity relation, E, by the set of its clusters in the 
same way as equivalence relations E are uniquely determined by their sets of 
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equivalence classes (4.4). In analogy to the partition matrix (4.2), we find 

u= : 

[ 

E(c(lJ, ml) E(C(l)) m2) l l l ii?(&), md) 
. . . . . . . . . 

E(&, ml) if?(&), rnz) . l : E(&) , md) 

where the fuzzy equivalence relation is the map 

E:ZxE + ) P 11 (4.19) 

and uij E U describes the degree of similarity of object rnj with prototype 
&), ,!?(&), mj), or the membership of the data samples in the clusters. That 
is, fuzzy sets are induced by ‘crisp’ sets when taking a similarity relation into 
account. In other words, the point &) E z induces a fuzzy set p,(i) of all 
elements that are similar to c (‘) . The membership degree p of o to this fuzzy 
set is the grade to which o and c@) are similar or indistinguishable: 

)!A&) (0) = E(di’, 0) l (4.20) 

The fuzzy set p,(i) (0) = E(&), o) is called the extensional hull of c@) with 
respect to similarity relation E .4 Similarity relations are fuzzy generalizations 
of equivalence relations and clusters are fuxxy equivalence classes (4.21). We 
can therefore describe fuzzy clustering as the problem of constructing fuzzy 
quotients (4.22) with respect to similarity relations: 

(4.21) 

(4.22) 

A similarity relation [Zad?l, Wo198] on E is a map whose values E(o, 0’) 
are interpreted as the degree to which o and o’ are equivalent. As with 
equivalence relations, E is required to satisfy three axioms interpreted as 

itself to the 
to the same 

degree 
degree 

reflexivity, E( 
1; symmetry, 

0,o) = 1 
E(O,O’) 

, that is, 
- - EC O’, 

.ement is sim 
0 is similar o), i.e. 

.ilar to 
to 0’ 

as o’ is similar to o; and transitivity. In equivalence relations, transitivity 
describes the fact 

E(oi,oj) A E(oj,ok) * E(oi,a) l (4.23) 

4 In conven tional set theory the subset consisting of all those elements which have a certain 
property is called the extension 
that a set is completely determ 

of the property. The ‘extensionality’ 
.ined just by specifying its elements. 

axiom for sets states 
With respect to E, 

the fuzzy set poO represents the extensional hull of the set {oo}, i.e. it is the smallest 
extensional fuzzy set with LOO = 1. In general, the extensionality of a fuzzy set A 

describes the compatibility of a t-norm T(.;), J!? and PA: T(~A(o),E(o,o’)) < PA. 
That is, it is a multi-valued formulation of the statement “IF o E A, AND o z o’, THEN 
o’ E A” 
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Fig. 4.4 The butterfly data set and hard-c-means result. 

For similarity relations transitivity is generalized with the condition that there 
exists a continuous triangular norm, T: E x E --+ [0, 11, generalizing the tri- 
angle inequality (7.1)) such that for all oi, oj, ok E E the following inequality 
holds: 

E(oi,ok) > T i@( - ( oil oj), ,@(oj, ok)) : T-transitivity. (4.24) 

The triangular norm can be interpreted as the valuation function of a con- 
junction. For instance, let T be the Lukasiewicz norm (7.4). Then, for (4.24), 
we have 

E(Oi, Ok) 2 E(Oi, Oj) + E(Oj, o/J - 1 , 

which states that if oi and oj, as well as oj and ok are similar, then also oi 
and 01, have to be similar. The origin of triangular norms, t-norms for short, is 
the so-called Poincare paradox and Menger’s probabilistic spaces (Section 7). 
The emergence of similarity relations from fundamental aspects of modelling 
and measurements is further discussed in Section 7. Section 4.6 presents a 
fuzzy rule-based system, based on similarity relations. 

4.3 EXAMPLE: HARD VS. FUZZY CLUSTERING 

The data set M consists of 15 points in the plane: 

j 1 2 3 4 5 6 7 8 

mj (4,2) ,(5,1) (5,2) (53) W) (62) (64 

As depicted in Figure 4.4, the shape of the data set suggests a ‘butterfly’ 
which is frequently used to discuss hard vs. fuzzy clustering [Bez81]. Clus- 
tering these points by the hard-c-means algorithm yields two fuzzy clusters 
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as shown in Figure 4.5. The plot shown on the right in Figure 4.4 shows 
the result after 2 iterations. We observe that, even though the but terfly is 

SYm metric, the clusters in Figure 4.4 can not be. Th .is suggests that a fuzzy 
partitioning of the data into two clusters would be more natural. The result 
of the fuzzy-c-means algorithm 4.1 with w = 1.25 and 6 = 0.01 is shown in 
Figure 4.6. For w = 1.25, the algorithm stopped after 7 iterations. Figure 4.7 
shows the fuzzy clusters for w = 2 obtained after 6 iterations and projected 
onto the x-axis. In Figure 4.8, the effect of the weighting factor w is demon- 
strated. For all results the following random initial partition matrix U(O) was 
used: 

u(o) = 
[ 

001111100001101 

I 110000011110010’ 

Fig. 4.5 Fuzzy sets obtained from fuzzy-c-means clustering of the Butterfly data set. 

4.4 ORTHOGONAL TRANSFORMATION 

As noted before, the distance measure employed in the objective function has 
considerable influence on how well the algorithm detects clusters (or shapes). 
To make the discussion in this section easier, let us consider a simple example 
of data in the plane similar to those in Figure 2.8 with E = Xi x X2. Let 
us shift our coordinate system of Z to bring the expected vector q (i.e. the 
cluster center C) to the origin such that o denotes the new coordinate system: 
0 --O-V* 

A Euclidean distance leads to the expression 

oTIo ) 
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Fix c, 2 < c < d, and choose any inner product norm metric for Iw”, the termination 
tolerance&Y > 0, e.g., between 0.01 and 0.001. Initialize U(O) E Mhc, (e.g., randomly). 

Repeat for 1 = 1,2,. . .: 

Step 1: Calculate centers (centroids) of hard clusters, i.e. the c-mean vectors c(‘): 

w _ cz - 7 l<i<C. - - 

Step 2: Update U(l): Reallocate cluster memberships to minimize squared errors 
between the data and current cluster centers (prototypes): 

JZ) = 
1 if d(mj c!“‘) = min d(mj, cr’) ’ 2 

ij 
l<k<C 

0 otherwise. 

Until IlW) - Wml) 11 < 6 . 

1 
l 

1 
0 

1 1 
l l 

1 
l 

1 
0 

AIgodthm 4.2 Hard-c-means (ISODATA) algorithm. 

0 
0 

0 
0 

1 0.5 0 0 0 
0 0 0 0 l 

0 
l 

0 
0 

0 
l 

0 
l 

0 0 0 0.5 1 
0 0 0 0 0 

0 
l 

0 
0 

1 
l 

1 
0 

1 1 
0 0 

1 
0 

1 
0 

Fig. 4.6 Fuzzy-c-means clustering of the butterfly data set. w = 1.25 

where I is the identity matrix, imposing a spherical structure onto the data 
space Z In other words, the algorithm using the Euclidean norm should be 
particularly well suited to identify clusters of spherical shape. More often, 
however, we may find that clusters are shaped to what can be better de- 
scribed with an ellipsoid. What follows is a discussion on how such clusters 
can be characterized. In particular, we shall discuss the case where instead 
of the identity matrix I the covariance matrix C leads to what is called the 
Mahalonobis norm. Describing an ellipsoidal cluster by its two main axes 
is a task similar to principal component analysis. The motivation of princi- 
pal component analysis is parsimony - dimension reduction. Two or more 
correlated variables are described by a single linear composite (the equation 
describing the longer axis of the ellipsoid or the regression line fitted to the 
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0.87 0.13 0.13 0.87 
l a l 0 
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0.97 1 0.88 0.5 0.12 0 0.03 0.03 0 0.12 0.5 0.88 1 0.97 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.95 0.05 0.05 0.95 
a 0 l 0 

0.87 0.13 0.13 0.87 
0 0 a 0 

Q. 4.7 Fuzzy-c-means clustering of the butterfly data set. w = 2 

0.8 

0.6 

Fig. 4.8 FCM: w = 1.25 (left), w = 2 (right). Result after 7 iterations. 

cluster). This linear composite (“principal component”) attempts to account 
for as much as possible of the variation shared by the contributing variables. 
In other words, the data are maximally spread along the axis described by 
the linear composite. The axis is found by transforming the original coordi- 
nate system into a new one, maximizing the variance subject to the constraint 
6% = 1, where + is one column of the transformation matrix T associated 
with the axis along which the data are spread with maximum variance (see 
Figure 4.9). This restriction on the length of + will ensure that our transfor- 
mation meets the unit length condition for rotation. The term ‘orthogonal’ 
refers to the square matrix T that exhibits the property 

TTT=TT’=I. 

That is, any two column vectors or any two row vectors in the matrix T are 
mutually orthogonal and, furthermore, each vector is of unit length. Using 
such a transformation matrix on a set of points will preserve their angles, 
lengths, and interpoint distances, while at the same time referring them to a 
new, perhaps simpler, coordinate system. 
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Fig. 4.9 Eigenvectors and eigenvalues of a cluster with ellipsoidal structure. 

In order to maximize the spread of data along the principal axis, we try to 
find a vector + which maximizes the expression 

G?T’C-1a. (4.25) 

The constraint +TG = 1 ensures that the resultant scalar +TX-19 cannot be 
made arbitrarily large by finding entries of + with arbitrarily large values. The 
expression is optimized by taking the partial derivatives w.r.t. to a Lagrange 
multiplier 

d 
a@ (aTPa - qaT+ - 1)) = 2x* - 2x+ , (4.26) 

and setting this equal to zero 

(x -XI>* = 0. (4.27) 

Note that the term a/a@ consists of n partial derivatives. Equation (4.27) 
resembles expression (1.25), (F - X1)x = 0, which is often used to find the 
eigenstructure of system matrix F for dynamic systems. The only difference 
is that C is symmetric, and the eigenvectors a5 to be normalized to unit 
length. If the matrix C - XI, for a fixed A, were nonsingular (i.e. possessed 
an inverse), it would always be the case that the only possible solution to 
the equation involves setting + equal to the zero vector. Here we want the 
reverse, that is, to find a X that will make C - XI singular. Recalling that 
singular matrices have determinants of zero, we want to find a value for X 
that satisfies the characteristic equation of C: 

50ne should no t confuse the notation of the eigenvector with the state-transition matrix. 
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In other words, we wish to find + such that if premultiplied by C, results in 
a vector X+ whose components are proportional to those of a: 

Solving the characteristic equation yields n roots, but since we want to maxi- 
mize the distances between points, (4.25), we look for the largest Xi obtained 
from solving the characteristic equation. That is, we shall order the roots from 
large to small and choose that eigenvector + corresponding to the largest Xi. 
The eigenvectors corresponding to two different eigenvalues are orthogonal 
and hence form a new coordinate system. Collecting the eigenvectors in a 
transformation matrix T 

we can transform any given vector o into the new coordinate system by mul- 
tiplying it with T. In conclusion, the expression 

(0 - r))%-l(O - 7) = 1 

using the covariance matrix C, defines a (hyper)ellipsoid. Using the informa- 
tion of the covariance of the data we should therefore expect the clustering 
algorithm to perform better if the clusters are ‘shaped’. We will explore this 
idea further when, in Section 5, we present the Gustafson-Kessel algorithm 
which does exactly that. 

4.5 EXAMPLE: CLASSIFICATION 

In this example we discuss fuzzy clustering in classifier design. Discrimina- 
tion and classification are multi-variate techniques concerned with separating 
distinct sets of objects (or observations) and with allocating new objects (ob- 
servations) to previously defined groups. The example and data we use in this 
section are taken from [JW98]. In addition to an introduction to classification 
we demonstrate the sensitivity of clustering to the scales of different variables. 
Subsequent sections will provide further examples of classifier design. 

The admission officer of a business school has used an “index” of under- 
graduate grade point average (GPA) and graduate management aptitude test 
(GMAT) scores to help decide which applicants should be admitted to the 
school’s graduate programs. In [JW98] pairs of values x = (zi k GPA, 52 G 
GMAT) for recent applicants have been categorized into three groups: Cr - 
admit; C2 - do not admit; and C’s - borderline. The data are pictured in 
Figure 4.10. A decision will ultimately be to admit or not to admit a student 
and clustering the data into two groups would appear natural. The borderline 
group was presumably introduced to make the process fairer since there may 
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Fig. 4.10 Scatter plot of ($1 = GPA, X:Z = GMAT) for applicants to a graduate school 
who have been classified as admit (A), reject application (R) and borderline (B). 

be cases where two applicants with very similar scores may be classified into 
distinct groups. 

Suppose a new applicant has an undergraduate GPA of xi = 3.21 and a 
GMAT score of x:2 = 497. Let us classify this applicant using the following 
allocatory rule with equal prior probabilities: 

1 
Assign x to the population Ci for which -sdk,OO1.d (x, ci) + In pi is largest. 

In this rule the pi are prior probabilities which, if unknown, are usually set 
to pl = 132 = . l l = p, = l/c. An observation is then assigned to the closest 
population where the distance of x to the sample mean vector ci is calculated 
as 

gooled(x, Cl) = (x -  ci)Tq,,ed(x -  Ci) l 

Matrix C is the pooled estimate of the covariance matrix 

c 1 
pooled = 

dl + d2 + l l . + d, 
((4 - 1)x1 + (& - 1)X2 + 0.. + (d, - 1)X,) , 

where di denotes the sample size and Ci the sample covariance matrix for 
population Ci. Obviously these values can only be calculated if a set of labelled 
training data exists, that is, a training set of correctly classified observations. 
We also note that for the probabilistic model, the populations do not actually 
exist, but are thought to be created artificially. 

Using a probabilistic framework enables us to quantify the quality of our 
classification in terms of probabilities. However, as seen in this example we 
are required to make use of the following tricks and assumptions: 

l Populations may be created artificially and assumed to be normal. 
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Fig. 4. I I Result of discriminant analysis for applicants to a graduate school who have been 
classified as admit (A), do not admit (R) and borderline (B). 

l Prior probabilities need to be defined. 

l A set of labelled training data is required. 

l For data at the margins of a group an additional class is introduced. 

For the training data shown in Figure 4.10 the following parameters were 
obtained using a statistical software package: 

dl = 31 d2 = 28 d3 = 26 

3.40 2.48 2.99 Cl = [ 1 c2 = [ 1 c3 = 561.23 447.07 [ 1 446.23 

C= [ 488.45 2.97 1 c pooled = -2.0188 0.0361 3655.9011 -2.0188 1 
With x = [3.21, 4971T, the sample distances are calculated as 

d;ooled(X,C1) = 2.58 d;ooled(X,C2) = 17.10 d;ooled(X,C3) = 2.47 . 

Since the distance from x = [3.21, 4971T to the class mean c3 is smallest, the 
applicant is assigned to C’s, borderline. Figure 4.11 shows the decision surface 
for the whole space. 

We now contrast the discrimination analysis and its result using fuzzy-c- 
means clustering. First, we consider three clusters, c = 3, as in the given 
example and set w = 2. After 14 iterations the fuzzy-c-means algorithm 
determined, from unlabelled data, the cluster centers shown on the left in 
Figure 4.12. 
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Fig. 4. I2 Fuzzy-c-means clustering on non-normalized data, w = 2. Cluster 
and class membership functions (right). 

ten ters (left) 

The fuzzy-c-means algorithm returns the partition matrix U which serves 
as the model for our classifier. The final cluster prototypes are obtained as 

5 > Uij w mj 

j=l 
Ci = 

EC > 

7 i=1,2. 
W 

Uij 

j=l 

For any new applicant, from the pair x = [XI = GPA, II:~ = GMATIT, the 
membership in one of the two classes is then calculated by 

(4.28) 

As can be seen in Figure 4.12, the cluster center for the ‘reject’ class is dis- 
placed leading to class membership functions which do not take account of 
the GPA scores. Distance measures are sensitive to variations in the nu- 
merical ranges. In our example, differences in GMAT scores can be around 
200 while GPA score differences can be around 0.75. Since the membership 
evaluation in the iterative algorithm and the decision, (4.28), is based on a 
distance measure, the algorithm can generate misleading results. Clustering 
algorithms based on adaptive distance measures, introduced in Section 5, are 
less sensitive to data scaling. The normalization or scaling of data can help. 
If, in our example, we divide all values by the maximum value in the data set, 
the fuzzy-c-means algorithm identifies the three classes correctly, as shown in 
Figure 4.13. 

In the design of the statistical classifier, it was recognized that two classes 
would lead to unfairness for the students near to the margins of any class. 
A ‘borderline’ class was introduced. Since a student will either be admitted 
or not, a further decision is required on the basis of the ‘distance’ to the two 
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Fig. 4.13 Fuzzy-c-means clustering on normalized data. w = 1.25, 17 iterations. 

decision regions (‘accept’, ‘reject’). Let us now consider fuzzy clustering for 
only two classes, that is, c = 2. We use unlabelled but normalized data to 
classify applicants into two groups Cr and C 2: admit and do not admit. The 
general rule applied is that if the GPA is low and the GMAT is low, then the 
student is likely to perform poorly and should be rejected. On the other hand, 
an applicant with a high GPA and a high GMAT value should be admitted. 
The data matrix is created from 85 applicants consisting of two rows and 
d = 85 columns: 

[ 

GPA l -m 
M= “* GMAT . . . . . . . 1 

Fig. 4.14 Fuzzy-c-means classification for w = 1.25. 

The weighting factor w reflects the fuzziness in the decision making (student 
most probably would refer to w as the (un)fairness factor). For both w = 1.25 
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and w = 2, the following cluster centers of the normalized data were obtained: 

cl = (0.9,O.g) , c2 = (0.7,0.6) . 

For w = 1.25, 8 iterations and for w = 2, only 7 iterations were required. 
For the test candidate with scores, x = (3.21,497), the class memberships for 
W = 1.25 are 

PC, (4 = o-73 7 ,uc2(x) = 0.27 

and for w = 2, 

PC1 (x> = 0*67 7 pc2(x) = 0.33 l 

0.2 0.4 0.6 &i: 1 1.2 1.4 

Fig. 4.15 Fuzzy-c-means classification for w = 2. 

The decision surface and density contour plots are shown in Figures 4.14 
and 4.15. The fuzzy classifier, working with unlabelled data provides a more 
intuitive solution with equivalent final (hard) decisions. In Section 9.1, we 
will discuss classification problems further and demonstrate the equivalence 
of fuzzy inference engines with Bayes-optimal statistical classifiers (which are 
based upon the kernel density estimator in Section 3.2). 

4.6 SIMILARITY-BASED REASONING 

This section follows up the description of clustering inducing fuzzy equivalence 
relations. It should be read in conjunction with Section 7. 

Starting with the following fuzzy rule 

Ri : IF x1 is Ail AND x2 is Ai . . . AND X~ is Ai,, THEN y is & . (5.6) 

In [KGK94], fuzzy modelling is described in terms of similarity relations in the 
sense that the fuzzy sets Aik, & of model (5.6) correspond to the extensional 
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hulls, (4.20), of single points LC~: and yi’), k = 1, . . . , T. That is, &iO (21~) = 
-G> (9 E, (zk, zkO ). The fuzzy rule can then be interpreted as a vague representation 

of the point (z&. . . ,IC&@), i = 1,2,. . . ,?2R, in Xr X X2 x l =* x X, x 
Y. For each rule, a multi-variate similarity relation on the product space is 
constructed by means of the similarity relations & defined on the subspaces 
(or vice versa). If, for instance, we require the similarity relation to be the 
coarsest similarity relation on the product space such that it does distinguish 
at least as well as each &, for the antecedent variables on Xi x l l l x X,, we 
have 

Ernin{El E } =min{E+~,~~)}, k=1,2 ,..., T. ,‘“, T (4.29) 

From the definition of the extensional hull of a single point, (4.20), the exten- 
sional hull of a set A& can be defined as the fuzzy set 

PMo(O) = sup {J%w$} l 

OOEMO 
(4.30) 

pMo is interpreted as the fuzzy set of elements that are similar to at least one 
of the elements of MO. We can now construct the extensional hull of the set 
of points 

MO = 
I( 

xii), 
0 l *  l 7 

Q, yp 
>> 

7 
i = 1 ,2, .  .  .  ,  nR .  (4.31) 

Combining equations (4.29) and (4.30), we have 

~Mo(x1,--,2,,Y) = max E 
-(i> 

i rnin{El,..,E,,E} (Xl 7 “7 

For a given tuple (xi, . . . , x,), for each possible response y the degree to 
which the tuple (xi,. . . , xT, y) is similar to at least one of the points in MO, 
is computed by equation (4.32) replacing the sup by max. MO may be seen 
as (proto)typical points of the system model. The data space E = Xi x l . l x 

X, x Y is partitioned by the fuzzy sets induced by the typical points. The 
graph (1.8) of system G, is a fuzzy subset of E, that is, it is the fuzzy graph 

In [KK97], the set of typical points MO, also referred to as a partial mupping, 
is identified with the vector of cluster prototypes c@), (4.17). Hence, the 
extensional fuzzy set Ai of Z is a fuxxy point since there exists an c@) E Z 
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such that the membership function of Ai equals the extensional hull of the 
(crisp) point {&)} with 

/d,(i) (0) = E c@), 0 ( > (4.34) 

and p,(i) (0) is normalized, that is, there exists an o for which p,(i) (0) = 1. 
The definition of a fuzzy point implies 

T (PA; (0)~ PA; (0’)) < E ho’> 7 (4.35) 

which is a multi-valued formulation of the statement “IF o is an element of 
Ai AND o’ is an element of Ai, THEN o is similar to 0”‘. Then, if Ai is a 
fuzzy cluster in Z, we can use (4.35) to calculate k(o, 0’) for any (0,o’) E Z. 
The process of deriving an output fuzzy set or single output value in Y, given 
a fuzzy graph p and inputs, is based on the compositional rule of inference 
described on p. 158. 

An open problem is how to extract some fuzzy logic rule-based system 
by exploiting the lattice structure of the quotient of E by E defined by U as 
discussed in Section 4.7. Sections 7 and 8 describe various other fuzzy systems 
similar to (4.32) as part of an introduction to approximate reasoning. See also 
Section 11 for more details on fuzzy mappings and graphs. 

4.7 THE STRUCTURE OF THE QUOTIENT INDUCED BY SIMILARITY 

RELATIONS 

The fuzzy quotient induced by sampled data is a fuzzy partition of E with 
respect to a similarity relation E. By exploring the lattice structure of Z/E we 
aim to describe clusters as models of sets with respect to certain non-classical 
(fuzzy) logics, that is, maps with respect to T satisfying a list of logical axioms 
(cf. [FR94, NW97]). Fuzzy logic [NW971 means the extension of ordinary 
logic where the truth values consist of the two-element Boolean algebra to the 
case where they consist of the DeMorgan algebra ([0, 11, V, A, 1, 0,l) (i.e. a 
bounded distributive lattice where DeMorgan’s laws hold). Such a reasoning 
system uses the connectives and, or, not, and if-then. Flexibility in the 
proposed methodology is ensured by a relatively large class of connectives 
forming the basis of a propositional logical system. 

Hijhle solved the quotient problem with reference to the ultra-metric ap- 
proach to hierarchical clustering6, via the definition of the category M-SET 

6An overview of hierarchical clustering can be found in Appendix 13.3. 
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[Hiih88]. Starting with an integral commutative complete lattice monoid 

M- = (L, *c, 5) (4.36) 

he defines M-similarity with the M-valued, symmetric, reflexive, fuzzy equiv- 
alence relation (4.19) 

E:ExSL, (4.37) 

where transitivity is generalized by, cf. (4.24) 

E(O&Ok) > E(Oi,Oj) *  E(Oj,%) l (4.38) 

As before, M is viewed as a set of truth values. If the partially ordered set 
(L, 5) is a lattice, then it comes equipped with the two binary operations A 
and V for every pair of elements in L: 

a V Q’ = sup {a, a’} : join (supremum - smallest upper bound of {Q, a’} ) 
L 

mh!‘= inf {cr, a’} 
L 

: meet (infinimum - greatest lower bound of {a, a’} ) . 

The lattice is complete if every subset of L has a sup. If a lattice has an 
identity (i.e. it has a largest and smallest element) for A and V, then it is a 
bounded lattice. A lattice satisfying both distributive laws is called distribu- 
tive. The lattice ([0, 11, s), used in Sections 4 and 7, is a bounded distributive 
lattice which however is not complemented, (i.e. there does not exist for every 
element in [0, l] a complement). It is therefore not a Boolean lattice (Boolean 
algebra). For the unit-interval equipped with a t-norm and partial ordering 
-3, in case Of Tlylin, - clusters are set structures with respect to the intuistic logic 
whereas for TLuk clusters are models of sets with respect to the Lukasiewicx 
Zogk. On the other hand, (4.36) is also a complete Heyting algebra where * is 
the meet A. 

Hiihle showed that there exists a bijective mapping between the set of all 
M-similarities on Z and all partition trees, that is, 

I&!) = partition induced by equiv. rel. E, = {(o,o’) : E(o, 0’) > QI} , - 
(4.39) 

wherea!E L. & &ZxZ contains all pairs of points that are a-indistin- 
guishable. For instance, from (7.6), E, = {(o,o’) E Z x E 110 - 0’11 < a}. As - 

7A groupoid is any abstract system consisting of a set on which a closed operation has been 
defined. If we throw away the group axiom requiring every element to have an inverse, we 
get a more general structure called a semi-group or monoid, i.e. (L, 3) is a complete lattice, 
(L, *) is a commutative monoid and (L, *:, 4) is integral iff the upper bound is unity w.r.t. 
*. A monoid is a semi-group with an identity element. A semi-group is an associative 
groupoid. 
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demonstrated in Section 7, E, is not transitive for a # 1, that is, 23, is not 
an equivalence relation. 

If ,?(o, 0’) is interpreted as the degree of indistinguishability between o and 
o’ in terms of an error or tolerance level a, a cluster with respect to a given 
E on E is a subset of E containing all those elements of E whose similarity 
is sufficiently large. Using the category M-SET, Hijhle defines the quotient 
w.r.t. E to be the object (E, Ea)/E. With the definition of an equivalence 
class as the map 

&a : s + (0, l} (4.40) 

the relation 

E(O,O’) = SUP w * w> v 0,o’ E E, (4.41) 
all clusters W.r.t. <Ea 

shows that E -+ {clusters w.r.t. E} is an injective map, that is, the ‘chaining 
effect’ in conventional hierarchical clustering does not occur. 

An open question is how similar results can be obtained for partitional 
clustering; given fuzzy partition matrix U. The investigation into the lattice 
structure of the fuzzy quotient, obtained from fuzzy clustering, would provide 
a rigorous basis for the engineering practice applying approximate reasoning 
and fuzzy modelling. The mathematical fusion of NARX modelling with a 
propositional fuzzy logic and fuzzy clustering would have a wide range of 
applications. For example, in time-series and multi-variate data analysis a 
propositional logical system would allow an interface of qualitative expert 
knowledge with the quantitative analysis. 

To develop a propositional calculus based on fuzzy clustering in a multi- 
dimensional state-space a number of open problems need to be solved. By 
exploring the lattice structure of the quotient set, a (fuzzy) logic should form 
the basis for approximate reasoning on subsets of the product space used to 
represent a dynamic system. The main criticism of a propositional calculus, 
founded in bivalent logic, centers around the realism of modelling causation, 
that is, two-valued logical correlates of causal connections. In case of material 
implication, associating antecedent p with a cause and the consequent c with 
an effect, an absent cause may have an effect; things may be self-caused. To 
model causal links, relations between p and c are required to be non-reflexive 
(nothing is self-caused) and asymmetrical (irreversibility). Based on this re- 
quirement, conventional logic is inadequate for modelling cause-effect links. 
However, recent studies of fuzzy relations [FR94] offer a relational approach 
that provide appropriate mappings that are irreflexive, transitive (chain-like) 
and asymmetrical. At the same time the field of conditional event algebras 
[GMN97] advances formal links between logical and probabilistic descriptions 
and, in principle, it should therefore become possible to analyze dynamic sys- 
tems in a measure-free, that is, (fuzzy) logical or (fuzzy) relational framework. 



5 
Fuzzy Systems and 

Identification 

Cl Fuzzy clustering provides an effective way to identify fuzzy rule-based 
models from data. 

Cl Various fuzzy model structures exist and can be distinguished in terms 
of their simplicity, interpretability and suitability in diverse problems such 
as classification, prediction and control. 

Cl Fuzzy systems can be shown to be equivalent to the basis function 
expansion model. 

As the complexity of a system increases, our ability to make precise and yet 
significant statements about its behavior diminishes until a threshold is reached 
beyond which precision and significance (or relevance) become almost exclusive 
characteristics. 

-Lotfi Zadeh 

In this section we follow up on the results of Section 4 to see how the fuzzy 
partition matrix U (4.18), can be used to describe $-then rule-based models, 
which were suggested in Section 3.5. The basic principle of identification by 
product space clustering is to approximate a nonlinear regression problem by 
decomposing it into several local linear subproblems described by if-then rules. 
The methods discussed here have found numerous applications in engineering. 
A comprehensive discussion, including the application in control, was provided 
by Babuska [Bab98]. 

109 

Data Engineering: Fuzzy Mathematics in Systems Theory and Data Analysis.
Olaf Wolkenhauer

Copyright  2001 by John Wiley & Sons, Inc.
ISBNs: 0-471-41656-8 (Hardback); 0-471-22434-0 (Electronic)



110 FUZZY SYSTEMS AND IDENTIFICATION 

Given a fixed number of clusters c, the weighting coefficient m,, and an ini- 
tial partition 
ations, fuzzy 

matrix, the fuzzy-c-means algorithm 4.1 returns, after 
partition matrix U, describing the membership of the 

some iter- 
data sam- 

ples in the clusters. Each cluster is characterized by its center and covariance 
matrix which represents the variance of the data in the cluster. The eigen- 
structure of the cluster covariance matrix Fci), contains information about 
the shape and orientation of the ith cluster 

5 (uij)W(mj - &))(mj - .(i))T 
F(i) = j=l 

Ii? > 
. 

W 
Uij 

j=l 

(5 1) . 

Let Xik denote the kth eigenvalue of Fci) and & the kth unit eigenvector 
of F@). Let th e eigenvalues be arranged in decreasing order as &r > Xi2 2 
l ** > xi,. - Then the eigenvectors $1 to Q-r) span the ith cluster’s linear 
subspace and the nth eigenvector @in is the normal to this linear subspace. 
The eigenvectors are labelled in the order of the eigenvalues, that is, if Xi, is 
the smallest eigenvalue, @in is called smallest eigenvector. Whether the chosen 
model structure is correct can be evaluated using the proportions between 
the eigenvalues. Figure 5.1 illustrates an ellipsoid modelling the shape and 
orientation of a cluster by its eigenstructure. 
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Fig. 5. I Ellipsoid with eigenvectors and eigenvalues describing shape and orientation of a 
cluster. 

For the basic fuzzy-c-means algorithm 4.1, where the distance d is simply 
the Euclidean norm, that is, A is the identity matrix, the fuzzy-c-means al- 
gorithm searches for spherical clusters of approximately the same size. By 
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adapting the norm-inducing matrix A at each iteration using F@), ensures 
that the algorithm can detect hyperelli 

!? 
soidal clusters of different shape and 

orientation. Then the equation (o - c) F-l (o - c) = 1 defines a hyperellip- 
soid. The length of the kth axis of this hyperellipsoid is given by 6 and its 
direction is spanned by &. A well-known implementation of this idea is the 
Gustafson-Kessel (GK) algorithm 5.1 [Bab98, Bez81]. For the GK-algorithm, 
each cluster has its own norm-inducing matrix A@). From (4.9), denote the 
inner-product norm by 

d2 Ati> = 
(4 _ m 

‘1 j (5 2) . 

In order to be able to apply (4.16) and (4.17) iteratively with varying A@), 
its determinant (the cluster volume) is fixed, say ]Aci)] = 1. To get a matrix 

ACi)’ from ACi) with IACi) 1 = 1, we have ACi)’ = (lIlACi) I)l”r+l’ . A(i). Using 
the inverse of the covariance matrix, the A@) in equation (5.2) is calculated 
as 

A(i) & (IF(i) l)l’(r+l) . (Fci)) -’ . (5 3) . 
In Figure 5.2, the GK-algorithm is applied to a data of a nonlinear first-order 
autoregressive process, y(k) = f(x; k), where x = [y(k - l)]. For a first-order 
model, the data space E is two-dimensional with y(k) on the abscissa, values 

Y@ - 1) on the ordinate and the ellipsoids, representing linear submodels, 
obtained by applying algorithm 5.1. In this example, the size of the cluster is 
about the same. In general, from the condition (A@)] = 1 the GK-algorithm 
looks for clusters of equal volume. Hence, we have made an improvement to 
the FCM by considering shape and orientation but would require yet another 
refinement of the algorithm to take account of the cluster volume. 

0.6 - 

I  I  L I  I  I  

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

Fig. 5.2 First-order nonlinear autoregressive process and linear submodels identified by the 
GK-algorithm. 
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Fix c, 2 < c < d, and choose the termination tolerance 6 > 0, e.g., between 0.01 and 
0.001, and fix w, 1 5 w < 00, e.g., 2. Initialize XI(*) E A& (e.g., randomly). 

Repeat for 1 = l,2,. . .: 

Step 1: Compute cluster prototypes (means) (4.17): 

Step 2: Compute the cluster covariance matrices (5.1): 

. 

Step 3: Compute distances for 1 < i < c and 1 < j < d: - - - - 

Step 4: Update the partition matrix using (4.16): 
If dF(i) > 0 for 1 5 i 5 c, 1 5 j 5 d, 

otherwise 

(9 - 1 
u.. - . 

23 
2 @F(i) /dF(i))2’(lu--1) ’ 

k=l 

C 

u*. (I) = 0 if dF(i) (c(j), mj) > 0, and ~15’ E [0, l] 23 with >: 
(9 _ ?A*- -1. 23 

i=l 

Until JIW - UQ+ 11 < 6 . 

5.1 FUZZY SYSTEMS MODEL STRUCTURES 

Algodfhm 5. I Gustafson-Kessel (GK) algorithm. 

Considering the NARX model structure given in (3.5) and (4), the mapping 
X --+ Y is represented by the rule-based system 

Ri : IF y(k) is Ai1 AND . . . AND y (k - nY + 1) is Ainy AND 

u(k) is 23ii AND . . . AND u(k - n, + 1) is Binzl, THEN z&k + 1) is Ci , 

(5 4) . 

where the conjunctive operator ‘AND’ is represented by a t-norm and we 
wish to find the fuzzy sets Ail,, Bik and C; from the fuzzy partition matrix U. 
This can be achieved by pointwise projection of the multi-dimensional fuzzy 
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sets, defined pointwise, in the rows of partition matrix U, onto the subspaces 
referring to individual variables in the antecedent and/or consequent part of 
the rule. The projection of the partition matrix onto the regressors should 
result in a semantically interpretable partition with unimodal fuzzy sets. 

In general, we have the following rule-based structure of the Linguistic 
Model: 

Ri : IF x is Ai, THEN y is Bi, i = 1,2,...,n~ 7 (5 5) . 

where x is the antecedent variable and y  the consequent variable. Note that in 
general antecedent and consequent variables can be fuxx~ variables which have 
fuzzy sets as their values, x E F(X), y E F(Y). For x E Iw’, Ai is a fuzzy set 
defined by a multi-variate membership function PA, (x) : Xr x. l l x X, -+ [0, 11. 
Ai and Bi may then be viewed as fuxxy restrictions on X and Y as they 
partition the input and output space. In order to achieve a semantically 
interpretable model, it is desirable to have fuzzy sets associated with each of 
the regressors, leading to the conjunctive form 

Ri : IF xl is Ail AND ~2 is Ai . . . AND xr is Air, THEN y is Bi (5.6) 

with the degree of fulfillment ,L$ of the rule given by the conjunction 

where A is a suitable t-norm. As illustrated in Figure 5.3, for r = 2, we can 
obtain fuzzy subsets Ai1 and Ai for the conjunctive form from projections of 
the two-dimensional fuzzy set Ai. 

In the Takagi-Sugeno (TS) Model, the rule consequents are functions of 
the model inputs: 

Ri : IF x is Ai, THEN yi = fi(x), i = I$,. . . ~143 . (5 8) . 

As before, the antecedent proposition “x is Ai”, defined by the multi-variate 
membership function pAi (x) : Iw’ --+ [0, 11, can be decomposed into a conjunc- 
tive combination of regressor variables and univariate fuzzy sets: 

R i : IF ~1 is Ail AND ~2 is Ai2.. . AND X~ is Air, THEN yi = fi(x) . (5.9) 

A commonly used parameterization of y leads to the afine linear TS-modeZ: 

Yi = ar, + bi ) (5.10) 

where ai is a parameter vector and bi is a scalar offset. The consequents of 
the affine TS-model are hyperplanes (r-dimensional linear subspaces) in R’+l, 
whereas the if-part of the rule partitions the input space and determines the 
validity of the r&R locally linear models for different regions of the antecedent 
space. 
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Fig. 5.3 Two-dimensional fuzzy set Ai and its projections Ai1 and Aiz. 

5.2 IDENTIFICATION OF ANTECEDENT FUZZY SETS 

Antecedent membership functions for the ‘Linguistic’ and ‘Takagi-Sugeno’ 
models can be obtained by projection of the multi-dimensional fuzzy set de- 
fined pointwise in the rows of partition matrix U (4.18). Consider first the 
model structures given in (5.5) and (5.8), that is, 

Ri : IF x is Ai, THEN . . . , i = 1,2,. . . ,72~ . 

Considering one rule per cluster, c = nR, for the partition matrix we use 
indices 

UijEU, i=1,2,...,C, j=1,2,...,d. 

The regressor vector (antecedent variables) is denoted by 

ii = 1,2 )...) T . 

The multi-dimensional fuzzy sets Ai define fuzzy regions in the antecedent 
space for which the ith consequent proposition is valid. In general, the mem- 
bership function is defined by PA; (x), but since U is finite, we have a pointwise 
definition for 

. 
Xj = [mlj7-*-7mkj7---7 mrj lT 7 (5.11) 

vectors of sampled values for antecedent variables xi, . . . , x~, mkj E M and 
M is a (T + 1) x d matrix. The projection of the (T + 1)-dimensional fuzzy set, 
defined by the ith row in U, onto the r-dimensional antecedent subspace is an 
r-dimensional fuzzy set Ai, defined pointwise for xj and membership function 

PA; (xj> = .,Fiax d {Uijl E U 1 Xjf = Xj} . (5.12) 
3 9”‘) 



lDENTlFlCATlON OF ANTECEDENT FUZZY SETS 115 

For model structures (5.6) and (5.9) in conjunctive form, 

R ,i : IF ~1 is Ail AND . . . AND X:~C is Ail, AND . . . AND xr is Ai,, THEN. . . 

the membership functions for each antecedent variable x:lc E x are obtained by 
projecting each of the c rows of the partition matrix onto each of the subspaces 
corresponding to the T antecedent variables; for all (i, j, k): 

PAi, (Xkj) = max mkI jI EM. {Uij/ E U : mkj = mkljl, j’ = 1, . . . , d, k’ = 1, . . . , f} . 

(5.13) 
In other words, pAik (Xkj) is the projection of fuzzy cluster i onto the kth 
coordinate space, defined pointwise for all values mkj. In order to extend this 
discrete fuzzy set to the set of real numbers, one usually computes the convex 
hull or fits a parametric function. Figure 5.4 gives an example for a pointwise 
projection onto a subspace and subsequent fitting of a parametric function. 
In general, the degree of membership for a value x to the kth projection of 
fuzzy cluster i, is the supremum over the membership degrees of all vectors 
mj with xk as the kth component to the fuzzy cluster i, that is, 

~Aik(X) = max {uij : Xj = (Xl,. . . , Xk,. . . ,X,) E Rr} . (5.14) 

The axis-orthogonal projection onto the axes of the antecedent variables has 
the disadvantage that for clusters which are shaped and not orthogonal to the 
axis, the projection would imply a loss of information. A transformation of 
the antecedent variables, that is, the axis, by means of eigenvector projection, 
using the T largest eigenvectors of the cluster covariance matrices (5.1) would 
compensate for such problems. This however compromises the interpretability 
of t,he rule-based structure. 

Fig. 5.4 Pointwise projection of a cluster and fitted parametric function. 

0 
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5.3 PARAMETER IDENTIFICATION IN THE TAKAGI-SUGENO MODEL 

Inference in fuzzy rule-based systems is the process of deriving an output fuzzy 
set from given rules (the ‘knowledge base’) and the inputs. The inference in 
the Linguistic model is based on the compositional rule of inference described 
in Section 7.2. In the Takagi-Sugeno fuzzy model, for a given input x the 
degree of fulfillment for the antecedent part of the rule is either calculated by 
pi = p&(x), referring to model (5.8), or using (5.7) with respect to model 
(5.9). Then the inference is reduced to 

2 Pi(x) l (aTx + bi) 

Y = i=l 

2 Pi(X) ’ 

(5.15) 

i=l 

An advantage of the TS-model structure is that it facilitates the analysis 
of stability and approximation capabilities in the framework of ‘polytopic 
systems’ [Bab98]. By denoting the normalized degree of fulfillment 

(5.16) 

c lMx) 
k=l 

the affine Takagi-Sugeno model can be expressed as a quasi-linear model with 
input-dependent parameters: 

(5.17) 

The fuzzy model is then viewed as a mapping from 
space to a convex region (polytope) in the parameter 

the antecedent 
space of the qu 

or input 
asi-linear 

model (5.17). S imilarly, if the fuzzy sets Bi of the Linguistic model (5.5) or 
the consequent part of the TS-model is reduced to a singleton bi, we have 

R i : IF x is Ai, THEN ZJ is bi, i = 1,2, l . l ,n~ . (5.18) 

Replacing (5.16) in (5.15), the inference engine has the compact form 

Y =z &(X)*bi, (5.19) 
i=l 

which is identical to the basis function approximator (3.22) introduced in Sec- 
tion 3.2! This formulation, also called basis function expunsion, describes a 
general class of nonlinear function approximators including Radial Basis Func- 
tion (RBF) networks, multi-variate adaptive regression splines and neurofuzzy 
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spline networks. In the singleton model (5.18), the basis functions &(x) are 
given by the normalized degrees of fulfillment of the rule antecedents. 

What remains to complete the description of TS-models is a method to es- 
timate parameters ai and bi for the affine model (5.10). Assuming each cluster 
represents a local linear model, the consequent parameters ai and bi can be 
identified from i = 1, . . . , c independent ordinary least-squares solutions. To 
separate data into their cluster, the membership degrees uij of the partition 
matrix U, (4.18), are used as weights for each data pair (xj, yj). We arrange 
the identification data as in (2.27) with weighting matrix Wi, 

x= (5.20) 

Hence, the consequent parameters for each rule are concatenated into a single 
parameter vector 

Oi = [a:, bi]* . (5.21) 

Appending a unitary column to X, (2.27) gives the extended regressor matrix 

x, = [X,1]. (5.22) 

We find the weighted least-squares solution of 

y=x,e+& (5.23) 

by replacing X by X, and W by Wi in (2.32): 

h e i= [XFWiX,]-‘XFWiY. (5.24) 

The parameters ai and bi are combined in a single vector 

where 

e i = [ Oil f  Oi2, l l l ) oir7 Oi(,+l) I ? (5.25) 

. . . I 0 I ir 

5.4 EXAMPLE: TS-MODELLING AND IDENTIFICATION 

The following example is taken from one of the seminal papers that introduced 
TS-models [TS85]. 
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0. 

0. 

0. 

0 5 10 15 20 25 

Fig. 5.5 Fuzzy sets and input-output relationship of the TS-model in the first example. 

In TS-models, (5.9), the premise of an implication (IF-part of a rule) is 
the description of fuzzy spaces of inputs and its consequence is a linear input- 
output relation. Suppose that we have the following three rules (implications): 

The output for the conjunctive TS-model structure is given by 

i=l 
Y= 

5 (CLAi1(21)““‘~Ai,(X,)) ’ 

(5.26) 

i=l 

If we are given xi = 12, x2 = 5, the value inferred by the rules is 

0.25 l 17 + 0.2 l 24 + 0.375 l 15 
Y= N 17 . 8 . 

0.25 + 0.2 + 0.375 

Figure 5.5 shows the antecedent fuzzy sets on the left and the input-output 
relationship obtained from (5.26) on the right. For a second example, suppose 
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that we have the following two implications (rules): 

0.8 

RI : IFzisArr, THENy=2+0.6z 

R2 : IFzisAzr, THENg=9+0.2z. 

-2.5 0 2.5 5 7.5 10 12.5 
01. -. 

0 2 4 6 8 lf 

X 

119 

Fig. 5.6 Antecedent fuzzy sets, input-output data and identified model of the second example. 

On the left in Figure 5.6, the antecedent fuzzy sets AlI (RI, the fuzzy 
set on the left) and A21 (Rs, The fuzzy set on the right) are shown. The 
equation in the consequence can be interpreted to represent a law that holds 
in the fuzzy subspace defined in the premise. On the right in Figure 5.6, the 
dashed lines are the original equations in the model above. Note that the fuzzy 
partitioning of the input space enables us to connect equations smoothly. In 
fact, with hard clustering, an additional third relation would be required to 
connect both equations. The output y for the input II: is obtained from (5.26) 
as 

F (PA;1 (Xl) ’ l l l A pAi, (&)) l (bi - t  ailxl + l l l + a+xz) 

i=l 
Y= 

2 (,uAil (Xl) A ’ ’ l A PA;,. (XT)) 
i=l 

6 /JAil(X) ’ (bi + ailx) 
_ i=l 
- 

I6 PAi,(X) ’ 
i=l 

Let $i be 

4 
PAil (Xl) A ’ w l A I_LAir (XT) .- 

’ - 2 (pAleI (xl) A l l l A ~A&,)) 
k=l 
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Then 

nR 

y = ‘T;7 4i ’ (bi + UilXl + .  .  l + a&&-) 

i=l 

= 2 4i ’ (bi + &IX) . 

i=l 

When a set of input-output data mij, m2j,. . . , m,j for input variables xi, . . . , X~ 
and yj, j = 1,2,..., d are given, we can obtain the consequence parameters 
bi,Uil,..., air, i= l,.. . , ?‘@, by the least-squares method (2.29). Let X be a 

d x ( r  + 1) l nR matrix ‘, Y a vector of size d and 0 a parameter vector defined 
as follows (first in general and then for the example): 

Then the parameter vector 8 is calculated by (2.29), 

ii = [XTX]-lXTY . 

In Figure 5.6, the identified two models are plotted as solid lines, while the 
(noise-free) models RI and R2 are represented by dashed lines. 

5.5 EXAMPLE: PREDICTION OF A CHAOTIC TIME-SERIES 

In this example the fuzzy-c-means algorithm is used to identify the model of 
a the (chaotic) Mackey-Glass time-series. The time-series is generated by the 
following delay differential equation: 

dz(t) 0.2 ’ x(t - 7) - - - 
dt 1 + xlO(t - 7) 

- 0.1x(t) . (5.27) 

For 7 > 17, (5.27) displays chaotic behavior. Here, we chose 7 = 25, and 
Figure 5.7 shows a section of the sampled time-series. 
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1. 

0. 

0. 

k 

Fig. 5.7 A section of the Mackey-Glass time-series for 7 = 25. 60 values from Ic = 200 to 
260 were used for training. 

In time-series prediction we are not particularly interested in individual 
antecedent fuzzy sets and the interpretability of the rule. The aim is to 
have accurate predictions and one may therefore consider multi-dimensional 
ant,ecedent membership functions. The membership degree PA; (x) A p,(x) of 
t,he regressor vector x is calculated directly using the inverse of the distance 
from the cluster prototype in subspace X. Let F, denote the part of the 
cluster covariance matrix related to the regressor x. The matrix is therefore 
the same as (5.1), F ci) but with the last column dropped. Since we consider , 
subspace X of X x Y, the norm-inducing matrix is calculated as 

A:) & (IF(“)I . (J+)) -’ . (5.28) 

Similarly, let &’ denote the projection of cluster prototype &) (4.17), onto 
X such that the inner-product norm &&I measures the distance of an input 

X 

(i> vector x to the prototype cx : 

(5.29) 

The membership to a cluster (rule) is somehow inverse proportional to the 
distance and the following methods have been suggested. 

Probabilistic Method: 

Pi(X) = 
1 

~ (d2A(i) (XT Cg’) /G!:(i) (x, “~))) l’(zu-l) 
. (5.30) 

k=l X X 

1 The matrix X given in the original paper by Takagi and Sugeno is not correct. 
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Whereas in the probabilistic method the sum of membership degrees of all 
the rules is one, this constraint is dropped in the Possibilistic Method: 

Pi(X) = 
1 

1 + d2A(;) (x, C$) l 

(5.31) 

X 

t 
0.6 0.8 

:tk-25) 
1.2 1.4 0.6 0.8 1 

y(k-25) l-2 
1.4 

Fig. 5.8 Result of fuzzy-c-means (left) and GK-clustering (right). 

The effectiveness of these two methods and others is discussed in [Bab98]. 
Here, we compare both methods for fuzzy-c-means and the GK-algorithm 
for 60 training data taken from k = 200 to AJ = 260. In all cases, we chose 
w = 1.5, c = 3 and the model structure y(l”c+l) = f(y(lc--25)) or equivalently 

Y@ + 26) = f(y(lc)). First, considering the results of the fuzzy-c-means, 
Figure 5.8 shows the training data in the product space, the identified cluster 
centers and the linear models identified using weighted least-squares. 

k 

Fig. 5.9 Fuzzy-c-means: probabilistic method (left) vs. possibilistic method (right). 

For the Gustafsson-Kessel algorithm, the clustering result is shown in Fig- 
ure 5.8. Though both models, the possibilistic method in particular, produce 
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better forecasts, the algorithm is computationally much more expensive and 
with only 60 values for training the GK-algorithm is sensitive to the initial 
partition matrix. The forecast results are shown in Figure 5.10. 

Fig. 5.10 GK-algorithm: probabilistic method (left) vs. possibilistic method (right). 

5.6 DISCUSSION: PRODUCT SPACE CLUSTERING FOR SYSTEM 
IDENTIFICATION 

You can only find truth with logic if you have already found truth without it. 
-G.K. Chesterton 

The input-output variables of a system and their past values specify a multi- 
dimensional space which translates the dynamics into a static regression prob- 
lem. The main problems of clustering for system identification are: 

D Structure selection, that is, to determine the ‘relevant’ input and output 
variables with respect to the aim of the modelling exercise. 

D When identifying dynamic systems, the 
of the model dynamics must be chosen. 

structure and the order (n,, ny) 

In many practical situations this may be very difficult from prior knowledge 
alone. Also, the discussed algorithms assume the number of cluster is known 
or fixed. Once the structure is fixed, fuzzy clustering has proven successful in 
systems modelling and pattern recognition. 

From the foregoing discussion, there are at least three important 
fuzzy relations are relevant in systems analysis: 

reasons why 

1. In hard clustering, objects somewhere “in between” two clusters, are 
‘forced’ to be associated with exactly one cluster though partial mem- 
bership may be more realistic. 
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2. Continuous degrees of membership allow analytical optimal solutions to 
the optimization problems in clustering, simplifying the computation as 
well as providing more realistic results with overlapping clusters. 

3. The Poincare paradox demonstrates that, on the basis of measured data, 
in systems analysis, relations may be non-transitive. Maintaining some 
form of transitivity, as a basic tool of inference, the integration of uncer- 
tainty into relations leads to probabilistic spaces, t-norms and similarity 
relations. 

5.7 REGRESSION MODELS AND FUZZY CLUSTERING 

Cl Fuzzy clustering does not make assumptions about the randomness but 
can be related to regression analysis. 

Cl Fuzzy-c-regression models yield simultaneous estimates for the parameters 
of c-regression models. 

Oft expectation fails and most oft there 
Where most it promises, and oft it hits 
Where hope is coldest and despair most fits 

-William Shakespeare, “All’s Well That Ends Well” 

In 1993, Hathaway and Bezdek [HB93] introduced a family of objective func- 
tions, called fuzzy-c-regression models which can be used to fit switching re- 
gression models to certain types of mixed data. In close analogy to the fuzzy-c- 
means algorithm, minimization of the objective functions yields simultaneous 
estimates for the parameters of c-regression models, together with a fuzzy- 
c-partitioning of the data2. The notation in this section is identical to the 
concepts defined in Section 4. 

Instead of assuming that a single regression model (2.15), can account for 
the d pairs of data (xj, IJ~), the switching regression model from which the 
data are assumed to be drawn, is specified by 

y  = h(x; 6) + &i 7 l<i<c, - - (5.32) 

where the the objective is to determine the parameter vectors 8i E 0 c I@ 
for c different models. The data rnj = (xj, yj) are unlabelled, that is, it is not 
known which model from (5.32) applies3. 

2An alternative app roach is to first cluster the data, for instance with either the hard-c- 
means or fuzzy-c-means algorithms, and then apply linear model identification to the data 
in each of the obtained clusters. 
3As data are u nlabelled, i.e. it is unknown to which class (cluster) they belong, fuzzy-c- 
means clustering is also called unsupervised learning. 
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In a statistical framework the definition of an optimal estimate of 0 depends 
on assumptions made about the distribution of random vectors pi and the set 
of feasible parameters. Commonly, the &i are assumed to be independently 
generated from some probability distribution function p(~; q, a) such as the 
Gaussian distribution with mean 0 and unknown standard deviation Q, 

(2.57) 

For example, let c = 2 and 2 = 2. Then, from (5.32), 

Y = fdx; 01) + El 

Y = f2(x; 02) + E2 l 
(5.33) 

Each data sample rnj is assumed to be generated with probability R(i) from 
model i such that xi=, Pr(i) = 1. The log-likelihood function (2.55) of the 
data is 

L(6; M) A l&(0; M) = In Pr(Mlt9) (2.55) 

= 2 In 2 Pr(i) l p(mj(i, Oi) 
j=l ix1 

(3.25) 

= fJn[Pr(i) l p(?Jj - 011Xj - e1210,01) 
j=l 

+ ((1 - Pr(i)) ’ P(Yj - Q21Xj - ~2210,~2))] l 
(5.34) 

To this point, the formulation of the problem of the mixture density model 
discussed in Section 3.3 and the EM-algorithm can be used to iteratively 
optimize C as detailed in Section 3.4. The motivation to use the EM-algorithm 
comes from the fact that the observed data are incomplete in the sense that 
t,hey are unlabelled - we do not know for any mj which model i generated it. 

If we could partition M into c subsets corresponding to the models (5.32), 
we would have complete information and then estimators for t?i could be ob- 
tained by regression. For instance, we can first use the hard-c-means algorithm 
to identify a crisp-c-partition of M such that M = U Mi, Mi n Mj = 8 for 
i # j, a#nd then solve c separate single models using standard least-squares, 
@as]. 

Alternatively, Hathaway and Bezdek suggested to (fuzzy) partition M and 
estimate el, . . . , 8, simultaneously by modifying the fuzzy-c-means algorithm. 
Clustering in M assigns (fuzzy) label vectors uij E U, (4.18), to each mj de- 
scribing the membership of the object represented by mj in the ith class or 
submodel. If the uij came from maximum likelihood estimation in mixture 
density decomposition, it would describe a posterior probability that the ob- 
ject described by uij (j fixed) came from class i. For the switching regression 
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problem, uij is considered a weight describing the extent to which the model 
value fi (xj ; &) matches yj . The quality of the model is quantified with the 
loss Q(m, 0), that is, the expectation Eij[0i] of the error in fi(xj; &) approx- 
imating Yj. For example, let 

Eij[ei] = IlYj - fi(Xj;ei)l12 . (5.35) 

With the general definition, Eij, the family of fuzzy-c-regression model objec- 
tive functions for U E A& and uij E U is defined by 

(5.36) 

where w > 1 is fixed as in (4.11). The difference with the fuzzy objective 
functions (4.11) is that the fit of the regression models to each yj replaces the 
distance of mj to some prototype. With respect to (5.35) the objective func- 
tion E,[U, (0,) . . . , O,)l is a fuzzy, multi-model extension of the least-squares 
criterion. If the regression functions fi(x; 0i) are linear in the parameters &, 
the parameters can be obtained as a solution of the weighted least-squares 
problem specified by (5.36). Using the same approach as in (5.20), where the 
membership degrees of the fuzzy partition matrix U serve as the weights in 
W, and with (5.22), the optimal parameters t& are computed as 

8 i= [X~W&] -5cTwiY . (5.24) 

The procedure is summarized in algorithm 5.2. Note that in the mixture 
density approach for the EM-algorithm, the probability that component i 
generated data point j is denoted by pij, (3.28), and in the fuzzy-c-regression 
rnodel it is denoted by uij. For our example (5.33), we would have in the ML 
formulation 

Pij = c 
Pr(i) ’ P(?Jj - OilXj - 0i2 I 0, ai> 

C Pr(k) l P(Yj - e/clXj - ok2 ( 0, ak) a 
k=l 

5.8 EXAMPLE: PH NEUTRALIZATION PROCESS 

In this example, we apply the fuzzy regression model, discussed in the pre- 
vious section, to data obtained from a highly nonlinear pH neutralization 
process4 [Bab98]. The system consists of a neutralization tank to which a 
base Q is added and the pH level is the output variable to be controlled. The 
identification data set, consisting of d = 1250 values is shown in Figure 5.11. 

4The pH model was described in [MHL72]. 
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Fix c, 2 < c < d, and choose the termination tolerance 6 > 0 and fix W, 1 < w < 00. 
Initialize%(‘) E MfC randomly. 

- 

Repeat for 1 = 1,2,. . .: 

Step 1: Using (5.24), calculate model parameters 0!‘) to globally minimize (5.36). 

Step 2: Update the partition matrix with Eij = E&9~z-1)] to satisfy 

JZ) = 1 

ij & (%) 5 

if Eij > 0 for 1 5 i 5 C, and otherwise u;j = 0 if Eij > 0, and u;j E [0, I] 
with (UI~ +***+u,j) = 1. 

Until ]lW) - Wvl) )I < 6 . 

Algorithm 5.2 Fuzzy-c-regression models. 

520 

65 

6 
100 150 

Tm[mm)  

Fig. 5. I I Input and output data used for identification. 

Here we represent the process as a first-order discrete-time NARX model: 

pH(k + 1) = f (P~W,Q(V) 7 

where k: denotes the sampling instant and f is the unknown relationship we 
wish to identify. In Figure 5.12, the data are plotted in the data space and 
it can be seen that clusters are not immediately apparent. The s-shaped area 
with a higher density of data corresponds to the equilibrium of the system. 
For c = 3, w = 2 and the stopping criterion set equal to 6 = 10-l’, the 
fuzzy-c-regression model leads to the model shown in Figure 5.13. Note that 
the switching regression model does not produce compact sets. Instead, it 
finds the dynamically similar regions on the pH-Q space. This means the 
points marked by squares are mainly equilibrium points, while the other two 
clusters cover two different off-equilibrium regions. Hence, the method is 
useful for extracting “fuzzy” knowledge about the possible dynamic regions 
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of the system, but because of the non-compact fuzzy sets one would obtain 
from the fuzzy clusters, it is difficult to transform the result into a rule base. 
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Fig. 5.72 Training data, as used for identification and 90 degrees view. 
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Fig. 5.73 Fuzzy switching regression model. 90 degrees view where points are assigned to 
the cluster in which they have the maximum membership. 



6 
Random-Set Modelling and 

Identification 

Prediction is difficult, especially if it concerns the future. 

Cl Random sets can be viewed as multi-valued maps or random variables. 

Cl For very small data sets, local uncertainty models (random subsets) can 
be used to generalize information in the data space. 

q The estimation of coverage functions of random sets yields possibility dis- 
tri bu tions. 

Cl While probabilities describe whether or not an events occurs, possibility 
describes the degree of confidence or feasibility to which some condition 
exists.‘ 

0 A random set approach to identification leads to quahtative predictions. 

q Qualitative predictions are fuzzy restrictions and may therefore provide a 
mechanism to combine quantitative data analysis with rule-based systems 
describing qualitative expert knowledge. 

-Mark Twain 

In this section, we describe a random-set approach to time-series analysis. 
The principle idea is that, based on only a small data set M, we are unable to 
choose a distribution function for data in E and therefore a specified number 
of nearest neighbors rnj in E induce random subsets - representing a local 
uncertainty model. The motivation is that random-set theory provides us with 
a mechanism to integrate statistical objects into rule-based systems on the 
basis of generalized (fuzzy) sets. More specifically, predictions of the models 
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developed in this section are determined from a possibility distribution which 
can be processed in a rule-based system as described in Section 7.2. The 
possibility distribution itself is an estimate of the generalized distribution 
function of projected random subsets. Before introducing random-sets, we 
review the more familiar concept of random variables and point-valued maps. 

6.1 RANDOM VARIABLES, POINT-VALUED MAPS 

The possible outcomes of an experiment, determined in part by random factors 
form the space of elementary events Q. Other events, expressed as qualitative 
concepts such as whether the die produces an even or odd number, are formed 
by combinations of elementary events, that is, subsets of 0. These events 
may thus be organized in a structure of subsets a-algebra on St, denoted by 
a~. This structure ensures (by imposing certain conditions to the subsets) a 
predictable behavior in operations with subsets such as complement, union, 
intersection, and so on, and then allows us to measure how likely an event is 
by introducing a probability measure PrQ in the measurable space (0, a~). 
The choice of a~ depends on the kind of experiment under consideration. 
The tuple (0, a~, Pm) is called a probability space and it summarizes the 
experiment or process. 

A random variable is a rule that associates for each elementary event CJ E i;t 
an element x(w) in a space X, in which the elements are organized by a D- 
algebra, ax . The aim of using a random variable is to generate a probability 
measure on (X, ax) such that the probability space (X, ax, Pr,) is the mathe- 
matical description of the experiment as well as the original probability space 
(a, m, Pm)- The benefit arises when (X, ax) is a well-known measurable 
space where mathematical tools such as integration are established. One of 
the most commonly used measurable space is (R, a), where B is the a-algebra 
of Bore1 (Bore1 algebra), which is generated from the topological space of the 
open sub.sets of R. 

For the formal definition of a random variable, let (R, an, Pm) be a prob- 
ability space and (X,0x) a measurable space. Every (a~-DX)-measurable 
mapping 

x:i-b+x (6 11 . 

is called a random variable. The mapping x is said to be OR-ox measurable 
iff VA E ax, x-l (A) E a~. Measurability ensures equivalent representations 
of the experiment in both probability spaces (0, cry, Pm) and (X, CTX, Prx) 
where Prx is explained below. If X = R and ax = L?, it is called a numerical 
random variable. Since every elementary outcome is ‘mapped’ into a ‘point’, 
a random variable is also referred to as a point-valued map. 
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The distribution or probability law of x is defined as Pr, = PTQ o x-l. 
This means that an event A E crx has the probability 

Pr,(A) = Pro 0 x-l(A) 

= Pro (X-‘(A)) 

= Prn{u : x(u) E A}. (6 2) . 

From (6.2)) for any event A, given a probability law defined on 0, a measure 
of the probability of that event in X can be obtained using the inverse image 
x-l (A) of A. The inverse map is defined by 

- 
x l . . Bx + ml 

A I+ x-l(A) = {w : x(u) E A} . (6 3) . 

Depending on whether we deal with a discrete or continuous random variables, 
we have 

Pr,(A) = x Pr({u}) (discrete case), (6 4 . 
UEX-l(A) - - s dPr 

x-l(A) 
(continuous case). (6 5) . 

As illustrated in Figure 6.1, the event A is defined by a crisp subset. A set 
of elements can be described by listing its elements or by the definition of its 
characteristic function (Chapter 2). In terms of the expectation operator E[-1, 
we have equivalently: 

Pr,(A) = 
s 

dPrQ = <x-1(A)(u) dPrQ 
x-l(A) s R - - s dPr, 
A 

= ‘?~~~(x~l l 

= cx(x) dPrx 
s X 

(2 2) 
. 

The concept of a random variable x can be summarized in the following 
commutative diagram: 
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Fig. 6.7 A random variable as a point-valued mapping. I 

6.2 RANDOM-SETS, MULTI-VALUED MAPS 

It has been argued’ that in many cases the situation described by ordinary 
random variables is somewhat ideal and, in fact, we may not know into which 
x any particular w maps. Such considerations lead to a multi-valued map 
where any w E 0 maps into a subset of X. In other words, the only difference 
to a random variable is that it associates every elementary event w E 0 with 
an event of 24 which is a set of subsets of X. That is, we associate with each 
w E 0 a subset of X. Associated with a probability measure, a multi-valued 
map therefore describes a random-set [GMN97, WolOl]. As can be seen from 
the illustration of a random-set in Figure 6.2, in case of multi-valued maps, 
the inverse image is not unambiguous and subsequently the mathematics of 
the spaces and measures involved is more complicated. However, we will find 
that random-set theory provides a convenient interface between probability 
theory and possibility theory. 

Let (0, a~, Pm) be a probability space and let (24, au) be a measurable 
space where 24 is a set of subsets of X, that is, 24 C P(X), where P(E) is 
the power class of E and CTU is a a-algebra defined on U. The power chss 
P(X) is ‘defined as the set of sets P(X) = {C: C C X}. Then a random-set - 
is defined as a (an - au)-measurable mapping l? : 0 -+ U. The mapping 
associates elementary events of fi with elements of U, so really it is a random 
variable between the probability space (&go, Pm) and the measurable space 
(ZA, 0~). Then in some way, as we define the distribution or the probability 
law of a random variable, we define the distribution of a random-set by Pry = 

‘The introduction of multi-valued maps in statistics is attributed to A. Dempster, who 
showed that the multi-valued mapping from 52 to X carries a probability measure, Pm, 
defined over subsets of s2 into a system of upper and lower probabilities defined over subsets 
of X. Upper and lower probabilities were then later described by G. Shafer as subjective 
probabilities modelling belief and ptazlsibility, in what is referred to as evidence theory. 
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Fig. 6.2 Random-set: Set-valued map. 

Pm 0 r-l in analogy with random variables: 

Prr(d)= PrQ 0 r-l(d) 
= Prn{w : I’(w) E d} Vd E au. (6 6) . 

Note that a random-set can be seen as a random variable from 0 to 24 or 
as a multi-valued mapping from 0 to X since I’(w) E U + I’(w) C X. 
The probability space (24, a~, Prr) is the mathematical model that is-used 
to represent and explain the experiment. 

In order to be able to associate (probability) measure with events in P(X), 
we need to define measurable spaces. 24 is a set of subsets included in X 
a,nd is chosen according to the type of process that is being studied. The 
g-algebra on U, a~, being a set of sets of subsets of X, implies a rather 
complicated structure of subsets to identify and work with. Note also that 
ml! c p(u) r ww>> since U C P(X). (U, au) is termed a hypermeasurable - 
space. 

For any A E 24, that is,, A c X, we distinguish the following family of 
subsets: 

CA={C: AcCW}. (6 7) . - 

Let us suppose that (24, au) is a measurable space such as VA E 24, CA E ou. 
Then (6.7) determines the following measure on X such that VA C X: - 

cl? (A) = PrI-(CA) 

= prG (r(W) E CA) 

= PrQ{w : A c l?(w)} . (6 8) . 

The 
our 

function 
attention 

c&) in (6.8) is called subset coverage function. We now focus 
on the special case of the family of su bsets CA when A = {z}. 
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Then the family of subsets becomes 

c {x} = {C : {x} E c E u} (6 9) . 
- - {C:xECEz4} (6.10) 
- - C X 

and the subset coverage function (6.8) becomes the one-point coverage func- 
tion of the random-set I’ 

a+) = prr (Cx) 
= Prfl 0 lT’(C,) 

= Prn{w : r(w) C C,} 

= Pra{w : x E r(w)} Vx E X. (6.11) 

From (6.11), we can define yet another distribution for subsets of X: 

h+q = suP{cr(x)} VAcX. (6.12) 
usA 

Both (6.11) and (6.12) are mappings into the unit interval. Note that cr : X --+ 
[0, I] therefore defines a fuzzy restriction on X. (6.12) is called a possibility 
measure and was already introduced in Section 2. 

Let the outcomes of a process be in the form of subsets of X and let 
Cl 7 “‘7 Cd be a sequence of random subsets obtained from n realizations of the 
process. We assume that Cr, . . . . Cd is a random-set sample. Then set-valued 
statistics are required to estimate the one-point coverage function and their 
properties. An estimator of the one-point coverage function is 

&(X) = (6.13) 
k=l 

where <& is the indicator or characteristic function of the crisp set CI,, k E 

(1 , d}. The difference between point-valued and set-valued statistics is 
illus&ated in Figure 6.3. 

Problems subject to uncertainty, imposed by subjective and imprecise in- 
formation, are present in many real-world problems and are more and more 
often considered in engineering applications. Fuzzy set theory has been suc- 
cessfully applied to those problems where a lack of precision exists in the 
outcome of an experiment, for instance, the definition of a concept by a group 
of experts, where everyone has a own idea of the outcome. It is called a fuzzy 
concept because the borderlines are not clearly defined. Fuzzy mathemat- 
ics gives good descriptions for those concepts by using fuzzy set membership 
functions. 
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Fig. 6.3 Point-valued statistics (left) vs. set-valued statistics (right). 

Set-valued statistics based on random-set theory introduces a practical 
method to set up these membership functions from a sample of outcomes 
such as some different opinions about a concept. This allows us to study the 
process by applying fuzzy mathematics, which has become a useful extension 
to probability theory and statistics. 

In the previous section we introduced the definition of a random-set and 
its distribution by drawing on the similarity with the definition of a random 
variable. This similarity allows us to study processes governed by a random- 
set, (i.e. processes with subsets of a space as possible outcomes) by applying 
probability theory on the (Z&au) hypermeasurable space. 

6.3 A RANDOM-SET APPROACH TO SYSTEM IDENTIFICATION 

Based upon previous definitions regarding random sets and possibility distri- 
butions, this section we introduces a random-set model for multi-variate data 
and dynamic systems in particular. The principle idea is to let sampled data 
induce random-sets (local uncertainty models) in the data space. Thus, the 
estimation of the coverage function describes a fuzzy set. In case of Z = X x Y 
where we consider an autoregressive structure for y = f(x), the projections of 
random subsets onto space Y leads to a possibility distribution as a qualita- 
t,ive forecast, expressing explicitly the uncertainty (confidence) of the model 
w.r.t. any potential candidate y(k + 1). 

We begin with a simple example of the idea using a first-order autoregres- 
sive model structure and square-shaped subsets. Let C2 be a set of abstract 
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states and I’ the observable 

r:o -+ u 
W I+ r(w) c z = x x Y . (6.14) 

Given a set of identification or training data’ M = { mj}, j = 1, . . . , d and 
mj = (x,y) E X x Y, an abstract state constitutes a finite number of points 
in Z inducing a random subset in Z. We call this induced random subset the 
context of a state w and denote it by C. Intuitively, a small number of neigh- 
boring sampled data rnj describes a loch uncertainty model by defining an 
area in the data space in which the real but inaccessible true value lies. (The 
relatively small number of neighboring points prevents us from the definition 
of a probability density.) One possibility to create a context is for all rnj E M 
to use a metric between two points rnj and rni to define the neighborhood of 
rnj E M as the closed set (hypercube) whose boundaries are defined by rnj 
and its n, nearest neighbors: 

C j= [minzi,maxzf] x ..* x [min 5$, max 9$] x [min yi, max yi] . (6.15) 

The point mj and its n, nearest neighbors are indexed 
thus generates a sample of I’, denoted 

by i. The data set M 

C = {Cj} where CjCXXY, j=l,...,d. - 

The set of hypercubes, C, essentially comprises our identified model on which 
we shall base our decision making. We notice that the identification itself 
therefore, initially, does not involve any optimization. Given a set of training 
data, the identified model is a coverage function of a random-set (6.13). Since 
the one-point coverage function (6.11) is also a fuzzy restriction (11 .l), we 
may consider the random-set model as a fuzzy model. 

Now, consider the situation in which the data space is defined in terms of 
the nonlinear autoregressive model 

Y@ + 0 = f(x) 7 

where 
X= [Y(k) 7 . . . 7 y(k - nY + l), U(lc), . . . , u(k - %.L + 1)1’ 

such that each element in vector x defines an axis in the product space X = 
XIX**- x X,. A prediction model is then built from the projections of random 
subsets Cj C E onto Y, the space of candidates for y(/c + 1). Formally, for 
any x E X, extended into X x Y, the projected random intervals on Y are 
defined by 

C X- 
i - {Y : Xext n G # 8) - (6.16) 

‘LNote t hat ‘x’ denoted a random variable 
regressi on vector as introduced in Section 

in the previous section, while here it denotes the 
2. 
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x 

Projection of random subsets in X x Y onto Y. 

Let i = l,..., nP be the number of random intervals for which xext is covered 
by any Cj. Figure 6.4 illustrates the concept of a realization of random-set 
I? and projections onto Y. Then, {CF} is a set-valued sample for x E X and 
from (6.13), we obtain a conditional possibility distribution 

ii(ylx) = - ip 2 by(Y) where k;x(Y> = { :, (6.17) 
i=l 

. 

In (6.17), for any y’ E Y, +(y’Ix) determines the possibility of y(rC + 1) = y’. 
In other words, each r(y) specifies the degree of feasibility, model confidence, 
that y is the next output at time k + 1. The measure is conditional on the 
experience we have from set of training data M. Consequently, regions in 
which training data are sparse will produce low degrees of confidence. In fact, 
if for any given x, xext extends into regions of the data space in which no 
random subsets exist, the model confidence will be zero. (We can still make 
a, prediction by extrapolating as in conventional regression analysis). 

The difference with a probability distribution or density is important. Sta- 
tistical laws (established either empirically or on the basis of hypothetical 
models) are not used in prediction of the probability of occurrence of indiuid- 
uaE events. Their chief importance, as far as prediction is concerned, lies in 
that they help in forecasting collective properties, that is, properties of large 
collections of entities that are similar in some respects. Here, however, we con- 
sider time-series with small numbers of data which are non-repeatable or only 
one realization is available for analysis. Hence, we are unable to associate with 
a forecast a probability distribution which for any y E Y would tell us whether 
or not, on average, we could expect y to be the value y(k + 1). We contend 
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Fig. 6.5 Student numbers (in thousands) enrolling between 1971 and 1992. 

that reporting a single number for a prediction (or parameter estimate) is 
almost always inadequate. Quantification of the uncertainty associated with 
a single number, while often challenging, is critical for subsequent decision 
making. Here, instead of generating first a single-valued prediction and then 
building an uncertainty model, we produce a qualitative forecast, n(y) and 
then extract a single number if required. For instance, we obtain a numerical 
prediction of a value in Y by finding a representative value from the possibility 
distribution, for example, 

jj(k + 1) = 

S y Y  l *(Ylx) dY 

sy ii-(YIX) dY ’ 

(6.18) 

Since, in general, we do not have Vy E Y that there exists a y’ for which 

4Y’) = 1, we normalize (6.17) to the unit-interval. Note that this does 
not influence the numerical value predicted in any way (cf. Eq. (6.18)) but 
provides an intuitive interpretation of R (see Figure 6.12). 

The random-set model itself can be described by a fuzzy graph (cf. (4.33)) 

F G {(wr(=,y))} l (6.19) 

The model can therefore be generalized to fuzzy inputs. Thus, the formulation 
of the fuzzy system and inference described here is equivalent to the concepts 
of approximate reasoning (Section 7.2). The more important point, however, 
is that the information provided by x (from quantitative analysis) can be 
combined with vague or fuzzy information in a qualitative knowledge base as 
described in Section 7.2. The motivation for such diagnostic signal analysis is 
as follows: We started off with the assumption that only a small training data 
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set M is available, the experiment may not be repeatable and that in the case 
of a time-series the process is nonlinear and non-stationary. As an example, 
consider the problem of forecasting the number of students at a particular 
university. Assuming we have records for 22 years, as shown in Figure 6.5, we 
wish to make a forecast for the upcoming year. Surely, we can extract cycles 
and trends from past data but context-dependent knowledge should help us to 
improve our forecast. In our example, knowledge of economical and political 
events provide additional information which is not buried in historical data. 
For instance, following the currency crisis in Asia, UK universities with a large 
number of Asian students could expect a negative trend in enrollments. It 
is this type of qualitative context-dependent knowledge which is conveniently 
represented by fuzzy if-then rules, and the random-set model suggested here 
allows us to combine both quantitative analysis with qualitative information. 
In Algorithm 6.1 the process of fuzzy random set modelling and forecasting 
is summarized. Note that modelling essentially comprises the storage of local 
uncertainty models (such as hypercubes or ellipsoids) but does not involve 
any numerical optimization. 

1. Modelling: 
1.1 Fix 7371, the number of nearest neighbors forming the local uncertainty 

models. 

1.2 Calculate local uncertainty model C = {Cj), j = 1,2,. . . , d, where d is 
T 

the number of training data, rnj E M, rnj = [XT, yj] . 

2. Forecasting: 
2.1 Obtain np random subsets Cp, where x extended into Z is covered by Cj. 

From this set, determine projections C$ i = 1,2, . . . , np onto Y. 

2.2 Estimate possibility distribution (qualitative forecast quantifying model 
uncertainty): 

2.3 For a single-valued numerical forecast, ‘defuzzify’ r(e) calculating for in- 
stance the mean value. 

Algorithm 6. I Fuzzy random-set modelling and forecasting. 

6.4 EXAMPLE 1: NONLINEAR AR PROCESS 

The nonlinear first-order autoregressive process used here has been used to 
test other fuzzy models elsewhere [Bab98]. As before, it is assumed that 
the system identification problem is transformed into a static approximation 
problem: y z f(x), where x = (z~,cc~, . . . ,x& x E (Xi x X2 x... x X,) C Iw’ 
and y E Y c Iw. The considered nonlinear AR( 1) dynamic system is simulated 
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Nonlinear AR(l) process 
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Fig. 6.6 Ex. 1: Nonlinear AR( 1) process: Time series and data space. 

as follows: 

2x - 2, 0.5 < x, 

x(k + 1) = f(x(k)) +&(A$, f(x) = -2x, -0.5< x < 0.5 (6.20) 

2x + 2, x < -0.5 ) - 

where E(/c) - N(0,a2) with (T = 0.3. x(0) = 0.1 and 0 < IC < 200 of which 
the first hundred values are used for identification and-the rest for model 
validation. Note that we keep the notation as in [Bab98], that is, x(k + 1) 
takes its values in Y. 

The only model assumptions are that the data were generated by some 
nonlinear autoregressive system: 

x(lc+l)=f(x(lc),x(lc-1),.,.,x(&rfl)), (6.21) 

where T is the system order. We choose T = 1, leading to the planar case for 
the random set model. Figure 6.6 shows the signal on the left and observations 
rnj E M, used for identification, on the right. 

knn=5 

x(k) 

possibil 

1. 

0.8. 

0.6. 

ty distribution k=124 

1 

-0.4 -0.2 
pred x(k+lP=-O.O;i?' 

Fig. 6.7 Ex.1: Random-set model and forecast at k = 124, nn = 5. 



EXAMPLE I: NONLINEAR AR PROCESS 141 

Figure 6.7 shows the random-set model obtained when considering five 
nearest neighbors. At k = 124, the qualitative forecast is a possibility distri- 
bution which for a value y E Y, specifies the degree of confidence that this 
value will correspond to CC( k + 1). 

Fig. 6.8 Ex. 1: Estimated fuzzy model 

Figure 6.8 shows the (non-normalized) fuzzy model and the contour plot 
calculated for a discretized product space X x Y. From the contour plot, 
we can see that the random set model only conveys information about the 
regions covered by the identification data. Events (x, y) which have not been 
‘experienced’ before will have only little or zero reliability assigned. Little 
extrapolation occurs outside regions covered by identification data, and the 
model explicitly quantifies the confidence of the model. This may be seen as 
an advantage but implies that the model may not provide any prediction for 
some input values. 

Nonlinear AR(l) process 
I- . -*-'....'.. ..l 0.8 

1. 0.6 

0.4 
0.5. 
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0. 0 ‘;; t: 
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-0.5. -0.2 . 
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x(k+l): . . pred x(k+l): - 

Fig. 6.9 Ex. 1: Mode 1 validation. 
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For the five nearest neighbor model, Figure 6.9 shows a sequence of forecasts 
and the error. For better visibility only a section of the sequence is shown. 

6.5 EXAMPLE 2: BOX-JENKINS GAS-FURNACE DATA 

As a second example we consider the Box-Jenkins gas furnace data set which 
is often used as a standard test for identification techniques. The data set 
consists of 296 pairs of input-output measurements. The input u is the gas 
flow rate into a furnace, the output y is the CO:! concentration in the outlet 
gases with a sampling interval of nine seconds. 

60 

CO-2 concentration (out) gas flow rate (in) 

58 2 

56 1 
254 I-l 
;52 .G 0 

T 

50 -1 

48 -2 

46 
0 50 100 150 200 250 300 0 50 100 150 200 250 300 

sample k sample k 

Fig. 6.10 Ex.2: Box-Jenkins gas furnace data. 

The model structure chosen is y(k) = f(y(k - l),u(k: - 3)). The two 
data sets are plotted in Figure 6.10. Only the first 50 values are used for 
identification. Figure 6.11 shows the random set model for two nearest neigh- 
bor sets (cubes). An increase in the number of nearest neighbors, forming a 
random set, increases the area of the data space into which the model gener- 
alizes/extrapolates but also increases the model complexity. 

Figure.6.12 illustrates the validation of a 5-nearest neighbor model. With 
md (in %) we denote the proportion of inputs for which the model would not 
give a reliable forecast. One can identify a considerable number of instances in 
which the model would not make a reliable prediction due to a lack of ‘previous 
experience’. In such cases, the previous value is taken as the forecast. Beside 
the mean square error, mse=C (y - ij)2/n, the mdtiple correlation coeficient 
Rc measures the proportion to which the predicted outputs care capable of 
explaining the total variation of y: 

R2 
k=l 

y= n 
c Y”v4 - 

k=l 
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Fig. 6.7 I Ex.2: Random set model. nn=2. 
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Fig. 6.12 Ex.2: Model validation. nn=5. 
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In Figure 6.12, if the model confidence was zero, the current value was as- 
sumed as the forecast. As can be seen from the plot, this leaves to a rather 
large error at times. As suggested before, in these cases we would have to 
extrapolate. Using hyperellipsoids as local uncertainty models, a merging al- 
gorithm iteratively merges random subsets in X x Y into a small number of 
clusters. The (T + 1) - 1 principal components in an (T + 1)-dimensional space 
of a set of data then generate the same hyperplane that we would obtain 
by applying multiple linear regression analysis. In other words, the hyper- 
plane generated by T principal components in every cluster are used as model 
to make predictions. In Figure 6.13, the algorithm is demonstrated for the 
AR(l) model discussed previously. Local uncertainty models are formed by 
random ellipsoids. The three final clusters obtained are marked by thicker 
lines. The original piecewise-linear (noise-free) model is plotted as a dashed 
line, whereas the model used for extrapolation in the random-set model is 
shown as a solid line. 

0 
x(k) 

Fig. 6.73 Clustering and extrapolation in the AR( 1) random-set model. 
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Scjentj~c jx~vestjgatjon relies on two prjncjpa~ concepts: comparing and 
reasoning. 

M~t~ematjca~ formulations of distance and transitivity are at the core 

of the rno~e~~jng ~ro~~ern. 

Tire Poincare paradox describes the indistinguishability of individual 
elements in non-mat~ematjca~ contjn~a and hence proves that uncertajnty 
is certain. 

Taking account of uncertainty leads to similarity (fuzzy) relations. 

~22~ concepts therefore occur ~nat~ra~~y~ from f~n~arnent~ analysis. 

Fuzzy relations motivate approximate reasoning. 

~~~roxjmate re~onjng is a concert to capture ~~a~jtatjve 
(context-dependent) expert knowledge. 

The physical laws, in their observable consequences, have a finite limit of preci- 
sion. 

-Kurt G6del 

If we are to reduce the process of a scientific investigation to two concepts, 
it would be c~rn~~~~~g and ~~~s~~~~g. We use sets and operations on sets 
or, equivalently, relations in order to group and hence compare objects, vari- 
ables, and so forth. In Section 1 we saw that an analysis of a system by 
mea#ns of observables inevitably induces equivalence relations. They play a 
fundamental role which we shall discuss further in this section. More general 
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and philosophical consequences are discussed in a summary at the end of this 
section and in Section 12.2. 

Let E be a set, then a (crisp) relation R on E will be a subset of the 
Cartesian product, R c E x S. If (o,o’) E R, we shall write R(o, 0’) = 1 (or 
just R(o, ol> for short) to state that u is related to o’ via R. A relation R in 
E is an e~~~~~Ze~ce ~el~~~~~, denoted E if it satisfies the following conditions: 

E(o,o) = 1 VOEE (reflexive), 

E(o,o’) = 1 --J, E(o’,o) = 1 (symmetry) 7 
E(o,o’) = 1 A ~(o’,o”) = 1 * E(o,o”) = I (transitivity) . 

Intuitively, an equivalence relation is a generalization of equality (which itself 
is an equivalence relation). We have therefore already heavily relied on two 
simple equivalence relations, equality (=) and elementhood (E) for the pur- 
pose of comparison. With respect to equality, it is obvious that it satisfies the 
three conditions for an equivalence relation: 

a=a holds (reflexivity) 

a=b + b=a (symmetry) 

a=bAb=c=+a=c (transitivity) . 

From this example, we can see that transitivity enables us to infer something 
new about the relationship of two variables given two pieces of information. 
The concept plays consequently a fundamental role in reasoning. We can 
illustrate transitivity with another important tool for comparison: the concept 
of a metric. 

The function d(*, 0) defines a distance between elements of E. Let for any 
. - oi,oj,ok in z: 

d(Oi,Oj) = 0 iff oi = oj 

d(Oi,Oj) > 0 iff 0; # oj 

d(Oi, Oj) = d(Oj, Oi) symmetry . 

A distance is called metric iff Voi, oj, 01, E X, it is transitive: 

d(O~,O~) < d(Oi,Oj) + d(O~,O~) l 
-  

This inequality is called the tr~a~gZe ~~e~~aZ~t~: 

(7 1) . 
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A simple example for a metric is the absolute value of the difference: 

d(x, 2’) = Ix - ~‘1 . 

Having established the basic tools for comparison and reasoning it remains to 
define a mechanism of order. Examples of relations which establish an order 
are the ‘greater than’ and ‘subsethood’ relations. Again these relations are 
transitive: 

“‘greater or equal” >: - oi > oj A oj > OA: oi > OI, 

(‘set-inclusion” c: ACB A BCC --i ‘AcC - - - - 

Formally, these relations are establishing a partial order on E, making E a 
pa,rtially ordered set (poset). A partial ordering (or semi-ordering) on Z is a 
binary relation 4 on E such that the relation is - 

reflexive, i.e. - x+x, 

antisymmetric, i.e. x 5 x’ and X’ 5 x implies x = x’ , 

transitive, i. e, x -( z’ and x’ -( x” implies x -( x” . - - 

In Section 1, for the analysis of a system we were required to establish the 
quality of states, that is, we were testing values of observables for equality. 
If such an analysis is to be implemented in a computer or validated with 
measured data, we may find it impossible to establish theoretical equality 
for real numbers. We are therefore forced to take some ~rn~~ec~s~o~ into 
account. Matching mathematical idealism with physical reality, however, has 
unfortunate consequences illustrated by the Poincare paradox. In short, the 
Poincare paradox describes the ~~~~s~~~g~~s~u~~~~~~ of individual elements in 
non-mathematical continua. More specifically, for three points oi, oj and ok, 
let S denote a threshold (tolerance, significance level). Then, two elements o 
and o’ are indistinguishable for d(o, 0’) 5 S, where d(=, 0) denotes a proximity 
measure such as a metric. Therefore, it turns out that physical equality is not 
transitive, that is, (7.1) does not apply if we study physical systems by means 
of observations. The Poincare paradox demonstrates that an element, oj, may 
be indistinguishable from two others, oi and ok that can be distinguished from 
one another. Let us consider the following measurements in Iw: oi = 1.5, oj = 
2, ok: = 2.2, and S = 0.6, and let us use the metric d(o, o) = (o - 0’1, w.r.t. a 
threshold, accuracy or error bound 6, to identify observations. Our analysis 
is based on the ~~eo~e~~cu~ model that if observations oi and oj are similar, as 
well as oj and ok are similar, then so should be oi and ok, in other words, 
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Now, considering act?.& data, 

but 

I oi - Ojl = 0.5 < 6 * Oi = Oj 

I Oj - Od = 0.2 < 6 * Oj = Ok 

I oi - Okl = 0.7 > 6 * oi # Ok . (7 2) * 

A solution to this dilemma leads us directly to fuzzy relations which have 
already played an important role in clustering in Section 4. To bridge the 
mathematical idealization with physical reality, Karl Menger suggested re- 
taining the transitive relation but introducing a measure between 0 and 1, 
probabilities, to quantify uncertainty. More specifically, we associate d(o, 0’) 
by a (cumulative) distribution function I?‘,,,/ whose value I$:,! (CL) for any a is 
interpreted as the probability that the distance between o and o’ is less than 
a. As a result, metric spaces become ~~o~u~~Z~~~~C rn~~~~c shocks [SSSS]. The 
most important fact, however, is that the triangle inequality given in (7.1) 
has no unique generalization: 

with a choice of functions T(e, l ) . This means that the model under consid- 
eration is a formal model which cannot model reality adequately and hence 
assumptions are in a sense arbitrary, that is, the model builder can freely 
decide which model characteristics he or she chooses. We can arrive at in- 
equality (7.3) by starting with the triangle inequality (7.1), which implies the 
logical proposition 

d(oi,oj) <a A d( oj,ok) < b + d(o~,o~) < a + b . 

Since A =+ B implies that Pr (A) < Pr (B) , we get 

Pr(d(o~,oj) < a A d(oj,o~) < b) < P~(d(o~,o~) < u + b) = Fai,,(a + b). 

Thus, if T is such that T(Pr(A), Pr(B)) < Pr(AM3) for any two propositions 
A and B, the desired inequality (7.3) willfollow. The function T is a mapping 
[O, 11 x [O, l] -+ [0, l]. For example, 

Tmin (a7 b) = min(a, b) (minimum operator), 

TLuk ($7 b) = max(a + b - 1,O) (Lu~siewicz norm), . (7 4) 
Tpro(a, b) = a l b (algebraic product). 

Let T = a . b. Then (7.3) becomes 

(7 5) l 

which states that the probability of the distance between 0; and oh being 
smaller than a+b is at least the joint probability of the independent occurrence 
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of the distance between oi and oj being smaller than a and the distance 
between oj and ok: being smaller than b. In other words, 

Pr(d(oi,Ok) < CA + b) > Pr(d(oi,oj) < a, d(oj,Ok) < b) . 

So much for probabilistic uncertainty and the introduction to triangular 
norms. We now show that a metric induces a similarity (fuzzy) relation for 
which transitivity is generalized in the form of inequality (7.3). What we 
look for is a transitive relation that defines a degree of indistinguishability 
for values being very close, 0 % 0’. A fuzzy equivalence relation or similarity 
~eZat~o~ [Zad71], E, is a fuzzy relation which is reflexive, symmetric, and 
transitive. It defines a function i: 5 x E + [O, l] that satisfies the conditions 
(cf. (4.24)): 

E(o,o) = 1 VOES (reflexive), 

E(o,o’) = E(o’,o) (symmetric) , 

E(o,o”) > T(E(0, o’), @of, 0”)) - (transitive) . 

Transitivity for fuzzy relations is therefore defined in analogy to Menger’s 
inequality, (7.3), for probabilistic metric spaces. In this context, the triangular 
norm T, extends the domain of logical conjunction from the set (0, l} to 
the interval [O, 11. Using the min-operator, we speak of min-transitivity as a 
natural extension of the equivalence relation above. The equivalence classes 
partition U into sets containing elernents that are all similar to each other to 
degree at least S. 

For a bounded metric space (E, d) there exists a non-negative value 6 E Iw+ 
such that d(o, 0’) < 6 for all o in E The distance between values of factors 
on objects then induces a fuzzy relation over S: 

1 
E(o,o’) = 1 - gd(o,o’) . 

The bound S allows scaling such that the distance between any two values 
in E lies in the unit-interval [O, 11. The correspondence of transitivity for a 
distance function and transitivity of fuzzy relations depends on the T-norm 
employed. The metric equivalent of the Lukasiewicz norm (7.4), is the triangle 
inequality, (7.1); the metric equivalent of product transitivity is the inequality 

d(oi,ok) < d(oi,oj) +d(oj,ok) -d(oi,oj)d(oj,Otc) - 

related to (7.5) w.r.t. probabilistic uncertainty. If a fuzzy equivalence re- 
lation is mm-transitive the distance satisfies the more restrictive ultrametric 
inequality~ 

The Lukasiewicz norm turns out to be the least restrictive one. For the 
comparison of factors on objects u it would usually be reasonable to assume 
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that to objects are similar in their contribution to the model if 10 - 0’1 < S, - 
where &is a number representing our (‘indifference” w.r.t. to the measurement 
process. 

We saw that if we are to use equivalence relations, in practical situations, 
we may allow for a tolerance to identify two objects as the same (as having 
the same observable consequence) . The inequality 10 - 0’1 5 6 describes a 
subset (relation) Rd c E x E 

Rs = {(o,o’) E E x E : lo - 0’1 5 S} . 

The Poincare paradox (7.2) demonstrated that this relation is not an equiv- 
alence relation, that is, it is not a transitive relation. We therefore could 
not study the quotient set induced by this relation. Kruse et al. [KGK94]l 
showed, however, that we can define a mapping &j such that Ed (0, 0’) is 
greater than 1 - 6 if and only if o and o’ are indistinguishable with respect 
to the tolerance 6: 

(o,o’) E Rs if and only if -ka(o,o’) > 1 - S , - 

where 

Ejj : EXE --+ [o, 11 
(o,o’) t-+ 1 - inf{li E [O, l] : (o,o) E Ra} 

with S E [0, l] and if there is no S for which the relation holds, we define 
inf 0 k 1. & is a fuzzy equivalence relation w.r.t. TLuk. The value &(o, 0’) = 
1 - min{]o - 0’1, l} describes the degree to which two objects o and o’ have 
similar observable consequences and transitivity of this relation implies that 
if o and o’ are similar and o’ and 0” are similar in their values in E, then 
0 is similar to 0”. To arrive at the inequality (4.24) defining transitivity for 
similarity relations, we show that any (pseudo)metric (in the unit-interval) 
induces a similarity relation and vice versa [Zad71]: 

E(o,o’) = I - inf(d(o,o’), 1) . (7 6) . 

Let d’(o) 0’) = 1 - inf(d( o, o’), 1) be a pseudo-metric. Inserted in the transi- 
tivity law for fuzzy relations (4.24) with Y’min, the greatest t-norm, gives 

1 - d’(oi,ok) > min(1 - d’(oi,oj), 1 - d’(oj,ok)) - 

IThe book [KGK94] and various papers by R. Kruse and F. Klawonn provide an extensive 
treatment of equivalence relations and how rule-based systems can be build from them (see 
Section 4.6). They also generalize the case described here with 6 E [0, l] and Eb(o, 0’) = 

1 - min{]o - 0’1, l} to any unit in Z by means of a scaling factor s > 0, E&D, 0’) = 
Z - min{]s . 0 - s so’], l}. 



and since T(A(o),B(o)) = 1 - S(l- A(o), 1 - B(o)), the t-conorm, 

1 - ~‘(O~,O~) > 1 - - max(~‘(o~, oj), ~‘(o~, 0~)) 

d’(o~, ok) < max(d~(o~~ oj), d’(o~, 0~)) ? 

which is the ultra-metric, implying the triangle inequality (7.1). Then from 
(7,6), with respect to (7.3), E( o, 0’) can also be interpreted as the probability 
that the distance between o and o’ is equal to 0. 

This section has focused on equivalence relations and 
fundamental concepts in any scientific investigation that 

transi 
makes 

tivity as 
use of a 

two 
for- 

mal model. Transitivity is not only of importance in science and engineering. 
anon-technical’ decision making is based on prioritization: In pairwise com- 
parisons the importance (dominance, preference) is relative. For example, we 
may consider 4 three times more important than p and T twice as important 
than 13. To be consistent, we need a rule, such as, if 4 is more important than 
p and T is more important than 4 then also r should be more important than 
p. More formally, if we denote by i(*, 0) the relative importance, to ensure 
consistency we require the transitive relation 

to hold2. We have seen that comparisons, using set operations, norms and 
metrics quantifies (dis)similarity by inducing formal relations. Consistent 
reasoning requires the use of some rule, that is, relations are expected to be 
transitive. Both the definition of functions to evaluate comparisons and the 
form of the transitive law are d~~~~d - choice, a ~~~~~~, ad hoc, whether it is 
formal, rigorous or not. 

7.1 UNCERTAINTY IN SYSTEMS ANALYSIS 

The sense of the world must lie outside the world... What we cannot speak about 
we must remain silent about. 

--Ludwig Wittgenstein, Tractatus Logico-Philosophicus 

To this point our study of system models and the analysis of data in the 
presence of uncertainty suggest a number of conclusions about the encoding 
of natural systems through formal systems: 

D As Karl Popper demonstrated, scientific theories deal with concepts not 
reality. Formula and theories are so formulated as to correspond in 

2The ‘product-transitive’ relation is also the basis for ~~u~~~~cu~ 
(AHP ) ; a decision making and prioriti zation technique developed by 
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some ‘useful’ way to the real world. However, this is an approximate 
correspondence. Mathematical forms say by themselves nothing about 
material reality. Any objective content lies entirely in the (biological, 
physical, ..) meaning attached ad hoc to the symbols appearing in math- 
ematical formulations. There is no wrong theory or model. Instead, one 
may be more useful or convenient than another. The quest for precision 
is analogous to the quest for certainty and both precision and certainty 
are impossible to attain. It is therefore important to be precise about 
uncertainty, not to ignore it but to incorporate it in our models and 
theories. In systems engineering, uncertainty appears in various distinct 
forms, illustrated in Figure 7.1. A successful methodology to analyze 
complex systems will have to embrace all types of uncertainty includ- 
ing those induced by human experts or operators. Data alone, without 
l~nowledge of the context in which they were generated, will not be suf- 
ficient. (More details of the concepts presented in Figure 7.1 can be in 
found in [Wo198].) 

D Triangular norms, which in many ways are at the root of fuzzy mathe- 
matics and fuzzy logic, are motivated by an analysis of the fundamental 
mechanism we use in the analysis of data. 

I> Similarity relations arise from metrics employed to quantify the simi- 
larity of objects (7.6). As for conventional equivalence relations, the 
definition of transitivity is important. In general, transitivity for some 
fuzzy relation R, is commonly denoted R 1 Ro R and is defined in terms - 
cd ~~~~~~~P~ ~~~~j~~~~ hq 

Or, equivalently, expressed in terms of fuzzy equivalence relations E we 
obtain (4.24)) which resembles Menger’s inequality (7.3). In Section 4.6, 
we describe an approach to approximate reasoning based on similarity 
relations, developed by R. Kruse and F. Klawonn [KGK94]. The princi- 
ple idea of approximate reasoning is introduced in the following section. 

More philosopl~ical consequences from these 
ments put forward throughout the book are fur 

considerations and the argu- 
ther discussed in Section12.2. 

7.2 A FUZZY PROPOSITIONAL CALCULUS 

Inferences of Science and Common Sense differ from those of deductive logic and 
mathematics in a very important respect, namely, when the premises are true 
and the reasoning correct, the conclusion is only ~~o~u~Ze* 

-Bertrand Russell 
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Possibility: 
: of feasibility that 
: condition exists. 

intervals 

Fig. 7. I Forms and representations of uncertainty. 

In subsequent sections, we will describe the problem of how to capture quali- 
tative, context-dependent expert or operator knowledge in form of fuzzy logic, 
if-then rules. The models developed in Sections 4 and 5 take a very similar, if 
not identical, form but there the fuzzy graph F is interpreted as a set of rules 
or statements about local dependencies among variables. In Section 6, we 
developed a time-series model in which forecasts are formulated as possibil- 
ity distributions, which, in turn, can be processed in a fuzzy logic rule-based 
system as will be discussed in Section 7.2. In Section 4 we then suggested to 
interpret the cluster structure ~~~~c~Z~ in terms of a multi-valued logic. In this 
section, we discuss the question how logic or which form of logical relations 
are suitable for modelling dynamics, states, and dependencies. 

Though the concepts and ideas introduced in previous sections, lead to 
models which are sets of rules, statements about local dependencies among 
variables, we acknowledge that the causal problem3 is an ontological, not a 
logical question, it cannot be reduced to logical terms but it can be analyzed 
with the help of logic. Reducing a causal problem to its logical aspects, the 
terms ‘cause’ and ‘effect’ are associated with &uth values as follows: Event C 
is the cause of event &J, and event E the effect of event C, is translated into 
three logical propositions, U, J+ c, such that u is a true universal law, p describes 
c, and c is the logical consequence of u and p. p and c are statements about 
concrete objects - events, processes, conditions and so on. In the following 

3As a defini tion of a ‘causal law’, which is not strictly bound to any specific philosophical 
perspective, we shall understand by a ‘causal dependency’ a general proposition by virtue 
of which it is possible to infer the existence of an event from the existence of another. 
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subsections WC? discuss how the conditional or implicative statement 

IF C, THEN E 

may be transformed into the following logical forms: 

0 As a material implication, p + c among propositions p and c. 

0 As an inclusion relation C c E among classes C and E. 

* As a relation R(q, ~2) among members 11;1 and ~2 of the classes C and 
E. 

7.2.1 Probabilistic Logic 

Similar to fuzzy logic, in probabdistic logic the information processed is uncer- 
tain The statements contain quantifiers such as “many”, “almost” instead of 
just 3, ‘d in first-order logic. Viewing degrees of beliefs in the truth of propo- 
sitions as subjective probabilities, one would like to use standard calculus of 
probabilities to implement a ‘logic’ of uncertain information [NW97]. For- 
mally, the objective is to identify logical formulations with set-theoretic ones 
- propositions are viewed as elements of a Boolean algebra that is a lattice. 
This is accomplished with a partial order given by p 4 c if p A c = p and the - 
connectives A (meet) and V (join) are defined in terms of -( by PVC = sup{p, c} 
andpAc= inf {p, c}. The difficulties of a synergy of set theory and logic be- 
comes obvious when comparing the conditional probability model for “c given 
P” - WClP) = Pr(c and p)/~r(p) and the two-valued logical equivalent of 
it, Pr(p ) c), determined as the truth of “c or not p”. We may therefore 
have Pr(p + c) > Pr(clp). This problem of defining an algebraic synthe- 
sis of the foundations of logic and probabilities was the original program of 
George Boole [Boo58], which is now discussed in the context of con~~t~onaZ 
event algebras [GMN97]. 

7.2.2 Classical Two-Valued Logic 

The basis of propositional calcuhs is a set of formal entities, that is, simple 
statements - primitive propositions, often called variables of the logic. Such 
variables are combined using basic logical connectives, V (or), r\ (any), 17 
(not), to build expressions or formulas. The mapping from the set of all 
expressions into the set of truth values is called truth evaluation. In two- 
valued logic the ‘truth’ of a proposition can take the values 0 (“false”) and I 
(“true”) only. The formula p + c, modelling “IF p THEN c” or “p implies c” 
is called material implication and is defined by 

P*C --7pvc (7 7) . 

=cPwv~P, (7 8) . 



that is, it is defined in terms of the three basic connectives. From the table 
above it becomes apparent that two-valued logic is insufficient to deal with all 
those cases for which we might employ rule-based knowledge. In particular, 
the truth values of p and p =+ c cannot be chosen independently and it is 
not possible to quantify gradual changes in the antecedent and consequent 
of a rule. In fact, if the antecedent p were interpreted as the cause and the 
consequent c as the effect, the material implication would mean that an absent 
cause entails any effect. ~rther, every proposition implies itself as p --\, p, 
meaning everything is self-caused. 

A propositional calculus is a logic of atomic propositions which cannot be 
broken down. The validity of arguments does not depend on the meaning 
of these atomic propositions, but rather on the form of the argument. If we 
consider propositions of the form ““all as are b” which involves the ~~u~~~~~~ 
“all” and the ~~~~~c~~~ b, then the validity of an argument should depend on 
the relationship between parts of the statement as well as the form of the 
statement. In order to reason with this type of proposition, propositional 
calculus is extended to predicate calcuZus. A predicate on a set is a relation. 
generalizing the Boolean modus ponens, we can either redefine the implication 
or allow fuzzy concepts (fuzzy sets) in the premise and conclusion parts of the 
rule. This leads to what is known as ~ppro~~rn~te re~so~~~~. 

Drawing conclusions from hypotheses, approximate reasoning is an ap- 
proach which models IF-THEN types of knowledge representations by gen- 
eralizing the Boolean (two-valued) logic rno~~s bowels ( ‘~forward reasoning”) : 

Approximate Reasoning Two-valued logic 
Implication IF x is A, THEN y is 23. P=,C 
Premise x is A’. P 

Conclusion y is B’. c 

In fault or change detection, the truth of a proposition is interpreted as 
the ~eus~~~~~t~ or ~oss~~~Z~t~ to which some practical condition exists. The rule 
IF C, THEN E, describes the truth value or feasibility of E as a function of 
the truth value of event C. In other words, the rule serves as a description, 
explanation: 

IF p, THEN c 

or IF C is true, THEN E is true , 

where p = “C is true” essentially is a test of hypothesis. On the other hand, 
in prediction we identify the succession of events 

IF ~(~), THEN ~(~ + 1) is w’ , 

where again in the premise part of the rule we test a hypothesis for the possi- 
bility or feasibility that the systems is in a particular state or condition. The 
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7.2.3 Approximate Reasoning 

Everything is vague to a degree you do not realize till you have tried to make it 
precise. 

-Bertrand Russell 

To introduce the idea of approximate reasoning consider the set of “people”, 
denoted P. Let A c P be the subset of all “tall people” and let h(p) be a 
function describing the height for any p E P, h: P -+ IR such that h(pl) > - 
~(~~) means person pl is at least as tall as ~2. Suppose P # 0, there is at 
least one tall person. (This assumption should be reasonable by experience: 
the author of this book is 2.11 m tall and has not met anyone considering him 
as “not tall”.) We can formulate the following inductive rule: 

IF pi is tall, AND p1 is indistinguishable from ~2, THEN 132 is tall. 

Starting with three persons, p1 known to be tall, 132 only 1 cm taller than pl 
and p3 being lcm taller than ~2, we find that the rule is true for pl and ~2,132 
is concluded to be a tall person. Since 133 is only just as much taller than 132 
as p2 is taller than pl we also conclude p3 is tall. Declaring one person as tall, 
it turns out from a finite iteration of modus ponens that all people are tall 
- which clearly does not conform with the author’s experience. The problem 
lies with the application of the law of the excluded middle, An AC = 0, applied 
to vague concepts such as “tall people”. Using a fuzzy set to represent the set 
of tall people avoids this paradoxical situation. Consider the map 

A : P + [0, l] . 

Then A should be some function of the height of a person, A(p) = f@(p)). 
Function f should be continuous, monotonically increasing and for at least one 
value of h it should be equal to one. The inductive premise is now reformulated 
as a relation R(pl ,pz) such that (see also p. 145) 

fvPl’P2) = 1 given (p1,p2) E ((PhP2) : 0 5 Ih(Pd - h(P2)l < Kl . 

A simple way of deducing the truth value A(p2) of “~2 is tall” from the truth 
value A(pl) is by means of the following relation representing the concept of 
“relative hen&t” : 

4P2 > 
WPl’P2) = - 

A(Pl) ’ 
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from which we obtain the basic deductive relationship 

If both persons are of similar height, R(p1, p2) is close to one and it turns 
out that for finite iterations of modus ponens, as above, the validity of the 
deductive process becomes smaller and smaller. It seems that fuzzy sets and 
fuzzy relations provide a methodology to capture approximate reasoning. 

In approximate reasoning, classical propositions p, c, which can be either 
true or false, are replaced by fuzzy propositions such as “x is A” where x is 
a fuzzy variable and the fuzzy concept A is represented by a fuzzy subset. 
A given fact “x is A”‘, conjunctively combined with the prior knowledge of 
the implication rule, leads to gradual truth values taking values on the unit- 
interval. In standard logic the emphasis is on formal validity and truth is to 
be preserved under any and every interpretation. In contrast, in approximate 
reasoning one tries to preserve information within the situation (context) in 
which the reasoning takes place. In general, we identify the triple (1, A, V) 
with (“, n, U) and here in particular with (I - ~1, T, S). FIere, a t-norm is a 
binary function that extends the domain of logical conjunction from the set 
{0, l} to the interval [0, 11. S imilarly, S models disjunctive operations. 

A proposition takes the form “x is A” with fuzzy variable x taking values 
in X and A modelled by a fuzzy set defined on the universe of discourse X 
by membership function ,u: X -+ [0, I]. A compound statement, “x is A AND 
y is L-3”) is taken as a fuzzy set A n B in X x Y with 

For the sake of simplicity, we consider a single rule of type 

IF x is A, THEN y is B , 

which can be regarded as a fuzzy relation 

R : X x Y + [0, l] 

(x7 Y> - R(X,Y) I 

where R(x, y) is interpreted as the strength of relation between x and y* 
Viewed as a fuzzy set, with p&x, y) = R(x) y) denoting the degree of mem- 
bership in the (fuzzy) subset R, p&x, y) is computed by means of a fuxxy 
~rnp~~~~t~on. Replacing the negation 1 in (7.7) with the basic fuzzy comple- 
ment 1 - E-L, and the disjunction V with the fuzzy union max-operator, we 
obtain the so-called D~enes-~escher ~mpl~cut~on 
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From (74, replacing negation by the fuzzy complement, disjunction by the 
max-operator and conjunction by the min-operator, we obtain the Zones im- 
pl~cut~on 

pR(x, !d = max (min(~A(x), kdd), 1 -  PA) l 

Other possibilities are 

(7.10) 

/-l&Y) = min(l, 1 - /U(x) + k@b>) : Lukasiewicz implication, 

(7.11) 

if PA(x) 2 pB(Y), 
otherwise. 

: Gijdel implication, (7.12) 

or defined using t-norms 

pR(x, Y> = min(CLA(x)~ k@(Y)) 

pR(x, !d = PA (z> l rtLB b.d 

: Minimum implication, (7.13) 

: Product implication. (7.14) 

Finally, given some ‘input data’, the generalized modus ponens provides a 
mechanism for inference on the basis of some input: 

Implication: 
Premise: 

IF x is A, THEN y is B. 
x is A’. 

Conclusion: y is B’. 

In terms of fuzzy relations the output fuzzy set B’ is obtained as the relational 
sup-t composition, B’ = A’ o R. The computation of the conclusion pB’(y) 
is realized on the basis of what is called the compositional rule of inference: 
Given PA'(X), and pR(x,Y), pB'(Y) is f  ound by generalizing the (crisp’ rule 

IF x = a AND y = f(x), THEN y = I . 

The inference can be described in three steps as illustrated in Figure 7.2: 

1. Extension of A’ to X x Y, i.e. p1AI,,,(x,y) = PA’(X). 

2. Intersection of A& with R, i.e. 

3. Projection of A& n R on Y, i.e. the compositional rule of inference is 
defined by 

CtB’ b> = suP~A~~~~R(~,Y) 
XfX 

= SUP T(pA;,, (x, ?/>T pR& 3,) 7 (7.15) 
XEX 
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where in (7.15) the supremum or maximum can be seen as a ‘selection’ from 
the information provided by ALXt n R. Taking the maximum over all values in 
X, one may view B’ described by PB’ (y) as the shadow of fuzzy set AQxt n R. 

Fig. 7.2 Compositional rule of inference in approximate reasoning. 

The link of (7.15) to the composition of fuzzy relations can be easily arrived 
at from the definition of a composite mapping (1.6) given in Section 1. Let g 
and h define two ordinary relations on U x 0 and fl x Y, respectively. The 
composition of g and h, denoted h o g, is defined as a relation in U x Y such 
that (u, y) E h o g if and only if there exists at least one w E 0 such that 
(u,w)~gand(w,y)~h. U sing characteristic function & : U x 0 -+ (0, l} 
and [h : 0 x Y --+ (0, l}, we have 

Shog(%d = ;f-- T(C,(%w),<h(Wdd) (7.16) 

for any (u, y) E U x Y where T is any t-norm. Equation (7.16) is then 
generalized to fuzzy relations by simply replacing the characteristic function 
for crisp sets < by the fuzzy set-membership function I_L: 

I-Lhog(u,d = FF; T(1.1g(U,‘d,CLh(W,!d) l 
(7.17) 

Because the t-norm in (7.17) can take a variety of formulas, we obtain for each 
t-norm a particular composition. The two most commonly used compositions 
in the literature are the so-called max-min composition and max-product com- 
position using Tmin and Tpro, respectively. 



8 

Fuzzy Inference Engines 

Cl There are various ways to realize a fuzzy rule-based system, distinguished 
by the way rules are combined and the inference engine employed. 

Cl Fuzzy systems are nonlinear mappings. 

Cl Fuzzy systems are universal function approximators. 

All traditional logic habitually assumes that precise symbols are being employed. 
It is therefore not applicable to this terrestrial life but only to an imagined celes- 
tial existence. 

-Bertrand Russell 

The previous section introduced approximate reasoning as a methodology to 
encode rule-based knowledge and to process linguistic information using fuzzy 
sets and fuzzy logic. We have seen that for one rule the generalized modus po- 
nens specifies a mapping. Because any realistic rule-base will consist of several 
rules, the question arises of how make an inference with a set of rules. Here- 
after, two frequently used inference schemes, namely, the composition-based 
and the individuaz-r21Ee-based inferences, are described. Depending on various 
assumptions on the type of input data (fuzzy or non-fuzzy) and fuzzy logics 
(implication,...) used, we obtain compact representations of fuzzy if-then rule- 
based systems as mappings. This section follows closely the comprehensive 
discussion in [ Wan97]. 
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8.1 COMPOSITION-BASED INFERENCE 

In composition-based inference, all rules are combined into a single fuzzy 
relation R in X x Y, which is then viewed as a single fuzzy if-then rule. 
Hereafter, we consider the ‘linguistic model structure’ (5.5), or its conjunctive 
form (5.6)) with T input variables combined in vector x. Then, Ai is a fuzzy set 
defined by a multi-variate membership function CLA; (x) : X1 X. l . x X, -+ [0, 11. 

The way rules are combined depends on the interpretation of what a set of 
rules should mean. If rules are viewed as independent conditional statements, 
then a reasonable mechanism for aggregating nR individual rules Ri (fuzzy 
relations) is the union: 

nR 

i=l 

=s(P~+dd,- ,PR~W)) . (8 1) . 

On the other hand, if rules are seen as strongly coupled conditional statements, 
their combination should employ an intersection operator: 

Composition-based inference is summarized in Algorithm 8.1. 

(8 2) . 

Let A’ be any fuzzy set in X. We then obtain the output of composition-based fuzzy 
inference engine as follows. For the no fuzzy if-then rules of the conjunctive linguistic 
model structure 

Ri : IF ~1 is Ai1 AND 22 is Ai . . . AND X~ is AiT, -THEN y is Bi . (5 6) . 

Step 1: Determine the fuzzy set membership functions 

CLAi,x...xAi,(Xl,...,X,) I.T(~Ai1(Xl),...,CLAi,(Xr)) . (8 3) * 

Step 2: Equation (8.3) is viewed as the fuzzy set PA in the fuzzy implications (7.9)- 
(7.14) and PR; (x, y), i = 1,. . . , nR, is calculated according to any of the 
implications. 

Step 3: pR(x,y) is determined according to (8.1) or (8.2). 

Step 4: Finally, for an arbitrary input A’, the output B’ is obtained according to 

pB’(d = ~:‘f:T(~A’(x)>~R(Xd)) - (8.4) 

Algdthm 8. I Composition-based inference. 
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The first two steps are identical to the composition-based inference. 

Step 1: Determine the fuzzy set membership functions 

~AilX.‘.XAi,(Xl,...,Xr) -IT(CLAi1(Xl),..‘,CLAir(XT)) * (8 3) . 

Step 2: Equation (8.3) is viewed as the fuzzy set j..LA in the fuzzy implications (7.9)- 
(7.14) and PR; (x,y), i = 1,. . . , nR, is calculated according to any of the 
implications. 

Step 3: For a given input fuzzy set A’ in X, determine the output fuzzy set I?: in 
Y for each rule Ri according to the generalized modus ponens (7.15), i.e. 

CLB: (Y) = sup T(PA’ (X)> PRi (X9 Y)) (8 6) . 
XEX 

fork I,...$& 

Step 4: The output of the fuzzy inference engine is obtained from either the union 

fiB’ (d = s(pB; (Y>> * * * 7 PB; (d) (8 7) . 

or intersection 

PB’ (9) = T(t%; b>, - - l 7 PB:, b>) 

of the individual output fuzzy sets I?‘, , . . . , I?;. 

(8 s> . 

Algorithm 8.2 Individual-rule-based inference. 

The fuzzy system represented by fuzzy relation R, defined on the Cartesian 
product space of the system variables Xi x X2 x l l l x X, x Y, describes a 
fuzzy graph F equivalent to (4.33), which explains why the compositional rule 
of inference can be regarded as a generalized function evaluation (cf. Section 
1). Let the fuzzy graph F be defined by the fuzzy relation R c X x Y, 
R = Uy!Tl Ri such that 

F = {(j~l(y),A’) : B’ = A’0 R} (8 5) . 

in analogy to (3.9 > 

8.2 INDIVIDUAL-RULE-BASED INFERENCE 

Instead of combining all rules into one, each rule may be evaluated individually 
to obtain for each rule an output fuzzy set which are then aggregated into one 
output fuzzy set by taking either their union or intersection. 

That is, for a given input fuzzy set A’ in X, determine the output fuzzy set 
Bl in Y for each rule R; according to the generalized modus ponens (7.15), 
that is, 

PB:(Y) = SUP T(IJA'(X),ClRi(X,Y)) (8 6) . 
XEX 
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--------------------------- 
& : IF xl is ,/&, AND 52 is , ,,/?f~~~‘~w’6’ 

-1 0; +1 -1 0; +1 
I 

X’l z/2 

w@! . .) THEN . . . . . . . . . . Q my forall R; ,... ‘*zN y 

Fig. 8.7 Individual-rule-based inference. 

for i = l,...,n~. The output of the fuzzy inference engine is obtained from 
either the union 

i-dY> = s(~B;(Y),.--#B;(Y)) (8 7) . 

or intersection 

t-‘k’) = T(pB; (!h l l l 7 I-LB’ b>) r (8 8) . 

of the individual output fuzzy sets Bi, . . . , Bi. The basic idea of the individual- 
rule-based inference, for min-inference, singleton input, union intersection, is 
illustrated in Figure 8.1. A step-by-step summary is given by Algorithm 8.2. 

Using individual-rule-based inference with the union combination in 
(8.7)) the implications (7.13) and (7.14)) and max for all the t-conorm op- 
erators, we obtain from (8.6) and (8.7) the following two inference engines: 

D Minimum Inference Engine: Using (7.13) and the min for all t-norm 
operators, 

pB’(y) = I2Ia.x 
i=l ,-,nR 

supmin(~A’(X),~A,,(Zl),...,I1A,p(Z,),~B;(Y)) l 

XEX > 

(8 9) . 

D Product Inference Engine: Using (7.14) and the algebraic product 
for all t-norm operators, 

PB'(Y) = I-II-Em 
i=l 

PA’(X) ’ fr PAik(Xk) ’ PBi(Y) . (8.10) 
,-,nR 

k=l 
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Let the fuzzy set A’ be a singleton, that is, if we consider ‘crisp’ input data, 

PA’(x) = 
1 if x = x’ 

0 otherwise, 
(8.11) 

where x’ is some point in X. Substituting (8.11) in (8.9) and (8.10), we find 
that the supxEx is achieved at x = x’. Hence, (8.9) reduces to, cf. (4.32), 

i-@‘(Y) = max {min(~Ail(5:),...,~Ai,(~~),~~~(Y))} i=l,...,rtR 

and (8.10) reduces to 

(8.12) 

pB,(y) = max l 

i=l ,.-,nR 
fi /-&&ic) l I-ldY) 

(8.13) 
k=l 

A disadvantage of the minimum and product inference engines is that if for 
some x E X, p&j&k) is small, then j@/(y) obtained from (8.9) and (8.10) 
will be very small. 

Using individual-rule-based inference, intersection combination (8.8)) the 
implications (7.9), (7.10), (7.11), we obtain from (8.6) the following inference 
engines (i = 1,. . . ,n~): 

D Dienes-Rescher Inference Engine: Using (7.9) and the min(-> t- 
norm in (8.8) and (8.3), 

pBf (y) = min 
i 

sup min [pAf (x), max (1 - 
XEX 

k$n ) - %  (ZL)) I I  k% (d ) ]  }  l 

7”‘> 

(8.14) 

D Zadeh Inference Engine: Using (7.10), and t-norm min(+) in (8.8) 
and (8.3) 

pBf(y) = min 
i 

sup min[pAf(x),max(min[p&(x1), . . . , 
XEX 

PAi, (Xr>, PBi (Y)] 7 1 - k=,in (PAik (Xk))) ]  }  l (8*l5) 

>“‘7 r  

D Lukasiewicz Inference Engine: Using (7.11) and the min t-norm in 
(8.8) and (8.3), 

pBf (y) = min 
i 

sup min[pAf(x),min(l,l 
XEX 

- mjn(PAi, (zk)) + PBi O)]} n 

= min 
i 

sup min [pAf (x), 1 - 
min 

XEX 

k=l,...,r 
(PAik (Xk)) + PB; (y)l }  l 

(8.16) 
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If the fuzzy set A’ is a singleton, substituting (8.11) into the equations of the 
inference engines (8.14)-(8.16), the supxEx is obtained at x = x’, leading to 
the following singleton input inference engines. From (8.14) we obtain 

k@‘(Y) = i-F’” 
,-,nR 

max[l- 
-  

k-yin r (%c cx ; ) ) )  I-L& ( ? I ) ] }  l 

-  
7”‘) 

From (8.14) 

and from (8.16)) 

pal = min 
i=l ,--,nR 

1,l - min (pAik(x:)) + /JBi(Y) . 
k=l,...,r > 

8.3 FUZZY SYSTEMS AS NONLINEAR MAPPINGS 

This section highlights the dual role of fuzzy systems. Starting with logical or 
conditional statements to capture context-dependent expert knowledge, fuzzy 
systems are if-then rule-based systems constructed from a collection of linguis- 
tic rules. On the other hand, fuzzy systems are nonlinear mappings between 
two spaces, say X and Y. As such, they can be identified from sampled data 
by various methods including fuzzy clustering and we can also formally relate 
fuzzy systems to various other methodologies. One therefore has to consider 
the context in which a fuzzy system is employed and accordingly select the 
appropriate formal representation. Semantics can therefore play an important 
role; not only in separating various methodologies. For example, if a fuzzy 
system is identified from data and the rules are interpreted by the user in or- 
der to gain new knowledge or insight into the process that generated the data 
in the first place, then the choice of a framework to formalize implications, 
conditionals, or correlations is very important. If, on the other hand, the aim 
is to generalize from data regardless of the interpretation, we should select 
a convenient (simple, accurate,..) framework to identify such a relation from 
sample data. 

A defuxxifier is a mapping from the fuzzy set B’ in Y to a point y’ in Y. 
To obtain a single-valued numerical output from the inference engines, one 
has to somehow capture the information given in PBl (y) by a single number. 
The center of gravity defitizzifier determines y’ as the center of the area under 
the membership function pB/ (y): 

(8.17) 
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where sy is the conventional Riemann integral which, in case of a discrete 
space Y, is replaced by a finite sum. If pB/ (y) is viewed as a density or 
distribution function, then the center of gravity gives the mean value. The 
main problem with this defuzzifier is the calculation of the integral for irregular 
shapes of j&l (y). Since the fuzzy set B’ is the union or intersection of r&R 
fuzzy sets, the weighted average of the centers of the r& fuzzy sets provides a 
reasonable approximation of (8.17). Let &) be the center of the ith fuzzy set 
and w@) be its height. Then, the center-average defuzx$er calculates y’ as 

FY 
( ‘1 o2 l w 0 i 

Y’ t i’lnR 
c w(i) l 

(8.18) 

i=l 

Consider a normalized fuzzy set Bi, that is, 3y : PB; (y) = 1, in the ‘Lin- 
guistic model’ 

Ri : IF ~1 is Ail AND x2 is Ai . . . AND xf is Ai,, THEN y is Bi . (5.6) 

Let the input data be crisp, that is, substituting (8.11) into the product 
inference engine (8.10)) we have 

(8.19) 

Suppose we use the center-average defuzzifier (8.18). Then, the center of the 

fuzzy set pAirc (xi) . pBi (y) determines the center of Bi, denoted by yhi) in 

(8.18). The height of the ith fuzzy set in (8.19) is n’,=, j&4;, (x1,) +B; (yt’) = 
nEZ1 j&4;,(xk) and equals wci) in (8.18). This reduces the fuzzy system 
(5.6) with product inference engine, singleton input data, and center-average 
defuzzier to the compact formulation 

z yt )  l fi /JAi, (XL) 
yl = i’lnR k=l 

C I? PAik(Ick) 
i=l lc=l 

or, in general, we find that the fuzzy system is a nonlinear mapping (cf. 
Section 1) 

where the argument x E X c Iw’ maps to f(x) E Y c Iw, a weighted average 
of the consequent fuzzy sets: 

(8.20) 

i=l k=l 
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Similar to (8.20), we obtain for a fuzzy system (5.6), with minimum inference 
engine (8.9), singleton input (8.11) and center-average defuzzifier (8X$), 

. (8.21) 

An important conclusion is that fuzzy rule-based systems enable us to 
encode ‘logical’ if-then relationships and to process fuzzy information. By 
describing such knowledge processing using fuzzy relations and representing 
a fuzzy system as a nonlinear mapping, we should be able to combine such 
qualitative reasoning system with quantitative models processing numerical 
data. 

In this section, the input-output relationships of the fuzzy inference engines, 
introduced in the previous section, are visualized. Figure 8.2 illustrates the 
rule-base. 

IF ~1 is Ai1 AND ~2 

Fig. 8.2 Rule-based fuzzy reasoning. 

For the Gaussian and triangular shaped input space fuzzy sets in Figure 8.3 
and output sets Bi in Figure 8.4, Figures 8.7 and 8.6 describe the input-output 
behavior of the minimum inference engine (8.21) and the product inference 
engine (8.20), respectively. In both cases, we consider the conjunctive struc- 
ture of the ‘Linguistic’ fuzzy model (5.6), with singleton input (8.11)) and 
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center-average defuzzifier (8.18). Figure 8.8 compares the contour plots of the 
minimum and product inference engines for triangular sets. 

Fig. 8.3 Gaussian and trapezoidal input fuzzy sets. 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1 -0.6 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.6 1 

Fig. 8.4 Gaussian and trapezoidal outputs sets Bi. 

From the figures, we find that the shape of the fuzzy sets has no major influ- 
ence on the input-output behavior of the fuzzy system. For most engineering 
applications we may therefore chose fuzzy sets which are most convenient with 
respect to implementation or analysis. For triangular membership functions, 
the product inference engine has a linear overall behavior as seen in Figure 8.8. 
However, if we change the partition of the input space as shown in Figure 8.5, 
we obtain for the minimum and product inference the input-output behavior 
shown in Figures 8.9 and 8.10, respectively. 

In general, we find that a disadvantage of the minimum and product in- 
ference engines is that for some x E X, )(-LA& (Q) is very small. Then, PB’ (y) 
obtained from (8.9) and (8.10) will be very small. For individual-rule-based 
inference with intersection-based combination, this problem does not occur. 
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Fig. 8.5 An input space fuzzy partition which is not fully overlapping. 

The product inference engine with individual-rule-based inference and union 
combination (8.7) is identical to the composition-based inference with union 
combination of rules (8.1). 

If the fuzzy sets Bi in (5.6) are normal with center &I, then for singleton 
input data (8.11)) center-average defuzzifier (8.18) and Lukasiewicz inference 
engine (8.16) or Dienes-Rescher inference engine (8.14) the fuzzy systems are 
of the following form [Wan97]: 

nR 

x 

i=l 

. 0 
Yo2 7 

independent of the input - which does not make sense and hence no plots are 
given. A detailed comparison of inference engines can be found in the book 
by Wang [Wan97]. 

Fig. 8.6 Product inference with Gaussian and trapezoidal sets. 
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t  

0.5 

> 0 

-0.5 

-1 
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1 1 

-1 -1 
xz 

-1 x2 -1 

X 1 x1 

Fig. 8.7 Minimimum inference with Gaussian and trapezoidal sets. 

Fig. 8.8 Contour plots for minimum ir lference (left) vs. product inference (right). 

-t’ 
I  I  I  I  I  

-1 -0.5 0 0.5 1 

Fig. 8.9 Minimum inference with input fuzzy partition that does not fully overlap. 
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Fig. 8. IO Product inference with non-overlapping input fuzzy partition. 

Xl 

“ .J  

1’ 

X2 
-1 -1 

x1 

Fig. 8. IO Product inference with non-overlapping input fuzzy partition. 



9 
Fuzzy Classijkation 

El Fuzzy clustering groups unlabelled data into a fixed number of classes and 
hence can be used to design classifiers. 

Cl Specific fuzzy classifiers can be shown to be formally equivalent to optimal 
statistical classifiers. 

Cl If-then rule-based fuzzy classifiers provide an intuitive framework to 
interpret data. 

In Section 4.5, we devised a fuzzy classifier using clustering algorithms. Here 
we continue our discussion on classification from a fuzzy systems perspective. 
First, we show that a fuzzy classifier can be related to Parzen’s kernel density 
estimator, introduced in Section 3.2. We then apply the concept of a fuzzy 
rule-base, introduced in the previous section, to design a classifier. We use the 
well-known Fisher-Anderson ‘iris’ data set to illustrate the concept of fuzzy 
classification. 

9.1 EQUIVALENCE OF FUZZY AND STATISTICAL CLASSIFIERS 

In Section 5.3, we demonstrated that a fuzzy system is in fact equivalent to a 
basis function expansion (Section 3.3). The present section will add another 
example of classification. We can show that the fuzzy system (8.20) is equiv- 
alent to a statistical classifier? using the density estimates from Section 3.2. 

‘Foramoree e xt nsive discussion see [Kun96]. 
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This example should be considered in conjunction with the example given in 
Section 4.5 in order to obtain a more complete understanding of classification. 

The problems of classification and discrimination are closely related. In 
each instance, the data rnj E Iw’ are assumed to comprise c clusters. If the 
number of clusters c is known, and a training sample of data is available 
from each cluster, then the problem is to formulate rules for assigning new 
unclassified (unlabelled) observations to one of the clusters. In other words, we 
assign to an object (described as a point x in the feature space Xi x l l l x X,) 
a class label C from the set C = {Cl, . . . , Cc>. Hereafter we assume that 
x1 x l *a x X, coincides with Tw’ and that have available a set of (labelled) 
training data M = {ml,. . . , md}, rnj = [V-Q,. . . , m,Jr E IF. We denote by 
i E {1,2,... , c} the index of the class label among {Cl, . . . , C,), associated 
with mj. The problem is to design a classifier, that is, to specify a mapping 
$J such that each object x is associated with one class Ci: 

In a probabilistic framework, both x and C are random variables. Let 
Pr(Ci) be the prior probability for class Ci, i = 1,. . . , c and denote by p(x]Ci) 
the class-conditional probability density function. In statistical (Bayesian) 
decision theory, the aim is to design an optimal classifier with a small error, 
that is, one that assigns to x a class label C* corresponding to the highest 
posterior probability: 

C * = argmcx Pr(CIx) . 

Here, the posterior probability is calculated by 

P,(CiJX) = 
f+(G) P(XlG) 

P(X) 
7 (9 1) . 

P(X) = opt P(Xlac) ’ 
k 

In Section 3.2, Parzen’s kernel estimator was introduced as a non-parametric 
approximation of a probability density function. Let K(x) be a kernel func- 
tion (also referred to as a Parxen window) which peaks at zero, is non- 
negative, and whose integral equals one over IEV . The multi-dimensional kernel 

function centered around rnj E IEV can be expressed in the form &K 
( > 
7 , 

where h determines the window with and hence is a smoothing parameter. Us- 
ing the estimator (3.19), we can approximate the class-conditional probability 
density using the sample set M by 

x K(y), mjEM, 
js b.=i . 3 
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where dc; is the number of elements of M from class Ci. Finally, we estimate 
the prior probabilities in (9.1) by 

Inserting both approximations into (9.1), we obtain the following estimate of 
the posterior probability: 

p^T(cilx) = d . h’l p( . X 
) ’ 

Introducing an indicator function CC; (mj), 

Cdmj) = 
1, 

if bj = i, i. e. IKlj comes from class Ci; 

0, otherwise. 

We can rewrite (9.2) as 

d 

*al(~) l >: cci(mj)K 
"-1 

(9 2) . 

(9 3) . 

where factor al(x) depends on x but not on the class label. Using the multi- 
dimensional Gaussian kernel 

1 1 

h’,/mdm exp 
-- 

2h2 ( 
X-~j)T~~l(X-mj) 

(9 4) . 
where C is the covariance matrix. Using the Gaussian kernel we have for the 
posterior probabilities (9.3) 

d 

l al(x) * x <ci (mj)KG . 
j=l 

(9 5) . 

Let us now consider a fuzzy classifier where the rule-base takes the form of 
(8.20). For any class Ci , we consider d rules of the form 

Rj : IF ~1 is Ajl AND . . . AND XT is Ajr, 

THEN TJ{, = 1 and y{ = 0, Vi # i’, i = 1,. . . ,c, j = 1,. . . ,d , (9.6) 

where yi denotes the ith component of the output vector yj associated with 
the jth rule. Each Ajk is a fuzzy set with membership function 

PAjk : II% + [o, l] . 
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Specifically, we define 

PAjh (X) = exp 

where h is a parameter and the membership functions evaluate the similarity 
of any given x with mj. Let the activation strength (‘firing level’) of the jth 
rule be 

PAjk (2k) 
k=l 

‘lc - mkjj2 

(X - mj)TA-l(x - mj) 
> 

. 

For C being an identity matrix, we notice that pj(x) differs from the Gaussian 
kernel (9.4) only by a constant. We therefore write 

pj(x)=a2*K 7 . 
( > 

The output of the fuzzy classifier w.r.t. class Ci is obtained as 

yi = 
j=l 

. ..equivalent to (8.20) and (5.19)! 

j=l 

d 

(9 7) . 

Since yi functions as an indicator function for mj with respect to Ci, we find 
that equations (9.7) and the posterior probability of the statistical classifier 
(9.5) differ only by a factor which does not depend on the class i. In both 
cases, for the fuzzy classifier and the statistical classifier a decision is obtained 
by choosing the class label for which (9.7) and (9.5) are largest. We conclude 
that a fuzzy system can be shown to be equivalent to a probabilistic classifier 
(which is known to be asymptotically optimal in the Bayesian sense). 

9.2 FUZZY RULE-BASED CLASSIFIER DESIGN 

In Section 4, we used clustering algorithms to identify groups of data in the 
data space. Clusters may also be cons idered as classes and a clusteri .ng algo- 
rithm can therefore be used to design a classifier. The principal idea of fuzzy 
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classification is to use fuzzy sets and fuzzy if-then rules to characterize classes. 
One motivation is that the fuzzy classifier provides some degree of linguistic 
interpretability of the data in terms of fuzzy labels (like “small” or “low”). 
We shall develop the concept of a rule-based fuzzy classifier using the ‘iris’ 
data set. 

Sepal Wi$th 

Fig= 9.1 

Petal Width 

Petal Width 

Petal Length 

Two different views of the complete Iris data set. 

In his pioneering work on discriminant analysis, R.A. Fisher analyzed data, 
originally collected by E. Anderson, on three species of iris flowers2. Let the 
classes be defined as: 

Cl : Iris sestosa; C2 : Iris versicolor; C3 : Iris virginica. 

The following four variables were measured: sepal length (sl), sepal width 
(SW), petal length (pl), and petal width (pw) . Since we cannot visualize all 
four variables at the same time, we choose to plot all 150 data sets for the 
variables pl, pw, and SW in Figure 9.1. In Figure 9.2, we have selected two 
particular angles which demonstrate that the two variables, petal width and 
petal length alone may well be sufficient to build a classifier. We therefore 
chose 75 sets of training (pw, pZ)-data (25 from each class). 

In the original studies concerning the iris data, a question was whether 
versicolor is not a sestosa-virginica hybrid. This was confirmed by Fisher. 
Applying the fuzzy-c-means algorithm with w = 1.5, c = 3 and S = 0.01 to 
the data, we obtained after 11 iterations the cluster centers depicted on the 
right in Figure 9.2. The partition matrix U contains for each training vector 

‘See [JW98] for the data set and classification based on discriminant analysis. 
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Petal Width 

2 3 4 
Sepal Width 

1 2 3 4 5 6 7 
Petal Length 

Fig. 9.2 TLvo different views of the complete iris data set. On the right, the selected training 
data are plotted together with the cluster centers obtained from fuzzy-c-means clustering on 
unlabelled data. 

mj = (PWJ4 d g a e ree of membership in any of the three classes. From the 
fuzzy clusters we obtain orthogonal projections onto the subspaces as shown 
in Figure 9.3. The projected membership degrees are used to fit piecewise- 
linear fuzzy set-membership functions as described in Section 11. We would 
refer to the linguistic terms, from left to right, as ‘“small”, ‘Lmedium”, “large”, 
describing the extent of the petal width and length. 

0 0.5 1 1.5 2 2.5 0 1 2 3 4 5 6 7 
Petal Width Petal Length 

Fig. 9.3 Projections of the fuzzy clusters in U and fitted membership functions. 

The next step is to design a fuzzy classifier using the fuzzy sets. From 
the plot on the right in Figure 9.2, we can intuitively see that the following 
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rule-base describes an appropriate classification: 

________1 y-j 

RS: IF pw is 17 de 19 5 qil, AND pl is i3 111 I4 141 “, THEN iris virginica. 

Each rule describes one class and the fuzzy sets in the if-part of the rules 
correspond to those in Figure 9.3. We used the t-norm min for the conjunction 
such that the aggregate agreement of any given data vector with a rule is 
calculated by 

where A is a suitable t-norm. The degree of fulfillment pi(x) of the if-part 
is therefore the degree of confidence in that a given data vector x belongs to 
class Ci. The final decision assigns the x to the class which maximizes the 
degree of confidence ,0(x) : 

c * = argmaxpi(x) . 
i 

With this classification we can validate the rule-based classifier against all 150 
(labelled) vectors. For the given parameters and fuzzy sets we have five mis- 
classifications. If there are two or more classes that are assigned the maximal 
degree of confidence by the rules, we may either refrain from a classification 
and label it as ‘unknown’, or we break the tie by selecting one these classes 
randomly. 



10 
Fuzzy Control 

Cl Fuzzy rule-based systems can also be used to devise control laws. 

Cl Fuzzy control can be particularly useful if no linear parametric model of 
the process under control is available. 

Cl Fuzzy control is not ‘model-free’ as a good understanding of the process 
dynamics may be required. 

cl Fuzzy control lacks of design methodologies. 

Cl Fuzzy controllers are easy to understand and simple to implement. 

Feedback control theory arose from cybernetics’, the interdisciplinary sci- 
ence dealing with communication and control systems in living organisms, 
machines, and organizations founded by Norbert Wiener in the 1940s. Cy- 
bernetics developed as the investigation of the techniques by which informa- 
tion is transformed into desired performance. Systems of communication and 
control in living organisms and those in machines are considered analogous in 
cybernetics. To achieve desired performance of a system, the actual results 
of control actions must be made available as feedbaclc2 for future action. A 
standard feedback control system is illustrated in Figure 10.1. 

lThe term cybernetics is derived from the Greek word kybernetes, meaning “steersman” or 
“governor”. 
2Feedback: W hen we desire a system to follow a given pattern the difference between this 
pattern and the actual behavior is used as a new input to cause the part regulated to change 
in such a way as to bring its behavior closer to that given by the pattern. 

Data Engineering: Fuzzy Mathematics in Systems Theory and Data Analysis.
Olaf Wolkenhauer

Copyright  2001 by John Wiley & Sons, Inc.
ISBNs: 0-471-41656-8 (Hardback); 0-471-22434-0 (Electronic)
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Fig. 10. I Standard configuration of a feedback contril system. 

Conventional approaches such as PID, adaptive, optimal and robust control 
are often referred to as model-based since for the design of the control law and 
its parameters a linear transfer function model, based on differential equations, 
is required. Assuming, or knowing, that the model is sufficiently accurate, 
a powerful theory is available not only to guarantee stability, robustness, 
optimality and so forth, but also to guide the non-expert through the design 
in an algorithmic manner. Fuzzy control starts from the assumption that a 
linear model is not available - either because it is not accurate, not feasible 
or too cumbersome to determine. It is then assumed that on the scale of 
input variables alone it is possible to decide upon the control action. Such an 
approach does not require a parametric model but is not model-free either. We 
may be required to have a good understanding of the behavior of the process 
or at least have to accept heuristics. In this section we apply the previously 
introduced fuzzy rule-based inference schemes to control a dynamic process 
in a closed-loop configuration. The concepts presented here are only a basic 
example of fuzzy control, chosen to make comparisons and to introduce the 
main ideas. Many more sophisticated and advanced nonlinear, adaptive fuzzy 
control schemes have been developed and described in numerous textbooks 
[Wan97, Ped93, KGK94, Bab98, PY98]. 

10.1 PI-CONTROL VS. FUZZY PI-CONTROL 

This section is based on the approach presented in [SY89]. A conventional 
linear proportional-integral (PI) controller with two inputs (error and rate of 
change in error) and one output is compared to a fuzzy PI-controller with 
piecewise-linear fuzzy set membership functions and different combinations of 
logical fuzzy connectives. It is shown that, in general, a fuzzy controller is 
nonlinear, but with a specific combination of t-norms and t-conorms the fuzzy 
PI-controller is equivalent to its linear counterpart. The configuration of the 
closed-loop system is shown in Figure 10.2. 
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error 1 
setpoint . +Ge - 

de- 
fuzzification rule-base -+ -Gu - 

fuzzification - 
---,A-&.--, 

1 
I 

rate of change 

process 4 

Fig. 10.2 Block diagram of a closed-loop fuzzy control system. 

A non-fuzzy PI-controller changes its control action u(t) depending on the 
error e(t), that is, the difference (s - y> between the setpoint s(t) and current 
output, and the integral of the error 

du(t) = K de(t) 
dt P dt + Ki e(t) 7 (10.1) 

where e(t) = s(t) - y(t). To obtain a control action the term du(t)/dt is 
integrated. A fuzzy PI-controller is developed analogously: 

deriv’(k) = Kp l rate’(k) + Ki l error’(k) , (10.2) 

where error, rate, deriv are fuzzy (or linguistic) variables partitioning the 
underlying spaces by piecewise-linear (triangular) fuzzy sets as shown in Fig- 
ure 10.3. Each of these fuzzy sets is called a linguistic term. The (ordered) 
sets of linguistic terms, partitioning the underlying domain (universe of dis- 
course), are denoted RATE and ERROR = (negative, zero, positive), whereas 
for DERIV, negative and positive are further refined into ‘negative small’ and 
‘negative large’. We write DERIVi to refer to the ith term. 

Equation (10.2) can be redefined to scale the fuzzy variables into a range 
from - 1 to +l. This requires the introduction of the scaling gains G,, G, 
and G,, where deriv’ = G, l deriv; G, - rate’ = rate and G, l error’ = error. 
Substituting these into equation (10.2)) we obtain the following equation for 
the incremental control output of the fuzzy PI-controller: 

KP Ki deriv(k) = u rate(k) + GG error(k) l 

u r u e 

(10.3) 

The constants K, (G,G,) and KJ(G,G,) are assumed equal to 0.5 to make 
deriv fall into the interval [-1, 11. The fuzzy controller is then equivalent to 
a conventional PI-controller with proportional gain Kp = 0.5 . G, l Gr and 
integral gain Ki = 0.5 0 G, 0 G,. We note that there are infinitely many 
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1 I I I 

-1 -0.0 -0.6 -0.4 -0.2 0 02 04 0.6 0.0 1 -1 -0B -0.6 -0.4 -0.2 0 0.2 04 0.6 08 1 
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Fig. 10.3 Fuzzy sets for the variables error, rate and the output, respectively. 

combinations of G,, G,, and G, to hold true for these expressions. The 
complete rule-base, that is the set of control rule takes the form: 

RI : IF error is ‘negative’ AND rate is ‘negative’, 

THEN deriv is ‘negative large’ 

R2 : IF error is ‘negative’ AND rate is ‘zero’, OR error is ‘zero’ 

AND rate is ‘negative’, THEN deriv is ‘negative small’ 

RS : IF error is ‘negative’ AND rate is ‘positive’, OR error is ‘zero’ 

AND rate is ‘zero’, OR error is ‘positive’ 

AND rate is ‘negative’, THEN deriv is ‘zero’ 

R4 : IF error is ‘zero’ AND rate is ‘positive’, OR error is ‘positive’ 

AND rate is ‘zero’, THEN deriv is ‘positive small’ 

R5 : IF error is ‘positive’ AND rate is ‘positive’, 

THEN deriv is ‘positive large’ 

where ‘negative’, ‘zero’, ‘positive’, and so on are fuzzy terms represented by 
fuzzy sets. The logical connectives ‘AND’ and ‘OR’ are subsequently replaced 
by some t- and t-conorm respectively to determine the firing level of the ith 
rule, denoted /JDERIV; (deriv). The rule-base can conveniently be illustrated 
in matrix form: 
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Assuming n, fuzzy sets for the error and rate of change in error, we require 

2( n, - 1) fuzzy sets (and rules) for the output deriv. The principal values for 
fuzzy sets in the consequence part of the rules (at which ~DERIV; (deriv) = 1) 
are equally spaced, but at half the interval of the members of the antecedent 
fuzzy sets. There are three fuzzy sets defined on each input space for the 
error and rate of error. The principal values of the ith member of the fuzzy 
partition DERIVi are given by -1 + (i - l)/(n, - 1). Following the paper by 
W. Siler we employ a linear defuzzification strategy: 

27x,-l / 

deriv(k) = >: ~DERII@~~~) l -I+ t 
i=l \ 

(10.4) 

This value is integrated and scaled to obtain the control action required to 
drive the plant. We first evaluate the control rules using the Zadeh logic: 

T(bd% /-d)) = ~~+A(%PBC)), S(PAO,PBC)) = ma+-Q(-h~(-)) l 

1 I I 1 r 
I 

0.8 - 0 

0.6 - 

-0.25 

0.4 - 0.75 - 

0.2 

~~~~~ 

-1 -0.8 -0.8 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

rafe 

Fig. IO.4 Characteristics of the fuzzy PI-controHer using Zadeh logic. 

As can already be seen, the fuzzy PI-controller is structurally relatively 
simple and is, in fact, static. All dynamic elements, such as the rate of change 
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or the integration of the output signal, are outside the inference engine. This 
fact allows us to study the characteristics of the controller by means of the 
control surface and phase-plane plot (isocontours of constant values of deriv) 
shown in Figure 10.4. The control is linear in the second and fourth quadrants 
but hyperlinear in the first and third quadrants. 

Using a mixed logic, that is, Zadeh logic for RI and Rg, and Lukasiewicz 
logic for R2 and Rd 

T(t%-d.), /-de)) = max(o&A(') + l-B(*)) - l), 

s(b4('), td')) = mi+,pA(-) + PB(.)) 

and ignoring rule R3 since its consequent is multiplied by zero, we obtain the 
controller characteristic shown in Figure 10.5. Similarly, using the probabdity 
logic 

T(PA(*)#B(*)) = PA(*) l pB('), 

s(pA(*), pB(')) = /%I(*) + pB(=) - PA(*) l pB(') 

for RI and Rg, and the probability ‘AND’ and the Lukasiewicz ‘OR’ for rules 
Rz and Rd , the fuzzy controller is linear. We can conclude that using some 
appropriate mixed logic, the fuzzy PI-controller is theoretically and numer- 
ically identical to a linear PI-controller. Hence, choosing such mixed logic 
we would not have gained any possible advantage with the fuzzy controller in 
comparison to the conventional PI-controller. Even worse, while for the linear 
PI-controller a design methodology is available, with the fuzzy PI-controller 
we have no fixed strategy how to decide upon its parameters. 

rafe rafe 

Fig. IO.5 Characteristics of the fuzzy PI-controller using a mixed logic. 
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10.2 EXAMPLE 1: FIRST-ORDER SYSTEM WITH DEAD-TIME 

Based on the controller introduced in the previous section and the paper 
[YSBSO], this section will first replace the linear defuzzification by the center- 
average defuzzification by a nonlinear strategy and then compare the nonlinear 
fuzzy PI-controller with its linear counterpart. The following notation will be 
employed: 

error’(k) = s(k) - y(k) 

error(k) = G, l error’(k) 

rate’(k) = error’(k) - error’(k - 1) 

rate(k) = G, 9 rate’(k) 

deriv’ (k) = G, 9 deriv(k) 

44 = u(k - 1) + den%‘(k) . 

As in the previous section, we assume the sampling period to be equal to one. 
Hence, the rate of change can be calculated by simply taking the difference 
between two error measurements. Considering the last equation for u(k) and 
t,he block diagram in Figure 10.2, one should also bear in mind that the output 
of the fuzzy inference engine is an incremental control action not the control 
action itself. The two input variables error and rate are characterized by two 
fuzzy sets describing a ‘negative’ and ‘positive’ error and rate, respectively. 
With only two fuzzy sets describing the inputs, the output space is partitioned 
into three fuzzy sets (‘negative ‘,‘zero’,‘positive’) as shown in Figure 10.6. 

0.6 
dark 

Fig. IO.6 Fuzzy sets for the variables error and rate (left) and the output (right). 
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There are three unique fuzzy control rules composed out of four if-then 
rules in total: 

RI : IF error is ‘negative’ AND rate is ‘negative’, THEN deriv is ‘negative’ 

R2 : IF error is ‘negative’ AND rate is ‘positive’, THEN deriv is ‘zero’ 

R3 : IF error is ‘positive’ AND rate is ‘negative’, THEN deriv is ‘zero’ 

Rq : IF error is ‘positive’ AND rate is ‘positive’, THEN deriv is ‘positive’ 

In contrast to the linear defuzzification strategy (10.4), employed in the previ- 
ous section, here we use center-average defuzzification @.I$). The denomina- 
tor, normalizing the membership degrees to one, introduces some nonlinearity: 

C-1 
2nc P DERIV; (deriv) l 

deriv(k) = i=l 
-1 + s 

> 
C-1 

2nc CL 

. (10.5) 

DERIV; @-iv) 
i=l 

Employing the Zadeh logic the control characteristics are shown in Figure 10.7. 
The fuzzy controller with the nonlinear defuzzification shows an opposite be- 
havior to the fuzzy PI-controller with linear defuzzification (Figure 10.4). 
From the step-responses of the plant under control one would consider whether 
an increased or decreased gain near (away) the steady-state (center of the 
phase-plane) is desirable and would choose the defuzzification strategy ac- 
cordingly. 

-1 -1 -1 -0.0 -06 -0.4 -0.2 0 0.2 0.4 0.6 08 1 

rate rate 

Fig. 10.7 Fuzzy PI-controller with center-average defuzzification and Zadeh logic for rule 
evaluation. 

We are now in the position to compare the nonlinear fuzzy PI-controller 
with its linear (non-fuzzy) counterpart. The following equations hold for the 
membership functions associated with the error and rate of change of the 
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error: 

Perror is pos 
(e(k)> = error(k) + 1 2 (10.6) 

Perror is neg 
-error(k) + 1 -G, l error’(k) + 1 

(e(k)) = 2 = 2 (10.7) 

/bate is pos (r(k)) = 
rate(k) + 1 Gr l rate’(k) + 1 

2 = 2 
(10.8) 

/-bate is neg (rw) = 
-rate(k) + 1 -Gr l rate’(k) + 1 

2 = 
. 

2 
(10.9) 

These equations suggest a partition of the phase-plane into sectors for which, 
depending on the rule, specific fuzzy sets are relevant (see Figure 10.8): 

Sector RI R2 R3 R4 

error is ‘neg.’ 
error is ‘neg.’ 
rate is ‘neg.’ 
rate is ‘neg.’ 
rate is ‘neg.’ 
rate is ‘neg.’ 
error is ‘neg.’ 
error is ‘neg.’ 

rate is ‘neg.’ 
rate is ‘neg.’ 
rate is ‘neg.’ 
rate is ‘neg.’ 
error is ‘pas.’ 
error is (pas.’ 
error is ‘pas.’ 
error is ‘pas.’ 

error is ‘neg.’ 
error is ‘neg.’ 
error is ‘neg.’ 
error is ‘neg.’ 
rate is ‘pas.’ 
rate is (~0s.’ 
rate is ‘pas.’ 
rate is ‘pas.’ 

rate is ‘~0s.’ 
rate is ‘pas.’ 
error is ‘pod 
error is (pod 
error is ‘pas.’ 
error is ‘pas.’ 
rate is ‘~0s.’ 
rate is ‘pas.’ 

Fig* 10.8 Partioning of the phase-plane for a fuzzy PI-controller. 

From equations (10.6)-( 10.9) and (10.5), we obtain the following equations 
for the output w.r.t. the sectors defined in Figure 10.8: 
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Sectors 1 and 2: 

deriv(k) = -PerroT is neg (e(k)) + h-ate is pos (r(k)) 

Perror is neg (e(k)) + bate is neg (r(lc)) + /b-ate is pos (r(k)) 

- Ge l error’(k) -I- Gr 9 rate’(k) - 
3 - Ge l error’(k) l 

(10.10) 

Sectors 3 and 4: 

deriv(k) = 
-h-ate is neg (r(k)) + P error is pos ( ( ek ,> 

/bate is neg (r(k)) + II, error is neg (e(k)) + P error is pos (e(k)) 

- Gr . rate’(k) -I- Ge 9 error’(k) - 
3 - Gr . rate’(k) l 

(10.11) 

Sectors 5 and 6: 

deriv(k) = 
-h-ate is neg (r(k)> + I-L error is pos (e(k)) 

/bate is neg (r(k)) + hate is pos (r(k)) + Perror is pos (e(k)) 

Gr l rate’(k) + Ge l error’(k) - 
3 + Gr l error’(k) l 

(10.12) 

Sectors 7 and 8: 

deriv(k) = 
-PerroT is neg (e(k)) + /-bate is pos (r(k)) 

Perror is neg (44) + I-L error is pos (e(k)) + /bate is pos (r(k)) 

Ge l error’(k) + Gr n rate’(k) - - 
3 + Gr l rate’(k) l 

(10.13) 

If Gr Irate’(k) 1 5 Ge 1 error’(k) 1 5 1, then we have 

deriv( k) = 
Ge l error’(k) + Gr l rate’(k) 

3 - Ge . Ierror’ (k) I 
(10.14) 

and if Gelerror’( < G&ate’(k)) < 1, - - 

deriv(k) = 
Ge l error’(k) + Gr l rate’(k) 

3 - Gr . Irate’(k)1 . 
(10.15) 

As we have seen in the previous section, the fuzzy PI-controller with linear 
defuzzification and mixed logic is equivalent to a non-fuzzy PI-controller with 
proportional gain Kp = 0.5 l G, . Gr and integral gain Ki = 0.5 . G, . Ge: 

deriv’(k) = Kp . rate’(k) + Ki l error’(k) . (10.16) 

Comparing (10.16) with equations (10.14) and (10.15), we notice that the 
fuzzy PI-controller with nonlinear defuzzification and Zadeh logic for rule 
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evaluation is equivalent to a linear PI-controller with changing gains E(p and 
K; given by 

K G l G.L 

* = 3 - G,lerror’(k)l 

Ki = G ’ GIL 
3 - G,(error’(k)I 

(10.17) 

(10.18) 

when G,Irate’(k)I < G,Ierror’(k)I 2 1, and 

K G, ’ G 
* = 3 - G,Irate’(k)I 

Ki = Ge ’ GA 
3 - G,(rate’(k)J 

(10.19) 

(10.20) 

when G,Ierror’(k)l < G,(rate’(k)( < 1. If we define the static gains Kps and - - 
Kis as the proportional and integral gains when both error’ and rate’ are 
equal to zero, we have 

(10.21) 

(10.22) 

and find for the conventional PI-controller 

KP KiS deriv(k) = $ l rate’(k) + c l error’(k) 
u U 

G, l rate’(k) + G, l error’(k) - - . 
3 

(10.23) 

Comparing equality (10.23) with equations (10.14) and (10.15), the following 
inequalities are obtained: 

1 1 
>- 

3 - G, . error’(k) - 3 

when G,Irate’(k)l < G,Ierror’(k)l < 1, and 

1 1 
>- 

3-G,*rate’(k) - 3 

when G,(error’(k)( 5 G,Irate’(k)l 5 1. In other words, the (absolute value of 
the) incremental control action of the fuzzy PI-controller is equal to, or greater 
than, the (absolute value of the) incremental control action of the non-fuzzy 
PI-controller when G, lerror’(k)l < 1 and G,Irate’(k)I < 1. We can conclude - - 
that t,he larger the (absolute values of) error (rate) values, the larger the 
difference between the outputs of the two controllers. The nonlinearity of the 
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Fig. 10.9 Step-responses, phase-plane and trajectory for (fuzzy) PI-controller. 

fuzzy PI-controller can therefore be used to improve the control performance 
in comparison to a non-fuzzy and linear PI-controller. 

For a comparison of the step-responses of two PI-controllers, fuzzy (with 
Zadeh logic and nonlinear defuzzification) and non-fuzzy, the static propor- 
tional gain Kp, and the static integral gain K& of the fuzzy controller were 
set equal the proportional and integral gains Kp = 2.38 and Ki = 4.43 of 
the conventional PI-controller. The process plant is taken to be the following 
first-order system with time delay and transfer function: 

y( > S 1 
-=-. 

w > 

e-o.2s 
. 

S s+1 

The step-response, phase-plane and trajectory are shown in Figure 10.9. We 
note that there are infinitely many combinations of G,, G, and G, for ex- 
pressions (10.21) and (10.22) to hold true. The fact that there is no design 
methodology providing step-by-step guidance how to select the parameters of 
the fuzzy PI-controller, is a major disadvantage. 

10.3 EXAMPLE 2: COUPLED TANKS 

Using the coupled tanks model from Section 1, we first describe two linear 
control designs and then develop a fuzzy PI-controller with equivalent perfor- 
mance. 

Design of a Fluid Level Proportional Controller 

The design procedure is to plot the root locus of the open-loop transfer func- 
tion G, (x), and select the gain Kp that gives a closed-loop damping factor of 
8 = 0.7. The closed-loop natural frequency wn can be read off the root locus 
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diagram. The closed-loop transfer function is 

H&) = :2:2;) = KF’ Gv(x) 
r l+K, G,(x) ' 

(10.24) 

where 

G&) = z-1 2 
x 

(10.25) 

The steady-state error can be calculated using 

ess = [UT(X) - 7.ki2(41,_+1 = V-(l) [l - H&>l~-+l ’ 7 (10.26) 

where vr (1) is the steady-state reference input. 

Design of a Proportional Plus Integral Controller 

The design procedure is to set the integral action time constant to a reasonable 
value (in this case Ti = 5Os), plot the root locus of the open-loop system in 
cascade with the compensator 1 + + 5, and select the gain k that gives a 
closed-loop damping factor of 29 = 0.‘7. The purpose of the integral action is 
to make the steady-state error zero. The proportional and integral gains Kp 
and Ki can be computed by comparing the coefficients of the compensator 
transfer functions 

(10.27) 

Writing the open-loop system in series with a proportional plus integral action 
compensator as 

K (ST, + 1) gd2 gp 
G,(s) = 

K2 
l sT 

i T&s2 + (TI + T2)s + 1 
(10.28) 

the closed-loop transfer function becomes 

H,(s) = F . STi + 1 

TiTlT2s3 + Ti (T1 + T2) S2 + Ti (1 + Kzfd2 ) s + Kzrd’ ’ 

(10.29) 
Assuming 

Tl > 0; T2 > 0; gp > 0; gd2 > 0; Ic2 > 0; Ti > 0; K > 0 (10.30) 

the closed-loop system is stable for 

(10.31) 
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Hence, the closed-loop system can become unstable for sufficiently large gain 
if 

CT2 Ti < - 
Tl + T2 

and the gain required to make the closed-loop system unstable is 

K2 K=-----• Ti(fi +T2) 

gpgdz l-572 - Ti(c +T2) l 

(10.32) 

(10.33) 

The closed-loop system under proportional plus integral control has three 
poles, and one zero. Using the design procedure outlined above, two of the 
poles will be complex conjugate (at 8 = 0.7) ; the remaining pole and zero are 
negative real. 

Design of a Fuzzy PI-Controller 

In contrast to conventional control theory which, based on a linear parametric 
model of the process, provides a step-by-step methodology to select parame- 
ters, in fuzzy control we lack such a desirable methodology and usually rely on 
(often unsatisfying) trial-and-error procedures. In the following simulations, 
using the notation introduced in Section 10.1, the constants v and F 
are set to make the output to fall within the interval C-1, +lr The fuzzy 
sets for the input and output are identical to the sets in Figure 10.3. Two 
step-responses of a conventional and the equivalent fuzzy controller are shown 
in Figure 10.10. In the simulation, G, = 0.02, G, = 1, and G, = 15. 
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Fig. 10.10 Step-responses: non-fuzzy PI-controller with Kp = 7.5 and Ki = 0.15 (dashed 
line), and its fuzzy equivalent. 

On the basis of the proportional-integral control schemes evaluated here we 
can summarize fuzzy control design as follows. Assuming the process under 
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consideration is nonlinear or a linear parameterized model is not available, 
a fuzzy controller should be designed in the phase-plane according to the 
procedure below. 

1. Fix the number of (triangular, fully overlapping) fuzzy sets partitioning 
the input spaces. 

2. On the basis of the phase-plane characteristic and/or trajectory, decide 
on the fuzzy logic to be employed. This will determine the overall gain 
structure of the phase-plane (cf. Figures 10.4 and 10.7). 

3. Adjust input-output gains to have trajectories of the system to fall 
within the [-1, l] range. 

4. Change positions of principal values for input fuzzy sets to fine-tune 
gain structure in the quadrants of the phase-plane. 

From the control surface or phase-plane characteristics of the fuzzy controllers, 
we have seen that a fuzzy controller, though overall nonlinear, is, in fact, a 
piecewise-linear system. It is therefore possible to use textbook knowledge on 
nonlinear control design and analysis in the phase-plane. 



11 
Fuzzy Mathematics 

Cl Fuzzy concepts are ‘natural’ generalizations of conventional mathematical 
concepts. 

Cl Probability and possibility are complementary. 

Cl Possibility theory is the attempt to be precise about uncertainty, to related 
statistical objects with rule-based and fuzzy concepts. 

Everything is a matter of degree. 
-The Fuzzy Principle 

Since almost all objects of mathematics can be described by sets (e.g., a 
function as a set of ordered pairs), one can establish fuzzy generalizations 
for nearly all of those. In the previous sections, we have seen that fuzzy 
mathematical concepts occur ‘naturally’, that is, considering the uncertainty 
involved in the application, the need to generalize creates fuzzy mathematical 
objects. We considered 

0 fuzzy sets l fuzzy graphs 
0 fuzzy mappings 0 fuzzy clustering 
l fuzzy relations and their composition l possibility measures and distributions 

To apply formal mathematical objects to an engineering problem, mathe- 
matical statements are formulated using propositional CUZCUZUS for which the 
standard logical connectives and their set-theoretic equivalents for proposi- 
tions p and Q are: 
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Conjunction PMI “p and q” A, ” B, Intersection 
Disjunction PQ “p or q” A, U B, Union 
Negation lP “not p” A ; Complement 
Implication P--?-cl “p implies q” A; u B, Entailment 

Classically, the subsets A of a set X form a Boolean algebra under the opera- 
tions union, intersection, and complement. In particular, the double comple- 
ment of a subset A is A itself, (A”)” = A, in parallel to the tautology 11~ = p 
of the propositional calculus. Fuzzy versions of these operations above will 
abandon the Zaw of the excluded middle, A n AC = 8, and consequently allow 
us to model vague, fuzzy, and ambiguous concepts, avoiding paradoxes. From 
these extensions, we find that there are at least five ways to develop rule-based 
systems: 

1. 

2. 

3. 

4. 

5. 

Composite fuzzy relations (approximate reasoning), 

Functional approximation (e.g., Takagi-Sugeno models), 

Similarity-based reasoning, 

Multi-valued logic, 

Possibilistic reasoning, 

of which the first three were addressed in this book. An overview of different 
fuzzy mathematical extensions to classical concepts is given in Figure 11.1. In 
this book, fuzzy sets have been described in different ways. Most commonly 
a fuzzy set is considered to be a family of pairs, R = {(z, p&c))} and mem- 
bership function p(e). OR describes the degree of membership of x in fuzzy 
set R. Viewing degrees of membership as some kind of weighting on elements 
of the underlying reference space X, a fuxxy restriction is the mapping p 

p : x -+ [o, l] 

x e l-4 ) x . (11.1) 

Especially in engineering, triangular and trapezoidal fuzzy set-membership 
functions are sufficiently accurate and have the advantage of a simple imple- 
mentation. The following equations are useful in this context. Let a < b < 
c < d denote characteristic points: - 

“Left-open” set: ~(x; a, b) = max(min (E,l) ,O) 

“Right-open”: ~(x; a, b) = max (min (E,l) ,O) 

“Tkiangular”: ~(x; a, b, c) =max(min(E,$,O) 

‘Trapezoidal”: ~(x; a, b, c, d) = max 
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Rg. 11. I Fuzzy mathematical extensions in context [Wo198]. 

Instead of taking elements of the universe of discourse as arguments, we 
may consider the co-domain of p to describe subsets of X in terms of a- 
cuts, R” where R” = {z: OR >_ a is also called level-set. The fact that a } 
family of level-sets can describe a fuzzy set is manifested in the decomposition 
or representation theorem. Instead of taking a set-membership perspective we 
may view ~(0) as a mapping, or fuzzy restriction R: 

PR :X-+L 

x r-) a, 

where here we assume L = [0, 11. While in the set-membership setting we first 
identify a value x and then determine its degree of membership, we may also 
start wit,h a level a E L to find out which elements in X satisfy this condition. 
This leads to the definition of a level-set or a-cut R, (see Figure 11.2): 

R CY = {x E x : p(x) > a} . (11.2) 

The representation theorem [NW971 shows that a family of sets {R”} with 
the assertion “x is in R”” has the “degree of truth” a, and composes a fuzzy 
set, or equivalently, a fuzzy restriction 

R( ) x = SUP min(a, <Ra (x)) 7 (11.3) 
e(wl 

where 
a = min{a, CR” (x)} 

a,nd hence 
R= {(~,a.) : x E X, ,uR(x) = R(x) = a} . (11.4) 
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We can summarize the level-set representation of R as the mapping 

R : {(Ra)} --+ F(X) 
(Rd e PR 7 

pR(x) = sup {a E [&I], x E RCY} l 

a! 

k-(Z) 

--------m---m 

x 
* 

Fig. 11.2 Level-set representation of fuzzy restriction (set) R. 

Figure 11.2 suggests yet another perspective on fuzzy restrictions as multi- 
valued maps. Let I’ be a map from L to X such that for any a f L, the image 
is made up of those x E X which are compatible with a: 

r : L + P(X) (11.5) 

a! t-) r( > a . 

Expressed in terms of ordered pairs (a, x) E L x X, 

R= {(a,~) : x E I’(a)} , (11.6) 

which is called compatibility relation and is related to I’(a) by 

r(a)={x: (a,x)~R}. (11.7) 

We also considered generalizations of ordinary relations to fuzzy equiva- 
lents. For example, considering the binary relation 

R:XxY + u4 11 

(2, Y> - bdz,!d 7 

a fuzzy relation R is a fuzzy set defined in X x Y as 

R : X x Y + [OJ] 

(z7 Y> - pRh!d l 
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11.1 THE ALGEBRA OF FUZZY SETS 

In this section, we first summarize the usual use and notation 
and then look at more formal aspects of how to describe sets. 

of (fuzzy) sets 

For ‘crisp’ sets, if X is any set and x E X, the algebra of the power set 
P(X) of X, that is, of the set of (crisp) subsets of X, is usually formulated in 
terms of A E P(X) and B E P(X) as follows: 

Containment : AcB o XEA + XEB 
Equality: A = B @ A c B and B c A 

Complement: A” = {x E X : x $ A} 

Intersection: AnB=(zcX: x E A and x E B} 

Union: AuB={xeX: x E A or x E B or both} . 

For fuzzy sets realized via functions, the set-theoretic operations and relations 
above have their equivalents in 7(X), namely, the set of all fuzzy sets (the 
set of all membership functions). Let PA and PB be in F(X): 

Containment: A c B e PA(x) 5 pB(x) 

Equality: A = B ( PA(x) = pB(x) 

complement: p&(x) = 1 - PA(x) 

Intersection: p~n&X) = T(&(X),~B(X)) 

Union: PAuB(Z) =~(P~Cd,ll~(~)) l 

These are by no means the only definitions but those most commonly used. 
Similarly, the intersection and union operators are most commonly defined by 

j4AnB(x) = min(hdX),P~(X)) ad pAnB(x) = ma+A(x),pB(x)) . 

With this definition, the fuzzy union of A and B is the smallest fuzzy set con- 
taining both A and B, and the intersection is the largest fuzzy set contained 
by both A and B. This pair of operators is the only pair which preserves the 
equalities p fl p = p and p U p = p. In other words, it is the only pair of 
distributive and thus absorbing and idempotent pair of t-norm and t-conorm 
[FR94], that is, (F(X), n, U) is a distributive lattice. However, (F(X), n, U) is 
not a Boolean algebra, since not all elements of the lattice have complements 
in it. Considering possibility distributions on product spaces, using max, min, 
joint distributions are separable, that is, it is possible to project marginal dis- 
tributions onto subspaces. Subsequently the concept of non-interactivity can 
be defined in analogy to independence in probability theory. 

We also made frequent use of the fact that 
formalizing the notion of a set. A subset A of 

there are two distinct ways of 
X may be formulated as a list 
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describing its members 

A={eX: x satisfies some condition} . 

On the other hand, the subset A of X can be considered as an inclusion A c X 
and hence as a mapping. Equivalent subobjects of X are represented by the 
same “arrow” from X, by taking the arrow to be the characteristic function 

[A : x + (0, I} 

x * b(2) where b(x) = 
1 if x E A, 
0 ifx+!A. 

Moreover, from the characteristic function C, one can reconstruct the subset 
A: it consists of exactly those elements x E X which land on 1 under c. In 
other words, A is the puEZbackl of the inclusion (1) c (0, l}, 

This can be generalized by replacing the set (0, 1) of ‘truth values’ by a non- 
negative interval L leading to ‘categorical’ formulations of fuzzy sets [Hoh88]. 
This includes the case of L = [0, l] being the unit-interval or some lattice 
defined on it. Then, the three operations A, V, and 1, defined by truth 
tables, are functions as L x L + L. 

11.2 THE EXTENSION PRINCIPLE 

In Section 7.2, instead of viewing the fuzzy systems as an algorithm based 
on formal multi-valued logic, the rule-base and inference mechanism was de- 
scribed as a mapping from a fuzzy set A’ in X to a fuzzy set B’ in Y. The 
compositional rule of inference generalized the ‘crisp’ rule 

IF x = a AND y = f(x), THEN y = f(a) 

’ In the corn mutative diagram, A completes the solid line ‘corner’ by means of the dashed 
lines and is thus called pullback. The terminology originates from Category Theory [LS97] 
in which algebra is organized to look not just at the objects but also at the mappings 
(arrows) between them. Examples are functions between sets or continuous maps between 
spaces. A category then consists of objects and arrows between them. Category Theory 
subsequently starts with functions between sets rather than with sets and their elements. 
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to be valid for fuzzy sets 

/@’ (9) = SUP T(pA’ (x), pR(x, 9)) l 

XEX 
(7.15) 

The fuzzy system, defined by the compositional rule of inference, maps fuzzy 
sets in X to fuzzy sets in Y. In other words, the fuzzy model describes a fuxxy 

maPPan 

where we obtain pf(A) (y) as a special case of the composition of two fuzzy 
relations 

I-L!(A) (d = suP T(b-Lxt (x9 Y), dx, !d) (11.9) 
XEX 

with extension pAext (x, y) = PA(x), equivalent to (7.15) or the individual- 
rule-based inference (8.6). 

We can take the extension of the mapping to the fuzzy mapping as a 
blueprint for a general extension principle. Let f be a mapping from X to 
K Y = f(x)* c onsider the situation where we are given a fuzzy number A 
(“approximately x0”) instead of a real number. We wish to find the fuzzy 
image B by a generalization of f; how do we construct B = f(A)? We 
would require that the membership values of B should be determined by the 
membership values of A. Also sup B should be the image of sup A as defined 
by f. If the function f is surjective (onto), that is not injective (not a one-to- 
one mapping), we need to choose which of the values PA(x) to take for PB (y). 
Zadeh proposed the sup-union of all values x with y = f(x) that have the 
membership degree PA(x). In other words, 

/-@b) = (11.10) 

In general, we have the mapping 

which we aim to generalize to a function &) of fuzzy sets. The extension 
principle is defined as 

J: F(X) + F(y> 
(pAI (x1>, l - l #Ap(xr>) * j(~At(xl),=..,~A,(xr)) 7 

where 

@(Al ,..a, A,)(Y) = SUP {~A~(x~)A”‘A~A~(xr)} l 

(Xl 7”‘) 4a-l(Y) 

(11.11) 
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In Section 1, we introduced the functional representation (model !JR) of a 
system 6, y = f(x) and its associated graph, F = {(x,f(x))}. We then 
introduced various (equivalent) generalizations into fuzzy models described 
by the fuzzy graph F: In Section 4.6, equation (4.33), in Section 5, equation 
(5.5), in Section 6, by (6.19), and in Section 8 by equation (8.5). 

11.3 FUZZY RULES AND FUZZY GRAPHS 

There is a close relation between the concept of approximate reasoning (Sec- 
tion 7.2), the fuzzy inference engines (Section S), the fuzzy mapping intro- 
duced in the previous section and a fuzzy graph F. Fuzzy rules and a fuzzy 
graph may both be interpreted as granular representations of functional de- 

P endencies and relations. 

A fuzzy graph F, serves as an approximate or compressed representation 
of a functional dependence f : X --+ Y, in the form 

F = Al x B1 v A2 x B2 v 9. l v A,, x B,, (11.12) 

or more compactly 

F = ~ Ai x Bi , 
i=l 

where the Ai and Bi are fuzzy subsets of X and Y, respectively, Ai x Bi is the 
Cartesian product of Ai and Bi, and V is the operation of disjunction which 
is usually taken to be the union. In terms of membership functions, we may 
write 

where x E X, y E Y, V and A are any triangular t- and t-conorm, respectively. 
Usually V = max and A = min establishing the relationship to the extension 
principle, approximate reasoning and so forth. A fuzzy graph may therefore 
be represented as a fuzzy relation or a collection of fuzzy if-then rules 

IFxisAi,THENyisBi i=1,2 ,..., no. 

Each fuzzy if-then rule is interpreted as the joint constraint on x and y defined 

bY 

(x7 Y> is Ai x Bi . 

In Section 4.6 we referred to such constraint as a fuzzy point in the data space 
E = X x Y. The concept of a fuzzy points and a fuzzy graph are illustrated 
m Figure 11.3. 
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X 

Fig. 11.3 Representation of a function and its fuzzy graph. 

11.4 FUZZY LOGIC 

Any useful logic must concern itself with Ideas with a fringe of vagueness and a 
Truth that is a matter of degree. 

-Norbert Wiener 

The basic claim of fuzzy theorists is that everything is a matter of degree. 
This view is based on the analysis of ‘real-world’ problems and the resulting 
paradox when applying conventional mathematics rooted in set theory. The 
following examples were first discussed by Bertrand Russell: 

Liar paradox: Does the liar from Crete lie when he says that all Cretans 
are liars? If he lies, he tells the truth. But if he tells the truth, he lies. 

Barber paradox: A barber advertises: “I shave all, and only, those men 
who don’t shave themselves”. Who shaves the barber? If he shaves himself, 
then according to the ad he doesn’t. If he does not, then according to him he 
does. 

Set as a collection of objects: 

i. Consider the collection of books. This collection itself is not a book, 
thus it is not a member of another collection of books. 

ii. The collection of all things that are not books is itself not a book and 
therefore a member of itself. 

iii. Now consider the set of all sets that are not members of themselves. Is 
this a member of itself or not? 
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The problem of those paradoxes is their self-reference; they violate the laws 
of non-contradiction or the law of the excluded middle 

t(S) A t(not S) = 0 or SnSC=0, 

where t denotes the truth 
sentation, respectively. In 

value 
those 

(in (0, l}), S is a statement or its set repre- 
paradoxes we find 

t(S) = t(not S) . (11.13) 

With t(not S) = 1 - t(S) inserted into (11.13), we obtain the contradiction 

t(S) = 1 - t(S) . (11.14) 

However, in fuzzy logic we simply solve (11.14) for t(S) : 

2 l t(S) = 1 or w = i . 

. ..the truth lies somewhere in between! 

Throughout the book, we have suggested that fuzzy sets and fuzzy rule- 
based systems are a suitable means to capture and process vague and fuzzy 
information. In Section 5, the fuzzy partition Ail, . . . , Ai, in the if-antecedent 
part of a rule was identified by projecting fuzzy clusters onto subspaces. In 
Section 6, the identified model provided forecasts as fuzzy restrictions and we 
suggested that such information can be readily processed in a fuzzy rule-based 
system as detailed in Section 7.2. It should, however, be noted that we have 
not considered fuzzy logic as a multi-valued generalization of a pure (formal) 
logic. Instead, we motivated our rule-based systems in terms of approximate 
reasoning (see Section 7.2). Next, we provide more examples of how a fuzzy 
partition and fuzzy data can be generated from numerical data sets. 

11.5 A BIJECTIVE PROBABILITY - POSSIBILITY TRANSFORMATION 

Possibility theory is an information theory which is related to but independent 
of both fuzzy sets and probability theory. Technically, a possibility distribu- 
tion is a fuzzy set. For example, all fuzzy numbers are possibility distributions. 
However, possibility theory can also be derived without reference to fuzzy sets. 
Many of the rules of possibility theory are similar to probability theory, but 
use either max/min or max/times calculus, rather than the plus/times cal- 
culus of probability theory. Research into possibility theory has been largely 
concerned with being precise about uncertainty and reasoning in the presence 
of uncertainty. Although not as well defined as probability theory, possibility 
theory has made important contributions to establish formal relationships be- 
tween a number of paradigms including belief functions, rough sets, random 
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sets, fuzzy sets and probabilistic sets. The publications of Didier Dubois pro- 
vide a rich and comprehensive source for most aspects of possibility theory. 
Here we note only one particular aspect, a formal link between probability 
and possibility distribution. 

A possibility distribution ~(0) on X is a mapping from the reference set or 
universe X into the unit-interval, 

77- : x + [o, l] . 

A usual convention is to assume that there exists at least one x E X for which 

4x> = 1. This is called the normalization condition. Like a probability 
distribution is related to its associated probability measure, the possibility 
distribution is described in terms of a possibility measure by 

44 = JWXH > 

where the possibility of some event A is defined by 

WA) = sup n(x) for an ordinary set A, 
XEX 

= sup min{pA(x),n.(x)} for a fuzzy set A . 
XEX 

A dual necessity (or certainty) measure is defined by 

Ne(A) = 1 - II( 
- - inf { 1 - 7r(x)} 

x6- 
for an ordinary set A, 

= inf min{pA(x), (1 - r(x))} for a fuzzy set A . 
XEX 

(2.14) 

(11.15) 

(11.16) 

(11.17) 

In analogy to axioms in probability theory, Pr(X) = II(X) = 1, Pr(@) = 
II(@) = 0. The probability of the statement “A or B” is given by Pr(A U B) = 
Pr(A) + Pr(B). Th e events A and B are assumed to be mutually exclusive, 
that is, A f~ B = 8. If AC denotes the event “not A”, in probability theory 
it is consequently required that probabilities are additive on disjoint sets, 
Pr(A) + Pr(A”) = 1. In contrast, for a subjective judgement one may view 
both propositions “A occurs” and “A does not occur” as possible and we 
therefore only require 

II(A) + II > 1 . - (11.18) 

To be able to operate with such weak evidence we require the measure of 
necessity to act as a lower bound: 

Ne(A) = 1 - II , and Ne(A) + Ne(A”) < 1 , - (11.19) 

as the impossibility of the opposite event. “A is necessary” is interpreted as 
A is bound to occur. We can summarize these intuitive requirements by the 
following inequality: 

Ne(A) = 1 --II 5 Pr(A) < II(A) . (11.20) 
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And for the union of two events, 

II(A u B) = sup {I-(Z) : x E Au B} 

= sup {n(x) : XEAVXEB} 

= max(sup{7r(x) : x E A},sup{~(x) : x E B}) 
. * . II(A U B) = max(II(A)J(B)) . (11.21) 

From these definitions, D. Dubois and H. Prade [DP83] derived a necessity 
measure as a bias in probabilities: the necessity of an event is the extra amount 
of probability of elementary events in a set over the amount of probability 
assigned to the most frequent outcome outside the event of concern. For this 
view, the X~'S are (without 10~s of generality) ranked SO that for pj = Pr({xj}), 
PI 2 132 2 "' 2 Pnb and Aj denotes the set (~1, x2, . . . , xj}. Thus, 

Ne(A) = x max(pi -p/,0), p’ = maxpk . 
a&A 

(11.22) 
GEA 

From (11.22), V j = 1,. l . ,r~+, 

rj = 1 - Ne(X - {xj}) 

xl--- ‘Ti7 max(pi - Pjd% 
XiEX-{Xj} 

= Pj + x (Pi - max(Pi - Pj, 0)) 
i#j 

= Pj + x min(Pi, Pj) 
W 

= 2 llliIl(p~,pj) . 
i=l 

(11.23) 

11.6 EXAMPLE: MAINTENANCE DECISION MAKING 

One of the major problems in maintenance practice is the lack of a system- 
atic, adaptable and data-driven approach in setting preventive maintenance 
instructions. A computerized maintenance management system (CMMS) is 
a decision support system prioritizing machines based on the two most im- 
portant criteria - the downtime of machines and the frequency of faults. The 
knowledge-base consisting of nine fuzzy rules is shown in Figure 11.4. For 
example, if a machine fails regularly, but the downtime is relatively small, 
that is, it does not take much time to solve the problem, the operator should 
obtain a skill upgrade to deal with the problem himself rather than calling 
out a maintenance engineer. On the other hand, a machine which, when it 
fails, does take long to repair, should be monitored for such faults if they do 
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Fig. 11.4 Decision grid - fuzzy rules used in preventive maintenance decision making. 

not occur too frequently. A successful ‘control’ of the maintenance problem 
is achieved if machines move, month by month from the lower right corner of 
the decision grid to the upper left corner. The problem is to define what is 
regarded as a “low downtime”? To obtain a fuzzy partition of the two spaces 
‘downtime’ and ‘frequency’, the decision support system reviews monthly data 
of the worst ten machines. For example, consider the monthly evaluation of 
ten machines (out of 130) representing about 89% of the problems: 

d 30 20 20 17 16 12 7 6 6 4 

f 27 16 12 9 8 8 8 4 3 2 

Since the downtime of machines presents the most important criteria, as 
it can readily be related to profit, loss or gain, we shall focus on downtime 
hereafter. The first step in obtaining a fuzzy partition is to plot a probability 
distribution obtained from the histogram. The average downtime, here 13.8, 
for that particular month is used to split the reference space into two halves. 
A downtime considerably larger than this value should be regarded as “high”. 
It is also the point for which pmed (d) = 1. By definition, probability distribu- 
tions summarize whole sets of machines; in preventive maintenance, however, 
decisions are made for individual machines. That is, we do not wish to con- 
sider whether or not we can (on average) expect a failure of any machine, but 
on the basis of the data collected, we wish to establish the degree of feasibility 
or possibility that a particular machine should be considered as having a “high 
downtime”. We consequently require a transformation of the probabilistic in- 
formation to a possibility distribution (or fuzzy restriction, which numerically 
is the same). 
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Using the bijective transformation (11.23)) r&b refers to the number of bins 
of the histogram and p is the relative frequency estimate of the probability 
for that section of the space D, of downtime. The data, histogram, and the 
possibility distribution obtained from (11.23) are shown in Figure 11.5. Fi- 
nally, fuzzy partitions with piecewise-linear membership functions is obtained 
from a least-squares fit through the midpoints of the bars of the possibility 
distribution X. For values d smaller than the mean value, the least-squares 
algorithm is constrained by the requirement that p,,& = 0) = 0. If we 
require the sets of the fuzzy partition to be fully overlapping, that is, for any 
4 xi Pi(d) = 1, tJh e membership functions plow(d) and phi&(d) are obtained 
from the complement of the fuzzy set “medium”, /.,&hi&(d) = 1 - p,&&) for 
values of d greater than the mean value and plow (d) = 1 - pmed (d) for values 
of d smaller than the mean value. 

0.8 

0.6 

5 10 15 20 25 30 35 40 
downtime 

Fig. 11.5 Data, histogram, possibility distribution and fuzzy partition. 

A (multi-stage fuzzy) control or optimization problem is introduced by 
considering time. Machines are reviewed on a monthly basis and, as indicated 
by the arrow in Figure 11.4. We aim to move (control) machines from the 
bottom-right to the upper-left corner of the decision grid. 

11.7 EXAMPLE: EVALUATING STUDENT PERFORMANCES 

In this example, we wish to evaluate student performances against set stan- 
dards. At many universities, two thresholds are of particular importance. 
The student must obtain an overall result of, say > 50% to obtain the degree. 
Students with > 70% are awarded a degree withdistinction. It is the neigh- 
borhood of the; particular points we consider. Strict adherence to such hard 
thresholds is inevitably unfair in some cases where someone with, say 69.4%, 
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Fig. 17.6 Induced fuzzy set with ~0 = 50 and 6 = 0.1, and fuzzy partition for MSc degree 
evaluation. 

may not achieve a distinction while a colleague with just 0.6% more would 
succeed. Let (X, d) be a metric space with X = [0, 1001 and the standard 
metric 

d: RXR + lR+ 

(x,x’) * Ix - x’l . 

From (7.6)) we know that the metric d(a) induces a similarity relation E : X x 
X -+ [0, l] on X by 

E = 1 - inf(d(z,z’), 1) , (7 6) . 

which formally is identical to a fuzzy restriction or fuzzy set. To identify 
‘border cases’, that is, students which are close to the pass mark, denoted 
~0, we introduce a function that depends on x0 and a ‘locality’ parameter 
6 E (0,oo) used to scale the metric d(m) to become a proximity measure. As a 
result of these considerations, we obtain the triangular fuzzy set 

ho (4 = 1 - min{)6 l x0 - 6. x], 1) . (11.24) 

Figure 11.6 (left plot), shows a fuzzy set induced by 6 = 0.1. A similar 
procedure can be applied to the 70% mark. Assuming fully overlapping sets 
(Vx c P(X) = 11, th e single parameter S induces a complete fuzzy partition. 
Figure 11.6 (right plot) illustrates a general example of a fuzzy partition in 
tpdhmance evaluati!on 

Let us now consider the results of 23 students in a particular exam. Their 
results in % are: 

47.33 34.5 71 84.17 76.5 39.67 62 55.83 
35.67 81.67 65 78.83 60.33 43 40.5 40.67 
37.33 64.33 62.67 50 56.67 46.83 26.67 

Analyzing the data, we wish to get a picture of how the class performed as 
a group compared to other classes and how results are distributed within a 
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group. The overall average of marks is 55%. To get an idea of how results are 
distributed within the class, we plot a histogram, with bars centered around 
the points 25,35,45,55,65,75,85. The frequency count is obtained as the 
number of results that lie in bins from 20 to 90 in steps of 10. The histogram, 
plotted on the left in Figure 11.7, suggests that the class is somewhat split into 
two halves. With only few data, one has to be careful as the division of the 
interval [0, 1001 to plot the histogram influences the shape considerably. For 
instance, the 50% result is counted toward the (40,501 interval. Now, relative 
frequencies are frequently used to estimate probabilities. From the data, can 
we determine what the probability was to score more than, say SO%? We 
would calculate such probability from the density function p(z) as shown in 
the plot on the right in Figure 11.7 (obtained from Parzen’s Gaussian kernel 
estimator with window width 5; cf. Section 3.2). Considering the definition 
of statistical laws, the meaning of such evaluation would be senseless, and the 
plot of the density function does not reveal any useful information. 

35 45 55 65 75 85 

25 35 55 65 75 85 
I results 

50 60 
% result 

70 80 90 

F@. II. 7 Examination results: Histogram and density estimate. 



12 
Summary 

data: known facts or things used as a basis for inference or reckoning. 
system: a complex whole; a set of connected things or parts. 
uncertainty: the fact or condition of being uncertain. 

-Oxford Dictionary, 9th edition 

In this section, we summarize some of the formalisms introduced to model 
natural systems. Further below, more philosophical ideas are discussed. 

12.1 SYSTEM REPRESENTATIONS 

Conceptually, the book presented three main topics connected by the following 
lines of reasoning: 

Uncertainty: 

Systems -+ Uncertainty --+ Expectation --+ Statistics: mean, (co-) vari- 
ance, correlation. 

Universal Function Approximation: 

Systems -+ Modelling -+ Identification + Least-Squares Principle --+ 
Regression -+ Density Estimation -+ Basis Function Approximation. 

Fuzzy Systems: 
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Uncertainty --+ Comparing & Reasoning -+ Equivalence Relations -+ 
(Fuzzy) Similarity Relations + Propositions as Subsets of a Data Space 
-+ (Fuzzy) Clustering -+ Fuzzy Rule-Based Systems -+ Random-Sets + 
Fuzzy-System Identification + Approximate Reasoning. 

Virtually all the material is derived from, or directly related to, two fun- 
damental concepts: The formulation of a system using some dependent vari- 
able(s), denoted y, as a function of the independent variable(s) x: 

Second, the expectation operator forms the basis for describing (measuring) 
(un)certainty in systems and data: 

In systems theory, a system 6 is described by a formal model 9X using a 
0-parameterized mapping f(e) to describe the relationship among inputs and 
outputs as 

Y = f (u; 0) 7 (1 5) . 

which, in the regression formulation, was generalized to 

Y = f  (xi 0) l 

Uncertainty in systems theory is due to 

(2.15) 

D Incomplete knowledge about the structure or nature of the system under 
consideration. 

D Observations are imprecise, vague or fuzzy, as well as random. 

D Preference; to have ‘simple’ models we choose to ignore aspects or accept 
incompleteness. 

Consequently, sets of uncertain information need to be summarized; specifi- 
cally averaged or aggregate& using the expectation operator 

A f h(Y) OS(Y) ’ 

(12.1) 

Y 

Globally, uncertain knowledge about elements of some space is characterized 
by some distribution over this space which can also be described by measures 
of central tendency, E[y] k q, and variability E[(y - v)~] A g2. Knowledge 
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about events is quantified by the expectation leading to probability measures 
PT( 0) or possibility measures II( 0): 

E[hd = J CA(y) p(y) dy G f+(A), A crisp- 
Y 

(2 2) . 

= sup r(y) A II(A), A crisp. 
YEA 

(2.14) 

EbA] = s PA(Y) P(Y) d!/ t Pr(A), A fuzzy- 
Y 

(2.13) 

= f i-hi(Y) o h) = sup { /&L&J) A r(y) } A II(A), A fuzzy. (2.13) 
YEY 

Y 

Events are described by crisp and fuzzy membership functions, respectively: 

c : Y + (0, l} and p : Y + [o, l] . 

The (un)certainty of a relationship between two variables is formalized 
using the covariance and the correlation p. 

The least-squares principle is introduced as a criteria to quantify the quality 
of approximation of y by f (x; 0). I n regression, we thus try to find a function 
of the regressors in x such that the expected error is small. The examples 
2.1.1 and 2.1.2 illustrated the least-squares principle applied to 

D fitting functions to data, 

D function approximation, 

showing that the least-squares principle makes sense without a probabilistic 
framework. Modelling and identification of systems is, in general, based on 
tha f&xars,Ag UIIL l.VllV l n rnnPfhntc* L”llbb,r ULJ. 

D A specific class of approximating functions f(x; O), parameterized by 8. 

D The loss function L(y , f (m; 0)) to quantify the quality of approximation 
using a set of training data samples M = {mj}. 

D The risk functional, quantifying the expected error: 

Jwl - - 
./ L(Y, f  (x; 0)) PC% Y> dXdY (2.16) 

G R(8) . 

For a stochastic framework, two closely related inductive principles play a 
fundamental role: 
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D 

D 

Maximum Likelihood (ML) : Determine the parameter(s) 8 for which 
the probability of observing the outcome (data) M is as high as possible. 
In other words, the likelihood (function) of the data 

t(O; ml, m2,. . . , md) = Pr(Mle> (2.53) 

is maximized to obtain a ML estimate: 

i& = arg max [(O; M) . 
e 

(2.54) 

For convenience, the log-likelihood function C replaces e in the actual 
calculation: 

c(8; M) G ln e(8; M) . (2.55) 

Empirical Risk Minimization (ERM): In statistical learning the- 
ory, the training data m = (x, y) are assumed to be independent identi- 
cally distributed according to some (unknown) probability density func- 
tion p(m). The objective is to select a loss function from the class 

Q(m, 0) f L(Y, fk 0)) (3.11) 

such that it minimizes the risk functional 

R(8) = Q(mJ9~(m> dm - s (3.10) 

The ERM principle is then based on the empirical risk 

d 

Remp(~) = $ x Q(mj,e> l 

j=l 

(3.12) 

The class of approximating functions considered includes 

D Algebraic Polynomials: For example, in linear regression 

fcx; e) = x ei l xi .  
(3 a> 

.  

In a probabilistic model, f(x) = J y . p(ylx)dy and 

L(Y,f(X$)) = (Y -mq2 7 

R(e) = 
s 

(y - f  (x; q2P(x,Y) dXY l 

D Trigonometric Polynomials: For example, in the Fourier series (2.52), 

f(~; 0) = a0 + 2 ai l COS(~ X) + 2 bi l sin(i X) . 
i=l i=l 
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D Local Basis Function Networks: For example, in kernel density 
estimation, (3.17), or Radial Basis Function (RBF) neural networks, 

In general, we use a linear combination of basis functions CJ& (0): 

(cm3 J) 
f (x; 0) = x 6 ’ M4 7 (3.22) 

i=l 

where, depending on the context, the upper limit of the sum is either c (num- 
ber of clusters), or ?%R (number of rules), or T (number of regressor variables). 
Or more generally, for example in mixture density estimation, 

In density estimation, the ‘output’ y becomes a density and hence f(x; 0) 
describes a class of density functions with 

D Loss function: L(y, f(x, 0)) becomes L(f(x, 6)). 

D Likelihood function: !(8; M) = nj”=, f(mj; 6) . 

D Log-Likelihood function: L(8; M) = c,“=, f(mj; 6). 

We noted that instead of maximizing l(0; M) = c,“=, f(mj$), we could 

equally minimize d - ‘& In f (mj; 0) implying that in density estimation, 
maximizing the log-likelihood function is equivalent to minimizing the ML 
empirica risk functional 

amp(e) = - 2 in f(mj; e> 
j=l 

in statistical learning theory (based on the ERM principle). Though the 
functional approximators given in (3.22) and (3.23) are universal - in principle 
they can approximate any nonlinear function, and their parameterizations also 
nonlinear and hence the maximization/minimization of an inductive principle 
poses a nonlinear optimization problem. The EM-algorithm was introduced 
a.s one possible technique to solve this optimization problem. 

In Section 4 a#nd 5, the demanded qualities of a model were further ex- 
tended to allow for interpretability as well as precision. In other words, the 
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identified model should allow an interpretation of local relationships in terms 
of (fuzzy) $then rules. For this purpose, in Section 4, the data matrix M was 
partitioned according to (fuzzy) clusters identified in data space Z. Three par- 
titional clustering algorithms were described: (1) the hard-c-means algorithm, 
(2) its fuzzy-c-means generalization, and (3) the Gustafson-Kessel algorithm, 
which is a further refinement to account for cluster shape and orientation. 
Subsequently clusters can be identified as rules. In partitional clustering the 
objective is to minimize the ‘within-cluster-overall-variance’, where the the 
within-cluster variance is described by some metric evaluating the distance of 
data points with respect to some prototypical point &). 

D Hard-c-Means Clustering: For all (i, j), uij E (0, l}, the partition 
space is defined by: 

C d 

Mhc = UEvcd: 
x 

uij=I; O<Cuij<d,Vi 
i=l j=l 

(4 7) . 

Objective function: 

Jhc(M;U,C) = ke4ZLij l di (mj,Cci)) . (4 8) . 
ix1 j=l 

D Fuzzy-c-Means Clustering: For all (i,j), uij E [0, 11, such that the 
fuzzy partition space is defined by: 

C d 

Mfc = UEvcd: x uij=I; O<Cuij <d,Vi (4.10) 
i=l j=l 

Objective function: 

Jf,(M; U, C) = 9 k (uij)w l & (m/)) l 

i=l j=l 

(4.11) 

D Switching Regression Models: In Section 5.7, switching regression 
models were introduced as an alternative to the EM-algorithm in mix- 
ture density estimation. The basic idea is to identify c-regression models 

y = fi(X; Oi) + Ei (5.32) 

on the basis of an objective function from the family 

Ew[U9 {ei}] = e 2 21; l Eij[ei] .  

i=l j=l 
(5.36) 



SYSTEM REPRESENTATIONS 219 

The outcome of a clustering algorithm is the partition matrix U and cluster 
centers C: 

(U, C) = argmin J(M) . 
M 

The elements uij E U in the partition matrix are evaluations of an equivalence 
(proximity) relation. Section 7 illustrated the fact that a crisp equivalence 
relation leads to a paradox. Generalizing a transitive equivalence relation, 
any pseudo-metric (employed to quantify the proximity of a data point mj to 
a cluster prototype c(Q) induces a fuzzy or similarity relation 

(4.19) 

for which transitivity is defined as 

E(oi,Oj), E(Oj, Ok)  

> 

l 

(4.24) 

D Approximate Reasoning is introduced via the compositional rule of 
inference, generalizing the (crisp’ rule 

IF x = a AND y = f(x), THEN y = f(a) 

to be valid for fuzzy sets A’ and B’: 

I-LB’ (9) = SUP T(pA’ ( x ) ,  PR (2,Y)) l 

XEX 
(7.15) 

In other words, the fuzzy model describes a fuzzy mapping 

D The Extension Principle defines a general 
mathematical concept to fuzzy versions: 

method to extend crisp 

where 

Four fuzzy rule-based system structures were discussed in detail. In general, 
the antecedent part of the rule calculates the degree of fulfillment of the rule 
via the degree of membership of x in Ai where Ai is a r-dimensional fuzzy 
set. Alternatively, in the conjunctive model, for each ith rule, the degree of 
fulfillment is defined as 

pi(X) f PA;1 (Xl) A PAi, (X2> A ’ ’ ’ A PAi, (z,> 7 (5 7) . 
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where i = 1,2 ,..., nR, the Ail, are one-dimensional fuzzy sets defined on 
subspaces XI, of E, and A is calculated by a suitable t-norm operator. 

D Klawonn’s Similarity-Based Models: For a given set of points 

the output of the fuzzy model, based on similarity relations, is the ex- 
tensional hull MO of the points. For i = I,. . . , n& k = 1,. . . , r: 

D Random-Set Models: Let a be a set of abstract states and I’ an 
observable multi-valued map 

rA-2 + u 

w I+ r(w) c E = x x Y . (6.14) 

The data set M generates a sample of I’, denoted 

C = {Cj} where CjCXxY, j=l,...,d. - 

For the nonlinear autoregressive model 

y(k + 1) = f(x) 7 

X= [Y v4 7 . . . , y(k - ny + l), U(k), . . . ) U(k - nu + UT 

such that each element in vector x defines an axis in the product space 
x=x1x-*x XT. A pred .iction model is then build from the projections 
of random subsets Cj C Z onto Y, the space of candidates for y(k + 1). 
Formally, for any x E X, extended into X x Y, the projected random 
intervals on Y are defined by 

c X- i - {y : Xext f-l Ci # 0) l (6.16) 

From the conditional possibility distribution, for any y’ E Y, ;i(y’Jx) 
determines the possibility of y(k + 1) = y’: 

(6.17) 

D Linguistic Fuzzy Models: Let A’ be any fuzzy set in X. We then 
obtain the output of composition-based fuzzy inference engine as fol- 
lows. For the nR fuzzy if-then rules of the conjunctive linguistic model 
structure 

Ri : IF ~1 is Ai1 AND ~2 is Ai . . . AND xr is Air, THEN y is Bi . 

(5 6) . 
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D Composition-based inference: 

D First determine the fuzzy set-membership functions 

D Let (8.3) be viewed as the fuzzy set PA in the fuzzy implica- 
tions (7.9)-(7.14) and pR;(x,y), i = 1,. . . , nR, is calculated 
according to any of the implications. 

D Next, pR(x, y) is determined according to 
D Union Aggregation: (8.1), 

D Intersection Aggregation: (8.2), 

= T(/&’ ( x ,  Y), l l l 7 /@PR cx, d) 

i=l 

D Finally, for an arbitrary input A’, the output B’ is obtained 
according to 

I--1B’(Y> = supT(~A’(X)+R(X,Y)) - 
XEX 

D Individual-rule-based inference: The 
tical to the composition-based inference: 

first two steps are iden- 

D For a given input fuzzy set A’ in X, determine the output 
fuzzy set Bi in Y for each rule Ri according to the generalized 
modus ponens (7.15), that is, 

/-JB: (y) = SUP T (PA’ (X> I tQ& Cx, Y )) (8 6) l 

XEX 

fori=l,...,nR. 
D The output of the fuzzy inference engine is obtained from either 

the union 

or intersection 

/@I (y> = T(pB; (id> l l l 1 PB:, (3)) (8 8) . 

of the individual output fuzzy sets Bi, . . . , Bi. 

Depending on the choice of operators used in calculating unions, inter- 
sections, implications, rule-aggregation and defuzzification of B’, various 
inference engines are obtained. 
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D Takagi-Sugeno Fuzzy Models: 

R i : IF x is Ai, THEN yi = fi (x) . (5 8) . 

A common parameterization of y is the affine linear model 

Yi = a:x + bi . (5.10) 

Takagi-Sugeno inference engine: 

Y= 

SW l yi 

i=l 

5 Pi(X) l 

i=l 

(5.15) 

Since nR = c, introducing the normalized degree of membership 

($i(x) -r, lux) 

2 Pi(X) ’ 

(5.16) 

j=l 

and the singleton versions y = bi of the Linguistic and TS models, we notice 
that the fuzzy systems belong to the class of basis function approximators 
(3.22): 

9~2 $i(x)*bi. (5.19) 
i=l 

Antecedent fuzzy sets are obtained by pointwise projection and consequent 
parameters were estimated by standard least-squares. In this book, we consid- 
ered the Linguistic fuzzy model or equivalently the model based on similarity 
relations for approximate reasoning: qualitative knowledge processing, that is, 
capturing context-dependent, ad hoc, a priori expert knowledge. The other 
model structures, in particular the TS-model were introduced as models which 
can be identified from data using fuzzy clustering algorithms. 

Analyzing data and systems has a purpose and inevitably decisions are 
made as the result of the analysis. Figure 1.2 outlined the process of systems 
analysis. In Figure 12.1, we can now consider a more detailed view of what the 
general term ‘decision making’ implies with respect to real-world problems. 



MORE PHILOSOPHICAL IDEAS 223 

DECISION MAKING 

PREDICTION CLASSIFICATION CONTROL PRIORITISATION 

I I I I 

Forecasting Fault-Detection Feedback and 
and Diagnosis Anticipatory Systems Maintenance 

I I I I 

current state z(lc) event e error e( Ic) alternatives 
. . 

future state x(k + 1) class C control action u(k + 1) priorities, schedule 

Fig. 12. I Decision making concepts and applications. 

12.2 MORE PHILOSOPHICAL IDEAS 

This harmony that human intelligence believes it discovers in nature - does it 
exist apart from that intelligence ? No, without doubt, a reality completely inde- 
pendent of the spirit which conceives it, sees it or feels it, is an impossibility. A 
world so exterior as that, even if it existed, would be forever inaccessible to us. 
But what we call objective reality is, in the last analysis, that which is common 
to several thinking beings, and could be common to all; this common part, we 
will see, can be nothing but the harmony expressed by mathematical laws. 

-Henri Poincare 

The arguments put forward throughout the book reflect a similar position in 
epistemology (the philosophy of science - metaphysics). The view from which 
such “fuzzy logic of scientific discovery” is derived is outlined in Figure 12.2. 
We identified ‘comparing’ and ‘reasoning as the two fundamental concepts 
which take distinct forms in the areas of mathematics, science, logic, and 
philosophy’. 

’ For those who would not consider reading the original work of Arthur Schopenhauer, the 
excellent book by Bryan Magee [Mag97] provides a comprehensive summary. 
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phenomena 4 PHILOSOPHY - 
I I 
the world of experience 

in which we differentiate 
- perception 

search for regularities 
in space and time 

connectives 1 LOGIC 
I 

disjunction - union t 

t 

conjunction - intersection 

noumena 
I 
explanatory world, 
the ontological problem 

- conception 

structure 
I 
describing generic 

or ‘natural’ laws 
e.g causation 

inference 

I 
implication 

negation - complement 
I 

entailment / composition 

I 

MATHEMATICS 
*=F 

describing differences finding similarities 
between things that are similar between things that 

distance order are different 

v 

COMPARING --) UNCERTAINTY. REASONING 
I i 

space 

I # i 
time 

similarity relations W Possibility Theory *Approximate Reasoning 

Fig. 12.2 “The fuzzy logic of scientific discovery” [Wo198]. 

The world as we know it is our interpretation of the observable facts in 
the light of theories that we ourselves invent. Reality is hidden but (tran- 
scendentally) real. This independent reality outside the world of all possible 
experience is Kant’s world of the noumenal, the world of things as they are 
in themselves. Independent reality is something which human knowledge can 
approach only asymptotically. The world ‘as we experience it’ is dependent 
on the nature of our apparatus for experience, with the consequence that 
things as they appear to us, are not the same as they are in themselves. This 
world of experience is Kant’s world of the phenomena - the empirical world. 
This epistemological view has its equivalent in modelling natural systems, the 
phenomenological perspective outlined in Section 1. 

Since Hume demonstrated that ‘scientific laws’ are not empirically verifi- 
able, Kant, Schopenhauer and Popper argued that the search for certainty 
is an error. Human knowledge does not reveal something objectively and 
timelessly true but remains ‘our’ belief, hypothesis, or theory - a creation of 
the human mind, and not embodied in the world waiting to be discovered. 
Instead of assuming a set of differential equations could describe the natural 
phenomena itself, we ought to focus on the representation of systems, which 
is limited and often subjective. 
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Our experience is made intelligible to us in terms of time, space and causal- 
ity. Space and time are forms of sensibility whereas the subjective correlative 
is the ‘understanding’. Schopenhauer introduced the notion of ‘differentiation’ 
tied to the concepts of space and time. Then, for anything to be different from 
anything else, either space or time has to be presupposed. That is, the concept 
of succession presupposes either spatial or temporal concepts, or both. Hence, 
causal connections exist only between objects in the phenomenal world. For 
mathematics, the concept of succession is required. This presupposes either 
spatial or temporal concepts, or both. This suggests that mathematics is cre- 
ated rather than being discovered and as rigorous it may be, every argument 
must have an absolute minimum of one premise and one rule of procedure 
(e.g., If A, Then B) before it begins, and therefore begins to be an argument 
at all. So, every argument has to rest on at least two undemonstrated as- 
sumptions, for no argument can establish either the truth of its own premises 
or the validity of the rules by which itself proceeds [Mag97]. 

Mathematical models of (perceived) reality are systems of causal entail- 
ments. To ask “why” is to assert a “because” and hence applies to the realm 
of causality only. In system theory, we study organization and pattern sepa- 
rate from their material embodiment. We shall now discuss this separation of 
a formal model from its real-world counterpart in more detail. In describing 
a probabilistic framework of processes we noted in previous sections of the 
book that it does not refer to an actual measurement but to an observation, 
in general. For instance, the formal model of the dice, based on the assump- 
tion of physical symmetry, leads to the probability of l/6 for the number 2 
t,o occur. However, this gives us only limited help in predicting the outcome 
of rolling the particular dice I hold in my hand. Pr(2) = l/6 is the result of 
a formal model - a deduction. On the other hand, induction is the process 
of matching measured data with the model. Induction, as a form of general- 
ization, seeks to establish general (i.e. quantified) propositions on the basis 
of instances; deduction, conversely seeks to establish instances in terms of 
quantified or general propositions. Let X denote some set whose elements are 
called instances. For simplicity, let us assume we can enumerate the elements 
of x: 

x = {Xl ,..., xi $... } . 

A predicate or property f, possessed or manifested by an instance xi is denoted 
f (xi). Let x be a variable taking values in X. Then, the expression f(xi) is 
an assertion about the specific instance xi in X. The universal quantifier V 
is used to make statements about the set or universe X. For example, the 
expression 

asserts ‘Lfor all x in X, or for any x, x has the property f or f(x) is true”. 
This general proposition can be interpreted as a string of conjunctions 
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By deduction we can infer a particzllar f(zi> from the general proposition 
Vx, f(x). The problem of induction is the complementary attempt to es- 
tablish a general proposition on the basis of particular instances (samples) 
{Xl,~2,***, } in X for which it is known that f(zi> holds. Empiricism is then 
understood as the extrapolation from samples in X to a general truth about 
X. 

Analogous to the definition of a general proposition above, in Section 1 
we introduced the graph F = {(x, f(x))} as an alternative formulation of 
the function y = f(x) to model a system. We subsequently generalized the 
formulation of a graph F c X x Y by means of fuzzy if-then rules and fuzzy 
graphs F. A system can therefore be defined as a relation in the set-theoretic 
sense. We define a system in terms of relationships between observed features 
rather than what these features actually are (physical, biological, . ..). The 
general notion of a system as a subset of the space E can be made more 
specific by any of the methodologies presented in this book. Most of the time 
we specified a system in terms of equations defined on appropriate variables. 
Each variable is associated with a system object Xi or Y which represents the 
range of the respective variable. In particular, we considered the construction 
of such relations by means of measured data and in terms of a set of verbal 
statements. A system is understood as a particular kind of set, that is, a 
relation, capturing the collection of appearances of the object in consideration 
rather than the object of study itself. To develop a kind of theory starting 
from the definition of 6 as a graph F c X x Y, more structure needs to be 
introduced a) into the elements of the system objects Xi as a set itself with 
additional appropriate structure or b) by introducing the structure in the 
object sets Xi and Y themselves. The first approach leads to the concept of 
(abstract) time systems and the second to the concept of an algebraic system. 
The former was introduced in Section 1 with the elements of objects being 
time functions. 

Mathematics and set-theoretic formulations in particular are our chosen 
ZangTLage to describe aspects of the real-world. As with every natural language, 
we have to distinguish between syntactic aspects (referring to the language 
itself) and semantic aspects pertaining to the interpretation of statements 
produced by the language. From a syntactical point of view, divorced from 
any external referents, propositions in the language are in general not u6out 
anything. Production rules are themselves propositions but refer to other 
propositions in the language. The syntactical production rules of a language 
are its internal vehicles for what Robert Rosen [RosSl] calls inferential en- 
tailment. The rules allow us to say that propositions imply each other. By 
talking of a ‘formal model’, we already assumed that we choose mathematics 
as the formalism. Said another way, a formalism is a finite list of production 
rules. A formal system is therefore distinguished from a natural system, an 
aspect of, or process in, the real world we wish to study. An algorithm is 
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the application of production rules to specific propositions. By addressing 
a “why” or “what” to a proposition, we assume that it entails a “because” 
or “this “. Inferential entailment or implication describes a relation between 
propositions in a formalism; p entails c, or p implies c. 

The study of entailment relations at the level of phenomena; the entailment 
of one phenomenon by another, is usually described as causality. As indicated 
in Section 7.2, propositional calculus founded in bivalent logic is entirely inap- 
propriate in modelling causation. The two-valued logical correlates of a causal 
connections is that of material implication, associating antecedent p with a 
cause and the consequent c with an effect, an absent cause may have an effect; 
things may be self-caused. To model causal links, relations between p and c 
are required to be non-reflexive (nothing is self-caused) and asymmetrical (ir- 
reversibility). Based on this requirement, conventional logic is inadequate for 
modelling cause-effect links. However, recent studies of fuzzy relations offer 
a relational approach that provide appropriate mappings that are irreflexive, 
transitive (chain-like) and asymmetrical. Sections 4.6 and 4.7 together with 
the discussion in Section 7 form the background for the development of a 
formal framework which allows us to analyze causal or dynamic systems in a 
measure-free, that is, (fuzzy) logical or (fuzzy) relational framework. In all 
this we need to separate inferential entailment from causal entailment. For- 
mal or pure propositional calculus founded in bivalent logic is an example of 
the former, where new propositions are generated by inferential rules. The 
relation of inferential entailment to the entirely different causal entailment be- 
tween phenomena is embodied in the concept of a natural law. In establishing 
(hypothesizing) natural laws we make the following assertions: 

D The succession of events or phenomena that we perceive are not com- 
pletely arbitrary; there are relations (e.g., causal relations) manifested 
in the world of phenomena. 

D The relations between phenomena are, at least in parts, observable, that 
is, can be perceived and grasped by the human mind. 

12.2.1 Data Engineering 

What we can observe is not nature itself, but nature exposed to our method of 
questioning. 

-Werner Heisenberg 

Data engineering is the combination of pattern recognition techniques with 
system theory (Figure 12.3). To approach challenges, provided by the natural 
sciences and engineering, we require knowledge of more than one methodology 
and how the different theoretical frameworks can be related. Various theo- 
retical concepts - often described as distinct or unrelated - can shown to be 
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closely related if not formally equivalent. Starting the problem-solving pro- 
cess not from a theory but from the data and context-dependent knowledge 
available, the book introduced a number of concepts for system modelling and 
data analysis with the aim of decision making: prediction and classification, 
prioritization and control. 

PHENOMENA 
(‘particular’) 

I 

measurement DATA 
’ (context dependent) 

I DATA ENGINEERING: 

observation 

I 

structure 
organisation 

b 

perception 

I 
L 

b 

INFORMATION 
(context independent) 

induction I behavior 
function 

b 

KNOWLEDGE 
(‘general’) ’ 

I 

cognition MODEL 
b (context dependent) 

deduction 

I 
THEORY, LAW DECISIONS 

Pattern Recognition 
(working methodology) 

Systems Theory 
(conceptual framework) 

1 
explanation 

1 
prediction & classificatidn, prioritisation & control 

Fig. 12.3 
theory. 

Data engineering is the combination of pattern recognition techniques with system 

In modern systems theory and its applications, the physical structure of 
the system under consideration is of secondary interest. Instead, a model is 
intended to appropriately represent the behavior of the system under con- 
sideration. This requires methodologies and paradigms which provide inter- 
pretability in addition to accuracy. Accuracy is thereby understood not as 
the ability to provide a numerical value which minimizes (for example) the 
mean-square-error, but rather as the ability to be precise and honest about un- 
certainty. The forecast of a conventional time-series model, based on various 
simplifying assumptions, is not necessarily more accurate than the forecast of 
a rule-based fuzzy system generating a possibility distribution. A fuzzy set 
may be more precise than a real number! 

Data mining, extends classical statistics by emphasizing retrospective anal- 
ysis of data; primarily interested in understandability rather than accuracy or 
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predictability. The focus is on relatively simple interpretable models involving 
rules, trees, graphs, and so forth with current practice being pattern-focused 
rather than model-focused. We therefore call ‘data engineering’ the practice of 
matching data with models or, more generally, the art of turning data into in- 
formation. This requires the combination of concepts from various disciplines 
such as 

0 Applied Statistics (multi-variate, descriptive statistics) 

0 Systems Theory (modelling and identification of dynamic processes) 

D Decision Theory (multi-criteria decision making, knowledge-based sys- 
tem). 



13 
Appendices 

13.1 SETS, RELATIONS, MAPPINGS 

A set X is a collection of (mathematical) objects such as points in the plane, 
real numbers, functions, and so on, called the elements of X. If x is an element 
of X, we write x E X and if X and X’ are two sets for which 

x E X implies that x E X’ , 

X is contained in X’, X is a subset of X’ and we write X C X’. The subset 
of X which contains no elements is called the empty set,denoted 8. If A 
a,nd B are two sets, their union A U B is defined to be the set of elements 
which belong to at least one of the sets A and B; their intersection A n B is 
defined as the set of elements which belong to.both A and B; the diflerence 
A - B is defined to be the set of elements which belong to A and not to B. 
If A n B = 8, we say that the sets are disjoint; if A n B # 8, we say that the 
sets intersect. If A C X, the difference X - - A is called the complement of A 
relative to X and is denoted by AC. If A C_ X, the characteristic function of 
A relative to X is a map <A, defined on the elements of X by 

b(x) = 
1 ifxEA 

0 ifxEX-A. 
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The following relations hold: 

Cm&) = max(CA(W~(z))=5~(4 + CB(~ - SAC&) , 

cAnB(z) = min{ CA(x), b(x)} =<A@) + b(x) , 

[AC(~) = 1 - [A(z) . 

The set consisting of the elements 51, x2,. . . , X~ is denoted by {xi, x2, . . ., 
xr}. For example, the set of positive integers (0, 1,2, . . .} is denoted by N and 
the set of real numbers is denoted by Iw and often called the Euclidean or real 
line. The following sets are called intervals: 

[a, bl = {x : x E Et) x > a, x < b} - - “closed interval”, 

(U)b) = {x : x E R) x > a, x < b} “open interval”, 

(U)b] = {x : x E IR) x > a, x < b} “left-open interval”, 

[a, b) = {x : x E Et) x > a, x < b} _ - “right-open interval”. 

A set X is finite iff there is an n E N such that there exists a one-to-one 
(onto) correspondence between all elements in X and the set { 1,2, . . . , n}. A 
set X is said to be infinite if it is not finite. A set equivalent to N = { 1,2, . . .} 
is called countably infinite (or denumerabbe). A set is countable if it is either 
finite or countably infinite. Alternatively, a set is countable if its elements can 
be arranged as the terms of a sequence. 

A set I and a correspondence i I-+ ui associating each i E I to an element 
ui E A is called a family of elements in A and is denoted by (ui : i E 1); I is 
called the index set. If I = {1,2,. . . , n}, we have a set called an n-tuple, and 
if n = 2, this tuple is called a pair. If I is the set of strictly positive integers, 
we obtain a sequence 

(al, a2, a3, ’ l l ) k (a,) l 

A set I and a correspondence associating each element i E I a subset Ai of A 
is called a family of sets in A and is denoted by 

d G (Ai : i E I) . 

A family d = (Ai : i E 1) is called a (crisp or hard) partition of the set A if 

(1) vi : Ai # 8) Ai C A, 
(2) i # j + Ai n Aj- 0, 

(3) UieI Ai = A . 

In other words, every point of A belongs to one and only one Ai. A family 
d = (Ai : i E 1) is called a covering of A if 

(1) V i : Ai # 0, 

(2) Uifr Ai = A . 
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Alternatively, each element of A belongs to at least one Ai. The order of a 
covering d is the greatest integer m, for which there exist m, + 1 sets of d 
having a non-empty intersection; a partition is a covering of order 0. A family 
d = (Ai : i E 1) is called a filter base (or just base) if 

(1) V i : Ai # 0, 
(2) vi Qj 3k I AkcAinAj. - 

We say that a family d is a lattice with respect to the operations U and n if 

A2 

t 

a 
Al x A2 T 4 + A2 

IAl 4 I I ’ 
I 

I 

III! I I I I I I 

t 
III: III 

al Al 

I I 
I I * 

1 2 

Fig. 13. I Cartesian product (left) and Cartesian sum (right) of two sets A1 and AZ. 

The Curtesian sum Al + As of two sets Al and A2 is the set formed by 
the pairs (l,ar), (2,u& h w ere al E Al and u2 E A2 as shown in Figure 13.1. 
Suppose that two elements, first x E X, followed by y E Y, are chosen. Then, 
this choice is denoted by the pair (x, y) and is called an ordered pair. The set 
of all such ordered pairs is called the Cartesian product (or product set) of X 
and Y, 

x XY = {(x,y) : x EX, y E Y} . 

Note that, in general, X x Y # Y x X. If furnished with some structure, the 
set X x Y leads to a Cartesian product space (see Figure 13.1). 

Any subset R C X x Y of X x Y defines a binary relation between the - 
elements of X and the elements of Y. A relation is therefore a set of ordered 
pairs, denoted 

R = {(x, y) E X x Y : R(x, y) holds} 9 
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Y 

Since bY R an element in X is associated with one or more 
establ ishes a multi-valued correspondence ( see figure 13.2): 

x x Y 

X x 

Fig. 13.2 Relation R defined on the Cartesian product X x Y. 

elements in Y, R 

R : x x Y + {OJ} 

(X,Y> -  R(x,y) l 

The domain of R is the set 

dom[R] = {x : x E X and R(x, y) = 1 for some y E Y} . 

The range of R is the set 

ran[R] = {y : y E Y and R(x, y) = 1 for some x E X} . 

The relation R C X x X establishes a relation among the elements of 
X. An important example of such relations are equivalence reEations on X 
possessing the following properties: 

R(s, 4 VXEX (reflexivity) 

R(x,x’) + R(x’,x) (symmetry) 

R(x, x’) A R(x’,x”) + R(x,x”) (transitivity) . 

Intuitively, an equivalence relation is a generalization of equality (which itself 
is an equivalence relation). If R is an equivalence relation on a set X, and if 
n E X is any element of X, then we can form a subset of X defined 

[alR = {x : R(a,x) = l} . 

If b is another element of X, we can likewise form the subset 

PI R= x { : R(b,x)=l}. 
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We then have the following conditions: 

blR = PI. Or MR n PI. = 0 l 

The subset [& defined above is called eqzlivalence class of a (under relation 
R). Since any two such classes are either identical or disjoint, the relation R 
can be regarded as partitioning the set X into a family of subsets. The set 
of equivalence classes of X under an equivalence relation R is called quotient 
set of X modulo R and denoted 

X/R. 

A function (or mappingl) from a set X into a set Y, denoted f : X --+ Y, 
is a ‘single-valued’ relation f c X x Y such that for every x E X there exists 
a unique y E Y written as 

Y = f(x) ’ 

If f : X --+ Y, X, the set of arguments of f is called the domain of f, denoted 
dom[f] and Y, the set of values of f(a), is called the codomain of f. The 
element y E Y in f(x) = y is called the image of x E X, or the value of the 
function at 1x3. The range of a function f : X --+ Y, denoted ran[f], is the set 
of elements in Y that are images of elements in X, that is, run[f] is the set 
of all images of f: 

run[f] = {f(x) : x E x} . 

run[fl is sometimes referred to as the image set. The graph of function 
f : X -+ Y is the set (relation) 

{(x,  f ( x ) )  :  x E x} = {(X,Y) :  x E x ,  Y = f(4-l l 

The set 
f(A) = {f(u) : a E A c X} 

is called the direct image of A, f(A) c run[f]. Suppose f : X -+ Y and 
B c Y. Then the set 

f-l(B) = (12: : f(x) E B} 

is called the inverse image of B under f, f-l(B) c X, that is, f-l(B) is a 
subset of the domain of f. Let f : X -+ Y and g: Y --+ 2. Then the composite 
or product of the functions f and g is the function g o f from X into 2: 

The composite g 0 f is defined for every x E X 

(9 O f&9 = df (z>> l 

lit is customary to use the terms function, mapping and transformation synonymously. 
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There exists an important relation between mappings and equivalence re- 
lations. Let f : X --+ Y be a mapping. For each x f X, let us define 

[X]f = {x’ : 
f(x’> = f (4 )  l 

These sets [x]f are all subsets of X and can be regarded as the equivalence 
classes of a corresponding equivalence relation IQ on X. The relation Rf 
specifies the extent to which the elements of X can be distinguished, or re- 
solved, by f. Thus, if we regard the mapping f as associating with an element 
x f X and element y E Y, the equivalence relation Rf specifies those distinct 
elements of X which are assigned the same value by f . 
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function f 

surjective (onto) 

‘: 

‘_ 

injective (one-to-one) 

bijective (one-to-one and onto) 

Fig. 13.3 Classification of mappings. 
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13.2 MEASURING FORECAST ACCURACY 

The following list describes some of the most common measures used to eval- 
uate forecasting accuracy. 

Mean Absolute Deviation (MAD) 
The Mean Absolute Deviation averages the magnitudes of the forecast errors: 

1 n 
MAD = d l ~ Iyj - ~jl . 

j=l 

Note 

l Taking squares or the magnitudes is to avoid the cancellation of positive 
and negative terms. 

Mean Square Error (MSE) 
The Mean Square Error averages the squares of the forecast errors: 

MSE = f l x (yj - Gj)” , 
j=l 

Note 

l ‘Squaring’ is an algebraic operation (‘absolute value’ is not), so the MSE 
can be studied using algebra and calculus. 

l The statistical properties of the MSE are well established. 

l The MSE gives more weight to larger forecast errors than does the MAD. 

Root Mean Square Error (RMSE): 

RMSE = dib?SE . 

Note 

l Like the MAD, the RMSE is measured in the same units as the original 
data. 

Mean Absolute Percent Error (MAPE) 
Errors are expressed as a percentage of relative error in order to introduce a 
unit-free scale of evaluation: 

Note 



l Because 
compare 
different 

(HIERARCHICAL) CLUSTERING 239 

it is dimensionless, or unit-free, the MAPE can be used to 
the accuracy of the same or different models on two entirely 
series. 

L 

Multiple Correlation Coefficient (MCC): 

Note: 

d 
A 

CY j 

MC&+ 

CY 
2 

j=l 
j  

l The ratio MCC measures the proportion of the total variation of y that 
is explained by the regression. 

l MCC is often expressed in percent. 

l Sometimes the mean value of y is subtracted from 6 and y before calcu- 
lating MCC. 

13.3 (HIERARCHICAL) CLUSTERING 

A hierarchical clustering is a sequence of nested partitions. Instead of work- 
ing on an object data set M directly, this method processes sets of d2 nu- 
merical relationships between pairs of objects represented by the data. It 
is convenient to array the relational values as a d x d proximity or rela- 
tion matrix whose elements describe a binary relation. For example, let 
M= {m1,m2, l l -  7 

md} C Iw” be a set of d feature vectors in n-space, then 
every metric or distance measure d produces a (dis-)similarity relation matrix 
whose elements are d(mi,mj) A dij : IEY x Tw” --+ lR+ ; for instance, object 
data are converted into relational data using dij = (Irni - mjII = Jz, 
1 < i, j < d. - - 

An agglomerative algorithm starts with each object describing an individ- 
ual cluster. On the basis of a proximity matrix, disjoint clusters are merged 
sequentially according to some local connectivity criterion. The latter is for- 
mulated by any positive semi-definite, symmetric set-distance function on 
P(IEP) x P(llV”). D ff i erent linkage algorithms correspond to different choices 
of this distance d(M, W) between two subsets of M. A dendrogram provides 
a0 convenient illustration of hierarchical clustering. At each step, the cluster- 
ings are assigned sequence numbers 0, 1, . . . , (d - 1) and S(Z) is the level of the 
It” clustering. More specifically, the steps involved are as follows: 

1. Start with disjoint clusters at level S(0) = 0 and sequence number I = 0. 
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2. Find the least dissimilar pair of clusters in current clustering, d(M, M’) = 
mi%#j{d(m, Mj)}, h w ere the minimum is over all pairs of clusters in 
the current clustering. 

3. Increment the sequence number from I to Z + 1. Merge clusters M and 
M’ into a single cluster M” to form the next clustering 1. Set the level 
of this clustering to 6(1) = d(M, M’). 

4. Update the proximity matrix by deleting rows and columns correspond- 
ing to M and M’, and adding a row and column corresponding to M”. 
The proximity between the new cluster and the remaining ones is defined 
for single linkage clustering as 

d( M”, M”‘) = min{d( Ml”, M), d( M”‘, M’)} . 

5. Repeat steps 2 - 4 until all objects are in one cluster. 

CLUSTERING 

object matrix 

: 

v 

-- ----- unsupervised learning 
(unlabeled data) 

hierarchical nested sequence 
classification of partitions II single-linkage agglomerative 

algorithms clustering 

Fig. 13.4 Overview of clustering techniques. 

13.4 MEASURE SPACES AND INTEGRALS 

Uncertainty techniques use the basic notion of an event and its occurrence or 
non-occurrence to model a phenomenon. To every event A there exists a con- 
trary event “not A”, denoted by lA, and 1A occurs only if A does not occur. 
“A implies B”, that is, when A occurs, B occurs necessarily, is denoted by 
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A C B. Logical combinations of events create new events. The uncertainty of - 
the process under consideration can take various distinct forms (randomness, 
fuzziness, vagueness, ambiguity, imprecision) which require the definition of 
an appropriate measure to quantify (un)certainty [Wo198]. Formally, events 
are represented as sets of elementary outcomes. The sets of events form a field 
(or algebra) of sets. . 

Let 0 be an arbitrary non-empty set. A collection d of subsets of 0 is a 
a-field, if 

( > a s2ed. 
(b) If A E -4, then dc E d. 

( > c If Ai E d, i = 1,2, . . . E I, a countable index set, then U O" A,ed. i=l 

For a finite number of Ai, d is called a field or an algebra. The pair (R, -4) 
is called a measurable space. In probability theory, 0 denotes the sample 
space of elementary outcomes while d is the set of events (measurable sets). 
0 refers to the certain event while the empty set 8 refers to the impossible 
event. The power set P(0) of 0 is a g-algebra. It is the largest a-algebra of 
subsets of 0, and when 0 = II%, the a-algebra generated by the collection of 
all open subsets of IR is called the BoreZ a-algebra of IR and denoted B. The 
empty set 0 is contained in a~ since it is the complement of St. 

Let (a, -4) be a measurable space . A function g: d --+ 
if g(0) = 0 and if Ai,i = 1,2,. l . is a 
d, then the condition 

9 fiA ( i 
i=l 

sequence of pairwise disjoint elements of 

00 
- - Ix ( 9 ai 

i=l 
I) 

[0, 001 is a measure 

is called o-udditivity. If it is required for only finitely many Ai, it is called 
udditivity. The triple (0, d, g) is called measure space. If (X, ax) is another 
measurable space and I?: 0 -+ X with 

VAeax, r-l(A) = {w: IT(w) E A} E d , 

then g(I-l) : 0~ -+ [0, l] is a measure on (X, OX), referred to as the measure 
ifmuge of g by X. The measure g ((a, b)) = b - a on (R, B) is called the 
Lebesgue measure on R. The measure space (R, d, g) is a probability space if 

go = 1 and the mapping I? is called a random vuriubZe and g(I?) is the 
probability ZUW of r on X. On (IR, B), probability measures can be defined 
in terms of probability density functions. These are functions p: R -+ [0, 00) 
such that s-“, p(z)dz = 1. The associated probability measure is given by 
gr(A) = J’p(z)dz for A E B. Th e measure g for a probability space is then 
denoted by PT. 
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A probability space is a set (such as the set of possible outcomes of an 
experiment) associated with a function PT(~) that measures subsets (events) 
of that space. A discrete probability space has a finite or infinite number of 
possible outcomes. For example, the set of d integers X = { 1,2,3, . . . , d} or 
the set of non-negative numbers X = (0, 1,2, . . .}. A problem occurs with the 
latter example. If each outcome is to be ‘equally likely’, that is, each element 
has the same probab ility, t hei r sum does not add up 
a basic requirement (axiom) 

to one, C,o”P(Xj) # 1, 
in probability theory. If, on the other hand, 

the number of outcomes is countable, or the space is finite, we calculate the 
probability of an event A C X as the sum of the probabilities of the individual 
outcomes, h(A) = C, j E-p(zj). 

A sample space that has as elements all the points in an interval, or all 
the points in a union of intervals, on the real line Iw is called continuous, for 
example, X = {z : x > O}. These spaces have always an infinite number of 
elements. Considering the interval between two points in X, we find that 
there are ‘more’ points in any continuous interval than there are integers. 
Thus a continuous sample space is said to contain an ‘uncountable’ or ‘non- 
denumerable’ number of points. 

When the probability spaces are not just infinite but are also continuous, 
the probability of events cannot be described in terms of a finite sum but leads 
to the introduction of integrals. Let A = [a, b] be an interval in X = Iw from a 

to b, describing an event in question. Then the integral h(A) = s,bp(x) dx 
calculates the probability of A as the area under the graph p(x) (probabil- 
ity density function) restricted by [a, b] (cf. Fig. 2.1). The (mathematical) 
problem which occurs with continuous spaces is the fact that the probability 
of getting the exact outcome, say Pr(a), is zero. That is, we cannot ‘sum 
up’ the probabilities of the single-element events (points) that are subsets of 
A. The solution leads to the concepts of a-algebra and the Lebesgue integral 
(measures). 

To allow probabilities of events to be calculated by accumulating the like- 
lihood of individual outcomes constituting the event, we do not allow ‘all’ 
possible subsets of X to be events: Let all intervals that are subsets of X, and 
any finite unions and intersections of such intervals be events. In other words, 
if A and B are events, then A n B and A U B are possible events. Similarly, 
if A is an outcome, then AC is a candidate as are the empty set 8 and X. 

To introduce the Lebesgue and then fuzzy integral, we first look at the prin- 
ciple idea behind the standard Riemann integral. The idea of the Riemann 
integral is to measure the area under the graph f(z) by cutting it into narrower 
and narrower columns and approximating each column with two rectangles; 
one rectangle just above the graph, the other just below (Figure 13.5). If, 
as the columns get narrower, the sum of the areas of the smaller rectangles 
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Fig. 13.5 Riemann integration. 

approaches that of the larger rectangles, the function is called Riemann in- 
tegrable, and the common limit is the integral. The problem with Riemann 
integrals is that they are only applicable to continuous functions. This prob- 
lem can be solved by taking a different view of the integral. The Lebesgue 
integral takes a somewhat opposite direction than the Riemann integral,. It 
first looks at the values of f(z) and then at the values of x that produced y 
(Figure 13.6). As with the Riemann integral, we cut the function f(x) into 
narrower and narrower intervals but this time into horizontal slices, dividing 
the function’s domain. 

f( > 

::::~:::: 

. . . . . . . . . . . . . . . . . . . . X 
V V v v * 

Fig. 13.6 Lebesgue integration. 

The calculation of the integral becomes a question of measuring the length 
of the subsets of X. Thought of in higher dimensions we would measure the 
area, the volume and so forth. It is for this reason that Lebesgue integration 
is synonymous with measure theory. It was A. Kolmogorov who, by realizing 
this relationship, based probability theory on measure theory. 

Fuzzy or Sugeno integrals are nonlinear generalized Lebesgue-Stieltjes in- 
tegrals which we use for modelling expectations using a fuzzy measure g(e). 
Fuzzy integrals are developed analogous to Lebesgue integrals. From the def- 
inition of an expectation (2.1) of a function f(e) on X with respect to some 
function g(e), 

E[f ( * ) ]  = 1 f ( x )  l g(x) dx ’ 

X 
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we described the probability of an event A (crisp set) as 

-(A) = E[[A(‘)] = / CA(x) - P(x) dx 
X 

(2 2) . 

and similar for a fuzzy event (2.10). Viewing the product of the two functions 
f ( l ) and g( 0) as a ‘weighting’ and the (Riemann or Lebesgue) integral as some 
form of averaging, one could think of a more general framework in which those 
composition and accumulation operations are replaced. For instance, let A 
be a crisp set and f a function from X to [0, 11. Then the fuzzy integral of a 
function f over A with respect to a fuzzy measure g(n) is defined as 

f f (4 O 9C) = sup min (a, g(A f-J F,)) ) 
A 

~E[W] 

where Fa = {x, f(x) 2 a}. In terms of the expectation of a characteristic 
function of a crisp set A we write 

E[C‘A(‘)] = f b(x) odx> 

with g(e) = II(-), 

and for f(q) = 1, 

= s^up min{a, g(A,)} 
a 

= sup min(a, sup r(X)) 
QE[W] XEA~F, 

= II(A) . (2.14) 

Similarly, for a fuzzy event A, the fuzzy integral is defined as 

f f(+g(*) = f min(pA(x),f(x)) ‘d’) 

A X 

with j(e) = 1, 

= f b&) o 9(*)  l x 
As with probabilities, the expectation of the fuzzy set membership function 
describes the possibility of fuzzy event A: 

E[/-d*)] = f i-dx) o n(x) (2.13) 

= sip min(pA(x), r(x)) 
= I;(A) . 
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We can interpreted the expectation of a fuzzy event as the degree of consis- 
tency of the fuzzy event with the possibility distribution X. In that sense, 
possibility relates to the degree of feasibility and need not to be associated 
with a degree of likelihood or frequency. See also Figure 2.1. 

Fuzzy measures occur if we replace a-additivity by requiring the mapping 
g to be monotonic with respect to set-inclusion only. More specifically, let d 
be a family of subsets of a set i;t, with 8 E d. The mapping g: d -+ [0, 00) is 
called a fuxxy measure if 

(a> s(0) = 0 l 

(b) 

If A,B E d and A c B, then g(A) 5 g(B). 

The triple (a, d, g) is a fuxxy measure space. 

13.5 UNBIASEDNESS OF ESTIMATORS 

Let ~j, j = 1,2,. . . , d be a random sample of a random variable x associated 
with a probability law that has a mean qX and variance oz. The unbiasedness 
of the estimator of the variance 

1 d 

is proved by showing that E[6$] = ai: 

d 

E x (zj - 

j=l 

Lj=l 

.2Xj& + Qz > 1 
d 

2CXjqx + 

j=l 

d 

->: Q-z 

j=l I 

1 
Lj=l 



246 APPENDICES 

All xj are assumed to follow the same probability law. Therefore, E[x!$ = 
E[xl - xi] = E[x2]. Hence 

d 

[ 1 
d 

E x (Xj - (iX)2 = x E [x5] - dE [QZ] 

j=l j=l 

= dE [x2] 4 E [ij;] 
v - 

** ** 

= d (a; + ~8) - d 

If we define the statistic as (2.9), it follows that 

E [Cf] = & E - 

Notes 

* We have 

( Xj - - - (d - 1)~; 
d-l = 

o2 X 
q.e.d . 

o2 - 
X- 

E [(x - qx)“] - E [x2 - 2xqx + rl:] 

= E [x2] - 2qxE [x] + E [q:] 

= E [x2] - qz or E [x2] = rj; + 0; . 

** Since O$ = 5 and ~9 = vx, we have E [+$I = $ + c . 

13.6 STATISTICAL REASONING 

In general, we can distinguish the following modes of statistical reasoning: 

1. Tests of significance. 

2. Statistical generalization (randomization for causal inference and induc- 
tion). 

3. Statistical causality (regression models and time-series analysis). 

4. Subjective inference (such as Bayesian theory). 

Tests of significance, rooted in the Neyman-Pearson framework of statistical 
hypothesis testing, are often considered as irrelevant for the empirical sci- 
ences suggesting that it is a theory not a method [Wan92]. Throughout the 
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book we used descriptive or deductive techniques analyzing a given sample 
without drawing any conclusions or inferences about the population. Apart 
from explorative data analysis (EDA) and descriptive statistics2, inferential 
(or inductive) statistics plays a prominent role in statistical theory. Given a 
representative sample of a population, we aim to infer conclusions about the 
population. The uncertainty of such analysis is quantified using probabilities. 
Here we briefly list some of the key issues and terms. 

Sampling Theory: Methods for obtaining a representative sample. 

Estimation Theory 

. 0 point estimates vs. interval estimates. 

l distribution or ‘quality’ of the estimators of e and C2. 

Confidence Interval: For example, we are confident of finding the statistic 
(unknown parameter) 19 in the interval 0 31200 (confidence limits), that 
is, in 95.45% (confidence level) of the time. 

Statistical Decision Theory: Decision making about the population: 

Tests of Significance: Testing whether an outcome is due to chance 
or something else. The key idea is that if an observed value is too 
many standard errors away from its expected value, it is unlikely 
to be due to chance. Note that chances are assumed to be in the 
measuring procedure, not the thing being measured. 

Hypotheses: Statements about the probability distribution of the pop- 
ulation. 

HO: null hypothesis, expressing the idea that an observed difference 
is due to chance, for example, the probability of no difference 
is p = 0.5. 

Hr : alternative hypothesis, for example, p > 0.5, p # 0.5, p = 0.7. 

Hypothesis Testing: Procedures to decide whether to accept or reject 
a hypothesis or to determine whether the observed samples differ 
significantly from expected results. 

Type I error: 

Type II error: 

Test Statistics 
and what is 
z-statistic 

hypothesis rejected when it should be accepted. 

hypothesis accepted when it should be rejected. 
I: used to quantify the difference between the d ata 
expected on the null hypothesis. For example, the 

Z= 
observed - expected 

standard error 

2A good introduction, from a ‘descriptive perspective’ can be found in [F’reSl]. 
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says how many standard errors away an observed value is from 
its expected value, where the expected value is calculated using 
the null hypothesis. 

Standard Error: describes how big the chance error is. 

Significance Level: The maximum probability with which we would 
be willing to risk a type I error. For example, if there is a 0.05 
or 5% level of significance in designing a test of a hypothesis, then 
there are about 5 chances in 100 that we would reject the hypothe- 
sis when it shou ld be accepted, that is, we are about 95% confident 
that we have made the right decision. We can say that the hypoth- 
esis has been rejected at a 0.05% level of significance, which means 
that we could be wrong with probability 0.05. 

p-value: The pvalue of a test is the chance of getting a big statistic 
assuming the null hypothesis to be right. 

13.7 FREQUENCY ANALYSIS 

In th is book the fo cus has been on the analysis of 
they were obtained from a time-series. The analysi 

rk which we briefly introduce in t 
transition from the time domain 

domain 
present 

is another very 
section. The fo 

data in the time 
s of signals in the 

powerful framewo 
cus will be on the 

the frequency domain by means of integral transformations. 

Though many 
continuous- time, 

natural or physical systems may, in principle, 
we assume the situation in which we have a set 

domain if 
frequency 

he 
to 

tions such as the following sampled sequence: 

x(k) 0 0.25 0.5 0.75 1 0.. 

k 0 1 2 3 4 **a 

operate in 
of observa- 

In the time domain, we would model such data by means of linear difference 
equations and the aim in this section is to develop a model of the data in 
terms of frequency components. Before going any further, we need to make 
some basic assumptions: 

1. Period Sampling: We 
every T, seconds, that is, 

assume the values are sampled periodically 
we have 

x(kT,) f X(k)) k = O,l,. . . . 

For most engineering applications this may be no problem as the hard- 
ware collecting data is sampling periodically anyway. However, consider 
medical data collected from patients on a “monthly basis”. The number 
of days between samples usually vary considerably. 
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2. Reactive Paradigm: We assume that the system or process which 
generated the data can be described sufficiently by means of historical 
data alone. In other words, the value of x at time k is a function of past 
values only: 

x(k) = f (x(O), x(l), . . . ,x(k - I)) . 

3. Linearity: We assume a linear relationship for f( 0): 

xv4 = a0 + UlX(k - 1) + azx(lc - 2) + l l l . 

These assumptions lead to a linear recurrence d$erence, equation in corre- 
spondence to ordinary differential equations in continuous-time. We develop 
frequency domain models of sampled-data systems from harmonic analysis in 
continuous time. 

In Section 2.1.2, the Fourier series was introduced as an approximation of a 
signal 
series 

f (t> bY means of periodic functions. One can also say that the Fourier 
decomp oses a signal into periodic components: 

l cos(iu&) + bi l sin(iwot)) . (2.52) 

An alternative equivalent formulation is the complex Fourier series 

&(t) = 5 ci l ejiwot ,  

i=---00 

where the complex Fourier coefficients ci are obtained as 

WO 

J 

+JO 

ci = - 

27r 
fP(t)ei”“Otdt . 

-+o 

Here, the period of fp(t) equals 27&o. Each ci is the value of the complex 
frequency component of fp(t) at ZLJ~. As shown in Figure 13.7, the amplitude 
spectrum of fp(t) can be visualized. Apart from the visualization of frequency 
components in the signal, the trandformation into the frequency domain has 
several advantages: For many signals and systems, simple parametric expres- 
sions can be found analytically; solutions of differential/difference equations 
become algebraic in nature, allowing simple manipulation and analysis of com- 
plex systems. Hence a transformation into the frequency domain is not only 
useful for harmonic analysis but for systems analysis in general. 

A generalization of the Fourier series is obtained if we wish to consider more 
and more frequencies that is, shrinking Aw in the complex Fourier series. To 
achieve this, wg --+ 0, the fundamental period 27r/wo must increase infinitely. 
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Fig. 13.7 Discrete amplitude spectrum obtained from Fourier analysis. 

Replacing CJO by Au to emphasize the vanishing frequency interval, we obtain 
the following expression: 

As Aw approaches zero, the product GO always equals CJ. As a result, the 
fundamental period of fp(t) 

f(t) 
increases to infinity such that fp(t) approaches 

. 
l 

+CQ 

[i 
r/Aw 

f(t) 
- 

2’, At20 x 
-- f( > 

T e-jiAwrdT $AWTA~ 

i=-00 -r/Aw I 

1 O” O” - -- J is 27r -m f( > T e-jW~dT 1 ejiWtdw 
-m 

f(t) .l O” - -- J 27r -a 

F(jw)Gwtdw . 

Here 

J 
co 

F(jw) = f(t) e -w & 
-00 

is called the Fourier transform or spectrum of f(t). For the integral to con- 
verge we have the condition that f(t) -+ 0 for t --+ oo which often may not 
be case. To ensure convergence, we use the following trick. Multiplication 
of f(t) by a factor e-IOit ensures that the product f (t)e-lOlt diminishes for 
increasing t. Let us also assume, without loss of generality, that f(t) starts at 
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t = 0 with f(t) = 0 for t < 0. Using the notation s k CT + jq we obtain the 
so-called Laplace transform of f(t) as 

F( > s = 
I 

f(t) e -st dt 
0 

and vice versa from F(s) we obtain f(t) as 

f(t) 
1 a+& 

- - 
2nj s 

F(s)estds . 
a-jw 

Next, we derive the Laplace transform of a sampled, that is, discrete-time, 
signal. The Laplace transform assumes a continuous-time signal while here 
we assume we are given the sequence x(kT,). Once again we use a trick to 
develop a mathematical model of the sampling process by introducing the 
Dirac impulse d(t) with the property J&(t) = 1. The sampled signal is then 
described by 

x*(t) = 

- - 

co 

>: s 
i=o 

(km t - 

The Laplace transform of x*(t) is then obtained as 

x(t)S(t - kTs)eWstdt 

00 co 
- - 

CJ’ 
x(t)e-%(t - kT,)dt 

k=-00 O 

= 2 x(ksT,) where t = kT, . 
k=O 

If we denote eSTs by x, we obtain what is called the x-transform of a discrete- 
time signal: 

F*(s) = 2 x(k)z-” . 
k=O 
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Cluster orientation, 110, 218 
Cluster shape, 110, 218 
Cluster volume, 111 
Cluster 

ellipsoidal, 96 
fuzzy, 106, 115, 206 
hyperellipsoidal, 88, 111 
hyperspherical, 88 
spherical, 110 

Clustering, 73, 84-85 
Clustering criterion, 87 
Clustering 

fuzzy-c-means, 101, 218 
fuzzy, 82-83, 86, 94, 99, 108-109, 124, 

166, 173 
hard-c-means, 88, 218 
hard, 83, 89, 94, 119, 123 
hierarchical, 86, 106, 108, 239 
partitionaI, 86, 108, 218 
product space, 82, 109 
single linkage, 240 

Codomain, 70, 235 
Coefficient 

correlation, 33, 46, 59 
multiple, 142, 239 

Fourier, 50 
complex, 249 

weighting, 110 
Commutative diagram, 12, 131 
Complexity, xx 
Composite (product), 235 
Composition, 23 

max-min, 159 
max-product, 159 

Compositional rule of inference, 116, 158, 
163, 202, 219 

Confidence interval, 45, 247 
Conjunction, 94, 113 
Connective, 106 

logical, 197 
Consequent, 108, 113, 227 
Context of a state, 136 
Control 

adaptive, 182 
fuzzy, 181-182 
nonlinear, 195 
optimal, 182 
PID, 182 
robust, 182 

Controller 
fuzzy, 181 
PI, 182 

fuzzy, 182-183 
Correlation, 215 
Covariance, 33, 56-58, 215 
Coverage function, 133 

Covering, 232 
Curse of dim .ensi 
Cybernetics, 181 

onali ty, 81 

Data engineering, 229 
Data mining, 228 
Data 

complete, 79 
experimental, 17, 19 
incomplete, 79, 125 
mixed, 124 
normalized, 103-104 
relational, 239 
sampled, 35, 38, 135 
time-series, 53, 83 
training, 51, 73 

identically distributed, 72 
independent, 72 
labelled, 100 

unlabelled, 101, 103-104, 124-125, 1.73 
Decision making, 3, 136, 138, 151, 222, 228, 

247 
Decision surface, 101, 104 
Deduction, 74, 225 
Defuzzification, 221 

center-average, 187 
linear, 185, 187 
nonlinear, 188 

Defuzzifier, 166 
center-average, 167-170 
center of gravity, 166 

Degree of confidence, 137, 179 
Degree of consistency, 245 
Degree of feasibility, 35, 137, 245 
Degree of frequency, 245 
Degree of fuI~l~ment, 113, 116, 179, 219 
Degree of indistinguishability, 108, 149 
Degree of IikeIihood, 245 
Degree of membership, 89, 91, 157, 198, 

219, 222 
Degree of possibility, 35 
Dendrogram, 86, 239 
Density, 50, 53 
Density contour plot, 104 
Density 

conditional, 72 
joint, 81 
marginal, 58 
probability, 3, 32, 72, 136, 174 

Determinism, 16 
Deviation 

mean absolute, 238 
Discrimination, 99 
Dispersion, 32-33, 58 
Distribution, 50 

conditional, 60, 62 
Gaussian, 125 
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joint, 54 * 
marginal, 54, 201 
normal, 51 
possibility, 35, 82, 129, 135, 138, 207, 

228, 245 
conditional, 137, 220 

probability, 32-33, 35, 207 
infinite-dimensional, 55 
joint, 55, 81 
time-invariant, 56 

Domain, 70, 235 
frequency, 50, 248 
time, 50, 248 

Dynamics, 12 
Eigenstructure, 98, 110 
Eigenvalue, 26, 110 
Eigenvector, 26, 98, 110 
Empirical Risk Minimization, 73 
Encoding, 3, 5, 27, 24 
Ensemble, 54 
Entailment, 226--227 
Equation of state, 11 
Equation 

characteristic, 26, 98 
normal, 39--40 
output, 25 
state, 25 

Equilibrium, 56 
statistical, 81 

~rgodicity, 8 1 
Error 

estimation, 60, 64-65 
entering 

r~inirn~lrn, 62 
forecast, 238 
mean absolute percent, 238 
mean square, 238 

root, 238 
~~rediction, 39, 48 
quadratic, 47 

mean, 48 
minimal mean, 47 

random, 41 
squared, 37 

estimate 
empirica~~ 75 
least-squares, 39-40, 61 
linear, 62 
maximum likelihood, 50, 52, 77, 216 
multi-variate kernel density, 77 
optimal, 65, 73 
parameter, 31, 44 
pooled ) 100 
state, 64 
statistical, 60 

Estimation 
density, 69, 72-73, 75, 77-79, 81, 217 

Kernel, 69 
kernel, 217 
mixture, 217-218 

least-squares, 63 
m~imum likelihood, 50, 125 

Estimator, 33 
kernel, 76-77 
kernel density, 104 
kernel 

Gaussian, 76 
multi-variate, 76 
naive, 76 
Parzen’s, 75, 174, 212 

unbiased, 33 
Event 

certain, 241 
crisp, 35 
fuzzy, 34-35, 244 
impossible, 241 
observable, 4, 6 

Expectation, 34, 61 
Expectation operator, 31-32, 34, 57, 131, 

214 
Expectation 

conditional, 38, 61-62 
Extension principle, 75, 203-204, 219 
Extensional hull, 93, 105-106, 220 
Extensionality, 93 
Factors 

linked, 6 
partially linked, 6 
unlinked, 6 

Feasibility, 155 
Field, 241 
Filter 

Ka~man-Bucy, 43, 62, 67 
optimal, 62, 64 

Finite-state machine, 17-18 
Firing level, 184 
Forec~ting, 139, 142, 206 

q~lalitative, 138, 141 
Fourier series, 31, 43, 49-50, 216, 249 

complex, 249 
Frequency domain, 50 
unction, 235 

characteristic, 134 
approximating, 74, 77-78 
auto~orre~ation, 57 
auto~ovariance, 56 
basis, 69, 77, 117, 217 
characteristic, 32, 89, 131, 202, 231 
composite, 12 
cost, 87 

least-squares, 46 
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coverage, 129, 135 
cumulative distribution, 73, 75 
density, 80, 217 

approximating, 80 
deterministic, 37, 41 
distance, 149 
distribution 

cumulative, 148 
generalized, 130 

fuzzy set-membership, 92, 159, 221 
~iecewise-linear, 182 
trapezoidal, 198 
triangular, 198 

indicator, 75, 175-176 
kernel, 76, 174 

multi-dimensional, 174 
likelihood, 50-51, 77, 79, 125, 216-217 
linear, 37, 63 
logical, 3 
loss, 37, 60, 63, 73, 77, 215, 217 
membership, 35, 106, 152, 157, 166, 175, 

198, 204 
antecedent, 114 
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probability distribution, 35, 52, 58, 125 
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maximum likelihood empirical risk, 217 
risk, 37, 73, 77, 215 
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Fuzzy proposition, 157 
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Gaussian kernel, 175 
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fuzzy, 157, 221 
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Learning, 70, 73 
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Least-squares criterion, 31, 36-37, 42, 46, 
90, 126 

Least-squares polynomial, 47 
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Measure, 241 
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conjunctive, 219 
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input-output, 24, 37 
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discrete-time, 25 

Takagi-Sugeno, 82, 113-114, 116, 118, 222 
affine linear, 113 
conjunctive, 118 

theoretical, 33 
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uncertainty, 84 
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liar, 205 
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fuzzy-c-, 124 
fuzzy, 83, 89, 95, 106, 206, 209, 211 
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Parzen window, 174 
Pattern recognition, 85, 123 
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Plausibility~ 132 
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fuzzy, 105-106 
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Possibility, 35, 155, 197 
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Prediction 
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single-valued, 138 

Predictor, 71 
Premise, 118-119 
Principal component analysis, 96 
Probability, 32, 35, 79, 197 
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joint, 148 
lower, 132 
posterior, 125, 174-175 
prior, 174 
subjective, 132, 154 
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discrete-time, 54 
dynamic, 1 
ergodic, 81 
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nonlinear, 139 
stationary, 56 
stochastic, 15, 27, 31, 53-55 
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orthogonal, 58 
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Reasoning 
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15’7, 204, 219 
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Regressand, 36, 82 
Regression, 73 
Regression line, 41-42, 44-45, 96 
Regression surface, 41 
Regression vector, 36 
Regression 

linear, 216 
linear parametric, 37-38, 69, 71, 73 

Regressor, 82, 113, 121 
orthogonal, 42 

Regressors, 36 
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compatibility, 200 
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hard, 89 
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symmetric, 86 
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sample autocovariance, 57 
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factor, 87 
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fuzzy, 89, 218 
phase, 10 
probabilistic, 94, 124 
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State-transition, 18 
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strict, 81 
weak, 56 

Statistics 
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System 
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discrete-time, 26 
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piecewise-linear , 195 
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estimation, 247 
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Markov decision, 18 
measure, 243 
possibility, 32, 75 
probability, 32 
sampling, 247 
statistical decision, 174, 247 
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Laplace, 30, 50, 251 

Transformation, 15, 235 
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