Antonio Romano
 Addolorata Marasco

Continuum Mechanics using Mathematica

Fundamentals, Methods, and Applications

Second Edition
E) Birkhäuser
(2) Birkhäuser

Modeling and Simulation in Science, Engineering and Technology

Series Editor

Nicola Bellomo
Politecnico di Torino
Torino, Italy

Editorial Advisory Board

K.J. Bathe

Department of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge, MA, USA
M. Chaplain

Division of Mathematics
University of Dundee
Dundee, Scotland, UK
P. Degond

Department of Mathematics, Imperial College London, London, United Kingdom
A. Deutsch

Center for Information Services and High-Performance Computing Technische Universität Dresden Dresden, Germany
M.A. Herrero

Departamento de Matematica Aplicada Universidad Complutense de Madrid Madrid, Spain

P. Koumoutsakos
Computational Science \& Engineering Laboratory
ETH Zürich
Zürich, Switzerland
H.G. Othmer
Department of Mathematics
University of Minnesota
Minneapolis, MN, USA
K.R. Rajagopal
Department of Mechanical Engineering
Texas A\&M University
College Station, TX, USA

T.E. Tezduyar

Department of Mechanical Engineering \&
Materials Science
Rice University
Houston, TX, USA
A. Tosin

Istituto per le Applicazioni del Calcolo
"M. Picone"
Consiglio Nazionale delle Ricerche
Roma, Italy

Antonio Romano • Addolorata Marasco

Continuum Mechanics using Mathematica ${ }^{\circledR}$

Fundamentals, Methods, and Applications

Second Edition
(2) Birkhäuser

Antonio Romano
Department of Mathematics
and Applications "R. Caccioppoli"
University of Naples Federico II
Naples, Italy

Addolorata Marasco
Department of Mathematics
and Applications "R. Caccioppoli"
University of Naples Federico II
Naples, Italy

Additional material to this book can be downloaded from http://extras.springer.com

ISSN 2164-3679
ISBN 978-1-4939-1603-0
DOI 10.1007/978-1-4939-1604-7
Springer New York Heidelberg Dordrecht London
Library of Congress Control Number: 2014948090
Mathematics Subject Classification: 74-00, 74-01, 74AXX, 74BXX, 74EXX, 74GXX, 74JXX
© Springer Science+Business Media New York 2006, 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.birkhauser-science.com)

Preface

The motion of any body depends both on its characteristics and on the forces acting on it. Although taking into account all possible properties makes the equations too complex to solve, sometimes it is possible to consider only the properties that have the greatest influence on the motion. Models of ideals bodies, which contain only the most relevant properties, can be studied using the tools of mathematical physics. Adding more properties into a model makes it more realistic, but it also makes the motion problem harder to solve.

In order to highlight the above statements, let us first suppose that a system S of N unconstrained bodies $C_{i}, i=1, \ldots, N$, is sufficiently described by the model of N material points whenever the bodies have negligible dimensions with respect to the dimensions of the region containing the trajectories. This means that all the physical properties of C_{i} that influence the motion are expressed by a positive number, the mass m_{i}, whereas the position of C_{i} with respect to a frame I is given by the position vector $\mathbf{r}_{i}(t)$ versus time. To determine the functions $\mathbf{r}_{i}(t)$, one has to integrate the following system of Newtonian equations:

$$
m_{i} \ddot{\mathbf{r}}_{i}=\mathbf{F}_{i} \equiv \mathbf{f}_{i}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}, \dot{\mathbf{r}}_{1}, \ldots, \dot{\mathbf{r}}_{N}, t\right)
$$

$i=1, \ldots, N$, where the forces \mathbf{F}_{i}, due both to the external world and to the other points of S, are assigned functions \mathbf{f}_{i} of the positions and velocities of all the points of S, as well as of time. Under suitable regularity assumptions about the functions \mathbf{f}_{i}, the previous (vector) system of second-order ordinary differential equations in the unknowns $\mathbf{r}_{i}(t)$ has one and only one solution satisfying the given initial conditions

$$
\mathbf{r}_{i}\left(t_{0}\right)=\mathbf{r}_{i}^{0}, \quad \dot{\mathbf{r}}_{i}\left(t_{0}\right)=\dot{\mathbf{r}}_{i}^{0}, \quad i=1, \ldots, N
$$

A second model that more closely matches physical reality is represented by a system S of constrained rigid bodies $C_{i}, i=1, \ldots, N$. In this scheme, the
extension of C_{i} and the presence of constraints are taken into account. The position of C_{i} is represented by the three-dimensional region occupied by C_{i} in the frame I. Owing to the supposed rigidity of both bodies C_{i} and constraints, the configurations of S are described by $n \leq 6 N$ parameters q_{1}, \ldots, q_{n}, which are called Lagrangian coordinates. Moreover, the mass m_{i} of C_{i} is no longer sufficient for describing the physical properties of C_{i} since we have to know both its density and geometry. To determine the motion of S, that is, the functions $q_{1}(t), \ldots, q_{n}(t)$, the Lagrangian expressions of the kinetic energy $T(q, \dot{q})$ and active forces $Q_{h}(q, \dot{q})$ are necessary. Then a possible motion of S is a solution of the Lagrange equations

$$
\frac{d}{d t} \frac{\partial T}{\partial \dot{q}_{h}}-\frac{\partial T}{\partial q_{h}}=Q_{h}(q, \dot{q}), \quad h=1, \ldots, n,
$$

satisfying the given initial conditions

$$
q_{h}\left(t_{0}\right)=q_{h}^{0}, \quad \dot{q}_{h}\left(t_{0}\right)=\dot{q}_{h}^{0}, \quad h=1, \ldots, n,
$$

which once again fix the initial configuration and the velocity field of S.
We face a completely different situation when, to improve the description, we adopt the model of continuum mechanics. In fact, in this model the bodies are deformable and, at the same time, the matter is supposed to be continuously distributed over the volume they occupy, so that their molecular structure is completely erased. In this book we will show that the substitution of rigidity with the deformability leads us to determine three scalar functions of three spatial variables and time, in order to find the motion of S. Consequently, the fundamental evolution laws become partial differential equations. This consequence of deformability is the root of the mathematical difficulties of continuum mechanics.

This model must include other characteristics which allow us to describe the different macroscopic material behaviors. In fact, bodies undergo different deformations under the influence of the same applied loads. The mathematical description of different materials is the object of the constitutive equations. These equations, although they have to describe a wide variety of real bodies, must in any case satisfy some general principles. These principles are called constitutive axioms and they reflect general rules of behavior. These rules, although they imply severe restrictions on the form of the constitutive equations, permit us to describe different materials. The constitutive equations can be divided into classes describing the behavior of material categories: elastic bodies, fluids, etc. The choice of a particular constitutive relation cannot be done a priori but instead relies on experiments, due to the fact that the macroscopic behavior of a body is strictly related to its molecular structure. Since the continuum model erases this structure, the constitutive equation of a particular material has to be determined by experimental procedures. However, the introduction of deformability into the model does not permit us to describe all the phenomena accompanying the motion. In fact, the viscosity of S as well as the friction between S and any external bodies produce heating, which in turn causes heat exchanges among parts of S or between S and
its surroundings. Mechanics is not able to describe these phenomena, and we must resort to the thermomechanics of continuous systems. This theory combines the laws of mechanics and thermodynamics, provided that they are suitably generalized to a deformable continuum at a nonuniform temperature.

The situation is much more complex when the continuum carries charges and currents. In such a case, we must take into account Maxwell's equations, which describe the electromagnetic fields accompanying the motion, together with the thermomechanic equations. The coexistence of all these equations gives rise to a compatibility problem: in fact, Maxwell's equations are covariant under Lorentz transformations, whereas thermomechanics laws are covariant under Galilean transformations.

This book is devoted to those readers interested in understanding the basis of continuum mechanics and its fundamental applications: balance laws, constitutive axioms, linear elasticity, fluid dynamics, waves, etc. It is self-contained, as it illustrates all the required mathematical tools, starting from an elementary knowledge of algebra and analysis.

It is divided into 13 chapters. In the first two chapters the elements of linear algebra are presented (vectors, tensors, eigenvalues, eigenvectors, etc.), together with the foundations of vector analysis (curvilinear coordinates, covariant derivative, Gauss and Stokes theorems). In the remaining ten chapters the foundations of continuum mechanics and some fundamental applications of simple continuous media are introduced. More precisely, the finite deformation theory is discussed in Chap. 3, and the kinetic principles, the singular surfaces, and the general differential formulae for surfaces and volumes are presented in Chap. 4. Chapter 5 contains the general integral balance laws of mechanics, as well as their local Eulerian or Lagrangian forms. In Chaps. 6 and 7 the constitutive axioms, the thermo-viscoelastic materials, and their symmetries are discussed. In Chap. 8, starting from the characteristic surfaces, the classification of a quasi-linear partial differential system is discussed, together with ordinary waves and shock waves. The following two chapters cover the application of the general principles presented in the previous chapters to perfect or viscous fluids (Chap. 9) and to linearly elastic systems (Chap. 10). In Chap. 11, a comparison of some proposed thermodynamic theories is presented. The great importance of fluid dynamics in meteorology is showed in Chap. 12. In particular, in this chapter the arduous path from the equation of fluid dynamics to the chaos is sketched. In the last chapter, we present a brief introduction to the navigation since the analysis of this problem is an interesting example of the interaction between the equations of fluid dynamics and the dynamics of rigid bodies. Finally, in Appendix A the concept of a weak solution is introduced.

This volume has many programs written with Mathematica ${ }^{\circledR}$ [69]. These programs, whose files will be available at Extras.Springer.com., apply to topics discussed in the book such as the equivalence of applied vector systems, differential operators in curvilinear coordinates, kinematic fields, deformation theory, classification of systems of partial differential equations, motion representation of perfect
fluids by complex functions, waves in solids, and so on. This approach has already been adopted by two of the authors in other books (see [1,33]). ${ }^{1}$

Many other important topics of continuum mechanics are not considered in this volume, which is essentially devoted to the foundations of the theory. In a second volume [56], already edited, continua with directors, nonlinear elasticity, mixtures, phase changes, electrodynamics in matter, ferromagnetic bodies, and relativistic continua are discussed.

Naples, Italy
Antonio Romano
Addolorata Marasco

[^0]
Contents

1 Elements of Linear Algebra 1
1.1 Motivation to Study Linear Algebra 1
1.2 Vector Spaces and Bases 2
Examples 3
1.3 Euclidean Vector Space 5
1.4 Base Changes 10
1.5 Vector Product 12
1.6 Mixed Product 13
1.7 Elements of Tensor Algebra 14
1.8 Eigenvalues and Eigenvectors of a Euclidean Second-Order Tensor 20
1.9 Orthogonal Tensors 25
1.10 Cauchy's Polar Decomposition Theorem 28
1.11 Higher Order Tensors 29
1.12 Euclidean Point Space 31
1.13 Exercises 32
1.14 The Program VectorSys 38
Aim of the Program VectorSys 38
Description of the Problem and Relative Algorithm 38
Command Line of the Program VectorSys 39
Parameter List 39
Worked Examples 40
Exercises 42
1.15 The Program EigenSystemAG 42
Aim of the Program EigenSystemAG 42
Description of the Algorithm 43
Command Line of the Program EigenSystemAG 43
Parameter List 43
Worked Examples 43
Exercises 44
2 Vector Analysis 47
2.1 Curvilinear Coordinates 47
2.2 Examples of Curvilinear Coordinates 50
2.3 Differentiation of Vector Fields 53
2.4 The Stokes and Gauss Theorems 58
2.5 Singular Surfaces 59
2.6 Useful Formulae 63
2.7 Some Curvilinear Coordinates 66
Generalized Polar Coordinates 66
Cylindrical Coordinates 68
Spherical Coordinates 69
Elliptic Coordinates 70
Parabolic Coordinates 70
Bipolar Coordinates 71
Prolate and Oblate Spheroidal Coordinates 72
Paraboloidal Coordinates 72
2.8 Exercises 73
2.9 The Program Operator 76
Aim of the Program 76
Description of the Algorithm 76
Command Line of the Program Operator 77
Parameter List 77
Use Instructions 78
Worked Examples 78
Exercises 82
3 Finite and Infinitesimal Deformations 83
3.1 Deformation Gradient 83
3.2 Stretch Ratio and Angular Distortion 86
3.3 Invariants of C and B 89
3.4 Displacement and Displacement Gradient 90
3.5 Infinitesimal Deformation Theory 92
3.6 Transformation Rules for Deformation Tensors 94
3.7 Some Relevant Formulae 95
3.8 Compatibility Conditions 98
3.9 Curvilinear Coordinates 102
3.10 Exercises 103
3.11 The Program Deformation 107
Aim of the Program 107
Description of the Algorithm and Instructions for Use 107
Command Line of the Program Deformation 108
Parameter List 108
Worked Examples 109
Exercises 112
4 Kinematics 115
4.1 Velocity and Acceleration 115
4.2 Velocity Gradient 118
4.3 Rigid, Irrotational, and Isochoric Motions 119
4.4 Transformation Rules for a Change of Frame 122
4.5 Singular Moving Surfaces 123
4.6 Time Derivative of a Moving Volume 126
4.7 Exercises 130
4.8 The Program Velocity 133
Aim of the Program, Input and Output 133
Worked Examples 134
Exercises 135
5 Balance Equations 137
5.1 General Formulation of a Balance Equation 137
5.2 Mass Conservation 142
5.3 Momentum Balance Equation 143
5.4 Balance of Angular Momentum 146
5.5 Energy Balance 147
5.6 Entropy Inequality 149
5.7 Lagrangian Formulation of Balance Equations 152
5.8 The Principle of Virtual Displacements 157
5.9 Exercises 158
6 Constitutive Equations 163
6.1 Constitutive Axioms 163
6.2 Thermoviscoelastic Behavior. 167
6.3 Linear Thermoelasticity 173
6.4 Exercises 177
7 Symmetry Groups: Solids and Fluids 179
7.1 Symmetry 179
7.2 Isotropic Solids 182
7.3 Perfect and Viscous Fluids 186
7.4 Anisotropic Solids 189
7.5 Exercises 192
7.6 The Program LinElasticityTensor 193
Aim of the Program 193
Description of the Problem and Relative Algorithm 194
Command Line of the Program LinElasticityTensor 194
Parameter List 195
Worked Examples 195
Exercises 196
8 Wave Propagation 197
8.1 Introduction 197
8.2 Cauchy's Problem for Second-Order PDEs 198
8.3 Characteristics and Classification of PDEs 202
8.4 Examples 204
8.5 Cauchy's Problem for a Quasi-Linear First-Order System 207
8.6 Classification of First-Order Systems 209
8.7 Examples 211
8.8 Second-Order Systems 214
8.9 Ordinary Waves 216
8.10 Linearized Theory and Waves 220
8.11 Shock Waves 224
8.12 Exercises 227
8.13 The Program PdeEqClass 229
Aim of the Program PdeEqClass 229
Description of the Problem and Relative Algorithm 229
Command Line of the Program PdeEqClass 230
Parameter List 230
Use Instructions 230
Worked Examples 231
Exercises 232
8.14 The Program PdeSysClass 234
Aim of the Program PdeSysClass 234
Description of the Problem and Relative Algorithm 234
Command Line of the Program PdeSysClass 235
Parameter List 235
Use Instructions 236
Worked Examples 237
Exercises 238
8.15 The Program WavesI 240
Aim of the Program WavesI 240
Description of the Problem and Relative Algorithm 240
Command Line of the Program WavesI 241
Parameter List 241
Use Instructions 241
Worked Example 242
Exercises 243
8.16 The Program WavesII 246
Aim of the Program WavesII 246
Description of the Problem and Relative Algorithm 246
Command Line of the Program WavesII 248
Parameter List 248
Use Instructions 248
Worked Example 248
Exercises 250
9 Fluid Mechanics 251
9.1 Perfect Fluid 251
9.2 Stevino's Law and Archimedes' Principle 253
9.3 Fundamental Theorems of Fluid Dynamics 256
9.4 Boundary Value Problems for a Perfect Fluid 261
9.5 2D Steady Flow of a Perfect Fluid 262
9.6 D'Alembert's Paradox and the Kutta-Joukowsky Theorem 270
9.7 Lift and Airfoils 273
9.8 Newtonian Fluids 278
9.9 Applications of the Navier-Stokes Equation 279
9.10 Dimensional Analysis and the Navier-Stokes Equation 281
9.11 Boundary Layer 282
9.12 Motion of a Viscous Liquid Around an Obstacle 287
9.13 Ordinary Waves in Perfect Fluids 295
9.14 Shock Waves in Fluids 297
9.15 Shock Waves in a Perfect Gas 300
9.16 Exercises 304
9.17 The Program Potential 306
Aim of the Program Potential 306
Description of the Problem and Relative Algorithm 307
Command Line of the Program Potential 307
Parameter List 307
Worked Examples 308
Exercises 312
9.18 The Program Wing 313
Aim of the Program Wing 313
Description of the Problem and Relative Algorithm 313
Command Line of the Program Wing 313
Parameter List 313
Worked Examples 314
Exercises 315
9.19 The Program Joukowsky 315
Aim of the Program Joukowsky 315
Description of the Problem and Relative Algorithm 316
Command Line of the Program Joukowsky 316
Parameter List 316
Worked Examples 317
Exercises 318
9.20 The Program JoukowskyMap 318
Aim of the Program JoukowskyMap 318
Description of the Problem and Relative Algorithm 318
Command Line of the Program JoukowskyMap 318
Parameter List 318
Use Instructions 319
Worked Examples 319
Exercises 321
10 Linear Elasticity 323
10.1 Basic Equations of Linear Elasticity 323
10.2 Uniqueness Theorems 327
10.3 Existence and Uniqueness of Equilibrium Solutions 329
10.4 Examples of Deformations 333
10.5 The Boussinesq-Papkovich-Neuber Solution 335
10.6 Saint-Venant's Conjecture 336
10.7 The Fundamental Saint-Venant Solutions 341
10.8 Ordinary Waves in Elastic Systems 344
10.9 Plane Waves 350
10.10 Reflection of Plane Waves in a Half-Space 356
SH Waves 361
10.11 Rayleigh Waves 362
10.12 Reflection and Refraction of SH Waves 365
10.13 Harmonic Waves in a Layer 368
10.14 Exercises 371
11 Other Approaches to Thermodynamics 373
11.1 Basic Thermodynamics 373
11.2 Extended Thermodynamics 376
11.3 Serrin's Approach 378
11.4 An Application to Viscous Fluids 382
12 Fluid Dynamics and Meteorology 385
12.1 Introduction 385
12.2 Atmosphere as a Continuous System 387
12.3 Atmosphere as a Mixture 390
12.4 Primitive Equations in Spherical Coordinates 394
12.5 Dimensionless Form of the Basic Equations 397
12.6 The Hydrostatic and Tangent Approximations 401
12.7 Bjerknes’ Theorem 404
12.8 Vorticity Equation and Ertel's Theorem 406
12.9 Reynolds Turbulence 409
12.10 Ekman's Planetary Boundary Layer 412
12.11 Oberbeck-Boussinesq Equations 416
12.12 Saltzman's Equations 418
12.13 Lorenz's System 421
12.14 Some Properties of Lorenz's System. 424
13 Fluid Dynamics and Ship Motion 429
13.1 Introduction 429
13.2 A Ship as a Rigid Body 430
13.3 Kinematical Transformations 434
13.4 Dynamical Equations of Ship Motion 436
13.5 Final Form of Dynamical Equations 439
13.6 About the Forces Acting on a Ship. 440
13.7 Linear Equations of Ship Motion 442
13.8 Small Motions in the Presence of Regular Small Waves 444
13.9 The Sea Surface as Free Surface 448
13.10 Linear Approximation of the Free Boundary Value Problem 451
13.11 Simple Waves 454
13.12 Flow of Small Waves 456
13.13 Stationary Waves 459
A A Brief Introduction to Weak Solutions 463
A. 1 Weak Derivative and Sobolev Spaces 463
A. 2 A Weak Solution of a PDE 467
A. 3 The Lax-Milgram Theorem 469
References 471
Index 475

Chapter 1
 Elements of Linear Algebra

In this chapter the fundamental concepts of linear algebra are exposed. More precisely, we introduce vector spaces, bases and contravariant components of a vector relative to a base, together with their transformation formulae on varying the basis. Then, Euclidean vector spaces and some fundamental operations in these spaces are analyzed: vector product, mixed product, etc. The elementary definition of n-tensors is given together with elements of tensor algebra. The problem of eigenvalues of symmetric 2 -tensor and orthogonal 2-tensors is widely discussed and Cauchy's polar decomposition theorem is proved. Finally, the Euclidean point spaces are introduced. The last sections contain exercises and detailed descriptions of some packages written with Mathematica ${ }^{\circledR}$ [69], which allows the user to solve by computer many of the problems considered in this chapter.

1.1 Motivation to Study Linear Algebra

In describing reality mathematically, several tools are used. The most familiar is certainly the concept of a function, which expresses the dependence of some quantities $\left(y_{1}, \ldots, y_{m}\right)$ on others $\left(x_{1}, \ldots, x_{n}\right)$ by m analytical relations

$$
\begin{equation*}
y_{i}=f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, m \tag{1.1}
\end{equation*}
$$

For instance, the coordinate x of a material point moving on a straight line with harmonic motion varies with time t according to the law

$$
x=A \sin (\omega t+\varphi),
$$

where $\omega=2 \pi \nu$ and A, ν, and φ are the amplitude, the frequency, and the phase of the harmonic motion, respectively. Similarly, an attractive elastic force \mathbf{F} depends on the lengthening \mathbf{s} of the spring, according to the rule

$$
F_{i}=-k x_{i}, \quad i=1,2,3 .
$$

In this formula F_{i} denotes the i th force component, $k>0$ is the elastic constant, and x_{i} is the i th component of \mathbf{s}. A final example is a dielectric, in which the components D_{i} of the electric induction \mathbf{D} depend on the components E_{i} of the electric field \mathbf{E}.

Later, it will be shown that the tension in a neighborhood I of a point P of an elastic material S depends on the deformation of I; both the deformation and the tension are described by 9 variables. Therefore to find the relation between deformation and tension, we need 9 functions like (1.1), depending on 9 variables.

The previous examples, and many others, tell us how important it is to study systems of real functions depending on many real variables. In studying mathematical analysis, we learn how difficult this can be, so it is quite natural to start with linear relations f_{i}. In doing this we are making the assumption that small causes produce small effects. If we interpret the independent variables x_{i} as causes and the dependent variables y_{i} as effects, then the functions (1.1) can be replaced with their Taylor expansions at the origin $(0, \ldots, 0)$. Limiting the Taylor expansions to first order gives linear relations, which can be explored using the techniques of linear algebra. In this chapter we present some fundamental aspects of this subject. ${ }^{1}$

1.2 Vector Spaces and Bases

Let $\Re(\mathbb{C})$ be the field of real (complex) numbers. A vector space on $\Re(\mathbb{C})$ is an arbitrary set \mathcal{E} equipped with two algebraic operations, called addition and multiplication. The elements of this algebraic structure are called vectors.

The addition operation associates with any pair of vectors \mathbf{u}, \mathbf{v} of \mathcal{E} their sum $\mathbf{u}+\mathbf{v} \in \mathcal{E}$ in a way that satisfies the following formal properties:
$\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$;
only one element $\mathbf{0} \in \mathcal{E}$ exists for which $\mathbf{u}+\mathbf{0}=\mathbf{u}$;
for all $\mathbf{u} \in \mathcal{E}$, only one element $-\mathbf{u} \in \mathcal{E}$ exists such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.

The multiplication operation, which associates the product $a \mathbf{u} \in \mathcal{E}$ to any number a belonging to $\Re(\mathbb{C})$ and any vector $\mathbf{u} \in \mathcal{E}$, has to satisfy the formal properties

[^1]\[

$$
\begin{align*}
1 \mathbf{u} & =\mathbf{u} \\
(a+b) \mathbf{u} & =a \mathbf{u}+b \mathbf{u} \\
a(\mathbf{u}+\mathbf{v}) & =a \mathbf{u}+a \mathbf{v} \tag{1.3}
\end{align*}
$$
\]

Let $W=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}$ be a set of r distinct vectors belonging to $\mathcal{E} ; r$ is also called the order of W. The vector

$$
a_{1} \mathbf{u}_{1}+\cdots+a_{r} \mathbf{u}_{r}
$$

where a_{1}, \ldots, a_{r} are real (complex) numbers, is called a linear combination of $\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$. Moreover, the set $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}$ is linearly independent or free if any linear combination

$$
\begin{equation*}
a_{1} \mathbf{u}_{1}+\cdots+a_{r} \mathbf{u}_{r}=\mathbf{0} \tag{1.4}
\end{equation*}
$$

implies that $a_{1}=\cdots=a_{r}=0$. In the opposite case, they are linearly dependent.
If it is possible to find linearly independent vector systems of order n, where n is a finite integer, but there is no free system of order $n+1$, then we say that n is the dimension of \mathcal{E}, which is denoted by \mathcal{E}_{n}. Any linearly independent system W of order n is said to be a basis of \mathcal{E}_{n}. When it is possible to find linearly independent vector sets of any order, the dimension of the vector space is said to be infinity.

We state the following theorem without proof.
Theorem 1.1. A set $W=\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ of vectors of \mathcal{E}_{n} is a basis if and only if any vector $\mathbf{u} \in \mathcal{E}_{n}$ can be expressed as a unique linear combination of the elements of W :

$$
\begin{equation*}
\mathbf{u}=u^{1} \mathbf{e}_{1}+\cdots+u^{n} \mathbf{e}_{n} . \tag{1.5}
\end{equation*}
$$

For brevity, from now on we denote a basis by $\left(\mathbf{e}_{i}\right)$. The coefficients u^{i} are called contravariant components of \mathbf{u} with respect to the basis $\left(\mathbf{e}_{i}\right)$. The relations among the contravariant components of the same vector with respect two bases will be analyzed in Sect. 1.4.

Examples

- The set of the oriented segments starting from a point O of ordinary threedimensional space constitutes the simplest example of a three-dimensional vector space on \Re. Here the addition is defined with the usual parallelogram rule, and the product $a \mathbf{u}$ is defined by the oriented segment having a length $|a|$ times the length of \mathbf{u} and a direction coinciding with the direction of \mathbf{u}, if $a>0$, or with the opposite one, if $a<0$.
- The set of the matrices

$$
\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\cdots & \cdots & \cdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right),
$$

where the coefficients are real (complex) numbers, equipped with the usual operations of summation of two matrices and the product of a matrix for a real (complex) number, is a vector space. Moreover, it is easy to verify that one basis for this vector space is the set of $m \times n$-matrices that have all the elements equal to zero except for one which is equal to 1 . Consequently, its dimension is equal to $m n$.

- The set \mathcal{P} of all polynomials

$$
P(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}
$$

of the same degree n with real (complex) coefficients is a $(n+1)$-dimensional vector space, since the polynomials

$$
\begin{equation*}
P_{1}(x)=x^{n}, \quad P_{2}=x^{n-1}, \quad \ldots, \quad P_{n+1}=1 \tag{1.6}
\end{equation*}
$$

form a basis of \mathcal{P}.

- The set F of continuous functions on the interval $[0,1]$ is a vector space whose dimension is infinity since, for any n, the set of polynomials (1.6) is linearly independent.

From now on we will use Einstein's notation, in which the summation over two repeated indices is understood provided that one is a subscript and the other a superscript. In this notation, relation (1.5) is written as

$$
\begin{equation*}
\mathbf{u}=u^{i} \mathbf{e}_{i} . \tag{1.7}
\end{equation*}
$$

Moreover, for the sake of simplicity, all of the following considerations refer to a three-dimensional vector space \mathcal{E}_{3}, although almost all the results are valid for any vector space.

A subset $U \subset \mathcal{E}$ is a vector subspace of \mathcal{E} if

$$
\begin{align*}
\mathbf{u}, \mathbf{v} & \in \mathcal{E} \Rightarrow \mathbf{u}+\mathbf{v} \in \mathcal{E} \\
a & \in \Re, \mathbf{u} \in \mathcal{E} \Rightarrow a \mathbf{u} \in \mathcal{E} \tag{1.8}
\end{align*}
$$

Let U and V be two subspaces of \mathcal{E}_{3} having dimensions p and $q(p+q \leq 3)$, respectively, and let $U \cap V=\{\mathbf{0}\}$. The direct sum of U and V, denoted by

$$
W=U \oplus V
$$

Fig. 1.1 Direct sum
is the set of all the vectors $\mathbf{w}=\mathbf{u}+\mathbf{v}$, with $\mathbf{u} \in U$ and $\mathbf{v} \in V$.
Theorem 1.2. The direct sum W of the subspaces U and V is a new subspace whose dimension is $p+q$.

Proof. It is easy to verify that W is a vector space. Moreover, let $\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right)$ and $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{q}\right)$ be two bases of U and V, respectively. The definition of the direct sum implies that any vector $\mathbf{w} \in W$ can be written as $\mathbf{w}=\mathbf{u}+\mathbf{v}$, where $\mathbf{u} \in U$ and $\mathbf{v} \in V$ are uniquely determined. Therefore,

$$
\mathbf{w}=\sum_{i=1}^{p} u^{i} \mathbf{u}_{i}+\sum_{i=1}^{q} v^{i} \mathbf{v}_{i}
$$

where the coefficients u^{i} and v^{i} are again uniquely determined. It follows that the vectors $\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{q}\right)$ represent a basis of W.

Figure 1.1 illustrates the previous theorem for $p=q=1$.

1.3 Euclidean Vector Space

Besides the usual operations of vector sum and product of a real number times a vector, the operation of scalar or inner product of two vectors can be introduced. This operation, which associates a real number $\mathbf{u} \cdot \mathbf{v}$ to any pair of vectors (\mathbf{u}, \mathbf{v}), is defined by the following properties:

1. it is distributive with respect to each argument:

$$
(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}, \quad \mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w} ;
$$

2. it is associative:

$$
a \mathbf{u} \cdot \mathbf{v}=\mathbf{u} \cdot(a \mathbf{v})
$$

3. it is symmetric:

$$
\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}
$$

4. it satisfies the condition

$$
\mathbf{u} \cdot \mathbf{u} \geq 0
$$

the equality holding if and only if \mathbf{u} vanishes.
From now on, a space in which a scalar product is defined is referred to as a Euclidean vector space.

Property (4) allows us to define the length of the vector \mathbf{u} as the number

$$
|\mathbf{u}|=\sqrt{\mathbf{u} \cdot \mathbf{u}} ;
$$

in particular, a vector is a unit or normal vector if

$$
|\mathbf{u}|=1 .
$$

Two vectors \mathbf{u} and \mathbf{v} are orthogonal if

$$
\mathbf{u} \cdot \mathbf{v}=0
$$

The following two inequalities, due to Minkowski and Schwarz, respectively, can be proved:

$$
\begin{align*}
|\mathbf{u}+\mathbf{v}| & \leq|\mathbf{u}|+|\mathbf{v}|, \tag{1.9}\\
|\mathbf{u} \cdot \mathbf{v}| & \leq|\mathbf{u}||\mathbf{v}| . \tag{1.10}
\end{align*}
$$

The last inequality permits us to define the angle $0 \leq \varphi \leq \pi$ between two vectors \mathbf{u} and \mathbf{v} by the relation

$$
\cos \varphi=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}
$$

which allows us to give the inner product the following elementary form:

$$
\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \varphi
$$

A vector system $\left(\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right)$ is called orthonormal if

$$
\mathbf{u}_{i} \cdot \mathbf{u}_{j}=\delta_{i j},
$$

where $\delta_{i j}$ is the Kronecker symbol

$$
\delta_{i j}= \begin{cases}1, & i=j \\ 0, & i \neq j\end{cases}
$$

It is easy to verify that the vectors belonging to an orthonormal system $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ are linearly independent; in fact, it is sufficient to consider the scalar product between any of their vanishing linear combinations and a vector \mathbf{u}_{h} to verify that the h th coefficient of the combination vanishes. This result implies that the number m of the vectors of an orthogonal system is ≤ 3.

The Gram-Schmidt orthonormalization procedure permits us to obtain an orthonormal system starting from any set of three independent vectors $\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right)$. In fact, if this set is independent, it is always possible to determine the constants λ in the expressions

$$
\begin{aligned}
& \mathbf{v}_{1}=\mathbf{u}_{1} \\
& \mathbf{v}_{2}=\lambda_{2}^{1} \mathbf{v}_{1}+\mathbf{u}_{2}, \\
& \mathbf{v}_{3}=\lambda_{3}^{1} \mathbf{v}_{1}+\lambda_{3}^{2} \mathbf{v}_{2}+\mathbf{u}_{3},
\end{aligned}
$$

in such a way that \mathbf{v}_{2} is orthogonal to \mathbf{v}_{1} and \mathbf{v}_{3} is orthogonal to both \mathbf{v}_{1} and \mathbf{v}_{2}. By a simple calculation, we find that these conditions lead to the following values of the constants λ :

$$
\begin{aligned}
& \lambda_{2}^{1}=-\frac{\mathbf{u}_{2} \cdot \mathbf{v}_{1}}{\left|\mathbf{v}_{1}\right|^{2}} \\
& \lambda_{3}^{2}=-\frac{\mathbf{u}_{3} \cdot \mathbf{v}_{2}}{\left|\mathbf{v}_{2}\right|^{2}}, \\
& \lambda_{3}^{1}=-\frac{\mathbf{u}_{3} \cdot \mathbf{v}_{1}}{\left|\mathbf{v}_{1}\right|^{2}}
\end{aligned}
$$

Then the vectors $\mathbf{v}_{h}, h=1,2,3$, are orthogonal to each other and it is sufficient to consider the vectors $\mathbf{v}_{h} /\left|\mathbf{v}_{h}\right|$ to obtain the desired orthonormal system.

Let $\left(\mathbf{e}_{i}\right)$ be a basis and let $\mathbf{u}=u^{i} \mathbf{e}_{i}, \mathbf{v}=v^{j} \mathbf{e}_{j}$, be the representations of two vectors in this basis; then the scalar product becomes

$$
\begin{equation*}
\mathbf{u} \cdot \mathbf{v}=g_{i j} u^{i} v^{j} \tag{1.11}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{i j}=\mathbf{e}_{i} \cdot \mathbf{e}_{j}=g_{j i} . \tag{1.12}
\end{equation*}
$$

When $\mathbf{u}=\mathbf{v}$, (1.11) gives the square length of a vector in terms of its components:

$$
\begin{equation*}
|\mathbf{u}|^{2}=g_{i j} u^{i} u^{j} \tag{1.13}
\end{equation*}
$$

Owing to the property (4) of the scalar product, the quadratic form on the right-hand side of (1.13) is positive definite, so that

$$
\begin{equation*}
g \equiv \operatorname{det}\left(g_{i j}\right)>0 \tag{1.14}
\end{equation*}
$$

If the basis is orthonormal, then (1.11) and (1.13) assume the simpler form

$$
\begin{align*}
& \mathbf{u} \cdot \mathbf{v}=\sum_{i=1}^{3} u^{i} v^{i}, \tag{1.15}\\
& |\mathbf{u}|^{2}=\sum_{i=1}^{3}\left(u^{i}\right)^{2} . \tag{1.16}
\end{align*}
$$

Due to (1.14), the matrix $\left(g_{i j}\right)$ has an inverse so that, if $g^{i j}$ are the coefficients of this last matrix, we have

$$
\begin{equation*}
g^{i h} g_{h j}=\delta_{j}^{i} . \tag{1.17}
\end{equation*}
$$

If a basis $\left(\mathbf{e}_{i}\right)$ is assigned in the Euclidean space \mathcal{E}_{3}, it is possible to define the dual or reciprocal basis (\mathbf{e}^{i}) of $\left(\mathbf{e}_{i}\right)$ with the relations

$$
\begin{equation*}
\mathbf{e}^{i}=g^{i j} \mathbf{e}_{j} \tag{1.18}
\end{equation*}
$$

These new vectors constitute a basis since from any linear combination of them,

$$
\lambda_{i} \mathbf{e}^{i}=g^{i h} \lambda_{i} \mathbf{e}_{h}=\mathbf{0}
$$

we derive

$$
g^{i h} \lambda_{i}=0
$$

when we recall that the vectors $\left(\mathbf{e}_{i}\right)$ are independent. On the other hand, this homogeneous system admits only the trivial solution $\lambda_{1}=\lambda_{2}=\lambda_{3}=0$, since $\operatorname{det}\left(g^{i j}\right)>0$.

The chain of equalities, see (1.18), (1.12), (1.17),

$$
\begin{equation*}
\mathbf{e}^{i} \cdot \mathbf{e}_{j}=g^{i h} \mathbf{e}_{h} \cdot \mathbf{e}_{j}=g^{i h} g_{h j}=\delta_{j}^{i} \tag{1.19}
\end{equation*}
$$

Fig. 1.2 Dual bases
proves that \mathbf{e}^{i} is orthogonal to all the vectors $\mathbf{e}_{j}, j \neq i$ (see Fig. 1.2 and Exercise 1.2). It is worthwhile to note that if the basis $\left(\mathbf{e}_{i}\right)$ is orthogonal, then (1.18) implies that

$$
\mathbf{e}^{i}=g^{i i} \mathbf{e}_{i}=\frac{\mathbf{e}_{i}}{g_{i i}},
$$

so that any vector \mathbf{e}^{i} of the dual basis is parallel to the vector \mathbf{e}_{i}.
From this relation we have

$$
\mathbf{e}_{i} \cdot \mathbf{e}^{i}=1
$$

so that

$$
\left|\mathbf{e}_{i} \|\left|\mathbf{e}^{i}\right| \cos 0=1\right.
$$

and

$$
\begin{equation*}
\left|\mathbf{e}^{i}\right|=\frac{1}{\left|\mathbf{e}_{i}\right|} \tag{1.20}
\end{equation*}
$$

In particular, when the basis $\left(\mathbf{e}_{i}\right)$ is orthonormal, $\mathbf{e}^{i}=\mathbf{e}_{i}, i=1, \ldots, n$.
With the introduction of the dual basis, any vector \mathbf{u} admits two representations:

$$
\begin{equation*}
\mathbf{u}=u^{i} \mathbf{e}_{i}=u_{j} \mathbf{e}^{j} \tag{1.21}
\end{equation*}
$$

The quantities u_{i} are called covariant components of \mathbf{u}. They can be obtained from the components of \mathbf{u} with respect to the reciprocal basis or from the projections of \mathbf{u} onto the axes of the original basis:

$$
\begin{equation*}
\mathbf{u} \cdot \mathbf{e}_{i}=\left(u_{j} \mathbf{e}^{j}\right) \cdot \mathbf{e}_{i}=u_{j} \delta_{i}^{j}=u_{i} . \tag{1.22}
\end{equation*}
$$

In particular, if the basis is orthonormal, then the covariant and contravariant components are equal.

The relation (1.22) shows that the covariant and contravariant components can be defined respectively as

$$
\begin{equation*}
u_{i}=\mathbf{u} \cdot \mathbf{e}_{i}=g_{i j} u^{j}, \quad u^{j}=\mathbf{u} \cdot \mathbf{e}^{j}=g^{j i} u_{i} . \tag{1.23}
\end{equation*}
$$

It follows from (1.23) that the scalar product (1.11) can be written in one of the following equivalent forms:

$$
\begin{equation*}
\mathbf{u} \cdot \mathbf{v}=g_{i j} u^{i} v^{j}=u_{j} v^{j}=g^{i j} u_{i} v_{j} \tag{1.24}
\end{equation*}
$$

1.4 Base Changes

Covariant or contravariant components of a vector are relative to the chosen basis. Consequently, it is interesting to determine the corresponding transformation rules under a change of the basis. Let us consider the base change $\left(\mathbf{e}_{i}\right) \longrightarrow\left(\mathbf{e}_{i}^{\prime}\right)$; when we note that any vector \mathbf{e}_{i}^{\prime} can be represented as a linear combination of the vectors $\left(\mathbf{e}_{i}\right)$, we have ${ }^{2}$

$$
\begin{equation*}
\mathbf{e}_{i}^{\prime}=A_{i}^{j} \mathbf{e}_{j}, \quad \mathbf{e}_{i}=\left(A^{-1}\right)_{i}^{j} \mathbf{e}_{j}^{\prime} \tag{1.25}
\end{equation*}
$$

In other words, the base change is assigned by giving the nonsingular matrix $\left(A_{j}^{i}\right)$ of the vector components $\left(\mathbf{e}_{i}^{\prime}\right)$ with respect to the basis $\left(\mathbf{e}_{i}\right)$.

On the other hand, any vector \mathbf{u} admits the following two representations:

$$
\mathbf{u}=u^{\prime i} \mathbf{e}_{i}^{\prime}=u^{j} \mathbf{e}_{j}
$$

from which, taking into account (1.25), there follow the transformation formulae of vector components with respect to base changes:

$$
\begin{equation*}
u^{\prime i}=\left(A^{-1}\right)_{j}^{i} u^{j}, \quad u^{i}=A_{j}^{i} u^{\prime j} \tag{1.26}
\end{equation*}
$$

In order to determine the corresponding transformation formulae of covariant components, we note that (1.23) and (1.25) imply that

$$
u_{i}^{\prime}=\mathbf{u} \cdot \mathbf{e}_{i}^{\prime}=\mathbf{u} \cdot A_{i}^{j} \mathbf{e}_{j}
$$

and then

$$
\begin{equation*}
u_{i}^{\prime}=A_{i}^{j} u_{j} \tag{1.27}
\end{equation*}
$$

[^2]or
\[

$$
\begin{equation*}
u_{i}=\left(A^{-1}\right)_{i}^{j} u_{j}^{\prime} \tag{1.28}
\end{equation*}
$$

\]

A comparison of (1.25), (1.26), and (1.27) justifies the definition of covariant and contravariant components given to u_{i} and u^{i} : the transformation of covariant components involves the coefficient of the base transformation (1.25), whereas the transformation of the contravariant components involves the coefficients of the inverse base transformation.

It is also interesting to determine the transformation formulae of the quantities $g_{i j}$ and $g^{i j}$ associated with the scalar product. To this end, we note that (1.12) and (1.25) imply that

$$
g_{i j}^{\prime}=\mathbf{e}_{i}^{\prime} \cdot \mathbf{e}_{j}^{\prime}=A_{i}^{h} A_{j}^{k} \mathbf{e}_{h} \cdot \mathbf{e}_{k} ;
$$

that is,

$$
\begin{equation*}
g_{i j}^{\prime}=A_{i}^{h} A_{j}^{k} g_{h k} \tag{1.29}
\end{equation*}
$$

Similarly, from the invariance of the scalar product with respect to a base change and from (1.24), we have

$$
g^{\prime i j} u_{i}^{\prime} v_{j}^{\prime}=g^{h k} u_{h} v_{k}
$$

and taking into account (1.28), we obtain

$$
\begin{equation*}
g^{\prime i j}=\left(A^{-1}\right)_{h}^{i}\left(A^{-1}\right)_{k}^{j} g^{h k} . \tag{1.30}
\end{equation*}
$$

From (1.18), (1.30), and (1.25), it also follows that

$$
\begin{equation*}
\mathbf{e}^{\prime i}=\left(A^{-1}\right)_{h}^{i} \mathbf{e}^{h} . \tag{1.31}
\end{equation*}
$$

Finally, let $\left(\mathbf{e}_{i}\right)$ and $\left(\mathbf{e}_{i}^{\prime}\right)$ be two bases of \mathcal{E}_{3} related to each other by the transformation formulae (1.25). When

$$
\begin{equation*}
\operatorname{det}\left(A_{j}^{i}\right)>0, \tag{1.32}
\end{equation*}
$$

we say that the two bases have the same orientation. It is easy to recognize that this connection between the two bases represents an equivalence relation R in the set B of the bases of \mathcal{E}_{3}. Moreover, R divides B in two equivalence classes; any two bases, each of them belonging to one class, define the two possible orientations of \mathcal{E}_{3}.

1.5 Vector Product

Let $\left(\mathbf{e}_{i}\right)$ be a basis of \mathcal{E}_{3}. The vector product or cross product is an internal operation which associates, to any pair of vectors \mathbf{u} and \mathbf{v} of \mathcal{E}_{3}, a new vector $\mathbf{u} \times \mathbf{v}$ whose covariant components are

$$
\begin{equation*}
(\mathbf{u} \times \mathbf{v})_{i}=\sqrt{g} e_{i j h} u^{j} v^{h}, \tag{1.33}
\end{equation*}
$$

where u^{i} and v^{j} denote the contravariant components of \mathbf{u} and \mathbf{v} and $e_{i j h}$ is the Levi-Civita symbol, defined as follows:

$$
e_{i j h}=\left\{\begin{align*}
0, & \text { if two indices are equal; } \tag{1.34}\\
1, & \text { if the permutation } i j h \text { is even } \\
-1, & \text { if the permutation } i j h \text { is odd }
\end{align*}\right.
$$

The attribute even or odd of the index sequence $i j h$ depends on the number of index exchanges we have to do in order to reproduce the fundamental sequence 123. For example, 231 is even, since two exchanges are needed: the first one produces 132 and the second, 123. On the other hand, 213 is odd, since just one exchange of indices is sufficient to come back to 123 .

From the definition (1.34), we see that the exchange of two indices in the permutation symbol implies a sign change; that is,

$$
e_{i j k}=-e_{k j i}=e_{k i j}=-e_{i k j}
$$

Moreover, we remark that the product of two permutation symbols can be expressed by the Kronecker symbol δ using the following identity

$$
e_{m i q} e_{j k q}=\delta_{m j} \delta_{i k}-\delta_{m k} \delta_{i j}=\left|\begin{array}{cc}
\delta_{m j} & \delta_{m k} \tag{1.35}\\
\delta_{i j} & \delta_{i k}
\end{array}\right|
$$

This formula can be memorized as follows: the first two indices of the first e appear in the determinant as row indices, whereas the first two indices of the second e are column indices.

It is easy to verify that the composition law (1.33) is distributive, associative, and skew-symmetric. In order to recognize that the present definition of the cross product $\mathbf{u} \times \mathbf{v}$ coincides with the elementary one, we consider an orthonormal basis $\left(\mathbf{e}_{i}\right)$ such that $|\mathbf{u}| \mathbf{e}_{1}=\mathbf{u}$ and the plane $\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)$ contains \mathbf{v}. In this basis, \mathbf{u} and \mathbf{v} have components $(|\mathbf{u}|, 0,0)$ and $(|\mathbf{v}| \cos \varphi,|\mathbf{v}| \sin \varphi, 0)$. Here φ is the angle between \mathbf{v} and \mathbf{e}_{1}; that is, the angle between \mathbf{v} and \mathbf{u}. Finally, due to (1.33), we easily derive that $\mathbf{u} \times \mathbf{v}$ is orthogonal to the plane defined by \mathbf{u}, \mathbf{v} and its component along \mathbf{e}_{3} is $|\mathbf{u}||\mathbf{v}| \sin \varphi$.

It remains to verify that the right-hand side of (1.33) is independent of the basis or, equivalently, that the quantities on the left-hand side of (1.33) transform with the law (1.27). First, from (1.29) we derive

$$
\begin{equation*}
\sqrt{g^{\prime}}= \pm \operatorname{det}\left(A_{j}^{i}\right) \sqrt{g} \tag{1.36}
\end{equation*}
$$

where the $+\operatorname{sign}$ holds if $\operatorname{det}\left(A_{j}^{i}\right)>0$ and the $-\operatorname{sign}$ holds in the opposite case. Moreover, the determinant definition implies that

$$
\begin{equation*}
e_{i j h}=\frac{1}{\operatorname{det}\left(A_{p}^{q}\right)} A_{i}^{l} A_{j}^{m} A_{h}^{n} e_{l m n}, \tag{1.37}
\end{equation*}
$$

so that, taking into account (1.33) and (1.36), we write

$$
(\mathbf{u} \times \mathbf{v})_{i}^{\prime}=\sqrt{g^{\prime}} e_{i j h} u^{\prime j} v^{\prime h}= \pm A_{i}^{l} e_{l m n} \sqrt{g} u^{m} v^{n}
$$

Then it is possible to conclude that the cross product defines a vector only for base changes which preserve the orientation (Sect. 1.4). Vectors having this characteristic are called axial vectors or pseudovectors, whereas the vectors transforming with the law (1.27) are called polar vectors.

Examples of axial vectors are given by the moment \mathbf{M}_{O} of a force \mathbf{F} with respect to a pole O or by the angular velocity $\boldsymbol{\omega}$, whose direction changes with the basis orientation. This is not true for the force, velocity, etc., which are examples of polar vectors (see Exercise 10).

At a less formal but more intuitive level, the nature of the vector under consideration can be recognized by looking at its behavior under a reflection (see Fig. 1.3): if the reflection preserves the direction, we are in the presence of an axial vector, while if the reflection induces a change of its direction, the vector is polar.

1.6 Mixed Product

The mixed product of three vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$, is the scalar quantity $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$. When (1.24) and (1.33) are taken into account, we obtain the following coordinate form of the mixed product:

$$
\begin{equation*}
(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}=\sqrt{g} e_{i j h} w^{i} u^{j} v^{h} . \tag{1.38}
\end{equation*}
$$

Fig. 1.3 Axial vector $\boldsymbol{\omega}$ (angular velocity)—Polar vector \mathbf{F} (force)

The skew-symmetry properties of the Levi-Civita symbol (see Sect. 1.5) allow us to verify the following cyclic property of the mixed product:

$$
(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}=(\mathbf{w} \times \mathbf{u}) \cdot \mathbf{v}=(\mathbf{v} \times \mathbf{w}) \cdot \mathbf{u} .
$$

It is easy to recognize the geometric meaning of the mixed product. In fact, it has been already said (Sect. 1.5) that the vector product is a vector orthogonal to the plane defined by \mathbf{u} and \mathbf{v}, having the norm equal to the area of the parallelogram σ with sides $|\mathbf{u}|$ and $|\mathbf{v}|$. The scalar product $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}$ is equal to the component \mathbf{w} along $(\mathbf{u} \times \mathbf{v})$ times the length of $(\mathbf{u} \times \mathbf{v})$. Finally, the mixed product represents the volume of the parallelepiped with edges \mathbf{u}, \mathbf{v}, and \mathbf{w}.

1.7 Elements of Tensor Algebra

Let \mathcal{E}_{3} be a Euclidean vector space. The mapping

$$
\begin{equation*}
\mathbf{T}: \mathcal{E}_{3} \rightarrow \mathcal{E}_{3} \tag{1.39}
\end{equation*}
$$

is linear if, using the notation $\mathbf{T}(\mathbf{u})=\mathbf{T u}$, we have

$$
\begin{equation*}
\mathbf{T}(a \mathbf{u}+b \mathbf{v})=a \mathbf{T} \mathbf{u}+b \mathbf{T} \mathbf{v} \tag{1.40}
\end{equation*}
$$

for all $a, b \in \mathfrak{R}$ and for all $\mathbf{u}, \mathbf{v} \in \mathcal{E}_{3}$.
We will let $\operatorname{Lin}\left(\mathcal{E}_{3}\right)$ denote the set of linear mappings of \mathcal{E}_{3} into \mathcal{E}_{3}. These applications are also called endomorphisms, Euclidean double tensors, or 2-tensors of \mathcal{E}_{3}.

The product ST of two tensors \mathbf{S} and \mathbf{T} is the composition of \mathbf{S} and \mathbf{T}; that is, for all $\mathbf{u} \in \mathcal{E}_{3}$ we have

$$
\begin{equation*}
(\mathbf{S T}) \mathbf{u}=\mathbf{S}(\mathbf{T u}) \tag{1.41}
\end{equation*}
$$

Generally, $\mathbf{S T} \neq \mathbf{T S}$; if $\mathbf{S T}=\mathbf{T S}$, then the two tensors are said to commute. The transpose \mathbf{T}^{T} of \mathbf{T} is the new tensor defined by the condition

$$
\begin{equation*}
\mathbf{u} \cdot \mathbf{T}^{T} \mathbf{v}=\mathbf{v} \cdot(\mathbf{T u}), \quad \forall \mathbf{u}, \mathbf{v} \in \mathcal{E}_{3} . \tag{1.42}
\end{equation*}
$$

The following properties can be easily established:

$$
\begin{aligned}
(\mathbf{T}+\mathbf{S})^{T} & =\mathbf{T}^{T}+\mathbf{S}^{T} \\
(\mathbf{T S})^{T} & =\mathbf{S}^{T} \mathbf{T}^{T} \\
\left(\mathbf{T}^{T}\right)^{T} & =\mathbf{T}
\end{aligned}
$$

A tensor \mathbf{T} is symmetric if

$$
\begin{equation*}
\mathbf{T}=\mathbf{T}^{T} \tag{1.43}
\end{equation*}
$$

and skew-symmetric if

$$
\begin{equation*}
\mathbf{T}=-\mathbf{T}^{T} \tag{1.44}
\end{equation*}
$$

The tensor product of vectors \mathbf{u} and \mathbf{v} is the tensor $\mathbf{u} \otimes \mathbf{v}$ such that

$$
\begin{equation*}
(\mathbf{u} \otimes \mathbf{v}) \mathbf{w}=\mathbf{u} \mathbf{v} \cdot \mathbf{w}, \quad \forall \mathbf{w} \in \mathcal{E}_{3} \tag{1.45}
\end{equation*}
$$

The set $\operatorname{Lin}\left(\mathcal{E}_{3}\right)$ of tensors defined on \mathcal{E}_{3} is itself a vector space with respect to the ordinary operations of addition and the product of a mapping times a real number. For this space the following theorem holds:

Theorem 1.3. The vector space $\operatorname{Lin}\left(\mathcal{E}_{3}\right)$ of Euclidean double tensors is 9dimensional. The tensor systems $\left(\mathbf{e}_{i} \otimes \mathbf{e}_{j}\right),\left(\mathbf{e}_{i} \otimes \mathbf{e}^{j}\right),\left(\mathbf{e}^{i} \otimes \mathbf{e}^{j}\right)$ are bases of $\operatorname{Lin}\left(\mathcal{E}_{3}\right)$ so that for all $\mathbf{u} \in \mathcal{E}_{3}$, the following representations of Euclidean double tensors hold:

$$
\begin{equation*}
\mathbf{T}=T^{i j} \mathbf{e}_{i} \otimes \mathbf{e}_{j}=T_{j}^{i} \mathbf{e}_{i} \otimes \mathbf{e}^{j}=T_{i j} \mathbf{e}^{i} \otimes \mathbf{e}^{j} \tag{1.46}
\end{equation*}
$$

The matrices $\left(T^{i j}\right)$, $\left(T_{j}^{i}\right)$, and $\left(T_{i j}\right)$ are called the contravariant, mixed, and covariant components of \mathbf{T}, respectively. Finally, the relations among the different components are given by the equations

$$
\begin{equation*}
T_{i j}=g_{j h} T_{i}^{h}=g_{i h} g_{j k} T^{h k} \tag{1.47}
\end{equation*}
$$

Proof. To verify that the system $\left(\mathbf{e}_{i} \otimes \mathbf{e}_{j}\right)$ is a basis of $\operatorname{Lin}\left(\mathcal{E}_{3}\right)$, it is sufficient to prove that it is a linearly independent system and that any tensor \mathbf{T} can be expressed as a linear combination of the elements of $\left(\mathbf{e}_{i} \otimes \mathbf{e}_{j}\right)$. First, from

$$
\lambda^{i j} \mathbf{e}_{i} \otimes \mathbf{e}_{j}=\mathbf{0}
$$

and from (1.45), (1.12), we derive

$$
\lambda^{i j} \mathbf{e}_{i} \otimes \mathbf{e}_{j}\left(\mathbf{e}_{h}\right)=\lambda^{i j} \mathbf{e}_{i} \mathbf{e}_{j} \cdot \mathbf{e}_{h}=\lambda^{i j} g_{j h} \mathbf{e}_{i}=\mathbf{0}
$$

for any $h=1,2,3$. But the vectors $\left(\mathbf{e}_{i}\right)$ form a basis of \mathcal{E}_{3}, so that the previous relation implies, for any index i, the homogeneous system

$$
\lambda^{i j} g_{j h}=0
$$

of three equations in the three unknowns $\lambda^{i j}$, where i is fixed. Since the determinant $\operatorname{det}\left(g_{i j}\right)$ of this system is different from zero, see (1.14), all the unknowns $\lambda^{i j}$ with fixed i vanish. From the arbitrariness of i, the theorem follows.

Similarly, from the linear combination

$$
\lambda_{j}^{i} \mathbf{e}_{i} \otimes \mathbf{e}^{j}=\mathbf{0}
$$

when (1.19) is taken into account, we have

$$
\lambda_{j}^{i} \mathbf{e}_{i} \otimes \mathbf{e}^{j}\left(\mathbf{e}_{h}\right)=\lambda_{j}^{i} \mathbf{e}_{i} \mathbf{e}^{j} \cdot \mathbf{e}_{h}=\lambda_{j}^{i} \delta_{h}^{j} \mathbf{e}_{i}=\lambda_{h}^{i} \mathbf{e}_{i}=\mathbf{0},
$$

so that $\lambda_{h}^{i}=0$, for any choice of i and h. In the same way, the independence of tensors ($\mathbf{e}^{i} \otimes \mathbf{e}^{j}$) can be proved.

To show that any tensor \mathbf{T} can be written as a linear combination of any one of these systems, we start by noting that, from (1.21) and the linearity of \mathbf{T}, we have

$$
\mathbf{T} \mathbf{u}=u_{j} \mathbf{T e}^{j}
$$

On the other hand, $\mathbf{T e}^{j}$ is a vector of \mathcal{E}_{3} and therefore can be represented in the following form, see (1.21):

$$
\mathbf{T e}^{j}=T^{i j} \mathbf{e}_{i} .
$$

If the definition of covariant components (1.23) is recalled together with (1.45), we have

$$
\mathbf{T u}=T^{i j} u_{j} \mathbf{e}_{i}=T^{i j} \mathbf{e}_{i} \otimes \mathbf{e}_{j}(\mathbf{u})
$$

Finally, owing to the arbitrariness of \mathbf{u}, we obtain

$$
\mathbf{T}=T^{i j} \mathbf{e}_{i} \otimes \mathbf{e}_{j}
$$

To show $(1.46)_{2}$, it is sufficient to remark that

$$
\mathbf{T u}=u^{j} \mathbf{T e}_{j},
$$

so that, introducing the notation $\mathbf{T e}_{j}=T_{j}^{i} \mathbf{e}_{i}$, we derive

$$
\mathbf{T u}=T_{j}^{i} u^{j} \mathbf{e}_{i}
$$

Noting that (1.23) and (1.22) hold, we have $u^{j}=g^{j i} u_{i}=g^{j i} \mathbf{e}_{i} \cdot \mathbf{u}=\mathbf{e}^{j} \cdot \mathbf{u}$, and the previous relation gives

$$
\mathbf{T} \mathbf{u}=T_{j}^{i} \mathbf{e}_{i} \otimes \mathbf{e}^{j}(\mathbf{u})
$$

From this expression, due to the arbitrariness of $\mathbf{u},(1.46)_{2}$ is derived. In a similar way, (1.46) $)_{3}$ can be proved.

Relation (1.47) is easily verified using (1.46) and the definition of the reciprocal basis (1.18), so that the theorem is proved.

Example 1.1. Verify that the matrices of contravariant or covariant components of a symmetric (skew-symmetric) tensor are symmetric (skew-symmetric), using the definition of transpose and symmetry.

The symmetry of $\mathbf{T}\left(\mathbf{T}=\mathbf{T}^{T}\right)$ and (1.42) imply that

$$
\mathbf{v} \cdot \mathbf{T} \mathbf{u}=\mathbf{u} \cdot \mathbf{T} \mathbf{v}
$$

so that

$$
v_{i} T^{i j} u_{j}=u_{i} T^{i j} v_{j}=u_{j} T^{j i} v_{i}
$$

The arbitrariness of \mathbf{u} and \mathbf{v} leads to $T^{i j}=T^{j i}$. In a similar way, it can be proved that $T_{i j}=-T_{j i}$ when \mathbf{T} is skew-symmetric.

Example 1.2. Using the different representations (1.46), verify that the contravariant, mixed and covariant components of the unit or identity tensor \mathbf{I}

$$
\mathbf{I} \mathbf{u}=\mathbf{u}, \quad \forall \mathbf{u} \in \mathcal{E}_{3}
$$

are given by the following matrices, respectively:

$$
\left(g^{i j}\right), \quad\left(\delta_{j}^{i}\right), \quad\left(g_{i j}\right)
$$

Starting from the condition defining \mathbf{I}, written in terms of components,

$$
\left(I^{i j} \mathbf{e}_{i} \otimes \mathbf{e}_{j}\right) \cdot\left(u_{h} \mathbf{e}^{h}\right)=u_{i} \mathbf{e}^{i},
$$

we derive the equation

$$
I^{i h} u_{h} \mathbf{e}_{i}=g^{h i} u_{h} \mathbf{e}_{i}
$$

which implies that $I^{i h}=g^{i h}$. In a similar way the others results follow.
The image of \mathbf{T}, denoted by $\operatorname{Im}(\mathbf{T})$, is the subset of \mathcal{E}_{3} such that

$$
\begin{equation*}
\operatorname{Im}(\mathbf{T})=\left\{\mathbf{v} \in \mathcal{E}_{3} \mid \exists \mathbf{u} \in \mathcal{E}_{3}: \mathbf{v}=\mathbf{T} \mathbf{u}\right\} \tag{1.48}
\end{equation*}
$$

whereas the kernel of \mathbf{T}, denoted by $\operatorname{Ker}(\mathbf{T})$, is the subset of \mathcal{E}_{3} such that

$$
\begin{equation*}
\operatorname{Ker}(\mathbf{T})=\left\{\mathbf{u} \in \mathcal{E}_{3} \mid \mathbf{T u}=\mathbf{0}\right\} . \tag{1.49}
\end{equation*}
$$

Theorem 1.4. $\operatorname{Im}(\mathbf{T})$ and $\operatorname{Ker}(\mathbf{T})$ are vector subspaces of \mathcal{E}_{3}. Moreover, \mathbf{T} has an inverse if and only if $\operatorname{Ker}(\mathbf{T})=\{\mathbf{0}\}$.

Proof. In fact, if $\mathbf{v}_{1}=\mathbf{T} \mathbf{u}_{1} \in \operatorname{Im}(\mathbf{T})$ and $\mathbf{v}_{2}=\mathbf{T} \mathbf{u}_{2} \in \operatorname{Im}(\mathbf{T})$, we have

$$
a \mathbf{v}_{1}+b \mathbf{v}_{2}=a \mathbf{T} \mathbf{u}_{1}+b \mathbf{T} \mathbf{u}_{2}=\mathbf{T}\left(a \mathbf{u}_{1}+b \mathbf{u}_{2}\right)
$$

so that $a \mathbf{v}_{1}+b \mathbf{v}_{2} \in \operatorname{Im}(\mathbf{T})$. Moreover, if $\mathbf{u}_{1}, \mathbf{u}_{2} \in \operatorname{Ker}(\mathbf{T})$, we have $\mathbf{T} \mathbf{u}_{1}=\mathbf{T} \mathbf{u}_{2}=\mathbf{0}$ and therefore

$$
\mathbf{0}=a \mathbf{T} \mathbf{u}_{1}+b \mathbf{T} \mathbf{u}_{2}=\mathbf{T}\left(a \mathbf{u}_{1}+b \mathbf{u}_{2}\right)
$$

so that $a \mathbf{u}_{1}+b \mathbf{u}_{2} \in \operatorname{Ker}(\mathbf{T})$. Finally, if \mathbf{T} has an inverse, the condition $\mathbf{T}(\mathbf{0})=\mathbf{0}$ implies that the inverse image of the zero vector of \mathcal{E}_{3} contains only the zero vector, i.e., $\operatorname{Ker}(\mathbf{T})=\{\mathbf{0}\}$. Conversely, if this condition implied the existence of two vectors $\mathbf{u}^{\prime}, \mathbf{u}^{\prime \prime} \in \mathcal{E}_{3}$ such that $\mathbf{T u ^ { \prime }}=\mathbf{T u} \mathbf{u}^{\prime \prime}$, we would have $\mathbf{T}\left(\mathbf{u}^{\prime}-\mathbf{u}^{\prime \prime}\right)=\mathbf{0}$. From this relation it would follow that $\mathbf{u}^{\prime}-\mathbf{u}^{\prime \prime} \in \operatorname{Ker}(\mathbf{T})$ and therefore $\mathbf{u}^{\prime}-\mathbf{u}^{\prime \prime}=\mathbf{0}$.

As a consequence of the previous results, we can say that \mathbf{T} is an isomorphism if and only if

$$
\begin{equation*}
\operatorname{Im}(\mathbf{T})=\mathcal{E}_{3}, \quad \operatorname{Ker}(\mathbf{T})=\{\mathbf{0}\} . \tag{1.50}
\end{equation*}
$$

Theorem 1.5. Let us consider a tensor $\mathbf{T} \in \operatorname{Lin}\left(\mathcal{E}_{3}\right)$ and a basis $\left(\mathbf{e}_{i}\right)$ of \mathcal{E}_{3}. Then the following conditions are equivalent:

1. \mathbf{T} is an isomorphism;
2. the vectors $\mathbf{T}\left(\mathbf{e}_{i}\right)$ represent a basis \mathcal{E}_{3};
3. the representative matrix $\left(T_{j}^{i}\right)$ of \mathbf{T} with respect to the basis $\left(\mathbf{e}_{i}\right)$ is not singular.

Proof. 1. $\Longrightarrow 2$. In fact, from the conditions $\lambda^{i} \mathbf{T e}_{i}=\mathbf{T}\left(\lambda^{i} \mathbf{e}_{i}\right)=\mathbf{0}$ and (1.50) ${ }_{2}$, it follows that $\lambda^{i} \mathbf{e}_{i}=\mathbf{0}$; consequently, $\lambda^{i}=0$, since $\left(\mathbf{e}_{i}\right)$ is a basis and the vectors $\mathbf{T} \mathbf{e}_{i}$ are independent. Moreover, if \mathbf{T} is an isomorphism, then for any $\mathbf{v} \in \mathcal{E}_{3}$ there exists a unique $\mathbf{u} \in \mathcal{E}_{3}$ such that $\mathbf{v}=\mathbf{T u}=u^{i} \mathbf{T e}_{i}$, so that the vectors $\mathbf{T e}_{i}$ represent a basis of \mathcal{E}_{3}.
2. $\Longrightarrow 3$. In fact, the condition $\lambda^{i} \mathbf{T e}_{i}=\mathbf{0}$ can be written $\lambda^{i} T_{i}^{h} \mathbf{e}_{h}=\mathbf{0}$ so that, due to (2), the homogeneous system $\lambda^{i} T_{i}^{h}=0$ must admit only the vanishing solution and therefore the matrix $\left(T_{j}^{i}\right)$ is not singular.
$3 . \Longrightarrow 1$. In terms of components, $\mathbf{v}=\mathbf{T u}$ is expressed by the system

$$
\begin{equation*}
v^{i}=T_{h}^{i} u^{h} \tag{1.51}
\end{equation*}
$$

For any choice of the vector $\mathbf{v} \in \mathcal{E}_{3}$, this system can be considered as a linear system of n equations with n unknowns u^{h}, which admits one and only one solution, when $\left(T_{j}^{i}\right)$ is not singular. Consequently, \mathbf{T} is an isomorphism.
To conclude this section, the transformation rules under a base change $\left(\mathbf{e}_{i}\right) \longrightarrow$ $\left(\mathbf{e}_{i}^{\prime}\right)$ of the components of a Euclidean second-order tensor will be derived. First, from (1.48), we have

$$
\mathbf{T}=T^{i j} \mathbf{e}_{i} \otimes \mathbf{e}_{j}=T^{\prime h k} \mathbf{e}_{h}^{\prime} \otimes \mathbf{e}_{k}^{\prime}
$$

so that, recalling (1.25), we find

$$
\left(A^{-1}\right)_{i}^{h}\left(A^{-1}\right)_{j}^{k} T^{i j} \mathbf{e}_{h}^{\prime} \otimes \mathbf{e}_{k}^{\prime}=T^{\prime h k} \mathbf{e}_{h}^{\prime} \otimes \mathbf{e}_{k}^{\prime}
$$

Since the tensors $\left(\mathbf{e}_{h}^{\prime} \otimes \mathbf{e}_{k}^{\prime}\right)$ form a basis of $\operatorname{Lin}\left(\mathcal{E}_{3}\right)$, we have

$$
\begin{equation*}
T^{\prime h k}=\left(A^{-1}\right)_{i}^{h}\left(A^{-1}\right)_{j}^{k} T^{i j} \tag{1.52}
\end{equation*}
$$

Similarly, starting from (1.46) $)_{2,3}$ and taking into account (1.25), we can derive the following transformation formulae for mixed and covariant components:

$$
\begin{align*}
T_{k}^{\prime h} & =\left(A^{-1}\right)_{i}^{h} A_{k}^{j} T_{j}^{i} \tag{1.53}\\
T_{h k}^{\prime} & =A_{h}^{i} A_{k}^{j} T_{i j} \tag{1.54}
\end{align*}
$$

Remark 1.1. In the following sections we will often use the notation $\mathbf{u} \cdot \mathbf{T}$. It denotes the linear mapping $\mathcal{E}_{3} \rightarrow \mathcal{E}_{3}$ that, in terms of components, is written

$$
\begin{equation*}
v^{i}=u^{j} T_{j}^{i} \tag{1.55}
\end{equation*}
$$

When the tensor \mathbf{T} is symmetric, we have

$$
\mathbf{u} \cdot \mathbf{T}=\mathbf{T u}
$$

Remark 1.2. It is worthwhile noting that the relations (1.51) to (1.54) can be written adopting matrix notation. For instance, in agreement with the convention that the product of two matrices is calculated by rows times columns, the following form can be given to (1.54):

$$
\begin{equation*}
T^{\prime}=A^{T} T A, \tag{1.56}
\end{equation*}
$$

where T and T^{\prime} are the matrices formed with the components of \mathbf{T} and \mathbf{T}^{\prime} with respect to the bases $\left(\mathbf{e}_{i}\right)$ and $\left(\mathbf{e}_{i}^{\prime}\right)$, respectively, and A denotes the matrix of the base change $\mathbf{e}_{i} \rightarrow \mathbf{e}_{i}^{\prime}$, see (1.25). It is also important to note that in the literature, usually,
the same symbol denotes both the tensor \mathbf{T} and its representative matrix T in a fixed basis. Consequently, relation (1.56) is also written as

$$
\mathbf{T}^{\prime}=\mathbf{A}^{T} \mathbf{T} \mathbf{A} .
$$

1.8 Eigenvalues and Eigenvectors of a Euclidean Second-Order Tensor

A real number λ is an eigenvalue of the tensor \mathbf{T} if there exists a nonvanishing vector \mathbf{u} called an eigenvector belonging to the eigenvalue λ, satisfying the eigenvalue equation

$$
\begin{equation*}
\mathbf{T u}=\lambda \mathbf{u} \tag{1.57}
\end{equation*}
$$

Equation (1.57) reflects the following problem, which has many applications: the tensor \mathbf{T} associates to any vector \mathbf{u} the vector \mathbf{v}, generally different from \mathbf{u}, both in norm and direction. The vectors which are not rotated by the linear application \mathbf{T} are just the solutions of (1.57).

We easily recognize that the eigenvectors belonging to the same eigenvalue λ form a vector subspace of \mathcal{E}_{3}, called the characteristic space $V(\lambda)$ associated with the eigenvalue λ. The geometric multiplicity of λ is the dimension m of this subspace. The spectrum of \mathbf{T} is the list $\lambda_{1} \leq \lambda_{2} \leq \ldots$ of its eigenvalues.

Theorem 1.6. The following properties hold:

1. the eigenvalues of a positive definite tensor

$$
\mathbf{v} \cdot \mathbf{T v}>0 \quad \forall \mathbf{v} \in \mathcal{E}_{3},
$$

are positive;
2. the characteristic spaces of symmetric tensors are orthogonal to each other.

Proof. If T is a symmetric positive definite tensor, λ its eigenvalue, and \mathbf{u} one of the eigenvectors corresponding to λ, we have

$$
\mathbf{u} \cdot \mathbf{T} \mathbf{u}=\lambda|\mathbf{u}|^{2}
$$

Since $|\mathbf{u}|^{2}>0$, the previous equation implies $\lambda>0$. Moreover, if λ_{1} and λ_{2} are distinct eigenvalues of \mathbf{T}, and $\mathbf{u}_{1}, \mathbf{u}_{2}$ are the two corresponding eigenvectors, we can write

$$
\mathbf{T} \mathbf{u}_{1}=\lambda_{1} \mathbf{u}_{1}, \quad \mathbf{T} \mathbf{u}_{2}=\lambda_{2} \mathbf{u}_{2},
$$

so that

$$
\mathbf{u}_{2} \cdot \mathbf{T} \mathbf{u}_{1}=\lambda_{1} \mathbf{u}_{1} \cdot \mathbf{u}_{2}, \quad \mathbf{u}_{1} \cdot \mathbf{T} \mathbf{u}_{2}=\lambda_{2} \mathbf{u}_{1} \cdot \mathbf{u}_{2} .
$$

From the symmetry $\left(\mathbf{T}=\mathbf{T}^{T}\right)$ of \mathbf{T}, we derive $\mathbf{u}_{2} \cdot \mathbf{T} \mathbf{u}_{1}=\mathbf{u}_{1} \cdot \mathbf{T} \mathbf{u}_{2}$. Consequently, we find

$$
\left(\lambda_{2}-\lambda_{1}\right) \mathbf{u}_{1} \cdot \mathbf{u}_{2}=0
$$

and the theorem is proved, since $\lambda_{2}-\lambda_{1} \neq 0$.
Let $\left(\mathbf{e}_{i}\right)$ be a fixed basis; when the representation of \mathbf{T} in (1.46) $)_{1}$ is used, the eigenvalue equation becomes

$$
T^{i j} \mathbf{e}_{i} \otimes \mathbf{e}_{j}(\mathbf{u})=T^{i j} \mathbf{e}_{i} \mathbf{e}_{j} \cdot \mathbf{u}=\lambda u^{i} \mathbf{e}_{i}
$$

or equivalently,

$$
T^{i j} u_{j} \mathbf{e}_{i}=\lambda g^{i j} u_{j} \mathbf{e}_{i} .
$$

The unknowns of this homogeneous system are the covariant components of the eigenvector \mathbf{u} :

$$
\begin{equation*}
\left(T^{i j}-\lambda g^{i j}\right) u_{j}=0 \tag{1.58}
\end{equation*}
$$

This system has nonvanishing solutions if and only if the eigenvalue λ is a solution of the characteristic equation

$$
\begin{equation*}
\operatorname{det}\left(T^{i j}-\lambda g^{i j}\right)=0 \tag{1.59}
\end{equation*}
$$

which is a third-degree equation in the unknown λ. The multiplicity of λ, as a root of (1.59), is called the algebraic multiplicity of the eigenvalue.

If the representation of \mathbf{T} in $(1.46)_{2}$ is used, we have

$$
T_{j}^{i} u^{j} \mathbf{e}_{i}=\lambda u^{i} \mathbf{e}_{i}=\lambda \delta_{j}^{i} u^{j} \mathbf{e}_{i},
$$

so that the eigenvalue equation, written in mixed components, becomes

$$
\begin{equation*}
\left(T_{j}^{i}-\lambda \delta_{j}^{i}\right) u^{j}=0, \tag{1.60}
\end{equation*}
$$

and the characteristic equation is

$$
\begin{equation*}
\operatorname{det}\left(T_{j}^{i}-\lambda \delta_{j}^{i}\right)=0 \tag{1.61}
\end{equation*}
$$

Finally, using the representation $(1.46)_{3}$, we have

$$
\begin{array}{r}
\left(T_{i j}-\lambda g_{i j}\right) u^{j}=0, \\
\operatorname{det}\left(T_{i j}-\lambda g_{i j}\right)=0 . \tag{1.63}
\end{array}
$$

Remark 1.3. Developing (1.61), we obtain a third-degree equation having the following form:

$$
\begin{equation*}
-\lambda^{3}+I_{1} \lambda^{2}-I_{2} \lambda+I_{3}=0, \tag{1.64}
\end{equation*}
$$

where the coefficients I_{1}, I_{2}, and I_{3} are called the first, second, and third invariant, respectively, and are defined as follows:

$$
\begin{equation*}
I_{1}=T_{i}^{i}, \quad I_{2}=\frac{1}{2}\left(T_{i}^{i} T_{j}^{j}-T_{j}^{i} T_{i}^{j}\right), \quad I_{3}=\operatorname{det}\left(T_{j}^{i}\right) \tag{1.65}
\end{equation*}
$$

It is clear that the roots of equation (1.64) are independent of the basis; that is, the eigenvalues are characteristic of the tensor \mathbf{T} if and only if the coefficients of the characteristic equation (1.64) are invariant with respect to base changes. We leave to reader to prove this property (see hint in Exercise 1). If another kind of components is used, the expressions for the invariant coefficients change. For example, for covariant components, the expressions become

$$
\begin{gather*}
I_{1}=g^{i j} T_{i j}, \quad I_{2}=\frac{1}{2}\left(g^{i j} T_{i j} g^{h k} T_{h k}-g^{i h} T_{h j} g^{j k} T_{i k}\right), \tag{1.66}\\
I_{3}=\operatorname{det}\left(g^{i h} T_{h j}\right)=\operatorname{det}\left(g^{i h}\right) \operatorname{det}\left(T_{h j}\right) . \tag{1.67}
\end{gather*}
$$

Theorem 1.7. If \mathbf{T} is a symmetric tensor, then

1. the geometric and algebraic multiplicities of an eigenvalue λ coincide;
2. it is always possible to determine at least one orthonormal basis $\left(\mathbf{u}_{i}\right)$ whose elements are eigenvectors of \mathbf{T};
3. in these bases, one of the following representation of \mathbf{T} is possible:
i) if all the eigenvalues are distinct, then

$$
\begin{equation*}
\mathbf{T}=\sum_{i=1}^{3} \lambda_{i} \mathbf{u}_{i} \otimes \mathbf{u}_{i} \tag{1.68}
\end{equation*}
$$

ii) if $\lambda_{1}=\lambda_{2} \neq \lambda_{3}$, then

$$
\begin{equation*}
\mathbf{T}=\lambda_{1}\left(\mathbf{I}-\mathbf{u}_{3} \otimes \mathbf{u}_{3}\right)+\lambda_{3} \mathbf{u}_{3} \otimes \mathbf{u}_{3} \tag{1.69}
\end{equation*}
$$

iii) if $\lambda_{1}=\lambda_{2}=\lambda_{3} \equiv \lambda$, then

$$
\begin{equation*}
\mathbf{T}=\lambda \mathbf{I} \tag{1.70}
\end{equation*}
$$

where \mathbf{I} is the identity tensor of \mathcal{E}_{3}.
Proof. We start by assuming that the property (1) has already been proved. Consequently, three cases are possible: the three eigenvalues are distinct, two are equal but different from the third one, or all of them are equal. In the first case, the eigenvector subspace $V\left(\lambda_{i}\right)$ belonging to the eigenvalue λ_{i} is one-dimensional and orthogonal to the others (see Theorem 1.5). Therefore, if a unit eigenvector \mathbf{u}_{i} is fixed in each of these subspaces, an orthonormal basis is obtained.

In the second case, the eigenvalue $\lambda_{1}=\lambda_{2}$ is associated with a two-dimensional eigenvector subspace $V\left(\lambda_{1}\right)$, so that it is always possible to find an orthonormal eigenvector pair $\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)$ in $V\left(\lambda_{1}\right)$. If a third unit vector \mathbf{u}_{3} is chosen in the one-dimensional eigenvector subspace $V\left(\lambda_{3}\right)$, orthogonal to the previous one, an orthonormal eigenvector basis (\mathbf{u}_{i}) is obtained.

Finally, if all the eigenvalues are equal to λ, the subspace $V(\lambda)$ is threedimensional, that is, it coincides with the whole space \mathcal{E}_{3} and it is certainly possible to determine an orthonormal eigenvector basis.

In conclusion, an orthonormal eigenvector basis ($\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$) can always be found. Since this basis is orthonormal, the contravariant, mixed, and covariant components of any tensor \mathbf{T} coincide; moreover, the reciprocal basis is identical to $\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right)$ and the tensor $g_{i j}$ has components $\delta_{i j}$.

Finally, all types of components of the tensor \mathbf{T} in the basis $\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right)$ are given by the diagonal matrix

$$
\left(T^{i j}\right)=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \tag{1.71}\\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right)
$$

In fact, using any one of the representation formulae (1.46), the eigenvalue equation $\mathbf{T} \mathbf{u}_{h}=\lambda_{h} \mathbf{u}_{h}$ can be written in the form

$$
T^{i j} \delta_{h j} \mathbf{u}_{i}=\lambda_{h} \delta_{h}^{i} \mathbf{u}_{i},
$$

from which we derive

$$
T^{i h}=\lambda_{h} \delta_{h}^{i},
$$

and (1.68) is proved. In the case (ii) (1.68) becomes

$$
\mathbf{T}=\lambda_{1}\left(\mathbf{u}_{1} \otimes \mathbf{u}_{1}+\mathbf{u}_{2} \otimes \mathbf{u}_{2}\right)+\lambda_{3} \mathbf{u}_{3} \otimes \mathbf{u}_{3} .
$$

But the unit matrix can be written as

$$
\begin{equation*}
\mathbf{I}=\mathbf{u}_{1} \otimes \mathbf{u}_{1}+\mathbf{u}_{2} \otimes \mathbf{u}_{2}+\mathbf{u}_{3} \otimes \mathbf{u}_{3} \tag{1.72}
\end{equation*}
$$

and (1.69) is also verified. Finally, (1.70) is a trivial consequence of (1.68) and (1.72).

The relation (1.68) is called a spectral decomposition of \mathbf{T}.
The following square-root theorem is important in finite deformation theory (see Chap. 3):

Theorem 1.8. If \mathbf{T} is a positive definite symmetric tensor, then one and only one positive definite symmetric tensor \mathbf{U} exists such that

$$
\begin{equation*}
\mathbf{U}^{2}=\mathbf{T} \tag{1.73}
\end{equation*}
$$

Proof. Since T is symmetric and positive definite from the previous theorem it follows that

$$
\mathbf{T}=\sum_{i=1}^{3} \lambda_{i} \mathbf{u}_{i} \otimes \mathbf{u}_{i}
$$

where $\lambda_{i}>0$ and $\left(\mathbf{u}_{i}\right)$ is an orthonormal basis. Consequently, we can define the symmetric positive definite tensor

$$
\begin{equation*}
\mathbf{U}=\sum_{i=1}^{3} \sqrt{\lambda_{i}} \mathbf{u}_{i} \otimes \mathbf{u}_{i} \tag{1.74}
\end{equation*}
$$

In order to verify that $\mathbf{U}^{2}=\mathbf{T}$, it will be sufficient to prove that they coincide when applied to eigenvectors. In fact,

$$
\begin{align*}
\mathbf{U}^{2} \mathbf{u}_{h} & =\left(\sum_{i=1}^{3} \sqrt{\lambda_{i}} \mathbf{u}_{i} \otimes \mathbf{u}_{i}\right)\left(\sum_{i=1}^{3} \sqrt{\lambda_{i}} \mathbf{u}_{i} \otimes \mathbf{u}_{i}\right) \mathbf{u}_{h} \tag{1.75}\\
& =\left(\sum_{i=1}^{3} \sqrt{\lambda_{i}} \mathbf{u}_{i} \otimes \mathbf{u}_{i}\right) \sqrt{\lambda_{h}} \mathbf{u}_{h}=\lambda_{h} \mathbf{u}_{h}=\mathbf{T} \mathbf{u}_{h} \tag{1.76}
\end{align*}
$$

To verify that \mathbf{U} is uniquely defined, suppose that there is another symmetric positive definite tensor \mathbf{V} such that $\mathbf{V}^{2}=\mathbf{T}$. Then we have

$$
\left(\mathbf{U}^{2}-\mathbf{V}^{2}\right)\left(\mathbf{u}_{i}\right)=\mathbf{0} \Rightarrow \mathbf{U}^{2}=\mathbf{V}^{2}
$$

Recalling (1.74) and the spectral representation (1.68), we conclude that the eigenvalues of \mathbf{V} are $\pm \sqrt{\lambda_{i}}$. But \mathbf{V} is also supposed to be symmetric and positive definite so that it coincides with \mathbf{U}.

1.9 Orthogonal Tensors

A 2-tensor \mathbf{Q} is orthogonal if, for any pair of vectors in \mathcal{E}_{3},

$$
\begin{equation*}
\mathbf{Q u} \cdot \mathbf{Q v}=\mathbf{u} \cdot \mathbf{v} \tag{1.77}
\end{equation*}
$$

In other words, a 2-tensor is orthogonal if, for any pair of vectors \mathbf{u}, \mathbf{v},

- the length of $\mathbf{Q u}$ is equal to the length of \mathbf{u}; and
- the angle between $\mathbf{Q u}$ and $\mathbf{Q v}$ is equal to the angle between \mathbf{u} and \mathbf{v}.

In particular, an orthogonal tensor transforms an orthonormal basis $\left(\mathbf{e}_{i}\right)$ into a system of orthonormal vectors $\left(\mathbf{Q e}_{i}\right)$. In Sect. 1.3 it was noted that such a system is linearly independent, so that $\left(\mathbf{Q e}_{i}\right)$ is again a basis. Moreover, from Theorem 1.4 we can say that an orthogonal tensor is an isomorphism and its representative matrix $Q=\left(Q_{i}^{J}\right)$ in a given basis $\left(\mathbf{e}_{i}\right)$ is not singular:

$$
\begin{equation*}
\operatorname{det} Q \neq 0 \tag{1.78}
\end{equation*}
$$

In terms of this matrix, the condition (1.77) becomes

$$
\begin{equation*}
g_{h k} Q_{i}^{h} Q_{j}^{k}=g_{i j} \tag{1.79}
\end{equation*}
$$

which implies the following result: In any orthonormal basis $\left(\mathbf{e}_{i}\right)$, an orthogonal tensor is represented by an orthogonal matrix:

$$
\begin{gather*}
Q^{T} Q=I \Leftrightarrow Q^{T}=Q^{-1} \tag{1.80}\\
\operatorname{det} Q= \pm 1 .
\end{gather*}
$$

It is clear that the composition of two orthogonal tensors leads again to an orthogonal tensor, that the identity is an orthogonal tensor, and that the inverse of an orthogonal tensor is again orthogonal. Therefore, the set of all the orthogonal tensors is a group. We note that these tensors are also called rotations. In particular those rotations for which $\operatorname{det} Q=1$ are called proper rotations. Usually, the group of rotations is denoted by $O(3)$, and the subgroup of proper rotations is denoted by $S O(3)$.

The following is very important:
Theorem 1.9. A nonidentical rotation \mathbf{Q} always has the eigenvalue $\lambda=1$ with geometric multiplicity equal to 1 ; i.e., a one-dimensional subspace A exists which is invariant with respect to \mathbf{Q}. Moreover, if A_{\perp} is the subspace of all the vectors which are orthogonal to A and $\mathbf{Q}_{\perp} \neq \mathbf{I}$ is the restriction of \mathbf{Q} to \mathbf{A}_{\perp}, then $\lambda=1$ is the only eigenvalue.

Proof. The eigenvalue equation for \mathbf{Q} in an orthonormal basis $\left(\mathbf{e}_{i}\right)$ is:

$$
\begin{equation*}
\left(Q_{j}^{i}-\lambda \delta_{j}^{i}\right) u^{j}=0, \tag{1.81}
\end{equation*}
$$

where (Q_{j}^{i}) is orthogonal, and the characteristic equation is

$$
\begin{equation*}
P_{3}(\lambda)=-\lambda^{3}+I_{1} \lambda^{2}-I_{2} \lambda+I_{3}=0 \tag{1.82}
\end{equation*}
$$

with the invariants given by the following expressions:

$$
\begin{align*}
& I_{1}=Q_{1}^{1}+Q_{2}^{2}+Q_{3}^{3}, \\
& I_{2}=\operatorname{det}\left(\begin{array}{ll}
Q_{2}^{2} & Q_{2}^{3} \\
Q_{3}^{2} & Q_{3}^{3}
\end{array}\right)+\operatorname{det}\left(\begin{array}{ll}
Q_{1}^{1} & Q_{1}^{3} \\
Q_{3}^{1} & Q_{3}^{3}
\end{array}\right)+\operatorname{det}\left(\begin{array}{ll}
Q_{1}^{1} & Q_{1}^{2} \\
Q_{2}^{1} & Q_{2}^{2}
\end{array}\right), \\
& I_{3}=\operatorname{det}\left(Q_{i}^{j}\right)=1 . \tag{1.83}
\end{align*}
$$

We note that the determinants appearing in (1.83) are the cofactors A_{j}^{i} of Q_{1}^{1}, Q_{2}^{2}, and Q_{3}^{3}, respectively. On the other hand, the condition $\operatorname{det}\left(Q_{i}^{j}\right)=1 \mathrm{implies}$ that

$$
A_{j}^{i}=\left(Q^{-1}\right)_{j}^{i}=\left(Q^{T}\right)_{j}^{i}
$$

that is,

$$
\begin{equation*}
A_{1}^{1}=Q_{1}^{1}, \quad A_{2}^{2}=Q_{2}^{2}, \quad A_{3}^{3}=Q_{3}^{3} . \tag{1.84}
\end{equation*}
$$

Therefore, the characteristic equation becomes

$$
\begin{equation*}
P_{3}(\lambda)=-\lambda^{3}+I_{1} \lambda^{2}-I_{1} \lambda+1=0 \tag{1.85}
\end{equation*}
$$

and $\lambda=1$ is a root.
Next, we have to verify that the eigenspace A belonging to $\lambda=1$ is onedimensional. Since the dimension of A is equal to $3-p$, where $p \leq 2$ is the rank of the matrix $\left(Q_{j}^{i}-\delta_{j}^{i}\right)$, we have to prove that $p=2$. The value $p=0$ is not
admissible since in such a case Q would be the unit matrix. If p were equal to 1 , all the 2×2-minors of the above matrix should vanish:

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{cc}
Q_{1}^{1}-1 & Q_{1}^{2} \\
Q_{2}^{1} & Q_{2}^{2}-1
\end{array}\right)=A_{3}^{3}-Q_{1}^{1}-Q_{2}^{2}+1=0 \\
& \operatorname{det}\left(\begin{array}{cc}
Q_{1}^{1}-1 & Q_{1}^{3} \\
Q_{3}^{1} & Q_{3}^{3}-1
\end{array}\right)=A_{2}^{2}-Q_{1}^{1}-Q_{3}^{3}+1=0 \\
& \operatorname{det}\left(\begin{array}{cc}
Q_{2}^{2}-1 & Q_{2}^{3} \\
Q_{3}^{2} & Q_{3}^{3}-1
\end{array}\right)=A_{1}^{1}-Q_{2}^{2}-Q_{3}^{3}+1=0
\end{aligned}
$$

These relations and (1.84) would imply $Q_{1}^{1}=Q_{2}^{2}=Q_{3}^{3}=1$. From this result and the orthogonality conditions

$$
\begin{aligned}
& \left(Q_{1}^{1}\right)^{2}+\left(Q_{1}^{2}\right)^{2}+\left(Q_{1}^{3}\right)^{2}=1, \\
& \left(Q_{2}^{1}\right)^{2}+\left(Q_{2}^{2}\right)^{2}+\left(Q_{2}^{3}\right)^{2}=1, \\
& \left(Q_{3}^{1}\right)^{2}+\left(Q_{3}^{2}\right)^{2}+\left(Q_{3}^{3}\right)^{2}=1,
\end{aligned}
$$

it should follow that $Q_{j}^{i}=\delta_{j}^{i}$, which violates the hypothesis that Q is not the unit matrix.

It remains to prove that $\lambda=1$ is the only eigenvalue of \mathbf{Q}. First, we note that A_{\perp} is a two-dimensional subspace. If $\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)$ is an orthonormal basis of A_{\perp} and \mathbf{u}_{3} is a unit vector of A, it is clear that $\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right)$ is an orthonormal basis of the whole vector space \mathcal{E}_{3}. Since the rotation \mathbf{Q} does not modify the scalar product of two vectors, we have

$$
\begin{aligned}
& \mathbf{Q u} \mathbf{u}_{1}=\bar{Q}_{1}^{1} \mathbf{u}_{1}+\bar{Q}_{1}^{2} \mathbf{u}_{2}, \\
& \mathbf{Q} \mathbf{u}_{2}=\bar{Q}_{2}^{1} \mathbf{u}_{1}+\bar{Q}_{2}^{2} \mathbf{u}_{2}, \\
& \mathbf{Q u} \mathbf{u}_{3}=\mathbf{u}_{3} .
\end{aligned}
$$

Therefore, the representative matrix \bar{Q} of \mathbf{Q} in the basis $\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right)$ is

$$
\bar{Q}=\left(\begin{array}{ccc}
\bar{Q}_{1}^{1} & \bar{Q}_{1}^{2} & 0 \\
\bar{Q}_{2}^{1} & \bar{Q}_{2}^{2} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and the orthogonality conditions are

$$
\begin{aligned}
& \left(\bar{Q}_{1}^{1}\right)^{2}+\left(\bar{Q}_{1}^{2}\right)^{2}=1, \\
& \left(\bar{Q}_{2}^{1}\right)^{2}+\left(\bar{Q}_{2}^{2}\right)^{2}=1, \\
& \bar{Q}_{1}^{1} \bar{Q}_{2}^{1}+\bar{Q}_{1}^{2} \bar{Q}_{2}^{2}=0 .
\end{aligned}
$$

These relations imply the existence of an angle $\varphi \in(0,2 \pi)$ such that

$$
\bar{Q}=\left(\begin{array}{ccc}
\cos \varphi & -\sin \varphi & 0 \\
\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(note that $\varphi=0$ and $\varphi=2 \pi$ correspond to the unit matrix). Therefore, in the basis $\left(\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right)$ the characteristic equation becomes

$$
P_{3}(\lambda)=(1-\lambda)\left(\lambda^{2}-2 \lambda \cos \varphi+1\right)=0
$$

so that, if $\mathbf{Q}_{\perp} \neq \mathbf{I}$ (i.e., $\varphi \neq \pi$), then the only real eigenvalue is $\lambda=1$.
The one-dimensional eigenspace belonging to the eigenvalue $\lambda=1$ is called the rotation axis.

1.10 Cauchy's Polar Decomposition Theorem

In this section we prove a very important theorem, called Cauchy's polar decomposition theorem.

Theorem 1.10. Let \mathbf{F} be a 2-tensor for which $\operatorname{det} \mathbf{F}>0$ in a Euclidean vector space \mathcal{E}_{3}. Then there exist positive definite, symmetric tensors \mathbf{U}, \mathbf{V} and a proper rotation \mathbf{R} such that

$$
\begin{equation*}
\mathbf{F}=\mathbf{R} \mathbf{U}=\mathbf{V} \mathbf{R} \tag{1.86}
\end{equation*}
$$

where \mathbf{U}, \mathbf{V}, and \mathbf{R} are uniquely defined by the relations

$$
\begin{align*}
& \mathbf{U}=\sqrt{\mathbf{F}^{T} \mathbf{F}}, \quad \mathbf{V}=\sqrt{\mathbf{F} \mathbf{F}^{T}} \\
& \mathbf{R}=\mathbf{F U}^{-1}=\mathbf{V}^{-1} \mathbf{F} . \tag{1.87}
\end{align*}
$$

Proof. To simplify the notation, an orthonormal basis $\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$ is chosen in \mathcal{E}_{3}. Moreover, we denote by T the representative matrix of any 2-tensor \mathbf{T} with respect to the basis $\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$.

First, we will prove that the decompositions are unique. In fact, using the matrix notation, if $F=R^{\prime} U^{\prime}=V^{\prime} R^{\prime}$ are any other two decompositions, we obtain

$$
F^{T} F=U^{\prime} R^{\prime T} R^{\prime} U^{\prime}=U^{\prime 2},
$$

so that, from Theorem 1.8, U^{\prime} is uniquely determined and coincides with (1.87) . Consequently, $R^{\prime}=F\left(U^{\prime}\right)^{-1}=F U^{-1}=R$ and then $V^{\prime}=R^{\prime} U^{\prime} R^{T}=$ $R U R^{T}=V$.

To prove the existence, we note that the tensor $C=F^{T} F$ is symmetric and positive definite. Therefore, Theorem 1.8 implies that \mathbf{U} exists and that it is the only tensor satisfying the equation $U^{2}=C$. Choosing $R=F U^{-1}$, we obtain $F=R U$. The following relations prove that R is a proper rotation:

$$
\begin{gathered}
R^{T} R=U^{-1} F^{T} F U^{-1}=U^{-1} U^{2} U^{-1}=I \\
\operatorname{det} R=\operatorname{det} F \operatorname{det} U^{-1}>0
\end{gathered}
$$

Finally, the second decomposition is obtained by taking $V=R U R^{T}$.

1.11 Higher Order Tensors

The definition of a Euclidean second-order tensor introduced in the previous section is generalized here to Euclidean higher order tensors. A third-order Euclidean tensor or, in short, a 3-tensor, is a mapping

$$
\mathbf{T}: \mathcal{E}_{3} \times \mathcal{E}_{3} \longrightarrow \mathcal{E}_{3}
$$

which is linear with respect to each variable. The Levi-Civita symbol introduced by (1.34) is an example of a third-order tensor.

If a basis $\left(\mathbf{e}_{i}\right)$ is introduced in \mathcal{E}_{3}, then for all $\mathbf{u}, \mathbf{v} \in \mathcal{E}_{3}$, we have the relation

$$
\mathbf{T}(\mathbf{u}, \mathbf{v})=\mathbf{T}\left(u^{i} \mathbf{e}_{i}, v^{j} \mathbf{e}_{j}\right)=u^{i} v^{j} \mathbf{T}\left(\mathbf{e}_{i}, \mathbf{e}_{j}\right),
$$

from which, introducing the notation

$$
\mathbf{T}\left(\mathbf{e}_{i}, \mathbf{e}_{j}\right)=T_{i j}^{k} \mathbf{e}_{k},
$$

we also have

$$
\begin{equation*}
\mathbf{T}(\mathbf{u}, \mathbf{v})=T_{i j}^{k} u^{i} v^{j} \mathbf{e}_{k} . \tag{1.88}
\end{equation*}
$$

The tensor product of the vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ is the following third-order tensor:

$$
\begin{equation*}
\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}(\mathbf{x}, \mathbf{y})=\mathbf{u}(\mathbf{v} \cdot \mathbf{x})(\mathbf{w} \cdot \mathbf{y}) \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{E}_{3} . \tag{1.89}
\end{equation*}
$$

From (1.23), Eq. (1.88) becomes

$$
\mathbf{T}(\mathbf{u}, \mathbf{v})=T_{i j}^{k}\left(\mathbf{e}^{i} \cdot \mathbf{u}\right)\left(\mathbf{e}^{j} \cdot \mathbf{v}\right) \mathbf{e}_{k}=T_{i j}^{k} \mathbf{e}_{k} \otimes \mathbf{e}^{i} \otimes \mathbf{e}^{j}(\mathbf{u}, \mathbf{v})
$$

so that, from the arbitrariness of vectors \mathbf{u}, \mathbf{v}, we obtain

$$
\begin{equation*}
\mathbf{T}=T_{i j}^{k} \mathbf{e}_{k} \otimes \mathbf{e}^{i} \otimes \mathbf{e}^{j} \tag{1.90}
\end{equation*}
$$

Relation (1.88) can be written using different types of components of the tensor \mathbf{T}. For example, recalling the definition of reciprocal basis, we derive

$$
\mathbf{T}=T_{j}^{l k} \mathbf{e}_{l} \otimes \mathbf{e}^{j} \otimes \mathbf{e}_{k}=T^{l m k} \mathbf{e}_{l} \otimes \mathbf{e}_{m} \otimes \mathbf{e}_{k}=T_{p q r} \mathbf{e}^{p} \otimes \mathbf{e}^{q} \otimes \mathbf{e}^{r},
$$

where

$$
T_{j}^{l k}=g^{l i} T_{i j}^{k}, \quad T^{l m k}=g^{l i} g^{m j} T_{i j}^{k}, \quad T_{p q r}=g_{p k} T_{q r}^{k},
$$

denote the different components of the tensor.
A third-order tensor can be also defined as a linear mapping

$$
\begin{equation*}
\mathbf{T}: \mathcal{E}_{3} \longrightarrow \operatorname{Lin}\left(\mathcal{E}_{3}\right), \tag{1.91}
\end{equation*}
$$

by again introducing the tensor product (1.89) as follows:

$$
\mathbf{u} \otimes \mathbf{v} \otimes \mathbf{w}(\mathbf{x})=(\mathbf{w} \cdot \mathbf{x}) \mathbf{u} \otimes \mathbf{v}
$$

In fact, from the equation

$$
\mathbf{T} \mathbf{u}=u^{i} \mathbf{T} \mathbf{e}_{i}
$$

and the representation

$$
\mathbf{T e}_{i}=T_{i}^{j k} \mathbf{e}_{j} \otimes \mathbf{e}_{k}
$$

we derive

$$
\mathbf{T}=T_{i}^{j k} \mathbf{e}_{j} \otimes \mathbf{e}_{k} \otimes \mathbf{e}^{i}
$$

Finally, a 4th-order tensor is a linear mapping $\mathbf{T}: \mathcal{E}_{3} \times \mathcal{E}_{3} \times \mathcal{E}_{3} \longrightarrow \mathcal{E}_{3}$ or, equivalently, a linear mapping $\mathbf{T}: \operatorname{Lin}\left(\mathcal{E}_{3}\right) \longrightarrow \operatorname{Lin}\left(\mathcal{E}_{3}\right)$. Later, we will prove that, in the presence of small deformations of an elastic system, the deformation state is described by a symmetric 2-tensor $E_{h k}$, while the corresponding stress state is expressed by another symmetric tensor $T_{h k}$. Moreover, the relation between these two tensors is linear:

$$
T_{h k}=\mathbb{C}_{h k}^{l m} E_{l m}
$$

where the 4th-order tensor $\mathbb{C}_{h k}^{l m}$ is called the linear elasticity tensor.

1.12 Euclidean Point Space

In this section a mathematical model of the ordinary three-dimensional Euclidean space will be given. A set E_{n}, whose elements will be denoted by capital letters A, B, \ldots, will be called an n-dimensional affine space if a mapping

$$
\begin{equation*}
f:(A, B) \in E_{n} \times E_{n} \rightarrow f(A, B) \equiv \overrightarrow{A B} \in \mathcal{E}_{n} \tag{1.92}
\end{equation*}
$$

exists between the pairs of elements of E_{n} and the vectors of a real n-dimensional vector space \mathcal{E}_{n}, such that
1.

$$
\begin{align*}
& \overrightarrow{A B}=-\overrightarrow{B A} \\
& \overrightarrow{A B}=\overrightarrow{A C}+\overrightarrow{C B} \tag{1.93}
\end{align*}
$$

2. for any $O \in E_{n}$ and any vector $\mathbf{u} \in \mathcal{E}_{n}$, one and only one element $P \in E_{n}$ exists such that

$$
\begin{equation*}
\overrightarrow{O P}=\mathbf{u} \tag{1.94}
\end{equation*}
$$

Then the elements of E_{n} will be called points; moreover, the points A, B of E_{n} that correspond to $\overrightarrow{A B}$, are called the initial and final point of $\overrightarrow{A B}$, respectively.

A frame of reference (O, \mathbf{e}_{i}) in an n-dimensional affine space E_{n} is the set of a point $O \in E_{n}$ and a basis $\left(\mathbf{e}_{i}\right)$ of \mathcal{E}_{n}. The point O is called the origin of the frame. For a fixed frame, the relation (1.94) can be written as

$$
\begin{equation*}
\overrightarrow{O P}=u^{i} \mathbf{e}_{i} \tag{1.95}
\end{equation*}
$$

where the real numbers u^{i} denote the contravariant components of \mathbf{u} in the basis $\left(\mathbf{e}_{i}\right)$. These components are also called the rectilinear coordinates of P in the frame $\left(O, \mathbf{e}_{i}\right)$. In order to derive the transformation formulae of the rectilinear coordinates (Sect. 1.1) of a point $P \in E_{3}$ for the frame change $\left(O, \mathbf{e}_{i}\right) \longrightarrow\left(O^{\prime}, \mathbf{e}_{i}^{\prime}\right)$, we note that

$$
\begin{equation*}
\overrightarrow{O P}=\overrightarrow{O O^{\prime}}+\overrightarrow{O^{\prime} P} \tag{1.96}
\end{equation*}
$$

Representing the vectors of (1.96) in both the frames, we have

$$
u^{i} \mathbf{e}_{i}=u_{O^{\prime}}^{i} \mathbf{e}_{i}+u^{\prime j} \mathbf{e}_{j}^{\prime},
$$

where $u_{O^{\prime}}^{i}$ denote the coordinates of O^{\prime} with respect to (O, \mathbf{e}_{i}). Recalling (1.25), from the previous relation we derive

$$
\begin{equation*}
u^{i}=u_{O^{\prime}}^{i}+A_{j}^{i} u^{\prime j} \tag{1.97}
\end{equation*}
$$

Finally, if \mathcal{E}_{n} is a Euclidean vector space, then E_{n} is called a Euclidean point space. In this case, the distance between two points A and B can be defined as the length of the unique vector \mathbf{u} corresponding to the pair (A, B). To determine the expression for the distance in terms of the rectilinear coordinates of the above points, we note that, in a given frame of reference $\left(O, \mathbf{e}_{i}\right)$, we have:

$$
\begin{equation*}
\overrightarrow{A B}=\overrightarrow{A O}+\overrightarrow{O B}=\overrightarrow{O B}-\overrightarrow{O A}=\left(u_{B}^{i}-u_{A}^{i}\right) \mathbf{e}_{i} \tag{1.98}
\end{equation*}
$$

where u_{B}^{i}, u_{A}^{i} denote the rectilinear coordinates of B and A, respectively. Therefore, the distance $|A B|$ can be written as

$$
\begin{equation*}
|A B|=\sqrt{g_{i j}\left(u_{B}^{i}-u_{A}^{i}\right)\left(u_{B}^{j}-u_{A}^{j}\right)}, \tag{1.99}
\end{equation*}
$$

and it assumes the Pitagoric form

$$
\begin{equation*}
|A B|=\sqrt{\sum_{i=1}^{n}\left(u_{B}^{i}-u_{A}^{i}\right)^{2}} \tag{1.100}
\end{equation*}
$$

when the basis $\left(\mathbf{e}_{i}\right)$ is orthonormal.

1.13 Exercises

1. In Sect. 1.3 the vectors of dual basis have been defined by (1.18). Then, it has been proved that

$$
\mathbf{e}^{i} \cdot \mathbf{e}_{j}=\delta_{j}^{i} .
$$

Prove that, this condition, in turn, leads to (1.18).
Hint: If we put $\mathbf{e}^{i}=\lambda^{i j} \mathbf{e}_{j}$, then from the above condition we obtain $\lambda^{i j} g_{i j}=\delta_{i j}$.
2. Prove that (1.38) is equivalent to the following formula

$$
(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}=\sqrt{g}\left|\begin{array}{ccc}
u^{1} & u^{2} & u^{3} \\
v^{1} & v^{2} & v^{3} \\
w^{1} & w^{2} & w^{3}
\end{array}\right| .
$$

In particular, verify that the elementary volume $d V$ of the three-dimensional Euclidean point space in the coordinates $\left(y^{i}\right)$ can be written as follows

$$
d V=\sqrt{g} d y^{1} d y^{2} d y^{3}
$$

3. Prove the invariance under base changes of the coefficients of the characteristic equation (1.64). Use the transformation formulae (1.53) of the mixed components of a tensor.
4. Using the properties of the cross product, determine the reciprocal basis (\mathbf{e}^{i}) of $\left(\mathbf{e}_{i}\right), i=1,2,3$.
The vectors of the reciprocal basis (\mathbf{e}^{i}) satisfy the condition (1.19)

$$
\mathbf{e}^{i} \cdot \mathbf{e}_{j}=\delta_{j}^{i},
$$

which constitutes a linear system of n^{2} equations in the n^{2} unknowns represented by the components of the vectors \mathbf{e}^{i}. For $n=3$, the reciprocal vectors are obtained by noting that, since \mathbf{e}^{1} is orthogonal to both \mathbf{e}_{2} and \mathbf{e}_{3}, we can write

$$
\mathbf{e}^{1}=k\left(\mathbf{e}_{2} \times \mathbf{e}_{3}\right)
$$

On the other hand, we also have

$$
\mathbf{e}^{1} \cdot \mathbf{e}_{1}=k\left(\mathbf{e}_{2} \times \mathbf{e}_{3}\right) \cdot \mathbf{e}_{1}=1
$$

so that

$$
\frac{1}{k}=\mathbf{e}_{1} \cdot \mathbf{e}_{2} \times \mathbf{e}_{3}
$$

Finally,

$$
\mathbf{e}^{1}=k \mathbf{e}_{2} \times \mathbf{e}_{3}, \quad \mathbf{e}^{2}=k \mathbf{e}_{3} \times \mathbf{e}_{1}, \quad \mathbf{e}^{3}=k \mathbf{e}_{1} \times \mathbf{e}_{2} .
$$

These relations also show that $k=1$ and the reciprocal basis coincides with $\left(\mathbf{e}_{i}\right)$, when this is orthonormal.
5. Evaluate the eigenvalues and eigenvectors of the tensor \mathbf{T} whose components in the orthonormal basis $\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$ are

$$
\left(\begin{array}{ccc}
4 & 2 & -1 \tag{1.101}\\
2 & 4 & 1 \\
-1 & 1 & 3
\end{array}\right)
$$

The eigenvalue equation is

$$
\mathbf{T} \mathbf{u}=\lambda \mathbf{u}
$$

This has nonvanishing solutions if and only if the eigenvalue λ is a solution of the characteristic equation

$$
\begin{equation*}
\operatorname{det}(\mathbf{T}-\lambda \mathbf{I})=0 \tag{1.102}
\end{equation*}
$$

In our case, the relation (1.102) requires that

$$
\operatorname{det}\left(\begin{array}{ccc}
4-\lambda & 2 & -1 \\
2 & 4-\lambda & 1 \\
-1 & 1 & 3-\lambda
\end{array}\right)=0
$$

corresponding to the following third-degree algebraic equation in the unknown λ :

$$
-\lambda^{3}+11 \lambda^{2}-34 \lambda+24=0
$$

whose solutions are

$$
\lambda_{1}=1, \quad \lambda_{2}=4, \quad \lambda_{3}=6 .
$$

The components of the corresponding eigenvectors can be obtained by solving the following homogeneous system:

$$
\begin{equation*}
T^{i j} u_{j}=\lambda \delta^{i j} u_{j} . \tag{1.103}
\end{equation*}
$$

For $\lambda=1$, Eq. (1.103) become

$$
\begin{aligned}
& 3 u_{1}+2 u_{2}-u_{3}=0 \\
& 2 u_{1}+3 u_{2}+u_{3}=0 \\
& -u_{1}+u_{2}+2 u_{3}=0
\end{aligned}
$$

Imposing the normalization condition

$$
u_{i} u_{i}=1
$$

to these equations gives

$$
u_{1}=\frac{1}{\sqrt{3}}, \quad u_{2}=-\frac{1}{\sqrt{3}}, \quad u_{3}=\frac{1}{\sqrt{3}} .
$$

Proceeding in the same way for $\lambda=4$ and $\lambda=6$, we obtain the components of the other two eigenvectors:

$$
\left(-\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right), \quad\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right) .
$$

From the symmetry of \mathbf{T}, the three eigenvectors are orthogonal (verify).
6. Let \mathbf{u} and λ be the eigenvectors and eigenvalues of the tensor \mathbf{T}. Determine the eigenvectors and eigenvalues of \mathbf{T}^{-1}.
If \mathbf{u} is an eigenvector of \mathbf{T}, then

$$
\mathbf{T} \mathbf{u}=\lambda \mathbf{u}
$$

Multiplying by \mathbf{T}^{-1}, we obtain the condition

$$
\mathbf{T}^{-1} \mathbf{u}=\frac{1}{\lambda} \mathbf{u}
$$

which shows that \mathbf{T}^{-1} and \mathbf{T} have the same eigenvectors, while the eigenvalues of \mathbf{T}^{-1} are the reciprocal of the eigenvalues of \mathbf{T}.
7. Let

$$
g_{11}=g_{22}=1, g_{12}=0
$$

be the coefficients of the scalar product \mathbf{g} with respect to the basis $\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right)$; determine the components of \mathbf{g} in the new basis defined by the transformation matrix (1.101) and check whether or not this new basis is orthogonal.
8. Given the basis $\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$ in which the coefficients of the scalar product are

$$
g_{11}=g_{22}=g_{33}=2, g_{12}=g_{13}=g_{23}=1,
$$

determine the reciprocal vectors and the scalar product of the two vectors $\mathbf{u}=$ $(1,0,0)$ and $\mathbf{v}=(0,1,0)$.
9. Given the tensor \mathbf{T} whose components in the orthogonal basis $\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$ are

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 2 & 3
\end{array}\right)
$$

determine its eigenvalues and eigenvectors.
10. Evaluate the eigenvalues and eigenvectors of a tensor \mathbf{T} whose components are expressed by the matrix (1.101), but use the basis $\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$ of the Exercise 6.
11. Evaluate the component matrix of the most general symmetric tensor \mathbf{T} in the basis $\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$, supposing that its eigenvectors \mathbf{u} are directed along the vector $\mathbf{n}=(0,-1,1)$ or are orthogonal to it; that is, verify the condition

$$
\mathbf{n} \cdot \mathbf{u}=-u_{2}+u_{3}=0
$$

Hint: Take the basis formed by the eigenvectors $\mathbf{e}_{1}^{\prime}=(1,0,0), \mathbf{e}_{2}^{\prime}=(0,1,1)$ and \mathbf{n}.
12. An axial vector \mathbf{u} transforms according to the law

$$
u_{i}= \pm A_{i}^{j} u_{j}
$$

Verify that the vector product $\mathbf{u} \times \mathbf{v}$ is an axial vector when both \mathbf{u} and \mathbf{v} are polar and a polar vector when one of them is axial.
13. Let E_{n} be a Euclidean n-dimensional vector space. If \mathbf{u} is a vector of E_{n}, determine the linear map

$$
\mathbb{P}: E_{n} \rightarrow E_{n},
$$

such that $\mathbb{P}(\mathbf{v}) \cdot \mathbf{u}=0, \forall \mathbf{v} \in E_{n}$. Determine the representative matrix P of \mathbb{P} in a basis $\left(\mathbf{e}_{i}\right)$ of E_{n}.
Hint: The component of \mathbf{v} along \mathbf{u} is $\mathbf{u} \cdot \mathbf{v}$ so that $\mathbb{P}(\mathbf{v})=\mathbf{v}-(\mathbf{u} \cdot \mathbf{v}) \mathbf{u}=\mathbf{v}-\mathbf{u} \otimes \mathbf{u} \cdot \mathbf{v}$.
14. Let \mathbf{S} and \mathbf{T} be two endomorphisms of the vector space E_{n}. Let W be the eigenspace belonging to the eigenvalue λ of \mathbf{T}. If \mathbf{S} and \mathbf{T} commute, i.e., if $\mathbf{S T}=\mathbf{T S}$, prove that \mathbf{S} maps W into itself. Furthermore, \mathbf{S} maps the kernel of T into itself.
Hint: If $\mathbf{T}(\mathbf{u})=\mathbf{0}$, then $\mathbf{T S}(\mathbf{u})=\mathbf{S T}(\mathbf{u})=\mathbf{0}$ so that \mathbf{S} maps ker \mathbf{T} into itself. Now, W is the kernel of $\mathbf{T}-\lambda \mathbf{I}$. \mathbf{S} commutes with this mapping if it commutes with \mathbf{T}. Recalling what has just been shown, \mathbf{S} maps W into itself.
15. Let \mathbf{S} and \mathbf{T} be 2-tensors of the Euclidean vector space E_{n}. Suppose that both \mathbf{S} and \mathbf{T} admit n simple eigenvalues. Denote by $\bar{\lambda}_{1}, \ldots, \bar{\lambda}_{n}$ the eigenvalues of \mathbf{S} and with $\left(\overline{\mathbf{u}}_{i}\right)$ the corresponding basis of eigenvectors. Finally, we denote by $\lambda_{1}, \ldots, \lambda_{n}$ and $\left(\mathbf{u}_{i}\right)$ the eigenvalues and the basis of eigenvectors of T. Prove that the bases $\left(\overline{\mathbf{u}}_{i}\right)$ and $\left(\mathbf{u}_{i}\right)$ coincide if and only if \mathbf{S} and \mathbf{T} commute. Hint: If $\overline{\mathbf{u}}_{i}=\mathbf{u}_{i}, i=1, \ldots, n$, we have that

$$
\begin{align*}
(\mathbf{S T}-\mathbf{T S}) \mathbf{u}_{i} & = \\
\lambda_{i} \mathbf{S u} \mathbf{u}_{i}-\bar{\lambda}_{i} \mathbf{T u} & = \\
\lambda_{i} \bar{\lambda}_{i}-\bar{\lambda}_{i} \lambda_{i} & =0, \tag{1.104}
\end{align*}
$$

so that

$$
\begin{equation*}
\mathbf{S T}-\mathbf{T S}=\mathbf{0} \tag{1.105}
\end{equation*}
$$

If \mathbf{S} and \mathbf{T} commute, we can write what follows

$$
\mathbf{T S u} \mathbf{u}_{i}=\mathbf{S T} \mathbf{u}_{i}=\lambda_{i} \mathbf{S u}_{i}
$$

and $\mathbf{S u} \mathbf{u}_{i}$ is an eigenvector of \mathbf{T} belonging to the eigenvalue λ_{i}. But λ_{i} is simple and the corresponding eigenspace is one-dimensional. Therefore, $\mathbf{S} \mathbf{u}_{i}=\bar{\lambda} \mathbf{u}_{i}$
and we conclude that any eigenvector of \mathbf{T} is also an eigenvector of \mathbf{S}. Repeating the above reasoning starting from $\mathbf{S T} \overline{\mathbf{u}}_{i}$, we prove that any eigenvector of \mathbf{S} is also an eigenvector of \mathbf{T}.
16. Taking into account the results of Exercises 14 and 15, extend the result of Exercise 15 when both the 2-tensors \mathbf{S} and \mathbf{T} on the vector space E_{n} are symmetric and they still admit bases of eigenvectors but their eigenvalues are not simple. In other words, prove that when the symmetric 2-tensors \mathbf{T} and \mathbf{S} are symmetric and have bases of eigenvectors, \mathbf{T} and \mathbf{S} commute if and only if they have at least a common basis of eigenvectors.
Hint: We have already proved in the Exercise 15 that if \mathbf{T} and \mathbf{S} have a common basis of eigenvectors, then they commute. Denote by W_{i} the vector subspace of eigenvectors belonging to the eigenvalue λ_{i} of \mathbf{T} and let n_{i} be the dimension of W_{i}. If $\lambda_{1}, \ldots, \lambda_{r}$ are all the eigenvectors of \mathbf{T}, it is $W_{1}+\cdots+W_{r}=E_{n}$. Further, we have already shown that if \mathbf{T} and \mathbf{S} commute, then the restriction of \mathbf{S} to W_{i} is an endomorphism of W_{i}. Since this restriction is symmetric, it admits a basis of eigenvectors of W_{i}, that are also eigenvectors of \mathbf{T} belonging to λ_{i}. These results hold for any subspace W_{i} and the problem is solved.
17. Let E_{n} be a Euclidean vector space and denote by V_{m} a m-dimensional vector subspace of E_{n}. It is evident that the vector set

$$
W=\left\{\mathbf{w} \in E_{n}: \mathbf{w} \cdot \mathbf{u}, \forall \mathbf{u} \in V_{m}\right\}
$$

is a vector subspace formed by all the vectors that are orthogonal to all the vectors of V_{m}. Prove that E_{n} is the direct sum of V_{m} and W.
Hint: It has to be proved that

- $V_{m} \bigcap W=\mathbf{0}$;
- Any $\mathbf{u} \in E_{n}$ can be written as $\mathbf{u}=\mathbf{v}+\mathbf{w}$, where $\mathbf{v} \in V_{n}$ and $\mathbf{w} \in W$ are uniquely determined.

In fact, if $\overline{\mathbf{u}} \in V_{m} \bigcap W$, then it is $\overline{\mathbf{u}} \cdot \overline{\mathbf{u}}=0$ so that $\overline{\mathbf{u}}=\mathbf{0}$. Further, denoting by $\left(\mathbf{e}_{i}\right), i=1, \ldots, m$, a basis of V_{m}, for any $\mathbf{u} \in E_{n}$ we define the vectors

$$
\begin{equation*}
\mathbf{v}=\sum_{i=1}^{n}\left(\mathbf{u} \cdot \mathbf{e}_{i}\right) \mathbf{e}_{i}, \quad \mathbf{w}=\mathbf{u}-\mathbf{v} \tag{1.106}
\end{equation*}
$$

where the vector $\mathbf{w} \in W$ since $\mathbf{w} \cdot \mathbf{v}=(\mathbf{u}-\mathbf{v}) \cdot \mathbf{v}=0$. If another decomposition of \mathbf{u} exists, we have that

$$
\mathbf{u}=\mathbf{v}+\mathbf{w}=\mathbf{v}^{\prime}+\mathbf{w}^{\prime}
$$

that is

$$
\mathbf{w}^{\prime}-\mathbf{w}=\mathbf{v}-\mathbf{v}^{\prime}
$$

But $\mathbf{w}^{\prime}-\mathbf{w} \in W$ and $\mathbf{v}-\mathbf{v}^{\prime} \in V_{m}$. Since they are equal, they coincide with $\mathbf{0}$.
18. Prove that the map

$$
\mathfrak{P}: \mathbf{u} \in E_{n} \rightarrow \mathbf{v} \in V_{m},
$$

where \mathbf{v} is given by (1.106), is linear, symmetric and verifies the condition

$$
\mathfrak{P}^{2}=I
$$

The map \mathfrak{P} is called the projection map of E_{n} on V_{m}.

1.14 The Program VectorSys

Aim of the Program VectorSys

The program VectorSys determines, for any system Σ of applied vectors, an equivalent vector system Σ^{\prime} and, when the scalar invariant vanishes, its central axis. Moreover, it plots in the space both the system Σ and Σ^{\prime}, as well as the central axis.

Description of the Problem and Relative Algorithm

Two systems $\Sigma=\left\{\left(A_{i}, \mathbf{v}_{i}\right)\right\}_{i=1, \cdots, n}$ and $\Sigma^{\prime}=\left\{\left(B_{j}, \mathbf{w}_{j}\right)\right\}_{j=1, \cdots, m}$ of applied vectors are equivalent if they have the same resultants and moments with respect to any pole O. It can be proved that Σ and Σ^{\prime} are equivalent if and only if

$$
\begin{equation*}
\mathbf{R}=\mathbf{R}^{\prime}, \mathbf{M}_{P}=\mathbf{M}_{P}^{\prime}, \tag{1.107}
\end{equation*}
$$

where $\mathbf{R}, \mathbf{R}^{\prime}$ denote their respective resultants and $\mathbf{M}_{P}, \mathbf{M}_{P}^{\prime}$ their moments with respect to a fixed pole P.

The scalar invariant of a system of applied vectors Σ is the scalar product

$$
\begin{equation*}
I=\mathbf{M}_{P} \cdot \mathbf{R} \tag{1.108}
\end{equation*}
$$

which is independent of the pole P. If $\mathbf{R} \neq \mathbf{0}$, then the locus of points Q satisfying the condition

$$
\begin{equation*}
\mathbf{M}_{Q} \times \mathbf{R}=\mathbf{0} \tag{1.109}
\end{equation*}
$$

is a straight line parallel to \mathbf{R}, which is called the central axis of Σ. Its parametric equations are the components of the vector ${ }^{3}$

$$
\begin{equation*}
\mathbf{u}=\frac{\mathbf{M}_{P} \times \mathbf{R}}{R^{2}}+t \mathbf{R} \tag{1.110}
\end{equation*}
$$

where P is any point of \mathcal{E}_{3} and R is the norm of \mathbf{R}.
It is possible to show that any system Σ of applied vectors is equivalent to its resultant \mathbf{R}, applied at an arbitrary point P, and a torque equal to the moment \mathbf{M}_{P} of Σ with respect to P. Moreover, there are systems of applied vectors which are equivalent to either a vector or a torque (see [52,64]).
More precisely, the following results hold:

1. If $I=0$
(a) and $\mathbf{R} \neq \mathbf{0}$, then the system Σ is equivalent to its resultant \mathbf{R} applied at any point A of the central axis;
(b) and $\mathbf{R}=\mathbf{0}$, then the system Σ is equivalent to any torque having the moment \mathbf{M}_{P} of Σ with respect to P.
2. If $I \neq 0$, then the system Σ is equivalent to its resultant \mathbf{R} applied at any point P and a torque with moment \mathbf{M}_{P}.

A system of applied vectors is equivalent to zero if for all $P \in \mathfrak{R}^{3}$ we have $\mathbf{R}=\mathbf{M}_{P}=\mathbf{0}$.

Command Line of the Program VectorSys

VectorSys [A_, V_, P_]

Parameter List

Input Data

A $=$ list of points of application of the vectors of Σ;
$\mathrm{V}=$ list of components of the vectors of Σ;
$\mathrm{P}=$ pole with respect to which the moment of Σ is evaluated.

[^3]
Output Data

equivalent system Σ^{\prime};
central axis of Σ;
plot of Σ;
plot of Σ^{\prime};
plot of the central axis of Σ.

Worked Examples

1. Let $\Sigma=\left\{\left(A_{i}, \mathbf{v}_{i}\right)\right\}_{i=1, \cdots, 3}$ be the following applied vectors system:

$$
\begin{aligned}
& A_{1} \equiv(0,1,0), \mathbf{v}_{1} \equiv(1,0,1), \\
& A_{2} \equiv(1,0,0), \mathbf{v}_{2} \equiv(2,1,0), \\
& A_{3} \equiv(0,1,2), \mathbf{v}_{3} \equiv(3,0,0)
\end{aligned}
$$

and let $P \equiv(0,0,0)$ be the pole with respect to which the moment of Σ is evaluated.
To apply the program VectorSys to Σ, we input the following data:
$A=\{\{0,1,0\},\{1,0,0\},\{0,1,2\}\}$;
$V=\{\{1,0,1\},\{2,1,0\},\{3,0,0\}\} ;$
$P=\{0,0,0\}$;
VectorSys [A, V, P]
The corresponding output is ${ }^{4}$
The vector system is equivalent to the resultant $R=$
$\{6,1,1\}$ applied at P and a torque $M_{P}=\{1,6,-3\}$.
2. Consider the system $\Sigma=\left\{\left(A_{i}, \mathbf{v}_{i}\right)\right\}_{i=1,2}$, where

$$
\begin{aligned}
& A_{1} \equiv(0,1,0), \quad \mathbf{v}_{1} \equiv(1,0,0) \\
& A_{2} \equiv(0,-1,0), \mathbf{v}_{2} \equiv(-1,0,0)
\end{aligned}
$$

and a pole $P \equiv(0,0,0)$.
To apply the program VectorSys, we input
$A=\{\{0,1,0\},\{0,-1,0\}\}$;
$V=\{\{1,0,0\},\{-1,0,0\}\} ;$
$P=\{0,0,0\}$;
VectorSys [A, V, P]
The corresponding output is
The vector system is equivalent to the torque $M_{P}=$ $\{0,0,-2\}$.

[^4]3. Let $P \equiv(0,0,0)$ be the pole and let $\Sigma=\left\{\left(A_{i}, \mathbf{v}_{i}\right)\right\}_{i=1,2}$ be a vector system, where
\[

$$
\begin{aligned}
& A_{1} \equiv(1,0,0), \mathbf{v}_{1} \equiv(0,1,0) \\
& A_{2} \equiv(2,0,0), \mathbf{v}_{2} \equiv(0,-1 / 2,0)
\end{aligned}
$$
\]

Input:

$A=\{\{1,0,0\},\{2,0,0\}\}$;
$V=\{\{0,1,0\}, \quad\{0,-1 / 2,0\}\} ;$
$P=\{0,0,0\}$;
VectorSys [A, V, P]
Output:
The central axis is identified by $x(t)=0$,
$y(t)=\frac{t}{2}, \quad \forall t \in \Re$
$x(t)=0$,
and the system is equivalent to the resultant $\mathrm{R}=$ $\left\{0, \frac{t}{2}, 0\right\}$ applied at any point of the central axis.
4. Let $\Sigma=\left\{\left(A_{i}, \mathbf{v}_{i}\right)\right\}_{i=1,2}$ be a vector system with

$$
\begin{aligned}
& A_{1} \equiv(1,0,0), \mathbf{v}_{1} \equiv(0,1,0), \\
& A_{2} \equiv(2,0,0), \mathbf{v}_{2} \equiv(0,1,0)
\end{aligned}
$$

and the pole at the origin.
Input:
$A=\{\{1,0,0\}, \quad\{2,0,0\}\}$;
$V=\{\{0,1,0\},\{0,1,0\}\} ;$
$P=\{0,0,0\}$;
VectorSys [A, V, P]
Output:
The central axis is identified by
$x(t)=-\frac{3}{2}$,
$y(t)=2 t, \quad \forall t \in \Re$
$x(t)=0$,
and the system is equivalent to the resultant $\mathrm{R}=$ $\{0,2,0\}$ applied at any point of the central axis.

Exercises

Apply the program VectorSys to the following vector systems:

1. $\Sigma=\left\{\left(A_{i}, \mathbf{v}_{i}\right)\right\}_{i=1, \cdots, 3}$, where

$$
\begin{aligned}
& A_{1} \equiv(0,1,0), \mathbf{v}_{1} \equiv(1,0,1) \\
& A_{2} \equiv(1,0,0), \mathbf{v}_{2} \equiv(2,1,0) \\
& A_{3} \equiv(2,0,3), \mathbf{v}_{3} \equiv(3,0,0)
\end{aligned}
$$

2. $\Sigma=\left\{\left(A_{i}, \mathbf{v}_{i}\right)\right\}_{i=1, \cdots, 4}$, where

$$
\begin{aligned}
& A_{1} \equiv(0,1,0), \mathbf{v}_{1} \equiv(1,0,1) \\
& A_{2} \equiv(1,0,0), \mathbf{v}_{2} \equiv(-2,1,3) \\
& A_{3} \equiv(2,1,0), \mathbf{v}_{3} \equiv(1,3,-1) \\
& A_{4} \equiv(1,3,1), \mathbf{v}_{4} \equiv(-1,-2,4)
\end{aligned}
$$

3. $\Sigma=\left\{\left(A_{i}, \mathbf{v}_{i}\right)\right\}_{i=1,2}$, where

$$
\begin{aligned}
& A_{1} \equiv(0,0,1), \mathbf{v}_{1} \equiv(1,0,0) \\
& A_{2} \equiv(0,0,0), \mathbf{v}_{2} \equiv(-1,0,0)
\end{aligned}
$$

4. $\Sigma=\left\{\left(A_{i}, \mathbf{v}_{i}\right)\right\}_{i=1, \cdots, 3}$, where

$$
\begin{aligned}
& A_{1} \equiv(1,0,0), \quad \mathbf{v}_{1} \equiv(1,0,0), \\
& A_{2} \equiv(1 / 2,0,1), \mathbf{v}_{2} \equiv(0,1,0), \\
& A_{3} \equiv(0,1,0), \quad \mathbf{v}_{3} \equiv(0,0,1)
\end{aligned}
$$

5. $\Sigma=\left\{\left(A_{i}, \mathbf{v}_{i}\right)\right\}_{i=1,2}$, where

$$
\begin{aligned}
& A_{1} \equiv(0,0,0), \mathbf{v}_{1} \equiv(1,0,0), \\
& A_{2} \equiv(1,0,0), \mathbf{v}_{2} \equiv(-1,0,0)
\end{aligned}
$$

1.15 The Program EigenSystemAG

Aim of the Program EigenSystemAG

The program EigenSystemAG evaluates the eigenvalues of a square matrix and determines the algebraic and geometric multiplicity of each of them as well as the corresponding eigenspace.

Description of the Algorithm

Given the mixed components T_{i}^{j} of a 2-tensor \mathbf{T}, the program determines the spectrum and the characteristic space of each eigenvalue.

Command Line of the Program EigenSystemAG

EigenSystemAG [matrix]

Parameter List

Input Data

matrix $=$ mixed components of a 2-tensor.

Output Data

the eigenvalues and their algebraic and geometric multiplicities;
the eigenspaces relative to each eigenvector;
an eigenvector basis when the tensor can be put in a diagonal form.

Worked Examples

1. Consider the square matrix

$$
A=\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right) .
$$

To apply the program, it is sufficient to input the following data:
matrix $=\{\{1,1,0,1\},\{1,0,1,0\},\{0,0,1,0\},\{0,1,0,1\}\}$;
EigenSystemAG [matrix]
The output is
Algebraic and geometric multiplicity of distinct eigenvalues:
$\lambda_{1}=0:$ AlgMult $=2, \quad$ GeoMult $=1$

Eigenspace relative to $\lambda_{1}: V_{1}=\{\{0,-1,0,1\}\}$.
$\lambda_{2}=1:$ AlgMult $=1, \quad$ GeoMult $=1$
Eigenspace relative to λ_{2} : $\mathrm{V}_{2}=\{\{-1,0,1,0\}\}$
$\lambda_{3}=2: ~ A l g M u l t=1, \quad$ GeoMult $=1$
Eigenspace relative to $\lambda_{3}: V_{1}=\{\{2,1,0,1\}\}$.
The matrix cannot be reduced to a diagonal form!
2. Consider the symmetric 2-tensor

$$
\mathbf{T}=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)
$$

To find an eigenvector basis with respect to which \mathbf{T} is diagonal, the program EigenSystemAg can be used as follows:
matrix $=\{\{1,1\},\{1,2\}$;
EigenSystemAG [matrix]
The output is
Algebraic and geometric multiplicity of distinct eigenvalues:
$\lambda_{1}=\frac{1}{2}(3-\sqrt{5}): \quad$ AlgMult $=1, \quad$ GeoMult $=1$
Eigenspace relative to $\lambda_{1}: V_{1}=\left\{\left\{\frac{1}{2}(-1-\sqrt{5}), 1\right\}\right\}$.
$\lambda_{2}=\frac{1}{2}(3+\sqrt{5}): \quad$ AlgMult $=1, \quad$ GeoMult $=1$
Eigenspace relative to $\lambda_{2}: \quad V_{2}=\left\{\left\{\frac{1}{2}(-1+\sqrt{5}), 1\right\}\right\}$
The matrix is diagonal in the basis of its eigenvectors:
$\mathcal{B}_{1}=\left\{\left\{\frac{1}{2}(-1-\sqrt{5}), 1\right\},\left\{\frac{1}{2}(-1+\sqrt{5}), 1\right\}\right\}$.

Exercises

Apply the program EigenSystemAG to the following 2-tensors:

1. $\mathbf{T}=\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right)$;
2. $\mathbf{T}=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0\end{array}\right)$;
3. $\mathbf{T}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$;
4. $\mathbf{T}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$.

Chapter 2
 Vector Analysis

This chapter is dedicated to the extension of the ordinary differential calculus to general curvilinear coordinates in a Euclidean point space. After defining the metric in general coordinates, the Christoffel symbols are introduced to define the covariant derivative of any tensor field in general coordinates. All these concepts are applied to derive the expressions of the differential operators (gradient, divergence, curl, and Laplacian) in any system of coordinates. Then, the above results are analyzed in coordinates that are often used in the applications. Gauss' and Stokes' theorems are extended to vector fields that exhibit a jump in their derivatives across a surface (singular surface). The fundamental Hadamard's theorem is proved for this singular surfaces. The last sections contain exercises and the presentation of the program Operator, written with Mathematica ${ }^{\circledR}$ [69], which allows the user to obtain by computer all the results exposed in this chapter.

2.1 Curvilinear Coordinates

Let $\left(O, \mathbf{u}_{i}\right)$ be a frame in the Euclidean three-dimensional space E_{3}. At the beginning of Chap. 1, we stated that any point $P \in E_{3}$ is defined by its linear coordinates $\left(u^{i}\right)$ with respect to the frame $\left(O, \mathbf{u}_{i}\right)$; moreover, these coordinates coincide with the contravariant components of the position vector $\mathbf{u}=\overrightarrow{O P}$ in the basis (\mathbf{u}_{i}).

Let

$$
\begin{equation*}
u^{i}=f^{i}\left(y^{1}, y^{2}, y^{3}\right), \quad i=1,2,3, \tag{2.1}
\end{equation*}
$$

be three functions of class $C^{1}(D)$ in the domain $D \subset \mathfrak{R}^{3}$, and let $D^{\prime} \subset \mathfrak{R}^{3}$ be the image of D under the functions f^{i}. Suppose that

1. these functions generate a bijective correspondence between D and D^{\prime};
2. the inverse functions

$$
y^{i}=g^{i}\left(u^{1}, u^{2}, u^{3}\right), \quad i=1,2,3,
$$

are also of class C^{1} in D^{\prime}.
In particular, these conditions imply that the Jacobian determinant of the functions f^{i} does not vanish at any point of D :

$$
\begin{equation*}
\operatorname{det}\left(\frac{\partial u^{i}}{\partial y^{j}}\right) \neq 0 \tag{2.2}
\end{equation*}
$$

If the functions f^{i} are linear,

$$
u^{i}=u_{O^{\prime}}^{i}+A_{j}^{i} y^{j},
$$

and $\operatorname{det}\left(A_{j}^{i}\right)>0$, then the relations (2.1) define a linear coordinate change in E_{3}, see (1.97), relative to the frame change $\left(O, \mathbf{u}_{i}\right) \rightarrow\left(O^{\prime}, \mathbf{u}_{i}^{\prime}\right)$; in this case, D and D^{\prime} coincide with \mathfrak{R}^{3}.

More generally, when the functions f^{i} are nonlinear and the variables y^{i} are used to define the points of E_{3}, we say that curvilinear coordinates $\left(y^{i}\right)$ have been introduced in the region $\Omega \subseteq E_{3}$.

The coordinate curves are those curves of E_{3} whose parametric equations are obtained from the functions (2.1) by fixing two of the variables y^{i} and varying the third one. From our hypotheses, it follows that three coordinate curves cross at any point $P \in \Omega$; moreover, the vectors

$$
\begin{equation*}
\mathbf{e}_{i}=\left(\frac{\partial u^{j}}{\partial y^{i}}\right)_{P} \mathbf{u}_{j} \tag{2.3}
\end{equation*}
$$

are linearly independent, since from the condition

$$
\lambda^{i} \mathbf{e}_{i}=\mathbf{0},
$$

we have

$$
\lambda^{i}\left(\frac{\partial u^{j}}{\partial y^{i}}\right)_{P} \mathbf{u}_{j}=\mathbf{0} .
$$

The independence of the vectors \mathbf{u}_{i} leads to the following homogeneous system:

$$
\lambda^{i}\left(\frac{\partial u^{j}}{\partial y^{i}}\right)=0, \quad j=1,2,3
$$

which, from (2.2), admits only the trivial solution $\lambda^{1}=\lambda^{2}=\lambda^{3}=0$. The three vectors (\mathbf{e}_{i}) that are tangent to the coordinate curves at P form the natural or holonomic frame $\left(P, \mathbf{e}_{i}\right)$ at P for the space E_{3}.

We note that in Cartesian coordinates the base vectors are unit vectors, tangent to coordinate curves. In nonorthogonal coordinates the natural base vectors are tangent to coordinate curves, but in general are neither unit vectors nor orthogonal to each other.

In addition to transformations from linear coordinates to curvilinear coordinates, it is useful to consider the transformations from curvilinear coordinates $\left(y^{i}\right)$ to other curvilinear coordinates $\left(y^{\prime i}\right)$, which are defined by regular bijective functions

$$
\begin{equation*}
y^{\prime i}=y^{\prime i}\left(y^{1}, y^{2}, y^{3}\right), \quad i=1,2,3 . \tag{2.4}
\end{equation*}
$$

Once again, the hypothesis that the functions (2.4) are bijective implies

$$
\begin{equation*}
\operatorname{det}\left(\frac{\partial y^{\prime i}}{\partial y^{j}}\right)>0, \tag{2.5}
\end{equation*}
$$

at any regular point. If $u^{i}=f^{i}\left(y^{j}\right), u^{i}=f^{\prime i}\left(y^{\prime j}\right)$, and $y^{j}=y^{j}\left(y^{\prime h}\right)$ denote, respectively, the coordinate changes $\left(y^{i}\right) \longrightarrow\left(u^{i}\right),\left(y^{\prime i}\right) \longrightarrow\left(u^{i}\right),\left(y^{\prime i}\right) \longrightarrow\left(y^{i}\right)$, the chain rule gives

$$
\frac{\partial u^{i}}{\partial y^{\prime j}}=\frac{\partial u^{i}}{\partial y^{h}} \frac{\partial y^{h}}{\partial y^{\prime j}} .
$$

When the condition (2.3) is taken into account, this relation becomes

$$
\begin{equation*}
\mathbf{e}_{j}^{\prime}=\frac{\partial y^{h}}{\partial y^{\prime j}} \mathbf{e}_{h} \tag{2.6}
\end{equation*}
$$

Then we can conclude that as a consequence of a coordinate transformation $y^{\prime j}=$ $y^{\prime j}\left(y^{h}\right)$, the natural basis at P transforms according to the law (2.6); that is, the matrix of the base change coincides with the Jacobian matrix of the inverse functions $y^{i}=y^{i}\left(y^{\prime j}\right)$.

From the results of Chap. 1, it follows that the relation between the components of any vector \mathbf{v} at P, with respect to the bases \mathbf{e}_{i} and \mathbf{e}_{i}^{\prime}, is expressed by the following formulae:

$$
\begin{equation*}
v^{\prime i}=\frac{\partial y^{\prime i}}{\partial y^{h}} v^{h} \tag{2.7}
\end{equation*}
$$

All the considerations of Chap. 1 can be repeated at any point P of E_{3}, when curvilinear coordinates are adopted, provided that the natural basis at P is chosen. For instance, the inner product of the vectors $\mathbf{v}=v^{i} \mathbf{e}_{i}$ and $\mathbf{w}=w^{i} \mathbf{e}_{i}$ applied at $P\left(y^{i}\right)$ is written as

$$
\begin{equation*}
\mathbf{v} \cdot \mathbf{w}=g_{i j}\left(y^{h}\right) v^{i} w^{j}, \tag{2.8}
\end{equation*}
$$

where the functions

$$
\begin{equation*}
g_{i j}\left(y^{h}\right)=\mathbf{e}_{i} \cdot \mathbf{e}_{j}=\sum_{h=1}^{3} \frac{\partial u^{h}}{\partial y^{i}} \frac{\partial u^{h}}{\partial y^{j}} \tag{2.9}
\end{equation*}
$$

denote the inner products of the vectors of the natural basis at P. It should be noted that, in curvilinear coordinates, the inner products (2.9) depend on the point; that is, the quantities $g_{i j}$ are functions of the coordinates $\left(y^{i}\right)$. Also in this case, the (local) reciprocal bases can be defined by the positions

$$
\begin{equation*}
\mathbf{e}^{i}=g^{i j} \mathbf{e}_{j} \tag{2.10}
\end{equation*}
$$

where $\left(g^{i j}\right)$ is the inverse matrix of $\left(g_{i j}\right)$.
The square of the distance between two points with coordinates $\left(u^{i}\right)$ and $\left(u^{i}+\right.$ $\left.d u^{i}\right)$ in the orthonormal frame (O, \mathbf{u}_{i}) is given by

$$
d s^{2}=\sum_{i=1}^{3}\left(d u^{i}\right)^{2}
$$

Differentiating (2.1) and taking into account the relations (2.9), we obtain

$$
\begin{equation*}
d s^{2}=g_{i j}\left(y^{h}\right) d y^{i} d y^{j} \tag{2.11}
\end{equation*}
$$

The functions $g_{i j}\left(y^{h}\right)$ are called metric coefficients in the curvilinear coordinates $\left(y^{i}\right)$. From (2.6), in the coordinate change $y^{\prime j}=y^{\prime j}\left(y^{h}\right)$, the metric coefficients transform according to the rule

$$
\begin{equation*}
g_{i j}^{\prime}=\frac{\partial y^{h}}{\partial y^{\prime i}} \frac{\partial y^{k}}{\partial y^{\prime j}} g_{h k} . \tag{2.12}
\end{equation*}
$$

2.2 Examples of Curvilinear Coordinates

Let

$$
\left\{\begin{array}{l}
u^{1}=r \cos \varphi, \tag{2.13}\\
u^{2}=r \sin \varphi,
\end{array}\right.
$$

Fig. 2.1 Bases in polar coordinates
be the transformation from polar coordinates (r, φ) to Cartesian coordinates $\left(u^{1}, u^{2}\right)$ in the plane E_{2}. These functions are regular and bijective for all $(r, \varphi) \in D=$ $(0, \infty) \times[0,2 \pi)$ and for all $\left(u^{1}, u^{2}\right) \in D^{\prime}$, where D^{\prime} denotes E_{2} without the origin. At any point of D, the Jacobian matrix J is written as

$$
J=\left(\begin{array}{rr}
\cos \varphi & -r \sin \varphi \\
\sin \varphi & r \cos \varphi
\end{array}\right),
$$

and its determinant is given by $r>0$. The coordinate curves, obtained by fixing either φ or r in (2.13), are the half-lines going out from the origin, without the origin itself, as well as the circles with their centers at the origin and radius r (see Fig. 2.1).

In the frame $\left(O, \mathbf{u}_{1}, \mathbf{u}_{2}\right)$, where \mathbf{u}_{1}, and \mathbf{u}_{2} are unit vectors along the axes $O u^{1}$ and $O u^{2}$, respectively, the tangent vectors in polar coordinates are

$$
\left\{\begin{array}{l}
\mathbf{e}_{1}=\cos \varphi \mathbf{u}_{1}+\sin \varphi \mathbf{u}_{2}, \\
\mathbf{e}_{2}=-r \sin \varphi \mathbf{u}_{1}+r \cos \varphi \mathbf{u}_{2},
\end{array}\right.
$$

so that the metric coefficients are

$$
g_{11}=\mathbf{e}_{1} \cdot \mathbf{e}_{1}=1, \quad g_{12}=\mathbf{e}_{1} \cdot \mathbf{e}_{2}=0, \quad g_{22}=\mathbf{e}_{2} \cdot \mathbf{e}_{2}=r^{2},
$$

and the metric becomes

$$
d s^{2}=d r^{2}+r^{2} d \varphi^{2}
$$

Fig. 2.2 Bases in spherical coordinates

More generally, let

$$
\left\{\begin{array}{l}
u^{1}=r \cos \varphi \sin \theta \tag{2.14}\\
u^{2}=r \sin \varphi \sin \theta \\
u^{3}=r \cos \theta
\end{array}\right.
$$

be the transformation from spherical coordinates (r, φ, θ) to Cartesian coordinates $\left(u^{1}, u^{2}, u^{3}\right)$. These functions are regular and bijective for all $(r, \varphi, \theta) \in D=$ $(0, \infty) \times[0,2 \pi) \times[0, \pi)$ and for all $\left(u^{1}, u^{2}, u^{3}\right) \in D^{\prime}$, where D^{\prime} is E_{3} without the origin (Fig. 2.2). At any point of D, the Jacobian matrix is written as

$$
J=\left(\begin{array}{ccc}
\cos \varphi \sin \theta & -r \sin \varphi \sin \theta & r \cos \varphi \cos \theta \\
\sin \varphi \sin \theta & r \cos \varphi \sin \theta & r \sin \varphi \cos \theta \\
\cos \theta & 0 & -r \sin \theta
\end{array}\right)
$$

and its determinant is $-r^{2} \sin \theta \neq 0$. The coordinate curves are respectively the half-lines going out from the origin and different from $O u^{3}$, the circles with center at the origin and radius r lying in the plane $\varphi=$ const. (the meridians), and finally, the circles with center $(0,0, r \cos \theta)$ and radius r (the parallels). In the frame $\left(O, \mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right)$, where $\mathbf{u}_{1}, \mathbf{u}_{2}$, and \mathbf{u}_{3} are unit vectors along the axes $O u^{1}, O u^{2}$, and $O u^{3}$, the components of the tangent vectors to these coordinate curves are given by the columns of the Jacobian matrix

$$
\left\{\begin{array}{l}
\mathbf{e}_{1}=\cos \varphi \sin \theta \mathbf{u}_{1}+\sin \varphi \sin \theta \mathbf{u}_{2}+\cos \theta \mathbf{u}_{3}, \\
\mathbf{e}_{2}=-r \sin \varphi \sin \theta \mathbf{u}_{1}+r \cos \varphi \sin \theta \mathbf{u}_{2}, \\
\mathbf{e}_{3}=r \cos \varphi \cos \theta \mathbf{u}_{1}+r \sin \varphi \cos \theta \mathbf{u}_{2}-r \sin \theta \mathbf{u}_{3},
\end{array}\right.
$$

the metric coefficients are

$$
\begin{align*}
& g_{11}=\mathbf{e}_{1} \cdot \mathbf{e}_{1}=1, \quad g_{12}=\mathbf{e}_{1} \cdot \mathbf{e}_{2}=g_{13}=\mathbf{e}_{1} \cdot \mathbf{e}_{3}=0, \\
& g_{23}=\mathbf{e}_{2} \cdot \mathbf{e}_{3}=0, \quad g_{22}=\mathbf{e}_{2} \cdot \mathbf{e}_{2}=r^{2} \sin ^{2} \theta, \tag{2.15}\\
& g_{33}=\mathbf{e}_{3} \cdot \mathbf{e}_{3}=r^{2},
\end{align*}
$$

and the square of the distance between two points becomes

$$
d s^{2}=d r^{2}+r^{2} \sin ^{2} \theta d \varphi^{2}+r^{2} d \theta^{2}
$$

We leave the reader to verify that in the transformation from cylindrical coordinates to Cartesian coordinates,

$$
\left\{\begin{array}{l}
u^{1}=r \cos \varphi, \tag{2.16}\\
u^{2}=r \sin \varphi, \\
u^{3}=u^{3},
\end{array}\right.
$$

we have

$$
\begin{aligned}
& J=\left(\begin{array}{ccc}
\cos \varphi & -r \sin \varphi & 0 \\
\sin \varphi & r \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right), \operatorname{det} J=r, \\
& \begin{cases}\mathbf{e}_{1} & =\cos \varphi \mathbf{u}_{1}+\sin \varphi \mathbf{u}_{2}, \\
\mathbf{e}_{2} & =-r \sin \varphi \mathbf{u}_{1}+r \cos \varphi \mathbf{u}_{2}, \\
\mathbf{e}_{3} & =\mathbf{u}_{3}, \\
g_{11} & =\mathbf{e}_{1} \cdot \mathbf{e}_{1}=1, g_{12}=\mathbf{e}_{1} \cdot \mathbf{e}_{2}=g_{13}=\mathbf{e}_{1} \cdot \mathbf{e}_{3}=g_{23}=0, \\
g_{22} & =\mathbf{e}_{2} \cdot \mathbf{e}_{2}=r^{2}, g_{33}=\mathbf{e}_{3} \cdot \mathbf{e}_{3}=1, \\
d s^{2} & =d r^{2}+r^{2} d \varphi^{2}+\left(d u^{3}\right)^{2} .\end{cases}
\end{aligned}
$$

2.3 Differentiation of Vector Fields

A vector field is a mapping $\mathbf{v}: P \in U \subset E_{3} \longrightarrow \mathbf{v}(P) \in \mathcal{E}_{3}$ which associates a vector $\mathbf{v}(P)$ to any point P belonging to an open domain U of E_{3}. If $\left(y^{i}\right)$ denotes a curvilinear coordinate system in U and $\left(P, \mathbf{e}_{i}\right)$ is the associated natural frame (see previous section), we have $\mathbf{v}(P)=v^{i}\left(y^{h}\right) \mathbf{e}_{i}$ in U. The vector field \mathbf{v} is said to be differentiable of class $\boldsymbol{C}^{k}(k \geq 0)$ in U if its components $v^{i}\left(y^{h}\right)$ are of class C^{k}. For the sake of simplicity, from now on the class of a vector field will not be stated because it will be plain from the context.

If $f: U \longrightarrow \Re$ is a differentiable function of the coordinates y^{i}, then the gradient of f is the vector field

$$
\begin{equation*}
\nabla f \equiv f_{, i} \mathbf{e}^{i}=g^{i j} f_{, j} \mathbf{e}_{i} \tag{2.17}
\end{equation*}
$$

where the short notation $\partial f / \partial y^{i}=f_{, i}$ has been used. We can easily verify that the definition (2.17) is independent of the coordinates, since the quantities appearing as covariant or contravariant components in (2.17) have the right transformation properties.

It has already been noted at the beginning of this chapter that the natural frame (P, \mathbf{e}_{i}) depends on the point $P \in U$. In view of the next applications, it is interesting to evaluate the variation of the fields \mathbf{e}_{i} along the coordinate curves; that is, the derivatives $\mathbf{e}_{i, j}$. From (2.3), we have

$$
\begin{equation*}
\mathbf{e}_{i, h}=u^{k}{ }_{, i h} \mathbf{u}_{k} \tag{2.18}
\end{equation*}
$$

so that, if the Christoffel symbols $\Gamma_{i h}^{k}$ are introduced by the relations

$$
\begin{equation*}
\mathbf{e}_{i, h}=\Gamma_{i h}^{k} \mathbf{e}_{k} \tag{2.19}
\end{equation*}
$$

then the derivatives on the left-hand side will be known with respect to the basis $\left(\mathbf{e}_{i}\right)$, provided that the expressions of Christoffel symbols have been determined. In order to find these expressions, we note that (2.18) and (2.19) imply the symmetry of these symbols with respect to the lower indices. Moreover, the relations $\mathbf{e}_{i} \cdot \mathbf{e}_{j}=g_{i j}$ give the equations

$$
g_{i j, h}=\mathbf{e}_{i, h} \cdot \mathbf{e}_{j}+\mathbf{e}_{i} \cdot \mathbf{e}_{j, h}
$$

which, from (2.19), can be written as

$$
\begin{equation*}
g_{i j, h}=g_{j k} \Gamma_{i h}^{k}+g_{i k} \Gamma_{j h}^{k} . \tag{2.20}
\end{equation*}
$$

Cyclically permuting the indices i, j, h the other relations are obtained:

$$
\begin{align*}
& g_{h i},_{j}=g_{i k} \Gamma_{h j}^{k}+g_{h k} \Gamma_{i j}^{k}, \tag{2.21}\\
& g_{j h, i}=g_{h k} \Gamma_{j i}^{k}+g_{j k} \Gamma_{h i}^{k} .
\end{align*}
$$

Adding the Eq. $(2.21)_{1}$ to (2.20) and subtracting $(2.21)_{2}$, we derive the following formula:

$$
\begin{equation*}
\Gamma_{j h}^{l}=\frac{1}{2} g^{l i}\left(g_{i j}, h+g_{h i},{ }_{j}-g_{j h, i}\right) . \tag{2.22}
\end{equation*}
$$

Finally, the condition $\mathbf{e}^{j} \cdot \mathbf{e}_{i}=\delta_{i}^{j}$ implies that

$$
\mathbf{e}^{j}{ }_{, h} \cdot \mathbf{e}_{i}+\mathbf{e}^{j} \cdot \mathbf{e}_{i},{ }_{h}=0
$$

or

$$
\mathbf{e}^{j}{ }_{, h} \cdot \mathbf{e}_{i}=-\Gamma_{i h}^{j} .
$$

This relation shows that the opposites of the Christoffel symbols coincide with the covariant components of the vector field $\mathbf{e}^{j}{ }_{, h}$; consequently,

$$
\begin{equation*}
\mathbf{e}^{j}{ }_{, h}=-\Gamma_{i h}^{j} \mathbf{e}^{i} . \tag{2.23}
\end{equation*}
$$

Consider any vector field $\mathbf{v}=v^{k} \mathbf{e}_{k}$ expressed in the curvilinear coordinates $\left(y^{i}\right)$. Then a simple calculation shows that relation (2.19) implies

$$
\begin{equation*}
\mathbf{v}_{,}=\left(v^{k},_{h}+\Gamma_{l h}^{k} v^{l}\right) \mathbf{e}_{k} . \tag{2.24}
\end{equation*}
$$

If the field \mathbf{v} is written in the form $\mathbf{v}=v_{k} \mathbf{e}^{k}$ and (2.23) is taken into account, then instead of (2.24) we obtain

$$
\begin{equation*}
\mathbf{v},{ }_{h}=\left(v_{k}, h-\Gamma_{k h}^{l} v_{l}\right) \mathbf{e}^{k} \tag{2.25}
\end{equation*}
$$

To extend (2.24), (2.25) to any Euclidean second-order tensor field \mathbf{T}, it is sufficient to use one of the possible representation formulae

$$
\mathbf{T}=T^{k l} \mathbf{e}_{k} \otimes \mathbf{e}_{l}=T_{l}^{k} \mathbf{e}_{k} \otimes \mathbf{e}^{l}=T_{k l} \mathbf{e}^{k} \otimes \mathbf{e}^{l}
$$

to derive

$$
\begin{align*}
& \mathbf{T}_{{ }_{h}}=\left(T^{k l}{ }_{{ }_{h}}+\Gamma_{p h}^{k} T^{p l}+\Gamma_{p h}^{l} T^{k p}\right) \mathbf{e}_{k} \otimes \mathbf{e}_{l}, \\
& \mathbf{T}_{, h}=\left(T_{l}^{k},{ }_{h}+\Gamma_{p h}^{k} T_{l}^{p}-\Gamma_{l h}^{p} T_{p}^{k}\right) \mathbf{e}_{k} \otimes \mathbf{e}^{l} \tag{2.26}\\
& \mathbf{T}_{,_{h}}=\left(T_{k l, h}-\Gamma_{k h}^{p} T_{p l}-\Gamma_{l h}^{p} T_{k p}\right) \mathbf{e}^{k} \otimes \mathbf{e}^{l}
\end{align*}
$$

All of these derivative formulae reduce to the ordinary ones when Cartesian coordinates are used, since in these coordinates the Christoffel symbols vanish.

The covariant derivative of the vector field \mathbf{v} is the second-order tensor field

$$
\begin{align*}
\nabla \mathbf{v} & =\mathbf{v},{ }_{h} \otimes \mathbf{e}^{h}=\left(v^{k},{ }_{h}+\Gamma_{l h}^{k} v^{l}\right) \mathbf{e}_{k} \otimes \mathbf{e}^{h} \\
& =\left(v_{k}, \Gamma_{k h}^{l} v_{l}\right) \mathbf{e}^{k} \otimes \mathbf{e}^{h} . \tag{2.27}
\end{align*}
$$

Similarly, the covariant derivative of a second-order tensor field \mathbf{T} is the thirdorder tensor field defined as follows:

$$
\begin{equation*}
\nabla \mathbf{T}=\mathbf{T}_{, h} \otimes \mathbf{e}^{h} \tag{2.28}
\end{equation*}
$$

We note that relations (2.22) and (2.26) 3 imply that

$$
\begin{equation*}
\mathbf{g},{ }_{h}=\mathbf{0}, \quad \nabla \mathbf{g}=\mathbf{0} . \tag{2.29}
\end{equation*}
$$

To generalize these elementary concepts, we introduce the divergence of the vector field \mathbf{v} in the following way, see (2.24):

$$
\begin{equation*}
\nabla \cdot \mathbf{v}=\mathbf{v},{ }_{h} \cdot \mathbf{e}^{h}=v,{ }_{h}^{h}+\Gamma_{l h}^{h} v^{l} . \tag{2.30}
\end{equation*}
$$

More generally, the divergence of a second-order tensor field \mathbf{T} is given by the vector field

$$
\begin{equation*}
\nabla \cdot \mathbf{T}=\mathbf{T}_{, h} \cdot \mathbf{e}^{h}=\left(T_{, h}^{h l}+\Gamma_{p h}^{h} T^{p l}+\Gamma_{p h}^{l} T^{h p}\right) \mathbf{e}_{l} . \tag{2.31}
\end{equation*}
$$

Now, the identity

$$
\begin{equation*}
\Gamma_{i h}^{i}=\frac{1}{\sqrt{g}}(\sqrt{g}), h \tag{2.32}
\end{equation*}
$$

where

$$
g=\operatorname{det}\left(g_{i j}\right)
$$

can be proved starting from (2.20) and the relation

$$
\frac{\partial g}{\partial g_{i j}}=g g^{i j}
$$

which, in turn, will be shown in Sect. 3.7; in fact,

$$
\begin{aligned}
\frac{1}{\sqrt{g}}(\sqrt{g}),_{h} & =\frac{1}{\sqrt{g}}\left(\frac{1}{2 \sqrt{g}} \frac{\partial g}{\partial g_{i j}} g_{i j, h}\right)=\frac{1}{2} g^{i j} g_{i j, h} \\
& =\frac{1}{2} g^{i j}\left(g_{j k} \Gamma_{i h}^{k}+g_{i k} \Gamma_{j h}^{k}\right) \\
& =\frac{1}{2}\left(\Gamma_{i h}^{i}+\Gamma_{j h}^{j}\right)=\Gamma_{i h}^{i} .
\end{aligned}
$$

By using the relation (2.32), we can write the divergence of a vector or tensor field in the following equivalent forms:

$$
\begin{align*}
& \nabla \cdot \mathbf{v}=\frac{1}{\sqrt{g}}\left(\sqrt{g} v^{h}\right),_{h}, \\
& \nabla \cdot \mathbf{T}=\left(\frac{1}{\sqrt{g}}\left(\sqrt{g} T^{h l}\right),_{h}+\Gamma_{p h}^{l} T^{h p}\right) \mathbf{e}_{l} . \tag{2.33}
\end{align*}
$$

Let us introduce the skew-symmetric tensor field

$$
\nabla \mathbf{v}-(\nabla \mathbf{v})^{T}=\mathbf{v},{ }_{h} \otimes \mathbf{e}^{h}-\left(\mathbf{v},{ }_{h} \otimes \mathbf{e}^{h}\right)^{T}
$$

Recalling $(2.27)_{3}$ and the definition of transpose tensor (1.42), we have

$$
\begin{aligned}
\nabla \mathbf{v}-(\nabla \mathbf{v})^{T}= & \left(v_{k}, h-\Gamma_{k h}^{l} v_{l}\right) \mathbf{e}^{k} \otimes \mathbf{e}^{h}-\left(v_{k, h}-\Gamma_{k h}^{l} v_{l}\right) \mathbf{e}^{h} \otimes \mathbf{e}^{k} \\
& =\left(v_{k}, h-v_{h}, k\right) \mathbf{e}^{k} \otimes \mathbf{e}^{h} .
\end{aligned}
$$

The axial vector ${ }^{1}$

$$
\begin{equation*}
\nabla \times \mathbf{v}=\frac{1}{2 \sqrt{g}} \epsilon^{i h k}\left(v_{k}, h-v_{h, k}\right) \mathbf{e}_{i} \tag{2.34}
\end{equation*}
$$

is called the curl of \mathbf{v}. A simple mnemonic device for deducing the components of $\nabla \times \mathbf{v}$ is obtained by noting that the components coincide with the algebraic complements of $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ in the matrix

$$
\left(\begin{array}{ccc}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\
\partial & \frac{\partial}{\partial y^{1}} & \frac{\partial}{\partial y^{2}} \\
\frac{\partial y^{3}}{} \\
v_{1} & v_{2} & v_{3}
\end{array}\right) .
$$

It is well known that the curves $x^{i}(t)$ that are solutions of the system

$$
\frac{d x^{i}}{d t}=v^{i}\left(x^{j}\right)
$$

are called integral curves of the vector field \mathbf{v}. Moreover, in analysis it is proved that the directional derivative of a function f along the integral curves of the vector field \mathbf{u} is expressed by the formula

[^5]\[

$$
\begin{equation*}
\frac{d f}{d t}=\mathbf{u} \cdot \nabla f=u^{h} f_{, h} \tag{2.35}
\end{equation*}
$$

\]

Similarly, the directional derivative of the vector field \mathbf{v} along the integral curves of \mathbf{u} is defined as the new vector field

$$
\begin{equation*}
\frac{d \mathbf{v}}{d t}=\mathbf{u} \cdot \nabla \mathbf{v} \tag{2.36}
\end{equation*}
$$

Applying (2.27) to \mathbf{v}, we find that the previous definition assumes the following form:

$$
\begin{equation*}
\frac{d \mathbf{v}}{d t}=u^{h}\left(v^{i},{ }_{h}+\Gamma_{j h}^{i} v^{j}\right) \mathbf{e}_{i} . \tag{2.37}
\end{equation*}
$$

Finally, the Laplacian of f is the function

$$
\begin{equation*}
\Delta f=\nabla \cdot \nabla f \tag{2.38}
\end{equation*}
$$

It is easy to verify from (2.17), (2.30), and (2.32) that the Laplacian of f can be written as follows:

$$
\begin{equation*}
\Delta f=\frac{1}{\sqrt{g}}\left(\sqrt{g} g^{h j} f, j\right),_{h}, \tag{2.39}
\end{equation*}
$$

where, as usual, $g=\operatorname{det}\left(g_{i j}\right)$.

2.4 The Stokes and Gauss Theorems

In this section the following notations are introduced: $f: U \longrightarrow \mathfrak{R}$ is a function of class C^{1} in an open region U of \mathfrak{R}^{2} or $\mathfrak{R}^{3}, C \subset U$ is any domain having a regular boundary ∂C, and $\left(u^{i}\right)$ are Cartesian coordinates relative to the frame $\left(O, \mathbf{u}_{i}\right)$. In analysis the famous Gauss's theorem is proved:

$$
\begin{equation*}
\int_{\partial C} f \cos n u^{i} d \sigma=\int_{C} f_{, i} d c \tag{2.40}
\end{equation*}
$$

where $\cos n u^{i}$ is the cosine of the angle between the external unit vector \mathbf{n} orthogonal to ∂C and the unit vector \mathbf{u}_{i} along the axis u^{i}. Applying the previous formula to any component with respect to $\left(O, \mathbf{u}_{i}\right)$ of a vector field \mathbf{v} and adding the relations obtained, we derive the vector form of Gauss's theorem:

$$
\begin{equation*}
\int_{\partial C} \mathbf{v} \cdot \mathbf{n} d \sigma=\int_{C} \nabla \cdot \mathbf{v} d c . \tag{2.41}
\end{equation*}
$$

Fig. 2.3 Stokes theorem

Similarly, applying formula (2.40) to the components $T^{i 1}, T^{i 2}, T^{i 3}$ of a tensor field and adding the results, we have

$$
\begin{equation*}
\int_{\partial C} \mathbf{n} \cdot \mathbf{T} d \sigma=\int_{C} \nabla \cdot \mathbf{T} d c . \tag{2.42}
\end{equation*}
$$

Another remarkable result is expressed by Stokes's theorem:

$$
\begin{equation*}
\int_{\partial \sigma} \mathbf{v} \cdot \mathbf{t} d s=\int_{\sigma} \nabla \times \mathbf{v} \cdot \mathbf{n} d \sigma \tag{2.43}
\end{equation*}
$$

where σ is a regular surface having a regular boundary $\partial \sigma$, \mathbf{t} is the unit vector tangent to the curve $\partial \sigma$, and \mathbf{n} is the external unit vector orthogonal to σ. The orientation on $\partial \sigma$ (that is of \mathbf{t}) is counter-clockwise with respect to \mathbf{n} (see Fig. 2.3).

2.5 Singular Surfaces

Let C be a compact domain of E_{3} having a regular boundary ∂C, let σ be a regular oriented surface, and let \mathbf{n} be the unit vector normal to σ. We suppose that σ divides C into two regions C^{-}and C^{+}, where C^{+}is the part of C containing \mathbf{n} (Fig. 2.4).

Let $\psi(P)$ be a function of class $C^{1}(C-\sigma)$ with the following finite limits:

$$
\lim _{P \longrightarrow \mathbf{r}, P \in C^{+}} \psi(P) \equiv \psi^{+}(\mathbf{r}), \lim _{P \longrightarrow \mathbf{r}, P \in C^{-}} \psi(P) \equiv \psi^{-}(\mathbf{r})
$$

for all $\mathbf{r} \in \sigma$. The functions $\psi^{+}(\mathbf{r}), \psi^{-}(\mathbf{r})$ are supposed to be continuous on σ. If the jump of $\psi(P)$ in crossing σ,

$$
[[\psi(\mathbf{r})]]=\psi^{+}(\mathbf{r})-\psi^{-}(\mathbf{r})
$$

does not vanish at some points $\mathbf{r} \in \sigma$, then the surface σ is called a zero-order singular surface for ψ.

Fig. 2.4 Singular surface

Similarly, when $[[\psi]]=0$ on σ, and the limits

$$
\lim _{P \longrightarrow \mathbf{r}, P \in C^{+}} \frac{\partial \psi}{\partial x_{i}}(P) \equiv\left(\frac{\partial \psi}{\partial x_{i}}\right)^{+}(\mathbf{r}), \lim _{P \longrightarrow \mathbf{r}, P \in C^{-}} \frac{\partial \psi}{\partial x_{i}}(P) \equiv\left(\frac{\partial \psi}{\partial x_{i}}\right)^{-}(\mathbf{r}),
$$

exist and are continuous functions of the point $\mathbf{r} \in \sigma$, the surface σ is called a first-order singular surface for ψ if, at some points of σ, the jump below does not vanish:

$$
\left[\left[\frac{\partial \psi}{\partial x_{i}}(P)\right]\right]=\left(\frac{\partial \psi}{\partial x_{i}}\right)^{+}(\mathbf{r})-\left(\frac{\partial \psi}{\partial x_{i}}\right)^{-}(\mathbf{r})
$$

At this point, the meaning of a \boldsymbol{k}-order singular surface for ψ should be clear. Moreover, in the previous definitions ψ can be regarded as a component of a vector or tensor field.

Theorem 2.1 (Generalized Gauss's Theorem). If σ is a zero-order singular surface for the vector field $\mathbf{v}(P)$ of class $C^{1}(C-\sigma)$, then the following result holds:

$$
\begin{equation*}
\int_{\partial C} \mathbf{v} \cdot \mathbf{N} d \sigma=\int_{C} \nabla \cdot \mathbf{v} d C+\int_{\sigma}[[\mathbf{v}(P)]] \cdot \mathbf{n} d \sigma \tag{2.44}
\end{equation*}
$$

where \mathbf{N} and \mathbf{n} denote the vectors normal to ∂C and σ, respectively; moreover, \mathbf{n} lies in the region C^{+}.

Proof. In our hypotheses Gauss's theorem is applicable to both the domains C^{-} and C^{+}:

$$
\int_{\partial C^{-}-\sigma} \mathbf{v} \cdot \mathbf{N} d \sigma+\int_{\sigma} \mathbf{v}^{-}(\mathbf{r}) \cdot \mathbf{n} d \sigma=\int_{C^{-}} \nabla \cdot \mathbf{v} d C
$$

Fig. 2.5 Generalized Stokes theorem

$$
\int_{\partial C^{+}-\sigma} \mathbf{v} \cdot \mathbf{N} d \sigma-\int_{\sigma} \mathbf{v}^{+}(\mathbf{r}) \cdot \mathbf{n} d \sigma=\int_{C^{+}} \nabla \cdot \mathbf{v} d C
$$

where we note that at any point of $\partial C^{-} \cap \sigma$ we have $\mathbf{N}=\mathbf{n}$, while on $\partial C^{+} \cap \sigma$ we have $\mathbf{N}=-\mathbf{n}$. Formula (2.44) is obtained by adding the two previous relations.

A similar formula can be proved for a tensor, starting from (2.42):

$$
\begin{equation*}
\int_{\partial C} \mathbf{n} \cdot \mathbf{T} d \sigma=\int_{C} \nabla \cdot \mathbf{T} d C+\int_{\sigma} \mathbf{n} \cdot[[\mathbf{T}(P)]] d \sigma \tag{2.45}
\end{equation*}
$$

To generalize Stokes's theorem, we consider a vector field $\mathbf{v}(P)$ for which σ is a zero-order singular surface, together with a regular surface S contained in C and intersecting σ along the curve γ.

The following theorem holds (see Fig. 2.5):
Theorem 2.2 (Generalized Stokes's Theorem). If $\sigma \subset C$ is a zero-order singular surface for the vector field $\mathbf{v}(P)$, then for any surface $S \subset C, S \cap \sigma \neq \emptyset$, we have

$$
\begin{equation*}
\int_{\partial S} \mathbf{v} \cdot \mathbf{t} d s=\int_{S} \nabla \times \mathbf{v} \cdot \mathbf{N} d S+\int_{\gamma}[[\mathbf{v}]] \cdot \boldsymbol{\tau} d s \tag{2.46}
\end{equation*}
$$

where \mathbf{N} is the unit vector normal to S and $\boldsymbol{\tau}$ is the unit vector tangent to the curve γ, which is oriented in such a way that its orientation appears counter-clockwise with respect to \mathbf{N}, applied at a point of $\partial S \cap C^{+}$.

Proof. Formula (2.46) is proved by applying Stokes's theorem (2.43) to both the surfaces $S^{-}=S \cap C^{-}$and $S^{+}=S \cap C^{+}$and subtracting the results obtained.

The following theorem is due to Hadamard:
Theorem 2.3 (Hadamard). If ψ is a function of class $C^{1}(C-\sigma)$ and σ is a firstorder singular surface for ψ, then on any regular curve γ of σ we have

$$
\begin{equation*}
\boldsymbol{\tau} \cdot[[\nabla \psi]]=0 \tag{2.47}
\end{equation*}
$$

where $\boldsymbol{\tau}$ is the unit vector tangent to γ.
Proof. Let $\mathbf{r}(s)$ be the equation of γ and let $\mathbf{f}(\lambda, s)$ be a one-parameter family of curves contained in C^{-}such that

$$
\lim _{\lambda \longrightarrow 0} \mathbf{f}(\lambda, s)=\mathbf{f}(0, s)=\mathbf{r}(s)
$$

From the properties of ψ, on any curve $\mathbf{f}(\lambda, s)$, where λ is fixed, we obtain

$$
\frac{d \psi}{d s}(\mathbf{f}(\lambda, s))=\frac{\partial \mathbf{f}}{\partial s}(\lambda, s) \cdot \nabla \psi(\mathbf{f}(\lambda, s)) .
$$

The following result follows from the continuity of all the functions involved, when $\lambda \longrightarrow 0$:

$$
\frac{d \psi^{-}}{d s}(\mathbf{r}(s))=\boldsymbol{\tau} \cdot \nabla \psi(\mathbf{r}(s))^{-}
$$

Similar reasoning, starting from C^{+}, leads to the corresponding relation

$$
\frac{d \psi^{+}}{d s}(\mathbf{r}(s))=\boldsymbol{\tau} \cdot \nabla \psi(\mathbf{r}(s))^{+}
$$

and the theorem is proved by taking into account the condition $\psi^{+}=\psi^{-}$on σ.
Relation (2.47) is usually referred as the geometric compatibility condition for a weak discontinuity of the field ψ. This condition states that if $[[\psi]]=0$, then only the normal derivative can be discontinuous, and the term geometric emphasizes the fact that this condition does not depend on the actual motion of the discontinuity. This is formally expressed by the following theorem.

Theorem 2.4. In the hypotheses of the previous theorem, we have

$$
\begin{equation*}
[[\nabla \psi]]_{\mathbf{r}}=a(\mathbf{r}) \mathbf{n} \quad \forall \mathbf{r} \in \sigma \tag{2.48}
\end{equation*}
$$

Proof. In fact, if γ is any regular curve on σ crossing the point \mathbf{r}, from (2.47) it follows that $[[\nabla \psi]]_{\mathbf{r}}$ is orthogonal to any tangent vector to σ at the point \mathbf{r}. Consequently, either $[[\nabla \psi]]_{\mathbf{r}}$ vanishes or it is orthogonal to σ.

If ψ is a component of any r-tensor field \mathbf{T} at r, and σ is a first-order singular surface of \mathbf{T}, then from (2.48) we have

$$
\begin{equation*}
[[\nabla \mathbf{T}]]_{\mathbf{r}}=\mathbf{n} \otimes \mathbf{a}(\mathbf{r}) \quad \forall \mathbf{r} \in \sigma \tag{2.49}
\end{equation*}
$$

where $\mathbf{a}(\mathbf{r})$ is an r-tensor.
In particular, for a vector field \mathbf{v} the previous formula gives

$$
\begin{align*}
{[[\nabla \mathbf{v}]]_{\mathbf{r}} } & =\mathbf{n} \otimes \mathbf{a}(\mathbf{r}), \\
{[[\nabla \cdot \mathbf{v}]]_{\mathbf{r}} } & =\mathbf{n} \cdot \mathbf{a}(\mathbf{r}), \tag{2.50}\\
{[[\nabla \times \mathbf{v}]]_{\mathbf{r}} } & =\mathbf{n} \times \mathbf{a}(\mathbf{r}),
\end{align*}
$$

where $\mathbf{a}(\mathbf{r})$ is a vector field on σ.
If σ is a second-order singular surface for the function ψ of class $C^{2}(C-\sigma)$ and formula (2.50) $)_{1}$ is applied to $\nabla \psi$, we derive

$$
\begin{equation*}
\left[\left[\frac{\partial^{2} \psi}{\partial x_{j} \partial x_{i}}\right]\right]=n_{j} a_{i} \tag{2.51}
\end{equation*}
$$

But the derivation order can be inverted, and we also have

$$
a_{i} n_{j}=a_{j} n_{i}
$$

so that

$$
\frac{a_{i}}{n_{i}}=\frac{a_{j}}{n_{j}} \equiv \lambda
$$

and $a_{i}=\lambda n_{i}$. Consequently, the relation (2.51) becomes

$$
\begin{equation*}
[[\nabla \nabla \psi]]_{\mathbf{r}}=\mathbf{n} \otimes \mathbf{n}(\lambda(\mathbf{r})) . \tag{2.52}
\end{equation*}
$$

More generally, for any r-tensor \mathbf{T}, we have

$$
\begin{equation*}
[[\nabla \nabla \mathbf{T}]]_{\mathbf{r}}=\mathbf{n} \otimes \mathbf{n} \otimes \mathbf{A}(\mathbf{r}) \tag{2.53}
\end{equation*}
$$

where $\mathbf{A}(\mathbf{r})$ is an r-tensor field.

2.6 Useful Formulae

It often happens that a practical problem of continuum mechanics exhibits symmetry properties which suggest the use of particular coordinate systems. For instance, if the problem exhibits cylindrical symmetry, it is convenient to adopt cylindrical
coordinates; on the other hand, if the symmetry is spherical, it is convenient to adopt spherical coordinates, and so on. Therefore, it is useful to determine the expressions for divergence, curl, and the Laplacian in these coordinate systems.

Here we limit our discussion to orthogonal curvilinear coordinates, so that the metric is written as

$$
\begin{equation*}
d s^{2}=g_{11}\left(d y^{1}\right)^{2}+g_{22}\left(d y^{2}\right)^{2}+g_{33}\left(d y^{3}\right)^{2} . \tag{2.54}
\end{equation*}
$$

Noting that the inverse matrix of $\left(g_{i j}\right)$ has the form

$$
\left(g^{i j}\right)=\left(\begin{array}{ccc}
\frac{1}{g_{11}} & 0 & 0 \\
0 & \frac{1}{g_{22}} & 0 \\
0 & 0 & \frac{1}{g_{33}}
\end{array}\right)
$$

from (2.17) we obtain

$$
\begin{equation*}
\nabla f=\frac{1}{g_{i i}} \frac{\partial f}{\partial y^{i}} \mathbf{e}_{i} \tag{2.55}
\end{equation*}
$$

Moreover, if we introduce the notation

$$
h=g_{11} g_{22} g_{33},
$$

then the relation $(2.33)_{1}$ becomes

$$
\begin{equation*}
\nabla \cdot \mathbf{v}=\frac{1}{\sqrt{h}} \frac{\partial}{\partial y^{i}}\left(\sqrt{h} v^{i}\right) \tag{2.56}
\end{equation*}
$$

and (2.34) gives

$$
\begin{align*}
\nabla \times \mathbf{v}=\frac{1}{\sqrt{h}}\left[\left(\frac{\partial v_{3}}{\partial y^{2}}-\frac{\partial v_{2}}{\partial y^{3}}\right) \mathbf{e}_{1}\right. & +\left(\frac{\partial v_{1}}{\partial y^{3}}-\frac{\partial v_{3}}{\partial y^{1}}\right) \mathbf{e}_{2} \tag{2.57}\\
& \left.+\left(\frac{\partial v_{2}}{\partial y^{1}}-\frac{\partial v_{1}}{\partial y^{2}}\right) \mathbf{e}_{3}\right] .
\end{align*}
$$

Finally, from (2.39) we derive

$$
\begin{equation*}
\Delta f=\frac{1}{\sqrt{h}} \frac{\partial}{\partial y^{i}}\left(\sqrt{h} \frac{1}{g_{i i}} \frac{\partial f}{\partial y^{i}}\right) \tag{2.58}
\end{equation*}
$$

The curvilinear components of a vector or tensor do not in general have all the same dimensions as they do in rectangular Cartesian coordinates. For example, the
cylindrical contravariant components of a differential vector are ($d r, d \theta, d z$), which do not have the same dimensions. In physical applications, it is usually desirable to represent each vector component in the same terms as the vector itself, and for this reason we refer to physical components. In a general curvilinear coordinate system, the physical components of a vector at a point are defined as the vector components along the natural base vectors, so that we introduce at any point a local basis \mathbf{a}_{i} formed by unit vectors which are parallel to the vectors \mathbf{e}_{i} of the natural basis, that is,

$$
\begin{equation*}
\mathbf{a}_{i}=\frac{1}{\sqrt{g_{i i}}} \mathbf{e}_{i}(\text { no sum over } i) \tag{2.59}
\end{equation*}
$$

similarly, we introduce vectors \mathbf{a}^{i} parallel to the vectors \mathbf{e}^{i} of the dual basis:

$$
\mathbf{a}^{i}=\sqrt{g_{i i}} \mathbf{e}^{i}
$$

Since these bases are formed by unit vectors, the components of any tensor field with respect to them have a direct physical meaning. We remark that generally these new bases are not natural; that is, there exist no curvilinear coordinates ($x^{\prime i}$) of which $\left(\mathbf{a}_{i}\right)$ are the natural bases. In other words, we are not searching for the expressions for divergence, curl, and the Laplacian in new curvilinear coordinates, but rather we wish to write (2.56), (2.57), and (2.58) in terms of the components with respect to the basis $\left(\mathbf{a}_{i}\right)$.

First, since $\left(\mathbf{a}_{i}\right)$ is an orthonormal basis, it coincides with the reciprocal basis and there is no difference between covariant and contravariant components of any tensor with respect to it:

$$
\mathbf{v}=\bar{v}^{i} \mathbf{a}_{i}=\bar{v}_{i} \mathbf{a}_{i} .
$$

From the identity

$$
\mathbf{v}=\bar{v}^{i} \mathbf{a}_{i}=v^{i} \mathbf{e}_{i}
$$

and (2.59), we obtain (no sum over i)

$$
\begin{equation*}
\bar{v}^{i}=\sqrt{g_{i i}} v^{i}=\sqrt{g_{i i}} g^{i i} v_{i}=\frac{v_{i}}{\sqrt{g_{i i}}} . \tag{2.60}
\end{equation*}
$$

It is easy to verify, starting from (2.59) and (2.60), that in the new basis $\left(\mathbf{a}_{i}\right)$, we can write (2.27), (2.55), (2.56), and (2.57) as

$$
\begin{equation*}
\nabla f=\frac{1}{\sqrt{g_{i i}}} \frac{\partial f}{\partial y^{i}} \mathbf{a}_{i}, \tag{2.61}
\end{equation*}
$$

$$
\begin{align*}
\nabla \cdot \mathbf{v}= & \frac{1}{\sqrt{h}}\left[\frac{\partial}{\partial y^{1}}\left(\sqrt{g_{22} g_{33}} \bar{v}^{1}\right)+\frac{\partial}{\partial y^{2}}\left(\sqrt{g_{11} g_{33}} \bar{v}^{2}\right)\right. \tag{2.62}\\
& \left.+\frac{\partial}{\partial y^{3}}\left(\sqrt{g_{11} g_{22}} \bar{v}^{3}\right)\right] \\
\nabla \times \mathbf{v}= & \frac{1}{\sqrt{h}}\left(\frac{\partial\left(\sqrt{g_{33}} \bar{v}_{3}\right)}{\partial y^{2}}-\frac{\partial\left(\sqrt{g_{22}} \bar{v}_{2}\right)}{\partial y^{3}}\right) \sqrt{g_{11}} \mathbf{a}_{1} \\
& +\frac{1}{\sqrt{h}}\left(\frac{\partial\left(\sqrt{g_{11}} \bar{v}_{1}\right)}{\partial y^{3}}-\frac{\partial\left(\sqrt{g_{33}} \bar{v}_{3}\right)}{\partial y^{1}}\right) \sqrt{g_{22}} \mathbf{a}_{2} \tag{2.63}\\
& +\frac{1}{\sqrt{h}}\left(\frac{\partial\left(\sqrt{g_{22}} \bar{v}_{2}\right)}{\partial y^{1}}-\frac{\partial\left(\sqrt{g_{11}} \bar{v}_{1}\right)}{\partial y^{2}}\right) \sqrt{g_{33}} \mathbf{a}_{3}, \\
\nabla \mathbf{v}= & \frac{1}{\sqrt{g_{h h}} \sqrt{g_{l l}}}\left(\left(\sqrt{g_{l l}} \bar{v}_{l}\right),{ }_{h}-\Gamma_{l h}^{k} \sqrt{g_{k k}} \bar{v}_{k}\right) \mathbf{a}^{h} \otimes \mathbf{a}^{l} \tag{2.64}
\end{align*}
$$

while (2.58) remains the same.

2.7 Some Curvilinear Coordinates

This section is devoted to the description of some curvilinear coordinate systems, usually used to solve some problems characterized by specific symmetry properties. In Sect. 2.2, we described polar, spherical, and cylindrical coordinates; in this section, we evaluate some differential formulae of functions, vectors, and 2-tensors with respect to the basis $\left(\mathbf{a}_{i}\right)$.

For the other curvilinear coordinates described here, ${ }^{2}$ we will present only the formulae that transform them to Cartesian coordinates as well as the plots of coordinate curves. ${ }^{3}$ However, all the other metric characteristics and the differential formulae in these coordinates can be easily obtained by using the program Operator in the package Mechanics, which will be described in the last section of this chapter.

Generalized Polar Coordinates

The curvilinear coordinates (r, φ), related to Cartesian coordinates $\left(u^{1}, u^{2}\right)$ by the functions

$$
\left\{\begin{array}{l}
u^{1}=r a \cos \varphi, \\
u^{2}=r b \sin \varphi, \quad a, b \in \mathfrak{R}^{+},
\end{array}\right.
$$

[^6]

Fig. 2.6 Generalized polar coordinates
are called generalized polar coordinates (see Sect. 2.2). The coordinate curves are the half-lines coming out from the origin (see Fig. 2.6)

$$
\tan \varphi=\frac{a u^{2}}{b u^{1}}
$$

as well as the ellipses

$$
\frac{\left(u^{1}\right)^{2}}{a^{2}}+\frac{\left(u^{2}\right)^{2}}{b^{2}}=r^{2}
$$

The vectors tangent to the coordinate curves are

$$
\left\{\begin{array}{l}
\mathbf{e}_{1}=a \cos \varphi \mathbf{u}_{1}+b \sin \varphi \mathbf{u}_{2} \\
\mathbf{e}_{2}=-r a \sin \varphi \mathbf{u}_{1}+r b \cos \varphi \mathbf{u}_{2}
\end{array}\right.
$$

where $\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)$ represent the unit vectors along the axes $O u^{1}$ and $O u^{2}$, respectively. Consequently, the metric matrix becomes

$$
\left(\begin{array}{cc}
a^{2} \cos ^{2} \varphi+b^{2} \sin ^{2} \varphi & r \sin \varphi \cos \varphi\left(b^{2}-a^{2}\right) \\
r \sin \varphi \cos \varphi\left(b^{2}-a^{2}\right) & r^{2}\left(b^{2} \cos ^{2} \varphi+a^{2} \sin ^{2} \varphi\right)
\end{array}\right)
$$

Since $g_{12}=g_{21}=r \sin \varphi \cos \varphi\left(b^{2}-a^{2}\right)$, the natural basis and the angle between \mathbf{e}_{1} and \mathbf{e}_{2} vary with the point; moreover, this angle is generally not a right angle. Finally, the nonvanishing Christoffel symbols are

$$
\Gamma_{22}^{1}=-r, \Gamma_{12}^{2}=\frac{1}{r}
$$

We note that, when $a=b=1$, the transformation above reduces to the polar transformation (2.13).

Let F be any function, let \mathbf{v} be a vector field, and let \mathbf{T} be a 2 -tensor. If the components are all evaluated in the unit basis of a polar coordinate system, then the following formulae hold:

$$
\begin{aligned}
\nabla F= & \frac{\partial F}{\partial r} \mathbf{a}_{1}+\frac{1}{r} \frac{\partial F}{\partial \varphi} \mathbf{a}_{2}, \\
\Delta F= & \frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial F}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} F}{\partial \varphi^{2}}, \\
\nabla \cdot \mathbf{v}= & \frac{1}{r} \frac{\partial\left(r v_{r}\right)}{\partial r}+\frac{1}{r} \frac{\partial v_{\varphi}}{\partial \varphi}, \\
\nabla \cdot \mathbf{T}= & {\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r T_{r r}\right)+\frac{1}{r} \frac{\partial T_{r \varphi}}{\partial \varphi}-\frac{1}{r} T_{\varphi \varphi}\right] \mathbf{a}_{1} } \\
& +\left[\frac{1}{r} \frac{\partial\left(r T_{r \varphi}\right)}{\partial r}+\frac{1}{r} \frac{\partial}{\partial \varphi}\left(T_{\varphi \varphi}\right)+\frac{1}{r} T_{\varphi r}\right] \mathbf{a}_{2} .
\end{aligned}
$$

Cylindrical Coordinates

Let P^{\prime} be the orthogonal projection of a point $P\left(u^{1}, u^{2}, u^{3}\right)$ onto the plane $u^{3}=0$, and let (r, θ) be the polar coordinates of P^{\prime} in this plane (see Fig. 2.1). The variables (r, θ, z) are called cylindrical coordinates and are related to Cartesian coordinates (u^{1}, u^{2}, u^{3}) by the equations

$$
\left\{\begin{array}{l}
u^{1}=r \cos \theta \\
u^{2}=r \sin \theta \\
u^{3}=z
\end{array}\right.
$$

By using the results of the previous sections, it is possible to evaluate the following expressions for the differential operators in the unit basis $\left\{\mathbf{a}_{i}\right\}_{i=1,2,3}$ that is associated with the natural basis $\left\{\mathbf{e}_{i}\right\}_{i=1,2,3}$ (see Sect. 2.2):

$$
\begin{aligned}
\nabla F= & \frac{\partial F}{\partial r} \mathbf{a}_{1}+\frac{1}{r} \frac{\partial F}{\partial \theta} \mathbf{a}_{2}+\frac{\partial F}{\partial z} \mathbf{a}_{3}, \\
\Delta F= & \frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial F}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} F}{\partial \theta^{2}}+\frac{\partial^{2} F}{\partial z^{2}}, \\
\nabla \cdot \mathbf{v}= & \frac{1}{r} \frac{\partial\left(r v_{r}\right)}{\partial r}+\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta}+\frac{\partial v_{z}}{\partial z}, \\
\nabla \times \mathbf{v}= & \left(\frac{1}{r} \frac{\partial v_{z}}{\partial \theta}-\frac{\partial v_{\theta}}{\partial z}\right) \mathbf{a}_{1}+\left(\frac{\partial v_{r}}{\partial z}-\frac{\partial v_{z}}{\partial r}\right) \mathbf{a}_{2} \\
& +\left(\frac{1}{r} \frac{\partial\left(r v_{\theta}\right)}{\partial r}-\frac{1}{r} \frac{\partial v_{r}}{\partial \theta}\right) \mathbf{a}_{3} .
\end{aligned}
$$

$$
\begin{aligned}
\nabla \cdot \mathbf{T}= & {\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r T_{r r}\right)+\frac{1}{r} \frac{\partial T_{\theta r}}{\partial \theta}+\frac{\partial T_{z r}}{\partial z}-\frac{1}{r} T_{\theta \theta}\right] \mathbf{a}_{1} } \\
& +\left[\frac{1}{r} \frac{\partial T_{\theta \theta}}{\partial \theta}+\frac{\partial T_{z \theta}}{\partial z}+\frac{1}{r} \frac{\partial}{\partial r}\left(r T_{r \theta}\right)+\frac{1}{r} T_{\theta r}\right] \mathbf{a}_{2} \\
& +\left[\frac{\partial T_{z z}}{\partial z}+\frac{1}{r} \frac{\partial}{\partial r}\left(r T_{r z}\right)+\frac{1}{r} \frac{\partial T_{\theta z}}{\partial \theta}\right] \mathbf{a}_{3},
\end{aligned}
$$

where F, \mathbf{v}, and \mathbf{T} denote a scalar, vector, and 2-tensor whose components are evaluated in $\left(\mathbf{a}_{i}\right)$.

Spherical Coordinates

The spherical coordinates (see Sect. 2.2) (r, θ, φ) are connected to Cartesian coordinates by the relations

$$
\left\{\begin{array}{l}
u^{1}=r \sin \theta \cos \varphi \\
u^{2}=r \sin \theta \sin \varphi \\
u^{3}=r \cos \theta
\end{array}\right.
$$

and the differential operators in the unit basis are

$$
\begin{aligned}
\nabla F= & \frac{\partial F}{\partial r} \mathbf{a}_{1}+\frac{1}{r} \frac{\partial F}{\partial \theta} \mathbf{a}_{2}+\frac{1}{r \sin \theta} \frac{\partial F}{\partial \varphi} \mathbf{a}_{3}, \\
\Delta F= & \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial F}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial F}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} F}{\partial \varphi^{2}}, \\
\nabla \cdot \mathbf{v}= & \frac{1}{r^{2}} \frac{\partial\left(r^{2} v_{r}\right)}{\partial r}+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta v_{\theta}\right)+\frac{1}{r \sin \theta} \frac{\partial v_{\varphi}}{\partial \varphi}, \\
\nabla \times \mathbf{v}= & \frac{1}{r \sin \theta}\left(\frac{\partial}{\partial \theta}\left(v_{\varphi} \sin \theta\right)-\frac{\partial v_{\theta}}{\partial \varphi}\right) \mathbf{a}_{1} \\
& +\frac{1}{r}\left(\frac{1}{\sin \theta} \frac{\partial v_{r}}{\partial \varphi}-\frac{\partial\left(r v_{\varphi}\right)}{\partial r}\right) \mathbf{a}_{2}+\frac{1}{r}\left(\frac{\partial\left(r v_{\theta}\right)}{\partial r}-\frac{\partial v_{r}}{\partial \theta}\right) \mathbf{a}_{3} .
\end{aligned}
$$

We omit the very long expression of $\nabla \cdot \mathbf{T}$, which can be obtained by the program Operator.

Fig. 2.7 Elliptic coordinates

Elliptic Coordinates

Let P_{1} and P_{2} denote two fixed points $(-c, 0)$ and $(c, 0)$ on the u^{1}-axis. Let r_{1} and r_{2} be the distances from P_{1} and P_{2} of a variable point P in the plane $O u^{1} u^{2}$. The elliptic coordinates are the variables

$$
\left(\xi \equiv \frac{r_{1}+r_{2}}{2 c}, \eta \equiv \frac{r_{1}-r_{2}}{2 c}, z\right)
$$

where $\xi \leq 1$ and $-1 \leq \eta \leq 1$. These variables are related to Cartesian coordinates by the following relations (see Fig. 2.7):

$$
\left\{\begin{array}{l}
u^{1}=c \xi \eta, \\
u^{2}=c \sqrt{\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)}, \quad c \in \mathfrak{R} \\
u^{3}=z .
\end{array}\right.
$$

Parabolic Coordinates

The parabolic coordinates (ξ, η, z) are related to Cartesian coordinates $\left(u^{1}, u^{2}, u^{3}\right)$ by the relations (see Fig. 2.8)

$$
\left\{\begin{array}{l}
u^{1}=\frac{1}{2}\left(\eta^{2}-\xi^{2}\right), \\
u^{2}=\xi \eta, \\
u^{3}=-z .
\end{array}\right.
$$

Fig. 2.8 Parabolic coordinates

Fig. 2.9 Bipolar coordinates

Bipolar Coordinates

The transformations

$$
\left\{\begin{array}{l}
u^{1}=\frac{a \sinh \xi}{(\cosh \xi-\cos \eta)}, \\
u^{2}=\frac{a \sin \eta}{(\cosh \xi-\cos \eta)}, \quad a \in \mathfrak{R} \\
u^{3}=z
\end{array}\right.
$$

define the relation between the Cartesian coordinates $\left(u^{1}, u^{2}, u^{3}\right)$ and the bipolar coordinates (ξ, η, z) (see Fig. 2.9).

Prolate and Oblate Spheroidal Coordinates

The transformation equations

$$
\left\{\begin{array}{l}
u^{1}=c \xi \eta, \\
u^{2}=c \sqrt{\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)} \cos \varphi, \quad c \in \Re \\
u^{3}=c \sqrt{\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)} \sin \varphi,
\end{array}\right.
$$

where

$$
\xi \geq 1, \quad-1 \leq \eta \leq 1, \quad 0 \leq \varphi \leq 2 \pi
$$

express the relation between prolate spheroidal coordinates $(\xi, \eta, \varphi$) and Cartesian coordinates $\left(u^{1}, u^{2}, u^{3}\right)$.

Similarly, the oblate spheroidal coordinates (ξ, η, φ) are defined by the following transformation formulae:

$$
\left\{\begin{array}{l}
u^{1}=c \xi \eta \sin \varphi, \\
u^{2}=c \sqrt{\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)}, \quad c \in \mathfrak{R} \\
u^{3}=c \xi \eta \cos \varphi,
\end{array}\right.
$$

with the same conditions on ξ, η, and φ.
The spheroidal coordinates in the space are obtained by rotating the ellipses of Fig. 2.7 around one of its symmetry axes. More specifically, if the rotation is around the major axis x, then the spheroidal prolate coordinates are generated; if the rotation is around the minor axis y, then the coordinates are called oblate. To conclude, we note that the spheroidal coordinates reduce to the spherical ones when the focal distance $2 c$ and the eccentricity go to zero.

Paraboloidal Coordinates

The variables (ξ, η, φ), defined by the functions

$$
\left\{\begin{array}{l}
u^{1}=\xi \eta \cos \varphi, \\
u^{2}=\xi \eta \sin \varphi, \\
u^{3}=\frac{1}{2}\left(\xi^{2}-\eta^{2}\right),
\end{array}\right.
$$

are called paraboloidal coordinates. These coordinates are obtained by rotating the parabolas of Fig. 2.8 around their symmetry axis x.

2.8 Exercises

1. Write formulae (2.54)-(2.63) in cylindrical and spherical coordinates by using the results of Sect. 2.2.
2. Find the restrictions on the components of a vector field $\mathbf{u}(r, \varphi)$ in order for it to be uniform $(\nabla \mathbf{u}=\mathbf{0})$ in polar coordinates (r, φ).
3. Verify that $\nabla \times \nabla f=\mathbf{0}$ for any function f and that $\nabla \cdot \nabla \times \mathbf{u}=0$ for any vector field \mathbf{u}.
4. Determine the directional derivative of the function $x^{2}-x y+y^{2}$ along the vector $\mathbf{n}=\mathbf{i}+2 \mathbf{j}$, where \mathbf{i} and \mathbf{j} are unit vectors along the Cartesian axes $O x$ and $O y$.
5. Determine the directional derivative of the function $x^{2}-x y+y^{2}$ along the parametric curve $x=\cos \varphi, y=\sin \varphi$.
6. Using the components, prove that

$$
\begin{gathered}
\nabla(F \mathbf{v})=\mathbf{v} \cdot \nabla F+F \nabla \cdot \mathbf{v} \\
\nabla \times \nabla \mathbf{u}=\nabla \nabla \mathbf{u}-\Delta \mathbf{u} \\
\nabla \times(\mathbf{u} \times \mathbf{v})=\mathbf{v} \cdot \nabla \mathbf{u}-\mathbf{v} \nabla \cdot \mathbf{u}+\mathbf{u} \nabla \mathbf{v}-\mathbf{u} \cdot \nabla \mathbf{v}
\end{gathered}
$$

Hint: About the first formula we have that

$$
\epsilon_{i j h}\left(F u_{h}\right),_{j}=\epsilon_{i j h} F,_{j} u_{h}+\epsilon_{i j h} F v_{h},{ }_{j}=F \epsilon_{i j h} v_{h},{ }_{j}-\epsilon_{i h j} u_{h} F,_{j}
$$

7. Verify that the volume V enclosed by the surface σ with unit normal vector \mathbf{n} can be written as

$$
V=\frac{1}{6} \int_{\sigma} \nabla\left(r^{2}\right) \cdot \mathbf{n} d \sigma
$$

where $r^{2}=x_{i} x_{i}$ and \mathbf{n} is the external unit vector normal to σ.
Hint: Note that

$$
V=\int_{V} d V=\frac{1}{3} \int_{V} \nabla \cdot \mathbf{r} d V=\frac{1}{3} \int_{\sigma} \mathbf{r} \cdot \mathbf{n} d \sigma
$$

where \mathbf{r} is the position vector of a point of V or σ relative to an arbitrary origin O.
8. With the notation of the previous exercise, prove that

$$
V \mathbf{I}=\int_{\sigma} \mathbf{r} \otimes \mathbf{n} d \sigma
$$

where \mathbf{I} is the identity matrix. Further, prove the formula of the above exercise starting from this result.

Hint: We have that

$$
\int_{\sigma} x_{i} n_{j} d \sigma=\int_{V} \frac{\partial x_{i}}{\partial x_{j}} d V=\delta_{i j} \int_{V} d V
$$

9. In Cartesian coordinates prove that

$$
\int_{\partial V} F \nabla \times \mathbf{v} \cdot \mathbf{N} d \sigma=\int_{V} \nabla F \cdot \nabla \times \mathbf{v} d V
$$

where \mathbf{N} is the exterior unit normal to the boundary ∂V of the volume V and F is a smooth function.
Hint: From Gauss's theorem we have that

$$
\begin{aligned}
\int_{\partial V} \epsilon_{i j k} F v_{k, j} N_{i} d \sigma & =\int_{V}\left(F v_{k, j}\right)_{, i} d V \\
& =\int_{V}\left(\epsilon_{i j k} F, i v_{k, j}+\epsilon_{i j k} F v_{k, j i}\right) d V
\end{aligned}
$$

10. By Gauss' theorem prove that

$$
\int_{\partial V} \mathbf{n} \times(\mathbf{a} \times \mathbf{r}) d \sigma=2 \mathbf{a} V
$$

where \mathbf{n} is the exterior unit normal to the boundary ∂V of the volume V and a is a constant vector.
11. Let S be a regular surface defined by the parametric equations

$$
\mathbf{r}=\mathbf{r}\left(u^{1}, u^{2}\right)
$$

where \mathbf{r} is the position vector of the points of S in the Euclidean point space E_{3} and u^{1}, u^{2} are curvilinear coordinates on S. It is well known that the two tangent vectors to the coordinate curves on S

$$
\mathbf{a}_{\alpha}=\frac{\partial \mathbf{r}}{\partial u^{\alpha}}, \quad \alpha=1,2,
$$

at any point $\mathbf{r} \in S$ form a basis of the tangent space to S at \mathbf{r}. The area $d \sigma$ of the infinitesimal parallelogram formed by the infinitesimal vectors $d u^{1} \mathbf{a}_{1}$ and $d u^{2} \mathbf{a}_{2}$ is given by

$$
d \sigma=\left|\mathbf{a}_{1} \times \mathbf{a}_{2}\right| d u^{1} d u^{2}
$$

Prove that

$$
d \sigma=\sqrt{a} d u^{1} d u^{2}
$$

where

$$
a=\operatorname{det}\left(a_{\alpha \beta}\right), \quad a_{\alpha \beta}=\mathbf{a}_{\alpha} \cdot \mathbf{a}_{\beta} .
$$

12. Resorting to the result of the above exercise, prove that the area of a sphere (see Sect. 2.2)

$$
\begin{aligned}
& x=r \cos \varphi \sin \theta \\
& y=r \sin \varphi \sin \theta \\
& z=r \cos \theta
\end{aligned}
$$

is $4 \pi r^{2}$.
13. Let $O x y$ a Cartesian frame of reference in the plane and denote by R the rectangle $[0, a] \times[0, b]$ and by \mathbf{i}, \mathbf{j} the unit vectors along the axes $O x$ and $O y$, respectively. Verify the Gauss theorem for the plane vector field

$$
\mathbf{v}=x y^{2} \mathbf{i}+y x^{2} \mathbf{j}
$$

in the rectangle R.
Hint: Since $\nabla \cdot \mathbf{v}=y^{2}+x^{2}$, we have that

$$
\int_{R} \nabla \cdot \mathbf{v} d V=\int_{0}^{a} \int_{0}^{b}\left(x^{2}+y^{2}\right) d x d y=\frac{1}{3}\left(a^{3} b+a b^{3}\right)
$$

On the other hand, along ∂R the unit normal \mathbf{n} has the components

$$
(0,-1), \quad(1,0), \quad(0,1), \quad(-1,0) .
$$

Consequently, it is

$$
\int_{\partial R} \mathbf{v} \cdot \mathbf{n} d l=\int_{0}^{b} a y^{2} d y-\int_{a}^{0} b x^{2} d x=\frac{1}{3}\left(a^{3} b+a b^{3}\right) .
$$

14. Let C a circle with its center at the origin of polar coordinates (r, φ) having radius a. Verify the Gauss theorem applied to C and the vector field:

$$
\mathbf{v}=r \mathbf{e}_{r}+\cos \varphi \mathbf{e}_{\varphi},
$$

where \mathbf{e}_{r} and \mathbf{e}_{φ} are the vectors of the holonomic basis.

Hint: The metric writes $d s^{2}=d r^{2}+r^{2} d \varphi^{2}$; in this basis the unit vector normal to ∂C has components $(1,0)$. Therefore, we can write

$$
\int_{\partial C} \mathbf{v} \cdot \mathbf{n} d l=\int_{0}^{2 \pi} g_{i j} v^{i} n^{j} d l=\int_{0}^{2 \pi} a d \varphi=2 \pi a .
$$

Finally, it is

$$
\begin{aligned}
\nabla \cdot \mathbf{v} & =\frac{1}{\sqrt{g}} \frac{\partial}{\partial r}\left(\sqrt{g} v^{r}\right)+\frac{1}{\sqrt{g}} \frac{\partial}{\partial \varphi}\left(\sqrt{g} v^{\varphi}\right) \\
& =2-\sin \varphi .
\end{aligned}
$$

2.9 The Program Operator

Aim of the Program

When a transformation from curvilinear to Cartesian coordinates is given, the program Operator evaluates the Jacobian matrix of this transformation, the vectors of the natural basis, the metric coefficients, and all the significant nonvanishing Christoffel symbols. Moreover, if the curvilinear coordinates are orthogonal, then all the differential operators are evaluated with respect to the unit basis for functions, vector fields, and 2-tensor fields. In particular, if all these fields are assigned in Cartesian coordinates, but we wish to find the operators in curvilinear coordinates, then the program first supplies the components in these coordinates and then evaluates the expressions for the operators. Finally, fixing for the input parameter characteristic the attribute symbolic, the program gives all the differential operators in symbolic form, without making explicit the functional dependence of the components on the curvilinear coordinates. In all other cases, the parameter characteristic has the attribute numeric.

Description of the Algorithm

The program uses the theory presented in the previous sections to determine both the geometric characteristics and the differential operator expressions of functions, vector fields, and 2-tensor fields.

Command Line of the Program Operator

Operator[tensor, var, transform, characteristic, option, simplifyoption]

Parameter List

Input Data

tensor $=\{ \}$, \{function \}, or components of a vector or 2-tensor field in the unit basis associated with the curvilinear coordinates var or in the Cartesian coordinates $\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$;
var = curvilinear or Cartesian coordinates;
transform $=$ right-hand side of coordinate transformation from curvilinear coordinates var to Cartesian coordinates, or of the identity transformation;
characteristic = symbolic or numeric. The first choice is adopted when the functional dependence of the fields on the variables var is not given, and in this case the output is symbolic. The second choice refers to other cases. option = metric, operator, or all. The program gives outputs relative to metric characteristics of the curvilinear coordinates, to differential operators of tensor, or to both of them.
simplifyoption $=$ true or false. In the first case, the program gives many simplifications of symbolic expressions.

Output Data

Jacobian transformation matrix;
natural basis;
metric matrix;
inverse of the metric matrix;
Christoffel symbols;
unit basis associated with the natural one;
gradient and Laplacian of a scalar field;
gradient, divergence, and curl of a vector field;
gradient and divergence of a 2-tensor field;

Use Instructions

We have already said that the input datum transform represents the right-hand sides of the transformations from curvilinear coordinates var to Cartesian coordinates. In the program, the latter are expressed by the letters x, y, z. Consequently, the program fails if the input parameter option is equal to operator, all, or if the introduced coordinates invert the orientation of one or more Cartesian axes. To overcome this difficulty, we can choose variables in transform which are different from the corresponding Cartesian ones. For example, if we wish to evaluate the differential operators of the function F in parabolic coordinates, which have the transformation equations

$$
\left\{\begin{array}{l}
x=\frac{1}{2}\left(\eta^{2}-\xi^{2}\right), \\
y=\xi \eta, \\
z=-z,
\end{array}\right.
$$

in the case where the orientation of z-axis is inverted, the previous transformation can be written as

$$
\left\{\begin{array}{l}
x=\frac{1}{2}\left(\eta^{2}-\xi^{2}\right), \\
y=\xi \eta, \\
z=-k .
\end{array}\right.
$$

Moreover, we recall that the program does not evaluate the differential operators when the curvilinear coordinates are not orthogonal. In this case, it gives only the geometric characteristic.

Worked Examples

1. In order to determine the metric characteristics of the elliptic coordinates $\{\xi, \eta, z\}$ (see Sect. 2.7), it is sufficient to input the following data:
tensor $=\{ \}$; var $=\{\xi, \eta, z\}$;
transform $=\left\{c \xi \eta, c \sqrt{\left(\xi^{2}-1\right)\left(1-\eta^{2}\right)}, \quad \mathrm{z}\right\}$;
characteristic = symbolic;
option = metric;
simplifyoption = true;
Operator[tensor, var, transform, characteristic, option, simplifyoption]

The program gives the following output:
Jacobian matrix
$\left(\begin{array}{ccc}c \eta & c \xi & 0 \\ c \xi \sqrt{\frac{1-\eta^{2}}{-1+\xi^{2}}}-c \eta \sqrt{\frac{1-\xi^{2}}{-1+\eta^{2}}} & 0 \\ 0 & 0 & 1\end{array}\right)$
Natural basis
$\mathrm{e}_{1}=\mathrm{c} \eta \mathrm{u}_{1}-\mathrm{c} \xi \sqrt{\frac{1-\eta^{2}}{-1+\xi^{2}}} \mathrm{u}_{2}$
$\mathrm{e}_{2}=\mathrm{c} \xi \mathrm{u}_{1}-\mathrm{c} \eta \sqrt{\frac{1-\xi^{2}}{-1+\eta^{2}}} \mathrm{u}_{2}$
$e_{3}=u_{3}$
Metric matrix
$\left(\begin{array}{ccc}\frac{c^{2}\left(-\eta^{2}+\xi^{2}\right)}{-1+\xi^{2}} & 0 & 0 \\ 0 & \frac{c^{2}\left(\eta^{2}-\xi^{2}\right)}{-1+\eta^{2}} & 0 \\ 0 & 0 & 1\end{array}\right)$
Inverse metric matrix
$\left(\begin{array}{ccc}\frac{-1+\xi^{2}}{c^{2}\left(-\eta^{2}+\xi^{2}\right)} & 0 & 0 \\ 0 & \frac{-1+\eta^{2}}{c^{2}\left(\eta^{2}-\xi^{2}\right)} & 0 \\ 0 & 0 & 1\end{array}\right)$
Christoffel symbols
$\Gamma_{11}^{1}=\frac{\xi\left(\eta^{2}-1\right)}{\left(\xi^{2}-1\right)\left(\xi^{2}-\eta^{2}\right)}$
$\Gamma_{12}^{1}=\frac{\eta}{\eta^{2}-\xi^{2}}$
$\Gamma_{22}^{1}=\frac{\xi\left(\xi^{2}-1\right)}{\left(\eta^{2}-1\right)\left(\xi^{2}-\eta^{2}\right)}$
$\Gamma_{11}^{2}=\frac{\eta\left(\eta^{2}-1\right)}{\left(\xi^{2}-1\right)\left(\eta^{2}-\xi^{2}\right)}$
$\Gamma_{12}^{2}=\frac{\xi}{\left(\xi^{2}-\eta^{2}\right)}$
$\Gamma_{22}^{2}=\frac{\eta\left(\xi^{2}-1\right)}{\left(\eta^{2}-1\right)\left(\eta^{2}-\xi^{2}\right)}$
Unit basis
$\mathrm{a}_{1}=\frac{\eta \mathrm{u}_{1}}{\sqrt{\frac{-\eta^{2}+\xi^{2}}{-1+\xi^{2}}}}+\xi \sqrt{\frac{-1+\eta^{2}}{\eta^{2}-\xi^{2}}} \mathrm{u}_{2}$

2. Evaluate the gradient and the Laplacian of the function

$$
F=x^{2}+x y+y^{2},
$$

in the unit basis associated with the polar coordinates. To use the program Operator we input the following:
tensor $=\left\{\mathrm{x}^{2}+\mathrm{xy}+\mathrm{y}^{2}\right\}$;
var $=\{r, \varphi\}$;
transform $=\{r \operatorname{Cos}[\varphi], r \operatorname{Sin}[\varphi]\} ;$
characteristic = numeric;
option = operator;
simplifyoption = true;
Operator[tensor, var, transform, characteristic,
option, simplifyoption]
In output we obtain
The function $F=x^{2}+x y+y^{2}$ in the coordinates $\{r, \varphi\}$
is written as $F=r^{2}(1+\operatorname{Cos}[\varphi] \operatorname{Sin}[\varphi])$
Differential operators
Gradient
$\nabla F=\binom{r(2+\operatorname{Sin}[2 \varphi])}{r \operatorname{Cos}[2 \varphi]}$
Laplacian
$\Delta \mathrm{F}=4$
3. Let $\{\xi, \eta, k\}$ be parabolic coordinates and let F be any function depending on these coordinates. The program Operator allows us to calculate both the geometric characteristic of the coordinates $\{\xi, \eta, k\}$ and the gradient and Laplacian of F by introducing the following data:
tensor $=\{F\}$;
$\operatorname{var}=\{\xi, \eta, k\}$;
transform $=\left\{\frac{1}{2}\left(\xi^{2}-\eta^{2}\right), \xi \eta,-\mathrm{k}\right\} ;$
characteristic = symbolic;
option = all;
simplifyoption = true;

Operator[tensor, var, transform, characteristic, option, simplifyoption]

We obtain this output:
Jacobian matrix
$\left(\begin{array}{ccc}\xi & -\eta & 0 \\ \eta & \xi & 0 \\ 0 & 0 & -1\end{array}\right)$
Natural basis
$\mathrm{e}_{1}=\xi \mathrm{u}_{1}+\eta \mathrm{u}_{2}$
$\mathrm{e}_{2}=-\eta \mathrm{u}_{1}+\xi \mathrm{u}_{2}$
$e_{3}=-u_{3}$
Metric matrix
$\left(\begin{array}{ccc}\xi^{2}+\eta^{2} & 0 & 0 \\ 0 & \xi^{2}+\eta^{2} & 0 \\ 0 & 0 & 1\end{array}\right)$
Inverse metric matrix
$\left(\begin{array}{ccc}\frac{1}{\xi^{2}+\eta^{2}} & 0 & 0 \\ 0 & \frac{1}{\xi^{2}+\eta^{2}} & 0 \\ 0 & 0 & 1\end{array}\right)$
Christoffel symbols
$\Gamma_{11}^{1}=\frac{\xi}{\xi^{2}+\eta^{2}}$
$\Gamma_{12}^{1}=\frac{\eta}{\xi^{2}+\eta^{2}}$
$\Gamma_{22}^{1}=-\frac{\xi}{\xi^{2}+\eta^{2}}$
$\Gamma_{11}^{2}=-\frac{\eta}{\xi^{2}+\eta^{2}}$
$\Gamma_{12}^{2}=\frac{\xi}{\xi^{2}+\eta^{2}}$
$\Gamma_{22}^{2}=\frac{\eta}{\xi^{2}+\eta^{2}}$
Unit basis
$\mathrm{a}_{1}=\frac{\xi}{\sqrt{\xi^{2}+\eta^{2}}} \mathrm{u}_{1}+\frac{\eta}{\sqrt{\xi^{2}+\eta^{2}}} \mathrm{u}_{2}$
$\mathrm{a}_{2}=-\frac{\eta}{\sqrt{\xi^{2}+\eta^{2}}} \mathrm{u}_{1}+\underline{\xi \sqrt{\xi^{2}+\eta^{2}} \mathrm{u}_{2}}$
$\mathrm{a}_{3}=-\mathrm{u}_{3}$
Differential operators for the function $\mathrm{F}[\xi, \eta, k]$

Gradient
$\nabla \mathrm{F}=\left(\begin{array}{c}\frac{1}{\sqrt{\xi^{2}+\eta^{2}}} \partial_{\xi}[\mathrm{F}] \\ \frac{1}{\sqrt{\xi^{2}+\eta^{2}}} \partial_{\eta}[\mathrm{F}] \\ \partial_{\mathrm{K}}[F]\end{array}\right)$
Laplacian
$\Delta \mathrm{F}=\frac{\left(\xi^{2}+\eta^{2}\right) \partial_{\mathrm{k}^{2}}[\mathrm{~F}]+\partial_{\eta^{2}}[\mathrm{~F}]+\partial_{\xi^{2}}[\mathrm{~F}]}{\xi^{2}+\eta^{2}}$

Exercises

1. Apply the program Operator to the coordinates introduced in Sect. 2.7 to determine their geometric characteristics.
2. Using the program Operator, evaluate the differential operators of any scalar, vector, or 2-tensor field both in Cartesian coordinates and those of Exercise 1.
3. Evaluate the gradient and Laplacian of the function $F=x^{2}+x y+y^{2}+z$ in Cartesian and spherical coordinates.
4. Determine the differential operators of the vector field $\mathbf{v}=r \mathbf{e}_{r}+\cos \varphi \mathbf{e}_{\varphi}+$ $\sin \theta \mathbf{e}_{\theta}$ in spherical coordinates.
5. Evaluate the differential operators of the tensor $\{\{x, y\},\{x, y\}\}$ in polar coordinates.

Chapter 3
 Finite and Infinitesimal Deformations

This chapter contains the fundamental definitions and theorems relative to finite and infinitesimal deformations of a continuous system. Starting from the deformation gradient, the rotation tensor, right and left stretching tensors are defined making clear their use in defining the different aspects of deformation. Then, the left and right Cauchy-Green tensors are introduced with a complete analysis of their invariants. Starting from the displacement gradient, the infinitesimal deformations are defined. Finally, the compatibility conditions of a deformation are analyzed. After a section of exercises, the chapter ends with the introduction of the program Deformation, written with Mathematica ${ }^{\circledR}$ [69].

3.1 Deformation Gradient

Let S be a three-dimensional continuous body and let $R=\left(O, \mathbf{e}_{i}\right)$ be a rectangular coordinate system in the Euclidean space E_{3} (see Chap. 1). Moreover, let C_{*} and C denote two configurations of S at different times. Any point of S in the reference configuration C_{*}, identified from now on by the label \mathbf{X}, is called a material point; the same point in the actual or current configuration C is identified by the position \mathbf{x} and is called a spatial point. Furthermore, $\left(x_{i}\right)$ and $\left(X_{L}\right)$, with $i, L=1,2,3$, are respectively the spatial and material coordinates of the particle \mathbf{X} in $\left(O, \mathbf{e}_{i}\right) .{ }^{1}$

When a rectangular coordinate system is adopted ($g_{i j} \equiv \delta_{i j}$), the position of indices is immaterial since the covariant and contravariant components coincide.

[^7]A finite deformation from C_{*} to C is defined as the vector function

$$
\begin{equation*}
\mathbf{x}=\mathbf{x}(\mathbf{X}) \tag{3.1}
\end{equation*}
$$

which maps any $\mathbf{X} \in C_{*}$ onto the corresponding $\mathbf{x} \in C$.
In order to preserve the basic property of matter that two particles cannot simultaneously occupy the same place, we require that $\mathbf{x}(\mathbf{X}) \neq \mathbf{x}(\mathbf{Y})$ if $\mathbf{X} \neq \mathbf{Y}$, for all $\mathbf{X}, \mathbf{Y} \in C_{*}$, so that (3.1) is a diffeomorphism preserving the topological properties of the reference configuration.

In terms of coordinates, (3.1) is equivalent to the three scalar functions

$$
\begin{equation*}
x_{i}=x_{i}\left(X_{L}\right) \tag{3.2}
\end{equation*}
$$

which are assumed to be of class C^{1}, together with their inverse functions. It follows that the Jacobian must be different from zero:

$$
\begin{equation*}
J=\operatorname{det}\left(\frac{\partial x_{i}}{\partial X_{L}}\right) \neq 0 \tag{3.3}
\end{equation*}
$$

More particularly, it is supposed that ${ }^{2}$

$$
\begin{equation*}
\operatorname{det} \mathbf{F}>0 \tag{3.4}
\end{equation*}
$$

Differentiation of (3.2) gives

$$
\begin{equation*}
d x_{i}=\frac{\partial x_{i}}{\partial X_{L}} d X_{L} \tag{3.5}
\end{equation*}
$$

so that, at any $\mathbf{X} \in C_{*}$, a linear mapping is defined, called the deformation gradient in \mathbf{X}. It is identified by the tensor

$$
\begin{equation*}
\mathbf{F}=\left(F_{i L}\right)=\left(\frac{\partial x_{i}}{\partial X_{L}}\right) \tag{3.6}
\end{equation*}
$$

which maps the infinitesimal material vector $d \mathbf{X}$, emanating from \mathbf{X}, onto the corresponding vector $d \mathbf{x}$, emanating from $\mathbf{x}(\mathbf{X})$. In particular, if \mathbf{F} does not depend on $\mathbf{X} \in C_{*}$, then the deformation is called homogeneous. Note that the linear mapping (3.6) locally describes the body deformation when passing from C_{*} to C. To make this more explicit, we start by noting that, due to condition (3.3), Cauchy's polar decomposition Theorem 1.10 can be applied: it is always possible to find a proper orthogonal matrix \mathbf{R} (i.e., $\mathbf{R R}^{T}=\mathbf{R}^{T} \mathbf{R}=\mathbf{I}$) and two symmetric and positive definite matrices \mathbf{U} and \mathbf{V} such that

[^8]\[

$$
\begin{equation*}
\mathbf{F}=\mathbf{R} \mathbf{U}=\mathbf{V} \mathbf{R} \tag{3.7}
\end{equation*}
$$

\]

In order to explore the meaning of this decomposition, we start with (3.7) . The matrix \mathbf{U} is a linear mapping in \mathbf{X}; i.e., it maps the vector space at \mathbf{X} into itself, whereas \mathbf{R} defines an orthogonal mapping of vectors in \mathbf{X} into vectors in $\mathbf{x}(\mathbf{X})$. For this reason, the second one is sometimes referred to as a two-point tensor (see Sect. 3.6).

Because \mathbf{U} is symmetric and positive definite, its eigenvalues λ_{L} are real and positive, with corresponding mutually orthogonal eigenvectors (\mathbf{u}_{L}). In addition, the mapping \mathbf{R} transforms orthonormal bases in \mathbf{X} into orthonormal bases in $\mathbf{x}(\mathbf{X})$, so that, if $d \mathbf{X}=d X_{L} \mathbf{u}_{L}$ and $\mathbf{e}_{L}=\mathbf{R}\left(\mathbf{u}_{L}\right)$, then

$$
\begin{aligned}
d \mathbf{x} & =\mathbf{F} d \mathbf{X}=\mathbf{R U}\left(d X_{L} \mathbf{u}_{L}\right)=\lambda_{L} d X_{L} \mathbf{R} \mathbf{u}_{L} \\
& =\lambda_{1} d X_{1} \mathbf{e}_{1}+\lambda_{2} d X_{2} \mathbf{e}_{2}+\lambda_{3} d X_{3} \mathbf{e}_{3} .
\end{aligned}
$$

Therefore, the vector $d \mathbf{x}$ has components ($\lambda_{1} d X_{1}, \lambda_{2} d X_{2}, \lambda_{3} d X_{3}$) relative to the basis $\left(\mathbf{e}_{L}\right)$ and the following is proved:

Theorem 3.1. In the deformation $C_{*} \rightarrow C$, the elementary parallelepiped $d C_{*}$ which has a vertex at \mathbf{X} and edges $\left(d X_{1} \mathbf{u}_{1}, d X_{2} \mathbf{u}_{2}, d X_{3} \mathbf{u}_{3}\right)$ parallel to the eigenvectors $\left(\mathbf{u}_{L}\right)$ of \mathbf{U} is transformed into the parallelepiped at $\mathbf{x}(\mathbf{X})$ in three steps: stretching any $d X_{L}$ of $d C_{*}$ of the entity λ_{L}; transporting the element obtained with a rigid translation in $\mathbf{x}(\mathbf{X})$; and finally rotating $\lambda_{L} d X_{L} \mathbf{u}_{L}$ under \mathbf{R}, in order to superimpose this edge on the axis $\left(\mathbf{e}_{L}\right)$.

We observe that in any rigid translation the rectilinear components of a vector are not affected, whereas they change for a curvilinear coordinate change, due to the local character of the basis. This topic will be addressed in more detail in Sect. 3.9.

The decomposition expressed by $(3.7)_{1}$ allows the introduction of the following definitions:

$$
\begin{aligned}
& \mathbf{R}=\text { rotation tensor } \\
& \mathbf{U}=\text { right stretching tensor }, \\
& \mathbf{V}=\text { left stretching tensor }, \\
& \lambda_{L}=\text { principal stretching in the direction of } \mathbf{u}_{L}, \\
& \mathbf{u}_{L}=\text { principal direction of stretching } .
\end{aligned}
$$

We recall how the tensors \mathbf{U} and \mathbf{R} can be represented in terms of \mathbf{F} (see Theorem 1.8):

$$
\begin{equation*}
\mathbf{U}=\sqrt{\mathbf{F}^{T} \mathbf{F}}, \quad \mathbf{R}=\mathbf{F U}^{-1} \tag{3.8}
\end{equation*}
$$

The meaning of (3.8) ${ }_{1}$ is that the matrix \mathbf{U} is represented, in the basis of the eigenvectors (\mathbf{u}_{L}) of $\mathbf{F}^{T} \mathbf{F}$, by the diagonal matrix \mathbf{U}^{\prime}, having as diagonal terms the square roots of the eigenvalues of $\mathbf{F}^{T} \mathbf{F}$.

The matrix \mathbf{U} relative to any new basis $\left(\mathbf{e}_{L}\right)$ is given by the transformation rule

$$
\mathbf{U}=\mathbf{A} \mathbf{U}^{\prime} \mathbf{A}^{T}
$$

where \mathbf{A} is the matrix representing the transformation $\left(\mathbf{u}_{L}\right) \longrightarrow\left(\mathbf{e}_{L}\right)$ (i.e., $\mathbf{e}_{i}=$ $\left.A_{i k} \mathbf{u}_{k} ; U_{i j}=A_{i h} A_{j k} U_{h k}^{\prime}\right)$.

In any case, the evaluation of the matrix \mathbf{U} is not easy, since its components are, in general, irrational (see Exercise 1). By inspecting (3.8) ${ }_{1}$, we see that it may be more convenient to use the matrix $\mathbf{F}^{T} \mathbf{F}$ directly, rather than \mathbf{U}. Furthermore, we note that since \mathbf{F} includes effects deriving from both the deformation and the rigid rotation \mathbf{R}, its use in constitutive laws is not appropriate, due to the fact that no changes in the state of stress are due to a rigid rotation.

These issues indicate the need to introduce other measures of deformation.

3.2 Stretch Ratio and Angular Distortion

Let $d \mathbf{x}$ be an infinitesimal vector in C corresponding to $d \mathbf{X}$ in C_{*}. The simplest (and most commonly used) measure of the extensional strain of an infinitesimal element is the stretch ratio (or simply stretch). This measure depends on the direction of the unit vector \mathbf{u}_{*} of $d \mathbf{X}$ and is expressed by the scalar quantity

$$
\begin{equation*}
\delta_{\mathbf{u}_{*}}=\frac{|d \mathbf{x}|}{|d \mathbf{X}|} \tag{3.9}
\end{equation*}
$$

while the quantity

$$
\begin{equation*}
\delta_{\mathbf{u}_{*}}-1=\frac{|d \mathbf{x}|-|d \mathbf{X}|}{|d \mathbf{X}|} \tag{3.10}
\end{equation*}
$$

defines the longitudinal unit extension (always along the direction of \mathbf{u}_{*}).
Moreover, the change in angle Θ_{12} between two arbitrary vectors $d \mathbf{X}_{1}$ and $d \mathbf{X}_{2}$, both emanating from $\mathbf{X} \in C_{*}$, is called the shear γ_{12} and it is defined as

$$
\begin{equation*}
\gamma_{12}=\Theta_{12}-\theta_{12} \tag{3.11}
\end{equation*}
$$

where θ_{12} is the angle between $d \mathbf{x}_{1}$ and $d \mathbf{x}_{2}$ in C corresponding to $d \mathbf{X}_{1}$ and $d \mathbf{X}_{2}$.
The right Cauchy-Green tensor (Green, 1841) is defined as the symmetric tensor

$$
\begin{equation*}
\mathbf{C}=\mathbf{F}^{T} \mathbf{F}, \quad C_{L M}=\frac{\partial x_{k}}{\partial X_{L}} \frac{\partial x_{k}}{\partial X_{M}} \tag{3.12}
\end{equation*}
$$

By taking into account (3.8) $)_{1}$, we see that it is also

$$
\begin{equation*}
\mathbf{C}=\mathbf{U}^{2} \tag{3.13}
\end{equation*}
$$

so that \mathbf{C} is a positive definite tensor with the following properties:
Theorem 3.2. 1. The stretch ratio in the direction of the unit vector \mathbf{u}_{*} and the angle that two arbitrary unit vectors $\mathbf{u}_{* 1}$ and $\mathbf{u}_{* 2}$ assume during the deformation are given by

$$
\begin{gather*}
\delta_{\mathbf{u}_{*}}=\sqrt{\mathbf{u}_{*} \cdot \mathbf{C u}} \tag{3.14}\\
\cos \theta_{12}=\frac{\mathbf{u}_{* 1} \cdot \mathbf{C} \mathbf{u}_{* 2}}{\sqrt{\mathbf{u}_{* 1} \cdot \mathbf{C u}} \sqrt{* 1} \sqrt{\mathbf{u}_{* 2} \cdot \mathbf{C u}}} ; \tag{3.15}
\end{gather*}
$$

2. The tensors \mathbf{C} and \mathbf{U} have the same eigenvectors; the eigenvalues of \mathbf{C} are equal to the squares of the eigenvalues of \mathbf{U};
3. The components $C_{L L}$ correspond to the squares of the stretch ratios in the direction of the unit vectors of the basis $\left(\mathbf{e}_{L}\right)$, whereas $C_{L M}, L \neq M$, are proportional to the sine of the shear strain between \mathbf{e}_{L} and \mathbf{e}_{M}.
4. Finally, the eigenvalues of \mathbf{C} are equal to the squares of the stretch ratios in the direction of the eigenvectors.

Proof. Let $d \mathbf{X}=|d \mathbf{X}| \mathbf{u}_{*}$; then from (3.9), (3.6), and (3.12), it follows

$$
\delta_{\mathbf{u} *}^{2}=\frac{d \mathbf{x} \cdot d \mathbf{x}}{|d \mathbf{X}|^{2}}=\frac{|d \mathbf{X}|^{2} \mathbf{u}_{*} \cdot \mathbf{C} \mathbf{u}_{*}}{|d \mathbf{X}|^{2}}
$$

so that (3.14) is proved. In a similar manner, given $d \mathbf{X}_{1}=\left|d \mathbf{X}_{1}\right| \mathbf{u}_{* 1}$ and $d \mathbf{X}_{2}=$ $\left|d \mathbf{X}_{2}\right| \mathbf{u}_{* 2}$, it follows that

$$
\cos \theta_{12}=\frac{d \mathbf{x}_{1} \cdot d \mathbf{x}_{2}}{\left|d \mathbf{x}_{1}\right|\left|d \mathbf{x}_{2}\right|}=\frac{\left|d \mathbf{X}_{1}\right|\left|d \mathbf{X}_{2}\right| \mathbf{u}_{* 1} \cdot \mathbf{C} \mathbf{u}_{* 2}}{\left|d \mathbf{X}_{1}\right|\left|d \mathbf{X}_{2}\right| \sqrt{\mathbf{u}_{* 1} \cdot \mathbf{C u}_{* 1}} \sqrt{\mathbf{u}_{* 2} \cdot \mathbf{C u}}}
$$

which proves (3.15).
The property (2) has been proved in Theorem 1.8.
The property (3) can easily be proved as a consequence of (3.14) and (3.15), if in these relations we assume that $\mathbf{u}_{* 1}=\mathbf{e}_{L}$ and $\mathbf{u}_{* 2}=\mathbf{e}_{M}$, and recall that $C_{L M}=$ $\mathbf{e}_{L} \cdot \mathbf{C e}_{M}$.

We will also make use of the left Cauchy-Green tensor (Finger, 1894):

$$
\begin{equation*}
\mathbf{B}=\mathbf{F} \mathbf{F}^{T}=\mathbf{R U}^{2} \mathbf{R}^{T}=\mathbf{B}^{T}=\mathbf{V}^{2}, \quad B_{i j}=\frac{\partial x_{i}}{\partial X_{K}} \frac{\partial x_{j}}{\partial X_{K}} . \tag{3.16}
\end{equation*}
$$

It is of interest to prove the following theorem:
Theorem 3.3. The tensors \mathbf{B} and \mathbf{C} have the same eigenvalues; the eigenvectors of \mathbf{C} are obtained by applying the rotation \mathbf{R}^{T} to the eigenvectors of \mathbf{B}.

Proof. If \mathbf{u} is an eigenvector of \mathbf{C} corresponding to the eigenvalue Λ_{C}, then

$$
\mathbf{C u}=\mathbf{U}^{2} \mathbf{u}=\Lambda_{C} \mathbf{u}
$$

so that

$$
\mathbf{R} \mathbf{U}^{2} \mathbf{R}^{T}(\mathbf{R u})=\Lambda_{C}(\mathbf{R u})
$$

and finally

$$
\mathbf{B}(\mathbf{R} \mathbf{u})=\Lambda_{C}(\mathbf{R} \mathbf{u})
$$

On the other hand, if \mathbf{v} is an eigenvector of \mathbf{B} corresponding to the eigenvalue Λ_{B}, then

$$
\mathbf{B} \mathbf{v}=\mathbf{R} \mathbf{U}^{2} \mathbf{R}^{T} \mathbf{v}=\Lambda_{B} \mathbf{v}
$$

which proves the theorem.
In order to highlight the physical meaning of the tensors \mathbf{C} and \mathbf{B}, we observe that the Cauchy-Green tensor gives the square length of the element $d \mathbf{x}$ in which the original element $d \mathbf{X}$ is transformed:

$$
\begin{equation*}
d l^{2}=d \mathbf{X} \cdot \mathbf{C} d \mathbf{X} \tag{3.17}
\end{equation*}
$$

Conversely, the tensor $\mathbf{B}^{-1}=\left(\mathbf{F}^{-1}\right)^{T} \mathbf{F}^{-1}$, which has Cartesian components

$$
B_{i j}^{-1}=\frac{\partial X_{K}}{\partial x_{i}} \frac{\partial X_{K}}{\partial x_{j}},
$$

(Cauchy, 1827), gives the initial length of the element $d \mathbf{x}$

$$
\begin{equation*}
d l_{*}^{2}=d \mathbf{x} \cdot \mathbf{B}^{-1} d \mathbf{x} \tag{3.18}
\end{equation*}
$$

In addition to the formulae (3.14) and (3.15) giving the stretch ratios and the angle changes, it is of practical interest to derive the following expressions, which relate the change of an infinitesimal oriented area $\mathbf{d} \sigma_{*}$, defined in the initial configuration, to the corresponding infinitesimal oriented $\mathbf{d} \boldsymbol{\sigma}$ in the deformed configuration, as well as the change in volume from $d C_{*}$ into $d C$:

$$
\begin{equation*}
\mathbf{d} \sigma \equiv \mathbf{N} d \sigma=J\left(\mathbf{F}^{-1}\right)^{T} \mathbf{N}_{*} d \boldsymbol{\sigma} \equiv J\left(\mathbf{F}^{-1}\right)^{T} \mathbf{d} \sigma_{*} \tag{3.19}
\end{equation*}
$$

$$
\begin{equation*}
d c=J d c_{*}, \tag{3.20}
\end{equation*}
$$

where \mathbf{N}_{*} and \mathbf{N} are the unit vectors normal to $d \sigma_{*}$ and $d \sigma$, respectively.
To prove (3.19), consider two infinitesimal vectors dx and dy both emanating from $\mathbf{x} \in C$. The area of the parallelogram with edges $\mathbf{d x}$ and $\mathbf{d y}$ is given by the length of the vector

$$
\mathbf{d} \boldsymbol{\sigma} \equiv \mathbf{N} d \sigma=\mathbf{d x} \times \mathbf{d y} .
$$

In terms of components, this is

$$
d \sigma_{i}=N_{i} d \sigma=\epsilon_{i j k} d x_{j} d y_{k}=\epsilon_{i j k} F_{j L} F_{k M} d X_{L} d Y_{M}
$$

and, multiplying by \mathbf{F}, we obtain

$$
F_{i K} N_{i} d \sigma=\epsilon_{i j k} F_{i K} F_{j L} F_{k M} d X_{L} d Y_{M}
$$

The definition of determinant allows us to write

$$
J \epsilon_{K L M}=\epsilon_{i j k} F_{i K} F_{j L} F_{k M},
$$

so that the previous relation becomes

$$
F_{i K} N_{i} d \sigma=J \epsilon_{K L M} d X_{L} d Y_{M}
$$

Finally, it follows that

$$
N_{i} d \sigma=J\left(F^{-1}\right)_{K i} \epsilon_{K L M} d X_{L} d Y_{M}=J\left(F^{-1}\right)_{K i} N_{* K} d \sigma_{*}
$$

where $\epsilon_{K L M}$ is the permutation symbol.
Relation (3.20) follows directly from the rule of change of variables in multiple integrals.

3.3 Invariants of C and B

As we showed in Chap. 1, we recall that

1. the eigenvalues of a symmetric tensor are real and they are strictly positive if the tensor is positive definite;
2. the characteristic spaces of a symmetric tensor are mutually orthogonal.

It follows that the eigenvalues of \mathbf{C} and \mathbf{B} are real and positive. Furthermore, the characteristic equation of \mathbf{C} is written as

$$
\begin{equation*}
\Lambda^{3}-I_{C} \Lambda^{2}+I I_{C} \Lambda-I I I_{C}=0 \tag{3.21}
\end{equation*}
$$

where the coefficient $I_{C}, I I_{C}, I I I_{C}$, are the first, second, and third principal invariant of the tensor \mathbf{C}, i.e., they are quantities independent of the basis in which \mathbf{C} is expressed:

$$
\begin{align*}
I_{C} & =\operatorname{tr} \mathbf{C}=C_{11}+C_{22}+C_{33}, \\
I I_{C} & =\operatorname{det}\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)+\operatorname{det}\left(\begin{array}{ll}
C_{11} & C_{13} \\
C_{31} & C_{33}
\end{array}\right)+\operatorname{det}\left(\begin{array}{ll}
C_{22} & C_{23} \\
C_{32} & C_{33}
\end{array}\right), \\
I I I_{C} & =\operatorname{det} \mathbf{C} . \tag{3.22}
\end{align*}
$$

In particular, if the eigenvectors of \mathbf{C} are selected as basis vectors, then the matrix representing \mathbf{C} is diagonal, and (3.22) can also be written as

$$
\begin{align*}
I_{C} & =\Lambda_{1}+\Lambda_{2}+\Lambda_{3} \\
I I_{C} & =\Lambda_{1} \Lambda_{2}+\Lambda_{1} \Lambda_{3}+\Lambda_{2} \Lambda_{3} \\
I I I_{C} & =\Lambda_{1} \Lambda_{2} \Lambda_{3} . \tag{3.23}
\end{align*}
$$

Moreover, \mathbf{C} and \mathbf{B} have the same eigenvalues so that:

$$
\begin{align*}
I_{C} & =I_{B} \\
I I_{C} & =I I_{B} \\
I I I_{C} & =I I I_{B} . \tag{3.24}
\end{align*}
$$

3.4 Displacement and Displacement Gradient

The deformation process of a continuous body S as it passes from the initial configuration C_{*} to the current configuration C can also be described by considering the displacement field $\mathbf{u}(\mathbf{X})$, defined as

$$
\begin{equation*}
\mathbf{u}(\mathbf{X})=\mathbf{x}(\mathbf{X})-\mathbf{X} \tag{3.25}
\end{equation*}
$$

If the displacement gradient tensor

$$
\begin{equation*}
\mathbf{H}=\nabla \mathbf{u}(\mathbf{X}) \equiv\left(\frac{\partial u_{i}}{\partial X_{L}}\right) \tag{3.26}
\end{equation*}
$$

is introduced, then from (3.25) it follows that

$$
\begin{equation*}
\mathbf{F}=\mathbf{I}+\mathbf{H} . \tag{3.27}
\end{equation*}
$$

A common measure of the deformation is given in this case by the GreenSt.Venant tensor (Green, 1841; St.Venant, 1844)

$$
\begin{equation*}
\mathbf{G}=\frac{1}{2}(\mathbf{C}-\mathbf{I})=\mathbf{G}^{T} . \tag{3.28}
\end{equation*}
$$

This tensor gives the change in the squared length of the material vector $d \mathbf{X}$, i.e.,

$$
(d l)^{2}-\left(d l_{*}\right)^{2}=2 d X_{I} G_{I J} d X_{J} .
$$

By taking into account the definition (3.12) of \mathbf{C} and the Eq. (3.27), we find that the Green-St.Venant tensor also assumes the form

$$
\begin{equation*}
\mathbf{G}=\mathbf{E}+\frac{1}{2} \mathbf{H}^{T} \mathbf{H}, \tag{3.29}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{E}=\frac{1}{2}\left(\mathbf{H}+\mathbf{H}^{T}\right) \tag{3.30}
\end{equation*}
$$

is the infinitesimal strain tensor.
The main properties of the tensor \mathbf{G} are expressed by the following theorem:
Theorem 3.4. 1. Both tensors \mathbf{G} and \mathbf{C} have the same eigenvectors; if Λ are the eigenvalues of \mathbf{C}, then \mathbf{G} has eigenvalues equal to $(\Lambda-1) / 2$.
2. The squares of the stretch ratios of elements initially parallel to the coordinate axes are equal to $2 G_{L L}+1$; the components $G_{L M}(L \neq M)$ are proportional to the angle between the deformed elements that were initially parallel to the coordinate axes.

Proof. Property (1) follows from the definitions. To prove (2) it is enough to recall (3.14), (3.15), and (3.28), so that

$$
\begin{aligned}
\delta_{\mathbf{u}_{1}}^{2} & =C_{11}=1+2 G_{11}, \\
\cos \theta_{12} & =\frac{C_{12}}{\sqrt{C_{11} C_{22}}}=\frac{2 G_{12}}{\sqrt{\left(1+2 G_{11}\right)\left(1+2 G_{22}\right)}} .
\end{aligned}
$$

Finally, the following relationships hold between the invariants of \mathbf{G} and \mathbf{B} :

$$
2 I_{G}=I_{B}-3,
$$

$$
\begin{aligned}
4 I I_{G} & =I I_{B}-2 I_{B}+3 \\
8 I I I_{G} & =I I I_{B}-I I_{B}+I_{B}-1 \\
I_{B} & =2 I_{G}+3 \\
I I_{B} & =4 I I_{G}+4 I_{G}+3 \\
I I I_{B} & =8 I I I_{G}+4 I I_{G}+2 I_{G}+1 .
\end{aligned}
$$

3.5 Infinitesimal Deformation Theory

The deformation $C_{*} \rightarrow C$ is defined to be infinitesimal if both the components of \mathbf{u} and $\nabla \mathbf{u}$ are first-order quantities, i.e., the squares and products of these quantities can be neglected.

We observe that \mathbf{F}, \mathbf{C}, and $\mathbf{B} \rightarrow \mathbf{I}$ when $\mathbf{u} \rightarrow \mathbf{0}$, whereas \mathbf{H}, \mathbf{G}, and $\mathbf{E} \rightarrow \mathbf{0}$ if $\mathbf{u} \rightarrow \mathbf{0}$.

From (3.29), in the case of infinitesimal deformations we have

$$
\begin{equation*}
\mathbf{G} \simeq \mathbf{E}, \tag{3.31}
\end{equation*}
$$

where the sign \simeq indicates that the quantities on the left-hand side differ from the quantities on the right-hand side by an order greater than $|\mathbf{u}|$ and $|\nabla \mathbf{u}|$.

As far as the meaning of the linearized deformation tensor \mathbf{E} are concerned, the following theorem holds:

Theorem 3.5. The tensors \mathbf{E} and \mathbf{U} have the same eigenvectors (and the same applies to \mathbf{C} and $\mathbf{B})^{3}$; these eigenvectors identify the principal axes of deformation. The longitudinal unit extension in the direction parallel to the unit vector \mathbf{e}_{L} of the axis X_{L} is given by

$$
\begin{equation*}
\delta_{u_{L}}-1 \simeq E_{L L}, \tag{3.32}
\end{equation*}
$$

and the shear strain relative to the axes X_{L} and X_{M} is twice the off-diagonal component

$$
\begin{equation*}
\gamma_{L M} \simeq 2 E_{L M} \tag{3.33}
\end{equation*}
$$

Proof. To prove the first part of the theorem, we consider two unit vectors $\mathbf{u}_{* 1}$ and $\mathbf{u}_{* 2}$ emanating from $\mathbf{X} \in C_{*}$. By using (3.29), (3.30), and (3.31), we obtain

[^9]$$
\mathbf{u}_{* 1} \cdot \mathbf{C} \mathbf{u}_{* 2}=\mathbf{u}_{* 1} \cdot(2 \mathbf{G}+\mathbf{I}) \mathbf{u}_{* 2} \simeq \mathbf{u}_{* 1} \cdot 2 \mathbf{E} \mathbf{u}_{* 2}+\mathbf{u}_{* 1} \cdot \mathbf{u}_{* 2},
$$
so that, if $\mathbf{u}_{* 1}=\mathbf{u}_{* 2}=\mathbf{u}_{*}$ and we take into account (3.14), we find that
\[

$$
\begin{equation*}
\delta_{u_{*}}=\sqrt{1+\mathbf{u}_{*} \cdot 2 \mathbf{E} \mathbf{u}_{*}} \simeq 1+\mathbf{u}_{*} \cdot \mathbf{E} \mathbf{u}_{*} . \tag{3.34}
\end{equation*}
$$

\]

Relation (3.32) is then proved if $\mathbf{u}_{*}=\mathbf{e}_{L}$.
Relationship (3.34) replaces (3.14) in the linearized theory, showing that under such an assumption, the stretch ratios can be evaluated in any direction from the components of \mathbf{E}. For this reason, \mathbf{E} is called the infinitesimal deformation tensor. Furthermore, from (3.15) and (3.34) and with $\mathbf{u}_{* 1}=\mathbf{e}_{L}, \mathbf{u}_{* 2}=\mathbf{e}_{M}$, it follows that

$$
\cos \theta_{12} \simeq \frac{2 E_{L M}}{\left(1+E_{L L}\right)\left(1+E_{M M}\right)} \simeq \frac{2 E_{L M}}{1+\left(E_{L L}+E_{M M}\right)}
$$

From (3.15) we have $\cos \theta_{12}=\cos \left(\frac{\pi}{2}-\gamma_{12}\right)=\sin \gamma_{12} \simeq \gamma_{12}$. But γ_{12} is a first-order quantity so that, by multiplying the numerator and denominator by $1-$ $\left(E_{L L}+E_{M M}\right)$ and neglecting terms of higher order, (3.33) is obtained.

Theorem 3.6. In an infinitesimal deformation ${ }^{4}$ we have

$$
\begin{equation*}
\mathbf{U} \simeq \mathbf{I}+\mathbf{E}, \quad \mathbf{R} \simeq \mathbf{I}+\mathbf{W} \tag{3.35}
\end{equation*}
$$

where \mathbf{W} is the skew-symmetric tensor of rotation for infinitesimal deformation

$$
\begin{equation*}
\mathbf{W}=\frac{1}{2}\left(\mathbf{H}-\mathbf{H}^{T}\right)=-\mathbf{W}^{T} . \tag{3.36}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
\mathbf{F} \cdot d \mathbf{X}=d \mathbf{X}+\mathbf{E} \cdot d \mathbf{X}+\varphi \times d \mathbf{X} \tag{3.37}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi_{i}=-\frac{1}{2} \epsilon_{i j k} W_{j k} \tag{3.38}
\end{equation*}
$$

is the vector of infinitesimal rotation.
Proof. By using (3.12) and (3.13) we obtain

$$
\begin{equation*}
\mathbf{U}^{2}=\mathbf{F}^{T} \mathbf{F} \Rightarrow \mathbf{U}=\sqrt{\mathbf{C}}, \quad \mathbf{R}=\mathbf{F U}^{-1} \tag{3.39}
\end{equation*}
$$

[^10]It follows that $\mathbf{U} \simeq \sqrt{2 \mathbf{E}+\mathbf{I}} \simeq \sqrt{2 \mathbf{E}+\mathbf{I}} \simeq \mathbf{I}+\mathbf{E} ;$ moreover,

$$
\mathbf{R}=\mathbf{F} \mathbf{U}^{-1} \simeq(\mathbf{I}+\mathbf{H})(\mathbf{I}+\mathbf{E})^{-1} .
$$

Since $(\mathbf{I}+\mathbf{E})^{-1} \simeq \mathbf{I}-\mathbf{E} \simeq \mathbf{I}-\frac{1}{2}(\mathbf{H}+\mathbf{H})^{T}$, we have $\mathbf{R} \simeq \mathbf{I}+\mathbf{W}$ and (3.35) is proved. In addition,

$$
\mathbf{F} \cdot d \mathbf{X}=\mathbf{R} \mathbf{U} \cdot d \mathbf{X}=(\mathbf{I}+\mathbf{E})(\mathbf{I}+\mathbf{W}) \cdot d \mathbf{X} \simeq(\mathbf{I}+\mathbf{E}+\mathbf{W}) \cdot d \mathbf{X}
$$

In any case, it is always possible to express $\mathbf{W} \cdot d \mathbf{X}$ in the form $\varphi \times d \mathbf{X}$, where φ is the adjoint of \mathbf{W}, as defined by (3.38).

To give a physical meaning to (3.37), at $\mathbf{X} \in C_{*}$ we consider a parallelepiped with edges that are parallel to the eigenvectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$ of \mathbf{E}. Any edge $d X_{L} \mathbf{u}_{L}$ (no summation on L) is transformed into $d X_{L} \mathbf{u}_{L}+\lambda_{L} d X_{L} \mathbf{u}_{L}+\varphi \times d X_{L} \mathbf{u}_{L}$, i.e., the vector $\varphi \times d X_{L} \mathbf{u}_{L}$ is added to the vector $d X_{L} \mathbf{u}_{L}$, which rotates $d X_{L} \mathbf{u}_{L}$ by an angle $|\varphi|$ around the direction of φ, together with the deformed vector $\lambda_{L} d X_{L} \mathbf{u}_{L}$.

We can easily derive a further useful relation:

$$
\begin{equation*}
J \simeq 1+\operatorname{tr} \mathbf{H}=1+\operatorname{tr} \mathbf{E}, \tag{3.40}
\end{equation*}
$$

so that the (3.20) can be written as

$$
\begin{equation*}
d c=(1+\operatorname{tr} \mathbf{E}) d c_{*} . \tag{3.41}
\end{equation*}
$$

3.6 Transformation Rules for Deformation Tensors

In the previous analysis, the same Cartesian coordinate system has been used for both the initial configuration C_{*} and the current configuration C. For the sake of clarity, different symbols have been introduced for the coordinates (X^{L}) of material points $\mathbf{X} \in C_{*}$ and for the coordinates (x^{i}) of spatial points $\mathbf{x} \in C$.

At this stage it is useful to show how the deformation tensors transform when changing the coordinate system, both in the reference and the current configuration. The situation arises when dealing with properties related to the isotropy of the material (which in this case has an inherent reference system), a problem dealt with in Chap. 7, as well as when dealing with transformation rules of mechanical quantities for a change of the rigid reference frame (see Chaps. 4 and 6).

As a starting point, first we note that the quantities F_{L}^{i} cannot be regarded as the components of a tensor in the sense specified in Chap. 1, due to the fact that \mathbf{F} is a linear mapping between the space of vectors emanating from $\mathbf{X} \in C_{*}$ and the vector space defined at the corresponding point $\mathbf{x} \in C$ (rather than a linear mapping between vectors emanating from the same point).

If we consider rotations of the axes in C_{*} and C generated by the orthogonal matrices \mathbf{Q}^{*} and \mathbf{Q}

$$
\begin{equation*}
\mathbf{X}^{*}=\mathbf{Q}^{*} \mathbf{X}, \quad \mathbf{x}^{\prime}=\mathbf{Q} \mathbf{x} \tag{3.42}
\end{equation*}
$$

then from the transformation $(3.42)_{1}$ we derive

$$
\begin{equation*}
d \mathbf{x}=\mathbf{F}^{*} d \mathbf{X}^{*}=\mathbf{F}^{*} \mathbf{Q}^{*} d \mathbf{X}=\mathbf{F} d \mathbf{X} \Rightarrow \mathbf{F}=\mathbf{F}^{*} \mathbf{Q}^{*} \tag{3.43}
\end{equation*}
$$

and $(3.42)_{2}$ leads to

$$
\begin{equation*}
d \mathbf{x}^{\prime}=\mathbf{F}^{\prime} d \mathbf{X}=\mathbf{Q F} d \mathbf{X} \Rightarrow \mathbf{F}^{\prime}=\mathbf{Q F} \tag{3.44}
\end{equation*}
$$

These results highlight the fact that the deformation tensor behaves as a vector for coordinate changes in only one configuration, and in this respect \mathbf{F} is an example of a two-point tensor. This definition is in fact used for a tensor whose components transform like those of a vector under rotation of only one of the two reference axes and like a two-point tensor when the two sets of axes are rotated independently. This aspect can be understood intuitively if we refer to the figurative picture suggested by Marsden and Hughes [36], according to which the tensor \mathbf{F} has two "legs": one in C_{*} and one in C.

It is also easy to verify that the tensors \mathbf{H} and \mathbf{G} satisfy the same transformation rule of \mathbf{F}. Moreover,

$$
\begin{gather*}
\mathbf{C}^{*}=\left(\mathbf{F}^{T}\right)^{*} \mathbf{F}^{*}=\mathbf{Q}^{*} \mathbf{F}^{T} \mathbf{F}\left(\mathbf{Q}^{*}\right)^{T}=\mathbf{Q}^{*} \mathbf{C}\left(\mathbf{Q}^{*}\right)^{T}, \tag{3.45}\\
\mathbf{C}^{\prime}=\mathbf{F}^{/ T} \mathbf{F}^{\prime}=\mathbf{F}^{T} \mathbf{Q}^{T} \mathbf{Q} \mathbf{F}=\mathbf{C}, \tag{3.46}
\end{gather*}
$$

so that \mathbf{C} behaves as a tensor for changes of coordinates in C_{*}, while it exhibits invariance for transformations in C.

Similarly, the following transformation rules can be proven to hold:

$$
\begin{gather*}
\mathbf{G}^{*}=\mathbf{Q}^{*} \mathbf{G}\left(\mathbf{Q}^{*}\right)^{T}, \quad \mathbf{G}^{\prime}=\mathbf{G} \tag{3.47}\\
\mathbf{B}^{*}=\mathbf{B}, \quad \mathbf{B}^{\prime}=\mathbf{Q} \mathbf{B} \mathbf{Q}^{T} \tag{3.48}
\end{gather*}
$$

3.7 Some Relevant Formulae

In this section we will present and prove formulae that will be useful for topics developed later in this book.

Let us start by observing that, if \mathbf{F} is the deformation gradient tensor, \mathbf{a} is a nonsingular matrix, and $a=\operatorname{det} \mathbf{a}$, then

$$
\begin{gather*}
\frac{\partial}{\partial x_{i}}\left(\frac{1}{J} F_{i L}\right)=0 \tag{3.49}\\
\frac{\partial a}{\partial a_{i j}}=a\left(a^{-1}\right)_{j i}, \quad \frac{\partial\left(a^{-1}\right)_{h k}}{\partial a_{i j}}=-\left(a^{-1}\right)_{h i}\left(a^{-1}\right)_{j k} \tag{3.50}
\end{gather*}
$$

Furthermore, if $\mathbf{a}(\mathbf{h})=\mathbf{I}+\mathbf{h}$, it follows that

$$
\begin{equation*}
a=1+I_{h}+I I_{h}+O\left(h^{2}\right), \quad \mathbf{a}^{-1}=\mathbf{I}-\mathbf{h}+\mathbf{h}^{2}+O\left(\mathbf{h}^{2}\right) . \tag{3.51}
\end{equation*}
$$

Finally, for the right Cauchy-Green tensor, the following relations hold:

$$
\begin{gather*}
\frac{\partial I_{C}}{\partial \mathbf{C}}=\mathbf{I}, \quad \frac{\partial I I_{C}}{\partial \mathbf{C}}=I_{C} \mathbf{I}-\mathbf{C}^{T} \tag{3.52}\\
\frac{\partial I I I_{C}}{\partial \mathbf{C}}=I I I_{C}\left(\mathbf{C}^{-1}\right)^{T}=\left[\mathbf{C}^{2}-I_{C} \mathbf{C}+I I_{C} \mathbf{I}\right]^{T} \tag{3.53}
\end{gather*}
$$

where I is the unit matrix. Note that (3.49) and (3.50) apply to any nonsingular tensor \mathbf{C}; if \mathbf{C} is symmetric, then the sign of transpose can be omitted.

To prove (3.50) ${ }_{1}$, it is enough to express the determinant a in terms of its first row elements, i.e., $a=a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13}$, where $A_{i j}$ is the cofactor of $a_{i j}$. Since, $\partial a / \partial a_{12}=A_{12}$ and recalling that

$$
\begin{equation*}
\left(a^{-1}\right)_{21}=\frac{A_{12}}{a} \tag{3.54}
\end{equation*}
$$

we see that the relation $(3.50)_{1}$ is proved for $i=1, j=2$, and so for any other choice of indices.

To prove $(3.50)_{2}$, we differentiate the relation

$$
\begin{equation*}
a_{r l}\left(a^{-1}\right)_{l k}=\delta_{r k} \tag{3.55}
\end{equation*}
$$

with respect to $a_{i j}$ to obtain

$$
\frac{\partial a_{r l}}{\partial a_{i j}}\left(a^{-1}\right)_{l k}+a_{r l} \frac{\partial\left(a^{-1}\right)_{l k}}{\partial a_{i j}}=0
$$

By multiplying by $\left(a^{-1}\right)_{h r}$ and recalling (3.55), we get

$$
\frac{\partial\left(a^{-1}\right)_{h k}}{\partial a_{i j}}=-\left(a^{-1}\right)_{h r} \frac{\partial a_{r l}}{\partial a_{i j}}\left(a^{-1}\right)_{l k}=-\left(a^{-1}\right)_{h r} \delta_{r i} \delta_{j l}\left(a^{-1}\right)_{l k}
$$

and $(3.50)_{2}$ follows.

The relation (3.49) is verified through the sequence of identities

$$
\begin{aligned}
\frac{\partial}{\partial x_{i}}\left(\frac{1}{J} F_{i L}\right) & =\frac{\partial F_{h M}}{\partial x_{i}} \frac{\partial}{\partial F_{h M}}\left(\frac{1}{J} F_{i L}\right) \\
& =\frac{\partial F_{h M}}{\partial x_{i}}\left[-\frac{1}{J^{2}} J\left(F^{-1}\right)_{M h} F_{i L}+\frac{1}{J} \delta_{i h} \delta_{M L}\right] \\
& =\frac{1}{J}\left(F^{-1}\right)_{N i} \frac{\partial F_{h M}}{\partial X_{N}}\left[\delta_{i h} \delta_{M L}-\delta_{M L} F_{i L}\right] \\
& =\frac{1}{J}\left[\left(F^{-1}\right)_{N h} \frac{\partial^{2} x_{h}}{\partial X_{L} \partial X_{N}}-\left(F^{-1}\right)_{N h} \frac{\partial^{2} x_{h}}{\partial X_{L} \partial X_{N}}\right]=0 .
\end{aligned}
$$

Considering now (3.51), we first observe that, for a matrix $\mathbf{a}(\mathbf{h})=\mathbf{I}+\mathbf{h}$, we have

$$
a(\mathbf{h})=a(\mathbf{0})+\left(\frac{\partial a}{\partial h_{i j}}\right)_{\mathbf{h}=\mathbf{0}} h_{i j}+\frac{1}{2}\left(\frac{\partial^{2} a}{\partial h_{i j} \partial h_{l m}}\right)_{\mathbf{h}=\mathbf{0}} h_{i j} h_{l m}+O\left(\mathbf{h}^{2}\right)
$$

and since $a(\mathbf{0})=1$, from (3.50) $)_{1}$ it follows that

$$
\left(\frac{\partial a}{\partial h_{i j}}\right)_{\mathbf{h}=0}=\left(\frac{\partial a}{\partial a_{i j}}\right)_{\mathbf{h}=0}=a(0)\left(a^{-1}\right)_{j i}(0)=\delta_{i j}
$$

By using (3.50), we can write

$$
\begin{aligned}
\frac{\partial^{2} a}{\partial h_{i j} \partial h_{l m}} & =\frac{\partial}{\partial h_{i j}} a\left(a^{-1}\right)_{m l} \\
& =a\left(a^{-1}\right)_{j i}\left(a^{-1}\right)_{m l}-a\left(a^{-1}\right)_{m i}\left(a^{-1}\right)_{j l}, \\
\left(\frac{\partial^{2} a}{\partial h_{i j} \partial h_{l m}}\right)_{\mathbf{h}=0} h_{i j} h_{l m} & =\left(\delta_{j i} \delta_{m l}-\delta_{m i} \delta_{j l}\right) h_{i j} h_{l m} \\
& =h_{i i} h_{l l}-h_{m j} h_{j m}=2 I I_{\mathbf{h}},
\end{aligned}
$$

so that (3.51) ${ }_{1}$ is proved.
Furthermore,

$$
\begin{aligned}
\left(a^{-1}\right)_{i j}=\delta_{i j} & +\left(\frac{\partial\left(\delta_{i j}+h_{i j}\right)^{-1}}{\partial h_{l m}}\right)_{\mathbf{h}=0} h_{l m} \\
& +\frac{1}{2}\left(\frac{\partial^{2}\left(\delta_{i j}+h_{i j}\right)^{-1}}{\partial h_{l m} \partial h_{p q}}\right)_{\mathbf{h}=0} h_{l m} h_{p q}+\cdots,
\end{aligned}
$$

and, since $(3.50)_{2}$ gives

$$
\begin{aligned}
& \left(\frac{\partial\left(\delta_{i j}+h_{i j}\right)^{-1}}{\partial h_{l m}}\right)_{\mathbf{h}=0}=-\left[\left(\delta_{i l}+h_{i l}\right)^{-1}\left(\delta_{m j}+h_{m j}\right)^{-1}\right]_{\mathbf{h}=0}=-\delta_{i l} \delta_{m j} \\
& \left(\frac{\partial^{2}\left(\delta_{i j}+h_{i j}\right)^{-1}}{\partial h_{l m} \partial h_{p q}}\right)_{\mathbf{h}=0}=\delta_{i l} \delta_{m p} \delta_{q j}+\delta_{i p} \delta_{q l} \delta_{m j}
\end{aligned}
$$

$(3.51)_{2}$ is obtained.
To prove (3.52) and (3.53), consider the identity

$$
\begin{equation*}
\operatorname{det}(\Lambda \mathbf{I}+\mathbf{C})=\Lambda^{3}+I_{C} \Lambda^{2}+I I_{C} \Lambda+I I I_{C} \tag{3.56}
\end{equation*}
$$

Differentiating both sides of (3.56) with respect to \mathbf{C} and recalling (3.50) $)_{1}$, we have

$$
\begin{gather*}
\frac{\partial}{\partial \mathbf{C}} \operatorname{det}(\Lambda \mathbf{I}+\mathbf{C})=\operatorname{det}(\Lambda \mathbf{I}+\mathbf{C})\left[(\Lambda \mathbf{I}+\mathbf{C})^{-1}\right]^{T} \tag{3.57}\\
\frac{\partial}{\partial \mathbf{C}}\left(\Lambda^{3}+I_{C} \Lambda^{2}+I I_{C} \Lambda+I I I_{C}\right)=\frac{\partial I_{C}}{\partial \mathbf{C}} \Lambda^{2}+\frac{\partial I I_{C}}{\partial \mathbf{C}} \Lambda+\frac{\partial I I I_{C}}{\partial \mathbf{C}} . \tag{3.58}
\end{gather*}
$$

The right-hand sides of (3.57) and (3.58) must be equal so that, multiplying the expression above by $(\Lambda \mathbf{I}+\mathbf{C})^{T}$ and considering (3.56), we get

$$
\begin{aligned}
\left(\Lambda^{3}+I_{C} \Lambda^{2}+I I_{C} \Lambda+I I I_{C}\right) \mathbf{I} & \\
=\frac{\partial I_{C}}{\partial \mathbf{C}} \Lambda^{3} & +\left(\frac{\partial I I_{C}}{\partial \mathbf{C}}+\frac{\partial I_{C}}{\partial \mathbf{C}} \mathbf{C}^{T}\right) \Lambda^{2} \\
& +\left(\frac{\partial I I I_{C}}{\partial \mathbf{C}}+\frac{\partial I I_{C}}{\partial \mathbf{C}} \mathbf{C}^{T}\right) \Lambda+\frac{\partial I I I_{C}}{\partial \mathbf{C}} \mathbf{C}^{T}
\end{aligned}
$$

By comparing the coefficients of Λ, (3.52) and (3.53) are easily derived. As a further result the Cayley-Hamilton theorem follows:

$$
\begin{equation*}
\mathbf{C}^{3}-I_{C} \mathbf{C}^{2}+I I_{C} \mathbf{C}-I I I_{C} \mathbf{I}=0 \tag{3.59}
\end{equation*}
$$

which is valid for any 2-tensor \mathbf{C}.

3.8 Compatibility Conditions

The tensor field $C_{L M}(\mathbf{X})$ cannot be arbitrarily assigned, since the equations

$$
\begin{equation*}
\sum_{i=1}^{3} \frac{\partial x_{i}}{\partial X_{L}} \frac{\partial x_{i}}{\partial X_{M}}=C_{L M} \tag{3.60}
\end{equation*}
$$

due to the symmetry of \mathbf{C}, form a system of 6 nonlinear partial differential equations with the three unknowns $x_{i}(\mathbf{X})$, which describe the deformation of a continuous body S when passing from C_{*} to C.

The mathematical difficulty arises from the fact that Eq. (3.60) overdetermine the three unknowns, so that we have to search for necessary and sufficient conditions ensuring that a proposed set of functions $C_{L M}$ can be regarded as the tensor components of a deformation field.

In order to find these integrability conditions on (3.60), we first observe that, since

$$
\begin{equation*}
d \mathbf{x} \cdot d \mathbf{x}=d \mathbf{X} \cdot \mathbf{C} d \mathbf{X} \tag{3.61}
\end{equation*}
$$

the coordinates X_{L} in C_{*} can also be regarded as curvilinear coordinates in C, in which the metric tensor components are $C_{L M}$. In addition, C is a subset of the Euclidean space and therefore the components $C_{L M}$ must be such that they correspond to a Euclidean metric tensor. In this respect, Riemann's theorem states that a symmetric tensor is a metric tensor of a Euclidean space if and only if it is a nonsingular positive definite tensor and the corresponding Riemann-Christoffel tensor \mathbf{R} formed from $C_{L M}$ identically vanishes ${ }^{5}$:

$$
\begin{align*}
R_{N M L P}= & \frac{1}{2}\left(C_{L M, N P}+C_{P N, L M}-C_{N L, M P}-C_{P M, L N}\right) \\
& +C^{R S}\left(\Gamma_{P N R} \Gamma_{L M S}-\Gamma_{P M R} \Gamma_{L N S}\right)=0, \tag{3.62}
\end{align*}
$$

where

$$
2 \Gamma_{L M P}=C_{L P, M}+C_{M P, L}-C_{L M, P}
$$

are Christhoffel symbols of the second kind.
These $3^{4}=81$ equations (3.62) are not independent. In fact, due to the symmetries of $R_{N M L P}$ that can be deduced by inspection of (3.62),

$$
R_{L M N P}=-R_{M L N P}=-R_{L M P N} ; \quad R_{L M N P}=R_{N P L M},
$$

there are only 6 distinct and nonvanishing components $R_{N M L P}$. To prove this, let a pair of indices $L P$ be fixed. Since $R_{N M L P}$ is skew-symmetric with respect to the pair $N M$, we conclude that indices N and M can only assume the values 12,13 , and 23. The same argument holds for $L P$ if the pair $N M$ is given. Finally, the 9 nonvanishing components of $R_{N M L P}$

[^11]\[

$$
\begin{array}{lll}
R_{1212}, & R_{1213}, & R_{1223}, \\
R_{1312}, & R_{1313}, & R_{1323}, \\
R_{2312}, & R_{2313}, & R_{2323},
\end{array}
$$
\]

merge into the following 6 independent components, due to symmetry with respect to the first two indices:

$$
\begin{array}{lll}
R_{1212}, & R_{1213}, & R_{1223}, \\
& R_{1313}, & R_{1323}, \\
& & R_{2323} . \tag{3.63}
\end{array}
$$

As a special case, consider the linearized theory of elasticity. Since $\mathbf{C} \simeq \mathbf{I}+$ $2 \mathbf{E}$, (3.62) assumes the form

$$
\begin{equation*}
R_{N M L P} \simeq E_{L M, N P}+E_{P N, L M}-E_{N L, M P}-E_{P M, L N}=0, \tag{3.64}
\end{equation*}
$$

which is certainly true if $\mathbf{E}(\mathbf{X})$ is a linear function. The equations of interest deduced from (3.64) are the following, known as the St.Venant compatibility conditions (St.Venant, 1864):

$$
\begin{align*}
& R_{1212} \simeq 2 E_{12,12}-E_{11,22}-E_{22,11}=0, \\
& R_{1213} \simeq E_{12,13}+E_{31,12}-E_{11,23}-E_{23,11}=0, \\
& R_{1223} \simeq E_{22,13}+E_{31,22}-E_{12,23}-E_{23,21}=0, \\
& R_{1313} \simeq 2 E_{13,13}-E_{11,33}-E_{33,11}=0, \\
& R_{1323} \simeq E_{13,23}+E_{23,13}-E_{12,33}-E_{33,21}=0, \\
& R_{2323} \simeq 2 E_{23,23}-E_{22,33}-E_{33,22}=0 . \tag{3.65}
\end{align*}
$$

and (3.65) can be summarized by the following relation:

$$
\begin{equation*}
\epsilon_{Q S R} \epsilon_{N M L} E_{Q N, S M}=0 \Leftrightarrow \nabla \times \nabla \times \mathbf{E}=\mathbf{0} . \tag{3.66}
\end{equation*}
$$

If the divergence operator is applied to (3.66), it follows that

$$
\begin{equation*}
\epsilon_{Q S R} \epsilon_{N M L} E_{Q N, S M R}=0, \tag{3.67}
\end{equation*}
$$

which is identically satisfied by any second-order symmetric tensor \mathbf{E}, since the permutation symbol $\epsilon_{Q S R}$ is skew-symmetric with respect to indices R and S and $E_{Q N, S M R}$ is symmetric with respect to the same indices.

When $L=1,2,3,(3.67)$ gives the following three equations:

$$
\begin{align*}
-R_{1223,3}+R_{1323,2}-R_{2323,1} & =0 \\
R_{1213,3}-R_{1313,2}+R_{1323,1} & =0 \\
-R_{1212,3}+R_{1213,2}-R_{1223,1} & =0 \tag{3.68}
\end{align*}
$$

It is then possible to conclude that, if

$$
\begin{equation*}
R_{1213}=R_{1223}=R_{1323}=0 \tag{3.69}
\end{equation*}
$$

it also holds that

$$
\begin{equation*}
R_{2323,1}=R_{1313,2}=R_{1212,3}=0 \tag{3.70}
\end{equation*}
$$

i.e.,

$$
\begin{align*}
& R_{2323} \text { is independent on } X^{1}, \\
& R_{1313} \text { is independent on } X^{2}, \tag{3.71}\\
& R_{1212} \text { is independent on } X^{3} .
\end{align*}
$$

It is convenient to summarize all the above considerations as follows: if C_{*} is linearly simply connected, system (3.60) can be integrated if and only if the 6 distinct components of the curvature tensor $\mathbf{R}(\mathbf{C})$ vanish. In the linearized theory, the tensor \mathbf{E} must satisfy (3.65) or, equivalently, must satisfy (3.69) in C_{*} and (3.71) on the boundary ∂C_{*}.

We note that, when dealing with infinitesimal deformations, (3.64) can be obtained by observing that, given a symmetric tensor field $\mathbf{E}(\mathbf{X})$, a displacement field $\mathbf{u}(\mathbf{X})$ has to be determined such that

$$
u_{L, M}+u_{M, L}=2 E_{L M} .
$$

By adding and subtracting $u_{L, M}$, we can write the above system of 6 equations with 3 unknowns $u_{L}(\mathbf{X})$ as, see (3.36)

$$
u_{L, M}=E_{L M}+W_{L M} .
$$

The 3 differential forms

$$
d u_{L}=u_{L, M} d X_{M}=\left(E_{L M}+W_{L M}\right) d X_{M}
$$

can be integrated if and only if

$$
\begin{equation*}
E_{L M, N}+W_{L M, N}=E_{L N, M}+W_{L N, M} . \tag{3.72}
\end{equation*}
$$

Cyclic permutation of indices in (3.72) gives two similar equations, and adding (3.72) to the first of these and subtracting the second one, leads to

$$
E_{L M, N}-E_{M N, L}=W_{L N, M},
$$

which is equivalent to the system of differential forms

$$
d W_{L N}=\left(E_{L M, N}-E_{M N, L}\right) d X_{M} .
$$

These forms can be integrated if and only if (3.64) holds.

3.9 Curvilinear Coordinates

This section extends the description of the deformation to the case in which both the initial and current configurations are given in curvilinear coordinates (y^{i}), which for sake of simplicity are still taken to be orthogonal (Chap. 2).

In this case, we have to distinguish contravariant components, relative to the natural basis $\left(\mathbf{e}_{i}\right)$, from covariant components, relative to the reciprocal or dual basis (\mathbf{e}^{i}), furthermore, for physical reasons it is convenient to express vectors and tensors with respect to an orthonormal basis (\mathbf{a}_{i}) (see Chap. 2, Sect. 2.6).

If $\left(y^{i}\right)$ are the coordinates of a point in C whose coordinates in C_{*} are $\left(Y^{L}\right)$, then the finite deformation from $C_{*} \longrightarrow C$ is given by

$$
\begin{equation*}
y^{i}=y^{i}\left(Y^{L}\right) . \tag{3.73}
\end{equation*}
$$

Differentiation gives

$$
\begin{equation*}
d y^{i} \mathbf{e}_{i}=\frac{\partial y^{i}}{\partial Y^{L}}(\mathbf{Y}) d Y^{L} \mathbf{e}_{i} \tag{3.74}
\end{equation*}
$$

where $\left(\mathbf{e}_{i}\right)$ is the natural basis associated with $\left(y^{i}\right)$ at the point $\mathbf{y}(\mathbf{Y}) \in C$. By recalling (2.59) and (2.61) and referring to the components $d \bar{y}^{i}$ in the basis of unit vectors $\left(\mathbf{a}_{i}\right)$, we find that

$$
\begin{equation*}
d \bar{y}^{i} \mathbf{a}_{i}=\bar{F}_{L}^{i} d \bar{Y}^{L} \mathbf{a}_{i}, \tag{3.75}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{F}_{L}^{i}=\frac{\sqrt{g_{i i}}}{\sqrt{g_{L L}}} F_{L}^{i} . \tag{3.76}
\end{equation*}
$$

The bar indicates that the quantities are evaluated in the basis \mathbf{a}_{i}. It is useful to observe that the metric coefficient $g_{i i}$ is computed at $\mathbf{y}(\mathbf{Y}) \in C$, while $g_{L L}$ is
evaluated at $\mathbf{Y} \in C_{*}$. We can apply Cauchy's theorem of polar decomposition in the form (3.7) to the matrix $\left(\bar{F}_{L}^{l}\right)$ and, since $\left(\mathbf{a}_{i}\right)$ is an orthonormal basis, all considerations developed for Cartesian coordinates still apply to $\left(\bar{F}_{L}^{i}\right)$.

As an example, the components of tensors \mathbf{C} and \mathbf{B} relative to $\left(\mathbf{a}_{i}\right)$ are given by the elements of the matrices

$$
\overline{\mathbf{C}}=\overline{\mathbf{F}}^{T} \overline{\mathbf{F}}, \quad \overline{\mathbf{B}}=\overline{\mathbf{F}}^{T}
$$

and the eigenvalue equation is written as

$$
\bar{C}_{L M} \bar{u}^{M}=\lambda \delta_{L M} \bar{u}^{M} .
$$

The displacement gradient $\nabla \mathbf{u}$ and tensors \mathbf{E} and \mathbf{W} assume the expression given by the rules explained in Chap. 2. The program Deformation, discussed at the end of this chapter, can be used to advantage in this respect.

3.10 Exercises

1. Describe the deformation process corresponding to a one-dimensional extension or compression.

The required deformation is characterized by two principal stretch ratios equal to unity, while the third one is different than unity. The vector function (3.1) is in this case equivalent to the following scalar functions:

$$
x_{1}=\alpha X_{1}, \quad x_{2}=X_{2}, \quad x_{3}=X_{3},
$$

where $\alpha>0$ if it is an extension and $\alpha<0$ if it is a compression.
The deformation gradient, the right Cauchy-Green tensor, and the GreenSt.Venant tensor are expressed by

$$
\begin{aligned}
& \mathbf{F}=\left(\begin{array}{lll}
\alpha & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \\
& \mathbf{C}=\mathbf{F}^{T} \mathbf{F}=\left(\begin{array}{ccc}
\alpha^{2} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \\
& \mathbf{G}=\frac{1}{2}\left(\mathbf{F}^{T} \mathbf{F}-\mathbf{I}\right)=\left(\begin{array}{ccc}
\frac{\alpha^{2}-1}{2} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Fig. 3.1 Plane shear deformation
2. Given the plane pure shear deformation

$$
x_{1}=X_{1}, \quad x_{2}=X_{2}+k X_{3}, \quad x_{3}=X_{3}+k X_{2},
$$

determine \mathbf{F}, \mathbf{C}, and \mathbf{G}, the stretch ratios along the diagonal directions, and the angle θ_{23} in the current configuration, as shown in Fig. 3.1.

The required tensors are represented by the matrices

$$
\begin{aligned}
& \left(F_{i L}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & k \\
0 & k & 1
\end{array}\right), \\
& \left(C_{L M}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & k \\
0 & k & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & k \\
0 & k & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1+k^{2} & 2 k \\
0 & 2 k & 1+k^{2}
\end{array}\right), \\
& \left(G_{L M}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \frac{k^{2}}{2} & k \\
0 & k & \frac{k^{2}}{2}
\end{array}\right) .
\end{aligned}
$$

Given a line element parallel to the unit vector \mathbf{N} identified in the reference configuration, the stretch ratio $\Lambda_{\mathbf{N}}$ is computed according to the relationship

$$
\Lambda_{\mathbf{N}}^{2}=\mathbf{N} \cdot \mathbf{C N}
$$

In the direction parallel to the diagonal $O B$ we obtain

$$
\Lambda_{O B}^{2}=\left(0 \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1+k^{2} & 2 k \\
0 & 2 k & 1+k^{2}
\end{array}\right)\left(\begin{array}{c}
0 \\
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right)=(1+k)^{2}
$$

and in the direction $C A$ we obtain

$$
\Lambda_{C A}^{2}=\left(0-\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1+k^{2} & 2 k \\
0 & 2 k & 1+k^{2}
\end{array}\right)\left(\begin{array}{c}
0 \\
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right)=(1-k)^{2}
$$

The angle θ_{23} in the current configuration is given by

$$
\cos \theta_{23}=\frac{C_{23}}{\sqrt{C_{22}} \sqrt{C_{33}}}=\frac{2 k}{1+k^{2}}
$$

3. Referring to the pure shear deformation of Fig. 3.1, apply the polar decomposition to the tensor \mathbf{F}.

Principal axes X_{2}^{\prime} and X_{3}^{\prime} are rotated 45° about X_{1}, so that the transformation matrix is

$$
\left(A_{i j}\right)=\left(\cos \left(X_{i}^{\prime}, X_{j}\right)\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

The Cauchy-Green tensor \mathbf{C} in the basis of principal axes is:

$$
\mathbf{C}^{\prime}=\mathbf{A C A}^{T}
$$

with components

$$
\left(C_{i j}^{\prime}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & (1+k)^{2} & 0 \\
0 & 0 & (1-k)^{2}
\end{array}\right)
$$

It is then proved, as stated by Theorem 3.2, that the eigenvalues of the tensor \mathbf{C} are the squares of the stretch ratios along the eigenvectors.

Moreover, the same Theorem 3.2 also states that both \mathbf{U} and \mathbf{C} have the same eigenvectors, and the eigenvalues of \mathbf{C} are the squares of the eigenvalues of \mathbf{U}, so that

$$
\left(U_{i j}^{\prime}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1+k & 0 \\
0 & 0 & 1-k
\end{array}\right)
$$

It follows that

$$
\left(\left(U^{\prime}\right)_{i j}^{-1}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{1+k} & 0 \\
0 & 0 & \frac{1}{1-k}
\end{array}\right)
$$

The matrix \mathbf{U}^{-1} in the initial frame is

$$
\mathbf{U}^{-1}=\mathbf{A}^{T}\left(\mathbf{U}^{\prime}\right)^{-1} \mathbf{A}
$$

so that

$$
\left(U_{i j}^{-1}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{1-k^{2}} & -\frac{k}{1-k^{2}} \\
0-\frac{k}{1-k^{2}} & \frac{1}{1-k^{2}}
\end{array}\right) .
$$

Finally, since we have proved that

$$
\mathbf{R}=\mathbf{F U}^{-1}
$$

we have

$$
\left(R_{i j}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Thus, the required decomposition is

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & k \\
0 & k & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & k \\
0 & k & 1
\end{array}\right) .
$$

and we observe that the matrix \mathbf{R} rotates the principal axes of \mathbf{C} in $\mathbf{X} \in C_{*}$ in order to superimpose them on the principal axes of \mathbf{B}^{-1} in $\mathbf{x} \in C$. As these axes coincide in this case, $\mathbf{R}=\mathbf{I}$.
4. Given the deformation

$$
x_{i}=X_{i}+A_{i j} X_{j},
$$

with $A_{i j}$ constant, prove that plane sections and straight lines in the reference configuration correspond to plane sections and straight lines in the current configuration.
5. Verify that, if the deformation in Exercise 4 is infinitesimal, i.e., the quantities $A_{i j}$ are so small that their products are negligible, then the composition of two subsequent deformations can be regarded as their sum.
6. Given the deformation

$$
\left\{\begin{array}{l}
x_{1}=X_{1}+A X_{3}, \\
x_{2}=X_{2}-A X_{3}, \\
x_{3}=X_{3}-A X_{1}+A X_{2},
\end{array}\right.
$$

find $\mathbf{F}, \mathbf{U}, \mathbf{R}, \mathbf{C}, \mathbf{B}$, principal directions, and invariants.
7. Determine under which circumstances the infinitesimal displacement field

$$
\mathbf{u}(\mathbf{X})=u_{1}\left(X_{1}\right) \mathbf{i}+u_{2}\left(X_{2}\right) \mathbf{j}
$$

satisfies the compatibility conditions (3.66).

3.11 The Program Deformation

Aim of the Program

Given a transformation from orthogonal curvilinear coordinates var to Cartesian coordinates, the program Deformation allows the user to compute the tensors \mathbf{F}, \mathbf{C}, and \mathbf{B}, the eigenvalues and eigenvectors of \mathbf{C} and \mathbf{B}, the deformation invariants, and the inverse of \mathbf{B}, as well as the tensors \mathbf{U} and \mathbf{R}.

Furthermore, given two directions parallel to the unit vectors vers1 and vers2, the program defines the stretch ratios in these directions and the shearing angle, if vers1 and vers 2 are distinct. We note that all tensor and vector components are relative to the basis of unit vectors associated with the holonomic basis of curvilinear coordinates var.

Description of the Algorithm and Instructions for Use

The program is based on the theoretical points presented in Sects. 3.1-3.3 and 3.9. Curvilinear coordinates in both the reference and current configurations can be chosen, with only the restriction that they be orthogonal. The program makes vers1 and vers 2 unit vectors, if they are not.

The caption option refers to tensors \mathbf{R} and \mathbf{U} and allows the following possibilities: symbolic, numeric, and null. In particular, if option is selected as null, the program does not compute \mathbf{U} and \mathbf{R}; by selecting symbolic or numeric the program computes \mathbf{U} and \mathbf{R}, preserving the symbolic or numeric structure.

If the input datum simplifyoption is chosen equal to true, then the program redefines the Mathematica ${ }^{\circledR}$ [69] routines Sqrt, Times, Plus, etc., in such a way that the quantities in irrational symbolic expressions can be treated as real. This procedure permits the simplification of all the irrational symbolic calculations inside the program. However, due to the complex form of the matrices U and R , it is not possible to use this option together with option=symbolic. ${ }^{6}$

Command Line of the Program Deformation

Deformation[func, var, transform, point, vers1, vers2, option, simplifyoption]

Parameter List

Input Data

func $=$ r.h.s. elements of the vector field describing the deformation;
var $=$ curvilinear or Cartesian coordinates;
transform $=$ r.h.s. elements of the transformation from curvilinear var to Cartesian coordinates, or r.h.s. elements of the identity transformation;
point $=$ coordinates at which we want to compute the stretch ratios along the directions vers1 and vers2 and the shearing angle;
vers1 $=$ first vector;
vers2 $=$ second vector;
option $=$ options related to \mathbf{U} and \mathbf{R}; the possibilities are symbolic, numeric, and null;
simplifyoption $=$ true or false. In the first case, the program computes many simplifications of symbolic expressions.

Output Data

deformation gradient \mathbf{F};
right Cauchy-Green tensor C;
eigenvalues, eigenvectors, and invariants of \mathbf{C};
left Cauchy-Green tensor B;
eigenvectors and inverse of \mathbf{B};

[^12]right stretching tensor;
rotation tensor;
stretching ratios in the directions vers1 and vers 2 , evaluated at point;
shearing angle between vers1 and vers2, evaluated at point.

Worked Examples

1. We consider the plane deformation

$$
\left\{\begin{array}{l}
x_{1}=X_{1}+k X_{2}, \\
x_{2}=X_{2},
\end{array} \quad \forall k \in \mathfrak{R}\right.
$$

which maps any $\mathbf{X}=\left(X_{1}, X_{2}\right) \in C_{*}$ onto $\mathbf{x} \in C$. Both the initial and the current configuration are relative to a Cartesian coordinate system. The input data are the following:
func $=\left\{\mathrm{X}_{1}+\mathrm{kX}_{2}, \mathrm{X}_{2}\right\} ;$
var $=\left\{\mathrm{X}_{1}, \mathrm{X}_{2}\right\}$;
transform $=\left\{\mathrm{X}_{1}, \mathrm{X}_{2}\right\}$;
point $=\{0,0\}$;
vers1 $=\{1,0\}$;
vers2 $=\{0,1\}$;
option = null;
simplifyoption = true;
Deformation[func, var, transform, point, vers1, vers2, option, simplifyoption]

The program Deformation gives the following results:
Deformation gradient
$\mathrm{F}=\left(\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right)$
Right Cauchy-Green tensor
$C=\left(\begin{array}{lc}1 & k \\ k & 1+k^{2}\end{array}\right)$
Eigenvalues of C
$\lambda_{1}=\frac{1}{2}\left(2+\mathrm{k}^{2}-\mathrm{k} \sqrt{4+\mathrm{k}^{2}}\right):$ AlgMult $=$ GeoMult $=1$
$\lambda_{2}=\frac{1}{2}\left(2+\mathrm{k}^{2}+\mathrm{k} \sqrt{4+\mathrm{k}^{2}}\right):$ AlgMult $=$ GeoMult $=1$
An orthonormal basis of eigenvectors of C
$u_{1}=\left\{-\frac{k+\sqrt{4+k^{2}}}{\sqrt{2} \sqrt{4+k^{2}+k \sqrt{4+k^{2}}}}, \frac{\sqrt{2}}{\sqrt{4+k^{2}+k \sqrt{4+k^{2}}}}\right\}$
$u_{2}=\left\{\frac{-k+\sqrt{4+k^{2}}}{\sqrt{2} \sqrt{4+k^{2}-k \sqrt{4+k^{2}}}}, \frac{1}{\sqrt{1+\frac{1}{4}\left(-k+\sqrt{4+k^{2}}\right)^{2}}}\right\}$
Principal invariants of C
$I_{C}=2+k^{2}$
$I_{C}=1$
Left Cauchy-Green tensor
$\mathrm{B}=\left(\begin{array}{cc}1+\mathrm{k}^{2} & \mathrm{k} \\ \mathrm{k} & 1\end{array}\right)$
An orthonormal basis of eigenvectors of B
$\mathrm{v}_{1}=\left\{\frac{\mathrm{k}-\sqrt{4+\mathrm{k}^{2}}}{\sqrt{2} \sqrt{4+\mathrm{k}^{2}-\mathrm{k} \sqrt{4+\mathrm{k}^{2}}}}, \frac{1}{\sqrt{1+\frac{1}{4}\left(\mathrm{k}-\sqrt{4+\mathrm{k}^{2}}\right)^{2}}}\right\}$
$\mathrm{v}_{2}=\left\{\frac{\mathrm{k}+\sqrt{4+\mathrm{k}^{2}}}{2 \sqrt{1+\frac{1}{4}\left(\mathrm{k}+\sqrt{4+\mathrm{k}^{2}}\right)^{2}}}, \frac{1}{\sqrt{1+\frac{1}{4}\left(\mathrm{k}+\sqrt{4+\mathrm{k}^{2}}\right)^{2}}}\right\}$
Inverse of the left Cauchy-Green tensor
$\mathrm{B}^{-1}=\left(\begin{array}{cc}1 & -k \\ -k & 1+k^{2}\end{array}\right)$
Stretch ratio in the direction $\{1,0\}$
$\delta_{1}=1$
Stretch ratio in the direction $\{0,1\}$
$\delta_{2}=\sqrt{1+\mathrm{k}^{2}}$
Shear angle between the directions $\{1,0\}$ and $\{0,1\}$
$\cos \Theta_{12}=\frac{\mathrm{k}}{\sqrt{1+\mathrm{k}^{2}}}$
Initial value of the angle (in degrees)
$\Theta_{12}{ }^{i}=90^{\circ}$
Final value of the angle (in degrees)
$\Theta_{12}^{\mathrm{f}}=\frac{180 \operatorname{ArcCos}\left[\frac{\mathrm{k}}{\sqrt{1+\mathrm{k}^{2}}}\right]^{\circ}}{\pi}$
2. We consider the set of plane deformations

$$
\left\{\begin{array}{l}
r=R+k(R) \\
\phi=\Phi
\end{array}\right.
$$

where $k=k(R)$ is an invertible function of class C^{1} such that

$$
\left(1+k^{\prime}(R)\right)\left(\sqrt{(R+k(R))^{2}} / R\right)>0, \text { for all } R . \text { Both the reference and the }
$$ current configuration are relative to a polar curvilinear coordinate system. The

program Deformation provides all the peculiar aspects of this deformation at a selected point, which we assume in this example is the point $\{1,0\}$.

Input data:

func $=\{R+k[R], \Phi\}$;
var $=\{R, \Phi\}$;
transform $=\{\operatorname{RCos}[\Phi], \operatorname{RSin}[\Phi]\}$;
point $=\{1,0\}$;
vers1 $=\{1,0\}$;
vers2 $=\{0,1\}$;
option = symbolic;
simplifyoption = true;
Deformation[func, var, transform, point, vers1, vers2, option, simplifyoption]
Output data:
All tensor and vector components are relative to the basis of unit vectors associated with the natural
basis of the curvilinear coordinates $\{\mathrm{R}, \Phi\}$.
Deformation gradient
$F=\left(\begin{array}{cc}1+k^{\prime}[R] & 0 \\ 0 & \frac{R+k[R]}{R}\end{array}\right)$
Right Cauchy-Green tensor
$C=\left(\begin{array}{cc}\left(1+k^{\prime}[R]\right)^{2} & 0 \\ 0 & \frac{(R+k[R])^{2}}{R^{2}}\end{array}\right)$
Eigenvalues of C
$\lambda_{1}=\frac{(R+k[R])^{2}}{R^{2}}:$ AlgMult $=$ GeoMult $=1$
$\lambda_{2}=\left(1+k^{\prime}[R]\right)^{2}$: AlgMult $=$ GeoMult $=1$
An orthonormal basis of eigenvectors of C
$u_{1}=\{0,1\}$
$u_{2}=\{1,0\}$
Principal invariants of C
$I_{C}=\frac{(R+k[R])^{2}}{R^{2}}+\left(1+k^{\prime}[R]\right)^{2}$
$I I_{C}=\frac{(R+k[R])^{2}\left(1+k^{\prime}[R]\right)^{2}}{R^{2}}$
Left Cauchy-Green tensor
$B=\left(\begin{array}{cc}\left(1+k^{\prime}[R]\right)^{2} & 0 \\ 0 & \frac{(R+k[R])^{2}}{R^{2}}\end{array}\right)$
An orthonormal basis of eigenvectors of B
$\mathrm{v}_{1}=\{0,1\}$
$\mathrm{v}_{2}=\{1,0\}$

```
Inverse of the left Cauchy-Green tensor
\(B^{-1}=\left(\begin{array}{cc}\frac{1}{\left(1+k^{\prime}[R]\right)^{2}} & 0 \\ 0 & \frac{R^{2}}{(R+k[R])^{2}}\end{array}\right)\)
Right stretching tensor
\(U=\left(\begin{array}{cc}1+k^{\prime}[R] & 0 \\ 0 & \frac{R+k[R]}{R}\end{array}\right)\)
Rotation tensor
\(R=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\)
Stretch ratio in the direction \(\{1,0\}\)
\(\delta_{1}=1+k^{\prime}[1]\)
Stretch ratio in the direction \(\{0,1\}\)
\(\delta_{2}=1+\mathrm{k}[1]\)
Shear angle between the directions \(\{1,0\}\) and \(\{0,1\}\)
\(\cos \Theta_{12}=0\)
Initial value of the angle (in degrees)
\(\Theta_{12}{ }^{i}=90^{\circ}\)
Final value of the angle (in degrees)
\(\Theta_{12}{ }^{\mathrm{f}}=90^{\circ}\)
```


Exercises

Apply the program Deformation to the following deformations:

1. $\left\{\begin{array}{l}x_{1}=X_{1}+k X_{2}, \\ x_{2}=X_{2}, \\ x_{3}=X_{3} .\end{array} \quad \forall k \in \Re\right.$
2. $\left\{\begin{array}{l}x_{1}=\alpha X_{1}, \\ x_{2}=\beta X_{2}, \quad \forall \alpha, \beta, \gamma \in \mathfrak{R} \\ x_{3}=\gamma X_{3} .\end{array}\right.$
3. $\left\{\begin{array}{l}x_{1}=X_{1}, \\ x_{2}=X_{2}-k X_{3}, \\ x_{3}=X_{3}+k X_{2} .\end{array} \quad \forall k \in \Re\right.$
4. $\left\{\begin{array}{l}x_{1}=X_{1}, \\ x_{2}=X_{2}+\sqrt{2} X_{3}, \\ x_{3}=X_{3}+\sqrt{2} X_{2} .\end{array}\right.$
5. $\left\{\begin{array}{l}x_{1}=X_{1}, \\ x_{2}=X_{2}, \\ x_{3}=X_{3}+k X_{2} .\end{array} \quad \forall k \in \Re\right.$
6. $\left\{\begin{array}{l}x_{1}=X_{1}, \\ x_{2}=X_{2}+k X_{3}, \quad \forall k \in \Re \\ x_{3}=X_{3}+k X_{2} .\end{array}\right.$

Chapter 4
 Kinematics

This chapter is dedicated to an extensive analysis of the kinematic aspects of a moving continuous system. After defining Eulerian and Lagrangian velocity and acceleration, the rate of deformation and the vorticity tensor are introduced to classify different flows: rigid, irrotational, and isochoric. Then, the transformation properties under a change of the frame of reference of these tensors are determined. A moving singular surface is defined together with its normal speed both in Eulerian and Lagrangian description of flow. Further, the kinematic compatibility conditions are determined for a singular moving surface. Some fundamental formulae to derive with respect to time some integrals evaluated on moving volumes or surfaces are proved. After a section of exercise, it is presented the program Velocity, written with Mathematica ${ }^{\circledR}$, to do the calculations showed in this chapter by a computer.

4.1 Velocity and Acceleration

The aim of this section is to consider the motion of a continuous system S with respect to an orthonormal frame of reference $R=\left(O, \mathbf{e}_{i}\right)$ (see Chap. 1). As stated in Chap. 3, if C denotes the configuration of S in R at time t, then the coordinates (x_{i}) of the point $\mathbf{x} \in C$ are defined to be Eulerian or spatial coordinates of \mathbf{x}. In order to describe the motion of S, its points have to be labeled so that we can follow them during the motion. This requires the introduction of a reference configuration C_{*}, selected among all the configurations the system S can assume (the usual choice is the initial one), and the coordinates (X_{L}) of $\mathbf{X} \in C_{*}$ are defined as the Lagrangian or material coordinates.

The motion of S is accordingly defined by

$$
\begin{equation*}
x_{i}=x_{i}(\mathbf{X}, t), \quad i=1,2,3 . \tag{4.1}
\end{equation*}
$$

Equation (4.1) is required to satisfy, for any time instant, the assumptions introduced for (3.1), i.e., they are supposed to be one-to-one functions of class C^{2}. In particular, the requirement that one and only one $\mathbf{x} \in C$ corresponds to each $\mathbf{X} \in C_{*}$ guarantees that during the motion the system does not exhibit fractures or material discontinuities; the requirement that one and only one \mathbf{X} corresponds to each \mathbf{x} (existence of the inverse function) preserves the basic property of matter that two particles cannot simultaneously occupy the same position; finally, requiring that the functions are of class C^{2} guarantees the regular and smooth behavior of the velocity and acceleration.

From the above properties it follows that at any $\mathbf{X} \in C_{*}$, the Jacobian J of (4.1) is different from zero.

Moreover, if C_{*} has been selected as the initial configuration, so that J is equal to 1 when $t=0$, the continuity of J requires that, for all t ,

$$
\begin{equation*}
J=\operatorname{det}\left(\frac{\partial x_{i}}{\partial X_{j}}\right)>0 . \tag{4.2}
\end{equation*}
$$

Any quantity ψ of the continuous system S can be represented in Lagrangian or Eulerian form, depending on whether it is expressed as a function of (\mathbf{X}, t) or (\mathbf{x}, t), i.e., if it is a field assigned on the initial configuration C_{*} or on the current configuration C :

$$
\begin{equation*}
\psi=\psi(\mathbf{x}, t)=\psi(\mathbf{x}(\mathbf{X}, t), t)=\tilde{\psi}(\mathbf{X}, t) . \tag{4.3}
\end{equation*}
$$

When dealing with balance equations (see Chap. 5), it will be shown how it is important to correctly compute the rate of change of a physical quantity, occurring at a given material point. This rate of change is called the material derivative.

As an example, the velocity and the acceleration of the particle $\mathbf{X} \in C_{*}$ at time t are given by the partial derivative of the material representation

$$
\begin{equation*}
\mathbf{v}=\tilde{\mathbf{v}}(\mathbf{X}, t)=\frac{\partial \mathbf{x}}{\partial t}=\frac{\partial \mathbf{u}}{\partial t}, \quad \mathbf{a}=\tilde{\mathbf{a}}(\mathbf{X}, t)=\frac{\partial^{2} \mathbf{x}}{\partial t^{2}}=\frac{\partial^{2} \mathbf{u}}{\partial t^{2}} \tag{4.4}
\end{equation*}
$$

where $\mathbf{u}=\mathbf{x}(\mathbf{X}, t)-\mathbf{X}$ is the displacement field introduced in Chap. 3.
Because of the invertibility assumption of the motion, the formulation of the same fields in the spatial representation is allowed by the following identities:

$$
\begin{align*}
& \mathbf{v}(\mathbf{x}, t)=\mathbf{v}(\mathbf{x}(\mathbf{X}, t), t)=\tilde{\mathbf{v}}(\mathbf{X}, t), \\
& \mathbf{a}(\mathbf{x}, t)=\mathbf{a}(\mathbf{x}(\mathbf{X}, t), t)=\tilde{\mathbf{a}}(\mathbf{X}, t), \tag{4.5}
\end{align*}
$$

and it follows that the material derivative of the spatial representation is given by the total derivative

$$
\begin{equation*}
\mathbf{a}=\frac{\partial \mathbf{v}}{\partial t}+\mathbf{v} \cdot \nabla \mathbf{v} \tag{4.6}
\end{equation*}
$$

where the gradient operator ∇ means differentiation with respect to spatial coordinates:

$$
\mathbf{v} \cdot \nabla \mathbf{v}=v_{j} \frac{\partial \mathbf{v}}{\partial x_{j}}
$$

The general form for any field $\psi(\mathbf{x}, t)=\tilde{\psi}(\mathbf{X}, t)$ is

$$
\begin{equation*}
\dot{\psi}=\frac{\partial \tilde{\psi}}{\partial t}=\frac{\partial \psi}{\partial t}+\mathbf{v} \cdot \nabla \psi \tag{4.7}
\end{equation*}
$$

which shows that the material derivative in the spatial representation is composed of two contributions: the first one is a local change expressed by the partial time derivative and the second one is the convective derivative $\mathbf{v} \cdot \nabla \psi$.

Relevant features of the motion are often highlighted by referring to particle paths and streamlines. For this reason, the following definitions are introduced.

The vector field $\mathbf{v}(\mathbf{x}, t)$ at a fixed time t is called the kinetic field.
A particle path is the trajectory of an individual particle of S. In Lagrangian terms, particle paths can be obtained by integration of (4.4):

$$
\begin{equation*}
\mathbf{x}=\mathbf{x}_{0}+\int_{0}^{t} \tilde{\mathbf{v}}(\mathbf{X}, t) d t \tag{4.8}
\end{equation*}
$$

If the velocity field is expressed in the Eulerian form $\mathbf{v}=\mathbf{v}(\mathbf{x}, t)$, then the determination of particle paths requires the integration of a nonautonomous system of first-order differential equations:

$$
\begin{equation*}
\frac{d \mathbf{x}}{d t}=\mathbf{v}(\mathbf{x}, t) \tag{4.9}
\end{equation*}
$$

We briefly remind the reader that a system of first-order differential equations (4.9) is called autonomous if the functions on the right-hand side are real-valued functions that do not depend explicitly on t.

A streamline is defined as the continuous line, at a fixed time t, whose tangent at any point is in the direction of the velocity at that point.

Based on this definition, streamlines represent the integral curves of the kinetic field, i.e., the solution of the autonomous system

$$
\begin{equation*}
\frac{d \mathbf{x}}{d s}=\mathbf{v}(\mathbf{x}, t), \quad t=\text { const } . \tag{4.10}
\end{equation*}
$$

where s is a parameter along the curve. We note that two streamlines cannot intersect; otherwise we would have the paradoxical situation of a velocity going in two directions at the intersection point.

The motion is defined to be stationary if

$$
\begin{equation*}
\frac{\partial}{\partial t} \mathbf{v}(\mathbf{x}, t)=\mathbf{0} \tag{4.11}
\end{equation*}
$$

which is equivalent to saying that all the particles of S that cross the position $\mathbf{x} \in C$ during the time evolution have the same velocity.

Since in the stationary motion the right-hand side of both (4.9) and (4.10) are independent of t, the two systems of differential equations are equivalent to each other, so that particle paths and streamlines are coincident.

4.2 Velocity Gradient

Two relevant kinematic tensors will be extensively used. The first one is the symmetric tensor defining the rate of deformation or stretching (Euler, 1770)

$$
\begin{equation*}
D_{i j}=\frac{1}{2}\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right)=D_{j i} \tag{4.12}
\end{equation*}
$$

and the second one is the skew-symmetric tensor defined as the spin or vorticity tensor

$$
\begin{equation*}
W_{i j}=\frac{1}{2}\left(\frac{\partial v_{i}}{\partial x_{j}}-\frac{\partial v_{j}}{\partial x_{i}}\right)=-W_{j i} \tag{4.13}
\end{equation*}
$$

By means of these two tensors, the gradient of velocity can be conveniently decomposed as

$$
\begin{equation*}
\nabla \mathbf{v}=\mathbf{D}+\mathbf{W} \tag{4.14}
\end{equation*}
$$

By recalling the definition of differential

$$
\begin{equation*}
\mathbf{v}(\mathbf{x}+d \mathbf{x}, t)=\mathbf{v}(\mathbf{x}, t)+d \mathbf{x} \cdot \nabla \mathbf{v} \tag{4.15}
\end{equation*}
$$

and using the decomposition (4.14), we obtain

$$
\begin{equation*}
\mathbf{v}(\mathbf{x}+d \mathbf{x}, t)=\mathbf{v}(\mathbf{x}, t)+\omega \times d \mathbf{x}+\mathbf{D} d \mathbf{x} \tag{4.16}
\end{equation*}
$$

where $\boldsymbol{\omega}$ is the vector such that $\boldsymbol{\omega} \times d \mathbf{x}=\mathbf{W} d \mathbf{x}$. It can be verified that

$$
\begin{equation*}
\omega=\frac{1}{2} \nabla \times \mathbf{v}, \tag{4.17}
\end{equation*}
$$

which shows that, in a neighborhood of $\mathbf{x} \in C$, the local kinetic field is composed of a rigid motion with angular velocity given by (4.17) that is a function of time and \mathbf{x}, and the term $\mathbf{D} d \mathbf{x}$.

Later it will be useful to refer to the following expression for the Eulerian acceleration, derived from (4.6):

$$
\begin{aligned}
a_{i} & =\frac{\partial v_{i}}{\partial t}+v_{j} \frac{\partial v_{i}}{\partial x_{j}}=\frac{\partial v_{i}}{\partial t}+v_{j} \frac{\partial v_{i}}{\partial x_{j}}+v_{j} \frac{\partial v_{j}}{\partial x_{i}}-v_{j} \frac{\partial v_{j}}{\partial x_{i}} \\
& =\frac{\partial v_{i}}{\partial t}+2 W_{i j} v_{j}+\frac{1}{2} \frac{\partial v^{2}}{\partial x_{j}}
\end{aligned}
$$

Since $W_{i j} v_{j}=\epsilon_{i h j} \omega_{h} v_{j}$, we obtain

$$
a_{i}=\frac{\partial v_{i}}{\partial t}+2 \epsilon_{i h j} \omega_{h} v_{j}+\frac{1}{2} \frac{\partial v^{2}}{\partial x_{j}},
$$

and, referring to (4.17), we see that in vector terms it holds that

$$
\begin{equation*}
\mathbf{a}=\frac{\partial \mathbf{v}}{\partial t}+(\nabla \times \mathbf{v}) \times v+\frac{1}{2} \nabla v^{2} . \tag{4.18}
\end{equation*}
$$

4.3 Rigid, Irrotational, and Isochoric Motions

For the analysis we are going to present, it is of interest to introduce Liouville's formula

$$
\begin{equation*}
\dot{J}=J \nabla \cdot \mathbf{v} \tag{4.19}
\end{equation*}
$$

To prove (4.19), first observe that by definition

$$
\dot{J}=\frac{d}{d t} \operatorname{det}\left(\frac{\partial x_{i}}{\partial X_{L}}\right)=\left|\begin{array}{lll}
\frac{\partial v_{1}}{\partial X_{1}} & \frac{\partial v_{1}}{\partial X_{2}} & \frac{\partial v_{1}}{\partial X_{3}} \\
\frac{\partial x_{2}}{\partial X_{1}} & \frac{\partial x_{2}}{\partial X_{2}} & \frac{\partial x_{2}}{\partial X_{3}} \\
\frac{\partial x_{3}}{\partial X_{1}} & \frac{\partial x_{3}}{\partial X_{2}} & \frac{\partial x_{3}}{\partial X_{3}}
\end{array}\right|+\cdots+\left|\begin{array}{lll}
\frac{\partial x_{1}}{\partial X_{1}} & \frac{\partial x_{1}}{\partial X_{2}} & \frac{\partial x_{1}}{\partial X_{3}} \\
\frac{\partial x_{2}}{\partial X_{1}} & \frac{\partial x_{2}}{\partial X_{2}} & \frac{\partial x_{2}}{\partial X_{3}} \\
\frac{\partial v_{3}}{\partial X_{1}} & \frac{\partial v_{3}}{\partial X_{2}} & \frac{\partial v_{3}}{\partial X_{3}}
\end{array}\right| .
$$

Moreover,

$$
\frac{\partial v_{h}}{\partial X_{L}}=\frac{\partial v_{h}}{\partial x_{j}} \frac{\partial x_{j}}{\partial X_{L}}
$$

and since each determinant can be written as $J \partial v_{i} / \partial x_{i}$ (no summation on i), (4.19) is proved.

Theorem 4.1. The motion of S is (globally) rigid if and only if

$$
\begin{equation*}
\mathbf{D}=\mathbf{0} \tag{4.20}
\end{equation*}
$$

Proof. To prove that (4.20) follows as a necessary condition, we observe that a rigid motion implies $v_{i}(\mathbf{x}, t)=v_{i}\left(\mathbf{x}_{0}, t\right)+\epsilon_{i j l} \omega_{j}(t)\left(x_{l}-x_{0 l}\right)$. The velocity gradient

$$
\frac{\partial v_{i}}{\partial x_{k}}=\epsilon_{i j k} \omega_{j}
$$

is then skew-symmetric, so that

$$
2 D_{i k}=\frac{\partial v_{i}}{\partial x_{k}}+\frac{\partial v_{k}}{\partial x_{i}}=\left(\epsilon_{i j k}+\epsilon_{k j i}\right) \omega_{j}=0
$$

To prove that $\mathbf{D}=\mathbf{0}$ is a sufficient condition, by (4.15) and (4.16) we obtain

$$
\begin{equation*}
\frac{\partial v_{i}}{\partial x_{j}}=W_{i j}, \quad W_{i j}=-W_{j i} \tag{4.21}
\end{equation*}
$$

The system (4.21) of 9 differential equations with the three unknown functions $v_{i}(\mathbf{x})$ can be written in the equivalent form

$$
\begin{equation*}
d v_{i}=W_{i j} d x_{j} \tag{4.22}
\end{equation*}
$$

so that (4.21) has a solution if and only if the differential forms (4.22) can be integrated. If the region C of the kinetic field is simply connected, then a necessary and sufficient condition for the integrability of (4.22) is

$$
\frac{\partial W_{i j}}{\partial x_{h}}=\frac{\partial W_{i h}}{\partial x_{j}}
$$

By cyclic permutation of the indices, two additional conditions follow:

$$
\frac{\partial W_{j h}}{\partial x_{i}}=\frac{\partial W_{j i}}{\partial x_{h}}, \quad \frac{\partial W_{h i}}{\partial x_{j}}=\frac{\partial W_{h j}}{\partial x_{i}}
$$

Summing up the first two, subtracting the third one and taking into account $(4.21)_{2}$, we derive the condition

$$
\frac{\partial W_{i j}}{\partial x_{h}}=0
$$

which shows that the skew-symmetric tensor $W_{i j}$ does not depend on the spatial variables and eventually depends on time. Then, integration of (4.22) gives

$$
v_{i}(\mathbf{x}, t)=v_{0 i}(t)+W_{i j}(t)\left(x_{j}-x_{0 j}\right),
$$

and the motion is rigid.
The motion of S is defined to be irrotational if

$$
\begin{equation*}
\omega=\frac{1}{2} \nabla \times \mathbf{v}=\mathbf{0} . \tag{4.23}
\end{equation*}
$$

Again suppose that the region C is simply connected; then it follows that the motion is irrotational if and only if

$$
\begin{equation*}
\mathbf{v}=\nabla \varphi \tag{4.24}
\end{equation*}
$$

where φ is a potential for the velocity, also defined as the kinetic potential.
Let $c \subset C$ be a region which is the mapping of $c_{*} \subset C_{*}$ under the equations of the motion. This region is a material volume because it is always occupied by the same particles. If during the motion of S the volume of any arbitrary material region does not change, then the motion is called isochoric or isovolumic, i.e.,

$$
\frac{d}{d t} \int_{c} d c=0
$$

By changing the variables $\left(x_{i}\right) \longrightarrow\left(X_{L}\right)$, the previous requirement can be written as

$$
\frac{d}{d t} \int_{c_{*}} J d c_{*}=0
$$

and, since the volume c_{*} is fixed, differentiation and integration can be exchanged, and because of (4.19), we get

$$
\int_{c_{*}} J \nabla \cdot \mathbf{v} d c_{*}=\int_{c} \nabla \cdot \mathbf{v} d c=0 \quad \forall c \subset C .
$$

Next, we conclude that a motion is isochoric if and only if

$$
\begin{equation*}
\nabla \cdot \mathbf{v}=0 \tag{4.25}
\end{equation*}
$$

Finally, an irrotational motion is isochoric if and only if the velocity potential satisfies Laplace's equation

$$
\begin{equation*}
\Delta \varphi=\nabla \cdot \nabla \varphi=0 \tag{4.26}
\end{equation*}
$$

whose solutions are known as harmonic functions.

4.4 Transformation Rules for a Change of Frame

As we will discuss in Chap. 7, constitutive equations are required to be invariant under change of frame of reference. Intuitively, this requirement means that two observers in relative motion with respect to each other must observe the same stress in a given continuous body. For this and other reasons it is of interest to investigate how the tensors $\dot{\mathbf{F}}, \nabla \mathbf{v}, \mathbf{D}$, and \mathbf{W} transform under a change of frame of reference.

Let us briefly recall that a frame of reference can be considered as an observer measuring distances with a ruler and time intervals with a clock. In general, two observers moving relatively to each other will record different values of position and time of the same event. But within the framework of Newtonian mechanics, it is postulated that: distance and time intervals between events have the same values in two frames of reference whose relative motion is rigid.

Suppose that the first observer is characterized by the reference system $O x_{i}$ and time t and the second one by $O^{\prime} x_{i}^{\prime}$ and t^{\prime}. The above requirement can be expressed in analytical terms as

$$
\begin{align*}
x_{i}^{\prime} & =Q_{i j}(t) x_{j}+c_{i}(t) \\
t^{\prime} & =t+a \tag{4.27}
\end{align*}
$$

where $\mathbf{Q}=\left(Q_{i j}\right), \mathbf{c}=\left(c_{i}\right)$, and a are a proper orthogonal tensor, an arbitrary vector, and an arbitrary scalar quantity, respectively.

The change of frame of reference expressed by (4.27) is a time-dependent rigid transformation known as a Euclidean transformation (see Chap. 1).

A scalar field g, a vector field \mathbf{q}, and a tensor field \mathbf{T} are defined to be objective if, under a change of frame of reference, they transform according to the rules

$$
\begin{align*}
g^{\prime}\left(\mathbf{x}^{\prime}, t^{\prime}\right) & =g(\mathbf{x}, t) \\
\mathbf{q}^{\prime}\left(\mathbf{x}^{\prime}, t^{\prime}\right) & =\mathbf{Q}(t) \mathbf{q}(\mathbf{x}, t) \\
\mathbf{T}^{\prime}\left(\mathbf{x}^{\prime}, t^{\prime}\right) & =\mathbf{Q}(t) \mathbf{T}(\mathbf{x}, t) \mathbf{Q}^{T}(t) \tag{4.28}
\end{align*}
$$

In this case we say that two observers are considering the same event from two different points of view.

It was already observed in Sect. 3.6 that the deformation gradient \mathbf{F} and the left and right Cauchy-Green tensors transform as follows:

$$
\begin{equation*}
\mathbf{F}^{\prime}=\mathbf{Q F}, \quad \mathbf{C}^{\prime}=\mathbf{C}, \quad \mathbf{B}^{\prime}=\mathbf{Q} \mathbf{B} \mathbf{Q}^{T} \tag{4.29}
\end{equation*}
$$

Moreover, the following additional transformation rules hold under a change of frame (4.27):

$$
\dot{\mathbf{F}}^{\prime}=\mathbf{Q} \dot{\mathbf{F}}+\dot{\mathbf{Q}} \mathbf{F}
$$

$$
\begin{align*}
\nabla^{\prime} \mathbf{v}^{\prime} & =\mathbf{Q} \nabla \mathbf{v} \mathbf{Q}^{T}+\dot{\mathbf{Q}} \mathbf{Q}^{T}, \\
\mathbf{D}^{\prime} & =\mathbf{Q D} \mathbf{Q}^{T}, \\
\mathbf{W}^{\prime} & =\mathbf{Q} \mathbf{W} \mathbf{Q}^{T}+\dot{\mathbf{Q}} \mathbf{Q}^{T} . \tag{4.30}
\end{align*}
$$

Equation (4.30) ${ }_{1}$ is obtained by differentiating $(4.29)_{1}$ with respect to time.
Furthermore, differentiating the relation $x_{i}^{\prime}=Q_{i j}(t) x_{j}+c_{i}(t)$ with respect to time and x_{h}^{\prime}, we get

$$
\frac{\partial v_{i}^{\prime}}{\partial x_{h}^{\prime}}=Q_{i j} \frac{\partial v_{j}}{\partial x_{k}} \frac{\partial x_{k}}{\partial x_{h}^{\prime}}+\dot{Q}_{i j} \frac{\partial x_{j}}{\partial x_{h}^{\prime}}
$$

and $(4.30)_{2}$ is proved. Moreover, the orthogonality condition $\mathbf{Q} \mathbf{Q}^{T}=\mathbf{I}$ allows us to write $\dot{\mathbf{Q}} \mathbf{Q}^{T}+\mathbf{Q} \dot{\mathbf{Q}}^{T}=\mathbf{0}$, i.e., $\dot{\mathbf{Q}} \mathbf{Q}^{T}=-\left(\dot{\mathbf{Q}} \mathbf{Q}^{T}\right)^{T}$, so that the skew-symmetry of $\dot{\mathbf{Q}} \mathbf{Q}^{T}$ is derived. By recalling the definitions (4.12) and (4.13) of \mathbf{D} and $\mathbf{W},(4.30)_{3,4}$ can easily be proved.

It follows that only the rate of deformation tensor \mathbf{D} can be considered to be objective.

4.5 Singular Moving Surfaces

In continuum mechanics it is quite common to deal with a surface that is singular with respect to some scalar, vector, or tensor field and is moving independently of the particles of the system. Typical phenomena include acceleration waves, shock waves, phase transitions, and many others. Due to the relevance of these topics, this section and the next one are devoted to the kinematics of singular surfaces.

Let

$$
\begin{equation*}
f(\mathbf{r}, t)=0 \tag{4.31}
\end{equation*}
$$

be a moving surface $\Sigma(t)$. Given a point $\mathbf{r} \in \Sigma(t)$, consider the straight line a of equation $\mathbf{r}+s \mathbf{n}$, where \mathbf{n} is the unit vector normal to $\Sigma(t)$ at \mathbf{r}. If $f(\mathbf{r}, t+\tau)=0$ is the equation of $\Sigma(t+\tau)$, let the intersection point of a with the surface $\Sigma(t+\tau)$ be denoted by \mathbf{y}. The distance between $\Sigma(t)$ and $\Sigma(t+\tau)$ measured along the normal at \mathbf{r} is given by $s(\tau)$, and this parameter allows us to define the normal speed of $\Sigma(t)$ as the limit

$$
\begin{equation*}
c_{n}=\lim _{\tau \longrightarrow 0} \frac{s(\tau)}{\tau}=s^{\prime}(0) \tag{4.32}
\end{equation*}
$$

The limit (4.32) can also be expressed in terms of (4.31) if it is observed that $s(\tau)$ is implicitly defined by equation

$$
f(\mathbf{r}+s \mathbf{n}, t+\tau) \equiv \varphi(s, \tau)=0
$$

so that, from Dini's theorem on implicit functions, it follows that

$$
s^{\prime}(0)=-\left(\frac{\partial \varphi / \partial \tau}{\partial \varphi / \partial s}\right)_{(0,0)}=-\frac{\partial f / \partial t}{\nabla f \cdot \mathbf{n}}
$$

Since ∇f is parallel to \mathbf{n} and has the same orientation, it can be written as

$$
\begin{equation*}
c_{n}=-\frac{\partial f / \partial t}{|\nabla f|} \tag{4.33}
\end{equation*}
$$

The velocity of the surface with respect to the material particles instantaneously lying upon it is called the local speed of propagation and is given by $\left(c_{n}-\mathbf{v} \cdot \mathbf{n}\right)$, if the current configuration is regarded as a reference configuration.

Note that we obtain (4.33) by using the implicit representation of the surface $\Sigma(t)$. If we adopt a parametric form of $\Sigma(t)$, i.e., $\mathbf{r}=\mathbf{g}\left(u_{\alpha}, t\right)$, where $u_{\alpha}, \alpha=1,2$, are the parameters on the surface, then $f\left(\mathbf{g}\left(u_{\alpha}, t\right), t\right)=0$ and (4.33) gives

$$
\begin{equation*}
c_{n}=\frac{1}{|\nabla f|} \nabla f \cdot \frac{\partial \mathbf{g}}{\partial t}=\mathbf{n} \cdot \frac{\partial \mathbf{r}}{\partial t} . \tag{4.34}
\end{equation*}
$$

It can be proved that the velocity of the surface is independent of the parametric representation of $\Sigma(t)$.

In fact, if U_{α} with $u_{\alpha}=u_{\alpha}\left(U_{\beta}, t\right)$ are new parameters, then the parametric equations of the surface will be $\mathbf{R}\left(U_{\alpha}, t\right)=\mathbf{r}\left(u_{\alpha}\left(U_{\beta}, t\right)\right)$ and (4.34) will be expressed in terms of $\partial \mathbf{R} / \partial t$ instead of $\partial \mathbf{r} / \partial t$. Since

$$
\frac{\partial \mathbf{R}}{\partial t}=\frac{\partial \mathbf{r}}{\partial u_{\alpha}} \frac{\partial u_{\alpha}}{\partial t}+\frac{\partial \mathbf{r}}{\partial t}
$$

and $\partial \mathbf{r} / \partial u^{\alpha}$ are tangent to the surface $\Sigma(t)$, it follows that

$$
\mathbf{n} \cdot \frac{\partial \mathbf{r}}{\partial t}=\mathbf{n} \cdot \frac{\partial \mathbf{R}}{\partial t}
$$

and both parametric representations lead to the same value of c_{n}.
Let $\mathbf{r}=\mathbf{g}\left(u_{\alpha}, t\right)$ be a surface $\Sigma(t)$ and let $\Gamma(t)$ be a moving curve on it, with parametric equations $\mathbf{r}=\mathbf{G}(s, t)=\mathbf{g}\left(u_{\alpha}(s, t), t\right)$, where s is the curvilinear abscissa on $\Gamma(t)$. The orientation of the tangent unit vector τ to the curve $\Gamma(t)$ is fixed according to the usual rule that $\boldsymbol{\tau}$ is moving counterclockwise on $\Gamma(t)$ for an
observer oriented along \mathbf{n}. Furthermore, the unit vector normal to $\Gamma(t)$ on the plane tangent to $\Sigma(t)$ is expressed by $\boldsymbol{\nu}_{\Sigma}=\boldsymbol{\tau} \times \mathbf{n}$.

According to these definitions, the velocity of the curve $\Gamma(t)$ is given by the scalar quantity

$$
\begin{equation*}
w_{v}=\frac{\partial \mathbf{G}}{\partial t} \cdot \boldsymbol{v}_{\Sigma} \equiv \mathbf{w} \cdot \boldsymbol{v}_{\Sigma} \tag{4.35}
\end{equation*}
$$

and it can be proved that $\mathbf{w} \cdot \boldsymbol{v}_{\Sigma}$ is independent of the parametric representation of $\Sigma(t)$ and $\Gamma(t)$ (see Exercise 7).

A moving surface $\Sigma(t)$ is defined to be singular of order $\mathbf{k} \geq \mathbf{0}$ with respect to the field $\psi(\mathbf{x}, t)$ if the same definition applies to the fixed surface \mathbb{S} of \Re^{4} of Eq. (4.31) (see Sect. 2.5).

It is convenient to write the relationships found in Sect. 2.5 in terms of variables (x_{i}, t). To this end, let \mathfrak{R}^{4} be a four-dimensional space in which the coordinates $\left(x_{i}, t\right)$ are introduced, and let the fixed surface \mathbb{S} of \mathfrak{R}^{4} be represented by (4.31) (see Fig. 4.1).

The unit vector \mathbf{N} normal to S has components

$$
\begin{equation*}
\mathbf{N}=\frac{\operatorname{grad} f}{|\operatorname{grad} f|}=\frac{1}{|\operatorname{grad} f|}\left(\nabla f, \frac{\partial f}{\partial t}\right), \tag{4.36}
\end{equation*}
$$

where $\operatorname{grad} f=\left(\partial f / \partial x_{i}, \partial f / \partial t\right)$. Taking into account (4.33) and observing that the unit normal \mathbf{n} in \Re^{3} to the surface $f(\mathbf{r}, t)=0$, with t fixed, has components $\left(\partial f / \partial x_{i}\right) /|\nabla f|$, we find that (4.36) can be written as

$$
\begin{equation*}
\mathbf{N}=\frac{|\nabla f|}{|\operatorname{grad} f|}\left(\mathbf{n},-c_{n}\right) \equiv \beta\left(\mathbf{n},-c_{n}\right) . \tag{4.37}
\end{equation*}
$$

Fig. 4.1 Singular surface in the space-time

With this notation, if $\Sigma(t)$ is a surface of order 1 with respect to the tensor field $\mathbf{T}(\mathbf{x}, t)$, then (2.48) and (4.37) give the following jump conditions:

$$
\begin{align*}
{[[\nabla \mathbf{T}]] } & =\mathbf{n} \otimes \mathbf{A}(\mathbf{x}, t), \tag{4.38}\\
{\left[\left[\frac{\partial \mathbf{T}}{\partial t}\right]\right] } & =-c_{n} \mathbf{A}(\mathbf{x}, t), \tag{4.39}
\end{align*}
$$

where $\mathbf{A}(\mathbf{x}, t)=\mathbf{a}|\nabla f| /|\operatorname{grad} f|$.
If the surface is of order 2 , then (2.50) leads to the following conditions:

$$
\begin{align*}
{[[\nabla \nabla \mathbf{T}]] } & =\mathbf{n} \otimes \mathbf{n} \otimes \mathbf{A}(\mathbf{x}, t), \tag{4.40}\\
{\left[\left[\nabla \frac{\partial \mathbf{T}}{\partial t}\right]\right] } & =-c_{n} \mathbf{n} \otimes \mathbf{A}(\mathbf{x}, t), \tag{4.41}\\
{\left[\left[\frac{\partial^{2} \mathbf{T}}{\partial t^{2}}\right]\right] } & =c_{n}^{2} \mathbf{A}(\mathbf{x}, t) \tag{4.42}
\end{align*}
$$

4.6 Time Derivative of a Moving Volume

Let $V(t)$ be a moving volume with a smooth boundary surface $\partial V(t)$ having equation $g(\mathbf{x}, t)=0$ and unit outward normal \mathbf{N}. Suppose that its velocity component along the normal is given by

$$
V_{N}=-\frac{1}{|\nabla g|} \frac{\partial g}{\partial t}
$$

When dealing with balance equations, it is useful to express the time derivative of a given quantity, defined over a volume which is not fixed but is changing with time. To do this, we need to use the following relation:

$$
\begin{equation*}
\frac{d}{d t} \int_{V(t)} \mathbf{f}(\mathbf{x}, t) d c=\int_{V(t)} \frac{\partial \mathbf{f}}{\partial t} d c+\int_{\partial V(t)} \mathbf{f} V_{N} d \sigma \tag{4.43}
\end{equation*}
$$

To prove (4.43), we observe that

$$
\begin{aligned}
\frac{d}{d t} \int_{V(t)} & \mathbf{f}(\mathbf{x}, t) d c \\
& =\lim _{\Delta t \rightarrow 0} \frac{1}{\Delta t}\left(\int_{V(t+\Delta t)} \mathbf{f}(\mathbf{x}, t+\Delta t) d c-\int_{V(t)} \mathbf{f}(\mathbf{x}, t) d c\right)
\end{aligned}
$$

The right-hand term can also be written in the form

$$
\begin{aligned}
& \int V(t+\Delta t) \mathbf{f}(\mathbf{x}, t+\Delta t) d c-\int_{V(t)} \mathbf{f}(\mathbf{x}, t+\Delta t) d c \\
& +\int_{V(t)}[\mathbf{f}(\mathbf{x}, t+\Delta t)-\mathbf{f}(\mathbf{x}, t)] d c
\end{aligned}
$$

and we see that the difference of the first two integrals gives the integral of $\mathbf{f}(\mathbf{x}, t+$ Δt) over the change of $V(t)$ due to the moving boundary $\partial V(t)$. By neglecting terms of higher order, we have

$$
\begin{aligned}
\int_{V(t+\Delta t)} \mathbf{f}(\mathbf{x}, t+\Delta t) d c & -\int_{V(t)} \mathbf{f}(\mathbf{x}, t+\Delta t) d c \\
& =\int_{\partial V(t)} \mathbf{f}(\mathbf{x}, t+\Delta t) V_{N} \Delta t d \sigma
\end{aligned}
$$

so that in the limit $\Delta t \longrightarrow 0$, (4.43) is proved.
In the same context, let $\Sigma(t)$ be a singular surface of zero order with respect to the field $\mathbf{f}(\mathbf{x}, t)$ and $\sigma(t)=\Sigma(t) \cap V(t)$. If $f(\mathbf{x}, t)=0, \mathbf{n}$, and c_{n} denote the equation of $\Sigma(t)$, its unit normal, and its advancing velocity, respectively, we have

$$
c_{n}=-\frac{1}{|\nabla f|} \frac{\partial f}{\partial t}
$$

and the following formula can be proved:

$$
\begin{equation*}
\frac{d}{d t} \int_{V(t)} \mathbf{f}(\mathbf{x}, t) d c=\int_{V(t)} \frac{\partial \mathbf{f}}{\partial t} d c+\int_{\partial V(t)} \mathbf{f} V_{N} d \sigma-\int_{\sigma(t)}[[\mathbf{f}]] c_{n} d \sigma \tag{4.44}
\end{equation*}
$$

To this end, suppose the surface $\Sigma(t)$ divides the volume $V(t)$ into two regions, V^{-}and V^{+}. In order to apply (4.43), we note that ∂V has velocity V_{N}, while $\sigma(t)$ is moving with velocity c_{n} if $\sigma(t)$ is considered to belong to $V^{-}(t)$, or with velocity $-c_{n}$ if it is part of V^{+}. Furthermore, the field \mathbf{f} on $\sigma(t)$ will be \mathbf{f}^{-}or \mathbf{f}^{+}, depending on whether $\sigma(t)$ belongs to V^{-}or V^{+}. We derive (4.44) by applying (4.43) to V^{+} and V^{-}and subtracting the corresponding results.

As a particular case, if $V(t)$ is a fixed volume ($V_{N}=0$), then from (4.44) it follows that

$$
\begin{equation*}
\frac{d}{d t} \int_{V} \mathbf{f}(\mathbf{x}, t) d c=\int_{V} \frac{\partial \mathbf{f}}{\partial t} d c-\int_{\sigma(t)}[[\mathbf{f}]] c_{n} d \sigma \tag{4.45}
\end{equation*}
$$

As a further application of (4.44), consider a material volume $c(t) \subset C(t)$ that is the mapping of the initial volume $c_{*} \subset C_{*}$ by the equations of motion $\mathbf{x}=\mathbf{x}(\mathbf{X}, t)$.

Since this moving volume is a collection of the same particles of $S(t)$, its boundary $\partial c(t)$ is moving at normal speed $\mathbf{v} \cdot \mathbf{N}$, and (4.44) can be written as

$$
\begin{equation*}
\frac{d}{d t} \int_{c(t)} \mathbf{f}(\mathbf{x}, t) d c=\int_{c(t)} \frac{\partial \mathbf{f}}{\partial t} d c+\int_{\partial c(t)} \mathbf{f} \otimes \mathbf{v} \cdot \mathbf{N} d \sigma-\int_{\sigma(t)}[[\mathbf{f}]] c_{n} d \sigma \tag{4.46}
\end{equation*}
$$

By applying the generalized Gauss's theorem (2.42) to the second integral of the right-hand side of (4.46), we derive

$$
\begin{equation*}
\frac{d}{d t} \int_{c(t)} \mathbf{f}(\mathbf{x}, t) d c=\int_{c(t)}\left[\frac{\partial \mathbf{f}}{\partial t}+\nabla \cdot(\mathbf{v} \otimes \mathbf{f})\right] d c-\int_{\sigma(t)}\left[\left[\mathbf{f}\left(c_{n}-v_{n}\right)\right]\right] d \sigma \tag{4.47}
\end{equation*}
$$

In applications the need often arises to consider a material open moving surface, i.e., a surface which is the mapping, by the equations of motion $\mathbf{x}=\mathbf{x}(\mathbf{X}, t)$, of a surface S^{*} represented in the reference configuration by the equation $\mathbf{r}=\mathbf{r}\left(u^{\alpha}\right)$. In this case the following formula holds:

$$
\begin{equation*}
\frac{d}{d t} \int_{S(t)} \mathbf{u}(\mathbf{x}, t) \cdot \mathbf{N} d \sigma=\int_{S(t)}\left[\frac{\partial \mathbf{u}}{\partial t}+\nabla \times(\mathbf{u} \times \mathbf{v})+\mathbf{v} \nabla \cdot \mathbf{u}\right] \cdot \mathbf{N} d \sigma \tag{4.48}
\end{equation*}
$$

where \mathbf{N} is the unit vector normal to $S(t)$.
To prove (4.48), we first observe that due to (3.19) we can write

$$
\begin{align*}
\frac{d}{d t} \int_{S(t)} \mathbf{u}(\mathbf{x}, t) \cdot \mathbf{N} d \sigma & =\frac{d}{d t} \int_{S(t)} u_{i} d \sigma_{i} \\
& =\frac{d}{d t} \int_{S^{*}} u_{i} J \frac{\partial X_{L}}{\partial x_{i}} d \sigma_{* L}=\int_{S^{*}} \frac{d}{d t}\left(u_{i} J \frac{\partial X_{L}}{\partial x_{i}}\right) d \sigma_{* L} . \tag{4.49}
\end{align*}
$$

In addition, from (4.19) it follows that

$$
\begin{equation*}
\frac{d}{d t}\left(J \frac{\partial X_{L}}{\partial x_{i}}\right)=J \nabla \cdot \mathbf{v} \frac{\partial X_{L}}{\partial x_{i}}+J \frac{d}{d t} \frac{\partial X_{L}}{\partial x_{i}} \tag{4.50}
\end{equation*}
$$

and to evaluate the derivative on the right-hand side it is convenient to recall that

$$
\frac{\partial X_{L}}{\partial x_{i}} \frac{\partial x_{h}}{\partial X_{L}}=\delta_{i h} .
$$

Therefore,

$$
\frac{d}{d t} \frac{\partial X_{L}}{\partial x_{i}}=-\frac{\partial \dot{x}_{h}}{\partial x_{i}} \frac{\partial X_{L}}{\partial x_{h}}
$$

and (4.50) becomes

$$
\frac{d}{d t}\left(J \frac{\partial X_{L}}{\partial x_{i}}\right)=J \nabla \cdot \mathbf{v} \frac{\partial X_{L}}{\partial x_{i}}-J \frac{\partial \dot{x}_{h}}{\partial x_{i}} \frac{\partial X_{L}}{\partial x_{h}} .
$$

By using this expression in (4.50) we find that

$$
\frac{d}{d t} \int_{S(t)} \mathbf{u}(\mathbf{x}, t) \cdot \mathbf{N} d \sigma=\int_{S(t)}(\dot{\mathbf{u}}+\mathbf{u} \nabla \cdot \mathbf{v}-\mathbf{u} \cdot \nabla \mathbf{v}) \cdot \mathbf{N} d \sigma
$$

and (4.48) is proved by applying known vector identities.
Finally, it is of interest to investigate how (4.48) can be generalized to the case in which the material surface $S(t)$ intersects the moving surface $\Sigma(t)$, which is supposed to be singular with respect to the field \mathbf{u}. Let $\Gamma(t)=S(t) \cap \Sigma(t)$ be the intersection curve between $S(t)$ and $\Sigma(t)$, and let $S^{-}(t)$ and $S^{+}(t)$ be the regions into which $S(t)$ is subdivided by $\Gamma(t)$. If $\boldsymbol{\tau}$ denotes the unit vector tangent to $\Gamma(t)$ and \boldsymbol{v}_{s} the unit vector tangent to $S(t)$ such that $\boldsymbol{v}_{s}, \boldsymbol{\tau}, \mathbf{N}$ define a positive basis (see Fig. 4.2), then we can easily prove the following generalization of (4.48):

$$
\begin{align*}
\frac{d}{d t} \int_{S(t)} \mathbf{u}(\mathbf{x}, t) \cdot \mathbf{N} d \sigma & =\int_{S(t)}\left[\frac{\partial \mathbf{u}}{\partial t}+\nabla \times(\mathbf{u} \times \mathbf{v})+\mathbf{v} \nabla \cdot \mathbf{u}\right] \cdot \mathbf{N} d \sigma \\
& -\int_{\Gamma(t)} \mathbf{n} \times[[\mathbf{u} \times(\mathbf{w}-\mathbf{v})]] \cdot \mathbf{v}_{S} d s \tag{4.51}
\end{align*}
$$

where \mathbf{w} is the velocity of $\Gamma(t)$.
Remark 4.1. When dealing with continuous systems characterized by interfaces (examples include shock waves, Weiss domains in crystals, phase transitions, and many other phenomena), it is useful to evaluate the following derivative:

$$
\frac{d}{d t} \int_{S(t)} \boldsymbol{\Phi}_{S} d \sigma
$$

Fig. 4.2 Singular curve on a surface
where $\boldsymbol{\Phi}_{S}(\mathbf{x}, t)$ is a field transported by the nonmaterial surface $\Sigma(t)$ and $S(t)=$ $c(t) \cap \Sigma(t)$, where $c(t)$ is a material or fixed volume. The formula (4.51) does not allow us to consider this case, and as a result many authors have paid attention to this problem (see for example Moeckel [37], Gurtin [16], Dell'Isola and Romano [9]). Recently, Marasco and Romano [34] have presented a simple and general formulation that will be further discussed in Volume II.

4.7 Exercises

1. Given the motion

$$
x_{1}=\left(1+\frac{t}{T}\right)^{2} X_{1}, \quad x_{2}=X_{2}, \quad x_{3}=X_{3}
$$

find the Lagrangian and Eulerian representation of the velocity and acceleration.
The displacement components in the Lagrangian form are given by

$$
u_{1}=x_{1}-X_{1}=\left(2 \frac{t}{T}+\frac{t^{2}}{T^{2}}\right) X_{1}, \quad u_{2}=u_{3}=0
$$

and in Eulerian form they are

$$
u_{1}=\frac{2(t / T)+(t / T)^{2}}{\left(1+\frac{t}{T}\right)^{2}} x_{1}, \quad u_{2}=u_{3}=0
$$

The velocity components in the Lagrangian representation are

$$
v_{1}=\frac{\partial u_{1}(X, t)}{\partial t}=\frac{2}{T}\left(1+\frac{t}{T}\right) X_{1}, \quad v_{2}=v_{3}=0
$$

and in Eulerian form they are

$$
v_{1}=\frac{2}{T} \frac{1}{\left(1+\frac{t}{T}\right)} x_{1}, \quad v_{2}=v_{3}=0
$$

Finally, the acceleration components in Lagrangian form are

$$
a_{1}=\frac{2}{T^{2}} X_{1}, \quad a_{2}=a_{3}=0
$$

while the Eulerian representation can be obtained by substituting in the previous relation the inverse motion

$$
X_{1}=\frac{x_{1}}{\left(1+\frac{t}{T}\right)^{2}}
$$

or by applying the material derivative operator

$$
\frac{d}{d t}=\frac{\partial}{\partial t}+\mathbf{v} \cdot \nabla
$$

so that

$$
a_{1}=\frac{2}{T^{2}} \frac{1}{\left(1+\frac{t}{T}\right)^{2}} x_{1}, \quad a_{2}=a_{3}=0
$$

2. Prove that the motion is rigid if and only if the equations of motion have the structure

$$
x_{i}=b_{i}(t)+Q_{i j}(t) X_{j}
$$

where $Q_{i j}$ is a proper orthogonal tensor, i.e.,

$$
Q_{i j} Q_{k j}=\delta_{i j}, \quad \operatorname{det} \mathbf{Q}=1
$$

Let \mathbf{X}^{A} and \mathbf{X}^{B} label two particles in the reference configuration. If the motion is expressed by the previous relations, then

$$
x_{i}^{A}-x_{i}^{B}=Q_{i j}(t)\left(X_{i}^{A}-X_{j}^{B}\right)
$$

in addition, the properties of \mathbf{Q} give

$$
\begin{aligned}
\left(x_{i}^{A}-x_{i}^{B}\right)\left(x_{i}^{A}-x_{i}^{B}\right) & =Q_{i j}(t) Q_{i k}\left(X_{j}^{A}-X_{j}^{B}\right)\left(X_{k}^{A}-X_{k}^{B}\right) \\
& =\left(X_{j}^{A}-X_{j}^{B}\right)\left(X_{j}^{A}-X_{j}^{B}\right)
\end{aligned}
$$

so that it is proved that the distance between the two points does not change and the motion is rigid.

On the other hand, as shown in Sect. 3.2, in a rigid body

$$
C_{L M}=F_{i L} F_{i M}=\delta_{L M}
$$

and \mathbf{F} is an orthogonal tensor. By differentiating with respect to X_{P} it can be shown that \mathbf{F} is independent of \mathbf{X}, so that by integrating the equation

$$
\frac{\partial x_{i}}{\partial X_{L}}=F_{i L}(t)
$$

we obtain the equation of a rigid motion.
3. Prove that the kinetic field

$$
\left\{\begin{array}{l}
v_{1}=-5 x_{2}+2 x_{3} \\
v_{2}=5 x_{1}-3 x_{3} \\
v_{3}=-2 x_{1}+3 x_{2}
\end{array}\right.
$$

corresponds to a rigid motion.
In fact, the spatial gradient of velocity is given by

$$
\left(\frac{\partial v_{i}}{\partial x_{j}}\right)=\left(\begin{array}{ccc}
0 & -5 & 2 \\
5 & 0 & -3 \\
-2 & 3 & 0
\end{array}\right)
$$

and it is skew-symmetric. Consequently, the rate of deformation

$$
D_{i j}=\frac{1}{2}\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right)
$$

vanishes and the motion is rigid, according to (4.20).
4. Prove the following formulae:

$$
\begin{aligned}
\nabla \times(F \mathbf{u}) & =F \nabla \times \mathbf{u}-\mathbf{u} \times \nabla F \\
\nabla \cdot(\mathbf{u} \times \mathbf{v}) & =\mathbf{v} \cdot \nabla \times \mathbf{u}-\mathbf{u} \cdot \nabla \times \mathbf{v} \\
\nabla \times(\mathbf{u} \times \mathbf{v}) & =\mathbf{u}(\nabla \cdot \mathbf{v})-\mathbf{v}(\nabla \cdot \mathbf{u})+(\mathbf{v} \cdot \nabla) \mathbf{u}-(\mathbf{u} \cdot \nabla) \mathbf{v}
\end{aligned}
$$

Hint: About the first formula we have that

$$
\epsilon_{i j h}\left(F u_{h}\right),_{j}=\epsilon_{i j h} F,_{j} u_{h}+\epsilon_{i j h} F v_{h},_{j}=F \epsilon_{i j h} v_{h},{ }_{j}-\epsilon_{i h j} u_{h} F,_{j} .
$$

5. Prove that a rigid motion is isochoric.

Hint: A motion is rigid if and only if the rate of deformation $D_{i j}=0$. This condition implies that $\nabla \cdot \mathbf{v}=D_{i i}=0$ and the motion is isochoric.
6. Find a class of isochoric but nonrigid motions.

Hint: If the motion is isochoric, then $\nabla \cdot \mathbf{v}=0$ but this condition is equivalent to state that $\mathbf{v}=\nabla \times \mathbf{A}$, where \mathbf{A} is an arbitrary regular vector field. This velocity field is not rigid if and only if the rate of deformation does not vanish, i.e., when

$$
\left(\epsilon_{i j h} A_{h},{ }_{j}\right)_{,_{k}}+\left(\epsilon_{k j h} A_{h},_{j}\right)_{, i}=\epsilon_{i j h} A_{h},{ }_{j k}+\epsilon_{k j h} A_{h}, j_{i} \neq 0
$$

7. Compute the angular velocity in an isochoric motion.
8. Prove that the velocity of propagation (4.35) of a curve on a surface is independent of their parametric representations.

4.8 The Program Velocity

Aim of the Program, Input and Output

Given a transformation from orthogonal curvilinear coordinates var to Cartesian coordinates and given the components of a velocity field in both the associated unit basis as well as in the holonomic basis of the coordinates var, the program Velocity computes the acceleration, the velocity gradient, and divergence, as well as the angular velocity.

Theoretical bases are provided in Sects. 4.1 and 4.2. Velocity components must be given relative to the unit basis associated with the holonomic one of the curvilinear coordinates var.

The command line of the program Velocity is
Velocity[vel, var, transform, characteristic, simplifyoption],
where the input data have the following meaning:
vel $=$ velocity components;
var $=$ orthogonal curvilinear or Cartesian coordinates;
transform $=$ r.h.s. terms of the transformation from curvilinear var to Cartesian coordinates or r.h.s. terms of the transformation "identity";
characteristic $=$ option, corresponding to possible choices symbolic or numeric (as previously defined for the program Operator).
simplifyoption $=$ true or false. In the first case, the program computes many simplifications of symbolic expressions (as previously defined for the program Deformation).

From the previous data the corresponding output follows:
spatial gradient of velocity;
acceleration;
velocity divergence;
angular velocity.

Worked Examples

1. Let $\mathbf{v}=v_{r} \mathbf{e}_{r}+v_{\varphi} \mathbf{e}_{\varphi}+v_{z} \mathbf{e}_{z}$ be a velocity field in cylindrical coordinates. The required input data are the following:
```
vel = { v
var = {r,\varphi,z};
transform = {RCos[\varphi], RSin[\varphi],z};
characteristic = symbolic;
simplifyoption = true;
Velocity[vel, var, transform, characteristic,
simplify-option]
```

The program provides the following output data: ${ }^{1}$
The components of any vector or tensor quantity are re-relative to the unit basis associated with the holonomic basis of the curvilinear coordinates $\{r, \varphi, z\}$.
Spatial gradient of velocity
$\nabla \mathrm{v}=\left(\begin{array}{ccc}\partial_{r}\left[\mathrm{v}_{r}\right] & \partial_{\mathrm{r}}\left[\mathrm{v}_{\varphi}\right] & \partial_{\mathrm{r}}\left[\mathrm{v}_{z}\right] \\ \frac{-\mathrm{v}_{\varphi}+\partial_{\varphi}\left[\mathrm{v}_{r}\right]}{\mathrm{r}} & \frac{\mathrm{v}_{\mathrm{r}}+\partial_{\varphi}\left[\mathrm{v}_{\varphi}\right]}{\mathrm{r}} & \frac{\partial_{\varphi}\left[\mathrm{v}_{\mathrm{z}}\right]}{\mathrm{r}} \\ \partial_{\mathrm{z}}\left[\mathrm{v}_{\mathrm{r}}\right] & \partial_{\mathrm{z}}\left[\mathrm{v}_{\varphi}\right] & \partial_{\mathrm{z}}\left[\mathrm{v}_{\mathrm{z}}\right]\end{array}\right)$
Acceleration
$a=\left(\begin{array}{c}v_{r} \partial_{r}\left[v_{r}\right]+v_{z} \partial_{r}\left[v_{z}\right]+v_{\varphi} \partial_{r}\left[v_{\varphi}\right]+\partial_{\mathrm{t}}\left[\mathrm{v}_{\mathrm{r}}\right] \\ \partial_{\mathrm{t}}\left[\mathrm{v}_{\varphi}\right]+\frac{\mathrm{v}_{\mathrm{r}} \partial_{\varphi}\left[\mathrm{v}_{\mathrm{r}}\right]+\mathrm{v}_{\mathrm{z}} \partial_{\varphi}\left[\mathrm{v}_{\mathrm{z}}\right]+\mathrm{v}_{\varphi} \partial_{\varphi}\left[\mathrm{v}_{\varphi}\right]}{\left.\mathrm{r}_{\mathrm{t}}\right]} \\ \partial_{\mathrm{t}}\left[\mathrm{v}_{\mathrm{z}}\right]+\mathrm{v}_{\mathrm{r}} \partial_{\mathrm{z}}\left[\mathrm{v}_{\mathrm{r}}\right]+\mathrm{v}_{\mathrm{z}} \partial_{\mathrm{z}}\left[\mathrm{v}_{\mathrm{z}}\right]+\mathrm{v}_{\varphi} \partial_{\mathrm{z}}\left[\mathrm{v}_{\varphi}\right]\end{array}\right)$
Divergence of velocity
$\nabla \cdot \mathrm{v}=\partial_{\mathrm{r}}\left[\mathrm{v}_{\mathrm{r}}\right]+\partial_{\mathrm{z}}\left[\mathrm{v}_{\mathrm{z}}\right]+\frac{\mathrm{v}_{\mathrm{r}}+\partial_{\cdot}\left[\mathrm{v}^{\prime}\right]}{\mathrm{r}}$
Angular velocity
$\omega=\left(\begin{array}{c}\frac{1}{2}\left(-\partial_{z}\left[\mathrm{v}_{\varphi}\right]+\frac{\partial_{\varphi}\left[\mathrm{v}_{\mathrm{z}}\right]}{\mathrm{r}}\right) \\ \frac{1}{2}\left(-\partial_{r}\left[\mathrm{v}_{\mathrm{z}}\right]+\partial_{\mathrm{z}}\left[\mathrm{v}_{r}\right]\right) \\ \frac{1}{2}\left(\frac{\mathrm{v}_{\varphi}}{\mathrm{r}}+\partial_{r}\left[\mathrm{v}_{\varphi}\right]-\frac{\partial_{\varphi}\left[\mathrm{v}_{r}\right]}{\mathrm{r}}\right)\end{array}\right)$
2. Compute the dynamic characteristics of the velocity field

$$
\mathbf{v}=\frac{x}{1+t} \mathbf{i}+\frac{2 y}{1+t} \mathbf{j}+\frac{3 z}{1+t} \mathbf{k}
$$

[^13]
Input data:

$$
\begin{aligned}
& \text { vel }=\left\{\frac{x}{1+t}, \frac{2 y}{1+t}, \frac{3 z}{1+t}\right\} \\
& \text { var }=\{x, y, z\} ; \\
& \text { transform }=\{x, y, z\} ; \\
& \text { characteristic }=\text { numeric; } \\
& \text { simplifyoption }=\text { false; } \\
& \text { Velocity[vel, var, transform, characteristic, } \\
& \text { simplify-option] }
\end{aligned}
$$

Output:
Spatial gradient of velocity
$\nabla_{\mathrm{V}}=\left(\begin{array}{ccc}\frac{1}{1+\mathrm{t}} & 0 & 0 \\ 0 & \frac{2}{1+t} & 0 \\ 0 & 0 & \frac{3}{1+\mathrm{t}}\end{array}\right)$
Acceleration
$a=\left(\begin{array}{c}0 \\ \frac{2 y}{(1+t)^{2}} \\ \frac{6 z}{(1+t)^{2}}\end{array}\right)$
Divergence of velocity
$\nabla \cdot v=\frac{6}{1+t}$
Angular velocity
$\omega=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$

Exercises

Apply the program Velocity to the following fields:

1. $\mathbf{v}=(-5 y+2 z) \mathbf{i}+(5 x-3 z) \mathbf{j}+(-2 x+3 y) \mathbf{k}$
2. $\mathbf{v}=x^{2} t \mathbf{i}+y t^{2} \mathbf{j}+x z t \mathbf{k}$
3. $\mathbf{v}=\left(x^{3}-x y^{2}\right) \mathbf{i}+\left(x^{2} y+y\right) \mathbf{j}$
4. $\mathbf{v}=B x z t \mathbf{i}+B y^{2} t^{2} \mathbf{j}+B z y \mathbf{k}$
5. Use the program Operator to obtain the differential operators for the velocity field in Exercise 3.

Chapter 5
 Balance Equations

This chapter contains the general integral or local balance law in Eulerian and Lagrangian form. Then, this general law is used to derive the mass conservation, the Cauchy stress-tensor, Piola-Kirchhoff tensor, the momentum equation, the angular momentum with the symmetry of Cauchy's stress-tensor, the balance of energy, and the Clausius-Duhem entropy inequality. All the above laws are written in the presence of a moving singular surface across which the fields exhibit discontinuities. The balance laws considered in this chapter are fundamentals for all the developments of continuum mechanics, also in the presence of electromagnetic fields.

5.1 General Formulation of a Balance Equation

The fundamental laws of continuum mechanics are integral relations expressing conservation or balance of physical quantities: mass conservation, momentum balance, angular momentum balance, energy balance, and so on. These balance laws can refer to a material volume, intended as a collection of the same particles, or to a fixed volume.

In rather general terms, a balance law has the following structure:

$$
\begin{equation*}
\frac{d}{d t} \int_{c(t)} \mathbf{f}(\mathbf{x}, t) d c=-\int_{\partial c(t)} \boldsymbol{\Phi} \cdot \boldsymbol{N} d \sigma+\int_{c(t)} \mathbf{r} d c \tag{5.1}
\end{equation*}
$$

where $c(t)$ is an arbitrary material volume of the configuration $C(t)$ of the system.
The physical meaning of (5.1) is the following: the change that the quantity \mathbf{f} exhibits is partially due to the flux $\boldsymbol{\Phi}$ across the boundary of $c(t)$ and partially due to the source term \mathbf{r}.

If we refer to a fixed volume V, then in addition to the flux $\boldsymbol{\Phi}$ we need to consider the transport of \mathbf{f} throughout V with velocity \mathbf{v}, so that (5.1) assumes the form

$$
\begin{equation*}
\frac{d}{d t} \int_{V} \mathbf{f}(\mathbf{x}, t) d c=-\int_{\partial V}(\mathbf{f} \otimes \mathbf{v}+\boldsymbol{\Phi}) \cdot \boldsymbol{N} d \sigma+\int_{V} \mathbf{r} d c \tag{5.2}
\end{equation*}
$$

When the configuration $C(t)$ is subdivided in two regions by a moving singular surface $\Sigma(t)$, then the previous balance law in the integral form (5.1) or (5.2), the derivation rules (4.45) and (4.46), as well as the generalized Gauss theorem (2.46) allow us to derive the following local form of the balance equation and jump condition

$$
\begin{align*}
& \frac{\partial \mathbf{f}}{\partial t}+\nabla \cdot(\mathbf{f} \otimes \mathbf{v}+\boldsymbol{\Phi})-\mathbf{r}=\mathbf{0} \text { in } C(t)-\Sigma(t) \\
& {\left[\left[\mathbf{f}\left(v_{n}-c_{n}\right)+\boldsymbol{\Phi} \cdot \boldsymbol{n}\right]\right]=0 } \tag{5.3}\\
& \text { on } \Sigma(t)
\end{align*}
$$

In many circumstances, on the basis of reasonable physical assumptions, we are led to the following integral balance equation:

$$
\begin{equation*}
\frac{d}{d t} \int_{c(t)} \mathbf{f}(\mathbf{x}, t) d c=-\int_{\partial c(t)} \mathbf{s} d \sigma+\int_{c(t)} \mathbf{r} d c \tag{5.4}
\end{equation*}
$$

where there is no reason to conclude that $\mathbf{s}=\boldsymbol{\Phi} \cdot \boldsymbol{N}$.
In this case, Gauss's theorem cannot be applied to the surface integral on the right-hand side; consequently, (5.3) cannot be derived. Anyway, if \mathbf{s} is supposed to depend on (\mathbf{x}, t) as well as on the unit vector \mathbf{N} normal to $\partial c(t)$ (Cauchy's hypothesis), then Cauchy's theorem can be proved ${ }^{1}$:

Theorem 5.1. If in the integral momentum balance law the tensor of order r has the structure $\mathbf{s}=\mathbf{s}(\mathbf{x}, t, \mathbf{N})$, then there is a tensor $\mathbf{\Phi}(\boldsymbol{x}, t)$ of order $(r+1)$ such that

$$
\begin{equation*}
\mathbf{s}=\boldsymbol{\Phi} \cdot \mathbf{N} \tag{5.5}
\end{equation*}
$$

Proof. For sake of simplicity but without loss of generality, \mathbf{s} is supposed to be a vector. If a material volume $c(t) \subset C(t)$ is considered such that $c(t) \cap \Sigma(t)=\emptyset$, then from (5.3) and (4.46) it follows that

$$
\begin{equation*}
\int_{c(t)}\left(\frac{\partial \mathbf{f}}{\partial t}+\nabla \cdot(\mathbf{f} \otimes \mathbf{v})-\mathbf{r}\right) d c \equiv \int_{c(t)} \boldsymbol{\varphi} d c=-\int_{\partial c(t)} \mathbf{s} d \sigma \tag{5.6}
\end{equation*}
$$

[^14]If A is the area of the surface ∂c and the functions under the integral are regular, then (5.6) gives

$$
\frac{1}{A} \int_{c} \varphi_{i} d c=\frac{1}{A} \int_{\partial c} s_{i}(\mathbf{N}) d \sigma
$$

By applying the mean-value theorem to the volume integral, ${ }^{2}$ we have

$$
\frac{1}{A} \operatorname{vol}(c) \varphi_{i}\left(\xi_{i}, t\right)=\frac{1}{A} \int_{\partial c} s_{i}(\mathbf{N}) d \sigma .
$$

where $\xi_{i}, i=1,2,3$, are the coordinates of a suitable point internal to c. In the limit $A \rightarrow 0$ (or, which is the same for c merging into its internal point \mathbf{x}), the following result is obtained:

$$
\begin{equation*}
\lim _{A \rightarrow 0} \frac{1}{A} \int_{\partial c} s_{i}(\mathbf{N}) d \sigma=0 \tag{5.7}
\end{equation*}
$$

Now, if φ and \mathbf{s} are regular functions, it must hold that

$$
\begin{equation*}
\mathbf{s}(\mathbf{N})=-\mathbf{s}(-\mathbf{N}) \tag{5.8}
\end{equation*}
$$

as we can prove by applying (5.7) to a small cylinder c_{ϵ} having height ϵ^{2}, bases with radius ϵ and by considering the surface σ through the internal point \mathbf{x} (see Fig. 5.1).

Let ξ_{1}, ξ_{2}, and ξ_{3} be three points located on the surface of the cylinder, on the base whose normal is \mathbf{N}, and on the other base of normal $-\mathbf{N}$, respectively; moreover, let \mathbf{N}_{1} the unit normal to the lateral surface of c_{ϵ}.

By applying the mean-value theorem, it follows that

$$
\int_{\partial c_{\epsilon}} s_{i}(\mathbf{x}, \mathbf{N}) d \sigma=2 \pi \epsilon^{3} s_{i}\left(\xi_{1}, \mathbf{N}_{1}\right)+\pi \epsilon^{2} s_{i}\left(\xi_{2}, \mathbf{N}\right)+\pi \epsilon^{2} s_{i}\left(\xi_{3},-\mathbf{N}\right)
$$

where the argument t has been omitted for sake of simplicity.

Fig. 5.1 Small cylinder to evaluate $\mathbf{s}(-\mathbf{N})$

[^15]

Fig. 5.2 Cauchy's tetrahedron

Since the term $2 \pi \epsilon^{3}+2 \pi \epsilon^{2}$ represents the area A of the cylinder c_{ϵ}, the previous relation gives (5.7) when $A \rightarrow 0$.

Now to prove (5.4), we use Cauchy's tetrahedron argument. At a point $\mathbf{x} \in C$ draw a set of rectangular coordinate axes, and for each direction \mathbf{N} choose a tetrahedron such that it is bounded by the three coordinate planes through \mathbf{x} and by a fourth plane, at a distance ϵ from \mathbf{x}, whose unit outward normal vector is \mathbf{N} (see Fig. 5.2).

Let σ_{0} be the area of the surface whose normal is \mathbf{N} and let $\sigma_{i}(i=1,2,3)$ be the area of each of the three right triangles whose inward normal is given by the basis unit vector \mathbf{e}_{i}. Since $\sigma_{i}=\sigma_{0}\left|N_{i}\right|$ and the volume c of Δ is equal to $\sigma_{0} \epsilon / 3$, if in (5.7) c denotes Δ, it follows that

$$
\lim _{\epsilon \rightarrow 0} \frac{1}{\sigma_{0}\left(1+\sum_{i=1}^{3}\left|N_{i}\right|\right)}\left[s_{i}\left(\xi_{1}, \mathbf{N}\right) \sigma_{0}+\sum_{i=1}^{3} s_{i}\left(\eta_{j},-\mathbf{e}_{j}\right)\left|N_{j}\right| \sigma_{0}\right]=0
$$

and in addition, if $N_{j}>0(j=1,2,3)$, then from (5.8) it must be that

$$
\begin{equation*}
\mathbf{s}(\mathbf{x}, \mathbf{N})=\sum_{j=1}^{3} \mathbf{s}\left(\mathbf{x}, \mathbf{e}_{j}\right) N_{j}, \tag{5.9}
\end{equation*}
$$

which is valid even if some $N_{j}=0$, because of the continuity assumption on $\mathbf{s}(\mathbf{x}, \mathbf{N})$.

Conversely, if N_{1} is negative, then $\sigma_{1}=-\sigma_{0} N_{1}$ and in (5.9) the term $-\mathbf{s}\left(\mathbf{x}, \mathbf{e}_{1}\right) N_{1}$ will replace $\mathbf{s}\left(\mathbf{x}, \mathbf{e}_{1}\right) N_{1}$; assuming the reference $\left(-\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$ in place of $\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$ still gives (5.9).

If

$$
\begin{equation*}
\Phi_{i j}=\mathbf{e}_{i} \cdot \mathbf{s}\left(\mathbf{x}, \mathbf{e}_{j}\right) \tag{5.10}
\end{equation*}
$$

then (5.9) can be written as

$$
\begin{equation*}
s_{i}=\mathbf{s} \cdot \mathbf{e}_{i}=\Phi_{i j} N_{j} \tag{5.11}
\end{equation*}
$$

Since \mathbf{N} and \mathbf{s} are vectors and \mathbf{N} is arbitrary, (5.11) requires $\Phi_{i j}$ to be the components of a second-order tensor so that (5.5) is proved.

In the presence of electromagnetic fields additional balance laws are needed. They have the following structure:

$$
\begin{equation*}
\frac{d}{d t} \int_{S(t)} \mathbf{u} \cdot \mathbf{N} d \sigma=\int_{\partial S(t)} \mathbf{a} \cdot \boldsymbol{\tau} d s+\int_{S(t)} \mathbf{g} \cdot \mathbf{N} d \sigma+\int_{\Gamma(t)} \mathbf{k} \cdot \boldsymbol{v} d s \tag{5.12}
\end{equation*}
$$

where $\mathbf{u}, \mathbf{a}, \mathbf{g}$, and \mathbf{k} are vector fields, $S(t)$ is any arbitrary material surface, and $\Gamma(t)$ is the intersection curve of $S(t)$ with the singular moving surface $\Sigma(t)$.

To obtain the local form in the region C as well as the jump conditions on $\Sigma(t)$, the rule (4.48) and the Stokes theorem (2.48) have to be applied to the first integral on the right-hand side, so that

$$
\begin{array}{lc}
\frac{\partial \mathbf{u}}{\partial t}+\mathbf{v} \nabla \cdot \mathbf{u}=\nabla \times(\mathbf{a}+\mathbf{v} \times \mathbf{u})+\mathbf{g} & \text { in } C(t), \\
(\mathbf{n} \times[[\mathbf{u} \times(\mathbf{w}-\mathbf{v})+\mathbf{a}]]+\mathbf{k}) \cdot \boldsymbol{v}_{\Sigma}=0 & \text { on } \Sigma(t) . \tag{5.13}
\end{array}
$$

Moreover, $\mathbf{w} \cdot \mathbf{N}=v_{N}, \mathbf{w} \cdot \mathbf{n}=c_{n}$, since $\Gamma(t)$ belongs to both the material surface $S(t)$ and the singular surface $\Sigma(t)$; therefore, (5.13) $)_{2}$ can be written

$$
\begin{equation*}
\left(\left[\left[\left(c_{n}-v_{n}\right) \mathbf{u}-u_{n}(\mathbf{w}-\mathbf{v})+\mathbf{n} \times \mathbf{a}\right]\right]+\mathbf{k}\right) \cdot v_{\Sigma}=0 \tag{5.14}
\end{equation*}
$$

In the basis $(\boldsymbol{\tau}, \mathbf{n}, \mathbf{N})$ it holds that

$$
\mathbf{w}-\mathbf{v}=\left[w_{\tau}-\boldsymbol{v} \cdot \boldsymbol{\tau}\right] \boldsymbol{\tau}+\frac{c_{n}-v_{n}}{\sin ^{2} \alpha} \mathbf{n}-\frac{\left(c_{n}-v_{n}\right) \cos \alpha}{\sin ^{2} \alpha} \mathbf{N}
$$

where $\cos \alpha=\mathbf{n} \cdot \mathbf{N}$, so that $(5.13)_{2}$ assumes the form

$$
\begin{equation*}
\left(\left[\left[\left(c_{n}-v_{n}\right) \mathbf{u}+\mathbf{n} \times \mathbf{a}\right]\right]+\mathbf{k}\right) \cdot \boldsymbol{v}_{\Sigma}+\left[\left[\mathbf{n} \cdot \mathbf{u}\left(c_{n}-v_{n}\right)\right]\right] \cot \alpha=0 \tag{5.15}
\end{equation*}
$$

Since the material surface $S(t)$ is arbitrary, the relation (5.15) must hold for any value of α. If, as an example, we first suppose that $\alpha=\pi / 2$ and that it has an arbitrary value, we derive the following:

$$
\begin{align*}
& {\left[\left[\left(c_{n}-v_{n}\right) \mathbf{u}+\mathbf{n} \times \mathbf{a}\right]\right]+\mathbf{k}=\mathbf{0},} \\
& {\left[\left[u_{n}\left(c_{n}-v_{n}\right)\right]\right]=\left[\left[u_{n}\right]\right] c_{n}-\left[\left[u_{n} v_{n}\right]\right]=0} \tag{5.16}
\end{align*}
$$

In literature, the following relation is usually proposed:

$$
\begin{equation*}
\mathbf{n} \times\left[\left[\mathbf{u} \times\left(c_{n}-v_{n}\right) \mathbf{n}+\mathbf{a}\right]\right]+\mathbf{k}=\mathbf{0} \quad \text { on } \Sigma(t) \tag{5.17}
\end{equation*}
$$

We note that it is equivalent to $(5.16)_{1}$ if and only if $(5.16)_{2}$ is satisfied.
Some consequences of $(5.16)_{2}$ are the following:

1. if $\left[\left[u_{n}\right]\right]=0$, then $\left[\left[v_{n}\right]\right]=0$;
2. if the surface $\Sigma(t)$ is material, then $(5.16)_{2}$ is identically satisfied and $(5.16)_{1}$ reduces to

$$
\begin{equation*}
\mathbf{n} \times[[\mathbf{a}]]+\mathbf{k}=\mathbf{0} \tag{5.18}
\end{equation*}
$$

Remark 5.1. The balance equations presented here are sufficiently general to allow the formulation of all the physical principles considered in this volume. However, they do not work for describing phenomena such as phase transitions (see [34]) or shock waves, with transport of momentum and energy on the wavefront. For these phenomena the reader is referred to Volume II.

5.2 Mass Conservation

In order to derive the mass conservation law for a continuous system S, we introduce the basic assumption that its mass is continuously distributed over the region $C(t)$ occupied by S at the instant t. In mathematical terms, there exists a function $\rho(\mathbf{x}, t)$ called the mass density, which is supposed to be of class C^{1} on $C(t)$, except for the points of a singular surface $\Sigma(t)$ of order 0 (see Sect. 5.2) with respect to $\rho(\mathbf{x}, t)$ and the other fields associated with S.

According to this assumption, if $c(t) \subset C(t)$ is a material volume, i.e., the image under $\mathbf{x}(\mathbf{X}, t)$ of a given region $c_{*} \subset C_{*}$, then the mass of $c(t)$ at the instant t is given by

$$
\begin{equation*}
m\left(c_{*}\right)=\int_{c(t)} \rho(\mathbf{x}, t) d c \tag{5.19}
\end{equation*}
$$

The mass conservation principle postulates that during the motion the mass of any material region does not change in time:

$$
\begin{equation*}
\frac{d}{d t} \int_{c(t)} \rho(\mathbf{x}, t) d c=0 \tag{5.20}
\end{equation*}
$$

With reference to the general balance law (5.1), the mass conservation principle for an arbitrary fixed volume v assumes the form

$$
\begin{equation*}
\frac{d}{d t} \int_{v} \rho(\mathbf{x}, t) d c=-\int_{\partial v} \rho(\mathbf{x}, t) \mathbf{v} \cdot \mathbf{N} d c \tag{5.21}
\end{equation*}
$$

If the material or fixed volume is subdivided in two regions by a singular surface $\Sigma(t)$ of 0 order with respect to the fields of interest, then the general formulas (5.3) allow us to obtain the local formulation of the mass balance principle and the jump condition

$$
\begin{array}{rlrl}
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v}) & =\dot{\rho}+\rho \nabla \cdot \mathbf{v}=0 & \text { on } C(t)-\Sigma(t) \\
{\left[\left[\rho\left(v_{n}-c_{n}\right)\right]\right]} & =0 & & \text { on } \Sigma(t) \tag{5.22}
\end{array}
$$

5.3 Momentum Balance Equation

Let S be a continuous system and let $\rho(\mathbf{x}, t)$ be its mass density in the current configuration. In the following discussion any dependence on time t will be omitted for the sake of simplicity.

A fundamental axiom of continuum mechanics is the momentum balance principle:
For any arbitrary material volume c of \mathcal{S} it holds that

$$
\begin{equation*}
\dot{\mathbf{Q}}(c)=\mathbf{F}\left(c, c^{e}\right), \tag{5.23}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{Q}(c)=\int_{c} \rho \mathbf{v} d c \tag{5.24}
\end{equation*}
$$

is the momentum of c and $\mathbf{F}\left(c, c^{e}\right)$ is the resultant of all the forces acting on c from its exterior c^{e}.

In a first simplified approach to continuum mechanics, the external actions on c are divided into mass forces, continuously distributed over c, and contact forces, acting on the boundary ∂c of c; therefore,

$$
\begin{equation*}
\mathbf{F}\left(c, c^{e}\right)=\int_{c} \rho \mathbf{b} d c+\int_{\partial c} \mathbf{t} d \sigma \tag{5.25}
\end{equation*}
$$

where \mathbf{b} is the specific force, defined on c, and \mathbf{t} is the traction or the stress, defined on ∂c.

With such an assumption, the first integral in (5.25) represents all (gravitational, electromagnetic, etc.) forces acting on the volume c from the exterior of S and the vector \mathbf{b} is an a priori assigned field depending on \mathbf{x} and t. On the other hand, \mathbf{t} is a field of contact forces acting on ∂c which come from the molecular attraction between particles of c^{e} and c at the boundary ∂c.

The contact forces, which are strictly influenced by the deformation of S, are unknown, as are reactions in rigid body mechanics. The main difference between reactions and contact forces is the fact that for the latter, we can provide constitutive laws that specify their link with the motion of the system.

At this stage, some remarks are necessary to show how restrictive the previous hypotheses are. First, the mass forces acting over c could originate from other portions of S, external to c. This is just the case for mutual gravitational or electromagnetic attractions among parts of S. In fact, mass forces are unknown a priori, and the need arises to add to the motion equations the other equations governing the behavior of those fields which generate such forces.

As an example, if \mathbf{b} is the gravitational field produced by the system itself, it is necessary to introduce Poisson's equation for this field (see Volume II for other examples).

Furthermore, the assumption made about contact forces means that molecular actions can be uniquely represented by the vector $\mathbf{t} d \sigma$. According to this assumption the approximation of a simple continuum is usually introduced. But when the need arises to capture essential features linked to the microstructure of the body, contact actions are better represented by a vector $\mathbf{t} d \sigma$ as well as a torque $\mathbf{m} d \sigma$. In this case, the approximation of a polar continuum (E. and F. Cosserat, 1907) is used, and the related model is particularly useful in describing liquid crystals, due to the fact that molecules or molecule groups behave as points of a polar continuum.

Anyway, in the following discussion and within the scope of this first volume, the classical assumption of $\mathbf{m}=\mathbf{0}$ will be retained, so that S will be modeled as a simple continuum. Since molecular actions have a reduced interaction distance, the force acting on the surface $d \sigma$ depends on the particles of S adjacent to $d \sigma$ and not on particles far away. This remark justifies the Euler-Cauchy postulate that the vector \mathbf{t}, acting on the unit area at \mathbf{x}, depends on the choice of the surface only through its orientation, i.e.,

$$
\begin{equation*}
\mathbf{t}=\mathbf{t}(\mathbf{N}) \tag{5.26}
\end{equation*}
$$

where \mathbf{N} is the outward unit vector normal to $d \sigma .^{3}$
This assumption is equivalent to saying that the traction \mathbf{t} depends on the boundary ∂c only to first order; i.e., \mathbf{t} depends on the orientation of the tangent plane at $\mathbf{x} \in \partial c$ and not on the curvature of ∂c.

[^16]It is customary to introduce the decomposition

$$
\mathbf{t}=t_{n} \mathbf{N}+\mathbf{t}_{\sigma},
$$

where the component $t_{n}=\mathbf{t} \cdot \mathbf{N}$ is called the normal stress and the component \mathbf{t}_{σ} is called the shear stress.

By applying (5.23) to a material volume c and using definitions of momentum and external forces, we obtain

$$
\begin{equation*}
\frac{d}{d t} \int_{c} \rho \mathbf{v} d c=\int_{\partial c} \mathbf{t}(\mathbf{N}) d \sigma+\int_{c} \rho \mathbf{b} d c \tag{5.27}
\end{equation*}
$$

Then, applying Theorem 5.1 to (5.27), we have:
Theorem 5.2. If \mathbf{t}, \mathbf{b} and the acceleration \mathbf{a} are regular functions, then the actionreaction principle also holds for stresses, i.e.,

$$
\begin{equation*}
\mathbf{t}(\mathbf{N})=-\mathbf{t}(-\mathbf{N}) \tag{5.28}
\end{equation*}
$$

There exists a second-order tensor T, called Cauchy's stress tensor, such that \mathbf{t} is a linear function of \mathbf{N}, so that

$$
\begin{equation*}
\mathbf{t}(\mathbf{N})=\mathbf{T} \cdot \mathbf{N} \tag{5.29}
\end{equation*}
$$

The tensor \mathbf{T} depends on (\mathbf{x}, t), but is independent of \mathbf{N}.
In the next section, it will be proved that \mathbf{T} is a symmetric tensor; therefore, its eigenvalues are real and there is at least one orthonormal basis of eigenvectors. Eigenvalues are known as principal stresses and eigenvectors of \mathbf{T} give principal directions of stress characterized by the following property: the traction \mathbf{t}, acting on the area $d \sigma$ normal to the principal direction \mathbf{u}, is normal to $d \sigma$, or, equivalently, on this area there are no shear stress components (see Exercise 2).

When (5.29) is substituted into (5.27), the balance equation with the general structure (5.1) is recovered, where

$$
\mathbf{f}=\rho \mathbf{v}, \quad \boldsymbol{\Phi}=-\mathbf{T}, \quad \mathbf{r}=\rho \mathbf{b} .
$$

Taking into account (5.3) as well as the local form of the mass conservation (5.22), the local expression of the momentum balance and the jump condition can be easily derived:

$$
\begin{gather*}
\rho \dot{\mathbf{v}}=\nabla \cdot \mathbf{T}+\rho \mathbf{b}, \tag{5.30}\\
{\left[\left[\rho \mathbf{v}\left(c_{n}-v_{n}\right)+\mathbf{T n}\right]\right]=\mathbf{0} .} \tag{5.31}
\end{gather*}
$$

In the case of a material surface, the jump condition (5.31) reduces to Poisson's condition

$$
[[\mathbf{T}]] \mathbf{n}=0
$$

on which are based the stress boundary conditions.
We observe, in fact, that one of the most interesting material surfaces is the boundary of a body, so that the mechanical interaction of two sub-bodies is uniquely determined by tractions on this surface, of equal magnitude and opposite sign.

5.4 Balance of Angular Momentum

Within the framework of nonpolar continua, in addition to (5.27), the balance of the angular momentum is supposed to hold:
For any material volume of c we have:

$$
\begin{equation*}
\dot{\mathbf{K}}_{x_{0}}=\mathbf{M}_{x_{0}}\left(c, c^{e}\right), \tag{5.32}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{K}_{x_{0}}=\int_{c} \rho\left(\mathbf{x}-\mathbf{x}_{0}\right) \times \mathbf{v} d c \tag{5.33}
\end{equation*}
$$

is the angular momentum of c with respect to \mathbf{x}_{0} and $\mathbf{M}_{x_{0}}\left(c, c^{e}\right)$ is the moment with respect to \mathbf{x}_{0} of all forces acting on c from its exterior c^{e}.

The assumption that S is a simple continuum implies that

$$
\begin{equation*}
\mathbf{M}_{x_{0}}\left(c, c^{e}\right)=\int_{\partial c}\left(\mathbf{x}-\mathbf{x}_{0}\right) \times \mathbf{T N} d \sigma+\int_{c} \rho\left(\mathbf{x}-\mathbf{x}_{0}\right) \times \mathbf{b} d c . \tag{5.34}
\end{equation*}
$$

Here again, by using the expressions (5.33) and (5.34), the relation (5.32) assumes the general structure (5.1), where

$$
\mathbf{f}=\rho\left(\mathbf{x}-\mathbf{x}_{0}\right) \times \mathbf{v}, \quad \boldsymbol{\Phi}=-\left(\mathbf{x}-\mathbf{x}_{0}\right) \times \mathbf{T}, \quad \mathbf{r}=\rho\left(\mathbf{x}-\mathbf{x}_{0}\right) \times \mathbf{b} .
$$

As a consequence, (5.32) is equivalent to the local conditions (5.3); in addition, by recalling (5.30) and (5.31) and by considering the continuity of ($\mathbf{x}-\mathbf{x}_{0}$) across Σ, we find the following local condition:

$$
\begin{equation*}
\epsilon_{i j h} T_{h j}=0, \tag{5.35}
\end{equation*}
$$

which shows the symmetry of the stress tensor ${ }^{4}$

$$
\begin{equation*}
\mathbf{T}=\mathbf{T}^{T} \tag{5.36}
\end{equation*}
$$

To summarize, mass conservation, momentum balance, and balance of angular momentum give the following 4 differential equations

$$
\begin{align*}
& \dot{\rho}+\rho \nabla \cdot \mathbf{v}=0, \\
& \rho \dot{\mathbf{v}}=\nabla \cdot \mathbf{T}+\rho \mathbf{b}, \tag{5.37}
\end{align*}
$$

for 10 unknown fields: $\rho(\mathbf{x}, t), \mathbf{v}(\mathbf{x}, t)$, and $\mathbf{T}(\mathbf{x}, t)$, where $\mathbf{T}=\mathbf{T}^{T}$.
Thus, we reach the conclusion that (5.37), with jump conditions $(5.22)_{2}$ and (5.31), do not form a closed set of field equations for the unknown fields; therefore we need to introduce constitutive laws connecting the tensor \mathbf{T} with the fields $\rho(\mathbf{x}, t)$ and $\mathbf{v}(\mathbf{x}, t)$. This conclusion could also be reached by observing that relations (5.37) are of general validity, in that they do not contain any information about the constitution of the continuous body. But it is also evident that different materials will suffer different stress states if subjected to the same action.

This aspect will be discussed in Chap. 7 in a rather general framework.

5.5 Energy Balance

Up to now, we have only considered purely mechanical aspects of the motion of the continuous system S. When dealing with relations between heat and work, we must introduce an additional field equation: the energy balance or the first law of thermodynamics:

1. To any arbitrary material volume c of S we can associate a scalar function $E(c)$, called the internal energy, such that if $T(c)$ is the kinetic energy of c, then the total energy content of c is given by $E(c)+T(c)$;
2. The total power exchanged by c with its exterior c^{e} is represented by the mechanical power $P\left(c, c^{e}\right)$, due to external forces acting on c, and the thermal power $Q\left(c, c^{e}\right)$;
3. The time change of energy of c is given by

$$
\begin{equation*}
\dot{E}(c)+\dot{T}(c)=P\left(c, c^{e}\right)+Q\left(c, c^{e}\right) . \tag{5.38}
\end{equation*}
$$

As a matter of definition, we remark that the term kinetic energy indicates the macroscopic kinetic energy associated with the macroscopically observable velocity

[^17]of the continuous system. Random thermal motion of molecules, associated with temperature, is part of the internal energy.

As a particular case, when $\dot{E}(c)=Q\left(c, c^{e}\right)=0,(5.38)$ reduces to the kinetic energy theorem

$$
\begin{equation*}
\dot{T}(c)=P\left(c, c^{e}\right) \tag{5.39}
\end{equation*}
$$

which states that the rate change of the kinetic energy is equal to the power of the forces acting on c.

In continuum mechanics, quantities appearing in (5.38) have to be expressed as integrals of scalar or vector fields defined on c. To this end, for nonpolar continua we suppose that

$$
\begin{equation*}
E(c)=\int_{c} \rho \varepsilon d c, \quad T(c)=\int_{c} \frac{1}{2} \rho v^{2} d c \tag{5.40}
\end{equation*}
$$

where ε is the specific internal energy.
Moreover, making reference to (5.27) and (5.29), the mechanical power can be written as

$$
\begin{equation*}
P\left(c, c^{e}\right)=\int_{c} \rho \mathbf{b} \cdot \mathbf{v} d c+\int_{\partial c} \mathbf{v} \cdot \mathbf{T N} d \sigma \tag{5.41}
\end{equation*}
$$

so that it assumes the meaning of the rate at which the body forces per unit mass and the traction per unit area are doing work.

Similarly, an additive decomposition is also assumed to hold for the thermal power $Q\left(c, c^{e}\right)$:

$$
\begin{equation*}
Q\left(c, c^{e}\right)=\int_{c} \rho r d c+\int_{\partial c} s d \sigma \tag{5.42}
\end{equation*}
$$

where r is a distributed specific heat source (supposed to be a given function of (\mathbf{x}, t)) and s represents the thermal power flux through the boundary ∂c.

According to the Euler-Cauchy postulate, we also have

$$
\begin{equation*}
s=s(\mathbf{x}, t, \mathbf{N}) \tag{5.43}
\end{equation*}
$$

so that, referring to theorem (5.5), we write

$$
\begin{equation*}
s(\mathbf{x}, t, \mathbf{n})=-\mathbf{h}(\mathbf{x}, t) \cdot \mathbf{N} \tag{5.44}
\end{equation*}
$$

where the vector \mathbf{h} is the heat flux vector and the negative sign accounts for the fact that $\int_{\partial c} \mathbf{h}(\mathbf{x}, t) \cdot \mathbf{N} d \sigma$ represents the outward heat flux.

By virtue of the above considerations, formally expressed by (5.39), (5.41), and (5.44), (5.38) can be written as

$$
\begin{equation*}
\frac{d}{d t} \int_{c} \rho\left(\varepsilon+\frac{1}{2} v^{2}\right) d c=\int_{\partial c}(\mathbf{v} \cdot \mathbf{T N}-\mathbf{h} \cdot \mathbf{N}) d \sigma+\int_{c} \rho(\mathbf{v} \cdot \mathbf{b}+r) d c \tag{5.45}
\end{equation*}
$$

and usual arguments lead to the following local equation and jump condition:

$$
\begin{align*}
& \rho \dot{\varepsilon}=\mathbf{T}: \nabla \mathbf{v}-\nabla \cdot \mathbf{h}+\rho r \quad \text { on } C(t), \\
& {\left[\left[\rho\left(\frac{1}{2} v^{2}+\epsilon\right)\left(c_{n}-v_{n}\right)+\mathbf{v} \cdot \mathbf{T n}-\mathbf{h} \cdot \mathbf{n}\right]\right]=0 \quad \text { on } \Sigma(t),} \tag{5.46}
\end{align*}
$$

where $C(t)$ is the region occupied by S at the instant t and $\Sigma(t)$ is a singular surface.
Furthermore, it can be proved that

$$
\begin{equation*}
\mathbf{T}: \nabla \mathbf{v}=\mathbf{T}: \mathbf{D}=T_{i j} D_{i j} \tag{5.47}
\end{equation*}
$$

by simply considering the decomposition of the velocity gradient tensor (4.14) and recalling that \mathbf{T} is a symmetric tensor and \mathbf{W} is skew-symmetric.

5.6 Entropy Inequality

A relevant concept of continuum mechanics is the temperature. As distances are measured by means of rulers, so the temperature of a body is measured by means of cylinders containing substances (mercury, alcohol, or others) whose expansion laws are well established. Such a device is called a thermometer and the measuring scale is rather arbitrary, as is the scale of a ruler. But independent of the device used to measure the temperature, there exists a lower bound, below which the body cannot be cooled further.

If this lower bound is assumed to be 0 , then the corresponding temperature scale θ is called the absolute temperature, where

$$
0 \leq \theta \leq \infty
$$

When $Q\left(c, c^{e}\right)>0$, the region c is receiving thermal power from c^{e}; the reverse is true when $Q\left(c, c^{e}\right)<0$, e.g., the region c is providing thermal power to c^{e}. It should be noted that the energy balance principle does not contain any restriction on the value of $Q\left(c, c^{e}\right)$. On the contrary, experience shows that work can be transformed into heat by friction and there is no negative limit to $Q\left(c, c^{e}\right)$. On the other hand, experience also shows that a body can spontaneously receive heat from its surroundings at constant ambient temperature θ until it reaches the same ambient temperature.

By using these arguments we conclude that there exists an upper bound of $Q\left(c, c^{e}\right)$, denoting the maximum heat power which can be absorbed by the region c during an isothermic transformation. This statement is formally expressed by the
entropy principle or the second law of thermodynamics for isothermal processes: For any material volume c whose evolution takes place at constant temperature, there exists an upper bound for the thermal power

$$
\begin{equation*}
Q\left(c, c^{e}\right) \leq B(c) \tag{5.48}
\end{equation*}
$$

If the entropy S of the material volume c is introduced through the definition

$$
\begin{equation*}
\theta \dot{S}(c)=B(c) \tag{5.49}
\end{equation*}
$$

then the previous inequality becomes

$$
\begin{equation*}
\theta \dot{S}(c) \geq Q\left(c, c^{e}\right) \tag{5.50}
\end{equation*}
$$

which is known as the Clausius-Planck inequality.
The extension of this principle to a continuous system S is not straightforward, as the temperature depends not only on time (as in the case for isothermic processes), but also on the point $\mathbf{x} \in C$.

At first glance, we might suppose that we could apply (5.50) to any element of the continuum system S. But a deeper insight would indicate that this assumption has serious shortcomings, as it cannot explain many phenomena occurring inside the system. For this reason, we state the following more general formulation of the entropy principle or the second law of thermodynamics:
Let S be a continuum system and let c be any arbitrary material volume of S. There exist two scalar functions $S(c)$ and $M\left(c, c^{e}\right)$, called entropy and entropy flux, respectively, such that

$$
\begin{equation*}
\dot{S}(c) \geq M\left(c, c^{e}\right) \tag{5.51}
\end{equation*}
$$

where

$$
\begin{equation*}
S(c)=\int_{c} \rho \eta d c \tag{5.52}
\end{equation*}
$$

and

$$
\begin{equation*}
M\left(c, c^{e}\right)=\int_{\partial c} i d \sigma+\int_{c} \rho k d c \tag{5.53}
\end{equation*}
$$

In (5.52) and (5.53) η is the specific entropy, i is the density of the conductive part of the entropy flux, and k is the density of the entropy flux emanating by radiation.

Assuming $i=i(\mathbf{x}, t, \mathbf{N})$, we can write $i=\mathbf{j}(\mathbf{x}, t) \cdot \mathbf{N}$ and the following local equations hold:

$$
\begin{align*}
& \rho \dot{\eta} \geq \nabla \cdot \mathbf{j}+\rho k, \\
& {\left[\left[\rho \eta\left(c_{n}-v_{n}\right)+\mathbf{j} \cdot \mathbf{n}\right]\right] \geq 0,} \tag{5.54}
\end{align*}
$$

under the usual assumption of regularity of the introduced functions.
It is important to investigate the structure of the fields \mathbf{j} and k. The ClausiusPlank inequality (5.50) applied to a material element $d c$ of S,

$$
\begin{equation*}
\theta \frac{d}{d t}(\rho \eta d c) \geq(-\nabla \cdot \mathbf{h}+\rho \mathbf{r}) d c \tag{5.55}
\end{equation*}
$$

leads to the inequality

$$
\begin{equation*}
\rho \dot{\eta} \geq \frac{-\nabla \cdot \mathbf{h}+\rho r}{\theta} \tag{5.56}
\end{equation*}
$$

If, in addition to (5.56), we introduce the Fourier inequality

$$
\begin{equation*}
\mathbf{h} \cdot \nabla \theta \leq 0 \tag{5.57}
\end{equation*}
$$

which states that heat flows from regions at higher temperature to regions at lower temperatures, then (5.56) and (5.57) imply the Clausius-Duhem inequality

$$
\begin{equation*}
\rho \dot{\eta} \geq-\nabla \cdot \frac{\mathbf{h}}{\theta}+\rho \frac{r}{\theta}, \tag{5.58}
\end{equation*}
$$

which can be regarded as a generalization of the previous relations.
By comparing (5.58) to (5.54), we find that \mathbf{j} and k assume the following expressions:

$$
\begin{equation*}
\mathbf{j}=-\frac{\mathbf{h}}{\theta}, \quad k=\frac{r}{\theta} \tag{5.59}
\end{equation*}
$$

and (5.54) becomes

$$
\begin{align*}
& \rho \dot{\eta} \geq-\nabla \cdot \frac{\mathbf{h}}{\theta}+\rho \frac{r}{\theta}, \\
& {\left[\left[\rho \eta\left(c_{n}-v_{n}\right)-\frac{\mathbf{h}}{\theta} \cdot \mathbf{n}\right]\right] \geq 0 .} \tag{5.60}
\end{align*}
$$

But, owing to (5.46) ${ }_{1}$, we can write $-\nabla \cdot \mathbf{h}+\rho r=\rho \dot{\epsilon}-\mathbf{T}: \nabla \mathbf{v}$ and substituting into $(5.60)_{1}$, we get the reduced dissipation inequality

$$
\begin{equation*}
-\rho(\dot{\psi}+\eta \dot{\theta})+\mathbf{T}: \nabla \mathbf{v}-\frac{\mathbf{h} \cdot \nabla \theta}{\theta} \geq 0 \tag{5.61}
\end{equation*}
$$

where the quantity

$$
\begin{equation*}
\psi=\epsilon-\theta \eta \tag{5.62}
\end{equation*}
$$

is the Helmholtz free energy.
Finally, if the temperature θ is supposed to be constant across the surface $\Sigma(t)$, by eliminating the term $[[\mathbf{h} \cdot \mathbf{n}]]$ appearing in $(5.46)_{2}$ and $(5.60)_{2}$, we obtain the additional jump condition

$$
\begin{equation*}
\left[\left[\rho\left(\frac{1}{2} v^{2}+\psi\right)\left(c_{n}-v_{n}\right)+\mathbf{v} \cdot \mathbf{T n}\right]\right] \leq 0 . \tag{5.63}
\end{equation*}
$$

At this stage, the reader should be aware of the introductory nature of the material discussed here. In the next chapter the essential role played by the inequality (5.61) in continuum mechanics will be highlighted (in particular in Sects. 6.1 and 6.2). Moreover, a critical review of the present formulation of thermodynamics will be presented in Sect. 6.1, and alternative formulations will also be discussed in Chap. 11.

At the moment, it is worth noting that there are applications where the energy flux of nonmechanical nature (represented by the term $-\mathbf{h} \cdot \mathbf{n}$) and the entropy flux $(-\mathbf{h} \cdot \mathbf{n} / \theta)$ can require more complex relations. For instance, in the theory of mixtures I. Mueller (see [39]) showed that this form of the entropy flux has to be modified. This is not surprising if we consider continua where electrical charges and currents are present. In this case, in the energy balance equation there are flux terms of both thermal and electromagnetic energy, the latter through the Poynting vector, while in the entropy inequality the ratio between the heat flux vector and the absolute temperature still appears. Nevertheless, even when we limit our attention to thermal and mechanical phenomena, the need can arise for postulating the presence of an extra term of energy flux, which does not appear in the entropy inequality (see for example the interstitial theory of J. Serrin \& J. Dunn [61], suggested to model capillarity phenomena). Finally the same need arises when dealing with ferromagnetic and dielectric continua (see [53,54]).

5.7 Lagrangian Formulation of Balance Equations

It will be shown in the next chapter that (5.37) and (5.46) ${ }_{1}$, under certain circumstances, allow us to compute the fields $\rho(\mathbf{x}, t), \mathbf{v}(\mathbf{x}, t)$, and $\theta(\mathbf{x}, t)$ in the current configuration C. But in many cases it is of interest, especially from a physical point of view, to compute the same fields as a function of (\mathbf{X}, t), e.g., in the reference configuration C_{*}.

Let $\Sigma_{*}(t)$ be the Lagrangian image in C_{*} of the singular surface $\Sigma(t) \subset C(t)$, having the equation

$$
\begin{equation*}
F(\mathbf{X}, t)=f(\mathbf{x}(\mathbf{X}, t), t)=0 \tag{5.64}
\end{equation*}
$$

Fig. 5.3 Singular surface in the space-time

If, in particular, $\Sigma(t)$ is material, then F is independent of t. The function $F(\mathbf{X}, t)$ is continuous, as it is composed of continuous functions. Further, it is also differentiable. In fact, we have that

$$
d F=\frac{\partial F}{\partial X_{L}} d X_{L}=\frac{\partial f}{\partial x_{i}} F_{i L} d X_{L}=|\nabla f| n_{i} F_{i L} d X_{L}
$$

But, in the absence of fracture inside the body, $d x_{i} n_{i}=n_{i} F_{i L} d X_{L}$ is continuous and F is differentiable. Then, it is possible to define the normal speed c_{N} of the moving surface $F(\mathbf{X}, t)=0$ by the relation (see Fig. 5.3, where the dotted lines denote the trajectories of the points of the continuum)

$$
\begin{equation*}
c_{N}=-\frac{1}{|\nabla F|} \frac{\partial F}{\partial t} . \tag{5.65}
\end{equation*}
$$

When $\Sigma(t)$ is material, $c_{N}^{ \pm}=0$ since $v_{n}=c_{n}$.
We now devote our attention to the Lagrangian formulation of balance equations. For the mass balance equation, by considering (3.8) and (5.19) we obtain

$$
m\left(c_{*}\right)=\int_{c} \rho(\mathbf{x}, t) d c=\int_{c_{*}} \rho_{*}(\mathbf{X}) d c_{*}
$$

or

$$
\int_{c_{*}}\left[\rho(\mathbf{x}(\mathbf{X}, t) t) J-\rho_{*}(\mathbf{X})\right] d c_{*}=0
$$

Since c_{*} is an arbitrary volume, taking into account the regularity of the density field on ($C_{*}-\Sigma_{*}$), we derive the local Lagrangian formulation of mass conservation:

$$
\begin{equation*}
\rho J=\rho_{*}, \tag{5.66}
\end{equation*}
$$

which allows us to compute the mass density once the motion is known; consequently, \boldsymbol{J} is also determined, since ρ_{*} is an initially assigned value. We also observe that (5.66) implies that on $\Sigma(t)$ we have

$$
(\rho J)^{ \pm}=\left(\rho_{*}\right)^{ \pm} .
$$

Similar arguments can be applied to the momentum equation

$$
\frac{d}{d t} \int_{c} \rho \mathbf{v} d c=\int_{\partial c} \mathbf{T} \mathbf{N} d \sigma+\int_{c} \rho \mathbf{b} d c
$$

where \mathbf{N} is the unit vector normal to ∂c, which, by using (3.7), (3.8), and (5.66), we can write as

$$
\frac{d}{d t} \int_{c_{*}} \rho_{*} \mathbf{v} d c_{*}=\int_{\partial c_{*}} J \mathbf{T}\left(\mathbf{F}^{-1}\right)^{T} \mathbf{N}_{*} d \sigma_{*}+\int_{c_{*}} \rho_{*} \mathbf{b} d c_{*} .
$$

If we introduce the first Piola-Kirchhoff tensor,

$$
\begin{equation*}
\mathbf{T}_{*}=J \mathbf{T}\left(\mathbf{F}^{-1}\right)^{T} \quad\left(T_{* L i}=J T_{i j}\left(\mathbf{F}^{-1}\right)_{L j}\right) \tag{5.67}
\end{equation*}
$$

then the previous global equation becomes

$$
\begin{equation*}
\frac{d}{d t} \int_{c_{*}} \rho_{*} \mathbf{v} d c_{*}=\int_{\partial c_{*}} \mathbf{T}_{*} \mathbf{N}_{*} d \sigma_{*}+\int_{c_{*}} \rho_{*} \mathbf{b} d c_{*}, \tag{5.68}
\end{equation*}
$$

which, under the usual assumptions of regularity, allows us to derive the local conditions

$$
\begin{array}{ll}
\rho_{*} \mathbf{a}=\nabla_{\mathbf{X}} \cdot \mathbf{T}_{*}+\rho_{*} \mathbf{b} & \text { on } C(t)-\Sigma(t), \\
{\left[\left[\rho_{*} \mathbf{v} c_{N}+\mathbf{T}_{*} \mathbf{n}_{*}\right]\right]=\mathbf{0}} & \text { on } \Sigma(t), \tag{5.69}
\end{array}
$$

where $\nabla_{\mathbf{X}}$. is the divergence operator with respect to variables X_{L}.
It is also relevant to note that the definition (5.67) and the symmetry of the stress tensor (5.36) give

$$
\begin{equation*}
\mathbf{T}_{*} \mathbf{F}^{T}=\mathbf{F T}^{T} . \tag{5.70}
\end{equation*}
$$

If on the boundary ∂C or in some part of it there acts the traction $\mathbf{t}(\mathbf{x}), \mathbf{x} \in \partial C$, then Cauchy's stress tensor \mathbf{T} satisfies the following boundary condition:

$$
\begin{equation*}
\mathbf{T N}=\mathbf{t} . \tag{5.71}
\end{equation*}
$$

By multiplying this relation for $d \sigma$ and taking into account (3.19), we obtain the traction $\mathbf{t}_{*}=\mathbf{T}_{*} \mathbf{N}_{*}$ acting on the boundary in the reference configuration:

$$
\begin{equation*}
\mathbf{t}_{*}=\frac{d \sigma}{d \sigma_{*}} \mathbf{t} . \tag{5.72}
\end{equation*}
$$

Finally, it can be easily verified, starting from (3.17), that

$$
\begin{equation*}
d \sigma=J \sqrt{\mathbf{N}_{*} \cdot \mathbf{C}^{-1} \mathbf{N}_{*}} d \sigma_{*} \tag{5.73}
\end{equation*}
$$

We remark that the first Piola-Kirchhoff stress tensor has the shortcoming of being a nonsymmetric tensor, so that it is not so appropriate in constitutive laws involving symmetric deformations (as for example \mathbf{G}, see Sect. 3.4). This argument suggests the introduction of the second Piola-Kirchhoff tensor $\tilde{\mathbf{T}}_{*}$, symmetric in nonpolar continua, defined in such a way that the force $\mathbf{t} d \sigma$ transforms into $t_{*} d \sigma_{*}$ according to the transformation rule of material vectors (4.28):

$$
\begin{equation*}
\tilde{\mathbf{T}}_{*} \mathbf{N}_{*} d \sigma_{*}=\mathbf{F}^{-1}(\mathbf{T N}) d \sigma . \tag{5.74}
\end{equation*}
$$

By recalling the transformation formula of surfaces (3.7), we see that

$$
\tilde{\mathbf{T}}_{*} \mathbf{N}_{*} d \sigma_{*}=\mathbf{F}^{-1}\left(\mathbf{T} J\left(\mathbf{F}^{-1}\right)^{T} \mathbf{N}_{*}\right) d \sigma_{*},
$$

and finally

$$
\begin{equation*}
\tilde{\mathbf{T}}_{*}=J \mathbf{F}^{-1} \mathbf{T}\left(\mathbf{F}^{-1}\right)^{T} . \tag{5.75}
\end{equation*}
$$

By comparing with (5.67), we also find that

$$
\begin{equation*}
\tilde{\mathbf{T}}_{*}=\mathbf{T}_{*}\left(\mathbf{F}^{-1}\right)^{T}, \tag{5.76}
\end{equation*}
$$

and the momentum equation $(5.69)_{1}$ becomes

$$
\begin{equation*}
\rho_{*} \mathbf{a}=\nabla_{\mathbf{X}}\left(\tilde{\mathbf{T}}_{*} \mathbf{F}^{T}\right)+\rho_{*} \mathbf{b} . \tag{5.77}
\end{equation*}
$$

Similar considerations apply to the energy balance equation (5.45), which assumes the global Lagrangian formulation

$$
\begin{align*}
\frac{d}{d t} \int_{c_{*}} \rho_{*}\left(\varepsilon+\frac{1}{2} v^{2}\right) d c_{*} & =\int_{\partial c_{*}}\left(\mathbf{v} \cdot \mathbf{T}_{*} \mathbf{N}_{*}-\mathbf{h}_{*} \cdot \mathbf{N}_{*}\right) d \sigma_{*} \\
& +\int_{c_{*}} \rho_{*}(\mathbf{v} \cdot \mathbf{b}+r) d c_{*} \tag{5.78}
\end{align*}
$$

where

$$
\begin{equation*}
\mathbf{h}_{*}=J \mathbf{h}\left(\mathbf{F}^{-1}\right)^{T} . \tag{5.79}
\end{equation*}
$$

From (5.78), the local equations follow:

$$
\begin{align*}
& \rho_{*} \dot{\epsilon}=\mathbf{T}: \dot{\mathbf{F}}^{T}-\nabla_{\mathbf{X}} \cdot \mathbf{h}_{*}+\rho r \quad \text { in } C(t)-\Sigma(t), \\
& {\left[\left[\rho_{*}\left(\frac{1}{2} v^{2}+\epsilon\right) c_{N}+\mathbf{v} \cdot \mathbf{T}_{*} \mathbf{n}_{*}-\mathbf{h}_{*} \cdot \mathbf{n}_{*}\right]\right]=0 \quad \text { on } \Sigma(t) .} \tag{5.80}
\end{align*}
$$

Finally, the global form of entropy inequality

$$
\begin{equation*}
\frac{d}{d t} \int_{c(t)} \rho_{*} \eta d c_{*} \geq-\int_{\partial c_{*}(t)} \frac{\mathbf{h}_{*} \cdot \mathbf{N}_{*}}{\theta} d \sigma_{*}+\int_{c_{*}(t)} \rho_{*} \frac{r}{\theta} d c_{*} \tag{5.81}
\end{equation*}
$$

locally implies that

$$
\begin{align*}
& \rho_{*} \dot{\eta} \geq-\nabla_{\mathbf{X}}\left(\frac{\mathbf{h}_{*}}{\theta}\right)+\rho_{*} \frac{r}{\theta} \quad \text { in } C(t)-\Sigma(t), \\
& {\left[\left[\rho_{*} \eta c_{N}-\frac{\mathbf{h} \cdot \mathbf{n}_{*}}{\theta}\right]\right] \geq 0 \quad \text { on } \Sigma(t) .} \tag{5.82}
\end{align*}
$$

Similarly, to (5.61)-(5.63) correspond the Lagrangian expressions

$$
\begin{array}{ll}
-\rho_{*}(\dot{\psi}+\eta \dot{\theta})+\mathbf{T}_{*}: \dot{\mathbf{F}}^{T}-\frac{\mathbf{h}_{*} \cdot \nabla_{\mathbf{X}} \theta}{\theta} \geq 0 & \text { in } C(t)-\Sigma(t), \\
{\left[\left[\rho_{*}\left(\frac{1}{2} v^{2}+\psi\right) c_{N}+\mathbf{v} \cdot \mathbf{T}_{*} \mathbf{n}_{*}\right]\right] \leq 0} & \text { on } \Sigma(t) . \tag{5.83}
\end{array}
$$

5.8 The Principle of Virtual Displacements

All the previously discussed balance laws refer to dynamical processes. As a particular case in static conditions they merge into the following equilibrium equations:

$$
\begin{align*}
& \nabla \cdot \mathbf{T}+\rho \mathbf{b}=\mathbf{0} \\
& -\nabla \cdot \mathbf{h}+\rho r=0 \tag{5.84}
\end{align*}
$$

More specifically, if equilibrium is reached at uniform temperature, then the heat flux vector vanishes (also see next chapter) and from $(5.84)_{2}$ it follows that $r=0$. In the following discussion we will focus on the case of constant uniform temperature, with the equilibrium condition expressed by $(5.84)_{1}$.

Let S be a system at equilibrium in the configuration C_{0}, subject to mass forces of specific density \mathbf{b}. Moreover, for boundary conditions we assume that a portion ∂C_{0}^{\prime} of the boundary ∂C_{0} is subjected to prescribed tractions \mathbf{t}, while the portion $\partial C_{0}^{\prime \prime}$ is fixed. If $\delta \mathbf{u}(\mathbf{x})$ is a virtual infinitesimal displacement field, with the restriction that it be kinematically admissible, i.e., it is a vector field of class $C^{1}\left(C_{0}\right)$ and vanishing on $\partial C_{0}^{\prime \prime}$, then from $(5.84)_{1}$ we have the following global relation:

$$
\int_{C_{0}} \nabla \mathbf{T} \cdot \delta \mathbf{u} d c+\int_{C_{0}} \mathbf{b} \cdot \delta \mathbf{u} d c=\mathbf{0}
$$

which also can be written as

$$
\int_{C_{0}}[\nabla(\mathbf{T} \cdot \delta \mathbf{u})-\mathbf{T}: \nabla \delta \mathbf{u}] d c+\int_{C_{0}} \mathbf{b} \cdot \delta \mathbf{u} d c=\mathbf{0} .
$$

Gauss's theorem, taking into account that $\delta \mathbf{u}=\mathbf{0}$ on $\partial C_{0}^{\prime \prime}$, leads to

$$
\begin{equation*}
\int_{C_{0}} \mathbf{T}: \nabla \delta \mathbf{u} d c=\int_{C_{0}} \mathbf{b} \cdot \delta \mathbf{u} d c+\int_{\partial C_{0}^{\prime}} \mathbf{t} \cdot \delta \mathbf{u} d c . \tag{5.85}
\end{equation*}
$$

Note that, if (5.85) holds for any kinematically admissible field $\delta \mathbf{u}$, then (5.84) is satisfied. This remark proves that (5.85) is an expression totally equivalent to equilibrium conditions and allows us to state the following: The continuous system S, whose boundary is partially fixed, is at equilibrium in the configuration C_{0} under the external forces \mathbf{b} and \mathbf{t} if and only if the work done by these forces, given a kinematically admissible and infinitesimal displacement, is equal to the internal work done by stresses to produce the deformation field $\nabla \delta \mathbf{u}$ associated with the displacement field.

We remark that the previous global form of the equilibrium condition is just one of the possible expressions of the principle of virtual displacements (or principle of virtual work, as it is often referred in the literature) for a continuous system. Early expressions are due to D'Alembert and Lagrange. In particular, Lagrange, in his Mécanique Analytique (1788) stated that "any equilibrium law, which will be deduced in the future, will always be interpreted within the principle of virtual work: equivalently, it will be nothing else than a particular expression of this principle."

In Chap. 1 of Volume II it will be shown that the principle of virtual work is a weak or variational formulation of the equilibrium problem. This different perspective, apparently not investigated after Cauchy introduced the variational formulation of differential equations (5.84) and related boundary conditions, is now considered to be the most convenient tool for deriving the equilibrium solutions (see also Chap. 10 and Appendix A).

5.9 Exercises

1. Given the stress tensor at the point P

$$
T_{i j}=\left(\begin{array}{ccc}
300 & -50 & 0 \\
-50 & 200 & 0 \\
0 & 0 & 100
\end{array}\right),
$$

derive the stress vector acting on a plane, through P, parallel to the plane shown in Fig. 5.4.

Since any vector normal to this plane is also normal to vectors $\overrightarrow{A B}$ and $\overrightarrow{B C}$, it can be expressed as

Fig. 5.4 Cauchy tetrahedron

$$
\mathbf{n}=\overrightarrow{A B} \times \overrightarrow{B C}=\left|\begin{array}{ccc}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\
-2 & 2 & 0 \\
-2 & 0 & 3
\end{array}\right|=6 \mathbf{e}_{1}+6 \mathbf{e}_{2}+4 \mathbf{e}_{3}
$$

and the unit normal vector $\hat{\mathbf{n}}$ has components

$$
\left(\frac{3}{\sqrt{22}}, \frac{3}{\sqrt{22}}, \frac{2}{\sqrt{22}}\right)
$$

Applying (5.29), we find the required stress vector to be

$$
t_{i}^{(n)}=T_{i j} n_{j}=\left(\begin{array}{ccc}
300 & -50 & 0 \\
-50 & 200 & 0 \\
0 & 0 & 100
\end{array}\right)\left(\begin{array}{l}
3 / \sqrt{22} \\
3 / \sqrt{22} \\
2 / \sqrt{22}
\end{array}\right)=\left(\begin{array}{l}
750 / \sqrt{22} \\
450 / \sqrt{22} \\
200 / \sqrt{22}
\end{array}\right) .
$$

2. Given

$$
t_{n}=\mathbf{n} \cdot \mathbf{T n} \quad \text { with } \mathbf{n} \cdot \mathbf{n}=1
$$

verify that the maximum and minimum values of the normal component t_{n} act along the principal directions and coincide with the principal stresses.

In seeking the above constrained extremal values, we can use the Lagrangian multiplier method, which requires us to seek the extrema of the function

$$
F(\mathbf{n})=t_{n}-\lambda(\mathbf{n} \cdot \mathbf{n}-1)=\mathbf{n} \cdot \mathbf{T n}-\lambda(\mathbf{n} \cdot \mathbf{n}-1),
$$

where λ is a Lagrange multiplier. The method requires the derivative of $F(\mathbf{n})$ with respect to n_{k} to vanish, i.e.,

$$
\frac{\partial}{\partial n_{k}}\left(T_{i j} n_{j} n_{i}-\lambda\left(n_{i} n_{i}-1\right)\right)=0,
$$

or equivalently,

$$
\left(T_{k j}-\lambda \delta_{k j}\right) n_{j}=0,
$$

which shows that the problem is nothing other than the eigenvalue formulation for principal stresses, as already discussed in Sect. 5.2.

If the characteristic equation is written in the form (see Sect. 3.3)

$$
\lambda^{3}-I_{T} \lambda^{2}+I I_{T} \lambda-I I I_{T}=0
$$

then it is plain that the algebraic nature of eigenvalues of \mathbf{T}, which are real owing to the symmetry of \mathbf{T}, depends on the principal invariants. If there are
three distinct eigenvalues, then there are three distinct principal stresses and the stress state is called triaxial; if two eigenvalues are coincident, then the stress state is said to be cylindrical and there are no shear stresses on any plane parallel to the cylinder axis, which is the only determined direction; finally, if all three eigenvalues are coincident, then all directions are principal and the stress state is said to be isotropic or spherical or hydrostatic, because it is the stress state that exists in a fluid at rest.
3. Prove that, in a rigid body rotation where $\mathbf{v}=\boldsymbol{\omega} \times \mathbf{r}$, Eqs. (5.32) and (5.40) $)_{2}$ reduce to the balance equation of angular momentum and to the kinetic energy for a rigid body.

By referring to the expression of double vector product, from (5.32) we find that

$$
\begin{aligned}
\mathbf{M}_{O} & =\dot{\mathbf{K}}_{O}=\frac{d}{d t} \int_{V} \mathbf{r} \times \rho \mathbf{v} d c=\frac{d}{d t} \int_{V} \mathbf{r} \times \rho(\boldsymbol{\omega} \times \mathbf{r}) d c \\
& =\frac{d}{d t} \int_{V} \rho\left(|\mathbf{r}|^{2} \boldsymbol{\omega}-(\mathbf{r} \cdot!) \mathbf{r}\right) d c=\frac{d}{d t} \int_{V} \rho\left(|\mathbf{r}|^{2} \mathbf{1}-\mathbf{r} \otimes \mathbf{r}\right) d c(\boldsymbol{\omega})
\end{aligned}
$$

where $\mathbf{1}$ is the identity mapping and $\mathbf{r} \otimes \mathbf{r}$ is a linear mapping such that $\mathbf{r} \otimes \mathbf{r}$ $(\omega)=(\mathbf{r} \cdot \omega) \mathbf{r}$.

If

$$
\mathbf{I}_{O}=\int_{V} \rho\left(|\mathbf{r}|^{2} \mathbf{1}-\mathbf{r} \otimes \mathbf{r}\right) d c
$$

denotes the tensor of inertia with respect to a fixed pole O, then

$$
\mathbf{M}_{O}=\frac{d}{d t}\left(\mathbf{I}_{O} \boldsymbol{\omega}\right)
$$

Finally, substituting $\mathbf{v}=\boldsymbol{\omega} \times \mathbf{r}$ into (5.40) $)_{2}$, we obtain

$$
\begin{aligned}
T & =\frac{1}{2} \int_{V} \rho v^{2} d c=\frac{1}{2} \int_{V} \rho(\boldsymbol{\omega} \times \mathbf{r}) \cdot \mathbf{v} d c \\
& =\frac{1}{2} \int_{V} \rho \mathbf{r} \times \mathbf{v} \cdot \boldsymbol{\omega} d c=\frac{1}{2} \mathbf{K}_{O} \cdot \boldsymbol{\omega}=\frac{1}{2} \boldsymbol{\omega} \cdot \boldsymbol{I}_{O} \boldsymbol{\omega},
\end{aligned}
$$

where it has been taken into account that $\boldsymbol{\omega}$ is independent of \mathbf{r} and $\mathbf{K}_{O}=\mathbf{I}_{O} \boldsymbol{\omega}$.
4. At a point of a continuous system S the rate of deformation and the stress tensor have components given by

$$
D_{i j}=\left(\begin{array}{lll}
1 & 6 & 4 \\
6 & 3 & 2 \\
4 & 2 & 5
\end{array}\right), \quad T_{i j}=\left(\begin{array}{ccc}
4 & 0 & -1 \\
0 & -1 & 3 \\
-1 & 3 & 5
\end{array}\right)
$$

Determine the stress power $T_{i j} D_{i j}$.
5. Prove that in any motion the diffusion equation of Beltrami is satisfied:

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\omega}{\rho}\right)=\frac{1}{\rho}\left(\frac{1}{2} \nabla \times \mathbf{a}+\omega \cdot \nabla \mathbf{v}\right) \tag{5.86}
\end{equation*}
$$

where ω is the angular velocity, ρ the mass density and \mathbf{v} the velocity field.
Hint: First, from the mass conservation, we have that

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{\omega}{\rho}\right) & =\frac{\dot{\omega}}{\rho}-\frac{\omega \dot{\rho}}{\rho^{2}} \\
& =\frac{\dot{\omega}}{\rho}+\frac{\omega}{\rho} \nabla \cdot \mathbf{v} \\
& =\frac{1}{\rho} \frac{\partial \omega}{\partial t}+\frac{1}{\rho} \mathbf{v} \cdot \nabla \boldsymbol{\omega}+\frac{\omega}{\rho} \nabla \cdot \mathbf{v}
\end{aligned}
$$

Beltrami's formula is proved when the curl of (4.18) and one of the formulae of Exercise 6 in Sect. 2.8 are taken into account.

Note that, when $\nabla \times \mathbf{a}=\mathbf{0}$ (see Sect. 9.3), (5.86) reduces to

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\boldsymbol{\omega}}{\rho}\right)=\frac{1}{\rho} \boldsymbol{\omega} \cdot \nabla \mathbf{v} \tag{5.87}
\end{equation*}
$$

6. Prove that the plane velocity field

$$
v_{1}=A \frac{x_{1}^{2}-x_{2}^{2}}{r^{4}}, \quad v_{2}=2 A \frac{x_{1} x_{2}}{r^{4}}
$$

where A is a constant and $r^{2}=x_{1}^{2}+x_{2}^{2}$ is a possible irrotational motion of a liquid.

Hint: Verify that $\nabla \cdot \mathbf{v}=0$.
7. Prove that the plane flow that in polar coordinates (r, φ) has components:

$$
v_{r}=\left(1-r^{2}\right) \frac{\cos \varphi}{r^{2}}, \quad v_{\varphi}=\left(1+r^{2}\right) \frac{\sin \theta}{r^{2}}
$$

satisfies the mass balance if ρ is constant. Analyze the streamlines of the flow.

Chapter 6
 Constitutive Equations

This chapter contains a wide discussion about the constitutive axioms. These axioms constitute general rules that any material must satisfy in answering to external agents. The first two of them state that the answer of a material at a point depends, in a certain way, on past history of a neighborhood of that point. The third one is the objectivity principle stating that the response of materials does not depend on the rigid frame of reference adopted to observe their behavior. The fourth is the equipresence principle postulating that, a priori, the fundamental variables of the thermokinetic process influence all the fields describing the answer of the body. Finally, the last one, the dissipation principle, requires that materials, in reacting to the external agents, satisfy the second principle of thermodynamics in any process. In such a way, the entropy inequality becomes a restriction on the constitutive equations rather than a restriction on the processes. The effects of these principles on the constitutive equations are analyzed for thermoviscoelastic materials.

6.1 Constitutive Axioms

It has already been stated in Chaps. 4 and 5 that balance equations are general relations whose validity does not depend on body properties. However, we also know from experience that two bodies with the same dimensions and shape may react differently when subjected to the same load and thermal conditions.

Thus we intuitively conclude that, in contrast to rigid body dynamics, the evolution of a continuous deformable body cannot be completely predicted by knowing the equations of motion, the mass distribution, and the external forces acting on the body. We will now use the results of Chap. 5 to express this statement in a formal way.

In the Eulerian description, $\{\rho, \mathbf{v}, \mathbf{T}, \epsilon, \mathbf{h}, \theta\}$ represent the unknown fields, and the balance equations for mass conservation, momentum balance, and energy balance are the equations we use to determine these fields. Similarly, in the Lagrangian description, the unknowns become $\left\{\mathbf{v}, \mathbf{T}_{*}, \epsilon_{*}, \mathbf{h}_{*}, \theta\right\}$ and the balance equations are the momentum balance and energy balance.

In both cases the balance equations do not form a closed set of field equations for the above-mentioned fields, so that we must add relations that connect the stress tensor, the internal energy, and the heat flux with the basic fields.

These relations are called constitutive equations because they describe the material constitution of the system from a macroscopic view point.

In order to obtain such relationships, we presume that the macroscopic response of a body, as well as any macroscopic property of it, depends on its molecular structure, so that response functions could in principle be obtained from statistical mechanics, in terms of the average of microscopic quantities.

As a matter of fact, such an approach, although promising from a theoretical point of view, is not straightforward if applied to the complex materials that interest us in continuum mechanics.

In addition, the basic assumption of continuum mechanics consists of erasing the discrete structure of the matter, so that constitutive equations are essentially based on experimental evidence. Again, this is not an easy task, but continuum mechanics greatly simplifies this task through the introduction of general rules, called constitutive axioms. In fact, they represent constraints for the structure of constitutive equations.

In order to discuss these axioms, we introduce some definitions.
The history of a thermokinetic process up to time t is defined by the two functions

$$
\begin{equation*}
\mathbf{x}_{S}^{t}=\mathbf{x}(\mathbf{Y}, \tau), \theta_{S}^{t}=\theta(\mathbf{Y}, \tau) \quad(\mathbf{Y}, \tau) \in C_{*} \times(-\infty, t] \tag{6.1}
\end{equation*}
$$

According to this definition, two processes are locally equivalent at \mathbf{X} if there is at least a neighborhood of \mathbf{X} in which the two histories coincide.

By dynamic process we mean the set of fields $\mathbf{x}(\mathbf{Y}, t), \theta(\mathbf{Y}, t), \mathbf{T}_{*}(\mathbf{Y}, t)$, $\epsilon(\mathbf{Y}, t), \mathbf{h}_{*}(\mathbf{Y}, t), \eta(\mathbf{Y}, t)$, where $\mathbf{T}_{*} \mathbf{F}^{T}=\mathbf{F T}_{*}^{T}$, which are solutions of equations $(5.69)_{1}-(5.80)_{1}$, under a given body density \mathbf{b} and a source r.

Taking into account all the previous remarks, it turns out that the material response is formally expressed by the set of fields $\mathbf{A}=\left\{\mathbf{T}_{*}, \epsilon, \mathbf{h}_{*}, \eta\right\}$, which depend on the history of the thermokinetic process. Constitutive axioms, listed below, deal with such functional dependence.

1. Principle of Determinism (Noll, 1958).

At any instant t, the value of \mathbf{A} at $\mathbf{X} \in C_{*}$ depends on the whole history of the thermokinetic process $\mathbf{x}_{S}^{t}, \theta_{S}^{t}$ up to the time t.

This is equivalent to stating that the material response at $\mathbf{X} \in C_{*}$ and at time t is influenced by the history of S through a functional

$$
\begin{equation*}
\mathbf{A}=\mathbf{\Upsilon}\left(\mathbf{x}_{S}^{t}, \theta_{S}^{t}, \mathbf{X}\right) \tag{6.2}
\end{equation*}
$$

which depends on $\mathbf{X} \in C_{*}$ (nonhomogeneity) as well as on the reference configuration.

If the Eq. (6.2) are substituted into (5.69) ${ }_{1}$, (5.80) ${ }_{1}$, with $\mathbf{T}_{*} \mathbf{F}^{T}=\mathbf{F T}_{*}^{T}$, then a system of 4 scalar equations for the 4 unknown functions $\mathbf{x}(\mathbf{X}, t), \theta(\mathbf{X}, t)$ is obtained. If \mathbf{b} and the history of the process are given up to the instant t_{0} under suitable boundary and initial conditions, then this system allows us to predict, at least in principle, the process from t_{0} on.

Note that (6.2) assumes that the material has a memory of the whole history of the motion. We make two remarks about this assumption: first, it is unrealistic to have experience of the whole history of the thermokinetic process; moreover, the results are quite reliable if we presume that the response of the system S is mainly influenced by its recent history. Depending on the kind of memory selected, there are different classes of materials (e.g., materials with fading memory, plastic memory, and so on). Furthermore, if only the recent history (how recent has to be specified) is supposed to be relevant, then for suitably regular motions in $C_{*} \times$ $(-\infty, t]$, the history of the motion can be expressed, at least in a neighborhood of (\mathbf{X}, t), in terms of a Taylor expansion at the initial point (\mathbf{X}, t) of order n. Such an assumption allows us to consider a class of materials for which \mathbf{A} depends on \mathbf{F} as well as on its spatial and time derivatives evaluated at (\mathbf{X}, t):

$$
\begin{equation*}
\mathbf{A}=\mathbf{A}\left(\mathbf{F}, \dot{\mathbf{F}}, \nabla_{X} \mathbf{F}, \ldots, \mathbf{X}\right) \tag{6.3}
\end{equation*}
$$

The materials described by a constitutive relation (6.3) are said to be of grade n if n is the maximum order of the derivatives of motion and temperature.

It is worthwhile to note that this principle includes, as special cases, both classical elasticity and the history-independent Newtonian fluids (see Chap. 7).
2. Principle of Local Action (Noll, 1958).

Fields $\mathbf{A}(\mathbf{X}, t)$ depend on the history of the thermokinetic process through a local class of equivalence at \mathbf{X}.

According to the notion of contact forces, this principle states that the thermokinetic process of material points at a finite distance from \mathbf{X} can be disregarded in computing the fields $\mathbf{A}(\mathbf{X}, t)$ at \mathbf{X}.

The previous two principles (i.e., determinism and local action), when combined, imply that the response at a point depends on the history of the thermokinetic process relative to an arbitrary small neighborhood of the particle. Materials satisfying these two principles are called simple materials.
3. Principle of Material Frame-Indifference.

Constitutive equations (6.2) must be invariant under changes of frame of reference.

We first remark that the principle of material frame-indifference or material objectivity is not to be confused with the term objectivity in the sense of transformation behavior as discussed in Chap. 4.

In fact, the term objectivity denotes transformation properties of given quantities, whereas the principle of material objectivity discussed here postulates the complete independence of the material response from the frame of reference.

In other words, since constitutive equations represent a mathematical model of material behavior, they are supposed to be independent of the observer. To make this principle clear, consider a point P with mass m moving in an inertial frame I under the action of an elastic force $-k\left(\mathbf{x}-\mathbf{x}_{O}\right)$, where O is the force center. The motion equation of P in I is written as

$$
m \ddot{\mathbf{x}}=-k\left(\mathbf{x}-\mathbf{x}_{O}\right) .
$$

If a frame I^{\prime} is considered to be in rigid motion with respect to I, so that the transformation $\mathbf{x}^{\prime}=\mathbf{x}_{\Omega}(t)+\mathbf{Q}(\mathbf{t}) \mathbf{x}$ holds, where $\mathbf{x}_{\Omega}(t)$ is the position vector fixing the origin of I with respect to I^{\prime} and $\mathbf{Q}(t)$ is an orthogonal matrix, then the motion equation assumes the form

$$
m \ddot{\mathbf{x}}^{\prime}=-k\left(\mathbf{x}^{\prime}-\mathbf{x}_{O}^{\prime}\right)-m \mathbf{a}_{\tau}-2 m \boldsymbol{\omega}_{\tau} \times \dot{\mathbf{x}}^{\prime}
$$

where \mathbf{a}_{τ} and $\boldsymbol{\omega}_{\tau}$ are the acceleration and the angular velocity of I^{\prime} with respect to I. The motion of P in I^{\prime} can be obtained by integrating this equation or, alternatively, by integrating the previous one and by applying the rigid transformation rule to the result. In this example it is relevant to observe that, when writing the motion equation in I^{\prime}, it has been assumed that the elastic force is an invariant vector and the constitutive elastic law is invariant when passing from I to I^{\prime}.

In summary, the principle of material frame-indifference states that constitutive quantities transform according to their nature (e.g., ϵ is invariant, \mathbf{T}_{*} is a tensor, and so on), and, in addition, their dependence on the thermokinetic process is invariant under changes of frame of reference.
4. Principle of Dissipation (Coleman e Noll, 1963).

Constitutive equations satisfy the reduced dissipation inequality (5.83) $)_{1}$ in any thermokinetic process compatible with momentum and energy balance (5.69) ${ }_{1}$, $(5.80)_{1}$.

To investigate the relevance of this principle, we first observe that, given (6.2) with $\mathbf{T}_{*} \mathbf{F}^{T}=\mathbf{F} \mathbf{T}^{T}$, the momentum and energy balance equations can always be satisfied by conveniently selecting \mathbf{b} and r. This remark implies that momentum and energy balance equations $(5.69)_{1},(5.80)_{1}$ do not, as a matter of principle, play any role of constraint for the thermokinetic process; in other words, any thermokinetic process is a solution of the balance equations provided that \mathbf{b} and r are conveniently selected.

Moreover, we note that the reduced dissipation inequality is equivalent to the entropy principle, presuming that the energy balance is satisfied. Historically, the entropy inequality has been considered to be a constraint for the processes: i.e., only those processes that are solutions of the balance equations and satisfy the second law of thermodynamics for given body forces \mathbf{b}, energy sources, and prescribed boundary conditions are admissible. It is apparent how complex such a requirement is, since explicit solutions can only be obtained in a few cases.

A different point of view was introduced by Coleman and Noll. They entrust the reduced dissipation inequality with the task that it be a further constraint for the constitutive equations, i.e., these equations must satisfy the reduced inequality in any process that is compatible with the momentum and energy balance. In a rather effective way, one could say that the material itself is required to satisfy the second law of thermodynamics in responding to any thermokinetic process.

A further remark is concerned with the fact that there is no general agreement on the possibility of arbitrarily selecting the thermodynamic process and then finding the functions $\mathbf{b}(\mathbf{X}, t)$ and $r(\mathbf{X}, t)$ from the momentum and balance equations. In fact, it is argued that such a choice could be physically very difficult or even impossible. As a consequence, it should be more appropriate to require (see [29] and [39]) that the dissipation principle be satisfied for those processes in which the momentum and energy balance are satisfied with arbitrary but prescribed forces and energy sources. ${ }^{1}$
5. Principle of Equipresence (Truesdell and Toupin, 1960).

All constitutive quantities depend a priori on the same variables, i.e., on the history of the thermokinetic process.

According to this principle, response functions that depend on only one of the two components of the thermokinetic process cannot be postulated, i.e., the stress tensor cannot be supposed to depend only on the motion and the heat flux on the temperature field. This remark is especially relevant for composite materials and in the presence of interaction phenomena, because in such cases it ensures that coupled phenomena are properly taken into account.

The mathematical theory of the constitutive equations is a rather broad branch of continuum mechanics, so that it is almost impossible to give a complete review of this subject in a textbook. For this reason, here only one class of materials will be considered with the twofold aim: to give the reader examples of applications of the general principles discussed above and to introduce the behavior of the most common materials that are considered in this volume. Materials exhibiting a more complex behavior will be analyzed in Volume II.

6.2 Thermoviscoelastic Behavior

Material behavior described in this section exhibits the following features:

- the stress state depends on temperature and on local deformations, i.e., on \mathbf{F};
- internal friction or dissipation phenomena are generated when a part of the system is in relative shearing motion with respect to other parts, so that the

[^18]material response depends on temperature and on the velocity gradient $\nabla \mathbf{v}=$ $\dot{\mathbf{F}} \mathbf{F}^{-1}$.

Let S be a continuous system, with C_{*} its reference configuration and C the current configuration, associated with the motion $\mathbf{x}=\mathbf{x}(\mathbf{X}, t)$ at the time instant t. We consider a material response such that

$$
\begin{equation*}
\mathbf{A}=\mathbf{A}_{C_{*}}(\mathbf{F}, \dot{\mathbf{F}}, \theta, \Theta, \mathbf{X}) \tag{6.4}
\end{equation*}
$$

where $\boldsymbol{\Theta}=\nabla_{\mathbf{X}} \theta$.
We note that, if \mathbf{A} is independent of \mathbf{X}, then the system S is homogeneous in the reference configuration C_{*}.

Material response, as expressed by (6.4), depends on both the local thermal state, i.e., the temperature and its gradient in a neighborhood of \mathbf{X}, and on the local state of deformation and its time changes. This dependence justifies the definition of thermoviscoelastic behavior, given to responses exhibiting the structure (6.4).

Particular cases include thermoelastic behavior if (6.4) does not depend on $\dot{\mathbf{F}}$, so that there are no dissipation effects due to internal friction, and elastic behavior if thermal effects are also disregarded.

Making reference to the constitutive axioms, we first remark that (6.4) satisfies the determinism and local action principles owing to its dependence on the thermokinetic process, locally on space and on time. ${ }^{2}$

As far as the principle of dissipation is concerned, the following theorem can be proved:

Theorem 6.1. A constitutive equation (6.4) satisfies the reduced dissipation inequality in any thermokinetic process if and only if the following relations hold:

$$
\begin{align*}
& \psi=\psi(\mathbf{F}, \theta), \\
& \eta=-\frac{\partial \psi}{\partial \theta}=\eta(\mathbf{F}, \theta), \\
& \mathbf{T}_{*}^{(e)}=\rho_{*} \frac{\partial \psi}{\partial \mathbf{F}}=\mathbf{T}_{*}^{(e)}(\mathbf{F}, \theta), \\
& \mathbf{T}_{*}^{(d)}: \dot{\mathbf{F}}^{T}-\frac{\mathbf{h}_{*} \cdot \boldsymbol{\Theta}}{\theta} \geq 0, \tag{6.5}
\end{align*}
$$

[^19]where
\[

$$
\begin{equation*}
\mathbf{T}_{*}^{(e)}=\mathbf{T}_{*}^{(e)}(\mathbf{F}, \mathbf{0}, \theta, \mathbf{0}) \tag{6.6}
\end{equation*}
$$

\]

is the Piola-Kirchhoff stress tensor at equilibrium and

$$
\begin{equation*}
\mathbf{T}_{*}^{(d)}=\mathbf{T}(\mathbf{F}, \dot{\mathbf{F}}, \theta, \boldsymbol{\Theta})-\mathbf{T}(\mathbf{F}, \mathbf{0}, \theta, \mathbf{0}) \tag{6.7}
\end{equation*}
$$

is its dynamic component.
Proof. If the time derivative of $\psi(\mathbf{F}, \dot{\mathbf{F}}, \theta, \boldsymbol{\Theta})$ is substituted into $(5.83)_{1}$, then we get the relation

$$
\begin{align*}
& -\rho_{*} \frac{\partial \psi}{\partial \dot{F}_{i L}} \ddot{F}_{i L}^{T}-\rho_{*} \frac{\partial \psi}{\partial \Theta_{i}} \dot{\Theta}_{i}-\rho_{*}\left(\eta+\frac{\partial \psi}{\partial \theta}\right) \dot{\theta} \\
& +\left(T_{* L i}-\rho_{*} \frac{\partial \psi}{\partial F_{i L}}\right) \dot{F}_{i L}^{T}-\frac{h_{* i} \cdot \Theta_{i}}{\theta} \geq 0 \tag{6.8}
\end{align*}
$$

which can be written in the compact form

$$
\begin{equation*}
\mathbf{a} \cdot \mathbf{u}+b \geq 0 \tag{6.9}
\end{equation*}
$$

by assuming that

$$
\begin{gather*}
\mathbf{a}=\left(-\rho_{*} \frac{\partial \psi}{\partial \dot{\mathbf{F}}},-\rho_{*} \frac{\partial \psi}{\partial \boldsymbol{\Theta}},-\rho_{*}\left(\eta+\frac{\partial \psi}{\partial \theta}\right)\right), \quad \mathbf{u}=(\ddot{\mathbf{F}}, \dot{\boldsymbol{\Theta}}, \dot{\theta}) \tag{6.10}\\
b=\operatorname{tr}\left(\left(\mathbf{T}_{*}-\rho_{*} \frac{\partial \psi}{\partial \mathbf{F}}\right) \dot{\mathbf{F}}^{T}\right)-\frac{\mathbf{h}_{*} \cdot \boldsymbol{\Theta}}{\theta} .
\end{gather*}
$$

Given that a and b are independent of \mathbf{u}, the inequality (6.9) is satisfied, for any arbitrary \mathbf{u}, if and only if $\mathbf{a}=\mathbf{0}$ and $b \geq 0$. This is certainly true because of the choice of the constitutive relations (6.4), so that (6.5) $)_{1,2}$ are proved if it is verified that \mathbf{u} can be arbitrary. This is made possible by virtue of the statement that any thermokinetic process is a solution of the balance equations, for a convenient choice of source terms \mathbf{b} and r. Because the thermokinetic process is arbitrary, it follows that $\ddot{\mathbf{F}}, \dot{\boldsymbol{\Theta}}, \dot{\theta}$ are also arbitrary, for a given $\mathbf{X} \in C_{*}$ and time t.

From all the above remarks it follows that (6.8) reduces to

$$
\begin{equation*}
\left(\mathbf{T}_{*}^{(e)}-\rho_{*} \frac{\partial \psi}{\partial \mathbf{F}}\right): \dot{\mathbf{F}}^{T}+\mathbf{T}_{*}^{(d)}: \dot{\mathbf{F}}-\frac{\mathbf{h}_{*} \cdot \boldsymbol{\Theta}}{\theta} \geq 0 \tag{6.11}
\end{equation*}
$$

where $(6.5)_{1}$ and $(6.5)_{2}$ have been taken into account. The previous considerations cannot be applied to this inequality since (6.11) does not exhibit the form (6.9).

The factor of $\dot{\mathbf{F}}^{T}$ does not depend on $\dot{\mathbf{F}}$, whereas the last two terms do. By substituting $\alpha \dot{\mathbf{F}}$ for $\dot{\mathbf{F}}$ and $\alpha \boldsymbol{\Theta}$ for $\boldsymbol{\Theta}$, with α a positive real number, (6.11) can be written as

$$
\begin{equation*}
\left(\mathbf{T}_{*}^{(e)}-\rho_{*} \frac{\partial \psi}{\partial \mathbf{F}}\right): \alpha \dot{\mathbf{F}}^{T}+\mathbf{T}_{*}^{(d)}: \alpha \dot{\mathbf{F}}-\frac{\mathbf{h}_{*} \cdot \boldsymbol{\Theta}}{\theta} \geq 0 \tag{6.12}
\end{equation*}
$$

and, by observing that

$$
\lim _{\alpha \longrightarrow 0} \mathbf{T}_{*}^{(d)}(\mathbf{F}, \alpha \dot{\mathbf{F}}, \theta, \alpha \Theta)=\mathbf{0}
$$

from (6.12), by dividing by α and considering the limit $\alpha \longmapsto 0$, we find that

$$
\left(\mathbf{T}_{*}^{(e)}-\rho_{*} \frac{\partial \psi}{\partial \mathbf{F}}\right): \dot{\mathbf{F}}^{T}-\frac{\mathbf{h}_{*}(\mathbf{F}, \mathbf{0}, \theta, \mathbf{0}) \cdot \boldsymbol{\Theta}}{\theta} \geq 0
$$

This inequality implies $(6.5)_{3}$, so that the theorem is proved.
Thus we conclude that the principle of dissipation implies that the free energy of a thermoviscoelastic material

- only depends on the deformation gradient and temperature;
- acts as a thermodynamic potential for the entropy and the Piola-Kirchhoff stress tensor at equilibrium, and these quantities both depend on \mathbf{F} and θ. In particular, when considering a thermoelastic material, the free energy acts as a thermodynamic potential for the whole Piola-Kirchhoff stress tensor.
It follows that, given the free energy, the constitutive equations for $\mathbf{T}_{*}^{(e)}$ and η are known. Furthermore, the dynamic component of the stress tensor and the heat flux vector must be defined in such a way that (6.5) 4 is satisfied in any process.

In the Eulerian formulation, by taking into account (5.67) and (5.79) and observing that

$$
\begin{aligned}
\mathbf{T}_{*}: \dot{\mathbf{F}}^{T} & =T_{* L i} \dot{F}_{i L}=J T_{i j} F_{L j}^{-1} \dot{F}_{i L}=J T_{i j} \frac{\partial v_{i}}{\partial x_{j}}=J T_{i j} D_{i j}, \\
\mathbf{h}_{*} \cdot \boldsymbol{\Theta} & =h_{* L} \Theta_{L}=J h_{i} F_{i L}^{-1} \Theta_{L}=J h_{i} g_{i}=J \mathbf{h} \cdot \mathbf{g},
\end{aligned}
$$

where \mathbf{D} is the rate of deformation tensor and $\mathbf{g}=\nabla \theta$, we find that relations (6.5) reduce to

$$
\begin{aligned}
\psi & =\psi(\mathbf{F}, \theta) \\
\eta & =-\frac{\partial \psi}{\partial \theta}=\eta(\mathbf{F}, \theta)
\end{aligned}
$$

$$
\begin{align*}
& \mathbf{T}^{(e)}=\rho \frac{\partial \psi}{\partial \mathbf{F}} \mathbf{F}^{T}=\mathbf{T}^{(e)}(\mathbf{F}, \theta), \\
& \mathbf{T}^{(d)}: \mathbf{D}-\frac{\mathbf{h} \cdot \mathbf{g}}{\theta} \geq 0 \tag{6.13}
\end{align*}
$$

The constraints derived from the material objectivity principle are expressed by the following theorem:

Theorem 6.2. Constitutive equations (6.13) satisfy the principle of material frameindifference if and only if

$$
\begin{align*}
& \psi=\psi(\mathbf{C}, \theta), \\
& \eta=-\frac{\partial \psi}{\partial \theta}=\eta(\mathbf{C}, \theta), \\
& \mathbf{T}^{(e)}=2 \rho \mathbf{F} \frac{\partial \psi}{\partial \mathbf{C}} \mathbf{F}^{T}, \\
& \mathbf{T}^{(d)}=\mathbf{F} \hat{\mathbf{T}}^{(d)}\left(\mathbf{C}, \mathbf{F}^{T} \mathbf{D F}, \theta, \boldsymbol{\Theta}\right) \mathbf{F}^{T}, \\
& \mathbf{h}=\mathbf{F} \hat{\mathbf{h}}\left(\mathbf{C}, \mathbf{F}^{T} \mathbf{D F}, \theta, \boldsymbol{\Theta}\right), \tag{6.14}
\end{align*}
$$

where $\mathbf{C}=\mathbf{F}^{T} \mathbf{F}$ is the right Cauchy-Green tensor (see Chap. 3).
Proof. To prove the theorem, we recall that in a rigid change of frame of reference $I \longrightarrow I^{\prime}$, tensors \mathbf{F}, \mathbf{C}, and $\dot{\mathbf{F}}$ transform according to rules (see (3.46) and (4.30)):

$$
\begin{align*}
\mathbf{F}^{\prime} & =\mathbf{Q F}, \quad \mathbf{C}^{\prime}=\mathbf{C}, \quad \mathbf{D}^{\prime}=\mathbf{Q} \mathbf{D} \mathbf{Q}^{T}, \\
\mathbf{W}^{\prime} & =\mathbf{Q} \mathbf{W} \mathbf{Q}^{T}+\dot{\mathbf{Q}} \mathbf{Q}^{T}, \quad \mathbf{G}^{\prime}=\mathbf{G}, \tag{6.15}
\end{align*}
$$

where \mathbf{Q} is the orthogonal matrix of the change of frame.
To prove the necessary condition, we observe that the objectivity of ψ implies that

$$
\psi(\mathbf{F}, \theta)=\psi(\mathbf{Q F}, \theta) \quad \forall \mathbf{Q} \in O(3)
$$

Resorting to the polar decomposition theorem (see Chap. 1) we can write that $\mathbf{F}=\mathbf{R U}$ and assuming that \mathbf{Q} is equal to \mathbf{R}^{T}, we find that

$$
\psi(\mathbf{F}, \theta)=\psi(\mathbf{U}, \theta)
$$

and since $\mathbf{U}^{2}=\mathbf{C},(6.14)_{1}$ and $(6.14)_{2}$ are proved.
Moreover,

$$
\frac{\partial \psi}{\partial F_{i Q}} F_{j Q}=\frac{\partial \psi}{\partial C_{L M}} \frac{\partial C_{L M}}{\partial F_{i Q}} F_{j Q}=\frac{\partial \psi}{\partial C_{L M}}\left(\delta_{h i} \delta_{L Q} F_{h M}+F_{h L} \delta_{h i} \delta_{M Q}\right) F_{j Q}
$$

so that $(6.14)_{3}$ is also proved.

For (6.14) ${ }_{4}$, since $\nabla_{\mathbf{X}} \mathbf{v}=\mathbf{F}^{T} \nabla \mathbf{v}$, it holds that

$$
\mathbf{T}^{(d)}(\mathbf{F}, \dot{\mathbf{F}}, \theta, \boldsymbol{\Theta})=\tilde{\mathbf{T}}^{(d)}(\mathbf{F}, \nabla \mathbf{v}, \theta, \boldsymbol{\Theta})=\overline{\mathbf{T}}^{(d)}(\mathbf{F}, \mathbf{D}, \mathbf{W}, \theta, \boldsymbol{\Theta}) .
$$

Furthermore, since $\boldsymbol{\Theta}$ is invariant, the objectivity of $\overline{\mathbf{T}}^{(d)}(\mathbf{F}, \mathbf{D}, \mathbf{W}, \theta, \boldsymbol{\Theta})$ implies that

$$
\overline{\mathbf{T}}^{(d)}\left(\mathbf{F}^{\prime}, \mathbf{D}^{\prime}, \mathbf{W}^{\prime}, \theta, \boldsymbol{\Theta}\right)=\mathbf{Q} \overline{\mathbf{T}}^{(d)}(\mathbf{F}, \mathbf{D}, \mathbf{W}, \theta, \boldsymbol{\Theta}) \mathbf{Q}^{T},
$$

i.e.,

$$
\begin{equation*}
\overline{\mathbf{T}}^{(d)}(\mathbf{F}, \mathbf{D}, \mathbf{W}, \theta, \boldsymbol{\Theta})=\mathbf{Q}^{T} \overline{\mathbf{T}}^{(d)}\left(\mathbf{Q F}, \mathbf{Q} \mathbf{D} \mathbf{Q}^{T}, \mathbf{Q} \mathbf{W} \mathbf{Q}^{T}+\dot{\mathbf{Q}} \mathbf{Q}^{T}, \theta, \boldsymbol{\Theta}\right) \mathbf{Q} . \tag{6.16}
\end{equation*}
$$

If $\mathbf{Q}=\mathbf{I}$ and $\dot{\mathbf{Q}} \mathbf{Q}^{T}=\dot{\mathbf{Q}}=-\mathbf{W}$, then (6.16) gives

$$
\overline{\mathbf{T}}^{(d)}(\mathbf{F}, \mathbf{D}, \mathbf{W}, \theta, \boldsymbol{\Theta})=\overline{\mathbf{T}}^{(d)}(\mathbf{F}, \mathbf{D}, \mathbf{0}, \theta, \boldsymbol{\Theta})
$$

which proves that $\overline{\mathbf{T}}^{(d)}$ is independent of \mathbf{W}. It follows that (6.16) reduces to

$$
\overline{\mathbf{T}}^{(d)}(\mathbf{F}, \mathbf{D}, \theta, \boldsymbol{\Theta})=\mathbf{Q}^{T} \overline{\mathbf{T}}^{(d)}\left(\mathbf{Q F}, \mathbf{Q D Q}{ }^{T}, \theta, \boldsymbol{\Theta}\right) \mathbf{Q}
$$

If again the relations $\mathbf{F}=\mathbf{R U}$ and $\mathbf{Q}=\mathbf{R}^{T}$ are used, we deduce that:

$$
\overline{\mathbf{T}}^{(d)}(\mathbf{F}, \mathbf{D}, \theta, \boldsymbol{\Theta})=\mathbf{R} \overline{\mathbf{T}}^{(d)}\left(\mathbf{U}, \mathbf{Q} \mathbf{D Q}^{T}, \theta, \boldsymbol{\Theta}\right) \mathbf{R}^{T}=\mathbf{F} \hat{\mathbf{T}}^{(d)}\left(\mathbf{C}, \mathbf{Q D} \mathbf{Q}^{T}, \theta, \boldsymbol{\Theta}\right) \mathbf{F}^{T}
$$

and (6.14) $)_{4}$ is also proved.
Equation (6.14) 5 can be verified from similar arguments.
It is easy to check that $(6.14)_{1,2}$ are also sufficient conditions. As far as $(6.14)_{3}$ is concerned, it holds that

$$
\mathbf{T}^{(e)}\left(\mathbf{F}^{\prime}, \theta, \boldsymbol{\Theta}^{\prime}\right)=2 \rho \mathbf{F}^{\prime} \frac{\partial \psi}{\partial \mathbf{C}^{\prime}} \mathbf{F}^{\prime T}=2 \rho \mathbf{Q} \mathbf{F} \frac{\partial \psi}{\partial \mathbf{C}} \mathbf{F}^{T} \mathbf{Q}^{T}=\mathbf{Q T}^{(e)}(\mathbf{F}, \theta, \boldsymbol{\Theta}) \mathbf{Q}^{T} .
$$

The same procedure proves the other relations.
A thermoviscoelastic material is incompressible if

$$
\begin{equation*}
J=1 \Longleftrightarrow \nabla \cdot \mathbf{v}=0 \Longleftrightarrow V(c)=\text { const }, \tag{6.17}
\end{equation*}
$$

where $V(c)$ is the volume of any material region c (see (3.20) and (4.25)).
It is relevant to observe that in this case the inequality of the reduced dissipation no longer implies (6.13), since (6.8) must be satisfied for any process for which $\nabla \cdot \mathbf{v}=0$. To take this constraint into account, the inequality $R+p \nabla \cdot \mathbf{v} \geq 0$,
instead of (6.8), must be considered, where R represents (6.8) and p is a Lagrangian multiplier. It can be verified that $(6.13)_{3}$ reduces to

$$
\begin{equation*}
\mathbf{T}^{(e)}(\mathbf{F}, \theta, \boldsymbol{\Theta})=-p \mathbf{I}+\rho \frac{\partial \psi}{\partial \mathbf{F}} \mathbf{F}^{T} \tag{6.18}
\end{equation*}
$$

where $p(\mathbf{x})=\tilde{p}(\mathbf{X})$ is an undetermined function.
If a thermoelastic behavior, or a thermoviscoelastic behavior at rest, is supposed, i.e., $\mathbf{D}=\mathbf{0}$, then from $(6.13)_{4}$ we derive the condition

$$
\begin{equation*}
\mathbf{h} \cdot \mathbf{g} \leq 0, \tag{6.19}
\end{equation*}
$$

which allows us to say that when the system is at rest or there are no viscous effects, heat flows from higher temperature regions to lower temperature regions.

In addition, observing that the function $\mathbf{f}(\mathbf{F}, \mathbf{0}, \theta, \mathbf{g})=\mathbf{h} \cdot \mathbf{g}$ attains its maximum when $\mathbf{g}=\mathbf{0}$, we find that

$$
\begin{equation*}
\nabla_{\mathbf{g}} \mathbf{f}(\mathbf{F}, \mathbf{0}, \theta, \mathbf{g})_{\mathbf{g}=\mathbf{0}}=\mathbf{h}(\mathbf{F}, \mathbf{0}, \theta, \mathbf{0})=\mathbf{0} \tag{6.20}
\end{equation*}
$$

and it can be said that in a thermoviscoelastic system at rest, as well as in an elastic system, we cannot have heat conduction without a temperature gradient, i.e., when the temperature is uniform.

6.3 Linear Thermoelasticity

In this section, we consider a thermokinetic process of viscoelastic materials satisfying the following assumptions:

1. the reference configuration C_{*} is a state of equilibrium in which the stress tensor is \mathbf{T}_{0} and the temperature field θ_{0} is uniform;
2. the displacement field $\mathbf{u}(\mathbf{X}, t)$, its gradient $\mathbf{H}=\nabla_{\mathbf{X}} \mathbf{u}(\mathbf{X}, t)$, the temperature difference $\theta-\theta_{0}$, and its gradient $\boldsymbol{\Theta}=\nabla_{\mathbf{X}} \theta$ are first-order quantities.

The linearity assumption is equivalent to requiring that powers and products of these quantities appearing in the constitutive equation of the stress or powers greater than two in the thermodynamic potentials can be disregarded.

In order to illustrate the physical relevance of the above assumptions, we present the following two examples:

- Let S be a hollow cylinder with inner radius r_{1}, outer radius r_{2}, and height l, constituted by a thermoelastic homogeneous material in equilibrium under uniform temperature and in the absence of forces. Suppose now that a sector (as shown in Fig. 6.1) is extracted and the extremities A and A^{\prime} are welded in such

Fig. 6.1 Unstressed and stressed cylinders
a way that a new cylinder, whose cross section is no longer circular, is obtained. If we assume this configuration as a reference configuration C_{*}, then the stress state is not zero even in absence of applied forces, and the system will reach a new equilibrium temperature θ_{0}. Any perturbation of the system not far from C_{*} will satisfy only the assumption (2).

- As a second example, consider a cylinder of height l filled with fluid. Due to the weight of the fluid, there is a radial pressure acting on the internal cylinder wall, whose intensity increases linearly with depth from the surface (Stevino's law, Chap. 9). This pressure will produce a deformation of the cylinder, which defines the reference configuration C_{*}. If a piston acting on the surface will produce an additional small pressure changing in time, then there will be an evolution of the system satisfying only assumption (2).

By taking advantage of the fact that all the quantities describing the evolution from the reference configuration C_{*} under the assumptions (1) and (2) are first-order quantities, the stress constitutive relation can be replaced with its Taylor expansion, truncated to the first-order terms, whereas the constitutive equations of the thermodynamic potentials can be approximated with their Taylor expansions, truncated to the second-order terms.

From (6.14) $)_{3,5}$, since in the reference configuration $\mathbf{C}=\mathbf{I}$ and $\boldsymbol{\Theta}=\mathbf{0}$, it follows that

$$
\begin{equation*}
\mathbf{T}_{0}=2 \rho_{*}\left(\frac{\partial \psi}{\partial \mathbf{C}}\right)_{*} \tag{6.21}
\end{equation*}
$$

where the notation $(A)_{*}$ emphasizes that the quantity A is evaluated for $\mathbf{C}=\mathbf{I}$, $\theta=\theta_{0}$, and $\boldsymbol{\Theta}=\mathbf{0}$, i.e., in C_{*}.

In particular, if the reference configuration is stress free, then

$$
\begin{equation*}
\mathbf{T}_{0}=\mathbf{0} . \tag{6.22}
\end{equation*}
$$

Under the assumption (2), the constitutive equations can be proved to have the structure

$$
\begin{align*}
& \mathbf{T} \cong \mathbf{T}_{0}+\mathbf{H} \mathbf{T}_{0}+\mathbf{T}_{0} \mathbf{H}^{T}-\operatorname{tr} \mathbf{H} \mathbf{T}_{0}+\mathbb{C} \mathbf{E}+\mathbb{A}\left(\theta-\theta_{0}\right), \\
& \mathbf{h} \cong-\mathbf{K g} \tag{6.23}
\end{align*}
$$

where \mathbf{E} is the tensor of infinitesimal strain (see (3.30)), $\mathbf{g}=\nabla_{\mathbf{x}} \theta$, and

$$
\begin{align*}
\mathbb{C}_{i j n p} & =4 \rho_{*}\left(\frac{\partial^{2} \psi}{\partial \mathbb{C}_{i j} \partial \mathbb{C}_{n p}}\right)_{*}, \mathbb{A}_{i j}=2 \rho_{*}\left(\frac{\partial^{2} \psi}{\partial \theta \partial \mathbb{C}_{i j}}\right)_{*} \\
K_{i j} & =-\frac{\partial \hat{h}_{i}}{\partial \Theta_{j}}\left(\mathbf{I}, \theta_{0}, \mathbf{0}\right) \tag{6.24}
\end{align*}
$$

Tensors \mathbb{C} and \mathbf{K} are called the tensor of linear elasticity and the tensor of thermal conductivity, relative to C_{*}.

Owing to (6.24), \mathbb{C} and \mathbb{A} have the following properties of symmetry:

$$
\begin{equation*}
\mathbb{C}_{i j n p}=\mathbb{C}_{j i n p}=\mathbb{C}_{i j p n}=\mathbb{C}_{n p i j}, \mathbb{A}_{i j}=\mathbb{A}_{j i} \tag{6.25}
\end{equation*}
$$

furthermore, from (6.19) and $(6.23)_{2}$, it follows that the tensor \mathbf{K} is positive definite:

$$
\begin{equation*}
\mathbf{g} \cdot \mathbf{K g} \geq 0 \tag{6.26}
\end{equation*}
$$

Moreover, since

$$
\begin{align*}
& \mathbf{T}_{*} \cong \mathbf{T}+\operatorname{tr} \mathbf{H} \mathbf{T}_{0}-\mathbf{T}_{0} \mathbf{H}^{T} \\
& \mathbf{h}_{*} \cong \mathbf{h} \tag{6.27}
\end{align*}
$$

if the reference configuration C_{*} is stress free, it follows that

$$
\begin{align*}
& \mathbf{T} \cong \mathbf{T}_{*} \cong \mathbb{C} \mathbf{E}+\mathbb{A}\left(\theta-\theta_{0}\right) \\
& \mathbf{h} \cong \mathbf{h}_{*} \cong-\mathbf{K g} \tag{6.28}
\end{align*}
$$

so that there is no difference between the Lagrangian and Eulerian descriptions.
Finally, we observe that (6.23) $)_{1}$ and (6.27) give the following approximate expression of \mathbf{T}_{*} :

$$
\mathbf{T}_{*} \cong \mathbf{T}_{0}+\mathbf{H} \mathbf{T}_{0}+\mathbb{C} \mathbf{E}+\mathbb{A}\left(\theta-\theta_{0}\right)
$$

To prove previous formulae, we will made use of lowercase Latin indices for both the Eulerian and Lagrangian formulations. In addition, since the aim is to find a set of linearized constitutive equations for the stress, the free energy ψ will be represented by a Taylor expansion truncated to second-order terms:

$$
\begin{align*}
\psi \cong & \psi_{*}+\left(\frac{\partial \psi}{\partial \theta}\right)_{*}\left(\theta-\theta_{0}\right)+\left(\frac{\partial \psi}{\partial C_{l m}}\right)_{*}\left(C_{l m}-\delta_{l m}\right) \\
& +\frac{1}{2}\left(\frac{\partial^{2} \psi}{\partial \theta^{2}}\right)_{*}\left(\theta-\theta_{0}\right)^{2}+\left(\frac{\partial^{2} \psi}{\partial \theta \partial C_{l m}}\right)_{*}\left(\theta-\theta_{0}\right)\left(C_{l m}-\delta_{l m}\right) \\
& +\frac{1}{2}\left(\frac{\partial^{2} \psi}{\partial C_{l m} \partial C_{n p}}\right)_{*}\left(C_{l m}-\delta_{l m}\right)\left(C_{n p}-\delta_{n p}\right) \tag{6.29}
\end{align*}
$$

From (6.29) it also follows that

$$
\begin{equation*}
\frac{\partial \psi}{\partial C_{l m}} \cong\left(\frac{\partial \psi}{\partial C_{l m}}\right)_{*}+\left(\frac{\partial^{2} \psi}{\partial \theta \partial C_{l m}}\right)_{*}\left(\theta-\theta_{0}\right)+\left(\frac{\partial^{2} \psi}{\partial C_{l m} \partial C_{n p}}\right)_{*}\left(C_{n p}-\delta_{n p}\right) \tag{6.30}
\end{equation*}
$$

and since $\mathbf{C}=\mathbf{F}^{T} \mathbf{F}=\mathbf{I}+2 \mathbf{E}+\mathbf{H}^{T} \mathbf{H}$, by neglecting second-order terms we get

$$
\begin{equation*}
\frac{\partial \psi}{\partial C_{l m}} \cong\left(\frac{\partial \psi}{\partial C_{l m}}\right)_{*}+\left(\frac{\partial^{2} \psi}{\partial \theta \partial C_{l m}}\right)_{*}\left(\theta-\theta_{0}\right)+2\left(\frac{\partial^{2} \psi}{\partial C_{l m} \partial C_{n p}}\right)_{*} E_{n p} \tag{6.31}
\end{equation*}
$$

In addition, from (5.66), (3.40), and (3.27) it follows that

$$
\rho \cong \rho_{*}(1-\operatorname{tr} \mathbf{H}), \mathbf{F}=\mathbf{I}+\mathbf{H}
$$

and $(6.14)_{3}$ becomes

$$
\begin{equation*}
T_{i j} \cong 2 \rho_{*}\left(1-H_{h h}\right)\left(\delta_{i l}+H_{i l}\right) \frac{\partial \psi}{\partial C_{l m}}\left(\delta_{j m}+H_{j m}\right) \tag{6.32}
\end{equation*}
$$

By substituting (6.31) into (6.32), neglecting terms of higher order, and taking into account (6.21) and (6.24) $)_{1,2},(6.23)_{1}$ is proved.

In a similar way, first-order terms of the heat flux vector give

$$
h_{i} \cong \frac{\partial h_{i}}{\partial \Theta_{j}}(\mathbf{C}, \theta, \mathbf{0}) \Theta_{j} \cong \frac{\partial h_{i}}{\partial \Theta_{j}}(\mathbf{I}, \theta, \mathbf{0}) \Theta_{j},
$$

so that $(6.23)_{2}$ and $(6.24)_{3}$ are also proved, since $\boldsymbol{\Theta}=\mathbf{F}^{T} \mathbf{g}=\left(\mathbf{I}+\mathbf{H}^{T}\right) \mathbf{g}$.
Finally, to prove (6.27) we recall (3.40) as well as the Lagrangian definitions (5.67) and (5.79), which, when expressed as a Taylor series, become

$$
\begin{aligned}
T_{* i j} & \cong\left(1+H_{h h}\right) T_{i h}\left(\delta_{j h}-H_{j h}\right) \cong T_{i j}+H_{h h} T_{i j}-T_{i h} H_{j h}, \\
h_{* i} & =\left(1+H_{h h}\right) h_{j}\left(\delta_{i j}-H_{i j}\right) \cong h_{j}+H_{h h} h_{j}-h_{j} H_{i j} .
\end{aligned}
$$

The introduction of equations (6.23) into the latter gives (6.27).

6.4 Exercises

1. Given the constitutive equations of order 3

$$
\mathbf{A}=\mathbf{A}_{C_{*}}\left(\mathbf{v}, \mathbf{F}, \nabla_{\mathbf{X}} \mathbf{F}, \dot{\mathbf{F}}, \theta, \mathbf{G}, \dot{\theta}, \ddot{\theta}, d^{3} \theta / d t^{3}, \nabla_{\mathbf{X}} \mathbf{G}, \nabla_{\mathbf{X}} \dot{\mathbf{G}}, \mathbf{X}\right)
$$

prove that the objectivity principle does not allow any dependence on the velocity \mathbf{v} of \mathbf{X}.

Consider the change of reference frame from I to I^{\prime}, the latter having a constant velocity \mathbf{u} with respect to I. The objectivity principle requires that

$$
\mathbf{A}_{C_{*}}(\mathbf{v}+\mathbf{u}, \boldsymbol{\xi})=\mathbf{A}_{C_{*}}(\mathbf{v}, \boldsymbol{\xi})
$$

where $\boldsymbol{\xi}$ is the set of all other variables. The choice $\mathbf{u}=-\mathbf{v}$ proves the independence of \mathbf{v}.

Using the principle of dissipation, other constraints for the constitutive quantities are obtained.
2. Let $\mathbf{d}(\mathbf{X}, t)$ be a vector field and consider the constitutive equation for the heat flux vector in the form

$$
\mathbf{h}=\mathbf{h}(\mathbf{F}, \dot{\mathbf{d}}, \theta, \boldsymbol{\Theta})
$$

Prove that the objectivity principle requires that

$$
\mathbf{h}=\tilde{\mathbf{h}}(\mathbf{C}, \hat{\mathbf{d}}, \theta, \boldsymbol{\Theta})
$$

where

$$
\hat{\mathbf{d}}=\dot{\mathbf{d}}-\omega \times \mathbf{d}
$$

and ω is the angular velocity at $\mathbf{x} \in C$.

Chapter 7
 Symmetry Groups: Solids and Fluids

Determining the constitutive equations of materials is one of the most important and difficult problems of continuum mechanics. Since in this theory we renounce to a microscopic description of matter, we can determine constitutive equations only by experiments. These experiments can be widely simplified if the form of constitutive equations is reduced by theoretic considerations. In Chap. 6 we have shown as the constitutive axioms perform this task. Also the symmetries, considered in this chapter, have the same aim. A symmetry is an operation carried out on a body which has no effect on the response of material to external actions. It is proved that these operations form a group which characterizes the material. In this chapter we analyze the unimodular symmetries that characterizes the thermoviscoelstic fluids, the orthogonal group which defines isotropic solids and the symmetry group of the crystal classes, studying their effects on the form of the constitutive equations of these materials. After a section of exercises, the last sections describe the program LinElasticityTensor, written with Mathematica ${ }^{\circledR}$, which allows to determine the elasticity tensor of linear elasticity of different materials.

7.1 Symmetry

The experimental determination of the constitutive equation of a material is not an easy task. It requires special apparatuses that must satisfy very restrictive requirements, the most important being the capability of inducing a uniform state of stress and strain in the material element being tested. In addition, even in the simplest cases of elastic behavior, the experimental procedure is far from straightforward due to the number of stress (or strain) states required to determine the material response.

For these reasons, it is relevant to ask if symmetry properties of materials can to some extent simplify this task, because of the additional restrictions they introduce into the constitutive equations.

Within this framework, we will first turn our attention to isotropic solids and to viscous fluids and then we will highlight the general properties of elastic anisotropic solids in isothermal conditions.

Before we proceed, let us introduce some intuitive considerations that will help us to understand a more formal definition of symmetry.

Let C_{*} be a sphere of radius r exhibiting the same elastic properties in all directions and subjected to a uniform pressure $-p \mathbf{N}$, where \mathbf{N} is the unit forward vector normal to ∂C_{*}. We can predict, and it is experimentally proved, that C_{*} deforms into a sphere C of radius $r_{1}<r$, whose state of stress is given by $-p \mathbf{I}$. This final configuration is also obtained if C_{*} is rotated around an axis passing through its center, before applying the uniform pressure $-p \mathbf{N}$ on its boundary.

If the material of C_{*} does not have the same elastic properties in all directions, then the deformed state of C will be an ellipsoid whose minor axis is in the direction of lower stiffness.

Suppose now that the sphere C_{*} is first subjected to a rigid rotation \mathbf{Q} about its center, so that its configuration changes from C_{*} to C_{*}^{\prime}, and it is subsequently deformed through the application of $-p \mathbf{I} \mathbf{N}$. Its final configuration C^{\prime} will be an ellipsoid rotated with respect to C, according to the matrix \mathbf{Q}.

More generally, consider an elastic body S in the reference configuration C_{*} subjected to mass forces $\rho \mathbf{b}$ and surface tractions \mathbf{t}, and suppose it reaches the deformed configuration C, in which the strain and the stress state in a neighborhood of \mathbf{x} are given by the deformation gradient \mathbf{F} and the stress tensor \mathbf{T}. If the material exhibits a symmetry expressed by the orthogonal matrix $\mathbf{Q},{ }^{1}$ then we could rotate it by \mathbf{Q}, so that C_{*} rotates into C_{*}^{\prime}, and we could apply a force system, conveniently modified in such a way that the deformation gradient in $\mathbf{Q x}$ is still represented by \mathbf{F}. In this case, the stress state will be the same.

In the following discussion the notations Unim and $O(3)$ identify respectively the group of 3×3 matrices whose determinant is ± 1 and the group of orthogonal matrices (see Chap. 1):

$$
\begin{align*}
\operatorname{Unim} & =\left\{\mathbf{H}: E_{3} \rightarrow E_{3}, \quad \mathbf{H} \in \operatorname{Lin}\left(E_{3}\right), \quad \operatorname{det} \mathbf{H}= \pm 1\right\} \\
O(3) & =\left\{\mathbf{Q}: E_{3} \rightarrow E_{3}, \quad \mathbf{Q}^{T} \mathbf{Q}=\mathbf{I}, \quad \operatorname{det} \mathbf{Q}= \pm 1\right\} . \tag{7.1}
\end{align*}
$$

Accordingly, $O(3)$ is a subgroup of Unim.
Any matrix \mathbf{H} belonging to one of these groups represents a transformation of the vector space \mathcal{E}_{3} that leaves unchanged the mass density, as can be proved by noting that $\rho=\rho_{*}|\operatorname{det} \mathbf{H}|$.

[^20]If not otherwise stated, \mathbf{H} and \mathbf{Q} will denote unimodular and orthogonal matrices, respectively.

Let C_{*} be a reference configuration of a thermoelastic system S and let \mathbf{X}_{0} be an arbitrary selected point of C_{*}, and consider the transformation $C_{*} \longrightarrow C_{*}^{\prime}$

$$
\mathbf{X}^{\prime}=\mathbf{L}(\mathbf{X})=\mathbf{X}_{0}+\mathbf{H}\left(\mathbf{X}-\mathbf{X}_{0}\right), \mathbf{H} \in \text { Unim },
$$

which, due to the properties of \mathbf{H}, preserves volume and density and leaves \mathbf{X}_{0} a fixed point.

Now consider an arbitrary deformation $C_{*} \longrightarrow C$, represented by $\mathbf{x}=\mathbf{f}(\mathbf{X})$, and a second one $C_{*} \longrightarrow C_{*}^{\prime} \longrightarrow C$, obtained by first applying $\mathbf{L}(\mathbf{X})$ and then $\mathbf{f}^{\prime}\left(\mathbf{X}^{\prime}\right)$, so that $\mathbf{f}=\mathbf{f}^{\prime} \mathbf{H}$. If S is a thermoviscoelastic material and its response is specified by $\mathbf{A}(\mathbf{F}, \dot{\mathbf{F}}, \theta, \boldsymbol{\Theta})$ (see (6.4)), then $\mathbf{H} \in \operatorname{Unim}$ represents a symmetry at \mathbf{X}_{0} and in the configuration C_{*} if and only if

$$
\begin{equation*}
\mathbf{A}_{C_{*}}(\mathbf{F}, \dot{\mathbf{F}}, \theta, \boldsymbol{\Theta})=\mathbf{A}_{C_{*}}(\mathbf{F H}, \dot{\mathbf{F}} \mathbf{H}, \theta, \boldsymbol{\Theta} \mathbf{H}) \tag{7.2}
\end{equation*}
$$

i.e., the material response in \mathbf{X}_{0} is the same whether we consider the deformation $\mathbf{f}(\mathbf{X})$ or $\mathbf{f}^{\prime}(\mathbf{L}(\mathbf{X}))$.

Theorem 7.1. Symmetry transformations at the point \mathbf{X}_{0} of C_{*} are a subgroup $\mathfrak{G}_{C_{*}}$ of Unim.

Proof. To prove that if $\mathbf{H}_{1}, \mathbf{H}_{2} \in \mathfrak{G}_{C_{*}}$ then also $\mathbf{H}_{1} \mathbf{H}_{2} \in \mathfrak{G}_{C_{*}}$, we first observe that, if \mathbf{F} is nonsingular and $\mathbf{H}_{1} \in \mathfrak{G}_{C_{*}}$, it follows that $\mathbf{F H}_{1}$ is nonsingular. If we replace \mathbf{F} with $\mathbf{F H}_{1}$ and $\boldsymbol{\Theta}$ with $\boldsymbol{\Theta} \mathbf{H}_{1}$ in (7.2), then we obtain

$$
\mathbf{A}_{C_{*}}\left(\mathbf{F} H_{1}, \dot{\mathbf{F}} \mathbf{H}_{1}, \boldsymbol{\Theta} \mathbf{H}_{1}\right)=\mathbf{A}_{C_{*}}\left(\mathbf{F H}_{1} \mathbf{H}_{2}, \mathbf{F H}_{1}, \dot{\mathbf{F}} \mathbf{H}_{1} \mathbf{H}_{2}, \boldsymbol{\Theta} \mathbf{H}_{1} \mathbf{H}_{2}\right),
$$

where, for the sake of simplicity, the dependence on θ has been omitted. In addition, if $\mathbf{H}_{1} \in \mathfrak{G}_{C_{*}}$ and therefore $\mathbf{A}_{C_{*}}(\mathbf{F}, \dot{\mathbf{F}}, \boldsymbol{\Theta})=\mathbf{A}_{C_{*}}\left(\mathbf{F H}_{1}, \cdot \mathbf{F H}_{1}, \boldsymbol{\Theta} \mathbf{H}_{1}\right)$, then it holds that

$$
\begin{equation*}
\mathbf{A}_{C_{*}}(\mathbf{F}, \dot{\mathbf{F}}, \boldsymbol{\Theta})=\mathbf{A}_{C_{*}}\left(\mathbf{F H}_{1} \mathbf{H}_{2}, \mathbf{F H}_{1}, \dot{\mathbf{F}} \mathbf{H}_{1} \mathbf{H}_{2}, \boldsymbol{\Theta} \mathbf{H}_{1} \mathbf{H}_{2}\right), \tag{7.3}
\end{equation*}
$$

and since $\mathbf{H}_{1} \mathbf{H}_{2} \in$ Unim, we have $\mathbf{H}_{1} \mathbf{H}_{2} \in \mathfrak{G}_{C_{*}}$. Furthermore, if $\mathbf{H} \in \mathfrak{G}_{C_{*}}$, then \mathbf{H}^{-1} exists and by replacing \mathbf{F} with $\mathbf{F} \mathbf{H}^{-1}$ and $\boldsymbol{\Theta}$ with $\boldsymbol{\Theta} \mathbf{H}^{-1}$ in (7.2), it is proved that $\mathbf{H}^{-1} \in \mathfrak{G}_{C_{*}}$.

The subgroup $\mathfrak{G}_{C_{*}}$ is called the symmetry group of S at \mathbf{X}_{0} and in the configuration C_{*}.

It can also be proved that symmetry groups in two configurations C_{*} and C_{*}^{\prime} and at the point \mathbf{X}_{0}, where these are related to each other through a unimodular transformation \mathbf{P}, are conjugate; i.e., there exists the relation,

$$
\begin{equation*}
\mathfrak{G}_{C_{*}^{\prime}}=\mathbf{P} \mathfrak{G}_{C_{*}} \mathbf{P}^{-1} \tag{7.4}
\end{equation*}
$$

At this stage, we can give the following definitions:

- the material is homogeneous in the configuration C_{*} if its symmetry group is independent of $\mathbf{X}_{0} \in C_{*}$;
- a thermoelastic solid S is called anisotropic in the configuration C_{*} and at $\mathbf{X}_{0} \in$ C_{*} if

$$
\begin{equation*}
\mathfrak{G}_{C_{*}} \subset O(3) \tag{7.5}
\end{equation*}
$$

i.e., if its symmetry group at \mathbf{X}_{0} is a proper subgroup of all possible rotations about \mathbf{X}_{0};

- a thermoelastic system S represents a thermoelastic isotropic solid at \mathbf{X}_{0}, if there exists a configuration C_{*}, called the natural or undistorted configuration, relative to which the group of isotropy at \mathbf{X}_{0} is the orthogonal group:

$$
\begin{equation*}
\mathfrak{G}_{C_{*}}=O(3) \tag{7.6}
\end{equation*}
$$

Finally we leave as an exercise to verify the following formulae

$$
\begin{equation*}
\mathbf{F}=\mathbf{F}^{\prime} \mathbf{H}, \boldsymbol{\Theta}=\mathbf{H}^{T} \boldsymbol{\Theta}^{\prime}, \mathbf{C}=\mathbf{H}^{T} \mathbf{C}^{\prime} \mathbf{H} \tag{7.7}
\end{equation*}
$$

where quantities without primes refer to the deformation $C_{*} \longrightarrow C$ and those with primes to $C_{*}^{\prime} \longrightarrow C$.

7.2 Isotropic Solids

We now proceed to explore the restrictions on the constitutive equations of a thermoelastic material deriving from the assumption of isotropy. To do this, the following definitions are necessary.

A scalar function $f(\mathbf{B})$ of the second-order tensor \mathbf{B} is defined to be isotropic if

$$
\begin{equation*}
f(\mathbf{B})=f\left(\mathbf{Q B} \mathbf{Q}^{T}\right) \quad \forall \mathbf{Q} \in O(3) \tag{7.8}
\end{equation*}
$$

Similarly, a vector function $\mathbf{f}(\mathbf{v}, \mathbf{B})$ and a tensor function $\mathbf{T}=\mathbf{T}(\mathbf{v}, \mathbf{B})$, whose arguments are the vector \mathbf{v} and the tensor \mathbf{B}, are defined to be isotropic if

$$
\begin{align*}
\mathbf{Q}(\mathbf{v}, \mathbf{B}) & =\mathbf{f}\left(\mathbf{Q v}, \mathbf{Q B} \mathbf{Q}^{T}\right) & & \forall \mathbf{Q} \in O(3) \\
\mathbf{Q T}(\mathbf{v}, \mathbf{B}) \mathbf{Q}^{T} & =\mathbf{T}\left(\mathbf{Q v}, \mathbf{Q B} \mathbf{Q}^{T}\right) & & \forall \mathbf{Q} \in O(3) \tag{7.9}
\end{align*}
$$

We refer the reader to $[57,58,68]$ for more insight into the structure of isotropic functions. For the applications we are going to discuss, it is relevant to observe that
the above theorems for isotropic functions allow us to write (7.8) and (7.9) $)_{1}$ in the following form:

$$
\begin{align*}
f(\mathbf{B}) & =f\left(I_{B}, I I_{B}, I I I_{B}\right), \\
\mathbf{f}(\mathbf{v}, \mathbf{B}) & =\left(K_{0} \mathbf{I}+K_{1} \mathbf{B}+K_{2} \mathbf{B}^{2}\right) \mathbf{v} \tag{7.10}
\end{align*}
$$

where $I_{B}, I I_{B}, I I I_{B}$ are the principal invariants of the second-order tensor \mathbf{B} and K_{0}, K_{1}, K_{2} depend on $I_{B}, I I_{B}, I I I_{B}, g^{2}, \mathbf{g} \cdot \mathbf{B g}$, and $\mathbf{g} \cdot \mathbf{B}^{2} \mathbf{g}$.

We can now prove the following fundamental theorem:
Theorem 7.2. A thermoelastic system S with constitutive equations that satisfy the principle of material frame-indifference and the principle of dissipation is an isotropic solid if and only if

$$
\begin{align*}
\psi & =\psi(I, I I, I I I, \theta), \\
\eta & =-\frac{\partial \psi}{\partial \theta}=\eta(I, I I, I I I, \theta), \\
\mathbf{T} & =f_{0} \mathbf{I}+f_{1} \mathbf{B}+f_{2} \mathbf{B}^{2}, \\
\mathbf{h} & =\left(K_{0} \mathbf{I}+K_{1} \mathbf{B}+K_{2} \mathbf{B}^{2}\right) \mathbf{g}, \tag{7.11}
\end{align*}
$$

where I, II, III are the principal invariants of \mathbf{B} or \mathbf{C} and the functions f are defined as

$$
\begin{equation*}
f_{0}=2 \rho I I I \frac{\partial \psi}{\partial I I I}, \quad f_{1}=2 \rho\left(\frac{\partial \psi}{\partial I}+I \frac{\partial \psi}{\partial I I}\right), \quad f_{2}=-2 \rho \frac{\partial \psi}{\partial I I}, \tag{7.12}
\end{equation*}
$$

and the functions K depend on θ and on $I, I I, I I I, g^{2}, \mathbf{g} \cdot \mathbf{B g}$, and $\mathbf{g} \cdot \mathbf{B}^{2} \mathbf{g}$.
Proof. If the constitutive equations of S satisfy both the principles of material frame-indifference and dissipation and S is thermoelastic (i.e., it does not exhibit frictional dissipation), then (6.14) becomes

$$
\begin{align*}
\psi & =\psi(\mathbf{C}, \theta), \\
\eta & =-\frac{\partial \psi}{\partial \theta}=\eta(\mathbf{C}, \theta), \\
\mathbf{T}^{(e)} & =2 \rho \mathbf{F} \frac{\partial \psi}{\partial \mathbf{C}} \mathbf{F}^{T}, \\
\mathbf{h} & =\mathbf{F} \hat{\mathbf{h}}(\mathbf{C}, \theta, \boldsymbol{\Theta}) . \tag{7.13}
\end{align*}
$$

Referring to (7.13) $)_{1}$, we find that the isotropy assumption (7.2) applied to the free energy ψ,

$$
\begin{equation*}
\psi(\mathbf{F}, \theta)=\psi(\mathbf{F Q}, \theta) \quad \forall \mathbf{Q} \in O(3) \tag{7.14}
\end{equation*}
$$

gives (see (7.7))

$$
\begin{equation*}
\psi(\mathbf{C}, \theta)=\psi\left(\mathbf{Q}^{T} \mathbf{C} \mathbf{Q}, \theta\right) \quad \forall \mathbf{Q} \in O(3) \tag{7.15}
\end{equation*}
$$

This relation, despite the immaterial exchange of \mathbf{Q}^{T} with \mathbf{Q}, is coincident with (7.8), so that the function $\psi(\mathbf{C}, \theta)$ is isotropic.

From (7.10),$(7.11)_{1,2}$ follow.
From (6.14) ${ }_{2}$, (3.52), and (3.53) it follows that

$$
\begin{align*}
\mathbf{T} & =2 \rho \mathbf{F}\left(\frac{\partial \psi}{\partial I} \frac{\partial I}{\partial \mathbf{C}}+\frac{\partial \psi}{\partial I I} \frac{\partial I I}{\partial \mathbf{C}}+\frac{\partial \psi}{\partial I I I} \frac{\partial I I I}{\partial \mathbf{C}}\right) \mathbf{F}^{T} \\
& =2 \rho \mathbf{F}\left(\frac{\partial \psi}{\partial I} \mathbf{I}+\frac{\partial \psi}{\partial I I}(I \mathbf{I}-\mathbf{C})+\frac{\partial \psi}{\partial I I I} I I I\left(\mathbf{C}^{2}-I_{C} \mathbf{C}+I I_{C} \mathbf{I}\right)^{T}\right) \mathbf{F}^{T}, \tag{7.16}
\end{align*}
$$

and since $\mathbf{C}=\mathbf{F}^{T} \mathbf{F}, \mathbf{B}=\mathbf{F F}^{T}$, and $\mathbf{B}^{2}=\mathbf{F C F}^{T},(7.11)_{3}$ is proved, also taking into account (7.12).

To prove (7.11) $)_{4}$, we see that the isotropy requirement (7.2) applied to \mathbf{h} gives (7.13) $)_{4}$ the form (see (7.7))

$$
\mathbf{F} \hat{\mathbf{h}}(\mathbf{C}, \theta, \boldsymbol{\Theta})=\mathbf{F Q} \hat{\mathbf{h}}\left(\mathbf{Q}^{T} \mathbf{C Q}, \theta, \mathbf{Q}^{T} \boldsymbol{\Theta}\right)
$$

from which it follows that

$$
\mathbf{Q}^{T} \hat{\mathbf{h}}(\mathbf{C}, \theta, \boldsymbol{\Theta})=\hat{\mathbf{h}}\left(\mathbf{Q}^{T} \mathbf{C Q}, \theta, \mathbf{Q}^{T} \boldsymbol{\Theta}\right)
$$

This expression, despite the exchange of \mathbf{Q}^{T} with \mathbf{Q}, is coincident with (7.9) . From (7.10) we can derive

$$
\mathbf{h}=\mathbf{F}\left(h_{0} \mathbf{I}+h_{1} \mathbf{C}+h_{2} \mathbf{C}^{2}\right) \boldsymbol{\Theta},
$$

and by substituting $\boldsymbol{\Theta}=\mathbf{F}^{T} \mathbf{g}$ and $\mathbf{B}^{2}=\mathbf{F C F}^{T}$, relations (7.11) 4 are obtained.
Finally, we observe that it is an easy exercise to verify that Eq. (7.11) satisfy the isotropy requirement (7.2).

If

- the transformation $C_{*} \rightarrow C$ is infinitesimal, and
- in the reference configuration C_{*} the system is elastic, homogeneous at a constant and uniform temperature, and
- C_{*} is a stress-free state,
then $(7.11)_{3}$ allows us to derive the constitutive equation of a linear isotropic solid.
To do this, we first note that the following relations hold: $\mathbf{B}=\mathbf{F F}^{T}=$ $(\mathbf{I}+\mathbf{H})(\mathbf{I}+\mathbf{H})^{T} \simeq \mathbf{I}+2 \mathbf{E}, \mathbf{B}^{2}=\mathbf{I}+4 \mathbf{E}$.

If, in addition, we assume that f_{0}, f_{1}, f_{2} can be expanded in power series of principal invariants in the neighborhood of the identity matrix \mathbf{I}, then by neglecting second-order terms of \mathbf{H} we get the condition

$$
\begin{equation*}
f_{i} \simeq a_{i}+b_{i}(I-3) \simeq a_{i}+2 b_{i} \operatorname{tr} \mathbf{E},\left(a_{1}+a_{2}+a_{3}=0\right) \tag{7.17}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
\mathbf{T}=\lambda(\operatorname{tr} \mathbf{E}) \mathbf{I}+2 \mu \mathbf{E}, \tag{7.18}
\end{equation*}
$$

where the coefficients λ and μ are called the Lamé coefficients.
We also have

$$
\operatorname{tr} \mathbf{T}=(3 \lambda+2 \mu) \operatorname{tr} \mathbf{E},
$$

so that, if $(3 \lambda+2 \mu) \neq 0$, combining with (7.18) leads to the inverse relation

$$
\begin{equation*}
\mathbf{E}=\frac{1}{2 \mu} \mathbf{T}-\frac{\lambda}{2 \mu(3 \lambda+2 \mu)}(\operatorname{tr} \mathbf{T}) \mathbf{I} . \tag{7.19}
\end{equation*}
$$

To give these coefficients a physical interpretation, we suppose the system S to be subjected to a uniform traction of intensity t along the direction parallel to the base unit vector \mathbf{e}_{1}, so that $\mathbf{t}_{\mathbf{e}_{1}}=\mathbf{T e} \mathbf{e}_{1}=t \mathbf{e}_{1}$. By considering the stress tensor components relative to the basis $\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right)$, we find that the only nonvanishing component is $T_{11}=t$. From (7.19) we derive the deformation components

$$
\begin{aligned}
& E_{11}=\frac{\lambda+\mu}{\mu(3 \lambda+2 \mu)} t, \\
& E_{22}=E_{33}=-\frac{\lambda}{2 \mu(3 \lambda+2 \mu)} t, \\
& E_{12}=E_{13}=E_{23}=0 .
\end{aligned}
$$

The quantities

$$
\begin{align*}
E_{Y} & =\frac{t}{E_{11}}=\frac{\mu(3 \lambda+2 \mu)}{\lambda+\mu}, \\
\sigma & =-\frac{E_{22}}{E_{11}}=-\frac{E_{33}}{E_{11}}=\frac{\lambda}{2(\lambda+\mu)}, \tag{7.20}
\end{align*}
$$

are called Young's modulus and Poisson's ratio, respectively. Their meaning is as follows:

- Young's modulus indicates the ratio between the traction per unit surface area and the linear dilation produced in the same direction;
- Poisson's ratio is the ratio between the contraction, in the direction orthogonal to \mathbf{t}, and the dilation along \mathbf{t}.

More generally, when thermal phenomena are also considered, linearization of (7.11) gives

$$
\begin{align*}
& \mathbf{T}=\lambda\left(\theta_{0}\right)(\operatorname{tr} \mathbf{E}) \mathbf{I}+2 \mu\left(\theta_{0}\right) \mathbf{E}-\beta\left(\theta-\theta_{0}\right) \mathbf{I}, \\
& \mathbf{h}=-K\left(\theta_{0}\right) \mathbf{g}, \tag{7.21}
\end{align*}
$$

where the function $K\left(\theta_{0}\right)$, due to (6.19), is positive:

$$
\begin{equation*}
K\left(\theta_{0}\right)>0 . \tag{7.22}
\end{equation*}
$$

7.3 Perfect and Viscous Fluids

A thermoviscoelastic system S whose constitutive equation is given by $\mathbf{A}(\mathbf{F}, \dot{\mathbf{F}}, \theta, \boldsymbol{\Theta})$ is a thermoviscous fluid if

$$
\begin{equation*}
\mathfrak{G}_{C_{*}}=\text { Unim } \quad \forall C_{*} . \tag{7.23}
\end{equation*}
$$

We note that (7.23) indicates that local changes of shape do not modify the response of the system, according to experimental evidence. Moreover, since the reference configuration is arbitrary, fluids do not lose their symmetry properties during deformation.

Theorem 7.3. A thermoelastic system S with constitutive equations that satisfy the principles of dissipation and material frame-indifference represents a thermoviscous fluid if and only if

$$
\begin{align*}
\psi & =\psi(\rho, \theta) \\
\eta & =-\frac{\partial \psi}{\partial \theta}=\eta(\rho, \theta), \\
\mathbf{T}^{(e)} & =-\rho^{2} \frac{\partial \psi}{\partial \rho} \mathbf{I} \\
\mathbf{T}^{(d)} & =\mathbf{f}(\rho, \mathbf{D}, \theta, \mathbf{g}) \\
\mathbf{h} & =\left(K_{0} \mathbf{I}+K_{1} \mathbf{D}+K_{2} \mathbf{D}^{2}\right) \mathbf{g}, \tag{7.24}
\end{align*}
$$

where ρ is the density, \mathbf{f} is a tensor function of \mathbf{D} and \mathbf{g}, and functions K depend on ρ, θ, and on invariants $g^{2}, \mathbf{g} \cdot \mathbf{D g}$, and $\mathbf{g} \cdot \mathbf{D}^{2} \mathbf{g}$.

Proof. Symmetry properties allow us to write

$$
\psi(\mathbf{F H}, \theta)=\psi(\mathbf{F}, \theta) \quad \forall \mathbf{H} \in \operatorname{Unim},
$$

and this equality, taking into account $(6.14)_{1}$ and $(7.7)_{3}$, can also be written in the form

$$
\begin{equation*}
\psi\left(\mathbf{H}^{T} \mathbf{C H}, \theta\right)=\psi(\mathbf{C}, \theta) \quad \forall \mathbf{H} \in \operatorname{Unim} . \tag{7.25}
\end{equation*}
$$

Since $\operatorname{det} \mathbf{H}=1$, we can put $\mathbf{H}=J \mathbf{F}^{-1}$, so that

$$
\psi(J, \theta)=\psi(\mathbf{C}, \theta)
$$

By reminding ourselves of the Lagrangian mass conservation, i.e., $\rho J=\rho_{*}$, as well as of the independence of constitutive equations of the reference configuration, we obtain

$$
\psi(J, \theta)=\psi\left(\rho_{*} / \rho, \theta\right)=\psi(\rho, \theta)
$$

so that $(7.24)_{1}$ is proved.
Moreover, if we put $\mathcal{I}=J^{2}$, then from $(6.14)_{3}$ it follows that

$$
\mathbf{T}^{(e)}=2 \rho \mathbf{F} \frac{\partial \psi}{\partial J} \frac{d \sqrt{\mathcal{I}}}{d J} \mathbf{F}^{T}=\frac{\rho}{J} \mathbf{F} \frac{\partial \psi}{\partial J} \frac{d \sqrt{\mathcal{I}}}{d J} \mathbf{F}^{T}
$$

This condition, by recalling (3.53), can be written as

$$
\mathbf{T}^{(e)}=\rho J \frac{\partial \psi}{\partial J} \mathbf{I}=\rho J \frac{\partial \psi}{\partial \rho} \frac{d \rho}{d J} \mathbf{I}=-\rho^{2} \frac{\partial \psi}{\partial \rho} \mathbf{I}
$$

and $(7.24)_{3}$ is also proved. By using similar arguments $(7.24)_{2}$ follows.
To verify $(7.24)_{4}$, we first need to observe that the Eulerian rate of deformation tensor \mathbf{D} is invariant with respect to a symmetry transformation. Then, by considering (6.14) $)_{4}$, the symmetry property of a fluid

$$
\mathbf{T}^{(d)}\left(\mathbf{F H}, \dot{\mathbf{F}} \mathbf{H}, \theta, \mathbf{H}^{T} \boldsymbol{\Theta}\right)=\mathbf{T}^{(d)}(\mathbf{F}, \dot{\mathbf{F}}, \theta, \boldsymbol{\Theta})
$$

can be put in the form

$$
\mathbf{T}^{(d)}\left(\mathbf{H}^{T} \mathbf{C H}, \mathbf{H}^{T} \mathbf{F}^{T} \mathbf{D F H}, \theta, \mathbf{H}^{T} \boldsymbol{\Theta}\right)=\mathbf{T}^{(d)}\left(\mathbf{C}, \mathbf{F}^{T} \mathbf{D F}, \theta, \boldsymbol{\Theta}\right)
$$

If $\mathbf{H}=J \mathbf{F}^{-1}$, it follows that

$$
\mathbf{T}^{(d)}\left(J, J^{2} \mathbf{D}, \theta, J \mathbf{g}\right)=\mathbf{T}^{(d)}\left(\mathbf{C}, \mathbf{F}^{T} \mathbf{D F}, \theta, \boldsymbol{\Theta}\right)
$$

and

$$
\mathbf{T}^{(d)}\left(\mathbf{C}, \mathbf{F}^{T} \mathbf{D F}, \theta, \boldsymbol{\Theta}\right)=\mathbf{T}^{(d)}(\rho, \mathbf{D}, \theta, \mathbf{g})
$$

Finally, from the expression of material frame-indifference

$$
\begin{equation*}
\mathbf{Q T}^{(d)}(\rho, \mathbf{D}, \theta, \mathbf{g}) \mathbf{Q}^{T}=\mathbf{T}^{(d)}\left(\rho, \mathbf{Q D Q}^{T}, \theta, \mathbf{Q g}\right) \tag{7.26}
\end{equation*}
$$

and $\mathbf{T}^{(d)}$ is proved to be an isotropic function. Finally, by considering the representation formula $(7.10)_{2}$, the relation $(7.24)_{4}$ is derived. In a similar way, $(7.24)_{5}$ can be verified.

The sufficient condition is rather obvious, since in (7.24) the constitutive variables are defined in the Eulerian representation so that they are invariant with respect to any unimodular transformation that preserves the mass of the reference configuration.

In the absence of thermal phenomena, the constitutive equation of $\mathbf{T}^{(d)}$ assumes the form

$$
\begin{equation*}
\mathbf{T}^{(d)}(\rho, \mathbf{D})=-p \mathbf{I}+k_{1} \mathbf{D}+k_{2} \mathbf{D}^{2} \tag{7.27}
\end{equation*}
$$

where p, k_{1}, k_{2} are scalar functions of ρ and of the principal invariants $I_{D}, I I_{D}$, $I I I_{D}$ of \mathbf{D}.

If dissipation effects are also absent, then in (7.27) $k_{1}=k_{2}=0$; the fluid is called perfect and the stress tensor has the form

$$
\begin{equation*}
\mathbf{T}=-\rho^{2} \frac{\partial \psi}{\partial \rho} \mathbf{I} \equiv-p_{0}(\rho) \mathbf{I} . \tag{7.28}
\end{equation*}
$$

In particular, if the components of \mathbf{D} are first-order quantities and p, k_{1}, k_{2} are analytical functions of $I_{D}, I I_{D}, I I I_{D}$, it follows that

$$
\begin{aligned}
p(\rho) & \simeq p_{0}(\rho)+\lambda(\rho) I_{D} \\
k_{1} & \simeq 2 \mu(\rho)+b(\rho) I_{D}, \\
k_{2} & \simeq 2 \hat{\mu}(\rho)+c(\rho) I_{D} .
\end{aligned}
$$

By substituting into (7.27) and neglecting higher order terms, we obtain the NavierStokes behavior

$$
\begin{equation*}
\mathbf{T}=-\left(p_{0}(\rho)+\lambda(\rho) I_{D}\right) \mathbf{I}+2 \mu(\rho) \mathbf{D} \tag{7.29}
\end{equation*}
$$

In this case, during the motion the fluid is subjected to shear stresses and to a pressure represented by a static component $p_{0}(\rho)$ and a dynamic component
$\lambda(\rho) I_{D}$. If furthermore the fluid is incompressible, then $\nabla \cdot \mathbf{v}=I_{D}=0$ and (7.29) becomes

$$
\begin{equation*}
\hat{\mathbf{T}}(\rho, \mathbf{D}) \simeq-p \mathbf{I}+2 \mu \mathbf{D} \tag{7.30}
\end{equation*}
$$

Due to the incompressibility constraint, the pressure p in (7.30) no longer depends on $\rho, I_{D}, I I_{D}, I I I_{D}$.

By assuming that $\mathbf{Q}=-\mathbf{I}$ in (7.26) and in the isotropy condition of \mathbf{h}, we find that

$$
\begin{aligned}
\mathbf{T}^{(d)}(\rho, \mathbf{D}, \theta, \mathbf{g}) & =\mathbf{T}^{(d)}(\rho, \mathbf{D}, \theta,-\mathbf{g}), \\
\mathbf{h}(\rho, \mathbf{D}, \theta, \mathbf{g}) & =-\mathbf{h}(\rho, \mathbf{D}, \theta,-\mathbf{g}),
\end{aligned}
$$

and in particular

$$
\begin{equation*}
\mathbf{h}(\rho, \mathbf{D}, \theta, \mathbf{0})=\mathbf{0} . \tag{7.31}
\end{equation*}
$$

The relation (7.31) shows that the heat flux vanishes with temperature gradient, for any ρ, \mathbf{D}, and θ.

We note that this result, derived from symmetry properties of the fluid, is a more severe restriction than the one expressed by (6.20).

Finally, it can be proved [5] that the linearization in the neighborhood of an equilibrium state at constant temperature gives

$$
\begin{align*}
\mathbf{T}^{(d)} & =-\lambda(\rho, \theta) I_{D} \mathbf{I}+2 \mu \mathbf{D} \\
\mathbf{h} & =-K(\rho, \theta) \mathbf{g} \tag{7.32}
\end{align*}
$$

provided that terms of the order of

$$
\sqrt{I_{D}^{2}+g^{2}}
$$

are neglected.

7.4 Anisotropic Solids

Materials such as natural crystals, porous media, fiberglass-reinforced plastics, and so on are not isotropic. In general, they are said to be anisotropic because they possess some symmetry but the symmetry group does not contain the complete orthogonal group. Among anisotropic materials, crystals deserve special attention.

Let S be a hyperelastic solid and let $\mathfrak{G}_{C_{*}}$ be its symmetry group, which is a proper subgroup of $O(3)$ in an undistorted reference configuration C_{*}. It can be proved, ${ }^{2}$ starting from (7.15), that if ψ is an analytic function of the components of \mathbf{C}, then it can be expressed as a polynomial in the invariants I_{1}, \ldots, I_{n} of \mathbf{C}

$$
\begin{equation*}
\psi=\psi\left(I_{1}, \ldots, I_{n}\right) \tag{7.33}
\end{equation*}
$$

In the case of an isotropic material (as already seen in the previous section), the invariants I_{1}, \ldots, I_{n} coincide with $I_{B}, I I_{B}, I I I_{B}$.

From the definition (6.14) of an elastic material, it follows that

$$
\begin{equation*}
\mathbf{T}=2 \rho \mathbf{F} \frac{\partial \psi}{\partial I_{\alpha}} \frac{\partial I_{\alpha}}{\partial \mathbf{C}} \mathbf{F}^{T} \equiv 2 \rho \frac{\partial \psi}{\partial I_{\alpha}} \mathbf{k} \tag{7.34}
\end{equation*}
$$

where the function \mathbf{k} is independent of the form of the elastic energy but is determined by the material symmetries and the coordinates used to describe these symmetries.

Consequently, the constitutive equations of different elastic materials, exhibiting the same symmetry, differ only for the functions $\partial \psi / \partial I_{\alpha}$.

In the following discussion, the symbolic notation $\mathbf{R}_{\mathrm{n}}^{\varphi}$ is used to indicate a counterclockwise rotation of magnitude φ about the unit vector \mathbf{n}.

It can be shown that there are 12 groups of symmetries and 11 of them include 32 crystalline classes. The last group describes the so-called transverse isotropy (see Exercise 3), $\mathfrak{G}_{C *}$ being given by the identity and rotations $\mathbf{R}_{\mathbf{n}}^{\varphi}, 0<\varphi<2 \pi$ about a convenient unit vector \mathbf{n}.

In any crystalline class, in its undistorted state there are three preferred directions defined by unit vectors $\mathbf{u}_{i}(i=1,2,3)$. A system of rectilinear coordinates \mathbf{X} can be associated with these directions. The material symmetry is described by the orthogonal subgroup $\mathfrak{G}_{C_{*}}$ which transforms these coordinates into new ones \mathbf{X}^{\prime}, the energy form being preserved in the transformation.

To define the symmetry group $\mathfrak{G}_{C_{*}}$ of a solid it is sufficient to single out a set of elements of $\mathfrak{G}_{C_{*}}$, called the generators of $\mathfrak{G}_{C_{*}}$, such that by composing and inverting all of them, the whole group $\mathfrak{G}_{C_{*}}$ is obtained.

It can be proved that the following linear transformations are present in all the generator systems of crystalline classes:

$$
\mathbf{I}, \mathbf{R}_{\mathbf{u}_{i}}^{\pi}, \mathbf{R}_{\mathbf{u}_{i}}^{\pi / 2}, \mathbf{R}_{\mathbf{u}_{i}}^{\pi / 3}, \mathbf{R}_{\mathbf{u}_{i}}^{2 \pi / 3}
$$

Table 7.1 lists the generators of symmetry groups of different crystalline classes. The last column in this table gives the total number of transformations contained in the group.

[^21]Table 7.1 Crystallographic classes

Crystal Class	Generators of $\mathfrak{G}_{C_{*}}$	Order of $\mathfrak{G}_{C_{*}}$
Triclinic system		
(all classes)	I	2
Monoclinic system		
(all classes)	$\mathbf{R a n}_{3}^{\pi}$	4
Rhombic system		
(all classes)	$\mathbf{R}_{\mathbf{u}_{1}}^{\pi}, \mathbf{R}_{\mathbf{u}_{2}}^{\pi}$	8
Tetragonal system		
(3 classes)	$\mathbf{R}_{\mathbf{u}_{3}}^{\pi / 2}$	8
(4 classes)	$\mathbf{R}_{\mathbf{u}_{3}}^{\pi / 2}, \mathbf{R}_{\mathbf{u}_{1}}^{\pi}$	16
Cubic system		
(2 classes)	$\mathbf{R}_{\mathbf{u} 1}^{\pi}, \mathbf{R}_{\mathbf{u} \mathbf{u}}^{\pi}, \mathbf{R}_{\mathbf{p}}^{2 \pi / 3}$	24
(3 classes)	$\mathbf{R}_{\mathbf{u}_{1}}^{\pi / 2}, \mathbf{R}_{\mathbf{u}_{2}}^{\pi / 2}, \mathbf{R}_{\mathbf{u}_{3}}^{\pi / 2}$	48
Hexagonal system		
(2 classes)	$\mathbf{R}_{\mathbf{p}}^{2 \pi / 3}$	6
(3 classes)	$\mathbf{R}_{\mathbf{u}_{1}}^{\pi}, \mathbf{R}_{\mathbf{u}_{3}}^{2 \pi / 3}$	12
(3 classes)	$\mathbf{R}_{\mathbf{u}_{3}}^{\pi / 3}$	12
(4 classes)	$\mathbf{R}_{\mathbf{u}_{1}}^{\pi}, \mathbf{R}_{\mathbf{u}_{3}}^{\pi / 3}$	24

The complete set of polynomial bases I_{1}, \ldots, I_{n} for the crystalline bases is given in [63] and [10]. In the following we consider only the first three systems. ${ }^{3}$
In Table 7.1, $\mathbf{p}=\left(\mathbf{u}_{1}+\mathbf{u}_{2}+\mathbf{u}_{3}\right) / \sqrt{3}$.

1. Triclinic system: the polynomial basis is given by all components of \mathbf{C};
2. Monoclinic system: the polynomial basis is given by the following 7 components:

$$
C_{11}, \quad C_{22}, \quad C_{33}, \quad C_{12}^{2}, \quad C_{13}^{2}, \quad C_{23}, \quad C_{13} C_{12} .
$$

3. Rhombic system: the polynomial basis is given by the following 7 components:

$$
C_{11}, \quad C_{22}, \quad C_{33}, \quad C_{23}^{2}, \quad C_{13}^{2}, \quad C_{12}^{2}, \quad C_{12} C_{23} C_{13}
$$

In closing this section, we note the following: given a material of a crystal class with a deformation process that starts from an undistorted configuration, its free

[^22]energy can be expressed as a polynomial of a convenient degree in the variables forming the polynomial basis. Finally, the stress-strain relationship can be deduced from (7.34).

7.5 Exercises

1. By using the symmetry properties, show that the strain energy function of an isotropic solid is characterized by only two independent constants.

Hint: If the solid is isotropic, then any plane is a symmetry plane as well as any axis is a symmetry axis under any rotation, so that the following relations must hold for the nonvanishing coefficients:

$$
\begin{aligned}
& C_{11}=C_{22}=C_{33} \\
& C_{12}=C_{23}=C_{31} \\
& C_{44}=C_{55}=C_{66}=\frac{1}{2}\left(C_{11}-C_{12}\right),
\end{aligned}
$$

and the strain energy function assumes the form

$$
\begin{aligned}
\Psi & =\frac{1}{2} C_{11}\left(E_{11}^{2}+E_{22}^{2}+E_{33}^{2}\right) \\
& +C_{12}\left(E_{11} E_{22}+E_{11} E_{33}+E_{22} E_{33}\right) \\
& +\frac{1}{4}\left(C_{11}-C_{12}\right)\left(E_{12}^{2}+E_{13}^{2}+E_{23}^{2}\right) .
\end{aligned}
$$

2. Using the properties of isotropic tensors, prove that only two constants are required to characterize the material response of an isotropic solid.

Isotropic tensors are such that their rectangular components are independent of any orthogonal transformation of coordinate axes.

According to this definition, all scalars (i.e., tensors of order zero) are isotropic, whereas vectors (first-order tensors) are not isotropic. The unit tensor, whose components are represented in rectangular coordinates by the Kronecker delta $\delta_{i j}$, is isotropic. It is obvious that any scalar multiple of the unit tensor has the same property. These particular tensors exhaust the class of isotropic secondorder tensors.

The most general fourth-order isotropic tensor is represented in the form

$$
C_{i j h k}=\lambda \delta_{i j} \delta_{h k}+\mu\left(\delta_{i h} \delta_{j k}+\delta_{i k} \delta_{j h}\right)+\kappa\left(\delta_{i h} \delta_{j k}-\delta_{i k} \delta_{j h}\right)
$$

Suppose that $C_{i j h k}$ are the coefficients of the linear material response

$$
T_{i j}=C_{i j h k} E_{h k},
$$

where one or both the tensors $T_{i j}$ and $E_{h k}$ is symmetric. In either case, the requirement for $C_{i j h k}$ to be symmetric with respect to $i j$ or $h k$ implies that $\kappa=0$. It follows that

$$
C_{i j h k}=\lambda \delta_{i j} \delta_{h k}+\mu\left(\delta_{i h} \delta_{j k}+\delta_{i k} \delta_{j h}\right)
$$

is the most general expression of the coefficients of a linearized elastic isotropic solid and only two constants are needed to characterize the material properties (as found in Exercise 1).
3. Prove that the material response of a transversely isotropic solid is characterized by 5 independent constants.

Hint: A transversely isotropic solid is symmetric with respect to some axis. If $O x_{3}$ denotes this axis, then the rotation through a small angle α about $O x_{3}$ is written as

$$
\begin{aligned}
& X_{1}^{*}=X_{1} \cos \alpha+X_{2} \sin \alpha \simeq X_{1}+X_{2} \alpha, \\
& X_{2}^{*}=X_{2} \cos \alpha-X_{1} \sin \alpha \simeq X_{2}-X_{1} \alpha, \\
& X_{3}^{*}=X_{3} .
\end{aligned}
$$

The strain energy Ψ must be invariant with respect to this transformation, so that if Ψ is expressed in terms of the strain components in the new coordinates, then all the coefficients of α must vanish.

The result is that the number of elastic constants reduces to 5 .
4. By substituting the first equality (3.53) into (7.11), prove that

$$
\begin{aligned}
& \mathbf{T}=f_{0} \mathbf{I}+f_{1} \mathbf{B}+f_{-1} \mathbf{B}^{-1}, \\
& \mathbf{h}=\left(K_{0} \mathbf{I}+K_{-1} \mathbf{B}+K_{-2} \mathbf{B}^{-1}\right) \mathbf{g},
\end{aligned}
$$

and find formulae corresponding to (7.12).

7.6 The Program LinElasticityTensor

Aim of the Program

The program LinElasticityTensor applies to isotropic linear materials or to anisotropic ones belonging to the triclinic, monoclinic, and rombic crystal classes. It determines the components of the elasticity tensor and the components of the linear deformation tensor \mathbf{E}. Moreover, all these expressions are given following Voigt's notation.

Description of the Problem and Relative Algorithm

The program distinguishes between isotropic solids, for which $\psi=\psi\left(I_{\mathbf{C}}, I I_{\mathbf{C}}\right)$, and anisotropic solids, for which $\psi=\psi\left(I_{1}, \cdots, I_{n}\right)$, where I_{1}, \cdots, I_{n} are the invariants of the crystal class under consideration. If the reference configuration C_{*} is unstressed and the state of the solid is isothermic, then the constitutive equations have the following structure:

$$
\mathbf{T}=\mathbb{C} \mathbf{E}
$$

where \mathbf{E} is the tensor of infinitesimal strain and \mathbb{C} is the tensor of linear elasticity. Moreover, we know that

$$
\begin{aligned}
\mathbb{C}_{i j h k} & =4 \rho_{*}\left(\frac{\partial^{2} \psi}{\partial C_{i j} \partial C_{h k}}\right), \\
\mathbb{C}_{i j h k} & =\mathbb{C}_{j i h k}=\mathbb{C}_{i j k h}, \\
\mathbb{C}_{i j h k} & =\mathbb{C}_{h k i j}
\end{aligned}
$$

On the other hand, it is possible to reduce the 81 components of \mathbb{C} to 21 independent components. ${ }^{4}$ If we adopt Voigt's notation, which uses the index transformation

$$
\begin{aligned}
& i i \longrightarrow i, i=1,2,3 \\
& 12 \longrightarrow 6, \\
& 13 \longrightarrow 5, \\
& 23 \longrightarrow 4,
\end{aligned}
$$

then the elasticity tensor can be reduced to the form $\mathbb{C}=\left(\mathbb{C}_{\alpha \beta}\right)$, where $\alpha, \beta=$ $1, \cdots, 6$. If the same notation is used for \mathbf{E}, then the elastic potential and the stress tensor can be written as

$$
\begin{aligned}
\psi & =\frac{1}{2 \rho_{*}} \mathbb{C}_{\alpha \beta} E_{\alpha} E_{\beta}, \\
\mathbf{T} & =\mathbb{C} \cdot \mathbf{E}
\end{aligned}
$$

Command Line of the Program LinElasticityTensor

```
LinElasticityTensor[class]
```

[^23]
Parameter List

Input Data

class characterizes the solid and can assume the values isotropic, triclinic, monoclinic, or rombic.

Output Data

Elastic potential ψ as a function of the principal invariants of \mathbf{E} or of the invariants of the crystal class to which the solid belongs;
the components of \mathbb{C} in Voigt's notation;
the expression of ψ in Voigt's notation; the stress tensor \mathbf{T} in Voigt's notation.

Worked Examples

1. Isotropic Solid. To apply the program LinElasticityTensor to the class of linear and isotropic materials, we have to input the following data:
class = isotropic;
LinElasticityTensor[class]
The corresponding output is
Principal invariants in linear elasticity
$B=\left\{\mathrm{I}_{\mathrm{E}}, I \mathrm{I}_{\mathrm{E}}\right\}$
Elastic potential as a function of the principal
invariants
${ }_{\iota}=a_{1,0}\left(E_{1,1}+E_{2,2}+E_{3,3}\right)+a_{2,0}\left(E_{1,1}+E_{2,2}+E_{3,3}\right)^{2}$ $+a_{0,1}\left(-E_{1,2}^{2}-E_{1,3}^{2}+E_{1,1} E_{2,2}-E_{2,3}^{2}+E_{1,1} \mathrm{E}_{3,3}+\mathrm{E}_{2,2} \mathrm{E}_{3,3}\right)$
Independent components of linear elasticity tensor $\mathbb{C}=\left(\mathbb{C}_{i j h k}\right)$ in Voigt's notation
$\mathbb{C}_{1,1}=8 \rho_{*} a_{2,0}$
$\mathbb{C}_{1,2}=4 \rho_{*}\left(a_{0,1}+2 \mathrm{a}_{2,0}\right)$
$\mathbb{C}_{1,3}=4 \rho_{*}\left(a_{0,1}+2 a_{2,0}\right)$
$\mathbb{C}_{2,2}=8 \rho_{*} \mathrm{a}_{2,0}$
$\mathbb{C}_{2,3}=4 \rho_{*}\left(a_{0,1}+2 a_{2,0}\right)$
$\mathbb{C}_{3,3}=8 \rho_{*} a_{2,0}$
$\mathbb{C}_{4,4}=-8 \rho_{*} a_{0,1}$
$\mathbb{C}_{5,5}=-8 \rho_{*} a_{0,1}$
$\mathbb{C}_{6,6}=-8 \rho_{*} a_{0,1}$
Elastic potential E_{i} in Voigt's notation
$\psi=-4 E_{4}^{2} a_{0,1}-4 E_{5}^{2} a_{0,1}-4 E_{6}^{2} a_{0,1}+4 E_{1}^{2} a_{2,0}+4 E_{2}^{2} a_{2,0}+4 E_{3}^{2} a_{2,0}$ $+4 \mathrm{E}_{1} \mathrm{E}_{2}\left(\mathrm{a}_{0,1}+2 \mathrm{a}_{2,0}\right)+4 \mathrm{E}_{1} \mathrm{E}_{3}\left(\mathrm{a}_{0,1}+2 \mathrm{a}_{2,0}\right)+4 \mathrm{E}_{2} \mathrm{E}_{3}\left(\mathrm{a}_{0,1}+2 \mathrm{a}_{2,0}\right)$
Stress tensor components
$\mathrm{T}_{1}=8 \rho_{*} \mathrm{E}_{1} \mathrm{a}_{2,0}+4 \rho_{*} \mathrm{E}_{2}\left(\mathrm{a}_{0,1}+2 \mathrm{a}_{2,0}\right)+4 \rho_{*} \mathrm{E}_{3}\left(\mathrm{a}_{0,1}+2 \mathrm{a}_{2,0}\right)$
```
\(\mathrm{T}_{1}=8 \rho_{*} \mathrm{E}_{2} \mathrm{a}_{2,0}+4 \rho_{*} \mathrm{E}_{1}\left(\mathrm{a}_{0,1}+2 \mathrm{a}_{2,0}\right)+4 \rho_{*} \mathrm{E}_{3}\left(\mathrm{a}_{0,1}+2 \mathrm{a}_{2,0}\right)\)
\(\mathrm{T}_{1}=8 \rho_{*} \mathrm{E}_{3} \mathrm{a}_{2,0}+4 \rho_{*} \mathrm{E}_{1}\left(\mathrm{a}_{0,1}+2 \mathrm{a}_{2,0}\right)+4 \rho_{*} \mathrm{E}_{2}\left(\mathrm{a}_{0,1}+2 \mathrm{a}_{2,0}\right)\)
\(\mathrm{T}_{1}=-8 \rho_{*} \mathrm{E}_{4} \mathrm{a}_{0,1}\)
\(\mathrm{T}_{1}=-8 \rho_{*} \mathrm{E}_{5} \mathrm{a}_{2,0}\)
\(\mathrm{T}_{1}=8 \rho_{*} \mathrm{E}_{6} \mathrm{a}_{2,0}\)
```


Exercises

Apply the program LinElasticityTensor to anisotropic linear elastic materials belonging to the following crystal classes:

1. monoclinic;
2. triclinic;
3. rombic.

Chapter 8
 Wave Propagation

In this chapter, we start from the Cauchy problems for second-order partial differential equations and first-order systems of partial differential equations, classifying them in elliptic, parabolic, and hyperbolic. Then, we identify the characteristic surfaces of Cauchy's problem with the singular surfaces of ordinary waves of Hadamard. The acoustic tensor is defined and it is proved that the normal speeds of ordinary waves are equal to the square of the eigenvalues of the acoustic tensor. Further, it is proved that the evolution of the singular surfaces is given by the eikonal equation. Finally, after defining shock waves, we determine the Rankine-Hugoniot conditions. After a section of exercises, the programs PdeEqClass, PdeSysClass, WavesI, and WavesII, written with Mathematica ${ }^{\circledR}$, are described. These programs allow to classify equations and systems and determine the normal speeds of ordinary waves.

8.1 Introduction

The evolution of a physical system is said to have wave behavior if a character of propagation or oscillation or both can be attributed to it. As an example, points of a string with fixed boundary ends, oscillating in a stationary way, have an oscillatory character without propagation (see Exercise 1). On the other hand, if we consider an infinite string with a single fixed end that is subjected to an initial perturbation, then its motion has only the character of propagation (see Exercise 2), which is eventually damped if dissipation effects are present (see Exercise 3). Furthermore, when considering waves produced by a falling stone in a lake, we can distinguish the damped oscillations of material points of the surface from the propagation of the surface separating the disturbed region from the undisturbed region.

With such a premise in mind, we consider a physical phenomenon described by fields depending on position \mathbf{x} and time t. Moreover, we suppose it to satisfy a system of partial differential equations. It is of interest to investigate if this system can predict the evolution of wave-type phenomena. Apparently, the answer would require that we know the solutions of the system, because their properties could allow us to identify the presence of propagation or oscillation effects. However, this approach cannot usually be pursued, owing to the complexity of the equations of mathematical physics.

If the system is linear and dissipation effects are absent, we can look for sinusoidal solutions. In fact, because of the linearity, any superposition of such solutions is still a solution of the system so that, taking advantage of the Fourier method, the most general solution can be determined. Such a procedure can no longer be applied if the system is nonlinear, so that we need to introduce a more general approach, due to Hadamard, which considers wavefronts as singular surfaces of Cauchy's problem. Such an approach can be applied to any system, and, for linear systems, it gives the same results as the Fourier method.

In the present chapter we first turn our attention to quasi-linear equations and then to quasi-linear systems of partial differential equations (PDEs) in order to show under which circumstances there are characteristic surfaces for which Cauchy's problem is ill posed. A classification of the equations and systems is given, based on the existence and the number of these surfaces. Then it is proved that such characteristic surfaces are singular surfaces for the solutions of the system. In particular, when the independent variables reduce to the usual ones, i.e., spatial and time variables, we prove the existence of a moving surface which has a speed of propagation that can be computed together with its evolution. This surface will be interpreted as a wavefront.

Finally, the last section of this chapter deals with shock waves and highlights the role of the second law of thermodynamics in the description of the phenomenon.

8.2 Cauchy's Problem for Second-Order PDEs

In a domain $\Omega \subseteq \Re^{n}$, the second-order quasi-linear partial differential equation

$$
\begin{equation*}
a_{i j}(\mathbf{x}, u, \nabla u) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}=h(\mathbf{x}, u, \nabla u), \quad i, j=1, \ldots, n, \quad \mathbf{x} \in \Omega, \tag{8.1}
\end{equation*}
$$

is given. In particular, if the coefficients $a_{i j}$ are independent of u and of ∇u, then the equation is called semilinear; when, in addition to this condition, the function h depends linearly on u and ∇u, the equation is called linear.

Then, with reference to Eq. (8.1), the following Cauchy's problem is stated: If Σ_{n-1} is a regular and orientable $(n-1)$-dimensional hypersurface contained in Ω and \mathbf{N} denotes the unit vector field normal to Σ_{n-1}, find a solution $u(\mathbf{x})$ of (8.1) in Ω which satisfies on Σ_{n-1} the following Cauchy's data:

Fig. 8.1 Cauchy surface

$$
\begin{equation*}
u(\mathbf{x})=u_{0}(\mathbf{x}), \quad \frac{d u}{d n} \equiv \nabla u \cdot \mathbf{N}=d_{0}(\mathbf{x}), \quad \mathbf{x} \in \Sigma_{n-1} \tag{8.2}
\end{equation*}
$$

where $u_{0}(\mathbf{x})$ and $d_{0}(\mathbf{x})$ are assigned functions on Σ_{n-1} corresponding to the values of $u(\mathbf{x})$ and its normal derivative on this hypersurface.

A first step in discussing such a problem consists of introducing a convenient coordinate system $\left(v_{1}, \ldots, v_{n}\right)$, the Gauss coordinates, in the neighborhood of Σ_{n-1}, in order to simplify its formulation.

Given a Cartesian coordinate system (O, \mathbf{u}_{i}) in \Re^{n}, let

$$
x_{i}=r_{i}\left(v_{1}, \ldots, v_{n-1}\right), i=1, \ldots, n,
$$

be the parametric equations of the surface Σ_{n-1}. In a neighborhood of Σ_{n-1} in \Re^{n}, the system of functions

$$
\begin{equation*}
x_{i}=r_{i}\left(v_{1}, \ldots, v_{n-1}\right)+v_{n} N_{i} \tag{8.3}
\end{equation*}
$$

is considered, where v_{n} is the distance of an arbitrary point of the normal from Σ_{n-1} (see Fig. 8.1). Accordingly, the condition $v_{n}=0$ again gives the equation of Σ_{n-1}.

The system (8.3) defines a coordinate transformation $\left(\nu_{1}, \ldots, v_{n}\right) \longleftrightarrow$ $\left(x_{1}, \ldots, x_{n}\right)$ in a neighborhood of Σ_{n-1}, and the Jacobian of (8.3), evaluated for $v_{n}=0$, is

$$
J=\left(\begin{array}{cccc}
\frac{\partial x_{1}}{\partial \nu_{1}} & \cdots & \frac{\partial x_{1}}{\partial v_{n-1}} & N_{1} \\
\cdots & \cdots & \cdots & \cdots \\
\frac{\partial x_{n}}{\partial v_{1}} & \cdots & \frac{\partial x_{n}}{\partial v_{n-1}} & N_{n}
\end{array}\right) .
$$

We also remark that the first $n-1$ column vectors of J,

$$
\mathbf{e}_{i}=\frac{\partial x_{1}}{\partial v_{i}} \mathbf{u}_{1}+\cdots+\frac{\partial x_{n}}{\partial v_{i}} \mathbf{u}_{n}, i=1, \ldots, n-1,
$$

are tangent to the $n-1$ coordinate curves on Σ_{n-1} and independent, since the surface is regular.

By noting that \mathbf{N} is normal to Σ_{n-1}, so that it is independent of the vectors $\left(\mathbf{e}_{i}\right)$, we see that the determinant of J is different from zero, so that the inverse transformation

$$
\begin{equation*}
v_{i}=v_{i}\left(x_{1}, \ldots, x_{n}\right) \tag{8.4}
\end{equation*}
$$

can be obtained from (8.3). Relative to the coordinates ν_{i}, the equation of the hypersurface Σ_{n-1} becomes

$$
\begin{equation*}
v_{n}\left(x_{1}, \ldots, x_{n}\right) \equiv f\left(x_{1}, \ldots x_{n}\right)=0 \tag{8.5}
\end{equation*}
$$

and Cauchy's data (8.2) assume the simplified form

$$
\begin{equation*}
u\left(v_{1}, \ldots, v_{n-1}\right)=u_{0}\left(v_{1}, \ldots, v_{n-1}\right), \quad \frac{\partial u}{\partial v_{n}}=d_{0}\left(v_{1}, \ldots, v_{n-1}\right) \tag{8.6}
\end{equation*}
$$

Remark 8.1. It is worth noting that the knowledge of the directional derivative of the function $u(\mathbf{x})$ along the normal to Σ_{n-1} gives the gradient of $u(\mathbf{x})$ in any point of Σ_{n-1}. In fact, on Σ_{n-1} it holds that

$$
\nabla u=\sum_{i=1}^{n-1} \frac{\partial u}{\partial \nu_{i}} \mathbf{e}^{i}+\frac{\partial u}{\partial \nu_{n}} \mathbf{N}
$$

where (\mathbf{e}^{i}) are the vectors reciprocal to the $(n-1)$ tangent vectors to Σ_{n-1}.
The Cauchy-Kovalevskaya theorem introduced below is of basic relevance, since it asserts the local existence of solutions of a system of PDEs, with initial conditions on a noncharacteristic surface. Its proof is not straightforward and, for this reason, only particular aspects related to the wave propagation will be addressed.

Theorem 8.1 (Cauchy-Kovalevskaya Theorem). If the coefficients $a_{i j}$, the function u, the Cauchy data (8.2) and the implicit representation (8.5) of Σ_{n-1} are analytic functions of their arguments and, in addition, Σ_{n-1} satisfies the condition

$$
\begin{equation*}
a_{i j}(\mathbf{x}, u, \nabla u) \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} \neq 0, \mathbf{x} \in \Sigma_{n-1}, \tag{8.7}
\end{equation*}
$$

then there exists a unique analytic solution of the Cauchy problem (8.1)-(8.2) in a neighborhood of Σ_{n-1}.

Proof. Let us assume the coordinates $\left(\nu_{1}, \ldots, v_{n}\right)$ in \Re^{n}. The following expansion of u in a neighborhood of Σ_{n-1} can be written:

$$
u(\mathbf{x})=u_{0}\left(v_{1}, \ldots, v_{n-1}, 0\right)+\left(\frac{\partial u}{\partial v_{n}}\right)_{v_{n}=0} v_{n}
$$

$$
\begin{equation*}
+\frac{1}{2}\left(\frac{\partial^{2} u}{\partial v_{n}^{2}}\right)_{v_{n}=0} v_{n}^{2}+\cdots \tag{8.8}
\end{equation*}
$$

To prove the theorem, we need to show that

1. all the derivatives of u appearing in the above expansion can be determined by using (8.1) and Cauchy's data (8.2);
2. the series (8.8) converges uniformly toward a solution of the Cauchy problem (8.1), (8.2);

Below we only prove that, under the assumption (8.7), all the derivatives of the expansion (8.8) can be computed.

Let h and k be indices in the range $1, \ldots, n$; then

$$
\begin{align*}
& \frac{\partial u}{\partial x_{i}}=\frac{\partial u}{\partial v_{h}} \frac{\partial \nu_{h}}{\partial x_{i}}, \tag{8.9}\\
& \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}=\frac{\partial}{\partial x_{i}}\left[\frac{\partial u}{\partial v_{h}} \frac{\partial \nu_{h}}{\partial x_{j}}\right] \\
&= \frac{\partial}{\partial x_{i}}\left[\frac{\partial u}{\partial v_{h}}\right] \frac{\partial v_{h}}{\partial x_{j}}+\frac{\partial u}{\partial v_{h}} \frac{\partial^{2} v_{h}}{\partial x_{i} \partial x_{j}} \\
&= \frac{\partial^{2} u}{\partial v_{h} \partial v_{k}} \frac{\partial v_{h}}{\partial x_{j}} \frac{\partial v_{k}}{\partial x_{i}}+\frac{\partial u}{\partial \nu_{h}} \frac{\partial^{2} v_{h}}{\partial x_{i} \partial x_{j}} . \tag{8.10}
\end{align*}
$$

By using the above expressions, we see that (8.1) becomes

$$
\begin{equation*}
\sum_{h, k=1}^{n}\left(a_{i j} \frac{\partial v_{h}}{\partial x_{j}} \frac{\partial v_{k}}{\partial x_{i}}\right) \frac{\partial^{2} u}{\partial v_{h} \partial v_{k}}=g\left(v, u, \frac{\partial u}{\partial v}\right), \tag{8.11}
\end{equation*}
$$

where on the left-hand side we have collected the second derivatives of u with respect to ν_{h} and the first derivatives of v_{h} with respect to x_{i}. We note that the latter are obtained by differentiating the known inverse transformation (8.4).

When the Cauchy data on Σ_{n-1}

$$
\begin{equation*}
u\left(v_{1}, \ldots, v_{n-1}\right)=u_{0}\left(v_{1}, \ldots, v_{n-1}\right), \quad \frac{\partial u}{\partial v_{n}}=d_{0}\left(v_{1}, \ldots, v_{n-1}\right), \tag{8.12}
\end{equation*}
$$

are taken into account, we see that all the first derivatives of u at $\mathbf{x}_{0} \in \Sigma_{n-1}$ are obtained by differentiating $(8.12)_{1}$ or from (8.12) $)_{2}$. The second derivatives

$$
\left(\frac{\partial^{2} u}{\partial v_{h} \partial v_{k}}\right)_{v_{n}=0}, \quad\left(\frac{\partial^{2} u}{\partial v_{h} \partial v_{n}}\right)_{v_{n}=0}=\left[\frac{\partial}{\partial v_{h}}\left(\frac{\partial u}{\partial v_{n}}\right)\right]_{v_{n}=0},
$$

where at least one of the indices h and k changes from 1 to $n-1$, are evaluated from Cauchy's data (8.12).

Finally, about the second derivative

$$
\left(\frac{\partial^{2} u}{\partial v_{n}^{2}}\right)_{v_{n}=0}
$$

we observe that the system (8.11), written at $\mathbf{x}_{0} \in \Sigma_{n-1}$, when (8.5) is taken into account, allows us to obtain

$$
\begin{equation*}
\left[\left(a_{i j} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}}\right) \frac{\partial^{2} u}{\partial v_{n}^{2}}\right]_{v_{n}=0}=F, \tag{8.13}
\end{equation*}
$$

where F is a quantity which can be derived from Cauchy's data.
The relation (8.13) allows us to compute the desired derivative if

$$
\left(a_{i j} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}}\right)_{v_{n}=0} \neq 0 .
$$

In addition, this condition allows us to compute the derivatives of higher order in $\mathbf{x}_{0} \in \Sigma_{n-1}$ and to prove the remaining point (2).

8.3 Characteristics and Classification of PDEs

An ($n-1$)-dimensional hypersurface Σ_{n-1}

$$
f\left(x_{1}, \ldots, x_{n}\right)=0
$$

is said to be a characteristic surface with respect to the Eq. (8.1) and Cauchy's data (8.2) if $z=f\left(x_{1}, \ldots, x_{n}\right)$ is a solution of the equation

$$
\begin{equation*}
a_{i j}(x, u, \nabla u) \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}}=0 . \tag{8.14}
\end{equation*}
$$

In such a case, the Cauchy problem is ill posed, in the sense that there is no uniqueness since there are several possibilities for computing the partial derivatives

$$
\partial^{r} u / \partial \nu_{n}^{r}, r \geq 2
$$

starting from the same Cauchy's data.

It is relevant to observe that, if the coefficients $a_{i j}$ of (8.1) depend only on the coordinates x_{i}, Eq. (8.1) is linear or semilinear and the characteristic surfaces depend on the equation but not on Cauchy's data.

On the other hand, in the quasi-linear case (8.14) allows us to define the function $f(\mathbf{x})$ provided that the values of u and ∇u are known at any point. Since these quantities are uniquely defined from the equation and Cauchy's data, and are therefore continuous across the characteristic surface Σ_{n-1}, (8.14) can be regarded as an equation in the unknown $f(\mathbf{x})$ if the solution of (8.1) is known on at least one side of Σ_{n-1}. This is not a severe requirement, since a solution of (8.1) is often known in the form $u_{0}=$ const.

Accordingly, when dealing with a quasi-linear equation, a solution u_{0} from which we can compute the coefficients $a_{i j}$ at any point \mathbf{x} is supposed to be known.

However, Eq. (8.14) is a first-order nonlinear partial differential equation in the unknown function $f\left(x_{1}, \ldots, x_{n}\right)$, so that its solution is not easy to find. As a consequence, it is not easy to determine the characteristic surfaces of (8.1).

Suppose that, for a fixed point $\mathbf{x} \in \Omega$, there are characteristic surfaces Σ_{n-1} containing \mathbf{x}. Since the components of the unit vector \mathbf{N}, normal to a solution Σ_{n-1} of (8.14), are $N_{i}=\left(\partial f / \partial x_{i}\right) /|\nabla f|$, Eq. (8.14) can be written as

$$
\begin{equation*}
a_{i j}\left(x, u_{0}, \nabla u_{0}\right) N_{i} N_{j} \equiv a_{i j}^{0}(\mathbf{x}) N_{i} N_{j}=0, \tag{8.15}
\end{equation*}
$$

where the vectors \mathbf{N} are normal to the characteristic surfaces through the point \mathbf{x}. The collection of the vectors verifying (8.15) give rise to a cone $A_{\mathbf{x}}$. In fact, $\mathbf{N}=\mathbf{0}$ is a solution of (8.15). In addition, if \mathbf{N} is a solution, then so is $\mu \mathbf{N}$ provided that μ is real.

These arguments allow us to classify equations (8.1) at any $\mathbf{x} \in \mathfrak{R}^{n}$ by considering the eigenvalues of the symmetric matrix $a_{i j}^{0}(\mathbf{x})$.

1. The differential equation (8.1) is called elliptic at \mathbf{x} (or with respect to a solution u_{0} if it is quasi-linear) if all the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of $a_{i j}^{0}(\mathbf{x})$ are positive or, equivalently, if the quadratic form

$$
a_{i j}^{0}(\mathbf{x}) N_{i} N_{j}
$$

is positive definite.
In this case, there exists a transformation $\left(x_{i}\right) \longrightarrow\left(\bar{x}_{i}\right)$, dependent on \mathbf{x}, which allows us to write at the point \mathbf{x} the quadratic form $a_{i j}^{0}(\mathbf{x}) N_{i} N_{j}$ in the canonical form

$$
\lambda_{1} \bar{N}_{1}^{2}+\cdots+\lambda_{n} \bar{N}_{n}^{2}, \lambda_{1}, \ldots, \lambda_{n}>0 .
$$

We can also say that (8.1) is elliptic at \mathbf{x} if there are no real vectors normal to the characteristic surfaces passing through \mathbf{x}; i.e., the cone $A_{\mathbf{x}}(8.15)$ at \mathbf{x} is imaginary. So if all the eigenvalues of $a_{i j}$ are positive, then there is no real solution of (8.14).
2. The differential equation (8.1) is called parabolic at \mathbf{x} (or with respect to a solution u_{0} if it is quasi-linear) if the matrix $a_{i j}^{0}(\mathbf{x})$ has at least one eigenvalue equal to zero. In this case there is a transformation $\left(x_{i}\right) \longrightarrow\left(\bar{x}_{i}\right)$, dependent on \mathbf{x}, which allows us to transform $a_{i j}^{0}(\mathbf{x}) N_{i} N_{j}$ into the canonical form

$$
\lambda_{1} \bar{N}_{1}^{2}+\cdots+\lambda_{m} \bar{N}_{m}^{2}, \quad \lambda_{1}, \ldots, \lambda_{m} \neq 0, \quad \lambda_{m+1}=\cdots=\lambda_{n}=0
$$

In this case the hyperplane $\bar{N}_{1}=\cdots=\bar{N}_{m}=0$ is contained in the cone $A_{\mathbf{x}}$.
3. The differential equation (8.1) is called hyperbolic in \mathbf{x} (or with respect to a solution u_{0} if it is quasi-linear) if all but one of the eigenvalues of the matrix $a_{i j}^{0}(\mathbf{x})$ have the same sign and the remaining one has the opposite sign. In this case there is a transformation $\left(x_{i}\right) \longrightarrow\left(\bar{x}_{i}\right)$, dependent on \mathbf{x}, which allows us to transform the quadratic form $a_{i j}^{0}(\mathbf{x}) N_{i} N_{j}$ into the canonical form

$$
\lambda_{1} \bar{N}_{1}^{2}+\cdots+\lambda_{n-1} \bar{N}_{n-1}^{2}-\lambda_{n} \bar{N}_{n}^{2}
$$

where the eigenvalues $\lambda_{1}, \ldots, \lambda_{n-1}$ have the same sign and λ_{n} takes the opposite sign. In this case $A_{\mathbf{x}}$ is a real cone.

8.4 Examples

1. Consider Laplace's equation

$$
\Delta u \equiv \frac{\partial^{2} u}{\partial x_{1}^{2}}+\frac{\partial^{2} u}{\partial x_{2}^{2}}=0
$$

in the unknown function $u\left(x_{1}, x_{2}\right)$. The matrix $a_{i j}$ is given by

$$
a_{i j}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

with two coincident eigenvalues, equal to $\lambda=1$. The equation is elliptic and the cone $A_{\mathbf{x}}$ is imaginary, since it is represented by the equation

$$
N_{1}^{2}+N_{2}^{2}=0 .
$$

The characteristic curves are given by

$$
\left(\frac{\partial f}{\partial x_{1}}\right)^{2}+\left(\frac{\partial f}{\partial x_{2}}\right)^{2}=0
$$

and this equation does not have real $f\left(x_{1}, x_{2}\right)$ solutions. Since Laplace's equation does not admit characteristic curves, the Cauchy problem is well posed for any curve of the x_{1}, x_{2}-plane.
2. As a second example, consider D'Alembert's equation (also called the wave equation)

$$
\frac{\partial^{2} u}{\partial x_{1}^{2}}-\frac{\partial^{2} u}{\partial x_{2}^{2}}=0 .
$$

The matrix $a_{i j}$ is

$$
a_{i j}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
$$

its eigenvalues are $\lambda_{1}=1$ and $\lambda_{2}=-1$, and the equation is hyperbolic. The cone $A_{\mathbf{x}}$ is written as

$$
N_{1}^{2}-N_{2}^{2}=0
$$

and is formed by the two straight lines $N_{1}-N_{2}=0$ and $N_{1}+N_{2}=0$. The characteristic curves are the solutions of the equation

$$
\left(\frac{\partial f}{\partial x_{1}}\right)^{2}-\left(\frac{\partial f}{\partial x_{2}}\right)^{2}=0
$$

which is equivalent to the following system:

$$
\left(\frac{\partial f}{\partial x_{1}}-\frac{\partial f}{\partial x_{2}}\right)=0, \quad\left(\frac{\partial f}{\partial x_{1}}+\frac{\partial f}{\partial x_{2}}\right)=0 .
$$

With the introduction of the vector fields $\mathbf{u}_{1}=(1,-1)$ and $\mathbf{u}_{2}=(1,1)$, the previous system can be written as

$$
\nabla f \cdot \mathbf{u}_{1}=0, \nabla f \cdot \mathbf{u}_{2}=0
$$

The above equations show that their solutions $f\left(x_{1}, x_{2}\right)$ are constant along straight lines parallel to the vectors \mathbf{u}_{1} and \mathbf{u}_{2}, and, since this corresponds to the definition of characteristic curves, we conclude that the characteristic curves are represented in the plane $O x_{1} x_{2}$ by families of straight lines

$$
x_{1}-x_{2}=\text { const, } x_{1}+x_{2}=\text { const. }
$$

In this case Cauchy problem is ill posed if Cauchy's data are assigned on these lines.
3. The heat equation

$$
\frac{\partial^{2} u}{\partial x_{1}^{2}}-\frac{\partial u}{\partial x_{2}}=0
$$

is an example of a parabolic equation, since the matrix

$$
a_{i j}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

has eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=0$. The cone $A_{\mathbf{x}}$ is defined at any point by

$$
N_{1}^{2}=0
$$

and coincides with a line parallel to the x_{2} axis. The equation of the characteristic curves reduces to

$$
\frac{\partial f}{\partial x_{1}}=0
$$

with solutions

$$
f=g\left(x_{2}\right)=\text { const },
$$

where g is an arbitrary function. It follows that the characteristic curves are represented by the lines

$$
x_{2}=\text { const. }
$$

4. Finally we consider Tricomi's equation

$$
\frac{\partial^{2} u}{\partial x_{1}^{2}}+x_{1} \frac{\partial^{2} u}{\partial x_{2}^{2}}=0 .
$$

Since the matrix

$$
a_{i j}=\left(\begin{array}{cc}
1 & 0 \\
0 & x_{1}
\end{array}\right)
$$

has eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=x_{1}$, this equation is hyperbolic in those points of the plane $O x_{1} x_{2}$ where $x_{1}<0$, parabolic if $x_{1}=0$, and elliptic if $x_{1}>0$. The equation of the cone $A_{\mathbf{x}}$ is given by

$$
N_{1}^{2}+x_{1} N_{2}^{2}=0
$$

and the characteristic equation

$$
\left(\frac{\partial f}{\partial x_{1}}\right)^{2}+x_{1}\left(\frac{\partial f}{\partial x_{2}}\right)^{2}=0
$$

does not admit real solutions if $x_{1}>0$, whereas if $x_{1}<0$ it assumes the form

$$
\left(\frac{\partial f}{\partial x_{1}}-\sqrt{\left|x_{1}\right|} \frac{\partial f}{\partial x_{2}}\right)\left(\frac{\partial f}{\partial x_{1}}+\sqrt{\left|x_{1}\right|} \frac{\partial f}{\partial x_{2}}\right)=0 .
$$

This equation is equivalent to the following two conditions:

$$
\nabla f \cdot \mathbf{v}_{1}=0, \nabla f \cdot \mathbf{v}_{2}=0
$$

where $\mathbf{v}_{1}=\left(1,-\sqrt{\left|x_{1}\right|}\right)$ and $\mathbf{v}_{2}=\left(1, \sqrt{\left|x_{1}\right|}\right)$, and the characteristic curves are the integrals of these fields, e.g., $x_{2}= \pm \frac{2}{3} \sqrt{\left|x_{1}\right|^{3}}+c$, where c is an arbitrary constant.

8.5 Cauchy's Problem for a Quasi-Linear First-Order System

In the previous section we introduced the concept of the characteristic surface related to a second-order PDE. Here we consider the more general case of a firstorder quasi-linear system of PDEs. It is clear that this case includes the previous one, since a second-order PDE can be reduced to a system of two first-order PDEs.

Let $\mathbf{x}=\left(x_{1}, \ldots x_{n}\right)$ be a point of a domain $\Omega \subset \mathfrak{R}^{n}$, and let $\mathbf{u}=$ ($\left.u_{1}(\mathbf{x}), \ldots, u_{m}(\mathbf{x})\right)$ be a vector function of m components, each depending on n variables $\left(x_{1}, \ldots, x_{n}\right)$. Assume that the vector function satisfies the m differential equations

$$
\left\{\begin{array}{c}
\left(A_{11}^{1} \frac{\partial u_{1}}{\partial x_{1}}+\cdots+A_{1 m}^{1} \frac{\partial u_{m}}{\partial x_{1}}\right)+\cdots+\left(A_{11}^{n} \frac{\partial u_{1}}{\partial x_{n}}+\cdots+A_{1 m}^{n} \frac{\partial u_{m}}{\partial x_{n}}\right)=c_{1}, \tag{8.16}\\
\\
\left(A_{m 1}^{1} \frac{\partial u_{1}}{\partial x_{1}}+\cdots+A_{m m}^{1} \frac{\partial u_{m}}{\partial x_{1}}\right)+\cdots+\left(A_{m 1}^{n} \frac{\partial u_{1}}{\partial x_{n}}+\cdots+A_{m m}^{n} \frac{\partial u_{m}}{\partial x_{n}}\right)=c_{m},
\end{array}\right.
$$

where

$$
\begin{equation*}
A_{j h}^{i}=A_{j h}^{i}(\mathbf{x}, \mathbf{u}), c_{i}=c_{i}(\mathbf{x}, \mathbf{u}) \tag{8.17}
\end{equation*}
$$

are continuous functions of their arguments.

It is necessary to clearly specify the meaning of indices in $A_{j h}^{i}(\mathbf{x}, \mathbf{u})$:
$i=1, \ldots, n$ refers to the independent variable $x_{i} ;$
$j=1, \ldots, m$ refers to the equation;
$h=1, \ldots, m$ refers to the function u_{h}.
If the matrices

$$
\mathbf{A}^{i}=\left(\begin{array}{ccc}
A_{11}^{i} & \cdots & A_{1 m}^{i} \tag{8.18}\\
\cdots & \cdots & \cdots \\
A_{m 1}^{i} & \cdots & A_{m m}^{i}
\end{array}\right), \quad \mathbf{c}=\left(\begin{array}{c}
c_{1} \\
\cdots \\
c_{m}
\end{array}\right)
$$

are introduced, system (8.16) can be written in the following concise way:

$$
\mathbf{A}^{1} \frac{\partial \mathbf{u}}{\partial x_{1}}+\cdots+\mathbf{A}^{n} \frac{\partial \mathbf{u}}{\partial x_{n}}=\mathbf{c}
$$

or in the still more compact form

$$
\begin{equation*}
\mathbf{A}^{i} \frac{\partial \mathbf{u}}{\partial x_{i}}=\mathbf{c} \tag{8.19}
\end{equation*}
$$

The Cauchy problem for the system (8.19) consists of finding a solution of (8.19) which satisfies Cauchy's data

$$
\begin{equation*}
\mathbf{u}(\mathbf{x})=\mathbf{u}_{0}(\mathbf{x}) \quad \forall \mathbf{x} \in \Sigma_{n-1} \tag{8.20}
\end{equation*}
$$

where Σ_{n-1} is a regular surface of \mathfrak{R}^{n}.
By proceeding as in the previous section, we introduce the coordinates $\left(v_{1}, \ldots, v_{n}\right)$, so that Σ_{n-1} is represented by the equation $v_{n}=f(\mathbf{x})=0$. When expressed in these coordinates, system (8.19) becomes

$$
\mathbf{A}^{i} \frac{\partial \mathbf{u}}{\partial x_{i}}=\mathbf{A}^{i} \frac{\partial \mathbf{u}}{\partial \nu_{h}} \frac{\partial \nu_{h}}{\partial x_{i}}=\mathbf{c}
$$

or

$$
\begin{equation*}
\left(\mathbf{A}^{i} \frac{\partial \nu_{h}}{\partial x_{i}}\right) \frac{\partial \mathbf{u}}{\partial v_{h}}=\mathbf{c}, \tag{8.21}
\end{equation*}
$$

whereas Cauchy's data assume the form

$$
\begin{equation*}
\mathbf{u}\left(v_{1}, \ldots, v_{n-1}, 0\right)=\tilde{\mathbf{u}}_{0}\left(v_{1}, \ldots, v_{n-1}\right) \tag{8.22}
\end{equation*}
$$

According to the assumption that $A_{j h}^{i}(\mathbf{x}, \mathbf{u})$ and $c_{i}(\mathbf{x}, \mathbf{u})$ are analytic functions of their arguments, the solution can be expanded in a power series of v_{n}; i.e.,

$$
\begin{equation*}
\mathbf{u}(\mathbf{x})=\mathbf{u}_{0}\left(v_{1}, \ldots, v_{n-1}\right)+\left(\frac{\partial \mathbf{u}}{\partial v_{n}}\right)_{\mathbf{x}_{0}} v_{n}+\frac{1}{2}\left(\frac{\partial^{2} \mathbf{u}}{\partial v_{n}^{2}}\right)_{\mathbf{x}_{0}} v_{n}^{2}+\cdots \tag{8.23}
\end{equation*}
$$

where $\mathbf{x}_{0} \in \Sigma_{n-1}$. The system (8.21) can be written in the form

$$
\left(\mathbf{A}^{i} \frac{\partial f}{\partial x_{i}}\right)_{\mathbf{x}_{0}} \frac{\partial \mathbf{u}}{\partial v_{n}}=\mathbf{F},
$$

where \mathbf{F} is expressed from Cauchy's data. This form highlights the fact that $\left(\partial \mathbf{u} / \partial v_{n}\right)_{\mathbf{x}_{0}}$ is determined if and only if

$$
\begin{equation*}
\operatorname{det}\left(\mathbf{A}^{i} \frac{\partial f}{\partial x_{i}}\right)_{\mathbf{x}_{0}} \neq 0 \tag{8.24}
\end{equation*}
$$

It is easy to verify that this condition allows us to determine all the derivatives $\partial^{r} \mathbf{u} / \partial \nu_{n}^{r}$ at any $\mathbf{x}_{0} \in \Sigma_{n-1}$. Moreover, it can be proved that the series (8.23) is uniformly convergent toward a solution of the Cauchy problem (8.21), (8.22).

8.6 Classification of First-Order Systems

An $(n-1)$-dimensional hypersurface Σ_{n-1} of equation $f(\mathbf{x})=0$ is called a characteristic surface for Cauchy's problem (8.21), (8.22), if it is a solution of the equation

$$
\begin{equation*}
\operatorname{det}\left(\mathbf{A}^{i} \frac{\partial f}{\partial x_{i}}\right)=0 \tag{8.25}
\end{equation*}
$$

As we saw for a second-order PDE, if the system (8.19) is quasi-linear, then the matrices \mathbf{A}^{i} depend on the solution \mathbf{u} of the system as well as on the point \mathbf{x}. Therefore (8.25) allows us, at least in principle, to find the function $f(\mathbf{x})$ if a solution \mathbf{u}_{0} is assigned. As a consequence, the classification of a quasi-linear system depends on the solution \mathbf{u}_{0}, i.e., on Cauchy's data.

Once again, the determination of characteristic surfaces requires that we solve a nonlinear first-order PDE. We remark that if a solution f of (8.25) exists, then the vector \mathbf{N} normal to the characteristic surface $f=$ const, has components N_{i} proportional to $\partial f / \partial x_{i}$, and the following condition holds:

$$
\begin{equation*}
\operatorname{det}\left(\mathbf{A}^{i} N_{i}\right)=0 \tag{8.26}
\end{equation*}
$$

In addition, the vectors \mathbf{N} lean against a cone, since if \mathbf{N} satisfies (8.26), then so does $\mu \mathbf{N}$ for any real μ.

If

$$
\begin{equation*}
\operatorname{det} \mathbf{A}^{1} \neq 0 \tag{8.27}
\end{equation*}
$$

then from (8.26) it follows that

$$
\operatorname{det}\left(\mathbf{A}^{1}\right)^{-1} \operatorname{det}\left(\mathbf{A}^{i} N_{i}\right)=\operatorname{det}\left(\left(\mathbf{A}^{1}\right)^{-1} \mathbf{A}^{i} N_{i}\right)=0
$$

i.e.,

$$
\begin{equation*}
\operatorname{det}\left(\mathbf{I} N_{1}+\sum_{\alpha=2}^{n} \mathbf{B}^{\alpha} N_{\alpha}\right)=0, \mathbf{B}^{\alpha}=\left(\mathbf{A}^{1}\right)^{-1} \mathbf{A}^{\alpha} . \tag{8.28}
\end{equation*}
$$

Given an arbitrary vector $\left(N_{\alpha}\right)$ of \Re^{n-1}, vectors normal to a characteristic surface in \mathbf{x} exist if the algebraic equation of order m (8.28) admits a real solution N_{1}. Moreover, (8.28) represents the characteristic equation of the following eigenvalue problem:

$$
\begin{equation*}
\left(\sum_{\alpha=2}^{n} \mathbf{B}^{\alpha} N_{\alpha}\right) \mathbf{v}=-N_{1} \mathbf{v} \tag{8.29}
\end{equation*}
$$

so that the roots of (8.28) are the opposite eigenvalues of the matrix

$$
\begin{equation*}
\mathbf{C} \equiv \sum_{\alpha=2}^{n} \mathbf{B}^{\alpha} N_{\alpha} \tag{8.30}
\end{equation*}
$$

which, in general, is not symmetric. According to all the previous considerations, system (8.19) can be classified as follows:

1. The system (8.19) is called elliptic at \mathbf{x} (or for the solution \mathbf{u}_{0} when it is quasilinear), if, for any \mathbf{N}, (8.28) does not admit any real solution N_{1}, i.e., there are no vectors normal to characteristic surfaces passing through an arbitrary point $\mathbf{x} \in$ Ω. As a consequence, elliptic systems do not have real characteristic surfaces.
2. The system (8.19) is hyperbolic at \mathbf{x} (or for the solution \mathbf{u}_{0} when it is quasilinear), if, for any \mathbf{N}, (8.28) has only real roots, some of them eventually coincident, and the eigenvectors span \Re^{m} [23, p. 46].
3. The system (8.19) is totally hyperbolic at \mathbf{x} if, for any \mathbf{N}, all m roots of (8.28) are real, distinct, and the corresponding eigenvectors form a basis of \Re^{m} [23, p. 45].
4. The system (8.19) is parabolic at \mathbf{x} if, for at least one root of (8.28), the dimension of the corresponding subset of eigenvectors is less than the algebraic multiplicity of the root itself.

Fig. 8.2 Cone with several nappes

We remark that in the last three cases, for any vector $\tilde{\mathbf{N}}=\left(N_{2}, \ldots, N_{n}\right) \in \mathfrak{R}^{n-1}$, there are several values of N_{1} (with a maximum of m) which satisfy (8.28). This means that the cone $A_{\mathbf{x}}$ has several nappes (see Fig. 8.2).

8.7 Examples

1. A second-order PDE is equivalent to a system of first-order differential equations. In order to prove that the transformation preserves the character (elliptic, hyperbolic, or parabolic), we observe that Laplace's equation

$$
\frac{\partial^{2} u}{\partial x_{1}^{2}}+\frac{\partial^{2} u}{\partial x_{2}^{2}}=0
$$

with the substitution

$$
\frac{\partial u}{\partial x_{1}}=v, \quad \frac{\partial u}{\partial x_{2}}=w
$$

is equivalent to the system

$$
\begin{aligned}
& \frac{\partial v}{\partial x_{1}}+\frac{\partial w}{\partial x_{2}}=0, \\
& \frac{\partial v}{\partial x_{2}}-\frac{\partial w}{\partial x_{1}}=0,
\end{aligned}
$$

where the second equation expresses that the second mixed derivatives of the function u are equal.

By comparing to (8.19), the previous system can be written as

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{\frac{\partial v}{\partial x_{1}}}{\frac{\partial w}{\partial x_{1}}}+\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\frac{\partial v}{\partial x_{2}}}{\frac{\partial w}{\partial x_{2}}}=\binom{0}{0}
$$

and the characteristic equation (8.25) is given by

$$
\operatorname{det}\left(\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \frac{\partial f}{\partial x_{1}}+\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \frac{\partial f}{\partial x_{2}}\right)=0
$$

or

$$
\left(\frac{\partial f}{\partial x_{1}}\right)^{2}+\left(\frac{\partial f}{\partial x_{2}}\right)^{2}=0
$$

Then (8.28) becomes

$$
\operatorname{det}\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) N_{1}+\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) N_{2}\right)=0
$$

i.e.,

$$
N_{1}^{2}+N_{2}^{2}=0
$$

and this equation admits complex roots for any real value of N_{2}.
By using this procedure, we ask the reader to verify that D'Alembert's equation is equivalent to a hyperbolic system.
2. The diffusion equation

$$
\frac{\partial u}{\partial x_{1}}-\frac{\partial^{2} u}{\partial x_{2}^{2}}=0
$$

is equivalent to the system

$$
\begin{aligned}
\frac{\partial w}{\partial x_{2}} & =v \\
\frac{\partial v}{\partial x_{2}}-\frac{\partial w}{\partial x_{1}} & =0
\end{aligned}
$$

where $\partial u / \partial x_{1}=v$ and $\partial u / \partial x_{2}=w$. In matrix form, this is

$$
\left(\begin{array}{cc}
0 & 0 \\
0 & -1
\end{array}\right)\binom{\frac{\partial v}{\partial x_{1}}}{\frac{\partial w}{\partial x_{1}}}+\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\frac{\partial v}{\partial x_{2}}}{\frac{\partial w}{\partial x_{2}}}=\binom{v}{0}
$$

and multiplying on the left by the inverse of

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

gives

$$
\left(\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right)\binom{\frac{\partial v}{\partial x_{1}}}{\frac{\partial w}{\partial x_{1}}}+\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{\frac{\partial v}{\partial x_{2}}}{\frac{\partial w}{\partial x_{2}}}=\binom{0}{v}
$$

As a consequence, (8.29) becomes

$$
\left(\begin{array}{cc}
0 & -N_{1} \\
0 & 0
\end{array}\right)\binom{v_{1}}{v_{2}}+N_{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{v_{1}}{v_{2}}=0 .
$$

It is now rather easy to verify that $N_{2}=0$ is an eigenvalue of multiplicity 2 and the corresponding eigenvector is $\left(v_{1}, 0\right)$, so that it spans a one-dimensional subspace. Therefore, the system is parabolic.
3. Finally, we introduce an example related to fluid mechanics (a topic addressed in Chap. 9). Let S be a perfect compressible fluid of density $\rho(t, x)$ and velocity $v(t, x)$ (oriented parallel to the axis $O x$). The balance equations of mass (5.22) and momentum (5.30) of S are

$$
\begin{array}{r}
\frac{\partial \rho}{\partial t}+v \frac{\partial \rho}{\partial x}+\rho \frac{\partial v}{\partial x}=0 \\
\rho \frac{\partial v}{\partial t}+\rho v \frac{\partial v}{\partial x}+p^{\prime}(\rho) \frac{\partial \rho}{\partial x}=0
\end{array}
$$

where $p=p(\rho)$ is the constitutive equation.
The above system can be reduced to the form (8.19) as follows:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & \rho
\end{array}\right)\binom{\frac{\partial \rho}{\partial t}}{\frac{\partial v}{\partial t}}+\left(\begin{array}{cc}
v & \rho \\
p^{\prime} & \rho v
\end{array}\right)\binom{\frac{\partial \rho}{\partial x}}{\frac{\partial v}{\partial x}}=0
$$

so that the characteristic equation (8.25) is given by

$$
\operatorname{det}\left(\left(\begin{array}{ll}
1 & 0 \\
0 & \rho
\end{array}\right) \frac{\partial f}{\partial t}+\left(\begin{array}{cc}
v & \rho \\
p^{\prime} & \rho v
\end{array}\right) \frac{\partial f}{\partial x}\right)=0 .
$$

It can also be written in the form

$$
\operatorname{det}\left(\begin{array}{cc}
\frac{\partial f}{\partial t}+v \frac{\partial f}{\partial x} & \rho \frac{\partial f}{\partial x} \\
p^{\prime} \frac{\partial f}{\partial x} & \rho\left(\frac{\partial f}{\partial t}+v \frac{\partial f}{\partial x}\right)
\end{array}\right)=0
$$

and the expansion of the determinant gives

$$
\left(\frac{\partial f}{\partial t}+v \frac{\partial f}{\partial x}\right)^{2}-p^{\prime}\left(\frac{\partial f}{\partial x}\right)^{2}=0
$$

Furthermore, (8.28) can be written as

$$
\operatorname{det}\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) N_{1}+\left(\begin{array}{cc}
v & \rho \\
p^{\prime} / \rho & v
\end{array}\right) N_{2}\right)=0
$$

i.e.,

$$
N_{1}^{2}+2 N_{2} v N_{1}+N_{2}^{2}\left(v^{2}-p^{\prime}\right)=0 .
$$

This equation has two distinct roots

$$
N_{1}=\left(-v \pm \sqrt{p^{\prime}}\right) N_{2}
$$

which are real if $p^{\prime}(\rho)>0$. The corresponding eigenvectors

$$
\left(1,-\frac{\sqrt{p^{\prime}}}{\rho}\right), \quad\left(1, \frac{\sqrt{p^{\prime}}}{\rho}\right)
$$

are independent, so that the system is totally hyperbolic.

8.8 Second-Order Systems

In many circumstances, the mathematical model of a physical problem reduces to a second-order quasi-linear system

$$
\begin{equation*}
A_{H K}^{i j} \frac{\partial^{2} u_{K}}{\partial x_{i} \partial x_{j}}+f_{H}(\mathbf{x}, \mathbf{u}, \nabla \mathbf{u})=0, \quad H, K=1, \ldots, m, \tag{8.31}
\end{equation*}
$$

of m equations in the unknown functions u_{1}, \ldots, u_{m} depending on the variables x_{1}, \ldots, x_{n}.

In this case, the classification of the system can be pursued by two procedures.
The procedure discussed in the previous section can be still applied by transforming (8.31) into a first-order system of $(m+m n)$ equations by adding the $m n$ auxiliary equations

$$
\frac{\partial u_{H}}{\partial x_{j}}=v_{H j}, \quad H=1, \ldots, m, j=1, \ldots, n,
$$

with $m n$ auxiliary unknowns and by rewriting (8.31) in the form

$$
A_{H K}^{i j} \frac{\partial v_{K j}}{\partial x_{i}}+f_{H}(\mathbf{x}, \mathbf{u}, \mathbf{v})=0, \quad H, K=1, \ldots, m
$$

Such a procedure has the disadvantage that there is a huge increase in the number of equations: as an example, if $m=3$ and $n=4$, the transformed system gives rise to 15 equations.

This shortcoming calls for a different approach, so that the system (8.31) is written in the matrix form

$$
\begin{equation*}
\mathbf{A}^{i j} \frac{\partial^{2} \mathbf{u}}{\partial x_{i} \partial x_{j}}+\mathbf{f}(\mathbf{x}, \mathbf{u}, \nabla \mathbf{u})=0 \tag{8.32}
\end{equation*}
$$

where

$$
\mathbf{A}^{i j}=\left(\begin{array}{ccc}
A_{11}^{i j} & \cdots & A_{1 m}^{i j} \\
\cdots & \cdots & \cdots \\
A_{m 1}^{i j} & \cdots & A_{m m}^{i j}
\end{array}\right), \quad \mathbf{f}=\left(\begin{array}{c}
f_{1} \\
\cdots \\
f_{m}
\end{array}\right) .
$$

We remark that the matrices $\mathbf{A}^{i j}$ are generally not symmetric. By proceeding as in the previous two sections, instead of (8.14), (8.24), we find that the characteristic surfaces are now given by the equation

$$
\begin{equation*}
\operatorname{det}\left(\mathbf{A}^{i j} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}}\right)=0 . \tag{8.33}
\end{equation*}
$$

As a consequence, the vector \mathbf{N} normal to the characteristic surface $f=$ const, satisfies the condition

$$
\begin{equation*}
\operatorname{det}\left(\mathbf{A}^{i j} N_{i} N_{j}\right)=0, \tag{8.34}
\end{equation*}
$$

which defines, at any \mathbf{x}, a cone with multiple nappes. This result allows us to extend the classification rule of first-order systems to second-order ones.

8.9 Ordinary Waves

Let C be a region of \Re^{n}. We denote by Σ_{n-1} a hypersurface dividing this region into two parts C^{-}and C^{+}, where C^{+}is that part which contains the unit vector \mathbf{N} normal to Σ_{n-1}. If $\mathbf{u}(\mathbf{x})$ is a C^{1} function in $C-\Sigma_{n-1}$ as well as a solution of the system (8.21) in each one of the regions C^{-}and C^{+}, then the following theorem can be proved:

Theorem 8.2. The surface Σ_{n-1} is a first-order singular surface with respect to the function $\mathbf{u}(\mathbf{x})$ if and only if it is a characteristic surface for the Cauchy problem (8.21)-(8.22).

Proof. Let Σ_{n-1} be a first-order singular surface with respect to $\mathbf{u}(\mathbf{x})$. Then the following jump condition holds across Σ_{n-1} (see (2.49)):

$$
\begin{equation*}
\left[\left[\frac{\partial \mathbf{u}}{\partial x_{i}}\right]\right]_{\mathbf{x}_{0}}=\mathbf{a} N_{i} \quad \forall \mathbf{x}_{0} \in \Sigma_{n-1} \tag{8.35}
\end{equation*}
$$

where \mathbf{a} is a vector field with m components. In addition, since $\mathbf{u}(\mathbf{x})$ satisfies the system (8.19) in both C^{-}and C^{+}regions, for $\mathbf{x} \longrightarrow \mathbf{x}_{0} \in \Sigma_{n-1}$, we find that

$$
\mathbf{A}^{i}\left(\frac{\partial \mathbf{u}}{\partial x_{i}}\right)_{\mathbf{x}_{0}}^{ \pm}=\mathbf{c}
$$

so that

$$
\begin{equation*}
\mathbf{A}^{i}\left[\left[\frac{\partial \mathbf{u}}{\partial x_{i}}\right]\right]_{\mathbf{x}_{0}}=\mathbf{0} \tag{8.36}
\end{equation*}
$$

Owing to (8.35), when we note that $N_{i}=\partial f / \partial x_{i}$, where $f(\mathbf{x})=0$ is the equation of the surface Σ_{n-1}, we conclude that

$$
\begin{equation*}
\left(\mathbf{A}^{i} \frac{\partial f}{\partial x_{i}}\right)_{\mathbf{x}_{0}} \mathbf{a}=\mathbf{0} . \tag{8.37}
\end{equation*}
$$

If the surface Σ_{n-1} is singular, then the field \mathbf{a} is nonvanishing at some point $\mathbf{x}_{0} \in$ Σ_{n-1}. Equivalently, the coefficient determinant of the system (8.37) in the unknown vector a has to be equal to zero. Therefore, (8.25) holds and Σ_{n-1} is a characteristic surface.

Conversely, if (8.25) holds, then (8.35) is satisfied for a nonvanishing vector a and Σ_{n-1} is a first-order singular surface.

In its essence, the previous theorem states that the characteristic surfaces of the system (8.19) are coincident with the singular first-order surfaces of the solution $\mathbf{u}(\mathbf{x})$ of (8.19). System (8.37) is called the jump system associated with (8.19).

In order to highlight the role of the previous theorem in wave propagation, a physical phenomenon is supposed to be represented by the first-order quasilinear system (8.21), whose unknowns are functions of the independent variables $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(t, \mathbf{x}) \in \mathfrak{R}^{4}$, where t is the time and \mathbf{x} is a spatial point. A moving surface $S(t)$, of equation $f(t, \mathbf{x})=0$, is supposed to subdivide a region $V \subset \mathfrak{R}^{3}$ into two parts $V^{-}(t)$ and $V^{+}(t)$, with the normal unit vector to $S(t)$ pointing toward $V^{+}(t)$.

If the solution $\mathbf{u}(t, \mathbf{x})$ of (8.21) exhibits a discontinuity in some of its first derivatives across $S(t)$, then $\mathbf{u}(t, \mathbf{x})$ is said to represent an ordinary wave. If the function itself exhibits a discontinuity on $S(t)$, then $\mathbf{u}(t, \mathbf{x})$ represents a shock wave. In both cases, $S(t)$ is the wavefront and $V^{+}(t)$ is the region toward which the surface $S(t)$ is moving with normal speed c_{n}. Accordingly, regions $V^{-}(t)$ and $V^{+}(t)$ are called the perturbed and undisturbed region, respectively.

It follows that a wavefront $S(t)$ of an ordinary wave is a first-order singular surface with respect to the solution $\mathbf{u}(t, \mathbf{x})$ of the system (8.19), or, equivalently, a characteristic surface.

With these concepts in mind, we can determine the wavefront $f(t, \mathbf{x})=0$ by means of the theory of singular surfaces as well as by referring to characteristic surfaces. The relevant aspect relies on the fact that the system (8.19) predicts the propagation of ordinary waves if and only if its characteristics are real, i.e., the system is hyperbolic.

It could be argued that the definition of a wave introduced here does not correspond to the intuitive idea of this phenomenon. As an example, the solution of D'Alembert's equation can be expressed as a Fourier series of elementary waves. In any case, when dealing with ordinary waves of discontinuity, it is relatively easy to determine the propagation speed of the wavefront $S(t)$ and its evolution as well as the evolution of the discontinuity. Furthermore, in all those cases in which we are able to construct the solution, it can be verified a posteriori that the propagation characteristics are coincident with those derived from the theory of ordinary waves.

If the evolution is represented by a first-order system of PDEs

$$
\begin{equation*}
\frac{\partial \mathbf{u}}{\partial t}+\sum_{i=1}^{3} \mathbf{B}^{i}(\mathbf{x}, t, \mathbf{u}) \frac{\partial \mathbf{u}}{\partial x_{i}}=\mathbf{b} \tag{8.38}
\end{equation*}
$$

then the associated jump system is

$$
\begin{equation*}
-c_{n} \mathbf{a}+\sum_{i=1}^{3} \mathbf{B}^{i}(\mathbf{x}, t, \mathbf{u})_{\mathbf{r}} n_{i} \mathbf{a}=\mathbf{0} \tag{8.39}
\end{equation*}
$$

where c_{n} is the propagation speed of the wavefront $f(t, \mathbf{x})=0, \mathbf{n}$ is the unit vector normal to the surface, and \mathbf{a} is the vector of discontinuities of first derivatives. If we introduce the $m \times m$ matrix

$$
\begin{equation*}
\mathbf{Q}(\mathbf{x}, t, \mathbf{u}, \mathbf{n})=\sum_{i=1}^{3} \mathbf{B}^{i}(\mathbf{x}, t, \mathbf{u}) n_{i} \tag{8.40}
\end{equation*}
$$

where m is the number of unknowns, i.e., the number of components of $\mathbf{u}(t, \mathbf{x})$, then system (8.39) becomes

$$
\begin{equation*}
\mathbf{Q}(\mathbf{x}, t, \mathbf{u}, \mathbf{n}) \mathbf{a}=c_{n} \mathbf{a} \tag{8.41}
\end{equation*}
$$

This equation leads to the following results (Hadamard): Given the undisturbed state $\mathbf{u}^{+}(\mathbf{x}, t)$ toward which the ordinary wave propagates, the matrix \mathbf{Q} is a known function of \mathbf{r} and t, due to the continuity of $\mathbf{u}(\mathbf{x}, t)$ on $S(t)$. Furthermore, for a given direction of propagation \mathbf{n}, speeds of propagation correspond to the eigenvalues of the matrix \mathbf{Q}, and discontinuities of first derivatives are the eigenvectors of \mathbf{Q}.

The existence of waves requires that eigenvalues and eigenvectors be real.
Once the propagation speed $c_{n}\left(\mathbf{x}, t, \mathbf{u}^{+}, \mathbf{n}\right)$ has been determined, the evolution of the wavefront can be derived by referring to the speed of propagation of $S(t)$ (see Chap. 4):

$$
\begin{equation*}
\frac{\partial f}{\partial t}=-c_{n}\left(\mathbf{x}, t, \mathbf{u}^{+}, \mathbf{n}\right)|\nabla f| \tag{8.42}
\end{equation*}
$$

Since $S(t)$ is a moving surface, $\partial f / \partial t \neq 0$; furthermore, $\mathbf{n}=\nabla f /|\nabla f|$ and c_{n} is a homogeneous function of zero order with respect to $\partial f / \partial x_{i}$. Therefore, (8.42) reduces to the eikonal equation:

$$
\begin{equation*}
\frac{\partial f}{\partial t}+c_{n}\left(\mathbf{x}, t, \mathbf{u}^{+}, \frac{\partial f}{\partial x_{i}}\right)=0 \tag{8.43}
\end{equation*}
$$

Finding the solution of this equation is far from being a simple task.
Here again it may happen that the physical problem can be represented by m second-order PDEs with m unknowns depending on x_{1}, \ldots, x_{n}. This system could be transformed into a new first-order system of $m n$ equations with $m n$ unknowns, to which the previous results apply, by introducing the new unknowns

$$
\frac{\partial u_{i}}{\partial x_{j}}=v_{i j}
$$

and the additional equations

$$
\frac{\partial v_{i j}}{\partial x_{h}}=\frac{\partial v_{i h}}{\partial x_{j}}
$$

expressing the invertibility of second derivatives of functions u_{i}. Because such a procedure greatly increases the number of equations, the extension of the previous
procedure to second-order systems appears to be more convenient. From this perspective, if the evolution is represented by the system

$$
\begin{equation*}
\frac{\partial^{2} \mathbf{u}}{\partial t^{2}}+\mathbf{B}_{i j}(t, \mathbf{x}, \mathbf{u}, \nabla \mathbf{u}) \frac{\partial^{2} \mathbf{u}}{\partial x_{i} \partial x_{j}}+\mathbf{f}(t, \mathbf{x}, \mathbf{u}, \nabla \mathbf{u})=\mathbf{0} \tag{8.44}
\end{equation*}
$$

then an ordinary wave is defined as a second-order singular surface $S(t)$ of the solution $\mathbf{u}(t, \mathbf{x})$, i.e., as a surface across which the second-order derivatives (some or all of them) are discontinuous; similarly, $S(t)$ is a shock wave if the function or its first derivatives are discontinuous across it.

If the system (8.44) is written in the regions V^{-}and V^{+}, then by considering the limit of \mathbf{x} toward a point $\mathbf{r} \in S(t)$ and by subtracting the results, we obtain the jump system associated with (8.44):

$$
\begin{equation*}
\left[\left[\frac{\partial^{2} \mathbf{u}}{\partial t^{2}}\right]\right]_{\mathbf{r}}+\mathbf{B}_{i j}(\mathbf{x}, t, \mathbf{u}, \nabla \mathbf{u})_{\mathbf{r}}\left[\left[\frac{\partial^{2} \mathbf{u}}{\partial x_{i} \partial x_{j}}\right]\right]_{\mathbf{r}}=\mathbf{0} . \tag{8.45}
\end{equation*}
$$

By recalling jump expressions derived in Sect. 4.5, this becomes

$$
\begin{equation*}
\mathbf{Q}(\mathbf{x}, t, \mathbf{u}, \nabla \mathbf{u}, \mathbf{n}) \mathbf{a} \equiv \mathbf{B}_{i j}(\mathbf{x}, t, \mathbf{u}, \nabla \mathbf{u})_{\mathbf{r}} n_{i} n_{j} \mathbf{a}=c_{n}^{2} \mathbf{a} \tag{8.46}
\end{equation*}
$$

where $\mathbf{n}=\left(n_{i}\right)$ is the unit vector normal to $S(t)$ and \mathbf{a} is the discontinuity vector.
It has been proved that (Hadamard): Given an undisturbed state $\mathbf{u}^{+}(\mathbf{x}, t)$ toward which the ordinary wave $S(t)$ propagates, then due to the continuity of $u(x, t)$ across $S(t)$, the matrix Q is a known function of t and r. Furthermore, given a propagation direction n, the speeds of propagation are the roots of eigenvalues of the matrix

$$
\mathbf{B}_{i j}(t, \mathbf{x}, \mathbf{u}, \nabla \mathbf{u})_{\mathbf{r}} n_{i} n_{j},
$$

and the discontinuity vectors are its eigenvectors.
We give the following examples:

1. When we consider D'Alembert's equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=\Delta u
$$

the jump system is written as

$$
(\mathbf{n} \otimes \mathbf{n}) \mathbf{a}=c_{n}^{2} \mathbf{a} .
$$

In a reference frame $O x y z$ in which $O x$ is parallel to \mathbf{n}, where $\mathbf{n}=(1,0,0)$, the eigenvalues of the tensor $\mathbf{n} \otimes \mathbf{n}$ are 0 (with multiplicity 2) and 1 and the
eigenvectors have components $\left(0, a_{2}, a_{3}\right)$ and $\left(a_{1}, 0,0\right)$. It follows that the speeds of propagation along \mathbf{n} are ± 1.
2. The system of example 3, Sect. 8.3, can be written in the form (8.38)

$$
\binom{\frac{\partial \rho}{\partial t}}{\frac{\partial v}{\partial t}}+\left(\begin{array}{cc}
v & \rho \\
\frac{p^{\prime}}{\rho} & v
\end{array}\right)\binom{\frac{\partial \rho}{\partial x}}{\frac{\partial v}{\partial x}}=0
$$

and, since $\mathbf{n}=(1,0,0)$, it follows that

$$
\mathbf{Q}=\left(\begin{array}{cc}
v & \rho \\
\frac{p^{\prime}}{\rho} & v
\end{array}\right)
$$

The eigenvalues of this matrix are

$$
c_{n}=v \pm \sqrt{p^{\prime}(\rho)},
$$

so that the result previously obtained is recovered.

8.10 Linearized Theory and Waves

We have already seen how far from straightforward it is to obtain a solution of the quasi-linear system (8.38). But it can also be observed that, under the assumption $\mathbf{b}=\mathbf{0}$, any arbitrary constant vector function $\mathbf{u}=\mathbf{u}_{0}$ is a solution of the system. More generally, suppose that a solution \mathbf{u}_{0} of (8.38) is already known, so that we can ask under which circumstances the function

$$
\begin{equation*}
\mathbf{u}=\mathbf{u}_{0}+\mathbf{v}, \tag{8.47}
\end{equation*}
$$

obtained by adding a small perturbation \mathbf{v} to the undisturbed state \mathbf{u}_{0}, is still a solution of the system.

We say that there is a small perturbation if $|\mathbf{v}|$ and $|\nabla \mathbf{v}|$ are first-order quantities, so that their products and power can be neglected. It will be shown in the following discussion that such an assumption implies that \mathbf{v} is a solution of the linearized system (8.38), so that we can apply many techniques in order to find an analytical expression of \mathbf{v}. In addition, we also note that the assumption of small perturbation, to be consistent, requires that we ascertain the stability of the undisturbed state. This observation is related to the nonlinear nature of the system (8.38), so that it could happen that a solution corresponding to initial data $\mathbf{u}_{0}+\mathbf{v}_{0}$, with small \mathbf{v}_{0},

- it does not remain over time of the order of \mathbf{v}_{0}; or
- only exists in a finite time interval.

In both cases the solution of the linearized problem does not represent an approximate solution of the nonlinear problem.

Within this framework, we introduce the following examples to clarify the previous considerations.

1. Consider the nonlinear equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=0 \tag{8.48}
\end{equation*}
$$

which admits the solution $u_{0}=0$. The integral curves of the vector field $\mathbf{V} \equiv$ $(1, u)$ are the solution of the system

$$
\begin{aligned}
& \frac{d t}{d s}=1, \\
& \frac{d x}{d s}=u,
\end{aligned}
$$

which corresponds to the equation

$$
\begin{equation*}
\frac{d x}{d t}=u(t, x(t)) \tag{8.49}
\end{equation*}
$$

On these curves, (8.48) gives

$$
\frac{d u}{d s}=0
$$

i.e., $u(t, x(t))=$ const $=u(0, x(0)) \equiv u_{0}(\xi)$, where $\xi=x(0)$. From (8.49) it follows that along the lines

$$
\begin{equation*}
x-u_{0}(\xi) t=\xi \tag{8.50}
\end{equation*}
$$

the solution $u(t, x)$ of (8.48) is constant, so that at (t, x) it assumes the same values that it has at the point ξ :

$$
u=u_{0}\left(x-u_{0}(\xi) t\right)
$$

showing a character of wave solution. We can conclude that, given the values $u_{0}(\xi)$ of the function u on the axis $O x$, the solution of (8.48) is determined. If the initial datum $u_{0}(\xi)$ is not constant, then the straight lines (8.50) are no longer parallel and they intersect at some point of the plane t, x. This means that the wave is a shock (Fig. 8.3).

Fig. 8.3 Intersection of characteristics

On the other hand, consider the Cauchy problem related to (8.48), with

$$
u_{0}(\xi)=1+v_{0}(\xi)
$$

where $v_{0}(\xi)$ is a first-order quantity. If (8.48) is linearized in the neighborhood of $u=1$, then we obtain for the perturbation v the equation

$$
\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x}=0
$$

to be solved with the Cauchy datum $v_{0}(\xi)$. By using the previous procedure, we conclude that the function $v(t, x)$ is constant along the parallel lines $x-t=\xi$ and that it assumes the form

$$
v(t, x)=v_{0}(x-t)=v_{0}(\xi)
$$

In this case the linear solution is defined at any time t and represents a wave moving with constant speed, equal to 1 .
2. As a second example we consider the equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x}-u^{2}=0 \tag{8.51}
\end{equation*}
$$

which admits the solution $u=0$. If we introduce the vector field $\mathbf{V} \equiv(1,1)$, whose integral curves are the parallel lines

$$
x-t=\xi,
$$

then the previous equation along these lines gives

$$
\frac{d u}{d s}=u^{2}
$$

The general solution of (8.51) then is

$$
\begin{equation*}
u=\frac{u_{0}(\xi)}{1-u_{0}(\xi) t}=\frac{u_{0}(x-t)}{1-u_{0}(x-t) t}, \tag{8.52}
\end{equation*}
$$

where $u_{0}(\xi)=u_{0}(0, x)$. If $u_{0}(\xi)>0$, then the solution along the straight line $x-t=\xi$ is infinity at the time $t_{*}>0$, such that $u_{0}(\xi) t_{*}=1$.

By linearizing in the neighborhood of $u=0$, we obtain the following equation for the perturbation v :

$$
\frac{\partial v}{\partial t}+\frac{\partial v}{\partial x}=0
$$

which has the wave solution

$$
v=v_{0}(\xi)=v_{0}(x-t)
$$

defined at any time t.
When we can apply the linearizing procedure, presuming that the undisturbed state is a stable one, then by substituting the solution (8.47) into (8.38) and by neglecting nonlinear terms of $|\mathbf{v}|$ and $|\nabla \mathbf{v}|$, we obtain that the perturbation \mathbf{v} must be a solution of the linear system

$$
\begin{equation*}
\frac{\partial \mathbf{v}}{\partial t}+\sum_{i=1}^{3} \mathbf{B}^{i}\left(\mathbf{x}, t, \mathbf{u}_{0}\right) \frac{\partial \mathbf{v}}{\partial x_{i}}=\mathbf{0} . \tag{8.53}
\end{equation*}
$$

In this case we can try to obtain the solution as a Fourier series of elementary waves; i.e., we can try to determine whether a sinusoidal wave of amplitude \mathbf{A}, wavelength λ, and propagating in the direction of the unit vector \mathbf{n} with speed U, written as

$$
\begin{equation*}
\mathbf{v}(t, \mathbf{x})=\mathbf{A} \sin \frac{2 \pi}{\lambda}(\mathbf{n} \cdot \mathbf{x}-U t) \tag{8.54}
\end{equation*}
$$

can be a solution of (8.53). Since

$$
\begin{aligned}
\frac{\partial \mathbf{v}}{\partial t} & =-\frac{2 \pi}{\lambda} U \mathbf{A} \cos \frac{2 \pi}{\lambda}(\mathbf{n} \cdot \mathbf{x}-U t), \\
\frac{\partial \mathbf{v}}{\partial x_{i}} & =\frac{2 \pi}{\lambda} n_{i} \mathbf{A} \cos \frac{2 \pi}{\lambda}(\mathbf{n} \cdot \mathbf{x}-U t),
\end{aligned}
$$

then by substituting into (8.53) we find that

$$
-U \mathbf{A}+\sum_{i=1}^{3} \mathbf{B}^{i}\left(\mathbf{x}, t, \mathbf{u}_{0}\right) n_{i} \mathbf{A}=\mathbf{0}
$$

which is the same as (8.39) if we assume that $\mathbf{u}=\mathbf{u}_{0}$. We reach the conclusion that a plane sinusoidal wave is a solution of the linear system (8.53) if and only if the speed of propagation is an eigenvalue of

$$
\mathbf{Q}^{i}\left(\mathbf{x}, t, \mathbf{u}_{0}, \mathbf{n}\right) \equiv \sum_{i=1}^{3} \mathbf{B}^{i}\left(\mathbf{x}, t, \mathbf{u}_{0}\right) n_{i}
$$

and the amplitude is the corresponding eigenvector.

8.11 Shock Waves

As we mentioned in Sect. 8.5, a singular surface $\Sigma(t)$ is a shock wavefront if the function \mathbf{u} exhibits a discontinuity across it. Usually, we meet with shock waves when we are dealing with systems of PDEs related to conservation laws

$$
\begin{equation*}
\frac{\partial g_{i}(\mathbf{u})}{\partial t}+\frac{\partial}{\partial x_{j}} \Psi_{i j}(t, \mathbf{x}, \mathbf{u})=b_{i}(t, \mathbf{x}, \mathbf{u}) \tag{8.55}
\end{equation*}
$$

$i=1, \ldots, m$ and $j=1, \ldots, n$, i.e., to those systems which are equivalent to integral balance laws (see (5.2) and (5.3))

$$
\frac{d}{d t} \int_{V} g_{i}(\mathbf{u}) d c=-\int_{\partial V} \Psi_{i j} N_{j} d \sigma+\int_{V} b_{i} d c
$$

where V is an arbitrary volume of \Re^{3} and \mathbf{N} is the unit vector normal to ∂V.
As discussed in Chap. 5 (see (5.3)), on the discontinuity surface $\Sigma(t)$ the following Rankine-Hugoniot jump conditions hold:

$$
\begin{equation*}
\left[\left[g_{i}(\mathbf{u}) c_{n}-\Psi_{i j}(t, \mathbf{x}, \mathbf{u}) n_{j}\right]\right]=0 \tag{8.56}
\end{equation*}
$$

where c_{n} is the normal component of the speed of propagation of $\Sigma(t)$ and \mathbf{n} is the unit vector normal to $\Sigma(t)$.

Let us now assume that a given phenomenon is represented by a system of n PDEs such as (8.55), with the unknowns $\mathbf{u}=\left(u_{1}, \ldots, u_{m}\right)$. When the constitutive law $\boldsymbol{\Psi}(t, \mathbf{x}, \mathbf{u})$ has been defined, the system (8.56) gives a finite relation between the two limits \mathbf{u}^{-}and \mathbf{u}^{+}of the field \mathbf{u} on the two sides of the wavefront, where \mathbf{u}^{+}are the values relative to the undisturbed region.

The aim is now to analyze the system (8.56) with reference to the following three cases:

- linear shock;
- small intensity shock;
- finite shock.

Let us start by assuming that both functions g_{i} and $\Psi_{i j}$ are linearly dependent on the unknown functions u_{i} :

$$
g_{i}=K_{i j}(t, \mathbf{x}) u_{j}, \quad \Psi_{i j}=H_{i j k}(t, \mathbf{x}) u_{k}
$$

i.e., the system (8.55) is linear or semi-linear. Accordingly, the Rankine-Hugoniot conditions are

$$
\left(K_{i j} c_{n}-H_{i k j} n_{k}\right)\left[\left[u_{j}\right]\right]=0,
$$

and they constitute an algebraic system for the jumps [[$\left.\left.u_{j}\right]\right]$. In this case, it is then apparent that our problem reduces to the usual eigenvalue problem, as we saw for ordinary waves.

We assume that the jumps are of small intensity, then we can write

$$
\begin{aligned}
g_{i} & =K_{i j} u_{j}+\frac{1}{2} K_{i j h}^{(1)} u_{j} u_{h}+\cdots, \\
\Psi_{i j} & =H_{i j k} u_{k}+\frac{1}{2} H_{i j h k}^{(1)} u_{h} u_{k}+\cdots .
\end{aligned}
$$

By substituting into the Rankine-Hugoniot conditions (8.56), as well as by neglecting terms higher than first order and taking into account the symmetry conditions

$$
K_{i j h}^{(1)}=K_{i h j}^{(1)}, \quad H_{i j h k}^{(1)}=H_{i j k h}^{(1)},
$$

we get

$$
\left(K_{i j} c_{n}-H_{i j k} n_{k}\right)\left[\left[u_{j}\right]\right]+\frac{1}{2}\left(K_{i j h}^{(1)} c_{n}-H_{i k j h}^{(1)} n_{k}\right)\left[\left[u_{j} u_{h}\right]\right]=0 .
$$

By also observing that

$$
\begin{aligned}
{[[A B]] } & =A^{+} B^{+}-A^{-} B^{-}=A^{+} B^{+}-A^{-} B^{+}+A^{-} B^{+}-A^{-} B^{-} \\
& =[[A]] B^{+}+[[B]] A^{-}=[[A]] B^{+}+[[B]]\left(A^{+}-[[A]]\right) \\
& \simeq[[A]] B^{+}+[[B]] A^{+}
\end{aligned}
$$

we find that the previous relation assumes the form

$$
\begin{aligned}
\left(K_{i j} c_{n}\right. & \left.-H_{i k j} n_{k}\right)\left[\left[u_{j}\right]\right] \\
& +\frac{1}{2}\left(K_{i j h}^{(1)} c_{n}-H_{i k j h}^{(1)} n_{k}\right)\left(\left[\left[u_{j}\right]\right] u_{h}^{+}+\left[\left[u_{h}\right]\right] u_{j}^{+}\right)=0
\end{aligned}
$$

and it follows that

$$
\begin{equation*}
\left(L_{i j} c_{n}-M_{i k j} n_{k}\right)\left[\left[u_{j}\right]\right]=0, \tag{8.57}
\end{equation*}
$$

where

$$
\begin{aligned}
L_{i j} & =K_{i j}+K_{i j h}^{(1)} u_{h}^{+}, \\
M_{i k j} & =H_{i k j}+H_{i k j h}^{(1)} u_{h}^{+} .
\end{aligned}
$$

In the case of small intensity shocks, we conclude that the problem of determining the speed of propagation and the jumps is reduced to a linear algebraic problem.

In the most general case, the Rankine-Hugoniot conditions correlate the values of \mathbf{u}^{-}, corresponding to the perturbed region, with those of \mathbf{u}^{+}, corresponding to the undisturbed region, when the speed of propagation c_{n} is known. In fact, Eq. (8.56) do not allow us to solve the problem, because, due to the presence of c_{n}, there are fewer equations than unknowns. All we can do is express the values of \mathbf{u}^{-}as functions of c_{n}, called the shock intensity.

We remark that even if we know the value of c_{n}, the problem is still difficult to solve. First, the system (8.56) could have no real solutions $u_{1}^{-}, \ldots, u_{m}^{-}$in the disturbed region; i.e., the state $u_{1}^{+}, \ldots, u_{m}^{+}$could be incompatible with the propagation of shock waves.

It could also happen that the system (8.56), which is nonlinear in the general case, could admit more than one solution compatible with the choice $u_{1}^{+}, \ldots, u_{m}^{+}$, which is equivalent to having several modes of propagation of shock waves. As this doesn't match physical reality, we need to introduce a rule for selecting the one meaningful solution.

But before introducing such a rule, we also need to remark that the indeterminacy arises from the definition of shock waves, according to which discontinuities of zero order are assumed. In reality, around the wavefront there exists a boundary layer where the fields \mathbf{u} change rapidly but with continuity from values pertinent to the perturbed state to those of the undisturbed state. This boundary layer can also be predicted on a theoretical basis by introducing more sophisticated constitutive laws. These laws generate a system of PDEs of higher order, with terms of higher order being multiplied by a small parameter, which creates the boundary layer (see Chap. 9).

In order to avoid this difficulty, an alternative approach consists of adding to (8.56) a scalar condition which reflects the second law of thermodynamics (see also Chap. 9).

One choice consists of assuming that the entropy jump across the shock wavefront is positive. Another possibility is represented by the Lax condition [27]:

$$
\begin{equation*}
v_{n}\left(\mathbf{u}^{+}\right)<c_{n}<v_{n}\left(\mathbf{u}^{-}\right), \tag{8.58}
\end{equation*}
$$

where $v_{n}\left(\mathbf{u}^{+}\right)$and $v_{n}\left(\mathbf{u}^{-}\right)$denote the advancing speeds of the ordinary discontinuity waves in the states \mathbf{u}^{+}and \mathbf{u}^{-}, respectively. In other words, the Lax condition states that, before the arrival of the shock wave, the undisturbed region must be in a supersonic state, while the disturbed region is in a subsonic state. This also means that an observer who moves with the velocity of the perturbed region sees the shock waves moving toward him with a supersonic speed. On the other hand, an observer moving with the velocity of the undisturbed region sees the shock wave going away with subsonic speed.

8.12 Exercises

1. Find a stationary wave for a string with fixed ends and length l.

We must find a solution $u(x, t)$ to the problem

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial t^{2}}=v^{2} \frac{\partial^{2} u}{\partial x^{2}} \\
u(0, t)=u(l, t)=0,
\end{gathered}
$$

which exhibits, at any point, a character of oscillation but not of propagation. To this end, consider the function

$$
u(x, t)=A(t) B(x)
$$

where $B(0)=B(l)=0$ and $A(t)$ is periodic. It can be verified that this function is the required solution if and only if it has the form

$$
u(x, t)=A \sin \left(\frac{2 \pi}{\lambda} v t+\varphi\right) \sin \left(\frac{2 \pi}{\lambda} x+\varphi\right)
$$

where A and φ are arbitrary constants and $\lambda=l / k$, with k a positive integer.
2. Find a sinusoidal solution representing a wave propagating on a string of infinite length.

In this case we need to verify that the function

$$
u=A \sin \frac{2 \pi}{\lambda}(x-v t)
$$

is a solution of D'Alembert's equation.
3. Verify that the function

$$
u(x, t)=A e^{-h t} \sin \frac{2 \pi}{\lambda}(x-v t)
$$

is a solution of D'Alembert's equation in presence of a dissipation term

$$
\frac{\partial^{2} u}{\partial t^{2}}-v^{2} \frac{\partial^{2} u}{\partial x^{2}}=-h \frac{\partial u}{\partial t}, h>0 .
$$

4. Classify the following PDEs by determining the corresponding characteristic curves:

$$
\begin{align*}
x^{2} y \frac{\partial^{2} u}{\partial x^{2}}+x y \frac{\partial^{2} u}{\partial x \partial y}-y^{2} \frac{\partial^{2} u}{\partial y^{2}} & =0, \\
(x \log y) \frac{\partial^{2} u}{\partial x^{2}}+4 y \frac{\partial^{2} u}{\partial y^{2}} & =0, \tag{8.59}\\
\frac{\partial^{2} u}{\partial x \partial y}-x y \frac{\partial^{2} u}{\partial y^{2}} & =0, \\
x^{2} y \frac{\partial^{2} u}{\partial x^{2}}-x y^{2} \frac{\partial^{2} u}{\partial y^{2}} & =
\end{align*}
$$

Derive values of k for which the equation

$$
\frac{\partial^{2} u}{\partial x^{2}}-k x \frac{\partial^{2} u}{\partial x \partial y}+4 x^{2} \frac{\partial^{2} u}{\partial y^{2}}=0
$$

is elliptic, parabolic, or hyperbolic.
5. Verify that the quasi-linear equation

$$
u^{2} \frac{\partial^{2} u}{\partial x^{2}}+3 \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} \frac{\partial^{2} u}{\partial x \partial y}-u^{2} \frac{\partial^{2} u}{\partial y^{2}}=0
$$

is hyperbolic for any solution u.
6. Verify that the quasi-linear equation

$$
\left[1-\left(\frac{\partial u}{\partial x}\right)^{2}\right] \frac{\partial^{2} u}{\partial x^{2}}-2 \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} \frac{\partial^{2} u}{\partial x \partial y}+\left[1-\left(\frac{\partial u}{\partial y}\right)^{2}\right] \frac{\partial^{2} u}{\partial y^{2}}=0
$$

is hyperbolic for those solutions for which $|\nabla u|>1$ and it is elliptic for those solutions for which $|\nabla u|<1$.
7. Classify the linear system

$$
\begin{array}{r}
\frac{\partial u}{\partial x}+2 \frac{\partial u}{\partial t}+\frac{\partial v}{\partial x}+3 \frac{\partial v}{\partial t}-u+v=0 \\
3 \frac{\partial u}{\partial x}+\frac{\partial u}{\partial t}-2 \frac{\partial v}{\partial x}-\frac{\partial v}{\partial t}-2 v=0
\end{array}
$$

8. Classify the quasi-linear system

$$
\begin{aligned}
\rho \frac{\partial u}{\partial x}+u \frac{\partial \rho}{\partial x}+\frac{\partial \rho}{\partial t} & =-2 \rho \frac{u}{x}, \\
\rho u \frac{\partial u}{\partial x}+\rho \frac{\partial u}{\partial t}+c^{2} \frac{\partial \rho}{\partial x} & =0 .
\end{aligned}
$$

8.13 The Program PdeEqClass

Aim of the Program PdeEqClass

The program PdeEqClass classifies the quasi-linear second-order PDEs.

Description of the Problem and Relative Algorithm

Given a quasi-linear second-order PDE in a domain $\Omega \subseteq \Re^{n}$

$$
a_{i j}(\mathbf{x}, u, \nabla u) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}=h(\mathbf{x}, u, \nabla u), \quad i, j=1, \cdots, n, \quad \mathbf{x} \in \Omega,
$$

a point \mathbf{x}_{0} and a solution $u_{0}(\mathbf{x})$, the program PdeEqClass determines the coefficient matrix $\mathbf{A}=\left(a_{i, j}\right)$ and the matrix \mathbf{A}_{0}, which is obtained by evaluating \mathbf{A} at \mathbf{x}_{0} with respect to the known solution u_{0}. Moreover, it calculates the eigenvalues of \mathbf{A} if option=symbolic is chosen or those of \mathbf{A}_{0} if option= numeric is chosen. In the latter case the PDE is classified.

We recall that, for quasi-linear PDEs, the characteristic surfaces depend both on the equation and the Cauchy data. Consequently, the classification is relative to a point \mathbf{x}_{0} for the given solution $u_{0}(\mathbf{x}) .{ }^{1}$ On the other hand, for semi-linear and linear ${ }^{2}$ PDEs the characteristic surfaces depend only on the equation and therefore the classification is relative to any point \mathbf{x}_{0}.

[^24]
Command Line of the Program PdeEqClass

```
PdeEqClass[eq, var, unk, point, unk0, option]
```


Parameter List

Input Data

eq $=$ second-order quasi-linear PDE, where all the terms containing the second derivative appear on the left-hand side, while all the other terms appear on the right-hand side;
var $=$ list of independent variables;
unk = unknown function;
point $=$ coordinates of the point \mathbf{x}_{0} at which the PDE has to be classified;
unk0 $=$ known solution u_{0} of PDE when it is quasi-linear;
option $=$ option for the symbolic or numeric calculation of the eigenvalues of \mathbf{A} and \mathbf{A}_{0}, respectively.

Output Data

the coefficient matrix \mathbf{A};
the matrix \mathbf{A}_{0} obtained by evaluating \mathbf{A} at point and with respect to the solution unk0;
the eigenvalues of \mathbf{A} if option = symbolic;
the eigenvalues of \mathbf{A}_{0} if option $=$ numeric;
the elliptic, hyperbolic, or parabolic character of the PDE if option $=$ numeric.

Use Instructions

The equation has to be given in such a way that on the left-hand side the second derivatives appear, while the right-hand side includes all the terms involving the unknown function and its first derivatives. According with the syntax both of Mathematica ${ }^{\circledR}$ [69] and the program PdeEqClass, the PDE to be examined must be put in the form,

$$
e q=a_{i j}(x, u, \nabla u) u_{x_{i}, x_{j}}==h(x, u, \nabla u),
$$

where the two sides of the equation are separated by a double equal sign and the symbol $\frac{\partial^{2} u}{\partial \mathrm{x}_{\mathrm{i}} \partial \mathrm{x}_{\mathrm{j}}}$ is written as $\mathrm{u}_{\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}}$.

If the equation is semi-linear or linear, then only the input datum point has to be given, not unk0.

Worked Examples

1. Laplace's Equation: Consider Laplace's equation

$$
v_{x, x}+v_{y, y}+v_{z, z}=0
$$

To apply the program PdeEqClass, it is sufficient to input the following data:
$\mathrm{eq}=\mathrm{v}_{\mathrm{x}, \mathrm{x}}+\mathrm{v}_{\mathrm{y}, \mathrm{y}}+\mathrm{v}_{\mathrm{z}, \mathrm{z}}==0$;
$\operatorname{var}=\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$;
unk $=\mathrm{v}$;
point $=\left\{\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right\}$;
unk0 $=\mathrm{v}_{0}$;
option = numeric;
PdeEqClass [eq, var, unk, point, unk0, option]
In output we obtain
Coefficient matrix
$A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
Eigenvalues of A
$\lambda_{1}=1$
The Pde is elliptic.
2. Classify the following equation:

$$
u_{x, x}+2 k u_{t, x}+k^{2} u_{t, t}=0
$$

To apply the program PdeEqClass, it is sufficient to input the following data:
$u_{\mathrm{x}, \mathrm{x}}+2 \mathrm{k} u_{\mathrm{t}, \mathrm{x}}+\mathrm{k}^{2} \mathrm{u}_{\mathrm{t}, \mathrm{t}}==0$;
$\operatorname{var}=\{t, x\}$;
unk $=u$;
point $=\left\{t_{0}, x_{0}\right\}$;
unk0 $=u_{0}$;
option = numeric;
PdeEqClass[eq, var, unk, point, unk0, option]
In output we obtain
Coefficient matrix
$A=\left(\begin{array}{cc}k^{2} & k \\ k & 1\end{array}\right)$
Eigenvalues of A
$\lambda_{1}=0$
$\lambda_{2}=1+k^{2}$
The Pde is parabolic.
3. To verify that the quasi-linear equation

$$
u^{2} u_{x, x}+3 u_{x} u_{y} u_{x, y}-u^{2} u_{y, y}=0
$$

is hyperbolic for any nonvanishing solution $u=u(x, y)$, we can start by applying the program PdeEqClass with the following input data:
$u^{2} u_{x, x}+3 u_{x} u_{y} u_{x, y}-u^{2} u_{y, y}=0 ;$
$\operatorname{var}=\{\mathrm{x}, \mathrm{y}\}$;
unk $=u$;
point $=\left\{\mathrm{x}_{0}, \mathrm{y}_{0}\right\}$;
unk0 $=u_{0}$;
option = numeric;
PdeEqClass[eq, var, unk, point, unk0, option]
The output is
Coefficient matrix
$A=\left(\begin{array}{cc}u^{2} & \frac{3 u_{x} u_{y}}{2} \\ \frac{3 u_{x} u_{y}}{2} & -u^{2}\end{array}\right)$
Matrix A_{0} obtained by evaluating A at point $\left\{x_{0}, y_{0}\right\}$ and with respect to the solution $u_{0}[x, y]$
$A_{0}=\left(\begin{array}{cc}u_{0}[x, y]^{2} & \frac{3}{2} u_{0}^{(0,1)}[x, y] u_{0}{ }^{(1,0)}[x, y] \\ \frac{3}{2} u_{0}^{(0,1)}[x, y] u_{0}^{(1,0)}[x, y] & -u_{0}[x, y]^{2}\end{array}\right)$
Eigenvalues of A_{0}
$\lambda_{1}=-\sqrt{u_{0}[x, y]^{4}+\frac{9}{4} u_{0}^{(0,1)}[x, y]^{2} u_{0}{ }^{(1,0)}[x, y]^{2}}$
$\lambda_{2}=\sqrt{u_{0}[x, y]^{4}+\frac{9}{4} u_{0}{ }^{(0,1)}[x, y]^{2} u_{0}{ }^{(1,0)}[x, y]^{2}}$
The equation cannot be classified since not all the eigenvalues have a definite sign!
As one can see, the output supplies only some help to the user in classifying the equation. In fact, the program cannot decide the sign of the eigenvalues as long as the input data are not given in the numerical form. That is due to the fact that when the input data are assigned in symbolic form, Mathematica ${ }^{\circledR}$ [69] is not able to distinguish between real and complex quantities.

Exercises

Apply the program PdeEqClass to the following differential equations.

1. D'Alembert's equation

$$
\frac{\partial^{2} u}{\partial x^{2}}-\frac{1}{v^{2}} \frac{\partial^{2} u}{\partial t^{2}}=0 .
$$

2. Heat equation

$$
\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial u}{\partial y}=0
$$

3. Tricomi's equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+x^{2} \frac{\partial^{2} u}{\partial y^{2}}=0
$$

4. Classify the PDE

$$
x \frac{\partial^{2} u}{\partial x^{2}}-4 \frac{\partial^{2} u}{\partial x y}=0
$$

in the region $x>0$.
5. Show that the equation

$$
y z \frac{\partial^{2} u}{\partial x^{2}}+z x \frac{\partial^{2} u}{\partial y^{2}}+x y \frac{\partial^{2} u}{\partial z^{2}}=0
$$

is elliptic in the regions $x>0, y>0, z>0$ and $x<0, y<0, z<0$, and is hyperbolic almost everywhere else.
6.

$$
x \log y \frac{\partial^{2} u}{\partial x^{2}}+4 y \frac{\partial^{2} u}{\partial y^{2}}=0
$$

7.

$$
x^{2} y \frac{\partial^{2} u}{\partial x^{2}}-x y^{2} \frac{\partial^{2} u}{\partial y^{2}}=0
$$

8.

$$
y^{2} \frac{\partial^{2} u}{\partial x^{2}}+x \frac{\partial^{2} u}{\partial y^{2}}=0 .
$$

9.

$$
-\left(y^{2}+z^{2}\right) \frac{\partial^{2} u}{\partial x^{2}}+\left(z^{2}+x^{2}\right) \frac{\partial^{2} u}{\partial y^{2}}+\left(x^{2}+y^{2}\right) \frac{\partial^{2} u}{\partial z^{2}}=0
$$

10.

$$
\left(y^{2}-z^{2}\right) \frac{\partial^{2} u}{\partial x^{2}}+\left(z^{2}-x^{2}\right) \frac{\partial^{2} u}{\partial y^{2}}+\left(x^{2}-y^{2}\right) \frac{\partial^{2} u}{\partial z^{2}}=0
$$

11.

$$
(y-x) \frac{\partial^{2} u}{\partial x^{2}}+x^{2} \frac{\partial^{2} u}{\partial y^{2}}=0
$$

12. Verify that the quasi-linear equation

$$
\left[1-\left(\frac{\partial u}{\partial x}\right)^{2}\right] \frac{\partial^{2} u}{\partial x^{2}}-2 \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} \frac{\partial^{2} u}{\partial x \partial y}+\left[1-\left(\frac{\partial u}{\partial y}\right)^{2}\right] \frac{\partial^{2} u}{\partial y^{2}}=0
$$

is hyperbolic for those solutions for which $|\nabla u|>1$ and it is elliptic for those solutions for which $|\nabla u|<1$.

8.14 The Program PdeSysClass

Aim of the Program PdeSysClass

The program PdeSysClass classifies the quasi-linear first-order systems of PDEs.

Description of the Problem and Relative Algorithm

Consider the quasi-linear first-order systems of PDEs of m equations in the m unknown functions (u_{1}, \cdots, u_{m}) depending on n variables $\left(x_{1} \equiv t, \cdots, x_{n}\right)$

$$
\begin{gather*}
\left(A_{11}^{1} \frac{\partial u_{1}}{\partial x_{1}}+\cdots+A_{1 m}^{1} \frac{\partial u_{m}}{\partial x_{1}}\right)+\cdots+\left(A_{11}^{n} \frac{\partial u_{1}}{\partial x_{n}}+\cdots+A_{1 m}^{n} \frac{\partial u_{m}}{\partial x_{n}}\right)=c_{1}, \\
\cdots \tag{8.60}\\
\left(A_{m 1}^{1} \frac{\partial u_{1}}{\partial x_{1}}+\cdots+A_{m m}^{1} \frac{\partial u_{m}}{\partial x_{1}}\right)+\cdots+\left(A_{m 1}^{n} \frac{\partial u_{1}}{\partial x_{n}}+\cdots+A_{m m}^{n} \frac{\partial u_{m}}{\partial x_{n}}\right)=c_{m},
\end{gather*}
$$

where $A_{i j}^{k}(\mathbf{x}, \mathbf{u})$ and $c_{i}(\mathbf{x}, \mathbf{u})$ are continuous functions of their arguments.
By introducing the matrices

$$
\mathbf{A}^{i}=\left(\begin{array}{lll}
A_{11}^{i} & \cdots & A_{1 m}^{i} \\
\cdots & \cdots & \cdots \\
A_{m 1}^{i} & \cdots & A_{m m}^{i}
\end{array}\right), \mathbf{c}=\left(\begin{array}{c}
c_{1} \\
\cdots \\
c_{m}
\end{array}\right),
$$

the system (8.60) can be put in the form (see Chap. 8)

$$
\begin{equation*}
\mathbf{A}^{i} \frac{\partial \mathbf{u}}{\partial x_{i}}=\mathbf{c} \tag{8.61}
\end{equation*}
$$

The program PdeSysClass determines the characteristic equation associated with the system (8.61)

$$
\begin{equation*}
\operatorname{det}\left(\mathbf{I} N_{1}+\sum_{\alpha=2}^{n} \mathbf{B}^{\alpha} N_{\alpha}\right)=0 \tag{8.62}
\end{equation*}
$$

where $\mathbf{B}^{\alpha}=\left(\mathbf{A}^{1}\right)^{-1} \mathbf{A}^{\alpha}$ and $\mathbf{N} \equiv\left(N_{\alpha}\right)$ represent the components of an arbitrary vector of \Re^{n-1}. It is well known that the roots N_{1} of the characteristic equation (8.62) coincide with the opposite of the eigenvalues of the matrix

$$
\mathbf{B}=\sum_{\alpha=2}^{n} \mathbf{B}^{\alpha} N_{\alpha} .
$$

Then, if option $=$ numeric, the program calculates the eigenvalues of \mathbf{B} with their respective algebraic and geometric multiplicities. Finally, it classifies the system (8.60) at any point \mathbf{x}_{0} (but for the given solution \mathbf{u}_{0} if the system is quasi-linear).

Command Line of the Program PdeSysClass

PdeSysClass[sys, var, unk, point, unk0, option]

Parameter List

Input Data

sys = quasi-linear first-order system of PDEs, where the terms containing the first derivatives appear on the left-hand side while the right-hand side contains the functions and the known terms;
var = list of independent variables;
unk = list of unknown functions;
point $=$ coordinates of the point \mathbf{x}_{0} at which the system of PDEs has to be classified;
unk0 $=$ known solution \mathbf{u}_{0} of the system of PDEs when it is quasi-linear;
option $=$ option for the symbolic or numeric calculations of the solutions of the associated characteristic equation.

Output Data

the matrices \mathbf{A}_{i} of the coefficients of the system of PDEs;
the matrices \mathbf{A}_{i}^{0} obtained by evaluating \mathbf{A}_{i} at point and with respect to the solution unk0;
the solutions of the characteristic equation (8.62);
the eigenvalues of $\mathbf{B}=\sum_{\alpha=2}^{n} B^{\alpha} N_{\alpha}$ if option $=$ numeric;
the algebraic and geometric multiplicities of the distinct eigenvalues of \mathbf{B} if option = numeric;
the elliptic, hyperbolic, totally hyperbolic, or parabolic character of the system of PDEs if option $=$ numeric.

Use Instructions

The system of PDEs has to be given in such a way that on the left-hand side the first derivatives appear, while the right-hand side includes all the terms involving the unknown functions and the known terms. The system of PDEs we wish to examine must to be given according to the syntax both of Mathematica ${ }^{\circledR}$ [69] and the program, i.e., in the form

$$
\begin{aligned}
& \text { eq1 }=\left(A_{11}^{1} u_{1 x_{1}}+\cdots+A_{1 m}^{1} u_{m x_{1}}\right)+\cdots+\left(A_{11}^{n} u_{1 x_{n}}+\cdots+A_{1 m}^{n} u_{m x_{n}}\right)==c_{1}, \\
& \cdots \\
& \text { eqm }=\left(A_{m 1}^{1} u_{1 x_{1}}+\cdots+A_{m m}^{1} u_{m x_{1}}\right)+\cdots+\left(A_{m 1}^{n} u_{1 x_{n}}+\cdots+A_{m m}^{n} u_{m x_{n}}\right)==c_{m},
\end{aligned}
$$

where the two sides of the any equation are separated by a double equal sign and the symbol $\frac{\partial u}{\partial \mathrm{x}_{\mathrm{i}}}$ is written as $u_{x_{i}}$.

For a semi-linear or linear system, only the input datum point has to be given, not unk0.

We remark that to classify the system of PDEs when option $=$ numeric, the arbitrary unit vector $\mathbf{N} \equiv\left(N_{\alpha}\right)$ of \Re^{n-1} is chosen.

Worked Examples

1. Laplace's equation: Consider the system in \mathfrak{R}^{2}

$$
\left\{\begin{array}{l}
v_{x}+w_{y}=0, \\
v_{y}-w_{x}=0,
\end{array}\right.
$$

which is equivalent to Laplace's equation

$$
u_{x, x}+u_{y, y}=0
$$

To apply the program PdeSysClass, it is sufficient to input the following data:

```
eq1 \(=v_{x}+w_{y}=0\);
\(\mathrm{eq} 2=\mathrm{v}_{\mathrm{x}}-\mathrm{w}_{\mathrm{y}}==0\);
sys \(=\{\) eq1, eq 2\(\} ;\)
\(\operatorname{var}=\{\mathrm{x}, \mathrm{y}\}\);
unk \(=\{\mathrm{v}, \mathrm{w}\}\);
point \(=\left\{\mathrm{x}_{0}, \mathrm{y}_{0}\right\}\);
unk0 \(=\left\{\mathrm{v}_{0}, \mathrm{w}_{0}\right\}\);
option = numeric;
PdeSysClass[sys, var, unk, point, unk0, option]
In output we obtain
Coefficient matrices
\(\mathrm{A}_{1}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\)
\(A_{2}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\)
Solutions of the characteristic equation
\(\operatorname{det}\left(\mathrm{IN}_{1}+\sum_{\alpha=2}^{\mathrm{n}} \mathrm{B}^{\alpha} \mathrm{N}_{\alpha}\right)=0\)
\(\mathrm{N}_{1}=-\mathrm{i} \mathrm{N}_{2}\)
\(\mathrm{N}_{1}=i \mathrm{~N}_{2}\)
Eigenvalues of \(\mathrm{B}=\sum_{\alpha=2}^{\mathrm{n}} \mathrm{B}^{\alpha} \mathrm{N}_{\alpha}=\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)\)
\(\lambda_{1}=-\mathrm{i}\)
\(\lambda_{2}=\mathrm{i}\)
Algebraic and geometric multiplicities of the
distinct eigenvalues of \(B\)
\(\lambda_{1}=-i: \quad\) AlgMult \(=1 \quad\) GeoMult \(=1\)
\(\lambda_{2}=i: \quad\) AlgMult \(=1 \quad\) GeoMult \(=1\)
The system of PDEs is elliptic.
```

2. Classify the linear system in \mathfrak{R}^{2}

$$
\left\{\begin{array}{l}
u_{x}+2 u_{y}+v_{x}+3 v_{y}=u-v, \\
3 u_{x}+u_{y}-2 v_{x}-v_{y}=2 v
\end{array}\right.
$$

To apply the program PdeSysClass, it is sufficient to input the following data:
eq1 $=u_{x}+2 u_{y}+v_{x}+3 v_{y}=u-v$;
eq2 $=3 u_{x}+u_{y}-2 v_{x}-v_{y}=2 v$;
sys $=\{$ eq1, eq 2$\} ;$
$\operatorname{var}=\{\mathrm{x}, \mathrm{y}\}$;
unk $=\{\mathrm{u}, \mathrm{v}\}$;
point $=\left\{\mathrm{x}_{0}, \mathrm{y}_{0}\right\}$;
unk0 $=\left\{\mathrm{u}_{0}, \mathrm{v}_{0}\right\}$;
option = numeric;
PdeSysClass[sys, var, unk, point, unk0, option]
In output we obtain
Coefficient matrices
$\mathrm{A}_{1}=\left(\begin{array}{rr}1 & 1 \\ 3 & -2\end{array}\right)$
$A_{2}=\left(\begin{array}{rr}2 & 3 \\ 1 & -1\end{array}\right)$
Solutions of the characteristic equation
$\operatorname{det}\left(\operatorname{IN}+{ }_{1} \sum_{\alpha=2}^{\mathrm{n}} \mathrm{B}^{\alpha} \mathrm{N}_{\alpha}\right)=0$
$\mathrm{N}_{1}=-\frac{1}{2}(3+\sqrt{5}) \mathrm{N}_{2}$
$\mathrm{N}_{1}=\frac{1}{2}(-3+\sqrt{5}) \mathrm{N}_{2}$
Eigenvalues of $\mathrm{B}=\sum_{\alpha=2}^{\mathrm{n}} \mathrm{B}^{\alpha} \mathrm{N}_{\alpha}=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$
$\lambda_{1}=\frac{1}{2}(3-\sqrt{5})$
$\lambda_{2}=\frac{1}{2}(3+\sqrt{5})$
Algebraic and geometric multiplicities of the distinct eigenvalues of B
$\lambda_{1}=\frac{1}{2}(3-\sqrt{5}): \quad$ AlgMult $=1 \quad$ GeoMult $=1$
$\lambda_{2}=\frac{1}{2}(3+\sqrt{5}): \quad$ AlgMult $=1 \quad$ GeoMult $=1$
The system of PDEs is totally hyperbolic.

Exercises

Apply the program PdeSysClass to the following systems.

1. D'Alembert's equation

$$
\left\{\begin{array}{l}
v_{x}-w_{t}=0, \\
w_{x}-a^{2} v_{t}=0,
\end{array} \quad a \in \mathfrak{R}\right.
$$

2. Heat equation

$$
\left\{\begin{array}{l}
w_{x}-v_{y}=0, \\
v_{x}=-w .
\end{array}\right.
$$

3. Equations of 2D fluid dynamics

$$
\left\{\begin{array}{l}
\rho_{t}+v \rho_{x}+\rho v_{x}=0 \\
\rho v_{t}+\rho v v_{x}+p^{\prime}(\rho) \rho_{x}=0
\end{array}\right.
$$

4. Equations of 3D fluid dynamics

$$
\left\{\begin{array}{l}
\rho_{t}+u \rho_{x}+v \rho_{y}+\rho u_{x}+\rho v_{y}=0 \\
\rho u_{t}+\rho u u_{x}+\rho v u_{y}+p^{\prime}(\rho) \rho_{x}=0 \\
\rho v_{t}+\rho u v_{x}+\rho v v_{y}+p^{\prime}(\rho) \rho_{y}=0
\end{array}\right.
$$

5. Classify the system

$$
\left\{\begin{array}{l}
u_{x}+x u_{t}+v_{x}+3 v_{t}=u-v, \\
3 u_{x}+u_{t}-2 v_{x}-v_{t}=2 v
\end{array}\right.
$$

along the straight line $x_{0}=2$, i.e., at the arbitrary point $\left(t_{0}, x_{0}=2\right)$.
6. Classify the system

$$
\left\{\begin{array}{l}
u_{x}+2 u_{t}+v_{x}+3 v_{t}=u-v, \\
3 u_{x}+u_{t}-2 v_{x}-v_{t}=2 v
\end{array}\right.
$$

7. Classify the system

$$
\left\{\begin{array}{l}
\rho u_{x}+u \rho_{x}+\rho_{t}=-\frac{2 \rho u}{x} \\
\rho u u_{x}+\rho u_{t}+c^{2} \rho_{x}=0
\end{array}\right.
$$

at any point with respect to the solution $\left(\rho=\rho_{0}, u=0\right)$.
8. Tricomi's equation: Classify the system

$$
\left\{\begin{array}{l}
v_{y}-w_{x}=0 \\
v_{x}+x w_{y}=0
\end{array}\right.
$$

at any point $\left(x=x_{0}, y\right)$ for any x_{0} in \Re.

8.15 The Program WavesI

Aim of the Program WavesI

The program WavesI determines the characteristic equation of a quasi-linear firstorder system of PDEs as well as the advancing speeds of the characteristic surfaces.

Description of the Problem and Relative Algorithm

Consider a quasi-linear first-order system of PDEs of m equations in the m unknown functions (u_{1}, \cdots, u_{m}) depending on the n variables $\left(x_{1} \equiv t, \cdots, x_{n}\right)$ in the form

$$
\begin{equation*}
A_{i j}^{k}(\mathbf{x}, \mathbf{u}) \frac{\partial u_{j}}{\partial x_{k}}=F_{i}(\mathbf{x}, \mathbf{u}), \tag{8.63}
\end{equation*}
$$

where $A_{i j}^{k}(\mathbf{x}, \mathbf{u})$ and $F_{i}(\mathbf{x}, \mathbf{u})$ are continuous functions of their arguments.
The hypersurface Σ_{n-1} of equation $f(\mathbf{x})=0$ is a characteristic surface for the Cauchy problem

$$
\left\{\begin{array}{l}
\mathbf{A}^{i} \frac{\partial \mathbf{u}}{\partial x_{i}}=\mathbf{F} \\
\mathbf{u}(\mathbf{x})=\mathbf{u}_{0}(\mathbf{x}) \quad \forall \mathbf{x} \in \Sigma_{n-1}
\end{array}\right.
$$

where

$$
\mathbf{A}^{i}=\left(\begin{array}{lll}
A_{11}^{i} & \cdots & A_{1 m}^{i} \\
\cdots & \cdots & \cdots \\
A_{m 1}^{i} & \cdots & A_{m m}^{i}
\end{array}\right)
$$

if it is a singular first-order surface of the function $\mathbf{u}(\mathbf{x})$, i.e., if

$$
\begin{equation*}
\operatorname{det}\left(\mathbf{A}^{i} \frac{\partial f}{\partial x_{i}}\right)_{\mathbf{x}_{0}}=0 \tag{8.64}
\end{equation*}
$$

Moreover, the following jump conditions hold ${ }^{3}$:

$$
\left[\left[\frac{\partial \mathbf{u}}{\partial t}\right]\right]_{\mathbf{x}_{0}}=-c_{n} \mathbf{a}
$$

[^25]$$
\left[\left[\frac{\partial \mathbf{u}}{\partial x_{i}}\right]\right]_{\mathbf{x}_{0}}=n_{i-1} \mathbf{a} \quad \forall i=2, \cdots, n, \quad \mathbf{x}_{0} \in \Sigma_{n-1}
$$
where \mathbf{n} is the unit vector normal to Σ_{n-1} at \mathbf{x}_{0}, c_{n} is the normal component of the advancing speed, and \mathbf{a} is the discontinuity field of the same order as \mathbf{u}. These last relations, together with (8.64), allow us to calculate the normal components of the advancing speeds of Σ_{n-1}.

Command Line of the Program WavesI

WavesI[sys, unk, var]

Parameter List

Input Data

sys = quasi-linear first-order system of PDEs, where the terms containing the first derivatives appear on the left-hand side, and the right-hand side contains the functions and the known terms;
unk $=$ list of the unknown functions;
var $=$ list of the independent variables; the first one is the time.

Output Data

the canonical form of the system;
the characteristic equation;
the normal speed of Σ_{n-1}.

Use Instructions

The system of PDEs has to be given in such a way that on the left-hand side the first derivatives appear and the right-hand side includes all the terms involving the unknown functions and the known terms. Moreover, the time t occupies the first place in the list of the independent variables.

The system of PDEs we wish to examine must to be given according to the syntax both of Mathematica ${ }^{\circledR}$ [69] and the program; i.e., any equation has to be written in the form

$$
e q_{i}=A_{i j}^{k}\left(u_{j}\right)_{x_{k}}==F_{i}
$$

where the two sides are separated by a double equal sign and the symbol $\frac{\partial u_{j}}{\partial x_{k}}$ is written as $\left(u_{j}\right)_{x_{k}}$.

Worked Example

Hydrodynamic equations: In the absence of body forces, consider the hydrodynamic equations of a compressible perfect fluid

$$
\left\{\begin{array}{l}
\rho \dot{\mathbf{v}}+p^{\prime}(\rho) \nabla \rho=0, \\
\dot{\rho}+\rho \nabla \cdot \mathbf{v}=0,
\end{array}\right.
$$

where the pressure p is a function of the density ρ. To verify the existence of acoustic waves in the fluid, it is possible to use the program Waves I with the following data ${ }^{4}$:

```
eq1 = \rho(\mp@subsup{v}{1}{}\mp@subsup{)}{\textrm{t}}{}+\rho\mp@subsup{\textrm{v}}{1}{}(\mp@subsup{\textrm{v}}{1}{}\mp@subsup{)}{\textrm{x}1}{}+\rho\mp@subsup{\textrm{v}}{2}{}(\mp@subsup{\textrm{v}}{1}{}\mp@subsup{)}{\textrm{x}2}{}+\mp@subsup{\textrm{p}}{}{\prime}[\rho](\rho\mp@subsup{)}{\textrm{x}1}{}==0;
eq2 = \rho(\mp@subsup{v}{2}{}\mp@subsup{)}{\textrm{t}}{}+\rho\mp@subsup{\textrm{v}}{1}{}(\mp@subsup{\textrm{v}}{2}{}\mp@subsup{)}{\textrm{x}1}{}+\rho\mp@subsup{\textrm{v}}{2}{}(\mp@subsup{\textrm{v}}{2}{}\mp@subsup{)}{\textrm{x}2}{}+\mp@subsup{\textrm{p}}{}{\prime}[\rho](\rho\mp@subsup{)}{\textrm{x}2}{}==0;
eq3 = (\rho) t}+\mp@subsup{\textrm{v}}{1}{}(\rho\mp@subsup{)}{\textrm{x}1}{}+\mp@subsup{\textrm{v}}{2}{}(\rho\mp@subsup{)}{\textrm{x}2}{}+\rho(\mp@subsup{\textrm{v}}{1}{}\mp@subsup{)}{\textrm{x}1}{}+\rho(\mp@subsup{\textrm{v}}{2}{}\mp@subsup{)}{\textrm{x}2}{}==0
sys = {eq1, eq2, eq3};
unk}={\mp@subsup{\textrm{v}}{1}{},\mp@subsup{\textrm{v}}{2}{},\rho}
var = {t, x1, x2};
WavesI[sys,unk, var]
```

The output is
Canonical form of the system

$$
\begin{aligned}
& \left(\begin{array}{ccc}
\rho & 0 & 0 \\
0 & \rho & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
\left(\mathrm{v}_{1}\right)_{\mathrm{t}} \\
\left(\mathrm{v}_{2}\right)_{\mathrm{t}} \\
\rho_{\mathrm{t}}
\end{array}\right)+\left(\begin{array}{ccc}
\rho \mathrm{v}_{1} & 0 & \mathrm{p}^{\prime}[\rho] \\
0 & \rho \mathrm{v}_{1} & 0 \\
\rho & 0 & \mathrm{v}_{1}
\end{array}\right)\left(\begin{array}{c}
\left(\mathrm{v}_{1}\right)_{\mathrm{x}_{1}} \\
\left(\mathrm{v}_{2}\right)_{\mathrm{x}_{1}} \\
\rho_{\mathrm{x}_{1}}
\end{array}\right) \\
& +\left(\begin{array}{ccc}
\rho \mathrm{v}_{2} & 0 & 0 \\
0 & \rho \mathrm{v}_{2} & \mathrm{p}^{\prime}[\rho] \\
0 & \rho & \mathrm{v}_{2}
\end{array}\right)\left(\begin{array}{c}
\left(\mathrm{v}_{1}\right)_{\mathrm{x}_{2}} \\
\left(\mathrm{v}_{2}\right)_{\mathrm{x}_{2}} \\
\rho_{x_{2}}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

Characteristic equation in a matrix form

[^26]\[

$$
\begin{aligned}
& \text { Det }\left[\left(\begin{array}{lll}
\rho & 0 & 0 \\
0 & \rho & 0 \\
0 & 0 & 1
\end{array}\right) \mathrm{f}_{\mathrm{t}}+\left(\begin{array}{ccc}
\rho \mathrm{v}_{1} & 0 & \mathrm{p}^{\prime}[\rho] \\
0 & \rho \mathrm{v}_{1} & 0 \\
\rho & 0 & \mathrm{v}_{1}
\end{array}\right) \mathrm{f}_{\mathrm{x}_{1}}+\left(\begin{array}{ccc}
\rho \mathrm{v}_{2} & 0 & 0 \\
0 & \rho \mathrm{v}_{2} & \mathrm{p}^{\prime}[\rho] \\
0 & \rho & \mathrm{v}_{2}
\end{array}\right) \mathrm{f}_{\mathrm{x}_{2}}\right]=0 \\
& \text { The }
\end{aligned}
$$
\]

Exercises

Verify the existence of characteristic surfaces for the following first-order quasilinear systems of PDEs.

1. Laplace's equation

$$
\Delta u=0 .
$$

In order to check that there is no real characteristic surface for this equation by the program WavesI, we need to transform the previous equation into an equivalent first-order system. But it is well known that this transformation can be done in infinite ways, without modifying either the mathematical or the physical properties. However, in this process it is essential to recall that the program WavesI determines the characteristic surfaces as discontinuity surfaces for the first derivatives of the involved unknown functions. In other words, only the transformations for which the new unknowns coincide with the first derivatives of the function u are allowed. In particular, we can achieve this by introducing the functions

$$
u_{1}=u_{x}, u_{2}=u_{y},
$$

and reducing the Laplace equation to the system

$$
\left\{\begin{array}{l}
\left(u_{1}\right)_{y}-\left(u_{2}\right)_{x}=0, \\
\left(u_{1}\right)_{x}+\left(u_{2}\right)_{y}=0,
\end{array}\right.
$$

where the first equation expresses Schwarz's condition for the second derivative of u.

To make this clearer, we note that the transformation

$$
\left\{\begin{array}{l}
u_{x}=u_{1} \\
u_{y}=u_{2} \\
\left(u_{1}\right)_{x}+\left(u_{2}\right)_{y}=0
\end{array}\right.
$$

cannot be used in the program WavesI. In fact, with these new unknowns u_{1}, u_{2}, and u, the program attempts to determine the characteristic surfaces as discontinuity surfaces for the first derivatives of u too.
2. D'Alembert's equation

$$
\frac{\partial^{2} u}{\partial x^{2}}-\frac{1}{v^{2}} \frac{\partial^{2} u}{\partial t^{2}}=0 .
$$

Similar to the previous exercise, by introducing the notations $u_{1}=u_{t}$ and $u_{2}=$ u_{x}, the wave equation becomes equivalent to the following system:

$$
\left\{\begin{array}{l}
\left(u_{1}\right)_{x}-\left(u_{2}\right)_{t}=0, \\
\left(u_{2}\right)_{x}-\frac{1}{v^{2}}\left(u_{1}\right)_{t}=0 .
\end{array}\right.
$$

3. Heat equation

$$
\frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}}=0 \equiv\left\{\begin{array}{l}
\left(u_{1}\right)_{x}-\left(u_{2}\right)_{t}=0 \\
u_{1}-\left(u_{2}\right)_{x}=0
\end{array}\right.
$$

4. Tricomi's equation

$$
\frac{\partial^{2} u}{\partial t^{2}}-t \frac{\partial^{2} u}{\partial x^{2}}=0 \equiv\left\{\begin{array}{l}
\left(u_{1}\right)_{x}-\left(u_{2}\right)_{t}=0 \\
\left(u_{1}\right)_{t}-t\left(u_{2}\right)_{x}=0
\end{array}\right.
$$

5. Generalized Tricomi's equation

$$
\frac{\partial^{2} u}{\partial t^{2}}-g(t) \frac{\partial^{2} u}{\partial x^{2}}=0 \equiv\left\{\begin{array}{l}
\left(u_{1}\right)_{x}-\left(u_{2}\right)_{t}=0 \\
\left(u_{1}\right)_{t}-g(t)\left(u_{2}\right)_{x}=0 .
\end{array}\right.
$$

6. Maxwell's equations

$$
\left\{\begin{array}{l}
\nabla \times \mathbf{E}=-\mu \frac{\partial \mathbf{H}}{\partial t}, \\
\nabla \times \mathbf{H}=\epsilon \frac{\partial \mathbf{E}}{\partial t},
\end{array}\right.
$$

where \mathbf{E} and \mathbf{H} are the electric and magnetic fields, and μ and ϵ are the dielectric and magnetic permeability constants, respectively.

Maxwell's equations are equivalent to the following first-order system:

$$
\left\{\begin{array}{l}
\left(E_{z}\right)_{y}-\left(E_{y}\right)_{z}+\mu\left(H_{x}\right)_{t}=0 \\
\left(E_{x}\right)_{z}-\left(E_{z}\right)_{x}+\mu\left(H_{y}\right)_{t}=0 \\
\left(E_{y}\right)_{x}-\left(E_{x}\right)_{y}+\mu\left(H_{z}\right)_{t}=0 \\
\left(H_{z}\right)_{y}-\left(H_{y}\right)_{z}-\epsilon\left(E_{x}\right)_{t}=0 \\
\left(H_{x}\right)_{z}-\left(H_{z}\right)_{x}-\epsilon\left(E_{y}\right)_{t}=0 \\
\left(H_{y}\right)_{x}-\left(H_{x}\right)_{y}-\epsilon\left(E_{z}\right)_{t}=0
\end{array}\right.
$$

where $E_{x}, E_{y}, E_{z}, H_{x}, H_{y}$, and H_{z} denote the components of \mathbf{E} and \mathbf{H} along the axes. The existence of electromagnetic waves can be easily verified with the program WavesI.
7. 2D-linear elasticity equation

$$
\rho^{*} \frac{\partial^{2} \mathbf{u}}{\partial t^{2}}=(\lambda+\mu) \nabla \nabla \cdot \mathbf{u}+\mu \Delta \mathbf{u}
$$

where ρ^{*} is the mass density in the reference configuration, \mathbf{u} is the displacement field, and λ and μ are the Lamé coefficients. By introducing the new unknowns

$$
\mathbf{u}_{1}=\frac{\partial \mathbf{u}}{\partial x}, \quad \mathbf{u}_{2}=\frac{\partial \mathbf{u}}{\partial t}, \quad \mathbf{u}_{3}=\frac{\partial \mathbf{u}}{\partial y}
$$

the above equation becomes equivalent to the following first-order system composed by six equations in the unknowns $\mathbf{u}_{1}, \mathbf{u}_{2}$ and \mathbf{u}_{3} :

$$
\left\{\begin{array}{l}
\left(u_{1, x}\right)_{t}-\left(u_{2, x}\right)_{x}=0 \\
\left(u_{1, y}\right)_{t}-\left(u_{2, y}\right)_{x}=0 \\
\left(u_{2, x}\right)_{y}-\left(u_{3, x}\right)_{t}=0 \\
\left(u_{2, y}\right)_{y}-\left(u_{3, y}\right)_{t}=0 \\
\rho\left(u_{2, x}\right)_{t}-(\lambda+\mu)\left[\left(u_{1, x}\right)_{x}+\left(u_{1, y}\right)_{x}\right]-\mu\left[\left(u_{1, x}\right)_{x}+\left(u_{3, x}\right)_{y}\right]=0 \\
\rho\left(u_{2, y}\right)_{t}-(\lambda+\mu)\left[\left(u_{3, x}\right)_{y}+\left(u_{3, y}\right)_{x}\right]-\mu\left[\left(u_{2, y}\right)_{x}+\left(u_{3, y}\right)_{y}\right]=0
\end{array}\right.
$$

The use of the program Waves I shows that the longitudinal waves travel with a greater velocity than the transverse waves.
8.

$$
\left\{\begin{array}{l}
u_{t}-q_{x}=0 \\
q_{t}-a(u) q_{x}=0
\end{array}\right.
$$

9.

$$
\left\{\begin{array}{l}
u_{t}-q_{x}=0 \\
q_{t}-a(u) q_{x}-b(u) v_{x}=0 \\
q_{x}-v=0
\end{array}\right.
$$

8.16 The Program WavesII

Aim of the Program WavesII

The program Waves II evaluates the characteristic equation of a system of secondorder quasi-linear PDEs as well as the advancing speeds of the characteristic surfaces and the second derivative jumps. Moreover, in the 2D case, it distinguishes between transverse and longitudinal waves.

Description of the Problem and Relative Algorithm

Consider a second-order quasi-linear system of m equations in m unknowns (u_{1}, \cdots, u_{m}) depending on n variables $\left(x_{1} \equiv t, \cdots, x_{n}\right)$:

$$
\begin{equation*}
A_{i j}^{h k}(\mathbf{x}, \mathbf{u}, \nabla \mathbf{u}) \frac{\partial^{2} u_{j}}{\partial x_{h} \partial x_{k}}=F_{i}(\mathbf{x}, \mathbf{u}, \nabla \mathbf{u}), \tag{8.65}
\end{equation*}
$$

where $A_{i j}^{k}(\mathbf{x}, \mathbf{u}, \nabla \mathbf{u})$ and $F_{i}(\mathbf{x}, \mathbf{u}, \nabla \mathbf{u})$ are continuous functions of their arguments.
A hypersurface Σ_{n-1} of equation $f(\mathbf{x})=0$ is a characteristic surface relative to the Cauchy problem

$$
\left\{\begin{array}{l}
\mathbf{A}^{i j} \frac{\partial^{2} \mathbf{u}}{\partial x_{i} \partial x_{j}}=\mathbf{F}, \\
\mathbf{u}(\mathbf{x})=\mathbf{u}_{0}(\mathbf{x}) \quad \forall \mathbf{x} \in \Sigma_{n-1} \\
\frac{d \mathbf{u}}{d \mathbf{n}} \equiv \nabla \mathbf{u} \cdot \mathbf{n}=\mathbf{d}_{0}(\mathbf{x}) \quad \forall \mathbf{x} \in \Sigma_{n-1}
\end{array}\right.
$$

where

$$
\mathbf{A}^{i j}=\left(\begin{array}{ccc}
A_{11}^{i j} & \cdots & A_{1 m}^{i j} \\
\cdots & \cdots & \cdots \\
A_{m 1}^{i j} & \cdots & A_{m m}^{i j}
\end{array}\right)
$$

if it is a second-order singular surface for the function $\mathbf{u}(\mathbf{x})$, i.e., if

$$
\begin{equation*}
\operatorname{det}\left(\mathbf{A}^{i j} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}}\right)_{\mathbf{x}_{0}}=0 . \tag{8.66}
\end{equation*}
$$

Moreover, the following jump conditions hold ${ }^{5}$:

$$
\begin{aligned}
{\left[\left[\frac{\partial^{2} \mathbf{u}}{\partial t^{2}}\right]\right]_{\mathbf{x}_{0}} } & =c_{n}^{2} \mathbf{a}, \\
{\left[\left[\frac{\partial^{2} \mathbf{u}}{\partial x_{i} \partial x_{j}}\right]\right]_{\mathbf{x}_{0}} } & =n_{i-1} n_{j-1} \mathbf{a} \quad \forall i, j=2, \cdots, n, \\
{\left[\left[\frac{\partial^{2} \mathbf{u}}{\partial x_{i} \partial t}\right]\right]_{\mathbf{x}_{0}} } & =-c_{n} n_{i-1} \mathbf{a} \quad \forall i=2, \cdots, n, \quad \mathbf{x}_{0} \in \Sigma_{n-1},
\end{aligned}
$$

where \mathbf{n} is the unit vector normal to Σ_{n-1} at \mathbf{x}_{0}, c_{n} is the advancing velocity of Σ_{n-1}, and \mathbf{a} is the discontinuity field of the same order as \mathbf{u}. These last relations, together with (8.66), allow us to evaluate the advancing velocity of Σ_{n-1} and the jump fields.

In the planar case, the program distinguishes between transverse and longitudinal waves. In particular, the velocity c_{n} refers to a transverse wave if the second derivative jumps on the characteristic surface are orthogonal to \mathbf{n}, that is, the following relations hold:

$$
\left\{\begin{array}{l}
\mathbf{a} \cdot \mathbf{n}=0, \\
\mathbf{a} \times \mathbf{n} \neq \mathbf{0}
\end{array}\right.
$$

similarly, c_{n} refers to a longitudinal wave when the jumps are parallel to \mathbf{n} :

$$
\left\{\begin{array}{l}
\mathbf{a} \cdot \mathbf{n} \neq 0, \\
\mathbf{a} \times \mathbf{n}=\mathbf{0} .
\end{array}\right.
$$

[^27]
Command Line of the Program WavesII

WavesII[sys, unk, var]

Parameter List

Input Data

sys $=$ second-order quasi-linear system of PDEs, where all the terms containing the second derivative appear on the left-hand side, and all the other terms appear on the right-hand side;
unk = list of the unknowns;
var $=$ list of the independent variables where the first one is the time.

Output Data

characteristic equation associated with the system;
the normal speed of Σ_{n-1};
jump vectors;
in the 2D case the distinction between transverse and longitudinal waves.

Use Instructions

The system has to be given in such a way that on the left-hand sides the second derivatives appear while the right-hand sides include all the terms involving the unknown functions and their first derivatives. The time t occupies the first position of the list of the independent variables. Each equation of the system must be written with the syntax both of Mathematica ${ }^{\circledR}$ [69] and the program, i.e., in the form

$$
e q_{i}=A_{i j}^{h k}\left(u_{j}\right)_{x_{h}, x_{k}}==F_{i},
$$

where the two sides of the equation are separated by a double equal sign and the symbol $\frac{\partial^{2} u_{j}}{\partial x_{h} \partial x_{k}}$ is written as $\left(u_{j}\right)_{x_{h}, x_{k}}$.

Worked Example

Consider the 2D linear elasticity equation

$$
\rho^{*} \frac{\partial^{2} \mathbf{u}}{\partial t^{2}}=(\lambda+\mu) \nabla \nabla \cdot \mathbf{u}+\mu \triangle \mathbf{u}
$$

where ρ^{*} is the mass density, $\mathbf{u} \equiv\left(u_{x}, u_{y}\right)$ is the displacement field, and λ and μ are the Lamé coefficients.

To verify the existence of longitudinal and transverse waves, we can use the program WavesII by inputting the following input data:

```
eq1 \(=\rho\left(u_{x}\right)_{t, t}-(\lambda+\mu)\left(\left(u_{x}\right)_{x, x}+\left(u_{y}\right)_{x, y}\right)-\mu\left(\left(u_{x}\right)_{x, x}+\left(u_{x}\right)_{y, y}\right)=0 ;\)
```



```
sys \(=\{\) eq1, eq 2\(\} ;\)
unk \(=\left\{\mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}\right\}\);
\(\operatorname{var}=\{t, x, y\} ;\)
WavesII[sys, unk, var]
```

The corresponding output is
Characteristic equation

$$
\left(-\lambda-2 \mu+\rho c_{n}^{2}\right)\left(-\mu+\rho c_{n}^{2}\right)=0
$$

Normal speed of $\Sigma(t)$
$\mathrm{c}_{\mathrm{n}, 1}=-\frac{\sqrt{\mu}}{\sqrt{\rho}}$
$\mathrm{c}_{\mathrm{n}, 2}=\frac{\sqrt{\mu}}{\sqrt{\rho}}$
$c_{n, 3}=-\frac{\sqrt{\lambda+2 \mu}}{\sqrt{\rho}}$
$\mathrm{C}_{\mathrm{n}, 4}=\frac{\sqrt{\lambda+2 \mu}}{\sqrt{\rho}}$
Jump vectors
$\mathrm{a}_{1}=\frac{\mathrm{a}_{2} \mathrm{n}_{1}}{\mathrm{n}_{2}}$
$\mathrm{a}_{1}=-\frac{\mathrm{n}_{2} \mathrm{a}_{2}}{\mathrm{n}_{1}}$
The velocity $\mathrm{c}_{\mathrm{n}, 1}=-\frac{\sqrt{\mu}}{\sqrt{\rho}}$ refers to a transverse wave.
The velocity $\mathrm{c}_{\mathrm{n}, 2}=\frac{\sqrt{\mu}}{\sqrt{\rho}}$ refers to a transverse wave.
The velocity $\mathrm{c}_{\mathrm{n}, 3}=-\frac{\sqrt{\lambda+2 \mu}}{\sqrt{\rho}}$ refers to a longitudinal wave.

The velocity $\mathrm{c}_{\mathrm{n}, 4}=\frac{\sqrt{\lambda+2 \mu}}{\sqrt{\rho}}$ refers to a longitudinal wave.

Exercises

Apply the program Waves II to the following systems.

1. Navier-Stokes equations

$$
\left\{\begin{array}{l}
\rho \dot{\mathbf{v}}=(\lambda+\mu) \nabla \nabla \cdot \mathbf{v}+\mu \Delta \mathbf{v}-p^{\prime}(\rho) \nabla \rho, \\
\dot{\rho}+\rho \nabla \cdot \mathbf{v}=0 .
\end{array}\right.
$$

The program Waves II shows that, due to the viscosity, there is no propagation in the fluid.
2. Laplace's equation

$$
\Delta u=0 .
$$

3. D'Alembert's equation

$$
\frac{\partial^{2} u}{\partial x^{2}}-\frac{1}{v^{2}} \frac{\partial^{2} u}{\partial t^{2}}=0
$$

4. Heat equation

$$
\frac{\partial u}{\partial t}-\frac{\partial^{2} u}{\partial x^{2}}=0
$$

5. Tricomi's equation

$$
\frac{\partial^{2} u}{\partial t^{2}}-t \frac{\partial^{2} u}{\partial x^{2}}=0
$$

6. Generalized Tricomi's equation

$$
\frac{\partial^{2} u}{\partial t^{2}}-g(t) \frac{\partial^{2} u}{\partial x^{2}}=0
$$

Chapter 9
 Fluid Mechanics

This chapter contains many important topics about perfect and viscous fluids. First, we formulate the equations of statics of fluids stating Stevino's and Archimedes' laws. Then, on dynamics of perfect fluids, we prove Kelvin's, Lagrange's and Bernoulli's theorems with some applications. After defining the vortex tubes, we formulate Helmotz's theorems. There follows an analysis of plane flows by complex potentials. After showing important examples of complex potentials (vortex, source, doublet, etc.), we prove D'Alembert's paradox and Blausius' formula. The analysis of Kutta-Joukowski's mapping leads to the determination of wing contour. After proving D'Alembert's paradox, we are compelled to introduce the viscosity by Newtonian fluids. After a dimensionless formulation of Navier-Stokes equations, we show that viscous flows lead us to boundary layers. The chapter contains an extensive analysis of these narrow regions by Prandtl's approach. Then, we apply the general theory of ordinary waves to perfect fluids in order to prove the existence of longitudinal waves in compressible fluids. Finally, we apply the Rankine-Hugoniot conditions to analyze the behavior of shock waves in perfect fluids. After sections containing exercises, we state the programs, Potential, Wing and Joukowski written with Mathematica ${ }^{\circledR}$ [69].

9.1 Perfect Fluid

A perfect fluid or Euler fluid was defined (see (7.28)) to be a fluid S whose stress tensor is expressed by the constitutive equation

$$
\begin{equation*}
\mathbf{T}=-p \mathbf{I}, \quad p>0 \tag{9.1}
\end{equation*}
$$

where the positive scalar p is called the pressure. If the pressure

$$
\begin{equation*}
p=p(\rho) \tag{9.2}
\end{equation*}
$$

is a given function of the mass density ρ, then the fluid is called compressible. On the other hand, if the fluid is density preserving, so that the pressure does not depend on ρ, then the fluid is said to be incompressible. In this case the pressure p is no longer defined by a constitutive equation; it is a function of \mathbf{x} to be deduced from the momentum balance. By assuming (9.1), it follows that the stress acting on any unit surface with normal \mathbf{N} is given by

$$
\begin{equation*}
\mathbf{t}=\mathbf{T} \mathbf{N}=-p \mathbf{N} \tag{9.3}
\end{equation*}
$$

so that \mathbf{t} is normal to the surface, is directed toward the interior, and its intensity does not depend on \mathbf{N} (Pascal's principle). When dealing with static conditions $(\mathbf{v}=\mathbf{0})$ and conservative body forces, i.e., $\mathbf{b}=-\nabla U$, the momentum balance equation (5.30) is

$$
\begin{equation*}
\nabla p=-\rho \nabla U \tag{9.4}
\end{equation*}
$$

Experimental evidence leads us to assume that $d p / d \rho>0$ and the function $p=$ $p(\rho)$ can be inverted. If we introduce the notation

$$
\begin{equation*}
h(p)=\int \frac{d p}{\rho(p)} \tag{9.5}
\end{equation*}
$$

then

$$
\nabla h(p)=\frac{d h}{d p} \nabla p=\frac{1}{\rho} \nabla p
$$

and (9.4) becomes

$$
\begin{equation*}
\nabla(h(p)+U)=0 . \tag{9.6}
\end{equation*}
$$

Equation (9.6) shows that in the whole volume occupied by the fluid we have

$$
\begin{equation*}
h(p)+U=\text { const. } \tag{9.7}
\end{equation*}
$$

In particular, if the fluid is incompressible ($\rho=$ const), then instead of (9.7), we have

$$
\begin{equation*}
\frac{p}{\rho}+U(\mathbf{x})=\text { const. } \tag{9.8}
\end{equation*}
$$

Both (9.7) and (9.8) allow us to say that potential surfaces coincide with the isobars.

9.2 Stevino's Law and Archimedes' Principle

It is relevant to observe how many conclusions can be inferred from (9.7) and (9.8).

1. Let S be an incompressible fluid on the boundary of which acts a uniform pressure p_{0} (atmospheric pressure). If the vertical axis z is oriented downward, then the relation $U(\mathbf{x})=-g z+$ const implies that the free surface is a horizontal plane.
2. Let S be an incompressible fluid subjected to a uniform pressure p_{0} on its boundary. If the cylinder which contains the fluid is rotating around a vertical axis a with uniform angular velocity ω, then its free surface is a paraboloid of rotation around a. In fact, the force acting on the arbitrary particle P is given by $\mathbf{g}+\omega^{2} \overrightarrow{Q P}$, where Q is the projection of P on a. It follows that

$$
U=-g z-\frac{\omega^{2}}{2}\left(x^{2}+y^{2}\right)
$$

and then (9.8) proves that the free surface is a paraboloid (see Fig. 9.1).
3. Assume that the arbitrary constant in the expression of U is such that if $z=0$, then $U(0)=0$. From (9.8) it follows that

$$
\frac{p(z)}{\rho}-g z=\frac{p_{0}}{\rho}
$$

i.e.,

$$
\begin{equation*}
p(z)=p_{0}+\rho g z, z>0 \tag{9.9}
\end{equation*}
$$

Fig. 9.1 Rotating vessel
and Stevino's law is obtained: The pressure linearly increases with depth by an amount equal to the weight of the liquid column acting on the unit surface.
4. The simplest constitutive equation (9.2) is given by a linear function relating the pressure to the mass density. By assuming that the proportionality factor is a linear function of the absolute temperature θ, the corresponding constitutive equation defines a perfect gas

$$
\begin{equation*}
p=R \rho \theta \tag{9.10}
\end{equation*}
$$

where R is the universal gas constant. Let the gas be at equilibrium at constant and uniform temperature when subjected to its weight action. Assuming the axis $O z$ is oriented upward, we get $U(z)=g z+$ const and, taking into account (9.10), Eq. (9.7) becomes

$$
R \theta \int_{p_{0}}^{p} \frac{d p}{p}=-g z
$$

so that

$$
\begin{equation*}
p(z)=p_{0} \exp \left(-\frac{g z}{R \theta}\right) . \tag{9.11}
\end{equation*}
$$

5. Archimedes' principle is a further consequence of (9.8): The buoyant force on a body submerged in a liquid is equal to the weight of the liquid displaced by the body.

To prove this statement, consider a body S submerged in a liquid, as shown in Fig. 9.2.

If p_{0} is the atmospheric pressure, then the force acting on S is given by

$$
\begin{equation*}
\mathbf{F}=-\int_{\sigma_{e}} p_{0} \mathbf{N} d \sigma-\int_{\sigma_{i}}\left(p_{0}+\rho g z\right) \mathbf{N} d \sigma, \tag{9.12}
\end{equation*}
$$

Fig. 9.2 Archimedes principle
where \mathbf{N} is the outward unit vector normal to the body surface σ, σ_{i} is the submerged portion of σ, and σ_{e} is the portion above the waterline. By adding and subtracting on the right-hand side of (9.12) the integral of $-p_{0} \mathbf{N}$ over Ω (see Fig. 9.2), (9.12) becomes

$$
\begin{equation*}
\mathbf{F}=-\int_{\partial C_{e}} p_{0} \mathbf{N} d \sigma-\int_{\partial C_{i}}\left(p_{0}+\rho g z\right) \mathbf{N} d \sigma, \tag{9.13}
\end{equation*}
$$

so that the knowledge of \mathbf{F} requires the computation of the integrals in (9.13). To do this, we define a virtual pressure field (continuous on Ω) in the interior of the body:

$$
\begin{aligned}
& p=p_{0} \quad \text { on } C_{e} \\
& p=p_{0}+\rho g z \quad \text { on } C_{i} .
\end{aligned}
$$

Applying Gauss's theorem to the integrals in (9.13), we obtain

$$
\begin{gathered}
\int_{\partial C_{e}} p_{0} \mathbf{N} d \sigma=\int_{C_{e}} \nabla p_{0} d V=0, \quad \int_{\partial C_{i}} p_{0} \mathbf{N} d \sigma=\int_{C_{i}} \nabla p_{0} d V=0 \\
\int_{\partial C_{i}} \rho g z \mathbf{N} d \sigma=\rho g \int_{C_{i}} \nabla z d V
\end{gathered}
$$

Finally,

$$
\begin{equation*}
\mathbf{F}=-\rho g V_{i} \mathbf{k} \tag{9.14}
\end{equation*}
$$

where k the unit vector associated with $O z$.
Equation (9.14) gives the resultant force acting on the body S. To complete the equilibrium analysis, the momentum \mathbf{M}_{O} of pressure forces with respect to an arbitrary pole O has to be explored. If $\mathbf{r}=\overrightarrow{O P}$, then

$$
\begin{equation*}
\mathbf{M}_{O}=-p_{0} \int_{\sigma_{e}} \mathbf{r} \times \mathbf{N} d \sigma-\int_{\sigma_{i}} \mathbf{r} \times\left(p_{0}+\rho g z\right) \mathbf{N} d \sigma \tag{9.15}
\end{equation*}
$$

Again, by adding and subtracting on the right-hand side of (9.15) the integral of $-p_{0} \mathbf{r} \times \mathbf{N}$ over Ω, (9.15) becomes

$$
\mathbf{M}_{O}=-p_{0} \int_{\partial C_{e}} \mathbf{r} \times \mathbf{N} d \sigma-\int_{\partial C_{i}} \mathbf{r} \times\left(p_{0}+\rho g z\right) \mathbf{N} d \sigma
$$

By applying Gauss's theorem, we get

$$
\begin{aligned}
-p_{0} \int_{C_{e}} \epsilon_{i j l} \frac{\partial x_{j}}{\partial x_{l}} d V & =-p_{0} \int_{C_{e}} \epsilon_{i j l} \delta_{j l} d V=0 \\
& \int_{C_{i}} \frac{\partial}{\partial x_{l}}\left[\epsilon_{i j l} x_{j}\left(p_{0}+\rho g z\right)\right] d V \\
& =-\int_{C_{i}}\left[\epsilon_{i j l} \delta_{j l}\left(p_{0}+\rho g z\right)+\epsilon_{i j l} x_{j} \rho g \delta_{3 l}\right] d V \\
& =-\rho g \int_{C_{i}} \epsilon_{i j 3} x_{j} d V
\end{aligned}
$$

Finally,

$$
\begin{equation*}
\mathbf{M}_{0}=-\rho g\left[x_{2 C} \mathbf{i}-x_{1 C} \mathbf{j}\right] V_{i}, \tag{9.16}
\end{equation*}
$$

where \mathbf{i} and \mathbf{j} are orthonormal base vectors on the horizontal plane and

$$
\begin{equation*}
x_{1 C} V_{i}=\int_{C_{i}} x_{1} d V, \quad x_{2 C} V_{i}=\int_{C_{i}} x_{2} d V \tag{9.17}
\end{equation*}
$$

Expression (9.16) shows that the momentum of the pressure forces vanishes if the line of action of the buoyant force passes through the centroid of the body. The centroid of the displaced liquid volume is called center of buoyancy.

In summary: A body floating in a liquid is at equilibrium if the buoyant force is equal to its weight and the line of action of the buoyant force passes through the centroid of the body. It can be proved that the equilibrium is stable if the center of buoyancy is above the centroid and it is unstable if the center of buoyancy is below the centroid.

An extension of Archimedes' principle to perfect gases is discussed in the Exercise 3.

9.3 Fundamental Theorems of Fluid Dynamics

The momentum balance equation (5.30), when applied to a perfect fluid subjected to conservative body forces, is written as

$$
\begin{equation*}
\rho \dot{\mathbf{v}}=-\nabla p-\rho \nabla U \tag{9.18}
\end{equation*}
$$

with the additional introduction of (9.5), it holds that

$$
\begin{equation*}
\dot{\mathbf{v}}=-\nabla(h(p)+U) . \tag{9.19}
\end{equation*}
$$

By recalling the above definitions, the following theorems can be proved.
Theorem 9.1 (W. Thomson, Lord Kelvin). In a barotropic flow under conservative body forces, the circulation around any closed material curve γ is preserved; i.e., it is independent of time:

$$
\begin{equation*}
\frac{d}{d t} \int_{\gamma} \mathbf{v} \cdot d \mathbf{s}=0 \tag{9.20}
\end{equation*}
$$

Proof. If γ is a material closed curve, then there exists a closed curve γ^{*} in C^{*} such that γ is the image of γ^{*} under the motion equation $\gamma=\mathbf{x}\left(\gamma^{*}, t\right)$. It follows that

$$
\begin{aligned}
\frac{d}{d t} \int_{\gamma} v_{i} d x_{i} & =\frac{d}{d t} \int_{\gamma^{*}} v_{i} \frac{\partial x_{i}}{\partial X_{j}} d X_{j}=\int_{\gamma^{*}} \frac{d}{d t}\left(v_{i} \frac{\partial x_{i}}{\partial X_{j}}\right) d X_{j} \\
& =\int_{\gamma^{*}}\left(\dot{v}_{i} \frac{\partial x_{i}}{\partial X_{j}}+v_{i} \frac{\partial \dot{x}_{i}}{\partial X_{j}}\right) d X_{j}=\int_{\gamma}\left(\dot{v}_{i}+v_{i} \frac{\partial v_{i}}{\partial x_{j}}\right) d x_{j}
\end{aligned}
$$

and, taking into account (9.19), it is proved that

$$
\begin{equation*}
\frac{d}{d t} \int_{\gamma} \mathbf{v} \cdot d \mathbf{s}=\int_{\gamma}\left(\dot{\mathbf{v}}+\frac{1}{2} \nabla v^{2}\right) \cdot d \mathbf{s}=-\int_{\gamma} \nabla\left(h(p)+U-\frac{1}{2} v^{2}\right) \cdot d \mathbf{s}=0 \tag{9.21}
\end{equation*}
$$

Theorem 9.2 (Lagrange). If at a given instant t_{0} the motion is irrotational, then it continues to be irrotational at any $t>t_{0}$, or equivalently, vortices cannot form.

Proof. This can be regarded as a special case of Thomson's theorem. Suppose that in the region C_{0} occupied by the fluid at the instant t_{0} the condition $\omega=\mathbf{0}$ holds. Stokes's theorem requires that

$$
\Gamma_{0}=\int_{\gamma_{0}} \mathbf{v} \cdot d \mathbf{s}=0
$$

for any material closed curve γ_{0}. But Thomson's theorem states that $\Gamma=0$ for all $t>t_{0}$, so that also $\boldsymbol{\omega}(t)=\mathbf{0}$ holds at any instant.

Theorem 9.3 (Bernoulli). In a steady flow, along any particle path, i.e., along the trajectory of an individual element of fluid, the quantity

$$
\begin{equation*}
H=\frac{1}{2} v^{2}+h(p)+U \tag{9.22}
\end{equation*}
$$

is constant. In general, the constant H changes from one streamline to another, but if the motion is irrotational, then H is constant in time and over the whole space of the flow field.

Proof. By recalling (4.18) and the time independence of the flow, (9.19) can be written as

$$
\begin{equation*}
\dot{\mathbf{v}}=(\nabla \times \mathbf{v}) \times \mathbf{v}+\frac{1}{2} \nabla v^{2}=-\nabla(h(p)+U) \tag{9.23}
\end{equation*}
$$

A scalar multiplication by \mathbf{v} gives the relation

$$
\dot{\mathbf{v}} \cdot \nabla\left(\frac{1}{2} v^{2}+h(p)+U\right)=0
$$

which proves that (9.22) is constant along any particle path. If the steady flow is irrotational, then (9.23) implies $H=$ const through the flow field at any time.

In particular, if the fluid is incompressible, then Bernoulli's theorem states that in a steady flow along any particle path (or through the flow field if the flow is irrotational) the quantity H is preserved; i.e.,

$$
\begin{equation*}
H=\frac{1}{2} v^{2}+\frac{p}{\rho}+U=\text { const } . \tag{9.24}
\end{equation*}
$$

The Bernoulli equation is often used in another form, obtained by dividing (9.24) by the gravitational acceleration

$$
h_{z}+h_{p}+h_{v}=\text { const },
$$

where $h_{z}=U / g$ is the gravity head or potential head, $h_{p}=p / \rho g$ is the pressure head and $h_{v}=v^{2} / 2 g$ is the velocity head.

In a steady flow, a stream tube is a tubular region Σ within the fluid bounded by streamlines. We note that streamlines cannot intersect each other. Because $\partial \rho / \partial t=0$, the balance equation (5.22) gives $\nabla \cdot(\rho \mathbf{v})=0$, and by integrating over a volume V defined by the sections σ_{1} and σ_{2} of a stream tube (see Fig. 9.3), we obtain

$$
\begin{equation*}
Q=\int_{\sigma_{1}} \rho \mathbf{v} \cdot \mathbf{N} d \sigma=\int_{\sigma_{2}} \rho \mathbf{v} \cdot \mathbf{N} d \sigma \tag{9.25}
\end{equation*}
$$

Fig. 9.3 Stream tube

This relation proves that the flux is constant across any section of the stream tube. If the fluid is incompressible, then (9.25) reduces to

$$
\begin{equation*}
\int_{\sigma_{1}} \mathbf{v} \cdot \mathbf{N} d \sigma=\int_{\sigma_{2}} \mathbf{v} \cdot \mathbf{N} d \sigma \tag{9.26}
\end{equation*}
$$

The local angular speed ω is also called the vortex vector and the related integral curves are vortex lines; furthermore, a vortex tube is a surface represented by all vortex lines passing through the points of a (nonvortex) closed curve. By recalling that a vector field \mathbf{w} satisfying the condition $\nabla \cdot \boldsymbol{w}=0$ is termed solenoidal, and that $2 \nabla \cdot \omega=\nabla \cdot \nabla \times \mathbf{v}=0$, we conclude that the field ω is solenoidal. Therefore vortex lines are closed if they are limited, and they are open if unconfined. We observe that Fig. 9.3 can also be used to represent a vortex tube if the vector \mathbf{v} is replaced by $\boldsymbol{\omega}$.

The following examples illustrate some relevant applications of Bernoulli's equation.

1. Consider an open vessel with an orifice at depth h from the free surface of the fluid. Suppose that fluid is added on the top, in order to keep constant the height h. Under these circumstances, it can be proved that the velocity of the fluid leaving the vessel through the orifice is equal to that of a body falling from the elevation h with initial velocity equal to zero (this result is known as Torricelli's theorem, because it was found long before Bernoulli's work). Assuming that at the free surface we have $\mathbf{v}=0$ and $z=0$, it follows that $H=p_{0} / \rho$ and, by applying (9.24), we derive the relation

$$
H=\frac{p_{0}}{\rho}=\frac{v^{2}}{2}-g h+\frac{p_{0}}{\rho},
$$

so that $v=\sqrt{2 g h}$.
2. In a horizontal pipe of variable cross section, the pressure of an incompressible fluid in steady motion decreases in the converging section.

First, the mass balance equation (9.26) requires that

$$
\begin{equation*}
v_{1} \sigma_{1}=v_{2} \sigma_{2} \tag{9.27}
\end{equation*}
$$

so that the fluid velocity increases in the converging section and decreases in the diverging section.

Furthermore, since $U=g z=$ const along the stream tube, (9.24) implies that

$$
\frac{v_{1}^{2}}{2}+\frac{p_{1}}{\rho}=\frac{v_{2}^{2}}{2}+\frac{p_{2}}{\rho}
$$

and this proves that the pressure decreases in a converging section. This result is applied in Venturi's tube, where a converging section acts as a nozzle, by increasing the fluid velocity and decreasing its pressure.

Theorem 9.4 (First Helmoltz's Theorem). The flux of the vortex vector across any section of a vortex tube is constant.
Proof. Let σ_{1} and σ_{2} be two sections of a vortex tube T and consider the closed surface Σ defined by σ_{1}, σ_{2} and the lateral surface of T. By applying Gauss's theorem, we have

$$
\int_{\Sigma} \boldsymbol{\omega} \cdot \mathbf{N} d \sigma=\int_{V} \nabla \cdot \omega d V=\frac{1}{2} \int_{V} \nabla \cdot(\nabla \times \mathbf{v}) d V=0
$$

where \mathbf{N} is the unit outward vector normal to Σ. The definition of a vortex tube implies that ω is tangent to Σ at any point, so that the theorem is proved since

$$
\int_{\Sigma} \boldsymbol{\omega} \cdot \mathbf{N} d \sigma=-\int_{\sigma_{1}} \boldsymbol{\omega} \cdot \mathbf{N}_{1} d \sigma+\int_{\sigma_{2}} \boldsymbol{\omega} \cdot \mathbf{N}_{2} d \sigma=0
$$

where \mathbf{N}_{1} is the unit vector normal to σ_{1}, pointing toward the interior of the tube, and \mathbf{N}_{2} is the outward unit vector normal to σ_{2}.

From this theorem it also follows that the particle vorticity increases if the vortex curves are converging.

Theorem 9.5 (Second Helmoltz's Theorem). Vortex lines are material lines.
Proof. At the instant $t_{0}=0$, the vector ω is supposed to be tangent to the surface σ_{0}. Denote by $\sigma(t)$ the material surface defined by the particles lying upon σ_{0} at the instant t_{0}. We have to prove that $\sigma(t)$ is a vortex surface at any arbitrary instant. First, we verify that the circulation Γ along any closed line γ_{0} on σ_{0} vanishes. In fact, if A is the portion of σ_{0} contained in γ_{0}, it holds that

$$
\Gamma=\int_{\gamma_{0}} \mathbf{v} \cdot d \mathbf{s}=\int_{A} \nabla \times \mathbf{v} \cdot \mathbf{N} d \sigma=2 \int_{A} \boldsymbol{\omega} \cdot \mathbf{N} d \sigma=0
$$

since ω is tangent to A. According to Thomson's theorem, the circulation is preserved along any material curve, so that, if $\gamma(t)$ is the image of γ_{0}, it follows that

$$
\int_{\gamma(t)} \mathbf{v} \cdot d \mathbf{s}=\int_{A(t)} \nabla \times \mathbf{v} \cdot \mathbf{N} d \sigma=2 \int_{A(t)} \boldsymbol{\omega} \cdot \mathbf{N} d \sigma=0
$$

Since $A(t)$ is arbitrary, $\boldsymbol{\omega} \cdot \mathbf{N}=0$ and the theorem is proved.
The theorem can also be stated by saying that the vortex lines are constituted by the same fluid particles and are transported during the motion. Examples include the smoke rings, whirlwinds, and so on.

9.4 Boundary Value Problems for a Perfect Fluid

The motion of a perfect compressible fluid S subjected to body forces \mathbf{b} is governed by the momentum equation (see (9.18))

$$
\begin{equation*}
\dot{\mathbf{v}}=-\frac{1}{\rho} \nabla p(\rho)+\mathbf{b} \tag{9.28}
\end{equation*}
$$

and the mass conservation

$$
\begin{equation*}
\dot{\rho}+\rho \nabla \cdot \mathbf{v}=0 \tag{9.29}
\end{equation*}
$$

Equations (9.28) and (9.29) are a first-order system for the unknowns $\mathbf{v}(\mathbf{x}, t)$ and $\rho(\mathbf{x}, t)$ and, to find a unique solution, both initial and boundary conditions have to be specified.

If we consider the motion in a fixed and compact region C of the space, (e.g., a liquid in a container with rigid walls), the initial conditions are

$$
\begin{equation*}
\mathbf{v}(\mathbf{x}, 0)=\mathbf{v}_{0}(\mathbf{x}), \quad \rho(\mathbf{x}, 0)=\rho_{0}(\mathbf{x}) \quad \forall \mathbf{x} \in C \tag{9.30}
\end{equation*}
$$

and the boundary condition is

$$
\begin{equation*}
\mathbf{v} \cdot \mathbf{N}=0 \quad \forall \mathbf{x} \in \partial C, \quad t>0 \tag{9.31}
\end{equation*}
$$

This boundary condition states that the fluid can perform any tangential motion on the fixed surface, whose unit normal is \mathbf{N}.

The problem is then to find in $C \times[0, t]$ the fields $\mathbf{v}(\mathbf{x}, t)$ and $\rho(\mathbf{x}, t)$ that satisfy the balance equations (9.28), (9.29), the initial conditions (9.30), and the boundary condition (9.31).

If the fluid is incompressible ($\rho=$ const), then the Eq. (9.28) becomes

$$
\begin{equation*}
\dot{\mathbf{v}}=-\frac{1}{\rho} \nabla p+\mathbf{b} \tag{9.32}
\end{equation*}
$$

while the mass conservation (9.29) leads us to the condition

$$
\begin{equation*}
\nabla \cdot \mathbf{v}=0 \tag{9.33}
\end{equation*}
$$

The unknowns of the system (9.32) and (9.33) are given by the fields $\mathbf{v}(\mathbf{x}, t)$ and $p(\mathbf{x}, t)$, and the appropriate initial and boundary conditions are

$$
\begin{align*}
\mathbf{v}(\mathbf{x}, 0) & =\mathbf{v}_{0}(\mathbf{x}) \quad \forall \mathbf{x} \in C, \\
\mathbf{v} \cdot \mathbf{N} & =0 \quad \forall \mathbf{x} \in \partial C, t>0 . \tag{9.34}
\end{align*}
$$

A more complex problem arises when a part of the boundary is represented by a moving or free surface $f(\mathbf{x}, t)=0$. In this case, finding the function f is a part of the boundary value problem. The moving boundary ∂C^{\prime}, represented by $f(\mathbf{x}, t)=0$, is a material surface, since a material particle located on it has to remain on this surface during the motion. This means that its velocity c_{N} along the unit normal \mathbf{N} to the free surface is equal to $\mathbf{v} \cdot N$; that is, $f(\mathbf{x}, t)$ has to satisfy the condition (see (4.33))

$$
\frac{\partial}{\partial t} f(\mathbf{x}, t)+\mathbf{v}(\mathbf{x}, t) \cdot \nabla f(\mathbf{x}, t)=0
$$

In addition, on the free surface it is possible to prescribe the value of the pressure, so that the dynamic boundary conditions are

$$
\begin{align*}
& \frac{\partial}{\partial t} f(\mathbf{x}, t)+\mathbf{v}(\mathbf{x}, t) \cdot \nabla f(\mathbf{x}, t)=0, \\
& p=p_{e} \quad \forall \mathbf{x} \in \partial C^{\prime}, \quad t>0, \tag{9.35}
\end{align*}
$$

where p_{e} is the prescribed external pressure.
On the fixed boundary part, the previous impenetrability condition (9.32) applies, and if the boundary C extends to infinity, then conditions related to the asymptotic behavior of the solution at infinity have to be added.

9.5 2D Steady Flow of a Perfect Fluid

The following two conditions define an irrotational steady motion of an incompressible fluid S :

$$
\begin{equation*}
\nabla \times \mathbf{v}=\mathbf{0}, \quad \nabla \cdot \mathbf{v}=0 \tag{9.36}
\end{equation*}
$$

where $\mathbf{v}=\mathbf{v}(\mathbf{x})$. The first condition allows us to deduce the existence of a velocity or kinetic potential $\varphi(\mathbf{x})$ such that

$$
\begin{equation*}
\mathbf{v}=\nabla \varphi, \tag{9.37}
\end{equation*}
$$

where φ is a single- or a multiple-valued function, depending on whether the motion region C is connected or not. ${ }^{1}$

[^28]In addition, taking into account $(9.36)_{2}$, it holds that

$$
\begin{equation*}
\Delta \varphi=\nabla \cdot \nabla \varphi=0 \tag{9.38}
\end{equation*}
$$

Equation (9.38) is known as Laplace's equation and its solution is a harmonic function.

Finally, it is worthwhile to note that, in dealing with a two-dimensional (2D) flow, the velocity vector \mathbf{v} at any point is parallel to a plane π and it is independent of the coordinate normal to this plane. In this case, if a system $O x y z$ is introduced, where the axes x and y are parallel to π and the z axis is normal to this plane, then we have

$$
\mathbf{v}=u(x, y) \mathbf{i}+v(x, y) \mathbf{j},
$$

where u, v are the components of \mathbf{v} on x and y, and \mathbf{i}, \mathbf{j} are the unit vectors of these axes.

If now C is a simply connected region of the plane $O x y$, conditions (9.36) become

$$
\begin{equation*}
-\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=0, \quad \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \tag{9.39}
\end{equation*}
$$

These conditions allow us to state that the two differential forms $\omega_{1}=u d x+v d y$ and $\omega_{2}=-v d x+u d y$ are integrable, i.e., there is a function φ, called the velocity potential or the kinetic potential, and a function ψ, called the stream potential or the Stokes potential, such that

$$
\begin{equation*}
d \varphi=u d x+v d y, \quad d \psi=-v d x+u d y . \tag{9.40}
\end{equation*}
$$

From (9.37) it follows that the curves $\varphi=$ const are at any point normal to the velocity field. Furthermore, since $\nabla \varphi \cdot \nabla \psi=0$, the curves $\psi=$ const are flow lines.

It is relevant to observe that (9.40) suggest that the functions φ and ψ satisfy the Cauchy-Riemann conditions

$$
\begin{equation*}
\frac{\partial \varphi}{\partial x}=\frac{\partial \psi}{\partial y}, \quad \frac{\partial \varphi}{\partial y}=-\frac{\partial \psi}{\partial x}, \tag{9.41}
\end{equation*}
$$

so that the complex function

$$
\begin{equation*}
F(z)=\varphi(x, y)+i \psi(x, y) \tag{9.42}
\end{equation*}
$$

is holomorphic and represents a complex potential. Then the complex potential can be defined as the holomorphic function whose real and imaginary parts are the velocity potential φ and the stream potential ψ, respectively. The two functions φ and ψ are harmonic and the derivative of $F(z)$,

$$
\begin{equation*}
V \equiv F^{\prime}(z)=\frac{\partial \varphi}{\partial x}+i \frac{\partial \psi}{\partial x}=u-i v=|V| e^{-i \theta} \tag{9.43}
\end{equation*}
$$

represents the complex velocity, with $|V|$ being the modulus of the velocity vector and θ the angle that this vector makes with the x axis.

Within the context of considerations developed in the following discussion, it is relevant to remember that the line integral of a holomorphic function vanishes around any arbitrary closed path in a simply connected region, since the CauchyRiemann equations are necessary and sufficient conditions for the integral to be independent of the path (and therefore it vanishes for a closed path).

The above remarks lead to the conclusion that a 2D irrotational flow of an incompressible fluid is completely defined if a harmonic function $\varphi(x, y)$ or a complex potential $F(z)$ is prescribed, as it is shown in the examples below.

Example 9.1. Uniform motion. Given the complex potential

$$
\begin{equation*}
F(z)=U_{0}(x+i y)=U_{0} z \tag{9.44}
\end{equation*}
$$

it follows that $V=U_{0}$, and the 2 D motion

$$
\begin{equation*}
\mathbf{v}=U_{0} \mathbf{i} \tag{9.45}
\end{equation*}
$$

is defined, where \mathbf{i} is the unit vector of the axis $O x$. The kinetic and Stokes potentials are $\varphi=U_{0} x, \psi=U_{0} y$, and the curves $\varphi=$ const and $\psi=$ const are parallel to $O y$ and $O x$ (see Fig. 9.4), respectively. This example shows that the complex potential (9.44) can be introduced in order to describe a 2 D uniform flow, parallel to the wall $y=0$.

Example 9.2. Vortex potential. Let a 2D flow be defined by the complex potential

$$
\begin{equation*}
F(z)=-i \frac{\Gamma}{2 \pi} \ln z=-i \frac{\Gamma}{2 \pi} \ln r e^{i \theta}=\frac{\Gamma}{2 \pi} \theta-i \frac{\Gamma}{2 \pi} \ln r \tag{9.46}
\end{equation*}
$$

Fig. 9.4 Uniform motion

Fig. 9.5 Vortex potential
where r, θ are polar coordinates. It follows that

$$
\begin{aligned}
& \varphi=\frac{\Gamma}{2 \pi} \theta=\frac{\Gamma}{2 \pi} \arctan \frac{y}{x} \\
& \psi=-i \frac{\Gamma}{2 \pi} \ln r=-\frac{\Gamma}{4 \pi} \ln \left(x^{2}+y^{2}\right)
\end{aligned}
$$

and the curves $\varphi=$ const are straight lines through the origin, while the curves $\psi=$ const are circles whose center is the origin (see Fig. 9.5).

Accordingly, the velocity components become

$$
\begin{aligned}
& u=\frac{\partial \varphi}{\partial x}=-\frac{\Gamma}{2 \pi} \frac{y}{x^{2}+y^{2}}=-\frac{\Gamma}{2 \pi} \frac{\sin \theta}{r}, \\
& v=\frac{\partial \varphi}{\partial y}=\frac{\Gamma}{2 \pi} \frac{x}{x^{2}+y^{2}}=\frac{\Gamma}{2 \pi} \frac{\cos \theta}{r} .
\end{aligned}
$$

It is relevant to observe that the circulation around a path γ bordering the origin is given by

$$
\int_{\gamma} \mathbf{v} \cdot d \mathbf{s}=\Gamma
$$

so that it does not vanish if $\Gamma \neq 0$. This is not in contradiction with the condition $\nabla \times \mathbf{v}=\mathbf{0}$ since the plane without the origin is no longer a simply connected region. In Sect. 9.7, further arguments will be addressed in order to explain why the circulation around an obstacle does not vanish in a 2D flow.

The complex potential (9.46) can then be used with advantage to describe the uniform 2D flow of particles rotating around the axis through the origin and normal to the plane $O x y$.

Example 9.3. Sources and sinks. For pure radial flow in the horizontal plane, the complex potential is taken:

$$
F(z)=\frac{Q}{2 \pi} \ln z=\frac{Q}{2 \pi} \ln r e^{i \theta}=\frac{Q}{2 \pi}(\ln r+i \theta), \quad Q>0 .
$$

so that

$$
\varphi=\frac{Q}{2 \pi} \ln r=\frac{Q}{4 \pi} \log \left(x^{2}+y^{2}\right), \quad \psi=\frac{Q}{2 \pi} \theta=\frac{Q}{2 \pi} \arctan \frac{y}{x} .
$$

The curves $\varphi=$ const are circles and the curves $\psi=$ const are straight lines through the origin. The velocity field is given by

$$
\mathbf{v}=\frac{Q}{2 \pi r} \mathbf{e}_{r},
$$

where \mathbf{e}_{r} is the unit radial vector (see Fig. 9.6). Given an arbitrary closed path γ around the origin, the radial flow pattern associated with the above field is said to be either a source, if

$$
\begin{equation*}
\int_{\gamma} \mathbf{v} \cdot \mathbf{n} d \sigma=Q>0 \tag{9.47}
\end{equation*}
$$

or a sink, if $Q<0$. The quantity $Q / 2 \pi$ is called the strength of the source or sink.

Fig. 9.6 Sources and sinks

Fig. 9.7 Doublet

Example 9.4. Doublet. A doublet is the singularity obtained by taking to zero the distance between a source and a sink having the same strength. More precisely, consider a source and a sink of equal strength, the source placed at the point A, with $z_{1}=-a e^{i \alpha}$, and the sink placed at B, with $z_{2}=a e^{i \alpha}$. The complex potential for the combined flow is then

$$
\begin{equation*}
F(z)=\frac{Q}{2 \pi} \ln \left(z+a e^{i \alpha}\right)-\frac{Q}{2 \pi} \ln \left(z-a e^{i \alpha}\right) \equiv f(z, a) \tag{9.48}
\end{equation*}
$$

The reader is invited to find the kinetic and Stokes potential (see Fig. 9.7).
If points A and B are very near to each other, i.e., $a \simeq 0$, it follows that

$$
F(z)=f(z, 0)+f^{\prime}(z, 0) a=\frac{Q}{\pi} \frac{1}{z} a e^{i \alpha} .
$$

In particular, if $a \rightarrow 0$, so that $Q a / \pi \rightarrow m$, then we obtain the potential of a doublet (source-sink):

$$
\begin{equation*}
F(z)=\frac{m}{z} e^{i \alpha} \tag{9.49}
\end{equation*}
$$

Furthermore, if $\alpha=0$, e.g., if the source and the sink are on the x axis, then

$$
\begin{equation*}
F(z)=\frac{m}{z}=\frac{m x}{x^{2}+y^{2}}-i \frac{m y}{x^{2}+y^{2}} \equiv \varphi+i \psi \tag{9.50}
\end{equation*}
$$

and the flow lines $\psi=$ const are circles through the origin.
Example 9.5. Consider the 2D flow with complex potential

$$
\begin{equation*}
F(z)=U_{0} z+\frac{U_{0} a^{2}}{z} \tag{9.51}
\end{equation*}
$$

Fig. 9.8 Flow around a cylinder relative to potential (9.51)
i.e., the flow is obtained as the superposition of a uniform flow parallel to the x axis (in the positive direction) and the flow due to a dipole (source-sink) system of strength $m=U_{0} a^{2}$. Assuming $z=x+i y$, then from (9.51) it follows that

$$
\varphi=U_{0} x\left(1+\frac{a^{2}}{x^{2}+y^{2}}\right), \quad \psi=U_{0} y\left(1-\frac{a^{2}}{x^{2}+y^{2}}\right) .
$$

The flow lines $\psi=$ const are represented in Fig. 9.8 (for $U_{0}=a=1$).
Note that the condition $x^{2}+y^{2}=a^{2}$ corresponds to the line $\psi=0$. Furthermore, if the region internal to this circle is substituted with the cross section of a cylinder, (9.51) can be assumed to be the complex potential of the velocity field around a cylinder. The components of the velocity field are given by

$$
\begin{aligned}
& u=\frac{\partial \varphi}{\partial x}=U_{0}\left(1-a^{2} \frac{x^{2}-y^{2}}{r^{4}}\right)=U_{0}\left(1-\frac{a^{2}}{r^{2}} \cos 2 \theta\right), \\
& v=\frac{\partial \varphi}{\partial y}=-U_{0} \frac{a^{2}}{r^{2}} \sin 2 \theta .
\end{aligned}
$$

It should be noted that, although singular points associated with a doublet do not actually occur in real fluids, they are interesting because the flow pattern associated with a doublet is a useful approximation far from singular points, and it can be combined to advantage with other nonsingular complex potentials.

Example 9.6. All the previous examples, with the exception of Example 9.2, refer to 2D irrotational flows whose circulation along an arbitrary closed path is vanishing. We now consider the complex potential

$$
\begin{equation*}
F(z)=U_{0} z+\frac{U_{0} a^{2}}{z}+i \frac{\Gamma}{2 \pi} \ln z \tag{9.52}
\end{equation*}
$$

This represents a flow around a cylinder of radius a obtained by superposing a uniform flow, a flow generated by a dipole, and the flow due to a vortex. The dipole and the vortex are supposed to be located on the center of the section. In this case,

Fig. 9.9 Flow around a cylinder relative to potential (9.52) if $\Gamma^{2}<16 \pi^{2} a^{2} U_{0}^{2}$

Fig. 9.10 Flow around a cylinder relative to potential (9.52) if $\Gamma^{2}=16 \pi^{2} a^{2} U_{0}^{2}$
according to (9.47), the vorticity is Γ, and the vortex can be supposed to be produced by a rotation of the cylinder around its axis. Flow lines are given by the complex velocity

$$
V=\frac{d F}{d z}=U_{0}\left(1-\frac{a^{2}}{z^{2}}\right)+i \frac{\Gamma}{2 \pi z} .
$$

In order to find stagnation points $(V=0)$, we must solve the equation $d F / d z=0$. Its roots are given by

$$
\begin{equation*}
z_{v=0}=\frac{1}{4 U_{0} \pi}\left(-i \Gamma \pm \sqrt{\left(16 U_{0}^{2} \pi^{2} a^{2}-\Gamma^{2}\right)}\right) \tag{9.53}
\end{equation*}
$$

Three cases can be distinguished: $\Gamma^{2}<16 \pi^{2} a^{2} U_{0}^{2}, \Gamma^{2}=16 \pi^{2} a^{2} U_{0}^{2}$, and $\Gamma^{2}>$ $16 \pi^{2} a^{2} U_{0}^{2}$, whose corresponding patterns are shown in Figs. 9.9, 9.10, and 9.11 (assuming $U_{0}=a=1$).

At this stage the reader should be aware that these examples, although of practical relevance, are based on equations of steady-state hydrodynamics, which in some occasions give rise to inaccurate or paradoxical results. As an example, in the next

Fig. 9.11 Flow around a cylinder relative to potential (9.52) if $\Gamma^{2}>16 \pi^{2} a^{2} U_{0}^{2}$
section we will analyze D'Alembert's paradox, according to which the drag of a fluid on an obstacle is zero. In order to remove this paradox, it will be necessary to introduce a boundary layer within which viscosity cannot be disregarded.

9.6 D'Alembert's Paradox and the Kutta-Joukowsky Theorem

In spite of the attractive results obtained in the previous section, the assumption of a perfect fluid cannot be used to explain some important phenomena occurring in fluid dynamics.

In particular, the condition $\mathbf{v} \cdot \mathbf{n}=0$ assumed on the boundary ∂C means that the fluid is free to move with respect to the wall boundary, while there is actually no relative movement and the appropriate boundary condition on ∂C should be $\mathbf{v}=\mathbf{0}$. It has also been shown that, when considering the irrotational steady flow of a perfect fluid, the motion is described by a velocity potential φ that is the solution of a Neumann's problem for Laplace's equation. It follows that the boundary condition $\mathbf{v}=\nabla \varphi=\mathbf{0}$ on ∂C, appropriate for a real fluid, is a redundant condition, not admissible for Laplace's equation.

This example is just one of the contradictions arising when dealing with inviscid fluids. The aim of this section is to discuss the most relevant of these.

Let V be a fixed (nonmaterial) volume. Then the momentum balance equation is written as

$$
\begin{equation*}
\frac{d}{d t} \int_{V} \rho \mathbf{v} d c=\int_{\partial V}(\mathbf{T}-\rho \mathbf{v} \otimes \mathbf{v}) \cdot \mathbf{N} d \sigma+\int_{V} \rho \mathbf{b} d c \tag{9.54}
\end{equation*}
$$

If a fixed solid S of volume C is placed in a steady flow of an incompressible fluid, then Eq. (9.54) allows us to find the drag on S, assuming that $\mathbf{b}=\mathbf{0}$. Since the flow is steady, the left-hand side of (9.54) vanishes; furthermore, if Δ is the region bounded by the surface ∂C of the solid and an arbitrary surface Σ that contains C (see Fig. 9.12), then by recalling that $\mathbf{v} \cdot \mathbf{n}=0$ on ∂C, we find that

Fig. 9.12 Flow around an obstacle

$$
\int_{\partial C} \mathbf{T} \cdot \mathbf{N} d \sigma+\int_{\Sigma}(\mathbf{T}-\rho \mathbf{v} \otimes \mathbf{v}) \cdot \mathbf{N} d \sigma=0
$$

The first integral is just the opposite of the force \mathbf{F} acting on S, so that the previous relation becomes

$$
\begin{equation*}
\mathbf{F}=\int_{\Sigma}(\mathbf{T}-\rho \mathbf{v} \otimes \mathbf{v}) \cdot \mathbf{N} d \sigma \tag{9.55}
\end{equation*}
$$

From similar arguments it can be proved that the torque of the force acting on S with respect to a pole O can be obtained from (5.30), so that

$$
\begin{equation*}
\mathbf{M}_{O}=\int_{\Sigma} \mathbf{r} \times(\mathbf{T}-\rho \mathbf{v} \otimes \mathbf{v}) \cdot \mathbf{N} d \sigma \tag{9.56}
\end{equation*}
$$

At this stage we recall the following theorem of the potential theory, without a proof.
Theorem 9.6. If in the region surrounding a solid C an irrotational flow of an incompressible fluid satisfies the condition

$$
\lim _{r \rightarrow \infty} \mathbf{v}=\mathbf{V}
$$

where \mathbf{V} is a constant vector (representing the undisturbed motion at infinity) and r is the distance of any point from an arbitrary origin, then the velocity field assumes the asymptotic behavior

$$
\begin{equation*}
\mathbf{v}=\mathbf{V}+O\left(r^{-3}\right) \tag{9.57}
\end{equation*}
$$

In a 2 D motion, (9.57) can be replaced by the following relation:

$$
\begin{equation*}
\mathbf{v}=V \mathbf{i}+\frac{\Gamma}{2 \pi r^{2}}(-y \mathbf{i}+x \mathbf{j})+O\left(r^{-2}\right) \tag{9.58}
\end{equation*}
$$

where \mathbf{i} and \mathbf{j} are the unit vectors of the axes $O x$ and $O y, \mathbf{i}$ is parallel to \mathbf{V}, and the circulation

$$
\begin{equation*}
\Gamma=\oint \mathbf{v} \cdot d \mathbf{s} \tag{9.59}
\end{equation*}
$$

refers to any closed path surrounding the solid body.
Note that in two dimensions the condition $\nabla \times \mathbf{v}=\mathbf{0}$ does not imply that $\Gamma=0$, since the region surrounding the obstacle is not simply connected. However, by applying Stokes's theorem, it can be proved that Γ assumes a value which is independent of the path.

By taking into account the asymptotic behavior (9.57) and Bernoulli's theorem (9.24), where $U=0$ in the absence of body forces, we find that

$$
\begin{equation*}
p=p_{0}+\frac{1}{2} \rho\left(V^{2}-v^{2}\right)=p_{0}+O\left(r^{-3}\right), \tag{9.60}
\end{equation*}
$$

where p_{0} is the pressure at infinity. Substituting $\mathbf{T} \cdot \mathbf{N}=\left[-p_{0}+0\left(r^{-3}\right)\right] \mathbf{N}$ into (9.55) gives

$$
\mathbf{F}=-\int_{\Sigma}\left(p_{0} \mathbf{I}-\rho \mathbf{V} \otimes \mathbf{V}\right) \mathbf{N} d \sigma+\int_{\Sigma} O\left(r^{-3}\right) d \sigma
$$

so that, assuming that the arbitrary surface Σ is a sphere of radius R, we have

$$
\begin{equation*}
\mathbf{F}=-\left(p_{0} \mathbf{I}-\rho \mathbf{V} \otimes \mathbf{V}\right) \int_{\Sigma} \mathbf{N} d \sigma+O\left(R^{-1}\right) \tag{9.61}
\end{equation*}
$$

Finally, by applying Gauss's theorem to the right-hand side, we find that

$$
\mathbf{F}=\mathbf{0},
$$

i.e., the irrotational flow of a perfect fluid gives zero drag on any obstacle placed in a fluid stream (D'Alembert's paradox).

In a 2D motion, from (9.58), we have

$$
v^{2}=V^{2}-V \frac{\Gamma}{\pi r^{2}} y+O\left(r^{-2}\right)
$$

Substituting into Bernoulli's theorem instead of (9.60), we get

$$
\begin{equation*}
p=p_{0}+\frac{1}{2} \rho \frac{\Gamma}{\pi r^{2}} y V+O\left(r^{-2}\right) . \tag{9.62}
\end{equation*}
$$

By combining with (9.55), the force acting on the obstacle assumes the expression

$$
\begin{aligned}
\mathbf{F} & =-\left(p_{0}+\rho V^{2}\right) \mathbf{i} \int_{\Sigma} N_{x} d l-p_{0} \mathbf{j} \int_{\Sigma} N_{y} d l \\
& -\frac{\Gamma}{2 \pi R^{2}} V \mathbf{j} \int_{\Sigma}\left(x N_{x}+y N_{y}\right) d l \\
& -\frac{\Gamma}{2 \pi R^{2}} V \mathbf{i} \int_{\Sigma}\left(y N_{x}-x N_{y}\right) d l+\int_{\Sigma} O\left(r^{-2}\right) d l
\end{aligned}
$$

where Σ is now a circle of radius R surrounding the body C. Since integrals

$$
\int_{\Sigma} N_{x} d l, \quad \int_{\Sigma} N_{y} d l
$$

vanish, the previous expression becomes

$$
\mathbf{F}=-\frac{\Gamma}{2 \pi R^{2}} V \mathbf{j} \int_{\Sigma}\left(x N_{x}+y N_{y}\right) d l-\frac{\Gamma}{2 \pi R^{2}} V \mathbf{i} \int_{\Sigma}\left(y N_{x}-x N_{y}\right) d l+O\left(r^{-2}\right),
$$

In addition we have $\left(x N_{x}+y N_{y}\right)=\mathbf{R} \cdot \mathbf{N}=R$ and $\left(y N_{x}-x N_{y}\right)=0$, so that the Blasius formula

$$
\begin{equation*}
\mathbf{F}=-\rho \Gamma V \mathbf{j} \tag{9.63}
\end{equation*}
$$

is obtained.
This formula shows that although a steady flow of an inviscid fluid predicts no drag on an obstacle in the direction of the relative velocity in the unperturbed region, it can predict a force normal to this direction. This is a result obtained independently by W.M. Kutta in 1902 and N.E. Joukowski (sometimes referred as Zoukowskii) in 1906, known as the Kutta-Joukowski theorem. Such a force is called lift, and it is important for understanding why an airplane can fly.

Before closing this section, we observe that our inability to predict the drag for an inviscid fluid in the direction of relative velocity does not means we should abandon the perfect fluid model. Viscosity plays an important role around an obstacle, but, far from the obstacle, the motion can still be conveniently described according to the assumption of an inviscid fluid.

9.7 Lift and Airfoils

A lifting wing having the form of an infinite cylinder of appropriate cross section normal to rulings, is usually called an airfoil.

Airplane wings are obviously cylinders of finite length, and the effects of this finite length have an important role in the theory of lift. Nevertheless, even considering an infinitely long cylinder, essential aspects of lift can be identified.

Fig. 9.13 Flow around an airfoil

First, we must justify a nonvanishing circulation around a wing. To do this, consider a wing L of section S and the fluid motion around it, described by the complex potential (9.51) at time t_{0}. Let γ be any material curve surrounding the wing (see Fig. 9.13).

In the region $R^{2}-S$, the motion is assumed to be irrotational with the exception of a small portion $\Delta \cup d$, near the wing, whose presence is justified by the following arguments: viscosity acts in a boundary layer Δ just around the wing and it produces a vortex of area d at the point A. This vortex grows away from the wing and disappears into the fluid mass, but it is continuously generated. The material curve γ is assumed to be large enough to contain S at any instant t. Since in the region $R^{2}-S \cup \Delta \cup d$, which is not a simply connected region, the motion is irrotational, Thomson's theorem implies that the circulation on γ is zero at any time. Furthermore, by applying Stokes's theorem to the region bounded by the oriented curves γ, γ_{1}, and γ_{2}, we see that the circulation on γ_{1} must be equal and opposite to the circulation on γ_{2}. At this stage, it becomes useful to transform the flow field we are dealing with into another flow field which is easier to determine. For this reason, we recall the definition of conformal mapping together with some other properties. If a complex variable w is an analytic function of z, i.e., $w=\Phi(z)$, then there is a connection between the shape of a curve in the z plane and the shape of the curve in the w plane, as a consequence of the properties of an analytic function. In fact, the value of the derivative is independent of the path the increments $d x$ and $d y$ follow in going to zero. Since it can be proved that this transformation preserves angles and their orientation, it is called conformal mapping.

As already shown in Sect. 9.5, the flow around a given profile can be described through a convenient complex potential. The simplest wing profile was suggested by Joukowski. It is obtained from the complex potential $F(\zeta)$ of the motion around a circular cylinder (Example 9.5) in the plane $\zeta=\xi+i \eta$, by means of the conformal mapping $z=x+i y=\Phi(\zeta)$.

Note that lift can occur if there is an asymmetry due either to the asymmetry of the body or to a misalignment between the body and the approaching flow. The angle of misalignment is called the angle of attack. The angle of attack to the cylinder

Fig. 9.14 Geometry of the airfoil
of the velocity vector is denoted by φ, as shown in Fig. 9.14, and the motion is supposed to be described by the complex potential

$$
\begin{equation*}
\hat{F}(\zeta)=U_{0}\left[\left(\zeta-b e^{i \theta}\right) e^{-i \varphi}+\frac{a^{2}}{\left(\zeta-b e^{i \theta}\right) e^{-i \varphi}}\right] \tag{9.64}
\end{equation*}
$$

It is obtained from the potential introduced in Sect. 9.5, Example 5, i.e., $F\left(\zeta^{\prime}\right)=$ $U_{0}\left(\zeta^{\prime}+a^{2} / \zeta^{\prime}\right)$, by applying the transformations $\zeta^{\prime} \rightarrow \zeta^{\prime \prime}=\zeta^{\prime} e^{i \varphi} \rightarrow \zeta=\zeta^{\prime \prime}+b e^{i \theta}$, corresponding to a rigid rotation φ of the axes and a rigid translation of the origin into $b e^{i \theta}$.

Joukowsky's transformation is defined as

$$
\begin{equation*}
z=\Phi(\zeta)=\zeta+\frac{l^{2}}{\zeta} \tag{9.65}
\end{equation*}
$$

which is conformal everywhere, with the exception of the origin, which is mapped to infinity. The inverse transformation cannot be carried out globally, since from (9.65) it follows that

$$
\zeta=\frac{z \pm \sqrt{z^{2}-4 l^{2}}}{2}
$$

It can also be proved that the region external to the circle γ of radius a is in one-toone correspondence with the region external to the curve given by the image Γ of the circle γ.

As a consequence, Joukowsky's conformal mapping allows us to define, in the region external to Γ, a new complex potential

$$
F(z)=\hat{F}\left(\Phi^{-1}(z)\right)
$$

which describes the motion around the profile Γ. Such a profile, provided that the parameter l is conveniently selected, is the wing shape in Fig. 9.14. In particular, the
point $T(l, 0)$ in the plane (ξ, η), corresponding to the sharp trailing edge, is mapped into $T^{\prime}(2 l, 0)$ in the plane (x, y). This point is singular for the derivative $d \hat{F} / d \zeta$ of (9.64), since

$$
\begin{aligned}
\left(\frac{d F}{d z}\right)_{z=(2 l, 0)} & =\left(\frac{d \hat{F}}{d \zeta}\right)_{\zeta=(l, 0)}\left(\frac{d \zeta}{d z}\right)_{z=(2 l, 0)} \\
& =\left(\frac{d \hat{F}}{d \zeta}\right)_{\zeta=(l, 0)} \frac{1}{(d z / d \zeta)_{\zeta=(l, 0)}} \\
& =\left(\frac{d \hat{F}}{d \zeta}\right)_{\zeta=(l, 0)} \frac{1}{\left(1-\frac{l^{2}}{\zeta^{2}}\right)_{\zeta=(l, 0)}}
\end{aligned}
$$

A nonvanishing circulation around the wing is justified by Joukowsky assuming that the velocity has a finite value at any point.

In order to satisfy this condition, Joukowsky introduces the complex potential due to the circulation (see Example 6 in Sect. 9.5), so that the velocity is zero at T^{\prime}. The complex potential $F(z)$, due to the superposition of different contributions, is then given by

$$
\begin{equation*}
F(z)=U_{0}\left[\left(\zeta-b e^{i \theta}\right) e^{-i \varphi}+\frac{a^{2}}{\left(\zeta-b e^{i \theta}\right) e^{-i \varphi}}\right]+i \frac{\Gamma}{2 \pi} \ln \frac{\left(\zeta-b e^{i \theta}\right) e^{-i \varphi}}{a}, \tag{9.66}
\end{equation*}
$$

where ζ and z correspond to each other through (9.65). Figure 9.15 shows streamlines around the cylinder obtained by considering the real part of the righthand side of (9.66), i.e., the kinetic potential $\varphi(\xi, \eta)$. Figure 9.16 shows the wing profile and the related streamlines.

The complex velocity at $T^{\prime}(2 l, 0)$ in the z plane is

$$
\left(\frac{d F}{d z}\right)_{z=(2 l, 0)}=\left(\frac{d \hat{F}}{d \zeta}\right)_{\zeta=(l, 0)} \frac{d \zeta}{d z}
$$

Fig. 9.15 Flow around a cylinder

Fig. 9.16 Flow around the airfoil

Since $\left(\frac{d \zeta}{d z}\right)_{(2 l, 0)}=1 /\left(1-l^{2} / \zeta^{2}\right)_{\zeta=(l, 0)}=\infty$, to obtain a finite value of $(d F / d z)_{(2 l, 0)}$ the derivative $(d F / d \zeta)_{(l, 0)}$ needs to vanish. This condition is satisfied by observing that

$$
\begin{equation*}
\frac{d \hat{F}}{d \zeta}=U_{0}\left[e^{-i \varphi}-\frac{a^{2} e^{i \varphi}}{\left(\zeta-b e^{i \theta}\right)^{2}}\right]+i \frac{\Gamma}{2 \pi} \frac{1}{\zeta-b e^{i \theta}} \tag{9.67}
\end{equation*}
$$

and from Fig. 9.14 it also follows that $\zeta-b e^{i \theta}=\zeta-l+a e^{i(\pi-\beta)}$; therefore, when $\zeta=l$, from (9.67) we deduce that

$$
U_{0}\left(1-e^{-2 i(\pi-\beta)+2 i \varphi}\right)+i \frac{\Gamma}{2 \pi a} e^{-i(\pi-\beta)+i \varphi}=0 .
$$

Equating to zero both the real and imaginary parts, we get the value of Γ :

$$
\begin{equation*}
\Gamma=-4 \pi a U_{0} \sin (\pi-\beta-\varphi)=4 \pi a U_{0} \sin (\beta+\varphi), \tag{9.68}
\end{equation*}
$$

which depends on the velocity of the undisturbed stream, on the apparent attack angle φ, and on β. The last two parameters define the dimension and curvature of the wing profile, given a and U_{0}.

Increasing the angle of attack of an airfoil increases the flow asymmetry, resulting in greater lift. Experimental evidence shows that if the total angle of attack $\varphi+\beta$ reaches a critical value, the airfoil stalls, and the lift drops dramatically.

There are three programs attached to this chapter: Wing, Potential, and Joukowsky. The program Wing gives the curve Γ in the plane z corresponding to the circle of unit radius through Joukowsky's map.

The program Potential provides a representation of the streamlines corresponding to a given complex potential $F(z)$.

Finally, the program Joukowski gives the streamlines around a wing, allowing changes of the angle of attack as well as the coordinates of the center of the cylinder.

9.8 Newtonian Fluids

The simplest assumption, that the difference between the stress in a moving fluid and the stress at equilibrium is linearly related to the rate of deformation tensor, is due to Newton (1687). The 3D case was studied by Navier (1821) for an incompressible fluid, and later by Poisson (1831) for the general case.

Due to these contributions, we have that the constitutive equations of a linear compressible or incompressible viscous fluid (see Sect. 7.3), respectively are

$$
\begin{align*}
& \mathbf{T}=\left[-p(\rho)+\lambda(\rho) \mathbf{I}_{D}\right] \mathbf{I}+2 \mu(\rho) \mathbf{D} \tag{9.69}\\
& \mathbf{T}=-p \mathbf{I}+2 \mu \mathbf{D} \tag{9.70}
\end{align*}
$$

If (9.69) is introduced into $(5.30)_{1}$, the Navier-Stokes equation

$$
\begin{equation*}
\rho \dot{\mathbf{v}}=\rho \mathbf{b}-\nabla p+\nabla(\lambda \nabla \cdot \mathbf{v})+\nabla \cdot(2 \mu \mathbf{D}) \tag{9.71}
\end{equation*}
$$

is obtained. Consequently, for a compressible viscous fluid we must find the fields $\mathbf{v}(\mathbf{x}, t)$ and $\rho(\mathbf{x}, t)$ which satisfy the system

$$
\begin{align*}
& \rho \dot{\mathbf{v}}=\rho \mathbf{b}-\nabla p+\nabla(\lambda \nabla \cdot \mathbf{v})+\nabla \cdot(2 \mu \mathbf{D}), \\
& \dot{\rho}+\rho \nabla \cdot \mathbf{v}=0 \tag{9.72}
\end{align*}
$$

in the domain C occupied by the fluid, as well as the boundary condition on a fixed wall

$$
\begin{equation*}
\mathbf{v}=\mathbf{0} \quad \text { on } \partial C \tag{9.73}
\end{equation*}
$$

and the initial conditions

$$
\begin{equation*}
\rho(\mathbf{x}, 0)=\rho_{0}(\mathbf{x}), \quad \mathbf{v}(\mathbf{x}, 0)=\mathbf{v}_{0}(\mathbf{x}) \quad \forall \mathbf{x} \in C . \tag{9.74}
\end{equation*}
$$

For the case of an incompressible fluid, for which $\rho=$ const, $\mu=$ const , $\nabla \cdot \mathbf{v}=0$, and

$$
2 \nabla \cdot \mathbf{D}=\Delta v+\nabla(\nabla \cdot \mathbf{v})=\Delta v
$$

Eq. (9.71) becomes

$$
\dot{\mathbf{v}}=\mathbf{b}-\frac{1}{\rho} \nabla p+v \Delta \mathbf{v}
$$

where $v=\mu / \rho$ is the coefficient of kinematic viscosity.

Then the problem reduces to finding the fields $\mathbf{v}(\mathbf{x}, t)$ and $p(\mathbf{x}, t)$ that satisfy the system

$$
\begin{align*}
\dot{\mathbf{v}} & =\mathbf{b}-\frac{1}{\rho} \nabla p+\frac{\mu}{\rho} \Delta \mathbf{v} \\
\nabla \cdot \mathbf{v} & =0 \tag{9.75}
\end{align*}
$$

the boundary condition (9.73), and the initial condition

$$
\mathbf{v}(\mathbf{x}, 0)=\mathbf{v}_{0}(\mathbf{x}) \quad \forall \mathbf{x} \in C
$$

9.9 Applications of the Navier-Stokes Equation

In this section we consider a steady flow of a linear viscous fluid characterized by a velocity field parallel to the axis $O x$ in the absence of body forces.

If $O y$ and $O z$ are two other axes, which together with $O x$ form an orthogonal frame of reference, then

$$
\begin{equation*}
\mathbf{v}=v(x, y, z) \mathbf{i} \tag{9.76}
\end{equation*}
$$

where \mathbf{i} is the unit vector associated with the $O x$ axis. The introduction of (9.76) into (9.75) gives

$$
\begin{aligned}
\frac{\partial v}{\partial x} v+\frac{1}{\rho} \frac{\partial p}{\partial x} & =\frac{\mu}{\rho} \Delta v \\
\frac{\partial p}{\partial y} & =\frac{\partial p}{\partial z}=0 \\
\frac{\partial v}{\partial x} & =0
\end{aligned}
$$

These equations imply that

$$
p=p(x), \quad v=v(y, z)
$$

so that the pressure and the velocity field depend only on x and on y, z, respectively. It follows that they are both equal to the same constant A :

$$
\begin{equation*}
\frac{\partial p}{\partial x}=\rho A, \quad \frac{\mu}{\rho}\left(\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}\right)=A \tag{9.77}
\end{equation*}
$$

The first equation tells us that p is a linear function of x, so that if p_{0} and p_{1} are the values at $x=0$ and $x=l$, it follows that

$$
\begin{equation*}
p=\frac{p_{1}-p_{0}}{l} x+p_{0} \tag{9.78}
\end{equation*}
$$

Therefore, (9.77) 2 becomes

$$
\begin{equation*}
\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}=\frac{p_{1}-p_{0}}{\mu l} \tag{9.79}
\end{equation*}
$$

We integrate (9.79) when $v=v(y)$ and the fluid is confined between the two plates $y=0$ and $y=h$ of infinite dimension, defined by $y=0$ and $y=h$. Moreover, the second plate is supposed to move with uniform velocity V along $O x$ and p_{0}, p_{1} are supposed to be equal. We have

$$
v=a y+b
$$

where a and b are constant. If there is no relative slip at $y=0$ and $y=h$, i.e.,

$$
v(0)=0, \quad v(h)=V,
$$

we get

$$
\begin{equation*}
v=\frac{V}{h} y . \tag{9.80}
\end{equation*}
$$

Now, a flow in a cylinder with axis $O x$ is taken into account. In cylindrical coordinates (r, φ, x), defined by

$$
r=\sqrt{y^{2}+z^{2}}, \quad \varphi=\arctan \frac{z}{y}, \quad x=x
$$

provided that $v(y, z)=v(r)$, Eq. (9.79) can be written as

$$
\begin{equation*}
\frac{d}{d r}\left(r \frac{d v}{d r}\right)=\frac{p_{1}-p_{0}}{\mu l} r \tag{9.81}
\end{equation*}
$$

and the integration gives

$$
\begin{equation*}
v=\frac{p_{1}-p_{0}}{4 \mu l} r^{2}+A \log r+B \tag{9.82}
\end{equation*}
$$

where A and B are arbitrary constants. The condition that v has a finite value at $r=0$ requires $A=0$. Furthermore, the adhesion condition $v(a)=0$, where a is the radius of the cylinder, leads to

$$
B=-\frac{p_{1}-p_{0}}{4 \mu l} a^{2},
$$

so that (9.82) becomes

$$
\begin{equation*}
v=\frac{p_{1}-p_{0}}{4 \mu l}\left(r^{2}-a^{2}\right) \tag{9.83}
\end{equation*}
$$

The solution (9.83) allows us to compute the flux Q across the tube:

$$
\begin{equation*}
Q=\rho \int_{0}^{a} v 2 \pi r d r=\pi \rho a^{4} \frac{p_{0}-p_{1}}{8 \mu l} \tag{9.84}
\end{equation*}
$$

Formula (9.84) is used to determine the viscosity μ, by measuring $Q, p_{1}-p_{0}$, and the mass density of the fluid.

9.10 Dimensional Analysis and the Navier-Stokes Equation

It is well known that dimensional analysis is a very useful technique in modeling a physical phenomenon. By using such a procedure, it can be proved that some terms of the Navier-Stokes equation can be neglected with respect to other terms, so that the complexity of the equation is reduced.

For instance, the term $\nabla p / \rho$ in Eq. (9.75) cannot be compared with $v \Delta \mathbf{v}$, since their order of magnitude is not known a priori. To make this comparison possible we must introduce suitable reference quantities. If, for sake of simplicity, our attention is restricted to liquids, i.e., to Eq. (9.75), a characteristic length L and a characteristic velocity U are necessary. As an example, for a solid body placed in a moving liquid, L can be identified with a characteristic dimension of the body ${ }^{2}$ and U with the uniform velocity of the liquid particles that are very far from the body. In any case, both L and U have to be selected in such a way that the dimensionless quantities

$$
\begin{equation*}
\mathbf{v}^{*}=\frac{\mathbf{v}}{U}, \quad \mathbf{r}^{*}=\frac{\mathbf{r}}{L}, \quad \tau=\frac{t}{L / U} \tag{9.85}
\end{equation*}
$$

have the order of magnitude of unity. It follows that

$$
\begin{aligned}
\dot{\mathbf{v}} & =\frac{\partial \mathbf{v}}{\partial t}+\mathbf{v} \cdot \nabla \mathbf{v}=\frac{U}{L / U} \frac{\partial \mathbf{v}^{*}}{\partial \tau}+\frac{U^{2}}{L} \mathbf{v}^{*} \cdot \nabla^{*} \mathbf{v}^{*} \\
\frac{1}{\rho} \nabla p & =\frac{1}{\rho L} \nabla^{*} p \\
\nu \Delta \mathbf{v} & =v \Delta^{*} \mathbf{v}^{*} \\
\nabla \cdot \mathbf{v} & =\frac{U}{L} \nabla^{*} \cdot \mathbf{v}^{*}
\end{aligned}
$$

where the derivatives appearing in the operators $\nabla^{*}, \nabla^{*} \cdot$, and Δ^{*} are relative to the variables $\left(x^{*}, y^{*}, z^{*}\right)=\mathbf{r}^{*}$. The substitution of these relations into (9.75), after dividing by U^{2} / L, leads to

[^29]\[

$$
\begin{align*}
\dot{\mathbf{v}}^{*} & =-\frac{1}{\rho U^{2}} \nabla^{*} p+\frac{v}{U L} \Delta^{*} \mathbf{v}^{*}, \\
\nabla^{*} \cdot \mathbf{v}^{*} & =0 . \tag{9.86}
\end{align*}
$$
\]

If the quantity ρU^{2} is assumed to be a reference pressure, then the introduction of the dimensionless pressure

$$
\begin{equation*}
p^{*}=\frac{p}{\rho U^{2}} \tag{9.87}
\end{equation*}
$$

allows us to write the system (9.86) in the form

$$
\begin{align*}
\dot{\mathbf{v}}^{*} & =-\nabla^{*} p^{*}+\frac{1}{R} \Delta^{*} \mathbf{v}^{*}, \\
\nabla^{*} \cdot \mathbf{v}^{*} & =0 \tag{9.88}
\end{align*}
$$

where the dimensionless quantity

$$
\begin{equation*}
R=\frac{U L}{v} \tag{9.89}
\end{equation*}
$$

is known as the Reynolds number.
We are now in a position to note that the quantities $\dot{\mathbf{v}}^{*}, \nabla^{*} p$, and $\Delta^{*} \mathbf{v}^{*}$ in (9.88) are of the order of unity, whereas the term which multiplies the Laplacian on the right-hand side can be neglected for large values of R, i.e., for low viscosity.

In addition, it can be noted that the solution of (9.88) is the same for problems involving the same Reynolds number. This conclusion allows us to build physical models of the real problem in the laboratory by conveniently choosing parameters U, L, and v in order to preserve the Reynolds number (scaling).

If $R \rightarrow \infty$, then Eq. (9.88) reduce to dimensionless equations of a perfect liquid. But care must be used in stating that (9.88) can be applied at any point of the domain. In fact, when $R \rightarrow \infty$, Eq. (9.88) are not compatible with the boundary condition $\mathbf{v}^{*}=\mathbf{0}$, so that they can be used in the whole domain, with the exception of a narrow region around the body. In this region, which is called the boundary layer, (9.88) still applies, because of the influence of viscosity.

9.11 Boundary Layer

In the previous section, the boundary layer has been defined as the thin layer in which the effect of viscosity is important, independent of the value of the Reynolds number. This definition derives from the hypothesis, introduced by Prandtl (1905), that viscosity effects are important (that is, comparable with convection and inertia
terms) in layers attached to solid boundaries whose thickness approaches zero as the Reynolds number goes to infinity, while the same effects can be neglected outside these layers.

There are two specific aspects related to Prandtl's hypothesis to be noted: first, the fact that the boundary layer is thin compared with other dimensions allows us to introduce some approximations in the motion equations. Second, in the boundary layer the liquid velocity has a transition from the zero value at the boundary (according to the no-slip condition) to a finite value outside the layer.

Accordingly, with these remarks, it is appropriate to search for the solution of (9.75) in terms of a power series in the small parameter $\varepsilon=1 / R$, i.e.,

$$
\begin{equation*}
\mathbf{v}=\mathbf{v}_{0}+\mathbf{v}_{1} \epsilon+\mathbf{v}_{2} \epsilon^{2}+\cdots, \tag{9.90}
\end{equation*}
$$

where \mathbf{v}_{0} is the solution for perfect liquid. However, by substituting (9.90) into (9.88), we see how this approach does not allow us to determine terms such as $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots$ since the parameter ϵ multiplies the highest derivatives. Therefore, the need arises for a new perturbation method, called the method of singular perturbations.

Before going into the details of the problem, we recall the basic ideas of both regular and singular perturbation methods.

In modeling reality, it often happens that the effect to be described is produced by a main cause and a secondary one, called a perturbation of the main cause. For instance, the motion of a planet (effect) is primarily caused by its gravitational attraction to the sun; however, the action of the heavier planets cannot be completely neglected. In this case, when writing the equations mathematically describing the phenomenon in nondimensional form, the term related to the secondary cause is multiplied by a small dimensionless parameter ε.

The regular perturbation method assumes that the solution of the perturbed problem can be represented by a power series of ε. Referring to (9.90), the term \mathbf{v}_{0} is called the leading-order term, and, if the method works properly, it is the solution of the unperturbed problem (in our example, it is the solution for the perfect liquid).

By substituting the power series expansion into the differential equations and auxiliary conditions, we obtain a set of equations which allow us to determine $\mathbf{v}_{1}, \mathbf{v}_{2}$, etc.

This procedure does not always give an approximate solution and its failure can be expected when the small parameter ε multiplies the highest derivatives appearing in the equations. In fact, in this case, setting ε equal to zero changes the mathematical character of the problem. Related to this aspect, failures of the regular perturbation method occur when the physical problem is characterized by multiple (time or length) scales. It is just in these cases that the singular perturbation method has to be applied.

According to Prandtl's hypothesis, the solution of (9.75) changes rapidly in a narrow interval or inner region, corresponding to the boundary layer, and more gently in the outer region. It follows that in order to analyze the flow in the inner region, a proper rescaling is necessary.

Fig. 9.17 Boundary layer on a plate

The final step will be to match the inner and the outer solution, so that an approximate solution uniformly applicable over the complete region can be obtained.

For the sake of simplicity, the procedure will be applied below to a 2D flow, parallel to $O x$. The axis $O x$ is supposed to be the trace of a boundary plate, and, due to symmetry arguments, the analysis will be restricted to the sector $x \geq 0$, $y \geq 0$.

Accordingly, the velocity field is expressed by

$$
\begin{equation*}
\mathbf{v}=U \mathbf{i} \tag{9.91}
\end{equation*}
$$

where U is a constant. Then, two reference lengths L and δ are introduced, together with two reference velocities U and ϵU, in order to take into account the different changes of velocity components u and v along the x and y axes (Fig. 9.17). Furthermore, let

$$
\begin{equation*}
x=x^{*} L, \quad y=y^{*} \delta, \quad u=u^{*} U, \quad v=v^{*} \epsilon U . \tag{9.92}
\end{equation*}
$$

Equation (9.88) become

$$
\begin{align*}
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y} & =-\frac{1}{\rho} \frac{\partial p}{\partial x}+v\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right) \\
u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y} & =-\frac{1}{\rho} \frac{\partial p}{\partial y}+v\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right) \\
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y} & =0 \tag{9.93}
\end{align*}
$$

which in dimensionless form are

$$
\frac{U^{2}}{L} u^{*} \frac{\partial u^{*}}{\partial x^{*}}+\frac{U^{2} \epsilon}{\delta} v^{*} \frac{\partial u^{*}}{\partial y^{*}}=-\frac{P}{\rho L} \frac{\partial p^{*}}{\partial x^{*}}+v\left(\frac{U}{L^{2}} \frac{\partial^{2} u^{*}}{\partial x^{* 2}}+\frac{U}{\delta^{2}} \frac{\partial^{2} u^{*}}{\partial y^{* 2}}\right),
$$

$$
\begin{align*}
\frac{U^{2} \epsilon}{L} u^{*} \frac{\partial v^{*}}{\partial x^{*}}+\frac{U^{2} \epsilon^{2}}{\delta} v^{*} \frac{\partial v^{*}}{\partial y^{*}} & =-\frac{P}{\rho \delta} \frac{\partial p^{*}}{\partial y^{*}}+v\left(\frac{U \epsilon}{L^{2}} \frac{\partial^{2} v^{*}}{\partial x^{* 2}}+\frac{U \epsilon}{\delta^{2}} \frac{\partial^{2} v^{*}}{\partial y^{* 2}}\right) \\
\frac{U}{L} \frac{\partial u^{*}}{\partial x^{*}}+\frac{U \epsilon}{\delta} \frac{\partial v^{*}}{\partial y^{*}} & =0 \tag{9.94}
\end{align*}
$$

By deleting starred symbols since there is no danger of confusion, the previous system can be written in the form

$$
\begin{align*}
u \frac{\partial u}{\partial x}+\frac{L \epsilon}{\delta} v \frac{\partial u}{\partial y} & =-\frac{P}{\rho U^{2}} \frac{\partial p}{\partial x}+\frac{v}{U L} \frac{\partial^{2} u}{\partial x^{2}}+\frac{v L}{U \delta^{2}} \frac{\partial^{2} u}{\partial y^{2}} \\
u \frac{\partial v}{\partial x}+\frac{L \epsilon}{\delta} v \frac{\partial v}{\partial y} & =-\frac{P}{\rho U^{2}} \frac{L}{\epsilon \delta} \frac{\partial p}{\partial y}+\frac{v}{U L} \frac{\partial^{2} v}{\partial x^{2}}+\frac{v L}{U \delta^{2}} \frac{\partial^{2} v}{\partial y^{2}} \\
\frac{\partial u}{\partial x}+\frac{L \epsilon}{\delta} \frac{\partial v}{\partial y} & =0 \tag{9.95}
\end{align*}
$$

It can be noted that if the term $\epsilon L / \delta$ is not on the order of unity, then either u is independent of x, or v is independent of y. Neither of these possibilities has any physical meaning, so it emerges that

$$
\begin{equation*}
\frac{L \epsilon}{\delta} \simeq 1 \tag{9.96}
\end{equation*}
$$

This conclusion allows us to write the system (9.95), assuming that $P \simeq \rho U^{2}$, in the form

$$
\begin{align*}
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y} & =-\frac{\partial p}{\partial x}+\frac{1}{R}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{L^{2}}{\delta^{2}} \frac{\partial^{2} u}{\partial y^{2}}\right) \\
u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y} & =-\frac{L^{2}}{\delta^{2}} \frac{\partial p}{\partial y}+\frac{1}{R}\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{L^{2}}{\delta^{2}} \frac{\partial^{2} v}{\partial y^{2}}\right) \\
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y} & =0 \tag{9.97}
\end{align*}
$$

The first two equations show that the condition of preserving the viscosity effect when $R \rightarrow \infty$ requires that

$$
\begin{equation*}
\frac{1}{R} \frac{L^{2}}{\delta^{2}} \simeq 1 \Rightarrow \delta \simeq \frac{L}{\sqrt{R}} \tag{9.98}
\end{equation*}
$$

and finally Eq. (9.97) become

$$
\begin{align*}
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y} & =-\frac{\partial p}{\partial x}+\frac{1}{R} \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}} \\
\frac{1}{R}\left(u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}\right) & =-\frac{\partial p}{\partial y}+\frac{1}{R^{2}} \frac{\partial^{2} v}{\partial x^{2}}+\frac{1}{R} \frac{\partial^{2} v}{\partial y^{2}} \\
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y} & =0 \tag{9.99}
\end{align*}
$$

We can now apply the perturbation theory, i.e., we can search for a solution in terms of power series of the parameter $1 / R$. In particular, when $R \rightarrow \infty$ the first term of this series must satisfy Prandtl's equations

$$
\begin{align*}
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y} & =-\frac{\partial p}{\partial x}+\frac{\partial^{2} u}{\partial y^{2}} \\
\frac{\partial p}{\partial y} & =0 \\
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y} & =0 \tag{9.100}
\end{align*}
$$

Equation $(9.100)_{2}$ implies that $p=p(x)$, so that the pressure assumes the same value along the normal at ($x, 0$). In addition, since Bernoulli's theorem (9.22) states that in the unperturbed region the pressure is uniform, we conclude that the pressure is uniform in the entire domain.

Equation (9.100) $)_{3}$ implies (see (9.40)) the existence of the Stokes potential $\psi(x, y)$, so that

$$
u=\frac{\partial \psi}{\partial y}, \quad v=-\frac{\partial \psi}{\partial x}
$$

and $(9.100)_{1}$ becomes

$$
\begin{equation*}
\frac{\partial \psi}{\partial y} \frac{\partial^{2} \psi}{\partial x \partial y}-\frac{\partial \psi}{\partial x} \frac{\partial^{2} \psi}{\partial y^{2}}=\frac{\partial^{3} \psi}{\partial y^{3}} . \tag{9.101}
\end{equation*}
$$

This equation must be integrated in the region $x \geq 0, y \geq 0$ with the following boundary conditions:

$$
\begin{gathered}
u=v=0, \quad \text { if } y=0 \\
\lim _{y \rightarrow \infty} u=1, \quad \lim _{y \rightarrow \infty} v=0
\end{gathered}
$$

which, in terms of ψ, are

$$
\begin{align*}
\psi(x, 0) & =0, \quad \frac{\partial \psi}{\partial y}(x, 0)=0, \\
\lim _{y \rightarrow \infty} \frac{\partial \psi}{\partial y}(x, y) & =1 . \tag{9.102}
\end{align*}
$$

It can be noted by inspection that if $\psi(x, y)$ is a solution of (9.101), then so is the function

$$
\begin{equation*}
\psi(x, y)=c^{1-n} \psi\left(\frac{x}{c}, \frac{y}{c^{n}}\right) . \tag{9.103}
\end{equation*}
$$

Moreover, it can be proved that the functions satisfying (9.103) have the form

$$
\psi(x, y)=x^{1-n} \psi\left(1, \frac{y}{x^{n}}\right) \equiv x^{1-n} f(\eta) .
$$

The derivative of this function with respect to y is

$$
\frac{\partial \psi}{\partial y}=x^{1-2 n} f^{\prime}(\eta)
$$

so that the condition $(9.102)_{3}$ only holds for $n=1 / 2$ and

$$
\begin{equation*}
\psi(x, y)=\sqrt{x} f(\eta), \tag{9.104}
\end{equation*}
$$

where $\eta=y / \sqrt{x}$. Substituting (9.104) into (9.101), and taking into account the boundary conditions (9.102), we obtain the Blasius equation:

$$
\begin{equation*}
2 f^{\prime \prime \prime}+f f^{\prime \prime}=0 \tag{9.105}
\end{equation*}
$$

with the boundary conditions

$$
\begin{equation*}
f(0)=0, \quad f^{\prime}(0)=0, \quad \lim _{\eta \rightarrow \infty} f^{\prime}(\eta)=1 . \tag{9.106}
\end{equation*}
$$

The problem (9.105), (9.106), for which a theorem of existence and uniqueness holds, can only be solved numerically. The pattern of the solution is shown in Fig. 9.18 (see Exercise 3).

9.12 Motion of a Viscous Liquid Around an Obstacle

The aim of this section is to apply the previous results to the irrotational steady motion of a viscous liquid around an obstacle of arbitrary shape.

According to the dimensional analysis of the Navier-Stokes equations, when the Reynolds number R attains high values the assumption of a perfect

Fig. 9.18 Blasius' solution
incompressible fluid is justified in all the domain except for the boundary layer, in which the viscosity is needed in order to satisfy the no-slip condition $\mathbf{v}=\mathbf{0}$ at the boundary. When integrating the motion equations in this layer, a problem of singular perturbations arises, so that a convenient change of variables is required. In particular, we introduce new variables ξ and η such that

1. the curve $\eta=0$ describes the profile of the obstacle;
2. curves $\xi=$ const are normal to the obstacle;
3. the boundary layer is described by changing η from 0 to ∞.

For instance, in the previous example, the old dimensionless coordinates x and y were replaced with x and $y^{\prime}=y /(1 / R)$. With this change, the straight line $y=0$ gives the obstacle profile, the straight lines $x=$ const are orthogonal to the plate and, given the high value of the Reynolds number, if $0<y<\delta$, where $\delta=L / \sqrt{R}$ is the thickness of the boundary layer, the variable y^{\prime} changes from 0 to $\sqrt{R} \rightarrow \infty$.

In the general case of a body S of arbitrary cross section, recalling that outside the obstacle the model of a perfect liquid is applicable, we must find a complex potential $F(z)=\varphi+i \psi$, where $\varphi(x, y)$ and $\psi(x, y)$ denote the kinetic and Stokes potential, respectively. Then the curvilinear coordinates (φ, ψ)

$$
\begin{align*}
& \varphi=\varphi(x, y) \tag{9.107}\\
& \psi=\psi(x, y)
\end{align*}
$$

are introduced. Consequently, the family $\varphi=$ const contains the profile of the obstacle, whereas the curves $\psi=$ const are normal to them (see Fig. 9.19). In the next step, we need to define new coordinates $\psi^{*}=\psi / \delta$, where δ is an estimate of the boundary layer thickness, and we need to write the motion equations in this new coordinate system. In the final step, the perturbation method is applied in order to obtain an approximate solution.

Fig. 9.19 Curvilinear coordinates around an obstacle

Let $F(z)=\varphi+i \psi$ be a complex potential for the field \mathbf{v}_{0} of the inviscid flow. Then, the square of the infinitesimal distance between two points is written as ${ }^{3}$

$$
\begin{equation*}
d s^{2}=|d z|^{2}=\frac{|d F|^{2}}{\left|F^{\prime}(z)\right|^{2}}=\frac{d \varphi^{2}+d \psi^{2}}{\left|\frac{\partial \varphi}{\partial x}+i \frac{\partial \psi}{\partial x}\right|^{2}} \tag{9.108}
\end{equation*}
$$

By taking into account of (9.43), the previous expression becomes

$$
\begin{equation*}
d s^{2}=\frac{d \varphi^{2}+d \psi^{2}}{\left|\bar{u}_{0}-i \bar{v}_{0}\right|^{2}}=\frac{1}{v_{0}^{2}}\left(d \varphi^{2}+d \psi^{2}\right), \tag{9.109}
\end{equation*}
$$

where \bar{u}_{0} and \bar{v}_{0} are the components of \mathbf{v}_{0}, and $v_{0}=\left|\mathbf{v}_{0}\right|$.
From (9.109), the following expressions can be derived (the reader should refer to (2.61)-(2.63)):

$$
\begin{align*}
\nabla f & =v_{0}\left(\frac{\partial f}{\partial \varphi} \mathbf{i}_{\varphi}+\frac{\partial f}{\partial \psi} \mathbf{i}_{\psi}\right) \tag{9.110}\\
\omega & =\frac{1}{2} \nabla \times \mathbf{v} \\
& =\frac{1}{2} v_{0}^{2}\left[\frac{\partial}{\partial \varphi}\left(\frac{v_{\psi}}{v_{0}}\right)-\frac{\partial}{\partial \psi}\left(\frac{v_{\varphi}}{v_{0}}\right)\right] \mathbf{k} \equiv \omega \mathbf{k} \tag{9.111}
\end{align*}
$$

[^30]\[

$$
\begin{align*}
\nabla \times \boldsymbol{\omega} & =v_{0}\left(\frac{\partial \omega}{\partial \psi} \mathbf{i}_{\varphi}-\frac{\partial \omega}{\partial \varphi} \mathbf{i}_{\psi}\right), \tag{9.112}\\
\nabla \cdot \mathbf{v} & =v_{0}^{2}\left[\frac{\partial}{\partial \varphi}\left(\frac{v_{\varphi}}{v_{0}}\right)+\frac{\partial}{\partial \psi}\left(\frac{v_{\psi}}{v_{0}}\right)\right], \tag{9.113}\\
\mathbf{v} \times \boldsymbol{\omega} & =\omega\left(v_{\psi} \mathbf{i}_{\varphi}-v_{\varphi} \mathbf{i}_{\psi}\right) \tag{9.114}
\end{align*}
$$
\]

where v_{φ} and v_{ψ} are the dimensionless velocity components for the viscous flow, \mathbf{i}_{φ} and \mathbf{i}_{ψ} are the unit vectors tangent to the curves φ and ψ are variable, while \mathbf{k} is the unit vector normal to the plane of the motion.

Assuming that the viscous liquid is incompressible and the motion is steady, (9.88) becomes

$$
\begin{align*}
\mathbf{v} \cdot \nabla \mathbf{v} & =-\nabla p+\epsilon \Delta \mathbf{v} \\
\nabla \cdot \mathbf{v} & =0 \tag{9.115}
\end{align*}
$$

where, as usual, $\epsilon=1 / R$. In addition, from (4.18) it follows that

$$
\begin{equation*}
\mathbf{v} \cdot \nabla \mathbf{v}=\frac{1}{2} \nabla v^{2}-2 \mathbf{v} \times \omega \tag{9.116}
\end{equation*}
$$

and, since $\nabla \cdot \mathbf{v}=0$,

$$
\Delta \mathbf{v}=\nabla(\nabla \cdot \mathbf{v})-\nabla \times \nabla \times \mathbf{v}=-2 \nabla \times \boldsymbol{\omega}
$$

Eq. (9.115) become

$$
\begin{align*}
\frac{1}{2} \nabla v^{2}-2 \mathbf{v} \times \boldsymbol{\omega} & =-\nabla p-2 \epsilon \nabla \mathbf{x} \boldsymbol{\omega}, \\
\nabla \cdot \mathbf{v} & =0 . \tag{9.117}
\end{align*}
$$

By taking into account (9.110)-(9.114), it can now be proved that the previous equations assume the form

$$
\begin{align*}
v_{0} \frac{\partial}{\partial \varphi}\left(\frac{v_{\varphi}^{2}+v_{\psi}^{2}}{2}\right)-2 v_{\psi} \omega & =-v_{0} \frac{\partial p}{\partial \varphi}-2 \epsilon v_{0} \frac{\partial \omega}{\partial \psi} \\
v_{0} \frac{\partial}{\partial \psi}\left(\frac{v_{\varphi}^{2}+v_{\psi}^{2}}{2}\right)+2 v_{\varphi} \omega & =-v_{0} \frac{\partial p}{\partial \psi}+2 \epsilon v_{0} \frac{\partial \omega}{\partial \varphi} \\
\frac{\partial}{\partial \varphi}\left(\frac{v_{\varphi}}{v_{0}}\right)+\frac{\partial}{\partial \psi}\left(\frac{v_{\psi}}{v_{0}}\right) & =0 . \tag{9.118}
\end{align*}
$$

Finally, by introducing the quantities

$$
\begin{equation*}
w_{\varphi}=\frac{v_{\varphi}}{v_{0}}, \quad w_{\psi}=\frac{v_{\psi}}{v_{0}}, \tag{9.119}
\end{equation*}
$$

we get

$$
\begin{gather*}
\frac{\partial w_{\varphi}}{\partial \varphi}+\frac{\partial w_{\psi}}{\partial \psi}=0 \tag{9.120}\\
w_{\varphi} \frac{\partial w_{\varphi}}{\partial \varphi}+w_{\psi} \frac{\partial w_{\varphi}}{\partial \psi}+\left(w_{\varphi}^{2}+w_{\psi}^{2}\right) \frac{\partial}{\partial \varphi} \log v_{0} \tag{9.121}\\
=-\frac{1}{v_{0}^{2}} \frac{\partial p}{\partial \varphi}+\epsilon\left[\frac{\partial^{2} w_{\varphi}}{\partial \varphi^{2}}+\frac{\partial^{2} w_{\varphi}}{\partial \psi^{2}}-2 \frac{\partial}{\partial \psi} \log v_{0}\left(\frac{\partial w_{\psi}}{\partial \varphi}-\frac{\partial w_{\varphi}}{\partial \psi}\right)\right], \\
w_{\varphi} \frac{\partial w_{\psi}}{\partial \varphi}+w_{\psi} \frac{\partial w_{\psi}}{\partial \psi}+\left(w_{\varphi}^{2}+w_{\psi}^{2}\right) \frac{\partial}{\partial \psi} \log v_{0} \tag{9.122}\\
=-\frac{1}{v_{0}^{2}} \frac{\partial p}{\partial \psi}+\epsilon\left[\frac{\partial^{2} w_{\psi}}{\partial \varphi^{2}}+\frac{\partial^{2} w_{\psi}}{\partial \psi^{2}}+2 \frac{\partial}{\partial \varphi} \log v_{0}\left(\frac{\partial w_{\psi}}{\partial \varphi}-\frac{\partial w_{\varphi}}{\partial \psi}\right)\right] .
\end{gather*}
$$

Equations (9.120), (9.122), and (9.123) form an elliptic system for the unknowns $w_{\varphi}(\varphi, \psi), w_{\psi}(\varphi, \psi)$, and $p(\varphi, \psi)$, since the solution v_{0}, which refers to the problem of an inviscid liquid, has been supposed to be known.

Boundary conditions related to this system are the no-slip condition on the boundary of the obstacle and the condition that at infinity the velocity is given by $v_{0} \mathbf{i}_{\psi}$. Noting that the profile of the obstacle is defined by $\varphi_{1} \leq \varphi \leq \varphi_{2}, \psi=0$ (see Fig. 9.19), we obtain

$$
\begin{gather*}
w_{\varphi}(\varphi, 0)=w_{\psi}(\varphi, 0)=0, \varphi_{1} \leq \varphi \leq \varphi_{2}, \tag{9.123}\\
\lim _{\varphi, \psi \longrightarrow \infty} w_{\varphi}=0, \lim _{\varphi, \psi \longrightarrow \infty} w_{\psi}=1 . \tag{9.124}
\end{gather*}
$$

The pressure p_{0} relative to the inviscid motion is given by Bernoulli's theorem. In fact, at infinity the velocity value is unity and the pressure is zero, so that

$$
\begin{equation*}
p_{0}=\frac{1}{2}\left(1-v_{0}^{2}\right) . \tag{9.125}
\end{equation*}
$$

As seen in the previous section, in the Eqs. (9.120), (9.122), and (9.123) a small parameter ϵ appears, where it multiplies the highest derivatives. Consequently, here again we introduce two expansions of ϵ : the first one valid far from the obstacle
(outer solution), and the second one applicable near to the obstacle (inner solution). The second expansion must satisfy the system (9.120), (9.122), and (9.123), provided that it is written in convenient coordinates, which expand the boundary layer and allow the velocity to change from zero to the value relative to the inviscid motion.

More specifically, by taking into account (9.123), (9.124), and (9.125) the outer solution can be given the form

$$
\begin{align*}
w_{\varphi} & =\epsilon w_{\varphi}^{(1)}+\cdots \\
w_{\psi} & =1+\epsilon w_{\psi}^{(1)}+\cdots \\
p & =\frac{1}{2}\left(1-v_{0}^{2}\right)+\epsilon p^{(1)}+\cdots \tag{9.126}
\end{align*}
$$

Furthermore, the convenient variable for expanding the boundary layer is

$$
\begin{equation*}
\psi_{*}=\frac{\psi}{\Delta(\epsilon)}, \tag{9.127}
\end{equation*}
$$

where $\Delta(\epsilon)$ is a function of ϵ, determined in the following discussion.
In order to write (9.120), (9.122), and (9.123) in terms of the new variables φ and ψ_{*}, we observe that

$$
\begin{aligned}
\frac{\partial}{\partial \psi} & =\frac{1}{\Delta(\epsilon)} \frac{\partial}{\partial \psi_{*}} \\
\frac{\partial^{2}}{\partial \psi^{2}} & =\frac{1}{\Delta^{2}(\epsilon)} \frac{\partial^{2}}{\partial \psi_{*}^{2}}
\end{aligned}
$$

Consequently, by using the notation

$$
\begin{aligned}
w_{\varphi}(\varphi, \psi) & =w_{\varphi}^{*}\left(\varphi, \psi_{*}\right), \\
w_{\psi}(\varphi, \psi) & =w_{\varphi}^{*}\left(\varphi, \psi_{*}\right), \\
p(\varphi, \psi) & =p^{*}\left(\varphi, \psi_{*}\right),
\end{aligned}
$$

the system (9.120), (9.122), and (9.123) is written as

$$
\begin{equation*}
\frac{\partial w_{\varphi}^{*}}{\partial \varphi}+\frac{1}{\Delta(\epsilon)} \frac{\partial w_{\psi}^{*}}{\partial \psi_{*}}=0 \tag{9.128}
\end{equation*}
$$

$$
\begin{align*}
& w_{\varphi}^{*} \frac{\partial w_{\varphi}^{*}}{\partial \varphi}+\frac{w_{\psi}^{*}}{\Delta(\epsilon)} \frac{\partial w_{\varphi}^{*}}{\partial \psi_{*}}+\left(w_{\varphi}^{* 2}+w_{\psi}^{* 2}\right) \frac{\partial}{\partial \varphi} \log v_{0}=-\frac{1}{v_{0}^{2}} \frac{\partial p^{*}}{\partial \varphi} \tag{9.129}\\
& +\epsilon\left[\frac{\partial^{2} w_{\varphi}^{*}}{\partial \varphi^{2}}+\frac{1}{\Delta^{2}(\epsilon)} \frac{\partial^{2} w_{\varphi}^{*}}{\partial \psi_{*}^{2}}-\frac{2}{\Delta(\epsilon)} \frac{\partial}{\partial \varphi} \log v_{0}\left(\frac{\partial w_{\psi}^{*}}{\partial \varphi}-\frac{1}{\Delta(\epsilon)} \frac{\partial w_{\varphi}^{*}}{\partial \psi_{*}}\right)\right] \\
& w_{\varphi}^{*} \frac{\partial w_{\psi}^{*}}{\partial \varphi}+\frac{w_{\psi}^{*}}{\Delta(\epsilon)} \frac{\partial w_{\psi}^{*}}{\partial \psi_{*}}+\left(w_{\varphi}^{* 2}+w_{\psi}^{* 2}\right) \frac{1}{\Delta(\epsilon)} \frac{\partial}{\partial \psi_{*}} \log v_{0}=-\frac{1}{v_{0}^{2}} \frac{1}{\Delta(\epsilon)} \frac{\partial p^{*}}{\partial \psi_{*}} \\
& +\epsilon\left[\frac{\partial^{2} w_{\psi}^{*}}{\partial \varphi^{2}}+\frac{1}{\Delta^{2}(\epsilon)} \frac{\partial^{2} w_{\psi}^{*}}{\partial \psi_{*}^{2}}+2 \frac{\partial}{\partial \varphi} \log v_{0}\left(\frac{\partial w_{\psi}^{*}}{\partial \varphi}-\frac{1}{\Delta(\epsilon)} \frac{\partial w_{\varphi}^{*}}{\partial \psi_{*}}\right)\right] \tag{9.130}
\end{align*}
$$

If $\partial w_{\varphi}^{*} / \partial \varphi$ and $\partial w_{\psi}^{*} / \partial \psi_{*}$ were of the same order, recalling that $1 / \Delta(\epsilon)$ goes to infinity when $\epsilon \longrightarrow 0$, we see that the continuity equation would give $\partial w_{\psi}^{*} / \partial \psi_{*}=0$, so that w_{ψ}^{*} would be independent of ψ_{*}. Moreover, we have that $w_{\psi}^{*}=0$ when $\psi_{*}=0$ for arbitrary φ, so that we would have everywhere $w_{\psi}^{*}=0$, despite the requirement that the component w_{ψ}^{*} changes from zero at the boundary to a finite value outside the layer.

Therefore, we need to have

$$
\begin{aligned}
w_{\varphi}^{*} & =\hat{w}_{\varphi}\left(\varphi, \psi_{*}\right)+\cdots \\
w_{\psi}^{*} & =\Delta(\epsilon) \hat{w}_{\psi}\left(\varphi, \psi_{*}\right)+\cdots \\
p & =\hat{p}\left(\varphi, \psi_{*}\right)+\cdots
\end{aligned}
$$

so that the system (9.128), (9.130), and (9.130) is written as

$$
\begin{gather*}
\frac{\partial \hat{w}_{\varphi}}{\partial \varphi}+\frac{\partial \hat{w}_{\psi}}{\partial \psi_{*}}=0 \tag{9.131}\\
\hat{w}_{\varphi} \frac{\partial \hat{w}_{\varphi}}{\partial \varphi}+\hat{w}_{\psi} \frac{\partial \hat{w}_{\varphi}}{\partial \psi_{*}} \\
+\left(\hat{w}_{\varphi}^{2}+\Delta^{2}(\epsilon) \hat{w}_{\psi}^{2}\right) \frac{\partial}{\partial \varphi} \log v_{0}=-\frac{1}{v_{0}^{2}} \frac{\partial \hat{p}}{\partial \varphi} \tag{9.132}\\
+\epsilon\left[\frac{\partial^{2} \hat{w}_{\varphi}}{\partial \varphi^{2}}+\frac{1}{\Delta^{2}(\epsilon)} \frac{\partial^{2} \hat{w}_{\varphi}}{\partial \psi_{*}^{2}}-2 \frac{\partial}{\partial \varphi} \log v_{0}\left(\frac{\partial \hat{w}_{\psi}}{\partial \varphi}-\frac{1}{\Delta(\epsilon)} \frac{\partial \hat{w}_{\varphi}}{\partial \psi_{*}}\right)\right],
\end{gather*}
$$

$$
\begin{align*}
& \Delta(\epsilon) \hat{w}_{\varphi} \frac{\partial \hat{w}_{\psi}}{\partial \varphi}+\Delta(\epsilon) \hat{w}_{\psi} \frac{\partial \hat{w}_{\psi}}{\partial \psi_{*}} \\
& +\left(\hat{w}_{\varphi}^{2}+\Delta^{2}(\epsilon) \hat{w}_{\psi}^{2}\right) \frac{1}{\Delta(\epsilon)} \frac{\partial}{\partial \psi_{*}} \log v_{0}=-\frac{1}{v_{0}^{2}} \frac{1}{\Delta(\epsilon)} \frac{\partial \hat{p}}{\partial \psi_{*}} \tag{9.133}\\
& +\epsilon\left[\Delta(\epsilon) \frac{\partial^{2} \hat{w}_{\psi}}{\partial \varphi^{2}}+\frac{1}{\Delta(\epsilon)} \frac{\partial^{2} \hat{w}_{\psi}}{\partial \psi_{*}^{2}}+2 \frac{\partial}{\partial \varphi} \log v_{0}\left(\Delta(\epsilon) \frac{\partial \hat{w}_{\psi}}{\partial \varphi}-\frac{1}{\Delta(\epsilon)} \frac{\partial w_{\varphi}^{*}}{\partial \psi_{*}}\right)\right] .
\end{align*}
$$

On the other hand, it also holds that

$$
\begin{align*}
v_{0}(\varphi, \psi) & =v_{0}(\varphi, 0)+\left(\frac{\partial v_{0}}{\partial \psi}\right)_{\psi=0} \psi+\cdots \\
& =v_{0}(\varphi, 0)+\Delta(\epsilon)\left(\frac{\partial v_{0}}{\partial \psi}\right)_{\psi=0} \psi_{*}+\cdots \tag{9.134}
\end{align*}
$$

where $v_{0}(\varphi, 0)$ is the velocity on the obstacle boundary for the inviscid flow. Consequently, for $\epsilon \longrightarrow 0$, the following parabolic system is obtained:

$$
\begin{align*}
\frac{\partial \hat{w}_{\varphi}}{\partial \varphi}+\frac{\partial \hat{w}_{\psi}}{\partial \psi_{*}} & =0 \tag{9.135}\\
\hat{w}_{\varphi} \frac{\partial \hat{w}_{\varphi}}{\partial \varphi}+\hat{w}_{\psi} \frac{\partial \hat{w}_{\varphi}}{\partial \psi_{*}}+\frac{\hat{w}_{\varphi}^{2}}{v_{0}} \frac{d v_{0}}{d \varphi} & =-\frac{1}{v_{0}^{2}} \frac{\partial \hat{p}}{\partial \varphi}+\frac{\partial^{2} \hat{w}_{\varphi}}{\partial \psi_{*}^{2}}, \tag{9.136}\\
\frac{\partial \hat{p}}{\partial \psi_{*}} & =0 . \tag{9.137}
\end{align*}
$$

The following boundary conditions

$$
\begin{align*}
\hat{w}_{\varphi}(\varphi, 0) & =\hat{w}_{\psi}(\varphi, 0)=0, \varphi_{1} \leq \varphi \leq \varphi_{2}, \\
\hat{w}_{\varphi}\left(\varphi_{1}, \psi_{*}\right) & =1, \tag{9.138}
\end{align*}
$$

are obtained by the velocity of the undisturbed motion ahead the obstacle.
The inner solution of (9.120), (9.122), and (9.123) must be compatible with the outer solution, so that the additional requirements are

$$
\begin{equation*}
\lim _{\psi_{*} \longrightarrow \infty} \hat{w}_{\varphi}=1, \hat{p}=\frac{1}{2}\left(1-v_{0}\right)^{2} . \tag{9.139}
\end{equation*}
$$

The boundary value problem (9.135)-(9.139) is very complex, so that it is not surprising that a general solution is not yet available. When considering a 2D plate, we find that the problem reduces to the system (9.100), which is the origin of the

Blausius equation. We remark that the compatibility condition $(9.139)_{2}$ allows us to eliminate the pressure in (9.136), since

$$
\frac{\partial \hat{p}}{\partial \varphi}=\frac{d \hat{p}}{d \varphi}=-v_{0} \frac{d v_{0}}{d \varphi}
$$

9.13 Ordinary Waves in Perfect Fluids

This section is devoted to wave propagation in perfect fluids. Two topics will be addressed: first, waves are considered to be small perturbations of an undisturbed state, corresponding to a homogeneous fluid at rest. This assumption allows us to linearize the motion equations and to apply elementary methods (see remarks in Sect. 8.6). Next, ordinary waves of discontinuity are analyzed, showing that the propagation velocity has the same expression obtained by the linearized theory. On the other hand, nonlinearity of the system influences the propagation of waves whose pattern is different whether we consider a linear case or not. Finally, the last section deals with shock waves in perfect fluids.

Consider a compressible perfect fluid at rest, with uniform mass density ρ_{0}, in absence of body forces. Assume that the motion is produced by a small perturbation, so that it is characterized by a velocity \mathbf{v} and a density ρ that are only lightly different from $\mathbf{0}$ and ρ_{0}, respectively. More precisely, such an assumption states that quantities \mathbf{v} and $\sigma=\rho-\rho_{0}$ are first-order quantities together with their first-order derivatives.

In this case, the motion equations

$$
\begin{align*}
& \rho \dot{\mathbf{v}}=-\nabla p(\rho)=-p^{\prime}(\rho) \nabla \rho, \\
& \dot{\rho}+\rho \nabla \cdot \mathbf{v}=0, \tag{9.140}
\end{align*}
$$

can be linearized. In fact, neglecting first-order terms of $|\mathbf{v}|$ and σ, we get

$$
\begin{aligned}
p^{\prime}(\rho) & =p^{\prime}\left(\rho_{0}\right)+p^{\prime \prime}\left(\rho_{0}\right) \sigma+\cdots, \\
\dot{\rho} & =\dot{\sigma}=\frac{\partial \sigma}{\partial t}+\mathbf{v} \cdot \nabla \sigma=\frac{\partial \sigma}{\partial t}+\cdots, \\
\dot{\mathbf{v}} & =\frac{\partial \mathbf{v}}{\partial t}+\mathbf{v} \cdot \nabla \mathbf{v}=\frac{\partial \mathbf{v}}{\partial t}+\cdots,
\end{aligned}
$$

so that Eq. (9.140) become

$$
\begin{align*}
\rho_{0} \frac{\partial \mathbf{v}}{\partial t} & =-p^{\prime}\left(\rho_{0}\right) \nabla \sigma, \\
\frac{\partial \sigma}{\partial t}+\rho_{0} \nabla \cdot \mathbf{v} & =0 . \tag{9.141}
\end{align*}
$$

Consider now a sinusoidal 2D wave propagating in the direction of the vector \mathbf{n} with velocity U and wavelength λ :

$$
\mathbf{v}=\mathbf{a} \sin \frac{2 \pi}{\lambda}(\mathbf{n} \cdot \mathbf{x}-U t), \boldsymbol{\sigma}=b \sin \frac{2 \pi}{\lambda}(\mathbf{n} \cdot \mathbf{x}-U t) .
$$

We want a solution of the previous system having this form. To find this solution, we note that

$$
\begin{aligned}
\frac{\partial \mathbf{v}}{\partial t} & =-\frac{2 \pi}{\lambda} U \mathbf{a} \cos \frac{2 \pi}{\lambda}(\mathbf{n} \cdot \mathbf{x}-U t), \frac{\partial \sigma}{\partial t}=-\frac{2 \pi}{\lambda} U b \cos \frac{2 \pi}{\lambda}(\mathbf{n} \cdot \mathbf{x}-U t), \\
\nabla \cdot \mathbf{v} & =\frac{2 \pi}{\lambda} \mathbf{n} \cdot \mathbf{a} \cos \frac{2 \pi}{\lambda}(\mathbf{n} \cdot \mathbf{x}-U t), \nabla \sigma=\frac{2 \pi}{\lambda} \mathbf{n} b \cos \frac{2 \pi}{\lambda}(\mathbf{n} \cdot \mathbf{x}-U t),
\end{aligned}
$$

so that the system (9.141) becomes

$$
\begin{aligned}
\rho_{0} U \mathbf{a} & =p^{\prime}\left(\rho_{0}\right) b \mathbf{n}, \\
-U b+\rho_{0} \mathbf{a} \cdot \mathbf{n} & =0,
\end{aligned}
$$

i.e.,

$$
\begin{array}{r}
\left(p^{\prime}\left(\rho_{0}\right) \mathbf{n} \otimes \mathbf{n}-U^{2}\right) \mathbf{I} \mathbf{a}=0, \\
\left(p^{\prime}\left(\rho_{0}\right)-U^{2}\right) b=0 .
\end{array}
$$

Assuming a reference frame whose axis $O x$ is oriented along \mathbf{n}, we get

$$
\begin{align*}
& U=0, \quad \mathbf{a} \perp \mathbf{n}, \\
& U= \pm \sqrt{p^{\prime}\left(\rho_{0}\right)}, \quad \mathbf{a}=a \mathbf{n} \tag{9.142}
\end{align*}
$$

where the eigenvalue 0 has multiplicity 2 . Thus we prove the existence of dilational waves propagating at a speed

$$
U=\sqrt{p^{\prime}\left(\rho_{0}\right)}
$$

The velocity U is called the sound velocity, and the ratio $m=v / U$ is known as the Mach number. In particular, the motion is called subsonic or supersonic, depending on whether $m<1$ or $m>1$.

Let $S(t)$ be the wavefront of a singular wave for the nonlinear equations (9.107). In order to find the propagation speed c_{n} of $S(t)$, the jump system associated with (9.107) (see (4.38) and Chap. 8) can be written as

$$
\begin{align*}
\rho\left(c_{n}-v_{n}\right) \mathbf{a} & =p^{\prime}(\rho) b \mathbf{n}, \\
\left(c_{n}-v_{n}\right) b & =\rho \mathbf{n} \cdot \mathbf{a} \tag{9.143}
\end{align*}
$$

where \mathbf{a} and b refer to the discontinuities of the first derivatives of \mathbf{v} and ρ, respectively. By getting b from the second equation and substituting into the first one, it follows that

$$
\left(c_{n}-v_{n}\right)^{2} \mathbf{a}=p^{\prime}(\rho) \mathbf{n}(\mathbf{n} \cdot \mathbf{a})
$$

i.e.,

$$
\begin{equation*}
\left(p^{\prime}(\rho) \mathbf{n} \otimes \mathbf{n}-\mathbf{I}\left(c_{n}-v_{n}\right)^{2}\right) \mathbf{a}=\mathbf{0} . \tag{9.144}
\end{equation*}
$$

Equation (9.144) shows that the squares of relative velocity are equal to the eigenvalues of the acoustic tensor

$$
p^{\prime}(\rho) \mathbf{n} \otimes \mathbf{n}
$$

and the discontinuity vectors a are the related eigenvectors. The relative advancing velocity is

$$
\begin{equation*}
c_{n}=v_{n} \pm \sqrt{p^{\prime}(\rho)}, \quad \mathbf{a}=a \mathbf{n} \tag{9.145}
\end{equation*}
$$

so that, if the undisturbed state is at rest, the same result $(9.142)_{2}$ is obtained.
Exercise 9.1. Starting from Eq. (9.72), we leave the reader to prove that in an incompressible viscous fluid no ordinary discontinuity wave exists.

Hint: Note that the equation we are considering contains second-order derivatives of velocity and first-order derivatives of density. This implies that the singular surface is of second-order with respect to \mathbf{v}, and of first-order with respect to ρ. In addition, jumps of second-order derivatives with respect to time, strictly related to c_{n}, do not appear in (9.72).

9.14 Shock Waves in Fluids

In this section we deal with some fundamental properties of compressible inviscid fluids, under the assumption that the shock is adiabatic i.e., it happens without absorbing or losing heat:

$$
\begin{equation*}
[[\mathbf{h}]] \cdot \mathbf{n}=0 . \tag{9.146}
\end{equation*}
$$

It is well known that if v and η are chosen as thermodynamic variables, then the reduced dissipation inequality leads to the following relations:

$$
v=\frac{\partial h}{\partial p}(p, \eta), \theta=-\frac{\partial h}{\partial \eta}(p, \eta)
$$

where the enthalpy $h=\epsilon+p v$. Therefore, if

$$
\frac{\partial^{2} h}{\partial p \eta}=-\frac{\partial \theta}{\partial p} \neq 0,
$$

it is possible to find the relation

$$
\begin{equation*}
\eta=\eta(p, v) . \tag{9.147}
\end{equation*}
$$

In the following discussion, all the constitutive equations will be supposed to depend on v, η, and the entropy being expressed by (9.147).

Jump conditions (5.22) $)_{2}$, (5.31), and (5.46), written for a perfect fluid,

$$
\begin{align*}
{\left[\left[\rho\left(c_{n}-v_{n}\right)\right]\right] } & =0 \\
{\left[\left[\rho \mathbf{v}\left(c_{n}-v_{n}\right)-p \mathbf{n}\right]\right] } & =0 \\
{\left.\left[\left[\rho\left(\frac{1}{2} v^{2}+\epsilon(\rho, p)\right)\left(c_{n}-v_{n}\right)-p v_{n}\right]\right]\right] } & =0 \tag{9.148}
\end{align*}
$$

give a system of one vector equation and two scalar equations with the unknowns $\mathbf{v}^{-}, \rho^{-}, p^{-}$, referring to the perturbed region, and the normal speed of propagation c_{n} of Σ since the values of \mathbf{v}^{+}, ρ^{+}, and p^{+}are assigned.

If we decompose the velocity \mathbf{v} into its normal v_{n} and tangential component \mathbf{v}_{τ},

$$
\mathbf{v}=v_{n} \mathbf{n}+\mathbf{v}_{\tau},
$$

where

$$
v^{2}=v_{n}^{2}+v_{\tau}^{2},
$$

then Eq. (9.148) become

$$
\begin{align*}
{\left[\left[\rho\left(c_{n}-v_{n}\right)\right]\right] } & =0, \\
{\left[\left[\rho \mathbf{v}_{\tau}\left(c_{n}-v_{n}\right)\right]\right] } & =\mathbf{0}, \\
{\left[\left[\rho v_{n}\left(c_{n}-v_{n}\right)-p\right]\right] } & =0 \\
{\left[\left[\rho\left(\frac{1}{2}\left(v_{n}^{2}+v_{\tau}^{2}\right)+\epsilon(\rho, p)\right)\left(c_{n}-v_{n}\right)-p v_{n}\right]\right] } & =0, \tag{9.149}
\end{align*}
$$

From (9.149) ${ }_{1,2}$ it follows that

$$
\begin{equation*}
\left[\left[\rho \mathbf{v}_{\tau}\left(c_{n}-v_{n}\right)\right]\right]=\rho^{ \pm}\left(c_{n}-v_{n}^{ \pm}\right)\left[\left[\mathbf{v}_{\tau}\right]\right]=\mathbf{0} \tag{9.150}
\end{equation*}
$$

so that, if the shock wave is material

$$
c_{n}=v_{n}^{ \pm}
$$

then from (9.149) $)_{3,4}$ we get the conditions

$$
[[p]]=0,\left[\left[v_{n}\right]\right]=0
$$

We conclude that the discontinuities only refer to density, tangential velocity, and internal energy.

On the other hand, if $c_{n} \neq v_{n}^{ \pm},(9.150)$ states that the continuity of the tangential components of velocity on the nonmaterial wavefront

$$
\begin{equation*}
\left[\left[\mathbf{v}_{\tau}\right]\right]=\mathbf{0}, \tag{9.151}
\end{equation*}
$$

and the system (9.149) reduces to the system

$$
\begin{align*}
{\left[\left[\rho\left(c_{n}-v_{n}\right)\right]\right] } & =0, \\
{\left[\left[\rho v_{n}\left(c_{n}-v_{n}\right)-p\right]\right] } & =0, \\
{\left[\left[\rho\left(\frac{1}{2} v_{n}^{2}+\epsilon(\rho, p)\right)\left(c_{n}-v_{n}\right)-p v_{n}\right]\right] } & =0 . \tag{9.152}
\end{align*}
$$

of three equations for the four unknowns $v_{n}^{-}, \rho^{-}, p^{-}$, and c_{n}. This system can be solved provided that the constitutive equation $\epsilon(\rho, p)$ has been assigned together with the value of one of the above quantities.

There are some relevant consequences of the system (9.152). First, if we introduce at $\mathbf{x} \in \Sigma$ a reference system attached to the wavefront, the previous system is written as

$$
\begin{align*}
\rho^{-} w^{-} & =\rho^{+} w^{+} \equiv j, \\
\rho^{-}\left(w^{-}\right)^{2}+p^{-} & =\rho^{+}\left(w^{+}\right)^{2}+p^{+}, \\
\rho^{-}\left(\frac{1}{2}\left(w^{-}\right)^{2}+\epsilon^{-}\right)+p^{-} & =\rho^{+}\left(\frac{1}{2}\left(w^{+}\right)^{2}+\epsilon^{+}\right)+p^{+}, \tag{9.153}
\end{align*}
$$

where w is the velocity of particles on the wavefront with respect to the new reference system. Taking into account the first of these equations and introducing the specific volume $v=1 / \rho$, we find that the system (9.153) can be written as

$$
\begin{align*}
j^{2} v^{-}+p^{-} & =j^{2} v^{+}+p^{+} \\
\frac{1}{2} j^{2}\left(v^{-}\right)^{2}+\epsilon^{-} & =\frac{1}{2} j^{2}\left(v^{+}\right)^{2}+\epsilon^{+} \tag{9.154}
\end{align*}
$$

The first equation allows us to derive the condition

$$
\begin{equation*}
j^{2}=\frac{p^{-}-p^{+}}{v^{+}-v^{-}} \tag{9.155}
\end{equation*}
$$

corresponding to the two possibilities

$$
p^{-}>p^{+} \quad \text { and } \quad v^{-}<v^{+} \quad \text { or } \quad p^{-}<p^{+} \quad \text { and } \quad v^{-}>v^{+}
$$

Finally, after taking into account (9.155), the Eq. (9.154) becomes

$$
\begin{equation*}
f\left(v^{-}, p^{-}\right) \equiv \epsilon^{-}\left(v^{-}, p^{-}\right)-\epsilon^{+}+\frac{1}{2}\left(v^{-}-v^{+}\right)\left(p^{-}+p^{+}\right)=0 \tag{9.156}
\end{equation*}
$$

This equation is called Hugoniot's equation or the adiabatic shock equation and, given a pair p^{+}, v^{+}for the undisturbed region, it allows us to find all values p^{-}, v^{-}which are compatible with jump conditions, but not necessarily possible. In fact we observe that, assuming that the shock wave exists, there must be a unique combination of $v^{+}, v^{-}, p^{+}, p^{-}$, once j or, equivalently, c_{n} has been assigned. This remark highlights that the jump system does not provide a complete description of shock phenomenon, since it admits more than one solution. Some of these solutions must be rejected on a physical basis.

If $\epsilon(v, p)$ is assumed to be a one-to-one function of each of its variables, then the Eq. (9.156) defines a curve γ in the plane (p, v) having the following properties:

- the straight line $v=v^{+}$intersects the curve only at $\left(v^{+}, p^{+}\right)$;
- the straight line $p=p^{+}$intersects the curve only at $\left(v^{+}, p^{+}\right)$;
- it is a convex curve.

This last property can be deduced by resorting to the implicit function theory and assuming some suitable properties of the constitutive equation.

A geometric interpretation of the curve defined by (9.156) highlights some aspects governing shock waves. The quantity j^{2} is the opposite of the slope of the straight line connecting the point $\left(v^{+}, p^{+}\right)$with any other point $\left(v^{-}, p^{-}\right)$of the curve itself (see Fig. 9.20).

All the straight lines originating at the point $\left(v^{+}, p^{+}\right)$and intersecting the curve represent transitions which are allowed by the jump conditions. This conclusion indicates that we need to introduce a physical criterion to select the values (v^{-}, p^{-}) that are physically acceptable.

In the next section the case of a perfect gas will be considered in great detail.

9.15 Shock Waves in a Perfect Gas

In this section the shock wave equations (9.153) will be examined in the case of a perfect gas. For given quantities p^{+}and v^{+}, the unknowns p^{-}, w^{-}, w^{+}will be expressed in terms of the fourth unknown v^{-}.

Fig. 9.20 The curve defined by the Eq. (9.156)

The Clausius-Duhem inequality, suitably written for the case of a shock wave, will be introduced in order to select the physically acceptable values of v^{+}.

The constitutive equation of a perfect gas is

$$
\begin{equation*}
\epsilon\left(p, v^{+}\right)=\frac{1}{\gamma-1} p v^{+} \tag{9.157}
\end{equation*}
$$

where γ is expressed in terms of the universal gas constant R and the specific heat at constant volume c_{v} by the relation

$$
\gamma=1+\frac{R}{c_{v}}
$$

In a monatomic gas $\gamma=5 / 3$, and for a diatomic gas $\gamma=7 / 5$.
Substituting (9.157) into (9.156), we obtain the explicit form of Hugoniot's curve:

$$
\begin{equation*}
\frac{p^{-}}{p^{+}}=\frac{v^{+}(\gamma+1)-v^{-}(\gamma-1)}{v^{-}(\gamma+1)-v^{+}(\gamma-1)} \tag{9.158}
\end{equation*}
$$

For a monatomic gas whose thermodynamic properties in the undisturbed region have been assigned, Hugoniot's curve has the behavior shown in Fig. 9.21.

Substituting (9.158) into (9.155) leads to

$$
\begin{equation*}
j^{2}=\frac{2 \gamma p^{+}}{v^{-}(\gamma+1)-v^{+}(\gamma+1)} . \tag{9.159}
\end{equation*}
$$

Therefore, from $(9.153)_{1}$, the velocities w^{-}and w^{+}are derived:

$$
\begin{align*}
& w^{-}=j v^{-}=v^{-} \sqrt{\frac{2 \gamma p^{+}}{v^{-}(\gamma+1)-v^{+}(\gamma+1)}}, \\
& w^{+}=j v^{+}=v^{+} \sqrt{\frac{2 \gamma p^{+}}{v^{-}(\gamma+1)-v^{+}(\gamma+1)}} . \tag{9.160}
\end{align*}
$$

Fig. 9.21 Hugoniot's curve

On the other hand, the Clausius-Duhem inequality leads to the jump condition

$$
\begin{equation*}
\left[\left[\rho \eta\left(c_{n}-v_{n}\right)-\frac{\mathbf{h}}{\theta} \cdot \mathbf{n}\right]\right] \geq 0 \tag{9.161}
\end{equation*}
$$

which, as the shock is adiabatic $(\mathbf{h}=\mathbf{0})$, reduces to

$$
\left[\left[\rho \eta\left(c_{n}-v_{n}\right)\right]\right] \geq 0
$$

in the proper frame of the wave front, this assumes the form

$$
\begin{equation*}
j[[\eta]] \leq 0 . \tag{9.162}
\end{equation*}
$$

To within an arbitrary constant, the specific entropy of a perfect gas is

$$
\begin{equation*}
\eta=c_{v} \ln p v^{\gamma} . \tag{9.163}
\end{equation*}
$$

Using (9.159) and (9.163), it becomes

$$
\begin{equation*}
\eta=\sqrt{\frac{2 \gamma p^{+}}{v^{-}(\gamma+1)-v^{+}(\gamma+1)}} c_{v} \ln \frac{p^{-}\left(v^{-}\right)^{\gamma}}{p^{+}\left(v^{+}\right)^{\gamma}} \geq 0 . \tag{9.164}
\end{equation*}
$$

The first factor exists if

$$
\begin{equation*}
v^{-}>\frac{(\gamma-1)}{(\gamma+1)} v^{+} \tag{9.165}
\end{equation*}
$$

and the left-hand side of (9.164) has the same sign as the second factor. This is positive if

$$
\begin{equation*}
v^{-} \leq v^{+} \tag{9.166}
\end{equation*}
$$

Owing to (9.165) and (9.166), it is clear that the Clausius-Duhem inequality imposes the following restriction on the values of v^{-}:

$$
\begin{equation*}
\frac{(\gamma-1)}{(\gamma+1)} v^{+}<v^{-} \leq v^{+} \tag{9.167}
\end{equation*}
$$

Many relevant conclusions can be deduced from (9.167). First of all, the specific volume v across a shock wave decreases. Therefore, from (9.166) it follows that

$$
p^{-}>p^{+}
$$

which means that only compressive shock waves are physically acceptable for a perfect gas. It is worthwhile to remark that, under suitable assumptions, this result represents a general feature of shock waves.

Furthermore, the specific volume does not decrease indefinitely, but rather approaches a finite value. This limit volume is $v^{+} / 4$ in the case of a monatomic gas and $v^{+} / 6$ for a diatomic gas.

Finally, let us compare the gas velocities w^{-}and w^{+}with the corresponding speeds of sound U. For a perfect gas, we have

$$
U^{2}=\left(\frac{\partial p}{\partial \rho}\right)_{\eta}=\gamma p v
$$

From (9.160) and (9.158) we have

$$
\begin{align*}
& \left(\frac{w^{-}}{U^{-}}\right)^{2}=\frac{2}{\frac{v^{-}}{v^{+}}(\gamma-1)-(\gamma-1)} \tag{9.168}\\
& \left(\frac{w^{-}}{U^{-}}\right)^{2}=\frac{2}{\frac{v^{-}}{v^{+}}(\gamma-1)-(\gamma-1)}
\end{align*}
$$

It can be easily proved that when the values of v^{-}satisfy (9.166), we obtain

$$
\left(\frac{w^{-}}{U^{-}}\right)^{2}<1, \quad\left(\frac{w^{+}}{U^{+}}\right)^{2}>1
$$

Therefore, it can be concluded that

$$
w^{-}<U^{-}, \quad w^{+}>U^{+}
$$

i.e., the shock waves travel with a supersonic velocity with respect to the gas in the undisturbed gas, and they propagate with a subsonic velocity with respect to the compressed gas.

9.16 Exercises

1. Find Archimedes' force acting on the empty cylinder of radius R, height h and density ρ with vertical axis, immersed in water. Denote by d the common thickness of its walls.

Hint: The weight of the cylinder is

$$
p=\rho g\left[\pi R^{2} \delta+2 \pi R \delta(h-\delta)\right]=\rho g \pi \delta\left[R^{2}+2 R(h-\delta)\right] .
$$

Further, the buoyant force is

$$
F=g \pi g R^{2} \bar{h},
$$

where \bar{h} is the distance between the water surface and the bottom of the cylinder. This force balances the weight if

$$
\bar{h}=\rho \delta\left(1+\frac{h-\delta}{R}\right) .
$$

It is evident that this value can be accepted if $\bar{h}<h$.
2. Repeat the above exercise for a empty cube whose edges have the value L.
3. Find the density of a sphere of radius R in order for it to be floating with half of it immersed in water.

Hint: The weight of the sphere is

$$
p=\rho g \frac{4}{3} \pi R^{3}
$$

and the buoyant force is

$$
F=g \frac{2}{3} \pi R^{3}
$$

The two forces assume the same value when

$$
\rho=0.5
$$

4. Let S be a body formed by the matter contained inside two concentric spheres with radii $R_{1}<R_{2}$. Evaluate the weight of S, Archimedes' force acting on S, supposing that at equilibrium the water-line contains the centers of the spheres, and the density of S.

Hint: The weight is

$$
p=\rho g \frac{4}{3} \pi\left(R_{2}^{3}-R_{1}^{3}\right) .
$$

Archimedes' force is

$$
F=g \frac{2}{3} \pi R_{2}^{3}
$$

The density of S is given by

$$
\rho=\frac{R_{2}^{3}}{2\left(R_{2}^{3}-R_{1}^{3}\right)} .
$$

5. Find the total force acting on a body S immersed in a perfect gas G. Assuming that the axis $O x_{3}$ is vertical and oriented upward, the pressure p on S due to the presence of G is (see (9.11))

$$
p\left(x_{3}\right)=p_{0} \exp \left(-\frac{g x_{3}}{R \theta}\right) .
$$

From this we derive the expansion

$$
\begin{equation*}
p\left(x_{3}\right)=p_{0}-\rho_{0} g x_{3}+\frac{1}{2} \rho_{0} \frac{g^{2}}{R \theta} x_{3}^{2}+O(3) \tag{9.169}
\end{equation*}
$$

in which the constitutive equation $p_{0}=\rho R \theta$ has been taken into account. Substituting (9.169) into the expression for the total force acting on S

$$
\begin{equation*}
\mathbf{F}=-p_{0} \int_{\sigma} \exp \left(-\frac{g x_{3}}{R \theta}\right) \mathbf{N} d \sigma \tag{9.170}
\end{equation*}
$$

where σ is the surface of S and \mathbf{N} is the exterior unit normal to σ, and repeating the considerations leading to Archimedes' principle for liquid, we derive

$$
\begin{align*}
\mathbf{F} & =\rho_{0} g \mathbf{k} V-\rho_{0} \frac{g^{2}}{R \theta} \int_{\sigma} x_{3}^{2} \mathbf{N} d \sigma+O(3), \\
& =\rho_{0} g \mathbf{k} V-2 \rho_{0} \frac{g^{2}}{R \theta} V \mathbf{k} \tag{9.171}
\end{align*}
$$

where V is the volume of the region occupied by S and \mathbf{k} is the unit upwardoriented vector along $O x_{3}$. Formula (9.171) shows that we have again a total force which is equivalent to an upward-driven force with a value, in general, that differs from (9.14).
6. Verify that the surface of the water contained in a cubic container S which moves with constant acceleration a parallel to the floor of S assumes the profile shown in Fig. 9.22. Hint: It is sufficient to apply the condition

$$
\frac{p}{\rho}+U(\mathbf{x})=\cos t \equiv c
$$

Fig. 9.22 Water in accelerated container
on the surface of water and recall that

$$
U=-g z+a x
$$

7. Consider the conformal mapping

$$
\begin{equation*}
w=z^{2} \tag{9.172}
\end{equation*}
$$

Prove that, applying this transformation to the complex potential of a uniform flow

$$
V=U_{0} z
$$

we obtain the following complex potential

$$
V=x 2-y 2+2 i x y
$$

Supply a physical interpretation of the corresponding flow in the region $x>0$, $y>0$.
8. Find a solution of Blausius's equation (9.105) in terms of power series in the neighborhood of the origin, with the boundary conditions (9.106) . Use an analytic expansion (by introducing the variable $\xi=1 / x$) in order to satisfy the second condition.

9.17 The Program Potential

Aim of the Program Potential

The program Potential, evaluates the complex velocity, the kinetic potential, and Stokes potential when the complex potential $F=F(z)$ is given. Moreover, it plots the level curves of the above potentials.

Description of the Problem and Relative Algorithm

The algorithm calculates the real and imaginary parts of the complex potential $F=F(z)$, with $z=x+i y$. We recall that these parts coincide with the kinetic potential $\varphi=\varphi(x, y)$ and the Stokes potential $\psi=\psi(x, y)$, respectively. Then the program evaluates the derivatives of φ and ψ with respect to x in order to find the complex velocity $V=(\partial \varphi / \partial x)+i(\partial \psi / \partial x)$. Finally, the program plots the level curves $\varphi=$ const and $\psi=$ const contained in a given rectangle with vertices $A_{1} \equiv(a, 0), A_{2} \equiv(b, 0), A_{3} \equiv(0, c)$, and $A_{4} \equiv(0, d)$.

Command Line of the Program Potential

Potential[F, \{a, b\}, $\{c, d\},\{v a l o k, ~ v a l l K, ~ s t e p K\}$, \{valos, val1S, stepS\}, points, option]

Parameter List

Input Data

$\mathrm{F}=$ complex potential $F=F(z) ;$
$\{\mathrm{a}, \mathrm{b}\},\{\mathrm{c}, \mathrm{d}\}=$ determine the vertices $A_{1} \equiv(a, 0), A_{2} \equiv(b, 0), A_{3} \equiv$ $(0, c), A_{4} \equiv(0, d)$ of the rectangle in which the potential level curves have to be drawn;
\{valok, vallk, stepK\} = lowest and highest values of the kinetic level curves; stepK is the step to draw them;
\{valos, valls, steps $\}=$ lowest and highest values of the Stokes level curves; stepS is the step to draw them;
points = number of plot points;
option = plot option. If option = Kinetic, the program plots only the kinetic level curves; if option $=$ Stokes, it plots only the Stokes level curves. When option =All, both the curves are represented.

Output Data

The complex potential $F=\varphi(x, y)+i \psi(x, y)$;
the complex velocity $V=\frac{\partial \varphi}{\partial x}+i \frac{\partial \psi}{\partial x}$;
the plot of the level curves $\varphi=$ const and $\psi=$ const .

Worked Examples

1. Uniform motion. Consider the complex potential

$$
F(z)=2 z .
$$

To apply the program Potential it is sufficient to input the data $\mathrm{F}=2 \mathrm{z}$;
$\{\mathrm{a}, \mathrm{b}\}=\{-1,1\} ;$
$\{c, d\}=\{-1,1\} ;$
$\{$ val0K, val1K, stepK $\}=\{-10,10,0.5\}$;
$\{$ val0S, val1S, stepS $\}=\{-10,10,0.5\} ;$
points = 100;
option = All;
Potential[F, \{a, b\}, \{c, d\}, \{val0K, val1K, stepK\},
\{valos, valls, steps\}, points, option]
The corresponding output is (see Fig. 9.23)
Complex potential
$\mathrm{F}=2 \mathrm{x}+2 \mathrm{i} \mathrm{y}$
Complex velocity
$\mathrm{V}=2$

----- Level line of the Stokes potential ψ
Level line of the kinetic potential φ
Fig. 9.23 Uniform motion
2. Vortex potential. Consider the complex potential

$$
F(z)=-i \log z
$$

describing a planar flow in which the fluid particles uniformly rotate around an axis containing the origin and orthogonal to the plane $O x y$. Applying the program Potential with the input data ${ }^{4}$
$\mathrm{F}=-I \log [z]$;
$\{\mathrm{a}, \mathrm{b}\}=\{-1,1\}$;
$\{c, d\}=\{-1,1\} ;$
$\{$ valok, vallK, stepK $\}=\{-1,1,0.5\}$;
$\{$ val0S, vallS, stepS $\}=\{-2,2,0.4\}$;
points = 100;
option =All;
Potential [F, $\{\mathrm{a}, \mathrm{b}\},\{\mathrm{c}, \mathrm{d}\}$,
\{valok, vallk, stepk\}, \{valos, val1S, steps\}, points, option],
we obtain (see Fig. 9.24)
Complex potential
$F=\operatorname{ArcTan}\left[\frac{Y}{x}\right]-\frac{1}{2} i \log \left[x^{2}+y^{2}\right]$
Complex velocity
$V=\frac{i x}{x^{2}+y^{2}}-\frac{y}{x^{2}\left(1+\frac{y^{2}}{x^{2}}\right)}$

------ Level line of the Stokes potential ψ
__ Level line of the kinetic potential φ
Fig. 9.24 Vortex potential

[^31]3. Sources and Sinks. The flow produced by a source or a sink that has an intensity Q is described by the complex potential
$$
F(z)=\frac{Q}{2 \pi} \log z
$$
where Q is positive for a source and negative for a sink. When $Q=2 \pi$, the program Potential with the input (see Fig. 9.25)
$\mathrm{F}=\mathrm{Log}[\mathrm{z}]$;
$\{a, b\}=\{-2.8,2.8\} ;$
$\{c, d\}=\{-2.8,2.8\} ;$
$\{$ val0K, val1K, stepK $\}=\{-1,1,0.25\} ;$
$\{$ valoS, val1s, steps $\}=\{-1,1,0.25\} ;$
points = 100;
option =All;
Potential[F, $\{a, b\},\{c, d\},\{v a l o k, ~ v a l 1 K, ~ s t e p K\}$, \{valos, valls, stepS\}, points, option]
gives the output
Complex potential
$F=\operatorname{IArcTan}\left[\frac{Y}{x}\right]+\frac{1}{2} \log \left[x^{2}+y^{2}\right]$
Complex velocity
$V=\frac{x}{x^{2}+y^{2}}-\frac{\text { Iy }}{x^{2}\left(1+\frac{y^{2}}{x^{2}}\right)}$

------ Level line of the Stokes potential ψ
_- Level line of the kinetic potential φ
Fig. 9.25 Source and sink
4. Doublet. The flow produced by a source-sink dipole with intensity $Q=2 \pi$ is described by the complex potential
$$
F(z)=\frac{1}{z}
$$

The program Potential, with the input

$$
F=1 / z
$$

$\{\mathrm{a}, \mathrm{b}\}=\{-2,2\}$;
$\{c, d\}=\{-2,2\} ;$
$\{$ val0K, vallK, stepK $\}=\{-0.5,0.5,0.2\} ;$
$\{$ val0S, vallS, stepS $\}=\{-0.5,0.5,0.2\} ;$
points = 100;
option = All;
Potential[F, $\{a, b\},\{c, d\},\{v a l o k, ~ v a l 1 K, ~ s t e p K\}$, \{valos, val1S, stepS\}, points, option],
gives the output (see Fig. 9.26)
Complex potential
$F=\frac{x}{x^{2}+y^{2}}-I \frac{Y}{x^{2}+y^{2}}$
Complex velocity
$V=-\frac{2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}+\frac{2 I x y}{\left(x^{2}+y^{2}\right)^{2}}+\frac{1}{x^{2}+y^{2}}$

------ Level line of the Stokes potential ψ

- Level line of the kinetic potential φ

Fig. 9.26 Doublet
5. Consider the complex potential

$$
F(z)=z+\frac{1}{z}
$$

describing the planar flow produced by the superposition of a uniform motion along the x-axis and a flow generated by a source-sink dipole with intensity 1 . In order to represent the level curves of $\psi=\psi(x, y)$, it is sufficient to input $F=z+1 / z ;$
$\{\mathrm{a}, \mathrm{b}\}=\{-2,2\}$;
$\{c, d\}=\{-2,2\}$;
$\{$ valok, vallK, stepK $\}=\{-0.5,0.5,0.1\} ;$
$\{$ val0S, vallS, stepS $\}=\{-0.5,0.5,0.1\} ;$
points = 100;
option = Stokes;
Potential [F, $\{a, b\},\{c, d\},\{v a l o k, ~ v a l l k, ~ s t e p K\}$, \{valoS, val1S, stepS\}, points, option].
In output we have (see Fig. 9.27)
Complex potential
$F=x\left(1+\frac{1}{x^{2}+y^{2}}\right)-I\left(y-\frac{y}{x^{2}+y^{2}}\right)$
Complex velocity
$\mathrm{V}=1-\frac{2 \mathrm{x}^{2}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{2}}+\frac{2 \text { Ixy }}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{2}}+\frac{1}{\mathrm{x}^{2}+\mathrm{y}^{2}}$

Fig. 9.27 Level lines of Stokes potential ψ

Exercises

Apply the program Potential to the following complex potentials.

1. $F(z)=z+\frac{1}{z}+i \alpha \log z$, with $\alpha=1,2,2.2$.
2. $F(z)=\frac{\exp (i \pi / 4)}{z}$.
3. $F(z)=\sqrt{z}$.
4. $F(z)=\sqrt{1-z^{2}}$.
5. $F(z)=z+\sqrt{1-z^{2}}$.

9.18 The Program Wing

Aim of the Program Wing

The program Wing draws the curve Γ which represents the image under the Joukowsky map of the unit circle with a given center as well as the straight line r containing the point $T^{\prime} \equiv(2 l, 0)$ and forming an angle β with respect to $O x$. Moreover, it gives the parametric equations of both Γ and r and the values of l and β.

Description of the Problem and Relative Algorithm

Given the center $C \equiv\left(x_{C}, y_{C}\right)$ of the unit circle, the program applies the Joukowsky transformation

$$
z=\zeta+\frac{l^{2}}{\zeta},
$$

where

$$
l=x_{C}+\sqrt{1-y_{C}} .
$$

Then it determines the corresponding curve Γ and draws the straight line r containing T^{\prime}, which coincides with the exit point of the wing, and forms an angle $\beta=\arcsin y_{C}$ with the $O x$-axis. Moreover, it gives the parametric equations of Γ and r.

Command Line of the Program Wing

Wing [xc_,yc_]

Parameter List

Input Data

$\mathrm{xc}=$ abscissa of the center C of the unit circle;
yc $=$ ordinate of the center C of the unit circle.

Output Data

parametric equation of Γ;
parametric equation of the straight line r containing T^{\prime} and forming an angle β with $O x$;
plot of Γ, r, and the circumference C;
values of l and β.

Worked Examples

1. Apply Joukowsky's transformation to the unit circle with the center $C \equiv$ $(0.2,0.1)$; i.e., enter as input the command Wing[0.2, 0.1].
The corresponding output is ${ }^{5}$
Parametric equations of the wing
$x(t)=0.2+\operatorname{Cos}[t]+\frac{1.42799(0.2+\operatorname{Cos}[t])}{(0.2+\operatorname{Cos}[t])^{2}+(0.1+\operatorname{Sin}[t])^{2}}$
$y(t)=0.1+\sin [t]-\frac{1.42799(0.1+\sin [t])}{(0.2+\operatorname{Cos}[t])^{2}+(0.1+\operatorname{Sin}[t])^{2}}$
Parametric equations of the straight line r containing the point $\mathrm{T}^{\prime} \equiv(21,0)$ and forming an angle β with Ox-axis $x(t)=2.38997-0.994987 t$
$y(t)=0.1 t$
$\beta=5.73917^{\circ}$
$1=1.19499$

_- Wing profile
------ Straight line r
Fig. 9.28
2. Consider Joukowsky's transformation relative to the unit circle with its center at $C \equiv(0.1,0.15)$ and use the program Wing, entering Wing [0.1, 0.15].
In output we obtain
Parametric equations of the wing
[^32]```
\(x(t)=0.1+\operatorname{Cos}[t]+\frac{1.18524(0.1+\operatorname{Cos}[t])}{(0.1+\operatorname{Cos}[t])^{2}+(0.15+\operatorname{Sin}[t])^{2}}\)
\(y(t)=0.15+\sin [t]-\frac{1.18524(0.15+\sin [t])}{(0.1+\operatorname{Cos}[t])^{2}+(0.15+\operatorname{Sin}[t])^{2}}\)
Parametric equations of the straight line \(r\) containing
the point \(\mathrm{T}^{\prime} \equiv(21,0)\) and forming an angle \(\beta\) with Ox-axis
\(x(t)=2.17737-0.988686 t\)
\(y(t)=0.15 t\)
\(\beta=8.62693^{\circ}\)
\(1=1.08869\)
```


__ Wing profile
------ Straight line r
Fig. 9.29

## Exercises

Apply the program Wing to the unit circle with the center at $C \equiv\left(x_{C}, y_{C}\right)$ for the following values of $x_{C}$ and $y_{C}$

1. $x_{C}=0.1, \quad y_{C}=0.2$.
2. $x_{C}=-0.18, \quad y_{C}=0.2$.
3. $x_{C}=0.19, \quad y_{C}=0.21$.
4. $x_{C}=0.18, \quad y_{C}=0.18$.

### 9.19 The Program Joukowsky

## Aim of the Program Joukowsky

When the complex potential $F=F(z)$ is given by the conformal Joukowsky transformation, the program Joukowsky draws the streamlines both around the unit circle and the wing profile, which is the image of the circle under the above transformation.

## Description of the Problem and Relative Algorithm

Given the center $C \equiv\left(x_{C}, y_{C}\right)$ of the unit circle and Joukowsky's transformation, the program determines the complex potential $F=F(z)$ of the flow around the cylinder (see Sect. 9.5). Moreover, it draws the streamlines around both the cylinder profile and the wing. The above streamlines are the integral curves of the field

$$
\mathbf{X}=\left(\frac{\partial \operatorname{Re}(F)}{\partial x}-\frac{\partial \operatorname{Im}(F)}{\partial y}\right)
$$

corresponding to a given set of initial data; that is, they are solutions of the Cauchy problems

$$
\left\{\begin{array}{l}
\dot{x}=\frac{\partial \operatorname{Re}(F)}{\partial x}  \tag{9.173}\\
\dot{y}=-\frac{\partial \operatorname{Im}(F)}{\partial y}, \quad i=1, \cdots, n \\
x\left(t_{0}\right)=x_{0 i} \\
y\left(t_{0}\right)=y_{0 i}
\end{array}\right.
$$

## Command Line of the Program Joukowsky

Joukowsky[', xc, yc, \{a, b\}, \{c, d\}, indata, steps, T1, T2]

## Parameter List

## Input Data

$\varphi=$ angle of attack;
$\mathrm{xc}=$ abscissa of the center $C$ of the unit circle;
$\mathrm{yc}=$ ordinate of the center $C$ of the unit circle;
$\{a, b\},\{c, d\}=$ definition of the graphic window in which to represent the streamlines;
indata $=$ set of initial data for numerically integrating the differential system (9.173);
steps = steps of the numerical integration;
T1, $T 2=$ lowest and highest extrema of the integration interval.

## Output Data

streamlines around the cylinder;
streamlines around the wing profile.

## Worked Examples

1. Consider the unit circle with its center at $C \equiv(-0.2,0.1)$ and let $\varphi=10^{\circ}$ be the angle of attack. In order to show the streamlines around the cylinder and the wing, it is sufficient to enter ${ }^{6}$
```
\(\varphi=10\) Degree;
\(\{\mathrm{xc}, \mathrm{yc}\}=\{-0.2,0.1\} ;\)
\(\{a, b\}=\{-3,3\} ;\)
\(\{c, d\}=\{-1.5,1.6\} ;\)
indata \(=\) Join[Table \([\{-3,-1.4+1.4 i / 15\},\{i, 0,15\}]\),
Table[\{-3 + \(2 *\) i/5, -1.5\}, \(\{i, 0,5\}]\);
steps \(=10000\);
\(\{\mathrm{T} 1, \mathrm{~T} 2\}=\{0,10\}\);
Joukowsky[', xc, yc, \{a, b\}, \{c, d\}, indata, steps, T1, T2].
The corresponding output is shown in Figs. 9.30 and 9.31.
```

Streamlines around the cylinder


Fig. 9.30

Streamlines around the wing profile


Fig. 9.31

[^33]
## Exercises

Determine the set of initial conditions indata and the other input parameters that allow us to apply the program Joukowsky in the following cases:

1. $C \equiv(-0.2,0.1), \quad \varphi=29^{\circ}$.
2. $C \equiv(-0.18,0.2), \quad \varphi=8^{\circ}$.
3. $C \equiv(-0.22,0.18), \quad \varphi=20^{\circ}$.

### 9.20 The Program JoukowskyMap

## Aim of the Program JoukowskyMap

When a (closed, open, or piecewise defined) curve or a point set are assigned, the program JoukowskyMap determines the corresponding image under Joukowsky's transformation of a unit circle with a given center (Fig. 9.31).

## Description of the Problem and Relative Algorithm

Given the center $C \equiv\left(x_{C}, y_{C}\right)$ of the unit circle and a (closed, open, or piecewise defined) curve or a point set $\Gamma$, the program applies Joukowsky's transformation and determines the image $\Gamma^{\prime}$ of $\Gamma$. In particular, if $\Gamma$ is a curve, it determines the parametric equations of $\Gamma^{\prime}$ as well as its plot; instead, if $\Gamma$ is a finite set of points, it determines the image of each of them.

## Command Line of the Program JoukowskyMap

JoukowskyMap [xc, yc, curve, data, range, option]

## Parameter List

## Input Data

$\{\mathrm{xc}, \mathrm{yc}\}=$ coordinates of the center $C$ of the unit circle;
curve $=$ option relative to the curve $\Gamma$ for which the choices closed, open, piecewise, and points are possible;
data $=$ parametric equations of $\Gamma$ or point list;
range $=$ variability range of the parameter $t$ in data or null if $\Gamma$ is a point set;
option = parametric; for this choice the program gives the parametric equations or the coordinates of $\Gamma^{\prime}$; for a different choice of option it shows only the plot.

## Output Data

Plots of $\Gamma, \Gamma^{\prime}$, and the unit circle in the same graphic window; parametric equations of $\Gamma^{\prime}$;
coordinates of the points of $\Gamma^{\prime}$.

## Use Instructions

For the input datum curve the following choices are possible:
curve $=$ closed if $\Gamma$ is a closed curve defined by two parametric equations $x=x(t), y=y(t)$, where the parameter $t$ varies in the interval $\left[\tau_{1}, \tau_{2}\right]$, which in input is given by range $=\left\{\tau_{1}, \tau_{2}\right\}$;
curve $=$ open if $\Gamma$ is an open curve defined by two parametric equations $x=x(t), y=y(t)$, where the parameter $t$ varies in the interval $\left[\tau_{1}, \tau_{2}\right]$, which in input is given by range $=\left\{\tau_{1}, \tau_{2}\right\}$;
curve $=$ piecewise if $\Gamma$ is a curve defined by more parametric equations $x_{i}=x_{i}(t), y_{i}=y_{i}(t), i=1, \ldots, n$, where the parameter $t$ varies in one or more intervals which are given by range $=\left\{\tau_{1}, \tau_{2}\right\}$; or range $=$ $\left\{\left\{\tau_{1,1}, \tau_{1,2}\right\}, \cdots,\left\{\tau_{n, 1}, \tau_{n, 2}\right\}\right\}$;
curve $=$ points if $\Gamma$ is the finite set of points; in this case range $=$ null.
Moreover, if the input datum option $=$ parametric, the program also gives the parametric equations of $\Gamma^{\prime}$ or the coordinates of the points of $\Gamma^{\prime}$.

## Worked Examples

1. Let $\Gamma$ be the square internal to the unit circle with its center at $C \equiv(0.1,0.2)$ and vertices $A \equiv(0.5,-0.5), B \equiv(0.5,0.5), D \equiv(-0.5,0.5), E \equiv(-0.5,-0.5)$. The program JoukowskyMap shows the image of $\Gamma$ under Joukowsky's transformation given the following data:
```
{xc, yc} = {0.1, 0.2};
curve = piecewise;
{xa, ya} = {xe1, ye1} = {0.5,-0.5};
{xa1, yal} = {xb, yb} = {0.5,0.5};
{xb1, yb1} = {xd, yd } = {-0.5,0.5};
{xd1,yd1} = {xe, ye} = {-0.5,-0.5};
```

```
data \(=\{\{x a+t(x a 1-x a), y a+t(y a 1-y a)\}\),
\(\{\mathrm{xb}+\mathrm{t}(\mathrm{xb} 1-\mathrm{xb}), \mathrm{yb}+\mathrm{t}(\mathrm{yb} 1-\mathrm{yb})\}\),
\(\{x d+t(x d 1-x d), y d+t(y d 1-y d)\}\),
\(\{x e+t(x e 1-x e), y e+t(y e 1-y e)\}\} ;\)
range \(=\{0,1\}\);
option = null;
JoukowskyMap[xc, yc, curve, data, range, option].
The corresponding output is \({ }^{7}\)
```



- Unit circle
----- Input curve or list of points
.-..... Output curve or list of points
Fig. 9.32 Joukowsky map

2. Let $\Gamma$ be an ellipse which is external to the unit circle with the center at $C \equiv$ $(0.1,0.2)$ and parametric equations

$$
\left\{\begin{array}{l}
x(t)=x_{C}+2 \cos t, \\
y(t)=y_{C}+\sin t,
\end{array} \quad t \in[0,2 \pi] .\right.
$$

To see the image curve $\Gamma^{\prime}$ of $\Gamma$ under Joukowsky's transformation, the program JoukowskyMap can be used by entering
$\{\mathrm{xc}, \mathrm{yc}\}=\{0.1,0.2\} ;$
curve = closed;
data $=\{\mathrm{xc}+2 \operatorname{Cos}[\mathrm{t}], \mathrm{yc}+\operatorname{Sin}[\mathrm{t}]\} ;$
range $=\{0,21\}$;
option = null;
JoukowskyMap[xc, yc, curve, data, range, option].
The corresponding output is shown in Fig. 9.33.
3. Consider the set of points $\Gamma=\left\{P_{1} \equiv(0,1.5), P_{2} \equiv(0.5,0), P_{3} \equiv(0.75,0.75)\right.$, $\left.P_{4} \equiv(0.75,0), P_{5} \equiv(1,0), P_{6} \equiv(1,1)\right\}$. To determine the image of $\Gamma$ under

[^34]
__ Unit circle
------- Input curve or list of points
.-.-.-.. Output curve or list of points
Fig. 9.33 Joukowsky map

Joukowsky's transformation relative to the unit circle with the center at $C \equiv$ $(0.2,0.1)$, we have to enter
$\{\mathrm{xc}, \mathrm{yc}\}=\{0.2,0.1\} ;$
curve = points;
data $=\{\{0,1.5\},\{0.5,0\},\{0.75,0.75\},\{0.75,0\},\{1,0\},\{1,1\}\} ;$
option = null;
JoukowskyMap[xc, yc, curve, data, range, option], to obtain the output of Fig. 9.34.


- Unit circle
- •• Input curve or list of points
$\star \star \star \star$ Output curve or list of points
Fig. 9.34 Joukowsky map


## Exercises

Apply the program JoukowskyMap to a unit circle with the center at $C \equiv$ $(0.2,0.1)$ relative to the following curves or sets of points $\Gamma$ (Fig. 9.34).

1. $\Gamma$ : radius of the unit circle along the $O x$-axis.
2. $\Gamma$ : triangle internal to the circle with vertices $A \equiv(0.1,0), B \equiv(1.1,0), D \equiv$ $(0.2,0.1)$.
3. $\Gamma$ : segment parallel to the $O y$-axis with end points $A \equiv(1,0), B \equiv(1,1.1)$.
4. $\Gamma$ : segment with end points $A \equiv(1,0), C \equiv(0.2,0.1)$.
5. $\Gamma$ : finite set of points on the $O x$-axis. Verify that Joukowsky's transformation leaves the above points on the $O x$-axis.
6. $\Gamma$ : finite set of points on the $O y$-axis. Verify that Joukowsky's transformation leaves the above points on the $O y$-axis.
7. $\Gamma$ : circle with the center at the origin and radius $r=0.6$.
8. $\Gamma$ : circle with the center at the origin and radius $r=2$.
9. $\Gamma$ : circle with the center $C$ and radius $r=2$.
10. $\Gamma$ : circle with the center $C$ and radius $r=0.8$.
11. $\Gamma$ : square with vertices $A \equiv(1.5,-1.5), B \equiv(1.5,1.5), D \equiv(-1.5,1.5)$, $E \equiv(-1.5,-1.5)$.
12. $\Gamma$ : polygonal with vertices $A \equiv(0,0.5), B \equiv(1,0.2), D \equiv(0,1), E \equiv$ $(0.2,1)$.
13. $\Gamma$ : polygonal with vertices $A \equiv(1.1,1.2), B \equiv(1.2,1.2), D \equiv(1.2,0)$.
14. $\Gamma$ : semicircle with the center $C \equiv(0.2,0.1)$, radius $r=0.5$, and chord parallel to the $O x$-axis.
15. $\Gamma$ : semicircle with the center $C \equiv(0.2,0.1)$, radius $r=2$, and chord parallel to the $O x$-axis.

## Chapter 10 <br> Linear Elasticity

We start with the formulation of the different boundary value problems of linear elasticity: mixed problem, stress problem, and displacement problem. Theorems of existence and unicity of solutions of these problems are proved in suitable functional spaces. Then, the solution of Boussinesq-Papkovich-Neuber of linear elasticity is given. The Saint-Venant conjecture is discussed together with all the fundamental solutions of linear elasticity it supplies. The remaining part of the chapter contains a wide analysis of waves in linear elasticity in which important phenomena as reflection waves, refraction of waves, and Rayleigh surface waves are analyzed.

### 10.1 Basic Equations of Linear Elasticity

This chapter deals with some fundamental problems of linear elasticity and the material it covers is organized as follows. Since the existence and uniqueness theorems play a fundamental role, the first sections will be devoted to these theorems. The existence and the uniqueness of a solution can be proved in a classical way, by requiring that the solution exists and is unique within a class of regular functions; but it can also be proved in a weak sense (see Appendix A) if it is the unique solution of a suitable integral problem.

After discussing some elementary solutions, we present a method for analyzing beam systems, according to the Saint-Venant assumption, whose validity is not yet completely proved.

Finally, we will discuss the Fourier method as a tool for analyzing problems characterized by simple geometry.

More general cases require the use of numerical methods whose reliability is based on the following requirements:

- for the problem we are going to analyze numerically, a theorem of existence and uniqueness exists;
- the involved procedures allow us to control the errors.

Additional remarks concern the fact that, when dealing with a linearized theory obtained by replacing the nonlinear equations with the corresponding linearized ones, the implicit assumption is that small perturbations produce small effects. This is not always the case, and it is relevant

- to investigate the condition of stability of an equilibrium configuration of the elastic system, in whose proximity it is of interest to linearize the equations;
- to express nonlinear equations in a dimensionless form;
- to define the circumstances, related to initial and loading conditions, under which the linearized equations give an appropriate description of the motion or the equilibrium.

In this respect, in the following discussion it is assumed, without any further insight, that the linearization provides correct results if

1. loads, displacement $\mathbf{u}$, displacement gradient $\mathbf{H}$, velocity $\mathbf{v}$, and velocity gradient $\nabla \mathbf{v}$ are all first-order quantities, so that their products or powers can be neglected;
2. the configuration $C_{*}$ around which the linearization is applied is an unstressed equilibrium configuration;
3. all the processes take place under constant and uniform temperature.

With the above remarks in mind, we recall that in linear elasticity there is no further need to distinguish between the Piola-Kirchhoff tensor and the Cauchy stress tensor (see (6.28)); in addition, if the initial state is unstressed and the evolution takes place at constant and uniform temperature, then the stress tensor is written as

$$
\begin{equation*}
T_{i j}=C_{i j h k} E_{h k} \tag{10.1}
\end{equation*}
$$

where the linear elasticity tensor $C_{i j h k}$ is characterized by the following properties of symmetry:

$$
\begin{equation*}
C_{i j h k}=C_{j i h k}=C_{i j k h}=C_{h k i j} \tag{10.2}
\end{equation*}
$$

In particular, for a linear elastic and isotropic medium, by taking into account (10.1) and (7.18), the elasticity tensor becomes

$$
\begin{equation*}
C_{i j h k}=\lambda \delta_{i j} \delta_{h k}+\mu\left(\delta_{i h} \delta_{j k}+\delta_{j h} \delta_{i k}\right) \tag{10.3}
\end{equation*}
$$

Then the equations of linear elasticity are obtained by substituting the stress tensor (10.1) into the motion equation (5.69) and observing that, if $\mathbf{v}=\partial \mathbf{u}(\mathbf{X}, t) / \partial t$ is the velocity field, then in the linearization we have

$$
\begin{equation*}
\mathbf{a}=\frac{\partial^{2} \mathbf{u}}{\partial t^{2}}+\dot{\mathbf{u}} \cdot \nabla \dot{\mathbf{u}} \cong \frac{\partial^{2} \mathbf{u}}{\partial t^{2}} \tag{10.4}
\end{equation*}
$$

Moreover, the tractions $\mathbf{t}$ and $\mathbf{t}_{*}$ as well as the unit vectors $\mathbf{N}$ and $\mathbf{N}_{*}$ that are normal to the boundaries $\partial C$ and $\partial C_{*}$ only differ from each other by terms higher than the first-order terms of the displacement and displacement gradients (see (5.72), (5.73)).

In general, a dynamical problem of linear elasticity can be formulated as a mixed boundary value problem: find a displacement field $\mathbf{u}(\mathbf{X}, t)$ such that

$$
\left\{\begin{array}{l}
\rho_{*} \frac{\partial^{2} u_{i}}{\partial t^{2}}=\frac{\partial}{\partial X_{j}}\left(C_{i j h k} \frac{\partial u_{h}}{\partial X_{k}}\right)+\rho_{*} b_{i} \quad \text { on } C_{*},  \tag{10.5}\\
C_{i j h k} \frac{\partial u_{h}}{\partial X_{k}} N_{j}=t_{i}(\mathbf{X}, t) \quad \text { on } \Sigma_{1}, \\
\mathbf{u}(\mathbf{X}, t)=0 \quad \text { on } \Sigma_{2}, \\
\mathbf{u}(\mathbf{X}, 0)=\mathbf{u}_{0}(\mathbf{X}), \quad \dot{\mathbf{u}}(\mathbf{X}, 0)=\dot{\mathbf{u}}_{0}(\mathbf{X}) \quad \text { on } C_{*},
\end{array}\right.
$$

where $\Sigma_{1}$ is the portion of the boundary $\partial C_{*}$ on which the traction $\mathbf{t}(\mathbf{X}, t)$ is prescribed, $\Sigma_{2}$ is the fixed portion of $\partial C_{*}, \Sigma_{1} \cup \Sigma_{2}=\partial C_{*}$, and $\mathbf{N}$ is the outward unit vector normal to $\partial C_{*}$.

In particular, if $\Sigma_{2}=\emptyset$, then the boundary problem is a stress boundary value problem; on the other hand, if $\Sigma_{1}=\emptyset$, then the problem reduces to a displacement boundary value problem.

A static mixed boundary value problem is formulated in this way:

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial X_{j}}\left(C_{i j h k} \frac{\partial u_{h}}{\partial X_{k}}\right)+\rho_{*} b_{i}=0 \quad \text { on } C_{*},  \tag{10.6}\\
C_{i j h k} \frac{\partial u_{h}}{\partial X_{k}} N_{j}=t_{i}(\mathbf{X}) \quad \text { on } \Sigma_{1}, \\
u_{i}(\mathbf{X})=0 \quad \text { on } \Sigma_{2} .
\end{array}\right.
$$

If the solid is homogeneous and isotropic, then the elasticity tensor $C$ assumes the form (10.3), where $\lambda$ and $\mu$ are constant, so that the system (10.5) is written as

$$
\left\{\begin{array}{l}
\rho_{*} \frac{\partial^{2} \mathbf{u}}{\partial t^{2}}=\mu \Delta \mathbf{u}+(\lambda+\mu) \nabla \nabla \cdot \mathbf{u}+\rho_{*} b_{i} \quad \text { on } C_{*},  \tag{10.7}\\
(2 \mu \mathbf{E}+\lambda(\operatorname{tr} \mathbf{E}) \mathbf{I}) \mathbf{N}=\mathbf{t}(\mathbf{X}) \quad \text { on } \Sigma_{1}, \\
\mathbf{u}(\mathbf{X})=\mathbf{0} \text { on } \Sigma_{2}, \\
\mathbf{u}(\mathbf{X}, 0)=\mathbf{u}_{0}(\mathbf{X}), \quad \dot{\mathbf{u}}(\mathbf{X}, 0)=\dot{\mathbf{u}}_{0}(\mathbf{X}), \\
\text { on } C_{*}
\end{array}\right.
$$

When dealing with a stress boundary value problem, the traction $\mathbf{t}$ and the body force $\mathbf{b}$ have to satisfy the overall equilibrium equations of the system $S^{1}$ :

[^35]\[

\left\{$$
\begin{array}{l}
\int_{\partial C_{*}} \mathbf{t} d \sigma+\int_{C_{*}} \rho_{*} \mathbf{b} d c=\mathbf{0}  \tag{10.8}\\
\int_{\partial C_{*}} \mathbf{r} \times \mathbf{t} d \sigma+\int_{C_{*}} \rho_{*} \mathbf{r} \times \mathbf{b} d c=\mathbf{0} .
\end{array}
$$\right.
\]

The first condition is a restriction on the prescribed values of $\mathbf{t}$ and $\mathbf{b}$. Moreover, introducing the decomposition

$$
\begin{equation*}
\mathbf{r}=\mathbf{r}_{*}+\mathbf{u}, \tag{10.9}
\end{equation*}
$$

where $\mathbf{r}_{*}$ is the position vector in the reference configuration, and recalling that $\mathbf{t}, \mathbf{b}$, and $\mathbf{u}$ are first-order quantities, we find that $(10.8)_{2}$ can be written in the form

$$
\begin{equation*}
\int_{\partial C_{*}} \mathbf{r}_{*} \times \mathbf{t} d \sigma+\int_{C_{*}} \rho_{*} \mathbf{r}_{*} \times \mathbf{b} d c=\mathbf{0} \tag{10.10}
\end{equation*}
$$

This condition must be satisfied both from data and solution, i.e., it is a compatibility condition.

Sometimes it is convenient to assume as unknowns the stresses rather than the displacements. In a traction problem, it holds that

$$
\begin{align*}
& \nabla_{\mathbf{X}} \cdot \mathbf{T}+\rho_{*} \mathbf{b}=\mathbf{0} \\
& \text { on } C_{*},  \tag{10.11}\\
& \mathbf{T N}=\mathbf{t} \text { on } \partial C_{*} .
\end{align*}
$$

The solutions $\mathbf{T}(\mathbf{X})$ of this system have to satisfy the integrability condition of the deformation tensor $\mathbf{E}=C^{-1} \mathbf{T}$. Such a condition (see Sect. 3.8) is written as

$$
\nabla \times \nabla \times \mathbf{E}=\mathbf{0}
$$

and, due to the constitutive law (10.1), the equilibrium equations become

$$
\begin{align*}
\nabla_{\mathbf{X}} \cdot \mathbf{T}+\rho_{*} \mathbf{b}=\mathbf{0} & \text { on } C_{*}, \\
\nabla \times \nabla \times\left(C^{-1} \mathbf{T}\right)=\mathbf{0} & \text { on } C_{*}, \\
\mathbf{T N}=\mathbf{t} & \text { on } \partial C_{*} . \tag{10.12}
\end{align*}
$$

[^36]
### 10.2 Uniqueness Theorems

This section is aimed at proving the uniqueness of a classical solution of mixed boundary problems; in the next section we will discuss the existence and uniqueness of weak solutions of mixed or pure traction problems.

In order to reach this goal, it is relevant first to prove that, in any arbitrary motion, the following integral relation holds:

$$
\begin{equation*}
\frac{d}{d t} \int_{C_{*}} \rho_{*}\left(\frac{1}{2} \dot{u}^{2}+\Psi\right) d c_{*}=\int_{\partial C_{*}} \mathbf{t} \cdot \dot{\mathbf{u}} d \sigma_{*}+\int_{C_{*}} \rho_{*} \mathbf{b} \cdot \dot{\mathbf{u}} d c_{*}, \tag{10.13}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho_{*} \Psi=\frac{1}{2} C_{i j h k} E_{i j} E_{h k} \tag{10.14}
\end{equation*}
$$

is the energy density of elastic deformation.
The motion equation (10.5) ${ }_{1}$, when multiplied by $\dot{\mathbf{u}}$, gives

$$
\begin{aligned}
\frac{d}{d t} \int_{C_{*}} \rho_{*} \frac{1}{2} \dot{u}^{2} d c_{*}= & \int_{C_{*}}\left(\dot{u}_{i} \frac{\partial}{\partial X_{j}}\left(C_{i j h k} E_{h k}\right)+\rho_{*} b_{i} \dot{u}_{i}\right) d c_{*} \\
= & -\int_{C_{*}} \mathbf{C}_{i j h k} \dot{E}_{i j} E_{h k} d c_{*} \\
& +\int_{C_{*}}\left(\frac{\partial}{\partial X_{j}}\left(C_{i j h k} E_{h k} \dot{u}_{i}\right)+\rho_{*} b_{i} \dot{u}_{i}\right) d c_{*},
\end{aligned}
$$

so that, by using (10.14) as well as by applying Gauss's theorem, we get

$$
\frac{d}{d t} \int_{C_{*}} \rho_{*}\left(\frac{1}{2} \dot{u}^{2}+\Psi\right) d c_{*}=\int_{\partial C_{*}} C_{i j h k} E_{h k} \dot{u}_{i} N_{j} d \sigma_{*}+\int_{C_{*}} \rho_{*} b_{i} \dot{u}_{i} d c_{*} .
$$

This relation, with the boundary conditions (10.5) $)_{2,3}$, allows us to obtain (10.13).
The following uniqueness theorem can now be proved:
Theorem 10.1. If the elasticity tensor is positive definite, so that

$$
\begin{equation*}
C_{i j h k} E_{i j} E_{h k}>0, \tag{10.15}
\end{equation*}
$$

and a solution $\mathbf{u}(\mathbf{X}, t)$ of the mixed problem (10.5) exists, then this solution is unique.

Proof. If $\mathbf{u}_{1}$ and $\mathbf{u}_{2}$ are two solutions of the mixed problem (10.5), then the difference $\mathbf{u}=\mathbf{u}_{1}-\mathbf{u}_{2}$ will be a solution of (10.5) corresponding to the following homogeneous data:

$$
\begin{array}{rlrll}
\mathbf{u} & =\mathbf{0} & \text { on } \Sigma_{1} & & \mathbf{t}=\mathbf{0} \\
\mathbf{o n} \Sigma_{2}, \\
\mathbf{u}(\mathbf{X}, 0) & =\dot{\mathbf{u}}(\mathbf{X}, 0)=\mathbf{0} & & \text { on } C_{*} .
\end{array}
$$

It follows that for the motion $\mathbf{u}$ the integral condition (10.13) gives

$$
\begin{equation*}
\frac{d}{d t} \int_{C_{*}} \rho_{*}\left(\frac{1}{2} \dot{u}^{2}+\Psi\right) d c_{*}=0 \tag{10.16}
\end{equation*}
$$

Moreover, when the initial conditions for $\mathbf{u}$ are taken into account, the integral appearing in (10.16) must initially vanish so that during the subsequent evolution we have

$$
\int_{C_{*}} \rho_{*}\left(\frac{1}{2} \dot{u}^{2}+\Psi\right) d c_{*}=0 .
$$

Since all the quantities under the integral are nonnegative and the functions are of class $C^{2}$, at any instant and at any point it must hold that

$$
\dot{\mathbf{u}}(\mathbf{X}, t)=\mathbf{0}, \Psi(\mathbf{X}, t)=0
$$

since initially $\mathbf{u}(\mathbf{X}, 0)=\mathbf{0}$, it follows that $\mathbf{u}$ vanishes at any instant and at point, so that $\mathbf{u}_{1}=\mathbf{u}_{2}$.

We use the same procedure to prove the uniqueness of an equilibrium problem. In fact, if the equilibrium equation (10.6) ${ }_{1}$, previously multiplied by $\mathbf{u}$, is integrated over $C_{*}$, then when (10.13) is again taken into account, we obtain the following relation:

$$
\begin{equation*}
\int_{C_{*}} \rho_{*} \Psi d c_{*}=\int_{\partial C_{*}} \mathbf{t} \cdot \mathbf{u} d \sigma_{*}+\int_{C_{*}} \rho_{*} \mathbf{b} \cdot \mathbf{u} d c_{*} . \tag{10.17}
\end{equation*}
$$

Now the following theorem can be proved.
Theorem 10.2. Let the elasticity tensor be positive definite (see (10.15)). Then, if a solution $\mathbf{u}(\mathbf{X})$ of a mixed problem or a displacement problem exists, it is unique. For a problem of pure traction, the solution is unique, apart from an arbitrary infinitesimal rigid displacement.

Proof. If $\mathbf{u}_{1}$ and $\mathbf{u}_{2}$ are two solutions, then their difference must also be a solution satisfying the homogeneous data

$$
\mathbf{u}=\mathbf{0} \quad \text { on } \Sigma_{1}, \quad \mathbf{t}=\mathbf{0} \quad \text { on } \Sigma_{2}
$$

It follows from (10.17) that

$$
\int_{C_{*}} \rho_{*} \Psi d c_{*}=0
$$

and since $\mathbb{C}$ is positive definite, it also follows that $\Psi=0$, i.e., $\mathbf{E}=\mathbf{0}$. This proves that $\mathbf{u}$ is a rigid displacement. If $\Sigma_{1}$ does not reduce to a point or a straight line, then the condition $\mathbf{u}=\mathbf{0}$ on $\Sigma_{1}$ implies that $\mathbf{u}=\mathbf{0}$ in all the region $C_{*}$.

Remark 10.1. When considering an isotropic material, the condition (10.15) is fulfilled if and only if

$$
\begin{equation*}
\lambda+2 \mu>0, \quad \mu>0 . \tag{10.18}
\end{equation*}
$$

This remark is proved by the following chain of equalities:

$$
\begin{aligned}
2 \Psi & =C_{i j h k} E_{i j} E_{h k}=\left(\lambda \delta_{i j} \delta_{h k}+\mu\left(\delta_{i h} \delta_{j k}+\delta_{j h} \delta_{i k}\right)\right) E_{i j} E_{h k} \\
& =\lambda(\operatorname{tr} \mathbf{E})^{2}+2 \mu \operatorname{tr}\left(\mathbf{E}^{2}\right)=(\lambda+2 \mu)(\operatorname{tr} \mathbf{E})^{2}+2 \mu\left(E_{12}^{2}+E_{13}^{2}+E_{23}^{2}\right),
\end{aligned}
$$

so that $\Psi$ is positive definite if and only if the conditions (10.18) are satisfied.

### 10.3 Existence and Uniqueness of Equilibrium Solutions

In this section, in order to prove an existence and uniqueness theorem for a mixed boundary problem (see (10.5)), a weak formulation is used (see Appendix A).

Let

$$
\begin{equation*}
\mathcal{U}_{0}=\left(H\left(C_{*}\right)\right)^{3} \tag{10.19}
\end{equation*}
$$

be the vector space of all the vector functions $\mathbf{v}(\mathbf{X})$ whose components

- are square integrable functions vanishing on $\Sigma_{1}$;
- have weak first derivatives in $C_{*}$.

Then $\mathcal{U}_{0}$ is a complete vector space with respect to the Sobolev norm

$$
\begin{equation*}
\|\mathbf{v}\|_{\mathcal{U}_{0}}^{2}=\sum_{i=1}^{3} \int_{C_{*}} v_{i}^{2} d c_{*}+\sum_{i, j=1}^{3} \int_{C_{*}} v_{i, j}^{2} d c_{*}, \tag{10.20}
\end{equation*}
$$

and it is a Hilbert space with respect to the scalar product

$$
\begin{equation*}
(\mathbf{v}, \mathbf{u})_{\mathcal{U}_{0}}=\sum_{i=1}^{3} \int_{C_{*}} v_{i} u_{i} d c_{*}+\sum_{i, j=1}^{3} \int_{C_{*}} v_{i, j} u_{i, j} d c_{*}, \tag{10.21}
\end{equation*}
$$

where $a_{i, j}=\partial a_{i} / \partial X_{j}$.

Introducing the notations

$$
\begin{align*}
B(\mathbf{u}, \mathbf{v}) & =\int_{C_{*}} C_{i j h k} u_{h, k} v_{i, j} d c_{*}, \\
F(\mathbf{v}) & =\int_{C_{*}} \rho_{*} b_{i} v_{i} d c_{*}+\int_{\Sigma_{2}} t_{i} v_{i} d \sigma_{*}, \tag{10.22}
\end{align*}
$$

the weak formulation of the problem (10.6) gives:

$$
\begin{equation*}
B(\mathbf{u}, \mathbf{v})=F(\mathbf{v}) \quad \forall \mathbf{v} \in \mathcal{U}_{0} \tag{10.23}
\end{equation*}
$$

Now the following theorem can be proved:
Theorem 10.3. Let $C_{*}$ be a compact region of $\mathfrak{R}^{3}$ bounded by a regular surface and assume that $b_{i}(\mathbf{X}) \in L_{2}\left(C_{*}\right), t_{i}(\mathbf{X}) \in L_{2}\left(\Sigma_{2}\right)$. If the elasticity tensor satisfies the conditions

1. $C_{i j h k}(\mathbf{X}) \in L_{1}\left(C_{*}\right),\left|C_{i j h k}\right|<K, K>0$;
2. it is elliptic; i.e., $C_{i j h k} \xi_{i j} \xi_{h k}>\mu \sum_{i, j} \xi_{i j}^{2}, \mu>0$, for any symmetric tensor $\xi_{i j}$; then the weak solution $\mathbf{u} \in \mathcal{U}_{0}$ of the problem (10.6) is unique.

Proof. The definition of $\mathcal{U}_{0}$ and the assumptions about $b_{i}, t_{i}$, and $C_{i j h k}$ allow us to state that $B$ is a bilinear continuous form on $\mathcal{U}_{0} \times \mathcal{U}_{0}$ and $F$ is a linear continuous form on $\mathcal{U}_{0}$. In fact, the first condition gives

$$
\left(\int_{C_{*}} C_{i j h k} u_{i, j} v_{h, k} d c_{*}\right)^{2} \leq K^{2}\left(\sum_{i, j} \int_{C_{*}} u_{i, j} v_{i, j} d c_{*}\right)^{2}
$$

Since $\mathbf{v}, \mathbf{u} \in \mathcal{U}_{0}$, the squared components $v_{i}$ and $u_{i}$ can be summed up as well as their first derivatives, and Schwarz's inequality (see (1.10)) can be applied to the integral on the left-hand side in $L_{2}\left(C_{*}\right)$, so that we obtain the relation

$$
\begin{aligned}
& \left(\int_{C_{*}} C_{i j h k} u_{i, j} v_{h, k} d c_{*}\right)^{2} \leq K^{2} \sum_{i, j} \int_{C_{*}} u_{i, j}^{2} d c_{*} \int_{C_{*}} v_{i, j}^{2} d c_{*} \\
& \leq K^{2}\left(\sum_{i} \int_{C_{*}} u_{i}^{2} d c_{*}+\sum_{i, j} \int_{C_{*}} u_{i, j}^{2} d c_{*}\right)\left(\sum_{i} \int_{C_{*}} v_{i}^{2} d c_{*}+\sum_{i, j} \int_{C_{*}} v_{i, j}^{2} d c_{*}\right),
\end{aligned}
$$

which in a compact form is written as

$$
|B(\mathbf{u}, \mathbf{v})| \leq K\|\mathbf{u}\|_{\mathcal{U}_{0}}\|\mathbf{v}\|_{\mathcal{U}_{0}} .
$$

This proves the continuity of $B$; in a similar way, the continuity of $F$ can be verified.

At this point, the theorem is a consequence of the Lax-Milgram theorem (see Appendix A) if it is proved that $B$ is strongly coercive or strongly elliptic. Then the symmetry properties of $C$ allow us to write

$$
C_{i j h k} u_{i, j} u_{h, k}=C_{i j h k} E_{i j} E_{h k}>\mu \sum_{i, j} E_{i j}^{2},
$$

where $\mathbf{E}$ is the tensor of infinitesimal deformations. From the previous inequality it also follows that

$$
\int_{C_{*}} C_{i j h k} u_{i, j} u_{h, k} d c_{*}>\mu \sum_{i, j} \int_{C_{*}} E_{i j}^{2} d c_{*} .
$$

By recalling Korn's inequality (see Appendix A), we see that

$$
\sum_{i, j} \int_{C_{*}} E_{i j}^{2} d c_{*} \geq \sigma\|\mathbf{u}\|_{\mathcal{U}_{0}}^{2}
$$

where $\sigma$ is a positive constant, and the theorem is proved.
If $C, t_{i}$, and $b_{i}$ are conveniently regular functions, then the weak solution is also a regular solution for the mixed boundary problem (10.6).

For the problem of pure traction

$$
\begin{align*}
\left(C_{i j h k} u_{h, k}\right)_{, j} & =-\rho_{*} b_{i} \quad \text { on } C_{*}, \\
C_{i j h k} u_{h, k} N_{* j} & =t_{i} \quad \text { on } \partial C_{*}, \tag{10.24}
\end{align*}
$$

the following theorem holds:
Theorem 10.4. Let the hypotheses about $C, \mathbf{b}$, and $\mathbf{t}$ of the previous theorem be satisfied, together with the global equilibrium conditions

$$
\begin{array}{r}
\int_{\partial C_{*}} \mathbf{t} d \sigma+\int_{C_{*}} \rho_{*} \mathbf{b} d c_{*}=\mathbf{0} \\
\int_{\partial C_{*}} \mathbf{r}_{*} \times \mathbf{t} d \sigma+\int_{C_{*}} \rho_{*} \mathbf{r}_{*} \times \mathbf{b} d c_{*}=\mathbf{0} \tag{10.25}
\end{array}
$$

Then the problem (10.24) has a unique solution, apart from an arbitrary infinitesimal rigid displacement.

Proof. Only the main steps of the proof are given. Let

$$
\mathcal{U}=\left(H^{1}\left(C_{*}\right)\right)^{3}
$$

be the vector space of the functions $\mathbf{v}(\mathbf{x})$ whose components belong to $L_{2}\left(C_{*}\right)$ together with their derivatives. It is a Banach space with respect to the Sobolev norm (10.20), and a Hilbert space with respect to the scalar product (10.21). Once again, (10.23) represents the weak formulation of the equilibrium problem (10.24) provided that $\Sigma_{2}$ in (10.21) is replaced with $\partial C_{*}$. Moreover, it is possible to prove, by the same procedure followed in the previous theorem, that $B(\mathbf{u}, \mathbf{v})$ and $F(\mathbf{v})$ are continuous in $\mathcal{U} \times \mathcal{U}$ and $\mathcal{U}$, respectively. However, $B(\mathbf{u}, \mathbf{v})$ is not strongly coercive. In fact, from condition (2) we derive

$$
B(\mathbf{u}, \mathbf{u})=\int_{C_{*}} C_{i j h k} E_{i j} E_{h k} d c_{*} \geq \mu \sum_{i, j} \int_{C_{*}} E_{i j}^{2} d c_{*},
$$

so that

$$
\begin{equation*}
B(\mathbf{u}, \mathbf{u})=0 \Longleftrightarrow \sum_{i, j} \int_{C_{*}} E_{i j}^{2} d c_{*}=0 \tag{10.26}
\end{equation*}
$$

Consequently, if the subspace $R$ of $\mathcal{U}$ given by

$$
\begin{equation*}
R=\left\{\hat{\mathbf{u}} \in \mathcal{U}, \quad \hat{\mathbf{u}}=\mathbf{a}+\mathbf{b} \times \mathbf{r}_{*}, \quad \mathbf{a}, \mathbf{b} \in \mathfrak{R}^{3}\right\} \tag{10.27}
\end{equation*}
$$

of rigid displacements is introduced, it follows that the condition (10.26) is satisfied for any element of $R$ and therefore it does not imply that $\mathbf{u}=\mathbf{0}$.

It is possible to verify that any Cauchy sequence $\left\{\hat{\mathbf{u}}_{n}\right\}$ of elements belonging to $R$ converges to an element of $R$, so that this subspace is closed. Owing to known results of analysis, the quotient space

$$
\mathcal{H}=\mathcal{U} / R
$$

is a Banach space with respect to the norm

$$
\begin{equation*}
\|[\mathbf{u}]\|_{\mathcal{H}}=\inf _{\hat{\mathbf{u}} \in R}\|\mathbf{u}+\hat{\mathbf{u}}\|_{\mathcal{U}} \tag{10.28}
\end{equation*}
$$

where [ $\mathbf{u}$ ] denotes the equivalence class of $\mathcal{U}$. It is also a Hilbert space with respect to the scalar product

$$
\begin{equation*}
([\mathbf{u}],[\mathbf{v}])_{\mathcal{H}}=\inf _{\hat{\mathbf{u}}, \hat{\mathbf{v}} \in R}(\mathbf{u}+\hat{\mathbf{u}}, \mathbf{v}+\hat{\mathbf{v}})_{\mathcal{U}} . \tag{10.29}
\end{equation*}
$$

On the other hand, the positions

$$
\begin{align*}
\dot{B}([\mathbf{u}],[\mathbf{v}]) \equiv B(\mathbf{u}, \mathbf{v}) & =\int_{C_{*}} C_{i j h k} E_{i j}(\mathbf{u}) E_{h k}(\mathbf{v}) d c_{*} \\
\dot{F}([\mathbf{v}]) & =F(\mathbf{v}) \tag{10.30}
\end{align*}
$$

define a bilinear form on $\mathcal{H} \times \mathcal{H}$ and a linear form on $\mathcal{H}$, respectively. In fact, $E_{i j}(\mathbf{u})=E_{i j}\left(\mathbf{u}^{\prime}\right)$ if and only if $\mathbf{u}$ and $\mathbf{u}^{\prime}$ differ for a rigid displacement, that is, belong to the same equivalence class. Moreover,

$$
\begin{aligned}
F(\mathbf{v})-F\left(\mathbf{v}^{\prime}\right)= & \mathbf{a} \cdot\left(\int_{\partial C_{*}} \mathbf{t} d \sigma+\int_{C_{*}} \rho_{*} \mathbf{b} d c_{*}\right) \\
& +\mathbf{b} \cdot\left(\int_{\partial C_{*}} \mathbf{r}_{*} \times \mathbf{t} d \sigma+\int_{C_{*}} \rho_{*} \mathbf{r}_{*} \times \mathbf{b} d c_{*}\right)=0
\end{aligned}
$$

due to the conditions (10.25). It is also easy to verify that $\dot{B}(\mathbf{u}, \mathbf{v})$ and $F(\mathbf{v})$ are continuous and that the weak formulation of the equilibrium boundary problem is written as

$$
\dot{B}([\mathbf{u}],[\mathbf{v}])=\dot{F}([\mathbf{v}]) \quad \forall[\mathbf{v}] \in \mathcal{H}
$$

Finally, owing to the inequality (see Appendix A)

$$
\sum_{i, j} \int_{C_{*}} E_{i j}^{2} d c_{*} \geq c\|[\mathbf{u}]\|_{\mathcal{H}}^{2}
$$

the bilinear form $\dot{B}([\mathbf{u}],[\mathbf{v}])$ is strongly coercive and the theorem is proved.

### 10.4 Examples of Deformations

A deformation of the system $S$ is defined to be homogeneous if its Jacobian matrix is independent of the coordinates. In this case, the deformation tensor is constant and, presuming the material is homogeneous, the stress state is constant and the equilibrium equations are fulfilled.

We now discuss some examples of homogeneous deformations.

## 1. Uniform expansion

As a consequence of the displacement field

$$
u_{i}=\alpha X_{i}, i=1,2,3,
$$

any point $\mathbf{X}$ moves along the straight line passing through the origin and the point $\mathbf{X}$, independently of the direction. This deformation is infinitesimal if $\alpha$ is a firstorder quantity. If $\alpha>0$, the deformation is an uniform expansion; if $\alpha<0$, it is a volume contraction. The displacement and deformation gradient tensors are

$$
\mathbf{H}=\mathbf{E}=\left(\begin{array}{ccc}
\alpha & 0 & 0 \\
0 & \alpha & 0 \\
0 & 0 & \alpha
\end{array}\right),
$$

and the stress tensor is given by

$$
\mathbf{T}=(3 \lambda+2 \mu) \alpha \mathbf{I},
$$

and represents a uniform pressure if $\alpha<0$, and a tension if $\alpha>0$.

## 2. Homotetic deformation

Consider the displacement field

$$
u_{1}=\alpha_{1} X_{1}, \quad u_{2}=\alpha_{2} X_{2}, \quad u_{3}=\alpha_{3} X_{3},
$$

and the corresponding tensors

$$
\mathbf{H}=\mathbf{E}=\left(\begin{array}{ccc}
\alpha_{1} & 0 & 0 \\
0 & \alpha_{2} & 0 \\
0 & 0 & \alpha_{3}
\end{array}\right)
$$

as well as the stress tensor

$$
\mathbf{T}=\lambda\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) \mathbf{I}+2 \mu \mathbf{E}
$$

In particular, if $\alpha_{2}=\alpha_{3}=0$ and $\alpha_{1}>0$, then the stress field reduces to an uniaxial traction.
3. Pure distortion

The displacement field

$$
u_{1}=k X_{2}, u_{2}=u_{3}=0
$$

implies that

$$
\mathbf{E}=\left(\begin{array}{ccc}
0 & k / 2 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

and

$$
\mathbf{T}=\left(\begin{array}{ccc}
0 & \mu k & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

### 10.5 The Boussinesq-Papkovich-Neuber Solution

When the problem does not suggest any symmetry, the approach usually followed is the Boussinesq-Papkovich-Neuber method. In the absence of body forces and at equilibrium, (10.7) $)_{1}$ assumes the form

$$
\begin{equation*}
\nabla \nabla \cdot \mathbf{u}+(1-2 v) \Delta \mathbf{u}=0 \tag{10.31}
\end{equation*}
$$

where

$$
\begin{equation*}
v=\frac{\lambda}{2(\lambda+\mu)} . \tag{10.32}
\end{equation*}
$$

Then the following theorem holds:
Theorem 10.5. The displacement fields

$$
\begin{equation*}
\mathbf{u}_{1}=\nabla \varphi, \quad \text { with } \Delta \varphi=0 \tag{10.33}
\end{equation*}
$$

and

$$
\mathbf{u}_{2}=4(1-v) \boldsymbol{\Phi}-\nabla(\boldsymbol{\Phi} \cdot \boldsymbol{X}), \quad \text { with } \Delta \boldsymbol{\Phi}=\mathbf{0}
$$

are two solutions of the equilibrium equation (10.31), for any choice of the harmonic functions $\varphi$ and $\boldsymbol{\Phi}$. Since (10.31) is linear, any linear combination of these solutions still represents a solution.

Proof. To prove that $\mathbf{u}_{1}$ is a solution of (10.31), it is sufficient to note that

$$
\nabla \cdot \mathbf{u}_{1}=\Delta \varphi=0, \quad \Delta\left(\mathbf{u}_{1}\right)_{i}=\sum_{j=1}^{3} \frac{\partial^{2}}{\partial X_{j}^{2}}\left(\frac{\partial \varphi}{\partial X_{i}}\right)=0
$$

since the differentiation order with respect to the variables $X_{i}$ and $X_{j}$ can be reversed, and $\varphi$ is a harmonic function.

When considering the second displacement field, we get

$$
u_{2 j}=4(1-v) \Phi_{j}-\Phi_{j}-X_{h} \frac{\partial \Phi_{h}}{\partial X_{j}}=(3-4 v) \Phi_{j}-X_{h} \frac{\partial \Phi_{h}}{\partial X_{j}},
$$

so that

$$
\nabla \cdot \mathbf{u}_{2}=(3-4 \nu) \frac{\partial \Phi_{j}}{\partial X_{j}}-\frac{\partial \Phi_{j}}{\partial X_{j}}-X_{h} \frac{\partial^{2} \Phi_{h}}{\partial X_{j}^{2}}=2(1-2 \nu) \nabla \cdot \boldsymbol{\Phi}
$$

since $\boldsymbol{\Phi}$ is harmonic. Moreover,

$$
\Delta u_{2 i}=\sum_{j=1}^{3} \frac{\partial^{2} u_{2 i}}{\partial X_{j}^{2}}=(3-4 v) \sum_{j=1}^{3} \frac{\partial^{2} \Phi_{i}}{\partial X_{j}^{2}}-\frac{\partial}{\partial X_{j}} \frac{\partial}{\partial X_{j}}\left(X_{h} \frac{\partial \Phi_{h}}{\partial X_{i}}\right)
$$

and, since

$$
\frac{\partial}{\partial X_{j}} \frac{\partial}{\partial X_{j}}\left(X_{h} \frac{\partial \Phi_{h}}{\partial X_{i}}\right)=\frac{\partial}{\partial X_{j}}\left(\frac{\partial \Phi_{j}}{\partial X_{i}}+X_{h} \frac{\partial^{2} \Phi_{h}}{\partial X_{j} \partial X_{i}}\right),
$$

it holds that

$$
\Delta \mathbf{u}_{2}=-\nabla \nabla \cdot \boldsymbol{\Phi} .
$$

It is now easy to verify that $\mathbf{u}_{2}$ is a solution of (10.31).
By introducing convenient hypotheses concerning the elastic coefficients as well as the differentiability of the functions, we can prove that any solution of (10.31) can be expressed as a combination of $\mathbf{u}_{1}$ and $\mathbf{u}_{2}$.

In addition, we can also verify that, if the boundary surface has a symmetry axis $X_{3}$ and the displacement components in cylindrical coordinates $\left(r, \psi, X_{3}\right)$ are

$$
u_{r}=u_{r}\left(r, X_{3}\right), \quad u_{\psi}=0, \quad u_{3}=u_{3}\left(r, X_{3}\right)
$$

then there are two scalar functions $\varphi$ and $\Phi$ such that the displacement can be written as $\mathbf{u}=\mathbf{u}_{1}+\mathbf{u}_{2}$, with $\boldsymbol{\Phi}=\Phi \mathbf{a}_{3}$, where $\mathbf{a}_{3}$ is the unit vector of the axis $X_{3} .{ }^{2}$

### 10.6 Saint-Venant's Conjecture

In the previous section we proved two fundamental theorems which assure the existence and uniqueness of the solution of two boundary value problems of linear elasticity. However, we said nothing about the form of the solution itself. In the introductory notes, we stressed the need to resort to numerical methods to find an approximate form of the solution or to Fourier's approach, when the region $C_{*}$ has a simple form. These considerations show the importance of a method which allows us to find analytical solutions of equilibrium problems, which we often find in applications (see [12]).

In the engineering sciences, it is very important to find the equilibrium configuration of elastic isotropic systems $S$ satisfying the two following conditions:

[^37]

Fig. 10.1 Example of a beam

- the unstressed reference configuration $C_{*}$ of $S$ has a dimension which is much greater than the others; that is, $C_{*}$ is a cylinder whose length $L$ satisfies the condition

$$
\begin{equation*}
L \gg a, \tag{10.34}
\end{equation*}
$$

where $a$ is a characteristic dimension of a section orthogonal to the direction along which the length $L$ is evaluated;

- the body forces are absent and the surface forces act only on the bases of the above cylinder.

A system satisfying these conditions is called a beam. Let $C_{*}$ be the cylindrical reference configuration of the elastic isotropic system $S, \sigma_{1}$ and $\sigma_{2}$ its simply connected bases, $\sigma_{l}$ the lateral surface of $C_{*}$, and $O X_{1} X_{2} X_{3}$ an orthogonal coordinate system having the origin in the center of mass of $\sigma_{2}$ and the $O X_{3}$-axis along the length $L$ of the cylinder (see Fig. 10.1).

The method, due to Saint-Venant, which allows us to find explicit solutions of the equilibrium problems relative to a beam can be described in the following way:

1. First, it is assumed that any longitudinal planar section $\sigma$ of $C_{*}$ containing the axis $X_{3}$ is subjected to a stress $\mathbf{t}_{\sigma}$, whose component along the $X_{3}$-axis is the only component different from zero; that is,

$$
\begin{equation*}
\mathbf{t}_{\sigma}=\mathbf{T n}=\mathbf{t}_{\sigma} \mathbf{e}_{3} \quad \forall \mathbf{n} \perp \mathbf{e}_{3}, \tag{10.35}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
T_{11}=\mathbf{e}_{1} \cdot \mathbf{T e}_{1}=0, \quad T_{12}=\mathbf{e}_{1} \cdot \mathbf{T} \mathbf{e}_{2}=0, \quad T_{22}=\mathbf{e}_{2} \cdot \mathbf{T e}_{2}=0 . \tag{10.36}
\end{equation*}
$$

Then the most general solution satisfying these conditions is determined by the equilibrium equations. This procedure is called a semi-inverse method.
2. The solutions found in step (1) are used to determine the total force and torque acting on the bases. By using the Saint-Venant conjecture, which is discussed below, they are supposed to represent a good approximation of the equilibrium solutions corresponding to force distributions on the bases with the same total force and torque.

Let us now examine these steps in detail. In our hypotheses, the equilibrium equations can be written as

$$
\begin{equation*}
\mu \Delta \mathbf{u}+(\lambda+\mu) \nabla \nabla \cdot \mathbf{u}=0 \quad \text { on } C_{*}, \tag{10.37}
\end{equation*}
$$

and it is possible to prove (see [4,35], and [12]) that the most general solution of (10.37) satisfying the conditions (10.36) is given by the following functions:

$$
\begin{align*}
u_{1}= & c_{1}+\gamma_{3} X_{2}-\gamma_{2} X_{3} \\
& -k\left\{a_{0} X_{1}+\frac{1}{2} a_{1}\left(X_{1}^{2}-X_{2}^{2}\right)+a_{2} X_{1} X_{2}\right. \\
& \left.+X_{3}\left[b_{0} X_{1}+\frac{1}{2} b_{1}\left(X_{1}^{2}-X_{2}^{2}\right)+b_{2} X_{1} X_{2}\right]\right\} \\
& +\alpha X_{2} X_{3}-\frac{1}{2} a_{1} X_{3}^{2}-\frac{1}{6} b_{1} X_{3}^{3},  \tag{10.38}\\
u_{2}= & c_{2}+\gamma_{1} X_{3}-\gamma_{3} X_{1} \\
& -k\left\{a_{0} X_{2}+\frac{1}{2} a_{2}\left(X_{2}^{2}-X_{1}^{2}\right)+a_{1} X_{1} X_{2}\right. \\
& \left.+X_{3}\left[b_{0} X_{2}+\frac{1}{2} b_{2}\left(X_{2}^{2}-X_{1}^{2}\right)+b_{1} X_{1} X_{2}\right]\right\} \\
& -\alpha X_{1} X_{3}-\frac{1}{2} a_{2} X_{3}^{2}-\frac{1}{6} b_{2} X_{3}^{3},  \tag{10.39}\\
u_{3}= & c_{3}+ \\
& +\frac{1}{2} X_{1}-\gamma_{1} X_{2}+X_{3}^{2}\left(a_{0}+a_{1} X_{1}+b_{1} X_{1}+b_{2} X_{2}\right)-\frac{1}{2} b_{0}\left(X_{1}^{2}+X_{2}^{2}\right) \\
& -b_{1} X_{1} X_{2}^{2}-b_{2} X_{1}^{2} X_{2}+\alpha \psi\left(X_{1}, X_{2}\right) \\
& +b_{1} \eta_{1}\left(X_{1}, X_{2}\right)+b_{2} \eta_{2}\left(X_{1}, X_{2}\right), \tag{10.40}
\end{align*}
$$

where $c_{1}, c_{2}, c_{3}, \gamma_{1}, \gamma_{2}, \gamma_{3}, a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}$, and $\alpha$ are arbitrary constants and $\psi\left(X_{1}, X_{2}\right), \eta_{1}\left(X_{1}, X_{2}\right)$, and $\eta_{2}\left(X_{1}, X_{2}\right)$ are arbitrary harmonic functions; i.e.,

$$
\Delta \psi=\Delta \eta_{1}=\Delta \eta_{2}=0
$$

If the axes $O X_{1}$ and $O X_{2}$ are chosen to coincide with the inertial axes of the bases, we have

$$
\int_{\sigma_{2}} X_{1} d \sigma=\int_{\sigma_{2}} X_{2} d \sigma=\int_{\sigma_{2}} X_{1} X_{2} d \sigma=0
$$

and it is possible to verify that all the solutions (10.38)-(10.40) satisfy the boundary condition

$$
\begin{equation*}
\mathbf{T N}=\mathbf{0} \quad \text { on } \sigma_{l}, \tag{10.41}
\end{equation*}
$$

for any choice of the constants $c_{1}, c_{2}, c_{3}, \gamma_{1}, \gamma_{2}, \gamma_{3}, a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}$, and $\alpha$, if $b_{0}=0$ and the functions $\psi\left(X_{1}, X_{2}\right), \eta_{1}\left(X_{1}, X_{2}\right)$, and $\eta_{2}\left(X_{1}, X_{2}\right)$ satisfy the following Neumann boundary value problems:

$$
\begin{aligned}
& \Delta \psi=0 \quad \text { on } \sigma_{2}, \\
& \frac{d \psi}{d N}=-X_{2} N_{1}+X_{1} N_{2} \quad \text { on } \partial \sigma_{2}, \\
& \Delta \eta_{1}=0 \quad \text { on } \sigma_{2}, \\
& \frac{d \eta_{1}}{d N}=\frac{k X_{1}^{2}+(2-k) X_{2}^{2}}{2} N_{1}+(2+k) X_{1} X_{2} N_{2} \quad \text { on } \partial \sigma_{2}, \\
& \Delta \eta_{2}=0 \quad \text { on } \sigma_{2}, \\
& \frac{d \eta_{2}}{d N}=\frac{k X_{2}^{2}+(2-k) X_{1}^{2}}{2} N_{2}+(2+k) X_{1} X_{2} N_{1} \quad \text { on } \partial \sigma_{2} .
\end{aligned}
$$

Suppose that the functions $\psi\left(X_{1}, X_{2}\right), \eta_{1}\left(X_{1}, X_{2}\right), \eta_{2}\left(X_{1}, X_{2}\right)$ have been determined (up to a constant) by solving the previous boundary problems. Then the family of solutions (10.38)-(10.40) satisfies the equilibrium condition (10.37) and the lateral boundary condition (10.41) for any choice of the constants $c_{1}, c_{2}, c_{3}, \gamma_{1}$, $\gamma_{2}, \gamma_{3}, a_{0}, a_{1}, a_{2}, b_{1}, b_{2}$, and $\alpha$, since $b_{0}=0$, in order to satisfy (10.41).

It remains to impose the remaining boundary conditions

$$
\mathbf{T N}_{1}=\mathbf{t}_{1} \quad \text { on } \sigma_{1}, \quad \mathbf{T} \mathbf{N}_{2}=\mathbf{t}_{2} \quad \text { on } \sigma_{2},
$$

on the bases of the beam. It is quite evident that it is impossible to satisfy these functional conditions with the remaining constants $c_{3}, \gamma_{1}, \gamma_{2}, \gamma_{3}, a_{0}, a_{1}, a_{2}, b_{1}, b_{2}$, and $\alpha$. Therefore these constants are determined by requiring that the total force $\mathbf{R}$ and torque $\mathbf{M}$ evaluated starting from the solution (10.38)-(10.40) coincide with the total force $\mathbf{G}$ and torque $\mathbf{L}$ of the force distributions $\mathbf{t}(\mathbf{X})$ (see (7.20)) on the bases of the beam. In this regard, we remark that, owing to the conditions (10.8) and (10.10), the forces acting on the bases are equilibrated so that

$$
\mathbf{R}=\mathbf{R}_{1}+\mathbf{R}_{2}=\mathbf{0}, \mathbf{M}=\mathbf{M}_{1}+\mathbf{M}_{2}=\mathbf{0},
$$

where $\mathbf{R}_{i}$ and $\mathbf{M}_{i}$ denote the total force and torque on the basis $\sigma_{i}$, respectively. Consequently, the total force and torque of the surface forces, evaluated starting from the solution (10.38)-(10.40), will balance the applied forces on the bases if and only if

$$
\begin{equation*}
\mathbf{R}_{2}=\mathbf{G}_{2}, \mathbf{M}_{2}=\mathbf{L}_{2} . \tag{10.42}
\end{equation*}
$$

If we introduce the notation

$$
\rho_{1}^{2}=\frac{1}{A} \int X_{1}^{2} d \sigma, \rho_{2}^{2}=\frac{1}{A} \int X_{2}^{2} d \sigma
$$

where $A$ is the area of $\sigma_{2}$, it is possible to verify (see [12]) that conditions (10.42) lead to the following expressions for the undetermined constants:

$$
\begin{gather*}
b_{1}=\frac{R_{1}}{A E_{Y} \rho_{1}^{2}}, b_{2}=\frac{R_{2}}{A E_{Y} \rho_{2}^{2}},  \tag{10.43}\\
a_{0}=\frac{R_{3}}{A E_{Y}}, a_{1}=-\frac{M_{2}}{A E_{Y} \rho_{1}^{2}}, a_{2}=\frac{M_{2}}{A E_{Y} \rho_{2}^{2}},  \tag{10.44}\\
M_{3}=-\frac{E}{4(1+k)}\left\{2 A\left(\rho_{1}^{2}+\rho_{2}^{2}\right) \alpha-b_{1} \int_{\sigma_{2}}\left[(2-k) X_{2}^{3}-(4+k) X_{1}^{2} X_{2}\right] d \sigma\right. \\
-b_{2} \int_{\sigma_{2}}\left[(2-k) X_{1}^{3}-(4+k) X_{1} X_{2}^{2}\right] d \sigma \\
-2 \int_{\sigma_{2}}\left[X_{1}\left(\alpha \frac{\partial \psi}{\partial X_{2}}+b_{1} \frac{\partial \eta_{1}}{\partial X_{2}}+b_{2} \frac{\partial \eta_{2}}{\partial X_{2}}\right)\right. \\
\left.\left.\quad-X_{2}\left(\alpha \frac{\partial \psi}{\partial X_{1}}+b_{1} \frac{\partial \eta_{1}}{\partial X_{1}}+b_{2} \frac{\partial \eta_{2}}{\partial X_{1}}\right)\right] d \sigma\right\} \tag{10.45}
\end{gather*}
$$

where, $R_{1}, R_{2}, R_{3}, M_{1}, M_{2}$, and $M_{3}$ are the components of $\mathbf{R}_{2}$ and $\mathbf{M}_{2}$, respectively; moreover, $E_{Y}$ is Young's modulus (see (7.20)) and $A$ is the area of $\sigma_{2}$. The coefficient $q$ of $\alpha$ appearing in (10.45), which has the form

$$
q=\frac{E}{2(1+k)}\left\{2 A\left(\rho_{1}^{2}+\rho_{2}^{2}\right)-\int_{\sigma_{2}}\left[X_{1} \frac{\partial \psi}{\partial X_{2}}-X_{2} \frac{\partial \psi}{\partial X_{1}}\right] d \sigma\right\},
$$

is called the torsional stiffness and can be proved to be positive.
Finally, we note that the constants $c_{1}, c_{2}, c_{3}, \gamma_{1}, \gamma_{2}$, and $\gamma_{3}$ are not relevant, since they define an infinitesimal rigid displacement.

In conclusion, the previous procedure has led us to a set of three functions satisfying the equilibrium equations, the boundary condition of vanishing forces on the lateral surface of the beam, and the further condition that the total forces acting on the bases are globally equilibrated and have the same resultant and torque of the surface loads, applied on the bases. It is evident that these functions do not represent a solution of the posed boundary value problem since they do not satisfy the boundary conditions on the bases at any point of $\sigma_{1}$ and $\sigma_{2}$.

The Saint-Venant conjecture consists of supposing that these functions represent a good approximation of the effective solution of the above boundary value problem. More precisely, Saint-Venant hypothesized that forces having the same resultant and torque produce the same effect on the beam regardless of their distribution on the bases, except for a small region near the bases themselves.

This conjecture allows us to consider the three functions we found as the solution of our equilibrium problem. The conjecture has not yet been proved in the above form (see the end of this section); however, because of its fundamental role in linear elasticity, it is also called the Saint-Venant principle.

### 10.7 The Fundamental Saint-Venant Solutions

The solution proposed by Saint-Venant depends on six constants $a_{0}, a_{1}, a_{2}, b_{1}$, $b_{2}$, and $\alpha$. In other words, by setting all but one of these constants equal to zero, six families of solutions are determined. Due to the linearity of the equilibrium boundary value problem, any linear combination of these six solutions is also a solution.

Let us now discuss the meaning of some deformation patterns.

## 1. Pure (compression) extension

The constant $a_{0} \neq 0$ and all the other constants vanish, so that we have (see (10.38)-(10.40) and (10.43)-(10.45))

$$
\begin{array}{lll}
u_{1}=-k a_{0} X_{1}, & u_{2}=-k a_{0} X_{2}, & u_{3}=-k a_{0} X_{3}  \tag{10.46}\\
R_{1}=R_{2}=0, & R_{3}=A E_{Y} a_{0}, & M_{1}=M_{2}=M_{3}=0 .
\end{array}
$$

In other words, the beam is subjected to forces orthogonal to the bases, stretching or compressing the beam (see Fig. 10.2). Each planar section remains planar and the deformation is independent of the form of the basis $\sigma_{2}$.

## 2. Uniform bending

The constant $a_{1} \neq 0$ ( or $\left.a_{2} \neq 0\right)$ and all the other ones vanish so that we have (see (10.38)-(10.40))


Fig. 10.2 Pure extension (compression)


Fig. 10.3 Uniform bending

$$
\begin{align*}
& u_{1}=-\frac{1}{2} a_{1}\left[k\left(X_{1}^{2}-X_{2}^{2}\right)+X_{3}^{2}\right], \quad u_{2}=-a_{1} X_{1} X_{2}, \quad u_{3}=a_{1} X_{1} X_{2}, \\
& R_{1}=R_{2}=0, \quad R_{3}=0, \quad M_{1}=0, \quad M_{2}=-A \rho_{1}^{2} a_{1}, \quad M_{3}=0 \tag{10.47}
\end{align*}
$$

The forces acting on each base are equivalent to a couple lying in the plane $O X_{1} X_{3}$ (see Fig. 10.3). The rulings of the cylinder become parabolas in this plane. The sections of the beam which are orthogonal to $O X_{3}$ remain planar and all their planes contain the point $\left(-a_{1}^{-1}, 0,0\right)$ on the $X_{1}$-axis. Finally, the deformation is again independent of the form of $\sigma_{2}$.

## 3. Nonuniform bending

The constant $b_{1} \neq 0$ (or $b_{2} \neq 0$ ) and all other ones vanish so that we have (see (10.38)-(10.40))

$$
\begin{align*}
u_{1}= & -\frac{1}{2} b_{1}\left[k X_{3}\left(X_{1}^{2}-X_{2}^{2}\right)-\frac{1}{3} X_{3}^{3}\right], \quad u_{2}=-k b_{1} X_{1} X_{2} X_{3}, \\
u_{3}= & b_{1}\left[\frac{1}{2} X_{1} X_{3}^{2}-X_{1} X_{2}^{2}+\eta_{1}\left(X_{1}, X_{2}\right)\right], \\
R_{1}= & A E_{Y} \rho_{1}^{2} b_{1}, \quad R_{2}=R_{3}=0, \quad M_{1}=M_{2}=0, \\
\frac{4(1+k)}{E_{Y}} M_{3}= & b_{1} \int_{\sigma_{2}}\left[(2-k) X_{2}^{3}-(4+k) X_{1}^{3} X_{2}\right] d \sigma \\
& +2 b_{1} \int_{\sigma_{2}}\left(X_{1} \frac{\partial \eta_{1}}{\partial X_{2}}-X_{2} \frac{\partial \eta_{1}}{\partial X_{1}}\right) d \sigma . \tag{10.48}
\end{align*}
$$

The forces, which are equivalent to a unique force parallel to the $O X_{1}$-axis plus a couple contained in $\sigma_{2}$ (see Fig. 10.4), act on each base. The sections of the beam undergo a bending depending on $\eta_{1}$; that is, of the form of $\sigma_{2}$.

## 4. Torsion

The constant $\alpha \neq 0$ and the others vanish so that we have (see (10.38)-(10.40))


Fig. 10.4 Nonuniform bending


Fig. 10.5 Torsion

$$
\begin{align*}
u_{1} & =\alpha X_{1} X_{3}, \quad u_{2}=-\alpha X_{1} X_{3}, \quad u_{3}=\alpha \psi\left(X_{1}, X_{2}\right) \\
R_{1} & =R_{2}=R_{3}=0, \quad M_{1}=M_{2}=0 \\
M_{3} & =\alpha \frac{E_{Y}}{2(1+k)}\left\{A\left(\rho_{1}^{2}+\rho_{2}^{2}\right)-\int_{\sigma_{2}}\left(X_{1} \frac{\partial \psi}{\partial X_{2}}-X_{2} \frac{\partial \psi}{\partial X_{1}}\right) d \sigma\right\} . \tag{10.49}
\end{align*}
$$

On each base acts a force which is equivalent to a couple lying on the base itself. Every ruling becomes a cylindrical helix and $\alpha l$ is a measure of the angle between two sections which are $l$ apart (see Fig. 10.5).

As already mentioned, Saint-Venant's conjecture is so useful when dealing with elastic systems whose geometry is such that one dimension dominates the others that it is often referred as a principle. In this context, we ask ourselves if SaintVenant's solution does represent a sufficient approximation of the true solution and if a rigorous mathematical proof of this principle can be given. For instance, for a beam with sharp edges, the first derivatives of the effective solution are singular at such points; therefore, Saint-Venant's solution, which is supposed to be regular, cannot be a convenient approximation.

Finally, we close this section with a result due to Toupin (see [65]), which represents a partial proof of Saint-Venant's conjecture.

Theorem 10.6. Let $S$ be a cylinder of length $2 l$ and denote as $C\left(Z_{1}, Z_{2}\right)$ that part of it which is obtained by varying the coordinate $X_{3}$ from $Z_{1}$ to $Z_{2}$. If

$$
U\left(X_{3}\right)=\int_{C\left(-l, X_{3}\right)}\left(2 \mu E_{i j} E_{i j}+\lambda E_{i i} E_{j j}\right) d c
$$

is the elastic energy of the portion from the section $\sigma_{1}$ (of coordinate $-l$ ) to the section of coordinate $X_{3}$ and, moreover, the section $\sigma_{1}$ is free, then

$$
\frac{U\left(X_{3}\right)}{U(l)} \leq \gamma_{0} \exp \left(-\frac{l-X_{3}}{\gamma}\right)
$$

where $\gamma_{0}$ and $\gamma$ depend on the geometry and elastic properties of $S$.
This theorem states that the elastic energy relative to the portion between the coordinates $-l, z$, compared to the energy relative to the whole cylinder, decays exponentially as the section of coordinate $X_{3}$ moves away from $\sigma_{2}$, toward the free section $\sigma_{1}$.

### 10.8 Ordinary Waves in Elastic Systems

In order to describe the wave propagation in linear elastic and anisotropic systems, it is enough to apply the general theory presented in Chap. $8(10.6)_{1}$, which allows us to state the following:

Theorem 10.7. The amplitude of an ordinary wave propagating in the direction $\mathbf{n}$ is an eigenvector of the acoustic tensor $\mathbf{Q ( n )}$, and the normal velocities $c_{n}$ are linked to the positive eigenvalues $\Lambda$ of $\mathbf{Q ( n )}$ through the formula

$$
\begin{equation*}
c_{n}= \pm \sqrt{\frac{\Lambda}{\rho_{*}}} \tag{10.50}
\end{equation*}
$$

Proof. When (8.44) and (8.45) are referred to the system (10.6) ${ }_{1}$, we obtain the jump system

$$
\begin{equation*}
\rho_{*}\left[\left[\frac{\partial^{2} u_{i}}{\partial t^{2}}\right]\right]=C_{i j h k}\left[\left[\frac{\partial^{2} u_{j}}{\partial x_{h} \partial x_{k}}\right]\right] . \tag{10.51}
\end{equation*}
$$

By applying the kinetic conditions (4.40)-(4.42), we get the following eigenvalue problem:

$$
\begin{equation*}
\left(\mathbf{Q}(\mathbf{n})-\rho_{*} c_{n}^{2} \mathbf{I}\right) \mathbf{a} \equiv(\mathbf{Q}(\mathbf{n})-\Lambda \mathbf{I}) \mathbf{a}=\mathbf{0} \tag{10.52}
\end{equation*}
$$

where $\mathbf{a}$ is the amplitude of the discontinuity, $\mathbf{n}$ is the unit vector normal to the surface $\sigma(t)$, and $\mathbf{Q ( n )}$ is the acoustic tensor

$$
\begin{equation*}
Q_{i j}(\mathbf{n})=C_{i j h k} n_{h} n_{k} . \tag{10.53}
\end{equation*}
$$

In Sect. 10.2 we proved some theorems of existence and uniqueness that are based on the assumption that the elasticity tensor $C$ is positive definite. For other theorems of existence and uniqueness, relative to the solution of the equilibrium boundary problems, it was necessary to require that $C$ be strongly elliptic. The following theorem proves that the assumption that $C$ is positive definite is also fundamental when dealing with wave propagation.

Theorem 10.8. If the elasticity tensor is positive definite, then the acoustic tensor $\mathbf{Q}(\mathbf{n})$ is symmetric and positive definite.

Proof. First, we note that the acoustic tensor is symmetric, due to the symmetry properties (10.2) of the elasticity tensor. Furthermore, these symmetry properties of $\mathbb{C}$ allow us to write, for any $\mathbf{v}$,

$$
Q_{i j}(\mathbf{n}) v_{i} v_{j}=C_{i j h k} v_{i} v_{j} n_{h} n_{k}=\frac{1}{4} C_{i j h k}\left(v_{i} n_{h}+v_{h} n_{i}\right)\left(v_{j} n_{k}+v_{k} n_{j}\right) .
$$

Since the tensor $v_{i} n_{h}+v_{h} n_{i}$ is symmetric and $\mathbb{C}$ is positive definite, then

$$
Q_{i j}(\mathbf{n}) v_{i} v_{j}>0 .
$$

Given a propagation direction $\mathbf{n}$, a wave is said to be a longitudinal or dilational wave if

$$
\begin{equation*}
\mathbf{a} \| \mathbf{n} ; \tag{10.54}
\end{equation*}
$$

it is called a transverse or shear wave if

$$
\begin{equation*}
\mathbf{a} \cdot \mathbf{n}=0 \tag{10.55}
\end{equation*}
$$

With this in mind, we prove the following:
Theorem 10.9. Let $C$ be symmetric and positive definite. Then, given a propagation direction $\mathbf{n}$, the following cases are possible:

1. There are ordinary waves propagating in the direction $\mathbf{n}$ with three different velocities; moreover, their amplitudes of discontinuity are mutually orthogonal;
2. There are waves propagating in the direction $\mathbf{n}$, with only two different velocities; one of these is related to waves whose amplitude has a fixed direction, whereas the other velocity is related to waves having amplitudes in any direction, but orthogonal to the first one;
3. There are waves propagating in the direction $\mathbf{n}$ with only one velocity and amplitude vector in any direction;
4. Finally, there is at least one direction $\mathbf{n}_{1}$ characterized by longitudinal and transverse waves.

Proof. The points (1), (2), and (3) derive from Theorem 10.7 and from the fact that the acoustic tensor is symmetric and positive definite. To prove the property (4), note that, given (10.54) and (10.52), the ordinary wave propagating along $\mathbf{n}$ is longitudinal if $\mathbf{n}$ is an eigenvector of the acoustic tensor

$$
\left(\mathbf{Q}(\mathbf{n})-\rho c_{n}^{2} \mathbf{I}\right) \mathbf{n}=\mathbf{0}
$$

so that we have to prove that the mapping $\mathbf{n} \longrightarrow \mathbf{Q ( n ) n}$ has at least one eigenvector. Since $\mathbf{Q ( n )}$ is positive definite, it holds that

$$
\begin{equation*}
\mathbf{n} \cdot \mathbf{Q}(\mathbf{n}) \mathbf{n}>0, \quad \mathbf{Q}(\mathbf{n}) \mathbf{n} \neq 0 \tag{10.56}
\end{equation*}
$$

As a consequence, the function

$$
\begin{equation*}
\mathbf{l}(\mathbf{n})=\frac{\mathbf{Q}(\mathbf{n}) \mathbf{n}}{|\mathbf{Q}(\mathbf{n}) \mathbf{n}|} \tag{10.57}
\end{equation*}
$$

maps unit vectors $\mathbf{n}$ into unit vectors. However, it cannot be that

$$
\mathbf{l}(\mathbf{n})=-\mathbf{n}
$$

corresponding to

$$
\frac{\mathbf{n} \cdot \mathbf{Q}(\mathbf{n}) \mathbf{n}}{|\mathbf{Q}(\mathbf{n}) \mathbf{n}|}=-1
$$

since this contradicts (10.56). By invoking the so-called theorem of fixed points, the function (10.57) has at least one fixed point; i.e., there exists a unit vector $\mathbf{n}_{1}$ such that

$$
\mathbf{l}\left(\mathbf{n}_{1}\right)=\mathbf{n}_{1} .
$$

By considering (10.57), we see that

$$
\mathbf{Q}\left(\mathbf{n}_{1}\right) \mathbf{n}_{1}=\left|\mathbf{Q}\left(\mathbf{n}_{1}\right) \mathbf{n}_{1}\right| \mathbf{n}_{1} \equiv \lambda \mathbf{n}_{1},
$$

and the theorem is proved.
Only if the material exhibits additional symmetries, i.e., only if the material has an inherent reference frame are there preferential directions of polarization for the wave.

With this in mind, we now consider the case of transverse anisotropy, also called orthotropy of revolution. This is of particular relevance for geological media.

This assumption means that there is a plane $\left(0 x_{1}, 0 x_{2}\right)$ in which all the directions are equivalent and there is an axis $0 x_{3}$ of orthotropy. The number of independent elastic constant reduces to 5 , namely:

$$
\begin{gather*}
C_{1111}=C_{2222}, \quad C_{2233}=C_{1133}, \quad C_{1313}=C_{2323}, \\
C_{3333} \text { and } C_{1122},  \tag{10.58}\\
C_{1212}=\frac{1}{2}\left(C_{1111}-C_{1122}\right) .
\end{gather*}
$$

All the other constants are equal to zero.
If the direction of propagation is oriented along the orthotropic axis, i.e., $\mathbf{n}=\mathbf{n}_{3}$, then we can infer the existence of a longitudinal wave moving with speed of propagation

$$
c_{P}=\sqrt{C_{3333} / \rho}
$$

and two transverse waves moving with speed of propagation

$$
c_{S}=\sqrt{C_{1313} / \rho}=\sqrt{C_{2323} / \rho}
$$

If $\mathbf{n} \cdot \mathbf{n}_{3}=0$, i.e., the propagation vector belongs to the plane of isotropy, then there is a longitudinal wave propagating with speed

$$
c_{P}=\sqrt{C_{1111} / \rho}=\sqrt{C_{2222} / \rho}
$$

and two transverse waves. One of the latter waves is polarized in the direction of $\mathbf{n}_{3}$, i.e., it has its amplitude in this direction, and propagates with speed

$$
c_{S}=\sqrt{C_{1313} / \rho}=\sqrt{C_{2323} / \rho},
$$

whereas the other is polarized in the isotropic plane and moves with normal velocity

$$
c_{S}=\sqrt{C_{1212} / \rho}
$$

These aspects are particularly useful when using wave propagation as a tool for identifying the elastic properties of geological media.

If the elastic system is isotropic and homogeneous, then the elasticity tensor assumes the form (10.3) and the acoustic tensor is written as

$$
\begin{equation*}
\mathbf{Q}(\mathbf{n})=(\lambda+\mu) \mathbf{n} \otimes \mathbf{n}+\mu \mathbf{I} . \tag{10.59}
\end{equation*}
$$

It is important to determine the conditions which the Lamé coefficients $\lambda$ and $\mu$ must satisfy in order that the elasticity tensor be strongly elliptic and the acoustic tensor be positive definite.

The answer relies on the following theorem:
Theorem 10.10. Given an isotropic, homogeneous, linear elastic material, if

$$
\begin{equation*}
\lambda+2 \mu>0, \quad \mu>0, \tag{10.60}
\end{equation*}
$$

then the elasticity tensor is positive definite and the acoustic tensor is symmetric and positive definite. Moreover, in any direction $\mathbf{n}$ there are longitudinal waves whose velocity is

$$
\begin{equation*}
c_{P}= \pm \sqrt{\frac{\lambda+2 \mu}{\rho_{*}}} \tag{10.61}
\end{equation*}
$$

and transverse waves whose velocity is

$$
\begin{equation*}
c_{S}= \pm \sqrt{\frac{\mu}{\rho_{*}}} \tag{10.62}
\end{equation*}
$$

Moreover, the amplitudes of these last waves lie in a plane normal to $\mathbf{n}$.
Proof. By considering (10.3), we see that the elasticity tensor becomes

$$
C_{i j h k} \xi_{i j} \xi_{h k}=(\lambda+2 \mu) \sum_{i=1}^{3} \xi_{i i}^{2}+2 \mu\left(\xi_{12}^{2}+\xi_{13}^{2}+\xi_{13}^{2}\right)
$$

so that, if (10.60) holds then $C$ is positive definite. It follows that the acoustic tensor is symmetric and positive definite. In addition, the eigenvalues problem for the acoustic tensor $\mathbf{Q ( n )}$ is

$$
((\lambda+\mu) \mathbf{n} \otimes \mathbf{n}+\mu \mathbf{I}) \mathbf{a}=\rho_{*} c_{n}^{2} \mathbf{a}
$$

Assuming an orthogonal base system with origin at the point $\mathbf{x}$ of the wavefront and the $O X_{1}$-axis along $\mathbf{n}$, we can write the previous equation as

$$
\left(\begin{array}{ccc}
\lambda+2 \mu & 0 & 0 \\
0 & \mu & 0 \\
0 & 0 & \mu
\end{array}\right)\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)=\rho_{*} c_{n}^{2}\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)
$$

The characteristic equation becomes

$$
\left(\lambda+2 \mu-\rho_{*} c_{n}^{2}\right)\left(\mu-\rho_{*} c_{n}^{2}\right)^{2}=0
$$

and (10.61), (10.62) are proved. In addition, it can be shown that the eigenvectors corresponding to the first value of the velocity have the form ( $a_{1}, 0,0$ ), so that the wave is longitudinal; the eigenvectors associated with the second value of the velocity have the form $\left(0, a_{1}, a_{2}\right)$, so that the wave is transverse and orthogonal to $\mathbf{n}$.

When $c_{n}$ is known, the evolution of the wavefront $f=$ const can be derived (see Chap. 4) from the equation

$$
c_{n}=-\frac{1}{|\nabla f|} \frac{\partial f}{\partial t}
$$

When dealing with isotropic, linear elastic materials, the results of the previous theorem can also be obtained by using the decomposition suggested by Helmholtz's theorem:

Theorem 10.11. A vector field $\mathbf{u}$, which is finite, uniform and regular and vanishes at infinity, can be expressed as a sum of a gradient of a scalar potential $\phi$ and the curl of a vector $\Psi$ whose divergence is zero:

$$
\mathbf{u}=\mathbf{u}_{1}+\mathbf{u}_{2},
$$

where

$$
\begin{equation*}
\mathbf{u}_{1}=\nabla \phi, \quad \mathbf{u}_{2}=\nabla \times \boldsymbol{\Psi}, \quad \nabla \cdot \boldsymbol{\Psi}=0 \tag{10.63}
\end{equation*}
$$

We use this theorem without proving it. Substitute (10.63) into the (10.7) to obtain

$$
\begin{equation*}
\rho_{*} \ddot{\mathbf{u}}=(\lambda+2 \mu) \nabla(\nabla \cdot \mathbf{u})-\mu \nabla \times(\nabla \times \mathbf{u}), \tag{10.64}
\end{equation*}
$$

and rearrange the operators to obtain the equations

$$
\begin{equation*}
\nabla\left[\rho_{*} \frac{\partial^{2} \phi}{\partial t^{2}}-(\lambda+2 \mu) \Delta \phi\right]+\nabla \times\left[\rho_{*} \frac{\partial^{2} \boldsymbol{\Psi}}{\partial t^{2}}-\mu \Delta \Psi\right]=0 \tag{10.65}
\end{equation*}
$$

Equation (10.65) implies that the potentials $\phi$ and $\Psi$ satisfy D'Alembert's equation, i.e.,

$$
\begin{gather*}
\rho_{*} \frac{\partial^{2} \phi}{\partial t^{2}}=(\lambda+2 \mu) \Delta \phi,  \tag{10.66}\\
\rho_{*} \frac{\partial^{2} \boldsymbol{\Psi}}{\partial t^{2}}=\mu \Delta \boldsymbol{\Psi} . \tag{10.67}
\end{gather*}
$$

The first displacement field $\mathbf{u}_{1}$, obtained from the potential $\phi$ as a solution of (10.66), represents a wave propagating at a normal speed

$$
c_{P}=\sqrt{\frac{\lambda+2 \mu}{\rho_{*}}}
$$

and, since

$$
\nabla \cdot \mathbf{u}_{1} \neq 0, \quad \nabla \times \mathbf{u}_{1}=0
$$

we conclude that an irrotational displacement produced by the wave generates volume changes. Furthermore, if we consider a plane wave represented by the solution

$$
\phi=\phi\left(\mathbf{n} \cdot \mathbf{X}-c_{P} t\right),
$$

then the displacement $\mathbf{u}_{1}=\nabla \phi=\mathbf{n} \phi$ is parallel to the propagation direction, so that the wave is longitudinal.

The second field $\mathbf{u}_{2}=\nabla \times \boldsymbol{\Psi}$ describes waves propagating at a normal speed

$$
c_{S}=\sqrt{\frac{\mu}{\rho_{*}}}
$$

and satisfying the conditions

$$
\nabla \cdot \mathbf{u}_{2}=0, \quad \nabla \times \mathbf{u}_{2} \neq \mathbf{0} .
$$

Again, by considering a plane wave $\boldsymbol{\Psi}=\boldsymbol{\Psi}\left(\boldsymbol{n} \cdot \boldsymbol{X}-c_{S} t\right)$ and the corresponding displacement

$$
\mathbf{u}_{2}=\nabla \times \boldsymbol{\Psi}=\mathbf{n} \times \boldsymbol{\Psi},
$$

we have that $\mathbf{n} \cdot \mathbf{u}_{2}=0$ and the wave is transverse.

### 10.9 Plane Waves

In this section we consider plane harmonic waves whose displacement field is represented by

$$
\begin{equation*}
\mathbf{u}(\mathbf{X}, \mathbf{t})=\mathbf{A} \cos \left(\frac{2 \pi}{\lambda} \mathbf{n} \cdot \mathbf{X}-\omega t+\varphi\right) \equiv \mathbf{A} \cos (\mathbf{k} \cdot \mathbf{X}-\omega t+\varphi) . \tag{10.68}
\end{equation*}
$$

The absolute value of the constant $\mathbf{A}$ is called the amplitude, $\mathbf{n}$ is the propagation unit vector, $\omega$ is the circular frequency,

$$
\frac{|\mathbf{k}|}{2 \pi}
$$

is the wave number, $\lambda$ is the wavelength, and $\varphi$ is the phase. In the following discussion,

$$
f=\frac{\omega}{2 \pi}, T=\frac{1}{f},
$$

denote the frequency and the period, respectively, and

$$
\begin{equation*}
\alpha=f \lambda=\frac{\omega}{k} \tag{10.69}
\end{equation*}
$$

is the phase velocity.
The propagation of these waves will be analyzed in spatial regions with the following geometries:

1. a homogeneous and isotropic half-space $y \geq 0$, whose boundary $y=0$ is a free surface, i.e.,

$$
\begin{equation*}
\mathbf{T N}=\mathbf{0}, \tag{10.70}
\end{equation*}
$$

where $\mathbf{N}$ is the unit vector normal to the surface $y=0$. This case is relevant when we investigate reflection phenomena and prove the existence of Rayleigh surface waves;
2. a domain formed by two homogeneous and isotropic media, whose interface $y=$ 0 is characterized by the jump conditions

$$
\begin{equation*}
[[u]]=0,[[\mathbf{T N}]]=\mathbf{0} . \tag{10.71}
\end{equation*}
$$

This case is relevant when we investigate refraction phenomena;
3. a layer of limited depth. This case is relevant when we investigate the RayleighLamb dispersion relation.

In all the above cases, a boundary problem is formulated and we search for a solution by using the method of separation of variables. Without loss of generality, the direction of propagation defined by the unit vector $\mathbf{n}$ is supposed to lie on the plane $x y$. This is a vertical plane, whereas the $x z$-plane, which represents the boundary surface of the half-space, is the horizontal plane. The displacement $u_{n}$ produced by longitudinal waves is in the direction $\mathbf{n}$, so that it lies in the vertical plane, whereas the displacement produced by transverse waves is normal to $\mathbf{n}$. The components $u_{v}$ and $u_{h}$ lie on the vertical plane and in the normal plane to $\mathbf{n}$, respectively (see Fig. 10.6).

The selected reference system is such that the vector $\mathbf{k}$ has only two components ( $k, p$ ), so that

$$
\mathbf{k} \cdot \mathbf{X}=k x+p y .
$$

Furthermore, by using Helmholtz's theorem, the displacement $\mathbf{u}$ is expressed by (10.63). In particular, since the motion is independent of $z,{ }^{3}$ the displacement components are

[^38]

Fig. 10.6 Plane waves

$$
\begin{align*}
& u_{x}=\frac{\partial \phi}{\partial x}+\frac{\partial \Psi_{3}}{\partial y}  \tag{10.72}\\
& u_{y}=\frac{\partial \phi}{\partial y}-\frac{\partial \Psi_{3}}{\partial x} \\
& u_{z}=-\frac{\partial \Psi_{1}}{\partial y}+\frac{\partial \Psi_{2}}{\partial x}
\end{align*}
$$

and the condition $\nabla \cdot \boldsymbol{\Psi}=0$ becomes

$$
\begin{equation*}
\frac{\partial \Psi_{1}}{\partial x}+\frac{\partial \Psi_{2}}{\partial y}=0 \tag{10.73}
\end{equation*}
$$

The mathematical problem of determining solutions in the half-space $y \geq 0$ reduces to finding the solution of the equations (10.66) and (10.67):

$$
\begin{gather*}
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=\frac{1}{c_{p}^{2}} \frac{\partial^{2} \phi}{\partial t^{2}},  \tag{10.74}\\
\frac{\partial^{2} \Psi_{\alpha}}{\partial x^{2}}+\frac{\partial^{2} \Psi_{\alpha}}{\partial y^{2}}=\frac{1}{c_{s}^{2}} \frac{\partial^{2} \Psi_{\alpha}}{\partial t^{2}}, \alpha=1,2,3, \tag{10.75}
\end{gather*}
$$

when the initial and boundary conditions are given.
To do this, consider the Eq. (10.74), ${ }^{4}$ and search for a solution in the form

$$
\begin{equation*}
\phi(x, y, t)=X(x) Y(y) T(t) . \tag{10.76}
\end{equation*}
$$

[^39]By substituting (10.76) into (10.74) we get

$$
\begin{equation*}
\frac{X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=\frac{1}{c_{p}^{2}} \frac{T^{\prime \prime}}{T} \equiv \frac{a}{c_{p}^{2}} \tag{10.77}
\end{equation*}
$$

where $a$ is a constant. Then from

$$
\frac{T^{\prime \prime}}{T}=a
$$

by assuming $a=-\omega^{2}$, we derive the solution

$$
\begin{equation*}
T(t)=A_{t} \sin \omega t+B_{t} \cos \omega t \tag{10.78}
\end{equation*}
$$

which expresses the harmonic character of the wave under consideration. Furthermore, from (10.77) it follows that

$$
\frac{X^{\prime \prime}}{X}=-\frac{\omega^{2}}{c_{p}^{2}}-\frac{Y^{\prime \prime}}{Y} \equiv b
$$

and, since we are searching for harmonic solutions in at least one of the directions $x$ and $y$, by assuming $b=-k^{2}$, the following system holds:

$$
\begin{align*}
\frac{X^{\prime \prime}}{X} & =-k^{2} \\
\frac{Y^{\prime \prime}}{Y} & =k^{2}-\frac{\omega^{2}}{c_{p}^{2}} \tag{10.79}
\end{align*}
$$

The first equation represents the propagation in the $x$-axis direction

$$
\begin{equation*}
X(x)=A_{x} \sin k x+B_{x} \cos k x \tag{10.80}
\end{equation*}
$$

and the solution (10.76) becomes

$$
\begin{equation*}
\phi(x, y, t)=Y(y)\left(A_{x} \sin k x+B_{x} \cos k x\right)\left(A_{t} \sin \omega t+B_{t} \cos \omega t\right) . \tag{10.81}
\end{equation*}
$$

In order to find the function $Y(y)$, two cases have to be distinguished:

$$
\begin{align*}
& k^{2}-\frac{\omega^{2}}{c_{p}^{2}} \geq 0  \tag{10.82}\\
& k^{2}-\frac{\omega^{2}}{c_{p}^{2}}<0
\end{align*}
$$

Similarly, for the Eq. (10.75) we get

$$
\begin{align*}
\Psi_{\alpha}(x, y, t) & \equiv Y_{\alpha}(y) X_{\alpha}(x) T_{\alpha}(t) \\
& =Y_{\alpha}(y)\left(A_{x \alpha} \sin k_{\alpha} x+B_{x \alpha} \cos k_{\alpha} x\right)\left(A_{t \alpha} \sin \omega_{\alpha} t+B_{t \alpha} \cos \omega_{\alpha} t\right) \tag{10.83}
\end{align*}
$$

where $\alpha=1,2,3$, and any function $Y_{\alpha}(y)$ depends on the choice of one of the two cases

$$
\begin{align*}
& k_{\alpha}^{2}-\frac{\omega_{\alpha}^{2}}{c_{s}^{2}} \geq 0  \tag{10.84}\\
& k_{\alpha}^{2}-\frac{\omega_{\alpha}^{2}}{c_{s}^{2}}<0
\end{align*}
$$

In particular, by assuming $(10.82)_{2}$ and $(10.84)_{2}$, we have

$$
\begin{align*}
Y(y) & =A_{y} \sin p y+B_{y} \cos p y \\
Y_{\alpha}(y) & =A_{y \alpha} \sin q_{\alpha} y+B_{y \alpha} \cos q_{\alpha} y, \alpha=1,2,3 \tag{10.85}
\end{align*}
$$

where

$$
\begin{align*}
p & =\sqrt{\frac{\omega^{2}}{c_{p}^{2}}-k^{2}} \\
p_{\alpha} & =\sqrt{\frac{\omega_{\alpha}^{2}}{c_{s}^{2}}-k_{\alpha}^{2}}, \alpha=1,2,3 \tag{10.86}
\end{align*}
$$

In the following discussion, it is convenient to use Euler's formulae

$$
\begin{equation*}
\cos \beta+i \sin \beta=e^{i \beta}, \cos \beta-i \sin \beta=e^{-i \beta} \tag{10.87}
\end{equation*}
$$

which allow us to write (10.85) in the exponential form

$$
\begin{align*}
Y(y) & =A_{y} e^{-i p y}+B_{y} e^{i p y} \\
Y_{\alpha}(y) & =A_{y \alpha} e^{-i p_{\alpha} y}+B_{y \alpha} e^{i p_{\alpha} y}, \alpha=1,2,3 \tag{10.88}
\end{align*}
$$

where the constants $A_{y}, B_{y}, A_{y \alpha}$, and $B_{y \alpha}$ are properly defined. ${ }^{5}$ By applying the same exponential form to $X(x), T(t), X_{\alpha}(x)$, and $T_{\alpha}(t),(10.81)$ and (10.83) can be written as

[^40]\[

$$
\begin{align*}
\phi & =\left(A_{y} e^{-i p y}+B_{y} e^{i p y}\right)\left(A_{x} e^{-i k x}+B_{x} e^{i k x}\right)\left(A_{t} e^{-i \omega t}+B_{t} e^{i \omega t}\right), \\
\Psi_{\alpha} & =\left(A_{y \alpha} e^{-i p_{\alpha} y}+B_{y \alpha} e^{i p_{\alpha} y}\right)\left(A_{x \alpha} e^{-i k_{\alpha} x}+B_{x \alpha} e^{i k_{\alpha} x}\right)  \tag{10.89}\\
& \times\left(A_{t \alpha} e^{-i \omega_{\alpha} t}+B_{t \alpha} e^{i \omega_{\alpha} t}\right) .
\end{align*}
$$
\]

where again all the constants have been defined.
In order to appreciate the mathematical aspects of the problem, we observe that the uniqueness of the solution in the half-space $y \geq 0$ needs to define the following:

1. the initial conditions, i.e., the values of the functions $\phi$ and $\Psi_{\alpha}$ and their time derivatives at the initial instant;
2. the asymptotic conditions, i.e., the behavior of $\phi$ and $\Psi_{\alpha}$ if $x \longrightarrow \pm \infty$ and $y \longrightarrow \infty$;
3. the boundary condition (10.70), which is equivalent to three scalar conditions on the surface $y=0$.

In addition, (10.73) must be taken into account.
In this way we obtain $8+12+3+1=24$ conditions for the 24 constants in (10.90). However, the periodic dependence on the variables $x, y$, and $t$ rules out both the initial and asymptotic conditions. As far as the initial data are concerned, it is always possible to eliminate the constants $B_{t}$ and $B_{t \alpha}$ and to put $A_{t}$ and $A_{t \alpha}$ into other constants, in order to reduce their number to 16 . Moreover, in the absence of asymptotic conditions, the remaining constants are still undetermined. In conclusion, we are faced with a problem in which 16 constants are limited by 4 conditions so that it admits $\infty^{12}$ solutions. We will need to give to some of these constants a convenient value, depending on the relevant aspects of the problem under consideration.

In order to evaluate (10.70) and (10.71), it is useful to write down the components of the stress tensor. From (7.18), (10.72), since

$$
\Delta \phi=\left(\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}\right),
$$

can be written as

$$
C^{\prime} e^{i \beta}+D^{\prime} e^{-i \beta}
$$

with

$$
C^{\prime}+D^{\prime}=C, i\left(C^{\prime}-D^{\prime}\right)=D .
$$

it follows that

$$
\begin{align*}
T_{11} & =\lambda \Delta \phi+2 \mu\left(\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \Psi_{3}}{\partial x \partial y}\right), \\
T_{22} & =\lambda \Delta \phi+2 \mu\left(\frac{\partial^{2} \phi}{\partial y^{2}}-\frac{\partial^{2} \Psi_{3}}{\partial x \partial y}\right), \\
T_{33} & =\lambda \Delta \phi, \\
T_{12} & =2 \mu\left[\frac{\partial^{2} \phi}{\partial x \partial y}+\frac{1}{2}\left(\frac{\partial^{2} \Psi_{3}}{\partial y^{2}}-\frac{\partial^{2} \Psi_{3}}{\partial x^{2}}\right)\right],  \tag{10.90}\\
T_{23} & =\mu\left(\frac{\partial^{2} \Psi_{2}}{\partial y \partial x}-\frac{\partial^{2} \Psi_{1}}{\partial y^{2}}\right), \\
T_{13} & =\mu\left(-\frac{\partial^{2} \Psi_{1}}{\partial y \partial x}+\frac{\partial^{2} \Psi_{2}}{\partial x^{2}}\right) .
\end{align*}
$$

### 10.10 Reflection of Plane Waves in a Half-Space

In the discussion below, longitudinal waves will be denoted by $P$, whereas transverse waves will be denoted by $S H$ if they are polarized in the horizontal plane (Fig. 10.7) or by $S V$ if they are polarized in the vertical plane (Fig. 10.8).

When the interface between two media is free, then there arises a simple reflection characterized by the conversion of modes, i.e., an incident longitudinal or transverse plane wave gives rise to two reflected waves, one longitudinal and the other transverse.


Fig. 10.7 SH waves


Fig. 10.8 SV waves

On the basis of the previous remarks, it is always possible to set $B_{t}=0$. Then, by developing the products in $(10.90)_{1}$ and by conveniently denoting the multiplicative constants, we obtain 4 terms whose wave vectors are

$$
(k,-p), \quad(k, p), \quad(-k, p), \quad(-k,-p)
$$

Apart from a symmetry with respect to the $O y$-axis, the last two wave numbers refer to waves propagating in the same manner as the first two. Since the same arguments apply to $\Psi_{\alpha}$, we lose no generality by writing

$$
\begin{align*}
\phi(x, y, t) & =A e^{i(k x-p y-\omega t)}+B e^{i(k x+p y-\omega t)}, \\
\Psi_{\alpha}(x, y, t) & =A_{\alpha} e^{i\left(k_{\alpha} x-p_{\alpha} y-\omega_{\alpha} t\right)}+B_{\alpha} e^{i\left(k_{\alpha} x+p_{\alpha} y-\omega_{\alpha} t\right)}, \tag{10.91}
\end{align*}
$$

where $\alpha=1,2,3$. These functions must be determined through the conditions

$$
\begin{equation*}
T_{21}=T_{22}=T_{23}=0 \quad \text { for } y=0, \tag{10.92}
\end{equation*}
$$

which are deduced from $\mathbf{T N}=\mathbf{0}$ for $y=0$, where $\mathbf{N}$ has components $(0,1,0)$.
From (10.72) we deduce that $u_{x}$ and $u_{y}$ depend on $\phi$ and $\Psi_{3}$, which are the potentials describing $P$ and $S V$ waves; similarly, $u_{z}$ only depends on $\Psi_{1}$ and $\Psi_{2}$, which describe $S H$ waves. Accordingly, it is convenient to split the problem into two other problems, the first related to the displacement field represented by $\left(u_{x}, u_{y}, 0\right)$ and the second described by $\left(0,0, u_{z}\right)$.
(a) $P$ and $S V$ waves

$$
\begin{gather*}
u_{x}=\frac{\partial \phi}{\partial x}+\frac{\partial \Psi_{3}}{\partial y}, \quad u_{y}=\frac{\partial \phi}{\partial y}-\frac{\partial \Psi_{3}}{\partial x}, \quad u_{z}=0  \tag{10.93}\\
T_{21}=0, \quad T_{22}=0 \quad \text { for } y=0
\end{gather*}
$$

(b) SH waves

$$
\begin{gather*}
u_{x}=u_{y}=0, \quad u_{z}=-\frac{\partial \Psi_{1}}{\partial y}+\frac{\partial \Psi_{2}}{\partial x}, \\
\frac{\partial \Psi_{1}}{\partial x}+\frac{\partial \Psi_{2}}{\partial y}=0  \tag{10.94}\\
T_{23}=0 \quad \text { for } y=0
\end{gather*}
$$

## $P$ and $S V$ Waves

From (10.91) and (10.93) it follows that

$$
\begin{align*}
\phi(x, y, t) & =A\left(I_{P}\right) e^{i(k x-p y-\omega t)}+A\left(R_{P}\right) e^{i(k x+p y-\omega t)} \\
\Psi_{3}(x, y, t) & =A\left(I_{S V}\right) e^{i\left(k_{3} x-p_{3} y-\omega_{3} t\right)}+A\left(R_{S V}\right) e^{i\left(k_{3} x+p_{3} y-\omega_{3} t\right)} \tag{10.95}
\end{align*}
$$

where the constants $A$ and $B$ have been changed in order to highlight their physical meaning: the first term in $(10.95)_{1}$ represents the amplitude of the $P$ wave incident in the direction $\mathbf{k}_{P}=(k,-p, 0)$, whereas $A\left(R_{P}\right)$ is the amplitude of the $P$ wave reflected in the direction $\mathbf{k}_{P}^{\prime}=(k, p, 0)$. A similar meaning is attributed to $A\left(I_{S}\right)$, which denotes the amplitude of a $S V$ wave incident in the direction $\mathbf{k}_{S V}=\left(k_{3},-p_{3}, 0\right)$, whereas $A\left(R_{S V}\right)$ is the amplitude of the $S V$ wave reflected in the direction $\mathbf{k}_{S V}^{\prime}=\left(k_{3}, p_{3}, 0\right)$. In this way, $(10.95)_{1}$ describes two plane waves; the first one is incident with respect to the surface $y=0$ at an angle $\theta_{p}$, called the angle of incidence, and the second one is the reflected wave, with the corresponding angle of the same amplitude, called the angle of reflection. If $\theta_{S V}$ denotes the angle between the $S V$ ray and the normal $\mathbf{N}$ to the plane of incidence, then the same considerations apply to $(10.95)_{2}$. The above functions represent a solution of the problem posed if the constants in (10.95) can be found such that they satisfy the boundary conditions $(10.93)_{2}$. From the above remarks, it follows that

$$
\begin{align*}
k & =k_{P} \sin \theta_{p}, p=k_{P} \cos \theta_{p} \\
k_{3} & =k_{S V} \sin \theta_{S V}, p_{3}=k_{S V} \cos \theta_{S V} \tag{10.96}
\end{align*}
$$

where

$$
k_{P}=\sqrt{k^{2}+p^{2}}, k_{S V}=\sqrt{k_{3}^{2}+p_{3}^{2}} .
$$

By substituting (10.95) into the first part of $(10.93)_{2}$ and by also taking into account (10.90), we can prove that the following equation holds:

$$
\begin{align*}
& k_{P}^{2} \sin \left(2 \theta_{P}\right) e^{i \mu}\left(A\left(I_{P}\right)-A\left(R_{P}\right)\right)  \tag{10.97}\\
& -k_{S V}^{2} \cos \left(2 \theta_{S V}\right) e^{i \mu_{3}}\left(A\left(I_{S V}\right)+A\left(R_{S V}\right)\right)=0,
\end{align*}
$$

where

$$
\begin{equation*}
\mu=k_{P} x \sin \theta_{P}-\omega t, \mu_{3}=k_{S V} x \sin \theta_{S V}-\omega_{3} t \tag{10.98}
\end{equation*}
$$

Since $x$ and $t$ are arbitrary, (10.97) is satisfied only if

$$
\begin{align*}
& k_{P} x \sin \theta_{P}-\omega t=k_{S V} x \sin \theta_{S V}-\omega_{3} t, \\
& k_{P}^{2} \sin \left(2 \theta_{P}\right)\left(A\left(I_{P}\right)-A\left(R_{P}\right)\right)  \tag{10.99}\\
& -k_{S V}^{2} \cos \left(2 \theta_{S V}\right)\left(A\left(I_{S V}\right)+A\left(R_{S V}\right)\right)=0 .
\end{align*}
$$

Similarly, from (10.99) $)_{1}$ it follows that

$$
\begin{align*}
\omega & =\omega_{3} \\
k_{P} \sin \theta_{P} & =k_{S V} \sin \theta_{S V} . \tag{10.100}
\end{align*}
$$

Substituting (10.95) into the second part of $(10.93)_{2}$ and considering (10.90) and (10.100), we see that

$$
\begin{align*}
& \cos \left(2 \theta_{S V}\right)\left(A\left(I_{P}\right)+A\left(R_{P}\right)\right)  \tag{10.101}\\
& +\sin \left(2 \theta_{S V}\right)\left(A\left(I_{S V}\right)-A\left(R_{S V}\right)\right)=0 .
\end{align*}
$$

Furthermore, if we introduce the ratio

$$
\delta \equiv \frac{k_{S V}}{k_{P}}=\frac{c_{P}}{c_{S}}>1,
$$

where $c_{P}$ and $c_{S}$ are the normal speed of the longitudinal and transverse wave, then $(10.100)_{1}$ allows us to give the boundary conditions the form

$$
\begin{gather*}
\omega=\omega_{3}, \frac{\sin \theta_{P}}{\sin \theta_{S V}}=\delta>1, \\
\sin \left(2 \theta_{P}\right)\left(A\left(I_{P}\right)-A\left(R_{P}\right)\right)-\delta^{2} \cos \left(2 \theta_{S V}\right)\left(A\left(I_{S V}\right)+A\left(R_{S V}\right)\right)=0, \\
\cos \left(2 \theta_{S V}\right)\left(A\left(I_{P}\right)+A\left(R_{P}\right)\right)+\sin \left(2 \theta_{S V}\right)\left(A\left(I_{S V}\right)-A\left(R_{S V}\right)\right)=0 \tag{10.102}
\end{gather*}
$$



Fig. 10.9 Reflection of waves

The conditions (10.102) give rise to the following remarks.
Both waves have the same frequency. The condition $(10.102)_{2}$ gives the ratio of the angle of incidence of $P$ and $S V$ waves. The last two conditions allow us to link two of the four constants $A$ to the other two, arbitrarily selected. Let us now consider some relevant cases.

- First, assume that $A\left(I_{S V}\right)=0$. Then from $(10.102)_{2,3}$ it follows that

$$
\begin{align*}
\frac{A\left(R_{P}\right)}{A\left(I_{P}\right)} & =\frac{\sin \left(2 \theta_{P}\right) \sin \left(2 \theta_{S V}\right)-\delta^{2} \cos ^{2}\left(2 \theta_{S V}\right)}{\sin \left(2 \theta_{P}\right) \sin \left(2 \theta_{S V}\right)+\delta^{2} \cos ^{2}\left(2 \theta_{S V}\right)} \\
\frac{A\left(R_{S V}\right)}{A\left(I_{P}\right)} & =\frac{2 \sin \left(2 \theta_{P}\right) \cos \left(2 \theta_{S V}\right)}{\sin \left(2 \theta_{P}\right) \sin \left(2 \theta_{S V}\right)+\delta^{2} \cos ^{2}\left(2 \theta_{S V}\right)} \tag{10.103}
\end{align*}
$$

where $\theta_{S V}$ is expressed in terms of $\theta_{P}$ and $\delta$ throughout (10.102) 2 . This result shows that an incident $P$ wave whose angle of incidence is $\theta_{P}$ gives rise to two reflected waves; the first is a $P$ wave having the reflected angle equal to the incident angle, and the second is an $S V$ wave having a reflected angle $\theta_{S V}<\theta_{P}$, according to $(10.102)_{2}$ (see Fig. 10.9).

In other words, the single $P$ wave generates two reflected waves, $P$ and $S V$; this phenomenon is referred to as mode conversion. Furthermore, from (10.103) it also follows that

- if the $P$ wave is normal to the plane of incidence $\left(\theta_{P}=0\right), A\left(R_{S V}\right)=0$, and there is only one reflected $P$ wave; and
- if the angle of incidence satisfies the condition

$$
\sin \left(2 \theta_{P}\right) \sin \left(2 \theta_{S V}\right)-\delta^{2} \cos ^{2}\left(2 \theta_{S V}\right)=0
$$

then there is only the reflected $S V$ wave.

- Let us now consider the case of an incident $S V$ wave. Since $A\left(I_{P}\right)=0$, $(10.102)_{3,4}$ give

$$
\begin{align*}
& \frac{A\left(R_{S V}\right)}{A\left(I_{S V}\right)}=\frac{\sin \left(2 \theta_{P}\right) \sin \left(2 \theta_{S V}\right)-\delta^{2} \cos ^{2}\left(2 \theta_{S V}\right)}{\sin \left(2 \theta_{P}\right) \sin \left(2 \theta_{S V}\right)+\delta^{2} \cos ^{2}\left(2 \theta_{S V}\right)} \\
& \frac{A\left(R_{P}\right)}{A\left(I_{S V}\right)}=-\frac{\delta^{2} \sin \left(4 \theta_{S V}\right)}{\sin \left(2 \theta_{P}\right) \sin \left(2 \theta_{S V}\right)+\delta^{2} \cos ^{2}\left(2 \theta_{3 S V}\right)} \tag{10.104}
\end{align*}
$$

This result shows that an incident $S V$ wave whose angle of incidence is $\theta_{S V}$ gives rise to two reflected waves; the first one is an $S V$ wave whose angle of reflection is equal to the angle of incidence, and the second is a $P$ wave whose angle of reflection is $\theta_{P}>\theta_{S V}$, according to (10.102) $)_{2}$.

If $\theta_{S V}=0, \pi / 4$, then the reflected waves are $S V$ waves of amplitude $-A\left(I_{S V}\right), A\left(I_{S V}\right)$. Furthermore, from $(10.102)_{2}$ follows the existence of a limit value for the angle of reflection of an $S V$ wave:

$$
\begin{equation*}
\left(\theta_{S V}\right)_{\lim }=\arcsin \frac{1}{\delta} \tag{10.105}
\end{equation*}
$$

for which the reflected $P$ wave moves in the $x$-direction. If

$$
\sin \left(2 \theta_{P}\right) \sin \left(2 \theta_{S V}\right)-\delta^{2} \cos ^{2}\left(2 \theta_{S V}\right)=0
$$

then the $S V$ wave is reflected as a $P$ wave.

## SH Waves

From $(10.91)_{2}$ it follows that

$$
\begin{align*}
& \Psi_{1}(x, y, t)=A_{1} e^{i\left(k_{1} x-p_{1} y-\omega_{1} t\right)}+B_{1} e^{i\left(k_{1} x+p_{1} y-\omega_{1} t\right)}  \tag{10.106}\\
& \Psi_{2}(x, y, t)=A_{2} e^{i\left(k_{2} x-p_{2} y-\omega_{2} t\right)}+B_{2} e^{i\left(k_{2} x+p_{2} y-\omega_{2} t\right)}
\end{align*}
$$

Since these functions must satisfy the boundary condition $(10.94)_{3}$, we get

$$
p_{1}^{2}\left(A_{1}+B_{1}\right) e^{i\left(k_{1} x-\omega_{1} t\right)}+k_{2} p_{2}\left(A_{2}-B_{2}\right) e^{i\left(k_{2} x-\omega_{2} t\right)}=0
$$

and, by noting that $x$ and $t$ can be arbitrarily chosen, when $(10.86)_{2}$ is taken into account, it follows that

$$
\begin{gather*}
k_{1}=k_{2}, \omega_{1}=\omega_{2}  \tag{10.107}\\
p_{1}\left(A_{1}+B_{1}\right)=k_{1}\left(A_{2}-B_{2}\right) .
\end{gather*}
$$

By introducing Helmholtz's decomposition (10.94)2, we get

$$
\begin{equation*}
k_{1} A_{1}=p_{1} A_{2}, k_{1} B_{1}=-p_{1} B_{2} \tag{10.108}
\end{equation*}
$$

so that $(10.107)_{2}$ becomes

$$
\left(A_{1}+B_{1}\right)\left(p_{1}^{2}-k_{1}^{2}\right)=0,
$$

and finally

$$
\begin{equation*}
A_{1}=-B_{2}, \quad \text { or } p_{1}^{2}=k_{1}^{2} . \tag{10.109}
\end{equation*}
$$

By paying attention to the first relation of (10.109), the only one of practical interest, and also taking into account (10.108) and (10.109), we see that (10.106) can be written as

$$
\begin{align*}
& \Psi_{1}(x, y, t)=A_{1} e^{i\left(k_{1} x-p_{1} y-\omega_{1} t\right)}-A_{1} e^{i\left(k_{1} x+p_{1} y-\omega_{1} t\right)}  \tag{10.110}\\
& \Psi_{2}(x, y, t)=\left(k_{1} / p_{1}\right) A_{1} e^{i\left(k_{1} x-p_{1} y-\omega_{1} t\right)}+\left(k_{1} / p_{1}\right) A_{1} e^{i\left(k_{1} x+p_{1} y-\omega_{1} t\right)}
\end{align*}
$$

The displacement $u_{z}$, due to $(10.94)_{1}$ and (10.111), assumes the form

$$
u_{z}=\frac{p_{1}^{2}+k_{1}^{2}}{p_{1}}\left[A_{1} e^{i\left(k_{1} x-p_{1} y-\omega_{1} t\right)}+A_{1} e^{i\left(k_{1} x+p_{1} y-\omega_{1} t\right)}\right],
$$

and the following conclusion is proved: an SH wave incident on the surface $y=0$ is reflected as an SH wave with the same amplitude and with the angle of reflection equal to the angle of incidence. In this case there is no mode conversion.

### 10.11 Rayleigh Waves

In the previous sections we proved that, in an elastic unbounded medium, there are two waves: a longitudinal, or dilational, wave and a transverse, or distortional, wave. When dealing with a half-space, it can be proved that there exists an additional wave, called a Rayleigh wave, which propagates confined only in the neighborhood of the surface of the medium, with less speed than the body waves; its displacement decays exponentially with the distance from the surface.

Consider a wave propagating in the $x$ direction, parallel to the surface $y=0$, attenuated in the $y$ direction. Since the displacements occur in the plane $O x y$, only the scalar potential $\phi$ and the component $\Psi_{3}$ of the vector potential $\Psi$ have to be considered.

According to these requirements, we refer to $(10.82)_{1}$ and $(10.84)_{1}$ by taking the positive sign for the functions $Y(y)$ and $Y_{\alpha}(y), \alpha=3$, in the method of separation of variables (see Sect. 10.9). Accordingly, it holds that

$$
\begin{align*}
Y(y) & =A_{y} e^{-\bar{p} y}+B_{y} e^{\bar{p} y} \\
Y_{3}(y) & =A_{3} e^{-\bar{p}_{3} y}+B_{3} e^{\bar{p}_{3} y} \tag{10.111}
\end{align*}
$$

where

$$
\begin{align*}
\bar{p} & =-p=\sqrt{k^{2}-\frac{\omega^{2}}{c_{P}^{2}}}  \tag{10.112}\\
\bar{p}_{3} & =-p_{3}=\sqrt{k_{3}^{2}-\frac{\omega_{3}^{2}}{c_{P}^{2}}}
\end{align*}
$$

In (10.111), since the wave is supposed to be confined to the surface, it follows that $B_{y}=B_{3}=0$ and the potentials become

$$
\begin{align*}
\phi_{3} & =A e^{-\bar{p} y} e^{i(k x-\omega t)}, \\
\Psi & =B e^{-\bar{p}_{3} y} e^{i\left(k_{3} x-\omega_{3} t\right)} . \tag{10.113}
\end{align*}
$$

Constants $A$ and $B$ must satisfy the boundary condition $\mathbf{T N}=\mathbf{0}$; in scalar terms, they can be written as

$$
\begin{equation*}
T_{12}=T_{22}=0 \quad \text { if } y=0 \tag{10.114}
\end{equation*}
$$

By introducing the potentials (10.113) into $(10.90)_{2,4}$, the first part of (10.114) gives

$$
-2 i \bar{p} k A e^{i k x}+\left(\bar{p}_{3}^{2}+k_{3}^{2}\right) B e^{i k_{3} x}=0,
$$

and, since the $x$-axis is arbitrary, it follows that

$$
\begin{equation*}
k=k_{3},-2 i \bar{p} k A+\left(\bar{p}_{3}^{2}+k^{2}\right) B=0 . \tag{10.115}
\end{equation*}
$$

The second part of (10.114) gives

$$
\begin{equation*}
\left[(\lambda+2 \mu) \bar{p}^{2}-\lambda k^{2}\right] A+2 \mu i \bar{p}_{3} k B=0 . \tag{10.116}
\end{equation*}
$$

Moreover, taking into account (10.112) with $k=k_{3}$ and considering the relation $c_{P}^{2} / c_{s}^{2}=(\lambda+2 \mu) / \mu$, we also find that

$$
\begin{aligned}
\bar{p}_{3}^{2}+k^{2} & =2 k^{2}-\frac{\omega^{2}}{c_{S}^{2}} \\
\bar{p}^{2}(\lambda+2 \mu)-\lambda k^{2} & =\left(k^{2}-\frac{\omega^{2}}{c_{P}^{2}}\right)(\lambda+2 \mu)-\lambda k^{2}=\mu\left(2 k^{2}-\frac{\omega^{2}}{c_{S}^{2}}\right) .
\end{aligned}
$$

By introducing these relations into (10.116) and $(10.115)_{2}$, we obtain the following system:

$$
\left(\begin{array}{cc}
2 k^{2}-\frac{\omega^{2}}{c_{S}^{2}} & 2 i k \sqrt{k^{2}-\frac{\omega^{2}}{c_{S}^{2}}}  \tag{10.117}\\
-2 i k \sqrt{k^{2}-\frac{\omega^{2}}{c_{P}^{2}}} & 2 k^{2}-\frac{\omega^{2}}{c_{S}^{2}}
\end{array}\right)\binom{A}{B}=0
$$

which admits a nontrivial solution only if the determinant of the coefficients vanishes. By imposing this condition, we obtain the dispersion relation, which relates the circular frequency $\omega$ to the wave number $k$ :

$$
\begin{equation*}
\left(2 k^{2}-\frac{\omega^{2}}{c_{S}^{2}}\right)^{2}-4 k^{2} \sqrt{k^{2}-\frac{\omega^{2}}{c_{S}^{2}}} \sqrt{k^{2}-\frac{\omega^{2}}{c_{P}^{2}}}=0 \tag{10.118}
\end{equation*}
$$

Finally, by using the relation

$$
\begin{equation*}
c_{R}=\frac{\omega}{k} \tag{10.119}
\end{equation*}
$$

we derive the Rayleigh equation (1887):

$$
\begin{equation*}
\left(2-\frac{c_{R}^{2}}{c_{S}^{2}}\right)^{2}-4\left(1-\frac{c_{R}^{2}}{c_{S}^{2}}\right)^{1 / 2}\left(1-\frac{c_{S}^{2}}{c_{P}^{2}} \frac{c_{R}^{2}}{c_{S}^{2}}\right)^{1 / 2}=0 \tag{10.120}
\end{equation*}
$$

If the potentials (10.113) are introduced into (10.72) with $k=k_{3}$, then the displacement components can be written as

$$
\begin{align*}
& u_{x}=\left(i k A e^{-\bar{p} y}-\bar{p} B e^{-\bar{p}_{3} y}\right) e^{i(k x-\omega t)}, \\
& u_{y}=-\left(\bar{p} A e^{-\bar{p} y}+i k B e^{-\bar{p}_{3} y}\right) e^{i(k x-\omega t)} \tag{10.121}
\end{align*}
$$

The previous results allow us to make the following remarks:

1. First, from $(10.82)_{1}$ and $(10.84)_{1}$, when considering the positive sign as well as $\alpha=3, k=k_{3}$, and recalling (10.119), we get

$$
\begin{equation*}
c_{R}<c_{S}<c_{P} \tag{10.122}
\end{equation*}
$$

i.e., the Rayleigh wave propagates more slowly than the longitudinal and shear waves. Furthermore, from (10.120) it follows that the ratio $c_{R} / c_{S}$ depends only on the ratio $c_{P} / c_{S}$ or, equivalently, on Poisson's ratio; since usually $0.15 \leq v \leq$ 0.3 , it follows that $0.90 \leq c_{R} / c_{S} \leq 0.93$.
2. In the relation (10.120) the wave number $k$ does not appear, so that in an elastic homogeneous medium, surface waves are not dispersive (also see the next section). To see this, consider a wave which is obtained by superimposing two waves of different circular frequency $\omega$. Due to the linear character of the
problem we are dealing with, all the wave components have the same phase velocity and the wave form does not change in time.
3. Since the determinant of the matrix in (10.117) vanishes, the constant $B$ can be derived as a function of $A$ :

$$
\begin{equation*}
B=\frac{2 i A}{2-c_{R}^{2} / c_{S}^{2}} \sqrt{1-c_{R}^{2} / c_{P}^{2}} \tag{10.123}
\end{equation*}
$$

where (10.119) has also been taken into account, so that the displacement components (10.121) depend on the arbitrary constant $A$. Because of the imaginary unit, these components exhibit a phase difference of 90 degrees. For this reason, the motion $\mathbf{X}=(x, y)$ of a particle near to the boundary is composed of two harmonic motions along the axes $O x$ and $O y$, characterized by the same circular frequency and amplitude $A$ and $B$. The trajectory of $\mathbf{X}$ is an ellipse, the major semi-axis $B$ is normal to the free surface, and the motion is counterclockwise with respect to the normal at the surface. At the boundary, the normal component is about 1.5 times the tangential component.
4. Because the motion is attenuated with depth, it is confined to a narrow zone of about 2 times the wavelength, and this aspect justifies the definition of a surface wave. This circumstance, as well as the fact that along the propagation direction the surface waves are less attenuated than the body waves, renders the analysis of this problem very attractive when dealing with geological sites.

### 10.12 Reflection and Refraction of $\boldsymbol{S H}$ Waves

If the boundary surface is an interface $y=0$ separating two media in contact, we need to find the displacement and stress continuity across the interface. ${ }^{6}$ It can be shown that an $S H$ wave arriving at the surface $y=0$ from one medium generates only reflected and refracted $S H$ waves. In the following discussion, the superscript $a$ characterizes properties of the first medium $(y>0)$ and the superscript $b$ characterizes those of the second medium $(y<0)$. The boundary conditions at the interface are

$$
\begin{equation*}
u_{z}^{a}=u_{z}^{b}, T_{23}^{a}=T_{23}^{b} . \tag{10.124}
\end{equation*}
$$

Applying Helmholtz's condition to both media, we can write the governing potentials in the following way:

[^41]\[

$$
\begin{align*}
& \Psi_{1}^{\tau}=A_{1}^{\tau} e^{i\left(k_{1}^{\tau} x-p_{1}^{\tau} y-\omega_{1}^{\tau} t\right)}+B_{1}^{\tau} e^{i\left(k_{1}^{\tau} x+p_{1}^{\tau} y-\omega_{1}^{\tau} t\right)},  \tag{10.125}\\
& \Psi_{2}^{\tau}=A_{2}^{\tau} e^{i\left(k_{1}^{\tau} x-p_{1}^{\tau} y-\omega_{1}^{\tau} t\right)}+B_{2}^{\tau} e^{i\left(k_{1}^{\tau} x+p_{1}^{\tau} y-\omega_{1}^{\tau} t\right)}, \tau=a, b .
\end{align*}
$$
\]

By inserting these relations into $(10.72)_{3}$, we can derive the displacement component $u_{z}$ in both media:

$$
\begin{align*}
u_{z}^{a}= & i\left(k_{1}^{a} A_{2}^{a}+p_{1}^{a} A_{1}^{a}\right) e^{i\left(k_{1}^{a} x-p_{1}^{a} y-\omega_{1}^{a} t\right)} \\
& +i\left(k_{1}^{a} B_{2}^{a}-p_{1}^{a} B_{1}^{a}\right) e^{i\left(k_{1}^{a} x+p_{1}^{a} y-\omega_{1}^{a} t\right)}, \\
u_{z}^{b}= & i\left(k_{1}^{b} A_{2}^{b}+p_{1}^{b} A_{1}^{b}\right) e^{i\left(k_{1}^{b} x-p_{1}^{b} y-\omega_{1}^{b} t\right)}  \tag{10.126}\\
& +i\left(k_{1}^{b} B_{2}^{b}-p_{1}^{b} B_{1}^{b}\right) e^{i\left(k_{1}^{b} x+p_{1}^{b} y-\omega_{1}^{b} t\right)},
\end{align*}
$$

and they describe four waves directed along the vectors $\left(k_{1}^{a},-p_{1}^{a}\right),\left(k_{1}^{a}, p_{1}^{a}\right),\left(k_{1}^{b}\right.$, $\left.-p_{1}^{b}\right),\left(k_{1}^{b}, p_{1}^{b}\right)$. Since the $S H$ wave has been supposed to propagate in the $a$ medium, we can write

$$
\begin{align*}
& u_{z}^{a}=i A(I) e^{i\left(k_{1}^{a} x-p_{1}^{a} y-\omega_{1}^{a} t\right)}+i A(R f l) e^{i\left(k_{1}^{a} x+p_{1}^{a} y-\omega_{1}^{a} t\right)}, \\
& u_{z}^{b}=i A(R f r)^{i\left(k_{1}^{b} x-p_{1}^{b} y-\omega_{1}^{b} t\right)}, \tag{10.127}
\end{align*}
$$

where

$$
\begin{align*}
A(I) & =k_{1}^{a} A_{2}^{a}+p_{1}^{a} A_{1}^{a}, \\
A(R f l) & =k_{1}^{a} B_{2}^{a}-p_{1}^{a} B_{1}^{a}, \\
A(R f r) & =k_{1}^{b} A_{2}^{b}+p_{1}^{b} A_{1}^{b}, \tag{10.128}
\end{align*}
$$

denote the amplitudes of the incident, reflected, and refracted waves, respectively.
Helmholtz's condition introduces the following relations between the quantities $A_{1}^{\tau}, A_{2}^{\tau}, B_{1}^{\tau}$, and $B_{2}^{\tau}, \tau=a, b:$

$$
\begin{equation*}
k_{1}^{\tau}\left(A_{1}^{\tau}+B_{1}^{\tau}\right)+p_{1}^{\tau}\left(B_{2}^{\tau}-A_{2}^{\tau}\right)=0, \tag{10.129}
\end{equation*}
$$

so that the six constants $A_{1}^{a}, A_{2}^{a}, B_{1}^{a}, B_{2}^{a}, A_{1}^{b}, A_{2}^{b}$, which appear in (10.127), have to satisfy the four conditions (10.124) and (10.129). Therefore, if the characteristics of the incident wave are given, the solution is completely determined.

If $\theta^{a}$ and $\theta^{b}$ denote the angles between $\mathbf{N}$ and the propagation vectors of the incident and refracted waves, respectively, we obtain

$$
\begin{align*}
& k_{1}^{a}=k^{a} \sin \theta^{a}, p_{1}^{a}=k^{a} \cos \theta^{a},  \tag{10.130}\\
& k_{1}^{b}=k^{b} \sin \theta^{b}, p_{1}^{b}=k^{b} \cos \theta^{b},
\end{align*}
$$

where $k^{a}$ and $k^{b}$ are the wave numbers. Inserting the displacements (10.127) into (7.18), we derive

$$
\begin{align*}
& T_{23}^{a}=-\mu^{a} p_{1}^{a}[-A(I)+A(R f l)] e^{i\left(k_{1}^{a} x-\omega_{1}^{a} t\right)}, \\
& T_{23}^{b}=\mu^{b} p_{1}^{b} A(R f r) e^{i\left(k_{1}^{b} x-\omega_{1}^{b} t\right)} . \tag{10.131}
\end{align*}
$$

Taking into account $(10.124)_{1}$ and (10.130), we derive the equation

$$
\begin{equation*}
[A(I)+A(R f l)] e^{i\left(k^{a} x \sin \theta^{a}-\omega_{1}^{a} t\right)}=A(R f r) e^{i\left(k^{b} x \sin \theta^{b}-\omega_{1}^{b} t\right)} \tag{10.132}
\end{equation*}
$$

The arbitrariness of $x$ and $t$ leads to

$$
\begin{align*}
& \omega_{1}^{a}=\omega_{1}^{b}, \frac{\sin \theta^{a}}{\sin \theta^{b}}=\frac{k_{b}}{k_{a}}=\frac{c_{S}^{a}}{c_{S}^{b}},  \tag{10.133}\\
& A(I)+A(R f l)=A(R f r) .
\end{align*}
$$

In turn, the continuity condition $(10.124)_{2}$, when $(10.133)_{1,2}$ are taken into account, implies that

$$
\begin{equation*}
\mu^{a} k^{a} \cos \theta^{a}[-A(I)+A(R f l)]=-\mu^{b} k^{b} \cos \theta^{b} A(R f r) \tag{10.134}
\end{equation*}
$$

This condition, together with $(10.133)_{3}$, gives the wave amplitude ratios

$$
\begin{align*}
\frac{A(R f r)}{A(I)} & =\frac{2 \mu^{a} \cos \theta^{a}}{\mu^{a} \cos \theta^{a}+\mu^{b}\left(c_{S}^{a} / c_{S}^{b}\right) \cos \theta^{b}} \\
\frac{A(R f l)}{A(I)} & =\frac{\mu^{a} \cos \theta^{a}-\mu^{b}\left(c_{S}^{a} / c_{S}^{b}\right) \cos \theta^{b}}{\mu^{a} \cos \theta^{a}+\mu^{b}\left(c_{S}^{a} / c_{S}^{b}\right) \cos \theta^{b}} \tag{10.135}
\end{align*}
$$

The previous formulae contain the following results (see Fig. 10.10): Let $\Sigma$ be an SH wave which propagates in the a-medium and is incident on the surface $y=0$. If $\theta^{a}$ is the angle which $\Sigma$ forms with the vector $\mathbf{N}$ normal to this surface, two waves are generated: a reflected one propagating in the a-medium and forming with $\mathbf{N}$ the same angle $\theta^{a}$, and a refracted wave propagating in the $b$-medium and forming with $\mathbf{N}$ an angle $\theta^{b}$, which is related to $\theta^{a}$ by $(10.133)_{2}$ Snell's law. In particular, in the limit case

$$
\mu^{a} \cos \theta^{a}=\mu^{b}\left(c_{S}^{a} / c_{S}^{b}\right) \cos \theta^{b}
$$

$\Sigma$ is completely refracted.


Fig. 10.10 Reflection and refraction of waves

### 10.13 Harmonic Waves in a Layer

This section deals with the propagation of $P$ and $S V$ waves in an elastic layer $\Delta$ of finite thickness $2 h$, having free boundary surfaces. We introduce a coordinate system whose origin $O$ is on the plane of symmetry $\pi$ of $\Delta$, parallel to the boundary surfaces, with the axes $O x, O y$ on $\pi$ and $O z$ orthogonal to $\pi$. The analysis of this problem is relevant as it allows us to introduce the concepts of dispersion, group velocity, and frequency spectrum.

The displacement field is represented by the following functions:

$$
\begin{align*}
& u_{x}=u_{x}(x, y, t), \\
& u_{y}=u_{x}(x, y, t),  \tag{10.136}\\
& u_{x}=0
\end{align*}
$$

From (10.93), the scalar potential $\phi$ and the component $\Psi_{3}$ of the vector potential are relevant, and, by considering the solutions obtained with the method of separation of variables (see Sect. 10.9) and in particular (10.85), we see that they assume the following form:

$$
\begin{align*}
\phi & =[A \cos (p y)+B \sin (p y)] e^{i(k x-\omega t)} \\
\Psi_{3} & =\left[A_{3} \cos \left(p_{3} y\right)+B_{3} \sin \left(p_{3} y\right)\right] e^{i\left(k_{3} x-\omega_{3} t\right)} \tag{10.137}
\end{align*}
$$

where

$$
p=\sqrt{\frac{\omega^{2}}{c_{P}^{2}}-k^{2}}
$$

$$
\begin{equation*}
p_{3}=\sqrt{\frac{\omega_{3}^{2}}{c_{S}^{2}}-k_{3}^{2}} . \tag{10.138}
\end{equation*}
$$

By substituting (10.137) into (10.72) $)_{1,2}$, we obtain the displacement components

$$
\begin{align*}
u_{x}= & i k[A \cos (p y)+B \sin (p y)] e^{i(k x-\omega t)} \\
& +p_{3}\left[-A_{3} \sin \left(p_{3} y\right)+B_{3} \cos \left(p_{3} y\right)\right] e^{i\left(k_{3} x-\omega_{3} t\right)}, \\
u_{y}= & p[-A \sin (p y)+B \cos (p y)] e^{i(k x-\omega t)} \\
& -i k_{3}\left[A_{3} \cos \left(p_{3} y\right)+B_{3} \sin \left(p_{3} y\right)\right] e^{i\left(k_{3} x-\omega_{3} t\right)} . \tag{10.139}
\end{align*}
$$

By imposing the boundary conditions

$$
\begin{equation*}
\mathbf{T n}=\mathbf{0} \Longleftrightarrow T_{12}=T_{22}=0 \quad \text { if } y= \pm h, \tag{10.140}
\end{equation*}
$$

since $x$ and $t$ are arbitrary, we get

$$
\begin{equation*}
\omega=\omega_{3}, k=k_{3}, \tag{10.141}
\end{equation*}
$$

together with the following relations:

$$
\begin{align*}
& 2 i k p[-A \sin (p h)+B \cos (p h)] \\
&-\left(p_{3}^{2}-k^{2}\right)\left[A_{3} \cos \left(p_{3} h\right)+B_{3} \sin \left(p_{3} h\right)\right]=0, \\
&-\left[p^{2}(\lambda+2 \mu)+\lambda k^{2}\right][A \cos (p h)+B \sin (p h)] \\
&-2 \mu i k p^{3}\left[-A_{3} \sin \left(p_{3} h\right)+B_{3} \cos \left(p_{3} h\right)\right]=0, \\
& 2 i k p[A \sin (p h)+B \cos (p h)] \\
&-\left(p_{3}^{2}-k^{2}\right)\left[A_{3} \cos \left(p_{3} h\right)-B_{3} \sin \left(p_{3} h\right)\right]=0, \\
&-\left[p^{2}(\lambda+2 \mu)+\lambda k^{2}\right][A \cos (p h)-B \sin (p h)] \\
&-2 \mu i k p^{3}\left[A_{3} \sin \left(p_{3} h\right)+B_{3} \cos \left(p_{3} h\right)\right]=0, \tag{10.142}
\end{align*}
$$

where (10.141) have been taken into account. Furthermore, recalling (10.138) and the relation $c_{P}^{2} / c_{S}^{2}=(\lambda+2 \mu) / \mu$ leads to

$$
\begin{equation*}
p^{2}(\lambda+2 \mu)+\lambda k^{2}=\mu\left(p_{3}^{2}-k^{2}\right) \tag{10.143}
\end{equation*}
$$

Now, add and subtract the first and the third and add and subtract the second and the fourth of (10.142), where (10.143) has been substituted. We obtain

$$
\begin{align*}
2 i k p B \cos (p h)-\left(p_{3}^{2}-k^{2}\right) A_{3} \cos \left(p_{3} h\right) & =0, \\
2 i k p A \sin (p h)+\left(p_{3}^{2}-k^{2}\right) B_{3} \sin \left(p_{3} h\right) & =0, \\
\left(p_{3}^{2}-k^{2}\right) A \cos (p h)+2 i k p_{3} B_{3} \cos \left(p_{3} h\right) & =0, \\
-\left(p_{3}^{2}-k^{2}\right) B \sin (p h)+2 i k p_{3} A_{3} \sin \left(p_{3} h\right) & =0, \tag{10.144}
\end{align*}
$$

and rearranging gives

$$
\begin{gather*}
\left(\begin{array}{cc}
2 i k p \sin (p h) & \left(p_{3}^{2}-k^{2}\right) \sin \left(p_{3} h\right) \\
\left(p_{3}^{2}-k^{2}\right) \cos (p h) & 2 i k p_{3} \cos \left(p_{3} h\right)
\end{array}\right)\binom{A}{B_{3}}=0,  \tag{10.145}\\
\left(\begin{array}{cc}
2 i k p \cos (p h) & -\left(p_{3}^{2}-k^{2}\right) \cos \left(p_{3} h\right) \\
-\left(p_{3}^{2}-k^{2}\right) \sin (p h) & 2 i k p_{3} \sin \left(p_{3} h\right)
\end{array}\right)\binom{B}{A_{3}}=0 . \tag{10.146}
\end{gather*}
$$

The reason for rearranging in this way is now clear: $A$ and $B_{3}$ represent displacements symmetric with respect to the axis $O x$, whereas $B$ and $A_{3}$ represent skew-symmetric displacements.

If we assume that displacements are symmetric, then $B$ and $A_{3}$ must vanish, and by setting to zero the determinant of the matrix in (10.145), we derive the RayleighLamb frequency equation

$$
\begin{equation*}
\frac{4 k^{2} p p_{3}}{\left(p_{3}^{2}-k^{2}\right)^{2}}=-\frac{\tan \left(p_{3} h\right)}{\tan (p h)} \tag{10.147}
\end{equation*}
$$

By similar arguments, from (10.146) we obtain the frequency equation for antisymmetric waves:

$$
\begin{equation*}
\frac{4 k^{2} p p_{3}}{\left(p_{3}^{2}-k^{2}\right)^{2}}=-\frac{\tan (p h)}{\tan \left(p_{3} h\right)} \tag{10.148}
\end{equation*}
$$

Recalling (10.138), we see that these equations give the wave number $k$ or the phase velocity $c=\omega / k$ for any selected value of the circular frequency $\omega$, i.e., (10.147) and (10.148) represent the relation between the wave velocity and the wave number, called the frequency spectrum.

If the velocity changes with $\omega$, the propagation is said to be dispersive, because any wave obtained as a superposition of waves of different frequencies will change its shape in time, since single components tend to disperse. In this case, we introduce the concept of group velocity $v_{G}$, and it can be shown, by making reference to two monochromatic waves characterized by the same amplitude but slightly different frequencies, that the following relation holds:

$$
\begin{equation*}
v_{G}=\frac{d \omega}{d k}=c+k \frac{d c}{d k}=c-\lambda \frac{d c}{d \lambda} . \tag{10.149}
\end{equation*}
$$

The above argument is kinematic in its essence. From a dynamic point of view, it can be proved that the group velocity is the velocity of the energy propagation. The proof is in this case rather long, but we can rely on intuition and observe that energy cannot be transferred through nodes, which move with group velocity.

A final remark is that usually $d c / d k<0$, so that $v_{G}<c$; this case is called normal dispersion. When $v_{G}>c$, the case is called inverse dispersion.

### 10.14 Exercises

1. Suppose that a uniform layer of isotropic elastic material of thickness $H$ is subjected at the lower boundary to a planar steady-state motion represented as

$$
\begin{equation*}
u_{1}=A e^{-i \omega t} . \tag{10.150}
\end{equation*}
$$

Determine the displacement field of the layer and show that the layer response depends on the frequency of the boundary motion.

Due to reflection at the upper boundary, there will also be a wave traveling in the negative $x_{3}$ direction, so that for the displacement field we can assume a steady-state solution of the form

$$
\begin{equation*}
u_{1}\left(x_{3}, t\right)=B e^{i\left(k x_{3}-\omega t\right)}+C e^{i\left(-k x_{3}-\omega t\right)} \tag{10.151}
\end{equation*}
$$

Since the surface of the layer is stress free, it must hold that

$$
\frac{\partial u_{1}(H, t)}{\partial x_{3}}=i k B \exp [i(k H-\omega t)]-i k C \exp [i(k H+\omega t)]=0,
$$

which implies that

$$
\begin{equation*}
B e^{i k H}-C e^{-i k H}=0 \tag{10.152}
\end{equation*}
$$

At the lower boundary the motion must be equal to the prescribed value, so that

$$
\begin{equation*}
B+C=A \tag{10.153}
\end{equation*}
$$

and both these conditions allow us to find the two constants

$$
\begin{align*}
B & =\frac{e^{-i k H}}{2 \cos k H} A  \tag{10.154}\\
C & =\frac{e^{i k H}}{2 \cos k H} A
\end{align*}
$$

By introducing these constants into (10.151), we obtain the solution for the displacement field:

$$
\begin{equation*}
u_{1}=\frac{A \cos \left(k x_{3}-k H\right)}{\cos k H} e^{-i \omega t} \tag{10.155}
\end{equation*}
$$

This relatively simple example allows us to introduce an aspect of relevance in earthquake engineering known as soil amplification. Let us define as an amplification factor the ratio between the motion at the upper boundary (which is the relevant one for buildings interacting with the soil) and the one imposed at the lower boundary (which can be assumed to be the motion of the bedrock). This ratio is

$$
\begin{equation*}
\text { amplification ratio }=\frac{u_{1}(H, t)}{u_{1}(0, t)}=\frac{1}{\cos k H}=\frac{1}{\cos \left(\omega H / v_{s}\right)}, \tag{10.156}
\end{equation*}
$$

and it can be observed that a resonance phenomenon occurs (i.e., the motion tends to infinity) when the ratio has the value

$$
\begin{equation*}
\frac{\omega H}{v_{S}}=\frac{\pi}{2}+n \pi \tag{10.157}
\end{equation*}
$$

We note that, even if an infinite amplification cannot occur (because the present analysis assumes no dissipation of energy), the major aspects of this phenomenon are qualitatively accounted for: the amplification factor depends on the layer properties as well as the frequency of the motion at its base.
2. Assuming a Kelvin-Voigt solid

$$
T_{i j}=2 G \varepsilon_{i j}+2 \eta \dot{\varepsilon}_{i j}
$$

where $\eta$ is a damping coefficient, show, with reference to the layer of Exercise 1, that the amplification factor is equal to

$$
\frac{1}{\sqrt{\cos ^{2} k H+\sinh ^{2} \xi k H}} .
$$

## Chapter 11 <br> Other Approaches to Thermodynamics

The thermodynamics adopted in the preceding chapters of the book is based on the Clausius-Duhem inequality. In this theory all the concepts of elementary thermodynamics of homogeneous and reversible processes are extended to irreversible processes without any criticism. In this chapter other proposals are discussed which have the purpose of making more convincing the extension of standard concepts of elementary thermodynamics to irreversible processes. In particular, we sketch the proposals of Day's, Serrin's, and of the extended thermodynamics.

### 11.1 Basic Thermodynamics

In Chap. 5 we introduced Truesdell, Coleman, and Noll's approach (see, for instance, $[5,10,67])$ to thermodynamics of continua, together with some of its applications. This approach has the following main advantages:

- It suggests a formulation of thermodynamic principles that we can use in continuum mechanics.
- It suggests that we use the second principle as a restriction for the constitutive equations, rather than as a constraint on processes.

Despite these advantages, some authors have noted shortcomings or flaws about this approach. Starting from these objections, we now present a concise review of various approaches. To do this, we first recall some concepts of basic thermodynamics.

Essentially, elementary thermodynamics (see [11]) deals with homogeneous and steady-state processes; i.e., it considers processes evolving in such a way that, at any instant, the state of a system $S$ is always very near equilibrium. It follows that
the state of $S$ can be described by a convenient and finite number of real parameters $\mathbf{x} \equiv\left(x_{i}\right), i=1, \ldots, n$, and its evolution is given by the functions $x_{i}(t)$ of the time $t$.

As an example, the equilibrium state of a gas in a container is macroscopically described by its volume $V$ and the pressure $p$. If we consider a binary mixture of gas, then in addition to the parameters $V$ and $p$, the concentration $c$ of one of them must be introduced. Accordingly, the steady-state evolution is described through the functions $p(t), V(t)$, and $c(t)$.

As a second step, the empirical temperature $\tau$ of the system $S$ in a given state $\pi$ is defined by the zero postulate of thermodynamics: If two systems are at equilibrium when they are in contact with a third one, they will also be at equilibrium when kept in contact with each other.

According to this postulate, it can be proved that the equilibrium of two systems requires the existence of at least one state function, called the empirical temperature, which is equal for both of them. The state of a system can then be regarded as an index of this equilibrium. The reference system can be assumed to be a thermometer and, if its state is expressed by its volume, this latter parameter is an index of the empirical temperature. This is what happens in common thermometers, where the temperature scales refer to volume changes.

In the following discussion, instead of the pressure, the empirical temperature $\tau=x_{1}$ is taken as one of the state variables.

Moreover, we suppose that the mechanical power $w$ and the thermal power $q$ can be represented by the following relationships:

$$
\left\{\begin{array}{l}
w=\sum_{k=1}^{n} \pi_{k}(\mathbf{x}) \dot{x}_{k}  \tag{11.1}\\
q=c(\mathbf{x}) \dot{\tau}+\sum_{k=2}^{n} v_{k}(\mathbf{x}) \dot{x}_{k}
\end{array}\right.
$$

where the state functions $\pi_{k}(\mathbf{x})$ are called partial pressures, the function $c(\mathbf{x})$ is the specific heat, and $v_{k}(\mathbf{x})$ are the latent heats.

When dealing with fundamentals of elementary thermodynamics, it is important to recall that the first and second laws have been formulated for cyclic processes, at the end of which the system returns to its initial state.

Furthermore, these laws only involve the notion of mechanical and thermal power. By using the previous notations, we represent these cycles by closed curves $\gamma_{c}$ of $\Re^{n}$ of the equation $\mathbf{x}=\mathbf{x}(t)$.

First law of thermodynamics: In any cyclic process $\gamma_{c}$ the mechanical work $L^{(e)}$ done on the system is equal to the absorbed heat $Q$ :

$$
\begin{equation*}
L^{(e)}=Q . \tag{11.2}
\end{equation*}
$$

Since $L^{(e)}$ and $Q$ are written as

$$
L^{(e)}=\int_{\gamma_{c}} w(t) d t, \quad Q=\int_{\gamma_{c}} q(t) d t
$$

the differential form

$$
\omega=\left(\pi_{1}(\mathbf{x})-c(\mathbf{x})\right) d \tau+\sum_{k=2}^{n}\left(\pi_{k}(\mathbf{x})-v_{k}(\mathbf{x})\right) d x_{k}
$$

is integrable, so that we conclude that there exists a state function $E(\mathbf{x})$, called the internal energy, such that, in any process which is not a cycle, the change $\Delta E$ is given by

$$
\begin{equation*}
\Delta E=L^{(e)}-Q=\int_{\gamma_{c}} \omega . \tag{11.3}
\end{equation*}
$$

It is well known that the first law states that the transformation of one form of energy into another is completely symmetric. On the other hand, since in physical processes such a symmetry does not hold (i.e., the transformation of nonthermal energy into thermal energy is the preferred process), the second law imposes severe limitations on the transformation of heat into work. In fact, its formulation given by Lord Kelvin is as follows:

Second law of thermodynamics (Lord Kelvin, 1851): It is impossible to perform a cyclic transformation whose only result is to convert into work a given heat quantity $Q$, extracted from a source at uniform temperature.

It can be also proved that the above formulation is equivalent to the following one, due to Clausius (1854):

It is impossible to realize a cyclic transformation whose only result is the heat transfer from a body, having a given temperature, to another one at a higher temperature.

Starting from the second law, we can prove the existence of an universal function $\theta$ (the term universal highlights its applicability to any body), which is positive and depends only on the empirical temperature $\tau$. This function $\theta$ is called the absolute temperature. Furthermore, it can be proved that, in any cyclic steady process in the interval $\left(t_{0}, t_{1}\right)$, if $\theta(t)$ is the uniform temperature at which the heat exchange takes place, the integral relation

$$
\begin{equation*}
\int_{t_{0}}^{t_{1}} \frac{q(t)}{\theta(t)} d t=0 \tag{11.4}
\end{equation*}
$$

holds provided that the cyclic transformation is reversible.

The above result can then be used to prove the existence of a state function $\eta$, called entropy, such that, in any reversible but not necessarily cyclic process, it holds that

$$
\begin{equation*}
\Delta \eta=\eta\left(t_{1}\right)-\eta\left(t_{0}\right)=\int_{t_{0}}^{t_{1}} \frac{q(t)}{\theta(t)} d t \tag{11.5}
\end{equation*}
$$

In elementary thermodynamics the previous concepts are also usually extended to irreversible processes and, in such cases, (11.4) and (11.5) become

$$
\begin{equation*}
\int_{t_{0}}^{t_{1}} \frac{q(t)}{\theta(t)} d t \leq 0, \quad \eta\left(t_{1}\right)-\eta\left(t_{0}\right) \geq \int_{t_{0}}^{t_{1}} \frac{q(t)}{\theta(t)} d t \tag{11.6}
\end{equation*}
$$

But these extensions are not so straightforward for the following reasons:

- an irreversible transformation of a thermodynamic system is not analytically defined;
- it is far from being clear how to compute $q$ and $w$, as well as the integrals in (11.3) and (11.6).

These shortcomings call for a new formulation of elementary thermodynamics, in order to describe nonhomogeneous and irreversible processes. However, it is relevant to observe that in this theory the concepts of energy and entropy are derived from properties of cyclic processes, rather than being introduced as primitive concepts, as is done in the formulation of Truesdell and Coleman.

In the remaining sections, we present extended thermodynamics (see [40]) and the formulation suggested by J. Serrin [60]. ${ }^{1}$

### 11.2 Extended Thermodynamics

Let $S$ be a rigid body of uniform density $\rho$. The energy balance equation in this case is

$$
\rho \dot{\epsilon}=-\nabla \cdot \mathbf{h},
$$

and, by introducing the constitutive relationships

$$
\begin{equation*}
\epsilon=\epsilon(\theta), \quad \mathbf{h}=-K \nabla \theta \tag{11.7}
\end{equation*}
$$

[^42]we obtain
$$
\rho c \dot{\theta}=K \Delta \theta
$$
where the thermal conductivity $K$ is a positive quantity and $c=\partial \epsilon / \partial \theta$ is the heat capacity under constant volume. The equation obtained is a second-order partial differential equation of parabolic type, for the unknown field of temperature $\theta(\mathbf{x}, t)$. As it is well recognized, this equation describes a diffusion phenomenon, and accordingly any perturbation appears instantaneously at any spatial point. Therefore, in contrast with the experimental result, it cannot foresee a finite velocity of the heat propagation at low temperature. The need to predict such an experimental result was the starting point for extended thermodynamics.

The assumptions of this approach can be summarized as follows. Let $S$ be a continuous system described by $n$ fields $\mathbf{u}=\left(u_{(1)}\left(\mathbf{x}_{\alpha}\right), \ldots, \mathbf{u}_{(n)}\left(\mathbf{x}_{\alpha}\right)\right)$, where $\left(x_{\alpha}\right)=$ $(t, \mathbf{x}), \alpha=0,1,2,3$, which satisfy $n$ balance equations

$$
\begin{equation*}
\frac{\partial \mathbf{F}_{(i) \alpha}(\mathbf{u})}{\partial x_{\alpha}}=\mathbf{P}_{(i)}(\mathbf{u}), i=1, \ldots, n \tag{11.8}
\end{equation*}
$$

Quantities like $\mathbf{F}_{(i) 0}$ are densities, whereas quantities like $\mathbf{F}_{(i) j}, j=1,2,3$, are fluxes; on the right-hand side, quantities like $\mathbf{P}_{(i)}$ represent production terms. If the constitutive equations $\mathbf{F}_{(i) \alpha}(\mathbf{u})$ and $\mathbf{P}_{(i)}(\mathbf{u})$ are specified, then the quasi-linear system (11.8) allows us to determine the fields $\mathbf{u}_{(i)}\left(\mathbf{x}_{\alpha}\right)$.

In order to reduce the generality of the constitutive equations, they must satisfy

- the entropy inequality;
- the convexity;
- the principle of relativity; i.e., they must be covariant for a Galilean transformation.

The entropy inequality is expressed as

$$
\frac{\partial h_{\alpha}(\mathbf{u})}{\partial x_{\alpha}} \equiv \Sigma(\mathbf{u}) \geq 0
$$

where this inequality must be satisfied by all the thermodynamic processes compatible with the balance equations (11.8).

It is relevant to remark that, even if the entropy principle is accepted as a constraint for the constitutive equations, this principle must be satisfied when considering processes compatible with balance equations, which play the role of constraints for the processes.

As proved in [29], this requirement is equivalent to requiring that the inequality

$$
\frac{\partial h_{\alpha}(\mathbf{u})}{\partial x_{\alpha}}-\sum_{i=1}^{n} \boldsymbol{\Lambda}_{(i)} \cdot\left(\frac{\partial \mathbf{F}_{(i) \alpha}(\mathbf{u})}{\partial x_{\alpha}}-\mathbf{P}_{(i)}(\mathbf{u})\right) \geq 0
$$

is satisfied for any differentiable process $\mathbf{u}_{(i)}\left(x_{\alpha}\right)$, where the quantities $\boldsymbol{\Lambda}_{(i)}$ are unknown Lagrangian multipliers.

Since the previous inequality can also be written as

$$
\sum_{j=1}^{n}\left(\frac{\partial h_{\alpha}(\mathbf{u})}{\partial \mathbf{u}_{(j)}}-\sum_{i=1}^{n} \boldsymbol{\Lambda}_{(i)} \cdot \frac{\partial \mathbf{F}_{(i) \alpha}(\mathbf{u})}{\partial \mathbf{u}_{(j)}}\right) \frac{\partial \mathbf{u}_{(j)}}{\partial x_{\alpha}}+\sum_{i=1}^{n} \boldsymbol{\Lambda}_{(i)} \cdot \mathbf{P}_{(i)} \geq 0
$$

and the quantities $\partial \mathbf{u}_{(i)} / \partial x_{\alpha}$ are arbitrary, we derive

$$
\begin{equation*}
\frac{\partial h_{\alpha}(\mathbf{u})}{\partial \mathbf{u}_{(j)}}-\sum_{i=1}^{n} \boldsymbol{\Lambda}_{(i)} \cdot \frac{\partial \mathbf{F}_{(i) \alpha}(\mathbf{u})}{\partial \mathbf{u}_{(j)}} \geq 0, \quad \sum_{i=1}^{n} \boldsymbol{\Lambda}_{(i)} \cdot \mathbf{P}_{(i)} \geq 0 \tag{11.9}
\end{equation*}
$$

Finally it can be proved that the $n \times n$ matrices

$$
\frac{\partial \mathbf{F}_{(i) \alpha}(\mathbf{u})}{\partial \boldsymbol{\Lambda}_{(j)}}
$$

are symmetric and that this imposes severe constraints on the functions $\mathbf{F}_{(i) \alpha}(\mathbf{u})$.
This approach leads to quasi-linear systems of hyperbolic differential equations, gives a generalized form for the entropy flux, and proves the existence of the absolute temperature. The reader interested in applications of extended thermodynamics to fluids, mixtures, and other fields is referred to [40].

### 11.3 Serrin's Approach

Serrin's approach is based on the notion of an ideal material and provides a mathematically correct formulation of all the results of the elementary thermodynamics of homogeneous processes. In the context of this volume, we limit ourselves to outlining that this approach allows us

1. to introduce the absolute temperature $\theta$ as a positive function of the empirical temperature, measured by thermometers constituted by ideal materials;
2. to introduce the accumulation function $\mathcal{Q}(\theta, P)$, dependent on the absolute temperature $\theta$ as well as on the thermodynamic process $P$ of the system $S$. This function expresses the heat quantity exchanged by $S$ with the surroundings at a temperature less than or equal to $\theta$, during the process $P$;
3. to formulate the thermodynamic principles for cyclic processes, without assuming the existence of energy and entropy.

The two fundamental laws of thermodynamics are formulated by Serrin in the following way.

First Law. In any cyclic process $P$, the balance of energy is given by

$$
L^{(i)}(P)=Q(P),
$$

where $L^{(i)}$ denotes the mechanical work of the system on the exterior world and $Q$ is the quantity of heat received from it.

Second Law. There is no cyclic process $P$ in which the accumulation function assumes positive values.

This formulation states that in any cyclic process there are temperatures at which the system provides heat to the surroundings. It can be further proved that the above formulation, when applied to homogeneous systems, leads to Kelvin and Clausius's postulate.

Moreover, starting from the second law and the existence of ideal materials, Serrin proves that the second law is equivalent to the following mathematical condition in any cyclic process:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\mathcal{Q}(\theta, P)}{\theta^{2}} d \theta \leq 0 \tag{11.10}
\end{equation*}
$$

It remains now to find the expressions of $L^{(i)}, Q$ and $\mathcal{Q}(\theta, P)$ for a continuous system $S$ in order to write explicitly the previous thermodynamic laws. To this end, we introduce the following definitions.

A process of duration $J=\left[0, t_{1}\right]$ is defined by a couple of functions

$$
\mathbf{x}(\mathbf{X}, t), \theta(\mathbf{X}, t),
$$

conveniently regular on $C_{*} \times J$, which give a motion and an absolute temperature field at any instant $t \in J$. The set $\mathbb{P}(S)$ of the cyclic processes of duration $J$ is given by all processes which satisfy the conditions

$$
\left\{\begin{align*}
\mathbf{x}(\mathbf{X}, 0) & =\mathbf{x}\left(\mathbf{X}, t_{1}\right),  \tag{11.11}\\
\theta(\mathbf{X}, 0) & =\theta\left(\mathbf{X}, t_{1}\right),
\end{align*}\right.
$$

as well as the balance equations of mass, momentum, and angular momentum.
The change of kinetic energy $\Delta T$ of $c(t)$, in the time interval $J$ and along the process $P$, is written as

$$
\begin{equation*}
\Delta T=\int_{c\left(t_{1}\right)} \frac{1}{2} \rho v^{2} d c-\int_{c(0)} \frac{1}{2} \rho v^{2} d c . \tag{11.12}
\end{equation*}
$$

In addition, the work $L^{(e)}(P)$ done by the exterior of $c(t)$ during the same process $P$ is given by

$$
\begin{equation*}
L^{(e)}(P)=\int_{J} d t \int_{\partial c(t)} \mathbf{v} \cdot \mathbf{T n} d \sigma+\int_{J} d t \int_{c(t)} \mathbf{v} \cdot \rho \mathbf{b} d c . \tag{11.13}
\end{equation*}
$$

But, $L^{(i)}(P)=\Delta T-L^{(e)}(P)$, so that the previous relation implies that

$$
\begin{equation*}
L^{(i)}(P)=\Delta T-\int_{J} d t \int_{\partial c(t)} \mathbf{v} \cdot \mathbf{T n} d \sigma+\int_{J} d t \int_{c(t)} \mathbf{v} \cdot \rho \mathbf{b} d c \tag{11.14}
\end{equation*}
$$

Taking the scalar product of the local balance equation (5.30) with $\mathbf{v}$ and integrating the result over $c(t)$, we obtain

$$
\begin{align*}
\frac{d}{d t} \int_{c(t)} \frac{1}{2} \rho v^{2} d c= & \int_{\partial c(t)} \mathbf{v} \cdot \mathbf{T n} d \sigma+\int_{c(t)} \mathbf{v} \cdot \rho \mathbf{b} d c \\
& -\int_{c(t)} \mathbf{T}: \nabla \mathbf{v} d c \tag{11.15}
\end{align*}
$$

By integrating this over the time interval $J$ and by recalling (11.13), we have the relation

$$
\Delta T=L^{(e)}(P)-\int_{J} d t \int_{c(t)} \mathbf{T}: \nabla \mathbf{v} d c
$$

which, compared with (11.14), leads to

$$
\begin{equation*}
L^{(i)}=-\int_{J} d t \int_{c(t)} \mathbf{T}: \nabla \mathbf{v} d c \tag{11.16}
\end{equation*}
$$

In a similar way, assuming that the heat exchanged by $c(t)$ with the surroundings is given (see Chap. 5) by a source term $r$ and a flux through the boundary $\partial c(t)$ of density $\mathbf{h} \cdot \mathbf{n}$, we get

$$
\begin{equation*}
Q(P)=\int_{J} d t\left(\int_{\partial c(t)} \mathbf{h} \cdot \mathbf{n} d \sigma+\int_{J} d t \int_{c(t)} \rho r d c\right) \tag{11.17}
\end{equation*}
$$

Finally, by introducing the notations

$$
\left\{\begin{array}{l}
\partial \tilde{c}_{t}(\theta)=\{\mathbf{x} \in \partial c(t) \mid \vartheta(\mathbf{x}, t)<\theta\}, \\
\tilde{c}_{t}(\theta)=\{\mathbf{x} \in c(t) \mid \vartheta(\mathbf{x}, t)<\theta\},
\end{array}\right.
$$

where $\vartheta(\mathbf{x}, t)$ is the field of absolute temperature and $\theta$ is any arbitrary but fixed value of temperature, the accumulation function is written as

$$
\begin{equation*}
\mathcal{Q}(\theta, P)=\int_{J} d t\left(\int_{\partial \tilde{c}_{t}(\theta)} \mathbf{h} \cdot \mathbf{n} d \sigma+\int_{\tilde{c}_{t}(\theta)} \rho r d c\right) \tag{11.18}
\end{equation*}
$$

At this stage we are in a position to prove that the previous relations allow us to formulate the first and second laws of thermodynamics in a manner which is completely analogous to that of elementary thermodynamics.

First, by combining (11.16) and (11.17), the first law can be written as

$$
\begin{equation*}
\int_{J} d t \int_{c(t)}(\mathbf{T}: \nabla \mathbf{v}+\nabla \cdot \mathbf{h}+\rho r) d c=0 \tag{11.19}
\end{equation*}
$$

whereas (11.18) allows us to put the second law (11.10) in the form

$$
\begin{equation*}
\int_{0}^{\infty} \frac{1}{\theta^{2}}\left(\int_{J} d t\left(\int_{\partial \tilde{c}_{t}(\theta)} \mathbf{h} \cdot \mathbf{n} d \sigma+\int_{\tilde{c}_{t}(\theta)} \rho r d c\right)\right) d \theta \leq 0 . \tag{11.20}
\end{equation*}
$$

Equations (11.19) and (11.20) are valid for any cyclic process of duration $J$.
To continue, it is more convenient to rewrite the previous formulae in the Lagrangian formalism (see Sect. 5.6) as follows:

$$
\begin{gather*}
\int_{J} d t \int_{c_{*}(t)}\left(\mathbf{T}_{*}: \dot{\mathbf{F}}+\nabla \cdot \mathbf{h}_{*}+\rho_{*} r\right) d c_{*}=0  \tag{11.21}\\
\int_{0}^{\infty} \frac{1}{\theta^{2}}\left(\int_{J} d t\left(\int_{\partial \tilde{c}_{*_{t}}(\theta)} \mathbf{h}_{*} \cdot \mathbf{n}_{*} d \sigma_{*}+\int_{\tilde{c}_{* t}(\theta)} \rho_{*} r d c_{*}\right)\right) d \theta \leq 0 \tag{11.22}
\end{gather*}
$$

where $\mathbf{T}_{*}$ is the Piola-Kirchhoff stress tensor, $\mathbf{h}_{*}$ is the material heat flux vector, and $\mathbf{F}$ is the deformation gradient.

The application of Fubini's theorem leads to the relation

$$
\begin{equation*}
\int_{0}^{\infty} \frac{1}{\theta^{2}} d \theta \int_{\partial \tilde{c}_{*_{t}}(\theta)} \mathbf{h}_{*} \cdot \mathbf{n}_{*} d \sigma_{*}=\int_{\partial c_{*}} \mathbf{h}_{*} \cdot \mathbf{n}_{*} d \sigma_{*} \int_{\theta}^{\infty} \frac{1}{\theta^{2}} d \theta \tag{11.23}
\end{equation*}
$$

The second of the previous relations can also be written as

$$
\begin{equation*}
\int_{J}\left(\int_{\partial c_{*}} \frac{\mathbf{h}_{*} \cdot \mathbf{n}_{*}}{\theta} d \sigma_{*}+\int_{c_{*}} \rho_{*} \frac{r}{\theta} d c_{*}\right) d t \leq 0 \tag{11.24}
\end{equation*}
$$

Finally, by applying Gauss's theorem and using the arbitrariness of the material region $c_{*}$, we see that the fundamental laws of thermodynamics assume the form

$$
\begin{gather*}
\int_{J}\left(\mathbf{T}_{*}: \dot{\mathbf{F}}+q\right) d t=0  \tag{11.25}\\
\int_{J} \frac{1}{\theta}\left(q-\frac{\mathbf{h}_{*} \cdot \nabla \theta}{\theta}\right) d t \leq 0 \tag{11.26}
\end{gather*}
$$

where

$$
\begin{equation*}
q=\nabla \cdot \mathbf{h}_{*}+\rho_{*} r . \tag{11.27}
\end{equation*}
$$

### 11.4 An Application to Viscous Fluids

In order to exploit the content of the thermodynamic laws (11.25) and (11.26), they are applied to the viscous fluids (see Sect. 7.3). The results discussed here are contained in [20]; for an extension to materials with fading memory see [19].

The constitutive equations of the material are supposed to be expressed by the differentiable functions

$$
\begin{align*}
\mathbf{T}_{*} & =\mathbf{T}_{*}(\mathbf{F}, \dot{\mathbf{F}}, \theta, \dot{\theta}, \nabla \theta), \\
q & =q(\mathbf{F}, \dot{\mathbf{F}}, \theta, \dot{\theta}, \nabla \theta), \\
\mathbf{h}_{*} & =\mathbf{h}_{*}(\mathbf{F}, \dot{\mathbf{F}}, \theta, \dot{\theta}, \nabla \theta) . \tag{11.28}
\end{align*}
$$

In order to make explicit the restrictions on the constitutive equations (11.28) deriving from the two thermodynamic laws, we start by noting that in any equilibrium process

$$
\begin{equation*}
\mathbf{x}(\mathbf{Y}, t)=\mathbf{F} \cdot(\mathbf{Y}-\mathbf{X}), \theta(\mathbf{Y}, t)=\theta(\mathbf{X}) \tag{11.29}
\end{equation*}
$$

the thermodynamic laws lead to the conditions

$$
\begin{align*}
& q(\mathbf{F}, \mathbf{0}, \theta, \dot{\theta}, \mathbf{0})=0 \\
& \mathbf{h}_{*}(\mathbf{F}, \mathbf{0}, \theta, \dot{\theta}, \mathbf{0}) \geq 0 \tag{11.30}
\end{align*}
$$

so that the function $\mathbf{f}(\mathbf{G})=\mathbf{h}_{*}(\mathbf{F}, \mathbf{0}, \theta, \dot{\theta}, \mathbf{0}) \cdot \nabla \boldsymbol{\theta}$ has a minimum at $\nabla \theta=\mathbf{0}$; consequently,

$$
\begin{equation*}
\left(\nabla_{\nabla \theta} \mathbf{f}\right)_{\nabla \theta=\mathbf{0}}=\mathbf{h}_{*}(\mathbf{F}, \mathbf{0}, \theta, \dot{\theta}, \mathbf{0})=0 \tag{11.31}
\end{equation*}
$$

and there is no heat conduction in the absence of a temperature gradient.
Moreover, by expanding $q$ in power series of $\dot{\mathbf{F}}$ and $\dot{\theta}$ and recalling (11.31) ${ }_{1}$, we get

$$
\begin{equation*}
q=c(\mathbf{F}, \theta) \dot{\theta}+\boldsymbol{v}(\mathbf{F}, \theta) \cdot \dot{\mathbf{F}}-S(\mathbf{F}, \dot{\mathbf{F}}, \theta, \dot{\theta}, \nabla \theta) \tag{11.32}
\end{equation*}
$$

where $S$ is a second-order function of $\dot{\mathbf{F}}$ and $\dot{\theta}$. If we introduce the notations

$$
\begin{align*}
\mathbf{T}_{*}^{e}(\mathbf{F}, \theta) & =\mathbf{T}_{*}(\mathbf{F}, \mathbf{0}, \theta, 0, \mathbf{0}), \\
\mathbf{T}_{*}^{D} & =\mathbf{T}_{*}-\mathbf{T}_{*}^{e} \\
R & =\mathbf{T}_{*}^{D}: \dot{\mathbf{F}} \tag{11.33}
\end{align*}
$$

then the fundamental laws $(11.25),(11.26)$ reduce to the form

$$
\int_{J}\left(\left(\rho_{*} \boldsymbol{v}+\mathbf{T}_{*}^{e}\right) \cdot \dot{\mathbf{F}}+\rho_{*} c \dot{\theta}\right) d t+\int_{J}\left(R-\rho_{*} S\right) d t=0
$$

$$
\begin{equation*}
\int_{J} \rho_{*} \frac{1}{\theta}(\boldsymbol{v} \cdot \dot{\mathbf{F}}+c \dot{\theta}) d t-\int_{J} \rho_{*} \frac{1}{\theta}\left(S+\frac{\mathbf{h}_{*} \cdot \nabla \theta}{\theta}\right) d t \leq 0 \tag{11.34}
\end{equation*}
$$

for any cycle at the point $\mathbf{X} \in C_{*}$.
Now it is possible to prove that
Theorem 11.1. For materials described by the constitutive equations (11.28), there exists a function $u(\mathbf{F}, \theta)$, called the specific internal energy, such that for any process of duration $J$, the following relations are satisfied:

$$
\begin{gather*}
u(\mathbf{F}, \theta)_{t=J}-u(\mathbf{F}, \theta)_{t=0}=\int_{0}^{J}\left(\rho_{*} q-\mathbf{T}_{*}: \dot{\mathbf{F}}\right) d t  \tag{11.35}\\
\frac{\partial u}{\partial \mathbf{F}}=\rho_{*} \boldsymbol{v}+\mathbf{T}_{*}, \frac{\partial u}{\partial \theta}=\rho_{*} c  \tag{11.36}\\
R=\rho_{*} S \tag{11.37}
\end{gather*}
$$

Proof. Let $P$ be a cyclic process defined by the motion $\mathbf{x}(\mathbf{X}, t)$ and the temperature field $\theta(\mathbf{X}, t)$, where $\mathbf{X}, t) \in C_{*} \times[0, J]$. Let $P_{\epsilon}$ denote a new cyclic process characterized by the new fields

$$
\begin{equation*}
\mathbf{x}_{\epsilon}(\mathbf{X}, t)=\mathbf{x}(\mathbf{X}, \epsilon t), \theta_{\epsilon}(\mathbf{X}, t)=\theta\left(\mathbf{X}_{0}+\epsilon\left(\mathbf{X}-\mathbf{X}_{0}\right), \epsilon t\right) \tag{11.38}
\end{equation*}
$$

where $\mathbf{X}_{0}$ is an arbitrary point of $C_{*}$. In the process $P_{\epsilon}$, any particle $\mathbf{X}$ of the system assumes, at the instant $t$, the same position and temperature than it assumes at the instant $\epsilon t$ during the process $P$. For $\epsilon \rightarrow 0$, the system tends to equilibrium at uniform and constant temperature.

It is easy to verify the following relations:

$$
\begin{align*}
\mathbf{F}_{\epsilon}\left(\mathbf{X}_{0}, t\right) & =\mathbf{F}\left(\mathbf{X}_{0}, \epsilon t\right), \dot{\mathbf{F}}_{\epsilon}\left(\mathbf{X}_{0}, t\right)=\epsilon \dot{\mathbf{F}}\left(\mathbf{X}_{0}, \epsilon t\right) \\
\theta_{\epsilon}\left(\mathbf{X}_{0}, t\right) & =\theta\left(\mathbf{X}_{0}, \epsilon t\right), \dot{\theta}_{\epsilon}\left(\mathbf{X}_{0}, t\right)=\epsilon \dot{\theta}\left(\mathbf{X}_{0}, \epsilon t\right) \\
\nabla \theta_{\epsilon} & =\epsilon \nabla \theta . \tag{11.39}
\end{align*}
$$

The first fundamental law $(11.34)_{1}$, applied to the process $P_{\epsilon}$, leads to the equality

$$
\begin{equation*}
\int_{0}^{J / \epsilon}\left(\left(\rho_{*} \boldsymbol{v}_{\epsilon}+\mathbf{T}_{* \epsilon}^{e}\right) \cdot \epsilon \dot{\mathbf{F}}+\rho_{*} c \epsilon \dot{\theta}\right) d t+\int_{0}^{J / \epsilon}\left(R_{\epsilon}-\rho_{*} S_{\epsilon}\right) d t=0 \tag{11.40}
\end{equation*}
$$

which, by the variable change $t^{\prime}=\epsilon t$, can be written as

$$
\begin{equation*}
\int_{0}^{J}\left(\left(\rho_{*} \boldsymbol{v}+\mathbf{T}_{*}^{e}\right) \cdot \dot{\mathbf{F}}+\rho_{*} c \dot{\theta}\right) d t^{\prime}+\frac{1}{\epsilon} \int_{0}^{J / \epsilon}\left(R_{\epsilon}-\rho_{*} S_{\epsilon}\right) d t^{\prime}=0 \tag{11.41}
\end{equation*}
$$

In the limit $\epsilon \rightarrow 0$, we have that

$$
\begin{equation*}
\int_{0}^{J}\left(\left(\rho_{*} \boldsymbol{v}+\mathbf{T}_{*}^{e}\right) \cdot \dot{\mathbf{F}}+\rho_{*} c \dot{\theta}\right) d t^{\prime}=0 \tag{11.42}
\end{equation*}
$$

in any cyclic process. Owing to a well-known theorem of differential forms, from (11.42) the conditions (11.36) are derived.

Let $t$ be any instant in the interval $[0, J]$ of the cyclic process $P$ and let $P^{\prime}$ be the process bringing the system to the initial state and having a duration $\left[t, t+J^{\prime}\right]$. Finally, $P_{\epsilon}^{\prime}$ will denote the process defined by (11.38). Applying (11.34) to the cyclic composed process $P_{c}$ constituted by $P$ in the time interval $[0, t]$ and by $P_{\epsilon}^{\prime}$ in the time interval $\left[t, t+J^{\prime} / \epsilon\right]$, and taking into account (11.42), we derive

$$
\begin{equation*}
\int_{0}^{t}(R-S) d t^{\prime}+\int_{t}^{t+J^{\prime} / t}\left(R_{\epsilon}^{\prime}-S_{\epsilon}^{\prime}\right) d t^{\prime}=0 \tag{11.43}
\end{equation*}
$$

By the variable change $t^{\prime \prime}=\epsilon\left(t^{\prime}-t\right)$ in the second integral, the previous relation becomes

$$
\begin{equation*}
\int_{0}^{t}(R-S) d t^{\prime}+\frac{1}{\epsilon} \int_{0}^{J^{\prime \prime}}\left(R_{\epsilon}^{\prime \prime}-S_{\epsilon}^{\prime \prime}\right) d t^{\prime \prime}=0 \tag{11.44}
\end{equation*}
$$

so that, for $\epsilon \rightarrow 0$, we conclude that

$$
\begin{equation*}
\int_{0}^{t}(R-S) d t=0 \quad \forall t \in[0, J] \tag{11.45}
\end{equation*}
$$

and the proof is complete.
In a similar way, the following theorem can be proved.
Theorem 11.2. For materials described by the constitutive equations (11.28), there exists a function $\eta(\mathbf{F}, \theta)$, called the specific entropy, such that in any process of duration J the following relations are satisfied:

$$
\begin{gather*}
\eta(\mathbf{F}, \theta)_{t=J}-\eta(\mathbf{F}, \theta)_{t=0}=\int_{0}^{J} \frac{1}{\theta}\left(\rho_{*} q-\frac{\mathbf{h}_{*} \cdot \nabla \theta}{\theta}\right) d t  \tag{11.46}\\
\theta \frac{\partial \eta}{\partial \mathbf{F}}=\rho_{*} \boldsymbol{v}, \theta \frac{\partial \eta}{\partial \theta}=\rho_{*} c  \tag{11.47}\\
\rho_{*} S \theta+\mathbf{h}_{*} \cdot \nabla \theta \geq 0 \tag{11.48}
\end{gather*}
$$

## Chapter 12 <br> Fluid Dynamics and Meteorology

After a brief history of scientific meteorology, the atmosphere is described as a complex mixture. For this model we write the so-called primitive equations which are very difficult to solve even numerically. These equations are simplified by resorting to drastic approximations: The Hydrostatic and Tangent Approximations. Then, we prove the important Bjerknes and Ertel theorems. To justify the influence of the lower layers of atmosphere on meteorological phenomena Reynolds' turbolence is introduced. The effects of viscosity are considered in the Oberbeck-Boussinesq equations and Saltzmann equations. Lorentz solved these last equations by Fourier's expansion and this approach leads him to an ordinary system of differential equations, whose solutions generate the deterministic chaos.

### 12.1 Introduction

Our capacity to understand and forecast the evolution of complex physical systems represents one of the most important progresses of the last century. As a consequence, today, we are able to forecast the weather behavior with the advance of some days. This science has arrived at a such level of knowledge that its forecasts about the climatic variations on the earth are sufficiently reliable.

Meteorology is a rather young science. In fact, the first scientist who collected atmospheric data in a systematic way was Le Verrier (1855). The first formulation of scientific weather forecast is due to the American scientist C. Abbe (1901). Three years later (1904), the Norwegian scientist V. Bjerknes published an article [3] in which the weather evolution was reduced to an initial value problem for the equations of fluid dynamics. However, the equations proposed by this author were so complex that any attempt to solve them failed.


Fig. 12.1 Atmospheric layers

The second important contribution to meteorology is due to the English L. F. Richardson [50] who supplied a simplified version of the equations proposed by Bjerknes. But also these equations were too difficult to solve. A fundamental step in modeling the atmosphere was suggested by J. von Newmann who proposed to use his new computer ENIAC to obtain numerical solutions of the complex equations governing the weather evolution.

The atmosphere is the narrow gaseous layer surrounding the earth. In this layer we can observe a wide variety of phenomena (rain, snow, wind, etc.) that we globally call atmospheric weather. The atmosphere is composed by many sub-layers that are shown in Fig. 12.1. Each layer is characterized by a different behavior of temperature and density. In the layer adjacent to the earth surface, the troposphere, the temperature decreases by increasing the distance from the ground. The troposphere contains about the $85 \%$ of the atmospheric mass and has a thickness of about $6 \mathrm{~km} .{ }^{1}$ Since this layer is in contact with the earth surface it is strongly influenced by the energy changes by radiation, evaporation, condensation, and convection. The other layers (stratosphere, mesosphere, thermosphere) are shown in Fig. 12.1 with their thickness.

The meteorological forecasts can be referred to the following scales that are defined by a characteristic length $L$ and a characteristic time $t$ :

## - Micro-scale

$$
L \sim 1 \div 10^{2} \mathrm{~m} \quad t \sim 10 \mathrm{~s}
$$

On this scale we observe turbulence and vortices that are produced by the interaction between the atmosphere and the ground. These effects cannot easily be described owing to the high number of factors determining them.

[^43]- Local-scale

$$
L \sim 10^{3} \div 10^{4} \mathrm{~m} \quad t \sim 10^{2} \mathrm{~s}
$$

On this scale we observe tornados, breezes, and local storms. Also these phenomena are difficult to describe.

- Mesoscale

$$
L \sim 10^{5} \mathrm{~m} \quad t \sim 10^{3} \mathrm{~s}
$$

- Synoptic scale or planetary scale

$$
L \sim 10^{6} \mathrm{~m} \quad t \sim 10^{4} \div 10^{5} \mathrm{~s}
$$

The analysis of the atmosphere on this scale is fundamental to obtain weather forecasts since it supplies a general view of atmospheric dynamics.

In the next sections we analyze the atmospheric phenomena on the synoptic scale after deriving the system of partial differential equations that describe the behavior of these phenomena.

### 12.2 Atmosphere as a Continuous System

In this section, we propose a mathematical model for the synoptic scale of our atmosphere resorting to continuum mechanics of compressible Newtonian fluids. More precisely, we determine a system of partial differential equations governing the weather evolution on the synoptic scale in the following hypotheses:

- The earth is a sphere of radius $r_{0}$;
- The earth rotates with constant angular velocity $|\boldsymbol{\Omega}|=7.292 \cdot 10^{-5} \mathrm{rad} / \mathrm{s}$ about a fixed axis $\xi$ containing the center $O$ of the earth;
- The gravitational effects of sun and moon on the atmosphere can be neglected.

We observe atmospheric phenomena staying on the terrestrial surface. Therefore, it is quite natural to adopt a frame of reference at rest with respect to the earth. More precisely, we adopt an orthogonal Cartesian frame of reference $O x y z$ with the origin at the center of the earth $O$, the axis $O z$ coinciding with the rotation axis $\xi$ of the earth and the other two axes $O x$ e $O y$ rotating with the earth. Since $O x y z$ is not an inertial frame, in the dynamical equations describing the evolution of the atmosphere we have to take into account the fictitious forces. However, we can evaluate these forces only after discovering the motion of $O x y z$ relative to an inertial frame. In the solar system, the frame of reference $I$ with the origin at the center of the sun and the axes oriented toward fixed stars is inertial. Moreover, the frame of reference $O \overline{x y z}$ with the origin at the center of the earth and the axes
parallel to the axes of $I$ can be considered inertial for time intervals small (one or two weeks) with respect to a year. In conclusion, we can say that the rigid motion of $O x y z$ relative to the inertial frame $O \overline{x y z}$ is a uniform rotation about the axis $a \equiv O z$ with constant angular velocity $\boldsymbol{\Omega}$. This conclusion allows us to say that the drag acceleration, i.e., the acceleration $\mathbf{a}_{\tau}$ of a point $P \in O x y z$ relative to $O \overline{x y z}$, is given by the following formula (see, for instance, [55, p. 193])

$$
\begin{equation*}
\mathbf{a}_{\tau}=\boldsymbol{\Omega} \times(\boldsymbol{\Omega} \times \mathbf{r}) \tag{12.1}
\end{equation*}
$$

where $\mathbf{r}$ is the position vector of $P$ with respect to the origin $O$ of $O x y z$. Finally, the absolute acceleration $\mathbf{a}_{a}$ (i.e., relative to the inertial frame $O \overline{x y z}$ ) of an atmospheric particle $P$, whose position vector is $\mathbf{r}$, is given by the following equation

$$
\begin{equation*}
\mathbf{a}_{a}=\dot{\mathbf{v}}+\boldsymbol{\Omega} \times(\boldsymbol{\Omega} \times \mathbf{r})+2 \boldsymbol{\Omega} \times \mathbf{v}, \tag{12.2}
\end{equation*}
$$

where $\mathbf{v}$ is the velocity of $P$ relative to the terrestrial frame $O x y z$.
Besides the hypotheses stated at the beginning of this section, we suppose that the model of a compressible Navier-Stokes fluid, with constant coefficients $\lambda$ and $\mu$ (see Sect. 9.8), supplies a good description of the atmospheric phenomena. Therefore, we can adopt the local mass conservation and the Navier-Stokes equations (9.72):

$$
\begin{align*}
& \dot{\rho}+\rho \nabla \cdot \mathbf{v}=0  \tag{12.3}\\
& \rho \dot{\mathbf{v}}=-\nabla p+\rho \mathbf{g}^{*}-2 \rho \boldsymbol{\Omega} \times \mathbf{v}+\mathbf{F} \tag{12.4}
\end{align*}
$$

where, denoting by $\mathbf{g}$ the gravitational acceleration,

$$
\begin{equation*}
\mathbf{g}^{*}=\mathbf{g}-\boldsymbol{\Omega} \times(\boldsymbol{\Omega} \times \mathbf{r}) \tag{12.5}
\end{equation*}
$$

is the effective gravitational acceleration and

$$
\begin{equation*}
\mathbf{F}=\lambda \nabla(\nabla \cdot \mathbf{v})+2 \mu \nabla \cdot \mathbf{D} \tag{12.6}
\end{equation*}
$$

denotes the viscous forces per unit mass. In (12.6) $\lambda$ and $\mu$ are the viscosity coefficients and $\mathbf{D}$ is the rate deformation tensor.

It is quite evident that the evolution of atmospheric weather is strongly influenced by the temperature field. Consequently, if we wish to obtain a reasonable description of atmospheric phenomena, we must add to the dynamical equations (12.3), (12.4) the balance of energy which, for a compressible Navier-Stokes fluid assumes the form:

$$
\begin{equation*}
\rho \dot{\epsilon}=-p \nabla \cdot \mathbf{v}+k \Delta T+\Phi(\mathbf{v})+\rho r \tag{12.7}
\end{equation*}
$$

where $\epsilon$ is the specific internal energy, $T$ the absolute temperature, $r$ the specific energy supply and

$$
\begin{equation*}
\Phi(\mathbf{v})=2 \mu D_{i j} D_{i j}+\lambda\left(D_{i i}\right)^{2} \tag{12.8}
\end{equation*}
$$

gives the specific dissipation power due to viscosity. We explicitly note that in (12.7) we adopt the linear Fourier law of thermal conduction stating that the heat flux $\mathbf{h}$ is given by

$$
\begin{equation*}
\mathbf{h}=-k \nabla T, \tag{12.9}
\end{equation*}
$$

where the thermal conductivity coefficient $k$ is constant.
Remark 12.1. Viscosity is important only in a narrow layer in contact with the terrestrial surface. Although this layer has a thickness of a few meters, viscosity originates a turbulence whose effects are relevant in large layers of the atmosphere. In almost all the applications of the above equations to meteorology, it is supposed either $\lambda=0$ (see, for instance, [18]) or $\lambda=\mu / 3$ (see [73]).

We conclude this section noting that the specific force $\mathbf{g}^{*}$ is conservative. In fact, if we adopt spherical coordinates $r, \varphi, \theta$ with the origin $O$ at the center of the earth, g admits the Newtonian potential

$$
\begin{equation*}
V_{g}=-\frac{G M}{r}, \tag{12.10}
\end{equation*}
$$

where $M$ is mass of the earth and $G$ is the universal gravitational constant. In particular, if we consider atmospheric phenomena in the troposphere and denote by $r_{0}$ the radius of the earth, then we can substitute (12.10) with the approximate form

$$
\begin{equation*}
V_{g} \simeq-\frac{G M}{r_{0}}+\frac{M G}{r_{0}^{2}}\left(r-r_{0}\right) \equiv C+g_{0}\left(r-r_{0}\right) \tag{12.11}
\end{equation*}
$$

where $C$ is a constant and $g_{0}$ is the gravity acceleration corresponding to the mean radius of the earth. In conclusion, denoting by $\mathbf{k}$ the unit vector along the vector radius $\mathbf{r}$, in the troposphere the gravity acceleration can be written as follows

$$
\begin{equation*}
\mathbf{g} \simeq g_{0} \mathbf{k} \tag{12.12}
\end{equation*}
$$

About the drag force we start noting that

$$
-\boldsymbol{\Omega} \times(\boldsymbol{\Omega} \times \mathbf{r})=-(\boldsymbol{\Omega} \cdot \mathbf{r}) \boldsymbol{\Omega}+|\boldsymbol{\Omega}|^{2} \mathbf{r}=-\left(\boldsymbol{\Omega} \otimes \boldsymbol{\Omega}-|\boldsymbol{\Omega}|^{2}\right) \cdot \mathbf{r}
$$

In conclusion, the potential of the drag force is

$$
\begin{equation*}
V_{d}=-\frac{1}{2} \mathbf{r} \cdot\left(\boldsymbol{\Omega} \otimes \boldsymbol{\Omega}-|\boldsymbol{\Omega}|^{2} \mathbf{I}\right) \cdot \mathbf{r} \tag{12.13}
\end{equation*}
$$

The total potential

$$
\begin{equation*}
V=V_{g}+V_{d}, \tag{12.14}
\end{equation*}
$$

is called the geopotential.

### 12.3 Atmosphere as a Mixture

We could think that Eqs. (12.3), (12.4) lead to a satisfying description of atmospheric behavior but it is not so. In fact, the atmosphere cannot be considered as a simple compressible viscous fluid. In the atmosphere there are clouds that are composed by water, water vapor and ice. Then, it is necessary to consider atmosphere as a mixture of water, water vapor, ice, and dry air in which each constituent can undergo a phase transition transforming it into another one.

A more extensive exposition of fluid mixture theory can be found in [56] and in the references there cited. Here, we introduce the fundamental principle of this theory just to complete the set of Eqs. (12.3), (12.4) and (12.7) in such a way to allow a more accurate description of the complex structure of atmosphere.

Any theory of mixture with $n$ constituents is based on the following assumptions:

- Each volume element is supposed to be occupied by all its constituents;
- The density $\rho_{i}$ and a velocity $\mathbf{v}_{i}$ of each constituent satisfy the balance laws of continuum mechanics;
- The whole mixture has to satisfy the same balance laws as a consequence of the behavior of each constituent.

From the above hypotheses we derive that the mass continuity equation must be satisfied for each constituent. However, this equation cannot be written as a mass conservation since any constituent can be transformed in another one by a phase change. Therefore, we write the balance of mass in the following form:

$$
\begin{equation*}
\frac{\partial \rho_{i}}{\partial t}+\nabla \cdot\left(\rho_{i} \mathbf{v}_{i}\right)=I_{i}, \quad i=1, \ldots, 4 \tag{12.15}
\end{equation*}
$$

where $I_{i}$ denotes the mass per unit time and volume added or subtracted to the $i$ th constituent. On the other hand, for the whole mixture has to hold the mass conservation:

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})=0 \tag{12.16}
\end{equation*}
$$

Adding the four equations (12.15) and comparing the result with (12.16), we obtain

$$
\begin{align*}
\rho & =\sum_{i=1}^{4} \rho_{i},  \tag{12.17}\\
\mathbf{v} & =\frac{1}{\rho} \sum_{i=1}^{4} \rho_{i} \mathbf{v}_{i},  \tag{12.18}\\
\sum_{i=1}^{4} I_{i} & =0 \tag{12.19}
\end{align*}
$$

These equations show that the velocity $\mathbf{v}$ of a point $\mathbf{r}$ of the mixture coincides with the velocity of the center of mass of the elementary volume centered at $\mathbf{r}$.

In a general theory of mixtures we should extend the above considerations to the momentum balance, angular momentum balance, and energy balance of each constituent and compare the result of the summation of these equations with the corresponding equations of the whole mixture. The result we obtain, although it is quite general, is very complex. Therefore, we here consider a particular case which is called the theory of classical mixtures.

We define

$$
\begin{equation*}
\mathbf{u}_{i}=\mathbf{v}_{i}-\mathbf{v}, \tag{12.20}
\end{equation*}
$$

the diffusion velocity of the $i$ th constituent. Then, we write Eqs. (12.15) in the equivalent form

$$
\begin{equation*}
\frac{\partial \rho_{i}}{\partial t}+\nabla \cdot\left(\rho_{i} \mathbf{v}\right)+\nabla \cdot \boldsymbol{\Phi}_{i}=I_{i}, \quad i=1, \ldots, 4 \tag{12.21}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{\Phi}_{i}=\rho_{i} \mathbf{u}_{i} \tag{12.22}
\end{equation*}
$$

is the diffusion flux of the $i$ th constituent. Introducing the $i$ th concentration by the formula,

$$
\begin{equation*}
c_{i}=\frac{\rho_{i}}{\rho}, \tag{12.23}
\end{equation*}
$$

Eq. (12.21) assumes the final form

$$
\begin{equation*}
\rho \dot{c}_{i}+\nabla \cdot \boldsymbol{\Phi}_{i}=I_{i}, \quad i=1, \ldots, 4 \tag{12.24}
\end{equation*}
$$

where

$$
\begin{equation*}
\dot{c}_{i}=\frac{\partial c_{i}}{\partial t}+\mathbf{v} \cdot \nabla c_{i} \tag{12.25}
\end{equation*}
$$

We note that, in view of (12.17) and (12.19), one of the equations (12.24) is not necessary. On the other hand, if we add Eqs. (12.24), for $i=1,2,3$ to Eqs. (12.3), (12.6) we have not a closed system for the presence of the unknown diffusive fluxes that contain the unknown diffusion velocities $\mathbf{u}_{i}$. At this point we should take into account the balance equations of momentum and angular momentum. The theory of classical mixture does not resort to these equations assuming that the diffusive fluxes are functions of $\rho, \rho_{i}, i=1,2,3$ and their gradients (Fick's law). Starting from the dissipation principle, it is also proved that in the local balance of energy it is necessary to introduce an extra energy flux besides the heat flux (see [56]). If we denote by $\psi\left(\rho, c_{i}, T\right)$ the specific free energy, this flux has the form

$$
\boldsymbol{\Pi}=\sum_{i=1}^{3} \mu_{i} \boldsymbol{\Phi}_{i}
$$

where

$$
\mu_{i}=\frac{\partial \psi}{\partial c_{i}},
$$

are the chemical potential.
Although we are already using a simplified theory of mixtures, in applying it to atmosphere the diffusion fluxes are neglected, i.e., it is supposed that $\boldsymbol{\Phi}_{i}=\mathbf{0}$, $i=1,2,3$. In other words, it is supposed that the variations of concentrations are only due to the phase transitions inside the atmosphere, that is, they are represented by $I_{i}, i=1,2,3$. As a consequence of this simplification, the extra energy flux $\Pi$ in the energy balance disappears. On the other hand, we have to take into account the latent heat released into the atmosphere owing to phase transitions. To do that, we introduce into the local balance of energy a quantity $Q$ which denotes the heat per unit mass and time produced by the phase transitions.

In conclusion, the basic equations of our model of atmosphere are:

$$
\begin{align*}
& \dot{\rho}+\rho \nabla \cdot \mathbf{v}=0  \tag{12.26}\\
& \rho \dot{c}_{i}=I_{i}, \quad i=1,2,3  \tag{12.27}\\
& \rho \dot{\mathbf{v}}=-\nabla p+\rho \mathbf{g}^{*}-2 \rho \boldsymbol{\Omega} \times \mathbf{v}+\mathbf{F}  \tag{12.28}\\
& \rho \dot{\epsilon}=-p \nabla \cdot \mathbf{v}+k \Delta T+\Phi(\mathbf{v})+\rho(r+Q), \tag{12.29}
\end{align*}
$$

At least in principle, this system supplies the unknowns $\rho, c_{1}, c_{2}, c_{3}, T, \mathbf{v}$, provided that we assign the constitutive equations of $I_{1}, I_{2}, I_{3}, p, \epsilon$, and $Q$ as functions of $\rho$, $c_{1}, c_{2}, c_{3}, T$.

It is important to remark what follows

- In the above equations the air is modeled as a mixture of water in a different state of aggregation. In other words, these equations do not take into account the presence of other gases in the atmosphere as polluting gases.
- Equations (12.26)-(12.29) are still too complex to hope that we can find a solution of them. To facilitate the analysis of atmospheric phenomena forecasted by the basic equations, the viscosity is initially neglected (i.e., the air is considered to be a perfect gas)

$$
\mathbf{F}=\mathbf{0}, \quad \Phi(\mathbf{v})=0,
$$

and then the viscosity is considered either as a perturbation of the behavior of a perfect gas or it is taken into account in particular regions of atmosphere, where the effects of viscosity are relevant (see Sect. 12.8).

- Further, in many cases, the transformations inside the atmosphere are supposed to be adiabatic $(k=0)$. We can prove that, under this assumption, the energy equation (12.29) assumes the form (see [73, 74])

$$
\rho \dot{T}=\frac{\gamma-1}{R \gamma} \dot{p},
$$

where $\gamma=c_{p} / c_{v}$ is the rate between specific heat at constant pressure and specific heat at constant volume and $R$ is the constant of perfect gases. In fact, if the gas is perfect, then

$$
\begin{equation*}
\epsilon=c_{v} T, \quad p=R \rho T, \quad R=c_{p}-c_{v} . \tag{12.30}
\end{equation*}
$$

The energy equation (12.29), in the above hypotheses, reduces to

$$
\rho \dot{\epsilon}=-p \nabla \cdot \mathbf{v} .
$$

In view of the mass conservation (12.26), we obtain

$$
\begin{aligned}
\rho \dot{\epsilon} & =p \frac{\dot{\rho}}{\rho}=R T \dot{\rho} \\
& =T \frac{d}{d t}\left(\frac{p}{T}\right)=\dot{p}-\frac{p}{T} \dot{T}=\dot{p}-\rho R \dot{T}
\end{aligned}
$$

The above equation can also be written as follows

$$
\rho\left(c_{v}+R\right) \dot{T}=\dot{p}
$$

It is easy to verify that $c_{v}+R=c_{p}, c_{p}=\frac{R \gamma}{\gamma-1}$ and the new form of energy equation is proved.

In conclusion, the simplified equations can be written as follows

$$
\begin{align*}
& \dot{\rho}+\rho \nabla \cdot \mathbf{v}=0,  \tag{12.31}\\
& \rho \dot{c}_{i}=I_{i}, \quad i=1,2,3,  \tag{12.32}\\
& \rho \dot{\mathbf{v}}=-\nabla p+\rho \mathbf{g}^{*}-2 \rho \boldsymbol{\Omega} \times \mathbf{v},  \tag{12.33}\\
& \rho \dot{T}=\frac{\gamma-1}{R \gamma} \dot{p} . \tag{12.34}
\end{align*}
$$

To the above equations we add the constitutive relations (12.30).

### 12.4 Primitive Equations in Spherical Coordinates

It is quite natural to adopt spherical coordinates $(\varphi, \theta, r)$ (longitude, latitude, altitude) ${ }^{2}$ in the terrestrial frame of reference which we have introduced in Sect. 12.2. To follow the conventions used in meteorology, we denote by $\theta$ the latitude instead than the colatitude. This implies that in the formulae of Chap. 2, $\sin \theta$ has to be substituted by $\cos \theta$. When we adopt the spherical coordinates in the terrestrial frame, all the unknown fields in the Eqs. (12.31)-(12.34) become functions of these coordinates and time. For the convenience of reader, we here rewrite some formulae of Chap. 2 with the new conventions (Fig. 12.2). The square of the infinitesimal distance between two points is

$$
\begin{equation*}
d s^{2}=r^{2} \cos ^{2} \theta d \varphi^{2}+r^{2} d \theta^{2}+d r^{2} \tag{12.35}
\end{equation*}
$$

The metric coefficients and the Christoffel symbols different from zero are

$$
\begin{align*}
& g_{11}=r^{2} \cos ^{2} \theta, g_{12}=g_{13}=g_{23}=0  \tag{12.36}\\
& g_{22}=r^{2}, g_{33}=1  \tag{12.37}\\
& g^{11}=\frac{1}{r^{2} \cos ^{2} \theta}, g^{12}=g^{13}=g^{23}=0  \tag{12.38}\\
& g^{22}=\frac{1}{r^{2}}, g^{33}=1 \tag{12.39}
\end{align*}
$$



Fig. 12.2 A basis relative to spherical coordinates

[^44]\[

$$
\begin{align*}
& \Gamma_{12}^{1}=-\tan \theta, \Gamma_{13}^{1}=\frac{1}{r}  \tag{12.40}\\
& \Gamma_{11}^{2}=\sin \theta \cos \theta, \Gamma_{23}^{2}=\frac{1}{r},  \tag{12.41}\\
& \Gamma_{11}^{3}=-r \cos ^{2} \theta, \Gamma_{22}^{3}=-r . \tag{12.42}
\end{align*}
$$
\]

In Sect. 2.6 we have shown that, adopting orthogonal coordinates, any vector $\mathbf{v}$ admits the following representations in the natural basis $\left(\mathbf{e}_{i}\right)$ and the physical basis $\left(\mathbf{a}_{i}\right)^{3}$

$$
\mathbf{v}=\bar{v}^{i} \mathbf{e}_{i}=v^{i} \mathbf{a}_{i}
$$

where

$$
\begin{equation*}
\mathbf{a}_{i}=\frac{1}{\sqrt{g_{i i}}} \mathbf{e}_{i}, \quad v^{i}=\sqrt{g_{i i}} \bar{v}^{i} \tag{12.43}
\end{equation*}
$$

(no sum over $i$ ). In the physical basis, if $F$ is a function and $\mathbf{v}$ a vector field of $(r, \varphi, \theta)$, the following formulae hold (see Sect. 2.7) ${ }^{4}$ :

$$
\begin{align*}
\nabla F & =\frac{1}{r \cos \theta} \frac{\partial F}{\partial \varphi} \mathbf{a}_{1}+\frac{1}{r} \frac{\partial F}{\partial \theta} \mathbf{a}_{2}+\frac{\partial F}{\partial r} \mathbf{a}_{3},  \tag{12.44}\\
\nabla \cdot \mathbf{v} & =\frac{1}{r^{2}} \frac{\partial\left(r^{2} v_{r}\right)}{\partial r}+\frac{1}{r \cos \theta} \frac{\partial}{\partial \theta}\left(\cos \theta v_{\theta}\right)+\frac{1}{r \cos \theta} \frac{\partial v_{\varphi}}{\partial \varphi} . \tag{12.45}
\end{align*}
$$

We omit to write the very long expression of $\mathbf{v} \cdot \nabla \mathbf{v}$ which can be derived by applying the program Operator.

Now, we have at our disposal all the ingredients we need to write the Eqs. (12.31)-(12.34) in spherical coordinates.

First, we evaluate the components of $\mathbf{g}^{*}$ and Coriolis' force in the terrestrial frame. At a first approximation, the gravitational contribution to $\mathbf{g}^{*}$ is given by (12.12). Further, to evaluate the specific drag force, we denote by $\mathbf{k}$ the unit vector along the terrestrial axis so that $\boldsymbol{\Omega}=\Omega \mathbf{k}$. Then, we write the position vector in the form $\mathbf{r}=\mathbf{r}_{\|}+\mathbf{r}_{\perp}$, where $\mathbf{r}_{\|}$is the component of $\mathbf{r}$ along $\mathbf{k}$ and $\mathbf{r}_{\perp}$ is the component of $\mathbf{r}$ along a unit vector $\mathbf{u}$ orthogonal to $\mathbf{k}$ and contained in the plane $O \mathbf{a}_{2} \mathbf{a}_{3}$. Since $\boldsymbol{\Omega}=\Omega \mathbf{a}_{3}$, we can write

$$
-\boldsymbol{\Omega} \times(\boldsymbol{\Omega} \times \mathbf{r})=-\left(\boldsymbol{\Omega} \otimes \boldsymbol{\Omega}-|\boldsymbol{\Omega}|^{2}\right) \cdot \mathbf{r}=-\Omega^{2} \mathbf{r}_{\perp}=-\Omega^{2} \mathbf{r} \cos \theta
$$

[^45]Considering that $g_{0} \simeq 9.8 \mathrm{~m} / \mathrm{s}^{2}$ and $\Omega=7.29 \mathrm{rad} / \mathrm{s}$, we can neglect the drag force with respect to $g_{0}$. Finally, it is

$$
\begin{equation*}
\mathbf{g}^{*} \simeq g_{0} \mathbf{a}_{3} \tag{12.46}
\end{equation*}
$$

Now, we refer the velocity field to the physical basis and denote by $u, v, w$ its components

$$
\mathbf{v}=u \mathbf{a}_{1}+v \mathbf{a}_{2}+w \mathbf{a}_{3} .
$$

In the terrestrial frame the Coriolis acceleration can be written as follows

$$
-2 \boldsymbol{\Omega} \times \mathbf{v}=\Omega\left(\cos \theta \mathbf{a}_{2}+\sin \theta \mathbf{a}_{3}\right) \times\left(u \mathbf{a}_{1}+v \mathbf{a}_{2}+w \mathbf{a}_{3}\right)
$$

Introducing the Coriolis parameter

$$
\begin{equation*}
f=2 \Omega \sin \theta, \tag{12.47}
\end{equation*}
$$

the Coriolis force assumes the form:

$$
\begin{equation*}
-2 \boldsymbol{\Omega} \times \mathbf{v}=f\left(v \mathbf{a}_{1}-u \mathbf{a}_{2}\right)-\frac{d f}{d \theta}\left(w \mathbf{a}_{1}-u \mathbf{a}_{3}\right) . \tag{12.48}
\end{equation*}
$$

Now, we have to find the form of the differential operators in spherical coordinates. In view of (12.35), (12.36), and (12.43), we have that

$$
\begin{align*}
\dot{\rho} & =\frac{\partial \rho}{\partial t}+\frac{u}{r \cos \theta} \frac{\partial \rho}{\partial \varphi}+\frac{v}{r} \frac{\partial \rho}{\partial \theta}+w \frac{\partial \rho}{\partial r},  \tag{12.49}\\
\nabla \cdot \mathbf{v} & =\frac{1}{r \cos \theta} \frac{\partial u}{\partial \varphi}+\frac{1}{r \cos \theta} \frac{\partial}{\partial \theta}(v \cos \theta)+\frac{1}{r^{2}} \frac{\partial\left(r^{2} w\right)}{\partial r} . \tag{12.50}
\end{align*}
$$

On the other hand, from the expression of $\mathbf{v} \cdot \nabla \mathbf{v}$ obtained by the program Operator, it is also

$$
\begin{align*}
\dot{\mathbf{v}} & =\left(\frac{\partial u}{\partial t}+\frac{u}{r \cos \theta} \frac{\partial u}{\partial \varphi}+\frac{v}{r} \frac{\partial u}{\partial \theta}+w \frac{\partial u}{\partial r}-\frac{u v \tan \theta}{r}+\frac{u w}{r}\right) \mathbf{a}_{1} \\
& +\left(\frac{\partial v}{\partial t}+\frac{u}{r \cos \theta} \frac{\partial v}{\partial \varphi}+\frac{v}{r} \frac{\partial v}{\partial \theta}+w \frac{\partial v}{\partial r}-\frac{u w}{r}+\frac{u^{2}}{r} \tan \theta\right) \mathbf{a}_{2} \\
& +\left(\frac{\partial w}{\partial t}+\frac{u}{r \cos \theta} \frac{\partial w}{\partial \varphi}+\frac{v}{r} \frac{\partial w}{\partial \theta}+w \frac{\partial w}{\partial r}-\frac{u^{2}+v^{2}}{r}\right) \mathbf{a}_{3} . \tag{12.51}
\end{align*}
$$

In view of the above results, the mass conservation assumes the following form:

$$
\begin{align*}
& \frac{\partial \rho}{\partial t}+\frac{u}{r \cos \theta} \frac{\partial \rho}{\partial \varphi}+\frac{u}{r} \frac{\partial \rho}{\partial \theta}+w \frac{\partial \rho}{\partial r} \\
+ & \rho\left(\frac{1}{r \cos \theta} \frac{\partial u}{\partial \varphi}+\frac{1}{r \cos \theta} \frac{\partial}{\partial \theta}(v \cos \theta)+\frac{\partial w}{\partial r}+\frac{2 w}{r}\right)=0 \tag{12.52}
\end{align*}
$$

whereas (12.32) becomes:

$$
\begin{equation*}
\frac{\partial c_{i}}{\partial t}+\frac{u}{r \cos \theta} \frac{\partial c_{i}}{\partial \varphi}+\frac{u}{r} \frac{\partial c_{i}}{\partial \theta}+w \frac{\partial c_{i}}{\partial r}=I_{i} \tag{12.53}
\end{equation*}
$$

Taking into account (12.49), we write the three components of momentum balance along the axes $\mathbf{a}_{1}, \mathbf{a}_{2}$ and $\mathbf{a}_{3}$ as follows

$$
\begin{gather*}
\frac{\partial u}{\partial t}+\frac{u}{r \cos \theta} \frac{\partial u}{\partial \varphi}+\frac{v}{r} \frac{\partial u}{\partial \theta}+w \frac{\partial u}{\partial r}-\frac{u v \tan \theta}{r}+\frac{u w}{r} \\
=-\frac{1}{\rho} \frac{1}{r \cos \theta} \frac{\partial p}{\partial \varphi},  \tag{12.54}\\
\frac{\partial v}{\partial t}+\frac{u}{r \cos \theta} \frac{\partial v}{\partial \varphi}+\frac{v}{r} \frac{\partial v}{\partial \theta}+w \frac{\partial v}{\partial r}-\frac{u w}{r}+\frac{u^{2}}{r} \tan \theta=-\frac{1}{\rho r} \frac{\partial p}{\partial \theta},  \tag{12.55}\\
\frac{\partial w}{\partial t}+\frac{u}{r \cos \theta} \frac{\partial w}{\partial \varphi}+\frac{v}{r} \frac{\partial w}{\partial \theta}+w \frac{\partial w}{\partial r}-\frac{u^{2}+v^{2}}{r}=-\frac{1}{\rho} \frac{\partial p}{\partial r} . \tag{12.56}
\end{gather*}
$$

Finally, the energy equation is (see (12.34))

$$
\begin{equation*}
\rho \dot{T}=\frac{\gamma-1}{R \gamma} \dot{p}, \tag{12.57}
\end{equation*}
$$

where the total derivatives $\dot{T}$ and $\dot{p}$ can be explicitly written by (12.49). ${ }^{5}$

### 12.5 Dimensionless Form of the Basic Equations

Equations (12.52)-(12.56) are too difficult to integrate even numerically. We can hope that the formal complexity of the equations can be reduced if some terms in the equations can be neglected with respect to others. To recognize if this is the case, we need to write the basic equations in dimensionless form. To this purpose, we introduce some reference quantities to which we refer the fields appearing in the equations.

[^46]First, we introduce three characteristic lengths:

1. $L$ to scale the horizontal lengths;
2. $H$ to scale the vertical lengths;
3. $a$ the terrestrial mean radius.

With these lengths we define two dimensionless parameters: the sphericity parameter $\delta$ and the hydrostatic parameter $\epsilon$ :

$$
\begin{equation*}
\delta=\frac{L}{a}, \quad \epsilon=\frac{H}{L} . \tag{12.58}
\end{equation*}
$$

Besides the above characteristic quantities, we introduce a reference velocity $U$ and a characteristic time $t_{0}$. The velocity $U$ is characteristic of the horizontal velocities of the air. Consequently, the characteristic velocity $W$ to evaluate the vertical velocities, owing to our choice of the characteristic lengths, verifies the condition

$$
\begin{equation*}
W \simeq \epsilon U . \tag{12.59}
\end{equation*}
$$

All the reference quantities we have introduced allow us to define three fundamental dimensionless coefficients:

- The Rossby number

$$
\begin{equation*}
R o=\frac{U^{2}}{L} \frac{1}{f_{0} U}=\frac{U}{f_{0} L}, \tag{12.60}
\end{equation*}
$$

where $f_{0}$ is the Coriolis number at a given latitude $\theta_{0}$. This number gives the rate between the acceleration relative to the terrestrial frame and the Coriolis acceleration.

- The Stroual number

$$
\begin{equation*}
S=\frac{L}{U t_{0}}, \tag{12.61}
\end{equation*}
$$

If $t_{0}=L / U$, then $S=1$.

- The Froude number

$$
\begin{equation*}
F r=\frac{U}{\sqrt{g_{0} H}}, \tag{12.62}
\end{equation*}
$$

which measures the effects of gravity.
Before writing the basic equations in dimensionless form, we introduce new coordinates $x, y$, and $z$ defined by the transformation formulae


Fig. 12.3 Coordinates $x, y, z$

$$
\begin{align*}
& x=a \varphi \cos \theta_{0}  \tag{12.63}\\
& y=a\left(\theta-\theta_{0}\right)  \tag{12.64}\\
& z=r-a \tag{12.65}
\end{align*}
$$

The above formulae show that the new coordinates are proportional to the spherical ones, have their origin at $r=a$, longitude $\varphi=0$ and latitude $\theta=\theta_{0}$. Their geometric meaning is shown in Fig. 12.3.

It is evident that

$$
\begin{equation*}
\frac{\partial}{\partial \varphi}=a \cos \theta_{0} \frac{\partial}{\partial x}, \quad \frac{\partial}{\partial \theta}=a \frac{\partial}{\partial y}, \quad \frac{\partial}{\partial r}=\frac{\partial}{\partial z} \tag{12.66}
\end{equation*}
$$

Now, we have to write the Eqs. (12.52)-(12.56) in these new coordinates after introducing the dimensionless quantities:

$$
\begin{align*}
t^{*} & =t / t_{0}, \quad x^{*}=x / L, \quad y^{*}=y / L, \quad z^{*}=z / H  \tag{12.67}\\
u^{*} & =u / U, \quad v^{*}=v / U, \quad T^{*}=\frac{P}{R \rho_{0}}  \tag{12.68}\\
w^{*} & =w / \epsilon U, \quad p^{*}=p / P, \quad \rho^{*}=\rho / \rho_{0} \tag{12.69}
\end{align*}
$$

where $P$ and $\rho_{0}$ are reference values of pressure and density, respectively. In the transformed equations will appear the dimensionless quantities that we denote, for sake of simplicity, with the same letters of the corresponding dimensional quantities. Introducing the operator (see (12.52))

$$
\begin{equation*}
S \frac{d}{d t} \equiv S \frac{\partial}{\partial t}+\frac{\cos \theta_{0}}{\cos \theta} \frac{u}{1+\epsilon \delta z} \frac{\partial}{\partial x}+\frac{v}{1+\epsilon \delta z} \frac{\partial}{\partial z} \tag{12.70}
\end{equation*}
$$

after tedious but simple calculations, it is possible to arrive at the following dimensionless form of the primitive equations of meteorology

- Mass conservation:

$$
\begin{align*}
S \frac{d \rho}{d t} & +\rho\left(\frac{\cos \theta_{0}}{\cos \theta} \frac{1}{1+\epsilon \delta z} \frac{\partial u}{\partial x}+\frac{1}{\cos \theta(1+\epsilon \delta z)} \frac{\partial(v \cos \theta)}{\partial y}\right. \\
& \left.+\frac{\partial w}{\partial z} 2 \delta \frac{w}{1+\epsilon \delta}\right)=0 \tag{12.71}
\end{align*}
$$

- Component along $\mathbf{a}_{1}$ of momentum equation

$$
\begin{align*}
& \rho\left(S \frac{d u}{d t}+\frac{\epsilon \delta u w}{1+\epsilon \delta z}-\frac{\delta u v \tan \theta}{1+\epsilon \delta z}-\frac{1}{R o} \frac{\sin \theta}{\sin \theta_{0}} v+\frac{\epsilon \cos \theta}{R o \sin \theta_{0}} w\right) \\
& +\frac{\cos \theta_{0}}{\cos \theta(1+\epsilon \delta z)} \frac{P}{\rho_{0} U^{2}} \frac{\partial p}{\partial x}=0, \tag{12.72}
\end{align*}
$$

- Component along $\mathbf{a}_{2}$ of momentum equation

$$
\begin{align*}
& \rho\left(S \frac{d v}{d t}+\frac{\epsilon \delta v w}{1+\epsilon \delta z}+\frac{\delta u^{2} \tan \theta}{1+\epsilon \delta z}+\frac{1}{R o} \frac{\sin \theta}{\sin \theta_{0}} u\right) \\
+ & \frac{1}{1+\epsilon \delta z} \frac{P}{\rho_{0} U^{2}} \frac{\partial p}{\partial y}=0 \tag{12.73}
\end{align*}
$$

- Component along $\mathbf{a}_{3}$ of momentum equation

$$
\begin{align*}
& \rho\left(S \epsilon^{2} \frac{d w}{d t}+\epsilon \delta \frac{u^{2}+v^{2}}{1+\epsilon \delta z}-\frac{\epsilon}{R o} \frac{\cos \theta}{\cos \theta_{0}} u\right) \\
& +\frac{P}{\rho_{0} U^{2}} \frac{\partial p}{\partial x}+\frac{1}{F r^{2}} \rho=0, \tag{12.74}
\end{align*}
$$

- Energy balance

$$
\begin{equation*}
\rho S \dot{T}=\frac{\gamma-1}{R \gamma} S \dot{p} \tag{12.75}
\end{equation*}
$$

- Dimensionless constitutive equation: $p=\rho T$.

These are the primitive equations of meteorology in dimensionless form. They make possible many simplifications depending on the region of atmosphere we intend to analyze.

If we are interested in studying atmospheric motions at mean latitudes $\left(\theta \simeq 45^{\circ}\right)$ on synoptic scale, then the reference quantities have the following values:

$$
\begin{align*}
& L \simeq 10^{6} \mathrm{~m}, \quad H \simeq 10^{4} \mathrm{~m}, \quad a \simeq 6.3 \cdot 10^{6} \mathrm{~m} \\
& U \simeq 10 \mathrm{~m}^{-1}, \quad f_{0} \simeq 10^{-4} \mathrm{~s}^{-1}, \quad P_{h o} \simeq 10 \mathrm{hPa} \\
& P_{v} \simeq 10^{3} \mathrm{hPa}, \quad g \simeq 10 \mathrm{~ms}^{-2}, \quad \rho_{0} \simeq 1 \mathrm{~kg} / \mathrm{m}^{3} \tag{12.76}
\end{align*}
$$

where $P_{h o}$ and $P_{v}$ are, respectively, characteristic pressures relative to horizontal and vertical motions. Consequently, if we propose to describe the atmospheric phenomena on the synoptic scale, we have that

$$
\begin{equation*}
\delta \simeq 10^{-1}, \quad \epsilon \simeq 10^{-2}, \quad R o \simeq 10^{-1}, \quad F r \simeq 10^{-3 / 2} \tag{12.77}
\end{equation*}
$$

It is evident that the weight of the different terms in Eqs. (12.71)-(12.74) changes if we are interested in phenomena relative to a different scale. For instance, if we choose $L \simeq 10^{4} \mathrm{~m}, H \simeq 10^{3} \mathrm{~m}$, without modifying the remaining parameters in (12.76), then it is

$$
\begin{equation*}
\delta \simeq 10^{-2}, \quad \epsilon \simeq 10^{-1}, \quad R o \simeq 10, \quad F r \simeq 10^{-3 / 2} \tag{12.78}
\end{equation*}
$$

### 12.6 The Hydrostatic and Tangent Approximations

Suppose that we are interested in so extended horizontal regions of atmosphere that the corresponding characteristic length $L$ leads to the condition

$$
\begin{equation*}
\epsilon \ll \delta . \tag{12.79}
\end{equation*}
$$

If (12.79) holds, Eqs. (12.71)-(12.74) reduce to the following ones

- Mass conservation:

$$
\begin{equation*}
S \frac{d \rho}{d t}+\rho\left(\frac{\cos \theta_{0}}{\cos \theta} \frac{\partial u}{\partial x}+\frac{1}{\cos \theta} \frac{\partial(v \cos \theta)}{\partial y}+\frac{\partial w}{\partial z}\right)=0 \tag{12.80}
\end{equation*}
$$

- Component along $\mathbf{a}_{1}$ of momentum equation

$$
\begin{equation*}
\rho\left(S \frac{d u}{d t}-\delta u v \tan \theta-\frac{1}{R o} \frac{\sin \theta}{\sin \theta_{0}} v\right)+\frac{\cos \theta_{0}}{\cos \theta} \frac{P_{h o}}{\rho_{0} U^{2}} \frac{\partial p}{\partial x}=0, \tag{12.81}
\end{equation*}
$$

- Component along $\mathbf{a}_{2}$ of momentum equation

$$
\begin{equation*}
\rho\left(S \frac{d v}{d t}+\frac{\epsilon \delta v w}{1+\epsilon \delta z}+\delta u^{2} \tan \theta+\frac{1}{R o} \frac{\sin \theta}{\sin \theta_{0}} u\right)+\frac{P_{h o}}{\rho_{0} U^{2}} \frac{\partial p}{\partial y}=0, \tag{12.82}
\end{equation*}
$$

- Component along $\mathbf{a}_{3}$ of momentum equation

$$
\begin{equation*}
\frac{P_{v}}{\rho_{0} U^{2}} \frac{\partial p}{\partial x}+\frac{1}{F r^{2}} \rho=0 \tag{12.83}
\end{equation*}
$$

- Energy balance

$$
\begin{equation*}
\rho S \frac{d T}{d t}-\frac{\gamma-1}{\gamma} S \frac{d p}{d t}=0 \tag{12.84}
\end{equation*}
$$

- Dimensionless constitutive equation: $p=\rho T$.

When (12.80)-(12.84) are again written in spherical coordinates, we obtain the primitive equations of meteorology:

$$
\begin{align*}
& \frac{d \rho}{d t}+\rho \frac{1}{r \cos \theta} \frac{\partial u}{\partial \varphi}+\frac{1}{r \cos \theta} \frac{\partial}{\partial \theta}(v \cos \theta)+\frac{\partial w}{\partial r}=0,  \tag{12.85}\\
& \frac{d u}{d t}-\frac{v w \tan \theta}{r}-f v+\frac{1}{\rho r \cos \theta} \frac{\partial p}{\partial \varphi}=0,  \tag{12.86}\\
& \frac{d v}{d t}-\frac{u^{2} \tan \theta}{r}+f u+\frac{1}{\rho r} \frac{\partial p}{\partial \theta}=0,  \tag{12.87}\\
& \frac{\partial p}{\partial z}+\rho g=0,  \tag{12.88}\\
& \rho \frac{d T}{d t}-\frac{\gamma-1}{\gamma R} \frac{d p}{d t}=0, \tag{12.89}
\end{align*}
$$

with the constitutive equation $p=\rho R T$.
Since (12.88) is the equation of hydrostatics, (12.85)-(12.89) are also called the equations of hydrostatic approximation. Further, if we introduce the horizontal velocity $\mathbf{v}_{h}=u \mathbf{a}_{1}+v \mathbf{a}_{2},(12.86),(12.87)$ assume the following vector form:

$$
\begin{equation*}
\frac{d \mathbf{v}_{h}}{d t}+\left(\frac{u}{r} \tan \theta+f\right) \mathbf{k} \times \mathbf{v}_{h}+\nabla_{h} p=0 \tag{12.90}
\end{equation*}
$$

where

$$
\begin{equation*}
\nabla_{h} p=\frac{1}{r \cos \theta} \frac{\partial p}{\partial \varphi} \mathbf{a}_{1}+\frac{1}{r} \frac{\partial p}{\partial \theta} \mathbf{a}_{2} \tag{12.91}
\end{equation*}
$$

denotes the horizontal component of $\nabla p$ in spherical coordinates. The equations of hydrostatic approximation have a great relevance in studying the atmospheric dynamics on a large scale in a narrow layer of atmosphere near the earth. Further, they represent the starting point of all the numerical and analytical approximations.

Now, we propose another important approximation of the primitive equations of meteorology based on (12.78). In these conditions we can neglect the terms containing $\delta$ and $\epsilon / R o$ in the Eqs. (12.70)-(12.75) so that we obtain

$$
\begin{gather*}
S \frac{d \rho}{d t}+\rho\left(\frac{\cos \theta_{0}}{\cos \theta} \frac{\partial u}{\partial x}+\frac{1}{\cos \theta} \frac{\partial(v \cos \theta)}{\partial y}+\frac{\partial w}{\partial z}\right)=0  \tag{12.92}\\
\rho\left(S \frac{d u}{d t}-\frac{1}{R o} \frac{\sin \theta}{\sin \theta_{0}} v\right)+\frac{\cos \theta_{0}}{\cos \theta} \frac{P}{\rho_{0} U^{2}} \frac{\partial p}{\partial x}=0  \tag{12.93}\\
\rho\left(S \frac{d v}{d t}+\frac{1}{R o} \frac{\sin \theta}{\sin \theta_{0}} u\right)+\frac{P}{\rho_{0} U^{2}} \frac{\partial p}{\partial y}=0  \tag{12.94}\\
\rho S \epsilon^{2} \frac{d w}{d t}+\frac{P}{\rho_{0} U^{2}} \frac{\partial p}{\partial x}+\frac{1}{F r^{2}} \rho=0  \tag{12.95}\\
\rho S \dot{T}=\frac{\gamma-1}{R \gamma} S \dot{p}  \tag{12.96}\\
p=\rho T
\end{gather*}
$$

where

$$
\begin{equation*}
S \frac{d}{d t}=S \frac{\partial}{\partial t}+\frac{\cos \theta_{0}}{\cos \theta} u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}+w \frac{\partial}{\partial z} \tag{12.97}
\end{equation*}
$$

On the other hand, in the above equations $\theta$ depends on $\delta$ since

$$
\begin{aligned}
\sin \theta & =\sin \theta_{0}+\delta y \cos \theta_{0}+O\left(\delta^{2}\right), \\
\cos \theta & =\cos \theta_{0}-\delta y \sin \theta_{0}+O\left(\delta^{2}\right)
\end{aligned}
$$

Therefore, in our approximation, we have that

$$
\frac{\sin \theta}{\sin \theta_{0}} \simeq 1, \quad \frac{\cos \theta}{\cos \theta_{0}} \simeq 1
$$

and Eqs. (12.92)-(12.97) assume the following dimensional form:

$$
\begin{align*}
\dot{\rho}+\rho \nabla \cdot \mathbf{v} & =0,  \tag{12.98}\\
\dot{u}-f v+\frac{1}{\rho} \frac{\partial p}{\partial x} & =0,  \tag{12.99}\\
\dot{v}+f u+\frac{1}{\rho} \frac{\partial p}{\partial y} & =0,  \tag{12.100}\\
\dot{w}+\frac{1}{\rho} \frac{\partial p}{\partial z}-g & =0  \tag{12.101}\\
\rho \dot{T}-\frac{\gamma-1}{\gamma R} \dot{p} & =0,  \tag{12.102}\\
P & =\rho R T . \tag{12.103}
\end{align*}
$$

Introducing the horizontal velocity and horizontal pressure gradient as follows

$$
\mathbf{v}_{h}=u \mathbf{a}_{1}+v \mathbf{a}_{2}, \quad \nabla_{h} p=\frac{\partial p}{\partial x} \mathbf{a}_{1}+\frac{\partial p}{\partial y} \mathbf{a}_{2}
$$

Eqs. (12.99) and (12.100) assume the following vector form:

$$
\begin{equation*}
\dot{\mathbf{v}}_{h}+f \mathbf{k} \times \mathbf{v}_{h}=-\frac{1}{\rho} \nabla_{h} p \tag{12.104}
\end{equation*}
$$

Equations (12.98)-(12.103) are called the equations of tangent plane approximation since they hold in a neighborhood of the point $\varphi=0, \theta=\theta_{0}$ and $r=a$ of the earth surface.

### 12.7 Bjerknes' Theorem

We have already said that the terrestrial observer adopts a noninertial frame of reference which is at rest relative to the earth. Now, we consider (see Sect. 2) the inertial frame of reference $O \overline{x y z}$ which has its origin $O$ at the center of the earth and the axes oriented toward fixed stars. In this frame of reference, the momentum equation is

$$
\begin{equation*}
\rho \dot{\mathbf{v}}_{a}=-\nabla p-\rho \nabla V_{g} \tag{12.105}
\end{equation*}
$$

where $\mathbf{v}_{a}$ is the absolute velocity, that is the velocity relative to the inertial frame $O \overline{x y z}$ and $V_{g}$ is the gravitational potential (see (12.14)). From kinematics of rigid motions, we know that

$$
\begin{equation*}
\mathbf{v}_{a}=\mathbf{v}+\boldsymbol{\Omega} \times \mathbf{r} \tag{12.106}
\end{equation*}
$$

where $\mathbf{v}$ is the velocity relative to the terrestrial frame and $\boldsymbol{\Omega}$ is the angular velocity of $O x y z$ with respect to $O \overline{x y z}$. Recalling (4.17), the Exercise 4 in Sect. 4.7 and remembering that $\boldsymbol{\Omega}$ is a constant vector, we obtain that the absolute and relative angular velocities are related by the formula

$$
\begin{equation*}
\boldsymbol{\omega}_{a}=\frac{1}{2} \nabla \times \mathbf{v}_{a}=\frac{1}{2} \nabla \times \mathbf{v}+\nabla \times(\boldsymbol{\Omega} \times \mathbf{r})=\boldsymbol{\omega}+\boldsymbol{\Omega} . \tag{12.107}
\end{equation*}
$$

Further, from (12.106) we derive that the absolute circulation of velocity around a closed material curve $\gamma$ (see Sect. 9.3)

$$
\Gamma_{a}=\int_{\gamma} \mathbf{v}_{a} \cdot d \mathbf{s}
$$

is given by

$$
\begin{equation*}
\Gamma_{a}=\Gamma+\int_{\gamma}(\boldsymbol{\Omega} \times \mathbf{r}) \cdot d \mathbf{s} \tag{12.108}
\end{equation*}
$$

On the other hand, owing to Stokes' theorem it is also

$$
\int_{\gamma}(\boldsymbol{\Omega} \times \mathbf{r}) \cdot d \mathbf{s}=\int_{S} \nabla \times(\boldsymbol{\Omega} \times \mathbf{r}) \cdot \mathbf{N} d \sigma
$$

where $S$ is a surface whose boundary is $\gamma$ and $N$ is the unit normal to $S$. Taking into account (12.7) and (12.8), we obtain:

$$
\begin{equation*}
\Gamma_{a}=\Gamma+\int_{S} \boldsymbol{\Omega} \cdot \mathbf{N} d \sigma \tag{12.109}
\end{equation*}
$$

But $\boldsymbol{\Omega}=\Omega \mathbf{k}$, with $\mathbf{k}$ unit vector along the axis of rotation of the earth, so that $\mathbf{k} \cdot \mathbf{N}=\sin \theta$ and the above formula assumes the final form

$$
\begin{equation*}
\Gamma_{a}=\Gamma+\Omega A_{n} \tag{12.110}
\end{equation*}
$$

where $A_{n}$ is the area of the projection of the surface $S$ on the equatorial plane.
Now, we can prove the following Bjerknes' theorem:
Theorem 12.1. In the terrestrial frame of reference the circulation of velocity around a closed material curve satisfies the condition

$$
\begin{equation*}
\frac{d \Gamma}{d t}=-\int_{\gamma} \frac{1}{\rho} \nabla p \cdot d \mathbf{s}-\Omega \frac{d A_{n}}{d t} \tag{12.111}
\end{equation*}
$$

Proof. By differentiating (12.110) with respect to time, we have

$$
\frac{d \Gamma}{d t}=\frac{d \Gamma_{a}}{d t}-\Omega \frac{d A_{n}}{d t}
$$

Since $\gamma$ is a closed material curve, it is the image $\gamma=\mathbf{x}\left(\gamma_{*}, t\right)$ of a closed curve $\gamma_{*}$ in the reference configuration $C_{*}$ by the equation of motion $\mathbf{x}=\mathbf{x}(\mathbf{X}, t), \mathbf{X} \in C_{*}$. Therefore, the following chain of equalities holds:

$$
\begin{aligned}
\frac{d \Gamma_{a}}{d t} & =\frac{d}{d t} \int_{\gamma} v_{i} d x_{i}=\frac{d}{d t} \int_{\gamma_{*}} v_{i} \frac{\partial x_{i}}{\partial X_{j}} d X_{j} \\
& =\int_{\gamma_{*}}\left(\dot{v}_{i} \frac{\partial x_{i}}{\partial X_{j}}+v_{i} \frac{\partial \dot{x}_{i}}{\partial X_{j}}\right) d X_{j}=\int_{\gamma}\left(\dot{\mathbf{v}}+\frac{1}{2} \nabla v^{2}\right) \cdot d \mathbf{s} .
\end{aligned}
$$

Taking into account (12.105), we finally have that

$$
\frac{d \Gamma_{a}}{d t}=-\int_{\gamma} \nabla\left(V_{g}-\frac{1}{2} v^{2}\right) \cdot d \mathbf{s}-\int_{\gamma} \frac{1}{\rho} \nabla p \cdot d \mathbf{s}
$$

and the theorem is proved since the first integral on the right-hand side of the above equation vanishes.

Remark 12.2. By applying one of the formulae of exercise 4 in Sect. 4.7 and Stokes’ theorem, we obtain

$$
-\int_{\gamma} \frac{1}{\rho} \nabla p \cdot d \mathbf{s}=\int_{S} \frac{1}{\rho^{2}} \nabla \rho \times \nabla p \cdot \mathbf{N} d \sigma .
$$

This formula shows that the first integral on the right-hand side of (12.111) vanishes if and only if the surfaces at constant density coincide with the surfaces at constant pressure. This circumstance is verified for a perfect fluid at constant temperature (barotropic fluid) not for a perfect fluid in which the temperature varies from one point to another one.

Remark 12.3. From the above remark, it follows that if we consider a perfect fluid at constant temperature moving relative to an inertial frame, then Bjerknes' theorem reduces to Kelvin's theorem which has been proved in Sect. 9.3.

Remark 12.4. In a barotropic fluid moving relative to the terrestrial frame of reference, the absolute circulation of velocity is constant so that, integrating (12.111) in the time interval $\left[t_{1}, t_{2}\right]$, we obtain that

$$
\Gamma\left(t_{2}\right)-\Gamma\left(t_{1}\right)=-2 \Omega\left(A_{n}\left(t_{2}\right)-A_{n}\left(t_{1}\right)\right) .
$$

Therefore, in these conditions, the relative circulation of velocity in the terrestrial frame varies changing both the latitude of $\gamma$ and the area of the surface $S$, which has a material curve $\gamma$ as its boundary.

### 12.8 Vorticity Equation and Ertel's Theorem

We have already proved many important results about the angular velocity $\boldsymbol{\omega}$. The first important property of this vector field is described by Kelvin's theorem which states that the velocity circulation along a closed material curve is constant. That implies, in view of Stokes' theorem, that the flux of $\omega$ across a material surface is constant. Other important results are expressed by Helmotz's theorems about the vortex tubes. Finally, the evolution of this vector is described by Beltrami's equation (5.86)

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\omega}{\rho}\right)=\frac{1}{\rho}\left(\frac{1}{2} \nabla \times \mathbf{a}+\omega \cdot \nabla \mathbf{v}\right) \tag{12.112}
\end{equation*}
$$

which, when the continuous system is a perfect fluid acted upon by conservative forces, reduces to the following one

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\boldsymbol{\omega}}{\rho}\right)=\frac{1}{\rho} \boldsymbol{\omega} \cdot \nabla \mathbf{v} \tag{12.113}
\end{equation*}
$$

More particularly, if the fluid is incompressible, then the above equation becomes

$$
\dot{\omega}=\omega \cdot \nabla \mathbf{v}
$$

In this section we prove an important result, due to Ertel (1942), which can be derived by Beltrami's equation (12.112). From the momentum equation (see (5.30))

$$
\mathbf{a}=-\frac{1}{\rho} \nabla p+\frac{1}{\rho} \nabla \cdot \mathbf{T}^{(d)}+\mathbf{b}
$$

where $\mathbf{T}^{(d)}$ denotes the dissipative part of stress, we obtain

$$
\begin{align*}
\nabla \times \mathbf{a} & =-\nabla \times\left(\frac{\nabla p}{\rho}\right)+\nabla \times\left(\frac{\nabla \cdot \mathbf{T}^{(d)}}{\rho}\right)+\nabla \times \mathbf{b} \\
& =\frac{\nabla \rho \times \nabla p}{\rho^{2}}+\nabla \times\left(\frac{\nabla \cdot \mathbf{T}^{(d)}}{\rho}\right)+\nabla \times \mathbf{b} \tag{12.114}
\end{align*}
$$

Introducing (12.114) into (12.112), we arrive at the following equation ${ }^{6}$

$$
\begin{align*}
2 \frac{d}{d t}\left(\frac{\boldsymbol{\omega}}{\rho}\right) & =\frac{2}{\rho} \boldsymbol{\omega} \cdot \nabla \mathbf{v}+\frac{\nabla \rho \times \nabla p}{\rho^{3}} \\
& +\frac{1}{\rho} \nabla \times\left(\frac{\nabla \cdot \mathbf{T}^{(d)}}{\rho}\right)+\frac{1}{\rho} \nabla \times \mathbf{b}, \tag{12.115}
\end{align*}
$$

which, resorting to the mass conservation, can easily be written in the equivalent form

$$
\begin{align*}
2 \dot{\boldsymbol{\omega}} & =2 \boldsymbol{\omega} \cdot \nabla \mathbf{v}-2 \omega \nabla \cdot \mathbf{v}+\nabla \times \mathbf{b} \\
& +\frac{\nabla \rho \times \nabla p}{\rho^{2}}+\nabla \times\left(\frac{\nabla \cdot \mathbf{T}^{(d)}}{\rho}\right) . \tag{12.116}
\end{align*}
$$

[^47]This last equation shows that the time variations of $\omega$ are due to:

- the term $(\nabla \rho \times \nabla p) / \rho^{2}$ which takes into account effects of changes of density and temperature;
- the term $\nabla \times \mathbf{b}$ describing the effects on vorticity of the acting forces;
- the term $\nabla \times\left(\nabla \cdot \mathbf{T}^{(d)} / \rho\right)$ which describes the vorticity diffusion due to viscosity;
- the term $\omega \nabla \cdot \mathbf{v}$ describing the effects of volume variations;
- the term $\omega \cdot \nabla \mathbf{v}$ showing the effects of variation of velocity on time variations of $\omega$.

All the equations we have written in this section hold in an inertial frame. If we want to apply them to a terrestrial frame of reference, we have to remember that is not inertial. In view of (12.105) and (12.107), the force acting on the atmosphere are conservative and angular velocity $\omega$ becomes

$$
\boldsymbol{\omega}_{a}=\boldsymbol{\omega}+\boldsymbol{\Omega}
$$

Finally, (12.116) in the terrestrial frame of reference can be written as follows

$$
\begin{equation*}
2 \frac{d}{d t}\left(\frac{\boldsymbol{\omega}_{a}}{\rho}\right)=\frac{2}{\rho} \boldsymbol{\omega} \cdot \nabla \mathbf{v}+\frac{\nabla \rho \times \nabla p}{\rho^{3}}+\frac{1}{\rho} \nabla \times\left(\frac{\nabla \cdot \mathbf{T}^{(d)}}{\rho}\right), \tag{12.117}
\end{equation*}
$$

Now, we are in condition to prove the following
Theorem 12.2 (Ertel). If there exists a scalar field $\Lambda$ which is constant during the motion,

$$
\begin{equation*}
\dot{\Lambda}=0 \tag{12.118}
\end{equation*}
$$

the dissipative stress tensor $\mathbf{T}^{(d)}$ vanishes and one of the following conditions holds,

- the fluid is barotropic (i.e., $p=p(\rho)$ );
- $\Lambda=\Lambda(\rho, p)$;
then also the potential vorticity

$$
\begin{equation*}
\Pi=\frac{1}{\rho}(\boldsymbol{\omega}+\boldsymbol{\Omega}) \cdot \nabla \Lambda \tag{12.119}
\end{equation*}
$$

is constant.
Proof. In the above hypotheses, Eq. (12.117) becomes

$$
\begin{equation*}
2 \frac{d}{d t}\left(\frac{\boldsymbol{\omega}_{a}}{\rho}\right)=\frac{2}{\rho} \boldsymbol{\omega}_{a} \cdot \nabla \mathbf{v}+\frac{\nabla \rho \times \nabla p}{\rho^{3}} \tag{12.120}
\end{equation*}
$$

On the other hand, it is

$$
\begin{align*}
\frac{d}{d t} \nabla \Lambda & =\frac{\partial}{\partial t} \nabla \Lambda+\mathbf{v} \cdot \nabla(\nabla \Lambda) \\
& =\nabla \frac{\partial \Lambda}{\partial t}+\nabla(\mathbf{v} \cdot \nabla \Lambda)-\nabla \mathbf{v} \cdot \nabla \Lambda \\
& =\nabla\left(\frac{d \Lambda}{d t}\right)-\nabla \mathbf{v} \cdot \nabla \Lambda \tag{12.121}
\end{align*}
$$

In view of this result, we can also write:

$$
\begin{equation*}
\frac{2}{\rho} \boldsymbol{\omega}_{a} \cdot \frac{d}{d t} \nabla \Lambda=\left(\frac{\boldsymbol{\omega}_{a}}{\rho} \cdot \nabla\right) \frac{d \Lambda}{d t}-\left(\frac{\boldsymbol{\omega}_{a}}{\rho} \cdot \nabla \mathbf{v}\right) \cdot \nabla \Lambda . \tag{12.122}
\end{equation*}
$$

By a scalar product of $\mathbf{v}$ and (12.120) we obtain a new equation which, added to (12.122), supplies the final condition

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{2 \omega_{a}}{\rho} \cdot \nabla \Lambda\right)=\nabla \Lambda \cdot\left(\frac{\nabla \rho \times \nabla p}{\rho^{3}}\right) \tag{12.123}
\end{equation*}
$$

when we use (12.118). Now, the right-hand side of (12.123) vanishes when $p=$ $p(\rho)$, since it is $\nabla p=p^{\prime}(\rho) \nabla \rho$, and when $\Lambda=\Lambda(\rho)$. Then, theorem is proved.

This theorem is very important for understanding the large scale dynamics of the atmosphere. Indeed, in suitable approximations, it becomes the governing equation of motion. Any time we determine a scalar function which is constant during the motion, we obtain a corresponding potential vorticity. For instance, if the atmospheric process is adiabatic, the entropy $S$ is constant and, consequently, also $\left(\omega_{a} \cdot \nabla S\right) / \rho$ is constant. In particular, we can state that in going from a surface for which $\Lambda=\Lambda_{1}$ to a surface $\Lambda=\Lambda_{2}$, where $\Lambda_{1}<\Lambda_{2}$ are slightly different values, then, the component of $\omega_{a}$ along the normal $\mathbf{N}=\nabla \Lambda /|\nabla \Lambda|$ to the first surface, decreases in going from $\Lambda_{1}$ to $\Lambda_{2}$. There are many applications of Ertel's theorem to meteorology and oceanography.

### 12.9 Reynolds Turbulence

The basic equations of meteorology, in their different approximated versions, constitute the starting point of any more accurate theory of atmospheric behavior. However, they are based on the assumption that the air can be described by a perfect gas in the absence of thermal conductivity. In other words, these equations neglect all the effects produced by viscosity and heat exchanges inside the atmosphere. These effects are relevant, especially near the terrestrial surface (planetary boundary layer).

Viscosity and heat conduction produce a chaotic and unforeseeable behavior of the flow, i.e., they generate turbulence in the flow. As a consequence, the flow can change from a laminar and ordered flow to a turbulent one. The mathematical problems related to turbulence are extremely complex and they are still unsolved. Here, we introduce only the preliminary elements of this theory due to Rayleigh. The approach of this author is based on the hypothesis that, during a turbulent flow, there exists a mean motion which can be described by the ordinary equations of viscous fluids. For instance, the smoke of a cigarette exhibits a sequence of vortices whose behavior is very complicated. However, together with this chaotic flow, there is a regular upward flow of vortices.

The idea of Rayleigh consists in decomposing the velocity $\mathbf{v}$ of the turbulent flow into a fluctuant part $\tilde{\mathbf{v}}$ and a velocity $\langle\mathbf{v}\rangle$ which is the time mean of $\mathbf{v}$ :

$$
\begin{equation*}
\langle\mathbf{v}\rangle=\frac{1}{T} \int_{-T / 2}^{T / 2} \mathbf{v}(\mathbf{x}, t+\tau) d \tau \tag{12.124}
\end{equation*}
$$

where the time interval $[-T / 2, T / 2]$ is supposed to be much smaller than the characteristic time of the mean motion. Although we have no idea about $\tilde{\mathbf{v}}$, we are only interested in describing its effects on the regular mean motion. In conclusion, we have that

$$
\begin{equation*}
\mathbf{v}=\langle\mathbf{v}\rangle+\tilde{\mathbf{v}}, \tag{12.125}
\end{equation*}
$$

where, owing to (12.124), it is also

$$
\begin{equation*}
\langle\tilde{\mathbf{v}}\rangle=0 . \tag{12.126}
\end{equation*}
$$

Similar decompositions hold for the mass density $\rho(\mathbf{r}, t)$ and the pressure $p(\mathbf{r}, t)$ :

$$
\begin{gather*}
\rho=\langle\rho\rangle+\tilde{\rho}, \quad p=\langle p\rangle+\tilde{p}, \\
\langle\tilde{\rho}\rangle=\langle\tilde{p}\rangle=0 . \tag{12.127}
\end{gather*}
$$

Further, denoting by $a(\mathbf{r}, t)$ and $b(\mathbf{r}, t)$ two arbitrary fields depending on the position vector and time, it is plain to verify that the following Rayleigh's rules hold:

$$
\begin{align*}
\langle a+b\rangle & =\langle a\rangle+\langle a\rangle \\
\langle a b\rangle & =\langle a\rangle\langle b\rangle+\langle\tilde{a} \tilde{b}\rangle \\
\left\langle\frac{\partial a}{\partial t}\right\rangle=\frac{\partial}{\partial t}\langle a\rangle, & \left\langle\frac{\partial a}{\partial x}\right\rangle=\frac{\partial}{\partial x}\langle a\rangle . \tag{12.128}
\end{align*}
$$

Introducing the decompositions (12.125), (12.126) into the mass balance of an incompressible fluid, we obtain

$$
\begin{equation*}
\nabla \cdot\langle\mathbf{v}\rangle=0 \tag{12.129}
\end{equation*}
$$

Denoting by $u, v$, and $w$ the components of $\mathbf{v}$ along Cartesian axes $O x y z$ and applying the rules (12.128) to Navier-Stokes equation of an incompressible viscous fluid (see (9.77)), we arrive at the following result for the component of momentum along $O x$

$$
\begin{align*}
& \left(\frac{\partial}{\partial t}+(\langle u\rangle+\tilde{u}) \frac{\partial}{\partial x}+(\langle v\rangle+\tilde{v}) \frac{\partial}{\partial y}+(\langle w\rangle+\tilde{w}) \frac{\partial}{\partial z}\right)(\langle u\rangle+\tilde{u}) \\
= & \frac{1}{\rho} \frac{\partial\langle p\rangle}{\partial x}-\frac{1}{\rho} \frac{\partial \tilde{p}}{\partial x}+v \triangle(\langle u\rangle+\tilde{u}) \tag{12.130}
\end{align*}
$$

from which, evaluating the mean value of both sides and taking into account the incompressibility of the fluid, we have that

$$
\begin{align*}
& \frac{\partial\langle u\rangle}{\partial t}+\langle\mathbf{v}\rangle \cdot \nabla\langle u\rangle \\
= & -\frac{1}{\rho} \frac{\partial\langle p\rangle}{\partial x}+v \triangle\langle u\rangle-\frac{\partial}{\partial x}\langle\tilde{u} \tilde{u}\rangle-\frac{\partial}{\partial x}\langle\tilde{u} \tilde{v}\rangle-\frac{\partial}{\partial x}\langle\tilde{u} \tilde{w}\rangle . \tag{12.131}
\end{align*}
$$

Introducing the notations

$$
\begin{equation*}
\left\langle\tilde{v}_{i} \tilde{v}_{j}\right\rangle=-\frac{\tau_{i j}}{\rho}, \tag{12.132}
\end{equation*}
$$

and considering the components of momentum equation along the axes $O x$ and $O y$, we finally obtain

$$
\begin{equation*}
\frac{\partial\langle\mathbf{v}\rangle}{\partial t}+\langle\mathbf{v}\rangle \cdot \nabla\langle\mathbf{v}\rangle=-\frac{1}{\rho} \nabla\langle p\rangle+\frac{1}{\rho} \nabla \cdot \boldsymbol{\tau}+v \Delta\langle\mathbf{v}\rangle . \tag{12.133}
\end{equation*}
$$

This equation shows that, owing to the presence of the term $\nabla \cdot \boldsymbol{\tau}$, the mean value of velocity does not satisfy the equation of a Navier-Stokes for incompressible fluid. On the other hand, the symmetric tensor $\boldsymbol{\tau}$ depends on the flow fluctuations that are unknown. Therefore, in order to close the system (12.129), (12.133), we need conditions that relate $\boldsymbol{\tau}$ to the mean velocity $\langle\mathbf{v}\rangle$. The most simple way to reach this objective, consists in supposing that $\tau$ depends linearly on the gradient of mean velocity by the relations:

$$
\begin{align*}
\tau_{x x} & =2 \rho A_{H} \frac{\partial u}{\partial x}, \tau_{y y}=2 \rho A_{H} \frac{\partial v}{\partial y}  \tag{12.134}\\
\tau_{z z} & =2 \rho A_{V} \frac{\partial w}{\partial z}  \tag{12.135}\\
\tau_{x y} & =\rho A_{H}\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right) \tag{12.136}
\end{align*}
$$

$$
\begin{align*}
& \tau_{x z}=\rho A_{V} \frac{\partial u}{\partial z}+A_{H} \frac{\partial w}{\partial x}  \tag{12.137}\\
& \tau_{y z}=\rho A_{V} \frac{\partial v}{\partial z}+\rho A_{H} \frac{\partial w}{\partial y} . \tag{12.138}
\end{align*}
$$

The quantities $A_{V}$ and $A_{H}$ are called the turbulence vertical viscosity coefficient and the turbulence horizontal viscosity coefficient, respectively. Note that the tensor $\tau$ defined by the above equations is symmetric.

Equation (12.12), in which we have adopted the definitions (12.134)-(12.138), shows that the turbulence is described by a further viscosity stress $\boldsymbol{\tau}$. However, this stress, differently from the viscosity stress tensor appearing in the Navier-Stokes equation, is not due to molecular interactions. In fact, it has been introduced to describe the turbulence. In other words, the Navier-Stokes tensor describes physical properties of fluid whereas $\boldsymbol{\tau}$ describes a property of the flow of fluid.

### 12.10 Ekman's Planetary Boundary Layer

We have already said that the effects of viscosity and thermal conduction are relevant on the earth surface. In this section we sketch the effects of turbulence due to viscosity in a layer near the terrestrial surface.

The layer of atmosphere in which the turbulence is important is called Ekman's layer. The main properties of this layer can be derived supposing that it is filled by an incompressible and homogeneous gas whose turbulent motion is referred to a Cartesian frame of reference $O x y z$ at rest with respect to the earth. The origin $O$ of $O x y z$ is a point belonging to the surface of the earth and the Cartesian plane $O x y$ is the tangent plane to the earth at the point $O$.

In this section we prove that the thickness of Ekman's layer is evaluated by the number

$$
\begin{equation*}
\delta_{E}=\sqrt{\frac{2 A_{V}}{f}} \tag{12.139}
\end{equation*}
$$

where $A_{V}$ is the turbulence vertical viscosity coefficient (see previous section) and $f$ the Coriolis parameter. Recalling that $f \simeq 10^{-4} \mathrm{~s}^{-1}$ and $A_{V} \simeq 10^{4} \mathrm{~m} / \mathrm{s}$, we can state that

$$
\delta_{E} \simeq 10^{2}-10^{3} m
$$

Introduce the Ekman number

$$
\begin{equation*}
E=\frac{\delta^{2}}{L^{2}}=2 \frac{A_{V}}{f L^{2}} \tag{12.140}
\end{equation*}
$$

denoting the rate between the coefficient $A_{v}$ and Coriolis' parameter multiplied by a characteristic length. If $L \simeq \delta_{E}$, then $\simeq 1$ and we are in the turbulent layer; if $E \ll 1$, then we are out of this layer.

From the hypotheses about the nature of this layer and the frame of reference we have adopted, we can state that the equations governing the turbulent motion are (see Eqs. (12.133)-(12.138)) ${ }^{7}$ :

$$
\begin{gather*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0  \tag{12.141}\\
\frac{d u}{d t}-f v=-\frac{1}{\rho} \frac{\partial p}{\partial x}+A_{H}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)+A_{V} \frac{\partial^{2} u}{\partial z^{2}}  \tag{12.142}\\
\frac{d v}{d t}+f u=-\frac{1}{\rho} \frac{\partial p}{\partial y}+A_{H}\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)+A_{V} \frac{\partial^{2} v}{\partial z^{2}}  \tag{12.143}\\
\frac{d w}{d t}+g=-\frac{1}{\rho} \frac{\partial p}{\partial z}+A_{H}\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}\right)+A_{V} \frac{\partial^{2} w}{\partial z^{2}} \tag{12.144}
\end{gather*}
$$

where $f=2 \Omega$. To the above equations we add the following asymptotic conditions

$$
\begin{equation*}
u=U, v=w=0, z \rightarrow \infty, \tag{12.145}
\end{equation*}
$$

and the boundary conditions on the terrestrial surface

$$
\begin{equation*}
u=v=w=0, z=0 \tag{12.146}
\end{equation*}
$$

We search for a stationary solution of the boundary value problem (12.141), (12.146) of the following form:

$$
\begin{equation*}
u=u(z), v=v(z), w=w(z) . \tag{12.147}
\end{equation*}
$$

From this hypothesis and the continuity equation (12.141) we obtain the relation

$$
\begin{equation*}
\frac{\partial w}{\partial z}=0 \tag{12.148}
\end{equation*}
$$

which, in view of the boundary condition $w(0)=0$, implies that

$$
\begin{equation*}
w(z)=0 . \tag{12.149}
\end{equation*}
$$

Owing to this result, Eqs. (12.142)-(12.144) can be written in the form:

[^48]\[

$$
\begin{gather*}
-f v=-\frac{1}{\rho} \frac{\partial p}{\partial x}+A_{V} \frac{\partial^{2} u}{\partial z^{2}}  \tag{12.150}\\
f u=-\frac{1}{\rho} \frac{\partial p}{\partial y}+A_{V} \frac{\partial^{2} v}{\partial z^{2}}  \tag{12.151}\\
g=-\frac{1}{\rho} \frac{\partial p}{\partial z} \tag{12.152}
\end{gather*}
$$
\]

From (12.147), it follows that $\partial p / \partial x$ and $\partial p / \partial y$ do not depend on $x$ and $y$. In the limit $z \rightarrow \infty$, when we take into account the asymptotic conditions (12.145), we obtain that

$$
\begin{equation*}
0=-\frac{1}{\rho} \lim _{z \rightarrow \infty} \frac{\partial p}{\partial x}, f U=-\frac{1}{\rho} \lim _{z \rightarrow \infty} \frac{\partial p}{\partial y} \tag{12.153}
\end{equation*}
$$

In conclusion, since $\partial p / \partial x$ and $\partial p / \partial y$ are independent of $x$ and $y$, we can state that, for any value of $z$ it is:

$$
\begin{equation*}
\frac{\partial p}{\partial x}=0, \frac{\partial p}{\partial y}=-\rho f U \tag{12.154}
\end{equation*}
$$

All these results allow us to put (12.150) and (12.151) in the form:

$$
\begin{align*}
f \bar{u} & =A_{V} \frac{d^{2} v}{d z^{2}}  \tag{12.155}\\
-f v & =A_{V} \frac{d^{2} \bar{u}}{d z^{2}} \tag{12.156}
\end{align*}
$$

where we have introduced the notation

$$
\begin{equation*}
\bar{u}=u-U \tag{12.157}
\end{equation*}
$$

Differentiating twice (12.156) and taking into account (12.155), we obtain the fourth-order ordinary differential equation

$$
\begin{equation*}
\frac{d^{4} \bar{u}}{d x^{4}}+\frac{f^{2}}{A_{V}} \bar{u}=0 \tag{12.158}
\end{equation*}
$$

whose general integral, in view of (12.139), is

$$
\begin{align*}
\bar{u} & =C_{1} e^{(1+i) z / \delta_{E}}+C_{2} e^{(1-i) z / \delta_{E}} \\
& +C_{3} e^{-(1+i) z / \delta_{E}}+C_{4} e^{-(1-i) z / \delta_{E}} \tag{12.159}
\end{align*}
$$



Fig. 12.4 Ekman's spiral $\gamma_{E}$ and experimental curve $\gamma$
with $C_{1}, C_{2}, C_{3}, C_{4}$ arbitrary constants of integration. Since the first two terms of (12.159) contain exponentials with positive real parts, the solution is bounded if $C_{1}=C_{2}=0$. For these values of $C_{1}$ and $C_{2}$ are also satisfied the asymptotic conditions (12.145). Therefore, we have that

$$
\begin{align*}
\bar{u} & =C_{3} e^{-(1+i) z / \delta_{E}}+C_{4} e^{-(1-i) z / \delta_{E}},  \tag{12.160}\\
v & =-i C_{3} e^{-(1+i) z / \delta_{E}}+i C_{4} e^{-(1-i) z / \delta_{E}}, \tag{12.161}
\end{align*}
$$

and the conditions (12.146) are satisfied if

$$
\begin{equation*}
C_{3}=C_{4}=-\frac{U}{2} . \tag{12.162}
\end{equation*}
$$

In conclusion, the stationary solution we are searching for is

$$
\begin{align*}
& u=U\left(1-e^{-z / \delta_{E}} \cos \frac{z}{\delta_{E}}\right),  \tag{12.163}\\
& v=U e^{-z / \delta_{E}} \sin \frac{z}{\delta_{E}} \tag{12.164}
\end{align*}
$$

The curve $\gamma_{E}$ described by these parametric equations is called Ekman's spiral and its behavior is shown in Fig. 12.4. When the value of $z$ increases, the point $(u / U, v / U)$ moves toward the right-hand side on both curves. In other words, although the two curves are different, Ekman's curve describes an important effect: the horizontal velocity rotates when the altitude increases, i.e., there is a rotating wind parallel to the surface of the earth. A more accurate analysis of system (12.141)-(12.144) leads to the following interesting results (see, for instance, $[18,45])$ :

- The horizontal wind moves toward the regions of atmosphere with a lower pressure. In Fig. 12.5 are shown the isobars and the flow of air toward the low pressure zones.


Fig. 12.5 Flow from high pressure to low pressure

- Together with the horizontal flow, there is a vertical component of velocity. This vertical flow moves air from warmer regions to colder ones determining the formation of clouds.
- All the mentioned flows lead to the reduction of the cyclonic regions (spin-down).


### 12.11 Oberbeck-Boussinesq Equations

In the preceding two sections we have shown some effects of turbulence resulting from viscosity. In the next sections we take into account some fundamental effects due to the thermal conduction.

On any scale the atmospheric motions have their origin in the convection. This phenomenon is essentially determined by temperature differences due to solar heating, the temperature difference between the polar regions and the equatorial zone. Consider a fluid layer $L$ whose lower surface $S_{0}$ is at a constant temperature $T_{0}$ greater than the temperature $T$ of the upper surface $S$ of $L$. If the difference $T-T_{0}$ is small, then the fluid remains at rest and the heat flows from $S_{0}$ toward $S$. This phenomenon is called heat conduction. Since the temperature decreases from $T_{0}$ to $T$ in passing from $S_{0}$ to $S$, the lower layers of $L$ have a lower density as a consequence of thermal expansion. Therefore, on these layers is acting the buoyant force (see Sect. 9.2) that pushes them toward $S$. If the difference $T-T_{0}$ is small, then this force is balanced by the viscosity. When the difference $T-T_{0}$ increases, the viscosity does not succeed in stopping the lower layers and starts the heat convection, i.e., the motion of fluid from $S_{0}$ to $S$ in a turbulent way. The first attempt to describe the experiments on convection, due to Bènard (1900), was carried out by Rayleigh which proved that the convection takes place when the Rayleigh number $R_{a}$ is greater than a critical value $R_{*}$ depending on the geometry of the layer, i.e., when

$$
\begin{equation*}
R_{a} \equiv \frac{g \alpha h^{4}\left(T-T_{0}\right)}{k v}>R_{*}, \tag{12.165}
\end{equation*}
$$

where $g$ is the gravitational acceleration, $\alpha$ the thermal expansion coefficient, $h$ the thickness of the layer, $k$ the thermal diffusion coefficient, and $v$ the kinematic viscosity coefficient.

In order to describe the convection inside a gas the Oberbeck-Boussinesq equations have been proposed. These equations are obtained simplifying the Navier-Stokes equations of a compressible viscous fluid on the basis of the following hypotheses: ${ }^{8}$

- the variations of mass density due to the heating can be neglected everywhere in the Navier-Stokes equations except than in the gravitational term $\rho \mathbf{g}$. Denoting by $\rho_{0}$ the constant value of mass density at the temperature $T_{0}$, the term $\rho \mathbf{g}$ is written as follows

$$
\begin{equation*}
\rho_{0}\left[1-\alpha\left(T-T_{0}\right)\right], \tag{12.166}
\end{equation*}
$$

where $\alpha$ is the thermal expansion coefficient. This formula states that, beside the gravitational force $\rho_{0} \mathbf{g}$, there is a buoyant force increasing with the temperature difference $T-T_{0}$.

- All the thermodynamic coefficients $\mu, k, .$. , appearing in the equations are constant.

Accepting the above hypotheses, the mass conservation, the momentum balance, and the energy balance assume the following form

$$
\begin{gather*}
\nabla \cdot \mathbf{v}=0  \tag{12.167}\\
\dot{\mathbf{v}}=-\frac{1}{\rho_{0}} \nabla p+g\left[1-\alpha\left(T-T_{0}\right)\right] \mathbf{k}+v \triangle \mathbf{v},  \tag{12.168}\\
\dot{T}=\kappa \Delta T, \tag{12.169}
\end{gather*}
$$

where $\kappa=k / \rho_{0} c_{p}$ and $c_{p}$ is the specific heat. It is evident that the OberbeckBoussinesq equations have to be equipped with appropriate initial and boundary conditions relative to the flow and temperature.

[^49]
### 12.12 Saltzman's Equations

In this section we refer the Oberbeck-Boussinesq equations to a Cartesian frame of reference $O x y z$, with $O z$ vertical, and suppose that all the fields entering these equations depend only on the coordinates $x, z,-\infty<x<\infty, 0 \leq z \leq h$, and time $t$. The simplified equations we obtain are called Saltzman's equations. Denoting by $\mathbf{i}$ and $\mathbf{k}$ the unit vectors long the axes $O x$ and $O z$, respectively, the velocity fields can be written as $\mathbf{v}=u \mathbf{i}+w \mathbf{k}$ and Eqs. (12.167)-(12.169) become:

$$
\begin{gather*}
\frac{\partial u}{\partial x}+\frac{\partial w}{\partial z}=0  \tag{12.170}\\
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+w \frac{\partial u}{\partial z}=-\frac{1}{\rho_{0}} \frac{\partial p}{\partial x}+v \Delta u  \tag{12.171}\\
\frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+w \frac{\partial w}{\partial z}=-\frac{1}{\rho_{0}} \frac{\partial p}{\partial z}-g \\
+\alpha g\left(T-T_{0}\right)+v \Delta w  \tag{12.172}\\
\frac{\partial T}{\partial t}+u \frac{\partial T}{\partial x}+w \frac{\partial T}{\partial z}=\kappa \Delta T \tag{12.173}
\end{gather*}
$$

First, we note that (12.170) implies the existence of a stream potential, i.e., of a function $\psi(x, z)$ such that (see Sect. 9.5)

$$
\begin{equation*}
u=\frac{\partial \psi}{\partial z}, w=-\frac{\partial \psi}{\partial x} \tag{12.174}
\end{equation*}
$$

and (12.170) is verified. In second place, we prove the existence of a static solution of (12.170)-(12.172) in which the temperature depends only on the variable $z$, that is, $T_{c}=T_{c}(z)$. Then, for $u=w=0$ and $T=T(z)$, these equations reduce to $p=p(z)$ and

$$
\begin{equation*}
\frac{d^{2} T_{c}}{d z^{2}}=0 \tag{12.175}
\end{equation*}
$$

whose solution $T_{c}$, corresponding to the boundary data:

$$
\begin{equation*}
T_{c}(0)=T_{0}, T_{c}(h)=T_{0}-\delta T, \tag{12.176}
\end{equation*}
$$

is

$$
\begin{equation*}
T_{c}(z)=T_{0}-\delta T \frac{z}{h} \tag{12.177}
\end{equation*}
$$

Now, according to Saltzman, we express the solution $T(x, z, t)$ of (12.170)-(12.172) as the sum of $T_{c}(z)$ and the deviations $\Theta(x, z, t)=T(x, z, t)-T_{c}(z)$, i.e,

$$
\begin{equation*}
T(x, z, t)=T_{c}(z)+\Theta(x, z, t) . \tag{12.178}
\end{equation*}
$$

Now, introducing (12.174) into (12.171), (12.172), differentiating (12.171) with respect to $z$, (12.172) with respect to $x$ and subtracting the resulting equations, we obtain

$$
\begin{equation*}
\frac{\partial}{\partial t} \Delta \psi-\frac{\partial \psi}{\partial z} \frac{\partial}{\partial x} \Delta \psi+\frac{\partial \psi}{\partial x} \frac{\partial}{\partial z} \Delta \psi=\alpha g \frac{\partial \Theta}{\partial x}+v \Delta^{2} \psi \tag{12.179}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta^{2}=\frac{\partial^{4}}{\partial x^{4}}+2 \frac{\partial^{4}}{\partial x^{2} \partial z^{2}}+\frac{\partial^{4}}{\partial z^{2}} \tag{12.180}
\end{equation*}
$$

It is an easy exercise to verify that the energy equation (12.173) can be written as follows:

$$
\begin{equation*}
\frac{\partial \Theta}{\partial t}+\frac{\partial \psi}{\partial x} \frac{\partial \Theta}{\partial z}-\frac{\partial \psi}{\partial z} \frac{\partial \Theta}{\partial x}=\frac{\delta T}{h} \frac{\partial \psi}{\partial x}+\kappa \Delta \Theta . \tag{12.181}
\end{equation*}
$$

Adopting the usual notation

$$
\frac{\partial(a, b)}{\partial(x, z)}=\frac{\partial a}{\partial x} \frac{\partial b}{\partial z}-\frac{\partial a}{\partial z} \frac{\partial b}{\partial x},
$$

we can write (12.179) and (12.181) in the form

$$
\begin{align*}
\frac{\partial}{\partial t} \Delta \psi+\frac{\partial(\psi, \Delta \psi)}{\partial(x, z)}= & \alpha g \frac{\partial \Theta}{\partial x}+v \Delta^{2} \psi,  \tag{12.182}\\
\frac{\partial \Theta}{\partial t}+\frac{\partial(\psi, \Theta)}{\partial(x, z)} & =\frac{\delta T}{h} \frac{\partial \psi}{\partial x}+\kappa \Delta \Theta . \tag{12.183}
\end{align*}
$$

These equations are equivalent to (12.170)-(12.173). It remains to assign the boundary conditions. Searching for a solution such that $T(0)=T_{0}$ and $T(h)=$ $T_{0}-\delta T$, we obtain the following boundary conditions for $\Theta$ (see (12.178)):

$$
\begin{equation*}
\Theta(x, 0, t)=\Theta(x, h, t)=0 . \tag{12.184}
\end{equation*}
$$

About the boundary conditions relative to the velocity, following Lorentz (see [31]), we assume that the conditions of free surface hold on both the planes $z=0$ and $z=h$. This assumption leads to the conditions

$$
\begin{equation*}
w(x, 0)=w(x, h)=0 \Leftrightarrow \frac{\partial \psi}{\partial x}(x, 0)=\frac{\partial \psi}{\partial x}(x, h)=0 \tag{12.185}
\end{equation*}
$$

In turn, these conditions imply ${ }^{9}$

$$
\begin{equation*}
\psi(x, 0)=\psi(x, h)=\cos t=0 . \tag{12.186}
\end{equation*}
$$

From the hypothesis that $z=0$ and $z=h$ are free surfaces, we also derive the condition that the tangential component of the stress vanishes:

$$
\begin{equation*}
\mathbf{t} \cdot \mathbf{T} \cdot \mathbf{n}=2 \mu t_{i} D_{i j} n_{j}, \tag{12.187}
\end{equation*}
$$

where $\mathbf{t}=(1,0)$ is the unit vector along to the axis $O x$ and $\mathbf{n}=(0,1)$ denotes the unit vector along the axis $O z$. Since the condition (12.186) implies

$$
\frac{\partial w}{\partial x}(x, 0)=\frac{\partial w}{\partial x}(x, h)=0
$$

from (12.74) we easily derive the following boundary data

$$
\begin{equation*}
\frac{\partial u}{\partial z}(x, 0)=\frac{\partial u}{\partial z}(x, h)=0 \Rightarrow \frac{\partial^{2} \psi}{\partial z^{2}}(x, 0)=\frac{\partial^{2} \psi}{\partial z^{2}}(x, h)=0 . \tag{12.188}
\end{equation*}
$$

The asymptotic boundary data relative to the variable $x \in(-\infty, \infty)$ are substituted by suitable periodic data (see next section).

Before attempting to solve Saltzman's equations it is convenient to write them in dimensionless form. To this end, we start defining the following reference velocity

$$
\begin{equation*}
U=\sqrt{g h \alpha \delta T} \tag{12.189}
\end{equation*}
$$

As reference quantities of length, temperature, and time we take $h, \delta T$, and $h^{2} v$ respectively. Using these reference quantities we introduce the following dimensionless variables:

$$
\begin{align*}
& u^{*}=\frac{u}{\sqrt{g h \alpha \delta T}}, w^{*}=\frac{w}{\sqrt{g h \alpha \delta T}}, \Theta^{*}=\frac{\Theta}{\delta T} \\
& x^{*}=\frac{x}{h}, z^{*}=\frac{z}{h}, t^{*}=\frac{t}{h^{2} v}, \psi^{*}=\frac{\psi}{H U} \tag{12.190}
\end{align*}
$$

Omitting the asterisk for sake of simplicity, we can write Saltzman equations and boundary conditions in the following dimensionless form

[^50]\[

$$
\begin{align*}
\frac{\partial}{\partial t} \Delta \psi+R_{e} \frac{\partial(\psi, \Delta \psi)}{\partial(x, z)} & =\Delta \psi+R_{e} \frac{\partial \Theta}{\partial x}, \\
\frac{\partial \Theta}{\partial t}+R_{e} \frac{\partial(\psi, \Theta)}{\partial(x, z)} & =\frac{1}{\sigma} \Delta \Theta+R_{e} \frac{\partial \psi}{\partial x}, \\
\psi(x, 0)=\psi(x, 1)=0, \psi_{z z}(x, 0) & =\psi_{z z}(x, 1)=0, \\
\Theta(x, 0) & =\Theta(x, 1)=0, \tag{12.191}
\end{align*}
$$
\]

where we have introduced the Prandtl number

$$
\begin{equation*}
\sigma=\frac{\nu}{\kappa}, \tag{12.192}
\end{equation*}
$$

and the Reynolds number

$$
\begin{equation*}
R_{e}=\frac{U H}{v}=\frac{\sqrt{g h^{3} \alpha \delta T}}{v} \tag{12.193}
\end{equation*}
$$

We conclude this section comparing the Rayleigh number (12.165) with Reynolds number

$$
\begin{equation*}
R_{a}=R_{e}^{2} \sigma=\frac{g \alpha h^{4} \delta T}{\kappa v} \tag{12.194}
\end{equation*}
$$

### 12.13 Lorenz's System

Equations (12.191) are nonlinear partial differential equations in the unknowns $\psi$ and $\Theta$. Here we sketch the procedure proposed by Lorentz in [31] to obtain approximate solutions of the boundary value problem (12.191). This approach consists in introducing into Eq. (12.191) the Fourier expansions of the functions $\psi$ and $\Theta$. In such a way we arrive at a system of infinite ordinary differential equations whose unknowns are the Fourier coefficients of the expansions of $\psi$ and $\Theta$. It is well known that this approach, when it is applied to a linear system, allows to determine the Fourier coefficients step by step. On the contrary, in the nonlinear case, we should solve the whole system of the infinite equations to determine the Fourier coefficients. It is evident that this approach can lead to concrete results if we can state, on a physical ground, that the first terms of the Fourier expansions are sufficient to supply a sufficiently approximated description of the phenomenon we are interested in.

Since we are trying to obtain a description of the thermal convective cells, we impose periodic boundary conditions for the variable $x$, i.e., we suppose that the functions $\psi$ and $\Theta$ are periodic with respect to the variable $x$ with a period $2 h / a$. In this hypothesis, the domain in which we search for the Fourier expansions in
dimensionless variables is $\Omega=\left[0,2 h a^{-1}\right] \times[0,1]$. We suppose that the functions $\psi$ and $\Theta$ are square-summable functions, i.e., elements of the Hilbert space $L_{2}(\Omega)$, and choose in $\Omega$ the basis of orthonormal functions

$$
\begin{equation*}
\{\cos n \pi a x, \sin n \pi a x, 1\}_{n=1}^{\infty} \times\{\sin m \pi z\}_{m=1}^{\infty} . \tag{12.195}
\end{equation*}
$$

Starting from the numerical results of Saltzman, Lorenz [31] supposed that it was sufficient to consider only the first terms of Fourier's expansions of the functions $\psi$ and $\Theta$. In other words, he assumed that

$$
\begin{align*}
\psi(x, z, t) & =\sqrt{2} X(t) \sin (n \pi a x) \sin \pi z  \tag{12.196}\\
\Theta & =\sqrt{2} Y(t) \cos (\pi a x) \sin (\pi z)-Z(t) \sin (2 \pi z) \tag{12.197}
\end{align*}
$$

in which $\sqrt{2} X(t), \sqrt{2} Y(t),-Z(t)$ denote the first Fourier coefficients of the above functions. Inserting expansions (12.196) and (12.197) into the dimensionless Saltzmann's equations (12.191) we obtain

$$
\begin{align*}
& \sqrt{2} \dot{Y} \cos (\pi a x) \sin (\pi x)-\dot{Z} \sin (2 \pi z) \\
+ & R_{e}\left[\pi a^{2} X Y \sin (2 \pi z)-2 \sqrt{2} \pi a^{2} X Z \cos (\pi a x) \sin (\pi z) \cos (2 \pi z)\right] \\
= & \frac{1}{\sigma}\left[4 \pi^{2} Z \sin (2 \pi z)-\sqrt{2} \pi^{2}\left(a^{2}+1\right) Y \cos (\pi a x) \sin (\pi z)\right] \\
+ & R_{e} \sqrt{2} X \pi a \cos (\pi a x) \sin (\pi x)  \tag{12.198}\\
- & \sqrt{2} \pi^{2}\left(a^{2}+1\right) \dot{X} \sin (\pi a x) \sin (\pi z)=-R_{e} \sqrt{2} \pi a Y \sin (\pi a x) \sin (\pi z) \\
+ & \sqrt{2} \pi^{4}\left(a^{2}+1\right)^{2} X \sin (\pi a x) \sin (\pi z) \tag{12.199}
\end{align*}
$$

From (12.199) there follows

$$
\begin{equation*}
\dot{X}=\frac{a R_{e}}{\pi\left(a^{2}+1\right)} Y-\pi^{2}\left(a^{2}+1\right) X \tag{12.200}
\end{equation*}
$$

Further, multiplying (12.198) by $\sin (2 \pi z)$ and integrating on the interval $[0,1]$, when the orthogonality conditions are recalled, we obtain the equation

$$
\begin{equation*}
\dot{Z}=-\frac{4 \pi^{2}}{\sigma} Z+\pi a^{2} R_{e} X Y \tag{12.201}
\end{equation*}
$$

Finally, multiplying (12.198) by $\sin (\pi z)$ and integrating on $[0,1]$, we get the equation

$$
\begin{equation*}
\dot{Y}=R_{e} \pi a X-\pi^{2} a R_{e} X Z-\frac{\pi^{2}\left(a^{2}+1\right)}{\sigma} Y . \tag{12.202}
\end{equation*}
$$

Now, it remains to give a more simple form to (12.200), (12.201), and (12.202). To this end, it is sufficient to introduce the new variables

$$
\begin{equation*}
x=\lambda X, \quad y=\mu X, \quad z=\eta Z, \quad \tau=\xi t, \tag{12.203}
\end{equation*}
$$

where $\lambda, \mu, \eta, \xi$ are parameters that will be chosen in a suitable way. Under the change variables (12.203), the Eqs. (12.200), (12.201), and (12.202) become

$$
\begin{gather*}
\dot{x}=\frac{1}{\xi}\left(-\pi^{2}\left(1+a^{2}\right) x+\frac{\pi a \lambda R_{e}}{\pi^{2}\left(1+a^{2}\right) \mu} y\right),  \tag{12.204}\\
\dot{y}=\frac{1}{\xi}\left(-\sigma \pi^{2}\left(1+a^{2}\right) y-\frac{\pi a R_{e} \mu}{\lambda \eta} x z+\frac{\pi a R_{e} \mu}{\lambda} x\right),  \tag{12.205}\\
\dot{z}=\frac{1}{\xi}\left(-\frac{4 \pi^{2}}{\sigma} z+\frac{\pi^{2} a R_{e} \eta}{\lambda \mu} x y\right) . \tag{12.206}
\end{gather*}
$$

Finally, Lorenz chooses the parameters $\lambda, \mu, \nu, \xi$ in such a way that

$$
\begin{align*}
\frac{\pi^{2}\left(1+a^{2}\right)}{\xi \sigma}=1, \quad & \frac{\pi^{2} a R_{e} v}{\xi \lambda \mu}=1 \\
\frac{\pi^{2} a R_{e} \mu}{\xi \lambda \eta}=1, & \frac{\pi a R_{e} \lambda}{\xi \pi^{2}\left(1+a^{2}\right) \mu}=\sigma \tag{12.207}
\end{align*}
$$

In conclusion, Eqs. (12.204)-(12.206) assume the form

$$
\begin{align*}
\dot{x} & =-\sigma x+\sigma y, \\
\dot{y} & =-y-x z+r x, \\
\dot{z} & =-b z+x y \tag{12.208}
\end{align*}
$$

where we have introduced the notations (see (12.194))

$$
\begin{equation*}
r=\frac{\pi a R_{e} \mu}{\xi \lambda}=\frac{R_{a}}{R_{a}^{*}}, \quad b=\frac{4}{1+a^{2}} . \tag{12.209}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{a}^{*}=\frac{a^{2}}{\pi^{4}\left(1+a^{2}\right)^{3}} \tag{12.210}
\end{equation*}
$$

is a characteristic value of Rayleigh's number depending on the geometry of the system.

### 12.14 Some Properties of Lorenz's System

In this section we present some interesting properties of the solutions of Lorenz's system. ${ }^{10}$

First, we prove that all the solutions of Lorenz's system are bounded. To prove this statement, we introduce the new variable

$$
\begin{equation*}
u=z-r-\sigma, \tag{12.211}
\end{equation*}
$$

by which Lorenz's equations assume the following form

$$
\begin{align*}
\dot{x} & =-\sigma(x-y), \\
\dot{y} & =-y-x(u+\sigma), \\
\dot{u} & =-b(u+r+\sigma)+x y . \tag{12.212}
\end{align*}
$$

Let $x(t), y(t), u(t)$ any solution $\gamma$ of (12.212). If $s=\left(x^{2}+y^{2}+u^{2}\right)^{1 / 2}$ denotes the distance from the origin $(0,0,0)$ of the moving point of $\gamma$, then we can write that

$$
\begin{aligned}
s \dot{s} & =x \dot{x}+y \dot{y}+u \dot{u}=-\sigma x^{2}-y^{2}-b\left(u^{2}+u(\sigma+r)\right) \\
& =-\sigma x^{2}-y^{2}-b\left(u+\frac{1}{2}(r+\sigma)\right)^{2}+\frac{1}{4} b(r+\sigma)^{2} .
\end{aligned}
$$

Now, it is $\dot{s} \leq 0$ if and only if the following condition is verified

$$
-\sigma x^{2}-y^{2}-b\left(u+\frac{1}{2}(r+\sigma)\right)^{2}+\frac{1}{4} b(r+\sigma)^{2} \leq 0
$$

which, in terms of the variables $x, y$, and $z$, can also be written as follows

$$
\begin{equation*}
\frac{x^{2}}{b(r+\sigma)^{2} / 4 \sigma}+\frac{y^{2}}{b(r+\sigma) / 4}+\frac{\left(z-\frac{r+\sigma}{2}\right)^{2}}{(r+\sigma / 2)^{2}} \geq 1 \tag{12.213}
\end{equation*}
$$

This condition defines en ellipsoid $\mathcal{E}$ having the center $(0,0,(r+\sigma) / 2)$ and axes $2(r+\sigma / 2) \sqrt{b / \sigma}, 2(r+\sigma / 2) \sqrt{b}$, and $r+\sigma$ along $O x, O y$ and $O z$, respectively. In conclusion, the distance $s$ decreases for any state outside $\mathcal{E}$ and therefore all the solutions tend asymptotically to $\mathcal{E}$.

To prove another important property of the solutions of Lorenz's equations, we resort to Liouville's formula

$$
\begin{equation*}
\dot{J}=J \nabla \cdot \mathbf{f}, \tag{12.214}
\end{equation*}
$$

[^51]which holds for any autonomous system of differential equations
$$
\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x})
$$
$\mathbf{x} \in \Re^{n}$, where $J$ is the Jacobian matrix
$$
J=\left(\frac{\partial f_{i}}{\partial x_{j}}\right) .
$$

For the Lorenz's system (12.208) we have that

$$
\begin{equation*}
\nabla \cdot \mathbf{f}=-(\sigma+b+1)<0 \tag{12.215}
\end{equation*}
$$

Denote by $\mathbf{x}=(x, y, z)$ any point of $\mathfrak{R}^{3}$, by $V_{0}$ the volume of any subset $\Omega_{0}$ of $\mathfrak{R}^{3}$ and consider the orbits $\mathbf{x}\left(\mathbf{t}, \mathbf{x}_{\mathbf{0}}\right), \mathbf{x}_{0} \in \Omega_{0}$, starting from any point of $\Omega_{0}$. Finally, by $V(t)$ we denote the volume of the set $\Omega(t)$ of $\mathfrak{R}^{3}$ defined by

$$
\Omega=\left\{\mathbf{x}\left(t, \mathbf{x}_{0}\right), \mathbf{x}_{0} \in \Omega_{0}, t \in \mathfrak{R}\right\} .
$$

Then, applying Liouville formula, we obtain the result

$$
\begin{aligned}
\dot{V}(t) & =\frac{d}{d t} \int_{\Omega(t)} d v=\frac{d}{d t} \int_{\Omega_{0}} J d v_{0}=\int_{\Omega_{0}} \dot{J} d v_{0} \\
& =-(\sigma+b+1) V(t)
\end{aligned}
$$

from which it follows

$$
\begin{equation*}
V(t)=V_{0} e^{-(\sigma+b+1) t} \tag{12.216}
\end{equation*}
$$

so that the volume $V(t)$ decreases exponentially when $t \rightarrow \infty$. Taking into account both the above results, we can state that all the orbits starting from the points of any region $\Omega_{0}$ containing the ellipsoid $\mathcal{E}$ asymptotically converge toward a subset $W$ of $\mathcal{E}$ whose measure tends to zero.

Remark 12.5. Before going on, we note that when $x=y=z=0$ it is also $X=Y=Z=0$ (see (12.203)) and, in view of (12.196) and (12.197), $\Theta=\psi=0$. In other words, when $x=y=z=0$ the velocity field vanishes and the temperature fields reduces to the convective static solution (12.189).

Determining the equilibrium configurations and their stability or instability is a very elaborate task which requires the knowledge of many results about dynamical systems (see, for instance [22,31]). For these reasons, we omit the complete analysis of equilibrium configurations and limit ourselves to expose the main results. The equilibrium configurations of Lorenz's system are obtained solving the algebraic system

$$
\begin{align*}
x-y & =0, \\
r x-y-x z & =0 \\
b z-x y & =0, \tag{12.217}
\end{align*}
$$

from which we derive the conditions

$$
\begin{equation*}
x=y, \quad z=\frac{y^{2}}{b}, \quad y\left[(r-1) b-y^{2}\right]=0 . \tag{12.218}
\end{equation*}
$$

Analyze the possible equilibrium configurations:

1. $r<1$.

From (12.218) it follows that the only solution is $x=y=z=0$. In view of the above remark, this solution corresponds to the absence of convection and the temperature reduces to the static solution (12.189). In order to evaluate the stability of this equilibrium solution, we consider the jacobian matrix of Lorenz's system at the origin

$$
\left(\frac{\partial f_{i}}{\partial x_{j}}\right)_{\mathbf{x}=\mathbf{0}}=\left(\begin{array}{ccc}
-\sigma & \sigma & 0  \tag{12.219}\\
r & -1 & 0 \\
0 & 0 & -b
\end{array}\right),
$$

whose characteristic equation is

$$
\begin{equation*}
(\lambda+b)\left[\lambda^{2}+(1+\sigma) \lambda+\sigma(1-r)\right]=0 . \tag{12.220}
\end{equation*}
$$

This equation admits the following negative solutions

$$
\begin{equation*}
\lambda_{1}=-b, \quad \lambda_{2,3}=-\frac{1+\sigma}{2} \mp \frac{1}{2} \sqrt{(1+\sigma)^{2}-4 \sigma(1-r)}, \tag{12.221}
\end{equation*}
$$

and $(0,0,0)$ is linearly asymptotically stable. Since this is a case in which the results derived from linear stability can be extended to the nonlinear stability (see, for instance, [33]), we can state that $(0,0,0)$ is asymptotically stable.
2. $r>1$

System (12.218) admits the following three solutions

$$
\begin{align*}
& x=y=z=0  \tag{12.222}\\
& x=y=\mp \sqrt{b(r-1)}, z=r-1 \tag{12.223}
\end{align*}
$$

The first solution again corresponds to the conductive solution. However, in this case, the characteristic equation (12.220) admits the negative eigenvalue


Fig. 12.6 Convective cells relative to $C^{-}$and $C^{+}$

$$
\begin{equation*}
\lambda_{2}=-\frac{1+\sigma}{2}+\frac{1}{2} \sqrt{(1+\sigma)^{2}-4 \sigma(1-r)} \tag{12.224}
\end{equation*}
$$

and the equilibrium position $(0,0,0)$ is unstable. In other words, the equilibrium configuration $(0,0,0)$ is asymptotically stable when $r<1\left(R_{a}<R_{a}^{*}\right)$ and becomes unstable when $r>1\left(R_{a}>R_{a}^{*}\right)$. This variation of stability character of $(0,0,0)$ corresponds to Rayleigh's instability.

The other two equilibrium configurations, which we denote with $C^{\mp}$, correspond to stationary convective configurations. They are symmetric respect to $O z$ axis and differ, each from the other, for the rotation versus of the vortex cylinders of any convective cell (see Fig. 12.6). This statement can be verified by evaluating the vertical component of velocity at the center of the cell and on one of the two boundaries:

$$
\begin{align*}
w(0,1 / 2)= & \frac{\partial \psi}{\partial x}(0,1 / 2) \propto \mp \sqrt{(b r-1)}  \tag{12.225}\\
& w\left(a^{-1}, 1 / 2\right) \propto \mp \sqrt{(b r-1)} \tag{12.226}
\end{align*}
$$

In order to determine the stability properties of the equilibrium configurations $C^{\mp}$, we must consider the jacobian matrix of Lorenz's system at $C^{\mp}$ :

$$
\left(\frac{\partial f_{i}}{\partial x_{j}}\right)_{C^{\mp}}=\left(\begin{array}{ccc}
-\sigma & \sigma & 0  \tag{12.227}\\
1 & -1 & \mp \sqrt{b(r-1)} \\
\mp \sqrt{b(r-1)} \mp \sqrt{b(r-1)} & -b
\end{array}\right),
$$

and its characteristic equation. We omit the elaborated algebraic discussion leading to the following results. There exist a critical value $r^{*}>1$ and a value

$$
\begin{equation*}
r_{H}=\frac{\sigma(\sigma+b+3)}{\sigma-b-1} \tag{12.228}
\end{equation*}
$$



Fig. 12.7 Chaotic behavior of Lorenz's solution
such that:

- if $r \in\left(1, r^{*}\right)$, then $(0,0,0)$ is an unstable node and $C^{\mp}$ are two stable nodes ${ }^{11}$;
- if $r \in\left(r^{*}, r_{H}\right)$, then $(0,0,0)$ is an unstable node and $C^{\mp}$ are two stable foci;
- If $r>r_{H}$, the $(0,0,0)$ is an unstable node and $C^{\mp}$ are two unstable saddlepoints.

One of the most interesting consequences of Lorenz's system is that, per suitable values of the constants $a, b$, and $\sigma$, the solution of the system defines a curve having a very complex behavior. It tends to a subset $W$ of $\mathfrak{R}^{3}$ with a measure equal to zero (see (12.216)). However, this set, which is called Lorenz's strange attractor is not a surface but has a fractal structure (see Fig. 12.7). Finally, the solution has a chaotic behavior depending strongly on the choice of initial data (deterministic chaos).

[^52]
## Chapter 13 <br> Fluid Dynamics and Ship Motion

This chapter is a brief introduction to the very difficult problem of ship motion. The difficulties of this problem are due to the many factors determining the behavior of a ship during the navigation: the form of the ship, the sea waves, the wind action, etc. After introducing the roll, pitch, and yaw angles, many fundamental kinematic relations are determined. Then, the dynamical equations are proposed starting from dynamics of rigid bodies. A section is dedicated to the analysis of the forces acting on the ship. Since the nonlinear problem posed by these equations is very difficult to solve, small motions are considered which lead to linear differential equations. All the forces and momenta, describing the actions of weight, buoyant force, the interaction between ship and sea, are taken into account. In order to evaluate all the terms appearing in the motion equations, it is necessary to consider the effects produced by waves propagating on the free surface of the sea. To the analysis of the wave propagation on the free surface are dedicated the last sections of the chapter. ${ }^{1}$

### 13.1 Introduction

The theoretical foundations of the ship motion were laid in the eighteenth century by Euler (1749) and Bouger (1746), which analyzed the roll of a ship in smooth sea. In two important papers, the small oscillations of a floating body are studied as small oscillations of a simple pendulum. Into the dynamical equations proposed by these authors only hydrostatic forces appear, that is, they do not take into account dynamical actions. D. Bernoulli was the first to consider the effect of regular waves on the ship motion (1759) putting in evidence the ruinous effect

[^53]of the sea waves on the ship when the frequency of the waves becomes equal to the frequency of proper oscillations of the ship. However, at the basis of Bernoulli's reasoning there was a wrong hypothesis. In fact, he supposed that the effects of the sea waves were equivalent to a force acting vertically on the ship. Only in 1861 W. Froude published a paper in which the action of the sea waves on the ship was supposed to be orthogonal not to the ship surface but to the waves themselves. In this paper, he supposed that the ship was advancing orthogonally to the waves and that the oscillations of the ship were small. Under these hypotheses, he obtained a right evaluation of the pitch motion of the ship. At that time there was no theoretical model to describe the effects of the sea waves on the ship motion when the waves propagate along an oblique direction with respect to the rhumb line. As a consequence, the subsequent improvements realized in building ships were only the result of important developments of engineering science not of theoretical descriptions of ship motion. A consistent contribution to the theoretical understanding of interaction between sea waves and ship was given at the end of 1800 by A. N. Krylov, which can be considered the father of Russian naval engineering. In his articles of 1896 and 1898 he supplied a set of equations representing a first complete theory of the action of sea waves on the ship motion. In a paper of 1907, the Russian engineer Zukovski proved that the oscillations of a body floating interact with the water surrounding the body. In turn, this interaction produces a reaction on the body which can be computed increasing its mass in Krylov's equations. In two papers (1935, 1939), Pavlenko proposed some formulae to calculate this increasing of mass and showed its effects on pitch and roll. In 1940 Kǒcin published a fundamental paper, which, together the results of Pavlenko, allowed Haskind (1946, 1953, 1973) to formulate the first consistent hydrodynamic theory of ship motion. More recently, this theory has been developed by many authors (see, for instance, $[14,24,25,42,46,59]$ ) who have also suggested many numerical procedures to obtain approximate solutions. In all these papers the oscillations of the ship are supposed to have a small amplitude so that the basic equations become linear. However, this approximation leads to consistent errors in evaluating the roll of a ship. Consequently, a nonlinear theory of ship motion has been elaborated by many researchers (see [21,44]) in the hypothesis that the waves are sinusoidal. On the other hand, the sea waves that are generated by wind are not regular so that, to overcome this difficulty, the theory of probability has been applied (see, for instance, $[2,47,48,70]$ ).

### 13.2 A Ship as a Rigid Body

A theory of ship motion requires the formulation of the dynamical equations of motion containing the interaction forces between sea and ship. ${ }^{2}$ The first step of this difficult process consists in considering a ship as a rigid body so that we can

[^54]use Euler's dynamical equations to describe its motion. ${ }^{3}$ It is well known that a free rigid body has six degrees of freedom since we have to assign six parameters to define its position relative to a frame of reference. Now, following Euler, we choose the frame of reference and the above parameters.

In studying the dynamics of a free rigid body $S$ it is convenient to introduce three different frames of reference: the lab frame $O x y z$ is the frame relative to which we want to determine the motion of $S$, the second frame $O^{\prime} \xi \eta \zeta$ has the origin $O^{\prime}$ at a point of $S$ (usually the center of mass of $S$ ) and axes parallel to those of $O x y z$, and the third one $O^{\prime} x^{\prime} y^{\prime} z^{\prime}$, called the body frame, is at rest relative to $S$. Often, the axes of $O^{\prime} x^{\prime} y^{\prime} z^{\prime}$ are principal axes of inertia relative to the point $O^{\prime .}{ }^{4}$ Then, the six parameters necessary to determine the motion of $S$ relative to the lab frame $O x y z$ are the three coordinates of $O^{\prime}$ in $O x y z$ and an orthogonal matrix $\mathbf{Q}$ giving the orientation of $O^{\prime} x^{\prime} y^{\prime} z^{\prime}$ relative to $O x y z$. It is well known that the group $S O(3)$ of all orthogonal matrices is a three-dimensional differentiable manifolds which is locally diffeomorphic to an open subset of $\mathfrak{R}^{3}$. Consequently, the nine coefficients $Q_{i j}$ of $\mathbf{Q}$ are not independent, since they have to satisfy the six orthogonality conditions $\mathbf{Q Q}^{T}=\mathbf{I}$, and we can define an orthogonal matrix by introducing into $S O(3)$ an arbitrary system of three local coordinates. A set of such a coordinates is given by Euler's angles. However, in the sequel we show that for a ship or an aeroplane it is more convenient to adopt another set of local coordinates.

If we assume that a ship is modeled by a rigid body $S$, we have to assign the aforesaid frames and parameters to define the position of $S$ relative to the lab frame. To this end, we denote by $\Sigma$ the free surface of the sea in the absence of wind and waves (smooth sea) and call ideal ship motion the motion of $S$ in these conditions. Further, we suppose that:

- The surface $\Sigma$ can be identified with its tangent plane $\pi$ at a point $O \in \Sigma$;
- The rhumb line in the ideal motion is a straight line of $\pi$ covered with uniform velocity $U$;
- A frame of reference at rest relative to $\pi$ is inertial. In other words, during the navigation, we can neglect the action of noninertial forces in a terrestrial frame of reference;
- The ship has a symmetry plane $\pi_{s}$.

Now, as a terrestrial frame of reference we adopt Cartesian axes $O x y z$ with the origin $O \in \pi$, axis $O x$ and $O y$ on $\pi, O z$ orthogonal to $\pi$ and axis $O x$ directed along the direction of the sea wave propagation (see Fig. 13.1). Further, we introduce the frame $G_{0} \xi \eta \zeta$ having the origin at the position $G_{0}$ of the center of mass of the ship $S$ in the ideal motion, axis $G_{0} \xi$ directed along the ideal rhumb

[^55]

Fig. 13.1 Rhumb line, frames, and Euler's angles


Fig. 13.2 The ship with the body frame
line and $G_{0} \zeta$ orthogonal to $\pi$. This frame of reference is inertial since it moves with uniform velocity $U$ with respect to $O x y z$. The angle between the axes $O x$ and $O \xi$ is called rhumb angle $\chi$ and it is evaluated starting from the axis $O x$ (it is negative in Fig. 13.1).

Finally, as body frame we adopt a set of Cartesian axes $G x^{\prime} y^{\prime} z^{\prime}$ with the origin at the actual position $G$ of the center of mass of the ship $S$ and axes at rest with respect to the ship. From the existence of a symmetry plane $\pi_{s}$, we know that $G \in \pi_{s}$ and any system of Cartesian axes $G x^{\prime} y^{\prime} z^{\prime}$, with axes $O x^{\prime}, O y^{\prime}$ lying on $\pi_{s}$ and $O z^{\prime}$ orthogonal to $\pi_{s}$, is a system of principal axes of inertia (see Fig. 13.2). From now on, we fix in such a way the axes of the body frame and choose $O x^{\prime}$ directed along the median line of the ship. We can state that the position of $G$ with respect $G_{0} \xi \eta \zeta$ is given by the three coordinates of $G$. Their behavior in time characterizes the translational motion of the ship. The projection $(\xi(t), \eta(t))$ on $\pi$ of the trajectory of $G$ (the dashed line in Fig. 13.1) is the real rhumb line of the ship.

It remains to determine three parameters to assign the orientation of $G x^{\prime} y^{\prime} z^{\prime}$ relative to $G_{0} \xi \eta \zeta$. It is evident that these parameters are equal to the parameters giving the orientation of $G x^{\prime} y^{\prime} z^{\prime}$ relative to the axes $G \xi \eta \zeta$ since this Cartesian frame differs from $G_{0} \xi \eta \zeta$ only for the origin. It is well known that there are 12 different


Fig. 13.3 First rotation about $G \xi$ : roll
ways to decompose a rotation matrix (orthogonal matrix) into a product of three orthogonal matrices, where each of them represents a rotation about an axis. One of these decompositions leads to the three Euler angles that are very often used in analyzing the dynamics of a rigid body with a fixed point. These angles are not used for determining the position of a ship or an aeroplane. We omit to prove that it is possible to transform $G \xi \eta \zeta$ into $G x^{\prime} y^{\prime} z^{\prime}$ by three independent rotations about three convenient axes. We say that the rotations are independent if each of them has no effect on the others. Starting from $G \xi \eta \zeta$, consider a rotation through $\theta$ about the axis $G \xi$ and denote by $G x_{3} y_{3} z_{3}$, where $G \xi \equiv G x_{3}$, the axes after the rotation (see Fig. 13.3). The second rotation, through the angle $\theta$ about $G y_{3}$, transforms $G x_{3} y_{3} z_{3}$ into $G x_{2} y_{2} z_{2}$. In this rotation the axes $G x_{2}$ and $G z_{2}$ remains on the plane $G x_{3} z_{3}$ so that the angle $\psi$ is not modified (see Fig. 13.4). Finally, the third rotation, through the angle $\varphi$ about $G x_{2}$ brings $G x_{2} y_{2} z_{2}$ into $G x^{\prime} y^{\prime} z^{\prime}$. It is evident that $\psi$ and $\theta$ remain constant in this rotation (see Fig. 13.5). ${ }^{5}$

In view of the above considerations, we can state that the position of the ship relative to the frame $G_{0} \xi \eta \zeta$ is given assigning the coordinates $\left(\xi_{G}, \eta_{G}, \zeta_{G}\right)$ of the center of mass of $S$ and Euler's angles $(\psi, \theta, \varphi)$. We conclude listing the naval terminology of the coordinates $\left(\xi_{G}, \eta_{G}, \zeta_{G}\right)$ and Euler's angles:

- $\xi_{G}$-surge, $\eta_{G}$-sway, $\zeta_{G}$-heave;
- $\varphi$-roll, $\theta$-pitch, $\psi$-yaw.

[^56]

Fig. 13.4 Second rotation about $G y_{2}$ : pitch


Fig. 13.5 Third rotation about $G x_{2}$ : yaw

### 13.3 Kinematical Transformations

Our task is to determine the coordinate transformation between $G x^{\prime} y^{\prime} z^{\prime}$ and $O x y z$. To this end, we start determining the coordinate transformation between $G_{0} \xi \eta \zeta$ and $O x y z$. Denote by ( $\mathbf{e}_{x}, \mathbf{e}_{y}, \mathbf{e}_{z}$ ) unit vectors along the axes $O x y z$ and by $\left(\mathbf{e}_{\xi}, \mathbf{e}_{\eta}, \mathbf{e}_{\zeta}\right)$ unit vectors along the axes of $G_{0} \xi \eta \zeta$. It is evident that

$$
\begin{align*}
& \mathbf{e}_{\xi}=\cos \chi \mathbf{e}_{x}+\sin \chi \mathbf{e}_{y}, \\
& \mathbf{e}_{\eta}=-\sin \chi \mathbf{e}_{x}+\cos \chi \mathbf{e}_{y}, \\
& \mathbf{e}_{\zeta}=\mathbf{e}_{z} . \tag{13.1}
\end{align*}
$$

On the other hand, from Fig. 13.6 we see that

$$
\begin{align*}
\overrightarrow{O P} & =\overrightarrow{O G}_{0}+\overrightarrow{G_{0} P}=\left(U t \cos \chi \mathbf{e}_{x}+U t \sin \chi \mathbf{e}_{y}\right) \\
& +\xi \mathbf{e}_{\xi}+\eta \mathbf{e}_{\eta}+\zeta \mathbf{e}_{\zeta}, \tag{13.2}
\end{align*}
$$



Fig. 13.6 Transformation of coordinates between $O x y z$ and $G_{0} \xi \eta \zeta$
where U is the uniform velocity of the ship with respect to Oxyz in the ideal motion. Introducing (13.1) into (13.2) we obtain the coordinate transformation from $G_{0} \xi \eta \zeta$ to $O x y z$ :

$$
\begin{align*}
& x=U t \cos \chi+\xi \cos \chi-\eta \sin \chi, \\
& y=U t \sin \chi+\xi \sin \chi+\eta \cos \chi, \\
& z=\zeta . \tag{13.3}
\end{align*}
$$

Now, we determine the coordinate transformation between $G x^{\prime} y^{\prime} z^{\prime}$ and $G_{0} \xi \eta \zeta$. Denoting by $G \xi^{\prime} \eta^{\prime} \zeta^{\prime}$ a frame of reference with axes parallel to those of with $G_{0} \xi \eta \zeta$, we consider the translation $G_{0} \xi \eta \zeta \rightarrow G \xi^{\prime} \eta^{\prime} \zeta^{\prime}$ given by

$$
\begin{align*}
& \xi=\xi^{\prime}+\xi_{G} \\
& \eta=\eta^{\prime}+\eta_{G} \\
& \zeta=\zeta^{\prime}+\zeta_{G} \tag{13.4}
\end{align*}
$$

where $\left(\xi_{G}, \eta_{G}, \zeta_{G}\right)$ are the coordinates of the center of mass in the frame $G_{0} \xi \eta \zeta$. Then, starting from the frame $G \xi^{\prime} \eta^{\prime} \zeta^{\prime}$, we compose the translation (13.4) and the three rotations we have defined in the preceding section to obtain the final transformation between $G_{0} \xi \eta \zeta$ and $G x^{\prime} y^{\prime} z^{\prime}$, then we invert it to obtain the transformation $G x^{\prime} y^{\prime} z^{\prime} \rightarrow G_{0} \xi \eta \zeta$. The three rotations of Figs. 13.3, 13.4, 13.5 are defined by the following matrices:

$$
\begin{align*}
& A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \varphi & \sin \varphi \\
0-\sin \varphi & \cos \varphi
\end{array}\right),  \tag{13.5}\\
& B=\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right), \tag{13.6}
\end{align*}
$$

$$
C=\left(\begin{array}{ccc}
\cos \psi & \sin \psi & 0  \tag{13.7}\\
-\sin \psi & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

In conclusion, the transformations $G_{0} \xi \eta \zeta \rightarrow G x^{\prime} y^{\prime} z^{\prime}$ and $G x^{\prime} y^{\prime} z^{\prime} \rightarrow G_{0} \xi \eta \zeta$ can, respectively, be written as follows

$$
\begin{align*}
x^{\prime} & =\cos \theta \cos \psi\left(\xi-\xi_{G}\right) \\
& +(-\cos \psi \sin \theta \sin \varphi+\cos \varphi \sin \psi)\left(\eta-\eta_{G}\right) \\
& +(\cos \phi \cos \psi \sin \theta+\sin \varphi \sin \psi)\left(\zeta-\zeta_{G}\right)-\xi_{G} \\
y^{\prime} & =-\cos \theta \sin \psi\left(\xi-\xi_{G}\right) \\
& +(\cos \varphi \cos \psi+\sin \theta \sin \varphi \sin \psi)\left(\eta-\eta_{G}\right) \\
& +(\cos \psi \sin \varphi-\cos \varphi \sin \theta \sin \psi)\left(\zeta-z \eta_{G}\right)-\eta_{G} \\
z^{\prime} & =-\sin \theta\left(\xi-\xi_{G}\right) \\
& -\cos \theta \sin \varphi\left(\eta-\eta_{G}\right)+\cos \theta \cos \varphi\left(\zeta-\zeta_{G}\right)-\zeta_{G} .  \tag{13.8}\\
\xi & =x^{\prime} \cos \theta \cos \psi-y^{\prime} \cos \theta \sin \psi-z^{\prime} \sin \theta+\xi_{G}, \\
\eta & =(-\cos \psi \sin \theta \sin \varphi+\cos \varphi \sin \psi) x^{\prime} \\
& +(\cos \psi \cos \varphi+\sin \theta \sin \varphi \sin \psi) y^{\prime} \\
& -\cos \theta \sin \varphi z^{\prime}+\eta_{G} \\
\zeta & =(\cos \varphi \cos \psi \sin \theta+\sin \varphi \sin \psi) x^{\prime} \\
& +(\cos \psi \sin \varphi-\cos \varphi \sin \theta \sin \psi) y^{\prime} \\
& +z^{\prime} \cos \theta \cos \varphi+\zeta_{G} \tag{13.9}
\end{align*}
$$

These transformation formulae and (13.3) show that we know the coordinates $(\xi, \eta, \zeta)$ in the terrestrial frame of any point $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ of the ship $\left(\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right.$ are constant in the body frame $\left.G x^{\prime} y^{\prime} z^{\prime}\right)$, provided that we determine the functions $\xi_{G}(t), \eta_{G}(t), \zeta_{G}(t), \psi(t), \theta(t)$, and $\varphi(t)$.

The next problem to solve consists in determining these functions by dynamical equations of motion.

### 13.4 Dynamical Equations of Ship Motion

In order to find the fundamental kinematic functions $\xi_{G}(t), \eta_{G}(t), \zeta_{G}(t), \psi(t), \theta(t)$, and $\varphi(t)$ which describe the ship motion, we have to write the dynamical equations in the inertial frame of reference $G_{0} \xi \eta \zeta$. It is well known that the fundamental equations describing the dynamics of a rigid body $S$ are:


Fig. 13.7 Different frames of reference

- the balance laws of linear momentum, expressed in terms of center of mass $G^{6}$

$$
\begin{equation*}
m \ddot{\mathbf{r}}_{G}=\mathbf{R} \tag{13.10}
\end{equation*}
$$

- and the balance equation of the angular momentum

$$
\begin{equation*}
\dot{\mathbf{K}}_{G}=\mathbf{M}_{G} . \tag{13.11}
\end{equation*}
$$

In the above equations $m$ is the mass of the body, $\mathbf{r}_{G}=\left(\xi_{G}, \eta_{G}, \zeta_{G}\right)$ the position vector of $G$ relative to $G_{0} \xi \eta \zeta$, $\mathbf{R}$ the total force acting on $S, \mathbf{K}_{G}$ the angular momentum of $S$ relative to the center of mass, and $\mathbf{M}_{G}$ the torque of the forces acting on $S$. From dynamics of rigid bodies we know that the angular momentum $\mathbf{K}_{G}$ of $S$ is equal ${ }^{7}$ to the angular momentum $\overline{\mathbf{K}}$ in the frame $G \xi \eta \zeta^{8}$, having its origin at $G$ and the axes parallel to the axes of $G_{0} \xi \eta \zeta$ (see Sect. 15.2 in [55]), i.e.,

$$
\begin{equation*}
\mathbf{K}_{G}=\overline{\mathbf{K}} \tag{13.12}
\end{equation*}
$$

It is evident that the motion of $G \xi \eta \zeta$ with respect to $G_{0} \xi \eta \zeta$ is not uniform but translational. In $G \xi \eta \zeta$ the center of mass of $S$ is at rest, so that the motion of $S$ relative to this frame is a rigid motion about the fixed point $G$. Therefore, the velocity field of $S$ relative to $G \xi \eta \zeta$ can be written as follows

$$
\begin{equation*}
\dot{\mathbf{r}}=\omega \times \mathbf{r}, \tag{13.13}
\end{equation*}
$$

where $\mathbf{r}$ is the position vector of an arbitrary point of $S$ with respect to the center of mass and $\omega$ is the instantaneous angular velocity of $S$ relative to $G \xi \eta \zeta$. Owing to

[^57]the translational motion of $G \xi \eta \zeta$ relative to $G_{0} \xi \eta \zeta$, $\omega$ is also the angular velocity of $S$ relative to $G_{0} \xi \eta \zeta$. Further, the angular momentum of a solid with a fixed point is proportional to angular velocity, i.e.,
\[

$$
\begin{equation*}
\mathbf{K}_{G}=\mathbf{I} \cdot \boldsymbol{\omega}, \tag{13.14}
\end{equation*}
$$

\]

where $\mathbf{I}$ is the central tensor of inertia of $S$. It can be proved that $\mathbf{I}_{G}$ is symmetric and positive definite so that its eigenvalues are real and positive and it admits at least a basis of eigenvectors.

We have written the balance equations (13.10) and (13.11) in the inertial frame $G_{0} \xi \eta \zeta$. Further, we have noted that (13.12) allows us to reduce the evaluation of $\mathbf{K}_{G}$ to the calculus of the angular momentum of a solid with a fixed point. Consequently, $\mathbf{K}_{G}$ has the form (13.14), where $\omega$ is given by (13.13). Now, following Euler, we consider the projections of (13.11) along the axes of the body frame $G x^{\prime} y^{\prime} z^{\prime}$. We note that, when the rigid body $S$ is a ship, it has a plane of symmetry $\pi$ and we have that $G \in \pi$ (see Sect. 15.4 of [55]) and the central tensor of inertia satisfies the condition:

$$
\begin{equation*}
I_{x^{\prime} y^{\prime}}=I_{y^{\prime} z^{\prime}}=0 \tag{13.15}
\end{equation*}
$$

To verify (13.15) it is sufficient to remember that in Sect. 15.4 of [55] we have recalled that the axis $G \zeta$ is a principal axis of inertia. Consequently, the unit vector along this axis is an eigenvector of $\mathbf{I}$. Then, we can write that

$$
\left(\begin{array}{ccc}
I_{x^{\prime} x^{\prime}} & I_{x^{\prime} y^{\prime}} & I_{x^{\prime} z^{\prime}} \\
I_{x^{\prime} y^{\prime}} & I_{y^{\prime} y^{\prime}} & I_{y^{\prime} z^{\prime}} \\
I_{x^{\prime} z^{\prime}} & I_{y^{\prime} z^{\prime}} & I_{z^{\prime} z^{\prime}}
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\lambda\left(\begin{array}{c}
0 \\
1 \\
0
\end{array}\right),
$$

and (13.15) is proved.
In order to simplify the evaluation of time derivative of $\mathbf{K}_{G}$, we introduce more compact notations: instead of denoting by $\left(v_{x}^{\prime}, v_{y}^{\prime}, v_{z}^{\prime}\right)$ the components of a vector $\mathbf{v}$ in the frame $G x^{\prime} y^{\prime} z^{\prime}$, we write $\left(v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right)$. A similar convention we adopt to denote the components of the 2-tensor $\mathbf{I}_{G}$ so that $I_{x^{\prime} y^{\prime}}=I_{12}$, etc. With these notations (13.14) can be written as follows

$$
\begin{equation*}
\mathbf{K}_{G}=\sum_{i, j=1}^{3} I_{i j} \omega_{j}^{\prime} \mathbf{e}_{i}^{\prime}, \tag{13.16}
\end{equation*}
$$

where $\mathbf{e}_{1}^{\prime}, \mathbf{e}_{2}^{\prime}$, and $\mathbf{e}_{3}^{\prime}$ are unit vectors along the axes $G x^{\prime}, G y^{\prime}$, and $G z^{\prime}$, respectively, and $\omega_{i}^{\prime}, i=1,2,3$, are the components of $\omega$ along these axes. Since the frame $G x^{\prime} y^{\prime} z^{\prime}$ is at rest with respect to $S$, the components of the tensor of inertia do not depend on time. Consequently, from (13.16) we obtain that the time variation of $\mathbf{K}_{G}$ relative to $G \xi \eta \zeta$ is given by

$$
\dot{\mathbf{K}}_{G}=\sum_{i, j=1}^{3} I_{i j} \dot{\omega}_{j}^{\prime} \mathbf{e}_{i}^{\prime}+\sum_{i, j=1}^{3} I_{i j} \omega_{j}^{\prime} \dot{\mathbf{e}}_{i}^{\prime} .
$$

Remembering Poinsot's formula

$$
\begin{equation*}
\dot{\mathbf{u}}=\omega \times \mathbf{u} \tag{13.17}
\end{equation*}
$$

which holds for any vector which is constant in $G x^{\prime} y^{\prime} z^{\prime}$, the above equation, in view of (13.16), assume the form

$$
\begin{equation*}
\dot{\mathbf{K}}_{G}=\sum_{i, j=1}^{3} I_{i j} \dot{\omega}_{j}^{\prime} \mathbf{e}_{i}^{\prime}+\omega \times \mathbf{K}_{G} \tag{13.18}
\end{equation*}
$$

### 13.5 Final Form of Dynamical Equations

In order to obtain the fundamental dynamical equations governing the ship motion in the unknowns $\xi_{G}(t), \eta_{G}(t), \zeta_{G}(t), \varphi(t), \theta(t)$, and $\psi(t)$, we start recalling that in classical mechanics the forces acting on a rigid body $S$ moving relative to the frame $G \xi \eta \zeta$ are supposed to depend on the position and velocity field of $S$ relative to $G \xi \eta \zeta$

$$
\begin{equation*}
\dot{\mathbf{r}}=\dot{\mathbf{r}}_{G}+\omega \times \mathbf{r} \tag{13.19}
\end{equation*}
$$

It is crucial to note that (13.18) contains the components $\left(\omega_{x}^{\prime}, \omega_{y}^{\prime}, \omega_{z}^{\prime}\right)$ of $\boldsymbol{\omega}$ in the frame $G x^{\prime} y^{\prime} z^{\prime}$ whereas the components of (13.19) along the axes of $G \xi \eta \zeta$ have to be expressed by the components $\left(\omega_{\xi}, \omega_{\eta}, \omega_{\zeta}\right)$ of $\omega$ in this frame. This problem can easily be solved by remembering that the components $\left(\omega_{\xi}, \omega_{\eta}, \omega_{\zeta}\right)$ are related to $\left(\omega_{x}^{\prime}, \omega_{y}^{\prime}, \omega_{z}^{\prime}\right)$ by (13.9).

There is another more important problem to solve: the dynamical equations must contain only the unknowns $\xi_{G}(t), \eta_{G}(t), \zeta_{G}(t), \varphi(t), \theta(t)$, and $\psi(t)$ so that we have to express $\left(\omega_{x}^{\prime}, \omega_{y}^{\prime}, \omega_{z}^{\prime}\right)$ in terms of $\varphi, \theta, \psi, \dot{\varphi}, \dot{\theta}$, and $\dot{\psi}$.

In order to obtain the relation between the above sets of variables, we recall how we have defined the rotations that led us to the angles $\varphi, \psi$, and $\theta$. Then, we can write the angular velocity $\omega$ as follows

$$
\begin{equation*}
\boldsymbol{\omega}=\dot{\varphi} \mathbf{e}_{\xi}+\dot{\theta} \mathbf{e}_{y}+\dot{\psi} \mathbf{e}_{3}^{\prime}, \tag{13.20}
\end{equation*}
$$

where $\mathbf{e}_{\xi}$ is the unit vector along the axis $G \xi, \mathbf{e}_{y}$ is the unit vector along the axis $G y_{2}$ after the first rotation (see Sect. 12.4 of [55]), and $\mathbf{e}_{3}^{\prime}$ is the unit vector along the axis $G x_{3}^{\prime}$ of the body frame $G x^{\prime} y^{\prime} z^{\prime}$. If we want to relate the components $\dot{\varphi}, \dot{\theta}, \dot{\psi}$ of $\omega$ in the basis $\left(\mathbf{e}_{\xi}, \mathbf{e}_{y}, \mathbf{e}_{3}^{\prime}\right)$ to its components in the body basis $\left(\mathbf{e}_{x}^{\prime}, \mathbf{e}_{y}^{\prime}, \mathbf{e}_{z}^{\prime}\right)$, we have
to apply to each term of (13.20) the rotations necessary to transform (13.20) into a relation relative to the body frame. In other words, we have to apply the matrix $C B A$ to the vector $(\dot{\varphi}, 0,0)$, the matrix $C B$ to the vector $(0, \dot{\theta}, 0)$, and the unit matrix to $(0,0, \dot{\psi})$. In such a way we obtain the kinematic relations

$$
\begin{align*}
\omega_{x}^{\prime} & =\dot{\varphi} \cos \theta \cos \psi+\dot{\theta} \sin \psi \\
\omega_{y}^{\prime} & =\dot{\theta} \cos \psi-\dot{\varphi} \cos \theta \sin \psi \\
\omega_{z}^{\prime} & =\dot{\psi}-\dot{\varphi} \sin \theta \tag{13.21}
\end{align*}
$$

From the results of this section there follows that the classical assumption according to which the forces acting on a body $S$ depend on the position of $S$ and its velocity field, can be formulated stating that the vectors $\mathbf{R}$ and $\mathbf{M}_{G}$ in the balance equations (3.11), (3.12) are functions of $\xi_{G}, \eta_{G}, \zeta_{G}, \varphi, \theta, \psi$ and their time derivatives $\dot{\xi}_{G}, \dot{\eta}_{G}, \dot{\zeta}_{G}, \dot{\varphi}, \dot{\theta}, \dot{\psi}$. It is also possible that the vectors explicitly depend on time.

Now, we are in condition to write the equations whose integration, at least in principle, will give the ship motion. Projecting (13.10) along the axes of the lab frame $G \xi \eta \zeta$, we obtain

$$
\begin{align*}
m \ddot{\xi}_{G} & =R_{\xi} \\
m \ddot{\eta}_{G} & =R_{\eta} \\
m \ddot{\zeta}_{G} & =R_{\zeta} \tag{13.22}
\end{align*}
$$

and the projection of (3.11) along the axes $G x^{\prime} y^{\prime} z^{\prime}$ of the body frame, taking into account (13.18), gives

$$
\begin{align*}
I_{x^{\prime} x^{\prime}} \dot{\omega}_{x}^{\prime}+I_{x^{\prime} z^{\prime}} \dot{\omega}_{z}^{\prime}+I_{x^{\prime} z^{\prime}} \omega_{x}^{\prime} \omega_{y}^{\prime}+\left(I_{z^{\prime} z^{\prime}}-I_{y^{\prime} y^{\prime}}\right) \omega_{y}^{\prime} \omega_{z}^{\prime} & =M_{x^{\prime}}, \\
I_{y^{\prime} y^{\prime}} \dot{\omega}_{y}^{\prime}+I_{x^{\prime} z^{\prime}}\left(\omega_{z}^{2}-\omega_{x}^{2}\right)+\left(I_{x^{\prime} x^{\prime}}-I_{z^{\prime} z^{\prime}}\right) \omega_{x} \omega_{z} & =M_{y^{\prime}} \\
I_{z^{\prime} z^{\prime}} \dot{\omega}_{z}^{\prime}+I_{x^{\prime} z^{\prime}} \dot{\omega}_{x}^{\prime}-I_{x^{\prime} z^{\prime}} \omega_{y} \omega_{z}+\left(I_{y^{\prime} y^{\prime}}-I_{x^{\prime} x^{\prime}}^{\prime}\right) \omega_{x}^{\prime} \omega_{2}^{\prime} & =M_{z^{\prime}} . \tag{13.23}
\end{align*}
$$

In conclusion, the dynamical equations of the ship motion are (13.21), (13.22), and (13.23), provided that we know how $\mathbf{R}$ and $\mathbf{M}_{G}$ depend on the fundamental variables $\xi_{G}, \eta_{G}, \zeta_{G}, \varphi, \theta, \psi$ and their time derivatives $\dot{\xi}_{G}, \dot{\eta}_{G}, \dot{\zeta}_{G}, \dot{\varphi}, \dot{\theta}, \dot{\psi}$.

### 13.6 About the Forces Acting on a Ship

In this section we analyze the forces acting on a ship due to weight, sea, and wind. When the ship is at rest in smooth sea, it is acted upon by its weight and buoyant force (Archimedes principle, Sect. 9.2). At equilibrium, these two forces
are equal and opposite. Further, the weight is applied at the center of mass $G$ and it is downward directed while the buoyant force is upward directed and it is applied at the center of buoyant $C$. These two points belong to the vertical containing $G$. We have already proved in Sect. 9.2 that the intensity of buoyant force is equal to the weight of the water displayed by the ship at equilibrium.

When the ship $S$ is subjected to a more or less complex motion, the buoyant force is modified owing to the variations of the submerged part of $S$ and the pressure of the waves. In particular, the vertical straight line containing the buoyant center $C$ is modified and does not coincide with the vertical straight line containing $G$. In these conditions we cannot apply Pascal's principle and the determination of water pressure on $S$ is a much more difficult problem. Finally, we have to take into account the effects of viscosity and inertial forces on the ship motion.

In principle, we can list the forces acting on $S$ as follows:

- weight of $S$;
- water pressure;
- viscous forces;
- additional resistent forces;
- inertial forces;
- exciting forces.

Apart from the weight, which does not depend on ship motion, all the other forces are depending on it. The determination of dynamical forces is strongly related to the sea conditions. Consequently, we distinguish the following two cases:

- the ship moves in smooth sea:
- the ship moves in rough sea.

In the first case, we can suppose that the amplitudes of the variables defining the ship motion about its center of mass are small, so that we can linearize the dynamical equations. In the second case, this hypothesis cannot be accepted only when the amplitude of waves is small, otherwise the dynamical equations to solve are nonlinear. Moreover, the waves could be not regular; in this case we have to resort to statistical considerations to evaluate the wave action on the ship.

In smooth sea, the main term of pressure forces is the static buoyant force applied at the buoyant center $C$. The ship motion generates additional terms due to variations of volume and form of the submerged part of the ship during the navigation. These terms produce forces and torques which force the ship to return to the equilibrium position.

The viscous forces have not a relevant effect on the ship motion. Further, the resistent forces include the wave-making damping and the vortex damping. The former is due to the energy necessary to produce the waves generated by the ship during its oscillating motion. The latter is the force produced by the presence of vortices around the ship.

Also the inertial forces appear during the ship motion. In fact, the ship oscillations produce an acceleration of the water particles which are in contact with the hull. In turn, these accelerated particles exert reaction forces on the ship.

In smooth sea the above forces are the only forces to take into account. If the ship navigates in rough sea, we have also to consider the exciting forces which are due to the wave action on the hull. These forces modify the hydrodynamic distribution of the pressure on the ship so that we cannot evaluate these force field as we did in smooth sea. The main contribution of the exciting force can be evaluated resorting to the ghost ship hypothesis of Froude-Krylov. According to this hypothesis the pressure at a point of the hull is equal to the pressure of the sea wave at that point, in the absence of the ship. In other words, if we know the wave motion, then we can evaluate the pressure acting at any point of the hull. It can be proved that this assumption allows us to evaluate only the main part of the exciting force. To complete its determination we have to add a further term which takes into account the partial reflection and diffraction of the waves at their arrival on the hull.

For a detailed analysis of all the cited forces we refer the reader to specialized books on this subject (see $[2,14,21,24,25,41,42,44,46-49,59,70,71]$ ).

### 13.7 Linear Equations of Ship Motion

In this section we suppose that:

- the angular variables (roll, pitch, and yaw) have small values;
- the sea waves acting on the ship have small amplitudes.

The above hypotheses allow us to linearize the dynamical equations. First, we note that, in the linear approximation, (13.21) reduce to the following equations

$$
\begin{equation*}
\omega_{x}^{\prime}=\dot{\varphi}, \quad \omega_{y}^{\prime}=\dot{\theta}, \quad \omega_{z}^{\prime}=\dot{\psi} \tag{13.24}
\end{equation*}
$$

Consequently, Eqs. (13.22), (13.23) can be written as follows:

$$
\begin{gather*}
m \ddot{\xi}_{G}=F_{\xi}, \\
m \ddot{\eta}_{G}=F_{\eta}, \\
m \ddot{\zeta}_{G}=F_{\zeta},  \tag{13.25}\\
I_{x^{\prime} x^{\prime}} \ddot{\varphi}+I_{x^{\prime} z^{\prime}} \ddot{\psi}=M_{x^{\prime}}, \\
I_{y^{\prime} y^{\prime}} \ddot{\theta}=M_{y^{\prime}}, \\
I_{z^{\prime} z^{\prime}} \ddot{\psi}+I_{x^{\prime} z^{\prime}} \ddot{\varphi}=M_{z^{\prime}} . \tag{13.26}
\end{gather*}
$$

It is evident that these equations will be really linear provided that the forces and torques on the right-hand sides are supposed to depend linearly on $\xi_{G}(t), \eta_{G}(t)$, $\zeta_{G}(y), \varphi(t), \theta(t), \psi(t)$ and their first time derivatives.

We suppose that, in smooth sea, this system admits an equilibrium configuration corresponding to the following values of configuration parameters: $\xi_{G}=\eta_{G}=\varphi=$ $\theta=\psi=0$ and $\zeta_{G}=\zeta_{G 0}$. It is more convenient to give (13.25), (13.26) a matrix form. This can be obtained by introducing the following matrices

$$
\left(\mathbb{M}_{j k}\right)=\left(\begin{array}{cccccc}
m & 0 & 0 & 0 & 0 & 0  \tag{13.27}\\
0 & m & 0 & 0 & 0 & 0 \\
0 & 0 & m & 0 & 0 & 0 \\
0 & 0 & 0 & I_{x^{\prime} x^{\prime}} & 0 & I_{x^{\prime} z^{\prime}} \\
0 & 0 & 0 & 0 & I_{y^{\prime}} y^{\prime} & 0 \\
0 & 0 & 0 & I_{x^{\prime} z^{\prime}} & 0 & I_{z^{\prime} z^{\prime}}
\end{array}\right),
$$

and

$$
\left(u_{j}\right)=\left(\begin{array}{c}
\xi_{G}  \tag{13.28}\\
\eta_{G} \\
\zeta_{G} \\
\varphi \\
\theta \\
\psi
\end{array}\right), \quad\left(\mathbb{F}_{j}\right)=\left(\begin{array}{c}
F_{\xi} \\
F_{\eta} \\
F_{\zeta} \\
M_{\xi} \\
M_{\eta} \\
M_{\zeta}
\end{array}\right),
$$

which allow us to write (13.25) and (13.26) in the form

$$
\begin{equation*}
\sum_{k=1}^{6} \mathbb{M}_{j k} \ddot{u}_{k}=\mathbb{F}_{j}, \quad j=1, \ldots, 6 \tag{13.29}
\end{equation*}
$$

$\left(\mathbb{M}_{i j}\right)$, which is called the matrix of inertia of the ship $S$, includes the total mass of $S$ and the mass distribution about the center of mass by the momenta of inertia $I_{x x}, I_{y y}, I_{z z}$, and $I_{x z}$. The element $\ddot{u}_{j}$ of $\left(\ddot{u}_{j}\right)$ is the acceleration of the $j$ th degree of freedom of $S$. Finally, $\left(\mathbb{F}_{j}\right)$ is the force-torque matrix and it includes all the forces and torques acting on $S$.

In view of the considerations of Sect. 13.6, we introduce the decomposition

$$
\begin{equation*}
\mathbb{F}_{j}=\mathbb{F}_{j}^{G}+\mathbb{F}_{j}^{B}+\mathbb{F}_{j}^{H}+\mathbb{F}_{j}^{W}+\mathbb{F}_{j}^{F}, \tag{13.30}
\end{equation*}
$$

where $\left(\mathbb{F}_{j}^{G}\right)$ is the weight force, $\left(\mathbb{F}_{j}^{B}\right)$ is the hydrostatic buoyant force, $\left(\mathbb{F}_{j}^{H}\right)$ the hydrodynamic force $\left(\mathbb{F}_{j}^{W}\right)$ the wave exciting force and $\left(\mathbb{F}_{j}^{F}\right)$ the frictional damping force.

It is evident that, to complete the linear formulation, we have to assign the linear functions $\mathbb{F}_{j}\left(u_{h}, \dot{u}_{h}\right)$, i.e., how the forces depend on position and velocity field of $S$.

### 13.8 Small Motions in the Presence of Regular Small Waves

In this section we apply the linear equations to ship motion in smooth sea and in the presence of regular small waves. First, we determine the combined effect of weight and buoyant force in the linear approximation. It is well known that, at equilibrium, the balance between the weight and the buoyant force allows the ship floating. Further, if the ship is slightly moved from this position, then restoring torques tend to take back the ship to the rest position (see Fig. 13.8). Taking into account that we are proposing a linear theory of ship motion, we assume that

$$
\begin{equation*}
\mathbb{F}_{j}=\mathbb{F}_{j}^{W}+\mathbb{F}_{j}^{B}=-\sum_{j=1}^{6} C_{j k} u_{k}, \quad j=1, \ldots, 6, \tag{13.31}
\end{equation*}
$$

where the constant coefficients $C_{j k}$ are called restoring coefficients. In other words, in writing (13.20), we state that the components $F_{j}^{W}+F_{j}^{B}$ are linear functions of the variations $u_{j}$ of the position parameters with respect to the equilibrium. The negative sign means that the combined effect of weight and buoyant force produces restoring actions on the ship. Introducing (13.30) into (13.29), we obtain the equations describing the small motions of a ship in smooth sea:

$$
\begin{equation*}
\sum_{k=1}^{6} \mathbb{M}_{j k} \ddot{u}_{k}=-\sum_{j=1}^{6} C_{j k} u_{k}, \quad j=1, \ldots, 6 \tag{13.32}
\end{equation*}
$$

These equations can be used when the coefficients $C_{j k}$ are given. Now, determining the coefficients $C_{j k}$ is a problem of naval engineering. In textbooks about this subject, many procedures are presented to evaluate the restoring coefficients starting from the geometric characteristics of the hull. Here, we limit ourselves to recall that it is possible to prove that, if the ship admits a longitudinal symmetry plane, then many coefficients $C_{j k}$ vanish. More precisely, the restoring coefficient matrix reduces to


Fig. 13.8 Weight, buoyant force, and torques

$$
\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0  \tag{13.33}\\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & C_{33} & 0 & C_{35} & 0 \\
0 & 0 & 0 & C_{44} & 0 & 0 \\
0 & 0 & C_{53} & 0 & C_{55} & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Taking into account this result and recalling (13.27) and (13.28), we can write equations (13.32) in the form

$$
\begin{align*}
m \ddot{\xi}_{G} & =0 \\
m \ddot{\eta}_{G} & =0 \\
m \ddot{\zeta}_{G} & =-C_{33} \zeta_{G}-C_{35} \theta,  \tag{13.34}\\
m \ddot{\varphi} & =-C_{44} \varphi \\
m \ddot{\theta} & =-C_{53} \zeta_{G}-C_{55} \theta \\
m \ddot{\psi} & =0 \tag{13.35}
\end{align*}
$$

These equations suggest some interesting dynamical considerations. First, in view of (13.34), we can state that if the center of mass is initially on the rhumb line and its velocity is tangent to the rhumb line, then it moves only vertically in the frame $G_{0} \xi \eta \zeta$, where $G_{0}$ is the projection of center of mass on the sea surface (see Sect. 13.3). Further, this movement along the vertical is affected by the pitch motion. The first equation (13.35) shows that the roll is harmonic and it is absent if initially $\varphi(0)=\dot{\varphi}(0)=0$. From the third one we derive the absence of yaw; finally, the second equation (13.35) and the third equation (13.34), show that the pitch motion and the vertical motion of the center of mass affect each other. The interaction between these two motions generates a very complex ship motion. In fact, to solve the system

$$
\begin{align*}
m \ddot{\zeta}_{G} & =-C_{33} \zeta_{G}-C_{35} \theta \\
m \ddot{\theta} & =-C_{53} \zeta_{G}-C_{55} \theta, \tag{13.36}
\end{align*}
$$

it is convenient to transform it into the following system of four first-order differential equations

$$
\begin{align*}
\dot{\zeta}_{G} & =u_{1}, \\
\dot{\theta} & =u_{2}, \\
\dot{u}_{1} & =-C_{33} \zeta_{G}-C_{35} \theta, \\
\dot{u}_{2} & =-C_{53} \zeta_{G}-C_{55} \theta, \tag{13.37}
\end{align*}
$$

where $u_{1}$ and $u_{2}$ are auxiliary variables. Giving (13.37) a more compact form

$$
\begin{equation*}
\dot{\mathbf{x}}=\mathbf{A x} \tag{13.38}
\end{equation*}
$$

with

$$
\mathbf{x}=\left(\begin{array}{c}
\zeta_{G}  \tag{13.39}\\
\theta \\
u_{1} \\
u_{2}
\end{array}\right), \quad \mathbf{A}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-C_{33} & -C_{35} & 0 & 0 \\
-C_{53} & -C_{55} & 0 & 0
\end{array}\right)
$$

we can write the general solution of the above system as follows

$$
\begin{equation*}
\mathbf{x}(t)=\sum_{j=1}^{r} \sum_{i=1}^{m_{j}} \mathbf{c}_{i j} t^{i-1} e^{\lambda_{j} t} \tag{13.40}
\end{equation*}
$$

where $\mathbf{c}_{i j}$ are suitable vectors depending on 4 arbitrary constants, $\lambda_{1}, \ldots, \lambda_{r}, r \leq 4$, is the number of the eigenvalues of the matrix $\mathbf{A}$ and $m_{1}, \ldots, m_{r}$ their algebraic multiplicity. Further, the analysis of the behavior of (13.40) allows us to establish if the linear approximation is valid or not. For instance, if the matrix $A$ admits a double eigenvalue $\bar{\lambda}$, then the solution (13.40) contains a secular term. Consequently, the solution does not diverge provided that the real part of $\bar{\lambda}$ is negative.

To complete our analysis of ship motion in smooth sea, we have to take into account the effects of inertial and resisting forces, due to the waves produced by the ship during the navigation (see Sect. 13.6). With the notations of Sect. 13.7, we suppose that these forces, in the linear approximation, can be written as it follows:

$$
\begin{equation*}
\mathbb{F}_{j}^{H}=-\sum_{k=1}^{6} A_{j k} \ddot{u}_{k}-\sum_{k=1}^{6} B_{j k} \dot{u}_{k}, \quad j=1, \ldots, 6 \tag{13.41}
\end{equation*}
$$

The coefficients $A_{j k}$ are called the adjoint mass coefficients since, when they are carried on the left-hand side of (13.29), modify mass and momenta of inertia of the ship. It can be proved that the matrix $\left(A_{j k}\right)$ is symmetric so that their number reduces to 21 . Further, if the ship has a longitudinal symmetry plane, their number becomes 12 since it is

$$
\begin{equation*}
A_{12}=A_{14}=A_{16}=A_{23}=A_{25}=A_{34}=A_{36}=A_{45}=A_{56}=0 . \tag{13.42}
\end{equation*}
$$

The coefficients $B_{j k}$ are called damping coefficients and they again verify conditions (13.42) in the presence of a longitudinal symmetry of the ship.

Finally, we suppose that small and regular waves are propagating on the sea surface and evaluate forces and momenta due to their meeting with the ship during the navigation. Let $S$ be a ship moving with uniform velocity $U$ in a direction
forming a rhumb angle $\chi$ with the direction of wave propagation. In this situation the generalized interaction forces $\mathfrak{F}_{j}$ between the ship and the waves not only depend on the position parameters $\left(u_{j}\right)$ and their first and second time derivatives but also on the vertical displacement $u_{w}$ of the sea free surface and their first and second time derivatives, i.e.,

$$
\begin{equation*}
\mathbb{F}_{j}=\mathbb{F}_{j}\left(u_{w}, \dot{u}_{w}, \ddot{u}_{w}, u_{j}, \dot{u}_{j}, \ddot{u}_{j}\right) \tag{13.43}
\end{equation*}
$$

Supposing that the values of position parameters, variables $u_{w}, \dot{u}_{w}, \ddot{u}_{w}$ and their first and second time derivatives are small, we can substitute the functions (13.43) with their Taylor's expansions:

$$
\begin{align*}
\mathbb{F}_{j} & =a_{j} \ddot{u}_{w}+b_{j} \dot{u}_{w}+c_{j} u_{w} \\
& -\sum_{j=1}^{6}\left(A_{j k} \ddot{u}_{k}+B_{j k} \dot{u}_{k}+C_{j k} u_{k}\right), \quad j=1, \ldots, 6 . \tag{13.44}
\end{align*}
$$

The coefficients $A_{j k}, B_{j k}$, and $C_{j k}$ have the meaning already made clear in the above sections but in this case they depend also on the wavelength of the sea waves. If (13.44) is introduced into Eq. (13.29), we obtain the general equations governing the ship motion of small amplitude:

$$
\begin{equation*}
\sum_{k=1}^{6}\left(\mathbb{M}_{j k}+A_{j k}\right) \ddot{u}_{k}+B_{j k} \dot{u}_{k}+C_{j k} u_{k}=\mathbb{F}_{j}^{w}, \quad j=1, \ldots, 6, \tag{13.45}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbb{F}_{j}^{w}=a_{j} \ddot{u}_{w}+b_{j} \dot{u}_{w}+c_{j} u_{w}, \tag{13.46}
\end{equation*}
$$

denotes the $j$ th component of the exciting forces.
Let $z_{w}=A \cos \left(\omega_{e} t-k x\right)$, where $k$ is the wave number $2 \pi / \lambda$, a plane wave propagating along the axis $O x$ of the frame $O x y z$ (see Fig. 13.6). In view of (13.3), the equation of this wave in the frame $G_{0} \xi \eta \zeta$ is given by the following equation

$$
\begin{equation*}
\zeta_{w}=A \cos \left(\omega_{e} t-k \xi \cos \chi+k \eta \sin \chi\right), \tag{13.47}
\end{equation*}
$$

where $\omega_{e}=\omega-k U \cos \chi$. At the center of mass of the ship, where $\xi=\eta=0$, the wave amplitude is

$$
\begin{equation*}
\zeta_{w}=A \cos \left(\omega_{e} t\right) \tag{13.48}
\end{equation*}
$$

so that

$$
\begin{equation*}
\dot{\zeta}_{w}=-\omega_{e} A \sin \left(\omega_{e} t\right), \quad \ddot{\zeta}_{w}=-\omega_{e}^{2} A \cos \left(\omega_{e} t\right) \tag{13.49}
\end{equation*}
$$

It is supposed that the force produced by the sea waves on the ship is proportional to the amplitude that the wave should have at $G_{0}$ in the absence of the ship (ghost ship hypothesis, Sect. 13.6). In other words, we suppose that

$$
\begin{equation*}
\mathbb{F}_{j}^{w}=\overline{\mathbb{F}}_{j}^{w} \cos \left(\omega_{e} t+\gamma_{j}\right) \tag{13.50}
\end{equation*}
$$

Introducing (13.50) into (13.46), we obtain

$$
\begin{equation*}
\overline{\mathbb{F}}_{j}^{w}=a \sqrt{\left(c_{j}-\omega_{e}^{2} a_{j}\right)^{2}+\left(\omega_{e} b_{j}\right)^{2}}, \quad \tan \gamma_{j}=\frac{\omega_{e} b_{j}}{c_{j}-\omega_{e}^{2} a_{j}} \tag{13.51}
\end{equation*}
$$

and Eq. (13.45) become

$$
\begin{equation*}
\sum_{k=1}^{6}\left(\mathbb{M}_{j k}+A_{j k}\right) \ddot{u}_{k}+B_{j k} \dot{u}_{k}+C_{j k} u_{k}=\overline{\mathbb{F}}_{j}^{w} \cos \left(\omega_{e} t+\gamma_{j}\right), j=1, \ldots, 6 \tag{13.52}
\end{equation*}
$$

In conclusion, to all the ship motions in the absence of sea waves, we have now to add a particular solution of (13.52) due to the presence of the impressed force on the right-hand side of (13.52).

### 13.9 The Sea Surface as Free Surface

All the coefficients appearing in Eq. (13.52) have to be evaluated starting from the characteristics of the hull, sea waves, and wind. From now on, we propose to analyze in more detail the waves that the wind produces on the sea surface. In this way, we will be able to evaluate their amplitude and energy.

To begin, we suppose that the sea is a perfect incompressible fluid whose flow is irrotational. From Sect. 9.5 we know that such a flow is a potential flow, i.e., there exists a function $\varphi$ of class $C^{2}$ solution of Laplace's equation

$$
\begin{equation*}
\Delta \varphi=0 \tag{13.53}
\end{equation*}
$$

which is related to the velocity field by the relation

$$
\begin{equation*}
\mathbf{v}=\nabla \varphi \tag{13.54}
\end{equation*}
$$

Let $\Sigma_{0}$ be the plane free surface of the sea in the absence of wind or other perturbation. Denote by $d$ the distance between $\Sigma_{0}$ and the sea floor $\Sigma_{f}$ and introduce a frame of reference $O x y z$ with the origin and the axes $O x$ and $O y$ belonging to $\Sigma_{0}$ (see Fig. 13.9). The domain in which we wish to find a solution $\varphi$ of (13.53) is the region $C(t)$ contained between the sea actual surface $\Sigma(t)$ and $\Sigma_{f}$. This domain is unbounded since $-\infty<x, y<\infty$ and depends on time because of the moving surface $\Sigma(t)$.


Fig. 13.9 Waves on the sea surface

We have to assign the boundary data on the surfaces $\Sigma_{f}$ and $\Sigma(t)$. Remembering that we are assuming that the water is a perfect fluid, the boundary condition on the fixed surface $\Sigma_{f}$ is

$$
\begin{equation*}
\mathbf{v} \cdot \mathbf{k}=\mathbf{k} \cdot \nabla \varphi=\frac{\partial \varphi}{\partial z}=0 \tag{13.55}
\end{equation*}
$$

where $\mathbf{k}$ is the unit vector along the axis $O z$. On the other hand, $\Sigma(t)$, whose evolution is unknown, is a material surface (see Sect. 5.3). Then, we can conclude that at each point of $\Sigma(t)$ the following conditions hold

$$
\begin{equation*}
v_{n}=c_{n}, \quad p-p_{a}=0, \tag{13.56}
\end{equation*}
$$

where $c_{n}$ is the normal speed of $\Sigma(t)$ (see Sect. 4.5), $p$ is the water pressure on $\Sigma(t)$ and $p_{a}$ the atmospheric pressure, which is supposed to be known. Denoting by

$$
\begin{equation*}
F\left(x, y, z_{w}, t\right) \equiv z_{w}-f(x, y, t)=0 \tag{13.57}
\end{equation*}
$$

the equation of the moving surface $\Sigma(t)$, the external unit vector $\mathbf{N}$ normal to $\Sigma(t)$ has components

$$
\begin{align*}
N_{i} & =\frac{1}{|\nabla F|}\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, 1\right), \\
|\nabla F| & =\sqrt{1+\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}}, \tag{13.58}
\end{align*}
$$

and the normal speed of $\Sigma(t)$ is given by

$$
\begin{equation*}
c_{n}=\frac{1}{|\nabla F|} \frac{\partial f}{\partial t} . \tag{13.59}
\end{equation*}
$$

Taking into account this result, we can write first condition (13.56) as it follows

$$
\begin{equation*}
\frac{\partial \varphi}{\partial x} \frac{\partial f}{\partial x}+\frac{\partial \varphi}{\partial y} \frac{\partial f}{\partial y}+\frac{\partial \varphi}{\partial z}=\frac{\partial f}{\partial t} \tag{13.60}
\end{equation*}
$$

Since this boundary condition holds on the moving unknown surface $\Sigma(t)$, we face with a free boundary problem. Further, (13.60) contains the unknown function $f$ so that we need another condition to determine $f$.

In order to find a new boundary condition, we prove the following theorem.
Theorem 13.1. Consider an irrotational flow of an incompressible fluid acted upon by conservative forces. If $\varphi$ and $U$ denote, respectively, the kinetic potential of the flow and the potential energy of the forces, then, in the whole region of the flow the following identity holds

$$
\begin{equation*}
\frac{\partial \varphi}{\partial t}+\frac{1}{2} v^{2}+\frac{p}{\rho}+U=0 \tag{13.61}
\end{equation*}
$$

Proof. When the flow is irrotational, the acceleration formula we have proved in Sect. 4.2, becomes

$$
\mathbf{a}=\frac{\partial \mathbf{v}}{\partial t}+\frac{1}{2} \nabla v^{2}
$$

On the other hand, since the fluid is a perfect liquid acted upon by conservative forces, the equation of motion assumes the form

$$
\dot{\mathbf{v}}=-\nabla\left(\frac{p}{\rho}+U\right)
$$

where $\rho$ is the constant density of the liquid. Remembering that $\mathbf{v}=\nabla \varphi$ and $\partial \nabla \varphi / \partial t=\nabla(\partial \varphi / \partial t)$, from the last two equations we obtain that

$$
\frac{\partial \varphi}{\partial t}+\frac{1}{2} v^{2}+\frac{p}{\rho}+U=c(t)
$$

where $c(t)$ is an arbitrary function. On the other hand, in view of (13.54), the kinetic potential $\varphi$ is defined up to an arbitrary function of time. If we define $\varphi_{1}(t)$ in such a way that $c(t)=\partial \varphi_{1} / \partial t=\dot{\varphi}_{1}$, then (13.61) is verified provided that $\varphi(x, y, z, t)$ is substituted by $\varphi(x, y, z, t)-\varphi_{1}(t)$.

In our case all the hypotheses of Theorem 13.1 are satisfied and $U=g z$. Therefore, identity (13.61) holds in the whole region $C(t)$. The further boundary condition we are searching for is obtained taking into account (13.54) and evaluating (13.61) on surface $\Sigma(t)$ :

$$
\begin{equation*}
\frac{\partial \varphi}{\partial t}+\frac{1}{2}\left[\left(\frac{\partial \varphi}{\partial x}\right)^{2}+\left(\frac{\partial \varphi}{\partial y}\right)^{2}+\left(\frac{\partial \varphi}{\partial z}\right)^{2}\right]+\frac{p_{a}}{\rho}+g z_{w}=0 \tag{13.62}
\end{equation*}
$$

### 13.10 Linear Approximation of the Free Boundary Value Problem

The free boundary problem (13.53), (13.55), (13.60), (13.62) we have formulated in the preceding section cannot be solved because of its strongly nonlinear character. Then, we try to solve it in the hypothesis that the components of $\mathbf{v}(x, y, z, t)$ and the values of $z_{w}=f(x, y, t)$ are first order quantities together with their time and space derivatives. In these condition, the aforesaid free boundary value problem becomes

$$
\begin{align*}
& \Delta \varphi=0, \quad \text { in } C(t) \\
& \frac{\partial \varphi}{\partial z}=0, \quad \text { on } \quad \Sigma_{f}, \\
& \frac{\partial \varphi}{\partial z}=\frac{\partial f}{\partial t}, \quad \text { on } \Sigma(t), \\
& \frac{\partial \varphi}{\partial t}+\frac{p_{a}}{\rho}+g f=0, \text { on } \Sigma(t) . \tag{13.63}
\end{align*}
$$

This free boundary value problem is now linear and we can apply standard methods to solve it. In particular, we resort to the method of separated variables. To simplify the calculation, we omit the dependence on the variable $y$; in other words, we analyze the behavior of waves in the plane $O x z$ supposing that this behavior is the same on all the coordinate planes $y=$ const .

We begin searching for a solution of (13.63) such that

$$
\begin{equation*}
\varphi(x, z, t)=X(x) Z(z) T(t) \tag{13.64}
\end{equation*}
$$

Introducing this function into Laplace's equation, we obtain

$$
\begin{equation*}
-\frac{X^{\prime \prime}(x)}{X(x)}=\frac{Z^{\prime \prime}(z)}{Z(z)} \equiv K, \tag{13.65}
\end{equation*}
$$

where $K$ is a constant which can be positive or negative. The case $K<0$ is of no interest for us. Then, introducing the notation $K \equiv 4 \pi^{2} / \lambda^{2}>0$, from (13.65) we obtain the equations

$$
\begin{align*}
X^{\prime \prime}(x) & =-\frac{4 \pi^{2}}{\lambda^{2}} X(x), \\
Z^{\prime \prime}(z) & =\frac{4 \pi^{2}}{\lambda^{2}} Z(z), \tag{13.66}
\end{align*}
$$

whose general solutions are

$$
\begin{align*}
& X(x)=A \cos \left(\frac{2 \pi}{\lambda} x+\alpha\right) \\
& Z(x)=B \cosh \left(\frac{2 \pi}{\lambda} z+\beta\right) \tag{13.67}
\end{align*}
$$

where $A, \alpha, B$, and $\beta$ are integration constants. Since the function $\varphi=$ $X(x) Z(z) T(t)$ must satisfy the second condition (13.63) for any $x$ on the sea floor $(z=-d)$, we impose that

$$
B \frac{2 \pi}{\lambda} \sinh \left(-\frac{2 \pi d}{\lambda}+\beta\right)=0
$$

In turn, this condition implies that

$$
\begin{equation*}
\beta=\frac{2 \pi d}{\lambda} \tag{13.68}
\end{equation*}
$$

and our solution assumes the form

$$
\begin{equation*}
\varphi(x, z, t)=A \cos \left(\frac{2 \pi}{\lambda} x+\alpha\right) B \cosh \left(\frac{2 \pi}{\lambda}(z+d)\right) T(t) . \tag{13.69}
\end{equation*}
$$

Now, from the second and third conditions (13.63) we derive a new equation containing only the kinetic potential. In fact, differentiating the forth relation, we have that

$$
\begin{equation*}
\frac{\partial^{2} \varphi}{\partial t^{2}}=-g \frac{\partial f}{\partial t} \tag{13.70}
\end{equation*}
$$

at any point of the region $C(t)$. From (13.70) and the third relation (13.63), we finally obtain that on the surface $\Sigma(t)$ has to be satisfied the condition

$$
\begin{equation*}
\frac{\partial \varphi}{\partial z}=-\frac{1}{g} \frac{\partial^{2} \varphi}{\partial t^{2}} \tag{13.71}
\end{equation*}
$$

Our hypothesis that $\varphi$ and $f$ are first order variables with their first and second derivatives allows us to state that the values of both sides of (13.71) on the rest surface $z=0$ are equal to the values on $\Sigma(t)$ up to second order terms. Applying the condition (13.71) for $z=0$ to the solution (13.69), we have that

$$
\begin{equation*}
B \frac{2 \pi}{\lambda} \sinh \left(\frac{2 \pi d}{\lambda}\right) T(t)=-\frac{1}{g} B \cosh \left(\frac{2 \pi d}{\lambda}\right) T^{\prime \prime}(t) \tag{13.72}
\end{equation*}
$$

Introducing the notation:

$$
\begin{equation*}
v^{2}=\frac{g}{2 \pi \lambda} \tanh \frac{2 \pi d}{\lambda}, \tag{13.73}
\end{equation*}
$$

we can write the general solution of (13.72) in the form

$$
\begin{equation*}
T(t)=C \cos (2 \pi v t+\gamma), \tag{13.74}
\end{equation*}
$$

where $C$ and $\gamma$ are arbitrary constants. In conclusion, the kinetic potential satisfying all the boundary conditions is

$$
\begin{equation*}
\varphi=\bar{K} \cos \left(\frac{2 \pi}{\lambda} x+\alpha\right) \cosh \frac{2 \pi}{\lambda}(z+d) \cos (2 \pi v t+\gamma), \tag{13.75}
\end{equation*}
$$

where $\bar{K}=A B C$. Owing to the well-known trigonometric formula

$$
2 \cos \alpha \cos \beta=\cos (\alpha-\beta)+\cos (\alpha+\beta)
$$

we can write (13.75) in the form

$$
\begin{align*}
\varphi & =K \cos \frac{2 \pi}{\lambda}(x-\lambda v t+\delta) \cosh \frac{2 \pi}{\lambda}(z+d) \\
& +K \cos \frac{2 \pi}{\lambda}(x+\lambda v t+\epsilon) \cosh \frac{2 \pi}{\lambda}(z+d) \tag{13.76}
\end{align*}
$$

where

$$
K=\frac{\bar{K}}{2}, \quad \delta=\frac{\lambda}{2 \pi}(\alpha-\gamma), \quad \epsilon=\frac{\lambda}{2 \pi}(\alpha+\gamma) .
$$

It is straightforward to verify that each addendum on the right-hand side of (13.76) satisfies the boundary conditions for any choice of the arbitrary constants $K, \lambda, \delta$ and $\epsilon$. In order to determine a unique solution of our problem, we have also to assign the initial datum $\varphi(x, z, 0)=\varphi_{0}(x, y)$. Since (13.75) contains only four arbitrary constants, it cannot satisfy an arbitrary initial datum. Therefore, we have to consider a double Fourier's expansion in the variables $x$ and $z$ of $\varphi_{0}(x, y)$ and compare this expansion to the series of the infinite solutions (13.76) on varying the constants $K, \lambda, \delta$ and $\epsilon$. Since these calculations are simple but very tedious, we limit ourselves to the analysis of the solution (13.76), which corresponds to a particular initial datum.

### 13.11 Simple Waves

In this section, we analyze the property of the solution

$$
\begin{equation*}
\varphi=K \cosh \frac{2 \pi}{\lambda}(z+d) \cos \frac{2 \pi}{\lambda}(x-\lambda \nu t+\delta) \tag{13.77}
\end{equation*}
$$

We call such a solution a simple wave since it corresponds to a harmonic plane wave with frequency $\nu$, wavelength $\lambda$, traveling along the $O x$ axis with velocity $V=\lambda \nu$. Note that solution (13.76) is the superposition of two simple waves with the same characteristics but propagating in opposite directions.

About the amplitude

$$
A=K \cosh \frac{2 \pi}{\lambda}(z+d)
$$

of a simple wave, we have to note what follows. The linear approximation requires that $A \ll \lambda \ll d$ but the function $\cosh (z+d)$, although it vanishes when $z=-d$, assumes a very large value for $z=0$ when $d$ is large (deep sea). This implies that we have to take very small values of $K$ if we want a small amplitude. Therefore, it is more convenient to put

$$
\begin{equation*}
K=\frac{K_{1}}{\cosh \frac{2 \pi}{\lambda} d}, \tag{13.78}
\end{equation*}
$$

since $0 \leq\left(\cosh \frac{2 \pi}{\lambda}(z+d) / \cosh \frac{2 \pi}{\lambda} d \leq 1, x \in[-d, 0]\right.$, and the constant $K_{1}$ controls the value of the amplitude. From now on, we intend that the constant $K$ in (13.77) has the expression (13.78). ${ }^{9}$ When the value of $K_{1}$ is assigned in (13.78), the amplitude of the small wave is determined by the function

$$
y(z, d, \lambda)=\frac{\cosh \frac{2 \pi}{\lambda}(z+d)}{\cosh \frac{2 \pi}{\lambda} d}
$$

The plot of the above function, for a fixed value of $d$ (see Fig. 13.10), shows that the value of $y$ becomes next to zero after a small fraction of the total depth $d$. Further, this fraction increases with the wavelength.

In view of (13.73), the propagation speed $V=\lambda \nu$ can be written as follows

$$
\begin{equation*}
V(\lambda, d)=\sqrt{\frac{g \lambda}{2 \pi} \tanh \frac{2 \pi d}{\lambda}} \tag{13.79}
\end{equation*}
$$

[^58]

Fig. 13.10 Plot of $y(z)$. The dashed, dotted, and continuous curves refer to increasing values of $\lambda$ and $d$ fixed

This function is called dispersion relationship of simple waves. It gives the dependence of the wave speed on the wave length $\lambda$ and the water depth $d$. Approximate explicit forms of the above function can be obtained by a Taylor's expansion of $V(\lambda, d)$, with respect to $\lambda$. For the present, we note that the form of $V(\lambda, d)$ shows that, for a given value of $\lambda$, the wave will propagate faster in deep water than in shallow water. Also, waves with greater wavelength will propagate faster than waves with short wavelength. Hence, if a group of waves of varying wave length were to propagate away from an area where they were initially generated, they would propagate at different speeds. The longer wave length waves would propagate faster than the shorter wave length waves. Hence, the wave field would gradually disperse. This gives rise to the name, dispersion relationship.

We note that, when $d \gg \lambda$, it is $\tanh (2 \pi d / \lambda) \approx 1$ and (13.79) reduces to the formula

$$
\begin{equation*}
V(\lambda)=\sqrt{\frac{g \lambda}{2 \pi}} \tag{13.80}
\end{equation*}
$$

which shows that the wave velocity in deep sea is proportional to the square root of wavelength.

On the contrary, if $d \ll \lambda$ (shallow water), then

$$
\tanh \frac{2 \pi g}{\lambda} \approx \frac{2 \pi g}{\lambda}
$$

and (13.79) becomes

$$
\begin{equation*}
V(d)=\sqrt{g d} \tag{13.81}
\end{equation*}
$$

This is the case of tide waves.

### 13.12 Flow of Small Waves

Now, we have to evaluate all the characteristics of the flow corresponding to the kinetic potential (13.77). We start determining the profile of the free surface $\Sigma(t)$.

It has already been noted that the potential $\varphi$ is defined up to an arbitrary function $c(t)$. Therefore, if we add this function to (13.77), we do not modify any result. Then, adding the function $p_{a} t / \rho$ to (13.77), last equation (13.63) reduces to the condition

$$
\begin{equation*}
\frac{\partial \varphi}{\partial t}+g f=0, \quad \text { on } \quad \Sigma(t) \tag{13.82}
\end{equation*}
$$

Taking into account (13.82) and (13.77), we can state that on $\Sigma(t)$ the following equation holds

$$
\begin{align*}
z_{w} & =f(x, t)=-\frac{1}{g} \frac{\partial \varphi}{\partial t} \\
& =-\frac{2 \pi K v}{g} \cosh \frac{2 \pi}{\lambda}\left(z_{w}+d\right) \sin \frac{2 \pi}{\lambda}(x-\lambda v t+\gamma) \tag{13.83}
\end{align*}
$$

Note that (13.83) implicitly defines $z_{w}$ since this variable also appears on the righthand side. On the other hand, it is

$$
\cosh \frac{2 \pi}{\lambda}\left(z_{w}+d\right)=\cosh \frac{2 \pi d}{\lambda}+\frac{2 \pi}{\lambda} \sinh \frac{2 \pi d}{\lambda} z_{w}+\cdots
$$

Consequently, up to second order terms, we can evaluate the right-hand side of (13.83) on $z=0$ and the equation of $\Sigma(t)$ becomes

$$
z_{w}=-\frac{2 \pi K v}{g} \cosh \frac{2 \pi d}{\lambda} \sin \frac{2 \pi}{\lambda}(x-\lambda v t+\gamma)
$$

In view of (13.78), it can also be written as follows

$$
\begin{equation*}
z_{w}=-\frac{2 \pi K_{1} v}{g} \sin \frac{2 \pi}{\lambda}(x-\lambda v t+\gamma) . \tag{13.84}
\end{equation*}
$$

It has to be noted that the propagation speed (13.79) has nothing to do with the velocity of the water particles. In fact, it is the velocity of the perturbation produced by the surface wave. Instead, the water flow is obtained by (13.54) evaluating the gradient of the kinetic potential (13.77):

$$
\begin{align*}
& v_{x}=-\frac{2 \pi}{\lambda} K \cosh \frac{2 \pi}{\lambda}(z+d) \sin \frac{2 \pi}{\lambda}(x-\lambda \nu t+\gamma) \\
& v_{z}=\frac{2 \pi}{\lambda} K \sinh \frac{2 \pi}{\lambda}(z+d) \cos \frac{2 \pi}{\lambda}(x-\lambda \nu t+\gamma) \tag{13.85}
\end{align*}
$$



Fig. 13.11 Streamlines and velocity field in water

First, we remind that, in the above formulae $K$ is given by (13.78). On the other hand, function $y$ of the preceding section assumes values which differ from zero only for $z$ next to the sea free surface. Consequently, outside this narrow layer, the water is at rest. Finally, it is easy to verify that, in our approximation, from (13.59) and (13.84), there follows $c_{n}=\partial f / \partial t=v_{z}$. This is an awaited result, since in view of (13.58), $v_{n}=\mathbf{v} \cdot \mathbf{N}=v_{z}$ and $\Sigma(t)$ is a material surface. Finally, the streamlines, i.e., the integral curves of the velocity field for $t$ constant, are shown in Fig. 13.11 together with the velocity vectors.

In order to determine the trajectories of water particles from (13.85), we have first to note that these formulae give the velocity field in the Eulerian form. Therefore, the trajectory of an arbitrary particle, which at the initial instant $t=0$ occupies the position $\left(x_{0}, z_{0}\right)$, can be found solving the following initial value problem

$$
\begin{align*}
\frac{d x}{d t} & =v_{x}(x(t), z(t), t) \\
\frac{d z}{d t} & =v_{z}(x(t), z(t), t) \\
x(0) & =x_{0}, \quad z(0)=z_{0} \tag{13.86}
\end{align*}
$$

where $v_{x}(x, z, t)$ and $v_{z}(x, z, t)$ are given by (13.85). This system can be solved only numerically. However, an approximate evaluation of these trajectories can be obtained starting from the following considerations.

Consider the trajectory of a water particle whose position vector at the instant $t=0$ is $\mathbf{x}_{0}$. The equation defining the trajectory of this particle is given by the solution $\mathbf{x}\left(t, \mathbf{x}_{0}\right)$ of (13.86). If the water particles don't go very far from their equilibrium locations, however, a great simplification ensues: to find the motion near some starting point $\mathbf{x}_{0}$ it is sufficient to a good approximation to just evaluate the velocity $\mathbf{v}$ at $\mathbf{x}_{0}$. In fact, denoting by $\boldsymbol{\xi}\left(\mathbf{x}_{0}, t\right)$ the displacement of the particle occupying the position $\mathbf{x}_{0}$ at the instant $t$, we can write that $\mathbf{x}\left(\mathbf{x}_{0}, t\right)=\mathbf{x}_{0}+\boldsymbol{\xi}\left(\mathbf{x}_{0}, t\right)$. Therefore, (13.86) become:

$$
\begin{equation*}
\frac{d \boldsymbol{\xi}}{d t}=\mathbf{v}\left(\mathbf{x}_{0}+\boldsymbol{\xi}, t\right)=\mathbf{v}\left(\mathbf{x}_{0}, t\right)+\boldsymbol{\xi} \cdot(\nabla \mathbf{v})_{\mathbf{x}_{0}, t} . \tag{13.87}
\end{equation*}
$$

If we can neglect the term $\boldsymbol{\xi} \cdot(\nabla \mathbf{v})_{\mathbf{x}_{0}, t}$ with respect to $\mathbf{v}\left(\mathbf{x}_{0}, t\right)$ since $\boldsymbol{\xi}$ is small, ${ }^{10}$ then finding the trajectory just requires integrating (13.87) with respect to time with $\mathbf{x}$ held fixed.

Integrating (13.87) with $\mathbf{x}$ fixed, we obtain

$$
\xi(t)=x_{0}+\int v_{x} d t, \quad \zeta(t)=z_{0}+\int v_{z} d t
$$

where $\left(x_{0}, z_{0}\right)$ are the coordinates of particle $\mathbf{x}_{0}$ at the instant $t=0$. Consequently, we have that

$$
\begin{align*}
& \xi(t)=-\frac{K}{V} \cosh \frac{2 \pi}{\lambda}(z+d) \cos \frac{2 \pi}{\lambda}(x-\lambda v t+\gamma) \\
& \zeta(t)=-\frac{K}{V} \sinh \frac{2 \pi}{\lambda}(z+d) \sin \frac{2 \pi}{\lambda}(x-\lambda v t+\gamma) \tag{13.88}
\end{align*}
$$

where $V=\lambda \nu$ is given by (13.79). In view of (13.78), we introduce the positive quantities

$$
\begin{align*}
& a=\frac{K}{V} \cosh \frac{2 \pi}{\lambda}(z+d)=\frac{K_{1}}{V} \frac{\cosh \frac{2 \pi}{\lambda}(z+d)}{\cosh \frac{2 \pi}{\lambda} d} \\
& b=\frac{K}{V} \sinh \frac{2 \pi}{\lambda}(z+d)=\frac{K_{1}}{V} \frac{\sinh \frac{2 \pi}{\lambda}(z+d)}{\cosh \frac{2 \pi}{\lambda} d} \tag{13.89}
\end{align*}
$$

from (13.85) we obtain that the trajectory $(\xi(t), \zeta(t))$ of a water particle verifies the condition

$$
\begin{equation*}
\frac{\xi^{2}}{a^{2}}+\frac{\zeta^{2}}{b^{2}}=1 \tag{13.90}
\end{equation*}
$$

Equation (13.88) represents an ellipse with horizontal semi-axis $a$ and vertical semiaxis $b$. Therefore, for small waves and large wavelengths, water particles move in closed elliptical orbits. Since

$$
\begin{equation*}
\frac{b}{a}=\tanh \frac{2 \pi}{\lambda}(z+d) \tag{13.91}
\end{equation*}
$$

[^59]

Fig. 13.12 Orbits in deep sea


Fig. 13.13 Orbits in shallow sea
in deep water $a=b$ and the orbit becomes a circle. These orbits are shown in Figs. 13.12 and 13.13. The orbits progressively become more elongated with decreasing depth $d$ and submergence $z$.

Finally, since we obtain the time derivative of $\varphi$ by (13.75), we conclude that the pressure inside the water can be evaluated by (13.61) which, in the linear approximation, becomes

$$
\begin{equation*}
\frac{\partial \varphi}{\partial t}+\frac{p}{\rho}+g z=0 \tag{13.92}
\end{equation*}
$$

### 13.13 Stationary Waves

Stationary waves can be generated in a closed or partially closed basin. This circumstance is verified in ports, vessels, etc. Consequently, the theory of stationary waves is not important for the ship navigation. However, there are some cases in


Fig. 13.14 Stationary waves in a basin
which it is interesting. For instance, in analyzing the sloshing of ship cisterns or when we want to study a ship model in an naval basin.

In order to simplify the calculations, we suppose that the basin is unbounded along the $O y$ axis but is limited along the $O x$ axis so that $0 \leq x \leq L$ (see Fig. 13.14).

In this case, the kinetic potential (13.77) does not verify all the boundary data. In fact, for $x=0=L$, we have to impose the conditions:

$$
\begin{equation*}
\mathbf{v}(0, z, t) \cdot \mathbf{N}=0, \quad \mathbf{v}(L, z, t) \cdot \mathbf{N}=0, \tag{13.93}
\end{equation*}
$$

where $\mathbf{N}$ is the unit normal to the walls $x=0$ and $x=L$. Since on these walls $\mathbf{N}$ has components $(1,0)$ and $(-1,0)$, respectively, conditions (13.93) assume the following form

$$
\begin{equation*}
v_{x}(0, z, t)=0, \quad v_{x}(L, z, t)=0 . \tag{13.94}
\end{equation*}
$$

Remembering that $\mathbf{v}=\nabla \varphi$, the kinetic potential $\varphi$ in (13.75), which already satisfies the boundary conditions on $\Sigma_{f}$ and $\Sigma(t)$, must verify the other two boundary conditions:

$$
\begin{equation*}
\frac{\partial \varphi}{\partial x}(0, z, t)=0, \quad \frac{\partial \varphi}{\partial x}(L, z, t)=0 . \tag{13.95}
\end{equation*}
$$

From (13.75) we see that the first condition is satisfied when $\alpha=0$ whereas the second one imposes that

$$
\begin{equation*}
\lambda=\frac{2 L}{n}, n=1,2, \ldots, n, \ldots \tag{13.96}
\end{equation*}
$$

In other words, in a bounded region are not possible waves with any wavelength but only waves whose wavelengths verify condition (13.95). The velocity field of stationary waves is obtained by (13.85), when (13.96) is taken into account:

$$
v_{x}=-\frac{\pi n}{L} K \sin \frac{\pi n}{L} x \cosh \frac{2 \pi n}{L}(z+d) \cos (\pi v t+\gamma),
$$

$$
\begin{equation*}
v_{z}=\frac{\pi n}{L} K \cos \frac{\pi n}{L} x \sinh \frac{2 \pi n}{L}(z+d) \cos (\pi v t+\gamma) . \tag{13.97}
\end{equation*}
$$

Further, from (13.84) we obtain the equation of free surface $\Sigma(t)$

$$
\begin{equation*}
z_{w}=\frac{\pi K v}{g} \cos \frac{\pi n}{L} x \cosh \frac{\pi n}{L} d \sin (2 \pi v t+\gamma), \tag{13.98}
\end{equation*}
$$

from which we derive that $z_{w}=0$ at the points

$$
x_{n}=(2 k+1) \frac{L}{n}, \quad k=0,1, \ldots
$$

which are called the nodes of stationary waves.
In all the considerations about waves, we have always supposed their existence. In effect, they are generated by different causes: wind, earthquake, etc. The case of the waves produced by the wind (wind generated waves) can be analyzed by an extension of the free boundary problem we have considered in the above sections. In fact, we can consider the two-phase system formed by water and atmosphere and apply to each phase: (1) the equations of perfect incompressible fluids; (2) the hypothesis that for both the flows there exists a kinetic potential; (3) the interface conditions (13.56).

The wave theory developed in the above sections was based on the hypothesis that the wave height was so small that the dynamic and kinematic boundary conditions at the free surface could be applied on the surface $z=0$ rather than at the wave disturbed surface $z_{w}=f(x, t)$. Usually, the ratio $K_{1} / \lambda$ seldom exceeds 0.05 to 0.08 and hence the small amplitude assumption is often valid. There are, however, some applications where the simplifying assumptions of linear approximation become significant. In such cases it is necessary to resort to the use of a nonlinear or finite amplitude wave theory. Such theories require the free surface boundary conditions to be applied at the free surface, which is, initially unknown as the wave form is part of the solution. The problem is made tractable by the use of perturbation methods. Such an analysis assumes that the nonlinearities represent only small corrections to linear wave theory. Physically the difference between linear and finite amplitude theories is that finite amplitude theories consider the influence of the wave itself on its properties. Therefore, in contrast to linear theory, the phase speed, wave length, water surface profile, and other properties are functions of the actual wave height. We invite the reader interested in the many different finite amplitude wave theories that have been proposed to look up the many specialistic textbooks (see, for instance, [71]).

## Appendix A <br> A Brief Introduction to Weak Solutions

## A. 1 Weak Derivative and Sobolev Spaces

Let $\Omega$ be a bounded and open subset of $\Re^{n}$. Let $D(\Omega)$ be the vector space of $C^{\infty}(\Omega)$-functions having a compact support $S_{\varphi}$ contained in $\Omega$ :

$$
D(\Omega)=\left\{\varphi \in C^{\infty}(\Omega), S_{\varphi} \subset \Omega\right\}
$$

If $f \in C^{1}(\bar{\Omega})$, then it is always possible to write

$$
\begin{equation*}
\int_{\Omega} \frac{\partial f}{\partial x^{i}} \varphi d \Omega=\int_{\Omega} \frac{\partial}{\partial x^{i}}(f \varphi) d \Omega-\int_{\Omega} f \frac{\partial \varphi}{\partial x^{i}} d \Omega . \tag{A.1}
\end{equation*}
$$

If the first integral on the right-hand side is transformed into an integral over the boundary $\partial \Omega$ by Gauss's theorem and the hypothesis $\varphi \in D(\Omega)$, then the previous identity becomes

$$
\begin{equation*}
\int_{\Omega} \frac{\partial f}{\partial x^{i}} \varphi d \Omega=-\int_{\Omega} f \frac{\partial \varphi}{\partial x^{i}} d \Omega \tag{A.2}
\end{equation*}
$$

Conversely, if for any $f \in C^{1}(\bar{\Omega})$ a function $\chi \in C^{0}(\bar{\Omega})$ exists such that

$$
\begin{equation*}
\int_{\Omega} \chi \varphi d \Omega=-\int_{\Omega} f \frac{\partial \varphi}{\partial x^{i}} d \Omega \quad \forall \varphi \in D(\Omega), \tag{A.3}
\end{equation*}
$$

then, subtracting (A.2) and (A.3), we have the condition

$$
\begin{equation*}
\int_{\Omega}\left(\chi-\frac{\partial f}{\partial x^{i}}\right) \varphi d \Omega=0 \quad \forall \varphi \in D(\Omega) \tag{A.4}
\end{equation*}
$$

which in turn implies that $\chi=\partial f / \partial x^{i}$, owing to the continuity of both of these functions. All the previous considerations lead us to introduce the following definition.

Definition A.1. Any $f \in L_{2}(\Omega)$ is said to have a weak or generalized derivative if a function $\chi \in L_{2}(\Omega)$ exists satisfying the condition (A.3).

It is possible to prove that the generalized derivative has the following properties:

- if $f \in C^{1}(\bar{\Omega})$, then its weak derivative coincides with the ordinary one;
- the weak derivative of $f \in L_{2}(\Omega)$ is defined almost everywhere by the condition (A.3); i.e., it is unique as an element of $L_{2}(\Omega)$;
- under certain auxiliary restrictions, ${ }^{1}$ we have that if $\chi$ is the weak derivative of the product $f_{1} f_{2}$, where $f_{1}, f_{2} \in L_{2}(\Omega)$, then

$$
\int_{\Omega} \chi \varphi d \Omega=\int_{\Omega}\left(\chi_{1} f_{2}+f_{1} \chi_{2}\right) \varphi d \Omega
$$

where $\chi_{i}$ is the generalized derivative of $f_{i}, i=1,2$.
From now on, the weak derivative of $f\left(x_{1}, \ldots x_{n}\right) \in L_{2}(\Omega)$ with respect to $x_{i}$ will be denoted by $\partial f / \partial x_{i}$.

Example A.1. The weak derivative of the function $f(x)=|x|, x \in[-1,1]$, is given by the following function of $L_{2}([-1,1])$ :

$$
\frac{d f}{d x}=\left\{\begin{aligned}
-1, & x \in[-1,0) \\
1, & x \in(0,1]
\end{aligned}\right.
$$

This is proved by the following chain of identities:

$$
\begin{aligned}
\int_{-1}^{1} \frac{d f}{d x} \varphi d x & =-\int_{-1}^{1}|x| \frac{d \varphi}{d x} d x=\int_{-1}^{0} x \frac{d \varphi}{d x} d x-\int_{0}^{1} x \frac{d \varphi}{d x} d x \\
& =[x \varphi]_{-1}^{0}-\int_{-1}^{0} \varphi d x-[x \varphi]_{0}^{1}+\int_{0}^{1} \varphi d x \\
& =-\int_{-1}^{0} \varphi d x+\int_{0}^{1} \varphi d x
\end{aligned}
$$

Example A.2. The function

$$
f(x)= \begin{cases}0, & x \in[-1,0) \\ 1, & x \in[0,1]\end{cases}
$$

[^60]does not have a weak derivative. In fact, we have
$$
\int_{-1}^{1} \frac{d f}{d x} d x=-\int_{-1}^{1} f \frac{d \varphi}{d x} d x=-[\varphi]_{0}^{1}=\varphi(0)
$$
and no function can satisfy the previous relation.
Definition A.2. The vector space
\[

$$
\begin{equation*}
W_{2}^{1}(\Omega)=\left\{f: f \in L_{2}(\Omega), \frac{\partial f}{\partial x_{i}} \in L_{2}(\Omega), i=1, \ldots, n\right\} \tag{A.5}
\end{equation*}
$$

\]

of the functions which belong to $L_{2}(\Omega)$, together with their first weak derivatives, is called a Sobolev space.

It becomes a normed space if the following norm is introduced:

$$
\begin{equation*}
\|f\|_{1,2}=\left(\int_{\Omega} f^{2} d \Omega+\sum_{i=1}^{n} \int_{\Omega}\left(\frac{\partial f}{\partial x_{i}}\right)^{2} d \Omega\right)^{1 / 2} \tag{A.6}
\end{equation*}
$$

Recalling that in $L_{2}(\Omega)$ we usually adopt the norm

$$
\|f\|_{L_{2}(\Omega)}=\left(\int_{\Omega} f^{2} d \Omega\right)^{1 / 2}
$$

we see that the relation (A.6) can also be written as

$$
\begin{equation*}
\|f\|_{1,2}^{2}=\|f\|_{L_{2}(\Omega)}^{2}+\sum_{i=1}^{n}\left\|\frac{\partial f}{\partial x_{i}}\right\|_{L_{2}(\Omega)}^{2} \tag{A.7}
\end{equation*}
$$

The following theorem is given without a proof.
Theorem A.1. The space $W_{2}^{1}(\Omega)$, equipped with the Sobolev norm (A.6), is a Banach space (i.e., it is complete). More precisely, it coincides with the completion $H_{2}^{1}(\Omega)$ of the space

$$
\left\{f \in C^{1}(\Omega),\|f\|_{1,2}<\infty\right\} .
$$

This theorem states that for all $f \in W_{2}^{1}(\Omega)$, a sequence $\left\{f_{k}\right\}$ of functions $f_{k} \in$ $C^{1}(\Omega)$ with a finite norm (A.7) exists such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|f-f_{k}\right\|_{1,2}=0 \tag{A.8}
\end{equation*}
$$

In turn, in view of (A.6), this condition can be written as

$$
\lim _{k \rightarrow \infty}\left\{\int_{\Omega}\left(f-f_{k}\right)^{2} d \Omega+\sum_{i=1}^{n} \int_{\Omega}\left(\frac{\partial f}{\partial x_{i}}-\frac{\partial f_{k}}{\partial x_{i}}\right)^{2} d \Omega\right\}=0
$$

or equivalently,

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \int_{\Omega}\left(f-f_{k}\right)^{2} d \Omega & =0 \\
\lim _{k \rightarrow \infty} \int_{\Omega}\left(\frac{\partial f}{\partial x_{i}}-\frac{\partial f_{k}}{\partial x_{i}}\right)^{2} d \Omega & =0, \quad i=1, \ldots, n .
\end{aligned}
$$

In other words, each element $f \in W_{2}^{1}(\Omega)$ is the limit in $L_{2}(\Omega)$ of a sequence $\left\{f_{k}\right\}$ of $C^{1}(\Omega)$-functions and its weak derivatives are also the limits in $L_{2}(\Omega)$ of the sequences of ordinary derivatives $\left\{\partial f_{k} / \partial x_{i}\right\}$.

The previous theorem makes it possible to define the weak derivatives of a function as the limits in $L_{2}(\Omega)$ of sequences of derivatives of functions belonging to $C^{1}(\Omega)$ as well as to introduce the Sobolev space as the completion $H_{2}^{1}(\Omega)$ of $\left\{f \in C^{1}(\Omega),\|f\|_{1,2}<\infty\right\}$.

Let $C_{0}^{1}(\Omega)$ denote the space of all the $C^{1}$-functions having a compact support contained in $\Omega$ and having a finite norm (A.6). Then another important functional space is $\hat{H}_{2}^{1}$, which is the completion of $C_{0}^{1}(\Omega)$. In such a space, if the boundary $\partial \Omega$ is regular in a suitable way, the following Poincaré inequality holds:

$$
\begin{equation*}
\int_{\Omega} f^{2} d \Omega \leq c \sum_{i=1}^{n} \int_{\Omega}\left(\frac{\partial f}{\partial x_{i}}\right)^{2} d \Omega \quad \forall f \in \hat{H}_{2}^{1}(\Omega), \tag{A.9}
\end{equation*}
$$

where $c$ denotes a positive constant depending on the domain $\Omega$. If we consider the other norm

$$
\begin{equation*}
\|f\|_{\hat{H}_{2}^{1}(\Omega)}=\left(\sum_{i=1}^{n} \int_{\Omega}\left(\frac{\partial f}{\partial x_{i}}\right)^{2} d \Omega\right)^{1 / 2} \tag{A.10}
\end{equation*}
$$

then it is easy to verify the existence of a constant $c^{1}$ such that

$$
\|f\|_{\hat{H}_{2}^{1}(\Omega)} \leq\|f\|_{1,2} \leq c^{1}\|f\|_{\hat{H}_{2}^{1}(\Omega)}
$$

so that the norms (A.6) and (A.9) are equivalent.
We conclude this section by introducing the concept of trace. If $f \in C^{1}(\bar{\Omega})$, then it is possible to consider the restriction of $f$ over $\partial \Omega$. Conversely, if $f \in H_{2}^{1}(\Omega)$, it is not possible to consider the restriction of $f$ over $\partial \Omega$, since the measure of $\partial \Omega$ is zero and $f$ is defined almost everywhere, i.e., up to a set having a vanishing measure. In order to attribute a meaning to the trace of $f$, it is sufficient to remember that, if $f \in H_{2}^{1}$, then a sequence of $C^{1}(\bar{\Omega})$-functions $f_{k}$ exists such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|f-f_{k}\right\|_{1,2}=0 \tag{A.11}
\end{equation*}
$$

Next, consider the sequence $\left\{\bar{f}_{k}\right\}$ of restrictions on $\partial \Omega$ of the functions $f_{k}$ and suppose that, as a consequence of (A.12), it converges to a function $\bar{f} \in L_{2}(\Omega)$. In this case, it could be quite natural to call $\bar{f}$ the trace of $f$ on $\partial \Omega$.

More precisely, the following theorem could be proved:
Theorem A.2. A unique linear and continuous mapping

$$
\begin{equation*}
\gamma: H_{2}^{1}(\Omega) \rightarrow L_{2}(\Omega) \tag{A.12}
\end{equation*}
$$

exists such that $\gamma(f)$ coincides with the restriction on $\partial \Omega$ of any function $f^{1}(\bar{\Omega})$. Moreover,

$$
\begin{equation*}
\hat{H}_{2}^{1}(\Omega)=\left\{f \in H_{2}^{1}(\Omega), \gamma(f)=0\right\} . \tag{A.13}
\end{equation*}
$$

## A. 2 A Weak Solution of a PDE

Consider the following classical boundary value problems relative to Poisson's equation in the bounded domain $\Omega \subset \Re$ having a regular boundary $\partial \Omega$ :

$$
\begin{gather*}
\sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}=f \quad \text { in } \Omega \\
u=0 \quad \text { on } \partial \Omega  \tag{A.14}\\
\sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}=f \quad \text { in } \Omega \\
\frac{d u}{d n}=\sum_{i=1}^{n} \frac{\partial u}{\partial x_{i}}=0 \quad \text { on } \partial \Omega \tag{A.15}
\end{gather*}
$$

where $f$ is a given $C^{0}(\Omega)$-function. The previous boundary problems are called the Dirichlet boundary value problem and the Neumann boundary value problem, respectively.

Both these problems admit a solution, unique for the first problem and defined up to an arbitrary constant for the second one, in the set $C^{2}(\Omega) \bigcap C^{0}(\bar{\Omega})$.

By multiplying (A.14) for any $v \in H_{2}^{1}(\Omega)$ and integrating over $\Omega$, we obtain

$$
\begin{equation*}
\int_{\Omega} v \sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}} d \Omega=\int_{\Omega} f v d \Omega \tag{A.16}
\end{equation*}
$$

If we recall the identity

$$
v \frac{\partial^{2} u}{\partial x_{i}^{2}}=\frac{\partial}{\partial x_{i}}\left(v \frac{\partial u}{\partial x_{i}}\right)-\frac{\partial v}{\partial x_{i}} \frac{\partial u}{\partial x_{i}}
$$

and use Gauss's theorem, then (A.16) can be written as

$$
\begin{equation*}
\sum_{i=1}^{n} \int_{\partial \Omega} v \frac{\partial u}{\partial x_{i}} n_{i} d \sigma-\sum_{i=1}^{n} \int_{\Omega} \frac{\partial v}{\partial x_{i}} \frac{\partial u}{\partial x_{i}} d \Omega=\int_{\Omega} f v d \Omega \tag{A.17}
\end{equation*}
$$

where $\left(n_{i}\right)$ is the unit vector normal to $\partial \Omega$.
In conclusion, we have:

- If $u$ is a smooth solution of Dirichlet's boundary value problem (A.14) and $v$ is any function in $\hat{H}(\Omega){ }_{2}^{1}$, then the previous integral relation becomes

$$
\begin{equation*}
-\sum_{i=1}^{n} \int_{\Omega} \frac{\partial v}{\partial x_{i}} \frac{\partial u}{\partial x_{i}} d \Omega=\int_{\Omega} f v d \Omega \quad \forall v \in \hat{H}_{2}^{1}(\Omega) \tag{A.18}
\end{equation*}
$$

- If $u$ is a smooth solution of Neumann's boundary value problem (A.15) and $v$ is any function in $H(\Omega){ }_{2}^{1}$, then from (A.17) we derive

$$
\begin{equation*}
-\sum_{i=1}^{n} \int_{\Omega} \frac{\partial v}{\partial x_{i}} \frac{\partial u}{\partial x_{i}} d \Omega=\int_{\Omega} f v d \Omega \quad \forall v \in H_{2}^{1}(\Omega) \tag{A.19}
\end{equation*}
$$

Conversely, it is easy to verify that if $u$ is a smooth function, then the integral relations (A.18) and (A.19) imply that $u$ is a regular solution of the boundary value problems (A.14) and (A.15), respectively. All the previous considerations suggest the following definitions:

- A function $u \in \hat{H}_{2}^{1}(\Omega)$ is a weak solution of the boundary value problem (A.14) if it satisfies the integral relation (A.18).
- A function $u \in H_{2}^{1}(\Omega)$ is a weak solution of the boundary value problem (A.15) if it satisfies the integral relation (A.19).

Of course, a weak solution is not necessarily a smooth (or strong) solution of the above boundary value problems, but it is possible to prove its existence under very general hypotheses. Moreover, by resorting to regularization procedures, which can be applied when the boundary data are suitably regular, a weak solution can be proved to be smooth as well.

More generally, instead of (A.14) and (A.15), let us consider the following mixed boundary value problem:

$$
\begin{align*}
\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} A_{L i}(\mathbf{x}, \mathbf{u}, \nabla \mathbf{u}) & =f_{L} \quad \forall \mathbf{x} \in \Omega \\
A_{L i}(\mathbf{x}, \mathbf{u}, \nabla \mathbf{u}) & =g_{L}(\mathbf{x}) \quad \forall \mathbf{x} \in \partial \Omega^{\prime} \subset \partial \Omega \\
& \forall \mathbf{x} \in \partial \Omega-\partial \Omega^{\prime}, \tag{A.20}
\end{align*}
$$

where $\mathbf{u}(\mathbf{x})$ is a $p$-dimensional vector field depending on $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right), L=$ $1, \ldots, p, \Omega \subset \Re^{n}$, and $\mathbf{n}$ is the unit normal vector to $\partial \Omega$.

By proceeding as before, it is easy to verify that the weak formulation of the boundary value problem (A.20) can be written as

$$
\begin{equation*}
-\int_{\Omega} \mathbf{A}(\mathbf{x}, \mathbf{u}, \nabla \mathbf{u}) \cdot \nabla \mathbf{v} d \Omega=\int_{\Omega} \mathbf{f} \cdot \mathbf{v} d \Omega-\int_{\partial \Omega} \mathbf{g} \cdot \mathbf{v} d \sigma \quad \forall \mathbf{v} \in \mathbb{U} \tag{A.21}
\end{equation*}
$$

where $\mathbb{U}=\left(\hat{H}_{2}^{1}(\Omega)\right)^{L}$ is the Banach space of all the vector functions which vanish on $\partial \Omega^{\prime}$.

Remark A.1. It is very important to note that if the assigned value of the unknown on the boundary is not zero in one of the problems (A.14) or (A.21), then the weak solution cannot belong to $H_{2}^{1}(\Omega)$ or to $\mathbb{U}$, respectively. This difficulty can be overcome by introducing any auxiliary function $\hat{g}(\mathbf{x})$ which extends to $\Omega$ the values of the boundary value $g$. Then the usual weak formulation can be applied to the new unknown $\hat{\mathbf{u}}-\hat{\mathbf{g}}$. However, it is not easy to find the function $\hat{g}(\mathbf{x})$, especially when $g$ or the boundary $\partial \Omega$ are not regular.

## A. 3 The Lax-Milgram Theorem

Let us suppose that the vector function $\mathbf{A}$ appearing under the integral on the left-hand side of (A.21) depends linearly on $\mathbf{u}$ and $\nabla \mathbf{u}$. Then it is convenient to formulate the boundary value problem (A.21) in an abstract way. In the above linearity hypothesis, the left-hand side of (A.21) is a bilinear form of $\mathbf{u}$ and $\mathbf{v}$ on the Hilbert space $U$ :

$$
B: \mathbb{U} \times \mathbb{U} \rightarrow \mathfrak{R}
$$

On the other hand, the right-hand side of (A.21) defines a linear form $F$ on $\mathbb{U}$ :

$$
F: \mathbb{U} \rightarrow \mathfrak{R} .
$$

Consequently, the weak formulation (A.21) of the boundary value problem (A.20) can be written as

$$
\begin{equation*}
B(\mathbf{u}, \mathbf{v})=F(\mathbf{v}) \quad \forall \mathbf{v} \in \mathbb{U} \tag{A.22}
\end{equation*}
$$

For this kind of equation there is a remarkable theorem due to Lax and Milgram. Before stating it, some definitions are necessary.

Definition A.3. A bilinear form $B: \mathbb{U} \times \mathbb{U} \rightarrow \mathfrak{R}$ is $\mathbb{U}$-elliptic with respect to the norm induced by the scalar product of the Hilbert space $\mathbb{U}$ if

$$
\begin{equation*}
B(\mathbf{u} \cdot \mathbf{u}) \geq \alpha\|\mathbf{u}\|_{\mathbb{U}}, \tag{A.23}
\end{equation*}
$$

where $\gamma$ is a positive real number.

Definition A.4. A bilinear form $B: \mathbb{U} \times \mathbb{U} \rightarrow \mathfrak{R}$ is $\mathbb{U}$-continuous if a positive constant $M$ exists such that

$$
\begin{equation*}
|B(\mathbf{u} \cdot \mathbf{v})| \leq M\|\mathbf{u}\|_{U}\|\mathbf{v}\|_{\mathbb{U}} . \tag{A.24}
\end{equation*}
$$

Definition A.5. If $F: \mathbb{U} \rightarrow \mathfrak{R}$ is a linear form on the Hilbert space $\mathbb{U}$, the $\mathbb{U}$-norm of $F$ is defined by the relation

$$
\begin{equation*}
\|F\|_{\mathbb{U}}=\frac{|F(\mathbf{u})|}{\|\mathbf{u}\|_{\mathbb{U}}} \quad \forall \mathbf{u} \in \mathbb{U} \tag{A.25}
\end{equation*}
$$

Theorem A.3. Let $B: \mathbb{U} \times \mathbb{U} \rightarrow \mathfrak{R}$ be a continuous and $\mathbb{U}$-elliptic bilinear form on the Hilbert space $\mathbb{U}$. Then there exists one and only one solution $\mathbf{u}$ of the equation (A.22), such that it depends continuously on the boundary data

$$
\begin{equation*}
\|\mathbf{u}\|_{\mathbb{U}} \leq \frac{1}{\alpha}\|F\|_{\mathbb{U}} \tag{A.26}
\end{equation*}
$$

## References

[1] N. Bellomo, L. Preziosi, A. Romano, Mechanics and Dynamical Systems with Mathematica ${ }^{\circledR}$ (Birkhäuser Basel, 2000)
[2] R. Bhattacharrya, Dynamics of marine vehicles (Wiley, New York, 1978)
[3] V. Bjerknes, Das Problem der Wettervorhersage, betrachtet vom Standpunkte der Mechanik und der Physik. Meteorologische Zeitschrift 21, 1-7 (1904)
[4] A. Clebsch, Thèorie de l'èlasticitè des Corpes Solides (Dunod, Paris, 1883)
[5] B. Coleman, V. Mizel, Existence of caloric equations of state in thermodynamics. J. Chem. Phys. 40, (1964)
[6] W.A. Day, Thermodynamics based on a work axiom. Arch. Rat. Mech. Anal. 31, (1968)
[7] W.A. Day, The Thermodynamics of Simple Materials with Fading Memory, 2nd edn. Springer Tracts in Natural Philosophy, vol. 22. (Springer, New York, 1972)
[8] W.A. Day, Entropy and Hidden variables in continuum thermodynamics. Arch. Rat. Mech. Anal. 62, (1976)
[9] F. Dell'Isola, A. Romano, On a general balance law for continua with an interface. Ricerche Mat. 2, XXXV (1986)
[10] A. Eringen, E. Suhubi, Elastodynamics, vol. I (Academic Press, New York and London, 1974)
[11] E. Fermi, Termodinamica (Boringhieri, Torino, 1958)
[12] G. Fichera, Problemi Analitici Nuovi nella Fisica Matematica Classica (Quaderni del Consiglio Nazionale delle Ricerche, Gruppo Nazionale della Fisica Matematica (Scuola TipoLito "Istituto Anselmi", Napoli, 1985)
[13] G. Gallavotti, Foundations of Fluid Dynamics (Springer, Berlin, 2002)
[14] O. Grim, A Method for a more precise computation of heaving and pitching motions, both in smooth water and in waves, in: Proc. Symp. Nav. Hydrodyn., 3rd ACR-65, Off. Nav. Res., Washington, DC (1960)
[15] M.E. Gurtin, The Linear Theory of Elasticity, Handbuch der Physik, vol. VIa/2 (Springer, Berlin/New York, 1972)
[16] M. Gurtin, On the two-phase Stefan problem with interfacial entropy and energy. Arch. Rat. Mech. Anal. 96, 199-241 (1986)
[17] B. Hao, W. Zheng, Applied Symbolic Dynamics and Chaos (World Scientific, Singapore, 1998)
[18] J.R. Houlton, An Introduction to Dynamic Metereology (Elsevier Accademic Press, Taiwan 2004)
[19] D. Iannece, A. Romano, D. Starita, The coldness, a universal function in thermoelastic bodies. Arch. Rat. Mech. Anal. 75, (1981a)
[20] D. Iannece, G. Starita, A new proof of the existence of the internal energy and entropy for rate type materials. Ric. di Matematica XXIX, (1981b)
[21] R.A. Ibrahim, I.M. Grace, Modeling of Ship Roll Dynamics and Its Coupling with Heave and Pitch. Mathematical Problems in Engineering, vol. 2010 (Hindawi Publishing Corporation, 2009)
[22] E.A. Jackson, Perspectives of Nonlinear Dynamics II (Cambridge University Press, Cambridge, 1990)
[23] A. Jeffrey, Quasilinear Hyperbolic Systems and Waves (Pitman Publishing, London-San Francisco-Melbourne, 1976)
[24] F. John, On the motion of floating bodies - Part I. Comm. Pure Appl. Math. 2, (1949)
[25] F. John, On the motion of floating bodies - Part II. Comm. Pure Appl. Math. 3, (1950)
[26] L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann, Oxford, 2000)
[27] P.D. Lax, Hyperbolic systems of conservation laws. Comm. Pure Appl. Math., vol. 10 (Wiley, New York, 1957)
[28] A. Lichnerowicz, Algèbra et Analyse Linéaires (Masson Paris, 1947)
[29] I-Shih Liu, Method of Lagrange multipliers for exploitation of the entropy principle. Arch. Rat. Mech. Anal. 46, (1972)
[30] I-Shih Liu, Continuum Mechanics (Springer Berlin Heidelberg, 2002)
[31] E. Lorentz, Deterministic nonperiodic flow. J. Atmos. Sci. 20, (1963)
[32] A.E.H. Love, Mathematical Theory of Elasticity (Dover, New York, 1944)
[33] A. Marasco, A. Romano, Scientific Computing with Mathematica ${ }^{\circledR}$ : Mathematical Problems for ODEs (Birkhäuser Basel, 2001)
[34] A. Marasco, A. Romano, Balance laws for charged continuous systems with an interface. Math. Models Methods Appl. Sci. (M ${ }^{3}$ AS) 12(1), 77-88 (2002)
[35] R. Marcolongo, Teoria Matematica dell'Equilibrio dei Corpi Elastici (Manuali Hoepli, Serie Scientifica, Milano, 1904)
[36] J. Marsden, T. Hughes, Mathematical Foundations of Elasticity (Dover Publications, Inc. New York, 1983)
[37] G.P. Moeckel, Thermodynamics of an interface. Arch. Rat. Mech. Anal. 57, 255-280 (1974)
[38] G. Mostov, J. Sampson, J. Meyer, Fundamental Structures of Algebra (Mcgraw-Hill, 1963)
[39] I. Müller, The coldness, a universal function in thermoelastic bodies. Arch. Rat. Mech. Anal. 41, (1971)
[40] I. Müller, T. Ruggeri, Rational Extended Thermodynamics, 2nd edn. Springer Tracts in Natural Philosophy, vol. 37. (Springer, New York, 1998)
[41] R. Nabergoj, Fondamenti di tenuta della nave al mare (Notes Trieste, 2010)
[42] J.N. Newman, Theory of ship motions. Adv. Appl. Mech. 18, (1978)
[43] W. Noll, Lectures on the foundations of continuum mechanics and thermodynamics. Arch. Rat. Mech. Anal. 52, (1973)
[44] J.R. Paulling, R.M. Rosenberg, On unstable ship motions resulting from nonlinear coupling. J. Ship Res. 3, (1959)
[45] J. Pedlosky, Geophisical fluid Dynamics (Springer, New York, 1979)
[46] A.S. Peters, J.J. Stoker, The motion of a ship as a floating rigid body in a seaway. Comm. Pure Appl. Math. 10, (1957)
[47] T. Perez, Ship Motion Control: Course Keeping and Roll Stabilisation Using Rudder and Fins (Springer-Verlag London, 2005)
[48] W.G. Price, R.E.D. Bishop, Probabilistic Theory of Ship Dynamics (Chapman and Hall, London, 1974)
[49] K.J. Rawson, N.C Tupper, Basic Ship Theory (Elsevier Butterworth-Heinemann, 2001)
[50] L.F. Richardson, Weather Prediction by Numerical Process (Cambridge University Press, Cambridge, 1922)
[51] A. Romano, Elementi di Algebra Lineare e Geometria Differenziale, Liguori Editore Napoli, (1996)
[52] A. Romano, Meccanica Razionale con Elementi di Meccanica Statistica (Liguori Editore Napoli, 1996)
[53] A. Romano, A macroscopic theory of thermoelastic dielectrics. Ric. Mat. Univ. Parma 5, (1979)
[54] A. Romano, A macroscopic non-linear theory of magnetothermoelastic continua. Arch. Rat. Mech. Anal. 65, (1977)
[55] A. Romano, Classical Mechanics with Mathematica ${ }^{\circledR}$ (Birkhäser Basel, 2012)
[56] A. Romano, A. Marasco, Continuum Mechanics: Advanced Topics and Reasearch Trends (Birkhäser Basel, 2010)
[57] R. Rivlin, Further remarks on the stress-deformation relations for isotropic materials. J. Rat. Mech. Anal. 4, (1955)
[58] R. Rivlin, J. Ericksen, Stress-deformation relations for isotropic materials. J. Rat. Mech. Anal. 4, (1955)
[59] N. Salvesen, E.O. Tuck, O. Faltinsen, Ship motions and sea loads. Trans. Soc. Naval Architects Marine Eng. 78, (1970)
[60] J. Serrin, Foundations of Thermodynamics. Lecture notes of a course held in Naples (1977)
[61] J. Serrin, J. Dunn, On the thermodynamics of interstitial working. Arch. Rat. Mech. Anal. 88(2), 95-133 (1985)
[62] V.I. Smirnov, A Course of Higher Mathematics, vol. V (Pergamon Press, Oxford-New York; Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1964)
[63] G. Smith, R. Rivlin, Integrity bases for vectors. The crystal classes. Arch. Rat. Mech. Anal. 15, (1964)
[64] C. Tolotti, Lezioni di Meccanica Razionale (Liguori Editore Napoli, 1965)
[65] R. Toupin, Saint-Venant's Principle. Arch. Rat. Mech. Anal. 18, (1965)
[66] C. Truesdell, A First Course in Rational Continuum Mechanics, vol. 1, 2nd edn. (Academic Press Boston, 1991)
[67] C. Truesdell, W. Noll, The Nonlinear Field Theories of Mechanics. Handbuch der Physik, vol. III/3 (Springer, Berlin/New York, 1965)
[68] C. Wang, A new representation theorem for isotropic functions. Part I and Part II. Arch. Rat. Mech. Anal. 36, (1971)
[69] S. Wolfram, Mathematica ${ }^{\circledR}$. A System for Doing Mathematics by Computer (AddisonWesley Redwood City, California, 1991)
[70] Y. Yang, C. Zhou, X. Jia, Robust adaptive fuzzy control and its application to ship roll stabilization. Inform. Sci. 142, (2002)
[71] I.R. Young, Wind Generated Ocean Waves (Elsevier New York, 1999)
[72] X. Zeng, R. Pielke, R. Eykholt, Chaos theory and its applications to the atmosphere. Bull. Am. Meteorol. Soc. 74(4), (1993)
[73] R.K. Zeytounian, Metereological Fluid Dynamics (Springer, Berlin, 1991)
[74] R.K. Zeytounian, Topics in Hyposonic Flow Theory (Springer, Berlin, 2006)

## Index

## Symbols

2-tensor, 14

## A

absolute temperature, 375
acceleration, 116
accumulation function, 378
acoustic tensor, 297, 344
adiabatic shock equation, 300
adjoint, 94
affine space, 31
algebraic multiplicity, 21
angle of attack, 274
anisotropic solid, 182, 189
Archimedes' principle, 254
axial vector, 13

## B

balance of the angular momentum, 146
basic equations, 392
basis, 3
basis, dual or reciprocal, 8
Beltrami equation, 406
Beltrami's diffusion equation, 161
bending, nonuniform, 342
bending, uniform, 341
Bernoulli's theorem, 257
bipolar coordinates, 71
Bjerknes' theorem, 405
Blasius equation, 287
Blasius formula, 273
boundary layer, 282
Boussinesq-Papkovich-Neuber method, 335

## C

Cauchy's hypothesis, 138
Cauchy's polar decomposition theorem, 28
Cauchy's problem, 198, 208
Cauchy's stress tensor, 145
Cauchy's theorem, 138
Cauchy-Green tensor, left, 87
Cauchy-Green tensor, right, 86
Cauchy-Kovalevskaya theorem, 200
Cayley-Hamilton theorem, 98
center of buoyancy, 256
central axis, 39
characteristic equation, 21
characteristic space, 20
characteristic surface, 198, 202, 209
Christoffel symbols, 54
classical mixture, 391
Clausius-Duhem inequality, 151
Clausius-Planck inequality, 150
coefficient of kinematic viscosity, 278
compatibility conditions, 100
complex potential, 263
complex velocity, 264
components, contravariant, 3
components, covariant, 9
compressible, 252
concentration, 391
configuration, actual or current, 83
configuration, reference, 83
conjugate, 181
constitutive axioms, 164
constitutive equations, 164
contact forces, 143
convective derivative, 117
coordinate curves, 48
coordinates, spatial and material, 83
Coriolis parameter, 396
covariant derivative, 55
curl, 57
curvilinear coordinates, 48
cylindrical coordinates, 68

## D

D'Alembert's equation, 205
D'Alembert's paradox, 272
deformation gradient, 84
Deformation program, 107
deformation, homogeneous, 333
derivative, weak or generalized, 464
deterministic chaos, 428
diffusion flux, 391
diffusion velocity, 391
dilational wave, 345
dilational waves, 296
dimension, 3
direct sum, 4
directional derivative, 58
Dirichlet boundary value problem, 467
dispersion relation, 364
dispersion relationship, 455
displacement boundary value problem, 325
displacement field, 90
displacement gradient, 90
divergence, 56
doublet, 267
dynamic process, 164

## E

effective gravitational acceleration, 388
EigenSystemAG program, 42
eigenvalue, 20
eigenvalue equation, 20
eigenvector, 20
eikonal equation, 218
Ekman number, 412
Ekman's layer, 412
Ekman's spiral, 415
elastic behavior, 168
elliptic coordinates, 70
elliptic equation, 203
elliptic system, 210
empirical temperature, 374
endomorphism, 14
energy balance, 147
energy density, 327
entropy, 150, 376
entropy principle, 150
equivalent to zero, 39
equivalent vector system, 38
Ertel theorem, 408
Euclidean point space, 32
Euclidean tensor, 14, 29
Euclidean vector space, 6
Euler fluid, 251
Euler-Cauchy postulate, 144
Eulerian coordinates, 115
Eulerian form, 116
extended thermodynamics, 376

## F

Fick's law, 391
finite deformation, 84
first Helmoltz theorem, 260
first law of Thermodynamics, 374
first law of thermodynamics, 147
first Piola-Kirchhof tensor, 154
first-order singular surface, 60
Fourier inequality, 151
frame of reference, 31
frame, natural, or holonomic, 49
free vector set, 3
frequency spectrum, 370
Froude number, 398

## G

Gauss coordinates, 199
Gauss's theorem, 58
generalized polar coordinates, 67
geometric compatibility condition, 62
geometric multiplicity, 20
geopotential, 389
ghost ship, 442
grade $n, 165$
gradient, 54
gradient of velocity, 118
Gram-Schmidt procedure, 7
Green-St.Venant tensor, 91
group velocity, 370

## H

Hadamard's theorem, 62, 218, 219
harmonic function, 121, 263
heat convection, 416
heat equation, 206
heat flux vector, 148
heat source, specific, 148
Helmholtz free energy, 152
Helmholtz theorem, 349
homogeneous material, 182
Hugoniot's equation, 300
hydrostatic approximation, 402
hydrostatic parameter, 398
hyperbolic equation, 204
hyperbolic system, 210

## I

image, 17
incompressible, 252
incompressible fluid, 189
incompressible material, 172
infinitesimal strain tensor, 91
integral curves, 57
invariant, first, second, and third, 22
inverse dispersion, 371
irrotational motion, 121
isochoric motion, 121
isotropic function, 182
isovolumic motion, 121

## J

Joukowsky program, 315
Joukowsky's transformation, 275
JoukowskyMap, 318
jump conditions, 59, 138
jump system, 217

## K

kernel, 18
kinetic energy, 147
kinetic energy theorem, 148
kinetic field, 117
kinetic potential, 121
Kutta-Joukowsky theorem, 273

## L

Lagrange's theorem, 257
Lagrangian coordinates, 115
Lagrangian form, 116
Lagrangian mass conservation, 154
Lamé coefficients, 185
Laplace's equation, 121, 204, 263
Laplacian, 58

Lax condition, 226
length, 6
Levi-Civita symbol, 12
lift, 273
linear combination, 3
linear isotropic solid, 185
linear mapping, 14
linear PDE, 198
linearly dependent vector set, 3
linearly independent vector set , 3
LinElasticityTensor program, 193
local balance equation, 138
local speed of propagation, 124
Local-scale, 387
locally equivalent processes, 164
longitudinal unit extension, 86
longitudinal wave, 345
Lorenz's strange attractor, 428

## M

Mach number, 296
mass conservation principle, 143
mass density, 142
mass forces, 143
material coordinates, 115
material derivative, 116
material frame-indifference, 165
material objectivity, 165
material response, 164
material volume, 121, 137
Mesoscale, 387
metric coefficients, 50
Micro-scale, 386
Minkowski's inequality, 6
mixed boundary value problem, 325
mixed product, 13
mixture, 390
mode conversion, 360
momentum balance principle, 143

## N

Navier-Stokes behavior, 188
Navier-Stokes equation, 278
Neumann boundary value problem, 467
normal dispersion, 371
normal speed, 123
normal stress, 145

## 0

Oberbeck-Boussinesq equations, 417
objective tensor, 122
objective vector, 122
Operator program, 76
order, 3
ordinary wave, 217
orientation, 11
orthogonal vectors, 6
orthonormal system, 6

## P

P wave, 356
parabolic coordinates, 70
parabolic equation, 204
parabolic system, 210
paraboloidal coordinates, 72
particle path, 117
Pascal's principle, 252
PdeEqClass program, 229
PdeSysClass program, 235
perfect fluid, 188, 251
perfect gas, 254
perturbed region, 217
phase velocity, 351
Poincaré inequality, 466
Poisson's condition, 146
Poisson's ratio, 185
polar continuum, 144
polar vector, 13
Potential program, 306
potential, stream or Stokes, 263
potential vorticity, 408
potential, velocity or kinetic, 263
Prandtl number, 421
Prandtl's equations, 286
pressure, 252
primitive equations, 402
principal direction of stress, 145
principal stress, 145
principal stretching, 85
principle of determinism, 164
principle of dissipation, 166
principle of equipresence, 167
principle of local action, 165
principle of virtual work, 158
product, 2, 14
product, inner or scalar, 5
product, vector or cross, 12
prolate spheroidal coordinates, 72
proper rotation, 25
pseudovector, 13
pure compression, 341
pure extension, 341

## Q

quasi-linear PDE, 198

## R

Rankine-Hugoniot jump conditions, 224
rate of deformation, 118
Rayleigh equation, 364
Rayleigh number, 416
Rayleigh wave, 362
Rayleigh-Lamb frequency equation, 370
Rayleigh-Lamb relation, 351
rectilinear coordinates, 31
reduced dissipation inequality, 151
reflection, 351
refraction, 351
Reynolds number, 282, 421
Riemann-Christoffel tensor, 99
Rossby number, 398
rotation, 25
rotation axis, 28
rotation tensor, 85

## S

Saint-Venant conjecture, 341
Saint-Venant principle, 341
Saltzman's equations, 418
scalar invariant, 38
Schwarz's inequality, 6
second Helmholtz theorem, 260
second law of thermodynamics, 150
second Piola-Kirchhoff tensor, 155
second principle of thermodynamics, 375
semi-inverse method, 337
semilinear PDE, 198
SH wave, 356
shear, 86
shear stress, 145
shear wave, 345
shock intensity, 226
shock wave, 217
simple continuum, 144
simple material, 165
singular perturbation, 283
singular surface, 59, 125
sink, 266
Sobolev space, 465
solenoidal vector field, 259
sound velocity, 296
source, 266
spatial coordinates, 115
specific entropy, 150
specific force, 144
specific internal energy, 148
spectral decomposition, 24
spectrum, 20
spherical coordinates, 69
sphericity parameter, 398
spin, 118
stagnation points, 269
stationary motion, 118
Stevino's law, 254
Stokes's theorem, 59
stream tube, 258
streamline, 117
strength of a source or sink, 266
stress, 144
stress boundary conditions, 146
stress boundary value problem, 325
stretch ratio, 86
stretching, 118
stretching tensor, left, 85
stretching tensor, right, 85
Stroual number, 398
subsonic motion, 296
subspace, 4
sum, 2
supersonic motion, 296
SV wave, 356
symmetric tensor, 15
symmetry, 181
symmetry group, 181
synoptic-scale, 387

## T

tangent plane approximation, 404
temperature, absolute, 149
tensor of linear elasticity, 175
tensor of thermal conductivity, 175
tensor product, 15, 29
tensor, acoustic, 344
tensor, first Piola-Kirchhof, 154
tensor, Green-St.Venant, 91
tensor, infinitesimal stress, 91
tensor, left Cauchy-Green, 87
tensor, orthogonal, 25
tensor, Riemann-Christoffel, 99
tensor, right Cauchy-Green, 86
tensor, rotation, 85
tensor, second Piola-Kirchhoff, 155
tensor, skew-symmetric, 15
tensor, symmetric, 15
tensor, two-point, 95
thermal power flux, 148
thermoelastic behavior, 168
thermoelastic isotropic solid, 182
thermokinetic process, 164
thermometer, 149
thermoviscoelasticity, 168
thermoviscous fluid, 186
Thomson-Kelvin theorem, 257
Torricelli's theorem, 259
torsion, 342
torsional stiffness, 340
totally hyperbolic system, 210
trace, 466, 467
traction, 144
transpose, 14
transverse wave, 345
Tricomi's equation, 206
troposphere, 386
turbulence, 410
turbulence horizontal viscosity coefficient, 412
turbulence vertical viscosity coefficient, 412
two-point tensor, 95

## U

undisturbed region, 217

## V

vector, 2
vector field, 53
vector space, 2
vector, unit or normal, 6
Vectorsys program, 38
velocity, 116
velocity or kinetic potential, 262
Velocity program, 133
Venturi's tube, 259
vortex damping, 441
vortex line, 259
vortex potential, 264
vortex tube, 259
vortex vector, 259
vorticity tensor, 118

## W

wave, dilational, 345
wave, longitudinal, 345
wave, P, SH, and SV, 356
wave, Rayleigh, 362
wave-making damping, 441
wavefront, 217
WavesI program, 240
WavesII program, 246
weak solution, 468
Wing program, 312

## Y

Young's modulus, 185

## Z

zero postulate of thermodynamics, 374


[^0]:    ${ }^{1}$ The reader interested in other fundamental books in continuum mechanics can consult, for example, the references $[26,30,36,66]$.

[^1]:    ${ }^{1}$ For a more extensive study of the subjects of the first two chapters, see [28, 38, 52], [51].

[^2]:    ${ }^{2}$ It is easy to verify, by using considerations similar to those used at the end of the previous section, that the independence of the vectors $\left(\mathbf{e}_{i}^{\prime}\right)$ is equivalent to requiring that $\operatorname{det}\left(A_{j}^{i}\right) \neq 0$.

[^3]:    ${ }^{3}$ Equation (1.110) is a direct consequence of (1.109) and the formula

    $$
    \mathbf{M}_{O}=\mathbf{M}_{P}+(P-O) \times \mathbf{R} \quad \forall O, P \in \mathfrak{R}^{3} .
    $$

[^4]:    ${ }^{4}$ Due to space limitations, the graphic output is not displayed in the text.

[^5]:    ${ }^{1}$ It is worth noting that all the previous definitions are independent of the dimension of the space, whereas the definition (2.34) of curl refers to a three-dimensional space.

[^6]:    ${ }^{2}$ Except for the generalized polar coordinates, all the other ones are orthogonal.
    ${ }^{3}$ These plots have been obtained by the built-in function ContourPlot of Mathematica ${ }^{\circledR}$ [69].

[^7]:    ${ }^{1}$ From now on, capital indices are used to identify quantities defined in $C_{*}$, while lowercase indices identify quantities in $C$.

[^8]:    ${ }^{2}$ This hypothesis will be motivated in the next chapter.

[^9]:    ${ }^{3}$ Here and in the following discussion the equality is intended to be satisfied by neglecting secondorder terms in $\mathbf{H}$.

[^10]:    ${ }^{4}$ Note that $\mathbf{I}+\mathbf{W}$ is orthogonal if we neglect second-order terms in $\mathbf{H}$. In fact, $(\mathbf{I}+\mathbf{W})(\mathbf{I}+\mathbf{W})^{T} \simeq \mathbf{I}+\mathbf{W}+\mathbf{W}^{T}=\mathbf{I}$, since $\mathbf{W}$ is skew-symmetric.

[^11]:    ${ }^{5}$ The Riemann-Christoffel tensor $\mathbf{R}$ is also referred as the curvature tensor and the condition (3.62) as Riemann's theorem.

[^12]:    ${ }^{6}$ If both the choices option=symbolic and simplifyoption=true are input, then the program cannot give the requested outputs. In this situation, the computation can be stopped from the pop-up menu of Mathematica ${ }^{\circledR}{ }^{\circledR}$ [69]. To interrupt the computation relative to the last input line, choose Kernel $\rightarrow$ Interrupt Evaluation or Kernel $\rightarrow$ Abort Evaluation; to interrupt all the running processes, choose Kernel $\rightarrow$ Quit $\rightarrow$ Local $\rightarrow$ Quit. In this last case, the package Mechanics.m must be launched again before any other application.

[^13]:    ${ }^{1}$ It is suggested that the reader to compare these results to those provided by the program Operator.

[^14]:    ${ }^{1}$ In [43], W. Noll proves that Cauchy's hypothesis follows from the balance of linear momentum under very general assumptions concerning the form of the function describing the surface source $s$.

[^15]:    ${ }^{2}$ The mean value theorem applies to each component of the vector function, and not to the vector function itself.

[^16]:    ${ }^{3}$ See the footnote of Sect. 5.1.

[^17]:    ${ }^{4}$ Cauchy's stress tensor is not symmetric in the case of a polar continuum.

[^18]:    ${ }^{1}$ This problem will analyzed more extensively in Chap. 11.

[^19]:    ${ }^{2}$ It should be remarked that a material behavior of order 3 is represented by a constitutive response having the structure

    $$
    \mathbf{A}=\mathbf{A}_{C_{*}}\left(\mathbf{v}, \mathbf{F}, \nabla_{\mathbf{X}} \mathbf{F}, \dot{\mathbf{F}}, \theta, \boldsymbol{\Theta}, \dot{\theta}, \ddot{\theta}, d^{3} \theta / d t^{3}, \nabla_{\mathbf{X}} \boldsymbol{\Theta}, \mathbf{X}\right),
    $$

    where all the third-order derivatives are included. In any case, as shown in Exercise 1, the objectivity principle rules out the dependence on $\mathbf{v}$ and the principle of dissipation does not allow any dependence on $\nabla_{\mathbf{X}} \mathbf{F}, d^{3} \theta / d t^{3}, \nabla_{\mathbf{X}} \boldsymbol{\Theta}$.

[^20]:    ${ }^{1} \mathrm{~A}$ linear transformation is represented here by a matrix in a given orthonormal basis, as discussed in Chap. 1.

[^21]:    ${ }^{2}$ The interested reader should refer to [10, 67].

[^22]:    ${ }^{3}$ Here we use Voigt's notations, according to which the indices of the components of the elasticity tensor are fixed as follows,

    $$
    11 \rightarrow 1,22 \rightarrow 2,33 \rightarrow 3,23 \rightarrow 4,13 \rightarrow 5,12 \rightarrow 6
    $$

    so that, for instance, $C_{1323}=C_{54}$.

[^23]:    ${ }^{4}$ More precisely, the first group of the above relations allows us to reduce 81 components of $\mathbb{C}$ to 36 independent components, and the second group reduces these to 21 .

[^24]:    ${ }^{1}$ It is clear that this procedure is applicable when a solution is known, for instance when $u_{0}(\mathbf{x})=$ const.
    ${ }^{2}$ The equation is semi-linear if it has the form

    $$
    a_{i j}(\mathbf{x}) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}=h(\mathbf{x}, u, \nabla u), \quad i, j=1, \cdots, n, \quad \mathbf{x} \in \Omega,
    $$

    and linear if $h(\mathbf{x}, u, \nabla u)$ is a linear function of $u$ and $\nabla u$.

[^25]:    ${ }^{3}$ Remember that the time occupies the first place, i.e., $x_{1} \equiv t$, in the list of the independent variables.

[^26]:    ${ }^{4}$ We remark that in Mathematica ${ }^{\circledR}$ [69] the functional dependence is expressed by brackets. Therefore, instead of $p=p(\rho)$ we have to write $p=p[\rho]$.

[^27]:    ${ }^{5}$ We recall that the time always occupies the first position in the list of the variables, i.e., $x_{1} \equiv t$.

[^28]:    ${ }^{1}$ If $C$ is not a simply connected region, then the condition $\nabla \times \mathbf{v}=\mathbf{0}$ does not imply that $\int_{\gamma} \mathbf{v} \cdot d \mathbf{s}=$ 0 on any closed curve $\gamma$, since this curve could not be the boundary of a surface contained in $C$. In this case, Stokes's theorem cannot be applied.

[^29]:    ${ }^{2}$ In the 2D case, $L$ can be a characteristic dimension of the cross section.

[^30]:    ${ }^{3}$ We recall that the derivative at $z_{0}$ of a function $F(z)$ of a complex variable $z$ is defined by

    $$
    F^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{F(z)-F\left(z_{0}\right)}{z-z_{0}} .
    $$

    This limit must be independent of the path $z \rightarrow z_{0}$ and, in particular, if $z=z_{0}+\Delta x$, it holds that

    $$
    F^{\prime}\left(z_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{F(z)-F\left(z_{0}\right)}{\Delta x}=\frac{\partial \varphi}{\partial x}+i \frac{\partial \psi}{\partial x} .
    $$

[^31]:    ${ }^{4}$ We note that according to the usual syntax of Mathematica ${ }^{\circledR}$ [69], all the mathematical constants and the elementary functions are written with a capital letter. Consequently, I denotes the imaginary unity.

[^32]:    ${ }^{5}$ We note that, for typographical reasons, the plots of this section are presented in a different form with respect to the plots which are obtained by launching the package Mechanics.m.

[^33]:    ${ }^{6}$ We note that Mathematica ${ }^{\circledR}$ uses 10 Degree instead of $10^{\circ}$. Moreover, the initial data are given by resorting to the built-in functions Join and Table, which respectively denote the union operation and the indexed list (see on-line help of Mathematica ${ }^{\circledR}$ [69]).

[^34]:    ${ }^{7}$ The plots of this section, for typographic reasons, differ from the plots obtained by the program JoukowskyMap of the package Mechanics.m.

[^35]:    ${ }^{1}$ If the portion $\Sigma_{2}$ is nonempty, then conditions (10.8) are replaced by

    $$
    \left\{\begin{array}{l}
    \int_{\Sigma_{1}} \mathbf{t} d \sigma+\int_{C_{*}} \rho_{*} \mathbf{b} d c+\int_{\Sigma_{2}} \boldsymbol{\phi} d \sigma=\mathbf{0}, \\
    \int_{\Sigma_{1}} \mathbf{r} \times \mathbf{t} d \sigma+\int_{C_{*}} \rho_{*} \mathbf{r} \times \mathbf{b} d c+\int_{\Sigma_{1}} \mathbf{r} \times \boldsymbol{\phi} d \sigma=\mathbf{0},
    \end{array}\right.
    $$

[^36]:    where $\phi$ is the reaction provided by the constraints fixing the portion $\Sigma_{2}$ of the boundary. These conditions of global equilibrium are certainly satisfied due to the presence of the above reactions, provided that they are assured by the constraints.

[^37]:    ${ }^{2}$ For further insight into these topics the reader is referred to $[15,32]$.

[^38]:    ${ }^{3}$ This is related to the assumption of plane waves, so that all the physical quantities are independent of $z$.

[^39]:    ${ }^{4}$ The same argument applies to (10.75).

[^40]:    ${ }^{5}$ It can be proved, starting from (10.87), that the expression

    $$
    C \sin \beta+D \cos \beta
    $$

[^41]:    ${ }^{6}$ If the media are bounded together, the transverse slip can also occur at lubricated interfaces, a case not considered here but of interest in ultrasonics, when transducers on lubricated plates are used to generate and receive waves from solids.

[^42]:    ${ }^{1}$ In the papers of A. Day [6-8], the notions of internal energy and temperature are accepted and, by conveniently rewriting the second principle for cyclic processes, the existence of the entropy for a large class of materials is proved.

[^43]:    ${ }^{1}$ This thickness varies in going from the equator to the pole.

[^44]:    ${ }^{2}$ Note that the order $(\varphi, \theta, r)$ of the coordinates is different from the order $(r, \varphi, \theta)$ adopted in Chap. 2.

[^45]:    ${ }^{3}$ Here, we have again modified the notations adopted in Chap. 2 since we have denoted by an over bar the components of a vector in the natural basis.
    ${ }^{4}$ We recall that all the formulae of the differential operators used in this section can be obtained by resorting to the program Operator.

[^46]:    ${ }^{5} \mathrm{~A}$ complete analysis of basic equations in spherical coordinates can be found in $[18,73,74]$.

[^47]:    ${ }^{6}$ Equations (12.115) and (12.116) differ from the corresponding equations that can be find in literature, since we define $\omega=(1 / 2) \nabla \times \mathbf{v}$ instead of $\omega=\nabla \times \mathbf{v}$.

[^48]:    ${ }^{7}$ For the sake of simplicity, we omitted in these equations the symbol $\rangle$ to denote the mean value.

[^49]:    ${ }^{8}$ In literature it is possible to find many attempts to justify these hypotheses. In our opinion none of them is completely convincing. They can essentially been accepted owing to the correct results they foresee.

[^50]:    ${ }^{9}$ From (12.185) we derive that $\psi=c_{1}$ on the plane $z=0$ and $\psi=c_{2}$ on $z=h$, where $c_{1}$ and $c_{2}$ are constants. In [13] the choice $c_{1}=c_{2}$ is justified. Since $\psi$ is defined up to a constant, we can choose $c_{1}=c_{2}=0$.

[^51]:    ${ }^{10}$ To go deep into this subject, see, for instance, [17, 22, 72].

[^52]:    ${ }^{11}$ For the definitions of nodes, foci and saddlepoints, see for instance [33].

[^53]:    ${ }^{1}$ The reader interested in the topics presented in this chapter may consult specialistic books, for instance [2, 14, 21, 24, 25, 41, 42, 44, 46-49, 59, 70, 71].

[^54]:    ${ }^{2}$ The notations adopted in this chapter are the same used in [55] and [41].

[^55]:    ${ }^{3}$ It is evident that this hypothesis can be accepted for a big ship since, if the goods are well packed in the hold, any position change of passengers does not modify the mass distribution. This in not true for a small barge in which, any position change of a passenger should modify the mass distribution.
    ${ }^{4}$ All the definitions and notations used in this chapter are the same used in [55], Chapters 12, 15, 16.

[^56]:    ${ }^{5}$ It is evident that, composing these three rotations, we obtain a Cartesian frame fixed in the body. It is possible to prove that, given any transformation $G \xi \eta \zeta \rightarrow G x^{\prime} y^{\prime} z^{\prime}$ by an orthogonal matrix, it is possible to determine $\varphi, \theta$, and $\psi$.

[^57]:    ${ }^{6}$ All the results and definitions of rigid body dynamics can be found in [55], Chapter 15.
    ${ }^{7}$ See, for instance [55], Chapter 15.
    ${ }^{8}$ It can be proved that $\overline{\mathbf{K}}$ does not depend on the choice of the pole.

[^58]:    ${ }^{9}$ See, [71], pg. 5.

[^59]:    ${ }^{10}$ It can be proved that this circumstance is verified if the amplitude $K_{1}$ in (13.78) is such that $K_{1} \ll \lambda$.

[^60]:    ${ }^{1}$ See [62], Section 109.

