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Preface

“A odience, leve,
ad trestment —

a description of
such matters is
what prefaces ae
supposed to be
about.”

— P. R. Halmos [142]

“People do ire
alimebrida}a?fu—
Ity by equpAINg
themselves  with
Jargon: they can
pontificete and ar a
superficial expertise.
But what we should
ask of educated
mathematicians ~ is
not Whet they can
speechify - abou,
nor even what they
know about the
existing  corpus
of mathematical
knowledge, hut
rather what can
they now do with
thar leeming and
whether they can
actually solve math-
emaicd probdlams
anising in practice.
In short, we look for
deeds not words.”
— J. Hammersley [145]

THIS BOOK 1S BASED on a course of the same name that has been taught
annually at Stanford University since 1970. About fifty students have taken it
each year-juniors and seniors, but mostly graduate students-and alumni
o thee dases have begun to gpawn dmila cousss dsavhge Thus the time
sams ripe to prest the maeaid to a wider audence (induding  sophomores).

It was a dark and stormy decade when Concrete Mathematics was born.
Long-held values were constantly being questioned during those turbulent
years; college campuses were hotbeds of controversy. The college curriculum
itself was challenged, and mathematics did not escape scrutiny. John Ham-
mersley had just written a thought-provoking article “On the enfeeblement of
mathematical skills by ‘Modern Mathematics' and by similar soft intellectual
trash in schools and universities’ [145]; other worried mathematicians [272]
even asked, “Can mathematics be saved?’ One of the present authors had
embarked on a series of books called The Art of Computer Programming, and
in writing the first volume he (DEK) had found that there were mathematical
tools missing from his repertoire; the mathematics he needed for a thorough,
well-grounded understanding of computer programs was quite different from
what he'd learned as a mathematics major in college. So he introduced a new
course, teaching what he wished somebody had taught him.

The course title “Concrete Mathematics” was originaly intended as an
antidote to “ Abstract Mathematics,” since concrete classical results were rap-
idly being swept out of the modern mathematical curriculum by a new wave
of abstract ideas popularly called the “New Math!” Abstract mathematics is a
wonderful subject, and there's nothing wrong with it: It's beautiful, general,
and useful. But its adherents had become deluded that the rest of mathemat-
ics was inferior and no longer worthy of attention. The goal of generalization
had become so fashionable that a generation of mathematicians had become
unable to relish beauty in the particular, to enjoy the challenge of solving
quantitative problems, or to appreciate the value of technique. Abstract math-
ematics was becoming inbred and losing touch with redlity; mathematical ed-
ucation needed a concrete counterweight in order to restore a healthy balance.

When DEK taught Concrete Mathematics at Stanford for the first time,
he explained the somewhat strange title by saying that it was his attempt
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to teach a math course that was hard instead of soft. He announced that,
contrary to the expectations of some of his colleagues, he was not going to
teach the Theory of Aggregates, nor Stone’s Embedding Theorem, nor even
the Stone-Tech compactification. (Several students from the civil engineering
department got up and quietly left the room.)

Although Concrete Mathematics began as a reaction against other trends,
the main reasons for its existence were positive instead of negative. And as
the course continued its popular place in the curriculum, its subject matter
“solidified” and proved to be valuable in a variety of new applications. Mean-
while, independent confirmation for the appropriateness of the name came
from ancther direction, when Z. A. Melzak published two volumes entitled
Companion to Concrete Mathematics [214].

The material of concrete mathematics may seem at first to be a disparate
bag of tricks, but practice makes it into a disciplined set of tools. Indeed, the
techniques have an underlying unity and a strong appeal for many people.
When another one of the authors (RLG) first taught the course in 1979, the
students had such fun that they decided to hold a class reunion a year later.

But what exactly is Concrete Mathematics? It is a blend of coNtinuous
and discreTE mathematics. More concretely, it is the controlled manipulation
of mathematical formulas, using a collection of techniques for solving prob-
lems. Once you, the reader, have learned the materia in this book, all you
will need is a cool head, a large sheet of paper, and fairly decent handwriting
in order to evaluate horrendous-looking sums, to solve complex recurrence
relations, and to discover subtle patterns in data. You will be so fluent in
algebraic techniques that you will often find it easier to obtain exact results
than to settle for approximate answers that are valid only in a limiting sense.

The major topics treated in this book include sums, recurrences, ele-
mentary number theory, binomia coefficients, generating functions, discrete
probability, and asymptotic methods. The emphasis is on manipulative tech-
nigue rather than on existence theorems or combinatoria reasoning; the goal
is for each reader to become as familiar with discrete operations (like the
greatest-integer function and finite summation) as a student of calculus is
familiar with continuous operations (like the absolute-value function and in-
finite integration).

Notice that this list of topics is quite different from what is usually taught
nowadays in undergraduate courses entitled “Discrete Mathematics!’ There-
fore the subject needs a distinctive name, and “Concrete Mathematics’ has
proved to be as suitable as any other.

The aignd texdbook for Sanfods course on concee mahemdics wes
the “Mathematical Preliminaries’ section in The Art of Computer Program-
ming [173]. But the presentation in those 110 pages is quite terse, so another
author (OP) was inspired to draft a lengthy set of supplementary notes. The

“The heart of math-
ematics ~ consists

of concrete exam-
ples and concrete
problems. *

—P. R Hamos [141]

“It is downright
snful to teach the
abdtract  before the
concrete.

-Z. A. Mdz&k [214)

Concrete Ma the-

matics is a bridge
to absdtract mathe-
matics.

“The advanced
reeder who skips
pats that appear
too eementay may
miss more than
the less advanced
reader who skips
pats that  appesr
too complex. *

-G. Pélya [238]

(We're not bold
enough to try
Distinuous Math-
ema tics.)



u a concrete
life  preserver
thrown to students
snking in a sea of
abgtraction.”

- W. Gottschalk

Math graffiti:

Kilroy wesn't Haar.
Free the group.
Nuke the kerndl.
Power to the n.
N=I = P=NP.

| have only a
margind  interest
in this subject.

This was the most
enjoyable course
I've ever had. But
it might be nice
to summarize the
maerid as you
go dong.
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present book is an outgrowth of those notes; it is an expansion of, and a more
leisurely introduction to, the material of Mathematical Preliminaries. Some of
the more advanced parts have been omitted; on the other hand, several topics
not found there have been included here so that the story will be complete.

The authors have enjoyed putting this book together because the subject
began to jell and to take on a life of its own before our eyes; this book almost
seemed to write itself. Moreover, the somewhat unconventional approaches
we have adopted in several places have seemed to fit together so well, after
these years of experience, that we can't help feeling that this book is a kind
of manifesto about our favorite way to do mathematics. So we think the book
has turned out to be a tale of mathematical beauty and surprise, and we hope
that our readers will share at least ¢ of the pleasure we had while writing it.

Since this book was born in a university setting, we have tried to capture
the spirit of a contemporary classroom by adopting an informa style. Some
people think that mathematics is a serious business that must always be cold
and dry; but we think mathematics is fun, and we aren't ashamed to admit
the fact. Why should a strict boundary line be drawn between work and
play? Concrete mathematics is full of appealing patterns, the manipulations
are not always easy, but the answers can be astonishingly attractive. The
joys and sorrows of mathematical work are reflected explicitly in this book
because they are part of our lives.

Students always know better than their teachers, so we have asked the
first students of this material to contribute their frank opinions, as “graffiti”
in the margins. Some of these margina markings are merely corny, some
are profound; some of them warn about ambiguities or obscurities, others
are typical comments made by wise guys in the back row; some are positive,
some are negative, some are zero. But they al are real indications of feelings
that should make the text material easier to assimilate. (The inspiration for
such marginal notes comes from a student handbook entitled Approaching
Stanford, where the official university line is counterbalanced by the remarks
of outgoing students. For example, Stanford says, “There are a few things
you cannot miss in this amorphous shape which is Stanford”; the margin
says, “Amorphous . . . what the h*** does that mean? Typical of the pseudo-
intellectualism around here.” Stanford: “There is no end to the potential of
a group of students living together.” Graffito: “Stanford dorms are like zoos
without a keeper.”)

The margins also include direct quotations from famous mathematicians
of past generations, giving the actual words in which they announced some
of their fundamental discoveries. Somehow it seems appropriate to mix the
words of Leibniz, Euler, Gauss, and others with those of the people who
will be continuing the work. Mathematics is an ongoing endeavor for people
everywhere; many strands are being woven into one rich fabric.
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PREFACE

This book contains more than 500 exercises, divided into six categories:

¢ Warmups are exercises that everv reaper should try to do when first
reading the materid.

e Basics are exercises to develop facts that are best learned by trying
one’'s own derivation rather than by reading somebody else's,

¢ Homework exercises are problems intended to deepen an understand-
ing of materia in the current chapter.

e Exam problems typically involve ideas from two or more chapters si-
multaneously; they are generaly intended for use in take-home exams
(not for in-class exams under time pressure).

e Bonus problems go beyond whd an avaage dudet of conaete mathr
ematics is expected to handle while taking a course based on this book;
they extend the text in interesting ways.

e Research problems may o may nat be humenly solvable but the ones
presented here seem to be worth a try (without time pressure).

Answers to all the exercises appear in Appendix A, often with additional infor-
mation about related results. (Of course, the “answers’ to research problems
are incomplete; but even in these cases, partial results or hints are given that
might prove to be helpful.) Readers are encouraged to look at the answers,
especially the answers to the warmup problems, but only arrer making a
serious attempt to solve the problem without peeking.

We have tried in Appendix C to give proper credit to the sources of
each exercise, since a great deal of creativity and/or luck often goes into
the design of an instructive problem. Mathematicians have unfortunately
developed a tradition of borrowing exercises without any acknowledgment;
we believe that the opposite tradition, practiced for example by books and
magazines about chess (where names, dates, and locations of origina chess
problems are routinely specified) is far superior. However, we have not been
able to pin down the sources of many problems that have become part of the
folklore. If any reader knows the origin of an exercise for which our citation
is missing or inaccurate, we would be glad to learn the details so that we can
correct the omission in subsequent editions of this book.

The typeface used for mathematics throughout this book is a new design
by Hermann Zapf [310], commissioned by the American Mathematical Society
and developed with the help of a committee that included B. Beeton, R. P.
Boes L. K. Durst, D. E Knuth, P. Murdock, R S Pddas P. Renz, E Svasm,
S. B. Whidden, and W. B. Woolf. The underlying philosophy of Zapf's design
is to capture the flavor of mathematics as it might be written by a mathemati-
cian with excellent handwriting. A handwritten rather than mechanical style
is appropriate because people generaly create mathematics with pen, pencil,

1 e
Concrele mathemat-
ics means drilling

The homework was
tough but I leamed
a lot. It was worth
every hour.

Toke-home exams
are vital-keep
them.

Exams were hader
than the homework
led meto expect.

Cheeters may pass
this course by just
copying the an-
swers, but they're
only cheating
themselves.

Difficult  exams
don't teke into ac-
count students who
have other dlasss
to prepae for.



I'm  unaccustomed
to this face.

Dear prof Tharks
for (151 the ~puns,
(2) the subject
matter.

[ don't see how
what I've learned
will ever hep me.

| bad alot of trou
ble in this class, but
I know it sharpened
my math skills and
my thinking skills.

[ would advise the
casual student to
stay away from this
course.

PREFACE ix

or chalk. (For example, one of the trademarks of the new design is the symbol
for zero, ‘0, which is dightly pointed at the top because a handwritten zero
rarely closes together smoothly when the curve returns to its starting point.)
The letters are upright, not italic, so that subscripts, superscripts, and ac-
cents are more easily fitted with ordinary symbols. This new type family has
been named AMS Euler, after the great Swiss mathematician Leonhard Euler
(1707-1783) who discovered so much of mathematics as we know it today.
The aphabets include Euler Text (Aa Bb Cc through Xx Yy Zz), Euler Frak-
tur (AaBb €c through XrPy 33), and Euler Script Capitals (AB € through
X Y 2), as well as Euler Greek (Aa B 3 P’y through Xx W Qw) and special

symbols such as p and X. We are especialy pleased to be able to inaugurate
the Euler family of typefaces in this book, because Leonhard Euler's spirit
truly lives on every page: Concrete mathematics is Eulerian mathematics.

The authors are extremely grateful to Andrei Broder, Ernst Mayr, An-
drew Yao, and Frances Y ao, who contributed greatly to this book during the
years that they taught Concrete Mathematics at Stanford. Furthermore we
offer 1024 thanks to the teaching assistants who creatively transcribed what
took place in class each year and who helped to design the examination ques-
tions; their names are listed in Appendix C. This book, which is essentially
a compendium of sixteen years worth of lecture notes, would have been im-
possible without their first-rate work.

Many other people have helped to make this book a reality. For example,
we wish to commend the students at Brown, Columbia, CUNY, Princeton,
Rice, and Stanford who contributed the choice graffiti and helped to debug
our first drafts. Our contacts at Addison-Wesley were especialy efficient
and helpful; in particular, we wish to thank our publisher (Peter Gordon),
production supervisor (Bette Aaronson), designer (Roy Brown), and copy ed-
itor (Lyn Dupré). The National Science Foundation and the Office of Naval
Research have given invaluable support. Cheryl Graham was tremendously
helpful as we prepared the index. And above all, we wish to thank our wives
(Fan, Jill, and Amy) for their patience, support, encouragement, and ideas.

We have tried to produce a perfect book, but we are imperfect authors.
Therefore we solicit help in correcting any mistakes that we've made. A re-
ward of $2.56 will gratefully be paid to the first finder of any error, whether
it is mathematical, historical, or typographical.

Murray Hill, New Jersey -RLG
and Stanford, California DEK
May 1988 oP



A Note on Notation

SOME OF THE SYMBOLISM in this book has not (yet?) become standard.
Hereis alist of notations that might be unfamiliar to readers who have learned
similar material from other books, together with the page numbers where
these notations are explained:

Notation Name Page

Inx natural logarithm: log, X 262

lgx binary logarithm: log, x 70

log x common logarithm: log, ¢ X 435

Ix] floor: max{n n < X, integer n} 67

[x] celling: min{ n n 2> x, integer n} 67

xmody remainder: x -y |x/y| 82

{x} fractional part: x mod 1 70

Z f(x) 5x indefinite summation 48

b . .

> flx) definite summation 49

x& falling factorial power: x!/(x = n)! 47

i rising factoria power: I'(x + n}/T'(x) 48

n;j subfactorial: n!/0' =nl/1! + .. + (-1 )™nl/n! 194

Rz rea part: x, if z =x + iy 64
If you don’t under-

Jz imaginary part: y, if z=x + iy 64 stand what the
X denotes at the

H, harmonic number: 1 /1+ ...+ 1 /n 29  bottom of this page,
try asking your

HE generdized hamonic number: 1 /1* + ...+ 1 /n* 263  Latin professor

instead of your
() mth derivative of f at z 456  math professor.



Prestressed concrete << n >>
mathematics is con- m

crete  mahematics
that's preccded by (Gm---Qo)o
a bewildering list

of notations. K{ar,...,an)

.. B]
[(m=mn]
[m\n]
fm\n]

[fmLn]

A NOTE ON NOTATION xi

Stirling cycle number (the “first kind”)
Stirling subset number (the “second kind”)

Eulerian number

Second-order Eulerian number

radix notation for § .-, aib®

continuant polynomial
hypergeometric  function

cardinality: number of elements in the set A
coefficient of 2" in f (z}

closed interval: the set {x o <x < f}

1if m = n, otherwise O *

1if m divides n, otherwise O *

1if m exactly divides n, otherwise O *

1if m is relatively prime to n, otherwise O *

245

244

253

256

11
288

205

39
197
73
24
102
146

115

*In genera, if S is any statement that can be true or false, the bracketed
notation [S] stands for 1 if S is true, 0 otherwise.
Throughout this text, we use single-quote marks (‘. .. ') to delimit text as

it is written, double-quote marks (*“. .
the string of letters ‘string’ is sometimes called a “string!’

Also ‘nongtring’ is

") for a phrase as it is spoken. Thus,

a gring. An expression of the form ‘a/bc’ means the same as ‘a/(bc)’. Moreover,

logx/logy =

(logx)/(logy) and 2n! = 2(n!).
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Recurrent Problems

Raise your hand
if you've never

seen this,

OK, the reg of
you can cut to

equation  (L.1).

Gold -wow.
Are our disks made
of concrete?

THIS CHAPTER EXPLORES three sample problems that give a fee for
what's to come. They have two traits in common: They've all been investi-
gated repeatedly by mathematicians; and their solutions all use the idea of
recurrence, in which the solution to each problem depends on the solutions
to smaller instances of the same problem.

1.1 THE TOWER OF HANOI

Let's look first a a neat little puzzle called the Tower of Hanoi,
invented by the French mathematician Edouard Lucas in 1883. We are given
a tower of eight disks, initially stacked in decreasing size on one of three pegs:

Al B
AT ‘
i

Hlllllllllmv
Ii

U

The objective is to transfer the entire tower to one of the other pegs, moving
only one disk at a time and never moving a larger one onto a smaller.

Lucas [208] furnished his toy with a romantic legend about a much larger
Tower of Brahma, which supposedly has 64 disks of pure gold resting on three
diamond needles. At the beginning of time, he said, God placed these golden
disks on the first needle and ordained that a group of priests should transfer
them to the third, according to the rules above. The priests reportedly work
day and night at their task. When they finish, the Tower will crumble and

the world will end.



2 RECURRENT PROBLEMS

It's not immediately obvious that the puzzle has a solution, but a little
thought (or having seen the problem before) convinces us that it does. Now
the question arises: What's the best we can do? That is, how many moves
are necessary and sufficient to perform the task?

The best way to tackle a question like this is to generalize it a bit. The
Tower of Brahma has 64 disks and the Tower of Hanoi has 8; let's consider
what happens if there are n disks.

One advantage of this generalization is that we can scale the problem
down even more. In fact, we'll see repeatedly in this book that it's advanta-
geous to Lox At swaL cases first. It's easy to see how to transfer a tower
that contains only one or two disks. And a small amount of experimentation
shows how to transfer a tower of three.

The next step in solving the problem is to introduce appropriate notation:
NAME AND CONQUER. Let’'s say that T, is the minimum number of moves
that will transfer n disks from one peg to another under Lucas's rules. Then
Ty is obviously 1,and T; = 3.

We can also get another piece of data for free, by considering the smallest
case of dl: Clearly Top = 0, because no moves at all are needed to transfer a
tower of n = 0 disks! Smart mathematicians are not ashamed to think small,
because general patterns are easier to perceive when the extreme cases are
well understood (even when they are trivial).

But now let’s change our perspective and try to think big; how can we
transfer a large tower? Experiments with three disks show that the winning
idea is to transfer the top two disks to the middle peg, then move the third,
then bring the other two onto it. This gives us a clue for transferring n disks
in general: We first transfer the n — 1 smallest to a different peg (requiring
Ta_1 moves), then move the largest (requiring one move), and finally transfer
the n- 1 smallest back onto the largest (requiring another T,_; moves). Thus
we can transfer n disks (for n > 0) in at most 2T,,_1 + 1 moves:

To 6 2T+ 1, forn > 0.

This formula uses ' € ' instead of ‘= ' because our construction proves only
that 2T,_1 + 1 moves suffice; we haven't shown that 2T,_; + 1 moves are
necessary. A clever person might be able to think of a shortcut.

But is there a better way? Actually no. At some point we must move the  Most of the pub-
largest disk. When we do, the n — 1 smallest must be on a single peg, and it lished “Solutions”
has taken at least T,_1 moves to put them there. We might move the largest ﬁ?(eL#]C:s&sroglgn’
disk more than once, if we're not too alert. But after moving the largest disk o Allardice ad
for the last time, we must transfer the n- 1 smallest disks (which must again ~ Frasr [7], fal to ex-

be on a single peg) back onto the largest; this too requires T, . | moves. Hence Elgn>v;hTy h nIUSt

T3 2T+ 1, for n > 0.



Y eah, yeah.
I seen that word
before.

Mathematicd  in-
duction proves tha
we can clinb as
high as we like on
a ladder, by proving
that we can climb
onto the bottom
rung (the basis)
and that from each
rung we can climb
up to the next one
(the induction).

1.1 THE TOWER OF HANOI 3

These two inequalities, together with the trivial solution for n = 0, yield

To =0;

(1.1)
Ty= 2T+ 1,

for n > 0.

(Notice that these formulas are consistent with the known values T; = 1 and
T, = 3. Our experience with small cases has not only helped us to discover
a general formula, it has also provided a convenient way to check that we
haven’t made a foolish error. Such checks will be especially valuable when we
get into more complicated maneuvers in later chapters.)

A set of equalities like (1.1) is caled a recurrence (ak.a recurrence
relation or recursion relation). It gives a boundary value and an equation for
the general value in terms of earlier ones. Sometimes we refer to the genera
equation alone as a recurrence, although technically it needs a boundary value
to be complete.

The recurrence allows us to compute T,, for any n we like. But nobody
really likes to compute from a recurrence, when n is large; it takes too long.
The recurrence only gives indirect, “local” information. A solution to the
recurrence would make us much happier. That is, we'd like a nice, neat,
“closed form” for T, that lets us compute it quickly, even for large n. With
a closed form, we can understand what T, redly is.

So how do we solve a recurrence? One way is to guess the correct solution,
then to prove that our guess is correct. And our best hope for guessing
the solution is to look (again) at small cases. So we compute, successively,
T3=234+1=7T;=27+1=15Ts =2-154+1=31; T, =2-31 + 1 =63.
Aha! It certainly looks as if

T, =2"—1, forn > 0.

(1.2)

At least this works for n £ 6.

Mathematical induction is a general way to prove that some statement
about the integer n is true for al n 2> no. First we prove the statement
when n has its smallest value, no; this is called the basis. Then we prove the
statement for n > no, assuming that it has already been proved for all values
between ny and n = 1, inclusive; this is called the induction. Such a proof
gives infinitely many results with only a finite amount of work.

Recurrences are ideally set up for mathematical induction. In our case,
for example, (1.2) follows easily from (1.1): The basis is trivid, since Ty =
2 —1 = 0. And the induction follows for n > 0 if we assume that (1.2 holds

when n is replaced by n — 1:
To= 2T, , 41 =22"" =11 4+1 = 2" 1.

Hence 1.2y holds for n aswell. Good! Our quest for T,, has ended successfully.



4 RECURRENT PROBLEMS

Of course the priests task hasn’t ended; they're still dutifully moving
disks, and will be for a while, because for n = 64 there are 264 _1 moves (about
18 quintillion). Even a the impossble rate of one move per microsecond, they
will need more than 5000 centuries to transfer the Tower of Brahma. Lucas's
original puzzle is a bit more practical, It requires 28 — 1 = 255 moves, which
takes about four minutes for the quick of hand.

The Tower of Hanoi recurrence is typical of many that arise in applica-
tions of all kinds. In finding a closed-form expression for some quantity of
interest like T, we go through three stages:

1 Look at small cases. This gives us insight into the problem and helps us
in stages 2 and 3.
2 Find and prove a mathematical expression for the quantity of interest. What is a proof?
For the Tower of Hanoi, this is the recurrence (1.1) that allows us, given ~ “One half of one
o percent pure alco-
the inclination, to compute T, for any n. hol.
3 Find and prove a closed form for our mathematical expression. For the

Tower of Hanoi, this is the recurrence solution (1.2).

The third stage is the one we will concentrate on throughout this book. In
fact, we'll frequently skip stages 1 and 2 entirely, because a mathematical
expression will be given to us as a starting point. But even then, we'll be
getting into subproblems whose solutions will take us through all three stages.

Our analysis of the Tower of Hanoi led to the correct answer, but it
required an “inductive leap”; we relied on a lucky guess about the answer.
One of the main objectives of this book is to explain how a person can solve
recurrences without being clairvoyant. For example, we'll see that recurrence
(1.1) can be simplified by adding 1 to both sides of the equations:

Tp+1=1
Ta+1=2T1 +2, forn> 0.

Now if we let U, = T, + 1, we have Interesting: We  get
rid of the +1in

(1.1) by adding, not

Up=1; (1.3) by subtracting.

U, = 2Un-, forn>0.

It doesn’t take genius to discover that the solution to this recurrence is just
U, = 2™ hence T, = 2" ~ 1. Even a computer could discover this.

1.2 LINES IN THE PLANE

Ou sood sarple pradlem hes a more geomdric flavo, How mary
dlices of pizza can a person obtain by making n straight cuts with a pizza
knife? Or, more academically: What is the maximum number L, of regions
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defined by n lines in the plane? This problem was first solved in 1826, by the
(A pizza with Swiss ~ Swiss mathematician Jacob Steiner [278].
Cheese?) Again we start by looking at small cases, remembering to begin with the
smallest of all. The plane with no lines has one region; with one line it has
two regions; and with two lines it has four regions:

1
1 /
2
=1 =2 L,=4

(Each line extends infinitely in both directions.)

Sure, we think, L, = 2"; of course! Adding a new line simply doubles
the number of regions. Unfortunately this is wrong. We could achieve the
doubling if the nth line would split each old region in two; certainly it can

A region is convex split an old region in at most two pieces, since each old region is convex. (A
:ifng '”Cg]gg]?s db| straight line can split a convex region into at most two new regions, which
tweensegmy o gf its will aso be convex.) But when we add the third line-the thick one in the
points. (That's not diagram below- we soon find that it can split at most three of the old regions,
what my dicionay  no matter how we've placed the first two lines:

says, but it's wha
mathematicians
believe) 2
la
1b 4 3a
4b 3b

Thus L3=4 + 3 = 7 is the best we can do.

And after some thought we realize the appropriate generalization. The
nth line (for n > 0) increases the number of regions by k if and only if it
splits k of the old regions, and it splits k old regions if and only if it hits the
previous lines in k- 1 different places. Two lines can intersect in at most one
point. Therefore the new line can intersect the n- 1 old lines in at most n- 1
different points, and we must have k < n. We have established the upper
bound

Ly € Lot +n, for n > 0.

Furthermore it's easy to show by induction that we can achieve equality in
this formula. We simply place the nth line in such a way that it's not parallel
to any of the others (hence it intersects them all), and such that it doesn't go
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through any of the existing intersection points (hence it intersects them all
in different places). The recurrence is therefore

Lo = 1;
L,= Loy +n, forn> 0.

(1.4)

The known values of 1, L, and L; check perfectly here, so we'll buy this.

Now we need a closed-form solution. We could play the guessing game
again, but 1,2, 4, 7, 11, 16, . . . doesn’t look familiar; so let's try another
tack. We can often understand a recurrence by “unfolding” or “unwinding”
it al the way to the end, as follows:

I—n = Ln~1 +n
= L2+ n=1)+n Unfolding?

Id call this
Lizt(M=2)+(n=1) +n “plugging in.”

Lt1+2+--+(n=-2)+(n=-1)+n
=1+ S, whereS, =1+2+3+..+(n=1) +n.

In other words, L,, is one more than the sum S, of the first n positive integers.

The quantity S, pops up how and again, so it's worth making a table of
small values. Then we might recognize such numbers more easily when we
see them the next time:

n| 123 4 5 6 7 8 9 10 11 12 13 14
Sw| ! 3 6 10 15 21 28 36 45 55 66 78 91 105

These values are aso called the triangular numbers, because S, is the number
of bowling pinsin an n-row triangular array. For example, the usual four-row
array o’ has Sq¢= 10 pins

To evaluate S,, we can use a trick that Gauss reportedly came up with

in 1786, when he was nine years old [73] (see aso Euler [92, part 1, §415]): It seems a lot of
Stuff is attributed
to Gauss-
S = 1 + 2 + 3 +...+4 (n-1) +n either he was really

+Sn= n + () + (N2 + v + 2 + 1 smart or he had a
great press agent.
=M+ + M+ + M+ + + (n+1)+ (n+1
n= )+ ( )+ ( ) ( )+ ( ) Maybe he jus
had a magnetic
personality.

We merely add S, to its reversal, so that each of the n columns on the right
ams to n + 1. Simplifying,

nn+1)

5 forn > 0. (1.5)

Sn:



Actudly Gauss is
often cdled the
grestes  mathe-
matician of all time.
So it’s nice to be
able to understand
a lesst one of his
discoveries.

When in doubt,
look at the words.
Why is it “closed”
as opposed to
“OPEH"? Wha
image does it bring
to mind?

Answver: The e
tion is “closed,” not
odfined in terms of
itdf-not  leading
to recurence. The
case ish “closed” it
won't happen again.
Megphors are the
key.

Is“2g" atechnicd
term?

1.2 LINES
OK, we have our solution:

nn+1)
2

As experts, we might be satisfied with this derivation and consider it
a proof, even though we waved our hands a bit when doing the unfolding
and reflecting. But students of mathematics should be able to meet stricter
standards; so it's a good idea to construct a rigorous proof by induction. The
key induction step is

L, = +1, fornxoO. (1.6)

Ly = Lii+n = (3(n=Tn+1)+n = Inm+1)+1.

Now there can be no doubt about the closed form (1.6).

Incidentally we've been talking about “closed forms’ without explic-
itly saying what we mean. Usually it's pretty clear. Recurrences like (1.1)
and (14) are not in closed form- they express a quantity in terms of itself;
but solutions like (1.2) and (1.6) are. Sums like1 + 2 + ... + n are not in
closed form- they cheat by using ‘. . . ’; but expressions like n(n + 1)/2 are.
We could give a rough definition like this: An expression for a quantity f(n)
isin closed form if we can compute it using at most a fixed number of “well
known” standard operations, independent of n. For example, 2" - 1 and
n(n + 1)/2 are closed forms because they involve only addition, subtraction,
multiplication, division, and exponentiation, in explicit ways.

The total number of simple closed forms is limited, and there are recur-
rences that don’t have simple closed forms. When such recurrences turn out
to be important, because they arise repeatedly, we add new operations to our
repertoire; this can greatly extend the range of problems solvable in “simple’
closed form. For example, the product of the first n integers, n!, has proved
to be so important that we now consider it a basic operation. The formula
‘n!” is therefore in closed form, although its equivalent ‘1-2-....n'is not.

And now, briefly, a variation of the lines-in-the-plane problem: Suppose
that instead of straight lines we use bent lines, each containing one “zig!’
What is the maximum number Z,, of regions determined by n such bent lines
in the plane? We might expect Z,, to be about twice as big as L, or maybe
three times as big. Let's see:

Zy=12

IN THE PLANE 7
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From these small cases, and after a little thought, we realize that abent . . and a little
line is like two straight lines except that regions merge when the “two” lines  afterthought. ..
don't extend past their intersection point.

Regions 2, 3, and 4, which would be distinct with two lines, become a single

region when there’s a bent line; we lose two regions. However, if we arrange

things properly-the zig point must lie “beyond” the intersections with the

other lines-that’s all we losg; that is, we lose only two regions per line. Thus Exer_clise 18 has the
etalls.

Zn = Lin—2n n2n+1)/2+1—-2n

Mm*P—n+1, fornx0 (1.7)

Comparing the closed forms (1.6) and (1.7), we find that for large n,
Ln ~ %nz,
Zn ~ 2n*:

so we get about four times as many regions with bent lines as with straight

lines. (In later chapters we'll be discussing how to analyze the approximate
behavior of integer functions when n is large.)

1.3 THE JOSEPHUS PROBLEM

Our final introductory example is a variant of an ancient problem  (Ahrens /5, vol. 2]

named for Flavius Josephus, a famous historian of the first century. Legend ~@d Herstein

. , . . . and Kaplanky [156]
has it that Josephus wouldn’t have lived to become famous without his math- g5 the interes-
ematical talents. During the Jewish-Roman war, he was among a band of 41 ing history of this
Jewish rebels trapped in a cave by the Romans. Preferring suicide to capture, ~ problem. - Josephus
the rebels decided to form a circle and, proceeding around it, to kill every r\]/'g?;f) [168] is a bit
third remaining person until no one was left. But Josephus, along with an
unindcted co-congoirator, wated none of this qudde nonsnss 0 he quickdly
calculated where he and his friend should stand in the vicious circle. . thereby  saving

In our variation, we start with n people numbered 1 to n around acircle, m;tde for us to
and we eliminate every second remaining person until only one survives. For '



Hee's a cae where
n =0 makes no
Sense.

Even 0, a bad
guess isn't a waste
of time, because it
gets us involved in
the problem.

This is the tricky
pat: We have
J(Zn) =
newnumber(J(n)),
where

newnumber( k) =
2k—1.
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example, here's the starting configuration for n = 10:

The elimination order is 2, 4, 6, 8, 10, 3, 7, 1, 9, so 5 survives. The problem:
Determine the survivor's number, J(n).

We just saw that J(10) = 5. We might conjecture that J(n) = n/2 when
n is even; and the case n = 2 supports the conjecture: J(2) = 1. But a few
other small cases dissuade us-the conjecture fails for n = 4 and n = 6.

n |
) |

1 2 3
1 1 3

SR N

5 6
3 5
It's back to the drawing board; let's try to make a better guess. Hmmm . . .
J(n) always seems to be odd. And in fact, there’s a good reason for this: The
first trip around the circle eliminates all the even numbers. Furthermore, if
n itself is an even number, we arrive at a situation similar to what we began
with, except that there are only half as many people, and their numbers have
changed.

So let's suppose that we have 2n people originally. After the first go-
round, we're left with

2n-1 ! 3
n-3 5

and 3 will be the next to go. This is just like starting out with n people, except
that each person’s number has been doubled and decreased by 1. That is,

J2n) = 2J(n) =1, forn>1
We can now go quickly to large n. For example, we know that J( 10) = 5, so
J(20) = 2J{10)~1 = 2.5— 1 = 9

Smilarly J(40) = 17, and we can deduce that J(5-2™)= 2™*! 4 1
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But what about the odd case? With 2n + 1 people, it turns out that Odd cass? Hey,

person number 1 is wiped out just after person number 2n, and we're left with lelivefn?{ brother
out or It
3

n+1 5
n—1 7

Again we almost have the original situation with n people, but this time their
numbers are doubled and increased by 1. Thus

Jon+ 1)=2Jn)+1, forn>1

Combining these equations with J( 1) = 1 gives us a recurrence that defines J
inall cases:

1
2J(n) =1 forn> 1 (1.8)
2J(m)+ 1, forn> 1

Instead of getting J(n) from J(n- 1), this recurrence is much more “efficient,”
because it reduces n by a factor of 2 or more each time it's applied. We could
compue J 1000000), sy, with only 19 goplictions of (18). But ill, we sk
a closed form, because that will be even quicker and more informative. After
al, this is a matter of life or death.

Our recurrence makes it possible to build a table of small values very
quickly. Perhaps we'll be able to spot a pattern and guess the answer.

n |1]2345674910111213141516
1 131357h357091113 151

Voila! It seems we can group by powers of 2 (marked by vertical lines in
the table); J(nlis always 1 at the beginning of a group and it increases by 2
within a group. So if we write n in the form n = 2" + 1, where 2™ is the
largest power of 2 not exceeding n and where t is what's left, the solution to
o recurace sETs to be

J2m+1) =21+1, fom>0and0 <1< 2™ (1.9)

(Notice that if 2" < n < 2m+!, the remainder 1 = n - 2" «idies 0 <1<
Zm—l -Jm zm.)

We must now prove (1.g). As in the past we use induction, but this time
the induction is on m. When m = 0 we must have 1 = 0; thus the basis of



But there's a sSim-
pler way! The

key fact is tha
Jji2™ = 1 for

dl m, and this
follows immedi-
ady from our firg
equation,

J(2n) = 2](n)—1.
Hence we know that
the first person will
urvive  whenever

n isapowerof2.
And in the gen

ed cae when

n = 2™ 41,
the number of
people is reduced
to a power of 2
dter there have
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1.3 THE JOSEPHUS PROBLEM

(1.9) reduces to J(1) = 1, which is true. The induction step has two parts,
depending on whether 1 is even or odd. If m > 0 and 2™ + L = 2n, then 1 is
even and

J2m+ )= 2J2™ '+ 1/2)=1=2(21/2+1) =1= 214+ 1,

by (1.8) and the induction hypothesis; this is exactly what we want. A similar
proof works in the odd case, when 2" + 1 = 2n + 1. We might also note that
(1.8) implies the relation

J2n+ 1) =J{2n) = 2.

Either way, the induction is complete and (1.9) is established.

To illustrate solution (1.9), let's compute J( 100). In this case we have
100 = 26 + 36, s0 J(100) =236 + 1 = 73.

Now that we've done the hard stuff (solved the problem) we seek the
soft: Every solution to a problem can be generalized so that it applies to a
wider class of problems. Once we've learned a technique, it's instructive to
look at it closely and see how far we can go with it. Hence, for the rest of this
section, we will examine the solution (1.9) and explore some generalizations
of the recurrence (1.8). These explorations will uncover the structure that
underlies al such problems.

Powers of 2 played an important role in our finding the solution, so it's
natural to look at the radix 2 representations of n and J(n). Suppose n's
binary expansion is

N= (bym bm-1.. by bg)z;
that is,

N = bn2™ + by 2™ "4 v + b2 4 by,

where each b; is either 0 or 1 and where the leading bit b, is 1. Recaling
that n = 2" + 1, we have, successively,

n = (1bn-1bn-2...brbol2,
1=(0 bm_1by 2... bybg)z,
21= (bm-1by 2... by bo0)2,
214 1= (bym_1bm2...bybol);,

](Tl) = (bmA] bn_2...b1 by bm)Zn

(The last step follows because J(n) = 21 + 1 and because b,, = 1.) We have
proved that

J(ombm_1 ... by bo)2) = (bm-1...by bobm)z; (1.10)

11
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that is, in the lingo of computer programming, we get J(n) from n by doing
a one-hit cyclic shift left! Magic. For example, if n = 100 = (1 100100); then
Jn) = J((1100100);) = (1001001) 2, whichis64 + 8 + 1 = 73. If we had been
working al aong in binary notation, we probably would have spotted this
pattern  immediately.
If we start with n and iterate the J function m + 1 times, we're doing (“Iteration” means
m+ 1 one-bit cyclic shifts; so, since n is an (m-+1)-bit number, we might ~ plying a function

expect to end up with n again. But this doesn't quite work. For instance to itself
if n = 13 we have I((HO1)2) = (1011);, but then ]((1011)2) = (111); and
the process breaks down; the O disappears when it becomes the leading bit.
In fact, J(n) must always be < n by definition, since J(n) is the survivor's
number; hence if J(n) < n we can never get back up to n by continuing to
iterate.
Repeated application of J produces a sequence of decreasing values that
eventually reach a “fixed point,” where J(n) = n. The cyclic shift property
makes it easy to see what that fixed point will be: lIterating the function
enough times will always produce a pattern of all 1*s whose value is 2V =1,
where v(n) is the number of 1 bits in the binary representation of n. Thus,
since v( 13) = 3, we have
2 or more J's
TR, 3
1O JAa3)..) = 22—-1 = 7;
smilarly Curiously  enough,
if M is a compat
8 C* n-manifold
’_J;\or 2or¢ 10 (n > 1), thee
T TUT0T10T101101011)3) ...)) = 27 —~ 1 = 1023. exists a differen-
tiable immerson of
M into R*™ ™

Curigus, but true. . . _ but not necessarily
Let's return briefly to our first guess, that J(n) = n/2 when n is even. jpto R ¥™-7.

This is obviously not true in general, but we can now determine exactly when I wonder if Jose-
phus was secretly

it is true: a topologist?
J(n) = n/z,
41 = 2™ +1)/2,
L= }@2m-2).

If this number | = 1 (2" 2) is an integer, then n = 2" + 1 will be a solution,
because 1 will be less than 2™. It's not hard to verify that 2™ -2 is a multiple
of 3 when m is odd, but not when m is even. (We will study such things
in Chapter 4.) Therefore there are infinitely many solutions to the equation
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J(n) = n/2, beginning as follows:

m 1 n=2m"+1 Jn) =21+1=n/2 n (binary)

1 0 2 1 10
3 2 10 5 1010
5 10 42 21 101010
7 42 170 85 10101010

Notice the pattern in the rightmost column. These are the binary numbers
for which cyclic-shifting one place left produces the same result as ordinary-
shifting one place right (halving).

OK, we understand the J function pretty well; the next step is to general-
ize it. What would have happened if our problem had produced a recurrence
that was something like (1.8), but with different constants? Then we might
not have been lucky enough to guess the solution, because the solution might
have been really weird. Let's investigate'this by introducing constants «, {3,

Looks like Greek and v and trying to find a closed form for the more genera recurrence
to me.
f(1) = a;
f(2n) = 2f(n) + B, forn>1 (1.11)

f2n+1) =2f(n) + v, for n > 1L

(Our original recurrence had a = 1, f = -1, and vy = 1) Starting with
f (1) = a and working our way up, we can construct the following general
table for small values of n:

n f(n)
a

204+ B

2x + v

4o + 3B (1.12)
4o + 2+ v

do + B+ 2y

4a + 3y

8o+ 7B
8+ 6p + v

©O© O|l~vNo |

It seems that a’s coefficient is n’s largest power of 2. Furthermore, between
powers of 2, 3's coefficient decreases by 1 down to O and y’sincreases by 1
up from 0. Therefore if we express f(n) in the form

f(n) = A(n) a+ B(n) p+ C(n)y , (1.13)
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by separating out its dependence on «, 3, and v, it seems that

A(n) = 2™;
B(n) = 2™ —1-1; (1.14)
C(n) = 1.

Here, asusua, n=2™+land 0 <1< 2™ for n > 1.

It's not terribly hard to prove (1.13) and (1.14) by induction, but the Ho/d onto your
calculations are messy and uninformative. Fortunately there's a better way NS, thisnext part

to proceed, by choosing particular values and then combining them. Let's IS new Suff.
illustrate this by considering the special case a= 1, =y = 0, when f(n) is
supposed to be equal to A(n): Recurrence (1.11) becomes
AQ) = 1
A2n) = 2A(n), forn=>1

A(2n + 1) = 2A(n), forn>1
Sure enough, it's true (by induction on m) that A(2™ + 1) = 2™,

Next, let’s use recurrence (1.11) and solution (1.13) in reverse, by start-
ing with a simple function f(n) and seeing if there are any constants («, {3, v)
that will define it. Plugging in the constant function f(n) = 1 says that A nedt idea!

1= a;

1=21+8;

1=214%;

hence the values (a, 3, v) = (1, -1, -1) satisfying these equations will yield
A(n) -B(n) C(n) =f(n) = 1. Similarly, we can plug in f(n) = n:

1=y
2n= 2-n+ B;
n+1=2n+y;

These eguations hold for all n whena =1, =0, and y =1, sowedon't
need to prove by induction that these parameters will yield f(n) = n. We
aready know that f(n) = m will be the solution in such a case, because the
recurrence (1.11) uniquely defines f(n) for every value of n.

And now we're essentidly done! We have shown that the functions A(n),
B(n), and C(n) of (1.13), which solve (1.11) in general, satisfy the equations

A(M =2", wheren=2"+land0gl<2"
A(n) -B(n) = C(n) = 1 :

!

A(n) + C(n) = n.
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Our conjectures in (1.14) follow immediately, since we can solve these equa-
tionstoget C(N) = n=A(n)=1landB(n) =A(N =1 =Cn=2" =1 -1

This approach illustrates a surprisingly useful repertoire method for solv-
ing recurrences. First we find settings of general parameters for which we
know the solution; this gives us a repertoire of special cases that we can solve.
Then we obtain the general case by combining the special cases. We need as
many independent special solutions as there are independent parameters (in
this case three, for o, 8, and y). Exercises 16 and 20 provide further examples
of the repertoire approach.

We know that the original J-recurrence has a magical solution, in binary:

J(bm bm_y...b1bg)2) = (bm-1. .. bybo b2, where by, = 1.

Does the generalized Josephus recurrence admit of such magic?
Sure, why not? We can rewrite the generalized recurrence (1.11) as

f(1) = g

f(2n + )= 26(n) + ;. (19

forj=0,7and n2>1,

if welet Bo= P and B1= v. And this recurrence unfolds, binary-wise:

f((bmOm_1... b1bo)2)= 2f((bm brn_1. .. b1 )2)+ Pog
= 4 ((bm b1+ - b2)2)+ 2By, + B

= 2™((bm)2) +2™ By 4+ 2Bb, + By
= Mo+ 2™ By, e+ 2By, + P, .

Suppose we now relax the radix 2 notation to allow arbitrary digits instead
of just 0 and 1. The derivation above tells us that

f((bm bmoy. . by bo)z): (0( Bow 1 Bon_s. . . Bo,Bo 2.

Nice. We would have seen this pattern earlier if we had written (1.12) in
anot her way:

(1.16)

n f(m)

1 (ol

204+ B
20 + v

4o + 28+ B
4o + 28 + vy
4o + 2y + B
4o+ 2y + v

NG| WwN
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For example, when n = 100 = (1100100);, our original Josephus values
x=1 B=-1,and y =1yidd

n= @ 1 0 0 1 0 0); = 100
fn)= (2 1 -1 -1 1 -1 ~—1});
= +64 432 -6 -8 +4 -2 -1 = 73
as before. The cyclic-shift property follows because each block of binary digits
(10 . . . 00); in the representation of n is transformed into
a-1 .. .=1=1)3 = 0o ...01),.

So our change of notation has given us the compact solution (1.16) to the
general recurrence (1.15). If we're realy uninhibited we can now generalize
even more. The recurrence

f(j) = o5,
fdn +j) = cf(n) + B; ,

for <j <d

for0<j<dand n>l, (1.27)

is the same as the previous one except that we start with numbers in radix d
and produce values in radix c. That is, it has the radix-changing solution

f((bmbm_y...b1 bo)a) = (&b, Bom_s Bon 5. .. Bo Boyle- (1.18)

For example, suppose that by some stroke of luck we're given the recurrence

f(1) = 34,
f(2) = 5,
f(3n) = 10f(n) + 76, forn =1,
f(3n+1) = 10f(n)-2, forn 21,
f(3n +2) = 10f(n) + 8, forn 2 1,

and suppose we want to compute f (19). Herewe haved =3 and ¢ = 10. Now
19 = (201)3, and the radix-changing solution tells us to perform a digit-by-
digit replacement from radix 3 to radix 10. So the leading 2 becomes a 5, and
the 0 and 1 become 76 and -2, giving

fo) = f((201)3) = (5 76 —2)10 = 1258,
which is our answer.

Thus Josephus and the Jewish-Roman war have led us to some interesting
general recurrences.

There are two
kinds of general-
izations. One is
cheap and the other
is valuable.
It is easy to gen-
eralize by diluting
a little idea with a
big terminology.
It is much more
difficult to pre-
pae a refined and
condensed  extract
fiom several good
ingredients.

— G. Pélya [238]

Perhaps this was a
stroke of bad luck.

But in generd I'm
agand  recurrences
of wa.
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Exercises

Warmups

1

All horses are the same color; we can prove this by induction on the
number of horses in a given set. Here's how: “If there's just one horse
then it's the same color as itself, so the basis is trivial. For the induction
step, assume that there are n horses numbered 1 to n. By the induc-
tion hypothesis, horses 1 through n = 1 are the same color, and similarly
horses 2 through n are the same color. But the middle horses, 2 through
n 1, can't change color when they’'re in different groups; these are
horses, not chameleons. So horses 1 and n must be the same color as
well, by transitivity. Thus al n horses are the same color; QED.” What,
if anything, is wrong with this reasoning?

Find the shortest sequence of moves that transfers a tower of n disks
from the left peg A to the right peg B, if direct moves between A and B

are disallowed. (Each move must be to or from the middle peg. As usual,
a larger disk must never appear above a smaller one.)

Show that, in the process of transferring a tower under the restrictions of
the preceding exercise, we will actually encounter every properly stacked
arrangement of n disks on three pegs.

Are there any starting and ending configurations of n disks on three pegs
that are more than 2™ = 1 moves apart, under Lucas's original rules?

A “Venn diagram” with three overlapping circles is often used to illustrate
the eight possible subsets associated with three given sets:

a0
\\/
\/

Can the sixteen possihilities that arise with four given sets be illustrated
by four overlapping circles?

Some of the regions defined by n lines in the plane are infinite, while
others are bounded. What's the maximum possible number of bounded
regions?

Let H(n) = Jn+ 1) = J(n). Equation (1.8) tells us that H(2n) = 2, and
H2n+1) = J2n+2)-](2n+1) = 2)(n+1)=1)=(2](n)+1) = 2H(n)-2,
for al n > 1. Therefore it seems possible to prove that H(n) = 2 for al n,
by induction on n. What's wrong here?
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Homework exercises

8 Solve the recurrence

10

Qo = o Qi - B;
on = (1+Qn1)/Qn,, forn>1

Assume that Q, # 0 for al n > 0. Hint: Q4= (1+ «)/B.

Sometimes it's possible to use induction backwards, proving things from
nton 1 instead of vice versal For example, consider the statement

n
X A 4 )
P(n) : x1...xx < (%) s ifxy e, xq 20,

This is true when n = 2, since (x1 4+ x2)% —4x;x3 = (x1 —x2)2 > 0.

a By setting x, = (x1+ ---+ xq_1)/(n 1), prove that P(n) im-
plies P(n = 1) whenever n > 1,

b  Show that P(n) and P(2) imply P{2n).

¢ Explain why this implies the truth of P(n) for al n.

Let Qn be the minimum number of moves needed to transfer a tower of
n disks from A to B if all moves must be clockwise-that is, from A
to B, or from B to the other peg, or from the other peg to A. Also let R,
be the minimum number of moves needed to go from B back to A under
this restriction. Prove that

Q _{O, ifn=0; R _{0, ifn=0;
" 2R+ ifn>0; " L Qn+ Qe+, ifn>0.

(You need not solve these recurrences; we'll see how to do that in Chap-
ter 7.)

11 A Double Tower of Hanoi contains 2n disks of n different sizes, two of

12

each size. As usual, we're required to move only one disk at a time,
without putting a larger one over a smaller one.

a How many moves does it take to transfer a double tower from one
peg to another, if disks of equal size are indistinguishable from each
other?

b What if we are required to reproduce the origina top-to-bottom
order of al the equal-size disks in the final arrangement? [Hint:
This is difficult-it's really a “bonus problem.”]

Let's generalize exercise lla even further, by assuming that there are
m different sizes of disks and exactly ny disks of size k. Determine
A(ny,..., n,), the minimum number of moves needed to transfer a tower
when equal-size disks are considered to be indistinguishable.

now that's a
horse of a different
color.
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13 What's the maximum number of regions definable by n zig-zag lines,

Z27; =12
eech of which condss of two padld infinte hdf-lines joned by a draght
segment?

14 How many pieces of cheese can you obtain from a single thick piece by
making five straight sices? (The cheese must stay in its origina position
while you do all the cutting, and each slice must correspond to a plane
in 3D.) Find a recurrence relation for P,, the maximum number of three-
dimensional regions that can be defined by n different planes.

15 Josephus had a friend who was saved by getting into the next-to-last
position. What is 1(n), the number of the penultimate survivor when
evay soond paon is exeouted?

16 Use the repertoire method to solve the general four-parameter recurrence
g(1) = «a;
g(2n+j) = 3g(n) +yn+ B, forj=0Tad nx1
Hint: Try the function g(n) = n.
Exam problems

17 If W, isthe minimum number of moves needed to transfer a tower of n
disks from one peg to another when there are four pegs instead of three,
show that

Wins11/2 6 ZWomo1y2 + Ta forn> 0.
(Here T, = 2" = 1 is the ordinary three-peg number.) Use this to find a
closed form f(n) such that Wi, 41),, < f(n) for al n > 0.

18 Show that the following set of n bent lines defines Z,, regions, where Z,,
is defined in (1.7): The jth bent line, for 1 <j < n, hasits zig at (n?, )
and goes up through the points (n? = v/, 1) and (n% = nf = n"", 1).

19 Is it possible to obtain Z,, regions with n bent lines when the angle at
each zig is 30°?

20 Use the repertoire method to solve the general five-parameter recurrence
h(l) = a;
h(2n 4 i) = 4h(n) + y;n + B5 , fori=0,1and nx>1.
Hint: Try the functions h(n) = n and h(n) = n2.
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21 Suppose there are 2n people in a circle; the first n are “good guys’
and the last n are “bad guys!” Show that there is always an integer m
(depending on n) such that, if we go around the circle executing every
mth person, all the bad guys are first to go. (For example, when n = 3
we can take m = 5; when n = 4 we can take m = 30.)

Bonus problems

22 Show that it's possible to construct a Venn diagram for al 2" possible
subsets of n given sets, using n convex polygons that are congruent to
each other and rotated about a common center.

23 Suppose that Josephus finds himself in a given position j, but he has a
chance to name the elimination parameter q such that every gth person
is executed. Can he always save himself?

Research  problems

24 Find all recurrence relations of the form

X, — a+ aXn1 +-- 4 e Xn—k
" by Xaoi 4+ ..+ biXn—k

whose solution is periodic.

25 Solve infinitely many cases of the four-peg Tower of Hanoi problem by
proving that equality holds in the relation of exercise 17.

26 Generdizing exercise 23, let's say that a Josephus subset of {1,2,. .., n}
isaset of k numbers such that, for some q, the people with the other n-k
numbers will be eliminated first. (These are the k positions of the “good
guys’ Josephus wants to save.) It turns out that when n = 9, three of the
2° possible subsets are non-Josephus, namely (1,2,5,8,9}, {2,3,4,5, 8},
and {2,5,6,7, 8}. There are 13 non-Josephus sets when n = 12, none for

any other values of n € 12. Are non-Josephus subsets rare for large n? Yes, and well done
if you find them.



Sums

A term is how long
this course lasts.

SUMS ARE EVERYWHERE in mathematics, so we need basic tools to handle
them. This chapter develops the notation and general techniques that make
summation user-friendly.

2.1 NOTATION

In Chapter 1 we encountered the sum of the first n integers, which
wewroteout as 1+2+34...+(n—1)+n. The ‘ -’ in such formulas tells
us to complete the pattern established by the surrounding terms. Of course
we have to watch out for sums like 1 + 7 + . . . 4+ 417, which are meaningless
without a mitigating context. On the other hand, the inclusion of terms like
3and (n 1) was a bit of overkill; the pattern would presumably have been
clear if we had written smply 1 + 2+ . . . + n. Sometimes we might even be
so bold asto writejust 1 +--. +n.

We'll be working with sums of the genera form

aj+ a2+ +a,, (2.1)

where each q; is a number that has been defined somehow. This notation has
the advantage that we can “see” the whole sum, amost as if it were written
out in full, if we have a good enough imagination.

Each element a, of asum is called a term. The terms are often specified
implicitly as formulas that follow a readily perceived pattern, and in such cases
we must sometimes write them in an expanded form so that the meaning is
clear. For example, if

1424+, 4207

is supposed to denote a sum of n terms, not of 2"~', we should write it more
explicitly as

P2 42,

21
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The three-dots notation has many uses, but it can be ambiguous and a
bit long-winded. Other alternatives are available, notably the delimited form

2o,

k=I

(2.2)

which is called Sigma-notation because it uses the Greek letter > (upper-
case sigma). This notation tells us to include in the sum precisely those
terms a, whose index k is an integer that lies between the lower and upper
limits 1 and n, inclusive. In words, we “sum over k, from 1 to n.” Joseph
Fourier introduced this delimited t-notation in 1820, and it soon took the
mathematical world by storm.

Incidentally, the quantity after ) (here ay) is caled the summand.

The index variable k is said to be bound to the ) sign in (2.2), because
the k in ok is unrelated to appearances of k outside the Sigma-notation. Any
other letter could be substituted for k here without changing the meaning of
2. The letter i is often used (perhaps because it stands for “index”), but
we'll generally sum on k since it's wise to keep i for v—T.

It turns out that a generalized Sigma-notation is even more useful than
the delimited form: We simply write one or more conditions under the Z,
to specify the set of indices over which summation should take place. For
example, the sums in (1) and @2 can aso be written as

Z Qi .

1<kgn

(2:3)

In this particular example there isn't much difference between the new form
and (2.2), but the general form allows us to take sums over index sets that

aren’t restricted to consecutive integers. Fbr example, we can express the sum
of the squares of al odd positive integers below 100 as follows:

kZ
1<k<100
k odd
The delimited equivalent of this sum,

49

Z(2k+ 1)?,

k=0

is more cumbersome and less clear. Similarly, the sum of reciprocals of all
prime numbers between 1 and N is

Yoo
psz
p prime

“Le signe Y . “7°
indique que

Pon doit donner
au nombre entier i
toutes ses valeurs

1,2,3,...,d
prendre la somme
des termes”

J. Fourier [102]

Well, | wouldn't
want to use a or n
as the index vari-
able ingead of k in
(2.2); those letters

e “free varidles'

at do have mean-
ing outsde the }~
here.
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the delimited form would require us to write

where px denotes the kth prime and n(N) is the number of primes < N.

(Incidentally, this sum gives the approximate average number of distinct prime

factors of a random integer near N, since about 1 /p of those integers are

divisible by p. Its value for large N is approximately Inln N + 0.261972128;
In x stands for the natural logarithm of x, and In In x stands for In( 1n ) .)

The biggest advantage of general Sigma-notation is that we can manip-

The summation ulate it more easily than the delimited form. For example, suppose we want
symbol looks like to change the index variable k to k 4+ 1. With the general form, we have

a disorted pacman.
Z ax = Z Ak+1

1<kgn 1<k+1<n

it's easy to see what’s going on, and we can do the substitution almost without
thinking. But with the delimited form, we have

n n--1
D e = ) agr;
k=1 k=0

it's harder to see what’s happened, and we're more likely to make a mistake.
On the other hand, the delimited form isn't completely useless. It's
A tidy sum. nice and tidy, and we can write it quickly because (2.2) has seven symbols
compared with (2.3)'s eight. Therefore we'll often use ) with upper and
lower delimiters when we state a problem or present a result, but we'll prefer
to work with relations-under-x when we're manipulating a sum whose index
variables need to be transformed.
That's nothing. The 3_ sign occurs more than 1000 times in this book, so we should be

You should s how g0 that we know exactly what it means. Formally, we write
many times £ ap

pears in The lliad.
S

P(k)

(2.4)

as an abbreviation for the sum of al terms q; such that k is an integer
satisfying a given property P(k). (A “property P(k)” is any statement about
k that can be either true or false) For the time being, we'll assume that
only finitely many integers k satisfying P(k) have ax # O; otherwise infinitely
many nonzero numbers are being added together, and things can get a bit
tricky. At the other extreme, if P(k) is false for al integers k, we have an
“empty” sum; the value of an empty sum is defined to be zero.
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A dlightly modified form of (2.4) is used when a sum appears within the
text of a paragraph rather than in a displayed equation: We write ‘3 ., ax’,
attaching property P(k) as a subscript of }_, so that the formula won't stick
out too much. Similarly, ‘3" ¢'_; ai’ is a convenient alternative to 2.2y when
we want to confine the notation to a single line.

People are often tempted to write

n-1

S kk- 1)(n— k) instead of i kk- (- k)
k=0

k=2

because the terms for k = 0, 1, and n in this sum are zero. Somehow it

seems more efficient to add up n — 2 terms instead of n + 1 terms. But such

temptations should be resisted; efficiency of computation is not the same as
efficiency of understanding! We will find it advantageous to keep upper and
lower bounds on an index of summation as simple as possible, because sums
can be manipulated much more easily when the bounds are simple. Indeed,
the form XL‘;Z] can even be dangerously ambiguous, because its meaning is
not at all clear when n =0 or n = 1 (see exercise 1). Zero-valued terms cause
no harm, and they often save a lot of trouble.

So far the notations we' ve been discussing are quite standard, but now
we are about to make a radical departure from tradition. Kenneth Iverson
introduced a wonderful idea in his programming language APL [161, page 11],
and we'll see that it greatly simplifies many of the things we want to do in
this book. The idea is simply to enclose a true-or-false statement in brackets,
and to say that the result is 1 if the statement is true. O if the statement is Hev: The “Kro-

false. For example, necker delta’ that
’ I've seen in other

o . . books (I mean
1, if pisaprime number; Bin » Which is 1 if

[p prime] = {0, if p is not a prime number. Ken, 0 oth
erwise) is just a

Iverson’s convention allows us to express sums with no constraints whatever ecid case of
on the index of summation, because we can rewrite (2.4) in the form verson 's conven-

t[iol?: We]qan e\;\érite
=n | indead.
Y ac[P(k)]. (2.5)

k

If P(K) is false, the term ay [P(k)] is zero, so we can safely include it among
the terms being summed. This makes it easy to manipulate the index of
summation, because we don’t have to fuss with boundary conditions.

A dight technicality needs to be mentioned: Sometimes ax isn't defined
for all integers k. We get around this difficulty by assuming that [P(K)] is
“vay drongly zad® when RK) is fdss it's 90 much zao, it mekes ok [PK)]
equal to zero even when qy is undefined. For example, if we use lverson’s
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convention to write the sum of reciprocal primes < N as

> [p prime][(p<N1/p,

p

there’s no problem of division by zero when p = 0, because our convention
tells us that [0 prime] [0 < NJ/0 =0.
Let's sum up what we've discussed so far about sums. There are two
good ways to express a sum of terms. One way uses ‘-. -’, the other uses
'3 . The three-dots form often suggests useful manipulations, particularly
the combination of adjacent terms, since we might be able to spot a simplifying
pattern if we let the whole sum hang out before our eyes. But too much detail
can aso be overwhelming. Sigma-notation is compact, impressive to family
. and it's less and friends, and often suggestive of manipulations that are not obvious in
likely to lose points  three-dots form. When we work with Sigma-notation, zero terms are not

9?;5? Oﬁgo:g generally harmful; in fact, zeros often make t-manipulation easier.
2.2 SUMS AND RECURRENCES
OK, we understand now how to express sums with fancy notation.
But how does a person actually go about finding the value of a sum? One way
is to observe that there's an intimate relation between sums and recurrences.
The sum
n
Sn = Zak
k=0
(Think of S, as is equivalent to the recurrence
not just a single
number, but as a Sy = an:
ssquence defined  for 0= %0 (2.6)
dlnz0) Sn= Sna 4 a,, for n > 0.

Therefore we can evaluate sums in closed form by using the methods we
learned in Chapter 1 to solve recurrences in closed form.

For example, if a, is equal to a constant plus a multiple of n, the sum-
recurrence (2.6) takes the following general form:

R():Oc;

(2.7)
Ry =Ry 1+ B3 +vn, for n > 0.

Proceeding as in Chapter 1, we find Riy= ¢+ P+ v,R; = + 2 + 3y, and
so on; in general the solution can be written in the form

R.= A(n) « +B(n) B + C(n)y, (2.8)
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where A(n), B(n), and C(n) are the coefficients of dependence on the general
parameters «, 3, and .

The repertoire method tells us to try plugging in simple functions of n
for Ry, hoping to find constant parameters o, 8, and 'y where the solution is
especially simple. Setting R, = 1 implies x =1, $ =0, y = 0; hence

A(n) = 1.

Setting R,

nimpliesa=0, =1, vy = 0; hence

B(n) = n,

Setting R, = n? impliesa= 0, f=-1, y = 2; hence
2C(n) -B(n) = n?

and we have C(n) = {n? +n)/2. Easy as pie. Actudly esder; m =
Therefore if we wish to evaluate Y s T
n

Y (a+bk),

k=0

the sum-recurrence (2.6) boils down to (2.7) with a= B =4a vy = b, and the
answer is aA(n) + aB(n) - bC(n) = aln + 1) + b{n + Tjn/2.

Conversely, many recurrences can be reduced to sums; therefore the spe-
cial methods for evaluating sums that we'll be learning later in this chapter
will help us solve recurrences that might otherwise be difficult. The Tower of
Hanoi recurrence is a case in point:

T, = 2T +1, forn > 0.
It can be put into the special form (2.6) if we divide both sides by 2":

T()/z0 = 0;
T./2" = T,_/2™ 1 +1/2™, for n > 0.

Now we can set S, = T,,/2™, and we have

0 = 0O
Sp = Snoy +277, forn > 0.
It follows that
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cancels out, 0 it
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(Notice that we've left the term for k = O out of this sum.) The sum of the
geometric series 271 +27 2+ - 4+27" = ()74 (3)2+-- -+ ()™ will be derived
later in this chapter; it turns out to be 1 (% )".Hence T, =2"S, =2 1

We have converted T, to S, in this derivation by noticing that the re-
currence could be divided by 2™, This trick is a specia case of a general
technique that can reduce virtually any recurrence of the form

AnTn = byTu1+ Cy (2.9)
to a sum. The idea is to multiply both sides by a summation factor, s,:
sn@nTn = SpbnTn1+ sucy .
This factor s, is cleverly chosen to make
Sibn = Sn-1ang
Then if we write S, = s,a, T, we have a sum-recurrence,
Sn = Sn1 4 SnCn.

Hence
n mn
Sn= s0@To+ ) sici = sibiTo + Z SkCk
k=1 k=1

and the solution to the original recurrence (2.9) is

i
(S1b1To + Z skck) . (2.10)
k=1

T =

SnQn

For example, when n = 1 we get Ty= {s1byTy +s1¢c1}/s1a1 = (b Ty +¢1)/ay.
But how can we be clever enough to find the right s,? No problem: The
relation s, = $,_1an_1 /bn can be unfolded to tell us that the fraction

An-1an-2..- 4y

Sn I L L
= bnbn,] bz ‘

(2.11)
or any convenient constant multiple of this value, will be a suitable summation
factor. For example, the Tower of Hanoi recurrence has a,, = 1 and b, = 2
the general method we've just derived says that s, = 27" is a good thing to
multiply by, if we want to reduce the recurrence to a sum. We don’t need a
brilliant flash of inspiration to discover this multiplier.

We must be careful, as always, not to divide by zero. The summation-
factor method works whenever al the @s and all the b’s are nonzero.
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Let's apply these ideas to a recurrence that arises in the study of “quick-
sort,” one of the most important methods for sorting data inside a computer.
The avaage numba of compaison g5 made by quicksot when it is goplied
to n items in random order satisfies the recurrence

C():O;
n-1
2.12
Cn:n+1+—2-ZCk, for n> 0. (212
fdomn

Hmmm. This looks much scarier than the recurrences we' ve seen before; it
includes a sum over al previous values, and a division by n. Trying small
cases gives us some data (C; =2, C; = 5, C; = £) but doesn’t do anything
to quell our fears.

We can, howeve, reduce the complexity of (2.12) sydardicdly, by fird
getting rid of the division and then getting rid of the )~ sign. The idea is to
multiply both sides by n, obtaining the relation

n-1

nCy = n?+n+2y G, forn>0;
k=0

hence, if wereplacen by n =1,
n-2

M=1)Car = =12+ m-1)+2) C, forn-1>0.
k=0

We can now subtract the second equation from the first, and the ) sign
disappears:

nChp-Mm=1Ch1=2n + 2Cy_y, forn>1,

It turns out that this relation also holds when n = 1, because Cy = 2. There-
fore the original recurrence for C,, reduces to a much simpler one:

co = 0
nC, = M+ 1)Crh142n, forn> 0.

Progress. We're now in a position to apply a summation factor, since this
recurrence has the form of (2.9) witha =n, by, =n + 1, and ¢, = 2n.
The general method described on the preceding page tells us to multiply the
recurrence through by some multiple of

Qn-10n_2..-Q m—-1)-n-2)-...-1 2
M =P b.y..b, = (m+l)n-...-3 M+ n

(Quicksort  was
invented by Hoare
in 1962 [158].)
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The solution, according to (2.10), is therefore

LA
Cn=2(n+1) —.
My

The sum that remains is very similar to a quantity that arises frequently
in applications. It arises so often, in fact, that we give it a special name and
a specia notation:;

) (2.13)

&=

H —1+]+ +]— ;
L 2 n_g

The letter H stands for “harmonic”; H, is a harmonic number, so called
because the kth harmonic produced by a violin string is the fundamental
tone produced by a string that is I/k times as long.

We can complete our study of the quicksort recurrence (2.12) by putting

Cx into closed form; this will be possible if we can express C,, in terms of H,.
The sum in our formula for C, is

i 1 1
kT k+1

1<kgn

IN

We can relate this to H,, without much difficulty by changing k to k = 1 and
revising the boundary conditions:

1 1
LT X &

T<kgn I<k—1<n

2<k<n+1

( Z: _})._q_+«_;__ — H L
o 1 n+1 n+T

Alright! We have found the sum needed to complete the solution to (2.12):
The average number of comparisons made by quicksort when it is applied to
n randomly ordered items of data is

Ch = 2(n+1)H, — 2n. (2.14)

As usual, we check that small cases are correct: C;,=0,C=2, C;= 5.
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2.3 MANIPULATION OF SUMS Not to be confused

. . . ) with  finance.
The key to success with sums is an ability to change one ) into

another that is simpler or closer to some goal. And it's easy to do this by
learning a few basic rules of transformation and by practicing their use.

Let K be any finite set of integers. Sums over the elements of K can be
transformed by using three simple rules:

Y cax =c) a; (distributive law) (2.15)
keK keK
Y (ax+b) = ) ax+) bi;  (associative law) (2.16)
keK kek keK
Z a = Z Qi) - (commutative law) .17
keK

The distributive law allows us to move constants in and out of a ) . The
associative law allows us to break a }_ into two parts, or to combine two Y ’s
into one. The commutative law says that we can reorder the terms in any way
we please; here p(k) is any permutation of the set of all integers. For example, Why not call it

K= (1 i€ o) = K. th hree | n ivelv th permutative  instead
i (-1,0, +1} and if p(k) » these three laws tell us respectively that - o o ative?

catcapt+cay =clay Ffag+a); (distributive law)
(a1 +b1) + (ag+bgy) + (a1 +b1)

= (a1+ag+ay)+(b_1+by+by); (associative law)
aq1+a0 +q=q+ad+ a.q. (commutative law)

Gauss's trick in Chapter 1 can be viewed as an application of these three
basic laws. Suppose we want to compute the general sum of an arithmetic
progression,

S = ) (a+bk).
ogkgn
By the commutative law we can replace k by n = k, obtaining This is something
like changing vari-
ables indde an
Y (a+b(n-k)) = ) (a+bn-bk). integral, but easier.
0g<n—kgn 0gk<n

These two equations can be added by using the associative law:

Z ((a+bk)+(a+bn-bk)) = Z (2a +bn).

ogksn ogksn
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“What's one And we can now apply the distributive law and evaluate a trivial sum:
and one and one
end one and one 25= (2a+bm) Y 1 = (a+bnjn+1).
and one and one ogkgn
71
?;ddoc;]p?'know " Dividing by 2, we have proved that
sad Alice. n
4 |ost t.
She it d Y (atbk) = (a+ lbn)in+1). 218)
Addition.” k=0

-Lewis Carroll [44] . . )
The right-hand side can be remembered as the average of the first and last

terms, namely % (a + (a + bn)), times the number of terms, namely (n + 1).

It's important to bear in mind that the function p(k) in the general
commutative law (2.17) is supposed to be a permutation of all the integers. In
other words, for every integer n there should be exactly one integer k such that
p(k) = n. Otherwise the commutative law might fail; exercise 3 illustrates
this with a vengeance. Transformations like p(k) = k + c or p(k) = ¢ Kk,
where c is an integer constant, are always permutations, so they always work.

On the other hand, we can relax the permutation restriction a little bit:
We need to require only that there be exactly one integer k with p(k) =
when n is an element of the index set K. If n € K (that is, if n is not in K),
it doesn't matter how often p(k) = n occurs, because such k don’t take part
in the sum. Thus, for example, we can argue that

Y ac= ) an =) ax = ) ay, (2.19)

keK nek 2k6K 2keK
k even n even 2k even

since there’'s exactly one k such that 2k = n when n € K and n is even.
Iverson’s convention, which allows us to obtain the values O or 1 from
logical statements in the middle of a formula, can be used together with the
Additional, eh? distributive, associative, and commutative laws to deduce additional proper-
ties of sums. For example, here is an important rule for combining different
sets of indices: If K and K’ are any sets of integers, then

Z ax + Z a = Z ax + Z ag. (2.20)
keK keK’ keKnK’ keKUK'

This follows from the general formulas
}: a = Z ax [keK] (2.21)
keK k

and

[keK]+1keK’] = [keKNK I+ [keKUK']. (2.22)
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Typically we use rule (2.20) either to combine two amost-digoint index sets,
asin
N n

a + Y o = ay + Y a,  forigmgn
k=1 k=m k=1

Ms

or to split off asingle term from asum, asin

ax = q + a | forn>0. (2.23) (The two sides of
ogén ,gén - (2.ga) have been
switched here.)
This operation of splitting off a term is the basis of a perturbation
method that often allows us to evaluate a sum in closed form. The idea

is to start with an unknown sum and cal it S;:

S, = Zak.

0<k<n

(Name and conquer.) Then we rewrite S, ; in two ways, by splitting off both
its last term and its first term:

Sa+ @n+ = Z ak:a0+Zak

O<kgn+1 1<kg<n+1

= Qo+ Z_ ak+1

1<k+1€<n+1

=g + ) G (2.24)
0<kgn
Now we can work on this last sum and try to expressit in terms of S,. If we
succeed, we obtain an eguation whose solution is the sum we seek.
For example, let’s use this approach to find the sum of a general geomet-  If it's geometric,

ric progression there should be a
' geometric  proof.
Sp = ) axt.
0<kgn

The genera perturbation scheme in (2.24) tells us that

S, + ax™! = ax® + Z ax*!,
ogksn

guiii

and the sum on the right is x} ., ax* = xS, by the distributive law.
Therefore S, + ax™*' = a+ xS,,, and we can solve for S, to obtain

AN

n
a— GXn+1

Zaxk = ——]—_—x—,fOI’X#| (225)
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(When x = 1, the sum is of course simply (n + 1 )a) The right-hand side
Ah yes this formula can be remembered as the first term included in the sum minus the first term
wes drilled into me  excluded (the term after the last), divided by 1 minus the term ratio.
in high school That was almost too easy. Let's try the perturbation technique on a
dlightly more difficult sum,

Z‘_ K 2k

o<k<gn

In this case we have Sg=0, $;=2, S2= 10, S3=34, S4 = 98; what is the
general formula? According to (2.24) we have

Swtm+12M = 3 (k124

ogkgn

so we want to express the right-hand sum in terms of S,. Well, we can break
it into two sums with the help of the associative law,

Z-_ k2k+1 4 Z 2k+1)

0<k<n o<k<n

and the first of the remaining sums is 2S,. The other sum is a geometric
progression, which equals (2 = 2"*2)/(1 = 2) = 2"*2 2 by (2.25). Therefore
we have S, + (n + 1 )2"'= 25, + 2"2 ~ 2, and algebra yields

Y k¢ = (n- 12 42,
0gkgn

Now we understand why S; = 34: It's 32 + 2, not 2.17.
A similar derivation with x in place of 2 would have given us the equation
Sp 4+ (4 Tx™! =xS, + (x —x"*%)/(1  x); hence we can deduce that

ikxk _ x_(n+])xn+1 +nxn+2

a 7 , forx #1 (2.26)

It's interesting to note that we could have derived this closed form in a
completely different way, by using elementary techniques of differential cal-
culus. If we start with the equation

n ‘ 1= xnH!
Z = | X
k=0

and take the derivative of both sides with respect to x, we get

$ o = U0 107 3 o e e

a—x)? a —x)p

k=0
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because the derivative of a sum is the sum of the derivatives of its terms. We
will see many more connections between calculus and discrete mathematics
in later chapters.

24  MULTIPLE SUMS

The terms of a sum might be specified by two or more indices, not
just by one. For example, here's a double sum of nine terms, governed by two  Oh no, a nine-term

indices j and k: govermor.
a;by = a1by + aybz + aybs (lj\lotioe that this
- oesn't t
1<,k3 + a;by+ a;b; + azb; sum Overpeglr}j ; 1
+ a3by+ asby + asb;. and all k < 3.

We use the same notations and methods for such sums as we do for sums with
a single index. Thus, if P(j, k) is a property of j and k, the sum of al terms
aj such that P(j, k) is true can be written in two ways, one of which uses
Iverson’s convention and sums over all pairs of integers j and k:

Z ajx = Z ajk [P(],k)] .

P(i,k) ik

Only one ) sign is needed, athough there is more than one index of sum-
mation; > denotes a sum over all combinations of indices that apply.

We also have occasion to use two ) 's, when we're talking about a sum
of sums. For example,

> > ajx [PG,K)
ik
is an abbreviation for
5 (X an [P,
j k

which is the sum, over all integers j, of 3, ajk [P(j, k)], the latter being the  Multiple Z’s are
sum over all integers k of al terms q; x for which P(j, k) is true. In such cases %?“afﬁ?si drelgﬁtt) 10
we say that the double sum is “summed first on k!” A sum that depends on '
more than one index can be summed first on any one of its indices.

In this regard we have a basic law called interchanging the order of
summation, which generalizes the associative law (2.16) we saw earlier:

d Y anPG,R] =) ax =Y Y au[PG,K)]. (2.27)
(3,k k

ik P(j,k) j
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The middle term of this law is a sum over two indices. On the left, 3 ;3
stands for summing first on k, then on j. On the right, 3 | 3 . stands for
summing first on j, then on k. In practice when we want to evaluate a double
sum in closed form, it's usually easier to sum it first on one index rather than
on the other; we get to choose whichever is more convenient.
Who's panicking? Sums of sums are no reason to panic, but they can appear confusing to
I think this rule a beginner, so let's do some more examples. The nine-term sum we began
losorfr?prged()bt\gmsjcs)me with provides a good illustration of the manipulation of double sums, because
of the stuff in that sum can actually be simplified, and the simplification process is typical
Chapter 1. of what we can do with §~ ¥ ’s:

Y g = ) aibill <G k<3] = ) agbilt <G <k

1<i,k<3 Tk

jk
=) > abll <31 <k<3]
ik

=2 a1 <i<3] ) byll <k<3)
j

k

=Y qll gj$3}<zbk[1 skss])
j k
= (Z aj]1 sjss]) (Zbkﬂ skszd)
i k

(Zo)(Zm),

The first line here denotes a sum of nine terms in no particular order. The
second line groups them in threes, (a; by + a; by + a; bs) + (axby+ a;b; +

axbs3) + (a3by + aszb; + aszbz). The third line uses the distributive law to
factor out the a's, since a;and [1 <] < 3] do not depend on k; this gives

ai(br + by + b3) + ax(by+ b, + b3} + az(by+ by + bz). The fourth line is

the same as the third, but with a redundant pair of parentheses thrown in
so that the fifth line won't look so mysterious. The fifth line factors out the
(by + b, + b3} that occurs for each value of j: (a; + a; + a3)(by + by + b3).
The last line is just another way to write the previous line. This method of
derivation can be used to prove a general distributive law,

D abe = (Z%) (Zbk>, (2.28)

i3 €] keK
kek

valid for all sets of indices J and K.
The basic law (2.27) for interchanging the order of summation has many
variations, which arise when we want to restrict the ranges of the indices

f
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instead of summing over al integers j and k. These variations come in two
flavors, vanilla and rocky road. First, the vanilla version:

Zzaivk = Z Gk = Zzﬂi,k (2.29)

jel kek i€l kekK j€]
kEK
This is just another way to write (2.27), since the lversonian [j € J, ke K]
factors into [j € J] [k € K]. The vanillaflavored law applies whenever the ranges
of j and k are independent of each other.
The rocky-road formula for interchange is a little trickier. 1t applies when
the range of an inner sum depends on the index variable of the outer sum:

Z Z ax = Z Z Q- (2.30)

j€] keK(j keK’ je]’(

Here the sets J, K(j), K’, and J (k) must be related in such a way that
jel[keK()] = keK'[je] (k)].

A factorization like this is aways possible in principle, because we can let

J=K’ bethe set of al integers and K(j) = J (k) be the basic property P(j, k)

that governs a double sum. But there are important specia cases where the

sets J, K(j), K’, and J (k) have a simple form. These arise frequently in
applications. For example, here's a particularly useful factorization:

O<isniisksn] = I1<jgksn] = [1<k<n][1<j<k]. (2.31)

This lversonian equation allows us to write

n k

Zzaivk = Z ajk = z >_ aj k- (2.32)

j=1 k=j 1<j<kgn k=1 j=1

One of these two sums of sums is usually easier to evaluate than the other;  (Now is a good
we can use (2.32) to switch from the hard one to the easy one. g;‘;?;% ‘jf \gnadr ”éj)p
Let's apply these ideas to a useful example. Consider the array

(Or to check out
ar@gp aja; Qaz ... aiQg Ithe S.,nrl]c.kers. ba{h
anguisning In the
aay azaz azas PSSR 05, ¢ O free%er) g
asag aza; azaz ... Q3Qq
a,a; apQ; GQrdz ... QnpQp

of n? products a;ja;. Our goal will be to find a simple formula for

SQ = Z a;ayg ,

1<jgksn
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the sum of al elements on or above the main diagona of this array. Because
a;ax = axaj, the array is symmetrical about its main diagonal; therefore Sy
will be approximately half the sum of all the elements (except for a fudge
Does rocky road factor that takes account of the main diagonal).
have fudge in it? Such considerations motivate the following manipulations. We have

Z ajax - Z aka; = Z gGax = Swn,

1<j<kgn 1<kgjgn 1<kgjgn

because we can rename (], k) as (k, j). Furthermore, since

2S5q = S+ Sn = Z Q. + Z ajax

1<j,k<n 1<j=kgn

The first sum is (¥X;% a;) (Xr=; 0k) = (Zk L ax)’, by the general distribu-
tive law (2.28). The second sumis ¥ ,_; ak Therefore we have

1
Sq = Z ajay = z <(Z Clk) -+ Z ak) (2.33)
1<igkgn k=1

an expression for the upper triangular sum in terms of simpler single sums.
Encouraged by such success, let’s look at another double sum:

S = Z (ax — a;)(bx — b;) .

1<j<kgn

Again we have symmetry when j and k are interchanged:

S = Y (g-adb-b) = ) [(a—a)b—by).

1<k<ign 1<k<j<n
So we can add S to itself, making use of the identity
I<i<k<n]+[1<k<ign] = O<jk<n]-[1<j=k<n]
to conclude that

2§ = Z (aj = ay)(by  by) = Z_ (a; = ax)(by —by) .

1<j.k<n I<j=kgn
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The second sum here is zero; what about the first? It expands into four
separate sums, each of which is vanilla flavored:

Z a;b; — Z a;bx Z axb; + Z ax bk

[ESRE 1<, k<n 1<),k 1<ikgn
= 2 Z axby 2 Z a;by
I<j ksn 1<j k<gn
n
= ¥ ab- 2(Ya )(Zbk)
1<ksn k=1

In the last step both sums have been simplified according to the general
distributive law (2.28). If the manipulation of the first sum seems mysterious,
here it is again in slow motion:

2Zakbk:ZZZakbk

1<), k<n 1<ksn Tgjsn
-2 % o ¥
1<k<n 1<j<n
= 2 Z_ abn = In Z axbg.
1<k€n I<kgn

An index variable that doesn’'t appear in the summand (here j) can simply
be eliminated if we multiply what's left by the size of that variable’s index

set (here n).
Returning to where we left off, we can now divide everything by 2 and
rearrange things to obtain an interesting formula: (Chebyshev  actu-
n dly proved the
o )(zbk) ConY abi— Y (av-a)(b—by). (234) moos it
k=1 k=1 Jgi<ksn ingead of sums:
This identity yields Chebyshev’s summation inequalities as a special case: (I ff olx
n n n S ( )
(Z ak) (Zbk) S nz akbr, fa) <---<anand by oo K by : f{)fand 000 )i
- X
k=1 k=1 k=1 ae  monotone

nondecreasing

n.
(Z ak) <Zbk> 2 néakbk, lf a S e g Ay and b] 2 e 2 bn- funcuons_)

k=1

(In general, if a; <.+ < @& and if p is a permutation of {1,..., n}, it's
possible to prove that the largest value of ¥ ,_; axby k) occurs when by, <
* < by(n), ad the smallest value occurs when by1y 2 ... 2 bpm).)
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Multiple summation has an interesting connection with the general op-
eration of changing the index of summation in single sums. We know by the
commutative law that

Zak = Z Ap(k)
p(k)EK

keK

if p(k) is any permutation of the integers. But what happens when we replace
k by f(j), where f is an arbitrary function

. J o K

that takes an integer j € J into an integer f(j) € K? The genera formula for
index replacement is

Y agy = D aw#f(K), (2.35)
€] ke

where #f-(k) stands for the number of elements in the set
t-(k) = {j 1(j) = k}

that is, the number of values of j € J such that f(j) equals k.
It's easy to prove (2.35) by interchanging the order of summation,

2= Y alfl)=K- Y a) [fG)=K],

i€l i€l keK i€l
kEK
since Y o [f(j) =k] = #-(k). In the specid case that f is a one-to-one
My other math correspondence between J and K, we have #f (k)= 1 for dl k, and the

teacher calls this @ general formula @ss) reduces to
“bijection”; maybe

I'll lean to love
that word some: day. Z aty) = Z ag) = Z a.
And then again. . . i€l f(ileK kek

This is the commutative law (2.17) we had before, slightly disguised.

Our examples of multiple sums so far have al involved genera terms like
ax or by. But this book is supposed to be concrete, so let's take a look at a
multiple sum that involves actual numbers:

Sn= Z L

k —
1<j<kgn )

Forexample,S1=O;SZ=1;S3=2_1_]+3_1_]+3+2=%
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The normal way to evaluate a double sum is to sum first on j or first
on k, so let's explore both options.
1 . . .
Sn = v summing first on |
1<ken 1g<k © )
- X 3
kgn 1gk—j<k j
Z 1
i<k J

replacing j by kK — j

simplifying the bounds on j

1<kgn 0<
= Hy by (2.13), the definition of Hy ;
1£kgn
- Z Hy replacing k by k + 1
1<k+1<n
Z Hy simplifying the bounds on k
0<k<n

Alas! We don’t know how to get a sum of harmonic numbers into closed form.  Get out the whip.
If we try summing first the other way, we get

Sn = Z Z summing first on k

1<jgn ](k<n
1
= Z_ Z X replacing k by k + |

1<jgn j<k+j<n
1<j<n O0<kgn
=) Hn—j by (2.13), the definition of Hy_;
I<jgn
_ Z H; replacing j by n = |
1€n—jgn
= > H. simplifying the bounds on |

0gj<n

simplifying the bounds on k

7TI

We're back at the same impasse.
But there's another way to proceed, if we replace k by k + j before
deciding to reduce §,, to a sum of sums:

Sp = Z -k—_—] recopying the given sum
1<j<kgn
1
= Z X replacing k by k + j

1<j<k+j<n
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= Z lk summing first on j
Tgk<n 1gjgn—k
= Z i-x the sum on j is trivial
1<kgn k
n ..
- T Z 1 by the associative law
1<k<gn 1<kgn
1
= n( E) -n by gosh
1<k<n
= nH, —n. by (2.13), the definition of H,,

It was smat to sy ~ Aha! We've found S,. Combining this with the false starts we made gives us

k < ninstead of a further identity as a bonus:
k<n=1inthis

derivation.  Simple - B
bounds save energy. Z Hx nHn —n (2.36)
O0<k<n
We can understand the trick that worked here in two ways, one algebraic
and one geometric. (1) Algebraically, if we have a double sum whose terms in-
volve k+f( j), where f is an arbitrary function, this example indicates that it's
a good idea to try replacing k by k-f(j) and summing on j. (2) Geometrically,
we can look at this particular sum S, as follows, in the case n = 4:
k =1 k=2k=3k=4
i=1 % + +

+

—— N
—_ = W=

Our first attempts, summing first on j (by columns) or on k (by rows), gave
us Hi+ Hy + Hy = H; + H, + H;. The winning idea was essentially to sum
by diagonals, getting 2 + 3 + 1.

25 GENERAL METHODS

Now let’s consolidate what we've learned, by looking at a single
example from severa different angles. On the next few pages we're going to
try to find a closed form for the sum of the first n squares, which we'll call O,,:

0, = Z K, forn > 0. (2.37)
0<ksn

WEe'll see that there are at least seven different ways to solve this problem,
and in the process we'll learn useful strategies for attacking sums in general.
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First, as usual, we look at some small cases.
n

n’| 01234560 1 4 9 16 25 36 H7 ®8 @i Wm0 @il WD

¢ 0O 1 5 14 30 55 91 140 204 285 385 506 650

No closed form for [0, is immediately evident; but when we do find one, we
can use these values as a check.

Method 0: You could look it up.

A problem like the sum of the first n squares has probably been solved
before, so we can most likely find the solution in a handy reference book.
Sure enough, page 72 of the CRC Standard Mathematical Tables [24] has the

answer:
0 _ nn+1){2n+1)
n — 6 )

forn > 0. (2.38)

Just to make sure we haven't misread it, we check that this formula correctly
gives 05 = 5-6-11/6 = 55. Incidentally, page 72 of the CRC Tables has
further information about the sums of cubes, . . . , tenth powers.

The definitive reference for mathematical formulas is the Handbook of
Mathematical Functions, edited by Abramowitz and Stegun [2]. Pages 813- (Hader sums
814 of that book list the values of [, for n € 100; and pages 804 and 809  ¢an be found
exhibit formulas equivalent to (2.38), together with the analogous formulas gmemie
for sums of cubes, . . ., fifteenth powers, with or without alternating signs. table [147].)

But the best source for answers to questions about sequences is an amaz-
ing little book called the Handbook of Integer Sequences, by Sloane [270],
which lists thousands of sequences by their numerical values. If you come
up with a recurrence that you suspect has already been studied, all you have
to do is compute enough terms to distinguish your recurrence from other fa-
mous ones; then chances are you'll find a pointer to the relevant literature in
Sloane’'s Handbook. For example, 1, 5, 14, 30, . . . turns out to be Sloan€e's
sequence number 1574, and it's called the sequence of “square pyramidal
numbers’ (because there are [, balls in a pyramid that has a sguare base of
n? balls). Sloane gives three references, one of which is to the handbook of
Abramowitz and Stegun that we've already mentioned.

Still another way to probe the world’s store of accumulated mathematical
wisdom is to use a computer program (such as MACSYMA) that provides
tools for symbolic manipulation. Such programs are indispensable, especially
for people who need to deal with large formulas.

It's good to be familiar with standard sources of information, because
they can be extremely helpful. But Method 0 isn't really consistent with the
spirit of this book, because we want to know how to figure out the answers
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-~

~ \

Or, d least to by ourselves. (The look-up method is limited to problems that other people
problems - having have decided are worth considering; a new problem won't be there.

the same _answers

& problems  that Method 1: Guess the answer, prove it by induction.

other people have

decided to consicer. Perhaps a little bird has told us the answer to a problem, or we have

arrived at a closed form by some other less-than-rigorous means. Then we
merely have to prove that it is correct.

We might, for example, have noticed that the values of [, have rather
small prime factors, so we may have come up with formula (2.38) as something
that works for al small values of n. We might also have conjectured the
equivaent formula

nn+ Hmn+1
0, = —[ ol ), forn >0, (2-39)

3
which is nicer because it's easier to remember. The preponderance of the
evidence supports (2.39), but we must prove our conjectures beyond all rea-
sonable doubt. Mathematical induction was invented for this purpose.
“Well, Your Honor, we know that [, =0 = O(O+%)(O+1)/3, o the basis
is easy. For the induction, suppose that n > 0, and assume that (2.39) holds
when n is replaced by n = 1. Since

O, = anl +T12,

we have
30, = (n- I)(n- t)(n) + 3n?
= (n® = 3n? + In) + 3n?
= (m*+3nl+ In
= n(n+ Hn+1).

Therefore (2.39) indeed holds, beyond a reasonable doubt, for all n > 0.
Judge Wapner, in his infinite wisdom, agrees.

Induction has its place, and it is somewhat more defensible than trying
to look up the answer. But it's still not really what we're seeking. All of
the other sums we have evaluated so far in this chapter have been conquered
without induction; we should likewise be able to determine a sum like O,
from scratch. Flashes of inspiration should not be necessary. We should be
able to do sums even on our less creative days.

Method 2: Perturb the sum.
So let's go back to the perturbation method that worked so well for the
geometric progression (2.25). We extract the first and last terms of O . in
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order to get an equation for Cn:

Q oy = Y k+1)2 = Y (4241

ogksn 0<kgn
- Y K2 Y ke Y
0<kgn 0<k<n ogkgn

= On +2 ) k+ (n+1).

0<kgn

Oops- the [0,,’s cancel each other. Occasionally, despite our best efforts, the

perturbation method produces something like O, = O,, SO we lose. Seems more like a
On the other hand, this derivation is not atotal loss; it does reveal away ~ draw.

to sum the first n integersin closed form,

2} k= (1P (nt1),
og<kgn
even though we'd hoped to discover the sum of first integers squared. Could

it be that if we start with the sum of the integers cubed, which we might
cdl @, we will get an expression for the integers squared? Let's try it.

@+ (n+1) = Z(k+1)3= Z(k3+3k2+3k+1}
0<k<n ogks<n
n+1
— @, 430, + 3 ; ™ ().
Sure enough, the &3, 's cancel, and we have enough information to determine  Method 2
0O, without relying on induction: Perturb your TA.
30, = M+1P2—3n+1)n/2—(n+1)

= m+NM+2n+1-2n-1) = (n+1)(n+J)n.

Method 3: Build a repertoire.
A dight generalization of the recurrence (2.7) will also suffice for sum-
mands involving n?. The solution to

Ry = «;
Rpn = Ry +B+yn+8n?,  forn>0, (2.40)

will be of the general form
R, = A(M)a+B(n)p +C(n)y +D(n)s; (2.41)

and we have already determined A(n), B(n), and C(n), because (2.41) is the
same as (2.7) when 6 = 0. If we now plug in R, = n?, we find that n3 is the
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solution when a=10, $ =1,y = -3, 6 =3. Hence
3D(n) = 3C(n) + B(n) = n’;

this determines D(n).

We're interested in the sum [,, which equals O -1+ n?; thus we get
O, =R, ifwesst a ==y =0and 6 =1 in (241). Consequently
El, = D(n). We needn't do the algebra to compute D(n) from B(n) and
C(n), since we already know what the answer will be; but doubters among us
should be reassured to find that

3DM) = n+3¢m) - Bl = 43N ),
Method 4: Replace sums by integrals.

People who have been raised on calculus instead of discrete mathematics
tend to be more familiar with f than with 3, so they find it natural to try
changing 3 to j One of our goals in this book is to become so comfortable
with }" that we'll think [ is more difficult than ) (at least for exact results).
But till, it's a good idea to explore the relation between ) and [, since
summation and integration are based on very similar ideas.

In calculus, an integral can be regarded as the area under a curve, and we
can approximate this area by adding up the areas of long, skinny rectangles
that touch the curve. We can also go the other way if a collection of long,
skinny rectangles is given: Since O, is the sum of the areas of rectangles
whoe szsae1x 1, 1 x 4, . . ., 1 xm?, it is approximately equal to the area
under the curve £(x) = x? between 0 and n.

f(X)T B
7
The horizontd scale 7
here is ten times the
vaticd scale flx) = x2 7
123 n x

The area under this curve is | g x? dx = n?/3; therefore we know that 3, is

approximately  In.
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One way to use this fact is to examine the error in the approximation,
E, =0, - jn’.Since O, satisfies the recurrence [, = On_ + n?, we find
that E, satisfies the simpler recurrence

Bn = On—gn® = Op g 42— 40 = B4l n—1p3 4 n2 = In3

En—l +Tl—%,

Iy

Another way to pursue the integral approach is to find a formula for E, by
summing the areas of the wedge-shaped error terms. We have

n n k
_ 2 2
On -—J x2dx = Z <k —J p.8 dx) This is for people
0 k addicted to caculus.

Either way, we could find E, and then O,,.

Method 5: Expand and contract.

Yet another way to discover a closed form for Cl, is to replace the orig-
inal sum by a seemingly more complicated double sum that can actualy be
simplified if we massage it properly:

On= ) K= Y &k

1<ksn 1<j<ksn

=) )k

1< jsksn

> (B m-ien

1gjgn [The last step here
-1 Y, is something like
e (n(n+1)+5 -5 the lat dep of
I<isn the  perturbation
= I m+ N+ inn+1)—100= Inn+3n+1)-10.. method,  because

we get an equation
Going from a single sum to a double sum may appear at first to be a backward \(qulljg]ntitt)r/]e Oﬁnk&gmn

step, but it's actually progress, because it produces sums that are easier 0 sdes)
work with. We can't expect to solve every problem by continually simplifying,
simplifying, and simplifying: You can't scale the highest mountain peaks by
climbing only uphill!

Method 6: Use finite calculus.
Method 7: Use generating functions.

Stay tuned for still more exciting calculations of O, = ¥ ,_, K, as we
learn further techniques in the next section and in later chapters.



2.6 FINITE AND INFINITE CALCULUS 47

26 FINITE AND INFINITE CALCULUS

We've learned a variety of ways to deal with sums directly. Now it's
time to acquire a broader perspective, by looking at the problem of summa-
tion from a higher level. Mathematicians have developed a “finite calculus,”
analogous to the more traditional infinite calculus, by which it's possible to
approach summation in a nice, systematic fashion.

Infinite calculus is based on the properties of the derivative operator D,
defined by

DFC) = lim LGSV (G

h
Finite calculus is based on the properties of the difference operator A, defined
by
AfX)=F(x + 1) -F(X). (2.42)

This is the finite analog of the derivative in which we restrict ourselves to
positive integer values of h. Thus, h = 1 is the closest we can get to the
“limit” as h — 0, and Af(x) is the value of (F(x + h) = f(x))/hwhenh = 1.
The symbols D and A are called operators because they operate on
functions to give new functions; they are functions of functions that produce
functions. If f is a suitably smooth function of real numbers to real numbers,
As opposed to a then Df is aso a function from reals to reals. And if ¥ is any rea-to-rea
cassette - function. function, so is Af. The values of the functions Df and Af at a point x are
given by the definitions above.
Early on in calculus we learn how D operates on the powers f(x) = x™.
In such cases DF(x) = mx™ !. We can write this informally with ¥ omitted,

D(x™) = mx™'.

It would be nice if the A operator would produce an equally elegant result;
unfortunately it doesn't. We have, for example,

AP) = (x4 1P —~x} = 3x%+3x+1.

Math power. But there is a type of “mth power” that does transform nicely under A,
and this is what makes finite calculus interesting. Such newfangled mth
powers are defined by the rule

m f%ctors

la N

X2 = x(x—T1)...(x—m+1), integer m > 0. (2-43)

Notice the little straight line under the m; this implies that the m factors
are supposed to go down and down, stepwise. There’'s also a corresponding
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definition where the factors go up and up:

m factors
A

;c(x+1).‘.(x+m—1j,

i integer m > 0.

X (2-44)

When m = 0, we have x¢ = x% = 1, because a product of no factors is
conventionally taken to be 1 (just as a sum of no terms is conventionally 0).

The quantity x& is caled “x to the m falling,” if we have to read it
aoud; smilarly, x™ is “x to the m rising!” These functions are aso called
falling factoriad powers and rising factorial powers, since they are closely
related to the factorial function n! = n(n = 1). .. (1). In fact, n! = =17,

Severa other notations for factorial powers appear in the mathematical
literature, notably “Pochhammer’s symbol” (x), for x™ or xm; notations
like x{™ or x,,) are also seen for xX, But the underline/overline convention
is catching on, because it's easy to write, easy to remember, and free of
redundant parentheses.

Falling powers x are especially nice with respect to A. We have

AE) = (x+ 1) —x2
= (x+1)x...(X-m++) = X...(x—m+2)(x—m+1)
= mx(x—1}...(x—m+2),

hence the finite calculus has a handy law to match D(x™) = mx™!:

A(xD) = mx™=!, (2.45)
This is the basic factorial fact.

The operator D of infinite calculus has an inverse, the anti-derivative
(or integration) operator [. The Fundamental Theorem of Calculus relates D
to [

g(x) = Df(x) if and only if Jg(x) dx = f(x) + C.
Here [ g(x) dx, the indefinite integral of g(x), is the class of functions whose
derivative is g(x). Analogoudly, A has as an inverse, the anti-difference (or
summation) operator ) ; and there’'s another Fundamental Theorem:

D glx)x =

Here ¥ g(x) &x, the indefinite sum of g(x), is the class of functions whose
difference is g(x). (Notice that the lowercase § relates to uppercase A as
d relates to D.) The “C” for indefinite integrals is an arbitrary constant; the
“C” for indefinite sums is any function p(x) such that p(x + 1) = p(x). For

g(x) = Af(x) if and only if f(x)+C. (2.46)

Mathematica
terminology is
sometimes  crazy:
Pochhammer  [234]
actudly used the
notation (X) m

for the binomid
coefficient {S;) , not
for fectorid  powers

“Quemadmodum
ad differentiam
denotandam  usi
sumus signo A,
ita Ummam jndij-
cabimus signo L.
... & quo &quatio
Z= Ay, si inver-
tatur, dabit quoque
y=Zz+C.
—L. Euler (88



You call this a
punch line?
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example, C might be the periodic function a + b sin2mx; such functions get
washed out when we take differences, just as constants get washed out when
we take derivatives. At integer values of X, the function C is constant.

Now we're aimost ready for the punch line. Infinite calculus aso has
definite integrals. If g(x) = Df(x), then

b b
J g(x)dx = f(x){ = f(b) -f(a).

Therefore finite calculus-ever mimicking its more famous cousin- has def-
inite sums: If g(x) = Af(x), then

X_: g(x) 6x = f(x;C = f(b) -f(a). (2.47)

This formula gives a meaning to the notation Zz g(x) 6x, just as the previous
formula defines [° g(x) o

But what does Zz g(x) 6x readly mean, intuitively? We've defined it by
analogy, not by necessity. We want the analogy to hold, so that we can easily
remember the rules of finite calculus; but the notation will be useless if we
don’'t understand its significance. Let's try to deduce its meaning by looking
first a some special cases, assuming that g(x) = Af(x) = f(x + 1) -f(x). If
b = a we have

S “glx)ox = f(a)-f(a) = o.

Next, if b = a + 1, the result is

Zaﬂ g(x) & = fla+ 1) -f(a) = g(a).

More generally, if b increases by 1, we have

ZZH g(x)ox — Zz g(x) 6x

(f(b + 1) -f(a))  (f(b) -f(a))
f(b+ 1) -f(b) = g(b).

These observations, and mathematical induction, allow us to deduce exactly
what 3 ° g(x) 6x means in general, when a and b are integers with b > a

Zb g(x)dx = Zg(k] = Z g(k), for integersb > a  (248)
¢ k=a a<k<b

In other words, the definite sum is the same as an ordinary sum with limits,
but excluding the value at the upper limit.
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Let’s try to recap this; in a slightly different way. Suppose we've been
given an unknown sum that’s supposed to be evaluated in closed form, and
suppose we can write it in the form Za§k<b gk) = Zz g(x) 6x. The theory
of finite calculus tells us that we can express the answer as f(b) = f(a), if
we can only find an indefinite sum or anti-difference function f such that
gx) = f x + 1) = f(x). One way to understand this principle is to write
ZuSk<b g(k) out in full, using the three-dots notation:

D (flk+1) -£(k)) = (fla+1) -f(a)) + (fla+2) - fla+1)) +---
agk<h

+ (f(b=1) = f(b-2) + (f(b) = f(b-D)) .

Everything on the right-ha:nd side cancels, except f(b) = f(a); so f(b) - f(a)
is the value of the sum. (Sums of the form Zagkd’(f(k +1) - f(k)) are
often called telescoping, by analogy with a collapsed telescope, because the
thickness of a collapsed telescope is determined solely by the outer radius of
the outermost tube and the inner radius of the innermost tube.)

But rule (2.48) applies only when b > a; what happens if b < a? Well,
(2.47) says that we must have

Y. g0 6x = f(b) -f(a)
= -(f(a)-1(b)) = ~Y "g(x)6x.

This is analogous to the corresponding equation for definite integration. A
similar argument proves ¥~ D+ Y .= Y, the summation anaog of the iden-
tity [2+ [S= [C. In full garb,

Yoot bx+ Y et b=y " glx)ex, (2.49)

for all integers a, b, and c.

At this point a few of us are probably starting to wonder what all these
parallels and analogies buy us. Well for one, definite summation gives us a
simple way to compute sums of falling powers: The basic laws (2.45), (2.47),
and (2.48) imply the general law

km+l n nm+1

k™ = = —, for integers m, n > 0. 2.50
0; mEtl, ~ mtl = (2.50)
SK<N

This formula is easy to remember because it's so much like the familiar
j'g x™dx = n™/(m+ 1).

And dl this time

| thought it was
telescoping  because
it collapsed from a
very long expresson
to a very short one.

Others have been
wondering this for
some time now.
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this. .
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In particular, when m = 1 we have k! = k, so the principles of finite
calculus give us an easy way to remember the fact that

I~

Y k== nn-1)2

0<k<n

The definite-sum method also gives us an inkling that sums over the range
0 € k < n often turn out to be simpler than sums over 1 < k < n; the former
are just f(n) = f (0), while the latter must be evaluated asf (n + 1) = f (1)

Ordinary powers can also be summed in this new way, if we first express
them in terms of faling powers. For example,

K= kA4 kd,
hence
2 Tli n; 1 3 1 1
Z K= 5ty = gin—Nm-2+35) = 3n(n—3)n-1).
0<k<n

Replacing 11 by n + 1 gives us yet another way to compute the value of our
old friend Q@ =3 <, k? in closed form.

Gee, that was pretty easy. In fact, it was easier than any of the umpteen
other ways that beat this formula to death in the previous section. So let's
try to go up a notch, from squares to cubes: A simple calculation shows that

KB = kK4+3kE+kl.

(It's aways possible to convert between ordinary powers and factorial powers
by using Stirling numbers, which we will study in Chapter 6.) Thus

K& K2 |°

2
ask<b

Falling powers are therefore very nice for sums. But do they have any
other redeeming features? Must we convert our old friendly ordinary powers
to falling powers before summing, but then convert back before we can do
anything else? Well, no, it's often possible to work directly with factorial
powers, because they have additional properties. For example, just as we
have (x + y)? = x? + 2xy + y?, it turns out that (x + y)2 = x2 + 2lyl + y2,
and the same analogy holds between (x + y)” and (x + y)&. (This “factorial
binomial theorem” is proved in exercise 5.37.)

So far we've considered only falling powers that have nonnegative expo-
nents. To extend the analogies with ordinary powers to negative exponents,
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we need an appropriate definition of x® for m < 0. Looking at the sequence

X = x(x—1)(x~2),

X% = x(x-1),
x = x
=1

we notice that to get from x2 to x to x! to x¢ we divide by x 2, then
by x = 1, then by x. It seems reasonable (if not imperative) that we should
divide by x + 1 next, to get from x2 to x=1, thereby making x=- = 1 /(x + 1).
Continuing, the first few negative-exponent falling powers are

x— = ——

x—2

(x+1)(x+2)"
!

x;3
= (x+Nx+2)(x+3)’

and our general definition for negative faling powers is

-m !
T (x+Dx+2)...(x+m)’ form > 0. (2.51)

(It's also possible to define falling powers for real or even complex m, but we  How can a complex

will defer that until Chapter 5.) number be even?
With this definition, falling powers have additional nice properties. Per-

haps the most important is a general law of exponents, analogous to the law

Xm+n — xmxn

for ordinary powers. The faling-power version is
XM = xM(x —m)2 integers m and n. (2.52)
For example, x2£2 = x& (x  2)3; and with a negative n we have

xz’_3:x;(x—2];3=x(x' 1) 1 - = x—,

- Dx(x+1) — x+1

If we had chosen to define x=! as 1I/x instead of as1 /(x + 1), the law of

exponents (2.52) would have failed in caseslikem=-1 andn=1. In fact,

we could have used (2.52) to tell us exactly how falling powers ought to be

defined in the case of negative exponents, by setting m = -n. When an  Laws have ther
existing notation is being extended to cover more cases, it's always best to ~ exponents and  their
formulate definitions in such. away that general laws continue to hold. Oetractors.
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Now let's make sure that the crucial difference property holds for our
newly defined falling powers. Does Ax™ = mx™=1 when m < O? If m = -2,
for example, the difference is

Ax? — 1 _ 1

T (x4 2)(x+3) (x+1{x+2)
x+1)—(x+3)

x+D(x+2)(x+3)

= —2x=3,

Yes -it works! A similar argument applies for al m < 0.
Therefore the summation property (2.50) holds for negative falling powers
as well as positive ones, as long as no division by zero occurs:

m+l |b

b mn x=L f
m = or mf-1
Zux bx m+1 a’

But what about when m = —~1? Recall that for integration we use
b b
J x7"dx = Inx

u a

when m = -1. Wed like to have a finite analog of Inx; in other words, we
sk a fundtion F(x) such tha

1
x+1

x—_1:

= Af(x)= F(x+ 1)-F(x).
It's not too hard to see that

FO) =<4+ +

xXtI—

—_] =
N —

is such a function, when x is an integer, and this quantity is just the harmonic
number H, of (2.13). Thus H, is the discrete analog of the continuous Inx.
(We will define H, for noninteger x in Chapter 6, but integer values are good
enough for present purposes. We'll also see in Chapter 9 that, for large x, the

0.577 exactly? value of H, = In x is approximately 0.577 + 1/(2x). Hence H, and ln x are not
Maybe they mean  only analogous, their values usually differ by less than 1.)
14/3. We can now give a complete description of the sums of falling powers:
Then agan,
maybe  not. xmtl b
. T‘ o ifmf-1;
Zax—“léx =¢m a (2.53)

b
H, ifm=-1.

a

)
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This formula indicates why harmonic numbers tend to pop up in the solutions
to discrete problems like the analysis of quicksort, just as so-called natural
logarithms arise naturally in the solutions to continuous problems.

Now that we've found an analog for Inx, let's see if there's one for e*.
What function f(x) has the property that Af(x) = f(x), corresponding to the
identity De" = €'? Easy:

f(x+1)-f(X) = f(x) = f(x+ 1) = 2f(x):

so we're dealing with a simple recurrence, and we can take f(x) = 2" as the
discrete exponential function.
The difference of ¢* is also quite simple, for arbitrary c, namely

Alc®) = ¢ ¢f = (¢ = 1),

Hence the anti-difference of ¢* is ¢*/(c — 1 },if ¢ # 1. This fact, together with
the fundamental laws (2.47) and (2.48), gives us a tidy way to understand the
general formula for the sum of a geometric progression:

b b
b c* c’—c°
E ck = E > o6x = ‘ = , forc # 1.
a
a

—1 —1
ask<b ¢ ¢

Every time we encounter a function f that might be useful as a closed
form, we can compute its difference Af = g; then we have a function g whose
indefinite sum 3 g(x) 6x is known. Table 55 is the beginning of a table of  ‘Table 55’ is cr
difference/anti-difference pairs useful for summation. page 55. Get it?
Despite al the parallels between continuous and discrete math, some
continuous notions have no discrete analog. For example, the chain rule of
infinite calculus is a handy rule for the derivative of a function of a function;
but there’'s no corresponding chain rule of finite calculus, because there's no
nice form for Af (g (x)) . Discrete change-of-variables is hard, except in certain
cases like the replacement of x by ¢ + x.
However, A(f(x) g(x)) does have a fairly nice form, and it provides us
with a rule for summation by parts, the finite analog of what infinite calculus
calls integration by parts. Let's recall that the formula

D(uv) = uDv+vDu

of infinite calculus leads to the rule for integration by parts,

JuDv = uv-JvDu,
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Table 55 What's the difference?

f:Zg Af:g f:zg Af:g

x2 =1 0 2" 2"

XL =x l c* (c 1)c*
2=x(x—-1) 2 x /(c—1) ¢

xn mxm=1 cf cATf
x2L/(m 4 1) x& f+g Af+Ag
H, x=L=1/(x+1) fg fAg + EgAf

after integration and rearranging terms, we can do a similar thing in finite
calculus.

We start by applying the difference operator to the product of two func-
tions u(x) and v(x):

Aux) v(x)) = u(x+1) v(x+1)  uX) v(x)
= u(x+1)v(x+1) —u(x)v(x+1)
+ ulx)v(x+1) —u(x) v(x)
= ux) Av(x] + v(x+1) Au(x). (2-54)

This formula can be put into a convenient form using the shift operator E,
defined by

EF(x) = F(x+D).

Substituting this for v(x+1) yields a compact rule for the difference of a

product:
Alw) = uAv+ EvAu. (2:55)
Infinite  cdculus (The E is a bit of a nuisance, but it makes the equation correct.) Taking

avoids E here by

) the indefinite sum on both sides of this equation, and rearranging its terms,
letting 1 — o.

yields the advertised rule for summation by parts:

Z UAv = uv~Z EvAu. (2-56)

As with infinite calculus, limits can be placed on all three terms, making the
indefinite sums definite.
This rule is useful when the sum on the left is harder to evaluate than the
one on the right. Let's look at an example. The function | xe* dx is typicaly
[ guesse*=2* for integrated by parts; its discrete analog is ) x2* &x, which we encountered
smal values of 1 earlier this chapter in the form 3 [ k2*. To sum this by parts, we let
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u(x) = x and Av(x) = 2*; hence Au(x) = 1, v(x) = 2%, and Ev(x) = 2**!,
Plugging into (2.56) gives

Z X2” §x = X2" = ZZ"“ 6x = x2* 2>t 4 .
And we can use this to evaluate the sum we did before, by attaching limits:

n

Y K= Y o ex
k=C 0
= x2* _2x+l n+l
10

((Tl+ ])2n+1_2n+2) _ (0‘20_21) - (n_ «l)zn-H +2.

It's easier to find the sum this way than to use the perturbation method,

because we don’t have to think. The ultimate goal
We stumbled across a formula for 3", . Hi earlier in this chapter, ~ of mathematics

and counted ourselves lucky. But we could have found our formula (2.36) f e:fi igrml’n"t‘ztlzgéi ;

systematicaly, if we had known about summation by parts. Let's demonstrate  noyght.

this assertion by tackling a sum that looks even harder, 3, ,_. kHy. The

solution is not difficult if we are guided by analogy with [ x In x dx: We take

u(x) = H, and Av(x) = x = x1, hence Au(x) = x=L, v(x) = x2/2, Ev(x) =

(X +1)2/2, and we have

2

2 2
ZxHxéx = X—Hx - Z(l;—”x‘—‘GX

2
x2 1

= 7Hx - Eleéx
2 X2

= TH" vy + C.

(In going from the first line to the second, we' ve combined two falling pow-
ers (x+1)2x=! by using the law of exponents (2.52) withm=-1and n=2.)
Now we can attach limits and conclude that

" 2
2 K= Y DxHitx = (.- 1), (2.57)

O0<k<n

2.7 INFINITE SUMS

When we defined t-notation at the beginning of this chapter, we
finessed the question of infinite sums by saying, in essence, “Wait until later.  This is finesse?
For now, we can assume that all the sums we meet have only finitely many
nonzero terms” But the time of reckoning has finaly arrived; we must face
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the fact that sums can be infinite. And the truth is that infinite sums are
bearers of both good news and bad news.

First, the bad news: It turns out that the methods we’ve used for manip-
ulating ) ’s are not aways valid when infinite sums are involved. But next,
the good news. There is a large, easily understood class of infinite sums for
which all the operations we've been performing are perfectly legitimate. The
reasons underlying both these news items will be clear after we have looked
more closely at the underlying meaning of summation.

Everybody knows what a finite sum is. We add up a bunch of terms, one
by one, until they’ve all been added. But an infinite sum needs to be defined
more carefully, lest we get into paradoxical situations.

For example, it seems natural to define things so that the infinite sum

- 1,1 .14 1 1
§ = ]+7+Z+§+ﬁ+§+"'
is equal to 2, because if we double it we get
28 = 2414+ ik = 248,
On the other hand, this same reasoning suggests that we ought to define

T = 1+2+4+48+16+32+--

Sure: 1+ 2+ to be -1, for if we double it we get

4+8~..isthe

“infinite  precision” 2T = 244+ 8+16+32+464+.-- = T-I.

representation  of

the mmber L omething funny is going on; h t a negati ber b |

in abinay oom- mething funny is going on; how can we get a negative number by summing

puter with infinite positive quantities? It seems better to leave T undefined; or perhaps we should
word size say that T = 00, since the terms being added in T become larger than any
fixed, finite number. (Notice that oo is another “solution” to the equation
2T=T 1; it also “solves’ the equation 25 =2 + S)
Let's try to formulate a good definition for the value of a general sum
2 kek @k, Where K might be infinite. For starters, let's assume that al the
terms qi are nonnegative. Then a suitable definition is not hard to find: If
there's a bounding constant A such that

ZakgA

keF

for al finite subsets F c K, then we define } | . ax to be the least such A.
(It follows from well-known properties of the real numbers that the set of
al such A always contains a smallest element.) But if there's no bounding
constant A, we say that } , . ax = oo; this means that if A is any real
number, there's a set of finitely many terms ax whose sum exceeds A.
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The definition in the previous paragraph has been formulated carefully
so that it doesn’'t depend on any order that might exist in the index set K.
Therefore the arguments we are about to make will apply to multiple sums
with many indices k;, kz, . ., not just to sums over the set of integers.

In the special case that K is the set of nonnegative integers, our definition
for nonnegative terms qy implies that

n
2_a = lm ) a.
k0 k=0
Here's why: Any nondecreasing sequence of real numbers has a limit (possi-
bly oo). If the limit is A, and if Fis any finite set of nonnegative integers
whose elements are all < n, we have }_,rok < Y ;_,ax <A; hence A = 00
or A is a bounding constant. And if A’ is any number less than the stated
limit A, then there’s an n such that Y ! ax > A’; hence the finite set
F={0,1,...,n} witnesses to the fact that A’ is not a bounding constant.

We can now easily compute the value of certain infinite sums, according
to the definition just given. For example, if a; = x*, we have

> -

k=0

1 -—X“H

L {1/(1—x), ifo<x<1;

y
n 00, ifx>1.

n—ooo 1 —x
In particular, the infinite sums Sand T considered a minute ago have the re-
spective values 2 and oo, just as we suspected. Another interesting example is

Y ey~ 2
Ly &
—-1m

n
= 1im§ k=2 = lim —|= 1 .
n—00 n—oo —1]
k=0 0

Now let's consider the case that the sum might have negative terms as
well as nonnegative ones. What, for example, should be the value of

2 (1F =

k20

1141141147

If we group the terms in pairs, we get
-+ -D+0-4- = 04+04+0+---,

so the sum comes out zero; but if we start the pairing one step later, we get
I-a0-1-1-1y-1-1)-...="-0-0-0-

the sum is 1.

The st K might
even be uncount-
able. But only a
countable  num-

ber of terms can

be nonzero, if a
bounding  constant
A exists, because at
most nA tems ae
= |/n.

“Aggregatum
Quantitatum
a-ata-ata--a
etc. nunc est = a,
nunc = 0, adeoque
continuata in infini-
tum serie ponendus
= al/2, fateor
acumen e veritatem
animadversionis

»

—G. Grandi [133]
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We might also try setting x = -1 in the formula 3, ., x=1 /(1 ~x),
since we've proved that this formula holds when 0 < x < 1; but then we are
forced to conclude that the infinite sum is %, although it's a sum of integers!

Another interesting example is the doubly infinite } , ax where ax =
1/{k+ 1) for k > 0 and q, = 1/{k— 1) for k < 0. We can write this as

(DA ED T (2:58)

If we evaluate this sum by starting at the “center” element and working
outward,

(s D D)

we get the value 1; and we obtain the same value 1 if we shift all the paren-
theses one step to the left,

(A ED DD A

because the sum of al numbers inside the innermost n parentheses is

A similar argument shows that the value is 1 if these parentheses are shifted
any fixed amount to the left or right; this encourages us to believe that the
sum is indeed 1, On the other hand, if we group terms in the following way,

(T Db D b )
the nth pair of parentheses from inside out contains the numbers

- —1— - 1._.......... 11+]+1+...+._]__+_]_:]+H — H
n+l1 n 2 2 2n—-1  2n m mH

WEe'll prove in Chapter 9 that lim,,_, o (H2zn—Hn+1) = IN2; hence this grouping
suggests that the doubly infinite sum should really be equal to 1 + In2.

There's something flaky about a sum that gives different values when
its terms are added up in different ways. Advanced texts on analysis have
a variety of definitions by which meaningful values can be assigned to such
pathological sums; but if we adopt those definitions, we cannot operate with
x-notation as freely as we have been doing. We don’t need the delicate refine-
ments of “conditional convergence” for the purposes of this book; therefore
we'll stick to a definition of infinite sums that preserves the validity of all the
operations we've been doing in this chapter.



60 SUMS

In fact, our definition of infinite sums is quite simple. Let K be any
set, and let a, be a rea-valued term defined for each k € K. (Here ‘K’
might actually stand for several indices k;, k;, . . , and K might therefore be
multidimensional.) Any real number x can be written as the difference of its
positive and negative parts,

x = xt —x where x* = x-[x>0] and x~ = —x-[x<0].

(Either x+=0o0rx = 0.) We've dready explained how to define values for
the infinite sums ¥ . af and ¥ ¢« o because ai and a, are nonnegative.
Therefore our general definition is

Zak = Za; — :Z__Cl;, (2'59)

kek kek keK

unless the right-hand sums are both equal to oo. In the latter case, we leave
Y yex Gk undefined.
Let A+ = 3 ek af and A7 = ) (¢ a,. If A+ and A~ are both finite,
the sum ZkEK ok is said to converge absolutely to the value A = A* = A~. In other words, ap-
If AT = oo but A is finite, the sum ZkeK ay is said to diverge to +oo. %Jégﬁct%‘tfetffggfﬁn
Smilarly, if A”= oo but A+ is finite, 3 ;. ax is said to diverge to —oo. If "o values
At = A7 = o0, dl bets are off. CONVerges.
We started with a definition that worked for nonnegative terms, then we
extended it to real-valued terms. If the terms q, are complex numbers, we
can extend the definition once again, in the obvious way: The sum 3, ¢ ax
is defined to be 3, .« Rax +1) ¢ Jak, where Rax and Jax are the real
and imaginary parts of ok--provided that both of those sums are defined.
Otherwise 3 |, ax is undefined. (See exercise 18.)
The bad news, as stated earlier, is that some infinite sums must be left
undefined, because the manipulations we've been doing can produce inconsis-
tencies in all such cases. (See exercise 34.) The good news is that al of the
manipulations of this chapter are perfectly valid whenever we're dealing with
sums that converge absolutely, as just defined.
We can verify the good news by showing that each of our transformation
rules preserves the value of all absolutely convergent sums. This means, more
explicitly, that we must prove the distributive, associative, and commutative
laws, plus the rule for summing first on one index variable; everything else
we've done has been derived from those four basic operations on sums.
The distributive law (2.15) can be formulated more precisely as follows:
If 3, . ax converges absolutely to A and if ¢ is any complex number, then
ZkEK ca; converges absolutely to cA. We can prove this by breaking the sum
into real and imaginary, positive and negative parts as above, and by proving
the special case in which ¢ > 0 and each term ay is nonnegative. The proof
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in this special case works because J_, ¢ cayx = C 3_, ¢ ax for al finite sets F;
the latter fact follows by induction on the size of F.

The associative law (2.16) can be stated as follows: If 3 .. ax and
¥ «ex bk converge absolutely to A and B, respectively, then 3¢« (ax + by)
converges absolutely to A + B. This turns out to be a special case of a more
general theorem that we will prove shortly.

The commutative law (2.17) doesn’t really need to be proved, because
we have shown in the discussion following (2.35) how to derive it as a specia
case of a genera rule for interchanging the order of summation.

The main result we need to prove is the fundamental principle of multiple
sums: Absolutely convergent sums over two or more indices can always be
summed first with respect to any one of those indices. Formally, we shall

Best to skim this prove that if Jand the elements of {K; j € J} are any sets of indices such that
page the first time

you get here.
— Your friendly TA Z ajx converges absolutely to A,
W&

then there exist complex numbers A; for each j € J such that

Y ;i converges absolutely to A;, and
keK;

) A; converges absolutely to A,

j€]

It suffices to prove this assertion when all terms are nonnegative, because we

can prove the general case by breaking everything into real and imaginary,

positive and negative parts as before. Let's assume therefore that a; = O for

al pairs (j, k) € M, where M is the master index set {(j, k) j € J, k €K;}.
We are giventhat 3~ ; , cm 9.k is finite, namely that

Z aj Kk g A

(3,k)€F

for al finite subsets F C M, and that A is the least such upper bound. If j is
any element of J, each sum of the form §, .. a;« where F; is a finite subset
of K; is bounded above by A. Hence these finite sums have a least upper
bound A; > 0, and 3 ,¢, @5,k = A; by definition.

We dtill need to prove that A is the least upper bound of 3 ;¢ Aj,
for al finite subsets G C J. Suppose that G is a finite subset of J with
Y icc Aj=A > A. We can find finite subsets F; C K; such that 3 ;¢ ajx >
(A/ANA, for each j € G with A; > 0. There is at least one such j. But then
Zjee,kgj ajx > (A/A’) X ;cq A = A, contradicting the fact that we have
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2 ker G5, < A for dl finite subsets F C M. Hence 3 ;. A; < A, for all
finite subsets G C J.

Finaly, let A’ be any real number less than A. Our proof will be complete
if we can find a finite set G C J such that ZjeG A; > A’. We know that
there’s a finite set F C M such that Z(j,k)EF a;x > A’; let G be the set of j's
in this F, and let F;={k (, k) € F}. Then Z,.GG A 2 ZjeG ZkeFj Q=
Ljxer Gix > A'; QED.

OK, we're now legitimate! Everything we've been doing with infinite
sums is justified, as long a3 there’'s a finite bound on all finite sums of the
absolute values of the terms. Since the doubly infinite sum (2.58) gave us
two different answers when we evaluated it in two different ways, its positive
terms 1 + %+ %+- .. must diverge to oo; otherwise we would have gotten the
same answer no matter how we grouped the terms.

Exercises
Warmups

1 What does the notation

mean?
2 Simplify the expression x . ([x > 0] - [x < 0]).
3 Demonstrate your understanding of t-notation by writing out the sums

Z ax and Z Qg2

0<k<5 0gk2<5
in full. (Watch out -the second sum is a bit tricky.)

4  Express the triple sum

Z Qijk

I1gi<i<ks4

as a three-fold summation (with three ) 's),

a summing first on k, then j, then 1,

b summing first on 1, then j, then k.

Also write your triple sums out in full without the t-notation, using
parentheses to show what is being added together first.

So why have [ been
hearing a lot lately
about  “harmonic
convergence”?
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5 What's wrong with the following derivation?

CRRTIEN NS T S S

What is the value of ) ,{1<j <k< n], as afunction of j and n?
Let Vi(X) = f(x) — F(x-1). What is V(x™)?
What is the value of 0™, when m is a given integer?

© 00 N O

What is the law of exponents for rising factorial powers, analogous to
(2.52)7 Use this to define x ™.

10 The text derives the following formula for the difference of a product:
Aluv) = uAv + EvAu.
How can this formula be correct, when the left-hand side is symmetric
with respect to u and v but the right-hand side is not?
Basics
11 The genera rule (2.56) for summation by parts is equivaent to
Y (@i = @by = anby — agbo
0<k<n

— Z ax41 (bxs1 by), forn>0.

0<k<n
Prove this formula directly by using the distributive, associative, and
commutative laws.

12 Show that the function p(k) = k+ (—1)*c is a permutation of the set of
al integers, whenever c is an integer.

13 Use the repertoire method to find a closed form for ZEZO(—l)ka.
14 Evaluate § ;_, k2* by rewriting it as the multiple sum Y i<icken 2k,

15 Evaluate 63, = ) ,_; k* by the text's Method 5 as follows: First write
@ = 0 B 8 2Ygqaikithenapply(2.33).

16 Prove that x™/(x — n)= = x&/(x = m)Z, unless one of the denominators
is zero.

17 Show that the following formulas can be used to convert between rising
and falling factorial powers, for al integers m:

= (x+m-1"
= (D)= = (x—m4+ )"

non
==
= =
+
T
E{E]

(The answer to exercise 9 defines x ™)
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18 Let Rz and Jz be the real and imaginary parts of the complex num-

ber z. The absolute value |z| is v/(Rz)? + (Jz)2. A sum ZkeK ay of com-
plex terms ax is said to converge absolutely when the real-valued sums
Y vex Ray and 3~ Jay both converge absolutely. Prove that 3~ ¢ ax
converges absolutely if and only if there is a bounding constant B such
that 3, rlaxl < B for all finite subsets F C K.

Homework exercises
19 Use a summation factor to solve the recurrence
To = 5
2T, =nT,,+3.n!, for n> 0.
20 Try to evauate z{::o kHy by the perturbation method, but deduce the
value of 3", Hy instead.

21 Evaluamethesumss = YoM T = Y (=1 kK, and U, =
Y io(=1)"7*K? by the perturbatlon method assuming that n > 0.

22 Prove Lagrange’s identity (without using induction):

Y (abe—aby)? = (Z] )(;FZ) - (kz;akbk)z.

1<j<kgn '

This, incidentally, implies Cauchy’s inequality,

n 2 1:1_ n
(2 avvr)” e (3 o) (3 01)
k=1 k=1 k=1
23 Evauate the sum 3 ;_; (2k + 1)/(k(k + 1)) in two ways:
a Replace 1 /k(k + 1) by the “partid fractions’ 1 /k 1 /(k + 1).
b Sum by parts.

24 What i8 3 gcpen He/(k + 1)(k + 2)? Hint: Generalize the derivation of
(2.57).

25 The notation JT, ., ax means the product of the numbers ay for al k € K.
Assume for simplicity that a, # 1 for only finitely many k; hence infinite
products need not be defined. What laws does this n-notation satisfy,
analogous to the distributive, associative, and commutative laws that
hold for " ?

26 Express the double product Hl<]<k<n aj ax in terms of the single product
[T ax by manipulating n-notation. (This exercise gives us a product
analog of the upper-triangle identity (2.33).)

It's hard to prove
the identity of
somebody who's
been dead for 175
years.

This notation was

introduced b
Jacobi in 1829y [162].
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27 Compute A(c¥), and use it to deduce the value of Y ._,(—2)¥/k.
28 At what point does the following derivation go astray?

kK k-1
h= Zkk+1 - Z(?ﬁ_7>

k=1 k=21
= ZZ( i=k+1] ‘]E[" ~1]>
k=1 321
- < =k +1] _)Eb“ —1])
;>1 K21
k .
= T ¥ (§lk=i-n- )
j k
)>1 k21

-X (" k) - S -
m( i i+l = &6+ =
Exam problems

29 Evaluate the sum 3 [, (—1)%k/(4k? ~ 1).

30 Cribbage players have long been aware that 15 =7 + 8 =4 + 5+ 6 =
1+2+ 3+ 4+ 5. Find the number of ways to represent 1050 as a sum of
consecutive positive integers. (The trivial representation ‘1050' by itself
counts as one way; thus there are four, not three, ways to represent 15
as a sum of consecutive positive integers. Incidentally, a knowledge of
cribbage rules is of no use in this problem.)

31 Riemann’s zeta function (k) is defined to be the infinite sum

1
1+2_k _Z)k

izl

Prove that 3, _,(C(k)= 1) =1 What is the value of 2 >, (C(2k) = 1)7
32 Leta = b= max(0,a = b). Prove that
Zmin(k,x;k) = Z(x; (2k+ 1))
k20 k=0
for dl real x > 0, and evaluate the sums in closed form.
Bonus problems

33 Let Ak ax denote the minimum of the numbers a (or their greatest
lower bound, if K is infinite), assuming that each ay is either real or +oo.
What laws are valid for A-notation, analogous to those that work for %
and []? (See exercise 25.)
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34 Prove that if the sum 3~ . ay is undefined according to (2.59), then it

35

36

is extremely flaky in the following sense: If A~ and AT are any given
real numbers, it's possible to find a sequence of finite subsets F; ¢ F, ¢
F; C+. . of K such that

Z age A -, Whennisodd; Z_ ax = AT, when n is even
k€F, kEF,

Prove Goldbach’ s theorem

L ]+1+]+1+ 5t Z
7 8 15 24 31 k—]”

where P is the st of “perfect powers’ defined recursively as follows: Perfect power
corrupts perfectly.

={m™ m>2n 2= 2m ¢ P}

Solomon Golomb’s “ self.-describing sequence” (f (1), f(2),1(3),...)isthe
only nondecreasing sequence of positive integers with the property that
it contains exactly f(k) occurrences of k for each k. A few moments
thought reveals that the sequence must begin as follows:

n| 1234567891011 12
fn)| 1223344455 5 6

Let g(n) be the largest integer m such that f(m) = n. Show that
a g(n)= Y flk)

b g(9(n) = Ly kf(k).

¢ o(glom) = Ingm)(g(n) + 1) 1 Y1) alk)(glk) + 1).

Research problem
37 Will al the I/k by 1/(k + 1) rectangles, for k > 1, fit together inside a

1 by 1 square? (Recall that their areas sum to 1.)

ete. 1
1 4

e
1

W= Wl




Integer Functions

)Ouch.(

WHOLE NUMBERS constitute the backbone of discrete mathematics, and we
often need to convert from fractions or arbitrary real numbers to integers. Our
goal in this chapter is to gain familiarity and fluency with such conversions
and to learn some of their remarkable properties.

3.1 FLOORS AND CEILINGS

We start by covering the floor (greatest integer) and ceiling (least
integer) functions, which are defined for al real x as follows:

|x| = the greatest integer less than or equa to x;

(3-1)

[x] = the least integer greater than or equal to x .

Kenneth E. Iverson introduced this notation, as well as the names “floor” and
“ceiling,” early in the 1960s [161, page 12]. He found that typesetters could
handle the symbols by shaving the tops and bottoms off of ‘ [*and ‘] . His
notation has become sufficiently popular that floor and ceiling brackets can
now be used in a technical paper without an explanation of what they mean.
Until recently, people had most often been writing ‘[x]’ for the greatest integer
< X, without a good equivalent for the least integer function. Some authors
had even tried to use ‘]x['—with a predictable lack of success.

Besides variations in notation, there are variations in the functions them-
selves. For example, some pocket calculators have an INT function, defined
as |x] when x is positive and [x] when x is negative. The designers of
these calculators probably wanted their INT function to satisfy the iden-
tity INT(-x) = —INT(x}. But we'll stick to our floor and ceiling functions,
because they have even nicer properties than this.

One good way to become familiar with the floor and ceiling functions
is to understand their graphs, which form staircase-like patterns above and

67
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below the line f(x) = x:

X = —¢ ' f(x) f(x) =x

[X] = wonees

) = —

3(-2 -1 3 x
(1 . 1171 —2
o -3

2?
[e] = 3, [—e] = -2,

since e = 2.71828.. . .

By staring at this illustration we can observe several facts about floors
and ceilings. First, since the floor function lies on or below the diagonal line
f(x) = x, we have |x] € x; similarly [xI = x. (This, of course, is quite
obvious from the definition.) The two functions are equal precisely at the
integer points:

x| = x & X is an integer = (x] = x

(We use the notation ‘<’ to mean “if and only ifl*) Furthermore, when
they differ the ceiling is exactly 1 higher than the floor:

[x] ~ [x] = [x is not an integer] . (3.2)
If we shift the diagonal line down one unit, it lies completely below the floor

function, so x — 1 < [x[; smilaly x + 1 > [x]. Combining these observations
gives us

x-1 < |x] < x € [x] < x+1. (3.3)
Finally, the functions are reflections of each other about both axes:

=) = =Ix5 [=x] = =[] (3-4)

Cute.
By Iverson ’s bracket
convention, this is a
complete  equation.
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Thus each is easily expressible in terms of the other. This fact helps to
explain why the ceiling function once had no notation of its own. But we
see ceilings often enough to warrant giving them special symbals, just as we
have adopted special notations for rising powers as well as falling powers.
Mathematicians have long had both sine and cosine, tangent and cotangent,

Next wesk we're secant and cosecant, max and min; now we also have both floor and ceiling.

getting - walls To actualy prove properties about the floor and ceiling functions, rather
than just to observe such facts graphically, the following four rules are espe-
cialy useful:

x] = n &= n<x<n+l1, (a)

x]=n &= x-l<ngx, (b)
X]=n & n -1 <x<n, (c) (35)
[x]=n & x<n<x+l1. (d)

(We assume in al four cases that n is an integer and that x is real.) Rules

(8 and (c) are immediate consequences of definition (3.1); rules (b) and (d)

are the same but with the inequalities rearranged so that n is in the middle.
It's possible to move an integer term in or out of a floor (or ceiling):

x + n]=|x] +n, integer n. (3-6)

(Because rule (3.5(8)) says that this assertion is equivalent to the inequalities
x| + n <X +n<|x]+n+ 1) But smilar operations, like moving out a
constant factor, cannot be done in general. For example, we have |nx] # n|x]
when n = 2 and x = 1/2. This means that floor and ceiling brackets are
comparatively inflexible. We are usualy happy if we can get rid of them or if
we can prove anything at all when they are present.

It turns out that there are many situations in which floor and ceiling
brackets are redundant, so that we can insert or delete them at will. For
example, any inequality between a real and an integer is equivalent to a floor
or ceiling inequality between integers.

x<n & |x]<n, (a)

n<x <& n<[x], (b)

x<n = [K6n, () &7
(

n<x <« ne6lx. d)

These rules are easily proved. For example, if x < n then surely |x| < n, since
[x] < x. Conversely, if [x] < n then we must have x < n, since x < |x| + 1
and [x]+1 < n.

It would be nice if the four rules in (3.7) were as easy to remember as
they are to prove. Each inequality without floor or ceiling corresponds to the
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same inequality with floor or with ceiling; but we need to think twice before
deciding which of the two is appropriate.

The difference between. x and |x| is called the fractional part of X, and
it arises often enough in applications to deserve its own notation:

x} = x = |x]. (3-8)

We sometimes call |x| the integer part of X, since x = [x] + {x}. If a red
number x can be written in the form x = n + 8, where n is an integer and
0 <8 <1, we can conclude by (3.5(a))that n = [x]and 8 = {x}.

Identity (3.6) doesn’'t hold if n is an arbitrary real. But we can deduce
that there are only two possibilities for |x + y| in genera: If we write x =
Ix] + {x} and y = ly] + {y}, then we have [x + y|= [x] + [y] + [{x} + {y}].
And since 0 < {x} +{y} < 2, we find that sometimes |x -+ y]is |x]| + |y]
otherwise it's |x| + |y] + 1.

b}

3.2 FLOOR/CEILING APPLICATIONS

We've now seen the basic tools for handling floors and ceilings. Let's
put them to use, starting with an easy problem: What's [1g35]? (We use ‘Ig’
to denote the base-2 logarithm.) Well, since 2° < 35 < 2¢, we can take logs
to get 5 <1935 < 6; so (3.5(c)) tells us that [1g35] = 6.

Note that the number 35 is six hits long when written in radix 2 notation:;
35 = (100011)~. Is it always true that [lgn] is the length of n written in
binary? Not quite. We also need six bits to write 32 = (100000),. So [lgn]
is the wrong answer to the problem. (It fails only when n is a power of 2,
but that's infinitely many failures.) We can find a correct answer by realizing
that it takes m bits to write each number n such that 2™ <n < 2™ thus
(3.5(a)) tells us that m = 1 = |lgn], so m = [lgn| + 1. That is, we need
|lgn) t 1 bits to express n in binary, for all n > 0. Alternatively, a similar
derivation yields the answer [lg(n t 1 )]; this formula holds for n = 0 as well,
if we're willing to say that it takes zero bits to write n = 0 in binary.

Let's look next at expressions with several floors or ceilings. What is
[x]]? E a's ysince |x| is an integer, [[x]]isjust |x]. So is any other ex-
pression with an innermost | x| surrounded by any number of floors or ceilings.

Here's a tougher problem: Prove or disprove the assertion

W] = vl

Equality obviously holds when x is an integer, because x = [x|. And there's
equality in the special cases m = 314159. . . , e = 271828. . . , ad ¢ =
(1 ++/5)/2=1.61803..., because we get 1 = 1. Our failure to find a coun-
terexample suggests that equality holds in general, so let's try to prove it.

red x 2 0. (3-9)

Hmmm. We’d bet-
ter not write {x}
for the fractiond
pat when it could
be confused with
the set containing X
as its only element.

The second case

occurs if and only
if there’s a “carry”
at the position of
the decimal point,
when the fractiond

parts {x} and {y}
are added together.

[Of course m, e,
and ¢ arethe
obvious first real
numbers to try,
aren’t  they?)



Skepticism is
hedlthy only to
a limited extent.
Being skeptica
about proofs and
programs  (particu-
larly your own) will
probably keep your
grades hedthy and
your job farly s
cure. But applying
that much skepti-
cism will probably
d keep you shut
avay working al
the time, instead
of letting you get
out for exerdse ad
relaxation.
Too much skepti-
cism is an open in-
vitation to the State
of rigor mortis,
where you become
s worried about
beng correct and
rigorous that you
never get anything
finished.

-A skeptic

(This  observation

was made by R. J.
McEliece when he
was an undergrad.)
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Incidentally, when we're faced with a “prove or disprove,” we're usualy
better off trying first to disprove with a counterexample, for two reasons:
A disproof is potentialy easier (we need just one counterexample); and nit-
picking arouses our creative juices. Even if the given assertion is true, our
search for a counterexample often leads us to a proof, as soon as we see why
a counterexample is impossible. Besides, it's healthy to be skeptical.

If we try to prove that L\/WJ = |v/x] with the help of calculus, we might
start by decomposing x into its integer and fractional parts [x| + {x} =n+ 0
and then expanding the square root using the binomial theorem: (n+9)'/% =
n'/24n"129/2 =n-3/29%/8 + ... But this approach gets pretty messy.

It's much easier to use the tools we've developed. Here's a possible strat-
egy: Somehow strip off the outer floor and square root of |y/[x]], then re-
move the inner floor, then add back the outer stuff to get |/x|. OK. We let
m = |/[x]] and invoke (3.5(@), giving m < \/LX_J <m+ 1 That removes
the outer floor bracket without losing any information. Squaring, since all
three expressions are nonnegative, we have m? < |x] < (m + 1)2 That gets
rid of the square root. Next we remove the floor, using (3.7(d)) for the left
inequality and (3.7(a)) for the rightt m? < x < (m + 1)% It's now a simple
matter to retrace our steps, taking square roots to get m < /x < m + 1 and
invoking (3.5(a)) to get m = [y/x]. Thus |y/[x]] = m = [/x]; the assertion
is true. Similarly, we can prove that

MEIERIE

The proof we just found doesn’t rely heavily on the properties of square
roots. A closer look shows that we can generalize the ideas and prove much
more: Let f(x) be any continuous, monotonically increasing function with the
property that

red x = 0.

f(x) = integer =— X = integer.

(The symbol ‘=' means “implies!’) Then we have

)T = T,

whenever f(x), f(|x]), and £( [x]) are defined. Let's prove this general prop-
erty for ceilings, since we did floors earlier and since the proof for floors is
amost the same. If x = [x], there's nothing to prove. Otherwise x < [x],
and f(x) <f¥ ([x]) since f isincreasing. Hence[f (x)] < [f ( [x] )], since[]is

nondecreasing. If [f(x)] < [f( [x]]], there must be a number y such that
x <y< [x] and f(y) = [f(x)], since f is continuous. Thisy is an integer, be-
cause of f-s special property. But there cannot be an integer strictly between
x and [x]. This contradiction implies that we must have [f (x)] = [f ¢ [x])].

and (3.10)
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An important special case of this theorem is worth noting explicitly:

[”_’“J - {MJ and Pj_m] = [M] (3.11)

n n n n

if m and n are integers and the denominator n is positive. For example, let

m = 0; we have [[[x/10]/10| /10] = [x/1000]. Dividing thrice by 10 and

throwing off digits is the same as dividing by 1000 and tossing the remainder.
Let’s try now to prove or disprove another statement:

[VIXIT £ [Vx], realx 0.

This works when x = 7t and x = e, but it fails when x = ¢; so we know that
it isn't true in general.

Before going any further, let’s digress a minute to discuss different “lev-
els’ of questions that can be asked in books about mathematics:

Level 1. Given an explicit object x and an explicit property P(x), prove that
P(x) is true. For example, “Prove that [n] = 3.” Here the problem involves
finding a proof of some purported fact.

Level 2. Given an explicit set X and an explicit property P(x), prove that
P(x) is true for gll x € X. For example, “Prove that |x| £ x for al real x.”
Again the prablem involves finding a proof, but the proof this time must be
genera. We're doing algebra, not just arithmetic.

Level 3. Given an explicit set X and an explicit property P(x), prove or
disprove that P(x) is true for al x € X. For example, “Prove or disprove
that [\/[x]] = [vx] for dl red x > 0 Here ther¢'s an additiona level
of uncertainty; the outcome might go either way. This is closer to the real
Situation a mathematician constantly faces: Assertions that get into books
tend to be true, but new things have to be looked at with a jaundiced eye. If
the statement is false, our job is to find a counterexample. If the statement
is true, we must find a proof asin level 2.

Level 4. Given an explicit set X and an explicit property P(x), find a neces-
sary and sufficient condition Q(x) that P(x) is true. For example, “Find a
necessary and sufficient condition that |x| > [x].” The problem is to find Q
such that P(x) & Q(X). Of course, there's always a trivial answer; we can
take Q(X) = P(x). But the implied requirement is to find a condition that's as
simple as possible. Creativity is required to discover a simple condition that
will work. (For example, in this case, “|x| > [x] & X is an integer.“) The
extra element of discovery needed to find Q(x) makes this sort of problem
more difficult, but it's more typical of what mathematicians must do in the
“real world!" Finally, of course, a proof must be given that P(x) is true if and
only if Q(X) is true.

In my other texts
“prove or disprove”

seems to mean the
same as “prove,”
about 99.44% of
the time; but not

in this book.

But no simpler.
-A. Einstein
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Level 5. Given an explicit set X, find an interesting property P(x) of its
elements. Now we're in the scary domain of pure research, where students
might think that total chaos reigns. This is real mathematics. Authors of
textbooks rarely dare to ask level 5 questions.

End of digression. But let's convert our last question from level 3 to
level 4: What is a necessary and sufficient condition that [/[x]] = [vx1?
We have observed that equality holds when x = 3.142 but not when x = 1.618;
further experimentation shows that it fails also when x is between 9 and 10.
Home of the Oho. Yes. We see that bad cases occur whenever m? < x < m? + 1, since this
Toledo Mudhens. gives m on the left and m + 1 on the right. In al other cases where /x is
defined, namely when x = 0 or m? +1 <x < (m + 1 )%, we get equality. The
following statement is therefore necessary and sufficient for equality: Either
x is an integer or +/[x] isn't.
For our next problem let's consider a handy new notation, suggested
by C. A. R. Hoare and Lyle Ramshaw, for intervals of the real line: [o. P]
denotes the set of real numbers x such that o« < x < p. This set is caled
a closed interval because it contains both endpoints o and 3. The interval
containing neither endpoint, denoted by («., (), consists of al x such that
o < X < B; this is called an open interval. And the intervals [x.. ) and
(@ . B], which contain just one endpoint, are defined similarly and called
(Or, by pessimists, half- open.
hal-closed.) How many integers are contained in such intervals? The half-open inter-
vals are easier, so we start with them. In fact half-open intervals are amost
always nicer than open or closed intervals. For example, they're additive-we
can combine the half-open intervals [x.. 3) and [ . . v) to form the half-open
interval [a . y}. This wouldn't work with open intervals because the point 8
would be excluded, and it could cause problems with closed intervals because
(3 would be included twice.
Back to our problem. The answer is easy if « and 3 are integers: Then
[c..B) containsthe 3 — o integers o, x4+ 1,. ... B —1, assuming that « < f.
Smilarly ( «.. Blcontains ¢« integers in such a case. But our problem is
harder, because o and B are arbitrary reals. We can convert it to the easier
problem, though, since

x<n<p = [x] < n < [B],
a<n<p = la] < n < [B],

when n is an integer, according to (3.7). The intervals on the right have
integer endpoints and contain the same number of integers as those on the |eft,
which have real endpoints. So the interval [ec.. 3) contains exactly [B] — [«]
integers, and (ec.. Bl contains [3] |«|. This is a case where we actually
want to introduce floor or ceiling brackets, instead of getting rid of them.
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By the way, therés a mnemonic for remembering which case uses floors
and which uses ceilings. Half-open intervals that include the left endpoint
but not the right (such as 0 £ 9 < 1) are slightly more common than those
that include the right endpoint but not the Ieft; and floors are slightly more
common than ceilings. So by Murphy’s Law, the correct rule is the opposite
of what we'd expect -ceilings for [ . . ) and floors for («. . ).

Similar analyses show that the closed interval [x.. ] contains exactly
|B] [«]+1integers and that the open interval («..R) contains[B]—|o|— 1;
but we place the additional restriction ¢ #  on the latter so that the formula
won't ever embarrass us by claiming that an empty interval (a. . «) contains
atotal of -1 integers. To summarize, we' ve deduced the following facts:

interval integers contained restrictions

[a. B] [B]~ [a] +1 a<B,

(.. B) [B] ~ [« a< B, (3.12)
(.. B] 18] = Lo a< B,

(.. B) B]= Lo —1 a<B.

Now here's a problem we can’t refuse. The Concrete Math Club has a
caEno (open only to purchesas of this book) in which thees a roudte whed
with one thousand slots, numbered 1 to 1000. If the number n that comes up
on a spin is divisible by the floor of its cube root, that is, if

lvn] \ n,

then it's a winner and the house pays us $5; otherwise it's a loser and we
must pay $1. (The notation a\b, read “a divides b;” means that b is an exact
multiple of a; Chapter 4 investigates this relation carefully.) Can we expect
to make money if we play this game?

We can compute the average winnings-that is, the amount we'll win
(or lose) per play-by first counting the number W of winners and the num-
b L = 1000 = W o losas If eech numba comes up once duing 1000 plays
we win 5W dollars and lose L dollars, so the average winnings will be

SW-L _ 5W-—(1000-W) 6w — 1000
1000 1000 = 1000
If there are 167 or more winners, we have the advantage; otherwise the ad-
vantage is with the house.

How can we oout the numba of winnas among 1 through 1 OOO? It's
not hard to spot a pattern. The numbers from 1 through 2° = 1 = 7 are al
winners because [¢/n] = 1 for each. Among the numbers 23 = 8 through
33 — 1 =26, only the even numbers are winners. And among 3? = 27 through
43 ~ 1 =63, only those divisible by 3 are. And so on.

Jug like we can re-
marbe the date of
Columbus's  depar-
t ure by singing, “In
fourteen hundred
and ninety-three/
Columbus sailed the
deep blue sea *

[A poll of the class
a this point showed
that 28 students
thought it was a
bad idea to play,
13 wanted to gam-
ble, and the regt
were too confused
to answer.)

(So we hit them
with the Concrete
Math Club.)
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The whole setup can be analyzed systematically if we use the summa-
tion techniques of Chapter 2, taking advantage of Iverson’s convention about
logical statements evaluating to O or 1:

1000
W . [n is a winner]

n=1

= YAy nl = Y [k=Lv/Al]knl <n<1000]

1€<n<1000 kn
= Z [ <n<(k+ 1)} m=kml1 <n<1000]
k,mmn

14+) [k <km< (k+1)3][1<k<10]

k,m
= 14 ) [me k.. (k+1)¥Kk)]1<k<10]
k,m

T+ > (K +3k+3+1/k] - [K)

1<k<10

= 1+ ) (3k+4) =1+
1<k<10

‘9 = 172.

7431
2

This derivation merits careful study. Notice that line 6 uses our formula
(3.12) for the number of integers in a haf-open interval. The only “difficult”
maneuver is the decision made between lines 3 and 4 to treat n = 1000 as a
special case. (The inequality k3 < n < (k + 1 )3 does not combine easily with
1 €£n<g<1000 whenk =10.) In general, boundary conditions tend to be the
True. most critical part of Xx-manipulations.
The bottom line says that W = 172; hence our formula for average win-
Where did you say nings per play reduces to (6.172 = 1000)/1000 dollars, which is 3.2 cents. We
this casino is? can expect to be about $3.20 richer after making 100 bets of $1 each. (Of
course, the house may have made some numbers more equal than others.)
The casino problem we just solved is a dressed-up version of the more
mundane question, “How many integers n, where 1 < n <1000, satisfy the re-
lation [¥/n] \ n?’" Mathematically the two questions are the same. But some-
times it's a good idea to dress up a problem. We get to use more vocabulary
(like “winners” and “losers’), which helps us to understand what’s going on.
Let's get general. Suppose we change 1000 to 1000000, or to an even
larger number, N . (We assume that the casino has connections and can get a
bigger wheel.) Now how many winners are there?
The same argument applies, but we need to deal more carefully with the
largest value of k, which we can call K for convenience:

K = [VN]
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(Previously K was 10.) The total number of winners for general N comes to

w

> (Bk+4)+ ) [KP<KmgN]

1<k<X

= H7+3K+1)(K=1)+ ) [me K. N/K]

= 3K+ 3K—4+ ) [me[K2..N/K]].
m

We know that the remaining sum is [N/K] = [K?] + 1= [N/K| - K + 1;
hence the formula

W = [N/K] +3K? + 3K -3, K = [VN] (3.13)

gives the general answer for a wheel of size N.

The first two terms of this formula are approximately N2/ + IN2/3 =
%Nm, and the other terms are much smaller in comparison, when N is large.
In Chapter 9 we'll learn how to derive expressions like

W = %NZ,/_’, + O(N”')’),

where O(N'/3) stands for a quantity that is no more than a constant times
N'/3. Whatever the constant is, we know that it's independent of N; so for
large N the contribution of the O-term to W will be quite small compared
with 3N?/3. For example, the following table shows how close N2 is to W:

N INZ/3 w % error
1,000 150.0 172 12.791
10,000 696.2 746 6.670
100,000 3231.7 3343 3.331
1,000,000 15000.0 15247 1.620
10,000,000 69623.8 70158 0.761
100,000,000 323165.2 324322 0.357
1,000,000,000 1500000.0 1502496 0.166

It's a pretty good approximation.

Approximate formulas are useful because they're simpler than formu-
las with floors and ceilings. However, the exact truth is often important,
too, especially for the smaller values of N that tend to occur in practice.
For example, the casino owner may have falsely assumed that there are only
3N?/3 = 150 winners when N = 1000 (in which case there would be a 10¢
advantage for the house).



... without lots
of generality. .

“If x be an in-
commensurable
number less than
unity, one of the
saries of quantities
m/x, m/(1—x),
where m Is a whole
number, can be
found which shall
he between any
given  consecutive
integers, and but
one such quantity
can be found.”

— Rayleigh [245]

Right, because
exactly one of
the counts must
increese when n
increases by 1.
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Our last application in this section looks at so-called spectra. We define
the spectrum of a real number a to be an infinite multiset of integers,

Spec(e) = {|a], [2&], [3], . . .}

(A multiset is like a set but it can have repeated elements.) For example, the
spectrum of 1/2 starts out {0,1,1,2,2,3,3,...}.

It's easy to prove that no two spectra are equal-that a # [ implies
Spec(o) # Spec(B). For, assuming without loss of generality that a < B,
there's a positive integer m such that m( § —a) > 1. (In fact, any m 2
[1/(B ~ &) will do; but we needn’t show off our knowledge of floors and
celings al the time) Hence m = ma > 1, and [mB] > |m«]. Thus
Spec(B) has fewer than m elements < | ma], while Spec(«) has at least m.

Spectra have many beautiful properties. For example, consider the two
multisets

Spec(v2) = {1,2,4,5,7,8,9,11,12,14,15,16,18,19,21,22,24 ,... },
Spec(2+v2) = {3,6,10,13,17,20,23,27,30, 34,37,40,44,47,51,... }.

It's easy to calculate Spec( /2 ) with a pocket calculator, and the nth element
of Spec(2+ v/2) is just 2n more than the nth element of Spec(v2 ), by (3.6).
A closer look shows that these two spectra are also related in a much more
surprising way: It seems that any number missing from one is in the other,
but that no number is in both! And it's true: The positive integers are the
digoint union of Spec(v/2 ) and Spec(2+ /2 ). We say that these spectra form
a partition of the positive integers.

To prove this assertion, we will count how many of the elements of
Spec(v/2) are < n, and how many of the elements of Spec(2++v2)are< n. If
the total is n, for each n, these two spectra do indeed partition the integers.

Let a be positive. The number of elements in Spec(«) that are < n is

N(a,n) = ) [lke] <n]

k>0

Y [lkaf <n+1]

k>0

Z[koc<n+ 11

k>0

Y [o<k<(n+1)/a]

k
=[(n+1)/«] -1. (3-14)

I
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This derivation has two special points of interest. First, it uses the law
m<n = m<n+1, integers m and n (3.15)

to change ‘<’ to ‘<’, so that the floor brackets can be removed by (3.7).
Also -and this is more subtle -it sums over the range k > 0 instead of k > 1,
because (n + 1 )/a might be less than 1 for certain n and a. If we had tried
to apply (3.12) to determine the number of integers in [1.. (n+ 1)/«x), rather
than the number of integers in (0.. (n+ 1)/a), we would have gotten the right
answer; but our derivation would have been faulty because the conditions of
applicability wouldn’t have been met.

Good, we have a formula for N (a, n). Now we can test whether or not
Spec( /2 ) and Spec(2+ /2 ) partition the positive integers, by testing whether
or not N(v/2, n) + N2 + v/2,n) = n for al integers n > 0, using (3.14):

[n—H‘I ]+[n+1'| :

- | = — |1 =n

V2 2+V2
n+w {n+{

= + =n, by (3.2);

{\/Z 2+42 (32)
n+1 {n+1} n+l {n—H}
I\ Vil arvit ez v (39

Everything simplifies now because of the neat identity

1 1
—t— = 1;
V2 24+V2

our condition reduces to testing whether or not

{n+1}+{ n+1 } _

V2 2+V2)

for dl n > 0. And we win, because these are the fractional parts of two
noninteger numbers that add up to the integer n + 1. A partition it is.

3.3 FLOOR/CEILING RECURRENCES

Floors and ceilings add an interesting new dimension to the study
of recurrence relations. Let's look first at the recurrence

K():l;

.16
Kpy1 = 1+ min(ZKLn/zJ,3KLn/3J), forn > 0. (3.16)

Thus, for example, K;is 1 4+ min(2Ky, 3K,) = 3; the sequence begins 1, 3, 3,
4,7, 17,7,9,9, 10, 13, . . . . One of the authors of this book has modestly
decided to call these the Knuth numbers.
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Exercise 25 asks for a proof or disproof that K, > n, for al n > 0. The
first few K's just listed do satisfy the inequality, so there's a good chance that
it's true in general. Let's try an induction proof: The basis n = 0 comes
directly from the defining recurrence. For the induction step, we assume
that the inequality holds for all values up through some fixed nonnegative n,
and we try to show that K.+1 2 n 4+ 1. From the recurrence we know that
Kanyr = 1+ min(2K |52/ ,3K|n/3))- The induction hypothesis tells us that
2K |ns2) 3 2|n/2] and 3K{n/3) 2 3 |n/3|. However, 2|n/2| can be as small
asn 1,and 3 [n/3] can be as small as n = 2. The most we can conclude
from our induction hypothesis is that K, > 1 + (n = 2); this falls far short
of Knsyizn+ 1

We now have reason to worry about the truth of K, > n, so let's try to
disprove it. If we can find an n such that either 2K, ;) <nor 3K/ <n,
or in other words such that

K[n/ZJ < n/2 or Kins) < n/3,

we will have K11 < n + 1. Can this be possible? We'd better not give the
answer away here, because that will spoil exercise 25.

Recurrence relations involving floors and/or ceilings arise often in com-
puter science, because algorithms based on the important technique of “divide
and conquer” often reduce a problem of size n to the solution of similar prob-
lems of integer sizes that are fractions of n. For example, one way to sort
n records, if n > 1, is to divide them into two approximately equal parts, one
of size [n/2] and the other of size [n/2]. (Notice, incidentally, that

n = /2] + [n/2]; (3.17)

this formula comes in handy rather often.) After each part has been sorted
separately (by the same method, applied recursively), we can merge the
records into their final order by doing at most n — 1 further comparisons.
Therefore the total number of comparisons performed is at most f(n), where

f() = 0O .
f(n) = f([n/2)) +f([n/2)) +n—1, forn>1 (3-28)

A solution to this recurrence appears in exercise 34.

The Josephus problem of Chapter 1 has a similar recurrence, which can
be cast in the form

J) =1
Jn) = 2J(In/2]) = (-1)», forn>1
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We've got more tools to work with than we had in Chapter 1, so let's
consider the more authentic Josephus problem in which every third person is
eiminated, instead of every second. If we apply the methods that worked in
Chapter 1 to this more difficult problem, we wind up with a recurrence like

Ja(n) = [%]3([%“]) + an-‘ modn+1,

where ‘mod’ is a function that we will be studying shortly, and where we have
a, =-2,+1,o0r —% accordingasnmod 3 =0, 1, or 2. But this recurrence
is too horrible to pursue.

There's another approach to the Josephus problem that gives a much
better setup. Whenever a person is passed over, we can assign a new number.
Thus, 1 and 2 become n + 1 and n + 2, then 3 is executed; 4 and 5 become
n+4 3andn + 4, then 6 is executed; . . .; 3k + 1and 3k+ 2 become n+2k+ 1
and n + 2k + 2, then 3k + 3 is executed; . . . then 3n is executed (or left to
survive). For example, when n = 10 the numbers are

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17
18 19 20 21 22
23 24 25
26 27
28
29
30

The kth person eliminated ends up with number 3k. So we can figure out who
the survivor is if we can figure out the original number of person number 3n.

If N > n, person number N must have had a previous number, and we
can find it as follows: Wehave N =n+ 2k + 1 or N =n + 2k + 2, hence
kK =|(N=n -~ 1)/2} ; the previous number was 3k + 1 or 3k + 2, respectively.
That is, it was 3k + (N =n - 2k) = k + N — n. Hence we can calculate the
survivor's number J3 (n) as follows.

N = 3n;
while N>n do N:=—t
Ig(n) = N.

N—n-1

5 J +N-n;

. . . “Not too slow,
Thisis not a closed form for J3(n); it's not even a recurrence. But at least it 0t ¢00 fast.”

tells us how to calculate the answer reasonably fast, if nislarge. -L. Armstrong
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DY =(3)c),
where

Cu  1.622270503.
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Fortunately there's a way to simplify this algorithm if we use the variable
D =3n+ 1~ N in place of N. (This change in notation corresponds to
assigning numbers from 3n down to 1, instead of from 1 up to 3n; it's sort of
like a countdown.) Then the complicated assignment to N becomes

SRR ESER R

:n+D*{2n2_DJ - D~{?J - D+{%1 = [3D],

]}+(3n+1—-D)—n)

and we can rewrite the algorithm as follows:

D =1,
while D <2n do D :=
Jsn) := 3n+1-D.

[$D];

Aha! This looks much nicer, because n enters the calculation in a very simple
way. In fact, we can show by the same reasoning that the survivor ], (n) when
every gth person is eliminated can be calculated as follows:

D =1
while D € (g9 = T)jndo D:=[4DJ; (3.19)
J,(n) :=gn+1-D,
In the case q = 2 that we know so well, this makes D grow to 2™*! when
n=2"+1; hence J2(n) =2(2™+ 1) +1 -2+ =21 + 1. Good.
The recipe in (3.19) computes a sequence of integers that can be defined
by the following recurrence:

Dy =1,
(a (3.20)
n

Dl — [LD(q) J

forn > 0.
n-1

g-1
These numbers don't seem to relate to any familiar functions in a simple
way, except when g = 2; hence they probably don’t have a nice closed form.
But if we're willing to accept the sequence Dilq) as “known,” then it’s easy to
describe the solution to the generalized Josephus problem: The survivor J, (n)
isqn+ 1 — D%, where k is as small as possible such that D\*’ > (q ~ 1)n.

3.4 ‘MOD’: THE BINARY OPERATION

The quotient of n divided by mis|n/m|, when m and n, are positive
integers. It's handy to have a simple notation also for the remainder of this
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division, and we cal it ‘n mod m’'. The basic formula

n = m|n/m|+ pmodm

quotient remainder

tells us that we can express n mod m as n — m|n/m| . We can generalize this
to negative integers, and in fact to arbitrary real numbers:

fory # 0.

xmody = x =y|x/y], (3.21)

This defines ‘mod’ as a binary operation, just as addition and subtraction are
binary operations. Mathematicians have used mod this way informaly for a
long time, taking various quantities mod 10, mod 27w, and so on, but only in
the last twenty years has it caught on formally. Old notion, new notation.

We can easily grasp the intuitive meaning of x mod y, when x and y
are positive rea numbers, if we imagine a circle of circumference y whose
points have been assigned real numbers in the interval [0 . . y). If we travel a
distance x around the circle, starting at O, we end up at x mod y. (And the
number of times we encounter 0 as we go is |x/y].)

When x or y is negative, we need to look at the definition carefully in
order to see exactly what it means. Here are some integer-valued examples:

5mod3 = 5-3|5/3 = 2;
5mod -3 = 5=(-3)|5/(-3)] = -1,
-5 mod 3= -5~ 3|-5/3] = 1

-5 mod -3 = -5 — (-3) |-5/(-3)] = -2.

The number after ‘mod’ is called the modulus; nobody has yet decided what
to cal the number before ‘mod. In applications, the modulus is usualy
positive, but the definition makes perfect sense when the modulus is negative.
In both cases the value of x mod y is between 0 and the modulus:

fory >0
fory < 0.

What about y = O? Definition (3.21) leaves this case undefined, in order to
avoid division by zero, but to be complete we can define

xmod0 = x. (3.22)

This convention preserves the property that x mod y always differs from x by
a multiple of y. (It might seem more natural to make the function continuous

a 0, by defining x mod 0 = lim,.,o X mod y = 0. But we'll see in Chapter 4

Why do they call it
‘mod’: The Binary
Operation? ~ Stay
tuned to find out in
the next, exciting,
chapter!

Beware of computer
languages that use
another  definition.

How about calling
the other number
the modumor?
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that this would be much less useful. Continuity is not an important aspect
of the mod operation.)

We've already seen one special case of mod in disguise, when we wrote x
in terms of its integer and fractional parts, x = |x| + {x}. The fractional part
can also be written x mod 1, because we have

X =[x]+x mod 1.

Notice that parentheses aren't needed in this formula; we take mod to bind
more tightly than addition or subtraction.

The floor function has been used to define mod, and the ceiling function
hasn’t gotten equal time. We could perhaps use the ceiling to define a mod
anaog like

xmumbley = y[x/y] —x;

There was a time in  in our circle analogy this represents the distance the traveler needs to continue,
the 70s when ‘mod”  after going a distance x, to get back to the starting point 0. But of course

ma;]bﬂgetggshm we'd need a better name than ‘mumble’. If sufficient applications come along,
mumble function an appropriate name will probably suggest itself.

$0ulq7be called The distributive law is mod's most important algebraic property: We
punk'” have

No-I like

mumble’ c(x mod y) = (cx) mod (cy) (3.23)

for al real c, x, and y. (Those who like mod to bind less tightly than multi-
plication may remove the parentheses from the right side here, too.) It's easy
to prove this law from definition (3.21), since

c(xmody) = c(x =y [x/y])=cx ~cy |cx/cy] = cx mod cy ,

if cy # 0; and the zero-modulus cases are trivialy true. Our four examples
using +5 and +3 illustrate this law twice, with ¢ = -1. An identity like
(3.23) is reassuring, because it gives us reason to believe that ‘mod’ has not
been defined improperly.

The remander, eh? In the remainder of this section, we'll consider an application in which
‘mod’ turns out to be helpful although it doesn't play a central role. The
problem arises frequently in a variety of situations: We want to partition
n things into m groups as equally as possible.

Suppose, for example, that we have n short lines of text that we'd like
to arrange in m columns. For aesthetic reasons, we want the columns to be
arranged in decreasing order of length (actually nonincreasing order); and the
lengths should be approximately the same-no two columns should differ by
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more than one line's worth of text. If 37 lines of text are being divided into
five columns, we would therefore prefer the arrangement on the right:

8 8 8 8 5 8 8 7 7 7
linel line9 line 17 line 25 line 33 line 1 line 9 line17 line 24 line 31
line 2 line10 line 18 line 26 line 34 line2 line 10 line 18 line 25 line 32
line3 linell line19 line 27 line 35 line3 line 11 line 19 line 26 line 33
line4 linel2 line20 line28 line36 line4 linel2 1ine20 line27 line34
line 5 line13 line 21 line 29 line 37 lines line13 line21 line 28 line35
line6 lineld4 line22 line30 line6é linel4 1line22 line29 line36
line7 line15 line 23 line31 line7 line 15 line 23 line 30 line 37

line 8 linei6 line 24 line32 line8 line 16

Furthermore we want to distribute the lines of text columnwise-first decid-
ing how many lines go into the first column and then moving on to the second,
the third, and so on-because that's the way people read. Distributing row
by row would give us the correct number of lines in each column, but the
ordering would be wrong. (We would get something like the arrangement on
the right, but column 1 would contain lines 1, 6, 11, . . ., 36, instead of lines
1,23 ..,,8 & dered)

A row-by-row distribution strategy can’t be used, but it does tell us how
many lines to put in each column. If nis not a multiple of m, the row-
by-row procedure makes it clear that the long columns should each contain
[n/ml lines, and the short columns should each contain [n/m|. There will
be exactly n mod m long columns (and, as it turns out, there will be exactly
n mumble m short ones).

Let's generalize the terminology and talk about ‘things and ‘groups
instead of ‘lines’ and ‘columns’. We have just decided that the first group
should contain [n/m] things, therefore the following sequential distribution
scheme ought to work: To distribute n things into m groups, when m > O,
put [n/m] things into one group, then use the same procedure recursively to
put the remaining " = n- [n/ml things into m" = m- 1 additional groups.

For example, if n = 314 and m = 6, the distribution goes like this:

remaining things remaining groups [things/groups]

314 6 53
261 5 53
208 4 52
156 3 52
104 2 52

52 1 52

It works. We get groups of approximately the same size, even though the
divisor  keeps  changing.

Why does it work? In general we can suppose that n = gm + r, where
g=|n/m/and v = n mod m. The process is simple if r = 0: We put
[n/m] = q things into the first group and replacen by " = n  q, leaving
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n' = gm' things to put into the remaining m* = m = 1 groups. And if
r > 0, we put [n/m]=q + 1 things into the first group and replace n
byn =n-~q 1,leavingn =gm + v 1 things for subsequent groups.
The new remainder is v/ = v — 1, but q stays the same. It follows that there
will be r groups with g + 1 things, followed by m  r groups with g things.
How many things are in the kth group? We'd like a formula that gives
[n/m] when k < n mod m, and |n/m| otherwise. It's not hard to verify

that
n—k+1
m

has the desired properties, because this reducesto q + [{(r k + 1 )/ml if we

write n = gm + T as in the preceding paragraph; here g = |n/m|. We have

[(r—k+ 1)/m]=[k<r],if 1 <k <mand 0 < 1 < m. Therefore we can
write an identity that expresses the partition of n into m as-equal-as-possible
parts in nonincreasing order:

n n—1 n—m+1
e e e | (324
This identity is valid for all positive integers m, and for all integers n (whether
positive, negative, or zero). We have already encountered the case m = 2 in
(3.17), dthough we wrote it in a dlightly different form, n = [n/2] 4+ [n/2].
If we had wanted the parts to be in nondecreasing order, with the small
groups coming before the larger ones, we could have proceeded in the same

way but with [n/m] things in the first group. Then we would have derived
the corresponding identity

n = {%J + {n—;]J +oet {%J . (3-25)

It's possible to convert between (3.25) and (3.24) by using either (3.4) or the
identity of exercise 12.

Some c/aim that it's Now if we replace n in (3.25) by |mx]| , and apply rule (3.11) to remove

too dangerous to floors inside of floors, we get an identity that holds for all rea x:

replace anything by

an = x| o T (3.26)
[mx| = [x]+ +TEJ—. + — - 3.

This is rather amazing, because the floor function is an integer approximation
of a real value, but the single approximation on the left equals the sum of a

bunch of them on the right. If we assume that |x] is roughly x — % on the

average, the left-hand side is roughly mx — ‘5, while the right-hand side comes
toroughly (x—3)+(x—1+ 1)+ -4+ (x—I4+2=1) =mx—1; thesumof

al these rough approximations turns out to be exact!
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35 FLOOR/CEILING SUMS

Equation (3.26) demonstrates that it's possible to get a closed form
for at least one kind of sum that involves | |. Are there others? Yes. The
trick that usually works in such cases is to get rid of the floor or ceiling by
introducing a new variable.

For example, let's see if it's possible to do the sum

> WK

0gk<n

in closed form. One idea is to introduce the variable m = L\/EJ; we can do
this “mechanically” by proceeding as we did in the roulette problem:

Z L\/EJ = Z m[k<n}[m:[\/EJ]

o<k<n k,m2=0

= Z mik<n][m<vik<m+1
k,m=>=0
= Z mlk<n][m?<k<(m+1)?]
k,m=0
= Z m[m2<k<(m+1)2<n]
k,m=20
+ ) mmi<k<n<(m+1)2]

k,m=0

Once again the boundary conditions are a bit delicate. Let’s assume first that
n = g is a perfect square. Then the second sum is zero, and the first can be

evaluated by our usual routine:

Y m[misk<(m+1)?<adl]
k,m=0

= Zm((m+])2—m2)[m+1§a]

mz0

= Y m@2m+1)m<al
mz0

= ) (2m?+3mY)im< a]
mz0

a
- ZO (2m2 + 3ml)sm

= Za(a—N(a=2)+3ala—1) = lM@a+Nala—-1).

Faling powers
make the sum come
tumbling down.



Warning: This stuff
is farly advanced.
Better skim the
next two pages on
fird reading; they
aren"t crucial.

-Friendly TA

Start
Skimming

3.5 FLOOR/CEILING SUMS 87

In the general case we can let a = |y/n]; then we merely need to add
the terms for a? < k < n, which are all equal to a, so they sum to (n — a?)a.
This gives the desired closed form,

> VK] = na—jad—ja?—ga, a= |[vn. (3.27)

Another approach to such sums is to replace an expression of the form
Ix) by 2 ; (1< < xJ; thisis legal whenever x > 0. Here's how that method
works in the sum of [square rocts|, if we assume for convenience that n = a:

> Wk = Y i<isvkiogk<al]

ogk<n ik
= Y Y jP<k<al]
1<j<a k
= Z (a*=j%) = a® Jala+ )a+ D).
1<j<a

Now here’'s another example where a change of variable leads to a trans-
formed sum. A remarkable theorem was discovered independently by three
mathematicians- Bohl [28], Sierpinski [265], and Weyl [300] -at about the
same time in 1909: If « is irrationa then the fractional parts {na} are very uni-
formly distributed between 0 and 1, as 1 — co. One way to state this is that

1 1
lim — f({kal}) = J f(x) dx (3.28)
n—oo N 0;(_“({ }) 0

for dl irrational o and all functions £ that are continuous almost everywhere.

For example, the average value of {nx} can be found by setting f(x) = x; we

get % (That's exactly what we might expect; but it's nice to know that it is

realy, provably true, no matter how irrationa « is.)
The theorem of Bohl, Sierpinski, and Weyl is proved by approximating

f(x) above and below by “step functions,” which are linear combinations of

the simple functions

00 = [0<x<v]

when 0 € v € 1. Our purpose here is not to prove the theorem; that’s a job

for calculus books. But let’s try to figure out the basic reason why it holds,
by seeing how well it works in the special case f(x) = f,,(x). In other words,

let's try to see how close the sum

> [{ka<v]

0<k<n

gets to the “ideal” value nv, when n is large and ¢ is irrational.
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For this purpose we define the discrepancy D(«,n) to be the maximum
absolute value, over al 0 < v <1, of the sum

s(o,m,v) = Z ([{koc}<v] —v). (3-29)

0gk<n

Our goal is to show that D( «, n) is “not too large” when compared with n,
by showing that [s(a, n, V)| is aways reasonably small.

First we can rewrite s(«, n,v) in simpler form, then introduce a new
index variable j:

Y (<o) -v) = Y (el — lka—v] —)

0<k<n 0gk<n

=-nv+ Y Z[koc——v<j$koc]

0gken

-nv + [fo ' <k < (§+v)o-
2 2 1 ']

0gi<na] kin

If we're lucky, we can do the sum on k. But we ought to introduce some
new variables, so that the formula won't be such a mess. Without loss of

generality, we can assume that 0 < a < 1; let us write Right, name and
conguer.
_ _ The change of vari-
a = |la'], a' = ato; ablefromktojis
_ -1 -1 _ v’ the main point.
b=[va’l], val =D -V — Fiiendly TA

Thus @ = {«~'} is the fractional part of &, and v’ is the mumble-fractional
part of v .

Once again the boundary conditions are our only source of grief. For
now, let’s forget the restriction ‘k < n' and evaluate the sum on k without it:

Z [ke a5 +v)o¢*')} = [+ vile+a)]=[ila + )]

k

Il

b+ [ja'—v'] = [ia'].
OK, that's pretty ssimple; we plug it in and plug away:

sle,m,v) = - nv+ [nalb+ Z ([ja'=v'7 Tja’1) =S, (330)

0%i<nel

whae S is a coretion for the cases with k > n that we have faled to exdude
The quantity ja’ will never be an integer, since a (hence &) is irrationa; and
ja — v’ will be an integer for at most one value of j. So we can change the
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ceiling terms to floors:

s(o,n,v) = —nv+ nalb— Z (Lie'] = ljo'=v']) =S+ [0or 1 1 .
0<j<[na]
(The formula Interesting. Instead of a closed form, we're getting a sum that looks rather

[Qor 1 ]sands ike s(x, n, v) but with different parameters: ' instead of «, [ne] instead
for something that's

dither 0 or 1 - we of n, and v’ instead of v. So we'll have a recurrence for s( &, n,v), which
needn't  commit (hopefully) will lead to a recurrence for the discrepancy D («, n). This means

oursdves, becale  we want to get
the details don't

redly matter.) S(OL,, l—no[l‘v/) - Z (L]OCIJ L]-(XI_VIJ —Vl)
0<j<[nal
into the act:
s(a,n,v) = -nv+ [nalb— [najv’ —s(a’, [na],v') =S+ [0or1].

Recalling that b —v/ = vac™! | we see that everything will simplify beautifully
if we replace [na] (b = V') by na(b —v’) = nv:

s(a,n,v) = —s(a&’, [na],v') -S + € + [0 or 11.

Here ¢ is a positive error of at most va~'. Exercise 18 proves that S is,
likewise, between 0 and oc~'. We can also remove the term for j = [na] =1 =

[ne| from the sum, since it contributes either v' or v’ = 1. Hence, if we take
the maximum of absolute values over all v, we get

D(a,n) < D(a/, [an]) + « ' $2. (3-31)

The methods we'll learn in succeeding chapters will allow us to conclude
from this recurrence that D(«,n) is always much smaller than n, when n is
sufficiently large. Hence the theorem (3.28) is not only true, it can also be
strengthened: Convergence to the limit is very fast.
Whew; that was quite an exercise in manipulation of sums, floors, and
Stqp ) ceilings. Readers who are not accustomed to “proving that errors are small”
Skimming - ight find it hard to believe that anybody would have the courage to keep
going, when faced with such weird-looking sums. But actually, a second look
shows that there’s a simple motivating thread running through the whole
caculation. The main idea is that a certain sum s(x, m,v) of n terms can be
reduced to a similar sum of at most an terms. Everything else cancels out
except for a small residua left over from terms near the boundaries.
Let's take a deep breath now and do one more sum, which is not trivial
but has the great advantage (compared with what we've just been doing) that
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it comes out in closed form so that we can easily check the answer. Our goal
now will be to generalize the sum in (3.26) by finding an expression for

nk + x . .
Z , integer m > 0, integer n.
0<k<m m

Finding a closed form for this sum is tougher than what we've done so far
(except perhaps for the discrepancy problem we just looked at). But it's
instructive, so we'll hack away at it for the rest of this chapter.

As usual, especially with tough problems, we start by looking at small
cases. The special case n = 1 is (3.26), with x replaced by x/m:

31 (222 |25

And as in Chapter 1, we find it useful to get more data by generalizing
downwards to the case n = O:

X X X X
ml+ G = E]
m m m m
Our problem has two parameters, m and n; let's look at some small cases
for m. When m = 1 there's just a single term in the sum and its value is |x].
When m = 2 the sum is |x/2] + [(x + n)/2]. We can remove the interaction
between x and n by removing n from inside the floor function, but to do that

we must consider even and odd n separately. If n is even, n/2 is an integer,
so we can remove it from the floor:

3+ (l3l+3) =2l5)+ 7

If nisodd, (n 1)/2 is an integer so we get

e (527 - ey

The last step follows from (3.26) with m = 2.

These formulas for even and odd n slightly resemble those for n=0and 1,
but no clear pattern has emerged yet; so we had better continue exploring
some more small cases. For m = 3 the sum is

HRESHE]

and we consider three cases for n: Either it's a multiple of 3, or it's 1 more
than a multiple, or it's 2 more. That is, nmod 3 =0, 1,0r 2. If n mod 3 =0

Is this a harder sum
of floors, or a sum
of hader floors?

Be forewamned: This
is the beginning of
a patern, in that
the last part of the
chagter  condsts
o the solution of
some long, difficult
problem, with little
more motivation
than curiogity.
-Students

Touché. But ¢'mon,
gang, do you aways
need to be to/d
about  applications
before you can gt
interested in  some-
thing? This sum
aiss for example
in the study of
random  number
generation  and
testing. But math-
ematicians  looked
a it long before
computers  came
dong, because they
found it naturd to
ax if therd's a way
to sum arithmetic
progressions  that
have been “floored.”
-Your instructor
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then n/3 and 2n/3 are integers, so the sum is

HE(HE R (HEE YRR

If nmod 3 = 1then (n-1)/3and (2n -~ 2)/3 are integers, so we have

[§J+<[¥J+"—3——1)+<[X;2}+ZT‘;Z> = |x]+n—1.

Again this last step follows from (3.26), this time with m = 3. And findly, if
n mod 3 = 2 then

(552 22) - (25 25) - e

“Inventive genius The left hemispheres of our brains have finished the case m = 3, but the
requires  plesrable  right hemispheres still can’t recognize the pattern, so we proceed to m = 4:
menta activity as

a condition for its X X+ 1 x+2n x + 3n

vigorous  exercise. [_J + t J + l J + l J .

‘Necessity is the 4 4 4 4

mother of invention’

is a silly proverb. At least we know enough by now to consider cases based on n mod m. If
‘Necessity is the n mod 4 = 0 then

mother of futile 3 3
dodges’ is much X X n X 2n X ny F 3n
nerer to the truth lzJ*(lzJ*z)“L([zJ*T Hlal+3) =2l 7
The basis of the

growth of modern
invention is science,
and science is d-

And if nmod 4 =1,

most wholly the X x+1 n—1 §_+_2 2n—-2 zﬁ In-3
outgrowth of plea: lZJ + QTJ vl A el B e Al N vl B
surable  intellectua 3 3
curiosity.” _ 3n 3
-A. N. White- = b+7 73
head [303]

The case n mod 4 = 3 turns out to give the same answer. Finally, in the case
n mod 4 = 2 we get something a bit different, and this turns out to be an
important clue to the behavior in general:

1 (] 5) = (B 3) (1))

S (HNE ) R SR S

This last step simplifies something of the form {y/2 + [(y + 1)/2], which
agdn is a edd cae of (326).
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To summarize, here' s the value of our sum for small m:

m nmodm=0 nmodm=1nmodm=2 nmodm=3

1 |x)

2 2343 weD-d

3 3[§j+n x] +n-1 x]+n-1
Lol v ooy weds

It looks as if we're getting something of the form
X
a [EJ +bn+c,

where a, b, and ¢ somehow depend on m and n. Even the myopic among
us can see that b is probably (m =1)/2. It's harder to discern an expression
for a; but the case n mod 4 = 2 gives us a hint that a is probably ged(m, n),
the greatest common divisor of m and n. This makes sense because ged(m, n)
is the factor we remove from m and n when reducing the fraction n/m to
lowest terms, and our sum involves the fraction n/m. (We'll look carefully
at ged operations in Chapter 4.) The value of ¢ seems more mysterious, but
perhaps it will drop out of our proofs for a and b.

In computing the sum for small m, we' ve effectively rewritten each term
of the sum as

)

x+knj [x+knmodm +kn kn mod m
m - m m m

because (kn = kn mod m)/m is an integer that can be removed from inside
the floor brackets. Thus the original sum can be expanded into the following

tableau:
t X J 0 Omodm
— + —_— - —_—
m m m
{x-{-nmode n nmodm
+ —_— + = - —
m m m
[x-}-Zn mod m} 2n 2n mod m
+ _ + — -  ee—
m m m

[x-l—(m—l)nmode + (m—=1)n (m-I)nmodm
m m m
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When we experimented with small values of m, these three columns led re-
spectively to a|x/a], bn, and c.

In particular, we can see how b aises. The second column is an aithmetic
progression, whose sum we know-it’s the average of the first and last terms,
times the number of terms:

1(0+ (m}—n])n) m = (m—21)n

2

S0 our guess that b = (m =1)/2 has been verified.
The first and third columns seem tougher; to determine a and ¢ we must
take a closer look at the sequence ofnumbers

Omodm, nmodm, 2nmodm, . . . . (m-l)nmodm.

Suppose, for example, that m = 12 and n = 5. If we think of the
sequence as times on a clock, the numbers are 0 o’ clock (we take 12 o’ clock
to be 0 o'clock), then 5 o'clock, 10 o'clock, 3 o'clock (= 15 o'clock), 8 o'clock,
and so on. It turns out that we hit every hour exactly once.

Now suppose m = 12 and n = 8. The numbers are 0 0’ clock, 8 o’ clock,
4 o'clock (= 16 o' clock), but then 0, 8, and 4 repeat. Since both 8 and 12 are
multiples of 4, and since the numbers start at 0 (also a multiple of 4), there's
no way to break out of this pattern-they must al be multiples of 4.

In these two cases we have ged( 12,5) = 1 and ged( 12,8) = 4. The generd

Lenmanow, rule, which we will prove next chapter, states that if d = gcd(m,n) then we

dilemma  later. get the numbers 0, d, 2d, . . ., m —d in some order, followed by d — 1 more
copies of the same sequence. For example, with m = 12 and n = 8 the pattern
0, 8, 4 occurs four times.

The first column of our sum now makes complete sense. It contains
d copies of the terms [x/m], [(x + d)/m/|, ..., [(x + m = d)/m], in some
order, so itssum is

G e e )
= ¢l ] e =)

~a[3).

This last step is yet another application of (3.26). Our guess for a has been
verified:

a = d=gcd(m, n)
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Also, as we guessed, we can now compute ¢, because the third column

has become easy to fathom. It contains d copies of the arithmetic progression
O/m, d/m, 2d/m, ., (m = d)/m, so its sum is

1 m—d m m—d
d<5(0+ m )E) T2

the third column is actually subtracted, not added, so we have

d-m
>

Cc =

End of mystery, end of quest. The desired closed form is

nk + x X m—1 d—m
Z[mJ:d[EJJr 2 "t

0<k<m

where d = gcd(m, n). As a check, we can make sure this works in the special
casesn = 0 and n = 1 that we knew before: When n = 0 we get d =
ged(m,0) = m; the last two terms of the formula are zero so the formula
properly gives m|x/m|. And for n = 1 we get d = gcd(m, 1) = 1; the last
two terms cancel nicely, and the sum is just [x].

By manipulating the closed form a bit, we can actually make it symmetric
in m and n:

Z {nk-l—xJ _ d{ﬁJ +m—ln_i_d—m
0<k<m

m d 2 2
B X (m-)(n-1)  m-I d-m
“d[EJ+ 2 == T3
—Din—1 _
= d[EJ + (m )Z(n ) + dz ]. (3.32)

This is astonishing, because there’'s no reason to suspect that such a sum
should be symmetrical. We have proved a “reciprocity law,’

nk + x mk + x .
Z { — J_ Z [ - J, integers m,n > 0.

0gk<m 0<k<n

For example, if m =41 and n = 127, the left sum has 41 terms and the right
has 127; but they till come out equal, for all real x.

Yup, 'm floored.
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Exercises

Warmups

1 When we andlyzed the Josephus problem in Chapter 1, we represented
an arbitrary poditive integer nintheformn = 2™+ 1, where 0 <1 < 2".
Give explicit formulas for 1 and m as functions of n, using floor and/or
calling  brackets.

2 Wha is a formula for the nearest integer to a given real number x? In case
of ties, when x is exactly hafway between two integers, give an expression
that rounds (@) up-that is, to [x]; (b) down-that is, to [x].

3 Evauate L Lmoc]n/ocJ W hen m and n are positive integers and a is an
irrational number greater than n.

4 The text describes problems at levels 1 through 5. What is a level 0
problem? (This, by the way, is not a level 0 problem.)

5 Find a necessary and sufficient condition that [nx) = n|x|, when nis a
positive integer. (Your condition should involve {x}.)

6  Can something interesting be said about | f(x)] when f(x) is a continuous,
monotonically decreasing function that takes integer values only when
X is an integer?

7 Solve the recurrence

Xn = n, forOg<n<m;

Xo = Xnom +1, for n>m.
You know you're 8 Prove the Dirichlet box principle: If n objects are put into m boxes,
n Oﬁo”ggeesn",‘{[he't‘e”the some box must contain > [n/m] objects, and some box must contain
you how to pro- 6 [n/m].

‘Dirichlet’. . . . .
nounce Dirichi 9  Egyptian mathematicians in 1800 B. C. represented rational numbers be-

tween 0 and 1 as sums of unit fractions 1 /x1+ ...+ 1 /xx, where the X's
were distinct positive integers. For example, they wrote % + 1‘—5 instead
of % Prove that it is aways possible to do this in a systematic way: If

0<m/n <1, then

m 1 { - m 1}‘ {Tl]-
a = 4 + Urepresentation of n = g q = _W

(This is Fibonacci’s algorithm, due to Leonardo Fibonacci, A o. 1202.)
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Basics

10 Show that the expression

2x+11 2x+1 + 2x 4+ 1
2 4 4
is always either |x| or [x]. In what circumstances does each case arise?

11 Give details of the proof aluded to in the text, that the open interval
(a.. B) contains exactly [B] — |«| — 1 integers when a < B. Why does
the case a = p have to be excluded in order to make the proof correct?

12 Prove that

[&] = [2m=t]

for all integers n and all positive integers m. [This identity gives us
another way to convert ceilings to floors and vice versa, instead of using
the reflective law (3.4).]

13 Let aand B be positive real numbers. Prove that Spec(o) and Spec( )
partition the positive integers if and only if a and $ are irrational and
1/au+1/B = 1.

14 Prove or disprove:

(xmodny)mody = xmody, integer n.

15 |Is there an identity andogous to (3.26) that uses celings instead of floors?

16 Provethat n mod 2 = (1 - (-1)*) /2. Find and prove a similar expression
for n mod 3 in the form a + bw" + cw?®", where w is the complex number
(-1 +iV3)/2.Hint w?=1 and 1+ w + w? = 0.

17 Evauate the sum 3 o, . [x + k/m]in the case x > 0 by substituting
2 1<) <x + k/m] for [x + k/m] and summing first on k. Does your
answer agree with (3.26)?

18 Prove that the boundary-value error term S in (3.30) is at most o 'v.
Hint: Show that small values of j are not involved.

Homework exercises

19 Find a necessary and sufficient condition on the real number b > 1 such
that

|logy x| = [logb LxJJ

for al read x > 1.



3 EXERCISES 97
20 Find the sum of al multiples of x in the closed interval [«.. ], when
x > 0.

21 How many of the numbers 2™, for 0 < m < M, have leading digit 1 in
decima notation?

22 Evauate the sums S, = Y ¢ [n/2% + 1 and Ty = ¥\, 26 [n/2% + 3] %
23 Show that the nth element of the sequence

1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,. ..

is{v2n + %J (The sequence contains exactly m occurrences of m.)

24 Exercise 13 establishes an interesting relation between the two multisets
Spec(o) and Spec(oc/(oc— 1)), when « is any irrational number > 1,
because 1 /& + (@ = 1)/x = 1. Find (and provej an interesting relation
between the two multisets Spec(a) and Spec(ee/ (e + 1)), when « is any
positive real number.

25 Prove or disprove that the Knuth numbers, defined by (3.16), satisfy
K. = n for dl nonnegative n.

26 Show that the auxiliary Josephus numbers (3.20) satisfy

n n
q {q) q
1 < < - forn> 0.

27 Prove that infinitely many of the numbers DY defined by (3.20) are
even, and that infinitely many are odd.

28 Solve the recurrence
ap = 1;
an = Gn1 t+ [v/Gn1], forn> 0.
29 Show that, in addition to {3.31), we have
D(a,n) > D(a/, [an]) 7' -2,

30 Show that the recurrence

Xo = m,
Xo = X2, -2, forn>0,

has the solution X, = [«?"], if m is an integer greater than 2, where
a+a'=mand x>1. For example, if m = 3 the solution is

1+.5
2 ¥

Xn:r(ban-"\ ¢ = (X:Cbz.



98 INTEGER FUNCTIONS

31 Prove or disprove: {x|+ [y} + [x + y] < {2x] + |2y] .

32 Let|x]| = min(x = [x], [x] —x) denote the distance from x to the nearest
integer. What is the value of

> 2|22
k

(Note that this sum can be doubly infinite. For example, when x = 1/3
the terms are nonaero as k — —oo and also ask — +o0.)

Exam problems

33 A circle, 2n — 1 units in diameter, has been drawn symmetrically on a
21 X 2n chessboard, illustrated here for n = 3:

.
4

S B

a  How many cells of the board contain a segment of the circle?
b  Find a function f(n, k) such that exactly ZL‘;]‘ f(n, k) cells of the
board lie entirely within the circle.
34 Let f(n) = 1, [Igk].
a Find aclosed form for f(n) , whenn> 1.
b Prove that f(n) =n—1+f([n/2]) + f(|n/2]) for all n > 1.
35 Simplify the formula|(n + 1)2n! e mod n. Simplify it, but

don’t change the

36 Assuming that n is a nonnegative integer, find a closed form for the sum ;1.

1
Z 2llgk]4llglg k)

T<k<22™

37 Prove the identity

e N e

ogkem n

for al positive integers m and
38 Let xq, ..., Xy be real numbers such that the identity
Z |mxy] = [m Z ka
k=1 I<kgn

holds for al positive integers m. Prove something interesting about
X1y ooy X
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39 Prove that the double SUM 3\ <10« Locjcnl (X + k) /b* " equals
(b- 1)(logyx] + 1) +[x] = 1, for every real number x > 1 and every
integer b > 1.

40 The spira function o(n), indicated in the diagram below, maps a non-
negative integer n onto an ordered pair of integers (x(n), y (n)). For
example, it maps n = 9 onto the ordered pair (1, 2).

tY !
9
2 1 48
3 0 |7 X
4 5 6

a Prove that if m = [yn],
x(n) = (—])m((n— m(m+ ])) . [LZ\/HJ is even] + [%m]) ,

and find a similar formula for y(n). Hint: Classify the spira into
segments W, Sk, Ex, Ny according as [2y/m] = 4k — 2, 4k =1, 4k,
4k + 1.

b  Prove that, conversely, we can determine n from o(n) by a formula
of the form

n = (2k)? £ (2k+x(n) +yn)), k = max(x(n)}, jy(n))).

Give a rule for when the sign is + and when the sign is—.
Bonus problems

41 Let f and g be increasing functions such that the sets {f (1), f (2), ... } and
{g (1), g(2),..} partition the positive integers. Suppose that f and g are
related by the condition g(n) = f(f(n)) + 1 for al n > 0. Prove that

f(n) = (ne) and g(n) = [ne?), where & = (1 + V5)/2.

42 Do there exist real numbers g, , and y such that Spec(«), Spec( ], and
Spec(y) together partition the set of positive integers?
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43 Find an interesting interpretation of the Knuth numbers, by unfolding

the recurrence (3.16).

44 Show that there are integers o' and d\%’ such that

45

46

47

48

D L gl pla+ gla)
ad = “*q’_]“ _ Do ] AL, forn> 0,

when DY is the solution to (3.20). Use this fact to obtain another form
of the solution to the generalized Josephus problem:

JoM=1+dy+qn-ayl), fora® <n<q?.

Extend the trick of exercise 30 to find a closed-form solution to

Yo = m,
Y= 2Y2 ,=1, forn>0,
if m is a positive integer.
Prove that if n = | (V2" + \/il“l)mj , Where m and 1 are nonnegative

integers, then | /2n(n + 1]= [(\/Zm + \/Zl)mJ . Use this remarkable
property to find a closed form solution to the recurrence

Ly = & integer a > 0;
Lo = [V2Loa(Lu +1)],  forn>0

Hint: [yZRmT 1) = [vV2in + 1)),

The function f(x) is said to be replicative if it satisfies

flmx) = f(x) +f(x+ ;]1-) +...+f(x+ %)

for every positive integer m. Find necessary and sufficient conditions on
the real number c for the following functions to be replicative:

a f(x)=x+c.

b f(x) =[x+ cisaninteger].

¢ f(x) =max(|x],c).

d  f(x) =X+ c|x]=][x isnot an integer].

Find a necessary and sufficient condition on the real numbers 0 < ¢ < 1

and $ 3 0 such that we can determine « and B from the infinite multiset
of vaues

{na) + [nB) | n >0},
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Research problems

49 Find a necessary and sufficient condition on the nonnegative rea numbers
aand 3 such that we can determine a and B from the infinite multiset
of vaues

{|Ina)B] | n>0}.

50 Let X beareal number > ¢ = % (L++5 ). The solution to the recurrence

ZO(X) = X,
Zo(x) = Zn 4 (x)2 =1, forn> 0,

can be written Z,(x) = [f(x)2"], if x is an integer, where
() = lim Z.(x)"%

because Z,(x) = 1 < f (x)¥" < Z,(X). What interesting properties does
this function f(x) have?

51 Given nonnegative real numbers « and g, let

Spec(o;B) = {la+ B[, [2x+ B, [3+B], ...}

be a multiset that generalizes Spec(a) = Spec(a; 0). Prove or disprove:
If the m > 3 multisets Spec(o; B1), Spec(o; B2), . . ., Spec(am; B )

partition the positive integers, and if the parameters oy < o; <. . < &,,,
are rational, then

2m—1
k-1

52 Fibonacci’s agorithm (exercise 9) is “greedy” in the sense that it chooses
the least conceivable g at every step. A more complicated algorithm is
known by which every fraction m/n with n odd can be represented as a
sum of distinct unit fractions 1 /qy +. .. + 1 /g, with odd denominators.
Does the greedy agorithm for such a representation always terminate?

o = for1 < ksm.



Number Theory

INTEGERS ARE CENTRAL to the discrete mathematics we are emphasiz-
ing in this book. Therefore we want to explore the theory of numbers, an
important branch of mathematics concerned with the properties of integers.

We tested the number theory waters in the previous chapter, by intro-
ducing binary operations caled ‘mod’ and ‘ged’. Now let’'s plunge in and
really immerse ourselves in the subject.

41 DIVISIBILITY

We say that m divides n (or n is divisible by m) if m > 0 and the
ratio n/m is an integer. This property underlies al of number theory, so it's
convenient to have a specia notation for it. We therefore write

m\n = m > 0 and n = mk for some integer k. (4.1)

(The notation ‘m|n’ is actually much more common than ‘m\n' in current
mathematics literature. But vertical lines are overused-for absolute val-
ues, set delimiters, conditional probabilities, etc. -and backward slashes are
underused. Moreover, ‘m\n’ gives an impression that m is the denominator of
an implied ratio. So we shall boldly let our divisibility symbol lean leftward.)

If m does not divide n we write ‘mxn’.

There's a similar relation, “n is a multiple of m,” which means almost
the same thing except that m doesn’'t have to be positive. In this case we
simply mean that n = mk for some integer k. Thus, for example, there’s only
one multiple of 0 (namely 0), but nothing is divisible by 0. Every integer is
a multiple of -1, but no integer is divisible by -1 (strictly speaking). These
definitions apply when m and n are any real numbers; for example, 2= is
divisble by n. But we'll ailmost always be using them when m and n are
integers. After al, this is number theory.

102

In other words, be
prepared to  drown.

“ .. no integer is
divisible by -1
(dtrictly  speaking).”
-Graham, Knuth,
and Patashnik [131)



4.1 DIVISIBILITY 103

In Britain we call The greatest common divisor of two integers m and n is the largest
this ‘hef” (highest integer that divides them both:
common  factor).

gcd(m,n) = max{ k k\m and k\n}. (4.2)

For example, gcd( 12,18) = 6. This is a familiar notion, because it's the
common factor that fourth graders learn to take out of a fraction m/n when
reducing it to lowest terms: 12/18 = (12/6)/( 1 8/6) = 2/3. Notice that if
n > 0 we have gcd(0, n) = n, because any positive number divides O, and
because n is the largest divisor of itself. The value of ged(0,0) is undefined.

Not to be confused Ancther familiar notion is the least common multiple,
with the greatest
common  multiple. lecm(m,n) = min{k k>0, m\k and n\k}; (43)

this is undefined if m < 0 or n < 0. Students of arithmetic recognize this
as the least common denominator, which is used when adding fractions with
denominators m and n. For example, lem( 12,18) = 36, and fourth graders
know that %+ {x= £+ £ = £. The lcm is somewhat analogous to the
gcd, but we don’'t give it equal time because the gcd has nicer properties.
One of the nicest properties of the ged is that it is easy to compute, using
a 2300-year-old method called Euclid's agorithm. To caculate ged(m,n),

for given values 0 < m < n, Euclid’s algorithm uses the recurrence

ged(O,n) = n;
gcd(m,n) = ged(n mod m, m) , form > 0. (4-4)

Thus, for example, ged( 12,18) = ged(6,12) = ged(0,6) = 6. The stated
recurrence is valid, because any common divisor of m and n must also be a
common divisor of both m and the number n mod m, which isn — |n/m|m
There doesn’t seem to be any recurrence for lcm(m,n) that’s anywhere near
as simple as this. (See exercise 2.)

Euclid's algorithm also gives us more: We can extend it so that it will
compute integers m’ and n' satisfying

mm + n'n = gedim, n) . (4-5)
(Remember  that Here's how. If m = 0, we simply take m" = 0 and n' = 1. Otherwise we
m' orn' can be let ¥ = n mod m and apply the method recursively with + and m in place of

negative) m and n, computing ¥ and T such that

Tr+ mm= ged{r, m) .
Since r =n = [n/m]m and gecd(r, m) = gcd(m,n), this equation tells us that

F(n— [n/mjm) +MAm = ged(m,n).
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The left side can be rewritten to show its dependency on m and n:
(M ~[n/m]¥)m + ¥n = ged(m, n) ;

hence m’ = M =~ |n/m|7 and n" = 7 are the integers we need in (4.5). For
example, in our favorite case m = 12, n = 18, this method gives 6 = 0-0+1-6 =
1:6+0-12=(-1)-1241-18.

But why is (4.5) such a nesat result? The main reason is that there’'s a
sense in which the numbers m' and n’ actually prove that Euclid’s algorithm
has produced the correct answer in any particular case. Let's suppose that
our computer has told us after a lengthy calculation that gcd(m, n) = d and
that m'm + n'n = 4; but we're skeptical and think that there's redly a
greater common divisor, which the machine has somehow overlooked. This
cannot be, however, because any common divisor of m and n has to divide
m'm + n'n; so it has to divide d; so it has to be < d. Furthermore we can
easily check that d does divide both m and n. (Algorithms that output their
own proofs of correctness are caled self-certifying.)

WEe'll be using (4.5) alot in the rest of this chapter. One of its important
consequences is the following mini-theorem:

k\m and k\n = k\ ged(m,n), (4.6)

(Proof: If k divides both m and n, it divides m'm + n'n, so it divides
ged( m, n) . Conversdly, if k divides ged( m, m}, it divides a divisor of m and a
divisor of n, so it divides both m and n.) We always knew that any common
divisor of m and n must be less than or equal to their gcd; that’s the
definition of greatest common divisor. But now we know that any common
divisor is, in fact, a divisor of their ged.

Sometimes we need to do sums over al divisors of n. In this case it's
often useful to use the handy rule

) a = ) awm, integern>0, (a7)

m\n mi\n

which holds since n/m runs through &l divisors of n when m does. For
example, when n = 12 thissaysthat aj+ a; + a3+ ags +ag+ap;=ap;; +
(16+a4+a3+a2+a|.

There's aso a dightly more general identity,

Za, =_E E amm=mk|, (4.8)
m\n k m>0

which is an immediate consequence of the definition (4.1). If nis positive, the
right-hand side of (4.8) is Zk\n anx; hence (4.8) implies (4.7). And equation
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(4.8) works also when n is negative. (In such cases, the nonzero terms on the
right occur when Kk is the negative of a divisor of n.)
Moreover, a double sum over divisors can be “interchanged” by the law

2D Gm =) D Gku . (4.9)

m\n k\m kK\n W\(n/k)

For example, this law takes the following form when n = 12:

Q1+ @i +a22) +(a13+ ass)
+(@a+ azs+ agq) + (me+ aze+ a3+ age)
+ a2+ a2 4 @32 + asn2 4 g2 + ara)
=(ai, a1z + a3 + ar.a + a6 + ayq2)
222y @ v g6+ a2+ (a3 - a3 + asziz)
+ (@44 + as12) + (@66 + ag12) + .

We can prove (4.9) with lversonian manipulation. The left-hand side is

Yy amn=imlim=xt] = > ¥ aculn=jki;

il k,m>0 i k150

the right-hand side is

Z Z ai xin=jkjln/k=ml] = Z Z Qg 1 [n=mlk],

jom k>0 k,1>0

which is the same except for renaming the indices. This example indicates
that the techniques we've learned in Chapter 2 will come in handy as we study
number theory.

4.2 PRIMES

A positive integer p is called prime if it has just two divisors, namely

1 and p. Throughout the rest of this chapter, the letter p will always stand

How about the p in  for a prime number, even when we don’'t say so explicitly. By convention,
‘explicitly? 1 isn’'t prime, so the sequence of primes starts out like this:

2,3,5 7, 11,13 17, 19, 23, 29, 31, 37, 41, .,

Some numbers look prime but aren’t, like 91 (= 7.13) and 161 (= 7.23). These
numbers and others that have three or more divisors are called composite.
Every integer greater than 1 is either prime or composite, but not both.
Primes are of great importance, because they’re the fundamental building
blocks of al the positive integers. Any positive integer n can be written as a
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product of primes,

m
n= p1..-pm=Hpk, Pl 6 *** 6 Pm. (4.10)
k=l
For example, 12 =2-2.3; 11011 =7-11-11-13; 11111 =41.271. (Products
denoted by [] are analogous to sums denoted by ), as explained in exer-
cise 2.25. If m = 0, we consider this to be an empty product, whose value
is 1 by definition; that's the way n = 1 gets represented by (4.10).) Such a
factorization is aways possible because if n > 1 is not prime it has a divisor
ny such that 1 < ny < m; thus we can write n = n; -n,, and (by induction)
we know that n;and n, can be written as products of primes.

Moreover, the expansion in (4.10) is unique: There's only one way to
write n as a product of primes in nondecreasing order. This statement is
called the Fundamental Theorem of Arithmetic, and it seems so obvious that
we might wonder why it needs to be proved. How could there be two different
sets of primes with the same product? Well, there can’t, but the reason isn't
simply “by definition of prime numbers!’ For example, if we consider the set
of al real numbers of the form m + nv/10 when m and n are integers, the
product of any two such numbers is again of the same form, and we can call
such a number “prime” if it can't be factored in a nontrivial way. The number
6 has two representations, 2-3 = (4 + /10 )(4 /10 ); yet exercise 36 shows
that 2, 3, 4 + V10, and 4 — V10 are adl “prime’ in this system.

Therefore we should prove rigorously that (4.10) is unique. There is
certainly only one possibility when n = 1, since the product must be empty
in that case; so let's suppose that n > 1 and that all smaller numbers factor
uniquely. Suppose we have two factorizations

n=p ...Pn = di1...4x, pi<-Spmand qi<-<qgx,

where the p’s and g’s are al prime. We will prove that py = q;. If not, we
can assume that p, < g,, making p, smaller than al the g’s. Since p, and q;
are prime, their gcd must be 1; hence Euclid's self-certifying algorithm gives
us integers a and b such that ap, + bq; = 1. Therefore

ap19z...9qx + bg1qz...dx = qz...qk.

Now p1divides both terms on the left, since g1q; . ., gk = n; hence p, divides
the right-hand side, g2 ... qx. Thus qz ... qx/p1is an integer, and q; ... qi
has a prime factorization in which p, appears. But q; ... qx <n, S0 it has a
unique factorization (by induction). This contradiction shows that p, must
be equd to q, after all. Therefore we can divide both of n’'s factorizations by
p,, obtaining p2 . . .pm=4dz...dx < N. The other factors must likewise be
equal (by induction), so our proof of uniqueness is complete.
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It'sthe factor- Sometimes it's more useful to state the Fundamental Theorem in another

ization, not the way: Every positive integer can be written uniquely in the form

theorem,  that's

unigue. n = J]pv, whereexchn,>o0. (4.11)
P

The right-hand side is a product over infinitely many primes;, but for any
particular n al but a few exponents are zero, so the corresponding factors
are 1. Therefore it's really a finite product, just as many “infinite” sums are
really finite because their terms are mostly zero.

Formula (4.11) represents n uniquely, so we can think of the sequence
(n2, n3, ns, . ) a a number system for positive integers. For example, the
prime-exponent representation of 12 is (2,1,0,0,. . .) and the prime-exponent
representation of 18 is (1,2,0,0, . ). To multiply two numbers, we simply
add their representations. In other words,

k = mn = k, = m,+mn, forallp. (412)
This implies that

m\n = m, < n, foral p, (4-13)
and it follows immediately that

k
k

gcd(m,n) & k, = min(m,,n,) for allp; 4.14)
lcm(m,n) & kp = max(m,,n,) for all p.  (4.15)

—_

For example, since 12 = 22 -3'and 18 = 2’ . 3%, we can get their gcd and Icm
by taking the min and max of common exponents:

ng(]2,18) - 2min(2,l) .3min[1,2] =2 '31 = 6;
lem(12,18) = 2max(z1) . gmax(l2) — 22 .32 — 36.

If the prime p divides a product mn then it divides either m or n, perhaps
both, because of the unique factorization theorem. But composite numbers
do not have this property. For example, the nonprime 4 divides 60 = 6.10,
but it divides neither 6 nor 10. The reason is simple: In the factorization
60 = 6-10= {2-3)(2-5), the two prime factors of 4 = 2-2 have been split
into two parts, hence 4 divides neither part. But a prime is unsplittable, so
it must divide one of the original factors.

4.3 PRIME EXAMPLES

How many primes are there? A lot. In fact, infinitely many. Euclid
proved this long ago in his Theorem 9: 20, as follows. Suppose there were
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only finitely many primes, say k of them—2, 3,5, ..., Py. Then, said Euclid,
we should consider the number

M = 2:3-5-...-Py +1.

None of the k primes can divide M, because each divides M = 1. Thus there
must be some other prime that divides M; perhaps M itself is prime. This
contradicts our assumption that 2, 3, . . ., Py are the only primes, so there
must indeed be infinitely many.

Euclid’'s proof suggests that we define Euclid numbers by the recurrence

e, = €1€2...en_1 + 1, whenn > 1. (4.16)

The sequence starts out

e =14+1 =2

e =2+1 =3,

g3 = 2:.3+1=7;
eq = 2:3.7+1 = 43;

these are al prime. But the next case, es, is 1807 = 13.139. It tuns out that
€g = 3263443 is prime, while

e; = 547-607-1033-31051;
eg = 29881~67003~9119521~6212157481.

It is known that e, . . . , &7 are composite, and the remaining e, are probably
composite as well. However, the Euclid numbers are al relatively prime to
each other; that is,

ged(em,en) = 1, when m # n.

Euclid's algorithm (what else?) tells us this in three short steps, because
e, mod e, = 1Lwhenn >m

ged(em,en) = ged(l,en) = ged(0,1) = 1,

Therefore, if we let g; be the smallest factor of g; for dlj =1, theprimesq,
gz, 43, ... are al different. This is a sequence of infinitely many primes.

Let's pause to consider the Euclid numbers from the standpoint of Chap-
ter 1. Can we express e, in closed form? Recurrence (4.16) can be simplified
by removing the three dots. If n > 1 we have

en =€ Cn2lnat I = (ena—Tews +1=¢2 ,—e, |+ 1.

“OL mplToL

apLbuol mAeiovs

€Ll TavTOS TOD

wpoTelévTog

mAifovs TpiTwy

aplipn.”
-Euclid [80]

[Trandation:

“There are more

primes than in

any given set

of primes. 7]



Or probably more,
by the time you
read this.
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Thus e,, has about twice as many decimal digits as e,,_; . Exercise 37 proves
that theré's a constant E = 1.264 such that

en = [ +1]. (4.17)
And exercise 60 provides a similar formula that gives nothing but primes:
Pn = Uﬁ"J s (4.18)

for some constant P. But equations like (4.17) and (4.18) cannot redlly be
considered to be in closed form, because the constants E and P are computed
from the numbers e, and p,, in a sort of snesky way. No independent re-
lation is known (or likely) that would connect them with other constants of
mathematical interest.

Indeed, nobody knows any useful formula that gives arbitrarily large
primes but only primes. Computer scientists at Chevron Geosciences did,
however, strike mathematical oil in 1984. Using a program developed by
David Slowinski, they discovered the largest prime known at that time,

2216091 _ 4

while testing a new Cray X-MP supercomputer. It's easy to compute this
number in a few milliseconds on a personal computer, because modern com-
puters work in binary notation and this number is simply (11 .. .1);. All
216,091 of itshitsare <17 . But it's much harder to prove that this number
is prime. In fact, just about any computation with it takes a lot of time,
because it's so large. For example, even a sophisticated algorithm requires
several minutes just to convert 221991 _ 1 to radix 10 on a PC. When printed
out, its 65,050 decimal digits require 65 cents U.S. postage to mail first class.

Incidentally, 22'%%7' — 1 s the number of moves necessary to solve the
Tower of Hanoi problem when there are 216,091 disks. Numbers of the form

P—1

(where p is prime, as aways in this chapter) are called Mersenne numbers,
after Father Marin Mersenne who investigated some of their propertiesin the
seventeenth century. The Mersenne primes known to date occur for p = 2, 3,
5 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253,
4423, 9689, 9941,11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049,
and 216091

The number 2 1 can't possibly be prime if n is composite, because
2k 1 has2™ 1 as a factor:

zkm“ 1 — (2" - ])(zm[kfl) +2m(k72)+“.+ .I)



110 NUMBER THEORY

But 2P —~ 1 isn't always prime when p is prime; 2! = 1 = 2047 = 23.89 is the
smallest such nonprime. (Mersenne knew this.)

Factoring and primality testing of large nhumbers are hot topics nowadays.
A summary of what was known up to 1981 appears in Section 4.5.4 of [174],
and many new results continue to be discovered. Pages 391-394 of that book
explain a special way to test Mersenne numbers for primality.

For most of the last two hundred years, the largest known prime has
been a Mersenne prime, although only 31 Mersenne primes are known. Many
people are trying to find larger ones, but it's getting tough. So those really
interested in fame (if not fortune) and a spot in The Guinness Book of World
Records might instead try numbers of the form 2™k + 1, for small values of k
like 3 or 5. These numbers can be tested for primality aimost as quickly as
Mersenne numbers can; exercise 4.5.4-27 of [174] gives the details.

We haven't fully answered our original question about how many primes
there are. There are infinitely many, but some infinite sets are “denser” than
others. For instance, among the positive integers there are infinitely many
even numbers and infinitely many perfect squares, yet in several important
senses there are more even numbers than perfect squares. One such sense  Weird. | thought
looks at the size of the nth value. The nth even integer is 2n and the nth ~ there were the same

o . 3 number of even

perfect square is n<; since 2n is much less than n- for large n, the nth even integers & per-
integer occurs much sooner than the nth perfect square, so we can say there  fect squares, since
are many more even integers than perfect squares. A similar sense looks at  there’s a oneto-one
the number of values not exceeding x. There are |x/2| such even integers and mﬁmm
|_\/)_cJ perfect squares; since x/2 is much larger than /x for large x, again we '
can say there are many more even integers.

What can we say about the primes in these two senses? It turns out that
the nth prime, P,, is about n times the natural log of n:

P, ~ nlnn.

(The symbol ‘~’ can be read “is asymptotic to”; it means that the limit of
the ratio Pp/nlnn is 1 as n goes to infinity.) Similarly, for the number of
primes m(x) not exceeding x we have what's known as the prime number
theorem:

n(x) ~ —.
Inx
Proving these two facts is beyond the scope of this book, although we can
show easily that each of them implies the other. In Chapter 9 we will discuss
the rates at which functions approach infinity, and we'll see that the func-
tion ninn, our approximation to Py, lies between 2n and n? asymptotically.
Hence there are fewer primes than even integers, but there are more primes
than perfect squares.
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These formulas, which hold only in the limit as n or x — oo, can be
replaced by more exact estimates. For example, Rosser and Schoenfeld [253]
have established the handy bounds

Inx—3 < 2 < Inx—1, forx > 67, (4.19)

mx)

n(lnn+1nlnn—%) <P, < n(lnn+1n1nn—%), forn>20.(4.20)

If we look at a “random” integer n, the chances of its being prime are
about one in Inn. For example, if we look at numbers near 10'¢, we'll have to
examine about 16 In 10 ~ 36.8 of them before finding a prime. (It turns out
that there are exactly 10 primes between 10'® — 370 and 10'® — 1)) Yet the
distribution of primes has many irregularities. For example, all the numbers
between P, P; P, + 2and Py P, ... P+ P,y = 1 inclusive are composite.
Many examples of “twin primes’ p and p + 2 are known (5 and 7, 11 and 13,
17 and 19, 29 and 31,. ... 9999999999999641 and 9999999999999643, . . . ), yet
nobody knows whether or not there are infinitely many pairs of twin primes.
(See Hardy and Wright [150, §1.4 and §2.8].)

One simple way to caculate al m(x) primes < x is to form the so-called
sieve of Eratosthenes: First write down all integers from 2 through x. Next
circle 2, marking it prime, and cross out al other multiples of 2. Then repeat-
edly circle the smallest uncircled, uncrossed number and cross out its other
multiples. When everything has been circled or crossed out, the circled num-
bers are the primes. For example when x = 10 we write down 2 through 10,
circle 2, then cross out its multiples 4, 6, 8, and 10. Next 3 is the smallest
uncircled, uncrossed number, so we circle it and cross out 6 and 9. Now
5 is smallest, so we circle it and cross out 10. Finally we circle 7. The circled
numbers are 2, 3, 5, and 7; so these are the 7t{ 10) = 4 primes not exceeding 10.

“Je me sers de la
notation trés simple

n oour désimmerle 44 FACTORIAL  FACTORS
produit de nombres

. . Now let's take a look at the factorization of some interesting highly
décroissans depuis

N jusqu’s l'unité, composite numbers, the factorials:

savoir n(n 1)

(n =2). 3.2.1 n

L’emploi - continue/ n! =1.2....n = Hk, integer n > 0. (4.21)
Oe P’analyse combi- k=1

natoire que je fais

dans /a plupat de According to our convention for an empty product, this defines O! to be 1.

Tiggmgizrﬂg?ﬁs’ Thus n! = (n = 1)! n for every positive integer n. This is the number of

tion indispensa te. " ~ Permutations of n distinct objects. That is, it's the number of ways to arrange

— Ch. Kramp [186] mn things in a row: There are 1 choices for the first thing; for each choice of
first thing, there are n 1 choices for the second; for each of these n(n 1)

choices, therearen 2 for the third; and so on, givingn(n 1) (n 2)...(1
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arrangements in all. Here are the first few values of the factorial function.

2 3 4 5 6 7 8 9 10
2 6 24 120 720 5040 40320 362880 3628800

n | 0 1
T
It's useful to know afew factoria facts, like the first six or so values, and the
fact that 10! is about 31 million plus change; another interesting fact is that
the number of digitsin n! exceeds n when n > 25.

We can prove that n! is plenty big by using something like Gauss's trick
of Chapter 1:

=@ -2-....on)n-...-2-1) = Hk(“““k)-
k=1
Wehaven €<k(n+ 1 =k)< JT (n + 1 )2, since the quadratic polynomial
k(n+ —k) = 2(n+1)2— (k- 1(n+1))? hasits smallest value at k = 1 and
its largest value at k = 3 (n + 1) . Therefore

ﬁn<n12 < Tt
k=1 o 4
that is,
, m+ 1"
nvl < nl g —5 (4.22)

This relation tells us that the factorial function grows exponentially!!
To approximate n! more accurately for large n we can use Stirling's
formula, which we will derive in Chapter 9:

Nt~ m(g)". (4.23)

And a till more precise approximation tells us the asymptotic relative error:
Stirling's formula undershoots n! by a factor of about 1 /{ 12n). Even for fairly
small n this more precise estimate is pretty good. For example, Stirling's
approximation (4.23) gives a value near 3598696 when n = 10, and this is
about 0.83% =~ 1/120 too small. Good stuff, asymptotics.

But let's get back to primes. We'd like to determine, for any given
prime p, the largest power of p that divides n!; that is, we want the exponent
of p in n!'s unique factorization. We denote this number by €, (n!), and we
start our investigations with the small casep =2 and n =10. Since 10! isthe
product of ten numbers, e,( 10!) can be found by summing the powers-of-2
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contributions of those ten numbers; this calculation corresponds to summing
the columns of the following array:

| 12345678910] powers of 2

divisble by P x x x x x 5] = [10/2]

divisible by 4 X X 2 = [10/4]

divisible by 8 x 1=110/8]
powersof 2| 010201030 1 8

(The column sums form what's sometimes called the ruler function p(k),
because of their similarity to ‘™ ' ', the lengths of lines marking

fractions of an inch.) The sum of these ten sums is 8; hence 22 divides 10!
but 27 doesn’t.

There's also another way: We can sum the contributions of the rows.
The first row marks the numbers that contribute a power of 2 (and thus are
divisible by 2); there are |10/2] = 5 of them. The second row marks those
that contribute an additional power of 2; there are |10/4] = 2 of them. And
the third row marks those that contribute yet another; there are [10/8] = 1 of
them. These account for dl contributions, 0 we have e; (1 01) = 5 + 2 + 1 = 8.

For general n this method gives

amy = (23] +5]+ = ;[zikj

This sum is actually finite, since the summand is zero when 2% > n. Therefore

it has only |lgn| nonzero terms, and it's computationally quite easy. For
instance, when n = 100 we have

€2(1001) = 50+25+12+6+3+1 = 97.

Each term is just the floor of half the previous term. This is true for all n,
because as a special case of (3.11) we have Ln/zk“J = H“/ZkJ /2J. It's espe-
cially easy to see what's going on here when we write the numbers in binary:

100 = (1100100)~ = 100
|100/2] = (110010)~ = 50

|100/4] = (11001); = 25
[100/8] =  (1100); = 12
[100/16] = (110), = 6
1100/32] = (11); = 3
[100/64] = M2 = 1

We merely drop the least significant bit from one term to get the next.
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The binary representation also shows us how to derive another formula,

e2(nl) = n—v;(n), (4-24)

where v;(n) is the number of I's in the binary representation of n. This
simplification works because each 1 that contributes 2"’ to the value of n

contributes 2™+ 2m=2 4 . .. 4+ 20 = 2™ _ 1 to the value of €;(n!).
Generalizing our findings to an arbitrary prime p, we have

-Gl g ] e

k
k21 P

by the same reasoning as before.
About how large is ¢, (n!)? We get an easy (but good) upper bound by

simply removing the floor from the summand and then summing an infinite

geometric progression:

ep(nl) < E+1;,_,+1137+.--

p PP

n 1 1
:_(]+_+_2+...>
P PP
L
TP p-lo

n
=503

For p = 2 and n = 100 this inequdity says that 97 < 100. Thus the up-

per bound 100 is not only correct, it's also close to the true value 97. In
fact, the true value n - vz(n) is ~ n in general, because v;(n) < [lgn]is

asymptotically much smaller than n.

When p = 2 and 3 our formulas give ¢;(n!) ~ n and e3(n!) ~ N2, sO
it seems reasonable that every once in awhile ¢; (n!) should be exactly half
as big as e,(n!). For example, this happens when n = 6 and n = 7, because
gl = 2*. 32 .5 = 71/7. But nobody has yet proved that such coincidences

happen infinitely often.
The bound on ¢, (n!) in turn gives us a bound on p¢» (™), which is p's
contribution to n! :

Pep(n!) < pn/(pJ) .

And we can simplify this formula (at the risk of greatly loosening the upper
bound) by noting that p < 2P~ ': hence p™/(P-1) ¢ (2p-T)™/(p-T) = 2 |n

other words, the contribution that any prime makes to n! is less than 2n,
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We can use this observation to get another proof that there are infinitely
many primes. For if there were only the k primes 2, 3, . . ., Py, then we'd
have nl < (2m)k = 2" for &l n > 1, since each prime can contribute at most
afactor of 2" — 1. But we can easily contradict the inequality n! < 2nk by
choosing n large enough, say n = 2%¢. Then

k 2%k 2
nl < 2"k =2 = n"?,

contradicting the inequality n! > n? that we derived in (4.22). There are
infinitely many primes, till.

We can even beef up this argument to get a crude bound on w(n}, the
number of primes not exceeding n. Every such prime contributes a factor of
less than 2" to n!; so, as before,

nt <2,

If we replace n! here by Stirling’s approximation (4.23), which is a lower
bound, and take logarithms, we get

nn(n) > nign/e) + 1 lg(2mm) ;
hence
nin) > lg{n/e).

This lower bound is quite weak, compared with the actual value wt(n) ~
n/lnn, because logn is much smaller than n/logn when n is large. But we
didn't have to work very hard to get it, and a bound is a bound.

45 RELATIVE PRIMALITY

When ged(m, n) = 1, the integers m and n have no prime factors in
common and we say that they’'re relatively prime.
This concept is so important in practice, we ought to have a specia
notation for it; but alas, number theorists haven't come up with a very good
one yet. Therefore we cry: Hear us, O Mwmemsmaas o T WRD

LET US NOTWAI TANYLONGER! WE CAN MAKEMANYFORMULAS CLEARER
Like perpendicular BY DEFINNG A NEW NOTATION NoW LET us AGEE TO WTE ‘m L n',
lines don 't have AND TO SAY “m IS PRIME TO N IFM AND N ARE RELATIVELY PRIME.
a common dre> o ds, let us declare that
fion,  perpendicular n other words, us declare

numbers don’t have
common - fectors. mLln &  mnareintegers and ged(m,n) = 1. (4.26)
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A fraction m/n is in lowest terms if and only if m L n. Since we
reduce fractions to lowest terms by casting out the largest common factor of
numerator and denominator, we suspect that, in general,

m/ged(m,n) L n/ged(m, n) ; (4-27)

and indeed this is true. It follows from a more genera law, gcd(km, kn) =
kgcd(m, n), proved in exercise 14.

The L relation has a simple formulation when we work with the prime-
exponent representations of numbers, because of the gcd rule (4.14):

mJln &= min(m,,n,) = 0 for allp. (4.28)
Furthermore, since m, and n,, are nonnegative, we can rewrite this as The dot product is
zero, like orthogona
min = myn, = 0 forallp. (4.29) Vectors.

And now we can prove an important law by which we can split and combine
two L relations with the same left-hand side:

klmand kL1n = k Lmn. (4.30)

In view of (4.29), this law is another way of saying that k,m, = 0 and
kpn, = 0 if and only if k, (m, + n,) = 0, when m;, and n, are nonnegative.
There's a beautiful way to construct the set of all nonnegative fractions
m/n with m L n, caled the Stern—-Brocot tree because it was discovered Interesting how
independently by Moris Stern [279], a German mathematician, and Achille Mahemaidans

. . . . will say “discov-
Brocot [35], a French clockmaker. The idea is to start with the two fractions ered” when abso-

(% , %) and then to repeat the following operation as many times as desired: lutely anyone efse
woud have sad
m’ . . ! ed”
I nsert between two adjacent fractions Mand ™.
n+n’ n n’

The new fraction (m+m’)/(n+n') is caled the mediant of m/n and m'/n’.
For example, the first step gives us one new entry between 3 and g,

9
T

o
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and then we'll get 8, 16, and so on. The entire array can be regarded as an

fquess  1/0 s infinite binary tree structure whose top levels look like this:
infinity, “in lowest
terms.” 0 !

Each fract| onis "‘i"‘, , where 2t is the nearest ancestor above and to the left,
and 2+ is the nearest ancestor above and to the right. (An “ancestor” is a
fractl on that’s reachable by following the branches upward.) Many patterns
can be observed in this tree.

Why does this construction work? Why, for example, does each mediant
fraction (m+ m’)/(n +n") turn out to be in lowest terms when it appears in

Conserve  parody. thistree? (If m, m', n, and n" were all odd, we' d get even/even; somehow the

construction guarantees that fractions with odd numerators and denominators
never appear next to each other.) And why do all possible fractions m/n occur
exactly once? Why can’'t a particular fraction occur twice, or not at all?

All of these questions have amazingly simple answers, based on the fol-
lowing fundamental fact: If m/n and m’/n’ are consecutive fractions at any
stage of the construction, we have

m'n-mn’ = 1. (4.31)

This relation is true initially (1 . 1 — 0-0 = 1); and when we insert a new
mediant (m + m’)/(n + n’), the new cases that need to be checked are

m+m'M-—mn+n’) = 1;
m(n+n)—(m+m)' 1.

Both of these equations are equivalent to the original condition (4.31) that
they replace. Therefore (4.31) is invariant at al stages of the construction.

Furthermore, if m/n <« m’/n’ and if al values are nonnegative, it's easy
to verify that

m/n < (m+ m')/(n+n') < m'/n’.
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A mediant fraction isn't halfway between its progenitors, but it does lie some-

where in between. Therefore the construction preserves order, and we couldn’t

possibly get the same fraction in two different places. True, but if you get
One question still remains. Can any positive fraction a/b with a L b & compound frac-
. . . . ture you'd better go

possibly be omitted? The answer is no, because we can confine the construc-  ...7 7, ctor.

tion to the immediate neighborhood of a/b, and in this region the behavior

is easy to analyze: Initially we have

where we put parentheses around § to indicate that it's not really present
yet. Then if at some stage we have

<(§) <%

n/

32

the construction forms (m + m/}/(n 4+ n') and there are three cases. Either
(m+ m'’)/(n +n’) = ab and we win; or (m 4+ m')/(n + n') < ab and we
canset Mme~m+m,n~n+n; o (m+m)/(n+n) >aband we
cansetm «m+m,n « n + n. This process cannot go on indefinitely,
because the conditions

|
313
v
)

and D¢ 5

ie

imply that
an-bm > 1 and bm'  an’ > 1;
hence
(m'+n)(an—bm) + (m+n)(bm'~an') > m'+n'+ m+mn;

and thisisthe sasmeasa+ b =2m +n 4+ m + n by (4.31). Eithee mor n or
m’ or n’ increases at each step, so we must win after at most a + b steps.

The Farey series of order N, denoted by Fy, is the set of all reduced
fractions between 0 and 1 whose denominators are N or less, arranged in
increasing order. For example, if N = 6 we have

We can obtain JFy in general by starting with F, = %, % and then inserting
mediants whenever it's possible to do so without getting a denominator that
is too large. We don’'t miss any fractions in this way, because we know that
the Stern-Brocot construction doesn’'t miss any, and because a mediant with
denominator £ N is never formed from a fraction whose denominator is > N.

(In other words, Fyn defines a subtree of the Stern-Brocot tree, obtained by
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pruning off unwanted branches.) It follows that m'n — mn’ = 1 whenever
m/n and m’/n’ are consecutive elements of a Farey series.

This method of construction reveals that F can be obtained in a simple
way from Fy_;: We simply insert the fraction (m + m’)/N between con-
secutive fractions m/n, m’/n’ of Fy_; whose denominators sum to N. For
example, it's easy to obtain F; from the elements of ¢, by inserting ‘7 , %,

., & according to the stated rule:

3, 0111 1212314325345

- '1"7"6"5"4'"7"3'"5"7"2'_7'5"3"7'4'3'6'%'11'
When N is prime, N = 1 new fractions will appear; but otherwise we'll have
fewer than N — 1, because this process generates only numerators that are
relatively prime to N.

Long ago in (4.5) we proved-in different words-that whenever m L n
and 0 < m < n we can find integers a and b such that

ma-nb = 1, (4-32)

(Actudly we sid m'm + n'n = ged( m, n), but we can write 1 for ged( m, n),

afor m’, and b for -n".) The Farey series gives us another proof of (4.32),
because we can let b/a be the fraction that precedes m/n in ¥,. Thus (4.5)

isjust (4.31) again. For example, one solutionto 3a—7b=1isa=5,b =2,

since é precedes % in ¥;. This construction implies that we can always find a
solution to (4.32) withO < b<a<n,if 0 <xm < n. Smilaly, if0<n<m
and m 1 n, we can solve (4.32) with 0 <a < b < m by letting ab be the

fraction that follows n/m in F,,.

Sequences of three consecutive terms in a Farey series have an amazing
property that is proved in exercise 61. But we had better not discuss the

Farey ‘nough. Farey series any further, because the entire Stern-Brocot tree turns out to be
even more interesting.

We can, in fact, regard the Stern-Brocot tree as a number system for
representing rational numbers, because each positive, reduced fraction occurs
exactly once. Let's use the letters L and R to stand for going down to the
left or right branch as we proceed from the root of the tree to a particular
fraction; then a string of L’s and R's uniquely identifies a place in the tree.
For example, LRRL means that we go left from 1 down to 1, then right to £,
then right to 2, then left to 2. We can consider LRRL to be a representation
of 2. Every positive fraction gets represented in this way as a unique string
of L'sand R's

WEéll, actually there's a dight problem: The fraction % corresponds to
the empty string, and we need a notation for that. Let's agree to call it I,
because that looks something like 1 and it stands for “identity!’
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This representation raises two natural questions: (1) Given positive inte-
gersm and n with m 1 n, what is the string of L’s and R’s that corresponds
to m/n? (2) Given a string of L's and R's what fraction corresponds to it?
Question 2 seems easier, so let’s work on it first. We define

f(S) = fraction corresponding to S

when S is a ¢ring of L's ad Rs For exarge f (LRRL) = 3.

According to the construction, f(S) = (m + m/)/{(n + n") if m/n and
m’/n’ are the closest fractions preceding and following S in the upper levels
of the tree. Initilly m/n = 0/T and m'/n’ = 1/O; then we successively
replace either m/n or m//n’ by the mediant (m + m’')/(n + n') as we move
right or left in the tree, respectively.

How can we capture this behavior in mathematical formulas that are
easy to deal with? A bit of experimentation suggests that the best way is to
maintain a 2 X 2 matrix

M) = ()

that holds the four quantities involved in the ancestral fractions m/n and
m’/n’ enclosing S. We could put the m’s on top and the n’'s on the bottom,
fractionwise; but this upside-down arrangement works out more nicely be-
cause we have M(1) = (;9) when the process starts, and (;}) is traditionally
caled the identity matrix I.

A step to the left replaces i’ by n+ n” and m’ by m + m’; hence

i = (3 20 = (2 ) (3 ) =ms (3 1)
(Thisis a specia case of the general rule
(a b) (w x) _ <aw+by ax+bz)
c d y z cw+dy cx+dz
for multiplying 2 x 2 matrices.) Similarly it turns out that

meR) = (REm ) = me) (49)

m+m’ m’

Therefore if we define L and R as 2 x 2 matrices,

L:((]) }) R:(} ?) (4-33)

If you're clueless
about  matrices,
don’t panic; this
hook uses them
only here.
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we get the simple formula M(S) = S, by induction on the length of S. Isn't
that nice? (The letters L and R serve dua roles, as matrices and as letters in
the string representation.) For example,

M(LRRL) = LRRL = ({N(19(9() =

D62 = Q3

the ancestral fractions that enclose LRRL = 2 are £ and 2. And this con-

struction gives us the answer to Question 2:

f(s) = f((l}l &,)) = :i:, (4.34)

How about Question 1?7 That's easy, now that we understand the fun-
damental connection between tree nodes and 2 x 2 matrices. Given a pair of
positive integers m and n, with m 1 n, we can find the position of m/n in
the Stern-Brocot tree by “binary search” as follows:

FNT™

s = |
while m/n # f(S) do
if m/n < f(S) then (output(L); S := SL)
else (output(R); S := SR)

This outputs the desired string of L’s and R’s.
There's also another way to do the same job, by changing m and n instead
of maintaining the state S. If S is any 2 x 2 matrix, we have

f(RS) = f(S)+1

because RS is like S but with the top row added to the bottom row. (Let's
look at it in slow mation:

n n’ n n’
S_<m m')’ RS_<m+n m’—}-n)’

hence f(S) = (m+m/)/(n+n’) and f(RS) = ((m+n)+(m’+n"))/(n+n’).)
If we carry out the binary search algorithm on a fraction m/n with m > n,
the first output will be R; hence the subsequent behavior of the algorithm will
have f(S) exactly 1 greater than if we had begun with (m — n)/n instead of
m/n. A similar property holds for L, and we have

f(RS) = = f(S)) whenm > n;

> 3 5|3
S

f(LS) S = 1(S)) whenm < n,
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This means that we can transform the binary search algorithm to the following
matrix-free  procedure:

while m# n do
if m< n then (output(L); n := n-m)
else (output(R); m := m-n) .

For example, given m/n = 5/7, we have successively

m=5 5 3 | |
n=7 2 2 2 |
outpuu L R R L

in the simplified algorithm.

Irrational numbers don’'t appear in the Stern-Brocot tree, but al the
rational numbers that are “close” to them do. For example, if we try the
binary search algorithm with the number e = 2.71828. . , instead of with a
fraction m/n, we'll get an infinite string of L's and R*s that begins

RRLRRLRLLLLRLRRRRRRLRLLLLLLLLRLR....

We can consider this infinite string to be the representation of e in the Stern-
Brocot number system, just as we can represent e as an infinite decimal
2.718281828459... or as an infinite binary fraction (10,101101111110...),.
Incidentally, it turns out that €'s representation has a regular pattern in the
Stern-Brocot  system:

e = RL°RLRZLRL*RLRSLRLARLRILRL'ZRL . . . ;

this is equivalent to a special case of something that Euler [84] discovered
when he was 24 years old.
From this representation we can deduce that the fractions

RRLRRLRLLLL R L R R R R R R
12 3 5 8 11 19 30 42 68 87 - 106 193 299 492 685 878 1071 1264

1717172%3" 4° "7-11"18725%°32° 39" 717"1107181"252°323" 394" 465""
are the simplest rational upper and lower approximations to e. For if m/n
does not appear in this list, then some fraction in this list whose numerator
is < m and whose denominator is < n lies between m/n and e. For example,
47 is not as simple an approximation as 2 = 2.714. . . , which appears in
the list and is closer to e. We can see this because the Stern-Brocot tree
not only includes all rationals, it includes them in order, and because all
fractions with small numerator and denominator appear above all less simple

ones. Thus, %2 = RRLRRLL is less than 2 = RRLRRL, which is less than
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e = RRLRRLR.... Excellent approximations can be found in this way. For
example, % ~ 2.718280 agrees with e to six decimal places; we obtained this
fraction from the first 19 letters of €'s Stern-Brocot representation, and the
accuracy is about what we would get with 19 bits of €'s binary representation.

We can find the infinite representation of an irrational number ¢ by a

simple modification of the matrix-free binary search procedure:

if « < 1 then (output(L); o := &/(1 — «))
else (output(R); o := a— 1) .

(These steps are to be repeated infinitely many times, or until we get tired.)
If ais rational, the infinite representation obtained in this way is the same as
before but with RL*™ appended at the right of 's (finite) representation. For
example, if & =1, we get RLLL . . ., corresponding to the infinite sequence of
fractions 5 £ 3 % %, ..., which approach 1 in the limit. This situation is
exactly analogous to ordinary binary notation, if we think of L as 0 and R as 1.
Just as every real number x in [0, 1) has an infinite binary representation
(.b1bybs... )2 not ending with al I's, every real number « in [0, o) has
an infinite Stern-Brocot representation By B;B; . . . not ending with al R's.
Thus we have a one-to-one order-preserving correspondence between [0, 1)
and [0, co) if welet0 s Land 1 & R

There's an intimate relationship between Euclid’'s agorithm and the
Stern-Brocot representations of rationals. Given & = m/n, we get |[m/n|
R's, then [n/(m mod n)]| L’s, then |[(m mod n)/(n mod (m mod n))| R,
and so on. These numbers m mod n, n mod (m mod n), . . . are just the val-
ues examined in Euclid's algorithm. (A little fudging is needed at the end
to make sure that there aren’t infinitely many R’s) We will explore this
relationship further in Chapter 6.

4.6 ‘MOD’: THE CONGRUENCE RELATION

Modular arithmetic is one of the main tools provided by number
theory. We got a glimpse of it in Chapter 3 when we used the binary operation
‘mod’, usually as one operation amidst others in an expression. In this chapter
we will use ‘mod’ also with entire equations, for which a dlightly different
notation is more convenient:

a = b (mod m) & amodm = bmodm.

For example, 9 = -16 (mod 5), because 9 mod 5 = 4 = (-16) mod 5. The
formula‘a = b (mod m)’ can be read “a is congruent to b modulo m! The
definition makes sense when a, b, and m are arbitrary real numbers, but we
amost always use it with integers only.

(4.35)



124 NUMBER THEORY

Since x mod m differs from x by a multiple of m, we can understand
congruences in  another  way:

a=b (mod m) = a—bisamultipleof m.  (4.36)

For if amod m = b mod m, then the definition of ‘mod’ in (3.21) tells us
thaaa~b=amodm+km - (bmodm+1m)=(k 1)m for some integers
k and 1. Conversdly if a -~ b = km, then a= b if m = 0O; otherwise

amod m=a - |a/m|m = b+ km —|(b + km)/m|m
= b—|b/mjm = bmodm.

The characterization of = in (4.36) is often easier to apply than (4.35). For
example, we have 8 = 23 (mod 5) because 8 — 23 = -15 is a multiple of 5; we
don’'t have to compute both 8 mod 5 and 23 mod 5.

The congruence sign ' = ' looks conveniently like ¢ =’ because congru-  “I fee/ fine today
ences are almost like equations. For example, congruence is an equivalence  Modulo a light
relation; that is, it satisfies the reflexive law ‘a = &, the symmetric law headache.The Hacker's
‘a = b = b = 4d, and the transitive law ‘a = b = ¢ = a = ¢ Dictionary [277]
All these properties are easy to prove, because any relation ‘=’ that satisfies
‘a=b & f(a) = f(b)' for some function f is an equivalence relation. (In

our case, f(x) = x mod m.) Moreover, we can add and subtract congruent
elements without losing congruence:

a=zband c=d = at+c = b+d (mod m);
a=band c=4d = a-c = b-d (mod m) .

For if a — b and ¢ -~ d are both multiplesof m, soare(a +¢c) = (b + d) =
(@=-b)+(c-dad(@a-c) - (b-d =(a-b) = (c - d). Incidentdly, it
isn't necessary to write ‘(mod m)’ once for every appearance of ' =; if the
modulus is constant, we need to name it only once in order to establish the
context. Thisis one of the great conveniences of congruence notation.
Multiplication works too, provided that we are dealing with integers:

a=bandc=d = ac = bd  (mod m),
integers b, c.

Proof: ac — bd = (a — b)c + b(c — d). Repeated application of this multipli-
cation property now allows us to take powers:

a=b = da = b" (mod m), integers a, by
integer n > 0.
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For example, since 2 = -1 (mod 3), we have 2™ = (—1)" (mod 3); this means
that 2" - 1 isamultiple of 3 if and only if nis even.

Thus, most of the algebraic operations that we customarily do with equa-
tions can aso be done with congruences. Most, but not al. The operation
of division is conspicuously absent. If ad = bd (mod m), we can’'t aways
conclude that a = b. For example, 3-2 = 5-2 (mod 4), but 3 # 5.

We can salvage the cancellation property for congruences, however, in
the common case that d and m are relatively prime:

ad=bd & a=bD (mod m), (4.37)
integersa, b,d, mand d L m.

For example, it's legit to conclude from 15 = 35 (mod m) that 3 = 7 (mod m),
unless the modulus m is a multiple of 5.

To prove this property, we use the extended ged law (4.5) again, finding
d and m' such that dd + m'm = 1. Then if ad = bd we can multiply
both sides of the congruence by d', obtaining ad'd = bd'd. Since dd =1,
we have ad'd = aand bd'd = b; hence a = b. This proof shows that the
number d' acts aimost like 1/d when congruences are considered (mod m);
therefore we call it the “inverse of d modulo m!’

Another way to apply division to congruences is to divide the modulus
as well as the other numbers:

ad = bd (modmd) < a = b (modm), ford#0. (438

This law holds for al rea a, b, d, and m, because it depends only on the
distributive law (a mod m) d = ad mod md: We have a mod m = b mod m
<= (@amod m)d = (b mod m)d & ad mod md = bd mod md. Thus,
for example, from 3-2=5-2 (mod 4) we conclude that 3= 5 (mod 2).

We can combine (4.37) and (4.38) to get a general law that changes the
modulus as little as possible:

ad = bd (mod m)

& a=b (mod integers a, b, d, m. (4.39)

m
ged(d, m})'
For we can multiply ad = bd by d’, where d'd + m'm = gcd( d, m); this gives
the congruence a- gcd( d, m) =b- ged( d, m) (mod m), which can be divided
by ged(d, m).

Let's look a bit further into this idea of changing the modulus. If we
know that a = b (mod 100), then we aso must have a = b (mod 10), or
modulo any divisor of 100. It’s stronger to say that a — b is a multiple of 100
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than to say that it's a multiple of 10. In general,

a =b (md md = a=b (mod m) , integer d, (4.40)

because any multiple of md is a multiple of m.
Conversely, if we know that a = b with respect to two small moduli, can Modulitos?
we conclude that a = b with respect to a larger one? Yes; the rule is

a=b(modm) and a=b (mod n)
& a=b (mod lcm(m, n)) , integers m, n > 0. (4.42)

For example, if we know that a = b modulo 12 and 18, we can safely conclude
that a = b (mod 36). The reason is that if a b is a common multiple of m
and n, it is a multiple of lcm( m, n). This follows from the principle of unique
factorization.

The specia case m { n of this law is extremely important, because

Iem(m, n) = mn when m and n are relatively prime. Therefore we will state
it explicitly:

a=b (mod mn)
& a=b(mod m) and a = b (mod n), if mLn. (4.42)

For example, a = b (mod 100) if and only if a= b (mod 25) and a = b
(mod 4). Saying this another way, if we know x mod 25 and x mod 4, then
we have enough facts to determine x mod 100. This is a special case of the
Chinese Remainder Theorem (see exercise 30), so called because it was
discovered by Sun Tsii in China, about A o. 350.

The moduli m and n in (4.42) can be further decomposed into relatively
prime factors until every distinct prime has been isolated. Therefore

a="b (mod m) = a=b (mod p™) forallp,

if the prime factorization (4.11) of m is Hp p™. Congruences modulo powers
of primes are the building blocks for all congruences modulo integers.

4.7 INDEPENDENT RESIDUES

One of the important applications of congruences is a residue num-
ber system, in which an integer x is represented as a sequence of residues (or
remainders) with respect to moduli that are prime to each other:

Res(x)= (x mod ml,. . . ,x mod m,) , if my Lmyforl <j<k<r,

Knowing x mod my, ..., x mod m, doesn't tell us everything about x. But
it does alow us to determine x mod m, where m is the product m; . . . m,



4.7 INDEPENDENT RESIDUES 127

In practica applications we'll often know that x lies in a certain range; then
we'll know everything about x if we know x mod m and if m is large enough.

For example, let's look at a small case of a residue number system that
has only two moduli, 3 and 5:

x mod 15| cmod3 | ¢ mod 5
0 0 0
1 | 1
2 2 2
3 0 3
4 | 4
5 2 0
6 0 |
7 l 2
8 2 3
9 0 4
10 l 0
11 2 |
12 0 2
13 l 3
14 2 4

Each ordered par (x mod 3, x mod 5) is different, because x mod 3 = y mod 3
and x mod 5 = y mod 5 if and only if x mod 15 =y mod 15.

We can perform addition, subtraction, and multiplication on the two
components independently, because of the rules of congruences. For example,
if we want to multiply 7 = (1,2) by 13 = (1,3) modulo 15, we calculate
1\1mod3=1and 2.3 mod 5=1. The answeris (1,1) = 1; hence 7-13 mod 15
must equal 1. Sure enough, it does.

This independence principle is useful in computer applications, because
different components can be worked on separately (for example, by differ-
ent computers). If each modulus my is a distinct prime px, chosen to be

For example, the dightly less than 2%, then a computer whose basic arithmetic operations

Mersenne prime handle integers in the range [—23" 23") can easily compute sums, differences,
21 and products modulo pk. A set of r such primes makes it possible to add,

works - well subtract, and multiply “multiple-precision numbers’ of up to almost 31 r bits,

and the residue system makes it possible to do this faster than if such large
numbers were added, subtracted, or multiplied in other ways.

We can even do division, in appropriate circumstances. For example,
suppose we want to compute the exact value of a large determinant of integers.
The result will be an integer D, and bounds on |D} can be given based on the
size of its entries. But the only fast ways known for calculating determinants
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require division, and this leads to fractions (and loss of accuracy, if we resort
to binary approximations). The remedy is to evaluate D mod py = Dy, for
various large primes px. We can safely divide modulo py unless the divisor
happens to be a multiple of pk. That’s very unlikely, but if it does happen we
can choose another prime. Finally, knowing Dy, for sufficiently many primes,
we'll have enough information to determine D.

But we haven't explained how to get from a given sequence of residues
(xmod m,,...,x mod m,) back to x mod m. We've shown that this conver-
sion can be done in principle, but the calculations might be so formidable
that they might rule out the idea in practice. Fortunately, there is a rea
sonably simple way to do the job, and we can illustrate it in the situation
(x mod 3,x mod 5) shown in our little table. The key idea is to solve the
problem in the two cases (1,0) and (0, 1); for if (1,0)=aand (0,1) = b, then
(X, ¥) = (ax + by) mod 15, since congruences can be multiplied and added.

In our case a= 10 and b = 6, by inspection of the table; but how could
we find a and b when the moduli are huge? In other words, if m 1 n, what
is a good way to find numbers a and b such that the equations

amodm = 1, amodn = 0, bmodm = 0, bmodn = 1

al hold? Once again, (4.5) comes to the rescue: With Euclid’s algorithm, we
can find m’ and n’ such that

mm+n'n = 1.

Therefore we can take a = n'n and b = m'm, reducing them both mod mn
if  desired.

Further tricks are needed in order to minimize the calculations when the
moduli are large; the details are beyond the scope of this book, but they can
be found in [174, page 274]. Conversion from residues to the corresponding
origina numbers is feasible, but it is sufficiently slow that we save total time
only if a sequence of operations can al be done in the residue number system
before  converting  back.

Let's firm up these congruence ideas by trying to solve a little problem:
How many solutions are there to the congruence

x> =1 (mod m) , (4.43)
if we consider two solutions x and X’ to be the same when x = x’?

According to the general principles explained earlier, we should consider
first the case that m is a prime power, p*, where k > 0. Then the congruence
x? = 1 can be written

(x=1)(x+1) = 0 (mod p"),
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so p must divide either x — 1 or x + 1, or both. But p can't divide both
X —=21andx + 1 unless p = 2; we'll leave that case for later. If p > 2, then
pP\(x T(x+1 & pk\(x = 1) or p*\(x + 1); so there are exactly two
solutions, x = 41 and x = -1

The case p = 2 is a little different. If 2%\(x =1 )(x + 1) then either x — 1
or X + 1 is divisible by 2 but not by 4, so the other one must be divisible
by 2¥~!. This means that we have four solutions when k > 3, namely x = +1
andx = 2%' 4+ 1. (For example, when p* = 8 the four solutions are x =1, 3,
5, 7 (mod 8); it's often useful to know that the square of any odd integer has
the form 8n + 1)

Now x? = 1 (mod m) if and only if x> = 1 (mod p™ ) for all primes p
with m, > O in the complete factorization of m. Each prime is independent
of the others, and there are exactly two possibilities for x mod p™ except

All primes ae odd ~ when p = 2. Therefore if m has exactly r different prime divisors, the total
except 2, which is  number of solutions to x* = 1 is 2", except for a correction when m. is even.
the- oddest of all The exact number in genera is

orHBAmM]+[4\m] - [2\m] (4.44)

For example, there are four “square roots of unity modulo 12,” namely 1, 5,
7, and 11. When m = 15 the four are those whose residues mod 3 and mod 5
are +1, namely (1, 1), (1,4), (2, 1), and (2,4) in the residue number system.
These solutions are 1, 4, 11, and 14 in the ordinary (decimal) number system.

48 ADDITIONAL APPLICATIONS

There's some unfinished business left over from Chapter 3: We wish
to prove that the m numbers

Omodm, nmodm, 2nmodm, . . . . (m-1)nmodm (4.45)
consist of precisely d copies of the m/d numbers
0,0 d 2d, . . . . md

in some order, where d = gcd(m, n). For example, when m =12 and n = 8
we have d = 4, and the numbers are 0, 8, 4, 0, 8, 4, 0, 8, 4, 0, 8, 4.
The first part of the proof-to show that we get d copies of the first

Mahemdicians love m/d values-is now trivia. We have
to say that things

ae trivid. jn = kn (mod m) = j(n/d) = k(n/d) (mod m/d)

by (4.38); hence we get d copies of the values that occur when 0 < k < m/d.
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Now we must show that those m/d numbers are {0, d,2d,..., m = d}
in some order. Let's write m = m'd and n = n'd. Then kn mod m =
d(kn’ mod m’), by the distributive law (3.23); so the values that occur when
0 <k <m' are d times the numbers

Omodm',n modm’,2n modm', ..., (M =1 )n"modm .

But we know that m’ L n’ by (4.27); we've divided out their ged. Therefore
we need only consider the case d = 1, namely the case that m and n are
relatively prime.

So let’s assume that m | n. In this case it’s easy to see that the numbers
(4.45) arejust {0,1, ..., m -1} in some order, by using the “pigeonhole
principle!” This principle states that if m pigeons are put into m pigeonholes,
there is an empty hole if and only if there’'s a hole with more than one pigeon.
(Dirichlet’s box principle, proved in exercise 3.8, is similar.) We know that
the numbers (4.45) are distinct, because

jn = kn (mod m) = j =k (mod m)
when m L n; thisis (4.37). Therefore the m different numbers must fill all the
pigeonholes 0, 1, . . . , m = 1. Therefore the unfinished business of Chapter 3
is finished.

The proof is complete, but we can prove even more if we use a direct
method instead of relying on the indirect pigeonhole argument. If m 1L n and
if avaluej € [0, m) is given, we can explicitly compute k € [0, m) such that
kn mod m = j by solving the congruence

kn = j (mod m)
for k. We simply multiply both sides by n’, where mm + n’'n = 1, to get
kK = jn" [mod m) ;

hence k = jn" mod m.

We can use the facts just proved to establish an important result discov-
ered by Pierre de Fermat in 1640. Fermat was a great mathematician who
contributed to the discovery of caculus and many other parts of mathematics.
He left notebooks containing dozens of theorems stated without proof, and
each of those theorems has subsequently been verified-except one. The one
that remains, now called “Fermat’s Last Theorem,” states that

at + b £ " (4.46)
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Euler [93{ con-
jectured that
(14+b4+c47éd4,
but Noam Elkies
found infinitely
many solutions in
August, 1987.

Now Roger Frye has
done an exhaustive
computer  search,
proving (after about
110 hours on a Con-
nection  Maching)
that the smallest
solution is;

95800" +217519°
+ 414560
= 422481%.

“ laquelle propo-
gtion, 9 efle e
vraie, est de tres
grand usage.”

-P. de Fermat [97]
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for al positive integers a, b, ¢, and n, when n > 2. (Of course there are lots
of solutions to the equations a + b = ¢ and a® + b? = ¢2.) This conjecture
has been verified for al n < 150000 by Tanner and Wagstaff [285].

Fermat’s theorem of 1640 is one of the many that turned out to be prov-
able. It's now called Fermat’s Little Theorem (or just Fermat’s theorem, for
short), and it states that

n’' = 1 (modyp), ifn Lp. (4.47)

Proof: As usual, we assume that p denotes a prime. We know that the

p-l numbers n mod p, 2Znmod p, . . . . (p — 1 )n mod p are the numbers1, 2,
..., p=11in some order. Therefore if we multiply them together we get

n-(2n)-. ... ((p-—])n)
=(nmodp)y. (2nmod p) .. ... ((p -~ 1)m mod p)
= (p-D!,

where the congruence is modulo p. This means that

e -1z (p—1! (modp),

and we can cancel the (p 1)t since it's not divisible by p. QED.
An aternative form of Fermat’s theorem is sometimes more convenient:

(4.48)

This congruence holds for all integers n. The proof is easy: If n L p we
smply multiply (4.47) by n. If not, p\n,so n?=0 =n.

In the same year that he discovered (4.47), Fermat wrote a letter to
Mersenne, saying he suspected that the number

n’ = N (modp),  integer n

foo= 220 11

would turn out to be prime for al n > 0. He knew that the first five cases
gave primes.

2141 = 3; 2241 =5; 2*+1 = 17; 2541 = 257; 2'°+1 = 65537;

but he couldn’t see how to prove that the next case, 232 + 1 = 4294967297,
would be prime.

It's interesting to note that Fermat could have proved that 22 + 1 is not
prime, using his own recently discovered theorem, if he had taken time to
perform a few dozen multiplications. We can set n = 3 in (4.47), deducing
that

33 = | (mod 2% 41, if 2324 1isprime.
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And it's possible to test this relation by hand, beginning with 3 and squaring
32 times, keeping only the remainders mod 232 + 1. First we have 32 = 9,  Jf thisis Fermat's

then 32' = 81, then 32’ = 6561, and so on until we reach Little  Theoren,
the other one was

, last but not least.
32" = 3020026160  (mod 23% + 1) . )

The result isn't 1, so 232 + 1 isn’'t prime. This method of disproof gives us
no clue about what the factors might be, but it does prove that factors exist.
(They are 641 and 6700417.)

If 32” had turned out to be 1, modulo 232 + 1, the calculation wouldn’t
have proved that 232 + 1 is prime; it just wouldn't have disproved it. But
exercise 47 discusses a converse to Fermat’s theorem by which we can prove
that large prime numbers are prime, without doing an enormous amount of
laborious arithmetic.

We proved Fermat’s theorem by cancelling (p —~ 1 )! from both sides of a
congruence. It turns out that (p — I)! is always congruent to -1, modulo p;
thisis part of a classical result known as Wilson's theorem:

(n-- HY'=-1 (mod n) = nis prime, ifn>1. (449

One half of this theorem is trivid: If n > 1 is not prime, it has a prime
divisor p that appears as afactor of (n 1)!, so (n—=1)! cannot be congruent
to -1. (If (n- 1)! were congruent to -1 modulo n, it would also be congruent
to -1 modulo p, but it isn't.)

The other half of Wilson’s theorem states that (p = 1)! = -1 (mod p).
We can prove this half by pairing up numbers with their inverses mod p. If
n L p, we know that there exists n’ such that

nn = 1 (mod p);

here n’ is the inverse of n, and n is also the inverse of n’. Any two inverses
of n must be congruent to each other, since nn’ = nn” impliesn’ = n". If p is prime, is p*
Nowv sppoe we per up exch nurba bewen 1 ad pl with its invese  prime prime?
Since the product of a number and its inverse is congruent to 1, the product
of al the numbersin al pairs of inversesis also congruent to 1; so it seems
that (p -- 1! iscongruent to 1. Let’'s check, say for p = 5. We get 4! = 24;
but this is congruent to 4, not 1, modulo 5. Oops- what went wrong? Let's
take a closer look at the inverses:
1" =1, 2" = 3, 3" = 2, 4 = 4.
Ah so; 2 and 3 pair up but 1 and 4 don’t-they’re their own inverses.
To resurrect our analysis we must determine which numbers are their
own inverses. If x is its own inverse, then x* = 1 (mod p); and we have
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already proved that this congruence has exactly two rootswhenp > 2. (If
p =2it'sobviousthat (p 1)! =-1, so we needn’t worry about that case.)
Theroosael adp 1, adtheahe nurbas (bawen 1 ad p -~ 1) par
up; hence

(e-D! =1-(p-1) = -1,

as desired.
Unfortunately, we can’'t compute factorias efficiently, so Wilson's theo-
rem is of no use as a practical test for primality. It's just a theorem.

4.9 PHI AND MU

How many of the integers {0, 1, . . ., m-I} arerelatively prime to m?

This is an important quantity called ¢(m), the “totient” of m (so named by
J. J. Sylvester [284], a British mathematician who liked to invent new words).
We have ¢(1) =1, o(p) =p =1, ande(m)< m- 1 for al composite
numbers m.

The o function is called Euler’s totient function, because Euler was the
first person to study it. Euler discovered, for example, that Fermat’s theorem
(4.47) can be generalized to nonprime moduli in the following way:

nem™ = 1 (mod m),  ifnLm. (4.50)

(BExede R aks for a proof of Eue’s theoram)

If m is a pime power p¥, it's essy to compute (m), becaen 1L p* &=
pXn. Themutipesof p in{0,1,...,p* —1} are {0,p,2p,...,p* —p}; hece
there are p*~' of them, and @(p*) counts what is left:

“)

@(p¥) = p* - p*!

Natice thet this formula proparly gves @(p) = p — 1 whenk= 1.

If m>1 isnotaprime power, we can write m = m; m; where my L m;.
Then the numbers 0 < n < m can be represented in a residue number system
as (n mod m;, n mod m;). We have

nilm = nmodm; L my and nmod m; 1L my

by (4.30) and (4.4). Hence, n mod m is “good” if and only if n mod m,
and n mod m; are both “good,” if we consider relative primality to be a
virtue. The total number of good values modulo m can now be computed,
recursively: It is (m;)@(m;,), because there are ¢{m,) good ways to choose
the first component n mod m; and ¢(m;) good ways to choose the second
component n mod m; in the residue representation.
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For example, @(12) = @{4)¢(3)= 2.2 = 4, because n is prime to 12 if  “Sisint A et B nu-
and only if nmod 4 = (1 or 3) and n mod 3 = (1 or 2). The four values prime gen’ inter s primi
to 12 are (1,1}, (1,2), (3,1}, (3,2) in the residue number system; they are . %gi?}farzaglum
1, 5 7, 11 in ordinary decima notation. Euler's theorem states that =1 it= a, numerus

(mod 12) whenever n | 12. vero patium ad B
primarum sit = b,

A function f(m) of positive integers is caled multiplicative if f (1) =1 tum numerus par-
and tium ad productum
AB primarum erit

f(mym,) = f(my)f(my)  whenever m; L m,. (4.51) ab.

= —L. Buler [89]

We have just proved that ¢(m) is multiplicative. We've also seen another
instance of a multiplicative function earlier in this chapter: The number of
incongruent solutions to x> = 1 (mod m) is multiplicative. Still another
example is f(m) = m®* for any power o.

A multiplicative function is defined completely by its values at prime
powers, because we can decompose any positive integer m into its prime-

power factors, which are relatively prime to each other. The general formula
fim) = [[fe™),  if m=]]p™ (4.52)
p p

holds if and only if f is multiplicative.

In particular, this formula gives us the value of Euler’s totient function
for genera m:

o(m) = [Jo™ —p™ ') = mH(1 —:—)) (4.53)

p\m p\m

For example, @(12)= (4—2)(3—1) = 1201 = })(1 - }).

Now let’s look at an application of the ¢ function to the study of rational
numbers mod 1. We say that the fraction m/n is basic if 0 <m < n. There-
fore ¢(n) is the number of reduced basic fractions with denominator n; and
the Farey series &, contains al the reduced basic fractions with denominator
n or less, as well as the non-basic fraction %

The set of gll basic fractions with denominator 12, before reduction to
lowest terms, is

g 1 1 1.1 1
T2 8 4 3 92 D T
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and we can group these fractions by their denominators:

5 7
T2 12 720 T

1

1] Y 1) ) ) )

—o

o=
wl—
wiro
ENE
£l
N=
o8]
-

N

What can we make of this? Well, every divisor d of 12 occurs as a denomi-
nator, together with all ¢(d) of its numerators. The only denominators that
occur are divisors of 12. Thus

o(1) + @(2) + 0(3) + @(4) + ¢(6) + ©(12) = 12.

1

, &, 2=l for any m, hence

A similar thing wil] obviously happen if we begin with the unreduced fractions
0
m?

Z(p(d) = m. (4-54)

d\m

We said near the beginning of this chapter that problems in number
theory often require sums over the divisors of a number. Well, (4.54) is one
such sum, so our claim is vindicated. (We will see other examples.)

Now here’s a curious fact: If f is any function such that the sum

= Y f(d)

d\m

is multiplicative, then f itself i multiplicative. (This result, together with
(4.54) and the fact that g(m) = m is obviously multiplicative, gives another
reason why @{m) is multiplicative.) We can prove this curious fact by in-
duction on m: The basis is easy because f (1) =g (1) =1, Let m > 1, and
assume that f (mymy) =1 (my)f(m;) whenever my L m; and my m; < m. If
m =mym; and my 1L my, we have

gmimy) = Y fl@) = Y Y fldidy),

d\mym; di\my d;\m,

and d; L d; since all divisors of m,; are relatively prime to all divisors of
m;. By the induction hypothesis, f (d;1d;) =  (d1) f (d2 ) except possibly when
d; = my and d; = m;; hence we obtain

(X @) ¥ fien) = fim)fma) + fmim)

di\my dz\m.z

= g(m1)g(m2) — f(my)f(my) + f(mymy).

But this equals g(mym;) = g(mq)g(mz), so f(mimy) = f(my)f(my).
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Conversdly, if f(m) is multiplicative, the corresponding sum-over-divisors
function g(m) = ¥4, f(d) is aways multiplicative. In fact, exercise 33 shows
that even more is true. Hence the curious fact is a fact.

The Mobius function pu(m), named after the nineteenth-century mathe-
matician August Mobius who also had a famous band, is defined for all m> 1
by the eguation

D wd) = [m=1]. (4.55)

d\m

This equation is actually a recurrence, since the left-hand side is a sum con-
sisting of w(m) and certain values of u(d) with d < m. For example, if we
plugin m=1,2,. ., 12 successively we can compute the firs twelve values:

n |12 3 45 6 7 8910 11 12
)| 1 -1 -1 011 -1 001 -1 0

Mobius came up with the recurrence formula (4.55) because he noticed
that it corresponds to the following important “inversion principle’:

oimi = 210 ﬂm):dz\m”(d)g(%)‘ (459)

According to this principle, the p function gives us a new way to understand

any function f(m) for which we know Zd\m f(d). Now is a good time
The proof of (4.56) uses two tricks (4.7) and (4.g) that we described near to try warmup

the beginning of this chapter: If g(m) = ¥_ 4., f(d) then erercise 11.

> u(d)g(%) =3 u(%)g(d)

d\m d\m

= Y uP) ) (K
d\m k\d

=Y Y )k
k\m d\(m/k]

=) D wdfk)
kim d\(m/k)

= ¥ [m/k=1]f(k) = f(m).
k\m

The other half of (4.56) is proved similarly (see exercise 12).
Relation (4.56) gives us a useful property of the Mobius function, and we
have tabulated the first twelve values; but what is the value of u(m) when
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m is large? How can we solve the recurrence (4.55)7 Well, the function
g(m) = [m = 1] is obviously multiplicative-after all, it's zero except when
m= 1. So the Mobius function defined by (4.55) must be multiplicative, by
what we proved a minute or two ago. Therefore we can figure out what p(m)
is if we compute p(p*).

When m = pk, (4.55) says that

w(D) +pe) +peH) ++ud* = o

for dl k > 1, since the divisors of p* are 1, ..., p*. It follows that

wp) = -1;  w(p) = 0 fork>1.

Therefore by (4.52), we have the general formula

(4.57)

=17, ifm= P
wm) = HH(D"‘“) - {( D, fm=pipz...p

0, if mis divisible by some p2.

That's .
If we regard (4.54) as a recurrence for the function ¢(m), we can solve
that recurrence by applying Mobius's rule (4.56). The resulting solution is

o(m) = Y wld)7, (4.58)
d\m

For example,

©(12) = w(1)- 12+ p(2)-64 w(3)-4+ u(4)-3+ u(6)-2+ u(12)-1
=12-6-4+0+240 = 4.

If m is divisble by v different pimes sy {py , . . . , p,}, the sum (458) has only
2 nonzero terms, because the | function is often zero. Thus we can see that
(4.58) checks with formula (4.53), which reads

m(m)=m(1-pl1)...(1-l);

if we multiply out the T factors (1 =1 /p;), we get precisely the 2' nonzero
terms of (4.58). The advantage of the Mobius function is that it applies in
many situations besides this one.

For example, let's try to figure out how many fractions are in the Farey
series &,,. This is the number of reduced fractions in [0, 1] whose denominators
do not exceed n, so it is 1 greater than ®(n) where we define

Ox) = ) olk). (459)

1<kgx
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(We must add 1 to ®(n) because of the final fraction %_) The sum in (4.59)
looks difficult, but we can determine ®(x) indirectly by observing that

X

Z‘D(a> = %m [1+x] (4.60)

dz1

for al real x > 0. Why does this |dent|ty hold? Well, it's a bit awesome yet
not really beyond our ken. There are § |x]|1+ x] basic fractions m/n with
0 £m « n < X, counting both reduced and unreduced fractions; that gives
us the right-hand side. The number of such fractions with gcd(m,n) =
is @(x/d), because such fractions are m//n’ with 0 <m < n £ x/d after
replacing m by m'd and n by n'd. So the left-hand side counts the same
fractions in a different way, and the identity must be true.
Let's look more closely at the situation, so that equations (4.59) and
(4.60) become clearer. The definition of ®(x) implies that ®(x) = ®([x]);
but it turns out to be convenient to define ®(x) for arbitrary real values, not  (This extension to

just for integers. At integer values we have the table red values is a use-
ful trick for many

recurrences  that
n 0 12 3 4 5 6 7 8 9 10 11 12 i in the andysis
en)| -112 2 4 2 6 4 6 4 10 4 of  algorithms.)

®n)| 0 1 2 4 6 10 12 18 22 28 32 42 46

and we can check (4.60) when x = 12:

@(12) + O(6) + ®(4) + D(3) + D(2) + ®(2) +6-D(1)
= 46+124+6+4+2+2+6 = 78 = 3-12-13.

Amazing.

Identity (4.60) can be regarded as an implicit recurrence for ®(x); for
example, we've just seen that we could have used it to calculate @ (12) from
certain values of @®(m)withm < 12. And we can solve such recurrences by
using another beautiful property of the Mobius function:

() = ) f(x/d) = =Y uda(3).  (461)

dz1 azi

This inversion law holds for all functions  such that 3", -, |f(x/kd)| < oco;
we can prove it as follows. Suppose g(x) = } 4, f(x/d). Then

D Wdglx/d) =) uld) ) flx/ka)

dz dz1 k21

—fo/m Zu [m=kd]

m21 d, k=1
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=) flym) Y wd= Y fx/mim=1] = f(x).

m2! d\m m21
The proof in the other direction is essentialy the same.
So now we can solve the recurrence (4.60) for ®{x):
1
Dlx) = 5 Zd>]u(d) [x/d][1 + x/d] (4.62)

This is always a finite sum. For example,

|

®(12) = 3(12:13-6:7—-4-5+0—2-3+2-3
—1:240+0+1-2-1:2+40)
78-21-10-3+3—-1+1-1= 46.

i

In Chapter 9 we'll see how to use (4.62) to get a good approximation to ®(x);
in fact, we'll prove that

O(x) = %xz + O(xlogx).

Therefore the function @(x) grows “smoothly”; it averages out the erratic
behavior of ¢(k).

In keeping with the tradition established last chapter, let’s conclude this
chapter with a problem that illustrates much of what we've just seen and that
also points ahead to the next chapter. Suppose we have beads of n different
colors; our goal isto count how many different ways there are to string them
into circular necklaces of length m. We can try to “name and conquer” this
problem by calling the number of possible necklaces N (m, n).

For example, with two colors of beads R and B, we can make necklaces
of length 4in N (4,2) = 6 different ways:

RN RN RN R~ RN B
RR RR RB BB BB BB
LR B~ \.BJ KRJ KB/ B~/
All other ways are equivaent to one of these, because rotations of a necklace

do not change it. However, reflections are considered to be different; in the
case m = 6, for example,

B B
R R ) ) R R
| | is different from | | .
R B B R

B~ g~/
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The prablem of counting these configurations was first solved by P. A. Mac-
Mahon in 1892 [212].

There’s no obvious recurrence for N (m, n), but we can count the neck-
laces by breaking them each into linear strings in m ways and considering the
resulting fragments. For example, when m = 4 and n = 2 we get

RRRR RRRR RRRR RRRR
RRBR RRRB BRRR RBRR
RBBR RRBB BRRB BBRR
RBRB BRBR RBRB BRBR
RBBB BRBB BBRB BBBR
BBBB BBBB BBBB BBBB

Each of the n™ possible patterns appears at least once in this array of
mN(m,n) strings, and some patterns appear more than once. How many
times does a pattern q. . . a,,—; appear? That's easy: It's the number of
cyclicshiftsay . .. am—1aq - . - ax—7 that produce the same pattern as the orig-
ind ag...ay_1. FoOr example, BRBR occurs twice, because the four ways to
cut the necklace formed from BRBR produce four cyclic shifts (BRBR, RBRB,
BRBR, RBRB); two of these coincide with BRBR itself. This argument shows
that

mN(m,n) = Z Z [ao...am;] :ak...amqao...ak-]]

Ag,enny Am-1€Sn 0<k<m

= Z Z [ao...am,lzak...am_1a0...ak_1].

0<k<m ag,e.@m-1€Sn

Here S, is a set of n different colors.

Let's see how many patterns satisfy ag . . . Qm-1= Qg. .. Qym_1Gp - . . k-1,
when k is given. For example, if m = 12 and k = 8, we want to count the
number of solutions to

apa;aza3aqdsagayagde@ipay; = Gghe010011000a1Q24304050407 -
This means gy = ag = as; a1 = a9 = &S, a; = ayp = ag; and a3 = a;1 = ay.

So the vaues of ag, aj, az, ad a3 can be chosen in n* ways, and the remaining
a's depend on them. Does this look familiar? In genera, the solution to

4 = Q{j+k)modm for0<j<m
makes us equate a; With a ;1) meam fOr 1 =1,2, . . .; and we know that
the multiples of k modulo m are {0, d, 2d, ..., m = d}, where d = gcd(k, m).
Therefore the general solution is to choose aq, . - . , a4 independently and

then to set a; = a; 4 for d < j < m. There are n? solutions.
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We have just proved that
mN(m,n) = Z needikm)
0gk<m

This sum can be simplified, since it includes only terms n¢ where dim. Sub-
dtituting d = ged(k, m) yields

%Z nd ¥ [d=gcd(k,m)]

d\m  0gk<m

_ ] '
= — Y n Z [k/d L mvd]

d\m  Osk<m

nllz nd ¥ [kim/d].

d\m 0gk<m/d

N{m,n)

1l

(We are dlowed to replace k/d by k because k must be a multiple of d.)
Finaly, we have ) <y cm/alk L m/d] = @(m/d) by definition, so we obtain
MacMahon'’s formula:

1 1 m
N(m,n) = n—ld\zmndcp(%) = n—ld\zmco(d)n /d (4.63)

When m = 4 and n = 2, for example, the number of necklaces is % (-2t +
1.22+2.2) =6, just as we suspected.

It's not immediately obvious that the vaue N(m, n) defined by Mac-
Mahon's sum is an integer! Let's try to prove directly that

} e@n™¥=0  (modm), (4.64)
d\m

without using the clue that this is related to necklaces. In the specia case
that m is prime, this congruence reduces to n* + (p = 1jn = 0 (mod p); that
is, it reduces to n? = n. We've seen in (4.48) that this congruence is an
dternative form of Fermat’s theorem. Therefore (4.64) holds when m = p;
we can regard it as a generalization of Fermat’s theorem to the case when the
modulus is not prime. (Euler's generalization (4.50) is different.)

We've proved (4.64) for al prime moduli, so let's look at the smallest
case left, m = 4. We must prove that

n4+nf+2n =0 (mod 4) .

The proof is easy if we consider even and odd cases separately. If n is even,
al three terms on the left are congruent to 0 modulo 4, so their sum is too. If
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nis odd, n* and n? are each congruent to 1, and 2n is congruent to 2; hence

the left side is congruent to | + 1 + 2 and thus to 0 modulo 4, and we're done.
Next, let's be a bit daring and try m = 12. This value of m ought to

be interesting because it has lots of factors, including the square of a prime,

yet it is fairly small. (Also there's a good chance we'll be able to generalize a

proof for 12 to a proof for general m.) The congruence we must prove is
n24n®+2nt 4234+ 2n*+4n =0 (mod 12).

Now what? By (4.42) this congruence holds if and only if it also holds mod-
ulo 3 and modulo 4. So let's prove that it holds modulo 3. Our congru-
ence (4.64) holds for primes, so we have n® + 2n = 0 (mod 3). Careful
scrutiny reveals that we can use this fact to group terms of the larger sum:

n? 4+t i+ 2n? +4n
(n'2 £ 2n%) + (n® +2n?) +2(n® 4+ 2n)
0+0+2.0=0  (mod 3),

So it works modulo 3.
We're half done. To prove congruence modulo 4 we use the same trick.
We've proved that n* +n? +2n = 0 (mod 4), so we use this pattern to group:

n24nt+mt 4+ M+ 2t +an
= M+ nf+2m3)+2n* + n? + 2n)
04+20=0 (mod 4).

QED for the case m = 12. QED: Quite Easily
So far we've proved our congruence for prime m, for m = 4, and for m = Done.

12. Now let's try to prove it for prime powers. For concreteness we may

suppose that m = p* for some prime p. Then the left side of (4.64) is

n”’ + @(pIn®" + @(p?)n® + @lpin
3 2
=nP + (P=1)n" +(p? pinP+ (P’ ~pin
= (P =P )+ p(” = nP) 4 2P —n) +p’n,

We can show that this is congruent to 0 modulo p3 if we can prove that
n?’ - n¥’is divisible by p that n?*  n¥ is divisible by p? and that nP = n
is divisible by p, because the whole thing will then be divisible by p3. By the
aternative form of Fermat’s theorem we have mP? = n (mod p), so p divides
nP = 1,; hence there is an integer g such that

n’ = n+pq
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Now we raise both sides to the pth power, expand the right side according to
the binomia theorem (which we'll meet in Chapter 5), and regroup, giving

n?’

n+ P = TLD + lnp——l P + 2..p—2 P
( pq) (vq)o : (pq) ey +
n’ + p?Q

for some other integer Q. We're able to pull out a factor of p? here because
(‘,’) = p in the second term, and because a factor of (pq)? appears in al the
terms that follow. So we find that p2 divides nP" — nP,

Again we raise both sides to the pth power, expand, and regroup, to get

3

n? = (nP + p?Q)’°
2 _ p _ vp
— P+ (DZQ)1T1D(D 1) ] + (pZQ)an(p 2, 5 +
0 0
= '+ p'Q

for yet another integer Q. So p3 divides nP’ — nP’. This finishes the proof for
m = p3, because we've shown that p? divides the left-hand side of (4.64).
Moreover we can prove by induction that

for some final integer £ (final because we're running out of fonts); hence

k k-1

o= n (mod p*),  for k> 0. (4-65)

Thus the left side of (4.64), which is

k-1 -1 k-2

P =) s P Ty +p (P —n)+ pkn,
is divisible by p* and so is congruent to 0 modulo pk.

We're amost there. Now that we've proved (4.64) for prime powers, al
that remains is to prove it when m = m" my, where m’ | m;, assuming that
the congruence is true for m" and m,. Our examination of the case m = 12,
which factored into instances of m = 3 and m = 4, encourages us to think
that this approach will work.

We know that the ¢ function is multiplicative, so we can write

Z (p(d)nm/d = Z (p(d]dz)nnumz/d]dz

d\m dy \my, d2\m;
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But the inner sum is congruent to 0 modulo m;, because we' ve assumed that
(4.64) holds for m;; so the entire sum is congruent to O modulo m,. By a
symmetric argument, we find that the entire sum is congruent to O modulo m;
as well. Thus by (4.42) it's ‘ congruent to 0 modulo m. QED.

Exercises

Warmups

1  What is the smallest positive integer that has exactly k divisors, for
1<k<g6?

2 Prove that ged( m, n) . lem( m, n) = m.n, and use this identity to express
[cm(m,n) in terms of lem(n mod m, m), when n mod m # 0. Hint: Use
(4-12), (4.14), and (4.15).

3 Let n(x) be the number of primes not exceeding x. Prove or disprove:

n(x) = n{x = 1) = [x is prime]

4 What would happen if the Stern-Brocot construction started with the
five fractions (¢, 3, &, 3, 9) instead of with (¢, §)?

5 Find simple formulas for L* and R*, when L and R are the 2 x 2 matrices
of (4.33).

6 What does‘a = b (mod 0)' mean?

7  Ten people numbered 1to 10 are lined up in a circle as in the Josephus
problem, and every mth person is executed. (The vaue of m may be
much larger than 10.) Prove that the first three people to go cannot be
10, k, and k + 1 (in this order), for any k.

8 The residue number system (x mod 3, x mod 5) considered in the text has

the curious property that 13 corresponds to (1, 3), which looks almost the
same. Explain how to find al instances of such a coincidence, without
calculating al fifteen pairs of residues. In other words, find al solutions
to the congruences

10x+y = x (mod 3), 10x+y =y (mod5).

Hint: Use the facts that 10u+6v = u (mod 3) and 10u+6v = v (mod 5).

9 Show that (377 ~1)/2 isodd and composite. Hint: What is 377 mod 4?7

10 Compute ¢(999).
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11 Find a function o(n) with the property that
gn) = > f(k = f(n) = 3 o(k)g(n-k).
0gkgn ogksn
(This is analogous to the Mobius function; see (4.56).)
12 Simplify the formula 3\, 3 .4 w(k) 9(d/Kk).

13 A positive integer n is caled squarefree if it is not divisible by m? for
any m > 1. Find a necessary and sufficient condition that n is squarefree,
a in terms of the prime-exponent representation (4.11) of n;
b in terms of u(n).

Basics
14 Prove or disprove:

a gcd(km, kn) = kged(m,n) ;

b lem(km, kn) = klem(m,n) .
15 Does every prime occur as a factor of some Euclid number e,?
16 What is the sum of the reciprocals of the first n Euclid numbers?
17 Let f, be the “Fermat number” 22" 1+ 1. Prove that fm Lo if m<on,
18 Show that if 2" + 1 is prime then n is a power of 2.

19 For every positive integer n there’s a prime p such that n < p < 2n. (This
is essentially “Bertrand’s postulate,” which Joseph Bertrand verified for
n < 3000000 in 1845 and Chebyshev proved for all i in 1850.) Use
Bertrand’s postulate to prove that there's a constant b =~ 1.25 such that
the numbers

2], 122", 1227, . ..

are al prime.
20 Let P, be the nth prime number. Find a constant K such that

|(10%'K) mod10™] = P, .
21 Prove the following identities when n is a positive integer:

Y K y L(m/k)/fm/ku)"]J

T<k<n T<mgn 1<k<m

gl

Hint: This is a trick question and the answer is pretty easy.
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22 The number 1111111111111111111 is prime. Prove that, in any radix b, s this a test for
(11...1 )y can be prime only if the number of 1 ’s is prime. strabismus?

23 State arecurrence for p(k), the ruler function in the text’s discussion of
e,(n!). Show that there's a connection between p(k) and the disk that's
moved at step k when an n-disk Tower of Hanoi is being transferred in
2" -~ 1moves forl <k 2" = 1L

24 Express e, (n!) in terms of v, (n), the sum of the digits in the radix p Lok, ma
representation of n, thereby generalizing (4.24)- sideways - addition.

25 We say that m ezactly divides n, written m\\n, if m\n and m J n/m.
For example, in the text's discussion of factorial factors, pe»(™\n!.
Prove or disprove the following:

a kWwn and m\\n & km\in, if K L m.
b Fordl m,n > 0, either gcd(m, n)\\m or gcd(m, n)\\n.

26 Consider the sequence 5y of all nonnegative reduced fractions m/n such
that mn < N For example,

11111112121 312

0 1 L <
910 — 31210°9° 8726752423751 233712271

5345678910
221

bl

Is it true that m'n — mn' = 1 whenever m/n immediately precedes
m’/n’in gy?

27 Give asimple rule for comparing rational numbers based on their repre-
sentations as L's and R’s in the Stern-Brocot number system.

28 The Stern-Brocot representation of = is
7 = R3RVPLR¥LRLRZLRLRM™LIR.. . ;

use it to find al the simplest rational approximations to @ whose denom-
inators are less than 50. Is £ one of them?

29 The text describes a correspondence between binary real numbers x =
(.bibybs...)7in [0, 1) and Stern-Brocot real numbers ¢ =By B;Bs . . . in
[0, 00). If X corresponds to « and x # O, what number corresponds to
I--x?

30 Prove the following statement (the Chinese Remainder Theorem): Let
my,. ... m, beintegers with m; L my for 1 <j <k <r; let m=

my... my;andletar,. ... a., A beintegers. Then there is exactly one
integer a such that

a=ak (mod my)for I<k<r and A<a<A+m.

31 A number in decimal notation is divisible by 3 if and only if the sum of
its digits is divisible by 3. Prove this well-known rule, and generdize it.
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32 Prove Euler’s theorem (4.50) by generalizing the proof of (4.47).

33 Show that if f(m) and g(m) are multiplicative functions, then so is
h(m) = Zd\m f[d) g(m/d)

34 Prove that (4.56) is a specid case of (4.61).

Homework exercises

35 Let I{m,n) be a function that satisfies the relation
I(m,n)m+ I(n,mn = ged(m,n),

when m and n are nonnegative integers withm # n. Thus, [( m,n) = m’
and I(n, m) = n' in (4.5); the value of I(m, n) is an inverse of m with
respect to n. Find a recurrence that defines I(m,n).

36 Consider the set Z(v/10) = {m + ny10 integer m,n}. The number
m + nv10 is called a unit if m? = 1 on? = +1, since it has an inverse
(that is, since (m+nv10)-+(m—nv10) = 1). For example, 3++/10 is
aunit, and sois 19  6y/10. Pairs of cancelling units can be inserted into
any factorization, so we ignore them. Nonunit numbers of Z(y/10 | are
cdled prime if they cannot be written as a product of two nonunits. Show
that 2, 3, and 4 + v/10 are primes of Z(v/10). Hint: If2 = (k + lW/10) x
(m + ny/10) then 4 = (k? = 1 012) ( m? — 1 0n?). Furthermore, the square
of any integer mod 10 is 0, 1, 4, 5, 6, or 9.

37 Prove (4.17). Hint: Show that e, 1= (ex—1 3)? + 4, and consider

2 "log(e, = %).

38 Provethat if a | band a > b then
ged(a™ = b™, o™ b") = g&dlmn)  peedimin o<m<n.

(All variables are integers.) Hint: Use Euclid’'s agorithm.
39 Let §(m) be the smallest positive integer n for which there exists an
increasing sequence of integers

m=ag<a<. . w<<qg=0~n

such that a;a;...a, is a perfect square. (If m is a perfect square, we
canlett =1 and n = m.) For example, S(2) = 6 because the best such
sequence is 2-3-6. We have

2 3 45 6 7 8 9 10 11 12
6 8 4 10 12 14 15 9 18 22 20

1
S| 1

Prove that S(m) £S5 (m’) whenever 0 < m <m’.
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40

41

42

43

44

45

46

47

48

If the radix p representation of nis(a,,, . . . ajae)y, prove that
nlpe™) = (—neMg 1 glaol (mod p

(The left side is simply n! with all p factors removed. When n = p this
reduces to Wilson's theorem.)

a  Show that if p mod. 4 = 3, there is no integer n such that p divides
n? + 1. Hint: Use Fermat’s theorem.

b  But show that if pmod 4 = 1, there is such an integer. Hint: Write
@ =1 as (TT2,"? k(p = K)) and think about Wilson's theorem.

Consider two fractions m/n and m’/n’ in lowest terms. Prove that when
the sum m/n+m’/n’ isreduced to lowest terms, the denominator will be
nn' if and only if n L n’. (In other words, (mn’+m’/n)/nn’ will aready
be in lowest terms if and only if n and n" have no common factor.)

There are 2% nodes at level k of the Stern-Brocot tree, corresponding to
the matrices L* L*~' R, . ..., Rk, Show that this sequence can be obtained
by starting with [* and then multiplying successively by

<01 20(n31+ 1 )

for 1 < n < 2%, where p(n) is the ruler function.

Prove that a baseball player whose batting average is .316 must have
batted at least 19 times. (If he has m hits in n times at bat, then
m/n € [.3155, .3165).)

The number 9376 has the peculiar self-reproducing property that

93762 = 87909376

How many 4-digit numbers x satisfy the equation x> mod 10000 = x?
How many n-digit numbers x satisfy the equation x2 mod 10" = x?

a Provethat if n=1and nk=1 (mod m), then ngediik) = 1.

b  Show that 2" 1 (mod n), if n > 1. Hint: Consider the least prime
factor of n.

Show that if n™ =1 (mod m) and if n(™~"/P 21 (mod m) for all
primes such that p\(m 1), then m is prime. Hint: Show that if this
condition holds, the numbers n* mod m are distinct, for 1 < k< m.

Generalize Wilson's theorem (4.49) by ascertaining the value of the ex-
pression (H] <n<m,nlm Tl) mod m, when m > 1.

Wilson's  theorem:
“Martha, that boy
IS a menace”

Radio  announcer:

“ .. pitcher Mark
LeChiffre hitsa
two-run  single!
Mak was batting
only 080,50 he gets
his second hit of
the year. ”

Anything  wrong?

The proof that large
numbers are prime

is very easy. Let

x be a large prime

number; then X is

prime, QED.



What are the roots
of disunity?

4 EXERCISES 149

49 Let R(N) be the number of pairs of integers (m, n) such that 0 < m< N,
0<n<N,and m L n.
a  Express R(N) in terms of the @ function.
b Prove that RN) = ¥ ;. IN/d]2u(d).

50 Let m be a positive integer and let
w = e™™ = cog(2m/m) +isin(2m/m).

We say that w is an mth root of unity, since w™ = e?™* = 1. In fact,
each of the m complex numbers w®, w', .., w™'is an mth root of
unity, because (w*)™ = e#™i = 1; therefore z — w* is a factor of the
polynomia z™ 1, for 0 < k < m. Since these factors are distinct, the
complete factorization of z™ = 1 over the complex numbers must be

2" -1 = H (z—w¥).

0gk<m

a Let Yn(z) = [Jockem kim(z = w¥). (This polynomial of degree
@(m) is cdled the cyclotomic polynomial of order m.) Prove that

z™ -1 = H‘yd(Z)

d\m

b Prove that lPm(z:):l‘[d\m(zd 1)u(m/d),
Exam problems

51 Prove Fermat’s theorem (4.48) by expanding (1 + 1 + +. . + 1)? viathe
multinomia theorem.

52 Let nand x be positive integers such that x has no divisors < n (except 1),
and let p be a prime number. Prove that at least |n/p| of the numbers
[x—1,x*=1,...,x* T~ 1}aremultiples of p.

53 Find al positive integers n such that n'\ |(n = !/(n + 1)].
54 Determine the value of 1000! mod 1023° by hand calculation.

55 Let P, be the product of the first n factorials, TT,_, k!. Prove that
P,n/Pe is an integer, for al positive integers n.

56 Show that

2n-1 ) n-1
( - kmm(k, Zn—k))/( (2k+ 1) 2n2k—1>
k=1 k=1

is a power of 2.
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57 Let S(m,n) be the set of all integers k such that

mmodk+nmodk > k.

For example, S{(7,9) = {2,4,5,8,10,11,12,13,14,15,16}. Prove that
Z ok} = mn
)

kES(m,n

Hint: Prove first that Zngn 2am 0(d) = Zdzl ¢(d) [n/d]. Then
consider [(m + n)/d] [m/d] [n/d].

58 Let f(m) = Zd\m d. Find a necessary and sufficient condition that f(m)

is a power of 2.

Bonus problems
59 Provethat if x;,..., xn e positiveintegerswith 1 /x;4+-.. +1 /x, =1,

60

61

then max(x1,...,x,) < e,. Hint: Prove the following stronger result by
induction: “If 1 /x1+-..4+ 1 /xn+1/a=1,wherexs, ..., X, are positive
integers and « is a rational number > max(xi, .., Xn), then a+ 1 < eny1
and X1. X, (@+ 1) <er... eqxeny1.” (The proof is nontrivial.)

Prove that there's a constant P such that (4.18) gives only primes. You
may use the following (highly nontrivial) fact: There is a prime between

p and p + cp?, for some constant ¢ and all sufficiently large p, where
g = 1051
163

Prove that if m/n, m’/n’, and m”/n” are consecutive elements of Iy,
then

m [(n+N)/n'|m' —m,

[m+N)/n'|n’ —n.

n

(This recurrence allows us to compute the elements of Fy in order, start-
ing with ¢ and {.)

62 What binary number corresponds to e, in the binary < Stern-Brocot

63

correspondence? (Express your answer as an infinite sum; you need not
evaluate it in closed form.)

Show that if Fermat’s Last Theorem (4.46) is false, the least n for which
it fails is prime. (You may assume that the result holds when n = 4.
Furthermore, if a? + b? = ¢P and a 1 b, show that there exists an integer
m such that

[ mP, if pXe:
atb = {p"]mp if p\c.

Thus ¢ must be realy huge. Hint: Let x = a + b, and note that
god(x, (aP + (x = a)P)/x) = ged(x,paP ).
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64 The Peirce sequence Pn of order N is an infinite string of fractions
separated by ‘<’ or ‘=' signs, containing al the nonnegative fractions
m/n with m > 0 and n < N (including fractions that are not reduced).
It is defined recursively by starting with

P o= S<icdiadalad bl B i e

For N > 1, we form Pn41 by inserting two symbols just before the kNth
symbol of Py, for al k > 0. The two inserted symbols are

k-1
N if kN is odd;
k-1 . .
P , if kN is even.
N,kN N

Here Py ; denotes the jth symbol of Py, which will be either ‘<’ or ‘=’
when j is even; it will be a fraction when j is odd. For example,

= d-fckedstedctdetatatelatntcicinie
9y = 1-§-b<iciedcifofeteaicimgmi<ieie
P, = $=9=§=§<iededpeicicimimimicicici= )
s = $=9=g=gfeiedeiei<i-p<i<i<ii<dd=s
7o = §=§=i=g=§-deleleleimicicii=tedais

(Equal elements occur in a dlightly peculiar order.) Prove that the ‘<’
and ‘=’ signs defined by the rules above correctly describe the relations
between adjacent fractions in the Peirce sequence.

Research problems
65 Are the Euclid numbers e, all sguarefree?
66 Are the Mersenne numbers 2° — 1 al squarefree?

67 Prove or disprove that max;¢j<x<n ax/ged(a;j, 0k) > n, for al sequences
of integers 0 < a; < +++ < a,.

68 Is there a constant Q such that [Q?" | is prime for al n > O?

69 Let P, denote the nth prime. Prove or disprove that P,y P, =
O(log P)?.

70 Does €3(n!) = e2(n!)/2 for infinitely many n?

71 Prove or disprove: If k # 1 there exists n > 1 such that 2" = k (mod n).
Are there infinitely many such n?

72 Prove or disprove: For al integers a, there exist infinitely many n such
that @(n)\(n + a).
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73 If the @(n)+ 1 terms of the Farey series
H:TL = <3n(0)»5n(])a»gn(¢(n))>

were fairly evenly distributed, we would expect F, (k) ~ k/@(n). There-
fore the sum D(n) = ¥ 2'¢|Fw (k) — k/®(n)| measures the “deviation

of ¥, from uniformity!’ Is it true that D(n) = O (n'/2*€) for dl ¢ > O?

74 Approximately how many distinct values are there in the set {O! mod p,
UYmodyp,...,(p— 1) mod p}, as p — 0?
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LET'S TAKE A BREATHER. The previous chapters have seen some heavy
going, with sums involving floor, ceiling, mod, phi, and mu functions. Now
we're going to study binomial coefficients, which turn out to be (a) more
important in applications, and (b) easier to manipulate, than all those other
quantities.

5.1 BASIC IDENTITIES

The symbol (}) is a binomial coefficient, so called because of an im-

portant property we look at later this section, the binomial theorem. But we
read the symbol “n choose k! This incantation arises from its combinatorial
interpretation-it is the number of ways to choose a k-element subset from
an n-element set. For example, from the set {1,2,3,4} we can choose two
elements in six ways,

1,25, (1,34, (1,4}, (2,3}, (2,4}, (3,4}

so (3) = 6.

To express the number (i) in more familiar terms it's easiest to first
determine the number of k-element sequences, rather than subsets, chosen
from an n-element set; for sequences, the order of the elements counts. We
use the same argument we used in Chapter 4 to show that n! is the number
of permutations of n objects. There are n choices for the first element of the
sequence; for each, there are n-l choices for the second; and so on, until there
are n—k+1 choices for the kth. This gives n(n-1). . . (n—k+1) = nk choices
in al. And since each k-element subset has exactly k! different orderings, this
number of sequences counts each subset exactly k! times. To get our answer,
we simply divide by k!:

n nn-1...(n—k+1)

ok k(k-T)...(1) "

153
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For example,

C)a = %!

this agrees with our previous enumeration.

We cal n the upper index and k the lower index, The indices are
restricted to be nonnegative integers by the combinatorial interpretation, be-
cause sets don’t have negative or fractional numbers of elements. But the
binomial coefficient has many uses besides its combinatorial interpretation,
so we will remove some of the restrictions. It's most useful, it turns out,
to allow an arbitrary real (or even complex) number to appear in the upper
index, and to allow an arbitrary integer in the lower. Our forma definition
therefore takes the following form:

r—1)...(r—k+1) ™~ _
<r> - KK ..( = o Megerk=0 (5.1)
0, integer k < 0.

This definition has severa noteworthy features. First, the upper index is
cdled r, not n; the letter r emphasizes the fact that binomial coefficients make
sense when any real number appears in this position. For instance, we have
(3') = (=1)(=2)(=3)/(3-2-1) = -1. There’s no combinatorial interpretation
here, but r = -1 turns out to be an important special case. A noninteger
index like r = —1/2 aso turns out to be useful.

Second, we can view (}) as a kth-degree polynomia in . We'll see that
this viewpoint is often helpful.

Third, we haven't defined binomial coefficients for noninteger lower in-
dices. A reasonable definition can be given, but actual applications are rare,
so we will defer this generdization to later in the chapter.

Fina note: We've listed the redtrictions ‘integer k > 0' and ‘integer
k < O at the right of the definition. Such restrictions will be listed in al
the identities we will study, so that the range of applicability will be clear.
In genera the fewer restrictions the better, because an unrestricted identity
is most useful; still, any restrictions that apply are an important part of
the identity. When we manipulate binomial coefficients, it's easier to ignore
difficult-to-remember restrictions temporarily and to check later that nothing
has been violated. But the check needs to be made.

For example, almost every time we encounter (7} it equals 1, so we can
get lulled into thinking that it's always 1. But a careful ook at definition (5.1)
tells us that (2) is 1 only when n > 0 (assuming that n is an integer); when
n < 0we have (}) = 0. Traps like this can (and will) make life adventuresome.
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Before getting to the identities that we will use to tame binomia coeffi-
cients, let's take a peek at some small values. The numbers in Table 155 form
the beginning of Pascal’s triangle, named after Blaise Pasca (1623-1662)

Table 155 Pascadl’s triangle.

n n n n n n n n n n n
1066666 EE)EE) G
0 1
1 1 1
2 12 1
3 13 3 1
4 14 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 22 3 3B 21 7 1
8 1 8 28 5 70 5 28 8 1
9 1 9 3 8 126 126 84 36 9 1
10 | 10 45 120 210 252 210 120 45 10 1

because he wrote an influential treatise about them [227]. The empty entries
in this table are actually O’s, because of a zero in the numerator of (5.1); for
example, (;) = (1-0)/(2-1) = 0. These entries have been left blank simply to
help emphasize the rest of the table.

It's worthwhile to memorize formulas for the first three columns,

(8) =1, (I) _— (;) )

7
these hold for arbitrary reals. (Recall that (*}') = in(n + 1) is the formula
we derived for triangular numbers in Chapter 1; triangular numbers are con-
spicuously present in the (’;) column of Table 155.) It's also a good idea to
memorize the first five rows or so of Pascal’s triangle, so that when the pat-
tern 1, 4, 6, 4, 1 appears in some problem we will have a clue that binomial
oodfidents  probebly  luk  nearby.

The numbers in Pascal’s triangle satisfy, practically speaking, infinitely
many identities, so it's not too surprising that we can find some surprising
relationships by looking closely. For example, there's a curious “hexagon
property,” illustrated by the six numbers 56, 28, 36, 120, 210, 126 that sur-
round 84 in the lower right portion of Table 155. Both ways of multiplying
alternate numbers from this hexagon give the same product: 56-36-210 =
28-120-126 = 423360. The same thing holds if we extract such a hexagon
from any other part of Pascal’s triangle.

(5.2)
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And now the identities,. Our goal in this section will be to learn a few  “C'est une chose
simple rules by which we can solve the vast majority of practical problems €range combien

involving binomial coefficients. gro;tietfg”%’m
Definition (5.1) can be recast in terms of factorials in the common case —B. Pastd [227]
that the upper index r is an integer, n, that's greater than or equal to the
lower index k:
n n! .
(k) = m integersn > k > 0. (5.3)

To get this formula, we just multiply the numerator and denominator of (5.1)
by (n  K)!. It's occasionally useful to expand a binomial coefficient into this
factorial form (for example, when proving the hexagon property). And we
often want to go the other way, changing factorials into binomials.

The factorial representation hints at a symmetry in Pascal’s triangle:
Each row reads the same left-to-right as right-to-left. The identity reflecting
this-called the symmetry identity-is obtained by changing k to n ki

ny n integer n > 0,
k) \n-k)’ integer k. G4
This formula makes combinatorial sense, because by specifying the k chosen
things out of n we're in effect specifying the n — k unchosen things.
The restriction that n and k be integers in identity (5.4) is obvious, since

each lower index must be an integer. But why can’t n be negative? Suppose,
for example, that n = -1. Is

() 2 (L)

a valid equation? No. For instance, when k = O we get 1 on the left and O on
the right. In fact, for any integer k > O the left side is

(—1> I I

which is either 1 or -1; but the right side is O, because the lower index is
negative. And for negative k the left side is O but the right side is

-] 3
<*1—k) = (‘1) 1 k|

which is either 1 or -1. So the equation *(1') = (7' )" is always false!
The symmetry identity fails for al other negative integers m, too. But
unfortunately it's all too easy to forget this restriction, since the expression

in the upper index is sometimes negative only for obscure (but legal) values
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| just hope | don’t of its variables. Everyone who's manipulated binomial coefficients much has
fall into this trap falen into this trap at least three times.
during the midterm. N . : .

But the symmetry identity does have a big redeeming feature: It works
for al values of k, even when k < 0 or k > n. (Because both sides are zero in
such cases.) Otherwise 0 < k € n, and symmetry follows immediately from
(5-3):

n n! _ n! _ n
ok ~ ki(n-k)!' — (n—(n—k))! (n-k)! _<n—k)'

Our next important identity lets us move things in and out of binomial
coefficients:

T ri{r—1 .
(k) = E(k— ]) ,  integer k # 0. (5-5)

The restriction on k prevents us from dividing by 0 here. We call (5.5)
an absorption identity, because we often use it to absorb a variable into a
binomial coefficient when that variable is a nuisance outside. The equation
follows from definition (5.1), because t& = r(r— 1)%=! and k! = k(k- 1)! when
k > 0; both sides are zero when k < 0.

If we multiply both sides of (5.5) by k, we get an absorption identity that
works even when k = O

T r—1 .
k(k) = r(k— 1) : integer k. (5.6)
This one also has a companion that keeps the lower index intact:
T r—1 .
(r—k%) (k) = r( K ), integer k. (5.7)

We can derive (5.7) by sandwiching an application of (5.6) between two ap-
plications of symmetry:

(r—k) (;) = (r—k) (T i k) (by symmetry)
T<r1;]_ 1) (by (5.6))

r(r; ]>. (by symmetry)

Il

But wait a minute. We've claimed that the identity holds for all red -,
yet the derivation we just gave holds only when r is a positive integer. (The
upper index r — 1 must be a nonnegative integer if we're to use the symmetry
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property (5.4) with impunity.) Have we been cheating? No. It's true that  (Well, not here
the derivation is valid only for positive integers r; but we can claim that the anyway.)
identity holds for all values of 1, because both sides of (5.7) are polynomials
in r of degree k + 1. A nonzero polynomial of degree d or less can have at
most d distinct zeros; therefore the difference of two such polynomials, which
also has degree d or less, cannot be zero at more than d points unless it is
identically zero. In other words, if two polynomials of degree d or less agree
at more than d points, they must agree everywhere. We have shown that
(r-k)(;) = r(rl;')vheneve:r T is a positive integer; so these two polynomials
agree at infinitely many points, and they must be identicaly equal.

The proof technique in the previous paragraph, which we will call the
polynomial argument, is useful for extending many identities from integers
to reals; we'll see it again and again. Some equations, like the symmetry
identity (5.4), are not identities between polynomials, so we can’'t always use
this method. But many identities do have the necessary form.

For example, here's another polynomial identity, perhaps the most im-
portant binomial identity of all, known as the addition formula:

(D _ (r;1) + (c-1:) o integer k (5.8)

When r is a positive integer, the addition formula tells us that every number
in Pascal’s triangle is the sum of two numbers in the previous row, one directly
above it and the other just to the left. And the formula applies also when r
is negative, real, or complex; the only restriction is that k be an integer, so
that the binomial coefficients are defined.

One way to prove the addition formula is to assume that r is a positive
integer and to use the combinatorial interpretation. Recall that (}) is the
number of possible k-element subsets chosen from an r-element set. If we
have a set of r eggs that includes exactly one bad egg, there are (;) ways to
select k of the eggs. Exactly (*;‘) of these selections involve nothing but good
eggs; and ({;']) of them contain the bad egg, because such selections have k-I
of the r -- 1 good eggs. Adding these two numbers together gives (5.8). This
derivation assumes that r is a positive integer, and that k > 0. But both sides
of the identity are zero when k < 0, and the polynomia argument establishes
(5.8) in al remaining cases.

We can aso derive (5.8) by adding together the two absorption identities
(5.7) and (5.6):

) ) o) o)

the left side is r(]), and we can divide through by r. This derivation is valid
for everything but + = 0, and it's easy to check that remaining case.
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Those of us who tend not to discover such slick proofs, or who are oth-
erwise into tedium, might prefer to derive (5.8) by a straightforward manip-
ulation of the definition. If k > 0,

r—1 (r—]) C(r- nE -
(k)+ k-1 = T Tk

(r—Nkl(r—k) + (r—T1)1%
k! k!
(r—1)k=1r * T
ki K=ok

Again, the cases for k € 0 are easy to handle.

WEe've just seen three rather different proofs of the addition formula. This
is not surprising; binomial coefficients have many useful properties, several of
which are bound to lead to proofs of an identity at hand.

The addition formula is essentially a recurrence for the numbers of Pas-
cal’s triangle, so we'll see that it is especially useful for proving other identities
by induction. We can aso get a new identity immediately by unfolding the
recurrence. For example,

5)-6+0)
(5)+@)-()

6+ G+ ()0

)+ G+ () (o) (4)

Since (,) = 0, that term disappears and we can stop. This method yields
the general formula

2 (%) =) (7) = (7)

k<n
T+n+1 .
= 0 , integer n. (5.9)

+

w

+
+
+

Notice that we don't need the lower limit k = 0 on the index of summation,
because the terms with k < 0 are zero.

This formula expresses one binomial coefficient as the sum of others whose
upper and lower indices stay the same distance apart. We found it by repeat-
edly expanding the binomia coefficient with the smallest lower index: first
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(3), then (3), then (3), then (). What happens if we unfold the other way,
repeatedly expanding the one with largest lower index? We get

HEIWELY
)+
)+©+®+@
) @)+ 0)+()+C)
0 &)+ () () () ()

Now (3) is zero (so are (3) and (3) , but these make the identity nicer), and
we can spot the general pattern:

-GG ()

= (n+] ) , integersm, n > 0. (5.10)

N

It

1l
/‘\/‘\/—\

m+ |

This identity, which we call summation on the upper index, expresses a
binomial coefficient as the sum of others whose lower indices are constant. In
this case the sum needs the lower limit k > O, because the terms with k < 0
aren't zero. Also, m and n can’t in general be negative.

Identity (5.10) has an interesting combinatoria interpretation. If we want
to choose m + 1 tickets from a set of n + 1 tickets numbered O through n,
there are (1‘;) ways to do this when the largest ticket selected is number k.

We can prove both (5.9) and (5.10) by induction using the addition
formula, but we can aso prove them from each other. For example, let's
prove (5.9) from (5.10); our proof will illustrate some common binomial co-
efficient manipulations. Our genera plan will be to massage the left side
Y ("1%) of (5.g) s that it looks like the left side Y (¥) of (5.10); then we'll
invoke that identity, replacing the sum by a single binomia coefficient; finally
we'll transform that coefficient into the right side of (5.9).

We can assume for convenience that r and n are nonnegative integers;
the general case of (5.9) follows from this special case, by the polynomial
argument. Let's write m instead of r, so that this variable looks more like
a nonnegative integer. The plan can now be carried out systematically as
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follows:

=) - 20

k<n

-2 )
ogkemin VT

_(m4n+1 _ m+n+1

-(") - ()
Let’s look at this derivation blow by blow. The key step is in the second line,
where we apply the symmetry law (5.4) to replace (™7*) by (™). we're
allowed to do this only when m + k > 0, so our first step restricts the range
of k by discarding the terms with k < -m. (This is legal because those terms
are zero.) Now we're almost ready to apply (5. 10); the third line sets this up,
replacing k by k  m and tidying up the range of summation. This step, like
the first, merely plays around with t-notation. Now k appears by itself in
the upper index and the limits of summation are in the proper form, so the
fourth line applies (5.10). One more use of symmetry finishes the job.

Certain sums that we did in Chapters 1 and 2 were actually special cases

of (5.10), or disguised versions of this identity. For example, the case m = 1
gives the sum of the nonnegative integers up through n:

)+ (1) +oe (3) = 01+ tmtln_ (T,

And the general case is eguivalent to Chapter 2's rule

m+1
Z Kr = %, integers m,n > 0,
0<k<n

if we divide both sides of this formula by m!. In fact, the addition formula
(5.8) tells us that

() = Ca)-(G) = G5,

if we replace v and k respectively by x + 1 and m. Hence the methods of
Chapter 2 give us the handy indefinite summation formula

S (;) §x = (m: 1) +C. (5.11)
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Binomia coefficients get their name from the binomial theorem, which
deals with powers of the binomial expression x + y. Let's look at the smallest
cases of this theorem:

(x+1y)° = 1%y

(x+y)' = x'y® + 1xy!

(x+y)? = Ixy0 4+ 2"y + 1x%y?

(x+y)* = 13Y® +3x%y" 4 3yt 4+ 10y

(x+u)*" = 1My +43y" +6xty? +ax'y® +1x0y4 .

It's not hard to see why these coefficients are the same as the numbers in
Pascal’s triangle: When we expand the product

n factors

I ~

(x+y)x+y)...(x+y),

(x+u)" =

every term is itself the product of n factors, each either an x or y. The number
of such terms with k factors of x and n  k factors of y is the coefficient
of xky™* after we combine like terms. And this is exactly the number of
ways to choose k of the n binomials from which an x will be contributed; that
is, it's (}).

Some textbooks leave the quantity 0° undefined, because the functions
x° and (* have different limiting values when x decreases to 0. But this is a
mistake. We must define

x°:1,

for dl x,
if the binomia theorem is to be valid when x = 0, y = 0, andlor x = —y.
The theorem is too important to be arbitrarily restricted! By contrast, the
function 0* is quite unimportant.

But what exactly is the binomia theorem? In its full glory it is the
following identity:

integer 1 > 0

y T _k, r—k
oy =) o or [x/yl <1.

YA (5.12)
The sum is over al integers k; but it is really a finite sum when r is a nonneg-
ative integer, because al terms are zero except those with 0 <k < r. On the
other hand, the theorem is also valid when r is negative, or even when r is
an arbitrary real or complex number. In such cases the sum really is infinite,
and we must have [x/y|< 1 to guarantee the sum’s absolute convergence.

“At the age
of twenty-one
he [Moriarty] wrote
a tregtise upon the
Binomia Theorem,
which has had a Eu-
ropean vogue. On
the drength of it,
he won the Math-
emdicd Char a
one of our smaler
Universities”

—S. Holmes /71



(Chapter 9 tells the
meaning of 0 )
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Two special cases of the binomial theorem are worth special attention,
even though they are extremely simple. If x =y = 1 and r = n is nonnegative,
we get

o= (g>+<?)++(z), integer n > 0.

This equation tells us that row n of Pascal’s triangle sums to 2™, And when
x is -1 instead of +1, we get

o = (“)_<“)+...+(_1)n(“), integer n > 0.
0 1 n

For example, 1 =4+ 6 — 4 + 1 = 0O; the elements of row n sum to zero if we
give them alternating signs, except in the top row (when n = 0 and (° = 1).

When T is not a nonnegative integer, we most often use the binomial
theorem in the special case y = 1. Let's state this special case explicitly,
writing z instead of x to emphasize the fact that an arbitrary complex number
can be involved here:

@ +2z) = Z <;>zk, 2| < 1. (5-13)

k

The general formula in (5.12) follows from this one if we set z = x/y and
multiply both sides by y’'.

We have proved the binomial theorem only when r is a nonnegative in-
teger, by using a combinatorial interpretation. We can't deduce the general
case from the nonnegative-integer case by using the polynomial argument,
because the sum is infinite in the general case. But when r is arbitrary, we
can use Taylor series and the theory of complex variables:

f0) o F1O) , F1O

flz) = gz + =372 +

(0
_Z k!

k=0

P2

z*,

The derivatives of the function f(z) = (1 + z)" are easily evaluated; in fact,
f(z) =1k (@ +2z)7 k. Setting z = 0 gives (5.13).

We also need to prove that the infinite sum converges, when |z| < 1. It
does, because (;) = O(k~'~7) by equation (5.83) below.

Now let's look more closely at the values of (2) when n is a negative
integer. One way to approach these values is to use the addition law (5.8) to
fill in the entries that lie above the numbers in Table 155, thereby obtaining
Table 164. For example, we must have (B]) =1, since (g) = () + (2)) and

(7)) = 0; then we must have (') = -1, since (9)= (3')+ (3); and so on.
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Table 164 Pascal’s triangle, extended upward.

"o 0 Q) G) 66w ()6 66

-4 1 -4 10 -20 35 -56 84 -120 165 -220 286
-3 1 -3 6 -10 15 -21 28 -36 45 -55 66
-2 1 -2 3 —4 5 -6 7 -8 9 -10 11
-1 1 -1 | O 1 -1 ! -1 !
0 1 0 0 ¢ 0 0 0 0 0 0 0

All these numbers are familiar. Indeed, the rows and columns of Ta
ble 164 appear as columns in Table 155 (but minus the minus signs). So
there must be a connection between the values of (}) for negative n and the
values for positive n. The genera rule is

T\ _ Wfk—71—1 . )
<k) = (-1 ( K ) , integer k;

it is easily proved, since

(5.14)

* = rr=1)...(r=k+1)

= (=111 =1) .. (k=T=7) = (=)¥k=-7-1)k

when k > 0, and both sides are zero when k < 0.

Identity (5.14) is particularly valuable because it holds without any re-
striction. (Of course, the lower index must be an integer so that the binomial
coefficients are defined.) The transformation in (5.14) is caled negating the
upper index, or “upper negation!’

But how can we remember this important formula? The other identities
we've seen-symmetry, absorption, addition, etc. -are pretty simple, but
this one looks rather messy. Still, there's a mnemonic that’s not too bad: To
negate the upper index, we begin by writing down (—1)%, where k is the lower
index. (The lower index doesn’t change.) Then we immediately write k again,
twice, in both lower and upper index positions. Then we negate the original
upper index by subtracting it from the new upper index. And we complete
the job by subtracting 1 more (always subtracting, not adding, because this
iS a negation process).

Let’s negate the upper index twice in succession, for practice. We get

(1) = ()
= (_sz(k-(k—:(-l)-l) _ (D

You call this a
mnemonic? I'd call
it pneumatic—
full of air.

It does help me
remember,  though.

(Now is a good
time to do warmup
exercise 4.)
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0 were rigt back where we dated. This is prooedly nat wha the franaes o
It’s dofrugrating,  the identity intended; but it's reassuring to know that we haven’t gone astray.
if we're trying to Some gpplications of (514) ae of couse more usful then this We can
get somewhere €lse. X .

use upper negation, for example, to move quantities between upper and lower

index positions. The identity has a symmetric formulation,

(~1)“‘(~n_ 1) = (—l)“(ﬁn_ 1) , integers m,n > 0, (5.15)

m n

which holds because both sides are equal to (™) .

Upper negation can aso be used to derive the following interesting sum:

2= (@) -0) ()

= (—1)m<r;]> , integer m. (5.16)

The idea is to negate the upper index, then apply (.9}, ad negate again:

Nk k—1r—-1
(Here double negar 2 (k)( b —k;n( k )

tion helps, because ksm

we've  sandwiched -r+m
another operation in = ( )
between,) m

This fomua gves us a patid am o the rth row of Pascd’s tiange provided
that the entries of the row have been given alternating signs. For instance, if
T=>5and m = 2 the formula gives 1 —5+ 10 =6 = (—1)2(}).

Notice that if m > r, (5.16) gives the alternating sum of the entire row,
and this sum is zero when r is a positive integer. We proved this before, when
we expanded (1 — 1)’ by the binomia theorem; it's interesting to know that
the partial sums of this expression can also be evaluated in closed form.

How about the simpler partial sum,

=)+ ()= -

surely if we can evaluate the corresponding sum with alternating signs, we
ought to be able to do this one? But no; there is no closed form for the partia
sum of a row of Pasca’s triangle. We can do columns-that’s (5.10) —but
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not rows. Curiously, however, there is a way to partially sum the row elements
if they have been multiplied by their distance from the center:

Y (G0 = (al) e (529

k€m

(This formula is easily verified by induction on m.) The relation between
these partial sums with and without the factor of (r/2 - k) in the summand
is analogous to the relation between the integrals

1 2

a o

52 . 2
J xe ¥ dx = —se o and J e % dx.
-0 —0

The apparently more complicated integral on the left, with the factor of X,

has a closed form, while the simpler-looking integral on the right, without the

factor, has none. Appearances can be deceiving. (Well, |t actually
At the end of this chapter, we'll study a method by which it's possible  equals 3+/merf ,

to determine whether or not there is a closed form for the partial sums of a aerrpéjrltggcgfoghe

given series involving binomial coefficients, in a fairly genera setting. This  of «, if we're will-

method is capable of discovering identities (5.16) and (5.18), and it also will  ing to accept that

tell us that (5.17) is a dead end. & @ closed form.)
Partial sums of the binomial series lead to a curious relationship of an-

other kind:

Z (m:T')xkym—k - Z (_‘:> (_X)k(x_i_y)m.fk’ integer m. (519)
kSm k<m

This identity isn't hard to prove by induction: Both sides are zero when
m < 0 and 1 when m = 0. If we let S, stand for the sum on the left, we can
apply the addition formula (5.8) and show easily that

S, = Z( k1+r)kmk+k<zm< 1+r> symk

k<m
and
m- 1 +Y m—1+r
Z( K )X"y""‘ = YSm-1 +< )xm,
k€m m
m—71+4r -
Z( k—1 )xkum k = Xsm—l !
k€<m

when m > 0. Hence

Sm=( x +y)sm1+( ;)(—x)m,
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and this recurrence is satisfied also by the right-hand side of (5.19). By
induction, both sides must be equal; QED.

But there's a neater proof. When r is an integer in therange 0 = r > —m,
the binomial theorem tells us that both sides of (5.19) are (x+y)™*"y~". And
since both sides are polynomiasin r of degree m or less, agreement at m + 1
different values is enough (but just barely!) to prove equality in general.

It may seem foolish to have an identity where one sum equals another.
Neither sideisin closed form. But sometimes one side turns out to be easier
to evaluate than the other. For example, if weset x =-1andy =1, we get

Z'(m+r)(—1)k = (_r) ,  integer m>0,
< k m

an alternative form of identity (5.16). And if wesetx =y =1landr=m+1,
we get

2m+ 1 m+ kY, o«
> ()= ()
k<m ksm
The left-hand side sums just half of the binomial coefficients with upper index
2m + 1, and these are equal to their counterparts in the other half because
Pascal’s triangle has left-right symmetry. Hence the left-hand side is just
%22"‘“ = 2¢m_ This yields a formula that is quite unexpected,

Z m;— k) 27k integer m > 0. (5.20)

Let's check it when m = 22 (3)+1(3)+ 1(§)=1+ 3+ ¢ =4. Astounding.
So far we've been looking either a binomia coefficients by themselves or
at sums of terms in which there’s only one binomial coefficient per term. But
many of the challenging problems we face involve products of two or more
binomial coefficients, so we'll spend the rest of this section considering how
to ded with such cases.
Here's a handy rule that often helps to simplify the product of two bino-

mid  coefficients;

() = ) meesmk -~

We've dready seen the special case k = 1; it's the absorption identity (5.6).
Although both sides of (5.21) are products of binomial coefficients, one side
often is easier to sum because of interactions with the rest of a formula. For

example, the left side uses m twice, the right side uses it only once. Therefore
we usually want to replace () (%) by (7) (%) when summing on m.

r
m m-k
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Equation (5.21) holds primarily because of cancellation between m/!'s in
the factorial representations of () and (V) . If al variables are integers and
r=2m=k=0, we have

(%)(Ev = nnuﬂm)! kuzikﬂ

o

= K (m- K (-m)!
_ r! (r—k)! N/r—k
T okI(r-k)! T (m-k)!(r-m)! (k) <m—k)'

That was easy. Furthermore, if m < k or k < 0, both sides of (5.21) are
zero; so the identity holds for al integers m and k. Finally, the polynomial
argument extends its vdidity to all real r.

A binomial coefficient (;) = r!/(r  k)! k! can be written in the form
(a + b)!/al b! after a suitable renaming of variables. Similarly, the quantity
in the middle of the derivation above, r!/k! (m = k)! (r=m)!, can be written
intheform (a+ b +¢)!/al b! cl. Thisisa“trinomia coefficient  which arises
in the “trinomial theorem” :

(Q+b +C)‘ b
no _ a [
(x+y+z)" = Z “—aud

0<a,b,cgn

at+b+tc=n

Z <a‘;b+C) <b+c>xayb2c.
0<a,b,cgn te ¢
a+b+c=n

So (;) (v) is redly a trinomial coefficient in disguise. Trinomial coefficients

m

pop up occasionaly in applications, and we can conveniently write them as
atb+cy (@+b+ o)
a,b,c /) alblc

in order to emphasize the symmetry present.
Binomia and trinomia coefficients generdlize to multinomial coeffi-
cients, which are always expressible as products of binomial coefficients:

(ap +az+---+am)!
alay...a!

(u1+a2+...+a,> (Qm-1+am)
Qu+...+ta am ]

Thadore, when we rn aooss such a besdie oo dandad tedmiques gdly.

<m+a+.”+a>

a,az,...,an

Yeah, right.

“Excogitavi atem
olim mirebilem
regulam pro nu-
meris coefficientibus
potestatum, non
tantum & binomio
X+y,sdeta
trinomio X +y + z,
imo a polynomio
quocunque, ut data
potentia  gradus
cujuscunque V.

or. decimi, et
potentia in &us
valore comprehensa,
ut x>y3z%, possm
datim  assignare
numerum coef-
ficientem, quem
habere debet, sSne
ulla Tabula jam
calculata.”

~—G. W. Leibniz [200]
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Table 169 Sums of products of binomial coefficients.

r $ T+s )
% (m+k) (n-k) = <m+n)’ integers m, n. (5.22)
( L+s integer 120,
m+k n+k l—m+n/' integers m, n. (5.23)
s+k K _ (_qy#m ST M integer 1 >0,
(m k)( )(—U =1 (n—t)’ integers m, n. (5.24)
Lok ik (_qpm S m—1 integers
1(m>( )( == <l—m—n " lL,mn=0. (5.25)

L=k fa+ky (l+q+1 integers 1, m > 0, (5.26)
ockel \ M n To\m4n+1)’ integers n > q = 0. 5

Now we come to Tade 169, which ligs idenities that ae anong the most
important of our standard techniques. These are the ones we rely on when
struggling with a sum involving a product of two binomial coefficients. Each
of these identities is a sum over k, with one appearance of k in each binomial
coefficient; there aso are four nearly independent parameters, called m, n, r,
etc., one in each index position. Different cases arise depending on whether k
appears in the upper or lower index, and on whether it appears with a plus or
minus sign. Sometimes there's an additional factor of (-1 )%, which is needed
to make the terms summable in closed form.

Fold down the Table 169 is far too complicated to memorize in full; it is intended only

corner on this page,  for reference. But the first identity in this table is by far the most memorable,

o e and it should be remembered. It states that the sum (over all integers k) of the

You'll need it! product of two binomial coefficients, in which the upper indices are constant
and the lower indices have a constant sum for all k, is the binomial coefficient
obtained by summing both lower and upper indices. This identity is known
as Vandermonde’s convolution, because Alexandre Vandermonde wrote a
significant paper about it in the late 1700s [293]; it was, however, known
to Chu Shih-Chieh in China as early as 1303. All of the other identities in
Table 169 can be obtained from Vandermonde's convolution by doing things
like negating upper indices or applying the symmetry law, etc., with care;
therefore Vandermonde' s convolution is the most basic of all.

We can prove Vandermonde's convolution by giving it a nice combinato-
rial interpretation. If we replace k by k — m and n by n -~ m, we can assume
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that m = O; hence the identity to be proved is

Z (1:) (nik) = (riS) integer n. (5.27)

k

Let + and s be nonnegative integers; the genera case then follows by the
polynomial argument. On the right side, ("}*) is the number of ways to
choose n people from among r men and s women. On the left, each term  Sexist! You men-
of the sum is the number of ways to choose k of the men and n — k of the tioned men first.
women. Summing over al k. counts each possibility exactly once.

Much more often than n.ot we use these identities left to right, since tha's
the direction of simplification. But every once in a while it pays to go the
other direction, temporarily making an expression more complicated. When
this works, we've usualy created a double sum for which we can interchange
the order of summation and then simplify.

Before moving on let's look at proofs for two more of the identities in
Table 169. It's easy to prove (5.23); al we need to do is replace the first
binomial coefficient by (,_ ), then Vandermonde's (5.22) applies.

The next one, (5.24), is a bit more difficult. We can reduce it to Van-
dermonde’s convolution by a sequence of transformations, but we can just
as easily prove it by resorting to the old reliable technique of mathematical
induction. Induction is often the first thing to try when nothing else obvious
jumps out at us, and induction on | works just fine here.

For the basis1 = 0, al terms are zero except when k = —m; so both sides
of the equation are (—1)™(°*_™). N ow suppose that the identity holds for all
values less than some fixed [, where 1 > 0. We can use the addition formula
to replace (,,\\) by (15}) + (,ii-) i the original sum now breaks into two

m+k. m+k—1
sums, each of which can be evaluated by the induction hypothesis:

1-1 s+k -1 s+k
E (D) () (e

— (bt THmf STM _pym s ml
= 1) (n——l+1)+( R <n—1+1>‘

And this simplifies to the right-hand side of (5.24), if we apply the addition
formula once again.

Two things about this derivation are worthy of note. First, we see again
the great convenience of summing over al integers k, not just over a certain
range, because there’s no need to fuss over boundary conditions. Second,
the addition formula works nicely with mathematical induction, because it's
a recurrence for binomial coefficients. A binomial coefficient whose upper
index is | is expressed in terms of two whose upper indices are 1 1, and
that’s exactly what we need to apply the induction hypothesis.
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So much for Table 169. What about sums with three or more binomial
coefficients? If the index of summation is spread over all the coefficients, our
chances of finding a closed form aren't great: Only a few closed forms are
known for sums of this kind, hence the sum we need might not match the
given specs. One of these rarities, proved in exercise 43, is

()G
= (r;) <151)1 integers m,n > 0. (5.28)

Here's ancther, more symmetric example:

Z(a+b) (b+c> <c+a>(_])k
— \a+k/\b+k/\c+k
_ (a+b+o)

o integersa, b, ¢ > 0. (5.29)

This one has a two-coefficient counterpart,
a+b\/b+a (a+b)!
-k = —=, > 5.30
; (a . k> (b N k)( ) Th! integers a,b > 0, ( )

which incidentally doesn't appear in Table 169. The analogous four-coefficient
sum doesn’'t have a closed form, but a similar sum does:

Z:P1ﬁ<a+b>(b+c><c+d><d+a>/xéa+2b*2c+hﬁ
- a+k/\b+k/\c+k/\d+k a+b+c+d+k
_ (atb+c+d)! (atb+c)! (atb+d)! (atc+d)! (b+c+d)!
B (2a+2b+2c+2d)! (aro)! (b+d)! a bl ¢! d!
integers a, b, ¢, d > 0.

This was discovered by John Dougall [69] early in the twentieth century.
Is Dougall’s identity the hairiest sum of binomial coefficients known? No!
The champion so far is

L . a;+q; a,+a
(_])21S1\1<nk\) ( 1 J) ( } n )
an 1_‘[ aj+kij I—‘[ an + Zi<jkij — Zi>jkji

I<i<j<n 1<j<n
ar+---+a, :
= | integers ay, a;,...,a > 0. .31
(a]\QZy"'van el - (53)

Here the sum is over (“") index variables k;; for 1 < i <j < n. Equation

2 ~

(5.29) is the special case n = 3; the case n = 4 can be written out as follows,
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Ifweuse (a,b,C, d) for ((1],(12,(13,(14) and (lv)rk) for (k]ka13)k23):

D (1) a+b\ (a+c\ (b+c) /[ at+d \ [ b+d ctd
i,k b+i/\c+j/ \e+k/\d—i—j/ \d+i—k/ \d+j+k
(a+b+c+d)! .
= —gpag— > [Megesabcd>0
The left side of (5.31) is the coefficient of 29z5. . .25 after the product of
n(n — 1) fractions

I (%)
1< j<n %
i
has been fully expanded into positive and negative powers of the z's. The
right sde of (5.31) was conjectured by Freeman Dyson in 1962 and proved by
severa people shortly thereafter. Exercise 86 gives a“simple” proof of (5.31).
Another noteworthy identity involving lots of binomial coefficients is

Far (06

_ (n+r) (m_r) ,  integersm, n 0. (5.32)

n m—n

This one, proved in exercise 83, even has a chance of arising in practical
applications. But we're getting far afield from our theme of “basic identities,’
so we had better stop and take stock of what we've learned.

We've seen that binomial coefficients satisfy an almost bewildering va-
riety of identities. Some of these, fortunately, are easily remembered, and
we can use the memorable ones to derive most of the others in a few steps.
Table 174 collects ten of the most useful formulas, all in one place; these are
the best identities to know.

5.2 BASIC PRACTICE

In the previous section we derived a bunch of identities by manipu-
lating sums and plugging in other identities. It wasn’t too tough to find those
derivations- we knew what we were trying to prove, so we could formulate
a genera plan and fill in the details without much trouble. Usually, however,
out in the real world, we're not faced with an identity to prove; we're faced
with a sum to simplify. An.d we don’t know what a simplified form might
look like (or even if one exists). By tackling many such sums in this section
and the next, we will hone our binomia coefficient tools.
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To start, let's try our hand at a few sums involving a single binomial
coefficient.
Problem 1. A sum of ratios.

Wed like to have a dosd fom for

i m n integersn > m =0
k k ) = = "

k=0
At first glance this sum evokes panic, because we haven't seen any identi-

ties that deal with a quotient of binomial coefficients. (Furthermore the sum
involves two binomial coefficients, which seems to contradict the sentence
preceding this problem.) However, just as we can use the factorial represen-
tations to reexpress a product of binomial coefficients as another product —
that’s how we got identity (5.21)—we Can do likewise with a quotient. In
fact we can avoid the grubby factorial representations by letting r = n and
dividing both sides of equation (5.21) by (}) (I); this yields

00 - 0.

So we replace the quotient on the left, which appears in our sum, by the one
on the right; the sum becomes

S (/)

We dtill have a quotient, but the binomial coefficient in the denominator
doesn’t involve the index of summation k, so we can remove it from the sum.
We'll restore it later.

We can also simplify the boundary conditions by summing over all k > 0;
the terms for k > m are zero. The sum that’s left isn’t so intimidating:

> ()

It's similar to the one in identity (5.g), because the index k appears twice
with the same sign. But here it's -k and in (5.g) it's not. The next step
:should therefore be obvious; there's only one reasonable thing to do:

2 o IO ()

k=0 m—k>0

-Z()

k€m



174 BINOMIAL COEFFICIENTS

Table 174 The ton ten binomia coefficient identities.

ny n! integers
k/ 7 kl(n-k)! ' n>kz=0.
ny n integer n > 0O,
k/ ~ \n-%k/° integer k.
T r{r-—1 .

) = w1/ integer kK # 0.

)— =N, (T integer k
Uk K1) ' neger K

K—1—
r): (—1)“( ’ ]),integer k.

k k
r my [T r—k int K
mI\k) T W) lin_ ) integers m, k.
™ ook R integer + > 0,
= + R
; (k b (x+v) or x/yl < 1.

(Tt n+1 .
= 0 , integer n.
k€n
<k) B (n+1) integers
05een m m+1 m,n 2= 0.

()

factorid  expansion

symmetry

absorption/extraction

addition/induction

upper  negation

trinomial  revision

theorem

binomial

parallel  summation

upper  summation

integer n. Vandermonde convolution

And now we can apply the parallel summation identity, (5.g):

Z (n'ﬂkl+k) _ (‘(n-m)m+m+ 1)

kgm

X

n-l—l)

Finally’ we reinstate the (') in the denominator that we removed from
the sum earlier, and then apply (5.7) to get the desired closed form:

n+1

(/) - 5

This derivation actually works for any real value of n, as long as no division
by zero occurs; that is, as long as n isn't one of the integers 0, 1, ..., m 1.
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The more complicated the derivation, the more important it is to check
the answer. This one wasn't too complicated but we'll check anyway. In the
small case m = 2 and n = 4 we have

6/ = 0/0) = Q)/G) =1+ -5

yes, this agrees perfectly with our closed form (4 + 1)/(4 + 1 2).

Problem 2: From the literature of sorting.

Our next sum appeared way back in ancient times (the early 1970s)
before people were fluent with binomia coefficients. A paper that introduced
an improved merging technique [165] concludes with the following remarks:
“It can be shown that the expected number of saved transfers . . is given by
the expression

n

Z mrlCmn1
pror=tbmono

r=

Here m and n are as defined above, and ,C,, is the symbol for the number
of combinations of m objects taken n at atime. . . . The author is grateful to
the referee for reducing a more complex equation for expected transfers saved
to the form given here.”

We'll see that this is definitely not a final answer to the author’s problem.
It's not even a midterm answer.

First we should translate the sum into something we can work with; the
ghastly notation ,-—1Cm_n-11is enough to stop anybody, save the enthusi-
astic referee (please). In our language we'd write

L o/m—k—1 m
:Zk< )/( >, integersm > n 3 0.
m—n-—1 n

k=0

The binomia coefficient in the denominator doesn’'t involve the index of sum-
mation, so we can remove it and work with the new sum

n
Slas
k=0 m-n-—

What next? The index of summation appears in the upper index of the
binomial coefficient but not in the lower index. So if the other k weren't there,
we could massage the sum and apply summation on the upper index (5.10).
With the extra k, though, we can’'t. If we could somehow absorb that k into
the binomial coefficient, using one of our absorption identities, we could then
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sum on the upper index. Unfortunately those identities don't work here. But
if the k were instead m = k, we could use absorption identity (5.6):

(m—k)(lm::::) = (m—n)(:ll::) :

S0 here's the key: WE'll rewrite k as m = (m = k) and split the sum S

into two sums;
= /m-k-I = m—k—1
ék(m- n- |> - kgo(m_(m_k))<m—n—l)
B i m-k -1 = m—k—1
kzzom<m'n'|>_kz_o(m_k)<m—n—1)
- L m—k—1 o m-—k
_mg (m_n_1)—kzzo(m—n)(m_n)
= mA- (m-n)B,
where
- —k—1 > m—k
CEGTTY) e-EE
kZ:O m—-n-—1 kZ:O m-—n

The sums A and B that remain are none other than our old friends in
which the upper index varies while the lower index stays fixed. Let's do B
first, because it looks simpler. A little bit of massaging is enough to make the
summand match the left side of (5.10):

o<ken NTETT o<m-kgn m-n

- L5

m-ng<kgm

2 (nt)

og<kgm

In the last step we've included the terms with 0 < k < m ~ n in the sum;
they're all zero, because the upper index is less than the lower. Now we sum
on the upper index, using (s.10), and get

ockem m-—-n m-n+1
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The other sum A is the same, but with m replaced by m 1. Hence we
have a closed form for the given sum S, which can be further simplified:

§= mA—(m—n)B = m( m )—hn—M( m+ 1 )

m—n+1

m+1 m
- (retnemEE) (20
m—n+1 m—-n
n m
m—n-+1 m-—n/’
And this gives us a closed form for the origina sum:
=s/(2)
n
n ( m m
m-n+Am - n n

_n
m—-nmn+1"'

Even the referee can't simplify this.
Again we use a small case to check the answer. Whenm=4and n = 2,
we have

T=00/O+ 10/ +20/G=0+2+2=1,
which agrees with our formula 2/(4 = 2 + 1).

Problem 3: From an old exam.
Let’s do one more sum that involves a single binomia coefficient. This
Do old exams one, unlike the lagt, originated in the halls of academia; it was a problem on
ever die? a take-home test. We want the value of Q1400000, When

2" — k
Qn = ( )—1“, integer n > 0.
gp L e eg

This on€e's harder than the others; we can’t apply any of the identities we've
seen so far. And we're faced with a sum of 21900000 terms, so we can't just
add them up. The index of summation k appears in both indices, upper and
lower, but with opposite signs. Negating the upper index doesn’t help, either;
it removes the factor of (-1 )k, but it introduces a 2k in the upper index.
When nothing obvious works, we know that it's best to look at small
cases. If we can't spot a pattern and prove it by induction, at least we'll have
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some data for checking our results. Here are the nonzero terms and ther sums
for the first four values of n.

n Qn
o () - =
e - o 1
210 = 0+ @) =1=3+41 = -1

3l - +Q -G+ @ =1-7+15-10+1=0

We'd better not try the next case, n = 4; the chances of making an arithmetic
error are too high. (Computing terms like (%) and (/) by hand, let alone
combining them with the others, is worthwhile only if we're desperate.)

So the pattern startsout 1, 0, -1, 0. Even if we knew the next term or
two, the closed form wouldn't be obvious. But if we could find and prove a
recurrence for Q,, we'd probably be able to guess and prove its closed form.
To find a recurrence, we need to relate Qn to Q-1 (0r t0 Qsmaller values); DUt
to do this we need to relate a term like ('*37"%), which arises when n = 7 and
k = 13, to terms like (*'3'%). This doesn't look promising; we don’t know
any neat relations between entries in Pascal’s triangle that are 64 rows apart.
The addition formula, our main tool for induction proofs, only relates entries
that are one row apart.

But this leads us to a key observation: There's no need to deal with
entries that are 2"~ rows apart. The variable n never appears by itsdlf, it's
always in the context 2™ So the 2" is ared herring! If we replace 2" by m,  Oh, the sneakiness

all we need to do is find a closed form for the more general (but easier) sum ~ of the indiructor

who st that exam.

—k .

Rm = 3 (mk )(—-1)“, integer m > O;
k<m

then we'll also have a closed form for Q,, = Rz». And there's a good chance
that the addition formula will give us a recurrence for the sequence R, -

Vaues of R, for small m can be read from Table 155, if we aternately
add and subtract values that appear in a southwest-to-northeast diagonal.
The results are:

m|012 3 45678 9 10
Rm| 110 =1 =1 0110 =1 —1

There seems to be a lot of cancellation going on.
Let's look now at the formula for R,, and seeif it defines a recurrence.
Our strategy is to apply the addition formula (5.8) and to find sums that
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have the form R, in the resulting expression, somewhat as we did in the
perturbation method of Chapter 2:

R = ¥ (")

_ m-—-2-—k K -1 e
Z ( k )(_” - (m—l)(_]) ]

k<m-2
= Rmfl + (_])Zm - Rm—Z - (_1)2““7]) = Rm—1 - Rm72'
(In the next-to-last step we've used the formula (') = (~1)™, which we know

is true when m > 0.) This derivation is valid for m > 2.
From this recurrence we can generate values of R, quickly, and we soon
perceive that the sequence is periodic. Indeed,

: 0

| |

R, = | if mmod 6= { 2
m _1 3
1 4

0 5

The proof by induction is by inspection. Or, if we must give a more academic
proof, we can unfold the recurrence one step to obtain

Rm = (Rmfz - Rm73) = Rp2 = _Rm—3 !

whenever m > 3. Hence R,,, = R, _¢ Whenever m > 6.

Finaly, since Qn = Rz», we can determine Q,, by determining 2" mod 6
and using the closed form for R,,. When n = 0 we have 2° mod 6 = 1; after
that we keep multiplying by 2 (mod 6), so the pattern 2, 4 repeats. Thus

Ri=1 ifn=0;
Qn = Ry = {RZ =0, ifnisodd;
Ry =—1, ifn >0 iseven.
This closed form for Q,, agrees with the first four values we calculated when
we started on the problem. We conclude that Qiooo000 = R4 = -1.
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Problem 4: A sum involving two binomial coefficients.
Our next task is to find a closed form for

Zk(m_k_l), integersm > n > 0.

n
-n-—1
ko ™

Wait a minute. Where's the second binomial coefficient promised in the title
of this problem? And why should we try to simplify a sum we've aready
simplified? (This is the sum S from Problem 2.)

Well, this is a sum that's easier to simplify if we view the summand
as a product of two binomial coefficients, and then use one of the genera
identities found in Table 169. The second binomia coefficient materializes
when we rewrite k as (%):

L) = 20655

k=0 0gkgn
And identity (5.26) is the one to apply, since its index of summation appears
in both upper indices and with opposite signs.

But our sum isn't quite in the correct form yet. The upper limit of
summation should bem 1, if we're to have a perfect match with (5.26). No

problem; the terms for n <k £ m — 1 are zero. So we can plug in, with
(1, myn,q) «(mM~1,m-n. 1,1,0); the answer is

5= ()
m—n+1

This is cleaner than the formula we got before. We can convert it to the
previous formula by using (5.7):

m _n m
m-—n+1 “m—-n+1m-nj’
Similarly, we can get interesting results by plugging specia values into

the other genera identities we've seen. Suppose, for example, that we set
m=n=1and q=0in (5.26). Then the identity reads

Y -k = (“;]>.

0g<k<l

The left side is 1((1+1)1/2) = (12+ 2%+ . + 1?), 20 this gives us a brand new
way to solve the sum-of-squares problem that we beat to death in Chapter 2.

The moral of this story is: Specia cases of very general sums are some-
times best handled in the genera form. When learning general forms, it's
wise to learn their simple speciaizations.
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Problem 5: A sum with three factors.
Here's another sum that isn't too bad. We wish to simplify

ny\ (s .
; (k) (k)k‘ integer n > 0.

The index of summation k appears in both lower indices and with the same
sign; therefore identity (5.23) in Table 169 looks close to what we need. With
a bit of manipulation, we should be able to use it.

The biggest difference between (5.23) and what we have is the extra k in
our sum. But we can absorb k into one of the binomial coefficients by using
one of the absorption identities:

= () =2 () ()
(W6

We don'’t care that the s appears when the k disappears, because it’s constant.
And now we're ready to apply the identity and get the closed form,

TG =)

If we had chosen in the first step to absorb k into (}), not (;), we wouldn't

have been allowed to apply (5.23) directly, because n = 1 might be negative;
the identity requires a nonnegative value in at least one of the upper indices.

Problem 6: A sum with menacing characteristics.
The next sum is more challenging. We seek a closed form for

n+k\ /2k\ (=1} .
Z 2K N P integer n > 0.

k=0

One useful measure of a sum's difficulty is the number of times the index of
summation appears. By this measure we're in deep trouble-k appears six
times. Furthermore, the key step that worked in the previous problem-to
absorb something outside the binomial coefficients into one of them-won't
work here. If we absorb the k + 1 we just get another occurrence of k in its
place. And not only that: Our index k is twice shackled with the coefficient 2
inside a binomia coefficient. Multiplicative constants are usually harder to
remove than additive constants.
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We're lucky this time, though. The 2k’s are right where we need them
for identity (5.21) to apply, so we get

n+k\ (2k\ (-1)* n+k\ /m\ (=1)k
> () G -2 () e

k>0

The two 2's disappear, and so does one occurrence of k. So that’s one down
and five to go.

The k+ 1 in the denominator is the most troublesome characteristic left,
and now we can absorb it into (2) using identity (5.6):

n+k\ /Mm\ (-1 n+k\ /m+1\ (-1
Z( k ><k>k+1 :Z< K )(k+1>n—l—1

k>0 Kk
1 n+kyMm+1y
- n-}—];( k )(k+1)( R

(Recall that n = 0.) Two down, four to go.

To eliminate another k we have two promising options. We could use
symmetry on (™/*); or we could negate the upper index n -+ k, thereby elim-
inating that k as well as the factor (—1)%. Let's explore both possibilities,

starting with the symmetry option:
1 n+k)/mn-+1 X 1 n+k\/m+1 X
o - = — —1
n+l;< k )(k%—])( ) n+1;( n )(k—}—])( )

Third down, three to go, and we're in position to make a big gain by plugging For a minute
into (5.24): Replacing (1, m, n, s) by (n +1, 1, n, n), we get I thought we'd

have to punt.
1 n+k)/Mm-1 v 1 afm=1\ _
n+ 14 ( n )(k+l)(_” = aay (—1 ) =0

Zero, eh? After all that work? Let's check itwhenn=2: (5) (§)1 (3 ()1 +

(H@3=1-5+5=0 lcuks
Just for the heck of it, let's explore our other option, negating the upper
index of ("}"):

1 n+k\/m-1 1 —n—1\/n+1
n+1;( K )(kH)(_”k:nH;( K )(k+1)'

Now (5.23) applies, with (1,m,n,s) « (n +1,1,0, -n = 1), and

2 (0)60) - wa ()
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Hey wait. This is zero when i > 0, but it's 1 when n = 0. Our other
path to the solution told us that the sum was zero in all cases! What gives?
The sum actually does turn out to be 1 when n = O, so the correct answer is
‘Im=0]". We must have made a mistake in the previous derivation.

Let's do an instant replay on that derivation when n = 0O, in order to see
where the discrepancy first arises. Ah yes; we fell into the old trap mentioned
earlier: We tried to apply symmetry when the upper index could be negative!
We were not justified in replacing (";*) by (*-*) when k ranges over all
integers, because this converts zero into a nonzero value when k < —n. (Sorry
about that.)

The other factor in the sum, (1), turns out to be zero when k < —n,
except when n = 0 and k = -1. Hence our error didn't show up when we
checked the case n = 2. Exercise 6 explains what we should have done.

Problem 7: A new obstacle.
This one’'s even tougher; we want a closed form for

Z(n+k)(2k>ﬂt integers m,n > 0.
—=\m+2k/\k/k+1’ ‘
If m were 0 we'd have the sum from the problem we just finished. But it's
not, and we're left with a real mess-nothing we used in Problem 6 works
here. (Especialy not the crucia first step.)

However, if we could somehow get rid of the m, we could use the result
just derived. So our strategy is: Replace (r::;k) by a sum of terms like (')
for some nonnegative integer 1; the summand will then look like the summand
in Problem 6, and we can interchange the order of summation.

What should we substitute for (r::;k)'? A painstaking examination of the
identities derived earlier in this chapter turns up only one suitable candidate,
namely equation (5.26) in Table 169. And one way to use it is to replace the

parameters (1, m, n,q, k) by (n +k 1,2k, m = 1,0, j), respectively:
Z(n+k>(2k)(—1)k
S \mt2k/\k/ k+1

_ Z Z (n+k—1 —]> ( j ) (Zk)(—])k

k20 0<jgntk—1 2k m—1 k) k+1

_ j n+k—1-—73\ /2k\ (-1)k
_Z(m—l) Z ( 2k )(k>k+1
k)ﬁ;gﬂ

In the last step we've changed the order of summation, manipulating the
conditions below the } 's according to the rules of Chapter 2.
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We can't quite replace the inner sum using the result of Problem 6,
because it has the extra condition k >j n + 1. But this extra condition
is superfluous unlessj = n+ 1 > 0; that is, unlessj > n. And when j > n,
the first binomial coefficient of the inner sum is zero, because its upper index
is between 0 and k 1, thus strictly less than the lower index 2k. We may
therefore place the additional restriction j < n on the outer sum, without
affecting which nonzero terms are included. This makes the restriction k >
j  n + 1 superfluous, and we can use the result of Problem 6. The double
sum now comes tumbling down:

S0 = (RGeS

20 kzj-n+]
k>0
_ 21 ( j >2:<n+k—1—v<mﬁ(—nk
ool m-—1 = 2k k/k+1
_ j o n-1

0<j<n

The inner sums vanish except when j = n =1, so we get a simple closed form
as our answer.

Problem 8: A different obstacle.
Let’s branch out from Problem 6 in another way by considering the sum

n4k\ /2k\  (=1) _
Sm _ Z( 2K )(k>m, integers m,n = 0.

T k20

Again, when m = 0 we have the sum we did before; but now the m occurs
in a different place. This problem is a bit harder yet than Problem 7, but
(fortunately) we're getting better at finding solutions. We can begin as in
Problem 6,

_ n+k\ /m\ (~1)k
Sm—g( X )(k)m

Now (as in Problem 7) we try to expand the part that depends on m into
terms that we know how to deal with. When m was zero, we absorbed k + 1
into (L‘), if m > 0, we can do the same thing if we expand 1 /(k + 1 + m) into
absorbable terms. And our luck still holds: We proved a suitable identity

= [(m Tﬁ]_ r+1 integer m > 0,
Z i/ \J Tor+l-m’ rg [0,1,..., ml}. (5-33)

j=0
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in Problem 1. Replacing T by -k 2 gives the desired expansion,
n+k (—1)k ( ) ( k— 2)
=2 () e Z 605

Now the (k + 1)~! can be absorbed into (}), as planned. In fact, it could
also be absorbed into (“k} ?)~1. Double absorption suggests that even more
cancellation might be possible behind the scenes. Yes-expanding everything
in our new summand into factorials and going back to binomial coefficients

gives a formula that we can sum on k:

They expect us to min! Cifmtnt] n+T+j\/—n—1
ek s S e P AL GRS DI S |
on a sheet of iz0 k

sorach  paper.

m! n! yMm+n+1\/j
= (m+n+)! {—o(_”](nﬂﬂ >(n>

The sum over all integers j is zero, by (5.24). Hence —S,, is the sum for j < 0.
To evaluate —S,,, forj < O, let's replace j by -k - 1 and sum for k > O

_ m! n! Cpkf(mAn+Ty (k=1
S CELEDIEA ”( n—k )( n >

1oy
A

‘nr 1 k—n—1
= (mrnnm)z Z(_”nvk(m+n+ )( 0 )

k<m

m! n! m+n+1\/2n—k
= (m+n+1)! Z(_”( )( n )

k<n
m! n! m+n+1\/2n—k
T mint ) k;n(_” ( )( n )

Finally (5.25) applies, and we have our answer:

= _n&_m — (1"l
Smo = (=1) (m+n+1)!<n>_( imEm=—=".

Whew; we'd better check it. When n = 2 we find

_ L6 n 6 _ m(m- 1)
T om+1 m+2 m4+3 (m+1)(m+2)(m+3)

m

Our derivation requires m to be an integer, but the result holds for all real m,
because(m+1 )™*' S, is a polynomia in m of degree < n.
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53 TRICKS OF THE TRADE

Let's look next at three techniques that significantly amplify the
methods we have already learned.

Trick 1: Going halves. This should redlly
Many of our identities involve an arbitrary real number r. When t has  be called Trick 1/2
the special form “integer minus one half,” the binomial coefficient (;) can be
written as a quite different-looking product of binomial coefficients. This leads
to a new family of identities that can be manipulated with surprising ease.
One way to see how this works is to begin with the duplication formula

k(= Dk = 21222 integer k > 0. (5.34)

This identity is obvious if we expand the falling powers and interleave the
factors on the left side:

r=Hr=Nr—3).. (r—k+1)(r—k+1)

(2r)(2r = 1). .. (2 = 2k + 1)
2:2.....2

Now we can divide both sides by k!¢, and we get

—1/2 2 2k
O -GE)>

If we set kK = v = n, where n is an integer, this yields

(n —n1/2) = (2;1) /22“, integer n. (5.36)

And negating the upper index gives yet another useful formula,

() GFE). oo

For example, when n = 4 we have . . we have. .

(—1/2) _ (=1/2)(=3/2)(=5/2)(=7/2)
[

4 _( ) 4
B 12/%1.3.5.7

_ (i)4 1:3:5.7:2:4:68 _ (—_1)“ (8)
4) 12341234 7 \4) 4

Notice how we've changed a product of odd numbers into a factorial.
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Identity (5.35) has an amusing corollary. Let v = In, and take the sum
over all integers k. The result is

(@) (-2 (O (")

_ (n—l/Z

In/2] ) \ integer n > 0 (5.38)

by (5.23), because either n/2 or (n  1)/2 is [n/2], a nonnegative integer!
We can also use Vandermonde's convolution (5.27) to deduce that

()G = ()= menzo

k

Plugging in the values from (5.37) gives
—1/2\ (=172 _ [(=1\*[2K\ (=1\" *[2(n—K)
(OGE) -GE)0)E) )
(=M 2K\ (20— 2k
-5 (O6)

this is what sums to (—1)". Hence we have a remarkable property of the
“middle” elements of Pascal’s triangle:

2K\ [2n — 2k N
Z . ok = 4%, integer n > 0. (5.39)

k

For example, (3) (5) +(3) )+ (3) () +(3) (§) = 1-20+2:6+6:2+20-1= 64 = 4°.

These illustrations of our first trick indicate that it’s wise to try changing
binomial coefficients of the form (Zkk) into binomial coefficients of the form
("}/%), where n is some appropriate integer (usually 0, 1, or k); the resulting
formula might be much simpler.

Trick 2: High-order differences.

We saw earlier that it’s possible to evaluate partial sums of the series
(7) (1), but not of the series (}). It turns out that there are many important
applications of binomial coefficients with alternating signs, (1) (—1)*. One of
the reasons for this is that such coefficients are intimately associated with the
difference operator A defined in Section 2.6.

The difference Af of a function f at the point x is

Af(x) = f(x + 1) = f(x);
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if we apply A again, we get the second difference

A(x) = Af(x + 1) Af(X) = (F(x+2) = f(x+1)) = (Fxt1) -f(X))

f(x +2) — 2f(x + 1) + f(x),

which is analogous to the second derivative. Similarly, we have

AP f(x) = flx+3) —3f(x+2) +3f(x + 1) — f(x);
AYf(x) = fx+4) —4f(x +3) + 6f(x +2) —4f(x + 1) + f(x);

and so on. Binomia coefficients enter these formulas with aternating signs.
In general, the nth difference is

A f(x) = Z (2)(—1)“‘kf(x+ k), integer n > 0, (5-40)
k
This formula is easily proved by induction, but theré's dso a nice way to prove

it directly using the elementary theory of operators, Recall that Section 2.6
defines the shift operator E by the rule

EF(x) = T(x+D);

hence the operator A isE 1, where 1 isthe identity operator defined by the
rue 1 f(x) = f(x). By the binomia theorem,

- TR n k n—k
A" = (E-) = Zk (k>E (=) k.
This is an equation whose elements are operators; it is equivalent to (5.40),
snce EX is the operator that takes f(x) into f(x + k).
An interesting and important case arises when we consider negative
faling powers. Let f(x) = (x=1)=! = 1/x. Then, by rule (2.45), we have
Af(x) = (-D(x- 1)22, A*f(x) = (-D(-2)(x- 1)=2, and in genera

n!
x(x+ ... (x+n)

A ((x == = (=12 (x— 1=t = (=)0

Equation (5.40) now tells us that

ny (=% n!
Z(k)x+k T ox(x+1)...(x+n)

—— (":“)_1, x¢1{0,-1,..., —n). (5.41)
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For example,

R L I N
x x+1 x+2 x+3 x+4

-1/+("3)
=1/x .
= x(x+ Nx+2)(x+3)(x+4) 4

The sum in (5.41) is the partial fraction expansion of nl/(x(x+l) . . . (x+n)).
Significant results can be obtained from positive faling powers too. If
f(x) is a polynomia of degree d, the difference Af(x) is a polynomial of degree
d-l : therefore A? f(x) is a constant, and A™ f (x) = 0 if n > d. This extremely
important fact simplifies many formulas.
A closer look gives further information: Let

f(x) = adxd + (:Ld,]?(d_1 + 4 Cl]?(1 + CloXO

be any polynomial of degree d. We will see in Chapter 6 that we can express
ordinary powers as sums of falling powers (for example, x> = x2 + xl|); hence
there are coefficients by, by 1, ..., by, by such that

f(X) = bax® +ba_1x&=L+ -+ + byxb + box?.

(It turns out that bg = aq and by = ag, but the intervening coefficients are
related in a more complicated way.) Let ¢y = k! bx for 0 < k < d. Then

- o w2 e ) )

thus, any polynomia can be represented as a sum of multiples of binomial
coefficients. Such an expansion is called the Newton series of F(x), because
Isaac Newton used it extensively.

We observed earlier in this chapter that the addition formula implies

() - ()

Therefore, by induction, the nth difference of a Newton series is very simple:

A" f(X) = cq (din) +Cq—1 (d—:—n> + .40 <] —)-(-TL) + Co (_Xn) .

If we now set x = 0, al terms ck(kfn) on the right side are zero, except the
term with k-n = 0; hence

A"F(0) = {cn, ifn<d;
0, ifn>d.
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The Newton series for f(x) is therefore

_ d X - X X X
fx) = A f(O)Od +4¢ ‘f(O)(d_]>+---+Af(O)(]> +f(0)(o)

For example, suppose f(x) = x3. It's easy to calculate

f0) = 0, f1) = 1, f2) = 8, f(3) = 27;
Af(0) = 1, Af(1) =7, Af(2) = 19
A*F(0) = 6, A%f(1) = 12
A3£(0) = 6.
So the Newton series is x* = 6(3) +6(3) + 1 (}) + 0(5)-

Our formula A” f(0) = ¢, can also be stated in the following way, using
(540) with x = 0

n " k k k
; N ol ) e () Fely )+ ) = (<),
integer n > 0.
Here (co,c1,cz2,...) is an arbitrary sequence of coefficients; the infinite sum

co(§) +c1(*) +c2(5) +- - is actualy finite for al k > 0, so convergence is not
an issue. In particular, we can prove the important identity

y (.n)(—”k(ao+a1k+---+ank“) = (“1)'nlan,

— \k
integer n > 0, (5,42)
because the polynomial ay + a; k + . . . + a,k™ can always be written as a
Newton series co(g) + €1 (}) + . . . + ¢ (%) with ¢, = n! a.

Many sums that appear to be hopeless at first glance can actually be
summed amost trivially by using the idea of nth differences. For example,

let’s consider the identity

Z <E> (T'_nSk> (-1)* = ",  integer n > 0. (5-43)

k

This looks very impressive, because it's quite different from anything we've
seen so far. But it really is easy to understand, once we notice the telltale

n

factor (})(—1)* in the summand, because the function

f(k) = (“Sk) — %(-1)“s“kn+--~ - (—1)%”(“) 4.

n
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is a polynomial in k of degree n, with leading coefficient (-1 )"s"/n!. There-
fore (5.43) is nothing more than an application of (5.42).

We have discussed Newton series under the assumption that f(x) is a
polynomial. But we've also seen that infinite Newton series

f(x) = co (;) +e <T> te (;) +.

make sense too, because such sums are always finite when x is a nonnegative
integer. Our derivation of the formula A™f(0) = ¢, works in the infinite case,
just as in the polynomial case; so we have the general identity

f(x) = f(0) (;) + Af(0) (’]‘) +A2f(0)(§> +A3f(o)<’3‘) foen,

integer x > 0. (5.44)

This formula is valid for any function f(x) that is defined for nonnegative
integers X. Moreover, if the right-hand side converges for other values of X,
it defines a function that “interpolates’ f(x) in a natural way. (There are
infinitely many ways to interpolate function values, so we cannot assert that
(5.44) is true for al x that make the infinite series converge. For example,
if we let f(x) = sin(mx), we have f(x) = 0 at all integer points, so the right-
hand side of (5.44) is identically zero; but the left-hand side is nonzero at all
noninteger x.)

A Newton series is finite calculus's answer to infinite calculus's Taylor
series. Just as a Taylor series can be written

[ / \ (AN " \
_ owalny o oyaldey vyl vl
g(atx) = o + T x' + 20 X + 30 x” + )

(SinceE=1+A, the Newton series for f(x) = g( a + x) can be written
B = L(p)a
and E*g(a) = g(a) Ag(a) A?g(a) A3 gl
gla+x).) glat+x) = ol x4 1 xl+ o0 Xt + 31.\ X2+ (5.45)

(This is the same as (5.44), because A™f(0) = A™g(a) for al n > 0 when
f(xX) = g( a + x).) Both the Taylor and Newton series are finite when g is a
polynomial, or when x = 0; in addition, the Newton series is finite when x is a
positive integer. Otherwise the sums may or may not converge for particular
values of x. If the Newton series converges when x is not a honnegative integer,
it might actually converge to a value that's different from g (a + x), because
the Newton series (5.45) depends only on the spaced-out function values g(a),
gla+1),gla+2),....
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One example of a convergent Newton series is provided by the binomial
theorem. Let g(x) = (1 + z)*, where z is a fixed complex number such that
lzZt < 1. Then Ag(x) = (1 + z)*1 = (1 + z)* = z(1 + z)*, hence A" g(x) =
z"( 1 + z)*. In this case the infinite Newton series

_ n X - a X n
gla+x) = ;A g(a)(n> = (142 Zn (n>z
converges to the “correct” value (1 + z)2t*, for dl x.

James Stirling tried to use Newton series to generalize the factorial func-
tion to noninteger values. First he found coefficients §,, such that

= ga )5 o) o) -

isan identity for x = 0, x = 1, X = 2, etc. But he discovered that the resulting
series doesn’t converge except when x is a nonnegative integer. So he tried

again, this time writing
sol ) +si () +s2{
S0l A 2\ 5 +-

= *) =
Inx! ZS“(n)
Now A(Inx!) = In(x 4+ 1)! ~ Inx! = In(x + 1), hence

(5.46)

(5.47)

n

Sn = An(lnX!)lx:O

= A (In(x + 1)) |, _o
-y (““ ‘) (L)1 F Ik + )
” k

by (5.40). The coefficients are therefore s, = s1 = 0; s; = In2; s3 = In3
2In2=1n%;5,= In4-31n3+3 In2 = In 3; etc. In this way Stirling obtained
a series that does converge (although he didn't prove it); in fact, his series
converges for al x > -1. He was thereby able to evaluate %! satisfactorily.
Exercise 88 tells the rest of the story.

Trick 3: Inversion.
A special case of the rule (5.45) we've just derived for Newton's series
can be rewritten in the following way:

Y (P e rm = X

k k

gln) = (:) (=D*g(k). (5.48)

“Forasmuch &5
these terms increase
very fast, their
differences  will
make a diverging
progression,  which
hinders  the  ordinate
of the paabola
from approaching to
the truth; therefore
in this and the like
cases, | interpolate
the logarithms  of
the terms, whose
differences  consti-
tute a series swiftly
converging. *

—J. Stirling [281]

(Proofs of conver-
gence were not
invented until the
ningteenth ~ century.)
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This dual relationship between f and g is called an inversion formula; it's
rather like the Mobius inversion formulas (4.56) and (4.61) that we encoun-
Invert this: tered in Chapter 4. Inversion formulas tell us how to solve “implicit recur-
‘gmb ppo’. rences,” where an unknown sequence is embedded in a sum.
For example, g(n) might be a known function, and f(n) might be un-
known;andwemighthavefoundawaytoprovethatg(n) =3, (})(—1)*f(k).
Then (5.48) lets us express f(n) as a sum of known values.
We can prove (5.48) directly by using the basic methods at the beginning
of this chapter. If g(n) = Y, (})(=1)*f(k) for al n > 0, then

()= () £ () o

k k j

7 -1
M M

= Zf(i)(?)[n—izo] = f(n).

The proof in the other direction is, of course, the same, because the relation
between f and g is symmetric.

Let's illustrate (5.48) by applying it to the “football victory problem”:
A group of n fans of the winning football team throw their hats high into the
air. The hats come back randomly, one hat to each of the n fans. How many
ways h(n, k) are there for exactly k fans to get their own hats back?

For example, if n = 4 and if the hats and fans are named A, B, C, D,
the 4! = 24 possible ways for hats to land generate the following numbers of
rightful owners:

ABCD 4 BACD 2 CABD | DABC 0
ABDC 2 BADC 0 CADB 0 DACB !
ACBD 2 BCAD ! CBAD 2 DBAC !
ACDB ! BCDA 0 CBDA | DBCA 2
ADBC | BDAC 0 CDAB 0 DCAB 0
ADCB 2 BDCA | CDBA 0 DCBA 0

Therefore h(4,4) = 1; h(4,3) = 0; h(4,2) =6; h(4,1) =8 h(4,0) = 9.
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We can determine h(n, k) by noticing that it is the number of ways to
choose k lucky hat owners, namely (), times the number of ways to arrange
the remaining n-k hats so that none of them goes to the right owner, namely
h(in k, 0). A permutation is called a derangement if it moves every item,
and the number of derangements of n objects is sometimes denoted by the
symbol ‘n;’, read “n subfactorial!” Therefore h(n ~ k, 0) = (n — k);, and we
have the general formula

(z) (n—k)j.

(Subfactorial notation isn’t standard, and it's not clearly a great idea; but
let’s try it awhile to see if we grow to like it. We can always resort to ‘D, or
something, if ‘nj’ doesn’t work out.)

Our problem would be solved if we had a closed form for nj, so let’s see
what we can find. There's an easy way to get a recurrence, because the sum
of h(n, k) for al k is the total number of permutations of n hats:

nt= Y hink= Y <:)(n—k)i
k k
_ Z(:)k, integer n > 0.
k

(We've changed k to n — k and (,,",) to ({) in the last step.) With this
implicit recurrence we can compute all the h(n, k)’s we like:

h(nk) =

(5-49)

n| h(n, 0) hin, 1) h(n,2) h(n,3) h(n,4) h(n,5) h(n, 6)
0

1 0 1

2 1 0 |

3 2 3 0 1

4 9 8 6 0 l

50 44 45 20 10 0 !

6 265 264 135 40 15 0 1

For example, here’s how the row for n = 4 can be computed: The two right-
most entries are obvious-there's just one way for all hats to land correctly,
and there’s no way for just three fans to get their own. (Whose hat would the
fourth fan get?) When k = 2 and k = 1, we can use our equation for h(n, k),
giving h(4,2) = (;)h(2,0)= 6-1= 6, and h(4,1) = ($)n(3,0)= 4.2 = 8. We
can't use this equation for h{4,0); rather, we can, but it gives us h(4,0) =
(3)}1(4,0), Wi f¢ 18 true but useless. Taking another tack, we can use the
relation h(4,0)+ 8+ 6 + 0+ 1 = 4!to deduce that h(4,0) = 9; thisis the value
of 4j. Smilarly n; depends on the values of k; for k < n.

The at of math-
emaics, a of life
is knowing which
truths are useless.
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How can we solve a recurrence like (5.49)? Easy; it has the form of (5.48),
with g(n) = n! and f(k) = (—1)*k{. Hence its solution is

WEell, thisisn’t really a solution; it's a sum that should be put into closed form
if possible. But it's better than a recurrence. The sum can be simplified, since
k! cancels with a hidden k! in (}), so let’s try that: We get

n! —Nk
np = Z (n—_'—k—)'-(—”n+k = nl Z (_'L. (5.50)
0<k<n ' og<kgn ’
The remaining sum converges rapidly to the number 3~ . (—1 )%kl = e

In fact, the terms that are excluded from the sum are

_ 11k -1 n+1 1
nIZ( k]v) - (nil (-”k(k(z+l)'])t
on >0 nr
_ (_])nH ( B | ]
Ton+| n+2+ (n+2)(n+3) ‘
and the parenthesized quantity lies between 1 and1 s = M Therefore

the difference between nj and n!/e is roughly I/n in absolute value; more
precisely, it lies between 1 /(n + 1) and 1 /(n + 2). But n; is an integer.
Therefore it must be what we get when we round n!/e to the nearest integer,
if n > 0. So we have the closed form we seek:

n o1
nj = {? + EJ + [n=0]. (5:51)

This is the number of ways that no fan gets the right hat back. When
Basehdl fans 367  n is large, it's more meaningful to know the probability that this happens.
isalso Ty Cobb’s If we assume that each of the n! arrangements is equally likely- because the

e ta ine hets were thrown extremey high- this probbility is

record. Can this be ) ' :
a coincidence? H_TL/‘:’:—|O(1)N_~:,367__.
. €

(Hey walt, you're So when n gets large the probability that all hats are misplaced is almost 37%.
fudging. Cobb s

agae Wes Incidentally, recurrence (5.49) for subfactorials is exactly the same as
4191/11429 =~ (5.46), thefirstrecurrence considered by Stirling when he was trying to gen-
366699, while eralize the factoria function. Hence Sy = k;. These coefficients are so large,
:Es/uet} ﬁayg?#m' it's no wonder the infinite series (5.46) diverges for noninteger x.

Wade Boggs has Before leaving this problem, let’s look briefly at two interesting patterns

a few redly good that leap out at us in the table of small h(n, k). First, it seems that the num-
SEasors. . . ) bers 1, 3, 6, 10, 15, . . . below the al-0 diagona are the triangular numbers.
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This observetion is easy to prove, since those table entries are the h{n,n—2)’s,
and we have

h(n,n-2) = (n:)z; _ (;‘)

It also seems that the numbers in the first two columns differ by f1. Is
this always true? Yes,

h(n,0) —h(n,1) = nj—n(n-1)

- (2 5o 3 S)

o<ksn <kgn—-1

= i = (e

In other words, nj = n(n = 1); + (-1)“. This is a much simpler recurrence
for the derangement numbers than we had before.

Now let’s invert something else. If we apply inversion to the formula But inversion is the

source of smog.
Z_ n\(=D*  1/x+n -
— \k/ x+k Cox\n

that we derived in (5.41), we find

X n x+k\!
e L))

kz0

This is interesting, but not really new. If we negate the upper index in (*;*),
we have merely discovered identity (5.33) again.

5.4 GENERATING FUNCTIONS

We come now to the most important idea in this whole book, the
notion of a generating function. An infinite sequence (ao, ay, az, - - . ) that
we wish to deal with in some way can conveniently be represented as a power
series in an auxiliary variable z,

Alz) = aptaiz+aFi+e = ) aa (552)

k20
It's appropriate to use the letter z as the name of the auxiliary variable, be-
cause well often be thinking of z as a complex number. The theory of complex

variables conventionally uses ‘z' in its formulas; power series (a.k.a. analytic
functions or holomorphic functions) are central to that theory.
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We will be seeing lots of generating functions in subsequent chapters.
Indeed, Chapter 7 is entirely devoted to them. Our present goal is simply to
introduce the basic concepts, and to demonstrate the relevance of generating
functions to the study of binomial coefficients.

A generating function is useful because it's a single quantity that repre-
sents an entire infinite sequence. We can often solve problems by first setting
up one or more generating functions, then by fooling around with those func-
tions until we know a lot about them, and finally by looking again at the
coefficients. With a little bit of luck, we'll know enough about the function
to understand what we need to know about its coefficients.

If A(z)isany power series o axz*, we will find it convenient to write

[z2"]A(z) = a,; (5.53)

in other words, [z"] A(z) denotes the coefficient of z" in A(2).

Let A(z) be the generating function for {ay, a1, az,.. .} asin (5.52), and
let B(z) be the generating function for another sequence (by, by, by, .., ). Then
the product A(z) B (2) is the power series

(ao+a1z+azzz+---)(bo+b1z+bzzz+---)
= agbg + (aoby + ajbo)z + (aobz + ayby + azboe)z? + +++;

the coefficient of z" in this product is
QGbantarb, 1 +... 4+ anby = Z Axbn_i .
k=0

Therefore if we wish to evaluate any sum that has the general form

n

Ch = ) axbn i, (5.54)
k=0

and if we know the generating functions A(z) and B(z) , we have
Cn = [2"] A(z)B(z)

The sequence (c,) defined by (5.54) is called the conwvolution of the se-
guences (a,) and (b,); two sequences are “convolved” by forming the sums of
al products whose subscripts add up to a given amount. The gist of the previ-
ous paragraph is that convolution of sequences corresponds to multiplication
of their generating functions.
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Generating functions give us powerful ways to discover and/or prove

identities. For example, the binomial theorem tells us that (1 + z)" is the
generating function for the sequence ((3), (7). (5). - ):

1 +z)" = Z (;)zk

Similarly,

(1 +2° = ¥ (i)k

k>0

If we multiply these together, we get another generating function:

(42142 = @ 427

And now comes the punch line: Equating coefficients of z" on both sides of
this equation gives us

S (65 = ().

We've discovered Vandermonde's convolution, (5.27)! (5.27)! =
That was nice and easy; let’s try another. This time we use (1 —z)7, which (5-27)(4.27)

st greting ot for e spere (-1 1™(D) = () » ~(), )+ - . - ) (oed

Multiplying by (1 + z)" gives another generating function whose coefficients

we know:

A-—-2"(1+2 =@ 2.

Equating coefficients of z™ now gives the equation

g (D (n i k> (-1 = (=1)v? (nT/Z) [n even] . (5.55)

k=0
We should check this on a small case or two. When n = 3, for example,
the result is

T T . T T + T T . T T _

0/\3 1)\2 2)\1 3/)\0) © 0.
Each positive term is cancelled by a corresponding negative term. And the
same thing happens whenever n is odd, in which case the sum isn't very



If you have a high-
lighter pen, these
two equations have
got to be marked.
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interesting. But when n is even, say n = 2, we get a nontrivial sum that’'s
different from Vandermonde's convolution:

D000 OO -0 -

So (5.55) checks out fine when n = 2. It turns out that (5.30) is a special case
of our new identity (5.55).

Binomial coefficients also show up in some other generating functions,
most notably the following important identities in which the lower index
stays fixed and the upper index varies:

! n+k .
T C Z( N )zk, integer n > 0 (5.56)
k20~"
z" k\ .
L Z Lo integer n > 0. (5.57)
k=0

The second identity here is just the first one multiplied by z", that is, “shifted
right” by n places. The first identity is just a special case of the binomial
theorem in slight disguise: If we expand (1  z)~™~' by (5.13), the coefficient
of Z%is (7, ")(—1)¥, which can be rewritten as (;™) or (**¥) by negating
the upper index. These specia cases are worth noting explicitly, because they
arise so frequently in applications.

When n = 0 we get a special case of a special case, the geometric series:

1
— = 1442242+ .. .=sz.
11—z 0
This is the generating function for the sequence (1, 1, 1,... ), and it is espe-

cially useful because the convolution of any other sequence with this one is
the sequence of sums: When by = 1 for al k, (5.54) reduces to

Therefore if A(z) is the generating function for the summands (ay, a1, az,. ),
then A(z)/(1— z) is the generating function for the sums {co,c1,¢3,.. . ).

The problem of derangements, which we solved by inversion in connection
with hats and football fans, can be resolved with generating functions in an
interesting way. The basic recurrence

nt = ZOE (n—k)i

k
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can be put into the form of a convolution if we expand (}) in factorials and
divide both sides by n!:

1 \n k
Z K f(-n-k/)‘" ‘
The generating function for the sequence (g;, 3,5, - - - ) ise?; henceif we let

D = Y Sz,

k=0

the convolution/recurrence tells us that

T_Z = e D(Z)

Solving for D(z) gives

_ 1, 1 1o ] 15
D(Z) = ]——ze = T_—Z(az —FZ +EZ« + -

Equating coefficients of z" now tells us that

n — (—1)*
oy

k=0

this is the formula we derived earlier by inversion.

So far our explorations with generating functions have given us dick
proofs of things that we already knew how to derive by more cumbersome
methods. But we haven't used generating functions to obtain any new re-
sults, except for (5.55). Now we're ready for something new and more sur-
prising. There are two families of power series that generate an especially rich
class of binomia coefficient identities. Let us define the generalized binomia
series B, (2) and the generalized exponential Series €,(z) as follows:

_ z* _ R
Bilz) = kzao(tk)k Lo &g = kZ;o(tH N (5-58)

It can be shown that these functions satisfy the identities
Be(z)'t —Bilz)"t = 2 &(z)'In€i(z) = z. (5.59)
In the special caset = 0, we have

Bolz) = 1 +z; &o(z) = €,
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this explains why the series with parameter t are called “generalized” bino-
mials and exponentials.
The following pairs of identities are valid for al red r:

tk+ 7 T
By(2)" = Z( . ) e

k=0

k!
k20
By(z)" (tk—i—r) 5
1 —t+tB(z)]! g;o k !
& (2)" (tk +1)%
T c o wr (68

k=0

(When tk + r = 0, we have to be a little careful about how the coefficient
of z¥ is interpreted; each coefficient is a polynomial in r. For example, the
constant term of &,(z)"ist(0 +r)~', and thisis equal to 1 even when r = 0.)

Since equations (5.60) and (5.61) hold for al r, we get very general iden-
tities when we multiply together the series that correspond to different powers
r and s. For example,

Bi(z)® tk+r) T (tj+ s) .
B Z,r— oy k ]
(2] —t 1 tBy(z) | Z( kK Jtkrro ;) e

N 1’ Ve

k20
_ ZZHZ (tk+r> T (t(n—k)+s>'
= o k tk+7r n—xk

This power series must equal

By(z)** _ tn+r+y
1 t+t3t(z)~1”z< n ‘) )

.
nzo

hence we can equate coefficients of z" and get the identity

tk+71\ /tin—k)+s T tn+r+s ]
Z k nk i = n \ integer n,
k

valid for dl real r, s, and t. When t = O this identity reduces to Vander-
monde’s convolution. (If by chance tk + r happens to equal zero in this
formula, the denominator factor tk + r should be considered to cancel with
the tk+r in the numerator of the binomial coefficient. Both sides of the iden-
tity are polynomials in r, s, and t.) Similar identities hold when we multiply
Bi(z)" by By(z)*, etc.; Table 202 presents the results.
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Table 202 General convolution identities, valid for integer n > 0.

Z tk+r\/tn—tk+s T _ ftn+Tr+s 6
k n—k Jtk+r n : (5-62)

k

Z(tk+r)(tn—tk+s T s
- k n—k tk+1r tn—tk+s

_ tn+1r+s T+s 6
o n th+1+s’ (5.63)
n ’ n-k T
tk tn —tk = n .
;(J F =tk s)" o = (s (5.64)

n n-k T S
(tk+r}(tn —tk +s .
;(k) ( ) tk+7r tn—tk+s

T+s
= (tn+ e .
( r+s) tn+r+s (5.65)

We have learned that it's generally a good idea to look at special cases of
general results. What happens, for example, if we set t = |? The generaized
binomiad B, (z) is very simple-it's just

1
)= ) 2=

k20

therefore B, (z) doesn’t give us anything we didn’'t already know from Van-
dermonde’s convolution. But &; (z) is an important function,

k
_ k_1Z - 3 2 8 3 125 4
&(z) = ;(k+1) o T+z+35z +3P (5.66)
that we haven't seen before; it satisfies the basic identity Aha! This is the

iterated  power
2£(2) functmr;\
E(z) = e (5.67) E&(lnz) = 2°
thet I've often

This function, first studied by Eisenstein [75], arises in many applications. wondered - about.

The special casest = 2 and t = -1 of the generalized binomial are of
particular interest, because their coefficients occur again and again in prob-
lems that have a recursive structure. Therefore it's useful to display these

ZL2z2z2:. .
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series explicitly for future reference:

2k\ zk
By(z) — ()—
2 ()i

_ Z 2k 4+ 1\ z* 1—V1 -4z
Tk Jirx T T (5.68)
1—k\ zF
B =
12 ;( K )1—k
B Gt Ve N R R
"2\ k )itk T 7 (5-69)
2k 41 T
B,(z)" = k
2(z) ;( " )2k+rz . (5.70)
; r—k T
B (z) = ;( . )r_kzk. (5.70)
By ()" (2k+r) )
= z . .
o ; « (5.72)
B 1(z)"! (r—k) K
_ = FA .
VT+4z ; 3 (5-73)
The coefficients (ZTII) — of B, (2) are called the Catalan numbers Cy, because

Eugene Catalan wrote an influential paper about them in the 1830s [46]. The
sequence begins as follows:

n|o' 2345 6§ 7 8§ 9 1
Cil 11 25 14 2 ‘2 49 430 4862 ‘67%

The coefficients of B_; (z) are essentially the same, but there’s an extra 1 at the
beginning and the other numbers alternate in sign: (1, 1, —1,2, =5,14,... ).
Thus B 1 (2 =1 + zBy(—z). We also have B | (2) = B,(—z) .

Let's close this section by deriving an important consequence of (5.72)
and (5.73), a relation that shows further connections between the functions
B_1(2) and Bz(—z):

'Bq(Z)nH - (—Z)“HB)(—Z)“H (n*k)zk
V1+4z = '
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This holds because the coefficient of z* in (—z)"+1B,(—z)""//T+4z is

_Z)n+1

k] (_Z)TlJr]’BZ(—'Z')Tl+1 — (_])n+1[zk n,]] B,

: V1+4z V1+4z
n+1
- (—1 n+1 -1 k-n1 . k-n-1 732(2) +
(=1)"7(=1) z ]_]_4Z

= | 1k(2(k—n~])+n+]

kfZk—m—-T1Yy _ 4 Zk—mn—1

=1 (k—n-]) = =D ( K )
- (n _ k) C oy 2ot
k VT4

when k > n. The terms nicely cancel each other out. We can now use (5.68)
and (5.69) to obtain the closed form

() - () (),

k<n

integer n > 0. (5.74)

(The special case z = -1 came up in Problem 3 of Section 5.2. Since the
numbers 1(1 + /=3 are sixth roots of unity, the sums Y .. (" )(=1)¥
have the periodic behavior we observed in that problem.) Similarly we can
combine (5.70) with (5.71) to cancel the large coefficients and get

Z n—-k\ n X 14/ 144z “+ 1 —V1+az\"
k /n—k 2 2 ’
integer n > 0. (5.75)

k<n

9.5 HYPERGEOMETRIC FUNCTIONS

The methods we've been applying to binomial coefficients are very
effective, when they work, but we must admit that they often appear to be
ad hoc-more like tricks than techniques. When we're working on a problem,
we often have many directions to pursue, and we might find ourselves going They're even more
around in circles. Binomial coefficients are like chameleons, changing their versdtile  then

. - . . e chamdeons, we

appearance easily. Therefore it's natural to ask if there isn't some unifying can dissect them
principle that will systematically handle a great variety of binomial coefficient  and put them
summations all at once. Fortunately, the answer is yes. The unifying principle  back together in
is based on the theory of certain infinite sums called hypergeometric series. different ways.
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The dudy of hypergeometric series was launched many years ago by Eu-
ler, Gauss, and Riemann; such series, in fact, are still the subject of consid-
erable research. But hypergeometrics have a somewhat formidable notation,
which takes a little time to get used to.

The general hypergeometric series is a power series in z with m + n
parameters, and it is defined as follows in terms of rising factorial powers:

a1,...,am‘) af...dk 2
F prd —m (5.76)
<b1, o bal ) = k% bk .. bk k!

27

To avoid division by zero, none of the b’s may be zero or a negative integer.
Other than that, the as and b’'s may be anything we like. The notation
‘Flar,....,a,,;b1,.. ., by; 2} is ds0 used as an dternative to the two-line form
(5.76), Since a one-line form sometimes works better typographically. The a's
are said to be upper parameters; they occur in the numerator of the terms
of F. The b's are lower parameters, and they occur in the denominator. The
final quantity z is called the argument.

Standard reference books often use ', F,,’ instead of ‘F' as the name of a
hypergeometric with m upper parameters and n lower parameters. But the
extra subscripts tend to clutter up the formulas and waste our time, if we're
compelled to write them over and over. We can count how many parameters
there are, so we usually don't need extra additional unnecessary redundancy.

Many important functions occur as special cases of the generd hypergeo-
metric; indeed, that’s why hypergeometrics are so powerful. For example, the
simplest case occurs when m = n = 0: There are no parameters at al, and
we get the familiar series

Actually the notation looks a bit unsettling when m or n is zero. We can add
an extra ‘1’ above and below in order to avoid this:

F(Hz) = e,

In general we don’t change the function if we cancel a parameter that occurs
in both numerator and denominator, or if we insert two identical parameters.

The next simplest case has m = 1, q; = 1, and n = 0; we change the
parametersto m =2, aj =a; =1, n =1, and by = 1, so that n > 0. This
series also turns out to be familiar, because 1% = k!:

1,1 B e 1
F<] z)-Zz =1

k=0
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It's our old friend, the geometric series, F(a,...,a,,; b ,..., by;2) iscaled
hypergeometric because it includes the geometric series F( 1,1; 1; z) as a very
special case.

The general case m =1 and n = 0 is, in fact, easy to sum in closed form,

a, 11\ 7zt at+k—T) , |
F<1 lz)_ aE!—:;( . )z —a—2a (5.77)

k20

using (5.56). If we replace a by -a and z by —z, we get the binomial theorem,

F<_a1'] ’—Z> = (142)¢

A negative integer as upper parameter causes the infinite series to become
finite, since (-a)" = 0 whenever k > a > 0 and a is an integer.

The general case m = 0, n = 1 is another famous series, but it's not as
well known in the literature of discrete mathematics:

1 b-—1)  z¥ b—1)!

(il - g s - @S G
This function I, * is called a “modified Bessel function” of order b = 1. The
special case b = 1 gives us F( ./, |z) = Io(2y/z), which is the interesting series
Zkzo Z%/k!2.

The special case m = n = 1 is called a “confluent hypergeometric series”
and often denoted by the letter M:

a Kk zk
F( z) = 2 — = Mab,z2) (5.79)
b‘ W53 bk ki

This function, which has important applications to engineering, was intro-
duced by Ernst Kummer.

By now afew of us are wondering why we haven't discussed convergence
of the infinite series (5.76). The answer is that we can ignore convergence if
we are using z simply as a formal symbol. It is not difficult to verify that
formal infinite sums of the form }:kz" oz form a field, if the coefficients
&y lie in a field. We can add, subtract, multiply, divide, differentiate, and do
functional composition on such formal sums without worrying about conver-
gence; any identities we derive will till be formally true. For example, the
hypergeometric F( ]'1 ! z) = s K z* doesn’t converge for any nonzero z
yet we'll see in Chapter 7 that we can till use it to solve problems. On the
other hand, whenever we replace z by a particular numerical value, we do
have to be sure that the infinite sum is well defined.
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The next step up in complication is actually the most famous hypergeo-
metric of al. In fact, it was the hypergeometric series until about 1870, when
everything was generalized to arbitrary m and n. This one has two upper
parameters and one lower parameter:

(482 = 5

s kil
It is often called the Gaussian hypergeometric, because many of its subtle
properties were first proved by Gauss in his doctoral dissertation of 1812 [116],
athough Euler [95) and Pfaff [233] had aready discovered some remarkable
things about it. One of its important special cases is

aFbF ¢

(5.80)

f 1k

],] _ Kt \-A)
1n(H—z):zF<2 ’—z) —ZZ CESiPE.

w
N

= z— 4+ == =4 ...

Z z
27373
Notice that z~'In( 1+z) is a hypergeometric function, but In( 1 +z) itself cannot
be hypergeometric, since a hypergeometric series always has the value 1 when
z=0.

So far hypergeometrics haven't actually done anything for us except pro-
vide an excuse for name-dropping. But we've seen that several very different
functions can all be regarded as hypergeometric; this will be the main point of
interest in what follows. We'll see that a large class of sums can be written as
hypergeometric series in a “canonical” way, hence we will have a good filing
system for facts about binomial coefficients.

What series are hypergeometric? It's easy to answer this question if we
look at the ratio between consecutive terms:

ay,...
F

The first term is ty = 1, and the other terms have ratios given by

_ab..ak 2
tk tk - —
Z ’ Pk
1-

Kk
= bRk

tel _ ? AT bEoef ko
ty CLE BT kT (k1) 2k
(k+a1)...(k+am)z (5.81)
= (k+b1)... (k+bk+ 1) 5

This is arational function of k, that is, a quotient of polynomials in k. Any
rational function of k can be factored over the complex numbers and put
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into this form. The a's are the negatives of the roots of the polynomia in
the numerator, and the b’'s are the negatives of the roots of the polynomial
in the denominator. If the denominator doesn’t already contain the special
factor (k + 1), we can include (k + 1) in both numerator and denominator. A
constant factor remains, and we can call it z, Therefore hypergeometric series
are precisely those series whose first term is 1 and whose term ratio ty.,q/tx
is arationa function of k.

Suppose, for example, that we're given an infinite series with term ratio

tepr k? 4+ 7k + 10
ti - 4k2 +1 ’

a rational function of k. The numerator polynomia splits nicely into two
factors, (k + 2) (k + 5), and the denominator is 4(k +i/2) (k i/2). Since the
denominator is missing the required factor (k+ 1), we write the term ratio as

ter _ (k+2)(k+5)(k+1)(1/4)
te  (k+i/2)(k—1/2)(k+ 1)’

and we can read off the results: The given series is

2t - t"F(i/zz‘,i]/zll/‘l)'

k=0

Thus, we have a generd method for finding the hypergeometric represen-
tation of a given quantity S, when such a representation is possible: First we
write S as an infinite series whose first term is nonzero. We choose a notation
so that the seriesis ., t, with ty # 0. Then we calculate tx+1/tx. If the  mowisa good
term ratio is not a rationa function of k, we're out of luck. Otherwise we time to do warmup
express it in the form (5.81); this gives parametersal, ..., a, b1, ..., by, eedse 11)
and an argument z, suchthat S= t, F( ay,.. ., &, by, ..., by; 2).
Gauss's hypergeometric series can be written in the recursively factored
form

a,b _ ab a+1b+1 at?2_b+2
F( c l% =1+ 1cz(]+ 2 c+1z(1+‘“§"Ei72(1+ )>)

if we wish to emphasize the importance of term ratios.

Let's try now to reformulate the binomial coefficient identities derived
earlier in this chapter, expressing them as hypergeometrics. For example,
let's figure out what the parallel summation law,

T+ky _ (r+n+] int
Z )7 n , integern,

k<n
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looks like in hypergeometric notation. We need to write the sum as an infinite
series that starts at k = 0, so we replace k by n = k:

r+n-k (r+n-—X%)!
é( n-k ) = gor!(n k! —k;tk.
This series is formally infinite but actually finite, because the (n K)! in the
denominator will make t, = O when k > n. (We'll see later that I/x! is
defined for al x, and that I/x! = 0 when X is a negative integer. But for now,
let's blithely disregard such technicalities until we gain more hypergeometric
experience.) The term ratio is

tigr . (r+n—k=Dirln-k)! _ n-k

te  ri(n-k-DI(r+n-k)!' = r+n—k
(kT (k=m)(1)
T kon-n(k+ 1)

Furthermore t, = ("1"). Hence the parallel summation law is equivaent to
the hypergeometric identity

r+n r 1, —n 1 - r+n+1
n —n—r - n ’
T+n

Dividing through by ("7") g'ives a slightly simpler version,

F(l,—n 1) _ g’ " (r+n)#o. (5.82)

-—n—r T+1 n

Let’s do another one. The term ratio of identity (5.16),

> (r> (—1* = (—1)‘“(r_1)‘ integer m,

= k m
is(k—m)/(r—m+k+1)=(k+Dk—m)(1)/(k—m+r+1)(k+1), after
we replace k by m = k; hence (5.16) gives a closed form for

F(merr):

This is essentially the same as the hypergeometric function on the left of
(5.82), but with m in place of n and + + 1 in place of —r, Therefore identity
(5.16) could have been derived from (5.82), the hypergeometric version of
(5.9). (No wonder we found it easy to prove (5.16) by using (5.9).)

Before we go further, we should think about degenerate cases, because
hypergeometrics are not defined when a lower parameter is zero or a negative
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integer. We usually apply the parallel summation identity when r and n are
positive integers; but then —m—r is a negative integer and the hypergeometric
(5.76) is undefined. How then can we consider (5.82) to be legitimate? The
answer is that we can take the limit of F( 7:1';’; [1)ase — 0.
We will look at such things more closely later in this chapter, but for now
let's just be aware that some denominators can be dynamite. It is interesting,
however, that the very first sum we've tried to express hypergeometrically  (We proved the
has turned out to be degenerate. identities  originally
Another possibly sore point in our derivation of (5.82) is that we ex- fl?sredmtt?%er pgl’yngrgiai
panded (7".X) as(r+n k)!/rI(n k). This expansion fails when tis a agument to show

negative integer, because (—m)! has to be o if the law that they hold in
generd. Now we're
proving them firs
for irrationd T,
and using a limiting
is going to hold. Again, we need to approach integer results by considering a  argument to show
limtof r + ease — 0. tha they hold for

But we defined the factorial representation (;) = 7!/k! (r-k)! only when Inegers)
T is an integer! If we want to work effectively with hypergeometrics, we need
a factorial function that is defined for all complex numbers. Fortunately there
is such a function, and it can be defined in many ways. Here’'s one of the most

useful definitions of z!, actually a definition of 1 /z!:

~ = lim ( +Z)n : (5.83)

Z! n—oc n

Ol =0-(=1)-(=2)-...-(—m+1)- (=m)!

(See exercise 21. Euler [81] discovered this when he was 22 years old.) The
limit can be shown to exist for al complex z, and it is zero only when z is a
negative integer. Another significant definition is

x
Z = J tie L dt if Rz > -1. (5.84)
0
This integral exists only when the real part of z exceeds -1, but we can use
the formula
z! = z(z-I)! (5-85)

to extend (5.84) to all complex z (except negative integers). Still another
definition comes from Stirling’s interpolation of Inz! in (5.47). All of these
approaches lead to the same generalized factorial function.

There's a very similar function called the Gamma function, which re-
lates to ordinary factorials somewhat as rising powers relate to falling powers.
Standard reference books often use factorials and Gamma functions simulta-
neously, and it's convenient to convert between them if necessary using the
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following formulas:

Mz+1) = zl; (5.86)
19
-2)! T(z) = — . .8
D! Tlz) = o (5-87)
How do you write We can use these generalized factorials to define generalized factorial
z to the W power, powers, when z and w are arbitrary complex numbers:
when W is the
complex  conjugate 2
o w? wo_ =
b2 )l (5.88)
2™ Mz 4 w)
wo_
z - r(Z) ' (589)
The only proviso is that we must use appropriate limiting values when these
formulas give oco/00. (The formulas never give O/O, because factorials and
Gamma-function values are never zero.) A binomia coefficient can be written
b4 . . (!
= limlim ————— .
ow (mzw-w WH({=w)! (5-90)
| =g thg lower when z and w are any complex numbers whatever.
i_“def_ 'am\fl'it at Armed with generalized factorial tools, we can return to our goal of re-
I%Shaﬂltwr;)r/ '(z) ducing the identities derived earlier to their hypergeometric essences. The

is zero when w is binomial theorem (5.13) turns out to be neither more nor less than (5.77),
a negaive Integer. as we might expect. So the next most interesting identity to try is Vander-
monde's convolution (5.27):

()5 - (1) e

The kth term here is

T g
T (r-K)'k! (s-n+k)!(n-k)! '

ty

and we are no longer too shy to use generalized factorials in these expres-
sions. Whenever t, contains a factor like (o« + K)!, with a plus sign before
the k, we get (o + k+ 1)!/{aa +K)! =k +a+ 1 in theterm ratio ty,1/tx,
by (5.85); this contributes the parameter ‘o + 1' to the corresponding hyper-
geometric-as an upper parameter if ( x + k)! was in the numerator of ty,
but as a lower parameter otherwise. Similarly, a factor like (x — k)! leads to
(@ k 1/(« k)! = (—=1)/(k a); this contributes ‘-a to the opposite
set of parameters (reversing the roles of upper and lower), and negates the
hypergeometric argument. Factors like v!, which are independent of k, go
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into t, but disappear from the term ratio. Using such tricks we can predict
without further calculation that the term ratio of (5.27) is

tier k- k=m
e  k+Tk+s—m+1

times (—1)? = 1, and Vandermonde's convolution becomes

(Tst) F(s_—rn:;l]) - (ris)- (5.91)

We can use this equation to determine F( a, b; c; z) in general, when z = 1 and
when b is a negative integer.

Let's rewrite (5.91) in a form so that table lookup is easy when a new
sum needs to be evaluated. The result turns out to be

F(a,bm Mc—a—-b)lr(c) integer b <0
c T Tc-aT(c=bh)' or Re > Ra + NRb.

(5.92)

Vandermonde's convolution (5.27) covers only the case that one of the upper

parameters, say b, is a nonpositive integer; but Gauss proved that (5.92) is A few weeks ago, we
valid also when a, b, ¢ are complex numbers whose real parts satisfy Rc > gj;siﬂlgn!vha
Ra + Rb. In other cases, the infinite series F( “c'b 1) doesn’'t converge. When n

kindergarten.
b = —n, the identity can be written more conveniently with factorial powers  Now we’re studying

instead of Gamma functions: suff beyond his
Ph.D. thesis.
a, —m c—a)™ a—c)t ) Is this intimidating
F( ‘1) - | _l) = ( ) ) integer n > 0. (5.93) o wha?
C c? (—C)E

It turns out that all five of the identities in Table 169 are special cases of
Vandermonde's convolution; formula (s.93) covers them all, when proper at-
tention is paid to degenerate situations.

Notice that (5.82) is just the special case a = 1 of (5.93). Therefore we
don't really need to remember (5.82); and we don’t really need the identity
(5.9) that led us to (5.82), even though Table 174 said that it was memo-
rable. A computer program for formula manipulation, faced with the prob-
lem of evaluating }__ksn (’tk), could convert the sum to a hypergeometric and
plug into the general identity for Vandermonde's convolution.

Problem 1 in Section 5.2 asked for the value of

> (2)/G):

This problem is a natural for hypergeometrics, and after a bit of practice any
hypergeometer can read off the parameters immediately as F( 1, —m; —n; 1).
Hmmm,; that problem was yet another special takeoff on Vandermonde!
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The sum in Problem 2 and Problem 4 likewise yields F( 2,1 = n; 2 = m; 1).
(We need to replace k by k + 1 first.) And the “menacing” sum in Problem 6
turns out to be just F(n + 1, —n; 2; 1). Is there nothing more to sum, besides
disguised versions of Vandermonde's powerful convolution?

Well, yes, Problem 3 is a bit different. It deals with a specia case of the
general sum 3, (", *)z* considered in (5.74), and this leads to a closed-form
expression for

1+2[n/2], —n
F< o ’—z/4> .

We also proved something new in (5.55), when we looked at the coeffi-
cientsof (1 =z)"(1+z)":

—c—2n,- 2 n S (2n)! (c=1) )
F -1 = (-1n": 2 0.
( . ) (=1 n (orn DT integer n > 0
Kummer was a This is caled Kummer’s formula when it's generalized to complex numbers:
summer.
a, b (b/Z)' b/2
F ‘—1 = 2y g2
<1+b~a > pr (P9 (599

The summer of ‘3. (Ernst Kummer [187] proved this in 1836.)
It's interesting to compare these two formulas. Replacing ¢ by 1—2n— a,
we find that the results are consistent if and only if

o (2n)! . (b/2)! . x!
—] —_— —_— =
=5 N N Jm s

(5.95)

when n is a positive integer. Suppose, for example, that n = 3; then we
should have —6!/3! = lim,_, 3x!/(2x)!. We know that (—3)! and (—6)! are
both infinite; but we might choose to ignore that difficulty and to imagine
that (=3)!' = (=3)(—4)(=5)(—6)!, so that the two occurrences of (—6)! will
cancel. Such temptations must, however, be resisted, because they lead to
the wrong answer! The limit of x!/(2x)! as x — -3 is not (-3) (-4) (-5) but
rather —6!/3! = (—4)(—5)(—6), according to (5.95).

The right way to evauate the limit in (5.95) is to use equation (5.87),
which relates negative-argument factorials to positive-argument Gamma func-
tions. If we replace x by -n 4+ ¢ and let ¢ — 0O, two applications of (5.87)
give

(-n-e)! Tin+e) sin(2n + 2¢)m

(—2n = 2e)! T(2n + 2¢) sin(n + ¢)m
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Now sin( X +y ) =sinx cosy+ cosx siny; so thisratio of sinesis

cos 2nm sin 2em

cosnmsinem (=12 + o) |

by the methods of Chapter 9. Therefore, by (5.86), we have

o (m—et o T2n) o (2n=1)1 . (2n)t
i‘_‘.’ém— (=1 Tn) ~ 2= (n-—-1 — (=1) n! =’
as desired.

Let’s complete our survey by restating the other identities we've seen so
far in this chapter, clothing them in hypergeometric garb. The triple-binomial
sum in (5.29) can be written

: (1 —-a-2n,1-b-2n, -ZW ]>

ab
_ (2n)! (a+b+2n—-2)" )
= (-N" oy P \ integer n > 0.

When this one is generalized to complex numbers, it is called Dixon’s for-
mula:

a, b, c 1) _ (c/2)! (c —a)2(c—b)2
1 fca 1 +cd-b1) - T /! (5.96)
’ : (c—a—b)=
Ra+Rb<1 +Rc/2.

One of the most general formulas we' ve encountered is the triple-binomial
sum (5.28), which yields Saalschiitz’s identity:

a b, —m _ (c—a"(c=b)7
F(c, a+b—c—n+1 ]) T cM(c—a—b)" (5.97)

(@a=-c)® (b—c)™

integer n > 0.
(—cE(a+b—_cr’ o2

This formula gives the value at z= 1 of the general hypergeometric series
with three upper parameters and two lower parameters, provided that one
of the upper parameters is a nonpositive integer and that b; + b; = a; +

a;+ a3+ 1. (If the sum of the lower parameters exceeds the sum of the

upper parameters by 2 instead of by 1, the formula of exercise 25 can be used
to express F(a;, a3, as, by, by; 1) interms of two hypergeometrics that satisfy
Saalschiitz's identity.)

Our hard-won identity in Problem 8 of Section 5.2 reduces to

! F(XH, n+1, -n
1, x+2

14+x ’]) = (_])nxlxj:_l_‘



(Historical  note:
The grest rdevance
of  hypergeometric
saries to binomiad
coefficient  identities
wes firg pointed
out by George
Andrews in 1974
{9, section 5].)
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Sigh. This is just the special case ¢ = 1 of Saalschiitz's identity (5.97), SO we
could have saved a lot of work by going to hypergeometrics directly!
What about Problem 7?7 That extra-menacing sum gives us the formula

F(n+],m'n- 11 l‘]) m

im+1, im+1, 21/ n’

which is the first case we've seen with three lower parameters. So it looks
new. But it really isn't; the left-hand side can be replaced by

(n , m-n-1, -]
f(7, T }1) 1,
2m, 7M—3
using exercise 26, and Saalschiitz's identity wins again.

WEell, that's another deflating experience, but it's also another reason to
appreciate the power of hypergeometric methods.

The convolution identities in Table 202 do not have hypergeometric
equivalents, because their term ratios are rational functions of k only when
t is an integer. Equations (5.64) and (5.65) aren’t hypergeometric even when

t = 1. But we can take note of what (5.62) tells us when t has small integer
values:

%'r) %T"{"‘%, —-Nn, —M—s T+s+2n s+2n
F ‘1 = ;
T+1, —n—3s, —n—1Is+1 n n

1oy 2 ol pn_lg1

+3, 37+5, -1, -1 lzs,1 n ZS] 7 z‘ﬂ)
le cn—ler]l 1 _1ei2

T+1, —n—3s, “n—3s+73, ~N—35+3

(/)

The first of these formulas gives the result of Problem 7 again, when the
guantities (r, s,n) are replaced respectively by (1,2n + 1 = m, -1 = n).

Finally, the “unexpected” sum (5.20) gives us an unexpected hypergeo-
metric identity that turns out to be quite instructive. Let’s look at it in slow
motion. First we convert to an infinite sum,

Z-(m+k>2‘k:2” — (2m—k)2k:22m‘
k Z m—k
ksm k20

The term ratio from (2m — Kk)! 2%/m!(m = K)! is 2(k -~ m)/(k  2m), SO we
have a hypergeometric identity with z = 2

2m 1, —m
Fl " = 22m > .98
( ) ( Ly ‘2) 2°™ . integer m > 0. (5.98)
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But look at the lower parameter ‘—2m’. Negative integers are verboten, so
this identity is undefined!

It's high time to look a such limiting cases carefully, as promised earlier,
because degenerate hypergeometrics can often be evaluated by approaching
them from nearby nondegenerate points. We must be careful when we do this,
because different results can be obtained if we take limits in different ways.
For example, here are two limits that turn out to be quite different when one
of the upper parameters is increased by &:

T+e, =3 . +o(CTte)(—3) + (—1+e)(e)(-3)(-2)
!1_{%':( “2+e ’) :213%(1 —2+e)1T - T[=Zfe=T+e) 2T
+ (—1+e)(e)(1+e)( -3}(*2](*]])
(—2+e)(—T+e)(e) 3!
_ 3 1
=1-3+0+1 = 0;
imF( 0731 = dm (14 225 040
e\ 24 = el_lf(‘)( + =z +0+0)

= 1-—%+O+O = —%

Similarly, we have defined (7]) = 0 = lim,_, (Jje)  this is not the same
as lim._ (:}if:) = 1. The proper way to treat (5.98) as a limit is to redize
that the upper parameter -m is being used to make al terms of the series
Y iso ()2 zero for k > m; this means that we want to make the following

more precise statement:

2m\ .. 1, —m — 92m -
(m) 211% F (—2m—|—€’2) = 2°m integer m > 0. (5.99)
Each term of this limit is well defined, because the denominator factor (—zm)E
does not become zero until k. > 2m. Therefore this limit gives us exactly the
am (5200 we began with.

5.6 HYPERGEOMETRIC TRANSFORMATIONS

It should be clear by now that a database of known hypergeometric
closed forms is a useful tool for doing sums of binomia coefficients. We
simply convert any given sum into its canonical hypergeometric form, then
look it up in the table. If it's there, fine, we' ve got the answer. If not, we can
add it to the database if the sum turns out to be expressible in closed form.
We might also include entries in the table that say, “This sum does not have a
simple closed form in general.” For example, the sum 3, (1) corresponds
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to the hypergeometric

(") F ( 1, ’-1) integersn >m > 0 (5.100)

m n—m+1

this has a simple closed form only if m is near O, %n, or n.
But there’s more to the story, since hypergeometric functions also obey
identities of their own. This means that every closed form for hypergeometrics
The hypergeo- leads to additional closed forms and to additional entries in the database. For
metric  database example, the identities in exercises 25 and 26 tell us how to transform one
S:hkor:y\/?/legzznyb:see.’? hypergeometric into two others with similar but different parameters. These
can in turn be transformed again.
In 1793, J. F. Pfaff discovered a surprising reflection law,

1 ab| —z\ a,c—b
(]—z)“F( c ‘]—z) B F< c ‘Z>' (5101)

which is a transformation of another type. This is a forma identity in
power series, if the quantity (—z)*/(1 = z)**¢ is replaced by the infinite series
(=2)%(1+ (79 z+ (**$*1) 22 4+ . ) when the left-hand side is expanded (see
exercise 50). We can use this law to derive new formulas from the identities
we aready know, when z # 1.

For example, Kummer's formula (5.94) can be combined with the reflec-

tion law (5.101) if we choose the parameters so that both identities apply:

2 (Fomalz) = (5l

b/2)!
= %(b —a)¥2. (5.102)

We can now set a = -n and go back from this equation to a new identity in
binomial coefficients that we might need some day:

()< (14m)* 2% n\ /=1\* [n+k) //n+bik
LS e -2 &) (000

. (b/2)! (b4n)!

BT (b/2imy mMegern =0 (5103

For example, when n = 3 this identity says that

A 3 4.5 4.5.6
24+b) T4+ p)(5+Db) 84 +b)5+Db)6+b)
(b+3)(b+2)(b+1)

= (b+6)(b+4)(b+2)
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It's amost unbelievable, but true, for al b. (Except when a factor in the

denominator vanishes.)
This is fun; let's try again. Maybe we'll find a formula that will really

astonish our friends. What does Pfaft's reflection law tell us if we apply it to
the strange form (g.gg), where z = 27 In this case we set a = —m, b = 1,

and ¢ = —2m + €, obtaining

. -m, 1 . —m,—2m—-1+¢
_‘l ml F ’ ‘2 — 3
(=1) oo (—2m+e ) 21_rgF( —2m+e |2>

i (—m)k (=2m — 1+ e)Eg

=0 e (—2m +e)k k!
B m\ 2m 4+ 1)k
" (k) e Y

because none of the limiting terms is close to zero. This leads to another
miraculous formula,

2m+1 2
E ()it ot = /()
k€m
= 1/(_;1/2) , integer m > 0. (5.104)

When m = 3, for example, the sum is

84 16
1-7+2 14 = -2
*3 5’

and (7?) is indeed equal to —3.

When we looked at our binomial coefficient identities and converted them
to hypergeometric form, we overlooked (s.19) because it was a relation be-
tween two sums instead of a closed form. But now we can regard (5.19) as

an identity between hypergeometric series. If we differentiate it n times with
respect to y and then replace k by m — n = k, we get

m+4r n+k\ ook
Z -n - k)( n )X Y

k20

=2 <m o k) (n:k) (=)™ ™ e+ y)F

k=0

This yields the following hypergeometric transformation:

a -n _ la—¢)® a, -n integer
F( c ’Z> a (—C)E_F<1 -n+a-c ]_Z>’ nzQ (5-105)




How do you pro-
nounce 4 ?

(Dunno, but TRX
cdls it ‘vartheta’)
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Notice that when z = 1 this reduces to Vandermonde's convolution, (5.93).

Differentiation seems to be useful, if this example is any indication; we
also found it helpful in Chapter 2, when summing x + 2x% + ... + nx™. Let's
see what happens when a general hypergeometric series is differentiated with
respect to z:

EF a,...,Qn
dz bi,...,bn

k k
ay...a; z
Z) — § E1 im
= bk.. bk

k>1 bl (k_ ])'
_ aktl. L akil gk
S o bk
ar(a+1)%. .. amlam+1)k 2%
= f:—o b (by+1)%.. . b(by+1)kk!

a. .. a;+1,...
1_a' ( ! (5106)

b]...bn by+1, ...

, A1 .
, br+1 '
The parameters move out and shift up.
It's aso possible to use differentiation to tweak just one of the parameters
while holding the rest of them fixed. For this we use the operator

.4
dz '’

which acts on a function by differentiating it and then multiplying by z. This
operator gives

9 =

gp (@102 am _ af...ak -t kak ... dk zx
L Bl B e Bl B o
Theeorba SSBY. b (k—1)1 &5 b bRkl

which by itself isn't too useful. But if we multiply F by one of its upper
parameters, say a, and add 9F, we get

k ko ak zk
(ﬁ+a])F(a1‘ ;am Z) — Z( +(1—‘|)(1] il (]'TT\.Z ,
b, .., b = b']‘...b‘,‘lk!
_ Z a1+1 aElzk
bkk'
(aH—l ay, a,i)
z).

Only one parameter has been shifted.
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A similar trick works with lower parameters, but in this case things shift
down instead of up:

ar,...,am ) B Z(k-{-b]—l)a?...aﬁz“

(19+b1—1)F( z —
b1,...,bn = bk.. bk k!

_ Z (b1-1)3?;. . aEn_zk
k=0 (bl—‘”kb;...bhk!

Ay, ..oy AQm
1 .
(b )F<b1-l,b2,...,bn Z)

We can now combine al these operations and make a mathematica “pun”
by expressing the same quantity in two different ways. Namely, we have

©+ar)...(0+an)Fe =a|...amF(a]+1""'am+]|z),

bi,.... by

and
(B+by=1)...(4+by--F
_ _ _ ay, ..., Qm
= (b1=1)...(bn 1)F(b1_]’.m‘bn_]‘z),
where F=F(a,, ..., a,; by, ..., bn;z). And (5.106) tells us that the top line

is the derivative of the bottom line. Therefore the general hypergeometric
function F satisfies the differential equation

DB +by=-1]...84+b,~F=@ +al). .. d+ay)F, (5.107)

where D is the operator &,

This cries out for an example. Let’s find the differential equation satisfied
by the standard a-over-1 hypergeometric series F(z) = F(a,b; c; z). According
to (5.107), we have

D@ +c—1F = (34 a)(8+ b)F.

What does this mean in ordinary notation? Well, (4 + ¢ = I)F is zF/(z) +
(c = 1)F(z), and the derivative of this gives the |eft-hand side,

F@) + zF"(z) + (c = 1)F'(z) .

Ever hear the one
about the brothers
who named their
cattle ranch Focus,
because it's where
the SONS raise meat?



The function
Fzl= (1 —2)'
satisfies

9F = z(® = r)F.
This gives ancther
proof of the bino-
mial theorem.
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On the right-hand side we have

(94 a)(zF'(z)+bF(z)) = zf—z(zF’(Z)+bF(2))+ a(zF'(z) +bF(z))

= 2F'(2)+2*F"(2) +bzF'(z) + azF'(z) + abF(z).
Equating the two sides tells us that

z(1 —2)F"(z) + (c—z(a+ b+ 1))F'(z) —abF(z) = 0. (5.108)

This equation is equivaent to the factored form (5.107).

Conversely, we can go back from the differential equation to the power
series. Let's assume that F(z) = Zk;o 1, 2* is a power series satisfying (5.107).
A straightforward calculation shows that we must have

tit (k+a)...(k+an)
te = (k+b).. (k+b)k+1)"’

hence F(z) must be t; F(ay, ..., a,,; by,..., by:2z). We've proved that the
hypergeometric series (5.76) is the only formal power series that satisfies the
differential equation (5.107) and has the constant term 1.

It would be nice if hypergeometrics solved al the world's differential
equations, but they don’t quite. The right-hand side of (5.107) always expands
into a sum of terms of the form oy zZ*F*! (2), where Flk}(z) is the kth derivative
D*F(k): the left-hand side always expands into a sum of terms of the form
Biz® 'F¥)(z) with k > 0. So the differential equation (5.107) always takes
the special form
axoF(z) = 0.

Znil(ﬁn "Z(Xn)F(n)(Z) e F (B1 - ZO(])F’(Z)

Equation (5.108) illustrates this in the case n = 2. Conversely, we will prove
in exercise 6.13 that any differential equation of this form can be factored in
terms of the 4 operator, to give an equation like (5.107). So these are the dif-
ferential equations whose solutions are power series with rational term ratios.
Multiplying both sides of (5.107) by z dispenses with the D operator and
gives us an instructive all-4 form,
9D+ by 1...@+ by

DF=z(d+al) . D+ an)F. (5.109)

The first factor 4 = (84 1 = 1) on the left corresponds to the (k+ 1) in the term
ratio (5.81), which corresponds to the k! in the denominator of the kth term
in a general hypergeometric series. The other factors (4 + b; — 1) correspond
to the denominator factor (k+ b;), which corresponds to bjE in (5.76). On the
right, the z corresponds to z*, and (4 + q;) corresponds to a?‘.
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One use of this differential theory is to find and prove new transforma
tions. For example, we can readily verify that both of the hypergeometrics

2a, 2b
F<a+b+%(z) and F( +b+2‘4Z ))
satisfy the differential equation
z(1 =2)F'(z) + (a+b+])(1 —22)F'(z) —4abF(z) = 0;

hence Gauss's identity {116, equation 102]

2a, 2b
F ! =F 4z(
<a+b+% )Z) <a+b+2 ' 2] )) (5-110)
must be true. In particular, (Caution: We can't

ue (5110) sfdy
(ESABRIRAND
115} = ] 5.1 unless Sdes
at+b+3 12 \a+b+3 ’ ae polynomids
IE exarcise 53)

whenever bath infinte sums  convearge
Every new identity for hypergeometrics has consequences for binomial
coefficients, and this one is no exception. Let’'s consider the sum

m—k)(m+n+1> (—1>k .
—~ ) , integersm>n >0.

The terms are nonzero for 0 < k £ m ~ n, and with a little delicate limit-
taking as before we can express this sum as the hypergeometric

lim m F n-m, ~n—m—1+o¢ell .
e-0 N -m+6 2

The value of « doesn’t affect the limit, since the nonpositive upper parameter
n = m cuts the sum off early. We can set « = 2, so that (5.111) applies.
The limit can now be evaluated because the right-hand side is a specia case
of (5.92). The result can be expressed in simplified form,

gn(m;k>(m+;1+l> (:21_)
_ ((m+n)/z

n

integers

n—m 1
>2 Im+mn is even|, men>0 (5.112)
as shown in exercise 54. For example, when m = 5 and n = 2 we get
RO~ @G/2+ @)/ - ()(E)/8=10 =24 + 21 - 7 =Quwhenm=4

and n = 2, both sides give 3.
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We can aso find cases where (5.110) gives binomial sumswhen z = -1,
but these are realy weird. If we set a = % - 5Fand b= —n, we get the
monstrous formula

These hypergeometrics are nondegenerate polynomias when n # 2 (mod 3);
and the parameters have been cleverly chosen so that the left-hand side can
be evaluated by (5.94). We are therefore led to a truly mind-boggling resuilt,

@0/ (0)

4. 2
— (2“)/(3“n 3) , integer n>0, n#2 (mod 3). (5.113)

n

This is the most startling identity in binomial coefficients that we've seen.
Small cases of the identity aren't even easy to check by hand. (It turns out

The only use of that both sides do give % when n = 3.) But the identity is completely useless,
(5.113) istodemon-  of coyrse; surely it will never arise in a practical problem.

g]f' %iret(;etﬂ;xﬁ;:?gses So that's our hype for hypergeometrics. We've seen that hypergeometric
identities. series provide a high-level way to understand what's going on in binomial

coefficient sums. A great deal of additional information can be found in the
classic book by Wilfred N. Bailey [15) and its sequel by Lucy Joan Slater [269].

5.7 PARTIAL HYPERGEOMETRIC SUMS

Most of the sums we've evaluated in this chapter range over al in-
dices k > 0, but sometimes we' ve been able to find a closed form that works
over agenera range 0 < k < m. For example, we know from (5.16) that

n _ o qyma(n—1 .
Z (k)(—l)k = (~1) (m—])' integer m. (5.114)

k<m

The theory in Chapter 2 gives us a nice way to understand formulas like this:
If f(k) = Ag(k) = g(k + 1) — g(k), then we've agreed to write }_ f(k) 6k =
g(k) + C, and

Y oisk = gl 2= o) - o).

Furthermore, when a and b are integers with a < b, we have

Yotk = Y 1) = g(b)-g(a).

agsk<b
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Therefore identity (5.114) corresponds to the indefinite summation formula

Z(z)(_nkak = (—1)% ‘(k_:>+c

and to the difference formula

() = e (23),

It's easy to start with a function g(k) and to compute Ag(k) = f(k), a
function whose sum will be g(k) + C. But it's much harder to start with f(k)
and to figure out its indefinite sum ¥ f(k) 8k = g(k) + C; this function g
might not have a simple form. For example, there is apparently no simple
form for 3 (i) 8k; otherwise we could evaluate sums like 3, .. 3 (7) , about
which we're dudess

In 1977, R. W. Gosper [124] discovered a beautiful way to decide whether
a given function is indefinitely summable with respect to a genera class of
functions called hypergeometric terms. Let us write

ar, .o ‘B2
F oy
for the kth term of the hypergeometric series F( d,. . ., a,; by, ..., by; 2. We
will regard F( ay,...,a; by, ..., by;z)x asafunction of k, not of z. Gosper’s
decision procedure alows us to decide if there exist parameters ¢, Ay, . . ., A,
B1,.... By, and Z such that
ai, .. Al Am
F =
> <b1,... o z)kék cF(mal By z)k+c, (5.116)
givend,...,a, bi,..., b, and z. We will say that a given function
Flay,...,am;by,..., by;z)k is summable in hypergeometric terms if such
constants ¢ Al, ..., Am,B1,. .., By, Z exish
Let's write t(k) and T(k) as abbreviations for F(a;, . . ., a,,; by, .., bn; 2k
adF(Aq,...,Am;Br, ..., Bn; Z)k, respectively. The first step in Gosper's
decision procedure is to express the term ratio
tk+1) (k+a))...(k+an)z
t(k) ~ (k+by)...(k+by)k+1)

in the specia form

tk+ 1)  plk+ 1) q(k)
0~ Pk rk+1)’ (5:127)




nomials is andogous

to divighility of
integers. For exam-
ple, (k + a)\q(k)
means that the quo-
tient g(k)/(k +«]
is a polynomial.

It's well known that
(k+ a)\q(k)

it and only if
q(—o) = 0)

(Exercise 55 ex-

plains why we might

want to make this

magic

subdtitution.)
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where p, q, and r are polynomials subject to the following condition:

(k + «)\a(k) and (k + B)\r(k)
= a fis not a positive integer. (5.118)

This condition is easy to achieve: We start by provisionally setting p(k) =1,
qk)=(k+ay)...(k+an)z,and r(k) = (k+b; —1)...(k+ b, — 1)k; then
we check if (5.118) is violated. If q and r have factors (k + &) and (k + f)
wherea — =N > 0, we divide them out of q and r and replace p(k) by

pk)(k+a—12L = pk)(k+a—T)(k+a—2)...(k+p+1).

Thenew p, g, andr still satisfy (5.117), and we can repeat this process until
(5.118) holds.
Our goal is to find a hypergeometric term T(K) such that

t(k) = cT(k+ 1) —cT(k) (5.119)
for some constant c. Let’'s write

cT{k) = ————, (5.120)
where s(k) is a secret function that must be discovered somehow. Plugging
(5.120) into (5.117) and (5.119) gives us the equation that s(k) must satisfy:

pl) = qsk+s 1 —r(k)s(k) (5.121)

If we can find s(k) satisfying this recurrence, we've found Y t(k) k.

We're assuming that T(k+ 1 )/T(K) is a rational function of k. Therefore,
by (5.120) and (5.119), r(k)s(k)/p(k) = T(k)/(T(k + 1) -T(K)) is a rationa
function of k, and s(k) itself must be a quotient of polynomials:

s(k) = f(k)/g(k). (5122)

But in fact we can prove that s(k) is itself a polynomial. For if g(k) # 1,
and if f(k) and g(k) have no common factors, let N be the largest integer
such that (k 4+ B)and (k + B + N = 1) both occur as factors of g(k) for some
complex number (3. The value of N is positive, since N = 1 always satisfies
this condition. Equation (5.121) can be rewritten

p(k)g(k+1)g(k) = q(k)f(k+1)g(k) —r(k)g(k+1)f(k),
and if wesetk==Bandk=—f N we get

1(-B)g(1-p)f(=B) = 0 = q(-B-N){(1-p-N)g(-p~-N)
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Now f(—B) # 0 and f(1 — 3-N) # O, because f and g have no common
roots. Also g{1 — ) #£ 0 and g(—R — N) # O, because g(k) would otherwise
contain the factor (k+ 3 = 1) or (k+ B +N), contrary to the maximality of N.
Therefore

=B} = q(-p-N) = o.

But this contradicts condition (5.118). Hence s(k) must be a polynomial.
The remaining task is to decide whether there exists a polynomia s(k)

satisfying (5.121), when p(k), q(k), and r(k) are given polynomials. It's easy

to decide this for polynomials of any particular degree d, since we can write

SK) = agkd 4 og KT g og # 0

for unknown coefficients (aq, . . ., o) and plug this expression into the defin-
ing equation. The polynomial s(k) will satisfy the recurrence if and only if
the a's satisfy certain linear equations, because each power of k must have
the same coefficient on both sides of (5.121).

But how can we determine the degree of s? It turns out that there
actually are at most two possibilities. We can rewrite (5.121) in the form

2p(k) = Qk)(s(k+ 1) +s(k)) + R(k)(s(k+ 1) -s(K)), (5.123)
where Q(k) = g(k) -r(k) and R(k) = q(k) +r(k).

If s(k) has degree d, then the sum s(k + 1) + s(k) = 2a4kd + . .. aso has
degree d, while the difference s(k + 1) — s(k) = As(k) = dagkd~"+ ... has
degree d — 1. (The zero polynomial can be assumed to have degree -1.) Let's
write deg(p) for the degree of a polynomial p. If deg(Q) > deg(R), then
the degree of the right-hand side of (5.128) is deg(Q) + d, so we must have
d = deg(p) deg(Q). On the other hand if deg(Q) < deg(R) = d', we can
write Qk) = pkd'~" +. . . and R(k) = yk¢' +- . . where y # 0; the right-hand
side of (5.123) has the form

(2Botg + yd g )k4H4 T+ ...

Ergo, two possibilities: Either 28 + yd # 0, and d = deg(p) ~ deg(R) + 1;
or 28+ yd =0, and d > deg(p) -~ deg(R) + 1. The second case needs to be
examined only if —2B/v is an integer d greater than deg(p) — deg(R) + 1.

Thus we have enough facts to decide if a suitable polynomial s(k) exists.
If so, we can plug it into (5.120) and we have our T. If not, we've proved that
> t(k) 8k is not a hypergeometric term.
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Time for an example. Let's try the partial sum (5.114); Gosper’'s method
should be able to deduce the value of

Yy (2)(—1)‘<5k

for any fixed n. Ignoring factors that don’t involve k, we want the sum of

1,—m
t(k):F< ] '1)k.

The first step is to put the term ratio into the required form (5.117); we have

tk+1)  (k—m)  plk+1q(k)
t(k) TN = plk)rk+1)

so we simply take p(k) = 1, qk) = k n, and r(k) = k. This choice of
p, g, and T satisfies (5.118), unless n is a negative integer; let's suppose it

isn't. According to (5.123), we should consider the polynomias Q(k) = -n
and R(k) = 2k n. Since R has larger degree than Q, we need to look at
two cases. Either d = deg(p) — deg(R) + 1, which is 0; or d = —2§3 /v where
B =-nand vy = 2, hence d = n. The first case is nicer, so let's try it first:

Equation (5.121) is

1= (k—nja —kap
and so we choose oy = -I/n. This satisfies the reguired conditions and gives

r{k]) s(k) t(k)

cT(k) = o

Il
)
=
=
=

|
TN
=~ >
L5
[y
= R
T

which is the answer we were hoping to confirm.

If we apply the same method to find the indefinite sum 5 (E) bk, without
the (-1 )*, everything will be aimost the same except that q(k) will be n  k;
hence Q(k) = n 2k will have greater degree than R(k) = n, and we will
conclude that d has the impossible value deg(p) = deg(Q) = -1. Therefore
the function (}) is not summable in hypergeometric terms.

However, once we have eliminated the impossible, whatever remains—
however improbable-must be the truth (according to S. Holmes [70]). When
we defined p, g, and r we decided to ignore the possibility that n might be a
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negative integer. What if it is? Let's set n = -N, where N is positive. Then
the term ratio for ¥ (}) 8k is

tlk+1) _ -(k+N)  pk+ 1) q(k)
th) = (k+1) = plk) rlk+ 1)

and it should be represented by p(k) = (k+ )N, qk) = -1, r(k) = 1.
Gosper’s method now tells us to look for a polynomial s(k) of degreed = N -1,
maybe there's hope after all. For example, when N = 2 we want to solve

k1= —((k+ 1o + ap) = (kaa+ a).

Equating coefficients of k and 1 tells us that

1=—0 = oy, 1 = —o—xp~— &,
hence s(k) = —3k ~ 1 is a solution, and

T - (k=) (O oy 2kt

- k+1 - 4
Can this be the desired sum? Yes, it checks out: “Excellent,
Holmes!”
2k +3 2k +1 -2 “Elementary, my
(__1)k_4__(_])k ]—4— = (—])k(k+]) = (k ) dear Wa tsop."

We can write the summation formula in another form,

-2 2k+1m
Z-(k)_(_”k] 4 \o

k<m
_1ym-1 _(_1\ym
_ 1; ( L (21) )

This representation conceals the fact that ( kz) is summable in hypergeometric
terms, because [m/2] is not a hypergeometric term.

A catalog of summable hypergeometric terms makes a useful addition
to the database of hypergeometric sums mentioned earlier in this chapter.
Let's try to compile a list of the sums-in-hypergeometric-terms that we know.
The geometric series Y z* 8k is a very special case, which can be written
S 8k =(z—1)"2"+Cor

1,1 1 1,1
F k = ’ C .
E ( ! 7.)k6 F( 1 z)k+ . (5.124)

z—1
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We aso computed ¥~ kz* 8k in Chapter 2. This summand is zero when
k = 0, so we get a more suitable hypergeometric term by considering the sum

Y (k +1)z* 8k indead. The appropriate formula turns out to be
2,1 - 1+1/(1—2),1
ZF( 1 Z>k5k = —(1_—2)2}:( ]/(]—Z) \Zk (5125)

in hypergeometric notation.
There's also the formula 3~ (¥) 5k = (¥ ,), equation (s.10); we write it
T () sk = (*t"17), to avoid division by zero, and get
n+2,1 _ 1 n+2,1
ZF( ; [1)k5k = n—HF( ] mk,n;é-l.( 5.126)
Identity (5.9) turns out to be equivalent to this, when we express it hyperge-

ometrically.
In general if we have a summation formula of the form

A])....AM)

a],....am)1 ; _ ]
ZF( by, |'Z)k6k_ CF( By, ... ,Bx ‘Z>k’

b1, .. ..

(5.127)

then we aso have
a]y----am)1 _ A],"sAMy]
ZF( by,....by 'Z)k+16k - CF( By, ..., Bn ‘Z k+1'
for any integer 1. There's a general formula for shifting the index by L:

(a],..‘,am > al. .. &2 (a1+l,,,,,am+l,l )
F z = f}: Zz
b bl kst bl oty \bitL . Bt LT

Hence any given identity (5.127) has an infinite number of shifted forms:

ar+l,...,ap+1,1 ’Z>k 5k

F
) ( bi+l, . ... byl

bl.bL ALLLAL AL AntL
=c % ! TM F( 1+ mt L) . (5.128)
aj...4Bj... Bl Bi+l, ... Bnt+l 1k
There's usudly a far amount of cancellation among the as, A's, b's, and
B’s here. For example, if we apply this shift formula to (5.126), we get the

general identity
n+1+2,1 1+1 n+1+42,1
k = —— ’
ZF( 1+2 !])ké n+1 F( 141 ‘1)1(’ (5-129)
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vaid for dl n # -1. The shifted version of (5.125) is

1+2,1
ZF( 1+1 Z)kék

-1 L+ 1/(1—2) F(l+1+1/(1—z)‘1’>
T M-z 141 +1/(1—2z) 1%

(5.130)

With a bit of patience, we can compute a few more indefinite summation

identities that are potentially useful:

a, 24+(1—a)z/(1-2), R a1 .
ZF( 1+(1—a)z/(1-2) 2 ) - Q'ZTTF< 1 Z)k, (5-131)
a b, T+(c—ab)/(c—a—b+1),
ZF( c+1, (c—ab)/(c—a—b+1),2 l )

= = F(“‘b]1>k; (5-132)

ab —c c

ZF(c+1,a,ak:-)b]—c+l 1>k6k
- ((Cc)(~f(:)+%]) (C,C:—E’;)]—c]]>k' (5-133)

Exercises

Warmups

1  Whatis 1 14 ? Why is this number easy to compute, for a person who
krons  binomid  ocodffidents?

2 For which value(s) of k is (‘k‘) a maximum, when n is a given positive
integer? Prove your answer.

3 Prove the hexagon property, (i) (1) (") = ("c") (&3) ()-

4 Evauae (3, ) by negating (actually un-negating) its upper index.

5 Let p be prime. Show that (?) mod p =0 for 0 <k < p. What does this
imply about the binomial coefficients (°,')?

6 Fix up the text's derivation in Problem 6, Section 5.2, by correctly ap-
plying symmetry.

7 Is 634 true d0 when k < O?

Acase of
mistaken  identity.



(Here t and T
aren't  necessar-
ily related as in

(5-119).)
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8 FEvduae ¥, (})(—=D*(1 -k/n)*. What is the approximate value of this

sum, when n is very large? Hint: This sum is A™ £ (0) for some function f.
9  Show that the generalized exponentials of (5.58) obey the law
&lz) = &tz if t#£0,

where &(z) is an abbreviation for &;(z).
10 Show that —2(In(1 —z) + z)/z? is a hypergeometric function.
11 Express the two functions

. 23 25 Z7
sinz = z— g+ o+
1.23
acsinz = i+ 73+ 145+ 2357 "

in terms of hypergeometric series.

12 Which of the following functions of k is a “hypergeometric term,” in the
sense of (5.115)? Explain why or why not.
a nk
b k"
¢ (k! +(k+ 1)1)/2.
d Hithatis $+3+-..+1.
e t(K)T(n Kk)/T(n), whentand T are hypergeometric terms.
f (t(k) + T(k))/2, when t and T are hypergeometric terms.
g (a(k) + bt(k+l) + ct(k+2))/(a + bt(1) + ct(2)), when t is a
hypergeometric term.

Basics

13 Find relations between the superfactoria function P, = J];_, k! of ex-
ercise 4.55, the hyperfactoria function Q. = [];_, k¥, and the product

Rn = HE:O (E)
14  Prove identity (5.25) by negating the upper index in Vandermonde’s con-
volution (5.22). Then show that another negation yields (5.26).

15 What is 5, (M)} (—1)%? Hint: See (5.29).
16 Evauate the sum

() (T (e

when a, b, ¢ are nonnegative integers.

17 Find a simple relation between (*"'/?)and (*",,/?).

n
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18 Find an aternative form analogous to (5.35) for the product
(r) (r— 1/3) (r—2/3>
k k k '
19 Show that the generalized binomials of (5.58) obey the law

Bi(z) = By ((—2z)7".

20 Define a “generalized bloopergeometric series” by the formula

dQy,...,0m
G
(b],bn

Z ak. . ok K

X _ ] ey m

Z) - bE. bR k]
k20 1-.-0n .

using falling powers instead of the rising ones in (5.76). Explain how G is
related to F.

21 Show that Euler's definition of factorias is consistent with the ordinary
definition, by showing that the limit in (5.83) is 1/ (M-=1...(1) when
z = m is a positive integer.

22 Use (5.83) to prove the factorial duplication formula: By the way,

(-3 = VR

W (x = 3= @01 (=12,

23 What isthe value of F(—n, 1;:1)?

24 Find 3, (%)) (™:¥)4* by using hypergeometric series.

2k
25 Show that
a]) 0-27"‘)(1111
ay-—by) F z
(a1 =) (b1+1,bz,....bn )
ai+lay.... 4 ) (a1,az,...,am )
= oF ' z) - F z).
a (b1+1,b2,....bn "\ by, by, ..., by
Find a similar relation between the hypergeometrics F( a1, az, a3 - - -, a;
by,...,bn;z), Flar+1 aza3....amby,..., bns2z)and Flag,az + 1,
a3...,a,; by, .., by;2).

26 Express the function G(z) in the formula

ayy . ... Qn _
SUSRRNCRESE

as a multiple of a hypergeometric series.
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27 Prove that

1
F( a;,al-i-lz,... a,,am+2] (2m- nlz)2>
by, bi+3, ... bn)bn+2vz
1 2ai,..., 2a1,...,2am ))
L - —z) ).
2 2b1,...‘ 2by,...,2b,

28 Prove Euler’'s identity

F(a‘b‘z> = (1 —z)*°°F (c-—a, C_b\z>
c c

by applying Pfaft’s reflection law (5.101) twice.
29 Show that confluent hypergeometrics satisfy

f(5l=) = P (75%1):

30 What hypergeometric series F satisfies zF/(z) + F(z) = 1/(1 — 2)?

31 Show that if f(k) is any function summable in hypergeometric terms,
then fitself is a multiple of a hypergeometric term. In other words, if

Y f(k) 8k = cF(Aq,...,Am;Bi,..., Bn; Z)k + C, then there exist con-
stantsay, ..., a, b1,..., by, and z such that f(k) is a constant times
F(ay,...,a; by,..., bnyz)k.

32 Find ¥ k? 5k by Gosper’s method.
33 Use Gosper’s method to find ¥~ 8k/(k? = 1).

34 Show that a partial hypergeometric sum can always be represented as a
limit of ordinary hypergeometrics:

aj, ..., G . —c,an--.,am’
= lim F ,
ZF(b1,...,bn Z)k e (E—C,b1,...,bn Z)

k<ce
when c is a nonnegative integer. Use thisideato evaluate }, . (i) (-1)*.

Homework exercises

35 The notation }_ ., (+)2*™™ is ambiguous without context. Evaluate it

a asasumonk;
b asasumonn.

36 Let pk be the largest power of the prime p that divides (™), when m
and n are nonnegative integers. Prove that k is the number of carries
that occur when m is added to n in the radix p number system. Hint:
Exercise 4.24 helps here.
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37

38

39

40

41
42

43

44

45
46

Show that an analog of the binomia theorem holds for factorial powers.
That is, prove the identities

(x+y) = Z(E)xky“—k,
k

7 ny k, nk

(x+y)" = Z(k)x vk,
k

for all nonnegative integers n.

Show that all nonnegative integers n can be represented uniquely in the
formn = ($)+(5)+(S)here a, b, and ¢ are integers with 0 L a < b <c.
(Thisis called the binomial number system.)

Show that if xy = ax + by then x"y™= 31 (** 1% (a"b*kxk +

n-1
a™ *b™yk) for dl n > 0. Find a similar formula for the more general

product x™y™.
Find a closed form for
m n .
; —j+rk+s
_1y+! T ) . S
;:]( ) (j 1;11 m_j ) integers m,n > 0.

Evaluate Y, (1)k!/(n + 1 + K)! when n is a nonnegative integer.

Find the indefinite sum Y~ ((-1)*/(})) 6x, and use it to compute the sum
Y r_o(—=1¥/(}) in closed form.

Prove the triple-binomia identity (5.28). Hint: First replace (]:;‘:1) by
T k
Zi (m+n—j) (])

Use identity (5.32) to find closed forms for the double sums
e (PO -
o VASVANS m -]
(66 G/ ()

{50 i/ \i/\kJ\k j+k )’

givenintegersm >a>0and n>b > 0.
Find a closed form for 3~ . (3)47%.

Evaluate the following sum in closed form, when n is a positive integer:

2k—1\ (4n—2k -1 (—1)%!
Z( k )( n—k )(zk—1)(4n—2k—1)

k

Hint: Generating functions win again.



47

4

oo

49

50

51

52

53

54
55

56
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The sum ¥, ("¢%) ("™ ™ %) is a polynomial in  and s. Show that it
doesn’t depend on s.

The identity 3, . ("1¥)27% = 2" can be combined with 3~ ("7¥)z* =

1/(1 )™ to yield Y ion (“::")2*k =2". What is the hypergeometric
form of the latter identity?

Use the hypergeometric method to evaluate

@0

Prove Pfaff’s reflection law (5.101) by comparing the coefficients of z" on
both sides of the equation.

The derivation of (5.104) shows that
limeo M, 2m =1 + ¢ 2m + ¢, 2 =1/ (1/3).

In this exercise we will see that dlightly different limiting processes lead

to distinctly different answers for the degenerate hypergeometric series

FC —m,-2m ~ 1; -2m; 2).

a Show that lim._,y F(-m + ¢, -2m = 1, -2m + 2¢; 2) = 0, by using
Pfaff’s reflection law to prove the identity F(a,2m 1,23 2) =0
for al integers m > 0.

e

b What is lime_,, F-m + ¢, -2m ~ 1, -2m + ¢; 2)?
Prove that if N is a nonnegative integer,

N < —N
bN-..bNF Cl], vamv ‘
TP ( br,...,by |F

= 1-b1—N,... 1=b,—N =N| (=1)™*"

_ N N N 1 3 L] n )

< T a2 Elia
8% am(-7) ( 1—a;-N, ..., 1—ap=N Z

If we put b = —% and z = 1 in Gauss's identity (s5.110), the left side

reduces to -1 while the right side is +1. Why doesn’t this prove that

-1 =417

Explain how the right-hand side of (5.112) was obtained.

If the hypergeometric terms t(k) = F(a;, .. ., &,; by, .., , ba; z)x and
T(k) = F(A1,...,AM;By,...,Bn; Z)y satisty t(k) = c(T(k+ 1) -T(k)
foral k >0, showthat z=Zandm —n=M = N.

Find a genera formula for 3 (13) 5k using Gosper’s method. Show that
(=11 | XL || 52| is also a solution.



236 BINOMIAL COEFFICIENTS

57 Use Gosper’s method to find a constant § such that

5 (:) 2% (k + 0) 5k

is summable in hypergeometric terms.
58 If mand n are integers with O < m < n, let
k 1
T = e
mn Z (m) n—k
0<k<n

Find a relation between Ty, n and T,,_1 n-1, then solve your recurrence
by applying a summation factor.

Exam problems

59 Find a closed form for

2 (Llog: kJ)

when m and n are positive integers.

60 Use Stirling's approximation (4.23) to estimate (™™) when m and n are
both large. What does your formula reduce to when m = n?

61 Provethat when p is prime, we have

() = () (Emir) wen

[m/p)) \m mod p

for al nonnegative integers m and n.

W

62 Assuming that p is prime and that m and n are positive integers, deter-
mine the value of (:1';) mod p2. Hint: You may wish to use the following
generaization of Vandermonde's convolution:

Z (ﬁ)(fz) (Tm> B (T1+’r2+~'+Tm>
Ky +ky+otkp =n ki) Nk Km n
63 Find a closed form for
n
k[ ntk
2 =4 ( e )
k=0

given an integer n > 0.



64 Evaluate ) (Tkl)/[kzil , given an integer n > 0.

k=0
65 Prove that

) (n;]>n‘k(k-|—1)! = n.

66 Evauate “Harry’s double sum,’

Z ( - )(])l integer m > 0
Gz V- Vi) \m) 7 >0

as a function of m. (The sum is over both j and k.)
67 Find a closed form for
n k
Z ((2)> <2n k) : integer n > 0.
2 n
k=0
68 Find a closed form for
ny . .
)y (k) min(k,n—k),  integer n > 0.
k

69 Find a closed form for

min ’)
Kp ok 20 ,; (2

Ky 4tk =n
as a function of m and n.

70 Find a closed form for

; (T]:) <2]l<) (:21>k , integer n > 0.

71 Let

n+k
S, =
" Z(m+2k)ak‘

k>0
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where m and n are nonnegative integers, and let A(z) = 3, ., axz* be

the generating function for the sequence (ag, d, a3, . . . ).

a  Expressthe generating function S(z) =3 ., Spz" in terms of A(2).
b Use this technique to solve Problem 7 in Section 5.2.
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72 Prove that, if m, n, and k are integers and n > O,

(m/n

. )nz"‘v“‘) is an integer,

where v(k) is the number of I's in the binary representation of k.
73 Use the repertoire method to solve the recurrence

X() = a, X-I = ﬁ,
Xn= (Mm—1)(Xnor + X 2), forn > 1

Hint: Both n! and n; satisfy this recurrence.

74 This problem concerns a deviant version of Pascal’s triangle in which the
sides consist of the numbers1, 2, 3, 4, . . . instead of al I's, although the

interior numbers still satisfy the addition formula:
i
2 2 Lo
343 T
4 7 7 4

S s
@ lo 17 lp o

1

If (7)) denotes the kth number in row m, for 1 <k < n, we have

1
the quantity (1)) in closed form.

75 Find a relation between the functions

saln) = 3 (;L)
S1in) . %— (31:} 1) ’
San) . ; (31:} 2)

and the quantities [2/3| and [2"/3].
76 Solve the following recurrence for n, k > 0

Qno = 1, Qox = [k=0];

Qnx Qn-1x + Qnorxr + (2) , forn, k > 0.

(M) =(@)=nand ()= )+ ((32)) for 1 < k < n. Express
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77 What is the value of

kj+’| « ?
I <k> if m > 17

0€k) o RS I<i<m )

78 Assuming that m is a positive integer, find a closed form for

2m?
Z( kmodm )
(2k+ 1) mod (2m + 1)/

k=0
79 a Whatisthe greatest common divisor of (2]“),(23“), oo (GE) 7 Hint:
Consider the sum of these n numbers.
b Show that the least common multiple of (), (7). ..., (I)is equal

toL(n+ 1)/(n + 1), where L(n) = lem(1,2,... ,n).
80 Prove that (}) < (en/k)* for al integers k,n > 0.

8l IfO<f<land0 <x < 1,andif 1, m, n are nonnegative integers with
m < n, prove the inequality

_1yn—m-—1 l m+ 6 koS
(1) ;@(Hk)x 0.

Hint: Consider taking the derivative with respect to x.
Bonus problems

82 Prove that Pascal’s triangle has an even more surprising hexagon prop-
erty than the one cited in the text:

ng((E:;)v (kil)) (“Z])) = ng((nil)v (:Ll)» (k:)) )

if 0 <k < n. For example, gcd(56,36,210) = gcd(28,120,126) = 2

83 Prove the amazing identity (5.32) by first showing that it's true whenever
the right-hand side is zero.

84 Show that the second pair of convolution formulas, (5.61), follows from
the first pair, (5.60). Hint: Differentiate with respect to z.

85 Prove that

i(_])m k?+kg+~-+kfn+2“>
m=] T<ki<ky <<k &n n
n
= (-1)"nP = 2 .
on

(The left sideisa sum of 2™ = 1 terms) Hint: Much more is true
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86 Letal, ..., a, benonnegative integers, and let C(ay,. . ., a,) be the
coefficient of the constant term z§ . . . 2% when the n(n = 1) factors

.-2)

1€i,j<n
i#]
are fully expanded into positive and negative powers of the complex vari-
eb|eSz1,.. < .
a  Provethat C(ay, . .., a) equas the left-hand side of (5.31).
b Prove that if z), . ., z; are distinct complex numbers, then the
polynomid
s z z
— -4
f(z) = Z 1‘ —
k=1 1s_1§n

is identically equa to 1.
¢ Multiply the original product of n(n — 1) factors by f (0) and deduce
that C(aj,az,...,a,) isequato

Clar —1,az,...,a,) + Claj,a; —1,...,a,)
oo+ Clay,az,...,a0—1).
(This recurrence defines multinomial coefficients, soC(a;, . . ., &)

must equal the right-hand side of (5.31).)
87 Let m be a positive integer and let { = e™/™, Show that

n—mk\ ..
25
nB_m(Zm)nH
“ @ + M)B nz") -m
(CZW231+1/m(62j+]7~)1/m)H]
0<j<m (m+ ])BHl/m(CZH]Z)_] 1

(This reduces to (5.74) in the special case m =1.)
88 Prove that the coefficients sy in (5.47) are equal to

(_1)kJ:o eft(] _ e*—t)k~l %

»

for al k > 1; hence |sy| < 1/(k — 1).
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89 Prove that (5.19) has an infinite counterpart,

m+r me - _ .
y ( ’ )xky Loy (k) (—x)*(x+y)™ ¥, integer m,
k>m k>m

if Ixl < Jyland x| < |x + y|. Differentiate this identity n times with
respect to y and express it in terms of hypergeometrics; what relation do
you get?

90 Problem 1 in Section 52 considers }_,., (7) /(;) when v and s are integers
with s > r > 0. What is the value of this sum if r and s aren’t integers?

91 Prove Whipple’s identity,

F(%a, %a+%, I-a-b-c‘ —4z )

1+a—b, 1+a-c (1—2)2

a, b, c
— 1 _ aF ¥ ’
( z) (1+a—b,1+a—c‘z>’

by showing that both sides satisfy the same differential equation.

92 Prove Clausen's product identities
a, b 2a, a+b, 2b
F ) 2 — F ) ) ’ .
<a+b+% ‘ Z) (2a+2b, a+b+1 Z) '

] 1 1 1
7ta, ztb i—a 7—b
F 4 ' 4 4 ' 4
( 1 +atb Z) F( 1—a—b |Z>
1 ]
= F<7’ $+a-b, 3-a+b z).

1+a+b, |-a-b

What identities result when the coefficients of z™ on both sides of these
formulas are equated?

93 Show that the indefinite sum

k—1 k
Z(H(f(j] + a)/Hf(j)) 8k
j=1 j=1
has a (fairly) ssimple form, given any function f and any constant a.
94 Show that if w = ™3 we have

n 1+2m 4n :
im) @ =lnnon) integer n = 0.
k+l+m=3n s
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Research problems

95 Let q(n) be the smallest odd prime factor of the middle binomial co-
efficient ( "). According to exercise 36, the odd primes p that do not
divide (2“) are those for which al digits in n's radix p representation are
(p ~ 1)/2 or less. Computer experiments have shown that q(n) < 11 for
adl n < 1019000 except that q(3160) = 13.

a Isq(n) <11 for all n > 31607
b Isg(n) = 11 for infinitely many n?
A reward of $(3) (3) (3) is offered for a solution to either (a) or (b).

96 Is( ™) divisible by the square of a prime, for al n > 47

97 For what values of nis (3") = (-1)" (mod (2n + 1))?

n



Special Numbers

SOME SEQUENCES of numbers arise so often in mathematics that we rec-
ognize them instantly and give them special names. For example, everybody
who learns arithmetic knows the sequence of square numbers (1,4,9,16, .. ).
In Chapter 1 we encountered the triangular numbers (1,3,6,10, ... ); in Chap-
ter 4 we studied the prime numbers (2,3,5,7,.. .}); in Chapter 5 we looked
briefly at the Catalan numbers (1,2,5,14, ... ).

In the present chapter we'll get to know a few other important sequences.
First on our agenda will be the Stirling numbers {}} and [}], and the Eulerian
numbers (’Q}, these form triangular patterns of coefficients analogous to the
binomial coefficients (}) in Pascal’s triangle. Then we'll take a good look
at the harmonic numbers H,, and the Bernoulli numbers B, ; these differ
from the other sequences we've been studying because they’re fractions, not
integers. Finaly, we'll examine the fascinating Fibonacci numbers F, and
some of their important generalizations.

6.1 STIRLING NUMBERS

We begin with some close relatives of the binomial coefficients, the
Stirling numbers, named after James Stirling (1692-1770). These numbers
come in two flavors, traditionally called by the no-frills names “Stirling num-
bers of the first and second kind!" Although they have a venerable history
and numerous applications, they still lack a standard notation. We will write
{1} for Stirling numbers of the second kind and [}] for Stirling numbers of
the first kind, because these symbols turn out to be more user-friendly than
the many other notations that people have tried.

Tables 244 and 245 show what {}} and [}}] look like when n and k are
small. A problem that involves the numbers “1, 7, 6, 1" is likely to be related
to {}}, and a problem that involves “6, 11, 6, 1" is likely to be related to
[2], just as we assume that a problem involving “1, 4, 6, 4, 1" is likely to be

related to (}); these are the trademark sequences that appear when n = 4.

243
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Table 244 Stirling's triangle for subsets.

SRR RS RN BRI RURURY

6 !
15 25 10 1
31 90 65 15 !

© o N oo U1 WO
O OO OO0 OO o o —

PR phr ppPPR PR

63 301 350 140 21 1
127 966 1701 1050 266 28 1
255 3025 7770 6951 2646 462 36 1

Stirling numbers of the second kind show up more often than those of
the other variety, so let’s consider last things first. The symbol {}} stands for
the number of ways to partition a set of n things into k nonempty subsets.
For example, there are seven ways to split a four-element set into two parts:

{1,2,3u {4}, {2,3,410{1},

{1,21U{3,4},

{1,2,4}u {3},
{1,31u{z2,4},

{1,3,410{2},

{1,440{2,3}; (6.1)

thus {4} = 7. Notice that curly braces are used to denote sets as well as
the numbers {}} . This notational kinship helps us remember the meaning of
{+}, which can be read “n subset k.

Let'slook at small k. There's just one way to put n elementsinto asingle
nonempty set; hence { "} = 1, for al n > 0. On the other hand {{} = 0,
because a O-dement set is empty.

The case k = 0 is a hit tricky. Things work out best if we agree that
there’ s just one way to partition an empty set into zero nonempty parts; hence
{8} = 1. But anonempty set needs at least one part, so {3} = 0 for n> 0.

What happens when k = 27 Certainly {3} = 0. If a set of n > 0 objects
is divided into two nonempty parts, one of those parts contains the last object
and some subset of the firs m — 1 objects. There are 2"~' ways to choose the
latter subset, since each of the first n — 1 objects is either in it or out of it;
but we mustn’t put all of those objects in it, because we want to end up with
two nonempty pats. Therefore we subtract 1:

{;} = 7 integer n > 0. (6.2)

(This tallies with our enumeration of {}=7=23 1 waysabove))
2

(Stirling  himself
considered this

kind first in his

book [281].)
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Table 245 Stirling's triangle for cycles.

n n n n n n n n n n
B BB BB B GBI
0 1
1 0 !

2 0 | !

3 0 2 3 |

4 0 6 11 6 1

5 0 24 50 35 10 !

6 0 120 274 225 85 15 1

7 0 720 1764 1624 735 175 21 1

8 0 5040 13068 13132 6769 1960 322 28 1
9 0 40320 109584 118124 67284 22449 4536 546 36 1

A modification of this argument leads to a recurrence by which we can
compute {}} for al k: Given a set of n > 0 objects to be partitioned into k
nonempty parts, we either put the last object into a class by itself (in {::]1
ways), or we put it together with some nonempty subset of the first n ~ 1
objects. There are k{“f} possibilities in the latter case, because each of the
{™ '} ways to distribute the first n 1 objects into k nonempty parts gives
k subsets that the nth object can join. Hence

n n—1 n—1 ,
{k} = k{ K }+{k—1}’ integer n > 0. (6.3)

This is the law that generates Table 244; without the factor of k it would
reduce to the addition formula (5.8) that generates Pascal’s triangle.

And now, Stirling numbers of the first kind. These are somewhat like
the others, but [TQ] counts the number of ways to arrange n objects into k
cycles instead of subsets. We verbalize ‘[}]’ by saying “n cycle k!’

Cycles are cyclic arrangements, like the necklaces we considered in Chap-
ter 4. The cycle

AN
D B
¢/
can be written more compactly as ‘[A, B, C, DJ’, with the understanding that
A,B,C,DI = [B,C,D,A]= I[C,D,A,Bl= [D,A,B,Cl;

a cycle “wraps around” because its end is joined to its beginning. On the other
hand, the cycle [A, B, C, D}is not the same as [A, B, D, C]or [D, C, B, A].
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There are eleven different ways to make two cycles from four elements: “There are nine
and sixty ways
(1,2,3] (4], (1,2,4] 3], (1,3,41(2 2,3,4] 1], ?f'b Ioolnstructing
1L,3,24, 0,428, 0,432, 2,430, And-cvery-single-
(1,2]3,4], (1,31 12, 4], (1,41 12,3]; (6.4) opt}az-tofthem-is-
right.
hence [3] = 11. -Rudyard Kipling

A singleton cycle (that is, a cycle with only one element) is essentialy
the same as a singleton set (a set with only one element). Similarly, a 2-cycle
is like a 2-set, because we have [A, B]= [B, A] just as {A, B} = {B, A}. But
there are two different 3-cycles, [A, B, C] and [A, C, B]. Notice, for example,
that the eleven cycle pairs in (6.4) can be obtained from the seven set pairs
in (6.1) by making two cycles from each of the 3-element sets.

In general, n!/n = (n -- 1) ! cycles can be made from any n-element set,
whenever n > 0. (There are n! permutations, and each cycle corresponds
to n of them because any one of its elements can be listed first.) Therefore
we have

m = (n-1)!, integer n > 0. (6.5)

This is much larger than the value {7} = 1 we had for Stirling subset numbers.
In fact, it is easy to see that the cycle numbers must be at least as large as
the subset numbers,

n n :
[k] > {k} , integers n, k > 0, (6.6)

because every partition into nonempty subsets leads to at least one arrange-
ment of cycles.

Equality holds in (6.6) when all the cycles are necessarily singletons or
doubletons, because cycles are equivalent to subsets in such cases. This hap-
pens when k = n and when k = n — 1; hence

[ﬂ = {2}; [n'f,]] - {0

In fact, it is easy to see that.

m ) {2} = [n”:{n:}:( ) (6.7)

(The number of ways to arrange n objects into n 1 cycles or subsets is

the number of ways to choose the two objects that will be in the same cycle

or subset.) The triangular numbers (’2‘) =1, 3,6, 10, . . . are conspicuously
present in both Table 244 and Table 245.
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We can derive a recurrence for [}] by modifying the argument we used
for {1'}. Every arrangement of n objects in k cycles either puts the last object
into a cycle by itself (in [I-1] ways)or inserts that object into one of the ["']
cycle arrangements of the first n- 1 objects. In the latter case, there are n- 1
different ways to do the insertion. (This takes some thought, but it's not hard
to verify that there are j ways to put a new element into a j-cycle in order to

make a (j + 1)-cycle. When j = 3, for example, the cycle [A, B, C] leads to
(A, B,C, DI, A,B,D,Cl, 0 r [AD,B(]

when we insert a new element D, and there are no other possibilities. Sum-
ming over all j gives a total of n- 1 ways to insert an nth object into a cycle
decomposition of n = 1 objects.) The desired recurrence is therefore

[2] = (n—])[n;1] + [2::], integer n > 0. (6.8)

This is the addition-formula analog that generates Table 245.

Comparison of (6.8) and (6.3) shows that the first term on the right side is
multiplied by its upper index (n- 1) in the case of Stirling cycle numbers, but
by its lower index k in the case of Stirling subset numbers. We can therefore
perform “absorption” in terms like n[{z] and k{ 'Q}, when we do proofs by
mathematical  induction.

Every permutation is equivalent to a set of cycles. For example, consider
the permutation that takes 123456789 into 384729156. We can conveniently
represent it in two rows,

123456789
384729156,

showing that 1 goes to 3 and 2 goes to 8, etc. The cycle structure comes
about because 1 goes to 3, which goes to 4, which goes to 7, which goes back
to 1; that'sthecycle [1,3,4,7]. Another cycle in this permutation is (2,8, 5];
still another is [6,9]. Therefore the permutation 384729156 is equivalent to
the cycle arrangement

1,3,4,7] 12,8,5](6,9].

If we have any permutation my 7, ... m, of {1,2,. .., n}, every element isin a
unique cycle. For if we start with my = m and look a My = 7w, My = Mgy,
etc., we must eventually come back to m, = my. (The numbers must re-
peat sooner or later, and the first number to reappear must be my because
we know the unique predecessors of the other numbers ml, my, ..., mMy_1.)
Therefore every permutation defines a cycle arrangement. Conversely, every
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cycle arrangement obviously defines a permutation if we reverse the construc-
tion, and this one-to-one correspondence shows that permutations and cycle
arrangements are essentially the same thing.

Therefore [}] is the number of permutations of n objects that contain
exactly k cycles. If we sum [}{] over al k, we must get the total number of
permutations:

n
> Bj = nt, integer n > 0. (6.9)
k=0
For example, 6 + 11 + 6+ 1 =24 = 4!,

Stirling numbers are useful because the recurrence relations (6.3) and
(6.8) arise in a variety of problems. For example, if we want to represent
ordinary powers x" by falling powers x*, we find that the first few cases are

x® = x2;

X o=

X = x2 4 xL

o= 433+
o= oxd pexd 4 7xd XL

These coefficients look suspiciously like the numbers in Table 244, reflected
between left and right; therefore we can be pretty confident that the general
formula is

L1 Y . We'd better define
x" = X, integer n > 0. (6.10) .
Z{k} iy =Ll=0
when k < 0 and
And sure enough, a simple proof by induction clinches the argument: We T Z0.

have x- xk = xk+1 4 kxk because xk=1 = xk (x ~ k) ; hence x- x"~'is

X;{n;]}xk _ Z{“;]}xﬂ+;{“;1}kxh

k

. }:_y{zjj}xu;{“j}kxz

ECU SRR N

k k

In other words, Stirling subset numbers are the coefficients of factorial powers
that yield ordinary powers.
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We can go the other way too, because Stirling cycle numbers are the
coefficients of ordinary powers that yield factorial powers:

0

Xa = X

x =X

ol =xt+x;

¥ o= X2
xzzx4+6x3+11x2+6x1.

We have (x+n- 1).x¥ =x*""+ (n=1 )x¥, so aproof like the one just given
shows that

(x+n—-1x" T = (x+n~1)z {n;(_]]xk = Z [:]Xk_

k

This leads to a proof by induction of the general formula
X" = Z Tk integer n > 0. (6.11)
k ) e .

(Setting x = 1 gives (6.9) again.)

But wait, you say. This equation involves rising factorial powers x™, while
(6.10) involves falling factorials x™. What if we want to express xZ in terms of
ordinary powers, or if we want to express x™ in terms of rising powers? Easy;
we just throw in some minus signs and get

X" = Z {2}(—1)“"‘5, integer n > 0; (6.12)
X
Xt = Z [H (=1 kxk integer n > 0. (6.13)

k

This works because, for example, the formula

xt = x(x—1)(x—2)(x—3) x* —6x3 + 11x% — 6x
is just like the formula
o= x(x+D(x+2)(x+3) = ¥ 63 +11xE +6x
but with alternating signs. The general identity
K= (=)= (6.14)

of exercise 2.17 converts (6.10) to (6.12) and (6.11) to (6.13) if we negate x.
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Table 250 Basic Stirling number identities, for integer n > 0.

e

Recurrences:

Specia values:

{0} - |

{1} = w0 H
{3} =

W=l = 0)
EANERWERE
Gh =B = Q)= o mien

Converting between powers:

b

k

xl—ZH

(n—1)[n>0].

2™ -1) in>0]; [;} M—=1)Hnoy In>0]

Inversion formulas:

2 [2] {:1}(“)”" =+ [m=nl;
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Table 251 Additional Stirling number identities, for integers 1, m, n> 0.

{:1:11} - }:—(2) {:1} (6-25)
e = Z G

m+ 1 -
ny (k41 ek

|
tn) =

>
} - Zk: [:Jt:] (:1)(“”‘“4(' (6.18)

[n

m
mi{a} - ~ (s (619)
{:1:]1} = g{i}(mﬂ)n;k. (6.20)
[:11]1]: é[:m]“u= “’é[:l]/k!. ©-21)
RS AP ] o
M = pmen[ Y
(th) i {Tﬁi;}m(*”“““- 6.2)

n+11{k ek
k+1]{m (=07 (6.25)
m—-n\ /m+n\ |m+k

. (6.26)
(m+k> (n+k>[ k ]

2
2
X
R o ) [ T T
x
2

1

(H 96
6 (6.29)
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We can remember when to stick the (—1)"~k factor into a formula like
(6.12) because there’'s a natural ordering of powers when x is large:

xi > x" > x%, fordlx >n > 1 (6.30)

The Stirling numbers [}] and {}} are nonnegative, so we have to use minus
signs when expanding a “small” power in terms of “large” ones.
We can plug (6.11) into (6.12) and get a double sum:

g por

k.m

This holds for al x, so the coefficients of x%, x', ..., x™ ' x™*! x"*2, . . on

the right must all be zero and we must have the identity

Y {2} [k] (=1™* = [m=n], integers m,n > 0. (6.31)
- m

Stirling numbers, like binomial coefficients, satisfy many surprising iden-
tities. But these identities aren’t as versatile as the ones we had in Chapter 5,
so they aren't applied nearly as often. Therefore it's best for us just to list
the simplest ones, for future reference when a tough Stirling nut needs to be
cracked. Tables 250 and 251 contain the formulas that are most frequently
useful; the principal identities we have already derived are repeated there.

When we studied binomial coefficients in Chapter 5, we found that it
was advantageous to define 12) for negative n in such a way that the identity
(}) = (') + (37) 18 valid without any restrictions. Using that identity to
extend the (})’s beyond those with combinatorial significance, we discovered
(in Table 164) that Pascal’s triangle essentially reproduces itself in a rotated
form when we extend it upward. Let's try the same thing with Stirling's
triangles: What happens if we decide that the basic recurrences

(o = )
=t R

are valid for &l integers n and k? The solution becomes unique if we make
the reasonable additional stipulations that

O [ o 2} <[] en o



(Knuth [175, first
edition] used

(i) for (3)-)
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Table 253 Stirling's triangles in tandem.

R R e R S A TR

-5 !
-4 10 1
-3 35 6 1
-2 50 11 3 1
-1 24 6 2 1 1
0 0 0 0 0 0 1
! 0 0 0 0 0 0 1
2 0 0 0 0 0 0 11
3 0 0 0 0 0 0 13 1
4 0 0 0 0 0 0 17 6 1
5 0 0 0 0 0 0 115 25 10 1

In fact, a surprisingly pretty pattern emerges: Stirling's triangle for cycles
appears above Stirling’s triangle for subsets, and vice versal The two kinds
of Stirling numbers are related by an extremely simple law:

[le = {:ﬁ}, integers k,n. (6.33)

We have “duality,” something like the relations between min and max, between
|x] and [x], between x® and x™, between gcd and lcm. It's easy to check that
both of the recurrences (] = (- 1) [™ ']+ [t ]and {1} = ¥{". '} + {7}

amount to the same thing, under this correspondence.

6.2 EULERIAN NUMBERS

Another triangle of values pops up now and again, this one due to
Euler [88, page 485], and we denote its elements by (}). The angle brackets
in this case suggest “less than” and “greater than” signs; <'£> is the number of
permutations iy 70 . . . T, of {1,2, ... ,n} that have k ascents, namely, k places
where m < 7547. (Caution: This notation is even less standard than our no-
tations [¢] . {;} for Stirling numbers. But we'll see that it makes good sense.)
For example, eleven permutations of {1,2,3,4} have two ascents:

1324, 1423, 2314, 2413, 3412,
1243, 1342, 2341; 2134, 3124, 4123.

(The first row lists the permutations with 7, < 7; > m3 < 714; the second row
lists those with 71 < 71; < M3 > 74 and M > 7 < M3 < 74.) Hence (3) = 11.
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Table 254 Euler's triangle.

o6 GG Q)6 OOEE

0 !

1 1 0

2 1 1 0

3 1 4 ! 0

4 ! 11 11 ! 0

5 ! 26 66. 26 ! 0

6 Y 302 302 57 ! 0

7 1 120 1191 2416 1191 120 1 0

8 1 247 4293 15619 15619 4293 247 1 0

9 1 502 14608 88234 156190 88234 14608 502 1 0

Table 254 lists the smallest Eulerian numbers; notice that the trademark
sguence is 1, 11, 11, 1 this time There can be a most n — 1 ascents, when
n > 0, so we have (2} = [n=0] on the diagonal of the triangle.

Euler's triangle, like Pascd’s, is symmetric between left and right. But
in this case the symmetry law is dightly different:

<2> = <n—711—k>’ integer n> 0; (6.34)

The permutation 71y 7; . . .7, hasn- 1 -k ascents if and only if its “reflection”
. .. . Ty has k ascents.

Let's try to find a recurrence for (‘;) Each permutation p=p;. . . pa
of {1,...,n =1} leads to n permutations of {1,2,. .. n}if weinsert the new
element n in al possible ways. Suppose we put n in position j, obtaining the
permutation 7T =p1. .. pj- 1M Pj. . . Pa1. 1he number of ascents in n is the
same as the number in p, if j = 1 orif p;_; < py; i's one greater than the
number in p, if p;_1> p; or if j = n. Therefore 7 has k ascents in a total of
(k+ 1)(".")was from permutations p that have k ascents, plus a total of
((n-2) —(k—1)+1)<2:}> ways from permutations p that have k- 1 ascents.
The desired recurrence is

n\ _ n—1\ n—1 .
<k> = (k+1)< 5 />+(n—k)<k_]>, integern >0. (6.3 5)

Once again we start the recurrence off by setting
<i> = [k=0], integer kK, (6.36)

and we will assume that () = 0 when k < 0.
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Eulerian numbers are useful primarily because they provide an unusua
connection between ordinary powers and consecutive binomial coefficients:

k
X" = Z <E> (x: > , integer n > 0. (6.37)
k

(This is “Worpitzky's identity” [308].) For example, we have
; X n x+1

X 2 2 )

3 % x+1 (x+2)

X = (3)-1—4( 3 )-l- 3 )

4 x x+1 x+2 x+3

= () ()5 (7).

and so on. It's easy to prove (6.37) by induction (exercise 14).
Incidentally, (6.37) gives us yet another way to obtain the sum of the
first n squares: We have k2 = 3)(5) + (D (*3") = () + (*3"), hence

P2 etnt = (4O () + (@ Q (1)
= (") 4 () = Ln+n((n=1)+(n+2),

The Eulerian recurrence (6.35) is a bit more complicated than the Stirling

recurrences (6.3) and (6.8), so we don’t expect the numbers (},) to satisfy as
many simple identities. Still, there are a few:

(m) =

Il

|Ma

(” 1) M T kN1 (6.38)

; <:> (n X m) ; (6.39)
I

If we multiply (6.39) by z* ™ and sum on m, we get ¥, { n}m!z""™ =
Y. (1) (z+ 1) ¥ Replacingzby z 1 and equating coefficients of z* gives
(6.40). Thus the last two of these identities are essentialy equivalent. The
first identity, (6.38), gives us specia values when m is small:

n\ _ .. /n\ _ . L. /n\ _ a n (m+1
<0> = 1; <1> = 2"—n 1,<2>—3 (n+1)2+(2).

El
—
3 =2
——

I

N
3 3
~——
1l
~™M
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» Table 256 Second-order Eulerian triangle.

OQ)\'/ n n n n n n n n n n
N 0 1 2 3 4 5 6 7 8
0 !
‘ % 8 0 \\/\‘ ]
2 ; //’
3 \
l Al
4 i 28 58 28 0 AN
5 1 52 328 444 120 0
6 1 114 1452 4400 3708 720 0
7 1 240 5610 32120 58140 33984 5040 0
8 1 494 19950 195800 644020 785304 341136 40320 0

We needn't dwell further on Eulerian numbers here it's usudly sufficient
simply to know that they exist, and to have a list of basic identities to fall
back on when the need aises. However, before we leave this topic, we should
take note of yet another triangular pattern of coefficients, shown in Table 256.
We call these “second-order Eulerian numbers’ (1)), because they satisfy a
recurrence similar to (6.35) but with n replaced by 2n 1 in one place:

8 A S A ) B

These numbers have a curious combinatoria interpretation, first noticed by
Gessel and Stanley [118]: If we form permutations of the multiset {1, 1,2, 2,

.,n,n} with the special property that all numbers between the two occur-
rences of m are greater than m, for 1 < m < n, then (1)) is the number of
such permutations that have k ascents. For example, there are eight suitable
single-ascent permutations of {1, 1,2 2,3,3}:

113322, 133221, 221331, 221133, 223311, 233211, 331122, 331221.

Thus ((3)) = 8. The multiset {1, 1,2,2,.. ., n,n} has atotal of

§<<2>> = an-nn-3..0 = BE (6.42)

suitable permutations, because the two appearances of n must be adjacent
and there are 2n — 1 places to insert them within a permutation for n = 1.
For example, when n = 3 the permutation 1221 has five insertion points,
yidding 331221, 133221, 123321, 122331, and 122133. Recurrence (6.41) can
be proved by extending the argument we used for ordinary Eulerian humbers.
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Second-order Eulerian numbers are important chiefly because of their
connection with Stirling numbers [119]: We have, by induction on n,

{xjn} - 2\:_<<:>><x+n2:11_k>, integer n > 0; (6.43)

[x . n} - §<<Tl:>> (thxk) ! integer n > 0. (6.44)
For  eampe

X X x+1 x+2
L—J - (6) +8( 6 ) +6< 6 )

(We dready encountered the case n = 1 in (6.7).) These identities hold
whenever X is an integer and n is a nonnegative integer. Since the right-hand
sides are polynomials in x, we can use (6.43) and (6.44) to define Stirling
numbers {,*, } and [ * ] for arbitrary real (or complex) values of x.

If n > 0, these polynomials { * }and[ * | are zero when x = 0, x =1,
..., and x = n; therefore they are divisible by (x-O), (x-I), . . ., and (x-n).
It's intereging to look a what's left after these known fadiors are divided out.
We define the Stirling polynomials ¢, (x) by the rule

on(x) = | QD) (XTI (6.45)

X

(The degree of o(x) isn  1.) The fird few cases ae

So1/xisa oo(x) = 1/x;
polynomial? oilx) = 1/2;
(Sorry about  that.) o2(x) = (3x—1)/24;
o3(x) = (x* -x)/48;
os(x) = (153 —30x? 4 5x + 2)/5760.

They can be computed via the second-order Eulerian numbers; for example,

o3(x) = ((x—4)(x~5)+8(x+1](x—4) +6(x+2)(x+1))/6!.
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Table 258 Stirling convolution formulas.

rs Z 0i(1) Onoi(s) = (r + 8)On(r 4 5] (6.46)

s Z kok (1) On_i(s) = non(r+ ) (6.47)

rskznook(wrk)cnk(s——n—k) = (r+s)ou(r+s+n) (6.48)

si kok(r+k)on k(s + n-k) = non(r+s+n) (6.49)
k=0

NG

[H = (;E‘,—),cnfm(n) (6.51)

It turns out that these polynomials satisfy two very pretty identities:

(el—l) = "Zc“ ; (6.52)
(1ln]_z> = x) onlx+n)z" (6.53)

n0

Therefore we can obtain general convolution formulas for Stirling numbers, as
we did for binomial coefficients in Table 202; the results appear in Table 258.
When a sum of Stirling numbers doesn’t fit the identities of Table 250 or 251,
Table 258 may be just the ticket. (An example appears later in this chapter,
following equation (6.100). Exercise 7.19 discusses the general principles of
convolutions based on identities like (6.52) and (6.53).)

6.3 HARMONIC NUMBERS

It's time now to take a closer look at harmonic numbers, which we
first met back in Chapter 2:

11 1 Do .
= —t—f = = —, integern = 0. 6.
n= T ék (6.54)

These numbers appear so often in the anaysis of agorithms that computer
scientists need a special notation for them. We use H,,, the ‘H’ standing for
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“harmonic,” since a tone of wavelength I/n is caled the nth harmonic of a
tone whose wavelength is 1. The first few values look like this:

n| 0123 4 5 6 7 8 9 10
H | 0 1 3 1l 25 137 49 363 761 7129 7381
n 2 6 12 60 20 140 280 2520 2520

Exercise 21 shows that H, is never an integer when n > 1.

Here's a card trick, based on an idea by R. T. Sharp [264], that illustrates
how the harmonic numbers arise naturaly in simple situations. Given n cards
and a table, we'd like to create the largest possible overhang by stacking the
cards up over the table's edge, subject to the laws of gravity:

card 2 card 1
T \1 m|
— I ; T
= =
cardn — =t des—’
[ T
e dny) ———

table

To define the problem a bit more, we require the edges of the cards to be
paralel to the edge of the table; otherwise we could increase the overhang by
rotating the cards so that their corners stick out a little farther. And to make
the answer simpler, we assume that each card is 2 units long.

With one card, we get maximum overhang when its center of gravity is
just above the edge of the table. The center of gravity is in the middle of the
card, so we can create haf a cardlength, or 1 unit, of overhang.

With two cards, it's not hard to convince ourselves that we get maximum
overhang when the center of gravity of the top card is just above the edge
of the second card, and the center of gravity of both cards combined is just
above the edge of the table. The joint center of gravity of two cards will be
in the middle of their common part, so we are able to achieve an additiona
half unit of overhang.

This pattern suggests a general method, where we place cards so that the
center of gravity of the top k cards lies just above the edge of the k+ 1st card
(which supports those top k). The table plays the role of the n+ 1st card. To
express this condition agebraically, we can let d, be the distance from the
extreme edge of the top card to the corresponding edge of the kth card from
the top. Then d; = 0, and we want to make dx+; the center of gravity of the
first k cards:

dp +D)+(d+ 1)+ + (die +1
d41 = 4 (d: z (d ), for 1 <ksn. (6:55)
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(The center of gravity of k objects, having respective weights wy, . . ., wy
and having respective Centers O gravity at positions py, ... px, IS a position
(Wip1+-. -+ wipe)/(wr+ o+ wi).) We can rewrite this recurrence in two
equivaent forms

kdy1
(k—1)dy

k+d1+...+dk,1+dk, k;O,
k-1 +dy 4+ diy, k> 1

Subtracting these equations tells us that
kdicr1 — (k—=1)dx = 1 +dy, k> 1

hence dy;1 = dy + I/k. The second card will be offset half a unit past the
third, which is a third of a unit past the fourth, and so on. The genera
formula

di+1 = Hy (6.56)

follows by induction, and if we set kK = n we get d,,,1 = H, as the total
overhang when n cards are stacked as described.

Could we achieve greater overhang by holding back, not pushing each
card to an extreme position but storing up “potential gravitational energy”
for a later advance? No; any well-balanced card placement has

T+d)+(+da)+--+ (1 +dy)
" ‘

Furthermore d; = 0. It follows by induction that di+1 < Hy.

Notice that it doesn’'t take too many cards for the top one to be com-
pletely past the edge of the table. We need an overhang of more than one
cardlength, which is 2 units. The first harmonic number to exceed 2 is
Hs = £, so we need only four cards.

And with 52 cards we have an Hs;-unit overhang, which turns out to be  Anyone who actu-
Hs,/2 » 2.27 cardlengths. (We will soon learn a formula that tellsus how to  aly trieStoachieve
compute an approximate value of H,, for large n without adding up a whole this maximum

) overhang with 52
bunch of fractions) cards is probably

An amusing problem called the “worm on the rubber band” shows har- 2°tfuﬂea$i2§k_"gi:h
monic numbers in another guise. A slow but persistent worm, W, starts a  aybe hes a real
one end of a meter-long rubber band and crawls one centimeter per minute  joker.
toward the other end. At the end of each minute, an equally persistent keeper
of the band, K, whose sole purpose in life is to frustrate W, stretches it one
meter. Thus after one minute of crawling, W is 1 centimeter from the start
and 99 from the finish; then K stretches it one meter. During the stretching

operation W maintains his relative position, 1% from the start and 99% from

dkt1 6 1<kg<n,
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the finish; so W is now 2 cm from the starting point and 198 cm from the

goa. After W crawls for another minute the score is 3 cm traveled and 197

to go; but K stretches, and the distances become 4.5 and 295.5. And so on.
Metric units make Does the worm ever reach the finish? He keeps moving, but the goal seems to
this problem more  move away even faster. (We're assuming an infinite longevity for K and W,
senific an infinite elagticity of the band, and an infinitely tiny worm.)

Let's write down some formulas. When K stretches the rubber band, the
fraction of it that W has crawled stays the same. Thus he crawls 1/100th of
it the first minute, 1/200th the second, 1/300th the third, and so on. After
n minutes the fraction of the band that he's crawled is

! ! H,
m(l+é+§+”'+ﬁ> = 100" (6.57)

So he reaches the finish if H,, ever surpasses 100.

Well see how to estimate H, for large n soon; for now, let's simply
check our analysis by considering how “Superworm” would perform in the
same sSituation. Superworm, unlike W, can crawl 50cm per minute; so she
will cravl H, /2 of the band length after n minutes, according to the argument
we just gave. If our reasoning is correct, Superworm should finish before n
reaches 4, since H; > 2. And yes, a simple calculation shows that Superworm
has only 33% cm left to travel after three minutes have elapsed. She finishes

A flatworm, eh? in 3 minutes and 40 seconds flat.
Harmonic numbers appear also in Stirling's triangle. Let's try to find a

closed form for [3] , the number of permutations of n objects that have exactly
two cycles. Recurrence (6.8) tells us that

n+1 n n
[ 2 ]:“[ZMH
:n[?l-{-(n—l)!, ifn>0;

and this recurrence is a natural candidate for the summation factor technique
of Chapter 2:

R
mibng e =TT L

Unfolding this recurrence tells us that < [“;]] = Hy; hence

[nl = nlH, (6.58)

We proved in Chapter 2 that the harmonic series j , 1 /k diverges, which
means that H, gets arbitrarily large as n — co. But our proof was indirect;
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we found that a certain infinite sum (2.58) gave different answers when it was
rearranged, hence 3 , I/k could not be bounded. The fact that H, — oo
seems counter-intuitive, because it implies among other things that a large
enough stack of cards will overhang a table by a mile or more, and that the
worm W will eventualy reach the end of his rope. Let us therefore take a
closer look at the size of H,, when n is large.
The simplest way to see that H, — oo is probably to group its terms

according to powers of 2. We put one term into group 1, two terms into
group 2, four into group 3, eight into group 4, and so on:

LI L O O . O 0. DR R IO I IO IO
1Pyt et T T T Tt
NS N

v
~~
group 1 group 2 group 3 group 4

Both terms in group 2 are between ; and I, so the sum of that group is
1_ 1 y

between 2. ;= 5 and 2- %: . All four terms in group 3 are between %
and }, so their sum is also between § and 1. In fact, each of the 2*~7 terms
in group k is between 2 % and 2'-¥; hence the sum of each individua group
is between ] and 1.

This grouping procedure tells us that if n is in group k, we must have

H, > k/2 and H, < k (by induction on k). Thus H,, — oo, and in fact

Bt < by < gm0 (6.50)
We now know H, within a factor of 2. Although the harmonic numbers
approach infinity, they approach it only logarithmicaly-that is, quite dowly. We should cdl them
Better bounds can be found with just a littte more work and a dose %ﬁg],‘;’g’g ggwbers,
of calculus. We learned in Chapter 2 that H, is the discrete analog of the
continuous function lnn. The natural logarithm is defined as the area under
a curve, s0 a geometric comparison is suggested:

f
(X)T fx) = I/x

i"f‘—h—\

0 1 2 3 - - - n n+1

X

The area under the curve between 1 and n, which is j? dx/x = Inn, is less
than the area of the n rectangles, which is Y ;_; I’k = H,. Thus lan < Hy;
this is a sharper result than we had in (6.59). And by placing the rectangles



I now see awy
too how y agre
gate Of y° termes
of Musical pro-
gressions may bee
found (much after
same manner)
{)y Logarithms, but
y© cdculdions for
finding out those
rules would bee dill
more troublesom.”
—I. Newton [223]
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a little differently, we get a similar upper bound:

f(x)
f(x)=1/x

-

o 1 2 3 . . . n X

This time the area of the n rectangles, H,,, is less than the area of the first
rectangle plus the area under the curve. We have proved that

Inn < H, <lnn+l, forn> 1. (6.60)

We now know the value of H,, with an error of at most 1.
“Second order” harmonic numbers H!Z' arise when we sum the squares
of the reciprocals, instead of summing simply the reciprocals:

11 1 .
) -l fmgepe = Y —.
HY = 1+ g4+5+ 0+ L

Smilaly, we odine hamonc numbas o oda v by anming (—r)th poves
LI,
(r) — —

HI = k§:| ok (661)

If r> 1, these numbers approach a limit as n — oo; we noted in Chapter 4
that this limit is conventionally called Riemann’s zeta function:

(r)= HY = ) . 662)

Euler discovered a neat way to use generalized harmonic numbers to
approximate the ordinary ones, HY'). Let's consider the infinite series

Y. S N S U P B
MNe=T) Tkt e T ad ' (663

which converges when k > 1. The left-hand sideislnk — In(k — 1); therefore
if we sum both sides for 2 < k < n the left-hand sum telescopes and we get

n
1 1 1 1
Inn—Inl Z(—‘E-{-z—kz-+3?+4_k4+...>

1

(D) + 4P 1)+ J(HE) + L)+
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Rearranging, we have an expression for the difference between H,, and Inn:
Ho—lon = 1- J(HELD) <3 (HE 1) = J(HY 1) = ..
When n — o0, the right-hand side approaches the limiting value
1= 1(e2)-1) - $(e3)-1) = 7(C@)-1) =+,

which is now known as Euler’s constant and conventionally denoted by the
Greek letter y. In fact, L(r) — 1is approximately 1/2", so this infinite series
converges rather rapidly and we can compute the decimal value

y = 05772156649, . . . (6.64)
Euler's argument establishes the limiting relation
lim (H, —lnn)= v; (6.65)

n—oo

thus H,, lies about 58% of the way between the two extremes in (6.60). We
are gradualy homing in on its value.

Further refinements are possible, as we will see in Chapter 9. We will
prove, for example, that

l — LjL En
2n 12n32 120n%’

This formula alows us to conclude that the millionth harmonic number is

Hy, = Inn+vy+ O<en<. (6.66)

Hioo0000 =~ 14.3927267228657236313811275,
without adding up a million fractions. Among other things, this implies that
a dak of a million cads can ovahang the edge of a tdde by more then seven
cardlengths.

What does (6.66) tell us about the worm on the rubber band? Since H,, is
ubounded, the wom will defintdy resch the end, when H,, fird excesds 100,
Our approximation to H,, says that this will happen when n is approximately

el00-y o 99423

In fact, exercise 9.49 proves that the critical value of n is either [e'%~7]or
[¢190-Y]. We can imagine W’ s triumph when he crosses the finish line at last,
much to K’s chagrin, some 287 decillion centuries after his long crawl began.
(The rubber band will have stretched to more than 10%7 light years long; its
molecules will be pretty far apart.)

“Huius igitur quan-

titatis congtantis

C valorem detex-

imus, quippe est

C=9,577218."
—L. Euler [83]

Well, they can ‘t
redly go a it this
long; the world will
have ended much
ealier, when the
Tower of Brahma is
fully  trandferred.
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6.4 HARMONIC SUMMATION

Now let's look at some sums involving harmonic humbers, starting
with a review of a few ideas we learned in Chapter 2. We proved in (2.36)
and (2.57) that

0§ Hy = nHy —n; (6.67)
<k<n

Y kR = Mol oo 0 D (668)
0gk<n 2 4

Let's be bold and take on a more general sum, which includes both of these
as specia cases. What is the value of

Z (:1)Hk,

0<k<n
when m is a nonnegative integer?

The approach that worked best for (6.67) and (6.68) in Chapter 2 was
called summation by parts. We wrote the summand in the form u(k)Av(k),
and we applied the genera identity

b

Y uldavl) sx = wbevix)) ~ Y x4 Dau() 6x (669)

Remember? The sum that faces us now, Yo, .. (w)Hx, is a natural for this
method because we can let

1
u(k) = H, Au(k) = Hiyr = Hg = 1 i

() 0= ()~ () - ()

(In other words, harmonic numbers have a simple A and binomial coefficients
have a simple A-‘, so we're in business.) Plugging into (6.69) yields

k n/x X n
(e (o ()
0<k<n

v(k)

-y xt1) 8x
o o \m+1/ x+1
n k+1 1
(m+1)H“ - <m+1)§+—1'
ogk<n

The remaining sum is easy, since we can absorb the (k + 1)~ using our old
standby, equation (5.5):

m+1/k+1 m/m+1  \m+1/m+1"

0<k<n 0g<k<n
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Thus we have the answer we seek:

ogq (T]:l)Hk = (m:lL 1) (H“ - ﬁ) . (6.70)

(This checks nicely with (6.67) and (6.68) when m = 0 and m = 1)
The next example sum uses division instead of multiplication: Let us try
to evaluate

Now another method from Chapter 2 comes to our aid; equation (233) tells
us that

oo MDY ey D)o lpeene
n= 3 2 i 2id)= Z(“+ W (6.72)

It turns out that we could also have obtained this answer in another way if
we had tried to sum by parts (see exercise 26).

Now let's try our hands a a more difficult problem [291], which doesn't
submit to summation by parts:

U, = Z (112) H]ik—] (n—1k)", integer n > 1

k=1

(This sum doesn't explicitty mention harmonic numbers either; but who (Not to give the
knows when they might turn up?) answer aay or
We will solve this problem in two ways, one by grinding out the answer anything)
and the other by being clever and/or lucky. First, the grinder’s approach. We
expand (n = k)" by the binomial theorem, so that the troublesome k in the

denominator will combine with the numerator:

(__-I)k~l i
U= ¥ 3 S Y (7)o

k=1

> (‘.‘)(—1)”@Ji )N (’;) UL

; ) k21

I

This isn't quite the mess it seems, because the kJ~' in the inner sum is a
polynomia in k, and identity (5.40) tells us that we are simply taking the
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nth difference of this polynomial. Almost; first we must clean up a few things.
For one, ki-!isn't a polynomial if j = O; so we will need to split off that term
and handle it separately. For another, we're missing the term k = 0 from the
formula for nth difference; that term is nonzero when j = 1, so we had better
restore it (and subtract it out again). The result is

Up = ) (?)(—ni Iy (E)(—])kkj !

i1 k=0

L () G
) B ()

OK, now the top line (the only remaining double sum) is zero: It's the sum
of multiples of nth differences of polynomials of degree less than n, and such
nth differences are zero. The second line is zero except when j = 1, when it
equals —m™. So the third line is the only residua difficulty; we have reduced
the origina problem to a much smpler sum:

U, = n" (T, —1), where T, = Z nm ﬂ (6.72)

For ecample, Us= (D3 (D 1=% =01 01+ ()3} =% hence
U; = 27(T; = 1) as claimed.

How can we evauate T,? One way is to replace( yby (" )+ (22)),
obtaining a simple recurrence for T, in terms of T, ;. But theres a more
instructive way: We had a similar formula in (5.41), namely

— \k/ x+k ToxXGx+ Do..(x + 0

If we subtract out the term for k = 0 and set x = 0, we get —T,. So let's do it:

= ()
x  x(x+ 1)...(x+mn)

B <(x+1)...(x+n)—n!>
- x(x+1) ... (x+n)

x=0

x=0

(Bl e Py

XX +1)... (x+ n)

x=0
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(We have used the expansion (6.11) of (x + 1) . .. (X + n) = x™*1/x; we can
divide x out of the numerator because [*{'] = n!.) But we know from (6.58)
that [“*‘] = n! H,; hence T, = Hy, and we have the answer:

Uy = n"(Ho = 1). (6.73)

That's one approach. The other approach will be to try to evaluate a
much more general sum,

n\ (=)' "
Un(x,y) = Z Y v (x+ky)"™, integer n > 0; (6.74)
kZT‘\‘

the value of the origina U,, will drop out as the special case U, (n, -1). (We
are encouraged to try for more generality because the previous derivation
“threw away” most of the details of the given problem; somehow those details
must be irrelevant, because the nth difference wiped them away.)

We could replay the previous derivation with small changes and discover
the value of U, (x,y). Or we could replace (x + ky)™ by (x + ky)*~'(x + ky)
and then replace (}) by (".") + (371), leading to the recurrence

U (x,y) = xUn1(x,y) +xYn+yx"'; (6.75)

this can readily be solved with a summation factor (exercise 5).

But it's easiest to use another trick that worked to our advantage in
Chapter 2: differentiation. The derivative of U, (X, y ) with respect to y brings
out a k that cancels with the k in the denominator, and the resulting sum is
trivid:

(]
S y) = 3 (‘;) 1 i + )

k21

= -é( ) nix + ky)" = '

0

(Once again, the nth difference of a polynomial of degree < n has vanished.)
We've proved that the derivative of U, (x, y) with respect to y is nx™',
independent of y. In general, if f'(y) = ¢ then f(y) = f(0) + cy; therefore we
must have U, (x,y) = Ua(x,0) + nx™y.
The remaining task is to determine U, (x, 0). But U,(x, 0) is just x™
times the sum T, = H, we've aready considered in (6.72); therefore the
general sum in (6.74) has the closed form

Un(x,y) = x"Hy + nx""! y. (6.76)

In particular, the solution to the original problemisu, (n,-1) = n™*(H, 1).
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The next important sequence of numbers on our agenda is hamed
after Jakob Bernoulli (1654-1705), who discovered curious relationships while
working out the formulas for sums of mth powers [22]. Let’s write

S,(n) = O™ 4+1™+

n-1
=Y k"= Zmeéx. (6.77)
k=0

(Thus, when m > 0 we have S,(n) = Hf:;‘] in the notation of generalized
harmonic numbers.) Bernoulli looked at the following sequence of formulas

and spotted a pattern:

So(n) =
Si(n) = %n’- - %n
Sp(n) = 30 = jn?
S3(n) = %n“ %n3
S4(n) = in® = Inf
Ss(n) = {n® = n’
Se(n) = In” = In®
S;(n) = %ns - %n7
Sg(n) = gn° - %ns
Son) = e b
Sio(n) = Fnt - In!

+++++++
~
3

3

= ON—
3
()

wl—=
S
(¥

|
-+

B @i D~ Né“
3, n
(=28

+
©o

E)

o
+
Al
3

~0

+n
Al
ind + Ln
- %TlA + ]_12‘112
%ns + %n3 - 3]_0“
i+ - g
—n+ nP— 4 Zn

Can you see it too? The coefficient of n™*'in S(n) is aways 1 /(m + 1).

The coefficient of n™ is always —1/2. The coefficient of n™"

let's see . .
of n™3 is dways . .

. hmmm . .

lisaways. . .

. M/12. The coefficient of n™ 2 is aways zero. The coefficient
Clet's see ..

. yes, it's —m(m—1)(m—2)/720.

The coefficient of n™* is always zero. And it looks as if the pattern will
continue, with the coefficient of n™~% aways being some constant times mkx.

That was Bernoulli’s discovery. In modern notation we write the coeffi-

cients in the form

Sim(n)

1
B m+1+
+1(°“ <

1
m+]>B1n’“+---+ <m+ )an>
1 m

(6.79)
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Bernoulli numbers are defined by an implicit recurrence relation,

Z (m;ﬂ)Bj = [m=0], for dl m 2 0. (6.79)
i=0

For example, (5)Bo + (3)By = 0. The first few values turn out to be

N

3 4

=1
30

oo
~0

10 11 12

nlo 1
1

N—=
N —

(All conjectures about a simple closed form for B, are wiped out by the
appearance of the strange fraction —691/2730.)

We can prove Bernoulli's formula (6.78) by induction on m, using the
perturbation method (one of the ways we found S;(n)= [, in Chapter 2):

Smet () + MM = Z (k+ 7)™
k ()

I m+ 1 m+1
Z<m+ ) Z_(m?{J)Sj(n)-(e.BO)

k=0 j=0 =0 \ )

Let S (n) be the right-hand side of (6.78); we wish to show that S,,,(n) =

S m(n), assuming that S; (n) = S (n) for 0 £ j < m. We begin as we did for
m = 2 in Chapter 2, subtractlng Sim+1(n) from both sides of (6.80). Then we
expand each S; (n) using (6.78), and regroup so that the coefficients of powers
of 1 on the right-hand side are brought together and simplified:

Tlm.+—'| — Z <m]+1>5,(n) - Z (m—i—])g](n) + (m+1) A




6.5 BERNOULLI NUMBERS 271

nk+l fm41 +1-k
= ( ) (m )Bj_yk+(m—|—1)A
Ogkgm k< ;(r“

s

= nm 4 (m+ 1)A, where A = S,,,(n) -§m(n)'

(This derivation is a good review of the standard manipulations we learned
in Chapter 5) Thus A = 0 and S,,,(n) = Swm(n), QED.

Heré's some more In Chapter 7 we'll use generating functions to obtain a much simpler
nedt suff thet proof of (6.78). The key idea will be to show that the Bernoulli numbers are
you'll  probably h oFfici f th .
want to._ skim the coefficients of the power series
through the first n
: z z
time. = Bn=—. 6.81
Friendly  TA er—1 Té "n! (689
Sat Let's simply assume for now that equation (6.81) holds, so that we can de-
Skimming rive some of its amazing consequences. If we add 1z to both sides, thereby
cancelling the term Byz/1!= —3z from the right, we get
z 2z zet+]l | zeft+ el g z
3 + 77 et 1 e Ecoth > (6.82)

Here coth is the “hyperbolic cotangent” function, otherwise known in calculus
books as cosh z/sinh z; we have

er—e’? et + e ?

sinhz = 5 ; coshz =

(6.83)

Changing z to —z glv&e (%) coth( ) = £ coth £; hence every odd-numbered
coefficient of 2 coth must be zero, and we have

By = Bs = B, = By =B, = Biz =t = 0. (6.84)

Furthermore (6.82) leads to a closed form for the coefficients of coth:

27. Z m an

ﬂ>0\ n=0

2z

zcothz = prr. ZBZn

. (6.85)

But there isn't much of a market for hyperbolic functions, people are more
interested in the “real” functions of trigonometry. We can express ordinary
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trigonometric functions in terms of their hyperbolic cousins by using the rules
sin z = -isinh iz , cos z = cosh iz; (6.86)

the corresponding power series are

ginzg = 4~ — — 4= ... ) 2! 2 P
t = — —_ — cea
11 31 5 ‘ sinhz T + ] + = +eee
0 2 4 0 2 4
N S LLELE
cosz = r—ort g ) COShZ‘&J“E*_*
Hence cot z = cos z/sin z = { cosh iz/ sinh iz =i coth iz, and we have | see, we get “real”
functions by usil?g
212 n N L2 imaginary  numbers,
zcotz = Z m——m e = Z(—4) Ban Gl (6.87)
n=0 n=0

Another remarkable formula for zcot z was found by Euler (exercise 73):

2

zeotz = 1-2) e g (6.88)
k=1

We can expand Euler’'s formula in powers of z2, obtaining

2? z* 26
“2%(1@7@ tiam T e +)

z? 24
12 ZH® 4 =
2<T[ZHOO +5

zcotz

I

@, 2 {6)
Hoo+$]-[oo+... ,

Equating coefficients of z2" with those in our other formula, (6.87), gives us
an amost miraculous closed form for infinitely many infinite sums:

et 2211—1 7'[2“8211

(2n) = HZY = (-1) integer n > 0. (6.89)

2n)t
For example,
(4) = H(()‘é) 1+ l6 + Sl + - = -7 By/3 = 7[4/90 (691)
(2n)

Formula (6.89) is not only a closed form for Hy ', it aso tells us the approx-
imate size of B,,, since HY is very near 1 when n is large. And it tells
us that (—=1)»1 B,, > 0 for al n > 0; thus the nonzero Bernoulli numbers
dternate in sign.
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And that's not all. Bernoulli numbers also appear in the coefficients of
the tangent function,

sinz Zn—1

_ T _1yn=lgqnqn _ Z
Start tanz = cosz Z( )44 ])an——(Zn)!’ (6.92)
Skipping nz0

as well as other trigonometric functions (exercise 70). Formula (6.92) leads
to another important fact about the Bernoulli numbers, namely that

niAn __
Tono1 = (—1)’“‘%}32n is a positive integer. (6.93)

We have, for example:

n|] 135 7 9 11 13
Tl 1 2 16 272 7936 353792 22368256

(The T*s are called tangent numbers.)

One way to prove (6.93), following an idea of B. F. Logan, is to consider
the power saries

sinz+xcosz 5 22 23
- e 1 3 “ 4 2 .
S0SZ-XS Nz x+ (14+x7)z 4+ (2x34+2x) 3 + (6x"4+8x°+2) <

=) ToZ (6.94)

Whenx=tanw, WwhereT,,(x) isapolynomid inx; setting x =0 gives T, (0) =T,, the nth
thisistan(z +W).  tangent number. If we differentiate (6.94) with respect to x, we get

1 B , z“‘
{cosz—xsinz)? ~ Té “(")H’
but if we differentiate with respect to z, we get
1+x2 ! "
7 = > Talx) —7; = Y Tn(x)=.

(cosz —xsinz et ( o, n!

(Try it-the cancellation is very pretty.) Therefore we have
Tapi(x) = (1 +)T(x),  Tox) = x, (6.95)

a simple recurrence from which it follows that the coefficients of T, (x) are
nonnegative integers. Moreover, we can easily prove that T,(x) has degree
n + 1, and that its coefficients are aternately zero and positive. Therefore
Tons1 (0) = Tany1 is a poditive integer, as claimed in (6.93).
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Recurrence (6.95) gives us a simple way to calculate Bernoulli numbers,
via tangent numbers, using only simple operations on integers, by contrast,
the defining recurrence (6.79) involves difficult arithmetic with fractions.

If we want to compute the sum of nth powers from ato b = 1 instead of
from 0 to n = 1, the theory of Chapter 2 tells us that

b-I
Y kn = Zixmf)x = s,(b) -S,,,(a). (6.96)
k=a

This identity has interesting consequences when we consider negative values
of k: We have

k™ = (—1)'“Z k™, when m > 0,
k=-n+1 k=0
hence
Sm(0) = Sm{-n+ 1) = (-1)™(Sm(n) -S,(0)).

But Swm(0) = 0, so we have the identity
Sw(1 -n) = (=1)™'Sy(n), m>o0 (6.97)

Therefore Sm( 1) = 0. If we write the polynomid S(n) in factored form, it

will always have the factors n and (n- 1 ), because it has the roots 0 and 1. In

genera, S,(n) is a polynomial of degree m + 1 with leading term T—R—L—]n"‘“ .

Moreover, we can set n = 1in (6.97) to get Sm(1) = (=1)™F1S(3);if mis
1

even, this makes Sm(%) =0, s (n 5) will be an additional factor. These

observations explain why we found the simple factorization

S;(n) = Inn - Hn -1
in Chapter 2; we could have used such reasoning to deduce the value of S;(n)
without calculating it! Furthermore, (6.97) implies that the polynomia with
the remaining factors, S(n) = S (n)/(n %), dways satisfies

A

Sm(l-n) = S,(n), m even, m > 0.

It follows that S,(n) can aways be written in the factored form

1 [m/2}
mel n-j=aln j+a m odd;
m1 A M =7=o)n 3+ o),
Smin) = m/2 (6.98)
(n—3) : :
m+1 H(“_i_“k)(“—z+ak), m even.
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Here oy = %, and ay, . . ., A[m/2) @€ appropriate complex numbers whose
values depend on m. For example,

S3(n) = nf(n— 1)¥4;

Sim) = n(n— 2)(n 1){ ;+ 7/12)(n ~ 5 = /7/12)/5;
Ss(n) = n?(n—1)? + /3/8)n— % \/7)/6;

Se(n) = min- ;)(” Nin _% a)(n—1 - a)(n—} +F)(n-1 -=),

where o = 2 3/23-1/231/4(\/V3T + V27 + | VBT — V7).

If m is odd and greater than 1, we have B, = 0; hence S,,(n) is divisible
by n? (and by (n = 1)?). Otherwise the roots of S,(n) don't scem to obey a

law.

Let's conclude our study of Bernoulli numbers by looking at how they
relate to Stirling numbers. One way to compute S,(n) is to change ordinary
powers to falling powers, since the falling powers have easy sums. After doing
those easy sums we can convert back to ordinary powers:

J

k=0

N

k=0 k=0 j=0 920

m) nitt
Z{i}i+1

iz0

T () L

20 k=0

Therefore, equating coefficients with those in (6.78), we must have the identity

mY [j+ 1] (=1)i+1-% 1 /m41
Z{iH k} (e e (6.99)

j=0

It would be nice to prove this relation directly, thereby discovering Bernoulli
numbers in a new way. But the identities in Tables 250 or 251 don't give
us any obvious handle on a proof by induction that the left-hand sum in
(6.99) is a constant times mk 1 If k = m + 1, the left-hand sum is just
(MY (m+1) = 1/(m+1), so that case is easy. And if kK = m, the left-

m+1
hand side sums to { ™, }H[Mm "= {7} [" ] (m+1)"" = {m-1)—Im = -1
so that case is pretty easy too. But if k < m, the left- hand sum looks hairy.
Bernoulli would probably not have discovered his numbers if he had taken
this route.
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Gnethingwecandoisreplace {7} by {m“ (G+1){,7}. The G+1)
nicely cancels with the awkward denoml nator and the left- hand side becomes

m+ 1 [+ 1] (=1 F m O\ [j+1 .
Z{i+1}[k] j+1 T ;{i+1}[k](_])]+]k
iz

iz0

The second sum is zero, when k < m, by (6.31). That leaves us with the first
sum, which cries out for a change in notation; let's rename al variables so
that the index of summation is k, and so that the other parameters are m
and n. Then identity (6.9g) is equivaent to

_1)k-m
) {2} [Tﬂ ( 11)< ~ %(:L)B“m +im=n— 1. (6.100)

k

Good, we have something that looks more pleasant-although Table 251 still
doesn’'t suggest any obvious next step.

The convolution formulas in Table 258 now come to the rescue. We can
ue (65) ad (650) to remite the summand in tams of Sirling pdynomids

nl{kl ek B k! .
{k} I:m} = (-1 + {k-‘)'&onik( k).(m—”!o—k\m(k)’
n k __(_])kim n+l-m n!
{k}[m} — = (=" (m_])!UnAk(”k) Ok-m(k).

Things are looking good; the convolution in (6.48) yields

n—-m

D Onmk(—n +[n-mk)) or(m + k)

i

Y Onk(—K) ok-m(k)
k=0 k=0

m—-n
= On-m(Mm n+(n—mj}.

Y ETA )
Fomua (6100) is now vaified, and we find thet Bamouli numbes ae rdaed
to the constant terms in the Stirling polynomials:

(=)™ "mon(0) = % + [m=1]. (6.101)

6.6 FIBONACCI NUMBERS

Now we come to a special sequence of numbers that is perhaps the
mog pleest of dl, the Fboneod squence (F,):

ﬂ001121324355 i [ TR T O 17 /A N ¢ B TV
Fn\

Stop
Skimming
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Unlike the harmonic numbers and the Bernoulli numbers, the Fibonacci num-
bers are nice simple integers. They are defined by the recurrence

Fb =0
F] = 1;
Fo = Fuoy +Fp2,  forn>1 (6.102)

The simplicity of this rule-the simplest possible recurrence in which each
number depends on the previous two-accounts for the fact that Fibonacci
numbers occur in a wide variety of situations.

The  back-to-nature “Bee trees’ provide a good example of how Fibonacci numbers can arise
ndure of this ex- naturally. Let's consider the pedigree of a male bee. Each male (aso known
ample is shocking. . )

This book should be @ @ drone) is produced asexually from a female (also known as a queen); each
banned. female, however, has two parents, a male and a femae. Here are the first few

levels of the tree:

“T° % °T°
? ?
o}

S
| ?

The drone has one grandfather and one grandmother; he has one great-
grandfather and two great-grandmothers, he has two great-great-grandfathers
and three great-great-grandmothers. In general, it is easy to see by induction
that he has exactly Fni1 great™-grandpas and Fni; great™-grandmas.

Fibonacci numbers are often found in nature, perhaps for reasons similar
to the beetree law. For example, a typical sunflower has a large head that
contains spirals of tightly packed florets, usualy with 34 winding in one di-
rection and 55 in another. Smaller heads will have 21 and 34, or 13 and 21;
a gigantic sunflower with 89 and 144 spirals was once exhibited in England.
Similar patterns are found in some species of pine cones.

And heré's an example of a different nature [219): Suppose we put two
panes of glass back-to-back. How many ways a, are there for light rays to
pass through or be reflected after changing direction n times? The first few

Phyllotaxis, n.
The love of taxis.
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cases are:

When n is even, we have an even number of bounces and the ray passes
through; when n is odd, the ray is reflected and it re-emerges on the same
side it entered. The q,’'s seem to be Fibonacci numbers, and a little staring
a the figure tells us why: For n > 2, the n-bounce rays either take their
first bounce off the opposite surface and continue in a,_y ways, or they begin
by bouncing off the middle surface and then bouncing back again to finish
in da,-» ways. Thus we have the Fibonacci recurrence a, = anp_1 + an_3.
The initial conditions are different, but not very different, because we have
ap =1 =Fad gy = 2 = F;; therefore everything is simply shifted two
places, and &, = Fn+2.
Leonardo Fibonacci introduced these numbers in 1202, and mathemati-
cians gradually began to discover more and more interesting things about
them. Edouard Lucas, the perpetrator of the Tower of Hanoi puzzle dis-
cussed in Chapter 1, worked with them extensively in the last half of the nine- “La slitede Fi-
teenth century (in fact it was Lucas who popularized the name “Fibonacci bonacci posséde

numbers’). One of his amazing results was to use properties of Fibonacci g?m%rrgﬁgf:%rt
numbers to prove that the 39-digit Mersenne number 2'7 1 is prime. intéressantes.”
One of the oldest theorems about Fibonacci numbers, due to the French -E. Lucas [207]

astronomer  Jean-Dominique Cassini in 1680 [45], is the identity
Fas1Fooy =F2 = (=1)*,  forn>0. (6.103)

When n = 6, for example, Cassini’s identity correctly claimsthat 1 3.5-82 = 1.

A polynomia formula that involves Fibonacci numbers of the form F,iy
for small values of k can be transformed into a formula that involves only F,
and Fn1, because we can use the rule

Fm - Fm+2 Fm+1 (6'104)

to express F,; in terms of higher Fibonacci numbers when m <« n, and we can
use

Fn = Fnoo+Fn (6105)

to replace F,, by lower Fibonacci numbers when m > n+1. Thus, for example,
we can replace F,_y by F,4 1 = F, in (6.103) to get Cassini's identity in the
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form
Flo=Fopi Fa—F2= (-1)°. (6.106)
Moreover, Cassini’s identity reads
Fne2Fo = Fyp = (=1

when n is replaced by n + 1; this is the same as (F, ) + Fy)Fy = F2 | =
(—1)**!, which is the same as (6.106). Thus Cassini(n) is true if and only if
Cassini(n+l) is true; equation (6.103) holds for al n by induction.
Cassini’'s identity is the basis of a geometrica paradox that was one of
Lewis Carroll’'s favorite puzzles [54], [258], [298]. The idea is to take a chess-
board and cut it into four pieces as shown here, then to reassemble the pieces

into a rectangle:

|

‘vl -

Presto: The origind area of 8 x 8 = 64 sguares has been rearranged to yield

The paradox s 5 x 13 = 65 squarest A similar construction dissects any F, x F, sguare

explained bel-| into four pieces, using F..1, Fn, F, 1, ad F, ; as dimensions wherever the
cause well, . . . .

magic tricks aren't illustration has 13, 8, 5, and 3 respectively. The result is an F, | x F, 4

supposed to be rectangle; by (6.103), one square has therefore been gained or lost, depending
explained. on whether n is even or odd.

Strictly speaking, we can't apply the reduction (6.105) unless m > 2,
because we haven't defined F for negative n. A lot of maneuvering becomes
easier if we eliminate this boundary condition and use (6.104) and (6.105) to
define Fibonacci numbers with negative indices. For example, F | turns out

tobe F; Fy=1;,thenF. ;is Fy -F; = -1. In this way we deduce the values

nlo 14 2 3 4 5 6 -7 -8 9 a0 -1

Fn o 1 -1 2 -3 5 -8 13 21 34 -55 89

and it quickly becomes clear (by induction) that
Fon = (=)™ 'Fa, integer n. (6.107)

Cassini’s identity (6.103) is true for all integers n, not just for n > 0, when
we extend the Fibonacci sequence in this way.
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The process of reducing F, 4y to a combination of F, and Fr41 by using
(6.105) and (6.104) leads to the sequence of formulas

Fn.+2 = Fupr o+ Fn Fag = Fori = Fa
FTH-3 = 2FT‘L+1 + Fn Fhoz = _Fn+1 +2FTL
Fn+4 = 3Fn-+—l + ZFn Fn—3 = ZF‘rL+1 *3Fn
Fn+5 = 5Fn+l + 3Fn Fn_4 = _3Fn+1 + 5Fn
in which another pattern becomes obvious:
Fnek = FeFnprs FaFye (6.108)

This identity, easily proved by induction, holds for al integers k and n (pos-
itive, negative, or zero).
If wesetk =nin (6.108), we find that

Fon = FaFngrs Faoy Fa (6.109)
hence F;, is a multiple of F,. Similarly,

F3n = FonFnst + FanoaFa,
and we may conclude that Fy, is also a multiple of F,,. By induction,

Fin is a multiple of F,, (6.110)

for all integers k and n. This explains, for example, why F,; (which equals
610) is a multiple of both F; and Fs (which are equal to 2 and 5). Even more
is true, in fact; exercise 27 proves that

ng(Fm) Fn) - Fgcd(m,n) ' (6.111)

For example, ged(Fi2, Fig) = ged(144,2584) = 8 = Fq.

We can now prove a converse of (6.110): If n > 2 and if F, is a multiple of
F.., then mis amultiple of n. For if F,\F,, then F.\ gcd(Fp, F) = Fged(mn) <
F,. This 158 possible only if Fgca(mn) = Fn; @nd our assumption that n > 2
makes it mandatory that ged(m, n) = n. Hence n\m.

An extension of these divisibility ideas was used by Yuri Matijasevich in
his famous proof [213] that there is no agorithm to decide if a given multivari-
ate polynomia equation with integer coefficients has a solution in integers.
Matijasevich's lemma states that, if n > 2, the Fibonacci number F,, is a
multiple of FZ if and only if m is a multiple of nF,,.

Let's prove this by looking at the sequence (Fx, mod F2) for k = 1, 2,
3, ..., and seeing when F,, mod F2 = 0. (We know that m must have the
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form kn if F,, mod F, = 0. First we have F, mod FZ = Fy; that's not zero.
Next we have

Fan = FuFngy + FoogFo = 2FiFryy  (mod Fp),
by (6.108), since Fn41 = Fao1 (mod F). Smilaly
Faag1 = Fiy + F2 = F2, (mod F2).
This congruence allows us to compute

Fin FZTHL‘ Fo + FanFnoy

FéHFn + (ZFnFnH)FnH = 3F721+1FT1 (mOd FTZL);

F3n+l = F2n+1 Fn+1 + FZnFn
Fr31+l + (2FaFpg1 JFn = Fr31+1 (mod Fi) .

In general, we find by induction on k that

Fin = kFaFX] and Fenpr=FE, (mod F2).

Now Fn41 is reldively prime to F,, so

Fin = 0 (mod F2) & kF, = 0 (mod F2)
< k = 0 (mod F).

We have proved Matijasevich’'s lemma.

One of the most important properties of the Fibonacci numbers is the
special way in which they can be used to represent integers. Let's write

ik = j = k+2. (6.112)

Then every positive integer has a unique representation of the form

n=F,+Fk,+ +F, kKi>ke>»... >k >0 (6.113)

(This is “Zeckendorf's theorem” [201], [312].) For example, the representation
of one million turns out to be

1000000 832040 + 121393 + 46368 + 144 + 55

= Fo + Fs + Fuu + F; +Fy.

We can aways find such a representation by using a “greedy” approach,
choosing Fy, to be the largest Fibonacci number < n, then choosing Fy,
to be the largest that is < n = Fy,, and so on. (More precisely, suppose that
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F,. <n<Fyy; thenwehaveO <n =F < Fyy - Fr = Fe. 1. Ifnisa
Fibonacci number, (6.113) holds with r = 1 and k; = k. Otherwise n — F,
has a Fibonacci representation Fy, +- + Fy,, by induction on n; and (6.113)
holds if we set k; = k, because the inequalities F,, < n = F, < F ; imply
that k 3> k;.) Conversely, any representation of the form (6.113) implies that

Fk‘ S n< Fk|+] ,

because the largest possible value of F, +... + F, whenk »k; » ... »
k‘r > Ois

oot Feat o+ Fomod2i2 = oy =1, ifk>2 (6.114)

(This formula is easy to prove by induction on k; the left-hand side is zero
when k is 2 or 3.) Therefore k; is the greedily chosen value described earlier,
and the representation must. be unique.

Any unique system of representation is a number system; therefore Zeck-
endorf’s theorem leads to the Fibonacci number system. We can represent
any nonnegative integer n as a sequence of O’s and 1 ‘s, writing

N =(bpbyy. -.b2r & n =5 bF. (6.115)
k=2

This number system is something like binary (radix 2) notation, except that
there never are two adjacent 1’s. For example, here are the numbers from 1
to 20, expressed Fibonacci-wise:

I = (000001)~ 6 = (001001)¢ 11 = (010100)~ 16 =(100100)¢
2 = (000010)~ 7 = (001010)~ 12 = (010101)~ 17 = (100101)~
3 = (000100)~ 8 = (010000)¢ 13 = (100000)~ 18 = (101000)¢
4 = (000101)~ 9 = (010001)~ 14 = (100001)~ 19 = (101001)~
5 = (001000)~ 10 = (010010)~ 15 = (100010)~ 20 = (101010)~

The Fibonacci representation of a million, shown a minute ago, can be con-
trasted with its binary representation 21% + 218 4 217 + 216 4 214 + 29 + 26,

(1000000);0 = (10001010000000000010100000000)~
= (11110100001001000000)~.

The Fibonacci representation needs a few more bits because adjacent 1*s ae
not permitted; but the two representations are analogous.

To add 1 in the Fibonacci number system, there are two cases. If the
“units digit” is 0, we change it to 1; that adds F, = 1, since the units digit
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refers to F,. Otherwise the two least significant digits will be 01, and we
change them to 10 (thereby adding F;3 = F, = 1). Finaly, we must “carry”
as much as necessary by changing the digit pattern <011* to <100" until there
aenotwo I"s inarow. (This carry rule is equivaent to replacing Frmi1 + Fiy
by Fni2.) For example, to go from 5 = (1000)F to 6 = (1001)r or from
6= (1001 )rto 7 = (1010)¢ requires no carrying; but to go from 7 = (1010)¢

to 8 = (10000)r we must carry twice.

So far we've been discussing lots of properties of the Fibonacci numbers,
but we haven’'t come up with a closed formula for them. We haven't found
closed forms for Stirling numbers, Eulerian numbers, or Bernoulli numbers
either; but we were able to discover the closed form H, = [“;‘]/n! for har-
monic numbers. Is there a relation between F,, and other quantities we know?
Can we “solve” the recurrence that defines F,?

The answer is yes. In fact, there's a simple way to solve the recurrence by
using the idea of generating function that we looked at briefly in Chapter 5.
Let's consider the infinite series

F(z) = Fp + Fiz+ Fzzz 4+ = Z_Fnz“.

n20

(6.116)

If we can find a simple formula for F(z), chances are reasonably good that we
can find a smple formula for its coefficients F,.

In Chapter 7 we will focus on generating functions in detail, but it will
be helpful to have this example under our belts by the time we get there.
The power series F(z) has a nice property if we look at what happens when
we multiply it by z and by z?:

F@) = Fo+ Pz + Faz2 + F3z? + Fuz* + Fs2® + 000,
zF(z) = Foz + Fiz? + B2’ + Rz + B2’ 4 oo
2’F(z) = Foz? + F12d + Foz' + R’ 4.0,

If we now subtract the last two equations from the first, the terms that involve
22, 23, and higher powers of z will all disappear, because of the Fibonacci
recurrence. Furthermore the constant term Fo never actually appeared in the
first place, because Fy = 0. Therefore al that's left after the subtraction is
(Fy = Fo)z, which is just z. In other words,

F(z) — zF(z) — 2%F(z) = z,

and solving for F(z) gives us the compact formula

F(2) = ]___‘___

5 (6.117)
-z
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We have now boiled down all the information in the Fibonacci sequence
to a simple (although unrecognizable) expression z/( 1 — z - z2). This, believe
it or not, is progress, because we can factor the denominator and then use
patid fractions to achieve a formula that we can easly expand in power series.
The coefficients in this power series will be a closed form for the Fibonacci
numbers.

The plan of attack just sketched can perhaps be understood better if
we approach it backwards. If we have a simpler generating function, say
1/( 1 oz)where x is a constant, we know the coefficients of al powers of z,
because

!

= 1+oaz+o?22+a23+---.
1—oz

Similarly, if we have a generating function of the form A/( 1 —az) + B/( 1 — pz),
the coefficients are easily determined, because

L2 =AY (x2)"+B) (p2)"

+
1-az 1-Bz nz0 nx0

) (Aa™+BpMz. (6.118)

nz0

1l

Therefore all we have to do is find constants A, B, a, and B such that
A B 4

1-ocz+1-—[31 T le—z—22"

and we will have found a closed form Aa™ + BB" for the coefficient F,, of z"
in F(z). The left-hand side can be rewritten

A + B A—APz+B—-Baz
1—az 1-Pz (1—oz)(1—-Pz) '

so the four constants we seek are the solutions to two polynomia equations:

(1 —oz)(1—Bz) =1 — z—2%; (6.119)
(A+B)— (AR +Ba)z = 3. (6.120)

We want to factor the denominator of F(z) into the form (1 - «z){1 - Bz);
then we will be able to express F(z) as the sum of two fractions in which the
factors (1 = az) and (1 — z) are conveniently separated from each other.

Notice that the denominator factors in (6.119) have been written in the
form (1 - az) (1 ~ Bz), instead of the more usua form c(z - p;) (z = p2) where
p1 and p; are the roots. The reason is that (1 — az)( 1 — Bz) leads to nicer
expansions in  power Sseries.



As usual, the au-
thors can't resist
a  trick.

The ratio of one’s
height to the height
of one’s nave/ is
goproximately

1.618,  accord-

ing to extensive
empiricdl  observa-
tions by European
scholars /11 0].

6.6 FIBONACCI

We can find o« and f3 in several ways, one of which uses a slick trick: Let
us introduce a new variable w and try to find the factorization

w—wz—2 =W =az)lw PBz).
Then we can simply set w = 1 and we'll have the factorsof 1 7 — 72, The
roots of w?* wz z2= 0 can be found by the quadratic formula; they are

z4 V22 +4z22 1++5

z.
2 = 2
Therefore
et (- 1) (1)
Womwz—2t = (W 2 W 2

and we have the constants « and 5 we were looking for.

The number (1 + /5)/2 & 1.61803 is important in many parts of mathe-
matics as well as in the art world, where it has been considered since ancient
times to be the most pleasing ratio for many kinds of design. Therefore it
has a special name, the golden ratio. We denote it by the Greek letter ¢, in
honor of Phidias who is said to have used it consciously in his sculpture. The
other root (1 = v/5)/2= —1/¢ ~ =.61803 shares many properties of ¢, so it
has the special name ¢, “phi hat!” These numbers are roots of the equation
w? —w—1 =0,sowehave

' = v+, B = P41,

(More about ¢ and & later.)

We have found the constants x = ¢ and 3 = @ needed in (6.119); now
we merely need to find A and B in (6.120). Setting z = 0 in that equation
tells us that B = -A, so (6.120) boils down to

(6.121)

DA+ PA = 1.

The solution is A = 1 /(b — $) =1 /V/5; the partial fraction expansion of
(6.117) is therefore

1 1 1
F = =\ 7
(2] \/§<1 9z 1—Eﬁz>
Good, we've got F(z) right where we want it. Expanding the fractions into
power series as in (6.118) gives a closed form for the coefficient of z":

-9").

(6.122)

|
Fo = — (™
n \/g(cb

(This formula was first published by Leonhard Euler [91] in 1765, but people

forgot about it until it was rediscovered by Jacques Binet [25] in 1843)

(6.123)

NUMBERS 285
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Before we stop to marvel a our derivation, we should check its accuracy.
For n = 0 the formula correctly gives Fy = O; for n = 1, it gives F; =
(¢ — &)/V/5, which is indeed 1. For higher powers, equations (6.121) show
that the numbers defined by (6.123) satisfy the Fibonacci recurrence, so they
must be the Fibonacci numbers by induction. (We could also expand ¢
and §™ by the binomial theorem and chase down the various powers of v/5;
but that gets pretty messy. The point of a closed form is not necessarily to
provide us with a fast method of calculation, but rather to tell us how F,
relates to other quantities in mathematics.)

With a little clairvoyance we could simply have guessed formula (6.123)
and proved it by induction. But the method of generating functions is a pow-
erful way to discover it; in Chapter 7 we'll see that the same method leads us
to the solution of recurrences that are considerably more difficult. Inciden-
tally, we never worried about whether the infinite sums in our derivation of
(6.123) were convergent; it turns out that most operations on the coefficients
of power series can be justified rigorously whether or not the sums actually
converge [151]. Still, skeptical readers who suspect fallacious reasoning with
infinite sums can take comfort in the fact that equation (6.123), once found
by using infinite series, can be verified by a solid induction proof.

One of the interesting consequences of (6.123) is that the integer F, is
extremely close to the irrational number ¢"/4/5 when n is large. (Since & is
less than 1 in absolute value, ™ becomes exponentially small and its effect
is amost negligible.) For example, Fy,=55 and Fy; = 89 are very near

d)lO d)ﬂ
— ~ 5500364 and —= =~ 88.99775.

V5 V5

We can use this observation to derive another closed form,

o ]J o ]
Fo = |—=+ 3| = —= rounded to the nearest integer, .
T N
because $m/4/5 < § for dl. n > 0. When n is even, Fy is a little bit less

than ¢"/+/5; otherwise it is a little greater.
Cassini’s identity (6.103) can be rewritten

Fn+l Fn _ -1 )IL

Fn Faor  FaarFy

When nislarge, 1 /F,_1F, isvery smadl, soF, ., /F, must be very nearly the
same as F,/Fn_y; and (6.124) tells us that this ratio approaches ¢. In fact,
we have

Fasr = OFn+ 3™ . (6.125)




If the USA ever
goes metric, our
speed limit signs
will go from 55
mi/hr to 89 km/hr.
Or maybe the high.
way people will be
generous and let us

0o 0.

The “shift down"
rue changes n
tof(n/¢)and
the “shift up”
rue changes n
to f (ng) , where
0 =[x + 7'
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(This identity is true by inspection when n = 0 or n = 1, and by induction
when n > 1; we can also prove it directly by plugging in (6.123).) The ratio
Fui1/Fn isvery close to ¢, which it alternately overshoots and undershoots.

By coincidence, ¢ is also very nearly the number of kilometers in a mile.
(The exact number is 1.609344, since 1 inch is exactly 2.54 centimeters.)
This gives us a handy way to convert mentally between kilometers and miles,
because a distance of F,,; kilometers is (very nearly) a distance of F, miles.

Suppose we want to convert a non-Fibonacci number from kilometers
to miles; what is 30 km, American style? Easy: We just use the Fibonacci
number system and mentally convert 30 to its Fibonacci representation 21 +
8 + 1 by the greedy approach explained earlier. Now we can shift each number
down one notch, getting 13+ 5+ 1. (Theformer 1" was F;, sincek; > 0in
(6.113); the new ‘1’ is Fy.) Shifting down divides by ¢, more or less. Hence
19 miles is our estimate. (That's pretty close; the correct answer is about
18.64 miles) Similarly, to go from miles to kilometers we can shift up a
notch; 30 miles is approximately 34 + 13 + 2 = 49 kilometers. (That's not
quite as close; the correct number is about 48.28.)

It turns out that this “shift down” rule gives the correctly rounded num-
ber of miles per n kilometers for all n < 100, except in the cases n = 4, 12,
62, 75, 91, and 96, when it is off by less than 2/3 mile. And the “shift up”
rule gives either the correctly rounded number of kilometers for n miles, or
1 Kkm too mary, for al n < 126. (The only really embarrassing case is n = 4,
where the individual rounding errors for n = 3 + 1 both go the same direction
instead of cancelling each other out.)

6.7 CONTINUANTS

Fibonacci numbers have important connections to the Stern-Brocot
tree that we studied in Chapter 4, and they have important generalizations to
a sequence of polynomials that Euler studied extensively. These polynomials
are cdled continuants, because they are the key to the study of continued
fractions like

ao + - (6.126)
a +

a +

as +
Qg +
ab +

ab +
az
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The continuant polynomial K, (x1,x3,.. ., X,) has n parameters, and it
is defined by the following recurrence:

Ko() =1 )
Ki (x1) = x1;
Kn(xl,-.y‘Xn):Kn,](Xh---,Xn~1)xn+Knv2(x1»'- ., Xn-2). (6.127)

For example, the next three cases after X, (x) are

Ka{xy x2) = X3x3 + 1
K3(x1,%2,X3) = X1X2%3 + %1 +x 3 ;
Kalx1,%2,%3,%a) = X1%2X3X4 +X1X2 + X1%4 + X3%X4 + 1

It's easy to see, inductively, that the number of terms is a Fibonacci number:

Kn(1,1,...,1) = Fous . (6.128)

When the number of parameters isimplied by the context, we can write
smply ‘K’ instead of ‘K,', just as we can omit the number of parameters
when we use the hypergeometric functions F of Chapter 5. For example,
K(x1, x2) = Ka(x1, x2) = x;%2 + 1. The subscript n is of course necessary in
formulas like (6.128).

Euler observed that K(x;, xz,. . .,%n) Ccan be obtained by starting with
the product x1x; . . . x, and then striking out adjacent pairs xyxy4; in al
possible ways. We can represent Euler’s rule graphically by constructing all
“Morse code” sequences of dots and dashes having length n, where each dot
contributes 1 to the length and each dash contributes 2; here are the Morse
code sequences of length 4:

These dot-dash patterns correspond to the terms of K{x;,x;,x3, x4); a dot
signifies a variable that’s included and a dash signifies a pair of variables
that’s excluded. For example, . = . corresponds to x;xs.

A Morse code sequence of length n that has k dashes has n-2k dots and
n k symbols atogether. These dots and dashes can be arranged in (“;k)
ways, therefore if we replace each dot by z and each dash by 1 we get

n
—k
Knlz, 2,..,2) = Z (n 5 )z“‘Zk (6.129)

k=0
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We also know that the total nhumber of terms in a continuant is a Fibonacci
number; hence we have the identity

: — k
Foy1 = Z_ (nk ) (6.130)
k=0

(A closed form for (6.12g), generaizing the Euler-Binet formula (6.123) for
Fibonacci numbers, appears in (5.74).)

The relation between continuant polynomials and Morse code sequences
shows that continuants have a mirror symmetry:

K(Xnvn-tyXZyxl) = K(X]yXZV"'»xu)' (6.131)

Therefore they obey a recurrence that adjusts parameters at the left, in ad-
dition to the right-adjusting recurrence in definition (6.127):

Kn(xlv"-yxn) = X]Kr‘[ ](XZ»"-»XH) +Kn 2(X3,...’Xn]. (6132)

Both of these recurrences are special cases of a more general law:

Km+n(xl»---»mexm+1‘~~‘xm+n)
= Km(xhwwxm)Kn(merly---me+n)
+ K 1, coxm ) Ke 1(Xme2y o Xmgn ) (6.133)

This law is easily understood from the Morse code analogy: The first product
KKy, yields the terms of K., ., in which there is no dash in the [m, m + 1]
position, while the second product yields the terms in which there is a dash
there. If we set all the x's equal to 1, this identity tells us that F. .,y =
Fni1Frny1 + FmFn; thus, (6.108) is a specia case of (6.133).

Euler [90] discovered that continuants obey an even more remarkable law,
which generalizes Cassini’s identity:

Kmen(x1,..., Xm+n)Kk(Xm+l».,., Xm+k)
= Km+k(xlv. . .va+k)Kn(xm+lv-'-va+n)
e (K 0an s D Kn k1 (mgkt2h e Xman ). (6.134)

This law (proved in exercise 29) holds whenever the subscripts on the K's are
al nonnegative. For example, when k = 2, m = 1, and n = 3, we have

Kxy,x2,%3,%23 K(x2,x3) = K{x1,%2,%3) K(x2,%3,%x4) +1

Continuant polynomials are intimately connected with Euclid's algo-
rithm. Suppose, for example, that the computation of gcd(m, n) finishes
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in four steps:
ged(m, n) = ged(no, My np = m Ny o=n;
= ged(ng, ny n = nemodny = ny—qny;
= ged(ny, 3] ny = nymod n; = ny=(on;;
= geding, nal Ny = mymodng = My - g3nz;
= gcd(ng,0) = M4 0 = nymodng = M3 — dang.

Then we have

Ny = Ny K{jng ;
n3 = dang K(gq)ns;
nz = dsng +ng = K{qz, q4)ng;
(
(

I+

n = dany +n3 = K(gz,4d3,qs)n4
o= iy tny = K q],qz,qa,qnm

In general, if Euclid's algorithm finds the greatest common divisor d in k steps,
after computing the sequence of quotients qs, . . ., qx, then the starting num-
bers were K(q1,qz,.. -, qi)d and K(qz, . . ., gx)d. (This fact was noticed early
in the eighteenth century by Thomas Fantet de Lagny [190], who seems to
have been the first person to consider continuants explicitly. Lagny pointed
out that consecutive Fibonacci numbers, which occur as continuants when the
g's take their minimum values, are therefore the smallest inputs that cause
Euclid's algorithm to take a given number of steps.)

Continuants are also intimately connected with continued fractions, from
which they get their name. We have, for example,

! _ Klap,a1,az,0a3)
1 T Klay,az,a3)

(6.135)

a +—
275

The same pattern holds for continued fractions of any depth. It is easily
proved by induction; we have, for example,

K(a())a1ya2va3+]/a4) — K(a0|a1»a2va3va4)
Klar, az, a3 + 1/as) K(ay, az,a3,04)

because of the identity

Kn(xl»-.. y Xn—1,Xn +U)
= Kn(x1, ooy Xno1,%n) + Kaor (X, X021y (6.136)

(This identity is proved and generalized in exercise 30.)
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Moreover, continuants are closely connected with the Stern-Brocot tree
discussed in Chapter 4. Each node in that tree can be represented as a
sequence of L’s and R’s, say

ReoLOTRAZ[ @ ROn-2[%n) (6.137)

where @0 30 a1 31, a2 3L a3=21, . a2 21 ay,; 20 andnis
even. Using the 2 x 2 matrices L and R of (4.33), it is not hard to prove by
induction that the matrix equivalent of (6.137) is

( Kn_z(@r, ..., an_2) Knoi(ar, ... an_2,an 1) )

(6.138)
Kn,] (Clo, (1],. ey anfz) Kn(a()» i, ...,Qn-2, an*])

(The proof is part of exercise 80.) For example,

RaLbRCLd — bc+1 bcd+b+d ‘
abc+a+c abcd+ab+ad+cd+1

Finally, therefore, we can use (4.34) to write a closed form for the fraction in
the Stern-Brocot tree whose L-and-R representation is (6.137):

f(Rao '..Lan,1) — KTH—](G'O’G-])'-'»QTI*])])
Kn(a1)"'!aT‘LA1vI)

(6.139)

(This is “Halphen’s theorem” [143].) For example, to find the fraction for
LRRL we have a3 =0, a1= 1, a3 =2, a3 = 1, and n = 4; equation (6.139)
gives

K(0,1,2,1,1) _ K(2,1,1) K22 5
K(1,2,1,1) ~ K(1,2,1,1) ~ K(3,2) 7
(We have used the rule Kn(x1, ..., xq_1, %+ 1) = Ky 0,00 %01, %n, 1) tO

absorb leading and trailing I's in the parameter lists; this rule is obtained by
setting y = 1 in (6.136).)

A comparison of (6.135) and (6.139) shows that the fraction correspond-
ing to a general node (6.137) in the Stern-Brocot tree has the continued
fraction representation

f(R® ... L%1) =qy + ._ (6.140)
a; +

a +
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Thus we can convert a sight between continued fractions and the correspond-
ing nodes in the Stern-Brocot tree. For example,

f(LRRL) = O+

T+ —
2 + —1-T
1+ 7
We observed in Chapter 4 that irrational numbers define infinite paths
in the Stern-Brocot tree, and that they can be represented as an infinite
string of L’sand R’s. If the infinite string for ais Ree[ @1 R%2[ %3, . ., thereis

a corresponding infinite continued fraction

a=a+ : (6.141)

a +

a2 +

ag + 1
&+ —

This infinite continued fraction can also be obtained directly: Let ¢y = a and
fork>0let

(6.142)

Qe = o] ; X = ax+

The &@s are caled the “partial quotients’ of a. If a is rationa, say m/n,
this process runs through the quotients found by Euclid’s algorithm and then
stops (with a1 = 00).

Is Euler’s constant +y rational or irrational? Nobody knows. We can get ~ Or if they do,
partial information about this famous unsolved problem by looking for y in  they’re not talking.
the Stern-Brocot tree; if it's rational we will find it, and if it's irrational we
will find all the closest rational approximations to it. The continued fraction
for v begins with the following partia quotients:

k| o1 23456738
al 01 1T 2121 43

Therefore its Stern-Brocot  representation  begins LRLLRLLRLLLLRRRL . . : no
pattern is evident. Calculations by Richard Brent [33] have shown that, if -y
is rationa, its denominator must be more than 10,000 decimal digits long.
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Well, ¥ must be Therefore nobody believes that v is rational; but nobody so far has been able

irational,  becase  to prove that it isn't.
of a little-known

Einsteinian asser- Let's conclude this chapter by proving a remarkable identity that ties a lot
tion: “God does of these ideas together. We introduced the notion of spectrum in Chapter 3;
not throw huge h f o isth ltiset of b h . . stant

denominaors t espec_tr_um o _oclst e multiset of numbers |n«|, where & is a given constant.
the universe.” The infinite series

PR A A AR A A AR R

nzl

can therefore be said to be the generating function for the spectrum of ¢,
where ¢ = (1 + v/5)/2 is the golden ratio. The identity we will prove, dis-
covered in 1976 by JL. Davison [61], is an infinite continued fraction that
relates this generating function to the Fibonacci segquence:

(1—2) Z zinel (6.143)

Both sides of (6.143) are interesting; let's look first at the numbers [ng].
If the Fibonacci representation (6.113) of n is Fy, + ...+ F., we expect nd
to be approximately Fy, 11+ - ..+ Fi. 11, the number we get from shifting the
Fibonacci representation left (as when converting from miles to kilometers).
In fact, we know from (6.125) that

nd = Fii4 0t Fe41 = (@k' +, 4 fﬁk) ‘
Now § = —1/¢d and k; > --- > k, > 0, so we have

5+ B <o T g

-k

=t $F <o < 1

and $*' +- ..+ P* has the same sign as (-1) **, by a similar argument. Hence

Ind] = For - +Fge1= [k, (n) iseven]. (6.144)

Let us say that a number n is Fibonacci odd (or F-odd for short) if its least
significant Fibonacci bit is 1; this is the same as saying that k,(n) = 2.
Otherwise n is Fibonacci even (F-even). For example, the smallest F-odd
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numbers ae 1, 4, 6, 9 12, 14, 17, and 19. If k,(n) is even, then n = | is
F-even, by (6.114); similarly, if k,(n) is odd, then n — 1 is F-odd. Therefore

k,(n) is even & n 1lisF-even

Furthermore, if k,(n) is even, (6.144) implies that kr( [n(bj) = 2, if k(n) is
odd, (6.144) says that k. ( [nd]) = k,(n) + 1 Therefore k. ( [nd)) is aways
even, and we have proved that

|[ng] — 1 is always F-even.

Conversely, if m is any F-even number, we can reverse this computation and
find an n such that m + 1 == [n¢|. (First add 1 in F-notation as explained
earlier. If no carries occur, n is (m + 2) shifted right; otherwise n is (m + 1)
shifted right.) The right-hand sum of (6.143) can therefore be written

Z el = 4 Z z™[m is F-even] , (6.145)

nzl m20

How about the fraction on the left? Let's rewrite (6.143) so that the
continued fraction looks like (6.141), with al numerators 1

! 1-7
1 = = Z zlned. (6.146)
Z‘FO + nzl

|

2 F2 +

2z F +

(This transformation is a bit tricky! The numerator and denominator of the
original fraction having 2zf» as numerator should be divided by zf~- g
we stop this new continued fraction at 1/z , its value will be a ratio of

continuants,
Knt2(0,27Fe, z7F o0 27 ) _ Kalz™F, . .27 )
KTH'] (ZiFO)Z Fi yor -,ZiF") Kn+1 (Z_FO» Z_F1 . Z_Fn] ‘

as in (6.135). Let's look at the denominator first, in hopes that it will be
tractable. Setting Qq = Knp1Z(z,.. ,z fr),wefind Qo =1, Q;=1+ 277,
Q= 1+4+z" %2 9 =32 +2724+ 23424 and in general everything
fits beautifully and gives a geometric series

Qu=tl+z"+ 22+ + ;7 (Faa-1].
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The corresponding numerator is P, = K, (z ", . .., z F); this turns out to
be like Qn but with fewer terms. For example, we have

Ps = 2 it 2 T 4T 470 +z"2,

compared with Qs = 1 + z7' + ..+ z7'2 A closer look revedls the pattern
governing which terms are present: We have

14242425427 428421042

Ps
212

12
=z Z 2™ [m is F-even];
m=0

and in general we can prove by induction that

Frsz—1
P, = z! T MZZ z™ [m is F-even]
m=0
Therefore
P, Ll z" [mis Fever]
@ e

Taking the limit as n — oo now gives (6.146), because of (6.145).

Exercises
Warmups

1 What are the [‘;] = 11 permutations of {1,2,3,4} that have exactly two

cycles? (The cyclic forms appear in (6.4); non-cyclic forms like 2314 are
desired instead.)

2 There are m™ functions from a set of n elements into a set of m elements.
How many of them range over exactly k different function values?

3 Card stackersin the real world know that it's wise to alow a bit of slack
s0 that the cards will not topple over when a breath of wind comes aong.
Suppose the center of gravity of the top k cards is required to be at least
¢ units from the edge of the k + 1st card. (Thus, for example, the first
card can overhang the second by a most 1 —e units) Can we dill achieve
arbitrarily large overhang, if we have enough cards?

4 Express 1/1 + 1/3 +..- + 1/{Zn+1) in terms of harmonic numbers.

5  Explain how to get the recurrence (6.75) from the definition of U, (x, y)
in (6.74), and solve the recurrence.
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6

9
10

An explorer has left a pair of baby rabbits on an island. If baby rabbits
become adults after one month, and if each pair of adult rabbits produces
one pair of baby rabbits every month, how many pairs of rabbits are
present after n months ? (After two months there are two pairs, one of
which is newborn.) Find a connection between this problem and the “bee
tree” in the text.

Show that Cassini’s identity (6.103) is a special case of (6.108), and a
special case of (6.134).

Use the Fibonacci number system to convert 65 mi/hr into an approxi-
mate number of km/hr.

About how many square kilometers are in 8 square miles?

What is the continued fraction representation of &?

Basics

11

12

13

14
15

What is 3, (—1)*[;], the row sum of Stirling's cycle-number triangle
with alternating signs, when n is a nonnegative integer?

Prove that Stirling numbers have an inversion law analogous to (5.48):

om = T {per e i E [ e,

k k

The differential operators D = % and 4 = zD are mentioned in Chapters
2 and 5. We have
9 = 2D?+2D,

because 9*f(z) = 9zf'(z) = z&zf'(z) = 2*f"(2) + zf'(z), which is
(z2D?+2zD)f(z). Similarly it can be shown that 93 = 2°D3+322D2+zD.
Prove the general formulas

M = Z{z}szk,

k

DN = Z [:] (__])nfkﬁk)

k

for dl n > 0. (These can be used to convert between differential expres-
sions of the forms }_, axz*f'%/(z) and 3_, Bx*f(z), asin (5.109).)

Prove the power identity (6.37) for Eulerian numbers.

Prove the Eulerian identity (6.39) by taking the mth difference of (6.37).
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16 What is the general solution of the double recurrence
An‘O = dn [HZO] X AO.k = O, if k > O;
Ank = KAn1k+ An Tk=1. integers k, n,

when k and n range over the set of all integers?

17 Solve the following recurrences, assuming that ]E] is zero when n < 0 or
k<O

a 1 k _] n ) Ol TL, 2 .

18 Prove that the Stirling polynomials satisfy
(x+1)on(x+1) = (x=n)0n(x) +x0n_1(x)

19 Prove that the generalized Stirling numbers satisfy

FLndon /) - o e
3 X — n

- [tk x k x+k\ .
[ X }{X—n_;r_k}(*]) /(n+]> = O, lntegern>0‘

k=0

M>-

~
1l

20 Find a closed form for ¥, H*',

21 Show that if H, = an/by, where a, and b, are integers, the denominator
b, is a multiple of 2V'6™). Hint: Consider the number 2"/ ~TH 1.

22 Prove that the infinite sum

Z(%—k—]l—z>

k21

converges for al complex numbers z, except when z is a negative integer;
and show that it equals H, when z is a nonnegative integer. (Therefore we
can use this formula to define harmonic numbers H, when z is complex.)

23 Equation (6.81) gives the coefficients of z/(e* — 1), when expanded in
powers of z, What are the coefficients of z/(e? + 1 )? Hint: Consider the
identity (e* + 1)(e* — 1) = e?* — 1.
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24 Prove that the tangent number T>n.i is a multiple of 2". Hint: Prove
that all coefficients of Ton(x) and Tyn+1 (X) are multiples of 2™,

25 Equation (6.57) proves that the worm will eventually reach the end of
the rubber band at some time N. Therefore there must come a first
time n when he's closer to the end after n minutes than he was after
n 1 minutes. Show that n < %N,

26 Use summation by parts to evaluate S, = Y ;_, H/k. Hint: Consider
aso the related sum Y ', Hy_1/k.

2'7 Prove the ged law (6.111) for Fibonacci numbers.
28 The Lucas number L, is defined to be F,.y+ F,_;. Thus, according to
(6.109), we have F,, = F,L,. Here is a table of the first few values:

n1012345678910111213
Ln|2134711 18 29 47 76 123 199 322 521

a Use the repertoire method to show that the solution Q. to the gen-
eral recurrence

Qo = «; Qv = B; Qn = Qn+Qn2, n>1
can be expressed in terms of F, and L,.
b Find a closed form for L, in terms of ¢ and &.
29 Prove Euler's identity for continuants, equation (6.134).
30 Generalize (6.136) to find an expression for the incremented continuant
K(X1y -y Xme1,Xm + Y, Xmt1ye e+, Xn )y WhenT < m < n.
Homework exercises

31 Find a closed form for the coefficients |2| in the representation of rising
powers by falling powers:

oy

k

n ok

k|x_’ integer n > 0.

(For example, x* = x* 4 12x3 + 36x2 + 24x1, hence || = 36.).
32 In Chapter 5 we obtained the formulas
n+ky  /m+m+1 k m+1
)= ) e 2 ()= ()
by unfolding the recurrence (}) = ") + (7)) in two ways. What

ksm 0etm
k

identities appear when the analogous recurrence {1} =k{ "'} + {11}
is unwound?
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33 Table 250 gives the values of [5] and { }} What are closed forms (not
involving Stirling numbers) for the next cases, [3] and {}}?

34 What are (') and (72, if the basic recursion relation (6.35) is assumed
to hold for all integers k and n, and if () =0 for al k < O?

35 Prove that, for every ¢ > 0O, there exists an integer n > 1 (depending
on €) such that H, mod 1 <¢.

36 Isit possible to stack n bricks in such a way that the topmost brick is not
above any point of the bottommost brick, yet a person who weighs the
same as 100 bricks can balance on the middle of the top brick without
toppling the pile?

37 Express Z}T:”] (k mod m)/k(k + 1) in terms of harmonic numbers, as-
suming that m and n are positive integers. What is the limiting value
as n — oo?

38 Find the indefinite sum Y () (—1)%Hy 8k
39 Express ) ,_, HZ in terms of n and H,.
40 Prove that 1979 divides the numerator of Y 1*'V(—1)%"'/k, and give a

similar result for 1987. Hint: Use Gauss's trick to obtain a sum of
fractions whose numerators are 1979. See also exercise 4.

41 Evauate the sum

5 (L(m—kk)/zj)

k
in closed form, when n is an integer (possibly negative).

42 If Sis a set of integers, let S + 1 be the “shifted” set {x +1 X € §}.
How many subsets of {1,2, . ., n} have the property that S U (S+ 1) =
1,2,...,n+112

43 Prove that the infinite sum

N
+.01
+.002
+.0003
+.00005
+.000008
+.0000013

converges to a rational number.
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44 Prove the converse of Cassini’s identity (6.106): If k and m are integers

such that [m2—km—k?| = 1, then there is an integer n such that k = +F,
and m = £F, 4.

45 Use the repertoire method to solve the general recurrence

Xo = a X5 =B; Xn = Xno1 + Xno2+yn+5.

46 Wha are cos 36" and cos 72°7
47 Show that

n—1 _ n k
2" = ; (2k+1)5 '

and use this identity to deduce the values of F, mod p and F,.; mod p
when p is prime.

48 Prove that zero-valued parameters can be removed from continuant poly-
nomials by collapsing their neighbors together:

KTI(X])'-'yx'mf]loyxm.{-],...‘xn]
= Kno2(X1y -+ oy Xm—2, Xm-1HXm+1, Xm42, - - - Xn), lT<m<mn,

49 Find the continued fraction representation of the number ¥ ., 27t

50 Define f(n) for al positive integers n by the recurrence

£ = 1
f(2Zn) = f(n);
f2n+1) = f(n)+f(n+1).

a  For which n is f(n) even?
b  Show that f(n) can be expressed in terms of continuants.

Exam probl ems

51 Let p be a prime number.

a Provethat {?}=[}]=0 (mod p), for 1 <k < p.

b Provethat[";']=1 (mod p), for 1 < k<p.

¢ Provethat {2} =[* ] = 0 (mod p).

d Prove that if p >3 we have [5] =0 (mod p?). Hint: Consider pZ.
52 Let H, be written in lowest terms as an /by

a  Provethat p\bn & pXa|nsp), if p is prime.
b Finddl n> 0 such that a, is divisible by 5.
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53 Find a closed form for ¥ ™ (’;)“](—1)ka, when 0 < m < n. Hint:

54

55

56

57

58

59

60

Exercise 5.42 has the sum without the Hy factor.

Let n > 0. The purpose of this exercise is to show that the denominator
of B, isthe product of al primes p such that (p—1)\(2n).
a Show that S,(p) + [(p-)\m|is a multiple of p, when p is prime

and m > 0.
b  Use the result of part (a) to show that
-1
By, + Z Lp=h\en] = I, iS an integer.
P prime P

Hint: It suffices to prove that, if p isany prime, the denominator of
the fraction By, + [(p—1)\(2n)]/p is not divisble by p.

¢ Prove that the denominator of B,, is aways an odd multiple of 6,
and it is equal to 6 for infinitely many n.

Prove (6.70) as a corollary of a more general identity, by summing

200

and differentiating with respect to x.

Evduate 3, . () (=1)*k™*/(k—mijin closed form as a function of the
integers m and n. (The sum is over al integers k except for the value
k=m.)

The “wraparound binomial coefficients of order 5" are defined by

@) = O - (e mas) >

and (7)) = [k=0]. Let Qn be the difference between the largest and
smallest of these numbersin row n:

Qv = max ((2)) - B ((D) |

Find and prove a relation between Q,, and the Fibonacci numbers.

Find closed forms for 3_ ., Fiz"and y_ ., F3z". What do you deduce
about the quantity F3., 4F3 -~ F3 |7

Prove that if m and n are positive integers, there exists an integer x such
that F, = m (mod 3™).

Find all positive integers n such that either F, + 1 or F, — 1 is a prime
number.

nz0
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61 Prove the identity

n
Z_]_ :3—}:2"'1, integer n > 1.

What isy y_o1/F3.5:7

62 LetA, = ¢"+ ¢~"and By = ¢™ — o™
a  Find constants ¢ and B such that A,, = xA,_1+ BAn_2 and B, =
aBn_1+ BBn-z foradl n > 0.
b  Express A,, and B, in terms of F, and L, (see exercise 28).
¢ Provethat ) ¢ 41 /(Faks1+ 1) = Bo/Anyr.
d Findaclosed formfor 3} _;1/(Fas1 — 1)-

Bonus problems Bogus problems

63 How many permutations M7y ... 7, of {1,2,. .., n} have exactly k in-
dices j such that
a my <mforal { <j? (Suchj are called “left-to-right maximal')
b m; > j? (Such j are called “excedances!*)

64 What is the denominator of [,/ ], when this fraction is reduced to
lowest terms?

65 Prove the identity

Jlmjlf(tx]+,..+xnj)dx1. s = O}‘:i(kzl_'

0 0

66 Show that (7)) = 2(7), and find a closed form for ((3)).
67 Find a closed form for Y, k*Hnsx.

68 Show that the generalized harmonic numbers of exercise 22 have the
power series expansion

H, = ) (=)"HEzm T,

nz2
69 Prove that the generalized factorial of equation (5.83) can be written
eY?

[T(+5)e =5

k21

by considering the limit as n — oo of the first n factors of this infinite
product. Show that %(z!) is related to the general harmonic numbers of
exercise 22. .
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70 Prove that the tangent function has the power series (6.92), and find the
corresponding series for z/sin z and In( (tan z)/z).
71 Find arelation between the numbers T,, (1) and the coefficients of 1 /cos z.

72 What is —1)¥(™), the row sum of Eulers triangle with alternating
K k/

signs?
73 Prove that, for al integers n > 1,
z z z z
zeotz = —cot - — = tan

211 211 ‘21’ 71
2" -1
k —k
+ Z zin(cot Zznﬂ +cot z o ﬂ),
k=1

and show that the limit of the kth summand is 2z%/(z? — k?n?) for fixed k
asn — oo.

74 Prove the following relation that connects Stirling numbers, Bernoulli
numbers, and Catalan numbers:

= n+k (-Dk o (2n\ 1
Z{ }(n+k>k+1 h B“(n)n+1'

k=0

75 Show that the four chessboard pieces of the 64 = 65 paradox can also be
reassembled to prove that 64 = 63.

76 A sequence defined by the recurrence
A, =x, A =y, An = Anor + A

has A,,, = 1000000 for some m. What positive integers x and y make m
as large as possible?

77 The text describes a way to change a formula involving Fn 4, to a formula
that involves F, and F,41 only. Therefore it's natural to wonder if two
such “reduced” formulas can be equal when they aren’t identical in form.
Let P(x,y) be a polynomia in x and y with integer coefficients. Find a
necessary and sufficient condition that P(F,,,,F)=0fordl n> 0

78 Explain how to add positive integers, working entirely in the Fibonacci
number system.

79 Is it possible that a sequence (A,) satisfying the Fibonacci recurrence
A, = A1 + A,y can contain no prime numbers, if Ay and A, ae
relatively prime?
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80 Show that continuant polynomials appear in the matrix product
(o 1 > (0 1 ) (o 1 )
T x T %2/ 7"\ 1 xq
and in t} (determinant

a0 xJ T I il

a -1 xz A1 4. 1
det

Xn

81 Generdlizing (6.146), find a continued fraction related to the generating
function Y . zl"*), when « is any positive irrational number.

82 Let m and n be odd, positive integers. Find closed forms for

1 1
st —; S ——
mh= é Fomk+n + Fn ™= kZZO Fka+n —Fn

Hint: The sums in exercise 62 are S 3 = Sy ;.3 and Sy 3 =Sy ;.3

83 Let  be an irrational number in (0,1) and let a, ay, a3, . . . be the
partial quotients in its continued fraction representation. Show that
|D (¢, n) < 2whenn=K( ay,...,a) where D is the discrepancy

defined in Chapter 3.

84 Let Q, be the largest denominator on level n of the Stern-Brocot tree.
(Thus {Qq, Q1, Qz, Q3,Q4,...)=(1,2,3,5,8,. ..) according to the dia-
gram in Chapter 4.) Prove that Q, = Fns2.

85 Characterize all N such that the Fibonacci residues
{Fomod N, F; mod N, F; mod N, . ..}

form the complete set {0, 1,. . . , N — 1}. (See exercise 59.)
Research problems

86 What is the best way to extend the definition of {}'} to arbitrary real
values of n and k?

87 Let H, be written in lowest terms as an/bn, as in exercise 52.
a  Are there infinitely many n with 11 \a,?
b Are there infinitely many n with b, = lem(1,2,... ,n)? (Two such
values are n = 250 and n = 1000.)

88 Prove that Y and eY are irrational.
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89 Develop a generd theory of the solutions to the two-parameter recurrence

n—1

n —
‘k| = fon+ B+ v)["

+ (a'n + B’k+y’)’2_ ; ’ +n=kx=0], fornk=0,
assuming that H(‘| = Owhenn < 0 or k < 0. (Binomia coefficients,
Stirling numbers, Eunlerian numbers, and the sequences of exercises 17
and 31 are specia cases.) What specia values («, B,v, «’, B/,v’) yidd
“fundamental solutions” in terms of which the general solution can be
expressed?



Generating Functions

THE MOST POWERFUL WAY to deal with sequences of numbers, as far
as anybody knows, is to manipulate infinite series that “generate” those se-
guences. We've learned a lot of sequences and we've seen a few generating
functions; now we're ready to explore generating functions in depth, and to
see how remarkably useful they are.

7.1 DOMINO THEORY AND CHANGE

Generating functions are important enough, and for many of us new
enough, to justify a relaxed approach as we begin to look at them more closely.
So let’s start this chapter with some fun and games as we try to develop our
intuitions about generating functions. We will study two applications of the
ideas, one involving dominoes and the other involving coins.

How many ways T, are there to completely cover a 2 x n rectangle with
2 x 1 dominoes? We assume that the dominoes are identical (either because
they’re face down, or because someone has rendered them indistinguishable,
say by painting them all red); thus only their orientations-vertical or hori-
zontal-matter, and we can imagine that we're working with domino-shaped
tiles. For example, there are three tilings of a 2 x 3 rectangle, namely D, (B,
and Hl;s0 T; = 3.

To find a closed form for general T, we do our usual first thing, look at
small cases. When n = 1 there's obviously just one tiling, 0: and when n = 2
there are two, * | and El.

How about when n = 0; how many tilings of a 2 x O rectangle are there?
It's not immediately clear what this question means, but we've seen similar
situations before: There is one permutation of zero objects (namely the empty
permutation), so O! = 1, There is one way to choose zero things from n things
(namely to choose nothing), so (3) = 1. There is one way to partition the
empty set into zero nonempty subsets, but there are no such ways to partition

a nonempty set; so {7} = [n = 0]. By such reasoning we can conclude that

306

“Let me count the
ways. ”
-E. B. Browning
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there's just one way to tile a 2 x 0 rectangle with dominoes, namely to use
no dominoes; therefore Ty = 1. (This spoils the simple pattern T, = n that
holds when n = 1, 2, and 3; but that pattern was probably doomed anyway,
since Ty wants to be 1 according to the logic of the situation.) A proper
understanding of the null case turns out to be useful whenever we want to
solve an enumeration problem.

Let's look at one more small case, n = 4. There are two possibilities for
tiling the left edge of the rectangle-we put either a vertical domino or two
horizontal dominoes there. If we choose a vertical one, the partial solution is
[ and the remaining 2 x 3 rectangle can be covered in T; ways. If we choose
two horizontals, the partial solution H1J can be completed in T, ways. Thus
T, = T; + T, = 5. (The five tilings are [, 08, B, 80, and F3.)

We now know the first five values of T,:

n |
Tn |
These look suspiciously like the Fibonacci numbers, and it's not hard to see
why: The reasoning we used to establish T, = T3 + T, easily generalizes to

Tn = Tho1+ Ta_y, for n = 2. Thus we have the same recurrence here as for
the Fibonacci numbers, except that the initial values Ty = 1 and Ty = 1 are a
little different. But these initial values are the consecutive Fibonacci numbers
F, and F;, so the T's are just Fibonacci numbers shifted up one place:

01 2 3 4
1 1.2 35

To = Fasr, forn > 0.

(We consider this to be a closed form for Ty, because the Fibonacci numbers
are important enough to be considered “known!’ Also, F, itself has a closed
form (6.123) in terms of algebraic operations) Notice that this equation
confirms the wisdom of setting Ty = 1.

But what does all this have to do with generating functions? Well, we're
about to get to that -there’s another way to figure out what T, is. This new

b boldly go way is based on a bold idea. Let's consider the “sum” of all possible 2 x n
where no tiling s tjlings, for all n > 0, and call it T:
gone  before.

T=I1+0+0+B8+O+B+H+---. (7-1)

(The first term ‘I’ on the right stands for the null tiling of a 2 x O rectangle.)
This sum T represents lots of information. It's useful because it lets us prove
things about T as a whole rather than forcing us to prove them (by induction)
about its individual terms.

The terms of this sum stand for tilings, which are combinatorial objects.
We won't be fussy about what’s considered legal when infinitely many tilings
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are added together; everything can be made rigorous, but our goal right now
is to expand our consciousness beyond conventional algebraic formulas.

We've added the patterns together, and we can also multiply them-by
juxtaposition. For example, we can multiply the tilings 0 and B to get the
new tiling (8. But notice that multiplication is not commutative; that is, the
order of multiplication counts: (B is different from HI.

Using this notion of multiplication it's not hard to see that the null
tiling plays a specia role--it is the multiplicative identity. For instance,
IxB=BxI=H.

Now we can use domino arithmetic to manipulate the infinite sum T:

T = |4+0+0+B+M+B+H+:--
+0(1+0+04+8+--- ) +B(I+-0+T0+8+--+)
1+0T+8T. (7-2)

Every valid tiling occurs exactly once in each right side, so what we've done is

reasonable even though we're ignoring the cautions in Chapter 2 about “ab-

solute convergence!’ The bottom line of this equation tells us that everything | have agut fed-

in T is either the null tiling, or is a vertical tile followed by something else  ing that these

in T, or is two horizontal tiles followed by something else in T. f,uegse gsusronéor;-s
So now let’s try to solve the equation for T. Replacing the T on the left the’ dominoes are

by IT and subtracting the last two terms on the right from both sides of the small enough.

equation, we get
(I-O-E)T = 1. (7-3)
For a consistency check, here's an expanded version:

©0+0+8+ 00+ B+ <8+

-0 -0 -8 - 00 -0 - E -

- O-E-d1-E-80-88-8- -
!

Every term in the top row, except the first, is cancelled by a term in either
the second or third row, so our equation is correct.

So far it's been fairly easy to make combinatorial sense of the eguations
we've been working with. Now, however, to get a compact expression for T
we cross a combinatorial divide. With a leap of algebraic faith we divide both
sides of equation (7.3) by |--0-8 to get

Rk (7.4)
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(Multiplication isn't commutative, so we're on the verge of cheating, by not
distinguishing between left and right division. In our application it doesn’t
matter, because | commutes with everything. But let’s not be picky, unless
our wild ideas lead to paradoxes.)

The next step is to expand this fraction as a power series, using the rule

!
1-2z

= 14+z2+28+28+. ...

The null tiling 1, which is the multiplicative identity for our combinatorial
arithmetic, plays the part of 1, the usua multiplicative identity; and 0 4+ QO
plays z. SO we get the expansion

= 14+ (0+8)+ (0+B)* + (0+8)* +---
=14 (048) + (0+B+E+83)
+(I0+ 18+ [H + 8 + B0 + 8 + B+ B8 + - -

I-U-El

Thisis T, but the tilings are arranged in a different order than we had before.
Every tiling appears exactly once in this sum; for example, [EHIED appears
in the expansion of (0+8)7.

We can get useful information from this infinite sum by compressing it
down, ignoring details that are not of interest. For example, we can imagine
that the patterns become unglued and that the individual dominoes commute
with each other; then a term like (EEIED becomes 0* =°, because it contains
four verticals and six horizontals. Collecting like terms gives us the series

T = 14040+ 2?4+ 0 +202? +0* +30% =22 + 2% +--- .

The 20 o? here represents the two terms of the old expansion, (8 and &, that
have one vertical and two horizontal dominoes; similarly 302 =2 represents the
three terms 8, (H], and £0. We're essentialy treating [ and — as ordinary
(commutative) variables.

We can find a closed form for the coefficients in the commutative version
of T by using the binomia theorem:

= 2 22 23 P
Ty - e 0T 4 (04t +

f
>
WV
<
/N
Y o=
N’
=
a
(]
T
»
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(The last step replaces k-j by m; this is legal because we have (']‘) = 0 when
0 <k <j.) We conclude that (”jm) is the number of ways to tilea 2 x (j +2m)
rectangle with j vertical dominoes and 2m horizontal dominoes. For example,
we recently looked at the 2 x 10 tiling [EHIED, which involves four verticals
and six horizontals; there are (413) = 35 such tilings in al, so one of the terms
in the commutative version of T is 350%=°.

We can suppress even more detail by ignoring the orientation of the
dominoes. Suppose we don't care about the horizontal/vertical breakdown;
we only want to know about the total number of 2 x n tilings. (This, in
fact, is the number T, we started out trying to discover.) We can collect
the necessary information by simply substituting a single quantity, z, for
and . And we might as well aso replace | by 1, getting Now [I'mdis-

oriented.
1

T =355 (7.6)
This is the generating function (6.117) for Fibonacci numbers, except for a
missing factor of z in the numerator; so we conclude that the coefficient of z"
iNnTisFuyq.

The compact representations |/(1-0-8), I/(I-0—=?), and 1/(1—z—2%)
that we have deduced for T are called generating functions, because they
generate the coefficients of interest.

Incidentally, our derivation implies that the number of 2 x n domino
tilings with exactly m pairs of horizontal dominoes is (“T’n‘“). (This follows
because there are j = n  2m vertical dominoes, hence there are

j+my  /i+m\ _ /n—m

(5" =) = W)
ways to do the tiling according to our formula) We observed in Chapter 6
that (“;’1”‘) is the number of Morse code sequences of length n that contain
m dashes; in fact, it's easy to see that 2 x n domino tilings correspond directly
to Morse code sequences. (The tiling (EHIED corresponds to ‘+= =s¢ =o’)
Thus domino tilings are closely related to the continuant polynomials we
studied in Chapter 6. It's a small world.

We have solved the T, problem in two ways. The first way, guessing the
answer and proving it by induction, was easier; the second way, using infinite
sums of domino patterns and distilling out the coefficients of interest, was
fancier. But did we use the second method only because it was amusing to
play with dominoes as if they were algebraic variables? No; the real reason
for introducing the second way was that the infinite-sum approach is a lot
more powerful. The second method applies to many more problems, because,
it doesn't require us to make magic guesses.
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Let’s generalize up a notch, to a problem where guesswork will be beyond
us. How many ways U, are there to tile a 3 x n rectangle with dominoes?

The first few cases of this problem tell us a little: The null tiling gives
Uy = 1. There is no valid tiling when n = 1, since a 2 x 1 domino doesn't fill
a 3 x 1 rectangle, and since there isn't room for two. The next case, n = 2,
can easily be done by hand; there are three tilings, M, [, and B, so U; = 3.
(Come to think of it we already knew this, because the previous problem told
us that T3 = 3; the number of ways to tile a 3 x 2 rectangle is the same as the
number to tile a 2 x 3.) When n = 3, as when n = 1, there are no tilings. We
can convince ourselves of this either by making a quick exhaustive search or
by looking at the problem from a higher level: The area of a 3 x 3 rectangle is
odd, so we can't possibly tile it with dominoes whose area is even. (The same
argument obviously applies to any odd n.) Finally, when n = 4 there seem
to be about a dozen tilings; it's difficult to be sure about the exact number
without spending a lot of time to guarantee that the list is complete.

So let's try the infinite-sum approach that worked last time:

U=I+8+0+8+E+MI+HWB+E+T8+--. (7.7)

Every non-null tiling begins with either I, or 7 or B; but unfortunately the
first two of these three possibilities don’t simply factor out and leave us with
U again. The sum of all terms in U that begin with [}, can, however, be written
as LV, where

v=0+EO+H@+E+&+ -

is the sum of al domino tilings of a mutilated 3 x n rectangle that has its
lower left corner missing. Similarly, the terms of U that begin with ' can be
written [PA, where

A=p+@+B+B+a+ -

consists of all rectangular tilings lacking their upper left corner. The series A
is a mirror image of V. These factorizations alow us to write

u=1Il+Lv+pFA +H8U.

And we can factor V and A as well, because such tilings can begin in only
two ways:

V=0u-+g8yv,
A = gu+gA.
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Now we have three equations in three unknowns (U, V, and A). We can solve
them by first solving for V and A in terms of U, then plugging the results
into the equation for U:

V=i &)U, A=(-8)"y

U= +L(I-&)'0u+Fi-&)"gu+ Bu

And the final eguation can be solved for U, giving the compact formula

u= : .8
“LI-E 0 -FI-&)1 0 - B (#8)
This expression defines the infinite sum U, just as (7.4) defines T. | Jeaned in another
The next step is to go commutative. Everything simplifies beautifully — ¢l8s aout “regular

expressions” If 'm

when we detach all the dominoes and use only powers of 0 and o: not mistaken, we
can write
u = : u= @a
] —DZD(] |:|3)"]—UZL:J(]— D3)_] A:J3 +E§*U+E)'
3 in the language of
T—ao regular  expressions;
= (1- =23)2 =20 S0 there must be
some  connection
1-a%" between  regular
_ - expressons and  gen-
= 1-20s(1- =% grating  functions.
_ | N 20%o 404 =° N 8063 .
T 1= (1= (=235 T (1=-a3)7
2kp2k ok
= — 32kt
& (1-92°)
_ Z (m+2k)2kn2kmk+3m.
m
k,m=0

(This derivation deserves careful scrutiny. The last step uses the formula
(1 = w)y 2= 7 (™) w™, identity (5.56).) Let's take a good look at
the bottom line to see what it tells us. Firgt, it says that every 3 x n tiling
uses an even number of vertical dominoes. Moreover, if there are 2k verticals,
there must be at least k horizontals, and the total number of horizontals must
be k + 3m for some m > 0. Finaly, the number of possible tilings with 2k
verticals and k + 3m horizontals is exactly (™}2%)2.

We now are able to analyze the 3 x 4 tilings that left us doubtful when we
began looking at the 3 x n problem. When n = 4 the total areais 12, so we
need six dominoes altogether. There are 2k verticals and k + 3m horizontals,
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for some k and m; hence 2k + k + 3m = 6. In other words, k + m = 2.
If we use no verticals, then k = 0 and m = 2; the number of possibilities
is (#59)2° = 1. (This accounts for the tiling EH.) If we use two verticals,
then k = 1 and m = 1; there are ('7%)2" = 6 such tilings. And if we use
four verticals, then k = 2 and m = 0; there are (°%)22 = 4 such tilings,
making a total of 14 = 11. In generd if n is even, this reasoning shows that

k+ m = In, hence (”‘:lzk) = (:‘ﬁft) and the total number of 3 x n tilings is
— n/2+k k _ N—=M\,n2-m
Un = ;(n/Z—k)z - ;( m )2 ' (7:9)

As before, we can also substitute z for both [ and o, getting a gen-
erating function that doesn't discriminate between dominoes of particular
persuasions. The result is

! 1-23

U= —B3(0 —23) T =21 =23 T =23 = 1428 +2°° (7.10)

If we expand this quotient into a power series, we get
U=14+Uz2" +Uz®+Us2” +Ug2'?+---,

a generating function for the numbers U,. (There's a curious mismatch be-
tween subscripts and exponents in this formula, but it is easily explained. The
coefficient of 27, for example, is Ug, which counts the tilings of a 3 x 6 rectan-
gle. This is what we want, because every such tiling contains nine dominoes.)

We could proceed to analyze (7.10) and get a closed form for the coeffi-
cients, but it's better to save that for later in the chapter after we've gotten
more experience. So let's divest ourselves of dominoes for the moment and
proceed to the next advertised problem, “changel!’

How many ways are there to pay 50 cents? We assume that the payment

must be made with pennies @, nickels ®, dimes ®, quarters @), and half-
Ah yes, | remember  dollars . George Pélya [239] popularized this problem by showing that it
‘(’j\’gl‘legrg\’e hed half- can be solved with generating functions in an instructive way.

Let’s set up infinite sums that represent all possible ways to give change,
just as we tackled the domino problems by working with infinite sums that
represent all possible domino patterns. It's simplest to start by working with
fewer varieties of coins, so let’s suppose first that we have nothing but pennies.
The sum of all ways to leave some number of pennies (but just pennies) in
change can be written

P=/+0+00+000+ 0000 +
= /+0+@*+@+ 0%+,
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The first term stands for the way to leave no pennies, the second term stands
for one penny, then two pennies, three pennies, and so on. Now if we're
allowed to use both pennies and nickels, the sum of all possible ways is

N=P+®OP+OOP+OOOP+OOO®EOP+:--
= (/+0+@ +@'+®"'+--)P,

since each payment has a certain number of nickels chosen from the first
factor and a certain number of pennies chosen from P. (Notice that N is
notthesum /+ @+ ® + (@+ ®)? + (®+ ®)* + .. ., because such a
sum includes many types of payment more than once. For example, the term
(@ +E)7=00+ 00 + 0+ @@ treats @@ and GO as if they were
different, but we want to list each set of coins only once without respect to
order.)
Similarly, if dimes are permitted as well, we get the infinite sum

D = ($+@®@+0*+@*+@*+- )N,

which includes terms like @’®°0®° = @OBOEEEOO@OO®® when it is
expanded in full. Each of these terms is a different way to make change.
Adding quarters and then half-dollars to the realm of possibilities gives Coins of the ream.

Q= ($¥+®+@*+® +@®"+...)D;
C = ($+0+E*+’+6"'+--)Q.

Our problem is to find the number of terms in C worth exactly 50¢.

A simple trick solves this problem nicely: We can replace @ by z, ®
by 25, ® by z'°, @ by z2%, and (s9) by z°°, Then each term is replaced by z",
where n is the monetary value of the original term. For example, the term
C)®E®E® becomes 230+10+5+5+1 = ;71 The four ways of paying 13 cents,
namey ®®3, ®®8, ®?®3, and @', each reduce to z'3; hence the coefficient
of z!3 will be 4 after the z-substitutions are made.

Let P,, Ny, Dy, Qn, and C,, be the numbers of ways to pay n cents
when we're allowed to use coins that are worth at most 1, 5, 10, 25, and 50
cents, respectively. Our analysis tells us that these are the coefficients of z"
in the respective power series

P=1+z +22+ 22+ 2" +. .,
N=(14+2542°4+254204..)p,
D = (1429420420 4% 1. )N,
Q=(1 +284250+25+7%4...1D,
C

100 150

= (1+2°+2'%+230 4220 4..)Q.
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How many pennies  Obvioudly P, = 1 for al n > 0. And a little thought proves that we have
ae there, really? N, =|n/5] + 1: To make n cents out of pennies and nickels, we must choose
t';a'n“ 'szyfef‘;ﬁ,r gther Oor 1or . .. o |n/5] nickds after which theres only one way to supply
[ bet that P, 20 the requisite number of pennies. Thus P,, and N,, are smple; but the values
in the “real world”  of D, Qn, and C,, are increasingly more complicated.

One way to deal with these formulasisto realize that 1 + z™+ 22™ + - ..

isjust 1/(1=2z™). Thus we can write

P =1/(1—-2),
N = P/(1-2%),
D = N/(1 29,
Q = D/(1 %),
c = Q/(1-2").

Multiplying by the denominators, we have

(1—-2z)P =1,
(1 -2)N=P
(1-z"9YD = N
(1-2)Q= D
(1-2%C=Q

Now we can equate coefficients of z" in these equations, getting recurrence
relations from which the desired coefficients can quickly be computed:

P. = Pnf1 + [TIZO] ,
Ny = Nuos + Py,
Dn = Dpojo +Nn,
Qn = Qn-25 -t Dy,
Cn = Caso + Qn.

For example, the coefficient of 2" inD= (1 2z?)Q isequa to Qn — Qn_25;
so we must have Qn « Qn_25 = Dy, as claimed.

We could unfold these recurrences and find, for example, that Q, =
Dn+Dn_25+Dn_s50+Dn_zs+- -, Stopping when the subscripts get negative.
But the non-iterated form is convenient because each coefficient is computed
with just one addition, as in Pasca’s triangle.

Let’s use the recurrences to find Cso. First, Csp = Cy + Qs0; SO we want
to know Qso. Then Qsp = Q25 + Dsy, and Q25 = Qo + D35; so we also want
to know Dso and Djs. These D,, depend in turn on Dyg, Dig, Dy, Dis,
D19, Ds, and on N5, Ngs, ..., Ns. A simple calculation therefore suffices to
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determine all the necessary coefficients:

0O 5 10 15 20 25 30 35 40 45 &0

n
Phl2 212211 1 1 1 1 1

Nn [ 12345 6 7 8 9 10 11
Dn| 12 4 6 9 1216 25 36
Qn| 1 13 49
Ca| 1 50

The final value in the table gives us our answer, Cso: There are exactly 50 ways
to leave a 50-cent tip. (Not - counting  the
How about a closed form for C,? Multiplying the equations together ~ option of charging

i ; the tip to a oredit
gives us the compact expression Card.)P credi

1 1 l l !
C= T—z2]1—20 1207257 —20" (7.11)

but it's not obvious how to get from here to the coefficient of z". Fortunately
there is a way; we'll return to this problem later in the chapter.

More elegant formulas arise if we consider the problem of giving change
when we live in a land that mints coins of every positive integer denomination
(®,®,0),...) instead of just the five we allowed before. The corresponding
generating function is an infinite product of fractions,

1
a-2(0-2)(1-25)..."

and the coefficient of z" when these factors are fully multiplied out is called
p(n), the number of partitions of n. A partition of n is a representation of n
as a sum of positive integers, disregarding order. For example, there are seven
different partitions of 5, namely

5=441=3+2=34+1+1 =2424+1 =24+14+141 =1+14+1+4+141;

hence p(5) = 7. (Also p(2) = 2, p(3) = 3, p(4) = 5, and p(6) = 11; it begins
to look as if p(n) is aways a prime number. But p( 7) = 15, spoiling the

pattern.) There is no closed form for p(n), but the theory of partitions is a
fascinating branch of mathematics in which many remarkable discoveries have
been made. For example, Ramanujan proved that p(5n + 4) = 0 (mod 5),
p(7n+5 =0 (mod 7), and p(1 In+6) =0 (mod 1 1), by making ingenious

transformations of generating functions (see Andrews [11, Chapter 10]).
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Now let's look more closely at some of the techniques that make
power series powerful.
First a few words about terminology and notation. Our generic generat-
ing function has the form

G(z) = go+@iz+ gz’ +-+= ) gnz, (7.12)

n20

and we say that G(z), or G for short, is the generating function for the se-
quence {90,91,92,...W I¢ ve also call (gn). The coefficient g, of z"
in G(2) is sometimes denoted [2"'] G(2).

The sum in (7.12) runs over al n > 0, but we often find it more con-
venient to extend the sum over all integers n. We can do this by simply
regarding g 1= g = ... = 0. In such cases we might still talk about the
sequence (go, 91,9z, ... ), asif the gn’'s didn't exist for negative n.

Two kinds of “closed forms’ come up when we work with generating
functions. We might have a closed form for G(z), expressed in terms of z; or
we might have a closed form for g, expressed in terms of n. For example, the
generating function for Fibonacci numbers has the closed form z/(1 z  z2);
the Fibonacci numbers themselves have the closed form (¢™ — ") A/5. The
context will explain what kind of closed form is meant.

Now a few words about perspective. The generating function G(z) ap-
pears to be two different entities, depending on how we view it. Sometimes
it is a function of a complex variable z, satisfying all the standard properties
proved in calculus books. And sometimes it is simply a formal power series,

If physcists can gt with z acting as a placeholder. In the previous section, for example, we used
ﬁ"’ﬁ‘%’ S\I,JVrI';['Ir]&iI‘\I{]ig\SNigg the second interpretation; we saw several examples in which z was substi-
agwa/e and some- tuted for some feature of a combinatorial object in a “sum” of such objects.
times & a particle, The coefficient of z" was then the number of combinatorial objects having n
methemticians occurrences of that feature.

should be able to When we view G(z) as a function of a complex variable, its convergence

view generating ; o . )
functions in two becomes an issue. We said in Chapter 2 that the infinite series Zn>0 gnz"
different  ways. converges (absolutely) if and only if there's a bounding constant A such that

the finite sums % ,<n Ign2"| never exceed A, for any N. Therefore it's easy
to see that if ano gnz™ converges for some value z = zy, it also converges for
al z with |z| < |zol. Furthermore, we must have lim,_. Ignzj| = O; hence, in
the notation of Chapter 9, g, = O(|1/20|“) if there is convergence at z,. And
conversely if g, = O(M"), the series } , ., gnz" converges for al [z| < I/M.
These are the basic facts about convergence of power series.

But for our purposes convergence is usually a red herring, unless we're
trying to study the asymptotic behavior of the coefficients. Nearly every
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operation we perform on generating functions can be justified rigorously as
an operation on formal power series, and such operations are legal even when
the series don’t converge. (The relevant theory can be found, for example, in
Bell [19], Niven [225], and Henrici {151, Chapter 1].)

Furthermore, even if we throw all caution to the winds and derive formu-  Even if we remove
las without any rigorous justification, we generally can take the results of our  the tags from our
derivation and prove them by induction. For example, the generating func- mat tresses.
tion for the Fibonacci numbers converges only when |z| < 1/¢ & 0.618, but
we didn’'t need to know that when we proved the formula F, = (¢ ") A/5.

The latter formula, once discovered, can be verified directly, if we don't trust
the theory of formal power series. Therefore we'll ignore questions of conver-
gence in this chapter; it's more a hindrance than a help.

So much for perspective. Next we look at our main tools for reshaping
generating functions-adding, shifting, changing variables, differentiating,
integrating, and multiplying. In what follows we assume that, unless stated
otherwise, F(z) and G(z) are the generating functions for the sequences (f,)
and (gn). We also assume that the f,,’s and g,’s are zero for negative 1, since
this saves us some hickering with the limits of summation.

It's pretty obvious what happens when we add constant multiples of
F and G together:

aF(z) + BG(z) = ochnz“ + BZ gnz"
n n
= ) (ofy+Bgn)2". (7.13)

n
This gives us the generating function for the sequence (af, + fg,).
Shifting a generating function isn't much harder. To shift G(z) right by

m places, thet is, to form the generating function for the sequence (0,. . . |0,
G0,91,.--) = {gn_m) With m leading O's, we simply multiply by z™:
2"G(z) = Z gn 2" = Z gn-mz", integer m> 0. (7.14)
n n

This is the operation we used (twice), along with addition, to deduce the
equation (1 z — z?)F(z) = z on our way to finding a closed form for the
Fibonacci numbers in Chapter 6.

And to shift G(z) left m placesthat is, to form the generating function

for the sequence (gm, Gm+1, Gm+2,- . . ) = (gn+m) With the first m elements
discarded- we subtract off the first m terms and then divide by z™:
G(2)-90-9,z-. . . —Gm-12™"" _
(2)-g0-9 - Om 1 =) gnz" ™ = ) gnemz (7.25)
Z nzm nz0

(We can't extend this last sum over al nunless go=... =gm_1=0)
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Replacing the z by a constant multiple is another of our tricks:
Glez) = ) onlez)"= ) c"gnz™ (7.16)
n n

this yields the generating function for the sequence (c"g,). The specia case
c = -1 is particularly useful.

Often we want to bring down a factor of m into the coefficient. Differen-
tiation is what lets us ‘do that:

G@ = g +2022+3g32° +-- = ) (n+1)gnsiz", (7.17)
n

Shifting this right one place gives us a form that's sometimes more useful,
2G'(z) = ) ngnz" (7.18)
n

This is the generating function for the sequence (ng,). Repeated differentia-
tion would allow us to multiply g, by any desired polynomial in n.
Integration, the inverse operation, lets us divide the terms by n:

z
J G(t)dt = goz+ 1—9122 + 19223 +e = Zlgnqzn- (7.19)
0 2 3 nz1 n
(Notice that the constant term is zero.) If we want the generating function
for (gn/n) instead of {gn_1/m), we should first shift left one place, replacing
G(t) by (G(t) ~ go)/t in the integral.

Finally, here's how we multiply generating functions together:

F(z)G(z) (f0+f1l+f222+---)(g0+g]z+gzzz.+_...)

(fogo) + (fogr +1190)2 + (roge + f191 +f2g0)z? .+ +11

Z(Z fkgn,k) ", (7.20)

n

1

As we observed in Chapter 5, this gives the generating function for the se-
quence (hy), the convolution of (f,) and (gy). Thesum hn = 3, fign « can
also be written h, = ZL‘ZO fkgn—k, because f, =Owhenk <0 and gn-x =0
when k > n. Multiplication/convolution is a little more complicated than
the other operations, but it's very useful-so useful that we will spend all of
Section 7.5 below looking at examples of it.

Multiplication has several special cases that are worth considering as
operations in themselves. We've already seen one of these: When F(z) = z™
we get the shifting operation (7.14). In that case the sum h, becomes the
single term gn—m, because all fy’s are 0 except for fm = 1.



320 GENERATING FUNCTIONS

Table 320 Generating function manipulations.

aF(z) + BG(z) = ) (afy + Bgn)2"

n
™G(z) = Z L integer m > 0
—Qan — e — m-—1
Glz) - a0 g]sz Om_12 = > Gnimz", integer m > 0
n=0
G(cz) =

Z Cngn P
n
G'(z) = ) M+ Ngun 2°

0
z2G'(z) = ann z"
n

Z 1
[owa=y tgiz

0 nxl

FGE - Y (X fugeni )2
n k
1—126(2) = Z(Z Qk)ln

n k<n

Another useful special case arises when F(z) is the familiar function
1/(1—2) = 1+z+zz+~-; then all fx's (for k > 0) are 1 and we have
the important formula

]]_ZG(z) = Z(Zgnk)ln _ Z_(Z gk)zn, (7.21)

n k=0 n ‘kgn

Multiplying a generating function by 1/( |-z) gives us the generating function
for the cumulative sums of the original sequence.

Table 320 summarizes the operations we've discussed so far. To use
al these manipulations effectively it helps to have a healthy repertoire of
generating functions in stock. Table 321 lists the simplest ones; we can use
those to get started and to solve quite a few problems.

Each of the generating functions in Table 321 is important enough to
be memorized. Many of them are special cases of the others, and many of
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Table 321 Simple sequences and their generating functions.

sequence generating function closed form
— n
(1,0,0,0,0,0,..) nZO[n_O]z !
(0,...,0,1,0,0,...] m=m]z 2™
nz0
!
n
(LLLL,1L,T, 000 TL201 1.7
l
1,-1,1,-1,1,-1, ... —1)* 2"
( ) =1 42
n !
(1,0,1,0,1,0,.. .) 50 [2\n]z 5
!
1,0,... "
(1,0,...,0,1,0,...,0,1,0, | 11>,O[m\n]z o
!
L1zt
(1,2,3,4,5,6,...) néo(n J =27
(1,2,4,8,16,32,...)
(1,4,6,4,1,0,0,...) o @+2)
YOO MY Ty By My Py e TIZO n)

LW W)

El
WV

MMMMMMMMMMMMM MM
ab

n

n z
. —2Z €
> ano nl

WV
)

them can be derived quickly from the others by using the basic operations of
Table 320; therefore the memory work isn’t very hard.

For example,
function 1/( 1

let’s consider the sequence (1,2,3,4, . ), whose generating
z)? is often useful. This generating function appears near the
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middle of Table 321, and it's also the special casem = 1 of (1, (™), (™:%).

m

(™*3), ), which appears further down; it's also the special case ¢ = 2 of

the closely related sequence (1, ¢, ("), (°3?), . ). We can derive it from the
generating function for (1,1, 1, 1,..} by taking cumulative sums as in (7.21);

that is, by dividing 1 /(-2) by (2 —z). Or we can deriveitfrom (2 , 1, 1 , 1, . )

by differentiation, using (7.17).

The sequence (1, 0,1, 0, . ) is another one whose generating function can
be obtained in many ways. We can obviously derive the formula } 2 =
1/{ 1 z%)by substitutingz? for z in the identity y_ z*=1/( 1 = z); we can
dso gply cumulative summation to the sequence (1, -1 , 1, -1, . . . ), whose
generating function is 1/(1 + z), getting 1/(1 +z)(1 = z)= 1/(1 —z*). And
there’'s also a third way, which is based on a general method for extracting
the even-numbered terms{g¢, 0, g1, 0, g4,0, . . . ) of any given sequence: If we

add G(—z)to G(+z) we get

G+ G(— Z gn - z“ = ZZ gnin even]z";
n
therefore
G(z) -2 n
u+w — Zn O2n 22 i (7,22)

The odd-numbered terms can be extracted in a similar way,
G(z) - G(—z)

In the special case where ¢, = 1and G(z)=1/( 1 —z), the generating function
for (1,0,1,0,...) is }(G(z) + G(-2)) = (5 + =) = 757
Let's try this extraction trick on the generating function for Fibonacci

numbers We know that 3 Fuz™ = z/( 1z = 2%); hece
1 z —z
2n _ _
;FZ”Z - 2(}1 —z-2z? - 1 +Z‘~ZZ))
\zt+22mpdm g+t + 23 2
) (1—z8)2 - 22 = 1-3z22+2*
This generates the sequence {Fg, 0, F2,0, F4,. . . ); hence the sequence of alter-

nate F's, (Fo,F2,F4,Fg,...) = (0,1,3,8,...), has a simple generating function:

z
Fopz = —04 .
% n® 1—3z2+427 (7:24)

OK, OK, I'mcon-
vinced already
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Now let's focus our attention on one of the most important uses of
generating functions: the solution of recurrence relations.

Given a sequence (g, ) that satisfies a given recurrence, we seek a closed
form for g, in terms of n. A solution to this problem via generating functions
proceeds in four steps that are almost mechanical enough to be programmed
on a computer:

1 Write down a single equation that expresses g, in terms of other elements
of the sequence. This equation should be valid for all integers n, assuming
that gi1=9g-2= = 0.

2  Multiply both sides of the equation by z" and sum over al n. This gives,
on the left, the sum ), gnz", which is the generating function G (z). The
right-hand side should be manipulated so that it becomes some other
expression involving G (z).

3 Solve the resulting equation, getting a closed form for G (z).

4 Expand G(z) into a power series and read off the coefficient of z"; thisis
a closed form for gn.

This method works because the single function G(z) represents the entire

sequence (gy) in such a way that many manipulations are possible.

Example 1. Fibonacci numbers revisited.

For example, let's rerun the derivation of Fibonacci numbers from Chap-
ter 6. In that chapter we were feeling our way, learning a new method; now
we can be more systematic. The given recurrence is

go =0; a = 1;
9n = Gn-1t0gn-2, forn> 2

We will find a closed form for g,, by using the four steps above.
Step 1 tells us to write the recurrence as a “single equation” for g». We
could say

0, fn<0;
On = {1) if n=1;
gn-1+0Qn-2, ifn>1

but this is cheating. Step 1 really asks for a formula that doesn’t involve a
case-by-case construction. The single equation

On = On1tgn:

works for n > 2, and it also holds when n < 0 (because we have go = 0
and Qpegative = 0). But when n = 1 we get 1 on the left and O on the right.
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Fortunately the problem is easy to fix, since we can add [n = 1] to the right;
this adds 1 when n = 1, and it makes no change when n # 1. So, we have

On = Gn-1 +Gn2+[n=1];

this is the equation called fo:r in Step 1.
Step 2 now asks us to transform the equation for (g,) into an equation
for G(z)= )_, gnz". The task is not difficult:

Gz2) = ) gn2" = ) gn2"+) gn22'+) [n=1i"
n n n n

D oz Y gnz™ 4+ 2

n n

2G(z) + 2%G(z) + z

Step 3 is also simple in this case; we have

z
Z = -
& 2) 1w-z-—22’
which of course comes as no surprise.
Step 4 is the clincher. We carried it out in Chapter 6 by having a sudden
flash of inspiration; let's go more slowly now, so that we can get through
Step 4 safely later, when we meet problems that are more difficult. What is

z
n

27 1-z-22"

the coefficient of z" when z/(1 z  z%)is expanded in a power series? More
generally, if we are given any rational function

where P and Q are polynomials, what is the coefficient [z"] R(2)?
There’'s one kind of rational function whose coefficients are particularly
nice, namely

+ n_n
——_(1m;)m+l =) (m n)GP z (7.25)

m
nz0

(The case p = 1 appears in Table 321, and we can get the general formula
shown here by substituting pz for z.) A finite sum of functions like (7.25),
ay a; ay

S - — L — .26
(Z) = (] - p1z)m1+l 1 (] —pzz)mz+1 + + (1 —plz)ml+‘ , (72 )
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also has nice coefficients,
m; +n
Z"S(z2) = m(‘“‘*“)p%az( 2 )pz‘
my my

m1+n) n

eora(MIM el ()

We will show that every rational function R(z) such that R(0) # oc can be
expressed in the form

R(z) = 5(z) tT(z), (7.28)

where §(z) has the form (7.26) and T(z) is a polynomial. Therefore there is a
closed form for the coefficients [z"] R(z). Finding S(z) and T(z) is equivalent
to finding the “partial fraction expansion” of R(z2).

Notice that S{z) = oo when z has the values 1/p1, . .., 1/pi. Therefore
the numbers p, that we need to find, if we're going to succeed in expressing
R(z) in the desired form S(z) + T(z), must be the reciprocals of the numbers
o, where Q(ax) = 0. (Recall that R(z) = P(z)/Q(z), where P and Q are
polynomials;, we have R(z)= oo only if Q{z) = 0)

Suppose Q(z) has the form

Qz) =aqo+agiz+---+gqmz™, whereqy#ZOandqm # O.
The “reflected” polynomial

Qf(z) = doz™+ qiz™ ' 4+ O
has an important relation to Q (z):

QR(z) =delz  pi)... (2 = py)
& Qz) = qll —p1z)...(1 —pmz)
Thus, the roots of QR are the reciprocals of the roots of Q, and vice versa
We can therefore find the numbers py we seek by factoring the reflected poly-
nomia QFR(z).
For example, in the Fibonacci case we have

Qiz)= 1 —z—-2%; QR(z) = 22—z—1.

The roots of QR can be found by setting (a, b, ¢) = (1, -1, -1) in the quad-
ratic formula (-b 4 v/ b2 —4ac)/2a; we find that they are

145 -5
2 2

Therefore QR(z) = (z— d)(z— &) and Q(z)= (1 —d2)(1 - P2).

(b:

and 613:1
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Once we've found the p's, we can proceed to find the partia fraction
expansion. It's simplest if all the roots are distinct, so let's consider that
special case first. We might as well state and prove the general result formally:

Rational Expansion Theorem for Distinct Roots.
If R(z) = P(z)/Q(z), where Q(z) = go(1 m2z)... (1 piz) and the

numbers (p1, . . ., p1) are distinct, and if P(z) is a polynomial of degree less
than 1, then
—pxP(1/px)
Z'R(z) = aip}+--+ap,  whereay- ——=——  (7.20)
o P Qe
Proof: Let ay, . , ., a; be the stated constants. Formula (7.2g) holds if R(z) =

P(z)/Q(z) is equal to

= A 4B
1—p12 1=z

S(z)

And we can prove that R(z) = S(z) by showing that the function T(z) =
R — S(z) is not infinite as z — 1 /px. For this will show that the rational  Impress your par-
function T(z) is never infinite; hence T(z) must be a polynomial. We also can gggi bé’ Iea‘;’t"gthtige
show that T(z) — 0 asz — co; hence T(z) must be zero. page. per

Let o = 1/py. To prove that lim, .4, T(z) # oo, it suffices to show that
lim, .4 (z — o)T(z) = O, because T(z) is a rational function of z. Thus we
want to show that

lim (z = o )R(z) = lim (z = &x)S(2) .
z—r 0k zZ—r Oty
The right-hand limit equals lim,_, ax(z— ou)/{1~ pxz) = —ax/pk, because
(1 = pxz)= —pylz— ) and (z — ayx)/(1 ~ psz) = O for j # k. The left-hand
limit is
. P(z) LT o Plo)
1 - =P 1 = ,
A g T M IRRE T Qe
by L'Hospital’s rule. Thus the theorem is proved.
Returning to the Fibonacci example, we have P(z) = z and Q{z) =
1=z-2=(1 ~o¢2z)(1 dz);hence Q' (2) = -1 = 2z, and

—eP(/p) _ -1 _ _p
Q'(1/p) -1 -2/p p+2’

According to (7.29), the coefficient of ¢™ in [2"] R(z) is therefore ¢/(d +2) =
1/V/5; the coefficient of " is 3/(® + 2) = —1A/5. So the theorem tells us
that F, = (¢" = d")/V/5, as in (6.123).
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When Q(z) has repeated roots, the calculations become more difficult,
but we can beef up the proof of the theorem and prove the following more
general result:

General Expansion Theorem for Rational Generating Functions.

If R(z) = P(z)/Q(z), where Q(z) = qo(1 = pyz)d . .. (1 = pyz)4t and the
numbers (p1,. . , p;) are distinct, and if P(z) is apolynomial of degree less
than d;+ ... +d, then

[2"] R(z) = fi(n)p]+ -+ fi(n)p foral n >0, (7.30)
where each f,(n)isapolynomia of degreed, — 1 with leading coefficient

(—px) ¥ P(1/py)dk
Qa1 (1/py)
P(1/py)

@ ao L a0/ (7.31)

axy =

This can be proved by induction on max(d;, ..., d;), using the fact that

ar(di — 1)1 ai(d, ~1)!

R(Z)-’ (] — p122)d' . (] _ p[Z)dl

is a rational function whose denominator polynomial is not divisible by
(1 = pyz)9 for ay k.

Example 2: A more-or-less random recurrence.
Now that we've seen some general methods, we're ready to tackle new
problems. Let’'s try to find a closed form for the recurrence

go =g =1
On = Gno1+2gn-2+ (1", forn>2 (7.32)

It's always a good idea to make a table of small cases first, and the recurrence

lets us do that easily:
A(/g%q%
n |0 1 3 4 5 6 7 X

2
-nf1r-r1 -1 1 =1 1 - e /
On 1T 1 4 5 14 23 52 97

No closed form is evident, and this sequence isn't even listed in Sloane’s
Handbook [270]; so we need to go through the four-step process if we want
to discover the solution.
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Step 1 is easy, since we merely need to insert fudge factors to fix things
when n < 2: The equation

On = Gn1 +2gn2+ (-1)"n=0] 4+ [n=1]

holds for all integers n. Now we can carry out Step 2:

= ) gnz* = ) gnoiz" +qun 2t + "y Y
By Z‘ nZ>o ,; N.B.: The upper
index on 3
= 2G(z) + 22°G(2) + +z. is not mlssmg'

z

(Incidentally, we could also have used (*‘) instead of (-1)" [n > 0], thereby
getting 3 (7, ) = (1 +z)'by the binomial theorem.) Step 3 is elementary
algebra, Which yields

142(1+2;) T4z + 22
T +2)(1 —2-222) T (1 —-22)(1+2)%

And that leaves us with Step 4.

The squared factor in the denominator is a bit troublesome, since we
know that repeated roots are more complicated than distinct roots; but there
itis. We have two roots, p1=2 and p; = -1; the general expansion theorem
(7.30) tells us that

G(z)

gn = a12" + (an + c)(—=1)"
for some constant c, where

W o 1124147 . 1-1+1 1
YT+ = 9 P= 122/~ =13"

(The second formula for a, in (7.31) is easier to use than the first one when

the denominator has nice factors. We simply substitute z = 1 /py everywhere
in R(z), except in the factor where this gives zero, and divide by (dy — 1 )!; this
gives the coefficient of ndx—pl.) Plugging in n = O tells us that the value of
the remaining constant ¢ had better be 2 ; hence our answer is

gn = 32+ (In+3) - (7.33)

It doesn’t hurt to check the casesn =1 and 2, just to be sure that we didn’t
foul up. Maybe we should even try n = 3, since this formula looks weird. But
it's correct, al right.

Could we have discovered (7.33) by guesswork? Perhaps after tabulating
a few more values we may have observed that g, ~ 2g, when n is large.
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And with chutzpah and luck we might even have been able to smoke out
the constant g But it sure is simpler and more reliable to have generating
functions as a tool.

Example 3: Mutually recursive sequences.

Sometimes we have two or more recurrences that depend on each other.
Then we can form generating functions for both of them, and solve both by
a simple extension of our four-step method.

For example, let’s return to the problem of 3 x n domino tilings that we
explored earlier this chapter. If we want to know only the total number of
ways, U,, to cover a 3 x n rectangle with dominoes, without breaking this
number down into vertical dominoes versus horizontal dominoes, we needn’t
go into as much detail as we did before. We can merely set up the recurrences

U():l, U1:0; VOZO, V]:],
U, =2V 1+ Una,  Vi=U, 14 Va2, forn>2

Here V,, is the number of ways to cover a 3 x n rectangle-minus-corner, using
(3n = 1)/2 dominoes. These recurrences are easy to discover, if we consider
the possible domino configurations at the rectangle’s left edge, as before. Here
are the values of U, and V; for small n:

nlo123 45 6 7 e
U, 103011 0 41 0 X (7.34)
Vol 01T 0 4 0 15 0 56

Let's find closed forms, in four steps. First (Step 1), we have

Uy, = 2Vp 1+ Uy, = [n=0], Vo = Uy +Vaoz,
for al n. Hence (Step 2),

U@ = 2zV(z) + 22Uz) + 1, V() = zU(z) + z*V(z)

Now (Step 3) we must solve two equations in two unknowns; but these are
easy, since the second equation yields V(z)= zU(z)/{1 - z%); we find
1-22 z
U = - - _ V zZ — .
(2 1—4z2 + 247 (z) 1=4z2 424 (7:35)

(We had this formula for U(z) in (7.10), but with 2} instead of z?. In that
derivation, n was the number of dominoes; now it's the width of the rectangle.)

The denominator 1 — 4z% + z* is a function of z%; this is what makes
Uznsr = 0 and V,, = 0, as they should be. We can take advantage of this
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nice property of z% by retaining z2 when we factor the denominator: We need
not take 1 — 4z2 + 2% &l the way to a product of four factors (1 = pxz), since
two factors of the form (1 pyz?) will be enough to tell us the coefficients. In
other words if we consider the generating function

W(z) = = Wo+Wiz+Wpz2 +-.0 (7.36)

1—4z+2?
we will have V(z)= zW(z?) and U(Z) = (1 = z2)W(z%); hence Vini1= W,
and Uy = W, —W, _ ;. We save time and energy by working with the simpler
function W(z2).

The factors of 1 —4z+2% are (z—2—+/3) and (z-2+&), and they can
also be written (1 = (2+v/3)z) and (1 - (2—\/§)z) because this polynomial
is its own reflection. Thus it turns out that we have

Vins1 = Wn = 31_%\/-2(2+\/§)n+3_2\/§(2_\/§)n;
SV 3—/3
UZT\ = WTI _Wn_] = +6\/_ (2+\/§)n + 6\/_ (2_\/§)n

2+V3)r + (2-V3)"
= 3 - a 3+\/§
This is the desired closed form for the number of 3 x n domino tilings.
Incidentally, we can simplify the formula for U,, by realizing that the

second term always lies between 0 and 1. The number U,, is an integer, so
we have

(7.37)

(24+V3)"
3—V3

In fact, the other term (2 -- v/3)%/(3 + v/3) is extremely small when n is

large, because 2 ~ V3 & 0.268. This needs to be taken into account if we

try to use formula (7.38) in numerical caculations. For example, a fairly

expensive name-brand hand calculator comes up with 413403.0005 when asked

to compute (2 + v/3)'%(3 = v/3). This is correct to nine significant figures;

but the true value is dlightly less than 413403, not dlightly greater. Therefore

it would be a mistake to take the ceiling of 413403.0005; the correct answer,

U,y = 413403, is obtained by rounding to the nearest integer. Ceilings can  I've known slippery
be hazardous. floors 100,

Example 4: A closed form for change.

When we left the problem of making change, we had just calculated the
number of ways to pay 50¢. Let's try now to count the number of ways there
are to change a dollar, or a million dollars-still using only pennies, nickels,
dimes, quarters, and halves.

Uyn = [ -I , forn > 0. (7.38)
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The generating function derived earlier is

1 1 ! ! !
Clz) = 2z 2 F—zlo 225 L ;5!

this is a rational function of z with a denominator of degree 91. Therefore
we can decompose the denominator into 91 factors and come up with a 91-
term “closed form” for C,, the number of ways to give n cents in change.
But that's too horrible to contemplate. Can't we do better than the general
method suggests, in this particular case?

One ray of hope suggests itself immediately, when we notice that the
denominator is almost a function of z3. The trick we just used to simplify the
calculations by noting that 1 — 42% + z* is a function of 2z can be applied to
C(), if wereplace 1/(1 —z)by (1 +z+ 2%+ 2> +2%)/(1 — 2%):

C@) = d——tzrz2+23 +2% | 1 1 !
125 T — 20 T =210 ] —255 ] = 750

= (1+z+224+ 22 +24C(2%),
11 1 1 |
1—z1l—21—-221-201-210"

Clz) =

The compressed function C{z) has a denominator whose degree is only 19,
so it's much more tractable than the original. This new expression for C(z)
shows us, incidentally, that Cs, = Csnt1 = Csny2 = Csnys = Csnyg; and
indeed, this set of equations is obvious in retrospect: The number of ways to
leave a 53¢ tip is the same as the number of ways to leave a 50¢ tip, because
the number of pennies is predetermined modulo 5.
Now we're dso But C(z) till doesn’t have a really simple closed form based on the roots
geting compressed  of the denominator. The easiest way to compute its coefficients of C(z) is
feasoning probably to recognize that each of the denominator factors is a divisor of
1 —2'% Hence we can write
Alz)

‘@ (T where A(z) = Ag+ Az + -+ A2, (7.39)

The actua value of A(z), for the curious, is

At+z+-+2)P0+2 4 +25(1+2°)
= 1 +2z+42% +62° +92° + 132 + 182° + 24727
+ 3128 4 3927 + 45210 + 52211 4 57212 4 6323 + 6721 + 69,15
+6921% + 6727 + 632" +572'% 4 52,20 1 45221 + 39,22 4 31,23
+ 2427 11825 + 13270 + 978 + 6228 14277 12230 + 22 .



332 GENERATING FUNCTIONS

Finally, sincel/(1 —z'%)° = Zk>0 (kf‘) 10k “we can determine the coefficient

of Ch=1z ]C(]asfollowswhenn 1 0q +rand0 T < 10

CWOqH — ZAi(kILl)“Oq"'r:]Ok_f—j]
K
= A7) + A0 (F) + Arao (77 + Aveso (1) (7-40)

This gives ten cases, one for each value of r; but it's a pretty good closed
form, compared with alternatives that involve powers of complex numbers.

For example, we can use this expression to deduce the value of Csgoq =
Cioq. Then v = 0 and we have

Q+4) q+3 q+2 41

Cs0q - 4 2 q

0q ( 4 + 5< 4 +5 < 4 +2< A )

The number of ways to change 50¢ is (}) +45(}) = 50; the number of ways

to change $1 is (§) +45(3) + 52(}) = 292, and the number of ways to change
$1,000,000 is

2000004\ | (2000003} _ , (2000002)  , (2000001
4 4 4 4
= 66666793333412666685000001.

Example 5: A divergent series.
Now let's try to get a closed form for the numbers g defined by

gn = MOn-1, for n > 0.

After staring at this for a Sew nanoseconds we realize that g is just n!; in Nowadays peo-
fact, the method of summation factors described in Chapter 2 suggests this  Ple are talking
answer immediately. But let’s try to solve the recurrence with generating Lemtoseconds.
functions, just to see what happens. (A powerful technique should be able to
handle easy recurrences like this, as well as others that have answers we can’t
guess so easily.)

The equation

In = MGn1 + [n:()]

holds for al n, and it leads to
G(z) = Zgnz“: }:ngn_lzn—l-Zz“.
n n n=0

To complete Step 2, we want to express ) ng, ;z" in terms of G(z), and the
basic maneuvers in Table 320 suggest that the derivative G'(z) = }_,, ngnz" ‘



“This will be quick.”
That's what the
doctor said just
before he stuck me
with that needle.
Come to think of it,
“hypergeometric”
sounds a lot like
“hypodermic.”
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is somehow involved. So we steer toward that kind of sum:

G(z) =1 +Z(n+ gn 2™

n
1+ Z ng, 2™+ Z gn 2"
n a

1 +2*G'(z) + zG(z).

il

Let’s check this equation, using the values of g, for small n. Since

G=1+4+z422%2+62+24z% + ...,

G = V44 +182 49623+,
we have
222G’ = 224423 +182° +962° + -+ -,
2G = z4+zE +22+ 620 +242° + ...,
1 = 1.

These three lines add up to G, so we're fine so far. Incidentally, we often find
it convenient to write ‘G’ instead of ‘' G(z)'; the extra ‘(z)’ just clutters up the
formula when we aren’'t changing z.

Step 3 is next, and it's different from what we've done before because we
have a differential equation to solve. But this is a differential equation that
we can handle with the hypergeometric series techniques of Section 5.6; those
techniques aren’t too bad. (Readers who are unfamiliar with hypergeometrics
needn’t worrv- this will be quick.)

First we must get rid of the constant ‘1’, so we take the derivative of
both sides:

G = (zG'42G + 1)’ = (226G’ +2°G") + (G +2G)
= 22G" +32G' +G.

The theory in Chapter 5 tells us to rewrite this using the 4 operator, and we
know from exercise 6.13 that

8G = 2G’, #G = 22G” +2G’.
Therefore the desired form of the differential equation is
9G = z29°G+228G+2G = (D +1)%G.

According to (5.109), the solution with go = 1 is the hypergeometric series
F(1,1;552).
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Step 3 was more than we bargained for; but now that we know what the
function G is, Step 4 is easy-the hypergeometric definition (5.76) gives us
the power series expansion:

G(z) = F(L]‘z) = Zﬁjzn = Zn!z”

n=0 nz0

We've confirmed the closed form we knew al along, gn = n!.

Notice that the technique gave the right answer even though G(z) di-
verges for all nonzero z. The sequence n! grows so fast, the terms In! z"|
approach oo as N — oo, unless z = 0. This shows that formal power series
can be manipulated algebraically without worrying about convergence.

Example 6: A recurrence that goes ail the way back.

Let’s close this section by applying generating functions to a problem in
graph theory. A fun of order n is a graph on the vertices {0, 1, ..., n} with
2n ~ 1 edges defined as follows: Vertex 0 is connected by an edge to each of
the other n vertices, and vertex k is connected by an edge to vertex k + 1, for
1 <k < n. Here, for example, is the fan of order 4, which has five vertices
and seven edges.

4

3

2
0 !
The problem of interest: How many spanning trees f, are in such a graph?
A spanning tree is a subgraph containing all the vertices, and containing
enough edges to make the subgraph connected yet not so many that it has
a cycle. It turns out that every spanning tree of a graph on n + 1 vertices
has exactly n edges. With fewer than n edges the subgraph wouldn't be
connected, and with more than n it would have a cycle; graph theory books
prove this.

There are (Z“n”) ways to choose n edges from among the 2n 1 present

in a fan of order n, but these choices don’t always yield a spanning tree. For
instance the subgraph

4

3

Iz

0 !
has four edges but is not a spanning tree; it has a cycle from 0 to 4 to 3 to 0,

and it has no connection between {1,2} and the other vertices. We want to
count how many of the (Z“’ 1) choices actually do yield spanning trees.

n



7.3 SOLVING RECURRENCES 335

Let’s look at some small cases. It's pretty easy to enumerate the spanning

4 Jo4 S
D N B B S B

f,:l fz— 3—8

(We need not show the labels on the vertices, if we always draw vertex 0 at
the left.) What about the case n = O? At first it seems reasonable to set
fo = 1; but we'll take fy = 0, because the existence of a fan of order O (which
should have 2n = 1 = -1 edges) is dubious.

Our four-step procedure tells us to find a recurrence for f, that holds for
al n. We can get a recurrence by observing how the topmost vertex (vertex n)
is connected to the rest of the spanning tree. If it's not connected to vertex 0,
it must be connected to vertex n 1, since it must be connected to the rest of
the graph. In this case, any of the f,,_ | spanning trees for the remaining fan
(on the vertices 0 through n ~ 1) will complete a spanning tree for the whole
graph. Otherwise vertex n is connected to 0, and there’'s some number k < n
such that vertices n, n- 1, . . , k are connected directly but the edge between
k and k = 1 is not in the subtree. Then there can't be any edges between
Oand{n=1,..., Kk}, or there would be a cycle. If k = 1, the spanning tree
is therefore determined completely. And if k > 1, any of the f,_; ways to
produce a spanning treeon {0, 1,... , k =1} will yield a spanning tree on the
whole graph. For example, here’'s what this analysis produc&e when n = 4:

k=4 k=3
The general equation, valid for n > 1, is

fn=fn~l+fn71+f‘r\—2+fn73+.__+f1+1_

(It almost seems as though the ‘1’ on the end is f, and we should have chosen
fo = 1; but we will doggedly stick with our choice.) A few changes suffice to
make the equation valid for all integers n:

fro = fooy + Z f, + [n>0] . (7.41)

k<n
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This is a recurrence that “goes al the way back” from f,_, through dl pre-

vious values, so it's different from the other recurrences we've seen so far

in this chapter. We used a specia method to get rid of a similar right-side
sum in Chapter 2, when we solved the quicksort recurrence (2.12); namely,

we subtracted one instance of the recurrence from another (fyq = fn). This
trick would get rid of the ) now, asiit did then; but we'll see that generating

functions allow us to work directly with such sums. (And it's a good thing

that they do, because we will be seeing much more complicated recurrences
before  long.)

Step 1 is finished; Step 2 is where we need to do a new thing:

F(z) = anzn an71Z“+kaz”[k<n] +Z[n>0]z“
n n k,n n

1—2
k n

Z

- m
- ZF(2) + F(Z)Zz +1

m>0
z Z
= zF(z) + F(z) T + 17

The key trick here was to change 2" to z* z"~; this made it possible to express
the value of the double sum in terms of F(z), as required in Step 2.
Now Step 3 is ssimple algebra, and we find

z

F&l g

Those of us with a zest for memorization will recognize this as the generating
function (7.24) for the even-numbered Fibonacci numbers. So, we needn’t go
through Step 4; we have found a somewhat surprising answer to the spans-
of-fans  problem:

fn = Fon | forn>0. (7.42)

7.4 SPECIAL GENERATING FUNCTIONS

Step 4 of the four-step procedure becomes much easier if we know
the coefficients of lots of different power series. The expansions in Table 321
are quite useful, as far as they go, but many other types of closed forms are
possible. Therefore we ought to supplement that table with another one,
which lists power series that correspond to the “special numbers’ considered
in Chapter 6.
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Table 337 Generating functions for special numbers.

oo +
-z "7 = Z(Hm+“‘Hm)<mnn)Z“ (1.43)

eZZ 1 - TLZ;an’% (7.44)

1 (Fm]+Fn}:T1Z)z+(_1)mzz = ) P’ (7.45)
GRS =20 —2Zzn)1...(1 D Z{:L}Zn (7.47)
=224 1) (z4m—1) = y [:jz (7.48)

(2~ 1)” = m!n;o {:I}Z‘T (7.49)

- (7-50)

[
(rs) = SR}/ (7)o
(1 —Ze—z>m = Zof%[m:}/(m:) (7.52)

!

e”wz = (n)wmi
=, m ! (7.53)

(e*—1) n z"
- - >o{m}me (7'54)

! _ nj 2t
T—27 = &, H whor (7.55)

l-w _ n\ ,z"
W T <m>W o (7.56)
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Table 337 is the database we need. The identities in this table are not
difficult to prove, so we needn't dwell on them; this table is primarily for
reference when we meet a new problem. But there’s a nice proof of the first
formula, (7.43), that deserves mention: We start with the identity

! x+n\ .
(1 Az)x+? Zn< n )Z

and differentiate it with respect to x. On the left, (1 - z)”"1 is equal to
eltNIn0/1=2)] /s d/dx contributes a factor of In(1/(1 = z)). On the right,
the numerator of (*1")is (x +n) . .. (x + 1), and d/dx splits this into n terms
whose sum is equivalent to multiplying (*!™) by

l l

— = H
x+n+ +X+T x+n Hx-

Replacing x by m gives (7.43). Notice that Hyin  H, is meaningful even
when X is not an integer.

By the way, this method of differentiating a complicated product — leav-
ing it as a product-is usually better than expressing the derivative as a sum.
For example the right side of

d n 1
E;((X+n) k1)

)
= noo. ! _TI_
(x+n) (et 1) (x+n+ +x+1)

would be a lot messier written out as a sum.
The general identities in Table 337 include many important special cases.
For example, (7.43) simplifies to the generating function for H, when m = O:

1 | n
:1111—_‘-—2 = ;an . (757)

This equation can also be derived in other ways; for example, we can take the
power series for ln(l/( 1 z)) and divide it by 1 = z to get cumulative sums.

Identities (7.51) and (7.52) involve the respective ratios {,.™, }/(™.")
and [[™.] /(™ "), which have the undefined form O/O when n > m. However,
there is a way to give them a proper meaning using the Stirling polynomials
of (6.45), because we have

e/ ()
e/ ()

(=™ n!Imo,(n—m); (7.58)

i

n!'mo,(m). (7,59)



7.4 SPECIAL GENERATING FUNCTIONS 339

Thus, for example, the case m = 1 of (7.51) should not be regarded as the
power series Y, (z"/nN{,’ }/(), but rather as

7
ra

s o L : :
In(1+ z) Z( z)top(n—1)= 1 +727ﬁ22+"~.

nz0

Identities (7.53), (7.55), (7.54), and (7.56) are “double generating func-
tions” or “super generating functions” because they have the form G (w, z) =
2 mn 9mawW"z". The coefficient of w™ is a generating function in the vari-
able z; the coefficient of z" is a generating function in the variable w.

7.5 CONVOLUTIONS

I dways  thought The convolution of two given sequences {fs, f; ,..) = {(fa) and
e (90,01, )= {9x)is the sequence (fodo, fogr+ f1go, . )= (L fuons).
p We have observed in Sections 5.4 and 7.2 that convolution of sequences cor-

my brain when I S i : - . .
try to do a proof. responds to multiplication of their generating functions. This fact makes it

easy to evaluate many sums that would otherwise be difficult to handle.

Example 1: A Fibonacci convolution.

For example, let's try to evaluate ZE:O F Fo-x in closed form. This is
the convolution of (F,) with itself, so the sum must be the coefficient of z"
in F(z)?, whereF(z) isthe generating function for (F,). All we haveto dois
figure out the value of this coefficient.

The generating function F(z) isz/(1—z—z?%), aquotient of polynomials; so
the general expansion theorem for rational functions tells us that the answer
can be obtained from a partial fraction representation. We can use the general
expansion theorem (7.30) and grind away; or we can use the fact that

F(z)? = <_]_( o] ))2
VT —¢z T-3z
1 ] 2 1
N 5((1~¢z32 T -9 (1~asz>2>

= ;—)Z(n+1)¢“ “—éZFn+]zn+%Z(n+l)$“zn.

nz0 nz0 nz0

Instead of expressing the answer in terms of ¢ and §, let's try for a closed
form in terms of Fibonacci numbers. Recalling that ¢ + § = 1, we have

1 1
o P = [z“](l_(bz s ]&SZ)
"] 2-(d+d)z i 2-z

= (1T=oz)(1 $z) = 1—z—22

= ZFH+1 - Fn .
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Hence
Z (N+1)(2Fppr = ZFn+1z
nz0 n>0

and we have the answer we seek:

n

nF - (n+1F,
E FFix = il 5 (7.60)
k=0

For example, when n = 3 this formula gives FoF; + FF;, + F;Fp + FFy =
0+ 1 +1 +0=2 on the left and (6F; —4F3)/5 . ={(18 —8)/5 =2 on the right.

Example 2: Harmonic convolutions.
The efficiency of a certain computer method called “samplesort” depends
on the value of the sum

k 1
Thn = Z (m) m—t integers m,n = 0.

0<k<n

Exercise 5.58 obtains the value of this sum by a somewhat intricate double
induction, using summation factors. It's much easier to realize that Tmn is
just the nth term in the convolution of ((?), (w) (2), .. ) with (0, ! T 2, Co)

Both sequences have simple generating functions in Table 321:

n)n z™ AN 1
= e Y= = .
Z(m (1 —z)mt &n 1—2

n=0

Therefore, by (7.43),

" ! . ! 1
Tnn = H(_ )m+1 =" g —pm

= to-Ha )

In fact, there are many more sums that boil down to this same sort of
convolution, because we have

1 1 1 1 L

: = |
(1=z)H In 1—z (1=2z)" (1 —z)r+s+2 n 1-2

for al r and s. Equating coefficients of z" gives the general identity

r+k\ /s+n—%k
§< k )( n—k )(Hr+k_Hr)
B (r+s+n+1

n ) (Hr—+—s+n+1 - Hr+s+l) (7'61)
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Beca use its so This seems almost too good to be true. But it checks, at least when n = 2
harmonic.
(r+])<s+1‘) 1 r+2\(s+0 1 1
— + — +
1 1T /Jr+1 2 0 T+2 r+1

<T+s+3)( 1 N 1
= 2 T+s+3 14542

Special cases like s = 0 are as remarkable as the general case.
And there’s more. We can use the convolution identity

Z (rtk)(siri;k) _ (T+s—;n+1>

k

to transpose H, to the other side, since H, is independent of k:

Z T+ky/s+n—k H
- k n—k r+k
T+s+n+1

n

) (Hr+s+n+l - Hr+s+l + Hr) . (762)

There's still more: If v and s are nonnegative integers 1 and m, we can replace

(" by () and (*TM) by (™*17F); then we can change k to k- | and

nton-m=-—1, getting

ky /m—k n+1
0<1)< m )Hk = (L+m+])(Hn+1“Hl+m+1+Hl),

integers 1, m, n = 0. (7.63)

M=

~
I

Even the special case 1 = m = 0 of this identity was difficult for us to handle
in Chapter 2! (See (2.36).) We've come a long way.

Example 3: Convolutions of convolutions.
If we form the convolution of (f,) and (g,), then convolve this with a
third sequence (h,), we get a sequence whose nth term is

2 fiah.
j+k+l=n

The generating function of this three-fold convolution is, of course, the three-
fold product F(z) G(z) H(z). In a similar way, the m-fold convolution of a
sequence ( gn) with itself has nth term equal to

) P DR

ki+ky+o+kp=n

and its generating function is G(z)™.
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We can apply these observations to the spans-of-fans problem considered
earlier (Example 6 in Section 7.3). It turns out that there's another way to
compute fn, the number of spanning trees of an n-fan, based on the config-
urations of tree edges between the vertices {1,2,. .., n}: The edge between
vertex k and vertex k + 1 may or may not be selected for the subtree; and
each of the ways to select these edges connects up certain blocks of adjacent  Concrete blocks.
vertices. For example, when n = 10 we might connect vertices {1,2}, {3},
{4,5,6,7}, and {8,9,10}:

10
I
8
7
6

5
4

3
oo I

How many spanning trees can we make, by adding additional edges to ver-
tex O? We need to connect O to each of the four blocks; and there are two
ways to join 0 with {1,2}, one way to join it with {3}, four ways with {4, 5, 6,7},
and three ways with {S, 9, 10}, or2 1 -4-3 = 24 ways atogether. Summing
over al possible ways to make blocks gives us the following expression for the
total number of spanning trees:

fo = 3 Y kika ... K. (7.64)

m>0 ky +k2+-+kn=n
k. ka,..o, Km >0
Forexample, fy =4+3-14+2-2+1-342-1-14+1-2.14+1-1-241-1-1-1 =21,
This is the sum of m-fold convolutions of the sequence (0, 1,2,3,. . . ), for
m=1,2,3,....hence the generating function for (f,.) is

G(z)

Fz) = 6@+ G2+ 6P+ = ;=

where G(z) is the generating function for (0, 1,2,3,...), namely z/(1 = z)%.
Consequently we have
z z

F = =
(z) (1—2z)2—2z 1—3z+2%"°

as before. This approach to (f,,) is more symmetrical and appealing than the
complicated recurrence we had earlier.
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Example 4. A convoluted recurrence.
Our next example is especialy important; in fact, it's the “classic exam-
ple’ of why generating functions are useful in the solution of recurrences.
Suppose we have n + 1 variables xg, x1, . . . , X, whose product is to be
computed by doing n multiplications. How many ways C, are there to insert
parentheses into the product x -x; . . . .-x, SO that the order of multiplication is

completely specified? For example, when n = 2 there are two ways, xo- (X] *x2 )
and (xo-x1) . x2. And when n = 3 there are five ways,
X0 (x1+(x2-x3)), xo-((x1-%2)x3), (xo-x1)-(x2-x3),

(xo-(x1-%x2))-x3, ({x0-x1)-%2)-x3

ThusC; =2, C;=5; weasohave C;=1and Cy = 1.

Let’s use the four-step procedure of Section 7.3. What is a recurrence
for the C's? The key observation is that there's exactly one ‘. ' operation
outside al of the parentheses, when n > 0; this is the find multiplication
that ties everything together. If this . ' occurs between x, and x,.,, there
are C, ways to fully parenthesize xo-. . . . x, and there are C,,_; ; ways to
fully parenthesize xy 1. . . . xn; hence

Ch = CoCrh1+CiChn+---+C1Co, ifn>0.

By now we recognize this expression as a convolution, and we know how to
patch the formula so that it holds for al integers n:

Ch = ZCkCnflvk + In=0J. (7'65)

k

Step 1 is now complete. Step 2 tells us to multiply by z" and sum:

C(z) = Z Cnz"
n
=Y GGz + A
kn n=0
= Z CkaZ Cn717kzn7k + 1
k n
= C(z) - zC(z) + 1.

Lo and behold, the convolution has become a product, in the generating-
The authors jedt. function world. Life isfull of surprises.
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Step 3 is aso easy. We solve for C(z) by the quadratic formula:
Clz) = 1+ ,/2; —4z

But should we choose the + sign or the  sign? Both choices yield a function
that satisfies C(z) = zC(z)2 41, but only one of the choices is suitable for our
problem. We might choose the + sign on the grounds that positive thinking
is best; but we soon discover that this choice gives C(0) = oo, contrary to
the facts. (The correct function C(z) is supposed to have C(0) = Cy = 1.)
Therefore we conclude that

1-J1-42
- 2z '

Finaly, Step 4. What is [z"] C(2)? The binomia theorem tells us that

=g = 3 (1) a0 ‘1+sz( V) e

k=0

C(z)

hence, using (5.37),

-4 _ Zl(’—1/2>(_4z)k1

2z k-1
k=1
-1/2 z)" 2n\ z"
_Z< >n+1 _Z(n>n+1'
nz0 nz0

The number of ways to parenthesize, Cy,, is (") =5

We anticipated this result in Chapter 5, when we introduced the sequence
of Catalannumbers (1,1,2,5,14,.. . ) = (C). This suence aiss in dozas
of problems that seem at first to be unrelated to each other [41], because
many situations have a recursive structure that corresponds to the convolution
recurence  (7.65).

For example, let’s consider the following problem: How many sequences
{a1,a2..., az) of +1's ad -1"s have the propaty thet

and have dl their partia sums
ar, (l]+(12, Q,]+a2+...+a2n

nonnegative? There must be n occurrences of +1 and n occurrences of -1.
We can represent this problem graphically by plotting the sequence of partial

S the convo-
luted recurrence
has led us to an
oft-recurring con-
volution.
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sums s, = Y ¢_; a; as a function of n: The five solutions for n = 3 are

INA AAA

These are “mountain ranges’ of width 2n that can be drawn with line seg-
ments of the forms /and \ It turns out that there are exactly C, ways to
do this, and the sequences can be related to the parenthesis problem in the
following way: Put an extra pair of parentheses around the entire formula, so
that there are n pairs of parentheses corresponding to the n multiplications.
Now replace each '. 'by +1 and each ') ' by -1 and erase everything else.
For example, the formula x;- ((x\ -x2) - (X3 -X4)) corresponds to the sequence
(41,+1,=1,41,41,-1,—1,=1) by this rule. The five ways to parenthesize
X0 ' X1 X2+ X3 correspond to the five mountain ranges for n = 3 shown above.

Moreover, a dlight reformulation of our sequence-counting problem leads
to a surprisingly simple combinatorial solution that avoids the use of gener-
ating functions: How many sequences {ag, aj, d;z,..., ) of +1's and -1"s
have the property that

+a+a2+... +aQp=1,

when al the partia sums

Qop, a0+a]) a0+a1+a21 a0 +(11+..+a2n

are required to be positive? Clearly these are just the sequences of the pre-
vious problem, with the additional element q; = +1 placed in front. But
the sequences in the new problem can be enumerated by a simple counting
argument, using a remarkable fact discovered by George Raney [243] in 1959:
If (x1,%2,..., X,) is any sequence of integers whose sum is+1, exactly one of
the cyclic shifts

(X],Xz,..-,xm>, (XZV"')meX1)) vy (Xm)X]V'"Xm*1>

has all of its partidl sums positive.  For example, consider the seguence
(3, —5,2, —2,3,0). Its cyclic shifts are

(3, —5,2,'—2‘3,0> ('2v3|0\3v_5!2)
<_5y2y ‘2!3! 0)3) (3v0)3a _512’ ‘2) \/
(2, -2,3,0,3, -5) <Ov3v _5a2| _2)3>

and only the one that's checked has entirely positive partial sums.
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Raney’s lemma can be proved by a simple geometric argument. Let's
extend the sequence periodically to get an infinite sequence

(X1,X2, -y Xm, X1, X2, ooy X, X1, X240 ) 5
thus we let x4k = x« for all k > 0. If we now plot the partia sums s, =
x1+ v+ + Xy as a function of n, the graph of s, has an “average slope”’ of
I/m, because smin = Sn + |. For example, the graph corresponding to our
example sequence (3, —5,2,—2,3,0,3,-5,2,...) begins as follows:

The entire graph can be contained between two lines of slope 1 /m, as shown;

we have m = 6 in the illustration. In general these bounding lines touch the
graph just once in each cycle of m points, since lines of slope I/m hit points
with integer coordinates only once per m units. The unique lower point of
intersection is the only place in the cycle from which al partial sums will
be positive, because every other point on the curve has an intersection point
within m units to its right.

With Raney’s lemma we can easily enumerate the sequences (ay, . . ., azn)
of +1's and -1's whose partial sums are entirely positive and whose total
sum is +1 There are (*"*') sequences with n occurrences of -1 and n + 1
occurrences of +1, and Raney’s lemma tells us that exactly 1/(2n + 1) of
these sequences have all partial sums positive. (List all N = (***") of these
sequences and all 2n + 1 of their cyclic shifts, in an N x (2n + 1) array. Each
row contains exactly one solution. Each solution appears exactly once in each
column. So there are N/(2n~+1) distinct solutions in the array, each appearing
(2n + 1) times.) The total number of sequences with positive partial sums is

n+1 1 _(2n | C
n J2n+1  \n/n4+1
Example 5: A recurrence with m-fold convolution.

We can generalize the problem just considered by looking at sequences
{ag,..., amn)of +1’sand (I m)’s whose partial sums are al positive and

Ah, if stock prices
would only continue
to rise like this.

(Attention,  com-
puter  scientists:

The partid sums
in this problem
repreent the dtack
Sze & a function of
time, when a prod-
utt of n + 1 factors
is evaluated, be-
cause each “push”
opertion  changes
the gze by +1 and
each  multiplication
changes it by -1 .)
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whose total sum is +1. Such sequences can be called m-Raney sequences. If
there are k occurrences of (1 m)andmn+ 1 Kk occurrences of +1, we have

k(l-m)+(mn+1-k) = 1,

(Attention, ~ com- hence k = n. There are ("”T‘f') sequences with n occurrences of (1 ~ m) and
F)Turf sascclimtiﬁg . mn+1 noccurrences of +1, and Raney’s lemma tells us that the number
aion now appIiF:; of such sequences with all partial sums positive is exactly

with respect to an

m-ay  operation, ma+ly_ 1. mny_ (7.66)
indead of the bi- n mn+ | nj/(m-Imn+1

nary multiplication

consdeed ealier)  So this is the number of m-Raney sequences. Let's call this a Fuss-Catalan
number Ci™', because the sequence (Cﬁlm)> was first investigated by N.I.
Fuss [109] in 1791 (many years before Catalan himself got into the act). The
ordinary Catalan numbers are C, = CLZ).

Now that we know the answer, (7.66), let's play “Jeopardy” and figure
out a question that leads to it. In the case m = 2 the question was. “What
numbers C., satisfy the recurrence C,, = 3, CkCno1-k + [n = O]7 We will
try to find a similar question (a similar recurrence) in the general case.

The trivial sequence (+1) of length 1 is clearly an m-Raney sequence. If
we put the number (1 -m) at the right of any m sequences that are m-Raney,
we get an m-Raney sequence; the partial sums stay positive as they increase
to +2,then+3,..., +m, and +1. Conversely, we can show that all m-Raney
sequences{aop, ..., amn) arise in this way, if n > 0: The last term a,,,,, must
be (1 = m). The partial sums s; = ay +- . + a;. | are positive for 1 <j < mn,
and Sy, = M because Smn + a,,, = 1. Let k; be the largest index < mn such
that s, = 1, let k; be largest such that s, = 2; and so on. Thus Sk; = j
and sk > j, for ki <k <mnand1 <j < m. It follows that k, = mn, and
we can verify without difficulty that each of the subsequences (ao, . . ., ok, _1),
(Ok,, ..., ak;,-1), ..., {Qky_y, ..., Ak, 1) IS @1 M-Raney sequence. We must
have ki= mni+1 kx=k=mn; +L ..., kn = kg =mn, + 1, for
some nonnegative integers ny, ny, - . ., N,

Therefore (™"*) —— is the answer to the following two interesting ques-

tions: “What are the numbers Cilm) defined by the recurrence

clm — ( S c;@cm...cm)) + [n=0] (7.67)

4+t ng=n-1

for al integers n?”  “If G(z) is a power series that satisfies
G(z) = zG(Z)™ 4 1, (7.68)

what is {z"] G(2)?’
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Notice that these are not easy questions. In the ordinary Catalan case
(m = 2), we solved (7.68) for G(z) and its coefficients by using the quadratic
formula and the binomial theorem; but when m = 3, none of the standard
techniques gives any clue about how to solve the cubic equation G = zG> + 1.
So it has turned out to be easier to answer this question before asking it.

Now, however, we know enough to ask even harder questions and deduce
their answers. How about this one: “What is {z"] G(z)', if | is a positive
integer and if G(z) is the power series defined by (7.68)?" The argument we
just gave can be used to show that [z"] G(z)' is the number of sequences of
length mn + | with the following three properties:

Each element is either +1 or (1 m).
The partial sums are all positive.
The total sum is L.

For we get all such sequences in a unique way by putting together | sequences
that have the m-Raney property. The number of ways to do this is

Soare e = =Y 62t

Np+nz+--+ny=n

Raney proved a generalization of his lemma that tells us how to count
such sequences: If (x;,xz,.- -, Xn) is any sequence of integers with x; < 1 for
all j, and with x; +x, + ... + x5 = 1 > 0, then exactly | of the cyclic shifts

<X],X7_,...,Xm), <X2,...,Xm,X|>, ey (Xma X, X 1)

have all positive partial sums.
For example, we can check this statement on the sequence (—2,1, —1,0,
1,1,—1,1,1,1). The cyclic shifts are

-1,0,1,1,-1,1,1,1
1,- 1011 -1,1,1,1,--2

(—2 ) 1,-1,1,1,1,-2,1,-1,0,1)
{ )
(—=1,0,1,1,=1,1,1,1,-2, 1)
( )
( 0)

1,1,1,1, ~2,1,-1,0,1,1)
- 10,1,1, 1)
1, 2,1, 10,1,1, )

)

1,-2,1,-1,0,1,1,— 1,],1

v

1,1
0,1,1,-1,1,1,1,-2,1,—-1 1,1

1v]1 171v])]) 27])7]1 v

(
(-
{
(
(
and only the two examples marked ‘v’ have all partial sums positive. This
generalized lemma is proved in exercise 13.

A sequence of +1's and (1  m)’s that has length mn+ 1 and total sum 1
must have exactly n occurrences of (1 = m). The generalized lemma tells
us that 1/(mn + 1) of these (‘“?l“) sequences have all partial sums positive;
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hence our tough question has a surprisingly simple answer:

(mn + l) 1

"] G(2)' = :
\ n mn+1

(7-69)

for all integers 1 > 0.

Readers who haven't forgotten Chapter 5 might well be experiencing déja
vu: “That formula looks familiar; haven't we seen it before?’ Yes, indeed;
equation (5.60) says that

s = (")

Therefore the generating function G(z) in (7.68) must actually be the gener-
alized binomia series B, (z). Sure enough, equation (5.59) says

Bulz)' ™ = Bn(z) ™ =z,

which is the same as

Let’'s switch to the notation of Chapter 5, now that we know we're dealing
with generalized binomials. Chapter 5 stated a bunch of identities without
proof. We have now closed part of the gap by proving that the power series
‘B (2) defined by

Blz) = Z(tnwj)tnzL

n

has the remarkable property that

tn+7r\ rz"
‘Bt(z)r :Z( n )tn+ry

whenever t and 1 are positive integers.
Can we extend these results to arbitrary values oft and r? Yes; because

the coefficients (*"*") L= are polynomials in t and r. The general rth power
defined by
" 1—B(z))™\"
P oelBia) (rInBi(z))" ™ (1-3B,
Bulz)" = et®™ —Z n! _Zn! 2 m
n=0 n:0 mz1

has coefficients that are polynomials in t and r; and those polynomials are
equal to (“‘*r) t—n%; for infinitely many values oft and r. So the two sequences

n

of polynomials must be identically equal.
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Chapter 5 also mentions the generalized exponential series

n—-1
&(z) = Z(tn‘L—])zn‘

n!
nz0

which is said in (5.60) to have an equally remarkable property:

_or(tn + !

[2"] &(2)" = — (7.70)

We can prove this as a limiting case of the formulas for B, (z), because it is
not difficult to show that

Eilz)" = x&ngont(z/x)xr.

7.6 EXPONENI'IAL GF’'S

Sometimes a sequence {(g,) has a generating function whose proper-
ties are quite complicated, while the related sequence (g, /n!) has a generating
function that's quite simple. In such cases we naturaly prefer to work with
{gn/m!) and then multiply by n! at the end. This trick works sufficiently
often that we have a special name for it: We call the power series

Gl = Y a2, (7.72)

n=0

the exponential generating function or “egf” of the sequence (go,g1, g2, - - )
This name arises because the exponential function e istheegf of (1,1, 1,.,.).

Many of the generating functions in Table 337 are actually egf’s. For
example, equation (7.50) says that (ln ]‘Tz)m/m! is the egf for the sequence
(%1, [M [2],-..). The ordinary generating function for this sequence is
much more complicated (and aso divergent).

Exponential generating functions have their own basic maneuvers, analo-
gous to the operations we learned in Section 7.2. For example, if we multiply
the egf of {gn) by 2z, we get

n+1 AR

z FAls
Zgn nf = Zgnv1 =1 - annﬂm;

n=0 ’ nx1 n=0

thisis the egf of (0, go,291,...)={ngn_1).
Differentiating the egf of (go, g1, gz, - . . ) with respect to z gives
n

ann Zl, = Z On m=1) = Z On+1 %I; (7.72)

n=0 ’ nx1 ’ n=0

-1 Zn—]

Are we having
fun yet?
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thisis the egf of (g;,g;,. .. ). Thus differentiation on egf’s corresponds to the
left-shift operation (G(2) go) /z on ordinary gf's. (We used this left-shift
property of egf’s when we studied hypergeometric series, (5.106).) Integration
of an egf gives

+

z tn Zn] 2N
J.Zgnadt :ZQn(n+”!:ZgnlE§ (7'73)

0 nzo0 n=0 nzl

P4

this is a right shift, the egf of (0, gy, g1,.. ).
The most interesting operation on egf's, as on ordinary gf’s, is multipli-

cation. If F(z) and G(z) are egf’s for (f,) and (gn), then F(z)G(z) = H(z) is
the egf for a sequence (h,) caled the binomial convolution of (f,) and (gn):

h, = Z (E\) K On (774)

k

Binomial coefficients appear here because (}) = n!/k!(n  Kk)!, hence

hn _ fk gn k K
n ék! (m—k)’

in other words, (h,,/n!) is the ordinary convolution of (f,/n!) and (g,/n!).
Binomial convolutions occur frequently in applications. For example, we
defined the Bernoulli numbers in (6.79) by the implicit recurrence

Z(m.jL])Bj = [m=0], fordlm > 0

j=0 )

this can be rewritten as a binomia convolution, if we substitute n for m + 1
and add the term B, to both sides:

Z(E)Bk = Bytin=1], foral n30. (7.75)

k

We can now relate this recurrence to power series (as promised in Chapter 6)
by introducing the egf for Bernoulli numbers, B(z) = Zn;o B.z"/n!. The
left-hand side of (7.75) is the binomia convolution of (B,,) with the constant
sequence (1, 1 , 1, .); hence the egf of the left-hand side is B( z)e®. The egf
of the right-hand side is 3_,, (B, + [n=1])z"/n! = B(z) ~ z Therefore we
must have B(z)= z/(e* 1); we have proved equation (6.81), which appears
also in Table 337 as equation (7.44).
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Now let's look again at a sum that has been popping up frequently in
this book,

SN =0m+1m+2" +...+(n=1)" = Z K™,

O0<k<n

This time we will try to analyze the problem with generating functions, in
hopes that it will suddenly become simpler. We will consider n to be fixed
and m variable; thus our goal is to understand the coefficients of the power
series

S(z) = So(n)+Si(n)z+S:(n) = ) Sn
mz0
We know that the generating function for (1, k, k%, ... ) is
1 — m,m
1 -kz ~ Zk z
m20
hence
= m,m _
S(z) Oo;Zk z thz
mz <k<n o<k<n

by interchanging the order of summation. We can put this sum in closed
form,

S(2) = [ et e
HE o\ S0 T zl—n+1
1
= Z(He = He-h); (7.76)

but we know nothing about expanding such a closed form in powers of z.
Exponential generating functions come to the rescue. The egf of our

S{z/n) = So(n) +Si(n) = + S2(n) =Y Sn
mz0
To get these coefficients S, (n) we can use the egf for (1, k, k%,... ), namely
=y %1_' ,
mz0
and we have

S(z,n) = Z Z — Z ekz

m20 0<k<n m! 0gk<n
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And the latter sum is a geometric progression, so there's a closed form
€
S(z,n) = ———, (7.77)

All we need to do is figure out the coefficients of this relatively simple function,
and we'll know S,.(n), because S,(n) = m! [z™]S(z,n).

Here's where Bernoulli numbers come into the picture. We observed a
moment ago that the egf for Bernoulli numbers is

ZBk K —1

k=0

hence we can write

. . ez _ ]
S(z) =  B(z) o
0 21 2 ZO 221 Z2
_( oy T BT +Bzz )(n—+n7+n 3,+~-->

The sum S,(n) is ! times the coefficient of z™ in this product. For example,

So(n) - (Bowo') n:

l

210!
n’ n n 1.3 1.2 1
Saln) = 2 (o3 + B 3y + By ) = VoA

Si(n) = 1 <B»o +B n ) = n?—In;

] 2
2

We have therefore derived the formula O, = S;(n) = %n(n - %)(n - 1) for
the umpteenth time, and this was the simplest derivation of al: In a few lines
we have found the general behavior of S(n) for al m.

The genera formula can be written

Sm1(1) = - (B(n) = Br(0)) (7.78)

where B,(x) is the Bernoulli polynomia defined by
— m m—k
B,(x) = kZ (k)ka . (7-79)

Here’'s why: The Bernoulli polynomia is the binomia convolution of the
sequence (Bo, By, Bz, ... ) with (1, x,xZ,. . . ); hence the exponential generating



354 GENERATING FUNCTIONS
function for (Bo(x), By (x), B; (X), . . .} is the product of their egf’s,

. _ zm _ z zm _ Zexz
Blzx) = ) Bulx— = ——y Z>O M= (7.80)
m=z

m=0

Equation (7.78) follows because the egf for (0, So(n), 251 (n), ... }is, by {7.77),

ez . .

z - = B(z,n) B(z,0)

Let's turn now to another problem for which egf's are just the thing:
How many spanning trees are possible in the complete graph on n vertices
{1,2,..., n}? Let's call this number t,. The complete graph has %n(n ~ 1
edges, one edge joining each pair of distinct vertices;, so we're essentially
looking for the total number of ways to connect up n given things by drawing
n — 1 lines between them.

We have t; = t; = 1. Also t; = 3, because a complete graph on three
vertices is a fan of order 2; we know that f, = 3. And there are sixteen
spanning trees when n = 4;

NXX 1A NXAXN
VLD KX EZ K s

Hence {4 = 16.

Our experience with the analogous problem for fans suggests that the best
way to tackle this problem is to single out one vertex, and to look at the blocks
or components that the spanning tree joins together when we ignore all edges
that touch the special vertex. If the non-special vertices form m components
of sizes k1, kz, , - ., ky, then we can connect them to the special vertex in
kik; ... k, ways. For example, in the case n = 4, we can consider the lower
left vertex to be special. The top row of (7.81) shows 3t3 cases where the other
three vertices are joined among themselves in t3 ways and then connected to
the lower left in 3 ways. The bottom row shows 2.1 x t,t;x (3) solutions where
the other three vertices are divided into components of sizes 2 and 1 in (g)
ways; there's also the case Iéf where the other three vertices are completely
unconnected among themselves.

This line of reasoning leads to the recurrence

1 n-|I
th = Z;ﬁ Z (k]yka..‘ km) Kk e bt -

m>0 ky+kg+-+kn=n-1 ’
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for dl n > 1. Here’s why: There are (, ,kt:.].,km) ways to assign n- 1 elements
to a sequence of m components of respective sizes ki, k2, . . ., k,; there are
ty, t, ... tx, ways to connect up those individual components with spanning
trees; there are ki k; . . . ky, ways to connect vertex n to those components; and
we divide by m! because we want to disregard the order of the components.

For example, when n = 4 the recurrence says that

te = 3t3 + %((ﬁz)zhtz + (zél)zl‘lt]) + %((1,? ])t?) = 3t; + 6ty + t5.

The recurrence for t,, looks formidable at first, possibly even frightening;
but it realy isn't bad, only convoluted. We can define

up = nt,
and then everything simplifies considerably:
h - —1 - Uk, Uk, Uk .
nl ~ Zm! Z Kl kol 't kel ! Afn>1. 0 (7.82)
om0 Ky kg ok =n—1 m

The inner sum is the coefficient of z"~' an the egf U (2) , raised to the mth
power; and we obtain the correct formula aso when n = 1, if we add in the
term Ul(z)° that corresponds to the case m = 0. So

llrﬁTl — [anl] Z o “(Z)m — [anl} efi[z] = [zY Zeﬂ[z)

which defines the generalized exponential series &(z) = &; (2) in (5.59) and
(7.70); indeed, we have

So we can read off the answer to our problem:

n!

= 2= B = (01 e = v (r80)

n
The complete graph on {1,2, ..., n} has exactly n" ¢ spanning trees, for all
n> 0.
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7.7 DIRICHLET GENERATING FUNCTIONS

There are many other possible ways to generate a sequence from a
series; any system of “kernel” functions K,(z) such that

ZQnK,(Z) =0 = g,=0fordln
n

can be used, at least in principle. Ordinary generating functions use K,(z) =
z", and exponential generating functions use K, (z) = z"/n!; we could also try
falling factorial powers z™, or binomial coefficients z%/n!= (Z) .

The most important alternative to gf's and egf’s uses the kernel functions

1 /n%; it isintended for sequences (g1, g2,. . . ) that begin with n = 1 instead
of n=0:

Gzl = § 90

Glz) = ) = (7.85)

nzl

This is caled a Dirichlet generating function (dgf), because the German
mathematician Gustav Lejeune Dirichlet (1805-1859) made much of it.
For example, the dgf of the constant sequence (1,1, 1,...)is

Y = . (7.86)

nzl

This is Riemann’s zeta function, which we have aso called the generalized
harmonic number HL@’ when z > 1.

The product of Dirichlet generating functions corresponds to a special
kind of convolution:

- fl gm 1
Fz)Glz) = ) o9 =) — ) fignllm=nl.
Lmz1 nz1 Lmz1

Thus F(z) G(z) = H(z) is the dgf of the sequence

hn = Zf d 9nsd- (7-87)

d\n

For example, we know from (4.55) that 3 4., K(d) = [n= 1]; this is
the Dirichlet convolution of the Mobius sequence (p( 1), u( 2},u(3), .. .) with
(1,1,1,...), hence

Moz = Y 21— (7.88)

nzl

In other words, the dgf of (u(1), u(2), u(3),..-)is {(z)7".
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Dirichlet generating functions are particularly valuable when the se-
guence (91,g2,...) is a multiplicative function, namely when

Omn = Gm On for m L n.

In such cases the values of gn for al n are determined by the values of gn when
n is a power of a prime, and we can factor the dgf into a product over primes:

Giz) = [] (1+9—:+g§i+g—§i—+---) (7.89)
p prirae p p P

If, for instance, we set gn = 1 for al n, we obtain a product representation
of Riemann's zeta function:

=TI (=) (r90)

p prime

The Mobius function has u(p) = -1 and p(p*) = 0 for k > 1, hence its dgf is

Miz)= JJc1 -9 (7.91)

p prime

this agrees, of course, with (7.88) and (7.go). Euler's ¢ function has @(p*) =
p* —p*~" hence its dgf has the factored form

o - T (1+2=) - I =2 (7.92)

: 1—pl-z
p prire p prime p

We conclude that ®(z) = {(z — 1)/¢(z).

Exercises
Warmups

1 An eccentric collector of 2 x n domino tilings pays $4 for each vertica
domino and $1 for each horizontal domino. How many tilings are worth

exactly $m by this criterion? For example, when m = 6 there are three
solutions: B, El, and EH.

2 Give the generating function and the exponential generating function for
the sequence (2,5,13,35,...) = (2" + 3") in closed form.
What is }___, Hq/10™?

4  The general expansion theorem for rational functions P(z)/Q(z) is not

completely general, because it restricts the degree of P to be less than
the degree of Q. What happens if P has a larger degree than this?

nz0o
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5 Find a generating function S(z) such that

2 Sz = Y (;:) (1)

Basics

6  Show that the recurrence (7.32) can be solved by the repertoire method,
without using generating functions.

7 Solve the recurrence

go = ],

On = Gn 1 +20n_2+ - +1go, for n > 0.
8  What is [z"] (In(1 = 2))*/(1 = z)m+1?

9  Use the result of the previous exercise to evaluate Z:=o HiHn_x.

10 Set r =s = —1/2 in identity (7.61) and then remove al occurrences of
1/2 by using tricks like (5.36). What amazing identity do you deduce? | deduce tha Clark
. . . L Kent is redly
11 This problem, whose three parts are independent, gives practice in the Superman.

manipulation of generating functions. We assume that A(z)= 3 | a,z",
B(2) = 2, bpz",C@ =2, cnz", and that the coefficients are zero for
negative n.

a ey =3, aibk, express Cin terms of A and B.

b Ifnb, =3 ,2*a/(n = K)!, express A in terms of B.

¢ If ris area number and if & = Y 1, ("t¥)bn_k, express A in

terms of B; then use your formula to find coefficients fy(r) such that
bn = ZE:O fx(r) An- k-
12 How many ways are there to put the numbers {1,2,...,2n}intoa2xn

array so that rows and columns are in increasing order from left to right
and from top to bottom? For example, one solution when n = 5 is

1 2 4 5 8
3 6 7 910"
13 Prove Raney’s generalized lemma, which is stated just before (7.69).

14 Solve the recurrence
go =0 gr = 1

- /n
—2ngn_1 + Z_ <k> GkGn—k forn >1,
k

by using an exponential generating function.

9n
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16

17

18

19
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The Bell number b,, is the number of ways to partition n things into
subsets. For example, bz = 5 because we can partition {1,2,3} in the
following  ways.

{12,315 (0,003} {1,3tu{zl; (1Tu{2,3}; (1tu{2tu{3).
Prove that by.1= 3, (})bn_«, and use this recurrence to find a closed
form for the exponential generating function 3. bazYnl
Two sequences (a,,) and (b,,) are related by the convolution formula

_ a;+k;—1 a;+ky—1 an+k,—1 .
e T () (),
ki+2k;+---nkp=n

aso qy = 0 and by = 1. Prove that the corresponding generating func-
tions satisfy InB(z) = A(z) + JA(z?) + JA(Z}) +---.

Show that the exponential generating function G(z) of a sequence is re-
lated to the ordinary generating function G(z) by the formula

roé(zt)e’tdt = G(2),
0

if the integral exists.
Find the Dirichlet generating functions for the sequences
a oOn= \/T_l;
b g, = Inn;
¢ gn = [nissquarefree].
Express your answers in terms of the zeta function. (Squarefreeness is
defined in exercise 4.13)
Every power series F(z) = ) ., faz" With fo = 1 defines a sequence of
polynomials f,,(x) by the rule
F(z)* = ) falx)2",

n=0

where fo( 1) =1, andf,(0) =[n =0]. In general, ¥, (x) has degreen.
Show that such polynomials always satisfy the convolution formulas

Z fr(x) fnaly) = falx +y) |
k=0

n

(x+Y) ) kfi(¥)fai(y) = xnfalx+y).
k=0

(The identities in Tables 202 and 258 are special cases of this trick.)
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20 A power series G(z) is caled differentiably finite if there exist finitely
mery polynomids Py (z), . . ., P.(z), not all zero, such that

Po(z)G(z) + P1(2)G'(z) + - + Pr(2)G™(2) = O.

A snuace o numbes (go, g1,02,. - - ) is called polynomialy recursive
if there exist finitely many polynomials py (2), . . , pm(z), Not al zero,
such that

Po(n)gn +P1(N) Grt1 + 4+ Pm(N)gnim = 0

for al integers n > 0. Prove that a generating function is differentiably
finite if and only if its sequence of coefficients is polynomialy recursive.

Homework exercises

21 A robber holds up a bank and demands $500 in tens and twenties. He
also demands to know the number of ways in which the cashier can give
him the money. Find a generating function G(z) for which this number

Will he satle for

is [25°°) G(z), and a more compact generating function G(z) for which 2 x n domino

this number is [z°] G (z). Determine the required number of ways by
(a) using partia fractions; (b) using a method like (7.39).

22 Let P be the sum of al ways to “triangulate” polygons:

P=_+A+N+[]
QA+ TN+ O+ +

(The first term represents a degenerate polygon with only two vertices;
every other term shows a polygon that has been divided into triangles.
For example, a pentagon can be triangulated in five ways.) Define a
“multiplication” operation AAB on triangulated polygons A and B so
that the equation

P= _ +PAP
is valid. Then replace each triangle by ‘z’; what does this tell you about
the number of ways to decompose an n-gon into triangles?

23 In how many ways can a2 x 2 x n pillar be built out of 2 x 1 x 1 bricks?

24 How many spanning trees are in an n-wheel (a graph with n “outer”
vertices in a cycle, each connected to an (n + 1)st “hub” vertex), when
n>3?

tilings?

At union raes, as

many as you can

afford, plus a few.
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25 Lete m > 2 be an integer. What is a closed form for the generating

26

27

28

function of the sequence (n mod m), as a function of z and m? Use
this generating function to express ‘n mod m’ in terms of the complex
number w = e*™/™ (For example, when m = 2 we have w = -1 and

nmod2 =] —(-1)")

The second-order Fibonacci numbers (§, ) are defined by the recurrence

So = 0; =1
Sn Gt + En2+Fa forn > 1

Express §.,, in terms of the usual Fibonacci numbers F,, and F, ;.

A 2 x n domino tiling can also be regarded as a way to draw n disjoint
lines in a 2