
Quarter Squares Rule Quartic Equation 1489 

Quarter Squares Rule 

Quartet 
A SET of four, also called a TETRAD. 

see also HEXAD, MONAD, QUINTET, TETRAD, TRIAD 

Quartic Curve 
A general plane quartic curve is a curve of the form 

Ax4 + By4 + Cx3y + Dx2y2 + Ezy3 + Fx3 + Gg3 

+Hx2y+Izy2+Jx2+Ky2+Lxy+Mx+Ny+O=0. 

(1) 

The incidence relations of the 28 bitangents of the gen- 
eral quartic curve can be put into a ONE-TO-ONE cor- 
respondence with the vertices of a particular POLYTOPE 

in 7-D space (Coxeter 1928, Du Val 1931). This fact is 
essentially similar to the discovery by Schoutte (1910) 
that the 27 SOLOMON'S SEAL LINES on a CUBIC SUR- 
FACE can’be connected with a POLYTOPE in 6-D space 
(Du Val 1931). A similar but less complete relation ex- 
ists between the tritangent planes of the canonical curve 
of genus 4 and an 8-D POLYTOPE (Du Val 1931). 

The maximum number of DOUBLE POINTS for a 
generate quartic curve is three. 

nonde- 

A quartic curve of the form 

y2 = (x - a)@ - S)(z - r>(x - s> (2) 

can be written 

(&)2=(l-~)(1-~)(1-~), 

(3) 
and so is CUBIC in the coordinates 

x=1 
x--a (4) 

y=Y 
x - a2. (5) 

This transformation is a BIRATIONAL TRANSFORMA- 
TION. 
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Let P and Q be the INFLECTION POINTS and R and S 
the intersections of the line PQ with the curve in Figure 
(a) above. Then 

A=C (6) 
B = 2A. (7) 

In Figure (b) , let UV be the double tangent, and T the 
point on the curve whose z coordinate is the average of 
the 5 coordinates of U and V. Then UVj]PQIIRS and 

D=F (8) 

E=&D. (9) 

In Figure (c), the tangent at P intersects the curve at 
T/T/‘. Then 

G = 8B. (10) 

Finally, in Figure (d), the intersections of the tangents 
at P and Q are W and X. Then 

H = 27B (11) 

(Honsberger 1991). 

see U~SO CUBIC SURFACE, PEAR-SHAPED CURVE, 
SOLOMON’S SEAL LINES 
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Quartic Equation 
A general quartic equation (also called a BIQUADRATIC 
EQUATION) is a fourth-order POLYNOMIAL of the form 

x4 + u3z3 + u2t2 + UlZ + a0 = 0. (1) 

The ROOTS of this equation satisfy NEWTON'S RELA- 
TIONS: 

x1+m +x3 +x4 = -a3 (2) 
x1572 +x1x3 +x1x4 +x2x3 +x2x4 +x3x4 = a2 (3) 

x1x2x3 +x223x4 +x1x2x4 +x1x3x4 = -al (4) 

x1x2x3x4 = a0, (5) 

where the denominators on the right side are all u4 E 1. 

Ferrari was the first to develop an algebraic technique 
for solving the general quartic. He applied his technique 
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(which was stolen and published by Cardano) to the 
equation 

x4 + 6x2 - 60~ + 36 = 0 (6) 

(Smith 1994, p. 207). 

The x3 term can be eliminated from the general quartic 
(1) by making a substitution of the form 

%-X-A, (7) 

so 

Let yl be a REAL ROOT of the resolvent CUBIC EQUA- 
TION 

Y3 - a2y2 + (ala3 - 4U&’ + (4azao - al 
2 

- a3”ao.) = 0. 

(22) 

The four ROOTS are then given by the ROOTS of the 
equation 

X2 + +(a3 * &32 - da2 + 4y1) 

x4 + (~3 - 4x)z3 + (a2 - 3ad + 6X2)x2 

+(a1 - 2a2X + 3a3X2 - 4X3)x 

+(a0 - UJ + @X2 - a3X3 + A”). (8) 

Letting X = a3/4 so 

which are 

+$I ‘F dY12 - 4ao > = 0, (23) 

then gives 

where 

Z-X- +x 

x4+px2+qx+T, 

where 

%l = -ia3 + +R+ fD (24) 

z2 = -;a3+3R-+D (25) 

%3 = c4 1,,-$R+$E (26) 

24 = -93 - +R- $E, (27) 

P E a2 - ;a32 (11) 

Q E al - $lZ2tZ3 + ilZs3 (12) 

T--O- aala + +a32 - 5&z34. (13) 

Adding and subtracting x2u + u2/4 to (10) gives 

x4 + x221 + +A2 - x2u - ~u2+px2+qx+T=0, (14) 

which can be rewritten 

RG 

DG 

I 
+32 - a2 + ye (28) 

$a32 - R2 - 2az + a(4a3a2 - 8al - as3)R-l 

R#O 

932 - 2a2 +2&F-G 

R=O 

(29) 

;a3” - R2 - 2~2 - ;(4U3a2 - 8al - u~~)R-~ 

R#O 

( x2 - +,” - [(u -p)x2 - qx + ($u” - r)] = 0 (15) 

(Birkhoff and M ac Lane 1965). The first term is a per- 
fect square P2, and the second term is a perfect square 
Q2 for those u such that 

q2 = 4(u - #u2 - r)* (16) 

This is the resolvent CUBIC, and plugging a solution u1 
back in gives 

2 - 2a2 - z&F=0 

R= 0. 

(30) 

Another approach to solving the quartic (10) defines 

a = (X1 +X2)(X3 + X4) = -(Xl +X2)2 (31) 

p = (xl + X3)(X2 + X4) = -(Xl + X3)2 (32) 

7 = (xl + X4)(X2 +X3) = -(X2 + X3)2, (3% 

where use has been made of 

P2 - Q" = (P + Q)(P - Q), 

so (15) becomes 

(17) 
Xl +X2 +x3 +x4 = 0 (34) 

(which follows since a3 = 0), and 

where 

(x2 + $ul + &)(x2 + +I - Q), (18) 
h(x) = (x - Q>(X-LNX-+YY) (35) 

= x3 - (a + p + y)x2 + (a@ + ay + Pr>x - &* 

(36) 
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Comparing with 

P(x) =x3+p2 +qx+r (37) 
= II:- ( x1)(x-x2)(x -3)(x-x4) (38) 

4 

= x3 + ( 1 rI 
XiXj X 

2 

i#j 

+ (Xl + x2)(x1 + 23)(x2 + x3)x 
- 

x1x2x3(x1 +x2 +X3), (39) 

gives 

h( > x = x3 - 2px2 = (p” - r)z + q2* (40) 

Solving this CUBIC EQUATION gives QI, p, and y, which 
can then be solved for the roots of the quartic xi 

(Faucette 1996). 

see also CUBIC EQUATION, DISCRIMINANT (POLYNOM- 
IAL), QUINTIC EQUATION 
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Quartic Reciprocity Theorem 
Gauss 
GERS. 

stated the case 72 = 4 using the GAUSSIAN INTE- 

see also RECIPROCITY THEOREM 
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Quartic Surface 
An ALGEBRAIC SURFACE of ORDER 4. Unlike CUBIC 
SURFACES, quartic surfaces have not been fully classi- 
fied. 

see also BOHEMIAN DOME, BURKHARDT QUARTIC, 
CASSINI SURFACE, CUSHION, CYCLIDE, DESMIC SUR- 
FACE, KUMMER SURFACE, MITER SURFACE, PIRI- 
FORM, ROMAN SURFACE, SYMMETROID, TETRAHE- 
DROID,TOOTH SURFACE 
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Quartile 
One of the four divisions of observations which have 
been grouped into four equal-sized sets based on their 
RANK. The quartile including the top RANKED mem- 
bers is called the first quartile and denoted Ql. The 
other quartiles are similarly denoted Q2, Q3, and Q4. 
For IV data points with IV of the form 4n + 5 (for n = 0, 
1, l  *. ), the HINGES are identical to the first and third 
quartiles. 

see UZSO HINGE, INTERQUARTILE RANGE, QUARTILE 
DEVIATION, QUARTILE VARIATION C~EFFEIENT 

Quartile Deviation 

QD = $(Qz - &A 

where &I and QZ are INTERQUARTILE RANGES. 
see also QUARTILE VARIATION COEFFICIENT 

Quartile Range 

see INTERQUARTILE RANGE 

Quartile Skewness Coefficient 

~~~B~wLEY SKEWNESS 

Quartile Variation Coefficient 

v _= loo=, 
3 1 

where &I and Q2 are INTERQUARTILE RANGES. 

Quasiamicable Pair 
Let u(m) be the DIVISOR FUNCTION of m,. Then two 
numbers m and n are a quasiamicable pair if 

u(m) = a(n) = m + n + 1. 

The first few are (48, 75), (140, 195), (1050, 1925), 
(1575, 1648), . . . (Sloane’s A005276). Quasiamicable 
numbers are sometimes called BETROTHED NUMBERS 
or REDUCED AMICABLE PAIRS. 
see also AMICABLE PAIR 
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Quasiconformal Map 
A generalized CONFORMAL QAP. 

see also BELTRAMI DIFFERENTIAL EQUATION 
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Quasigroup 
A GROUPOID S such that for all a, b f S, there exist 
unique 5, y E S such that 

ax = b 

ya = b. 

No other restrictions are applied; thus a quasigroup need 
not have an IDENTITY ELEMENT, not be associative, etc. 
Quasigroups are precisely GROUPOIDS whose multiplica- 
tion tables are LATIN SQUARES. A quasigroup can be 
empty. 

see also BINARY OPERATOR, GROUPOID, LATIN 
SQUARE, LOOP (ALGEBRA), MONOID, SEMIGROUP 

References 
van Lint, J. H. and Wilson, R. M. A Course in Combina- 

torics. New York: Cambridge University Press, 1992. 

Quasiperfect Number 
A least ABUNDANT NUMBER, i.e., one such that 

o(n) = 2n+l. 

Quasiperfect numbers are therefore the sum of their non- 
trivial DIVISORS. No quasiperfect numbers are known, 
although if any exist, they must be greater than 1O35 

and have seven or more DIVISORS. Singh (1997) called 
quasiperfect numbers SLIGHTLY EXCESSIVE NUMBERS. 

~~~U~SOABUNDANT NUMBER,ALMOSTPERFECTNUM- 
BER, PERFECT NUMBER 
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Quasiperiodic Function 

see WEIERSTRAJ~ SIGMA FUNCTION, WEIERSTRA~ 
ZETA FUNCTION 

Quasiperiodic Mot ion 
The type of motion executed by a DYNAMICAL SYSTEM 
cant aining two incommensurate frequencies. 

Quasirandom Sequence 
A sequence of n-tuples that fills n-space more uniformly 
than uncorrelated random points. Such a sequence is 
extremely useful in computational problems where num- 
bers are computed on a grid, but it is not known in ad- 
vance how fine the grid must be to obtain accurate re- 
sults. Using a quasirandom sequence allows stopping at 
any point where convergence is observed, whereas the 
usual approach of halving the interval between subse- 
quent computations requires a huge number of compu- 
tations between stopping points. 

see ~~~PSEUDORANDOM NUMBER, RANDOM NUMBER 
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Quasiregular Polyhedron 
A quasiregular polyhedron is the solid region inte- 
rior to two DUAL regular polyhedra with SCHLXFLI 
SYMBOLS{~,~} and {Q, p}. Quasiregular polyhedra are 
denoted using a SCHL;~;FLI SYMBOL of the form { g }, 
with 

{~}={~>. 

Quasiregular polyhedra have two kinds of regular faces 
with each entirely surrounded by faces of the other kind, 
equal sides, and equal dihedral angles. They must sat- 
isfy the Diophantine inequality 

(1) 

1 1 1 
-+-+->l. 
P Q T 

(2) 

But p, 4 > 3, so T must be 2. This means that the possi- 
ble quasiregular polyhedra have symbols { i }, { i }, and 

3 { 1 5 - Now 
3 (> 3 = (374) (3) 

isthe OCTAHEDRON, whichisaregular PLATONIC SOLID 
and not considered quasiregular. This leaves only two 
convex quasiregular polyhedra: the CUBOCTAHEDRON 
{i} and the ICOSIDODECAHEDRON {i}* 

If nonconvex polyhedra are allowed, then additional 
quasiregular polyhedra are the GREAT DODECAHEDRON 
(5, $} and the GREAT ICOSTDODECAHEDRON {3,;} 
(Hart). 

For faces to be equatorial {h}, 

h = d4Nl + 1 - 1. (4) 
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The EDGES of quasiregular polyhedra form a system 
of GREAT CIRCLES: the OCTAHEDRON forms three 
SQUARES, the CUBOCTAHEDRON four HEXAGONS, and 
the ICOSIDODECAHEDRON six DECAGONS. The VER- 

TEX FIGURES of quasiregular polyhedra are RHOMBUSES 
(Hart). The EDGES are also all equivalent, a prop- 
erty shared only with the completely regular PLATONIC 
SOLIDS. 

see also CUBOCTAHEDRON, GREAT DODECAHEDRON, 
GREAT ICOSIDODECAHEDRON, ICOSIDODECAHEDRON, 
PLATONIC SOLID 
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Quasirhombicosidodecahedron 

see GREAT RHOMBICOSIDODECAHEDRON (UNIFORM) 

Quasirhombicuboctahedron 

see GREAT RHOMBICUBOCTAHEDRO N (UNIFORM) 

Quasisimple Group 
A FINITE GROUP L is quasisimple if L = [L, L] and 
L/Z(L) is a SIMPLE GROUP. 

see also COMPONENT, FINITE GROUP, SIMPLE GROUP 

Quasithin Theorem 
In the classical quasithin case of the QUASI-UNIPOTENT 
PROBLEM, if G does not have a “strongly embedded” 
SUBGROUP, then Gis a GROUP of LIE-TYPE in charac- 
teristic 2 of Lie RANK 2 generated by a pair of parabolic 
SUBGROUPS PI and Pz, or G is one of a short list of 
exceptions. 

see also LIE-TYPE GROUP, QUASI-UNIPOTENT PROB- 
LEM 

Quasitruncated Cuboctahedron 

see GREAT TRUNCATED CUBOCTAHEDRO 

Quasitruncated Dodecadocahedron 

~~~TRUNCATED DODECADODECAHEDRON 

Quasitruncated Dodecahedron 

~~~TRUNCATED DODECAHEDRON 

Quasitruncated Great Stellated 

Dodecahedron 

~~~GREAT STELLATED TRUNCATED DODECAHEDRON 

Quasitruncated Hexahedron 

CONSTELLATED TRUNCATED HEXAHEDRON 

Quasitruncated Small Stellated 

Dodecahedron 

~~~SMALL STELLATED TRUNCATED DODECAHEDRON 

Quasi-Unipotent Group 
A GROUP G is quasi-unipotent if every element of G of 
order p is UNIPOTENT for all PRIMES p such that G has 
PRANK 2 3. 

Quasi-Unipotent Problem 

see QUASITHIN THEOREM 

Quaternary 
The BASE 4 method of counting in which only the DIG- 

ITS 0, 1, 2, and 3 are used. These DIGITS have the 
following multiplication table. 

xl0 1 2 3 
000 0 0 
1012 3 
2 0 2 10 12 
3 0 3 12 21 

see also BASE (NUMBER), BINARY, DECIMAL, HEXA- 
DECIMAL, OCTAL,TERNARY 
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Quaternary Tree 

see QUADTREE 

Quaternion 
A member of a noncommutative DIVISION ALGEBRA 
first invented by William Rowan Hamilton. The quater- 
nions are sometimes also known as HYPERCOMPLEX 
NUMBERS and denoted IHE. While the quaternions are 
not commutative, they are associative. 

The quaternions 
MATRICES 

can be represented using complex 2x2 

H- [<* ;] = [ 
a + ib 

-c+id 
c + id 1 a-ib ’ (1) 

where z and w  are COMPLEX NUMBERS, a, b, c, and 
d are REAL, and Z* is the COMPLEX CONJUGATE of 
x. By analogy with the COMPLEX NUMBERS being rep- 
resentable as a sum of REAL and IMAGINARY PARTS, 
a l  1 + bi, a quaternion can also be written as a linear 
combination 

H=aU+bt+cJ+dK (2) 
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of the four matrices 

They have the following multiplication table. 
U 

1 0 - - [ 1 - 0 1 (3) 

(4) 

(5) 

(6) 

I= [ ; O 1 4 
J - - - [ 0 -1 1 1 0 

K - C [ 0 i i 1 . 0 

J J -k -1 2 

k k j -4 -1 

The quaternions 3~1, 43, &j, and MC form a non-Abelian 
GROUP of order eight (with multiplication as the group 
operation) known as Qs. 

The quaternions can be written in the form 
(Note that here, U is used to denote the IDENTITY MA- 

TRIX, not I.) The matrices are closely related to the 
PAULI SPIN MATRICES ox, uY, gz, combined with the 
IDENTITY MATRIX. From the above definitions, it fol- 
lows that 

a = al +a2i+a3j+ a4k. (19) 

The conjugate quaternion is given by 

a* = al - a2i - a3j - adk. (20) I2 = -u (7) 
J 2 -- - U (8) 
K2 = -U. (9) 

The sum of two quaternions is then 

a+b = (al+bl)+(a2+b2)i+(a3+b3)j+(a4+b4)k, (21) 

Therefore I, J, and K are three essentially different so- 
lutions of the matrix equation 

and the product of two quaternions is 

ab = (albl - a&2 - a363 - adbd) x2 = -u, (10) 
+ (ah + ah + ad4 - ah)i 

+ (ah - ah + a&l + ah)j 
+ (alb4 + a2b3 - a3b2 + agbl)k, (22) 

which could be considered the square roots of the nega- 
tive identity matrix. 

In IR4, the basis of the quaternions can be given by 
so the norm is 

[ 
0 1 0 0 

iE -10 0 0 

0 0 0 1 
0 0 -1 0 I n(a) = Ai2 = &G = Jill2 + az2 + as2 + a42. 

(11) (23) 
In this notation, the quaternions are closely related to 
FOUR-VECTORS. 0 0 0 -1 . 0 0 -1 

j=o10 [ 0 
(12) 

10 0 

0 1 
0 

ro 0 -1 01 

Quaternions can 
TOR by writing 

be interpreted as a SCALAR plus a VEC- 

a= al +azi+aaj+a4k = (al,a), (24) 
kxoo O1 - 

1 0 0 0 (13) where a G [a2 a3 ad]. In this notation, quaternion mul- 
tiplication has the particularly simple form 1 0 -1 0 OJ 1 0 0 0 

0 1 0 0 
l=oolo’ [ 1 0 0 0 1 

4142 = (Sl,Vl) ' (s272) 

(14) = (SIS:! - Vl - V2,SlV2 + s2n +v1 x v2)* (25) 

Division is uniquely defined (except by zero), so quater- 
nions form a DIVISION ALGEBRA. The inverse of a 
quaternion is given by The quaternions satisfy the following identities, some- 

times known as HAMILTON’S RULES, 
* 

a =a -1 

aa* ’ (26) -2 
z =j2=k2-1 (15) 

and the norm is multiplicative ij = -ji = k 

jk c -kj xi n(ab) = n(a>n(b). (27) 
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In fact, the product of two quaternion norms immedi- 
ately gives the EULER FOUR-SQUARE IDENTITY. 

A rotation about the UNIT VECTOR fi by an angle 8 can 

be computing using the quaternion 

q = (s,v) = (cos(@),Csin($)) (28) 

(Arvo 1994, Hearn and Baker 1996). The components of 
this quaternion are called EULER PARAMETERS. After 
rotation, a point p = (0, p) is then given by 

P’ = qpq-l = qpq’, (29) 

since n(q) = 1. A concatenation of two rotations, first 
~1 and then q2, can be computed using the identity 

qa(q1Pqf)d = (QZQl)P(&~) = kwldPhld* (30) 

(Goldstein 1980). 

see also BIQUATERNION, CAYLEY-KLEIN PARAMETERS, 
COMPLEX NUMBER, DIVISION ALGEBRA, EULER PA- 

RAMETERS,FOUR-VECTOR,~CTONION 
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Quattuordecillion 
In the American system, 104% 

see UZSO LARGE NUMBER 

Queens Problem 

What is the maximum number of queens which can be 
placed on an TX x n CHESSBOARD such that no two attack 
one another? The answer is n queens, which gives eight 
queens for the usual 8 x 8 board (Madachy 1979). The 
number of different ways the n queens can be placed on 
an n x n chessboard so that no two queens may attack 
each other for the first few n are 1, 0, 0, 2, 10, 4, 40, 92, 
. . . (Sloane’s AOOOl70, Madachy 1979). The number of 
rotationally and reflectively distinct solutions are 1, 0, 
0, 1, 2, 1, 6, 12, 46, 92, . l  . (Sloane’s AO02562; Dudeney 
1970; p. 96). The 12 distinct solutions for n = 8 are 
illustrated above, and the remaining 80 are generated 
by ROTATION and REFLECTION (Madachy 1979). 
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The minimum number of queens needed to occupy or 
attack all squares of an 8 x 8 board is 5. Dudeney (1970, 
pp* 95-96) gave the following results for the number of 
distinct arrangements IV& n) of 1Tc queens attacking or 
occupying every square of an n x n board fol which every 
queen is attacked (“protected”) by at least one other. 

k Queens n x n N,(k,n) * . , 
2 4 3 

3 5 37 

3 6 1 
4 7 5 

Dudeney (1970, pp. 95-96) also gave the following re- 
sults for the number of distinct arrangements IV&, n) 
of k queens attacking or occupying every square of an 
n x n board for which no two queens attack one another 
(they are “not protected”). 

k Queens n x n N,(k,n) 

1 2 1 

1 3 1 
3 4 2 

3 5 2 
4 6 17 

4 7 1 
5 8 91 

Vardi (1991) generalizes the problem from a square 
chessboard to one with the topology of the TORUS. The 
number of solutions for n queens with n ODD are 1, 0, 
10, 28, 0, 88, . . . (Sloane’s AOO7705). Vardi (1991) also 
considers the toroidal “semiqueens” problem, in which 
a semiqueen can move like a rook or bishop, but only on 
POSITIVE broken diagonals. The number of solutions to 
this problem for n queens with n ODD are 1, 3, 15, 133, 
2025, 37851,... (Sloane’s AO06717), and 0 for EVEN n. 

Chow and Velucchi give the solution to the question, 
“How many different arrangements of k queens are pos- 
sible on an order n chessboard?” as 1/8th of the COEF- 

FICIENT of akbn2-k in the POLYNOMIAL 

(a + b)n2 + 2(a + b)“(a2 + b2)cn2-nji2 

+3(a2 +b2)n2/2 +2(a4 +b4)n2/4 

‘ca’ b’ n, = 
n even 

(a + b)n2 + 2(a + b)(a4 + b4)(n2-1)/4 

+(a + b)(a2 + b2)(n2-1)/2 

+4(a+ b)“(a2 + b2)c”2-n)/2 n odd. 

Velucchi also considers the nondominating queens prob- 
lem, which consists of placing n queens on an order 
n chessboard to leave a maximum number U(n) of 
unattacked vacant cells. The first few values are 0, 0, 0, 
1, 3, 5, 7, 11, 18, 22, 30, 36, 47, 56, 72, 82, +, l  (Sloane’s 
A001366). Th e results can be generalized to k queens 
on an n x n board. 

see also l3 ISHOPS PROBLEM, CHESS, KINGS PROBLEM, 

KN IGHTS PROBLEM, KNIGHT’S Tou R, ROOKS PROB- 
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Queue 
A queue is a special kind of LIST in which elements 
may only be removed from the bottom by a POP action 
or added to the top using a PUSH action. Examples 
of queues include people waiting in line, and submitted 
jobs waiting to be printed on a printer. 
queues is called QUEUING THEORY. 

The study of 

see also LIST, QUEUING THEORY, STACK 
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Queuing Theory 
The study of the waiting times, lengths, and other prop- 

erties of QUEUES. 

References 
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Quicksort 
The fastest known SORTING ALGORITHM (on average, 
and for a large number of elements), requiring O(n lg n) 

steps. Q . k t UIC sor is a recursive algorithm which first 
partitions an array {ui}FE1 according to several rules 
(Sedgewick 1978) : 

Some key v is in its final position in the array (i.e., 
if it is the jth smallest, it is in position aj)* 

All the elements to the left of aj are less than or equal 
to aj. The elements al, ~2, . . . , aj-1 are called the 
“left subfile.” 

All the elements to the right of aj are greater than 
or equal t0 Ujm The elements aj+l, . . . , a, are called 
the “right subfile Y’ 

Quicksort was invented by Hoare (1961, 1962), has 
undergone extensive analysis and scrutiny (Sedgewick 
1975, 1977, 1978), and is known to be about twice as 
fast as the next fastest SORTING algorithm. In the worst 
case, however, quicksort is a slow n2 algorithm (and for 
quicksort, “worst case” corresponds to already sorted). 

see also HEAPSORT, SORTING 
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Quillen-Lichtenbaum Conjecture 
A technical CONJECTURE which connects algebraic k- 
THEORY to &ale cohomology. The conjecture was made 
more precise by Dwyer and Friedlander (1982). Thoma- 
son (1985) established the first half of this conjecture, 
but the entire conjecture has not yet been established. 
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Quincunx 
The pattern :e: of dots on the rr5” side of a 6-sided DIE. 
The word derives from the Latin words for both one and 

see also DICE 
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Quindecillion 
In the American system, 1048. 

see also LARGE NUMBER 

Quintet 
A SET of five. 

see also HEXAD, MONAD, QUARTET, TETRAD, TRIAD 

Quint ic Equation 
A general quintic cannot be solved algebraically in terms 
of finite additions, multiplications, and root extractions, 
as rigorously demonstrated by Abel and Galois. 

Euler reduced the general quintic to 

X5 - 10qx2 - p = 0. (1) 

A quintic also can be algebraically reduced to PRINCIPAL 
QUINTIC FURM 

x5 + u2x2 + UlX + a0 = 0. (2) 

By solving a quartic, a quintic can be algebraically re- 
duced to the BRING QUINTIC FORM 

x5-x-u=o, (3) 

as was first done by Jerrard. 

Consider the quint ic 

fi, ( x - wju, -j- w4ju2)] = 0, (4 
j=O 

where w  = e 2mi/5 and u1 and 7~2 are COMPLEX NUM- 
BERS. This is called DE MOIVRE'S QUINTIC. Generalize 
it to 

fil ( x - wju, + w2ju2 + w3ju3 + w4juq)] = 0. (5) 

j=O 
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Expanding, where 

(WjU~ --I- w2ju2 + w 
3j 

u3 + w 4ju4)5 

--5U(WjU~ + w2ju2 -j- w3ju3 + w4jU4)4 

4V(WLl + w2ju2 + W3jU3 + w4ju4>” 

+5W(wGQ + W2jU2 + W3jU3 + W4jU4) 

+[5(X - Y) - Z] = 0, (6) 

where 

U = ~1~4 -I u2u3 

V = UlU22 + U2U4’ + U3U12 + U4U32 (8) 

W = U12Uq2 +- U22U32 - U13U2 - U23U4 

- u43u3 - UlU2U3U4 (9) 

X = U13U3U4 + U23U1U3 + U33U2U4 + U43U1U2 (10) 

Y = U1U32U42 + U~UI~U~~ + U3U22U42 + U4U12U22 

(11) 

z = U15 + u2= + U35 + Ud5. 

The uis satisfy 

UlU4 -I- U2U3 = 0 (13) 

U~U22 + U2U42 + U3U12 + U4T~53~ = 0 (14) 

U12U42 + U22U32 - lL132t2 - U23U4 - U33U1 - u43u3 

- ulti2u3u4 = 5 52 (15) 

5[(U13U3U4 + U23U1U3 + U33u3U4 +- U43U1U2) 

- (U1U32U42 + U~ILI~U~~ -I- U3U22U42 + U~UI~U~~)] 

- (U15 -I- u25 + u35 + u45> = b. (16) 

Spearman and Williams (1994) show that an irreducible 
quintic 

x5+ax+b=0 (17) 

with RATIONAL COEFFICIENTS is solvable by radicals 
IFF there exist rational numbers E = *l, c > 0, and - 
e # 0 such that 

a= 
5e4(3 - 4EC) 

c2 + 1 

b= 
-4e5 (11C + 2c) 

c2+1 * 

(18) 

(19) 

The ROOTS are then 

Xj = e(w& + w2ju2 + w3ju3 + w4ju4>, (20) 

VI2213 

( > 
l/5 

Ul = 
D2 

‘u32v4 

( > 

l/5 

u2 = D2 
v22v1 

u3 = ( > 
115 

02 

m2v2 

( > 

l/5 

u4 = 
D2 

(21) 

(22) 

(23) 

(24) 

v4=d%dD-~d5 (28) 

D = c2 + 1. (29) 

The general quintic can be solved in terms of THETA 
FUNCTIONS, as was first done by Hermite in 1858. Kron- 
ecker subsequently obtained the same solution more sim- 
ply, and Brioshi also derived the equation. To do so, 
reduce the general quintic 

a5x5 + a4x4 + a328 + a2x2 + ax + a0 = 0 (30) 

into BRING QUINTIC FORM 

X5 -x+p=o. (31) 

Then define 

k = tan [w (*)I 

{ 

- sgn(%[p]) 
s = w@w) 

for R[p] = 0 

for WPI # 0 

(32) 

(33) 

b- 
s(k2j1/’ 

2 ’ 53/4&ixj 

q = q(k2) = eirrK’(k2)/K(k2), 

(34) 

(35) 

where k is the MODULUS, m E k2 is the PARAMETER, 
and Q is the NOME. Solving 

q(m) = e i~K’(m)/K(m) 
(36) 

for m gives the inverse parameter 

f124(4) m(q) = - 
f134 (4 l  

(37) 
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The RUSTS are then given by 

+i[m(e 
Z~ri/5~1/5)]1/8) 

x{b(e 
-4rri15ql/5)]lls + [m(ew5qql/8} 

x{[m(q1’5)]1’s + q5’s(q5)-1’8[m(~5)]‘/8) (38) 
x2 c b{m[m(q1/5)]1/8 + e3”i/4[m(e2rri/541/5)]1/8} 

xIe 
-3&/4 

I ( 
m e-2~~15q1/5)]1/8 +i[m(e4~~/5q1/5)]l/8} 

x {i[m(e -47w5ql/5)]w + 45/8(q5)-1/8[m(45)]1/8) 

(39) 

23 =b{~-3"i/4[m(e-2"i/5q1/5)]l/8 

-i[m(e 
-4e/5 l/5 l/0 4 >I >H-b(d’5)11’s 

-i[m(e 4~i/5~1/5)]1/8} 

x{e 3wi/4 [m(,w5qq]1/8 + Q5/s(q5)--1/8[m(q5)]1/8} 

(40) 

x4 = b{[m(q1/5)]1/s - i[m(e-4”i’591/5)]1/s)} 

~{-e3"i/4[m(e2rri/5q1/5)11/8 _ ~[m(ew5ql/5)1w} 

xte 
-3?ri/4 

[ ( 
m e-2~i/5q1/5)]l/8 

+q5~s(q5)-1/8[m(q5)]1/8) (41) 
x5 = b{[m(q1/5)]1/8 _ e-3xi/4[m(e-2”i/5q1/5)]1/s) 

x {_e3?ri/4[m(e2”i/5q1/5)]1/8 + i[m(e-4”i/591/5)]1/8} 

x{(-i[m(e 4~i15qu5)]1/8 + 45/s(45)--1/8[m(45)]1/8}* 

(42) 

Felix Klein used a TSCHIRNHAUSEN TRANSFORMATION 
to reduce the general quintic to the form 

t5 + 5az2 + 5bz + c = 0. (4% 

He then solved the related XCOSAHEDRAL EQUATION 

1(x, 1,Z) = z5(-1 + 11z5 + z10)5 

- El + z 3o - 100(-~5(r~~ + z”‘) + 522(-z5 + z”~)]~Z = 0, 

(44) 

All five roots can be derived using differential equations 
(Cockle 1860, Harley 1862). Let, 

Fl(P) = WP) (47) 

F2 b> 4F3(5, 1 2 3 4 = s; 1 3 5 5, sy zj 43 z; 3125 4 WP > (48) 

F3 (P) =4F3(~,~,~,~;a,~,%;~P4) (49) 

WP) =4F3(~,~,~,~;%,%r~;~p4), (50) 

then the ROOTS are 

1 2 3 4 1 3 5 3125 4 
t1 = -P4F3(5,53 53 5; 2149 4; =P ) (51) 

t2 = -E(p) + ipFz(p) + &p2F3(p) + &p3F4(p) 

(52) 

t3 = 4(p) + apF2(p) - $p”F3(p) + &p”R(p) 

(53) 
t4 = - %(P) + apFz(p) - $p2F3(p) - &p3F4(p) 

(54) 
t5 = iFl(p) + @‘z(p) + $p2F3(p) - &p3F4(p). 

(55) 

This technique gives closed form solutions in terms of 
HYPERGEOMETRIC F UNCTIONS in one variable for any 
POLYNOMIAL equation which can be written in the form 

xp + bxQ + c. (56) 

Cadenhad, Young, and Runge showed in 1885 that all 
irreducible solvable quintics with COEFFICIENTS of x4, 
x3, and x2 missing have the following form 

x5 + 5p4(4v + 3)x + 4p5(2v + 1)(4~ + 3) 
u2 +1 Y2 +1 

= 0, (57) 

where p and v are RATIONAL. 

see U&W BRING QUINTIC FORM, BRING-JERRARD QUIN- 
TIC FORM, CUBIC EQUATION, DE MOIVRE’S QUIN- 
TIC, PRINCIPAL QUINTIC FORM, QUADRATIC EQUA- 
TION, QUARTIC EQUATION, SEXTIC EQUATION 
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Quintic Surface 
A quintic surface is an ALGEBRAIC SURFACE of degree 
5. Togliatti (1940, 1949) showed that quintic surfaces 
having 31 ORDINARY DOUBLE POINTS exist, although 
he did not explicitly derive equations for such surfaces. 
Beauville (1978) subsequently proved that 31 double 
points was the maximum possible, and quintic surfaces 
having 31 ORDINARY DOUBLE POINTS are therefore 
sometimes called TOGLIATTI SURFACES. van Straten 
(1993) subsequently constructed a 3-D family of solu- 
tions and in 1994, Barth 
the DERVISH. 

derived the example known as 

see UZSO ALGEBRAIC SURFACE, DERVISH, KISS SUR- 
FACE,~RDINARY DOUBLE POINT 
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Quint illion 
In the American system, 1018. 

see also LARGE NUMBER 

Quintuple Quintuplet 
A group of five elements, also called a QUINTUPLET or 
PENTAD. 

A group of five elements, also called a QUINTUPLE or 
PENTAD. 

see UZSO MONAD, PAIR, PENTAD, QUADRUPLE, QUAD- 
RUPLET, QUINTUPLET, TETRAD, TRIAD, TRIPLET, 
TWINS 

Quintuple Product Identity 
A.k.a. the WATSON QUINTUPLE PRODUCT IDENTITY. 

00 

rI( 1 - q”)(l - zq”)(l - clqn-l)(l - z2q2y 

n=l 

x(1-z 
-zq2n-1) = 2 cz3rn _ Z-3m-l)qm(2m+1)/2~ 

m=-a 

(1) 

It can also be written 

00 

rI( 

l- q2”)(1 - q2n-1ql - q2n-1z-1) 

n=l 

x (1 - q4n-3Z2)( 1 - q4”-4y2) 

OEI 

lE 

3n2 - - 
4 

-2yz3n +Z-3n) _ (z3n-2+Z-(3n-29] (2) 

7X=-m 

or 

FE=--00 

00 
- - 

rI( 1 - qj)(1+ PqQ(l + z&l) 

j=l 

x (1 + z-z$j-l)(l + z2q2j-l). (3) 

Using the NOTATION of the RAMANUJAN THETA FUNC- 
TION (Berndt, p. 83)) 

f (B3/q, q5/B3) - B2f (q/B31 B3q51 

= f (-q2) f C-B23 -q2P2) 
f @wllB~ - C4) 

~~~UZSOJACOBITRIPLE PRODUCT,RAMANUJANTHETA 
FUNCTIONS 
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Quota Rule 
A RECURRENCE RELATION between the function Q aris- 
ing in QUOTA SYSTEMS, 

Q(n,r) = Q(n - 1,r - 1) + Q(n - 1,~). 

Quotient-Difference Algorithm 
The ALGORITHM of constructing and interpreting a 
QUOTIENT-DIFFERENCE TABLE which allows intercon- 
version of CONTINUED FRACTIONS, POWER SERIES, and 
RATIONAL FUNCTIONS approximations. 

see also QUOTIENT-DIFFERENCE TABLE 

Keferences 
Young, S. C.; Taylor, A. ID.; and Zwicker, W. S. ‘LCount- 

ing Quota Systems: A Combinatorial Question from Social 
Choice Theory.” Math. Mug. 68, 331-342, 1995. 

Quota System 
A generalization of simple majority voting in which a list 
of quotas (90, . l  . , qn} specifies, according to the number 
of votes, how many votes an alternative needs to win 
(Taylor 1995). The quota system declares a tie unless 
for some k, there are exactly k tie votes in the profile 
and one of the alternatives has at least qk votes, in which 
case the alternative is the choice. 

Quotient-Difference Table 

s= - 
X2-EW 12-(2)(l) -1 z-z 

N 1 

Let Q(n) be th e number of quota systems for n voters 
and Q(n, r) the number of quota systems for which 40 = 

A quotient-difference table is, a triangular ARRAY of 
numbers constructed by drawing a sequence of n num- 

r+l, so bers in a horizontal row and placing a 1 above each. An 

Q(n)= 9 Qhr)= (,;j++$ 

additional “1” is then placed at the beginning and end 
of the row of ls, and the valuelof rows underneath the 
original row is then determined by looking at groups of 
adjacent numbers 

where 1x1 is the FLOOR FUNCTION. This produces the N 
sequence of CENTRAL BINOMIAL COEFFICIENTS 1, 2,3, 
6, 10, 20, 35, 70, 126, . .a (Sloane’s A001405). It may 
be defined recursively by Q(0) = 1 and 

w x E 
s 

and computing 
X2--W s= N 

where CI, is a CATALAN NUMBER (Young et al. 1995). 
The function Q(n, r) satisfies 

for the elements falling within a triangle formed by the 
diagonals extended from the first and last “1,” as illus- 
trated above. 

OS in quotient-difference tables form square “windows” 
which are bordered by GEOMETRIC PROGRESSIONS. 
Quotient-difference tables eventually yield a row of OS 

for T > n/2-1 (Y oung et al. 1995). Q(n,r) satisfies the 
IFF the starting sequence is defined by a linear RECUR- 

QUOTA RULE. 
RENCE RELATION. For example, continuing the above 
example generated by the F~BONACCI NUMBERS 

see &SO BINOMIAL COEFFICIENT, CENTRAL BINOMIAL 

COEFFICIENT 1111111 
1 1 2 3 5 

References 
Sloane, N. J. A. Sequence A001405/M0769 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 
Taylor, A. Mathematics and Politics: Strategy, Voting, 

Power, and Proof. New York: Springer-Verlag, 1995. 
Young, S. C.; Taylor, A. ID.; and Zwicker, W. S. “Count- 

ing Quota Systems: A Combinatorial Question from Social 
Choice Theory.” Math. Mug. 68, 331-342, 1995. 

-1 1 -1 

0 

11111 1 1 1 
1 1 2 3 58 

-1 1 -1 1 
0 0 

Quotient 
The ratio g = r/s of two quantities T and s, where s # 0. 

111111111 

1 1 2 3 5 8 13 
-1 1 -1 1 -1 

see also DIVISION, QUOTIENT GROUP, QUOTIENT RING, 0 0 0 
QUOTIENT SPACE 0 



1502 Quotient Group 

1111111111 
1 1 2 3 5 8 13 21 

-1 1 -1 1 -1 1 
0 0 0 0 

0 0 

and it can be seen that a row of OS emerges (and fur- 
thermore that an attempt to extend the table will result 
in division by zero). This verifies that the FIBONACCI 

NUMBERS satisfy a linear recurrence, which is in fact 
given by the well-known formula 

F, = Fn-l + Fns2. 

However, construction of a quotient-difference table for 
the CATALAN NUMBERS,MOTZKIN NUMBERS, etc., does 

not lead to a row of zeros, suggesting that these numbers 
cannot be generated using a linear recurrence. 

see also DIFFERENCE TABLE, FINITE DIFFERENCE 

References 
Conway, J. H. and Guy, R. K. In The Book of Numbers, New 

York: Springer-Verlag, pp. 85-89, 1996. 

Quotient Group 
The quotient group of G with respect to a SUBGROUP H 
is denoted G/H and is read “G modulo K” The slash 
NOTATION conflicts with that for a FIELD EXTENSION, 
but the meaning can be determined based on context. 

see also ABHYANKAR'S CONJECTURE, FIELD EXTEN- 
SION, OU 'TERAUTOMORPHISM GROUP, SUBGROUP 

Quotient Ring 
The quotient ring of R with respect to a RING module 
some INTEGER n is denoted R/nR and is read “the ring 
R modulo n.” If n is a PRIME p, then Z/pZ is the 
FINITE FIELD II?,. For COMPOSITE 

k 

n= 
rI Pi 

i=l 

with distinct pi, Z/pZ is ISOMORPHIC to the DIRECT 
SUM 

see also FINITE FIELD, RING 

Quotient Rule 
The DERIVATIVE rule 

d f(x) --- [ 1 9W’W - f(49W dx 9(x> - [9(x)1 2 . 

see also CHAIN RULE, DERIVATIVE, POWER RULE, 
PRODUCT RULE 

Quotient Space 

Quotient Space 
The quotient space X/ N of a TOPOLOGICAL SPACE X 
and an EQUIVALENCE RELATION N on X is the set 
of EQUIVALENCE CLASSES of points in X (under the 
EQUIVALENCE RELATION w) together with the topol- 
ogy given by a SUBSET U of Xl--. U of X/w is open 
IFF &=-~a is open in X. 

This can be stated in terms of MAPS as follows: if Q : 
X + X/w denotes the MAP that sends each point to 
its EQUIVALENCE CLASS in X/N, the topology on X/w 
can be specified by prescribing that a subset of X/m is 
open IFF q-‘[the set] is open. 

In general, quotient spaces are not well behaved, and lit- 
tle is known about them. However, it is known that any 
compact metrizable space is a quotient of the CANTOR 

SET, any compact connected n-dimensional MANIFOLD 

for n > 0 is a quotient of any other, and a function out 
of a quotient space f : X/N+ Y is continuous IFF the 
function f 0 4 : X + Y is continuous. 

Let D” be the closed n-D DISK and snB1 its bound- 
ary, the (n - 1)-D sphere. Then IW/Sn-’ (which is 
homeomorphic to s”>, provides an example of a# quo- 
tient space. Here, lll)n/Sn-l is interpreted as the space 
obtained when the boundary of the n-DISK is collapsed 
to a point, and is formally the “quotient space by the 
equivalence relation generated by the relations that all 
points in VA1 are equivalent.” 

see also EQUIVALENCE RELATION, TOPOLOGICAL 
SPACE 

References 
Munkres, J. R. TopoEogy: A First Course. Englewood Cliffs, 

NJ: Prentice-Hall, 1975. 

References 
Abramowitz, M. and Stegun, C, A, (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
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R 

The FIELD of REAL NUMBERS. 

see also c, c*, II, Iv, Q, IR-, lR+, z 

R 
- 

The REAL NEGATIVE numbers. 

see also IK, Et+ 

IR+ 
The REAL POSITIVE numbers. 

see also R, IK 

The number of representations of n by k squares is de- 
noted r&z). The Mathema~icu@ (Wolfram Research, 
Champaign, IL) function NumberTheory ‘NumberTheory 
Functions ‘SumOfSquaresR[k,n] gives Tk(?&). 

r&z) is often simply written r(n). Jacobi solved the 
problem for k = 2, 4, 6, and 8. The first cases k = 
2, 4, and 6 were found by equating COEFFICIENTS of 
the THETA FUNCTION G&c), 29s2(z), and 634(~). The 
solutions for k = 10 and 12 were found by Liouville and 
Eisenstein, and Glaisher (1907) gives a table of rk(n) for 
k= 2s = 18. rz(n) was found as a finite sum involving 
quadratic reciprocity symbols by Dirichlet. ~~(72) and 
r7(n) were found by Eisenstein, Smith, and Minkowski. 

r(n) = ~2 (n) is 0 whenever n has a PRIME divisor of the 
form 4k+3 to an 0110 POWER; it doubles upon reaching 
a new PRIME of the form 411; + 1. It is given explicitly 

bY 

r(n) = 4 7, (-l)(d-1)/2 = 4[d&2) - d&)1, (1) 

d=1,3,.4n 

where dk(n) is the number of DWS~RS of n of the form 
4nz + k. The first few values are 4, 4, 0, 4, 8, 0, 0, 4, 

4, 8, 0, 0, 8, 0, 0, 4, 8, 4, 0, 8, 0, 0, 0, 0, 12, 8, 0, 
0, l  . . (Sloane’s A004018). The first 
summatory function 

R(n) E kr(n), 

k=l 

where are 0, 4, 8, 8, 12, 20, 20, 
(Sloane’s AO14198). Shanks (199 

i”(n) = l+ R(n), with R’(0) = 1. A 
for r(n) is 

few values of the 

(2) 

20, 24, 28, 36, 
3) defines instead 
LAMBERT SERIES 

O” 4(-1)"+1x" c = 
1 - xn 

?T(,,,- 
n=l 

(Hardy and Wright 1979). 

?t=l 

(3) 

2.6 

Asymptotic results include 

f$(k)=m+U(fi) 

k-l 

(4) 

IE Q w 
k 

= K + nlnn + 6(n-1/2), (5) 

where K is a constant known as the SIERPI~KI CON- 
STANT. The left plot above 

- rn, (6) 

with &fi illustrated by the dashed curve, and the right 
plot shows 

;TTlnn, (7) 

with the value of K indicated as the solid horizontal line. 

The number of solutions of 

x2 + y2 + z2 = n (8) 

for a given n without restriction on the signs or rela- 
tive sizes of x, y, and z is given by TQ (n) . If 72 > 4 is 
SQUAREFREE, then Gauss proved that 

24h( -n) for n G 3 (mod 8) 

7-3(n) = lZh(-4n) for 72 = 1,2,5,6 (mod 8) (9) 
0 for n G 7 (mod 8) 

(Arno 1992), where h(x) is the CLASS NUMBER of 2. 

Additional higher-order identities are given by 

T4(n) = 8Cd = 8a(n> (10) 

din 

= 24 x d = 24o&z) 
d=1,3,...1n 

(11) 

qo(n) = @4(n) + 16&(n) + 8x4(n)] (12) 

TM(n) = p24(n) 

+ s[(-l)n-1259T(n) - 512+)], (13) 

where 

Ed(n) = 

E:(n) = 

X4@) = 

>) (4 
d=1,3,...ln 

): (-1) 
d'=1,3,... In 

1 4 c ( + a 
a2+b2=n 

d-l)/2d4 

W-m& 

q4, 

04) 

(15) 

(16) 
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d’ E n/d, dk(n) is the number of divisors of n of the 
form 477~ + k, pad(n) is a SINGULAR SERIES, o(n) is the 
DIVISOR FUNCTION, so(n) is the DIVISOR FUNCTION of 
order 0 (i.e., the number of DIVISORS), and 7 is the TAU 
FUNCTION. 

Similar expressions exist for larger EVEN K, but they 
quickly become extremely complicated and can be writ- 
ten simply only in terms of expansions of modular func- 
tions. 

see also CLASS NUMBER, LANDAU-RAMANUJAN CON- 
STANT, PRIME FACTORS, S~ERPI~~SKI CONSTANT, TAU 
FUNCTION 
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R-Estimate 
A ROBUST ESTIMATION based on RANK tests. EX- 
amples include the statistic of the KOLMOGOROV- 
SMIRNOV TEST, SPEARMAN RANK CORRELATION, and 
WILCOXON SIGNED RANK TEST. 

see also L-ESTIMATE, M-ESTIMATE, ROBUST ESTIMA- 

TION 

References 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vet- 
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Raabe’s Test 
Given a SERIES of POSITIVE terms ui and a SEQUENCE 
of POSITIVE constants {ai}, use KUMMER'S TEST 

p’E lim 
( 

a,%- hL+1 l  

n-&m WI+1 > 

with a, = n, giving 

p’= lim 
( 
n-t%- u +l bfl) ?-L-km n 

> 

=JinJn(-J&-+I]. 

Defining 

then gives Raabe’s test: 

1. If p > 1, the SERIES CONVERGES. 

2. If p < 1, the SERIES DIVERGES. 

3. If p = l,the SERIES may CONVERGE or DIVERGE. 

see ~2s~ CONVERGENT SERIES, CONVERGENCE TESTS, 
DIVERGENT SERIES,KUMMER'S TEST 
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Rabbit Constant 
The limiting RABBIT SEQUENCE written as a BINARY 
FRACTION 0.1011010110110 .,.2 (Sloane’s A005614), 
where 62 denotes a BINARY number (a number in base- 
2). The DECIMAL value is 

R = 0.7098034428612913146... 

(Sloane’s A014565). 

Amazingly, the rabbit constant is also given by the CON- 
TINUED FRACTION [0, 2Fo, 2F1, 2F2, 2F3, . . .I, where Fn 

are FIBONACCI NUMBERS with F,J taken as 0 (Gard- 
ner 1989, Schroeder 1991). Another amazing connec- 
tion was discovered by S. Plouffe. Define the BEATTY 
SEQUENCE {ai} by 

a; = litpj , 

where 1x1 is the FLOOR FUNCTION and 4 is the GOLDEN 
RATIO. The first few terms are 1, 3, 4, 6, 8, 9, 11, . . . 
(Sloane’s A000201). Then 

see also RABBIT SEQUENCE, THUE CONSTANT, THUE- 

MORSE CONSTANT 
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Gardner, M. Penrose Tiles and Trapdoor Ciphers,. . and the 
Return of Dr. Matrix, reissue ed. New York: W. H. Free- 
man, pp. 21-22, 1989. 

Plouffe, S. “The Rabbit Constant to 330 Digits.” http: // 
lacim.uqam.ca/piDATA/rabbit .txt. 

Schroeder, M. Fractals, Chaos, Power Laws: Minutes from 
an Infinite Paradise. New York: W. H. Freeman, p. 55, 
1991. 

Sloane, N. J. A. Sequences A005614, A014565, and A000201/ 
M2322 in “An On-Line Version of the Encyclopedia of In- 
teger Sequences.” 

Rabbit-Duck Illusion 

A perception ILLUSION in which the brain switches be- 
tween seeing a rabbit and a duck. 

see also YOUNG GIRL-OLD WOMAN ILLUSION 

Rabbit Sequence 
A SEQUENCE which arises in the hypothetical repro- 
duction of a population of rabbits. Let the SUBSTITU- 
TION MAP 0 -+ 1 correspond to young rabbits grow- 
ing old, and 1 -+ 10 correspond to old rabbits produc- 
ing young rabbits. Starting with 0 and iterating using 
STRING REWRITING gives the terms 1, 10, 101, 10110, 
10110101, 1011010110110, . . . . The limiting sequence 
written as a BINARY FRACTION 0.1011010110110~. .2 

(Sloane’s A005614), where b2 denotes a BINARY number 
(a number in base-2) is called the RABBIT CONSTANT. 

see also RABBIT CONSTANT, THUE-MORSE SEQUENCE 

References 
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an Infinite Paradise. New York: W. H. Freeman, p. 55, 
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Rabdology 

see NAPIER'S BONES 

Rabin-Miller Strong Pseudoprime Test 
A PRTMALTTY TEST which provides an efficient proba- 
bilistic ALGORITHM for determining if a given number is 
PRIME. It is based on the properties of STRONG PSEU- 

DOPRIMES. Given an ODD INTEGER rz, let n = 2’s+l 
with s ODD. Then choose a random integer a with 

l<a<n-1. If&=1 (modn)orP~--1 (modn) 
forsomeO<j<r- - - 1, then n passes the test. A PRIME 

The test is very fast and requires no more than (1 + 
o(l)) lg n multiplications (mod n), where LG is the LOG- 
ARITHM base 2. Unfortunately, a number which passes 
the test is not necessarily PRIME, Monier (1980) and 
Rabin (1980) have shown that a COMPOSITE NUMBER 

passes the test for at most l/4 of the possible bases a.. 

The Rabin-Miller test (combined with a LUCAS PSEU- 
DOPRTME test) is the PRIMALITY TEST used by 
Mathematic@ versions 2.2 and later (Wolfram Re- 
search, Champaign, IL). As of 1991, the combined test 
had been proven correct for all n < 2.5 x lOlo, but not 
beyond. The test potentially could therefore incorrectly 
identifyalarge COMPOSITE NUMBER as PRIME (but not 
vice versa). STRONG PSEUD~PRTME tests have been’sub- 
sequently proved valid for every number up to 3.4 x 10r4. 

see ah LUCAS-LEHMER TEST, MILLER'S PRTMALTTY 
TEST,PSEUDOPRTME, STRONG PSEUDOPRIME ' 
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Rabinovich-Fabrikant Equation 
The 3-D MAP 

3E: = y(z - 1 + x2) + yx 

j, = x(32 + 1 - x2) + yy 
i = -2z(a! + xy) 

(Rabinovich and Fabrikant 1979). The parameters are 
most commonly taken as y = 0.87 and a = 1.1. It has 
a CORRELATION EXPONENT of2.19&0.01. 
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Racah V-Coefficient 
The Racah V-COEFFICIENTS are written 

and are sometimes 
CLEBSCH- GORDON C 

V(jh j; mlm2m) (1) 

0 
expressed 

EFFICTENTS 
using the related 

c3 mlm2 = (jlj2mm2 Ijlj2 jm), (2) 

will pass the test for all a. 
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The free abscissas xi for i = 2, . . . , n are the roots of 
the POLYNOMIAL 

or WIGNER 3j-SYMBOLS. Connections among the three 
are 

K-1(x)+P,(z) (jl j2mm2 1 jl j2m) 

r( 3 + 1 

. . . 

( 1) 
-jl+j2-m J1 32 3 - -- 

ml rnz -m > 
(3) 

(2) 
1+x 

1 

where P(X) is a LEGENDRE POLYNOMIAL. The weights 
of the free abscissas are 

= (-1)3+m&TV(jlj2j;mlm2 - m) (4) 

and of the endpoint . . 

V(jlj2j;mlm2m) = (-l)-jl+j2+j 
( 

m 
c2 zl cz . 

> 2 
w1= -* 

n2 
(4 (5) 

see also CLEBSCH-GORDON COEFFICIENT, RACAH 
~/Y-COEFFICIENT, WIGNER 3j-SYMBOL, WIGNER Sj- 
SYMBOL, WIGNER gj-SYMBOL 

The error term is given by 

E= 
22n-1n[(n - 1)!14 (&-&-1) 

P n - 1)!13 f cc> 9 (5) References 
Sobel’man, I. I. “Angular Momenta.” Ch. 4 in Atomic Spec- 

tra and Radiative Bansitions, 2nd ed. Berlin: Springer- 
Verlag, 1992. for t E (-1,l). 

Racah W-Coefficient 
Related to the CLEBSCH-GORDON COEFFICIENTS by 

2 -1 
0.333333 

3 -1 
-0.289898 
0.689898 

4 -1 
-0.575319 
0.181066 
0.822824 

5 -1 
-0.72048 
-0.167181 
0.446314 
0.885792 

0.5 
1.5 
0.222222 
1.02497 
0.752806 
0.125 
0.657689 
0.776387 
0.440924 
0.08 
0.446208 
0.623653 
0.562712 
0.287427 

(J1J2[f]~3~~lr JZJ3[f’]) 

= 2/(2J’ + 1)(2J” + 1) W(JlJzJJ3; J’J”) 

and 

(JI J~[J’]J~IJIJ~[J”]Jz) 

- - &J’ + 1)(2J” 

see also CLEBSCH-GORDON 
V-COEFFICIENT, WIGNER 3j 
SYMBOL,~IGNER~~-SYMBOL 

References 

+ 1) W(J;J&J”; JJ1). 

COEFFICIENT, RACAH 
SYMBOL, WIGNER 6j- 

The ABSCISSAS and weights can be computed analyti- 
cally for small n. 

Messiah, A. “Racah Coefficients and ‘6j’ Symbols.” Ap- 
n xi Wi pendix CII in Quantum Mechanics, Vol. 2. Amsterdam, 

Netherlands: North-Holland, pp. 1061-1066, 1962. 
Sobel’man, I. I. “Angular Momenta.” Ch. 4 in Atomic Spec- 

tra and Radiative Transitions, 2nd ed. Berlin: Springer- 
Verlag, 1992. 

2 -1 1 
2 

1 
3 

i! 
2 

3 -1 z 

;<1- &> ;(16+&) 

$+A) A(16 - d@ 
Radau Quadrature 
A GAUSSIAN QUADRATURE-like formula for numerical 
estimation of integrals. It requires m + 1 points and 
fits all POLYNOMIALS to degree Zm, so it effectively fits 
exactly all POLYNOMIALS of degree 2m - 1. It uses a 
WEIGHTING FUNCTION W(x) = 1 in which the end- 
point -1 in the interval [-1,1] is included in a total 
of n ABSCISSAS, giving T = n - 1 free abscissas. The 
general formula is 

see also CHEBYSHEV QUADRATURE, LOBATTO QUAD- 

RATURE 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p. 888, 1972. 

Chandrasekhar, S. Radiative Transfer. New York: Dover, 
p. 61, 1960. 

Hildebrand, F. B. Introduction to Numerical Analysis. New 
York: McGraw-Hill, pp. 338-343, 1956. s 1 

f(x)dx = wlf(-1) + kwif(xi). (1) 
-1 *- z- 2 
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Rademacher Function 

see SQUARE WAVE 

Radial Curve 
Let C be a curve and let 0 be a fixed point. Let P be 
on C and let Q be the CURVATURE CENTER at P. Let 
PI be the point with P-10 a line segment PARALLEL and 
of equal length to PQ. Then the curve traced by PI is 
the radial curve of C. It was studied by Robert Tucker 
in 1864. The parametric equations of a curve (f, g) with 
RADIAL POINT (50, yo) are 

x=q)-- Loft2 + 9’“) 
fs I II- II I fs 
f’(f12 + 9’“) 

Y = yo + fIgI? _ fHg’ ’ 

Curve 

astroid 
catenary 
cycloid 
deltoid 

Radial Curve 

quadrifolium 
kampyle of Eudoxus 
circle 
t rifolium 

logarithmic spiral logarithmic spiral 
tractrix kappa curve 

Heferences 
Lawrence, 3. D. A Catalog of Special Plane Curves. New 

York: Dover, pp. 40 and 202, 1972. 
Yates, R. C. ‘&Radial Curves.” A Handbook on Curves and 

Their Properties. Ann Arbor, MI: J. W. Edwards, pp. 172- 
174, 1952. 

Radial Point 
The point with respect to which a RADIAL CURVE is 
computed. 

see also RADIANT POINT 

Radian 
A unit of angular measure in which the ANGLE of an 
entire CIRCLE is 2n radians+ There are therefore 360” 
per 2n radians, equal to 180/n or 57,29577951”/radian. 
A RIGHT ANGLE is r/2 radians. 

see also ANGLE,ARC MINUTE,ARC SECOND,D 
GRADIA N, STERADIAN 

EGREE, 

Radiant Point 
The point of illumination for a CAUSTIC. 

see also CAUSTIC, RADIAL PRINT 

Radical 
The symbol e used to indicate a root is called a radi- 
cal. The expression e is therefore read “2 radical n,” 

or “the nth ROOT of 2.” n = 2 is written fi and is 
called the SQUARE ROOT of 2. n = 3 corresponds to 
the CUBE ROOT. The quantity under the root is called 
the RADICAND. 

Some interesting radical identities are due to Ramanu- 
jan, and include the equivalent forms 

(p/3 + 1)(21/3 - l)'/" =31/3 

(2 
113 _ 1)W = (g/3 _ ($/3 + ($)1/f 

Another such identity is 

(5 
1/3 _ 41/3)1/2 = @l/3 + 2(-f/3 _ &/3), 

see also CUBE ROOT,NESTED RADICAL,~OWER, RAD- 
ICAL INTEGER,RADICAND, ROOT (RADICAL),~QUARE 
ROOT,VINCULUM 

Radical Axis 

see RADICAL LINE 

Radical Center 

The RADICAL LINES ofthree CIRCLES~~~~ONCURRENT 
in a point known as the radical center (also called the 
POWER CENTER). This theorem was originally demon- 
strated by Monge (Dijrrie 1965, p. 153). 

see also APOLLONIUS' PROBLEM, CONCURRENT, 
MONGE'S PROBLEM, RADICAL LINE 

References 
Dijrrie, H. 100 Great Problems of Elementary Mathematics: 

Their History and Solutions. New York: Dover, 1965. 
Johnson, R. A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, p. 32, 1929. 

Radical Integer 
A radical integer is a number obtained by closing the IN- 
TEGERS under ADDITION, DIVISION, MULTIPUCATION, 
SUBTRACTION, and ROOT extraction. An example of 

such a number is fi + d? - J3+ $6+1/z. The 
radical integers are a subring of the ALGEBRAIC INTE- 
GERS. If there are ALGEBRAIC INTEGERS which are not 
radical integers, they must at least be cubic. 

see also AL IGEBRAIC 
EUCLIDE AN NUMBER 

INTEGER, ALGEBRAIC NUMBER, 
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Radical Line 

] @@, 

The LOCUS of points of equal POWER with respect to 
two nonconcentric CIRCLES which is PERPENDICULAR 
to the line of centers (the CHORDAL THEOREM; Dorrie 
1965). Let the circles have RADII ~1 and ~2 and their 
centers be separated by a distance d. If the CIRCLES 
intersect in two points, then the radical line is the line 
passing through the points of intersection. If not, then 
draw any two CIRCLES which cut each original CIRCLE 
twice. Draw lines through each pair of points of inter- 
section of each CIRCLE. The line connecting their two 
points of intersection is then the radical line. 

The radical line is located at distances 

dl = 
d2 + T12 - Tz2 

2d 

d2 + ~2 
2 

- TI 
2 

d2 = - 
2d 

(1) 

(2) 

along the line of centers from Cl and C2, respectively, 
where 

d = dl - d2 . (3) 

The radical line of any two POLAR CIRCLES is the AL- 
TITUDE from the third vertex. 

see also CHORDAL THEOREM, COAXAL CIRCLES, IN- 
VERSE POINTS, INVERSION, POWER (CIRCLE), RADI- 
CAL CENTER 

References 
Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited. 

Washington, DC: Math. Assoc. Amer., pp. 31-34, 1967. 
Dixon, R. Mathographics. New York: Dover, p. 68, 1991. 
Dijrrie, H. 100 Great Problems of Elementary Mathematics: 

Their History and Solutions. New York: Dover, p. 153, 
1965. 

Johnson, R. A. Modern Geometry: An Elementary Treatise 
on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, pp. 28-34 and 176-177, 1929. 

Radicand 
The quantity under a RADICAL sign. 

see also RADICAL, VINCULUM 

Radius 

The distance from the center of a CIRCLE to its PERI- 

METER, or from the center of a SPHERE to its surface. 
The radius is equal to half the DIAMETER. 
see ah BERTRAND'S PROBLEM, CIRCLE, CIRCUMFER- 
ENCE, DIAMETER, EXTENT, INVERSION RADIUS, KIN- 
NEY’S SET, PI, RADIUS OF CONVERGENCE, RADIUS OF 
CURVATURE, RADIUS (GRAPH), RADIUS OF GYRATION, 
RADIUS OF TORSION, RADIUS VECTOR, SPHERE 

Radius of Convergence 
The RADIUS (or I-D distance in the 1-D case) over which 
series expansion CONVERGES. 

Radius of Curvature 
The radius of curvature is given by 

R=1 
K’ (1) 

where K is the CURVATURE. At a given point on a curve, 
R is the radius of the OSCULATING CIRCLE. The symbol 
p is sometimes used instead of R to denote the radius of 
curvature. 

Let =1: and y be given parametrically by 

2 = x(t) (2) 

Y = YW (3) 

then 
R = (xl2 + y’2)3i2 

xly~l _ yfxll 9 (4) 

where x’ = dxldt and y’ = dy/dt. Similarly, if the 
curve is written in the form y = f(x), then the radius 
of curvature is given by 

R 
- 

[l+ ($)2]3’2 
- 

d2, 
l  

d22 

see also BEND (CURVATURE), CURVATURE, OSCULAT- 
ING CIRCLE, TORSION (DIFFERENTIAL GEOMETRY) 

References 
Kreyszig, E. Differential Geometry. New York: Dover, p, 34, 

1991. 

Radius (Graph) 
The minimum ECCENTRICITY of any VERTEX of a 
GRAPH. 

Radius of Gyration 
A function quantifying the spatial extent of the structure 
of a curve. It is defined by 

R, = df om T2p(T) dr 

where P(T) is the LENGTH DISTRIBUTION FUNCTION. 
Small compact patterns have small R,. 

References 
Pickover, C. A. Keys to Infinity. New York: W. H. Freeman, 

pp. 204-206, 1995. 
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Radius of Torsion 

1 -- u= -, 
7 

where 7 is the TORSION. The symbol # is also sometimes 
used instead of c. 

see also TORSION (DIFFERENTIAL GEOMETRY) 

Heferences 
Kreysaig, E. D$ferentiaZ Geometry. New York: Dover, p. 39, 

1991. 

Radius Vector 
The VECTOR r from the ORIGIN to the current position. 
It is also called the POSITION VECTOR. The derivative 
of r satisfies 

dr id 

=‘dt = 3dt 
--(r-r)= g(T2)=T$ =rw, 

where ‘u is the magnitude of the VELOCITY (i.e., the 
SPEED). 

Radix 
The BASE of a number system, i.e., 2 for BINARY, 8 
for OCTAL, 10 for DECIMAL, and 16 for HEXADECIMAL. 
The radix is sometimes called the BASE or SCALE. 

see UZSO BASE (NUMBER) 

Rado’s Sigma Function 

see BUSY BEAVER 

Radon-Nikodym Theorem 
A THEOREM which gives NECESSARY and SUFFICIENT 
conditions for a countably additive function of sets can 
be expressed as an integral over the set. 

References 
Doob, J. L. “The Development of Rigor in Mathematical 

Probability (1900-1950).” Amer. Math. Monthly 103, 
586-595, 1996. 

Radon Dansform 
An INTEGRAL TRANSFORM whose inverse is used to re- 
construct images from medical CT scans. A technique 
for using Radon transforms to reconstruct a map of a 
planet’s polar regions using a spacecraft in a polar orbit 
has also been devised (Roulston and Muhleman 1997). 

The Radon transform can be defined by 

R(P, 7) [fb YN = SW 
f  (x7 7 + PX) dx 

-w 

- - 

r r 
f(x,y)6[y-(~+Pz)]dYdz = U(PJ), (1) 

-w -w 

where His ~H~LBERT TRANSFORM. The transform 
also be defined by 

can 

f (x7 Y>% - xcos~ -ysina)dxdy, (3) 

where T is the PERPENDICULAR distance from a line to 
the origin and QI is the ANGLE formed by the distance 
VECTOR. 

Using the identity 

where F is the FOURIER TRANSFORM, gives the inver- 
sion formula 

f(?Y) = 
7T 

c 
II 

O” ~[~[f(w,cu)]]IWleiw(zcoscr+ysinor) dwdar. 
0 -w 

(5) 

The FOURIER TRANSFORM can be eliminated by writing 7r 
fb,Y) = ss O” R[f(? QI)IW? a, x, Y) dr da, (6) 

0 -w 

where T is a WEIGHTING FUNCTION such as 

W(~,a,x,y) = h(a!cosar+ysina - r) = F’[lwl]. (7) 

Nievergelt (1986) uses the inverse formula 

f(x, Y> 
- - 

1 
- lim 
7T ceo 7r 00 ss R[f(r + x cos a + pin a, a)]&(r) dr da, (8) 

0 -m 

where 

{ 

1 

G,(r) = s 
for ]rl < c - 

5 l - &+J for ITI > c. ( 
(9) 

LUDWIG’S INVERSION FORMULA expresses a function in 
terms of its Radon transform. R’(r, a) and R(p, r) are 
related by 

P = cot a 7 = TCSCctr (10) 
7 TC- 

l+p2 QI 
= cot-lp. 

where p is the SLOPE of a line and 7 is its intercept. The 
inverse Radon transform is 

The Radon transform satisfies superposition 

f  (x, y) = & 
I 

“d 
-w &H[WP7 Y - P41 dP, (2) 

R(p,~)[fi(x,y) + fi(w)] = UI(PJ) +U~(PJ), (12) 
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linearity 

scaling 

R(P, d[af(x, Y)l = aP7 43 (13) 

ROTATION, with R4 ROTATION by ANGLE 4 

u 
( 

p-tan@ 7 

> 1 +ptan@ costi+psin@ ’ (15) 

and skewing 

R(P, r)[f@ + by, cx + dY)l 
d - b(c + bd) - -- 

a+bp 1 (16) 
(Durrani and Bisset 1984). 

The line integral along p, T is 

I = J1-f” p2 u(pq) (17) 

The analog ofthe 1-D CONVOLUTION THEOREM is 

R(P, 7) [f (2, Y) * S(Y)1 = WP, T) * 9(T)? (18) 

the analog of PLANCHEREL'S THEOREM is 

Sm u(p,r) dr = SmSO) f (x7 Y> dXdY, (19) 
--oo --oQ --oo 

and the analog of PARSEVAL'S THEOREM is 

sa, 
WP, T)[f (x1 YN2 dr = 

-m SmSm 
f2(x, Y) dx dY. 

-m --oo 
(20) 

Let the 2-D cylinder function be defined by 

If f is a continuous function on C, integrable with re- 
fkY) = { 

1 for r < R 
spect to a plane LEBESGUE MEASURE, and 0 for T > R. 

(21) 

for every (doubly) infinite line I where s is the length 
measure, then f must be identically zero. I-Iowever, if 
the global integrability condition is removed, this result 
fails (Zalcman 1982, Goldstein 1993). 

see UZSO TOMOGRAPHY 
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Radon Transform-Cylinder 

Then the Radon transform is given by 

(1) 

NPJJ = SmSrn f(x, Y>S[Y - (7 + P41 dY dx9 (2) 
--oo --oo 

where 

a( > 
x =I 

J 

-ikx 

27r e --oo 
(3) 

is the DELTA FUNCTION. 



Radon Transform-Cylinder Radon Thnsform-Gaussian 

Now write 

sin0 - pcos8 = diq cos(8 + (b) E Jiq cos e’, 

(5) 
with q5 a phase shift. Then 

Then use 

J -w Jo 

I 

z 

t n+l Jn(t) dt = Zn+‘Jn+l(z), 
0 

which, with rx = 0, becomes 

s 
z 

t&(t) dt = zJ&). 
0 

Define 

tsk&+p2r 

dt = k& fp2 dr 

rdr = 
t dt 

k2(l +p2)’ 

so the inner integral is 

s 

RdG-7 tdt 

0 
Jo(t) k2(1 +p2) 

1 - - 
k2(1 +p2) 

kRJl+pZJ1(kRdq 

- - 
JI (kR+ + p2 ) ~ 

kdm 

and the Radon transform becomes 

(7) 

($1 

(9) 

(10) 

(11) 

R 

s 

O” 

R(pJ) = m -w 

e”“‘Jl(kR-\/l +p2) dk 

k 

2R 

s 

O” 

=Jl+p2 0 

cos(kr) J1 (kR& + p2 ) dk 

k 

C --&@(l +p2) - r2 for r2 < R2(1 +p2) - - 
0 for 72 > R2(1 +p2). - 

1511 

Converting to R’ using p = cot a, 

R’(T, a) = 2 
dl + cot2 a 

J( 1 + cot2 a) R2 - r2 csc2 a 

2 -- - csc2 aR2 - T2 csc2 a 
csc a 

= 2.JR2_r2, (14 

which could have been derived more simply by 

(15) 
s 

JR2 -4 

R’(r,a) = dY- 
-@z 

Radon Transform-Delta Function 
For a DELTA FUNCTION at (20, yo), 

pHT+q~ - xo)S(y - yo) 

x dkdydx 

e -ikyd(y - yo) dy 

X e ikpx 
fi( X- x0) dx 1 dk 

1 - -- 

s 

* ik7 -ikyoeikpxg & 

27T ee -w 

eik(r+pxO-yO) & = & + pxo - yo). 

Radon Transform-Gaussian 

R@, 2> 
20 

R(PJ) = 
1 

a&T 

e-(22+y2)/2a2 1 
d[y - (T + px)] dy da: 

- -- e-[sZ+(r+p+)21/2u2j da: 
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Radon Transform-Square 

2 

1.5 
R@, @ 

where 

f(w) = { 
1 for x,y E [-a, a] 
0 otherwise 

(2) 

-ikx 

is the DELTA FUNCTION. 

1 ikr 1 - - 
52 

-e 
--ikg a 

-ik [ 1 --Q & [eikpx]?a dk 

1 O” ikr 1 
-- - 

2n --coe s 

Ic2p [-2i sin(ka)][2i sin(kpa)] dk 

2 

s 

O” -- - 
sin(ka) sin(kpa)eik’ dk 

TP -m k2 

4 -- - 
s 

O” sin(ka) sin(kpa) cos( k7) dk 

m 0 k2 

(3) 

2 O” -- - 
s 

sin[k(T + u>l - sin[k(T - dl sin(kpu) & 

m 0 k2 

2 -- - 
{S 

O” sin[k(T + a)] sin(kpa) dk 

v 0 k2 

- 
s 

O” sin[k(T - a)] sin(kpa) dk 
k2 > 

. (4) 
0 

From Gradshteyn and Ryzhik (1979, equation 3.741.3), 

s 

O” sin@) sin@:) dx _ 1 

X2 
- p sgn(ab) min(Jal, IW, (5) 

0 

so. 

R(P, 4 = a {sgn[(T + +a] min( (7 + 4, IP4> 

- 
sdb  - U>PU] min(b - ~1, Ipal)} l  

(6) 

References 
Gradshteyn, I. S. and Ryzhik, I. M, Tables of Integr&, Se- 
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Railroad Track Problem 

Railroad Track Problem 

d 

x 

+(l+Al) 

21 

3 

R 

t9 

Given a straight segment of track of length I, add a small 
segment Al so that the track bows into a circular ARC. 
Find the maximum displacement d of the bowed track. 
The PYTHAGOREAN THEOREM gives 

R2 = x2 + (;q2, (1) 

But R is simply x + d, so 

R2 = (x + d)2 =x2 +2xd+d”. (2) 

Solving (1) and (2) for CC gives 

(3) 

Expressing the length of the ARC in terms of the central 
angle, 

+(E+Al)=8(d+x)=t? d+ 
( VJ 

But 8 is given by 

LE 
tan@ = 2 = 

$(2d) dl -=- 
2 3” _ d2 al” - d2 ’ 

so plugging 8 in gives 

$(I + Al) = (w) tan-l (+) 

d(l+ Al) = (d2 + $1”) tar? 

For 2 > d, 

dl 

I2 l- 
4 l ( 

Therefore, 

d(l + Al) 

$=: (d2 + $“> {Y(l+$) -; [y(1+F)13} 



Ramanujan 6-10-8 Identity Ramanujan Cos/Cosh Identity 

Keeping only terms to order (d/l)3, Ramanujan Constant 
The IRRATION AL constant 

4d3 4d3 16 d3 
dl+N=T+dl+T-3T (10) 

(11) 

so 

d2 = $U (12) 

and 

d+ 
$- 

q1n1= pz. (13) 

If we take 2 = 1 mile = 5280 feet and AZ = 1 foot, then 
d E 44.450 feet. 

Ramanujan 6-10-S Identity 
Let ad = bc, then 

64[(a + b + c)” + (b + c + d)” - (c + d + u)” 

-(d + a + b)6 + (a - d)6 - (b - c>“] 

x [(a + b + c)” + (b + c + d)l” - (c + d + u)l” 

-(d + a + b)l” + (a - d)l” - (b - c)l’] 

= 45[(a + b + c)” + (b + c + d)8 - (c + d + u)’ 

-(d+a+b)8+(u-d)8-(b-c)8]2. (1) 

This can also be expressed by defining 

I%-&, b, c, d) = (a + b + c)~~ + (b + c + d)2m 

-(c+d+u)2m -(d+a+b)2m+(a-d)2m-(b-c)2m (2) 

f2m(x,y) = (l+x+y)2m+(x+y+xy)2m-(y+xy+l)2m 

-(xy+ 1+ x)2m + (1 - xy)2m - (x - y)““. (3) 

Then 

F2rn(a,b,C,d) = a2mf2m(X,y), 

and identity (1) can then be written 

64f6(& y)flO(~,y) = 45fS2(?y)* 

Incident ally, 

(4) 

(5) 

fi(X,Y) = 0 (6) 

f4(x, Y) = 0. (7) 

References 
Berndt, B. C. Ramanujan’s Notebooks, Part IV. New York: 

Springer-Verlag, pp. 3 and 102-106, 1994. 
Berndt, B. C+ and Bhargava, S. “A Remarkable Identity 

Found in Ramanujan’s Third Notebook.” Glasgow Math. 
J. 34, 341-345, 1992. 

Berndt, B. C. and Bhargava, S. “Ramanujan-For Low- 
brows.” Amer. Math. Monthly 100, 644-656, 1993. 

Bhargava, S. “On a Family of Ramanujan’s Formulas for 
Sums of Fourth Powers.” Ganita 43, 63-67, 1992. 

Hirschhorn, M. D. “Two or Three Identities of Ramanujan.” 
Amer. Math. Monthly 105, 52-55, 1998. 

Nanjundiah, T. S. “A Note on an Identity of Ramanujan.” 
Amer. Math. Monthly 100, 485-487, 1993. 

Ramanuj an, S. Notebooks. New York: Springer-Verlag, 
pp. 385-386, 1987. 

1513 

~&diiE = 262537412640768743.99999999999925.. . 

which is very close to an INTEGER. Numbers such as the 
Ramanujan constant can be found using the theory of 
MODULAR FUNCTIONS. A few rather spectacular exam- 
ples are given by Ramanujan (1913-14), including the 
one above, and can be generated using some amazing 
properties of the ~-FUNCTION. 

M. Gardner (Apr. 1975) played an April Fool’s joke on 
the readers of Scientific American by claiming that this 
number was exactly an INTEGER. He admitted the hoax 
a few months later (Gardner, July 1975). 

see &U ALMOST INTEGER, CLASS NUMBER, j- 
FUNCTION 
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Ramanujan Continued Fraction 
Let f (a, b) be a RAMANUJAN THETA FUNCTION. Then 

f (-4, -q4> 1 4 q2 cl3 _ ---- 
f(-42, -43) - l+ 1+ 1+ 1 + l  l  .’ 

where the quantity on the right is a CONTINUED FRAC- 
TION. 

see UZSU RAMAN~JAN THETA FUNCTIONS 

Ramanujan Cos/Cosh Identity 

m cos(n0) 
-2 

’ +’ x cosh(nn) 
n- 1 1 [ O” cosh(n0) 

+ 1+2ciqF) 
TL= 1 1 

-2 
- 2r4(i) 
-- 

.7T ’ 

where l?(z) is the GAMMA FUNCTION. 
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Ramanujan-Eisenstein Series 
Let t be a discriminant, 

-7rJt q=-e , 

then 

G(q) 2 L(q) = 
O” (2k + l)q2k+1 

1-24x lsq2k+l 
k=l 

- - ( > 2K 2 (1 - 2k2) 
7r 

E4(Q) = mz) 

O” k3q2k 

E 1+240x- 
k=l ’ - q2k 

Et&) = N(q) 
O” k5q2k 

=1-504x- 
k=l ’ - q2k 

- - 6 (1 - 2k’)(l+ $k2k’2). 

(1) 

(2) 

(3) 

(4) 

see also KLEIN’S ABSOLUTE INVARIANT, PI 
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Borwein, J. M. and Borwein, P. B. “Class Number Three 

Ramanujan Type Series for l/7? J. Comput. Appl. Math. 
46, 281-290, 1993. 

Ramanujan, S. “Modular Equations and Approximations to 
R.” Quart. J. Pure Appl. Math. 45, 350-372, 1913-1914. 

Ramanujan Function 

12 
4 

4(& n> = l + 2 x ,),’ ( a -ak 
k=l 

$(a) = lim 4(a’ n, = l + 2 x ($- 12400 k a 
k=l 

The values of 4(n) for n = 2, 3, . . l  are 

$(2) = 2 ln 2 

4(3) = In3 

464 = gln2 

m> - $ln3+ +4. - 

Ramanujan g- and G-Functions 
Following Ramanujan (1913-14)) write 

rI ( 1 + e--lEd) = 21/4e-7+/24Gn 

k=1,3,5,... 

00 
rI ( 

1 _ e-kd) = p/4e-“m24gn. 

k=1,3,5,... 

(1) 

(2) 

These satisfy the equalities 

Gn and gn can be derived using the theory of MODULAR 
FUNCTIONS and can always be expressed as roots of al- 
gebraic equations when n is RATIONAL. For simplicity, 
Ramanujan tabulated gn for n EVEN and G, for n ODD. 

However, (6) allows G, and 9, to be solved for in terms 
of gn and G,, giving 

Gn = i ( gn8 + 2/9n16 + Ggn-’ > 
w 

. (8) 

Using (3) and the above two equations allows g4n to be 
computed in terms of gn or Gn 

Q4n = 
for n even 

Gn8 + JGn16 - Gn-’ 
> 

w  (9) 

for n odd. 

In terms of the PARAMETER k and complementary PA- 
RAMETER k’, 

G, = (2k,k;)-l/12 (10) 

gn = (11) 

Here, 

kn = A*(n) (12) 

is the ELLIPTIC LAMBDA FUNCTION, which gives the 
value of k for which 

K’(k) J- K(lc)= n- (13) 

Solving for A* (n) gives 

A*(n) = i[Jp-- d-1 (14) 

X*(n) = tJn6[dgn12 + g,-12 - i7n6]* (15) 

Analytic values for small values of n can be found in Ra- 
manujan (1913-1914) and Borwein and Borwein (1987), 
and have been compiled in Weisstein (1996). Ramanu- 
jan (1913-1914) contains a typographical error labeling 

G465 as G265. 

see also G-FUNCTION 
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Ramanujan’s Hypergeometric Identity Ramanujan Psi Sum 1515 

Ramanujan’s Interpolation Formula 
l 

Ramanujan’s Hypergeometric Identity 

p+l z (-l)“zkqQ) dx = $$ (1) 
= 

(-l)‘$A(k) da: = WPW~ (2) . 

1-(;)3+(g)3+.**=3F2(+&‘;-1) 

= tiFl ( ‘;‘;-1)]2 = r2(y)!;;(i), 
where 2~1(~,b;~;~) is a HYPERGEOMETRIC FUNCTION, 
3F2(a,b,~; d; e;~)is a GENERALIZED HYPERGEOMETRIC 
FUNCTION, and r(z) is a GAMMA FUNCTION. 

where X(E) is the DIRICHLET LAMBDA FUNCTION and 
2) is obtained 

(3) 

:ertain classes 

r(z) is the GAMMA FUNCTION. Equation 
from (1) by defining 

References 
Hardy, G. H. Ramanujan: Twelve Lectures ollz Subjects Sug- 

gested by His Life and Work, 3rd ed. New York: Chelsea, 
pe 106, 1959. 

(PC 1 
A( > 

u =- 

r(1;1 ) u l  

These formulas give valid results only for 
of functions. 

References 

Ramanujan’s Hypothesis 

see TAU CONJECTURE 

Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Sug- 
gested by His Life and Work, 3rd ed. I\Jew York: Chelsea, 
pp. 15 and 186-195, 1959. 

Ramanujan’s Identity 

where 

Ramanujan’s Master Theorem 
Suppose that in some NEIGHBORHOOD ofx = 0, 

w = l--J (1 - xm> 
m=l 

and P(n)is the PARTITION FUNCTION P. 

see U~SO RAMANUJAN'S SUM IDENTITY 

F(x) = F 4(k);;x)k, 
. 

k=Q 

Then 
r= 

J X “-lF(x) dx = r(n)&n). 
0 Ramanujan’s Integral 

References 
Berndt, B. C. Ramanujan’s Notebooks: Part I. New York: 

Springer-Verlag, p* 298, 1985. 

Ramanujan-Petersson Conjecture 
A CONJECTURE for the EIGENVALUES ofmodular forms 
under HECKE OPERATORS. [ 

2cos (it) 

I 

b+4/2 

- - 
x2eBit/2 + yZeit/2 

X J,+, 
V 

zcos (it) (x2eDit/2 + y2eit/2) 1 eit(uBp)'2, Ramanujan Psi Sum 
A sum which includes both the JACOBI TRIPLE PROD- 
UCT and the Q-BINOMIAL THEOREM as special cases. 
Ramanujan’s sum is 

where Jn(z) is a BESSEL FUNCTION OF THE FIRST 
KIND. 

References O” 0 
E 

an -xn = (~x>oo(Qlax)clo(Q)~(bla), 
(b) 72 (400 Wxb (% W>~ ’ 72=--00 

Watson, G. N. A Treatise on the Theory of Bessel Functions, 
2nd ed. Cambridge, England: Cambridge University Press, 
1966. 

where the NOTATION (q)k denotes Q-SERIES. For b = q, 
this becomes the Q-BINOMIAL THEOREM. 

see also JACOBI TRIPLE PRODUCT,Q-BINOMIAL THEO- 
REM, q-SERIES 
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Ramanujan’s Square Equation 
It has been proved that the only solutions to the DIO- 
PHANTINE EQUATION 

2” - 7 = x2 

are n = 3, 4, 5, 7, and 15 (Beeler et al. 1972, Item 31). 

References 
Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. 

Cambridge, MA: MIT Artificial Intelligence Laboratory, 
Memo AIM-239, Feb. 1972. 

Ramanujan’s Sum 
The sum 

c,(m) = 7: eZrrihmiq, 

h* (4 
(1) 

where h runs through the residues RELATIVELY PRIME 
to 4, which is important in the representation of numbers 
by the sums of squares. If (q,q’) = 1 (i.e., Q and Q’ are 
RELATIVELY PRIME), then 

%q m ( > = cq(m)cqt (m). (2) 

For argument 1, 

cb(l) = p(b), (3) 

where p is the MOBIUS FUNCTION, and for general m, 

(4) 

see also MOBIUS FUNCTION, WEYL'S CRITERION 

References 
Vardi, I. Computational Recreations in Mathematics. Red- 

wood City, CA: Addison-Wesley, p, 254, 1991. 

Ramanuj 
If 

an% Sum Identity 

1 + 53x + 9x2 

1 - 82x - 82x2 + x3 = 

00 
x UnXn 

n=l 

(1) 

2 - 26x - 12x2 
00 

1 - 82x - 82x2 + x3 = IE 
b,Xn (2) 

n=O 

“2+8x-10x2 
60 

1 - 82x - 82x2 + x3 = IE CnXn, 

n=O 

(3) 

then 
an3 + bn3 = Cn3 + (-l)n* (4 Ramanujan’s two-variable theta function is defined by 

Hirschhorn (1995) showed that 

a, = &[(64 + S&)$ + (64 - 8G>pn - 43(-l)“] 

(5) 

b, = &[(77 + 7J85) an + (77 - 71/85)p” + 16(-l)n] 

(6) 

Cn = &[(93 + g&)2 + (93 - g&)/3” - 16(-l)n], 

(7) 

Ramanujan Theta Functions 

where 

a= +(83+9&) (8) 

P - ;(83 - 965). - (9) 

Hirschhorn (1996) showed that checking the first seven 
cases n = 0 to 6 is sufficient to prove the result. 

References 
Hirschhorn, M. D. “An Amazing Identity of Ramanujan.” 

Math. Mag. 68, 199-201, 1995. 
Hirschhorn, M. D. “A Proof in the Spirit of Zeilberger of an 

Amazing Identity of Ramanujan.” Math. Mag. 09, 267- 

269, 1996. 

Ramanujan’s Tau-Dirichlet Series 

see TAU-DIRICHLET SERIES 

Ramanujan’s Tau Function 

see TAU FUNCTION 

Ramanujan Theta Functions 
Ramanujan’s one-variable theta function is defined by 

00 

4 > x G 
c 

m2 
x . (1) 

It is equal to the function in the JACOBI TRIPLE PROD- 
UCT with z = 1, 

p(x) = G(1) = H(1 + x2n-1)2(l - x2n) 

n=l 

00 

- - 

>: 
X ?-K&2 = 1+2Fx”2. 

m---m m=O 

Special values include 

(2) 

Iv) 
> = $q J 

1 

de 
-Tfi F(,) 

- 21i4n (3) 
4 

&4 

de-") = r(3) (4) 
4 

&+1/z r 
cp(e-““) = 2 - 

r( > 3 
. 

4 
(5) 

for labi < 1. It satisfies 

f(-1,a) = 0 (7) 

f (a, b) = f (b, 4 = (- a; ab), (-b; ab),(ab; ab), (8) 
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f(-a) = f(-CL -q”> 
00 

where (q)= are ~-SERIES. 

see also JACOBI TRIPLE PRODUCT, SCHR~TER’S FOR- 
MULA, q-SERIES 

Ramp Function 

R(x) E xH(x) 
X 

- - 
s 

H(x’) dx’ 
-m 

H(x’)H(x - xl) dx’ 

(1) 

(2) 

(3) 

(4 

where H(x) is the HEAVISIDE STEP FUNCTION and * is 
the CONVOLUTION. The DERIVATIVE is 

R’(x) = -H(x). (5) 

The FOURIER TRANSFORM of the ramp function is given 

bY 

F[R(x)] = 
s 

* e-2xikxR(x) dx = rih’(2rk) - &, 
--oo 

(6) 
where S(x) is the DELTA FUNCTION and 61(x) its DE- 

RIVATIVE. 

see also FOURIER TRANSFORM-RAMP FUNCTION, 
HEAVISIDE STEP FUNCTION, RECTANGLE FUNCTION, 

SGN, SQUARE WAVE 

Ramphoid Cusp 

A type of CUSP as illustrated above for the curve x4 + 
x2y2 - 2x2y - xy2 + y2 = 0. 

see also CUSP 

References 
Walker, R. J. Algebraic Curves. New York: Springer-Verlag, 

pp. 57-58, 1978. 

Ramsey Number 
The Ramsey number R(m, n) gives the solution to the 
PARTY PROBLEM, which asks the minimum number of 
guests R(m, n) that must be invited so that at least m 
will know each other (i.e., there exists a CLIQUE of order 
m) or at least n will not know each other (i.e., there 
exists an independent set of order n). By symmetry, it 
is true that 

R(m,n) = R(n,m). (1) 

It also must be true that 

R(2,m) = m. (2) 

A generalized Ramsey number is written 

and is the smallest INTEGER R such’ that, no matter 
how each n-element SUJBSET of an r-element SET are 
colored with k colors, there exists an i such that there is 
a SUBSET of size mi, all of whose n-element SUBSETS are 
color i. The usual Ramsey numbers are.then equivalent 
to R(m, n) = R(m, n; 2). 

Bounds are given by 

R(k - 1,E) + R(k,E - 1) - 1 
for R(k - 1,Z) and 

R(W) < - R(k, 2 - 1) even (4) 
R(k - 1,Z) + R(k,Z - 1) 

otherwise 

and 
R(k, k) < 4R(k - 2, k) + 2 - (5) 

(Chung and Grinstead 1983). Erd6s proved that for 
diagonal Ramsey numbers R(k, k) , 

k2”i2 
eJZ =c R(k, k). (6) 

This result was subsequently improved by a factor of 2 
by Spencer (1975). R(3, k) was known since 1980 to be 
bounded from above by c2k2/ In k, and Griggs (1983) 
showed that c2 = 5/12 was an acceptable limit, J.-H. 
Kim (Cipra 1995) subsequently bounded R(3, k) by a 
similar expression from below, so 

k2 k2 
Cl - Ink  < R(3,k) 5 ‘7--& (7) 
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Burr (1983) g ives Ramsey numbers for all 113 graphs 
with no more than 6 EDGES and no isolated points. 

A summary of known results up to 1983 for R(m,n) 
is given in Chung and Grinstead (1983). Radziszowski 
maintains an up-to-date list of the best current bounds, 
reproduced in part in the following table for R(m, n; 2). 

m n R(m, 4 
3 3 6 
3 4 9 
3 5 14 
3 6 18 
3 7 23 
3 8 28 
3 9 36 
3 10 PO, 431 
3 11 [46, 511 
3 12 15% 601 
3 13 I607 691 
3 14 I667 781 
3 15 [73, 891 
3 16 [7% 001 
3 17 E92, 4 
3 18 w, 4 
3 19 Pw 4 
3 20 [w 001 
3 21 [w 4 
3 22 [125, 4 
3 23 w, 4 

m n R(m, n) 
4 4 18 
4 5 25 
4 6 135, 411 
4 7 w, 621 
4 8 [55, 851 
4 9 [69, 1161 
4 10 [80, 1511 
4 11 [93, 1911 
4 12 [98, 2381 
4 13 [112, 2911 
4 14 [119, 3491 
4 15 [128, 4171 

m n R(m, n> 
5 5 P3, 491 
5 
5 L 5 
5 
5 

m 
6 
6 
6 
6 
6 

6 [w 871 
7 [80, 1431 
8 [95, 2161 
9 1116, 3711 

10 11, 4451 

n 
6 
7 
8 
9 

10 

Known values for generalized Ramsey numbers are given 
in the following table. 

-R(. . . ; 2) Bounds 

R(3,3,3; 2) 
R(% 334; 2) 
R(3,3,% 2) 
R(3,4,4; 2) 
WA 49% 2) 
R(4 44; 2) 
R(3, 3, 373; 2) 
w 3,3,4; 2) 
R(3,% 37% 3; 2) 
R(3,3,3,3,3,3; 2) 

17 

PO, 321 
[45, 591 
[55, 811 

> 80 
[128,;42] 

151, 641 
187, 1591 

[162, 3173 

11, 5001 

see also CLIQUE, COMPLETE GRAPH, EXTREMAL 

GRAPH, IRREDWNDANT RAMSEY NUMBER, SCHUR 

NUMBER 
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Ramsey’s Theorem 
A generalization of DILWORTH'S LEMMA. For each 
m,n E N with nz,n 2 2, there exists a least INTEGER 
R(m,n) (the RAMSEY NUMBER) such that no matter 
how the COMPLETE GRAPH &(,,,J is two-colored, it 

will contain a green 

&* Furthermore, 
SUBGRAPH Km or a red subgroup 

R(m,n) 5 R(m - h> A- R(m+ - 1) 

if m,n 2 3. The theorem can be equivalently stated 
that, for all E N, there exists an n f N such that any 
complete DIGRAPH on n VERTICES contains a complete 
transitive SUBGRAPH of m VERTICES. Ramsey’s theo- 
rem is a generalization of the PIGEONHOLE PRINCIPLE 
since 

R(2,2,,.. ,2) = t + 1. 
\ / 

t 

see also DILWORTH'S LEMMA, NATURAL INDEPEN- 
DENCE PHENOMENON,PIGEONHOLE PRINCIPLE, RAM- 

SEY NUMBER 
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Randelbrot Set 

The FRACTAL-like figure obtained by performing the 
same iteration as for the MANDELBROT SET, but adding 
a random component R, 

&+l = G-h 2+c+R. 

In the above plot, R E R, + iR,, where R,, R, E 
[-0.05,0.05]. 

see also MANDELBROT SET 
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Random Distribution 
A DISTRIBUTION in which the variates occur with PROB- 
ABILITIES asymptotically matching their “true” under- 
lying DISTRIBUTION is said to be random. 

see also DISTRIBUTION, RANDOM NUMBER 



Random Dot Stereogram Random Walk 

Random Dot Stereogram 

see STEREOGRAM 

Gardner, M. “Random Numbers.” Ch. 13 in 1Muthematical 
Carnival: A New Round-Up of Tantalizers and Puzzles 
from Scientific American. New York: Vintage, 1977. 

James, F. “A Review of Pseudorandom Number Generators.” 

Random Graph 
A random graph is a GRAPH in which properties such 
as the number of NODES, EDGES, and connections be- 
tween them are determined in some random way. Erd6s 
and R6nyi showed that for many monotone-increasing 
properties of random graphs, graphs of a size slightly 
less than a certain threshold are very unlikely to have 
the property, whereas graphs with a few more EDGES 

CoAputer Physics Comm. 60, 329-344, 1990. 
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are almost certain to have it. This is known as a PHASE 

TRANSITION. 

see also GRAPH (GRAPH THEORY)$RAPH THEORY 
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Random Matrix 
A random matrix is a MATRIX of given type and size 
whose entries consist of random numbers from some 
specified distribution. 

see also MATRIX 

Random Number 
Computer-generated random numbers are sometimes 
called PSEUDORANDOM NUMBERS, whiletheterm “ran- 
dom” is reserved for the output of unpredictable physi- 
cal processes. It is impossible to produce an arbitrarily 
long string of random digits and prove it is random. 

Freeman, pp. 233-247, 1995. 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vet- 

terling, W. T. ‘(Random Numbers.” Ch. 7 in Numerical 
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Random Percolation 
Strangely, it is very difficult for humans to produce a 
string of random digits, and computer programs can be 

see PERCOLATION THEORY 

written which, on average, actually predict some of the 
digits humans will write down based on previous ones. 

number used as the starting point in a random number 

The LINEAR CONGRUENCE METHOD is one algorithm 

generating algorithm is known as the SEED. The good- 

for generating PSEUDORANDOM NUMBERS. The initial 

ness of random numbers generated by a given ALGO- 
RITHM can be analyzed by examining its NOISE SPHERE. 

see ah BAYS' SHUFFLE, CLIFF RANDOM NUMBER 
GENERATOR, QUASIRANDOM SEQUENCE, SCHRAGE'S 
ALGORITHM, STOCHASTIC 
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Random Polynomial 
A POLYNOMIAL having random COEFFICIENTS. 

Random Variable 
A random variable is a measurable function from a 
PROBABILITY SPACE (S&P) into a MEASURABLE 
SPACE (S',s') k nownas the STATE SPACE. \ * I 
see also PROBABILITY SPACE, RANDOM DISTRIBUTION, 
RANDOM NUMBER, STATE SPACE,~ARIATE 
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Random Walk 
A random process consisting of a sequence of discrete 
steps of fixed length. The Fandom thermal perturba- 
tions in a liquid are responsible for a random walk phe- 
nomenon known as Brownian motion, and the collisions 
of molecules in a gas are a random walk responsible for 
diffusion. Random walks have interesting mathematical 
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properties that vary greatly depending on the dimension 
in which the walk occurs and whether it is confined to 
a lattice. 

see also RANDOM WALK- I-D, RANDOM WALK-Z-D, 

RANDOM WALK-~-D, SELF-AVOIDING WALK 
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Random Walk-l-D 
Let IV steps of equal length be taken along a LINE. Let 
p be the probability of taking a step to the right, Q the 
probability of taking a step to the left, 721 the number 
of steps taken to the right, and n2 the number of steps 
taken to the left. The quantities p, Q, n1, n2, and IV are 
related by 

p+q=l (1) 

and 
nI + n2 = N. (2) 

Now examine the probability of taking exactly n1 steps 
out of N to the right. There are (z) = (n1z2) ways 
of taking n1 steps to the right and n2 to the left, where 
(z) is a BINOMIAL COEFFICIENT. The probability of 
taking a particular ordered sequence of nl and n2 steps 
is pnl qn2. Therefore, 

P(m) = 
(nl + n2)! 

Pn1Qn2 = 
N! 

nl!nz! nl!(N - nl)! 
pqN-nl, 

(3) 
where n! is a FACTORIAL. This is a BINOMIAL DISTRI- 

BUTION and satisfies 

2 P(m) = (p +- q)N = lN = 1. 
nl=O 

(4 
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The MEAN number of steps n1 to the right is then 

(m) = fl nlP(nl) = F, nl,(NNA nl),pnlqN-nlnl, 
. l  

n1 =o nl=O 

but 
a 

nlpnl = p-pnl, 
8P 

(5) 

(6) 
SO 

(nl) = F ,,,(NN! (+-) qN-n’ - . 
nl=O 

nl), 
. 

d N N! 
=pap ): nl!(N - nl)! 

pnl qN-nl 

n1=0 

a 
= pap(p + q)N = pN(p + q)N-l = pN. (7) 

From the BINOMIAL THEOREM, 

(nz) = N - (nl) = N(l - p) = qN. (8) 

The VARIANCE is given by 

on12 = (n12) - (n1)2. (9) 

But 

(n12) = e 
nl=O 

N! 

nl!(N - nl)! 
pn1qN-nln12, 

so 

m2pn1 =nl (p$P = (p&)‘$l 

N 
N! 

- 

x 

nl IV-n1 
- 

nl!(N - nl)! p q 
nl=O 

N! 

nl!(N - nl)! 
,p"lqN-"l 

(10) 

d 2 = p- ( > ap (p+C71N = $LPN(P+ClF- 11 

= P[N(P + qlN-l + pN(N - l)(p + q)N-21 

= p[N + pN(N - I)] 

= pN[l + pN - p] = (NP)~ + Npq 

= (nlj2 + Npq- 

Therefore, 

anI =(n~~)-(nl)~ =Npq, 

and the ROOT-MEAN-SQUARE deviation is 

&xl = d%. 
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The expectation value of the distance after N steps is 
therefore 

For a large number of total steps N, the BINOMIAL DIG- 

TRIBUTION characterizing the distribution approaches a 
GAUSSIAN DISTRIBUTION. 

(d > N- i: I4 pm 100 

80 

60 

,// 

40 

20 

50 100 150 200 

Consider now the distribution of the distances dN trav- 
eled after a given number of steps, 

d= -N&N-2),... 

N 
1 IdI N! -- - 

2N x 
d=-N,-(N-2),... 

(Ep)! (E$)!’ (16) 

This sum can be done symbolically by separately con- 
sidering the cases N EVEN and N ODD. First, consider 
EVEN 2v so that N E 2J. Then 

dN z n1 - n2 = 2nl - N, (14) 

as opposed to the number of steps in a given direction. 
The above plots show dN(p) for N = 200 and three val- 
ues p = 0.1, p = 0.5, and p = 0.9, respectively. Clearly, 
weighting the steps toward one direction or the other in- 
fluences the overall trend, but there is still a great deal of 
random scatter, as emphasized by the plot below, which 
shows three random walks all with p = 0.5. 

-1 

Ix 
d=- J,-(J-l),... 

N! - - 
2N 

Pdl 
+dzgqm, (=p)! (qq! 1 c, 

J 
2d - - 

-[ 
; 2x (J+d)!(J-d)! 

d=l 1 
d 

(J+d)!(J-d)!’ 

Surprisingly, the most probable number of sign changes 
in a walk is 0, followed by 1, then 2, etc. 

d-1 . 

For a random walk with p = l/2, the probability P&i) 
of traveling a given distance d after N steps is given in 
the following table. 

But this sum can be evaluated analytically as 

-10 12 1 2 3 4 4 5 5 
1 

E 3 

4 1 
18 

10 32 0 10 
10 32 0 0 5 5 0 0 

1 l 
32 32 32 32 32 

J 

IE 
d J 

d 
= I (J+d)!(J-d)! = 2P(l+J)’ 

-2 

1 

i 
4 

iz 

0 

!nt I 

steps -5 
0 
1 
2 
3 
4 
5 1 

32 

In this tablt 

which, when combined with N = 2J and plugged back 
in, gives 

(&J) = 
r(2J + l)J VJ) 

22J-T(1+ J) = 225-T(J) (19) , subseqt ‘( DWS are found by adding HALF 

of each cell in a given row to each of the two cells diago- 
nally below it. In fact, it is simply PASCAL’S TRIANGLE 

padded with intervening zeros and with each row multi- 
plied by an additional factor of l/2. The COEFFICIENTS 

in this triangle are given by 

But the LEGENDRE DVPLICATION FORMULA gives 

22J-1'2r(J)r(J+ $) 
(20) r(2J)= 

so (15) 

(&J) = 
$T2 2J-'/2r(J)r(J+ 3) 2 r(J+ $1 

22J-2r2(J) = fi r(J) ’ 

(21) 
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Now consider N ODD, so IV E 2J - 1. Then 

N! -1 

(h-1) = 2N 
): 

PI 

n=-(2J-l), ( 2. > 

2J-l+d 1 
( 2. > 

2J-1-d 1 

L -(zJ+l),... 

25-l 

+ 7, ,2J-l+d)‘,d~2J-l-d)~ 

d=1,3,... 2. 2. I 

N! - - 
2N-1 

N! - - 
2N-1 

25-l 
d 

d=1,3,... 

25 

d=2,4,... 

d-l 

( 
ZLLp)! (&$A)! 1 

2d-1 - -- 
(J+ d - l)!(J - d)! 1 

= I’(2J) 
1 + J - 2Fl(l, -J; J; 1) + 1 

22J-2r(J)r(1+ J) r(aJ> 

The first few values of (dN) are then 

(do) = 0 
(dl) = (dz) = 1 
(da) = (&) = 4 
(d5) = (d6) = y 

(&) = (ds) = E 

(dg) = (ho) = E 

(dn) = (h) = z 

(du) = (44) = E* 

Now, examine the asymptotic behavior of (d& The 
asymptotic expansion of the GAMMA FUNCTION ratio is 

r(J+ +) Z 
r(J) 

l- 
1 1 

8J+ 
- +... 
128 J2 > (28) 

(Graham et al. 1994), so plugging in the expression for 
(dN) gives the asymptotic series 

FI’(J)I’(J+ l/2) 
- - 

T22J-21’2(J)J 
[l-t J-2F1(1, -J;J; -l)]+ 1 

- - 2 r(J+i)[l+ J-2~~(1,-J;J;-1)]+1. (22) 
fi Jr(J) 

But the HYPERGEOMETRIC FUNCTION ZFI hasthespe- 
cial value 

2Fl(1, -J; J; -1) = - fi Jr(J) + 1 
2 r(J++) ’ (23) 

SO 

2 r(Jt +) 
(&J-l) = - 

f i  r(J) l  

Summarizing the EVEN and ODD solutions, 

2 qJ+ +) 
(dN)= fi r(J) ' 

where 

1 

J=+N for N even 
J = 3 (N + 1) for N odd. 

Written explicitly in terms of N, 

for N even 

for N odd. 

(24) 

(27) 

21 -- 
2048N4 +'* > ' (29) 

where the top signs are taken for N EVEN and the bot- 
tom signs for N ODD. Therefore, for large N, 

(30) 

which is also shown in Mosteller et al. (1961, p. 14). 

see also BINOMIAL DISTRIBUTION, CATALAN NUMBER, 
~-GOOD PATH, P~LYA'S RANDOM WALK CONSTANTS, 
RANDOM WALK-~-D, RANDOM WALK-S-D, SELF- 
AVOIDING WALK 
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Random Walk-2-D 

Range (Image) 

steps are therefore required. 

In a PLANE, consider a sum of IV 2-D VECTORS with 
random orientations. Use PHASOR notation, and let the 
phase of each VECTOR be RANDOM. Assume N unit 
steps are taken in an arbitrary direction (i.e., with the 
angle 8 uniformly distributed in [0,27r) and not on a 
LATTICE), as illustrated above. The position z in the 
COMPLEX PLANE after Iv steps is then given by 

N 

z= 
x 

i8j 
e 1 (1) 

j=l 

whichhas ABSOLUTE SQUARE 

N N N N 

j=l k=l j=lk=l 

N 

= N+ x ei(ej-ek), 

j,k=l 

k#.i 

(2) 

Therefore, 

(3) 

Each step is likely to be in any direction, so both Bj 
and Ok are RANDOM VARIABLES with identical MEANS 

of zero, and their difference is also a random variable. 
Averaging over this distribution, which has equally likely 
POSITIVE and NEGATIVE values yields an expectation 
value of 0, so 

0 2 
x 1 > = N. 

(4) 

The root-mean-square distance after Iv unit steps is 
therefore 

1 I 25 rms = JN 1 (5) 

so with a step size of I, this becomes 

d rms = zdw. (6) 

In order to travel a distance d 

N= 
d 2 

0 i (7) 

Amazingly, it has been proven that on a 2-D LATTICE, 

a random walk has unity probability of reaching any 
point (including the starting point) as the number of 
steps approaches INFINITY. 

see UZSO P~LYA’S RANDUM WALK CONSTANTS, RAN- 

DOM WALK-~-D, RANDOM WALK-~-D 

Random Walk-3-D 
68 _ 

On a 3-D LATTICE, a random walk has less than unity 
probability of reaching any point (including the start- 
ing point) as the number of steps approaches infinity. 
The probability of reaching the starting point again 
is 0.3405373296.. . . This is one of P~LYA’S RANDOM 

WALK CONSTANTS. 

see UZSO P~LYA’S RANDOM WALK CONSTANTS, RAN- 

DOM WALK-~-D, RANDOM WALK-~-D 

Range (Image) 
If T is MAP over a DOMAIN D, then the range of 2’ is 
defined as 

Range(T) = T(D) = {T(X) : X E D}. 

The range T(D) is also called the IMAGE of D under T. 

see also DOMAIN, MAP 
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Range (Line Segment) 
The set of all points on a LINE SEGMENT, also called a 
PENCIL. 

see also PERSPECTIVITY, SECTION (PENCIL) 
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Range (Statistics) 

R E max(zi) - min(zi). (1) 

For small samples, the range is a good estimator of the 
population STANDARD DEVIATION (Kenney and Keep- 
ing 1962, pp. 213-214). For a continuous UNIFORM DIS- 
TRIBUTION 

P(x) = 
1 

& for 0 < x < c 
0 for 1x1 < c, (2) 

the distribution of the range is given by 

D(R) = N ($)N1 -(N - 1) ($>“. (3) 

Given two samples with sizes m, and n and ranges RI 
and Rz, let u E Rl/Rz. Then 

I 
m(m-l)n(n-1) 

(m+4(m+n4>(m+n--2) 
x[(m + n)um-2 - (m + n - 2)um3 

D(u) = 
1 

for 0 < u < 1 - - 
m(m-l)n(n-1) (4) 

(m+74(m+n--l)(m+n--2) 

I x[(m + n)u+ - (m + n - 2)u-“-1] 
forl<u<m. - 

The MEAN is 

(m - 1)n 

p” = (m + l)(n - 2)’ (5) 

and the MODE is 

(m4)(m+4 for m - n < 2 
fix 

{ 

(m-l)(m+n-2) - 

(n+l)(m+n--2) for m - n > 2. 
(6) 

n(m+n) - 

References 
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Rank 
In a total generality, the “rank” of a mathematical ob- 
ject is defined whenever that object is FREE. In gen- 
eral, the rank of a FREE object is the CARDINALITY of 
the FREE generating SUBSET G. The word “rank” also 
refers to several unrelated concepts in mathematics in- 
volving groups, quadratic forms, sequences, statistics, 
and tensors. 

see also RANK (GROUP), RANK (QUADRATIC FORM), 
RANK (SEQUENCE), RANK (STATISTICS), RANK (TEN- 
SOR) 

Rank (Group) 
For an arbitrary finitely generated ABELIAN GROUP G, 
the rank of G is defined to be the rank of the FREE 

generating SUBSET G modulo its TORSION SUBGROUP. 
For a finitely generated GROUP, the rank is defined to 
be the rank of its “Abelianization.” 

see also ABELIAN GROUP, BETTI NUMBER, BURNSIDE 
PROBLEM, QUASITHIN THEOREM, QUASI-UNIPOTENT 
GROUP,TORSION (GROUP THEORY) 

Rank (Quadratic Form) 
For a QUADRATIC FORM Q in the canonical form 

Q = y12 +~2~ +...+yp2 - yp+12 -yp+z2 -...-yr2, 

the rank is the total number T of square terms (both 
POSITIVE and NEGATIVE). 

see also SIGNATURE (QUADRATIC FORM) 

References 
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Rank (Sequence) 
The positionofa RATIONAL NUMBER in the SEQUENCE 
1, f, 2, i, 3, a, 5, %, 4, i, l  . . , ordered in terms of 
increasing NUMERATOR+DENOMINATOR. 

see also ENCODING, FAREY SERIES 

Rank (Statistics) 
The ORDINAL NUMBER of a value in a list arranged in 
a specified order (usually decreasing). 

see also SPEARMAN RANK CORRELATION, WILCOXON 
RANK SUM TEST, WILCOXON SIGNED RANK TEST, 
ZIPF'S LAW 

Rank (Tensor) 
Thetotalnumber of CONTRAVARIANT and COVARIANT 
indices of a TENSOR. The rank of a TENSOR is indepen- 
dent of the number of DIMENSIONS of the SPACE. 

Rank Object 

0 
1 

scalar 
vector 

22 tensor 

see also CONTRAVARIANT TENSOR, COVARIANT TEN- 
SOR,SCALAR,TENSOR,VECTOR 

Ranunculoid 
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An EPICYCLOID with n = 5 cusps, named 
tercup genus Ranunculus (Madachy 1979) 

see also EPICYCLOID. 

after the but- For variates with a standard NORMAL DISTRIBUTION, 
the ratio distribution is a CAUCHY DISTRIBUTION. For 
a UNIFORM DISTRIBUTION 

fhY) = { 
1 for z:, y E [o, 11 
0 otherwise, 

References 
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(3) 

0 UC0 
p(u) = J( zdx = [ix”] = ; for 0 < u < 1 

s 
l/u 

0 
xdx = [+x2];‘” = $ for u ; 1.- 

(4) 

see also CAUCHY DISTRIBUTION 

RAT-Free Set 
A RAT-free set is a set of points, no three of which 
determine a RIGHT TRIANGLE. Let f(n) be the smallest 
RAT-free subset guaranteed to be contained in a planar 
set of n points, then the function f(n) is bounded by Ratio Test 

Let ?.& be a SERIES with POSITIVE terms and suppose 

fi < f(n) 5 26. 
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Then 

1. If p < I, the SERIES CONVERGES. 

2. If p > 1 or p = 00, the SERIES DIVERGES. 

3. Ifp= l,the SERIES may CONVERGE or DIVERGE. 

The test is also called the CAUCWY RATIO TEST or 
D'ALEMBERT RATIO TEST. 

DC: Math. Assoc. Amer., pp. 250-251, 1991. 
Seidenberg, A. “A Simple Proof of a Theorem of Erd6s and 

Szekeres.” J. London Math. Sot. 34, 352, 195% 
see also CONVERGENCE TESTS 

Ratio 
The ratio of two numbers T and s is written T/S, where 
T is the NUMERATOR and s is the DENOMINATOR. The 
ratio of T to s is equivalent to the QUOTIENT T/S. Bet- 
ting ODDS written as T : s correspond to S/(T + s). A 
number which can be expressed as a ratio of INTEGERS 
is called a RATIONAL NUMBER. 
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lando, FL: Academic Press, pp. 282-283, 1985. 
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Rational Approximation 
If T is any number and n is any INTEGER, then there is 
a RATIONAL NUMBER m/n for which 

see also DENOMINATOR, F RACTION, 
ODDS,Q UOTIENT, RATIONAL NUMBER 

NUMERATOR, 

o<T-m<i. - 
n n 

Ratio Distribution 
Given two distributions Y and X with joint probabil- 
ity density function f (x, y), let U = Y/X be the ratio 
distribution. Then the distribution function of u is 

If T is IRRATIONAL and k is any WHOLE NUMBER, there 
is a FRACTION m/n with n 5 k and for which 

1 O<T-m<-& - (2) 
n 

D(u) = P(U 5 u) 

= P(Y 5 UXlX > 0) + P(Y 2 UXIX < 0) 
0 0 - - Jm Jux f(X’Y)dYdJ:-I- J J f (x1 Y> dY dx- 

0 0 --oo ux 

Furthermore, there are an infinite number of FRACTIONS 
m/n for which 

(1) O<T-E< 1 
- n 2’ (3) 

The probability function is then 
Hurwitz has shown that for an IRRATIONAL NUMBER C 

P(u) = D’(u) = [- xf(x,ux) dx - I” xf (x, ux) dx 
I I c h 1 -- 

k ’ ck2 ’ (4 Jo J-00 

- - J O” I 2 If( x, ux) dx. 
-m 

there are infinitely RATIONAL NUMBERS h/k if 0 < c < 
&, but if c > &, th ere are some [ for which this 
approximation holds for only finitely many h/k. 
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Rational Canonical Form 
There is an invertible matrix Q such that 

Q-Q = diag[L(h), L(h), . . -7 L(h)], 

where L(f) is 
POLYNOMIAL 

the companion MATRIX for any MONIC 

f(X) = fo + flX + l  0' + frx 

with fn = 1. The POLYNOMIALS & are called the “in- 
variant factors” of T, and satisfy &+J$J~ for i = s - 1, 

l *‘? 1 (Hartwig 1996). 

References 
Gantmacher, F. R. The Theory of Matrices, Vol. I. New 

York: Chelsea, 1960. 
Hartwig, R. E. “Roth’s Removal Rule and the Rational 

Canonical Form.” Amer. Math. Monthly 103, 332-335, 
1996. 

Herstein, I. N. Topics in Algebra, 2nd ed. New York: 
Springer-Verlag, pm 162, 1975. 

Hoffman, K. and Kunze, K. Linear Algebra, 3rd ed. Engle- 
wood Cliffs, NJ: Prentice-Hall, 1996. 

Lancaster, P. and Tismenetsky, M. The Theory of Matrices, 
2nd ed. New York: Academic Press, 1985. 

Turnbull, H. W. and Aitken, A. C. An Introduction to the 
Theory of Canonical Matrices, 2nd impression. New York: 
Blackie and Sons, 1945. 

Rational Cuboid 

see EULER BRICK 

Rational Distances 
It is possible to find six points in the PLANE, no three on 
a LINE and no four on a CIRCLE (i.e., none of which are 
COLLINEAR or CONCYCLIC), such that all the mutual 
distances are RATIONAL. An example is illustrated by 
Guy (1994, p. 185). 

It is notknownif a TRIANGLE with INTEGER~~~~~, ME- 

DIANS, and AREA exists (although there are incorrect 
PROOFS of the impossibility in the literature). HOW- 

ever, R. L. Rathbun, A. Kemnitz, and R. H. Buchholz 
have showed that there are infinitely many triangles with 
RATIONAL sides (HERONIAN TRIANGLES) with two RA- 

TIONAL MEDIANS (GUY 1994, p* 188). 

see also COLLINEAR, CONCYCLIC, CYCLIC QUADRILAT- 
ERAL, EQUILATERAL TRIANGLE, EULER BRICK, HERO- 

NIAN TRIANGLE, RATIONAL QUADRILATERAL, RATIO- 
NAL TRIANGLE,SQUARE,TRIANGLE 

References 
Guy, R* K. “Six General Points at Rational D 
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Rat ional Domain 

see FIELD 

ist antes” and 
Area.” 5 D20 
Theory, 2nd 

and 18% ,190, 

Rational Double Point 
There are nine possible types of ISOLATED SINGULARI- 
TIES on a CUBIC SURFACE, eight of them rational double 
points. Each type ~~ISOLATED SINGULARITY hasanas- 
sociated normal form and COXETER-DYNKIN DIAGRAM 

(AI, ~42, ~43, ~4.4, ~45, D4, D5, Es and &) l  

The eight types of rational double points (the & type 
being the one excluded) can occur in only 20 combi- 
nations on a CUBIC SURFACE (of which Fischer 1986 

gives 19): AI, 2A1, 3A1, Qh, A2, (AZ, Al), 2A2, 
(2A,&), 3Az, A3, (&,A), (A3,2&), A41 (&AI), 
As, (As,Al), D4, Dg, and & (Looijenga 1978, Bruce 
and Wall 1979, Fischer 1986). 

In particular, on a CUBIC SURFACE, precisely those con- 
figurations of rational double points occur for which the 
disjoint union of the COXETER-DYNKIN DIAGRAM is 
a SUBCRAPH of the COXETER-DYNKIN DIAGRAM &. 
Also, a surface specializes to a more complicated one 
precisely when its graph is contained in the graph of the 
other one (Fischer 1986). 

see also COXETER-DYNKIN 
ISOLATED SINGULARITY 
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Rat ional F’unct ion 
A quotient of two polynomials P(z) and Q(z), 

R(x) c z, 
z 

is called a rational function. More generally, if P and Q 
are POLYNOMIALS in multiple variables, their quotient 
is a rational function. 

see &O ABEL’S CURVE THEOREM, CLOSED FORM, 

FUNDAMENTAL THEOREM OF SYMMETRIC FUNCTIONS, 

QUOTIENT-DIFFERENCE ALGORITHM, RATIONAL INTE- 

GER, RATIONAL NUMBER, RIEMANN CURVE THEOREM 

Rational Integer 
A synonym for INTEGER. The word “rational” is some- 
times used for emphasis to distinguish it from other 
types of “integers” such as CYCLOTOMIC INTEGERS, 

EISENSTEIN INTEGERS, and GAUSSIAN INTEGERS. 
see also C YCLOTOMIC INTEGER, EISENSTEIN INTEGER, 
GA USSIAN INTEGER,INTEGER,RATIONAL NUMBER 
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Rat ional Number 
A number that can be expressed as a FRACTION p/q 
where p and q are INTEGERS, is called a rational num- 
ber with NUMERATOR p and DENOMINATOR 4. Num- 
bers which are not rational are called IRRATIONAL NUM- 
BERS. Any rational number is trivially also an ALGE- 
BRAIC NUMBER. 

For a, 6, and c any different rational numbers, then 

1 1 1 

-+(b+C)2 (a - !I)~ 

is the SQUARE of a rational number (Honsberger 1991). 
The probability that a random rational number has an 
EVEN DENOMINATOR is I/3 (Beeler et al. 1972, Item 
54). 

see also ALGEBRAIC INTEGER, ALGEBRAIC NUMBER, 
ANOMALOUS CANCELLATION, DENOMINATOR, DIRTCH- 
LET FUNCTION, FRACTION, INTEGER, IRRATIONAL 
NUMBER,NUMERATOR,QUOTIENT,TRANSCENDENTAL 
NUMBER 
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Rational Point 
A K-rational point is a point (X, Y) on an ALGEBRAIC 
CURVE, where X and Y are in a FIELD K. 

The rational point may also be a POINT AT INFINITY. 
For example, take the ELLIPTIC CURVE 

Y2 =X3+X+42 

and homogenize it by introducing a third variable 2 so 
that each term has degree 3 as follows: 

ZY2 = X3 + XZ2 + 42Z3. 

Now, find the points at infinity by setting 2 = 0, ob- 
t aining 

0 = x3. 

Solving gives X = 0, Y equal to any value, and (by 
. definition) 2 = 0. Despite freedom in the choice of Y, 
there is only a single PRINT AT INFINITY because the 
two triples (Xl, Yl, Zr), (X2, Y2, 22) are considered 
to be equivalent (or identified) only if one is a scalar 

RaY 

multiple of the other. Here, (0, 0, 0) is not considered 
to be a valid point. The triples (a, b, 1) correspond 
to the ordinary points (a, b), and the triples (a, b, 0) 
correspond to the POINTS AT INFINITY, usually called 
the LINE AT INFINITY. 

The rational points on ELLIPTIC CURVES over the GA- 
LOIS FIELD GF(q) are 5, 7, 9, 10, 13, 14, 16, l  l  . (Sloane’s 
A005523). 

see also ELLIPTIC CURVE, LINE AT INFINITY, POINT AT 
INFINITY 

References 
Sloane, N. J. A. Sequence A005523/M3757 in “An On-Line 
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Rational Quadrilateral 
A rational quadrilateral is a QUADRILATERAL for which 
the sides, DIAGONALS, and AREA are RATIONAL. The 
simplest case has sides a = 52, b = 25, c = 39, and 
d = 60 and DIAGONALS of length p = 63 and Q = 56. 

see also 
QUADRIL 

AREA, DIAGONAL (POLYGON), RATIONAL 
ATERAL 

Rational Triangle 
A rational triangle is a TRIANGLE all of whose sides are 
RATIONAL NUMBERS and all ofwhose ANGLES are RA- 
TIONAL numbers of DEGREES. The only such triangle is 
the EQUILATERAL TRIANGLE (Conway and Guy 1996) 

see also EQUILATERAL TRIA .NGLE, FERMAT'S RIGHT 
TRIANGLE THEOREM, RIGHT TRIAN GLE 

References 
Conway, J. H. and Guy, R. K. “The Only Rational Triangle.” 

In The Book of Numbers, 
pp. 201 and 228-239, 1996. 

RATS Sequence 
A sequence produced by the 
then sort the digits,” where 
example, after 668 we get 

668 + 866 

New York: Springer-Verlag, 

instructions “reverse, add, 
zeros are suppressed. For 

= 1534, 

so the next term is 1345. Applied to 1, the sequence 
gives 1, 2, 4, 8, 16, 77, 145, 668, 1345, 6677, 13444, 
55778, l  l  l  (Sloane’s A004000) 

see also 196-ALGORITHM, &kPREKAR ROUTINE, RE- 

VERSAL,~ORT-THEN-ADD SEQUENCE 

References 
Sloane, N. J. A. Sequence A004000/M1137 in “An On-Line 
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Ray 

B 

A VECTOR a from a point A to a point B. In GEOM- 
ETRY, a ray is usually taken as a half-infinite LINE with 
one of the two points A and B taken to be at INFINITY. 

see also LINE, VECTOR 
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Rayleigh Distribution 

:;I / 

x r 

The distribution with PROBABILITY FUNCTION 

P( > 

Te-T2/2g2 

T  = 
s2 

(1) 

for T f [O,oo). The MOMENTS about 0 are given by p:, E Tmp(T) dr = s-’ 
-2 

= s Ln+1 

Tm+1e--r2/2s2 dr 
(2) 

where I(Z) is a GAUSSIAN INTEGRAL. The first few of 
these are 

Il(a-l) = ;a 

I2(a 
-1 

> = au&T 

Iz(a-l) = ia2 

Id(a-l) = ia”* 

&(a -1 
) = a3, 

(3) 

(4) 

(5) 

(6) 

(7) 

so 

/Lb = s -2+(2s2) = 1 (8) 

p; = s-2; (2s2)&G = (9) 

p; c s-2 + (2s2)2 = 2s2 (10) 

p; = s-2; (2s2)2hx = qs3dG= 3s3fi (11) 

p; = s-~(~s~)~ = 8s4. (12) 

The MOMENTS about the MEAN are 

4-n 2 
p2 = p; - (p:)2 = 2s (13) 

p3 = p; - 3/.&L; + 2(/A:)” = 
J 

f (7T - 3)s3 (14) 

p4 = pk - 4/&p: + w;(p:)2 - 3(P - lJ14 

32 - 3n2 4 - -- 
4 s7 (15) 

so the MEAN,~ARIANCE, SKEWNESS, and KURTOSIS are 

(16) 
4-T 2 o2 = p2 = - 

2 s 
(17 

y1 = 5 = 2;;If;3$ (18 

kJ4 -3= 72 = -p 
2(-3r2 + 127~ - 8) 

(T-4)2 ’ (19 

Rayleigh Differential Equation 

y” - p(l - iyJ2)yJ + y = 0, 

where p > 0. Differentiating and setting y = y’ gives 
the VAN DER POL EQUATION. 

see ah VAN DER POL EQUATION 

Rayleigh’s Formulas 
The formulas 

for n = 0, 1, 2, . . . , where j,,(x) is a SPHERICAL BESSEL 

FUNCTION OF THE FIRST KIND and y&z) is a SPHERI- 
CAL BESSEL FUNCTION OF THE SECOND KIND. 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Hand book 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p* 439, 1972. 

Rayleigh-Ritz Variational Technique 
A technique for computing EIGENFUNCTIONS and 
EIGENVALUES. It proceeds by requiring 

J = ‘[p(x)y.” - q(x)y2] da: (1) 

to have a STATIONARY VALUE subject to the normaliza- 
tion condition 

s 

b 

y2w(x) dx = 1 
a 

and the boundary conditions 

(2) 

(3) 

(4) 

(5) 

(6) 

PYxYlb, = 0. 

This Ieadstothe STURM-LIOUVILLE EQUATION 

which gives the stationary values of 

F[YWl = 
S( ,” PYx2 - QY2W 

5,” y2w dx 

as 

F[Yn(X)l = An, 

where A, are the EIGENVALUES corresponding to the 
EIGENFuNCTI~N Yn. 

References 
A&en, G. “Rayleigh-Ritz Variational Technique.” $17.8 in 

Mathematical Methods for Physicists, 3rd ed. Orlando, 
FL: Academic Press, pp, 957-961, 1985. 
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Rayleigh’s Theorem 

see PARSEVAL’S THEOREM 

Re-Entrant Circuit 
A CYCLE in a GRAPH which terminates at the starting 
point. 

see also CYCLE (GRAPH), EULERIAN CIRCUIT, HAMIL- 
TONIAN CYCLE 

Real Analysis 
That portion of mathematics dealing with functions of 
real variables. While this includes some portions of To- 
POLUGY, it is most commonly used to distinguish that 
portion of CALCULUS dealing with real as opposed to 
COMPLEX NUMBERS. 

Real Axis 

see REAL LINE 

Real Function 
A FUNCTION whose RANGE is in the REAL NUMBERS is 

said to be a real function. 

see also COMPLEX FUNCTION, SCALAR FUNCTION, 
VECTOR FUNCTION 

Real Line 

-1 0 123 4 

A LINE with a fixed scale so that every REAL NUMBER 

corresponds to a unique POINT on the LINE. The gen- 
eralization of the real line to 2-D is called the COMPLEX 
PLANE. 

see also ABSCISSA, COMPLEX PLANE 

References 
Courant, R. and Robbins, H. What is Mathematics?: An El- 

ementary Approach to Ideas and Methods, 2nd ed. Oxford, 
England: Oxford University Press, p. 57, 1996. 

Real Matrix 
A MATRIX whose elements consist entirely of REAL 
NwMBERS. 

Real Number 
The set of all RATIONAL and IRRATIONAL numbers is 
called the real numbers, or simply the “reals,” and de- 
noted Iw. The set of real numbers is also called the 
CONTINUUM, denoted C. 

The real numbers can be extended with the addition of 
the IMAGINARY NUMBER i, equal to &i. Numbers of 
the form it: + iy, where x and y are both real, are then 
called COMPLEX NUMBERS. Another extension which 
includes both the real numbers and the infinite ORDINAL 
NUMBERS of@eorg Cantoristhe SURREAL NUMBERS. 

Pick two real numbers zc and y at random in (0,l) with 
a UNIFORM DISTRIBUTION. What is the PROBABILITY 
P even that WY] 1 where [r] denotes NINT, the nearest 
INTEGER to r, is EVEN? The answer may be found as 
follows (Putnam Exam). 

Jo1 sabyy da: dy = i(b--a) forO<a<b<l - - - 1 
ss 2;/,-dydx=$-$ forl<a<b 

(1) 
0 

- ~~+J,+jii 2(2n1m’) - - l 
n=l [ 2 

2(272+ +) 1 
O” 1 1 1 

-- 
- 

4 +c( -+- > 4n - 1 4n - 1 
n=l 

- $ - - - - + (!j 3 + 3 i + .) = . . a + (1 tan-l 1) 

--I - 
4 4-4 

- A(5 - T) ==: 46.460%. (2) 

Plouffe’s “Inverse Symbolic Calculator” includes a huge 
database of 54 million real numbers which are algebraic- 
ally related to fundamental mathematical constants and 
functions. 

see also COMPLEX NUMBER, CONTINUUM, i, IMAGI- 
NARY NUMBER, INTEGER RELATION, RATIONAL NUM- 

BER,REAL PART,~URREAL NUMBER 

References 
Plouffe, S. “Inverse Symbolic Calculator.” http: //www . cecm, 

sfu. c&projects/IX/. 
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pi/. 
Putnam Exam. Problem B-3 in the 54th Putnam Exam. 

Real Part 
The real part 3? of a COMPLEX NUMBER z = Al: +iy is 
the REAL NUMBER not multiplying i, so %[z + iy] = 2. 
In terms of n itself, 

R[z] = f(z+z*), 

where Z* is the COMPLEX CONJUGATE ofz. 

see also ABSOLUTE SQUARE, COMPLEX CONJUGATE, 
IMAGINARY PART 

References 
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Real Polynomial 
A POLYNOMIAL having only REAL NUMBERS as COEF- 
FICIENTS. 

see dso POLYNOMIAL 

Real Projective Plane 
The closed topological MANIFOLD, denoted Iwp2, which 
is obtained by projecting the points of a plane E from 
a fixed point P (not on the plane), with the addition 
of the LINE AT INFINITY, is called the real projective 
plane. There is then a one-to-one correspondence be- 
tween points in E and lines through P. Since each line 
through P intersects the sphere s2 centered at P and 
tangent to E in two ANTIPODAL POINTS, IKP2 can be 
described as a QUOTIENT SPACE of s2 by identifying any 
two such points. The real projective plane is a NONORI- 
ENTABLE SURFACE. 

The BOY SURFACE,~ROSS-CAP, and ROMAN SURFACE 
are all homeomorphic to the real projective plane and, 
because RP2 is nonorientable, these surfaces contain 
self-intersections (Kuiper 1961, Pinkall 1986). 

see also BOY SURFACE, 
SURFACE,PROJECTIVE 

CROSS- CAP, NONORIENTABLE 
ROMAN SURFACE PLANE, 
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Real Quadratic Field 
A QUADRATIC FIELD Q(a) with D > 0. 

see UZSO QUADRATIC FIELD 

Realizer 
A SET of R of LINEAR EXTENSIONS of a POSET P = 
(X, 5) is a realizer of P (and is said to realize P) pro- 

vided that for all x, y E X, II: 5 y IFF ~1: is below y in 
every member of R. 

see also DOMINANCE, LINEAR EXTENSION, PARTIALLY 
ORDERED SET,POSET DIMENSION 

Rearrangement Theorem 
Each row and each column in the GROUP multiplication 
table lists each of the GROUP elements once and only 
once. From this, it follows that no two elements may 
be in the identical location in two rows or two columns. 
Thus, each row and each column is a rearranged list of 
the GROUP elements. Stated otherwise, given a GRoUP 
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of n distinct elements (I, a, b, c, , . . , n), the set of prod- 
ucts (al, U2) ab, UC,. l  l  , an) reproduces the n original dis- 
tinct elements in a new order. 

see dS0 GROUP 

Reciprocal 
The reciprocal of a REAL or COMPLEX NUMBER z is 
its MULTIPLICATIVE INVERSE l/z. The reciprocal of a 
COMPLEX NUMBER x=x+@ is given by 

1 2 - iy X Y ’ ---- _ 
x + iy - x2 + y2 - x2 + y2 x2 + y2 2* 

Reciprocal Difference 
The reciprocal differences are closely related to the DI- 

VIDED DIFFERENCE. The first few are explicitly given 

bY 
x0 -x1 

P(XoJ1) = fo (1) 

p2(50,x1,x2) = 
x0 -x2 

P(XO,Xl) - P(Xb4 
+ fl (2) 

P3(xO,x1,xZ,x3) = 
x0 -x3 

p2(xO,x1,52)-~2(xl,xZ,x3) 

+p(m 152 > (3) 

pn(x0, Xl, ‘0 - , xn) 

X0 - Xn - - 

Pn-l(XOr**.,Xn-l)-Pn-l(Xl,**~~X~) 

(4) 

see &O BACKWARD DIFFERENCE, CENTRAL DIFFER- 
ENCE, DIVIDED DIFFERENCE, FINITE DIFFERENCE, 
FORWARD DIFFERENCE 

References 
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of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p. 878, 1972. 
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Reciprocal Polyhedron 
see DUAL POLYHEDRON 

Reciprocating Sphere 

see MIDSPHERE 

Reciprocation 
An incidence-preserving transformation in which points 
and lines are transformed into their poles and polars. 
A PROJECTIVE GEOMETRY-like DUALITY PRINCIPLE 
holds for reciprocation. 

References 
Coxeter, H. S. M. and Greitzer, S. L. “Reciprocation.” $6.1 
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Amer., pp* 132-136, 1967. 
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Reciprocity Theorem 
If there exists a RATIONAL INTEGER ~1: such that, when 
n, p, and 4 are POSITIVE INTEGERS, 

xn E q (mod p) , 

Rectangle Function 
The rectangle function II(z) is a function which is 0 
outside the interval [ - 1,1] and unity inside it. It is 
also called the GATE FUNCTION, PULSE FUNCTION, or 

WINDOW FUNCTION, and is defined by 

then Q is the n-adic reside of p, i.e., Q is an n-adic residue 
of p IFF xn = Q (mod p) is solvable for x:. 

The first case to be considered was n = 2 (the QUADRA- 
TIC RECIPROCITY THEOREM), ofwhich Gauss gave the 
first correct proof. Gauss also solved the case n = 3 
(CUBIC RECIPROCITY THEOREM) using INTEGERS of 
the form a + bp, when p is a root if x2 + x + I = 0 
and a, b are rational INTEGERS. Gauss stated the case 
n = 4 (QUARTIC RECIPROCITY THEOREM) using the 
GAUSSIAN INTEGERS. 

{ 

0 for 1x1 > L 
II(x) E s + for 1x1 = T (1) 

1 for 1x1 < 2. 

The function f(z) = hII((x - c)/b) has height h, center 
c, and full-width b. Identities satisfied by the rectangle 
function include 

II(x) = H(x + f> - H(x - ;) (2) 
= H(+ +x) + H(; - x) - 1 (3) 

Proof of n-adic reciprocity for PRIME n was given by 
= H(+ - x2) (4 

Eisenstein in 1844-50 and by Kummer in 1850-61. = +[sgn(x + +) - sgn(x - i)], (5) 
In the 192Os, Artin formulated ARTIN'S RECIPROCITY 
THEOREM, a general reciprocity law for all orders. where H(X) is the HEAVISIDE STEP FUNCTION. The 

see also ARTIN RECIPROCITY, CUBIC RECIPROCITY FOURIER TRANSFORM of the rectangle function is given 

THEOREM, LANGLANDS RECIPROCITY, QUADRATIC by 
RECIPROCITY THEOREM, QUARTIC RECIPROCITY THE- 
OREM,ROOK RECIPROCITY THEOREM F[II(x)] = 

s 
O" e-2"i""II(x)dx = sinc(rk), (6) 

-w 
Rectangle 

where sine(x) is the SINC FUNCTION. 

see also FOURIER TRANSFORM-RECTANGLE FUNC- 

TION, HEAWSIDE STEP FUNCTION, RAMP FUNCTION 

a 

A closed planar QUADRILATERAL with opposite sides of 
equal lengths a and b, and with four RIGHT ANGLES. 
The AREA of the rectangle is 

Rectangle Squaring 

A = ab, 

and its DIAGONALS are of length 

p, q = Ja2+bz. 

a 
BP 1 I I 

F K 

A SQUARE is a degenerate rectangle with a = b. 

see also GOLDEN RECTANGLE, PERFECT RECTANGLE, 
SQUARE 

References 
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edu/-eppstein/ jtiyard/rect . html. 

cl ‘D 

Given a RECTANGLE IIBCDE, draw EF = DE on an 

extension of BE. Bisect BF and call the MIDPOINT G. 
Now draw a SEMICIRCLE centered at G, and construct 
the extension of ED which passes through the SEMI- 
CIRCLE at H. Then q EKLH has the same AREA as 

DIBCDE. This can be shown as follows: 

A(nBCDE) =BEmED=BEqEF 

= (a + b)(a - b) = a2 - b2 = c2. 

References 
Dunham, W. “Hippocrates’ Quadrature of the Lune.” Ch. 1 

in Journey Through Genius: The Great Theorems of 
kfathematics. New York: Wiley, pp. 13-14, 1990. 
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Rectangular Coordinates 

see CARTESIAN COORDINATES 

Rectangular Distribution 

see UNIFORM DISTRIBUTION 

Rectangular Hyperbola 

A RIGHT HYPERBOLA of the special form 

XY = ab, 

so that the ASYMPTOTES are the lines x = 0 and y = 0. 
The rectangular hyperbola is sometimes also called an 
EQUILATERAL HYPERBOLA. 

see also HYPERBOLA, RIGHT HYPERBOLA 

References 
Courant, R. and Robbins, H. What is Mathematics?: An El- 

ementary Approach to Ideas and Methods, 2nd ed. Oxford, 
England: Oxford University Press, pp. 76-77, 1996. 

Rectangular Parallelepiped 

A closed box composed of 3 pairs of rectangular faces 
placed opposite each other and joined at RIGHT AN- 
GLES to each other. This PARALLELEPIPED therefore 
corresponds to a rectangular “box.” If the lengths of 
the sides are denoted a, b, and c, then the VOLUME is 

v = abc, (1) 

the total SURFACE AREA is 

A = 2(ab + bc + ca), (2) 

and the length of the “space” DIAGONAL is 
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Rectangular Projection 

see EQUIRECTANGULAR PROJECTION 

Rectifiable Current 
The space of currents arising from rectifiable sets by in- 
tegrating a differential form is called the space of 2-D 
rectifiable currents. For C a closed bounded rectifiable 
curve of a number of components in 8X3, C bounds a rec- 
tifiable current of least AREA. The theory of rectifiable 
currents generalizes to nz-D surfaces in R”. 

see U~SOINTEGRAL CURRENT,REGULARITY THEOREM 

References 
Morgan, F. “What is a Surface?” Amer. Math. MunthEy 103, 

369-376,1996. 

Rectifiable Set 
The rectifiable sets include the image of any LIPSCHITZ 
FUNCTION f from planar domains into R3. The full set 
is obtained by allowing arbitrary measurable subsets of 
countable unions of such images of Lipschitz functions as 
long as the total AREA remains finite. Rectifiable sets 
have an “approximate” tangent plane at almost every 
point. 

References 
Morgan, F. “What is a Surface?” Amer. Math. MonthEy 103, 

369-376, 1996. 

Rectification 
Rectification is the determination of the length of a 
curve. 

see also QUADRABLE, SQUARING 

Rectifying Latitude 
An AUXILIARY LATITUDE which gives a sphere having 
correct distances along the meridians. It is denoted p 
(or w) and is given by 

7TM 
P=F- (1) 

P 

Mp is evaluated for M at the north pole (4 = go”), and 
M is given by 

s 

4 
M = a(1 - e2) w 

(1 - e2 sin2 q5)3/2 

=a ’ &&&&$,e ;2sin@cos@4 
1 - e2 sin2 

dabc = Ja2fb2+cz. (3) 
A series for M is 

Ifa=b= c, then the rectangular parallelepiped is a 
CUBE. 

see also CUBE, EULER BRICK, PARALLELEPIPED 

References 
Beyer, W. H. (Ed.) GRC Standard Mathematical Tables, 

28th ed. Boca Raton, FL: CRC Press, p, 127, 1987. 

M = a[(1 - ie2 - &e4 - &e6 - . . .)$ 

- (ie” + &e” + *e6 + . . .)sin(2#) 

+ (&e4 + *e6 + . l  J sin(44) 

- ( &e6+.. .) sin(6$) + . . .I, 

. 

(2) 

(3) 
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and a series for p is Recurrence Sequence 

p = q5 - (gel - Gel3 + . . +) sin(24) 
A sequence of numbers generated by a RECURRENCE 

RELATION is called a recurrence sequence. Perhaps 

+ ( Eel2 - ge l4  + . l  .) sin(44) the most famous recurrence sequence is the FIBONACCI 

_ 35 
( 

3 
NUMBERS. 

zel -... ) sin(64) + (Eel4 - . l  l ) sin(84) + . . . , 
If a sequence {LC~} with ~1 = 22 = 1 is described by a 

(4 two-term linear recurrence relation of the form 

xn = Ax n-1+&x-2 (1) 
where 

l-&=7 
e1 = 

l+dcF 
(5) 

The inverse formula is 

4 = p + (ie1 - gel3 + +. J sin(2p) 

+ ( Eel2 - Eel4 + . + .) sin(4p) 

‘+ ( se13  - l  l  .) sin(6p) 

see also LATITUDE 

References 
Adams, 0. S. “Latitude Developments Connected with 

Geodesy and Cartography with Tables, Including a Table 
for Lambert Equal-Area Meridional Projections,” Spec. 
Pub. No. 67. U. S. Coast and Geodetic Survey, pp. 125-- 
128, 1921. 

Snyder, J. P. Map Projections-A Working Manual. U. S. 
Geological Survey Professional Paper 1395. Washington, 
DC: U. S. Government Printing Office, pp. 16-17, 1987. 

Rectifying Plane 
The PLANE spanned by the TANGENT VECTOR T and 
BINORMAL VECTOR% 

see also BINORMAL VECTOR,TANGENT VECTOR 

Recurrence Relation 
A mathematical relationship expressing fn as some com- 
bination of fi with i < n. The solutions to linear recur- 
rence can be computed straightforwardly, but QUAD- 
RATIC RECURRENCES are not so well understood. The 
sequence generated by a recurrence relation is called a 
RECURRENCE SEQUENCE. Perhaps the most famous ex- 
ample of a recurrence relation is the one defining the 
FIBONACCI NUMBERS, 

F, = K-2 +Fn-1 

for n > 3 and with F; = Fz = 1. - 

see also ARGUMENT ADDITION RELATION, ARGU- 
MENTMULTIPLICATION RELATION,CLENSHAWRECUR- 
RENCE FORMULA, QUADRATIC RECURRENCE, RECUR- 
RENCE SEQUENCE, REFLECTION RELATION,TRANSLA- 
TION RELATION 

References 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 

ling, W. T. “Recurrence Relations and Clenshaw’s Recur- 
rence Formula.” §5.5 in Numerical Recipes in FORTRAN: 
The Art of Scientific Computing, 2nd ed. Cambridge, Eng- 
land: Cambridge University Press, pp. 172-178, 1992. 

for 
for 

n > 3 and A and - 
xn is given by 

13 constants, then the 

an - pn 
Xn ZZ p 

a-0 
(2) 

where a and p are the ROOTS of the QUADRATIC EQUA- 

TION 

X2 - Ax - B = 0, (3) 

a=+(A+.\/A2+4B) (4) 

P - $(A- dA2 +4B). - (5) 

The general second-order linear recurrence 

Xn I= Axn-1 + Bx~-2 (6) 

for constants 
terms 

A and B with arbitrary x1 and 22 has 

Xl = Xl 

x2 = x2 

x3 = Bxl + Ax2 

x4 = Bx2 + ABxl + A2x2 

a = B2xl + 2ABx2 + A2Bxl + A3x2 

x6 = B2x2 + 2AB2x1 + 3A2Bxz + A3Bxl + A4x2. 

Dropping ~1, x2, and A, this can be written 

1 
1 
B 1 
B B 1 

B2 2B B 1 
B2 2B2 3B B 1, 

which is simply PASCAL'S TRIANGLE on its side. An 
arbitrary term can therefore be written as 

Xn = 
[$(n+k- 2)J 

k 
> 

Ak#n-k-1)/2j 

x,l [n+k (mod 2)lx2[n+k+l (mod 211 . (7) 
n-2 

- -- (AxI - x2) x A2k-n+2B- k+nm2(n-i-2) 

n- 1 

A2k--n+lB-k+n-1 

(n-i-l)* (‘I 



Recurrence Sequence 

The general linear third-order recurrence 

X n = AXE-1 + Bx~-2 + CX~-3 (9) 

has solution 

a -n 
P 

-n 

Xn 
= x1 A + 2&B + 3a2C + A + 2PB + 3p2C 

Y  
--n 

+A + 2yB + 3y2C > 
a1-n 

P 
l--n 

- 
(Ax1 -x2) 

A + 2aB + 3cu2C + A + 2PB + 3P2B 

Y 
l-n 

+ 
A + 2yC + 3y2C > 

-(BxI + Ax2 - x3) a2-n 

A + 2aB + 3a2C 

P 
2-n 

7 
2-n 

+A+2PB+3P2C + A + 2yB + 3y2C > ’ (10) 

where a, p, and y are the roots of the polynomial 

Cx3+Bx2+Ax=1. (11) 

A QUOTIENT-DIFFERENCE TABLE eventually yields a 
line of OS IFF the starting sequence is defined by a linear \ 
recurrknce relation. 

A linear second-order recurrence 

f n+l =xfn+ yfn-1 

can be solved rapidly using a “rate doubling,” 

f n+2 = (X2 + 2y)fn - y2fn-2, 

“rate tripling” 

f nf3 = (X3 + 3Xy)fn + y3fn--3, 

or in general, “rate k-tupling” formula 

f n+k = pkfn + qkfn-k, 

where 

PO =2 

pl = 2 

Pk = 2(-y> k/2 Tk(x@&)) 
pk+l = xpk + ypk-I 

(12) 

(13) 

(14 

(15) 

(16) 
(17) 
(18) 
(19) 

(here, T,+(x) is a CHEBYSHEV POLYNOMIAL OF THE 
FIRST KIND) and 

qo = -1 (20) 
41 = Y (21) 
qk = -(-9)” (22) 

qk+1 = -yqk (23) 

Recurrence Sequence 

(Beeler et al. 1972, Item 14). 

Let 
m 
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s(x) = n(l - CU~X)“~ = 1 - slX - . . . - s,Xn, (24) 

i=l 

where the generalized POWER sum a(h) for h = 0, 1, . . . 
is given by 

a(h) = 2 Ai(h)aih, (25) 
-- Z- 1 

with distinct NONZERO roots Eli, COEFFICIENTS Ai 
which are POLYNOMIALS of degree ni - 1 for POSXTIVE 
INTEGERS ni, and i E [l,m]. Then the sequence {ah} 
with ah = a(h) satisfies the RECURRENCE RELATION 

ah+n = &ah+&1 + . . . + s&h (26) 

(Meyerson and van der Poorten 1995). 

The terms in a general recurrence sequence belong to a 
finitely generated RING over the INTEGERS, so it is im- 
possible for every RATIONAL NUMBER to occur in any 
finitely generated recurrence sequence. If a recurrence 
sequence vanishes infinitely often, then it vanishes on 
an arithmetic progression with a common difference 1 
that depends only on the roots. The number of values 
that a recurrence sequence can take on infinitely often 
is bounded. by some INTEGER 2 that depends only on 
the roots. There is no recurrence sequence in which 
each INTEGER occurs infinitely often, or in which ev- 
ery GAUSSIAN INTEGER occurs (Myerson and van der 
Poorten 1995). 

Let p(n) be a bound so that a nondegenerate INTEGER 
recurrence sequence of order n takes the value zero at 
least p(n) times. Then ~(2) = 1, ~(3) = 6, and ~(4) 2 9 
(Myerson and van der Poorten 1995). The maximal case 
for ~(3) is 

an+3 = 2an+2 - 4%+1-f- 4& (27) 

with 
a0 = a1 = 0 (28) 

a2 = 1. (29) 

The zeros are 

a() = al = a4 = a6 = al3 = a52 = 0 

(Beukers 1991). 

(30) 

see also BINET FORMS, BINET’S FORMULA, FAST FI- 

BONACCI TRANSFORM, FIBONACCI SEQUENCE, LUCAS 
SEQUENCE, QUOTIENT-DIFFERENCE TABLE, SKOLEM- 

MAHLER-LERCH THEOREM 

References 
Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMBM. 

Cambridge, MA: MIT Artificial Intelligence Laboratory, 
Memo AIM-239, Feb. 1972. 

Beukers, F. “The Zero-Multiplicity of Ternary Recurrences.” 
Composite Math. 77, 165-177, 1991. 

Myerson, G. and van der Poorten, A. J. “Some Problems 
Concerning Recurrence Sequences.” Amer. Math. Monthly 
10?,698-705,1995. 
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Recurring Digital Invariant 
To define a recurring digital invariant of order k, com- 
put2 the sum of the kth powers of the digits of a number 
n. If this number n' is equal to the original number n, 

then n = n' is called a ~-NARCISSISTIC NUMBER. If 
not, compute the sums of the Jzth powers of the digits 
of n’, and so on. If this process eventually leads back 
to the original number n, the smallest number in the se- 
quence {n, n’, d, . . .} is said to be a k-recurring digital 
invariant. For example, 

55: 53+53 = 250 

250:23 +53 +03 = 133 

133 :13 + 33 +33 = 55, 

so 55 is an order 3 recurring digital invariant. The fol- 
lowing table gives recurring digital invariants of orders 
2 to 10 (Madachy 1979). 

Order RDIs Cycle Lengths 

2 4 8 

3 55, 136, 160, 919 3, 2, 3, 2 
4 1138, 2178 7, 2 
5 244, 8294, 8299, 9044, 9045, 28, 10, 6, 10, 22, 

6 

7 

8 
9 

10933,24584, 58618, 89883 
17148, 63804, 93531, 239459, 

282595 
80441, 86874, 253074, 376762, 

922428, 982108, five more 
6822, 7973187, 8616804 
322219, 2274831, 20700388, 

eleven more 

4, 12, 2, 2 
30, 2, 4, 10, 3 

92, 56, 27, 30, 14, 21 

see UZSO 196~hGORITHM, ADDITIVE PERSISTENCE, 
DIGITAL ROOT, DIGLTADITION, HAPPY NUMBER, 
KAPREKAR NUMBER, NARCISSISTIC NUMBER, VAM- 
PIRE NUMBER 

References 
Madachy, J. S. 

York: Dover, 
Madachy’s Mathematical 
pp. 163-165, 1979. 

Recreations. New 

Recursion 
A recursive process is one in which objects are defined in 
terms of other objects of the same type. Using some sort 
of RECURRENCE RELATION, the entire class of objects 
can then be built up from a few initial values and a small 
number of rules. The FIBONACCI NUMBERS are most 
commonly defined recursively. Care, however, must be 
taken to avoid SELF-RECURSION, in which an object is 
defined in terms of itself, leading to an infinite nesting. 

see also ACKERMANN FUNCTION, PRIMITIVE RECUR- 

SIVE FUNCTION, RECURRENCE RELATION, RECUR- 
RENCE SEQUENCE, RICHARDSON’S THEOREM, SELF- 
RECURSION, SELF-SIMILARITY, TAK FUNCTION 

References 
Buck, R. C. “Mathematical Induction and Recursive Defini- 

tions.” Amer. Math. Monthly 70, 128-135, 1963. 

Red-Black lYee 

Knuth, D. E. “Textbook Examples of Recursion.” In Ar- 
tificial Intelligence and Mathematical Theory of Gompu- 
tation, Papers in Honor of John McCarthy (Ed. V. Lif- 
schitz). Boston, MA: Academic Press, pp. 207-229, 1991. 

P&er, R. Rekursive Funktionen. Budapest: Akad. Kiado, 
1951. 

Recursive Function 
A recursive function is a function generated by (1) ADDI- 
TION, (2) MULTIPLICATION, (3) selection of an element 
from a list, and (4) determination of the truth or fal- 
sity of the INEQUALITY a < b according to the technical 
rules: 

1. If F and the sequence of functions G1, . . . , G, are 
recursive, then so is F(G1,. . . , Gn). 

2. If F is a recursive function such that there is an z 
for each a with H(a, s) = 0, then the smallest zc can 
be obtained recursively. 

A TURING MACHINE is capable of computing recursive 
functions. 

see also TURING MACHINE 

References 
Kleene, S. C. Introduction to Metamathematics. Princeton, 

NJ: Van Nostrand, 1952. 

Recursive Monotone Stable Quadrature 
A QUADRATURE(NUMERICAL INTEGRATION) algorithm 
which has a number of desirable properties. 

References 
Favati, P.; Lotti, G.; and Romani, F. “Interpolary Integration 

Formulas for Optimal Composition.” ACM Trans. Math. 
Software X7,207-217,199l. 

Favati, P.; Lotti, G.; and Romani, F. “Algorithm 691: Im- 
proving QUADPACK Automatic Integration Routines.” 
ACM Trans. Math. Software 17, 218-232, 1991. 

Red-Black Tree 
An extended BINARY TREE satisfying the following con- 
dit ions: 

1. Every node has two 
red or black. 

CHILDREN, each colored either 

2. Every LEAF node is colored black. 

3. Every red node has both of its CHILDREN colored 

4. Every path from the ROOT to a LEAF contains the 
same number (the “black-height”) of black nodes. 

Let n be the number of internal nodes of a red-black 
tree. Then the number of red-black trees for n = 1, 
2, ..* is 2, 2, 3, 8, 14, 20, 35, 64, 122, . . . (Sloane’s 
AOOll31). The number of trees with black roots and 
red roots are given by Sloane’s A001137 and Sloane’s 
A001138, respectively. 

Let Th be the GENERATING FUNCTION for the number of 
red-black trees of black-height h indexed by the number 
of LEAVES. Then 

z&+1(2) = [z+)]2 +[F@)]", (1) 
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where ~VI(X) = x+x2. If T(~)is the GENERATING FUNC- 

TION for the number of red-black trees, then 

Reducible Matrix 
A SQUARE n x n matrix A = aij is called reducible if 
the indices 1, 2, . . . , n can be divided into two disjoint 
nonempty sets il, i2, . . . , i, and jl, j2, . . . , j, (with 
p + v = n) such that 

T(x) = x + x2 + T(x2(1 + x)“> (2) 

(Ruskey). Let rb(n) be the number of red-black trees 
with n LEAVES, r(n) the number of red-rooted trees, 
and b(n) the number of black-rooted trees. All three of 
the quantities satisfy the RECURRENCE RELATION 

%jp =0 

for Q! = 1, 2, . . l  , p and p = 1, 2, . . . , v. A SQUARE MA- 

TRIX which is not reducible is said to be IRREDUCIBLE. 

see also SQUARE MATRIX 

References 
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 

ties, and Products, 5th ed. San Diego, CA: Academic 
Press, p. 1103, 1979. 

where (;) is a BINOMIAL COEFFICIENT, rb(1) = 1, 

W) = 2 for R(n) = rb(n), r(1) = r(3) = 0, r(2) = 1 

for R(n) = r(n), and b(1) = 1 for R(n) = b(n) (Ruskey). 
Reduction of Order 

see ORDINARY 

ORDER 

DIFFERENTIAL EQUATION-SECOND- 

References 
Beyer, R. “Symmetric Binary B-Trees: Data Structures and 

Maintenance Algorithms.” Acta Informat. 1, 290-306, 

1972. 
Rivest, R. L.; Leiserson, C. E.; and Cormen, R. H. Introduc- 

tion to Algorithms. New York: McGraw-Hill, 1990. 
Ruskey, F. “Information on Red-Black Trees.” http: //sue, 

csc.uvic.ca/-cos/inf/tree/RedBlackTree.html. 
Sloane, N. J. A. Sequences A001131, A001137, and A001138 

in “An On-Line Version of the Encyclopedia of Integer Se- 
quences .” 

Reduction Theorem 
If a fixed point is added to each group of a special com- 
plete series, then the resulting series is complete. 

References 
Coolidge, J. L. A Treatise on Algebraic Plane Curves. New 

York: Dover, p. 253, 1959. 

Redundancy 

Red Net 
The coloring red of two COMPLETE SUBGRAPHS of n/2 
points (for EVEN n) in order to generate a BLUE-EMPTY 

GRAPH. 

R(&, . . l  x,) G 2 H(Xi) - H(X1, = l  * jXn)T 

f- 
?,- 1  

where H(xi) is the ENTROPY and H(X1,. . . ,X,) is the 
joint ENTROPY. Linear redundancy is defined as see also BLUE-EMPTY GRAPH, COMPLETE GRAPH 

Reduced Amicable Pair 

see QUASIAMICABLE PAIR 

where pi are EIGENVALUES of the correlation matrix. 

see also PREDICTABILITY 
Reduced Fraction 
A FRACTION a/b written in lowest terms, i.e., by divid- 
ing NUMERATOR and DENOMINATOR through by their 
GREATEST COMMON DIVISOR (a,@ For example, Z/3 
is the reduced fraction of 8/12. 

see also FRACTION, PROPER FRACTION 

References 
Fraser, A. M. “Reconstructing Attractors from Scalar Time 

Series: A Comparison of Singular System and Redundancy 
Criteria.” Phys. D 34, 391-404, 1989. 

Palug, M. “Identifying and Quantifying Chaos by Using 
Information-Theoretic Functionals.” In Time Series Pre- 
diction: Forecasting the Future and Understanding the 

Past (Ed. A. S. Weigend and N. A. Gerschenfeld). Proc. 
NATO Advanced Research Workshop on Comparative 
Time Series Analysis held in Sante Fe, NM, May 14-17, 
1992. Reading, MA: Addison-Wesley, pp. 387-413, 1994. 

Reduced Latitude 

see PARAMETRIC LATITUDE 

Reducible Crossing 
A crossing in a LINK projection which can be removed 
by rotating part of the LINK, also called REMOVABLE 

CROSSING. 

Reeb Foliation 
The Reeb foliation of the HYPERSPHERE S3 is a FOLIA- 

TION constructed as the UNION of two solid TORI with 
common boundary. 

see also FOLIATION 

see also ALTERNATING KNOT 

Reducible Representation 

see IRREDUCIBLE REPRESENTATION 
References 
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or 

Perish Press, pp. 287-288, 1976. 
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Reef Knot 

see SQUARE KNOT 

Refinement 
A refinement X of a COVER Y is a COVER such that 
every element x E X is a SUBSET of an element y E Y. 

see also COVER 

Reflection 
The operation of exchanging all points of a mathemati- 
cal object with their MIRROR IMAGES (i.e., reflections in 
a mirror). Objects which do not change HANDEDNESS 

under reflection are said to be AMPHICHIRAL; those that 
do are said to be CHIRAL. 

If the PLANE of reflection is taken as the ZJZ-PLANE, 
the reflection in 2- or 3-D SPACE consists of making the 
transformation z + -x for each point. Consider an ar- 
bitrary point x0 and a PLANE specified by the equation 

ax+by+xx+d=O. 

This PLANE has NORMAL VECTOR 

(1) 

a 
n= b , [I (2) 

C 

and the POINT-PLANE DISTANCE is 

D laxo+byo+czo+d~ - - 
da2 + b2 + c2 l  

(3) 

The position of the point reflected in the given plane is 
therefore given by 

x; = x0 - 2Dfi x0 
= yo [ 1 

a 

-2~azo+byo+czo+d~ b l  [I (4) 

X0 
C 

see also AMPHICHIRAL, CHIRAL, DILATION, ENAN- 
TIOMER, EXPANSION, GLIDE, HANDEDNESS, IMPROPER 

ROTATION, INVERSION OPERATION, MIRROR IMAGE, 

PROJECTION, REFLECTION PROPERTY, REFLECTION 
RELATION, REFLEXIBLE, ROTATION, ROTOINVERSION, 
TRANSLATION 

Reflection Property 
In the plane, the reflection property can be stated as 
three theorems (Ogilvy 1990, pp. 73-77): 

1. The LOCUS of the center of a variable CIRCLE, tan- 
gent to a fixed CIRCLE and passing through a fixed 
point inside that CIRCLE, is an ELLIPSE. 

2. If a variable CIRCLE is tangent to a fixed CIRCLE 
and also passes through a fixed point outside the 
CIRCLE, then the LOCUS of its moving center is a 
HYPERBOLA. 

Reflection Property 

3. If a variable CIRCLE is tangent to a fixed straight line 
and also passes through a fixed point not on the line, 
then the LOCUS of its moving center is a PARABOLA. 

Let or : I -+ R2 be a smooth regular parameterized 
curve in Iw2 defined on an OPEN INTERVAL 1, and let 
Fl and F2 be points in IP”\@), where IF‘ is an n-D 
PROJECTIVE SPACE. Then a has a reflection property 
with FOCI Fl and F2 if, for each point P E a(I), 

1. 

2. 

A 

Any vector normal to the curve ac at P lies in the 
SPAN of the vectors F? and F?. 

The line normal to a at P bisects one of the pairs of 
opposite ANGLES formed by the intersection of the 
lines joining Fl and F2 to P. 

smooth connected plane curve has a reflection 
property IFF it is part of an ELLIPSE, HYPERBOLA, 
PARABOLA, CIRCLE, or straight LINE. 

FOCi Sign Both foci finite 

distinct + confocal ellipses 

One focus Both foci 

finite 00 

confocal 11 lines 

parabolas 

distinct - confocal hyperbola 

and 1 bisector 

confocal 

parabolas 

11 lines 

of interfoci line 

segment 

equal concentric circles 11 lines 

Let S E Iw3 be a smooth connected surface, and let Fl 
and F2 be points in P3\S, where pn is an n-D PRO- 
JECTIVE SPACE. Then S has a reflection property with 
FOCI Fl and F2 if, for each point P E S, 

1. Any vector normal to S at P lies in the SPAN of the 
vectors Fl 7 and F2. 

2. The line normal to S at P bisects one of the pairs 
of opposite angles formed by the intersection of the 
lines joining Fl and F2 to P. 

A smooth connected surface has a reflection property 
IFF it is part of an ELLIPSOID of revolution, a HYPER- 
BOLOID of revolution, a PARABOLOID of revolution, a 
SPHERE, or PLANE. 

Foci Sign Both foci finite One focus Both foci 

finite 00 

distinct + 

distinct - 

equal 

confocal ellipsoids confocal I I planes 

paraboloids 

confocal hyperboloids confocal I I planes 

and plane i bisector paraboloids 

of interfoci line 

segment 

concentric spheres 11 planes 

see also BILLIARDS 
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Drucker, D. “Euclidean Hypersurfaces with Reflective Prop- 

erties.” Geometrica Dedicata 33, 325-329, 1990. 
Drucker, D. “Reflective Euclidean Hypersurfaces.” Gemnet- 

rica Dedicuta 39, 361-362, 1991. 
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Drucker, D. and Locke, P. “A Natural Classification of Curves 
and Surfaces with Reflection Properties.” Math. Mug. 69, 
249-256, 1996. 

Ogilvy, C. S. Excursions in Geometry. New York: Dover, 
pp. 73-77, 1990. 

Wegner, B. “Comment on ‘Euclidean Hypersurfaces with Re- 
flective Properties’.” Geometrica Dedicata 30, 357-359, 
1991. 

Reflect ion Relation 
A mathematical relationship relating f(-2) to f(z). 

see also ARGUMENT ADDITION RELATION, ARGUMENT 

MULTIPLICATION RELATION, RECURRENCE RELATION, 
TRANSLATION RELATION 

Reflexible 
An object is reflexible if it is superposable with its image 
in a plane mirror. Also called AMPHICHIRAL. 

see also AMPHICHIRAL, CHIRAL, ENANTIOMER, HAND- 
EDNESS, MIRROR IMAGE, REFLECTION 

References 
Ball, W. W. R. and Coxeter, H. S. M. “Polyhedra.” Ch. 5 in 

Mathematical Recreations and Essays, 13th ed. New York: 
Dover, p. 130, 1987. 

Reflexible Map 
An AUTOMORPHISM which interchanges the two vertices 
of a regular map at each edge without interchanging the 
vertices. 

see also EDMONDS’ MAP 

Reflexive Closure 
The reflexive closure of a binary RELATION R on a SET 

X is the minimal REFLEXIVE RELATION R’ on X that 
contains R. Thus aR’a for every element a of X and 
aR’b for distinct elements a and b, provided that aRb. 

see also REFLEXIVE REDUCTION, REFLEXIVE 

TION, RELATION, TRANSITIVE CLOSURE 

Reflexive Graph 

see DIRECTED GRAPH 

RELA- 

Reflexive Reduction 
The reflexive reduction of a binary RELATION R on a 

SET X is the minimum relation R’ on X with the same 
REFLEXIVE CLOSURE as R. Thus aR’b for any elements 
a and b of X, provided that a and b are distinct and 
aRb. 

see UZSO REFLEXIVE CLOSURE, RELATION, TRANSITIVE 
REDUCTION 

Reflexive Relation 
A RELATION R on a SET S is reflexive provided that 
xRa: for every z in S. 

see &SO RELATION 

Reflexivity 
A REFLEXIVE RELATION. 

Region 
An open connected set is called a region (sometimes also 
called a DOMAIN). 

Regression 
A method for fitting a curve (not necessarily a straight 
line) through a set of points using some goodness-of- 
fit criterion. The most common type of regression is 
LINEAR REGRESSION. 

see also LEAST SQUARES FITTING, LINEAR REGRES- 
SION, MULTIPLE REGRESSION, NONLINEAR LEAST 

SQUARES FITTING, REGRESSION COEFFICIENT 

References 
Kleinbaum, D. G. and Kupper, L. L. Applied Regression 

Analysis and Other Multivariable Methods. North Scit- 
uate, MA: Duxbury Press, 1978. 

Regression Coefficient 
The slope b of a line obtained using linear LEAST 

SQUARES FITTING is called the regression coefficient. 

see also CORRELATION COEFFICIENT, LEAST SQUARES 

FITTING 

References 
Kenney, 5. F. and Keeping, E. S. Mathematics of Statistics, 

Pt. 2, 2nd ed. Princeton, NJ: Van Nostrand, p. 254, 1951. 

Regula Falsi 

see FALSE POSITION METHOD 

Regular Function 

see HOLOMORPHIC FUNCTION 

Regular Graph 
A GRAPH is said to be regular of degree T if all LOCAL 

DEGREES are the same number T. Then 

E = $w, 

where E is the number of EDGES. The connected 3- 
regular graphs have been determined by G. Brinkman 
up to 24 VERTICES. 

see also COMPLETE GRAPH, COMPLETELY REGULAR 

GRAPH, LOCAL DEG REE, SUPERREGULAR G RAPH 

References 
Chartrand, G. Introductory Graph Theory. New York: 

Dover, p+ 29, 1985. 

Regular Isotopy 
The equivalence of MANIFOLDS under continuous defor- 
mation within the embedding space. KNOTS of opposite 
CHIRALITY have AMBIENT ISOTOPY, but not regular 
isotopy. 

see also AMBIENT ISOTOPY 
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Regular Isotopy Invariant 

see BRACKET POLYNOMIAL 

Regular Local Ring 
A regular local ring is a LOCAL RING R with MAXIMAL 

IDEAL m, so that vz can be generated with exactly d ele- 
mentswhere d is the KRULL DIMENSION of the RING R. 
Equivalently, R is regular if the VECTOR SPACE m/m2 
has dimension d. 

see also KRULL DIMENSION, LOCAL RING, REGULAR 

RING, RING 

References 
Eisenbud, D. Commutative Algebra with a View Toward Al- 

gebraic Geometry. New York: Springer-Verlag, p. 242, 
1995. 

Regular Number 
A number which has a finite DECIMAL expansion. A 
number which is not regular is said to be nonregular. 

see also DECIMAL EXPANSION, REPEATING DECIMAL 

Regular Parameterization 
A parameterization of a SURFACE x(u, w) in u and w  is 
regular ifthe TANGENT VECTORS 

dX dX 

dzc 
and - 

dV 

are always LINEARLY INDEPENDENT. 

Regular Patch 
A regular patch is a PATCH x : U + Iw” for which 
the JACOBIAN J(x)(u,w) h as rank 2 for all (u,v) E U. 
A PATCH is said to be regular at a point (~0, vo) E U 
providing that its JACOBIAN has rank 2 at (~0, ~0). For 
example, the points at 4 = *x/2 in the standard param- 
eterization of the SPHERE (cos 8 sin 4, sin 8 sin 4, cos @) 
are not regular. 

An example of a PATCH which is regular but not IN- 

JECTIVE is the CYLINDER defined parametrically by 
(cosu,sinu,v) withu E (-oo,~)andv E (-2,2). How- 
ever, if x : U + IV is an injective regular patch, then x 
maps U diffeomorphically onto x(U). 

see also INJECTIVE PATCH,PATCH,REGULAR SURFACE 

References 
Gray, A. Modern Differential Geometry of Curves and Sur- 

faces. Boca Raton, FL: CRC Press, p. 187, 1993. 

Regular Point 

see ORDINARY POINT 

Regular Polygon 
An n-sided POLYGON in which the sides are all the same 
length and are symmetrically placed about a common 
center. The sum of PERPENDICULARS from any point 
to the sides of a regular polygon of n sides is n times 
the APOTHEM. Only certain regular polygons are TON- 
STRUCTIBLE" with RULER and STRAIGHTEDGE. 

n 

3 
4 
5 
6 
7 
8 
9 
10 

12 
15 
16 
17 
18 
20 
30 

equilateral triangle 

Regular Polygon 

square 
pentagon 
hexagon 
heptagon 
octagon 
nonagon 
decagon 
dodecagon 
pentadecagon 
hexadecagon 
heptadecagon 
act adecagon 
icosagon 
triacontagon 

see also CONSTRUCTIBLE POLYGON, GEOMETROGRA- 
PHY,HEPTADECAGON,POLYGON 

References 
Bishop, W. “How to Construct a Regular Polygon.” Amer. 

Math. Monthly 85, 186-188, 1978. 

Regular Polyhedron 
A polyhedron is said to be regular if its FACES and VER- 
TEX FIGURES are REGULAR (not necessarily CONVEX) 

polygons (Coxeter 1973, p. 16). Using this definition, 
there are a total of nine regular polyhedra, five being 
the CONVEX PLATONIC SOLIDS and four being the CON- 

CAVE (stellated) KEPLER-P• INSOT SOLIDS. However, 
the term “regular polyhedra,, is sometimes used to refer 
exclusively to the CONVEX PLATONIC SOLIDS. 

It can be proven that only nine regular solids (in the 
Coxeter sense) exist by noting that a possible regular 
polyhedron must satisfy 

Gordon showed that the only solutions to 

l+cos~1 +cos~2+cos43 =o 

of the form 6; = rm;/n; are the permutations of 

( $, ix, $ 7r) and (fn, ;7r, 2~). This gives three per- 
mutations of (3, 3, 4) and six of (3, 5, g) as possible 
solutions to the first equation. Plugging back in gives 
the SCHL AFLISYMBO LS of possible regular polyhedra as 
{3,3), {a% {4,3), {3,5), 1% 31’ 13’ $1’ {$I 31’ c% :I, 
and {&5} (C oxeter 1973, pp. 107-109). The first five of 
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these are the PLATONIC SOLIDS and the remaining four 
the KEPLER-P• INSOT SOLIDS. 

Every regular polyhedron has e + 1 axes of symmetry, 
where e is the number of EDGES, and 3h/2 PLANES of 
symmetry, where h is the number of sides of the corre- 
sponding PETRIE POLYGON. 

see also CONVEX POLYHEDRON, KEPLER-P• INSOT 
SOLID, PETRIE POLYGON, PLATONIC SOLID, POLY- 
HEDRON, POLYHEDRON COMPOUND, SPONGE, VERTEX 
FIGURE 

References 
Coxeter, H. S. M. “Regular and Semi-Regular Polytopes I.” 

Math. 2. 46, 380-407, 1940. 
Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York: 

Dover, pp. l-17, 93, and 107-112, 1973. 
Cromwell, P. R. Polyhedra. New York: Cambridge University 

Press, pp. 85-86, 1997. 

Regular Prime 
A PRIME which does not DIVIDE the CLASS NUMBER 
h(p) of the CYCLOTOMIC FIELD obtained by adjoining 
a PRIMITIVE ~TH ROOT of unity to the rational FIELD. 
A PRIME p is regular IFF p does not divide the Nu- 
MERATORS ofthe BERNOULLI NUMBERS Blo, &2,.*., 
B2p-2. A PRIME which is not 
IRREGULAR PRIME. 

regular is said to be an 

In 1915, Jensen proved that there are infinitely many 
IRREGULAR PRIMES. It has not yet been proven that 
there are an INFINITE number of regular primes (Guy 
1994, p. 145). Of the 283,145 PRIMES < 4 x 106, 171,548 
(or 60.59%) are regular (the conjectured FRACTION is 
eB1i2 = 60.65%). The first few are 3, 5, 7, 11, 13, 17, 
19, 23, 29, 31, 41, 43, 47, . . . (Sloane’s A007703). 

~~~U~S~BERNOULLI NUMBER, FERMAT'STHEOREM, IR- 

REGULAR PRIME 

References 
Buhler, J.; Crandall, R. Ernvall, R.; and Metsankyla, T. “IT- 

regular Primes and Cyclotomic Invariants to Four Million.” 
Math. Comput. 61, 151-153, 1993. 

Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. 
New York: Springer-Verlag, p. 145, 1994. 

Ribenboim, P. “Regular Primes.” s5.1 in The Nezu Book 

of Prime Number Records. New York: Springer-Verlag, 

pp. 323-329, 1996. 
Shanks, D. Solved and Unsolved Problems in Number Theory, 

4th ed. New York: Chelsea, p. 153, 1993. 
Sloane, N. J. A. Sequence A007703/M2411 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 

Regular Ring 
In the sense of von Neumann, a regular ring is a RING 
R such that for all a E R, there exists a b E R satisfying 
a = aba. 

Regular Sequence 
Let there be two PARTICULARLY WELL-BEHAVED 
FUNCTIONS F(z) and p,(s). If the limit 

lim 
7+0 SW 

Pr WW dx 
--oo 

exists, then pT(x) is a regular sequence of PARTICU- 
LARLY WELL-BEHAVED FUNCTIONS. 

Regular Singular Point 
Consider a second-order ORDINARY DIFFERENTIAL 
EQUATION 

y” + p(x)y’ + Q(x)y = 0, 

If P(x) and Q(x) remain FINITE at x = x0, then ~0 
is called an ORDINARY POINT. If either P(X) or Q(x) 
diverges as x -+ x0, then x0 is called a singular point. If 
either P(x) or Q(x) diverges as x -+ x0 but (x-x@(x) 
and (x - x~)~Q(x) remain FINITE as x + x0, then x = 
x0 is called a regular singular point (or NONESSENTIAL 
SINGULARITY). 

see also IRREGULAR SINGULARITY, SINGULAR POINT 
(DIFFERENTIAL EQUATION) 

References 
Arfken, G. “Singular Points.” 58.4 in Mathematical Meth- 

ods for Physicists, 3rd ed. Orlando, FL: Academic Press, 
pp. 451-453 and 461-463, 1985. 

Regular Singularity 

see REGULAR SINGULAR POINT 

Regular Surface 
A SUBSET M c IV‘ is called a regular surface if for each 
point p f M, there exists a NEIGHBORHOOD V of p in 
Ik” and a MAP x : U -+ R” of a OPEN SET U c zW2 
onto V n M such that 

1. x is differentiable, 

2. KU+ V ~IM~~~HOMEOMORPHISM, 

3. Eachmapx :U+Mis ~REGULAR PATCH. 

Any open subset of a regular surface is also a regular 
surface. 

see also REGULAR PATCH 

References 
Gray, A. “The Definition of a Regular Surface in R”.” $10.4 

in Modern Differential Geometry of Curves and Surfaces. 
Boca Raton, FL: CRC Press, pp. 195-200, 1993. 

see also REGULAR LOCAL RING, RING 

References 
Jacobson, N. Basic Algebra II, 2nd ed. New York: W. H. 

Freeman, p. 196, 1989. 
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Regular Triangle Center 
A TRIANGLE CENTER isregular IFF thereisa TRIANGLE 
CENTER FUNCTION which is a POLYNOMIAL in A, a, b, 
and c (where A is the AREA of the TRIANGLE) such that 
the TRILINEAR COORDINATES of the center are 

Regulus 
The locus of lines meeting three given SKEW LINES. 
(“Regulus” is also the name of the brightest star in the 
constellation Leo.) 

Reidemeister Moves 
f (a, h c> : f (b, c, a> : f (c, a, b)* 

The ISOGONAL CONJUGATE of a regular center is a regu- 
lar center. Furthermore, given two regular centers, any 
two of their HARMONIC CONJUGATE POINTS are also 
regular centers. 

see UZSO ISOGONAL CONJUGATE, TRIANGLE CENTER, 

TRIANGLE CENTER FUNCTION 

untwist 

poke 
unpoke 

Regularity Theorem 
An AREA-minimizing surface (RECTIFIABLE CURRENT) 
bounded by a smooth curve in R3 is a smooth subman- 
ifold with boundary. 

see also MINIMAL SURFACE, RECTIFIABLE CURRENT 

I 
III l  \ I 

/ 

’ - \ 4 
I 

slide / I 

In the 193Os, Reidemeister first rigorously proved that 
KNOTS exist which are distinct from the UNKNOT. He 
did this by showing that all KNOT deformations can be 
reduced to a sequence of three types of “moves,” called 
the (I) TWIST MOVE, (II) POKE MOVE, and (III) SLIDE 
MOVE. 

References 
Morgan, F. “What is a Surface?” Amer. Math. Monthly 103, 

369-376, 1996. 

Regularized Beta Function 
The regularized beta function is defined by REIDEMEISTER'S THEOREM guarantees that moves I,II, 

and III correspond to AMBIENT ISOTOPY (moves II and 
III alone correspond to REGULAR ISOTOPY). He then 
defined the concept of COLORABILITY, which is invariant 
under Reidemeister moves. 

I(z; a, b) = 
B(T a, b) 

B(d) ’ 

where B(z; a, b) is the incomplete BETA FUNCTION and 
B(a, b) is the complete BETA FUNCTION. see dso AMBIENT ISOTOPY, COLORABLE, MARKOV 

MOVES,REGULAR ISOTOPYJJNKNOT see also BETA 
FUNCTION 

FUNCTION, REGULARIZED GAMMA 

Reidemeister’s Theorem 
Two LINKS can be continuously deformed into each 
other IFF any diagram of one can be transformed into 
a diagram of the other by a sequence of REIDEMEISTER 
MOVES. 

Regularized Gamma Function 
The regularized gamma functions are defined bY 

see also REIDEMEISTER MOVES 

P(a, z) = I- &(a, z) = $$f 

and 

Q(a,x) = 1 -P(a,z) z w, 
a 

Reinhardt Domain 
A Reinhardt domain with center c is a DOMAIN D in 
Cn such that whenever D contains ~0, the DOMAIN D 
also contains the closed POLYDISK. 

where $a, x) and r(a, z) are incomplete GAMMA FUNC- 
TIONS and r(a) is acomplete GAMMA FUNCTION. Their 
derivatives are References 

Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary 
of IMathematics. Cambridge, MA: MIT Press, p* 101, 1980. $P(q 2) = e-Y--l 

$Q(a, z) = -e-Zxa? Relation 
A relation is any SUBSET of a CARTESIAN PRODUCT. 
For instance, a SUBSET of A x B, called a (binary) “re- 
lation from A to B,” is a collection of ORDERED PAIRS 
(a, b) with first components from A and second compo- 
nents from B, and, in particular, a SUBSET of A x A is 
called a “relation on A.” For a binary relation R, one 
often writes aRb to mean that (a, b) is in R. 

see also G 
FUN 'CTION 

,AMMA FUNCTION, REGULARIZED BETA 

References 
Press, W. I-I.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 

ling, W. T. Numerical Recipes in FORTRAN: The Art of 
Scientific Computing, 2nd ed. Cambridge, England: Cam- 
bridge University Press, pp. 160461, 1992. 
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see also ADJACENCY RELATION, ANTISYMMETRIC RE- 

LATION, ARGUMENT ADDITION RELATION, ARGU- 

MENT MULTIPLICATION RELATION, COVER RELATION, 
EQUIVALENCE RELATION, IRREFLEXIVE, PARTIAL OR- 
DER, RECURRENCE RELATION, REFLECTION RELA- 
TION, REFLEXIVE RELATION, SYMMETRIC RELATION, 
TRANSITIVE, TRANSLATION RELATION 

Relative Error 
Let the true value of a quantity be Al: and the measured 
or inferred value 20~ Then the relative error is defined 

bY 
Ax sx= =xo-x=~-l, 

X 2 X 

where Ax is the ABSOLUTE ERROR. The relative error 
of the QUOTIENT or PRODUCT of a number of quantities 
is less than or equal to the SUM of their relative errors. 
The PERCENTAGE ERROR is 100% times the relative 
error. 

see also ABS OLUTE 
PERCENTAGE ERROR 

ERROR, ERROR PROPAGATION, 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p* 14, 1972. 

Relative Ext remum 
A RELATIVE MAXIMUM or RELATIVE MINIMUM, also 
called a LOCAL EXTREMUM. 

see UZSO EXTREMUM, GLOBAL EXTREMUM, 
MA .XIMUM, RELATIVE MINIMUM 

RELATIVE 

Relative Maximum 
A MAXIMUM within some NEIGHBORHOOD which need 
not be a GLOBAL MAXIMUM. 

see also GLOBAL MAXIMUM, 
MINIMUM 

MAXIMUM, RELATIVE 

Relative Minimum 
A MINIMUM within some NEIGHBORHOOD which need 
not be a GLOBAL MINIMUM. 

see also 
IMUM 

GLOBALMINIMUM,MINIMUM, RELATIVEMAX- 

Relatively Prime 
Two integers are relatively prime if they share no com- 
mon factors (divisors) except 1. Using the notation 
(m,n) to denote the GREATEST COMMON DIVISOR, 
two integers m and n are relatively prime if (m, n) = 

1. Relatively prime integers are sometimes also called 
STRANGERS or COPRIME and are denoted nz L n. 

and n, (m, n) = k, can be interpreted as the number of 
LATTICE POINTS in the PLANE which lie on the straight 
LINE connecting the VECTORS (0,O) and (m, n) (exclud- 
ing (m, n) itself). In fact 6/n2 the fractional number of 
LATTICE POINTS VISIBLE fromthe ORIGIN (Castellanos 
1988, pp. 155-156). 

Given three INTEGERS chosen at random, the probabil- 
ity that no common factor will divide them all is 

[C(3)]-’ z 1.202-r = 0.832.. . , 

where C(3) is API?RY'S CONSTANT. This generalizes to 
k random integers (Schoenfeld 1976). 

see aho DIVISOR, GREATEST COMMON DIVISOR, VISI- 

BILITY 

References 
Castellanos, D. “The Ubiquitous Pi.” Math. Mag. 61, 67-98, 

1988. 
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. 

New York: Springer-Verlag, pp. 3-4, 1994. 
Schoenfeld, L. “Sharper Bounds for the Chebyshev Functions 

d(x) and @J(X), II.” Math. Comput. 30, 337-360, 1976. 

Relaxation Methods 
Methodsofsolvingan ORDINARY DIFFERENTIAL EQUA- 
TION by replacing it with a FINITE DIFFERENCE equa- 
tion on a regular grid spanning the domain of interest. 
The finite difference equations are then solved using an 
n-D NEWTON'S METHOD or other similar algorithm. 

References 
Press, W, H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 

ling, W. T. “Richardson Extrapolation and the Bulirsch- 
Steer Method.” $17.3 in Numerical Recipes in FORTRAN: 
The Art of Scientific Computing, 2nd ed. Cambridge, Eng- 
land: Cambridge University Press, pp. 753-763, 1992. 

Remainder 
In general, a remainder is a quantity “left over” after 
performing a particular algorithm. The term is most 
commonly used to refer to the number left over when two 
integers are divided by each other in INTEGER DIVISION. 
For example, 55\7 = 7, with a remainder of 6. Of course 
in real division, there is no such thing as a remainder 
since, for example, 55/7 = 7 + 6/7. 

The term remainder 
of a CONGRUENCE. 

is also sometimes to the RESIDUE 

see also DIVISION, INTEGER DIVISION, RESIDUE (CON- 
GRUENCE) 

Remainder Theorem 

~~~POLYNOMIAL REMAINDER THEOREM 

The probability that two INTEGERS picked at random 
are relatively prime is [c(2)]-’ = 6/n2, where c(z) is 
the RIEMANN ZETA FUNCTION. This result is related 
to the factthatthe GREATEST COMMON DIVISOR of m 



1544 Rem bs’ Surfaces Rhyi’s Parking Constants 

Rembs’ Surfaces Rhyi’s Parking Constants 
A special class of ENNEPER'S SURFACES which can be hr.& A detailed on-line essay by S. Finch was the start- 
given parametrically by ing point for this entry. 

Given the CLOSED INTERVAL [0,x] with CC > 1, let 1-D 

“cars” of unit length be parked randomly on the interval. 
The MEAN number M(x) of cars which can fit (without 

X = a( U cos u - U’ sin u) 

y = -a(U sin u + U’ cosu) 

z = w  - av’, 

(1) 

(2) 

(3) overlapping!) satisfies 

;+‘S”‘M(y)dy ;;z;;<l (l) 
2-l 0 

. - 

where 

u _ cosh(uf l)  

- 
- 

dE 

(4) 
The mean density of the cars for large x is 

v  _ cos(wl/C + 1) 

- 

- ~~ 

2v 

a = (C + l)(U2 - v2) l  

(5) 

(6) = 0.7475979203. . . . (2) 

The value of w  is restricted to Furthermore, 

(7) M(x) =mx+m-l+O(x-n) (3) 

for all n (R6nyi 1958), which was strengthened by 
Dvoretzky and Robbins (1964) to 

(Reckziegel 1986)) and the values ‘u = &WO correspond 
to the ends of the cleft in the surface. 

see also ENNEPER’S 

ERT'S SURFACE 
SURFACES, KUEN SURFACE, SIEV- 

M(x) =mx+m-l+O [ ($)x-3’2] . (4) 

References 
Fischer, G. (Ed.). Plate 88 in Muthematische Mod- 

elle/Muthematical Models, Bildband/Photograph Volume. 
Braunschweig, Germany: Vieweg, p* 84, 1986, 

Reckziegel, H. “Sievert’s Surface.” 53.4.4.3 in Mathemati- 
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Dvoretzky and Robbins (1964) also proved that 

inf M(t) + ’ < m < 
t+1 - - x<Z+l 

M(t) + 1 
X<t<X+l I!+1 l  

(5) 

-- 

Let V(x) be the variance of the number of cars, then 
Dvoretzky and Robbins (1964) and Mannion (1964) 
showed that 

Removable Crossing 

see REDUCIBLE CROSSING 1 2 

e -““R,(y) dy + x2 e -““R,(Y) dy I> Removable Singularity 
A SINGULAR PRINT z. of a FUNCTION f(z) for which 
it is possible to assign a COMPLEX NUMBER in such a 
way that f(z) becomes ANALYTIC. A more precise way 
of defining a removable singularity is as a SINGULARITY 
zo of a function f(z) about which the function f(z) is 
bounded. For example, the point x0 = 0 is a removable 
singularity in the SING FUNCTION sine x = sin x/x, since 
this function satisfies sine 0 = 1. 

xexp (-2l= y dy) dx=0.038156..., (6) 

where 

RI 

R2 

= M(x) -mx-m+l (7) 

for 0 < x < 1 
for x = 1 

for x > 1 

x-1 Rx(y)Rl(x - y - 1) dy 1 9 

(8) 

Rencontres Number 

Rendezvous Values 

see MAGIC GEOMETRIC C~ONSTANTS 
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and the numerical value is due to Blaisdell and Solomon 
(1970). Dvoretzky and Robbins (1964) also proved that 

inf VW ----+I< v(t) 
x<t<x+1 t + 1 - 

sup - (9 x:<t<x+r t+1’ 

and that 

4e 
wx+v+o y  K ) 

x-4 

V(x) = 1 l  (10 

Palasti (1960) conjectured that in 2-D, 

lim M(x, Y> 
= m2, (11) 

X,Y+~ XY 

but this has not yet been proven or disproven (Finch). 
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Rep-Tile 
A POLYGON which can be divided into smaller copies of 
itself. 

see also DISSECTION 

References 
Gardner, M. Ch. 19 in The Unexpected Hanging and Other 

MathematicaZ Diversions. Chicago, IL: Chicago University 
Press, 1991. 

Repartition 

see ADI?LE 

Repdigit 
A number composed of a single digit is called a repdigit. 
If the digits are all Is, the repdigit is called a REPUNIT. 
The BEAST NUMBER 666 is a repdigit. 

see also KEITH NUMBER, REPUNIT 
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Repeating Decimal 
A number whose decimal representation eventually be- 
comes periodic (i.e., the same sequence of digits repeats 
indefinitely) is called a repeating decimal. Numbers 
such as 0.5 can be regarded as repeating decimals since 
0.5 = 0.5000. . . = 0.4999. . . . All RATIONAL NUMBERS 
have repeating decimals, e.g., l/11 = 0.09. However, 
TRANSCENDENTAL NUMBERS, such as 7~ = 3.141592... 
do not. 

see also CYCLIC NUMBER, DECIMAL EXPANSION, FULL 
REPTEND PRIME, IRRATIONAL NUMBER, MIDY'S THE- 
OREM,RATIONAL NUMBER,REGULAR NUMBER 

References 
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1987. 
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England: Oxford University Press, pp. 66-68, 1996. 

Repfigit Number 

see KEITH NUMBER 

Replicate 
One out of a set of identical observations in a given 
experiment under identical conditions. 

Reptend Prime 

see FULL REPTEND PRIME 

Representation 
The representation of a GROUP G on a COMPLEX VEC- 
TOR SPACE V is a group action of G on V by linear 
transformations. Two finite dimensional representations 
r on V and n’ on V’ are equivalent if there is an invert- 
ible linear map E : V t+ V’ such that r’(g)E = En(g) 
for all g E G. 7r is said to be irreducible if it has no 
proper NONZERO invariant SUBSPACES. 

see also CHARACTER (MULTIPLICATIVE),~ETER-WEYL 
THEOREM, PRIMARY REPRESENTATION, SCHUR'S 
LEMMA 

References 
Knapp, A. W. “Group Representations and Harmonic Anal- 
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Repunit 
A (generalized) repunit to the base b is a number of the 
form 

Mb _ b” - 1 
n-- 

b-1’ 

The term “repunit” was coined by Beiler (1966), who 
also gave the first tabulation of known factors. Repunits 

MTl = M; = 2n - 1 with b = 2 are called MERSENNE 
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NUMBERS. If b = 10, the number is called a repunit see also CUNNINGHAM NUMBER, FERMAT NUMBER, 

(since the digits are all 1s). A number of the form MERSENNE NUMBER,REPDIGIT, SMITH NUMBER 

R, = $f+ lon - 1 

=Rn=-9- 

is therefore a (decimal) repunit of order n. 

b Sloane b-Repunits 

2 000225 1, 3, 7, 15, 31, 63, 127, . . . 
3 003462 1, 4, 13, 40, 121, 364, . . . 
4 002450 1, 5, 21, 85, 341, 1365, . . . 
5 003463 1, 6, 31, 156, 781, 3906, . . . 
6 003464 1, 7, 43, 259, 1555, 9331, .*a 
7 023000 1, 8, 57, 400, 2801, 19608, . . . 
8 023001 1, 9, 73, 585, 4681, 37449, ..* 
9 002452 1, 10, 91, 820, 7381, 66430, . . . 

10 002275 1, 11, 111, 1111, 11111, l  *. 
11 016123 1, 12, 133, 1464, 16105, 177156, . . . 
12 016125 1, 13, 157, 1885, 22621, 271453, .e. 

Williams and Seah (1979) factored generalized repunits 
for 3 < b < 12 and 2 < n < 1000. A (base-lo) re- - - - - 
punit can be PRIME only if n is PRIME, since other- 
wise 10ub - 1 is a BINOMIAL NUMBER which can be fac- 
tored algebraically. In fact, if r~ = 2a is EVEN, then 
102" -1= (10" - l)(lOa + 1). The only base-10 repunit 
PRIMES R, for n < 16,500 are n = 2, 19, 23, 317, and 
1031 (Sloane’s AOg4023; Madachy 1979, Williams and 
Dubner 1986, Ball and Coxeter 1987). The number of 
factors for the base-10 repunits for n = 1, 2, . . . are 1, 
1, 2, 2, 2, 5, 2, 4, 4, 4, 2, 7, 3, . . . (Sloane’s AO46053). 

b Sloane n of Prime b-Repunits 

000043 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, .e. 
028491 3, 7, 13, 71, 103, 541, 1091, 1367, . . . 
004061 3, 7, 11, 13, 47, 127, 149, 181, 619, w.. 
004062 2, 3, 7, 29, 71, 127, 271, 509, 1049, . . . 
004063 5, 13, 131, 149, 1699, .a. 
004023 2, 19, 23, 317, 1031, . . . 
005808 17, 19, 73, 139, 907, 1907, 2029, 4801, .a. 
004064 2, 3, 5, 19, 97, 109, 317, 353, 701, l  l  l  

A table of the factors not obtainable algebraically 
for generalized repunits (a continuously updated ver- 
sion of Brillhart et al. 1988) is maintained on- 
line. These tables include factors for 10” - 1 
(with n < 209 odd) and 10” + 1 (for n 5 210 
EVEN and-ODD) in the files ftp://sable.ox.ac.uk/ 
pub/math/cunningham/10- and ftp://sable.ox.ac. 
uk/pub/math/cunningham/lO+. After algebraically fac- 
toring Rn, these are sufficient for complete factoriza- 
tions. Yates (1982) published all the repunit factors for 
n 5 1000, a portion of which are reproduced in the 
MathemaGcG’ notebook by Weisstein. 
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Residual 
The residual is the sum of deviations from a best-fit 
curve of arbitrary form. 

R = E[Yi - f (Xi,Ul, 1.. ,a,>]2. 

The residual should not be confused with the CORRE- 
LATION COEFFICIENT. 

Residual vs. Predictor Plot 
A plot of yi vs. ei G ci - yi. Random scatter indicates 
the model is probably good. A pattern indicates a prob- 
lem with the model. If the spread in ei increases as ya 
increases, the errors are called HETER~SCEDASTIC. 

A SMITH NUMBER can be constructed from every fac- 
tored repunit. 
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Residue Class so 
The residue classes of a function f(z) mod rz are all pos- 
sible values of the RESIDUE f(z) (mod n). For example, 
the residue classes of z2 (mod 6) are { 0, I, 3,4}, since 

o2 E 0 (mod 6) 

l2 z 1 (mod 6) 

32 s 3 (mod 6) 

42 G 4 (mod 6) 

are all the possible residues. A COMPLETE RESIDUE 
SYSTEM is a set of integers containing one element from 
each class, so in this case, (0, 1,9,4} would be a COM- 
PLETE RESIDUE SYSTEM. 

see also COMMON RESIDUE, CONGRUENCE, MINIMAL 
RESIDUE 

References 
Shanks, D. Solved and Unsolved Problems in Number Theory, 

4th ed. New York: Chelsea, pp. 55-56, 1993. 

Residue Index 
p- 1 divided by the HAUPT-EXPONENT of a base b mod 
p for a given PRIME p. 

see also HAUPT~XPONENT 

The 4(m) residue classes prime to m form a GROUP un- 
der the binary multiplication operation (mod m), where 
qb(m) is the T~TIENT FUNCTION (Shanks 1993) and the 
GROUP is classed a MOWLO MULTIPLLCATION GROUP. 

see also COMPLETE RESIDUE SYSTEM, CONGRUENCE, 
CUBIC NUMBER, QUADRATIC RECIPROCITY THEO- 
REM, QUADRATIC RESIDUE, RESIDUE (CONGRUENCE), 
SQUARE NUMBER 

Residue Theorem (Complex Analysis) 
Given a complex function f(z), consider the LAURENT 
SERIES 

Integrate term by term using a closed contour y encir- 
sling ~0, 

References 
Shanks, D. Solved and Unsolved Problems in Number Theory, 

4th ed. New York: Chelsea, p. 56 and 59-63, 1993. s f(z) dz = 
7 

Residue (Complex Analysis) 
The constant a-1 in the LAURENT SERIES 

f(z) = 2 G(Z - zoy 
?I= -m 

of f(z) is called the residue of f(z). The residue is a 
very important property of a complex function and ap- 
pearsinthe amazing RESIDUE THEOREM of CONTOUR 
INTEGRATION. 

see &SO CONTOUR INTEGRATION, LAURENT SERIES, 
RESIDUE THEOREM 

References 
A&en, G. “Calculus of Residues.” 57.2 in Mathematical 

Methods for Physicists, 3rd ed. Orlando, FL: Academic 
Press, pp. 400-421, 1985. 

Residue (Congruence) 
The number bin the CONGRUENCE a E b (mod 
called the residue of a (mod m). The residue of 
numbers can be computed quickly using CONGRUE 
For example, to find 37r3 (mod 17), note that 

37E 3 

372 = 32 E 9 = - -8 

374 E 81 E -4 

378 G 16 E -1, 

m> is 
large 

NCES. 

3713 E 37l+4+8 z 3(-4)(-l) E 12 (mod 17). 

f(z> = h&(x - Zoyf (1) 

( z- xo)n dz 

J (z - zo)n dx. (2) 
7 

The CAUCHY INTEGRAL THEOREM requires that the 
first and last terms vanish, so we have 

s f(z)dz = aAl 
s 

k 
7 7 z - zo - (3) 

But we can evaluate this function (which has a POLE at 
~0) using the ~AUCHY INTEGRAL FORMULA, 

1 
f(zo) = - 

s 

f (4 05 
- 2ni 7 x  - 20 l  

(4) 

This equation must also hold for the constant function 
f(z) = 1, in which case it is also true that f(zo) = 1, so 

1 

s 

dz 
l=g - 

7 x - zo ’ 

s dz 
- = 2Ki, 

7 z - 250 

(5) 

(6) 
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and (3) becomes Iterating, 

s f(z) dz = 27tia-1. (7) 
Y 

The quantity a-1 is known as the RESIDUE of f(z) at x0* 
Generalizing to a curve passing through multiple poles, 

(7) b ecomes 

= )Jn + l)(n + 2)(n + m - l)a,-~(a - 250)~ 
n=O 

= m- 
( l)!a-1 

I 
poles in y 

f(z) dz = 2ni ‘);7 n(r, $‘)df), , (8) 

m  

+ x(n + l)(n + 2)(n + m - l)a,-I(Z - z0)n? (16) 
n=l J7 i=l 

where n is the WINDING NUMBER and the (i) superscript 
denotes the quantity corresponding to POLE i. 

so 

d ’ m- 
lim ~ 

x+zo dxm-1 K z - zo)“f(x)] If the path does not completely encircle the RESIDU 
take the CAUCHY PRINCIPAL VALUE to obtain 

‘E, 

= lim (m - l)!a-1 + 0 = (m - l)!c~-1, 
%--f%O 

(17) s f(z) dz = (0, - 0&a+ (9) 
and the RESIDUE is 

If f has only ISOLATED SINGULARITIES, then 
1 drn-1 

a-1 = -- 

( m- l)! dx”-l K 2 - zo)“f(x)]%=%,. (18) 
x a-Ji) = 0. (10) 

This amazing theorem says that the value of a CONTOUR 
INTEGRAL in the COMPLEX PLANE depends onlyonthe 
properties of a few special points inside the contour. 

see also CAUCHY INTEGRAL FORMULA$AUCHY INTE- 
GRAL THEOREM, CONTOUR INTEGRAL, LAURENT SE- 
RIES, POLE, RESIDUE (COMPLEX ANALYSIS) 

The residues may be found without explicitly expanding 
into a LAURENT SERIES as follows. 

If f(z) has a POLE of order nz at ZO, then a, = 0 for 
n< -m and a-, # 0. Therefore, 

Residue Theorem (Group) 
If two groups are residual to a third, every group residual 
to one is residual to the other. The Gambier extension of 
this theorem states that if two groups are pseudoresidual 
to a third, then every group pseudoresidual to the first 
with an excess greater than or equal to the excess of the 
first minus the excess of the second is pseudoresidual to 
the second, with an excess > 0. - 

f(Z) = x Un(Z - L())n = xa-m+n(Z - %g)-m+n 
n=-m n=O 

(12) 
00 

(Z - %O)“f(z) = r a-m+n(Z - ZO)n (13) 

n=O 

References 
Coolidge, J. L. A Ttreatise on Algebraic Plane Curves. New . 00 

d 
-[(.z - zo)“f(%)] = x nu-m+n(Z - zO)n-l 
dz 

York: Dover, pp. 30-31, 1959. 

n=O 

00 Resolution 
Resolution is a widely used word with many different 
meanings. It can refer to resolution of equations, reso- 
lution of singularities (in ALGEBRAIC GEOMETRY), reso- 
lution of modules or more sophisticated structures, etc. 
In a BLOCK DESIGN, a PARTITION 22 of a BIBD’s set 

of blocks B into PARALLEL CLASSES, each of which in 
turn partitions the set V, is called a resolution (Abel 
and Furino 1996). 

- - T nU-m+n(X - noJn--l 

F(n + 1)u -m+n+l (z - 20) 

n=O 

(z - z~)“f(z)] = pn(n+ 

n=O 

00 

n 
(14) 

l)a-m+n+i (z - XO)n-l 

- - 

d2 

dz2 

A resolution of the MODULE AI over the RING R is a 
complex of R-modules Ci and morphisms di and a MOR- 
PHISM E such that 

- - E n(n + l)a-,+,+& - a~)~-~ 
n=l 

= x(n + l)(n + 2)a-m+n+2(Z - Zg)n. (15) 



Resol u tion Class 

satisfying the following 

1. The composition of 
is the zero map, 

conditions: 

any two consecutive morphisms 

2. For all i, (ker&)/(imdi+l) = 0, 

3. C&ker E) 2 M, 

where ker is the kernel and im is the image. Here, the 
quotient 

(ker di) 

(im &+I) 

is the ith HOMOLOGY GROUP. 

If all modules Ci are projective (free), then the resolu- 
tion is called projective (free). There is a similar concept 
for resolutions “to the right” of M, which are called in- 
jective resolutions. 

see also HOMOLOGY GROUP, MODULE, MORPHISM, 

RING 

References 
Abel, R. J. R. and Furino, S. C. “Resolvable and Near Re- 

solvable Designs .” $1.6 in The CRC Handbook of Combi- 
natorial Designs (Ed. C. 3. Colbourn and J. H. Dinita). 
Boca Raton, FL: CRC Press, p. 4 and 87-94, 1996. 

Jacobson, N. B&c Algebra II, 2nd ed. New York: Mr. H. 
Freeman, p. 339, 1989. 

Resolution Class 

see PARALLEL CLASS 

Resolution Modulus 
The least POSITIVE INTEGER m* with the property that 

X(Y) = 1 whenever y E 1 (mod m*) and (y,m) = 1. 

Resolvable 
A balanced incomplete BLOCK DESIGN (B, V) is called 
resolvable if there exists a PARTITION R of its set of 
blocks B into PARALLEL CLASSES, each of which in turn 
partitions the set V. The partition R is called a RESO- 
LUTION. 

see also BLOCK DESIGN, PARALLEL CLASS 

References 
Abel, R. J. R. and Furino, S. C. “Resolvable and Near Re- 

solvable Designs.” 81.6 in The CRC Handbook of Combi- 
natorial Designs (Ed. C. J. Colbourn and J. H. Dinitz). 
Boca Raton, FL: CRC Press, p. 4 and 87-94, 1996. 

Resolving Tree 
A tree of LINKS obtained by repeatedly choosing a cross- 
ing, applying the SKEIN RELATIONSHIP to obtain two 
simpler LINKS, and repeating the process. The DEPTH 
of a resolving tree is the number of levels of links, not in- 
cluding the top. The DEPTH of the LINK is the minimal 
depth for any resolving tree of that LINK. 
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Resonance Overlap * 
Isolated resonances in a DYNAMICAL SYSTEM can 
cause considerable distortion of preserved TORI in their 
NEIGHBORHOOD, but they do not introduce any CHAOS 
into a system. IIowever, when two or more resonances 
are simultaneously present, they will render a system 
nonintegrable. Furthermore, if they are sufficiently 
“close” to each other, they will result in the appearance 
of widespread (large-scale) CHAOS. 

To investigate this problem, Walker and Ford (1969) 
took the integrable Hamiltonian 

Ho(h,Iz) = 11 + 12 - -r; - 31112 + Iz2 

and investigated the effect of adding a 2:2 resonance and 
a 3:2 resonance 

H(I$) = Ho(I) + a1112 cos(281 - 282) 

+@A 3’212 COS( 201 - 382). 

At low energies, the resonant zones are well-separated. 
As the energy increases, the zones overlap and a “macro- 
scopic zone of instability” appears. When the overlap 
starts, many higher-order resonances are also involved 
so fairly large areas of PHASE SPACE have their TORI 
destroyed and the ensuing CHAOS is “widespread” since 
trajectories are now free to wander between regions that 
previously were separated by nonresonant TORI. 

Walker and Ford (1969) were able to numerically pre- 
dict the energy at which the overlap of the resonances 
first occurred. They plotted the &-axis intercepts of 
the inner 2:2 and the outer 2:3 separatrices as a func- 
tion of total energy. The energy at which they crossed 
was found to be identical to that at which 2:2 and 2:3 
resonance zones began to overlap. 

see UZSO CHAOS,RESONANCE OVERLAP METHOD 

References 
Walker, G. H. and Ford, J. “Amplitude Instability and Er- 

godic Behavior for Conservative Nonlinear Oscillator Sys- 
tems.” Phys. Rev. 188, 416-432, 1969. 

Resonance Overlap Method 
A method for predicting the onset of 

see also GREENE'S METHOD 

References 

widespread CHAOS. 

Chirikov, B. V. “A Universal 
Dimensional Oscillator Systems.” 
1979. 

Instability of Many- 
Phys. Rep. 52, 264-379, 

Tabor, M. Chaos and Integrability in Nonlinear Dynamics: 
An Introduction. New York: Wiley, pp. 154-163, 1989. 
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Restricted Divisor F’unction 

500 I I 

, 
50 100 150 200 250 300 

The sum of the ALIQUOT DIVISORS of n, given by 

s(n) so(n) -72, 

where a(n) is the DIVISOR FUNCTION. The first few 
values are 0, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 16, . . . (Sloane’s 
A001065). 

see also DIVISOR FUNCTION 

References 
Sloane, N. 5. A. Sequence A001065/M2226 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 

Restricted Growth Function 

see RESTRICTED GROWTH STRING 

Restricted Growth String 
For a SET PARTITION of n elements, the n-character 
string ala2 . . . a, in which each character gives the 
BLOCK (Bo, Bl, . . . ) into which the corresponding el- 
ement belongs is called the restricted growth string (or 
sometimes the RESTRICTED GROWTH FUNCTION). For 
example, for the SET PARTITION {{l}, {2}, {3,4}}, the 
restricted growth string would be 0122. If the BLOCKS 
are “sorted” so that al = 0, then the restricted growth 
string satisfies the INEQUALITY 

ai+l 5 l+max{a1,a2,...,ai} 

for i = 1, 2, . l  . , n - 1. 

References 
Ruskey, F. “Info About Set Partitions.” http: // sue . csc . 

uvic.ca/-cos/inf/setp/SetPartitions.html. 

Resultant 
Given a POLYNOMIAL p(z) of degree n with roots ~i, 
i= 1, . ..) n and a POLYNOMIAL q(z) of degree 772 with 
roots &, j = 1, . . . , nz, the resultant is defined by 

R(P, Cl> = fi fi(Oj - ai>. 
i=l j=l 

There exists an ALGORITHM similar to the EUCLID- 
EAN ALGORITHM for computing resultants (Pohst and 
Zassenhaus 1989). The resultant is the DETERMINANT 

Reuleaux Wangle 

of the corresponding SYLVESTER MATRIX. Given p and 
g, then 

h(x) = RkWP(X - t)) 

is a POLYNOMIAL of degree mn, having as its roots all 
sums of the form ai + pj. 

see also DISCRIMINANT (POLYNOMIAL), SYLVESTER 
MATRIX 

References 
Pohst, M. and Zassenhaus, H. Algorithmic Algebraic Num- 

ber Theory. Cambridge, England: Cambridge University 
Press, 1989. 

Wagon, S. IUathematica in Action. New York: W. H. Free- 
man, p* 348, 1991. 

Retardance 
A shift in PHASE. 

see also PHASE 

Reuleaux Polygon 
A curvilinear polygon built up of circular ARCS. The 
Reuleaux polygon is a generalization of the REULEAUX 
TRIANGLE. 

~~~&~CURVEOF CONSTANTWIDTH,REULEAUXTRI- 
ANGLE 

References 
Wagon, S. Mathematics in Action. New York: W. H. Free- 

man, pp. 52-5,4, 1991. 

Reuleaux Triangle 

A CURVE OF CONSTANT WIDTH constructedbydrawing 
arcs from each VERTEX of an EQUILATERAL TRIANGLE 
between the other two VERTICES. It is the basis for the 
Harry Watt square drill bit. It has the smallest AREA 
for agiven width of any CURVE OF CONSTANT WIDTH. 

The AREA of each meniscus-shaped portion is 

where we have subtracted the AREA of the wedge from 
that of the EQUILATERAL TRIANGLE. The total AREA 
is then 

a T2 + -r2 = - 
4 (2) 

When rotated in a square, the fractional AREA covered 
1s 

A covered = 2&+ 3r = 0.9877700392.. . . (3) 
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The center does not stay fixed as the TRIANGLE is ro- 
tated, but moves along a curve composed of four arcs of 
an ELLIPSE (Wagon 1991). 

see also CURVE OF CONSTANT WIDTH, FLOWER OF 
LIFE, PIECEWISE CIRCULAR CURVE, REULEAUX POLY- 
GON 
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Reversal 
The reversal of a decimal number ubcm l  l  is 9 m. cba. 
Ball and Coxeter (1987) consider numbers whose re- 
versals are integral multiples of themselves. PALIN- 
DROMIC NUMBER and numbers ending with a ZERO 
are trivial examples m The first few nontrivial examples 
are 8712, 9801, 87912, 98901, 879912, 989901, 8799912, 
9899901, 87128712, 87999912, 98019801, 98999901, 

(Sloane’s A031877). 
k;ge numbers, 

The pattern continues for 
with numbers of the form 879 m. *9 12 

equal to 4 times their reversals and numbers of the 
form 989-m m 9 01 equal to 9 times their reversals. In 

addition, runs of numbers of either of these forms 
can be concatenated to yield numbers of the form 
879-912-879.’ l  9 12, equal to 4 times their rever- 

0&*989.**901, equal to 9 times 

their reversals. 

The product of a 2-digit number and its reversal is never 
a SQUARE NUMBER except when the digits are the same 
(Ogilvy 1988)* N umbers whose product is the reversal 
of the products of their reversals include 

312 x 221 = 68952 

213 x 122 = 25986 

(Ball and Coxeter 1987, p. 14). 

see also RATS SEQUENCE 

References 
Ball, W. W. R. and Coxeter, H. S. M, Mathematical Recre- 

ations and Essays, 13th ed. New York: Dover, pp. 14-15, 
1987, 

Ogilvy, C. S. and Anderson, J. T. Excursions in Number 
Theory. New York: Dover, pp. 88-89, 1988. 

Sloane, N. J. A. Sequence AU31877 in CLAn On-Line Version 
of the Encyclopedia of Integer Sequences.” 

Reversion of Series 

see SERIES REVERSION 

Reverse-Then-Add Sequence 
An integer sequence produced by the 196-ALGORITHM. 

see ~~SO~~~-ALGORITHM, SORT-THEN-ADD SEQUENCE 

Reznik’s Identity 
For P and Q POLYNOMIALS in n variables, 

FQb2 

where Di E B/Bxi, 1x1 2 is the BOMBIERI NORM, and 

BOMBIERI'S INEQUALITY follows from this identity. 

see also BEAUZAMY AND DI?GOT'S IDENTITY 

Rhodonea 

see ROSE 

Rhomb 

see RHOMBUS 

Rhombic Dodecahedral Number 
A FIGURATE NUMBER which is constructed as a cen- 
tered CUBE with a SQUARE PYRAMID appended to each 
face, 

RhoDod, = CC& + 6P,-1 = (2n - 1)(2n2 - 2n + l), 

where C&b, is a CENTERED CUBE NUMBER and Pn. is 
a PYRAMIDAL NUMBER. The first few are 1, 15, 65, 175, 
369, 671, . . . (Sloane’s A005917). The GENERATING 

FUNCTION of the rhombic dodecahedral numbers is 

x(1 + 112 + 11x2 + X3) 

(x - 1)” 
= x+15x2+65x3+175x4+. .** 

see also OCTAHEDRAL NIJMBER 

References 
Conway, J. H. and Guy, R. K. The Book of Numbers. New 

York: Springer-Verlag, pp. 53-54, 1996. 
Sloane, N. J. A. Sequence A005917/M4968 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 

Reverse Greedy Algorithm 
An algorithm for computing a UNIT FRACTION. 

see also GREEDY ALGORITHM, UNIT FRACTION 
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Rhombic Dodecahedron 

The DUAL POLYHEDRON ofthe CUBOCTAHEDRON, also 
sometimes called the RHOMBOIDAL DODECAHEDRON 
(Cotton 1990). Its 14 vertices are joined by 12 RHOM- 
BUSES, and one possible way to construct it is known as 
the BAUSPIEL, The rhombic dodecahedron is a ZONO- 
HEDRON and a SPACE-FILLING POLYHEDRON. The ver- 
tices are given by (fl, H, +l), (&2, 0, 0), (0, *2, 0), 

(0, 0, *2)* 

The edges of the CUBE-OCTAHEDRON COMPOUND in- 
tersecting in the points plotted above are the diagonals 
of RHOMBUSES, and the 12 RHOMBUSES form a rhombic 
dodecahedron (Ball and Coxeter 1987). 

see also BAUSPIEL, CUBE-OCTAHEDRON COMPOUND, 
DODECAHEDRON, PYRITOHEDRON, RHOMBIC TRIA- 
CONTAHEDRON, RHOMBUS, TRIGONAL DODECAHE- 
DRON,ZONOHEDRON 

References 
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recre- 

ations and Essays, 13th ed. New York: Dover, p. 137, 
1987. 

Cotton, F. A. Chemical Applications of Group Theory, 3rd 
ed. New York: Wiley, pm 62, 1990. 

Rhombic Icosahedron 
A ZONOHEDRON which can be derived from the TRIA- 
CONTAHEDRON by removing any one of the zones and 
bringing together the two pieces into which the remain- 
der of the surface is thereby divided. 

References 
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recre- 

ations and Essays, 13th ed. New York: Dover, p. 143, 
1987. 

Bilinski, S. L’ober die Rhombenisoeder.” Glasnik Mat.-Fiz. 
A&on. Drus’tro Mat. Fix. Hrvatske Ser. II 15, 251-263, 
1960. 

Rhombic Polyhedron 
A POLYHEDRON with extra square faces, given by the 
SCHL;~FLI SYMBOL r(z).’ 

see UZSO RHOMBIC DODECAHEDRON, RHOMBIC ICOSA- 
HEDRON, RHOMBIC TRIACONTAHEDRON, SNUB POLY- 

HEDRON,TRUNCATED POLYHEDRON 

Rhombic Tkiacontahedron 

A ZONOHEDRON which is the DUAL POLYHEDRON of 
the ICOSIDODECAHEDRON. It is composed of30 RHOM- 
BUSES joined at 32 vertices. Ede (1958) enumerates 
13 basic series of stellations of the rhombic triaconta- 
hedron, the total number of which is extremely large. 
Messer (1995) describes 226 stellations. The intersect- 
ing edges ofthe DODECAHEDRON-ICOSAHEDRON COM- 
POUND form the diagonals of 30 RHOMBUSES which com- 
prisethe TRIACONTAHEDRON. The CUBED-COMPOUND 
has the 30 facial planes of the rhombic triacontahedron 
(Ball and Coxeter 1987). 

see also CUBE ~-COMPOUND, DODECAHEDRON-ICOsA- 
HEDRON COMPOUND,ICOSIDODECAHEDRON,RHOMBIC 
DODECAHEDRON,RHOMBUS, ZONOHEDRON 

References 
Ball, W, W. R. and Coxeter, H. S. M. Mathematical Recre- 

ations and Essays, 13th ed. New York: Dover, p. 137, 
1987. 

Bulatov, V.v “Stellations of Rhombic Triacontahedron.” 
http:/hwv .physics l  orst . edu/ -bulatov /polyhedra/ 
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Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. 
Stradbroke, England: Tarquin Pub., p. 127, 1989. 
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98-100, 1958. 

Messer, P. W. “Les etoilements du rhombitricontaedre et 
plus.” Structural Topology No. 21, 25-46, 1995. 

Rhombicosacron 
The DUAL POLYHEDRON ofthe RHOMBICOSAHEDRON. 
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Rhombicosahedron 

The UNIFORM POLYHEDRON Us6 whose DUAL POLY- 
HEDRON is the RHOMBICOSACRON. It has WYTHOFF 

SYMBOL 23 & Its faces are 20{6} + 30{4}. The CIR- 

CUMRADIUS 6r unit edge length is 

References 
Wenninger, M. J. PoEyhedron AIodeZs. Cambridge, 

Cambridge University Press, pp. 149-150, 1971. 

Rhombicosidodecahedron 

England: 

see BICYRATE DIMINISHED RHOMBICOSIDODEC- 
AHEDRON, DIMINISHED RHOMBICOSIDODECAHEDRON, 
GREATRHOMBICOSIDODECAHEDRON (ARCHIMEDEAN), 
GREAT RHOMBICOSIDODECAHEDRON (UNIFORM), GY- 

RATE BIDIMINISHED RHOMBICOSIDODECAHEDRON, 

GYRATE RHOMBICOSIDODECAHEDRON, METABIDIMIN- 

ISHED RHOMBICOSIDODECAHEDRON, METABIGYRATE 

RHOMBICOSIDODECAHEDRON, METAGYRATE DIMIN- 

ISHED M~MBICOSIDODECAHEDRON, PARABIDIMIN- 

ISHED RHOMBICOSIDODECAHEDRON, PARABIGYRATE 
l  

RHOMBICOSIDODECAHEDRON, PARAGYRATE DIMIN- 

ISHED RHOMBICOSIDODECAHEDRON, SMALL RHOMB- 

ICOSIDODECAHEDRON, TRIDIMINISHED RHOMBICOSI- 

DODECAHEDRON,TRIGYRATE RHOMBICOSIDODECAHE- 

DRON 

Rhombicuboctahedron 

~~~GREATRH~MBICUBOCTAHEDRON (ARCHIMEDEAN), 
GREAT RHOMBICUBOCTAHEDRON (UNIFORM), SMALL 

RHOMBICUB~CTAHEDRON 

Rhombidodecadodecahedron 

The UNIFORM POLYHEDRON u38 whose DUAL P~LYHE- 

DRON is the MEDIAL DELTOIDAL HEXECONTAHEDRON. 

s 
It has SCHL;~FLI SYMBOL r ; 

11 
and WYTHOFF SYM- 

BOL $5 12. Its faces are 12(i) + 30{4} + 12{5}. The 
CIRCUMRADIUS for unit edge length is 

References 
Wenninger, M. J. Polyhedron Models. Cambridge, England: 

Cambridge University Press, pp. 116-117, 1989. 

Rhombihexacron 

see GREAT RHOMBIHEXACRON, SMALL RHOMBIHEX- 
ACRON 

Rhombihexahedron 

see GREAT RHOMBIHEXAHEDRON,~MALL RHOMBIHEX- 
AHEDRON 

Rhombitruncated Cuboctahedron 

see GREAT RHOMBICUBOCTAHEDRON (ARCHIMEDEAN) 

Rhombitruncated Icosidodecahedron 

see GREAT RHOMBICOSIDODECAHEDRON (ARCHIMED- 
EAN) 

Rhombohedron 
A PARALLELEPIPED boundedbysixcongruent RHOMBS. 

see also PARALLELEPIPED, RHOMB 

References 
Ball, W. W. R. and Coxeter, H. S. M. lMathematicaZ Recre- 

ations and Essays, 13th ed. New York: Dover, pp. 142 and 
161, 1987. 

Rhomboid 
A PARALLELOGRAM in which angles are oblique and ad- 
jacent sides are of unequal length. 

see also DIAMOND, LOZENGE, PARALLELOGRAM, 
QUADRILATERAL, RHOMBUS, SKEW QUADRILATERAL, 
TRAPEZIUM, TRAPEZOID 

Rhomboidal Dodecahedron 

see RHOMBIC DODECAHEDRON 

Rhombus 

a 

A QUADRILATERAL with both pairs of opposite sides 
PARALLEL and all sides the same length, i.e., an equilat- 
eral PARALLELOGRAM. The word RHOMB is sometimes 
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used instead of rhombus. The DIAGONALS p and Q of a 
rhombus satisfy 

p2+q2 =4a2, 

and the AREA is 
A = +pq. 

A rhombus whose ACUTE ANGLES are 45” is called a 
LOZENGE. 

see UZSO DIAMOND, LOZENGE, PARALLELOGRAM, 
QUADRILATERAL, RHOMBIC DODECAHEDRON, RHOM- 
BIC IC~~AHEDR~N, RHOMBIC TRIACDNTAHEDRON, 
RHOMBOID, SKEW QUADRILATERAL, TRAPEZIUM, 
TRAPEZOID 

References 
Beyer, IV. IX. (Ed.) CRC Standard Mathematical Tables, 

i8th ed. Bock R&on, FL: CRC Press, p. 123, 1987. 

Rhumb Line 

Ribbon Knot 
If the KNOT K is the boundary K = f(s’) of a singular 
disk f : D + s3 which has the property that each self- 
intersecting component is an arc A C f(m”) for which 
f-‘(A) consists of two arcs in ID2, one of which is inte- 
rior, then K is said to be a ribbon knot. Every ribbon 
knot is a SLICE KNOT, and it is conjectured that every 
SLICE KNOT is a ribbon knot. 

see UZSO SLICE KNOT 

References 
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or 

Perish Press, pm 225, 1976. 

Rib&% Theorem 
If the TANIYAMA-SHIMURA CONJECTURE holds for all 
semistable ELLIPTIC CURVES, then FERMAT'S LAST 
THEOREM is true. Before its proof by Ribet in 1986, 
the theorem had been called the epsilon conjecture. It 
had its roots in a surprising result of G. Frey. 

see also ELLIPTIC CURVE, FERMAT'S .ST THEOREM, 
MODULAR FORM, MODULAR FUNCTIZN, TANIYAMA- 
SHIMURA CONJECTURE 

Riccat i Differential Equation 

yl z PC,> + &MY + R(z)y2, 

where y’ = dy/dz. The transformation 

Yl 
W -- 

= yR(z) (2) 

leads to the second-order linear homogeneous equation 

R(z)y” - [R’(z) + Q(z)R(t)]y’ + [R(z)12P(z)y = 0. (3) 

Another equation sometimes called the Riccati differen- 
tial equation is 

z2w” + [z” - n(n + I)]‘113 = 0, (4) 

which has solutions 

w  = AZ&&Z) + Bzy&). (5) 

Yet another form of “the” Riccati differential equation 

dY 
dz 

= utn + by2, (6) 

which is solvable by algebraic, exponential, and logarith- 
mic functions only when n = -4m/(2m * l), for m. = 0, 
1, 2, l  . . . 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). “Riccati-Bessel 

finctions.” $10.3 in Handbook of Mathematical Func- 
tions with Formulas, Graphs, and Mathematical Tables, 
9th printing. New York: Dover, p. 445, 1972. 

Glaisher, J. W. L. “On Riccati’s Equation.” Quart. J. Pure 
Appl. Math, 11, 267-273, 1871. 

Ricci Curvature 
The mathematical object which 
of the volume of metric balls in 

controls the growth rate 
a MANIFOLD. 

see UZSO BISHOP'S INEQUALITY, MILNOR'S THEOREM 

Ricci Tensor 

R PK = RXp~n, 

where RXp~K is the RIEMANN TENSOR. 

see UZSO CURVATURE SCALAR,RIEMANN TENSOR 
Riccati-Bessel Functions 

Rice Distribution 

where 54 Z) and n&) are SPHERICAL BESSEL FUNC- 
TIONS OF THE FIRST and SECOND KIND. 

$ 
-- 

sn (4 E zjn(z) = ~JTL+I/Z(~) 

C,(z) = --rn&z) = - 
ZT 

yNn+l,2(4, 

References see UZSO RAYLEIGH DISTRIBUTION 
Abramowitz, M. and Stegun, C. A. (Eds.). “Riccati-Bessel 

FUnctions.” $10.3 in Handbook of Mathematical &nc- 
tions with Formulas, Graphs, and Mathematical Tables, 
9th printing. New York: Dover, p. 445, 1972. 

P(Z) = -$exp (-““Liv’2) 10 (F), 

where 1&z) is a MODIFIED BESSEL FUNCTION OF THE 
FIRST KIND and 2 > 0. For a derivation, see Papoulis 
(1962). For IV1 = 0, this reduces to the RAYLEIGH DIS- 
TRIBUTION. 

References 
Papoulis, A. The Fourier Integral and Its Applications. New 

York: McGraw-Hill, 1962. 
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Richard’s Paradox 
It is possible to describe a set of POSITIVE INTEGERS 
that cannot be listed in a book containing a set of count- 
ing numbers on each consecutively numbered page. 

Richardson Extrapolation 
The consideration of the result of a numerical calculation 
as a function of an adjustable parameter (usually the 
step size). The function can then be fitted and evaluated 
at h = 0 to yield very accurate results. Press et al. 
(1992) describe this process as turning lead into gold. 
Richardson extrapolation is one of the key ideas used in 
the popular and robust BULIRSCH-STOER ALGORITHM 
of solving ORDINARY DIFFERENTIAL EQUATIONS. 

see also BULIRSCH~TOER ALGORITHM 

References 
Acton, F. S. Numerical Methods That Work, 2nd printing. 

Washington, DC: Math. Assoc. Amer., p. 106, 1990. 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 

ling, W. T. “Richardson Extrapolation and the Bulirsch- 
Steer Method.” s16.4 in Numerical Recipes in FORTRAN: 
The Art of Scientific Computing, 2nd ed. Cambridge, Eng- 
land: Cambridge University Press, pp. 718-725, 1992. 

Richardson’s Theorem 
Let R be the class of expressions generated by 

1. The RATIONAL NUMBERS and the two REAL NUM- 

BERS 7r and ln2, 

2. The variable 2, 

3. The operations of ADDITION, MULTIPLICATION, and 
composition, and 

4. The SINE, EXPONENTIAL, and ABSOLUTE VALUE 

functions. 

Then if E E R, the predicate “E = 0” is recursively 
UNDECIDABLE. 

see also RECURSION, UNDECIDABLE 

References 
Caviness, 8. F. “On Canonical Forms and Simplification.” J. 

Assoc. Comp. Mach. 17, 385-396, 1970. 
Petkovsek, M.; Wilf, H. S.; and Zeilberger, D. A--B. Welles- 

ley, MA: A. K. Peters, 1996. 
Richardson, D. “Some Unsolvable Problems Involving Ele- 

mentary Functions of a Real Variable.” J. Symbolic Logic 
33,514-520,1968. 

Ridders’ Method 
A variation of the FALSE POSITION METHOD for find- 
ing ROOTS which fits the function in question with an 
exponential. 

see also FALSE POSITION METHOD 

References 
Ostrowski, A. M. Ch, 12 in Solutions of Equations and Sys- 

tems of Equations, 2nd ed. New York: Academic Press, 
1966. 

Press, W. H.; Flannery, B. P.; Teukolsky, S+ A.; and Vetter- 
ling, W. T. “Secant Method, False Position Method, and 

Ridders’ Method.” 59.2 in Numerical Recipes in FUR- 

TRAN: The Art of Scientific Computing, 2nd ed. Cam- 
bridge, England: Cambridge University Press, pp. 347- 
352, 1992. 

Ralston, A. and Rabinowitz, P. 58.3 in A First Course in 
Numerical Analysis, 2nd ed. New York: McGraw-Hill, 
1978. 

Ridders, C. F. J. “A New Algorithm for Computing a Sin- 
gle Root of a Real Continuous Function.” IBEE Trans. 
Circuits Systems 26, 979-980, 1979. 

Ridge 
An (n - 2)-D FACE of an n-D POLYTOPE. 

see also POLYTOPE 

Riemann-Christoffel Tensor 

see RIEMANN TENSOR 

Riemann Curve Theorem 
If two algebraic plane curves with only ordinary singular 
points and CUSPS are related such that the coordinates 
of a point on either are RATIONAL FUNCTIONS of a cor- 
responding point on the other, then the curves have the 
same GENUS (CURVE). This can be stated equivalently 
as the GENUS of a curve is unaltered by a BIRATIONAL 

TRANSFORMATION. 

References 
Coolidge, J. L. A Treatise on Algebraic Plane Curves. New 

York: Dover, pa 120, 1959. 

Riemann Different ial Equation 

see RIEMANN P-DIFFERENTIAL EQUATION 

Riemann’s Formula 

J(x) = Li(z) - x Li(zP) + In 2 

where Li(z) is the LOGARITHMIC INTEGRAL, the sum is 
taken over all nontrivial zeros p (i.e., those other than 
-2, -4, l  . . ) of the RIEMANN ZETA FUNCTION C(S), and 
J(Z) is RIEMANN WEIGHTED PRIME-POWER COUNT- 

ING FUNCTION. 

see UZSO LOGARITHMIC INTEGRAL, PRIME NUM- 

BER THEOREM, RIEMANN WEIGHTED PRIME-POWER 
COUNTING FUNCTION, RIEMANN ZETA FUNCTION 

Riemann Function 
The function obtained by approximating the RIEMANN 

WEIGHTED PRIME-POWER COUNTING FUNCTION Jz in 

x(x) = 
IE 
O” h-4 J2 (xq - (1) n 
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by the LOGARITHMIC INTEGRAL Li(s)* This gives 

where c(z) is the RIEMANN ZETA FUNCTION, p(n) is 
the MOBIUS FUNCTION, and Li(x) is the LOGARITHMIC 
INTEGRAL. Then 

T(X) = R(x) - E R(xp), (4 
P 

where r is the PRIME COUNTING FUNCTION. Ramanu- 
jan independently derived the formula for R(n), but 
nonrigorously (Berndt 1994, p. 123). 

see also MANGOLDT FUNCTION, PRIME NUMBER THE- 

OREM, RIEMANN-MANGOLDT FUNCTION, RIEMANN 

ZETA FUNCTION 

References 
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Riemann Hypothesis 
First published in Riemann (1859), the Riemann hy- 
pothesis states that the nontrivial ROOTS of the RIE- 
MANN ZETA FUNCTION 

where s E c (the COMPLEX NUMBERS), all lie on the 
“CRITICAL LINE” !X[s] = l/2, where $Z[Z] denotes the 
REAL PART of Z. The Riemann hypothesis is also known 
as ARTIN'S CONJECTURE. 

In 1914, Hardy proved that an INFINITE number of val- 
ues for s can be found for which c(s) = 0 and !J?[s] = l/Z. 
However, it is not known if all nontrivial roots s satisfy 
!R[s] = l/2, so the conjecture remains open. Andrk Weil 
proved the Riemann hypothesis to be true for field func- 
tions (Weil 1948, Eichler 1966, Ball and Coxeter 1987). 
In 1974, Levin showed that at least l/3 of the ROOTS 

must lie on the CRITICAL LINE (Le Lionnais 1983), a 
result which has since been sharpened to 40% (Vardi 
1991, p. 142). It is known that the zeros are symmetri- 
cal placed about the line S[s] = 0. 

al. 1994). It is also equivalent to the assertion that for 
some constant c, 

1 Li(a) - n(x)1 5 c& lnx, (2) 

where Li(x) is the LOGARITHMIC INTEGRAL and K is the 
PRIME COUNTING FUNCTION (Wagon 1991). 

The hypothesis was computationally tested and found to 
be true for the first 2 x 108 zeros by Brent et al. (1979), 
a limit subsequently extended to the first 1.5 x 10’ + I 
zeros by Brent ef al. (1979). Brent’s calculation covered 
zeros u + it in the region 0 < t < 81,702,130.19. 

There is also a finite analog of the Riemann hypothe- 
sis concerning the location of zeros for function fields 
defined by equations such as 

ay’ + bz” + c = 0. (3) 

This hypothesis, developed by Weil, is analogous to the 
usual Riemann hypothesis. The number of solutions for 
the particular cases (2, m) = (2,2), (3,3), (4,4), and (2,4) 
were known to Gauss. 

see also CRITICAL LINE, EXTENDED RIEMANN HY- 

POTHESIS,CRONWALL'S THEOREM,MERTENS CONJEC- 
TURE,MILLS' CONSTANT, RIEMANN ZETA FUNCTION 

References 
Ball, W. We R. and Coxeter, H. S. M. Mathematical Recre- 

ations and Essays, 13th ed. New York: Dover, p. 75, 1987. 
Brent, R. P.; Vandelune, J.; te Riele, H. J. J.; and Winter, 

D. T. “On the Zeros of the Riemann Zeta Function in the 
Critical Strip. I.” Math. Comput. 33, 1361-1372, 1979. 

Brent, R. P.; Vandelune, J.; te Riele, H. J. J.; and Winter, 
D. T. “On the Zeros of the Riemann Zeta Function in the 
Critical Strip. II.” Math. Comput. 39, 681-688, 1982. Ab- 
stract available at f tp : //nimbus. anu . edu. au/pub/Brent/ 
rpb070a,dvi.Z. 

Csordas, G.; Smith, W.; and Varga, R. S. “Lehmer Pairs of 
Zeros, the de Bruijn-Newman Constant and the Riemann 
Hypothesis.” Con&. Approx. 10, 107-129, 1994. 

Eichler, M. Introduction to the Theory of Algebraic Numbers 
and Functions. New York: Academic Press, 1966. 

Le Lionnais, F. Les nombres remarquables. Paris: Hermann, 
p. 25, 1983. 

Odlyzko, A. “The 102’th Zero of the Riemann Zeta Function 
and 70 Million of Its Neighbors.” 

Riemann, B. %ber die Anzahl der Primzahlen unter einer 
gegebenen Grssse,” Mon. Not. Berlin Akad., pp. 671-680, 
Nov. 1859. 

Sloane, N. J. A. Sequence A002410/M4924 in ‘(An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Vandelune, J. and te Riele, H. J. J. “On The Zeros of the 
Riemann Zeta-Function in the Critical Strip. III.” Math. 
Comput. 41, 759-767, 1983. 

Vandelune, J.; te Riele, H. J. J.; and Winter, D. T. “On the 
Zeros of the Riemann Zeta Function in the Critical Strip. 
IV.” IMath, Comput. 46, 667-681, 1986. 

Wagon, S. Mathematics in Action. New York: W. H. F’ree- 
man, p. 33, 1991. 

Weil, A. SW les courbes alge’briques et les varie’t ‘es qui s’en 
de’duisent. Paris, 1948. 

The Riemann hypothesis is equivalent to A 5 0, where 
A is the DE BRUIJN-NEWMAN CONSTANT (Csordas et 



Riemann Integral Riemann-Mangoldt Fhction 

Riemann Integral 
The Riemann integral is the INTEGRAL normally en- 
countered in CALCULUS texts and used by physicists and 
engineers. Other types of integrals exist (e.g., the LEB- 

ESGUE INTEGRAL), but are unlikely to be encountered 
outside the confines of advanced mathematics texts. 

The Riemann integral is based on the JORDAN MEA- 

SURE, and defined by taking a limit of a RIEMANN SUM, 

J f(x) dx E 
b k=l 

f (X,Y) dA = max~~k+O x f (xi, Y:)AAk c2) 
k=l 

n 

f(X,Y,4dV = lim 
max AVh+O >:( f xl, $1 $)A& 

k=l 

(3) 
where a 5 x 2 b and xi, yz, and zz are arbitrary points 
in the intervals Axk, Ayk, and A&, respectively. The 
value max Axk is called the MESH SIZE of a partition of 
the interval [a, b] into subintervals ax,. 

As an example of the application of the Riemann integral 
definition, find the AREA under the curve y = xf from 0 
to a. Divide (6, b) into n segments, so Axk = ? E h, 
then 

f(Q) = f(0) = 0 
f (X2) = f @xk> = h’ 

f (x3) = f @A%) = (2h)‘. 

(4) 
(5) 

(6) 

By induction 

f (xk) = f([k - l]Axk) = [(k - l)h]’ = h’(k - I)‘, (7) 

so 
f (xk)Axk = h ‘+‘(k - 1)’ 

xf(Xk)AXk = h'")(k - 1)'. 

k=P k=l 

For example, take T = 2. 

n 

c f (xk&k = h3 x(k - 1)” 

k=l k=l 

=h3( ~k2-2~k+~l) 
\k=l k=l k=l / 

n(n+1)(2n+1) 4n(n+1) +n 

6 2 1 1 

(8) 

(9) 

(10) 

1557 

so 

I E lim n+mkf(xk*)Ax& = ;itjl:f(xk)Axk 

k=l k-l 

= lim h3 
[ 

n(n + 1)(2n + 1) I p(n + 1) + n 
n-00 6 2 1 

= a3 lim 
[ 

n(n + 1)(2n + 1) n(n +- 1) + n 
n+a 6n3 - n3 723 1 -13 - sa . (11) 

see &O INTEGRAL, RIEMANN SuM 

References 
Kestelman, H. “Riemann Integration.” Ch. 2 in Modern 

Theories of Integration, 2nd rev. ed. New York: Dover, 
pp. 33-66, 1960. 

Riemann’s Integral Theorem 
Associated with an irreducible curve of GENUS (CURVE) 
p, there are p LINEARLY INDEPENDENT integrals of the 
first sort. The ROOTS of the integrands are groups of 
the canonical series, and every such group will give rise 
to exactly one integral of the first sort. 

References 
Coolidge, J. L. A Treatise on Algebraic Plane Curves. New 

York: Dover, p. 274, 1959. 

Riemann-Lebesgue Lemma 
Sometimes also called MERCER'S THEOREM. 

lim 
n-m I 

b 

K(X, z)Csin(nz) dz = 0 
a 

for arbitrarily large C and “nice” K(A, z). Gradshteyn 
and Ryzhik (1979) state the lemma as follows. If f(x) 
is integrable on [q x], then 

lim 
s 

7r 

t+m -n 
f(x) sin(tx) dx + 0 

and 

J 
7r 

lim 
ltjrn -w 

f(x)cos(tx) dx + 0. 

References 
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 

ries, and Products, 5th ed. San Diego, CA: Academic 
Press, p 1101, 1979. 

Riemann-Mangoldt Function 

f(x) = 2 y’n) 

n>l 

= Li(x) - x ei(plnx) - In2 
nontrivial p 

c(P)=0 

+ (1) 
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where c(z) is the RIEMANN ZETA FUNCTION, Li(z) is 
the LOGARITHMIC INTEGRAL andei(z)isthe EXPONEN- 
TIAL INTEGRAL. The MANGOLDT FUNCTION is givenby 

n(n) = ( Fp if n = p” for (m > 1) and p prime 
otherwise 

(2) 

C’( > 
00 

X --- 
cc > s - x 

A( 1 n 

ns (3) 
n=l 

for iqs] > 1. 

J(x) = x 2. (4) 
n<x - 

The SUMMATORY Riemann-Mangoldt function is defined 

bY 

y!(x) = ): A(n) = O(x) + O(x1’2) +, . . . (5) 
?-&<a: 

see also PRIME NUMBER THEOREM, RIEMANN FUNC- 
TION 

References 
Wagon, S. Mathematics in Action. New York: W. H. Free- 

man, pp. 364-365, 1991. 

Riemann Mapping Theorem 
Let ~0 be a point in a simply connected region R # C. 
Then there is a unique ANALYTIC FUNCTION w  = f(z) 
mapping R one-to-one onto the DISK Iw 1 < 1 such that 
f(zo) = 0 and f'(zo) = 0. The COROLLARY guarantees 
that any two simply connected regions except Ik2 can be 
mapped CONFORMALLY onto each other. 

Riemann’s Moduli Problem 
Find an ANALYTIC parameterization of the compact 
RIEMANN SURFACES in a fixed HOMOMORPHISM class. 
The AHLFORS-BERS THEOREM provedthat RIEMANN'S 
MODULI SPACE gives the solution. 

see also AHLFORS-BERS THEOREM, RIEMANN'S MOD- 

ULI SPACE 

Riemann’s Moduli Space 
Riemann’s moduli space R, is the space of ANALYTIC 
EQUIVALENCE CLASSES of RIEMANN SURFACES of fixed 
GENUS p. 

see also AHLFORS-BERS THEOREM, RIEMANN'S MOD- 
ULI PROBLEM,RIEMANN SURFACE 

Riemann P-Differential Equation 

+ YY’(C - 4(c - b) 

z -C 1 (z - a)@” b)(x - C) = O7 

where 
a+a’+p+p’+-y+-y’=1* 

Solutions are RIEMANN P-SERIES (Abramowitz and Ste- 
gun 1972, pp. 564-565). 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). “Riemann’s Dif- 

ferential Equation.” 515.6 in Handbook of Mathematical 
Functions with Formulas, Graphs, and Mathematical Tu- 
bles, 9th printing. New York: Dover, pp. 564-565, 1972. 

Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 
ics, Part I. New York: McGraw-Hill, pp. 541-543, 1953. 

Riemann P-Series 
Thesolutionstothe RIEMANN P-DIFFERENTIAL EQUA- 
TION 

z=P{;, ij j,;z}m 

Solutions are given in terms of the HYPERGEOMETRIC 
FUNCTION by 

u1 = (s>” (z)’ 

x aqar+p+y+p’+r;l+a-CY’;X) 

u2 = (g (5)’ 

x 2~1(cr’+p+r,cr’+p’+7;1+CY’--;X) 

u3 = (s)& (z>” 

x z~&+p+$,a+p’++y’;l+a:-cll’;X) 

U4 = (Ez>“’ (z)” 

x zF1(a’+p++‘+p’+=y’;1+a’-ar;X), 

where 
( - m-v 

A E (t - b)(c - a)’ 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). ‘Wemann’s Dif- 

ferent i al Equation.” $15.6 in Handbook of Mathematical 
Functions with Formulas, Graphs, and Mathematical Ta- 
bZes, 9th printing. New York: Dover, pp. 564-565, 1972. 

Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 
ics, Part I. New York: McGraw-Hill, pp. 541-543, 1953. 

Whittaker, E. T. and Watson, G. N. A Course in Modern 
AnaEysis, 4th ed. Cambridge, England: Cambridge Uni- 
versity Press, pp. 283-284, 1990. 

Riemann-Roth Theorem 
The dimension of a complete series is equal to the sum 
of the order and index of specialization of any group, 
less the GENUS of the base curve 

r =N+i+p. 

References 
Coolidge, 3. L. A Treatise on Algebraic Plane Curves. New 

York: Dover, pm 261, 1959. 
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Riemann Series Theorem 
By a suitable rearrangement of terms, a conditionally 
convergent SERIES may be made to converge to any de- 
sired value, or to DIVERGE. 

References 
Bromwich, T. J. I’a. and MacRobert, T. M. An Introduc- 

tion to the Theory of Injinite Series, 3rd ed. New York: 
Chelsea, p. 74, 1991. 

Riemann-Siegel Functions 

0 0 

121 - I21 

For a REAL P~SXTIVE i, the Riemann-Siegel 2 function 
is defined by 

at> E eiy( $ + it). 

The top plot superposes Z(t) (thick line) on I[( $ + it) 1, 
where c(z) is the RIEMANN ZETA FUNCTION. 

I 10 20 30 

ReLRiemannSiegelTheta z] Im(RiemannSiegelTheta z] 
/RiemannSiegelTheta zI 

The Riemann-Siegel theta function appearing above is 
defined by 

Riemann Surface 1559 

These functions are implemented in Mathematic 
(Wolfram Research, Champaign, IL) as RiemannSiegelZ 
[z] and RiemannSiegelTheta [z] , illustrated above. 

see also RIEMANN ZETA FUNCTION 

References 
Vardi, I. Computational Recreations in Muthematica. Read- 

ing, MA: Addison-Wesley, p. 143, 1991. 

Riemann Space 

see METRIC SPACE 

Riemann Sphere 
A 1-D COMPLEX MANIFOLD c*, which is the one-point 
compactification of the COMPLEX numbers c u {oo}, 
together with two charts. For all points in the COM- 

PLEX PLANE, the chart is the IDENTITY MAP from 
the SPHERE (with infinity removed) to the COMPLEX 
PLANE. For the point at infinity, the chart neighbor- 
hood is the sphere (with the ORIGIN removed), and the 
chart is given by sending infinity to 0 and all other points 
z to l/z. 

Riemann-Stieltjes Integral 

see STIELTJE~ INTEGRAL 

Riemann Sum 

Let a CLOSED INTERVAL [a, b] be partitioned by points 
a < 21 < 22 < . . l  < ~~-1 < b, the lengths of the 
resulting intervals between the points are denoted AQ, 
Ax2, a.., Ax,. Then the quantity 

n 

IE 
f (G>AXk 

k=l 

is called a Riemann sum for a given function f(x) and 
partition. The value max Axk is called the MESH SIZE 
of the partition. If the LIMIT max Ax, -+ 0 exists, this 
limit is known as the Riemann INTEGRAL of f(x) over 
the interval [a, b]. The shaded areas in the above plots 
show the LOWER and UPPER SUMS for a constant MESH 

SIZE. 

Riemann Surface 
The Riemann surface S of the ALGEBRAIC FUNCTION 
FIELD K is the set of nontrivial discrete valuations on 
K. Here, the set S corresponds to the IDEALS of the 
RING A of INTEGERS of K over C(z)* (A consists of the 
elements ofKthat are ROOTS of MONIC POLYNOMIALS 
over C[z] .) 



(1) 

where the quantity inside the 
s u 

c > I 
is a CHRISTOF- 

FEL SYMBOL OF THE SECOND KIND. Then 

(2) 

Broken down into its simplest decomposition in N-D, 

R 
- (N _ l)(N _ 2) hh - bib) + cA~uRm c3) 

Here, R,, is the RICCI TENSOR, R is the CURVATURE 
SCALAR, and C xpyK is the WEYL TENSOR. In terms of 
the JACOBI TENSOR Jpvap, 

R’” aup = 3 z(J’ uayp - J;(w). (4) 
The Riemann tensor is the only tensor that can be con- 
structed from the METRIC TENSOR and its first and 
second derivatives, 

RapTa = $6 “I - f& s + r&r;, - r;b - r;pc,& (5) , 9 

where I? are CONNECTION COEFFICIENTS and c are 
C~MMUTATIUN COEFFICIENTS. The number of inde- 
pendent coordinates in n-D is 

cn E $t2(n2 - l), (6) 

and the number of SCALARS which can be constructed 
from R+,K. and g,, is 

for n = 2 

l)(n-2)(n+3) forn.=l,n>Z. 

(7) 
In l-D, RI111 = 0. 

see &O BIANCHI IDENTITIES, CHRISTOFFEL SYM- 
BOL OF THE SECOND KIND, COMMUTATION Co- 
EFFICIENT, CONNECTION COEFFICIENT, CURVATURE 
SCALAR, GAUSSIAN CURVATURE, JACOBI TENSOR, 
PETROV NOTATION, RICCI TENSOR,WEYL TENSOR 

Riemann Zeta Function 

Riemann Theta Function 
Let the IMAGINARY PART ofa g xg MATRIX F be POS- 

ITIVE DEFINITE, and m = (ml,. . . , mg) be a row VEC- 

TOR with coefficients in z. Then the Riemann theta 
function is defined by 

8(u) = 71 exp[Zri(mTu + iFTm)]. 
m 

see &O RAMANUJAN THETA FUNCTIONS, THETA 
FUNCTION 

References 
Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary 

of Mathematics. Cambridge, MA: MIT Press, pm 9, 1980. 

Riemann Weighted Prime-Power Counting 

auction 
The Riemann weighted prime-power counting function 
is defined by 

r(x) + +7r(xf’2) + ;7r(x1/3) + . . . - & 

Jz(x) = 

{ 

for pm with p a prime(l) 
r(x) + $lr(x1’2) + $?T(x1/3) + . . . 

otherwise 

1 
= )imrn 2ni 

s 

2+iT 9 
E- In c(s) ds. (2) 

2-iT S 

The PRIME COUNTING FUNCTION is given in terms of 

Jd4 bY 00 
7r(x) = x 2 J2(x1’“). PC > 

(3) 72 
?&=I 

The function also satisfies the identity 

lnCb> - = 

S 
s 

O” Jz(x)x-s-l dx 
l  

(4) 

1 

see also MANGOLDT FUNCTION, PRIME COUNTING 
FUNCTION, RIEMANN'S FORMULA 

Riemann Xi Function 

see XI FUNCTION 

Riemann Zeta Function 
0.1 

0.075, 
2 

0.05, 

1 L 0.025 

4r---r 

-12 5 -1 -7.5 -2 
-0 025 

-10 -5 5 10 
- .05 

-1 -0 75 

_ .l 

Re[Zeta 21 Im[Zeta z] 
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The Riemann zeta function can be defined by the inte- 3.5 

3 

2.5 

2 

1.5 

1 

0.5 

gral 

cc > 
1 

J 

00 ux-l 

x G- 

r( > 

- du, 
x o P-1 

where x > 1. If x is an INTEGER n, then 

u l 
00 n- e un--l -U 

7-b-l -ku --- = emu21 e un--l 
e U-l - l-e-" 

k=l 

so 

s 

00 Un-l 

0 
e” - 1 

-ku e unel du. 

Let y E JG~L, then dy = JC du and 

cc > 1 
n =- 

r( > n 
-ku 

e u n-1 du 

=-k&y& (f)“lT 
k=l ' 1 - - 

r( 1 
t~-‘y~-~ dy, 

n 

(1) 

(2) 

(3) 

(4) 

where r(n) is the GAMMA FUNCTION. Integrating the fi- 
nal expression in (4) gives l?(n), which cancels the factor 
l/r(n) and gives the most common form of the Riemann 
zeta function, 

an> = R $ (5) 
k=f 

At n = 1, the zeta function reduces to the HARMONIC 
SERIES (which diverges), and therefore has a singularity. 
In the CUMPLEX PLANE, trivia1 zeros occur at -2, -4, 
-6, . . . , and nontrivial zeros at 

10 20 30 40 50 
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, 

I,! 
60 

1 - l  1 The RIEMANN HYPOTHESIS asserts that the nontrlvlal 
ROOTS of C(S) all have REAL PART 5 = !fS[s] = l/2, a 
line called the “CRITICAL STRIP." This is known to be 
true for the first 1.5 x 1012 roots (Brent et al. 1979). The 
above plot shows 1<(1/2+;t)l for t between 0 and 60. As 
can be seen, the first few nontrivial zeros occur at t = 
14.134725, 21.022040, 25.010858, 30.424876, 32.935062, 
37.586178, . . . (Wagon 1991, pp. 361-362 and 367-368). 

The Riemann zeta function can also be defined in terms 
of MULTIPLE INTEGRALS by 

The Riemann zeta function can be split up into 

c( 3 + it) = z(t)e+“(‘), (8) 

where x(t) and s(t) are the RIEMANN-SIEGEL FUNC- 
TIONS. An additional identity is 

lim c(s) - 1 = y, 
s+l s-l 

s-5+it (6) 
where y is the EULER-MASCHERONI CONSTANT. 

for 0 < 5 < 1. The figures below show the structure of 

CM by plotting IWI and l/lc'W 

Y  

4 

3 

2 

1 

0 
x 

50 
Y  

(9) 

The Riemann zeta function is related to the DIRICHLET 
LAMBDA FUNCTION X(Y) and DIRICHLET ETA FUNC- 
TION q(v) by 

cc 1 v w > u u - - 
p -2”= 

77( > 
2y - 2 w 

(Spanier and Oldham 1987). It is related to the LIOU- 
VTLLE FUNCTION A(n) by 

@s> O” w4 - = 
cc > § >: ns 

n=l 

(12) 

(Lehman 1960, Hardy and Wright 1979). Furthermore, 

5°C > O” 2°C”) - - c& - s c ns ’ (13) 
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the aid of the kw3 sum formula below. As a result, c(3) 
is sometimes called AP~RY'S CONSTANT. 

where w(n) - cro(n) is - the number of 
(Hardy and Wright 1979). 

different prime 
factors of n 

A generalized Riemann zeta function c(s, a) known as 
the HURWITZ ZETA FUNCTION canalsobe defined such 
that 

C(s) = C(s, 0). (14) 

(23) 

w (24) The Riemann zeta function may be computed analyti- 
cally for EVEN n using either CONTOUR INTEGRATION 
or PARSEVAL'S THEOREM with the appropriate FOUR- 
IER SERIES. An interesting formula involving the prod- 
uct of PRIMES was first discovered by Euler in 1737, 

C(4) (25) 

(Guy 1994, p. 257). A relation of the form 

<(2)(1-z-“)= (1+ $+&+...) (l- $) 

( 1 1 > ( 1 1 1 
= 1+~+3”+... - 2”+4”+6”+... 

> (15) 
C(5) = z5 g 0”-1 

k=l k5 (ik) 
(26) 

[(x)(1 - 2-“)(l - 3-y 
has been searched for with 25 a RATIONAL or ALGE- 
BRAIC NUMBER, but if 25 is a ROOT ofa POLYNOMIAL 
of degree 25 or less, then the Euclidean norm of the co- 
efficients must be larger than 2 x 1O37 (Bailey, Bailey 
and Plouffe) . Therefore, no such sums are known for 
c(n) are known for n 2 5. 

1 1 1 
= ( l+ 

3”+5”+F+... - > ( 
1 1 1 

3”+9”+15”+... 
> 

(16) 
&)(l - z-“)(l - 3-“) l  l  l  (1 - p-“) l  l  ’ 

00 

= C(x) H( 1 -p-“) = 1. (17) 
The zeta function is defined for !I?[s] > 1, but can be 
analytically continued to ZR[s] > 0 as follows 

Here, each subsequent multiplication by the next PRIME 
p leaves only terms which are POWERS of p-“. There- 
fore, 

r0Q 1 -1 

T(-l)“n-’ + Fnds = 2 F nws 
n=l n=l n=2,4,.,. 

C(x) = 1 no -p-“) 1 9 (18) = 2 ?(2k)-” = 21-s 2 k-s 
(27) 

k=l k=l 
Lp=2 1 

where p runs over all PRIMES. Euler’s product formula 
can also be written y) > -1 nn-s +c(s)= 2l-'c(s) 

n=l 

(28) 
C(s) = (l-2-s)-1 n (1-q-“)-” n (1-r-y. 

q=l ?-=3 
(mod 4) (mod 4) 

09) 

A few sum identities involving ((n) are 

a > s = + y-pm-‘. 
n=l 

(29) 

The DERIVATIVE of the Riemann zeta function is defined 

~rccn, - 11 = 1 (20) 
n=2 

bY 
00 

I 
cc > s =-s 

x 
kDslnk = - 

OQ Ink 

x 
F. (30) 

k=l k=2 

As s + 0, 

C’(O) ,. -+ ln(27r). (31) 
~(--Qn[C(n) - l] = 3. (21) 

The Riemann zeta function is related to the GAMMA 
FUNCTION I'(Z) by 

For EVEN n = 2k, 

n- 

a > n= 
2 ‘jBnIKn 

n! ' (32) 
I? ; 7T 0 

-“‘“5(s) = I? (9) 7T-~1-s~‘2~(1 - s). (22) 

where Bn is a BERNOULLI NUMBER. Another intimate 
connection with the BERNOULLI NUMBERS is provided 

bY 
Bn = (-l)n+ln<(l - n). (33) 

((n) was proved to be transcendental for all even n by 
Euler. Ap&y (1979) pro%Zme IRRATIONAL with 
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No analytic form for c(n) is known for ODD n G 2k + 1, 
but <(2/c + 1) can be expressed as the sum limit 

- - ( > +7r 2k+1 ;;; m l F [cot (&>lZi,l (34) 
i=l 

(Stark 1974). The values for the first few integral argu- 
ments are 

5(Q) - = -- 2 1 

c'(l) =a 

C(2) 
7T2 -- - 
6 

c(3) = 1.2020569032.. . 

C(4) 
n4 - -- 
90 

c(5) = 1.0369277551.. . 

C(6) 
2 - - 

945 
C(7) = 1.0083492774 l  . l  

w> 

7P 

- 
- 

9450 
c(9) = 1.0020083928.. . 

wo) = &. 1 
Euler gave c(2) to c(26) for EVEN n, and Stieltjes (1993) 
determined the values of c(2), . . . , 5(7O) to 30 digits of 
accuracy in 1887. The denominators of [(2n) for rz = 
1, 2, . . . are 6, 90, 945, 9450, 93555, 638512875, . . . 
(Sloane’s A002432). 

Using the LLL ALGORITHM, Plouffe (inspired by Zucker 
1979, Zucker 1984, and Berndt 1988) has found some 
beautiful infinite sums for C(n) with ODD n. Let 

(35) 

then 

c(3) (36) 

C(5) (37) 

C(7) 
19 7 - 

- 56700n - - 2X(7) (38) 

C(9) 
- 125 9 
-?iEGEP - g+(9) - &S+(9) (39) 

S(ll) = 1453 
425675250r l1 - 2X(11) (40) 

5(13) = 89 l3 - 55%(13) - &s+(13) 257432175T 

(41) 

W) = 
13687 

390769879500 r l5 - 2%(15) (42) 

W) = 
397549 17 

112024529867250T - fggs-(17) 

- (43) 

W) = 
7708537 

2143861251406&750* lg - 2%(19) (44) 

w> = 
68529640373 21 

1881063815762259253125T - $##-(21) 

- 
zdiG+ C21) (45) 

0.8 

0.6 

0.4 

0.2 

I I I I 

I  

2 4 6 8 10 

The inverse of the RIEMANN ZETA FUNCTION l/C(p) is 
the asymptotic density of pth-powerfree numbers (i.e., 
SQUAREFREE numbers, CUBEFREE numbers, etc.). The 
following table gives the number Qp (n) of pth-powerfree 
numbers < n for several values of n. - 

P l/[(p) 10 100 lo3 lo4 lo5 lOti 

2 0.607927 7 61 608 6083 60794 607926 
3 0.831907 9 85 833 8319 83190 831910 
4 0.923938 10 93 925 9240 92395 923939 
5 0.964387 10 97 965 9645 96440 964388 
6 0.982953 10 99 984 9831 98297 982954 

The value for c( 2) can be found using a number of dif- 
ferent techniques (Apostol 1983, Choe 1987, Giesy 1972, 
Holme 1970, Kimble 1987, Knopp and Schur 1918, Kor- 
tram 1996, Matsuoka 1961, Papadimitriou 1973, Sim- 
mons 1992, Stark 1969, Stark 1970, Yaglom and Yaglom 
1987). The problem of finding this value analytically 
is sometimes known as the BASLER PROBLEM (Castel- 
lanes 1988). Yaglom and Yaglom (1987), Holme (1970), 
and Papadimitrou (1973) all derive the result from DE 
MOIVRE’S IDENTITY or related identities. 

Consider the FOURIER SERIES of f(x) = x2n. 

f(x) = +o + x a, cos(mx) + x b, sin(mx), (46) 
VI= 1 m=l 

which has coefficients given by 

rrx2ndx 

2 [ x2n+1 7r 2X2n 
- 
-- - 

7r 2n+1 1 o=2n+1 

2 2n cos(mx) dx 

x2n cos(mx) dx (48) 

x2n sin(mx) dx = 0, (49) 

(47) 

where the latter is true since the integrand is ODD. 
Therefore, the FOURIER SERIES is given explicitly by 

272 00 
2n 7r 

x =- 
2n-k 1 +x 

a, cos(mx). w  
W-b= 1 
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NOW, a, is given by the COSINE INTEGRAL which can be rearranged to yield 

a, = 2 (-l)n+1(2n)! 
7r’ ’ 

[ 

sin(mx) k (2,,,‘-~Jr,k+l x2' 
.m 

k=O 

-I- cos(mx 

n 
k+l 

I 

7T 

( 1) 
(2JE _ 3)!m2n-2k+2x2k-1 l  c51) 

0 

But cos(m$ = ( 1) - m, and sin(mr) = sin 0 = 0, so 

k 

Now, if n = 1, 

a, = (A)“+’ 2(2!) 9 ( 1) 

k=l 
(2k &I,, x2k-2 

(53) 

so the FOURIER SERIES is 

x2 = 
n2 Tf4e (-1)” cos(mx) 

m2 . (54) 

Letting 2 = r gives cos(mr) = (A)“, SO 

and we have 

(56) 
m= 1 

Higher values of n can be obtained by finding am and 
proceeding as above. 

The value 5( 2) can also be found simply using the ROOT 
LINEAR COEFFICIENT THEOREM. Consider the equa- 
tion sin x = 0 and expand sin in a MACLAURIN SERIES 

sin x = z - 
z3 z5 
,,+,,+...=o 

. . (57) 

O-l- g+ 
z4 

(58) . 
gr +... 

l  

=l-;+ 
l  

$+..*, 
. 

where w  E x2. But the zeros of sin(z) occur at n, 27r, 37r, 
.,sothezerosofsinzu=sin&occurat,rr2, (2~)~,.... 

Therefore, the sum of the roots equals the COEFFICIENT 
of the leading term 

Riemann Zeta Function 

C(2) 
7T2 - - -. 
6 (60) 

Yet another derivation (Simmons 1992) evaluates the 
integral using the integral 

= ‘,(x+;z2y+$x3y2+e..)];dy 
s 0 

= ‘(l+ ;y+$y2+...)dy 
s 0 

1 
1 

1 1 
=l+z;;+3+.... (61) 

0 

To evaluate the integral, rotate the coordinate system 
by n/4 so 

and 

x = ucos0 - vsin8 = @(U-V) (62) 

Y =usini?+vcosB= +ti(~+v) (63) 

Then 

xy = ;(u” - v2) (64 

l-xy= 3(2-lL2+v2)* (65) 

&i/2 u 

I=4 
s s 

du dv 

0 o 2 - u2 -l-v2 

Jz Jz-u 

+4 
s s 

du dv 
= 11 + l-2. (66) 

y/Z/a 0 2 - u2 + v2 

Now compute the integrals 11 and 12* 

d/2 u 
II = 4 

s [s 

dv 1 du 
0 o 2-u2+v2 

=4 

Make the substitution 

u = 1/z sin 8 

&T= J2cose 

du = h cosOd0, 

(68) 

(69) 

(70) 
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tan-l (&) =taP (e) -0 (71) 

s 

d6 
II = 4 

1 2 

0 

-eJz case de = zp”];‘” = G4 
Jz case 

(72) 
12 can also be computed analytically, 

But 

tan-l ($Z) = tan-l ( fi>E:rs> 

= tan (5) = tan-l (&) 

= tan-l 
[ 

sin& - e) 
i + COS(+ - e) 1 

= tan-l 
1 

Zsin[+(+ - O)]COS[+(+T -e)] 

2~0~2[$(+-e)] > 
-11 ---~gv- ) ( e> 

du 

(73) 

(74) 

so 

42 
I2 = 4 

s 

1 
-(iT - $e)JZ cosede 

46 fi case 

= 4 [+e - +eQ]I;z 

(75) 

Combining 11 and 12 gives 

IT2 7T2 r2 
C(2) = I1 + I2 = 18 + 9 = 6’ 

see also ABEL'S EQUATION, 

(76) 

DEBYE 
FUNCTIONS, DIRICHLET BETA FUNCTION, DIRICH- 

LET ETA FUNCTION, DIRICHLET LAMBDA FUNC- 
TION, HARMONIC SERIES, HURWITZ ZETA FUNC- 
TION, KHINTCHINE'S CONSTANT, LEHMER'S PHENOME- 
NON, PSI FUNCTION, RIEMANN HYPOTHESIS, RIEMANN 

P-SERIES, RIEMANN-SIEGEL FUNCTIONS, STIELTJES 
CONSTANTS, XI FUNCTION 
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Riemannian Geometry 
The study of MANIFOLDS having a complete RIEMAN- 
NIAN METRIC. Riemannian geometry is a general space 
based on the LINE ELEMENT 

ds = F(x’, . . . , xn; dx’, . . l  , dxn), 

with F(x,y) > 0 for y # 0 a function on the TANGENT 

BUNDLE TM. In addition, F is homogeneous of degree 
I in y and of the form 

F2 x gij (2) dxi dx’ 

(Chern 1996). If this restriction is dropped, the resulting 
geometry is called FINSLER GEOMETRY. 
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Riemannian Geometry (Non-Euclidean) 

see ELLIPTIC GEOMETRY 

Riemannian Manifold 
A MANIFOLD possessing a METRIC TENSOR. For a com- 
plete Riemannian manifold, the METRIC d(x, y) is de- 
fined as the length of the shortest curve (GEODESIC) 
between x and y. 

see UZS~BISHOP'S INEQUALITY, CHEEGER'S FINITENESS 
THEOREM 

Riemannian Metric 
Suppose for every point x in a COMPACT MANIFOLD 

AI, an INNER PRODUCT (., & is defined on 8 TANGENT 

SPACE T,M of M at x. Then the collection of all these 
INNER PRODUCTS is called the Riemannian metric. In 
1870, Christoffel and Lipschitz showed how to decide 
when two Riemannian metrics differ by only a coordi- 
nate transformation. 

see UZSO COMPACT MANIFOLD, LINE ELEMENT,METRIC 
TENSOR 

Riesel Number 
There exist infinitely many ODD INTEGERS k such that 
k-2n - 1 is COMPOSITE for every n > 1. Numbers k with - 
this property are called RIESEL NUMBERS, and anal- 
ogous numbers with the minus sign replaced by a plus 
arecalled SIERPI~~SKI NUMBERS OF THE SECOND KIND. 
The smallest known Riesel number is k = 509,203, but 
there remain 963 smaller candidates (the smallest of 
which is 659) which generate only composite numbers for 
all n which have been checked (Ribenboim 1996, p. 358). 

Let u(k) be smallest n for which (2k - 1) .2n - 1 is PRIME, 
then the first few values are 2, 0, 2, 1, 1, 2, 3, 1, 2, 1, 1, 
4, 3, 1, 4, 1, 2, 2, 1, 3, 2, 7, l  l  l  (Sloane’s A046069), and 
second smallest 71 are 3, 1, 4, 5, 3, 26, 7, 2, 4, 3, 2, 6, 9, 
2, 16, 5, 3, 6, 2553, . . . (Sloane’s A046070). 

see UZSO CUNNINGHAM NUMBER, MERSENNE NUMBER, 
SIERPI~SKI'S COMPOSITE NUMBER THEOREM, SIER- 
PI&KI NUMBER OF THE SECOND KIND 
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Riesz-Fischer Theorem 
A function is L2- (square-) integrable IFF its FOURIER 
SERIES is &-convergent. The application of this theo- 
rem requires use of the LEBESGUE INTEGRAL. 

see also LEBESGUE INTEGRAL 

Riesz Representation Theorem 
Let f be a bounded linear FUNCTIONAL on a HILBERT 
SPACE H. Then there exists exactly one ~0 E H such 
that f(z) = (x,20) for all x E H. Also, llfll = Ilz& 

see also FUNCTIONAL, HILBERT SPACE 
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Riesds Theorem 
Every continuous linear functional U[ f] for f E C [a, b] 
can be expressed as a STIELTJES INTEGRAL 

where w(x) is determined by U and is of bounded vari- 
ation on [a, b]. 

see also STIELTJES INTEGRAL 
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Riffle Shuffle 
A SHUFFLE, also called a FARO SHUFFLE, in which a 
deck of 2n cards is divided into two HALVES which are 
then alternatively interleaved from the left and right 
hands (an “in-shuffle”) or from the right and left hands 
(an “out-shuffle”). Using an “in-shuffle,” a deck origi- 
nally arranged as 1 2 3 4 5 6 7 8 would become 5 1 6 2 7 
3 8 4. Using an “out-shuffle,” the deck order would be- 
come 1 5 2 6 3 7 4 8. Riffle shuffles are used in card tricks 
(Marlo 1958ab, Adler 1973), and also in the theory of 
parallel processing (Stone 1971, Chen et al. 1981). 

In general, card k moves to the position originally oc- 
cupied by the 2kth card (mod 2n + l)* Therefore, in- 
shuffling 2n cards 2n times (where 2n + 1 is PRIME) re- 
sults in the original card order. Similarly, out-shuffling 
2n cards 2n - 2 times (where 2n - 1 is PRIME) results 
in the original order (Diaconis et al. 1983, Conway and 
Guy 1996). A mazingly, this means that an ordinary 

is returned to its original order after 8 deck of 52 cards 
out-shuffles. 

Morris (1994) further discusses aspects of the perfect 
riffle shuffle (in which the deck is cut exactly in half 
and cards are perfectly interlaced). Ramnath and Scully 
(1996) give an algorithm for the shortest sequence of in- 
and out-shuffles to move a card from arbitrary position 
i to position j, Thi .s algorithm works for any deck with 
an EVEN number of cards and is O(log n)* 

see also CARDS, SHUFFLE 
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Rigby Points 
The PERSPECTIVE CENTERS of the TANGENTIAL and 
CONTACT TRIANGLES of the inner and outer SODDY 
POINTS. The Rigby points are given by 

Ri =I+$Ge 

Ril =I- $Ge, 

where I is the INCENTER and Ge is the GERGONNE 
POINT. 

see UZSO CONTACT TRIANGLE, GERGONNE POINT, 
GRIFFITHS POINTS, INCENTER, OLDKNOW POINTS, 
SODDY POINTS, TANGENTIAL TRIANGLE 
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Right Angle 
An ANGLE equal to half the ANGLE from one end of a 
line segment to the other. A right angle is 7r/2 radians 
or 90’. A TRIANGLE containing a right angle is called a 
RIGHT TRIANGLE. However, a TRIANGLE cannot con- 
tain more than one right angle, since the sum of the two 
right angles plus the third angle would exceed the 180” 
total possessed by a TRIANGLE. 

see UZSOACUTE ANGLE, OBLIQUE ANGLE,~BTUSE AN- 

GLE, RIGHT TRIANGLE, SEMICIRCLE, STRAIGHT AN- 
GLE,THALES' THEOREM 

Right Conoid 
A RULED SURFACE is called a right conoid if it can be 
generated by moving a straight LINE intersecting a fixed 
straight LINE such that the LINES are always PERPEN- 

DICULAR (Kreyszig 1991, p. 87). Taking the PERPEN- 
DICULAR plane as the zy-plane and the line to be the 
~-AXIS gives the parametric equations 

x(u, v) = v cosl?(u) 

y(u, v) = v sing(u) 

z(u,v) = h(u) 

(Gray 1993). Taking h(u) = 2u and 8(u) = u gives the 
HELICOID. 

see also HELICOID, PL~~CKER'S CONOID, WALLIS'S 
CONICAL EDGE 
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Right Hyperbola 
A HYPERBOLA for which the ASYMPTOTES are PER- 
PENDICULAR. This occurs when the SEMIMAJOR and 
SEMIMINOR AXES are equal. Taking a = b in the equa- 
tion of a HYPERBOLA with SEMIMAJOR AXIS parallel to 
the X-AXIS and SEMIMINOR AXIS parallel to the ~-AXIS 

(i.e., vertical DIRECTRIX), 

( X- x0)2 (Y - Yd2 
a2 - b2 = ’ 

therefore gives 

( X- x0)” - (y - yo)2 = u2. 

A special type of right hyperbola is the so-called RECT- 
ANGULAR HYPERBOLA, which has equation xy = ab. 

see &OHYPERBOLA,RECTANGULAR HYPERBOLA 

Right Line 

see LINE 

Right Strophoid 

Right Strophoid 

The STROPHOID of a line L with pole 0 not on L and 
fixed point 0’ being the point where the PERPENDICU- 
LAR from 0 to L cuts L is called a right strophoid. It is 
therefore a general STROPHOID with a = n/2. 

The right strophoid is given by the Cartesian equation 

y2 = c-x 2 
-x 1 
c+a: (1) 

or the polar equation 

T = ccos(28) sect% (2) 

The parametric form of the strophoid is 

1 - t2 
x(t) = t2 (3) 

t(t2 - 1) 
Y(t) = -yq-+l (4) 

The right strophoid has CURVATURE 

; =- (t > 
4(1+ 3t2) 

(1 + 6t2 + t4)3/2 

and TANGENTIAL ANGLE 

(5) 

d(t) - -2 tan-l t - tan-l - 

The right strophoid first appears in work by Isaac Bar- 
row in 1670, although Torricelli describes the curve in 
his letters around 1645 and Roberval found it as the Lo- 
cus of the focus of the conic obtained when the plane 
cutting the CONE rotates about the tangent at its vertex 
(MacTutor Archive). The AREA of the loop is 

A lnnn = h2f4 - ;TT) n 

(MacTutor Archive). 

Let C be the CIRCLE with center at the point where 
the right strophoid crosses the x-axis and radius the 
distance of that point from the origin. Then the right 
strophoid is invariant under inversion in the CIRCLE C 
and is therefore an ANALLAGMATIC CURVE. 

see also STROPHOID, TRISECTRIX 
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Right Strophoid In&se Curve 

The INVERSE CURVE of a right strophoid is the same 
strophoid. 

Right Triangle 

c a 

c\ 
90” 

b 

A TRIANGLE with an ANGLE of 90” (n/Z radians). The 
sides a, b, and c of such a TRIANGLE satisfy the PY- 
THAGOREAN THEOREM. The largest side is convention- 
ally denoted c and is called the HYPOTENUSE. 

For any three similar shapes on the sides of a right tri- 
angle, 

AI + A2 = AS, (1) 

which is equivalent to the PYTHAGOREAN THEOREM. 
For a right triangle with sides a, b, and HYPOTENUSE c, 
let T be the INRADIUS. Then 

Solving for T gives 

ab 
r=- 

a+b+c’ (3) 

But any PYTHAGOREAN TRIPLE can be written 

a = m2 - n2 

b=2mn 

C = m2 + n2, 

(4) 

(5) 

(6) 

so (5) becomes 

m2 - 
r= ( n2)2mn 

m2 - n2+2mn+m2+n2 
= n(m - n), (7) 

which is an INTEGER when m and n are integers. 

c 

H :‘-----,. 
A B 

Given a right triangle AABC, draw the ALTITUDE AH 
from the RIGHT ANGLE A. Then the triangles AAHC 
and ABHA are similar. 

C A 

In a right triangle, the MIDPOINT of the HYPOTENUSE 
is equidistant from the three VERTICES (Dunham 1990). 
This can be proved as follows. Given AABC, let M 
be the MIDPOINT of AB (so that AM = BM). Draw 
DMJ)CA, then since ABDM is similar to ABCA, it 
follows that BD = DC. Since both ABDM and 
ACDM are right triangles and the corresponding legs 
are equal, the HYPOTENUSES are also equal, so we have 
AM = B&f = CM and the theorem is proved. 

see UZSO ACUTE TRIANGLE, ARCHIMEDES' MIDPOINT 
THEOREM, BROCARD MIDPOINT, CIRCLE-POINT MID- 
POINT THEOREM, FERMAT'S RIGHT TRIANGLE THEO- 
REM, ISOSCELES TRIANGLE, MALFATTI'S RIGHT TRI- 
ANGLE PROBLEM, OBTUSE TRIANGLE,~YTHAGOREAN 
TRIPLE, QUADRILATERAL, RAT-FREE SET,TRIANGLE 
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Beyer, W. H. (Ed.) CRC Standard Mathematical Tables, 

28th ed. Boca Raton, FL: CRC Press, p. 121, 1987. 
Dunham, W. Journey Through Genius: The Great Theorems 

of kfathematics. New York: Wiley, pp 120421, 1990. 

Rigid 
A FRAMEWORK is rigid IFF continuous motion of the 
points of the configuration maintaining the bar con- 
straints comes from a family of motions of all EUCLID- 
EAN SPACE which are distance-preserving. A GRAPH G 
is (generically) d-rigid if, for almost all (i.e., an open 
dense set of) CONFIGURATIONS ofp, the FRAMEWORK 
G(p) is rigid in IP. 

One of the first results in rigidity theory was the RIGID- 
ITY THEOREM by Cauchy in 1813. Although rigidity 
problems were of immense interest to engineers, inten- 
sive mathematical study of these types of problems has 
occurred only relatively recently (Connelly 1993, Graver 
et al. 1993). 

~~~~ZSOBAR(EDGE),FLEXIBLE POLYHEDRON,FRAME- 
WORK, LAMAN'S THEOREM, LIEBMANN'S THEOREM, 
RIGIDITY THEOREM 

References 
Connelly, R. “Rigidity.” Ch. 1.7 in Handbook of Convex Ge- 

ometry, VoZ. A (Ed. P. M. Gruber and J. M. Wills). Am- 
sterdam, Netherlands: North-Holland, pp. 223-271, 1993. 

Crapo, H. and Whiteley, W. “Statics of Frameworks and Mo- 
tions of Panel Structures, A Projective Geometry Introduc- 
tion.” Structural Topology 6, 43-82, 1982. 
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Graver, J.; Servatius, B., l  and Servatius, EI. Combinatorial rings of order p3 for p an ODD PRIME is 3p + 50 and 52 
Rigidity. Providence, RI: Amer. Math. Sot., 1993, for p = 2 (Ballieu 1947, Gilmer and Mott 1973). 

Rigid Mot ion 
A transformation consisting of ROTATIONS and TRANS- 

LATIONS which leaves a given arrangement unchanged. 

see also EUCLIDEAN MOTION, PLANE, ROTATION 

A ring with a multiplicative identity is sometimes called 
a UNIT RING. FYaenkel (1914) gave the first abstract 
definition of the ring, although this work did not have 
much impact. 

References 
Courant, R. and Robbins, H. What is Mathematics?: An El- 

ementary Approach to Ideas and Methods, 2nd ed. Oxford, 
England: Oxford University Press, p* 141, 1996. 

Rigidity Theorem 
If the faces of a conwex POLYHEDRON were made of 
metal plates and the EDGES were replaced by hinges, 
the POLYHEDRON would be RIGID. The theorem was 
stated by Cauchy (1813), although a mistake in this pa- 
per went unnoticed for more than 50 years. An example 
of a concave “FLEXIBLE POLYHEDRON" (with 18 trian- 
gular faces) for which this is not true was given by Con- 
nelly (1978), and a FLEXIBLE POLYHEDRON with only 
14 triangular faces was subsequently found by Steffen 
(Mackenzie 1998). 

A ring that is COMMUTATIVE under multiplication, has 
a unit element, and has no divisors of zero is called an 
INTEGRAL DOMAIN. A ring which is also a COMMUTA- 
TIVE multiplication group is called a FIELD. The sim- 
plestrings are the INTEGERS Z, POLYNOMIALS I&land 
I& y] in one and two variables, and SQUARE nxn REAL 
MATRICES. 

Rings which have been investigated and found to be of 
interest are usually named after one or more of their in- 
vestigators. This practice unfortunately leads to names 
which give very little insight into the relevant properties 
of the associated rings. 

see also FLEXIBLE POLYHEDRON, RIGID 

References 
Cauchy, A. L. “Sur les polygons et le polyhkders.” X Vie 

Cahier IX, 87-89, 1813. 
Connelly, R. “A Flexible Sphere.” Math. Intel. 1, 130-131, 

1978. 

see also ABELIAN GROUP, ARTXNIAN RING, CHOW 

RING, DEDEKIND RING, DWIS~ON ALGEBRA, FIELD, 
GORENSTEIN RING, GROUP, GROUP RING, IDEAL, 
INTEGRAL DOMAIN, MODULE, NILPOTENT ELEMENT, 

NOETHERIAN RING, NUMBER FIELD, PRIME RING, 
PROOFER RING, QUOTIENT RING, REGULAR RING, 
RINGOID, SEMIPRIME RING, SEMIRING, SEMISIMPLE 
RING, SIMPLE RING, UNIT RING, ZERO DIVISOR 

References 
Graver, J.; Servatius, B.; and Servatius, K Combinatorial 

Rigidity. Providence, RI: Amer. Math. Sot., 1993. 
Mackenzie, D . “Polyhedra Can Bend But Not Breathe.” Sci- 

ence 279, 1637, 1998. 

Ballieu, R. “Anneaux finis; systemes hypercomplexes de rang 
trois sur un corps commutatif.” Ann. Sot. Sci. Bruzelles. 
se'r. I61, 222-227, 1947. 

Fletcher, C. R. “Rings of Small Order.” Math. Gaz. 64, 
9-22,198O. 

Ring 
A ring is a set together with two BINARY OPERATORS 
S(+, *) satisfying the following conditions: 

Fraenkel, A. “Uber die Teiler der Null und die Zerlegung von 
Ringen.” J. Reine Angew. Math. 145, 139-176, 1914. 

Gilmer, R. and Mott, J. “Associative Rings of Order p3.” 
Proc. Japan Acad. 49, 795-799, 1973. 

Kleiner , I. “The Genesis of the Abstract Ring Concept.” 
Amer. Math. Monthly 103, 417-424, 1996. 

Sloane, N. 3. A. Sequences A027623 and A037234 in “An On- 
Line Version of the Encyclopedia of Integer Sequences.” 

van der Waerden, B. L. A History of Algebra. New York: 
Springer-Verlag, 1985. 

1. 

2. 

3. 

4. 

5. 

6. 

Additive associativity: For all a, b, c f S, (a+b)+c = 

a+ (b+c), 

Additive commutativity: For all a, b f S, a + b = 
b+ a, 

Additive identity: There exists an element 0 E S 
such that for all a E S, 0 + a = a + 0 = a, 

Additive inverse: For every a E S there exists -uinS 
such that a + (-a) = (-a) + a = 0, 

Multiplicative associativity: For all a, b, c E S, (a sk 
b)*c=u*(b*c), 

Left and right distributivity: For all a, b, c E S, a * 
(b+c) = (a*b)+(a*c) and (b+c)*u = (b*a)+(c*u). 

A ring is therefore an ABELIAN GROUP under addition 
and a SEMIGROUP under multiplication. A ring must 
contain at least one element, but need not contain a 
multiplicative identity or be commutative. The number 
of finite rings of n elements for n = 1, 2, . . l  , are 1, 2, 2, 
11, 2, 4, 2, 52, 11, 4, 2, 22, 2, 4, 4, . . . (Sloane’s A027623 
and A037234; Fletcher 1980). In general, the number of 

Ring Cyclide 

The inversion of a RING TORUS. If the inversion center 
lies on the torus, then the ring cyclide degenerates to a 
PARABOLIC RING CYCLIDE. 
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see also CYCLIDE, PARABOLIC CYCLIDE, RING CY- 
GLIDE, RING T~RWS, SPINDLE CYCLIDE, TORUS 

Rising Factorial 

see P~CHHAMMER SYMBOL 

Ring Function 

SW TOROIDAL FUNCTION 

Rivest-Shamir-Adleman Number 

see RSA NUMBER 

Ring Torus RMS 

see ROOT-MEAN-SQUARE 

0 Robbin Constant 

One of the three STANDARD TORI given by the para- R = 6 + $@ - &.h + $ ln(1 + 1/z) 
metric equations ++(2+h)- + = 0.661707182 l  . . l  

2= (c+acosv)cosu 
see also TRANSFXNITE DIAMETER 

Y= (c+acosv)sinu 

z = a sin 21 
References 
Plouffe, S. “The Robbin Constant.” http: //lacim.uqam. ca/ 

piDATA/robbin.txt. 
with c > a. This is the TORUS which is generally meant 
when the term “torus” is used without qualification. 
The inversion of a ring torus is a RING CYCLIDE if the 
INVERSION CENTER does not lie on the torus and a PAR- 

ABOLIC RING CYCLIDE if it does. The above left figure 

shows a ring torus, the middle a cutaway, and the right 
figure shows a CROSS-SECTION of the ring torus through 
the xz-plane. 

see dso CYCLIDE, HORN TORUS, PARABOLIC RING CY- 

GLIDE, RING CYCLIDE, SPINDLE TORUS, STANDARD 
TORI, TORUS 

References 
Gray, A. “Tori.” s11.4 in Modem Differential Geometry 

of Curves and Surfaces. Boca Raton, FL: CRC Press, 

Robbin’s Inequality 
If the fourth MOMENT ~4 # 0, then 

P(I rr: - p41 2 X) < p4 + 3;yA; lh4, - 

where o2 is the VARIANCE. 

Robbins Algebra 
Building on work of Huntington (1933), Robbins con- 
jectured that the equations for a Robbins algebra, com- 
mutivity, associativity, and the ROBBINS EQUATION 

pp. 218-220, 1993. 
Pinkall, U. “Cyclides of Dupin.” 53.3 in Mathematical Models 

n(n(x + Y) + n(x -I- n(y))) = 5 

from- the bllections of Universities and Museums (Ed. 
G. Fischer). Braunschweig, Germany: Vieweg, pp* 28-30, 
1986. 

Ringoid 
A ringoid R is a set (R, +, X) with two binary operators, 
conventionally denoted addition (+) and multiplication 
(x), where X- distributes over + left and right: 

imply those for a BOOLEAN ALGEBRA. The conjecture 

was finally proven using a computer (McCune 1997). 

References 
Huntington, E. V. “New Sets of Independent Postulates for 

the Algebra of Logic, with Special Reference to White- 
head and Russell’s Principia Mathematics.” Trans. Amer. 
M&h. Sot. 35, 274-304, 1933. 

Huntington, E. V. “Boolean Algebra. A Correction.” nuns. 

a@ + c) = ab + acand(b + c)a = ba + ca. 

A ringoid can be empty. 

see UZSO BINARY OPERATOR, RING, SEMXRING 

References 
Rosenfeld, A. An Introduction to Algebraic Structures. New 

York: Holden-Day, 1968. 

Amer. Math. Sot. 35, 557-558, 1933. 
NlcCune, W. “Solution of the Robbins Problem.” J. Au- 

tomat. Reason. 19, 263-276, 1997. 
McCune, W. “Robbins Algebras are Boolean.” http: //nwu. 

mcs.anl.gov/-mccune/papers/robbins/. 
Nelson, E. “Automated Reasoning.” http://www.math. 

princeton.edu/lnelson/ar.html. 

Robbins Equation 

Risch Algorithm 
An ALGORITHM for indefinite integration. 

n(n(x + y) + n(x + n(y))) = 5. 

see also ROBBINS ALGEBRA 
see ~2~0 INDEFINITE INTEGRAL 
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Robert son Condition 
For the HELMHOLTZ DIFFERENTIAL EQUATION to be 
SEPARABLE in a coordinate system, the SCALE FACTORS 

hi in the LAPLACIAN 

3 v2 = x 
i=l 

and the functions f&i) and Qij defined by 

+ (k12+n1 + kz2%2 + ka2+n3)Xn = 0 

(2) 
must be of the form ofa ST;~CKEL DETERMINANT 

h&h s = Pm4 = 1 %;f %f; itf 1 = fl(u1)f2(u2)f3(u3). 
(3) 

see also HELMHOLTZ DIFFERENTIAL EQUATION, LA- 

PLACE'S EQUATION, SEPARATION OF VARIABLES, 

ST;~CKEL DETERMINANT 

References 
Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 

ics, Part 1. New York: McGraw-Hill, p. 510, 1953. 

Robertson Conjecture 
A conjecture due to M. S. Robertson (1936) which treats 
a UNIVALENT POWER SERIES containing only ODD pow- 

ers within the UNIT DISK. This conjecture IMPLIES the 
BIEBERBACH CONJECTURE and follows in turn from the 
MILIN CONJECTURE. de Branges’ proofofthe BIEBER- 
BACH CONJECTURE proceeded by proving the MILIN 
CONJECTURE, thus establishing the Robertson conjec- 
ture and hence implying the truth of the BIEBERBACH 
CONJECTURE. 

see also BIEBERBACH CONJECTURE, MILIN CONJEC- 
TURE 

References 
Stewart, I. From Here to Infinity: A Guide to Today’s 

Muthematics. Oxford, England: Oxford University Press, 
p. 165, 1996. 

Robertson-Seymour Theorem 
A generalization ofthe KURATOWSKI REDUCTION THE- 
OREM by Robertson and Seymour, which states that the 
collection of finite graphs is well-quasi-ordered by minor 
embeddability, from which it follows that Kuratowski’s 
“forbidden minor” embedding obstruction generalizes to 
higher genus surfaces. 

Formally, for a fixed INTEGER g > 0, there is a finite 
list of graphs L(g) with the property that a graph C 
embeds on a surface of genus g IFF it does not contain, 
as a minor, any of the graphs on the list L. 

Robin Boundary Conditions 
PARTIAL DIFFERENTIALEQUATIONBOUNDARYCONDI- 
TIONS which, for an elliptic partial differential equation 
in a region s1, specify that the sum of QU and the normal 
derivative of u = f at all points of the boundary of fl, 
a and f being prescribed. 

Robin’s Constant 

see TRANSFINITE DIAMETER 

Robinson Projection 
A PSEUDOCYLINDRICAL MAP PROJECTION which dis- 
torts shape, AREA, scale, and distance to create attrac- 
tion average projection properties. 

References 
Dana, P. H. “Map Projections.” http : //www .utexas . edu/ 

depts/grg/gcraft/notes/mapproj /mapproj.html. 

Robust Estimation 
An estimation technique which is insensitive to small 
departures from the idealized assumptions which have 
been used to optimize the algorithm. Classes of 
such techniques include &~-ESTIMATES (which fol- 
low from maximum likelihood considerations), L- 
ESTIMATES (which are linear combinations of ORDER 

STATISTICS), and R-ESTIMATES (based on RANK tests). 

see also L-ESTIMATE, M-ESTIMATE, R-ESTIMATE 

References 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vet- 

terling, W. T. “Robust, Estimation.” s15.7 in Numerical 
Recipes in FORTRAN: The Art of Scientific Computing, 
2nd ed. Cambridge, England: Cambridge University Press, 
pp. 694-700, 1992. 

Rodrigues’s Curvature Formula 

dr;J + K; dr = 0, 

where IQ is the unit NORMAL VECTOR and his one of 
the two PRINCIPAL CURVATURES. 

see also NORMAL VECTOR, PRINCIPAL CURVATURES 

Rodrigues Formula 
An operator definition of a function. A Rodrigues for- 
mula may be converted into a SCHL~~FLI INTEGRAL. 

see also SCHL~~FLI INTEGRAL 

Rogers-Ramanujan Continued Fraction 

see RAMANUJAN CONTINUED FRACTION 

References 
Fellows, M. R. “The Robertson-Seymour Theorems: A Sur- 

vey of Applications.” Comtemp. Math. 89, l-18, 1987. 
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Rogers-Ramanujan Identities 
For [q\ < 1 and using the NOTATION of the RAMANUJAN 
THETA FUNCTION, the Rogers-Ramanujan identities are 

Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Sug- 
gested by His Life and Work, 3rd ed. New York: Chelsea, 
p* 13, 1959. 

Paule, P “Short and Easy Computer Proofs of the Rogers- 
Ramanujan Identities and of Identities of Similar Type.” 
Electronic J. Combinatorics 1, RlO, l-9, 1994. http: // 
wuw. combinatorics. org/Voluma_l/volumel . html#RlO. 

Petkovgek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Welles- 
ley, MA: A. K. Peters, p. 117, 1996. 

Robinson, R. M. “Comment to: ‘A Motivated Proof of the 
Rogers-Ramanujan Identities.“’ Amer. Math. MonthEy 97, 
214-215, 1990. 

Rogers, L. J. “Second Memoir on the Expansion of Certain 
Infinite Products.” Proc. London Math. Sot. 25, 318-343, 
1894. 

Sloane, N. J. A. Sequence A006141/MO260 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

(1) 

f(-q”) O” q”c”+l> 

f(-cl”, -q”> = Fc=o (dk t IE (2) 

where (q)k are Q-SERIES. Written out explicitly (Hardy 
1959, p. 13), 

4+ 44 Q9 
1+1-q (1-q)(l-q2)+(1-q)(l-q2)(1-q3)+*** Rolle’s Theorem 

Let f be differentiable on (a, b) and continuous on [a, b]. 
If f(a) = f(b) = 0, then there is at least one point 
c E (a, b) where f’(c) = 0. 

see UZSO FIXED POINT THEOREM, MEAN-VALUE THEO- 
REM 

- 
- (l-q)(l-q6)..m;l-q4)(1-q9)**~ (3) 

42f 8 Q 12 

l+lvq (1-q)(l-q2)+(l-q)(l-qz)(l-q3)+mmm 
1 

- 
- (1-q2)(1-q7).**~(l-q3)(1-q")~**' (4) 

Roman Coefficient 
A generalization of the BINOMIAL COEFFICIENT whose 
NOTATION was suggested by Knuth, 

The identities can also be written succinctly as 

IQ 
k2+ak 

1+2 (1-q)(l-q”) 
k=l 

.-* (1 - q”) 
n 11 11 n! 
k = [kl!ln-kj!a (1) 

00 

rI 
1 - - 

j-o (1 - q 
Sj+u+l)(l -q5j-a++4)' (5) 

- 

The above expression is read LLRoman ?z choose V’ 
Whenever the BINOMIAL COEFFICIENT is defined (i.e., 
n 2 k > 0 or k > 0 > n), the Roman coefficient agrees 
with it. However, the Roman coefficients are defined for 
values for which the BINOMIAL COEFFICIENTS are not, 

e-g*, 

where a = 0, 1. 

Other forms of the Rogers-Ramanujan identities include 

k2 

c 

Q 

k (q; !?)k(q; q>n-k = 

(-q”q@k2-“v2 

(q; q)n--Ic(q; q)n+k 
(6) (2) 

t (3) and 

2qk2 

(q; Q)k(%&-k = 

(-1)"(1+ q")q@k2-kJ/2 

(9; q)n-k (q; &+k 
where 

n<OE { 1 for 72 < 0 
0 for 72 > 0. - 

(4) 
(7) 

(Petkovgek et al. 1996). 

see also ANDREWS-SCHUR IDENTITY 
The Roman coefficients also satisfy properties like those 
of the BINOMIAL COEFFICIENT, 
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401-409,1989. 

Bressoud, D. M. Analytic and Combinatorial Generalixa- 
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Amer. Math. Sot., 1980. 

(6) 

an analog of PASCAL’S FORMULA 

(7) 
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and a curious rotation/reflection law due to Knuth 

I 
t 1) 

kf(OO) - L 1 -- _ _ ( 1) n+(n>0) -k 
k-1 - L 1 n-l (8) 

(Roman 1992). 

see also BINOMIAL COEFFICIENT, ROMAN FACTORIAL 

References 
Roman, S. “The Logarithmic Binomial Formula.” AmeT 

Muth. Monthly 99, 641-648, 1992. 

Roman Factorial 

( n! for n > 0 

The Roman factorial arises in the definition of the HAR- 

MONIC LOGARITHM and ROMAN COEFFICIENT. It obeys 
the identities 

InI ! = L7t-j Ln - ll! (2) 

where 

1 1 n ! 
- = In1 [n - 11 l  l  l  ln - k + 11 
In - kl! 

lnl! 1-n - ll! = ( -l)n+(“<o) 9 

l’ 1 n E n for n # 0 

1 for n = 0 

n<Oe 1 1 for n < 0 
0 forn>O. - 

(5) 

(6) 

see UZSO HARMONIC LOGARITHM, HARMONIC NUMBER, 

ROMAN COEFFICIENT 

References 
Loeb, D. and Rota, G.-C. “Formal Power Series of Logarith- 

mic Type.” Advances Math. 75, l-118, 1989. 
Roman, S. “The Logarithmic Binomial Formula.” Amer. 

Math. Monthly 99, 641-648, 1992. 

Roman Numeral 
A system of numerical notations used by the Romans. It 
is an additive (and subtractive) system in which letters 
are used to denote certain “base” numbers, and arbi- 
trary numbers are then denoted using combinations of 
symbols. 

Character Numerical Value 

I 1 
V 5 
X 10 
L 50 
c 100 
D 500 
M 1000 

For example, the number 1732 would be denoted MD- 
CCXXXII. One additional rule states that, instead of 
using four symbols to represent a 4, 40, 9, 90, etc., such 
numbers are instead denoted by preceding the symbol 

Roman Surface 

for 5, 50, 10, 100, etc., with a symbol indicating subtruc- 
tion. For example, 4 is denoted IV, 9 as IX, 40 as XL, 
etc. However, this rule is generally not followed on the 
faces of clocks, where 1111 is usually encountered instead 
of IV. 

Roman numerals are encountered in the release year for 
movies and occasionally on the numerals on the faces of 
watches and clocks, but in few other modern instances. 
They do have the advantage that ADDITION can be done 
“symbolically” (and without worrying about the “place” 
of a given DIGIT) by simply combining all the symbols 
together, grouping, writing groups of 5 Is as V, groups 
of 2 Vs as X, etc. 

Roman Surface 

A QUARTIC NONORIENTABLE SURFACE, also known as 
the STEINER SURFACE. The Roman surface is one of 
the three possible surfaces obtained by sewing a MOBIUS 

STRIP to the edge of a DISK. The other two are the BOY 
SURFACE and CROSS-CAP, all of which are homeomor- 
phic to the REAL PROJECTIVE PLANE (Pinkall 1986). 

The center point of the Roman surface is an ordi- 
nary TRIPLE POINT with (fl,O,O) = (O,ff,O) = 
(O,O, fl), and the six endpoints of the three lines of 
self-intersection are singular PINCH POINTS, also known 
as WHITNEY SINGULARITIES. The Roman surface is es- 
sentially six CROSS-CAPS stuck together and contains a 
double INFINITY of CONKS. 

The Roman surface can given by the equation 

(~~+y~+z~-k~)~ = [(z-k)2 -2a:2][(z+k)2-2y2]. (1) 

Solving for z gives the pair of equations 

k(Y” - 
z= 

x2) * (x2 - y2)dk2 - x2 - yz 

2(x2 + y”) 
l  

(2) 

If the surface is rotated by 45” about the Z-AXIS via the 
ROTATION MATRIX 

R,(45’) = 5 
1 1 0 

[ 1 -1 1 0 (3) 
0 01 

to give 

(4) 
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then the simple equation 

x2y2 + x2z2 + y2z2 + 2kxyz = 0 (5) 

results. The Roman surface can also be generated us- 
ing the general method for NONORIENTABLE SURFACES 

using the polynomial function 

f(x, Y, 4 = (XY, YG 4 (6) 

(Pinkall 1936). Setting 

X = cosusinv (7) 
y = sinusinw (8) 

z = cos’u (9) 

in the former gives 

x(u,v) = + sin( Zu) sin2 21 (10) 

y(u,v) = + sinucos(2v) (11) 

z(u,v) = + cos u sin( 2v) (12) 

for u E [0,27r) and v E [--7r/2, r/2]. Flipping sinw 
and cos w  and multiplying by 2 gives the form shown 
by Wang. 

A HOMOTOPY (smooth deformation) between the Ro- 

man surface and BOY SURFACE is given by the equa- 
tions 

x(u,v) = 
ficos(2u) cos2 21 + cos u sin( 2w) 

2 - &5sin(3u) sin(2w) 
(13) 

Y(W) = 
fisin(2u) cos2 zt - sin u sin(2v) 

2 - al/Zsin(32L) sin(2v) 
(14 

z(u,v) = 
3 cos2 ‘u 

2 - aasin(3u) sin(2v) 
(15) 

for u f [-r/242] and II E [O,~F] as QC varies from 0 to 
1. a= 0 corresponds to the Roman surface and a = 1 
to the Boy SURFACE (Wang). 

see also BOY SURFACE, CROSS-CAP, HEPTAHEDRON, 

MOBIUS STRIP, NONORIENTABLE SURFACE, QUARTIC 
SURFACE,~TEINER SURFACE 
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Roman Symbol 

l-l { n E n for n # 0 
1 forn=O. 

see also ROMAN FACTORIAL, HARMONIC LOGARITHM 

References 
Roman, S. “The Logarithmic Binomial Formula.” Amer. 

Math. Monthly 99, 641-648, 1992. 

Romberg Integration 
A powerful NUMERICAL INTEGRATION technique which 
uses k refinements of the extended TRAPEZOIDAL RULE 
to remove error terms less than order O(NB2”). The 
routine advocated by Press et al. (1992) makes use of 
NEVILLE'S ALGORITHM. 
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Rook Number 
The rook numbers rf of an n x n BOARD B are the 
number of subsets of size n such that no two elements 
have the same first or second coordinate. In other word, 
it is the number of ways of placing n rooks on B such 
that none attack each other. The rook numbers of a 
board determine the rook numbers of the complemen- 
tary board B, defined to be d x d\B. This is known 
as the ROOK RECIPROCITY THEOREM. The first few 
rook numbers are 1, 2, 7, 23, 115, 694, 5282, 46066, . . . 
(Sloane’s AOOO903). For an n x 72 board, each n x n 
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PERMUTATION MATRIX corresponds to an allowed con- 

figuration of rooks. 

see also ROOK RECIPROCITY THEOREM 

References 
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Rook Reciprocity Theorem 

2 $(d - k)!z” = f-(-1)*&d - k)!z”(a: + l)d-k. 

k=O k=O 
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Rooks Problem 

The rook is a CHESS piece which may move any num- 
ber of spaces either horizontally or vertically per move. 
The maximum number of nonattacking rooks which may 
be placed on an n x n CHESSBOARD is n. This arrange- 
ment is achieved by placing the rooks along the diagonal 
(Madachy 1979). The total number of ways of placing 
n nonattacking rooks on an n x n boar,d is n! (Madachy 
1979, p. 47). The number of rotationally and reflectively 
inequivalent ways of placing n nonattacking rooks on 
an n x n board are 1, 2, 7, 23, 115, 694, l  . . (Sloane’s 
A000903; Dudeney 1970, p. 96; Madachy 1979, pp. 46- 
54). 

The minimum number of rooks needed to occupy or at- 
tack all spaced on an 8 x 8 CHESSBOARD is 8, illustrated 
above (Madachy 1979). 

Consider an n x n chessboard with the restriction that, 
for every subset of { 1, . . . , n}, a rook may not be put 
in column s + j (mod n) when on row j, where the rows 
are numbered 0, 1, . . . , n - 1. Vardi (1991) denotes 
the number of rook solutions so restricted as rook@, n). 

rook({l), > n is simply the number of DERANGEMENTS 
on n symbols, known as a SUBFACTORIAL. The first few 
values are 1, 2, 9, 44, 265, 1854, . . . (Sloane’s A000166). 

rook({l, 21, ) n is a solution to the MARRIED COUPLES 
PROBLEM, sometimes known as MI~NAGE NUMBERS. 
The first few MENAGE NUMBERS are -1, 1, 0, 2, 13, 
80, 579, . . l  (Sloane’s AO00179). 

Although simple formulas are not known for general { 1, 

- - . 7 p}, RECURRENCE RELATIONS can be used to com- 
pute rook({l,. . l  , p}, n) in polynomial time for p = 3, 

l **Y 6 (Metropolis et al. 1969, Mint 1978, Vardi 1991). 

see UZSO CHESS, MENAGE NUMBER, ROOK NUMBER, 

ROOK RECIPROCITY THEOREM 

References 
Dudeney, H. E. “The Eight Rooks.” $295 in Amusements in 

Mathematics. New York: Dover, p. 88, 1970. 
Kraitchik, M. “The Problem of the Rooks” and “Domina- 

tion of the Chessboard.” 510.2 and 10.4 in lMuthematicaZ 
Recreations, New York: W. W. Norton, pp. 240-247 and 
255-256, 1942. 

Madachy, J. S. ‘Madachy’s Mathematical Recreations. New 
York: Dover, pp. 36-37, 1979. 

Metropolis, M., * Stein, M. L.; and Stein, P. R. “Permanents 
of Cyclic (0, 1) Matrices.” J. Combin. Th. 7, 291-321, 
1969. 

Mint, H. 53.1 in Permanents. Reading, MA: Addison-Wesley, 
1978. 

Riordan, J. Chs. 7-8 in An Introduction to Combinatorial 
Analysis. Princeton, NJ: Princeton University Press, 1978. 

Sloane, N. J. A. Sequences A000903/M1761, AOOO166/ 
M1937, and A000179/M2062 in “An On-Line Version of 
the Encyclopedia of Integer Sequences.” http://uww. 
research.att.com/-njas/sequences/eisonline.html. 

Sloane, N. J. A. and Plouffe, S. Extended entry for M2062 in 
The Encyclopedia of Integer Sequences. San Diego: Aca- 
demic Press, 1995. 

Vardi, I. Computational Recreations in 1Muthematica. Read- 
ing, MA: Addison-Wesley, pp. 123-124, 1991. 

Room Square 
A Room square (named after T. G. Room) of order 72 
(for n ODD) is an arrangement in an n x n SQUARE 
MATRIX of n + 1 objects such that each cell is either 
empty or holds exactly two different objects. F’urther- 
more, each object appears once in each row and column 
and each unordered pair occupies exactly one cell. The 
Room square of order 2 is shown below. 

I 1, 2 
The Room square of order 8 is 
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Root 
The roots of an equation 

f(x) -0 (1) 

are the values of z for which the equation is satisfied. 
The FUNDAMENTAL THEOREM OF ALGEBRA statesthat 
every POLYNOMIAL equation of degree n has exactly 72 
roots, where some roots may have a multiplicity greater 
than 1 (in which case they are said to be degenerate). 

To find the nth roots of a COMPLEX NUMBER, solve the 
equation zn = w. Then 

zn = /xl”[cos(n8)+isin(d)] = lull (cos~+isin$), (2) 

so 
1x1 = 1wp (3) 

4 arg(z) = - . 
n (4) 

Rolle proved that any number has n nth roots (Boyer 
1968, p. 476). Householder (1970) gives an algorithm for 
constructing root-finding algorithms with an arbitrary 
order of convergence. Special root-finding techniques 
can often be applied when the function in question is a 
POLYNOMIAL. 

see ah BAILEY’S METHOD, BISECTION PROCEDURE, 
BRENT'S METHOD, GROUT'S METHOD, DESCARTES' 
SIGN RULE, FALSE POSITION METHOD, FUNDAMEN- 
TALTHEOREM OFSYMMETRIC FUNCTIONS,GRAEFFE'S 
METHOD, HALLEY'S IRRATIONAL FORMULA, HAL- 
LEY'S METHOD, HALLEY'S RATIONAL FORMULA, 

LAGUERRE'SMETHOD,LAMBERT'SMETHOD,LEHMER- 
SCHUR METHOD, LIN'S METHOD, MAEHLY'S PROCE- 
DURE, MULLER'S METHOD, NEWTON'S METHOD, RID- 
DERS' METHOD,ROOT DRAGGING THEOREM,~CHR& 
DER'S METHOD, POLYNOMIAL, SECANT METHOD, 
STURM FUNCTION, STURM THEOREM, TANGENT HY- 
PERBOLAS METHOD, WEIERSTRAB APPROXIMATION 
THEOREM 
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Root Dragging Theorem 
If any of the ROOTS of a POLYNOMIAL are increased, 
then all of the critical points increase. 

References 
Anderson, B. “Polynomial Root Dragging." Amer. Math. 
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Root Linear Coefficient Theorem 
The sum of the reciprocals of ROOTS of an equation 
equals the NEGATIVE COEFFICIENT of the linear term 
in the MACLAURIN SERIES. 

see also NEWTON'S RELATIONS 

Root-Mean-Square 
The root-mean-square (RMS) of a variate x, sometimes 
called the QUADRATIC MEAN, is the SQUARE ROOT of 
the mean squared value of x: 

R(x) G &x2) 

- - 

(1) 

for a discrete distribution 

(2) 

for a continuous distribution. 

Hoehn and Niven (1985) show that 

R(al + c, a2 + c, . . . , a,+~) <c+R(al,az,...,a,) 

for any POSITIVE constant c. 

Physical scientists often use the term root-mean-square 
as a synonym for STANDARD DEVIATION when they refer 
to the SQUARE ROOT of the mean squared deviation of 
a signal from a given baseline or fit. 

HORNER'S METHOD, HOUSEHOLDER'S METHOD, HUT- 
TON'S METHOD,ISOGRAPH,JENKINS-TRAUB METHOD, 
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Rooted Tree 
la 

see UZSO ARITHMETIC-GEOMETRIC MEAN, ARITH- 
METIC-HARMONIC MEAN, GENERALIZED MEAN, GE- 
OMETRIC MEAN, HARMONIC MEAN, HARMONIC- 
GEOMETRIC MEAN, MEAN, MEDIAN (STATISTICS), 
STANDARD DEVIATION, VARIANCE 

2 t 

3 i v Heierences 
Hoehn, L. and Niven, I. “Averages on the Move.” 1Math. 

Mug. 58, 151-156, 1985. 

4 h ‘v * Root (Radical) 
The nth root (or “RADICAL") of a quantity z is a value 
T such that x = rn, and therefore is the INVERSE FUNC- 
TION to the taking of a POWER. The nth root is de- 
noted T = fi or, using POWER notation, T = z l /n 

l  

The special case of the SQUARE ROOT is denoted fi. 
The quantities for which a general FUNCTION equals 0 
are also called ROOTS, or sometimes ZEROS. 

0 = root 

A TREE with a special node called the ‘(ROOT" or 
LLE~~.17 Denote the number of rooted trees with n, nodes 
by Tn, then the GENERATING FUNCTION is 

T(x) E eTnxn = x + x2 + 2x3 + 4x4 + 9x5 + 20x6 

n=O 

+48x7 + 115x’ + 286~’ + 719x1’ + . . . (1) 

see&o CUBER• OT,ROOT, SQUARE ROOT, VINCULUM 

Root Test 
Let Uk be a SERIES with POSITIVE terms, and let (Sloane’s AOOOOM). This POWER SERIES satisfies 

p = lim ukllk. 
k+m 

(2) 

(3) 

1. If p < 1, the SERIES CONVERGES. 

2. Ifp> lorp- 00, the SERIES DIVERGES. 
3. Ifp= 1, the SERIES may CONVERGE or DIVERGE. 

where t(x) is the GENERATING FUNCTION for unrooted This test is also called the CAUCHY ROOT TEST. 
TREES. A GENERATING FUNCTION for Tn can be writ- 
ten using a product involving Uze sequence itself as 

see also CONVERGENCE TESTS 
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00 00 

rI 
1 

X 

(1 

Tnxn. (4) - xn)Tn = n=l c 
n= 1 

The number of rooted trees can also be calculated from 
the RECWRRENCE RELATION Root (Tree) 

A special node which is designated to turn a TREE into 
a ROOTED TREE. The root is sometimes also called 
LLE~~," and each of the nodes which is one EDGE fur- 
ther away from a given EDGE is called a CHILD. Nodes 
connected to the same node are then called SIBLINGS. 

(5) 

see also CHILD, ROOTED TREE, SIBLING, TREE with To = 0 and 571 = 1, where the second sum is over 
all d which DIVIDE j (Finch). 

see also ORDERED TREE,RED-BLACK TREE,WEAKLY 
BINARY TREE 

Root of Unity 
The nth ROOTS of UNITY are ROOTS & = eaxikip of 
the CYCLOTOMIC EQUATION 

References 
Finch, S. “Favorite Mathematical Constants.” http : //wwu. xp - 1 - 1 

maths oft.com/asolve/constant/otter/otter. html. 
Ruskey, F. “Information on Rooted Trees.” http ://sue. which are known as the DE M~IVRE NUMBERS. csc 

.uvic.ca/-cos/inf/tree/RootedTree.html. 
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see also CYCLOTOMIC EQUATION, DE MOIVRE'S IDEN- 
TITY, DE MOIVRE NUMBER, UNITY 
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Rosat t i’s Theorem 
There is a one-to-one correspondence between the sets 
of equivalent correspondences (not of value 0) on an ir- 
reducible curve of GENUS (CURVE) p, and the rational 
CULLINEATIONS of a projective space of 2p - 1 dimen- 
sions which leave invariant a space of p - 1 dimensions. 
The number of linearly independent correspondences 
will be that of linearly independent COLLINEATIONS. 

References 
Coolidge, J. L. A Treatise on Algebraic Plane Curves. New 

York: Dover, p. 339, 1959. 

Rose 

A curve which has the shape of a petalled flower. This 
curve was named RHODONEA by the Italian mathemati- 
cian Guido Grandi between 1723 and 1728 because it 
resembles a rose (MacTutor Archive). The polar equa- 
tion of the rose is 

r = asin( 

or 
r = acos(n0). 

If TZ is ODD, the rose is n-petalled. If n is EVEN, the 
rose is 2n-petalled. If n is IRRATIONAL, then there are 
an infinite number of petals. 

The QUADRIFOLIUM is the rose with ?z = 2. The rose is 
the RADIAL CURVE of the EPICYCLOID. 

see also DAISY, MAURER ROSE, STARR ROSE 
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Rosenbrock Methods 
A generalization of the RUNGE-KUTTA METHOD for so- 
lution of ORDINARY DIFFERENTIAL EQUATIONS, also 
called KAPS-RENTROP METHODS. 

see also RUNGE-KUTTA METHOD 
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Rijssler Model 
The nonlinear 3-D MAP 

1579 

2 = 0.2 + xz - cz. 

see also L~RENZ SYSTEM 
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Rotation 
The turning of an object or coordinate system by an AN- 

GLE about a fixed point. A rotation is an ORIENTATION- 
PRESERVING ORTHOGONAL TRANSFORMATION. Eu- 
LER'S ROTATION THEOREM states that an arbitrary ro- 
tation can be parameterized using three parameters. 
These parameters are commonly taken as the EULER 
ANGLES. Rotations can be implemented using ROTA- 

TION MATRICES. 

The rotation SYMMETRY OPERATION for rotation by 
360”/n is denoted rrn.” For periodic arrangements of 
points (“crystals”), the CRYSTALLOGRAPHY RESTRIC- 
TION gives the only allowable rotations as 1, 2, 3, 4, and 
6. 

see U~SO DILATION,EUCLIDEAN GROUP,EULER’S ROTA- 

TI~NTHEOREM,EXPANSION,IMPROPERROTATION, IN- 
FINITESIMAL ROTATION, INVERSION OPERATION, MIR- 
ROR PLANE, ORIENTATION-PRESERVING, QRTHOGO- 

NAL TRANSFORMATION, REFLECTION,ROTATION FOR- 
MULA, ROTATION GROUP, ROTATION MATRIX, ROTA- 

TION OPERATOR, ROTOINVERSION, SHIFT, TRANSLA- 

TION 
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Rotation Formula 
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A formula which relates the VECTOR r' to the ANGLE 
!D in the above figure (Goldstein 1980). Referring to the 
figure, 

rt = ti + ti + rd 
=C(&r)+[r-~(~~r)]cos@+(rXti)sin~ 

=rcos++ti(&r)(l-cos+)+(rxfi)sin@. 

The ANGLE + and unit normal ti may also be 
as EULER ANGLES. In terms of the EULER 
TERS, 

expressed 
PARAME- 

r’ = r(eo2 -e12 
2 

-e2 - ea2) + 2e(e. r) + 2(r x h) sin+. 

see ah EULER ANGLES, EULER PARAMETERS 
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Rotation Group 
There are three representations of the rotation groups, 
corresponding to EXPANSION/DILATION, ROTATION, 
and SHEAR. 

Rotation Matrix 
When discussing a ROTATION, there are two possible 
conventions: rotation of the axes and rotation of the 
object relative to fixed axes. 

curve rotated by angle t) 

In R2, let a curve be rotated by a clockwise ANGLE 0, so 
that the original axes of the curve are 2 and y, and the 
new axes of the curve are 2’ and 9'. The MATRIX trans- 
forming the original curve to the rotated curve, referred 
to the original ji: and 9 axes, is 

R@ = 
[ 

cos e sin 0 
- sin8 1 co& ’ (1) 

i.e., 
x = RBx’. (2) 

CUECS rotated by angle 8 

On the other hand, let the axes with respect to which 
a curve is measured be rotated by a clockwise ANGLE 

19, so that the original axes are 2, and 90 
axes are ji: and 9. Then the MATRIX tra 
coordinates of the curve with respect to fi: 
by the MATRIX TRANSPOSE of the above 

i.e., 
x = R;xoa 

, and the new 
nsforming the 
and y is given 
matrix: 

(3) 

(4) 

In IR3, rotations of the CC-, y-, and z-axes give the ma- 
trices 

R,(a) = 

R,(P) = 

Rz(Y) = 

1 0 0 
0 cosa sin QI 1 (5) 
0 -sina cosa 

cosp 0 -sin@ 
0 1 0 1 (6) 

sinp 0 cos p 

cos y siny 0 
- siny cosy 0 . 1 (7) 

0 0 1 

see UZSO EULER ANGLES, EULER'S ROTATION THEO- 
REM,ROTATION 

Rotation Number 
The period for a QUASIPERIODIC trajectory to pass 
through the same point in a SURFACE OF SECTION. If 
the rotation number is IRRATIONAL, the trajectory will 
densely fill out a curve in the SURFACE OF SECTION. If 
the rotation number is RATIONAL, it is called the WIND- 
ING NUMBER, and only a finite number of points in the 
SURFACE OF SECTION will be visited by the trajectory. 

see also QUASIPERIODIC FUNCTION, SURFACE OF SEC- 
TION, WINDING NUMBER (MAP) 

Rotation Operator 
The rotation operator can be derived from examining 
an INFINITESIMAL ROTATION 

where d/dt is the time derivative, w is the ANGULAR 
VELOCITY, and x is the CROSS PRODUCT operator. 

see also ACCELERATION, ANGULAR ACCELERATION,~N- 
FINITESIMAL ROTATION 

Rot h’s Removal Rule 
If the matrices A, X, B, and C satisfy 

AX-XB=C, 
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see also LENS, REULEAUX TRIANGLE where I is the IDENTITY MATRIX. 
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Rotunda 
A class of solids whose only true member is the PEN- 
TAGONAL ROTUNDA. Roth’s Theorem 

For ALGEBRAIC QI 
see also ELONGATED ROTUNDA, GYR~ELONGATED Ro- 
TUNDA, PENTAGONAL ROTUNDA, TRIANGULAR HEBE- 
SPHENOROTUNDA 

P I I 1 
a-- <-, 

4 q2+’ 
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see UZSO HURWITZ EQUATION, HURWITZ'S IRRATIONAL 
NUMBER THEOREM, LAGRANGE NUMBER (RATIO- 
NAL APPROXIMATION), LIOUVILLE'S RATIONAL AP- 

PROXIMATION THEOREM, LIOUVILLE-ROTH CONSTANT, 

MARKOV NUMBER, SEGRE'S THEOREM,THUE-SIEGEL- 
ROTH THEOREM 

Rouch6’s Theorem 
Given two functions f and g ANALYTIC in A with y 
a simple loop HOMOTOPIC to a point in A, if [g(z)1 < 
] f (z) 1 for all z on y, then f and f + g have the same 
number of ROOTS inside ye 
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Roulette 
The curve traced by a fixed point on a closed convex 
curve as that curve rolls without slipping along a sec- 
ond curve. The roulettes described by the FOCI of CON- 

ICS when rolled upon a line are sections of MINIMAL 

SURFACES (i.e., they yield MINIMAL SURFACES whenre- 
volved about the line) known as UNDULOIDS. 

Rotkiewicz Theorem 
If n > 19, there exists a base-2 PSEUDOPRIME between 
n and n2. The theorem was proved in 1965. 

see also PSEUDOPRIME 
Curve 1 

circle 

curve 2 

exterior 

Pole 

on c. 

Roulette 

epicycloid References 
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doprimiers.” Rend. Circ. Mat. Palermo Ser. 2 14, 278- 
280, 1965. 
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circle 

circle interior on c. hypocycloid 

circle 

circle line on c. cycloid 

circle same circle any point rose 

circle line center parabola 

involute 

cycloid line center ellipse 

ellipse line focus elliptic catenary Rotoinversion 
hyperbola line focus hyperbolic catenary 

hyperbolic line origin tractrix see IMPROPER ROTATION 
spiral 

line any curve on line involute of curve 

logarithmic line any point line 

spiral 

parabola equal vertex cissoid of Diocles 

Rotor 
A convex figure that can be rotated inside a POLY- 
GON (or POLYHEDRON) while always touching every side 
(or face). The least AREA rotor in a SQUARE is the 
REULEAUX TRIANGLE. The least AREA rotor in an 
EQUILATERAL TRIANGLE is a LENS with two 60” ARCS 
of CIRCLES and RADIUS equal to the TRIANGLE ALTI- 
TUDE. 

parabola 

parabola 

line focus catenary 

see also GLISSETTE, UNDULOID 
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Curves. Cambridge, England: Cambridge University 
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Round 

see NINT 

Rounding 
The process of approximating a quantity, usually done 

for convenience or, in the case of numerical computa- 

tions, of necessity. If rounding is performed on each of 

a series of numbers in a long computation, round-off er- 

rors can become important, especially if division by a 

small number ever occurs. 

see also SHADOWING THEOREM 

References 
Wilkinson, 3. H. Rounding Errors in Algebraic Processes. 

New York: Dover, 1994. 

Routh-Hurwite Theorem 
Consider the CHARACTERISTIC EQUATION 

[XI - Al = X” + blXn-’ + l  l  . + b,-IX + 6, = 0 

determining the n EIGENVALUES X of a REAL n x n 
MATRIX A,where I is the IDENTITY MATRIX. Then the 
EIGENVALUES X all have NEGATIVE REAL PARTS if 

where 

Ak = 

A, > &AZ > 0, l  . l  ,A, > 0, 

bl 1 0 0 0 0 . . . 0 
ba bz h 1 0 0 . . . 0 
b, b, b3 b2 h 0 . . . 0 
1 . . . . . . . . . . . . * . 

b2;m1 b2;s2 bairn3 b2;s4 b2;s5 bz;Bs - - 8 b; 

References 
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 

ries, and Products, 5th ed. San Diego, CA: Academic 
Press, p. 1119, 1979. 

Rout h’s Theorem 
If the sides of a TRIANGLE are divided in the ratios X : 1, 

p : 1, and v : I, the CEVIANS form a central TRIANGLE 
whose AREA is 

(X/w - 1)” 
A= (~/&+x+l)(I1,Y+/L+l)(l4+~+1) Ay (I) 

where A is the AREA of the original TRIANGLE. For 
X=p=v=n, 

A= ( n-1)’ A 

n2+n+l l  

(2) 

For n = 2, 3, 4, 5, the areas are 3, $, and g. The 
AREA of the TRIANGLE formed by connecting the divi- 

sion points on each side is 

b 
At = (A + l)(p + l)(v + 1) A- 

(3) 

Routh’s theorem gives CEVA'S THEOREM and MENE- 
LAUS' THEOREM as special cases. 

see also CEVA’S THEOREM, CEVIAN, MENELAUS’ THE- 

OREM 

References 
Coxeter, H. S. M. Introduction to Geometry, 2nd ed. New 
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RSA Encryption 
A PUBLIC-KEY CRYPTOGRAPHY ALGORITHM which 

uses PRIME FACTORIZATION as the TRAPDOOR FUNC- 
TION. Define 

n = pq (1) 

for p and q PRIMES. Also define a private key d and a 

public key e such that 

de E 1 (mod 4(n)) (2) 

(e, e4> = 1, 

where 4(n) is the TOTIENT FUNCTION. 

(3) 

Let the message be converted to a number M. The 
sender then makes n and e public and sends 

E = Me (mod n). (4 

To decode, the receiver (who knows d) computes 

~~ s (M~)~ s Med E MN4(“~+” G M (mod n), (5) 

since nT is an INTEGER. In order to crack the code, d 

must be found. But this requires factorization of n since 

4(n) = (P - Q(q - 1). (6) 
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Both p and Q should be picked so that p * 1 and 4 + 1 
are divisible by large PRIMES, since otherwise the POL- 
LARD p- 1 FACTORIZATION METHOD O~WILLIAMS p+ 1 
FACTORIZATION METHOD potentially factor n easily. It 
is also desirable to have @(pq)) large and divisible by 
large PRIMES. 

It is possible to break the cryptosystem by repeated en- 
cryption if a unit of Z/4(n)Z has small ORDER (Sim- 
mons and Norris 1977, Meijer l996), where z/sz is the 
RING of INTEGERS between 0 and s - 1 under addition 
and multiplication (mod s). Meijer (1996) shows that 
“almost” every encryption exponent e is safe from break- 
ing using repeated encryption for factors of the form 

p = 2p1+ 1 

q=&+I, > 

PI = 2172 + 1 

q1 = 2q2 + 1, 

and p, pl, ~2, q, ql, and q2 are all PRIMES. In this case, 

4(n) = 4Plql 

he4> = 8PzQz* 

(11) 

(12) 

Meijer (1996) also suggests that ~2 and ~2 should be of 
order 1075. 

Using the RSA system, the identity of the sender can be 
identified as genuine without revealing his private code. 

see also PUBLIC-KEY CRYPTOGRAPHY 
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RSA Number 
Numbers contained in the “factoring challenge” of RSA 
Data Security, Inc. An additional number which is not 
part of the actual challenge is the RSA-129 number. The 
RSA numbers which have been factored are RSA-100, 
RSA-110, RSA-120, RSA-129, and RSA-130 (Cowie et 
al. 1996). 

published by R. Rivest, A. Shamir, and L. Adleman 
(Gardner 1977), along with the number and a $100 
reward for its decryption. Despite belief that the 
message encoded by RSA-129 “would take millions of 
years of break,” RSA-129 was factored in 1994 using 
a distributed computation which harnessed networked 
computers spread around the globe performing a mul- 
tiple polynomial QUADRATIC SIEVE FACTORIZATION 
METHOD. The effort was coordinated by P. Leylad, 
II. Atkins, and M. Graff. They received 112,011 full fac- 
torizations, 1,431,337 single partial factorizations, and 
8,881,138 double partial factorizations out of a factor 
base of 524,339 PRIMES. The final MATRIX obtained 
was 188,346 x 188,346 square. 

The text of the message was “The magic words are 
squeamish ossifrage” (an ossifrage is a rare, predatory 
vulture found in the mountains of Europe), and the FAC- 
TORIZATION (into a 64-DIGIT number and a 65-DIGIT 

number) is 

. ..721242362562561842935706935245?338978305971*.* 

= 3490529510847650949147849619903898133417764~~~ 

l **638493387843990820577*3276913299326.*. 

l  9  9  942539798288533 

(Leutwyler 1994, Cipra 1995). 
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Rubber-Sheet Geometry 

NONALGEBRAIC TOPOLOGY 

RSA-129 is a 129-digit number used to encrypt one 
of the first public-key messages. This message was 
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Rubik’s Clock 
A puzzle consisting of 18 small clocks. There are 12r8 
possible configurations, although not all are realizable. 

see also RUBIK’S CUBE 
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Rubik’s Cube 

A 3 x 3 x 3 CUBE in which the 26 subcubes on the outside 
are internally hinged in such a way that rotation (by a 
quarter turn in either direction or a half turn) is possible 
in any plane of cubes. Each of the six sides is painted 
a distinct color, and the goal of the puzzle is to return 
the cube to a state in which each side has a single color 
after it has been randomized by repeated rotations. The 
PUZZLE was invented in the 1970s by the Hungarian 
Erno Rubik and sold millions of copies worldwide over 
the next decade. 

The number of possible positions of Rubik’s cube is 

8!12!38212 

203.2 
= 43,252,003,274,489,856,000 

(Turner and Gold 1985). Hoey showed using the P~LYA- 

BURNSIDE LEMMA that there are 901,083,404,981,813,- 
616 positions up to conjugacy by whole-cube symme- 
tries. 

Algorithms exist for solving a cube from an arbitrary ini- 
tial position, but they are not necessarily optimal (i.e., 
requiring a minimum number of turns). The maximum 
number of turns required for an arbitrary starting po- 
sition is still not known, although it is bounded from 
above. Michael Reid (1995) produced the best proven 
bound of 29 turns (or 42 “quarter-turns”). The proof 
involves large tables of “subroutines” generated by com- 
puter. 

However, Dik Winter has produced a program based on 
work by Kociemba which has solved each of millions of 
cubes in at most 21 turns. Recently, Richard Korf (1997) 
has produced a different algorithm 

away from for cubes up to 18 moves 
which is practical 
solved. Out of 10 

randomly generated cubes, one was solved 
three required 17 moves, and six required 

in 
18 

16 moves, 
moves. 

see also RUBIK’S CLOCK 
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Rudin-Shapiro Sequence 
The sequence of numbers given by 

c k-1 

iz 1 
"iei+l 

? (1) 

where n is written in binary 

(2) 

It is therefore the parity of the number of pairs of consec- 
utive 1s in the BINARY expansion of n, The SUMMATORY 

sequence is 
n 

which gives 

2”12 + 1 if IC is even Sn = 
2(k11)/2 + 1 if k is odd 

(Blecksmith and Laud 1995). 

(3) 
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Rudvalis Group 
The SPORADIC GROUP Ru. 

see also SPORADIC GROUP 
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Rule 
A usually simple ALGORITHM or IDENTITY. The term is 
frequently applied to specific orders of NEWTON-C• TES 
FORMULAS. 

see also ALGORITHM, BAC-CAB RULE, BODE'S RULE, 
CHAIN RULE, CRAMER'S RULE, DESCARTES' SIGN 
RULE, DURAND'S RULE, ESTIMATOR, EULER'S RULE, 
EULER'S TOTIENT RULE, GOLDEN RULE, HARDY'S 
RULE, HORNER'S RULE, IDENTITY, L'HOSPITAL'S 
RULE,LEIBNIZ INTEGRAL RULE, METHOD, OSBORNE'S 
RULE, PASCAL'S RULE,POWERRULE,PRODUCTRULE, 
QUARTER SQUARES RULE, QUOTA RULE, QUOTIENT 
RULE, ROTH'S REMOVAL RULE, RULE OF 72, SIMP- 
SON'S RULE, SLIDE RULE, SUM RULE, TRAPEZOIDAL 
RULE,~EDDLE'S RULE, ZEUTHEN'S RULE 

Rule of 72 
70 
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2 40 
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The time required for a given PRINCIPAL to double (as- 
suming n = 1 CONVERSION PERIOD) for COMPOUND 
INTEREST is given by solving 

2P = P(l + T)t, (1) 

In 2 

it = ln(l + r) ’ (2) 

where LN is the NATURAL LOGARITHM. This function 
can be approximated by the so-called “rule of 72”: 

t 
0.72 

==:- 
T  . 

(3) 

The above plots show the actual doubling time t (left 
plot) and difference between actual and time calculated 
using the rule of 72 (right plot) as a function of the 
interest rate T. 

see also COMPOUND INTEREST, INTEREST 
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Ruled Surface Ruler 

A SURFACE which can be swept out by a moving LINE in 
space and therefore has a parameterization of the form 

x(u,v) = b(u) + v&u), (1) 

where b is called the DIRECTRIX (also called the BASE 
CURVE) and 6 is the DIRECTOR CURVE. The straight 
lines themselves are called RULINGS. The rulings of a 
ruled surface are ASYMPTOTIC CURVES. Furthermore, 

the GA USSIAN CURVATURE on a ruled 
FACE is everywhere NONPOSITIVE. 

REGULAR SUR- 

Examples of ruled surfaces include the elliptic HYPER- 
BOLOID of one sheet (a doubly ruled surface) 

[ 

a(cosu~ vsinu) 
b(sinu * cosu) 

ItCV 

]= [;zp]*“[-;;“]; (2) 

the HYPERBOLIC PARABOLOID (adoubly ruled surface) 

[42]= [y]+v[L]: (3) 
PLUCKER'S CONOID 

and the MOBIUS STRIP 

a sinu+vcos($u 

L vsin(+u) 

=u 

sinu 

(Gray 1993). 

The only ruled MINIMAL SURFACES are the PLANE and 
HELICOID (Catalan 1842, do Carmo 1986). 

see als 10 ASYMPTOTIC CURVE, CAYLEY'S RULED SUR- 
FACE, DEVELOPABLE SURFACE, DIRECTOR C URVE, 
DIRECTRIX (RULED SURFACE), GENERALIZED CONE, 
GENERALIZED CYLINDER, HELICOID, NONCYLINDRI- 
CAL RULED SURFACE,PLANE,RIGHT CONOID, RULING 
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A STRAIGHTEDGE with markings to indicate distances. 
Although GEOMETRIC CONSTRUCTIONS are sometimes 
said to be performed with a ruler and COMPASS, the 
term STRAIGHTEDGE is preferable to ruler since mark- 
ings are not allowed by the classical Greek rules. 

see also COASTLINE PARADOX, COMPASS, GEOMETRIC 
CONSTRUCTION,GEOMETROGRAPHY,GOLOMBRULER, 
PERFECT RULER,SIMPLICITY,SLIDE RULE, STRAIGHT- 
EDGE 
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Ruler Function where 
The exponent of the largest POWER of 2 which DIVIDES 
a given number k. The values of the ruler function are 
1, 2, 1, 3, 1, 2, 1, 4, 1, 2, . . . (Sloane’s AOO1511). 
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(Goulden and Jackson 1983, Bloom 1996). These formu- 
las disprove the assertion of Gardner (1982) that “there 
will almost always be a clump of six or seven CARDS 
of the same color” in a normal deck of cards by giving 

pS(26,26> = 0.46424. 

Ruling 
One of the straight lines sweeping out a RULED SUR- 

FACE. The rulings on a ruled surface are ASYMPTOTIC 
CURVES. 

Given n BERNOULLI TRIALS with a probability of suc- 
cess (heads) p, the expected number of tails is n( 1 - p), 
so the expected number of tail runs > 1 is z n(l - p)p. 
Continuing, 

see also ASYMPTOTIC CURVE, DIRECTOR CURVE, DI- 

RECTRIX (RULED SURFACE),RULED SURFACE is the expected number of runs 
petted run is therefore given by 

Run 
A run is a sequence of more than one consecutive iden- 
tical outcomes, also known as a CLUMP. Given n BER- 

NOULLI TRIALS (say, in the form of COIN TOSSINGS), 
the probability Pt(n) of a run of t consecutive heads or 
tails is given by the RECURRENCE RELATION 

(Gordon et al. 1986, Schilling 1990). Given m OS and n 
Is, the number of possible arrangements with u runs is 

Pt(n) = Pt(n - 1) + 271 - Pt(n - t)], (1) 

where Pt (n) = 0 for n < t and Pt(t) = 21Wt (Bloom 
1996). for k an INTEGER, where (i) is a BINOMIAL COEFFI- 

CIENT. Then 
Let C&z, k) denote the number of sequences of m indis- 
tinguishable objects of type A and k indistinguishable 
objects of type B in which 720 t-run occurs. The proba- 
bility that a t-run does occur is then given by 

G cm, k> 
Pt(m, k) = 1 - - 

m+k 1 

( > k 

(2) 

where (E) is a BINOMIAL COEFFICIENT. Bloom (1996) 
gives the following recurrence sequence for Ct(m, k), 

Ct(m, k) = &(m - 1, k - i) 
i=o 

t-1 

- 
c ( 

Ct m - t,k - i) + e&n, k), (3) 
i=l 

where 

1 ifm=OandO<k<t 
et(m, k) E -1 ifm =tandOsk<t (4) 

0 otherwise. 

Another recurrence which has only a fixed number of 
terms is given by 

Ct(m,k) = Ct(m- l,k)+Ci(m,k-l)-G(m-t,k-1) 

-Gt(m - l,k-t)+Ct(m- t, k - t) + eT(m,k), (5) 

RWZ 

1 if (m, k) = (0,O) or (t, t) 
ez(m, k) E -1 if (m,k) = (0, t) or (t, 0) (6) 

0 otherwise 

NR = n(1 - p)pR (7) 

> I& The longest ex- - 

- P)l (8) 

Bloom (1996) gives the expected number of noncontigu- 
ous t-runs in a sequence of m OS and n 1s as 

E(n,m, t) = 
(m + I)(+ + (n + l)(m>t 

(m + n)t 
1 (11) 

where (a), is the PUCHHAMMER SYMBOL. For m > 10, 
u has an approximately NORMAL DISTRIEWTION with 
MEAN and VARIANCE 

2mn 
CLU =l+- 

m-t-n 
(12) 

2 ou = 
2mn(2mn - m - n) 

(m + n)2(m + n - 1) ’ (13) 

see also COIN TOSSING, EULERIAN NUMBER, PERMU- 

TATION, S-RUN 
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Runge-Kutta Method 
A method of integrating ORDINARY DIFFERENTIAL 
EQUATIONS by using a trial step at the midpoint of 
an interval to cancel out lower-order error terms. The 
second-order formula is 

h = hf (Xn,Yn) 

k2 = hf(xn + ;h, yn + $1) 

yn+l = yn + b + o(h3), 

and the fourth-order formula is 

h = hf (xn, yn) 
kz = hf(xn + +h,yn + $1) 
h = hf(xn + +h,yn + $ka) 

JE4 = hf (xn + h, yn + kg) 

Yn+l = yn + ikl + $h + ik3 + ikd + S(h5). 

(Press et al. 1992). This method is reasonably simple 
and robust and is a good general candidate for numerical 
solution of differential equations when combined with an 
intelligent adaptive step-size routine. 

see UZSO ADAMS’ METHOD, GILL’S METHOD, MILNE’S 

METHOD, ORDINARY DIFFERENTIAL EQUATION, 
ROSENBROCK METHODS 
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lMathematical ‘Tables, 9th printing. New York: Dover, 
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A&en, G. Mathematical Methods for Physicists, 3rd ed. Or- 
lando, FL: Academic Press, pp. 492-493, 1985. 

Cartwright, J. H. E. and Piro, 0. “The Dynamics of Runge- 
Kutta Methods.” Int. J. Bifurcations Chaos 2, 427-449, 
1992. http://formentor.uib.es/-julyan/TeX/rkpaper/ 
root/root. html. 

Lambert, J. D. and Lambert, D. Ch. 5 in Numerical Meth- 
ods for Ordinary Differential Systems: The Initial Value 
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Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 
ling, W. T. “Runge-Kutta Method” and “Adaptive Step 

Size Control for Runge-Kutta.” $16.1 and 16.2 in Numeri- 
cal Recipes in FORTRAN: The Art of Scientific Comput- 
ing, 2nd ed. Cambridge, England: Cambridge University 
Press, pp* 704-716, 1992. 

Runge-Walsh Theorem 
Let f (2) be an ANALYTIC FUNCTION which is REGULAR 

in the interior of a JORDAN CURVE C and continuous in 
the closed DOMAIN bounded by C. Then f(x) can be 
approximated with an arbitrary accuracy by POLYNO- 
MIALS. 

see also ANALYTIC FUNCTION, JORDAN CURVE 

References 
Szegii, G 

Amer. 
Orthogonal Polynomials, 

‘Math. Sot., p. 7, 1975. 
4th ed. Providence, RI: 

Running Knot 
A KNOT which tightens around an object when strained 
but slackens when the strain is removed. Running knots 
are sometimes also known as slip knots or nooses. 

References 
Owen, P. Knots. Philadelphia, PA: Courage, p. 60, 1993. 

Russell’s Antinomy 
Let R be the set of all sets which are not members of 
themselves. Then R is neither a member of itself nor not 
a member of itself. Symbolically, let R = {x : x 6 2). 

Then R E R IFF R $Z R. 

Bertrand Russell discovered this PARADOX and sent it 
in a letter to G. Frege just as F’rege was completing 
Grundlagen der Arithmetik. This invalidated much of 
the rigor of the work, and F’rege was forced to add a note 
at the end stating, “A scientist can hardly meet with 
anything more undesirable than to have the foundation 
give way just as the work is finished. I was put in this 
position by a letter from Mr. Bertrand Russell when the 
work was nearly through the press.” 

see also GRELLING’S PARADOX 
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University Press, p. 78, 1996. 
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Russell’s Paradox 

see RUSSELL’S ANTINOMY 
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Russian Multiplication 
Also called ETHIOPIAN MULTIPLICATION. To multiply 
two numbers a and b, write a0 E a and bo E b in 
two columns. Under a~, write Lao/2], where 1x1 is the 
FLOOR FUNCTION, and under bo, write 2bo. Continue 
until ai = 1. Then cross out any entries in the b column 
which are opposite an EVEN NUMBER in the a column 
and add the b column. The result is the desired product. 
For example, for a = 27, b = 35 

27 35 
13 70 

6440 
3 280’ 
1 560 

945 

Russian Roulette 
Russian roulette is a GAME of chance in which one or 
more of the six chambers of a gun are filled with bullets, 
the magazine is rotated at random, and the gun is shot. 
The shooter bets on whether the chamber which rotates 
into place will be loaded. If it is, he loses not only his 
bet but his life. 

A modified version is considered by Horn et al. (1996) 
and Blom (1989). In this variant, the revolver is loaded 
with a single bullet, and two duelists alternately spin the 
chamber and fire at themselves until one is killed. The 
probability that the first duelist is killed is then 6/11. 

References 
Blom, G. Probabilities and Statistics: Theory and Applica- 

tions. New York: Springer-Verlag, p. 32, 1989. 
Blom, G.; Englund, J,.-E.; and Sandell, D. “General Russian 

Roulette.” Math. Mag. 69, 293-297, 1996. 

Ryser Formula 
A formula for the PERMANENT of a MATRIX 

perm(aij) = (-1)” x (-1)J”J fi x uij, 
i=l jEs 

where the SUM is over all SUBSETS of (1, . . l  , n}, and 
1 s 1 is the number of elements in s. The formula can be 
optimized by picking the SUBSETS so that only a single 
element is changed at a time (which is precisely a GRAY 

CODE), reducing the number of additions from n2 to n. 

, It turns out that the number of disks moved after the 
Fzth step in the TOWERS OF HANOI is the same as the 
element which needs to be added or deleted in the kth 
ADDEND of the RYSER FORMULA (Gardner 1988, Vardi 
1991, p. 111) 

see aho DETERMINANT, GRAY CODE, PERMANENT, 
TOWERS OF HANOI 

Puzzles & Diversions. New York: Simon and Schuster, 
1959. 

Knuth, D. E. The Art of Computer Programming, Vol. 2: 
Seminumerical Algorithms, 2nd ed. Reading, MA: 
Addison-Wesley, p. 497, 1981. 

Nijenhuis, A. and Wilf, H. Chs. 7-8 in Combinatorial Algo- 
rithms. New York: Academic Press, 1975. 

Vardi, I. Computational Recreations in Mathematics. Read- 
ing, MA: Addison-Wesley, p. 111, 1991. 
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S 

s-Additive Sequence 
A generalization of an ULAM SEQUENCE in which each 
term is the SUM of two earlier terms in exactly s ways. 
(s, Q-additive sequences are a further generalization in 
which each term has exactly s representations as the 
SUM of t distinct earlier numbers. It is conjectured that 
O-additive sequences ultimately have periodic differences 
of consecutive terms (Guy 1994, pm 233). 

see also GREEDY ALGORITHM, ST~HR SEQUENCE, 
ULAM SEQUENCE 
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Finch, S. R. “Conjectures about s-Additive Sequences.” Fib. 
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Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. 

New York: Springer-Verlag, pp. 110 and 233, 1994. 
Ulam, S. M. Problems in Modern Mathematics. New York: 

Interscience, p. ix, 1964, 

s-Cluster 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

Let an n x n MATRIX have entries which are either 1 

(with probability p) or 0 (with probability Q = 1 - p). 

An s-cluster is an isolated group of s adjacent (i.e., hori- 
zontally or vertically connected) 1s. Let Cn be the total 
number of Y~ITE" clusters. Then the value 

(C > KS(~) = lim - 
?-&+m nY ’ (1) 

called the MEAN CLUSTER COUNT PER SITE or MEAN 
CLUSTER DENSITY, exists. Numerically, it is found that 
Ks(l/2) sz: 0.065770. l  . (Ziff et al. 1997). 

Considering instead LLB~~~7' clusters (where numbers 
are assigned to the edges of a grid) and letting Cn be 
the total number of bond clusters, then 

(C 1 K&p) G lim - 
n-h- nY 

exists. The analytic value is known for p = l/2, 

Temperley, H. N. V. and Lieb, E. II. “Relations Between the 
‘Percolation’ and ‘Colouring’ Problem and Other Graph- 
Theoretical Problems Associated with Regular Planar Lat- 
tices; Some Exact Results for the ‘Percolation’ Problem." 
Proc. Roy. Sot. London A 322, 251-280, 1971. 

Ziff, R.; Finch, S.; and Adamchik, V. “Universality of Finite- 
Sized Corrections to the Number of Percolation Clusters.” 
Phys. Rev. Let. To appear, 1998. 

s-Run 
N.B. A detailed on-line essay by S. Finch was the start- 

ing point for this entry. 

Let v be a n-VECTOR whose entries are each 1 (with 
probability p) or 0 (with probability 4 = 1 - p), An 
s-run is an isolated group of s consecutive Is. Ignoring 
the boundaries, the total number of runs R, satisfies 

Kn = - (2) = (1 - p)” F;ps = p(l -p)(l - P”), 

a=1 

so 

K(P) = lim K, = p(1 -p), 
n-boo 

which is called the MEAN RUN COUNT PER SITE or 
MEAN RUN DENSITY in PERCOLATION THEORY. 

see also PERCOLATION THEORY, S-CLUSTER 

References 
Finch, S. ‘LFavorite Mathematical Constants.” http : //www . 

mathsoft.com/asolve/constant/rndprc/rndprc.html. 

S-Signature 

see SIGNATURE (RECURRENCE RELATION) 

Saalschtitzian 
For a GENERALIZED HYPERGEOMETRIC FUNCTION 

[ 
~1,~2,.-,a,+1 

WFP p1,p2,.*.,p* 7 y 1 
the Saalschiitzian S is defined if 

xp=xo+l. 

see also GENERALIZED HYPERGEOMETRIC FUNCTION 
(2) 

Saalschiitz’s Theorem 

(3) 

(Ziff et al. 1997). 

see also BOND PERCOLATION, PERCOLATION THEORY, 
S-RUN, SITE PERCOLATION 

References 
Finch, S. “Favorite Mathematical Constants.” http: //www. 

mathsoft.com/asolve/constant/rndprc/mdprc.html. 

3F2 
-5, -y, --z 1 lT(n + l)l?(x + y + n + 1) - 

n+1,-X-y-Z - r(x + n + l)r(y + 72 + 1) 

r(y + z + n + l)r(z + x + n + 1) 

‘r(~+ 72-t l)r(x+y+z+n+l) 

where 38'2 (a,b,c;d,e;x) is a GENERALIZED HYPERGEO- 
METRIC FUNCTION and F(X) is the GAMMA FUNCTION. 



1590 Saddle Saint Andre w’s Cross 

It can be derived from the DOWGALL-RA 
IDENTITY and written in the symmetric form 

.MANUJAN 

&(a, 6, c; d, e; 1) = 
Cd - 4lcl Cd - Wlcl 
dlcl (d - a - b)lcl 

for d+e = a+b+c+l with c a negative integer and (a), 
the POCHHAMMER SYMBOL (PetkovBek et al. 1996). 

see also DOUGALL-RAMANUJAN IDENTITY, GENERAL- 
IZED HYPERGEOMETRIC FUNCTION 

References 
Petkovgek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Welles- 

ley, MA: A. K. Peters, pp. 43 and 126, 1996. 

Saddle 
A SURFACE possessing a SADDLE POINT. 

see also HYPERBOLIC PARABOLOID, MONKEY SADDLE, 
SADDLE POINT (FUNCTION) 

Saddle-Node Bifurcation 

see FOLD BIFURCATION 

Saddle Point (Fixed Point) 

see HYPERBOLIC FIXED POINT (DIFFERENTIAL EQUA- 
TIONS), HYPERBOLIC FIXED POINT (MAP) 

Saddle Point (Function) 
A POINT of a FUNCTION or SURFACE which is a STA- 
TIONARY POINT but not an EXTREMUM. An example 
of a 1-D FUNCTION with a saddle point is f(z) = x3, 
which has 

f(x) = 3x2 

f”(x) = 6x 

f”‘(x) = 6. 

This function has a saddle point at 20 = 0 by the EX- 

TREMUM TEST since f”(zo) = 0 and f”‘(zo) = 6 # 0. 
An example of a SURFACE with a saddle point is the 
MONKEY SADDLE. 

Saddle Point (Game) 
For a general two-player ZERO-SUM GAME, 

min min aij 
isrn j<n 

5 min max aij . 
jln i<m 

If the two are equal, then write 

. l  

mm mm Ui j 
i<m j<n 

= minmaxuij = 21, 
j<n i<m 

where ‘u is called the VALUE of the GAME. In this case, 
there exist optimal strategies for the first and second 
players. 

A NECESSARY and SUFFICIENT condition for a saddle 
point to exist is the presence of a PAYOFF MATRIX ele- 
ment which is both a minimum of its row and a maxi- 
mum of its column. A GAME may have more than one 
saddle point, but all must have the same VALUE. 

see also GAME, PAYOFF MATRIX, VALUE 

References 
Dresher, M. “Saddle Points.” 51.5 in The IMathematics of 

Gam& of Strategy: Theory aid Applications. New York: 
Dover, pp. 12-14, 1981. 

Llewellyn, D. C.; Tovey, C.; and Trick, M. “Finding Saddle- 
points of Two-Person, Zero Sum Games.” Amer. Math. 
Monthly 95, 912-918, 1988. 

Safarevich Conjecture 

see SHAFAREVICH CONJECTURE 

Safe 
A position in a GAME is safe if the person who plays 
next will lose. 

see also GAME, UNSAFE 

The PERPENDICULAR distance s from an ARC’S MID- 

POINT to the CHORD across it, equal to the RADIUS T 
minus the APOTHEM a, 

s -r-u* 0) 

For a regular POLYGON of side length a, 

SER-T= +[csc(;) -cot(;)] 

(2) 

(3) 

(4) 

where Ris the CIRCUMRADIUS,~ the INRADIUS,~~~ the 
side length, and n is the number of sides. 

see ~ZSOAPOTHEM,CHORD,SECTOR,SEGMENT 

Saint Andrew’s Cross 



. Saint Anthony’s Cross Salem Constants 1591 

.A GREEK CROSS rotated by 45”, also called the crux 
decussata. The MULTIPLICATION SIGN x is based on 
Saint Andrew’s cross (Bergamini 1969h 

see UZSO CROSS, GREEK CROSS, MULTIPLICATION SIGN 

References 
Bergamini, ID. Mathematics. New York: Time-Life Books, 

p. 11, 1969. 

Saint Anthony’s Cross 

T 
A CROSS also called the tau cross or crux commissa. 

see also CROSS 

Saint Petersburg Paradox 
Consider a game in which a player bets on whether a 
given TOSS of a COIN will turn up heads or tails. If he 
bets $1 that heads will turn up on the first throw, $2 
that heads will turn up on the second throw (if it did 
not turn up on the first), $4 that heads will turn up on 
the third throw, etc., his expected pa&is 

i(l) + 32) + 34) +. . . = 3 + + + f +. l  l  = 00. 

Apparently, the first player can be in the hole by any 
amount of money and still come out ahead in the end. 
This PARADOX was first proposed by Daniel Bernoulli. 

The paradox arises as a result of muddling the distinc- 
tion between the amount of the final payoff and the net 
amount won in the game. It is misleading to consider 
the payoff without taking into account the amount lost 
on previous bets, as can be shown as follows. At the 
time the player first wins (say, on the nth toss), he will 
have lost 

n-l 

>: 
2 k-l = y-1 - 1 

k=l 

dollars. In this toss, however, he wins 2”-l dollars. This 
means that the net gain for the player is a whopping $1, 
no matter how many tosses it takes to finally win. As 
expected, the large payoff after a long run of tails is 
exactly balanced by the large amount that the player 
has to invest. 

In fact, by noting that the probability of winning on 
the nth toss is 1/2n, it can be seen that the probability 
distribution for the number of tosses needed to win is 
simply a GEOMETRIC DISTRIBUTION with p = l/2. 

see dso COIN TOSSING, GAMBLER’S RUIN, GEOMETRIC 

DISTRIBUTION, MARTINGALE 
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pp. 51-52, 1959. 
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duct.” Ea The World of Mathematics, Vol. 2 (Ed. K. New- 
man). Rtedmond, WA: Microsoft Press, 1988. 
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Todhunter, 5. $39& in History of the Muthematical Theory of 
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Sal 

see WALSH SUNCT~ION 

Salamin Formula 

see BRENT-SALAMIN FORMULA 

Salem Constants 
Each point of the PISOT~IJAYARAGHAVAN CONSTANTS 

S is a LIMIT POINT from both sides of a set T known as 
the Salem constants (Salem 1945). The Salem constants 
are algebraic INTEGERS > 1 in which one or more of the 
conjugates is on the UNIT CIRCLE with the others inside 
(Le Lionnais 1983, p. 150). The smallest known S&m 
number was~founH?.by’;Lehmri (1933) as the largest R-EAL 

ROOT of 

xl0 + x9 - x7 - x6 - x5 - x4 - x3 + c1: + 1 = 0, 

which is 

01 = 1.176280818.. . 

(Le Lionnais 1983, p. 35). Boyd (1977) found the fol- 
lowing table of small Salem numbers, and suggested that 
~1, 02, 03, and 04 are the smallest Salem numbers. The 
NOTATION 1 10 -1 -1 -1 is short for 1 10 -1 -1 -1 
- 1 1 0 1 - 1, the coefficients of the above polynomial. 

References 
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recre- 

ations and Essays, 13th ed. New York: Dover, pp. 44-45, 
1987, 
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k 0 polynomial 

1 1.1762808183 
2 1.1883681475 
3 1.2000265240 
4 1.2026167437 
5 1.2163916611 
6 1.2197208590 
7 1.2303914344 
8 1.2326135486 
9 1.2356645804 

10 1.2363179318 

11 1.2375048212 
12 1.2407264237 
13 1.2527759374 
14 1.2533306502 
15 1.2550935168 
16 1.2562211544 
I? 1.2601035404 
18 1.2602842369 
19 1.2612309611 
20 1.2630381399 
21 1.2672964425 
22 1.2806381563 
23 1.2816913715 

24 1.2824955606 
25 1.2846165509 
26 I.2847468215 
27 1.2850993637 

28 1.2851215202 

29 1.2851856708 

30 1.2851967268 
31 1.2851991792 

32 1.2852354362 
33 1 l 2854090648 

34 1.2863959668 
35 1.2867301820 
36 1.2917414257 
37 1.2920391602 
38 1.2934859531 
39 1.2956753719 

IO 110 -1 -1-l 
18 l-11-100 -11-11 
14 100 -1-1001 
14 10 -10000 -1 
IO 1000 -1-l 
18 1-1000000-11 
10 100-10 -1 
20 l-1000 -1100 -11 
22 10 -1-1000110 -1-l 
16 1-1000000-1 
26 10-100-100-101001 
12 1-11-100 -1 
18 10 0 0 0 0 -1 -1 -1 -1 
20 10-100-100000 
14 10 -1-1010 -1 
18 1 -100 -11000 -1 
24 l-100 -110 -1 l-101 -1 
22 1 -10 -11000 -1 l-11 
10 10 -100-l 
26 1-10000-10000001 
14 1 -10000-11 
8 100 -1-l 
26 10 0 0 0 0 -1 -1 

-1-l-1-l-1-1 
20 I-22-22 -210 -11-l 
18 1000-10-1-10-1 
26 1-211-2100 -110 -1 l-l 
30 10000 -I -1-1-1-1-1000 

01 
30 l-22-2 10 -12 -2 

10 -11-11-l 
30 1-1000000-1000-100-1 
26 10 -1-1000 10 -l-IO 11 
44 1-100000-1000-1 

00000001001 
30 10-100-1-100010010-1 
34 I-100 -11-101-1 

10 -11-101-1 
18 l-22 -22 -22 -33 -3 
26 l-100 -11-101-l 10 -11 

24 1 -10000-1000000 
20 10 -10 0 -10 0 -10 1 
10 10 -1-l 0 1 
18 1 -100 -11-101-1 

see also PISUT-VIJAYARAGHAVAN CONSTANTS 
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Salesman Problem 

Salient Point 
A point at which two noncrossing branches of a curve 
meet with diKerent tangents. 

see also CUSP 

Salinon 

The above figure formed from four connected SEMICIR- 
CLES. The word salinon is Greek for salt cellar, which 
the figure resembles. 

see &OARBELOS,PIECEWISE CIRCULAR CURVE,SEMI- 

CIRCLE 

Salmon’s Theorem 
Given a track bounded by two confocal ELLIPSES, if a 
ball is rolled so that its trajectory is tangent to the in- 
ner ELLIPSE, the ball’s trajectory will be tangent to the 
inner ELLIPSE following all subsequent caroms as well. 

References 
Salmon, G. A Treatise on Conic Sections. New York: 

Chelsea, pa 182, 1954. 

Saltus 
The word saltus has two different meanings: either a 
jump or an oscillation of a function. 

Sample Proportion 
Let there be x successes out of n BERNOULLI TRIALS. 
The sample proportion is the fraction of samples which 
were successes, so 

(1) 

For large n, 5 has an approximately NORMAL DISTRI- 
BUTION. Let RE be the RELATIVE ERROR and SEthe 
STANDARD ERROR, then 

(P> = P (2) 

SE(@) E a@) = J 
PO - P> - 

n (3) 

RE(+) = 213(1 - $1 erf-l 
PI 1 n (4 

where CI is the CONFIDENCE INTERVAL and erf x is the 
ERF function. The number of tries needed to determine 
p with RELATIVE ERROR REand CONFIDENCE INTER- 

VAL CI is 
see TRAVELING SALESMAN PROBLEM n = 2[erfD1(CI)12$(1 - $) 

(RE)2 * (5) 
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Sample Space 
Informally, the sample space for a given set of events 

Sampling Function 
The 1-D sampling function is given by 

is the set of all possible values the events may assume. 
Formally, the set of possible events for a given variate 00 

forms a SIGMA ALGEBRA, and sample space is defined SC > x = 
x ( 

S x-nAx), 

as the largest set in the SIGMA ALGEBRA. n=-m 

see also PROBABILITY SPACE, RANDOM VARIABLE, 
SIGMA ALGEBRA, STATE SPACE 

where S is the DIRAC DELTA FUNCTION. The 2-D VW 

sion is 

Sample Variance 
S(U, V> = >) S(U - Un, V - Vn), 

To estimate the population VARIANCE from a sample 
of Iv elements with a priori unknown MEAN (i.e., the 
MEAN is estimated from the sample itself), we need an 
unbiased ESTIMATOR for 0. This is the k-STATISTIC ks, 

which can be weighted to 

S(U, V) = x RnTnD,S(u - Un,V - Vn), 

N 
k2 = - 

N-lrn2 

and m2 G s2 is the sample variance 

(1) where Rn is a reliability weight, D, is a density weight 
(WEIGHTING FUNCTION), and T, is a taper. 

see also SHAH FUNCTION, SINC FUNCTION 

1 N s2 G - N xi- IE( 2)2. 
-- 2- 1 

Note that some authors prefer the definition 

N 

(2) 
Sampling Theorem 
In order for a band-limited (i.e., one with a zero POWER 
SPECTRUM for frequencies f > B) baseband (f > 0) 
signal to be reconstructed fully, it must be sampled at a 
rate f 2 213. A signal sampled at f = 2B is said to be 

12 - 1 - 
s - =N-l xi- 

E( 
q”, (3) 

NYQUIST SAMPLED, and f = 2B is called the NYQUIST 

i=l 
FREQUENCY. No information is lost if a signal is sam- 
pled at the NYQUIST FREQUENCY, and no additional 

since this makes the sample variance an UNBIASED Es- 
TIMATOR for the population variance. 
see also ~-STATISTIC, VARIANCE 

information is gained by sampling faster than this rate. 

see also ALIASING, NYQUIST FREQUENCY, NYQUIST 
SAMPLING, OVERSAMPLING 

Sampling San Marco Fkactal 
For infinite precision sampling of a band-limited signal 
at the NYQUIST FREQUENCY, the signal-to-noise ratio 
after Nq samples is 

SNR 

where 
CIENT 

P is the 

g2&/3772=&267 

(1) 

normalized cross-correlation COEFFI- 

(x(t)> (y(t)> 

p = -\/(x2(t)) (y”(t)> - 
(2) 

For p < 1, 
SNR=pJN,. (3) 

The identical result is obtained for oversampling. For 
undersampling, the SNR decreases (Thompson et al. 

The FRACTAL J(-3/4,0), where J is the JULIA SET. It 
slightly resembles the MANDELBROT SET. 

see also DOUADY’S RABBIT FRACTAL, JULIA SET, 
MANDELBROT SET 

1986). 

see UESO NYQUIST SAMPLING, OVERSAMPLING, QUANTI- 
ZATION EFFICIENCY, SAMPLING FUNCTION, SHANNON 
SAMPLING THEOREM, SING FUNCTION 

References 
Wagon, S. Muthematica in Action. New York: W. H. Free- 

man, p. 173, 1991. 

Sandwich Theorem 
References 
Feuer, A. Sampling in Digital Signal Processing and Control. 

see HAM SANDWICH THEOREM,~QUEEZING THEOREM 
Boston, MA: Birkhguser, 1996. 

Thompson, A. R.; Moran, J. M.; and Swenson, G. W. Jr. 
Interferometry and Synthesis in Radio Astronomy. New 
York: Wiley, pp. 214-216, 1986. 
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Sard’s Theorem 
The set of “critical values” of a MAP u : Iw” -+ Iw” of 
CLASS C1 has LEBE~GUE MEASURE 0 in R”. 

see aho CLASS (MAP), LEBESGUE MEASURE 

References 
Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Diciionary 

of Mathematics. Cambridge, MA: MIT Press, pm 682, 1980. 

sarkovskii’s Theorem 
Order the NATURAL NUMBERS as follows: 

Nowlet F bea C~NTINUUUS FUNCTIUN fromthe REALS 
to the REALS and suppose p + 4 in the above ordering. 
Then if F has a point of LEAST PERIOD p, then F also 
has a point of LEAST PERIOD 4. 

A special case of this general result, also known as Sar- 
kovskii’s theorem, states that if a CONTINUOUS REAL 
function has a PERIODIC POINT with period 3, then 
there is a PERIODIC POINT of period n for every IN- 

TEGER n. 

A converse to $arkovskii’s theorem says that if p + q 
in the above ordering, then we can find a CONTINUOUS 
FUNCTION which has a point of LEAST PERIOD q, but 
does not have any points of LEAST PERIOD p (Elaydi 
1996). For example, there is a CONTINUOUS FUNCTION 
with no points of LEAST PERIOD 3 but having points of 
all other LEAST PERIODS. 

see also LEAST PERIOD 

References 
Conway, J. H. and Guy, R. K. “Periodic Points.” In The 

Book of Numbers. New York: Springer-Verlag, pp. 207- 
208, 1996. 

Devaney, R. L. An Introduction to Chaotic Dynamical Sys- 
tems, 2nd ed. Reading, MA: Addison-Wesley, 1989. 

Elaydi, S. “On a Converse of Sharkovsky’s Theorem.” Amer. 
Math. Monthly 103, 386-392, 1996. 

Ott, E. Chaos in Dynamical Systems. New York: Cambridge 
University Press, p* 49, 1993. 

Sharkovsky, A. N. “Co-Existence of Cycles of a Continuous 
Mapping of a Line onto Itself.” Ukranian Math. 2. 16, 
61-71, 1964. 

Stefan, P. “A Theorem of Sharkovsky on the Existence of 
Periodic Orbits of Continuous Endomorphisms of the Real 
Line.” Comm. Math. Phys. 54, 237-248, 1977. 

S&k6zy’s Theorem 
A partial solution to the ERD~S SQUAREFREE CON- 
JECTURE which statesthatthe BINOMIAL COEFFICIENT 
("n") is never SQUAREFREE for all sufficiently large n 2 
no. &k&y (1985) showed that if s(n) is the square 
part of the BINOMIAL COEFFICIENT (c), then 

Ins(n) N (J2 - 2)c(+)&, 

where [(z)is the RIEMANN ZETA FUNCTION. Anupper 
bound on no of 281000 has been obtained. 

see also BINOMIAL COEFFICIENT, ERD~S SQUAREFREE 
CONJECTURE 

Keierences 
ErdGs, P. and Graham, R. L. Old and New Problems 

and Results in Combinatorial Number Theory. Geneva, 
Switzerland: L’Enseignement Mathhmatique Universite de 
Genkve, Vol. 28, 1980. 

Sander, J. W. “A Story of Binomial Coefficients and Primes.” 
Amer. Math. Monthly 102, 802-807, 1995. 

S&k&y, A. “On the Divisors of Binomial Coefficients, I.” J. 
Number Th. 20, 70-80, 1985. 

Vardi, I. “Applications to Binomial Coefficients .” Gom- 
putational Recreations in Mathemafica. Reading, MA: 
Addison-Wesley, pp. 25-28, 1991. 

Sarrus Linkage 
A LINKAGE which converts circular to linear motion us- 
ing a hinged square. 

see &OHART'S INVERSOR, LENKAGE,~EAUCELLIER IN- 

VERSoR 

Sarrus Number 

~~~P~uLET NUMBER 

SAS Theorem 

K 
c 

Specifying two sides and the ANGLE between them 
uniquely determines a TRIANGLE. Let b be the base 
length and h be the height. Then the AREA is 

K = ich = +acsinB. (1) 

The length of the third side is given by the LAW OF 
COSINES, 

b2 = a2 + c2 - 2accos B, 

so 
b = da2 + c2 - 2accosB. (2) 

Using the LAW OF SINES 

a b C ---- 
sinA - sinB - sinC 

then gives the two other ANGLES as 

(3) 

A = sin-’ 
asinB 

a2+c2-2accosB > 
(4 

C = sin-l 
(J 

csinB 
a2 + c2 - 2accos B’ > 

(5) 

see also AAA THEOREM, AAS THEOREM, ASA THE- 

OREM, ASS THEOREM,SSS THEOREM,TRIANGLE 
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Satellite Knot 
Let & be a knot inside a TORUS. Now knot the TORUS 
in the shape of a second knot (called the C~MPAN- 
ION KNOT) K2. Then the new knot resulting from 
KI is called the satellite knot KS. COMPOSITE KNOTS 
are special cases of satellite knots. The only KNOTS 
which are not HYPERBOLIC KNOTS are TORUS KNOTS 
and satellite knots (including COMPOSITE KNOTS). No 
satellite knot is an ALMOST ALTERNATING KNOT. 

see also ALMOST ALTERNATING KNOT, COMPANION 
KNOT,~OMPOSITE KNOT,HYPERBOLIC KNOT,TORWS 
KNOT 

References 
Adams, C. C. The Knot Book: An Elementary Introduction 

to the Mathematical Theory of Knots. New York: W. H. 
Freeman, pp. 115-118,1994. 

Satisfiability Problem 
Deciding whether a given Boolean formula in conjunc- 
tive normal form has an assignment that makes the for- 
mula “true.” In 1971, Cook showed that the problem is 
NP-COMPLETE. 

see also BOOLEAN ALGEBRA 

References 
Cook, S. A. and Mitchell, D. G. “Finding Hard Instances 

of the Satisfiability Problem: A Survey.” In Satisfiability 
problem: theory and upplications (Piscataway, NJ, 1996). 
Theoret. Comput. Sci., Vol. 35. Providence, RI: Amer. 
Math. Sot., pp* 1-17, 1997. 

Sa -usage Conj ecture 
In n-D for n 2 5 the arrangem .ent of HYPERSPHERES 

HULL has minimal CONTENT is always 
set of HYPERSPHERES arranged with 

whose CONVEX 

a “sausage” (a 
centers along a line), independent of the number of n- 

spheres. The CONJECTURE was proposed by Fejes T6th, 
and solved for dimensions 2 42 by Betke et al. (1994) 
and Betke and Henk (1998). 

see also CONTENT, CONVEX HULL,HYPERSPHERE,HY- 
PERSPHERE PACKING,~PHERE PACKING 

References 
Betke, U.; Henk, M.; and Wills, J. M. “Finite and Infinite 

Packings.” J. Reine Angew. Math. 453, 165-191, 1994. 
Betke, U. and Henk, M. “Finite Packings of Spheres.” Dis- 

crete Comput. Geom. 19, 197-227, 1998. 
Croft, H. T.; Falconer, K. J.; and Guy, R. K. Problem D9 

in Unsolved Problems in Geometry. New York: Springer- 
VerPag, 1991. 

Fejes T6th, E. “Research Problems.” Periodica Methematica 
Hungarica 6, 197-199, 1975. 

Saviteky-Golay Filter 
A low-pass filter which is useful for smoothing data. 

see also FILTER 

Heferences 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 

ling, W. T. Numerical Recipes in FORTRAN: The Art of 
Scientific Computing, 2nd ed. Cambridge, England: Cam- 
bridge University Press, pp. 183 and 644-645, 1992. 

Savoy Knot 

see FIGURE-OF-EIGHT KNOT 

Scalar 
A one-component quantity which is invariant under RO- 

TATIONS of the coordinate system. 

see also PSEUDOSCALAR, SCALAR FIELD, SCALAR 

FUNCTION, SCALAR POTENTIAL, SCALAR TRIPLE 
PRODUCT,TENSOR,VECTOR. 

Scalar Curvature 

see CURVATURE SCALAR 

Scalar Field 
A MAP f : IWn ++ R which assigns each x a SCALAR 

FUNCTION f(x). 

see also VECTOR FIELD 

References 
Morse, P. M. and Feshbach, H. “Scalar Fields.” $1.1 in Meth- 

ods of Theoretical Physics, 
Hill, pp. 4-8, 1953. 

Part I+ New York: McGraw- 

Scalar Function 
A function f(~, . . l  , 2,) of one or more variables whose 
RANGE is one-dimensional, as compared to a VECTOR 
FUNCTION, whose RANGE is three-dimensional (or, in 
general, n-dimensional). 

see also COMPLEX FUNCTION, REAL FUNCTION, VEC- 
TOR FUNCTION 

Scalar Potential 
A conservative VECTOR FIELD (for which the CURL V x 
F = 0) may be assigned a scalar potential 

$(x,y,z)-+(o,O,o)-- F-ds 
s c (x,0,0) 

=- s Fl(t, 0,O) dt + 
(W,O) s (GY ,O) 

Fz(x,V)dt 

bJw) 

s 

X,Y,E 

-t F3(x,y,t)dt, 
b,Y m 

where &F l  ds is a LINE INTEGRAL. 

see also POTENTIAL FUNCTION, VECTOR POTENTIAL 

Scalar Triple Product 
The VECTOR product 

[A,B,C]GA~(BXC)=B+XA) 

A A2 A3 

= Cm (A x B) = B1 Bz B3 

1 Cl (72 c3 

which yields a SCALAR (actually, a PSEUDOSCALAR). 

1 
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Scattering Theory 
The mathematical study of the SCATTERING OPERATOR 
and Schrodinger equation. 

see U~SO SCATTERING OPERATOR 

The VOLUME of a PARALLELEPIPED whose sides are 
given by the vectors A, B, and C is 

V parallelepiped = IA. (B x C)I. 

References 
Yafaev, D. R. Mathematical Scattering Theory: General The- 

ory. Providence, RI: Amer. Math. SOL, 1996. 

see also CROSS P RODUCT, DOT PRODUCT,PARALLEL- 
EPIPED, VECTOR TRIPLE PRODUCT 

References 
A&en, G. “Triple Scalar Product, Triple Vector Product.” 

51.5 in lMathematica1 Methods for Physicists, 3rd ed. Or- 
lando, FL: Academic Press, pp. 26-33, 1985. 

Schaar’s Identity 
A generalization of the GAUSSIAN SUM. For p and Q 
of opposite PARITY (i.e., one is EVEN and the other is 
ODD), Schaar’s identity states 

Scale 

see BASE (NUMBER) e -7ri/4 P--l 

x 

ex+2 q/P 
. 

r-0 

flir2pl!l - - 

Scale Factor 
For a diagonal METRIC TENSOR gij = giidij, where &j 
is the KRONECKER DELTA, the scale factor is defined by see also GAUSSIAN SUM 

References 
hi=&. (1) Evans, R. and Berndt, B. “The 

Sums.” Bull. Amer. Math . sot. 
Determination of Gauss 
5, 107429, 1981. 

The LINE ELEMENT (first FUNDAMENTAL FORM) is then 
given by Schanuel’s Conjecture 

Let Al, . . . . X, E c be linearly independent over the 
RATIONALS Q, then ds2 = gll dx112 + gzz dxm2 + g33 dx3s2 (2) 

= h12 dxl12 + hz2 dxm2 + ha2 dxw2. (3) 
W 11.W.) X,,exl,...,ex”) 

The scale factor appears in vector derivatives of 
nates in CURVILINEAR COORDINATES. 

coordi- 
has TRANSCENDENCE degree at least n over (& 
Schanuel’s conjecture is a generalization of the 
L~NDEMANN-WEIERSTRAJ~ THEOREM. If the conjecture 
is true, then it follows that e and 7r are algebraically 
independent. Mcintyre (1991) proved that the truth of 
Schanuel’s conjecture also guarantees that there are no 
unexpected exponential-algebraic relations on the INTE- 
GERS Z (Marker 1996). 

see also CONSTANT PROBLEM 

see also CURVILINEAR COORDINATES, F 
FORMS, LINE ELEMENT 

UNDAMENTAL 

Scalene Triangle 
A TRIANGLE with three unequal sides. 

see also ACUTE TRIANGLE, EQUILATERAL 
ISOSCELES TRIANGLE,~BTUSE TRIANGLE, 

TRIANGLE, 
TRIANGLE 

References 
Macintyre, A. “Schanuel’s Conjecture and Free Exponential 

Rings.” Ann. Pure Appl. Logic 51, 241-246, 1991. 
Marker, D. “Model Theory and Exponentiation.” Not, 

Amer. Math. Sot. 43, 753-759, 1996. 

Scaling 
Increasing a plane figure’s linear dimensions by a scale 
factor s increases the PERIMETER p’ -3 sp and the AREA 
A’ + s2A. 

see UESO DILATION, EXPANSION, FRACTAL, SELF- 
SIMILARITY Schauder Fixed Point Theorem 

Let A be a closed convex subset of a BANACH SPACE 
and assume there exists a continuous MAP T sending A 
to a countably compact subset T(A) of A. Then T has 
fixed points. 

Scattering Operator 
An OPERATOR relating the past asymptotic state of a 
DYNAMICAL SYSTEM governed by the Schrodinger equa- 
tion 1 References 

Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary 
of Mathematics. Cambridge, MA: MIT Press, p. 543, 1980. 

Schauder, J. “Der Fixpunktsatz in Funktionalr%umen.” Siu- 
dia Math. 2, 171-180, 1930. 

Zeidler, E. Applied Functional Analysis: Applications to 
Mathematical Physics. New York: Springer-Verlag, 1995. 

to its future asymptotic state. 

see also WAVE OPERATOR 
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Scheme 
A local-ringed SPACE which is locally isomorphic to an 
AFFINE SCHEME. 

see UZSO AFFINE SCHEME 

References 
Iyanaga, S. and Kawada, Y. (Eds.). “Schemes.” §18E in En- 

cyclopedic Dictionary of Mathematics. Cambridge, MA: 
MIT Press, pm 69, 1980. 

Schensted Correspondence 
A correspondence between a PERMUTATION and a pair 
of YOUNG TABLEAUX. 

see also PERMUTATION, YOUNG TABLEAU 

Heterences 
Knuth, D. E. The Art of Computer Programming, I/01. 3: 

Sorting and Searching, 2nd ed. Reading, MA: Addison- 
Wesley, 1973. 

Stanton, D, W. and White, D. E. $3.6 in Constructive Com- 
binatorics. New York: Springer-Verlag, pp. 85-87, 1986. 

Scherk’s Minimal Surfaces 

A class of MINIMAL SURFACES discovered by Scherk 
(1834) which were the first new surfaces discovered since 
Meusnier in 1776. Scherk’s first surface is doubly peri- 
odic. Scherk’s second surface, illustrated above, can be 
written parametrically as 

it: = 2E[ln(l + rP> - ln(1 - reis)] 

y = %[4i tan-l (Tei”)] 

z = !R {Zi(- ln[l - r2e2iB] + ln[l + r2e2is])} 

for 8 E [0,27r), and r f (0,l). Scherk’s first surface 
has been observed to form in layers of block copolymers 
(Peterson 1988). 

von Seggern (1993) calls 

z = cln 
[ 

cos(27Ty) 

cos( 274 

“Scherk’s surface.” Beautiful images of wood sculptures 
of Scherk surfaces are illustrated by Sequin. 
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gegebener Grenzen.” J. Reine. angew. Math. 13, 185-208, 
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Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; and 
Hoffman, D. “Periodic Area-Minimizing Surfaces in Block 
Copolymers.” Nature 334, 598-601, 1988. 

von Seggern, Il. CRC Standard Curves and Surfaces. Boca 
Raton, FL: CRC Press, p* 304, 1993. 

Wolfram Research “Mat hemat ica Version 2 .O Graphics 
Gallery.” http://uww.mathsource.com/cgi-bin/Math 
Source/Applications/Graphics/3D/O207-155* 

Schiffler Point 

The CONCURRENCE S of the EULER LINES E, of 
the TRIANGLES AXBC, AXCA, AXAB, and AABC 
where X is the INCENTER. The TRIANGLE CENTER 
FUNCTION is 

1 b+c-a 
a= - 

cosB+cosC - b+c l  

Wferences 
Kimberling, C. “Central Points and Central Lines in the 

Plane of a Triangle.” Math. Mag. 67, 163-187, 1994. 
Kimberling, C. “Schiffler Point .” http://www.evansville. 
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“Problem 1018 and Solution.” Crux Math. 12, 176-179, 
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Schinael Circle 
A CIRCLE having a given number of LATTICE POINTS 
on its CIRCUMFERENCE. The Schinzel circle halving n 

lattice points is given by the equation 

C (~-+)~+y~=+5’-r fern-2keven 

( X- i)” + y2 = ;52’” for n = 2k + 1 odd. 

Note that these solutions do not necessarily have the 
smallest possible RADIUS. For example, while the 
Schinzel circle centered at (l/3, 0) and with radius 625/3 
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has nine lattice points on its circumference, 
circle centered at (l/3 1 0) with radius 6513. 

so does the References 

see also CIRCLE, CIRCLE LATTICE POINTS, Ku- 

LIK~WSKI'S THEOREM, LATTICE POINT, SCHINZEL'S 
THEOREM, SPHERE 

References 
Honsberger, R. “Circles, Squares, and Lattice Points.” 

Ch. 11 in mathematical Gems I. Washington, DC: Math. 
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Sierpiriski, W. ‘Sur un probl&me de H. Steinhaus concernant 

les ensembles de points sur le plan.” Fund. Math. 46, 
191-194, 1959. 
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Numbers. New York: Pergamon Press, 1964. 

Schinzel’s Hypothesis 
If fl(X), . l  l  7 & (2) are irreducible POLYNOMIALS with 
INTEGER COEFFICIENTS such that no INTEGER n > 1 

divides fl(x), . . . , fs(x) for all INTEGERS x, then there 
should exist infinitely many x such that fl (IC), . . . , fs (x) 
are simultaneous PRIME. 

References 
Schinzel, A. and Sierpinski, W. “Sur certaines hypothks 

concernant les nombres premiers. Remarque.” Acta 
Arithm. 4, 185-208, 1958. 

Schinzel’s Theorem 
For every POSITIVE INTEGER n, there exists a CIRCLE 

in the plane having exactly n LATTICE POINTS on its 
CIRCUMFERENCE. The theorem is based on the number 
r(n) of integral solutions (x,y) to the equation 

x2 + y2 = 72, (1) 

Honsberger, R. “Circles, Squares, and Lattice Points.” 
Ch. 11 in Mathematical Gems I. Washington, DC: Math. 
Assoc. Amer., pp. 117-127, 1973. 

Kulikowski, T. “Sur l’existence d’une sph&re passant par un 
nombre donnG aux coordon&es entieres.” L ‘Enseignement 

Math. Ser. 2 5, 89-90, 1959. 
Schinzel, A, “Sur l’existence d’un cercle passant par un 

nombre donn& de points aux coordonnees entieres.” 
L%nseignement Math. Ser. 2 4, 71-72, 1958. 

Sierpinski, W. “Sur quelques problkmes concernant les points 
aux coordonnees entikres.” L’Enseignement Math. Ser. 2 
4, 25-31, 1958. 

Sierpiliski, W. “Sur un probl&me de H. Steinhaus concernant 
les ensembles de points sur le plan.” Fund. Math. 46, 
191-194, 1959. 

Sierpiriski, W. A Selection -of Problems in the Theory of 
Numbers. New York: Pergamon Press, 1964. 

Schisma 
The musical 
third exceed five octaves, 

interval bY which eight fifths and a major 

(;)“(;) 38 05 32805 
---- - - = 25 215 32768 1.00112915.. . l  

see also COMMA OF DIDYMUS, COMMA OF PYTHAGO- 
RAS, DIESIS 

SchlMi Double Six 
see DOUBLE SIXES 

SchlMi’s Formula 
For %[z] > 0, 

J&z) = 1 s 42 
= 0 

cos(z sin i! - A) dt 

sin(vT) -~ 

s 

O” e-z sinhte-vvt dt 
? 

IT 
0 

where J&z) is a BESSEL FUNCTION OF THE FIRST 
KIND. 

References 
Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionury 

of Mathematics. Cambridge, MA: MIT Press, p. 1472, 

given by 

e4 = 4(dl - &), (2) 

where dl is the number of divisors of n of the form 4k + 1 
and dg is the number of divisors of the form 4k + 3. It 
explicitly identifies such circles (the SCHINZEL CIRCLES) 
as 

SchlMi Function 
The function giving the VOLUME of the spherical 
quadrectangular TETRAHEDRON: 

1 (a: - +>” +y2 = :5”-l for n = 2k 

( X- +)2+y2 = i52k for n- 2k+l. (3) 

Note, however, that these solution 
have the smallest possible radius. 

.s do not necessarily 

see also BROWKIN'S THEO 

REM, SCHINZEL CIRCLE 
REM, KULIKOWS KI'S THEO- 

m=l 

x cos(2mx) - cos(2my) + cos(2mz) - 1 

m2 
- x2 -y2 -z2, 

and 
D E &OS2 x cos2 x - cos2 y. 

see also TETRAHEDRON 



SchMi! i Integral 

SchEfli Integral 
A definition of a function using a CONTOUR INTEGRAL. 

Schkfli integrals may be converted into RODRTGUES 

FORMIJLAS. 

see also RODRIGUES FORMULA 

SchKfli’s Modular Form 
The MODULAR EQUATION of degree 5 can be 

see also MODULAR EQUATION 

SchlHi Polynomial 
A polynomial given in terms of the NEUMANN 
MIALS O,(X) by 

written 

POLYNO- 

Sn(x> = 
2x04x) - 2cos2(+) 

. 
n 

see also NEUMANN POLYNOMIAL 

References 
Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary 

of Mathematics. Cambridge, MA: MIT Press, pa 1477, 
1980. 

von Seggern, ID. CRC Standard Curves and Surfaces. Boca 
Raton, FL: CRC Press, p. 196, 1993. 

SchlZfli Symbol 
The symbol {p,q} is used to denote a TESSELLATION 

of regular p-gons, with 4 of them surrounding each 
VERTEX. The Schlgfli symbol can be used to de- 
scribe PLATONIC SOLIDS, and a generalized version de- 
scribes QUASIREGULAR POLYHEDRA and ARCHXMED- 
EAN SOLIIX. 

see 
QU 

also 
ASIRE 

ARCHMEDEAN SOLID, PLATONIC 

ULAR POLYHEDRON, TESSELLATION 

SOLID, 

Schlegel Graph 
A GRAPH corresponding to POLYHEDRA skeletons. The 

POLYHEDRAL GRAPHS are special cases. 

References 
Gardner, M. Wheels, Life, and Other Mathematical Amuse- 

ments. New York: W. H. Freeman, p. 158, 1983. 

Schl6milch’s Function 

S(Y,Z) E s -(I + t)-“e-zt & = xyB1ez O” uxuemu du 0 s z = p--led2 
K42,(1-4/2(4, 

where H&&Z) is the WHITTAKER FUNCTION. 

Schnirelmann ‘s Theorem 1599 

Schl6milch’s Series 
A FOURIER SERIES-like expansion of a twice continu- 

ously differentiable function 

f( > - +a0 + Fa,Ja(nx) 2 - 

n=l 

for 0 < a: < T, where JO(X) is a zeroth order BESSEL 

FUNCTION OF THE FIRST KIND and a0 G 2f(0) + 2 

IF J s 42 
du 

7r 0 
$ t (u sin 4) d$ 

0 

2 7r 

J J 

WJ 
- 

a, = - du 
x 0 

uf ‘(u sin 4) cos(nn) d@ 
0 

A special case gives the amazing identity 

00 

1 = Jo(z)+ qp2&) = [Jo(2)]2 + 2~[Jn(4]2* 

?I= 1 n=l 

see UZSO BESSEL FUNCTION OF THE FIRST KIND, BES- 

SEL FUNCTION FOURIER EXPANSION,FOURIER SERIES 

References 
Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary 

of Mathematics. Cambridge, MA: MIT Press, p. 1473, 
1980. 

Schmitt-Conway Biprism 
A CONVEX POLYHEDRON which is SPACE-FILLING, but 
only aperiodically, was found by Conway in 1993. 

see also CONVEX POLYHEDRON, SPACE-FILLING POLY- 

HEDRON 

Schnirelmann Constant 
The constant so in SCHNIRELMANN'S THEOREM. 

see also SCHNIRELMANN'S THEOREM 

Schnirelmann Density 
The Schnirelmann density of a sequence of natural num- 
bers is the greatest lower bound of the fractions A(n)/n 

where A(n) is the number of terms in the sequence 5 n. 

References 
Khinchin, A. Y. “The Landau-Schnirelmann Hypothesis and 

Mann’s Theorem.” Ch. 2 in Three Pearls of Number The- 
ory. New York: Dover, pp. 18-36, 1998. 

Schnirelmann’s Theorem 
There exists a POSITIVE INTEGER s such that every suf- 
ficiently large INTEGER is the sum of at most s PRIMES. 
It follows that there exists a POSITIVE INTEGER SO > s - 
such that every INTEGER > 1 is a sum of at most SO 
PRIMES, where so is the SCHNIRELMANN CONSTANT. 
The best current estimate is SO = 19. 

see also PRIME NUMBER, SCHNIRELMANN DENSITY, 
WARING'S PROBLEM 

References 
Khinchin, A. Y. “The Landau-Schnirelmann Hypothesis and 

Mann’s Theorem.” Ch. 2 in Three Pearls of Number The- 
ory. New York: Dover, pp. 18-36, 1998. 
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Schoenemann’s Theorem 
If the integral COEFFICIENTS Co, Cl, . l  . , G-1 of the 
POLYNOMIAL 

f(x) = CO + clx + c2x2 + . t. + &-1x N--l + xN 

The generalization to n-D is called MAZUR’S THEO- 

REM. It follows from the SchGnflies theorem that any 
two KNOTS of s1 in s2 or R2 are equivalent. 

see also JORDAN CURVE THEOREM, MAZUR'S THEO- 
REM, RIEMANN MAPPING THEOREM 

are divisible by a PRIME NUMBER p, while the free term 
Co is not divisible by p2, then f(x) is irreducible in the 
natural rationality domain. 

References 
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or 

Perish Press, p+ 9, 1976. 
Thomassen, C. “The Jordan-SchZjnflies Theorem and the 

see UZSO ABEL'S IRREDUCIBILITY THEOREM, ABEL'S 
Classification of Surfaces.” Amer. M&h. Monthly 99, 116- 

LEMMA, GAUSS'S POLYNOMIAL THEOREM, KRON- 
130,1992. 

ECKER'S POLYNOMIAL THEOREM 
Schoolgirl Problem 

References 
Dijrrie, H. 100 Great Problems of Elementary Mathematics: 

~~~K~RKMAN’S SCHOOLGIRL PROBLEM 

Their History and Solutions. New York: Dover, p. 118, 
1965. Schoute Coaxal System 

The CIRCUMCIRCLE, BROCARD CIRCLE, LEMOINE 
Scholz Conjecture 
Let the minimal length of an ADDITION CHAIN for a 
number n be denoted Z(n). Then the Scholz conjecture . . 

states that 
1(2” - 1) 5 72 - 1 + l(n). 

The conjecture has been proven for a variety of special 
cases but not in general. 

see also ADDITION CHAIN 

References 
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. 

New York: Springer-Verlag, p. 111, 1994. 

called the Schoute coaxal system. In general, there are 

LINE, and ISODYNAMIC POINTS belong to a COAXAL 

12 points whose PEDAL TRIANGLES with regard to a 
given TRIANGLE have a given form. They lie six by six 
on two CIRCLES of the Schoute coaxal system. 

SYSTEM orthogonal to the the AP~LLONIUS CIRCLES, 

References 
Johnson, R. A. Modern Geometry: An Elementary ?keatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, pp. 297-299, 1929. 

Schoute’s Theorem 
In any TRIANGLE, the Locus of a point whose PEDAL 

SchZjnflies Symbol TRIANGLE has a constant BROCARD ANGLE and is de- 

One of the set of symbols Ci, Cs, Cl, C2, C’B, Cd, Cs, scribed in a given direction is a CIRCLE of the SCHOUTE 

c6, c7, c8, c2h, C3h, C4h, C5h, C6h, CZv, c3v1 c4v, 
COAXAL SYSTEM. 

c5v, c6v, C,TJ, Da, D3, D4, Ds, Ds, Dm, Da, D4h, 

ha> Da, &h, Dmh, D2d, D3d, D4dt D5d, D6d, 1, Ih, 

0, oh, 54, &, &, T, T,, and Th used to identify crys- 

References 
Johnson, R. A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, pp. 297-299, 1929. 

Schoute, P. H. Proc. Amsterdam Acad., 39-62, 1887-1888. 
tallographic symmetry GROUPS. 

Cotton (1990), gives a table showing the translations 
between Schijnflies symbols and HERMANN-MAUGUIN 
SYMBOLS. Some of the Schijnflies symbols denote dif- 
ferent sets of symmetry operations but correspond to 
the same abstract GROUP and so have the same CHAR- 

Schrage’s Algorithm 
An algorithm for multiplying two 32-bit integers modulo 
a 32-bit constant without using any intermediates larger 
than 32 bits. It is also useful in certain types of RANDOM 

ACTER TABLE. NUMBER generators. 
see also CHARACTER TABLE, HERMANN-MAUGUIN 
SYMBOL,POINT GROUPS, SPACE GROUPS,~YMMETRY 
OPERATION 

References 
Cotton, F. A. Chemical Applications of Group Theory, 3rd 

ed. New York: Wiley, p. 379, 1990. 

fCeierences 
Bratley, P.; Fox, B. L.; and Schrage, E. L. A Guide to Sim- 

ulation, 2nd ed. New York: Springer-Verlag, 1996. 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vet- 

terling, W. T. “Random Numbers.” Ch. 7 in Numerical 
Recipes in FORTRAN: The Art of Scientific Computing, 
2nd ed. Cambridge, England: Cambridge University Press, 
p. 269, 1992. 

Schijnflies Theorem 
If J is a simple closed curve in Iw2, the closure of one 
of the components of R2 - J is HOMEOMORPHIC with 

Schrage, L. “A More Portable Fortran Random Number Gen- 
erator.” ACM Trans. Math. Sofiware 5, 132438, 1979. 

the unit ~-BALL. This theorem may be proved using the 
RIEMANN MAPPING THEOREM, but the easiest proof is 
via MORSE THEORY. 
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Schrijder-Bernstein Theorem 
The Schrijder-Bernstein theorem for numbers states that 
if 

n<m<n, - - 

then m = n. For SETS, the theorem states that if there 
are INJECTIONS of the SET A into the SET B and of 
B into A, then there is a BIJECTWE correspondence 
between A and B (i.e., they are EQUIPOLLENT). 

see also BIJECTI~N, EQUIP~LLENT, INJECTION 

Schrijder’s Equation 

where R(z) = Xx + a2x2 + l  . ., X s R’(O), 1x1 = 1, and 
Xn # 1 for all n E N. 

Schrijder’s Method 
Two families of equations used to find roots of nonlin- 
ear functions of a single variable. The “B” family is 
more robust and can be used in the neighborhood of 
degenerate multiple roots while still providing a guar- 
anteed convergence rate. Almost all other root-finding 
methods can be considered as special cases of SchrSder’s 
method. Householder humorously claimed that papers 
on root-finding could be evaluated quickly by looking 
for a citation of Schrijder’s paper; if the reference were 
missing, the paper probably consisted of a rediscovery 
of a result due to Schrijder (Stewart 1993). 

One version of the “A” method is obtained by applying 
NEWTON'S METHOD to f/f’, 

GL+1=-zn - 
f (Xn)f'(Xn) 

[f ‘(Xn)]’ - f (Xn)f"(Xn) 

(Scavo and Thoo 1995). 

see also NEWTON'S METHOD 

References 
Householder, A. S. The Numerical Treatment of a Single 

Nonlinear Equation. New York: McGraw-Hill, 1970. 
Scavo, T. R. and Thoo, J. B, “On the Geometry of Halley’s 

Method.” Amer. Math. Monthly 102, 417-426, 1995. 
Schriider, E. “Uber unendlich viele Algorithmen zur 

Auflijsung der Gleichungen.” Math. Ann. 2, 317-365, 
1870. 

Stewart, Ct. We “On Infinitely Many Algorithms for Solv- 
ing Equations .” English translation of Schrijder’s orig- 
inal paper. College Park, MD: University of Maryland, 
Institute for Advanced Computer Studies, Department of 
Computer Science, 1993. f tp: //thales . cs . umd. edu/pub/ 
reports/imase ,ps. 

Schrijder Number 

The SchrSder number S, is the number of LATTICE 
PATHS in the Cartesian plane that start at (0, 0), end at 
(n, n), contain no points above the line y = x, and are 
composed only of steps (0, 1), (1, 0), and (1, l), i.e., +, 
T, and ,P. The diagrams illustrating the paths generat- 
ing S1, S2, and Sa are illustrated above. The numbers 
Sn are given by the RECURRENCE RELATION 

n-l 

Sra=Sn-l-t- 
IE 

Sk&--l-k, 

k=O 

where SO = 1, and the first few are 2, 6, 22, 90, , . . 
(Sloane’s A006318). The Schrijder Numbers bear the 
samerelationtothe DELANNOY NUMBERS as the CATA- 
LAN NUMBERS do to the BINOMIAL COEFFICIENTS. 

see also BINOMIAL COEFFICIENT, CATALAN NUMBER, 
DELANNOY NUMBER, LATTICE PATH, M~TZKIN NUM- 
BER,~-GOOD PATH 

References 
Sloane, N. J. A. Sequence A006318/M1659 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 

Schroeder Stairs 

see PENROSE STAIRWAY 

Schriiter’s Formula 
Let a general THETA FUNCTION be defined as 

00 

T(x, q) = 
lE 

xnqn2, 

n=-m 

then 

T(x, q”)T(x, qb) = 
a+b-1 

x 
ykqbk2T(xyq2b", qa+b)qp9x--bq2abk, qab(l+b$ 

k=O 

see also BLECKSMITH-BRILLHART-GERST THEOREM, 
JACOBI TRIPLE PRODUCT,RAMANUJAN THETA FUNC- 
TIONS 
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References 
Borwein, 3. M. and Borwein, P. B. Pi & the AGM: A Study in 

Analytic Number Theory and Computational Complexity. 
New York: Wiley, p. 111, 1987. 

Tannery, J. and Molk, J. Elements de la The’orie des Fonc- 
tions Ellip tiques, 

18934902. 

4 vols. Paris: Gauthier-Villars et fils, 

Schur Algebra where p is an ODD PRIME and 
An Auslander algebra which connects the representation 
theories of the symmetric group of PERMUTATIONS and 
the GENERAL LINEAR GROUP GL(n, C). Schur algebras 
are “quasihereditary.” 

References 
Martin, S. Schur Algebras and Representation Theory. New 

York: Cambridge University Press, 1993. 

~ = 1 ifp-1 (mod4) 
P- 

1 
i ifp-3 (mod4). 

This determinant has been used to prove the QUADRA- 
TIC RECIPROCITY LAW (Landau 1958, Vardi 1991). The 
ABSOLUTE VALUES of the PERMANENTS of the Schur 
matrix of order 2p + 1 are given by 1, 3, 5, 105, 81, 
6765, . . . (Sloane’s A003112, Vardi 1991). 

Denote the Schur matrix S, with the first row and first 
row column omitted by Sk. Then 

Schur Functor 
A FUNCTOR which defines an equivalence of module 
CATEGORIES. 

References 
Martin, S. Schur Algebras and Representation Theory. New 

York: Cambridge University Press, 1993. 

Schur’s Inequalities 
Let A = aij be an n x n MATRIX with COMPLEX (or 
REAL) entries and ETGENVALUES X1, X2, . . . , X,, then 

n 

c 
i=l 

n 

I CI 

Uij + aj*; 2 
2< ~ - 2 

i,j=l 

References 
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 

ries, and Products, 5th ed. San Diego, CA: Academic 
Press, p. 1120, 1979. 

Schur’s Lemma 
For each IC E N there exists a largest INTEGER s(k) 
(known as the SCHUR NUMBER) such that no matter 
how the set of INTEGERS less than Ln!e] (where IX] 
is the FLOOR FUNCTION) is partitioned into JC classes, 
one class must contain INTEGERS z, y, z such that 

x+Y = z, where z and y are not necessarily distinct. 
The upper bound has since been slightly improved to 
ln!(e - l/24)]. 

see also COMBINATORICS, S~HUR NUMBER, SCHUR'S 
THEOREM 

References 
<GUY, R. K. “Schur’s Problem. Partitioning Integers into 

Sum-Free Classes” and “The Modular Version of Schur’s 
Problem,” §Ell and El2 in Unsolved Problems in Number 
Theory, 2nd ed. New York: Springer-Verlag, pp. 209-212, 
1994. 

Schur Matrix 

Schur Number 

The p x p SQUARE MATRIX formed by setting sij = <‘j, 
where c is an pth ROOT OF UNITY. The Schur matrix 
has a particularly simple DETERMINANT given by 

det S = +ppla, 

perm S, = p perm Sk, 

where perm denoted the PERMANENT (Vardi 1991). 

References 
Graham, R. L. and Lehmer, D. H. “On the Permanent of 

Schur’s Matrix.” J. Austral. Math. Sot. 21, 487-497, 
1976. 

Landau, E. Elementary Number Theory. New York: Chelsea, 
1958. 

Sloane, N. J. A. Sequence A003112/M2509 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Vardi, I. Computational Recreations in Mathematics. Read- 
ing, MA: Addison-Wesley, pp. 119-122 and 124, 1991. 

Schur Multiplier 
A property of FINITE SIMPLE GROUPS which is known 
for all such GROUPS. 

see also FINITE GROUP, SIMPLE GROUP 

Schur Number 
The Schur numbers are the numbers in the partition- 
ing of a set which are guaranteed to exist by SCHUR'S 
LEMMA. Schur numbers satisfy the inequality 

s(k) 2 c(315)k’5 

for Iz > 5 and some constant c. SCHUR'S THEOREM also 
shows that 

44 < w-4, 

where R(n) is a RAMSEY NUMBER. The first few 
Schur numbers are 1, 4, 13, 44, (> 157), . . . (Sloane’s - 
A045652). 

see also RAMSEY NUMBER, RAMSEY'S THEOREM, 
SCHUR'S LEMMA,SCHUR'S THEOREM 

References 
Frederickson, H. “Schur Numbers and the Ramsey Numbers 

N(3,3,. . l  ,3; 2)e” J. Combin. Theory Ser. A 27, 376-377, 
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Guy, R. K. “Schur’s Problem. Partitioning Integers into 
Sum-Free Classes” and “The Modular Version of Schur’s 
Problem.” SE11 and El2 in Unsolved Problems in Number 

Theory, 2nd ed, New York: Springer-Verlag, pp. 209-212, 
1994. 

Sloane, N, J. A. Sequence A045652 in “An On-Line Version 
of the Encyclopedia of Integer Sequences.” 

Schur’s Problem 

see SCHUR'S LEMMA 

Schur’s Representation Lemma 
If r on V and ;r~’ on V’ are irreducible representations 
and E : V ++ V’ is a linear map such that n’ (g)E = 
ET(g) for all g E and group G, then E = 0 or E is 

invertible. Furthermore, if V = V’, then E is a SCALAR. 

References 
Knapp, A. W. LCGr~~p Representations and Harmonic Anal- 

ysis, Part II.” Not. Amer. IMath. Sot. 43, 537-549, 1996. 

Schur’s Theorem 
As shown by Schur in 1916, the SCHUR NUMBER s(n) 

satisfies 

44 5 R(n) 

for 72 = 1, 2, . . . , where R(n) is a RAMSEY NUMBER. 

see ah RAMSEY NUMBER, SCHUR'S LEMMA, SCHUR 
NUMBER 

Schwa&s Inequality 

I w11lw I2 F bh1~1) w:! 

Written out explicitly 

r rb l2 rb 

I$ > 2' (1 

r b 

> 

LJ *1(x)+z(x)dx 5 
a J I 

Wl (x>12 dx 
a J 

[h (41” dx, 
a 

(2) 

with equality IFF g(x) = af(x) with a a constant. To 
derive, let Q(x) be a COMPLEX function and x a COM- 
PLEX constant such that $(x) E f(x) + xg(x) for some 
f and g. Then 

with equality when $(x) = 0. Now, note that A and X* 
are LINEARLY INDEPENDENT +(they are ORTHOGONAL), 

so differentiate with respect to one of them (say X*) and 
set to zero to minimize s $J*$J dx. 

$/q*qdx=/s’fdx++*gdx=O (4) 

which means #that 

Jf’9dx A”=-- 

J9*9dx’ 
(6) 

Plugging back in, 

/$*$dx= f f*fdx- e/f*gdx 

Jf’dx -- 
J9’9dx s 

s*f d 
X 

+ sg*f dxSf*gdx 

cs9*9 w2 s 

g*9dx > 0 
l  

- 

(7) 

Multiplying through by j g*g dx gives 

l/g*f de1 = l/f*@xi < /f*f +*dx (10) 

or 

I (fl9) I2 I (f If> (dd ’ (11) 

BESSEL'S INEQUALITY can be derived from this. 
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*A&en, G. Mathematical Methods for Physicists, 3rd ed. Or- 
lando, FL: Academic Press, pp. 527-529, 1985. 

Schwarz-Pick Lemma 
If f is an analytic map of the DISK D into IID and f pre- 
serves the hyperbolic distance between any two points, 
then f is a disk map and preserves all distance. 

References 
Busemann, H. The Geometry of Geodesics. New York: Aca- 

demic Press, p. 41, 1955. 
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Schwarz Reflection Principle 

(1) 

g*c4 = iw >( f’“‘(zo) * 2 - xo)n- ?I! 
n=O I 

00 
- - >( z* - zo*)nfY~o*~ (2) 

n! l  

If zo is pure real, then zo = zo * , so 

Therefore, if a function f(x) is ANALYTIC over some 
region including the REAL LINE and f(z) is REAL when 
z is real, then f*(z) = f(z*). 

Schwarz Triangle 
The Schwarz triangles are SPHERICAL TRIANGLES 
which, by repeated reflection in their indices, lead to 
a set of congruent SPHERICAL TRIANGLES covering the 
SPHERE a finite number of times. 

Schware triangles are specified by triples of numbers 
(p, 4, r)* There are four “families” of Schwarz triangles, 
and the largest triangles from each of these families are 

(yJn’),(3 3 “) (3 4 “) (5 s 5). 
222'233'444 

The others can be derived from 

(P 4 r> = (P x Tl> + (x Q 7-47 

where 
1 1 1 

‘pl+;=; 

and 

COSQ =-cm(;) 
cos (a) sin ($) - cos (t) sin ($) 

- - 
( > 

l  

sin % 

see also COLUNAR TRIANGLE, SPHERICAL TRIANGLE 

References 
Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York: 

Dover, pp, 112-113 and 296, 1973. 
Schware, H. A. “Zur Theorie der hypergeometrischen Reihe.” 

9. reine angew. Math. 75, 292-335, 1873. 

Schwa&an Derivative 
The Schwarzian derivative is defined by 

D - fyx) 3 f”(x) 2 
Schwarzian = - - - 

f ‘(4 277q’ [ 1 
The FEIGENBAUM CONSTANT is universalfor l-D MAPS 
if its Schwarzian derivative is NEGATIVE in the bounded 
interval (Tabor 1989, p. 220). 

see &O FEIGENBAUM CONSTANT 

References 
Tabor, M. Chaos and Infegrubility in Nonlinear Dynamics: 

An Introduction. New York: Wiley, 1989. 

Schwenk’s Formula 
Let R+B bethenumber of MONOCHROMATIC FORCED 
TRIANGLES (where R and B are the number of red and 
blue TRIANGLES) in an EXTREMAL GRAPH. Then 

where (;) is a BINOMIAL COEFFICIENT and 1x1 is the 
FLOOR FUNCTION (Schwenk 1972). 

see also EXTREMAL GRAPH, MONOCHROMATIC 
FORCED TRIANGLE 

fteierences 
Schwenk, A. J. “Acquaintance Party Problem.” Amer. Math. 

Monthly 79, 1113-1117, 1972. 

Scientific Notation 
Scientific notation is the expression of a number n in the 
form a x lop, where 

is the FLOOR of the base-10 LOGARITHM of n (the “order 
of magnitude”), and 

n 
a - 

= l()P 

is a REAL NUMBER satisfying 1 5 Ial < 10. For exam- 
ple, in scientific notation, the number n = 101,325 has 
order of magnitude 

P = b&o 101,325j = 15.00572] = 5, 

so n would be written 1.01325 x 105. The special case 
of 0 does not have a unique representation in scientific 
notation, i.e., 0 = 0 X 10’ = 0 X lo1 = . . . . 

see also CHARACTERISTIC (REAL 
MANTISSA, SIGNIFICANT FIGURES 

NUMBER), FIGURES, 

Schwads Triangle Problem 

see FAGNANO'S PROBLEM 
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Score Sequence Searching 

The score sequence of a TOURNAMENT is a monotonic 
nondecreasing sequence of the OUTDEGREES of the VER- 

TICES. The score sequences for n = 1, 2, . . l  are 1, 1, 

2,4, 9, 22, 59, 167, . . . (Sloane’s AOOO571). 

see also TOURNAMENT 

Searching refers to locating a given element or an el- 
ement satisfying certain conditions from some (usually 
ordered or partially ordered) table, list, TREE, etc. 

see also SORTING, TABU SEARCH, TREE SEARCHING’ 

References 

References 
Ruskey, F. “Information on Score Sequences.” http: //sue, 
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Version of the Encyclopedia of Integer Sequences.” 

screw 
A TRANSLATION along a straight line L and a ROTATION 

about L such that the angle of ROTATION is proportional 

to the TRANSLATION at each instant. Also known as a 
TWIST. 

see also DINI’S SURFACE, HELICOID, ROTATION, SCREW 

THEOREM, SEASHELL, TRANSLATION 

Screw Theorem 
Any motion of a rigid body in space at- every instant is 
a SCREW motion. This theorem was proved by Moazi 
and Cauchy. 

see also SCREW 

Scruple 
An archaic UNIT FRACTION variously defined as l/200 

(of an hour), l/10 or l/12 (of an inch), l/12 (of a ce- 
lestial body’s angular diameter), or l/SO (of an hour or 
DEGREE). 

see also CALCUS, UNCIA 

Sea Horse Valley 

A portion of the MANDELBROT SET centered around 
-1.25 + 0.047i with width approximately 0.009 + 0.005i. 

see also MANDELBROT SET 

Knuth, D. E. The Art of Computer Programming, 2nd ed, 
Vol. 3: Sorting and Searching. Reading, MA: Addison- 
Wesley, 1973. 

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vet- 
terling, We T. “How to Search an Ordered Table.” 53.4 
in Numerical Recipes in FORTRAN: The Art of Scien- 
tific Computing, 2nd ed. Cambridge, England: Cambridge 
University Press, pp* 110-113, 1992. 

Search Tree 

see TREE SEARCHING 

Seashell 

see CONICAL SPIRAL 

Secant 

Im[Sec 21 RefSec zl 

8: 1. 

-0: 0. 
[zl [zl [Zl 

The function defined by set x E I/ cos x, where cos x is 
the COSINE. The MACLAURIN SERIES of the secant is 

secx = 
(-~)“&n 27-b 

(2 > n! ’ 

= 1+ +x2+ &x4 + gx” + %x8 -I--. . . , 

where Ez~ is an EULER NUMBER. 

see ~ZSOALTERNATING PERMUTATION,COSECANT,CO- 

SINE, EULER NUMBER, EXSECANT, INVERSE SECANT 
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Secant Line 

tangent line 

/+&e 

A line joining two points of a curve. In abstract math- 
ematics, the points which a secant line connects can be 
either REAL or COMPLEX CONJUGATE IMAGINARY. 

see UZ~O &TANGENT, TANGENT LINE, TRANSVERSAL 
LINE 

Secant Method 

A ROT-finding algorithm which assumes a function to 
be approximately linear in the region of interest. Each 
improvement is taken as the point where the approxi- 
mating line crosses the axis. The secant method retains 
only the most recent estimate, so the root does not nec- 
essarily remain bracketed. When the ALGORITHM does 
converge, its order of convergence is 

Second Amdamental Tensor 

Secant Number 
A number, more commonly called an EULER NUMBER, 
giving the number of ODD ALTERNATING PERMUTA- 
TIONS. The term ZAG NUMBER is sometimes also used. 

see U~SO ALTERNATING PERMUTATION, EULER NUM- 
BER, EULER ZIGZAG NUMBER, TAMGENT NUMBER 

Seth 

see HYPERBOLIC SECANT 

Second 

see ARC SECOND 

Second Curvature 

see Tmsrm (DIFFERENTIAL GEOMETRY) 

Second Derivative Test 
Suppose f(z) is a FUNCTION of z which is twice DIF- 

FERENTIABLE at a STATIONARY POINT ~0. 

1. If f”(zo) > 0, then f has a RELATIVE MINIMUM at 

X0- 

2. If f"(xo) < 0, then f has a RELATIVE MAXIMUM at 

x0* 

The EXTREMUM TEST gives slightly more general con- 
ditions under which functions with f”(xo) = 0. 

If f(x,y) is a 2-D FUNCTION which has a RELATIVE 
EXTREMUM at a point (x0,& and has CONTINUOUS 
PARTIAL DERIVATIVES at this point, then & (~0, yo) = 0 

and f&o, Yo) = 0. The second PARTIAL DERIVATIVES 
test classifies the point as a MAXIMUM or MINIMUM. 

Define the DISCRIMINANT as 
where C is a constant and 4 is the GOLDEN MEAN. 

D = fxxfvv - fxyfyx = fxxfw - fxy2. 

f( IX n--l)= 
f (X9x-l) - f (G-2) 

X7x-l - Xn-2 
(2) 

f (Xn) z f (Xn-1) + f’(Xrl)(Xn - X7x-l) = 0 (3) 

f( X,-l)+ 
f (&L-1)- f(xn-2) 

( Xn - Xn- 1)=0, (4) 
X7-b-l - Xn-2 

so 
X 

X7-b =x 
f( n-l)(Xn-1 -Xn-2) 

n-l- 
f (X7x-l) - f (Xn-2) l  

(5) 

see ah FALSE POSITION METHOD 

References 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 

ling, W. T. “Secant Method, False Position Method, and 
Ridders’ Method.” $9.2 in Numerical Recipes in FOR- 
TRAN: The Art of Scientific Computing, 2nd ed. Cam- 
bridge, England: Cambridge University Press, ppm 347- 
352, 1992. 

1. If D > 0, fxx(x~,y~) > 0 and fcx(xO,gO) + 
fBY(xO, yo) > 0, the point is a RELATIVE MINIMUM. 

2. If D > 0, fxx(xo,yo) < 0, and fxx(xo,yo) + 
fgY(xO, yo) < 0, the point is a RELATIVE MAXIMUM. 

3. If D < 0, the point is a SADDLE POINT. 

4. If D = 0, higher order tests must be used. 

see also DISCRIMINANT (SECOND DERIVATIVE TEST), 
EXTREMUM, EXTREMUM TEST, FIRST DERIVATIVE 
TEST, GLOBAL MAXIMUM, GLOBAL MINIMUM, I-IEs- 
SIAN DETERMINANT, MAXIMUM, MINIMUM, RELA- 
TIVE MAXIMUM, RELATIVE MINIMUM, SADDLE POINT 
(FUNCTION) 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p. 14, 1972. 

Second Fundamental Tensor 

see WEINGARTEN MAP 



Section (Graph) Seek Time 

Section (Graph) 
A section of a GRAPH is obtained by finding its inter- 
section with a PLANE. 

Section (Pencil) 
The lines of a PENCIL joining the points of a RANGE to 
another POINT. 

see also PENCIL, RANGE (LINE SEGMENT) 

Section. (Tangent Bundle) 
A VECTOR FIELD is a section of its TANGENT BUNDLE, 

meaning that to every point 2 in a MANIFOLD IM, a 

VECTOR X(Z) E T,M is associated, where Tz is the 
TANGENT SPACE. 

see also TANGENT BUNDLE, TANGENT SPACE 

Sectional Curvature 
The mathematical object K which controls the rate of 
geodesic deviation. 

see also BISHOP’S INEQUALITY, CHEEGER’S FINITENESS 

THEOREM, GEODESIC 

Sector 
s 

h 
c 

52 

---w--v 

d 
8 R 

A WEDGE obtained by taking a portion of a CIRCLE 

with CENTRAL ANGLE 8 < n radians (MO”), illustrated 
above as the shaded region. A sector of 7r radians would 
be a SEMICIRCLE. Let R be the radius of the CIRCLE, 

c the CHORD length, s the ARC LENGTH, h the height 
of the arced portion, and d the height of the triangular 
portion. Then 

R=h+d 

s = Re 

d = Rcos(;@) 

= +ccot(;ej 

- +2/4R2 --cc2 - 

c = 2Rsin(iB) 

= 2d tan( +O) 

- 20 2 - - d2 

= 2Jho. 

The ANGLE 8 obeys the relationships 

=2sin-l & . 
( > 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

(10) 

1607 

The AREA of the sector is 

A= ;Rs = +R20 (11) 

(Beyer 1987). 

see &O CIRCLE-CIRCLE INTERSECTION, LENS, OBTUSE 

TRIANGLE, SEGMENT 

References 
Beyer, W. H. (Ed.) CRC Standard Mathematical Tables, 

28th ed. Boca Raton, FL: CRC Press, p. 125, 1987. 

Sectorial Harmonic 
A SPHERICAL HARMONIC of the form 

sin(mO)p,” (cos 4) 

or 
cos(mO)P~(cos 4). 

see also SPHERICAL HARMONIC 

Secular Equation 

see CHARACTERISTIC EQUATION 

Seed 
The initial number used as the starting point in a RAN- 

DOM NUMBER generating ALGORITHM. 

Seed of Life 

One of the beautiful arrangements of CIRCLES found at 
the Temple of Osiris, at Abydos, Egypt (Rawles 1997). 
The CIRCLES are .placed with 6-fold symmetry, forming 
a mesmerizing pattern of CIRCLES and LENSES. 

see also CIRCLE, FIVE DISKS PROBLEM, FLOWER OF 

LIFE, VENN DIAGRAM 

References 
Rawles, B. Sacred Geometry Design Sourcebook: Universal 

Dimensional Patterns. Nevada City, CA: Elysian Pub., 
p* 15, 1997. 
Weisstein, E. W. “Flower of Life.” http: //www.astro. 
virginia.edu/-eww6n/math/notebooks/Flower~fLife.m. 

Seek Time 

see POINT-POINT DISTANCE-~-D 



1608 Segment 

Segment 
s 

A portion of a CIRCLE whose upper boundary is a circu- 
lar ARC and whose lower boundary is a CHORD making 
a CENTRAL ANGLE 8 < x radians (MO”), illustrated 
above as the shaded region. Let R be the radius of the 
CIRCLE, c the CHORD length, s the ARC LENGTH, h 
the height of the arced portion, and d the height of the 
triangular portion. Then 

R=h+d 

s = R8 

d = Rcos($) 

- $ccot($) - 

- 3d4R” -cc2 - 

c = ZRsin(@) 

= 2d tan( @) 

2 - d2 

= 2dh(2R - h) . 

The ANGLE 8 obeys the relationships 

The AREA of the segment is then 

A = Asector - Aisosceles triangle (11) 
- iR2(0 - sin@) - (12) 
= +(Rs-cd) (13) 

= R2cos-l ($) -dJRz-cl” (14) 

(1) 
(2) 
(3) 
(4 

(5) 
(6) 
(7) 

(8) 
(9) 

(10) 

- (R - h)J2Rh-hZ, (15) 

where the formula for the ISOSCELES TRIANGLE in terms 
of the VERTEX angle has been used (Beyer 1987). 

see also CHORD, CIRCLE-CIRCLE INTERSECTION, CYL- 
INDRICAL SEGMENT, LENS, PARABOLIC SEGMENT, 
SAGITTA,~ECTOR,~PHERICAL SEGMENT 

References 
Beyer, W. I-L (Ed.) CRC Standard Mathematical Tables, 

28th ed. Boca Raton, FL: CRC Press, p. 125, 1987. 

Seidel-Entringer-Arnold Wangle 

Segner’s Recurrence Formula 
The recurrence FORMULA 

& = EzE,-1 + EzEn-2 +. . . + E,-lE2 

which gives the solution to EULER'S POLYGON DIVISION 
PROBLEM. 
see UZSO CATALAN NUMBER, EULER'S POLYGON DIVI- 
SION PROBLEM 

Segre’s Theorem 
For any REAL NUMBER T > 0,an IRRATIONAL number - 
Q! can be approximated by infinitely many RATIONAL 
fractions p/q in such a way that 

1 - cp - -- --a< 
&-Gq2 l  1/1+4rq2 4 

Ifr = 1, this becomes HURWITZ'S 
THEOREM. 
see also HURWITZ'S IRRATIONAL 

IRRATIONAL NUMBER 

NUMBERTHEOREM 

Seiberg-Witten Equations 

DA$=O 
n-t / I 

where r is the sesquilinear map T : VP x W + h+@C. 

see also WITTEN’S EQUATIONS 

References 
Donaldson, S. K. “The Seiberg-Witten Equations and 4- 

Manifold Topology.” Bull. Amer. Math. Sot. 33, 45-70, 
1996. 

Morgan, J. W. The Seiberg- Witten Equations and Applica- 
tions to the Topology of Smooth Four-Manifolds. Prince- 
ton, NJ: Princeton University Press, 1996. 

Seiberg-Witten Invariants 

see WITTEN'S EQUATIONS 

Seidel-Entringer-Arnold Triangle 
The NUMBER TRIANGLE consisting of the ENTRINGER 
NUMBERS E,+ arranged in “ox-plowing” order, 

Eoo 

Elo + El1 

E22 + E21 + E20 

E30 + E31 --) E32 + E33 

E44 + E43 + E42 + E41 ++ E40 

giving 

1 

O+l 

Segmented Number 

~~~PRIME NUMBER OF MEASUREMENT 

1+--1+-o 

o--+1--+2-+2 

5+--5+-4+-2+0 



Seifer t Circle Seifer t ‘s Spherical Spiral 1609 

see UZSO BELL NUMBER, BOUSTROPHEDON TRANS- 
FORM,CLARK'S TRIANGLE, ENTRINGER NUMBER, Eu- 
LER'S TRIANGLE, LEIBNIZ HARMONIC TRIANGLE, NUM- 

BER TRIANGLE, PASCAL'S TRIANGLE 

References 
Arnold, V. I. “Bernoulli-Euler Updown Numbers Associ- 

ated with Function Singularities, Their Combinatorics, and 
Arithmetics.” Duke Math. J. 63, 537-555, 1991. 

Arnold, V. I. “Snake Calculus and Combinatorics of Ber- 
noulli, Euler, and Springer Numbers for Coxeter Groups.” 
Russian Math. Surveys 47, 3-45, 1992. 

Conway, J. H. and Guy, R. K. In The Book of Numbers. New 
York: Springer-Verlag, 1996. 

Dumont, D. ‘Further Triangles of Seidel-Arnold Type and 
Continued Fractions Related to Euler and Springer Num- 
bers.” Adv. Appl. Math. 10, 275-296, 1995. 

Entringer, R. C. “A Combinatorial Interpretation of the Eu- 
ler and Bernoulli Numbers.” Nieuw, Arch. Wisk. 14, 241- 
246, 1966. 

Millar, J.; Sloane, N. J. A.; and Young, N. E. “A New Op- 
eration on Sequences: The Boustrophedon Transform.” J. 
Combin. Th. Ser. A 76, 44-54, 1996. 

Seidel, I. “uber eine einfache Entstehungsweise der 
Bernoullischen Zahlen und einiger verwandten Reihen.” 
Sitzungsber. Miinch. Akad. 4, 157-187, 1877* 

Seifert Circle 
Eliminate each knot crossing by connecting each of the 
strands coming into the crossing to the-adjacent strand 
leaving the crossing. The resulting strands no longer 
cross but form instead a set of nonintersecting CIRCLES 
called Seifert circles. 

References 
Adams, C. C. The Knot Book: An Elementary Introduction 

to the Mathematical Theory of Knots. New York: W. H. 
F’reeman, p. 96, 1994. 

Seifert Conjecture 
Every smooth NONZERO VECTOR FIELD on the 3- 
SPHERE has at least one closed orbit. The conjecture 
was proposed in 1950, proved true for Hopf fibrations, 
but proved false in general by Kuperberg (1994). 

References 
Kuperberg, G. “A Volume-Preserving Counterexample to the 

Seifert Conjecture.” Comment. Math. Helv. 71, 70-97, 
1996. 

Kuperberg, G. and Kuperberg, K. “Generalized counterex- 
amples to the Seifert Conjecture.” Ann, Math. 143, 547- 
576, 1996. 

Kuperberg, G. and Kuperberg, K. “Generalized Counterex- 
amples to the Seifert Conjecture.” Ann. Math. 144, 23% 
268, 1996. 

Kuperberg, K. “A Smooth Counterexample to the Seifert 
Conjecture.” Ann. Math. 140, 723-732, 1994. 

Seifert Form 
For K a given KNOT in s3, choose a SEIFERT SURFACE 

iW2 in s3 for Kc and a bicollar A% x [- 1, l] in s3 - K. 
If x E HI (62) is represented by a l-cycle in X?, let z+ 

denote the homology cycle carried by =x: x 1 in the bi- 
collar. Similarly, let x- denote x x -1. The function 
f : HI (X2) x HI (h;r) -+ 2 defined by 

f (x, y) = lk(x, yf>Y 

where lk denotes the LINKING NUMBER, is called a 
Seifert form for K. 

see UZSO SEIFERT MATRIX 

References 
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or 

Perish Press, pp. 200-201, 1976. 

Seifert Matrix 
Given a SEIFERT FORM f(x, y), choose a basis el, 

“‘I ez9 for Hr (a) as a Z-module so every element is 
uniquely expressible as 

me1 + . . l  + n2ge2g 

with ni integer, define the Seifert matrix V as the 2g x 2g 
integral MATRIX with entries 

Vij = lk(ei, el). 

The right-hand TREFUIL KNOT has Seifert matrix 

1 1 -1 l  

A Seifert matrix is not a knot invariant, but it can be 
used to distinguish between different SEIFERT SURFACES 

for a given knot. 

see also ALEXANDER MATRIX 

References 
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or 

Perish Press, pp. 200-203, 1976. 

Seifert’s Spherical Spiral 

Is givenbythe CYLINDRICAL COORDINATES parametric 
equation 

T = sn(s) 

z = en(s), 



1610 Seifert Surface Self-Adjoint Operator 

where k is a POSITIVE constant and sn(s) and en(s) are 
JACOBI ELLIPTIC FUNCTIONS (Whittaker and Watson 
1990, pp. 527-528). 

In order for the operator to be self-adjoint, i.e., 

i-z+, (4) 
References 
Bowman, F. Introduction to Elliptic Functions, with Appli- 

cations. New York: Dover, p. 34, 1961. 
Whittaker, E. T. and Watson, G. N. A Course in Modern 

Analysis, 4th ed. Cambridge, England: Cambridge Uni- 
versity Press, 1990. 

the second terms in (1) and (3) must be equal, so 

PO’(X) = Pi(X)* (5) 

This also guarantees that the third terms are equal, since 

Seifert Surface 
An orientable surface with one boundary component 
such that the boundary component of the surface is a 
given KNOT K. In 1934, Seifert proved that such a sur- 
face can be constructed for any KNOT. The process of 
generating this surface is known as Seifert’s algorithm. 
Applying Seifert’s algorithm to an alternating projection 
of an alternating knot yields a Seifert surface of minimal 
GENUS. 

PO’(X) = 1)1(x) * PO”(X) = Pi’(X), (6) 

so (3) becomes 

(7) 

- - (8) 

There are KNOTS for which the minimal genus Seifert 
surface cannot be obtained by applying Seifert’s algo- 
rithm to any projection of that KNOT, as proved by 
Morton in 1986 (Adams 1994, p. 105). 

see also GENUS (KNOT), SEIFERT MATRIX 

The LEGENDRE DIFFERENTIAL EQUATION and the 
equationof SIMPLE HARMONIC MOTION areself-adjoint, 
but the LAGWERREDIFFERENTIAL EQUATION and HER- 
MITE DIFFERENTIAL EQUATION are not. 

A nonself-adjoint second-order linear differential oper- 
ator can always be transformed into a self-adjoint one References 

Adams, C. C. The Knot Book: An Elementary 
to the Mathematical Theory of Knots. New 
Freeman, pp. 95-106, 1994. 

Seifert, H. “Uber das Geschlecht von Knotten.” 
110, 571-592, 1934. 

the special case 

(9) 

(10) 

(11) 

(12) 

Introduction 
York: W. H. 

using STURM-LIOWVILLE THEORY. In 
pz (x) = 0, (8) gives 

Math. Ann. 

f [Pob$] = 0 

Self-Adjoint Matrix 
A MATRIX A for which 

du 
PO(X)& = c 

Af - T* - - (A > = A, du=C* 
PO (4 

where the ADJOINT OPERATOR is denoted At, AT is 
the MATRIX TRANSPOSE, and ok is the COMPLEX CON- 
JUGATE. If a MATRIX is self-adjoint, it is said to be 
HERMITIAN. 

u=c da: s PO(X) ’ 

where C is a constant of integration. 

see also ADJOINT OPERATOR, HERMITIAN MATRIX, 
MATRIX TRANSPOSE 

A self- adj oint 
CONDITIONS 

operator which satisfies the BOUNDARY 

(13) Self-Adjoint Operator 
Given a differential equation 

u*puII,=, = u*pU’~z=~ 

is automatically a HERMITIAN OPERATOR. 

see UZSO ADJOINT OPERATOR, HERMITIAN OPERATOR, 
STURM-LIOUVILLE THEORY 

L(x) = PO% +p1$ +pzu, (1) 

where pa = pi(x) and u = U(X), the ADJOINT OPERA- 
TOR Lt is defined by 

References 
A&en, G. “Self-Adjoint Differential Equations.” 59.1 in 

Mathematical Methods for Physicists, 3rd ed. Orlando, 
FL: Academic Press, pp. 497-509, 1985. 

d2u du 
= po= + @PO’ - Pl)Z + (PO" - PI’ + p2)u. (3) 
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Self-Avoiding Walk 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

Let the number of RANDOM WALKS on a d-D lattice 
starting at the ORIGIN which never land on the same 
lattice point twice in 72 steps be denoted c(n). The first 
few values are 

Cd(O) = 1 

Cd(l) = 2d 

~(2) = 2d(2d - 1). 

(1) 

(2) 

(3) 

The connective constant 

pd E lim [cd(n)]l’n 
n-300 (4) 

is known to exist and be FINITE. The best ranges for 
these constants are 

p2 E [2.62002,2.6939] (5) 

p3 E [4.572140,4.7476] (6) 

p4 E [6,742945,6.8179] (7) 
p5 E [8.828529,8.8602] (8) 

/&6 f [10.874038,10.8886] (9) 

(Finch). 

For the triangular lattice in the plane, 1-1 < 4.278 (Alm 
1993)) and for the hexagonal planar lattice, it is conjec- 
tured that 

p=dzz (10) 

(Madras and Slade 1993). 

The following limits are also believed to exist and to be 
FINITE: 

lim - 44 n--+= pnyl for d # 4 

lim e-4 for d = 4, (11) 
n+oo 

p?i-+(lIl,)1/4 

where the critical exponent y = 1 for d > 4 (Madras 
and Slade 1993) and it has been conjectured that 

43 
32 for d = 2 

Y= 1.162.. . for d = 3 (12) 
1 for d = 4. 

Define the mean square displacement over all n-step self- 
avoiding walks w  as 

where the critical exponent Y = l/2 for d > 4 (Madras 
and Slade 1993), and it has been conjectured that 

3 
4 for d = 2 

V= 0.59. l  . for d = 3 (15) 
1 
z for d = 4. 

see also RANDUM WALK 

References 
Alm, S. E. “Upper Bounds for the Connective Constant of 

Self-Avoiding Walks.” Combin. Prob. Comput. 2, 115- 
136, 1993. 

Finch, S. “Favorite Mathematical Constants.” http: //www. 
mathsoft. com/asolve/constant/cnntv/cmtv.html. 

Madras, N. and Slade, G. The Self-Avoiding Walk. Boston, 
MA: Birkhguser, 1993. 

Self-Conjugate Subgroup 

see INVARIANT SUBGROUP 

Self-Descriptive Number 
A lo-DIGIT number satisfying the following property. 
Number the DIGITS 0 to 9, and let DIGIT n be the num- 
ber of rzs in the number. There is exactly one such 
number: 6210001000. 

References 
Pickover, C. A. “Chaos in Ontario.” Ch. 28 in Keys to In- 

finity. New York: W. H. Freeman, pp. 217-219, 1995. 

Self-Homologous Point 

see SIMILITUDE CENTER 

Self Number 
A number (usually base 10 unless specified otherwise) 
which has no GENERATOR. Such numbers were origi- 
nally called COLUMBIAN NUMBERS (S. 1974). There are 
infinitely many such numbers, since an infinite sequence 
of self numbers can be generated from the RECURRENCE 
RELATION 

ck = 8. lO”-l t- ck--1 +8, (1) 

for k = 2, 3, . . . , where Cl = 9. The first few self 
numbers are 1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, 97, 
. . l  (Sloane’s A003052). 

An infinite number of 2-self numbers (i.e., base-2 self 
numbers) can be generated by the sequence 

ck = 2j + ck-1 + 1 (2) 

s(n) = ( jw(n)12) = $) x 14412- (13) 
w  

The following limits are believed to exist and be FINITE: 

lim +> n-k00,2v for d # 4 

lim 4n) for d = 4, (14) 
72300 

nzv(ln nJ1i4 

for JG = 1, 2, . . q , where Cl = 1 and j is the number 
of digits in c&l. An infinite number of n-self numbers 
can be generated from the sequence 

Ck = (n - 2)n k-l + ck-1. + (n - 2) (3) 
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for k = 2, 3, . . . , and 

Cl = n - 1 for n even 

n- 2 for n odd. (4) 

Joshi (1973) proved that if k is ODD, then nz is a k-self 
number IFF VI is ODD. Pate1 (1991) proved that 2k, 
4k + 2, and k2 + 2k + 1 are k-self numbers in every EVEN 

base k 2 4. 

see also IXGITADITION 

References 
Cai, T. “On k-Self Numbers and Universal Generated Num- 

bers ,” Fib. Quart. 34, 144-146, 1996. 
Gardner, M. Time Travel and Other Mathematical Bewil- 

derments. New York: W. H. freeman, pp. 115-117, 122, 
1988. 

Joshi, V. S. Ph.D. dissertation. Gujarat University, Ahmad- 
abad, 1973. 

Kaprekar, D. R. The Mathematics of New Self-Numbers. De- 
vaiali, pp. 19-20, 1963. 

Patel, R. B. “Some Tests for k-Self Numbers.” Math. Student 
56, 206-210, 1991. 

S., B. R. Solution to Problem E 2048. Amer. Math. Monthly 
81, 407, 1974. 

Sloane, N. J. A. Sequence A003052/M2404 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Self-Reciprocating Property 
Let h be the number of sides of certain skew POLYGONS 
(Coxeter 1973, p. 15). Then 

h= 
2(P + Q + 2) 

10-p-q. 

References 
Coxeter, H. S. M. Regular PoEytopes, 3rd ed. New York: 

Dover, 1973. 

Self-Recursion 
Self-recursion is a RECURSION which is defined in terms 
of itself, resulting in an ill-defined infinite regress. 

see SELF-RECURSION 

Self-Similarity 
An object is said to be self-similar if it looks “roughly” 
the same on any scale. FRACTALS are a particularly 
interesting class of self-similar objects. 

see also FRACTAL 

References 
Hutchinson, J. ‘Tractals and Self-Similarity.” Indiana Univ. 

J. Math. 30, 713-747, 1981. 

Self-Transversality Theorem 
Let j, T, and s be distinct INTEGERS (mod n), and let 

Wi be the point of intersection of the side or diagonal 
Kvi+j ofthen-gonP= [V-,... , I&] with the transversal 

vi+rvi+s. Then a NECESSARY and SUFFICIENT condi- 
tion for rn” 

nl i=l 
where ABjlCD and 

viwi 
WiK+j 

1 

( 1) 
n - -- 1 

is the ratio of the lengths [A, B] and [C, D] with a plus or 
minus sign depending on whether these segments have 
the same or opposite direction, is that 

1. n = 2nz is EVEN with j G no (mod n) and s G 
r+m (modn), 

2, n is arbitrary and either s G 2r and j E 3r, or 

3. T E 2s (mod n) and j E 3s (mod n)* 

References 
Griinbaum, B. and Shepard, G. C. “Ceva, Menelaus, and the 

Area Principle.” Math. Mag. 68, 254-268, 1995. 

Selfridge’s Conjecture 
There exist infinitely many n > 0 with pn2 > pn+p,+i 
for all i < n. Also, there exist infinitely many n > 0 

such that 2p, < p,-i + p,-i for all i < n. 

Selfridge-Hurwitz Residue 
Let the RESIDUE from P~PIN'S THEOREM be 

R = 3cF?a--1)/2 n- (mod F,) l 

where Fn is a FERMAT NUMBER. Selfridge and Hurwitz 
use 

R,(mod 235 - 1,236,236 - 1). 

A nonvanishing R, (mod 23”) indicates that Fn is COM- 

POSITE for n > 5. 

see also FERMAT NUMBER, P~PIN'S THEOREM 

References 
Crandall, R.; Doenias, J.; Norrie, C.; and Young, J. “The 

Twenty-Second Fermat Number is Composite.” Math. 
Comput. 84, 863-868, 1995. 

Selmer Group 
A GROUP which is related to the TANIYAMA~HIMURA 
CONJECTURE. 

see also TANIYAMA-SHIMURA CONJECTURE 
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Semicolon Derivative Semi-Integral 
An INTEGRAL of order l/2. The semi-integral of the 
CONSTANT FUNCTION f(z)= c is 

see COVARIANT DERIVATIVE 

Semiconvergent Series 

see ASYMPTOTIC SERIES 

see also SEMIDERIVATIVE 
Semicubical Parabola 

References 
Spanier, J. and Oldham, K. B. An Atlas of Functions. Wash- 

ington, DC: Hemisphere, pp. 8 and 14, 1987. 

Semialgebraic Number 
A subset of IIB” which is a finite Boolean combination 
of sets of the form {Z = (x1,. . . , xm) : f(z) > 0} and 
{Z : g(z) = 0}, where f,g E Iw[Xl,... ,X,1. 

References A PARABOLA-like curve with Cartesian equation 
Bierstone, E. and Milman, P. “Semialgebraic and Subanalytic 

Sets.” iHES Pub. Math. 67, 5-42, 1988. 
Marker, D. “Model Theory and Exponentiation.” Not. 

Amer. Math. Sot. 43, 753-759, 1996. 

Y = ax3i2, 

parametric equations 

Semianalytic 
X C R” is semianalytic if, for all x E R”, there is an - 
open neighborhood U of x such that X n U is a finite 
Boolean combination of sets (5 E U. : f(Z) = 0) and 
{z E u : g(z) > o}, where f,g : U + Iw are ANALYTIC. 

see also ANALYTIC FUNCTION, PSEUDOANALYTIC 

(2) 
(3) 

and POLAR COORDINATES, 

tan2 8 set 0 
r= 

a l  

FUNCTION, SUBANALYTIC (4) 
Hekrences 
Marker, D. “Model Theory and Exponentiation.” Not. 

Amer. Math. Sot. 43, 753-759, 1996. 
The semicubical parabola is the curve along which a par- 
ticle descending under gravity describes equal vertical 
spacings within equal times, making it an ISOCHRON~US 

CURVE. The problem of finding the curve having this 

property was posed by Leibniz in 1687 and solved by 
Huygens (MacTutor Archive). 

Semicircle 

The ARC LENGTH, CURVATURE, and TANGENTIAL AN- 

GLE are 

Half a CIRCLE. The PERIMETER of the semicircle of 
RADIUS T is 

s(t) = &(4 + 9t2)3/2 - & 

K(t) = 
6 

t(4 + 9tq3/2 
(6) L= 2T4-TT =T(2+7+ (1) 

t)(t) = tan-l(it). (7) and the AREA is 

A=2 
s 

rdndy= +r2. 

0 

The weighted mean of y is 

s 
T (Y> = 2 yd-dy = $T3. 

0 

The CENTROID is then given by 

(2) 

(3) 

see also NEILE’S PARABOLA, PARABOLA INVOLUTE 

References 
Gray, A. “The Semicubical Parabola.” $1.7 in Modem Dilf- 

ferential Geometry of Curves and Surfaces. Boca Raton, 
FL: CRC Press, pp. 15-16, 1993. 

Lawrence, J. D. A Catalog of Special Plane Curves. New 
York: Dover, pp. 85-87, 1972. 

Lee, X. ‘LSemicubic Parabola,” http : //www . best, corn/-xah/ 
Special Plane Curves _ dir / Semicubic Parabola-dir / 
semicubicParabola. html. 

MacTutor History of Mathematics Archive. “Neile’s 
Parabola.” http://www-groups. dcs.st-and.ac.uk/ 
-history/Curves/Neiles.html. 

Yates, R. C. “Semi-Cubic Parabola.” A Handbook on Curves 
and Their Properties. Ann Arbor, MI: J. W. Edwards, 
pp. 186-187, 1952. 

(Y> 4r 

Y=A=Gq 
(4) 

The semicircle is the CROSS-SECTION of a HEMISPHERE 

for any PLANE through the Z-AXIS. 

see also ARBELOS, ARC, CIRCLE, DISK, HEMISPHERE, 

LENS, RIGHT ANGLE, SALINON, THALES’ THEOREM, 

YIN-YANG 
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Semiderivative Semilatus Rectum 
A DERIVATIVE of order l/2. The semiderivative of the 
CONSTANT FUNCTION f(x)= cis 

Given an ELLIPSE, the semilatus rectum is defined as 
the distance L measured from a FOCUS such that 

d=h C --- 
dx112 - TX’ d- 

see also DERIVATIVE, SEMI-INTEGRAL 

References 
Spank, J. and Uldham, K. 13. An Atlas of Functions. Wash- 

ington, DC: Hemisphere, pp. 8 and 14, 1987. 

Semidirect Product 
The “split” extension G of GROUPS IV and F which 
contains a SUBGROUP F isomorphic to F with G = FN 
and F n N = {e}. 

References 
Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary 

of Mathematics. Cambridge, MA: MIT Press, p. 613, 1980. 

Semiflow 
An ACTION with G = Iw4. 

see also FLOW 

Semigroup 
A mathematical object defined for a set and a BI- 
NARY OPERATOR in which the multiplication operation 
is ASSOCIATIVE. No other restrictions are placed on a 
semigroup; thus a semigroup need not have an IDEN- 

TITY ELEMENT and its elements need not have inverses 
within the semigroup. A 
GROUPOID. 

semigroup is an ASSOCIATIVE 

A semigroup can be empty. The total number of semi- 
groups of order n are 1, 4, 18, 126, 1160, 15973, 836021, 

(Sloane’s A001423) l  The number of semigroups of 
brher n with one IDEMPOTENT are 1, 2, 5, 19, 132, 3107, 
623615, . . . (Sloane’s A002786), and with two IDEM- 

POTENTS are 2, 7, 37, 216, 1780, 32652, . . . (Sloane’s 
AO02787). The number a(n) of semigroups having n 

IDEMPOTENTS are 1, 2, 6, 26, 135, 875, . . . (Sloane’s 
A002788). 

see also ASSOCIATIVE, BINARY OPERATOR, FREE SEMI- 

GROUP, GROUPOID, INVERSE SEMIGROUP, MONOID, 

QUASIGROUP 

References 
Clifford, A. H. 

Semigroups. 
Sloane,- N. J. 

M1522, A002 
Line Version 

and Preston, G. B. The Algebraic Theory of 
Providence, RI: Amer. Math. Sot., 1961. 
A. Sequences A001423/M3550, A002786/ 

787/M1802, and A002788/M1679 in “An On- 
of the Encyclopedia of Integer Sequences.” 

(1) 

where r+ = a( 1+ e) and T- = a( 1- e) are the APOAPSIS 

and PERIAPSIS, and e is the ELLIPSE'S ECCENTRIC'ITY. 

Plugging in for r+ and T- then gives 

1 4 1 1 1 
z= > 

1 (1 + e) + (1 - e) -+- -- 
2a l-e l+e -2a 1 - e2 
1 1 - -~ - 
al-e”’ (2) 

so 

L = a(1 - e”). (3) 

see also ECCENTRICITY, ELLIPSE, Focus, 
TUM, SEMIMAJOR AXIS, SEMIMINOR AXIS 

LATUS REC- 

Semimagic Square 
A square that fails to be a MAGIC SQUARE only because 
one or both of the main diagonal sums do not equal the 
MAGIC CONSTANT is called a SEMIMAGIC SQUARE. 

see also MAGIC SQUARE 

Semimajor Axis 
HALF the distance across an ELLIPSE along its long prin- 
cipal axis. 

see also ELLIPSE, SEMIMINOR AXIS 

Semiminor Axis 
Half the distance across an ELLIPSE along its short prin- 
cipal axis. 

see also ELLIPSE, SEMIMAJOR AXIS 

Semiperfect Magic Cube 
A semiperfect magic cube, also called an ANDREWS 

CUBE, is a MAGIC CUBE for which the cross-section di- 
agonals do not sum to the MAGIC CONSTANT. 

see also MAGIC CUBE, PERFECT MAGIC CUBE 

Keferences 
Gardner, M. “Magic Squares and Cubes.” Ch. 17 in Time 

Travel and Other Mathematical Bewilderments. New 
York: W. H. Freeman, pp. 213-225, 1988. 

Semiperfect Number 
A number such as 20 = 1+ 4 + 5 + 10 which is the SUM 
of some (or all) its PROPER DIVISORS. A semiperfect 
number which is the SUM of all its PROPER DIVISORS is 
called a PERFECT NUMBER. The first few semiperfect 
numbers are 6, 12, 18, 20, 24, 28, 30, 36, 40, . . . (Sloane’s 
A005835). Every multiple of a semiperfect number is 
semiperfect, as are all numbers 2mp for m 2 1 and p a 

PRIME between 2m and 2”+l (Guy 1994, p. 47). 
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A semiperfect number cannot be DEFICIENT. Rare 
ABUNDANT NUMBERS which are not semiperfect are 
called WEIRD NUMBERS. Semiperfect numbers are 
sometimes also called PSEUDOPERFECT NUMBERS. 

see UZSO ABUNDANT NUMBER, DEFICIENT NUMBER, 
PERFECT NUMBER, PRIMITIVE SEMIPERFECT NUM- 
BER,WEIRD NUMBER 

References 
Guy, R. K. “Almost Perfect, Quasi-Perfect, Pseudoperfect, 

Harmonic, Weird, Multiperfect and Hyperperfect Num- 
bers .” §B2 in Unsolved Problems in Number Theory, 2nd 

ed. New York: Springer-Verlag, pp. 45-53, 1994. 
Sloane, N. J. A. Sequence A005835/M4094 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 
Zachariou, A. and Zachariou, E. “Perfect, Semi-Perfect and 

Ore Numbers.” Bull. Sot. Math. G&e (New Ser.) 13, 
12-22,1972. 

Semiperimeter 
The semiperimeter on a figure is defined as 

1 s = zp, (1) 

where p is the PERIMETER. The semiperimeter of POLY- 

GONS appears in unexpected ways in the computation of 
their AREAS. The most notable cases are in the ALTI- 
TUDE, EXRADIUS, and INRADIUS of a TRIANGLE, the 
SODDY CIRCLES,HERON'S FORMULA for the AREA of a 
TRIANGLE in terms of the legs a, b, and c 

Aa = +(s - a)(s - b)(s - c), (2) 

and BRAHMAGUPTA’S FORMULA for the AREA of a 
QUADRILATERAL 

A quadrilateral = 

J ( S- u)(s - b)(s - c)(s - d) - abcdcos2 

(3) 

The semiperimeter also appears in the beautiful 
L'HUILIER'S THEOREM about SPHERICAL TRIANGLES. 

G A D B 
-c- 

For a TRIANGLE, the following identities hold, 

s-u= g-u+b+c) (4) 
s-b= ;(U+b-C) (5) 
s-c= $(u+b-c). (6) 

Now consider the above figure. Let I be the INCENTER 
of the TRIANGLE AABC, with D, E, and F the tan- 
gent points of the INCIRCLE. Extend the line BA with 
GA = CE. Note that the pairs of triangles (ADI, AN), 
(BDI, BEI), (CFI, CEI) are congruent. Then 

BG=BD+AD+AG=BD+AD+CE 

= +(2BD + 2AD + 2CE) 

= ;[(BD + BE) + (AD + AF) + (GE + CF)] 

= ;[(BD + AD) + (BE + CE) + (AF + CF)] 

=;(AB+B~+Ac)=++~+c)=s. (7) 

Furthermore, 

S -U =BG-BC 

=(BD+AD+AG)-(BEfCE) 

=(BD+AD+CE)-(BD+CE)=AC (8) 

s-b=BG-AC 

=(BD+AD+AG)-(AFfCF) 

=(BD+AD$CE)-(AD+CE)=BD(9) 

S-C =BG-AB=AG (10) 

(Dunham 1990). These equations are some of the build- 
ing blocks of Heron’s derivation of HERON'S FORMULA. 

References 
Dunham, W. “Heron’s Formula for Triangular Area.” Ch. 5 

in Journey Through Genius: The Great Theorems of 
Mathematics. New York: Wiley, pp. 113-132, 1990. 

Semiprime 
A COMPOSITE number which is the PRODUCT of two 
PRIMES (possibly equal) l  They correspond to the 2- 
ALMOST PRIMES. The first few are 4, 6, 9, 10, 14, 15, 
21, 22, l  . . (Sloane’s A001358). 

see also ALMOST PRIME, CHEN'S THEOREM, COMPOS- 
ITE NUMBER,PRIME NUMBER 

References 
Sloane, N. J. A. Sequence A001358/M3274 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 

Semiprime Ring 
Given an IDEAL A, a semiprime ring is one for which 
An = 0 IMPLIES A = 0 for any POSITIVE n. Every 
PRIME RING is semiprime. 

see also PRIME RING 

Semiregular Polyhedron 
A POLYHEDRON or plane TESSELLATION is called 
semiregular if its faces are all REGULAR POLYGONS and 
its corners are alike (Walsh 1972; Coxeter 1973, pp. 4 

and 58; Holden 1991, p. 41). The usual name for a 
semiregular polyhedron is an ARCHIMEDEAN SOLIDS, of 
which there are exactly 13. 
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see also ARCHIMEDEAN SOLID, POLYHEDRON, TESSEL- 
LATION 

References 
Coxeter, H. S. M. “Regular and Semi-Regular Polytopes I.” 

Math. 2. 46, 380-407, 1940. 
Coxeter, H. S. M. ReguEar PoZyiopes, 3rd ed. New York: 

Dover, 1973. 
Holden, A. Shapes, Space, and Symmetry. New York: Dover, 

1991. 
Walsh, T. R. S. “Characterizing the Vertex Neighbourhoods 

of Semi-Regular Polyhedra.” Geometriae Dedicata 1, 117- 
123, 1972. 

Yemiring 
A semiring is a set together with two BINARY OPERA- 
TORS S(+, *) satisfying the following conditions: 

1. Additive associativity: For all a, b, c E S, (a+b)+c = 

a+(b+c), 

2. Additive commutativity: For all a, b E S, a + b = 
b + a, 

3. Multiplicative associativity: For all a, b, c f S, (a I 
b) * c = a* (b*c), 

4. Left and right distributivity: For all a, b, c E S, a * 
(b+c) = (u*b)+(u*c) and (b+c)*a = (b*a)+(c*u). 

Thus a semiring is therefore a commutative SEMIGROUP 
under addition and a SEMIGROUP under multiplication. 
A semiring can be empty. 

see also 
GROUP 

BINARY OPERATOR, RING, RINGUID, SEMI- 

References 
Rosenfeld, A. An Introduction to Algebraic Structures. New 

York: Holden-Day, 1968. 

Semisecant 

see TRANSVERSAL LINE 

Semisimple 
A ~-ELEMENT z of a GROUP G is semisimple if 

E(CG(x)) # 1, where E(H) is the commuting product 
of all components of ET and C&C) is the CENTRALIZER 
of G. 

see also CENTRALIZER,~-ELEMENT 

Semisimple Algebra 
An ALGEBRA with no nontrivial nilpotent IDEALS. In 
the 189Os, Cartan, Frobenius, and Molien independently 
proved that any finit e-dimensional semisimple algebra 
over the REAL or COMPLEX numbers is a finite and 
unique DIRECT SUM of SIMPLE ALGEBRAS. This re- 
sult was then extended to algebras over arbitrary fields 
by Wedderburn in 1907 (Kleiner 1996). 

see also 
BRA 

IDEAL, NILPOTENT ELEMENT, SIMPLE ALGE- 

References 
Kleiner, I. “The Genesis of the Abstract Ring Concept.” 

Amer. Math. Monthly 103, 417-424, 1996. 

Semisimple Lie Group 
A LIE GROUP which has a simply connected covering 
group HOMEOMORPHIC to R”. The prototype is any 
connected closed subgroup of upper TRIANGULAR CQM- 
PLEX MATRICES. The HEISENBERG GROUP is such a 
group. 

see also HEISENBERG GROUP, LIE GRoUp 

References 
Knapp, A. W. “Group Representations and Harmonic Anal- 

ysis, Part II.” Not. Amer. Math. Sot. 43, 537-549, 1996. 

Semisimple Ring 
A SEMIPRIME RING which is also an ARTINIAN RING. 

see also ARTINIAN RING 

Semistable 
When a PRIME 2 divides the DISCRIMINANT of a EL- 

LIPTIC CURVE E, two or all three roots of E become 
congruent mod 1. An ELLIPTIC CURVE is semistable if, 
for all such PRIMES 1, only two roots become CONGRU- 
ENT mod I (with more complicated definitions for p = 2 
or 3). 

see UZSO DISCRIMINANT (ELLIPTIC CURVE), ELLIPTIC 
CURVE 

Sensitivity 
The probability that a STATISTICAL TEST will be posi- 
tive for a true statistic. 

see also SPECIFICITY, STATISTICAL TEST, TYPE I ER- 
ROR,TYPE II ERROR 

Sentence 
A LOGIC FORMULA with no FREE variables. 

Separating Edge 
An EDGE of a GRAPH is separating if a path from a point 
A to a point B must pass over it. Separating EDGES can 
therefore be viewed as either bridges or dead ends. 

see also EDGE (GRAPH) 

Separating Family 
A SEPARATING FAMILY is a SET of SUBSETS in which 
each pair of adjacent elements are found separated, each 
in one of two disjoint subsets. The 26 letters of the 
alphabet can be separated by a family of 9, 

(ubcdef ghi) (jklmnopqr) (stuvwxyz) 
(abcjklstu) (defmnovwx) (ghipqryr) . 

(adgjmpsvy) (behknqtwr) (cf ilorux) 

The minimal size of the separating family for an n-set is 
0, 2, 3, 4, 5, 5, 6, 6, 6, 7, 7, 7, . . . (Sloane’s A007600). 

see also KATONA'S PROBLEM 

References 
Honsberger, R. “Cai Mao-Cheng’s Solution to Katona’s 

Problem on Families of Separating Subsets.” Ch. 18 in 
Mathematical Gems III. Washington, DC: Math. Assoc. 
Amer., pp* 224-239, 1985. 

Sloane, N. J. A. Sequence A007600/M0456 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 
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Separation 
Two distinct point pairs AC and BD separate each other 
if A, B, C, and D lie on a CIRCLE (or line) in such order 
that either of the arcs (or the line segment AC) contains 
one but not both of B and D. In addition, the point 
pairs separate each other if every CIRCLE through A and 
C intersects (or coincides with) every CIRCLE through 
B and D. If the point pairs separate each other, then 
the symbol AC//BD is used. 

Separation of Variables 
A method of solving partial differential equations in a 
function + and variables Z, y, . . . by making a substi- 
tution of the form 

qx,  y ,  l  l  l ) = X(x)Y(y) l  l  l  , 

breaking the resulting equation into a set of independent 
ordinary different ial equations, solving these for X (x) , 

Y(Y), l  ’  ’  1  
and then plugging them back into the original 

equation. 

This technique works because if the product of functions 
of independent variables is a constant, each function 
must separately be a constant. Success requires choice 
of an appropriate coordinate system and may not be at- 
tainable at all depending on the equation. Separation of 
variables was first used by L’Hospital in 1750. It is espe- 
cially useful in solving equations arising in mathematical 
physics,suchas LAPLACE'S EQUATION, the HELMHOLTZ 
DIFFERENTIAL EQUATION, and the SchrGdinger equa- 
tion. 

see also HELMHOLTZ 

PLA GE'S EQUATION 

DIFFERENTIAL EQUATION, LA- 

References 
A&en, G. “Separation of Variables” and “Separation of 

Variables--Ordinary Differential Equations.” 52.6 and 
58.3 in Mathematical Methods for Physicists, 3rd ed. Or- 
lando, FL: Academic Press, pp. 111-117 and 448-451, 
1985. 

Morse, P. M. and Feshbach, H. “Separable Coordinates” and 
“Table of Separable Coordinates in Three Dimensions.” 
gS.1 in Methods of Theoretical Physics, Part I. New York: 
McGraw-Hill, pp. 464-523 and 655-666, 1953. 

Separation Theorem 
There exist numbers yl < yz < . . . < ~~-1, a < ~~-1, 
~~-1 < b, such that 

A, = 4YJ - Ql(Yv-l)r 

where Y = 1, 2, . . . , 72, yo = a and ylz = b. Furthermore, 
the zeros xl, . . . , xn, arranged in increasing order, al- 
ternate with the numbers yl, . . . ~~-1, so 

XY < yv < %+1. 

More precisely, 

QI(xv + E) - a(a) < QI(yv) - a(u) 
= Xl + . . . + xv < “(Xv+1 - E) - a(u) 

for v = 1, . . . , n - 1. 

see also POINCAR~ SEPARATION THEOREM, STURMIAN 
SEPARATION THEOREM 

References 
Szegij, G. Orthogonal Polynomials, 4th ed. Providence, RI: 

Amer. Math. Sot., p. 50, 1975. 

Separatrix 
A phase curve (invariant MANIFOLD) which meets a HY- 
PERBOLIC FIXED POINT (intersection of a stable and an 
unstable invariant MANIFOLD). A separatrix marks a 
boundary between phase curves with different proper- 
ties. For example, the separatrix in the equation of mo- 
tion for the pendulum occurs at the angular momentum 
where oscillation gives way to rotation. 

Septendecillion 
In the American system, 1054. 

see also LARGE NUMBER 

Septillion 
In the American system, 102”. 

see also LARGE NUMBER 

Sequence 
A sequence is an ordered set of mathematical objects 
which is denoted using braces. For example, the symbol 

{wz=l denotes the infinite sequence of EVEN NUM- 
BERS (2, 4, . . . . 2n, ..*}. 

see aho 196-ALGORITHM, A-SEQUENCE, ALCUIN'S SE- 
QUENCE, B%SEQUENCE, BEATTY SEQUENCE, CAR- 
MICHAEL SEQUENCE, CAUCHY SEQUENCE, CONVER- 
GENT SEQUENCE, DEGREE SEQUENCE, DENSITY (SE- 
QUENCE),FRACTAL SEQUENCE,GIUGA SEQUENCE,:N- 
FINITIVE SEQUENCE, INTEGER SEQUENCE, ITERATION 
SEQUENCE, LIST, NONAVERAGING SEQUENCE, PRIM- 
ITIVE SEQUENCE, REVERSE-THEN-ADD SEQUENCE, 
SCORE SEQUENCE, SERIES, SIGNATURE SEQUENCE, 
SORT-THEN-ADD SEQUENCE,~LAM SEQUENCE 

Sequency 
The sequency k of a WALSH FUNCTION is defined as half 
the number of zero crossings in the time base. 

see also WALSH FUNCTION 

Sequency Function 

see WALSH FUNCTION 

Sequential Graph 
A CONNECTED GRAPH having e EDGES is said to be 
sequential if it is possible to label the nodes i with dis- 
tinct INTEGERS fi in{O, 1, 2, . . . , e - l} such that when 
EDGE ij is labeled fi + fj, the set of EDGE labels is 
a block of e consecutive integers (Grace 1983, Gallian 
1990). No HARMONIOUS GRAPH is known which cannot 
also be labeled sequentially. 
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see also CONNECTED GRAPH, HARMONIOUS GRAPH 

References 
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Series 
A series is a sum of terms specified by some rule. If each 
term increases by a constant amount, it is said to be an 
ARITHMETIC SERIES. If each term equals the previous 
multiplied by a constant, it is said to be a GEOMET- 
RIC SERIES. A series usually has an INFINITE’ number 
of terms, but the phrase INFINITE SERIES is sometimes 
used for emphasis or clarity. 

If the sum of partial sequences comprising the first few 
terms of the series does not converge to a LIMIT (e.g., 
it oscillates or approaches &oo), it is said to diverge. 
An example of a convergent series is the GEOMETRIC 
SERIES 00 

1n 
In ) 2 = 2, 

n=O 

and an 
SERIES 

example of a divergent series is the HARMONIC 

O” 1 
>: 

-- - 00. 
n 

n=l 

A number of methods known as CONVERGENCE TESTS 
can be used to determine whether a given series con- 
verges. Although terms of a series can have either sign, 
convergence properties can often be computed in the 
“worst case” of all terms being POSITIVE, and then ap- 
plied to the particular series at hand. A series of terms 
un is said to be ABSOLUTELY CONVERGENT if the series 
formed by taking the absolute values of the un, 

>1 l”A 

converges. 

An especially strong type of convergence is called UN- 

IF0 RM CONVERGEW E, and series which are uniformly 
convergent have particularly “nice” properties. For ex- 
ample, the sum of a UNIFORMLY CONVERGENT series 
of continuous functions is continuous. A CONVERGENT 
SERIES can be DIFFERENTIATED term by term, provided 
that the functions of the series have continuous deriva- 
tives and that the series of DERIVATIVES is UNIFORMLY 
CONVERGENT. Finally,a UNIFORMLY CONVERGENT se- 

ries of continuous functions can be INTEGRATED term by 
term. 

For a table listing the COEFFICIENTS for various series 
operations, see Abramowitz and Stegun (1972, p. 15). 

While it can be difficult to calculate analytical expres- 
sions for arbitrary convergent infinite series, many al- 
gorithms can handle a variety of common series types. 

The program Mathematics@ (Wolfram Research, Cham- 
paign, IL) implements many of these algorithms. Gen- 
eral techniques also exist for computing the numerical 
values to any but the most pathological series (Braden 
1992). 

see also ALTERNATING SERIES, ARITHMETIC SERIES, 
ARTISTIC SERIES, ASYMPTOTIC SERIES, BIAS (SERIES), 

C~NVERGENCE~MPROVEMENT, CONVERGENCETESTS, 
EULER-MACLAURIN INTEGRATION FORMULAS, GEO- 
METRIC SERIES, HARMONIC SERIES, INFINITE SERIES, 
MELODIC SERIES, Q-SERIES, RIEMANN SERIES THEO- 

REM, SEQUENCE, SERIES EXPANSION, SERIES REVER- 
SION 
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Mangulis, V. Handbook of Series for Scientists and Engi- 
neers. New York: Academic Press, 1965. 

Press, W. H.; Flannery, B. I?; Teukolsky, S. A.; and Vet- 
terling, W. T. “Series and Their Convergence.” 55.1 in 
Numerical Recipes in FORTRAN: The Art of Scientific 
Computing, 2nd ed. Cambridge, England: Cambridge Uni- 
versity Press, pp. 159-163, 1992. 

Rainville, E. D. Infinite Series. New York: Macmillan, 1967. 

Series Expansion 

see LAURENT SERIES, MACLAURIN SERIES, POWER SE- 

RIES, SERIES REVERSION, TAYLOR SERIES 

Series Inversion 

see SERIES REVERSION 

Series Multisection 
If 

f (2) = fo + fix + f2x2 + n l  . + frx + ’ l  ’ 7 

then 

S(n,j> = fjXj + fj+nXj+n + fj+2nXj+2n +... 
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is given by where 

n-l 

S(n,j) = 1 ~w-jtf(wtx), 
n 

t=o 

where w  = e 2Ti/n. . 

see also SERIES REVERSION 

References 
Honsberger, R. Mathematical Gems III. Washington, DC: 

Math. Assoc. Amer., pp. 210-214, 1985. 

Series Reversion 
Series reversion is the computation of the COEFFICIENTS 
of the inverse function given those of the forward func- 
tion. For a function expressed in a series as 

y  = a1x  + 52x2  + 53x3  + l  . . , 
(1) 

the series expansion of the inverse series is given by 

X = Aly+ A2y2 + A3y3 +. l  n  g (2) 

By plugging (2) into (I), the following equation is ob- 
tained 

Y = 51Aly + (mA12 + alA2)y2 

+(53A13 + 2aAAz + 51A3)y3 

+(3a3A12A2 + aub2 + aubA3) + l  l  l  . (3) 

Equating COEFFICIENTS then gives 

Al = aI-’ (4) 

A2 = -%A12 = -al-3a2 
a1 

(5) 

A3 = al -5 (2m2 - 5153) (6) 

Ad = al -7 
(55l5253 - 51~54 - 55~~) (7) 

A5 = izl-’ (6a12a2a4 $- 3a12a2a3 + 14az4 - a3a5 

- 21alaz2a3) (8) 
As = al-l1 (7a13a2a5 + 7a13a3a4 + 84alaz3a3 

- al448 - 28a12a2as2 - 42az5 - 28a12az2a4) 

(9) 
A7 = al-l3 (8a14a2as + 8a14a3a5 + 4a14ad2 

+ 120a12a23a4 + 180a12a22a32 + 132a2” 

- al557 - 36a13az2a5 - ?2a13a2a3a4 

- lSa1~a3~ - 330a@24a3) (10) 

(Dwight 1961, Abramowitz and Stegun 1972, p. 16). A 
derivation of the explicit formula for the nth term is 
given by Morse and Feshbach (1953), 

1 
A, = - 

IE ( 1) 
s+t+u+... - 

nal n 
a,t,u,... 

x n(n + 1). l  l  (72 -1+s+t+u+...) 

s!t!u! * * ' 

s + 2t + 3u + l  . l  = n - 1. (12) 

References 
Abramowit z, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
1972. 

Arfken, G. Mathematical Methods for Physicists, 3rd ed. Or- 
lando, FL: Academic Press, pp+ 316-317, 1985. 

Beyer, W. H. CRC Standard Mathematical Tables, 26th ed. 

Boca Raton, FL: CRC Press, p. 297, 1987. 
Dwight, H. B. Table of Integrals and Other Mathematical 

Data, 4th ed. New York: Macmillan, 1961. 
Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 

ics, Part I. New York: McGraw-Hill, pp. 411-413, 1953. 

Serpentine Curve 

A curve named and studied by Newton in 1701 and con- 
tained in his classification of CUBIC CURVES. It had 
been studied earlier by L’Hospital and Huygens in 1692 
(MacTutor Archive). 

The curve is given by the CARTESIAN equation 

abx 
Y(X) = 22 

and parametric equations 

(1) 

x(t) = acot t 

YW = bsintcost. 
(2) 

(3) 

The curve has a MAXIMUM at x = a and a MINIMUM at 
x = -a, where 

Y’C > x= abb-x)(a+x) =o 

(a2 + x2)2 ’ (4 

and inflection points at x = &&a, where 

y”(x) = 
2abx(x2 - 3a2) = o 

(x2 + a2)3 . (5) 

The CURVATURE is given by 

K(X) = 
2abx(x2 - 3a2) 

(x2 + a2)3 [l + (u3b-nbx2)2] 3’2 
(6) 

b2+u214 

4fi ab[2 cos( 2t) - l] cot t csc2 t 
+) = - {b2[1 + cos(4i)] + 2a2 csc4 t}3/2 ’ (‘I 

References 
Lawrence, J. D. A Catalog of Special Plane Curves. New 

York: Dover, pp. 111-112, 1972. 
Mac’lUor History of Mathematics Archive. “Serpentine.” 

http://www-groups.dcs.st-and.ac.uk/ehistory/Curves 
/Serpentine.html. 
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Symbol set Serret-Fkenet Formulas 

see FRENET FORMULAS n-ball 
c complex numbers 

C”, CC”) n-differentiable functions 
ID 

n 
n-disk 

WI quat ernions 

Set 
A set is a FINITE or INFINITE collection of objects. Older 
words for set include AGGREGATE and CLASS. Russell 
also uses the term MANIFULD to refer to a set. The 
study of sets and their properties is the object of SET 
THEORY. Symbols used to operate on sets include A 
(which denotes the EMPTY SET 0), v = (which denotes 
the POWER SET of a set), n (which means “and” or 
INTERSECTION), and U (which means “or” or UNION). 

II integers 
natural numbers 
rational numbers 

N 
Q 
R” 
s n 

z 

& 

real numbers in n-D 
n-sphere 
integers 
integers (mod n) 

The NOTATION AB, where A and l3 are arbitrary sets, 
is used to denote the set o MAPS from B to A. For 
example, an element of X d would be a MAP from the 

NATURAL NUMBERS N to the set X. Call such a func- 
tion f, then f(l), f(2), etc., are elements of X, so call 
them ~1, 22, etc. This now looks like a SEQUENCE of el- 
ements of X, so sequences are really just functions from 
N to X. This NOTATION is standard in mathematics 
and is frequently used in symbolic dynamics to denote 
sequence spaces. 

z- negative integers 
z+ positive integers 
z* nonnegative integers 

see also AGGREGATE, ANALYTIC SET, BOREL SET, c, 
CLASS (SET),~OANALYTIC SET,DEFINABLE SET, DE- 

RIVED SET,DOUBLE-FREE SET, EXTENSION, GROUND 
SET, Ii, INTENSION, INTERSECTION, KINNEY'S SET, 
MANIFOLD, N,PERFECT SET,POSET,Q,IW,SET DIF- 
FERENCE, SET THEORY, TRIPLE-FREE SET, UNION, 
VENN DIAGRAM,~ELL-ORDERED SET&Z-,Z+ 

Let E, F, and G be sets. Then operation on these sets 
using the fl and U operators is COMMUTATIVE References 

Courant, R. and Robbins, H. “The Algebra of Sets.” Supple- 
ment to Ch. 2 in What is Maihematics?: An Elementary 
Approach to Ideas and Methods, 2nd ed. Oxford, England: 
Oxford University Press, pp. 108-116, 1996. 

EnF=FnE (1) 

EuF=FuE, (2) 
Set Difference 
The set difference A\B is defined by ASSOCIATIVE 

(EnF)nG=En(FnG) (3) A\B = {z : z E A and x $ B}. 

(5) 

and DISTRIBUTIVE 

The same symbol is also used for QUOTIENT GROUPS. 

Set Partition 
A set partition of a SET S is a collection of disjoint 
SUBSETS &, B1, . . . of S whose UNION is S, where 
each Bi is called a BLOCK. The number of partitions of 
the SET {k}t=, is called a BELL NUMBER. 

see UZSOBELL NUMBER,BLOCK,RESTRICTED GROWTH 
STRING,~TIRLING NUMBER OF THE SECOND KIND 

(En F) u G = (E u G) n (F u G) (6) 

(EuF)nG=(EnG)u(FnG). (7) 

The proofs follow trivially using VENN DIAGRAMS. 
References 
Ruskey, F. “Info About Set Partitions.” http: // sue , csc , 

uvic,ca/-cos/inf/setp/SeWartitions.html. 

i=l 

Set Theory 
The mathematical theory of SETS. Set theory is closely 
associated with the branch of mathematics known as 

(8) 

LOGIC. 
The table below gives symbols for some common sets in 
mathematics. There are a number of different versions of set the- 

ory, each with its own rules and AXIOMS. In or- 
der of increasing CONSISTENCY STRENGTH, severalver- 
sions of set theory include PEANO ARITHMETIC (or- 
dinary ALGEBRA), second-order arithmetic (ANALY- 
SIS),~ERMELO-FRAENKEL SETTHEORY, Mahlo,weakly 
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compact, hyper-Mahlo, ineffable, measurable, Ramsey, 
supercompact, huge, and n-huge set theory. 

Given a set of REAL NUMBERS, there are 14 versions of 
set theory which can be obtained using only closure and 
complement (Beeler et al. 1972, Item 105). 

see UZSO AXIOMATIC SET THEORY, CONSISTENCY 
STRENGTH, CONTINUUM HYPOTHESIS, DESCRIPTIVE 
SET THEORY, IMPREDICATIVE, NAIVE SET THEORY, 
PEANO ARITHMETIC, SET, ZERMELO-FRAENKEL SET 

THEORY 

References 
Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. 

Cambridge, MA: MIT Artificial Intelligence Laboratory, 
Memo AIM-239, pp. 36-44, Feb. 1972. 

Brown, K. S. “Set Theory and Foundations.” http: //uuu. 
seanet.com/-ksbrown/ifoundat.htm. 

Courant, R. and Robbins, H. ‘&The Algebra of Sets.” Supple- 
ment to Ch. 2 in What is Mathematics?: An Elementary 

Approach to Ideas and Methods, 2nd ed. Oxford, England: 
Oxford University Press, pp. 108-116, 1996. 

Devlin, K. The Joy of Sets: Fundamentals of Contemporary 
Set Theory, 2nd ed. New York: Springer-Verlag, 1993. 

Halmos, P. R. Naive Set Theory. New York: Springer-Verlag, 
1974. 

MacTutor History of Mathematics Archive. “The Beginnings 
of Set Theory.” http://www-groups.dcs.st-and.ac.uk/- 
history /HistTopics /Beginnings-of -set -theory. html. 

Stewart, I. The Problems of Mathematics, 2nd ed. Oxford: 
Oxford University Press, p. 96, 1987. 

Sexagesimal 
The base-60 notational system for representing REAL 
NUMBERS. A base-60 number system was used by the 
Babylonians and is preserved in the modern measure- 
ment of time (hours, minutes, and seconds) and ANGLES 
(DEGREES, ARC MINUTES, and ARC SECONDS). 

see ah BASE (NUMBER), BINARY, DECIMAL, HEXA- 
DECIMAL, OCTAL, QUATERNARY, SCRUPLE, TERNARY, 
VIGESIMAL 

References 
Bergamini, D. Mathematics. New York: Time-Life Books, 

pp. 16-17, 1969. 
@ Weisstein, E. W. ‘LBases.” http : //www l  astro . Virginia. 

edu/-eww6n/math/notebooks/Bases.m, 

Sexdecillion 
In the American system, lo? 

see also LARGE NUMBER 

Sextic Equation 
The general sextic polynomial equation 

2 + a5x5 + u4x4 + u3x3 + a2x2 + alx + a0 = 0 

can be solved in terms of HYPERGEOMETRIC FUNCTIONS 
in one variable using Klein’s approach to solving the 
QUINTIC EQUATION. 

see 
QU 

UZSO 

ARTIC 
CUBIC EQUATION, QUADRATIC 
EQUATION, QUINTIC EQUATION 

EQUATION, 

References 
Coble, A. B. “The Reduction of the Sextic Equation to the 

Valentiner Form-Problem.” Math. Ann. 70, 337-350, 
1911a. 

Coble, A. B. “An Application of Moore’s Cross-ratio Group 
to the Solution of the Sextic Equation.” Trans. Amer. 
Math. Sot. 12, 311-325, 1911b. 

Cole, F. N. “A Contribution to the Theory of the General 
Equation of the Sixth Degree.” Amer. J. Math. 8, 265- 

286, 1886. 

Sextic Surface 
An ALGEBRAIC SURFACE which can be represented im- 
plicitly by a polynomial of degree six in x, y, and z. 
Examples are the BARTH SEXTIC and BOY SURFACE. 

see also ALGEBRAIC SURFACE, BARTH SEXTIC, BOY 

SURFACE, CUBIC SURFACE,DECIC SURFACE, QUADRA- 
TIC SURFACE, QUARTIC SURFACE 

References 
Catanese, F. and Ceresa, G. “Constructing Sextic Surfaces 

with a Given Number of Nodes.” J. Pure App2. Algebra 
23, l-12, 1982. 

Hunt, B. “Algebraic Surfaces.” http://www.mathematik. 
uni-kl.de/-wwwagag/Galerie.html. 

Sextillion 
In the American system, 1021. 

see also LARGE NUMBER 

Sexy Primes 
Since a PRIME NUMBER cannot be divisible by 2 or 3, 
it must be true that, for a PRIME p, p E 6 (mod 1,5). 
This motivates the definition of sexy primes as a pair 
of primes (p, q) such that p - q = 6 (“sexy” since “sex” 
is the Latin word for “six.“). The first few sexy prime 
pairs are (5, ll), (7, 13), (11, 17), (13, 19), (17, 23), (23, 
29), (31, 37), (37, 43), (41, 47), (47, 53), l  n  l  (Sloane’s 
A023201 and A046117). 

Sexy constellations also exist. The first few sexy triplets 

( i.e., numbers such that each of (p,p + 6, p + 12) is 
PRIME but p + 18 is not PRIME) are (7, 13, 19), (17, 23, 
29), (31, 37, 43), (47, 53, 59), l  . . (Sloane’s A046118, 
A046119, and A046120). The first few sexy quadruplets 
are (11, 17, 23, 29), (41, 47, 53, 59), (61, 67, 73, 79), 
(251, 257, 263, 269), . . . (Sloane’s A046121, A046122, 
A046123, A046124). Sexy quadruplets can only begin 
with a PRIME ending in a “1.” There is only a sin- 
gle sexy quintuplet, (5, 11, 17, 23, 29), since every fifth 
number of the form 6~k 1 is divisible by 5, and therefore 
cannot be PRIME. 

see also PRIME CONSTELLATION, PRIME QUADRUPLET, 
TWIN PRIMES 

References 
Sloane, N. J. A. Sequences A023201, A046117, A046118, 

A046119, A046120, A046121, A046122, A046123, and 
A046124 in “An On-Line Version of the Encyclopedia of 
Integer Sequences.” 

Trotter, T. “Sexy Primes.” http://www.geocities.com/ 
CapeCanaveral/Launchpad/8202/sexyprim,html. 
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Seydewitz’s Theorem 
If a TRIANGLE is inscribed in a CYNIC SECTION, any 

line conjugate to one side meets the other two sides in 
conjugate points. 

see dso CONIC SECTION, TRIANGLE 

7, 
c 

Also called SIGNUM. It can be defined as 

i 

-1 x<o 
sgn E 0 x = 0 (1) 

1 x>o 

Or 

sgn(x) = 2H(z) - 1, (2) 

where H(x) is the HEAVISDE STEP FUNCTION. For 
x # 0, this can be written 

sgn(z) E + for x # 0. 
I I 

(3) 

see also HEAVISIDE STEP FUNCTION, RAMP FUNCTION 

Shadow 
The SURFACE corresponding to the region of obscuration 
when a solid is illuminated from a point light source (lo- 
cated at the RADIANT POINT). A DISK is the SHADOW 
of a SPHERE on a PLANE perpendicular to the SPHERE- 
RADIANT POINT line. If the PLANE is tilted, the shadow 
can be the interior of an ELLIPSE or a PARABOLA. 
see also PROJECTIVE GEOMETRY 

Shadowing Theorem 
Although a numerically computed CHAOTIC trajectory 
diverges exponentially from the true trajectory with the 
same initial coordinates, there exists an errorless trajec- 
tory with a slightly different initial condition that stays 
near (“shadows”) the numerically computed one. There- 
fore, the FRACTAL structure of chaotic trajectories seen 
in computer maps is real. 

Keterences 
Ott, E. Chaos in Dynamical Systems. New York: Cambridge 

University Press, pp. 18-19, 1993. 

Shafarevich Conjecture 
A conjecture which implies the M~RDELL CONJECTURE, 
as proved in 1968 by A. N. Parshin. 

see also MORDELL CONJECTURE 

Heterences 
Stewart, I. The Problems of Mathematics, 2nd ed. Oxford, 

England: Oxford University Press, p. 45, 1987. 

Shah Fkmction 

III (2) S 2 6(x -n) 

n=-m 

where S(x) is the DELTA FUNCTION, so 
x 4 iZ(i.e.,z notan INTEGER). Theshah 
the identities 

(1) 

III (4 = 0 for 
function obeys 

III (ax) = - l F sfx- “) a (2) \ I 

a- \ 
7-L=--cx, 

ELI (-x) = III (2) 

III (x + n) = III (x), 

for 2n E Z (i.e., n a half-integer). 

It is normalized so that 

s 

n+l/2 
III (x) dx = 1 

n-l/2 

The “sampling property” is 

(3) 
(4) 

(5) 

and the “replicating property” is 

III (x) * f (4 = F f (x - 4, 0 7 

n=-m 

where s denotes CONVOLUTION. 

see also CONVOLUTION, DELTA FUNCTION, IMPULSE 
PAIR 

Shah-Wilson Constant 

see TWIN PRIMES CONSTANT 

Shallit Constant 
Define ~(x~,zz,*.., xn) with xi POSITIVE as 

f(Xl,X2,'.. Jn) 

i=l l<i<k<n j=i 

Then 
min f = 3n - C + o(1) 

as n increases, where the Shallit constant is 

C = 1.369451403937.. . 

(Shallit 1995). In their solution, Grosjean and De Meyer 
(quoted in Shallit 1995) reduced the complexity of the 
problem. 

References 
MacLeod, A. http: //www .mathsof t l  com/asolve/constant/ 

shapiro/macleod. html. 
Shallit, J. Solution by C. C. Grosjean and II. E. De Meyer. “A 

Minimization Problem.” Problem 94-15 in SIAM Review 
37, 451-458, 1995. 
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Shallow Diagonal 

see PASCAL'S TRIANGLE 

Shapiro’s Cyclic Sum Constant 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

Shanks’ Algorithm 
An ALGORITHM which finds the least NONNEGATIVE 
value of du (mod p) for given a and PRIME p, 

Consider the sum 

f( n x1,52,. l  l  ) xn) = 

Xl 
-+ 

x2 

x2 +x3 
-+ 

x3+24 l  ” 

. Xn-1 L Xn (1) Shanks’ Conjecture 
Let p(g) be the first PRIME which follows a PRIME GAP 
of g between consecutive PRIMES. Shanks’ conjecture 
holds that 

I  

Xn +X1 ' 21 +X2' 

where the xjs are NONNEGATIVE and the DENOMINA- 
TORS are POSXTIVE. Shapiro (1954) asked if 

f( n XltX29m.*j Xn)> in (2) 

for all n. It turns out (Mitrinovic et al. 1993) that this 
INEQUALITY is true for all EVEN 72 < 12 and ODD 12 < 

23. Ranikin (1958) proved that for - 
- 

see also PRIME DIFFERENCE FUNCTION, PRIME GAPS 

Keterences 
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. 

New York: Springer-Verlag, pm 21, 1994. 
Rivera, C. “Problems & Puzzles (Conjectures): Shanks’ 

f( > n =5=fofn.(Xl,XZ,w**,Xn), (3) 
- 

Conjecture.” 
X = lim 2- = inf 2 < f( > f( 1 : - 7 x lo-‘. (4) conj -009. htm. 

Shanks, D. “On Maximal Gaps Between Successive Primes.” 
Math. Comput. 18, 646-651, 1964. 

7x21 

X can be computed by letting 4(x) be the CONVEX HULL 
of the functions 

Shannon Entropy 
see ENTROPY Yl = e-x 

2 
y2 = 

eX + eX/2 ' 

(5) 

(6) 
Shannon Sampling Theorem 

Then 
ii = $4(O) = 0.4945668.. . 

(Drinfeljd 1971). 

see SAMPLING THEOREM 

Shape Operator 
The negative derivative 

A modified sum was considered by Elbert (1973): 

SC > v= -D,N (1) 
gn(XlrX11~~*, Xn) = 

21+x3 
-+ 

52 +x4 

x1+x2 
-+... 
x2 +x3 of the unit normal N vector field of a SURFACE is called 

the shape operator (or WEINGARTEN MAP or SECOND 
FUNDAMENTAL TENSOR). The shape operator S is 
an EXTRINSIC CURVATURE, and the GAUSSIAN CURVA- 
TURE is given by the DETERMINANT of S. If x : U + R3 
is a REGULAR PATCH, then 

+ 
2x-1+21 J&+x2 

Xn-l-txn 
+- 

xn  + Xl l  

(8) 

Consider I \ 

P 
gw = lim -, (9) 

n-k- n 

where 

9( > n =~~~Qn(Xl,X2,...,Xn), 

and let $(x) be the CONVEX HULL of 

yl = :(I + ex) 

(10) 

(11) 

S(x,) = -Iv, (2) 

S(x,) = -N,. co 

Ateach point p on a REGULAR SURFACE A.4 c Iw3, the 
shape operator is a linear map 

1 + e” 
yz = - 

1 + exi2 ' 
(12) S:MP-+MP. (4) 

Then 
p = $(O) = 0.978012.. . . (13) 

The shape operator for 
GARTEN EQUATIONS. 

a surface is given by the WEIN- 

see also CURVATURE, 
GARTEN EQUATIONS 

FUNDAMENTAL FORMS, WEIN- see also CONVEX HULL 
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Sharing Problem 
A problem also known as the POINTS PROBLEM or UN- 
FINISHED GAME. Consider a tournament involving k 
players playing the same game repetitively. Each game 
has a single winner, and denote the number of games 
won by player i at some juncture wi. The games are in- 
dependent, and the probability of the ith player winning 
a game is pi. The tournament is specified to continue 
until one player has won n games. If the tournament is 
discontinued before any player has won n games so that 
wi < n for i = 1, . . . , k, how should the prize money 
be shared in order to distribute it proportionally to the 
players’ chances of winning? 

For player i, call the number of games left to win Q = 
n- wi > 0 the “quota.” For two players, let p = p1 and 

q = pz = I - p be the probabilities of winning a single 
game, and a E ~1 = n - w1 and b = ~2 = n - w2 be 
the number of games needed for each player to win the 
tournament. Then the stakes should be divided in the 
ratio m : n, where 

m=pa l+fq+~ 
1 

a@+ 1)92 

. 

+-+ 
+++++~-2) b-1 

(b - l)! q 1 (1) 

b b(b+l) 2 
‘+ip+Tp 

. 

+.**+ 
b(b + 1) l  l  l  (b + a - 2) a-1 

(a - l)! P 1 (2) 
(Kraitchik 1942). 

If i players have equal probability of winning (“cell prob- 
ability”), then the chance of player i winning for quotas 
rl, l ., rk is 

‘Wi = Dy(rl,. . . , ri-l,~i+l,...,~k;~i), (3) 

where D is the DIRICHLET INTEGRAL of type 2D. Simi- 
larly, the chance of player i losing is 

Li  = c,k-‘(rl, - . l  , T&l, ri+l,. . . , rk; Ti), 
(4) 

where C is the DIRICHLET INTEGRAL of type 2C. If the 
cell quotas are not equal, the general Dirichlet integral 
D, must be used, where 

Pa 

ui = 1 - c,“r: pi ’ 

For k = 4 

p2 +p3 -+ 

with quota vector r = (Flrr2,r3,rd) and A = 

An expression for k = 5 is given by Sobel and Frankow- 
ski (1994, p. 838). 

see also DIRICHLET INTEGRALS 

References . 
Kraitchik, M. “The Unfinished Game.” 56.1 in IMuUzema~ical 

Recreations. New York: W+ W. Norton, pp* 117-118, 1942. 
Sobel, M. and F’rankowski, K. “The 500th Anniversary of the 

Sharing Problem (The Oldest Problem in the Theory of 
Probability)? Amer. Math. Monthly 101, 833-847, 1994. 

Sharkovsky’s Theorem 

see ~ARKOVSKII'S THEOREM 

Sharpe’s Differential Equation 
A generalization of the BESSEL DIFFERENTIAL EQUA- 
TION for functions of order 0, given by 

ry" + y' + (z + A)y = 0. 

Solutions are 

where 1Fl (a;b;x) is a CONFLUENT HYPERGEOMETRIC 
FUNCTION. 
see UZSO BESSEL DIFFERENTIAL EQUATION, CONFLU- 

ENT HYPERGEOMETRIC FUNCTION 

Sharpe Ratio 
A risk-adjusted financial measure developed by Nobel 
Laureate William Sharpe. It uses a fund’s standard de- 
viation and excess return to determine the reward per 
unit of risk. The higher a fund’s Sharpe ratio, the better 
the fund’s “risk-adjusted” performance. 

see also ALPHA, BETA 

Sheaf (Geometry) 
The set of all PLANES through a LINE. 
see also LINE, PENCIL, PLANE 

References 

If ri = r and ai = 1, then JXi and Li reduce to l/k 
as they must. Let P(rl , . . . , Tk) be the joint probability 
that the players would be RANKED in the order of the 
ris in the argument list if the contest were completed. 
For k = 3, 

(5) 
Woods, F. S. Higher Geometry: An Introduction to Advanced 

Methods in Analytic Geometry. New York: Dover, p. 12, 

(W p(rl, n,r3) = CD, h~2,n). (6) 

Sheaf (Topology) 
A topological GADGET related to families of ABELIAN 
GROUPS and MAPS. 

References 
Iyanaga, S. and Kawada, Y. (Eds.). itSheaves.” $377 in En- 

cyclopedic Dictionary of Mathematics. Cambridge, MA: 
MIT Press, p. 1171-1174, 1980. 



Shear 
l  
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Shear where B, is the rth BERNOULLI NUMBER, giving 

I 
A transformation in which all points along a given LINE 
L remain fixed while other points are shifted parallel to 
1; by a distance proportional to their PERPENDICULAR 
distance from L. Shearing a plane figure does not change 
its AREA. The shear can also be generalized to 3-Q in 
which PLANES are translated instead of lines. 

Shear Matrix 
The shear matrix eij is obtained from the IDENTITY 
MATRIX by inserting s at (;,j), e.g., 

1 S 0 ef2 = [ 0 1 0 1 . 
0 0 1 

see also ELEMENTARY MATRIX 

Shephard’s Problem 
Measurements of a centered convex body in Euclidean 
n-space (for 12 > 3) show that its brightness function 
(the volume of each projection) is smaller than that of 
another such body. Is it true that its VOLUME is also 
smaller? C. M. Petty and R. Schneider showed in 1967 
that the answer is yes if the body with the larger bright- 
ness function is a projection body, but no in general for 
every 72. 

References 
Gardner, R. J. “Geometric Tomography.” Not. Amer. Math. 

n’1 = Kf (5) 
n; = K2 - (6) 
n; = tc3 (7) 
n; = K4 + is” (8) 
nk = n5 (9) 

nb = n6 - (10) 

For a proof, see Kendall et al. (1987). 

References 
Kendall, M. G.; Stuart, A.; and Ord, J. K. Kendall’s Ad- 

vanced Theory of Statistics, Vol. I: Distribution Theory, 
6th ed. New York: Oxford University Press, 1987. 

Kenney, J. F. and Keeping, E. S. “Sheppard’s Correction.” 
54.12 in Mathematics of Statistics, Pt. 2, 2nd ed. Prince- 
ton, NJ: Van Nostrand, pp. 80-82, 1951. 

Sherman-Morrison Formula 
A formula which allows the new MATRIX to be computed 

u@v 

for a small change to a MATRIX A. If the change can be 
written in the form 

for two vectors u and v, then the Sherman-Morrison 
formula is 

(A + u 8 v)-l = A-l _ ‘“‘“‘1”,‘x ’ A-‘), 

where 
x  E v  l  A-% . 

see &O WOODBURY FORMULA 
Sot. 42, 422-429, 1995. 

kteterences 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 

ling, W* T. “Sherman-Morrison Formula.” In Numerical 
Reiipes in FORTRAN: The Art of Scientific Computing, 
2nd ed. Cambridge, England: Cambridge University Press, 
pp. 65-67, 1992. 

Sheppard’s Correction 
A correction which must be applied to the MOMENTS 
computed from NORMALLY DISTRIBUTED data which 
have been binned. The corrected versions of the second, 
third, and fourth moments are 

P2 = p2(o) - iLc2 
(1) 

P3 = P3(O) (2) 

P4 
= p4(0) - +,(O) + &c2, 

(3) 

where c is the CLASS INTERVAL. If n: is the rth Cu- 
MULANT of an ungrouped distribution and ~~ the rth 
CUMULANT of the grouped distribution with CLASS IN- 
TERVAL c, the corrected cumulants (under rather restric- 
tive conditions) are 

n: = 
nr for r odd 
6 - !+’ for T even, (4) 

Shi 

Re[SinhIntegral z] Im[SinhIntegral z] ISinhIntegral z1 



Shift Sibling 

Shi(x) = 
I 0 

’ F &. 

The function is given by the Mathem~tic@ (Wolfram 
Research, Champaign, IL) command SinhIntegral [z] q 

see also CHI, COSINE INTEGRAL, SINE INTEGRAL 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). “Sine and Co- 

sine Integrals.” s5.2 in Handbook of Mathematical Func- 
tions with Formulas, Graphs, and Mathematical Tables, 
9th printing. New York: Dover, pp. 231-233, 1972. 

Shift 
A TRANSLATION without ROTATION or distortion. 

see dso DILATION, EXPANSION, ROTATION, TRANSLA- 

TION, TWIRL 

Shift Property 

see DELTA FUNCTION 

Shimura-Taniyama Conjecture 

see TANIYAMA-SHIMURA CONJECTURE 

Shimura-Taniyama-Weil Conjecture 

see TANIYAMA-SHIMURA CONJECTURE 

Shoe Surface 

A surface given by the parametric equations 

x(u,v) = u 

Y(V) = v 

z(u,v) = ;u3 - ;u2. 

References 
Gray, A. Modern Differential Geometry of Curves and Sur- 

faces. Boca Raton, FL: CRC Press, p. 634, 1993. 

Shortening 
A KNOT used to shorten a long rope. 

see also BEND (KNOT) 

References 
Owen, P. Knots. Philadelphia, PA: Courage, p. 65, 1993. ’ 

Shuffle 
The randomization of a deck of CARDS by repeated 
interleaving. More generally, a shuffle is a rearrange- 
ment of the elements in an ordered list. Shuffling by 
exactly interleaving two halves of a deck is called a RIF- 

FLE SHUFFLE. Normal shuffling leaves gaps of different 
lengths between the two layers of cards and so random- 
izes the order of the cards. 

A deck of 52 CARDS must be shuffled seven times for it 
to be randomized (Aldous and Diaconis 1986, Bayer and 
Diaconis 1992). This is intermediate between too few 
shuffles and the decreasing effectiveness of many shuf- 
fles. One of Bayer and Diaconis’s randomness CRITE- 

RIA, however, gives 3 Ig k/2 shuffles for a k-card deck, 
yielding U-12 shuffles for 52 CARDS. Keller (1995) 
shows that roughly Ink: shuffles are needed just to ran- 
domize the bottom card. 

see also BAYS’ SHUFFLE, CARDS, FARO SHUFFLE, 

MONGE’S SHUFFLE, RIFFLE SHUFFLE 

References 
Aldous, D. and Diaconis, P. “ShufRing Cards and Stopping 

Times.” Amer. Math. Monthly 93, 333-348, 1986. 
Bayer, D. and Diaconis, P. “Trailing the Dovetail Shuffle to 

Its Lair.” Ann. Appl. Probability 2, 294-313, 1992. 
Keller, J. B. “How Many Shuffles to Mix a Deck?” SIAM 

Review 37, 88-89, 1995. 
Morris, S. B. “Practitioner’s Commentary: Card Shuffling.” 

UMAP J. 15, 333-338, 1994. 
Rosenthal, J. W. “Card Shuffling.” Math. Mag. 54, 64-67, 

1981. 

Siamese Dodecahedron 

see SNUB DISPHENOID 

Siamese Method 
A method for constructing MAGIC SQUARES of ODD or- 

der, also called DE LA LOUBERE'S METHOD. 

see also MAGIC SQUARE 

Sibling 
Two nodes connected to the same node in a ROOTED 

TREE are called siblings. 

see also CHILD, ROOTED TREE 

Shoemaker’s Knife 

see ARBELOS 
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Sicherman Dice 
b 1 

1 I I I 

A pair of DICE which have the same ODDS for throwing 
every number as a normal pair of 6-sided DICE. They 
are the only such alternate arrangement. 

see also DICE, EFRON’S DICE 

Sici Spiral 

-0.4 

-0.2 
t 

-0.3p 

-0.4. 

The spiral 

2 = ccit 

Y = c(sit - $r), 

where ci(t) and si(t) are the COSINE INTEGRAL and SINE 

INTEGRAL and c is a constant. 

see also COSINE INTEGRAL, SINE INTEGRAL, SPIRAL 

References 
von Seggern, D. CRC Standard Curves and Surfaces. Boca 

Raton, FL: CRC Press, pp. 204 and 270, 1993. 

Side 
Theedgeofa POLYGON and face of a POLYHEDRON are 
sometimes called sides. 

Sidon Sequence 

see B2-SEQUENCE 

Siegel Disk Fractal 

A JULIA SET with c = -0.390541 - 0.586788i. The 
FRACTAL somewhat resembles the better known MAN- 

DELBROT SET. 

see also DOUADY'S RABBIT FRACTAL, JULIA SET, 
MANDELBROT SET,SAN MARCO FRACTAL 

References 
Wagon, S. Mathematicu in Action. New York: W. H. F'ree- 

man, p. 176, 1991. 

Siegel Modular Function 
A r,-invariant meromorphic function on the space of 
all n x n complex symmetric matrices with POSITIVE 
IMAGINARY PART. In 1984, II. Umemura expressed the 
ROOTS of an arbitrary POLYNOMIAL in terms of elliptic 
Siegel functions. 
- n  

fteterences 
Iyanaga, S. and Kawada, Y. (Eds.). “Siegel Modular Func- 

t ions.” §34F in Eric yclopedic Dictionary of Mathe 

Cambrj .dge, MA : MIT Press, pp. 131-132, 1980* 
mutics. 

Siegel’s Paradox 
If a fixed FRACTION or: of a given amount of money P is 
lost, and then the same FRACTION z of the remaining 
amount is gained, the result is less than the original and 
equal to the final amount if a FRACTION II= is first gained, 
then lost. This can easily be seen from the fact that 

[P(l- x)](l+ 2) = P(1 - x2) < P 
[P(l+ x)1(1- 2) = P(l- X2) < P. 

Siegel’s Theorem 
An ELLIPTIC CURVE can have only a finite number of 
points with INTEGER coordinates. 

see also ELLIPTIC CURVE 

References 
Davenport, H. “Siegel’s Theorem.” Ch. 21 in Multiplica- 

tive Number Theory, 2nd ed. New York: Springer-Verlag, 
pp. 126-125, 1980. 

Sierpiriski Arrowhead Curve 

y-)fiTA v 
A FRACTAL which can be written as a LINDENMAYER 
SYSTEM with initial string IIYFNB, STRING REWRITING 
rules “X” -> "YF+XF+Y", I'Y" -> "XF-YF-X", and an- 
gle 60”. 

see also DRAGON CURVE, HILBERT CURVE, KOCH 
SNOWFLAKE, LTNDENMAYER SYSTEM, PEANO CURVE, 
PEANO-GOSPER CURVE, SIERPI~~SKI CURVE, SIERPI~ 
SKI SIEVE 

References 
Dickau, R. M. “Two-Dimensional L-Systems.” http:// 

forum.swarthmore.edu/advanced/robertd/lsysZd.htmL 
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Sierpifiski Carpet 

A FRACTAL which is constructed analogously to the 
SIERPI~~SKI SIEVE, but using squares instead of trian- 
gles. Let A& be the number of black boxes, L, the 
length of a side of a white box, and A, the fractional 
AREA of black boxes after the nth iteration. Then 

Nn = 8” (1) 
L, = (5)” = 3-” (2) 

A, = Ln2Nn = (0)“. (3) 

The CAPACITY DIMENSION is therefore 

d lim In Nn _ _ lim lnC8”) In 8 
cap = - 

- - --- 

n+m lnL, n-+m ln(3-“) - In3 

3 In 2 
- = 1.892789261.. . . 

= In3 (4) 

see also MENGER SPONGE, SIERPI~~SKI SIEVE 
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edu/-eww6n/math/notebooks/Fractal.m. 

Sierpiriski’s Composite Number Theorem 
There exist infinitely many ODD INTEGERS k such that 
kZ‘+l is COMPOSITE for every n > 1. Numbers k with 
this property are called SIERPI&& NUMBERS OF THE 

SECOND KIND, and analogous numbers with the plus 
sign replaced by a minus are called RIESEL NUMBERS. 

It is conjectured that the smallest SIERPI~~SKI NUMBER 

OF THE SECOND KIND is k = 78,557 and the smallest 
RIESEL NUMBER is Jc = 509,203. 

see also CUNNINGHAM NUMBER, SIERPI~~SKI NUMBER 

OFTHE SECOND KIND 
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Ribenboim, P. The New Book of Prime Number Records. 
New York: Springer-Verlag, pp. 357-359, 1996. 
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see also COMPOSITE NUMBER, SIERPI~KI NUMBERS 

OF THE SECOND KIND, SIERPI~~SKI’S PRIME SEQUENCE 

THEOREM 

Sierpiriski Constant 

2.62 

2.6 

2.58 

2.56 

T 1 / Let rk(n) denote the number of representations of n by 
Fz squares, then the SUMMATORY FUNCTION of ~~(k)/k 
has the ASYMPTOTIC expansion 

n m(k) 
x k 

= K + nlnn + O(nDfj2), 
k=l 

where K = 2.5849817596 is the Sierpinski constant, The 
above plot shows 

n m(k) >: k 
k=l 

with the value of K indicate< 

- 7rlnn, 

as the solid horizontal line. 

see also rk(n) 

References 
Sierpiliski, W. Oeuvres Choiseies, Tome 1. Editions Scien- 
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Sierpiriski Curve 

q 
There are several FRACTAL curves associated with Sier- 
pixiski. The above curve is one example, and the SIER- 

PIGSKI ARROWHEAD CURVE is another, The limit of the 
curve illustrated above has AREA 

A= &. 

The AREA for a related curve illustrated by Cundy and 
Rollett (1989) is 

A= $(7 - 4&). 
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see also EXTERIOR SNOWFLAKE, GOSPER ISLAND, 
HILBERT CURVE, KOCH ANTISNOWFLAKE, KOCH 
SNOWFLAKE, PEANO CURVE, PEANO-GOSPER CURVE, 

SIERPI~SKI ARROWHEAD CURVE 

References 
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Sierpiriski Gasket 

see SIERPI~~SKI SIEVE 

m 
Sierpiiiski-Menger sponge 

reissue ed. New York: W. H. Free- 

in Action. New York: W. H. Free- 

~~~MENGER SPONGE 

Sierpiriski Number of the First Kind 
Numbers of the form S, G nn + 1. The first few are 2, 
5, 28, 257, 3126, 46657, 823544, 16777217, , + l  (Sloane’s 
A014566), Sierpiliski proved that if S, is PRIM~E with 
72 2 2, then Sn = Fm+2m, where F, isa FERMAT NUM- 
BER with no 2 0. The first few such numbers are Fl = 5, 

F3 = 257, Fs, &, FZO, and F37. Of these, 5 and 257 are 

PRIME, and the first unknown case is Fz7 > 103’ ‘Or’. 

see also CULLEN NUMBER, CUNNING 
FERMAT NUMBER, WOODALL NUMBER 

.HAM NUMBER, 
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Sierpiliski Number uf the Second Kind 
A number /C satisfying SIERPI~~SKI'S COMPOSITE NUM- 

BER THEOREM, i.e.,suchthat kg 212 + lis COMPOSITE 
for every n > 1. The smallest known is Ic = 78,557, 
but there remain 35 smaller candidates (the smallest of 
which is 4847) which are known to generate only com- 
posite numbers for n _< 18,000 or more (Ribenboim 
1996, p. 358). 

Let a&) be smallest rz for which (2k - 1) m 2n + 1 is 
PRIME, then the first few values are 0, 1, 1, 2, 1, 1, 2, 1, 

3, 6, 1, 1, 2, 2, 1, 8, 1, 1, 2, 1, 1, 2, 2, 583, , . . (Sloane’s 
A046067). The second smallest n are given by 1, 2, 3, 
4, 2, 3, 8, 2, 15, 10, 4, 9, 4, 4, 3, 60, 6, 3, 4, 2, 11, 6, 
9, 1483, l  . . (Sloane’s A046068). Quite large n can be 
required to obtain the first prime even for small k. For 
example, the smallest prime of the form 383 l  2n + 1 is 
383 l  263g3 + 1. There are an infinite number of Sierpiriski 
numbers which are PRIME. 

The smallest odd !C such that k + 2n. is COMPOSITE for 
all n < k are 773, 2131, 2491, 4471, 5101, . . . . 

see also MERSENNE NUMBER, RIESEL NUMBER, SIER- 
PIfiSKI'S COMPOSITE NUMBER THEOREM 
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Sierpiriski’s Prime Sequence Theorem 
For any M, there exists a t’ such that the sequence 

n2 + t, 

where n = 1, 2, . . . contains at least M PRIMES. 

see also DIRICHLET'S THEOREM, FERMAT 4n + 1 THE- 
OREM,SIERPI&KI'S COMPOSITE NUMBER THEOREM 
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Sierpiriski Sieve 

AAAA 
A FRACTAL described by Sierpifiski in 1915. It 
is also called the SIERPI~~SKI GASKET or SIER- 
PIfiSK1 TRIANGLE. The curve can be written 
as a LINDENMAYER SYSTEM with initial string 
"FXF--FF--FF", STRING REWRITING rules ‘IFI’ -> 

"FF" , II p-> II --FXF++FXF++FXF--'I , and angle 60”. 

Let N, be the number of black triangles after iteration 
n, L, the length of a side of a triangle, and A, the 
fractional AREA which is black after the nth iteration. 
Then 

Nn = 3” (1) 
L;, = ($)” = 2-” (2) 

An = Ln2Nn = Cp)“. (3) 
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The CAPACITY DIMENSION is therefore 

Sieve of Eratosthenes 

SierpiI-iski Triangle 

see SIERPI~~SKI SIEVE 

d 
lirn In N, In 3 

= - 
--- 

ln(3”) 
cap 

n+oo lnL, - nfEx3 In(a-n) = G-2 

= 1.584962501.. . . (4) 

In PASCAL’S TRIANGLE, coloring all ODD numbers black 
and EVEN numbers white produces a Sierpiliski sieve. 

see also LINDENMAYER SYSTEM, SIERPI~~SKI ARROW- 
HEAD CURVE, SIERPI~~SKI CARPET, TETRIX 
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Sierpiriski Sponge 

see TETRIX 

Sierpitiski Tetrahedron 

see TETRXX 

Sierpiriski’s Theorem 

see SIERPI~~SKI'S COMPOSITE NUMBER THEOREM, 
SIERPI~~SKI'S PRIME SEQUENCE THEOREM 

Sieve 
A process of successively crossing out members of a list 
according to a set of rules such that only some remain. 
The best known sieve is the ERATOSTHENES SIEVE for 
generating PRIME NUMBERS. In fact, numbers gener- 
ated by sieves seem to share a 

PRIME of properties with the 
surprisingly 
NUMBERS. 

large number 

see also HAPPY NUMBER, NUMBER FIELD SIEVE FAC- 
TORIZATION METHOD, PRIME NUMBER, QUADRATIC 

SIEVE FACTORIZATION METHOD, SIERPI~~SKI SIEVE, 
SIEVE OF ERATOSTHENES, WALLIS SIEVE 
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Sieve of Eratosthenes 

21 242 23 2k 25 2j6 27 24& 29 31;o "1' "1" 23 jf 25 j6 "1' "I" 29 1s 

31 'I' 33 344 35 346 37 3jJ 39 40 31 3p 'I' p 35 44 37 Q 3p "I" 

41 j2 43 4j4 45 446 47 "4" 49 5p 41 ij 43 "1" 4p "4" 47 Q 49 '1" 

An ALGORITHM for making tables of PRIMES. Sequen- 
tially write down the INTEGERS from 2 to the highest 
number n you 
all numbers > 

wish to 
2 which 

include in the table. Cross out 
are divisible by 2 (every second 

number). Find the smallest remaining number > 2. It 
is 3. So cross out all numbers > 3 which are divisible 
by 3 (every third number). Find the smallest remaining 
number > 3. It is 5. So cross out all numbers > 5 which 
are divisible by 5 (every fifth number). 

Continue until you have crossed out all numbers divisi- 
ble by 161, where 1x1 is the FLOOR FUNCTION. The 
numbers remaining are PRIME. This procedure is illus- 
trated in the above diagram which sieves up to 50, and 
therefore crosses out PRIMES up to 1 mI = 7. If the 
procedure is then continued up-to r~r then the number 
of cross-outs gives the number of distinct PRIME factors 
of each number. 

References 
Conway, J. H. and Guy, R. K. The Book of Numbers. New 

York: Springer-Verlag, pp. 127-130, 1996. 
Pappas, T. The Joy of Mathematics. San Carlos, CA: Wide 

World Publ./Tetra, pp, 100-101, 1989. 
Ribenboim, P. The New Book of Prime Number Records. 

New York: Springer-Verlag, pp. 20-21, 1996. 
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Sieve& Integral 
The integral 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). “Sievert Inte- 

gral.” 527.4 in Handbook of Mathematical Functions with 
Formulas, Graphs, and Mathematical Tables, 9th printing. 
New York: Dover, pp. 1000-1001, 19’72. 

Sievert’s Surface 

A special case of ENNEPER’S SURFACES which can be 
given parametrically by 

X = rcosqb (1) 

Y = rsinq5 (2) 

z- 
ln[tan( +)] + a(C + 1) coszt 

dE 
? (3) 

where 

4 - - -~ - & + tan-l(tan&Fj3) (4) 

2 
a- 

C+l -Csin2vcos2U 

TI 
a&C + 1)(1 + Csin2 21) sinv 

Jc 
1 (6) 

with ju[ < 7~12 and 0 < v < n (Reckziegel 1986). 

see also ENNEPER’S SURFACES, KUEN SURFACE, 
REMBS’ SURFACES 

References 
Fischer, G. (Ed.). Plate 87 in Mathematische Mod- 

elle/Mathematical Models, Bildband/Photograph Volume. 
Braunschweig, Germany: Vieweg, p. 83, 1986. 

Reckziegel, H. “Sievert’s Surface.” $3.4.4.3 in Mathemati- 

cal Models from the Collections of Universities and Muse- 
ums (Ed, G. Fischer). Braunschweig, Germany: Vieweg, 
pp. 38-39, 1986. 

Sieved, JiL Uber die ZentraljXchen der Enneperschen 
Flathen konstanten Kriimmungsma$es. Dissertation, 
Tiibingen, 1886. 

Sifting Property 
The property 

s 
f(Y>W - Y> dY = f (4 

obeyedbythe DELTA FUNCTION d(x). 

see also DELTA FUNCTION 

Sigma Algebra 
Let X be a SET. Then a g-algebra F is a nonempty 
collection of SUBSETS of X such that the following hold: 

1. The EMPTY SET isin F. 
2. If A is in F, then so is the complement of A. 
3. If A, is a SEQUENCE of elements of F, then the 

UNION of the A,s is in F. 

If S is any collection of subsets of X, then we can always 
find a g-algebra containing S, namely the POWER SET 

of X. By taking the INTERSECTION of all c-algebras 
containing S, we obtain the smallest such a-algebra. We 
call the smallest a-algebra containing S the a-algebra 
generated by S. 

see also B~REL SIGMA ALGEBRA, BOREL SPACE, MEA- 
SURABLE SET, MEASURABLE SPACE,MEASURE ALGE- 
BRA,~TANDARD SPACE 

Sigma Function 

see DIVISOR FUNCTION 

Sigmoid Curve 

see SIGMOID FUNCTION 

Sigmoid Function 

-4 -2 2 4 

ReISigmoidFunction z] Im[SigmoidFunction z] 
ISigmoidFunction 21 

- 

The function 
1 

y = 1 +e-x 

which is the solution to the ORDINARY DIFFERENTIAL 
EQUATION 

dY 
& = YU - Y>a 

It has an inflection point at =1: = 0, where 

ex(ex - 1) 
Y”(X) = - (ex + 1)3 = O- 

see also EXPONENTIAL FUNCTION, EXPONENTIAL 
RAMP 

References 
van Seggern, D. CRC Standard Curves and Surfaces. Boca 

Raton, FL: CRC Press, p. 124, 1993. 
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sg in Signature (Recurrence Relation) 
The sign of a number, also called SGN, is -1 for a NEG- Let a sequence be defined by 
ATIVE number (i.e., one with a MINUS SIGN “-"), 0 for 
the number ZERO, or +l for a POSITIVE number (i.e., A -1 = s 

one with a PLUS SIGN “+“). A0 = 3 

see also ABSOLUTE VALUE, MINUS SIGN, NEGATIVE, 
PLUS SIGN, POSITIVE, SGN, ZERO 

A1 =T 

A, = TA~-~ - sA,--2+&e-3* 

Signalizer finctor Theorem Also define the associated POLYNOMIAL 

O(G; A) = (t?(a) : a E A - 1) f( > X = x3 - TX2 + sx + 1, 

is an A-invariant solvable $-subgroup of G. and let A be its discriminant. The PERRIN SEQUENCE 

is a special case corresponding to A, (0, -1). The sig- 
nature mod m of an INTEGER n with respect to the 
sequence A& s) is then defined as the 6-tuple (A+-1, 
A-,, A-,+1, &-I, A,, A+I) (mod m)* 
1. An INTEGER n has an S-signature if its signature 

Signature (Knot) 
The signature s(K) of a KNOT K can be defined using 
the SKEIN RELATIONSHIP 

s(unknot) = 0 (mod n) is (A-2, A-1, Ao, AI, AZ). 

and 

s(K+) - SW-) E {09219 

41s(K) w  V(K)(2i) > 0, 

2. An INTEGER n has a Q-signature if its signature 
(mod n) is CONGRUENT to (A,s,B,B,r,C) where, 
for some INTEGER a with f(a) = 0 (mod n), A = 
a-’ + 2a, B E -ru2 + (r2 - s)a, and C E a2 + 2a-? 

where V(K) is the ALEXANDER-CONWAY POLYNOMIAL 

and V(K)(2i) is an ODD NUMBER. 

3. An INTEGER n has an I-signature if its signature 
(mod n) is CONGRUENT to (qs,D’, D,r,s), where 
D’ + D = rs - 3 and (D’ - 0)” E A. 

Many UNKNOTTING NUMBERS can be determined using 
a knot’s signature. see also PERRIN PSE~DOPRIME 

see also SKEIN RELATIONSHIP, UNKNOTTING NUMBER 

References 
Gordon, C. McA.; Litherland, R. A.; and Murasugi, K. “Sig- 

natures of Covering Links.” Canad. J. Math. 33, 381-394, 
1981. 

Murasugi, K. “On the Signature of Links.” Topology 9, 283- 
298, 1970. 

Murasugi, K. “Signatures and Alexander Polynomials of 
Two-Bridge Knots.” C. R. Math. Rep. Acad. Sci. Canada 
5, 133-136, 1983. 

Murasugi, K. “On the Signature of a Graph.” C. R. Math. 
Rep. Acad. Sci. Canada 10, 107-111, 1988. 

Murasugi, K. “On Invariants of Graphs with Applications to 
Knot Theory.” Trans. Amer. Math. Sot. 314, l-49, 1989. 

Rolfsen, D. Knots and Links. Wilmington, DE: Publish or 
Perish Press, 1976. 

Stoimenow, A. “Signatures.” http: //www, inf ormatik.hu- 
berlin.de/*stoimeno/ptab/siglO.html. 

Signature Sequence 
Let 8 be an IRRATIONAL NUMBER, define S(0) = {c + 
d0 : c, d E N}, and let cn (0) + d,#( 0) be the sequence 
obtained by arranging the elements of S( 0) in increasing 
order. A sequence x is said to be a signature sequence if 
there EXISTS a POSITIVE IRRATIONAL NUMBER 8 such 
that x = {c#)}, and x is called the signature of 8. 

Thesignatureofan IRRATIONAL NUMBER isa FRACTAL 
SEQUENCE. Also, if x is a signature sequence, then the 
LOWER-TRIMMED SUBSEQUENCE is V(X)=X. 

Signature (Quadratic Form) 
The signature of the QUADRATIC FORM 

References 
Kimberling, C. “ fiact al Sequences and Interspersions l ” Ars 

Combin. 45, 157-168, 1997. 

Q = y12 +~2~ + l +yp2 -yp+12 -~~+2~ -..a -yr2 

is the number s of POSITIVE squared terms in the re- 

Signed Deviation 
The signed deviation is defined by 

duced form. (The signature is sometimes defined as Aui = (ui - ii>, 
29 - T.) 

see also p-SIGNATURE, RANK (QUADRATIC FORM), 
so the average deviation is 

SYLVESTER~S INERTIA LAW, SYLVESTER'S SIGNATURE 

References 
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- see also ABSOLUTE DEVIATION, DEVIATION, DISPER- 

ries, and Products, 5th ed. San Diego, CA: Academic SION (STATISTICS), MEAN DEVIATION, QUARTILE DE- 
Press, p. 1105, 1979. VIATION, STANDARD DEVIATION, VARIANCE 
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Significance 
Let 6 = z < zobserved. A value 0 < a < 1 such 
that P(S) <- 

- - 
- Q! is considered “significant” (i.e., is not 

simply due to chance) is known as an ALPHA VALUE. 

The PROBABILITY that a variate would assume a value 
greater than or equal to the observed value strictly by 
chance, P(d), is known as a P-VALUE. 

Depending on the type of data and conventional prac- 
tices of a given field of study, a variety of different alpha 
values may be used. One commonly used terminology 
takes P(a) 2 5% as “not significant,” 1% < P(d) < 5%, 
as “significant” (sometimes denoted *), and P(S) < 1% 
as “highly significant” (sometimes denoted **). Some 
authors use the term “almost significant” to refer to 
5% < P(b) < 10% although this practice is not rec- 
ommended. 

see UZSO ALPHA VALUE, CONFIDENCE INTERVAL, P- 
VALUE, PROBABLE ERROR, SIGNIFICANCE TEST, STA- 

TISTICAL TEST 

Significance Test 
A test for determining the probability that a given result 
could not have occurred by chance (its SIGNIFICANCE). 

see also SIGNIFICANCE, STATISTICAL TEST 

References 
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. 

Boca Raton, FL: CRC Press, pp. 491-492, 1987. 

Significant Digits 
When a number is expressed in SCIENTIFIC NOTATION, 

the number of significant figures is the number of DIG- 

ITS needed to express the number to within the uncer- 
tainty of measurement. For example, if a quantity had 
been measured to be 1.234 * 0.002, four figures would 
be significant. No more figures should be given than 
are allowed by the uncertainty. For example, a quantity 
written as 1.234 * 0.1 is incorrect; it should really be 
written as 1.2 * 0.1. 

The number of significant figures of a MULTIPLICATION 

or DIVISION of two or more quantities is equal to the 
smallest number of significant figures for the quantities 
involved. For ADDITION or MULTIPLICATION, the num- 
ber of significant figures is determined with the smallest 
significant figure of all the quantities involved. For ex- 
ample, the sum 10.234 + 5.2 + 100.3234 is 115.7574, but 
should be written 115.8 (with rounding), since the quan- 
tity 5.2 is significant only to *O.l. 

see also NINT, ROUND, TRUNCATE 

Significant Figures where $(n) is the TO 

see SIGNIFICANT DIGITS DIVISOR FUN CTION. 

Signpost 

A 6-PoLYIAMOND. 

References 
Golomb, S. W. Polyominoes: Puzzles, Patterns, Problems, 

and Packings, 2nd ed. Princeton, NJ: Princeton University 
Press, p. 92, 1994. 

Signum 

see SGN 

Silver Constant 
The REAL ROUT of the equation 

X3 - 5x2 + 6x - 1 = 0, 

which is 3.2469. . . . It is the seventh BERAHA CON- 
STANT. 

see also BERAHA CONSTANTS 

References 
Le Lionnais, F. Les nombres remarqzLabEes. Paris: Hermann, 

pp. 51 and 143, 1983. 

Silver Mean 

see SILVER RATIO 

Silver Ratio 
The quantity defined by the CONTINUED FRACTION 

6s G [2,2,2,...] = 2+ 1 
’ 2+ 1 

1 
2+- 

2+*** 

It follows that 

(6 s - l>” = 2, 

so 
Ss = & + 1 = 2.41421.. . . 

see UZSO GOLDEN RATIO, GOLDEN RATIO CONJUGATE 

Silverman Constant 

00 
x 
n=l 

- - rI x 
P prime k=l 

= 1.786576459.. . , 

1 

P 
2k spk-I 

TIEN T FUNCTION and u(n) is the 

References 
Finch, S. “Favorite Mathematical Constants.” http: //uew. 

mathsoft, com/asolve/constant/totient/totient .html. 
Zimmerman, P. http : // www . mathsoft l  corn / asolve / 

constant/totient/zimermn.html. 
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Silverman’s Sequence 
Let f (1) = 1, and let f(n) be the number of occurrences 
of n in a nondecreasing sequence of INTEGERS. Then 
the first few values of f(n) are 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 
5, . . . (Sloane’s A001462). The asymptotic value of the 
nth term is @2%b-1, where 4 is the GOLDEN RATIO. 

References 
Guy, R. K. “Silverman’s Sequences.” SE25 in Unsolved Pro& 

l&m in Number Theory, 2nd ed. New York: Springer- 
Verlag, pp. 225-226, 1994. 

Sloane, N. J. A. Sequence A001462/M0257 in “Pin On-Line 
Version of the Encyclopedia of Integer Sequences.” 

directly similar inversely similnr 

Two figures are said to be similar when all corresponding 
ANGLES are equal. Two figures are DIRECTLY SIMILAR 
when all corresponding ANGLES are equal and described 
in the same rotational sense. This relationship is written 
A N B. (The symbol N is also used to mean “is the same 
order of magnitude as” and “is ASYMPTOTIC to.“) Two 
figures are INVERSELY SIMILAR when all corresponding 
ANGLES are equal and described in the opposite rota- 
tional sense. 

see also DIRECTLY SIMILAR 
ILARITY TRANSFORMATION 

, INV ERSELY SIMILAR, SIM- 

References 
Project Mathematics! Similarity. Videotape (27 minutes) l  

California Institute of Technology. Available from the 
Math. Assoc. Amer. 

Similarity Axis 

see D'ALEMBERT'S THEOREM 

Similarity Dimension 
To multiply the size of a d-D object by a factor a, c = ud 
copies are required, and the quantity 

is called the similarity dimension. 

Similarity Point 
External (or positive) and internal (or negative) simi- 
larity points of two CIRCLES with centers C and C’ and 
RADII T and T’ are the points E and 1 on the lines CC’ 
such that 

CE T --- 
C’E - T” 

or 
CI T  

---- 

PI - T” 

Similitude Ratio 

Similarity Transformation 
An ANGLE-preserving transformation. A similarity 
transformation has a transformation MATRIX A’ of the 
form 

A ’ E BAB-l. 

If A is an ANTISYMMETRIC MATRIX 
is an ORTHOGONAL MATRIX, then 

( 
Uij - - -aji) and B 

- --b-lkiakibjl = bjlalkb;t = -(bab-l)jim - 

Similarity transformations and the concept of SELF- 

SIMILARITY are important foundations of FRACTALS 
and ITERATED FUNCTION SYSTEMS. 

see also CONFORMAL TRANSFORMATION 

References 
Lauwerier, H. fiuctals: Endlessly Repeated Geometric Fig- 

ures. Princeton, NJ: Princeton University Press, pp. 83- 
103,1991. 

Similitude Center 
Also called a SELF-HOMOLOGOUS POINT. If two SIM- 

ILAR figures lie in the plane but do not have parallel 
sides (they are not HOMOTHETIC), there exists a cen- 
ter of similitude which occupies the same homologous 
position with respect to the two figures. The LOCUS of 
similitude centers of two nonconcentric circles is another 
circle having the line joining the two homothetic centers 
as its DIAMETER. 

There are a number of interesting theorems regarding 
three CIRCLES (Johnson 1929, pp. 151-152). 

The external similitude centers of three circles are 
COLLINEAR. 

Any two internal similitude centers are COLLINEAR 
with the third external one. 

If the center of each circle is connected with the in- 
ternal similitude center of the other three [sic], the 
connectors are CONCURRENT. 

If one center is connected with the internal simil- 
itude center of the other two, the others with the 
corresponding external centers, the connectors are 
CONCURRENT. 

References 
Johnson, R. A. Modern Geometry: An Elementary Beatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, pp. 19-27 and 151-153, 1929. 

Similitude Ratio 
Two figures are HOMOTHETIC if they are related by a 
DILATION (a dilation is also known as a HOMOTHECY). 
This means that the connectors of corresponding points 
are CONCURRENT at a point which divides each connec- 
tor in the same ratio k, known as the similitude ratio. 

see also CONCURRENT, DILATION, HOMOTHECY, Ho- 
MOTHETIC 
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Simple Algebra 
An ALGEBRA with no nontrivial IDEALS. 

see also ALGEBRA, IDEAL, SEMISIMPLE ALGEBRA 

Simple Continued Fraction 
A CONTINUED FRACTION 

o=b()+ 
a1 

h + 
a2 

b2 + --EL 
b3 + l  . . 

in which the 
of the form 

i&s are all unity, leaving a continued fraction 

1 
0 = a0 + 

1 ' (2) 
a1 + 

1 
a2 + - 

a3 + l  ** 

A simple continued fraction can be written in a compact 
abbreviated NOTATION as 

0 = [aO,al,aZ,a3,--]. (3) 

Bach and Shallit (1996) show how to compute the JA- 
COBI SYMBOL in terms of the simple continued fraction 
of a RATIONAL NUMBER a/b. 

see &o CONTINUED FRACTION 

References 
Bach, E. and Shallit, J. Algorithmic Number Theory, 

Vol. 1: Eficient Algorithms. Cambridge, MA: MIT Press, 
pp. 343-344, 1996. 

Simple Curve 
A curve is simple closed if it does not cross itself. 

see also JORDAN CURVE 

Simple Graph 
A GRAPH for which at most one EDGE connects any two 
nodes. 

see ah ADJACENCY MATRIX, EDGE (GRAPH) 

Simple Group 
A simple group is a GROUP whose NORMAL SUBGROUPS 
(INVARIANT SUBGROUPS) are ORDER one or the whole 

of the original GROUP. Simple groups include ALTER- 
NATING GROUPS, CYCLIC GROUPS, LIE-TYPE GROUPS 

(five varieties), and SPORADIC GROUPS (26 varieties, 
including the MONSTER GROUP). The CLASSIFICATION 
THEOREM of finite simple groups states that such groups 
can be classified completely into the three types: 

1. CYCLIC GROUPS of PRIME ORDER, 

2. ALTERNATING GROUPS of degree at least five 

3. LIE-TYPE CHEVALLEY GROUPS, 

4. 

5. 
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LIE-TYPE (TWISTED CHEVALLEY GROUPS or the 
TITS GROUP), and 

SPORADIC GROUPS. 

BURNSIDE'S CONJECTURE states that every non- 
ABELIAN SIMPLE GROUP has EVEN ORDER. 

see also ALTERNATING GROUP, BURNSIDE'S CONJEC- 
TURE, CHEVALLEY GROUPS, CLASSIFICATION THEO- 
REM, CYCLIC GROUP,FEIT-THOMPSON THEOREM, FI- 
NITE GROUP, GROUP, INVARIANT SUBGROUP, LIE- 
TYPE GROUP, MONSTER GROUP, SCHUR MULTIPLIER, 
SPORADIC GROUP, TITS GROUP, TWISTED CHEVALLEY 
GROUPS 

Simple Harmonic Mot ion 
Simple harmonic motion refers to the periodic sinusoidal 
oscillation of an object or quantity. Simple harmonic 
motion is executed by any quantity obeying the DIF- 
FERENTIAL EQUATION 

55 + wo2z = 0, (1) 

where 5 denotes the second DERIVATIVE of z with re- 
spect to t, and wo is the angular frequency of oscillation. 
This ORDINARY DIFFERENTIAL EQUATION has an irreg- 
ular SINGULARITY at 00. The general solution is 

LC = Asin + Bcos(wot) (2) 
= Ccos(wot + @, (3) 

where the two constants A and B (or C and 4) are 
determined from the initial conditions. 

Many physical systems undergoing small displacements, 
including any objects obeying Hooke’s law, exhibit sim- 
ple harmonic motion. This equation arises, for example, 
in the analysis of the flow of current in an electronic 
CL circuit (which contains a capacitor and an induc- 
tor). If a damping force such as Friction is present, an 
additional term pli: must be added to the DIFFERENTIAL 
EQUATION and motion dies out over time. 

Adding a damping force proportional to 5, the first de- 
rivative of 61; with respect to time, the equation of motion 
for damped simple harmonic motion is 

2 + p2 + “02Z = 0, (4 

where p is the damping constant. This equation arises, 
for example, in the analysis of the flow of current in 
an electronic CLR circuit, (which contains a capacitor, 
an inductor, and a resistor). This ORDINARY DIFFER- 
ENTIAL EQUATION can be solved by looking for trial 
solutions of the form 2 = ert. Plugging this into (4) 
gives 

(r2 + @r + uo2)ert = 0 

r2 + pr + Ldo2 = 0. 

(5) 

(6) 
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This is a QUADRATIC EQUATION with solutions 

There are therefore three solution regimes depending 
the SIGN of the quantity inside the SQUARE ROOT, 

a E p” - 4w02. (8) 

The three regimes are 

1. a > 0 is POSITIVE: overdamped, 

2. a= 0 is ZERO: critically damped, 

3. or < 0 is NEGATIVE: underdamped. 

If a periodic (sinusoidal) forcing term is added at angular 
frequency w, the same three solution regimes are again 
obtained. Surprisingly, the resulting motion is still pe- 
riodic (after an initial transient response, corresponding 
to the solution to the unforced case, has died out), but it 
has an amplitude different from the forcing amplitude. 

The “particular” solution x, (t) to the forced second- 
order nonhomogeneous ORDINARY DIFFERENTIAL 

EQUATION 

2 + p(t)5 + q(t)x = Aios(wt) (9) 

due to forcing is given by the equation 

xp(t) = -a(t) s x2 (t)dt) -dt+xz(t) 
w(t) s xl(t)dt) dt 

W(t> ) 

(10) 
where x1 and 22 are the homogeneous solutions to the 
unforced equation 

ii + p(t)2 + q(t)x = 0 (11) 

and W(t) is the WRONSKCAN of these two functions. 
Once the sinusoidal case of forcing is solved, it can be 
generalized to any periodic function by expressing the 
periodic function in a FOURIER SERIES. 

2. 

1. 

I  5 10 15 20 

Critical damping is a special case of 
manic motion in which 

damped har- 

so 
p = 2w(). (13) 

The above plot shows an underdamped simple harmonic 
oscillator with w  = 0.3, p = 0.15. The solid curve is for 
(A, B) = (l,O), the dot-dashed for (0, l), and the dotted 
for (l/2, l/2). In this case, QI = 0 so the solutions ‘of the 
form z = P satisfy 

7-k = g-p> = -$p = -wo* 
(14) 

One of the solutions is therefore 

--wgt xl=e . (15) 

In order to find the other linearly independent solution, 
we can make use of the identity 

- p(t) dt 

22 (t> = x1(t) s e 
s 

1x1 (t>12 
dt. (16) 

Since we have p(t) = 2~0, e- s *“’ dt simplifies to eB2Y 
Equation (16) therefore becomes 

x2(t) = tcwot s 
e-2wOt - [ e-wet 2 1 

& c e--Ot s dt = teSwot. 

(17) 
The general solution is therefore 

x = (A + Bt)e-#Of (18) 

In terms of the constants A and B, the initial values are 

x(0) = A (19) 
x’(o) =B-Aw, (20) 

A = x(0) (21) 

B = x’(0) + wax(O). (22) 

For sinusoidally forced simple harmonic motion with 
critical damping, the equation of motion is 

2 + 2woj: + wo2x = Acos(wt), (23) 

and the WRONSKIAN is 

w(t) E Xl& - 21x2 

=e --ogt 
( 

--wgt e -w&e --wgt 
> +w0e -uotte-Wot 

=e 
-2wot 

(1 
- wet + wet) = e-2wo'. (24) 

QI E p2 - 4w02 = 0, (12) 
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Plugging this into the equation for the particular solu- 
tion gives 

x&) = -cwot 

J 

te-“otA cos(wt) dt 
e--2@ 

+ te -wet 

J 

e -@A cos(wt) dt 

,-a+ 

= Ae-“Ot - 

V 

tewot cos(wt) dt + t 

J 

ewot cos(wt) dt 1 = Ae-"ot { pot - (w2 + wo2)2 [(w2 -I- tw2wo - wo2 + two3) 

x cos(wt) + w(tw” - 2~0 + two2) sin(wt)] 

+t e 
wet 

- [wg cos(wt) + w sin(wt) 
w2 + wo2 > 

A 
= &2 + wo2)2 Kwo2 - w2) cos(wt) + 2wwo sin(wt)]. 

(25) 

In order to put this in the desired form, note that we 
want to equate 

Ccos$+Ssin0=Qcos(8+6) 

= Q(cos8cosS - sin8sinS). (26) 

Overdamped simple harmonic motion occurs when 

p2 - 4w02 > 0, (34 

so 
a E p2 - 4w02 > 0. (35) 

The above plot shows an overdamped simple harmonic 
oscillator with w  = 0.3, p = 0.075. The solid curve is 
for (A,B) = (l,O), the dot-dashed for (0, l), and the 
dotted for (l/2, l/2). The solutions are 

Xl =e 
r-t 

x2 = er+t, 
(36) 

(37) 
This means where 

Tf = $(-p * &F-x&. 

The general solution is therefore 

(38) 
C~Qcos6=w~~-w2 

2% -QsinS = 2~~0, 
(27) 
(28) 

(29) 

(30) 

x = Ae- + Be’+t 1 (3% so 

where A and B are constants. The initial values are 
Q = &Y2 + S2 

2(o) =A+B (40) 

x1 (0) =Ar-+Br+, (41) 
Plugging in, 

so 

Q = &04 - 2w$w2 + w4 -I 4w02w2 

A = x(o) + 
r+x(o) - x’(0) 

T- -r+ (42) (31) 

(32) B=- r+x(o) - x’(0) 
T--7-+ l  

(43) 

The solution in the requested form is therefore 
For a cosinusoidally forced overdamped oscillator with 
forcing function g(t) = C cos(wt), the particular solu- 
tions are "P = (w~,A,o,)2(wo2 +w2)cos(wt+S) 

A - - - cos(wt + S), 
w2 + wo2 (33) y1(t) = P (44) 

yz(t) = P, (45) 
where 8 is defined by (32), 

where 

$3 E +p- Jp2-4w02). (471 
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These give the identities 

Tl + T2 = -p (48) 

Simple Harmonic Motion 

Underdamped simple harmonic motion occurs when 

p” - 4w02 < 0, (57) 

T1 - r-2 = z/p 
2 - 4wo2 (49) 

and 

wo2 = a [P - b-1 2 
- r2)2] = $1 + T2) - (n - r2)2] 

=- ;[2Qrz + 2qr2] = rrr2. (50) 

The WRONSKIAN is 

The particular solution is 

Yp = -y1w + y22f2, (52) 

so 
a E p” - 4w02 < 0. (58) 

The above plot shows an underdamped simple harmonic 
oscillator with w  = 0.3, fl = 0.4. The solid curve is for 
(A, B) = (I, 0), the dot-dashed for (0, l), and the dotted 
for (l/2, l/2). Define 

then solutions satisfy 

and are of the form 

where 
X = ,-(Pl2fi7P 

. (62) 

s 

YNW c 
v1= --- 

W sin(wt) - T2 cos(wt) 

w(t) - r2 - Tl tw (r22 + w2) 
(53) 

212 c 
s 

w  sin(wt) - ~1 cos(wt) 
erlt(rz2 + w2) l  

Therefore, 

YP 
= Ccos(wt)(rlr2 - w2) - sin(wt)w(rl + rz) 

(T12 + W2)(r22 -5 w2) 

=c 
(w2 - w2) cos(wt) + pw sin(wt) 

w2p2 +- (w2 - wo2) 

c - - 
w2p2 + (w2 - wo2)2 

J(w2 - w(J2)2 + p2w2 

x cos(wt + 6) 
c - - 

p2w2 + (w2 - wo2)2 
cos(wt + S), (55) 

where 

S = tan-’ (56) 

Using the EULER FORMULA 

e 
iX = cosx + isinx, (63) 

this can be rewritten 

x=e - ww [cos (yt) rt i sin (yt)] . (64) 

We are interested in the realsolutions. Since we are deal- 
ing here with a linear homogeneous ODE, linear sums 
of LINEARLY INDEPENDENT solutions are also solutions. 
Since we have a sum of such solutions in (64), it follows 
that the IMAGINARY and REAL PARTS separately satisfy 
the ODE and are therefore the solutions we seek. The 
constant in front of the sine term is arbitrary, so we can 
identify the solutions as 

x1 = e-(P’2)t cos(yt) (65) 

52 
= e-ww 

sin(+) t (66) 

so the general solution is 

X = e-(P’2)t [A cos(yt) + B sin(yt)]. (67) 

The initial values are 

x(0) = A (68) 

x’(O) = +A+B,y (69) 

so A and I3 can be expressed in terms of the initial 
conditions by 

A = x(0) (70) 

B _ px(‘) + x’(o) -- 
27 Y ’ 

(71) 



Simple Harmonic Motion Simple Harmonic Motion 1639 

For a cosinusoidally forced underdamped oscillator with 
forcing function g(f) = Ccos(wt), use 

to obtain 

4w02 - p2 = 4y2 (74 

W02 = y2 + $2 = y2 + Qr2 (75) 
p = 2a. (76) 

The particular solutions are 

yl(t) = ewat cos(yt) 

I&) = eeat sin(+). 
(77) 

(78) 

The WRONSKIAN is 

w(t) = y1y; - YIY2 

=e -Ot cos(y!)[-ae-ut sin(+) + eMQty cos(yt)] 

-e --’ sin(+) [--Qewat cos(yt) - ematy sin($)] 
-2at 

=e {a[- sin($) cos(yt) + sin(yt) cos($)] 

+ y[cos’(yt) + sin2 (rt)]} 
-2crt 

=ye , (79) 

The particular solution is given by 

yp = -ym+y2u2, 

where 

S = tan-l (w2p_Ww02). 

If the forcing function is sinusoidal instead of cosinu- 
soidal, then 

6’ = & - + = tan-l x - $r z tan-l 

( > 
-1 

x ’ 
(85) 

(86) 

Simple Harmonic Motion Quadratic 
Perturbation 
Given a simple harmonic oscillator with a quadratic per- 
turbation ez2, 

find the first-order solution using a perturbation 
method. Write 

so 
2. $0 + E& + . . l  l  

(3) 

Plugging (2) and (3) back into (1) gives 

(~o+~~,)+(wo2x0+Wo2E21)-aE(x0 +22021E+..*)= 0. 

(4) 
Keeping only terms of order E and lower and grouping, 
we obtain 

where 

211 E s Y4) c -=- 
w(t) Y s 

eat cos(yt) cos(wt) dt (81) 

v2 E s Y2SP) c -=- 
w(t) Y s 

eat cos(yt) cos(wt) dt. (82) 

Using computer algebra to perform the algebra, the par- 
ticular solution is 

YP w  = c 
(a2 + y2 - w2) cos(wt) + 2ctlw sin(wt) 

[a2 + (y - W)2][a:2 + (y + g2] 

= c 
(do2 - w2) cos(wt) + @w sin(wt) 

(a2 + y2 + w2)2 - 4y2w2 

(wo2 - w2) cos(wt) + pw sin(d) 

= c(wo2 + w2)2 - 454wo2 - pyw2 

=C 
(wo2 - w2) cos(wt) + pw sin(wt) 

(wo2 - w2)2 - w2(4w02 - p2> 

(wo2 - wq2 + p2w2 - - 
(wo2 - w2)2 - w2 (4wo2 - p2> 

cos(wt + a> 

=C d( wo2 - w2)2 + p2w2 

(wo2 - w2)2 - w2(4wo2 - p2) 
cos(wt + S), 

(83) 

it? + wo2x - aYEx2 = 0, (1) 

(20 + wo220) 

Since this equation 
can separate it into 

+ (51 + wo2x1 - axo”)e = 0. (5) 

must hold for all POWERS of C, we 
the two differential equations 

ito + wo2xo = 0 (6) 

. . Xl + wo2x1 = axo2. 

The solution to (6) is just 

x0 = Acos(wot + 4). (8) 

Setting our clock so that 4 = 0 gives 

x0 = A cos(wot). (9) 

Plugging this into (7) then gives 

ii, + wo2x1 = aA cos2(wot). (10) 

The two homogeneous solutions to (10) are 

Xl = cos(wot) (11) 

52 = sin(wot). (12) 
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The particular solution to (10) is therefore given by 

xp(t) = -a(t) s 22 (t)dt) -dt+xZ(t) p 
w(t) s x1 @)dt) & 

w(t) ’ 

where 
(13) 

g(t) = aA cos2 (wet), (14) 

and the WRONSKIAN is 

= cos(w&)wo cos(w&) - [-wg sin(&)] sin(&) 

= wo. (15) 

Plugging everything into (13)) 

xp = aA [- cos(wot) 1 sin(wot~~s2~wot) & 

+ sin(&) 
s 

‘OS3 (wd) & 1 
= $ {sin&t) jr, - sin’(wot)] cos(wot) dt 

- cos(w0 t) s sin(wot 

Now let 

u T sin(wo t > 
du = w. cos(wot) dt 

V G cos(wot) 

dv = -WO sin(wot) 0%. 

(16) 

Then 

CyA2 
2, = 

W02 
u2> du + cos(wot) J 1 v2 dv 

- - $ [sin(U&)(l - iu3) + cos(wot) +v”] 

- - aAZ{sin(wot)[l - i sin3(ti0t)] 
W02 

+ 5 cos(wot) c0s”(wot)} 

- - g { ~[cos4(wot) - sin4(w&)] -t- sin’(wot)} 

- - $ { f[cos2(wot) - sin2(w0t)] + sin2(wot)} 

- - $ +[cos”(wot) + 2 sin2(w&)] 

aA - - - [2 - cos2(wot)] = 3wa2 
3wo2 

CUA2 (2 - i[1+ cos(2w~t)]} 

aA - - -[3 - cos(2wot)]. 
6w02 (21) 

Plugging x0(t) and (21) into (2), we obtain the solution 

x(t) 
aA 

= Acos(wot) - 6W02~[~~~(2~ot) - 31. (22) 

Simple Harmonic Oscillator 

see SIMPLE HARMONIC MOTION 

Simple Interest 
INTEREST which is paid only on the PRINCIPAL and not 
on the additional amount generated by previous INTER- 
EST payments. A formula for computing simple interest 
is 

a(t) = a(@(1 + Tt), 

where u(t) is the sum of PRINCIPAL and INTEREST at 
time t for a constant interest rate r. 

see aho COMPOUND INTEREST, INTEREST 

References 
Kellison, S. G. Theory of Interest, 2nd ed. Burr Ridge, IL: 

Richard D. Irwin, 1991. 

Simple Polygon 
A POLYGON P is said to be simple (or JORDAN) if the 
only points of the plane belonging to two EDGES of P are 
the VERTICES of P. Such a polygon has a well-defined 
interior and exterior. 

see also POLYGON, REGULAR POLYGON, TWO-EARS 
THEOREM 

References 
Toussaint, G. “Anthropomorphic Polygons.” Amer. Math. 

Monthly 122, 31-35, 1991. 

Simple Ring 
A NONZERO RING S whose only (two-sided) IDEALS are 
S itself and zero. Every commutative simple ring is a 
FIELD. Every simple ring is a PRIME RING. 

see also FIELD, IDEAL, PRIME RING, RING 

Simplex 
The generalization of a tetrahedral region of space to 
n-D. The boundary of a k-simplex has k + 1 O-faces 
(VERTICES), k(k + 1)/Z l-faces (EDGES), and (5::) i- 

faces, where (i) is a BINOMIAL COEFFICIENT. 

The simplex in 4-D is a regular TETRAHEDRON ABCD 

in which a point E along the fourth dimension through 
the center of ABCD is chosen so that EA = EB = 

EC = ED = AB. The 4-D simplex has SCHL;~FLI SYM- 
13OL {3,3,3}. 

]I 
2 equilateral triangular plane region 

The only irreducible spherical simplexes generated by 
reflection are A, (n 2 1), B, (n > 4), C, (n 2 2), 

0; (p 2 5), E6, ET, Es, F.4, Gs, and G4 The only . 
irreducible Euclidean simplexes generated by reflection 
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are w2, pm (m 2 3), Qm (m > 5), R, (m > 3), S, 
(m L 4), v3, T7, Ts, Ts, and US 

The regular simplex in n-D with n > 5 is denoted ark 
and has SCHL~FLI SYMBOL { 3,...,3). 

3n-1 

see also COMPLEX, CROSS POLYTOPE, EQUILATERAL 

TRIANGLE, LINE SEGMENT, MEASURE POLYTOPE, 
NERVE, POINT, SIMPLEX METHOD, TETRAHEDRON 

References 
Eppstein, D. “Triangles and Simplices.” http: //wuw . its . 

uci.edu/-eppstein/junkyard/triangulation.html. 

Simplex Method 
A method for solving problems in LINEAR PROGRAM- 
MING. This method, invented by G. B. Dantzig in 1947, 
runs along EDGES of the visualization SOLID to find the 
best answer. In 1970, Klee and Minty constructed ex- 
amples in which the simplex method required an expo- 
nential number of steps, but such cases seem never to 
be encountered in practical applications. 

A muchmoreefficient (POLYNOMIAL-time) ALGORITHM 
was found in 1984 by N. Karma&r. This method goes 
through the middle of the SOLID and then transforms 
and warps. It offers many advantages over the simplex 
method (Nemirovsky and Yudin 1994). 

see also LINEAR PROGRAMMING 

References 
Nemirovsky, A. and Yudin, N. Interior-Point Polynom- 

ial Methods in Convex Programming. Philadelphia, PA: 
SIAM, 1994. 

Press, W. ‘H.; Flannery, B. P.; Teukolsky, S. A.; and Vet- 
terling, W. T. “Downhill Simplex Method in Multidi- 
mensions” and “Linear Programming and the Simplex 
Method.” 5 10.4 and 10.8 in Numerical Recipes in FOR- 
TRAN: The Art of Scientific Computing, 2nd ed. Cam- 
bridge, England: Cambridge University Press, pp. 402-406 
and 423-436, 1992. 

Tokhomirov, V. M. “The Evolution of Methods of Convex 
Optimization.” Amer. Math. Monthly 103, 65-71, 1996. 

Simplicial Complex 
A simplicial complex is a SPACE with a TRIANGULA- 
TION. Objects in the space made up of only the sim- 
plices in the triangulation of the space are called sim- 
plicial subcomplexes. When only simplicial complexes 
and subcomplexes are considered, defining HOMOLOGY 
is particularly easy (and, in fact, combinatorial because 
of its finite/counting nature). This kind of homology is 
called SIMPLICIAL HOMOLOGY. 

see UZSO HOMOLOGY (TOPOLOGY), NERVE, SIMPLICIAL 
HOMOLOGY,~PACE, TRIANGULATION 

Simplicial Homology 
The type of HOMOLOGY which results when the spaces 
being studied are restricted to SIMPLICIAL COMPLEXES 
and subcomplexes. 

Simplicity 
The number of operations needed to effect a GEOMET- 
RIC CONSTRUCTION as determined in GEOMETROGRA- 
PHY. If the number of operations of the five GEOMET- 
ROGRAPHIC types are denoted ml, m2, n1, n2, and n3, 

respectively, then the simplicity is nzl +nz2 +nl +nz +ns 

and the symbol ml& + rn& + nlC1 + n& + n&. 

It is apparently an unsolved problem to determine if a 
given GEOMETRIC CONSTRUCTION is of smallest possi- 
ble simplicity. 

see also GEOMETRIC CONSTRUCTION, GEOMETROGRA- 
PHY 

References 
De Temple, D. W. “Carlyle Circles and the Lemoine Simplic- 

ity of Polygonal Constructions.” Amer. Math. MonthEy 98, 
97-108, 1991. 

Eves, H. An Introduction to the History of Mathematics, 6th 
ed. New York: Halt, Rinehart, and Winston, 1976. 

Simply Connected 
A CONNECTED DOMAIN is said to be simply connected 
(also called l-connected) if any simple closed curve can 
be shrunk to a point continuously in the set. If the 
domain is CONNECTED but not simply, it is said to be 
MULTIPLY CONNECTED. 

A SPACE S is simply connected if it is O-connected and 
if every MAP from the ~-SPHERE to S extends continu- 
ously to a MAP from the Z-DISK. In other words, every 
loop in the SPACE is contractible. 

see also CONNECTED SPACE,MULTIPLY CONNECTED 

Simpson’s Paradox 
It is not necessarily true that averaging the averages of 
different populations gives the average of the combined 
population. 

References 
Paulos, J. A. A Mathematician Reads the Newspaper. New 

York: BasicBooks, p* 135, 1995. 

Simpson’s Rule 
Let h= (b- )/ a n, and assume a function f(z) is defined 
at points f(a + kh) = yk for k = 0, . . . , n. Then 

s b 

f (EC) dx = ;h(yl -+ 4~2 + 2y3 + 4~4 + l  l  . 

a  

+%a-2 + 4y,-1+ yn) - R,, 

where the remainder is 

R, = $(b - a)4f(4)(x*) 

for some x* E [a, b]. 

see also BODE'S RULE, NEWTON-C• TES FORMULAS, 
SIMPSON'S 3/8 RULE,TRAPEZOIDAL RULE 

References 
Abramowite, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p. 886, 1972. see also SIMPLICIAL COMPLEX 
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Simpson’s 3/8 Rule 

Sine Function 

Sine Function 

s 

24 

f(x) dx = $(fl + 3fz + 3f3 + f4) - &h5fc4)(<). 
Xl 

see UZSO BODE’S RULE, NEWTON-C• TES FORMULAS, 
SIMPSON'S RULE 

References 
Abramowitz, M. and Stegun, C. A. (Eds,). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p* 886, 1972. 

Simson Line 

The Simson line is the LINE containing the feet of the 
perpendiculars from a point on the CIRCUMCIRCLE of 
a TRIANGLE to the sides (or their extensions) of the 
TRIANGLE. The Simson line is sometimes known as the 
WALLACE-SIMSON LINE, since it does not appear in any 
work of Simson (Johnson 1929, p. 137). 

The ANGLE between the Simson lines of two points P 

and P’ is half the ANGLE of the arc PP’. The Simson 
line of any VERTEX is the ALTITUDE through that VER- 
TEX. The Simson line of a point opposite a VERTEX is 
the corresponding side. If !FlTz5?3 is the Simson line of a 
pqint T of the CIRCUMCIRCLE, then the triangles T5F1~2 
and TA2Al are directly similar. 

see also CIRCUMCIRCLE 

References 
Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited. 

Washington, DC: Math. Assoc. Amer., pp. 40-41 and 43- 
45, 1967. 

Johnson, R. A. Modern Geometry: An Elementary Treatise 
on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, pp. 137439, 1929. 

A function also called the SAMPLING FUNCTION and de- 
fined by 

sine(x) E 
1 for x = 0 
sin x otherwise, (1) 

X 

where sinx is the SINE function. Let II(x) be the RECT- 
ANGLE FUNCTION, then the FOURIER TRANSFORM of 
II(x) is the sine function 

m(x>l = sinc(7rb). (2) 

The sine function therefore frequently arises in physical 
applications such as Fourier transform spectroscopy as 
the so-called INSTRUMENT FUNCTION, which gives the 
instrumental response to a DELTA FUNCTION input. Re- 
moving the instrument functions from the final spectrum 
requires use of some sort of DECONVOLUTION algorithm. 

The sine function can be written as a complex INTEGRAL 
by noting that 

sin(nx) 1 minx - eBinx 
sinc(nx) = 72J: = - 

nx 2i 

1 itx n - - 
2inx e [ I 

1 n 
B-n = 2rz J eixt dt. (3) 

-n 

The sine function can also be written as the INFINITE 
PRODUCT 

+&OS($)* 
k=l 

(4 

Definite integrals involving the sine function include 

sine(x) dx = $ (5) 

sine'(x) dx = $7~ (6) 

1; sinc3(x)dx = i7r (7) 
0 

I 
sinc4(x) dx = +T (8) 

0 

sinc5(x) dx = $r. (9) 
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These are all special cases of the amazing general result 

s 

O” sina z 
Zb dx = 

&-C (-1) N-W?/ 

0 29b - l)! 

x L”~c(-l)k ($ (a - 21C)b-1[ln(a - 2k)]“, (10) 

k=O 

where a and b are POSITIVE integers such that a > b > c, 
CEa- b (mod q, LXJ is the FLOOR FUNCTION, and 0’ 
is taken to be equal to 1 (Kogan). This spectacular for- 
mula simplifies in the special case when n is a POSITIVE 
EVEN integer to 

sin2n x 
- dx = 

X2" 2(2,“- l)! 

where (E) is an EULERIAN NUMBER (Kogan). The so- 
lution of the integral can also be written in terms of the 
RECURRENCE RELATION for the coefficients 

2aG-b ($i..l)) 
c(a, b) = for b = 1 or b = 2 

@z+-- [(a - l)c(a - 2, b - 2) 
(12) 

-a l  c(a, b - 2)] otherwise 

(Zimmerman). 

Rl R2 Rl R2 

The half-infinite integral of sine(x) can be derived using 
CONTOUR INTEGRATION. In the above figure, consider 
the path y E 71 +yl2+y2 +yzl. Now write z = Re? On 
an arc, dz = iRei’ de and on the X-AXIS, dz = eie dR. 

where 3 denotes the IMAGINARY POINT. NOW define 

= lim 
s 

’ exp(iR#) 
R1eie 

ieR 
1 
eie de 

R1 +O 
7r 

J 
R2 iR 

+ lim lim 
R1+O Rz+m Rr 

% dR 

+ lim s 
n exp(iz) Rl 

p dx + lim 
R2+- o z RI +O s R2 

where the second and fourth terms use the identities 
e i0 T 1 and eim = - 1. Simplifying, 

RI+0 S 
0 00 * 

I = lim exp(iRleis)iO d0 + S 0+ 

$dR 
7r 

+ lim 
J R2+= 0 

=-~*it?d@+~;$dR+O+[~ $dR, 

(15) 

where the third term vanishes by JORDAN’S LEMMA. 
Performing the integration of the first term and com- 
bining the others yield 

J 

00 iz 
I= -in + edz=O. (16) z --oo 

Rearranging gives 

J 

00 iz 
5 dz = h, 

x --oo 
(17) 

so 

S O” sinx 
- dz = n. 

z --oo 
(18) 

The same result is arrived at using the method of 
RESIDUES by noting 

I = 0 + i2ziRes[f(z)]z=0 

= i7r[ei”],=0 z=o 
(19) 

so 
S(I) = 7r. (20) 

Since the integrand is symmetric, we therefore have 

sin x 
dx = 

X 
55 

giving the SINE INTEGRAL evaluated at 0 as 

si(0) = - 
sin x 
- 

X 
dx = -+. 

(21) 

(22) 
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An interesting property of sine(x) is that the set of LO- 
CAL EXTREMA of sine(x) corresponds to its intersections 
with the COSINE function cos(x), as illustrated tibove. 

see also FOURIER TRANSFORM, FOURIER TRANS- 
FORM-RECTANGLE FUNCTION, INSTRUMENT FUNC- 
TION, JINC FUNCTION, SINE, SINE INTEGRAL 

References 
Kogan, S. “A Note on Definite Integrals Involving Trigono- 

metric Functions.” http://www.mathsoft.com/asolve/ 
canstant/pi/sin/sin.html. 

Morrison, K. E. “Cosine Products, Fourier Transforms, and 
Random Sums.” Amer. Math. Monthly 102, 716-724, 
1995. 

Sinclair’s Soap Film Problem 
Find the shape of a soap film (i.e., MINIMAL SURFACE) 

which will fill two inverted conical FUNNELS facing each 
other is known as Sinclair’s soap film problem (Bliss 
1925, p. 121). The soap film will assume the shape of a 
CATENOID. 

see also CATENOID, FUNNEL, MINIMAL SURFACE 

References 
Bliss, G. A. Calculus of Variations. Chicago, IL: Open The multiplicative inverse of the sine function is the 

court, pp. 121-122, 1925. COSECANT, defined as 
Isenberg, C. The Science of Soap Films- and Soap Bubbles. 

New York: Dover, p. 81, 1992. 
Sinclair, M. E. “On the Minimum Surface of Revolution in 

the Case of One Variable End Point.” Ann. Math. 8, 
177-188, 1907. 

Sine 

Let B be an ANGLE measured counterclockwise from the 
X-AXIS along the arc of the UNIT CIRCLE. Then sin8 is 
the vertical coordinate of the arc endpoint. As a result of 
this definition, the sine function is periodic with period 
2~. By the PYTHAGOREAN THEOREM, sin8 also obeys 
the identity 

sin20+cos20 = 1. (1) 

ReISin zl Im[Sln 21 ISin 21 

The sine function can be defined algebraically by the 
infinite sum 

O” x ( 1) n-l - 
sinz = 

n- l)!x 
2n-1 

(2 
(2) 

n=l 

and INFINITE PRODUCT 

m 

sinx = x 
IT( 

l-22 

> n2r2 ' (3) 
n=l 

It is also given by the IMAGINARY PART of the complex 
exponential 

sin x = S[P]. (4) 

Using the results from the EXPONENTIAL SUM FORMU- 

LAS 

gsin(nx) = 3 [ ePz] 
n=O n=O 

Similarly, 

00 

IE 
pn sin 

n=O 

nx) = 3 r 1 IE pneinx 
n=O 

-- 

1 - pewi% 1 psinx 

I-2pcosxfp2 = l-2pcosx+p2’ (7) 

Other identities include 

=% 
Sin(~N4ei(N-l)r/2 

sin( ix) 1 
- sin(iNx) 
- 

sin( ix) 
sin[ix(N - I)]. (6) 

sin(&) = 2 cos 8 sin[(n - l)O] - sin[(n - 2)0] (8) 

sin(nx) = y 
0 

n-l xsinx - 
n 

cos 
0 

3 
COSn-3 x sin3 2 

+; 0 
cos n-5 xsin5x-..., (9) 
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where (i) is a BINOMIAL COEFFICIENT. 

Cvijovik and Klinowski (1995) show that the sum 

has closed form for Y = 2n + 1, 

( 1) n 

S2n+1(4= = 
4(2n)! 7~ 

2n+1 
E2n 

where En(x) is an EULER POLYNOMIAL. 

A CONTINUED FRACTION representation of sinx is 

sinx = 

(10) 

(11) 

l+ 
(2*3-x2)+ 

2 - 3x2 

(4*5-x2)+ @ ,“‘g+ . - . . . 

(12) 
The value of sin(2n/n) is IRRATIONAL for all r~ except 4 
and 12, for which sin(r/2) = 1 and sin(r/6) = l/2. 

The FOURIER TRANSFORM of sin(2;lrkox) is given by 

F[sin(2nKox)] = 
r 

e -2rrikoz sin(27rkoz) dz 

= $(k + ko) - S(k - ko)]* (13) 

Definite integrals involving sin x include 

SW sin(x2) dx = f 6 (14 
0 

r 
sin(x3) dx = $(!J (15) 

0 

sin(x4) dx = - cos( gn)r( ;) (16) 

sin(x5) dx = i(& - l)Iyi), (17) 

where r(z) is the GAMMA FUNCTION. 

see also ANDREW’S SINE, COSECANT, COSINE, FOURIER 

TRANSFORM-SINE, HYPERBOLIC SINE, SING FUNC- 

TION, TANGENT, TRIGONOMETRY 
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Sine-Gordon Equation 
A PARTIAL DIFFERENTIAL EQUATION which appears in 
differential geometry and relativistic field theory. Its 
name is a pun on its similar form to the KLEIN-GORDON 

EQUATION. The sine-Gordon equation is 

Qt - ‘uxx + sinv = 0, (1) 

where ‘its and wmm are PARTIAL DERIVATIVES. The equa- 
tion can be transformed by defining 

t 
- Z $(x - t) 

q- f(x+t), 

giving 

%? = sinv. 

Traveling wave analysis gives 

df 

For d = 0, 

2[d - 2 sin”(+f)] 

X-X0- - l &YZ ln[f tan(af)] 

f(z) = *4 tan-1[e~(Z-LO)I(1-C2)1’2]. 

Letting z = [r] then gives 

zff + f’ = sin f. 

Letting g E eif gives 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

($1 

0 

which is the third PAINLEV~ TRANSCENDENT. Look for 
a solution of the form 

u(x, t) =4tan-l 2 . 4( > [ 1 w 
Taking the partial derivatives gives 

(10) 

4 xx = -k2+* + rn2ti2 + n2 

& = k2e4 + (m2 - l)$” - n2, 

(11) 

(12) 

which can be solved in terms of ELLIPTIC FUNCTIONS. 

A single SOLITON solution exists with k = n = 0, m > 1: 

21=4tar? [exp (=)I, (13) 

where 

P 
dm2--1 - - - 

m l  

(14 
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A two-SOLITON sdution exists with k = 0, m > 1: 

(15) 

A SOLITON-antisditon solution exists with k # 0, n = 0, 

A “breather” solution is 

sin( hit%) 
‘u = -4tan 

I cosh(mx) ’ (17) 

References 
Infeld, E. and Rowlands, G. Nonlinear Waves, Solitons, and 

Chaos. Cambridge, England: Cambridge University Press, 
pp* 199-200, 1990. 

Sine Integral 

RelSinInteqral 21 Im[SinIntegral 21 jSinIntegra1 21 

There are two types of “sine integrals” commonly de- 
fined, 

’ 
Si(x) G 

J 

sin t 

0 
7 dt 

and 

si(x) T - s O” sint 
t dt 

= -$i(ix) - ei(-ix)] 

= $el(ix) - e+ix)] 

- - SC > iz - f? 

where ei(x) is the EXPONENTIAL INTEGRAL and 

cl(x) S - ei(-2). 

(1) 

(2) 

(3) 

(4) 

(5) 

Sine I..tegral 

Si(z) is the function returned by the Mathematic 
(Wolfram Research, Champaign, IL) command Sin 
Integral [x] and displayed above, The half-infinite in- 
tegral of the SING FUNCTION is given by 

si(Q) = - 
s 

O” sinx 
- dx = -fn (6) 

0 
X 

To compute the integral of a sine function times a power 

I= 
s 

x2n sin(mx) dx, 

use INTEGRATION 8Y PARTS. Let 

2n 
U =X dw = sin(mx) dx 

(7) 

(8) 

du = 2nx2n-1 dx 
1 

v = -- cos(mx), 
m (9) 

so 

1 272 
I = --x2* cos(mx) + - 

m m s 
x2n-1 cos(mx) dx. (10) 

Using INTEGRATION BY PARTS again, 

2n-1 
U =2 dv = cos(mx) dx (11) 

du = (Zn - 1)x 27-b-2& 1 ‘u=- m sin(mx) (12) 

s 

1 
x271 sin(mx) dx = --Gx~~ cos(mx) 

2n - 1 -- 
s 

X 2n-2 sin(mx) dx 
m 1 

1 2n 2n-1 
=- -5 

m 
2n sin(mx) + -x 

m2 
sin( mx) 

(2n)(2n - ‘> - 
m2 s 

IC’n-2 sin(mx) dx 

1 2n =- -x2n cos(mx) + 2x2n-1 sin(mx) + . . . 
m 

(2 > n! 
+- 

m2n s 
x0 sin(mx) dx 

1 272 =- -x2n cos(mx) + 2x2n-1 sin(mx) + . . . 
m 

(2 > n! -- 
m2n+l cos(mx) 

(2 > = cos(mx) j-;(_1)L+’ (2n _ 2$L2k+l x2n-2k . 
k=O 

+ sin(mx) c(--1)*+’ (2k 2(2n)!l)vm2k x2n-2k+1q 
-n-. 

k=l 
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Letting k’ G n - k, so Singly Even Number 
An EVEN NUMBER of the form 4n + 2 (i.e., an INTEGER 

s x2n sin(mx) dx 

= cos(mx) ~(-l)“~x+l (2h),(2rJ:2L+, xzk 
.m 

k=O 

which is DMSIBLE by 2 but not. by 4). The first few 
for n = 0, 1, 2, . . l  are 2, 6, 10, 14, 18, . . . (Sloane’s 
A016825) 

see UZSO DOUBLY EVEN NUMBER, EVEN NUMBER, ODD 

NUMBER 
n-l 

References 

k=O 
Conway, J. H. and Guy, R. K. The Book of Numbers. New 

York: Springer-Verlag, pa 30, 1996. 
Sloane, N. J. A. Sequence A016825 in “An On-Line Version 

of the Encyclopedia of Integer Sequences.” 

( 1) 
+ sin(mx) 2 (2k _ ;, 

k+l Singular Homology 

’ .m 2n-2k+2x2k-1 The general type of HOMOLOGY which is what mathe- 

k=l 1 maticians generally mean when they say ‘Lhomology.” 

(14) Singular homology is a more general version than 
Poincar$s original SIMPLICIAL HOMOLOGY. 

see UZSO HOMOLOGY (TOPOLOGY), SIMPLICIAL HOMO- 

LOGY General integrals of the form 

are related to the SING FUNCTION and can be computed 
analytically. 

see also CHI, COSINE INTEGRAL, EXPONENTIAL IN- 

TEGRAL, NIELSEN’S SPIRAL, SHI, SICI SPIRAL, SINC 

FUNCTION 

References 

I(k,l) = 
s 

O” sin’” x 
(15) Singular Point (Algebraic Curve) 

0 
yF dx 

A singular point of an ALGEBRAIC CURVE is a point 
where the curve has “nasty” behavior such as a CUSP 

or a point of self-intersection (when the underlying field 
K is taken as the REALS). More formally, a point (a, b) 
on a curve f (x, y) = 0 is singular if the x and ‘y PAR- 
TIAL DERIVATIVES of f are both zero at the point (a, b). 
(If the field K is not the REALS or COMPLEX NUMBERS, 

then the PARTIAL DERIVATIVE is computed formally us- 
ing the usual rules of CALCULUS.) Abramowitz, M, and Stegun, C. A. (Eds.). “Sine and Co- 

sine Integrals .” $5.2 in Handbook of Mathematical Func- 
tions with Formulas, Graphs, and Mathematical Tables, 
9th printing. New York: Dover, pp. 231-233, 1972. 

A&en, G. Mathematical Methods for Physicists, 3rd ed. Or- 
lando, FL: Academic Press, pp. 342-343, 1985. 

Press, W. H.; Flannery, l3. P.; Teukolsky, S. A.; and Vetter- 
ling, W. T. “F!resnel Integrals, Cosine and Sine Integrals.” 
56.79 in Numerical Recipes in FORTRAN: The Art of Sci- 
entific Computing, 2nd ed. Cambridge, England: Cam- 
bridge University Press, pp. 248-252, 1992. 

Consider the following two examples. For the curve 

X3 - y2 = 0, 

the CUSP at (0, 0) is a singular point. For the curve 

x2 + y2 = -1, 

Spanier, J. and Oldham, K. B. “The Cosine and Sine Inte- 
grals.” Ch. 38 in An Atlas of Functions. Washington, DC: 
Hemisphere, pp. 361-372, 1987, 

(0, i) is a nonsingular point and this curve is nonsingular. 

see ah ALGEBRAIC CURVE, CUSP 

Sine-Tangent Theorem 
If 

sin Q 77-z --- 
sinp - n ’ 

Singular Point (Differential Equation) 
Consider a second-order ORDINARY DIFFERENTIAL 

EQUATION 

then 
tan[+(a - P)] m - n 

tan[+(a+P)] = m+n’ 

y” + P(x)y’ + Q(x)y = 0. 

If P(x) and Q(x) remain FINITE at x = x0, then x0 
is called an ORDINARY POINT. If either P(x) or Q(x) 

Sines Law 

see LAW OF SINES 

diverges as x + x0, then x0 is called a singular point. 
Singular points are further classified as follows: 

1. If either P(x) or Q(x) diverges as x -+ x0 but (x - 
x@(x) and (x-x~)~Q(x) remain FINITE as x + x0, 

then x = xo is called a REGULAR SINGULAR POINT 

(or NONESSENTIAL SINGULARITY). 
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2. If P(z) diverges more quickly than l/(x - x0), so 

( 
- zo)P(z) approaches INFINITY as Al: -+ ~0, or 

&c) diverges more quickly than l/(x - CC~)~Q so 
that (EC - z~)~Q(x) g oes to INFINITY as 2 -+ 20, 
then x0 is called an IRREGULAR SINGULARITY (or 
ESSENTIAL SINGULARITY). 

see also IRREGULAR SINGU 

LAR POINT, SINGULARITY 
'LARITY, REGULAR SINGU- 

References 
Arfken, G. “Singular Points.” 38.4 in Mathematical Meth- 

ods for Physicists, 3rd ed. Orlando, FL: Academic Press, 
pp. 451-454, 1985. 

Singular Point (Function) 
Singular points (also simply called “singularities”) are 
points zo in the DOMAIN of a FUNCTION f where f 

fails to be ANALYTIC. ISOLATED SINGULARITIES may 
be classified as ESSENTIAL SINGULARITIES, POLES, or 

REMOVABLE SINGULARITIES. 

ESSENTIAL SINGULARITIES 
der. 

are PoLES of INFINITE or- 

A POLE of order n is a singularity zo of f(z) for which 
the function (z - zo)“f( z is nonsingular and for which ) 

( z - zo)kf(z) is singular for k = 0, 1, . . , , 72 - 1. 

REMOVABLE SINGULARITIES are singularities for which 
it is possible to assign a COMPLEX NUMBER in such a 
way that f(z) b ecomes ANALYTIC. For example, the 
function f(z) = X"/Z has a REMOVABLE SINGULARITY 
at 0, since f(z) = z everywhere but 0, and f(z) can be 
set equal to 0 at z = 0. REMOVABLE SINGULARITIES are 
not POLES. 

The function f(z) = csc(l/z) has POLES at z = 
1/(2rn), and a nonisolated singularity at 0. 

see also ESSENTIAL SINGULARITY, IRREGULAR SINGU- 
LARITY, ORDINARY POINT, POLE, REGULAR SINGULAR 
POINT, REMOVABLE SINGULARITY, SINGULAR POINT 
(DIFFERENTIAL EQUATION) 

References 
A&en, G, “Singularities.” 57.1 in Mathematical Methods for 

Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 396- 
400, 1985, 

Singular Series 

8 

c( > 

2s 

p2s(*) = K&-l 
S 
P,q 

r( > 

pP49 
1 

s Q 
P99 

where Sprq is a GAUSSIAN SUM, and l?(s) is the GAMMA 
FUNCTION. 

Singular System 
A system is singular if the CONDITION NUMBER is IN- 

FINITE and ILL-CONDITIONED ifit is too large* 

see also CONDITION NUMBER, ILL-CONDITIONED 

Singular Value 
A MODULUS k, such that 

where K(k) is a complete ELLIPTIC INTEGRAL OF THE 
FIRST KIND, and K’(k,) = K(dx). The ELLIP- 

TIC LAMBDA FUNCTION X*(r) gives the value of k,. 

Abel (quoted in Whittaker and Watson 1990, p. 525) 
proved that if T is an INTEGER, or more generally when- 
ever 

K’(k) a-t-bfi --- 
K(k) - c+dfi’ 

where a, b, c, d, and n are INTEGERS, then the MODULUS 

k is the ROOT of an algebraic equation with INTEGER 

COEFFICIENTS. 

see &SO ELLIPTIC INTEGRAL SINGULAR VALUE, ELLIP- 
TIC INTEGRAL OF THE FIRST KIND,ELLIPTIC LAMBDA 
FUNCTION, MODULUS (ELLIPTIC INTEGRAL) 

References 
Whittaker, E. T. and Watson, G. N. A Course in Modern 

AnaEysis, 4th ed. Cambridge, England: Cambridge Uni- 
versity Press, pp. 524-528, 1990. 

Singular Value Decomposition 
An expansion of a REAL M x IV MATRIX by ORTHOG- 
ONAL OUTER PRODUCTS according to 

SkWE (1) 
k=l 

where s1 2 s2 2 . . . > 0, 

K E min{M, N} (2) 

and 

(3) 

Here 6ij is the KRONECKER DELTA and AT is the MA- 
TRIX TRANSPOSE. 

see UZSO CHOLESKY DECOMPOSITION, LU DECOMPOSI- 
TION, QR DECOMPOSITION 

References 
Nash, J. C. “The Singular-Value Decomposition and Its Use 

to Solve Least-Squares Problems.” Ch. 3 in Compact 
Numerical Methods for Computers: Linear Algebra and 
Function Minimisation, 2nd ed. Bristol, England: Adam 
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Singularity 
In general, a point at which an equation, surface, etc., 
blows up or becomes DEGENERATE. 

see dso ESSENTIAL SINGULARITY, ISOLATED SINGU- 
LARITY, SINGULAR POINT (ALGEBRAIC CURVE), SIN- 
GULAR POINT (DIFFERENTIAL EQUATION), SINGULAR 
POINT (FUNCTION), WHITNEY SINGULARITY 

Sinh 

see HYPERBOLIC SINE 

Sink (Directed Graph) 
murce 

sink 

A vertex of a DIRECTED GRAPH with no exiting edges, 
also called a TERMINAL. 

see also DIRECTED GRAPH,NETWORK,SOURCE 

Sink (Map) 
A stable fixed point of a MAP which, in a dissipative 
DYNAMICAL SYSTEM, is an ATTRACTOR. 

see also ATTRACTOR, DYNAMICAL SYSTEM 

Sinusoidal Projection 

An equal AREA MAP PRO&CTION. 

x = (A - A(j) cos (b 

Y = b 

The inverse FORMULAS are 

4=Y 

x=xo+L 
cosqs 

(1) 
(2) 

(3) 
(4) 

nererences 
Snyder, J. P. Map Projections-A Working Manual. U. S. 

Geological Survey Professional Paper 1395. Washington, 
DC: U. S. Government Printing Office, pp. 243-248, 1987. 

Sinusoidal Spiral 
A curve of the form 

p z an cos(d) 

with n RATIONAL, which is not a true SPIRAL. Sinu- 
soidal spirals were first studied by Maclaurin. Special 
cases are given in the following table. 

n 
-2 
-1 

1 -- 
2 
1 -- 

o3 

1 
3 
I 

I 

2 

Curve 
hyperbola 
1. 

lme 

parabola 

Tschirnhausen cubic 

logarithmic spiral 

Cayley sextic 

cardioid 

circle 
Bernoulli lemniscate 

1 

References 
Lawrence, J. D. A Catalog of Special Plane Curves. New 

York: Dover, p. 184, 1972. 
Lee, X. “Sinusoid ?’ http://www.best.com/-xah/Special 

PlaneCurves-dir/Sinusoid-dir/sinusoid.html. 
Lockwood, E. H. A Book of Curves. Cambridge, England: 

Cambridge University Press, p. 175, 1967. 
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Curves/Sinusoidal.html. 

Sinusoidal Spiral Inverse Curve 
The INVERSE CURVE ofa SINUSOIDAL SPIRAL 

1” = uCXln) [cos(nt)]‘/” 

with INVERSION CENTER at the origin and inversion ra- 
dius k is another SINUSOIDAL SPIRAL 

T = ka(l’“) [cos(nt)] I? 

Sinusoidal Spiral Pedal Curve 
The PEDAL CURVE of a SINUSOIDAL SPIRAL 

T = dl’“) [cos( nt)] l/n 

with PEDAL POINT at the center is another SINUSOIDAL 

SPIRAL 

2 = cos l+lln(72t) cos[(n + 1)t] 

y = cosl+lln (nt)sin[(n + l)t]. 
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Sister Celine’s Method 
A method for finding RECURRENCE RELATIONS for hy- 
pergeometric polynomials directly from the series ex- 
pansions of the polynomials. The method is effec- 
tive and easily implemented, but usually slower than 
ZEILBERGER'S ALGORITHM. Given a sum f(n) = 
cI, F(n, k), the method operates by finding a recur- 
rence of the form 

bY 

1. 

2. 

3. 

4. 

5. 

6. 

~~Uij(n)F(?l-j,A-i) =O 

i=o j=o 

proceeding as follows (Petkovgek et al. 1996, p, 59): 

Fix trial values of I and J. 

Assume a recurrence formula of the above form 
where a&) are to be solved for. 

Divide each term of the assumed recurrence by 
F(n, k) and reduce every ratio F(n-j, k -i)/F(n, k) 
by simplifying the ratios of its constituent factorials 
so that only RATIONAL FUNCTIONS in n and k: re- 
main. 

Put the resulting expression over a common DENOM- 

INATOR, then collect the numerator as a POLYNOM- 
IAL in k:. 

Solve the system of linear equations that results af- 
ter setting the coefficients of each power of k in the 
NUMERATOR to 0 for the unknown coefficients aij. 

If no solution results, start again with larger I or J. 

Under suitable hypotheses, a “fundamental theorem” 
(Verbaten 1974, Wilf and Zeilberger 1992, Petkovgek et 
al. 1996) guarantees that this algorithm always succeeds 
for large enough 1 and J (which can be estimated in ad- 
vance). The theorem also generalizes to multivariate 
sums and to q- and multi-q-sums (Wilf and Zeilberger 
1992, PetkovSek et al. 1996). 

SW UZSO GENERALIZED HYPERGEOMETRIC FUNCTION, 
GOSPER'S ALGORITHM, HYPERGEOMETRIC IDENTITY, 
HYPERGEOMETRIC SERIES, ZEILBERGER'S ALGORITHM 
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Fasenmyer, Sister M. C. “A Note on Pure Recurrence Rela- 
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Wilf, H. S. and Zeilberger, D. “An Algorithmic Proof Theory 

for Hypergeometric (Ordinary and “q”) Multisum/Integral 
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Six- Color Theorem 

Site Percolation 

site percolation bond percolation 

A PERCOLATION which considers the lattice vertices as 
the relevant entities (left figure). 

see also BOND PERCOLATION, PERCOLATION THEORY 

Siteswap 
A siteswap is a sequence encountered in JUGGLING in 
which each term is a POSITIVE integer, encoded in BI- 
NARY. The transition rule from one term to the next 
consists of changing some 0 to 1, subtracting 1, and then 
dividing by 2, with the constraint that the DIVISION by 
two must be exact. Therefore, if a term is EVEN, the bit 
to be changed must be the units bit. In siteswaps, the 
number of l-bits is a constant. 

Each transition is characterized by the bit position of 
the toggled bit (denoted here by the numeral on top of 
the arrow). For example, 

111~10011~10115‘10101L1011~111 

~1000113\10101~1110~1114-r1011.. . 

The second term is given from the first as follows: 
000111 with bit 5 flipped becomes 100111, or 39. Sub- 
tract 1 to obtain 38 and divide by two to obtain 19, 
which is 10011. 

see ~2s~ JUGGLING 

References 
Juggling Information Service. “Siteswaps.” http: //wwu, 

juggling.org/help/siteswap. 

Six-Color Theorem 
To color any map on the SPHERE or the PLANE requires 
at most six-colors. This number can be easily be reduced 
to five, and the FOUR-COLOR THEOREM demonstrates 
that the NECESSARY number is, in fact, four. 

see also FOUR-COLOR THEOREM, HEAWUOD CONJEC- 
TURE, MAP COLORING 
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Franklin, P. “A Six Colour Problem.” J. Math. Phys. 13, 

363-369, 1934. 
Hoffman, I. and Soifer, A. “Another Six-Coloring of the 

Plane.” Disc. Math. 150, 427-429, 1996. 
Saaty, T. L. and Kainen, P. C. The Four-Color Problem: 

Assaults and Conquest. New York: Dover, 1986. 
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Skein Relationship see also CONIC SECTION, CUBICAL ELLIPSE, CUBI- 
A relationship between KNOT POLYNOMIALS for links CAL HYPERBOLA$UBICAL PARABOLA, CUBICAL PAR- 
in different orientations (denoted below as L+, Lo, and ABOLXC HYPERBOLA 
L-). J. H. Conway was the first to realize that the 
ALEXANDER POLYNOMIAL could be defined by a rela- Skew Field 
tionship of this type. A FIELD in which the commutativity of multiplication 

L + L - 

is not required, more commonly called a DIVISION AL- 
GEBRA. 

see UZSO DIVISION ALGEBRA, FIELD 

Skew Lines 

see UZSO ALEXANDER POLYNOMIAL, HOMFLY POLY- Two or more LINES which have no intersections but are 
NOMIAL, SIGNATURE (KNOT) not PARALLEL, also called AGONIC LINES. Since two 

LINES in the PLANE must intersect or be PARALLEL, 

Skeleton 
The GRAPH obtained by collapsing a POLYHEDRON into 
the PLANE. The number of topologically distinct skele- 
tons N(n) with n VERTICES is given in the following 

skew lines can exist only in three or more DIMENSIONS. 

see also GALLUCCI'S THEOREM, REGULUS 

Skew Polyomino 

see UZSO L-POLYOMINO, SQUARE POLYOMINO, 
STRAIGHT POLYOMINO,T-POLYOMINO 

References 
Gardner, M. Martin Gardner’s New Mathematical Diuer- 

sions from Scientific American. New York: Simon and 
Schuster, p. 233, 1966. 

Skeleton Division 
A LONG DIVISION in which most or all of the digits 

Skew Quadrilateral 
A four-sided QUADRILATERAL not contained in a plane. 
The problem of finding the minimum bounding surface 
of a skew quadrilateral was solved by Schwarz (1890) in 
terms of ABELIAN INTEGRALS and has the shape of a 
SADDLE. It is given by solving 

are replaced by a symbol (usually asterisks) to form a 
CRYPTARITHM. (1+ fv2)fxx - 2fxfyfxy + (1+ fz”)fyv = 0. 
see also CRYPTARITHM 

Skew Conic 
see also QUADRILATERAL 

Also known as a GAUCHE CONIC, SPACE CONIC, 
References 

TWISTED CONIC, or CUBICAL CONIC SECTION. A 
Isenberg, C. The Science of Soap Films and Soap Bubbles. 

New York: Dover, p. 81, 1992. 
third-order SPACE CURVE having up to three points in Forsyth, A. FL. Calculus of Variations. New York: Dover, 
common with a plane and having three points in com- p. 503, 1960. 

mon with the plane at infinity. A skew cubic is deter- Schwara, H. A. Gesammelte Mathematische Abhandlungen, 

mined by six points, with no four of them COPLANAR. 
2nd ed. New York: Chelsea. 

A line is met by up to four tangents to a skew cubic. 

A line joining two points of a skew cubic (REAL or con- 
jugate imaginary) is called a SECANT of the curve, and 
a line having one point in common with the curve is 

Skew Symmetric Matrix 
A MATRIX A where 

AT = -A, 
called a SEMISECANT or TRANSVERSAL. Depending on 
the nature of the roots, the skew conic is classified as 
follows: 

with AT denoting the MATRIX TRANSPOSE. 

1. The three ROOTS are REAL and distinct (CUBICAL 
see also MATRIX TRANSPOSE, SYMMETRIC MATRIX 

HYPERBOLA). 
2. One 

CON 
root is REAL and the other two 

'JUGATES (CU BICA L ELLIPSE). 

are COMPLEX 

3. Two of the ROOTS coincide (CUBICAL PARABOLIC 

HYPERBOLA). 

4. All three ROOTS coincide (CUBICAL PARABOLA), 



1652 Skewes Number Sklar ‘s Theorem 

Skewes Number The PEARSON MODE SKEWNESS is defined by 

The Skewes number (or first Skewes number) is the num- 
ber Sk1 above which r(n) < Li(n) must fail (assuming 
that the RIEMANN HYPOTHESIS is true), where r(n) is 
the PRIME COUNTING FUNCTION and Li(n) is the LOG- 
ARITHMIC INTEGRAL. 

[mean] - [mode] 
. (4) 0 

PEARSON'S SKEWNESS COEFFICIENTS are definedby 

3[mean] - [mode] 

s (5) 29 34 

Sk1 = ee z lulolo . 

and 
The Skewes number has since been reduced to e 

e27/4 
$=: 

8.185 x 1O37o by te Riele (1987), although Conway and 
Guy (1996) 1 c aim that the best current limit is 101? 
In 1914, Littlewood proved that the inequality must, in 
fact, fail infinitely often. 

3[mean] - [median] 
l  

s  

(6) 
The BOWLEY SKEWNESS (also known 
SKEWNESS COEFFICIENT) is defined by 

as QUARTILE 

(Q3 - Q2) - (Q2 - QI) 621 -2Q2 + Q3 

Q3 -&I = Q3 - Ql ’ (7) 
The second Skewes number Sk2 is the number above 
which n(n) < Li(n) must fail (assuming that the RIE- 

MANN HYPOTHESIS is false). It is much larger than the 
Skewes number Ski, 

where the Qs denote the INTERQUARTILE RANGES. The 
MOMENTAL SKEWNESS is 

Sk2 = l(j1010103 . 

see UZSO GRAHAM'S NUMBER, RIEMANN HYPOTHESIS An ESTIMATOR for the FISHER SKEWNESS yl is 

References 
Asimov, I. “Skewered!” Of Matters Great and Small. New 

h 
91 = - 

k23/2 ' (9) 
York: Ace Books, 1976. Originally published in Magazine 
of Fantasy and Science Fiction, Nov. 1974. 

where the ks are ~-STATISTICS. The STANDARD DEVI- 
ATION ofgl is 

Ball, W. W. R. and Coxeter, H. S. M. lMathematica2 Recre- 
ations and Essays, 13th ed. New York: Dover, p. 63, 1987. 

Boas, R. P. “The Skewes Number.” In IWuthematical Plums 
(Ed. R. Honsberger). 
Amer., 1979. 

Washington, DC: Math. Assoc. 

see also BOWLEY SKEWNESS, FISHER SKEWNESS, 
GAMMA STATISTIC, KURTOSIS, MEAN, MOMENTAL 
SKEWNESS, PEARSON SKEWNESS, STANDARD DEVIA- 

TION 

Conway, J. H. and Guy, R. K. The Book of Numbers. New 
York: Springer-Verlag, p. 61, 1996. 

Lehman, R. S. “On the Difference m(z) - ii(z),” Acta Arith. 
11,397-410,1966. 

te Riele, H. J. J. “On the Sign of the Difference ~(2) -h(z).” 
Math. Compuf. 48, 323-328, 1987. 

Wagon, S. Mathematics in Action. New York: W. H. Free- 
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Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p. 928, 1972. 
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pp. 604-609, 1992. 
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Skewness 
The degree of asymmetry of a distribution. If the distri- 
bution has a longer tail less than the maximum, the 
function has NEGATIVE skewness. Otherwise, it has 
POSITIVE skewness. Several types of skewness are de- 
fined. The FISHER SKEWNESS is defined by 

Sklar’s Theorem 
Let H be a 2-D distribution function with marginal dis- 
tribution functions F and G. Then there exists a COP- 

ULA G such that 

P3 P3 
V'-- p23/2 - p1 (1) 

where ~3 is the third MOMENT, and ~2~‘~ E 0 is the 
STANDARD DEVIATION. The PEARSON SKEWNESS is 
defined by 

p1 = (5)’ =y12. 

The MOMENTAL SKEWNESS is defined by 

(2 

H(x, Y> = W(x)7 G(Y)>- 

> Conversely, for any univariate distribution functions F 
and G and any COPULA C, the function H is a two- 
dimensional distribution function with marginals F and 
G. Furthermore, if F and G are continuous, then C is 
unique. > 



Skolem-MaHer-Lerch Theorem 

Skolem-Mahler-Lerch Theorem 
If {~o,a1,...} is 8 RECURRENCE SEQUENCE, then the 
set of all k such that ak = 0 is the union of a finite 
(possibly EMPTY) set and a finite number (possibly zero) 
of full arithmetical progressions, where a full arithmetic 
progression is a set of the form {T, T + d, T + 24 . . .} with 
T E [OJ). 

References 
Myerson, G. and van der Poorten, A. J. “Some Problems 

c oncerning Recurrence 
102,698-705, 1995. 

Sequences. ” Amer. Math. Monthly 

Skolem Paradox 
Even though ARITHMETIC is uncountable, it possesses 
a countable CLmodel.” 

Skolem Sequence 
A Skolem sequence of order ~2 is a sequence S = 

{Sl,SZ,..., sz,} of 2n integers such that 

1. For every k E {1,2,. l  . , n}, there exist exactly two 
elements si, sj f S such that S; = sj = k, and 

2. If Si = Sj = k: with i < j, then j -i = k. 

References 
Colbourn, C. 5. and Dinitz, J. H. (Eds.) “Skolem Sequences.” 

Ch. 43 in CRC Handbook of Combinatorial Designs. Boca 
Raton, FL: CRC Press, pp* 457-461, 1996. 

Slant Height 
The height of an object (such as a CONE) measured 
along a side from the edge of the base to the apex. 

Slice Knot 
A KNOT K in s3 = dD4 is a slice knot if it bounds 
a DISK A2 in D4 which has a TUBULAR NEIGHBOR- 

HOOD A2 x ID2 whose intersection with S3 is a TUBULAR 

NEIGHBORHOOD K x ID2 for K. 

Every RIBBUN KNOT is a slice knot, and it is conjectured 
that every slice knot is a RIBBON KNOT. 

see also RIBBON KNOT, TUBULAR NEIGHBORHOOD 

References 
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or 

Perish Press, p. 218, 1976. 

Slide Move 

I 
\ I 

I 
/ 

’ - \ 
/ 

4 
I slide I 

The REIDEMEHTER MOVE of type III. 

see also REIDEMEISTER MOVES 

Slide Rule 

Slu tzky- Yule Effect 1653 

A mechanical device consisting of a sliding portion and a 
fixed case, each marked with logarithmic axes. By lining 
up the ticks, it is possible to do MULTIPLICATION by tak- 
ing advantage of the additive property of LOGARITHMS. 

More complicated slide rules also allow the extraction of 
roots and computation of trigonometric functions. The 
development of the desk calculator (and subsequently 
pocket calculator) rendered slide rules largely obsolete 
beginning in the 1960s. 

see also ABACUS, RULER, STRAIGHTEDGE 

References 
Electronic Teaching Laboratories. SimpZify Math: Learn to 

Use the Slide Rule. New Augusta, IN: Editors and Engi- 
neers, 1966. 

Saffold, R. The Slide Rule. Garden City, NY: Doubleday, 
1962. 

Slightly Defective Number 

see ALMOST PERFECT NUMBER 

Slightly Excessive Number 

see QUASIPERFECT NUMBER 

Slip Knot 

see RUNNING KNOT 

Slope 
A quantity which gives the inclination of a curve or line 
with respect to another curve or line. For a LINE in the 
PLANE making an ANGLE 0 with the X-AXIS, the SLOPE 

m is a constant given by 

AY 
m=AE 

= tan@, 

where Ax and Ay are changes in the two coordinates 
over some distance. It is meaningless to talk about the 
slope in 3-D unless the slope with respect to what is spec- 
ified. 

Slothouber-Graatsma Puzzle 
Assemble six 1 x 2 x 2 blocks and three 1 x 1 x 1 blocks 
into a 3 x 3 x 3 CUBE. 

see also BOX-PACKING THEOREM, CONWAY PUZZLE, 

CUBE DISSECTION, DE BRUIJN’S THEOREM, KLARNER’S 

THEOREM, POLYCUBE 

References 
Honsberger, R. Mathematical Gems II. Washington, DC: 

Math. Assoc. Amer., pp. 75-77, 1976. 

Slutzky-Yule Effect 
A MOVING AVERAGE may generate an irregular oscilla- 
tion even if none exists in the original data. 

see also MOVING AVERAGE 



1654 Sl uze Pearls Small Dodecahemicosacron 

Sluee Pearls 

see PEARLS OF SLUZE 

Smale-Hirsch Theorem 
The SPACE of IMMERSIONS of a MANIFQLD in another 
MANIFOLD is EIOMOTOPICALLY equivalent to the space 
of bundle injections from the TANGENT SPACE of the 
first to the TANGENT BUNDLE of the second. 

see also HOMOTOPY, IM MERSIO 
GENT Bu 'NDLE,TANGENT SPACE 

N, MANIFOLD, TAN- 

Smale Horseshoe Map 
The basic topological operations for constructing an AT- 
TRACTOR consist of stretching (which gives sensitivity to 
initial conditions) and folding (which gives the attrac- 
tion). Since trajectories in PHASE SPACE cannot cross, 
the repeated stretching and folding operations result in 
an object of great topological complexity. 

The Smale horseshoe map consists of a sequence of op- 
erations on the unit square. First, stretch by a factor of 
2 in the CC direction, then compress by 2a in the y direc- 
tion. Then, fold the rectangle and fit it back into the 
square. Repeating this generates the horseshoe attrac- 
tor. If one looks at a cross-section of the final structure, 
it is seen to correspond to a CANTOR SET. 

see also ATTRACTOR,~ANTOR SET 

Small Cubicuboctahedron 

UNIFORMPOLYHEDRONU~~~~~S~DUAL POLYHEDRON 
is the SMALL HEXACRONIC ICOSITETRAHEDRON. It has 
WYTHOFF SYMBOL % 4 14. Its faces are 8{3} + 6{4} + 
6{8}. The CIRCUMRADIUS for the solid with unit edge 
length is 

R= +&GZ. 

FACETED versions include the GREAT RHOMBICUB- 
OCTAHEDRON (UNIFORM) and SMALL RHOMBIHEXAHE- 
DRON. 

References 
Wenninger, M. J. Polyhedron Models. Cambridge, England: 

Cambridge University Press, pp. 104-105, 1971, 

Small Ditrigonal Dodecacronic 
Hexecontahedron 
The DUAL POLYHEDRON of the SMALL DITRIGONAL 
DODECICO~IDODECAHEDR~N. 

Small Ditrigonal Dodecicosidodecahedron 

The UNIFORM POLYHEDRON U43 whoseD~~~ POLYHE- 
DRON istheS~~~~ DITRIGONAL DODECACR~NIC HEX- 
ECONTAHEDRON. It has WYTHOFF SYMBOL 3515. Its 
faces are 20{3} + 12(g) + lZ{lO}. Its CIRCUMRADIUS 
with a = 1 is 

R= +J34+6&. 

References 
Wenninger, M. J. PoEyhedron. 1ModeZs. Cambridge, England: 

Cambridge University Press, pp. 126-127, 1971. 

Small Ditrigonal Icosidodecahedron 

The UNIFORM POLYHEDRON U30 whose DUAL POLYHE- 
DRON is the SMALL TRIAMBIC IC~SAHEDRON. It has 
WYTHOFF SYMBOL 313$. Its faces are 20{3} + 12{ 5}. 
A FACETED versionis the DITRTGONAL DODECADODEC- 
AHEDRON. Its CIRCUMRADIUS with a= 1 is 

R=$h. 

References 
Wenninger, M. J. PoEyhedron A4odeZs. Cambridge, England: 

Cambridge University Press, pp. 106-107, 1971. 

Small Dodecacronic Hexecontahedron 
The DUAL POLYHEDRON of the SMALL DODECICOSIDO- 
DECAHEDRON. 

Small Dodecahemicosacron 
The DUAL POLYHEDRON of the SMALL DODECAHEMI- 
COSAHEDRON. 



Small Dodecahemicosahedron Small Hexarrrammic Hexecontahedron 
U 

1655 

Small Dodecahemicosahedron 

The UNIFORM POLYHEDRON &2 whose DUAL POLY- 
HEDRON is the SMALL DODECAHEMICOSACRON. It has 
WYTHOFF SYMBOL $ $ 13. Its faces are N(6) + 12{ z}. 
It is a FACETED version of the ICOSIDODECAHEDRON. 
Its CIRCUMRADIUS with unit edge length is 

R= 1. 

References 
Wenninger, M. J. Polyhedron IModels. Cambridge, England: 

Cambridge University Press, p. 155, 1971. 

Small Dodecahemidodecacron 
The DUAL POLYHEDRON of the SMALL DODECAHEMI- 
DODECAHEDRON. 

Small Dodecahemidodecahedron 

The UNIFORM POLYHEDRON Us1 whose DUAL POLYHE- 
DRON is the SMALL DO~ECAHEMIDODECACRON. It has 

WYTHOFF SYMBOL 25 & Its faces are 30{4} + 12{10}. 

Its CIRCUMRADIUS with2a = 1 is 

R= ada. 

References 
Wenninger, M. J. Polyhedron IModels. Cambridge, England: 

Cambridge University Press, pp. 113-114, 1971. 

Small Dodecicosacron 
The DUAL POLYHEDRON of the SMALL DODECICOSA- 
HEDRON. 

Small Dodecicosahedron 

The UNIFORM POLYHEDRON &O whose DUAL POLYHE- 
DRON is the SMAL; DODECICOSACRON. It has WYTH- 

OFF SYMBOL 35 z . Its faces are 20{6} + 12{10}. Its 

CIRCUMRADIUS w$h a= 1 is 

References 
Wenninger, M. J. PoZyhedmn Models. Cambridge, England: 

Cambridge University Press, pp. 141-142, 1971. 

Small Dodecicosidodecahedron 

The UNIFORM POLYHEDRON & whose DUAL POLY- 
HEDRON is the SMALL DODECACRONIC HEXECONTAHE- 
DRON. It has WYTHOFF SYMBOL $515. Its faces are 
20{3} + 12{5} + 12{10}. It is a FACETED version of 
the SMALL RHOMBICOSIDODECAHEDRON Its CIRCUM- 
RADIUS with a = 1 is 

R=$Jl1+4& 

Keterences 
Wenninger, M. J. Polyhedron Models. Cambridge, England: 

Cambridge University Press, pp, 110-I 11, 1971. 

Small Hexacronic Icositetrahedron 
The DUAL POLYHEDRON of the SMALL CUBICWBOCTA- 
HEDRON. 

Small Hexagonal Hexecontahedron 
The DUALPOLYHEDRON of the SMALL SNUB ICOSICOSI- 
DODECAHEDRON. 

Small Hexagrammic Hexecontahedron 
The DUAL POLYHEDRON of the SMALL RETROSNUB 
I~~SI~~SIDODE~AHEDR~N. 



1656 Small Icosacronic Hexecontahedron 

Small Icosacronic Hexecont ahedron 
The DUAL POLYHEDRON of the SMALL Icos~cosr~o- 
DECAHEDRON. 

Small Icosicosidodecahedron 

The UNIFORM POLYHEDRON U31 whose DUAL POLY- 
HEDRON is the SMALL ICOSACRONIC HEXECONTAHE- 
DRON. It has WYTHOFF SYMBOL $515. Its faces are 
12{5} + 6{10}. Its CIRCUMRADIWS with a =lis 

Rx+ f(1+ J5), 

where 4 is the GOLDEN RATIO. 

References 
Wenninger, M. J. Polyhedron 1ModeZs. Cambridge, England: 

Cambridge University Press, p. 143, 1971. 

Small Icosihemidodecacron 
The DUAL POLYHEDRON of the SMALL ICOSIHEMIDO- 
DECAHEDRON. 

Small Icosihemidodecahedron 

The UNIFORM POLYHEDRON Vd9 whose DUAL POLY- 
HEDRON is the SMALL ICOSIHEMIDODECACRON~ It has 
WYTHOFF SYMBOL $3 15. Its faces are 20{3} + 6{10}. 
It is a FACETED version of the ICOSIDO~ECAHEDRON. 
Its CIRCUMRADIUS with a = 1 is 

R = 4 = ;(l+ &). 

References 
Wenninger, M. J. Polyhedron, lModeZs. Cambridge, England: 

Cambridge University Press, p. 140, 1971. 

Small Inverted Retrosnub 

Icosicosidodecahedron 

see SMALL RETROSNUB ICOSICOSIDODECAHEDRON 

Small Rhom bicosidodecahedron 

Small Multiple Method 
An algorithm for computing a UNIT FRACTION. 

Small Number 
GUY'S TTRONG LAW OF SMALL NUMBERS" states that 
there aren’t enough small numbers to meet the many 
demands made of them. Guy (1988) also gives several 
interesting and misleading facts about small numbers: 

1. 10% of the first 100 numbers are SQUARE NUMBERS. 

2. A QUARTER of the numbers < 100 are PRIMES. 

3. All numbers less than 10, except for 6, are PRIME 
POWERS. 

4. Half the numbers less than 10 are FIBONACCI NUM- 
BERS. 

see also LARGE NUMBER, STRONG LAW OF SMALL 
NUMBERS 

References 
Guy, R. K. "The Strong Law of Small Numbers." Amer. 

Math. MonthEy 95, 697-712, 1988. 

Small Retrosnub Icosicosidodecahedron 

L 

The UNIFORM POLYHEDRON EJ72 also called the 
SMALL INVERTED RETROSNUB ICOSICOSIDODECAHE- 
DRON whose DUAL POLYHEDRON is the SMALL HEXA- 
GRAMMIC HEXECONTAHEDRON. Ithas WYTHOFF SYM- 
BOL I$;$. Its faces are lOO(3) + 12{%). It has CIR- 
CUMRADIUS with a-1 

z 0.580694800133921. 

References 
Wenninger, M. J. Polyhedron Models. Cambridge, England: 

Cambridge University Press, pp. 194-199, 1971. 

Small Rhombicosidodecahedron 



Small Rhombicuboctahedron Small Rhombihexahedron 1657 

An ARCHIMEDEAN SOLID whose DUAL POLYHEDRON is 

the DELTOIDAL HEXECONTAHEDRON. It has SCHLXFLI 
SYMBOL r { > z . It is also UNIFORM POLYHEDRON 
i& with WYTHOFF SYMBOL 3512. Its faces are 

20{3} + 30{4} + 12{5}. The SMALL DUDECICOSIDO- 
DECAHEDRON and SMALL RHOMBIDODECAHEDRON are 
FACETED versions. The INRADIUS, MIDRADIUS, and 
CIRCUMRADIUS for a = 1 are 

T = &(15 + 2&)d11 + 4J5 = 2.12099.. . 

p = $a = 2.17625 . * m 

R = $&l+ 4J5 = 2.23295.. . . 

see also GREAT RHOMBICOSID~DECAHEDRON (ARCHI- 
MEDEAN), GREAT RHOMBICOSIDODECAHEDRON (UNI- 
FORM) 

Small Rhombicuboctahedron 

An ARCHIMEDEAN SOD also (inappropriately) called 
the TRUNCATED ICOSIDODECAHEDRON. This name is 
inappropriate since truncation would yield rectangu- 
lar instead of square faces. Its DUAL POLYHEDRON 
is the DELTOIDAL ICOSITETRAHEDRON, also called the 
TRAPEZOIDAL ICOSITETRAHEDRON. It has SCHLAFLI 
SYMBOL r(z). It is also UNIFORM POLYHEDRON 
UIO and has WYTHOFF SYMBOL 34 j 2. Its INRADIUS, 
MIDRADIUS, and CIRCUMRADTUS for a = 1 are 

r= &(6+&)&+2&=1.22026... 

p = 3 dg = 1.30656. l  . 

A version in which the top and bottom halves are rotated 
with respect to each other is known as the ELONGATED 
SQUARE GYROBICUPOLA. 

see also ELUNGATED SQUARE GYR~BICUPOLA, GREAT 
RHOMBICUBOCTAHEDRON (ARCHIMEDEAN), GREAT 
RHOMBICUBOCTAHEDRON (UNIFORM) 

References 
Ball, W. W. R+ and Coxeter, H. S, M. Ah!hematicaZ Recre- 

ations and Essays, 13th ed. New York: Dover, pp. 137- 
138, 1987. 

Small Rhombidodecacron 
The DUAL POLYHEDRON of the SMALL RH~MBIDODEC- 
AHEDRON. 

Small Rhombidodecahedron 

The UNIFORM POLYHEDRON Us9 whose DUAL POLY- 
HEDRON is the SMALLRHOMBIDODECACRON. It has 

WYTHOFF SYMBOL 25 2. Its faces are 30{4} + 12{10}. 

It is a FACETED version’ofthe SMALL RH~MBICOSIDO- 
DECAHEDRON. Its CIRCUMRADIUS with a-lis 

R - - 1. 
2 d 11 + 4&L 

References 
Wenninger, M. J. Polyhedron Models. Cambridge, England: 

Cambridge U niversity Press, pp. 113-114, 1971. 

Small Rhombihexacron 
The DUAL POLYHEDRON of the SMALL RHOMBIHEXA- 
HEDRON. 

Small Rhombihexahedron 

The UNIFORM POLYHEDRON VI8 whose DUAL P~LYHE- 
DRON is the SMAL; RHOMBIHEXACRON. It has WYTH- 

OFF SYMBOL 24 i  l  Its faces are 12{4} + 6(B). It is 
2 

R = $ J5 + 2J2 = 1.39897.. . . 



1658 Small Snub Icosicosidodecahedron 

a FACETED version of the SMALL 

DRON. Its C~RCUMRADIU~ with a = 1 is 

R=$d5+2d% 

References 
Wenninger, M. J* Polyhedron AIodels. Cambridge, England: 

Cambridge University Press, p. 134, 1971. 

Small Snub Icosicosidodecahedron 

The UNIFORM POLYHEDRON U32 whose DUAL POLYHE- 
DRON is the SMALL HEXAGONAL HEXECONTAHEDRON. 
It has WYTHOFF SYMBOL I33 4 (Har’El 1993 gives the 
symbol as 1 g 3 3.) Its faces are 100{3} + 12(g). Its 
CIR~~MRADIU~ for u = 1 is 

13+3&+&GGz 

= 1.4581903307387. l  . . 

References 
Har’El, 2. “Uniform Solution for Uniform Polyhedra.” Ge- 

ometriae Dedicata47, 57-110, 1993. 
Wenninger, M. J. Polyhedron Models. Cambridge, England: 

Cambridge University Press, pp* 172-173, 1971. 

Small Stellapentakis Dodecahedron 
The DUAL POLYHEDRON of the TRUNCATED GREAT 
DODECAHEDRON. 

Small Stellated Dodecahedron 

Small Stellated Truncated Dodecahedron 

SCHL~FLI SYMBOL is {& 5). It is also UNIFORM POLY- 

HEDRON U34 andhas WYTHOFF SYMBOL 512:. It was 
originally called the URCHIN by Kepler. It is composed 
of 12 PENTAGRAMMIC faces. Its faces are 12{ $}. The 
easiest way to construct it is to build twelve pentagonal 
PYRAMIDS 

and attach them to the faces of a DODECAHEDRON. 
The CIRCUMRADIUS of the small stellated dodecahedron 
with a = 1 is 

see also GREAT DODECAHEDRON, GREAT 
DRON, GREAT STELLATED DODECAHEDRON 
POINSOT SOLID 

ICOSAHE- 

, KEPLER- 

nererences 
Fischer, G. (Ed.). Plate 103 in Mathematische Mod- 

elle/Matherkzti&l Models, BiZdband/Photograph Volume. 
Braunschweig, Germany: Vieweg, p. 102, 1986. 

Rawles, B. Sacred Geometry Design Sourcebook: Universal 
Dimensional Patterns. Nevada City, CA: Elysian Pub., 
p* 219, 1997. 

Small Stellated niacontahedron 

see MEDIAL RHOMBIC TRIACONTAHEDRON 

Small Stellated Truncated Dodecahedron 

The UNIFORM POLYHEDRON US8 also called the 
QUASITRUNCATED~MALL STELLATEDDODECAHEDRON 
whose DUALPOLYHEDRON is the GREAT PENTAKIS Do- 
DECAHEDRON. It has SCHLXFLI SYMBOL t’{g,5} and 
WYTHOFF SYMBOL 251 %. Its faces are 12{5}+ 12{?}, 
Its CIRCUMRADIUS with a = 1 is 

R+ d34 - 106 

References 
Wenninger, M. J. Polyhedron IModels. Cambridge, England: 

Cambridge University Press, p, 151, 1971. 

One of the KEPLER-P• INSOT SOLIDS whose DUAL 
POLYHEDRON is the GREAT DODECAHEDRON. Its 



Small Ilhakis Octahedron Smarandache Constants 1659 

Small TXakis Octahedron 

The DUAL POLYHEDRON of the TRUNCATED CUBE. 

see also GREAT TRIAKIS OCTAHEDRON 

Small Triambic Icosahedron 
The DUAL POLYHEDRON of the SMALL DITRIGONAL 

Small World Problem 
The small world problem asks for the probability that 
two people picked at random have at least one acquain- 
tance in common. 

References 
Begay, A. “Smarandache Ceil Functions.” Bull. Pure Appl. 

sci. 16E, 227-229, 1997. 
“Functions in Number Theory." http://www.gallup.u. 

edu/-smarandache/FUNCTl.TXT. 
Sloane, N. J. A. Sequences A007947, A019554, A019555, and 

A0472/M000027 in ‘&An On-Line Version of the Encyclo- 
pedia of Integer Sequences.” 

Smarandache, F. Collected Papers, Vol. 2. Kishinev, 
Moldova: Kishinev University Press, 1997. 

Smarandache, F. Only Problems, Not Solutions!, 4th ed. 
Phoenix, AZ: Xiquan, 1993. 

Smarandache Constants 
The first Smarandache constant is defined as 

Sl =F 1 
- > 1.093111, 

n=2 W)l! 

where S(n) is the SMARANDACHE FUNCTION. Cojo- 
caru and Cojocaru (1996a) prove that Sr exists and is 
bounded by 0.717 < S1 < 1.253. The lower limit given 
above is obtained by taking 40,000 terms of the sum. 

Cojocaru and Cojocaru (1996b) prove that the second 
Smarandache constant 

SC > n 
- a 1.71400629359162 

n! 
n=2 

is an IRRATIONAL NUMBER. 

Cojocaru and Cojocaru (1996c) prove that the series 
see also BIRTHDAY PROBLEM 

Smarandache Ceil Function 
A SMARANDACHE-like function which is defined where 
Sk(n) is defined as the smallest integer for which 

+k(n)“. The Smarandache Sk(n) function can there- 
fore be obtained by replacing any factors which are kth 
powers in n by their k roots. The functions Sk(n) for 
k = 2, 3, . . . . 6 for values such that Sk (n) # n are 
tabulated by Begay (1997). 

&(n) = n, so the first few values of&(n) are 1, 2, 3, 4, 
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, . . l  

(Sloane’s A000027). The first few values of S2 (n) are 1, 
2, 3, 2, 5, 6, 7, 4, 3, 10, 11, 6, 13, 14, 15, 4, 17, 6, 19, 
10, . . . (Sloane’s A019554) The first few values of S3 (n) 
are 1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 4, 17, 
6, 19, 10, . . . (Sloane’s AO19555) The first few values of 
S,(n) are 1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 
17, 6, 19, 10, . . . (Sloane’s A007947), 

see UZSO PSEUDOSMARANDACHE FUNCTION, SMARAN- 
DACHE FUNCTION, SMARANDACHE-KUREPA FUNC- 
TION, SMARANDACHE NEAR-TO-PRIMORIAL FUNC- 
TION, SMARANDACHE SEQUENCES, SMARANDACHE- 
WAGSTAFF FUNCTION, SMARANDACHE FUNCTION 

s3 = 5 n:=:w = 0.719960700043708 

converges to a number 0.71 < S3 < 1.01, and that 

converges for a fixed REAL NUMBER a 2 1. The values 
for small a are 

S4( 1) = 1.72875760530223 

54(2) E 4.50251200619297 

S4(3) =2: 13.0111441949445 

S4(4) E 42.4818449849626 

S4(5) ==: 158.105463729329. 

Sandor (1997) shows that the series 
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converges to an IRRATIONAL. Burton (1995) and Du- 
mitrescu and Seleacu (1996) show that the series 

Smarandache Function 
500- 

400- 

300- 

00 

Ix 
r&=2 

S(n) 
(n + l)! 

converges. Dumitrescu and Seleacu (1996) show that 
the series 

(n+r)! 

and 
The smallest value S(n) for a given n for which r@(n)! 
(n divides S(n) FACTORIAL). For example, the number 
8 does not divide l!, 2!, 3!, but does divide 4! = 4*3*2*1 = 
8 l  3, so S(8) = 4. For a PRIME p, S(p) = p, and for an 
EVEN PERFECT NUMBER T, S(T) is PRIME (Ashbacher 
1997). 

s+y SC > n 

( n- T)! 

converge for T a natural number (which must be nonzero 
in the latter case). Dumitrescu and Seleacu (1996) show 
that 00 

IE 
n=2 

1 
The Smarandache numbers for n = 1, 2, . . . are 1, 2, 3, 

4, 5, 3, 7, 4, 6, 5, 11, . . . (Sloane’s A002034). Letting 
u(n) denote the smallest value of n for which S(n) = 1, 
2, l **, then a(n) is given by 1, 2, 3, 4, 5, 9, 7, 32, 
27, 25, 11, 243, . . . (Sloane’s A04602 1). Some values 
of S(n) first occur only for very large 72, for example, 
S(59,049) = 24, S(177,147) = 27, 5(134,217,728) = 
30, S(43,046,721) = 36, and S(9,765,625) = 45. 
D. Wilson points out that if we let 

converges. Burton (1995) and Dumitrescu and Seleacu 
(1996) show that the series 

and 

&IF 
1 

n-2 [Jwl” Jmm - 
converge for Qr > 1. be the power of the PRIME p in n!, where C(n,p) is the 

see also SMARANDACHE FUNCTION sum of the base-p digits of n, then it follows that 
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Smarandache-Kurepa Function 
Given the sum-of-factorials function 

E(n) = k/c!, 
k=l 

SK(p) is the smallest integer for p PRIME such that 1+ 
E[SK(p-1)] . d 1s ivisible by pm The first few known values 
of SK(p) are 2, 4, 6, 6, 5, 7, 7, 12, 22, 16, 55, 54, 42, 
24, . . . for p = 2, 5, 7, 11, 17, 19, 23, 31, 37, 41, 61, 71, 

73, 89, . . . . The values for p = 3, 13, 29, 43, 47, 53, 67, 
79, 83, . .., if they are finite, must be very large (e.g,, 
SK(3) > 100,000). 

see UZSO PSEUDOSMARANDACHE FUNCTION, SMARAN- 

DACRE 

SMARA 
CEIL FUNCTION, 

NDACHE-WAGSTAFF 
SMARANDACHE FUNCTION, 
FUNCTIONJMARANDACHE 

FUNCTION 
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3. 

Smarandache Near-to-Primorial Function 
SNTP(n) is the smallest PRIME such that p# - 1, p#, 

or p# + 1 is divisible by n, where p# is the PRIMORIAL 
of p. Ashbacher (1996) shows that SNTP(n) only exists 

1. If there are no square or higher powers in the factor- 
ization of n, or 

2. If there exists a PRIME Q < p such that nl(q# * 
l), where p is the smallest power contained in the 

factorization of n. 

Therefore, SNTP(n) d oes not exist for the SQUAREFUL 
numbers n = 4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, . . . 

(Sloane’s A002997) The first few values of SNTP(n), 
where defined, are 2, 2, 2, 3, 3, 3, 5, 7, . . . (Sloane’s 
A046026). 

see also PRIMORIAL, SMARANDACHE FUNCTION 
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Smarandache Paradox 
Let A be some attribute (e.g., possible, present, per- 
fect, etc.). If all is A, then the non-A must also be A. 
For example, “All is possible, the impossible too,” and 
“Nothing is perfect, not even the perfect.” 

References 
Le, C. T. “The Smarandache Class of Paradoxes.” Bull. 

Transylvania Univ. Brasov 38, 7-8, 1994. 
Le, C. T. “The Smarandache Class of Paradoxes.” Bull. Pure 

Appl. SC;. 14E, 109-110, 1995. 
Le, C. T. “The Smarandache Class of Paradoxes.” J. Indian 

Acad. Math. 18, 53-55, 1996. 
Mitroiescu, I. The Smarandache Class of Paradoxes. Glen- 

dale, AZ: Erhus University Press, 1994. 
Mitroiescu, I. “The Smarandache’s Class of Paradoxes Ap- 

plied in Computer Science.” Abstracts of Papers Presented 
to the Amer. Math. Sot. 16, 651, 1995. 

Smarandache Sequences 
Smarandache sequences are any of a number of simply 
generated INTEGER SEQUENCES resembling those con- 
sidered in published works by Smarandache such as the 
CONSECUTIVE NUMBERSEQUENCES and EUCLID NUM- 
BERS (Iacobescu 1997). Other Smarandache-type se- 
quences are given below. 

4. 

5. 

6. 

The concatenation of n copies of the INTEGER n: 
1, 22, 333, 4444, 55555, . . . (Sloane’s A000461; 
Marimutha 1997), 

The concatenation of the first n FIBONACCI NUM- 
BERS: 1, 11, 112, 1123, 11235, . . . (Sloane’s A019523; 
Marimutha 1997), 

The smallest number that is the sum of squares of 
two distinct earlier terms: 1, 2, 5, 26, 29, 677, . . . 
(Sloane’s A008318, Bencze 1997), 

The smallest number that is the sum of squares of 
any number of distinct earlier terms: 1, 1, 2, 4, 5, 6, 
16, 17, . . . (Sloane’s A008319, Bencze 1997), 

The smallest number that is not the sum of squares 
of two distinct earlier terms: 1, 2, 3, 4, 6, 7, 8, 9, 11, 
. l  l  (Sloane’s A008320, Bencze 1997), 

The smallest number that is not the sum of squares 
of any number of distinct earlier terms: 1, 2, 3, 6, 7, 
8, 11, . . . (Sloane’s A008321, Bencze 1997), 
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7. The smallest number that is a sum of cubes of two 
distinct earlier terms: 1, 2, 9, 730, 737, . . . (Sloane’s 
A008322, Bencze 1997)) 

8. 

9. 

The smallest number that is a sum of cubes of any 
number of distinct earlier terms: 1, 1, 2, 8, 9, 512, 
513, 514, . l  . (Sloane’s A008323, Bencze 1997), 

The smallest number that is not a sum of cubes of 
two of distinct earlier terms: 1, 2, 3, 4, 5, 6, 7, 8, 10, 

10. 

11. 

l  l  . (Sloane’s A008380, Bencze 1997), 

The smallest number that is not a sum of cubes of 
any number of distinct earlier terms: 1, 2, 3, 4, 5, 6, 
7, 10, 11, . . m (Sloane’s A008381, Bencze 1997)) 

The number of PARTITIONS of a number n = 1, 2, 
. into SQUARE NWRERS: 1, 1, 1, 1, 2, 2, 2, 2, 3, 

hi 4, 4, 5, 6, 6, 6, 8, 9, 10, 10, 12, 13, l  l  . (Sloane’s 
A001 156, Iacobescu 1997), 

12. The number of PARTITIONS of a number n = 1, 2, 
into CUBIC NUMBERS: 1, 1, 1, 1, 1, 1, 1, 1, 2, 

21’2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, . . . (Sloane’s 
A003108, Iacobescu 1997), 

13. Two copies of the first n POSITIVE integers: 11, 1212, 
123123, 12341234, l  . . (Sloane’s A019524, Iacobescu 
1997)) 

14. Numbers written in base of triangular numbers: 1, 
2, 10, 11, 12, 100, 101, 102, 110, 1000, 1001, 1002, 

15. 

16. 

17. 

18. 

l  l  . (Sloane’s A000462, Iacobescu 1997), 

Numbers written in base of double factorial numbers: 
1, 10, 100, 101, 110, 200, 201, 1000, 1001, 1010, , l  l  

(Sloane’s AO19513, Iacobescu 1997), 

Sequences starting with terms {al, a~} which contain 
no three-term arithmetic progressions starting with 
{1,2}: 1, 2, 4, 5, 10, 11, 13, 14, 28, . . . (Sloane’s 
A033155, Iacobescu 1997, Mudge 1997, Weisstein), 

Numbers of the form (n!)'+ I: 2, 5, 37, 577, 14401, 
518401, 25401601, 1625702401, 131681894401, . . l  

(Sloane’s AO20549, Iacobescu 1997), 

Numbers of the form (n!)" + 1: 2, 9, 217, 13825, 
1728001, 373248001, 128024064001, l  l  . (Sloane’s 
A019514, Iacobescu 1997), 

19. 

20. 

21. 

22. 

Numbers of the form 1 + 1!2!3! m.. n!: 2, 3, 13, 289, 
34561, 24883201, 125411328001, 5056584744960001, 
l  l  . (Sloane’s A019515, Iacobescu 1997), 

Sequences starting with terms {al, a~} which contain 
no three-term geometric progressions starting with 
{1,2}: 1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, . . . 
(Sloane’s A000452, Iacobescu 1997), 

Numbers repeating the digit 1 p, times, where p, is 
the nth prime: 11, 111, 11111, 1111111, . . . (Sloane’s 
AO31974, Iacobescu 1997). These are a subset of the 
REPUNITS, 

Integers with all 2s, 3s, 5s, and 7s (prime digits) 
removed: 1, 4, 6, 8, 9, 10, 11, 1, 1, 14, 1, 16, 1, 18, 
19, 0, . . . (Sloane’s A019516, Iacobescu 1997), 

23. 

24 

25. 

26. 

27. 

28. 

29. 

30. 

31 

32 

33 

Integers with all OS, Is, 4s, and 9s (square digits) 
removed: 2, 3, 5, 6, 7, 8, 2, 3, 5, 6, 7, 8, 2, 2, 22, 23, 
. . . (Sloane’s A031976, Iacobescu 1997). 

(Smarandache-Fibonacci triples) Integers n such 
that S(n) = S(n - l)+ S(n - Z), where S(L) is the 
SMARANDACHE FUNCTION: 3, 11, 121, 4902, 26245, 

(Sloane’s AOl5047; Aschbacher and Mudge 1995; 
&edt 1997, pp. 19-23; Begay 1997). The largest 
known is 19,448,047,080,036, 

(Smarandache-Radu triplets) Integers n such that 
there are no primes between the smaller and larger 
of S(n) and S(n + 1): 224, 2057, 265225, . . . 
(Sloane’s A015048; Radu 1994/1995, Begay 1997, Ib- 
stedt 1997). The largest known is 270,329,975,921, 
205,253,634,707,051,822,848,570,391,313, 
(Smarandache crescendo sequence) : Integers ob- 
tained by concatenating strings of the first n-51 inte- 
gers for n = 0, 1, 2, . . . : 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, l  . l  

(Sloane’s A002260; Brown 1997, &own and Castillo 
1997). The nth term is given by n - m(m+ 1)/2 + 1, 
where m. = L(dm - 1)/Z], with 1x1 the FLOOR 
FUNCTION (Hamel 1997), 

(Smarandache descrescendo sequence) : Integers ob- 
tained by concatenating strings of the first n inte- 
gers for n = . . ., 2, 1: 1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 

(Sloane’s A004736; Smarandache 1997, Brown 
G97), 

(Smarandache crescendo pyramidal sequence): Inte- 
gers obtained by concatenating strings of rising and 
falling integers: 1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 4’ 3, 
2, 1, . . . (Sloane’s AO04737; Brown 1997, Brown and 
Castillo 1997, Smarandache 1997)) 

(Smarandache descrescendo pyramidal sequence) : 
Integers obtained by concatenating strings of falling 
and rising integers: 1, 2, 1, 2, 3, 2, 1, 2, 3, 4, 3, 2, 1, 
2, 3, 4, . l  l  (Brown 1997), 

(Smarandache crescendo symmetric sequence): 1, 1, 
1, 2, 2, 1, 1, 2, 3, 3, 2, 1, . . . (Sloane’s AOO4739, 
Brown 1997, Smarandache 1997), 

(Smarandache descrescendo symmetric sequence): 1, 
1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, . . . (Sloane’s AOO474O; 
Brown 1997, Smarandache 1997), 

(Smarandache permutation sequence) : Numbers ob- 
tained by concatenating sequences of increasing 
length of increasing ODD NUMBERS and decreasing 
EVEN NUMBERS: 1, 2, 1, 3, 4, 2, 1, 3, 5, 6, 4, 2, . . . 
(Sloane’s AO04741; Brown 1997, Brown and Castillo 
1997), 

(Smarandache pierced chain sequence) : Numbers of 
the form c(n) = 1Olw for 72 = 0, 1, . . . : 101, 

n 

1010101, 10101010101, . l  l  (Sloane’s A031982; Ash- 
bather 1997) l  In addition, c(n)/101 contains no 
PRIMES (Ashbacher 1997), 
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34. 

35. 

36. 

37. 

38. 

39. 

40. 

41 l  

see 

(Smarandache symmetric sequence): 1, 11, 121, 

1221,12321,123321,. . . (Sloane’s AOO7907; Smaran- 
dache 1993, Dumitrescu and Seleacu 1994, sequence 
3; Mudge 1995), 

(Smarandache square-digital sequence): square 
numbers all of whose digits are also squares: 1, 4, 9, 
49, 100, 144, . l  . (Sloane’s A019544; Mudge 1997), 

(Square-digits): numbers composed of digits which 
are squares: 1, 4, 9, 10, 14, 19, 40, 41, 44, 49, . . l  

(Sloane’s AO66030), 

(Smarandache square-digital sequence) : square-digit 
numbers which are themselves squares: 1, 4, 9, 49, 
100, 144, . . . (Sloane’s AOl9544; Mudge 1997), 

(Cube-digits): numbers composed of digits which are 
cubes: 1, 4, 10, 11, 14, 40, 41, 44, 100, 101, . . . 
(Sloane’s A046031), 

(Smarandache cube-digit al sequence) : cube-digit 
numbers which are themselves cubes: 1, 8, 1000, 
8000, 1000000, . , q (Sloane’s AOl9545; Mudge 1997), 

(Prime-digits) : numbers composed of digits which 
are primes: 2, 3, 5, 7, 22, 23, 25, 27, 32, 33, 35, . . . 
(Sloane’s A046034), 

(Smarandache prime-digital sequence) : prime-digit 
numbers which are themselves prime: 2, 3, 5, 7, 23, 
37) 53, l  #. (Smith 1996, Mudge 1997). 

UZSO ADDITION CHAIN, CONSECUTIVE NUMBER SE- 

QUENCES, CUBIC NUMBER, EUCLID NUMBER, EVEN 
NUMBER, FIBONACCI NUMBER, INTEGER 
ODD NUMBER, PARTITION, SMARANDACHE 

SEQUENCE, 
FUNCTION, 

SQUARE NUMBER 
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Phoenix, AZ: Xiquan, 1993. 

Smarandache, F. Collected Papers, Vol. 2. Kishinev, 
Moldova: Kishinev University Press, 1997. 

Smith, S. “A Set of Conjectures on Smarandache Sequences.” 
Bull. Pure Appl. Sci. 15E, 101-107, 1996. 

Smarandache- Wagstaff Function 
Given the sum-of-FACTORIALS function 

E(n) = f)c!, 
k=l 

SW(p) is the smallest integer for p PRIME such that 

~wb>l d is ivisible by p. The first few known values 
are 2, 4, 5, 12, 19, 24, 32, 19, 20, 20, 20, 7, 57, 6, . . . for 
p = 3, 11, 17, 23, 29, 37, 41, 43, 53, 67, 73, 79, 97, . . . . 
The values for 5, 7, 13, 31, . . . , if they are finite, must 
be very large. 

see UZSO FACTORIAL, SMARANDACHE FUNCTION 
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Smith Brothers 
Consecutive SMITH NUMBERS. The first two brothers 
are (728, 729) and (2964, 2965). 

see also SMITH NUMBER 

Smith Conjecture 
The set of fixed points which do not move as a knot is 
transformed into itself is not a KNOT. The conjecture 
was proved in 1978. 
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Smith’s Markov Process Theorem 
Consider 

- - s p2(Yl,tllyz,tl)p3(y1,tl; yz, t21y3, t3) dy2. (1) 

If the probability distribution is governed by a MARKOV 

PROCESS, then 

P3(YlA y2,t2jy3,t3) = Pz(Y2 

= p2(y2 

Assuming no time dependence, so tl 

t2kbt3) 

Y343 - t2). (2) 

Z - 0, 

Pz(y1ly3,t3) = 

J 
Pz(ylIy2,t2)P2(y2Iy3,t3-t2) dyz. (3) 

see also MARKOV PROCESS 

Smith’s Network Theorem 
In a NETWURK with three EDGES at each VERTEX, the 
number of HAMILTONIAN CIRCUITS through a specified 
EDGE~SOO~ EVEN. 

see also EDGE (GRAPH), HAMILT~NIAN CIRCUIT, NET- 
WORK 

Smith Normal Form 
A form for INTEGER matrices. 

Smith Number 
A COMPOSITE NUMBER the SUM of whose DIGITS is 
the sum of the DIGITS of its PRIME factors (excluding 
1). (The PRIMES are excluded since they trivially satisfy 
this condition). One example of a Smith number is the 
BEAST NUMBER 

666 = 2 .3 - 3 - 37, 

since 

6+6+6=2+3+3+(3+7)=18. 

Another Smith number is 

4937775 = 3 l  5.5 - 65837, 

since 

4+9+3+7+7+7+5 = 3+5+5+(6+5+8+3+7) = 42. 

The first few Smith numbers are 4, 22, 27, 58, 85, 
94, 121, 166, 202, 265, 274, 319, 346, . . l  (Sloane’s 
A006753). There are 360 Smith numbers less than lo4 
and 29,928 2 106. McDaniel (1987a) showed that an 
infinite number exist. 

Smooth Number 

A generalized &Smith number can also be defined as 
a number m satisfying Sp(m) = M(m), where SP is 
the sum of prime factors and S is the sum of digits. 
There are 47 l-Smith numbers, 21 2-Smith numbers, 
three 3-Smith numbers, and one 7-Smith, g-Smith, and 
14-Smith number < 1000. 

A Smith number can be constructed from every factored 
REPUNIT R,. The largest known Smith number is 

g x &031(1045g4 + 3 x 1o22g7 + 1)147” x lo3g1321? 

see also MONICA SET, PERFECT NUMBER, REPUNIT, 
SMITH BROTHERS, SUZANNE SET 
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Smooth Manifold 
Another word for a Coo (infinitely differentiable) MAN- 

IFOLD. A smooth manifold is a TOPOLOGICAL MANI- 
FOLD together with its “functional structure” (Bredon 
1995) and so differs from a TOPOLOGICAL MANIFOLD 
because the notion of differentiability exists on it. Every 
smooth manifoldisa TOPOLOGICAL MANIFOLD, but not 

necessarily vice versa* (The first nonsmooth TOPOLOG- 

ICAL MANIFOLD occurs in 4-D.) In 1959, Milnor showed 
that a 7-D HYPERSPHERE can be made into a smooth 
manifold in 28 ways. 

see also DIFFERENTIABLE MANIFOLD, HYPERSPHERE, 

MANIFOLD, TOPOLOGICAL MANIFOLD 
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Smooth Number 
An INTEGER is k-smooth ifit has no PRIME FACTORS 

> k. The probability that a random POSITIVE INTEGER 

5 n is k-smooth is $(n, Ii)/ n, where $(n, k) is the num- 
ber of k-smooth numbers < n. This fact is important in - 
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application of Kraitchik’s extension of FERMAT’S FAC- 
TORIZATION METHOD because it is related to the num- 
ber of random numbers which must be examined to find 
a suitable subset whose product is a square. 

Since about r(k) J& smooth numbers must be found 
(where n(k) is the PRIME COUNTING FUNCTION), the 
number of random numbers which must be examined 
is about n(k)n/qb(n, k). But because it takes about 
r(k) steps to determine if a number is k-smooth using 
TRIAL DIVISION, the expected number of steps needed 
to find a subset of numbers whose product is a square 

is - [~(~>]2n/$(w (P omerance 1996). Canfield et al. 
(1983) showed that this function is minimized when 

k - exp(+Jlnnlnlnn) 

and that the minimum value is about 

exp(2dlnnlnlnn). 

In the CONTINUED FRACTION FACTORIZATION ALGO- 

RITHM, n can be taken as 2fi, but in FERMAT’S FAC- 

TORIZATION METHOD, it is n1/2Se. 1Tc is an estimate 
for the largest PRIME in the FACTOR BASE (Pomerance 
1996). 
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Smooth Surface 
A surface PARAMETERIZED in variables u and 21 is called 
smooth if the TANGENT VECTORS in the u and 21 direc- 
t ions satisfy 

CL x TV # 0, 

where A x B is a CROSS PRODUCT. 

Snake 
A simple circuit in the &HYPERCUBE which has no 
chords (i.e., for which all snake edges are edges of the 
HYPERCUBE). Klee (1970) asked for the maximum 
length s(d) of a d- snake. Klee (1970) gave the bounds 

7 44 1 1 - 12 l  l  l  2-d 
-- 

4(d-2-2 < 
- 

7d(d - 1)2 + 2 (1) 

for d > 6 (Danxer and Klee 1967, Douglas 1969), as well 
as numerous references. Abbott and Katchalski (1988) 
show 

s(d) > 77’ 2d-8, - (2) 

and Snevily (1994) showed that 

> 
(3) 

for n < 12, and conjectured - 

s(d) < 3 l  2”-3 + 2 - (4) 

for n < 5. The first few values for s(d) for d = 1, 2, . . . , 
are 2,>, 6, 8, 14, 26, . . l  (Sloane’s A000937). 

see also HYPERCUBE 

References 
Abbott, H. L. and Katchalski, M. “On the Snake in the B 

Problem.” J. Combin. Th. Ser. B 44, 12-24, 1988. 
Danzer, L. and Klee, V. “Length of Snakes in Boxes.” 

Combin. Th. 2, 258-265, 1967. 
Douglas, R, J. “Some Results on the Maximum Length 

Circuits of Spread Ic in the d-Cube.” J. Combin. Th. 

J. 

of 
6, 

323-339, 1969. 
Evdokimov, A. A. “Maximal Length of a Chain in a Unit 

n-Dimensional Cube.” Mat. Zumetki 6, 309-319, 1969. 
Guy, R. K. “Unsolved Problems Come of Age.” Amer, Math. 

Monthly 96, 903-909, 1989. 
Kautz, W. H. “Unit-Distance Error-Checking Codes.” IRE 

Trans. Elect. Comput. 7, 177-180, 1958. 
Klee, V. “What is the Maximum Length of a d-Dimensional 

Snake?” Amer. Math. Monthly 77, 63-65, 1970. 
Sloane, N. J. A. Sequence A000937/M0995 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 
Snevily, H. S. “The Snake-in-the-Box Problem: A New Upper 

Bound.” Disc. Math. 133, 307-314, 1994. 

Snake Eyes 
A roll of two 1s (the lowest roll possible) on a pair of 
six-sided DICE. The probability of rolling snake eyes is 
l/36, or 2.777. . . %. 

see also BOXCARS 

The expansion of the two sides of a sum equality in terms 
Snake Oil Method 

of POLYNOMIALS in X~ and ZJ’, followed by closed form 
summation in terms of zc and y. For an example of the 
technique, see Bloom (1995) l  
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Snake Polyiamond 

64 -- 

tity.” Problem 10206. 
Math. Monthly 102, 

A 6-POLYIAMOND. 
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Snedecor’s F-Distribution 
If a random variable X has a CHI-SQUARED DISTRIBU- 
TION with m degrees of freedom (xm2) and a random 
variable Y has a CHI-SQUARED DISTRIBUTION with n 
degrees of freedom ( xn2), and X and Y are independent, 
then 

(1) 

is distributed as Snedecor’s F-distribution with m and 
n degrees of freedom 

m/2 F(m-2)/2 

I’(y) I’(;) (1+ FF)(m+n”2 

for 0 < F < 00. The MOMENTS about 0 are 

n 
p; = - 

n-2 

I-& = 
n2(m+ 2) 

m(n - 2)(n - 4) 

P$ = 
n3(m+2)(m+4) 

m2(n - 2)(n - 4)(n - 6) 

PiI = 
n4(m + 2)(m + 4)(m + 6) 

m3(n - 2)(n - 4)(n - 6)(n - 8)’ 

SO the MOMENTS about the MEAN are given by 

p2 = 
2n2(m+n-2) 

m(n - 2)2(n - 4) 

8n3(m + n - 2)(2m +- n - 2) 
“= m2(n-2)3(n-4)(n-6) 

(2) 

(3) 

(4 

(5) 

(6) 

(7) 

(8) 

p4 = 
12n4(m + n - 2) 

m3(n - 2)4(n - 4)(n - 6)(n - 8) 9bva (9) 

g(m,n) = mn2 + 4n2 + m2n + 8mn - l6n 

+UIm2 - 20m + 16, (10) 

and the MEAN, VARIANCE, SKEWNESS, and KURTOSIS 
are 

n 
cL=p;=x (11) 

2 2n2(m + n - 2) 

o = m(n - 2)2(n - 4) (12) 

CL3 

y1=7=2 
J 

2(n - 4) 2m+n-2 

m(m+n-2) n-6 (13) 

P4 YZ=,--3 

12h(m, n) - - 
m(m + n - 2)(n - 6)(n - 8) ’ (14) 

Letting 
mF 

w E 1 ;“,T. (16) 

gives a J~ETA DISTRIBUTION. 

see &OBETA DISTRIBUTION$HI-SQUARED DISTRIBU- 
TION, STUDENT'S ~-DISTRIBUTION 
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Snellius-Pothenot Problem 
A SURVEYING PROBLEM which asks: Determine the po- 
sition of an unknown accessible point P by its bearings 
from three inaccessible known points A, B, and C. 

see also SURVEYING PROBLEMS 
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Snowflake 

see EXTERIOR SNOWFLAKE, KOCH ANTISNOWFLAKE, 
KOCH SNOWFLAKE,~ENTAFLAKE 

Snub Cube 

An ARCHIMEDEAN SOLID also called the SNUB CUB- 

OCTAHEDRON whose VERTICES are the 24 points on the 
surface of a SPHERE for which the smallest distance be- 
tween any two is as great as possible. It has two ENAN- 
TIOMERS, and its DUAL POLYHEDRON is the PENTAG- 

ONAL ICOSITETRAHEDRON. It has SCHLXFLI SYMBOL 
3 

s 4 { > ’ It is also UNIFORM POLYHEDRON Ur2 and has 
WYTHOFF SYMBOL 12 34. Its faces are 32{3} + 6{4}. 

where 

h(m,n) E n3 + 5mn2 - 8n2 + 5m2n - 32mn 

+2On - 22m2 + 44m - 16. (15) 



Snub Cuboctahedron 

The INRADIUS, MIDRADIUS, and CIRCUMRADIUS for 
a = 1 are 

r = 1.157661791.. . 

p = 1.247223168.. . 

R = 3 J x2 - 8x + 4 x2 I 5x + 4 = 1.3437133737446. l  . > 

where 

2 E (19 + 363y3, 

and the exact expressions for T and p can be computed 

using 

R2 - la2 
r- 

R4 

P= 4 
R2 - ia2. 

see ~2~0 SNUB DODECAHEDRON 
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Snub Cuboctahedron 

see SNUB CUBE 

Snub Disphenoid 

One of the con;ex DELTAHEDRA also known as the 

SIAMESE DODECAHEDRON. It is JOHNSON SOLID JB4. 

(0, 1923) 

Snub Dodecadodecahedron 1667 

The coordinates of the VERTICES may be found by solv- 
ing the set of four equations 

1 + Q2 + Z12 = 4 

(x2 - 1)” + (z3 - z1)2 = 4 

xz2 + (x3 - z2)2 = 4 

xz2 + 222 + (22 - Zl)” = 4 

for the four unknowns x2, ~1, ~2, and z3 m Numerically, 

x2 = 1.28917 

zl = 1.15674 

z2 = 1.97898 

z3 = 3.13572. 

The analytic solution requires solving the CUBIC EQUA- 
TION and gives 

22 = 1 - 7’ 2-2/3(1- i&)&l - ; l  2-1’3(1 + iJ3)a 

z1= ; 82 -l”[-48 + 6@(1+ ih) + p2(1 - i&3) 

+ 147py(& - i) + 42f12@ + i)]‘/“, 

where 

QI E (12iJ237 - 54p3 

p E 31’3(2idm - 9)1’3 

y E (9i + 2dE)Y 

Snub Dodecadodecahedron 

The UNIFORM POLYHEDRON i& whose DUAL POLY- 

HEDRON is the MEDIAL PENTAGONAL HEXECONTAHE- 
DRON. It has WYTH~FF SYMBOL 12 $5. Its faces are 
12{ 4} + 60{3} + 12{5}. It has CIRCUMRADIUS for a = 1 
of 

R = 1.27443994. 

see also SNUB CUBE 
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Snub Dodecahedron 

An ARCHIMEDEAN SOLID, also callede SNUB Icos- 
IDODECAHEDRON, whose DUAL POLYHEDRON is the 
PENTAGONAL HEXECONTAHEDRON. It has SCHL;~FLI 

SYMBOL s(i). It is also UNIFORM POLYHEDRON Uz9 
and has WYTHOFF SYMBOL 12 3 5. Its faces are 80{3} + 
12{5}. For a = 1, it has INRADIUS, MIDRADIUS, and 
CIRCUMRADIUS 

where 

T = 2.039873155.. . 

P = 2.097053835.. . 

R=1 J 
8 9 22/3 - 16x + Z1i3x2 

2 8 l  22/3 - 10x + 21i3x2 

= 2.15583737511564.. . , 

and the exact expressions for T and p can be computed 
using 

T= 

R2 - iu2 

References 
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Snub Icosidodecadodecahedron 

The UNIFORM POLYHEDRON i& whose DUAL POLY- 
HEDRON is the MEDIAL HEXAGONAL HEXECONTAHE- 
DRON. It has WYTHOFF SYMBOL ] 3 9 5. Its faces are 
12{ f} + 80{3} + 12{5}. It has CIRCUMRADIUS for u = 1 
of 

R+ J 24/3 - 14x+22/3x2 
2413 - Bx + 2213x2 

= 1.12689791279994.. . , 

where 
x = (25 + 32/69)1’3. 
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Snub Icosidodecahedron 

see SNUB DODECAHEDRON 

Snub Polyhedron 
A polyhedron with extra triangular faces, given by the 
SCHLXFLI SYMBOL s{I}. 

see U~SORHOMBIC POLYHEDRON,TRUNCATED POLYHE- 
DRON 

Snub Square Antiprism 

see JOHNSON SOLID 

Soap Bubble 

see BUBBLE 

Soccer Ball 

~~~TRUNCATED ICOSAHEDRON 

Sociable Numbers 
Numbers which result in a periodic ALIQUOT SE- 
QUENCE. If the period is 1, the number is called a PER- 
FECT NUMBER. If the period is 2, the two numbers are 
called an AMICABLE PAIR. If the period is t > 3, the 
number is called sociable of order t. Only two sociable 
numbers were known prior to 1970, the sets of orders 
5 and 28 discovered by Poulet (1918). In 1970, Cohen 
discovered nine groups of order 4. 

The table below summarizes the number of sociable cy- 
cles known as given in the compilation by Moews (1995). 

order known 
3 0 
4 38 
5 1 

6 2 
8 2 
9 1 

28 1 
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see also ALIQUOT SEQUENCE, PERFECT NUMBER, UNI- 
TARY SOCIABLE NUMBERS 
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Social Choice Theory 
The theory of analyzing a decision between a collection 
of alternatives made by a collection of n voters with sep- 
arate opinions. Any choice for the entire group should 
reflect the desires of the individual voters to the extent 
possible. 

Fair choice procedures usually satisfy ANONYMITY (in- 
variance under permutation of voters), DUALITY (each 
alternative receives equal weight for a single vote), and 
MONOTONICITY (a change favorable for X does not hurt 

Xl* Simple majority vote is anonymous, dual, and 
monotone. MAY'S THEOREM states a stronger result. 

see &O ANONYMOUS, DUAL VOTING, MAY'S THEO- 
REM, MONOTONIC VOTING, VOTING 
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Socrates’ Paradox 
Socrates is reported to have stated: “One thing I know 
is that I know nothing.” 

see also LIAR'S PARADOX 
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Soddy Circles 

Given three distinct points A, B, and C, let three CIR- 
CLES be drawn, one centered about each point and each 
one tangent to the other two. Call the RADII pi (~3 = a', 

r1 = b', r2 = c’). Then the CIRCLES satisfy 

a’ + b’ = c (1) 

a’ + c’ = b (2) 

b’ + cl = a, (3) 

as shown in the diagram below. 

B b’ et c 

1aa 

Solving for the RADII then gives 

a’ = 2 (b + c - a) 1 

b’= i(a+c-b) 

cl= +(a+b-c). 

(4 

(5) 

(6) 

The above TRIANGLE has sides a, b, and c, and 
SEMIPERIMETER 

s E +(a + b + c). (7) 

Plugging in, 

2s = (a’+b’)+(a’$-c’)$(b’+c’) = 2(a’+b’+c’), (8) 
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giving Solving for K~+I gives 

In addition, 

a=b’+c’=a’$b’+c’-a’=s-a’. (10) 

Switching a and a' to opposite sides of the equation and 
noting that the above argument applies equally well to 
b’ and c’ then gives 

a’ = s-a 

b'=S-b 

cl = s - c. 

(11) 

(12) 

(13) 

As can be seen from the first figure, there exist exactly 
two nonintersecting CIRCLES which are TANGENT to all 
three CIRCLES. These are called the inner and outer 
Soddy circles (S and S’, respectively), and their centers 
are called the inner and outer SODDY POINTS. 

The inner Soddy circle is the solution to the FOUR 
COWS PROBLEM. The center S of the inner Soddy cir- 
cle is the EQUAL DETOUR POINT, and the center of 
the outer Soddy circle S' is the ISOPERIMETRIC POINT 
(Kimberling 1994). 

Frederick Soddy (1936) gave the FORMULA for finding 
the RADII of the Soddy circles (~4) given the RAW ri 
(i = 1, 2, 3) of the other three. The relationship is 

2(Q2 + E22 +c32 + E42) = (El + E2 +E3 +E4)2, (14) 

where ei E &ni = fl/ri are the so-called BENDS, de- 
fined as the signed CURVATURES of the CIRCLES. If the 
contacts are all external, the signs are all taken as POS- 
ITIVE, whereas if one circle surrounds the other three, 
the sign of this circle is taken as NEGATIVE (Coxeter 
1969). Using the QUADRATIC FORMULA to solve for c4, 
expressing in terms of radii instead of curvatures, and 
simplifying gives 

f TlT2T3 
r4 = 

T2T3 +7'&'2 +7'3)f 2 IT2r3(T1 +T2 + f3)' 

(15) 

Here, the NEGATIVE solution corresponds to the outer 
Soddy circle and the P~SITXVE one to the inner Soddy 
circle. 

This FORMULA is called the DESCARTES CIRCLE THE- 
OREM since it was known to Descartes. However, Soddy 
also extended it to SPHERES. Gosper has further ex- 
tended the result to n + 2 mutually tangent n-D HY- 

PERSPHERES, whose CURVATURES satisfy 

For (at least) n = 2 and 3, the RADICAL equals 

where V is the CONTENT of the SIMPLEX whose vertices 
are the centers of the n+ 1 independent HYPERSPHERES. 
The RADICAND can also become NEGATIVE, yielding an 
IMAGINARY fin+l. For n = 3, this corresponds to a 
sphere touching three large bowling balls and a small 
BB, all mutually tangent, which is an impossibility. 

I3ellew has derived a generalization applicable to a CIR- 
CLE surrounded by n CIRCLES which are, in turn, cir- 
cumscribed by another CIRCLE. The relationship is 

[ ( n ~,-l)~+l]$~~+n(3n~~~-2n-6)~,~(~,_1)~ = 

i=l 

1 
[ ( n cn - 1) + II2 

x {n(c, - 1)” + l] x Ki 
-- z- 1 

+ncn(cn - l)(ncn2 + (3 - n)c, - 4])}, (19) 

where 

G-b = csc T . 
( > n 

(20) 

For 72 = 3, this simplifies to the Soddy formula. 

see UZW AP~LL~NIUS CIRCLES, APOLLONIUS' PROB- 
LEM, ARBELOS, BEND (CURVATURE), CIRCUMCIRCLE, 
DESCARTES CIRCLE THEOREM, FOUR COINS PROB- 
LEM, HART'S THEOREM, PAPPUS CHAIN, SPHERE 

PACKING, STEINER CHAIN 
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Soddy’s Hexlet 

see HEXLET 

nfl 
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2 
n+l 

x 
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IE 

2 & = 0. (16) 
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Soddy Line 
A LINE on which the INCENTER I, GERGONNE POINT 

Ge, and inner and outer SODDY POINTS S and S’ lie 
(the latter two of which are the EQUAL DETOUR POINT 
and the ISOPERIMETRIC POINT). The Soddy line can be 
given parametrically by 

I + XGe, 

where X is a parameter. It is also given by 

):(f - + = 0, 
where cyclic permutations of 
the sum is over TRILINEAR C 

d, e, and f are 
OORDINATES a, 

X Center 

taken and 

0, and Y* 

-4 outer Griffiths point Gr’ 
-2 outer Oldknow point 01’ 

4 -- outer Rigby point Ri ' 
-“1 outer Soddy center S’ 

0 incenter 1 
1 inner Soddy center S 

4 
3 

inner Rigby point Ri 
2 inner Oldknow point 02 
4 inner Griffiths point Gr 

00 Gergonne point 

S’, I, S, and Ge are COLLINEAR and form a HARMONIC 
RANGE (Vandeghen 1964, Oldknow 1996). There are a 
total of 22 HARMONIC RANGES for sets of four points 
out of these 10 (Oldknow 1996). 

The Soddy line intersects the EULER LINE in the DE 
LONGCHAMPS POINT, and the GERGONNE LINE in the 
FLETCHER POINT. 

see &O DE LONGCHAMPS POINT, EULER LINE, 
FLETCHER POINT, GERGONNE POINT, GRIFFITHS 
POINTS, HARMONIC RANGE, INCENTER, OLDKNOW 
POINTS, RIGBY POINTS, SODDY POINTS 
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Soddy Points 
Given three mutually tangent CIRCLES, there exist ex- 

actly two nonintersecting CIRCLES TANGENT to all three 
CIRCLES. These are called the inner and outer SODDY 
CIRCLES, and their centers are called the inner and outer 
Soddy points. The outer Soddy circle is the solution to 
the FOUR COINS PROBLEM. The center S of the inner 
Soddy circle is the EQUAL DETOUR POINT, and the cen- 
ter of the outer Soddy circle S’ is the ISOPERIMETRIC 

POINT (Kimberling 1994). 

see &O EQUAL DETOUR POINT, ISOPERIMETRIC 

POINT, SODDY CIRCLES 
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Sofa Constant 

see MOVING SOFA CONSTANT 

Sol Geometry 
The GEOMETRY of the LIE GROUP R SEMIDIRECT 
PRODUCT with R2, where R acts on R2 by (t, (qy)) -+ 

( etx, eBt y). 

see also THURSTON’S GEOMETRIZATION CONJECTURE 

Soldner’s Constant 
Consider the following formulation of the PRIME NUM- 

BER THEOREM, 

where p(m) is the MOBIUS FUNCTION and c (some- 
times also denoted p) is Soldner’s constant. Ramanujan 
found c = 1.45136380. . . (Hardy 1969, Le Lionnais 1983, 
Berndt 1994). Soldner (cited in Nielsen 1965) derived 
the correct value of c as 1.4513692346.. . , where c is the 
root of 

(Le Lionnais 1983). 
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Solenoidal Field 
A solenoidal VECTOR FIELD satisfies 

V-B=0 (1) 

for every VECTOR B, where V-B is the DIVERGENCE. If 
this condition is satisfied, there exists a vector A, known 
as the VECTOR POTENTIAL, such that 

B=VxA 1 (2) 

where V x A is the CURL. This follows from the vector 
identity 

V-B= V.(Vx A) =O. (3) 

If A is an IRROTATIONAL FIELD, then 

Axr (4) 

is solenoidal. If u and v are irrotational, then 

uxv (5) 
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is solenoidal. The quantity 

where Vu 
function 4 

(Vu) x (Vu), (6) 

is the GRADIENT, is always solenoidal. For a 
satisfying LAPLACE' s EQUATION 

v24 = 0, (7) 

it follows that V# is solenoidal (and also IRROTA- 
TIONAL). 

see also BELTRAMI FIELD,CURL,DIVERGENCE,DIVER- 
GENCELESS FIELD, GRADIENT, IRROTATIONAL FIELD, 
LAPLACE'S EQUATION, VECTOR FIELD 
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Solid 
A closed 3-D figure (which may, according to some ter- 
minology conventions, be self-intersecting). Among the 
simplest solids are the SPHERE, CUBE, CONE, CYLIN- 
DER, and more generally, the POLYHEDRA. 

see also APPLE, ARCHIMEDEAN -SOLID, CATALAN 
SOLID, CONE, CORK PLUG, CUBE, CUBOCTAHE- 
DRoN, CYLINDER, CYLINDRICAL HOOF, CYLINDRICAL 
WEDGE, DODECAHEDRON, GEODESIC DOME, GREAT 
DODECAHEDRON, GREAT ICOSAHEDRON, GREAT 
RHOMBICOSIDODECAHEDRON (ARCHIMEDEAN)$REAT 
RHOMBICUBOCTAHEDRON (ARCHIMEDEAN), GREAT 
STELLATED DODECAHEDRON, ICOSAHEDRON, ICOSI- 
DODECAHEDRON, JOHNSON SOLID, KEPLER-P• INSOT 
SOLID, LEMON, MOBIUS STRIP, OCTAHEDRON, PLA- 

TONIC SOLID, POLYHEDRON, PSEUDOSPHERE, 
RHOMBICOSIDODECAHEDRON, RHOMBICUBOCTAHE- 
DRON, SMALL STELLATED DODECAHEDRON, SNUB 
CUBE,SNUB DODECAHEDRON, SOLID OF REVOLUTION, 
SPHERE, STEINMETZ SOLID, STELLA OCTANGULA, 
SURFACE,TETRAHEDRON,TORUS,TRUNCATED CUBE, 
TRUNCATED DODECAHEDRON, TRUNCATED ICOSAHE- 
DRON, TRUNCATED OCTAHEDRON, TRUNCATED TET- 
RAHEDRON,~NIFORM POLYHEDRON,~ULFF SHAPE 

Solid Angle 
Defined as the SURFACE AREA 0 of a UNIT SPHERE 
which is subtended by a given object S. Writing the 
SPHERICAL COORDINATES as q5 for the COLATITUDE 
(angle from the pole) and 8 for the LONGITUDE (az- 
imuth), 

0-A projected = sin 4 de d$. 

Solid angle is measured in STERADIANS, and the solid 
angle corresponding to all of space being subtended is 
4~ STERADIANS. 

Solid Geometry 
That portion of GEOMETRY dealing with SOLIDS, as op- 

posed to PLANE GEOMETRY. Solid geometry is con- 
cerned with POLYHEDRA, SPHERES, 3-D SOLIDS, lines 
in 3-space, PLANES, and so on. 

see also GEOMETRY, PLANE GEOMETRY, SPHERICAL 
GEOMETRY 
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Solid Part it ion 
Solid partitions are generalizations of PLANE PARTI- 
TIONS. MacMohan (1960) conjectured the GENERATING 
FUNCTION for the number of solid partitions was 

f(+= (l-z)(l- L z2)3(1 -$)“(l -z4)10. ..’ 

but this was subsequently shown to disagree at n = 6 
(Atkin et al. 1967). Knuth (1970) extended the tabula- 
tion of values, but was unable to find a correct generat- 
ing function. The first few values are 1, 4, 10, 26, 59, 
140, . . . (Sloane’s A000293). 
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Solid of Revolution 
To find the VOLUME of a solid of rotation by adding up 
a sequence of thin cylindrical shells, consider a region 
bounded above by y = f(z), below by y = g(z), on the 
left by the LINE CC = a, and on the right by the LINE 

z = b. When the region is rotated about the Y-AXIS, 
the resulting VOLUME is given by 

s a 

v = 2n df(4 - ml dz 
b 

see also SPHERE, STERADIAN 
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To find the volume of a solid of rotation by adding up 
a sequence of thin flat disks, consider a region bounded 
above by y = f(x), below by y = g(x), on the left by the 

Solomon’s Seal Knot 

LINE ~1: = a, and on the right by the LINE x = 

the region is rotated about the X-AXIS, the 
VOLUME is 

b. When 
resulting 

see also SURFACE OF REVULUTION,VOLUME 

Solidus 
The diagonal slash “/” used to denote DIVISION for in- 
line equations such as a/b, l/(z - l)“, etc. The solidus 
is also called a DIAGONAL. 
see also DIVISION, OBELUS 

Solitary Number 
A number which does not have any FRIENDS. Solitary 
numbers include all PRIMES and POWERS of PRIMES. 
More generally, numbers for which (n,a(n)) = 1 are 
solitary, where (a, b) is the GREATEST COMMON DIVI- 
SOR ofaand band o(n) isthe DIVISOR FUNCTION. The 
first few solitary numbers are 1, 2, 3, 4, 5, 7, 8, 9, 11, 
13, 16, 17, 19, 21, . . . (Sloane’s A014567). 

see also FRIEND 

Soliton 
A stable isolated (i.e., solitary) traveling wave solution 
to a set of equations. 

see also LAX PAIR, SINE-GORDON EQUATION 
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Solomon’s Seal Lines 
The 27 REAL or IMAGINARY straight LINES which lie 
on the general CUBIC SURFACE and the 45 triple tan- 
gent PLANES to the surface. All are related to the 28 
BITANGENTS ofthe general QUARTIC CURVE. 

Schoutte (1910) showed that the 27 lines can be put into 
a ONE-TO-ONE correspondence with the vertices of a 
particular POLYTOPE in 6-D space in such a manner that 
all incidence relations between the lines are mirrored in 
the connectivity of the POLYTOPE and conversely (Du 
Val 1931). A similar correspondence can be made be- 
tween the 28 bitangents and a 7-D POLYTOPE (Coxeter 
1928) and between the tritangent planes of the canoni- 
cal curve of genus four and an 8-D POLYTOPE (Du Val 
1933) * 

see also BRIANCHON'S THEOREM, CUBIC SURFACE, 
DOUBLE SIXES, PASCAL'S THEOREM, QUARTIC SUR- 
FACE, STEINER SET 
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Solomon’s Seal Polygon 

Solvable Congruence 
A CONGRUENCE that has a solution. 

Solvable Group 
A solvable group is a group whose composition indices 
are all PRIME NUMBERS. Equivalently, a solvable is a 
GROUP having a “normal series” such that each “nor- 
mal factor” is ABELIAN. The term solvable derives from 
this type of group’s relationship to GALOIS'S THEOREM, 
namely that the SYMMETRIC GROUP S, is insoluble for 
n > 5 while it is solvable for n = 1, 2, 3, and 4. As a - 
result, the POLYNOMIAL equations of degree 2 5 are not 
solvable using finite additions, multiplications, divisions, 
and root extractions. 
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Every FINITE GROUP of order < 60, every ABELIAN 

GROUP, and every SUBGROUP of a solvable group is solv- 

able. 

see also ABELIAN GROUP, COMPOSITION SERIES, GA- 

LOIS'S THEOREM, SYMMETRIC GROUP 

References 
Lomont, J. S. Applications of Finite Groups. New York: 

Dover, p. 26, 1993. 

Solvable Lie Group 
The connected closed SUBGROUPS (up to an ISOMOR- 

PHISM) of COMPLEX MATRICES that are closed under 
conjugate transpose and have a discrete finite center. 
Examples include SPECIAL LINEAR GROUPS, SYMPLEC- 

TIC GROUPS, and certain isometry groups of QUADRA- 

TIC FORMS. 

see also LIE GROUP 
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Soma Cube 
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Somer-Lucas Pseudoprime 
An ODD COMPOSITE NUMBER IV is called a Somer- 
Lucas d-pseudoprime (with d > 1) if there EXISTS a 
nondegenerate LUCAS SEQUENCE U(P, Q) with Ub = 0, 

Ul = 1, D = P2 - 4Q, such that (IV, D) = 1 and 
the rank appearance of IV in the sequence U(P, Q) is 
(l/a)(N - (D/N)), where (D/N) denotes the JACOBI 

SYMBOL. 

see also LUCAS SEQUENCE, PSEUDOPRIME 
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Sommerfeld’s Formula 
There are (at least) two equations known as Sommer- 
feld’s formula. The first is 

-a 

J&) = & J 
gt cos teiv(t--x/2) & 

1 
-q+im 

where J&) is a BESSEL FUNCTION OF THE FIRST 

KIND. The second states that under appropriate re- 
strictions, A solid DISSECTION puzzle invented by Piet Hein during 

a lecture on Quantum Mechanics by Werner Heisenberg. 
There are seven soma pieces composed of all the irregular 
face-joined cubes (POLYCUBES) with 2 4 cubes. The 
object is to assemble the pieces into a CUBE. There are 
240 essentially distinct ways of doing so (Beeler et al. 
1972, Berlekamp et al. 1982), as first enumerated one 
rainy afternoon in 1961 by 3. H. Conway and Mike Guy. 

see UZSO WEYRICH’S FORMULA 
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Somos Sequence 
The Somos sequences are a set of related symmetrical 
RECURRENCE RELATIONS which, surprisingly, always 
give integers. The Somos sequence of order IG is defined 

A commercial version of the cube colors the pieces black, 
green, orange, white, red, and blue. When the 48 sym- 
metries of the cube, three ways of assembling the black 
piece, and 25 ways of assembling the green, orange, 
white, red, and blue pieces are counted, the total num- 
ber of solutions rises to lJO5.920. 

I I 

see also CUBE DISSECTION, POLYCUBE 
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a, = 
j=l Un-jU n-(k-j) 

1 
h-k 
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where 1x1 is the FLOOR FVNCTION and aj = 1 for j = 0, 

. . - ? IC - 1. The 2- and 3-Somos sequences consist entirely 
of is. The k-Somos sequences for k = 4, 5, 6, and 7 are 

a n--lan-3 + an-2 
2 

a, = 
an-4 

an-Oh-4 + G--2&-3 
an = 

an-5 

1 
a, = [ an-Uh-5 + an-2Un-4 + a,-s2] 

an-6 

1 
a, = -[an-Uh-6 + GL- 2an-5 + Un-3Un-4], 

an-7 

giving 1, 1, 1, 2, 3, 7, 23, 59, 314, 1529, l  . . (Sloane’s 

AOO6720), 1, 1, 1, 1, 2, 3, 5, 11, 37, 83, 274, 1217, . l  l  

(Sloane’s A006721), 1, 1, 1, 1, 1, 3, 5, 9, 23, 75, 421, 
1103, . l  . (Sloane’s A006722), 1, 1, 1, 1, 1, 1, 3, 5, 9, 
17, 41, 137, 769, . . . (Sloane’s A006723). Gale (1991) 
gives simple proofs of the integer-only property of the 
4-Somos and 5-Somos sequences. Hickerson proved 6- 
Somos generates only integers using computer algebra, 
and empirical evidence suggests 7-Somos is also integer- 
only. 

However, the k-Some s sequences for k > 8 do not give - 
integers. The values of n for which an first becomes 
nonintegral for the k-Somos sequence for k = 8, 9, . . . 
are 17, 19, 20, 22, 24, 27, 28, 30, 33, 34, 36, 39, 41, 42, 
44, 46,48, 51, 52, 55, 56, 58, 60, . +. (Sloane’s A030127). 

see also G&EL'S SEQUENCE, HERONIAN TRIANGLE 
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Sondat’s Theorem 
The PERSPECTIVE AXIS bisects the line joining the two 
ORTH~~ENTER~. 

see ah ORTHOCENTER, PERSPECTIVE AXIS 
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Sonine’s Integral 

J7l-b (4 
2x m-n 1 

- - 

2 m-n 
r( m- s 4 0 

J,(xt)tn+l(l - t2)m--n--l dt, 

where Jm(x) is a BESSEL FUNCTION OF THE FIRST 
KIND and r(x) is the GAMMA FUNCTION. 
see also HANKEL'S INTEGRAL, POISSON INTEGRAL 

Sonine Polynomial 
A polynomial which differs from the associated LA- 
GUERRE POLYNOMIAL by only a normalization constant, 

s;(x) = ;exx-T&(e-xx~+s) = -k&+,(x) 
l  l  

X3 X 
S-l 

- - 

s!(r + s)!O! - (s - l)!(T + s - l)!l! 
2 

+ (T - 2)!(Fi s - 2)!2! - l  l  l  

1 - - 
s!(r + s)!x 

4r+1)/2,42 
Ws+r/2+1/2,r/2(5), 

where wk,m (z) is a WHITTAKER FUNCTION. 

see also LAGUERRE POLYNOMIAL, WHITTAKER FUNC- 
TION 

Sonine-Schafheitlin Formula 

Jp(at) Jv(bt)tsA dt 

apr[(p + u - A + 1)/2] - - 
2Xb++1r[(-/4 + u + x + 1)/2]r(/h + 1) 

x 2F1 ((p + Y - X + 1)/2, (/.J - u - X + 1)/2; /.J+ 1; a2/b2), 

where @ + v - X + l] > 0, R[X] > -1, 0 < a < 
b, J,(X) is a BESSEL FUNCTION OF THE FIRST KIND, 
l?(x) is the GAMMA FUNCTION, and zFl(a,b;c;x) is a 
HYPERGEOMETRIC FUNCTION. 

References 
Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary 
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Sophie Germain Prime 
A PRIME p is said to be a Sophie Germain prime if both 
p and 2p + 1 are PRIME. The first few Sophie Germain 
primes are 2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 
. . . (Sloane’s A005384). 

Around 1825, Sophie Germain proved that the first case 
of FERMAT'S LAST THEOREM is true for such primes, 
i.e., if p is a Sophie Germain prime, there do not exist 
INTEGERS x, y, and z different from 0 and not multiples 
of p such that 

xp+yp=zp. 

Sophie Germain primes p of the form p = k . 2n - 
1 (which makes 2p + 1 a PRIME) are COMPOSITE 
MERSENNE NUMBERS. Since the largest known COM- 
POSITE MERSENNE NUMBER is AI, with p = 39051 x 
26001- 1, p is the largest known Sophie Germain prime. 

see also CUNNINGHAM CHAIN, FERMAT'S LAST THEO- 
REM,MERSENNE NUMBER,TWIN PRIMES 
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Sorites Paradox 
Sorites paradoxes are a class of paradoxical arguments 
also known as little-by-little arguments. The name 
“sorites” derives from the Greek word sores, meaning 
“pile” or “heap” . Sorites paradoxes are exemplified by 
the problem that a single grain of wheat does not com- 
prise a heap, nor do two grains of wheat, three grains 
of wheat, etc However, at some point, the collection 
of grains becomes large enough to be called a heap, but 
there is apparently no definite point where this occurs. 

see also UNEXPECTED HANGING PARADOX 

Sort-Then-Add Sequence 
A sequence produced by sorting the digits of a number 
and adding them to the previous number. The algorithm 
terminates when a sorted number is obtained. For it = 
1, 2, l  ,.) the algorithm terminates on 1, 2, 3, 4, 5, 6, 7, 
8, 9, 11, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 33, . l  . 
(Sloane’s A033862). The first few numbers not known 
to terminate are 316, 452, 697, 1376, 2743, 5090, . . . 
(Sloane’s A033861). The least numbers of sort-then-add 
persistence n = 1, 2, . . , , are 1, 10, 65, 64, 175, 98, 240, 
325, 302, 387, 198, 180, 550, . . . (Sloane’s A033863). 

see also 196-ALGORITHM, RATS SEQUENCE 

fteferences 
Sloane, N. J. A. Sequences A033861, A033862, and A033863 

in “An On-Line Version of the Encyclopedia of Integer Se- 
quences. ” 

Sorting is the rearrangement of numbers (or other or- 
derable objects) in a list into their correct lexographic 
order. Alphabetization is therefore a form of sorting. 
Because of the extreme importance of sorting in almost 
all database applications, a great deal of effort has been 
expended in the creation and analysis of efficient sorting 
algorithms. 

see also HEAPSORT, ORDERING, QUICKSORT 

References 
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Source 

space 

sink 

A vertex of a DIRECTED GRAPH with no entering edges. 

see also DIRECTED GRAPH, NETWORK, SINK (DI- 
RECTED GRAPH) 

Sous-Double 
A MULTIPERFECT NUMBER P3. Six sous-doubles are 
known, and these are believed to comprise all sous- 
doubles. 

see also MULTIPERFECT NUMBER, SOUS-TRIPLE 

Souslin’s Hypothesis 
Every dense linear order complete set without endpoints 
having at most w  disjoint intervals is order isomorphic 
to the CONTINUUM of REAL NUMBERS, where w is the 
set of NATURAL NUMBERS. 

References 
Iyanaga, S. and Kawada, Y. (Eds.). “Souslin’s Hypothe- 

sis.” $353.4 in in Encyclopedic Dictionary of Mathematics. 
Cambridge, MA: MIT Press, p. 137, 1980. 

Souslin Set 
The continuous image of a POLISH SPACE, also called 
an ANALYTIC SET. 

see also ANALYTIC SET, POLISH SPACE 

Sous-Triple 
A MULTIPERFECT NUMBER Pd. 36 sous-triples are 
known, and these are believed to comprise all sous- 
triples. 

see also MULTIPERFECT NUMBER, S~US-DOUBLE 

Space 
The concept of a space is an extremely general and im- 
portant mathematical construct. Members of the space 
obey certain addition properties. Spaces which have 
been investigated and found to be of interest are usually 
named after one or more of their investigators. This 
practice unfortunately leads to names which give very 
little insight into the relevant properties of a given space. 

One of the most general type of mathematical spaces is 
the TOPOLOGICAL SPACE. 

see &O AFFINE' SPACE, BAIRE SPACE, BANACH 
SPACE,BASE SPACE,BERGMAN SPACE,BESOV SPACE, 
BOREL SPACE$ALABI-YAU SPACE,~ELLULAR SPACE, 
CHU SPACE, DODECAHEDRAL SPACE, DRINFELD'S 
SYMMETRIC SPACE, EILENBERG-MAC LANE SPACE, 
EUCLIDEAN SPACE, FIBER SPACE, FINSLER SPACE, 
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FIRST-COUNTABLE SPACE, FR~CHET SPACE, FWNC- 
TION SPACE, G-SPACE, GREEN SPACE, HAUSDORFF 
SPACE, HEISENBERG SPACE, HILBERT SPACE, HY- 

PERBOLIC SPACE, INNER PRODUCT SPACE, &-SPACE, 
LENS SPACE, LINE SPACE, LINEAR SPACE, LIOU- 
VILLE SPACE,LOCALLY CONVEX SPACE, LOCALLY FI- 
NITE SPACE,LUOP SPACE, MAPPING SPACE, MEASURE 
SPACE, METRIC SPACE, MINKOWSKI SPACE, M~NTZ 
SPACE,NON-EUCLIDEAN GEOMETRY,NORMED SPACE, 
PARAC~MPACT SPACE,PLANARSPACE,POLISH SPACE, 
PROBABILITY SPACE, PROJECTIVE SPACE, QUOTIENT 
SPACE, RIEMANN'S MODULI SPACE, RIEMANN SPACE, 
SAMPLE SPACE, STANDARD SPACE, STATE SPACE, 
STONE SPACE, TEICHM~LLER SPACE, TENSOR SPACE, 
TOPOLOGICAL SPACE,TOPOLOGICAL VECTOR SPACE, 

TOTAL SPACE, VECTOR SPACE 

Space of Closed Paths 

see LOOP SPACE 

Space Conic 

see SKEW CONIC 

Space Curve 
A curve which may pass through any region of 3-D space, 
as contrasted to a PLANE CURVE which must lie in a 
single PLANE. Von Staudt (1847) classified space curves 
geometrically by considering the curve 

(b : I + rFk3 (1) 

at to = 0 and assuming that the parametric functions 
q&(t) for i = I, 2, 3 are given by POWER SERIES which 
converge for small t. If the curve is contained in no 
PLANE for small t, then a coordinate transformation 
puts the parametric equations in the normal form 

for integers 
invariants. 

qqt) =tl+kl +... (2) 
@z(t) = t2+k1+k2 + l  . 1  

43(t) = t 

3+k l+kz+k3  

+... 

h, h, k3 > 0, - called the local numerical 

see also CURVE, CYCLIDE, FUNDAMENTAL THEOREM 
OF SPACE CURVES, HELIX, PLANE CURVE, SEIFERT'S 
SPHERICAL SPIRAL, SKEW CONIC, SPACE-FILLING 
FUNCTION, SPHERICAL SPIRAL, SURFACE, VIVIANI'S 
CURVE 
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Space Diagonal 
The LINE SEGMENT connecting opposite VERTICES (i.e., 
two VERTICES which do not share a common face) in a 
PARALLELEPIPED or other similar solid. 

see also DIAGONAL (POLYGON), DIAGONAL (POLYHE- 
DRON), EULER BRICK 

Space Distance 
The maximum distance in 3-D can occur no more than 
2rt - 2 times. Also, there exists a fixed number c such 
that no distance determined by a set of TL points in 3- 
D space occurs more than cn5i3 times. The maximum 
distance can occur no more than [in21 times in 4-D, 
where LX] is the FLOOR FUNCTION. 

References 
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Space Division 
The number of regions into which space can be divided 
by n SPHERES is 

N = kn(n2 - 3n + 81, 

giving 2, 4, 8, 16, 30, 52, 84, l  . l  (Sloane's A046127). 

see also PLANE DIVISION 
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Space-Filling Curve 

see SPACE-FILLING FUNCTION 

Space-Filling Function 
A “CURVE” (i.e., a continuous map of a 1-D INTERVAL) 
into a 2-D area (a PLANE-FILLING FUNCTION) or a 3-D 
volume. 

see also HILBERT CURVE, PEANO CURVE, PEANO- 
GOSPER CURVE, PLANE-FILLING CURVE, SIERPI~~SKI 
CURVE, SPACE-FILLING POLYHEDRON 
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Space-Filling Polyhedron 
A space-filling polyhedron is a POLYHEDRON which can 
be used to generate a TESSELLATION of space. There 
exists one 16-sided space-filling POLYHEDRON, but it 
is unknown if this is the unique f6-sided space-filler. 
The CUBE, RHOMBIC DODECAHEDRON, and TRUN- 

CATED OCTAHEDRON are space-fillers, as are the ELON- 
GATED DODECAHEDRON and hexagonal PRISM. These 
five solids are all “primary” PARALLELOHEDRA (Coxeter 
1973). 

P. Schmitt discovered a nonconvex aperiodic polyhedral 
space-filler around 1990, and a convex POLYHEDRON 
known as the SCHMITT-CONWAY BIPRISM which fills 
space only aperiodically was found by J. H. Conway in 
1993 (Eppstein). 

see also CUBE, ELONGATED DODECAHEDRON, 
KELLER'S CONJECTURE, PARALLELOHEDRON, PRISM, 
RHOMBIC DODECAHEDRON, SCHMITT-CONWAY BI- 
PRISM, TESSELLATION, TILING, TRUNCATED OCTAHE- 
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Span (Geometry) 
The largest possible distance between two points for a 
finite set of points. 

see also JUNG'S THEOREM 

Span (Link) 
The span of an unoriented LINK diagram (also called 
the SPREAD) is the difference between the highest and 
lowest degrees of its BRACKET POLYNOMIAL. The span 
is a topological invariant of a knot. If a KNOT K has a 
reduced alternating projection of n crossings, then the 
span of K is 4n. 

see also LINK 

Span (Polynomial) 
The difference between the highest and lowest degrees 
ofa POLYNOMIAL. 

Span (Set) 
For a SET S, the span is defined by max S-min S, where 
max is the MAXIMUM and min is the MINIMUM. 

References 
Guy, R. K. Unsolved Problems in Number 

New York: Springer-Verlag, p. 207, 1994. 
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Span (Vectors) 
The span of SUBSPACE generated by VECTORS VI and 
v2 E Vis 

Span(vl, vz) = (~1 + sv2 : T, s E Iw}. 

Sparse Matrix 
A MATRIX which has only a small number of NONZERO 
elements. 

Space Groups 
The space groups in 2-D are called WALLPAPER 
GROUPS. In 3-D, the space groups are the symmetry 
GROUPS possible in a crystal lattice with the translation 
symmetry element. There are 230 space groups in R3, 
although 11 are MIRROR IMAGES of each other. They 
are listed by HERMANN-MAUGUIN SYMBOL in Cotton 
(1990). 
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ling, W. T. ‘LSparse Linear Systems.” $2.7 in Numerical 
Recipes in FORTRAN: The Art of Scientific Computing, 
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Special Orthogonal Group 
The special orthogonal group SO,(q) is the SUBGROUP 

of the elements of GENERAL ORTHOGONAL GROUP 
GO,(q) with DETERMINANT 1. 

Spearman Rank Correlation 
The Spearman rank correlation is defined by 

see &~GENERAL ORTHOGONAL GROUP 
EAR GROUP,~PECIAL UNITARY GROUP 

3 L LIN- 

The VARIANCE, KURTOSIS, and higher order MOMENTS References 
Conway, J. H.; Curtis, R. T,; Norton, S. P.; Parker, 

R. A.; and Wilson, R. A. “The Groups G&(q), SO,(q), 
PGGo(q)) and PSO,(q), and O,(q)? 52.4 in Atlas of 

Finite Groups: Maximal Subgroups and Ordinary Char- 
acters for Simple Groups. Oxford, England: Clarendon 
Press, pp. xi-xii, 1985. 

g2 c - 1 

N-l 
(2) 

114 6 
72 = -s - 3 - .*. (3) 

73 =y5 =...=o. (4) Special Point 
A POINT which does not lie on at least one ORDINARY 

Student was the first to obtain the VARIANCE. 

Spearman rank correlation is an R-ESTIMATE. 

The 

see also ORDINARY POINT 
References 
Press, W. H.; 

ling, W. T. 
Flannery, 8. P.; Teukolsky, S. A.; and Vetter- 
Numerical Recipes in FORTRAN: The Art of 
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Guy, R. K. “UnsoIved Problems Come of Age.” Amer. Math. 

Monthly 96, 903-909, 1989. Scientific Computing, 2nd ed. Cambridge, England: Cam- 
bridge University Press, pp, 634-637, 1992. 

Special Series Theorem 
If the difference between the order and the dimension of 
a series is less than the GENUS (CURVE), then the series 
is special. 

Special Curve 

see PLANE CURVE, SPACE CURVE 

Special Function References 
Coolidge, J. 1;. A Treatise on Algebraic Plane Curves. New 

see FUNCTION York: Dover, p. 253, 1959. 

Special Linear Group 
The special linear group S&(q) is the MATRIX GROUP 

corresponding to the set of n x n COMPLEX MATRI- 
CES having DETERMINANT +l. It is a SUBGROUP of 
the GENERAL LINEAR GROUP G&(q) and is also a LIE 

GROUP. 

Special Unitary Group 
The special unitary group W,(q) is the set of 72 x n 
UNITARY MATRICES with DETERMINANT +l (having 
n2 - 1 independent parameters). W(2) is HOMEOMOR- 
PHIC with the ORTHOGONAL GROUP O:(2). It is also 
called the UNITARY UNIMODULAR GROUP and is a LIE 

GROUP. The special unitary group can be represented 
by the MATRIX 

see also GENERAL LINEAR GROUP, SPECIAL ORTHOG- 
ONAL GROUP,~PECIAL UNITARY GROUP 
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Groups. Oxford, &gland: Clarendon Press, p. x, 1985. 

U(a, b) = 
b [ 1 -;* a* ’ (1) 

where a*a + b*b = 1 and a, b are the CAYLEY-KLEIN 
PARAMETERS. The special unitary group may also be 
represented by the MATRIX 

Special Matrix 
A matrix whose entries satisfy 

1 
0 ifj>i+l 

Uij = -1 ifj=i+l 
Oorl ifj<i. - 

or the matrices 

(3) There are 2”-l special MINIMAL MATRICES ofsize nXn. 

References 
Knuth, D. E. “Problem 10470.” Amer. Math. Monthly 102, 

655, 1995e 
(4) 

(5) 



1680 Species Spectral Rigidity 

The order 2j + 1 representation is 

UP s%, P/Y> I 

x 
( 1) - 

- “-“-“J(j + p)!(j - p)!(j + q)!(j - q)! 
- 

(j - p - m)!(j + q - m)!(m + p - q)!m! 
m 

x ezq” C0sW+9-p--2m 1 
( P> 

. p+2m-q 1 
5 sin ( P> 5 e iPY . (6) 

The summation is terminated by putting l/(-N)! = 0. 
The CHARACTER is given by 

x(j)(a) = 
{ 

1+2cosa+...+2cos(ja) 
2[cos( ia) + cos( ;a) + . . . + cos(ja)] 

for j = 0, 1,2,. . . 

forj= f,&.... 
(7) 

see also ORTHOGONAL GROUP, SPECIAL LINEAR 

GROUP,~PECIAL ORTHOGONAL GROUP 
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Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, 
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Species 
A species of structures is a rule F which 

1. Produces, for each finite set U, a finite set F[U], 

2. Produces, for each bijection 0 : U + V, a function 

F[a] : F[U] 4 F[V]. 

The functions F[u] should further satisfy the following 
functorial properties: 

1. For all bijections 0 :U+VandxV+W, 

F[T 0 a] = F[r] 0 F[u], 

2. For the IDENTITY MAP Idu : U + U, References 

F[Id] = Id . 
V WJI 

An element u E F[U] is called an F-structure on U (or 
a structure of species F on U). The function F[c] is 
called the transport of F-structures along 0. 

References 
Bergeron, F.; Labelle, G.; and Leroux, P. Combinatorial 

Species and Tree-Like Structures. Cambridge, England: 
Cambridge University Press, p+ 5, 1998. 

Specificity 
The probability that a STATISTICAL TEST will be nega- 
tive for a negative statistic. 

see also SENSITIVITY, STATISTICAL TEST, TYPE I ER- 
ROR,TYPE II ERROR 

Spectral Norm 
The NATURAL NORM induced by the &-NORM. Let 
At be the ADJOINT of the SQUARE MATRIX A, so that 
A+ = aTi, then 

llA112 = (maximum eigenvalue of AtA)li2 

IlAx 12 = max - 
Iblt2~o IIxIl2 ’ 

see also &-NORM, MATRIX NORM 
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Spectral Power Density 

2 
P&) E lim - 

T+oo T 
[y(t) - fj]eB2rivt dt 

so 

r” 1 p/2 

J Py(u) dv = d$n.- $ - 4” a 
0 

= ((y - a)“) = uy2. 

see also POWER SPECTRUM 

Spectral Radius 
Let A bean n x n MATRIX with COMPLEX or REALIST- 
ments with EIGENVALUES X1, . . . , X, l  Then the spectral 
radius p(A) of A is 

P(A) = max /XJ. 
l<i<Tb 

Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integruls, Se- 
ries, and Products, 5th ed. San Diego, CA: Academic 
Press, pp. 1115-1116, 1979. 

Spectral Rigidity 
The mean square deviation of the best local fit straight 
line to a staircase cumulative spectral density over a 
normalized energy scale. 

References 
Ott, E. Chaos in Dynamical Systems. New York: Cambridge 
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Spectral Theorem 
Let H be a WLBERT SPACE, B(W) the set of BOUNDED 
linear operators from H to itself, and u(T) the SPEC- 
TRUM of T. Then if T E B(H) and T is normal, there 
exists a unique resolution of the identity E on the Bore1 
subsets of a(T) which satisfies 

T= int X dE(X). 
WI 

Furthermore, every projection E(w) COMMUTES with 
every S E B(H) which COMMUTES with T. 

References 
Rudin, W. Theorem 12.23 in Functional Analysis, 2nd ed. 

New York: McGraw-Hill, 1991. 

Spectrum (Operator) 
Let T be an OPERATOR on a HILBERT SPACE. The 
spectrum o(T) of T is the set of X such that (T - AI) 
is not invertible on all of the HILBERT SPACE, where 
the As are COMPLEX NUMBERS and I is the IDENTITY 
OPERATOR. The definition can also be stated in terms 
of the resolvent of an operator 

p(T) = {X : (T - x1) is invertible}, 

and then the spectrum is defined to be the complement 
of p(T) in the COMPLEX PLANE. The reason for doing 
this is that it is easy to demonstrate that p(T) is an 
OPEN SET, which shows that the spectrum is closed. 

see also HILBERT SPACE 

Spectrum Sequence 
A spectrum sequence is a SEQUENCE formed bY succes- 
sive multiples of a REAL NUMBER a rounded down to 
the nearest INTEGER sn = LnaJ. If a is IRRATIONAL, 
the spectrum is called a BEATTY SEQUENCE. 

see also BEATTY SEQUENCE, LAGRANGE SPECTRUM, 
MARKOV SPECTRUM 

Speed 
The SCALAR Iv/ equal to the magnitude of the VELOC- 
ITY v. 

see also SPENCE'S INTEGRAL 

References 
Berestetskii, V. B.; Lifschitz, E. M.; and Ditaevskii, L. P. 

Quantum Electrodynamics, 2nd ed. Oxford, England: 
Pergamon Press, p. 596, 1982. 

Spence’s Integral 

s O 
F(z) = Li2(1 - 2) = 

ln(1 - t) dt t 1 
l-x 

where Li&c)is the DILOGARITHM. 

see also SPENCE'S FUNCTION 

Spencer’s 15-Point Moving Average 
A MOVING AVERAGE using 15 points having weights -3, 
-6, -5, 3, 21, 46, 67, 74, 67, 46, 21, 3, -5, -6, and -3. 
It is sometimes used by actuaries. 

see also MOVING AVERAGE 

References 
Kenney, J. F. and Keeping, E. S. Mathematics of Statistics, 

Pt. 1, 3rd ed. Princeton, NJ: Van Nostrand, p* 223, 1962. 

Sperner’s Theorem 
The MAXIMUM CARDINALITY ofacollectionof SUBSETS 
of a t-element SET T, none of which contains another, 
is the BINOMIAL COEFFICIENT (&,), where 1x1 is the 
FLOORFUNCTION. 

see also CARDINALITY 

Sphenocorona 

see JOHNSON SOLID 

Sphenoid 
see DI~PHEN~ID 

see also ANGULAR VELOCITY, VELOCITY 
Sphenomegacorona 

Spence’s Function 

F(z) G - 
s 

x ln(l + t) dt 

0 
t - 

see JOHNSON SOLID 

Sphere 
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A sphere is defined as the set of all points in R3 which 
are a distance T (the 4‘R~~~~~77) from a given point (the 
“CENTER”‘)~ Twice the RADIUS is called the DIAMETER, 
and pairs of points on opposite sides of a DIAMETER are 
called ANTIPODES. The term “sphere” technically refers 
to the outer surface of a “BUBBLE,” which is denoted !?. 
However, in common usage, the word sphere is also used 
to mean the UNION of a sphere and its INTERIOR (a 
“solid sphere”), where the INTERIOR is called a BALL. 
The SURFACE AREA of the sphere and VOLUME of the 
BALL of RADIUS T are given by 

RADIUS T, then a solid BALL is obtained. Converting 
to “standard” parametric variables a = p, u = 0, and 
u = 4 gives the first FUNDAMENTAL FURMS 

E = a sir? v (10) 

F=Q (11) 

G = a, (12) 

second FUNDAMENTAL FORMS 

e = a2 sin2 v 

f=O 

g=u2, 

(13) 

(14) 

(15) 

s = 4rrrr2 (1) 

v = $TT3 (2) 

(Beyer 1987, p. 130). In On the Sphere and Cylinder 
(ca. 225 BC), A rc imedes h became the first to derive 
these equations (although he expressed 7r in terms of 
the sphere’s circular cross-section). The fact that 

AREA ELEMENT 
dA = asinv, (16) 

GAUSSIAN CURVATURE 

1 
K=;E;;, (17) 

V 4 
sphere 3 

4 

= - 3 - - - - - V* 
circumscribed cylinder 

- vsphere 2 - 4 $ 2 (3) 

and MEAN CURVATURE 
was also known to Archimedes. 

H=1 
a’ (18) Any cross-section through a sphere is a CIRCLE (or, in 

the degenerate case where the slicing PLANE is tangent 
to the sphere, a point). The size of the CIRCLE is maxi- 
mized when the PLANE defining the cross-section passes 
through a DIAMETER. 

may also be represented parametrically by let- 

4, so 
A sphere 
ting u E T COS 

x= d r2-u2 case (19) The 
SIAN 

of RADIUS T is givenin CARTE- equation of a sphere 
COORDINATES by y = dr2 - u2 sin0 (20) 

z = u, (21) x2+y2+z2 =r2, (4) 

where 0 runs from 0 to 27~ and u runs from --T to T. which is a special case of the ELLIPSOID 

Given two points on a sphere, the shortest path on 
the surface of the sphere which connects them (the 
SPHERE GEODESIC) is an ARC of a CIRCLE known as a 
GREAT CIRCLE. The equation of the sphere with points 
(x1, yl, zl) and (x2,32, ~2) lying on a DIAMETER is given 

bY 

(5) 

and SPHEROID 

x2 + y2 + z2 

a2 c2 
= 1. (6) 

A sphere may also be 
NATES by 

specified in SPHERICAL COORDI- 

Four points are sufficient to uniquely define a sphere. 
Given the points (xi,yi,zi) with i = 1, 2, 3, and 4, the 
sphere containing them is given by the beautiful DE- 
TERMINANT equation 

x = pcosBsin4 (7) 
y = p sin 0 sin 4 (8) 
z = pcosq5, (9) 

x2 +y2 +x2 It: y z 1 
Xl2 + Y12 + a2 Xl y1 a 1 

x22 + y22 + 222 x2 y2 z2 1 = 0 (23) 

x32 + Y32 + z32 x3 y3 z3 1 

Xd2 +y42 +x42 x4 y4 z4 1 

where 8 is an azimuthal coordinate running from 0 to 27r 
(LONGITUDE), 4 is a polar coordinate running from 0 to 
r (COLATITUDE), and p is the RADIUS. Note that there 
are several other notations sometimes used in which the 
symbols for 8 and 4 are interchanged or where T is used 
instead of p. If p is allowed to run from 0 to a given (Beyer 1987, p. 210). 



Sphere Sphere 1683 

The generalization of a sphere in 72 dimensions is called a 
HYPERSPHERE. Ann-D HYPERSPHERE canbespecified 
by the equation 

Xl2 + Q2 + . . . + xn2 = T2. (24) 

The distribution of ANGLES for random rotation of a 
sphere is 

P(0) = 2 sin’(iQ), 
7T (25) 

giving a MEAN of n/2 + 217~ 

To pick a random point on the surface of a sphere, let u 
and v be random variates on [0, 11. Then 

0 = 27ru (26) 

4 
-1 

= cos (2 v - 1). (27) 

This works since the SOLID ANGLE is 

dSt = sin 4 de d+ = d0 d(cos 4). (28) 

Another easy way to pick a random point on a SPHERE 
is to generate three gaussian random variables 2, y, and 
z. Then the distribution of the vectors 

1 

d x2 + y2 + x2 

X 

[I Y z (29) 

is uniform over the surface s2. Another method is to 
pick z from a UNIFORM DISTRIBUTION over [-l,l] and 
0 from a UNIFORM DISTRIBUTION over [0,2~). Then 
the points 

(30) 

are uniformly distributed over S2. 

Pick four points on a sphere. What is the probability 
that the TETRAHEDRON having these points as VER- 
TICES contains the CENTER of the sphere? In the 1-D 
case, the probability that a second point is on the oppo- 
site side of l/2 is l/2. In the 2-D case, pick two points. 
In order for the third to form a TRIANGLE containing 
the CENTER, it must lie in the quadrant bisected by a 
LINE SEGMENT passing through the center of the CIR- 
CLE and the bisector of the two points. This happens 
for one QUADRANT, so the probability is l/4. Similarly, 
for a sphere the probability is one OCTANT, or l/8. 

Pick two points at random on a unit sphere. The first 
one can be assigned the coordinate (0, 0, 1) without 
loss of generality. The second point can be given the 
coordinates (sin 4, 0 cos 4) with 8 E 0 since all points 
with the same 4 are rotationally identical. The distance 
between the two points is then 

T- COS~~)~ = &G&i = 2 sin( +$). 

(31) 

Because the surface AREA element is 

do = sin@dBd4, (32) 

the probability that two points are a distance T apart is 

s 
x -+ - S[r - 2 sin( #] sin 4 d& (33) 

0 

The DELTA FUNCTION contributes when 

$T = sin(# (34) 

-1 1 q5 = 2sin (zr), (35) 

so 

&(r) = 3 sin[2sin-l(+)] = sin[sin-l(+r)] cos[sin-l(+)] 

= $r~qjL $J4-rz. (36) 

However, we need 

Pr(r) dr = P&)2 dr, (37) 

and 

idr= $cos(i4)d4= i 1 -sin2(i#)d4 J 
- $ - 

J 
l- (+r)2d$= $J4-rZd$ (38) 

so 
d4 2 
dr=m’ (39) 

and 

C(r) = +&iT+ = ;r 
- T2 

(40) 

for T f [0,2]. Somewhat surprisingly, the largest dis- 
tances are the most common, contrary to most people’s 
intuition. A plot of 15 random lines is shown below. 



1684 Sphere- Cylinder 

The MOMENTS about zero are 

s 

2 

p:, = (T”) = rn dr 
0 

giving the first few as 

Moments about the MEAN are 

Intersection Sphere Ever&n 

2 n+l 
- -- 

2+n’ (41) 

(42) 
(43) 
(44) 
(45) 

(46) 
(47) 
(48) 
(49) 

SO the SKEWNESS and KURTOSIS are 

see also BALL, BING'S THEOREM, BUBBLE, CIR- 
CLE, DANDELXN SPHERES, DIAMETER, ELLIPSOID, 

EXOTIC SPHERE, FEJES T~TH'S PROBLEM, HY- 
PERSPHERE, LIEBMANN'S THEOREM, LIOUVILLE'S 

SPHERE-PRESERVING THEOREM, MIKUSI~~SKI'S PROB- 
LEM, NOISE SPHERE, OBLATE SPHEROID, OSCULAT- 
ING SPHERE, PARALLELIZABLE, PROLATE SPHEROID, 
RADIUS, SPACE DIVISION, SPHERE PACKING, TENNIS 
BALL THEOREM 
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Sphere-Cylinder Intersection 

see CYLINDER-SPHERE INTERSECTION 

Sphere Embedding 
A 4-sphere has POSITIVE CURVATURE, with 

R2 = x2 + y2 + z2 + w2 (1) 

Since 

2x dx dy 
dw + 2yz + 22 

dz 
z + 2w = 0. (2) 

r = xk + yf + xii, (3) 

dw = - 
xdx+ydy+zdz 1: . dr 

W = -dm’ C4) 

To stay on the surface of the sphere, 

ds2 = dx2 + dy2 + dz2 + dw2 

r2 dr2 
= dx2 + dy2 + dz2 + R2 

- T2 

dr2 
= dr2 + r2 dfJ2 + R2 

7-1 

dr2 - -- 
1-s 

+ r-2 di12. (5) 

With the addition of the so-called expansion parameter, 
this is the Robertson-Walker line element. 

Sphere Eversion 
Smale (1958) proved that it is mathematically possible 
to turn a SPHERE inside-out without introducing a sharp 
crease at any point. This means there is a regular homo- 
topy from the standard embedding of the Z-SPHERE in 
EUCLIDEAN 3-space to the mirror-reflection embedding 
such that at every stage in the homotopy, the sphere is 
being IMMERSED in EUCLIDEAN SPACE. This result is 
so counterintuitive and the proof so technical that the 
result remained controversial for a number of years. 

In 1961, Arnold Shapiro devised an explicit eversion but 
did not publicize it. Phillips (1966) heard of the result 
and, in trying to reproduce it, actually devised an inde- 
pendent method of his own. Yet another eversion was 
devised by Morin, which became the basis for the movie 
by Max (1977). Morin’s eversion also produced explicit 
algebraic equations describing the process. The origi- 
nal method of Shapiro was subsequently published by 
Francis and Morin (1979). 

see also EVERSION, SPHERE 
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Sphere Geodesic 

see GREAT CIRCLE 

Sphere Packing 
Let q denote the PACKING DENSITY, which is the frac- 
tion of a VOLUME filled by identical packed SPHERES. 
In 2-D (CIRCLE PACKING), there are two periodic pack- 
ings for identical CIRCLES: square lattice and hexagonal 
lattice. Fejes T&h (1940) proved that the hexagonal lat- 
tice is indeed the densest of all possible plane packings 
(Conway and Sloane 1993, pp. 8-9). 

In 3-D, there are three periodic packings for identical 
spheres: cubic lattice, face-centered cubic lattice, and 
hexagonal lattice. It was hypothesized by Kepler in 1611 
that close packing (cubic or hexagonal) is the densest 
possible (has the greatest q), and this assertion is known 
as the KEPLER CONJECTURE. The problem of finding 
the densest packing of spheres (not necessarily periodic) 
is therefore known as the KEPLER PROBLEM. The KE- 
PLER CONJECTURE is intuitively obvious, but the proof 
still remains elusive. However, Gauss (1831) did prove 
that the face-centered cubic is the densest lattice pack- 
ing in 3-D (Conway and Sloane 1993, p. 9). This result 
has since been extended to HY~ERSPHERE PACKING. 

In 3-D, face-centered cubic close packing and hexagonal 
close packing (which is distinct from hexagonal lattice), 
both give 

7r 

v=3Jz 
= 74.048%. (1) 

For packings in 3-D, C. A. Rogers (1958) showed that 

q < fi(cos-1 5 - +) =z: 77.96355700% (2) 

(Le Lionnais 1983). This was subsequently improved to 
77.844% (Lindsey 1986), then 77.836% (Muder 1988). 
However, Rogers (1958) remarks that “many mathe- 
maticians believe, and all physicists know” that the ac- 
tual answer is 74.05% (C onway and Sloane 1993, p. 3). 

“Random” close packing in 3-D gives only 7 ==: 64% 
(Jaeger and Nagel 1992). 

The PACKING DENSITIES for several packing types are 
summarized in the following table. 

Packing q (exact) q (approx,) 

square lattice (2-D) Ti 0.7854 

hexagonal lattice (2-D) & 0.9069 

cubic lattice z 0.5236 

hexagonal lattice 3k 0.6046 

face-centered cubic lattice $$ 0.7405 

random 0.6400 
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n 

For cubic close packing, pack six SPHERES together in 
the shape ofan EQUILATERAL TRIANGLE and place an- 
other SPHERE on top to create a TRIANGULAR PYRA- 
MID. Now create another such grouping of seven 
SPHERES and place the two PYRAMIDS together facing 
in opposite directions. A CUBE emerges. Consider a 
face of the CUBE, illustrated below. 

The “unit cell” cube contains eight l/8-spheres (one at 
each VERTEX) and six HEMISPHERES. The total VOL- 
UME of SPHERES in the unit cell is 

V spheres in unit cell =(8-a+6mi)$r3 

(3) 

The diagonal of the face is 4r, so each side is 2& T. The 
VOLUME of the unit cell is therefore 

V - (z&r)3 =16&". unit cell - (4 

The PACKING DENSITY is therefore 

+TTz 7r 
r]CCP = 

--- 

16&r3 - 3fi 
(5) 

(Conway and Sloane 1993, p* 2). 

Hexagonal close packing must give the same values, since 
sliding one sheet of SPHERES cannot affect the volume 
they occupy. To verify this, construct a 3-D diagram 
containing a hexagonal unit cell with three layers. Both 
the top and the bottom contain six l/6-SPHERES and 
one HEMISPHERE. The total number of spheres in these 
two rows is therefore 

2(6+ + 1;) = 3. (6) 

The VOLUME of SPHERES in the middle row cannot be 
simply computed using geometry. However, symmetry 
requires that the piece of the SPHERE which is cut off 
is exactly balanced by an extra piece on the other side. 
There are therefore three SPHERES in the middle layer, 
for a total of six, and a total VOLUME 

V ~6. 4r 3 
spheres in unit cell 3~ (3+3)= 8nr3. (7) 
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Thebaseofthe HEXAGON ismade up of6 EQUILATERAL 
TRIANGLES with side lengths 2r. The unit cell base 
AREA is therefore 

A unit cell = 6[+(2r)(&)] = 6J3r2. (8) 

The height is the same as that of two TETRAHEDRA 
length 2r on a side, so 

h unit cell (9) 

giving 

8nr3 
VHCP = 

(6fi~~) (4r&) = 3j;i 
(10) 

(Conway and Sloane 1993, pp. 7 and 9). 

If we had actually wanted to compute the VOLUME of 
SPHERE inside and outside the HEXAGONAL PRISM, we 
could use the SPHERICAL CAP equation to obtain 

vi = $h2(3T-h)= ;m3; 

1 - - -m3 
9 

= &m3(9-J3) (11) 

v3 
3 4 

=7v y- 
[ 

$(9 - A)] = +r3(36 - 9 + A) 

= &m3(27 + A). (12) 

The rigid packing with lowest density known has q z 
0.0555 (Gardner 1966). To be RIGID, each SPHERE must 
touch at least four others, and the four contact points 
cannot be in a single HEMISPHERE or all on one equator. 

If spheres packed in a cubic lattice, face-centered cu- 
bic lattice, and hexagonal lattice are allowed to expand, 
they form cubes, hexagonal prisms, and rhombic dodec- 
ahedra. Compressing a random packing gives polyhedra 
with an average of 13.3 faces (Coxeter 1958, 1961). 

For sphere packing inside a CUBE, see Goldberg (1971) 
and Schaer (1966). 

see also CANNONBALL PROBLEM, CIRCLE PACK- 

ING, DODECAHEDRAL CONJECTURE, HEMISPHERE, 
HERMITE CONSTANTS, HYPERSPHERE, HYPERSPHERE 
PACKING, KEPLER CONJECTURE, KEPLER PROBLEM, 
KISSING NUMBER, LOCAL DENSITY, LOCAL DENSITY 
CONJECTURE,~PHERE 
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Sphere Point Picking 

see FEJES T~TH'S PROBLEM 

Sphere-Sphere Intersection 

R r 
Iz c3 (0, a 01 fd 0, 0) 

Let two spheres of RADII R and T be located along the X- 
AXIS centered at (O,O, 0) and (d, O,O), respectively. Not 
surprisingly, the analysis is very similar to the case of 
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the CIRCLE-CIRCLE INTERSECTION. The equations of 
the two SPHERES are 

x2 + y2 + x2 = R2 

(x - d)2 + y2 + z2 = r2. 

(1) 

(2) 

Combining (1) and (2) gives 

(x - d)2 + (R2 - x2) = r2. (3) 

Multiplying through and rearranging give 

x2 - 2dx + d2 -x2 =r2-R2. (4) 

Solving for x gives 

d2 - r2+R2 
X= 

2d * (5) 

The intersection of the SPHERES is therefore a curve 
lying in a PLANE parallel to the yz-plane at a single 
x-coordinate. Plugging this back into (1) gives 

d2 r2 + R2 

> 

2 

y2 + z2 = R2 - x2 = R2 - - 2d 

4d2R2 - (d2 - y2 + R2)2 - - 
4d2 1 (6) 

which is a CIRCLE with RADIUS 

1 
a=- 

2dJ 
@@- 2- Cd r2 + R2)2 

= A[(-d+ T - R)(-d - r + R) 

x [(-d+r+R)(d+r+R)]1’2. (7) 

The VOLUME of the 3-D LENS common to the two 
spheres can be found by adding the two SPHERICAL 
CAPS. The distances from the SPHERES' centers to the 
bases of the caps are 

dl = x 

d2 =d-x, 

(8) 

(9) 

so the heights of the caps are 

hl = R - dl = 
(T - R + d)(r + R - d) 

2d (10) 

h2 = T - d2 = 
(R-r+d)(R+r-d) 

2d 
. (11) 

The VOLUME of a SPHERICAL CAP of height h’ for a 
SPHERE of RADIUS R’ is 

V(R’,h’) = $tht2(3R’ - h’). (12) 

Letting RI = R and R2 = T and summing the two caps 
gives 

V = V(&,h)+ V(R2,hz) 

T(R+ r - d)2(d2 + 2dr - 3r2 + 2dR + 6rR - 3R2) - - 
12d 

l  

(13) 

This expression gives V = 0 for d = T + R as it must. 
In the special case T = R, the VOLUME simplifies to 

V = +(4R + d)(2R - d)2. (14) 

see &SO APPLE, CIRCLE-CIRCLE INTERSECTION, Dou- 
BLE BUBBLE,LENS,SPHERE 

Sphere with Tunnel 
Find the tunnel between two points A and B on a grav- 
itating SPHERE which gives the shortest transit time 
under the force of gravity. Assume the SPHERE to be 
nonrotating, of RADIUS a, and with uniform density p. 
Then the standard form EULER-LAGRANGE DIFFEREN- 
TIAL EQUATION in polar coordinates is 

Qdr3 - ra2) + q2(2a2 - r2) + a2r2 = 0, (1) 

along with the boundary conditions r (4 = 0) = ~0, 
r&b = 0) = 0, r(4 = 4~) = a, and r(4 = 4~) = a. 
Integrating once gives 

a2r2 r2 - To2 
rti2 = -- 

ro2 a2 - r2 ’ (2) 

But this is the equation of a HYPOCYCLOID generated by 
a CIRCLE of RADIUS i (a - rg) rolling inside the CIRCLE 
of RADIUS a, so the tunnel is shaped like an arc of a 
HYPOCYCLOID. The transit time from point A to point 
B is 

* * 

where 
GM 

g = -& = $7rpGa (4) 
is the surface gravity with G the universal gravitational 
constant. 

Spherical Bessel Differential Equation 
Take the HELMHOLTZ DIFFERENTIAL EQUATION 

V2F+k2F=0 (1) 

in SPHERICAL COORDINATES. This is just LAPLACE'S 
EQUATION in SPHERICAL COORDINATES with an addi- 
tional term, 

d2R 2 dR 1 d2eaR -pm+--+-- 
r dr ~~ sin2 4 de2 

+ ??i@?@R+ 
r2 sin 4 d4 

$$ + k2R@0 = 0. (2) 
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Multiply through by r2/RW, 

r2 d2R 2r dR 1 d20 -- 
R dr2 

+Rd+k2T2+-- 
r 0 sin2 4 de2 

cos+ d@ 1 d2+ 

+ + sin 4 d# 
-- --=o. (3) 

+ XP dqb2 

This equation is separable in R. Call the separation 
constant n(n + l), 

r2 d2R 2r dR -- 
R dr2 

+ RX + k2r2 = n(n + 1). (4) 

Now multiply through by R, 

2d2R dR 
T dr2 + 2rdr + [k2r2 - n(n + l)]R = 0. (5) 

This is the SPHERICAL BESSEL DIFFERENTIAL EQUA- 

TION. It can be transformed by letting x E kr, then 

dW 
’ dr 

= krdR@) = krdR(‘) w9 
k dr d(lcr)=xda:’ (6) 

Similarly, 

2 d2R(r) 2 d2R(i) 
T- - 

dr2 =x dx2 ’ (7) 

so the equation becomes 

2d2R dR 
x p+2xz+[x2-n(n+l)]R=O. (8 > 

Now look for a solution of the form R(T) = Z(Z)X~“~ 

denoting a derivative with respect to x by a prime, 

R’ = z’x-1/2 - $x-3/2 (9) 
R” = px4/2 _ ;yx-w _ $2’2-3/2 

_ p)zx-5/2 
= px-1/2 _ fx-W + $yd2, 

x2(f’x-1/2 _ fx-W + px-W) 

+2x(Z’x-1/2 - $ZX-~/~) + [x2 - n(n + l)]Z~-l/~ = 0 

(11) 

x2(f' - z'x-l + ;zx-2) + 2x(& - $zx-l) 

+[x2 - n(n + l)]Z = 0 (12) 

x2~“+(-x+2~)2’+[$-l+x2-n(n+~)]~ = 0 (13) 

But the solutions to this equation are BESSEL FUNC- 
TIONS of half integral order, so the normalized solutions 
to the original equation are 

(15) 

which are known as SPHERICAL BESSEL FUNCTIONS. 
The two types of solutions are denoted jn(x) (SPHERI- 
CAL BESSEL FUNCTION OF THE FIRST KIND) or n,(x) 

(SPHERICAL BESSEL FUNCTION OF THE SECOND KIND), 
and the general solution is written 

R(r) = AI& + Binn.(kr), (16) 

(17) 

see also SPHERICAL BESSEL FUNCTION, SPHERICAL 
BESSEL FUNCTION OF THE FIRST KIND, SPHERICAL 
BESSEL FUNCTION OF THE SECOND KIND 
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Spherical Bessel Function 
A solution to the SPHERICAL BESSEL DIFFERENTIAL 
EQUATION. The two types of solutions are denoted in(x) 
(SPHERICAL BESSEL FUNCTION OFTHEFIRST KIND)• ~ 
n,(x) (SPHERICAL BESSEL FUNCTION OF THE SECOND 
KIND). 

see also SPHERICAL BESSEL FUNCTION OF THE FIRST 
KIND, SPHERICAL BESSEL FUNCTION OF THE SECOND 
KIND 
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Arfken, G. “Spherical Bessel F’unctions.” 511.7 in Mathe- 
matical Methods for Physicists, 3rd ed. Orlando, FL: Aca- 
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Functions, Spherical Bessel Functions.” 56.7 in Numerical 
Recipes in FORTRAN: The Art of Scientific Computing, 
2nd ed. Cambridge, England: Cambridge University Press, 
pp. 234-245, 1992. 

x22” + x2’ + [x2 - (n” + n + $)]Z = 0 

x22” + x2’ + [x2 - (n + +)2]Z = 0. (14) 
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Spherical Bessel Function of the First Kind 

= yy O” (-l)“(s - n)! 2s 
IE 
s=o 

s!(Zs + 2n + l)!x 

n 
- - 

(L 1) !! [ 
l- 

$2" 

1!(2n + 3) 

( > fX” 
2 

+2!(2n + 3)(2n + 5) 
3-0. 

- - - ( 1) 

The first few functions are 

jo(x) = sin 
X 

cos x 
j&) = ?Fy - - 

j2(4 = 
($-$ 

3 
sinx - - cosx. 

X2 

see also POISSON INTEGRAL REPRESENTATION, RAY- 

LEIGH'S FORMULAS 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). “Spherical Bes- 

sel Functions.” §lO.l in Handbook of Mathematical Func- 
Cons with Formulas, Graphs, and Mathematical Tables, 
9th printing. New York: Dover, pp. 437-442, 1972. 
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Spherical Bessel Function of the Second 

Kind 

n,(x) = 
J & yn+l/2 Cx> 

( 1) 
nfl O” - 

- -- 
pp+l IE 

(-l>“b - nYx2s 

n=O 
s!(2s - 2n)! 

-- (2n - l)!! +X2 
- - 

xn+1 
[ 

1 

l!(l - 2n) 

( > $X2 
2 

+2!(1- 2n)(3 - 2n) + “’ 1 
= (-l)n+ld& J-n-l/2(x). 

The first few functions are 

no(x) = -EfE 
X 

sin x 
nl(x) = -y - - 

nz(x) = - ($-$ 
3 

cosx - - sinx. 
X2 

see also RAYLEIGH’S FORMULAS 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Tpherical Bes- 

sel Functions.” $10.1 in Handbook of Mathematical Func- 
tions with Formulas, Graphs, and Mathematical Tables, 
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Spherical Bessel Function of the Third Kind 

see SPHERICAL HANKEL FVNCTION OF THE FIRST 
KIND,SPHERICALHANKELFUNCTIUN OFTHESECOND 
KIND 

Spherical Cap 

A spherical cap is the region of a SPHERE which lies 
above (or below) a given PLANE. If the PLANE passes 
through the CENTER of the SPHERE, the cap is a HEMI- 
SPHERE. Let the SPHERE have RADIUS R, then the VOL- 

UME of a spherical cap of height h and base RADIUS a is 
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given by the equation of a SPHERICAL 
is a spherical cut by a second PLANE) 

SEGMENT (which Spherical Coordinates 

V spherical segment - - ;nh(3a2 + 3b2 + h2) (1) 

with b = 0, giving 

V - bh(3a2 + h2). cap - 6 

Using the PYTHAGOREAN THEOREM gives 

(R - h)’ + a2 = R2, 

which can be solved for a2 as 

a2 =2Rh-h2, 

Y 
(2) 

(3) 

(4) 

A system of CURVILINEAR COORDINATES which is nat- 
ural for describing positions on a SPHERE or SPHEROID. 
Define 8 to be the azimuthal ANGLE in the XV-PLANE 

from the X-AXIS with 0 < 8 < 2n (denoted A when re- 
ferred to as the LONGITU!~E), q5 to be the polar ANGLE 

from the ~-AXIS with 0 < 4 < m (COLATITUDE, equal - - and plugging this in gives the equivalent formula 
to 4 = 9u0 - S where 6 is the LATITUDE), and T to be 
distance (RADIUS) from a point to the ORIGIN. V - bh2(3R - h). cap - 3 (5) 
Unfortunately, the convention in which the symbols 8 
and 4 are reversed is frequently used, especially in phys- 
ics, leading to unnecessary confusion. The symbol p is 
sometimes also used in place of T. Arfken (1985) uses 
(T, 4,0), whereas Beyer (1987) uses (p, 8,@. Be very 
careful when consulting the literature. 

In terms of the so-called CONTACT ANGLE (the angle 
between the normal to the sphere at the bottom of the 
cap and the base plane) 

R-h-Rsin0 (6) 

In this work, the symbols for the azimuthal, polar, and 
radial coordinates are taken as 8, 4, and T, respectively. 
Note that this definition provides a logical extension of 
the usual POLAR COORDINATES notation, with 8 re- 
maining the ANGLE in the Q-PLANE and 4 becoming 
the ANGLE out of the PLANE. 

(7) 

SO 

V - &R3(2 - 3sina + sin3 CH). cap - 3 (8) 

Consider a cylindrical box enclosing the cap so that the 
top of the box is tangent to the top of the SPHERE. Then 
the enclosing box has VOLUME 

T= d x2 + y2 + z2 (1) 

(j = tan-l y 
0 X 

(2) 
vbox = mz2h = n(Rcosa)[R(l - Sinai)] 

= nR3(1 - sincll - sin2 a + sin3 a), (9) 4 = sin -1 

( 1 

d2syz = cos-l (“) - 

T  r ’ 
(3) 

so the hollow volume between the cap and box is given 

bY where T E [O, oo), 8 E [0,274 and $ E [0,7r]. In terms of 
CARTESIAN COORDINATES, 

vbox - Kap = $R3(1-3sin2a:+2sin3cr). (10) 
x = rcos8sin4 (4) 
y = rsinBsin$ (5) 

z = rcos@ (6) 

If a second PLANE cuts the cap, the resulting SPHER- 
ICAL FRWSTUM is called a SPHERICAL SEGMENT. The 
SURFACE AREA of the spherical cap is given by the same 
equation as for a general ZONE: The SCALE FACTORS are 

S cap = 2rRh. (11) h- =l 

he = T sin 4 

h# = T, 

(7) 

(8) 

(9) 
see also CONTACT ANGLE, DOME, FRUSTUM, HEMI- 
SPHERE, SOLID OF REVOLUTION, SPHERE, SPHERICAL 
SEGMENT,TORISPHERICAL DOMEJONE 
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SO the METRIC COEFFICIENTS are The GRADIENT is 

The LINE ELEMENT is 

ds=dr~+rd~~+rsin~d88, 

the AREA element 

da = r2 sinqbdBdqG, 

and the VOLUME ELEMENT 

dV = r2 sin # dB d4 dr. 

The JACOBIAN is 

The POSITION VECTOR is 

L 

so the UNIT VECTORS are 

dr 
h 

8 
- d8 - -- - 

dr - 
I I d8 

cos 0 sin 4 
sin 0 sin 4 

cos g5 I 
- sin 0 
cos 8 

0 1 cos 8 cos qb c* @ - --= - 
dr I I [ 1 sinOcosq3 . 

a - sin4 

Derivatives of the UNIT VECTORS are 

df - 
sin 8 sin 4 

ae= [ 1 codsin~ = sinq58 
0 

ae -;y;,” 

== -0 [ I =- 
co&b - sin@ 

A - w sin 0 cos f$ 
-x 
de [ 1 cos 8 cos 4 = co,@ 

0 

de cos e 
G = sinOcos$ = 4 [ 1 - sin q5 

ae 
% =o 
A 

[ 

- 
w cos 0 sin qb 
-- - - 
a4 

sin 8 sin 4 
- cos t$ 

1 - - -4. 
1 

(10) 
(11) 
(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 
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(30) 

so 

v,e = 0 (31) 
v,e = 0 (32) 

V& 
coscp& 1 - --- - 
r sin 4 - T 

cot 46. (36) 

NOW, since the CONNECTION COEFFICIENTS are given 
by I?;, = ii ’ (Ok&j), 0 

P=O [ 5 
0 0 0 

r4= [; ; O 1 1. cot4 ;; 
0 

] 
rr= [ 0 0 0 

0 -; 0  I l  
0  0  -; 

(37) 

(38) 

(39) 

The DIVERGENCE is 

V l  F = Al”, + r;,Aj 

= [ATT + (r;,AT + I’LTAe + r&A’] 
4 +[Aye + (&A’ + rieAe + r$eA >] 

+[A$ + (I’$AF + I&A’ + $,A’)] 

1 6A’ 1 dAB 1 dA+ - - --+--+ 
gr a- ge de 

--+(o+o+o) 
i&b 84 

1 
+ -A'+O+- 

1 
-A’+O+O 

T r 
d 2 - - $A’+ -A’+ -EAe + 1 idA”+ - Cot 6A+ 

1 
r r sin q5 d0 T w  r 

(40) 

or, in VECTOR notation, 

- - $ $T’%)+ &$(si@Fd+&$$ (41) 

The COVARIANT DERIVATIVES are given by 
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so 

A $ dA- 
r;r = - rLTAi = 8r (43) 

A 
1 dA, 

“’ = rsin+ dI9 
ri 1 c”A, --- re = - - - rTeAB 

rsin4 80 

1 dA, Ad - --- - - 
rsin@ &5 r (44) 

dAe . d& Ae,r = - - riTAi = - 
dr aT 

(46) 

/&j = - - - 
’ aA# ri A 

rsin$ a8 ” ’ 

- - LdAeaO - r&A4 - r&A, 
T sin q5 

1 dAe A - -- - 
rsin# 80 

+- cot 4A+ + -c 
T r 

(47) 

1 dAe . dAe 
A@,$ = - - - IT&Ai - 

T dr a4 
(48) 

aA e 34 A4;, = dr - l$Ai = T (49) 

1 aA+ a 1 8A+ A4;* = -- -I&$ = -- - 
rsin4 80 rsin$ de r;e 

1 aA+ cot (b - --- - 
rsin$ 30 

-& 
T (50) 

1 dA4 - 1 aA 
A4;+ = -- - I’&Ai = -- - I$+A, 

T a4 T w 
- 1 BA$ A, -- - -I--. 

T&b T (51) 

The COMMUTATION COEFFICIENTS are given by 

C/J -+ - + 
apep - I e,, e’p] = V&I - Vpe’, (52) 

[F, q = [a, a] = [& $1 = 0, (53) 

so cry = c;fj = c& = 0, where QI = T, O,qS. 

h 
[ 01 & = -[b, q = v,e - v *e = 0 - 18 = -I& 

r r 
(54) 

# so & =‘-c& = -+, c;e = c,, = 0. 

[ 41 $7 * =-[$,$]=O-1&-L& 
r r (55) 

4 4 so CT& = -c4r = r. r 
A 

P $1 f = -[& h] = 1 cot $6 - 0 = 1 cot 48, 
T r 

(56) 

so 
1 

c& = -&I = ; cot qi (57) 

Summarizing, 

CT = 

ce = 

P - - 

SPherical Coordinates 

-0 0 0 
0 0 0 

-0 0 0 1 -0 -L 0 I Or ; cot+ j -+ot(b 0 -0 0 -1. 0 0 or . L 0 0 -r 1 

(58) 

1 (59) 
(60) 

Time derivatives of the POSITION VECTOR are 

[ 

cosOsin@ - rsinOsin@ + rcOsecOs& 

+= sinOsin4+ +rcos8sin@ +rsinBcos&j 
cosq% - rsin$& 1 

cos 8 cos (25 
+T sidcost$ 4 [ 1 - sin q3 

=+F+rsin@+r&!L 

The SPEED is therefore given by 

The ACCELERATION is 

2 = (- sin e sin @& + cos 8 cos q%$ + cos e sin @) 

- (sin 0 sin $+e + T cos 8 sin 4S2 + T sin e cos $64 

+ T sin e sin 48) + (cos 8 cos & - T sin 0 cos &A 

- T cos 0 sin $6” + T cos 8 cos &S) 

= -2 sin e sin & + 2 cos 8 cos @q& - 2r sin 0 cos $44 

+cosBsim$i: - rsid?sin~ti+rcos8cos~~ 

- 7+c0sBsinf$(82 + 4”) (63) 

fi = (sin8siQi: + rcos@sin@ + rcos#sinO& 

+ (COS e sin qS1;8 - T sin e sin qG2 + T cos e cos qS&& 

+ T cos e sin @) + (sin 0 cos ++$ + T c0s e cos $A$ 

- 7- sin 8 sin q&j&” + T sin e cos $6) 
’  l  

= 2 COS 8 Sin #e+ + 2 Sin 8 COS $+t$ -i- 2T COS 8 COS (b&h 

+ sin&in@ + rcos8sin@ + rsinBcos& 

- rsin8sinqS(82 + 4”) (64 
2 = (cosqbi; - sin@&) - ( + sin 44 + T cos &i%” + T sin 44) 

= --Tcos&b2 + cosq5i; - 2sin&$+ -rsin&~ (65) 
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The LAPLACIAN is Plugging these in gives 

[ 

cos8sinqS 
F=(f- rqh2) sin 8 sin q5 

cos tp 1 d d + -- sin4% r2 sin q5 a4 ( > 
1 - -- 

( 

2 a2 d 
r-+zr---- + 

r2 dr2 & 
> 

1 a2 -- 
r2 sin2 q5 W2 

1 
+- 

r2 sin 4 ( 

d d2 
cos 4~ + sin @a+2 

> 

d2 20 1 d2 
= p+--+ -- 

r dr r2 sin2 4 a02 

1 -sin+ 1 L 0 

but 

+ 
cosqba ld2 ~- + -- 

~~ sin q5 &i5 r2 a42 l  

(73) 
sin q5e + cos q5c$ = 

[ 

cos 8 sin’ # + cos 8 cos2 qi5 
sin B sin2 4 + sin 8 cos2 q5 

0 cos 8 - - [ 1 sin 0 , 
0 

The vector LAPLACIAN is 

+3,4 2% + --- r2 2 cot sin 0 0 87~0 84 ,2,i,2 v9 

so 
v2v = 

i;= (i;-r~2)~+(2rcosq%&+2sinq5&+rsinq58)8 

+(24 + T$)$ - r sin $b2(sin 4E + cos 44) 

= f - q-J2 - r sin2 &j”)i ( 

+ (2 sin qS& + 2r cos qG$ + r sin @>e 

+(24 + r$ - r sin 4 cos @“)$. (68) To express PARTIAL DERIVATIVES with respect to Carte- 
sian axes in terms of PARTIAL DERIVATIVES of the spher- 
ical coordinates, Time DERIVATIVES of the UNIT VECTORS are 

1 -sin8sinq58+cosOcos~~ 
;= cosOsin$B + sinBcos#$ 

1 
= sin+%+ $6 . 

L -sin@ (75) 
dx 
dy = 
dz 1 1 

cosOsin+dr - rsin&in#dB +rcostlcos#d# 
sinesin#dr + rsin+ostIde + rsinecos#d$ 

cos4dr - rsin+d4 1 
cos e sin 4 -minthint) rcos8cosqb dr 

- - sin 0 sin 4 rsinqhose rsin8cosq5 de . 
cos (b 0 --T sin 4 I[ 1 d4 (76) 

(69) 

1 - -8(sin q% + c0s 44) - 

. A r-sintkosf$O - coshil 

+ - - 
L 

44 
cosecosq58 -sin&in&A 1 = -& + cos (bee. -cosqQ (71) Upon inversion, the result is 

rdTl rc0dsin& sinkin& cos (b 

(77) 

. sin 8 cost? -- - 
f sin 4 r sin 4 

0 

cosecos# sin 9 cos qb sin 4 -p -- 
r r r 

The CURL is 

(72) 
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1 

The Cartesian PARTIAL DERIVATIVES in spherical coor- 
dinates are therefore 

d dT d de d 84 8 

dz= 

-- 

6x a?- +aa:ae+zq 

d sin8 d 
= cos&in$- - -- 

cos 8 cos.$ a 

dr rsinq5 de 
+ 

r 84 

(78) 
d dr a de d 84 8 

ay=ayz+--+-- 
dy de 8Y 84 
d 

= sin0sinqSz + 
cod d 

---+ 
sin8cosq5 d 

T sin q5 d0 T s 

(79) 

d aT d at9 a a4 8 

aZ= 

-- 

--+azae+az&b 825 aT 

d sin4 d 
= c@- - -- 

dr T a+ 
(80) 

(Gasiorowicz 1974, pp. 167-168). 

The HELMHOLTZ DIFFERENTIAL EQUATION isseparable 
in spherical coordinates. 

see also COLATITUDE, GREAT CIRCLE, HEMHOLTZ 
DIFFERENTIALEQUATION-SPHERICAL COORDINATES, 
LATITUDE, LONGITUDE, OBLATE SPHEROIDAL COOR- 
DINATES,~ROLATE SPHEROIDAL COORDINATES 
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Spherical Design 
X is a spherical t-design in E IFF it is possible to exactly 
determine the average value on E of any POLYNOMIAL 
f of degree at most t by sampling f at the points of X. 
In other words, 

1 

s volume E E 
f (0 de = 

References 
Colbourn, cf. J. and Dinitz, J. H. (Eds.) “Spherical t- 

Designs.” Ch. 44 in CRC Handbook of Combinatorial De- 
signs. Boca Raton, FL: CRC Press, pp. 462-466, 1996. 

Spherical Excess 
The difference between the sum of the angles of a 
SPHERICAL TRIANGLE and 180”. 

see ~ZSOANGULAR DEFECT,DESCARTES TOTAL ANGU- 
LARDEFECT, GIRARD'S SPHERICALEXCESSFORMULA, 
L'HUILIER'S THEOREM, SPHERICAL TRIANGLE 

Spherical Frustum 

see SPHERICAL SEGMENT 

Spherical Geometry 
The study of figures on the surface of a SPHERE (such as 
the SPHERICAL TRIANGLE and SPHERICAL POLYGON), 
as opposed to the type of geometry studied in PLANE 
GEOMETRY or SOLID GEOMETRY. 

see &~PLANE GEOMETRY,~OLID GEOMETRY,~PHER- 
ICAL TRIGONOMETRY, THURSTON'S GEOMETRIZATI~N 
CONJECTURE 

Spherical Hankel Function of the First Kind 

Id?(x) = J~H,!&2(x) = j&c) + in,(x), 

where H(l) (x)is the HANKEL FUNCTION OF THE FIRST 
KIND and jn(x) and n,(x) are the SPHERICAL BESSEL 
FUNCTIONS OFTHE FIRST and SECOND KINDS. Explic- 
itly, the first few are 

1 
. 

h!)(x) = --(sinx-icosx) = -x * le’” 

h(1j(x) = eix 
1 

(-; - $) 

. 

h(‘j(x)=ei” 
3 3i 

2 
I.-2-2 , 

X > 
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tions with Formulas, Graphs, and Mathematical Tables, 
9th printing. New York: Dover, pp. 437-442, 1972. 

Spherical Hankel Function of the Second 
Kind 

h?)(x) s Jz~fi~,~(x) = jn(x) - in,(x), 

where Hc2) (x) is the HANKEL FUNCTION OF THE SEC- 
OND KIND and j,(x)andn,(x)arethe SPHERICAL BES- 
SEL FUNCTIONS OF THEFIRST and SECONDKINDS. EX- 

plicitly, the first is 

1 
. 

h?‘(x)= 3:(sinx+icosx) = me*? 
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Spherical Harmonic 
The spherical harmonics q”(8, 4) are the angular por- 
tion ofthe solution to LAPLACE'S EQUATION~II SPHER- 
ICAL COORDINATES where azimuthal symmetry is not 
present. Some care must be taken in identifying the no- 
tational convention being used. In the below equations, 
8 is taken as the azimuthal (longitudinal) coordinate, 
and 4 as the polar (latitudinal) coordinate (opposite the 
notation of A&en 1985). 

Spherical Harmonic 1695 

gn(8,4) E 
J 

~fjJ$Plm(cos+im*, (1) . 
The above illustrations show l~“(O,$)I (top) and 
RIYlm(O,$)] and 3[Y~“(O,@)] (bottom). The first few 
spherical harmonics are 

where wz = -2, -1 + I, . . . , 0, . . . , I and the normaliza- 
tion is chosen such that 

27r 7r 

s s 
xrnYf* sin qb d@ d8 

0 0 

(2) 

the 
the 

(3) 

13 yl-l = - 
2 5G d 

sin+? 
where S,, is the KRONECKER DELTA. Sometimes, 
CONDON-SHORTLEY PHASE (-1)” is prependedto 
definition of the spherical harmonics. 

Integrals of the spherical harmonics are given by 
13 

Y:=-z Gsin@e 
J 

1 y22 = _ 
d 

15 - sin2 4 e-2ie 
4 2n 

y-l - 1 IL5 sin+cos@eBie 
2 - 2 iii d where 

11 12 13 

ml m2 m3 > 
is a WIGNER 3j-SYMBOL 

(which is related to the CLEBSCH-GORDON COEFFI- 
CIENTS). The spherical harmonics obey 

1 
yz’= -- 1 zi 15 

2 5G 
sin 4 cos 4 2’ 1 

q-l = $ji 
zi 

(2Z+ l)! sinl &-de 
- 

. 47 (4) 

y&l - 
\i 

15 

4 2r 
sin2 qb e2ie x0 = J yfi(cos4) (5) 

q-” = (-l)“q”*, 

where P&c) is a LEGENDRE POLYNOMIAL. 

(6) 

yB2 
3 

- 1 J 105 sin2+cos+e-2ie 
-4 2n 

sin 4(5cos2 q5 - l)emis 

y; = - 1 J 7 (5cos3@ 3cos@) 
4; 

sin 4( 5 cos2 4 - l)P 
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Written in terms of CARTESIAN COORDINATES, 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

These can be separated into their REAL and IMAGINARY 
PARTS 

q”‘(O, 4) E Plm(cos 4) sin(m0) (16) 

xmc(8, 4) = Plm(cos4) cos(me). (17) 

The ZONAL HARMONICS are defined to be those of the 
form 

P,“(cos8). (18) 

The TESSERAL HARMONICS are those of the form 

sin(m$)P,“(cos 8) (19) 

cos(m4)P,“(cos e) (20) 

for n # m. The SECTORIAL HARMONES areofthe form 

sin(m$)P,“(cose) (21) 

cos(m$)P~(cose). (22) 

The spherical harmonics form a COMPLETE ORTHONOR- 
MAL BASIS, so an arbitrary REAL function f(O,@) can 
be expanded in terms of COMPLEX spherical harmonics 

Spherical Harmonic Addition Theorem 

or REAL spherical harmonics 

f (6 4) 
00 E 

=xCr cpyye, 6) sin(m0) + s;“y,mye, $)I. 
l=O m=O 

(24) 

see UZSO CORRELATION COEFFICIENT, SPHERICAL HAR- 
MONIC ADDITION THEOREM, SPHERICAL HARMONIC 
CLOSURE RELATIONS,~PHERICAL VECTOR HARMONIC 
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Spherical Harmonic Addition Theorem 
A FORMULA also known as the LEGENDRE ADDITION 
THEOREM which is derived by finding GREEN'S FUNC- 
TIONS for the SPHERICAL HARMONIC expansion and 
equating them to the generating function for LEGEN- 
DRE POLYNOMIALS. Whenyis defined by 

cos 

P, (cos y 

y = cos O1 cos e2 + sin O1 sin e2 cos & - 9S2, 

> 
4n n - -- 

2n + 1 IE (-l)my,n(~l, h)y_“,(e2, 42) 
7123-n 

1 n 
4n - -- 

2n + 1 c y;(el, h)y,"*(b 42) 

= P, (cos 81 )Pn (cosYii,” 

+2 2 ( - m)! 
mp~(c0se1)p~(c0se2)c0s[m(~l-~2)]. 
L > n . 

m=-n 
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References 
A&en, G. “The Addition Theorem for Spherical Harmon- 

ics.” 512.8 in Mathematical Methods for Physicists, 3rd 
ed. Orlando, FL: Academic Press, pp. 693-695, 1985. 

Spherical Harmonic Closure Relations 
The sum of the absolute squares of the SPHERICAL HAR- 
MONICS q”(8,$) over all values of m is 

- - 21+ 1 

47T l  

The double sum over m and 2 is given by 

- -- 
sinlg, ‘(’ 

1 - e2)wl - 42) 

= d(cOsel - ~0st3~)6(4~ - 42), 

where S(x) is the DELTA FUNCTION. 

Spherical Harmonic Tensor 
A tensor defined in terms of the TENSORS which satisfy 
the DOUBLE CONTRACTION RELATION. 

see also DOUBLE CONTRACTION RELATION, SPHERICAL 
HARMONIC 

Spherical Helix 
The TANGENT INDTCATRTX of a CURVE OF CONSTANT 
PRECESSION is a spherical helix. The equation of a 
spherical helix on a SPHERE with RADIUS T making an 
ANGLE 8 with the z-axis is 

x(q) = ir(l + COSO) cos * 

( 
1-t c0se - $T(l - cos0) cus - 
1 - case 4 

(1) 

YW - +(l+ cosB)sinti - 

( 1 + cos 8 - +(l - cod) sin p 
1- cos8 4 

(a> 

4G) = ( 
cos e 

rsinOcos p 
4 l-case l  

(3) 

The projection on the xv-plane is an EPICYCLOID with 
RADII 

a = rcos0 (4) 

b = rsin2(+O). (5) 

see also HELIX, LOXODROME, SPHERICAL SPIRAL 
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Spherical Point System 
How can n points be distributed on a SPHERE such that 
they maximize the minimum distance between any pair 
of points? This is FEJES T~TH’S PROBLEM. 

see also FEJES T~TH’S PROBLEM 

Spherical Polygon 
A closed geometric figure on the surface of a SPHERE 
which is formed by the ARCS of GREAT CIRCLES. The 
spherical polygon is a generalization of the SPHERICAL 
TRIANGLE. If 8 is the sum of the RADIAN ANGLES of 
a spherical polygon on a SPHERE of RADIUS r, then the 
AREA is 

S = [S - (n - 2)7r]r2. 

see &so GREAT CIRCLE, SPHERICAL TRIANGLE 

References 
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Boca Raton, FL: CRC Press, p. 131, 1987. 

Spherical Ring 
A SPHE I~~ with a CYLINDRICAL HOLE c 
centers of the CYLINDER and SPHERE 
called a NAPKIN RING. 

ut so that the 
coincide, also 

The volume of the entire CYLINDER is 

Vcyl = rLR2, (1) 

and the VOLUME of the upper segment is 

V - bh(3R2 + h2), seg - 6 (2) 

where 

R= 9-32 J 
h=r- $L, 

(3) 
(4) 

so the VOLUME removed upon drilling of a CYLINDRICAL 
hole is 

V rem = Kyl + Z&g = r[LR2 + +h(3R2 + h2)] 

= r(LR2 -+ hR2 + ;h3) 

= X[L(T2 - +L2) + (7’ - $L)(T2 - :L”) 

+ f (T - ;L)3] 

= +T2 - ;L3 + (T” - $T2L - $L2 + ;L3) 

+ $(T” - $T2L + ;TL2 - ;L3)] 

= r[$T” + (1 - + - $)T2L+ (-a + $)RL2 

+L”(-+ + + - &)] 

-4 - sXT3 - i7TL3 = $(8r3 - L3), (5) 
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Keft = v&here - Vrem = +r” - ($,rs - i*L3) = $L3. 

(6) 

Spherical Sector 

The VOLUME of a spherical sector, depicted above, is 
given by 

V= +R’h, 

where h is the vertical height of the upper and lower 
curves. 

see also CYLINDRICAL SEGMENT, SPHERE, SPHERICAL 
CAP, SPHERICAL SEGMENTJONE 
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Spherical Segment 

A spherical segment is the solid defined by cutting a 
SPHERE with a pair of PARALLEL PLANES. It can be 
thought of as a SPHERICAL CAP with the top truncated, 
and so 
surface 

it 
of 

corresponds to a SPHERICAL FRUSTUM. The 

the spherical segment (excluding the bases) is 
called a ZONE. 

Call the RADIUS of the SPHERE R and the height of 
the segment (the distance from the plane to the top of 
SPHERE) h. Let the RADII of the lower and upper bases 
be denoted a and b, respectively. Call the distance from 
the center to the start of the segment d, and the height 
from the bottom to the top of the segment h. Call the 

RADIUS parallel to the segment IP, and the height above 
the center y. Then r2 = R2 - y2, 

s 

d+h 

s 

d+h 
V= m2 dy = r CR2 - Y”> dY 

d d 

- - 7 [R2y - $Y~]Z+~ = r{R2h - ;[(d + h)3 - d3]} 

= r[R2h - ;(d3 + 3d2h + 3h2d + h3 - d3)] 

= r(R2h - d2h - h2d - +h3) 

= rh(R2 - d2 - hd - +h2). (1) 

Using 

a2 = R2 - d2 (2) 

b2 = R2 - (d + h)2 = R2 - d2 - 2dh - h2, (3) 

gives 

so 

a2 + b2 = 2R2 - 2d2 - 2dh - h2 

R2 - d2 -dh= +(a2+b2+h2), 

(4) 

(5) 

V = rh[+(a2 + b2 + h2) - $h2] = nh($a2 + $b2 + ;h2) 

- ;rh(3a2 + 3b2 + h2). - (6) 

The surface area of the ZONE (which excludes the top 
and bottom bases) is given by 

S = 2rRh. (7) 

see UZSO ARCHIMEDES' PROBLEM, FRUSTUM, HEMI- 

SPHERE, SPHERE, SPHERICAL CAP, SPHERICAL SEC- 
TOR,SURFACE OF REVOLUTION, ZONE 

References 
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. 
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Spherical Shell 
A generalization of an ANNULUS to 3-D. A spherical shell 
is the intersection of two concentric BALLS of differing 
RADII. 

see UZSO ANNULUS, BALL, CHORD, SPHERE, SPHERICAL 
HELIX 

Spherical Spiral 
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The path taken by a ship which travels from the south 
pole to the north pole of a SPHERE while keeping a fixed 

have ANGLES QI, p, and y and RADIUS T. Then the 
AREA of the spherical triangle is 

(but not RIGHT) ANGLE with respect to the meridians. 
The curve has an infinite number of loops since the 
separation of consecutive revolutions gets smaller and 
smaller near the poles. It is given by the parametric 
eauations 

K- =T”[(a+p+y) -T]* 

The sum of the angles of a spherical triangle is between 
180” and 540”. The amount by which it exceeds 180” is 
called the SPHERICAL EXCESS and is denoted E or A. 

X = costcosc The study of angles and distances of figures on a sphere 

Y = sintcosc is known as SPHERICAL TRIGONOMETRY. 

z= - sin c, 

where 
c = tan-l(&) 

and a is a constant. 

see UZSO MERCATOR PROJECTION, SEIFERT'S SPHERI- 

CAL SPIRAL 
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Spherical Symmetry 
Let A and B be constant VECTORS. Define 

Then the average 
face or volume is 

of Q over a spherically symmetric sur- 

see also COLUNAR TRIANGLE, GIRARD'S SPHERICAL 
EXCESS FORMULA,L'HUILIER'S THEOREM, SPHERICAL 
POLYGON,~PHERICAL TRIGONOMETRY 

References 
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of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
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Spherical Trigonometry 
Define a SPHERICAL TRIANGLE on the surface of a unit 
SPHERE, centered at a point 0, with vertices A, B, 
and C. Define ANGLES a G LBOC, b = LCOA, and 

= LAOB. Let the ANGLE between PLANES AOB and 
>OC be CY, the ANGLE between PLANES BOC and AOB 
be p, and the ANGLE between PLANES BOC and AOC 
be y. Define the VECTORS 

(1) 
0 
(3) 

(Q) = (3cos’&l)(A*B) =0, 
Then 

since ( 3 co2 0 - 1) = 0 over the sphere. 
(6 X 1;) l  (6 X E) = (Iii1 161 sinc)(j&l I+iinb)cosa 

Spherical Tessellation 
= sinbsinccosa. (4) 

~~~TRIANGULAR SYMMETRY GROUP 

Spherical Triangle 

Since these two 
identity 

expressions are equal, we obtain the 

Equivalently, 

(5) 

cos a = cosbcosc+ sinbsinccosa 

The identity 

(6) 

A spherical triangle is a figure formed on the surface of a 
sphere by three great circular arcs intersecting pairwise 
in three vertices. The spherical triangle is the spherical 
analog of the planar TRIANGLE. Let a spherical triangle 

sina I(& x 1;> x (6 x e)I - =- 
I&[&, 6, q + 1;[&, 6, q 

- 
16 x &I]& x e] sin b sin c 

- [&, i;, q -- 
sinbsinc’ (7) 
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where [a, b, c] is the SCALAR TRIPLE PRODUCT, gives a 
spherical analog of the LAW OF SINES, 

sin cy sin fl sin y ------ 6 Vol(OABC) 
sina - sinb - sine - sinasinbsinc’ (8) 

where Vol(OABC) is the VOLUME of the TETRAHE- 

DRON. F!rom (7) and (8), it follows that 

sinacosp = cosbsinc - sinbcosccoscu (9) 

cos a cos y = sinacotb - sinycotp. (10) 

These are the fundamental equalities of spherical 
trigonometry. 

There are also spherical analogs of the LAW OF COSINES 

for the sides of a spherical triangle, 

cosa = cosbcosc + sinbsinccosA 

cosb = cosccosa + sincsinacosB 

cost = cosacosb + sinasinbcosc, 

and the angles of a spherical triangle, 

cos A = - cosBcosC+sinBsinCcosu 

cos B = - cosCcosA + sinCsinAcosb 

cos c = - cosAcosB +sinAsinBcosc 

(Beyer 1987), as well as the 

tan[+(u - b)] 

tan[+(u + b)] = 

LAW OF TANGENTS 

tan[i(A - B)] 

tan[i(A + B)] * 

Let 

s= +(u+b+c) 

SE +(A+B+c), 

then the half-angle formulas are 

tan($A) = 
k 

sir+ - a) 

tan(@) = ’ 
sin(s - b) 

tan($) = 
k 

sin(s - c) ’ 

where 

k2 = sin(s - a) sin(s - b) sin(s - c) 

sin s 
= tan2 T, 

and the half-side formulas are 

tan(iu) = Kcos(S - A) (24) 
tan(ib) = Kcos(S - B) (25) 
tan&) = K cos(S - C), (26) 

(11) 
(12) 
(13) 

(14) 
(15) 
(16) 

(17) 

(18) 
(19) 

(20) 

(21) 

(22) 

(23) 

Spherical llkigonometry 

where 

K2 = - cos s 
(cos(S - A) cos(S - B) cos(S - C) = tan2 R’ 

(27) 
where R is the RADIUS of the SPHERE on which. the 
spherical triangle lies. 

Additional formulas include the HAVERSINE formulas 

havu = hav(b - c) + sin b sin c sin( s - c) (28) 

havA = 
sin(s - b) sin(s - c) 

sin b sin c (29) 

- havu - hav(b - c) 
- 

sin b sin c (30) 

= hav[;rr - (B + C)] + sin B sin C hav a, (31) 

GAUSS’S FORMULAS 

sin[$(a - b)] 

sin(&) = 

sin[i(A - B)] 

cos( $7) 

sin[$(a + b)] 

sin+) = 

cos[+(A - B)] 

sin( +C) 

cos[;(u - b)] 

cos(&) = 

sin[f(A + B)] 

cos( +c> 

cos[;(u + b)] 
cos(+c) = 

cos[+(A + B)] 
sin($C) ’ 

and NAPIER’S ANALOGIES 

sin[i(A - B)] tan[i(u - b)] 

sin[i(A + B)] = tan( $2) 

cos[+(A - B)] 

cos[+(A + B)] = 

tan[$ + b)] 

tan($) 

sin[+(u - b)] 

sin[+(a + b)] = 

tan[i(A - B)] 

cot( +c> 

cos[+(u - b)] 

cos[+(a + b)] = 

tan[i(A + B)] 

cot( $7) 

(Beyer 1987). 

(32) 

(33) 

(34 

(35) 

see also ANGULAR DEFECTJDESCARTES TOTAL ANGU- 

LAR DEFECT, GAUSS’S FORMULAS, GIRARD’S SPHER- 

ICAL EXCESS FORMULA, LAW OF COSINES, LAW OF 
SINES, LAW OF TANGENTS, L,‘HUILIER’S THEOREM, 

NAPIER’S ANALOGIES, SPHERICAL EXCESS, SPHERICAL 

GEOMETRY,~PHERICAL POLYGON,~PHERICAL TRIAN- 

GLE 
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Spherical Vector Harmonic 

~~~VECTOR SPHERICAL HARMONIC 

Spheroid 
A spheroid is an ELLIPSOID 

~~ cos2 8 sin2 4 ~~ sin2 8 sin2 4 T2 cos2 q5 

a2 
+ 

b2 
+------ 

c2 
= 1 (1) 

with two SEMIMAJOR AXES equal. Orient the ELLIPSE 
so that the a and b axes are equal, then 

2 cos2 8 sin2 # r2 sin2 8 sin2 
+ 

4 T2 cos2 4 
a2 a2 

+- 
C2 

= 1 (2) 

~~ sin2 qb r2 cos2 4 
-+- *2 2 = 1, (3) 

W b 

where a is the equatorial RADIUS and c is the polar 
RADIUS. Here 4 is the colatitude, so take 6 z 7r/2 - 4 
to express in terms of latitude. 

T2 cos2 6 ~~ sin2 6 
T+yr = 1. 

Rewriting cos2 S = 1 - sin2 6 gives 

T2 
a2 + ~~ sin2 S (&+ 

( 
a2 2 

r2 1+a2sin26- 
c2u2 > 

(4) 

(5) 

( a2 2 

z T2 1 + sin2 6+ 
> 

= a2, (6) 

( 
a2 2 

> 

-l/2 

T=a 1+&f+ . (7) 

If a > c, the spheroid is OBLATE. If a < c, the spheroid 
is PROLATE. If a = c, the spheroid degenerates to a 
SPHERE. 

see UZS~ DARWIN-DE SITTER SPHEROID, ELLIPSOID, 
OBLATE SPHEROID, PROLATE SPHEROID 

Spheroidal Harmonic 
A spheroidal harmonic is a special case of the ELLIP- 
SOIDAL HARMONIC which satisfies the differential equa- 
tion 

d 

- b 
2 dS 

dx - 
x )z A-c2x2-L 

1 - x2 
s=o 

on the interval -1 < 61: < 1. 

see also ELLIPSOIDAL HARMONIC 
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Spheroidal Wavefunction 
Whittaker and Watson (1990, p. 403) define the internal 
and external spheroidal wavefunctions as 

s(l) = 2n (n - m)! 
mn (npm)l (ir)p,” (cos 0) ;;; (4) 

l  

sC2) = 2x rnn ~Q~(~T)Q~(cosO) zz (m@). 
n , 

~~~~ZSOELL~PSOIDAL HARMONIC, OBLATE SPHEROIDAL 

WAVE FUNCTION,PROLATE SPHEROIDALWAVEFUNC- 
TION, SPHERICAL HARMONIC 
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9th printing. New York: Dover, pp, 751-759, 1972. 

Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 
ics, Part I. New York: McGraw-Hill, pp. 642-644, 1953+ 
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Sphinx 

A 6-POLYIAMOND named for its resemblance to the 
Great Sphinx of Egypt. 

References 
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Spider and Fly Problem 

In a rectangular room (a CUBOID) with dimensions 30’ x 

12’ x 12’, a spider is located in the middle of one 12’ x 12’ 
wall one foot away from the ceiling. A fly is in the middle 
of the opposite wall one foot away from the floor. If the 
fly remains stationary, what is the shortest distance the 
spider must crawl to capture the fly? The answer, 40’, 
can be obtained by “flattening” the walls as illustrated 
above. 
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Spider Lines 

see EPITROCH~ID 

Spiegeldrieck 

Lines 

see FUHRMANN TRIANGLE 

Spieker Center 
The center ofthe SPIEKER CIRCLE. It is the CENTROID 
of the PERIMETER of the original TRIANGLE. The third 
BROCARD POINT is COLLINEAR with the Spieker center 
andthe IS~TOMIC CONJUGATE POINT ofits INCENTER. 

see UZSO BROCARD POINTS, CENTROID (TRIANGLE), IN- 

CENTER, ISOTOMIC CONJUGATE POINT, PERIMETER, 
SPIEKER CIRCLE,TAYLOR CENTER 
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Spieker Circle 

The INCIRCLE of the MEDIAL TRIANGLE. center 

Spigot Algorithm 
An ALGORITHM which generates digits of a quantity one 
at a time without using or requiring previously com- 
puted digits. Amazingly, spigot ALGORITHMS are known 
for both PI and e. 

Spindle Torus 

Spijker’s Lemma 
The image on the RIEMANN SPHERE of any CIRCLE 

under a COMPLEX rational mapping with NUMERATOR 
and DENOMINATOR having degrees no more than n has 
length no longer than 2nn. 

References 
Edelman, A. and Kostlan, E. “How Many Zeros of a Random 

Polynomial are Real l  3” Bull. Amer. Math. Sot. 32, l-37, 
1995. 

Spindle Cyclide 

The inversion of a SPINDLE TORUS. If the inversion cen- 
ter lies on the torus, then the spindle cyclide degenerates 
to a PARABOLIC SPINDLE CYCLIDE. 

see also CYCLIDE, HORN CYCLIDE, PARABOLIC CY- 

GLIDE, RING CYCLIDE, SPINDLE TORUS, TORUS 

Spindle Torus 

One of the three STANDARD TORI given by the para- 
metric equations 

X== (c+acosw)cosu 

y= (c+ucosv)sinu 

z= asinw 

with c < a. The exterior surface is called an APPLE 
and the interior surface a LEMON. The above left figure 
shows a spindle torus, the middle a cutaway, and the 
right figure shows a cross-section of the spindle torus 
through the zz-plane. 

see also APPLE, CYCLIDE, HORN TORUS,LEMON, PAR- 
ABOLIC SPINDLE CYCLIDE, RING TORUS, SPINDLE CY- 

CLIDE,~TANDARD TORI,TORUS 

References 
Gray, A. “Tori.” $11.4 in Modern Differential Geometry 

of CurYves and Surfaces. Boca Raton, FL: CRC Press, 
pp. 218-220, 1993. 
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Pinkall, U. “Cyclides of &pin.” $3.3 in Mathematical Models 
from the Collections of Universities and Museums (Ed. 
G. Fischer). I3 raunschweig, Germany: Vieweg, pp. 28-30, 
1986. 

Spinode 

see also ACNODE, CRUNODE, CUSP, TACNODE 

Spinor 
A two-component COMPLEX column VECTOR. Spinors 
are used in physics to represent particles with half- 
integral spin (i.e., Fermions). 

References 
Lounesto, P. “Counterexamples to Theorems Published and 

Proved in Recent Literature on Clifford Algebras, Spinors, 
Spin Groups, and the Exterior Algebra.” http: //www . hit. 
fi/-lounesto/counterexamples*htm. 

Morse, P. M. and Feshbach, H. “The Lorenta Transforma- 
tion, Four-Vectors, Spinors.” $1.7 in Methods of Theoreti- 
cal Physics, Part I. New York: McGraw-Hill, pp. 93-107, 
1953. 

Spira Mirabilis 

see LOGARITHMIC SPIRAL 

Spiral 
In general, a spiral is a curve with T(s)/K(s) equal to a 
constant for all s, where 7 is the TORSION and K is the 
CURVATURE. 

see also ARCHIMEDES' SPIRAL, CIRCLE INVOLUTE, 
CONICAL SPIRAL, CORNU SPIRAL, COTES’ SPI- 

RAL, DAISY, EPISPIRAL, FERMAT'S SPIRAL, HYPER- 
BOLIC SPIRAL,LOGARITHMIC SPIRAL, MICE PROBLEM, 
NIELSEN'S SPIRAL,PHYLLOTAXIS, POINSOT'S SPIRALS, 
POLYGONAL SPIRAL, SPHERICAL SPIRAL 

References 
Eppstein, D. “Spirals.” http:// www . its . uci . edu / = 

eppstein/junkyard/spiraI.html. 
Lauwerier, H. Fractals: Endlessly Repeated Geometric Fig- 

ures. Princeton, NJ: Princeton University Press, pp. 54- 
66, 1991. 

Lockwood, E. H. “Spirals.” Ch. 22 in A Book of 
Curves. Cambridge, England: Cambridge University 
Press, pp. 172-175, 1967. 

Yates, R. C. “Spirals.” A Handbook on Curves and Their 
Properties. Ann Arbor, MI: J. W. Edwards, pp. 206-216, 
1952. 

Spiral Point 
A FIXED POINT for which the EIGENVALUES are COM- 
PLEX CONJUGATES. 

see also STABLE SPIRAL POINT, UNSTABLE SPIRAL 
POINT 

References 
Tabor, M. “Classification of Fixed Points.” 51.4.b in Chaos 

and Integrability in Nonlinear Dynamics: An Introduc- 
tion. New York: Wiley, pp. 22-25, 1989. 

Spirit Section 

spirograph 

A curve with Cartesian equation 

t 

1703 

Around 150 BC, Menaechmus constructed CONIC SEC- 
TIONS by cutting a CONE by a PLANE. Two hundred 
years later, the Greek mathematician Perseus investi- 
gated the curves obtained by cutting a TORUS by a 
PLANE which is PARALLEL to the line through the center 
of the HOLE of the TORUS (MacTutor). 

In the FORMULA of the curve given above, the TORUS 
is formed from a CIRCLE of RADIUS a whose center is 
rotated along a CIRCLE of RADIUS T. The value of c 
gives the distance of the cutting PLANE from the center 
ofthe TORUS. 

When c = 0, the curve consists of two CIRCLES of 
RADIUS a whose centers are at (T, 0) and (-T, 0). If 
c = T + a, the curve consists of one point (the origin), 
while if c > T + a, no point lies on the curve. The above 
curves have (a, b, T) = (W, 21, (3, 1, 2) (3, O-8, 21, (37 

1, 4), (3, 1, 4.5), and (3, 0, 4.5). 

References 
MacTutor History of Mathematics Archive. “Spirit Sec- 

tions .” http://www-groups.dcs.st-and.ac.uk/ahistory/ 
Curves/Spiric.html. 

Spirograph 
A HYPOTROCHOID generated by a fixed point on a CIR- 
CLE rolling inside a fixed CIRCLE. It has parametric 
equations, 

x = (R + r) cos 19 - (r + p) ~0s 

y=(R+r)sin&- (r+p)sin (+) y (2) 

where R is the radius of the fixed circle, T is the radius 
of the rotating circle, and p is the offset of the edge of 
the rotating circle. The figure closes only if R, T, and p 
are RATIONAL. The equations can also be written 

x = x&~cost + ucos(nt)] - 3&2sinf - usin( 

(3) 

y = y&-a cos t + a cos(nt)] + x0 [m sin t - a sin(&)], 

(4) 
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where the outer wheel has radius 1, the inner wheel a 
radius p/q, the pen is placed a units from the center, 
the beginning is at 19 radians above the z-axis, and 

m= ‘-’ 
Q 

(5) 

n- ‘-’ 
P 

(6) 

20 E cm 8 (7) 
yo = sin 0. (8) 

The following curves are for a = i/10, with i = 1, 2, . l  , , 
10, and 19 = 0. 

(P, s> = 07 5) 

Spirolateral 

(P, 4) = c&v 

Additional attractive designs such as the following can 
also be made by superposing individual spirographs. 

see also EPITROCHOID, HYPOTROCHOID, MAURER 
ROSE,~PIROLATERAL 

Spirolateral 
A figure formed by taking a series of steps of length 1, 2, 

n, with an angle 8 turn after each step. The symbol 
fo; ‘a spirolateral is alr*m*rakng, where the ais indicate 
that turns are in the -8 direction for these sters. 
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References 
Gardner, M. “Worm Paths.” Ch. 17 in Knotted Dough- 

nuts and Other Mathematical Entertainments. New York: 
W. II Freeman, 1986. 

Odds, F. C. “Spirolaterals.” Math. Teacher 66, 121-124, 
1973. 

Spline 
An interpolating POLYNOMIAL which uses information 
from neighboring points to obtain a degree of global 
smoothness. 

see ah B-SPLINE, B~ZIER SPLINE, CUBIC SPLINE, 

NURBS CURVE 

References 
Bartels, R. H.; Beatty, J. C.; and Barsky, B. A. An Introduc- 

tion to Splines for Use in Computer Graphics and Geo- 
metric Modelling. San Francisco, CA: Morgan Kaufmann, 
1987, 

de Boor, C. A Practical Guide to Splines. New York: 
Springer-Verlag, 1978. 

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vet- 
terling, W. T. “Interpolation and Extrapolation.” Ch. 3 
in Numerical Recipes in FORTRAN: The Art of Scien- 
tific Computing, 2nd ed. Cambridge, England: Cambridge 
University Press, pp. 99-122, 1992. 

Spiith, H. One Dimensional Spline Interpolation Algorithms. 
Wellesley, MA: A. K. Peters, 1995. 

Splitting 

3 
108 

'3 
108 

23 
108 

33 ‘08 

Splitting Algorithm 
A method for computing a UNIT FRACTION. This 
method always terminates (Beeckmans 1993). 

References 
Beeckmans, L. “The Splitting Algorithm for Egyptian F!rac- 

tions.” J, Number Th. 43, 173-185, 1993. 

Sponge 
A sponge is a solid which can be parameterized by IN- 
TEGERS p, Q, and n which satisfy the equation 

2sin($sin(~) =cos(%>. 

The possible sponges are {p, qlk} = {6,6[3}, {6,414}, 

{4,614)7 (3, W), and {4,4100} (Ball and Coxeter 1987). 

see also HONEYCOMB, MENGER SPONGE, SIERPI~~SKI 
SPONGE,TETRIX 

References 
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recre- 

ations and Essays, 13th ed. New York: Dover, p. 152, 
1987. 

Cromwell, P, R. Polyhedra. New York: Cambridge University 
Press, p. 79, 1997. 
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SPIROGRAPH see also MAURER ROSE, 
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Sporadic Group 
One of the 26 finite SIMPLE GROUPS. The most com- 
plicated is the MONSTER GROUP. A summary, as given 
by Conway et al. (1985), is given below. 

SYm Name Order MA 

Ml1 Mathieu 24 * 32 * 5 - 11 1 1 

Ml2 Mathieu 26 ’ 33 ’ 5 ’ 11 2 2 

M22 Mathieu 27 - 32 ’ 5 * 7 * 11 12 2 

M23 Mathieu 27 . 32 m 5.7.11.23 1 1 

M24 Mathieu 2 lo - 33 - 5 - 7 - 11 - 23 1 1 

Jz=HJ Janko 27 . 33 rn 52 . 7 2 2 

sux Suzuki 2 I3 .37.52 .7.11.13 6 2 

HS Higman-Sims 2g - 32 * 53 * 7 * 11 2 2 

McL McLaughlin 27 - 36 - 53 - 7 - 11 3 2 

co3 Conway 2 lo . 37 . 53 m7.11.23 1 1 

CO2 Conway 2 I* . 36 -53 . 7 . 11 . 23 1 1 

CO1 Conway 2 21 . 39 . 54 . 72 - 11 - 13. 23 2 1 

He Held 2 lo . 33 . 52 . 73 . 17 1 2 

F&2 Fischer 2 l7 .39 .52 .7.11 rn 13 6 2 

Fi23 Fischer 2 18 . 313 - 52 .7~11~13*17.23 1 1 

Fi;, Fischer 2 21 . 31” ’ 52 * 73 * 11 s 13 * 17 3 2 

m23 .29 

HN Harada-Norton 214 . 3” + 56 . 7. 11 . 19 1 2 

Th Thompson 2 15 , 310 * 53 * 72 - 13 * 19 * 31 1 1 

B Baby Monster 241 = 313 . 56 - 72 - 11 - 13. 17. 19 2 1 

-23 e 31 e 47 

M Monster I 246 v 320 . 5’ . 7” . 112 . 133 . 17. 19 1 1 

-23. m29.31 .41 b47.59 - 71 

JI Janko 23 -3-5-7-11-19 1 1 

O’N O’Nan 2g * 34 * 73 * 5 * 11 - 19 . 31 3 2 

33 Janko 27 * 35 * 5 * 17 ’ 19 3 2 

LY Lyons 28 - 37 - 5’ - 7 - 11 a 31.37.67 1 1 

Ru Rudvalis 2 I4 -33 . 53 . 7. 13. 29 2 1 

J4 Janko 2 21 . 33 = 5 a 7. 113 . 23.29 .31 1 1 

-37 - 43 

see ah BABY MONSTER GROUP, CONWAY GROUPS, 

FISCHER GROUPS, HARADA-NORTON GROUP, HELD 

GROUP, HIGMAN-SIMS GROUP, JANKO GROUPS, LYONS 

GROUP, MATHIEU GROUPS, MCLAUGHLIN GROUP, 

MONSTER GROUP, @NAN GROUP, RUDVALIS GROUP, 

SUZUKI GROUP, THOMPSON GROUP 

References 
Aschbacher, M. Sporadic Groups. New York: Cambridge 

University Press, 1994. 
Conway, J. H., - Curtis, R. T.; Norton, S. P.; Parker, R,. A.; 

and Wilson, R. A. Atlas of Finite Groups: Maximal Sub- 
groups and Ordinary Characters for Simple Groups. Qx- 
ford, England: Clarendon Press, p. viii, 1985. 

Math, Intell. Cover of volume 2, 1980. 
Wilson, R, A. “ATLAS of Finite Group Representation.” 

http://for.mat .bham.ac.uk/atlas#spo. 

Sports 

see also BASEBALL, BOWLING, CHECKERS, CHESS, Go 

Sprague-Grundy Function 

see NM-VALUE 

Sprague-Grundy Number 

see NIM-VALUE 

Square 

Sprague-Grundy Value 

see NIM-VALUE 

Spread (Link) 

see SPAN (LINK) 

Spread (Tree) 
A TREE having an infinite number of branches and 
whose nodes are sequences generated by a set of rules. 

see also FAN 

Spun Knot 
A 3-D KNOT spun about a plane in 4-D. Unlike SUS- 

PENDED KNOTS, spun knots are smoothly embedded at 
the poles. 

see also SUSPENDED KNOT, TWIST-SPUN KNOT 

Squarable 
An object which can be constructed by SQUARING is 
called squarable. 

Square 

1 

The term square is sometimes used to mean SQUARE 
NUMBER. When used in reference to a geometric figure, 
however, it means a convex QUADRILATERAL with four 
equal sides at RIGHT ANGLES to each other, illustrated 
above. 

The PERIMETER of a square with side length a is 

L = 4a (1) 

and the AREA is 
A = a2. (2) 

The INRADIUS T, CIRCUMRADIUS R, and AREA A can 

be computed directly from the formulas for a general 
regular POLYGON with side length a and n = 4 sides, 

R= $acsc ; = +-Jz, 
( > (4) 

A= = u2* (5) 

The length of the DIAGONAL of the UNIT SQUARE is fi, 

sometimes known as PYTHAGORAS’S CONSTANT. 



Square 

The AREA of a square inscribed inside a UNIT SQUARE 
as shown in the above diagram can be found as follows. 
Label 2 and y as shown, then 

x2 + y2 = T2 

(dl + r2 - 2)2 + y2 = 1. 

Plugging (6) into (7) gives 

(JS - x)2 + (2 - x2) = 1. 

Expanding 

x2 - 2z~+rz+1+r2+T2-X2=1 

and solving for cc gives 

T2 

x=&T7’ 

Plugging in for y yields 

y=~Gy&. 

The area of the shaded square is then 

&(Jg--l--y)2=~ 

(Detemple and Harold 1996). 

B 

Square 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

The STRAIGHTEDGE and COMPASS construction of the 
square is simple. Draw the line OpO and construct a 
circle having Opa as a radius. Then construct the per- 
pendicular OB through 0. Bisect p&B and p@B to 
locate PI and p2, where PA is opposite PO. Similarly, 
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construct ps and p4 on the other SEMICIRCLE. Con- 
necting PI PzP3P4 then gives a square. 

As shown by Schnirelmann, a square can be INSCRIBED 
in any closed convex planar curve (Steinhaus 1983). A 
square can also be CIRCUMSCRIBED about any closed 
curve (Steinhaus 1983). 

An infinity of points in the interior of a square are known 
whose distances from three of the corners of a square are 
RATIONAL NUMBERS. Calling the distances a, b, and c 
where s is the side length of the square, these solutions 
satisfy 

(s2 + b2 - a’)’ + (s2 + b2 - c”)” = (2bsj2 (13) 

(Guy 1994). In this problem, one of a, b, c, and s is 
DIVISIBLE by 3, one by 4, and one by 5. It is not known 
if there are points having distances from all fozlr corners 
RATIONAL, but such a solution requires the additional 
condition 

a2 +c2 = b2 +d2. (14) 

In this problem, s is DIVISIBLE by 4 and a, b, c, and d 
are ODD. If s is not DIVISIBLE by 3 (5), then two of a, 
b, c, and d are DIVISIBLE by 3 (5) (Guy 1994). 

see UZSOBROWKIN'S THEOREM,DISSECTTON,DOUGLAS- 
NEUMANN THEOREM, FINSLER-HADWIGER THEOREM, 
LOZENGE, PERFECT SQUARE DISSECTION, PYTHAGO- 
RAS'S CONSTANT, PYTHAGOREAN SQUARE Puz- 
ZLE, RECTANGLE, SQUARE CUTTING, SQUARE NUM- 
BER, SQUARE PACKING, SQUARE QUADRANTS, UNIT 

SQUARE,VON AUBEL'S THEOREM 

References 
Detemple, D. and Harold, S. “A Round-Up of Square Prob- 

lems.” Math. Mug. 69, 15-27, 1996. 
Dixon, R. M&ographics. New York: Dover, p. 16, 1991. 
Eppstein, D. “Rectilinear Geometry.” http: //www . its , uci , 

edu/leppstein/ junkyardirect . html. 
Guy, R. K. “Rational Distances from the Corners of a 

Square.” SD19 in Unsolved Problems in Number Theory, 
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Square Bracket Polynomial 
A POLYNOMIAL which is not necessarily an invariant of 
a LINK. It is related to the DKHROIC POLYNOMIAL. It 
is defined by the SKEIN RELATIONSHIP 

BL+ = q 
-112 

VBL~ +BL,> (1) 

and satisfies 
B unknot = q 

112 
(2) 

and 
B Luunknot = q 

l/2 BL. (3) 

References 
Adams, C. C. The Knot Book: An Elementary Infroduction 

to the Mathematical Theory of Knots. New York: W. H. 
Freeman, pp. 235-241, 1994. 
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Square Cupola Square Knot 

cl-- 
JOHNSON SOLID J4. The bottom eight VERTICES are 

(*+(I + A), *+, o), (*$, *;(I+ Jz), o), 

and the top four VERTICES are 

Square Curve 

see SIERPI~~KI CURVE 

Square Cutting 
The average number of regions into which IV lines divide 

a SQUARE is 

&N(N-I)T+N+I 

(Santa16 1976). 

see also CIRCLE CUTTING 

References 
Finch, S. “Favorite Mathematical Constants.” http: //www. 

mathsoft.com/asolve/constant/g8om/geom.html~ 
Santal6, L. A. Integral Geometry and Geometric Probability. 

Reading, MA: Addison-Wesley, 1976. 

Square-Free 

see SQUAREFREE 

Square Gyrobicupola 

see JOHNSON SOLID 

Square Integrable 
A function f(z) is said to be square integrable if 

is finite. 

see UZSO INTEGRABLE, L2-No~& TITCHMARSH THEO- 
REM 

References 
Sansone, G. “Square Integrable Functions.” $1.1 in Orthogo- 

nal Functions, rev. English ed. New York: Dover, pp. 1-2, 
1991. 

Rw a 
A composite KNOT of six crossings consisting of a KNOT 
SUM of a TREFOIL KNOT and its MIRROR IMAGE. The 
GRANNYKNOT has thesame ALEXANDERPOLYNOMIAL 
( X2 - x + 1)” as the square knot. The square knot is also 
called the REEF KNOT. 

see also GRANNY KNOT, MIRROR IMAGE, TREFOIL 
KNOT 

References 
Owen, P. Knots. Philadelphia, PA: Courage, p. 50, 1993. 

Square Matrix 
A MATRIX for which horizontal and vertical dimensions 
are the same (i.e., an 72 x n, MATRIX). 

see also MATRIX 

Square Number 

A FIGURATE NUMBER of the form nz = n2, where 72 
is an INTEGER. A square number is also called a PER- 
FECT SQUARE. The first few square numbers are 1, 4, 
9, 25, 36, 49, . . . (Sloane’s A000290). The GENERATING 
FUNCTION giving the square numbers is 

x(x + 1) 
(1 

= 2 + 4x2 

The kth nonsquare number 

an =n+ 

+ 9x3 + 16x4 + . . . . (1) 

uk is given by 

where 1x1 is the FLOUR FUNCTION, and the first few 
are 2, 3, 5, 6, 7, 8, 10, 11, l  . . (Sloane’s AOOOO37). 

The only numbers which are simultaneously square and 
PYRAMIDAL (the CANNONBALL PROBLEM) are PI = 1 
and P24 = 4900, corresponding to S1 = 1 and STO = 
4900 (Dickson 1952, p. 25; Ball and Coxeter 1987, p. 59; 
Ogilvy 1988), as conjectured by Lucas (1875, 1876) and 
proved by Watson (1918). The CANNONBALL PROBLEM 
is equivalent to solving the DIOPHANTINE EQUATION 

y2 = :x(x + l)(2z + 1) (3) 
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(Guy 1994, p. 147). n s(n) x2 (mod n) 

The only numbers which are square and TETRAHEDRAL 
are .Tel = 1, Te2 = 4, and Teds = 19600 (giving & = 1, 

s2 = 4, and 5140 = 19600), as proved by Meyl (1878; 
cited in Dickson 1952, p. 25; Guy 1994, p. 147). In 
general, proving that only certain numbers are simulta- 
neously figurate in two different ways is far from elemen- 
t ary. 

To find the possible last digits for a square number, write 
n = lOa+b for the number written in decimal NOTATION 
as able (a, b = 0, 1, . . . , 9). Then 

n2 = lOOa + 20ab + b2, (4 

so the last digit of n2 is the same as the last digit of b2. 
The following table gives the last digit of b2 for b = 0, 
1, “‘1 9. As can be seen, the last digit can be only 0, 
1, 4, 5, 6, or 9. 

0123 4 5 6 7 8 9 
0 1 4 9 -6 -5 -6 -9 -4 -1 

We can similarly examine the allowable last two digits 
by writing abclo as 

n = 1OOa + lob + c, (5) 

so 

n2 = (100~ + lob + c)~ 

= 104a2 + 2(1000ab + looac + 10bc) + 100b2 + c2 
- - ( 104a2 + 2000ab + 100~ + 100b2) + 20bc + c2, 

(6) 

so the last two digits are given by 2Obc+ c2 = c(20b + c). 
But since the last digit must be 0, 1, 4, 5, 6, or 9, the 
following table exhausts all possible last two digits. 

0 12 3 4 5 6 7 8 9 

1 01 21 41 61 81 -01 -21 -41 -61 -81 
4 16 96 -76 -56 -36 -16 -96 -76 -56 -36 
5 25 -25 -25 -25 -25 -25 -25 -25 -25 -25 
6 36 -56 -76 -96 -16 -36 -56 -76 -96 -16 
9 81 -61 -41 -21 -01 -81 -61 -41 -21 -01 

The only possibilities are 00, 01, 04, 09, 16, 21, 24, 25, 
29, 36, 41, 44, 49, 56, 61, 64, 69, 76, 81, 84, 89, and 96, 
which can be summarized succinctly as 00, el, e4, 25, 
06, and e9, where e stands for an EVEN NUMBER and o 
for an ODD NUMBER. Additionally, unless the sum of 
the digits of a number is 1, 4, 7, or 9, it cannot be a 
square number. 

The following table gives the possible residues mod n 
for square numbers for n = 1 to 20. The quantity s(n) 
gives the number of distinct residues for a given n. 

2 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 
20 

2 0,l 
2 0,l 
2 0,l 
3 0, 1, 4 
4 0, 1, 3, 4 
4 0, 1, 2, 4 
3 0, 1, 4 

4 0, 1, 4, 7 

6 0, 1, 4, 5, 6, 9 
6 0, 1, 3, 4, 5, 9 
4 0, 1, 4, 9 
7 0, 1, 3, 4, 9, 10, 12 
8 0, 1, 2, 4, 7, 8, 9, 11 
6 0, 1, 4, 6, 9, 10 
4 0, 1, 4, 9 
9 0, 1, 2, 4, 8, 9, 13, 15, 16 
8 0, 1, 4, 7, 9, 10, 13, 16 

10 0, 1, 4, 5, 6, 7, 9, 11, 16, 17 
6 0, 1, 4, 5, 9, 16 

In general, the ODD squares are congruent to 1 (mod 8) 
(Conway and Guy 1996). Stangl (1996) gives an explicit 
formula by which the number of squares s(n) in & (i.e., 
mod n) can be calculated. Let p be an ODD PRIME. 

Then s(n) is the MULTIPLICATIVE FUNCTION given by 

s(2) = 2 

s(p) = i(Pf 1) (P # 2) 

s(p”) = +(p” -p+2) (PM 

(7) 
(8) 

(9) 

(10) 
for n even 
for n odd 

s(p”) = 
for n > 3 even - 

for n > 3 odd. - 
(11) 

s(n) is related to the number q(n) of QUADRATIC 

RESIDUES in Z, by 

4CP”l = s(p”) - s(p”-“) (12) 

for n > 3 (Stangl 1996). - 

For a perfect square n, (n/p) = 0 or 1 for all ODD 

PRIMES p < n where (n/p) is the LEGENDRE SYMBOL. 

A number n which is not a perfect square but which 
satisfies this relationship is called a PSEUDOSQUARE. 

The minimum number of squares needed to represent 
the numbers 1, 2, 3, l  . . are 1, 2, 3, 1, 2, 3, 4, 2, 1, 2, . . . 
(Sloane’s A002828), and the number of distinct ways to 
represent the numbers 1, 2, 3, . l  . in terms of squares 
are 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, . . l  (Sloane’s A001156). 
A brute-force algorithm for enumerating the square per- 
mutations of n is repeated application of the GREEDY 

ALGORITHM. However, this approach rapidly becomes 
impractical since the number of representations grows 
extremely rapidly with n, as shown in the following ta- 
ble. 
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n Square Partitions 

10 4 

50 104 

100 1116 
150 6521 

200 27482 

Every PoSITIVE integer is expressible as a SUM of (at 

most) 9w = 4 square numbers (WARING'S PROBLEM). 
(Actually, the basis set is (0, 1, 4, 9, 16, 25, 36, 64, 81, 
100, . l  . ), so 49 need never be used.) Furthermore, an 
infinite number of n require four squares to represent 
them, so the related quantity G(2) (the least INTEGER 
n such that every POSITIVE INTEGER beyond a certain 
point requires G(2) squares) is given by G( 2) = 4. 

Numbers expressible as the sum of two squares are those 
whose PRIME FACTORS are of the form 4/~ - 1 taken to 
an EVEN POWER. Numbers expressible as the sum of 
three squares are those not of the form 4k(8Z + 7) for 
k, 2 > 0. The following table gives the first few numbers - 
which require N = 1, 2, 3, and 4 squares to represent 
them as a sum. 

N Sloane Numbers 

1 000290 1, 4, 9, 16, 25, 36, 49, 64, 81, . l  . 
2 000415 2, 5, 8, 10, 13, 17, 18, 20, 26, 29, . . . 
3 000419 3, 6, 11, 12, 14, 19, 21, 22, 24, 27, . . . 
4 004215 7, 15, 23, 28, 31, 39, 47, 55, 60, 63, . . . 

The FERMAT 4n + 1 THEOREM guarantees that every 
PRIME of the form 4n+ 1 is a sum of two SQUARE NUM- 
BERS in Only one way. 

There are only 31 numbers which cannot be expressed 
as the sum of distinct squares: 2, 3, 6, 7, 8, 11, 12, 15, 
18, 19, 22, 23, 24, 27, 28, 31, 32, 33, 43, 44, 47, 48, 60, 
67, 72, 76, 92, 96, 108, 112, 128 (Sloane’s A001422; Guy 
1994). All numbers > 188 can be expressed as the sum 
of at most five distinct squares, and only 

and 

124 = 1 + 4 + 9 + 25 + 36 + 49 (13) 

188 = 1 + 4 + 9 + 25 + 49 + 100 (14) 

require six distinct squares (Bohman et al. 1979; Guy 
1994, p. 136). In fact, 188 can also be represented using 
seven distinct squares: 

188 = 1 + 4 + 9 + 25 + 36 + 49 + 64. (15) 

The following table gives the numbers which can be rep- 
resented in W different ways as a sum of S squares. For 
example, 

50 = l2 + 72 = 52 +52 

can be represented in two ways (W = 2) by two squares 
(S = 2). 

S W Sloane Numbers 

1 1 000290 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, l  . . 
2 1 025284 2, 5, 8, 10, 13, 17, 18, 20, 25, 26, 29, 4 l  n  

2 2 025285 50, 65, 85, 125, 130, 145, 170, 185, . . . 
3 1 025321 3, 6, 9, 11, 12, 14, 17, 18, 19, 21, 22, l  . l  

3 2 025322 27, 33, 38, 41, 51, 57, 59, 62, 69, 74, l  .* 

3 3 025323 54, 66, 81, 86, 89, 99, 101, 110, 114, l  m* 
3 4 025324 129, 134, 146,153, 161,171,189, a.. 
4 1 025357 4, 7, 10, 12, 13, 15, 16, 18, 19, 20, . . . 
4 2 025358 31, 34, 36, 37, 39, 43, 459 47, 49, l  * n  

4 3 025359 28, 42, 55, 60, 66, 67, 73, 75, 78, . . . 
4 4 025360 52, 58, 63, 70, 76, 84, 87, 91, 93, . . . 

The number of INTEGERS < x which are squares or sums 
of two squares is 

where 

N(x) N kx(lnx)-1’2, (16) 

k= f-p= (17) 

(Landau 1908; Le Lionnais 1983, p. 31). The product 
of four distinct NONZERO INTEGERS in ARITHMETIC 
PROGRESSION is square only for (-3, -1, 1, 3), giv- 

ing WWP)W = 9 (Le Lionnais 1983, p. 53). It 
is possible to have three squares in ARITHMETIC PRO- 
GRESSION, but not four (Dickson 1952, pp. 435-440). If 
these numbers are r2, s2, and t2, there are POSITIVE 
INTEGERS p and Q such that 

T= IP 2-2Pq-q21 (18) 

s = p2 + q2 (19) 

t=p2+2pq-q2, (20) 

where (p, q) = 1 and one of T, s, or t is EVEN (Dick- 
son 1952, pp. 437-438) Every three-term progression of 
squares can be associated with a PYTHAGOREAN TRIPLE 

(X7 x 2) bY 

x- i(r+t) (21) 

Y = gt-T) (22) 

z=s (23) 

(Robertson 1996). 

CATALAN'S CONJECTURE states that 8 and 9 (23 and 
32) are the only consecutive POWERS (excluding 0 and 
l), i.e., the only solution to CATALAN'S DIOPHANTINE 
PROBLEM. This CONJECTURE has not yet been proved 
or refuted, although R. Tijdeman has proved that there 
can be only a finite number of exceptions should the 
CONJECTURE not hold. It is also known that 8 and 9 
are the only consecutive CUBIC and square numbers (in 
either order) l  
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A square number can be the concatenation of two 
squares, as in the case 16 = 42 and 9 = 32 giving 
169 = 132. 

It is conjectured that, other than 102n, 4 x 102” and 
9 x 102n, there are only a FINITE number of squares 
n2 having exactly two distinct NONZERO DIGITS (Guy 
1994, p. 262). The first few such n are 4, 5, 6, 7, 8, 9, 
11, 12, 15, 21, l  . l  (Sloane’s A016070), corresponding to 
n2 of 16, 25, 36, 49, 64, 81, 121, . . , (Sloane’s A016069). 

The following table gives the first few numbers which, 
when squared, give numbers composed of only certain 
digits. The only known square number composed only 
of the digits 7, 8, and 9 is 9. Vardi (1991) considers 
numbers composed only of the square digits: 1, 4, and 
9. 

Digits Sloane 

1, 2, 3 030175 

030174 
1, 4, 6 027677 

027676 
1, 4, 9 027675 

006716 
2, 4, 8 027679 

027678 
4, 5, 6 030177 

030176 

71, nL 

1, 11, 111, 36361, 363639, . . . 

1, 121, 12321, 1322122321, . . . 
1, 2, 4, 8, 12, 31, 38, 108, . . . 
1, 4, 16, 64, 144, 441, 1444, . . . 
1, 2, 3, 7, 12, 21, 38, 107, . . . 
1, 4, 9, 49, 144, 441, 1444, 11449, l  . . 
2, 22, 168, 478, 2878, 210912978, . . . 
4, 484, 28224, 228484, 8282884, . . . 
2, 8, 216, 238, 258, 738, 6742, . . . 
4, 64, 46656, 56644, 66564, . . . 

BROWN NUMBERS are pairs (m,n) of INTEGERS satis- 
fying the condition of BROCARD'S PROBLEM, i.e., such 
that 

n!+l=m2, (24) 

where n! is a FACTORIAL. Only three such numbers are 
known: (5,4), (l&5), (71,7). ErdCs conjectured that 
these are the only three such pairs. 

Either 5x2 + 4 = y2 or 5x2 - 4 = y2 has a solution in 
POSITIVE INTEGERS IFF, for some n, (x, y) = (F.., Ln), 
where & is a FIBONACCI NUMBER and L, is a LUCAS 
NUMBER (Honsberger 1985, pp. 114-118). 

The smallest and largest square numbers containing the 
digits 1 to 9 are 

11,8262 = 139,854,276, (25) 

30, 3842 = 923,187,456. (26) 

The smallest and largest square numbers containing the 
digits 0 to 9 are 

32, 0432 = 1,026,753,849, (27) 

99, 0662 = 9,814,072,356 (28) 

(Madachy 1979, p. 159). The smallest and largest square 
numbers containing the digits 1 to 9 twice each are 

335,180, 1362 = 112,345,723,568,978,496 (29) 

999,390, 4322 = 998,781,235,573,146,624, (30) 

and the smallest and largest containing 1 to 9 three 
times are 

10,546,200,195, 3122 

- 111,222,338,559,598,866,946,777,344 (31) - 

31,621,017,808, 1822 

= 999,888,767,225,363,175,346,145,124 (32) 

(Madachy 1979, p. 159). 

Madachy (1979, p. 165) also considers number which are 
equal to the sum of the squares of their two “halves” 
such as 

1233 = 122 + 332 (33) 

8833 = 88’ + 332 (34 

10100 = lo2 + loo2 (35) 

5882353 = 5882 + 23532, (36) 

in addition to a number of others. 

see UZSO ANTISQU ‘ARE NUMBER, BIQUADRATIC NUM- 
BER , BROCARD’S PROBLEM, BROWN NUMBERS, CAN- 

NONBA LL PROBLEM, CATALAN'S c ONJECTURE , CEN- 
TERED SQ UARE NUMBER, CLARK ‘S TRIANGLE, CUBIC 

NUMBER, DIOPHANTINE EQUATION, FERMAT 4n + 1 
THEOREM,GREEDYALGORITHM, GROSS, LAGRANGE'S 
FOUR-SQUARE THEOREM,LANDAU-RAMANUJAN CON- 
STANT, PSEUDOSQUARE, PYRAMIDAL NUMBER, rk(n), 
SQUAREFREE, SQUARE TRIANGULAR NUMBER, WAR- 

ING’S PROBLEM 

References 
Ball, W* W. R. and Coxeter, H. S M. IMathematical Recre- 

ations and Essays, 13th ed. New York: Dover, p. 59, 1987. 
Bohman, J.; FKberg, C.-E.; and Riesel, H. “Partitions in 

Squares .” BIT 19, 297-301, 1979. 
Conway, 3. H. and Guy, R. K. The Book of Numbers. New 

York: Springer-Verlag, pp* 30-32, 1996. 
Dickson, L. E. History of the Theory of Numbers, Vol. 2: 

Diophantine Analysis. New York: Chelsea, 1952. 
Grosswald, E. Representations of Integers as Sums of 

Squares. New York: Springer-Verlag, 1985. 
Guy, R. K. “Sums of Squares” and ‘Squares with Just Two 

Different Decimal Digits.” SC20 and F24 in Unsolved Prob- 
lems in Number Theory, 2nd ed. New York: Springer- 
Verlag, pp. 136-138 and 262, 1994. 

Honsberger, R. “A Second Look at the Fibonacci and Lucas 
Numbers.” Ch. 8 in Mathematical Gems III. Washington, 
DC: Math. Assoc. Amer,, 1985. 

Le Lionnais, F. Les nombres remarquables. Paris: Hermann, 
1983. 

Lucas, I& Question 1180. NOW. Ann. Math. Ser. 2 14, 336, 
1875. 

Lucas, I?. Solution de Question 1180, Nouv. Ann. Math. Ser. 
2 15, 429-432, 1876. 

Madachy, J. S. Madachy’s Mathematical Recreations, New 
York: Dover, pp. 159 and 165, 1979. 

Meyl, A.-J.-J. Solution de Question 1194. Nouu. Ann. Muth. 
17,464-467, 1878. 

Ogilvy, C. S. and Anderson, J. T. Excursions in Number 
Theory. New York: Dover, pp. 77 and 152, 1988. 



1712 Square Orthobicupola Square Pyramid 

Pappas, T. “Triangular, Square & Pentagonal Numbers.” 
The Joy of Mathematics. San Caries, CA: Wide World 
Publ./Tetra, p. 214, 1989. 

Pietenpol, J. L. “Square Triangular Numbers.” Amer, Math. 
Monthly 69, 168-169, 1962. 

Robertson, J. P. “Magic Squares of Squares.” Math. Mug. 
69, 289-293, 1996. 

Stangl, W. II. “Counting Squares in &.” Math. Mug. 69, 
285-289, 1996. 

Taussky-Todd, 0. “Sums of Squares.” Amer. Math. Monthly 

77,805-830, 1970. 
Vardi, I. Computational Recreations in Mathematics. Read- 

ing, MA: Addison-Wesley, pp. 20 and 234-237, 1991. 
Watson, G. N. “The Problem of the Square Pyramid.” Mes- 

senger. Math. 48, l-22, 1918. 

Square Orthobicupola 

see JOHNSON SOLID 

Square Packing 
Find the minimum size SQUARE capable of bounding n 
equal SQUARES arranged in any configuration. The only 
packings which have been proven optimal are 2,3, 5, and 
SQUARE NUMBERS (4, 9, . . . ). If 72 = ct2 - a for some 

a, it is CONJECTURED that the size of the minimum 
bounding square is a for small n. The smallest n for 
which the CONJECTURE is known to be violated is 1560. 
The size is known to scale as kb, where 

g3 - J3) < b < +* 

n Exact Decimal 

1 1 1 
2 2 2 
3 2 2 
4 2 2 
5 2+ +fi 2.707... 
6 3 3 
7 3 3 
8 3 3 
9 3 3 
10 3+ +fi 3.707... 
11 3.877. . . 
12 4 4 
13 4 4 
14 4 4 
15 4 4 
16 4 4 
17 4+ p 4.707... 
18 2(7 + 8) 4.822.. . 
19 3+ ;fi 4.885.u 
20 5 5 

The best packing of a SQUARE inside a PENTAGON, il- 
lustrated above, is 1.0673.. . . 
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Square Polyomino 

see also L-POLYOMINO, SKEW POLYOMINO, STRAIGHT 
POLYOMINO,T-POLYOMINO 

Square Pyramid 

A square pyramid is a PYRAMID with a SQUARE base. 
If the top of the pyramid is cut off by a PLANE, a square 
PYRAMIDAL FRUSTUM is obtained. If the four TRI- 
ANGLES of the square pyramid are EQUILATERAL, the 
square pyramid is the “regular” POLYHEDRON known as 
JOHNSON SOLID JI and, for side length a, has height 

h = @L (1) 

Using the equation for a general PYRAMID, the VOLUME 
of the “regular” is therefore 

V= ihAb = @a”. (2) 

If the apex of the pyramid does not lie atop the center 
of the base, then the SLANT HEIGHT is given by 

S= h2 + $u2, (3) 

where h is the height and a is the length of a side of the 
base. 
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a a12 

( > a (b) ( ) C 

Consider a HEMISPHERE placed on the base of a square 
pyramid (having side lengths a and height h) . Further, 
let the hemisphere be tangent to the four apex edges. 
Then what is the volume of the HEMISPHERE which is 
interior the pyramid (Cipra 1993)? 

Solving gives 

so 

x=+ a, J6 (13) 

Y- -d== JGa=JFa=G. (14) 

From Fig. (a), the CIRCUMRADIUS of the base is a/& 
Now find h in terms of T and a. Fig. (b) shows a CROSS- 
SECTION cut by the plane through the pyramid’s apex, 
one of the base’s vertices, and the base center. This 
figure gives 

so 

We can now find the AREA of the SPHERICAL CAP as 

V - bH(3A2 + H2), cap - 6 (15) 

where 

b= 2/ +2 - 73 (4) 
c = -\/ h2 - r2, (5) 

so the SLANT HEIGHT is 

s= J~=~+~=J~+J~z-~z. (6) 

Solving for h gives 

(7) 

We know, however, that the HEMISPHERE must be tan- 
gent to the sides, so T = a/2, and 

(8) 

Fig. (c) shows a CROSS-SECTION through the center, 
apex, and midpoints of opposite sides. The PYTHAGO- 
REAN THEOREM once again gives 

We now need to find x and y+ 

JF+d=l. (10) 

I3ut we know I and h, and d is given by 

Therefore, the volume within the pyramid is 

This problem appeared in the Japanese scholastic apti- 
tude test (Cipra 1993). 

see also SQUARE PYRAMIDAL NUMBER 
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so 

d = Jh2 - x2, (11) 
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Square Pyramidal Number 
A FIGURATE NUMBER ofthe form 

Pn = &(n + 1)(2n + l), (1) 

corresponding to a configuration of points which form 
a SQUARE PYRAMID, is called a square pyramidal num- 
ber (or sometimes, simply a PYRAMIDAL NUMBER). The 
first few are 1, 5, 14, 30, 55, 91, 140, 204, . . . (Sloane’s 
AO00330). They are sums of consecutive pairs of TET- 
RAHEDRAL NUMBERS and satisfy 

P, = @n + l)Tn, 

where 5?n is the nth TRIANGULAR NUMBER. 

(2) 

The only numbers which are simultaneously SQUARE 
and pyramidal (the CANNONBALL PROBLEM) are PI = 1 
and P24 = 4900, corresponding to S1 = 1 and ST0 = 
4900 (Dickson 1952, pa 25; Ball and Coxeter 1987, p. 59; 
Ogilvy 1988), as conjectured by Lucas (1875, 1876) and 
proved by Watson (1918). The proof is far from ele- 
mentary, and is equivalent to solving the D~OPHANTINE 
EQUATION 

y2 = ix(x + 1)(2x + 1) (3) 
(Guy 1994, p. 147). However, an elementary proof has 
also been given by a number of authors. 

Numbers which are simultaneously TRIANGULAR and 
square pyramidal satisfy the DIOPHANTINE EQUATION 

3(2y + 1)2 = 8x3 + 12x2 + 4x + 3. (4) 

The only solutions are z = -1, 0, 1, 5, 6, and 85 (Guy 
1994, p. 147). Beukers (1988) has studied the problem 
of finding numbers which are simultaneously TETRAHE- 
DRAL and square pyramidal via INTEGER points on an 
ELLIPTIC CURVE. He finds that the only solution is the 
trivial Tel = PI = 1. 

see also TETRAHEDRAL NUMBER 
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Square Root 

Square Quadrants 

P s 

Q R Q R 
The areas of the regions illustrated above can be found 
from the equations 

A+4B+4C=l (1) 

A+3B+2C=$. (2) 

Since we want to solve for three variables, we need a 
third equation. This can be taken as 

A+2B+C=2E+D, (3) 

where 
D=+& (4) 

leading to 

A+2B+C = D+2E = 2(D+E)-D = ++&, (6) 

Combining the equations (1) , (2), and (6) gives the ma- 
trix equation 

which can be inverted to yield 

Heferences 
Honsberger, R, More Mathematical Morsels. Washington, 
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Square Root 

1 
2 4 6 a 10 
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Re[Sqrt zl Im[Sqrt 21 ISqrt 21 

A square root of z is a number T such that r2 = 2. This 
is written 1” = 2 li2 (x to the l/2 POWER) or T = &. 
The square root function f(z) = fi is the INVERSE 
FUNCTION of f(z) = x2. Square roots are also called 
RADICALS or SURDS. A general COMPLEX NUMBER z 
has two square roots. For example, for the real P~SXTIVE 
number z = 9, the two square roots are fi = k3, since 
32 = (-3y = 9. Similarly, for the real NEGATIVE num- 
ber x = -9, the two square roots are G = 4~34 where 
i is the IMAGINARY NUMBER defined by i2 = -1. In 
common usage, unless otherwise specified, “the” square 
root is generally taken to mean the POSITIVE square 
root l  

The squarerootof2isthe IRRATIUNAL NUMBER 1/z==: 
1.41421356 (Sloane’s A002193), which has the simple 
periodic CONTINUED FRACTION 1, 2, 2, 2, 2, 2, ..* l  

The square rootof3isthe IRRATIONAL NUMBER &k 
1.73205081 (Sloane’s AOO2194), which has the simple 
periodic CONTINUED FRACTION 1, 1, 2, 1, 2, 1, 2, .-. 
In general, the CONTINUED FRACTIONS of the square 
roots of all POSITIVE integers are periodic. 

The square roots of a COMPLEX NUMBER are given by 

Jx= &Ja+yz{cos [f tar? (5>] 

t-i sin [itan-’ (:)I}. (1) 

As can be seen in the above figure, the IMAGINARY PART 
of the complex square root function has a BRANCH CUT 
along the NEGATIVE real axis. 

A NESTED RADICAL of the form da & bfi can some- 
times be simplified into a simple square root by equating 

I/a*b&=Jd*&* (2) 

Squaring gives 

afb&=d+ef2&, (3) 

so 

a=d+e (4 

b2c = 4de. 

Solving for d and e gives 

(5 ) 

A sequence of approximations a/b to G can be derived 
by factoring 

a2 - nb2 = ztl (7) 

( h w ere -1 is possible only if -1 is a QUADRATIC 
RESIDUE of n). Then 

(a+b&)(a-bfi)=fl (8) 

(a + bfi)“(a - b&i)” = (*l)k = rtl, (9) 

and 

(l+fiy=l+fi (10) 
(1+fi)2 = (1-t n) + 2fi (11) 

(1 + fi)(a + bfi) = (a + bn) + fi (a + b). (12) 

Therefore, a and b are given by the RECURRENCE RE- 
LATIONS 

ai = ai- -/- bi-ln 

bi = ai-1 + bivl 

(13) 

(14) 

with al = bl = 1. The error obtained using this method 
I  

iS 

The first few approximants to & are therefore given by 

1+3n 1+6n+n2 1+10n+5n2 
1, +<1+ 4,3fn 

4(n + 1) ’ 5 + 10n + n2 ’ l  ’ l  l  

(16) 
This ALGORITHM is sometimes known as the BHASKA- 
RA-BROUCKNER ALGORITHM. For the case n = 2,this 
gives the convergents to t/z as 1, 3/2, 7/5, 17/12, 41/29, 
99170, . l  . . 

Another general technique for deriving this sequence, 
known as NEWTON'S ITERATION, is obtained by letting 
zc = Jn. Then x = n/x, so the SEQUENCE 

2-k=;(2*-I+$-) (17) 

converges quadratically to the root. The first few ap- 
proximants to fi are therefore given by 

1, +(I + n), 
l+6n+n2 

4(n+l) ’ 

1 + 26n -j- 70n2 + 28n3 + n4 

8(1+ n)(l + 6n + n2) ‘“” (18) 

For a, this gives the convergents 1, 3/2, 17/12, 
577/408, 665857/470832,.... 

see also CONTINUED SQUARE ROOT, CUBE ROOT, 
NESTED RADICAL, NEWTON'S ITERATION, QUADRATIC 
SURD, ROOT OF UNITY, SQUARE NUMBER, SQUARE 
TRIANGULAR NVMBER,SURD 
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Square Root Inequality 

a&Ti-2fi<L2J;E-2Jn-1. 
d- n 

Square Root Method 
The square root method is an algorithm which solves 
the MATRIX EQUATION 

Au=g (1) 

for u, with A a p x p SYMMETRIC MATRIX and g a 
given VECTOR. Convert A to a TRIANGULAR MATRIX 
iuch that 

TTT = A, 

where TT is the MATRIX TRANSPOSE. Then 

TTk = g 

Tu=k, 

SO 

giving the equations 

2 
Sll = all 

511512 = a12 

s122 +m2 = a22 

Slj2 + S2j2 + . . . + Sjj2 = ajj 

Slj + s2 j s2k  $-. l  l  + sjjsjk = ajk. 

These give 

Sll = 

s12 = 

s22 = 

Sjj = 

sjk = 

&rl 
a12 

Sll 

J a22 - 5122 

I/ ajj - Sij 2 - S2j2 - . . . - Sj-l,j2 

(2) 

(3) 
(4) 

(5) 

(6) 

ajk - SljSlk - s2 j s2k  - . l  l  - s j - l , js j -1,k 

?  

Sii 

(7) 

Square Zl~angular Number 

giving T from A. Now solve for k in terms 

and g, 

Sllh = 91 

s&l + szzkz = g2 

sljk1 + szjk2 +. l  . + sjjkj = gj, 

which gives 

of the sijs 

(8) 

k1 = 

k2 = 

kj = 

91 

Sll 

92 - snh 

322 

gj - sljkl - szjk2 - l  . n - sj-l,jkj-1 

%j 

Finally, find u from the sijs and k, 

~11~1 + ~12~2 . . l  + slpup = ICI 

~22~2 + l  ew -I- SQU~ = k2 

sPP”P = k,, 

giving the desired solution, 

(9) 

(10) 

kP 
up = - 

SPP 

up-1 = 
k,-1 - sP--lP”P 

sp-l,p-1 

Uj = 
kj - Sj,j+lUj+l - Sj,j+zUj+2 - . . . - SjpUp 

. 

%j 

(11) 

see also LW DECOMPOSITION 

References 
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Square Triangular Number 
A number which is simultaneously SQUARE and TRIAN- 
G'CILAR. The first few are 1, 36, 1225, 41616, 1413721, 
48024900, . . . (Sloane’s A001110), corresponding to 
TI = &, Ts = SS, T49 = S35, T2a~ = 5204, 556~ = 

S1189, ‘9’ (Pietenpol 1962), but there are an infinite 
number, as first shown by Euler in 1730 (Dickson 1952). 

The general FORMULA for a square triangular number 
ST, is b2c2, where b/c is the nth convergent to the CON- 
TINUED FRACTION of fi (Ball and Coxeter 1987, p* 59; 
Conway and Guy 1996). The first few are 

1 3 7 17 41 99 239 - - - - ,.* 
i'2'5'12'29'70'169' l  

(1) 

The NUMERATORS and DENOMINATORS give solutions 
to the PELL EQUATION 

x2 - 2y2 = *I, (2) 
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but can also be obtained by doubling the previous FRAC- 
TION and adding to the FRACTION before that. The con- 
nection with the PELL EQUATION can be seen by letting 
N denote the Nth TRIANGULAR NUMBER and M the 
Mth SQUARE NUMBER, then 

+N(N + I) = hP. (3) 

Defining 

2 ~2N+l (4) 

y=2M (5) 

then gives the equation 

X2 - 2y2 = 1 (6) 

(Conway and Guy 1996). Numbers which are simul-b 
taneously TRIANGULAR and SQUARE PYRAMIDAL also 
satisfy the DIOPHANTINE EQUATION 

3(2y + 1)2 = 8x3 + 12x2 + 4x + 3. (7) 

The only solutions are =1: = -1, 0, 1, 5, 6, and 85 (Guy 
1994, p. 147). 

A general FORMULA for square triangular numbers is 

ST, = 
(1+JZ)2n-(l-fi)2n 2 

4a 1 (8) 
= $[(17+ 12Tqn + (17 - 12Jz)” - 21. (9) 

The square triangular numbers also satisfy the RECUR- 

RENCE RELATION 

ST, = 34ST,s1 - ST,B2 + 2 (10) 

un+2 = Gun+1 - un, (11) 

with uo = 0, u1 = 1, where ST, E un2. A curious 
product formula for ST, is given by 

An 

ST, = z2+’ fi [3+cos (91. 
k=l 

amazing GENERATING FUNCTION 

(12) 

1+x 
f(x) = (1 _ x)(l _ 34x + x2> = I+ 36x + 1225x2 + l  l  . 

(13) 

(Sloane and Plouffe 1995). 

see also SQUARE NUMBER, SQUARE ROOT, TRIANGU- 
LAR NUMBER 
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Square Wave 

The square wave is a periodic waveform consisting of 
instantaneous transitions between two levels which can 
be denoted 311. The square wave is sometimes also called 
the RADEMACHER FUNCTION. Let, the squarewavehave 
period 2L. The square wave function is ODD, so the 
FOURIER SERIES has a0 = an = 0 and 

b,= fl”sin(y) dx 

4 4 0 n even - -- no sin2($m) = G 
1 n odd. 

The FOURIER SERIES for the square wave is therefore 

f( > 
4 O” 1 

x =- 
Ix 

- sin E!Z . 
7r n ( > L 

n=1,3,5,... 

see also HADAMARD MATRIX, WALSH FUNCTION 

References 
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see UZSO CUBED, SQUARE ROOT 
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Squared Square 

see PERFECT SQUARE DISSECTION 

Squarefree 

A number is said to be squarefree (or sometimes 
QUADRATFRH; Shanks 1993) if its PRIME decomposi- 
tion contains no repeated factors. All PRIMES are there- 
fore trivially squarefree. The squarefree numbers are 1, 

2, 3, 5, 6, 7, 10, 11, 13, 14, 15, , . . (Sloane’s AOO5117). 
The SQUAREFUL numbers (i.e., those that contain at 
least one square) are 4, 8, 9, 12, 16, 18, 20, 24, 25, , , . 
(Sloane’s AO13929). 

The asymptotic number Q(n) of squaxefree numbers < n - 
is given by 

(1) 

(Hardy and Wright 1979, pp. 269-270). Q(n) for 72 = 
10, 100, 1000, . . . are 7, 61, 608, 6083, 60794, 607926, 

while the asymptotic density is l/5(2) = 6/,rr2 E 
bl667927,where ((n) is the RIEMANN ZETA FUNCTION. 

The MOBIUS FUNCTION is given by 

l-4 > n= 

0 if n has one or more repeated prime factors 
1 ifn-1 

( 1) 
k - if n is product of k distinct primes, 

(2) 

so p(n) # 0 indicates that n is squarefree. The asymp- 
totic formula for Q(z) is equivalent to the formula 

(3) 
n=l 

(Hardy and Wright 1979, p. 270) 

There is no known polynomial-time algorithm for recog- 
nizing squarefree INTEGERS or for computing the square- 
free part of an INTEGER. In fact, this problem may 
be no easier than the general problem of integer fac- 
torization (obviously, if an integer n can be factored 
completely, n is squarefree IFF it contains no dupli- 
cated factors). This problem is an import ant unsolved 
problem in NU MBER I THEORY because camp uting the 

RING of integers of an algebraic number field is re- 
ducible to computing the squarefree part of an IN- 
TEGER (Lenstra 1992, Pohst and Zassenhaus 1997). 
The Mathematic@ (Wolfram Research, Champaign, 
IL) function NumberTheory’ NumberTheoryFunct ions ’ 

SquareFreeQCn] determines whether a number is 
squarefree. 

The largest known SQUAREFUL FIBONACCI NUMBER 

is J&, and no SQUAREFUL FIBONACCI NUMBERS Fp 
are known with p PRIME. All numbers less than 
2.5 x 1015 in SYLVESTER'S SEQUENCE are squarefree, 
and no SQUAREFUL numbers in this sequence are known 
(Vardi 1991). Every CARMICHAEL NVMBER is square- 
free. The BINOMIAL COEFFICIENTS (2n;‘) are square- 
free only for n = 2, 3, 4, 6, 9, 10, 12, 36, l  . . , with no 
others less than n = 1500. The CENTRAL BINOMIAL 
COEFFICIENTS are SQUAREFREE only for n = 1, 2, 3, 4, 
5, 7, 8, 11, 17, 19, 23, 71, . . . (Sloane’s A046098), with 
no others less than 1500. 

see UZSO BINOMIAL COEFFICIENT, BIQUADRATEFREE, 
COMPOSITENUMBER,CUBEFREE,ERD&SQUAREFREE 
CONJECTURE,FIBONACCI NUMBER, KORSELT'S CRITE- 
RION, M~~BIUS FUNCTION, PRIME NUMBER, RIEMANN 
ZETAFUNCTION, S~RK~ZY'S THEOREM,SQUARENUM- 
BER,SQUAREFUL,SYLVESTER'S SEQUENCE 
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Squareful 
A number is squareful, also called NONSQUAREFREE, if it 
contains at least one SQUARE in its prime factorization. 
Such a number is also called SQUAREFUL. The first few 
are 4, 8, 9, 12, 16, 18, 20, 24,.25, . . l  (Sloane’s AO13929). 
The greatest multiple prime factors for the squareful 
integers are 2, 2, 3, 2, 2, 3, 2, 2, 5, 3, 2, 2, 3, . . . (Sloane’s 
A046028). Th e 1 east multiple prime factors for squareful 
integers are 2,2,3, 2, 2,3, 2, 2, 5, 3,2, 2,2,... (Sloane’s 
A046027). 

~~~AOGREATEST PRIMEFACTOR,LEASTPRIMEFAC- 
TOR,~MARANDACHE NEAR-TO-PRIMORIAL FUNCTION, 
SQUAREFREE 
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References 
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Squaring 
Squaringisthe GEOMETRIC CONSTRUCTION, using only 
COMPASS and STRAIGHTEDGE, ofa SQUARE which has 
the same area as a given geometric figure. Squaring 
is also called QUADRATURE. An object which can be 
constructed by squaring is called SQUARABLE. 

see &~CIRCLE SQUARING,COMPASS,CONSTRUCTIBLE 
NUMBER, GEOMETRIC CONSTRUCTION, RECTANGLE 
SQUARING, STRAIGHTEDGE, TRIANGLE SQUARING 

Using the LAW OF COSINES 

a2 = b2 +c2 - 2bccosA 

b2 = a2 + c2 - 2accos B 

c2 = a2 + b2 - 2ab cos C 

gives the three ANGLES as 

A=cos-l (b2+;;;a2) 

Bzcos-l (b2.,_,,) 

c = cos-l 
Squeezing Theorem 

1719 

(4) 
(5) 
(6) 

(7) 

(8) 

(9) 

Let there be two functions f- (2) and f+ (z) such that 
f(z) is “squeezed” between the two, 

f-(x) 2 f(x) 5 f+(G 

If 
T = lim f-(x) = lim f+(x), 

X3U X-6 

then Em,,, f(x) = T. In the above diagram the func- 
tions f-(x) = -x2 and f+(x) = x2 “squeeze” x2 sin(cx) 
at 0, so limz+o x2 sin(cz) = 0. The squeezing theorem 
is also called the SANDWICH THEOREM. 

SSS Theorem 

29 
c 

Specifying three sides uniquely determines a TRIANGLE 
whose AREA is given by HERON'S FORMULA, 

A = &(s - a)(s - b)(s - c), (1) 

where 
S- i(a+b+c) (2) 

* is the SEMIPERIMETER of the TRIANGLE. Let R be the 
CIRCUMRADIUS, then 

see also AAA THEOREM, AAS THEOREM, ASA THE- 
OREM, ASS THEOREM,HERON'S FORMULA, SAS THE- 
OREM,~EMIPERIMETER, TRIANGLE 

Stability 
The robustness of a given outcome to small changes in 
initial conditions or small random fluctuations. CHARS 
is an example of a process which is not stable. 

see also STABILITY MATRIX 

Stability Matrix 
Given a system of two ordinary differential equations 

ci: = f (x7 Y) (1) 

ti = S(X,Y)Y (2) 

let ~0 and yo denote FIXED POINTS with k = G = 0, so 

f(Xo,Yo) = 0 (3) 
g(x0, yo) = 0. (4) 

Then expand about (x0, yo) SO 

si? = fx(x0, yo)Sx + f&o, Yo>SY 

+ fxy(xo,Yo)~x~Y + “’ (5) 
&j= gx(xo, yo& + 9&o, YOVY 

+ gxy(x0,  Yo)bXbY + l  . ’  - 
(6) 

To first-order, this gives 

d Sx 

-[ I 

fx(Xo,Yo) fY(XO?Yd s=L: 
dt 6y Sx(~o,Yo) 9Y(“OfYO) I[ 1 8Y ’ (7) 

where the 2 x 2 MATRIX, or its generalization to higher 
dimension, is called the stability matrix. Analysis of 
the EIGENVALUES (and EIGENVECTORS) ofthe stability 
matrix characterizes the type of FIXED PRINT. 

see ~Z~~ELLIPTIC FIXED POINT (DIFFERENTIAL EQUA- 
TIONS), FIXED POINT, HYPERBOLIC FIXED POINT (3) 
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(DIFFERENTIAL EQUATIONS), LINEAR STABILITY, STA- 
BLE IMPROPER NODE, STABLE NODE, STABLE SPIRAL 
POINT, STABLE STAR, UNSTABLE IMPROPER NODE, 

UNSTABLE NODE, UNSTABLE SPIRAL POINT, UNSTA- 
BLE STAR 

-  ”  

References 
Tabor, M. “Linear Stability Analysis.” $1.4 in Chaos and In- 

tegrability in Nonlinear Dynamics: An Introduction. New 
York: Wiley, pp. 20-31, 1989. 

Stabilization 
1 2 n-l 1 2 n-l I1 

A I A 

'; 

f 
A type II MARKOV MOVE. 

see UZSO MARKOV MOVES 

Stable Equivalence 
TWO VECTOR BUNDLES are stably equivalent IFF Iso- 
MORPHIC VECTOR BUNDLES are obtained upon WHIT- 

NEY SUMMING each VECTOR BUNDLE with a trivial 
VECTOR BUNDLE. 

see also VECTOR BUNDLE,~HITNEY SUM 

Stable Improper Node 
A FIXED POINT for which the STABILITY MATRIX has 
equal NEGATIVE EIGENVALUES. 

see also ELLIPTIC FIXED POINT (DIFFERENTIAL EQUA- 
TIONS), FIXED POINT, HYPERBOLIC FIXED POINT 
(DIFFERENTIAL EQUATIONS), STABLE NODE, STABLE 
SPIRAL POINT, UNSTABLE IMPROPER NODE, UNSTA- 
BLE NODE,~NSTABLE SPIRAL POINTJJNSTABLE STAR 

References 
Tabor, M. “Classification of Fixed Points.” 51.4.b in Chaos 

and Integrability in Nonlinear Dynamics: An Introduc- 
tion. New York: Wiley, pp. 22-25, 1989* 

Stable Node 
A FIXED POINT for which the STABILITY MATRIX has 
both EIGENVALUES NEGATIVE, SO X1 < X2 < 0. 

see also ELLIPTIC FIXED POINT (DIFFERENTIAL 
EQUATIONS), FIXED POINT, HYPERBOLIC FIXED 
POINT (DIFFERENTIAL EQUATIONS), STABLE IM- 
PROPER NODE, STABLE SPIRAL POINT, STABLE STAR, 
UNSTABLEIMPROPERNODE,UNSTABLENODE,UNSTA- 
BLE SPIRAL POINT, UNSTABLE STAR 

References 
Tabor, M. “Cl assification of Fixed Points.” 51.4.b in Chaos 

and Integrability in Nonlinear Dynamics: An Introduc- 
tion. New York: Wiley, pp, 22-25, 1989. 

Stable Spiral Point 
A FIXED POINT for which the STABILITY MATRIX has 
EIGENVALUES of the form Xk = -a:*@ (with aJ > 0). 

see also ELLIPTIC FIXED POINT (DIFFERENTIAL 
EQUATIONS), FIXED POINT, HYPERBOLIC FIXED 
POINT (DIFFERENTIAL EQUATIONS), STABLE IM- 
PROPER NODE, STABLE NODE, STABLE STAR,UNSTA- 
BLE IMPROPER NODE, UNSTABLE NODE, UNSTABLE 
SPIRAL POINT, UNSTABLE STAR 

References 
Tabor, M. “Classification of Fixed Points.” s1.4.b in Chaos 

and Integrability in Nonlin ear Dynamics: 
tion. New York: Wiley, pp. 22-25, 1989. 

Introduc- 

Stable Star 
A FIXED POINT for which the STABILITY MATRIX has 
one zero EIGENVECTOR with NEGATIVE EIGENVALUE 
x < 0. 

see also ELLIPTIC FIXED POINT (DIFFERENTIAL 
EQUATIONS), FIXED POINT, HYPERBOLIC FIXED 
POINT (DIFFERENTIAL EQUATIONS), STABLE IM- 

PROPERNODE,STABLE NODE,STABLE SPIRAL POINT, 
UNSTABLEIMPROPERNODE,UNSTABLENODE,UNSTA- 
BLE SPIRAL POINTJJNSTABLE STAR 

References 
Tabor, M. “Classification of Fixed Points.” 51.4.b in Chaos 

and Integrability in Nonlinear Dynamics: An Introduc- 
tion. New York: Wiley, pp. 22-25, 1989. 

Stable Type 
A POLYNOMIAL equation whose ROOTS all have NEGA- 
TI VE REAL PARTS. For a REAL QUADRATIC EQUATION 

z2+Bz+C=0, 

the stability conditions are B, C > 0. For a REAL CUBIC 
EQUATION 

the stability conditions are A, B, C > 0 and AB > C. 

References 
Birkhoff, G. and Mac Lane, S. A Survey of Modern Algebra, 

3rd ed. New York: Macmillan, pp. 108-109, 1965. 

Stack 
A DATA STRUCTURE which is a special kind of LIST in 
which elements may be added to or removed from the 
top only. These actions are called a PUSH or a POP, 

respectively. Actions may be taken by popping one or 
more values, operating on them, and then pushing the 
result back onto the stack. 

Stacks are used as the basis for computer languages such 
as FORTH, PostScript@ (Adobe Systems), and the RPN 
language used in Hewlett-Packard@ programmable cal- 
culators. 

see also LIST, POP, PUSH, QUEUE 
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SGckel Determinant 
A DETERMINANT used to determine in which coordinate 
systems the HELMHOLTZ DIFFERENTIAL EQUATION is 
separable (Morse and Feshbach 1953). A determinant 

see also HELMH~LTZ DIFFERENTIAL EQUATION, LA- 

PLACE'S EQUATION, POISSON'S EQUATION, ROBERT- 
SON CONDITION, SEPARATION OF VARIABLES 

References 
Morse, P. M. and Feshbach, ?I. “Tables of Separable Coordi- 

nates in Three Dimensions.” Methods of Theoretical Phys- 
ics, Part I. New York: McGraw-Hill, pp. 509-511 and 655- 
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St amp Folding 
The number of ways of folding a strip of stamps has 
several possible variants. Considering only positions of 

in which +,i are functions of ui alone is called a St&zkel 
determinant q A coordinate system is separable if it 
obeys the ROBERTSON CONDITION, namely that the 
SCALE FACTORS hi in the LAPLACIAN the hinges for unlabeled stamps without regard to orien- 

tation of the stamps, the number of foldings is denoted 
U(n). If the stamps are labelled and orientation is taken 
into account, the number of foldings is denoted N(n) l  

Finally, the number of symmetric foldings is denoted 
S(n). The following table summarizes these values for 
the first n. 

i=l 

can be rewritten in terms of functions fi(ui) defined by 

7% S(n) w-4 N(n) 
1 1 1 1 

2 1 1 1 
3 2 2 6 
4 4 5 16 
5 6 14 50 
6 8 39 144 
7 18 120 462 
8 20 358 1392 
9 56 1176 4536 

10 3572 

hlh2h3 Bui \ hi2 dui j 

_ g(w+1,w+z) d 
- 

h hz h3 

1 a - -- - 
hi2 fi dui 

(3) 

such that S can be written 

hlh& 
' = fl(~1)f2(~2)f3(~3)' 

(4 
see also MAP FOLDING 

When this is true, the separated equations are of the 
form JXeIerences 

Gardner, M. “The Combinatorics of Paper-Folding. 
Wheels, Life, and Other Mathematical Amusements 
York: W. H. Freeman, pp. 60-73, 1983. 

Ruskey, F. “Information of Stamp Folding.” http : // 
csc.uvic.ca/mcos/inf/perm/StampFolding.htm1. 

Sloane, N. J. A. A Handbook of Integer Sequences. B 
MA: Academic Press, p. 22, 1973. 

33 In 
, New 

i& (f43 + (k12@nl +kz2@n2 +ks2@n3)Xn = 0 

(5) 

‘sue . 

The @js obey the minor equations oston, 

ibfl = d&t!& - a&32 = - 
h2 1 

(6) Standard Deviation 
The standard deviation is defined as the SQUARE ROOT 
of the VARIANCE, hf2 = @13+31-+12@33 = - 

h2 2 
(7) 

M3 
s 

= @12+23 - @13@22 = - 
h2 ’ (8) 

3 
o= J (x2> - (x)” = d&77 (1) 

where ~1 = (x) is the MEAN and pb = (x2) is the sec- 

ond MOMENT about 0. The variance o2 is equal to the 
second MOMENT about the MEAN, 

which are equivalent to 

MA1 +M2+21+M3@31= S (9) 

M1%2+J42@22+ M3+32 =0 (10) c2 = p2. (2) 

i%+13+M2+23+M3+33 =o. (11) 
The square rootofthe SAMPLE VARIANCE 
ple” standard deviation, 

is the “sam- 

(3) 

This gives a total of four equations in nine unknowns. 
Morse and Feshbach (1953, pp. 655-666) give not only 
the Stgckel determinants for common coordinate sys- 
tems, but also the elements of the determinant (although 
it is not clear how these are derived). 
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It is a BIASED ESTIMATOR of the population standard 
deviation. As unbiased ESTIMATOR is given by 

3)2. (4) 

Physical scientists often use the term ROOT-MEAN- 

SQUARE as a synonym for standard deviation when they 
refer to the SQUARE ROOT of the mean squared devia- 
tion of a signal from a given baseline or fit. 

see &~MEAN, MOMENT,ROOT-MEAN-SQUARE, SAM- 
PLE VARIANCE, STANDARD ERROR,~ARIANCE 

Standard Error 
The square root of the ESTIMATED VARIANCE of a quan- 
tity. The standard error is also sometimes used to mean 

n 2 72 2 2 
w(g) z c( - 1 > oi2 = c( - 1 > f12 = am 

n n n 
*- z- 1 

see also STANDARD DEVIATION 

Standard Map 

A2-D M~~,also called the TAYLOR-GREENE-CHIRIKOV 
MAP in some of the older literature. 

I n+1 = In + Ksin8, (1) 

9 n+l = & +&a+1 = In + 8, + Ksin&, (2) 

where I and 8 are computed mod 2~ and K is a POW 
TIVE constant. An analytic estimate of the width of the 
CHAOTIC zone (Chirikov 1979) finds 

JI= Be_AK-1’2, 
(3) 

Numerical experiments give A ==: 5.26 and B z 240. 
The value of K at which global CHAOS occurs has been 

bounded by various authors. GREENE'S METHOD is the 
most accurate method so far devised. 
] Author 1 Bound 1 Fraction 1 Decimal 

Hermann 
Italians 
Greene 
MacKay and Pearson 

Mather 

1 34 0.029411764 
- 0.65 
- 0.971635406 
03 64 0.984375000 

4 
3 

1.333333333 

FIXED POINTS are found by requiring that 

I n+l = In (4 

8 n+l = 07.p (5) 

The first gives K sin& = 0, so sin 0, = 0 and 

62 = OJL (6) 

The second requirement gives 

In + Ksid, = In = 0. (7) 

The FIXED 'POINTY are therefore (I, 8) = (0,O) and 
(0,n). In order to perform a LINEAR STABILITY analy- 
sis, take differentials of the variables 

dL+l = dim + K cos 8, de, (8) 

d&z+1 =dl,+(l+Kcos&)dO,. (9) 

In MATRIX form, 

The EIGENVALUES are found by solving the CHARAC- 
TERISTIC EQUATION 

1-X K cm 8, 
1 l+Kcos&-X 

= 0, (11) 

so 

x2 -X(Kcos0,+2)+1=0 (12) 

Xi=;[Kcos&+Zf-\/(Kco~&+2)~-i]. (13) 

For the FIXED POINT (O,r), 

-+(2-Kid=). - (14 

The FTXED POINT will be stable if I!R(X@gx’)l < 2. Here, 
that means 

+12- KI < 1 (15) 

12-Kj<2 (16) 

-2<2-K<2 (17) 

-4<-K<Q (18) 
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The three different classes of standard tori arise from the 
three possible relative sizes of a and c. c > a corresponds 
to the RING TORUS shown above, c = a corresponds to 
a HORN TORUS which touches itself at the point (0, 0, 
0), and c < a corresponds to a self-intersecting SPIN- 
DLE TORUS (Pinkall 1986). If no specification is made, 
“torus” is taken to mean RING TORUS. 

SO K E [0,4). For the FIXED POINT (0, 0), the EIGEN- 

VALUES are 

=$(2+Kf&C2+4K). (19) 

If the map is unstable for the larger EIGENVALUE, it is 
unstable. Therefore, examine X, (O’O). We have The standard tori and their inversions are CYCLIDES. 

see ah APPLE, CYCLIDE,HORN TORUS,LEMON, RING 

TORUS, SPINDLE TORUS, TORUS 

References 
Pinkall, U. “Cyclides of Dupin.” $3.3 in h4athematicuZ Models 

from the Collections of Universities and Museums (Ed. 
G. Fischer). Braunschweig, Germany: Vieweg, pp. 28-30, 
1986. 

so 

-2<2+K+JK2+4K<2 (21) 

-4-K<dm<-K. (22) 

Standardized Moment 
Defined for samples ~:i, i = 1, . l  . , N by 

But K > 0, so the second part of the inequality cannot 
be true. Therefore, the map is unstable at the FIXED 

POINT (0, 0). 

(1) References 
Chirikov, B. V. “A Universal Instability of Many- 

Dimensional Oscillator Systems.” Phys. Rep. 52, 264-379, 
1979. 

where 
Xi -2 = zi I -. 

SX 
12) Standard Normal Distribution 

A NORMAL DISTRIBUTION with zero MEAN (p = 0) and 
unity STANDARD DEVIATION (a2 = 1). 

see ah NORMAL DISTRIBUTION 

The first few are 

(3) 
(4) 
(5) 

(6) 

a1 =o 

Qr2 =l 
Standard Space 
A SPACE which is ISOMORPHIC to a BOREL SUBSET B 
of a POLISH SPACE equipped withits SIGMA ALGEBRA 
of BOREL SETS. 

see UZSO BOREL SET, POLISH SPACE, SIGMA ALGEBRA 
see also KURTOSIS, MOMENT, SKEWNESS 

Standard Tori 
full view cutaway truss-section Standardized Score 

see x-SCORE 
ring 
torus 

Stanley’s Theorem 
The total number of 1s that occur among all unordered 
PARTITIONS ofa POSITIVE INTEGER is equaltothesum 
of the numbers of distinct parts of (i.e., numbers in) 
those PARTITIONS. 

see UZSO ELDER'S THEOREM, PARTITION 

horn 
torus 

spindle 
torus 

References 
Honsberger, R. kfathematical Gems III. Washington, DC: 

Math. Assoc. Amer, pp. 6-8, 1985. 

One of the three classes of TORI illustrated above and 
given by the parametric equations 

X= (c+acosv)cosu (1) 

y- (c+acosv)sinu (2) 

z = asinv. (3) 
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Star References 
In formal geometry, a star is a set of 2n VECTORS &al, 

&a, which form a fixed center in EUCLIDEAN 3- 
&&E. In common usage, a star is a STAR POLYGON 

( i.e., regular convex polygon) such as the PENTAGRAM 
O~HEXAGRAM 

Lauwerier, H. Fractals: Endlessly Repeated Geometric Fig- 
ures. Princeton, NJ: Princeton University Press, pp+ 72- 
17, 1991. 

$& Weisstein,E. W* “l?ractals." http ://wuu.astro.virginia. 
edu/-eww6n/math/notebooks/Fractal.m. 

see also CROSS, EUTACTIC STAR, STAR OF GOLIATH, 
STAR POLYGON 

Star of Goliath 

Star of David 

~~~HEXAGRAM 

Star Figure 
A STAR POLYGON-k figure { :} for which p and q are 
not RELATIVELY PRIME. 

see also STAR POLYGON 

Star (Fixed Point) 
A FIXED POINT which has one zero EIGENVECTOR. 

see STABLE STAR,~NSTABLE STAR 

Star fiactal 

A FRACTAL composed of repeated copies of a PENTA- 
GRAM or other polygon. 

The above figure shows a generalization to different off- 
sets from the center. 

Star Graph 
The k-star graph is a TREE on k + 1 nodes with one 
node having valency k and the others having valency 1. 
Star graphs S, are always GRACEFUL. 

Star of Lakshmi 

0 I 
The STAR FIGURE {S/2}, which is used by Hindus to 
symbolize Ashtala~shmi, the eight forms of wealth. This 
symbol appears prominently in the Lugash national mu- 
seum portrayed in the fictional film Return of the Pink 
Panther. 

see also DISSECTION, HEXAGRAM, PENTAGRAM, STAR 
FIGURE,STAR POLYGON 

References 
Savio, D. Y. and Suryanaroyan, E. R. “Chebyshev Polyno- 

mials and Regular Polygons.” Amer. Math. Monthly 100, 
657-661, 1993. 

Star Number 
The number of cells in a generalized Chinese checkers 
board (or “centered” HEXAGRAM) l  

Sn = 6n(n + 1) + 1 = &-.-I + 12(n - I). (1) 

The first few are 1, 13, 37, 73, 121, . . . (Sloane’s 
A003154). Every star number has DIGITAL ROOT 1 or 
4, and the final digits must be one of: 01, 21, 41, 61, 81, 
13, 33, 53, 73, 93, or 37. 

The first TRIANGULAR star numbers are 1, 253, 49141, 
9533161, . l  l  (Sloane’s A006060), and can be computed 
using 

Ts _ 3[(7 + 4J3y1 + (7 - 4q2+‘I - 10 
n- 

32 
= 194TS n-1 + 60 - TSn-2. (2) 

The first few SQUARE star numbers are 1, 121, 11881, 
1164241, 114083761, l  . . (Sloane’s A006061). SQUARE 
star numbers are obtained by solving the DIOPHANTINE 
EQUATION 

2x2 + 1 = 3y2 (3) 
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and can be computed using 

ss, = 
[(5 + 2J6)n(J6 - 2) - (5 - 2ti)“(A + 2)12 

4 
. 

(4 

see UZSO HEX NUMBER, SQUARE NUMBER, TRIANGULAR 

NUMBER 

References 
Gardner, M. “Hexes and Stars.” Ch, 2 in Time Travel and 

Other Mathematical Bewilderments. New York: W. H. 
Freeman, 1988. 

Hindin, H. “Stars, Hexes, Triangular Numbers, and Pythag- 
orean Triples .” J. Recr, Math. 10, 191-193, 1983-1984. 

Sloane, N. J. A. Sequences A003154/M4893, A006060/ 
M5425, and A006061/M5385 in ccAn On-Line Version of 
the Encyclopedia of Integer Sequences.” 

Star Polygon 

9 

i I 4 lo 1 1 II 

A star polygon &L 

{ I 5 

with p,q POSITIVE INTEGERS, is 
a figure formed by connecting with straight lines every 
qth point out of p regularly spaced points lying on a 
CIRCUMFERENCE. The number qis called the DENSITY 
of the star polygon. Without loss of generality, take 

4 < P/2. 

The usual definition (Coxeter 1969) requires p and Q to 
be RELATIVELY PRIME. However, the star polygon can 
also be generalized to the STAR FIGURE (or “improper” 
star polygon) when p and q share a common divisor 
(Savio and Suryanaroyan 1993). For such a figure, if 
all points are not connected after the first pass, i.e., if 
(p, q) # 1, then start with the first unconnected point 
and repeat the procedure. Repeat until all points are 
connected. For (p,q) # 1, the {p/q} symbol can be 
factored as 

(1) 

where 

P pt _= ; 

to give rz {p’/q’} figures, each rotated by 27r/p radians, 
or 360” /p. 

If q = 1, a REGULAR POLYGON {p} is obtained, Spe- 
cial cases of {p/q} include {5/2} (the PENTAGRAM), 
{6/2} (the HEXAGRAM, or STAR OF DAVID), {8/2} (the 
STAR OF LAKSHMI), {8/3} (the OCTAGRAM), {10/3} 
(the DECAGRAM), and {12/5} (the DODECAGRAM). 

The star polygons were first systematically studied by 
Thomas Bradwardine. 

see UZSO DECAGRAM, HEXAGRAM, NONAGRAM, OCTA- 
GRAM, PENTAGRAM, REGULAR POLYGON, STAR OF 
LAKSHMI,~TELLATED POLYHEDRON 

References 
Coxeter, H. S. M. “Star Polygons.” $2.8 in Introduction to 

Geometry, 2nd ed. New York: Wiley, pp. 36-38, 1969. 
Frederickson, G. ‘LStardom.” Ch. 16 in Dissections: Plane 

and Fancy. New York: Cambridge University Press, 
ppa 172486, 1997. 

Savio, D. Y. and Suryanaroyan, E. R. “Chebyshev Polyno- 
mials and Regular Polygons.” Amer. Math. Monthly 100, 
657-661, 1993. 

Star Polyhedron 

see KEPLER-P• INSOT SOLID 

Starr Rose 

a =8,b=16,c=16 a=6,b=lB,c=18 

see also MAURER ROSE 

References 
Wagon, S. “Variations of Circular Motion.” 54.5 in Muthe- 

matica in Action. New York: W. H. fieeman, pp. 137-140, 
1991. 

State Space 
The measurable space (S’, s’) into which a RANDOM 

VARIABLE from a PROBABILITY SPACE is a measurable 
function, 

see also PROBABILITY SPACE, RANDOM VARIABLE 

Stationary Point 

f’(x) < 0, i 

f’(x) = 0 
f ‘TX) > 0 

f’(x) < 0 f’(x) > 0 
;;y+“df f'(x) < < 0, 0 V f'(x) > 0 f'(x) < 0 X- f"(x) f’(x) = 0 

A 

stulionaty poinC tttitGmm2 maximum 
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A point ~0 at which the DERIVATIVE of a FUNCTION 

f(z) vanishes, 
f’(Q) = 0. 

A stationary point may 
INFLECTION POINT. 

be a MINIMUM, MAXIMUM, or 

see also CRITICAL POINT, DERIVATIVE, EXTREMUM, 
FIRST DERIVATIVE TEST, INFLECTION POINT, MAXI- 
MUM, MINIMUM, SECOND DERIVATIVE TEST 

Stationary Tangent 

see INFLECTION POINT 

Stationary Value 
The value at a STATIONARY POINT. 

Statistic 
A function of one or more random variables. 

see also ANDERSON-DARLING STATISTIC, KUIPER 
STATISTIC, VARIATE 

Statistical Test 
A test used to determine the statistical SIGNIFICANCE 
of an observation. Two main types of error can occur: 

1. A TYPE I ERROR occurs when a false negative result 
is obtained in terms of the NULL HYPOTHESIS by 

obtaining a false positive measurement. 

2. A TYPE II ERROR occurs when a false positive result 
is obtained in terms of the NULL HYPOTHESIS by 
obtaining a false negative measurement. 

The probability that a statistical test will be positive for 
a true statistic is sometimes called the test’s SENSITIV- 
ITY, and the probability that a test will be negative for 
a negative statistic is sometimes called the SPECIFICITY. 
The following table summarizes the names given to the 
various combinations of the actual state of affairs and 

true negative result specificity 
false positive result 1 - specificity 

Multiple-comparison corrections to statistical ests are 

used when several statistical tests are being performed 
simultaneously. For example, let’s suppose you were 
measuring leg length in eight different lizard species and 
wanted to see whether the MEANS of any pair were dif- 
ferent. Now, there are 8!/2!6! = 28 pairwise comparisons 
possible, so even if all of the population means are equal, 
it’s quite likely that at least one pair of sample means 
would differ significantly at the 5% level. An ALPHA 
VALUE of 0.05 is therefore appropriate for each individ- 
ual comparison, but not for the set of all comparisons. 

In order to avoid a lot of spurious positi 
VALUE therefore needs to be lowered to 

.ves, the ALPHA 
for the 

number of 
rection for 

comparisons being performed. This is a cm- 
multiple comparisons. There are many differ- 

ent ways to do this. The simplest, and the most conser- 
vative, is the BONFERRONI CORRECTION. Tn practice, 
more people are more willing to accept false positives 
(false rejection of NULL HYPOTHESIS) than false neg- 
atives (false acceptance of NULL HYPOTHESIS), so less 

conservative comparisons are usually used. 

see also ANOVA, BONFERRONI CORRECTION, CHI- 
SQUARED TEST, FISHER'S EXACT TEST, FISHER 
SIGN TEST, KOLMOGOROV-SMIRNOV TEST, LIKELI- 
HOOD RATIO, LOG LIKELIHOOD PROCEDURE, NEGA- 
TIVE LIKELIHOOD RATIO, PAIRED &TEST, PARAMET- 
RIC TEST, PREDICTIVE VALUE, SENSITIVITY, SIGNIF- 
ICANCE TEST, SPECIFICITY, TYPE I ERROR, TYPE 
II ERROR, WILCOXON RANK SUM TEST, WILCOXON 
SIGNED RANK TEST 

Statistics 
The mathematical study of the LIKELIHOOD and PROB- 
ABILITY of events occurring based on known informa- 
tion and inferred by taking a limited number of sam- 
ples. 
many aspects of economi .cs and science, allowing edu- 
cated guesses to be made with a minimum of expensive 

Statistics plays an extremely important role in 

or difficult-to-obtain data. 

see also BOX-AND-WHISKER PLOT, BUFFON-LAPLACE 
NEEDLE PROBLEM, BUFFON'S NEEDLE PROBLEM, 
CHERNOFF FACE, COIN FLIPPING, DE MERE'S PROB- 
LEM, DICE, DISTRIBUTION, GAMBLER'S RUIN, INDEX, 
LIKELIHOOD, MOVING AVERAGE, P-VALUE, POPULA- 
TION COMPARISON, POWER (STATISTICS), PROBABIL- 
ITY, RESIDUAL vs. PREDICTOR PLOT, RUN, SHARING 
PROBLEM, STATISTICAL TEST, TAIL PROBABILITY 
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The Steenrod algebra has to do with the COHOMOL- 
OGY operations in singular COHOMOLOGY with INTE- 
GER mod 2 COEFFICIENTS. For every 72 f Z and 
i E {O,l, 2,3,. . .} th ere are natural transformations of 
FUNCTORS 

Sqi : H”(m; &) + Hn+$; &) 
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The existence of these cohomology operations endows 
the cohomology ring with the structure oi a MODULE 
over the Steenrod algebra A, defined to be T(Fz {Sqi : 

i E {O,l, 2,3,. . .}})/R, where Fz (a) is the fre: mod- 

ule functor that takes any set and sends it to the free 
Z2 module over that set. We think of F’z { Sqi : i E 

(0, 1,2, . . .}} as being a graded Zz module, where the 
i-th gradation is given by Zz l  Sq”. This makes the 
tensor algebra T(Fz2{Sqi : i E (0, 1,2,3,. . .}}) into a 

GRADED ALGEBRA over Z2. R is the IDEAL generated 
by the elements Sq%qj + @, (?mk2~‘)Sqi+j-kSqk and 
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1 + Sq” for 0 < i < 2j. This makes A into a graded & 
algebra. 

By the definition of the Steenrod algebra, for any SPACE 

(X74, H*(xA; 25 > 2 is a MODULE over the Steenrod al- 
gebra -A, with multiplication induced by Sq’ .X = S$ (2). 
With the above definitions, cohomology with COEFFI- 
CIENTS in the RING &, H* (a;&) is a FUWTOR from 
the category of pairs of TOPOLOGICAL SPACES to graded 
modules over A. 

see also ADEM RELATIONS, CARTAN RELATION, COHO- 
MOLOGY,GRADED ALGEBRA, IDEAL, MODULE, TOPO- 

LOGICAL SPACE 

Steenrod-Eilenberg Axioms 

see EILENBERG-STEENROD AXIOMS 

Steenrod’s Realization Problem 
When can homology classes be realized as the image 
of fundamental classes of MANIFOLDS? The answer is 
known, and singular BORDISM GROUPS provide insight 
into this problem. 

see also BORDISM GROUP, MANIFOLD 

Steepest Descent Method 
An ALGORITHM for calculating the GRADIENT Of(P) 
of a function at an n-D point P. The steepest descent 
method starts at a point PO and, as many times as 
needed, moves from Pi to Pi+1 by minimizing along 
the line extending from Pi in the direction of -Of (Pi), 
the local downhill gradient. This method has the severe 
drawback of requiring a great many iterations for func- 
tions which have long, narrow valley structures. In such 
cases, a CONJUGATE GRADIENT METHOD is preferable. 

see also CONJUGATE GRADIENT METHOD, GRADIENT 
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Steffenson’s Formula 

fp = fo -+ iP(P + q&/2 - + (P - QPL/2 

+(S3 + S4)$,, + (S3 - s&,2 +. - - 7 (1) 

forpE [-’ L 2,2], where 6 is the CENTRAL DIFFERENCE 
and 

s 1 p+n 
2n+1= - 

( > 2 2n+1 (2) 

P 
S2n+2 = ~ 

P+n 

( > 2n+2 2n+l (3) 

S 2n+leS2n+2 = 
(",',;Y) 

San+1 - s2n+2 = - 
P+n ( > 2n+2 ’ 

(4) 

(5) 

where (E) is a BINOMIAL COEFFICIENT. 
see also CENTRAL DIFFERENCE, STIRLING'S FINITE 
DIFFERENCE FORMULA 
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Steffensen’s Inequality 
Let f (2) be a NONNEGATIVE and monotonic decreasing 
function in [a, b] and g(z) satisfy such that 0 < g(z) < 1 - - 
in [a, b], then 

s 

b 

s 

b 

s 

a+k 

f(x)dx 5 f (Mx) dx 5 f (4 dx7 
b-k a a 

where 

k= 
s 

b 

s(x) dx* 
a 
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Steinbach Screw 

A SURFACE generated by the parametric equations 

x(u,v) = ucos’u 

~(21, w) = usinw 

z(u,v) = vcosu. 

The above image uses u E [-4,4] and zt E [0,6*25]. 
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Steiner Chain 

Given two nonconcentric CIRCLES with one interior to 
the other, if small TANGENT CIRCLES can be inscribed 
around the region between the two CIRCLES such that 
the final CIRCLE is TANGENT to the first, the CIRCLES 
form a Steiner chain. 

The simplest way to construct a Steiner chain is to per- 
form an INVERSION on a symmetrical arrangement on n 

circles packed between a central circle of radius b and an 
outer concentric circle of radius a. In this arrangement, 

(1) 

so the ratio of the radii for the small and large circles is 

(2) 

To transform the symmetrical arrangement into a 
Steiner chain, find an INVERSION CENTER which trans- 
forms two centers initially offset by a fixed distance c to 
the same point. This can be done by equating 

k2X k2(x - c) ~ - 
x:2 - a2 - (x - 42 - b2 ’ (3) 

giving the offset of the inversion center from the large 
circle’s center as 

X= 
a2 - b2 + c2 * &a” - b2 + c2)2 - 4a2c2 

. (4 

Plugging in a fixed value of a fixes b, which therefore 
determines II: for a given c. Equivalently, a Steiner chain 
results whenever the INVERSIVE DISTANCE between the 
two original circles is given by 

&=2ln[sec(z) +tan(E)] (5) 

=2ln[,,,(:+&)] (6) 

(Coxeter and Greitzer 1967). The centers of the circles 
in a Steiner chain lie on an ELLIPSE (Ogilvy 1990, p. 57). 

see ~SO ARBELOS, COXETER'S LOXODROMIC SEQUENCE 

OF TANGENT CIRCLES, HEXLET, PAPPUS CHAIN, 
STEINER’S PORISM 
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Steiner Construction 
A construction done using only a STRAIGHTEDGE. The 
PONCELET-STEINER THEOREM provesthatallconstruc- 
tions possible using a COMPASS and STRAIGHTEDGE are 
possible using a STRAIGHTEDGE alone, as long as a fixed 
CIRCLE and its center, two intersecting CIRCLES with- 
out their centers, or three nonintersecting CIRCLES. are 
drawn beforehand. 

see GLZSO GEOMETRIC CONSTRUCTION, MASCHER- 

ONI CONSTRUCTION, PONCELET-STEINER THEOREM, 

STRAIGHTEDGE 
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Steiner’s Ellipse 
Let a’ : p’ : 7’ be the ISOTOMIC CONJUGATE POINT 
of a point with TRILINEAR COORDINATES Q : p : y. 

The isotomic conjugate of the LINE AT INFINITY having 
trilinear equation 

aa+bfl+cy=O 

is 

known as Steiner’s ellipse (Vandeghen 1965). 

see also ISOTOMIC CONJUGATE POINT, LINE AT INFIN- 
ITY 
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STEINER'S PORISM states that if a Steiner chain is 
formed from one starting circle, then a Steiner chain 
is also formed from any other starting circle. 
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Steiner’s Hypocycloid 

see DELTOID 

Steiner-Lehmus Theorem 
Any TRIANGLE that has two equal ANGLE BISEC- 
TORS (each measured from a VERTEX to the opposite 
sides) is an ISOSCELES TRIANGLE. This theorem is 

also called the INTERNAL BISECTORS PROBLEM and 
LEHMUS' THEOREM. 

see also ~SOSCELES TRIANGLE 
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Steiner Points 
There are two different types of points known as Steiner 
points. 

The point of CONCURRENCE of the three lines drawn 
throughthe VERTICES ofa TRIANGLE PARALLELLY the 
corresponding sides of the first BROCARD TRIANGLE. It 
lies on the CIRCUM CIRCLE opposite the 

and has TRIANGLE CENTER FUNCTION 

a= bc(a2 - &a2 - c”). 

TARRY POINT 

The BRIANCHON POINT for KIEPERT’S PARABOLA is the 
Steiner point. The LEMOINE POINT K is the Steiner 
point of the first BROCARD TRIANGLE. The SIMSON 
LINE of the Steiner point is PARALLEL to the line OK, 
when 0 is the CIRCUMCENTER and K is the LEMOINE 
POINT. 

If triplets of opposites sides on a CONIC SECTION in 
PASCAL'S THEOREM are extended for all permutations 
of VERTICES, 60 PASCAL LINES are produced. The 20 
points of their 3 by 3 intersections are called Steiner 
points. 

see also BRIANCHON POINT, BROCARD TRIAN- 
GLES, CIRCUMCIRCLE, CONIC SECTION, KIEPERT'S 
PARABOLA, LEMOINE POINT, PASCAL LINE, PASCAL’S 

THEOREM, STEINER SET, STEINER TRIPLE SYSTEM, 
TARRY POINT 
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Steiner’s Porism 

If a 
de, 

STEINER CHAIN 
then a STEINER 

starting circle. In 
tric CIRCLES, draw 

is formed from one starting cir- 
CHAIN is formed from any other 

other words, given two nonconcen- 
CIRCLES successively touching them 

and each other. If the last touches the first, this will 
also happen for any position of the first CIRCLE. 
see also HEXLET, STEINER CHAIN 
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Steiner’s Problem 
1. 

1. 

0. 

0. 

0. 

0. 

For what value of x is f(z) = z? a MAXIMUM? The 
maximum occurs at x = e, where 

f(x) = x -2+1/x(l - lnx) = 0, 

which gives a maximum of 

e l/e = 1.444667861.. . l  

The function has an inflection point at x = 0.581933.. ., 
where 

fir(x) = x -4+1/x[1 - 3x + (lnx)(Zx - 2 + lnx)] = 0. 

see also FERMAT’S PROBLEM 

Steiner Quadruple System 
A Steiner quadruple system is a STEINER SYSTEM S(t = 

33 = 4, ‘u), where S is a v-set and B is a collection of 
k-sets of S such that every t-subset of S is contained 
in exactly one member of B. Barrau (1908) established 
the uniqueness of S(3,4, S), 

1 2 4 8 3 5 6 7 

2 3 5 8 1 4 6 7 

3 4 6 8 1 2 5 7 

4 5 7 8 1 2 3 6 

1 5 6 8 2 3 4 7 

2 6 7 8 1 3 4 5 

1 3 7 8 2 4 5 6 

and S(3,4,10) 

1 2 4 5 1 2 3 7 1 3 5 8 
2 3 5 6 2 3 4 8 2 4 6 9 

3 4 6 7 3 4 5 9 3 5 7 0 

4 5 7 8 4 5 6 0 1 4 6 8 

5 6 8 9 1 5 6 7 2 5 7 9 

6 7 9 0 2 6 7 8 3 6 8 0’ 
1 7 8 0 3 7 8 9 1 4 7 9 

1 2 8 9 4 8 9 0 2 5 8 0 

2 3 9 0 1 5 9 0 1 3 6 9 

1 3 4 0 1 2 6 0 2 4 7 0 

(1935) showed the existence of at least one S(3,4,14). 
Hanani (1960) p roved that a NECESSARY and SUFFI- 
CIENT condition for the existence of an S(3,4, w) is that 
21 E 2 or 4 (mod 6). 

The number of nonisomorphic Steiner quadruple systems 
of orders 8, 10, 14, and 16 are 1, 1, 4 (Mendelsohn 
and Hung 1972), and at least 31,021 (Lindner and Rosa 
1976). 

see also STEINER SYSTEM, STEINER TRIPLE SYSTEM 
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Steiner’s Segment Problem 
Given 72 points, find 
possible total length 

the line segments with the 
which connect the points. 

shortest 
The seg- 

ments need not necessarily be straight from one point 
to another. 

For three points, if all ANGLES are less than 120”, then 
the line segments are those connecting the three points 
to a central point P which makes the ANGLES (A) PB, 
(B) PC, and (C) PA all 120”. If one ANGLE is greater 
that 120”, then P coincides with the offending ANGLE. 

For four points, P is the intersection of the two diago- 
nals, but the required minimum segments are not nec- 
essarily these diagonals. 

A modified version of the problem is, given two points, 
to find the segments with the shortest total length con- 
nect ing the points such that each branch point may be 
connected to only three segments. There 
solution to this version of the problem. 

is no general 

Steiner Set 
Three sets of three LINES 

with two from both other 
such 
sets. 

that each line is incident 

see also SOLOMON’S SEAL LINES, STEINER POINTS, 

STEINER TRIPLE SYSTEM 

Fitting (1915) subsequently constructed the cyclic sys- 
tems S(3,4,26) and S(3,4,34), and Bays and de Week 



1732 Steifier Surface Steiner Wple System 

Steiner Surface Steiner’s Theorem 

A projection of the VER~NESE SURFACE into 3-D (which 
must contain singularities) is called a Steiner surface. 
A classification of Steiner surfaces allowing complex 
parameters and projective transformations was accom- 
plished in the 19th century. The surfaces obtained by 
restricting to real parameters and transformations were 
classified into 10 types by Coffman et al. (1996). Ex- 
amples of Steiner surfaces include the ROMAN SURFACE 

(Coffman type 1) and CROSS-CAP (type 3). 

Let LINES x and y join a variable point on a CONIC SEC- 
TION to two fixed points on the same CONIC SECTION. 
Then x and y are PROJECTIVELY related. 

see also CONIC SECTION, PROJECTION 

Steiner Triple System 
Let X be a set of 21 > 3 elements together with a set B - 
of 3-subset (triples) of X such that every Z-SUBSET of 
X occurs in exactly one triple of B. Then B is called a 
Steiner triple system and is a special case of a STEINER 
SYSTEM with t = 2 and JG = 3. A Steiner triple system 

SC 1 - S(v, k = - 3, X = 1) of order v exists IFF v = 
1,; (mod 6) (Kirkman 1847). In addition, if Steiner 
triple systems S1 and Sz of orders ~1 and 212 exist, then 
so does a Steiner triple system S of order ~1212 (Ryser 
1963, p* 101). 

The Steiner surface of type 2 is given by the implicit 
equation 

x2y2 - x2z2 + y2z2 - xyx = 0, 

and can be transformed into the ROMAN SURFACE or 
CROSS-CAP by a complex projective change of coordi- 
nates (but not by a real transformation). It has two 
pinch points and three double lines and, unlike the RO- 
MAN SURFACE or CROSS-CAP, is not compact in any 
affine neighborhood. 

The Steiner surface of type 4 has the implicit equation 

Y2 - 2xy2 - XL2 + x2y2 + X2L2 - z4 = 0, 

1 and two of the three double lines of surface 2 coincide 
along a line where the two noncompact “components” 
are tangent. 

see also CROSS-CAP, ROMAN SURFACE, VERONESE VA- 

RIETY 
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Steiner System 
A Steiner system is a set X of ‘u points, and a collection 
of subsets of X of size k (called blocks), such that any 
t points of X are in exactly one of the blocks. The 
special case t = 2 and k = 3 corresponds to a so-called 
STEINER TRIPLE SYSTEM. For a PROJECTIVE PLANE, 

V = n2 + n + 1, k = n + 1, t = 2, and the blocks are 
simply lines. 

see aEso STEINER QUADRUPLE SYSTEM, STEINER 
TRIPLE SYSTEM. 

References 
Colbourn, C. J. and Dinitz, 

of Combinatorial Designs. 

1996. 

J. H. (Eds.) CR C Handbook 
Boca Raton, FL: CRC Press, 

Woolhouse, W. S. B. “Prize Question 1733.” Lady’s and 
Gentleman’s Diary. 1844. 

Examples of Steiner triple systems S(v) of small orders 
v are 

s3 = {(1,2,W 

s7 = ((17% 4}, {2,% 51, (37% 61, {4,5,7h 

(57% I), cc 7,2), (7, 1,311 

s9 = {{1,2,3}, (4% 6>, (77% 91, {1,4,7), 

(27% 81, {3,6,9), {1,5,9}, c&6, w 

The number of nonisomorphic Steiner triple systems 
S(v) of orders 21 = 7, 9, 13, 15, 19, . . . (i.e., 6k + 1,3) 
are 1, 1, 20, 80, > 1.1 x 10’) . . . (Colbourn and Dinitz 
1996, pp. 14-15; Sloane’s A030129). S(7) is the same 
as the finite PROJECTIVE PLANE of order 2. S(9) is a 
finite AFFINE PLANE which can be constructed from the 
array 

a b c 
d e f. 
g h i 

One of the two S(13)s is a finite HYPERBOLIC PLANE. 
The 80 Steiner triple systems S(l5) have been studied 
by Tonchev and Weishaar (1997). There are more than 
1.1 x 10’ Steiner triple systems of order 19 (Stinson and 
Ferch 1985; Colbourn and Dinitz 1996, p. 15). 

see also HADAMARD MATRIX, KIRKMAN TRIPLE SYS- 
TEM,STEINER QUADRUPLE SYSTEM,~TEINER SYSTEM 
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Tonchev, V. D. and Weishaar, R. S+ “Steiner Triple Systems 
of Order 15 and Their Codes.” J. Stat. Plan. Inference 
58, 207-216,1997. 

Steinerian Curve 
The LOCUS of points whose first P~LARS with regard to 
the curves of a linear net have a common point. It is also 
the LOCUS of points of CONCURRENCE of line P~LARS 
of points of the JACOBIAN CURVE. It passes through 
all points common to all curves of the system and is of 
order 3(n - I)“. 

see ah CAYLEYIAN CURVE, JACOBIAN CURVE 
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Steinhaus-Moser Notation 
A NOTATION for LARGE NUMBERS definedbysteinhaus 

(1983, pp. 28-29). In this notation, n denotes nn, q A 
denotes “n in n TRIANGLES," and @ denotes “rz in n 

SQUARES." A modified version due to Moser eliminates 
the circle notation, continuing instead with POLYGONS 
of ever increasing size, so n in a PENTAGON is n with n 

SQUARES around it, etc. 

see also CIRCLE NOTATION, LARGE NUMBER, MEGA, 
MOSER 
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Steinitz’s Theorem 
A GRAPH Cistheedge graphofa POLYHEDRON IFF G 
is a SIMPLE, PLANAR GRAPH which is 3-connected. 

see ah PLANAR GRAPH,~IMPLE GRAPH 

Steinmetz Solid with c < c’ is 

The solid common to two (or three) right circular 
CYLINDERS of equal RADII intersecting at RIGHT AN- 

GLES is called the Steinmetz solid. (Two CYLINDERS 
intersecting at RIGHT ANGLES are sometimes called a 
BICYLINDER, and three intersecting CYLINDERS a TRI- 
CYLINDER.) 

The VOLUME common to two intersecting right CYLIN- 
DERS of RADIUS T is 

V2(T,T) = yr3. (1) 

If the two right CYLINDERS are of d#erent RADII a and 
b with a > b, then the VOLUME common to them is 

Vz(d) = +[(u” + b2)E(k) - (a2 - b2)K(k)], (2) 

whereK(k)isthecomplete ELLIPTIC INTEGRAL OF THE 
FIRST KIND, E(k) is the complete ELLIPTIC INTEGRAL 
OF THE SECOND KIND, and k = b/a is the MODULUS. 

The curves of intersection of two cylinders of RADII a 
and b, shown above, are given by the parametric equa- 
tions 

x(t) = acost 

y(t) = asin t 

4t) = fJb2 -a2sin2t 

(3) 

(4) 

(5) 

(Gray 1993). 

The VOLUME common to two ELLIPTIC CYLINDERS 

(6) 

T/2 (a, c; b, c’> = g[c,, +c2)E(k) - (d2 -c”)K(k)], (7) 

where k = c/c’ (Bowman 1961, p* 34). 

For three CYLINDERS of RADII T intersecting at RIGHT 
ANGLES, the VOLUME of intersection is 

v&,r,r) = 8(2 - J2)r3. (8) 

see also BICYLINDER, CYLINDER 
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Stella Octangula 

A POLYHEDRON COMPOUND composed ofa TETRAHE- 
DRON and its RECIPROCAL (a second TETRAHEDRON 
rotated 180” with respect to the first). The stella oct- 
angula is also called a STELLATED TETRAHEDRON. It 

can be constructed using the following NET by cutting 
along the solid lines, folding back along the plain lines, 
and folding forward along the dotted lines. 

1 \ 
\ 

# \ 
0 \ 

\I/ 
Another construction builds a single TETRAHEDRON, 
then attaches four tetrahedral caps, one to each face. 

4xm 

The edges of the two tetrahedra form the 12 DIAGONALS 
of a CUBE. The solid common to both tetrahedra is an 
OCTAHEDRON (Ball and Coxeter 1987), 

see 

POU 
.HEDRON, P also CUBE, OCTA 

ND,TETRAHEDRON 
OLYHEDRON COM- 

Stellated Tetrahedron 
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Stella Octangula Number 
A FIGURATE NUMBER of the form, 

stoct, = 0, + STfn-1 = n(2n2 - 1). 

The first few are 1, 14, 51, 124, 245, . . l  (Sloane’s 
A007588). The GENERATING FUNCTION for the stella 
act angula numbers is 

x(x2 + 10X + 1) 
(x - 1)” 

= x + 14x2 + 51x3 + 124x4 + . l  . . 
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Stellated Polyhedron 
A convex regular POLYHEDRON. Stellated polyhedra in- 
clude the KEPLER-P• INSOT SOLIDS, which consist of 
three DODECAHEDRON STELLATIONS and one of the 
ICOSAHEDRON STELLATIONS. Coxeter (1982) shows 
that 59 ICOSAHEDRON STELLATIONS exist. The CUBE 
and the TETRAHEDRON cannot be stellated. The OCT- 
AHEDRON has only one stellation, the STELLA OCTAN- 
GULA which is a compound of two TETRAHEDRA. 

There are therefore a total of 3 + 1 + (59 - 1) + 1 = 63 
stellated POLYHEDRA, although some are COMPOUND 
POLYHEDRA and therefore not UNIFORM POLYHEDRA. 
The set of all possible EDGES of the stellations can be 
obtained by finding all intersections on the facial planes. 

see also ARCHIMEDEAN SOLID STELLATION, DODEC- 
AHEDRON STELLATIONS, ICOSAHEDRON STELLAT~ONS, 
KEPLER-P• INSOT SOLID, POLYHEDRON, STELLA Oc- 
TANGULA, STELLATED TRUNCATED HEXAHEDRON, 
STELLATION, UNIFORM POLYHEDRON 

References 
Coxeter, H. S. M. The Fi,fty-Nine Icosahedru. New York: 

Springer-Verlag, 1982. 
Cundy, H. and Rollett, A* Mathematical Models, 3rd ed, 

Stradbroke, England: Tarquin Publications, 1989. 
Wenninger, M. J. PoEyhedron Models. Cambridge, England: 

University Press, 1974. 

Stellated Tetrahedron 

see STELLA OCTANGULA 



Stellated Yll-uncated Hexahedron Stereogram 1735 

Stellated Truncated Hexahedron 

The UNIFORM POLYHEDRON Ulg, also called the QUASI- 

TRUNCATED HEXAHEDRON, whose DUAL POLYHEDRON 

is the GREAT TRIAKIS OCTAHEDRON. It has SCHL;~FLI 

SYMBOL t’{4,3} and WYTHOFF SYMBOL 2 3 1 4. Its 
faces are 8{3} + 6(i). For a = 1, its CIRCUMRADIUS 
1s 

References 
Wenninger, M. J. Polyhedron Models. Cambridge, 

Cambridge University Press, p. 144, 1989. 
England: 

Stellation 
The process of constructing POLYHEDRA by extending 
the facial PLANES past the EDGES of a given POLYHE- 
DRON. 

see also ARCHIMEDEAN SOLID STELLATION, DODEC- 
AHEDRON STELLATIONS, FACETING, IC~~AHEDRON 
STELLATIONS, KEPLER-P• INSOT SOLID, POLYHEDRON, 
STELLA OCTANGULA,~TELLATED POLYHEDRON,~TEL- 
LATED TRUNCATED HEXAHEDRON,STELLATIONTRUN- 
CATION, UNIFORM POLYHEDRON 

References 
Fleurent, G. M. ‘Symmetry and Polyhedral Stellation Ia and 

Ib. Symmetry 2: Unifying Human Understanding, Part 1." 
Comput. Math. Appl. 17, 167-193, 1989. 

Messer, P. W. “Les etoilements du rhombitriconta&dre et 
plus.” Structural Topology 21, 25-46, 1995. 

Messer, P. W. and Wenninger, M. J. “Symmetry and Poly- 
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Stem-and-Leaf Diagram 
The “stem” is a column of the data with the last digit 
removed. The final digits of each column are placed 
next to each other in a row next to the appropriate col- 
umn. Then each row is sorted in numerical order. This 
diagram was invented by John Tukey. 

JAeferences 
Tukey, J. W. Explanatory Data Analysis. Reading, MA: 

Addison-Wesley, pp. 7-16, 1977. 

Step 
1.5 times the H-SPREAD. 

see also FENCE, H-SPREAD 

References 
Tukey, J. W. Explanatory Data Analysis. Reading, MA: 

Addison-Wesley, p. 44, 1977. 

Step Function 
A function on the REALS Iw is a step function if it can 
be written as *a finite linear combination of semi-open 
intervals [a, b) 2 fw. Therefore, a step function f can be 
written as 

where Eli E EC, fi (2) = 1 if GL: E [ai, bi) and 0 otherwise, 
for i = 1, . . . , 72. 

see also HEAVISIDE STEP FUNCTION 

Step Polynomial 

see HERMITE'S INTERPOLATING FUNDAMENTAL POLY- 
NOMIAL 

Steradian 
The unit of SOLID ANGLE. The SOLID ANGLE corre- 

sponding to all of space being subtended is 47r steradian. 

see ~SO RADIAN, SOLID ANGLE 

Stereogram 

A plane image or pair of 2-D images which, when ap- 
propriately viewed using both eyes, produces an image 
which appears to be three-dimensional. By taking a pair 
of photographs from slightly different angles and then al- 
lowing one eye to view each image, a stereogram is not 
difficult to produce. 

Amazingly, it turns out that the 3-D effect can be pro- 
duced by both eyes looking at a single image by defo- 
cusing the eyes at a certain distance. 
are called “random-dot stereograms.” 

Such stereograms 
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Bar-Natan, D. “Random-Dot Stereograms.” Math. J. 1, 69- 

71, 1991. 
Fineman, M. The Nature of Visual Illusion. New York: 

Dover, pp. 89-93, 1996. 
Julesz, B. Foundations of Cyclopean Perception. Chicago, 

IL: University of Chicago Press, 1971. 
Julesz, B. “Stereoscopic Vision.” Vision Res. 26, 1601-1611, 

1986. 
Terrell, M. S. and Terrell, R. E. “Behind the Scenes of a 

Random Dot Stereogram.” Amer. Math. Monthly 101, 
715-724, 1994. 

Tyler, C. “Sensory Processing of Binocular Disparity.” In 
Vergence Eye Movements: Basic and Clinical 
Boston, MA: Butterworth, pp. 199-295, 1983. 

Aspects. 
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Stereographic Projection 

A MAP PROJECTION in which GREAT CIRCLES are 
CLES and L~XODROMES are L OGARITHMIC SPIRAL 

x = kcosqSsin(X - A,) 

y = k[cos $1 sin 4 - sin& cosq5cos(X - X,)], 

where Stevedore% Knot 

k= 
2 

1 + sin $1 sin $ + cos 41 cos g5 cos(X - X0) l  

(3) 

The inverse FORMULAS are given by 

6 = sin --I ( coscsin& + 
y sin c cos 41 

P > 

X = X0 + tan-l 
( 

pcos ~1 cosxcsinc 
- ysin& sine > 

CIR- 

(1) 
(2) 

(4) 

> (5) 

p = 2/x2 + y2 

c = 2 tan-I( ip). 
(6) 

(7) 

see also GALL’S STEREOGRAPHIC PROJECTION 

Heierences 
Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited. 

Washington, DC: Math. Assoc. Amer., pp* 150-153, 1967. 
Snyder, J. P. Map Projections-A Working Manual. U. S. 

Geological Survey Professional Paper 1395. Washington, 
DC: U. S. Government Printing Office, pp. X4-163, 1987. 

Stereology 
The exploration of 3-D space from 2-D sections of PRO- 
JECTIONS of solid bodies. 

see also AXONOMETRY, CORK PLUG, CROSS-SECTION, 
PROJECTION, TRIP-LET 

Stern-Brocot Tree 

A special type of BINARY TREE obtained by starting 
with the fractions 9 and i and iteratively inserting (m+ 
m’)/(n + n’) between each two adjacent fractions m/n 

and m’/n’. The result can be arranged in tree form as 
illustrated above. The FAREY SEQUENCE F, defines a 
subtree of the Stern-Brocot tree obtained by prunirig off 
unwanted branches (Vardi 1991, Graham et al. 1994). 

see ~SO BINARY TREE, FAREY SEQUENCE, FORD CIR- 
CLE 
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Brocot, A. “Calcul des rouages par approximation, nouvelle 

methode.” Revue Chonome’trique 6, 186-194, 1860. 
Graham, R. L.; Knuth, D. E.; and Patashnik, 0. Concrete 

Mathematics: A Foundation for Computer Science, 2nd 
ed. Reading, YA: Addison-Wesley, pp. 116-117, 1994. 

Stern, M. A. “Uber eine zahlentheoretische Funktion.” J. 
reine angew. Muth. 55, 193-220, 1858. 

Vardi, I. Computational Recreations in Mathematics. Red- 
wood City, CA: Addison-Wesley, p. 253, 1991. 

The 6-crossing KNOT 06 001 having CONWAY-ALEXAN- 
DER POLYNOMIAL 

A(t) = 2t2 - 5t + 2. 

References 
Rolfsen, II. Knots and Links. Wilmington, DE: Publish or 

Perish Press, pp. 225, 1976. 

Stewart’s Theorem 

A 

c b 
P 

m n 

a(p2 + mn) = b2m + c2n, 

where 
aGm+n. 

References 
Altshiller-Court, N. “Stewart’s Theorem.” §6B in College 

Geometry: A S econd Course in Plane Geometry for Col- 
leges and Normal Schools, 2nd ed., rev. enl. New York: 
Barnes and Noble, ppm 152-153, 1952. 

Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited. 
Washington, DC: Math. Assoc. Amer., p. 6, 1967. 

Stick Number 
Let the stick number s(K) of a KNOT K be the least 
number of straight sticks needed to make a KNOT K. 
The smallest stick number of any KNOT is s(T) = 6, 
where T is the TREFOIL KNOT. If J and Kare KNOTS, 
then 

s(J + K) 5 s(J) + s(K) + 1. 
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For a nontrivial KNOT K, let c(K) be the CROSSING 
NUMBER (i.e., the least number of crossings in any pro- 
jection of K). Then 

35 + 2/25 + 8@(K) - 2)] 5 s(K) 2 2c(K). 

The following table gives the stick number for some com- 
mon knots. 

Knot s 

trefoil knot 6 
Whitehead link 8 

see also 
ING 

CROS SING NUMBER (LINK), TRIANGLE COUNT- 

References 
Adams, C. C. The Knot Book: An Elementary Introduction 

to the Mathematical Theory of Knots. New York: W* H, 
F’reeman, pp. 27-30, 1994. 

Stickelberger Relation 
Let P be a PRIME IDEAL in D, not containing m. Then 

(a(P)) = pCta;l, 

where the sum is over all 1 < t < m, which are RELA- - 
TIVELY PRIME to m. Here D, is the RING of integers in 

Wm), W) = SW? and other quantities are defined 
by Ireland and Rosen (1990). 

see also PRIME IDEAL 

References 
Ireland, K. and Rosen, M. “The Stickelberger Relation and 

the Eisenstein Reciprocity Law.” Ch. 14 in A Classical In- 
troduction to Modern Number Theory, 2nd ed. New York: 
Springer-Verlag, pp. 203-227, 1990. 

St iefel Manifold 
The Stiefel manifold of ORTHONORMAL k-frames in Iw” 
is the collection of vectors (~1, . . . , wk) where wi is in Iw” 
for alli,andthe k-tuple (~11, . . ..v~)is ORTHONORMAL. 
This is a submanifold of Rnlc, having DIMENSION nk - 

(k + l)k/2. 

Sometimes the “orthonormal” condition is dropped in 
favor of the mildly weaker condition that the k-tuple (WI, 

“‘1 vh) is linearly independent. Usually, this does not 
affect the applications since Stiefel manifolds are usually 
considered only during HOMOTOPY THEORETIC consid- 
erations. With respect to HOMOTOPY THEORY, the 
two definitions are more or less equivalent since GRAM- 
SCHMIDT ORTHONORMALIZATION givesriseto asmooth 
deformation retraction of the second type of Stiefel man- 
ifold onto the first. 

Stiefel-Whitney Class 
The ith Stiefel-Whitney class of a REAL VECTOR BUN- 
DLE (or TANGENT BUNDLE or a REAL MANIFOLD) is in 
the ith cohomology group of the base SPACE involved. 
It is an OBSTRUCTION to the existence of (n - i + 1) 
REAL linearly independent VECTOR FIELDS on that 
VECTOR BUNDLE, where n is the dimension of the 
FIBER. Here, OBSTRUCTION means that the ith Stiefel- 
Whitney class being NONZERO implies that there do not 
exist (n - i + 1) everywhere linearly dependent VECTOR 
FIELDS (although the Stiefel-Whitney classes are not al- 
ways the OBSTRUCTION). 

In particular, the nth Stiefel-Whitney class is the ob- 
struction to the existence of an everywhere NONZERO 
VECTOR FIELD, and the first Stiefel-Whitney class of a 
MANIFOLD is the obstruction to orientability. 

see also 
CLASS, S 

CHERN 
ITIEFEL- 

CLASS, OBSTRUCTION, PONTRYAGIN 
WHITNEY NUMBER 

Stiefel-Whitney Number 
The Stiefel-Whitney number is defined in terms of the 
STIEFEL-WHITNEY CLASS of a MANIFOLD as follows. 
For any collection of STIEFEL-WHITNEY CLASSES such 
that their cup product has the same DIMENSION as 
the MANIFOLD, this cup product can be evaluated on 
the MANIFOLD'S FUNDAMENTAL CLASS. The result- 
ing number is called the PONTRYAGIN NUMBER for that 
combination of Pontryagin classes. 

The most important aspect of Stiefel-Whitney numbers 
is that they are COBORDISM invariant. Together, PON- 
TRYAGIN and Stiefel-Whitney numbers determine an ori- 
ented MANIFOLD% COBORDISM class. 

see dso CHERN NUMBER, PONTRYAGIN NUMBER, 
STIEFEL-WHITNEY CLASS 

Stieltjes Constants 
N.B. A detailed on-line essay by S. Finch was the start- 

ing point for this entry. 

Expanding the RIEMANN ZETA FUNCTION aboutx =1 
gives 

1 - 
cc > z =- O” ( 

+>: 
1) 

Z-1 +& - l)“, (1) 
l  

where 

Yn - = lim m (Ink)” 
>: 

(lnm)fi’l - - m-boo k 1 n+l ' (2) 
k=l 

see also GRASSMANN MANIFOLD An alternative definition is given by 
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The case n = 0 gives the EULER-MASCHERONI CON- 
STANT y. The first few numerical values are given in the 
following table. 

0 0.5772156649 
1 -0.07281584548 
2 -0.009690363192 
3 0.002053834420 
4 0.002325370065 
5 0.0007933238173 

Briggs (1955-1956) proved that there infinitely many yn 
of each SIGN. l3erndt (1972) gave upper bounds of 

Stieltjes Integral 
The Stieltjes integral is a generalization of the RIEMANN 
INTEGRAL. Let f( II: and a(z) be real-values bounded ) 
functions defined on a CLOSED INTERVAL [a, b]. Take a 
partition of the INTERVAL 

a= x0 < Xl < x2,..* < xn-1 < xn = b, (1) 

and consider the Riemann sum 

n-1 

x f(ri)b(xi+l) - 44 (2) 
i=O 

{ 

4(+-I)! 

h-&t< & ;;-y; (4) 

7Fn l  

Vacca (1910) proves that the EULER-MASCHERONI 
CONSTANT may be expressed as 

00 

x Y= (5) 
k=l 

with & f [xi, xi+& If the sum tends to a fixed number 
I as max(zi+l - xi) --+ 0, then I is called the Stieltjes 
integral, or sometimes the RIEMANN-STIELTJES INTE- 
GRAL. The Stieltjes integral of P with respect to F is 
denoted 

s 
P(x) Wx) 1 (3) 

where 

where LxJ is the FLOOR FUNCTION. Hardy (1912) gave 
the FORMULA 

271 O" (-1)'" 
s 

P(x)dF(x) = gX(;;f)x ;f ; ;;;ft;ous (4) 
{ 

. 

-- 

In2 - >: ,Pkk - lkw)J1 1w l  (6) 
k=l 

If P and F have a common point of discontinuity, then ._ - 

Kluyver (1927) gave similar series for 7n with n > 1. 

A set of constants related to ym is 

(Sitaramachandrarao 1986, Lehmer 1988). 
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the integral does not exist. However, if the Stieltjes 
integral exists and F has a derivative F’, then 

s P(x) dF(x) = 
s 

P(x)F’(x) dx. (5) 

For enumeration of many of the integral’s properties, see 
Dresher (1981, p. 105). 

see also RIEMANN INTEGRAL 
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Stieltjes’ Theorem 
The m + 1 ELLIPSOIDAL HARMONICS when ~1, ~2, and 
~3 are given can be arranged in such a way that the 
rth function has T - 1 zeros between -a2 and 4 and '2 

the remaining m + T - 1 zeros between -b2 and -c2 
(Whittaker and Watson 1990). 

see also ELLIPSOIDAL HARMONIC 
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Analysis, 4th ed. Cambridge, England: Cambridge Uni- 
versity Press, pp* 560-562, 1990. 
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Stieltjes- Wigert Polynomial 
Orthogonal POLYNOMIALS associated with WEIGHTING 
FUNCTION 

w(x) = 7T-1’2 k exp(-k2 ln2 2) = 7r-1’2kx-k2 In 5 (1) 

for x E (0,oo) and IG > 0. Using 

n [I (1 - qn)(l - f-l). . . (1 - qn++l) - u - (1 - a)(1 - q”) l  . . (1 - q”) 
(2) 

where 0 < L, < n, 

and 
q = exp[-(2k2)-7. 

Then 

pn(x) = (-l)nqn’2+1’4[(1 - Q)(l - q2) 
n r i 

(1 - d-7 

(3) 

(4) 

-l/2 

X 

cl 1 

; qu2(-q1/2x)” (5) 

u=o 

for n > 0 and 
PO(X) = q1j4. (6) 

References 
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Stirling’s Approximation 
Stirling’s approximation gives an approximate value for 
the FACTORIAL function n! or the GAMMA FUNCTION 
P(n) for n >> 1. The approximation can most simply 
be derived for n an INTEGER by approximating the sum 
over the terms ofthe FACTORIAL with an INTEGRAL,SO 
that 

n 

Inn! = In 1 + In 2 + l  . . + In n = 
zl s 

Ink z lnxdx 
1 

- - [xlnx - x]: = nlnn - 72 + 1 = nlnn - 12. (1) 

The equation can also be derived using the integral def- 
inition of the FACTORIAL, 

n! = e -xxn dx. (2) 

Note that the derivative of the LOGARITHM of the inte- 
grand can be written 

d d 
dz ln(Czxn) = &nlnx - x) = 72 - 1. 

X 
(3) 

The integrand is sharply peaked with the contribution 
important only near x = n. Therefore, let x E n + 6 
where t < n, and write 

ln(xnCx) = nlnx - x = nln(n+i$) - (n+c). (4) 

Now, 

ln(n + 0 =ln[n(l+i)] =lnn+ln(l+b) 

c 15” =lnn+--ss+..., 
n (5) 

so 

ln(xneBx) = nln(n + c) - (n + S) 

15” =nlnn+J----n-4+... 
2n 

= nlnn - n - t ;+*... (6) 

Taking the EXPONENTIAL of each side then gives 

xnedx sr: e 
nln7z --72 

e e 
-&2n = nne-ne-p/2n 

. (7) 

Plugging into the integral expression for n! then gives 

n! E 

r 

nne-ne--E2/2n de % nnemn e-c2/2n d[ 

-n 

= nn. (8) 

Evaluating the integral gives 

n! Fz:n ne-ndG, (9) 

E J2 ~ g+1/2,-n . (10) 

Taking the LOGARITHM of both sides then gives 

Inn! $=: nlnn-n++ ln(27rn) = (n+i) Inn-n+: ln(27r). 

(11) 
This is STIRLING'S SERIES with only the first term re- 
tained and, for large n, it reduces to Stirling’s approxi- 
mation 

Inn! % nhn - 72. (12) 

Gosper notes that a better approximation to n! (i.e., 

one which approximates the terms in STIRLING'S SERIES 
instead of truncating them) is given by 

This also gives a much closer approximation to the FAC- 
TORIAL of 0, O! = 1, yielding d- z 1.02333 instead 
of 0 obtained with the conventional Stirling approxima- 
tion. 

see also STIRMNG'S SERIES 
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Stirling Cycle Number 

see STIRLING NUMBER OF THE FIRST KIND 

Stirling’s Finite Difference Formula 

for p E [-l/2,1/2], where 6 is the CENTRAL DIFFER- 
ENCE and 

S 
1 p+n 

2n+1 = - 

( > 2 2n+l 

S P P+n 
2n+2 = ~ 

( > 2n+2 2n+l ’ 

with (L) a BINOMIAL COEFFICIENT. 

see also CENTRAL DIFFERENCE, STEFFENSON'S FOR- 
MULA 

References 
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Stirling’s Formula 

see STIRLING'S SERIES 

Stirling Number of the First Kind 
The definition of the (signed) Stirling number of the first , . 
kind is a number Siml such that the number of permu- 
tations of n elements which contain exactly VI CYCLES 
is 

( 1) - “-“SW 
n l  (1) 

This means that SsLm’ = 0 for YII > n and SF’ = 1. The 
GENERATING FUNCTION is 

n 

x(x - 1) l  l  l  (x - n + 1) = 
>: 

sbdxm 
n l  

(2) 

m=O 

This is the Stirling number of the first kind returned 
by the Mathematic@ (Wolfram Research, Champaign, 
IL) command StirlingSi [n,m] . The triangle of signed 
Stirling numbers of the first kind is 

1 

-1 1 

2 -3 1 

-6 11 6 1 

24 - 50 35 - 10 1 

(Sloane’s A008275). 

The NONNEGATIVE version simply gives the number of 
PERMUTATIONS of n objects having m CYCLES (with 

cycles in opposite directions counted as distinct) and is 
obtained by taking the ABSOLUTE VALUE of the signed 
version. The nonnegative Stirling number of the first 

kind is denoted Sl(n, m) = ISin’ 1 or 

illustrating &(5,1) = 24, &(5,3) = 3i, &(5,4) = 10, 
and &(5,5) = 1 (Dickau) are shown below. 

S,(5,5) : :e 0 
The nonnegative Stirling numbers of the first kind sat- 
isfy the curious identity 

( ex - x - qk+l Sdn,n - k) e-xn 

(k + l)! 
I 

= ln(x+l) 

(3) 

(Gosper) and have the GENERATING FUNCTION 

(l+x)(1+2x)~~~(l+nx) = c&(n,m)l” (4) 
k=l 

and satisfy 

l(n+l,k) =nS&,k) +Sl(n,k- 1). (5) 

The Stirling numbers can be generalized to nonintegral 
arguments (a sort of “Stirling polynomial”) using the 
identity 

w + h) O” &(h,h- k) 
- = 
j”W> >: 'k 

k=O 
J 

- 1 + (h 1)h (h - - = 

2J- 

+ 2)(3h l)(h - 1)h 
24j2 

(h 3)(h - - + 2)(h - 1)2h2 

48j3 

+ 
.“Y (6) 

which is a generalization of an ASYMPTOTIC SERIES for 
a ratio of GAMMA FUNCTIONS r(j + 1/2)/r(j) (Gosper). 

see also CYCLE (PERMUTATION), HARMUNIC NUMBER, 
PERMUTATION, STIRLING NUMBER OF THE SECOND 
KIND 
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xn = x s(n, m)x(x - 1) l  l  l  (x - m + l), (6) 
m=O 

xs(n, k)$ = $(ex - l)“, (7) . . 
n>k 

and 

1 

(1 - x)(1 - 2x) v l  . (1 - kx) 
= k s(n, k)xn. (8) 

n=l 

Stirling Number of the Second Kind 
The number of ways of partitioning a set of n ele- 

The following diagrams (Dickau) illustrate the definition 

ments into m nonempty SETS (i.e., m BLOCKS), also 
of the Stirling numbers of the second kind s( n, m) for 
n = 3 and 4. 

called a STIRLING SET NUMBER. For example, the SET 
{1,2,3} can be partitioned into three SUBSETS in one 
way: {{1},{2},{3}}; into two SUBSETS in three ways: 

{{1,2}, {3)), {{1,3}, {W, and {W, (273)); and into 

F p& b 

one SUBSET in one way: {{1,2,3}}. p= 1 s(2)= 7 
4 

The Stirling numbers of the second kind are denoted 

Sirn) 7 &(n,m), s(n,m), or 
1 > 

c , so the Stirling num- 

bers of the second kind for three elements are 

s(3,l) = 1 

s(3,2) = 3 

s(3,3) = 1. 

(1) 
(2) 
(3) 

Since a set of n elements can only be partitioned in a 
single way into 1 or n SUBSETS, 

4% 1) = s(n,n) = 1. (4) 
Stirling numbers of the second kind obey the RECUR- 
RENCE RELATIONS 

The triangle of Stirling numbers of the second kind is 
s(n, k) = s(n - 1, k - 1) + ks(n - 1, k). (9) 

1 

1 1 An identity involving Stirling numbers of the second 

1 3 1 kind is 

1 7 6 1 

1 15 25 10 1 

1 31 90 65 15 1 

f(m,n) G F,kn (s)‘= (m+~&~~(n,k)mk~ 

k=l k=l 

(Sloane’s A008277). 

The Stirling numbers of the second kind can be com- 
puted from the sum 

It turns out that f(1, n) can have only 0, 2, or 6 as & 
last DIGIT (Riskin 1995). 

see also BELL NUMBER, COMBINATION LOCK, LENG- 
YEL'S CONSTANT,MINIMAL COVER,~TIRLING NUMBER 
OF THE FIRST KIND 

k-l 

s(n, k) = k x(-# 
l  

i=O 

(5) 
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Stirling’s Series 
The ASYMPTOTIC SERIES for the GAMMA FUNCTION is 

given by 

r( > 
-y-1/2 

J"-( 
7T 1+ 

1 1 139 
z =e 

12z+288r2-- 51840z3 

571 
-2488320~~ 

+... 
> (1) 

Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. 
Stradbroke, England: Tarquin Pub., p. 72, 1989. 

(Sloane’s A001163 and A001164). The series for x! is 
obtained by adding an additional factor of z, 

z! = r(X + 1) = pZz+1/2 
1 1 

122+- 288~~ 
139 571 --- 

51840~~ 2488320~~ 

The expansion of In r(z) is what is usually called Stir- 
ling’s series. It is given by the simple analytic expression 

B2T-b 

lnW = T  2n(2n-qz2n-1 (3) 

n=l 

- fln(2a)+(z+~)lnr-z+T-~+~-.-., - 
(4) 

where B, is a BERNOULLI NUMBER. 

see also BERNOULLI NUMBER, K-FUNCTION, STIR- 
LING'S APPROXIMATION 
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Stirling Set Number 

see STIRLING NUMBER OF THE SECOND KIND 

Stirrup Curve 

A plane curve given by the equation 

( x2 - q2 = Y2(Y - l)(Y - WY + 5). 

References 

Stochastic 

~~~RANDOM VARIABLE 

Stochastic Calculus of Variations 

see MALLIAVIN CALCULUS 

Stochastic Group 
The GROUP of all nonsingular n x 72 STOCHASTIC MA- 
TRICES over a FIELD F. It is denoted S(n,F). If p is 
PRIME and F is the GALOIS FIELD of ORDER Q =pm, 
S(n, q) is written instead of S(n, F). Particular exam- 
ples include 

S(2,2) = z2 

S(2,3) = s3 

S(2,4) = Aq 

S(3,2) = s4 

S(W) = z4 x0 &, 

where & is an ABELIAN GROUP, S, are SYMMETRIC 
GROUPS on n elements, and ~0 denotes the semidirect 
product with 8 : & + Aut(&) (Poole 1995). 

see also STOCHASTIC MATRIX 

References 
Poole, D+ G. “The Stochastic Group? Amer. Math. Monthly 

102, 798-801,1995. 
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Stochastic Matrix 
A Stochastic matrix is the transition matrix for a finite 
MARKOV CHAIN, also called a MARKOV MATRIX. El- 
ements of the matrix must be REAL NUMBERS in the 
CLOSED INTERVAL [0, 11. 

A completely independent type of stochastic matrix is 
defined as a SQUARE MATRIX withentriesin a FIELD F 
such that the sum of elements in each column equals 1. 
There are two nonsingular 2 x 2 STOCHASTIC MATRICES 
over Zz (i.e., the integers mod 2), 

[i q and [Yl ;I- 
There are six nonsingular stochastic 3 x 3 MATRICES 
over Z3, 

In fact, the set S of all nonsingular stochastic n x n ma- 

trices over a FIELD F forms a GROUP under MATRIX 

MULTIPLICATION. This GROUP is called the STOCHAS- 
TIC GROUP. 

see also MARKOV CHAIN, STOCHASTIC GROUP 
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Stochastic Process 
A stochastic process is a family of RANDOM VARI- 

ABLES {x(+),c E 3) from some PROBABILITY SPACE 
(S,S, P) into a STATE SPACE (S’,S’). Here, J is the 
INDEX SET of the process. 

see also INDEX SET, PROBABILITY SPACE, RANDOM 
VARIABLE, STATE SPACE 
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586-595, 1996. 

Stochastic Resonance 
A stochastic resonance is a phenomenon in which a non- 
linear system is subjected to a periodic modulated signal 
so weak as to be normally undetectable, but it becomes 
detectable due to resonance between the weak determin- 
istic signal and stochastic NOISE. The earliest definition 
of stochastic resonance was the maximum of the out- 
put signal strength as a function of NOISE (Bulsara and 
Gammaitoni 1996) V 

see ah KRAMERS RATE, NOISE 
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Bulsara, A. R. and Gammaitoni, L. “Tuning in to Noise.” 

Phys. Today 49, 39-45, March 1996. 

StIjhr Sequence 
Let al = 1 and define a,+1 to be the least INTEGER 

greater than a, for n > JC which cannot be written as _ 
the SUM of at most h addends among the terms al, a~, 

see also GREEDY ALGORITHM, S-ADDITIVE SEQUENCE, 

ULAM SEQUENCE 
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Stokes Phenomenon 
The asymptotic expansion of the AIRY FUNCTION Ai 
(and other similar functions) has a different form in dif- 
ferent sectors of the COMPLEX PLANE. 

see also AIRY FUNCTIONS 
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Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 
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Stokes’ Theorem 
For w a DIFFERENTIAL (n- l)-FORM with compact sup- 
port on an oriented n-dimensional MANIFOLD M, 

(1) 

where dw is the EXTERIOR DERIVATIVE of the differ- 
ential form w. This connects to the “standard” GRA- 
DIENT, CURL, and DIVERGENCE THEOREMS by the fol- 
lowing relations. If f is a function on 8X3, 

grad(f) = c-l df, (2) 

where c : Iw3 -+ R3 * (the dual space) is the duality 
isomorphism between a VECTOR SPACE and its dual, 
given by the Euclidean INNER PRODUCT on Ik3. If f is 
a VECTOR FIELD on a R”, 

div(f) = *d*c(f), (3) 

where * is the HODGE STAR operator. If f is a VECTOR 

FIELD on R3, 

curl(f) = ?*dc(f). (4) 

With these three identities in mind, the above Stokes’ 
theorem in the three instances is transformed into the 
GRADIENT, CURL, and DIVERGENCE THEOREMS re- 
spectively as follows. If f is a function on IEX3 and y 
is a curve in Iw3, then 

s 

grad(f) l  dl = 
s 

df = f (YW - f hW (5) 
Y  Y 
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which is the GRADIENT THEOREM. If f : R3 -+ EC3 
is a VECTOR FIELD and M an embedded compact 3- 
manifold with boundary in R3, then 

which is the DIVERGENCE THEOREM. If f is a VEC- 
TOR FIELD and M is an oriented, embedded, compact 
Z-MANIFOLD with boundary in R3, then 

whichisthe CURL THEOREM. 

Physicists generally refer to the CURL THEOREM 

s 
(V x F) n da = 

s 
F l  ds (8) 

S 8S 

as Stokes’ theorem. 

see UZSO CURL THEOREM, DIVERGENCE THEOREM, 
GRADIENT THEOREM 

Stolarsky Array 
A INTERSPERSION array given by 

1 2 3 5 8 13 21 34 55 4.. 
4 6 10 16 26 42 68 110 178 l  *g 
7 11 18 29 47 76 123 199 322 4.. 

9 15 24 39 63 102 165 267 432 4-v 
12 19 31 50 81 131 212 343 555 q .* 
14 23 37 60 97 157 254 411 665 l  ‘- 

17 28 45 73 118 191 309 500 809 l  a* 
20 32 52 84 136 220 356 576 932 l  ** 

22 36 58 94 152 246 398 644 1042 ... 
l  . l  . . . m  . . 

. 

l  . l  . . . . . . l  

. . l  l  . l  m  l  . . 

the first row of which is the FIBONACCI NUMBERS. 

see UZSO INTERSPERSION, WYTHOFF ARRAY 
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Stolarsky-Harborth Constant 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

Let b(k) be the number of 1s in the BINARY expression of 
k. Then the number of ODD BINOMIAL COEFFICIENTS 
(:) where 0 2 j 2 IC is 2 ‘(‘) (Glaisher 1899, Fine 1947). 

The number of ODD elements in the first n rows of PAS- 
CAL'S TRIANGLE is 

7-b-l 

f(n) = x Zb(? 

k=O 

This function is well approximated by n’, where 

s_E = 1.58496.. . . 

Stolarsky and Harborth showed that 

0.812556 < liminf - n-km 

(1) 

(2) 

f( > n 
< 0.812557 < limsup - 

79 
= 1. (3) 

n+oo 

The value 
f( ) SH = liminf - 
ny (4) n+m 

is called the Stolarsky-Harborth constant. 
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Stolarsky’s Inequality 
If 0 < g(z) < 1 and g is nonincreasing on the INTERVAL - - 
[OJ], then for all possible values of a and b, 

Stomachion 

A DISSECTION game similar to TANGRAMS described in 
fragmentary manuscripts attributed to Archimedes and 
wasreferredtoasthe LOCULUS OF ARCHIMEDES (Arch- 
imedes’ box) in Latin texts. The word Stomachion has 
as its root the Greek word for stomach. The game con- 
sisted of 14 flat pieces of various shapes arranged in the 
shape of a square. Like TANGRAMS, the object is to 
rearrange the pieces to form interesting shapes. 

see also DISSECTION, TANGRAM 
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Stone Space 
Let P(L) be th e set of all PRIME IDEALS of L, and define 
r(a) = {PI, 6 P}. Then the Stone space of L is the 
TOPOLOGICAL SPACE defined on P(L) by postulating 
that the sets of the form r(a) are a subbase for the open 
sets. 

see also PRIME IDEAL, TOPOLOGICAL SPACE 

Meterences 
Grgtzer, G. Lattice Theory: First concepts and Distributive 
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Stone-von Neumann Theorem 
A theorem which specifies the structure of the generic 
unitary representation of the Weyl relations and thus 
establishes the equivalence of Heisenberg’s matrix me- 
chanics and Schrijdinger’s wave mechanics formulations 
of quantum mechanics. 

References 
Neumann, J. van. “Die Eindeutigkeit der Schrodingerschen 
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Stopper Knot 
A KNOT used to prevent the end of a string from slipping 
through a hole. 

References 
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Stormer Number 
A Stormer number is a POSITIVE INTEGER n for which 

I  the largest PRIME factor p of n2 + 1 is at least 2n. Every 
GREGORY NUMBER t, can be expressed uniquely as a 
sum of t,s where the ns are Stormer numbers. Conway 
and Guy (1996) give a table of Stormer numbers repro- 
duced below (Sloane’s A005529). In a paper on INVERSE 
TANGENT relations, Todd (1949) gives a similar compi- 
lation. 

n Pn Pn Pin P3 P 
T 

1 2 10 101 19 181 26 617 35 613 
2 5 11 61 20 401 27 73 36 1297 
4 17 12 29 22 97 28 157 37 137 
5 13 14 197 23 53 29 421 39 761 
6 37 15 113 24 577 33 109 40 1601 
9 41 16 257 25 313 34 89 42 353 

see also GREGORY NUMBER, INVERSE TANGENT 
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Sloane, N. J. A. Sequence A005529/M1505 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Todd, J. “A Problem on Arc Tangent Relations.” Amer. 

Math. Monthly 56, 517-528, 1949. 

Straight Angle 
An ANGLE of180’ = n RADIANS. 

see also DIGON, RIGHT ANGLE 

Straight Line 

see LINE 

Straight Polyomino 

The straight polyomino of order n is the n-POLYOMINO 

in which all squares are placed along a line. 

see also L-POLYOMINO, SKEW POLYOMINO, SQUARE 

POLYOMINO, T-POLYOMINO 

Straightedge 
An idealized mathematical object having a rigorously 
straight edge which can be used to draw a LINE SEG- 
MENT. Although GEOMETRIC CONSTRUCTIONS are 

sometimes said to be performed with a RULER and COM- 
PASS, the term straightedge is preferable to RULER since 
markings on the straightedge (usually assumed to be 
present on a 
Greek rules. 

RULER) are not allowed by the classical 

see also COMPASS, GEOMETRIC CONSTRUCTION, GE- 
OMETROGRAPHY,MASCHERONI CONSTANT,POLYGON, 
PONCELET-STEINER THEOREM, RULER, SIMPLICITY, 
STEINER CONSTRUCTION 

Strange Attractor 
An attracting set that 
bedding PHASE SPACE 

has zero MEASURE in the em- 
and has FRACTAL dimension. 

Trajectories within a strange attractor appear to skip 
around randomly. 

see UZSO CORRELATION EXPONENT,FRACTAL 
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Lauwerier, H. Fructals: Endlessly Repeated Geometric Fig- 
ures. Princeton, NJ: Princeton University Press, pp. l37- 
138, 1991. 

Sprott, J. C. Strange Attractors: Creating Patterns in Chaos. 
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Strange Loop 
A phenomenon in which, whenever movement is made 
upwards or downwards through the levels of some heirar- 
chial system, the system unexpectedly arrives back 
where it started. Hofstadter (1987) uses the strange loop 
as a paradigm in which to interpret paradoxes in logic 
(such as GRELLING'S PARADOX and RUSSELL'S PARA- 
DOX) and calls a system in which a strange loop appears 
a TANGLED HIERARCHY. 

see dso GRELLING’S PARADOX, RUSSELL'S PARADOX, 
TANGLED HIERARCHY 

Keferences 
Hofstadter, D. R. GiideE, Escher, Bach: An Eternal Golden 

Braid. New York: Vintage Books, p. 10, 1989. 

Strangers 
Two numbers which are RELATIVELY PRIME. 

References 
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, 
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Strassen Formulas 
The usual number of scalar operations (i.e., the total 
number of additions and multiplications) required to 
perform n x n MATRIX MULTIPLICATION is 

M(n) = 2n3 - n2 (1) 

( i.e., n3 multiplications and ?z3 - n2 additions). How- 
ever, Strassen (1969) discovered how to multiply two 
MATRICES in 

s(n) = 7. 71gn - 6. dlgn (2) 

scalar operations, where lg is the LOGARITHM to base 2, 
which is less than M(n) for n > 654. For n a power of 
two (n = Z”), the two parts of (2) can be written 

7.7lgn = 7 l  7lg2” = 7. 7” = 7, p7 = 7(p)‘g7 = 7&7 

(3) 

6m41gn=6.41g2k =6.4k1g2=6,4k=6(2k)2=6n2, 

(4 

so (2) becomes 

Wk) 
c 7nlg7 - 6n2, 

(5 > 

TWO 2 x 2 matrices can therefore be multiplied 

C = Al3 (6 

C7) 

S(2) = 7 l  21g7 - 6 0 22 = 49 - 24 = 25 (8) 

scalar operations (as it turns out, seven of them are 
multiplications and 18 are additions). Define the seven 
products (involving a total of 10 additions) as 

Ql = (all + w)(hl + b22) (9) 
Q2 = (a21 +- m)bll w 

Q3 = al(bn - b22) (11) 

Q4 = a22 (-41 + b21) (12) 

Q5 = (all + m)h (13) 

QS = (---all + m)(hl + b) (14 
Q7 = (al2 - w)(h + h). (15) 

Then the matrix product is given using the remaining 
eight additions as 

cn=Q1+Qc-Q5+Q7 (16) 

czl=Q2-tQ4 (17) 

~12 = Q3 + Q5 (18) 

czz=@+Q3-Q2+Q6 (19) 

(Strassen 1969, Press et al. 1989). 

Matrix inversion of a 2 x 2 matrix A to yield C = A-l 
can also be done in fewer operations than expected using 
the formulas 

RI E all 
-1 

(20) 

R2 = a2lRl (21) 

R3 E Rlal2 (22) 

R4 E U2lR3 (23) 
R5 = R4 - ~22 (24) 

Rs E R5-l (25) 

Cl2 = R& (26) 

~21 = R&z (27) 

R7 = R3c2l (28) 

Cl1 = RI - R7 (29) 

c22 = -Rs (30) 

(Strassen 1969, Press et al. 1989). The leading exponent 
for Strassen’s algorithm for a POWER of 2 is lg 7 z 2.808. 
The best leading exponent currently known is 2.376 
(Coppersmith and Winograd 1990). It has been shown 
that the exponent must be at least 2. 

see also COMPLEX MULTIPLICATION,KARATSUBA MUL- 
TIPLICATION 
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x(u, v) = o(u) + v&u), (1) 

where 161 = 1, 0’ 9 6’ = 0, and d is called the striction 
curve of x. Furthermore, the striction curve does not 
depend on the choice of the base curve. The striction 
and DIRECTOR CURVES ofthe HELICOID 

Strassman’s Theorem 

Let (K I l  I) b  
e a complete non-ARCHIMEDEAN VALU- 

ATED FIELD, with VALUATION RING R, and let f(X) be 
a POWER series with COEFFICXENTS in R. Suppose at 
leastone ofthe COEFFICIENTS is NONZERO (so that f is 
not identically zero) and the sequence of COEFFICIENTS 
converges to 0 with respect to 1 l  1. Then f(X) has only 
finitely many zeros in R. 

x(u,v) = pi] +av [:;r:] 

see also ARCHIMEDEAN VALUATION, MAHLER-LECH 
THEOREM,~ALUATION, VALUATION RING 

0 
a(u) = [ 1 0 

bU acosu 
SC > U E [ 1 asinu . 

0 

For the HYPERBOLIC PARABOLOID 

Strassnitzky’s Formula 
The MACHIN-LIKE FORMULA 

a7r = cot-l 2 + cot-l 5 + cot-l 8. 

see also MACHIN'S FORMULA, MACHIN-LIKE FORMU- 

u 0 
x(u,v) = 0 +w 1 , [I [I 0 u 

the striction and DIRECTOR CURVES are 

Strategy 
A set of moves which a player plans to follow while play- 
ing a GAME. 

see also GAME, MIXED STRATEGY 

Stratified Manifold 
A set that is a smooth embedded 2-D MANIFOLD except 
for a subset that consists of smooth embedded curves, 
except for a set of ISOLATED POINTS. 

References 
Morgan, F. “What is a Surface?” Amer. Math. Monthly 103, 
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Strehl Identity 
The sum identity 

where (E) is a BINOMIAL COEFFICIENT. 

see UZSO BINOMIAL COEFFICIENT 

String Rewriting 1747 

(2) 

(3) 

(4 

(5) 

(6) 

(7) 

see UZSO DIRECTOR CURVE, DISTRIBUTION PARAME- 
TER,NONCYLINDRICAL RULED SURFACE,RULED SUR- 
FACE, 
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String Rewriting 
A SUBSTITUTION MAP in which rules are used to oper- 
ate on a string consisting of letters of a certain alpha- 
bet. String rewriting is a particularly useful technique 
for generating successive iterations of certain types of 
FRACTALS, suchasthe Box FRACTAL, CANTOR DUST, 
CANTOR SQUARE FRACTAL, and SIERP&KI CARPET. 

see also RABBIT SEQUENCE, SUBSTITUTION MAP 
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Peitgen, H.-U. and Saupe, D. (Eds.). “String Rewriting Sys- 

tems.” SC.1 in The Science of Fractal Images. New York: 
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Strong Law of Small Numbers 
There aren’t enough small numbers to meet the many 
demands made of them. 

Strip 

see CRITICAL STRIP, M~~BHJS STRIP 

Strong Convergence References 
Strong convergence is the type of convergence usually 
associated with convergence of a SEQUENCE. More for- 
mally, a SEQUENCE {xn} of VECTORS in an INNER 
PRODUCT SPACE Eis called convergent to a VECTOR x 

Gardner, M. “Patterns in Primes are a 
Law of Small Numbers.” Sci. Amer. 
1980. 

Guy, R. K. “The Strong Law of Small 
Math. Monthly 95, 697-712, 1988. 

Clue to the Strong 
243, 18-28, Dec. 

Numbers.” Amer. 

Strong Lucas Pseudoprime 
Let U(P,Q) and V(P,Q) be LUCAS SEQUENCES gener- 
ated by P and Q, and define see als o CONVERGENT SEQUENCE 

SPACE, WEAK CONVERGENCE 
, INNER PRODUCT 

D E P2 - 4Q. 
Strong Elliptic Pseudoprime 
Let ~2 be an ELLIPTIC PSEUDOPRIME associated with 
(E, P), and let n+l = 2% with k ODD and s 2 0. Then 
n is a strong elliptic pseudoprime when either W G 
0 (mod n) or 2’kP E 0 (mod n) for some T with 1 < - 
T < s. 

Let n bean ODD COMPOSITE NUMBER with (n, D)= 1, 
and n- (D/n) = 2”d with d ODD and s _> 0, where (a/b) 
is the LEGENDRE SYMBOL. If 

Ud E 0 (mod n) 

see also ELLIPTIC PSEUDOPRIME 
or 

V&-d E 0 (mod n) References 
Ribenboim, P. The New Book of Prime Number Records, 3rd 

ed. New York: Springer-Verlag, pp, 132-134, 1996. for some T with 0 
Lucas pseudoprime 

<r - 
with 

< s, then n is called 

Q> l  

a strong 
parameters (P, 

Strong Fkobenius Pseudoprime 
A PSEUDOPRIME which obeys an additional restriction 
beyond that required for a FROBENIUS P~EUDOPRIME. 
A number n with (n, 2a) = 1 is a strong F’robenius pseu- 
doprime with respect to GL: - a IFF n is a STRONG PSEU- 
DOPRIME with respect to f(z)* Every strong F’robenius 
pseudoprime with respect to =1: - a is an EULER PSEU- 
DOPRIME to the base a. 

A strong Lucas pseudoprime is a LUCAS PSEUDOPRIME 
to the same base. Arnault (1997) showed that any COM- 
POSITE NUMBER n is a strong Lucas pseudoprime for at 
most 4/15 of possible bases (unless n is the PRODUCT 
of TWIN PRIMES having certain properties). 

see &O EXTRA STRONG LUCAS PSEUDOPRIME,LUCAS 
PSEUDOPRIME 

References 
Arnault, F. “The Rabin-Monier Theorem for Lucas Pseudo- 

primes,” Math. Comput. 66, 869-881, 1997. 
Ribenboim, P. “Euler-Lucas Pseudoprimes (elpsp(P, Q)) and 

Strong Lucas Pseudoprimes (slpsp(P, Q)).” s2.X.C in The 
New Book of Prime Number Records, 3rd ed. New York: 
Springer-Verlag, pp- 130431, 1996. 

Every strong Fkobenius pseudoprime with respect to 

f( > X = x2 - bx - c such that ((b2 + 4c)/n) = -1 is a 
STRONG LUCAS PSEUDOPRIME with parameters (b,c). 
Every strong fiobenius pseudoprime n with respect to 
x24x+ lisan EXTRA STRONG LUCAS PSEUDOPRIME 
to the base b. 

see also FROBENIUS PSEUDOPRIME Strong Pseudoprime 
A strong pseudoprime toabaseaisan ODD COMPOSITE 
NUMBER n with n- 1 = d w  2’ (for d ODD) for which 
either 

a d E 1 (mod n) (1) 

References 
Grantham, J. “Fkobenius Pseudoprimes.” 1996. http : // 

www.clark.net/pub/grantham/pseudo/pseudo.ps 

Strong Law of Large Numbers 
For a set of random variates zc:i from a distribution hav- 
ing unit MEAN, 

or 
a d’2T G -1 (mod n) (2) 

for some T E [0, s). 
p lim 21+--+Zn 

( n-m n 
) =P(~~~(x)) =l. The definition is motivated by the fact that a FERMAT 

PSEUDOPRIME n to the base b satisfies 

This result is due to Kolmogorov. 

see also LAW OF TRULY LARGE NUMBERS, STRONG 
LAW OF SMALL NUMBERS, WEAK LAW OF LARGE 
NUMBERS 

bnml - 1 E 0 (mod n) . (3) 

But since n is ODD, it can be written n = 2nz + 1, and 

b 2m - 1 = (b” - l)(b" + 1) = 0 (mod n). (4) 
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If n is PRIME, it must DIVIDE at least one of the FAC- 
TORS, but can’t DIVIDE both because it would then DI- 

VIDE their difference 

(b” + 1) - (b” - 1) = 2. (5) 

Therefore, 
b” E H (mod n) , (6) 

so write n = 2”t + 1 to obtain 

bn-1 - 1 = (bt - l)(bt + l)(b2t + 1). w  - (b2”-It + 1). (7) 

If n DIVIDES exactly one of these FACTORS but is COM- 
POSITE, it is a strong pseudoprime. A COMPISETE num- 
ber is a strong pseudoprime to at most l/4 of all bases 
less than itself (Monier 1980, Rabin 1980). The strong 
pseudoprimes provide the basis for MILLER'S PRIMAL- 
ITY TEST and RABIN-MILLER STRONG PSEUDOPRIME 
TEST. 

A strong pseudoprime to the base a is also an EULER 
PSEUDOPRIME to the base a (Pomerance et al. 1980). 
The strong pseudoprimes include some EULER PSEU- 
DOPRIMES,FERMAT PSEUDOPRIMES, and CARMICHAEL 
NUMBERS. 

There are 4842 strong psp(2) less than 2.5~ 101’, where a 
psp(2) is also known as a POULET NUMBER. The strong 
k-pseudoprime test for k = 2, 3, 5 correctly identifies all 
PRIMES below 2.5 x 101’ with only 13 exceptions, and if 
7 is added, then the only exception less than 2.5 x lOlo 
is 315031751. Jaeschke (1993) showed that there are 
only 101 strong pseudoprimes for the bases 2, 3, and 
5 less than 1012, nine if 7 is added, and none if 11 is 
added. Also, the bases 2, 13, 23, and 1662803 have no 
exceptions up to 1012. 

If n is COMPOSITE, then there is a base for which n is not 
a strong pseudoprime. There are therefore no “strong 
CARMICHAEL NUMBERS." Let $k denote the smallest 
strong pseudoprime to all of the first k PRIMES taken 
as bases (i.e, the smallest ODD NUMBER for which the 
RABIN-MILLER STRONG PSEUDOPRIME TEST on bases 
less than or equal to k fails). Jaeschke (1993) computed 
& from k = 5 to 8 and gave upper bounds for k = 9 to 
11. 

$1 = 2047 

ti2 = 1373653 

953 = 25326001 

+4 = 3215031751 

*5 = 2152302898747 

*s = 3474749660383 

*7 = 34155071728321 

+a = 34155071728321 

& < 41234316135705689041 

‘Ict10 ; 1553360566073143205541002401 

till < 56897193526942024370326972321 - 

(Sloane’s A014233). A seven-step test utilizing these 
results (Riesel 1994) allows all numbers less than 3.4 x 
1014 to be tested. 

Pomerance et al. (1980) have proposed a test based on 
a combination of STRONG PSEUDOPRIMES and LUCAS 
PSEUDOPRIMES. They offer a $620 reward for discovery 
of a COMPOSITE NUMBER which passes their test (Guy 
1994, p. 28). 

see also CARMICHAEL NUMBER, MILLER'S PRIMAL- 
ITY TEST, POULET NUMBER, RABIN-MILLER STRONG 
PSEUDOPRIME TEST,ROTKIEWICZ THEOREM, STRONG 
ELLIPTIC PSEUDOPRIME, STRONG LUCAS PSEUDO- 
PRIME 
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Baillie, R. and Wagstaff, S. “Lucas Pseudoprimes.” Math. 

comput. 35, 1391~1417,198O. 
Guy, R. K. “Pseudoprimes. Euler Pseudoprimes. Strong 

Pseudoprimes .” §A12 in Unsolved Problems in Number 
Theory, 2nd ed. New York: Springer-Verlag, pp. 27-30, 
1994. 

Jaeschke, G. “On Strong Pseudoprimes to Several Bases.” 
Math. Comput. 61, 915-926, 1993. 

Monier, L. “Evaluation and Comparison of Two Efficient 
Probabilistic Primality Testing Algorithms.” Theor. Com- 
put. sci. 12, 97-108, 1980. 

Pomerance, C.; Selfridge, J. L.; and Wagstaff, S. S. Jr. “The 
Pseudoprimes to 25 l  lo* .” Math. Comput. 35, 1003-1026, 
1980. Available electronically from f tp: //sable. ox. ac , 
uk/pub/math/primes/ps2.2. 

Rabin, M. 0. “Probabilistic Algorithm for Testing Primal- 
ity.” J. Number Th. 12, 128-138, 1980. 

Riesel, H. Prime Numbers and Computer Methods for Fac- 
torization, 2nd ed. Basel: Birkhguser, p. 92, 1994. 

Sloane, N. J. A. Sequence A014233 in “An On-Line Version 
of the Encyclopedia of Integer Sequences.” 

Strong Pseudoprime Test 

see RABIN-MILLER STRONG PSEUDOPRIME TEST 

Strong Subadditivity Inequality 

#(A) + 4(B) - ti(AUB) 2 @(An B)* 

References 
Doob, J. L. “The Development of Rigor in Mathematical 

Probability (1900-1950) l ” Amer. Math. Monthly 103, 
586-595,1996. 

Strong Triangle Inequality 

Ix + YIP 2 max(I4m I&) 

for all z and y. 

see also p-ADIC NUMBER, TRIANGLE INEQUALITY 

Strongly Connected Component 
A maximal subgraph of a DIRECTED GRAPH such that 
for every pair of vertices u, w  in the SUBGRAPH, there is 
a directed path from u to v and a directed path from v 
to u. 

see also BI-CONNECTED COMPONENT 
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Strongly Embedded Theorem 
The strongly embedded theorem identifies all SIMPLE 
GROUPS with a strongly 2-embedded SUBGROUP. In 
particular, it asserts that no SIMPLE GROUP has a 
strongly 2-embedded 2’4ocal SUBGROUP. 

see also SIMPLE GROUP, SUBGROUP 

Strongly Independent 
An infinite sequence {ai} of POSITIVE INTEGERS is 

called strongly independent if any relation c ~iai, with 
pi = 0, H, or 412 and pi = 0 except finitely often, IM- 
PLIES e:i = 0 for all i. 

see also WEAKLY INDEPENDENT 

References 
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. 
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Strongly Triple-Free Set 

see TRIPLE-FREE SET 

Strophoid 
Let C be a curve, let 0 be a fixed point (the POLE), 

and let 0’ be a second fixed point. Let P and P’ be 
points on a line through 0 meeting C at Q such that 
P’Q = QP = QO’. The LOCUS of P and P’ is called 
the strophoid of C with respect to the POLE 0 and 
fixed point 0’. Let C be represented parametrically by 

(fW9W and let 0 = ( zo,yo) and 0’ = (xl,y& Then 
the equation of the strophoid is 

x=ff J (Xl - f)2 +- (y1 -g)2 

1+m2 

y=g* J ($1 - f I2 + (Yl - 9)” 
1+m2 

7 

where 

(2) 

mE P-Y0 
f - x0  l  

(3) 

The name strophoid means “belt with a twist,” and was 
proposed by Montucci in 1846 (MacTutor Archive). The 
polar form for a general strophoid is 

T= 
b sin@ - 28) 

sin@ - 0) * (4) 

If a = r/2, the curve is a RIGHT STROPHOID. The 
following table gives the strophoids of some common 
curves. 

Curve Pole Fixed Point Strophoid 

line not on line on line oblique strophoid 
line not on line foot of 1 right strophoid 

origin to line 
circle center on circumf. Fkeeth’s nephroid 

see also RIGHT STROPHOID 

Struve Differential Equation 
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Press, pp. 134-137, 1967. 

MacTutor History of Mathematics Archive. “Right.” http : 
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Structurally Stable 
A MAP 4 : M + lV where M is a MANIFOLD is C’ 
structurally stable if any CT perturbation is TOPOLOG- 
ICALLY CONJUGATE to 4. Here, C’ perturbation means 
a FUNCTION $ such that $ is close to 4 and the first T 
derivatives of $ are close to those of + 

see UZSO TOPOLOGICALLY CONJUGATE 

Structure 

see LATTICE 

Structure Constant 
The structure constant is defined as in+, where eijk 

is the PERMUTATION SYMBOL. The structure constant 
forms the starting point for the development of LIE AL- 
GEBRA. 

see also LIE ALGEBRA, PERMUTATION SYMBOL 

Structure Factor 
The structure factor SF of a discrete set r is the FOUR- 
IER TRANSFORM of S-scatterers of equal strengths on all 
points of r, 

S-(k) = SC 2' - x)e 
-2mikz' dxt = x e--2nikxa 

XEr 

References 
Baake, M.; Grimm, U.; and Warrington, D. H. “Some Re- 

marks on the Visible Points of a Lattice.” J. Phys. A: 
Math. General 27, 2669-2674, 1994. 

Struve Differential Equation 
The ordinary differential equation 

where l?(z) is the GAMMA FUNCTION. The solution is 

y = aJ&) + K(z) + %(z), 

where JV(r) and Yy(x) are BESSEL FUNCTIONS OF THE 

FIRST and SECOND KINDS, and 31,(z) is a STRUVE 
FUNCTION (Abramowitz and Stegun 1972). 
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see also BESSEL FUNCTION OF THE FIRST KIND, BES- 
SEL FUNCTION OF THE SECOND KIND, STRUVE FWNC- 
TION 

Student’s t-Distribution 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Hand book 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
pp, 496, 1972. 

A DISTRIBUTION published by William Gosset in 1908. 

His employer, Guinness Breweries, required him to pub- 
lish under a pseudonym, so he chose “Student.” Given 
n independent measurements xi, let 

Struve Fhnction 
Abramowitz and Stegun (1972, pp. 496-499) define the 
Struve function as 

t= z-p 
s/e (1) (-l)“( fz>“” 

ryrc: + $)Ip + v + i)’ (1) 
k=O 

where p is the population MEAN, z is the sample MEAN, 

and s is the ESTIMATOR for population STANDARD DE- 
VIATION (i.e., the SAMPLE VARIANCE) defined by 

where r(z) is the GAMMA FUNCTION. Watson (1966, 
p. 338) defines the Struve function as 

2)2. %(z) = 
2(3)” l 

s P+ +lr(;) 0 
(1 - t2)“-l/2 sin(xt) dt. (2) (2) 

The series expansion is Student’s t-distribution is defined as the distribution of 
the random variable t which is (very loosely) the “best” 
that we can do not knowing 0. If u = s, t = z and 
the distribution becomes the NORMAL DISTRIBUTION. 
As N increases, Student’s t-distribution approaches the 
NORMAL DISTRIBUTION. 

~&) = F(-1)“” 
lz 2m+u+l 

(2 ) 
r(m + i>r(v + m + $) ’ 

(3) 
m=O 

For half integral orders, 
Student’s t-distribution is arrived at by transforming to 
STUDENT'S Z-DISTRIBUTION with R n+1/2 2 ( > 

=Y n+1,2(z) + ; k rcrn ;p:‘-‘y2 (4) 

m=O 

z-p 
ZE- 

s  l  

(3) 

x-(n+1/2)(Z) = (-1)” Jn+1/2(z)m (5) Then define 

The Struve function and its derivatives satisfy 
The resulting probability and cumulative distribution 
functions are 

rflu-l(Z) - X,+1(2) = n&(4 - cfz>” fir@+ i)’ @) P lr+l\ 
&\ 2 I 

jr(‘) = fir (5) (I+ $)(r+1”2 

see U~SO ANGER FUNCTION, BESSEL FUNCTION, MODI- 
FIED STRUVE FUNCTION,~EBER FUNCTIONS 
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Spanier, J. and Oldham, K. B. “The Struve Function.” 
Ch. 57 in An Atlas of Functions. Washington, DC: Hemi- 
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Watson, G. N. A Treatise on the Theory of Bessel Functions, 

2nd ed. Cambridge, England: Cambridge University Press, 
1966. 

s t J%(t) = r(y) 
- fir (;) (I + $)“+“” 

dt 

1 

where 
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isthenumberof DEGREES OFFREEDOM,--00 <t< 00, 
r(z) is the GAMMA FUNCTION, B(a,b) is the BETA 
FUNCTION, and 1(x; u,b) is the REGULARIZED BETA 
FUNCTION defined by 

The noncentral Student’s t-distribution is given by 

P(x) = 
nn/2nl . 

2nex2/2r( $n) 

B(T a, b) 
I(‘;% b, = B(a,b) ’ (8) 

The MEAN, VARIANCE, SKEWNESS, and KURTO~IS of 
Student’s t-distribution are 

P =o (9) 
r g2 = - 

r-2 (10) 

yr = 0 (11) 

6 
72 = - 

r-4' (12) 

Beyer (1987, p. 514) gives 60%, 70%, 90%, 95%, 
97.5% 99%, 99.5%, and 99.95% confidence intervals, 
and Goulden (1956) gives 50%, 90%, 95%, 98%, 99%, 
and 99.9?& confidence intervals. A partial table is given 
below for small T and several common confidence inter- 
vals. 

r 80% 90% 3E!c 
1 3.08 6.31 12.71 

2 1.89 2.92 4.30 

3 1.64 2.35 3.18 

4 1.53 2.13 2.78 

5 1.48 2.01 2.57 

10 1.37 1.81 2.23 

30 1.31 1.70 2.04 

100 1.29 1.66 1.98 
00 1.28 1.65 1.96 

99% 
63.66 

9.92 
5.84 

4.60 

4.03 

4.14 

2.75 

2.63 

2.58 

The so-called A(tln) d’ t l b t is rl u ion is useful for testing if 
two observed distributions have the same MEAN. A(+) 
gives the probability that the difference in two observed 
MEANS for a certain statistic t with n DEGREES OF 
FREEDOM would be smaller than the observed value 
purely by chance: 

l A(tln) = fiB($, fn) 
(13) 

Let X be a NORMALLY DISTRIBUTED random variable 
with MEAN 0 and VARIANCE 02, let Y2/a2 have a CHI- 
SQUARED DISTRIBUTION with n DEGREES OF FREE- 

DOM, and let X and Y be independent. Then 

t_Xfi - 
Y (14) 

is distributed as Student’s t with n DEGREES OF FREE- 
DOM. 

+e(X222)/[2(n+r2)1 fi(n + x2)-(n+1)i2L;f2/2 (-$&) ) 

where l?(x) is the GAMMA FUNCTION, IF&; b;z) is a 
CONFLUENT HYPERGEOMETRIC FUNCTION, andLr(z) 
is an associated LAGUERRE POLYNOMIAL. 

see also PAIRED t-TEST, STUDENT'S Z-DISTRIBUTION 
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Student’s z-Distribution 
The probability density function and cumulative distri- 
bution functions for Student’s z-distribution are given 

(1) 

D(z) = 
-s?T(~n) zF&(n - l), in; $(n + 1); -z-‘) 

2fir[f(n + I)] 
. 

(2) 

The MEAN is 0, so the MOMENTS are 

p1 = 0 (3) 

1 
p2 = - n- 3 

(4) 

p3 = 0 (5) 

3 
p4 = 

(n - 3)(n - 5) ’ 
(6) 
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The MEAN, VARIANCE, SKEWNESS, and KURTOSIS are 

P =o (7) 
1 

o2 = - 
n-3 (8) 

y1 = 0 (9) 

6 
y2 = - 

n-5’ (10) 

Letting 

where z is the sample MEAN and p is the population 
MEAN gives STUDENT'S &DISTRIBUTION. 

see U~SO STUDENT'S &DISTRIBUTION 

Study’s Theorem 
Given three curves 41, $2, $3 with the common group 
of ordinary points G (which may be empty), let their 
remaining groups of intersections 923, g31, and 912 also 
be ordinary points. If 4’1 is any other curve through 
923, then there exist two other curves & & such that 
the three combined curves && are of the same order 
and LINEARLY DEPENDENT, each curve 4; contains the 
corresponding group gij, and every intersection of & or 
4: with $j or @[i lies on & or 4;. 

Heferences 
Coolidge, 3. L. A Treatise on Algebraic Plane Curves. New 

York: Dover, p. 34, 1959. 

Sturm Chain 
The series of STURM FUNCTIONS arising in application 
ofthe STURM THEOREM. 

see U~SOSTURM FUNCTION,~TURM THEOREM 

Sturm Function 
Given a function f(z) G fo(z), write fi E f’(z) and 
define the Sturm functions by 

&L(x) = - 
{ 

h-2(4 -h-Ax) [*I} > (1) 

where P(4lQ(x)l is a polynomial quotient. Then con- 
struct the following chain of Sturm functions, 

fo = QOfl - fi 

fl =qxf2---3 

f2 =f?2f3-f4 (2) 

f s-2 = qs-2fs-1- fs, 

known as a STURM CHAIN. The chain is terminated 

when a constant -fs(x) is obtained. 

Sturm functions provide a convenient way for finding 
the number of real roots of an algebraic equation with 

real coefficients over a given interval. Specifically, the 
difference in the number of sign changes between the 
Sturm functions evaluated at two points x = a and x = b 
gives the number of real roots in the interval (a, b). This 
powerful result is known as the STURM THEOREM. 

As a specific application of Sturm functions toward find- 
ing POLYNOMIAL ROOTS, consider the function fo(x) = 

X5 - 3x - 1, plotted above, which has roots -1.21465, 
-0.334734, 0.0802951& 1.32836& and 1.38879 (three of 
which are real). The DERIVATIVE is given by f’( 2) = 
5x4 - 3, and the STURM CHAIN is then given by 

fo = x5 -3X-l (3) 

fi = 5x4 - 3 (4) 

f2 = ;(12a:+5) (5) 
59083 

f3 = - 20736' (6) 

The following table shows the signs of fi and the number 
of sign changes A obtained for points separated by Ax = 
2. 

x fo fr f2 f3 n 

-2 -1 1 -1 1 3 
0 -1 -1 1 1 1 
2 11110 

This shows that 3 - 1 = 2 real roots lie in (-2,0), and 
1 - 0 = 1 real root lies in (0,2). Reducing the spacing 
to Ax = 0.5 gives the following table. 

=I: fo fl f2 f3 A 

-2.0 -1 1 -1 1 3 
-1.5 -1 1 -1 1 3 
-1.0 1 1 -1 1 2 
-0.5 1 -1 -1 1 2 

0.0 -1 -1 1 1 1 
0.5 -1 -1 1 1 1 
1.0 -1 1 1 1 1 
1.5 1 I 1 1 0 
2.0 1 1 1 1 0 

This table isolates the three real roots and shows that 
they lie in the intervals (-1.5, -l.O), (-0.5,0.0), and 
(1.0,l.S). If d esired, the intervals in which the roots fall 
could be further reduced. 

The Sturm functions satisfy the following conditions: 
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1. Two neighboring functions do not vanish simultane- 
ously at any point in the interval. 

2. At a null point of a Sturm function, its two neigh- 
boring functions are of different signs. 

3. Within a sufficiently small AREA surrounding a zero 

Point of fo@), f 1 z is everywhere greater than zero ( 1 
or everywhere smaller than zero. 

see also DESCARTES’ SIGN RULE, STURM CHAIN, 
STURM THEOREM 
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Sturm-Liouville Equation 
A second-order ORDINARY DIFFERENTIAL EQUATION 

d dy & Pi [ 1 + [h(x) - q(x)]9 = 0, 
where X is a constant and w(z) is a known function 
called either the density or WEIGHTING FUNCTION. The 
solutions (with appropriate boundary conditions) of X 
are called EIGENVALUES and the corresponding ux(x) 
EIGENFUNCTIONS. The solutions of this equation satisfy 
important mathematical properties under appropriate 
boundary conditions (Arfken 1985). 

see also 
TOR 

ADJOINT OPERATOR, SELF-ADJOINT OPERA- 
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Sturmian Separation Theorem 
Let A, = aij bea SEQUENCE of IV SYMMETRIC MATRI- 
CES of increasing order with i, j = 1, 2, . . . , T and T = 1, 
2, l **, IV. Let &(A,) be the kth EIGENVALUE of A,. for 
k = 1, 2, . . . , T, where the ordering is given by 

h(A,) > X2(AT) > . . . > &(A,). - - - 

Then it follows that 

References 
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Sturmian Sequence 
If a SEQUENCE has the property that the BLOCK 
GROWTH function B(n) = n + 1 for all n, then it is 
said to have minimal block growth, and the sequence is 
called a Sturmian sequence. An example of this is the 
sequence arising from the SUBSTITUTION MAP 

0 + 01 

1 + 0, 

yielding 0 + 01 -+ 010 + 01001 -+ 01001010 -+ . . ., 
which gives us the Sturmian sequence 01001010.. l  l  

STURM FUNCTIONS are sometimes also said to form a 
Sturmian sequence. 

see also STURM FUNCTION,~TURM THEOREM 

Subalgebra 
An ALGEBRA S’ which is part of a large ALGEBRA S 
and shares its properties. 

see also ALGEBRA 
Sturm-Liouville Theory 

see STURM-LIOUVILLE EQUATION 

Sturm Theorem 
The number of REAL ROUTS of an algebraic equation 
with REAL COEFFICIENTS whose REAL ROOTS are sim- 
ple over an interval, the endpoints of which are not 
ROOTS, is equal to the difference between the number 
of sign changes of the STURM CHAINS formed for the 
interval ends. 

see also STURM CHAIN, STURM FUNCTION 

S ubanalyt ic 
X C R” is subanalytic if, for all =I: E R”, there is an 
open U and Y C Rn+m a bounded SEMIANALYTIC set 
such that X n U is the projection of Y into U. 

see also SEMIANALYTIC 
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Subfactorial 
The number of PERMUTATIONS of 72 objects in which no 
object appear in its natural place (i.e., so-called “DE- 
RANGEMENTS"). 

Or 

n 

!n = n! L ( 1) 
k 

- 
k! (1 

k=O 

n! 
!nG - [ 1 e ’ (2) 

where kc! is the usual FACTORIAL and [s] is the NINT 
function. The first few values are !l = 0, !2 = 1, !3 = 2, 
!4 = 9, !5 = 44, !6 = 265, !7 = 1854, !8 = 14833, 

(Sloane’s AOO0166). For example, the only DE- 
R~NGEMENTS of {1,2,3} are {2,3,1} and {3,1,2}, so 
!3 = 2. Similarly, the DERANGEMENTS of {1,2,3,4} are 

{2,1,4,3}, (23% 4, I), {2,4,1,3), CT 1,4,2), 1% 4,1,2), 
{3,4,2, I}, {4,1,2,3}, (43% 1,2), and (47% 2,1)1 so 
!4 = 9. 

The subfactorials are also called the RENCONTRES NUM- 
BERS and satisfy the RECURRENCE RELATIONS 

!n = n*!(n - 1) + (-1)” (3) 

!(n + 1) = n[!n+!(n - l)]. (4) 

The subfactorial can be considered 
restricted ROOKS PROBLEM. 

a special case of a 

The only number equal to the sum of subfactorials of its 
digits is 

148,349 =!1+!4+!8+!3+!4+!9 (5) 

(Madachy 1979). 

see also DERANGEMENT, FACTORIAL, MARRIED Cou- 
PLES PROBLEM,ROOKS PROBLEM,~UPERFACTORIAL 
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Subfield 
If a subset S of the elements of a FIELD F satisfies the 
FIELD AXIOMS with the same operations of F, then S 
is called a subfield of F. Let F be a FINITE FIELD of 
order p”, then there exists a subfield of ORDER p" for 
PRIMES IFF WJ DIVIDES n. 

see also FIELD, SUBMANIFOLD, SUBSPACE 

Subgraph 
A GRAPH G' whose VERTICES and EDGES form subsets 
ofthe VERTICES and EDGES of a given GRAPH G. If G’ 
is a subgraph of G, then G is said to be a SUPERGRAPH 
of G’. 

see &O GRAPH (GRAPH THEORY),SUPERGRAPH 

Subgroup 
A subset of GROUP elements which satisfies the four 
GROUP requirements. The ORDER of any subgroup of a 
GROUP ORDER h must be a DIVISOR~~~. 

see also CARTAN SUBGROUP, COMPOSITION SERIES, 
FITTING SUBGROUP,&• UP 

Sublime Number 
Let T(n) and a(n) denote the number and sum of the di- 
visors of n, respectively (i.e., the zeroth- and first-order 
DIVISOR FUNCTIONS). A number N is called sublime if 
7(N) and a(N) areboth PERFECT NUMBERS Theonly 
two known sublime numbers are 12 and 

60865556702383789896703717342431696q.. 

. . . 22657830773351885970528324860512791691264. 

It is not known if any ODD sublime number exists. 

see UZSO DIVISOR FUNCTION, PERFECT NUMBER 

Submanifold 
A C” (infinitely differentiable) MANIFOLD is said to be 
a submanifold of a C” MANIFOLD M’ if M is a SUB- 

SET of M’ and the IDENTITY MAP of M into M’ is an 
embedding. 

see also MANIFOLD, SUBFIELD, SUBSPACE 

Submatrix 
An p x Q submatrix of an nz x n MATRIX (with p < nz, - 
n 2 q) is a p x q MATRIX formed by taking a block of 
the entries of this size from the original matrix. 

see also MATRIX 

Subnormal 
1: is a subnormal SUBGROUP of H if there is a a “normal 
series” (in the sense of Jordan-Holder) from L to K 

Subordinate Norm 

NONNATURAL NORM 

Subscript 
A quantity displayed below the normal line of text (and 
generally in a smaller point size), as the “i” in ai, is 
called a subscript. Subscripts are commonly used to 
indicate indices (aij is the entry in the ith row and jth 
column of a MATRIX A), partial differentiation (yz is an 
abbreviation for ay/ax), and a host of other operations 
and notations in mathematics. 

see also SUPERSCRIPT 
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Subsequence 
A subsequence of a SEQUENCE S = {~i}~=~ is a derived 
sequence {yi)El = {zi+j} for some j 2 0 and IV 5 n - 
j. More generally, the word subsequence is sometimes 
used to mean a sequence derived from a sequence S by 
discarding some of its terms. 

see also LOWER-TRIMMED 

TRIMMED SUBSEQUENCE 

SUBSEQUENCE, UPPER- 

Subset 
A portion of a SET. B is a subset of A (written 13 C A) 
IFF every member of B is a member of A. If SYis a 

PROPER SUBSET of A (i.e., a subset other than the set 
itself), this is written B C A. 

A SET of n elements has 2n subsets (including the set 
itself and the EMPTY SET). For sets of n = 1, 2, . . . 
elements, the numbers of subsets are therefore 2, 4, 8, 
16, 32, 64, . . . (Sloane’s A000079). For example, the 
set (1) has the two subsets 0 and {l}. Similarly, the 
set {1,2} has subsets 0 (the EMPTY SET, {I}, {2}, and 

C1,2b 

see also EMPTY SET,~MPLIES, ~-SUBSET, PROPER SUB- 
SET, SUPERSET, VENN DIAGRAM 
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Subspace 
Let v be a REAL VECTOR SPACE (e.g., the real con- 
tinuous functions C(I) on a CLOSED INTERVAL I, 2-D 

EUCLIDEAN SPACE Iw2, the twice differentiable real func- 
tions C(‘) (I) on I, etc.). Then W is a real SUBSPACE 
of v if w is a SUBSET of V and, for every ~1, w2 f W 
and t E Iw (the REALS), w1 + w2 E W and twl E W. 
Let (H) be a homogeneous system of linear equations in 
21, . . l  9  Xn- Then the SUBSET S of Iw” which consists of 
all solutions of the system (H) is a subspace of Iw”. 

More generally, let FQ be a FIELD with 4 = p”, where p 

is PRIME, and let Fq,n denote the n-D VECTOR SPACE 
over I$ The number of k-D linear subspaces of Fqln is 

N(Fq,n) = L I 
0 4 

where this is the Q-BINOMIAL COEFFICIENT (Aigner 
1979, Exton 1983). The asymptotic limit is 

Ce 

-k2 

rIjoo_,o - 4-j) 

C” k=-m q 
-(k+1/2j2 

co = 

(Finch) l  The case q = 2 gives the q-ANALOG of the 
WALLIS FORMULA. 

see also q-BINOMIAL 
MANIFOLD 

COEFFICIENT, SUBFIELD, SUB- 

References 
Aigner, M. Combinatorial Theory. New York: Springer- 
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Substitution Group 

see PERMUTATION GROUP 

Substitution Map 
A MAP which uses a set of rules to transform ele- 
ments of a sequence into a new sequence using a set 
of rules which “translate” from the original sequence to 
its transformation. For example, the substitution map 
(1 -+ 0,O -+ 11) would take 10 to 011. 

see also GOLDEN RATIO, MORSE-THUE SEQUENCE, 
STRING REWRITING, THUE CONSTANT 

Subtend 
Given a geometric object 0 in the PLANE and a point P, 
let A be the ANGLE from one edge of 0 to the other with 
VERTEX at P. Then 0 is said to subtend an ANGLE A 
from P. 

see also ANGLE, VERTEX ANGLE 

Subtraction 
Subtraction is the operation of taking the DIFFERENCE 
x -y of two numbers x and y. Here, the symbol between 
the x and y is called the MINUS SIGN and z - y is read 
“X MINUS y? 

see also ADDITION, DIVISION, MINUS, MINUS SIGN, 
MULTIPLICATION 

Succeeds 
The relationship x succeeds (or FOLLOWS) y is written 
x > y. The relation z succeeds or is equal to y is written 

x k y* 

see also PRECEDES 
N(Fq,n) = ceq 

n2/4 [l + o(l)] for n even 

~,q”~/~[l + o(l)] for n odd, 
Successes 

see DIFFERENCE OF SUCCESSES 
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summnt 

Sufficient 
A CONDITION which, if true, guarantees that a result 
is also true. (However, the result may also be true if 
the CONDITION is not met.) If a CONDITION is both 
NECESSARY and SUFFICIENT, then the result is said to 
bk true IFF (“if and only if”) the CONDITION holds. 

For example, the condition that a decimal number n 

end in the DIGIT 2 is a sufficient but not NECESSARY 
condition that n be EVEN. 

see U~SO IFF, IMPLIES, NECESSARY 

Suitable Number 

~~~IDONEAL NUMBER 

Sum 
A sum is the result of an ADDITION. For example, 
adding 1, 2, 3, and 4 gives the sum 10, written 

1+2+3+4=10. (1) 

The numbers being summed are called ADDENDS, or 
sometimes SUMMANDS. The summation operation can 
also be indicated using a capital sigma with upper and 
lower limits written above and below, and the index in- 
dicated below. For example, the above sum could be 
written 

4 

x 
k 

k=l 

= 10. (2) 

A simple graphical proof of the sum CLE1 k = n(n + 
1)/2 can also be given. Construct a sequence of stacks of 
boxes, each 1 unit across and Fz units high, where k = 1, 
2, . . . . n. Now add a rotated copy on top, as in the 
above figure. Note that the resulting figure has WIDTH 
n and HEIGHT n + 1, and so has AREA n(n + l)- The 
desired sum is half this, so the AREA of the boxes in the 
sum is n(n + 1)/2. S ince the boxes are of unit width, 
this is also the value of the sum. 

The sum can also be computed using 
MACLAURIN INTE GRATION FORMULA 

the first EULER- 

2 f(k) = s” f(x) dx + &f(l) + &f(n) 
k=l 1 

+$Bz[f’(n) - f’P>l + l  l  l  (3) . 
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with f(k) = k. Then 

n 

x s 

n 

k= xdx++ l++++(l-l)+*** 

k=l 1 

- gn2 - - l)-i+h+in=$(n+l). (4) 

The general finite sum of integral POWERS can be given 
by the expression 

n 

E 
kp = (B + n + l)Ip+ll - Bip+‘l 

P-t-1 
9 (5) 

k=l 

where the NOTATION BLkl means the quantity in ques- 
tion is raised to the appropriate POWER k and all terms 
of the form 13m are replaced with the corresponding 
BERNOULLI NUMBERS Bm* It is also true that the CO- 
EFFICIENTS of the terms in such an expansion sum to 1, 
as stated by Bernoulli without proof (Boyer 1943). 

An analytic solution for a sum of POWERS of integers is 

n 

c 
kP = CC-P) - s’(-IA 1+ 4, (6) 

k=l 

where c(z)is the RIEMANN ZETA FUNCTION and [(~;a) 
is the HURWITZ ZETA FUNCTION. For the special case 
ofp a POSITIVE integer, FAULHABER'S FORMULA gives 
the SUM explicitly as 

n 

Ix 
kp = & E(-1)6L’ (p L ‘) Bp+l-kn’, (7) 

k=l k=l 

where 6kp is the KRONECKER DELTA, (i) is a BINO- 
MIAL COEFFICIENT, and Bk is a BERNOULLI NUMBER. 
Written explicitly in terms of a sum of POWERS, 

n 

E 
kP 

Bkp! - - 

k=l 
k’(p- k+ l)! 

np--k+l 

l  

(8) 

l  

Computing the sums for p = 1, l  . . , 10 gives 

ck= i(n’+n) 

k=l 
n 

Ix 
k2= k(2n3+3n2+n) 

k=l 

n 

IE 
k3 = $(n4 + 2n3 + n2) 

k=l 
n 

IE 
k4 = $(6n5 + 15n4 + 10n3 - n) 

k=l 

n 

IE 
k5 = &(2n6 + 6n5 + 5n4 - n2) 

k=l 
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n 

x 
k” = ;ilZ(6n7 + 21n6 + 21n5 - 7n3 + n) (14) 

FE=1 
n 

): 
k7 = &(3na + 12n7 + 14n6 - 7n4 + 2n2) (15) 

k=l 

ks = &(lOng + 45n' +60n7 -4%t5 
k=l 

+ 20n3 - 3n) 
n 

x 
kg = &(2n1’ + long + 15n8 - 14n” 

k=l 

+ 10n4 - 3n2) 
n 

E 
k lo- 1 - 66(6n11 + 33d0 + 55~1’ - 66n7 

k=l 

+ 6671~ - 33n3 + 5n). 

Factoring the above equations results in 

7t 

): k = $n(n + 1) 

k=l 

k2 = in<, + 1)(2n + 1) 

k=l 

k3 = $n'(n+ 1)” 

k=l 

c k4 =: &-t(n + 1)(2n + 1)(3n2 + 3n - 1) 

k=l 
n 

x 
k5 z &n2(n + Q2(2n2 + 2n - 1) 

k=l 
n 

x 
k6 E +(n -I- 1 

k=l 

.)(2n + l)(3n4 + 6n3 - 3n + 1) 

n 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24 

k7 = &n2(n + 1)‘(3n4 + 6n3 - n2 - 4n + 2) 

k=l 

(25) 

n 

x 
k8 = &n(n + l)(Zn + 1)(5n6 + 15n5 + 5n4 

k=l 

-15n3 - n2 + 9n- 3) (26) 
n 

E 
kg = $n2(n+1)2(n2 +n- 1) 

k=l 

x(2n4 + 4n3 - n2 - 3n + 3) (27) 
n 

IE 

10 k = &n(n + l)(Zn + l)(n” + n - 1) 

k=l 

x(372' +9n5 +2n4 - lln3 +3n2 +lOn- 5). (28) 

Sum 

From the above, note the interesting identity 

(2% 

Sums of the following type can also be done analytically. 

(zxk)3=ggk)xn 
= f T(n + l)(n + 2)xn 

n=O 

k2 +3k+2 xn 

(31) 

= i ;S[&(n+ 1)(2n+l) 

n=O 

+ 3$n(n + 1) + 2(n + 1)1x” 

= & F(n + l)[n(2n + 1) + 9n + 121x” 

n=O 

= -& F(n + 1)(2n2 + 1On + 12)X” 

n=O 

= 5 Fl(n + l)(n + 2)(n -I- 3)x? (32) 

n=O 

By INDUCTION, the sum for an arbitrary POWER p is 

(3% 

Other analytic sums include 

(n- In- k( +p- 1)!2" 

(n - In - kl)! 

(34) 

( xa,Zn ) (35) = xtZn2X2n + 2 x GtiUjXn. 

\ n=O / n=O n=l 
i+ j=n 

i<j 

Ix XY = Xl y1+m y2 + l  a* +x2yr +x2y2 +.*. 

= (Xl + 52 + -* .)y1+(21+22 + l  . .)y2 - - E > x (y1 +y2 +.* l > = c x 7, Y, (36) 
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n 

IE 

nx n+2 
jxJ = 

- (n + l)x”+l +x 

(x - 1)” (38) 
j=O 

n -P (0 forO<r<n-1 - 

n &; (a: + k - r> 

& I-&I (k - T) = ’ = r$k 

(40) 

(n+l)j:m”= jl: [mlc’+ j: (kmk)l ’ (41) 

Sum-Product Number 
A sum-product number is a number n such that the sum 
of n’s digits times the product of n’s digit is n itself, for 
example 

135 = (1 + 3 + 5)(1’ 3 l  5). 

The only sum-product numbers less than lo7 are 1, 135, 
and 144. 

see also AMENABLE NUMBER 

Sum Rule 

d 

where d/da: denotes a derivative and f’(z) and g’(z) are 
the derivatives of f and g, respectively. 

see also DERIVATIVE 
KG= 1 m=l L p=l \m=1 

Summand 
To minimize the sum of a set of squares of numbers {xi} 
about a given number x0 

SE 
ID 

xi - xo)2 = x xi2 - 2x0 x xi + NX~~, (42) 

take the DERIVATIVE. 

$S=-2~x~+2Nxo=0. 
0 i 

Solving for x0 gives 

(43) 

(44 

~~~ADDEND 

Summatory Function 
For an discrete function f(n), the summatory function 
is defined by 

F(n) = i: f(k), 
kED 

where D is the DOMAIN of the function. 

see also DIVISOR FUNCTION, MANGOLDT FUNCTION, 
MERTENS FUNCTION,RUDIN-SHAPIRO SEQUENCE,TAU 
FUNCTION, TOTIENT FUNCTION 

SUP 

see SUPREMUM, SUPREMUM LIMIT 
so S is maximized when x0 is set to the MEAN. 

see also ARITHMETIC SERIES, BERNOULLI NUMBER, 

CLARK'S TRIANGLE, CONVERGENCE IMPROVEMENT, 
DEDEKIND SUM, DOUBLE SUM, EULER SUM, FACTO- 
RIAL SUM, FAULHABER'S FORMULA, GABRIEL'S STAIR- 
CASE, GAUSSIAN SUM, GEOMETRIC SERIES, G~SPER'S 
METHOD, HURWITZ ZETA FUNCTION, INFINITE PROD- 
UCT, KLOOSTERMAN'S SUM, LEGENDRE SUM, LERCH 
TRANSCENDENT, PASCAL'S TRIANGLE, PRODUCT, RA- 

MANUJAN'S SUM,RIEMANN ZETAFUNCTION,WHITNEY 
SUM 
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Super-3 Number 
An INTEGER n such that 3n3 contains three consecutive 
3s in its DECIMAL representation. The first few super- 
3 numbers are 261, 462, 471, 481, 558, 753, 1036, . . . 
(Sloane’s A014569). A. Anderson has conjectured that 
all numbers ending in 471, 4710, or 47100 are super-3 
(Pickover 19%). 

For a digit d, super-3 numbers can be generalized to 
super-d numbers n such that dnd contains d ds in its 
DECIMAL representation. The following table gives the 
first few super-d numbers for small d. 

d Sloane Super-d numbers 

032743 19, 31, 69, 81, 105, 106, 107, 119, . . . 
014569 261, 462, 471, 481, 558, 753, 1036, . . . 
032744 1168, 4972, 7423, 7752, 8431, 10267, . . . 
032745 4602, 5517, 7539, 12955, 14555, 20137, . . . 
032746 27257, 272570, 302693, 323576, . . . 
032747 140997, 490996, 1184321, 1259609, . . . 
032748 185423, 641519, 1551728, 1854230, . . . 
032749 17546133, 32613656, 93568867, . . . 
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Super Catalan Number 
While the CATALAN NUMBERS are the number of p- 
GOOD PATHS from (n,n) to (0,O) which do not cross 
the diagonal line, the super Catalan numbers count the 
number of LATTICE PATHS with diagonal steps from 
(n,n) to (0,O) which d o not touch the diagonal line 
x = y. 

The super Catalan numbers are given by the RECUR- 
RENCE RELATION 

SC > n= 
3(2n - 3)S(n - 1) - (n - 3)S(n - 2) 

n 

(Comtet 1974), with S(l) = S(2) = 1. (Note that the 
expression in Vardi (1991, p. 198) contains two errors.) 
A closed form expression in terms of LEGENDRE POLY- 

NOMIALS pn(x) is 

SC > n= 
3EL-l(3) - E&-z(3) 

412 

(Vardi 1991, p. 199). The first few super Catalan num- 
bers are 1, 1, 3, 11, 45, 197, . . . (Sloane’s A001003). 

see also CATALAN NUMBER 
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Super-Poulet Number 
A POULET NUMBER whose DIVISORS d all satisfy dj2d - 
2. 

see also Pouwx NUMBER 

Superabundant Number 

see HIGHLY COMPOSITE NUMBER 

Superegg 
A superegg is a solid described by the equation 

Supereggs will balance on either end for any a, b, and 
72. 

see also EGG, SUPERELLIPSE 

References 
Gardner, M. “Pier Hein’s Superellipse.” Ch. 18 in Math- 

ematical Carnival: A New Round-Up of Tantalizers and 
Puzzles from Scientific American. New York: Vintage, 
1977. 

Superellipse 

A curve of the form 

where T > 2. “The” superellipse is sometimes taken as 
the curve of the above form with T = 5/2. Superellipses 
with a = b are also known as LAMP CURVES. The above 
curves are for a = 1, b = 2, and T = 2.5, 3.0, and 3.5. 

A degenerate superellipse is a superellipse with T < 2. - 

The above curves are for a = 1, b = 2, and T = 0.5, 1.0, 
1.5, and 2.0. 

see also ELLIPSE, LAMI? CURVE, SUPEREGG 
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Superfactorial References 
The superfactorial of n is defined by Pickover (1995) as Guy, R. K. “Superperfect Numbers.” §I39 in Unsolved Prob- 

lems in Number Theory, 2nd ed. New York: Springer- 
Verlag, pp. 6+66, 1994. .n! 

n$ E nin!’ 

-’ 
1 12. 

The first two values are 1 and 4, but subsequently grow 
so rapidly that 3$ already has a huge number of digits. 

Sloane and Plouffe (1995) define the superfactorial by 

n 

n$ E rI i!, 
i=l 

which is equivalent to the integral values of the G- 
FUNCTION. The first few values are 1, 1, 2, 12, 288, 
34560,... (Sloane’s A000178). 

see also FACTORIAL, 

SUB FACTORIAL 
G-FUNCTION, LARGE NUMBER, 

References 
Pickover, C. A, Keys to Infinity. New York: Wiley, p. 102, 

Sloane, N. J. A. Sequence A000178/M2049 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Supergraph 
If G’ is a SUBGRAPH of G, then G is said to be a super- 
graph of G’. 

see also GRAPH (GRAPH THEORY), SUBGRAPH 

Supernormal 
Trials for which the LEXIS RATIO 

satisfies L > 1, where 0 is the VARIANCE in a set of s 
LEXIS TRIALS and 0~ is the VARIANCE assuming BER- 
NOULLI TRIALS. 

~~~UZSOBERNOULLI TRIAL, LEXXS TRIALS,~UBNORMAL 

Superperfect Number 
A number n such that 

a2(n) = u@(n)) = 29-q 

where a(n) is the DIVISOR FUNCTION. EVEN superper- 
feet numbers are just Zp-‘, where h& = 2p - 1 is a 
MERSENNE PRIME. If any ODD superperfect numbers 
exist, they are SQUARE NUMBERS and either n or c(n) 
is DIVISIBLE by at least three distinct PRIMES. 

More generally, an m-superperfect number is a number 
for which grn (n) = 2n. For m > 3, there are no EVEN - 

Kanold, H.-J. “Uber ‘Super Perfect Numbers.“’ Elem. Math. 
24, 61-62, 1969. 

Lord, G. “Even Perfect and Superperfect Numbers.” Elem. 
Math. 30, 87-88, 1975. 

Suryanarayana, D. “Super Perfect Numbers.” Elem. Math. 
20,16-17,1969. 

Suryanarayana, D. “There is No Odd Super Perfect Number 
of the Form p2” .” Elem. Math. 24, 148-150, 1973. 

Superposition Principle 
For a linear homogeneous ORDINARY DIFFERENTIAL 
EQUATION, if y&c) and yz(z) are solutions, then so is 

YdX) -t-Y&)* 

Superregular Graph 
For a VERTEX x of a GRAPH, let r5 and AX denote the 
SUBGRAPHS of P - zc induced by the VERTICES adjacent 
to and nonadjacent to x, respectively. The empty graph 
is defined to be superregular, and I? is said to be super- 
regular if I? is a REGULAR GRAPH and both lY5 and AX 
are superregular for all 2. 

The superregular graphs are precisely C’s, mKn (m, n > - 
I), G, (n 2 1) , and the complements of these graphs, 
where Cn is a CYCLIC GRAPH, Kn is a COMPLETE 
GRAPH and mKn is m disjoint copies of Kn, and Gn 
is the Cartesian product of Kn with itself (the graph 
whose VERTEX set consists of n2 VERTICES arranged in 
an n x n square with two VERTICES adjacent IFF they 
are in the same row or column). 

see also COMPLETE GRAPH,~YCLIC GRAPH,REGULAR 
GRAPH 

References 
Vince, A. “The Superregular Graph.” Problem 6617. Amer. 

Math. Monthly 103, 600-603, 1996. 
West, D. B. “The Superregular Graphs.” J. Graph Th. 23, 

289-295,1996. 

Superscript 
A quantity displayed above the normal line of text (and 
generally in a smaller point size), as the “i” in xi, is 
called a superscript. Superscripts are commonly used 
to indicate raising to a POWER (x3 means x l  x . x or x 
CUBED), multiple differentiation (fc3’ (x) is an abbrevi- 
ation for f”‘(x) = d”f/&c”), and a host of other opera- 
tions and notations in mathematics. 

see also SUBSCRIPT 

Superset 
A SET containing all elements of a smaller SET. If B is a 
SUBSET of A, then A is a superset of B, written A 3 B. 
If A is a PROPER SUPERSET of B, this is written A 5 B. 

see UZSO PROPER SUBSET,~ROPER SUPERSET, SUBSET 
m-superperfect numbers. 

see also MERSENNE NUMBER 
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Supplementary Angle 
Two ANGLES QI and 7r - Q! which together form a 
STRAIGHT ANGLE are said to be supplementary. 

see also ANGLE, COMPLEMENTARY ANGLE, DIGON, 
STRAIGHT ANGLE 

support 
The CLOSURE of the SET of arguments of a FUNCTION 
f for which f is not zero. 

see also CLOSURE 

Support Function 
Let M be an oriented REGULAR SURFACE in Iw3 with 
normal N. Then the support function of A4 is the func- 
tion h : A4 + Iw defined by 

VP) = P l  N(P)- 

References 
Gray, A. Modern Differential Geometry of Curves and Sur- 

faces. Boca Raton, FL: CRC Press, p, 293, 1993* 

Supremum 
The supremum of a set is the least upper bound of the 
set. It is denoted 

sup l  

S 

On the REAL LINE, the supremum 
as the supremum of its CLOSURE. 

of a set is the same 

see also INFIMUM, SUPREMUM LIMIT 

Supremum Limit 
The limit supremum is used for sequences and nets (as 
opposed to sets) and is denoted 

lim sup. 
S 

see also SUPREMUM 

Surd 
An archaic term for a SQUARE ROOT. 

see also QUADRATIC SURD, SQUARE ROUT 

Surface 
The word “surface” is an important term in mathe- 
matics and is used in many ways. The most common 
and straightforward use of the word is to denote a Z-D 
SUBMANIFOLD of3-D EUCLIDEAN SPACE. Surfaces can 
range from the very complicated (e.g., FRACTALS such 
as the MANDELBROT SET) to the very simple (such as 
the PLANE). More generally, the word %urface” can be 
used to denote an (n - 1)-D SUBMANIFOLD of an n-D 

MANIFOLD, or in general, any co-dimension 1 subob- 
ject in an object (like a BANACH SPACE or an infinite- 
dimensional MANIFOLD). 

Even simple surfaces can display surprisingly count erin- 
tuitive properties. For example, the SURFACE OF REVO- 
LUTION ofy = l/11: around the X-AXIS for z 2 1 (called 
GABRIEL'S HORN) has FINITE VOLUME but INFINITE 
SURFACE AREA. 

see also ALGEBRAIC SURFACE, BARTH DECIC, BARTH 
SEXTIC, BERNSTEIN MINIMAL SURFACE THEOREM, 
BOHEMIAN DOME, BOY SURFACE, CATALAN'S SUR- 
FACE, CAYLEY'S RULED SURFACE, CHAIR, CLEB- 
SCH DIAGONAL CUBIC, COMPACT SURFACE, CONE, 
CONICAL WEDGE, CONOCUNEUS OF WALLIS, CORK 
PLUG, CORKSCREW SURFACE, CORNUCOPIA, COSTA 
MINIMAL SURFACE, CROSS-CAP, CROSSED TROUGH, 
CUBIC SURFACE, CYCLIDE, CYLINDER, CYLINDROID, 
DARWIN-DE SITTER SPHEROID, DECIC SURFACE, DEL 
PEZZO SURFACE, DERVISH, DESMIC SURFACE, DE- 
VELOPABLE SURFACE, DINI'S SURFACE, EIGHT SUR- 
FACE, ELLIPSOID, ELLIPTIC CONE, ELLIPTIC CYLIN- 
DER, ELLIPTIC HELICOID, ELLIPTIC HYPERBOLOID, 
ELLIPTIC PARABOLOID, ELLIPTIC TORUS, ENNEPER'S 
SURFACES, ENRIQUES SURFACES, ETRUSCAN VENUS 
SURFACE,FLAT SURFACE,FRESNEL'S ELASTICITY SUR- 
FACE, GABRIEL'S HORN, HANDKERCHIEF SURFACE, 
HELICOID, HENNEBERG'S MINIMAL SURFACE, HOFF- 
MAN'S MINIMAL SURFACE, HORN CYCLIDE, HORN 
TORUS, HUNT'S SURFACE, HYPERBOLIC CYLINDER, 
HYPERBOLIC PARABOLOID, HYPERBOLOID, IDA SUR- 
FACE, IMMERSED MINIMAL SURFACE, KISS SURFACE, 
KLEIN BOTTLE, KUEN SURFACE, KUMMER SUR- 
FACE, LICHTENFELS SURFACE, MAEDER'S OWL MIN- 
IMAL SURFACE, MANIFOLD, MENN'S SURFACE, MIN- 
IMAL SURFACE, MITER SURFACE, MOBIUS STRIP, 
MONGE'S FORM, MONKEY SADDLE, NONORIENTABLE 
SURFACE, NORDSTRAND'S WEIRD SURFACE, NURBS 
SURFACE, ABLATE SPHEROID, OCTIC SURFACE, ORI- 
ENTABLESURFACE,PARABOLIC CYLINDER,PARABOLIC 
HORN CYCLIDE, PARABOLIC RING CYCLIDE, PARA- 
BOLIC SPINDLE CYCLIDE, PARABOLOID, PEANO SUR- 
FACE, PIRIFORM, PLANE, PL~~CKER'S CONOID, POLY- 
HEDRON, PRISM, PRISMATOID, PROLATE SPHEROID, 
PSEUDOCROSSCAP, QUADRATIC SURFACE, QUARTIC 
SURFACE, QUINTIC SURFACE, REGULAR SURFACE, 
REM& SURFACES, RIEMANN SURFACE, RING CY- 
GLIDE, RING TORUS, ROMAN SURFACE, RULED SUR- 
FACE, SCHERK'S MINIMAL SURFACES, SEIFERT SUR- 
FACE, SEXTIC SURFACE, SHOE SURFACE, SIEVERT'S 
SURFACE, SMOOTH SURFACE, SOLID, SPHERE, SPHER- 
OID, SPINDLE CYCLIDE, SPINDLE TORUS, STEINBACH 
SCREW,~TEINER SURFACE,SWALLOWTAIL CATASTRO- 
PHE,SYMMETROID,TANGLECUBE, TETRAHEDRAL SUR- 
FACE, TOGLIATTI SURFACE, TOOTH SURFACE, TRI- 
NOID,UNDULOID,VERONESE SURFACE,~ERONESE VA- 
RIETY, WALLIS'S CONICAL EDGE, WAVE SURFACE, 
WEDGE,~HITNEY UMBRELLA 
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Surface Area 
Surface area is the AREA of a given surface. Roughly 
speaking, it is the “amount” of a surface, and has units 
of distance squares. It is commonly denoted S for a 
surface in 3-D, or A for a region of the plane (in which 
case it is simply called “the” AREA). 

If the surface is PARAMETERIZED using u and V, then 

S= 
s 

IT, x T,\ du dv, (1) 
S 

where T, and TV are tangent vectors and a x b is the 
CROSS PRODUCT. 

The surface area given by rotating the curve y = f(z) 
from x = a to x = b about the s-axis is 

S= 
s 

a Zrf(x)dmdx. (2) 
b 

If z = f (x, y) is defined over a region R, then 

s=//&)2+($)2+ldA, (3) 

where the integral is taken over the entire surface. 

The following tables gives surface areas for some com- 
mon SURFACES. In the first table, S denotes the lateral 
surface, and in the second, T denotes the total surface. 
In both tables, T denotes the RADIUS, h the height, p 

the base PERIMETER, and s the SLANT HEIGHT (Beyer 
1987). 

Surface S 

cone mdr2 -t h2 

conical frustum 
cube 
cylinder 
lune 

oblate spheroid 
prolate spheroid 
pyramid 

pyramidal frustum 
sphere 
torus 
zone 

~(RI + R2)I/(R1- R2j2 + h2 

6a2 

2mh 

2r28 

2na2 + +-in(E) 
2rb2 + y sin-’ e 

+PS 

$PS 
4w2 

4n2 RT 

2mh 

Surface T 

cone m(r + &qF) 
conical frustum n[R12 + Rz2 

+@I+ &)&RI - R2j2 + h2] 
cvlinder 2m(r + h) 

Even simple surfaces can display surprisingly counterin- 
tuitive properties. For instance, the surface of revolu- 
tion of y = l/x around the X-AXIS for x > 1 is called 
GABRIEL'S HORN, and has FINITE VOLUME but INFI- 
NITE surface AREA. 
see UZSO AREA, SURFACE INTEGRAL,~URFACE OF REV- 

oLuTION,VOLuME 
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Surface Integral 
For a SCALAR FUNCTION f over a surface parameterized 
by u and v, the surface integral is given by 

~=Ssfda=Ssf(u,v)lTuxTi;ldudv, (1) 

where T, and L&, are tangent vectors and a x b is the 
CROSS PRODUCT. 

For a VECTOR FUNCTION over a surface, the surface 
integral is given by 

(2) 

= 
s 

f,dydz+ f&dx+f,da:&/, (3) 
S 

where aabisa DOT PRODUCT andfiisaunit NORMAL 
VECTOR. If z = f (x, y), then da is given explicitly by 

da = 
dz dz --;i:--Y+G 
da: dY 

dx dy. (4) 

Ifthe surface is SURFACE PARAMETERIZED using u and 
v, then 

@= 
s 

F - (T, x T,) dudv. (5) 
S 

see also SURFACE PARAMETERIZATTON 
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Surface Parameterization 
A surface in S-SPACE can be parameterized by two vari- 
ables (or coordinates) u and 21 such that 

Furthermore, the unit NORMAL VECTOR is 

&(u,v) = (10) 

(11) 

(12) 

(13) 

(14) 

x = x(u,v) (1) 
Y = Ybw) (2) 
x = z(u, v). (3) 

and the PRINCIPAL CURVATURES are 

9 El=-= s&4) (a+ - 4’*11) 
G (4’2 + @2)3/2 

e * 
I 

QZ--C- 
E 141 &--F’ 

If a surface is parameterized as above, then the tangent 
VECTORS 

T, = 
dx, dy h 82, 
-x+a,y+aZ1” 
dU 

(4 

da:* ay* dz* 
T,=dv~+dvy+dv~ The GAUSSIAN and MEAN CURVATURES are (5) 

are useful in computing the SURFACE AREA and SUR- 
FACE INTEGRAL. 

see also SMOOTH SURFACE, SURFACE AREA, SURFACE 
INTEGRAL 

Surface of Revolution (Gray 1993). 

A surface of revolution is a SURFACE generated by rotat- 
ing a 2-D CURVE about an axis. The resulting surface 
therefore always has azimuthal symmetry. Examples of 
surfaces of revolution include the APPLE, CONE (exclud- 
ing the base), CONICAL FRUSTUM (excluding the ends), 
CYLINDER (excluding the ends), DARWIN-DE SITTER 
SPHEROID, GABRIEL'S HORN, HYPERBOLOID, LEMON, 
OBLATE SPHEROID,PARABOLOID, PROLATE SPHEROID, 
PSEUDOSPHERE, SPHERE, SPHEROID, and TORUS (and 
its generalization, the TOROID). 

PAPPUS'S CENTROID THEOREM gives the VOLUME of a 
solid of rotation as the cross-sectional AREA times the 
distance traveled by the centroid as it is rotated. 

CALCULUS OF VARIATIONS canbeusedtofindthecurve 
from a point (xl, ~1) to a point (x2, ~2) which, when 
revolved around the X-AXIS, yields a surface of smallest 
SURFACE AREA A (i.e., the MINIMAL SURFACE). This 
is equivalent to finding the MINIMAL SURFACE passing 
through two circular wire frames. The AREA element is 

The standard 
is given by 

parameterization ofa surface of revolution 
dA = kyds = 27ry& + yt2 dx, (15) 

SO the SURFACE AREA is 
x(21, v) = 4(v) cos u (1) 

y(u, v) = 4(v) sinu (2) 

4-v) = Tqv>- (3) 
A = 2n /Y&Tax, (16) 

and the quantity we are minimizing is For a curve so parameterized, the first FUNDAMENTAL 
FORM has 

f = y& + yf2. (17) 
E = ti2 (4) 
F=O (5) 
G = #2 -I- qt2. (6) 

This equation has jX = 0, so we can use the BELTRAMI 
IDENTITY 

(18) 

Wherever 4 and 4” + qt2 are nonzero, then the surface 
is regular and the second FUNDAMENTAL FORM has 

to obtain 

YJW-Y’ yyt 
dz 

=a (19) WI* ‘=-&& (7) 
f=O (8) y(l + y’“) - yyf2 = a-\/l + y’2 (20) 

(9) y=a&+y’2 

&k 
=a 

12 

(21) 

(22) 
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(23) 

dx 1 a ---- 
dy - y' - Jm (24) 

x = a 
s 

dY ~y2 _ a2 = acosh-’ f + b 
0 (25) 

? (26) 

which is called a CATENARY, and the surface generated 
by rotating it is called a CATENOID. The two constants 
a and b are determined from the two implicit equations 

which cannot be solved analytically. 

(27) 

(28) 

The general case is somewhat more complicated than 
this solution suggests. To see this, consider the MINIMAL 
SURFACE between two rings of equal RADIUS yo. With- 
out loss of generality, take the origin at the midpoint of 
the two rings. Then the two endpoints are located at 

(-07 Yo) and (x0, Yo), and 

Yo = acosh (F) = .cosh(e) l  (29) 

But cosh(-x) = cash(x), so 

cash(F) = cash (=$J l  (30) 

Inverting each side 

-50 - b = -20 + b, (31) 

so b = 0 (as it must by symmetry, since we have chosen 
the origin between the two rings), and the equation of 
the MINIMAL SURFACE reduces to 

(32) 

At the endpoints 

but for certain values of x0 and yo, this equation has 
no solutions. The physical interpretation of this fact is 
that the surface breaks and forms circular disks in each 
ringtominimize AREA. CALCULUS OF VARIATIONS can- 
not be used to find such discontinuous solutions (known 
in this case as GOLDSCHMIDT SOLUTIONS). The mini- 
mal surfaces for several choices of endpoints are shown 
above. The first two cases are CATENOIDS, while the 
third case is a GOLDSCHMIDT SOLUTION. 

To find the maximum value of xo/yo at which CATE- 
NARY solutions can be obtained, let p s l/a. Then (31) 
gives 

YOP = cosh(pxo). (34) 

Now, denote the maximum value of x0 as x& Then it 
will be true that dxo/dp = 0. Take d/dp of (34), 

yo = sinh(pxo) (xo+p$). 

Now set dxo/dp = 0 

yo = x0 sinh(pxg). 

From (34), 
pyo* = cosh(pxo*). 

Take (37) + (36), 

px; = coth(px;). 

Defining u = pxo* , 

u = cothu. 

(35) 

(36) 

(37) 

(38) 

(39) 

This has solution u = 1.1996789403 l  . .* From (36), 
yap = coshu. Divide this by (39) to obtain yo/xo = 
sinh u, so the maximum possible value of xo/yo is 

X0 
- - csch u = 0.6627434193. q . . 
Yo - 

(40) 

Therefore, only Goldschmidt ring solutions exist for 
xo/yo > 0.6627.. . . 

The SURFACE 
is given by 

of the minimal CATENOID surface 

I 
X0 

A = a(274 ydmda:, (41) 
0 

but since 

Y= + + yt2 a (42) 

(43) 
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=4:aj’” + ,cosh($-+l, dx 

= 2na hxocosh($) dx+lxodx] 

= 27ra [tsinh($) +z]I 

=d [sinh($) + $11 

=m2 [sinh (+) + %] . (44) 

Some caution is needed in solving (33) for a. If we take 

x0 = l/2 and yo = 1 then (33) becomes 

(45) 

which has two solutions: al = 0.2350,. . (“deep”), and 

a2 = 0.8483.. . (“flat”). I-Iowever, upon plugging these 
into (44) with x0 = l/2, we find A1 = 6.8456. l  . and 

A2 = 5.9917.. .* So A1 is not, in fact, a local minimum, 
and A2 is the only true minimal solution. 

The SURFACE AREA of the CATENOID solution equals 
thatofthe GOLDSCHMIDT SOLUTION when (44) equals 
the AREA of two disks, 

na2 [sinh (?) + ?] = 27~~~ (46) 

a2 [,sinh(:) cash (T) + ?] -2y02 =o (47) 

a2 [cash(T) ,/cosh2 (z) - 1+ :j -yo2 =O. 

(48) 
Plugging in 

(49) 

$!? 
a 

Defining 

gives 

uJ2L2-I+ cash-’ u - u2 = 0. (52) 

This has a solution u = 1.2113614259. The value of 
xo/yo for which 

A catenary =A 2 disks (53) 

is therefore 

x0 SQ cash-’ ZQ a ( > a cash-’ u ---, 
Yo - F 2!l = - = 0.5276973967. 

U a 

(54) 

For zo/yo E (0*52770,0.6627), the CATENARY solution 
has larger AREA than the two disks, so it exists only as 
a RELATIVE MINIMUM. 

There also exist solutions with a disk (of radius r) be- 
tween the rings supported by two CATENOIDS of rev- 
olution. The AREA is larger than that for a simple 
CATENOID, but it is a RELATIVE MINIMUM. The equa- 
tion of the POSITIVE half of this curve is 

Y = cl cash 
(z +c3) l  

(55) 

r = cl cosh(c& (56) 

At, (so, YO), 

Yo = cl cash (57) 

The AREA of the two CATENOIDS is 

A catenoids y2 dx 

(58) 

Now let u = x/cl + c3, so du = dx/cl 

s 

zoh+c3 

A = 4m12 cosh2 u du 
c3 

"o/xl+c3 

= 4TC12$ 
s 

[cosh(2u) + l] du 
c3 

- - 27~1~ [i sinh(2u) + U] x”‘x”c3 
c3 

= 7rc1 2{sinh[2(z+~3)] -sinh(2c3)+3}. 

(59) 

The AREA of the central DISK is 
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A = 2~ 
I 

xJl+y’Zdx, 

and the quantity we are minimizing is 

so the total AREA is (70) 

W) 

(72) 

1 (73) 

EQUATION be- 

A = rc1 2 {sinh [2 (E +Q)] 

+[ cosh2 c3 - sinh(2ca)] + *}. 
Cl 

(61) f = 2&+ y12. 

By PLATEAU'S LAWS, the CATENOIDS meet at an AN- 
GLE of 120”, so 

Taking the derivatives gives 

af 

dY 
=0 

tan30” = El,=, = [sinh(: +c4z=0 
1 

= sinh c3 = - 
fi 

(62) 

sothe EULER-LAGRANGEDIFFERENTIAL 
comes 

and 

c3 (63) 

af 
dy- 

= 0. 

2 I2 
XY = a2(1 + y’“) 

y12(x2 - a2) = a2 

dY -- 
dx-&& 

(74) 

(75) 

(76) 

(77) 

(78) 

(79) 

(80) 

This means that 

cosh2 c3 - sinh(2c3) 

- - [l + sinh2 cs] - 2 sinh c3 

= (1-t ;) - 2 

(64) 

so 

A=7rcr2{sinh[2(z+c3)] +2}. (65) 
Y =a 

s 

Now examine zco/ yo, Solving for EC: then gives 

32 EQ 
x0 - 

G- Cl %= cash (z + c3) 
= usech(u + cg), (66) 

Cl 
which is the equation for a CATENARY. The SVRFACE 
AREA of the CATENOID product by rotation is where u E x0/~. Finding the maximum ratio of zo/yo 

gives 

A = 27~ 
s 

xJl+y’Zdx = 2n 
= sech(u+cs) -u tanh(u+cg) sech(u+cg) = 0 

(67) 
utanh(u+ca) = 1, (68) 

=zT d&&x2-a2)+u2dx s 
s 

x2 dx 
=2n dn 

with c3 = sinh -‘(l/A) as given above. The solu- 
tion is u = 1.0799632187, so the maximum value of 
xo/yo for two CATENOIDS with a central disk is ye = 
0.4078241702. 

[ 

X 
- - 

5 
d x2 - a2 

If we are interested instead in finding the curve from a 
point (xl, ~1) to a point (x2, ~2) which, when revolved 
around the ~-AXIS (as opposed to the X-AXIS), yields 
a surface of smallest SURFACE AREA A, we proceed as 
above. Note that the solution is physically equivalent 
to that for rotation about the ~-AXIS, but takes on a 
different mathematical form. The AREA element is 

1 r 

-- - 1 x2 

L d 
~2~ -a2 - xl 

d 
xl2 - a2 

+a2 In 
( 

x2+&p=YP 
x1+&=2 )I l  (81) 

Isenberg (1992, p. 80) discusses finding the MINIMAL 
SURFACE passing through two rings with axes offset from 
each other. &I = 27~~ ds = 27rx&-+- yf2 dx (69) 



1768 Surface of Section Survivorship Curve 

see dso APPLE, CATENOID, CONE CONICAL FRUSTUM, 
CYLINDER, DARWIN-DE SITTER SPHEROID, EIGHT 
SURFACE, GABRIEL'S HORN, HYPERBOLOID, LEMON, 
MERIDIAN, OBLATE SPHEROID, PAPPUS'S CENTROID 
THEOREM, PARABOLOID, PARALLEL (SURFACE OF 
REVOLUTION), PROLATE SPHEROID, PSEUDOSPHERE, 
SINCLAIR'S SOAP FILM PROBLEM, SOLID OF REVOLU- 
TION, SPHERE, SPHEROID,TOROID, TORUS 

References 
A&en, G. Mathematical Methods for Physicists, 3rd ed. Or- 

lando, FL: Academic Press, pp. 931-937, 1985. 
Goldstein, H. Classical Mechanics, 2nd ed. Reading, MA: 

Addison-Wesley, p. 42, 1980. 
Gray, A. “Surfaces of Revolution.” Ch. 18 in Modern Dif- 

ferential Geometry of Curves and Surfaces. Boca Raton, 
FL: CRC Press, pp* 357-375, 1993. 

Isenberg, C. The Science of Soap Films and Soap Bubbles. 
New York: Dover, pp. 79-80 and Appendix III, 1992. 

Surface of Section 
A surface (or “space”) of section is a way of presenting a 
trajectory in n-D PHASE SPACE in an (n- 1)-D SPACE. 
l3y picking one phase element constant and plotting the 
values of the other elements each time the selected el- 
ement has the desired value, an intersection surface is 
obtained. If the equations of motion can be formulated 
as a MAP in which an explicit FORMULA gives the values 
of the other elements at successive passages through the 
selected element value, the time required to compute the 
surface of section is greatly reduced. 

see also PHASE SPACE 

Surgery 
In the process of attaching a ~-HANDLE to a MANI- 
FOLD A!, the BOUNDARY of M is modified by a process 
called (k - l)- surgery. Surgery consists of the removal 
of a TUBULAR NEIGHBORHOOD of a (k - l)-SPHERE 
s IcW1 from the BOUNDARIES of M and the dim(M) - 1 

Surrogate 
Surrogate data are artificially generated data which 
mimic statistical properties of real data. 
surrogates have identical POWER SPECTRA as real data 
but with randomized phases. Scrambled surrogates have 

standard SPHERE, and the gluing together of these two the same probability distribution 
scarred-up objects along their common BOUNDARIES. white noise POWER SPECTRA. 
see als o BOUNDARYJIEHN SURGERY, HAN 
FOLD, SPHERE,TUBULAR NEIGHBORHOOD 

Surjection 
An UNTO (SURJECTIVE) MAP. 

see dso BIJECTION, INJECTION, ONTO 

Surjective 

see ONTO 

Surprise Examination Paradox 

~~~UNEXPECTED HANGING PARADOX 

'DLE, MANI- 

Surreal Number 
The most natural collection of numbers which includes 
both the REAL NUMBERS and the infinite ORDINAL 
NUMBERS of Georg Cantor. They were invented by John 
H. Conway in 1969. Every REAL NUMBER is surrounded 
by surreals, which are closer to it than any REAL NUM- 
BER. Knuth (1974) d escribes the surreal numbers in a 
work of fiction. 

The surreal numbers are written using the NOTATION 
{alb}, where {I} = 0, {Ol} = 1 is ihe simplest number 
greater than 0, {II} = 2 is the simplest number greater 
than 1, etc. Similarly, {IO} = -1 is the simplest number 
less than 1, etc. However, 2 can also be represented by 

{W), {VW, {W, etc. 

see also OMNIFIC INTEGER, ORDINAL NUMBER, REAL 
NUMBER 

References 
Berlekamp, E. R.; Conway, J. H.; and Guy, R. K. Winning 

Ways, For Your Mathematical Plays, Vol, 1: Games in 
General. London: Academic Press, 1982. 

Conway, J. H. On Numbers and Games. New York: Aca- 
demic Press, 1976. 

Conway, J. H. and Guy, R. K. The Book of Numbers. New 
York: Springer-Verlag, pp. 283-284, 1996. 

Conway, J. H. and Jackson, A. “Budding Mathematician 
Wins Westinghouse Competition.” Nut. Amer. Math. Sot. 
43, 776-779, 1996. 

Gonshor, H. An Introduction to Surreal Numbers. Cam- 
bridge: Cambridge University Press, 1986. 

Knuth, D. Surreal Numbers: How Two Ex-Students Turned 
on to Pure Mathematics and Found Total Happiness. 
Reading, MA: Addison-Wesley, 1974. http: //VW-cs- 
faculty.stanford.edu/-knuth/sn.html. 

Isospectral 

see also POWER SPECTRUM 

Surveying Problems 

as real data, but with 

see HANSEN'S PROBLEM, SNELLIUS-POTHENOT PROB- 
LEM 

Survivorship Curve 

TYPe I 
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z 
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2 
c 
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Suslin ‘s Theorem Swastika 

Plotting I, from a LZFE EXPECTANCY table on a loga- 
rithmic scale versus z gives a curve known as a survivor- 
ship curve. There are three general classes of survivor- 
ship curves, illustrated above. 

Type I curves are typical of populations in which 
most mortality occurs among the elderly (e.g., hu- 
mans in developed countries). 

Type II curves occur when mortality is not depen- 
dent on age (e.g., many species of large birds and 
fish). For an infinite type II population, eo = el = 

l  - ‘?  
but this cannot hold for a finite population. 

Type III curves occur when juvenile mortality is ex- 
tremely high (e.g., plant and animal species produc- 
ing many offspring of which few survive). In type 
III populations, it is often true that ei+l > ei for 
small i. In other words, life expectancy increases for 
individuals who survive their risky juvenile period. 

see ah LIFE EXPECTANCY 

Suslin’s Theorem 
A SET in a POLISH SPACE isa BOREL SETIFF itisboth 
ANALYTIC and COANALYTIC. For subsets ofw, a set is 
s,' IFF it is “hyperarithmetic.” 

see also ANALYTIC SET, BOREL SET$OANALYTIC SET, 
POLISH SPACE 

Suspended Knot 
An ordinary KNOT in 3-D suspended in 4-D to create a 
knotted 2-sphere. Suspended knots are not smooth at 
the poles. 

see also SPUN KNOT, TWIST-SPUN KNOT 

Suspension 
The JOIN of a TOPOLOGICAL SPACE X and a pair of 
points So, C(X) = X * So. 

see also JOIN (SPACES), TOPOL,OGICAL SPACE 

References 
Rolfsen, D, Knots and Links. Wilmington, DE: Publish or 

Perish Press, p. 6, 1976. 

Suzanne Set 
The nth Suzanne set S, is defined as the set of COMPOS- 
ITE NUMBERS II: for which nlS(lc) and nlS&), where 

S(X) = 2 Uj 

j=O 

Sp(x) = &(pi). 
i=l 

1769 

Every Suzanne set has an infinite number of elements. 
The Suzanne set S, is a superset of the MONICA SET 
1M,* 

see also MONICA SET 

References 
Smith, M. “Cousins of Smith Numbers: Monica and Suzanne 

Sets.” Fib. Quart. 34, 102-104, 1996. 

Suzuki Group 
The SPORADIC GROUP SW. 

References 
Wilson, R. A. “ATLAS of Finite Group Representation.” 

http://for.mat.bham.ac.uk/atlas/Suz.html. 

Swallowtail Catastrophe 

A CATASTROPHE which can occur for three control fac- 
tors and one behavior axis. The equations 

X = z&v2 + 3V4 

y = -2uv - 4V3 

display such a catastrophe (von Seggern 1993, Nord- 
strand). The above surface uses u E [-2,2] and v E 
[-0.8,0.8]. 

References 
Nordstrand, T. “Swallowtail.” http://www.uib.no/people/ 

nfytn/stltxt.htm. 
von Seggern, D. CRC Standard Curves and Surfaces. Boca 

Raton, FL: CRC Press, p. 94, 1993. 

Swastika 

An irregular ICOSAGON, also called the gammadion or 
fylfot, which symbolized good luck in ancient Arabic and 
Indian cultures. In more recent times, it was adopted as 
the symbol of the Nazi Party in Hitler’s Germany and 
has thence come to symbolize anti-Semitism. 

see also CROSS, DISSECTION 
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Swastika Curve 

The plane curve with Cartesian equation 

y4 - x4 = xy 

and polar equation 

r2 = 
sin 0 cos 8 

sin4 8 - cos4 0 l  

References 
Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. 

Stradbroke, England: Tarquin Pub., p, 71, 1989. 

Sweep Signal 

The general function 

y(a,b,c,d) = csin (h-a)~+a)2-u2 l  I> 
References 
von Seggern, D. CRC Standard Curves and Surfaces. Boca 

Raton, FL: CRC Press, p. 160, 1993. 

Swinnerton-Dyer Conjecture 
In the early 196Os, B. Birch and H. P. F. Swinnerton- 
Dyer conjectured that if a given ELLIPTIC CURVE has 
an infinite number of solutions, then the associated L- 
function has value 0 at a certain fixed point. In 1976, 
Coates and Wiles showed that elliptic curves with COM- 

PLEX multiplication having an infinite number of solu- 
tions have L-functions which are zero at the relevant 
fixed point (COATES-WILES THEOREM), but they were 
unable to prove the converse. V. Kolyvagin extended 
this result to modular curves. 

see UZSO COATES-WILES THEOREM, ELLIPTIC CURVE 

Heferences 
Cipra, B. “Fermat Prover Points to Next Challenges.” SC& 

ence 271, 1668-1669, 1996. 
Ireland, K. and Rosen, M. “New Results on the Birch- 

Swinnerton-Dyer Conjecture.” $20.5 in A Classical Intro- 
duction to Modern Number Theory, 2nd ed. New York: 
Springer-Verlag, pp. 353-357, 1990. 

Mazur, 8. and Stevens, G. (Eds.). p-Adic Monodromy and 

the Birch and Swinnerton-Dyer Conjecture. Providence, 
RI: Amer. Math. SOL, 1994. 

Swinnerton-Dyer Polynomial 
The minimal PULYNOMIAL S,(x) whose ROOTS are 
sums and differences of the SQUARE ROOTS of the first 
n PRIMES, 

References 
Vardi, I. Computational Recreations in Mathematics. Red- 

wood City, CA: Addison-Wesley, pp. 11 and 225-226, 1991. 

Swirl 

A swirl is a generic word to describe a function having 
arcs which double back swirl around each other. The 
plots above correspond to the function 

f b-9 0) = sin(6 cos T - n8) 

for n = 0, 1, . . . , 5. 

see also DAISY, WHIRL 

Sylow p-Subgroup 
If pk is the highest PUWER of a PRIME p dividing the 
ORDER ofafinite GROUP G,then a SUBGROUP ofG of 
ORDER p” is called a Sylow p-subgroup of G. 

see also ABHYAN 
LOW THEOREMS 

KAR'S CONJECTURE, SUBGROUP, SY- 

Sylow Theorems 
Let p be a PRIME NUMBER, G a GROUP, and IGl the 
order of G. 

1. If p divides [Cl, then G has a SYLOW ~-SUBGROUP. 

In a FINITE GROUP, all the SYLOW ~-SUBGROUPS 

are isomorphic for some fixed p. 

The number of SYLOW ~-SUBGROUPS for a fixed p is 
CONGRUENT to 1 (mod p). 
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Sylvester Cyclotomic Number 
Given a LUCAS SEQUENCE with parameters P and Q, 
discriminant D # 0, and roots 0 and p, the Sylvester 
cyclotomic numbers are 

Q n= 
rI 

(a - C’P>, 

[Ecos($) +isin(F) 

is a PRIMITIVE ROOT OF UNITY and the product is 
over all exponents r RELATIVELY PRIME to n such that 
T E [l,n)* 

see also LUCAS SEQUENCE 

References 
Ribenboim, P. The Book of Prime Number Records, 2nd ed* 

New York: Springer-Verlag, p. 69, 1989. 

Sylvester’s Determinant Identity 

I4 IAwq I = l&PI l&,I - I&l IASA 

where A,,w is the submatrix of A 
section of the subset w  of columns 

formed by the 
and u of rows. 

inter- 

Sylvester’s Four-Point Problem 
Let q(R) be the probability that four points chosen at 
random in a region R have a CONVEX HULL which is 
a QUADRILATERAL. For an open, convex subset of the 
PLANE of finite AREA, 

0.667 = i 
35 

< q(R) < 1 - s =z: 0.704. - - 

References 
Schneinerman, E. and Wilf, H. S+ “The Rectilinear Crossing 

Number of a Complete Graph and Sylvester’s ‘Four Point’ 
Problem of Geometric Probability.” Amer. Math. Monthly 
101, 939-943, 1994, 

Sylvester Graph 
The Sylvester graph of a configuration is the set of OR- 

DINARY POINTS and ORDINARY LINES. 

see also ORDINARY LINE, ORDINARY POINT 

Heferences 
Guy, R. K. “Monthly Unsolved Problems, 1969-1987.” 

Amer. Math. Monthly 94, 961-970, 1987. 
Guy, R. K. “Unsolved Problems Come of Age.” Amer. Math, 

Monthly 96, 903-909, 1989. 

Sylvester% Inertia Law 
The numbers of EIGENVALUES that are POSITIVE, NEG- 
ATIVE, or 0 do not change under a congruence trans- 
formation. Gradshteyn and Ryzhik (1979) state it as 
follows: when a QUADRATIC FORM Q in n variables is 
reduced by a nonsingular linear transformation to the 
form 

Q = y12  + y22  + . . . + yp2  - pp+12 - ypz2  - 9  l  . - Yr2, 

the number p of POSITIVE SQUARES appearing in the 
reduction is an invariant of the QUADRATIC FORM Q 
and does not depend on the method of reduction. 

see ah EIGENVALUE, QUADRATIC FORM 

References 
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 

ries, and Products, 5th ed. San Diego, CA: Academic 
Press, p. 1105, 1979. 

Sylvester’s Line Problem 
It is not possible to arrange a finite number of points so 
that a LINE through every two of them passes through 
a third, unless they are all on a single LINE. 

see also COLLINEAR, SYLVESTER'S FOUR-PRINT PROB- 
LEM 

Sylvester Matrix 
For POLYNOMIALS of degree nz and 72, the Sylvester ma- 
trix is an (m+n) x (m+n) matrix whose DETERMINANT 
is the RESULTANT ofthetwo POLYNOMIALS. 

see also RESULTANT 

Sylvester’s Sequence 
The sequence defined by eo = 2 and the RECURRENCE 
RELATION 

1 

l,n 
2 

en = ei = en-1 - en- 1 + 1. (1) 

i=o 

This sequence arises in Euclid’s proof that there are an 
INFINITE number of PRIMES. The proof proceeds by 
constructing a sequence of PRIMES using the RECUR- 
RENCE RELATION 

en+1 = eoel  l  l  + en + 1 

(2) 

(Vardi 1991). A mazingly, there is a constant 

E a 1.264084735306 (3) 

such that 
2nSl 

en = E ++ (4) 
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(Vardi 1991, Graham et al. 1994). The first few numbers 
in Sylvester’s sequence are 2, 3, 7, 43, 1807, 3263443, 
10650056950807, . . . (Sloane’s A000058). The e, satisfy 

O” 1 
>:- - 1. - 

en 
n=O 

(5) 

In addition, if 0 < II: < 1 is an IRRATIONAL NUMBER, 

then the nth term of an infinite sum of unit fractions 
used to represent z as computed using the GREEDY AL- 
GORITHM must be smaller than l/e,. 

The n of the first few PRIME en are 0, 1, 2, 3, 5, . . . . 
Vardi (1991) gives a lists of factors less than 5 x lo7 of 
en for n < 200 and shows that en is COMPOSITE for 
6 $s n 5 17. F’urthermore, all numbers less than 2.5 x 
10 in Sylvester’s sequence are SQUAREFREE, and no 
SQUAREFUL numbers in this sequence are known (Vardi 
1991) l  

see also EUCL ID'S THEORE 

SQUARE FREE, SQUAREFUL 

MS, GREEDY ALGORITHM, 

References 
Graham, R. L.; Knuth, D. E.; and Patashnik, 0. Research 

problem 4.65 in Concrete Mathematics: A Foundation 
for Computer Science, 2nd ed. Reading, MA: Addison- 
Wesley, 1994. 

Sloane, N. J. A. Sequence A000058/M0865 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Vardi, I. “Are All Euclid Numbers Squarefree?” and 
“PowerMod to the Rescue.” 55.1 and 5.2 in Computational 
Recreations in Mathematics. Reading, MA: Addison- 
Wesley, pp. 82-89, 1991. 

Sylvester% Signature 
Diagonalize a form over the RATIONALS to 

diagba l  A, pb l  B, . + .I, 

where all the entries are INTEGERS and A, B, . . . are 
RELATIVELY PRIME to p. Then Sylvester’s signature is 
the sum of the -l-parts of the entries. 

see also p-SIGNATURE 

Sylvester’s Triangle Problem 
The resultant of the vectors represented by the three 
RADII from the center of a TRIANGLE’S CIRCUMCIRCLE 

to its VERTICES is the segment extending from the CIR- 
CUMCENTER to the URTHOCENTER. 

see also CIRCUMCENTER, CIRCUMCIRCLE, ORTHOCEN- 

TER, TRIANGLE 

References 
Dijrrie, H. 100 Great Problems of Elementary Mathematics: 

Their History and Solutions. New York: Dover, p. 142, 
1965. 

Symbolic Logic 
The study of the meaning and relationships of state- 
ments used to represent precise mathematical ideas. 
Symbolic logic is also called FORMAL LOGIC. 

see also FORMAL LOGIC, LOGIC, METAMATHEMATICS 

References 
Carnap, R. Introduction to Symbolic Logic and Its Applica- 

tions. New York: Dover, 1958. 

Symmedian Line 
The lines ISOGONAL to the MEDIANS of a TRIANGLE 

are called the triangle’s symmedian lines. The symme- 
dian lines are concurrent in a point called the LEMOINE 
POINT. 

see also ISOG ONAL 
DIAN (TRIAN GLE) 

CONJUGATE, LEMOINE POINT, ME- 

Symmedian Point 

see LEMOINE POINT 

Symmetric 
A quantity which remains unchanged in SIGN when in- 
di ces are reversed. For example, Aij E Ui + Uj is sym- 
metric since Aij = Aji. 

see also ANTISYMMETRIC 

Symmetric Block Design 
A symmetric design is a BLOCK DESIGN (v, Ic, X, r, b) 
with the same number of blocks as points, so b = ‘u (or, 
equivalently, T = k). An example of a symmetric block 
design is a PROJECTIVE PLANE. 

see also BLOCK DESIGN, PROJECTIVE PLANE 

References 
Dinitz, 3. H. and Stinson, D. R. “A Brief Introduction to 

Design Theory.” Ch. 1 in contemporary Design Theory: A 
Collection of Surveys (Ed. J. H. Dinitz and D. R. Stinson). 
New York: Wiley, pp. 1-12, 1992. 

Symmetric Design 

see SYMMETRIC BLOCK DESIGN 

Symmetric Function 
A symmetric function on n variables ~1, . . , , X~ is a 
function that is unchanged by any PERMUTATION of its 
variables. In most contexts, the term “symmetric func- 
tion” refers to a polynomial on n variables with this fea- 
ture (more properly called a “symmetric polynomial”). 
Another type of symmetric functions is symmetric ra- 
tional functions, which are the RATIONAL FUNCTIONS 

that are unchanged by PERMUTATION of variables. 
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The symmetric polynomials (respectively, symmetric ra- 
tional functions) can be expressed as polynomials (re- 
spectively, rational functions) in the ELEMENTARY SYM- 
METRIC FUNCTIONS. This is called the FUNDAMENTAL 
THEOREM OF SYMMETRIC FUNCTIONS. 

A function f(z) is sometimes said to be symmetric about 
the ~-AXIS if f(-z) = f ( 2). Examples of such func- 
tions include 1x1 (the ABSOLUTE VALUE) and x2 (the 
PARABOLA). 
see UZSO ELEMENTARY SYMMETRIC FUNCTION,FUNDA- 
MENTAL THEOREM OF SYMMETRIC FUNCTIONS, RA- 
TIONAL FUNCTION 

References 
Macdonald, I. G. Symmetric Functions and Hall Polynomi- 

als, 2nd ed. Oxford, England: Oxford University Press, 

Macdonald, I. G. Symmetric Funtions and Orthogonal Poly- 
nomials. -Provide&e, RI: Amer. Math. Sot., 1997. 

Petkovgek, M.; Wilf, W. S.; and Zeilberger, D. “Symmet- 

ric Function Identities.” $1.7 in A=B. Wellesley, MA: 
A. K. Peters, pp. 12-13, 1996. 

Symmetric Group 
The symmetric group S, of DEGREE n is the GRUUP 
of all PERMUTATIONS on 12 symbols. S, is therefore of 
ORDER n! and contains as SUBGROUPS every GROUP of 
ORDER 72. The number of C~NJUGACY CLASSES of& 
is given by the PARTITION FUNCTION P. 

NETTO'S CONJECTURE states that the probability that 
two elements PI and P2 of a symmetric group generate 
the entire group tends to 3/4 as n -+ 00. This was 
proven by Dixon in 1967. 

see also ALTERNATING GROUP, CONJUGACY CLASS, 
FINITE GROUP, NETTO'S CONJECTURE, PARTITION 
FUNCTION P,SIMPLE GROUP 

References 
Lomont, J. S. “Symmetric Groups*” Ch. 7 in Applications of 

Finite Groups. New York: Dover, pp. 258-273, 1987. 
Wilson, R. A. “ATLAS of Finite Group Representation.” 

http://for.mat.bham.ac.uk/atlas#alt. 

Symmetric Matrix 
A symmetric matrix is a SQUARE MATRIX which sat- 
isfies AT = A where AT denotes the TRANSPOSE, SO 
&ij = a+ This also implies 

A-lAT = I, (1) 

where I is the IDENTITY MATRIX. Written explicitly, 

r a11 a12 ‘** ain 1 
a21 a22 l  - a2n 

. l  . . . 

. l  . l  
(2) 

The symmetric part of any MATRIX may be obtained 

A MATRIX A is symmetric if it can be expressed in the 
form 

A = QDQT, (4) 

where Q is an ORTHOGONAL MATRIX and D is a DI- 
AGONAL MATRIX. This is equivalent to the MATRIX 
equation 

AQ = QD, (5) 

which is equivalent to 

AQ n = LtQn (6) 

for all n, where Xn = Dn,. Therefore, the diagonal ele- 
ments of D are the EIGENVALUES of A, and the columns 
of Q are the corresponding EIGENVECTORS. 

see UZSO ANTISYMMETRIC MATRIX, SKEW SYMMETRIC 
MATRIX 

References 
Nash, J. C. “Real Symmetric Matrices.” Ch. 10 in Compact 

Numerical Methods for Computers: Linear Algebra and 
Function Minimisation, 2nd ed. Bristol, England: Adam 
Hilger, pp* 119-134, 1990. 

Symmetric Points 
Two points z and zs f C* are symmetric with respect to 
a CIRCLE or straight LINE L if all CIRCLES and straight 
LINES passing through z and zs are orthogonal to L. 
MOBIUS TRANSFORMATIONS preserve symmetry. Let a 
straight line be given by a point zo and a unit VECTOR 
e “, then 

S 2iB 
z =e (z - zo)* + zo* 

Let a CIRCLE be given by center zo and RADIUS T, then 

S T2 
z = x0 + 

( z- zo)* - 

see also MOBIUS TRANSFORMATION 

Symmetric Relation 
A RELATION R on a SET S is symmetric provided that 
for every =x: and y in S we have &y IFF yRz. 

see also RELATION 

Symmetric Tensor 
A second-RANK symmetric TENSOR is defined as a TEN- 
SOR A for which 

A mn 
=: A”“. 

(1) 

Any TENSOR can be written as a sum of symmetric and 
ANTISYMMETRIC parts 

A mn I 1 - Z(Amn + Anm) + ;(A,, -A,,> 

- l(BSmn + BAmn). - 
2 (2) 

The symmetric part of a TENSOR is denoted by paren- 
theses as follows: 

from 
A, = ;(A+A*). (3) Tcalb) = f (Tab + Tba) (3) 
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>: (4 
permutations 

The product of a symmetric and an ANTISYMMETRTC 

TENSOR is 0. This can be seen as follows. Let aap be 
ANTISYMMETRIC, SO 

11 22 
a =a =0 (5) 

21 12 a =-a. (6) 

Let b,p be symmetric, so 

h2 = b2l. (7) 

Then 

aaP6,1p = a% + a12b12 + a21b~l + a22b22 

= 0 + a12bn - a12blz + 0 = 0. (8) 

A symmetric second-RANK TENSOR A,, has SCALAR 

invariants 

Sl = A11 + A22 +A22 (9) 

~2 = AxA3 + Ad11 + Adz2 - ~423~ 

- A312 - A122. (10) 

Symmetroid 
A QUARTIC SURFACE which is the locus of zeros of the 
DETERMINANT of a SYMMETRIC 4 x 4 matrix of linear 
forms. A general symmetroid has 10 ORDINARY DOW- 

BLE POINTS (Jessop 1916, Hunt 1996). 

References 
Hunt, B. “Algebraic Surfaces.” http://www.mathematik. 

uni-kl.de/-wwwagag/Galerie.html. 
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Symmetry 
An intrinsic property of a mathematical object which 
causes it to remain invariant under certain classes of 
transformations (such as ROTATION, REFLECTION, IN- 

VERSION, or more abstract operations). The mathemat- 
ical study of symmetry is systematized and formalized 
in the extremely powerful and beautiful AREA of math- 
ematics called GROUP THEORY. 

Symmetry can be present in the form of coefficients of 
equations as well as in the physical arrangement of ob- 
jects. By classifying the symmetry of polynomial equa- 
tions using the machinery of GROUP THEORY, for ex- 
ample, it is possible to prove the unsolvability of the 
general QUINTIC EQUATION. 

In physics, an extremely powerful theorem of Noether 
states that each symmetry of a system leads to a phys- 
ically conserved quantity. Symmetry under TRANSLA- 

TION corresponds to momentum conservation, symme- 
try under ROTATION to angular momentum conserva- 
tion, symmetry in time to energy conservation, etc. 

see also GROUP THEORY 
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Eppstein, D. “Symmetry and Group Theory.” http : //www , 

ics.uci.edu/-eppstein/junkyard/sym.html. 
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Muthematics. San Carlos, CA: Wide World Publ./Tetra, 
pp, 154-155, 1989. 
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York: W. H. Freeman, 1990. 

Stewart, 1. and Golubitsky, M. Fearful Symmetry. New York: 
Viking Penguin, 1993. 

Symmetry Group 

see GROUP 

Symmetry Operation 
Symmetry operations include the IMPROPER ROTATION, 

INVERSION OPERATION, MIRROR PLANE, and ROTA- 
TION. Together, these operations create 32 crystal 
classes corresponding to the 32 POINT GROUPS. 

The INVERSION OPERATION takes 

(x7 Y, 2) + (-x, -y, -z) 

and is denoted i. When used in conjunction with a Ro- 
TATION, it becomes an IMPROPER ROTATION. An IM- 

PROPER ROTATION by 360”/n is denoted fi (or S,). For 
periodic crystals, the CRYSTALLOGRAPHY RESTRICTION 

allows only the IMPROPER ROTATIONS i, 2, 3, 3, and 6. 

The MIRROR PLANE symmetry operation takes 

(X,YJ) + (XIY, -4 (2, -y, 4 -3 (x, -y, z), 

etc., which is equivalent to 2. Invariance under reflection 
can be denoted now or ?%gh. The ROTATION symmetry 
operation for 360*/n is denoted n (or Cn). For periodic 
crystals, CRYSTALLOGRAPHY RESTRICTION allows only 
1, 2, 3, 4, and 6. 

Symmetry operations can be indicated with symbols 
such as cn, S,, E, i, nov, and nob. 

1. Cn indicates ROTATION about an n-fold symmetry 
axis. 

2. S, indicates IMPROPER 

symmetry axis. 
ROTATION about an n-fold 

3. E (or 1) indicates invariance under TRANSLATION. 

4. i indicates a center of symmetry under INVERSION. 
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5. 

6. 

n6 indicates 
TIONS. 

invariance under n vertical REFLEC- References 

nob indicates 
TIoNS. 

invariance under n horizontal REFLEC- 

Symmetry Principle 
SYMMETRIC PRINTS are preserved under a M~BIIB 

TRANSFORMATION. 

see also MOBIUS TRANSFORMATION, SYMMETRIC 
POINTS 

Symplectic Diffeomorphism 
A MAP T : (M~,w~) + (i&,w2) between the SYM- 

PLECTIC MANIFOLDS (MI, WI) and (A&, WZ) which is a 
DIFFEOMORPHISM and T*(wz) = w1 (where T* is the 
PULLBACK MAP induced by T, i.e., the derivative of 
the DIFFEOMORPHISM T acting on tangent vectors). A 
symplectic diffeomorphism is also known as a SYMPLEC- 
TOMORPHISM or CANONICAL TRANSFORMATION. 

see &ODIFFEOMORPHISM,P~LLBACK MAP,~YMPLEC- 
TIC MANIFOLD 

References 
Guillemin, V, and Sternberg, S. Symplectic Techniques in 

Physics. New York: Cambridge University Press, p. 34, 
1984. 

Symplectic Form 
A symplectic form 011 a SMOOTH MANIFOLD M is a 
smooth closed Z-FORM w  on M which is nondegenerate 
such that at every point nz, the alternating bilinear form 
wm on the TANGENT SPACE T.M is nondegenerate. 

A symplectic form on a VECTOR SPACE V over Fp is 
a function f(x,y) (defined for all 2, y E V and taking 
values in Fq) which satisfies 

f (XlXl + x2x2, y) = hf (Xl, Y) + X2f (x2, y), 

f (Y, 2) = -f (97 Yh 

and 
f (x,x) = 0. 

Symplectic forms can exist on m (or V) only if A,5! (or 

V) is EVEN-dimensional. 

Symplectic Group 
The symplectic group Sp,(q) for 12 EVEN is the GROUP 
of elements of the GENERAL LINEAR GROUP GL, that 
preserve a given nonsingular SYMPLECTIC FORM. Any 
such MATRIX has DETERMINANT 1. 

see also GENERAL LINEAR GROUP, LIE-TYPE GROUP, 
PROJECTIVE SYMPLECTIC GROUP,~YMPLECTIC FORM 

Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; 
and Wilson, R. A. “The Groups Sp,(q) and PSp,(q) = 

sn(q>.” s2.3 in Atlas of Finite Groups: Maximal Sub- 
groups and Ordinary Characters for Simple Groups. Qx- 
ford, England: Clarendon Press, pp. x-xi, 1985. 

Wilson, R. A, “ATLAS of Finite Group Representation.” 
http://for.mat.bham.ac.uk/atlas#symp. 

Symplectic Manifold 
A pair (A&w), where A4 is a MANIFOLD and w  is a 
SYMPLECTIC FORM on M. The PHASE SPACE Ik2” = 

Iw” x Iw” is a symplectic manifold. Near every point 
on a symplectic manifold, it is possible to find a set of 
local “Darboux coordinates” 
FORM has the simple form 

in which the SYMPLECTIC 

W= 
>: 

dqk A dpk 
k 

(Sjamaar 1996), where dqk ndpk is a WEDGE PRODUCT. 

see also MA NIFOLD 
SYMPLECTIC FORM 

, SYMPL IECTIC 

References 
Sjamaar, R. “Symplectic Reduction and Riemann-Roth For- 

mulas for Multiplicities.” Bull. Amer. Math. Sot. 33, 
327-338, 1996, 

Symplectic Map 
A MAP which preserves the sum of AREAS projected 
onto the set of (pi, qi) planes. It is the generalization of 
an AREA-PRESERVING MAP. 

see also AREA-PRESERVING MAP, LIOUVILLE'S PHASE 
SPACE THEOREM 

Symplectomorphism 

see SYMPLECTIC DIFFEOMORPHISM 

Synclastic 
A surface onwhichthe GAUSSIAN CURVATURE K is ev- 
erywhere POSITIVE. When K is everywhere NEGATIVE, 
a surface is called ANTICLASTIC. A point at which the 
GAUSSIAN CVRVATURE is POSITIVE is called an ELLIP- 
TIC POINT. 

see also ANTICLASTIC, ELLIPTIC POINT, GAUS- 
SIAN QUADRATURE, HYPERBOLIC POINT, PARABOLIC 
POINT, PLANAR POINT 

Synergetics 
Synergetics deals with systems composed of many sub- 
systems which may each be of a very different nature. 
In particular, synergetics treats systems in which cu- 
operation among subsystems creates organized struc- 
ture on macroscopic scales (Waken 1993). Examples 
of problems treated by synergetics include BIFURCA- 
TIONS, phase transitions in physics, convective instabili- 
ties, coherent oscillations in lasers, nonlinear oscillations 
in electrical circuits, population dynamics, etc. 
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see also BIFURCATION, CHAOS, DYNAMICAL SYSTEM 

References 
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Synthesized Beam 

see DIRTY BEAM 

Syntonic Comma 

see COMMA OF DIDYMUS 

Syracuse Algorithm 

see COLLATZ PROBLEM 

Syracuse Problem 

see COLLATZ PROBLEM 

System of Differential Equations 

see ORDINARY DIFFERENTIAL EQUATION 

System of Equations 
Let a linear system of equations be denoted 

AX=Y, (1) 

where A is a MATRIX and X and Y are VECTORS. As 
shown by CRAMER'S RULE, there is a unique solution if 
A has a MATRIX INVERSE A? In this case, 

x = A-?. (2) 

If Y = 0, then the solution is X = 0. If A has no MA- 
TRIX INVERSE, then the solution SUBSPACE is either a 
LINE or the EMPTY SET. If two equations are multiples 
of each other, solutions are of the form 

X = A+ tB, (3) 

fort a REAL NUMBER. 

see also CRAMER'S RULE, 

Syzygies Problem 
The problem of finding all 
braic relations among any 

see also QUANTIC 

MATRIX INVERSE 

independent irreducible alge- 
finite set of QUANTICS. 

Szilassi Polyhedron 

syzygy 
A technical mathematical object defined in terms of a 
POLYNOMIAL RING of n variables over a FIELD k. 

see also FUNDAMENTAL SYSTEM,HILBERT BASIS THE- 
OREM,~YZYGIES PROBLEM 

References 
Hilbert, D. ‘%ber die Theorie der algebraischen Formen.” 

Math. Ann. 36, 473-534, 1890. 
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in Encyclopedic Dictionary of Mathematics. Cambridge, 
MA: MIT Press, p. 1140, 1980. 

Szilassi Polyhedron 

J 

A POLYHEDRON which is topologically equivalent to a 
TORUS and for which every pair of faces has an EDGE in 
common. This polyhedron was discovered by L. Szilassi 
in 1977. Its SKELETON is equivalent to the seven-color 
torus map illustrated below. 



Szpiro ‘s Conjec t we 

The Szilassi polyhedron has 14 VERTICES, seven faces, 
and 21 EDGES, and is the DUAL POLYHEDRON of the 
CS~ZAR POLYHEDRON. 

see also CS~ZAR POLYHEDRON, TOROIDAL POLYHE- 
DRON 

References 
Eppstein, D. “Polyhedra and Polytopes.” http: //uwu. its , 

uci.edu/-eppstein/junkyard/polytope.html+ 
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Sapiro’s Conjecture 
A conjecture which relates the minimal DISCRIMINANT 
of an ELLIPTIC CURVE to the CONDUCTOR. If true, it 
would imply FERMAT'S LAST THEOREM for sufficiently 
large exponents. 

see also CONDUCTOR, DISCRIMINANT (ELLIPTIC 
CURVE), ELLIPTIC CURVE 
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Tacnode T 
&Distribution 

see STUDENT'S ~-DISTRIBUTION 

T-Polyomino 

73elsrT 

The order 72 T-polyomino consists of a vertical line of 
n - 3 squares capped by a horizontal line of three squares 
centered on the line. 

see also L-POLYOMINO, SKEW POLYOMINO, SQUARE 

POLYOMINO, STRAIGHT POLYOMINO 

T-Puzzle 

The DISSECTION of the four pieces shown at left into the 
capital letter “T” shown at right. 

see also DISSECTION 

References 
Pappas, T. “The T Problem.” The Joy of IMathematics. 

San Carlos, CA: Wide World Publ./Tetra, pp. 35 and 230, 
1989. 

T2-Separation Axiom 
Finite SUBSETS are CLOSED. 

see also CLOSURE 

Tableau 

see YOUNG TABLEAU 

Tabu Search 
A heuristic procedure which has proven efficient at solv- 
ing COMBINATORIAL optimization problems. 

References 
Glover, F.; Taillard, E.; and De Werra, D. “A User’s Guide 

to Tabu Search.” Ann. Oper. Res. 41, 3-28, 1993+ 
Piwakowski, K. “Applying Tabu Search to Determine New 
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volume3.html#R6. 

A DOUBLE PRINT at which two OSCULATING CURVES 
are tangent. The above plot shows the tacnode of the 
curve 2a4 - 3z2y+ y2 - 2y3 +y4 = 0. The LINKS CURVE 
also has a tacnode at the origin. 

SE &O ACNODE, CRUNODE, DOUBLE POINT SPINODE 

References 
Walker, R. J. Algebraic Curves. New York: Springer-Verlag, 

pp. 57-58, 1978. 

Tacpoint 
A tangent point of two similar curves. 

Tactix 

see NIM 

Tail Probability 
Define T as the set of all points I! with probabilities 
P(X) such that a > t I P(a < x < a + da) < PO 
or a < t += P(a 5 x 5 a + & < PO, where PO is 
a POINT PROBABILITY (often, the likelihood of an ob- 
served event). Then the associated tail probability is 
given by s, P(x) dx. 

see also P-VALUE, POINT PROBABILITY 

Tait Coloring 
A 3-coloring of GRAPH EDGES so that no two EDGES 

of the same color meet at a VERTEX (Ball and Coxeter 
1987, pp. 265-266). 

see also EDGE (GRAPH), TAIT CYCLE, VERTEX 
(GRAPH) 

References 
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recre- 

ations and Essays, 13th ed. New York: Dover, 1987. 

Tait Cycle 
A set of circuits going along the EDGES of a GRAPH, 
each with an EVEN number of EDGES, such that just 
one of the circuits passes through each VERTEX (Ball 
and Coxeter 1987, pp. 265-266). 

~~~UZSOEDGE(GRAPH),EULERIAN CYCLE,HAMILTON- 
IAN CYCLE, TAIT COLORING,VERTEX (GRAPH) 

References 
Ball, W. W. R. and Coxeter, H, S. M. Mathematical Recre- 

ations and Essays, 13th ed. New York: Dover, 1987. 

Tait Flyping Conjecture 

see FLYPING CONJECTURE 



1780 Tai t ‘s Hamiltonian Graph Conjecture Talisman Hexagon 

Tait’s Hamiltonian Graph Conjecture 
Every 3-connected cubic GRAPH (each VERTEX has VA- 
LENCY 3) has a HAMILTONIAN CIRCUIT. Proposed by 
Tait in 1880 and refuted by W. T. Butte in 1946 with a 
counterexample, TUTTE'S GRAPH. If it had been true, 
it would have implied the FOUR-COLOR THEOREM. A 
simpler counterexample was later given by Kozyrev and 
Grinberg. 

References 
Gabriel, R. P. Performance and Implementation of Lisp Sys- 
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Knuth, D. E. Textbook Examples of Recursion. Preprint 

1990. 
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see UZSU HAMILTONIAN CIRCUIT, TUTTE’S GRAPH, 

VERTEX (GRAPH) 
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Math. Assoc. Amer., pp. 82-89, 1973. 

Takagi fiactal Curve 

see BLANCMANGE FUNCTION 

Take-Away Game 

see NIM-HEAP 

Tait’s Knot Conjectures 
P. G. Tait undertook a study of KNOTS in response to 
Kelvin’s conjecture that the atoms were composed of 
knotted vortex tubes of ether (Thomson 1869). He cat- 
egorized KNOTS in terms of the number of crossings in a 
plane projection. He also made some conjectures which 
remained unproven until the discovery of JONES POLY- 
NOMIALS. 

Takeuchi Function 

see TAK FUNCTION 

Talbot’s Curve 

Tait’s FLYPING CONJECTURE states that the number of 
crossings is the same for any diagram of an ALTERNAT- 
ING KNOT. This was proved true in 1986. 

see also ALTERNATING KNOT, FI;YPING CONJECTURE, 

JONES POLYNOMIAL, KNOT 

References 
Tait, P. G. “On Knots I, II, III.” Scientific Papers, Vol. 1, 

London: Cambridge University Press, pp. 273-347, 1900. 
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Edinburgh 25, 217-260, 1869. 

A curve investigated by Talbot which is the NEGATIVE 

PEDAL CURVE of an ELLIPSE with respect to its center. 
It has four CUSPS and two NODES, provided the EC- 
CENTRICITY of the ELLIPSE is greater than l/a. Its 
CARTESIAN EQUATION is 

2= 
(a2 + f2 sin2 t) cos t 

y= a2 ( - 2f” + f2 sin2 t) sin t 
b 

1 

TAK F’unct ion where f is a constant. 
A RECURSIVE FUNCTION devised by I. Takeuchi. For 
INTEGERS 2, y, and x, and a function h, it is 

References 

TAKh(x, $h x> 

- - 

i 

h(x, Y, 4 for x < y 

h(h(z-l,y,x),h(y-1,2,x), fora:>y. 

h(z - 17 x7 Y>> 

Lockwood, E. H. A Book of Curves. Cambridge, England: 
Cambridge University Press, p. 157, 1967. 

MacTutor History of Mathematics Archive. “Talbot ‘s 
Curve.” http://www-groups,dcs.st-and.ac.uk/-history 
/Curves/Talbots.html. 

Talisman Hexagon 

The number of function calls & (a, b) required to com- 
pute TAK&, b, 0) for a > b > 0 is 

The TAK function is also connected with the BALLOT 
PROBLEM (Vardi 1991). 

see &~ACKERMANN FWNCTION,BALLOT PROBLEM 
An (n, k)-talisman hexagonan arrangement of nested 
hexagons containing the integers 1, 2, l  . . , Hn = 3n(n- 

a 
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1) + 1, where I& is the nth HEX NUMBER, such that 
the difference between all adjacent hexagons is at least 
as large as k. The hexagon illustrated above is a (3, 
5)-talisman hexagon. 

see also HEX NUMBER, MAGIC SQUARE, TALISMAN 

SQUARE 

tame, but a 4-D 4-ASSOCIATIVE algebra and a 3-D l- 
ASSOCIATIVE algebra need not be tame. It is conjec- 
tured that a 3-D &ASSOCIATIVE algebra is tame, and 
proven that a 3-D %ASSOCIATIVE algebra is tame if it 
possesses a multiplicative IDENTITY ELEMENT. 

References 

References 
Madachy, J. S. Madachy’s Mathematical Recreations. New 

York: Dover, pp. 111412, 1979. 

Finch, S+ “Zero Structures in Real Algebras.” http: //www, 
mathsoft.com/asolve/zerodiv/zerodiv.htmL 

Talisman Square 

An n x n ARRAY of the integers from 1 to n2 such that 
the difference between any one integer and its neighbor 
(horizontally, vertically, or diagonally, without wrapping 
around) is greater than or equal to some value k is called 
a (n, k)-talisman square. The above illustrations show 

(4, 2)-, (4, 3)-, (5, 4)-, and (6, 8)-talisman squares. 

see also ANTIMAGIC SQUARE, HETEROSQUARE, MAGIC 
SQUARE, TALISMAN HEXAGON 
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Tame Algebra 
Let A denote an R-algebra, so that A is a VECTOR 

SPACE over R and 

AxA+A 

(wd * x ’ Y, 

where x l  y is vector multiplication which is assumed to 
be BILINEAR. Now define 

2’ E {x E a : x m y = 0 for some nonzero y E A}, 

where 0 E 2. A is said to be tame if 2 is a finite union 
of SUBSPACES of A. A 2-D O-ASSOCIATIVE algebra is 

Tame Knot 
A KNOT equivalent to a POLYGONAL KNOT. Knots 
which are not tame are called WILD KNOTS. 

References 
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or 

Perish Press, p. 49, 1976. 

Tangency Theorem 
The external (internal) SIMILARITY POINT of two fixed 
CIRCLES is the point at which all the CIRCLES homoge- 

neously (nonhomogeneously) tangent to the fixed CIR- 

CLES have the same POWER and at which all the tan- 
gency secants intersect. 

References 
Dijrrie, H. 100 Great Problems of Elementary Mathematics: 
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Tangent 

Re[Tan 21 
Im[Tan z] 

ITan z] 

0.0 1: 
-0.0 0: 

[zl [zl 

The tangent function is defined by 

(1) 

where sin x is the SINE function and cos x is the COSINE 

function. The word “tangent,” however, also has an 
important related meaning as a LINE or PLANE which 
touches a given curve or solid at a single point. These 
geometrical objects are then called a TANGENT LINE or 

TANGENT PLANE, respectively. 
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The MACLAURIN SERIES for the tangent function is 

tanx = - >: 
( 1) n-122n(22n - l)&, 2n-1 + 

(2 > n! 
X l  l  1  

= x + ix3 + &x5 + &x7 + &x9 +. . .) (2) 

where B, is a BERNOULLI NUMBER. 

tanz is IRRATIONAL for any RATIONAL x # 0, which can 
be proved by writing tan=r: as a CONTINUED FRACTION 

tana: = 
X 

. 

l- 
X2 

3- 
X2 

--i 

(3) 

Lambert derived another CONTINUED FRACTION ex- 
pression for the tangent, 

tanx = 
' 1 1 -- 

x 3 1 --- 
x5 1 --- 

x 7 - -... 
X 

(4 

An interesting identity involving the PRODUCT of tan- 
gents is 

liniii/zj tan (F) = { 1” for n odd 
for n even, 

k=l 

(5) 

where 1x1 is the FLOOR FUNCTION* Another tangent 
identity is 

1 (1 fix)” - (l- ix)” 
tan(n tan-l 2) = - 

i (1+ ix), + (1 - ix), 
(6) 

(Beeler et al. 1972, Item 16). 

see also ALTERNATING PERMUTATION, COSINE, Co- 
TANGENT, INVERSE TANGENT, MORRIE’S LAW, SINE, 
TANGENT LINE, TANGENT PLANE 
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Tangent Line 

Tangent Bundle 
The tangent bundle TM of a SMOOTH MANIFOLD A4 
is the SPACE of TANGENT VECTORS to points in the 
manifold, i.e., it is the set (z,v) where x E M and v is 
tangent to x E M. For example, the tangent bundle to 
the CIRCLE is the CYLINDER. 

see &O COTANGENT BUNDLE, TANGENT VECTOR 

Tangent Developable 
A RULED SURFACE A.4 is a tangent developable of a 
curve y if i&Z can be parameterized by x(u, v) = y(u) + 
WY’(U). A tangent developable is a FLAT SURFACE. 

see ~2~0 BIN~RMAL DEVELOPABLE, NORMAL DEVEL- 
OPABLE 
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Gray, A. Modern Differential Geometry of Curves and Sur- 
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Tangent Hyperbolas Method 

see HALLEY'S METHOD 

Tangent Indicatrix 
Let the SPEED o of a closed curve on the unit sphere 
S2 never vanish. Then the tangent indicatrix 

. 
TE $ 

I I 

is another closed curve on S2. It is sometimes called the 
TANTRIX. If c IMMERSES in S2, then so wills 

References 
Solomon, B. “Tantrices of Spherical Curves.” Amer. Math. 

Monthly 103, 30-39, 1996. 

Tangent Line 

tangent line 

fi&e 

A tangent line is a LINE which meets a given curve at a 
single POINT. 

see also CIRCLE TANGENTS, SECANT LINE, TANGENT, 
TANGENTPLANE,TANGENTSPACE,TANGENTVECTOR 
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Their Properties. Ann Arbor, MI: J* W. Edwards, pp. 119- 
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Tangent Bifurcation 

see FOLD BIFURCATION 
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If f : M -+ IV, then the tangent map Tf associated to 
f isa VECTORBUNDLEHOMEOMORPHISMT~: TM-+ 
ZYV (i.e., a MAP between the TANGENT BUNDLES of A4 

and N respectively). The tangent map corresponds to 
DIFFERENTIATION by the formula 

Tangent Map Tangent Space 
Let x be a point in an n-dimensional COMPACT MANI- 
FOLD M, and attach at II: a copy of IFS” tangential to M. 
The resulting structure is called the TANGENT SPACE 
of M at 3: and is denoted T&f. If y is a smooth curve 
passing through X, then the derivative of y at II: is a 
VECTOR inT,M. 

see also TANGENT, TANGENT BUNDLE, TANGENT 
PLANE,TANGENT VECTOR 

where 4’(O) = 21 (i.e., 4 is a curve passing through the 
base point to 21 in TM at time 0 with velocity w). In 
this case, if f : M --+ Iv and g : IV -+ 0, then the CHAIN 

RULE is expressed as 

Tangent Vector 
For a curve with POSITION VECTOR r(t), the unit tan- 
gent vector ?(t) is defined by 

T(fog) = Tf oTg. (2) 
(1) 

In other words, with this way of formalizing differenti- 
ation, the CHAIN RULE can be remembered by saying 
that “the process of taking the tangent map of a map is 
functorial.” To a topologist, the form 

dr 
+ 

2 

dr - -- 
ds’ 

(2) 

(3) 

(f O 9>‘(a) = f’(s(a>> O 9Wl (3) 
where i is a parameterization variable 
ARC LENG ,TH l  For a function given 

and s is the 
parametrically for all 

CHAIN 

a, is more intuitive than the usual form of the 
by (f(t),g(t)), the tangent vector relative to the point 
(f(t),g(t)) is therefore given by see also DIFFEOMORPI~I~M 

References 
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Press, pp, 168-171, 1993. 

f 
x(t) = J&2 

I@) = &- 

(4) 

(5) 
Tangent Number 
A number also called a ZAG NUMBER giving the number 
of EVEN ALTERNATING PERMUTATIONS. The first few 
are 1, 2, 16, 272, 7936, . . . (Sloane’s A000182). 

see also ALTERNATING PERMUTATION, EULER ZIGZAG 
NUMBER, SECANT NUMBER 

To actually place the vector tangent to the curve, it must 
be displaced by (f(t), g(t)). It is also true that 

d+ 

ds 
= EEh (6) 

(7) 
References 
Knuth, D. E. and Buckholtz, T. 3. “Computation of Tangent, 

Euler, and Bernoulli Numbers.” Math. Cornput. 21, 663- 
688,1967. 

Sloane, N. J. A. Sequence AOOO182/M2096 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

(8) 

where 
and r 

N is the NORMAL 

the TORSION. 
VECTOR, K is the CURVATURE, 

Tangent Plane 
A tangent plane is a PLANE which meets a given SUR- 

FACE at a single POINT. Let (x0, yo) be any point of a 
surface function 2 = f(s, y). The surface has a nonver- 
tical tangent plane at (~0, ~0) with equation 

see also CURVATURE, NORMAL VECTOR, 
TANGEN T BUNDLE, TANGENT PLANE, 

TANGENT, 
TANGENT 

SPACE, TORSION (DIFFERENTIAL GEOMETRY) 

References 
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2 = f(xo,yo) + f&o,Yo)(~ - x0) + fdXO~YdY - yd 

see UESO NORMAL VECTOR, TANGENT, TANGENT LINE, 
TANGENT SPACE,TANGENTVECTOR 
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Tangential Angle 
For a PLANE CURVE, the tangential angle 4 is defined 

bY 
P@ = ds, (1) 

where s is the ARC LENGTH and P is the RADIUS OF 
CURVATURE. The tangential angle is therefore given bY 

where I is the CURVATURE. For a plane curve r(t), 

the tangential angle 6(t) can also be defined bY 

s 

t 
4 - - s’(t)tc(t) dt, (2) 

0 

rf (t> COSWI 
- = sin[$(t)] * Ir’(t) I [ 1 (3) 

Gray (1993) calls $ the TURNING ANGLE instead of the 
tangential angle. 

seeaZsoA~~ LENGTH, CURVATURE,~LANE CURVE, RA- 

DIUS OF CURVATURE,TORSION (DIFFERENTIAL GEOM- 
ETRY) 
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Tangent ial Triangle 

TRILINEAR COORDINATES of the VERTICES of the tan- 
gential triangle are 

A’ = -a:b:c 

B’ = a : 4: c 

c’ = a : b : -cc. 

Tangential Triangle Circumcenter 
A POINT with TRIANGLE CENTER FUNCTION 

CY = up2 cos(2B) + c2 cos(2C) - a2 cos(2A)]. 

It lies on the EULER LINE. 

Heferences 
Kimberling, C. “Central Points and Central Lines in the 

Plane of a Triangle.” Math. Msg. 67, 163-187, 1994. 

Tangents Law 

seeLAw OF TANGENTS 

Tangle 

A region in a KNOT or LINK projection plane surrounded 
by a CIRCLE such that the KNOT or LINK crosses the 
circle exactly four times. Two tangles are equivalent if a 
sequence of REIDEMEISTER MOVES can be used to trans- 
form one into the other while keeping the four string 
endpoints fixed and not allowing strings to pass outside 
the CIRCLE. 

The simplest tangles are the m-tangle and O-tangle, 
shown above. A tangle with n left-handed twists is 
called an n-tangle, and one with n right-handed twists 
is called a -n-tangle. By placing tangles side by side, 
more complicated tangles can be built up such as (-2, 3, 
Z), etc. The link created by connecting the ends of the 
tangles is now described by the sequence of tangle sym- 
bols, known as CONWAY'S KNOT NOTATION. If tangles 
are multiplied by 0 and then added, the resulting tangle 
symbols are separated by commas. Additional symbols 
which are used are the period, colon, and asterisk. 

Amazingly enough, two tangles described in this NOTA- 
TION are equivalent IFF the CONTINUED FRACTIONS of 
the form 

1 
2+- 

1 
3+- 

-2 

are equal (Burde and Zieschang 1985)! An ALGEBRAIC 
TANGLE is any tangle obtained by ADDITIONS and MUL- 
TIPLICATIONS of rational tangles (Adams 1994). Not all 
tangles are ALGEBRAIC. 

see also ALGEBRAIC LINK, FLYPE, PRETZEL KNOT 
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The CONTACT TRIANGLE and tangential triangle are 
perspective from the GERGONNE POINT. 

see aho CIRCUMCIRCLE, CONTACT TRIANGLE, 
GONNE POINT,PEDAL TRIANGLE, PERSPECTIVE 

GER- 
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Tanglecube 

A QUARTIC SURFACE given by the implicit equation 

x4 - 5x2 + y4 - 5y2 + x4 - 5z2 + 11.8 = 0. 

References 
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Tangled Hierarchy 
A system in which a STRANGE LOOP appears. 

see also STRANGE LOOP 
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Tangram 

\ 

1 

/ 

- 
42 

/ 

A combination of the above plane polygonal pieces sucn 

that the EDGES are coincident. There are 13 convex 

tangrams (where a “convex tangram” is a set of tangram 

pieces arranged into a CONVEX POLYGON). 
see also ORIGAMI, STOMACHION 
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Tanh 

~~~HYPERBOLIC TANGENT 

Taniyama Conjecture 

see TANIYAMA-SHIMURA CONJECTURE 

Taniyama-Shimura Conjecture 
A conjecture which arose from several problems pro- 

posed by Taniyama in an international mathematics 

symposium in 1955. Let E be an ELLIPTIC CURVE 
whose equation has INTEGER COEFFICIENTS, let N be 

the CONDUCTOR of E and, for each 72, let a, be the num- 

ber appearing in the L-function of E. Then there exists 

a MODULAR FORM of weight two and level Iv which is 

an eigenform under the HECKE OPERATORS and has a 

FOURIER SERIES && 

The conjecture says, in effect, that every rational ELLIP- 
TIC CURVE is a MODULAR FORM in disguise. Stated for- 

mally, the conjecture suggests that, for every ELLIPTIC 
CURVE y2 = Ax3 +Bz2 +CX+ D over the RATIONALS, 
there exist nonconstant MOKKAR FUNCTIONS f(x) and 

g(z) of the same level N such that 

[ml2 = 4dz)l2 + Cd4 + D- 

Equivalently, for every ELLIPTIC CURVE, there is a 

MODULAR FORM with the same DIRICHLET L-SERIES. 

In 1985, starting with a fictitious solution to FERMAT'S 
LAST THEOREM, G. Frey showed that he could create 

an unusual ELLIPTIC CURVE which appeared not to be 

modular. If the curve were not modular, then this would 

showthatif FERMAT'S LAST THEOREM were false,then 

the Taniyama-Shimura conjecture would also be false. 

Furthermore, if the Taniyama-Shimura conjecture were 

true,then so would be FERMAT'S LAST THEOREM! 

However, Frey did not actually prove whether his curve 

was modular. The conjecture that Frey’s curve was 

modular came to be called the “epsilon conjecture,” and 

was quickly proved by Ribet (RIBET'S THEOREM) in 

1986, establishing a very close link between two math- 

ematical structures (the Taniyama-Shimura conjecture 

and FERMAT'S LAST THEOREM) which appeared previ- 

ously to be completely unrelated. 

As of the early 199Os, most mathematicians believed 

that the Taniyama-Shimura conjecture was not accessi- 

ble to proof, However, A. Wiles was not one of these. He 

attempted to establish the correspondence between the 

set of ELLIPTIC CURVES and the set of modular elliptic 

curves by showing that the number of each was the same. 

Wiles accomplished this by “counting” Galois represen- 

tations and comparing them with the number of mod- 

ular forms. In 1993, after a monumental seven-year ef- 

fort, Wiles (almost) proved the Taniyama-Shimura con- 

jecture for special classes of curves called SEMISTABLE 
ELLIPTIC CURVES. 
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Wiles had tried to use horizontal Iwasawa theory to cre- 
ate a so-called CLANS NUMBER formula, but was initially 
unsuccessful and therefore used instead an extension of 
a result of Flach based on ideas from Kolyvagin. How- 
ever, there was a problem with this extension which 
was discovered during review of Wiles’ manuscript in 
September 1993. Former student Richard Taylor came 
to Princeton in early 1994 to help Wiles patch up this 
error. After additional effort, Wiles discovered the rea- 
son that the Flach/Kolyvagin approach was failing, and 
also discovered that it was precisely what had prevented 
Iwasawa theory from working. 

With this additional insight, he was able to success- 
fully complete the erroneous portion of the proof us- 
ing Iwasawa theory, proving the SEMISTABLE case of the 
Taniyama-Shimura conjecture (Taylor and Wiles 1995, 
Wiles 1995) and, at the same time, establishing FER- 

MAT'S LAST THEOREM as atruetheorem. 

see also ELLIPTIC CURVE, FERMAT'S LAST THEOREM, 

MODULAR FORM,MODULAR FUNCTION, RIBET’S THE- 
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Tank 

see CYLINDRICAL SEGMENT 

Tantrix 

see TANGENT INDICATRIX 

Tapering Function 

see APODIZATION FUNCTION 

Tarry-Escott Problem 
For each POSITIVE INTEGER I, there exists a P~NTIVE 
INTEGER n and a PARTITION of {l, l  . . , n} as a disjoint 
union of two sets A and B, such that for 1 5 i < I, 

The results extended to three or more sets of INTEGERS 
are called PROUHET'S PROBL EM. 

see also PROUHET'S PROBLEM 
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Tarry Point 
The point at which the lines through the VERTICES of a 
TRIANGLE PERPENDICULAR to the corresponding sides 
of the first BROCARD TRIANGLE, are CONCURRENT. 
The Tarry point lies on the CIRCUMCIRCLE opposite the 
STEINER POINT. It has TRIANGLE CENTER FUNCTION 

Q(= 
b4 + c4 - a2b2 - u2c2 

= sec(A + w), 
bc 

where w is the BROCARO ANGLE. The SIMSON LINE 
of the Tarry point is PERPENDICULAR to the line OK, 
when 0 is the CIRCUMCENTER and K is the LEMOINE 
POINT. 

see also BROCARD ANGLE,BROCARD TRIANGLES, CIR- 
CUMCIRCLE, LEMOINE POINT, SIMSON LINE, STEINER 
POINTS 
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Tarski’s Theorem 
Tarski’s theorem states that the first-order theory of the 
FIELD of REAL NUMBERS is DECIDABLE. However, the 
best-known ALGORITHM for eliminating QUANTIFIERS 
is doubly exponential in the number of QUANTIFIER 
blocks (Heintz et al. 1989). 
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Tau Conjecture 
Alsoknownas RAMANUJAN'S HYPOTHESIS. Ramanujan 
proposed that 

r(n) N O(7P2+‘), 

where -r(n) is the TAU FUNCTION, defined by 

- c ) -r(n zn = 2(1- 3x + 5x3 - 7x6 + l  . .)&* 

n=l 

This was proven by Deligne (1974), who was subse- 
quently awarded the FIELDS MEDAL for his proof. 

see also TAU FUNCTION 
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then 
r(pn) E 0 (mod p). (7) 

Values of p for which the first equation holds are p = 2, 
3, 5, 7, 23. 

Ramanuj an also studied Tau-Dirichlet Series 

f(x) E TT(n)ri’, (8) 
n= 1 

where T(n) is the TAU FUNCTION. Ramanujan conjec- 
tured that all nontrivial zeros of f(z) lie on the line 
R[s] = 6, where 

which has properties analogous to the RIEMANN ZETA 
FUNCTION. It satisfies 

f WY4 - - f@ - 4 
(2 > T s - &)12-s ' (9) 

and Ramanujan’s TAU-DIRICHLET SERIES conjecture al- 
leges that all nontrivial zeros of f(s) lie on the line 
!FZ[s] = 6. f can be split up into 

and T(n) is the TAU FUNCTION. 
see also TAW FUNCTION 

f(6 + it) = z(t)?@‘, (10) References 
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ries.” Math. Cornput. 27, 379-385, 1973, 
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Line.” J. Ramanujan Math. Sot. 3, 87-95, 1988. 

where 

z(t) = r(6 + it)f(6 + it)(2r)-it 

J sinh(&) 

’ rt(l+t2)(4+t2)(9+t2)(16+t2)(25+t2) (11) 

W) 
r(6 + it) - - -+iln ~ [ 1 r(6 - it) - t ln(24. (12) 

Tau Function 
A function r(n) related to the DIVISOR FUNCTION 
ok(n), also sometimes called RAMANUJAN'S TAU FUNC- 
TION. It is given by the GENERATING FUNCTION 

xr(n)xn = n(l- xn)24, (1) 
a-b=1 n=l 

The SUMMATORY tau function is given by 

T(n) = x%(n). (13) 
7222 

and the first few values are 1, -24, 252, -1472, 4380, 
. . . (Sloane’s AOOOXM). r(n) is also given by 

g(-2) = T(--l)“r(n)x” (2) 

Here, the prime indicates that when x is an INTEGER, 
the last term ~(2) should be replaced by $~(x). 

Ramanujan’s tau theta function Z(t) is a REAL function 
for REAL t and is analogous to the RIEMANN-SIEGEL 
FUNCTION 2. The number of zeros in the critical strip 
from t = 0 to T is given by 

9(x2) = j-q7($n)xn (3) 
n=l 

00 

c 
r(n)xn = x(1 - 3x + 5x3 - 7x” + . . .)“. (4) 

n=l 

where 0 is the RIEMANN THETA FUNCTION and~Dsis 
the TAU-DIRICHLET SERIES, defined by 

In ORE'S CONJECTURE, the tau function appears as the 
number of DIVISORS of n. Ramanujan conjectured and 
Mordell proved that if (n, n’), then 

(15) r(nd) = r(n)r(n’>. (5) 

Ramanujan conjectured and Watson proved that r(n) is 
divisible by 691 for almost all n. If 

Ramanujan conjectured that the nontrivial zeros of the 
function are all real. 

(6) 
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Ramanujan’s 7z function is defined by 

TX(t) = 
I36 + it)(2,)+ 

~(6 + it) 

where T&Z) is the TAU-DIRICHLET SERIES. 

see UZSO ORE’S CONJECTURE, TAU CONJECTURE, TAU- 
DIRICHLET SERIES 
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Tauberian Theorem so 

A Tauberian theorem is a theorem which deduces the 
convergence of an INFINITE SERIES on the basis of the 
properties of the function it defines and any kind of aux- 
iliary HYPOTHESIS which prevents the general term of 
the series from converging to zero too slowly. 

see UZSO HARDY-LITTLEWOOD TAUBERIAN THEOREM 

Tautochrone Problem 
Find the curve down which a bead placed anywhere will 
fall to the bottom in the same amount of time. The solu- 
tion is a CYCLOID, a fact first discovered and published 
by Huygens in Horologium oscillatorium (1673). Huy- 
gens also constructed the first pendulum clock with a 
device to ensure that the pendulum was isochronous by 
forcing the pendulum to swing in an arc of a CYCLOID. 

The parametric equations of the CYCLOID are 

X = a(0 - sin 0) (1) 

Y = a(1 -y cod). (2) 

To see that the CYCLOID satisfies the tautochrone prop- 
erty, consider the derivatives 

x’ = a(1 - cos 0) (3) 
yt = a sin 8, (4) 

and 

xt2 + y 
I2 = a2 [ (1 - 2 cos 8 + cos2 0) + sin2 O] 

= 2a2(1 - cod). (5) 

Now 
$nzv2 = WIY (6) 

ds 
dt d- QY (7) 

ds 

dt=zz= 

ddx2 + dy2 

d% 

_ ad-d0 - - 
J 

ado 

J2ga(l - cos e> - 9 ’ 
(8) 

so the time required to travel from the top of the CY- 
CLOID to the bottom is 

However, from an intermediate point 80, 

(9) 

(10) 

s x 
T= 

d2a2(1 - COSO) 

B. 2ug(cos 80 - cos e> 
de 

(11) 

Now let 

cos( ;e> a=- 
cos( po> (12) 

du _ -sin($ 
- 

2 cos(&) ’ 
(13) 

so 

- = 
2a --1 

J 
- sin 
9 

I 
a 

u]&r -, 
J g 

(14 
and the amount of time is the same from any point! 

see UZSO BRACHISTOCHRONE PROBLEM, CYCLOID 
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Tautology 
A logical statement in which the conclusion is equivalent 
to the premise. If p is a tautology, it is written + p. 

21 - - 
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Taxicab Number 
The nth taxicab number Ta(n) is the smallest num- 
ber representable in n ways as a sum of POSITIVE 
CUBES. The numbers derive their name from the 
HARDY-RAMANUJAN NUMBER 

T42) = 1729 

= l3 + 123 

= g3 + 103, (1) 

which is associated with the following story told about 
Ramanujan by G. H. Hardy. “Once, in the taxi from 
London, Hardy noticed its number, 1729. He must have 
thought about it a little because he entered the room 
where Ramanujan lay in bed and, with scarcely a hello, 
blurted out his disappointment with it. It was, he de- 
clared, ‘rather a dull number,’ adding that he hoped that 
wasn’t a bad omen. ‘No, Hardy,’ said Ramanujan, ‘it is 
a very interesting number. It is the smallest number 
expressible as the sum of two [POSITIVE] cubes in two 
different ways”’ (Hofstadter 1989, Kanigel 1991, Snow 
1993). 

However, this property was also known as early as 1657 
by F. de I3essy (Berndt and Bhargava 1993, Guy 1994). 
Leech (1957) found 

Ta(3) = 87539319 

= 1673 + 4363 

= 22g3 +4233 

= 2553 +414". (2) 

Rosenstiel et al. (1991) recently found 

W4) = 6963472309248 

= 24213 + 190833 

= 54363 + 1894g3 

= 102003 + 18O723 

= 133223 +166303. (3) 

D. Wilson found 

T45) -48988659276962496 

= 387873 +3657573 

=10?83g3 +3627533 

= 2052923 + 3429523 

= 2214243 +336588" 

= 23151g3 + 3319543. (4) 

The first few taxicab numbers are therefore 2, 1729, 
87539319, 6963472309248, . . . (Sloane’s A011541). 

Hardy and Wright (Theorem 412, 1979) show that the 
number of such sums can be made arbitrarily large but, 
updating Guy (1994) with Wilson’s result, the least ex- 
ample is not known for six or more equal sums. 

Sloane defines a slightly different type of taxicab num- 
bers, namely numbers which are sums of two cubes in 
two or more ways, the first few of which are 1729, 4104, 
13832, 20683, 32832, 39312, 40033, 46683, 64232, . . . 
(Sloane’s A001235). 

see &O DIOPHANTINE EQUATION-CUBIC, HARDY- 
RAMANUJAN NUMBER 
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Taylor Center 
The center of the TAYLOR CIRCLE, which is the SPIEKER 

CENTER of AHI&&, where I& are the ALTITUDES. 

References 
Johnson, R. A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton MifEn, p. 277, 1929. 

Taylor Circle 
From the feet of each 
lines PERPENDICULAR 

ALTITUDE of a TRIANGLE, draw 
to the adjacent sides. Then the 

feet of these perpendiculars 
TAYLOR CIRCLE. 

see also TUCKER CIRCLES 

lie on a CIRCLE called the 

References 
Johnson, R. A. Modern Geometry: An Elementary Treatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton Mifflin, p. 277, 1929. 
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Taylor’s Condition 
1 1 2 

l * a l a 

n=2 n=3 

4 

n=4 

For a given POSITIVE INTEGER 12, does there exist a 
WEIGHTED TREE with n VERTICES whose paths have 
weights 1, 2, . . . , (t), where (y) is a BINOMIAL CLEF- 
FICIENT? Taylor showed that no such TREE can exist 
unless it is a PERFECT SQUARE or a PERFECT SQUARE 
plus 2. No such TREES are known except n = 2, 3, 4, 

and 6. 

see ~SO GOLOMB RULER, PERFECT DIFFERENCE SET 
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Taylor Expansion 
see TAYLOR SERIES 

Taylor-Greene-Chirikov Map 

SUBSTANDARD MAP 

Taylor Polynomial 
see TAYLOR SERIES 

Taylor Series 
A Taylor series is a series expansion of a FUNCTION 
about a point. A 1-D Taylor series is an expansion of a 
SCALAR FUNCTION f(z) about a point II: = a. If a = 0, 
the expansion is known as a MACLAURIN SERIES. 

s x f’“‘(x) dx = [f’“-l’(x)]: = f-)(x) - f(n-1)(a) 
a 

(1) 

IX [L;yx)dx] dx = ~x,f(“-l)(x)-f(n-l)(~),dx 
- “-“j(x) - f’“-“‘(a) - (x - a)f(“-‘)(a). (2) 

Continuing, 

sss 

X 

f(“)(x) (dx)3 = f’“-3’(a) - (x - a)f(“-2)(a) 

a 

s s . . l  x f’“‘(x) (dx)” = f (4 - f (4 - (x - Mb> 

u 
n 

l (x-a)2f"(a)-..* -- 
2! - &(x-a) n-lf(n-l+z). (4) 

Therefore, we obtain the 1-D Taylor series 

f (5) = f(a) + (2 - a)f’(a) + $(x - a)2ft’(a) + . l  w 

f&y&” - a> 
“-lf(“-l+) + R 

nt (5) 

where Rn is a remainder term defined by 

R, = 

s  s  

l  -m x f(“)(x) (dx)” 1 

d 
n 

(6) 

Using the MEAN-VALUE THEOREM for a function g, it 
must be true that 

s 

X 

g(x) dx = (x - a)g(x*) (7) 
a 

for some x* E [a, x]. Therefore, integrating n times gives 
the result 

( R, = + dn f yx>* (8) . 

The maximum error is then the maximum value of (8) 
for all possible x* E [a, z]. 

An alternative form of the 1-D Taylor series may be 
obtained by letting 

x-a=nx (9) 

so that 
X =a+Axsxo+Ax. w  

Substitute this result into (5) to give 

f (x0 + Ax) = f (X0) + nzf’(xo) + @x)“f”(xo) + l  l  ” 

(11) 

A Taylor series of a FUNCTION in two variables f(x, y) 

is given by 

f(x + Ax, y + Ay) = f(x, Y) + [f&Y YW + fdx7 YWYI 

+$[(Ax)2fxx(x, Y) + 2AXAYfx,(X, Y) + (AY)2fYY(x?Y)l 

+$[(Ax)3fxxx(x, y) + 3(ax)2Ayfxx&, Y> 

+3Ax(Ay)2fx,,(x,y) + (Ay)3fyyy(~, v)] + l  l  + l  (12) 

This can be further generalized for a FUNCTION in n 
variables, 

= 

1 -- 
2! It:- ( g2 f’“-“(a) (3) 
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Rewriting, Taylor series can also be defined for functions of a COM- 
PLEX variable. By the CAUCHY INTEGRAL FORMULA, 

f(xl +al,...,x, +a,) 

Taking n, = 2 in (13) gives 00 
f(wx2) = 

1 a [ jI 
( 2'1 - 

d 
"')W 

j=O 
1 

d j 
+(xL - a2)- 

a,; 
1 I 

f(s’l,4) 
x;= 21 ,x; =x2 

- - f(a142)+ [ 
af af 

(Xl -al)= +(x2 - a2)G 
1 1 

1 
+g 

[ 

2 a"f 
2 

. 
(xl -al) dz 12 +2( 

af 
XI - al)(x2 - a2)- 

axlax 

+(x2 -2) 
2 a”f 

- ax22 +--*. 1 (15) 
Taking n = 3 in (14) gives 

f(xl + al,%2 +a2123 + a3) 00 1 
x{ ( 

d d a j - - 
j=O 

j! a1 ax; - $-Qdzj, +@dx$ 
> 

xf(xL& 4) 
1 

f (16) 

I x;= x~,x~=x~,xg=x~ 

or, in VECTOR form 

(17 

The zeroth- and first-order terms are 

> 

f( ) r (18) 

and 
(a - Vrl)f (r’) Irk 

respectively. The second-order term is 

+(a- &!)(a l  V,~)f(r')Jrkr 
= +a l  Vrf [a m (V f @‘))I,+ 

= $a - [a l  V,t (V,! f (r’))]irfIr, (20 

so the first few terms of the expansion are 

f (r + a) = f(r) + (a l  b)f (r’>lrkr 
+$a l  [a l  V,t(V,I f (rf))]lrkl. (21) 

f (z’) dz’ 
I- zo) - (2 - x0) 

1 J f (2’) dx’ - - 
27ri 

c  (z’  - zo) (1 - x) l  

(22) 

In the interior of C, 

I z- 4 p<l 
I 2' - %oI 

so, using 
00 

1 -- 
1-t- >: tn, 

(23) 

(24) 

it follows that 

( z - zo)nf (d) dxt 

( 2 - z())n+l 

loo -- f k’> dz - 
27ri >( 

z - %g)n I- 4 
n+1' (25) 

n=O 

Using the the CAUCHY INTEGRAL FORMULA for deriva- 
tives, 

f(z) = F(z - zo)+)* . (26) 
n=O 

see &o CAUCHY REMAINDER FORM, LAGRANGE Ex- 
PANSION, LAURENT SERIES, LEGENDRE SERIES, MAC- 
LAURIN SERIES, NEWTON'S FORWARD DIFFERENCE 
FORMULA 
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Tchebycheff 

see CHEBYSHEV APPROXIMATION FORMULA, CHEBY- 
SHEA CONSTANTS, CHEBYXXEV DEVIATION, CHEW- 

SHEV DIFFERENTIAL EQUATION, CHEBYSHEV FUNC- 
TION, CHEBYSHEV-GAUSS QUADRATURE, CHEBY- 
SHEV INEQUALITY, CHEBYSHEV INEQUALITY, CHEBY- 
SHEV INTEGRAL, CHEBYSHEV PHENOMENON, CHEBY- 
SHEV POLYNOMIAL OF THE FIRST KIND, CHEBY- 
SHEV POLYNOMIAL OF THE SECOND KIND, CHEBY- 
SHEV QUADRATURE, CHEBYSHEV-RADAU QUADRA- 
TURE,~HEBYSHEV-SYLVESTER CONSTANT 
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Teardrop Curve Temperature 
A plane curve given by the parametric equations The “temperature” of a curve I? is defined as 

X = cost 

y = sin t sinm(+t). 

see also PEAR-SHAPED CURVE 

References 
von Seggern, D. CRC Standard Curves and Surfaces. Boca 

Raton, FL: CRC Press, p. 174, 1993. 

Technique 
A specific method of performing an operation. The 
terms ALGORITHM, METHOD, and PROCEDURE arealso 

used interchangeably. 

see UZSO ALGORITHM, METHOD, PROCEDURE 

Teichmiiller Space 
TEICHM~LLER'S THEOREM asserts the EXISTENCE and 
UNIQUENESS of the extremal quasiconformal map be- 
tween two compact RIEMANN SURFACES of the same 
GENUS modulo an EQUIVALENCE RELATION. The 
equivalence classes form the Teichmiiller space T, of 
compact RIEMANN SURFACES of GENUS~. 

see also RIEMANN'S MODULI PROBLEM 

Teichmiiller’s Theorem 
Asserts the EXISTENCE and UNIQUENESS of the ex- 
tremal quasiconformal map between two compact RIE- 
MANN SURFACES of the same GENUS modulo an EQUIV- 
ALENCE RELATION. 

T- 

In ( 

121 , 

21-h > 

where 2 is the length of r and h is the length of the 
PERIMETER of the CONVEX HULL. The temperature 
of a curve is 0 only if the curve is a straight line, and 
increases as the curve becomes more “wiggly.” 

see also CURLICUE FRACTAL 

References 
Pickover, C. A. Keys to 

pp. 164-165, 1995. 
Infinity. New York: W. H. Freeman, 

Templar Magic Square 

A MAGIC SQUARE-type arrangement of the words in the 
Latin sentence “Sator Arepo tenet opera rotas” (“the 
farmer Arepo keeps the world rolling”). This square has 
been found in excavations of ancient Pompeii. 

see also MAGIC SQUARE 

References 

see also TEICHM~~LLER SPACE 

Telescoping Sum 
A sum in which subsequent terms cancel each other, 
leaving only initial and final terms. For example, 

s=kl(;-&) 
=(-----$)+(;-$)+*... 
+ ( -+5)+(&g an-2 

P 1 - -_- - 

al a, 

is a telescoping sum. 

see also ZEILBERGER'S ALGORITHM 
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Tennis Ball Theorem 
A closed simple smooth spherical curve dividing the 
SPHERE into two parts of equal areas has at least four 
inflection points. 

see also BALL, BASEBALL COVER 
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Tensor References 
An &h-RANK tensor of order m is a mathematical ob- 
ject in m-dimensional space which has n indices and 
mn components and obeys certain transformation rules. 
Each index of a tensor ranges over the number of dimen- 
sions of SPACE. If the components of any tensor of any 
RANK vanish in one particular coordinate system, they 
vanish in all coordinate systems. 

Abraham, R.; Marsden, J. E.; and Ratiu, T. S. Man$oZds, 
Tensor Analysis, and Applications. New York: Springer- 
Verlag, 1991. 

Akivis, M. A. and Goldberg, V. V. An Introduction to Linear 
Algebra and Tensors. New York: Dover, 1972. 

Arfken, G. “Tensor Analysis.” Ch. 3 in Mathematical Meth- 
ods for Physicists, 3rd ed. Orlando, FL: Academic Press, 
pp. 118-167, 1985. 

Aris, R. Vectors, Tensors, and the l3asic Equations of Fluid 
Mechanics. New York: Dover, 1989. 

Bishop, R. and Goldberg, S. Tensor Analysis on Manifolds. 
New York: Dover, 1980. 

Zeroth-RANK tensors are called SCALARS, and first- 
RANK tensors are called VECTORS. In tensor notation, 
a vector v would be written ui, where i = 1, . . . , m. 
Tensor notation can provide a very concise way of writ- 
ing vector and more general identities. For example, 
in tensor notation, the DOT PRODUCT u 9 v is simply 
written 

u-v = uivi, (1) 

where repeated indices are summed over (EINSTEIN 
SUMMATION) so that uizfi stands for ulul + . , , + umwma 

Similarly, the CROSS PRODUCT can be concisely written 
as 

U X V = EijkU 
j k 

V , (2) 

where Eijk is the LEVI-CIVITA TENSOR. 

Second-RANK tensors resemble square MATRICES. CON- 
TRAVARIANT second-RANK tensors are objects which 
transform as 

lij ax; ax; kl 
A =dZkzyAm (3) 

COVARIANT second-RANK tensors are objects which 
transform as fi .-h 

Jeffreys, H. Cartesian Tensors. Cambridge, England: Cam- 
bridge University Press, 1931. 

Joshi, A. W. Matrices and Tensors in Physics, 3rd ed. New 
York: Wiley, 1995. 

Lass, H. Vector and Tensor Analysis. New York: McGraw- 
Hill, 1950* 

Lawden, D. F. An Introduction to Tensor Calculus, Relatiu- 
ity, and Cosmology, 3rd ed. Chichester, England: Wiley, 
1982. 

McConnell, A. J. Applications of Tensor Analysis. New 
York: Dover, 1947. 

Morse, P. M. and Feshbach, H. “Vector and Tensor Formal- 
ism.” 51.5 in Methods of Theoretical Physics, Part I. New 
York: McGraw-Hill, pp. 44-54, 1953. 

Simmonds, J. G. A Brief on Tensor Analysis, 2nd ed. New 
York: Springer-Verlag, 1994. 

Sokolnikoff, I. S. Tensor Analysis-Theory and Applications, 
2nd ed. New York: Wiley, 1964. 

Synge, J+ L. and Schild, A. Tensor Calculus. New York: 
Dover, 1978. 

Wrede, R+ C. Introduction to Vector and Tensor Analysis. 
New York: Wiley, 1963. 

Tensor Calculus 
The set of rules for manipulating and calculating with 
TENSORS. 

MIXED second-RANK tensors are objects which trans- 
form as 

If two tensors A and B have the same RANK and the 
same COVARIANT and CONTRAVARIANT indices, then 

Aij + Bij = cij 

(5) 

(6) 

(7) 

(8) 

A transformation of the variables of a tensor changes the 
tensor into another whose components are linear HOMO- 
GENEOUS FUNCTIONS of the components of the original 
tensor. 

see UZSO ANTISYMMETRIC TENSOR, CURL, DIVER- 
GENCE, GRADIENT, IRREDUCIBLE TENSOR, ISOTROPIC 
TENSOR, JACOBI TENSOR, RICCI TENSOR, RIEMANN 
TENSOR, SCALAR, SYMMETRIC TENSOR, TORSION 
TENSOR,VECTOR,WEYL TENSOR 

Tensor Density 
A quantity which transforms like a TENSOR except for 
a scalar factor of a JACOBIAN. 

Tensor Dual 

see DUAL TENSOR 

Tensor Product 

MISDIRECT PRODUCT (TENSOR) 

Tensor Space 
Let E be a linear space over a FIELD K. Then the 
DIRECT PRODUCT @=, E is called a tensor space of 
degree k. 

References 
Yokonuma, T. Tensor Spaces and Exterior Algebra. Provi- 

dence, RI: Amer. Math. Sot., 1992. 

Tensor Spherical Harmonic 

~~~DOUBLE CONTRACTION RELATION 
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Tensor Transpose 

see TRANSPOSE 

Tent Map 

Tessellation 
A regular TILING of POLYGONS (in 2-D), POLYHEDRA 
(3-D), or POLYTOPES (n-D) is called a tessellation. Tes- 
sellations can be specified using a SCHL~~FLI SYMBOL. 

Consider a 2-D tessellation with Q regular pgons at each 
VERTEX. In the PLANE, 

A piecewise linear, 1-D MAP on the interval [O, l] ex- 
hibiting CHAOTIC dynamics and given by 

The case p = 1 is equivalent to the LOGISTIC EQUATION 
WITH T = 4, so the NATURAL INVARIANT in this case is 1 1 1 

-+-=2’ 
1 

P Q 

P(X) = r&q* so 
(P - WI - 2) = 4 

(2) 

(3) 

see also 2x MOD 1 MAP, LOGISTIC EQUATION, LOGISTIC 
EQUATION WITH T= 4 

(Ball and Coxeter 1987), and the only factorizations are 

Terminal 

see SINK (DIRECTED GRAPH) 

4 = 4 - 1 = (6 - 2)(3 - 2) I {6,3} (4) 

= 2 l  2 = (4 - 2)(4 - 2) + {4,4} (5) 

- 1 l  4 = (3 - 2)(6 - 2) + {3,6}. - (6) 

Ternary 
The BASE 3 method of counting in which only the digits 
0, 1, and 2 are used. These digits have the following 
multiplication table. 

x01 2 
000 0 r 101 2 
2 0 2 11 

Erdes and Graham (1980) conjectured that no POWER 
of 2, 2”, is a SUM of distinct powers of 3 for n > 8. 
This is equivalent to the requirement that the ternary 
expansion of 2n always contains a 2. This has been 
verified by Vardi (1991) up to n = 2.320. N+ J. A. Sloane 
has conjectured that any POWER of 2 has a 0 in its 
ternary expansion (Vardi 1991, p* 28). 

see also BASE (NUMBER), BINARY, DECIMAL, I-IExA- 
DECIMAL, OCTAL,QUATERNARY 
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Therefore, there are only three reg 
(composed ofthe HEXAGON, SQUARE, 
illustrated as follows. 

liar tessellations 
and TRIANGLE), 

There do not exist any regular STAR POLYGON tes- 
sellations in the PLANE. Regular tessellations of the 
SPHERE by SPHERICAL TRIANGLES are called TRIAN- 
GULAR SYMMETRY GROUPS. 

Regular tilings of the plane by two OT more convex reg- 
ular POLYGONS such that the same POLYGONS in the 
same order surround each VERTEX are called semireg- 
ular tilings . In the plane, there are eight such tessella- 
tions, illustrated below. 

Recreations in Mathematics. 
Wesley, pp. 20-25, 1991. 

Reading, MA: - Addison- 

e Weisstein, E. W. “Bases." http://www. 
edu/-eww6n/math/notebooks/Bases.m. 

astro.virginia. 
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In 3-Q a POLYHEDRON which is capable of tessellating 
space is called a’SPACE-FILLING POLYHEDRON. Exam- 
ples include the CUBE, RHOMBIC DODECAHEDRON, and 
TRUNCATED OCTAHEDRON. There is also a N-sided 
space-filler and a convex POLYHEDRON known as the 
SCHMITT-CONWAY BIPRISM which fills space only ape- 
riodically. 

A tessellation of n-D polytopes is called a HONEYCOMB. 

see also ARCHIMEDEAN SOLID, CELL, HONEY- 
COMB, SCHL~FLI SYMBOL, SEMIREGULAR POLYHE- 
DRON, SPACE-FILLING POLYHEDRON, TILING, TRIAN- 
GULAR SYMMETRY CROUP 
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Tesseract 

The HYPERCUBE in Iw4 is called a tesseract. It 
has the SCHL~FLI SYMBOL {4,3,3}, and VERTICES 
(&1,&l, +1,&l). The above figures show two visual- 
izations of the TESSERACT. The figure on the left is a 
projection of the TESSERACT in S-space (Gardner 1977), 
and the figure on the right is the GRAPH of the TESSER- 

ACT symmetrically projected into the PLANE (Coxeter 
1973). A TESSERACT has 16 VERTICES, 32 EDGES, 4 
SQUARES, and 8 CUBES. 

see also HYPERCUBE, POLYTOPE 
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Scientific American. New York: Vintage Books, 1977. 
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Tesseral Harmonic 
A SPHERICAL HARMONIC which is expressible as prod- . 
ucts of factors linear in x2, y2, and z2 multiplied by one 
of 1, z, y, z, yz, xx, xy, and zyz 

see also ZONAL HARMONIC 

Tethered Bull Problem 
Let a bull be tethered to a silo whose horizontal CROSS- 
SECTTON is a CIRCLE of RADIUS R by a leash of length 
L. Then the AREA which the bull can graze if L < Rn - 
is 

L3 A=$+g. 

References 
Hoffman, M. E. “The Bull and the Silo: An Application of 

Curvature.” Amer. Math. Monthly 105, 55-58, 1998. 

Tetrabolo 
A 4-POLYABOLO. 

Tetrachoric Function 
The function defined by 

( 1) n-l 

T, E L 
d- n! 

Z-yx) 7 
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where 

z(x) = &e-x2i2. 
7T 

see also NORMAL DISTRIBUTION 

References 
Kenney, J. F. and Keeping, E. S. “Tetrachoric Correlation.” 

$8.5 in Math ematics of Statistics, Pt. 2, 2nd ed. Princeton, 
NJ: Van Nostrand, pp* 205-207, 1951. 

Tetracontagon 
A 40-sided POLYGON. 

Tetracuspid 

see HYPOCYCLOID-4-CUSPED 

Tetrad 
A SET of four, also called a QUARTET. 

see also HEXAD, MONAD, PAIR, QUARTET, QUINTET, 
TRIAD, TRIPLE, TWINS 

Tetradecagon 
A 14-sided POLYGON, sometimes called a TETRAKAI- 
DECAGON. 

Tetradecahedron 
A 14-sided POLYHEDRON, sometimes called a TETRA- 
KAIDECAHEDRON. 

Tetraflexagon 
A FLEXAGON made with SQUARE faces. Gardner (1961) 

shows how to construct a tri-tetraflexagon, 

tetra-tetraflexagon, 

References 
Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 

ics, Vol. I. New York: McGraw-Hill, 1953, 

1 1 2 3 ml 3 Z i- i --- --I 
1 1 2 3 

2 2 E!El 2 2 

4 4 3 3 

’ 2 4 4 3 2 

2 -3 i- 4 -mm -mm 

and hexa-tetraflexagon. 

J/ 

Tetradyakis Hexahedron 
The DUAL POLYHEDRON ofthe CUBITRUNCATED CUB- 
OCTAHEDRON. 

2 2 El3 2 2 

see also CUBOCTAHEDRON,TRUNCATED OCTAHEDRON 

References 
Ghyka, M. The Geometry of Art and Life. New York: Dover, 

p. 54, 1977. 

Tetradic 
Tetradics transform DYADICS in much the same way 
that DYADICS transform VECTORS. They are repre- 
sented using Hebrew characters and have 81 compo- 
nents (Morse and Feshbach 1953, pp. 72-73). The use 
of tetradics is archaic, since TENSORS perform the same 
function but are notationally simpler. 

m 

see also FLEXAGON,FLEXATUBE,HEXAFLEXAGON 
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Tetragon 

see QUADRILATERAL 

Tetrahedral Coordinates 
Coordinates useful for plotting projective 3-D curves of 
the form f(ZO+l,ZZ,Z3) = 0 which are defined by 

zo-l-z-ha: 

x1=1- z+& 

x2=l+z+hy 

X~=l+x-&. 

see also CAYLEY CUBIC, KUMMER SURFACE 

Tetrahedral Graph 

1 
A POLYHEDRAL GRAPH which is also the COMPLETE 
GRAPH& 

see also CUBICAL GRAPH, D~DECAHEDRAL GRAPH, 
ICOSAHEDRAL GRAPH, OCTAHEDRAL GRAPH, TETRA- 
HEDRON 

Tetrahedral Group 
The POINT GROUP of symmetries of the TETRAHE- 
DRON, denoted Y?d. The tetrahedral group has symmetry 
operations E, 8C3, 3Cz, 6S+ and 60d (Cotton 1990). 

see &O ICOSAHEDRAL GROUP, OCTAHEDRAL GROUP, 
POINT GROUPS,TETRAHEDRON 

References 
Cotton, F. A. Chemical Applications of Group Theory, 3rd 

ed. New York: Wiley, pa 47, 1990. 
Lomont, J. S. “Icosahedral Group.” 53.1O.C in Applications 

of Finite Groups. New York: Dover, p. 81, 1987. 

Tetrahedral Number 
A FIGURATE NUMBER Te, ofthe form 

n 

Te,= Tn- Ix &(n+l)(n+2) = , (1) 

where Tn is the nth TRIANGULAR NUMBER and (z) is a 
BINOMIAL COEFFICIENT. These numbers correspond to 
placing discrete points in the configuration of a TETRA- 
HEDRON (triangular base pyramid). Tetrahedral num- 
bers are PYRAMIDAL NUMBERS with T = 3, and are 
the sum of consecutive TRIANGULAR NUMBERS. The 
first few are 1, 4, 10, 20, 35, 56, 84, 120, , . . (Sloane’s 

A000292). The GENERATING FUNCTION of the tetrahe- 
dral numbers is 

X 

(x - 1)4 
= x + 4x2 + 10x3 + 20x4 + l  l  l  l  

(2) 

Tetrahedral numbers are EVEN, except for every fourth 
tetrahedral number, which is ODD (Conway and Guy 
1996) l  

The only numbers which are simultaneously SQUARE 
and TETRAHEDRAL are Tel = 1, Tez = 4, and Ted8 = 

19600 (giving S1 = 1, Sz = 4, and 5140 = 19600), as 
proved by Meyl (1878; cited in Dickson 1952, p. 25). 
Numbers which are simultaneously TRIANGULAR and 
tetrahedral satisfy the BINOMIAL COEFFICIENT equa- 

(a>=($ (3) 

the only solutions of which are (m, n) = (10, IS), (22, 
56), and (36, 120) (Guy 1994, p. 147). Beukers (1988) 
has studied the problem of finding numbers which are 
simultaneously tetrahedral and PYRAMIDAL via INTE- 
GER points on an ELLIPTIC CURVE, and finds that the 
only solution is the trivial Tel = Pr = 1. 

see also PYRAMIDAL NUMBER, TRUNCATED 

DRAL NUMBER 
TETRAHE- 
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Tetrahedral Surface 
A SURFACE given by the parametric equations 

x = A(u - a)m(v - ajn 

y = B(u - b)“(v - b)” 

z = C(u - c)“(v - c)“. 

References 
Eisenhart, L. P. A Treatise on .the Differential Geometry of 

Curves and Surfaces. New York: Dover, p. 267, 1960. 
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Tetrahedroid This gives the AREA of the base as 

A special case of a quartic KUMMER SURFACE. 

References 
Fischer, G. (Ed.). Math ematical Models frum the Collections 

of Universities and Museums. Braunschweig, Germany: 
Vieweg, pp. 17-19, 1986. 
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Tetrahedron 

A 
The regular tetrahedron, often simply called “the” tetra- 
hedron,isthe PLATONIC SOLID pl with four VERTICES, 
six EDGES, and four equivalent EQUILATERAL TRIAN- 
GULAR faces (4{3}). It is also UNIFORM POLYHEDRON 
&. It is described by the SCHL;~FLI SYMBOL {3,3} and 
the WYTHOFF SYMBOL is 3 12 3. It is the prototype of 
the TETRAHEDRAL GROUPQ, 

The tetrahedron is its own DUAL POLYHEDRON. It 
is the only simple POLYHEDRON with no DIAGONALS, 
and cannot be STELLATED. The VERTICES of a 

tetrahedron are given by (O,O,&), (0, ?#,-ifi), 

(-&--i&&i&), and (l/z,--i&,-i&), or by 
(0, 0, 0), (0, 1, l), (1, 0, l), (1, 1, 0). In the latter case, 
the face planes are 

x+y+x=2 (1) 

x-y-x=0 (2) 

-x+y-x=0 (3) 

x+y-x=0. (4) 

Let a tetrahedron be length a on a side. The VERTICES 
are located at (x, 0, 0), (-d, &a/2, 0), and (0, 0, h). 
From the figure, 

Perspective View Bottom View Side view 

d is then 

(5) 

(7) 

The height is 

h=dEEa l-+f&a. J (8) 
The CIRCUMRADIUS R is found from 

x2 -+ (h - RI2 = R2 (9) 

x2 + h2 -2hR+R2 = R2. (10) 

Solving gives 

h a e 0.61237a. 

(11) 
The INRADIUS T is 

=h-R= ia--6a=&&z= 
J 

J3 
r 0.20412a, (12) 

which is also 
T= +h= +R. (13) 

The MIDRADIUS is 

p=Jsdz=a i&s 4 
z 0.35355a. 

Plugging in for the VERTICES 

(a&,0,0),(-@z,+,O) 

gives 

(14) 

1 and (O,O, @z). (15) 

Since a tetrahedron is a PYRAMID with a triangular base, 
V = +Abh, and 

V= i (i&a”) @a) = $6~~. (16) 

The DIHEDRAL ANGLE is 

0 = tan-l(Z&) = 2sir?($JG) = cos-l(i). (17) 
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By slicing a tetrahedron as shown above, a SQUARE can 
be obtained. This cut divides the tetrahedron into two 
congruent solids rotated by 90”. 

Now consider a general (not necessarily regular) tetra- 
hedron, defined as a convex POLYHEDRON consisting of 
four (not necessarily identical) TRIANGULAR faces. Let 
the tetrahedron be specified by its VERTICES at (xi, yi) 
wherei= 1, . . . . 4. Then the VOLUME is given by 

21 y1 21 1 

v= _II_ 52 y2 z2 1 

3! x3 y3 z3 1 ' 
w 

x4 y4 x4 1 

Specifying the tetrahedron by the three EDGE vectors 
a, b, and c from a given VERTEX, the VOLUME is 

V= $la-(b x c)l. . 09) 

If the faces are congruent and the sides have lengths a, 
b, and c, then 

V= 
J 

(a2 -I- b 2 - c2)(a2 + c2 - b2)(b2 +c2 - a2) 

72 (20) 

(Klee and Wagon 1991, p. 205). Let a, b, c, and d be 
the areas of the four faces, and define 

where Ljk means here the ANGLE between the PLANES 

formed by the FACES j and k, with VERTEX along their 
intersecting EDGE. Then 

a2 = b2+c2+d2-2cdcosB-2bdcosC-2bccosD. (24) 

The analog of GAUSS'S CIRCLE PROBLEM can be asked 
for tetrahedra: how many LATTICE PRINTS lie within a 
tetrahedron centered at the ORIGIN with a given INRA- 
DIWS (Lehmer 1940, Granville 1991, Xu and Yau 1992, 
Guy 1994). 

see UZSO AUGMENTED TRUNCATED TETRAHEDRON, 
BANG'S THEOREM, EHRHART POLYNOMIAL, HERONIAN 
TETRAHEDRON, HILBERT'S ~RD PROBLEM, ISOSCELES 
TETRAHEDRON, SIERPI~~SKI TETRAHEDRON, STELLA 

OCTANGULA,TETRAHEDRON~-COMPOUND,TETRAHE- 
DRON lo-COMPOUND,TRUNCATED TETRAHEDRON 
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Tetrahedron S-Compound 

A POLYHEDRON COMPOUND composed of 5 TETRA- 
HEDRA. Two tetrahedron 5-compounds of opposite 
CHXRALITY combine to make a TETRAHEDRON IO- 
COMPOUND. The following diagram shows pieces which 
can be assembled to form a tetrahedron 5-compound 
(Cundy and Rollett 1989). 

see &~POLYHEDRON COMPOUND,TETRAHEDRON lo- 
COMPOUND 
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Tetrahedron l&Compound 

TWO TETRAHEDRON ~-COMPOUNDS of opposite CHI- 
RALITY combined. 

see also POLYHEDRON COMPOUND, TETRAHEDRON 5- 
COMPOUND 
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Tetrahedron Inscribing 
Pick four points at random on the surface of a unit 
SPHERE. Find the distribution of possible volumes of 
(nonregular) TETRAHEDRA. Without loss of generality, 
the first point can be chosen as (1, 0, 0). Designate the 
other points a, b, and c. Then the distances from the 
first VERTEX are 

(1) 

b= [co:iii;i$l] (2 

cz [‘“2g$q. (3 

The average volume is then 

dqh d#z de3 d@z d& , (4) 

where 

Te trakaidecahedron 

and 

a.(b x c) = -cos&sin& +cos&sin& 

- cos &i cos 65 sin 42 sin 81 + cos 42 cos 03 sin q53 sin 81 

- cos 43 sin 42 sin 02 + cos $3 cos 81 sin 42 sin 02 

+ cos 42 sin $3 sin 03 - cos $2 cos 01 sin 43 sin 03. (6) 

The integrals are difficult to compute analytically, but 
lo7 computer TRIALS give 

(V) “N 0.1080 (7) 

( > V2 = 0.02128 (8) 

av2 = (v”) - (V)” $=: 0.009937. (9) 

see UZSO POINT-POINT DISTANCE-~-D, TRIANGLE IN- 

SCRIBING IN A CIRCLE, TRIANGLE INSCRIBING IN AN 
ELLIPSE 
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Tetrahemihexacron 
The DUAL POLYHEDRON of the TETRAHEMIHEXAHE- 
DRON. 

Tetrahemihexahedron 

The UNIFORM POLYHEDRON U4 whose DUAL POLYHE- 
DRON is the TETRAHEMIHEXACRON. It has SCHLAFLI 
SYMBOL r'{i} and WYTHOFF SYMBOL % 3) 2. Its faces 
are 4{3} + 3{4}. It is a faceted form of the OCTAHE- 
DRON. Its CIRCUMRADIUS is 

R= $6 

References 
Wenninger, M. J. Polyhedran Models. Cambridge, England: 
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Tetrakaidecagon 

~~~TETRADECAGON 

Tetrakaidecahedron 
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Tetrakis Hexahedron 

The DUAL POLYHEDRON of the TRUNCATED OCTAHE- 
DRON. 

Tetranacci Number 
The tetranacci numbers are a generalization of the FI- 

BONACCI NUMBERS defined by Z-‘o = 0, TI = 1, TZ = 1, 
Ts = 2,andthe RECURRENCE RELATION 

Tn = G-1 + K-z + 5%3 + G-4 

for n > 4. They represent the n = 4 case of the FI- - 
BONACCI n-STEP NUMBERS. The first few terms are 1, 
1, 2, 4, 8, 15, 29, 56, 108, 208, . . . (Sloane’s AOOO078). 
The ratio of adjacent terms tends to 1.92756, which is 
the REAL ROOT of x5 - 2x4 + 1 = 0. 

see also FIBONACCI n-STEP NUMBER, FIBONACCI NUM- 

BER,TRIBONACCI NUMBER 

References 
Sloane, N. J. A. Sequence A000078/M1108 in “An On-Line 
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SO the tetrix has an INTEGRAL CAPACITY DIMENSION 
(albeit one less than the DIMENSION of the 3-D TETRA- 
HEDRA from which it is built), despite the fact that it is 
a FRACTAL. 

The following illustration demonstrates how this coun- 
terintuitive fact can be true by showing three stages of 
the rotation of a tetrix, viewed along one of its edges. 
In the last frame, the tetrix “looks” like the 2-D PLANE. 

see also MENGER SPONGE, SIERPI~~SKI SIEVE 
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Tetromino 

The five 4-PoLYOMI NOES, known as STRAIGHT, L-, T-, 

SQUARE, and SKEW. 
Tetrix 

The 3-D analog- of the SIERPI~~SKI SIEVE illustrated 
above, also called the SIERPI~~SKI SPONGE or SIERPI~~SKI 
TETRAHEDRON. Let IVn be the number of tetrahedra, 
L, the length of a side, and A, the fractional VOLUME 
of tetrahedra after the nth iteration Then 

N, = 4” (1) 
L, = (i)” = 2-” (2) 

An = Ln3Nn = ($)“e (3) 

The CAPACITY DIMENSION is therefore 

d lim 
In Nn 

cap = - 
-=- 

n300 lnL, 
lim 1n(4n > 

n+oo ln(2-“) 

In 4 2 In 2 - - - - - = 2, 
In 2 - ln 2 

(4) 

EH % 
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Thales’ Theorem 

An ANGLE inscribed in a SEMICIRCLE is a RIGHT AN- 
GLE. 

see ah RIGHT ANGLE, SEMICIRCLE 

Theorem 
A statement which can be demonstrated to be true by 
accepted mathematical operations and arguments. In 
general, a theorem is an embodiment of some general 
principle that makes it part of a larger theory. 

According to the Nobel Prize-winning physicist Richard 
Feynman (1985), any theorem, no matter how diffi- 
cult to prove in the first place, is viewed as ‘6T~~~~~~” 
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by mathematicians once it has been proven. There- 
fore, there are exactly two types of mathematical ob- 
jects: TRIVIAL ones, and those which have not yet been 
proven. 

see also AXIOM, AXIOMATIC SYSTEM, COROLLARY, 
DEEP THEOREM, PORISM, LEMMA, POSTULATE, PRIN- 

CIPLE, PROPOSTTION 

These functions are sometimes denoted Oi or &, and a 
number of indexing conventions have been used. For a 
summary of these notations, see Whittaker and Watson 
(1990). The theta functions are quasidoubly periodic, 
as illustrated in the following table. 

6i &(z + 7g/&(z) I?& + tn)/&(z) 
Ql -1 -N 
82 -1 N 
83 1 N 
794 1 -N 

References 
Feynman, R* P. and Leighton, R. Surely You’re Joking, Mr. 

Feynman! New York: Bantam Books, 1985. 

Here, 
N = q--le-25 

(9) 
Theorema Egregium 
see GAUSS’S THEOREMA EGREGIUM 

The quasiperiodicity can be established as follows for 
the specific case of 84, Theta Function 

The theta functions are the elliptic analogs of the EX- 

PONENTIAL FUNCTION, and may be used to express the 
JACOBI ELLIPTIC FUNCTIONS* Let t be a constant COM- 

PLEX NUMBER with %[t] > 0. Define the NOME 

64(eqq) = y-) > -1 nqn 2 2nize2ni7r 
e 

= c (-l)nqn2e2niz = &(z,q) (10) 

n=--00 

@4(2 + r&q) = fyc > 
_ 1 nqn2 e2ni7rte2niz 

where 

(2) 
72=-m 

and K(k) is a complete ELLIPTIC INTEGRAL OF THE 

FIRST KIND, k is the MODULUS, and k’ is the comple- 
mentary MODUWS. Then the theta functions are, in 
the NOTATION of Whittaker and Watson, 

00 

= --9-1e-2iz >: 
(_l)n+lq("+1~2q2("+1)il 

n=--00 
&(z, Q) E 2 fJ-l)nqtn+112~2 sin[(Zrz + l)z] 

n=O -1 -2i;z 
=-q e fyc > 

-1 r~~n~~27ait 

T&=-m 

= -q-1e-2ia294(Z, q). (11) 
= zqli4 jr;(-1)“4”‘“+” sin[(2n + l)z] (3) 

n=O 

&(z, q) E 2 9 q(n+1/212 cos[(2n + l)z] The theta functions can be written in terms of each 
other: 

n=O 

00 

E p c qnCnfl) cos[ 
n=O 

63(q) = 1 + 2 F, qn2 cos(2nz 

&(z, q) = -45 ir+Tit/4194(z + $Tt, q) 

S,(q) = 61(x+ $7 d 

83(&Q) =84(z+ +, q>m 

(12) 

(13) 

(14) 

2n + l)z] (4 

(5) 
Any theta function of given arguments can be expressed 
in terms of any other two theta functions with the same 
arguments. 

n=l 

#4(&Q) = ec > - 1 nq”2 eaniz 
T&=--o0 

00 
10 

8 

6 

0.41 

0.2, 
- - 1 + 2 T(-l)“qn2 cos(2nx). (6) 

!  I -1 -0.5 0.5 1 
-0.2, I/ Written in terms of t, 
-0.4 

I 

8 

6 

I 

4 

2 

-1 -0.5 0.5 1 

!- . . 
0.2 0.4 0.6 0.8 1 

10 

8 

6 ! 4 

2 

-1 -0.5 0.5 1 

fi2@, q) = x q~“+w~2ewl 

Il.=-- 
(7) 

(8) &(t, q) = qn2 IPJ rn 
n=--00 
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Define 
6i G &(z = o), (15) 

which are plotted above. Then we have the identities 

912(%)1942 = 1932(2)622 - 622(x)932 (16) 

822(x)2942 = l?42(x)422 - &2(%)1932 (17) 
632(%)642 = 29*2(+?32 - 612(x)622 (18) 
642(%)642 = &2(%)&2 - -922(z)622. (19) 

Taking z = 0 in the last gives the special case 

2944 = 6a4 - T?z4. (20) 

In addition, 

293(x) = fy xn2 = 1+2x+2x4 +2x9 +... (21) 
n=--00 

tis2(z)=1+4 2- - ( X3 X5 X7 
- +... 

1-X 

-++- 
1 - x3 l-x5 l-x7 > 

(22) 
2 + -??- + 323 + +- +... 
l-x 1+x2 1 - x3 1+ x4 

(23) 

The theta functions obey addition rules such as 

63(z+y)fi3(z - Y)7932 = 1932(Y)7932(X)+~12(Y)~~2(r)4 

(24) 

Letting y = z gives a duplication FORMULA 

&(2~)63~ = 634(e) + 614(X). (25) 

For more addition FORMULAS, see Whittaker and Wat- 
son (1990, pp. 487-488). Ratios of theta function deriva- 
tives to the functions themselves have the simple forms 

29; (4 
00 

4 
2n 

qq 
= cotz +4 

Ix 
- 
1 - q2” 

sin( 27x5) (26) 
n=l 

@a (4 - - - 
392 (4 

- tanz + 4F(-Qn& sin( 27x2) 

# = 45-l)“-& sin(2nx) 
32 

n=l 

a4 O” x Q 2n4 sin(2.2) 
- = 
64W n=l l- 2q 

2n-1 cos(2z) + q4n-2 

O” 4q” sin(2nz) - - 
Ix l- q23 . 
n=l 

(27) 

(28) 

(29) 
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The theta functions can be expressed as products in- 
stead of sums by 

61 (z) = 2Gq1’4 sin x fi[ 1 - 2q2” cos(2z) + q4y (30) 

n=l 

00 

62(z) = 2Gq 114 cos % rI[ 1 + 2q2n cos(2x) + q4y(31) 
n=l 

83(z) = G fi,l+ 2q2n-1 COS(2Z) + q4”-2] (32) 
n-l 

84(z) = G fi[l - 2q2”-l COS(2Z) + q4n-2], (33) 
n=l 

where 

G G fi(l- q”“) (34) 
n=l 

(Whittaker and Watson 1990, pp. 469-470). 

The theta functions satisfy the PARTIAL DIFFERENTIAL 
EQUATION 

.a2y dy 
~~2-+-=0, 

&z2 at 
(35) 

where y G tij(Zlt). Ratios of the theta functions with $4 
in the DENOMINATOR also satisfy differential equations 

d 61(z) 
dz9qo [ 1 = g42 82 (463 (4 

1942(z) 
(36) 

d r92(~) -- [ 1 C 
dz 84(z) 

-8 2 &km (4 
3 

7942(2) 
(37) 

d 83(z) [ 1 -8 2 WPd4 -- = 
dx 64(z) 2 642(2) . 

(38) 

Some additional remarkable identities are 

f% = 626384 (39) 

6&t) = - i ( t> 
1/2er2/7Tit 

fl3 (40) 

which were discovered by Poisson in 1827 and are equiv- 
alent to 

00 

x 
e 

n=-m k=--00 

Another amazing identity is 

2291.[$b+c+d+e)]&[$-c+d+e)]&[$+c-d+e)] 

x84[+(b+c+ d- e)] = &(b)&(c)&(d)&(e) 

+s,(b)81(c)84(d)~3(e) - &(b)fb(c)&(d)h(e) 

+~4(b)83(+92(d)&(e) (42) 

(Whittaker and Watson 1990, p. 469). 
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The complete ELLIPTIC INTEGRALS OF THE FIRST and 
SECOND KINDS can be expressed using theta functions. 
Let 

and plug into (36) 

dJ 2 

( ) 
z = 22 (8 - c2g32) 

Now write 

and 
ztY32 G u. 

Then 
dY 2 

(3 du 
= (l- y2)(1- k2y2), 

where the MODULUS is defined by 

h2 (4 k = k(q) = - 
g32 (4 l  

Define also the complementary MODULUS 

k’= E- k’(q) ‘42kq) 

632(d * 

Now, since 
624 +6d4 = f?34, 

we have shown 
k2 + k’2 = 1. 

The solution to the equation is 

'3 61(U?1)3-21t) E sn(u k) 

y = 92 l?4(U83-2~t) 
> I 

I(63 2 - [2&2) 

(43) 

(44 

(45) 

(46) 

(47) 

(48) 

(49) 

w 

(51) 

(52) 

which is a JACOBI ELLIPTIC FUNCTION with periods 

4K(k) = 2da2(q) (53) 

and 
2iK’(k) = d32(q). (54) 

Here, K is the complete ELLIPTIC INTEGRAL OF THE 

FIRST KIND, 

K(k) = +fl32(q). (55) 

see &O BLECKSMITH-BRILLHART-GERST THEOREM, 

ELLIPTIC FUNCTION, ETA FUNCTION, EULER’S PEN- 
TAGONAL NUMBER THEOREM, JACOBI ELLIPTIC FUNC- 
TIONS, JACOBI TRIPLE PRODUCT, LANDEN’S FOR- 

MULA, MOCK THETA FUNCTION, MODULAR EQUATION, 

MODULAR TRANSFORMATION, MORDELL INTEGRAL, 

NEVILLE THETA FUNCTION, NOME, POINCAR&FUCHS- 

KLEIN AUTOMORPHIC FUNCTION, PRIME THETA 

FUNCTION, QUINTUPLE PRODUCT IDENTITY, RAMANU- 

JAN THETA FUNCTIONS, SCHR~~TER’S FORMULA, WE- 

BER FUNCTIONS 
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Theta Operator 
In the NOTATION of Watson (1966), 

References 
Watson, G. N. A Treatise on the Theory of Bessel Functions, 

2nd ed. Cambridge, England: Cambridge University Press, 
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Theta Subgroup 

see LAMBDA GROUP 

Thiele’s Interpolation Formula 
Let p be a RECIPROCAL DIFFERENCE. Then Thiele’s 
interpolation formula is the CONTINUED FRACTION 

f(x) = fW + 
-x1 -x2 

P~~l,x2)fP2(x~,x2~23) -f (xl)+ 

x-x3 

&1,X2,x3,x4) -&1,x2) + -’ 

References 
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Thiessen Polytope 

see VORONOI POLYGON 

Third Curvature 
Also known as the TOTAL CURVATURE. The linear ele- 
ment of the INDICATRIX 

dsp = JdsT2 -+- dsB2. 

SW &O LANCRET EQUATION 
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Thirteenth 

see FRIDAY THE THIRTEENTH 

Thompson Group 
The SPORADIC GROUP Th. 

Thorn’s Eggs 

EGG-shaped curves constructed using multiple CIRCLES 

which Thorn (1967) used to model Megalithic stone rings 
in I3ritain. 

see also EGG, OVAL 

References 
Dixon, R. Mathographics. New York: Dover, p. 6, 1991. 
Thorn, A. “Mathematical Background.” Ch. 4 in Megalithic 

Sites in Britain. Oxford, England: Oxford University 
Press, pp. 27-33, 1967. 

Thomae’s Theorem 

qz + y + s + 1) 
3F2 --a, 

qx + 8 + qqy + 23 + 1) 
-4 x + y + s + 1; 1 

x+s+l,y+s+l 

qu + b + s + 1) -2, -y,a+b+s+l 
a+s+l,b+s+l 

where l?(z) is the GAMMA FWNCTI~N and the function 
3F2 (a, b, C; d, e; z) is a GENERALIZED HYPERGEOMETRIC 

FUWTI~N. 

see UZSO GENERALIZED HYPERGEOMETRIC FUNCTION 

References 
Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Sug- 

gested by His Life and Work, 3rd ed. New York: Chelsea, 
pp* 104-105, 1959. 

Thomassen Graph 

The GRAPH illustrated above. 

see also THOMSEN GRAPH 

Thompson’s Functions 

see BEI, BER, KELVIN FUNCTIONS 

References 
Wilson, R. A. “ATLAS of Finite Group Representation.” 

http://for.mat.bham.ac.uk/atlas/Th,html. 

Thornsen’s Figure 

Take any TRIANGLE with VERTICES A, B, and C. Pick 
a point A1 on the side opposite A, and draw a line PAR- 

ALLEL to AB. Upon reaching the side AC at B1, draw 
the line PARALLEL to BC. Continue (left figure). Then 
A3 = Al for any TRIANGLE. If Al is the MIDPOINT of 
BC, then A2 = A1 (right figure). 

see also MIDPOINT, TRIANGLE 

References 
Madachy, J. S. Madachy’s Mathematical Recreations. New 

York: Dover, pp. 234, 1979. 

Thomsen Graph 
The COMPLETE BIPARTITE GRAPH J&,3, which is 
equivalent to the UTILITY GRAPH. It has a CROSSING 

NUMBER 1. 

see also COMPLETE BIPARTITE GRAPH, CROSSING 

NUMBER (GRAPH), THOMASSEN GRAPH, UTILITY 

GRAPH 

Thomson Lamp Paradox 
A lamp .is turned on for l/2 minute, off for l/4 minute, 
on for l/S minute, etc. At the end of one minute, the 
lamp switch will have been moved No times, where No is 
ALEPH-0. Will the lamp be on or off? This PARADOX 

is actually nonsensical, since it is equivalent to asking if 
the “last” INTEGER is EVEN or ODD. 

References 
Pickover, C. A. Keys to Infinity. New York: Wiley, pp. 19- 

23, 1995. 

Thomson’s Principle 

see DIRICHLET'S PRINCIPLE 

Thomson Problem 
Determine the stable equilibrium positions of Iv clas- 
sical electrons constrained to move on the surface of a 
SPHERE and repelling each other by an inverse square 
law. Exact solutions for N = 2 to 8 are known, but 
N = 9 and 11 are still unknown. 
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In reality, Earnshaw’s theorem guarantees that no sys- 
tem of discrete electric charges can be held in stable 
equilibrium under the influence of their electrical inter- 
action alone (Aspden 1987). 

see &O FEJE~ T~TH’S PROBLEM 
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Thousand 
1,000 = 10”. The word “thousand” appears in com- 
mon expressions in a number of languages, for example, 
“a thousand pardons” in English and “tusen takk” (“a 
thousand thanks”) in Norwegian. 

see also HUNDRED, LARGE NUMBER, MILLION 

Three 

see 3 

Three-Colorable 

see COLORABLE 

Three-In-A-Row 

see TIC-TAC-TOE 

Three Jug Problem 
Given three jugs with II: pints in the first, yin the second, 
and x in the third, obtain a desired amount in one of the 
vessels by completely filling up and/or emptying vessels 
into others. This problem can be solved with the aid of 
TRILINEAR COORDINATES. 

References 
Coxeter, H. S. M. and Greitzer, S. L. Geometry Revisited. 

Washington, DC: Math. Assoc. Amer., pp. 89-93, 1967. 

Three-Valued Logic 
A logical structure which does not assume the EX- 
CLUDED MIDDLE LAW. Three possible truth values are 
possible: true, false, or undecided. There are 3072 such 
logics. 

see also EXCLUDED MIDDLE LAW, FUZZY LOGIC, LOGIC 

Threefoil Knot 

see TREFOIL KNOT 

Thue Constant 
The base-2 TRANSCENDENTAL NUMBER 

0.1101l011111011011111 l  l  .2, 

where the nth bit is 1 if n is not divisible by 3 and is 
the complement of the (n/3)th bit if 72 is divisible by 3. 
It is also given by the SUBSTITUTION MAP 

0 * 111 

1 + 110. 

In decimal, the Thue constant equals 0.8590997969.. . . 

see dso RABBIT CONSTANT, THUE-MORSE CONSTANT 

References 

Thue-Morse Constant 
The constant also called the PARITY CONSTANT and 
defined by 

p=l - 2 2p(,)2-” = 0.4124540336401075977. . l  (1) 
n=O 

(Sloane’s A014571), where P(n) is the PARITY of ~2. 
Dekking (1977) proved that the Thue-Morse constant 
is TRANSCENDENTAL, and Allouche and Shallit give a 
complete proof correcting a minor error of Dekking. 

The Thue-Morse constant can be written in base 2 by 
stages by taking the previous iteration a,, taking the 
complement a,, and appending, producing 

a0 = 0.02 

a1 = 0.012 

a2 = 0.01102 

a3 = 0.011010012 

a4 = 0.01101001100101102. (2) 

This can be written symbolically as 

an+1 = a, + a, - 2-2n (3) 

with a0 = 0. Here, the complement is the number a, 
such that a, + a, = 0.11.. .2, which can be found from 

2n 

&&+a,= n 
- 

1 k 
1 

(i)“” 5 ) = 
11 -- 

-1 =l-2-2”. (4) 
k-l 2 
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Therefore, 
a, = 1 - a, - 2-2n, (5) 

and 

a,+1 = a, + (1 - 2-2n - an)2-2n, (6) 

The regular CONTINUED FRACTION for the Thue-Morse 
constant is [0 2 2 2 1 4 3 5 2 1 4 2 1 5 44 1 4 1 2 4 1 
115 14 150 15 5 1114 2 14 143 14 12 13 16 1 
2 12 150 12 424 12 5 2 1115 5 2 22 5 1111274 
3 5 2 1114 1115 154 7 2 12 2 12 1150 14 1 
2 867374 1 1 1 5 5 1 1 6 1 2 7 2 1650 23 3 1 1 1 2 5 
3 84 1 1 1 1284 . . . ] (Sloane’s A014572), and seems to 
continue with sporadic large terms in suspicious-looking 
patterns. A nonregular CONTINUED FRACTION is 

P= 
1 

. 
1 (7) 

3- 
I 

1 

3 
4- 

16 - 

A related infinite product is 

15 

255 
256 - 

65536 - I,, 

1 -3 l  15.255 a 65535 l  l  l  

4P=2- l  4.16 l  256 65536 ’  2 m l  -. 

(8) 

The SEQUENCE am = 0110100110010110100101100... 
(Sloane’s A010060) is known as the THUE-MORSE SE- 
QUENCE. 

see also RABBIT CONSTANT,THUE CONSTANT 
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Thue-Morse Sequence 
The INTEGER SEQUENCE (also called the MORSE-THUE 
SEQUENCE) 

01101001100101101001011001101001... (1) 

(Sloane’s A010060) which arises in the THUE-MORSE 

CONSTANT, It can be generated from the SUBSTITUTION 

MAP 

0 -+ 01 (2) 
1 -+ 10 (3) 

starting with 0 as follows: 

0-+01+0110+01101001-+.... (4) 

Writing the sequence as a POWER SERIES over the GA- 
LOIS FIELD GF(2), 

F(x) = 0 + 12 + 1x2 + ox3 + 1X4 + . . . , (5) 

then F satisfies the quadratic equation 

(1-t z)F2 + F = * (mod 2). (6) 

This equation has two solutions, F and F’, where F’ is 
the complement of F, i.e., 

F+F’= 
1 

1+ x + X2 + x3 + . . . = - 
1+x’ (7) 

which is consistent with the formula for the sum of the 
roots of a quadratic. The equality (6) can be demon- 
strated as follows. Let (abcdef. . . ) be a shorthand for 
the POWER series 

a + bx + cx2 + dx3 -I- . . . , (8) 

so F(x) is (0110100110010110.. .)* To get F2, simply 
use the rule for squaring POWER SERIES over GF(2) 

(A+ B)2 = A2 + B2 (mod 2), (9) 

which extends to the simple rule for squaring a POWER 

SERIES 

(ao+tqx+a2x2+. . J2 = ao+a1x2+a2x4+. l  . (mod 2), 

(10) 
i.e., space the series out by a factor of 2, (0 1 1 0 1 0 0 
1 l  . l  ), and insert zeros in the ODD places to get 

F2 = (0010100010000010.. .). (11) 

Then multiply by x (which just adds a zero at the front) 
to get 

xF2 = (00010100010000010.. l ). (12) 

Adding to F2 gives 

(1 +x)F2 = (0011110011000011.. .)* (13) 

This is the first term of the quadratic equation, which 
is the Thue-Morse sequence with each term doubled up. 
The next term is F, so we have 

(l+ x)F2 = (0011110011000011.. l ) (14) 

F = (0110100110010110.. .). (15) 



1808 Thue Sequence Thurston’s Geometrization Conjecture 

The sum is the above two sequences XORed together 
(there are no CARRIES because we’re working over 
GF(2)), giving 

(1+ z)F2 + F = (0101010101010101 l  . l ). (16) 

We therefore have 

(l+ x)F2 + F = + 

=x+x~+x~+x~+x’+x~~+... (mod2). (17) 

The Thue-Morse sequence is an example of a cube- 
free sequence on two symbols (Morse and Hedlund 
1944), i.e., it contains no substrings of the form VVVVW, 
where W is any WORD. For example, it does not con- 
tain the WORDS 000, 010101 or 010010010. In fact, 
the following stronger statement is true: the Thue- 
Morse sequence does not contain any substrings of the 
form WWa, where a is the first symbol of VV. We 
can obtain a SQUAREFREE sequence on three sym- 
bols by doing the following: take the Thue-Morse se- 
quence 0110100110010110.~~ and look at the sequence 
of WORDS of length 2 that appear: 01 11 10 01 10 00 
01 11 10 . ..* Replace 01 by 0, 10 by 1, 00 by 2 and 
11 by 2 to get the following: 021012021. l  . . Then this 
SEQUENCE is SQWAREFREE (Morse and Hedlund 1944). 

The Thue-Morse sequence has important connections 
with the GRAY CODE. Kindermann generates fractal 
music using the SEEF-SIMILARITY of the Thue-Morse 
sequence. 

see also GRAY CODE, PARITY CONSTANT, RABBIT SE- 

QUENCE,THUE SEQUENCE 
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Version 

Thue Sequence 
The SEQUENCE of BINARY DIGITS of the THUE CON- 
STANT, 0.110110111110110111110110110.. .2 (Sloane’s 
A014578). 

see also RABBIT CONSTANT, THUE CONSTANT 
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Thue-Siegel-Roth Theorem 
If a is a TRANSCENDENTAL NUMBER, itcanbe approx- 
imated by infinitely many RATIONAL NUMBERS m/n to 
within n-‘, where T is any POSITIVE number. 

see UZSO LIOUVILLE'S RATIONAL APPROXIMATION THE- 
OREM, LIOUVILLE-ROTH CONSTANT, ROTH’S THEO- 
REM 

Thue-Siegel-Schneider-Roth Theorem 

see THUE-SIEGEL-ROTH THEOREM 

Thue’s Theorem 
If n > 1, (a+) = 1 (i.e., a and n are RELATIVELY 
PRIME), and m is the least integer > fi, then there 
exist an x and y such that 

ay E *x (mod n) 

where 0 < x < m and 0 < y < m. 

References 
Shanks, D. Solved and Unsolved Problems in Number Theory, 
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Thurston’s Geometrization Conjecture 
Thurston’s conjecture has to do with geometric struc- 
tures on 3-D MANIFOLDS. Before stating Thurston’s 
conjecture, some background information is useful. 3- 
dimensional MANIFOLDS possess what is known as a 
standard 2-level DECOMPOSITION. First, there is the 
CONNECTED SUM DECOMPOSITION, whichsaysthatev- 
ery COMPACT 3-MANIFOLD is the CONNECTED SUM of 
a unique collection of PRIME &MANIFOLDS. 

The second DECOMPOSITION is the JACO-SHALEN- 
JOHANNSON TORUS DECOMPOSITION, whichstatesthat 
irreducible orientable COMPACT &MANIFOLDS have a 
canonical (up to ISOTOPY) minimal collection of dis- 
jointly EMBEDDED incompressible TORI such that each 
component of the S-MANIFOLD removed by the TORI is 
either “atoroidal” or “Seifert-fibered.” 

Thurston’s conjecture is that, after you split a 3- 
MANIFOLD into its CONNECTED SUM and then JACO- 
SHALEN-JOHANNSON TORUS DECOMPOSITION, the re- 
maining components each admit exactly one of the fol- 
lowing geometries: 

1. EUCLIDEAN GEOMETRY, 

2. HYPERBOLIC GEOMETRY, 

3. SPHERICAL GEOMETRY, 

4. the GEOMETRY of S2 x R, 

5. the GEOMETRY of Mr2 x Tw, 

6. the GEOMETRY of SLaR, 

7. NIL GEOMETRY, or 

8. SOL GEOMETRY. 
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Here, s2 is the ~-SPHERE and MI2 is the HYPERBOLIC 

PLANE. If Thurston’s conjecture is true, the truth of 
the POINCAR~ CONJECTURE immediately follows. 

see UZSO CONNECTED SUM DECOMPOSITION, EUCLID- 
EAN GEOMETRY, HYPERBOLIC GEOMETRY, JACO- 
SHALEN-JOHANNSONTORUSDECOMPOSITION,NILGE- 
OMETRY, POINCAR~ CONJECTURE, SOL GEOMETRY, 
SPHERICAL GEOMETRY 

Thwaites Conjecture 

see COLLATZ PROBLEM 

Tic-Tat-Toe 
The usual game of tic-tat-toe (also called TICKTACK- 

TOE) is 3-in-a-row on a 3 x 3 board. However, a gen- 
eralized WIN-A-ROW on an n x m board can also be 
considered. For n = 1 and 2 the first player can always 
win. If the board is at least 3 x 4, the first player can 
win for n = 3. 

However, for TIC-TAC-TOE which uses a 3 x 3 board, 
a draw can always be obtained. If the board is at least 
4 x 30, the first player can win for n = 4. For n = 5, a 
draw can always be obtained on a 5 x 5 board, but the 
first player can win if the board is at least 15 x 15. The 
cases n = 6 and 7 have not yet been fully analyzed for 
an n x n board, although draws can always be forced 
for n = 8 and 9. On an 00 x 00 board, the first player 
can win for n = 1, 2, 3, and 4, but a tie can always be 
forced for n > 8. For 3 x 3 x 3 and 4 x 4 x 4, the first 
player can always win (Gardner 1979). 

see also PONG HAU K’I 
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Ticktacktoe 

see TIC-TAC-TOE 

Tight Closure 
The application of characteristic p methods in COMMU- 
TATIVE ALGEBRA, which is a synthesis of some areas of 
COMMUTATIVE ALGEBRA and ALGEBRAIC GEOMETRY. 

see UZSOALGEBRAIC GEOMETRY,~OMMUTATIVE ALGE- 
BRA 
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Tightly Embedded 
Q is said to be tightly embedded if IQ f~ Qgl is ODD for 
all g E G - &(Q), where &(Q) is the NORMALIZER 
of Q in G. 

Tiling 
A plane-filling arrangement of plane figures or its gener- 
alization to higher dimensions. Formally, a tiling is a col- 
lection of disjoint open sets, the closures of which cover 
the plane. Given a single tile, the so-called first CORONA 
is the set of all tiles that have a common boundary point 
with the tile (including the original tile itself). 

WANG'S CONJECTURE (1961) stated that if a set of tiles 
tiled the plane, then they could always be arranged to 
do so periodically. A periodic tiling of the PLANE by 
POLYGONS or SPACE by POLYHEDRA is called a TES- 
SELLATION. The conjecture was refuted in 1966 when 
R. Berger showed that an aperiodic set of 20,426 tiles 
exists. By 1971, R. Robinson had reduced the num- 
ber to six and, in 1974, R. Penrose discovered an aperi- 
odic set (when color-matching rules are included) of two 
tiles: the so-called PENROSE TILES. (Penrose also sued 
the Kimberly Clark Corporation over their quilted toi- 
let paper, which allegedly resembles a Penrose aperiodic 
tiling; Mirsky 1997.) 

It is not known if there is a single aperiodic tile. 

The number of tilings possible for convex irregular 
POLYGONS are given in the above table. Any TRIAN- 
GLE or convex QUADRILATERAL tiles the plane. There 
are at least 14 classes of convex PENTAGONAL tilings. 
There are at least three aperiodic tilings of HEXAGONS, 
given by the following types: 

A + B + C = 360’ a-d 
A + B + D = 360” a=d,c=e (1) 

A=C=E a=b,c=d,e= f 

(Gardner 1988). Note that the periodic hexagonal TES- 
SELLATION is a degenerate case of all three tilings with 

A=fj=C=D=E=F a=b=c=d=e=f. 
(2) 
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There are no tilings for convex n-gons for n > 7. - 

see also ANISOHEDRAL TILING, CORONA (TILING), 
G~SPER ISLAND, HEESCH'S PROBLEM, ISOHEDRAL 
TILING, KOCH SNOWFLAKE, M~NOHE~DRAL TILING, 
PENROSE TILES, POLYOMINO TILING, SPACE-FILLING 
POLYHEDRON, TILING THEOREM, TRIANGLE TILING 
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Tiling Theorem 
Due to Lebesgue and Brouwer. If an n-D figure is cov- 
ered in any way by sufficiently small subregions, then 
there will exist points which belong to at least n + 1 of 
these subareas. Moreover, it is always possible to find a 
covering by arbitrarily small regions for which no point 
will belong to more than n + 1 regions. 

see UZSO TESSELLATION, TILING 

Times 
The operation of MULTIPLICATION, i.e., a times b. Vari- 
ous notations are a x b, a+b, ab, and (a)(b). The “multi- 
plicat ion sign” x is based on SAINT ANDREW’S C ,oss 

(8ergamini 1969), Floating point MULTIPLICAYION is 
sometimes denoted 8. 

see also CROSS PRODUCT, DOT PRODUCT, MINUS, 
MULTTPLICATION, PLUS, PRODUCT 
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Tit-for-Tat 
A strategy for the iterated PRISONER'S DILEMMA in 
which a prisoner cooperates on the first move, and there- 
after copies the previous move of the other prisoner. Any 
better strategy has more complicated rules. 

see UZSO PRISONER’S DILEMMA 
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Titanic Prime 
A PRIME with > 1000 DIGITS. As of 1990, there were 
more than 140Cknown (Ribenboim 1990). The table 
below gives the number of known titanic primes as a 
function of year end. 

Year Titanic Primes 
1992 2254 
1993 9166 
1994 9779 
1995 12391 
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Titchmarsh Theorem 
If f(u) is SQUARE INTEGRABLE over the REAL w axis, 
then any one of the following implies the other two: 

1. The FOURIER TRANSFORM of f(w) is 0 for t < 0. 

2. Replacing w  by z, the function f(z) is analytic in 
the COMPLEX PLANE z for y > 0 and approaches 
f(s) almost everywhere as y + 0. Furthermore, 
s-“, If(~+iy)1’da: < IG for some number IC and y > 0 

(i.e., the integral is bounded). 

3. The REAL and IMAGINARY PARTS of f(z) are 
HILBERT TRANSFORMS of each other. 

Tits Group 
A finite SIMPLE GROUP which is a SUBGROUP of the 
TWISTED CHEVALLEY GROUP 2F..(2). 

Toeplitz Matrix 
Given 2N - 1 numbers Tk where k = -N + 1, . l  . , -1, 
0, 1, . . l  , N - 1, a MATRIX of the form 

T-1 

TO 

T-2 

T-1 

. . 

T-n+1 

T-n+2 
l  

. 

, 

r0 
I T72-3 
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is called a Toeplitx matrix. MATRIX equations of the 
form 

N 

>: 
Ti-jXj = T-Ji 

j=l 

can be solved with O(N2) operations. 

see also VANDERMONDE MATRIX 
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Togliatti Surface 
Togliatti (1940, 1949) showed that QUINTXC SURFACES 
having 31 ORDINARY DOUBLE POINTS exist, although 
he did not explicitly derive equations for such sur- 
faces. Beauville (1978) subsequently proved that 31 dou- 
ble points are the maximum possible, and quintic SUF- 
faces having 31 ORDINARY DOUBLE POINTS are there- 
fore sometimes called Togliatti surfaces. van Straten 
(1993) subsequently constructed a 3-D family of solu- 
tions and in 1994, Barth derived the example known as 
the DERVISH. 

see also DERVISH, ORDINARY DOUBLE POINT, QUINTIC 
SURFACE 
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Tomography 
Tomography is the study of the reconstruction of 2- and 
&dimensional objects from l-dimensional slices. The 
RADON TRANSFORM is an important tool in tomogra- 

PhY* 

Rather surprisingly, there exist certain sets of four direc- 
tions in Euclidean n-space such that X-rays of a convex 
body in these directions distinguish it from all other 
convex bodies. 

see &O ALEKSANDROV'S UNIQUENESS THEOREM, 
BRUNN-MINKOWSKI INEQUALITY, BUSEMANN-PETTY 
PROBLEM, DVORETZKY'S THEOREM, RADON TRANS- 
FORM,~TEREOLOGY 
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Tooth Surface 

The QUARTIC SURFACE given by the equation 

x4 + y4 + z4 - (x2 + y2 + z2) = 0. 
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Topological Basis 
A topological basis is a SUBSET B of a SET T in which 
all other OPEN SETS can be written as UNIONS or finite 
INTERSECTIONS of B. For the REAL NUMBERS, the SET 
of all OPEN INTERVALS is a basis. 

Topological Completion 
The topological completion C of a FIELD F with respect 
to the ABSOLUTE VALUE 1.1 is the smallest FIELD con- 
taining F for which all CAUCHY SEQUENCES or rationals 
converge. 
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Topologically Conjugate 
Two MAPS 4, $J : M --+ M are said to be topologically 
conjugate ifthere EXISTS a HOMEOMORPHISM h: M --+ 
M such that 4 o h = h o $, i.e., h maps q-orbits onto 
&orbits. Two maps which are topologically conjugate 
cannot be distinguished topologically. 

see UZSO ANOSOV DIFFEOMORPHISM, 
STABLE 

Topological Dimension 

see LEBESGUE COVERING DIMENSION 

STRUCTURALLY 

Topological Entropy 
The topological entropy of a MAP M is defined as 

h-(M) = SUP h(W{Wi)), 
Wd 

where {Wi} is a partition of a bounded region W con- 
taining a probability measure which is invariant under 
M, and sup is the SUPREMUM. 
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Topological Groupoid 
A topological groupoid over B is a GROUPOID G such 
that B and G are TOPOLOGICAL SPACES and a, p, and 
multiplication are continuous maps. Here, QI and p are 
maps from G onto Iw2 with Q: : (~,y, y) t+ 61: and p : 

(w7 Y> * Y. 
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Topological Manifold 
A TOPOLOGICAL SPACE AJ satisfying some separability 
(i-e., it is a HAUSDORFF SPACE) and countability (i.e., it 
is a PARACOMPACT SPACE) conditions such that every 
point p E M has a NEIGHBORHOOD homeomorphic to 
an OPEN SET in R” for some n >_ 0. Every SMOOTH 

MANIFOLD is a topological manifold, but not necessarily 
vice versa. The 
occurs in 4-D. 

first nonsmooth topological manifold 

Nonparacompact manifolds are of little use in math- 
ematics, but non-Hausdorff manifolds do occasionally 
arise in research (Hawking and Ellis 1975). For man- 
ifolds, Hausdorff and second countable are equivalent 
to Hausdorff and paracompact, and both are equiva- 
lent to the manifold being embeddable in some large- 
dimensional Euclidean space. 

see also HAUSDORFF SPACE, MANIFOLD, PARACOM- 
PACT SPACE, SMOOTH MANIFOLD, TOPOLOGICAL 
SPACE 
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Topological Space 
A SET X for which a TOPOLOGY T has been specified 
is called a topological space (Munkres 1975, p* 76). 

see also KU 'RATOWSKI'S CLOSURE-COMPONENT 
LEM, OPEN SET,TOPOLOGICAL VECTOR SPACE 
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Topological Vector Space 
A TOPULOGICAL SPACE such that the two algebraic op- 

erations of VECTOR SPACE are continuous in the topol- 

%Y* 
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Topology 

Topologically Transitive 
A FUNCTION f is topologically transitive if, given any 
two intervals U and V, there is some POSITIVE INTEGER 
k such that f”(U) n V = 0. Vaguely, this means that 
neighborhoods of points eventually get flung out to “big” 
sets so that they don’t necessarily stick together in one 
localized clump. 

see also CHAOS 

Topology 
Topology is the mathematical study of properties of ob- 
jects which are preserved through deformations, twist- 
ings, and stretchings. (Tearing, however, is not allowed.) 
A CIRCLE is topologically equivalent to an ELLIPSE (into 
which it can be deformed by stretching) and a SPHERE 
is equivalent to an ELLIPSOID. Continuing along these 
lines, the SPACE of all positions of the minute hand on 
a clock is topologically equivalent to a CIRCLE (where 
SPACE of all positions means “the collection of all po- 
sitions”). Similarly, the SPACE of all positions of the 
minute and hour hands is equivalent to a TORUS. The 
SPACE of all positions of the hour, minute and second 
hands form a 4-D object that cannot be visualized quite 
as simply as the former objects since it cannot be placed 
in our 3-D world, although it can be visualized by other 
means. 

There is more to topology, though. Topology began with 
the study of curves, surfaces, and other objects in the 
plane and 3-space. One of the central ideas in topology 
is that spatial objects like CIRCLES and SPHERES can 
be treated as objects in their own right, and knowledge 
of objects is independent of how they are “represented” 
or “embedded” in space. For example, the statement 
“if you remove a point from a CIRCLE, you get a line 
segment” applies just as well to the CIRCLE as to an 
ELLIPSE, and even to tangled or knotted CIRCLES, since 
the statement involves only topological properties. 

Topology has to do with the study of spatial objects 
such as curves, surfaces, the space we call our universe, 
the space-time of general relativity, fractals, knots, man- 
ifolds (objects with some of the same basic spatial prop- 
erties as our universe), phase spaces that are encoun- 
tered in physics (such as the space of hand-positions of 
a clock), symmetry groups like the collection of ways of 
rotating a top, etc. 

The “objects” of topology are often formally defined as 
TOPOLOGICAL SPACES. If two objects have the same 
topological properties, they are said to be HOMEOMOR- 
PHIC (although, strictly speaking, properties that are 
not destroyed by stretching and distorting an object are 
really properties preserved by ISOTOPY, not HOMEO- 

MORPHISM; ISOToPY has to do with distorting embed- 
ded objects, while HOMEOMURPHISM is intrinsic). 

Topology is divided into ALGEBRAIC TOPOLOGY (also 
called COMBINATORIAL TOPOLOGY), DIFFERENTIAL 
TOPOLOGY, and LOW-DIMENSIONAL TOPOLOGY. 
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There is also a formal definition for a topology defined in 
terms of set operations. A SET X along with a collection 
T of SUBSETS of it is said to be a topology if the SUBSETS 
;n T obey the following properties: 111 

1. 

2. 

3. 

The (trivial) subsets X and the EMPTY SET 0 are 
in T. 

Whenever sets A and B are in T, then so is A n B. 

Whenever two or more sets are in T, then so is their 
UNION 

(Bishop and Goldberg 1980). 

A SET X for which a topology T has been specified 
is called a TOPOLOGICAL SPACE (Munkres 1975, p. 76). 
For example, the SET X = (0, 1, 2, 3) together with the 
SUBSETS T = {0}, { 1, 2, 3}, 0, (0, 1, 2, 3)) comprises 
a topology, and X is a TOPOLOGICAL SPACE. 

Topologies can be built up from TOPOLOGICAL BASES. 

For the REAL NUMBERS, the topology is the UNION of 
OPEN INTERVALS. 

see also ALGEBRAIC TOPOLOGY, DIFFERENTIAL To- 
POLOGY, GENUS, KLEIN BOTTLE, KURATOWSKI RE- 
DUCTION THEOREM, LEFSHETZ TRACE FORMULA, 
LOW-DIMENSIONAL TOPOLOGY, POINT-SET TOPOL- 
OGY, ZARISKI TOPOLOGY 
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Topos 
A CATEGORY modeled after the properties of the CAT- 
EGORY of sets. 

see also CATEGORY, LOGOS 
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Amster- 

Toposes. 

Toric Variety 
Let ml, m2, ..-, m, be distinct primitive elements of 
a 2-D LATTICE M such that det(mi, mi+l) > 0 for i = 
1, l *., ?t. Each collection I? = {ml, mz, . . . , m,} then 
forms a set of rays of a unique complete fan in M, and 
therefore determines a 2-D toric variety Xr. 
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Torispherical Dome 

I 4 v \ I’ \ \ I \ I : I I I 
A toriskherical dome is the surface obtained from the 
intersection of a SPHERICAL CAP with a tangent TORUS, 
as illustrated above. The radius of the sphere R is called 
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the “crown radius,” and the radius of the torus is called 
the “knuckle radius .” Torispherical domes are used to 
construct pressure vessels. 

see also DOME, SPHERICAL CAP 

Torn Square Fkactal 

see CES~RO FRACTAL 

where sinhz is the HYPERBOLIC SINE and coshz is the 
HYPERBOLIC COSINE. The SCALE FACTORS are 

h, = 
a 

cash v - cos u (4) 

h, = 
a 

cash v - cosu (5) 

h# = 
a sinh v 

cash v - cosu’ (6) 

Toroid 
The LAPLACIAN~~ 

A SURFACE OF REVOLUTION obtained by rotating a 
closed PLANE CURVE about an axis parallel to the plane 
which does not intersect the curve. The simplest toroid 
is the TORUS. 

see also PAPPUS’S CENTROID THEOREM, SURFACE OF 
REVOLUTION,TORUS 

Toroidal Coordinates 
2 

4 

A system of CURVILINEAR COORDINATES for which sev- 
eral different notations are commonly used. In this work 
(u, v, 4) is used, whereas Arfken (1970) uses (5, q~, cp). 
The toroidal coordinates are defined by 

X= 
a sinh v cos q5 

coshv - cosu (1 

Y= 
a sinh v sin q5 

cash v - cos u (2 
a sin u 

z= 
coshv - COW (3 

02f (coshv - cosu)’ d 1 w  - - 
a2 Bu cash w  - cos u du > 

+ (coshv - COSU)~ d sinh v af 
a2 sinh w  Bv cash v - cos u dv > 

+ (cash v - cosu)2 a”f 

a2 sinh v w2 

-3 cos coth2 w  + coshv coth2 v - - 
( cash v - cosu 

+ +3 cos2 u coth v csch w  - cos3 u csch2 v 

cash w  - cosu > 

a2 

w2 

d 2 a2 
+(COS u - coshv) sinu& + (coshv - cos u) dU2 

+(cosh v - cos u)(cosh w  coth v - sinh v 

d 
- cos u coth v) Bv + (cosh2 v - cos u) 

2 a2 dv2. 

(7) 

(8) 

The HELMHOLTZ DIFFERENTIAL EQUATION is notsepa- 
rable in toroidal coordinates, but LAPLACE’S EQUATION 
1s. 

see also BISPHERXCAL COORDINATES, LAPLACE'S 
EQUATION-T• ROIDAL COORDINATES 
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Academic Press, pp. 112415, 1970. 
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Toroidal Field 
A VECTOR FIELD resembling a TORUS which is purely 
circular about the Z-AXIS of a SPHERE (i.e., follows lines 
of LATITUDE). A toroidal field takes the form 

T= 

see also DIVERGENCELESS FIELD, POLOIDAL FIELD 

References 
Stacey, F. D. Physics of the Earth, 2nd ed. New York: Wiley, 
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Toroidal Function 
A class of functions also called RING FUNCTIONS which 
appear in systems having toroidal symmetry. Toroidal 
functions can be expressed in terms of the LEGENDRE 

FUNCTIONS and SECOND KINDS (Abramowitz and Ste- 
gun 1972, p. 336): 

P;+(cosh~) = [I’(1 -j4]-122P(1 - ,-2~)-P,-~V+1’2)o 

x 2&(+ - p, $ + Y - p; 1 - 2/q 1 - C”“) 

P,“_l,2(coshv) = 
r(n + m + $)(sinhq)m 

r(n - m + $)2mJ,l?(m + i) 

s 7r 
X 

sin2”4 dq5 

0 (cash q + cos 4 sinh q)n+m+1/2 

Q r-1,2(coshq) = [I’(1 + ~)]-‘fieiP~~(~ + v + p) 

x (l-e-2’1)Pe-(“+w’1 
2F&--p, ++u+p; 1$-p; l-C2’) 

Q:-1/2(cosh77) = 
(-l)“r(n + +) 
l?(n - m+ f> 

cosh( mt) dt 

(coshq + cosht sinh q)“+1/2 

for n > m. Byerly (1959) identifies 

&=;(cothz) = cschn zd;$otfl) 
co xn 

as a TOROIDAL HARMONIC. 

see also CONICAL FUNCTION 

References 
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ical Tables, 9th printing. New York: Dover, p, 336, 1972. 
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Toroidal Harmonic 

see TOROIDAL FIJNCTION 

Toroidal Polyhedron 
A toroidal polyhedron is a POLYHEDRON with GENUS 

g 2 1 (i.e., having one or more HOLES). Examples of 
toroidal polyhedra include the CS~;SZ~;R POLYHEDRON 

and SZILASSI POLYHEDRON, bothofwhich have GENUS 
1 (i.e., the TOPOLOGY of a TORUS). 

The only known TOROIDAL POLYHEDRON with no Dr- 

AGONALS is the CSASZAR POLYHEDRON. If another ex- 
ists, it must have 12 or more VERTICES and GENUS 
g > 6. The smallest known single-hole toroidal POLY- 

HEDRON made up of only EQUILATERAL TRIANGLES is 
composed of 48 of them. 

see &OCS~Z~RPOLYHEDRON,SZILASSI POLYHEDRON 

References 
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Toronto Function 

T(m, n, T) E 
r(+ + +) 

n~r-2n+m-l lFl($i -I- n;r2), 
l  

where lFl (qb;z) is a CONFLUENT HYPERGEOMET- 
RIG FUNCTION and r(z) is the GAMMA FUNCTION 

(Abramowitz and Stegun 1972). 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
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Torricelli Point 

see FERMAT POINT 

Torsion (DifferentiaI Geometry) 
The rate of change of the OSCULATING PLANE of a 
SPACE CURVE. The torsion T is POSITIVE for a right- 
handed curve, and NEGATIVE for a left-handed curve. 
A curve with CURVATURE K # 0 is planar IFF 7 = 0. 

The torsion can be defined by 

T E -N l  B’, 

where N is the unit NORMAL VECTOR and B is the 
unit BINORMAL VECTOR. Written explicitly in terms of 
a parameteriaed VECTOR FUNCTION x, 

where jab cl denotes a SCALAR TRIPLE PRODUCT and 
p is the RADIUS OF CURVATURE. The quantity l/-r is 
called the RADIUS OF TORSION and is denoted 0 or 4. 

see also CURVATURE, RADIUS OF CURVATURE, RADIUS 

OF TORSION 
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Torsion (Group Theory) 
If G is a GROUP, then the torsion elements To@) of G 
(also called the torsion of G) are defined to be the set 
of elements g in G such that gn = e for some NATURAL 

NUMBER n, where e is the IDENTITY ELEMENT of the 
GROUP G. 

In the case that G is ABELIAN, Tar(G) is a SUBGROUP 
and is called the torsion subgroup of G. If Tar(G) con- 
sists only of the IDENTITY ELEMENT, the GROUP G is 

called torsion-free. 

see also ABELIAN GROUP, GROUP, IDENTITY ELEMENT 

Torsion Number 
One of a set of numbers defined in terms of an invariant 
generated by the finite cyclic covering spaces of a KNOT 
complement. The torsion numbers for KNOTS up to 9 
crossings were cataloged by Reidemeister (1948). 

References 
Reidemeister, K. Knotentheorie. New York: Chelsea, 1948. 
Rolfsen, D. “Torsion Numbers.” §6A in Knots and Links. 

Wilmington, DE: Publish or Perish Press, pp. 145-146, 
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Torsion Tensor 
The TENSOR defined by 

TEik z -(I’ljk - I?&), 

where rzjk are CONNECTION COEFFICIENTS. 

see also CONNECTION COEFFICIENT 

Torus 

A torus is a surface having GENUS 1, and therefore pos- 
sessing a single “HOLE." The usual torus in 3-D space is 
shaped like a donut, but the concept of the torus is ex- 
tremely useful in higher dimensional space as well. One 
of the more common uses of n-D tori is in DYNAMICAL 

SYSTEMS. A fundamental result states that the PHASE 

SPACE trajectories of a HAMILTONIAN SYSTEM with n 

DEGREESOF FREEDOM andpossessing n INTEGRALS OF 
MOTION lie on an n-D MANIFOLD whichistopologically 
equivalent to an n-torus (Tabor 1989). 

The usual 3-D “ring” torus is known in older literature 
as an “ANCHOR RING? Let the radius from the center 
of the hole to the center of the torus tube be c, and the 

Torus 

radius of the tube be a. Then the equation in CARTE- 
SIAN COORDINATES is 

(c - @q)2 -I- x2 = a2. (1) 

The parametric equations of a torus are 

X- (c+acosv)cosu 

y= (c+acosv)sinu 

z = asinv 

(2) 
(3) 
(4) 

for u, v f [0,27r). Three types of torus, known as the 
STANDARD TORI, are possible, depending on the relative 
sizes of a and c. c > a corresponds to the RING TORUS 
(shown above), c = a corresponds to a HORN TORUS 
which is tangent to itself at the point (0, 0, 0), and 
c < a corresponds to a self-intersecting SPINDLE TORUS 
(Pinkall 1986). 

If no specification is made, “torus” is taken to mean 
RING TORUS. Thethree STANDARD TORI areillustrated 
below, where the first image shows the full torus, the 
second a cut-away of the bottom half, and the third a 
CROSS-SECTION of a plane passing through the Z-AXIS. 

full view cutaway cross-section 

ring 
torus 

howl 
tOrUS 

spindle 
torus 

The STANDARD TORI and their inversions are CY- 

CLIIlES. If the coefficient of sinv in the formula for z 
is changed to b # a, an ELLIPTIC TORUS results. 

0 
To compute the metric properties of the ring torus, de- 
fine the inner and outer radii by 

T-C-U C 

R=c+a. 

(5) 

(6) 
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Solving for a and c gives 

a= +(R-r) 

C= $(R+r). 

Then the SURFACE AREA of this torus is 

(7) 

(8) 

An arbitrary point P on a torus (not lying in the xy- 
plane) can have four CIRCLES drawn through it. The 
first circle is in the plane of the torus and the second 
is PERPENDICULAR to it. The third and fourth CIR- 
CLES are called VILLARCEAU CIRCLES (Villarceau 1848, 
Schmidt 1950, Coxeter 1969, Melnick 1983). 

s = (27m)(27rc) = 4n2ac (9) 
= r2(R + r)(R - T>, (10) 

and the VOLUME can be computed from PAPPUS’S CEN- 

TROID THEOREM 

v = (7Ta2)2m = 2n2a2c (11) 
= ;r2(R + r)(R - r)2. (12) 

The coefficients of the first and second FUNDAMENTAL 

FORMS of the torus are given by 

To see that two additional CIRCLES exist, consider a 
coordinate system with origin at the center of torus, with 
% pointing up. Specify the position of P by its ANGLE 4 

measured around the tube of the torus. Define 4 = 0 for 
the circle of points farthest away from the center of the 
torus (i.e., the points with x2 +-y2 = R”), and draw the 
~-AXIS as the intersection of a plane through the z-axis 
and passing through P with the zy-plane. Rotate about 
the ~-AXIS by an ANGLE 8, where 

(23) 
- - -(c+acosw)cosw 

; 0 
- - 

g = -a 

E = (c + a cos v)” 

F=U 

G = a2, 

giving RIEMANNIAN METRIC 

ds2 = (c + a cos II)” du2 + a2 dv2, 

AREA ELEMENT 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

In terms of the old coordinates, the new coordinates are 

2 = xl cos 0 - z1 sin 0 (24) 

z = xl sin B + z1 cos 8. (25) 

So in (~1~~1, ~1) coordinates, equation (1) of the torus 
becomes 

251 sin8)2 + y12 - cl2 

+(x1 sin 0 + z1 cos 0)” = a2. (26) 

dA=a(c+acosu)du/\dw w  

(where du A dv is a WEDGE PRODUCT), and GAUSSIAN 

Squaring both sides gives 

(x1 cod - 21 sinQ2 + ~1’ + c2 

and MEAN CURVATURES as 

K- 
cos 21 

u(c + a cos v) 

HE- 
c+ 2acosv 

2a(c + a cos w) 

(Gray 1993, pp. 289-291). 

A torus with a HOLE in its surface can 

(21) 

(22) 

be turned inside 
out to yield an identical torus. A torus can be knotted 
externally or internally, but not both. These two cases 
are AMBIENT ISOTOPIES, but not REGULAR ISOTOPIES. 

There are therefore three possible ways of embedding a 
torus with zero or one KNOT. 

- 2cy/(x1 cos 8 - 251 sin8)2 + y12 

+(x1 sin0 + ~1 co~8)~ = a2. (27) 

But 

(x1 cod - 2 z1 sin0)2 + (x1 sin0 + zlc0s8)~ = xl2 + ~1 , 

(28) 
so 

x12+y12+z12+c2-2c (x1 cos 8 - 251 sin8)2 + y12 = a2. 

(29) 
In the ~1 = 0 plane, plugging in (23) and factoring gives 

[xl2 + (y1 - a) 2 - c2][x1” + (y1 + a) - c”] = 0. (30) 

This gives the CIRCLES 

21~ + (~1 - a)" = c2 

and 

xl2 + (~1 + a)” = c2 

(31) 

(32) 
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in the ~1 plane. Written in MATRIX form with parameter 
t E [0,2n), these are 

ccost 
Cz= csint-a . [ 1 0 

In the original (z, y, z) coordinates, 

cod 0 -sin8 ccost 
I[ I csint + a 

0 ccost9cost - - [ 1 csint + a 
-c sin 8 cos t 

cos 0 0 sin8 ccost cz = 0 1 0 
- sin8 0 cos8 I[ 1 csint - a 

0 ccos8cost - - [ 1 csint-a . 
-c sin 8 cos t 

The point P must satisfy 

2 = asin = csinticost, 

so 
asin+ 

cost = - 
csin8 ’ 

Plugging this in for zcl and yI gives the ANGLE $ by 
which the CIRCLE must be rotated about the ~-AXIS in 

order to make it pass through P, 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

Y ‘1c, = tan-l a: = 0 csint + a cl/l - COG t + a - 
ccosecost - ccos8cost - 

(39 
The four CIRCLES passing through P are therefore 

Cz = L -sin$ co& 0 
0 0 1 

11 csint - a 
-c sin 8 cos t 

1 (41) 

[ 

(c+ucos~)cost 
c3 = (c+acos@sint 1 (42) 

usin@ 

c+ucost c4 = [ 0 1 . (43) 
asint 

RING TORUS, SPINDLE TORUS,SPIRIC SECTION, STAN- 
DARD TORI,TOROID,TORUS COLORING,TORUS CUT- 
TING 
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Torus Coloring 
The number of colors SUFFICIENT for MAP COLORING 
onasurfaceof GENUS g is given bythe HEAWOOD CON- 
JECTURE, 

where 1x1 is the FLOOR FUNCTION. The fact that x(g) 
(which is called the CHROMATIC NUMBER) is also NEC- 
ESSARY was proved by Ringel and Youngs (1968) with 
two exceptions: the SPHERE (which requires the same 
number of colors as the PLANE) and the KLEIN BOT- 
TLE. A g-holed TORUS therefore requires x(g) colors. 
Fur g = 0, 1, l .*, the first few values of x(g) are 4, 7, 
8, 9, 10, 11, 12, 12, 13, 13, 14, 15, 15, 16, . . . (Sloane’s 
A000934). 

see also CHROMATIC NUMBER, FOUR- COLOR THEO- 
REM, HE AWOOD CONJECTURE, KLEIN BOTTLE, MAP 
COLORING 
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see UZSO APPLE, CYCLIDE, ELLIPTIC TORUS, GENUS 
(SURFACE), HORN TORUS, KLEIN QUARTIC, LEMON, 
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Torus Cutting 
With n cuts of a TORUS of GENUS 1, the maximum 
number of pieces which can be obtained is 

N(n) = i(n” +3n2 +8n). 

The first few terms are 2, 6, 13, 24, 40, 62, 91, 128, 174, 
230, . . . (Sloane’s A003600) l  

see also CAKE CUTTING, CIRCLE CUTTING, CYLINDER 
CUTTING, PANCAKE CUTTING, PLANE CUTTING, PIE 
CUTTING,~QUARE CUTTING 
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Torus Knot 
A (p, q)-torus KNOT is obtained by looping a string 
through the HOLE of a TORUS p times with Q revolutions 
before joining its ends, where p and q are RELATIVELY 
PRIME. A (p, q)-torus knot is equivalent to a (q,p)-torus 
knot. The CROSSING NUMBER of a (p, q)-torus knot is 

c = min{p(q - 1>,4(P - 111 (1) 

(Murasugi 1991). The UNKNOTTING NUMBER of a 
(p, q)-torus knot is 

u= $(P - lk? - 1) (2) 

(Adams 1991). 

Torus knots with fewer than 11 crossings are the TRE- 
FOIL KNOT 03 ool (3, 2), SOLOMON'S SEAL KNOT 0500~ 

(5, 2), 07001 (7, 2), 08019 (4, 3), ogool (9, 2), and 10124 

(5, 3) (Adams et al. 1991). The only KNOTS which are 
not HYPERBOLIC KNOTS are torus knots and SATEL- 
LITE KNOTS (including COMPOSITE KNOTS). The(2,q), 
(3,4), and (3,5)-t orusknotsare ALMOST ALTERNATING 
KNOTS. 

The JONES POLYNOMIAL ofan (m, n)-TORUS KNOT is 

The BR .ACKET P 'OLYNOMIAL for the torus knot Kn = 

(2,n) is given by the RECURRENCE RELATI ON 

pL-l)(n-l)/2(1-~m+l +n+l +p+" 

1 - t2 
. (3) 

(Kn) = A (K,wl) + (-l)n-1A-3n+2, (4) 

where 

w  > 1 = -A3. 
(5) 

see also ALMOST ALTERNATING KNOT, HYPERBOLIC 
KNOT, KNOT, SATELLITE KNOT, SOLOMON'S SEAL 
KNOT,TREFOIL KNOT 
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Total Angular Defect 

~~~DESCARTES TOTAL ANGULAR DEFECT 

Total Curvature 
The total curvature of a curve is the quantity dm, 
where 4s the TORSION and rc, is the CURVATURE. The 
total curvature is also called the THIRD CURVATURE. 

see also CURVATURE,TORSION (DIFFERENTIAL GEOM- 
ETRY) 

Total Differential 

see EXACT DIFFERENTIAL 

Total Function 
A FUNCTION defined for all possible input values. 

Total Intersection Theorem 
If one part of the total intersection group of a curve 
of order n with a curve of order n1 + n2 constitutes 
the total intersection with a curve of order nl, then the 
other part will constitute the total intersection with a 
curve of order n2. 

References 
Coolidge, J. L. A Treatise on Algebraic Plane Curmes. New 
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Total Order 
A total order satisfies the conditions for a PARTIAL OR- 
DER plus the comparability condition. A RELATION 5 
is a partial order on a SET S if 

1. Reflexivity: a 5 a for all a E S 

2. Antisymmetry: a < b and b < a implies a = b - - 

3. Transitivity: a < b and b < c implies a < c, - - - 

and is a total order if, in addition, 

4. Comparability: For any a,b E S, either a 5 b or 
b < a. - 

see also PARTIAL ORDER, RELATION 

Total Space 
The SPACE E of a FIBER BUNDLE given by the MAP 
f : E -+ B, where B is the BASE SPACE of the FIBER 
BUNDLE. 

see also BASE SPACE, FIBER BUNDLE, SPACE 
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Totative and 
A POSITIVE INTEGER less than or equal to a number 
n which is also RELATIVELY PRIME to n, where 1 is 
counted as being RELATIVELY PRIME to all numbers. 
The number of totatives of rz is the value of the T~TIENT 
FUNCTION 4(n). 

see also RELATIVELY PRIME, T~TIENT FUNCTION 

Totient Function 

80- 

60 - 

40- 

20- 

20 40 60 80 100 

The totient function 4(n), also called Euler’s totient 
function, is defined as the number of POSITIVE INTE- 
GERS < n which are RELATIVELY PRIME to (i.e., do 
not contain any factor in common with) n, where 1 is 
counted as being RELATIVELY PRIME to all numbers. 
Since a number less than or equal to and RELATIVELY 
PRIME to a given number is called a TOTATIVE, the to- 
tient function 4(n) can be simply defined as the number 
of TOTATIVES of n. For example, there are eight TOTA- 
TIVES of 24 (1, 5, 7, 11, 13, 17, 19, and 23), so 4(24) = 8. 

By convention, 4(O) = 1. The first few values of 4(n) 
for n = 1, 2, . . l  are 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, . . . 
(Sloane’s AOOOOlO). 4(n) is plotted above for small n. 

For a PRIME p, 

4(P) = P - 1, (1) 

since all numbers less than p are RELATIVELY PRIME to 
p. If m = p” is a POWER of a PRIME, then the numbers 
which have a common factor with m are the multiples of 
p: p, 2p, . . . , (pa-l)p* There are pa-’ of these multiples, 
so the number of factors RELATIVELY PRIME to p” is 

($(p”) = pa - pa-l = pa-l(p - 1) z pa 
( > 

I- ; * (2) 

Now take a general m divisible by p. Let &(m) be the 
number of 'POSITIVE INTEGERS 5 m not DIVISIBLE by 
p. As before, p, 2p, . . . , (m/p)p have common factors, 
so 

&(m) =m- F =m 1-b . 
( > 

(3) 

Now let q be some other PRIME dividing m. The INTE- 
GERS divisible by q are q, 2q, . . . , (m/q)q. But these du- 
plicate pq, 2pq, . . . , (m/pq)pq. So the number of terms 
which must be subtracted from tip to obtain & is 

=m(l-i)-:(1--i) 

=m(d) (1-i). (5) 

By induction, the general case is then 

s(n)=n(d-) (1-k)...(1--J-). (6) 

An interesting identity relates 4(n2) to 4(n), 

e> = nt$(n). (7) 

Another identity relates the DIVISORS d of n to n via 

d 

(8) 

The DIVISOR FUNCTION satisfies the CONGRUENCE 

no(n) = 2 (mod 4(n)) (9) 

for all PRIMES and no COMPOSITE with the exceptions of 
4, 6, and 22 (Subbarao 1974), where o(n) is the DIVISOR 
FUNCTION. No COMPOSITE solution is currently known 

n - I E 0 (mod 4(n)) 

(Honsberger 1976, p. 35). 

Walfisz (1963), building on the work of others, showed 
that 

i: 0 
3N2 

qh =- ~r2 + 6[N(lnlV)2’3(lnln N)“/“], (11) 
n=l 

and Landau (1900, quoted in Dickson 1952) showed that 

N 

IE 

1 
-=AlnN+B+O 
4( > n (12) 

n=l 

where 

“=C,,,= O” [ml” CPM3) 3155(3) -=- 
C(6) 2x4 

k=l 
. _ 

= 1.9435964368 . . . (13) 

k=l ” ’ 

= -0.0595536246.. . , (14) 



Totient Function Totient , Valence Function 

p(k) is the MOBIUS FUNCTION, C(Z) is the RIEMANN 
ZETA FUNCTION, and y is the EULER-MASCHERONI 
CONSTANT (Dickson). A can also be written 

A=fi 1 -Pk6 
00 

n[ 

1 
k--l (1 -pk-‘)(I -pk-3) = k l + pk(pk - 1) ’ 1 - = 1 (15) 

Note that this constant is similar to ARTIN,S CONSTANT. 

If the G~LDBACH CONJECTURE is true, then for every 
number m, there are PRIMES p and 4 such that 

6(P) + 4(Q) = 2m (16) 

(Guy 1994, p. 105). 

Curious equalities of consecutive values include 

#(5186) = 4(5187) = #(5188) = 2534 (17) 

+(2593o) = +(x935) = $(25940) = @(X942) = z7s4 

(18) 
@(404471) = $(404473) = 4(404477) = 2832527 (19) 

(Guy 1994) p. 91). 

The SUMMATORY totient function, plotted above, is de- 

fined by 
n 

k=l 

and has the asymptotic series 

@( > 
1 

X- -x2 + (xlnx) 
W) 

(21) 

3 
- px2 + O(xlnx), (22) 

where &z) is the RIEMANN ZETA FUNCTION (Perrot 
1881). The first values of Q(n) are 1, 2, 4, 6, 10, 12, 18, 

22, 28, . . . (Sloane’s A002088). 

see ah DEDEKIND FUNCTION, EULER'S TOTIENT 
RULE, FERMAT'S LITTLE THEOREM, LEHMER'S PROB- 
LEM, LEUDESDORF THEOREM, NONCOTOTIENT, NON- 
TOTIENT, SILVERMAN CONSTANT, TOTATIVE, TOTIENT 
VALENCE FUNCTION 
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Totient Function Constants 

see SILVERMAN CONSTANT, TOTIENT FUNCTION 

Tot ient Valence Function 
&(m) is the number of INTEGERS n for which 4(n) = 
m, also called the MULTIPLICITY of m (Guy 1994). The 
table below lists values for @(IV) < 50. - 
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b(N) TJ-n N 
1 2 1,2 

2 3 3, 4, 6 

4 4 5, 8, 10, 12 

6 4 7, 9, 14, 18 

8 5 15, 16, 20, 24, 30 

10 2 11, 22 

12 6 13, 21, 26, 28, 36, 42 

16 6 17, 32, 34, 40, 48, 60 

18 4 19, 27, 38, 54 

20 5 25, 33, 44, 50, 66 

22 2 23, 46 

24 10 35, 39, 45, 52, 56, 70, 72, 78, 84, 90 

28 2 29, 58 

30 2 31, 62 

32 7 51, 64, 68, 80, 96, 102, 120 

36 8 37, 57, 63, 74, 76, 108, 114, 126 

40 9 41, 55, 75, 82, 88, 100, 110, 132, 150 

42 4 43, 49, 86, 98 

44 3 69, 92, 138 

46 2 47,94 

48 11 65, 104, 105, 112, 130, 140, 144, 

156, 168, 180, 210 

A table listing the first value of 4(N) with multiplicities 
up to 100 follows (Sloane’s AOl4573). 

M 4 M + M 4 
0 3 26 2560 51 4992 
2 1 27 384 52 17640 
3 2 28 288 53 2016 
4 4 29 1320 54 1152 
5 8 30 3696 55 6000 
6 12 31 240 56 12288 
7 32 32 768 57 4752 
8 36 33 9000 58 2688 
9 40 34 432 59 3024 

10 24 35 7128 60 13680 
11 48 36 4200 61 9984 
12 160 37 480 62 1728 
13 396 38 576 63 1920 
14 2268 39 1296 64 2400 
15 704 40 1200 65 7560 
16 312 41 15936 66 2304 
17 72 42 3312 67 22848 
18 336 43 3072 68 8400 
19 216 44 3240 69 29160 
20 936 45 864 70 5376 
21 144 46 3120 71 3360 
22 624 47 7344 72 1440 
23 1056 48 3888 73 13248 
24 1760 49 720 74 11040 
25 360 50 1680 75 27720 

JJf 4 
76 21840 
77 9072 
78 38640 
79 9360 
80 81216 
81 4032 
82 5280 
83 4800 
84 4608 
85 16896 
86 3456 
87 3840 
88 10800 
89 9504 
90 18000 
91 23520 

92 39936 

93 5040 
94 26208 
95 27360 
96 6480 
97 9216 
98 2880 
99 26496 

100 34272 

It is thought that N&m) 2 2 (i.e., the totient valence 
function never takes on the value l), but this has not 
been proven. This assertion is called CARMICHAEL’S 

T~TIENT FUNCTION CONJECTURE and is equivalent to 
the statement that for all n, there exists m # n such 
that 4(n) = 4(m) (Ribenboim 1996, pp. 39-40). Any 
counterexample must have more than 10,000,000 DIGITS 
(Schlafly and Wagon 1994, Conway and Guy 1996). 

Tournament Matrix 

see &O CARMICHAEL’S TOTIENT FWNCTION CONJEC- 
TURE, TOTIENT FUNCTION 
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Touchard’s Congruence 

B p+k = Bk + Bk+l (mod P) j  

when p is PRIME and B, is a BELL NUMBER. 

see also BELL NUMBER 

Tour 
A sequence of moves on a chessboard by a CHESS piece 
in which each square of a CHESSBOARD is visited exactly 
once. 

see also CHESS, KNIGHT'S TOUR, MAGIC TOUR, TRAV- 
ELING SALESMAN CONSTANTS 

Tournament 
A COMPLETE DIRECTED GRAPH. A so-called SCORE 
SEQUENCE can be associated with every tournament. 
Every tournament contains a HAMILTONIAN PATH. 

see also COMPLETE GRAPH,DIRECTED GRAPH, HAM- 

ILTONIAN PATH,SCORE SEQUENCE 
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Tournament Matrix 
A matrix for a round-robin tournament involving rz play- 
ers competing in n(n - 1)/2 matches (no ties allowed) 
having entries 

i 

1 if player i defeats player j 
Uij = -1 if player i loses to player j 

0 if;=j. 

The MATRIX satisfies 

A+AT+I=J, 

where I is the IDENTITY MATRIX, J is an n x n MATRIX 

of all ls, and AT is the MATRIX TRANSPOSE of A. 
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The tournament matrix for n players has zero DETER- 
MINANT IFF n is ODD (McCarthy and Benjamin 1996). 
The dimension of the NULLSPACE of an n-player tour- 
nament matrix is 

dim [nullspace] = 
0 for n even 
1 for n odd 

(McCarthy 1996). 
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Tower of Power 

see POWER TOWER 

Towers of Hanoi 

A PUZZLE invented by E. Lucas in 1883. Given a stack of 
n disks arranged from largest on the bottom to smallest 
on top placed on a rod, together with two empty rods, 
the towers of Hanoi puzzle asks for the minimum number 
of moves required to reverse the order of the stack (where 
moves are allowed only if they place smaller disks on top 
of larger disks). The problem is ISoMORPHIC to finding 
a HAMILTONIAN PATH on an n-HYPERCUBE. 

For n disks, the number of moves 
by the RECURRENCE RELATION 

h, required is given 

hn = 2h n-1+ 1. 

Solving gives 
h, = 2” - 1. 

The number of disks moved after the &h step is the 
same as the element which needs to be added or deleted 
in the kth ADDEND of the RYSER FORMULA (Gardner 
1988, Vardi 1991). 

A HANOI GRAPH can be constructed whose VERTICES 
correspond to legal configurations of n towers of Hanoi, 
where the VERTICES are adjacent if the corresponding 
configurations can be obtained by a legal move. It can 
be solved using a binary GRAY CODE. 

Poole (1994) gives Mathematic@ (Wolfram Research, 
Champaign, IL) routines for solving an arbitrary disk 
configuration in the fewest possible moves. The proof 
of minimality is achieved using the LUCAS CORRESPON- 
DENCE which relates PASCAL’S TRIANGLE to the HANOI 

GRAPH. ALGORITHMS are known for transferring disks 
for four pegs, but none has been proved minimal. For 
additional references, see Poole (1994). 

see UZSO GRAY CODE, RYSER FORMULA 
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Trace (Complex) 
The image of the path y in c under the FUNCTION f is 
called the trace. This term is unrelated to that applied 
to MATRICES and TENSORS. 

Trace (Group) 

see CHARACTER (GROUP) 

Trace (Map) 
Let a PATCH be given by the map x : U -+ R”, where U 
is an open subset of Iw2, or more generally by x : A + 
R”, where A is any SUBSET of R2. Then x(U) (or more 
generally, x(A)) is called the trace of x. 

see also PATCH 
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Trace (Matrix) 
The trace of an n x n SQUARE MATRIX A is defined by 

n(A) E aii, (1) 

where EINSTEIN SUMMATION is used (i.e., the aii is 
summed over i = 1, . . . , n). For SQUARE MATRICES 
A and B, it is true that 

n(A) = n(AT) (2) 
n-(A + B) = n-(A) + n(B) (3) 

n(aA) = an(A) (4 



1824 ClYace (Matrix) lkac trix 

(Lange 1987, p. 40). The trace is invariant under a SIM- 
ILARITY TRANSFORMATION 

A’ E BAB-1 (5) 

(Lange 1987, p, 64). Since 

(bab-l)ij = bila&$, (6) 

m(BAB-l) = bilalkb-lki 

= (bmlb)kmk = dklalk 

= akk = WA), (7) 

where 6~ is the KRONECKER DELTA. 

The trace of a product of square matrices is independent 
of the order of the multiplication since 

n(AB) = (ab)ii = aijbji = bjia;j see also CONTRACTION (TENSOR) 
- - (b > a jj = Tr(BA). (8) 

Tractory 

see TRACTRIX Therefore, the trace of the COMMUTATOR of A and B is 
given by 

n( [A, B]) = Tr(AB) - n( BA) = 0. (9) 

The product of a SYMMETRIC and an ANTISYMMETRIC 
MATRIX has zero trace, 

Tr(Adh) = o. (10) 

The value of the trace can be found using the fact that 
the matrix can always be transformed to a coordinate 
system where the Z-AXIS lies along the axis of rotation. 
In the new coordinate system, the MATRIX is ' 

A I - - [ 

cos 4 sin4 0 
- sin@ COST 0 1 , (11) 

0 0 1 

so the trace is 

n-(A’) = n(A) s aii = 1 + 2 cos 6. (12) 
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Trace (Tensor) 
The trace of a second-RANK TENWR T is a SCALAR 
given by the CONTRACTED mixed TENSOR equal to Y$ 
The trace satisfies 

Tr 
d 

~-w&f(“) I ?- ln[det(x)], = dxX 

and 

bln[detM] = ln[det(M + 6&Z)] - ln(detM) 

= ln dewf + 6M) 

[ detM 1 
= ln[detMA1(M + NM)] 

= ln[det(l + M%V)] 

==: ln[l + Tr(M%M)] 

z Tr(it!Pmf). 

Tract& 

The tractrix is the CATENARY INVOLUTE described by a 
point initially on the vertex. It has a constant NEGATIVE 
CURVATURE and is sometimes called the TRACTORY or 
EQUITANGENTIAL CURVE. The tractrix was first studied 
by Huygens in 1692, who gave it the name “tractrix.” 
Later, Leibniz, Johann Bernoulli, and others studied the 
curve. 

master 

The tractrix arises from the following problem posed to 
Leibniz: What is the path of an object starting off with 
a vertical offset when it is dragged along by a string of 
constant length being pulled along a straight horizontal 
line? By associating the object with a dog, the string 
with a leash, and the pull along a horizontal line with 
the dog’s master, the curve has the descriptive name 
HUNDKURVE (hound curve) in German. Leibniz found 
the curve using the fact that the axis is an asymptote 
to the tractrix (MacTutor Archive). 

In CARTESIAN COORDINATES the tractrix has equation 

X = a sech-’ (1) 
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One parametric form is 

z(t) = a(t - tanht) 

Y(f) = a sech t. 
(2) 

(3) 

t 

cl 

-i 

2 

t 
The ARC LENGTH,~URVATURE, and TANGENTIAL AN- 
GLE are 

4t) = ln(cosh t) (4 

4) = csch t (5) 

4(t) = 2 tan-l[tanh( it II* (6) 

A second parametric form in terms of the 
the straight line tangent to the tractrix is 

ANGLE 4 of 

x = a{ln[tan(#] + co@} 

y = asin 

(7) 

(8) 

(Gray 1993). This parameterization -has CURVATURE 

A parameterization which traverses 
constant speed a is given by 

the tractrix with 

1 uf?+ for zt E [O,oo) 
x(t) = uev/a for 21 E (-oo,O] 

(10) 

f a[tanh-‘(l/l - e-2v/a) - dl - e--2v/a] 

Y(t) = 
for 21 E [O,oo) 

a[- tanh-‘(dm) + 4-1 
for 21 E (-oo,O]. 

(11) 

When a tractrix is rotated around its asymptote, a 
PSEUD~SPHERE results. This is a surface of constant 
NEGATIVE CURVATURE. For a tractrix, the length of 
a TANGENT from its point of contact to an asymptote 
is constant l  The AREA between the tractrix and its 
asymptote is finite. 

see also CURVATURE, DINI’S SURFACE, MICE PROBLEM, 
PSEUDOSPHERE, PURSUIT CURVE,TRACTROID 
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Tractrix Evolute 
The EVOLUTE of the TRACTRIX is the CATENARY. 

Tractrix Radial Curve 
The RADIAL CURVE of the TRACTRIX is the KAPPA 
CURVE. 

Tkactroid 

The SURFACE OF REVOLUTION produced by revolving 
the TRACTRIX 

X = sechu 

Z-U-tanhu 

(1) 

(2) 

about the Z-AXIS is a tractroid given by 

x = sechucosw 

y = sechusinw 

z =u-tanhu. 

(3) 

(4) 

(5) 

see also PSEUDOSPHERE, SURFACE OF REVOLUTION, 
TRACTRIX 

Transcendental Curve 
A curve which intersects some straight line in an infin- 
ity of points (but for which not every point lies on this 
curve) I 
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Transcendental Equation 
An equation or formula involving TRANSCENDENTAL 
FUNCTIONS. 
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Transcendental Function 
A function which “transcends,” i.e., cannot be expressed 
intermsof,the usual ELEMENTARY FUNCTIONS. Define 

and let 12 s 2(2(z)), etc. Th ese are called the “elemen- 
tary” transcendental functions (Watson 1966, p. 111). 

see also 
TIoN 

ALGEBRAIC FUNCTION, ELEMENTARY FUNC- 
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Transcendental Number 
A number which is not the ROOT of any POLYNOMIAL 
equation with INTEGER COEFFICIENTS, meaning that it 
not an ALGEBRAIC NUMBER of any degree, is said to be 
transcendental. This definition guarantees that every 
transcendental number must also be TRRATIONAL, since 
a RATIONAL NUMBER is, by definition, an ALGEBRAIC 
NUMBER of degree one. 

Transcendental numbers are important in the history 
of mathematics because their investigation provided the 
firstproofthat CIRCLE SQUARING, one of the GEOMET- 
RIC PROBLEMS OF ANTIQUITY which had bafied math- 
ematicians for more than 2000 years was, in fact, insolu- 
ble. Specifically, in order for a number to be produced by 
a GEOMETRIC CONSTRUCTION using the ancient Greek 
rules, it must be either RATIONAL or a very special kind 
of ALGEBRAIC NUMBER known as a EUCLIDEAN NUM- 
BER. Because the number r is transcendental, the con- 
struction cannot be done according to the Greek rules. 

Georg Cantor was the first to prove the EXISTENCE of 
transcendental numbers. Liouville subsequently showed 
how to construct special cases (such as LIOUVILLE'S 
CONSTANT) using LIOUVILLE'S RATIONAL APPROXIMA- 
TION THEOREM. In particular, he showed that any num- 
ber which has a rapidly converging sequence of ratio- 
nal approximations must be transcendental. For many 
years, it was only known how to determine if special 
classes of numbers were transcendental. The determi- 
nation of the status of more general numbers was con- 
sidered an important enough unsolved problem that it 
was one of HILBERT'S PROBLEMS. 

Great progress was subsequently made by GELFOND'S 
THEOREM, which gives a general rule for determining if 
special cases of numbers of the form P are transcen- 
dental. Baker produced a further revolution by proving 
the transcendence of sums of numbers of the form cy In p 
for ALGEBRAIC NUMBERS a and 0. 

The number e was proven to be transcendental by Her- 
mite in 1873, and PI (IT) by Lindemann in 1882. eT is 
transcendental by GELFOND's THEOREM since 

( 1) - --i = (ey-i = ey 

The GELFOND-SCHNEIDER CONSTANT 2& is alsotrans- 
cendental. Other known transcendentals are sin 1 where 
sin II: is the SINE function, Jo( 1) where J&z) is a BES- 
SEL FUNCTION OF THE FIRST KIND (Hardy and Wright 
1985), In 2, In 3/ In 2, the first zero 20 = 2.4048255.. . of 
the BESSEL FUNCTION Jo(zo) (Le Lionnais 1983, p. 46), 
7r + In 2 + &! In 3 (Borwein et al. 1989), the THUE- 
MORSE CONSTANT P = 0.4124540336.. . (Dekking 
1977, Allouche and Shallit), the CHAMPERNOWNE CON- 
STANT 0.1234567891011. l  . , the THUE CONSTANT 

0.110110111110110111110110l10.. . , 

I?( 5) (Le Lionnais 1983, p. 46), I?( $r-1/4 (Davis 1959), 
and r( $) (Ch u d novsky, Waldschmidt), where r(x) is the 
GAMMA FUNCTION. At least one of ne and 7~ + e (and 
probably both) are transcendental, but transcendence 
has not been proven for either number on its own. 

Itisnotknownife”, Y?,#,Y (the EULER-MASCHERONI 
CONSTANT), IO(~), or II(~) (where 1&c) is a MODIFIED 

BESSEL FUNCTION OF THE FIRST KIND) aretranscen- 
dent al. 

The “degree” of transcendence of a number can be char- 
acterized by a so-called LIOUVILLE-ROTH CONSTANT. 
There are still many fundamental and outstanding prob- 
lems in transcendental number theory, including the 
CONSTANT PROBLEM and SCHANUEL'S CONJECTURE. 

see also ALGEBRAIC NUMBER, CONSTANT PROB- 
LEM, GELFOND'S THEOREM, IRRATIONAL NUM- 
BER, LINDEMANN-WEIERSTRA~~ THEOREM,LIOUVILLE- 
ROTH CONSTANT, ROTH'S THEOREM, SCHANUEL'S 
CONJECTURE,THUE-SIEGEL-ROTH THEOREM 
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If the signal is modified in some way, it will become 

gv(t) = $(v)fv(t) = $(v)F(v)e2”i”t (3) 

dt) 
- - 

Sm 
gv (t) dt = 

r 
4(u) F(v)eaTivt du, 

--oo --oo 

(4) 

Hardy, G. H. and Wright, E. M. An Introduction to the The- where 4(u) is known as the “transfer function.” FOUR- 
ory of Numbers, 5th ed. Oxford, England: Oxford Univer- IER TRANSFORMING q5 and F, 
sity Press, 1985. 

Le Lionnais, F. Les nombres remarquables. Paris: Hermann, 
p* 46, 1983. 4(u) = rrn @(t)e-2”ivt dt (5) 

Siegel, C. L. Transcendental Numbers. New York: Chelsea, J-m 
1965. 

Transcritical Bifurcation 
Let f : Iw x Iw + Iw be a one-parameter family of C2 
maps satisfying 

F(v) = 
SW 

f(t) e 
-2bvt dt. 

-m 

Fromthe CONVOLUTION THEOREM, 

(6) 

f(OJ-4 = O (1) 

[ 1 af =l = , 
,g;x=; ] w -- - t t% p=o,x=p 

2 
af [ 1 dxh 00 

>o 

, a2f [ 1 d/J2 > 0. p=o,x=o 

(2) 

(3) 

(4) 

(5) 

Then there are two branches, one stable and one unsta- 
ble. This BIFURCATION is called a transcritical bifurca- 
tion. An example of an equation displaying a transcrit- 
ical bifurcation is 

g(t) = f(t) * a(t) = [m f (t)@(t - 7) dT. (7) 

see also 
FORM 

J --oo 

CONVOLUTION THEOREM, FOURIER TRANS- 

Transfinite Diameter 
Let 

4( > 2 =cz+co+c1z -I + c&c2 + . . . 

bean ANALYTIC FUNCTION,REGULAR and UNIVALENT 
for 1~1 > 1, which maps JzJ > 1 CONFORMALLY onto the 
region T preserving the POINT AT INFINITY and its di- 
rection. Then the function 4(z) is uniquely determined 
and c is called the transfinite diameter, sometimes also 
knownas ROBIN'S CONSTANT or the CAPACITY of+(z). 

k/ix--x2. (6) see &O ANALYTIC FUNCTION, REGULAR FUNCTION, 
UNIVALENT FUNCTION 

(Guckenheimer and Holmes 1997, p. 145). 

see also BIFURCATION 
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Transfer Function 
The engineering terminology for one use of FOURIER 
TRANSFORMS. By breaking up a wave pulse into its 
frequency spectrum 

Tkansfinite Number 
One ofcantor’s ORDINAL NUMBERS W, w+l, w+2,..., 
w  + w, w  + w  + 1, . . l  which is “larger” than any WHOLE 
NUMBER. 

see also No, HI, CARDINAL NUMBER, CONTINUUM, OR- 
DINAL NUMBER,~HOLE NUMBER 

References 
Pappas, T. “Transfinite Numbers.” The Joy of Mathematics. 

San Carlos, CA: Wide World Publ./Tetra, pp. 156-158, 
1989. 

Transform 

f F( > 
27eut 

V= ue 9 (1) 
A shortened term for INTEGRAL TRANSFORM. 

Geometrically, if S and T are two transformations, then 
the entire signal can be written as a sum of contributions the SIMILARITY TRANSFORMATION TSTB1 is some- 
from each frequency, . times called the transform (Woods 1961). 

f(t) = [Lfvdv = S_, F(v)e2”i”tdv. (2) 
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see also ABEL TRANSFORM, BOWSTROPHEDON TRANS- 
FORM, DISCRETE FOURIER TRANSFORM, FAST FOUR- 
IER TRANSFORM, FOURIER TRANSFORM, FRAC- 
TIONAL FOURIER TRANSFORM, HANKEL TRANS- 
FORM, HARTLEY TRANSFORM, HILBERT TRANSFORM, 
LAPLACE-STIELTJES TRANSFORM, LAPLACE TRANS- 
FORM, MELLIN TRANSFORM, NUMBER THEORETIC 
TRANSFORM, PONCELET TRANSFORM, RADON TRANS- 

FORM, WAVELET TRANSFORM, Z-TRANSFORM, Z- 
TRANSFORM 

References 
Woods, F. S. Higher Geometry: An Introduction to Advanced 

Methods in AnaZytic Geometry. New York: Dover, p. 5, 
1961. 

Transformat ion 

see FUNCTION, MAP 

Transitive 
A RELATION R on a SET S is transitive provided that 
for all z, y and x in S such that xRy and y&z, we also 
have xRz. 

see also ASSOCIATIVE, COMMUTATIVE, RELATION 

Transitive Closure 
The transitive closure of a binary RELATION R on a 
SET X is the minimal TRANSITIVE relation R’ on X 
that contains R. Thus aR’b for any elements a and b of 
X, provided either that aRb or that there exists some 
element c of X such that aRc and cRb. 

see also 
TION 

REFLEXIVE CLOSURE, TRANSITIVE REDUC- 

Transitive Reduction 
The transitive reduction of a binary RELATION R on 
a SET X is the minimum relation R’ on X with the 
same TRANSITIVE CLOSURE as R. Thus aR’b for any 
elements a and b of X, provided that aRb and there 
exists no element c of X such that aRc and cRb. 

see also REFLEXIVE REDUCTION, TRANSITIVE CLO- 
SURE 

Transitivity Class 
Let S(T) be the group of symmetries which map a 
MONOHEDRAL TILING T onto itself. The TRANSITIV- 
ITY CLASS of a given tile T is then the collection of all 
tiles to which T can be mapped by one of the symmetries 
of S(T). 

see also M~NOHEDRAL TILING 

References 
Berglund, J. “Is There a LAnisohedral Tile for Ic > 5?” 

- Amer. Math. Monthly 100, 585-588, 1993. 

Tkanslat ion 
A transformation consisting of a constant offset with no 
ROTATION or distortion. In n-D EUCLIDEAN SPACE, a 
translation may be specified simply as a VECTOR giving 

the offset in each of the n coordinates. 

see also AFFINE GROUP, DILATION, EUCLIDEAN 
GROUP,EXPANSION, GLIDE, IMPROPER ROTATION, IN- 
VERSION OPERATION, MIRROR IMAGE, REFLECTION, 
ROTATION 

References 
Beyer, W. H. (Ed.) CRC Standard lkfathematical Tables, 

28th ed. Coca Raton, FL: CRC Press, p. 211, 1987. 

Tkanslat ion Relation 
A mathematical relationship transforming a function 
f(x) to the form f (x + a). 

see also ARGUMENT ADDITION RELATION, ARGUMENT 
MULTIPLICATION RELATION, RECURRENCE RELATION, 
REFLECTION RELATION 

Transpose 
The object obtained by replacing all elements aij with 
Uji* For a second-RANK TENSOR Uij 3 the tensor trans- 
pose is simply GTji . The matrix transpose, written AT, 
is the MATRIX obtained by exchanging A’s rows and 
columns, and satisfies the identity 

T 
(A > --I = (A-l)T. 

The product of two transposes satisfies 

= (AB);. 

Therefore, 
(AB)T = BTAT. 

Transpose Map 

see PULLBACK MAP 

Transposition 
An exchange of two elements of a SET with all others 
staying the same. A transposition is therefore a PER- 
MUTATION of two elements. For example, the swapping 
of 2 and 5 to take the list 123456 to 153426 is a trans- 
position. 

see also PERMUTATION, TRANSPOSITION ORDER 

Transposition Group 
A PERMUTATION GROUP in which the PERMUTATIONS 
are limited to TRANSPOSITIONS. 

see also PERMUTATION GROUP 
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Transposition Order 
An ordering of PERMUTATIONS in which each two adja- 
cent permutations differ by the TRANSPOSITION of two 
elements. For the permutations of {1,2,3} there are 
two listings which are in transposition order. One is 
123, 132, 312, 321, 231, 213, and the other is 123, 321, 
312, 213, 231, 132. 

see also LEXICOGRAPHIC ORDER, PERMUTATION 

References 
Ruskey, F. UInformation on Combinations of a Set." 

http://sue.csc.uvic.ca/-cos/inf/comb/Combinations 
Inf o.html. 

Transversal Array 
A set of n cells in an n x n SQUARE such that no two 
come from the same row and no two come from the same 
column. The number of transversals of an n x n, SQUARE 
is n! (n FACTORIAL). 

Transversal Design 
A transversal design TDx(k, n) of order n, block size k, 
and index X is a triple (V, G, B) such that 

1. V is a set of kn elements, 

2. G is a partition of V into k classes, each of size n 

(the “groups”), 

3. B is a collection of k-subsets of V (the “blocks”), 
and 

4. Every unordered pair of elements from V is contained 
in either exactly one group or in exactly X blocks, but 
not both. 

References 
Colbourn, c. J. and Dinita, J. I-I. (Eds.) CRC Handbook 

of Combinatorial Designs. Boca Raton, FL: CRC Press, 
p. 112, 1996. 

Transversal Line 
A transversal line is a LINE which intersects each of a 
given set of other lines. It is also called a SEMISECANT. 

see also LINE 

Transylvania Lottery 
A lottery in which three numbers are picked at random 
from the INTEGERS l-14. 

see also FANO PLANE 

Trapdoor Function 
An easily computed function whose inverse is extremely 
difficult to compute. An example is the multiplication 
of two large PRIMES. Finding and verifying two large 
PRIMES is easy, as is their multiplication. l3ut factoriza- 
tion of the resultant product is very difficult. 

see also RSA ENCRYPTION 

References 
Gardner, M. Chs. 13-14 in Penrose Tiles and Trapdoor 

Giphers. . . and the Return of Dr. Matrix, reissue ed. New 
York: W. H. F'reeman, pp. 299-300,1989. 

Trapezium 
There are two common definitions of the trapezium. The 
American definition is a QUADRILATERAL with no PAR- 

ALLEL sides. The British definition for a trapezium is 
a QUADRILATERAL with two sides PARALLEL. Such a 
trapezium is equivalent to a TRAPEZOID and therefore 
has AREA 

A= $(a+b)h. 

see also DIAMOND, LOZENGE, PARALLELOGRAM, 
QUADRILATERAL,RHOMBOID,RHOMBUS,SKEW QUAD- 
RILATERAL, TRAPEZOID 

Tkapezohedron 

The trapezohedra are the DUAL POLYHEDRA of the Ar- 
chimedean ANTIPRISMS. However, their faces are not 
TRAPEZOIDS. 

see &OANTIPRISM,DIPYRAMID,HEXAGONAL SCALEN- 
OHEDRON,PRISM,TRAPEZOID 

References 
Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. 
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Trapezoid 

L!kd 
b 

A QUADRILATERAL with two sides PARALLEL. 
trapezoid depicted above satisfies 

m- $(a+b) 

and has AREA 

A= $(a+ b)h = mh. 

The 

The trapezoid is equivalent to the British definition of 
TRAPEZIUM. 

see ah PYRAMIDAL FRUSTUM,TRAPEZIUM 

References 
Beyer, W. H. (Ed.) CRC Standard Mathematical Tables, 

28th ed. Boca Raton, FL: CRC Press, p. 123, 1987. 

Trapezoidal Hexecontahedron 

see DELTOIDAL HEXECONTAHEDRON 



1830 Trapezoidal Icositetrahedron Traveling Salesman Constants 

0.34207 < y4 2 p(4) < 121'86-1'2 < 0.55696 

< 0.59460 < 2 -3/4 < - a(4) < 0.8364 - (5) 

Trapezoidal Icositetrahedron 

see DELTOIDAL ICOSITETRAHEDRON 

(Fejes T&h 1940, Verblunsky 1951, Few 1955, Beard- 
wood et al. 1959), where 

Trapezoidal Rule 

Jr) x 

f I 

Lkl 

f 2 

x, x, 

Td = 

r (3 + $) [r@+ l>pd 
2fi(d1i2 + d-li2) ’ 

(6) 

r(z)is the GAMMA FUNCTION, Gsanexpressioninvolv- 
ing STRUVE FUNCTIONS and NEUMANN FUNCTIONS, 

The 2-point NEWTON-C• TES FORMULA 
4 - 280(3 - a) 

= 840-28Ofi+4fi-m 
(7) 

s x2 

f(x) da: = +(fi + f2) - ;h3f”(& 
Xl (Karloff 1989), and 

where fi G f(zi), h is the separation between the points, 
and < is a point satisfying ~1 5 5 5 ~2. Picking < to 
maximize f”(c) g ives an upper bound for the error in 
the trapezoidal approximation to the INTEGRAL. 

see U~SO BODE'S RULE, HARDY'S RULE, NEWTON- 

COTES FORMULAS, SIMPSON'S 3/8 RULE, SIMPSON'S 
RULE,~EDDLE'S RULE 

(Goddyn 1990). In the LIMIT d --+ 00, 

0.24197 < /irmiryd = -J- < liminf P(d) 
1/2ne - d+m 

< lim supP(d) < lim 121’c2d’6-1’2 - - 
d+m d+m 

References 
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- - 5 < 0.40825 (9) 

and 

0.24197 < 
1 

- 5 lim a(d) 
J%G d-+= 

Traveling Salesman Constants 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point j-or this entry. < 2(3-d3)8 <04052 - &-$ . 1 (10) 
Let L(n, d) be the smallest TOUR length for n points in a 
d-D HYPERCUBE. Then there exists a smallest constant 
Cy(d) such that for all optimal TOURS in the HYPER- 

CUBE, ..-I I\ 

where 
+ 5 8 = hm[@(d)]'l" 5 0.6602, (11) 

lim sup L(% d) 
< 44, 

n+m ncd-w& - 

and 8(d) is the best SPHERE PACKING density in d-D 
space (Goddyn 1990, Moran 1984, Kabatyanskii and 
Levenshtein 1978). Steele and Snyder (1989) proved 
that the limit a(d) exists. 

and a constant P(d) such that for almost all optimal 
tours in the HYPERCUBE, 

Now consider the constant 

lim Lb, 4 
n+m n(d-l)ldJd = 

P(d) 
’ 

(2) 
K E lim 

72300 

y =@(2)Jz, 
n (12) 

These constants satisfy the inequalities 
so 

i = yzJ2 5 rc, 5 s& < 0.9204. (13) 0.44194 < y2 = fg2 < p(2) - 

< S < 0.6508 < 0.75983 < 3-1'4 < a(2) - - 
< qb < 0.98398 (3) - 

The best current estimate is fi E 0.7124. 

A certain self-avoiding SPACE-FILLING CWRVE is an op- 
timal TOUR through a set of n points, where 72 can be 
arbitrarily large. It has length 

0.37313 < 73 2 p(3) 5 l21'66-"2 < 0.61772 < 0.64805 

<2 1's3-1'2 2 a(3) < 0.90422 (4) X E lim - - 4(1 + 2J2)J51 _ 0 7147827 
m+oo 153 - l  l *" 
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where L, is the length of the curve at the nzth iteration 
and nm is the point-set size (Moscato and Norman). 
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Traveling Salesman Problem 
A problem in GRAPH THEORY requiring the most effi- 
cient (i.e., least total distance) TOUR (Le., closed path) 
a salesman can take through each of n cities. No gen- 
eral method of solution is known, and the problem is 
NP-HARD. 

see aho TRAVELING SALESMAN CONSTANTS 
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Trawler Problem 
A fast boat is overtaking a slower one when fog suddenly 
sets in. At this point, the boat being pursued changes 
course, but not speed. How should the pursuing vessel 
proceed in order to be sure of catching the other boat? 

The amazing answer is that the pursuing boat should 
continue to the point where the slow boat would be if it 
had set its course directly for the pursuing boat when the 
fog set in. If the boat is not there, it should proceed in 
a SPIRAL whose origin is the point where the slow boat 
was when the fog set in. The SPIRAL can be constructed 
in such a way that the two boats will intersect before a 
complete turn is made. 

References 
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Tkebly Magic Square 

see TRIMAGIC SQUARE 

7Ikedecillion 
In the American system, 1042. 

see also LARGE NUMBER 

Tree 

1 l 

2 - 

6 --z-i 
-+ * K 

A tree is a mathematical structure which can be viewed 
as either a GRAPH or as a DATA STRUCTURE. The two 
views are equivalent, since a tree DATA STRUCTURE con- 
tains not only a set of elements, but also connections 
between elements, giving a tree graph. 

A tree graph is a set of straight line segments connected 
at their ends containing no closed loops (cycles). A tree 
with n nodes has n - 1 EDGES. The points of connection 
are known as FORKS and the segments as BRANCHES. 
Final segments and the nodes at their ends are called 
LEAVES. A tree with two BRANCHES at each FORK and 
with one or two LEAVER at the end of each branch is 
called a BINARY TREE. 

When a special node is designated to turn a tree into 
a ROOTED TREE, it is called the ROOT (or sometimes 
“EVE?) In such a tree, each of the nodes which is one 
EDGE further away from a given EDGE is called a CHILD, 
and nodes connected to the same node are then called 
SIBLINGS. 

Note that two BRANCHES placed end-to-end are equiva- 
lent to a single BRANCH which means, for example, that 
there is only one tree of order 3. The number t(n) of 
nonisomorphic trees of order Y-J = 1, 2, . . . (where trees , 
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of orders 1, 2, . . . , 6 are illustrated above), are 1, 1, 1, 
2, 3, 6, 11, 23, 47, 106, 235, . + . (Sloane’s AOOO055). 

Otter showed that 

lim t(n)n5’2 ~ - p 
n-boo an - 7 (1) 

(Otter 1948, Harary and Palmer 1973, Knuth 1969), 
where the constants QC and p are sometimes called OT- 
TER'S TREE ENUMERATX~N CONSTANTS. Write the 
GENERATING FUNCTION for ROOTED TREES as 

where the CUEFFICIENTS are 

j=l \ dlj / 

with fo = 0 and fi = 1. Then 

a = 2.955765.. . 

is the unique POSITIVE ROOT of 

1 f( > - = 1, 
X 

P - - lr [l+ fy ($) $]3’z = 0. a- 
k=2 

5349485 . . 

(2) 

(3) 

(4 

(5) 

. . 

(6) 
see &O B-TREE, BINARY TREE, CATERPILLAR GRAPH, 

CAYLEYTREE, CHILDJIIJKSTRA TREE,EVE,FOREST, 
KRUSKAL'S ALGORITHM, KRUSKAL'S TREE THEOREM, 
LEAF (TREE), ORCHARD-PLANTING PROBLEM, OR- 
DERED TREE,PATH GRAPH,PLANTED PLANAR TREE, 
P~LYA ENUMERATION THEOREM, QUADTREE, RED- 
BLACK TREE,ROOT (TREE),ROOTED TREE, SIBLING, 
STARGRAPH,STERN-BROCOT TREE, WEAKLY BINARY 
TREE,~EIGHTED TREE 
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Tree-Planting Problem 

see ORCHARD-PLANTING PROBLEM 

Tree Searching 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

In database structures, two quantities are generally of 
interest: the average number of comparisons required to 

1. Find an existing random record, and 

2. Insert a new random record into a data structure. 

Some constants which arise in the theory of digital tree 
searching are 

QI. ~ = 1.6066951524.. . (1) 

1 

(2 n - 1)2 
= lJ373387363. . . . (2) 

n=l 

ErdGs (1948) p roved that QI is IRRATIONAL. The ex- 
pected 
is 

number of comparisons for a successful search 

In 12 Y-l 
E=ln2+ln2 

- a + ; + d(n) + 0(n-li2) (3) 

- lgn - 0.716644.. . + S(n), (4 

and for an unsuccessful search 

- lgn - 0.273948. l  . + S(n). (6) 

Here b(n), E(S), and p(n) are small-amplitude periodic 
functions, and LG is the base 2 LOGARITHM. The VARI- 
ANCE for searching is 

1 
V--+ - + 

r2 6 

12 6(ln 2)2 
-a-P+e(s) - 2.844383 s. .+E(s) (7) 

and for inserting is 

VW ;+yT 6(;’ 2) 
a - 0 + c(s) - 0.763014.. . + E(S). 

(8) 
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Trefoil Curve The expected number of pairs of twin vacancies in a 
digital search tree is 

(A,)= [8+l-$(~+a’-a)-p(n)]n 

where 

1 
l-3 > = 0.2887880950. . l  

k=l 

1 1 1 1 
--- - 

3 
3+-- 

* 3.545 3 
+. 

* 5 - 15 l  21 

= exp 
[-: nP”1- 111 

=/gexp($-&&) 

x ij [l-exp (-g)] 

and 

k2”+’ 
k 

x 

1 

k=l 
1m3.7.16a**(2k-1) 2j-1 

j-1 

= 7.7431319855,. . . 

(9) 

(10) 

(11) 

(12 

(13 

(14) 

(Flajolet and Sedgewick 1986). The linear COEFFICIENT 

of (A,) fluctuates around 

> 
= 0.3720486812.. . , 

(15) 
which can also be written 

1 O”z 

C=In o J’ 1+x 

dx 

x (1+ x)(1 + ix)(l+ $x)(1 + ix) l  ’ n l  

(16) 

(Flajolet and Richmond 1992). 
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The plane curve given by the equation 

x4 + x2y2 + y4 = x(x” - y”). 

Trefoil Knot 

The knot 03 001, also called the THREEFOIL KNOT, which 
is the unique PRIME KNOT of three crossings. It has 
BRAID WORD a13* The trefoil and its MIRROR IMAGE 
are not equivalent. The trefoil has ALEXANDER POLY- 
NOMIAL --x2 + x - 1 and is a (3, 2)-TORUS KNOT. The 
BRACKET POLYNOMIAL can be computed as follows. 

(I;) = A3d2-l + A2Bd1-’ + A2Bd1-’ + AB2d2-1 

+ A2Bd1-l + AB2d2-l + AB2d2-1 + B3d3-l 

= A3d1 + 3A2Bd0 + 3AB2d1 + B3d2. 

Plugging in 

B = A-’ 

d= -A2 _ A-2 

gives 
(L) = A-7 - A-3 - A5, 

The normalized one-variable KAUFFMAN POLYNOMIAL 
X is then given by 

XL = (-A3)-“tL) (L) = (-A3)-3(A-7 _ A-3 - A5) 

- - K4 + A-l2 - A-l” 1 

where the WRITHE w(L)= 3. The JONES POLYNOMIAL 
is therefore 

v(t) = L(A = t-1'4) = t+ t3 - t4 = t(l+t2 - t”). 

Since V(P) # V(t), we have shown that the mirror 
images are not equivalent. 
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SUNBEAM DETECTOR 

Triabolo 
A 3-PoLYABoLo. 

Triacontagon 
A 30-sided POLYGON. 

Triacontahedron 
A 3O-sided POLYHEDRON such as the RHOMBIC TRIA- 
CONTAHEDRON. 

Triad 
A SET with three elements. 

see also HEXAD, MONAD, QUARTET, QUINTET, 
TETRAD 

Triakis Icosahedron 

The DUAL POLYHEDRON ofthe TRUNCATED D~DECA- 
HEDRON ARCHIMEDEAN SOLID. Thetriakisicosahedron 
is also ICOSAHEDRON STELLATION #2. 

References 
Wenninger, M. J. Polyhedron Models. New York: Cambridge 

University Press, p. 46, 1989. 

Triakis Octahedron 

see GREAT TRXAKIS OCTAHEDRON, SMALL TRIAKE 
OCTAHEDRON 

Triakis Tetrahedron 

The DUAL POLYHEDRON ofthe TRUNCATEDTETRAHE- 
DRON ARCHIMEDEAN SOLID. 

Trial 
In statistics, a trial is a single measurable random event, 
such as the flipping of a COIN, the generation of a RAN- 
DOM NUMBER, the dropping of a ball down the apex of 
a triangular lattice and having it fall into a single bin at 
the bottom, etc. 

see also BERNOULLI TRIAL, LEXIS TRIALS, POISSON 
TRIALS 

Trial Division 
A brute-force method of finding a DIVISOR of an INTE- 
GER n by simply plugging in one or a set of INTEGERS 
and seeing if they DIVIDE n. Repeated application of 
trial division to obtain the complete PRIME FACTOR- 
IZATION ofanumberiscalled DIRECT SEARCH FACTOR- 
IZATION. An individual integer being tested is called a 
TRIAL DIVISOR. 

see also DIRECT SEARCH FACTORIZATION, DIVISION, 
PRIME FACTORIZATION 

Trial Divisor 
An INTEGER n which is tested to see if it divides a given 
number. 

see also TRIAL DIVISION 

Triamond 

The unique %POLYIAMOND, illustrated above. 

see also POLYIAMOND, TRAPEZOID 

Triangle 

Acute 
Scalene Triangle 

Equilateral 
TriangIe 

Isosceles 
Triangle 

Obtuse 
Scaiene Triangle 

Right 
Triangle 

A triangle is a 3-sided POLYGON sometimes (but not 
very commonly) called the TRIGON. All triangles are 
convex. An ACUTE TRIANGLE is a triangle whose three 
angles are all ACUTE. A triangle with all sides equal is 
called EQUILATERAL. A triangle with two sides equal 
is called ISOSCELES. A triangle having an OBTUSE AN- 
GLE is called an OBTUSE TRIANGLE. A triangle with a 
RIGHT ANGLE is called RIGHT. A triangle with all sides 
a different length is called SCALENE. 

D A E 

B c 

The sum of ANGLES in a triangle is 180”. This can be es- 
tablished as follows. Let DAEI IBC (DAE be PARALLEL 
to BC) in the above diagram, then the angles pi and p 



Triangle 

satisfy Q = LDAB = LABC and p = LEAC = LBCE, 
as indicated. Adding y, it follows that 

a + p + y = 180”, (1) 

since the sum of angles for the line segment must equal 
two RIGHT ANGLES. Therefore, the sum of angles in the 
triangle is also 180”. 

Let S stand for a triangle side and A for an angle, and 
let a set of Ss and As be concatenated such that adja- 
cent letters correspond to adjacent sides and angles in a 
triangle. Triangles are uniquely determined by specify- 
ing three sides (SSS THEOREM), two angles and a side 
(AAS THEOREM), or two sides with an adjacent angle 
(SAS THEOREM). In each of these cases, the unknown 
three quantities (there are three sides and three angles 
total) can be uniquely determined. Other combinations 
of sides and angles do not uniquely determine a trian- 
gle: three angles specify a triangle only modulo a scale 
size (AAA THEOREM), and one angle and two sides not 
containing it may specify one, two, or no triangles (ASS 
THEOREM). 

p3 

Equilateral Triangle 

The RULER and COMPASS construction of the triangle 
can be accomplished as follows. In the above figure, take 
OpO as a RADIUS and draw OB i 0pO. Then bisect UB 
and construct p#i IlO~~. Extending BO to locate ps 
then gives the EQUILATERAL TRIANGLE APlPzP3* 

In Proposition IV.4 of the Elements, Euclid showed how 
to inscribe a CIRCLE (the INCIRCLE) in a given triangle 
by locating the CENTER as the point of intersection of 
ANGLE BISECTORS. In Proposition IV.5, he showed how 
to circumscribe a CIRCLE (the CIRCUMCIRCLE) about a 
given triangle by locating the CENTER as the point of 
intersection of the perpendicular bisectors. 

If the coordinates of the triangle VERTICES are given by 
(xi, yi) where i = 1, 2, 3, then the AREA n is given by 
the DETERMINANT 

A=; 
l  

x1 Yl l 
x2 Y2 1 

x3 Y3 l 
l  

(2) 

Wangle 1835 

If the coordinates of the triangle VERTICES are given in 
3-D by (xi, yi, xi) where i = 1, 2, 3, then 

A= 

In the above figure, let the CIRCUMCIRCLE passing 
through a triangle’s VERTICES have RADIUS T, and de- 
note the CENTRAL ANGLES from the first point to the 
second 81, and to the third point by 
of the triangle is given by 

A = 2r2 Isin( $01) sin( $92) sin 

Y2. Then the AREA 

;<e1 - 02)]I l  
(4) 

B 
c a 

A 
A c 

b 

If a triangle has sides a, b, c, call the angles opposite 
these sides A, B, and C, respectively. Also define the 
SEMIPERIMETER s as HALF the PERIMETER: 

SF +p= $(a+b+c). (5) 

The AREA of a triangle is then given by HERON'S FOR- 
MULA 

A=J s(s - a)(s - b)(s - c), (6) 

as well by the FORMULAS 

A+ 2/(a+b+c)(b+c- a)(c + a - b)(a + b - c) 

(7) 

-- - i 2/2(a2b2 + a2c2 + b2C2) - (a4 +- b4 + c4) (8) 

= id[(a + b)2 - c2][c2 - (a - b)2] (9) 

- a~P(P-2a)(P-2b)(P-2c), - 

= 2R2 sin A sin B sin C 

(10) 

(11) 
abc - - 
4R 

= TS (12) 

- iah, - 

= $bcsinA. 
(13) 

(14) ’ 
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In the above formulas, hi is the ALTITUDE on side i, R 
is the CIRCIJMRADIUS, and T is the INRADIUS (Johnson 
1929, p. 11). Expressing the side lengths a, b, and c in 
terms of the radii a’, b’, and c’ of the mutually tangent 
circles centered on the TRIANGLE vertices (which define 
the SODDY CIRCLES), 

a = b’ + c’ 

b = a’ + 2 

C = a’ +- b’, 

(15) 

(16) 

(17) 

gives the particularly pretty form 

A = Z/a’b’c’(a’ + bt + c’). (18) 

For additional FORMULAS, see Beyer (1987) and Baker 
(1884), who gives 110 FORMULAS for the AREA of a 
triangle. 

The number of different triangles which have INTEGRAL 
sides and PERIMETER n is 

195 In/21 

for n even 

for n odd, 
(27) 

where Pz and P3 are PARTITION FUNCTIONS P, [x] is 
the NINT function, and 1x1 is the FLOOR FUNCTION 
(Jordan et al. 1979, Andrews 1979, Honsberger 1985). 
The values of T(n) for n = 1, 2, l  . . are 0, 0, 1, 0, 1, 1, 2, 

1, 3, 2, 4, 3, 5, 4, 7, 5, 8, 7, 10, 8, 12, 10, 14, 12, 16, . . . 

(Sloane’s A005044), which is also ALCUIN'S SEQUENCE 
padded with two initial OS. T(n) also satisfies 

The ANGLES of a triangle satisfy 
T(2n) = T(2n - 3) = Pa(n). (28) 

cot A = 
b2 + c2 - a2 

4A 
(19) 

where A is the AREA (Johnson 1929, p* 11, with missing 
squared symbol added). This gives the pretty identity 

cot A + cot B + cot C = 
a2 + b2 + c2 

4A ’ (20) 

Let a triangle have ANGLES A, B, and C. Then 

sin A sin B sin C 2 kABC, (21) 

where 

(22) 

(Abi-Khuzam 1974, Le Lionnais 1983). This can be used 
to prove that 

8w3 < ABC, (23) 

where w is the BROCARD ANGLE. 

TRIGONOMETRW FUNCTIONS of half angles can be ex- 
pressed in terms of the triangle sides: 

cos(+A) = d s(s - a) 
- 

bc (24) 

sin(iA) = J (s - b)(s - c) 

bC 
(25) 

tan(iA) = 
J 

(s - b)(s - c) 

s(s - a) ’ (26) 

where s is the SEMIPERIMETER. 

It is not known if a triangle with INTEGER sides, ME- 

DIANS, and AREA exists (although there are incorrect 
PROOFS of the impossibility in the literature). How- 
ever, R. L. Rathbun, A. Kemnitz, and R. H. Buchholz 
have shown that there are infinitely many triangles with 
RATIONAL sides (HERONIAN TRIANGLES) with two RA- 
TIONAL MEDIANS (Guy 1994). 

In the following paragraph, assume the specified sides 
and angles are adjacent to each other. Specifying three 
ANGLES does not uniquely define a triangle, but any two 
triangles with the same ANGLES are similar (the AAA 
THEOREM). Specifying two ANGLES A and L3 and a side 
a uniquely determines a triangle with AREA 

A= 
a2 sin B sin C a2 sinB sin(r - A - B) 

2sinA = 2 sin A (29) 

(the AAS THEOREM). Specifying an ANGLE A, a side 
c, and an ANGLE B uniquely specifies a triangle with 
AREA n 

A= 
CL 

2(cot A + cot B) 
(30) 

(the ASA THEOREM). Given a triangle with two sides, 
a the smaller and c the larger, and one known ANGLE 
A, ACUTE and opposite a, if sin A < a/c, there are two 
possible triangles. If sin A = a/c, there is one possible 
triangle. If sin A > a/c, there are no possible triangles. 
This is the ASS THEOREM. Let a be the base length 
and h be the height. Then 

A = $uh = $ucsinB (31) 
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(the SAS THEOREM). Finally, if all three sides are spec- 
ified, a unique triangle is determined with AREA given 
by HERON’S FORMULA or by 

*2, (32) 

where R is the CIRCUMRADIUS. This is the SSS THEO- 
REM. 

There are four CIRCLES which are tangent to the sides 
of a triangle, one internal and the rest external. Their 
centers are the points of intersection of the ANGLE BI- 

SECTORS of the triangle. 

Any triangle can be positioned such that its shadow 
der an orthogonal projection is EQUILATERAL. 

un- 

see also AAA THEOREM, AAS THEOREM, ACUTE TRI- 
ANGLE, ALCUIN’S SEQUENCE, ALTITUDE, ANGLE BI- 

SECTOR, ANTICEVIAN TRIANGLE, ANTICOMPLEMEN- 

TARY TRIANGLE, ANTIPEDAL TRIANGLE, ASS THE- 

OREM, BELL TRIANGLE, BRIANCHON POINT, BRO- 
CARD ANGLE, BROCARD CIRCLE, BROCARD MID- 

POINT, BROCARD POINTS, BUTTERFLY THEOREM, 

CENTROID (TRIANGLE), CEVA’S THEOREM, CEVIAN, 

CEVIAN TRIANGLE, CHASLES’S THEDREM, CIRCUM- 

CENTER, CIRCUMCIRCLE, CIRCUMRADIUS, CONTACT 

TRIANGLE, CROSSED LADDERS PROBLEM, CRUCIAL 

POINT, D-TRIANGLE, DE LONGCHAMPS POINT, DESAR- 

GUES’ THEOREM, DISSECTION, ELKIES POINT, EQUAL 

DETOUR POINT, EQUILATERAL TRIANGLE, EULER 

LINE, EULER’S TRIANGLE, EULER TRIANGLE FOR- 

MULA, EXCENTER, EXCENTRAL TRIANGLE, EXCIR- 

CLE, EXETER POINT, EXMEDIAN, EXMEDIAN POINT, 

EXRADIUS, EXTERIOR ANGLE THEOREM, FAGNANO’S 

PROBLEM, FAR-OUT POINT, FERMAT POINT, FER- 
MAT’S PROBLEM, FEUERBACH POINT, FEUERBACH’S 

THEOREM, FUHRMANN TRIANGLE, GERGONNE POINT, 

GREBE POINT, GRIFFITHS POINTS, GRIFFITHS’ THE- 

OREM, HARMONIC CONJUGATE POINTS, HEILBRONN 

TRIANGLE PROBLEM, HERON’S FORMULA, HERO- 

NIAN TRIANGLE, HOFSTADTER TRIANGLE, HOMOTH- 

ETIC TRIANGLES, INCENTER, INCIRCLE, INRADIUS, 

ISODYNAMIC POINTS, ISOGONAL CONJUGATE, Iso- 
GONIC CENTERS, ISOPERIMETRIC POINT, ISOSCELES 

TRIANGLE, KABON TRIANGLES, KANIZSA TRIANGLE, 

KTEPERT’S HYPERBOLA, KIEPERT’S PARABOLA, LAW 

OF COSINES, LAW OF SINES, LAW OF TANGENTS, LEIB- 

NIZ HARMONIC TRIANGLE, LEMOINE CIRCLE, LEMOINE 

POINT, LINE AT INFINITY, MALFATTI POINTS, MEDIAL 

TRIANGLE, MEDIAN (TRIANGLE), MEDIAN TRIANGLE, 

MENELAUS’ THEOREM, MID-ARC POINTS, MITTEN- 

PUNKT, MOLLWEIDE’S FORMULAS, MORLEY CENTERS, 

MORLEY’S THEOREM, NAGEL POINT, NAPOLEON’S 

THEOREM, NAPOLEON TRIANGLES, NEWTON’S FOR- 

MULAS, NINE-POINT CIRCLE, NUMBER TRIANGLE, 

OBTUSE TRIANGLE, ORTHIC TRIANGLE, ORTHOCEN- 

TER, ORTH~LOGIC, PARALOGIC TRIANGLES, PAS- 
CAL’S TRIANGLE, PASCH’S AXIOM, PEDAL TRIAN- 
GLE, PERPENDICULAR BISECTOR, PERSPECTIVE TRI- 
ANGLES, PETERSEN-SHOUTE THEOREM, PIVOT THEO- 

REM, POWER POINT, POWER (TRIANGLE), PRIME TRI- 

ANGLE, PURSER’S THEOREM, QUADRILATERAL, RATIO- 

NAL TRIANGLE, ROUTH’S THEOREM, SAS THEOREM, 

SCALENE TRIANGLE, SCHIFFLER POINT, SCHWARZ 

TRIANGLE, SCHWARZ’S TRIANGLE PROBLEM, SEIDEL- 

ENTRINGER-ARNOLD TRIANGLE, SEYDEWITZ’S THE- 

OREM, SIMSON LINE, SPIEKER CENTER, SSS THEO- 

REM, STEINER-LEHMUS THEOREM, STEINER POINTS, 

STEWART’S THEOREM, SYMMEDIAN POINT, TANGEN- 

TIAL TRIANGLE, TANGENTIAL TRIANGLE CIRCUMCEN- 

TER, TARRY POINT, THOMSEN’S FIGURE, TORRICELLI 

POINT, TRIANGLE TILING, TRIANGLE TRANSFORMA- 

TION PRINCIPLE, YFF POINTS, YFF TRIANGLES 
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Triangle Center Function 
A HOMOGENEOUS FUNCTION f(a,b,c), i.e., a function 
f such that In the above figure, the curves are arcs of a CIRCLE and 

f (ta, tb, tc) = t” f (a, b, c), a =BC 

b=CA=CP 

c=BA=BQ. 

(1) 

(2) 

(3) 
which gives the 
GLE CENTER as 

TRILINEAR COORDINATES of a TRIAN- 

Then 
PQ” = 2BP. QC. (4) 

a:p:y=f(a,b,c): f(b,c,a): f(c,a,b). 

The variables may correspond to angles (A, B, C) or 
side lengths (a, b, c), since these can be interconverted 
using the LAW OF COSINES. 

see also MAJOR TRIANGLE CENTER, REGULAR TRIAN- 
GLE CENTER, TRIANGLE CENTER, TRILINEAR COOR- 
DINATES 

The figure also yields the algebraic identity 

(b+c- @TFq2 = a(Jbz+cz- b)(Jb2+CZ-c). 

(5) 

see also ARC 
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Triangle Center 
A triangle center is a point whose TRILINEAR CO~RDI- 
NATES are defined in terms of the side lengths and an- 
gles of a TRIANGLE. The function giving the coordinates 
QI : p : y is called the TRIANGLE CENTER FUNCTION. 
The four ancient centers are the CENTROID, INCENTER, 
CIRCUMCENTER, and ORTHOCENTER. For a listing of 
these and other triangle centers, see Kimberling (1994). 

Triangle Coefficient 
A function of three variables written A(ubc) E A@, b, c) 
and defined by 

A(&) = 
(a + b - ~)!(a - b + ~)!(-a + b + c)! 

(u-t b+c+ l)! ’ 

A triangle center is said to be REGULAR IFF there is a 
TRIANGLE CENTER FUNCTION whichisa POLYNOMIAL 
in A, a, b, and c (where A is the AREA of the TRIANGLE) 
such that the TRILINEAR COORDINATES of the center 
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Triangle Condition 
The condition that j takes on the values f (a, b, c) : f (b, c, a) : f (c, a, b). 

A triangle center is said to be a MAJOR TRIANGLE CEN- 
TER ifthe TRIANGLE CENTERFUNCTION ~isafunction 
of ANGLE A alone, and therefore p and y of B and C 

j =j1+jz,j,+j2 - 1,***,Ij1+217 

alone, resgectively. denoted A(jljzj). 

see also MAJOR TRIANGLE CENTER, REGULAR TRIAN- 
GLE CENTER, TRIANGLE, TRIANGLE CENTER FUNC- 
TION, TRIL~NEAR COORDINATES, TRILINEAR POLAR 
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Triangle Counting 
Given rods of length 1, 2, , . . , 71, how many distinct 
triangles T(n) can be made? Lengths for which 

obviously do not give triangles, but all other combina- 
tions of three rods do. The answer is 

1 

T(n) = “1” 

24 

n(n - 

(n - 1 
2) (2n 
>( n- 

- 5) 
3)(2n - I) 

for n even 

for n odd. 

The values for n = 1, 2, . . . are 0, 0, 0, 1, 3, 7, 13, 22, 34, 
50, l  . . (Sloane’s A002623). S omewhat surprisingly, this 
sequence is also given by the GENERATING FUNCTION 

4 

f(x) = (1 - x):(1 - x2) 
= x4 + 3x5 + 7x6 + 13x7 + . . . l  

References 
Honsberger, 

DC: Math. 
Sloane, N. J. 

Version of 

R. More Mathematical Morsels. Washington, 
Assoc. Amer., pp* 278-282, 1991. 
A. Sequence A002623/M2640 in “An On-Line 

the Encyclopedia of Integer Sequences.” 

Triangle of Figurate Numbers 

see FIGURATE NUMBER TRIANGLE 

Triangle Function 

A( > 
{ 

0 
XE 

Ix1 > l 
1 - 1x1 1x1 < 1 

= rI(x) * rI(x) (2) 
= n(x) * H(x -t ;) - IQ) * H(a: - ;), (3) 

where IT is the RECTANGLE FUNCTION and H is the 
HEAVISIDE STEP FUNCTION. An obvious generalization 
used as an APODIZATION FUNCTION goes by the name 
ofthe BARTLETT FUNCTION. 

There is also a three-argument function known as the 
triangle function: 

X(x, y,z) = x2 + y2 + x2 - 2xy - 2x2 - 2yx. (4) 

It follows that 

X(a2, b2, c2) = (a+b+c)(a+b-c)(a-b+c)(a-b-c). (5) 

Triangle Inequality 
Let x and y be vectors 

1x1 - IYI < Ix + YI 5 1x1 + IYL (1) 

Equivalently, for COMPLEX NUMBERS z1 and ~2, 

1x11 - Ix2l 5 1x1 + z2l < lal + I4 (2) 

A generalization is 

(3) 
see alsop-ADIC NUMBER, STRONG TRIANGLE INEQUAL- 
ITY 

References 
Abramowita, M. and Stegun, C. A. (Eds.). handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p. II, 1972. 

Triangle Inscribing in a Circle 

A 

e2 el 
(19 0) 

Select three points at random on a unit CIRCLE. Find 
the distribution of possible areas. The first point can 
be assigned coordinates (1, 0) without loss of generality. 
Call the central angles from the first point to the second 
and third 01 and 0~~ The range of 191 can be restricted 
to [0, K] because of symmetry, but 02 can range from 
[0,27r). Then 

A(W2)=21 l  (Q) l  ye> l  ['(er@2)]l, (1) sm z 1 sin z 2 sin z 

(2) 

(3) 

see also ABSOLUTE VALUE, BARTLETT FUNCTION, 
HEAVISIDE STEP FUNCTION, RAMP FUNCTION, SGN, 
TRIANGLE COEFFICIENT 
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Therefore, 

2 = 27r 
A=--@ 

ss 
Isin( i&) sin( $02) sin[$(& - &)] 1 do2 d& 

0 0 

= -$in($&) [12xsin(i&) Isin[i(& -&)]I dt12] d& 

= l JOT s,‘” 
F 82--81>0 

sh(~&)sin(~&)sin[~(& - e2)]de2 de1 

sin(~e1)sin(~e2)sin[~(e1 -e2)]de2del 

= -$ AL+&) [ly sin(+tY2)sin[i(d2 - el)] de2 de1 1 
+ -$ /)(~&) [l*’ sin($02)sin[$(02 - 8,)] de2 del, 

I 

(4) 

But 

s ($0,) sin[i(& - Q,)] d& 

= 

s 

sin($B2) [sin(~&)cos($Bz) - sin(fOl)cos(~&)] dBz 

= cos(pl) 
s 

sin2( $&> dt12 - sin($81) 

s 

sin( i 8,) cos( i02) de2 

=- i cos($O1) 
s 

(1 - cos02) da2 - i sin( $8,) 

s 

sin tY2 do2 

- + cos(i$)@ - sin&) + + sin($Q cos(&). - (5) 

Write (4) as 

V 

7r 7r 
sin( +)I~ de1 + 

s 
sin( dOI , 

0 0 I 
(6) 

then ’ 

11 s 
s 

2T sin(+&) sin[$(& - e,)] de2, (7) 
01 

and 

s 

61 
I2 E sin($&) sin[i(& - &)] d&. (8) 

0 

Fhn (61, 

II = + c0s(+e2j[e2 - sir@: + $ sin($Ol)[cOs&]~~ 

- + cos(~e,)(z~ - e1 + sin&) - 

+ $ sin(+&)(l - cOsel) 

= 7rcos(;e~) - $e, cOs(;el) + +[cOs(+el) sin& 

- cost?1 sin(+)] + i sin($&) 

= 7rcos(+e~) - +e, cOs(;el) + $ + 3 sin@ - +&) 

+ $ sin(+) 

= 7rcos(+&) - ;e, COS(~~~) + sin(+), (9) 

Wangle Inscribing in an Ellipse 

Jo 

Also, 

I2 = 3 cOs($el)[ sin & - e,]il - i sin( +&)[c0s O2]:1 

- + cOs(@)(sidl -e,) - $ sin(+Bl)(cOsO1 - 1) - 

- -$e, cos(;el) - 

+ i [sin& COS( +01) - cos 81 sin( +&)I 

+ 3 sin(+&) 

- - +I COS(+) + sin(i&), (11) 

so 
s 
T 

I2 sin(+&) de1 = $. (12) 
0 

Combining (10) and (12) gives 

A = $ ($ + ;) = g z 0.4775. (13) 

The VARIANCE is 

= 2= 2 1 
UA =- 

2x2 
ss 

[A( &,S2) - &I2 de2 d& 

0 0 

[ I 
2 sin(+O1) sin($02) sin[$(tY1 - 8,)]I 

3 -- 
27T 1 2 

d& dB1 

= 2rr 1 

= 27r2 ss 
{ 

4sin2($01) sin2( +02) sin2[$(82 - &>I 

0 0 

6 -- Isin(jt?l)sin(+t92)sin[+(191 - e2)]I + -$} d02 d& 
7r 

-i (F+ ;) + -324 

1 

= 27r2 ( 
~-9++L&-f) 

3(?r2 - Q z 0 1470 =- 
a7r2 * * (14) 

see also POINT-POINT DBTANCE-l-D, TETRAHEDRON 

INSCRIBING 

Triangle Inscribing in an Ellipse 

(09 b) 
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To inscribe an EQUILATERAL TRIANGLE in an ELLIPSE, 
place the top VERTEX at (O,b), then solve to find the 
(s,y) coordinate of the other two VERTICES. 

Jx2 + (b - y)” = 2x 

x2 + (b-y>” = 4x2 

3X2 = (b-y>“. 

Now plugging in the equation of the ELLIPSE 

$+$A, 
gives 

3a2 1- $ 
( > 

= b2 - 2by + y2 

- 2by + (b2 - 3a2) = 0 

26 - 
J 

4b2 - 4(b2 - 3a2) (1 + 39 
Y= 

2(1+3$) 

- - 
l-Jl-(l-3$)(1+3$)b 

1+3$ 
1 

and 

2 

(1) 

(2) 

(3) 

(4 

(5) 

(6) 

(7) 

(8) 

Triangle Postulate 
The sum of the ANGLES of a TRIANGLE is two RIGHT 
ANGLES. This POSTULATE is equivalent to the PARAL- 

LEL AXIOM. 

References 
Dunham, W. “Hippocrates’ Quadrature of the Lune.” Ch. 1 

in Journey Through Genius: The Great Theorems of 
Mathematics. New York: Wiley, p. 54, 1990. 

Triangle Squaring 

G 

; 

A D B 

Let CD be the ALTITUDE of a TRIANGLE AABC and 
let E be its MIDPOINT. Then 

and IABFG can be squared by RECTANGLE SQUAR- 
ING. The general POLYGON can be treated by draw- 
ing diagonals, squaring the constituent triangles, and 
then combining the squares together using the PYTHAG- 
OREAN THEOREM. 

see also PYTHAGOREAN THEOREM, RECTANGLE 
SQUARING 

References 
Dunham, W. “Hippocrates’ Quadrature of the Lune.” Ch. 1 

in Journey Through Genius: The Great Theorems of 
Mathematics. New York: Wiley, pp. 14-15, 1990. 

Triangle Tiling 

AA A 
n=l n=2 n=3 

The total number of triangle (including inverted ones) 
in the above figures is given by 

N(n) = 
%t(n + 2)(2n + 1) 
f [n(n + 2)(2n + 1) 

The first few values are 1, 5, 13, 
235, 315, 411, 525, 658, 812, 988, 
(Sloane’s A002717). 

References 

for n even 
- i] for n odd. 

27, 48, 78, 118, 170, 
1188, 1413, 1665, . . l  

Conway, J. H. and Guy, R. K. “How Many Triangles.” In The 
Book of Numbers. New York: Springer-Verlag, pp. 83-84, 
1996. 

Sloane, N. 5. A. Sequence A002717/M3827 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Triangle Transformation Principle 
The triangle transformation principle gives rules for 
transforming equations involving an INCIRCLE to equa- 
tions about EXCIRCLES. 

see U~SO EXCIRCLE, INCIRCLE 

References 
Johnson, R. A. Modern Geometry: An Elementary lkatise 

on the Geometry of the Triangle and the Circle. Boston, 
MA: Houghton MiffJin, pp. 191-192, 1929. 

Triangular Cupola 

JOHNSON SOLID J3* The bottom six VERTICES are 

area(AABC) = $AB * CD = AB l  DE, 
(hi&, k&O), (0, l 1,0), 
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and the top three VERTICES are 

see ah JOHNSON SOLID 

Triangular Dipyramid 

The triangular (or TRIGONAL) dipyramid is one of the 
convex DELTAHEDRA, and JOHNSON SOLID J12. 

see also DELTAHEDRON, DIPYRAMID, JOHNSON SOLID, 
PENTAGONAL DIPYRAMID 

Triangular Graph 

n 

k 

The triangular graph with n nodes on a side is denoted 
T(n). Butte (1970) showed that the CHROMATIC POLY- 
NOMIALS of planar triangular graphs possess a ROOT 
close to q52 = 2.618033. l  ., where 4 is the GOLDEN 
MEAN. More precisely, if n is the number of VERTICES 
of G, then 

(Le Lionnais 1983, pa 46). Every planar triangular graph 
possesses a VERTEX of degree 3, 4, or 5 (Le Lionnais 
1983, pp. 49 and 53). 

see also LATTICE GRAPH 

References 
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, 

1983. 
Tub, W. T. “On Chromatic Polynomials and the Golden 

Ratio.” J. Combin. Theory 9, 289-296, 1970. 

Triangular Hebesphenorotunda 

see JOHNSON SOLID 

Triangular Matrix 
An upper triangular MATRIX U is defined by 

Writ ten explicitly, 

(2) 

A lower triangular MATRIX L is defined by 

Lij = izi 
1 

* - for i > j 
for i 7 j* 

Written explicitly, 

(3) 

see also HESSENBERG MATRIX, HILBERT MATRIX, MA- 
TRIX,~ANDERMONDE MATRIX 

Triangular Number 

r-l 

A FIGURATE NUMBER of the form T, E n(n + 1)/2 ob- 
tained by building up regular triangles out of dots. The 
first few triangle numbers are 1, 3, 6, 10, 15, 21, . . . 
(Sloane’s A000217). T4 = 10 gives the number and ar- 
rangement of BOWLING pins, while Ts = 15 gives the 
number and arrangement of balls in BILLIARDS. Tkian- 
gular numbers satisfy the RECTJRRENCE RELATION 

T n+1 2 -Tn2 = (n+Q3, (1) 

as well as 

3T, -I- G-1 = T2n (2) 

3% +%+I = T2n+1 (3) 

1+ 3 + 5 + . . . + (2n - 1) = Tn + T,-l (4 

and 

(2n + 1)” = 8T + 1 = Tn-1 + 6T, + Tn+l (5) 

(Conway and Guy 1996). They have the simple GEN- 
ERATING FUNCTION 

f(x) = & = ~+3~~+6~~+10~~+15x~+. , , . (6) 

Every triangular number is also a HEXAGONAL NUM- 
BER, since 

$r(r + 1) = 
(y) [2(y) -I] forrodd 

(-5) [2 (-S) - I] for T even. (7) 
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Also, every PENTAGONAL NUMBER is l/3 of a triangular 
number. The sum of consecutive triangular numbers is 
a SQUARE NUMBER, since 

PELL NUMBER which is triangular is 1 (McDaniel 1996). 
The BEAST NUMBER 666 is triangular, since 

T6.6 = T36 = 666. (16) 
TT + TT-- = $r(r + 1) + $(r - 1)~ 

- $r[(r + 1) + (T - l)] = T2. - (8) 

Interesting identities involving triangular numbers and 
SQUARE NUMBERS are 

In fact, it is the largest REPDICIT triangular number 
(Bellew and Weger 1975-76). 

FERMAT'S POLYGONAL NUMBER THEOREM states that 
every POSITIVE INTEGER is a sum of most three TRI- 
ANGULARNUMBERS, four SQUARE NUMBERS,~~~~PEN- 
TAGONAL NUMBERS, and n n-POLYGONAL NUMBERS. 
Gauss proved the triangular case, and noted the event 
in his diary on July 10, 1796, with the notation 

2n-1 

x (-l)“+lTk = n2 

k=l 

‘12 

Tn2 = 
E 

k3 = +n2(n+ 
k=l 

1)” 

k3 = Tn (11) 
k=1,3,...,q 

for q ODD and 

n = +(q2 + 2q - I)+ (12) 

All EVEN PERFECT NUMBERS are triangular T* with 
PRIME p. Furthermore,every EVEN PERFECT NUMBER 
P > 6 is of the form 

P = 1 + 9T, = T3n+l, (13) 

where Tn is a triangular number with n = 8j + 2 (Eaton 
1995, 1996). Therefore, the nested expression 

9(9*-s (9(9(9(9T, + 1) + 1) + 1) + 1). . . + 1) + 1 (14) 

generates triangular numbers for any Tn. An INTEGER k 
is a triangular number IFF 8k + 1 is a SQUARE NUMBER 
> 1. 

The numbers 1, 36, 1225, 41616, 1413721, 48024900, 
l  l  l  (Sloane’sAOO1110)are SQUARE TRIANGULAR NUM- 
BERS, i.e., numbers which are simultaneously triangular 
and SQUARE (Pietenpol 1962). Numbers which are si- 
multaneously triangular and TETRAHEDRAL satisfy the 
BINOMIAL COEFFICIENT equation 

(i) = ($1 (15) 

the only solutions of which are (m, n) = (10, IS), (22, 
56), and (36, 120) (Guy 1994, p. 147). 

The smallest of two INTEGERS for which n3 - 13 is four 
times a triangular number is 5 (Cesaro 1886; Le Lionnais 
1983, p* 56). Th e only FIBONACCI NUMBERS which are 
triangular are 1, 3, 21, and 55 (Ming 1989), and the only 

1843 

* * EYRHKA num =A+A+A. (17) 

This case is equivalent to the statement that every num- 
ber of the form 8nz + 3 is a sum of three ODD SQUARES 
(Duke 1997). D irichlet derived the number of ways in 
which an INTEGER m, can be expressed as the sum of 
three triangular numbers (Duke 1997). The result is 
particularly simple for a PRIME of the form 8m. + 3, in 
which case it is the number of squares mod 8m+3 minus 
the number of nonsquares mod 8nz + 3 in the INTERVAL 
4m, + 1 (Deligne 1973). 

The only triangular numbers which are the PRODUCT of 
three consecutive INTEGERS are 6, 120,210,990, 185136, 
258474216 (Guy 1994, p. 148). 

see UZSO FIGURATE NUMBER, PRONIC NUMBER, 
SQUARE TRIANGULAR NUMBER 
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Triangular Orthobicupola 

see JOHNSON SOLID 

Triangular Pyramid 

see TETRAHEDRON 

Triangular Square Number 

see SQUARE TRIANGULAR NUMBER 

Triangular Symmetry Group 

(2, 393) GA 394 c&3,5) 

Given a TRIANGLE with angles (r/p, r/q, X/T), the 
resulting symmetry GROUP is called a (p, q, r) triangle 
group (also known as a SPHERICAL TESSELLATION). In 
3-D, such GROUPS must satisfy 

111 
-+q+;>l, 
P 

and so the only solutions are (2,2, n), (2,3,3), (2,3,4), 

and (2,3,5) (B a and Coxeter 1987). The group (2,3,6) 11 
gives rise to the semiregular planar TESSELLATIONS of 
types 1, 2, 5, and 7. The group (2,3,7) gives hyperbolic 
tessellations. 

Triangulation 
Triangulation is the division of a surface into a set of 
TRIANGLES, usually with the restriction that each TRI- 
ANGLE side is entirely shared by two adjacent TRIAN- 

GLES. It was proved in 1930 that every surface has a 
triangulation, but it might require an infinite number 
of TRIANGLES. A surface with a finite number of trian- 
gles in its triangulation is called COMPACT. B. Chazelle 
showed that an arbitrary SIMPLE POLYGON can be tri- 
angulated in linear time. 

see also COMPACT SURFACE, DELAUNAY TRIANGULA- 
TION, JAPANESE TRIANGULATION THEOREM, SIMPLE 
POLYGON 

Triaugmented Dodecahedron 

see JOHNSON SOLID 

Triaugmented Hexagonal Prism 

see JOHNSON SOLID 

Tkiaugmented Triangular Prism 

One of the convex DELTAHEDRA and JOHNSON SOLID 

J51. The VERTICES are (fl, H,O), (O,O, A), 
(0, *I, -a), (*(I+ J6)/2,0, -(a + &)/2), where 
the 51: and z coordinates of the last are found by solving 

x2+12+(z+&)2=22 

(x - 1>" + l2 + z2 = 22. 

see also DELTAHEDRON, JOHNSON SOLID 

Triaugmented Truncated Dodecahedron 

see JOHNSON SOLID 
see also GEODESIC DOME 
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Maxial Ellipsoid 

see ELLIPSOID 

Tribar 

An IMPOSSIBLE FIGURE published by R. Penrose (1958). 
It also exists as a TRIBOX. 
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Tribox 

An IMPOSSIBLE FIGURE. 

see U~SO IMPOSSIBLE FIGURE, TRIBAR 
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Tribonacci Number 
The tribonacci numbers are a generalization of the FI- 

BONACCI NUMBERS defined by Tr = 1, T2 = 1, Z-!! = 2, 
and the RECURRENCE RELATION 

Tn = G-1 + Tn-2 + Tn-3 (1 

for 72 > 4, The represent the n = 3 case of the FI- - 
BONACCI n-STEP NUMBERS. The first few terms are 1, 

1, 2, 4, 7, 13, 24, 44, 81, 149, . . . (Sloane’s AOOO073). 
The ratio of adjacent terms tends to 1.83929, which is 
the REAL ROOT of x4 - 2x3 + 1 = 0. The Tribonacci 
numbers can also be computed using the GENERATING 

FUNCTION 

1 
l-&-22-G 

= 1+ Z + 2z2 + 4z3 + 7x4 

+13z5 + 24r6 + 44z7 + 81x8 + 149r’ + . . . . (2) 

1845 

see &O FIBONACCI n-STEP NUMBER, FIBONACCI NUM- 

BER, TETRANACCI NUMBER 
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Trichotomy Law 
Every REAL NUMBER is NEGATIVE, 0, or POSITIVE. 

Tricolorable 
A projection of a LINK is tricolorable if each of the 
strands in the projection can be colored in one of three 
different colors such that, at each crossing, all three col- 
ors come together or only one does and at least two dif- 
ferent colors are used. The TREFUIL KNOT and trivial 
2-link are tricolorable, but the UNKNOT, WHITEHEAD 

LINK, and FIGURE-OF-EIGHT KNOT are not. 

If the projection of a knot is tricolorable, then REIDE- 

MEISTER MOVES on the knot preserve tricolorability, so 
either every projection of a knot is tricolorable or none 
is. 

Tkicomi Function 

see CONFLUENT HYPERGEOMETRIC FUNCTION OF THE 

SECOND KIND, GORDON FUNCTION 

Tricuspoid 

see DELTOID 

Tricylinder 

see STEINMETZ SOLID 

Xkidecagon 
A 13-sided POLYGON, sometimes also called the 
TRISKAIDECAGON. 

An explicit FORMULA for Tn is also given by 

Trident 

3 
{f(19+3~)1'3+~(19-3~)1~3+~}n(586+102~)1'3 

(586 +102m)2/3 +4 - 2(586+102fi)1/3 1 7 
(3) 

where [z] denotes the NINT function (Plouffe). The first 
part of a NUMERATOR is related to the REAL root of 
X3 -x2 - x - 1, but determination of the DENOMINATOR 

requires an application of the LLL ALGORITHM. The 
numbers increase asymptotically to 

The plane curve given by the equation 

where 

= 1.83928675521.. . (5) see also 
TON 

TRIDENT OF DESCARTES, TRIDENT OF NEW- 

(Plouffe). 
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Trident of Descartes 

The plane curve given by the equation 

(a + x)(a - x)(2a - 2) = x3 - 2ax2 - a2x + 2a3 = axy 

Y== 
(a + x)(a - x)(2a - 2) 

ax 

The above plot has a = 2. 

Trident of Newton 
The CUBIC CURVE defined by 

ax3 + bx2 + cx + d = xy 

with a # 0. The curve cuts the axis in either one or 
three points. It was the 66th curve in Newton’s classi- 
fication of CUBIC% Newton stated that the curve has 
four infinite legs and that the y-axis is an ASYMPTOTE 

to two tending toward contrary parts. 
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Tridiagonal Matrix 
A MATRIX with NONZERO elements only on the diagonal 
and slots horizontally or vertically adjacent the diagonal. 
A general 4 x 4 tridiagonal MATRIX has the form 

Inversion of such a matrix requires only n (as opposed 
to n3) arithmetic operations (Acton 1990). 

see also DIAGONAL MATRIX, JACOBI ALGORITHM 

References 
Acton, F. S. Numerical Methods That Work, 2nd printing. 

Washington, DC: Math. Assoc. Amer., p, 103, 1990. 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vet- 

terling, W. T. “Tridiagonal and Band Diagonal Systems of 
Equations.” 52.4 in Numerical Recipes in FORTRAN: The 
Art of Scientific Computing, 2nd ed. Cambridge, England: 
Cambridge University Press, pp. 42-47, 1992. 

Tkigonal Dodecahedron 

Tridiminished Icosahedron 

see JOHNSON SOLID 

Tridiminished Rhombicosidodecahedron 

see JOHNSON SOLID 

Tridyakis Icosahedron 
The DUAL POLYHEDRON of the IC~SITRUNCATED Do- 
DECADODECAHEDRON. 

Tkifolium 

Lawrence (1972) d fi e nes a trifolium as a FOLIUM with 
b E (0,4a). However, the term “the” trifolium is some- 
times applied to the FOLIUM with b = a, which is then 
the 3-petalled ROSE with Cartesian equation 

(x2 + y”)[y” + x(x + a)] = 4axy2 

and polar equation 

T = acos0(4sin2 0 - 1) = -a cos(3B). 

The trifolium with b = a is the RADIAL CURVE of the 
DELTOID. 

see aho BIFOLIUM, FOLIUM, QUADRIFOLIUM 

References 
Lawrence, J. D. A Catalog of Special Plane Curves. New 

York: Dover, pp. 152-153, 1972, 
MacTutor History of Mathematics Archive. “Trifolium.” 

http://www-groups.dcs.st-and.ac.uk/Mhistory/Curves 
/Trif olium, html, 

Trigon 

see TRIANGLE 

Trigonal Dipyramid 

see TRIANGULAR DIPYR-AMID 

Trigonal Dodecahedron 

An irregular DODECAHEDRON. 
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see also DODECAHEDRON, PYRITOHEDRON, RHOMBIC 
DODECAHEDRON 

References 
Cotton, F. A. Chemical AppEications of Group Theory, 3rd 

ed. New York: Wiley, p. 62, 1990. 

Trigonometric finct ions 

see TRIGONOMETRY 

Trigonometric Series 

A sin(2$) + B sin(44) + C sin(64) + D sin(84) 

= sin(W)(A + cos(24)(B’ + cos(&b)(C’ + D' COS(Z$)))), 

A/GA-C 

Bk2B-4D 

c’ E 4C 

D’ = 8D. 

Asin$+ Bsin(34) + Csin(54) + Dsin(74) 

= sin 4( A’ + sin2 q5( B’ + sin2 $( C’ + D’ sin2 4)))) 

where 

At=A+3B+5C+7D 

B’ = -4B - 20C - 56D 

C’ z 16C + 112D 

D’ = -64D. 

A + B cos(24) + C cos(4q9 + D cos(64) + E cos(8qb) 

= A’ + cos(2#)(B’ + cos(2qq(c’ + cos(2@) 

x(D’ + E’ COS(~+)))), 

AkA-C+E 

B’ = B - 3D 

C’ s 2C - 8E 

D’ = 4D 

E’ = 8E. 

References 
Snyder, J. P, Map Projections-A Working ikfanual. U. S, 

Geological Survey Professional Paper 1395. Washington, 
DC: U. Se Government Printing Office, p. 19, 1987. 

Trigonometric Substitution 
INTEGRALS ofthe form 

s f(cos 8, sin 8) d0 (1) 

can be solved by making the substitution z = eie so that 
& = ieie de and expressing 

The integral 
TION. 

case = eie + t? z + 25-l 
2 = 2 (2) 

sin(9= 
e ie -ie 

z-z 
-1 

-' =- 
2i 2i l  

can then be solved bY CONTOUR INTEGRA- 

(3) 

Alternatively, making the substitution t G tan(O/2) 
transforms (1) into 

2t 1 - t2 

> 

2 dt -- - 
1+ t2 ’ 1 + t2 1+ t2 l  

(4) 

The following table gives trigonometric substitutions 
which can be used to transform integrals involving 
square roots. 

see also HYPERBOLIC SUBSTITUTION 

Trigonometry 
The study of ANGLES and of the angular relationships 
of planar and 3-D figures is known as trigonometry. 
The trigonometric functions (also called the CIRCULAR 
FUNCTIONS) comprising trigonometry are the COSE- 
CANT CSCX, COSINE COW, COTANGENT C&z, SECANT 
set X, SINE sin 2, and TANGENT tang. The inverses of 
these functions are denoted csc-’ z, cos-’ LC, cot-l 2, 
set-’ 2, sin-l x, and tan-l X. Note that the f-’ NOTA- 
TION here means INVERSE FUNCTION, not f to the -1 
POWER. 

The trigonometric functions are most simply defined us- 
ing the UNIT CIRCLE. Let 8 be an ANGLE measured 
counterclockwise from the X-AXIS along an ARC of the 
CIRCLE. Then co4 is the horizontal coordinate of the 
ARC endpoint, and sin 19 is the vertical component. The 
RATIO sin O/ cos 8 is defined as tan& As a result of this 
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definition, the trigonometric functions are periodic with 
period 2~, so 

func(2nn + 0) = func(e), (1) 

where n is an INTEGER and func is a trigonometric func- 
tion. 

From the PYTHAGOREAN THEOREM, 

sin’ 8 + cos2 8 = 1. (2) 

Therefore, it is also true that 

tan’ 0 + 1 = sec2 0 (3) 

1 + cot2 8 = csc2 8. (4 

The trigonometric functions can be defined algebraically 
in terms of COMPLEX EXPONENTIALS (i.e., using the 
EULER FORMULA) as 

e 
iz 

sinz = 
- eBaz 

2i 
1 2i 

csc z = 7 = 
sin x &” _ e-i” 

eiz + e+ 
cosx = 

2 
1 2 

secz = - - 
cosz - eiz + e-iz 

sin z e iz I e-iz 
tanz S - = 

cos z i(ei% + e-i%) 

(5) 

(6) 

(7) 

(8) 

(9) 
1 

cot x E - - 

qei" + e-it) 
- 

i(l + e-2iz) 

tanz - e i% _ e-i% - 1  _  e--2i% l  
(10) 

OSBORNE’S RULE gives a prescription for converting 
trigonometric identities to analogous identities for HY- 
PERBOLIC FUNCTIONS. 

The ANGLES nn/m (with m, n integers) for which the 
trigonometric function may be expressed in terms of fi- 
nite root extraction of real numbers are limited to val- 
ues of m which are precisely those which produce con- 
structible POLYGONS. Gauss showed these to be of the 
form 

m = ZkPlP2 ’  l  ‘Ps, (11) 

where k is an INTEGER 2 0 and the pi are distinct FER- 
MAT PRIMES. The first few values are m = 1, 2, 3, 4, 
5, 6, 8, 10, 12, 15, 16, 17, 20, . . . (Sloane’s AOOMOI). 
Although formulas for trigonometric functions may be 
found analytically for other m as well, the expressions 
involve ROOTS of COMPLEX NUMBERS obtained by solv- 
ing a CUBIC, QUARTIC, or higher order equation. The 
cases m = 7 and m = 9 involve the CUBIC EQUATION 
and QWARTIC EQUATION, respectively. A partial table 
of the analytic values of SINE, COSINE, and TANGENT 
for arguments r/m is given below. Derivations of these 
formulas appear in the following entries. 

’ rad sin x tan 2 

The INVERSE TRIGONOMETRIC FUNCTIONS are gener- 
ally defined on the following domains. 

Function 
sin-l II: 
cos -lx 

tan-l x 

csc-l x 

se? x 
cot-l x 

Domain 

Inverse-forward identities are 

tan-l(cot 2) = +7r - x 

sin -l(cosx) = ;7r - x 

set-l(cscx) = +7r - x, 

and forward-inverse identities are 

cos(sin-l 2) = 2/1 - x2 

1 
cos(ta8 z) = - 

m 

sin(co? 2) = 2/1 - x2 

sin(tan-lx) = ---- 
de X2 

d1 --x2 

tan(cos-lx) = - 
X 

tan(siP 2) = - 
& - x2 l  

Inverse sum ident ities include 

sin -Ii x + cos-l X= +7T 

tan-l x + cot-l x = +T 

set -l x + csc-l x = $7r, 

where (20) follows from 

x= sin(sin-l 2) = cos( f~ - sin -1x)* 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 
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Complex inverse identities in terms of LOGARITHMS in- 
clude 

sin -1 (z) = -iln(iz It dl- -22) 
-1 cos z = ( > -iln(z * id1 - 9 ) 

tan-l(x) = -i In 
1 + iz 

( > 
- 
dW 

l- iz 
- $n - - 

( > 1+iz l  

For IMAGINARY arguments, 

sin(k) = i sinhz 

cos(iz) = coshz. 

For COMPLEX arguments, 

sin(a: + iy) = sinxcoshy + icoszsinhy 

cos(x + iy) = cosxcoshy - isinzsinhy l  

Forthe ABSOLUTE SQUARE of COMPLEX argumentsz = 
x + i y ,  

(24 
(25) 
(26) 

(27) 

( sin@ + iy)12 = sin2 x + sinh2 y (32 

1 cos(x + iy)j2 = cos2 x + sinh2 y. (33 

The MODULUS also satisfies the curious identity 

1 sin( 2 + iy) 1 = 1 sin x + sin( iy) 1. (34 

The only functions satisfying identities of this form, 

If@ + iY)l = If(x) + fGY)l (35 

are f(z) = AZ, f(z) = Asin( and f(z) = Asinh(bz) 
(Robinson 1957). 

Trigonometric product formulas can be derived using 
the following figure (Kung 1996). 

(cos a, sin c1! 

r 
-1 

In the figure, 

sin p) 

e- +(-P) (36) 
Y= $+P), (37) 

so 

SL$ (sin ctr + sin p) = cos[+ - p)] sin[+ + p)] 

(38) 
t=+ (cos a + cos p> = cos[+ - p)] ,,,[+(a + P)]. 

(39) 

With 0 and y as previously defined, the above figure 
(Kung 1996) gives 

u = co@ - cosa = 2 sin[$ - fl)] sin[+ + p)] 

w  
V = sina - sin@ = Zsin[+(cr - @]cos[$(cy + p)]. 

(41) 

Angle addition FORMULAS express trigonometric func- 
tions of sums of angles QI * /3 in terms of functions of 
a and p. They can be simply derived used COMPLEX 
exponentials and the EULER FORMULA, 

sin(a+/?) = 
ei(atP) _ ,-i(a+P) ,iueip I e-iae-ifi 

= 
2i 2i 

(cosff + isina)(cosp + isinp) 
= 

2i 

(cosa - i sin a) (cos p - i sin p) - 
2i 

cosacos~+isin~cosa+isinacos~-sinasinp 
= 

2i 
- cosacos~+icosasin~+isinacos~+sinasin~ 

I  

2i 

= sinacosp +sinPcosa (42) 

ei(a+a) -t-e -i(a+Q) 
+P) = 

,iu,ip + e-‘ae-i@ 
= 

2 2 
(cosa + isina)(cosp + isinp) 

I= 
2 

+( 
cosa - i sin a) (cos p - i sin p> 

2 
cosacosp+icosasinp+isinacosfl-sinasinp 

= 
2 

+ 
cosacos~ - icosasinp - isinacosp - sinasinp 

2 

= cosacos~ - sinasinp. (43) 
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Taking the ratio gives the tangent angle addition FOR- 
MULA 

sin(a + p) 
tanb+P) = cos(a + p) = 

sinQIcosp + sinficosa 

~~~acos~ - sinasinp 

*+G$ tanar + tanp - - - 
l- sinasinJ3 - 

cos a cos ap 1 -tan&an@ (44) 

The angIe addition FORMULAS can also be derived 
purely algebraically without the use of COMPLEX NUM- 
BERS. Consider the following figure. 

rYb r-4 
a 

Fromthelarge RIGHT TRIANGLE, 

LsinP+a 
s++m = Lcosa+ b 

LCOSP 
cosb+P) = Lcosa+b’ 

But, from the small triangle (inset at upper right), (56) 

(45) 

(46) 

Lsina! 
a= 

cos(a + p> 

b = L sin Q! tan@ + 0). 

(47) 

(48) 

Plugging a and b from (47) and (48) into (45) and (46) 
gives 

sin(a + p) = 
Lsinp+ * 

Lcosa + L sin Q: sin(a+P) 

cos(a+D) 

sin p cos( QI + /3) + sin a - - 
cos a cos(a + p) + sin a sin(a + p) ’ 

and 

cos(cy + p> = 
fdcosp 

Lcosa + L sin a sin(a+P) 

cos(a+P) 

cos p 
- - 

cosa + 
sin a sin(a+p) l  

cos(a+D) 

(49) 

(50) 

Now solve (50) for cos( Qd + p) , 

cos(a + p) cos a + sin a sin@ + p) = co@ (51) 

Plugging (52) into (49) gives 

sinp [ co3 P-sin a sin(a+P) 
cos a I 

+ sin a 
sin(a + p) = 

cos a 

[ 

cos /Y--sin a sin(a+p) 

cos a 
] + sin a sin@ + 0) 

sin 0 cos 0 - sin a sin p sin(a + p) + sin a cos a - - 

- - 

- - 

so 

cos a cos p - sin a cos a sin(a + p) + sin a cos a sin@ + p) 

sin p cos p - sin a sin p sin(a + p) + sin Q cos a 

cos a cos p 

sincl:cosa + sin/3cosP 
sina sinp sin(a+P), (53) 

cosc4:cosp -cosacosp 

sin@ + 0) ( 1 + 
sin QI sin p 

> 

sinacosa + sinpcosP - 
cosacosp - cos a cos p 

(54 

sin@ + p)( cos QI cos fl+ sin a sin 0) 

= sinacosa + sin/3cosP, (55) 

and 

sin@ + p) = 
sinacosa + sin/?cosfl 
sinasinp + coscycosp 

sinacosCL + sin@cosP sinct!cosP+ sinpcosa! - - 
sinasinp + cosQIcosp sina:cosP + sin@osar’ 

Multiplying out the DENOMINATOR gives 

(cos a cos p + sin a sin p) (sin a cos 0 + sin p cos a) 

= sin a cos ar cos2 p + cos2 ~1 sin p cos fl 

+ sin2 a: sin fl cos fl+ sin Q! cos Q sin2 p 

= sinacosa + sinpcos& (57) 

so 
sin@ + P) = sinacosfl+sinPcoscr. (58) 

Multiplying out (50), 

cos(a + p) cos a + sin a sin@ + p) = cosp (59) 

cos(a+P) = 
cos 0 - sin a sin@ + p) 

cos Qr 
cosp - - sin a(sin Q cos fl+ sin p cos cy) - 

cos a 

- cos p( 1 - sin2 a) + sin QI cos a sin 0 
- 

cos u! 
cos2 a cos p + sin Q: cos Q sin p - - 

cos QI 
= cosQrcosp + sinasinp. (60) 

to obtain 

cos(a + p) = 
cos p - sin a sin@ + p) 

l  

c o s  a 

(52) 
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Summarizing, 

sin@ + p) = sinC4:cosP + sinpcosa 

sin@ - p) = sinacosp - sinpcosa: 

cos(a + p) = cosc1:cosp - sinasinp 

cos(a - p> = cosacosP + sinasinp 

tan@ + 0) = 
tana + tanp 

1 - tan&an0 

tan(a - p) = 
tana - tan0 

l+tancl!tanp’ 

The sine and cosine angle addition identities can be sum- 
marized by the MATRIX EQUATION 

[ 

cos x sin x 

I[ 

cos y sin y 
- sin x cos x - siny cos y 1 - [ cos(x+y) sin@ + y) - 

- sin(x + y) cos(x + y) 1 
The double angle formulas are 

sin(2a) = 2 sina cos & 

cos(2a) = cus2 a -sin2a 

= 2 cos2 a - 1 

=l-2si& 

2tana! 
ww = 1 _ tan2 a0 

General multiple angle formulas are 

sin(na) = 2sin[(n - l)cw] cos QI - sin[(n - 2)Q] 

sin(nx) = ncosnB1 xsinx 

n(n - w  - 2) - cos 
L2.3 

n-3 x sin3 x + . . . (74) 

cos(na) = 2cos[(n - l)cy] cosa - cos[(n - 2)a] (75) 

cos(nx) = cosn x - 
n(n - 1) n-2 
- cos 

1.2 
2 sin2 x 

+n(n - l)(n - 2)(n - 3) 
1*2*3.4 

cosn-4 x sin* x - . . . (76) 

tan(ncu) = 
tan[(n - l)~y] + tana 

1 - tan[(n - l)a] tana’ (77) 

Therefore, any trigonometric function of a sum can be 
broken up into a sum of trigonometric functions with 
sin Q! cos or cross terms. Particular cases for multiple an- 
gle formulas up to n = 4 are given below. 

sin( 3cy) =3sincw-4sin3CY (78) 

cos(3ai) = 4 cos3 a - 3 cos a (79) 

tan(3a) = 
3tana - tan3a 

l-3tan2cr w  

sin(4ar) = 4sinacosa - 8sin3 acosa: (81) 

cos(4a) = 8 cos4 a - 8 cos2 a + 1 (82) 

tan(4a) = 
4tana:-4tan3a 

l-6tan2~+tan4a!’ (83) 
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Beyer (1987, p. 139) gives formulas up to n = 6. 

Sum identities include 

tan@ -p) sin@ - p) cos(a + /3) 

tan@ + p) = cos(a - p) sir+ + 0) 

- (sin QI cos p - sin p cos 0) (cos Q! cos 0 - sin Qr sin p) 

- (cos a cos 0 + sin a sin 0) (sin Q! cos fl+ sin p cos QI) 

sinctlcosa - sinpcosP - - 
sina!cosa!+sinpcosP’ (84 

Infinite sum identities include 

m 

c 
emkz sin&y) 1 

k =stan 

-r sin y 

( > 
,- 

s in l l x  l  

(85) 
k=l, 3, 5,,.. 

Trigonometric half-angle formulas include 

sin(z) = /F 

COS (%> = py 

tan ; = 
( > 

sin a 

1+ cosa 
l- COSQ! - - 

sin Q! 

(86) 

1 * Jl + tan2 a - - 
tan a 

tan a sin QI - - 
tana! +sina!’ 

The PROSTHAPHAERESIS FORMULAS are 

sina + sin/3 = 2sin[+ + p)] cos[+(~ - p)] (92) 

sina - sinp = 2cos[+ +@]sin[$(cr -p)] (93) 

sina + cosj3 = 2 cos[+ + fl)] cos[+ - p)] (94) 

cosa - cosp = -2sin[+(a + j?)] sin[+(a - p)]* (95) 

Related formulas are 

sin a cos /3 = + [sin@ - p) + sin@ + p)] (96) 

cosacosp = +(a - p> + cos(a + p)] (97) 

cos a sinp = + [sin@ + 0) - sin(a - p)] (98) 

sin a sinp = i[cos(a - p) - cos(a: + p)]. (99) 

Multiplying both sides by 2 gives the equations some- 
times known as the WERNER FORMULAS. 

Trigonometric product/sum formulas are 

sin@ + p) sin@ - 0) = sin2 QI - sin2 p = cos2 0 - cos2 Q 

VW 
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cos(a +p) cos(a - p> = cos2 a - sin2 p = cos2 p - sin2 a. 

(101) 

Power formulas include 

sin2 x = i[l - cos(22)] (102) 

sin3 x = + [3 sin x - sin(3x)] (103) 

sin4x= $[3- 4 cos(2x) + cos(42)] (104) 

and 

cos2 x = $[l + cos(22)] (105) 

cos3 2 = 93 cos 2 + cos(3x)] (106) 

cos4 x = i[3 + 4cos(2x) + cos(4z)] (107) 

(Beyer 1987, p. 140). Formulas of these types can also 
be given analytically as 

sin 
272 1 272 

x=- 
0 22m n 

+g F(-l)‘(T) cos[2(n - k)x] (108) 

k=O 

2n+l sin = q f)-1)” (,,, ‘> sin[(2n+l-2kjx] 

k=O 

(109) 

2n (-1)” 2n 
cos x = - 

22n 0 n 

1 

+2 2n-1 
cos[2(n - k)x] (110) 

cos 2n+l x = $9 (‘,, ‘> cos[(2n+ 1- 2k)x] (111) 

k=O 

(Kogan), where (z) is a BINOMIAL COEFFICIENT. 

see ah C~SECANT, COSINE, COTANGENT, EUCLIDEAN 
NUMBER, INVERSE CUSECANT, INVERSE COSINE, IN- 

VERSE COTANGENT, INVERSE SECANT, INVERSE SINE, 

INVERSE TANGENT, INVERSE TRIGONOMETRIC FUNC- 
TIONS, OSBORNE’S RULE, POLYGON, SECANT, SINE, 
TANGENT,TRIGONOMETRY VALUES: n, ~/2,~/3,~/4, 
7~15, ~16, ~17, ~18, n/9, n/10, r/11, 412, r/15, r/16, 

r/17, r/18, r/20, 0, WERNER FORMULAS 
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Trigonometry Values-n 
By the definition of the trigonometric functions, 

sinn = 0 

COST = -1 

tan7r = 0 

csc7r = 00 

seer = -1 

cot 7T = 00. 

Trigonometry Values*/2 
By the definition of the trigonometric functions, 

n 
sin - = 1 

0 2 

cos E 
( > 2 

=0 

tan z 
( > 

=m 

csc T 
( > 2 

=l 

set IT 
0 2 

=oo 

cot p 
( > 

= 0. 

see also DIGON 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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Trigonometry Values-r/3 
From TRIGONOMETRY VALUES: 7~/6 1 

7T sin - = + 
0 6 

cos E = 3 

0 6 
v5 

(1) 

(2) 

together with the trigonometric identity 

sin(2cu) = 2 sin QI cos QI, 

the identity 

(3) 

sin(i) =2sin(~)cos($2($)(+&++~ 

(4) 
is obtained. Using the identity 

cos(2a) = 1 - 2 sin2 QI, 

then gives 

(5) 

7l- 
cos - 

0 3 
=1-2sin2 7T ~1-2(+)~=$, 

0 ii (6) 

Summarizing, 

sin 0 7r 3 -‘h 
-2 

cos ( T  > 
3 

= 3 

tan i = ti. 
( > 

(7) 

(8) 

(9) 

see also EQUILATERAL TRIANGLE 

Trigonometry Values-r/4 
For a RIGHT ISOSCELES TRIANGLE, symmetry requires 
that the angle at each VERTEX be given by 

so a = 7~14. The sides are equal, so 

sin2ctl+cos2a=2sin2cr= 1. (2) 

Solving, 

sin R 
( > 4 

=f h 

7r 
cos - = ;Jz 

( > 4 

tan s = 1. 
0 

(3) 

(4 

(5) 

see also SQUARE 

Tkigonometry Values--n/5 1853 

Trigonometry Values---/r/5 
Use the identity 

sin(5ar) = 5 sin a - 20 sin3 QC + 16 sin5 a. (1) 

Now, let Q s n/5 and CI: G sinar. Then 

sin7r = 0 = 5~ - 20~~ +16x" (2) 

16x4 -20x2 +5 = 0. (3) 
Solving the QUADRATIC EQUATION for x2 gives 

sin2 0 7T 2ok d(-2c1)~ -4.16-5 

5 
= x2 =I 

2 l  16 

20 & m - - - '((5k A). 
32 -8 

Now, sin(n/5) must be less than 

sin E = + 
( > 4 

d5 , 

so taking the MINUS SIGN and simplifying gives 

sin(z) = JF= +&?LYJE 

cos(r/5) can be computed from 

cos(a)=.+-sin’(z)=a(l+&). 

Summarizing, 

sin(E) = aJ= 

sin ($) = ~v5iizz 

sin(F) = +JG-JYZ 

sin($) = $da 

cos T = a<l+&) 
( > 5 
2n 

cos - - 
( > 5 

- a<-1 + & 

37r 
cos - - 

( > 5 
- a(1 - A) 

4n 
cos - = 

( ) 5 
-$(l+& 

tan(F) = &FZ 

tan($) = -&TiZ 

tan($) = --&TiL 

(4) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

see also DODECAHEDRON, ICOSAHEDRON, PENTAGON, 
PENTAGRAM 
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Trigonometry Values-r/6 
Given a RIGHT TRIANGLE with angles defined to be ct 
and 2a, it must be true that 

so ctr = r/6. Define the hypotenuse to have length 1 
and the side opposite QC to have length X, then the side 
opposite 2a has length 4C-Z This gives sina E it: 
and 

sin(2cr) = &Y?. (2) 

But 
sin( 2cy) = 2sinacosa = 2x&T, (3) 

so we have 

This gives 2x = 1, or 

(5) 

cos(7r/6) is then computed from 

Summarizing, 

tan z = i&L 
( > 

(7) 

(8) 

(9) 

see UZSO HEXAGON, HEXAGRAM 

Trigonometry Values-r/7 
Trigonometric functions of nr/7 for n an integer cannot 
be expressed in terms of sums, products, and finite root 
extractions on real rational numbers because 7 is not a 
FERMAT PRIME. This also means that the HEPTAGON 
is not a CONSTRUCTIBLE POLYGON. 

However, exact expressions involving roots of complex 
numbers can still be derived using the trigonometric 
identity 

sin(ncu) = 2 sin[(n - l)a] cos a - sin[(n - 2)&j. (1) 

The case 12 = 7 gives 

sin(7cr) = 2 sin(6cy) cos a - sin(5a) 

= 2(32 cos5 a sin ct -32cos”asincr-i-6coscrsina)coscr 

- (5 sin a - 20 sin3 a + 16 sin5 a) 

= 64 cos6 a sin Ed - 64 cos4 a sin a + 12 cos2 or sin a 

-5 sin o + 20( 1 - cos2 a) sin or 

-16(1 - 2~0s~ 0 + cm4 a) sina 

= sin a(64 cos6 a - 80 cos4 a + 24 cos2 a - 1). (2) 

Rewrite this using the identity cos2 a = 1 - sin2 QI, 

sin 
7r 

( > r = 
sin ~(7 - 56 sin2 a + 112 sin4 Q - 64 sin” cy) 

--64sina(sin%- $$sin4cu+gsin2cr- &), (3) - 

Now, let cy E 7r/7 and x G sin2 o, then 

sin(n) = 0 = x3 - $x2 + $ - &, (4 

which is a CUBIC EQUATION in X. The ROOTS are 
numerically found to be x ==: 0.188255, 0.611260.. ., 
0.950484. , . . But sinar = fi, so these ROOTS corre- 
spond to sinew z 0.4338, sin(2a) E 0.7817, sin(3a) z 
0.9749. By NEWTON'S RELATION 

rI 
7-i = --ao, (5) 

i 

we have 
7 

x1x2x3 = 64' (6) 

or 

sin (:) sin ($) sin (f) = /-& = iJ5. (7) 

Similarly, 

cos(;)cos(~)cos(~) = ;. (8) 

The constants of the CUBIC EQUATION are given by 

Q 
- E ;(3al - @“) = ;/3 * ; - (-p] = -& (9) 

R E &(9anal - 2& - 27ao) 

= &[9(-;)(+8) - 2(-a)” - 27(-h)] 
7 - - -3456’ (10) 

The DISCRIMINANT is then 

D E Q3 + R2 = 343 49 
-2,985,984 +- 11,943,936 

- 4g 
- -442,368 <o I (11) 

so there are three distinct REAL ROOTS. Finding the 
first one, 

Writing 
fi+3-3/2 7 * - 

iFs2, (13) 

plugging in from above, and anticipating that the solu- 
tion we have picked corresponds to sin(3r/7), 
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see also HEPTAGON 

Trigonometry Values-r/8 

sin(i) =sin(&:) =J-cl-m 

= da= $J2-Jz. (1) 

NOW, checking to see if the SQUARE ROOT can be sim- 
plified gives 

2 - b2C = z2 - 12. 2 = 4 - 2 = 2, (2) 

which is not a PERFECT SQUARE, so the above expres- 
sion cannot be simplified. Similarly, 

cos (;) ;cos (i%> = JM 

== gqj= ~6-z (3) 

tan(z) +I!$= /T= /T 

d- 
-=&-iZ. 
S-4& - - 

2 (4 

But 
a2 - b2C = 32 -222=9-8=l (5) 

isa PERFECT S~u~~~,sowecan find 

d = i(3 It 1) = 1,2. 

Rewrite the above as 

tan i 
( > 

=1/2-l (6) 

3T 

0 

1 d+l cot - = - - ~ 
8 J2-1- 2-l 

=fi+1. (7) 

Summarizing, 

sin(z) = #CZ 

sin(F) =$&LX 

cos(;) = +5Tz 

cos (%) = ;J2-Jz 

tan i 
0 

=J2-1 

tan f 
( > 

=1/z+l. 

see also OCTAGON 

Trigonometry Values-r/9 

1855 

(8) 

(9) 

(10) 
, 

(11) 

(12) 

(13) 

Trigonometric functions of nr/9 radians for n an in- 
teger not divisible by 3 (e.g., 40” and 80”) cannot be 
expressed in terms of sums, products, and finite root 
extractions on real rational numbers because 9 is not a 
product of distinct FERMAT PRIMES. This also means 
that the NONAGON~~~~~ a CONSTRUCTIBLE POLYGON. 

However, exact expressions involving roots of complex 
numbers can still be derived using the trigonometric 
identity 

sin(3a) = 3 sin a - 4 sin3 a. (1) 

Let Q! = r/9 and 2 E sina. Then the above identity 
gives the CUBIC EQUATION 

4x3-332+ g3=0 (2) 

x3 - +-; . J3 (3) 
This cubic is of the form 

where 

x3 + px = 4, (4) 

p-i 

p-‘h 8 ’ 

The DISCRIMINANT~~ then 

(5) 

(6) 
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There are therefore three REAL distinct roots, which are 
approximately -0.9848, 0.3240, and 0.6428. We want 
the one in the first QUADRANT, which is 0.3240. 

Summarizing, 

7-r 
sin 1. = 4 ( > qJ5 - 1) 

sin(z)={-+/- 

=(~-/pj 

= 2-4/3( v- - VX) 
iz 0.3240.. . . (8) 

Similarly, 

. 37r 
sm 10 - 4 ( > - q1+ &) 

3r 

cos iii - 4 ( > 
- q10 - 2J5) 

tan ($) = ida. 

(8) 

(9) 

7T 
cos - 

( > 9 
= 2-4’3( vzzz+ ViTz) 

x 0.7660 l  l  l  . 
(9) 

Because of the NEWTON'S RELATIONS, we have the iden- 
tities 

An interesting near-identity is given by 

; [cos(&) +cosh(&) + 2cos(&h)cosh($h)] ==: 1. 

(10) 

sin (a> sin ($) sin (f) = i (10) 

cos (;) cos ($) cos (f> = +h (11) 

tan(z)tan($)tan($) =&. (12) 

In fact, the left-hand side is approximately equal to 1 + 
2.480 x 10-13. 

see also DECAGON, DECAGRAM 

Tbigonometry Values-7+1 
Trigonometric functions of nr/ 11 for n an integer cannot 
be expressed in terms of sums, products, and finite root 
extractions on real rational numbers because 11 is not a 
FERMAT PRIME. This alsomeansthatthe UNDECAGON 
is not a CONSTRUCTIBLE POLYGON. 

see also NONAGON, STAR OF GOLIATH 

Trigonometry Values-/W 

sin($) =sin(&F) =J+ [I-cos(z)] 

= $I-= $(&- 1). 

So we have 

cos($) =cos(;*;) =J; [1+cos(;)] 

- - 4 $ + a<1 + h)] 

and 

tan $ = 
0 d 

~+&TiT5. 

(1) 

(2) 

(3) 

However, exact expressions involving roots of complex 

numbers can still be derived using the trigonometric 
identity 

sin(lla) = sin(l2a - cy) cosctr - cos(l2a) sinctl 

= 2 sin(6cr) cos(6,) cos a - [l - 2 sin2(6a)] sina. (1) 

Using the identities from Beyer (1987, p* 139), 

sin(6a) = sin Q cos a[32 cos4 a - 32 cos2 Q + 61 

cos(6a) = 32 co8 a - 48 cos4 a + 18 cos2 QI - 1 

gives 

(2) 

(3) 

sin(lla) = 2 cos2 a sin a(32 cos4 QI - 32 cos2 a + 6) 

x (32 cos6 a - 48 cos4 a + 18 cos2 a - 1) 

- sincll[l - 2sin2 ~rcos’ (r(32 cos4 Q! - 32 cos2 Q + 6)2] 
- - sincy(l1 - 220sin2 QI + 1232 sin4 ~QI 

-2816sin6 a + 2816sin’ -1024sin1’a). (4) 

Now, let a E x/11 and x E sin2 a, then 

sin7r = 0 

= 11 - 220~ + 1232~~ - 2816x3 + 2816~~ - 1024x5. (5) 
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This equation is an irreducible QUINTIC EQUATION, so 
an analytic solution involving FINITE Rook extractions 

does not exist. The numerical ROOTS are 2 = 0.07937, 
0.29229, 0.57115, 0.82743, 0.97974. So sina = (X2817, 

sin(20) = 0.5406, sin(3ar) = 0.7557, sin($cy) = 0.9096, 
sin( 5cr) = 0.9898. From one of NEWTON’S IDENTITIES, 

sin(fi)sin(g)sin(g)sin(E)sin(z) 

11 - - - = 
1024 32 (6) 

1 -- - 
32 (7) 

tan(g)tan(g)tan(g)tan(z)tan(g) 

= fi. (8) 

The trigonometric functions of n/l1 also obey the iden- 
titv 

tan(g) +4sin ($) = 1/11. (9) 

see &O UNDECAGON 

References 
Beyer, W. H. YIkigonometry.” CRC Standard Mathematical 

Tables, 28th ed. Boca Raton, FL: CRC Press, 1987. 

Trigonometry Values-r/12 

sin(k) =sin(% -:) 

=-sin(a)cos(3)+sin(i)cos(:) 

- -$Jz(;) + $h($Jz) - 

- +<A- J2). - 

Similarly, 

cos($) =cos(;-%> 

(1) 

= cos (:)cos(i) -sin(t) 

- a(&+ Jz). - 
Summarizing, 

(2) 

= a(& - fi) z 0.25881 

= f (& + h) $=: 0.96592 

2 - fi= 0.26794 

= J6+ h==: 3.86370 

= &- fid.03527 

2 + h = 3.73205. 

(3) 

(4 

(5) 

(6) 

(7) 

(8) 

Trigonometry Values-r/l5 

sin($) =sin(t - $) 

= sin (z)cos($J -sin(&)+) 

-- - :\/;(5+J5)-$f(&l) 
-,',(2&2Ji%+&Tiz) -- (1) 

and 

cos($) =cos(;-$J 
= cos (z)cos($) +sin(z)sin($) 

- - 

;(-\/30+6&+&1). z- (2) 

Summarizing, 

F=: 0.20791 (3) 

z 0.40673 (4) 

cos(&) = ;(da+&-l)-00.97814 (5) 

cos(g) = ;(dcfi+l)- 0.91354 (6) 

7T tan 15 -2 ( > -q3&&-&ixz) 

sr: 0.21255. (7) 

Trigonometry Values-r/36 
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Summarizing, sin = &[136-882/11+8~'%-2(d%-3fi)~* 

-2P(l - fi - JZe*)]i'a 
z 0.99573 

AC-1 + di7-t VW 

-2&7+3fi -dL* -2&E). 
= 0.09227 

cos(g) = f1/2+ d-=0.83147 (7) 

tan(&) = da- &- 1 z0.19891. (8) 

There are some interesting analytic formulas involving 
the trigonometric functions of nn/17. Define 

P(x) E (x - 1)(x - 2)(x" + 1) 

Trigonometry Values-r/17 
Rather surprisingly, trigonometric functions of n7r/ 17 
for n an integer can be expressed in terms of sums, prod- 
ucts, and finite root extractions because 17 is a FER- 
MAT PRIME. This makes the HEPTADECAGON a CON- 
STRUCTIBLE, as first proved by Gauss. Although Gauss 
did not actually explicitly provide a construction, he did 
derive the trigonometric formulas below using a series of 
intermediate variables from which the final expressions 
were then built up. 

Let 

= g[34-2fi-2aJZE* 

-2d68+12fi+2ti(Ji-;i- 1)~ - 16fi~]~" 

z 0.18375 

$[30+2fi+2&* 

+2d68+12&?+2&(fi- l)~* - 161&]~'~ 

z 0.98297 

sin -8fi+4&(1- 617)~'+ 16&k 

+2(JZ-J34-2~')~34+6J17+(J34-~)~8 -8&+11'" 
M 0.36124 
2T 

cos - ( > 17 
=&[-1+Jl';i+xm 

8+12di%Zh(l-fi)~- -16&l 
M 0.0.93247 

sin 

g&) = 
2 + @w 

1-X 

94(x) = 
2 - @x> 

l-x 

fi(X) = a w> - 11 
a = + tan -1 4, 

where i = 1 or 4. Then 

2T 
fi(tana) = cos 17 ( > 

see also CONSTRUCTIBLE POLYGON, FERMAT PRIME, 

HEPTADECAGON 
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York: Springer-Verlag, pp* 192-194 and 229-230, 1996. 
Dijrrie, H. “The Regular Heptadecagon.” $37 in 100 Great 

Problems of Elementary Mathematics: Their History and 
Solutions. New York: Dover, pp. 177-184, 1965. 

Ore, 0. Number Theory and Its History. New York: Dover, 
1988. 

Smith, D. E. A Source Book in Muthematics. New York: 
Dover, p+ 348, 1994. 

Trigonometry Values-r/18 
The exact values of cos(n/lB) and sin(r/l8) are given 
by infinite NESTED RADICALS. 

==: 0.17365, 

where the sequence of signs +, +, - repeats with period 
3, and 

= 0.98481, 

~~68-4d%2(d%fi)~*+8&~+~~(&-&-2~*) 

= 0.0.67370 
where the sequence of signs -, -, + repeats with period 
3. 
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Trigonometry Values-r/20 

sin($) =sin(&) =$!$cos$) 

cos(g) =cos(&) = /; (1+cos-&) 

7r 
tan 20 = ( > l+&-&Tz 

= 0.15838. (3) 

An interesting near-identity is given by 

+cosh(&) +2cos(&&)cosh(&&)] = 1. 

(4) 
In fact, the left-hand side is approximately equal to 1 + 
2.480 x 10-13. 

Trigonometry Values-O 
By the definition of the trigonometric functions, 

sin0 = 0 

cos 0 = 1 

tan0 = 0 

csc 0 = 00 

sec0 = 1 

cot 0 = 00. 

Tkigyrate Rhombicosidodecahedron 

see JOHNSON SoLm 

Xkihedron 
The TRIPLE ofunit ORTHOGONAL VECTORS T,N,and 
I~(TANGENTVECTOR,NORMAL VECTOR, and BINOR- 
MAL VECTOR). 

see &o BINORMAL VECTOR, NORMAL VECTOR, TAN- 
GENT VECTOR 

Bilinear Coordinates 

c 

A 

Tl-ilinear Coordinates 1859 

Given a TRIANGLE AABC, the trilinear coordinates of 
a point P with respect to AABC are an ordered TRIPLE 
of numbers, each of which is PROPORTIONAL to the di- 
rected distance from P to one of the side lines. Trilinear 
coordinates are denoted QI : 0 : y or (q&r) and also 
are known as BARYCENTRIC COORDINATES, HOMOGE- 
NEOUS COORDINATES, or Yrilinears.” 

In trilinear coordinates, the three VERTICES A, B, and 
C are given by 1 : 0 : 0, 0 : 1 : 0, and 0 : 0 : 1. Let the 
point P in the above diagram have trilinear coordinates 
QI : p : y and lie at distances a’, b’, and c’ from the 
sides BC, AC, and AB, respectively. Then the distances 
a’ c kar, b’ = /@, and c’ = kr can be found by writing 
Aa for the AREA of ABPC, and similarly for Ab and 
AC* We then have 

A = A, + Ab + AC = $,aa’ + i bb’ + $x’ 

= $(aka+bkP$cky) = $k(acrtb/3fcy). (1) 

so 

k, 
2A 

acu+bp+cy’ 
(2) 

where A is the AREA of AABC and a, b, and c are the 
lengths of its sides. When the values of the coordinates 
are taken as the actual lengths (i.e., the trilinears are 
chosen so that k = l), the coordinates are known as 
EXACT TRILINEAR COORDINATES. 

Trilinear coordinates are unchanged when each is mul- 
tiplied by any constant p, so 

tl:t2:t3=~tl:C1tZ:~tg. (3) 

When normalized so that 

t1 + t2 + t3 = 1, (4) 

trilinear coordinates are called AREAL COORDINATES. 
The trilinear coordinates of the line 

where 
to the 

ux+vy+wx=o 

u:v:w=adA:bdB:cdc, 

di is the POINT-LINE DISTANCE from VERTEX A 

(5) 

(6) 

TKlinear coordinates for some common POINTS are sum- 
marized in the following table, where A, B, and C are 
the angles at the corresponding vertices and a, 6, and c 
are the opposite side lengths. 
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Point Triangle Center Function 

centroid M 
circumcenter 0 
de Longchamps point 
equal detour point 
Feuerbach point F 
incent er I 
isoperimetric point 
Lemoine point 
nine-point center N 
orthocenter H 
vertex A 
vertex B 
vertex C 

csc A, l/a 
cos A 
cos A - cos B cos c 
sec(iA) cos( $B) cos($C) + 1 
1 - cos(B - C) 
1 

sec( iA) cos( $B) cos( ;C) - 1 

Zos(B - C) 

cos B cos c 

1:Q:O 

0:l:O 

0:O:l 

To convert trilinear coordinates to a vector position for 
a given triangle specified by the z- and y-coordinates of 
its axes, pick two UNIT VECTORS along the sides. For 
instance, pick 

r i 

(7) 

2:= 
Cl I I cz ' 

(8) 
L J 

where these are the UNIT VECTORS BC and AB. As- 
sume the TRIANGLE has been labeled such that A = x1 
is the lower rightmost VERTEX and C = x2. Then the 
VECTORS obtained by traveling I, and 1, along the sides 
and then inward PERPENDICULAR to them must meet 

Solving the two equations 

gives 

x1 + lccl - kycz =J= 1~2Zaal - kaa2 

yl + Zcc2 + kycl = ydaa2 + kaal, 

(10) 

(11) 

, k&w1 + a2c2) - yk(c12 + c2”) + Cz(G - 52) + Cl(Y2 - Yl) 
ec - ~- - 

alc2 - a2c1 

(12) 

I, = 
kcu(a12 + az2 ) - yk(a,cl + ~3) + a~(32 - ~2) + a& - ~1) 

. 
al ~2 - a2cl 

(13) 

But 6 and 2: are UNIT VECTORS, so 

1, = 

k&lcl + ~2) - yk + &I - 22) + 4~2 - yl) 

ac2 - U2Cl 

(14) 
I, = 

ka - yk(um + am) + m(xl - m) + al(y2 - ~1) 
. 

alc2 - a2cl 

(15) 

And the VECTOR coordinates of the point QI : p : y are 
then 

x = x1 + 1, 
[;;I -kT [4,] l  (16) 

see 52~0 AREAL COORDINATES, EXACT TRILINEAR Co- 
ORDINATES, ORTHOCENTRIC COORDINATES, POWER 

CURVE, QUADRIPLANAR COORDINATES, TRIANGLE, 

TRILINEAR POLAR 
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Tkilinear Line 
A LINE is given in TRILINEAR COORDINATES by 

la+mp+nr=O. 

see also LINE, TRILINEAR COORDINATES 

Xkilinear Polar 
Given a TRIANGLE CENTER X = 2 : m : n, the line 

la+mp+nr=O 

is called the trilinear polar of X-l and is denoted L. 

see 52~0 CHASLES’S P~LARS THEOREM 

Trillion 
The word trillion denotes different numbers in Amer- 
ican and British usage. In the American system, one 
trillion equals 1012. In the British, French, and German 
systems, one trillion equals 101”. 

see also BILLION, LARGE NUMBER, MILLION 

Trimagic Square 
If replacing each number by its square or cube in a 
MAGIC SQUARE produces another MAGIC SQUARE, the 
square is said to be a trimagic square. Trimagic squares 
of order 32, 64, 81, and 128 are known. Tarry gave a 
method for constructing a trimagic square of order 128, 
Cazalas a method for trimagic squares of orders 64 and 
81, and R. V. Heath a method for constructing an or- 
der 64 trimagic square which is different from Cazalas’s 
(Kraitchik 1942). 
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Trimagic squares are also called TREBLY MAGIC 
SQUARES, and are 3-MULTIMAGIC SQUARES. 

see also BIMAGIC SQUARE, MAGIC SQUARE, MUL- 
TIMAGIC SQUARE 
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Trimean 
The trimean is defined to be 

TM+(H1+2M+H2), 

where Hi are the HINGES and AJ is the MEDIAN. Press 
et al. (1992) call this TUKEY’S TRIMEAN. It is an L- 
ESTIMATE. 

see &O HINGE, L-ESTIMATE, MEAN, MEDIAN (STATIS- 

TICS) 
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Dimorphic Number 
A number n such that the last digits of n3 are the same 
as n. 49 is trimorphic since 4g3 = 117649 (Wells 1986, 
p. 124). The first few are 1, 4, 5, 6, 9, 24, 25, 49, 51, 75, 
76, 99, 125, 249, 251, 375, 376, 499, . . . v 

see also AUTOMORPHIC NUMBER, NARCISSISTIC NUM- 
BER, SUPER-~ NUMBER 

References 
Wells, D. The Penguin Dictionary of Curious and Interesting 

Numbers. Middlesex, England: Penguin Books, 1986. 

Tkinoid 

A MINIMAL SURFACE discovered by L. P. M. Jorge and 
W. Meeks III in 1983 with ENNEPER-WEIERSTRAB PA- 
RAMETERIZATION 

1 
f = (53 - 1)” (1) 

9 = c” (2) 

(Dickson 1990). Explicitly, it is given by 

[ 

re iB 
a:=R 

41n(reie - 1) 
3(1+ reie + r2e2i0) - 9 

21n(l+ reie + r2e2ie)1 
I 

9 1 

y = -p 
[ 

-3reie (1 + T,ie> 
r3e3ifl - 1 

4fi(r3e3ie - 1) tan-l 
+ 

(-7 
7--3e3ie - 1 

z=g L --- 2 2 3 3(r3e3ie - 1) 1 ’ 

for 8 f [0,27r) and T f [0,4]. 

see UZSO MINIMAL SURFACE 
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(3) 

I (4) 
(5) 

Dickson, S. “Minimal Surfaces.” Mathematics J. 1, 38-40, 
1990. 

Wolfram Research “Mat hemat ica Version 2.0 Grap hits 
Gallery.” http: //uuu.mathsourc8.com/cgi-bin/ Math 
Source/Applications/Graphics/3D/O207-155. 

Trinomial 
A POLYNOMIAL with three terms. 

see also BINOMIAL, MONOMIAL, POLYNOMIAL 

Trinomial Identity 

(x" -+- axy + by2)(t2 + atu + bu2) = r2 + ars + bs2, (1) 

where 

r = xt - byu (2) 

S = yt + xu + ayu. (3) 

Trinomial Triangle 
The NUMBER TRIANGLE obtained by starting with a 
row containing a single “1” and the next row containing 
three 1s and then letting subsequent row elements be 
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computed by summing the elements above to the left, 
directly above, and above to the right: 

1 

1 1 1 

1 2 3 21 

1 367631 

1 4 10 16 19 16 10 4 1 

(Sloane’s A027907). The nth row can also be obtained 
by expanding (1 + z + x2)n and taking coefficients: 

(1+ x + x2)0 = 1 

(1+ Cc + X2)l = 1 + x + X2 

(1+ It: + z2)2 = 1+ 2x + 3x2 + 2x3 + x4 

and so on. 

see also PASCAL’S TRIANGLE 

References 
Sloane, N. J. A. Sequence A027907 in “An On-Line Version 
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Tkiomino 

The two 3-PoLYoMINoES are called triominoes, and are 
also known as the TROMINOES. The left triomino above 
is “STRAIGHT," while the right triomino is called “right” 
or L-. 

see also L-POLYOMINO, POLYOMINO, STRAIGHT POLY- 
OMINO 
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Hunter, J. A. H. and Madachy, J. S. Mathematical Diver- 
sions. New York: Dover, pp. 80-81, 1975. 
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Trip-Let 
A 3-dimensional solid which is shaped in such a way that 
its projections along three mutually perpendicular axes 
are three different letters of the alphabet. Hofstadter 
(1989) has constructed such a solid for the letters G, E, 
and B. 

see also CORK PLUG 

References References 
Hofstadter, D. R. Giidel, Escher, Bach: An Eternal Golden 

Braid. New York: Vintage Books, cover and pp. xiv, 1, 

and 273, 1989. 

Triple 
A group of three elements, also called a TRIAD. 

see also AMICABLE TRIPLE, MONAD, PAIR, PYTHAG- 

OREAN TRIPLE,QUADRUPLET,QUINTUPLET,TETRAD, 
TRIAD, TWINS 

Triple-Free Set 
A SET of POSITIVE integers is called weakly triple-free 
if, for any integer x, the SET {x, 2x, 3x} c S. It is called 
strongly triple-free if x E S IMPLIES 2x @ S and 3x @ S. 
Define 

PM = max{lSl : S C {1,2,. l  . ,n} 

is weakly triple-free} 

4 > n =max{lSl: S C {1,2,...,n} 

is strongly triple-free}, 

where IS/ denotes the CARDINALITY of S, then 

lim ‘0 > 4 
n-km n -5 

and 

lim -J- 4 > 
= 0.6134752692. l  . 

n--km n 

(Finch). 

see also DOUBLE-FREE SET 

References 
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Triple Jacobi Product 

see JACOBI TRIPLE PRODUCT 

Triple Point 

A point where a curve intersects itself along three arcs. 
The above plot shows the triple point at the ORIGIN of 
the TRIFOLIUM (x" +Y~)~ +3x2y-y3 = 0. 

see also DOUBLE POINT, QUADRUPLE POINT 

Walker, R. J. Algebraic Curves. New York: Springer-Verlag, 
pp. 57-58, 1978. 

Triple Scalar Prorduct 

see SCALAR TRIPLE PRODUCT 
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Triple Vector Product 
see VECTOR TRIPLE PRODUCT 

Triplet 

see TRIPLE 

Triplicate-Ratio Circle 
see LEMOINE CIRCLE 

Trisected Perimeter Point 
A triangle center which has a TRIANGLE CENTER FUNC- 
TION 

ct = bc(v - c+ a)(v - a -t-b), 

where v is the unique REAL ROOT of 

2x3 - 3(a + b + c)x2 + (a” + b2 + c2 -+- 8bc + 8ca + 8ab)x 

-(b2c + c2a + a2b + 5bc2 + 5ca2 + 5ab2 + Sabc) = 0. 

References 
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Trisection 

1 $13 trisection 

Angle trisection is the division of an arbitrary ANGLE 

into three equal ANGLES. It was one of the three GEO- 
METRIC PROBLEMS OF ANTIQUITY for which solutions 
using only COMPASS and STRAIGHTEDGE were sought. 
The problem was algebraically proved impossible by 
Wantael (1836). 

Although trisection is not possible for a general ANGLE 
using a Greek construction, there are some specific an- 
gles, such as 7r/2 and 7r radians (90’ and 180”, respec- 
tively), which can be trisected. Furthermore, some AN- 

GLES are geometrically trisectable, but cannot be con- 
structed in the first place, such as 3n/7 (Honsberger 
1991). In addition, trisection of an arbitrary angle can 
be accomplished using a marked RULER (a NEUSIS CON- 
STRUCTION) as illustrated below (Courant and Robbins 
1996). 

An ANGLE can also be divided into three (or any WHOLE 
NUMBER) ofequal partsusingthe QUADRATRIX OF HIP- 
PIAS or TRISECTRIX. 

see 

QU 

&SO ANGLE 
ADRATRIX OF 

BXSECTO 
HIPPIAS 

R, MACLAURIN 
, TRISECTRIX 
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Xkisectrix 

see CATALAN'S TRISECTRIX, MACLAURIN TRISECTRIX 

Trisectrix of Catalan 

see CATALAN'S TRISECTRIX 

Trisectrix of Maclaurin 
see MACLAURIN TRISECTRIX 

Triskaidecagon 

see TRIDECAGON 

Tkiskaidekaphobia 
The number 13 is traditionally associated with bad luck. 
This superstition leads some people to fear or avoid 
anything involving this number, a condition known as 
triskaidekaphobia. Triskaidekaphobia leads to interest- 
ing practices such as the numbering of floors as 1, 2, 

- * * > 11, 12, 14, 15, l  l  l  ) omitting the number 13, in many 
high-rise hotels. 

see also 13, BAKER'S DOZEN, 
TEENTH, TRISKAIDEKAPHOBIA 

FRIDAY THE THIR- 

Tritangent 
The tritangent of a CUBIC SURFACE is a PLANE which 
intersects the surface in three mutually intersecting 
lines. Each intersection of two lines is then a tangent 
point of the surface. 

see aEso CUBIC SURFACE 

. 

References 
Hunt, B. “Algebraic Surfaces.” http 

uni-kl. de/-wwwagag/Galerie. html. 
: //wwv .mathemat ik. 
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Xkitangent Triangle 

see EXCENTRAL TRIANGLE 

Trivial 
According to the Nobel Prize-winning physicist Richard 
Feynman (1985), mathematicians designate any THE- 

OREM as “trivial” once a proof has been obtained-no 
matter how difficult the theorem was to prove in the 
first place. There are therefore exactly two types of 
true mathematical propositions: trivial ones, and those 
which have not yet been proven. 

see also PROOF, THEOREM 

References 
Feynman, R. P. and Leighton, R. Surely You’re Joking, Mr. 

Feynman! New York: Bantam Books, 1985. 

Trivialization 
In the definition of a FIBER BUNDLE f : E + B, the 
homeomorphisms gu : f-‘(U) -+ U x F that commute 
with projection are called local trivializations for the 
FIBER BUNDLE f* 

see also FIBER BUNDLE 

Trochoid 
The curve described by a point at a distance b from the 
center of a rolling CIRCLE of RADIUS a. 

Truncate 
TO truncate a REAL NUMBER is to remove its nonin- 
tegral part. Truncation of a number x therefore corre- 
spondstotakingthe FLOOR FUNCTION LX]. 
see UZSO CEILING FUNCTION, FLOOR FUNCTION, NINT, 
ROUND 

Truncated Cone 

see CYNICAL FRUSTUM 

Truncated Cube 
/ 

An ARCHIMEDEAN SOLID whose DUAL POLYHEDRON is 
the TRIAKIS OCTAHEDRON. It has SCHLXFLI SYMBOL 
t{4,3}. It is also UNIFORM POLYHEDRON US and has 
WYTHOFF SYMBOL 2 3 14. Its faces are 8{3}+6{8}. The 
INRADIUS, MIDRADIUS, and CIRCUMRADIUS for a = 1 

are 

x=a+bsin+ 

Y = a - bcosqi 

r= &(5+2fi)J7+4& 1.63828 

p = i(2 + 1/2) a 1.70711 

R = id7 + 4fi = 1.77882. If b < a, the curveis a CURTATE CYCLOID. Ifb= a, the 
curve is a CYCLOID. If b > a, the curve is a PROLATE 
CYCLOID. 

see also CU 
CLOID 

RTATE CYCLOID, CYCLOID, PROLATE CY- 

References 
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Tkomino 

see TRIOMINO 

Tsue 
A statement which is rigorously known to be correct. A 
statement which is not true is called FALSE, although 
certain statements can be proved to be rigorously UN- 

DECIDABLE within the confines of a given set of assump- 
tions and definitions. Regular two-valued LOGIC allows 
statements to be only true or FALSE, but FUZZY LOGIC 

treats “truth” as a continuum which can have any value 
between 0 and 1. 

~~~~Z~~ALETHIC, FALSE, FUZZY LOGIC,LOGIC,TRUTH 
TABLE,~NDECIDABLE 

References 
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recre- 
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1987. 

Truncated Cuboctahedron 

see GREAT RHOMBICUBOCTAHEDRON (ARCHIMEDEAN) 

Truncated Dodecadodecahedron 

The UNIFORM POLYHEDRON i&, also called the QUA- 

SITRUNCATED DODECAHEDRON, whose DUAL POLYHE- 
DRON is the MEDIAL DISDYA~S TRIACONTAHEDRON. 

It has SCHL~FLI SYMBOLS' ; 
{ > 

and WYTHOFF SYM- 

BOL 2 $ 15. Its faces are 12{10} + 30{4} + 12{ y}. Its 
CIRCUMRADIUS for a = lis 

R=yE. 
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References 
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Truncated Dodecahedron 

An ARCHIMEDEAN SOLID whose DUAL POLYHEDRON is 
the TRIAKIS ICOSAHEDRON. It has SCHL~FLI SYMBOL 
t{5,3}. It is also UNIFORM POLYHEDRON UZS and has 
WYTHOFF SYMBOL 2 3 ) 5. Its faces are 20{3} + 12{10}. 
The INRADIUS,MIDRADIUS, and CIRCUMRADIUS fora = 
1 are 

5 (17& + 3J1o)fi + 15& = 2.88526 T=488 
p = $(5 + 3&) z 2.92705 

R+ d74 + 3OJ5 = 2.96945. 

Truncated Great Dodecahedron 

The UNIFORM POLYHEDRON&~ whose DUAL POLYHE- 
DRON isthe SMALL STELLAPENTAKIS DODECAHEDRON. 
It has SCHL~FLI SYMBOL t(5, $}. It has WYTHOFF 
SYMBOL 2 $5. Its faces are 12{ 4} + 12{10}. Its CIR- 
CUMRADIUS for a = 1 is 

see also GREAT ICOSAHEDR~N 

References 
Wenninger, M. J. Polyhedron Models. Cambridge, England: 

Cambridge University Press, p. 115, 1971. 

Truncated Great Icosahedron 
see GREAT TRUNCATED ICOSAHEDRON 

Truncated Hexahedron 
~~~TR~NCATED CUBE 

Truncated Icosahedron 

An ARCHIMEDEAN SOLID used in the construction of 
SOCCER BALLS. Its DUAL POLYHEDRON is the PEN- 
TAKIS DODECAHEDRON. It has SCHLAFLI SYMBOL 
t{3,5}. It is also UNIFORM POLYHEDRON U25 and has 
WYTHOFF SYMBOL 2513. Its faces are 20(6}+12{5}. 
The INRADIUS, MIDRADIUS, and CIRCUMRADIUS for 
a = 1 are 

’ (21+ d)da = 2.37713 T=872 
p = ;(l+ &) = 2.42705 

R = $ dK& e 2.47802. 

Truncated Icosidodecahedron 

see GREAT RHOMBICOSIDODECAHEDRON (ARCHIMED- 
EAN) 

Truncated Octahedral Number 
A FIGURATE NUMBER which is constructed as an OCT- 
AHEDRAL NUMBER with a SQUARE PYRAMID removed 
from each ofthe six VERTICES, 

TO, = &n-z - 6P,-1 = i(‘3n - 2)[2(3n - 2)” + l], 

where 0, is an OCTAHEDRAL NUMBER and P7E is a 
PYRAMIDAL NUMBER. The first few are 1, 38, 201, 586, 

. (Sloane’s A005910). The GENERATING FUNCTION 
fir the truncated octahedral numbers is 

x(6x3 + 55x2 + 34x 3- ‘1 = x + 38x2 + 2o1x3 + 
(x - 1)4 

. . . . 
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see ~2~0 OCTAHEDRAL NUMBER 
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Version of the Encyclopedia of Integer Sequences.” 

Truncated Octahedron 

An ARCHIMEDEAN SOLID, also known as the MECON, 
whose DUAL POLYHEDRON is the TETRAKIS HEXA- 
HEDRUN. It is also UNIFORM POLYHEDRON & and 
has SCHL;~FLI SYMBOL t{3,4} and WYTHOFF SYM- 
BOL 2 4 f 3. The faces of the truncated octahedron are 
8{6}+6{4}. Th e runcated octahedron has the Oh OCT- t 

AHEDRAL GROUP of symmetries. 

The solid can be formed from an OCTAHEDRON via 
TRUNCATION byremovingsix SQUARE PYRAMIDS, each 
with edge slant height a = s/3 and height h, where s is 
the side length of the original OCTAHEDRON. From the 
above diagram, the height and base area of the SQUARE 
PYRAMID are 

The VOLUME of the truncated octahedron is then given 
by the VOLUME of the OCTAHEDRON 

V l s3 octahedron = 3 A = 9dKz3 (3) 

minus six times the volume of the SQUARE PYRAMID, 

V = T/octahedron - 6(+Abh) = (9d - &)a3 = 8&t”, 

(4) 

The truncated octahedron is a SPACE-FILLING POLYHE- 
DRON. The INRADIUS,MIDRADIUS, and CIRCUMRADIUS 
for a = 1 are 

see also OCTAHEDRON 
TION 

, SQUARE PYRAMID, TRUNCA- 

References 
Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York: 

Dover, pp. 29-30 and 257, 1973. 

Truncated Polyhedron 
A polyhedron with truncated faces, given by the 
SCHL~~FLI SYMBOL~{~}. 

SW UZSO RHOMBIC POLYHEDRON, SNUB POLYHEDRON 

Truncated Pyramid 

see PYRAMIDAL FRUSTUM 

Truncated Square Pyramid 
The truncated square pyramid is a special case of a 
PYRAMIDAL FRUSTUM for a SQUARE PYRAMID. Let 
the base and top side lengths of the truncated pyramid 
be a and b, and let the height be h. Then the VOLUME 
of the solid is 

V= +(u” + ab + b2)h. 

This FORMULA was known to the Egyptians ca. 1850 
BC. The Egyptians cannot have proved it without calcu- 
Ius, however, since Dehn showed in 1900 that no proof of 
this equation exists which does not rely on the concept of 
continuity (and therefore some form of TNTEGRATION). 

see also FRUSTUM, PYRAMID, PYRAMIDAL FRUSTUM, 
SQUARE PYRAMID 

Truncated Tetrahedral Number 
A FKURATE NUMBER constructed by taking the (3n - 
2)th TETRAHEDRAL NUMBER and removing the (n - 
1)th TETRAHEDRAL NUMBER from each of the four cor- 

Ttet, E Tesn-3 - 4Te,-1 = $(23n2 - 27n + 10). 

The first few are 1, 16, 68, 180, 375, . . . (Sloane’s 
A005906). The GENERATING FUNCTION for the trun- 
cated tetrahedral numbers is 

x(10x2 + 12X + 1) 

( 2 - 1)” 
= x + 16~~ + 89x3 + 180x4 + . . . . 

References 
Conway, J. H. and Guy, R. K. The Book of Numbers. New 
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r = &a= 1.42302 (5) 

p = g = 1.5 (6) 

R= ffi = 1.58114. (7) 
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Truncated Tetrahedron 

An ARCHIMEDEAN SOLID whose dual is the TRIAKIS 
TETRAHEDRON. It has SCHL~FLI SYMBOL t{3,3}. It 
is also UNIFORM POLYHEDRON U2 and has WYTHOFF 
SYMBOL 23 13. Its faces are 4{3} + 4{6}. The INRA- 
DIUS, MIDRADIUS, and CIRCUMRADIUS 
tetrahedron with a = 1 are 

for a truncated 

?-=a g m E 0.95940 

p = ;Jz z 1.06066 

R = @ ==: 1.17260. 

Tkuncation 
The removal of portions of SOLIDS falling outside a set 
of symmetrically placed planes. The five PLATONIC 
SOLIDS belong to one of the following three truncation 
series (which, in the first two cases, carry the solid to its 
DUAL POLYHEDRON). 

Cube Truncated 
Cube 

Cuboctahedron Truncated 
Octahedron 

Octahedron 

Icosahedron Truncated 
Icosahedron 

Icosidodec- 
ahedron 

Truncated Dodecahedron 
Dodecahedron 

Tetrahedron Truncated 
Tetrahedron 

Octahedron 

see also STELLATION, TRUNCATED CUBE, TRUNCATED 

DODECAHEDRON, TRUNCATED ICOSAHEDRON, TR~N- 
CATED OCTAHEDRON, TRUNCATED TETRAHEDRON, 
VERTEX FIGURE 

Truth Table 
A truth table is a Z-D array with n + 1 columns. The 
first 72 columns correspond to the possible values of n 
inputs, and the last column to the operation being per- 
formed. The rows list all possible combinations of inputs 

together with the corresponding outputs. For example, 
the following truth table shows the result of the binary 
AND operator acting on two inputs A and B, each of 
which may be true or false. 

A B A//B 

FF F 
FT F 
TF F 
TT T 

see also AND, MULTIPLICATION TABLE, OR, XOR 

Tschebyshev 
An alternative spelling of the name “Chebyshev.” 

see also CHEBYSHEV APPROXIMATION FORMULA, 

CHEBYSHEV CONSTANTS, CHEBYSHEV DEVIATION, 

CHEBYSHEV DIFFERENTIAL EQUATION, CHEBYSHEV 
FUNCTION, CHEBYSBEV-GAUSS QUADRATURE,~HEBY- 
SHEA INEQUALITY, CHEBY~HEV INTEGRAL, CHEBY- 
SHEVPHENOMENON,CHEBYSHEVPOLYNOMIALOFTHE 
FIRST KIND, CHEBYSHEV POLYNOMIAL OF THE SEC- 
OND KIND, CHEBYSHEV QUADRATURE, CHEBYSHEV- 

RADAU QUADRATURE, CHEBYSHEV-SYLVESTER CON- 
STANT 

Tschirnhausen Cubic 

The Tschirnhausen cubic is a plane curve given by 

a= T cos 31 
( > 50 Y 

and is also known as CATALAN'S TRISECTRIX and 
L'HOSPITAL'S CUBE. The name Tschirnhaus’s cubic 
is given in R. C. Archibald’s 1900 paper attempting to 
classify curves (MacTutor Archive) l  Tschirnhaus’s cu- 
bic is the NEGATIVE PEDAL CURVE of a PARABOLA with 
respect to the FOCUS. 

References 
Lawrence, J. D. A Cutalog of Special Plane Curves. New 
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/Curves/Tschirnhaus.html. 

Tschirnhausen Cubic Caustic 
The CAUSTIC ofthe TSCHIRNHAUSEN CUBIC taking the 
RADIANT POINT as the pole is NEILE'S PARABOLA. 
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Tschirnhausen Cubic Pedal Curve 

// I 
The PEDAL CURVE to the TSCHHIRNHAUSEN CUBIC for 
PEDAL POINT at the origin is the PARABOLA 

X El--t2 

y = 2. 

see also PARABOLA, PED.AL CURVE, PEDAL POINT, 
TSCHIRNHAUSEN CUBIC 

Tschirnhausen Transformation 
A transformation of a POLYNOMIAL equation f(z) = 0 
which is of the form y = g(x)/h(z) where g and h are 
POLYNOMIALS and h(x) does not vanish at a root of 
f(z) = 0. The CUBIC EQUATION is a special case of such 
a transformation. Tschirnhaus (1683) showed that a 
POLYNOMIAL of degree n > 2 can be reduced to a form in 
which the xnB1 and xn-’ terms have 0 COEFFICIENTS. 
In 1786, E. S. Bring showed that a general QUINTIC 

EQUATION can be reduced to the form 

x5+px+q=o. 

In 1834, G. B. Jerrard showed that a Tschirnhaus trans- 
formation can be used to eliminate the x=-l, znm2, and 
X n-3 terms for a general POLYNOMIAL equation of de- 
gree n > 3. 

see also BRING QUINTIC FORM, CUBIC EQUATION 

References 
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Tubular Neighborhood 
The tubular embedding of a SUBMANIFOLD A4" c I'V 
of another MANIFOLD IV is an EMBEDDING t : A4 x 
II% n--m + N such that t(x,O) = x whenever x E M, 
where IEY” is the unit BALL in R”-” centered at 0. 
The tubular neighborhood is also called the PRODUCT 
NEIGHBORHOOD. 

see UZSOBALL,EMBEDDING, PRODUCT NEIGHBORHOOD 
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Tukey ‘s Biweight 

Tucker Circles 
Let three equal lines PlQ 1, &Qz, and P3Q3 be drawn 
ANTIPARALLEL to the sides of a triangle so that two (say 

PZQZ andPQ ) 3 3 are on the same side of the third line as 
AzP2QsA3. Then P2Q&Q2 is an isosceles TRAPEZOID, 

i.e., PaQ2, PlQ3, and P2Q1 are parallel to the respective 
sides. The MIDPOINTS Cl, CZ, and C3 of the antiparal- 
Iels are on the respective symmedians and divide them 
proportionally. 

If T divides KO in the same ratio, TC1, TC2, TC3 are 
parallel to the radii OAI, OA2, and OAs and equal. 
Since the antiparallels are perpendicular to the symme- 
dians, they are equal chords of a circle with center T 
which passes through the six given points. This circle is 
called the Tucker circle. 

KC1 KC2 KC3 KT CE---- ----- 
KA1 KA2 z=B’ 

then the radius of the Tucker circle is 

R&z2 + (1 - c)~ tanw, 

where w is the BROCARD ANGLE. 

The COSINE CIRCLE, LEMOINE CIRCLE, and TAYLOR 

CIRCLE are Tucker circles. 

see also ANTIPARALLEL, BROCARD ANGLE, COSINE 
CIRCLE, LEMOINE CIRCLE, TAYLOR CIRCLE 
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Tukey’s Biweight 

k 
The function 

*c > z = 

{ 
z 1-s ( ) for 1x1 < c 

0 for 1~51 > c 

sometimes used in ROBUST ESTIMATION. It has a min- 
imum at z = -c/a and a maximum at z = c/A, 
where 

q!!(z) = 1 - $ = 0, 
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and an inflection point at z = 0, where 

*“(q = -$ = 0. 

Keierences 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A,; and Vetter- 
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Tukey’s Trimean 

see TRIMEAN 

Tunnel Number 
Let a KNOT K be ~SMBEDDABLE. Then its tunnel 
number is a KNOT invariant which is related to n. 

see also EMBEDDABLE KNOT 
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Tur6n Graph 
The (n,k)-Tur&n graph is the EXTREMAL GRAPH on n 
VERTICES which contains no ~-CLIQUE. In other words, 
the Turan graph has the maximum possible number of 
EDGES of any n-vertex graph not containing a CAM- 
PLETE GRAPH I&. TUR~;N'S THEOREM gives the maxi- 
mum number of edges t(n, Ic) for the (n, k)-TurSn graph. 
For IG = 3, 

t(n,3) = +n4, 

so the T&n graph is given by the COMPLETE BIPAR- 
TITE GRAPHS 

K +&n/2 n even 

KC n4)/2,(n+1)/2 n odd. 

see also CLIQUE, COMPLETE BIPARTITE GRAPH, 
TUR~N'S THEOREM 
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Tur&n’s Inequalities 
For a set of POSITIVE yk, Ic = 0, 1, 2.. . , TurSn’s in- 
equalities are given by 

Yk2 -Yk-lTk+l 2' 

see UZSO JENSEN POLYNOMIAL 

TurBn’s Theorem 
Let G(V, E) b e a GRAPH with VERTICES V and EDGES 
E on n VERTICES without a ~-CLIQUE. Then 

t(O) I 
(k - 2)n2 

2(k - 1) ’ 

where t(n, k) = IEl is the EDGE NUMBER. More pre- 
cisely, the K-GRAPH Knl,...,nk--l with Ini - njj 5 1 for 
i # j is the unique GRAPH without a k-CLIQUE with the 
maximal number of EDGES t(n,k). 

see also CLIQUE, K-GRAPH, TWR~N GRAPH 
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Turbine 
A VECTOR FIELD on a CIRCLE in which the directions of 
the VECTORS are all at the same ANGLE tothe CIRCLE. 

see also CIRCLE, VECTOR FIELD 

Turing Machine 
A theoretical computing machine which consists of an 
infinitely long magnetic tape on which instructions can 
be written and erased, a single-bit register of memory, 
and a processor capable of carrying out the following 
instructions: move the tape right, move the tape left, 
change the state of the register based on its current value 
and a value on the tape, and write or erase a value on the 
tape. The machine keeps processing instructions until 
it reaches a particular state, causing it to halt. Deter- 
mining whether a Turing machine will halt for a given 
input and set of rules is called the HALTING PROBLEM. 

see UZSO BUSY BEAVER, CELLULAR AUTOMATON, 
CHAITIN'S OMEGA, CHURCH-TURING THESIS, COM- 
PUTABLE NUMBER, HALTING PROBLEM, UNIVERSAL 
TURING MACHINE 
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Turning Angle 

see TANGENTIAL ANGLE, 
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Tutte’s Graph Twin Peaks 
For an INTEGER n > 2, let lpf(z) denote the LEAST 
PRIME FACTOR of n. 1 PAIR of INTEGERS (x, y) is called 
a twin peak if 

1. x < y, 

2. lPf(X) = lPf(Y), 

see also HAMILTONIAN CIRCUIT, TAIT'S HAMILTONIAN 
GRAPH CONJECTURE 

A counterexample to TAIT'S HAMILTONIAN GRAPH 
CONJECTURE given by Tutte (1946). A simpler coun- 
terexample was later given by Kozyrev and Grinberg. 

Call the distance between two twin peaks (x, y) 

3. For all Z, x < z < y IMPLIES lpf(x) < lpf(x). 

A broken-line graph of the least prime factor function 
resembles a jagged terrain of mountains. In terms of 
this terrain, a twin peak consists of two mountains of 
equal height with no mountain of equal or greater height 
between them. Denote the height of twin peak (z, y) by 
p = lpf (x) = lpf (y). By definition of the LEAST PRIME 
FACTOR function, p must be PRIME. 
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Tutte Polynomial 
Let G be a GRAPH, and let es(T) denote the cardinality 
of the set of externally active edges of a spanning tree 
2’ of G and ia denote the cardinality of the set of 
internally active edges of T. Then 

t&, y) E x xia(T)yea(T). 

SGY--x. 

Then s must be an EVEN multiple of p; that is, s = kp 
where k is EVEN. A twin peak with s = kp is called a 
kp-twin peak. Thus we can speak of 2p-twin peaks, 4p- 
twin peaks, etc. A kp-twin peak is fully specified by k, 
p, and x, from which we can easily compute y = x + kp. 

The set of kptwin peaks is periodic with period Q = p#, 
where p# is the PRIMORIAL of p. That is, if (x, y) is a 
kp-twin peak, then so is (z + 4, y + q). A fundamental 
Izp-twin peak is a twin peak having x in the fundamental 
period [O, 4). The set of fundamental kp-twin peaks is 
symmetric with respect to the fundamental period; that 
is, if (x, y) is a twin peak on [0, q), then so is (q-y, q-x)* 
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The question of the EXISTENCE of twin peaks was first 
raised by David Wilson in the math-fun mailing list on 

l-36, 1996. http: 
volume3-2.html#R9. 

//uww. combinatorics. org/Volume_3/ 

Tutte, W. T. “A Contribution to the Theory of Chromatic 
Polynomials .” Cunad. J. Math. 6, 80-91, 1953. 

Feb. 10,“1997. Wilson already had privately showed the 
EXISTENCE of twin peaks of height p < 13 to be unlikely, 

but was unable to rule them out altogether. Later that 
same day, John H. Conway, Johan de Jong, Derek Smith, 
and Maniul BharEava collaborated to discover the first 
twin peai. Two <ours at the blackboard revealed that 
p = 113 admits the 2p-twin peak 

Tutte’s Theorem 
Let G be a GRAPH and S a SUBGRAPH of G. Let the 
number of ODD components in G - S be denoted S’, 
and 1st the number of VERTICES of S. The condition 
ISI > S’ for every SUBSET of VERTICES is NECESSARY 
and SUFFICIENT for G to have a I-FACTOR. 

z=126972592296404970720882679404584182254788131, 

which settled the EXISTENCE question. Immediately 
thereafter, Fred Helenius found the smaller 2p-twin peak 
with p = 89 and 

see also FACTOR (GRAPH) 
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x=9503844926749390990454854843625839. 

The effort now shifted to finding the least PRIME p ad- 
mitting a 2p-twin peak. On Feb. 12, 1997, Red Helenius 
found p = 71, which admits 240 fundamental 2p-twin 
peaks, the least being 

x = 7310131732015251470110369. 
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Helenius’s results were confirmed by Dan Hoey, who also 
computed the least Q-twin peak L(2p) and number of 
fundamental 2p-twin peaks N(2p) for p = 73, 79, and 
83. His results are summarized in the following table. 

P L(2P) N(2P) 

71 7310131732015251470110369 240 
73 2061519317176132799110061 40296 
79 3756800873017263196139951 164440 
83 6316254452384500173544921 6625240 

Let 7r2(n) be the number of twin primes p and p+2 such 
that p 5 n. It is not known if there are an infinite num- 
ber of such PRIMES (Shanks 1993), but all twin primes 
except (3, 5) are of the form 6n*l. J. R. Chen has shown 
there exists an INFINITE number of PRIMES p such that 
p + 2 has at most two factors (Le Lionnais 1983, p+ 49). 
Bruns proved that there exists a computable INTEGER 
20 such that if ~1: > x0, then - 

100x 
n2(x) < (In (1) 

The 2p-twin peak of height p = 73 is the smallest known 
twin peak. Wilson found the smallest known 4ptwin 
peak with p = 1327, as well as another very large 4ptwin 
peak with p = 3203. Richard Schroeppel noted that the 
latter twin peak is at the high end of its fundamental 
period and that its reflection within the fundamental 
period [O,p#) is smaller. 

(Ribenboim 1989, p. 201). It has been shown that 

r2(2) 2 c 
a a-.\‘) l- (p - 1)” (lnx)2 

‘i”[1+o(y=)], 

*p/u 

(2) 

Many open questions remain concerning twin peaks, 

WV 

where c has been reduced to 68/9 z 7.5556 (Fouvry and 
Iwaniec 1983), 128/17 ==: 7.5294 (Fouvry 1984), 7 (Bom- 
bieri et al. 1986), 6.9075 (Fouvry and Grupp 1986), and 
6.8354 (Wu 1990). The bound on c is further reduced 
to 6.8324107886 in a forthcoming thesis by Haugland 
(1998). This calculation involved evaluation of 7-fold in- 
tegrals and fitting of three different parameters. Hardy 
and Littlewood conjectured that c = 2 (Ribenboim 1989, 
p. 202). 

1. 

2. 

3. 

4. 

5. 

What is the smallest twin peak (smallest n)? 

What is the least PRIME p admitting a 4p-twin peak? 

Do Gp-twin peaks exist? 

Is there, as Conway has argued, an upper bound on 
the span of twin peaks? 

Let p < q < T be PRIME. If p and T each admit kp- 
twin peaks, does Q then necessarily admit a kp-twin 
peak? 

see also ANDRICA'S CONJECTURE, DIVISOR FUNCTION, 

LEAST COMMON MULTIPLE, LEAST PRIME FACTOR 

Twin Prime Conjecture 
Adding a correction proportional to l/ lnp to a compu- 
tation of BRUN'S CONSTANT ending with . . . + l/p + 
I/(p + 2) will give an estimate with error less than 

c(fi InPI-I. An extended form of the conjecture states 
that 

P&,p+2) -4L - A J 2 (lnx)2 ’ 

where & is the TWIN PRIMES CONSTANT. The twin 
prime conjecture is a special case of the more general 
PRIME PATTERNS CONJECTURE corresponding to the 
set S = {0,2}. 

see also I~RUN'S CONSTANT, PRIME ARITHMETIC PRO- 

GRESSION, PRIME CONSTELLATION, PRIME PATTERNS 
CONJECTURE, TWIN PRIMES 

Twin Primes 
Twin primes are PRIMES (p, q) such that p - q = 2. The 
first few twin primes are n * 1 for n = 4, 6, 12, 18, 30, 
42, 60, 72, 102, 108, 138, 150, 180, 192, 198, 228, 240, 
270, 282, l  . . (Sloane’s AOl4574). Explicitly, these are 

(3, 51, (5, 71, (11, 13), (17, 1% (2% 31), (41, 431, ” ’ 
(Sloane’s A001359 and A006512). 

Define 

7x-m InpT-b 
\ I 

If there are an infinite number of twin primes, then 
E = 0. The best upper limit to date is E < a +~/16 = 
0.44634.. . (Huxley 1973, 1977). The best previous 
values were 15/16 (Ricci), (2 + a)/8 = 0.46650.. . 
(Bombieri and Davenport 1966), and (24 - 1)/4 = 
0.45706.. . (Pil’Tai 1972), as quoted in Le Lionnais 
(1983, p. 26). 

Some large twin primes are 10,006,428& 1, 1,706,595 x 

2 11235 & 1, and 571,305 x 27701 & 1. An up-to-date table 
of known twin primes with 2000 or more digits follows. 
An extensive list is maintained by Caldwell. 

(P, P + 1) dig. Reference 

260,497,545 x 2"625 zt 1 2003 Atkin & Rickert 1984 

43,690,485,351,513 x 101ggs * 1 2009 Dubner, Atkin 1985 

2,846!!!! zt I 2151 Dubner 1992 

10,757,0463 x 1O225o * 1 2259 Dubner, Atkin 1985 

663,777 x 27”50 & 1 2309 Brown et a2. 1989 

75,188,117,004 x lO22g8 & 1 2309 Dubner 1989 

571305 x 27701 It 1 2324 Brown et al. 1989 
1,171,452,282 x lO24go * 1 2500 Dubner 1991 

459 ’ 2852g & 1 2571 Dubner 1993 

1,706,595 a 211235 & 1 3389 No11 et al. 1989 

4,655,478,828 m lO342g & 1 3439 Dubner 1993 

1,692,923,232 . 10402’ & 1 4030 Dubner 1993 

6,797,727 - 215328 & 1 4622 Forbes 1995 

697,053,813i1s352 A 1 4932 Indlekofer & Ja’rai 1994 

570,918,348 . 10512’ * 1 5129 Dubner 1995 

242,206,083 m 238880 & 1 11713 Indlekofer & Ja’rai 1995 
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The last of these is the largest known twin prime 
pair. In 1995, Nicely discovered a flaw in the Intel@ 
PentiumTM microprocessor by computing the recip- 
rocals of 824,633,702,441 and 824,633,702,443, which 
should have been accurate to 19 decimal places but were 
incorrect from the tenth decimal place on (Cipra 1995, 
1996; Nicely 1996). 

If 72 > 2, the INTEGERS n and n + 2 form a pair of twin - 
primes IFF 

4K n- l)!+l]+ n E 0 (mod n(n+2)). (4) 

n = pp’ where (p, p’) is a pair of twin primes IFF 

$(n)a(n) = (n - 3)(n + 1) (5) 

(Ribenboim 1989). The values of nz(n) were found by 
Brent (1976) up to n = 10? T. Nicely calculated them 
up to 10 l4 in his calculation of BRUN'S CONSTANT. The 
following table gives the number less than increasing 
powers of 10 (Sloane’s A007508). 

n r2 (4 
103 35 
104 205 
lo5 1224 
lo6 8,169 
lo7 58,980 
lo8 440,312 
log 3,424,506 
1o1* 27,412,679 
loll 224,376,048 
1o12 1,870,585,220 
lOI 15,834,664,872 
1o14 135,780,321,665 

see &o BRUN’S CONSTANT, DE POLIGNAC’S CONJEC- 
TURE PRIME CONSTELLATION, SEXY PRIMES, TWIN 

PRIME CONJECTURE, TWIN PRIMES CONSTANT 
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Twin Primes Constant 
The twin primes constant & is defined by 

p>2 L 
p prime 

ln(+II2) = x In 

P2.3 
p prime 

[P(P - 2)l 

L(P- v2'j 

- - 

CL 

11 

P>3 
p prime 

00 
ni 

(1-i) -2ln(l--i)] 

-- 
>: 

L” - 2 
- 

j >: 
-j 

P t (2) 
j=2 P13 p prime 

where the ps in sums and products are taken over 
PRIMES only. Flajolet and Vardi (1996) give series with 
accelerated convergence 

II2 = fi[<(n)(1 - 2-“)]-1” (3) 
n=2 

_ 3 15 35 --- ~Kbw - - 416 36 
2-“)(l - 3-n)(l - 5-n) 

n=2 

x(1 - ?-“)]-I=, (4) 
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. . . 
with 

In E f. 7, p(d)2”ld, 
n 

(5) 
din 

where p(x) is the MOBIUS FUNCTION. (4) has conver- 
gence like - (11/2)-Y 

The most accurately known value of II2 is 

I-I:! = 0.6601618158.. . . (6) 

Le Lionnais (1983, p. 30) calls C2 the SHAH-WILSON 

CONSTANT, and 2C2 the twin prime constant (Le Lion- 
nais 1983, p. 37). 

see also BRUN’S CONSTANT, GOLDBACH CONJECTURE, 
MERTENS CONSTANT 
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Twins 

see BROTHERS, PAIR 

Twirl 
A ROTATION combined with an EXPANSION or DILA- 

TION. 

see also SCREW, SHIFT 

Twist 
The twist of a ribbon measures how much it twists 
around its axis and is defined as the integral of the in- 
cremental twist around the ribbon. Letting Lk be the 
linking number of the two components of a ribbon, Tw 
be the twist, and Wr be the WRITHE, then 

Lk(R) = Tw(R) + Wr(R) 

(Adams 1994, p. 187). 

see also SCREW, WRITHE 
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Twist Map 
A class of AREA-PRESERVING MAPS ofthe form 

8. 2+1 = & + 2?T&) 

ri+1 = Ti, 

which maps CIRCLES into CIRCLES but with a twist re- 
sulting from the a = QI(T,) term. 

Twist Move 

)‘c>’ +> 
twist untwist 

The REIDEMEISTER MOVE oftype II. 

see &O REIDEMEISTER MOVES 

Twist Number 

see WRITHE 

Twist-Spun Knot 
A generalization of SPUN KNOTS due to Zeeman. This 
method produces 4-D KNOT types that cannot be pro- 
duced by ordinary spinning. 

see also SPUN KNOT 

Twisted Chevalley Groups 
FINITE SIMPLE GROUPS of LIE-TYPE of ORDERS 14, 
52, 78, 133, and 248. They are denoted 3D&), E&), 

ET(q), Es(q), F.(q), 2F4(2n)r, G2(q),2Gz(3n), 2B(2")- 

see UZSO CHEVALLEY GROUPS, FINITE GROUP, SIMPLE 

GROUP, TITS GROUP 

References 
Wilson, R. A. “ATLAS of Finite Group Representation.” 

http://for.mat.bham.ac.uk/atlas#twi. 

Twisted Conic 

see SKEW CONIC 

Twisted Sphere 

see CORKSCREW SURFACE 

Two 

see 2 

Two-Ears Theorem 
Except for TRIANGLES, every SIMPLE POLYGON has at 
least two nonoverlapping EARS. 

see &OEAR,ONE-MOUTH THEOREM, PRINCIPAL~ER- 

TEX 

References 
Meisters, G. H. “Principal Vertices, Exposed Points, and 

Ears.” Amer. Math. Monthly 87, 284-285, 1980. 
Toussaint , G. “Anthropomorphic Polygons.” Amer. Math. 

Monthly 122, 31-35, 1991. 



1874 Two-Point Distance 

Two-Point Distance 

see POINT-POINT DISTANCE-~-D, POINT-POINT 
DISTANCE-Z-D, POINT-POINT DISTANCE-3-D 

Two Triangle Theorem 

see DESARGUES' THEOREM 

Tychonof Compactness Theorem 
The topological product of any number of COMPACT 
SPACES is COMPACT. 

Type 
Whitehead and Russell (1927) devised a hierarchy of 
“types” in order to eliminate self-referential statements 
from Principia Mathematics, which purported to derive 
all of mathematics from logic. A set of the lowest type 
contained only objects (not sets), a set of the next higher 
type could contain only objects or sets of the lower type, 
and so on. Unfortunately, G~DEL'S INCOMPLETENESS 
THEOREM showed that both Principia AMhematica and 
all consistent formal systems must be incomplete. 

see also G~DEL'S INCOMPLETENESS THEOREM 

References 
Hofstadter, D. R. Gdel, Escher, Bach: An Eternal Golden 

Braid. New York: Vintage Books, pp. 21-22, 1989. 
Whitehead, A. N. and Russell, B. Principia Mathematics. 

New York: Cambridge University Press, 1927. 

Type I Error 
An error in a STATISTICAL TEST which occurs when a 
true hypothesis is rejected (a false negative in terms of 
the NULL HYPOTHESIS). 

see U~SU NULL I~YPOTHESIS, SENSITIVITY, SPECIFICITY, 
STATISTICAL TEST,TYPE II ERROR 

Type II Error 
An error in a STATISTICAL TEST which occurs when a 
false hypothesis is accepted (a false positive in terms of 
the NULL HYPOTHESIS). 

see also NULL HYPOTHESIS, SENSITIVITY, SPECIFICITY, 
STATISTICAL TEST, TYPE I ERROR 

Type II Error 
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U Proceeding in the manner, we can generate Ulam se- 
quences for any (u, v), examples of which are given be- 
1OW. 

U-Number 

see ULAM SEQUENCE 

Ulam Map 

-0.5 . . 

f(x) = 1 - 2X2 

(1,2)={1,2,3,4,6,8,11,13,16,18 ,... } 

(1,3) = {1,3,4,5,6,&l& 12,17,21, l  l  a} 

(1,4) = {1,4,5,6,7,8,10,16, IS, 19, l  l  a} 

(1,5) = {1,5,6,7,8,9,10,12,20,22,, l  .} 

(2,3) = {2,3,5,7,8,9,13,14,18,19,. l  a} 

(2,4) = {2,4,6,8,12,16,22,26,32,36,. . .} 

(2,5) = {2,5,7,9,11,12,13,15,19,23, l  l  l }* 

Schmerl and Spiegel (1994) proved that Ulam sequences 
(2, V) for ODD w  > 5 have exactly two EVEN terms. - 
Ulam sequences with only finitely many EVEN terms 
eventually must have periodic successive differences 
(Finch 1991, 1992abc). Cassaigne and Finch (1995) 
proved that the Ulam sequences (4, w) for 5 5 w  E 1 

for ct: E [-I, 11. F ixed points occur at 61: = -1, l/2, and 
order 2 fixed points at 51: = (l* &)/4. The INVARIANT 

(mod 4) have exactly three EVEN terms. 

The Ulam sequence can be generalized by the s- 

DENSITY of the map is 

P(Y) = &* 

References 
Beck, C. and Schlijgl, F. Thermodynamics of Chaotic Sys- 

tems: An Introduction. Cambridge, England: Cambridge 
University Press, p+ 194, 1995. 

Ulam Number 

~~~ULAM SEQUENCE 

Ulam’s Problem 

see COLLATZ PROBLEM 

Ulam Sequence 
The Ulam sequence {ai} = (u, V) is defined by al = u, 

a2 = V, with the general term a, for n > 2 given by 
the least INTEGER expressible uniquely as the SUM of 
two distinct earlier terms. The numbers so produced 
are sometimes called U-NUMBERS or ULAM NUMBERS. 

The first few numbers in the (1, 2) Ulam sequence are 
1, 2, 3, 4, 6, 8, 11, 13, 16, . . . (Sloane’s A002858). Here, 
the first term after the initial 1, 2 is obviously 3 since 
3 = 1 + 2. The next term is 4 = 1 + 3. (We don’t 

ADDITIVE SEQUENCE. 

see also GREEDY ALGORITHM, S-ADDITIVE SEQUENCE, 
ST&IR SEQUENCE 
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have to worry about 4 = 2 + 2 since it is a sum of a 
single term instead of unique terms.) 5 is not a member 
of the sequence since it is representable in two ways, 
5=1+4 = 2 + 3, but 6 = 2 + 4 is a member. 

Ultrametric 
An ultrametric is a METRIC which satisfies the following 
strengthened version of the TRIANGLE INEQUALITY, 

4x, 4 < maxbe, Y), d(Y, 4) 
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for all z, y, z. At least two of d(x, y), d(y, z), and d(x, x) 
are the same. 

Ultraspherical Function 
A function defined by a POWER SERIES whose coefi- 
cients satisfy the RECURRENCE RELATION 

Let X be a SET, and let XN (where N is the SET of 
NATURAL NUMBERS) denote the collection of sequences 
of elements of X (i.e., all the possible sequences x1, ~2, 
x3,*** ). For sequences a = (al, ~2,. . .), b = (bl, 62,. . .), 
let it be the number of initial places where the sequences 
agree, i.e., al = bl, a2 = b2, . . + , a, = b,, but a,+1 # 
b n+l* Take n = 0 if al # bl. Then defining d(u, b) = 2+ 
gives an ultrametric. 

uj+2 = uj 
(k + j)(k + j + 24 - n(n + 24 

(k+j+l)(k+j+2) ’ 

For x # -1, the function converges for a < l/2 and 
diverges for a > l/Z. 

Ultraspherical Polynomial 

The ultraspherical polynomials are solutions Pi”’ (2) to 
the ULTRASPHERICAL DIFFERENTIAL EQUATION for IN- 
TEGER n and O! < l/2. They are generalizations of LEG- 
ENDRE POLYNOMIALS to (n + 2)-D space and are pro- 

portional to (or, depending on the normalization, equal 
to) the GEGENBAUER POLYNOMIALS CL”(x), denoted 
in Mathematics @ (Wolfram Research, Champaign, IL) 
GegenbauerC [n, lambda, xl . The ultraspherical polyno- 

The p-ADIC NUMBER metric is another example of an 
ultrametric. 

see also METRIC,~-ADIC NUMBER 

Ultraradical 
A symbol which can be used to express solutions not 
obtainable by finite ROOT extraction. The solution to 
the irreducible QUINTIC EQUATION 

mials are also JACOBI POLYNOMIALS with Q! = @ They 
are given by the GENERATING FUNCTION x5+x=u 

1 

(1 - 2xt + t2P 
= x Pp(x)t”, (1) is written JZ. 

see also RADICAL 

and can be given explicitly by 
Ultraspherical Differential Equation 

PCX)(x) = w  + +I r(n+ 2x1 
n 

p(x-l/2,A-1/2)(x) 

r(U) r(n+ A+ a) n 
? (1 - X2)$' - (2a + l)zy' + n(n + 2a)y = 0. (1) 

Alternate forms are (2) 

(1-x”)Y”+(2X-3)xY’+(n+l)(n+2X-1)Y = 0, (2) where p(x-1/2+1/2) is a JACOBI POLYNOMIAL (Szeg6 
1975, /80). The first few ultraspherical polynomials 
are 

Y = (1 - x2)x-1’2Pp(x), (3) 
(A> PO (x) = 1 (3) 

PCX)(x) - 2Xx 1 - (4 

Pz’“‘(x) = -A + 2A(1+ X)2 (5) 

PCA1(x) - 3 
- -2X(1 + X)x + $x(I + X)(2 + X)x3. (6) 

+ ij + X - X2 + ax2 

(1 1 u = 0, (4) - x2)2 

where 
u = (1 - x2)Ai2+1/4p;A)(x), 

(5) 

and 

where 

X(1 - A) 
(n-t- A)” + sin2 u = 0, 

I 

u = sir? 8 PC’) (cos 0) n . 

In terms of the HYPERGEOMETRIC FUNCTIONS, 
(6) 

(7) 
x zFl(-n,n + 2X;X + f; i(l - x)) (7) 

The solutions are the ULTRASPHERICAL FUNCTIONS 
W P, (2). For integral n with a < l/2, the function con- 

vergestothe ULTRASPHERICAL POLYNOMIALS C~)(X). 

References x 2fi 
2 

-n,-n-Af$;-2n-2X+1;- 
1-X > 

(8) 
Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 

ics, Part I* New York: McGraw-Hill, pp. 547-549, 1953. 

= (,,.;+I) (211)” 

-n,-n-X+$;X+i;- (9) 



Ul traspherical Polynomial Umbra1 Calculus 1877 
They are normalized by 

Derivative identities include 

gPy(x) = 2xP;y) (2) (11) 

(1 - x2)-g[P~A~] = [2(n + A)]-l[(n + 2x - 1) 

x(n + ZX)PJ3) - n(n + l)PJ$(x)] (12) 

- - -n2PiA’(x) + (n + 2X - l)P~f’&) (13) 

= (n + 2X)3&‘(x) - (n + l)PJ$(x) (4 

nPiA1(x) = x&[PAA’(x)] - $[P~~l(x)] (15) 

(n + 2X)P(x’(2) = n $[~$)#I - +?)(,)I (16) 

$[P$)l(x) - P:“_‘,(x)] = 2(n + X)P~“‘P~“‘(x) (17) 

= 2x[P;A+1)(4 - P%“(X)] (18) 

(Szegij 1975, pp. 80-83). 

A RECURRENCE RELATION is 

nPJ?(z) = 2(n+X- l)zP$Qx) - (n+ZX- Z)PLx),(x) 

(19) 
for n = 2, 3, . . . . 

Special double-v FORMULAS also exist 

P(;)(x)= (2~+~~-1)2F,(-Y,YtX;~+~;l-x2) 
(20) 

(21) 
pw 

2v+1(4 = 
( > 

‘2”=“: x~q-v,v+X+1;X+~;1-x2) 
u 

(22) 
x2F+u, v + X + 1; 4; x2). 

(23) 

Special values are given in the following table. 

-lSpecial Polynomial 

n---- $ Legendre 
1 Chebyshev polynomial of the second kind 

Koschmieder (1920) gives representations in terms of 
ELLIPTIC FUNCTIONS for QI = -3/4 and QI = -2/3. 

see UZSO BIRTHDAY PROBLEM, CHEBYSHEV POLYNOM- 

IAL OF THE SECOND KIND, ELLIPTIC FUNCTION, HY- 
PERGEOMETRIC FUNCTION, JACOBI POLYNOMIAL 
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Umbilic Point 
A point on a surface at which the CURVATURE is the 
same in any direction. 

Umbra1 Calculus 
The study of certain properties of FINITE DIFFERENCES. 

The term was coined by Sylvester from the word “um- 
bra” (meaning “shadow” in Latin), and reflects the fact 
that for many types of identities involving sequences of 
polynomials with POWERS an, “shadow” identities are 
obtained when the polynomials are changed to discrete 
values and the exponent in an is changed to the POCH- 

HAMMER SYMBOL (a), = a(a - 1) l  l  l  (a - n + 1). 

For example, NEWTON’S FORWARD DIFFERENCE FOR- 
MULA written in the form 

(1) 

with f (x + a) E fzfa looks suspiciously like a finite 
analog of the TAYLOR SERIES expansion 

f (x + a) = F unb~f(x) 1 
. 

n=O 

(2) 

where fi is the DIFFERENTIAL OPERATOR. Similarly, 
the CHU-VANDERMONDE IDENTITY 

(x + a)n = (3) 
with (;) a BINOMIAL COEFFICIENT, looks suspiciously 
like an analog of the BINOMIAL THEOREM 

(x + u)n = F ($w 
k=O 

(4 
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(Di Bucchianico and Loeb). 

see also BINOMIAL THEOREM, CHU-VANDERMONDE 

IDENTITY, FINITE DIFFERENCE 

References 
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Math. 27, 95488, 1978. 
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Umbrella 

~~~WHITNEY UMBRELLA 

Unambiguous 

see WELL-DEFINED 

Unbiased 
A quantity which does not exhibit BIAS. An ESTIMATOR 
8 is an UNBIASED ESTIMATOR of0 if 

0 e =e* 

see UZSO BIAS (ESTIMATOR), ESTIMATOR 

Uncia 

1 uncia = +j. 

The word uncia was Latin for a unit equal to l/12 of 
another unit called the as. The words “inch” (l/12 of a 
foot) and “ounce” (originally l/12 of a pound and still 
l/12 of a “TYoy pound,” now used primarily to weigh 
precious metals) are derived from the word uncia. 

see also CALCUS, HALF, QUARTER, SCRUPLE, UNIT 
FRACTION 

References 
Conway, J. ‘f-r. and Guy, R. K. The Book of Numbers. New 

York: Springer-Verlag, p. 4, 1996. 

Uncorrelated 
Variables zi and z:j are said to be uncorrelated if their 
COVARIANCE is zero: 

INDEPENDENT STATISTICS are always 
the converse is not necessarily true. 

COV(Zi,Zj) = 0. 

uncorrelated, 

see also GOVARIANCE, INDEPENDENT STATISTICS 

Uncountable Set 

see UNCOUNTABLY INFINITE SET 

Uncountably Infinite Set 
An INFINITE SET which is not a COUNTABLY INFINITE 
SET. 

see ah ALEPH-0, ALEPH-1, COUNTABLE SET, COUNT- 
ABLY INFINITE SET, FINITE, INFINITE 

Undecagon 

0 
The unconstructible H-sided POLYGON with SCHL~FLI 
SYMBOL (11). 

see UZSO DECAGON, DODECAGON, TRIGONOMETRY 
VALUES--~/U 

Undecidable 
Not DECIDABLE as a result of being neither formally 
provable nor unprovable. 

see also C&EL's INCOMPLETENESS 
RICHARDSON'S THEOREM 

Undecillion 
In the American system, 103? 

see also LARGE NUMBER 

THEOREM, 

Undetermined Coefficients Method 
Given a nonhomogeneous ORDINARY DIFFERENTIAL 
EQUATION, select a differential operator which will an- 
nihilate the right side, and apply it to both sides. Find 
the solution to the homogeneous equation, plug it into 
the left side of the original equation, and solve for con- 
stants by setting it equal to the right side. The solution 
is then obtained by plugging the determined constants 
into the homogeneous equation 

see also ORDINARY DIFFERENTIAL EQUATION 

A number of the form aba l  l  ‘, abab l  l  0, etc. The first few 
Undulating Number 

nontrivial undulants (with the stipulation that a # b) 
are 101, 121, 131, 141, 151, 161, 171, 181, 191, 202, 212, 

. (Sloane’s A046075). Including the trivial I- and 2- 
digit undulants and dropping the requirement that a # b 
gives Sloane’s A033619. 

The first few undulating SQUARES are 121, 484, 676, 
69696, . . , (Sloane’s A016073), with no larger such num- 
bers of fewer than a million digits (Pickover 1995). Sev- 
eral tricks can be used to speed the search for square un- 
dulating numbers, especially by examining the possible 
patterns of ending digits. For example, the only possible 
sets of four trailing digits for undulating SQUARES are 
0404, 1616, 2121, 2929, 3636, 6161, 6464, 6969, 8484, 
and 9696. 

The only undulating POWER np = aba l  l  l  for 3 < p < 31 - - 
and up to 100 digits is 73 = 343 (Pickover 1995). A 
large undulating prime is given by 7 + 720( 100”’ - 1)/99 
(Pickover 1995). 



Unduloid Uniform Apodization Function 

A binary undulant is a POWER of 2 whose base-10 rep- 
resentation contains one or both of the sequences 010 l  l  l  

and 101. . . . The first few are 2” for n = 103, 107, 138, 
159, 179, 187, 192, 199, 205, . . . (Sloane’s A046076). 
The smallest n for which an undulating sequence of ez- 
a&y d-digit occurs for d = 3, 4, . . . are n = 103, 138, 
875, 949, 6617, 1802, 14545, . . . (Sloane’s A046077). 
An undulating binary sequence of length 10 occurs for 
n = 1,748,219 (Pickover 1995). 
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shows that he cannot be hanged on any other day. Nev- 
ertheless, the executioner unexpectedly arrives on some 
day other than Friday, surprising the prisoner. 

Sloane, N. J. A. Sequences A016073, A033619, A046075, 
A046076, and A046077 in “An On-Line Version of the En- 
cyclopedia of Integer Sequences.” 

This PARADOX is similar to that in Robert Louis Steven- 
son’s “The Imp in the Bottle,” in which you are offered 
the opportunity to buy, for whatever price you wish, a 
bottle containing a genie who will fulfill your every de- 
sire. The only catch is that the bottle must thereafter 
be resold for a price smaller than what you paid for it, or 
you will be condemned to live out the rest of your days 
in excrutiating torment. Obviously, no one would buy 
the bottle for 15 since he would have to give the bottle 
away, but no one would accept the bottle knowing he 
would be unable to get rid of it. Similarly, no one would 
buy it for 29!, and so on. However, for some reasonably 
large amount, it will always be possible to find a next 
buyer, so the bottle will be bought (Paulos 1995). 

see also SORITES PARADOX 

Unduloid References 
A SURFACE OF REVOLUTION with constant NONZERO 
MEAN CURVATURE also called an ONDWLOID. It is a 
ROULETTE obtained from the path described by the 
FOCI of a CONIC SECTION when rolled on a LINE. This 
curve then generates an unduloid when revolved about 
the LINE. These curves are special cases of the shapes 
assumed by soap film spanning the gap between pre- 
scribed boundaries. The unduloid of a PARABOLA gives 
a CATEN~ID. 

Chow, T. Y. “The Surprise Examination or Unexpected 
Hanging Paradox.” Amer. Math. Monthly 105, 41-51, 
1998. 

see also CALCULUS OF VARIATIONS, CATENOID, 
ROULETTE 

Clark, D. “How Expected is the Unexpected Hanging?” 
Math. Mug. 67, 55-58, 1994. 

Gardner, M. “The Paradox of the Unexpected Hanging.” 
Ch. 1 in The Unexpected Hanging and Other Mathematical 
Diversions. Chicago, IL: Chicago University Press, 1991. 

Margalit, A. and Bar-Hillel, M. “Expecting the Unexpected.” 
Philosophia 13, 263-288, 1983. 

Pappas, T. “The Paradox of the Unexpected Exam.” The 
Joy of Muthematics. San Carlos, CA: Wide World Publ./ 
Tetra, p. 147, 1989. 
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Unfinished Game 

do Carmo, M. P. “The Onduloid.” §3.5G in Mathematical 
Models from the Collections of Universities and Muse- 
ums (Ed. G. Fischer). Braunschweig, Germany: Vieweg, 
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see SHARING PROBLEM 

Unhappy Number 
A number which is not HAPPY is said to be unhappy. 

see also HAPPY NUMBER 

Unicursal Circuit 
A CIRCUIT in which an entire GRAPH is traversed in 
one route. An example of a curve which can be traced 

Unexpected Hanging Paradox 
unicursally is the M;)HAMMED SIGN. 

A PARADOX alsoknownas the SURPRISE EXAMINATION 
PARADOX or PREDICTION PARADOX. 

Uniform Apodiaation Function 

A prisoner is told that he will be hanged on some day 
between Monday and Friday, but that he will not know 
on which day the hanging will occur before it happens. 
He cannot be hanged on Friday, because if he were still 
alive on Thursday, he would know that the hanging will 
occur on Friday, but he has been told he will not know 
the day of his hanging in advance. He cannot be hanged 
Thursday for the same reason, and the same argument 

An APODIZATION FUNCTION 

f(x) = 1, 

1879 

(1) 
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1. The series sum having INSTRUMENT FUNCTION 

I 

a 

I(~) = 1 e-2Tikx dx = -?rzrc(e-2Tika - ezTikx) 
-a 

(2) 

sin( 27rka) - - 
nk 

= 2asinc(Zxka). (2) is cant inuous , 

2. The series may be integrated term by term 
The peak (in units of a) is 2. The extrema are given by 
letting p E 2nka and solving b 00 b 

f(x) dx = 
cs 

w(x) dx, 

n=l a 
(3) 

$(BW) = p 
sinp - pcosp = 0 

(3) 

and 

3. The series may be differentiated term by term 
sinp - pcosp = 0 (4) 

tanp = pm (5) 

$f (2) = in--&- (4) 
n=l 

Solving this numerically gives PO = 0, /?I = 4.49341, 
p2 = 7.72525, . . . for the first few solutions. The second 
of these is the peak POSITIVE sidelobe, and the third is 
the peak NEGATIVE sidelobe. As a fraction of the peak, 
they are 0.128375 and -0.217234. The FULL WIDTH AT 
HALF MAXIMUM is found by setting I(x) = 1 

see ah ABEL’S THEOREM, ABEL'S UNIFORM CONVER- 
GENCE TEST, WEIERSTRAB M-TEST 

References 
A&en, G. Mathematical Methods for Physicists, 3rd ed. Or- 

lando, FL: Academic Press, pp. 299-301, 1985. 
sine(x) = 3, (6) 

and solving for x1/2, yielding 
Uniform Distribution 
A distribution which has constant probability is called a 
uniform distribution, sometimes also called a RECTAN- 
GULAR DISTRIBUTION. The probability density function 
and cumulative distribution function for a continuous 

uniform distribution are 

x1/2 = 2rkl12u = 1.89549. (7) 

Therefore, with L E 2u, 

0.603353 1.20671 
FWHM = 2k1/2 = - - - - 

L . (8) 
U 

see UZSO APODIZATION FUNCTION 
0 for x < a 

D(x) = y foru<x<b 
--a for x 5 b. 

(2) 
1 - 

Uniform Boundedness Principle 
If a “pointwise-bounded” family of continuous linear 
OPERATORS from a BANACH SPACE to a NORMED 
SPACE is “uniformly bounded.” Symbolically, if 
sup jlTi(x)lI is FINITE for each x in the unit BALL, then 
sup l\Till is FINITE. The theorem is also called the 
BANACH-STEINHAUS THEOREM. 

With a = 0 and b = 1, these can be written 

P(x) = + sgn(x) - sgn(x - 1) (3) 

D(X) = +[l - (1 - x)‘sgn(l - x) + xsgn(x)]. (4) 

References 
Zeidler, E. Applied Functional Analysis: Applications to 

Mathematical Physics. New York: Springer-Verlag, 1995. 
The CHARACTERISTIC FUNCTION is 

4(t) - - 2 sin(iht)P, 
ht (5) 

Uniform Convergence 

A SERIES CTfl un( ) x is uniformly convergent to S(x) 
for a set E of values of x if, for each E > 0, an INTEGER 
N can be found such that 

where 

U =m-ih 

b=m+ih. 

(6) 

(7) I&L(x) - S(x)1 < E (1) 

The MOMENT-GENERATING FUNCTION is for n > N and all x E E. To test for uniform conver- - 
gence, use ABEL'S UNIFORM CONVERGENCE TEST or 
the WEIERSTRA~~ M-TEST. Ifindividualterms un(x) of 
a uniformly converging series are continuous, then 

M(t) = (ext) = lb &dx = [ &] b, (8) 
a a 
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so 
p-p 

AI(t) = t(b-a) for t # 0 
0 for t = 0, 

so 

(9) 

and 

jqt) = 1 [l(@ - apt) - $(p - p)] 
b-a t 

Z ebt(bt - 1) - P(at - 1) 
(b - a)t2 l  

(10) 

The function is not differentiable at zero, so the MO- 
MENTS cannot be found using the standard technique. 
They can, however, be found by direct integration. The 
MOMENTS about 0 are 

pi = :(a+ b) 

A = $(u” + ab + b2) 

ph = +(a + b)(a2 + b2) 

PL = ;(a” + a3b + a2b2 + ab3 + b*). 

The MOMENTS about the MEAN are 

Pl =0 

p2 = &(b - a)” 

P3 =0 

p4 = &@ - aI47 

(15) 

(16) 

(17) 

(18) 

SO the MEAN, VARIANCE, SKEWNESS, and KURTOSIS are 

P= +(a+ b) 

o2 =p2 = &(b-a)2 
P3 

y1=D3/2=0 

72 = -;* 

(19) 

(20) 

(21) 

(22) 

The probability distribution function and cumulative The VERTICES of a uniform polyhedron all lie on a 
distributions function for a discrete uniform distribution SPHERE whose center is their CENTROID. The VER- 
are TICES joined to another VERTEX lie on a CIRCLE. 

P(n) = $ (23) 

D(n) = G (24) 

for n = 1, . . . . Iv. The MOMENT-GENERATING FWNC- 
TION is 
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Pi = $(N + 1) 
p; = ;(N + 1)(2N + 1) 

& = ~N(N + ij2 

Ilk = $(N + 1)(2N + 1)(3N2 + 3N - 1) 

and the MOMENTS about the MEAN are 

p2 = &(N - l)(N+ 1) 

P3 =0 

p4 = &(N - l)(N + 1)(3N2 - 7). 

1 

(27) 
(28) 
(29) 
(30) 

(31) 
(32) 
(33) 

The MEAN, VARIANCE, SKEWNESS, and KURTOSIS are 

p = +(N + 1) (34 
a2 = p2 = $(N-l)(N+l) (35) 

P3 
yl=a3/2=0 (36) 

6(N2 + 1) 
” = 5(N - l)(N + I)’ (37) 

References 
Beyer, IV. H. CRC Standard Mathematical Tables, 28th ed. 

Boca Raton, FL: CRC Press, pp- 531 and 533, 1987. 

Uniform Polyhedron 
The uniform polyhedra are POLYHEDRA with identical 
VERTICES. Coxeter et al. (1954) conjectured that there 
are 75 such polyhedra in which only two faces are al- 
lowed to meet at an EDGE, and this was subsequently 
proven. (However, when any EVEN number of faces may 
meet, there are 76 polyhedra.) If the five pentagonal 
PRISMS are included, the number rises to 80. 

Source code and binary programs for generat- 
ing and viewing the uniform polyhedra are also 
available at http: //www *math. technion. ac. il/-rl/ 
kaleido/. The following depictions of the polyhedra 
were produced by R. Maeder’s Unif ormPolyhedra. m 
package for A&thematic@ (Wolfram Research, Cham- 
paign, IL). Due to a limitation in Muthematic& ren- 
derer, uniform polyhedra 69, 72, 74, and 75 cannot be 
displayed using this package. 

The MOMENTS about 0 are 

1 N 
PL=~ nm, 

x (26) 
n=l 
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n 
r 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

Vame/Dual 

ietrahedron 

ietrahedron 

;runcated tetrahedron 

;riakis tetrahedron 

>ctahemioctahedron 

)ctahemioctacron 

letrahemihexahedron 

ietrahemihexacron 

Dctahedron 

zube 

zube 

wtahedron 

zuboctahedron 

rhombic dodecahedron 

truncated octahedron 

tetrakis hexahedron 

truncated cube 

triakis octahedron 

small rhombicuboctahedron 

deltoidal icositetrahedron 

truncated cuboctahedron 

disdyakis dodecahedron 

snub cube 

pentagonal icositetrahedron 

small cubicuboctahedron 

small hexacronic icositetrahedron 

great cubicuboctahedron 

great hexacronic icositetrahedron 

cubohemioctahedron 

hexahemioctahedron 

cubitruncated cuboctahedron 

tetradyakis hexahedron 

great rhombicuboctahedron 

great deltoidal icositetrahedron 

small rhombihexahedron 

small rhombihexacron 

stellated truncated hexahedron 

great triakis octahedron 

great truncated cuboctahedron 

great disdyakis dodecahedron 

great rhombihexahedron 

great rhombihexacron 

icosahedron 

dodecahedron 

dodecahedron 

icosahedron 

icosidodecahedron 

rhombic triacontahedron 

truncated icosahedron 

pentakis dodecahedron 

n Name/Dual 

26 truncated dodecahedron 

triakis icosahedron 

27 small rhombicosidodecahedron 

deltoidal hexecontahedron 

28 truncated icosidodecahedron 

disdyakis triacontahedron 

29 snub dodecahedron 

pentagonal hexecontahedron 

30 small ditrigonal icosidodecahedron 

small triambic icosahedron 

3 1 small icosicosidodecahedron 

small icosacronic hexecontahedron 

32 small snub icosicosidodecahedron 

small hexagonal hexecontahedron 

33 small dodecicosidodecahedron 

small dodecacronic hexecontahedron 

34 small stellated dodecahedron 

great dodecahedron 

35 great dodecahedron 

small stellated dodecahedron 

36 dodecadodecahedron 

medial rhombic triacontahedron 

37 truncated great dodecahedron 

small stellapentakis dodecahedron 

38 rhombidodecadodecahedron 

medial deltoidal hexecontahedron 

39 small rhombidodecahedron 

small rhombidodecacron 

40 snub dodecadodecahedron 

medial pentagonal hexecontahedron 

41 ditrigonal dodecadodecahedron 

medial triambic icosahedron 

42 great ditrigonal dodecicosidodecahedron 

great ditrigonal dodecacronic hexecontahedron 

43 small ditrigonal dodecicosidodecahedron 

small ditrigonal dodecacronic hexecontahedron 

44 icosidodecadodecahedron 

medial icosacronic hexecontahedron 

45 icositruncated dodecadodecahedron 

tridyakis icosahedron 

46 snub icosidodecadodecahedron 

medial hexagonal hexecontahedron 

47 great ditrigonal icosidodecahedron 

great triambic icosahedron 
*’ 

48 great icosicosidodecahedron 

great icosacronic hexecontahedron 

49 small icosihemidodecahedron 

small icosihemidodecacron 

50 small dodecicosahedron 

small dodecicosacron 
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n Name/Dual 

51 small dodecahemidodecahedron 

small dodecahemidodecacron 

52 great stellated dodecahedron 

great icosahedron 

53 great icosahedron 

great stellated dodecahedron 

54 great icosidodecahedron 

great rhombic triacontahedron 

55 great truncated icosahedron 

great stellapentakis dodecahedron 

56 rhombicosahedron 

rhombicosacron 

57 great snub icosidodecahedron 

great pentagonal hexecontahedron 

58 1 small stellated truncated dodecahedron 

great pentakis dodecahedron 

59 truncated dodecadodecahedron 

medial disdyakis triacontahedron 

60 inverted snub dodecadodecahedron 

medial inverted pentagonal hexecontahedron 

61 great dodecicosidodecahedron 

great dodecacronic hexecontahedron 

62 small dodecahemicosahedron 

small dodecahemicosacron 

63 great dodecicosahedron 

great dodecicosacron 

64 great snub dodecicosidodecahedron 

great hexagonal hexecontahedron 

65 great dodecahemicosahedron 

great dodecahemicosacron 

66 great stellated truncated dodecahedron 

great triakis icosahedron 

67 great rhombicosidodecahedron 

great deltoidal hexecontahedron 

68 great truncated icosidodecahedron 

great disdyakis triacontahedron 

69 great inverted snub icosidodecahedron 

great inverted pentagonal hexecontahedron 

70 great dodecahemidodecahedron 

great dodecahemidodecacron 

71 great icosihemidodecahedron 

great icosihemidodecacron 

72 small retrosnub icosicosidodecahedron 

small hexagrammic hexecontahedron 

73 great rhombidodecahedron 

great rhombidodecacron 

74 great retrosnub icosidodecahedron 

great pentagrammic hexecontahedron 

75 great dirhombicosidodecahedron 

great dirhombicosidodecacron 

n 

76 

77 

78 

79 

80 

Name/Dual 

pentagonal prism 

pentagonal dipyramid 

pentagonal antiprism 

pentagonal deltahedron 

pentagrammic prism 

pentagrammic dipyramid 

pent agrammic ant iprism 

pentagrammic deltahedron 

pentagrammic crossed antiprism 

pentagrammic concave deltahedron 

see also ARCHIMEDEAN SOLID, AUGMENTED POLYHE- 

DRON, JOHNSON SOLID, KEPLER-P• XNSOT SOLID, PLA- 

TONIC SOLID, POLYHEDRON, VERTEX FIGURE, WYTH- 
OFF SYMBOL 
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Uniform Variate 
A RANDOM NUMBER which lies within a specified range 
(which can, without loss of generality, be taken as [O, 
l]), with a UNIFORM DISTRIBUTION. 

References 
Press, W. H.; Flannery, 13. P.; Teukolsky, S. A.; and Vet- 

terling, W. T. “Uniform Deviates.” $7.1 in Numerical 

Recipes in FORTRAN: The Art of Scientific Computing, 
2nd ed. Cambridge, England: Cambridge University Press, 
pp. 267-277, 1992. 

Unimodal Distribution 
A DISTRIBUTION such as the GAUSSIAN DISTRIBUTION 
which has a single “peak.” 

see also BIMODAL DISTRIBUTION 

Unimodal Sequence 
A finite SEQUENCE which first increases and then de- 
creases. A SEQUENCE {sl, ~2, . . . , sn} is unimodal if 
there exists a t such that 

231 < 232 5 l  . . 5  St 
- 

and 
St 2 St+1 > . . l  2  sn.  

Unimodular Group 
A group whose left HAAR MEASURE equals its right 
HAAR MEASURE. 

see dso HAAR MEASURE 
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Knapp, A. W. “Group Representations and Harmonic Anal- 

ysis, Part II.” Not. Amer. Math. Sot. 43, 537-549, 1996. 

Unimodular Matrix 
A MATRIX A with INTEGER elements and DETERMI- 
NANT det(A) = + 1, also called a UNIT MATRIX. 

The inverse of a unimodular matrix is another uni- 
modular matrix. A POSITIVE unimodular matrix has 
det(A) = +l. The nth POWER of a POSITIVE UNIMOD- 
ULAR MATRIX 

(1) 

1s 

M” = 

mdJ,-l(a) - Un-2(a) m2Un--1 (a) 

m2JJn--l(a) 1 m22U,-l(a) - Un-2(a) ’ (2) 
where 

a+ (ml + m22) (3) 

andthe Un are CHEBYSHEV POLYNOMIALS OFTHESEC- 
OND KIND, 

sin[(m + 1) cosm12] 
um(x> = do l  (4) 

-X 

see also CHEBYSHEV POLYNOMIAL OF THE SECOND 
KIND 
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Unimodular Transformation UnipotellC 
A ~-ELEMENT z of a GROUP G is unipotent if F* (CG(X)) 
is ~~-GR~uP, where F* is the generalized FITTING SUB- 
GROUP. 

A transformation x’ = Ax is unimodular if the DETER- 
MINANT of the MATRIX A satisfies 

d&(A) = zkl. see also FITTING SUBGROUP,~-ELEMENT,~-GROUP 

A NECESSARY and SUFFICIENT condition that a linear 
transformation transform a lattice to itself is that the 
transformation be unimodular. 

Unique 
The property of being the only possible solution (per- 
haps modulo a constant, class of transformation, etc.). 

see also ALEKSANDROV'S UNIQUENESS THEOREM, Ex- 
ISTENCE,MAY-THOMASON UNIQUENESS THEOREM Union 

The union of two sets A and B is the set obtained by 
combining the members of each. This is written A U B, 
and is pronounced “A union B” or “A cup B.” The 
union of sets A1 through A, is written UyE1 A;. 

Unique Factorization Theorem 

see FUNDAMENTAL THEOREM OF ARITHMETIC 

Let A, B, C, . . . be sets, and let P(S) denote the prob- 
ability of S. Then 

Unit 
A unit is an element in a RING that has a multiplicative 
inverse. If n is an ALGEBRAIC INTEGER which divides 
every ALGEBRAIC INTEGER~~ the FIELD, n is called a 
unit in that FIELD. A given FIELD may contain an in- 
finity of units. The units of Zn are the elements RELA- 
TIVELY PRIME ton. Theunitsinz, whichare SQUARES 
are called QUADRATIC RESIDUES. 

P(A u B) = P(A) + P(B) - P(A n B). (1) 

Similarly, 

P(A u’B u C) = P[A u (B u C)] 

= P(A) + P(B u C) - P[A n (B u C)] 

= P(A) + [P(B) + P(C) - P(B n C)] 

-P[(A n B) u (A n C)] 

= P(A) + P(B) + P(C) - P(B n C) 

-{P(A n B) + P(A n C) - P[(A n B) n (An C)]} 

= P(A) + P(B) + P(C) - P(A n B) 
-P(AnC)-P(BnC)+P(AnBnC). (2) 

FUNDAMENTAL UNIT, see &O EISENSTEIN UNIT, 
PRIME UNIT, QUADRATIC RESIDUE 

Unit Circle 

1 
P 0 

A CIRCLE of RADIUS 1, such as the one used to defined 
the functions of TRIGONOMETRY. If A and B are DISJOINT, by definition P(A n B) = 0, 

so 
P(Au B) = P(A) + P(B). (3) 

see also UNIT DISK, UNIT SQUARE 

Continuing 

E, 

, for a elements Unit Disk 

Wi), P 

which is the COUNTABLE ADDITIVITY PROBABILITY 
AXIOM. NOW let 

Ei = AnBi, (5) 

A DISK with RADIUS 1. 

see also FIVE DISKS PROBLEM, UNIT CIRCLE, UNIT 
SQUARE 

then 

Unit Fraction 
A unit fraction is a FRACTION with NUMERATOR 1, also 
known as an EGYPTIAN FRACTION. Any RATIONAL 
NUMBER has infinitely many unit fraction representa- 
tions, although only finitely many have a given fixed 
number of terms. Each FRACTION x/y with y ODD has 
a unit fraction representation in which each DENOMINA- 
TOR is ODD (Breusch 1954; Guy 1994, p. 160). Every 
x/y has a t-term representation where t = O( d=) 
(Vose 1985). 

see also INTERSECTION, OR 

Uniplanar Double Point 

see ISOLATED SINGULARITY 
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There are a number of ALGORITHMS (including the 
BINARY REMAINDER METHOD, CONTINUED FRAC- 

TION UNIT FRACTION ALGORITHM, GENERALIZED RE- 

3. Additive identity: There exists an element 0 f S 
such that for all a E S : 0 + a = a + 0 = a, 

4. Additive inverse: For every a E S, there exists a 
-a f S such that a + (-a) = (-a) + a = 0, 

5. Multiplicative associativity: For all a, b, c f S, (a * 
b)*c=a*(b*c), 

MAINDER METHOD, GREEDY ALGORITHM, REVERSE 
GREEDY ALGORITHM, SMALL MULTIPLE METHOD, and 
SPLITTING ALGORITHM) for decomposing an arbitrary 
FRACTION into unit, fractions. 

see also CALCUS, HALF, QUARTER, SCRUPLE, UNCIA 
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Unit Matrix 

see UNIMODULAR MATRIX 

Unit Point 
The point in the PLANE with Cartesian coordinates (1, 

1). 
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Unit Ring 

6. Multiplicative identity: There exists an element 1 E 
S such that for all a E S, 1 * a = a * 1 = a, 

‘7. Left and right distributivity: For all a, b, c e 5, a * 
(b+c) = (a*b)+(a*c) and (b+c)*u = (b*u)+(c*u). 

Thus, a unit ring is a RING with a multiplicative identity. 

see also BINARY OPERATOR, RING 

Heierences 
Rosenfeld, A. An Introduction to Algebraic Structures. New 

York: Holden-Day, 1968. 

Unit Sphere 
A SPHERE of RADIUS 1. 

see also SPHERE, UNIT CIRCLE 

Unit Square 

1 

0 1 
A SQUARE with side lengths 1. The unit square usually 
means the one with coordinates (0, 0), (1, 0), (1, l), (0, 
1) in the real plane, or 0, 1, 1 +i, and i in the COMPLEX 
PLANE. 

see UZSO HEILBRONN TRIANGLE PROBLEM, UNIT CIR- 
CLE, UNIT DISK 

Unit Step 

see HEAVISIDE STEP FUNCTION 

Unit Vector 
A VECTOR of unit length. The unit 
same direction as a given (nonzero) 

bY 
*=V - 

1 I V' 

vector G having the 
vector v is defined 

where [VI denotes the NORM of v, is the unit vector in 
the same direction as the (finite) VECTOR v. A unit 
VECTOR in the xR. direction is given by 

ar 
ax, 
ar 1 

I I d+l 

A unit ring is a set together with two BINARY OPERA- 
TORS S(+, *) satisfying the following conditions: 

1. Additive associativity: For all a, b, c E S, (u+b)+c = 

a+(b+c), 1 
2. Additive commutativity: For all a, b E S, a + b = 

where I is the RADITJS VECTOR. 

see also NORM, RADIUS VECTOR, VECTOR 

b+ a, 
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Unital 
A BLOCK DESIGN of the form (q3 + 1, q + 1, 1). 

References 
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Unitary Aliquot Sequence 
An ALIQU~T SEQUENCE computed using the analog of 
the RESTRICTED DIVISOR FUNCTION s*(n) in which 
only UNITARY DIVISORS are included. 

see also ALIQUOT SEQUENCE, 
NUMBERS 

UNITARY SOCIABLE 

References 
Guy, R. K. “Unitary Aliquot Sequences.” §B8 in Unsolved 

Problems in Number Theory, 2nd ed. New York: Springer- 
Verlag, pp. 63-65, 1994. 

Unitary Amicable Pair 
A PAIR of numbers m and n such that 

u*(m)=a*(n)=m$n, 

where u*(n) is the sum of UNITARY DIVISORS. Hagis 
(1971) and Garcia (1987) give 82 such pairs. The first 
few are (114, 126), (1140, 1260), (18018, 22302), (32130, 
40446), . . . (Sloane’s A002952 and A002953). 

References 
Garcia, M. *‘New Unitary Amicable Couples.” J. Recr. Math. 

19, 12-14, 1987. 
Guy, R. K. Unsolved Problems in Number Theory, 2nd ed. 

New York: Springer-Verlag, p. 57, 1994. 
Hagis, P. “Relatively Prime Amicable Numbers of Opposite 

Parity.” Math. Comput. 25, 915-918, 1971. 
Sloane, N. J. A. Sequences AO02952/M5372 and A0029531 

M5389 in “An On-Line Version of the Encyclopedia of In- 
teger Sequences.” 

Unitary Divisor 
A DIVISOR d of c for which 

GCD(d,c/d) = 1, 

where GCDisthe GREATEST COMMON DIVISOR. 

see also DIVISOR, GREATEST 
TARY PERFECT NUMBER 

COMMON DIVISOR, UNI- 

References 
Guy, R. K. “Unitary Perfect Numbers.” §B3 in Unsolved 

Problems in Number Theory, 2nd ed. New York: Springer- 
Verlag, pp. 53-59, 1994. 

Unitary Group 
The unitary group Un (q) is the set of n x n UNITARY 
MATRICES. 
see also LIE-TYPE GROUP, UNITARY MATRIX 

Unitary Matrix 
A unitary matrix is a MATRIX U for which 

Uf = u-l 1 (1) 

where t denotes the ADJOINT OPERATOR. This guaran- 
tees that 

u+u - 1 - l  
(2) 

Unitary matrices leave the length of a COMPLEX vector 
unchanged. The product of two unitary matrices is itself 
unitary. If U is unitary, then so is U-l. A SIMILARITY 
TRANSFORMATION ofa HERMITIAN MATRIX withauni- 
tary matrix gives 

( uazl-l)t = [(us)(d)]+ = (u-‘)+(ua)+ = (u+)+(a+J) 

= uaut = ua7i1 . (3) 

For REAL MATRICES, HERMITTAN is the s ame as OR- 
THOGONAL. Unitary matrices are NO IRMAI, MATRICES. 

If M is a unitary matrix, then the PERMANENT 

I perm(M)I < 1 - (4 

(Mint 1978, p. 25, Vardi 1991). 

see also ADJOINT OPERATOR, HERMITIAN MATRIX, 

NORMAL MATRIX, ORTHOGONAL MATRIX, PERMA- 
NENT 

References 
Arfken, G. “Hermitian Matrices, Unitary Matrices.” $4.5 in 

Mathematical Methods for Physicists, 3rd ed. Orlando, 
FL: Academic Press, pp, 209-217, 1985. 

Mint, H. Permanents. Reading, MA: Addison-Wesley, 1978. 
Vardi, I. “Permanents.” $6.1 in Computational Recreations 

in Mathematics. Reading, MA: Addison-Wesley, pp. 108 
and 110-112, 1991. 

Unitary Multiperfect Number 
A number n which is an INTEGER multiple k of the SUM 
of its UNITARY DIVISORS o*(n) is called a unitary k- 
multiperfect number. There are no ODD unitary multi- 
perfect numbers. 

References 
Guy, R. K. ‘LUnitary Perfect Numbers.” §B3 in Unsolved 

Problems in Number Theory, 2nd ed. New York: Springer- 
Verlag, pp. 53-59, 1994. 

Unitary Multiplicative Character 
A MULTIPLICATIVE CHARACTER is called unitary ifit 
has ABSOLUTE VALUE leverywhere. 

see also CHARACTER (MULTIPLICATIVE) 

References 
Wilson, R. A. “ATLAS of Finite Group Representation.” 

http://for.mat.bham.ac.uk/atlas#unit. 
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Unitary Perfect Number 
A number n which is the sum of its UNITARY DIVHORS 
with the exception of n itself. There are no ODD unitary 
perfect numbers, and it has been conjectured that there 
are only a FINITE number of EVEN ones. The first few 
are 6, 60, 90, 87360, 146361946186458562560000, . . . 
(Sloane’s A002827). 

References 
Guy, R. K. “Unitary Perfect Numbers.” §B3 in Unsolved 

Problems in Number Theory, 2nd ed. New York: Springer- 
Verlag, pp. 53-59, 1994. 

Sloane, N. J. A. Sequence A002827/M4268 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Wall, C. R. “On the Largest Odd Component of a Unitary 
Perfect Number.” Fib. Quart. 25, 312-316, 1987. 

Unitary Sociable Numbers 
SOCIABLE NUMBERS computed using the analog of the 
RESTRICTED DIVISOR FUNCTION s*(n) in which only 
UNITARY DIVISORS are included. 

see aho SOCIABLE NUMBERS 

References 
Guy, R. K. “Unitary Aliquot Sequences.” $88 in Unsolved 

Problems in Number Theory, 2nd ed. New York: Springer- 
Verlag, pp* 63-65, 1994, 

Unitary Transformation 
A transformation of the form 

where t denotes the ADJOINT OPERATOR. 

see also 

A’ = UAU+, 

ADJOINT OPERATOR, TRANSFORMATION 

Unitary Unimodular Group 

see SPECIAL UNITARY GROUP 

Unity 
The number 1. There are n nth ROOTS OF UNITY, 
known as the DE MOIVRE NUMBERS. 

see also 1, PRIMITIVE ROOT OF UNITY 

Univalent Function 
A function or transformation f in which f(z) does not 
overlap z. 

Univariate Function 
A FUNCTION of a single variable (e.g., f(z), g(z), 0(c), 
etc.). 

see UZSO MULTIVARIATE FUNCTION 

Univariate Polynomial 
A POLYNOMIAL in a single variable. In common usage, 
univariate POLYNOMIALS are sometimes simply called 
“POLYNOMIALS." 

see UZSO POLYNOMIAL 

Universal Graph 

see COMPLETE GRAPH 

Universal Statement 
A universal statement S is a FORMULA whose FREE vari- 

ables are all in the scope of universal quantifiers. 

Universal Turing Machine 
A TURING MACHINE which, by appropriate program- 
ming using a finite length of input tape, can act as any 
TURING MACHINE whatsoever. 

see CHAITIN’S CONSTANT, HALTING PROBLEM, TURING 

MACHINE 

References 
Penrose, R. The Emperor’s New Mind: Concerning Com- 

puters, Minds, and the Laws of Physics. Oxford: Oxford 
University Press, pp. 51-57, 1989. 

Unknot 
A closed loop which is not KNOTTED. In the 193Os, 
by making use of REIDEMEISTER MOVES, Reidemeister 
first proved that KNOTS exist which are distinct from 
the unknot. He proved this by COLORING each part of 
a knot diagram with one of three colors. 

The KNOT SUM of two unknots is another unknot. 

The JONES POLYNOMIAL of the unknot is defined to give 
the normalization 

v(t) = 1. 

Haken (1961) d evised an ALGORITHM to tell if a knot 
projection is the unknot. The ALGORITHM is so com- 

plicated, however, that it has never been implemented. 
Although it is not immediately obvious, the unknot is a 
PRIME KNOT. 

see also COLORABLE, KNOT, KNOT THEORY, LINK, 
REIDEMEISTER MOVESJNKNOTTING NUMBER 

Heierences 
Haken, W. “Theorie der Normalflachen.” Acta Math. 105, 

245-375,1961. 

Unknotting Number 
The smallest number of times a KNOT must be passed 
through itself to untie it. Lower bounds can be com- 
puted using relatively straightforward techniques, but it 
is in general difficult to determine exact values. Many 
unknotting numbers can be determined from a knot’s 
SIGNATURE. A KNOT with unknotting number 1 is a 
PRIME KNOT (Scharlemann 1985). It is not always true 
that the unknotting number is achieved in a projection 
with the minimal number of crossings. 

The following table is from Kirby (1997, pp. S&89), with 
the values for IO 139 and 10152 taken from Kawamura. 
The unknotting numbers for 10154 and 10161 can be 
found using MENASCO'S THEOREM (Stoimenow 1998). 
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31 1 89 1 910 2 or 3 932 1 or 2 
41 1 810 1 or 2 911 2 933 1 

51 2 811 1 912 1 934 1 

52 1 812 2 913 2 or 3 935 2 or 3 

61 1 813 1 914 1 936 2 
62 1 814 1 915 2 937 2 

63 1 815 2 916 3 938 2 or 3 

71 3 816 2 917 2 939 1 

72 1 817 1 918 2 940 2 
73 2 818 2 919 1 941 2 

74 2 819 3 920 2 942 1 

75 2 820 1 921 1 943 2 

76 1 821 1 922 1 944 1 
77 1 91 4 923 2 945 1 
81 1 92 1 924 1 946 2 
82 2 93 3 925 2 947 2 

83 2 94 2 926 1 948 2 
84 2 95 2 927 1 949 2 or 3 

85 2 96 3 928 1 10139 4 
86 2 97 2 929 1 m52 4 
87 1 98 2 930 1 10154 3 
88 2 99 3 931 2 10161 3 

see UZSO BENNEQUIN’S CONJECTURE, MENASCO’S THE- 
OREM, MILNOR'S CONJECTURE, SIGNATURE (KNOT) 
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Unless 
If A is true unless B, then not-B implies A, but B does 
not necessarily imply not-A. 

see also PRECISELY UNLESS 

Unlesss 

see PRECISELY UNLESS 

Unmixed 
A homogeneous IDEAL defining a projective ALGEBRAIC 
VARIETY is unmixed if it has no embedded PRIME divi- 

Unstable Spiral Point 

Unpoke Move 

~~~POKE MOVE 

1889 

Unsafe 
A position in a GAME is unsafe if the person who plays 
next can win. Every unsafe position can be made SAFE 
by at least one move. 

see also GAME, SAFE 

Unsolved Problem 

~~~PRUBLEM 

Unstable Improper Node 
A FIXED POINT for which the STABILITY MATRIX has 
equal POSITIVE EIGENVALUES. 

see also ELLIPTIC FIXED POINT (DIFFERENTIAL 
EQUATIONS), FIXED POINT, HYPERBOLIC FIXED 
PRINT (DIFFERENTIAL EQUATIONS), STABLE IM- 
PROPERNODE,STABLE NODE,STABLE SPIRAL POINT, 
UNSTABLE NODE, UNSTABLE SPIRAL POINT, UNSTA- 
BLE STAR 

References 
Tabor, M. “Classification of Fixed Points.” 51.4.b in Chaos 

and Integrability in Nonlinear Dynamics: An Introduc- 
tion. New York: Wiley, pp. 22-25, 1989. 

Unstable Node 
A FIXED POINT for which the STABILITY MATRIX has 
both EIGENVALUES POSITIVE, so X1 > X2 > 0. 

see also ELLIPTIC FIXED POINT (DIFFERENTIAL 
EQUATIONS), FIXED POINT, HYPERBOLIC FIXED 
POINT (DIFFERENTIAL EQUATIONS), STABLE IM- 
PROPERNODE,STABLE NODE,$TABLE SPIRAL POINT, 
STABLE STAR,~NSTABLE IMPROPERNODEJJNSTABLE 
SPIRAL POINTJJNSTABLE STAR 

References 
Tabor, M. “Cl assification of Fixed Points.” 51.4.b in Chaos 

and Integrability in Nonlinear Dynamics: An Introduc- 
tion. New York: Wiley, pp. 22-25, 1989. 

Unstable Spiral Point 
A FIXED POINT for which the STABILITY MATRIX has 
EIGENVALUES of the f&m Xk = QI * $3 (with a,@ > 0). 

see also ELLIPTIC FIXED PRINT (DIFFERENTIAL 
EQUATIONS), FIXED POINT, HYPERBOLIC FIXED 
PRINT (DIFFERENTIAL EQUATIONS), STABLE IM- 
PROPERNODE,STABLE NODE,STABLE SPIRAL POINT, 
STABLE STAR,~NSTABLE IMPROPERNODE,UNSTABLE 
NODE,~NSTABLE STAR 

References 
Tabor, M. “Cl assification of Fixed Points.” 51.4.b in Chaos 

and Integrcability in Nonlinear Dynamics: An Intruduc- 
tion. New York: Wiley, pp. 22-25, 1989. 
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Unstable Star 
A FIXED POINT for which the STABILITY MATRIX has 
one zero EIGENVECT~R with POSITIVE EIGENVALUE 
x > 0. 
see also ELLIPTIC FIXED POINT (DIFFERENTIAL 
EQUATIONS), FIXED POINT, HYPERBOLIC FIXED 
POINT (DIFFERENTIAL EQUATIONS), STABLE IM- 
PROPER NODESTABLE NODE,STABLE SPIRAL POINT, 
STABLE STAR, UNSTABLE IMPROPER NODE, UNSTABLE 
NODE, UNSTABLE SPIRAL POINT 

References 
Tabor, M. “Classification of Fixed Points.” 51.4.b in Chaos 

and Integrubility in Nonlinear Dynamics: An Intruduc- 
tion. New York: Wiley, pp. 22-25, 1989. 

Untouchable Number 
An untouchable number is an INTEGER which is not the 
sum of the PROPER DIVISORS of any other number. The 
first few are 2, 5, 52, 88, 96, 120, 124, 146, , , . (Sloane’s 
AOO5114). Erd& has proven that there are infinitely 
many. It is thought that 5 is the only ODD untouchable 
number. 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
pm 840, 1972. 

Guy, R. K. “Untouchable Numbers.” §BlO in Unsolved Prob- 
lems in Number Theory, 2nd ed. New York: Springer- 
Verlag, pp, 66-67, 1994. 

Sloane, N. J. A. Sequence A005114/M1552 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Upper Bound 

see LEAST UPPER BOUND 

Upper Integral 

Thelimit of an UPPER S~~,whenitexists,asthe MESH 
SIZE approaches 0. 

see UZSO LOWER INTEGRAL, RIEMANN INTEGRAL, UP- 
PER SUM 

Urchin 

Upper Limit 
Let the greatest term H of a SEQUENCE be a term which 
is greater than all but a finite number of the terms which 
are equal to H. Then H is called the upper limit of the 
SEQUENCE. 

An upper limit of a SERIES 

upper lim & = lim S, = k 
n-00 nhoo 

is said to exist if, for every e > 0, IS, - kl < e for 
infinitely many values of rz and if no number larger than 
k has this property. 

see also LIMIT, LOWER LIMIT 

References 
Bromwich, T. J. I’a and MacRobert, T. M. “Upper and Lower 

Limits of a Sequence.” 35.1 in An Introduction to the The- 
ory of Infinite Series, 3rd ed. New York: Chelsea, p. 40, 
1991. 

Upper Sum 

For a given function f(x) over a partition of a given in- 
terval, the upper sum is the sum of box areas f&)Az, 
using the greatest value of the function f(zz) in each 
subinterval Axk l  

see UZSO LOWER SUM, RIEMANN INTEGRALJPPER IN- 
TEGRAL 

Upper-Trimmed Subsequence 
The upper-trimmed subsequence of Al: = {xn} is the se- 
quence X(z) obtained by dropping the first occurrence 
of n for each n. If x is a FRACTAL SEQUENCE, then 

A( > X = 2. 

see also LOWER-TRIMMED SUBSEQUENCE 

References 
Kimberling, C. ‘Wactal Sequences and Interspersions.” Ars 

Combin. 45, 157-168, 1997. 

Upward Drawing 

see HASSE DIAGRAM 

Urchin 
Kepler’s original name for the SMALL STELLATED DO- 
DECAHEDRON. 



Utility Graph 

Utility Graph 

The utility problem asks, “Can a PLANAR GRAPH be 
constructed from each of three nodes (‘house owners’) to 
each of three other nodes (‘wells’)?” The answer is no, 
and the proof can be effected using the JORDAN CURVE 
THEOREM, while a more general result encompassing 
this one is the KURATOWSKI REDUCTION THEOREM. 
The utility graph UG is the graph showing the rela- 
tionships described above. It is identical to the THOM- 
SEN GRAPH and, in the more formal parlance of GRAPH 
THEORY, isknownasthe COMPLETEBIPARTITE GRAPH 
K3,3. 

see also COMPLETE BIPARTITE GRAPH, KURATOWSKI 
REDUCTION THEOREM, PLANAR GRAPH, THOMSEN 
GRAPH 

JXeierences 
Chartrand, G. “The Three Houses and Three Utilities Prob- 

lem: An Introduction to Planar Graphs.” §9+l in Intro- 
ductory Graph Theory. New York: Dover, pp+ 191-202, 
1985e 

Ore, 0. Grdphs and Their Uses. New York: Random House, 
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Muthematics. San Carlos, CA: Wide World Publ./Tetra, 
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UtiIi ty Pro bkm 1891 

Utility Problem 

see UTILITY GRAPH 
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V to one of the following: the trivial valuation, Euclidean 
absolute norm 1 n 1, or padic valuation 1 l  lP. 

Valence 

see VALENCY 

Valency 
The number of EDGES at a GRAPH VERTEX. 

Valuation 
A generalization of the p-ADIC NUMBERS first proposed 
by Kiirsch&k in 1913. A valuation 1 l  1 on a FIELD K is a 
FUNCTION from K to the REAL NUMBERS Tw such that 
the following properties hold for all 5, y E K: 

1. 1x1 > 0, - 

2. 1x1 = 0 IFF z = 0, 

3. IXYI = 14 IYL 
4. IzI 5 1 IMPLIES 11+x/ < C for some constant C > 1 

(independent of ztz)* - 
- 

If (4) is satisfied for C = 2, then 1 9 I satisfies the TRI- 
ANGLE INEQUALITY, 

4a. Ix + yI 5 12) + IyI for all 2,y E K. 

If (4) is satisfied for C = 1 then I .I 
TRIANGLE INEQ UALITY 

satisfies the stronger 

4b. 1% + YI < ma414, IYl>* 
The simplest valuation is the ABSOLUTE VALTJE for 
REAL NUMBERS. A valuation satisfying (4b) is called 
non-ARCHIMEDEAN VALUATION; otherwise, it is called 
ARCHIMEDEAN. 

If 19 11 is a valuation on K and A 2 1, then we can define 
a new valuation 1 . 12 by 

This does indeed give a valuation, but possibly with a 
different constant C in AXIOM 4. If two valuations are 
related in this way, they are said to be equivalent, and 
this gives an equivalence relation on the collection of 
all valuations on K. Any valuation is equivalent to one 
which satisfies the triangle inequality (4a). In view of 
this, we need only to study valuations satisfying (4a), 
and we often view axioms (4) and (4a) as interchange- 
able (although this is not strictly true). 

If two valuations are equivalent, then they are both non- 
ARCHIMEDEAN or both ARCHIMEDEAN. Q, Iw, and c 
with the usual Euclidean norms are Archimedean val- 
uated fields. For any PRIME p, the p-ADIC NUMBERS 
Q, with the p-adic valuation I . lP is a non-Archimedean 
valuated field. 

If K is any FIELD, we can define the trivial valuation 
on K by 1x1 = 1 for all x # 0 and 101 = 0, which is 
a non-Archimedean valuation. If K is a FINITE FIELD, 
then the only possible valuation over K is the trivial one. 
It can be shown that any valuation on Q is equivalent 

The equivalence of any nontrivial valuation of Q to ei- 
ther the usual ABSOLUTE VALUE or to a p-ADIC NUM- 
BER absolute value was proved by Ostrowski (1935). 
Equivalent valuations give rise to the same topology. 
Conversely, if two valuations have the same topology, 
then they are equivalent. A stronger result is the fol- 
lowing: Let I 9 11, 1 l  12, . . . , I . jk be valuations over Kc 
which are pairwise inequivalent and let al, ~2, . . . , arc 
be elements of K. Then there exists an infinite sequence 

(Xl, x2, “’ ) of elements of K such that 

lim xn = al 
72300 w.r.t. 1-11 

(2) 

lim zn =a~, 
n-boo w.r.t. I-12 (3) 

etc. This says that inequivalent valuations are, in some 
sense, completely independent of each other. For exam- 
ple, consider the rationals Q with the 3-adic and 5-adic 
valuations I . 13 and I l  1 5, and consider the sequence of 
numbers given by 

43 - 5” + 92 * 3n 
x:12 = 

3n +5n ’ 

Then xn + 43 as n + 00 with respect to I l  IS, but 
xn + 92 as n + 00 with respect to 1 . 15, illustrating 
that a sequence of numbers can tend to two different 
limits under two different valuations. 

(4 

A discrete valuation is a valuation for which the VALUA- 
TION GROUP is a discrete subset of the REAL NUMBERS 
R. Equivalently, a valuation (on a FIELD K) is discrete 
if there exists a REAL NUMBER e > 0 such that 

1x1 f (1 - E, 1 + E) * 1x1 = 1 for all 2 E K. (5) 

The p-adic valuation on Q is discrete, but the ordinary 
absolute valuation is not. 

If I . I is a valuation on K, then it induces a metric 

4x, Y> = lx - PI (6) 

on K, which in turn induces a TOPOLOGY on K. If 
I . I satisfies (4b) th en the metric is an ULTRAMETRIC. 
We say that (K, I . I) is a complete valuated field if the 
METRIC SPACE is complete. 

see also ABSOLUTE VALUE, LOCAL FIELD, METRIC 
SPACE, p-ADIC NUMBER, STRASSMAN’S THEOREM, UL- 

TRAMETRIC,VALUATION GROUP 

References 
Cassels, J. W+ S. Local Fields. Cambridge, England: C&m- 

bridge University Press, 1986. 
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Valuation Group 

IJet W,I* I> b e a valuated field. The valuation group G 
is d&ned to be the set 

with the group operation being multiplication. It is 
a SUBGROUP of the POSITIVE REAL NUMBERS, under 
multiplication. 

Valuation Ring 

Let (K I l  I> b  
e a non-Archimedean valuated field. Its 

valuation ring R is defined to be 

The valuation ring has maximal IDEAL 

and the field R/M is called the residue field, class field, 
or field of digits. For example, if K = Q (p-adic num- 
bers), then R = Zp (p-adic integers), M = ~2, (p-adic 
integers congruent to 0 mod p), and R/M = GF(p), the 
FINITE FIELD of order p. 

Valuation Theory 
The study of VALUATIONS which simplifies class field 
theory and the theory of algebraic function fields. 

see also VALUATION 

References 
Iyanaga, S. and Kawada, Y. (Eds.). “Valuations.” $425 

in Encyclopedic Dictionary of Mathematics. Cambridge, 
MA: MIT Press, pp+ 1350-1353, 1980. 

Value 
The quantity which a FUNCTION f takes upon applica- 
tion to a given quantity. 

see also VALUE (GAME) 

Value (Game) 
The solution to a GAME in GAME THEORY. When a 
SADDLE POINT is present 

l  l  l  

mm mm aij 
i<m j<n 

= mm max Uij 

j<n ilrn 
E v, 

and w  is the value for pure strategies. 

see also ABSOLUTE VALUE, GAME THEORY, MINIMAX 
THEOREM,~ALUATION 

Vampire Number 

Vampire Number 
A number v = zy with an EVEN number n of DIG- 

ITS formed by multiplying a pair of n/i&DIGIT numbers 
(where the DIGITS are taken from the original number 
in any order) it: and y together. Pairs of trailing zeros 
are not allowed. If v is a vampire number, then =x: and 
y are called its “fangs.” Examples of vampire numbers 
include 

1260 = 21 x 60 

1395 = 15 x 93 

1435 = 35 x 41 

1530 = 30 x 51 

1827 = 21 x 87 

2187 = 27 x 81 

6880 = 80 x 86 

(Sloane’s AOl4575). There are seven 4-digit vampires, 
155 6-digit vampires, and 3382 8-digit vampires. Gen- 
eral formulas can be constructed for special classes of 
vampires, such as the fangs 

cc = 25 l  10’” + 1  

y = 100(lOk+’ + 52)/25, 

giving the vampire 

21 = zcy = (lo”+l + 

= 2* l  1o”+2 + t 

= 8(26 + 5 l  lO”)( 

52)10”+2 + 100(10”+1 + 52)/25 

1 + 25 l  lo”), 

where z* denotes x with the DIGITS reversed (Roushe 
and Rogers) + 

Pickover (1995) also defines pseudovampire numbers, in 
which the multiplicands have different number of digits. 
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Pickover, C. A. “Vampire Numbers.” Ch. 30 in Keys fo In- 
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dated manuscript. 
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of the Encyclopedia of Integer Sequences.” 
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van der Grinten Projection 

A MAP PROJECTION given by the transformation 
2 = sgn(X - A,) 

rlA(G - P”) - dA2(G - ~‘2)~ - (P” + A2)(G2 - P2)l 
X 

P2 + A2 

Y = ww 
r[PQ - A&A2 + 1)(P2 + A2.) - Q2 

P2 + A2 1 (2) 

where 

A=1 L-X 
2 x-x() 7l- (3) 

G= 
cos e 

sin$+cos&- 1 (4 

P=G(-&l) (5) 

0 = sin-l - 24 
I I (6) 7r 

Q = A2 + G. 

The inverse FORMULAS are 

4 = We [- ml cos(& + +r) - z 1 3 

(7) 

(8) 
A= 

nix2 + Y2 - 1+ J1+ 2(X2 - Y2) + (X2 + y2)2[ + x 

2x 0, 

where 

x2 
TT 

y=y 
7T 

(9) 

w 
(11) 
(12) 
(13) 
(14 
(15) 

(16) 

(17) 
(18) 

References 
Snyder, J. P. Mup Projections-A Working hlunual. U. S. 

Geological Survey Professional Paper 1395. Washington, 
DC: U. S. Government Printing Of&e, pp. 239-242, 1987. 

van der Pol Equation 
An ORDINARY DIFFERENTIAL EQUATION which can be 
derived from the RAYLEIGH DIFFERENTIAL EQUATION 

by differentiating and setting y = y’. It is an equation 
describing self-sustaining oscillations in which energy is 
fed into small oscillations and removed from large os- 
cillations. This equation arises in the study of circuits 
containing vacuum tubes and is given by 

y” - /L(l - y2)yI + y = 0. 

see also RAYLEIGH DIFFERENTIAL EQUATION 

References 
Kreysaig, E. Advanced Engineering Mathematics, 6th ed. 

New York: Wiley, pp. 165-166, 1988. 

van der Waerden Number 
The threshold numbers proven to exist by VAN DER 

WAERDEN'S THEOREM. The first few are 1, 3, 9, 35, 
178, . . . (Sloane’s A005346). 

References 
Goodman, J. E. and O’Rourke, J. (Eds.). Handbook of Dis- 

crete & Computational Geometry. Boca Raton, FL: CRC 
Press, p. 159, 1997. 

Honsberger, R. More Mathematical Morsels. Washington, 
DC: Math, Assoc. Amer., p. 29, 1991. 

Sloane, N. J. A. Sequence AO05346/M2819 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

van der Waerden’s Theorem 
For any given POSITIVE INTEGERS k: and T, there exists 
a threshold number n(k, r) (known as a VAN DER WAER- 

DEN NUMBER) such that no matter how the numbers 1, 
2, “‘1 72 are partitioned into k classes, at least one of 
the classes contains an ARITHMETIC PROGRESSION of 
length at least T .  However, no FORMULA for K@,T) is 
known. 

see also ARITHMETIC PROGRESSION 

References 
Honsberger, R. More Mathematical Morsels. Washington, 

DC: Math, Assoc. Amer., p* 29, 1991. 
Khinchin, A. Y. “Van der Waerden’s Theorem on Arithmetic 

Progressions.” Ch. 1 in Three Pearls of Number Theory. 
New York: Dover, pp. H-17, 1998. 

van der Waerden, B. L. “Beweis einer Baudetschen Vermu- 
tung.” Nieuw Arch. Wiskunde 15, 212-216, 1927. 

van Kampen’s Theorem 
In the usual diagram of inclusion homeomorphisms, if 
the upper two maps are injective, then so are the other 
two. 

References 
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or 

Perish Press, pp. 74-75 and 369-373, 1976. 
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van Wijngaarden-Deker-Brent Method 

see BRENT'S METHOD 

Vandermonde Determinant 

1 Xl Xl2 a” x1-l 
1 52 x z 2  l  * ’  2p 

A(xl,. . . ,x~) = . . . . m 
l  l  . . . 

. 
. . . 

1  xn  xn2  - - - xj--1 

- 
- 

rI( 

x i  - 
xd  

(Sharpe 1987). For INTEGERS al, . l  ., a,, A(al,...,a,) 
is divisible by I-I:=, ( i - l)! (Chapman 1996). 

see also VANDERMONDE MATRIX 

References 
Chapman, R. “A Polynomial Taking Integer Values.” Math. 

Mug. 69, 121, 1996. 

Gradshteyn, I. S. and Ryzhik, I. M. TabZes of Integrals, Se- 
ries, and Products, 5th ed. San Diego, CA: Academic 
Press, p. 1111, 1979. 

Sharpe, D. $2.9 in Rings and Factorization. Cambridge, Eng- 
land: Cambridge University Press, 1987. 

Vandermonde Identity 

~~~CH~-VANDERMONDE IDENTITY 

Vandermonde Matrix 
A type of matrix which arises in the LEAST SQUARES 

FITTING of POLYNOMIALS and the reconstruction of a 

DISTRIBUTION from the distribution’s MOMENTS. The 
solution of an n x rt Vandermonde matrix equation re- 
quires O(d) operations. A Vandermonde matrix of or- 

der n is of the form 

see also TOEPLITZ MATRIX, TRIDIAGONAL MATRIX, 
VANDERMONDE DETERMINANT 

References 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 

ling, W* T. “Vandermonde Matrices and Toeplitz Matri- 
ces .” $2.8 in Numerical Recipes in FURTRAN: The Art of 
Scientific Computing, 2nd ed. Cambridge, England: Cam- 
bridge University Press, pp. 82-89, 1992. 

Vandermonde’s Sum 

seeC~~-VANDERMONDE IDENTITY 

Vandermonde Theorem 
Aspecialcaseof GAUSS'S THEOREM with a a NEGATIVE 
INTEGER-~: 

(c - b)n 
2Fl(-n, b; c; 1) = - 

( > 
1 

Cn 

where 2Fl (u, b; C; Z) is a HYPERGEOMETRIC FUNCTION 

and (a), isa POCHHAMMER SYMBOL (Bailey1935, pa 3). 

see also GAUSS'S THEOREM 

References 
Bailey, W+ N. Generalised Hypergeometric Series. Cam- 

bridge, England: Cambridge University Press, 1935. 

Vandiver’s Criteria 
Let p be a IRREGULAR PRIME, and let P = rp + 1 be a 

PRIME with P < p2 -p* Also let t be an INTEGER such 
that t3 f 1 (mod P). For an IRREGULAR PAIR (p,2k), 

form the product 

Q2k 
~ t-rd/2 trb _ ljbp-‘-2k, 

b=l 

where 

m= $(Pl - 0 

d c >: np-2k, 

n=l 

If Q2kr $ 1 (mod P) for all such IRREGULAR PAIRS, 
then FERMAT'S LAST THEOREM holds for exponent p. 

see also FERMAT'S LAST THEOREM, IRREGULAR PAIR, 
IRREGULAR PRIME 

References 
Johnson, W. “Irregular Primes and Cyclotomic Invariants.” 

Math. Comput. 29, 113-120, 1975. 

Vanishing Point 

one-point 
perspective 

two-point 
pempective 

thre&p&nt 
perspective 

v 

The point or points to which the extensions of PARALLEL 
lines appear to converge in a PERSPECTIVE drawing. 

see also PERSPECTIVE, PROJECTIVE GEOMETRY 

References 
Dixon, R. “Perspective Drawings.” Ch. 3 in Muthographics. 

New York: Dover, pp. 79-88, 1991. 



Varga ‘s Cons tan t Varizmce 1897 

Varga’s Constant However, it turns out (as discussed below) that an UN- 
BIASED ESTIMATOR for the population variance is given 

bY 
N 4 

1 
V = n = 9.2890254919.. . , 

where A is the ONE-NINTH CONSTANT. 

see also ONE-NINTH CONSTANT 

Variance 
For N samples of a variate having a distribution with 
known MEAN p, the “population variance” (usually 
called “variance” for short, although the word “popu- 
lation” should be added when needed to distinguish it 
from the SAMPLE VARIANCE) is defined by 

1 
var(x) E N X(x - /A>” = (x2 - 2/m + P2) 

= (x2) - (2PX) + (P2) 
=(x2)-zp(x)+p2, (1) 

where 

( > 
1 N 

x E- N xi. Ix (2) 
i=l 

But since (x) is an UNBIASED ESTIMATOR for the MEAN 

P = (2) 7 (3) 

it follows that the variance 

o2 G var(x) = (x2) - p2. (4) 

The population STANDARD DEVIATION is then defined 
as 

oqGfq=&GjqF. 

A useful identity involving the variance is 

(5) 

vef (4 + g(x)) = var(f(x)) + var(g(x)). (6) 
Therefore, 

var(ax + b) = ([(ax + b) - (ax + b)12) 

= ((ux + b - a (x) - b)‘) 

= ((ux - up)2) = (u2(x - p)“) 

= a2 x - (( 
2 

d > 
= cL’var(x) (7) 

var(b) = 0. (8) 

If the population MEAN is not known, using the sample 
mean z instead of the population mean p to compute 

lN S2 G & G - 
N xi- In 2)2 

i=l 
(9) 

gives a BIASED ESTIMATOR of the population variance. 
In such cases, it is appropriate to use a STUDENT’S t- 
DISTRIBUTION instead of a GAUSSIAN DISTRIBUTION. 

I2 1 
S &ENbl xi- 

In 
2)2. (10) 

i=l 

The MEAN and VARIANCE of the sample standard de- 
viation for a distribution with population mean ~1 and 
VARIANCE are 

N-l 2 
P sIv2 = - 

N ’ 
w 

2 
0 SN2 = F[(N - 1)p4 - (N - 3)p22]. (12) 

The quantity NSN”/CT” has a CHI-SQUARED DISTRIBU- 

TION. 

For multiple variables, the variance is given using the 
definition of COVARIANCE, 

= r x COV(Xi, Xj) 

ix1 j=l 

= k F COV(Xi, Xj) + FI e COV(Xi,Xj) 

i=l j=l i=l j=l 
j=i j+i 

=~COV(X~,Xj)+~~COV(Xi,Xj) 

i=l i=l j=l 
j#i 

= 2 var(xi) + 2 k F COV(X,, Xj). 

i=l i=l j=i+l 

(13) 

A linear sum has a similar form: 

var (k&Xi) =COV (ktZiXi,FtZjXj) 

i=l ix1 j=l ?n 
=cc UiUj COV(Xi, Xj) 

i=l j=l 

- - kai”var(xi) +2jl: 9 U;Uj COV(Xi, Xj). 

i=l ix1 j=i+l 

These equations can be expressed using the COVARI- 

ANCE MATRIX. 

To estimate the population VARIANCE from a sample 
of IV elements with a priori unknown MEAN (i.e., the 
MEAN is estimated from the sample itself), we need an 
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UNBIASED ESTIMATOR for 0. This is given by the k- 
STATISTIC kz, where 

N 
k2 = mm2 - 

and nz2 = s2 is the SAMPLE VARIANCE 

(15) 

1 N s2 E - N xi- >( 
Z)2. (16) 

i=l 

Note that some authors prefer the definition 

12 = 1 jv 
s -- N-1 xi- >( zj29 (17) 

i=l 

since this makes the sample variance an UNBIASED ES- 

TIMATOR for the population variance. 

When computing numerically, the MEAN must be com- 
puted before s2 can be determined. This requires stor- 
ing the set of sample values. It is possible to calculate 
st2 using a recursion relationship involving only the last 
sample as follows. Here, use pj to denote p calculated 
from the first j samples (not the jth MOMENT) 

c 
j 
izl xi 

/.Lj ii p 
i- 9 

(18) 

and sj2 denotes the value for the sample variance st2 
calculated from the first j samples. The first few values 
calculated for the MEAN are 

p1 = Xl 

p2 = 
lmp1+x2 

2 

p3 = 
2p2 -I-x3 

3 l  

Therefore, for j = 2, 3 it is true that 

(19) 

w 

(21) 

Pj = 
(j - l>P j-l + Xj 

i  l  

Therefore, by induction, 

(22) 

Pj+l = 
[(j + l> - G(j+l)-1 + Xj+l 

j+l 

- iPj +Xj+l - 
j+l 

(23) 

Pj+l(j + 1) = (i + l>Pj + txj+l - Pj) (24 

Pj-k1 = Pj + 
Xj+l - Pj 

j+1 ’ 
(25) 

and 
gj Ci&i - PA2 . - - 

j-l (26) 

Variance 

for j > 2, so - 

- - 
ID( 

Xi - Pj)(Pj - &+1)12 
i=l 
j+l j+l 

- - >: (Xi - Pj)2 + )JPj - Pj-d2 
i=l i=l 

j+l 

+ 2 >(Xi - Pj>(Pj - Pj+& (27) 
i=l 

Working on the first term, 

j+l 
Ix 
i=l 

Use (24) 

so 

j+1 

- Pjj2 - - 

- - 

J 

ID 

xi -  

- -  
z- 1 

(j - USj 

Pj)" + (Xj+l - 

2 + Cxj+l - Pj) 

PA2 
2 

. (28) 

Xjfl- Pwj =(j+1 >(P j+l -I%)9 (29) 

In Xi - /Lj)2 = (j - 1)Sj2 + (j + l)"(/Jj+l - Pj)"* (30) 
i=l 

Now work on the second term in (27), 

j+1 

n /Jj - /Jj+1)2 = (j + l)(Pj - Pj-d2* (31) 

i=l 

Considering the third term in (27), 

j+l j+l 

In Xi - Pj)(Pj - /Jj+l) = (/Lj - /lj+l) xCxi - IQ) 

i=l i=l 

= (pj - /.Lj+l) 

[- 

k(Xi - Pj) + (Xj+l - &> 

i=l 

= (/Lj - /-hj+l) 

( 
Xj+l - Pj - j/Lj + 2 xi 

- ) i=l 

But 

(32) 

(33) 

j+l 

E( /Jj - Pj+l)Cxj+l - Pj> 
i=l 

j+l 

- - 
In 

pj - /Jj+l)(j + l)(Pj+l - Pj) 

i=l 

= -(j + l)(Pj - /Jj+1)2* (34) 



Variance 

Plugging (30), (31), and (34) into (27), Combining (39)-(42) gives 

Variance 1899 

jSj+12 = [(j - l)sj2 + (j + l>2h+l - PA21 
+ Kj + wj - Pj+1> + wj + wj - &+dl 

= (j - 1)Sj2 + (j + q2(pj+l - &)2 
- (j + Wj - &+d2 

= (j - 1)Sj2 + (j + l>[(j + l> - lI(Pj+~ - PJ2 
= (j - 1)Sj2 + j(j + l&j+1 - llj12, 

so 

2 1 
%+l t= 

( > 

1 - : 
3 

Sj2 + (j + l)(pj+l -pj)2+ 

To find the variance of s2 itself, remember that 

var(s2) E (s”) - (s”)“, 

and 

( > 
s2 = 

N-l 
7P2- 

Now find (s”). 

(35) 

(36) 

(37) 

(38) 

(s”) = ((s”)“) = (((x2) - (4”)“) 
= ( [;xxi2- ($xxg212) 

=$((~xi)2)-&(J:xi2()7?i)2) 

+j$( (xx,)‘)- (39) 
Working on the first term of (39), 

((Xx?)‘>= 
- - 
- - 
- - 

(xxi4 + J:Xi2Xj2) 

(XXi') + (CXi2Xj2) 

N (xi”) + N(N - 1) (xi”) (xj2) 

Np; +N(N-l)pk2e (40) 

The second term of (39) is known from ~STATISTICS, 

(xxi2 (xxj)‘) =N/&+N(N-1)p/22, (41) 

as is the third term, 

((xxi)‘) =N(J:X~4)+3N(N-1)(~x~2~j2) 

+ +pI, + 3N(N - l)p;2] 

+ (N-1)(N2 -2N+3) 12 

N3 P2 

(N - l)[(N - 1)~; + (N2 - 2N + 3)pk2] - - 
N3 

7 

(43) 

so plugging in (38) and (43) gives 

var(s2) = (s”) - (s2)2 

- (N - l)[(N - 1)~: + (N2 - 2N + 3)pL2] - 
Iv3 

(N - 1)2N 12 - 
N3 p2 

- - g{(N - 1)~; + [(N2 - 2N + 3) 

- NW - l>lPa”> 

(N - WN - 1>Pi - (N - 3)Pk2] - - 
N3 

l  
(44) 

Student calculated the SKEWNESS and KURTOSIS of the 
distribution of s2 as 

J 8 
y1 = 

N-l (45) 

12 
y2=N-1 (46) 

and conjectured that the true distribution is PEARSON 

TYPE III DISTRIBUTION 

where 

Ns2 
o2 = - 

N-l (48) 

(49) 

= N/-h + 3N(N - I)/&~, (42) This was proven by R. A. Fisher. 
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The distribution of s itself is given by 

r( N-l 
2 > 

e 
--r~s~/Z,~ N-2 

S 

t > s = --CT = b(N)o, 
> 

b(N) = ; 
$ 

The MOMENTS are given by 

pr = 

and the variance is 

N-l 
var(s) = ~2 - ~1~ = 70~ - [b(N)a12 

2r2 ($) 

lT ( 
2 N-1 

2 > 

An UNBIASED ESTIMATOR of o is s/b(N). Romanovsky 
showed that 

139 b(N) = 1 - -& - 2 - - 
32N2 51849N3 + l  ‘. ’ (55) 

see also CORRELATION (STATISTICAL), COVARIANCE, 
C~VARIANCE MATRIX, ~-STATISTIC, MEAN, SAMPLE 
VARIANCE 

References and 
Prms, W. II.; Flannery, B. P.; Teukolsky, S. A.; and Vet- 

terkng, W. T. “Moments of a Distribution: Mean, Vari- 
ance, Skewness, and SO Forth.” 514.1 in IVumericaZ Recipes 
in FORTRAN: The Art of Scientific Computing, 2nd 
ed. Cambridge, England: Cambridge University Press, 
pp, 604-609, 1992. 

For a REAL segment z = 2, 

Variate 
A RANDOM VARIABLE in statistics. 

Variation 
The A-variation is a variation in which the varied path 
over which an integral is evaluated may end at different 
times than the correct path, and there may be variation 
in the coordinates at the endpoints. 

The S-variation is a variation in which the varied path 
in configuration space terminates at the endpoints rep- 
resenting the system configuration at the same time tl 
and tz as the correct path; i.e., the varied path always 
returns to the same endpoints in configuration space, so 

aqi(t,) = aqi(t,) = 0. 

see also CALCULUS OF VARIATIONSJARIATION OF AR- 
GUMENTJARIATION OF PARAMETERS 

Variation of Argument 
Let [ax ml d enote the change in argument of a func- 
tion f(r) around a closed loop y. Also let N denote the 
number of ROOTS of f(r) in y and P denote the number 
of POLES of f(z) in y. Then 

bg ml = &N-P). (1) 

To find [arg f(z)] in a given region R, break R into paths 
and find [arg f(z)] for each path. On a circular ARC 

c  

z = Reie, (2) 

let f(z) be a POLYNOMIAL P(z) of degree n. Then 

Law PC41 = [arg (?$)I 

=[argz”]+ [arg(y)]. 

Plugging in z = Reie gives 

[arg P(z)] = [arg Men] + [arg w] 

lim P(RP) 
- = [constant], 

R+~ Reign 

so 

[argP(r)] = [argeien] = n($z - 0,). 

[argf(a)] = tan-l & = 0. [ 1 
For an IMAGINARY segment z = iy, 

{ 

02 

[argf(iy)] = tan-’ a a 
> 01 

Note that the ARGUMENT must change continuously, 
‘Ljumps” occur across inverse tangent asymptotes. 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

Variation Coefficient 
If s5 is the STANDARD DEVIATION ofasetofsamples xi 
and r~ its MEAN, then 
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Variation of Parameters 
For 8 second-order ORDINARY DIFFERENTIAL EQUA- 
TION, 

Ytt + PWYl + WY = g(x). (1) 

Assume that linearly independent solutions 
yz(x) are known. Find ~1 and 212 such that 

YI (2) and 

y'(x) = Vl(X)Yl(X) + V2(X)Y2(4 (2) 

y*/(x) = (vi + v&z)+ (WY; +vzyb). (3) 

Now, impose the additional condition that 

v;y1 +v;y2 = 0 (4) 

so that 

y*'(x) = (WY: +vzy;> (5) 

Y”‘(X) = v;y; + v;y; + v1yy + v2y;. (6) 

Plug y*, y*‘, and y*” back into the original equation to 
obtain 

v~(Y~+Py~+qY~)+~a(Y~+PYb+~Ya)+~:y:+~:Y~ = 9(x> 

(7) 

Therefore, 

v;y; + v;y; = g(x)* (8) 

v:y1 +v;yz = 0 (9) 

v:y: +v;y; = g(x). (10) 

Generalizing to an nth degree ODE, let yl, , . . , yn be 
the solutions to the homogeneous ODE and let vi(x), 

“‘1 v:(z) be chosen such that 

1 

y1v; -I- y24 + .'- + ynv:, = 0 

y;v ;  + y ;v ;  + l  l  l  + y;v: ,  = 0  

. 
(11) 

. 

jp-1) t 

Vl + Y2 
(n-q + . . m + y+lL = g(x) n n l  

Then the particular solution is 

y*(X) = Vl(X)yl(X) +. l  l  + Vn(X)yn(X)* (12) 

Variety 

see ALGEBRAIC VARIETY 

Varignon Parallelogram 

The figure formed when the BIMEDIANS (MIDPOINTS 
of the sides) of a convex QUADRILATERAL are joined. 
VARIGNON'S THEOREM demonstrated that this figure is 
a PARALLELOGRAM. The center of the Varignon paral- 
lelogram is the CENTROID if four point masses are placed 
on the VERTICES of the QUADRILATERAL. 

see also MIDPOINT, PARALLELOGRAM, QUADRILAT- 
ERAL,~ARIGNON'S THEOREM 

Varignon’s Theorem 
The figure formed when the BIMEDIANS (MIDPOINTS of 
the sides) of a convex QUADRILATERAL are joined in 
order is a PARALLELOGRAM. Equivalently, the BIME- 
DIANS bisect each other. The AREA of this VARIGNON 

PARALLELOGRAM is half that of the QUADRILATERAL. 
The PERIMETER is equal to the sum of the diagonals of 
the original QUADRILATERAL. 

see &O BIMEDIAN, MIDPOINT, 
VARIGNON PARALLELOGRAM 

QUADRILATERAL, 
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Vassiliev Polynomial 
Vassiliev (1990) introduced a radically new way of look- 
ing at KNOTS by considering a multidimensional space 
in which each point represents a possible 3-D knot con- 
figuration. If two KNOTS are equivalent, a path then 
exists in this space from one to the other. The paths 
can be associated with polynomial invariants. 

Birman and Lin (1993) subsequently found a way to 
translate this scheme into a set of rules and list of po- 
tential starting points, which makes analysis of Vassiliev 
polynomials much simpler. Bar-Natan (1995) and Bir- 
man and Lin (1993) proved that JONES POLYNOMIALS 
and several related expressions are directly connected 
(Peterson 1992). In fact, substituting the POWER se- 
ries for e5 as the variable in the JONES ,POLYNOMIAL 
yields a POWER SERIES whose COEFFICIENTS are Vas- 
siliev polynomials (Birman and Lin 1993). Bar-Natan 
(1995) also discovered a link with Feynman diagrams 
(Peterson 1992). 
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Vault 
Let a vault consist of two equal half-CYLINDERS of 
length and diameter 2a which intersect at RIGHT 
ANGLES so that the lines of their intersections (the 
“groins”) terminate in the VERTICES of a SQUARE. 
Then the SURFACE AREA of the vault is given by 

A = 4(7r - 2)a2. 

see also DOME 

References 
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Vector 
A vector is a set of numbers Ao, . . . , A, that transform 
as 

Ai = aijAj. (1) 

This makes a vector a TENSOR of RANK 1. Vectors 
are invariant under TRANSLATION, and they reverse sign 
upon inversion. 

A vector is uniquely specified by giving its DIVERGENCE 
and CURL within a region and its normal component 

over the boundary, a result known as HELMHOLTZ'S 
THEOREM (A&en 1985, p. 79). A vector from a point 
A to a point B is denoted X8, and a vector w  may be 
denoted 5, or more commonly, v. 

A vector with unit length is called a UNIT VECTOR and 
is denoted with a HAT. An arbitrary vector may be 
converted to a UNIT VECTOR by dividing by its NORM, 
i.e., 

V 
zr=----. 

I I V 
(2) 

Let ti be the UNIT VECTOR defined by 

Then the vectors C, a, b, c, d satisfy the identities 

(n,) = 12= s’ (cos 0 sin qb) sin 4 d8 dqb 
0 0 

= [sin O]ix 
I 

2rr sin2 +d$ = 0 (4) 

0 

(ni) = 0 (5) 

(?tinj) = +Sij (6) 

(ninptk) = 0 (7) 

(ninkwh) = &(&k&m + &dkm + hdkl) (8) 

((a l  h)“) = ia2 
(9) 

((aGi)(bGi)) = is-b W) 

((aGi)h) = $2 (11) 

((a x q"> = ;u2 (12) 

((a x ii)*(b x ii)) = $a- b, (13) 

((a- ii)(bGi)(c-h)(d.ii)) 

= ~[(bf~~b)(bfc~d)+(bfa.c)(bf~~d)+(bfa.d)(bfb~c)] 

(14) 

where &j is the KRONECKER DELTA, a n b is a DOT 
PRODUCT, and EINSTEIN SUMMATION has been used. 

see also FOUR-VECTOR, HELMHOLTZ'S THEOREM, 
NORM,PSEUDOVECTOR,SCALAR,TENSOR, UNIT VEC- 
TOR,VECTOR FIELD 
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Vector Bundle 
A special class of FIBER BUNDLE in which the FIBER 
is a VECTOR SPACE. Technically, a little more is re- 
quired; namely, if f : E + B is a BUNDLE with FIBER 
Iw”, to be a vector bundle, all of the FIBERS f-l(x) for 
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61: E B need to have a coherent VECTOR SPACE struc- 
ture. One way to say this is that the “trivializations” 
h : f-‘(U) + u x Iv, are FIBER-for-FIBER VECTOR 
SPACE~SOMORPHISMS. 
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By symmetry, 

see also BUNDLE, FIBER, FIBER BUNDLE, LIE ALGE- 
BROID, STABLE EQUIVALENCE, TANGENT MAP, VEC- 
TOR SPACE, WHITNEY SUM 

Vector Derivative 
The basic types of derivatives operating on a VECTOR 
FIELD are the CURL vx, DIVERGENCE W, and GRADI- 
ENT v. 

Vector derivative identities involving the CURL include 

V x (kA) =kVxA (1) 

V x (fA) = f(V x A) + (of) x A (2) 

V x (A x B) = (B. V)A- (A. V)B 

+A(V l  B) - B(V . A) (3) 

A vx - = 
0 

f(V x A) + A x (Of) 

f f 2 (4) 

V x (A+ B) =VxA+VxB. (5) 

In SPHERICAL COORDINATES, 

Vxr=O (6) 
vxe=o (7) 
v x [Tf(r>l = fb>(V x 4 + Pm1 x r 

= f(r)(O) + ft x r = 0 + 0 = 0. (8) 

Vector derivative identities involving the DIVERGENCE 
include 

V l  (KA) =kV.A 

v. (fA) = f (V . A) -I- (Of). A 

V. (A x B) = B. (V x A) - A. (V x B) 

(9) 

PO 

(11) 

A va 7 = ( > f(V* A) - (Vf) ‘A 

f 2 (12) 

V-(A+B) =V.A+VmB (13) 

WV) =uvmv+(Vu)*v.’ (14) 

In SPHERICAL COORDINATES, 

v*r=3 (15) 
2 

V.f=- (16) 

&f(T)] = zg + f = +; + f (18) 
dr -- Q’ + y2 + z2)li2 = x(x2 + y2 +zz)-1/2 = $ 
dz - da: 

(19) 

k[Xf(T,] = $f +f. (20) 

df 
0+-f(r)] = 3f(r)+A(z2+y2+zZ)$ =3f(r)+rz 

T 

(21) 

v - (Ff(r)) = ff(r, + f (22) 

Vm (fy”) = 3~~~~ + (n - l)rnB1 = (n + 2)~“~~. (23) 

Vector derivative identities involving the GRADIENT in- 

V(kf)= kVf (24) 

V(fd = f&l + Of (25) 

V(A-B)=Ax(VxB)+Bx(VxA) 

+(A* V)B + (B l  V)A (26) 

V(ATf) = Ax (V x Vf)+Vf x (V x A) 

+A. V(Vf) -I- Of. VA 

=Vf x(VxA)+AT(Vf)+VfTA (27) 

f v - = 
0 

gVf - fVg 
g2 

(28) 
9 

V(f + 9) =Vf+Vg (29) 
V(Ae A) = 2A x (V x A) + 2(A- V)A (30) 

(A- V)A= V($A2) - A x (V x A). (31) 

Vector second derivative identities include 

v2t = v. (vt) = (32) 

V2A = V(Vm A) - V x (V x A). (33) 

This very important second derivative is known as the 
LAPLACIAN. 

v x (vt) = 0 (34) 
V(V . A) = V2A + V x (V x A) (35) 

V.(Vx A)=0 (36) 

V x (V x A) = V(V 9 A) - V2A 

V x (V2A) = V x [V(V 8 A)] - V x [V x (V x A)] 

= -V x [V x (V x A)] 

= -{V[V l  (V x A)] - V2(V x A)]} 

=V2(Vx A) (37) 

V2(V l  A) = V l  [V(V l  A)] 

= V. [V2A+ V x (V x A)] = V n (V2A) (38) 

V2[V x (V x A)] = V2[V(V l  A) - V2A] 

=V2[V(V. A)]-V4A (39) 

Vx[V2(Vx A)] =V2[V(V= A)]- V4A (40) 

V4A=-V2[Vx(Vx A)] +V2[V(V. A)] 

= V x [V”(V x A)] - V2[V x (V x A)]. (41) 
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Vector Function 
A function of one or more variables whose RANGE is 
3-dimensional, as compared to a SCALAR FUNCTION, 
whose RANGE is l-dimensional. 

Combination identities include 

see also COMPLEX 

SCALARFUNCTION 
FUNCTION, REAL FUNCTION, A - e(A . ;) 

(A*V)e= T (44) 

Of. A = V 9 (fA> - f (V l  A) (45) 

f(WA)=V*(fA)-AVf, (46) Vector Harmonic 

~~~VECTOR SPHERICAL HARMONIC 
where (45) and (46) follow from divergence rule (2). 

see also CURL, DIVERGENCE, GRADIENT, LAPLACIAN, 

VECTOR INTEGRAL, VECTOR QUADRUPLE PRODUCT, 
VECTOR TRIPLE PRODUCT 

Vector Integral 
The following vector integrals are related to the CURL 
THEOREM. If 

F E c x P(x, y, n), (1) References 
Gradshteyn, I. S. and Ryzhik, I. M. “Vector Field Theorem.” 

Ch. 10 in Tables of Integrals, Series, and Products, 5th ed. 
San Diego, CA: Academic Press, pp. 1081-1092, 1980. 

Morse, P. M. and Feshbach, H. “Table of Useful Vector and 
Dyadic Equations .” Methods of Theoretical Physics, Part 
I. New York: McGraw-Hill, pp. 50-54 and 114-115, 1953. 

then 

j)sxP=~(daxV)xP. (2) 

If 
F E cF, (3) 

Vector Direct Product 
Given VECTORS u and v, the vector direct product is 

(4) 
UV31@VT, 

The following are related to the DIVERGENCE THEO- 
REM. If 

F E c x P(x, y,z), (5) 

where @ is the MATRIX DIRECT 
the matrix TRANSPOSE. For 3 x 3 

PRODUCT and vT is 
vectors 

WV1 UlV2 UlV3 

uv = u2w u2v2 u2v3 + 

U3Vl u3v2 u3v3 1 then 

s 
VxFdV= 

s 
da x F. (6) 

V S 

Finally, if 
F E cF, (7) 

Note that if u = ji;i, then uj = &j, where &j is the 
KRONECKER DELTA. 

see UZSO MATRIX DIRECT PRODUCT, SHERMAN- 
MORRISON FORMULA,WOODBURY FORMULA 

lVFdV=S,Fda. (8) 
Vector Division 
There is no unique solution A to the MATRIX equation 
y = Ax unless x is PARALLEL to y, in which case A is a 
SCALAR. Therefore, vector division is not defined. 

see UZSO MATRIX, SCALAR 

see also CURL THEOREM, DIVERGENCE THEOREM, 
GRADIENT THEOREM, GREEN'S FIRST IDENTITY, 
GREEN'S SECOND IDENTITY,LINEINTEGRAL,SURFACE 
INTEGRAL,~ECTOR DERIVATIVE,~OLUME INTEGRAL 

Vector Field 
A MAP f : R” t-+ &k” which assigns each x a VECTOR 
FUNCTION f(x). FLOWS are generated by vector fields 
and vice versa. A vector field is a SECTION of its TAN- 
GENT BUNDLE. 

see &O FLOW, SCALAR FIELD, SEIFERT CONJECTURE, 
TANGENT BUNDLE,VECTOR,WILSON PLUG 

Vector Norm 
Given an n-D VECTOR 

Xl 

x2 

x= . , iI . 
. 

Xn 

References 
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a vector norm [Ix11 ( sometimes written simply 1x1) is a 
NONNEGATIVE number satisfying 

1. ~/XII > 0 when x # 0 and llxlj = 0 IFF x = 0, 

2. l/kxll = IkI ]IxII for any SCALAR k, 

3. llx + YII 5 IIXII + Ilull- 
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see also COMPATIBLE, MATRIX NORM, NATURAL 
NORM,NORM 

References 
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Press, p* 1114, 1980. 

Vector Ordering X+(-X)=0. 

If the first NONZERO component of the vector difference 
A - B is > 0, then A + B. If the first NONZERO 
component of A - B is < 0, then A + B. 

5. ASSOCIATIVITY of scalar multiplication: 

r(sX) = (TS)X. see also PRECEDES, SUCCEEDS 

Vector Potential 
A function A such that 

The most common use of a vector potential is the rep- 
resentation of a magnetic field. If a VECTOR FIELD has 
zero DIVERGENCE, it may be represented by a vector 
potential. 

see also DIVERGENCE, HELMHOLTZ’S THEOREM, Po- 
TENTIAL FUNCTION, SOLEN~IDAL FIELD, VECTOR 
FIELD 

Vector Quadruple Product 

(A x B) l  (C x D) = (A. C)(B l  D) - (A 9 D)(B. C) 

(1) 

(A x B)2 G (A x B) 9 (A x B) 

= (A l  A)(B - B) - (A 9 B)(B l  A) 

= A2B2 - (Am B)2 (2) 

Ax (B x (C x D)) =B(A*(CxD))-(A*B)(CxD) 

(3) 

(A x B) x (C x D) = [A,B,D]C - [A,B,C]D 

= (C x D) x (B x A) = [C, D,A]D - [C, D, B]A, (4) 

where [A,B,D] denotes the VECTOR TRIPLE PROD- 
UCT. Equation (l)is known as LAGRANGE'S IDENTITY. 

see &O LAGRANGE'S IDENTITY, VECTOR TRIPLE 
PRODUCT 

Vector Space 
A vector space over R” is a set of VECTORS for which 
any VECTORS X, Y, and Z E R” and any SCALARS T, 
s f R have the following properties: 

1. COMMUTATIVITY: 

x+y =Y+X. 

2. ASSOCIATIVITY of vector addition: 

(X+Y)+Z=X+(Y+Z). 

3. Additive identity: For all X, 

0+x=x+0=x. 

4. Existence of additive inverse: For any X, there exists 
a -X such that 

6. DISTRIBUTIVITY of scalar sums: 

(T + s)X =rx+sx. 

7. DISTRIBUTIVITY of vector sums: 

T(X + Y) =Tx+TY. 

8. Scalar multiplication identity: 

IX = x. 

An n-D vector space of characteristic two has 

S&n) = (2” - 2”>(2” - 2’) l  l  . (2” - 2k-1) 

distinct SUBSPACES of DIMENSION k. 

A MODULE is abstractly similar to a vector space, but 
it uses a RING to define COEFFICIENTS instead of the 
FIELD used for vector spaces. MODULES have COEFFI- 
CIENTS in much more general algebraic objects. 

see also BANACH SPACE, FIELD, FUNCTION SPACE, 
HILBERT SPACE, INNER PRODUCT SPACE, MODULE, 
RING,TOPOLOGICAL VECTOR SPACE 

Heterences 
A&en, G. Mathematical Methods for Physicists, 3rd ed. Or- 

lando, FL: Academic Press, pp. 530-534, 1985. 

Vector Spherical Harmonic 
The SPHERICAL HARMONICS can be generalized to vec- 
tor spherical harmonics by looking for a SCALAR F~Nc- 
TION q and a constant VECTOR c such that 

M = V x (c$) = $(V x c) + (VQ) x c 

=(V?)b)xc=--cxv,$J (1) 

so 

V.M=O. (2) 

Now use the vector identities 

V2M = V2(V x M) = V x (V2M) 

= v x (o”qb) = v x (cv2*) 

k2M = k2V x (c$J) = V x (cV2$), 

(3) 

(4) 
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so A number of conventions are in use. Hill (1954) defines 
V2M + k2M = V x [c(V’$ + k”$)], (5) 

and M satisfies the vector HELMHOLTZ DIFFERENTIAL 
EQUATION if q!~ satisfies the scalar HELMHOLTZ DIFFER- 
ENTIAL EQUATION 

Vector TlYansformation Law 

+iM&l+ 1)(22 + 1) sin0x”$ (15) 

V2+ + k”$ = 0. (6) 

Construct another vector function 

which also satisfies the vector HELMHOLTZ DIFFEREN- 
TIAL EQUATION since 

V2N = ;V2(V x M) = ;V x (V2M) 

= $V x (-k2M) = -kV x M = -k2N, (8) 

which gives 
V2N + k2N = 0. (9) 

We have the additional identity 

VxN= +(VxM)= ;V(V - M) 

1 = EV2M - ;V2M = 9 = kM. (lo) 

In this formalism, $J is called the generating function and 
c is called the PILOT VECTOR. The choice of generating 
function is determined by the symmetry of the scalar 
equation, i.e., it is chosen to solve the desired scalar 
differential equation. If M is taken as 

M = V x (r+), (11) 

where r is the radius vector, then M is a solution to 
the vector wave equation in spherical coordinates. If we 
want vector solutions which are tangential to the radius 
vector, 

Mm r = r 9 (V+ x c) = (V$J)(C x r) = 0, (12) 

so 
cxr=o (13) 

and we may take 
c=r (14) 

(16) 

(17) 

Morse and Feshbach (1953) define vector harmonics 
called B, C, and P using rather complicated expres- 
sions. 
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Vector Transformation Law 
The set of r~ quantities vj are components of an n-D 
VECTOR v IFF, under ROTATION, 

I 
Vi = UijVj 

for i = 1, 2, . . . , TL The DIRECTION COSINES between 
zb and xj are 

Uij S 
3X: 8Xj --- 
dXj - t?XL ’ 

They satisfy the orthogonality condition 

dXj 3X: 8Xj = s 
--- 

aijaik = w axk - dxk jkj 

where &l, is the KRONECKER DELTA. 

see also TENSOR, VECTOR 

(Arfken 1985, pp. 707-711; Bohren and Huffman 1983, 
p. 88). 
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Vector Triple Product 
The triple product can be written in terms of the LEVI- 

CIVITA SYMBOL Eijk as 

A.(BxC) ’ = EijkAZBjCka (1) 

The BAG-CAB RULE can be written in the form 

A x (B x C) = B(A.C) - C(A.B) (2) 

(A x B) x C = -C x (A x B) 

- -A(B . C) + B(A. C). - (3) 

Addition identities are 

Aa (B x C) = B l  (C x A) = Cm (A x B) 

[A,B,C]D=[D,B,C]A+[A,D,C]B+[A, 

q ’ r q - r’ q ’ rtr 

[q, q ’  , q”] [r , r ’  , lyrr ] = q ’  l  r q’ l  r’ q’ . r” 
q” . r q” . rt q” . rrr 

(4 
B, DIG 

(5) 

. (6) 

see UZSO BAC-CAB RULE, CROWS PRODUCT, DOT 
PRODUCT, LEVI-CIVITA SYMBOL, SCALAR TRIPLE 
PRODUCT,~ECTOR QUADRUPLE PRODUCT 
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Vee 
The symbol V variously means “disjunction” (in LOGIC) 
or “join” (for a LATTICE). 

see also WEDGE 

. Velocity 

dr 
V-dt’ 

where r is the POSITION VECTOR and 
rivative with respect to time. Expressed 
ARC LENGTH, 

d/dt is the de- 
in terms of the 

ds - 
V== XT’ 

where ? is the unit TANGENT VECTOR, so the SPEED 

(which is th e magnitude of the velocity) is 

v E Iv1 = dt - ds - ]r’(t)l. 

see also ANGULAR VELOCITY, POSITION VECTOR, 
SPEED 

Veronese Surface 1907 

Venn Diagram 

The simplest Venn diagram consists of three symmetri- 
cally placed mutually intersecting CIRCLES. It is used 
in LOGIC theory to represent collections of sets. The 
region of intersection of the three CIRCLES A n B II C, 
in the special case of the center of each being located at 
the intersection of the other two, is called a REULEAUX 
TRIANGLE. 

In general, an order n Venn diagram is a collection of n 
simple closed curves in the PLANE such that 

1. The curves partition the PLANE into 2” connected 
regions, and 

2. Each SUBSET S of (1, 2, , . . , n} corresponds to a 
unique region formed by the intersection of the inte- 
riors of the curves in S (Ruskey). 

see also CIRCLE, FLOWER OF LIFE, LENS, MAGIC CIR- 

CLES, REULEAUX TRIANGLE, SEED OF LIFE 

References 
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Stradbroke, England: Tarquin Pub., pp. 255-256, 1989. 
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Verging Construction 

see NEUSIS CONSTRUCTION 

Verhulst Model 

see LOGISTIC MAP 

Veronese Surface 
A smooth 2-D surface given by embedding the PROJEC- 
TIVE PLANE into projective 5-space by the homogeneous 
parametric equations 

v(x,y,z) = (x2,y2,z2,xy,xz,yz). 

The surface can be projected smoothly into $-space, but 
all 3-D projections have singularities (Coffman). The 
projections of these surfaces in 3-D are called STEINER 
SURFACES. The VOLUME of the Veronese surface is 2~~. 

see also STEINER SURFACE 

References 
Coffman, A. ‘(Steiner Surfaces.” http://vww.ipfw.edu/ 

math/Coffman/steinersurf ace,html. 
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Veronese Variety 

see VERONESE SURFACE 

Versed Sine 

see VERSINE 

Versiera 

see WITCH OF AGNESI 

Versine 

vers( 2) 

Variety 

G l- cosx, 

where cos z is the COSINE. 

tity, the versine is equal to 
Using a trigonometric iden- 

vers(z) = 2 sin2( $3). 

see also COSINE, COVERSINE, EXSECANT, HAVERSINE 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). 

of Mathematical Functions zvith Formulas, 
Mathematical Tables, 9th printing. New 
p. 78, 1972. 

Handbook 
Graphs, and 

York: Dover, 

Vertex Angle 

r( 
vertex 

The point about which an ANGLE is measured is called 
the angle’s vertex, and the angle associated with a given 
vertex is called the vertex angle. 

see also ANGLE 

Vertex Coloring 
BRELAZ’S HEURISTIC ALGORITHM can be used to find 
a good, but not necessarily minimal, VERTEX coloring 
of a GRAPH. 

see also BRELAZ’S HEURISTIC ALGORITHM, COLORING 

Vertex Connectivity 
The minimum number of VERTICES whose deletion from 
a GRAPH disconnects it. 

see also EDGE CONNECTIVITY 

Vertex Cover 

see HITTING SET 

Vertex (Parabola) 

Vertex Degree 
The degree of a VERTEX of a GRAPH is the number of 
EDGES which touch the VERTEX, also called the LOCAL 
DEGREE. The VERTEX degree of a point A in a GRAPH, 

denoted p(A), satisfies 

kc > p Ai = 2E, 
i=l 

where E is the total number of EDGES. DIRECTED 

GRAPHS have two types of degrees, known as the IN- 
DEGREE and the OUTDEGREE. 

see also DIRECTED GRAPH, INDEGREE, LocAL DE- 
GREE, OUTDEGREE 

Vertex Enumeration 
A CONVEX POLYHEDRON is defined as the set of solu- 
tions to a system of linear inequalities 

mxsb, 

where m is a REAL s x d MATRIX and b is a REAL s- 

VECTOR. Given m and b, vertex enumeration is the 
determination of the polyhedron’s VERTICES. 

see also CONVEX POLYHEDRON, POLYHEDRON 
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Source/Applications/Mathematics/O202-633. 

Vertex Figure 
The line joining the MIDPOINTS of adjacent sides in a 
POLYGON is called the polygon’s vertex figure. For a 
regular n-gon with side length s, 

7T 
V= s  c o s  - l  

0 n 

For a POLYHEDRON, the faces that join at a VERTEX 

form a solid angle whose section by the plane is the 
vertex figure. 

see also TRUNCATION 

Vertex (Graph) 
A point of a GRAPH, also called a NODE. 

see also EDGE (GRAPH), NULL GRAPH, TAUT COLOR- 

ING, TAIT CYCLE, TATTY HAMILTONIAN GRAPH CON- 

JECTURE, VERTEX (POLYGON) 

Vertex (Parabola) 
For a PARABOLA oriented vertically and opening up- 
wards, the vertex is the point where the curve reaches a 
minimum. 



Vertex 

A point at which two EDGES of a POLYGON meet. 

see also PRINCIPAL VERTEX, VERTEX (GRAPH), VER- 
TEX (POLYHEDRON) 

Vertex (Polyhedron) 

ge 

A point at which three of more EDGES of a POLYHE- 

DRON meet. The concept can also be generalized to a 
POLYTOPE. 

see also VERTEX (GRAPH),~ERTEX (POLYGON) 

Vertex (Polytope) 
The vertex of a POLYTOPE is a point where edges of the 
POLYTOPE meet. 

Vertical 
Oriented in an up-down position. 

see also HORIZONTAL 

Vertical-Horizontal Illusion 

! 
The HORIZONTAL line segment in the above figure ap- 
pears to be shorter than the VERTICAL line segment, 
despite the fact that it has the same length. 

Vi bra tion Problem 1909 

Vertical Perspective Projection 

/d 

,.Yf=-+ -. . ,, ,, 
.’ 

. B 
- ‘* _ . . ‘. 

d 

F-h Y 

‘ .  
-, . ’  

. . 

A MAP PROJECTION given by the transformation equa- 
t ions 

x = k’ cos $sin(X - A,) (1) 

y = k’[cos 41 sin q5 - sin 41 cos 4 cos( X - &)I, (2) 

where P is the distance of the point of perspective in 
units of SPHERE RADII and 

k’= p-1 
P - cos c 

(3) 

cos c = sin& sin@ + cos& cos@cos(X - X0). (4) 

References 
Snyder, J. P. Mup Projections-A Working Manual. U. S. 

Geological Survey Professional Paper 1395. Washington, 
DC: W. S. Government Printing Office, pp. 173478, 1987. 

Vertical Tangent 
A function f(x) h as a vertical tangent line at x0 if f is 
continuous at zo and 

lim f’(x) = *oo. 
x+x0 

Vesica Piscis 

see LENS 

Vibration Problem 
Solution of a system of second-order homogeneous 
nary differential equations with constant COEFFICI 
of the form 

d2x 

dt2 
+ l3x = 0, 

ordi- 
ENTS 

where 6 is a POSITIVE DEFINITE MATRIX. To solve the 
vibration problem, 

1. Solve the CHARACTERISTIC EQUATION of B to get 
EIGENVALUES X1,...&. Definewi E 6. 

2. Compute the corresponding EICENVECTORS 81, . . . , 
e 7-L' 

3. The normal modes of oscillation are given by x1 = 
A1 sin(wlt + Iyl)el, . . . , xn = A, sin(w,t + an)en, 
where Al, . . . , A, and al, . . . , an are arbitrary con- 
stants. 

4. The general solution is x = ~~=I xi. 



1910 Vickery Auction Visible Point 

Vickery Auction References 
An AUCTION in which the highest bidder wins but pays 
only the second-highest bid. This variation over the nor- 
mal bidding procedure is supposed to encourage bidders 
to bid the largest amount they are willing to pay. 

see also AUCTION 

Melaak, 2. A. Invitation to Geometry. New York: Wiley, 
pp. 63-72, 1983. 

Villarceau, M. “TGor&me SW le tore.” Now. Ann. Math. 7, 
345-347,1848. 

Vinculum 

Viergruppe 
The mathematical group 24 8 24, also denoted Da* Its 
multiplication table is 

v I I vi vi vi3 
I vl vz tr3 v4 
v; vl I v3 T/i 
vz Ir, 1/‘3 I vi 
vi v3 vz vi I 

see also DIHEDRAL GROUP, FINITE GROUP-Z4 

Vieta’s Substitution 
The substitution of 

X 
P =w-- 

3w 

into the standard form CUIUZ EQUATION 

x3 +pa: = q, 

which reduces the cubic to a QUADRATIC EQUATION in 
W3 1 

3 2 
( > w - $p3(w3) - q = 0. 

see also CUBIC EQUATION 

Vigesimal 
The base-20 notational system for representing REAL 
NUMBERS. The digits used to represent numbers using 
vigesimal NOTATION are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, 
C, D, E, F, G, H, I, and J. A base-20 number system was 
used by the Aztecs and Mayans. The Mayans compiled 
extensive observations of planetary positions in base-20 
notation. 

see also BASE (NUMBER), BINARY, DECIMAL, HEXA- 
DECIMAL, OCTAL, QUATERNARY, TERNARY 

References 
Weisstein, E. W. “Bases.” http://uuu.astro.virginia, 
edu/-eaw6n/math/notebooks/Bases .m. 

Vigint illion 
In the American system, 1063. 

see also LARGE NUMBER 

Villarceau Circles 
Given an arbitrary point on a TORUS, four CIRCLES can 
be drawn through it. The first is in the plane of the torus 
and the second is PERPENDICULAR to it. The third and 
fourth CIRCLES are called Villarceau circles. 

A horizontal line placed above multiple quantities to 
indicate that they form a unit. It is most commonly 
used to denote ROOTS (dm) and repeating decimals 
(0.111). 

Vinogradov’s Theorem 
Every sufficiently large ODD number is a sum of three 
PRIMES. Proved in 1937. 

see ~2~0 GOLDBACH C~MXT~RX 

Virtual Group 

see GR~UPOID 

Visibility 

see VISIBLE POINT 

Visible Point 
l l l 0 l l a l 

. 
l l l l a l 0 0 l l l 

0 0 l l l l l l 0 . .  

TWO LATTICE POINTS (x, y) and (x’, y’> are mutually 
visible if the line segment joining them contains no fur- 
ther LATTICE POINTS. This corresponds to the require- 
ment that (x’ - x, y’ - y) = 1, where (m,n) denotes the 
GREATEST COMMON DIVISOR. The plots above show 
the first few points visible from the ORIGIN. 

If a LATTICE POINT is selected at random in 2-Q the 
probability that it is visible from the origin is 6/r2. This 
is also the probability that two INTEGERS picked at ran- 
dom are RELATIVELY PRIME. If a LATTICE POINT is 
picked at random in n-D, the probability that it is visible 

see also TORUS 



Visible Point Vector Identity 

from the ORIGIN is l/c(n), where c(n) is the RXEMANN 
ZETA FUNCTION. 

An invisible figure is a POLYGON all of whose corners are 
invisible. There are invisible sets of every finite shape. 
The lower left-hand corner of the invisible squares with 
smallest z coordinate of AREAS 2 and 3 are (14, 20) and 
(104, 6200). 

see also LATTICE POINT, ORCHARD VISIBILITY PROB- 

LEM,RIEMANN ZETA FUNCTION 

References 
Apostol, T. $3.8 in Introduction to Analytic Number Theory. 

New York: Springer-Verlag, 1976. 
Baake, M.; Grimm, U.; and Warrington, D. H. “Some Re- 

marks on the Visible Points of a Lattice.” J. Phys. A: 
Math. General 27, 2669-2674, 1994. 

Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKIMEAL 
Cambridge, MA: MIT Artificial Intelligence Laboratory, 
Memo AIM-239, Feb. 1972. 

Herzog, F. and Stewart, B. M. “Patterns of Visible and Non- 
visible Lattice Points.” Amer. Math. Monthly 78, 487-496, 
1971. 

Mosseri, R. “Visible Points in a Lattice.” J. Phys. A; Math. 
Gen. 25, L25-L29, 1992. 

Schroeder, M. R. “A Simple Function and Its Fourier Trans- 
form .” Math. Intell. 4, 158-161, 1982. 

Schroeder, M. R. Number Th eory in Science and Communi- 
cation, 2nd ed. New York: Springer-Verlag, 1990 

Visible Point Vector Identity 
A set of identities involving n-D visible lattice points 
was discovered by Campbell (1994). Examples include 

rI ( 
(a,b)=l 
a>O,b<l 

rI ( 1 _ SaybZc)-l/c = (1 _ z)-l/Kl--xw-Y~l 

(a,b,c)=l 
a,b>O,c<l 

for Iw4 I=4 IWI, H < 1. 
References 
Campbell, G. B. “Infinite Products Over Visible Lattice 

Points.” Internat. J. Math. Math. Sci. 17, 637-654, 1994, 
Campbell, G. B. “Visible Point Vector Identities.” http : // 

www . geocities . corn / Cape Canaveral /Launchpad / 9416 / 
vpv .html. 

Vitali’s Convergence Theorem 
Let fn (z) be a sequence of functions, each regular in a 
region D, let Ifn (z) I < M for every n and z in D, and let - 
fn(z) tend to a limit as n + 00 at a set of points having 
a LIMIT POINT inside D. Then j&z) tends uniformly 
to a limit in any region bounded by a contour interior 
to D, the limit therefore being an analytic function of 
2. 

see also MONTEL'S THEOREM 

References 
Titchmarsh, E. C. The Theory of Functions, 2nd ed. Oxford, 

England: Oxford University Press, p. 168, 1960. 

Viviani’s Theorem 1911 

Viviani’s Curve 

The SPACE CURVE giving the intersection of the CYL- 
INDER 

(x - a)" + y2 = a2 

and the SPHERE 

It is given by the parametric equations 

z=CL(l+cost) 

Y = asint 

z = 2asin(+t). 

The CURVATURE and TORSION are given by 

k%(t) = J 
13 + 3cost 

a(3 +cost)3/2 

r(t) = 
6cos($t) 

a(13 + 3 cost) l  

(1) 

(2) 

(3) 
(4) 
(5) 

(6) 

(7) 

see also CYLINDER, SPHERE, STEINMETZ SOLID 

References 
Gray, A. “Viviani’s Curve.” $7.6 in Modern Differential Ge- 

ometry of Curves and Surfaces. Boca Raton, FL: CRC 
Press, pp. 140-142, 1993. 

von Seggern, D. CRC Standard Curves and Surfaces. Boca 
Raton, FL: CRC Press, p. 270, 1993. 

Viviani’s Theorem 
For a point P inside an EQUILATERAL TRIANGLE 
AA%‘, the sum of the perpendiculars pi from P to 
the sides of the TRIANGLE is equal to the ALTITUDE h. 
This result is simply proved as follows, 

AABC = APBC + APCA + APAB. (1) 

With s the side length, 

so 

h =pu +pb +pc. 

see UZSO ALTITUDE, EQUILATERAL TRIANGLE 

(2) 

(3) 



1912 Vjta’s Conjecture Volume Element 

Vojta’s Conjecture 
A conjecture which treats the heights of points relative 
to a canonical class of a curve defined over the INTE- 
GERS. 

References 
Cox, D. A. “Introduction to Fermat’s Last Theorem.” Amer. 

M&h. Monthly 101, 3-14, 1994. 

Volterra Integral Equation of the First Kind 
An INTEGRAL EQUATION ofthe form 

f (4 = IX k(x, W(t> dt* 

a 

see also FREDHOLM INTEGRAL EQUATION OF THE 
FIRST KIND, FREDHOLM INTEGRAL EQUATION OF THE 
SECOND KIND, INTEGRAL EQUATION, VOLTERRA IN- 

TEGRAL EQUATION OF THE SECOND KIND 

References 
Arfken, G. Mathematical Methods for Physicists, 3rd ed. Or- 

lando, FL: Academic Press, p. 865, 1985. 
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vet- 

terling, W. T. “Volterra Equations.” 518.2 in Numerical 
Recipes in FORTRAN: The Art of Scientific Computing, 
2nd ed. Cambridge, England: Cambridge University Press, 
pp+ 786-788, 1992. 

Volterra Integral Equation of the Second 

Kind 
An INTEGRAL EQUATION ofthe form 

s 

X 

w = f (4 + k(x, t>?w> dt- 

a 

see also FREDHOLM INTEGRAL EQUATION OF THE 
FIRST KIND,FREDHOLM INTEGRAL EQUATION OF THE 
SECOND KIND, INTEGRAL EQUATION, VOLTERRA IN- 
TEGRAL EQUATION OF THE FIRST KIND 

l%eierences 
A&en, G. Mathematical Methods for Physicists, 3rd ed. Or- 

lando, FL: Academic Press, p. 865, 1985. 
Press, W, H.; Flannery, 13. P.; Teukolsky, S. A.; and Vet- 

terling, W. T. “Volterra Equations.” $18.2 in Numerical 
Recipes in FORTRAN: The Art of Scientific Computing, 
2nd ed. Cambridge, England: Cambridge University Press, 
pp. 786-788, 1992. 

Volume 
The volume of a solid body is the amount of “space” it 
occupies. Volume has units of LENGTH cubed (i.e., cm3, 
m3 , in3, etc.) For example, the volume of a box (RECT- 
ANGULAR PARALLELEPIPED) of LENGTH L, WIDTH w, 
and HEIGHT H is given by 

V=LxWxH. 

volume of a SURFACE OF REVOLUTION is particularly 
simple to compute due to its symmetry. 

The following table gives volumes for some common 
SURFACES. Here T denotes the RADIUS, h the height, A 

the base AREA, and s the SLANT HEIGHT (Beyer 1987). 

Surface v * 

cone 
conical frustum 
cube 
cylinder 
ellipsoid 

oblate spheroid 

prolate spheroid 

pyramid 
pyramidal frustum 
sphere 

spherical sector 

spherical segment 
torus 

irh2r(3r - h) 

2x2 Rr2 

Even simple SURFACES can display surprisingly coun- 
terintuitive properties. For instance, the SURFACE OF 
REVOLUTION of y = l/x around the x-axis for it: > 1 - 
is called GABRIEL'S HORN, and has finite volume, but 
infinite SURFACE AREA. 

The generalization of volume to n DIMENSIONS for n > 4 

isknownas CONTENT. 

see also ARC LENGTH, AREA, CONTENT, HEIGHT, 
LENGTH (SIZE), SURFACE AREA, SURFACE OF REVO- 
LUTION, VOLUME ELEMENT, WIDTH (SIZE) 

References 
Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. 

Boca Raton, FL: CRC Press, pp. 127-132, 1987. 

Volume Element 
A volume element is the differential element dV whose 
VOLUME INTEGRAL over some range in a given coordi- 
nate system gives the VOLUME of a solid, 

V= dx dy dx. (1) 

In R”, the volume of the infinitesimal n-HYPERCUBE 
bounded by dxl, . . . , dx, has volume given by the 
WEDGE PRODUCT 

dV = dxl /I . . . /\ dx, (2) 

(Gray 1993). 

The use of the antisymmetric WEDGE PRODUCT instead 
of the symmetric product dxl . . l  dx, is a technical re- 
finement often omitted in informal usage. Dropping the 

The volume can also be computed for irregularly-shaped 
and curved solids such as the CYLINDER and CUBE. The 



Volume Integral van Staudt-Clausen Theorem 1913 

wedges, the volume element for CURVILINEAR C~ORDI- 

NATES in Tw3 is given by 

dV = I(hltil dul). (hztiz duz) x (h3ti3 du3)[ (3) 

= hl hz h3 dul duz du3 C-4 
dr dr dr - 

- l  
- 

dW 
- x - dul duz du3 
au2 dU3 

(5) 
da: ax act2 

au1 &2 au3 
- aY aY - 

au1 au2 
* dul duz dug 
au3 (6) 

83% 8% a% 

au1 au2 au3 

qx, Y14 - - 
d(ul,u2+3) 

dul duz duQ, (7) 

where the latter is the JACOBIAN and the hi are SCALE 

FACTORS. 

see &O AREA ELEMENT, JACOBIAN, LINE ELEMENT, 
RIEMANNIAN METRIC, SCALE FACTOR, SURFACE IN- 
TEGRAL,~OLUME INTEGRAL 

References 
Gray, A. Ysometries of Surfaces.” $13.2 in Modern. D$zren- 

tial Geometry of Curves and Surfaces. Boca Raton, FL: 
CRC Press, pp. 255-258, 1993. 

Volume Integral 
A triple integral over three coordinates giving the VOL- 

UME within some region R, 

V= 
sss 

dx dy dz. 
G 

see also INTEGRAL, LINE INTEGRAL, MULTIPLE INTE- 
GRAL, SURFACE INTEGRAL, VOLUME, VOLUME ELE- 
MENT 

von Aubel’s Theorem 

Given an arbitrary QUADRILATERAL, place a SQUARE 
outwardly on each side, and connect the centers of op- 
posite SQUARES. Then the two lines are of equal length 
and cross at a RIGHT ANGLE. 

see also QUADRILATERAL, RIGHT ANGLE, SQUARE 

References 
Kitchen, E. “Dijrrie Tiles and Related Miniatures.” Math. 

Mug. 67,128~130, 1994. 

von Dyck’s Theorem 
Let a GROUP G have a presentation 

G= (X1,**.,XnIrj(x1,-..,xn)~~ E J) 

so that G = F/R, where F is the FREE GROUP with ba- 
sis {XI,. . . , x,} and R is the NORMAL SUBGROUP gen- 
erated by the rj. IfHisaGRoUPwithH= (Al,..*,& 
andifrj(yl,...,yn) = 1 for all j, then there is a surjec- 
tive homomorphism G + H with xi t-+ yi for all i. 

see ~ZSOFREE GROUP, NORMAL SUBGROUP 

References 
Rotman, J. J. An Introduction to the Theory of Groups, 4th 

ed+ New York: Springer-Verlag, p. 346, 1995. 

von Mangoldt Function 

see MANGOLDT FUNCTION 

van Neumann Algebra 
A GROUP “with bells and whistles.” It was while study- 
ing von Neumann algebras that Jones discovered the 
amazing and highly unexpected connections with KNOT 
THEORY which led to the formulation of the JONES 

POLYNOMIAL. 

References 
Iyanaga, S. and Kawada, Y. (Eds.). “Van Neumann Alge- 

bras.” 5430 in Encyclopedic Dictionary of Mathematics. 
Cambridge, MA: MIT Press, pp. 1358-1363, 1980. 

van Staudt-Clausen Theorem 

Pk-Wn 

where Bzn is a BERNOULLI NUMBER, An is an INTEGER, 
and the pks are the PRIMES satisfying pk - 1]2k. For 
example, for k = 1, the primes included in the sum are 
2 and 3, since (2-1)12 and (3-1)12. Similarly, for k = 6, 
the included primes are (2, 3, 5, 7, 13), since (1, 2, 3, 
6, 12) divide 12 = 2 l  6. The first few values of An for 
n = 1, 2, l  . l  are 1, 1, 1, 1, 1, 1, 2, -6, 56, -528, l  . . 
(Sloane’s A000164). 

The theorem was rediscovered by Ramanujan (Hardy 
1959, p. 11) and can be proved using p-ADIC NUMBERS. 

see &O BERNOULLI NUMBER,~-ADIC NUMBER 
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Conway, J. H. and Guy, R. K. The Book of Numbers. New 
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Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Sug- 

gested by His Life and Work, 3rd ed. New York: Chelsea, 
1959. 
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Staudt” and “Proof of von Staudt’s Theorem,” 57.9-7.10 
in An Introduction to the Theory of Numbers, 5th ed. Ox- 
ford, England: Clarendon Press, pp, 90-93, 1979. 

Sloane, N. J. A. Sequence A000146/M1717 in ‘&An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Staudt. “Beweis eines Lehrsatzes, die Bernoullischen Zahlen 
betreffend.” J. reine angew. Math. 21, 372-374, 1840. 
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von Staudt Theorem 

seeing STAUDT-CLAUSEN THEOREM 

Voronoi Cell 
The generalization of a VORONOI POLYGON to n-D, for 
n > 2. 

Voronoi Diagram 

The partitioning of a plane with n points into n con- 
vex POLYGONS such that each POLYGON contains ex- 
actly one point and every point in a given POLYGON is 
closer to its central point than to any other. A Voronoi 
diagram is sometimes also known as a DIRICHLET TES- 
SELLATION. The cells are called DIRICHLET REGIONS, 
THIESSEN POLYTOPES,O~ VORONOI POLYGONS. 
see UZSO DELAUNAY TRIANGULATION, MEDIAL AXIS, 

VORONOI POLYGON 

References 
Eppstein, D. “Nearest Neighbors and Voronoi Diagrams.” 

http://uwu.ics.uci.edu/-eppstein/junkyard/~~html. 

Voronoi Polygon 
A POLYGON whose interior consists of all points in the 
plane which are closer to a particular LATTICE POINT 
than to any other. The generalization to n-D is called a 
DIRICHLETREGION, THIESSEN POLYTOPE, ~~VORONOI 
CELL. 

Voting 
It is possible to conduct a secret ballot even if the 
votes are sent in to a central polling station (Lipton 
and Widgerson, Honsberger 1985). 

see UZSO ARROW’S PARADOX, BALLOT PROBLEM, 
MAY'S THEOREM, QUOTA SYSTEM, SOCIAL CHOICE 
THEORY 

VR Number 
A “visual representation” number which is a sum of 
some simple function of its digits. For example, 

1233 = 122 + 332 

2661653 = 16532 - 2662 

221859 = 223 + 183 + 5g3 

40585 + 4! + O! + 5! +8! + 5! 

148349 =!1+!4+!8+!3+!4+!9 

4913 = (4 + 9 + 1+ 3)3 

are all VR numbers given by Madachy (1979). 

References 
Madachy, J. S. Madachy’s AIathematical Recreations. New 

York: Dover, pp. 165-171, 1979. 

Vulgar Series 

see FAREY SERIES 

References 
Honsberger, R. Mathematical Gems III. Washington, DC: 

Math. Assoc. Amer., pp. 157462, 1985. 
Lipton, R. G.; and Widgerson, A. “Multi-Party Crypto- 

graphic Protocols.” 



WZ-Constant Wallis Formula 1915 

W 
W2-Constant 

w2 = 1.529954037. l  l  I 

References 
Plouffe, S. “W2 Constant.” http://lacim.uqam.ca/piDATA/ 

wz.txt. 

VV-Funct ion 

see LAMBERT'S W-FUNCTION 

Wada Basin 
A J~ASIN OF ATTRACTION in which every point on the 
common boundary of that basin and another basin is 
also a boundary of a third basin. In other words, no 
matter how closely a boundary point is zoomed into, all 
three basins appear in the picture. 

see also BASIN OF ATTRACTION 

References 
Nusse, H. E. and Yorke, J. A. “Basins of Attraction.” Science 

271, 13764380, 1996. 

Walk 
A sequence of VERTICES and EDGES such that the VER- 
TICES and EDGES are adjacent. A walk is therefore 
equivalent to a graph CYCLE, but with the VERTICES 
along the walk enumerated as well as the EDGES. 

see also CIRCUIT, CYCLE (GRAPH), PATH, RANDOM 
WALK 

Wallace-Bolyai-Gerwein Theorem 
TWO POLYGONS are congruent by DISSECTION IFF they 
have the same AREA. In particular, any POLYGON is 
congruent by DISSECTION to a SQUARE of the same 
AREA. Laczkovich (1988) also proved that a CIRCLE 
is congruent by DISSECTION to a SQUARE (furthermore, 
the DISSECTION can be accomplished using TRANSLA- 
TIONS only), 

see also DISSECTION 

References 
Klee, V. and Wagon, S. Old and New Unsolved Problems in 

Plane Geometry and Number Theory. Washington, DC: 
Math. Assoc. Amer., pp. 50-51, 1991. 

Laczkovich, M. Ton Neumann’s Paradox with Translation.” 
Fund. Math. 131, l-12, 1988. 

Wallace-Simson Line 

see SIMSON LINE 

Wallis’s Conical Edge 

The RIGHT CONOID surface given by the parametric 
equations 

x(74, w) = 21 cosu 

Y (% 4 = wsinu 

z(u, v) = cda2 - b2 cos2 74. 

see also RIGHT CONOID 

References 
Gray, A. Modern Differential Geometry of Curves and Sur- 

faces. Boca Raton, FL: CRC Press, pp. 354-355, 1993. 

Wallis Cosine Formula 

s 

7.4 
cosn x dx = 

0 

fl 1~3*5**+-1) 
2 2.4.6...n 
2.4.6-m.(n-l) 

1*3*5---n 

for n = 2, 4, . . . 

for n = 3, 5, . . . . 

see also WALLIS FORMULA, WALLIS SINE FORMULA 

Wallis Formula 
The Wallis formula follows from the INFINITE PRODUCT 
representation of the SINE 

00 
sin 2 = 2 IT( 

X2 
l-- 

> 7r2n2 ’ (1) 
n=l 

Taking x = n/2 gives 

00 7T N (2 n2 > 1 2*2 4-4 646 2= - -,.. 

n=l 
(2 n-1)(2n+l) = l-3 3-5 547 l  

(3) 



1916 Wallis’s Problem 

A derivation due to Y. L. Yung uses the RIEMANN ZETA Wallis Sieve 
FUNCTION. Define 

F(s) E -Li,(-1) = ?:(-1)” 
ns 

n=l 

= (1 - 2’-s)c(s) 

F’(s) = F (-‘zl-, 

T-L=1 

SO 

F’(0) = F(-Qnlnn = -lnl+ln2-ln3+ 

n=l 

= In 
2.4.&e 

> 
1.3.5... l  

(4) 

(5) 

(6) 

Taking the derivative of the zeta function expression 
gives 

&l- 21-s)[(s) = 2’-s(ln2)C(s) + (l- 2l-“)<‘(s) (7) 

[$(1- 21-p)c(s)]s=o = -In2 -c’(O) 

= -ln2+ +ln(2r) =ln (F) =ln(fi). (8) 

Equating and squaring then gives the Wallis formula, 
which can also be expressed 

IT 

5 
= 

[ 
4Cwe-m 2 1 l  (9) 

The Q-ANALOG of the Wallis formula for 4 = 2 is 

00 

rI( 
1 - q-k)-1 = 3.4627466194.. . (10) 

k=l 

(Finch). 

see U~SO WALLIS COSINE FORMULA, WALLIS SINE FOR- 
MULA 
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Wallis’s Problem 
Find solutions to 0(x2) = a(y2) other than (x,y) = 
(4,5), where o is the DIVISOR FUNCTION. 

see also FERMAT'S SIGMA PROBLEM 

Walsh Fhction 

A compact set JV= with AREA 

8 24 48 
p(w”)=g25~***=; 

created by punching a square hole of length l/3 in the 
center of a square. In each of the eight squares remain- 
ing, punch out another hole of length l/(3 l  5), and so 
on. 

Wallis Sine Formula 

s 0 742 r 1~3~5~~.(n- 1) for for n n = = 3, 2, 4, 5, . . . . . . . 

see also WALLIS COSINE FORMULA, WALLIS FORMULA 

Wallpaper Groups 
The 17 PLANE SYMMETRY GROUPS. Their symbols are 

PI, P2, Pm, P% cm, pmm, Pm& P& cmm, P4, P4m, 
p4g, p3, p31m, p3m1, p6, and p6m. For a description 
of the symmetry elements present in each space group, 
see Coxeter (1969, p. 413). 
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Walsh Function 
Functions consisting of a number of fixed-amplitude 
square pulses interposed with zeros. Following Harmuth 
(1969), designate those with EVEN symmetry Cal@, t) 
and those with ODD symmetry Sal@, t). Define the SE- 
QUENCY k as half the number of zero crossings in the 
time base. Walsh functions with nonidentical SEQUEN- 
CIES are ORTHOGONAL, as are the functions Cal(k,t) 
and Sal@, t). The product of two Walsh functions is 
also a Walsh function. The Walsh functions 

for k = 0, 2, 4, . . . 
for k = 1, 3, 5, . . . V 

The Walsh functions Cal(k, t) for k = 0, 1, . . . , n/2 - 1 
and Sal(k, t) for k = 1, 2, . . . , n/2 are given by the rows 
ofthe HADAMARD MATRIX H,. 

see UZSO HADAMARD MATRIX, SEQUENCY 
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2. N=n2 - 1, with n - 1 and n + 1 PRIME. References 
Beauchamp, K. G. Wulsh Functions and Their Applications. 

London: Academic Press, 1975. 
Harmuth, H. F. “Applications of Walsh Functions in Com- 

municat ions .” IEEE Spectrum 6, 82-91, 1969. 

see also 

NUMBER 

LUCAS SEQUENCE, SYLVESTER 

Thompson, A. R.; Moran, J. M.; and Swenson, G. W. Jr. References 
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Waring’s Conjecture 

see WARING’S 

CONJECTURE 

CONJECTURE, WARING'S SUM 

Walsh Index Waring Formula 
The statistical INDEX 

p ,Cd=P, 
w C&KnPo’ 

LnPf 

A”+B” = >1 (-l)j-+ (Al3)j(A~B)“-~j, 
j=O 

where pn is the price per unit in 

quantity produced in period n. 
period n and qm is the 

where 1x1 is the FLOOR FUNCTION and (i) is a BINO- 
MIAL COEFFICIENT. see also INDEX 

see also FERMAT'S LAST THEOREM References 
Kenney, J. F. and Keeping, E. S. Mathematics of Statistics, 

Pt. 1, 3rd ed. Princeton, NJ: Van Nostrand, P* 66, 1962. Waring’s Prime Conjecture 
Every ODD INTEGER is a PRIME or the sum of three 
PRIMES. Wang’s Conjecture 

Wang’s conjecture states that if a set of tiles can tile 
the plane, then they can always be arranged to do so 
periodically (Wang 1961). The CONJECTURE was re- 
futed when Berger (1966) showed that an aperiodic set 
of tiles existed. Berger used 20,426 tiles, but the number 
has subsequently been greatly reduced. 

see also TILING 

Waring’s Problem 
Waring proposed a generalization of LAGRANGE'S 
FOUR-SQUARE THEOREM, stating that every RATIO- 
NAL INTEGER is the sum of a fixed number g(n) of nth 
POWERS of INTEGERS, where n is any given POSITIVE 
INTEGER and g(n) depends only on n. Waring origi- 
nally speculated that g(2) = 4, g(3) = 9, and g(4) = 19. 
In 1909, Hilbert proved the general conjecture using an 
identity in 25fold multiple integrals (Rademacher and 
Toeplite 1957, pp. 52-61). 
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In LAGRANGE'S FOUR-SQUARE THEOREM, Lagrange 
proved that g(2) = 4, where 4 may be reduced to 3 
except for numbers of the form 4n (8JE + 7) (as proved 
by Legendre). In the early twentieth century, Dickson, 
Pillai, and Niven proved that g(3) = 9. Hilbert, Hardy, 
and Vinogradov proved g(4) 5 21, and this was sub- 
sequently reduced to g(4) = 19 by Balasubramanian 
et al. (1986). L iouville proved (using LAGRANGE'S 
FOUR-SQUARETHEOREM and LIOUVILLE POLYNOMIAL 
IDENTITY) that g(5) < 53, and this was improved to 
47, 45, 41, 39, 38, anb finally g(5) < 37 by Wieferich. 
See Rademacher and Toeplitz (1957,-p. 56) for a simple 
proof. J.-J. Chen (1964) proved that g(5) = 37. 

Ward’s Primality Test 
Let N be an ODD INTEGER, and assume there exists 
a LUCAS SEQUENCE {Un) with associated SYLVESTER 
CYCLOTOMXC NUMBERS {Qn} such that there is an n > 
fl (with n and N RELATIVELY PRIME) for which Iv 
DIVIDES Qn. Then IV is a PRIME unless it has one of 

Dickson, Pillai, and Niven also conjectured an explicit 
formula for g(s) for s > 6 (Bell 1945)) based on the 
relationship 

the following two forms: 

1. IV = (n - l)“, with n - 1 PRIME and n > 4, or (;)n-L(%)nJ =1-(;>“(L(gn+2]}. (1) 
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If the DIOPHANTINE (i.e., 72 is restricted to being an 
INTEGER) inequality 

is true, then 

g(n) = 2” -I- 
(3 

This was given as a lower bound by Euler, and has been 
verified to be correct for 6 2 n < 200,000. Since 1957, 
it has been known that at most a FINITE number of k 
exceed Euler’s lower bound. 

There is also a related problem of finding the least IN- 
TEGER n such that every P~SITWE INTEGER beyond a 
certain point (i.e., all but a FINITE number) is the SUM 

of G(n) nth POWERS. From 1920-1928, Hardy and Lit- 
tlewood showed that 

G(n) 2 (n- 2)2+l+5 (4) 

and conjectured that 

G(k) < 
2k + 1 for IC not a power of 2 
4k for k a power of 2. (5) 

The best currently known bound is 

G(k) < ck In k (6) 

for some constant c. Heilbronn (1936) improved Vino- 
gradov’s results to obtain 

GJn) 2 6nlnn+ [4+3ln (3+ i)] n+3. (7) 

It has long been known that G(2) = 4. Dickson and 
Landau proved that the only INTEGERS requiring nine 
CUBES are 23 and 239, thus establishing G(3) < 8. 
Wieferich proved that only 15 INTEGERS require eight 
CUBES: 15, 22, 50, 114, 167, 175, 186, 212, 213, 238, 

303, 364, 420, 428, and 454, establishing G(3) < 7. The 
largest number known requiring seven CUBES-is 8042. 
In 1933, Hardy and Littlewood showed that G(4) < 19, 
but this was improved in 1936 to 16 or 17, and shown to 
be exactly 16 by Davenport (1939b). Vaughan (1986) 
greatly improved on the method of Hardy and Little- 
wood, obtaining improved results for n > 5. These 
results were then further improved by Briidern (1990), 
who gave G(5) 5 18, and Wooley (1992), who gave G(n) 
for n = 6 to 20. Vaughan and Wooley (1993) showed 
G(8) < 42. - 

Let G+(n) denote the smallest number such that alrn~st 
all sufficiently large INTEGERS are the sum of G+(n) 
nth POWERS. Then G+(3) = 4 (Davenport 1939a), 
G+(4) = 15 (Hardy and Littlewood 1925), P(8) = 32 
(Vaughan 1986), and G’(6) = 64 (Wooley 1992). If 

the negatives of POWERS are permitted in addition to 
the powers themselves, the largest number of nth POW- 

ERS needed to represent an aribtrary integer are denoted 
eg(n) and EG(n) (Wright 1934, Hunter 1941, Gardner 
1986). In general, these values are much harder to cal- 
culate than are g(n) and G(n). 

The following table gives g(n), G(n), G+(n), es(n), and 
EG(n) for n 5 20. The 
A002804. 

sequence of g(n) is Sloane’s 

n 9( > n w-4 
2 4 4 

3 9 <7 

4 19 -16 

5 37 < 18 

6 73 7 27 

7 143 2 36 

8 279 z 42 

9 548 -c 55 

10 1079 2 63 
11 2132 7 70 
12 4223 7 79 
13 a334 7 87 
14 16673 7 95 
15 33203 s-103 

16 66190 < 112 

17 132055 2 120 

18 263619 7 129 
19 526502 2 138 
20 1051899 2 146 

5 32 

< 64 - 

es(n) 
3 

P 51 
[g, ;01 

w4 
3 

see also EULER'S CONJECTURE, SCHNIRELMANN'S THE- 
OREM, VINOGRADOV'S THEOREM 
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Waring’s Sum Conjecture 

see WARING’S PROBLEM 

Waring’s Theorem 
If each of two curves meets the LINE AT INFINITY in 

distinct, nonsingular points, and if all their intersections 
are finite, then if to each common point there is attached 
a weight equal to the number of intersections absorbed 
therein, the CENTER OF MASS of these points is the 
center of gravity of the intersections of the asymptotes. 

References 
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Watchman Theorem 

see ART GALLERY THEOREM 

Watson’s Formula 
Let J,(X) be a BESSEL FUNCTION OF THE FIRST KIND, 
Yv(z) BESSEL FUNCTION OF THE SECOND KIND, and 
K,(Z) a MODIFIED BESSEL FUNCTION OF THE FIRST 
KIND. Also let ZJ?[z] > 0 and require %[p - Y] < 1. Then 

JPWW) - J&E-&) 
4sin[(p - I.+] - - 

79 s 

O” K 
V- P (2x sinh t)e-(Pf”)t &. 

0 

The fourth edition of Gradshteyn and Ryzhik (1979), 
Iyanaga and Kawada (1980), and Ito (1987) erroneously 
give the exponential with a PLUS SIGN. A related inte- 
gral is given by 

J ( 
YZ 

4 * - -- - 
s 7T 0 

&(2z sinh t)e-2vt dt 

for %[z] > 0. 

see also 
MULA 

DIXON- FERRAR FORMULA,NICHOLSON'S FOR- 
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Watson-Nicholson Formula 
Let I&) be a HANKEL FUNCTION OF THE FIRST or 
SECOND KIND, let X,Y > 0, and define 

w= J@T. 

Then 

Ho(x) = 3-1’2wexp{(-1)“1i[n/6 + V(W - $ul” V 

- tan-l w)]}H$J+) + O]V-ll. 
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Watson Quintuple Product Identity 

see QUINTUPLE PRODUCT IDENTITY 

Watson’s Theorem 

[ 
4 h c 

3F2 $(a+b+ l),c 1 - I?($(+ +c)r[+(l+a+b)]r(+ - +a- ;b+c) - 
r[$ -+- g]r[f(l + b)]r($ - +U + c)r(+ - +b + c)’ 

where 3F2 (a, b, c;d,e;r) is a GENERALIZED HYPERGEO- 
METRIC FUNCTION and I'(z) is the GAMMA FUNCTION. 

Watt’s Curve * 

A curve named after James Watt (1736-1819), the Scot- 
tish engineer who developed the steam engine (MacTu- 
tor Archive). The curve is produced by a LINKAGE of 
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rods connecting two wheels of equal diameter. Let the 
two wheels have RADIUS b and let their centers be lo- 
cated a distance 2a apart. Further suppose that a rod 
of length 2c is fixed at each end to the CIRCUMFERENCE 
of the two wheels. Let P be the MIDPOINT of the rod. 
Then Watt’s curve C is the LOCUS of P. 

The POLAR equation of Watt’s curve is 

T2 = b2 - (asin * y’4z2 - a2 cos2 O)2. 

If a = c, then C is a CIRCLE of RADIUS b with a figure 
of eight inside it. 
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Watt% Parallelogram 
A LINKAGE used in the original steam engine to turn 
back-and-forth motion into approximately straight-line 
motion. 

see also LINKAGE 
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Wave 

A 4-POLYHEX. 
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Wave Equation 
The wave equation is 

(1) 

where v2 is the LAPLACIAN. 

The 1-D wave equation is 

a2* 1 a2$ -=-- 
8X2 v2  at2 l  

In order to specify a wave, the equation is subject to 
boundary conditions 

w, t) = 0, (4) 

and initial conditions 

The wave equation can be solved using the so-called 
d’Alembert’s solution, a FOURIER TRANSFORM method, 
or SEPARATION OF VARIABLES. 

d’Alembert devised his solution in 1746, and Euler sub- 
sequently expanded the method in 1748. Let 

6 
- =x-d (7) 

rl E x + at. 

By the CHAIN RULE, 

1 a2* a”?/!) 2 a2+ + a2ti --=-- - 
v2 at2 at2 d& a+ l  

(10) 

The wave equation then becomes 

Any solution of this equation is of the form 

$(C, rl) = f (77) + L&5) = f (x + 4 + iI@ - 4, (12) 

where f and g are any functions. They represent two 
waveforms traveling in opposite directions, f in the 
NEGATIVE zc direction and g in the POSITIVE x direc- 
tion. 

The 1-D wave equation can also be solved by applying 
a FOURIER TRANSFORM to each side, 

J O” a2$(x,t) -2rrikx dx 

8x2 e 
-m 

1 -- - 
V2 J --oo 

which is given, with the help of the FOURIER TRANS- 
FORM DERIVATIVE identity, by 

(2rik)‘@(k, t) = -$ “‘;Lf’ t), (14) 

where 

Tw,t) = 0 (3) 
q(k, t) E F[$(x, t)] = [= $(x, t)e-2xikx dx. (15) 
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This has solution where m is an INTEGER. Plugging (23)) (25) and (26) 
back in for $J in (21) gives, for a particular value of m, 

$I@, t) = A(k)e2”ikvt + B(k)e-2”ik”t. (16) 
tim(x, t) = [E, sin(w,t) + F, cos(w,t)]D, sin 

Taking the inverse FOURIER TRANSFORM gives 

O” *(x,t) = 
I 

Q(k, t)eaxikx dx 
--cx) 

- - - [A m cos(w,t) + B, sin&J)] sin 

- - 

s 
O” [A(k) 

2bkvt 
e 

+ i;k) e -2Tikvt 
1 e -2nikx dk: 

- - 

SRI 
fw e 

-kik(x---vt) & 

-m 

The initial condition $(x,0) = 0 then gives B, = 0, SO 

(27) b ecomes 

$J~(x, t> = A, cos(w,t) sin 
(28) 

where 

+ 

I= 
BW 

-2dk(x+vt) & 

Z fl(im- vt) + b(k)fi(a: + vt), 

The general solution is a sum over all possible values of 
m, so 

$(x, t) = e A, cos(w,t) sin (y) . (29) 
m=l 

f&) G x[A(k)] = 
.I’ 

cIo A(k)e-2”ikudk 
--oo 

Using ORTH~GONALITY of sines again, 

f2(u) G -;F[B(k)] = 
s 

* B(k)e-2”ikudk. 
-m 

(17) 

(18) 

(19) 

lLsin (?) sin (7) dx = g&m, 

where Jim is the KRONECKER DELTA defined by 

This solution is still subject to all other initial and 
boundary conditions. 

The 1-D wave equation can be solved by SEPARATION 

OF VARIABLES using a trial solution 

This gives 
Td2X 1 d2T 

- = 
dx2 ;;Zx= (21) 

1 d2X 1 1d2T --=----= 
X dx2 u2 T dt2 

-k2. (22) 

So the solution for X is 

X(x) = Ccos(kx) + Dsin(kx). (23) 

Rewriting (22) gives 

1 d2T -- 
T dt2 

= ev2k2 E mw2, 

so the solution for T is 

T(t) = E cos(wt) + F sin(wt), (25 

where v G w/k. Applying the boundary conditions 
Q(O, t) = $(L, t) = 0 to (23) gives 

1921 

(27) 

s = 1 m=n 
mn - 

1 0 m#n’ 

gives 

131) 

IL 2/(x, 0) sin (7) dx 
0 

= FAlsin (F) sin (y) dx 

I=1 

so we have 

Am = g /L $(x, 0) sin (y) dx. 
0 

(33) 

The computation of Ams for specific initial distortions 
is derived in the FOURIER SINE SERIES section. We 
already have found that B, = 0, so the equation of 
motion for the string (29), with 

vmr 
urn z vk, = - 

L ’ (34) 

is 

yb(x,t) = F A,cos (F) sin (7)) (35) 
C=O kL = mr, (26) 
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where the A, COEFFICIENTS are given by (33). 

A damped 1-D wave 

a2* - - L?Y+b?? 
ax2 - v2 at2 dt ’ 

given boundary conditions 

WA t> = 0 

W,t) = 0, 

initial conditions 

$(x70) = f (4 

$x7 0) = Sk4 

and the additional constraint 

(36) 

(37) 
(38) 

(39) 

(40) 

(41) 

can also be solved as a FOURIER SERIES. 

*(x7 t) 

n=l 

[an sin&d) + bn cos(p,t)], 

(42) 

where 

/-&a=’ 
4v2n2r2 - b2L2v4 - - 

2L 2L (43) 

(44) b,= fl”sin(y) f(X)dx 

an=$-{lLsin(y) [g(x)+$f(x)]}dx. 

(45) 

To find the motion of a rectangular membrane with sides 
of length L, and L, (in the absence of gravity), use the 
2-D wave equation 

where z(x, y, t) is the vertical displacement of a point 
on the membrane at position (x,y) and time t. Use 
SEPARATION OF VARIABLES to look for solutions of the 
form 

4x7 Y, t) = X(X)Y(Y)W). (47) 

Plugging (47) into (46) gives 

d2X d2Y 1 d2T 
YT-j-p +XTdy2 = +y-p (48) 

where the partial derivatives have now become complete 
derivatives. Multiplying (48) by v2/XYT gives 

v2 d2X v2 d2Y 1 d2T 
ys+-T=Tdt2. 

y dY 
(4% 

The left and right sides must both be equal to a con- 
stant, so we can separate the equation by writing the 
right side as 

1 d2T --- 
T &2 --w2m (50) 

This has solution 

w  = Cw cos(wt) + D, sin(wt). 

Plugging (50) back into (49), 

(51) 

v2 d2X v2 d2Y 
yp + -2 = -w2, 

y dY 

which we can rewrite as 

(52) 

1 d2X 1 d2Y w2 -- - --- - 
X dx2 - Y dy2 7=- 

kx2 (53) 

since the left and right sides again must both be equal to 
a constant. We can now separate out the Y(y) equation 

1 d2Y W2 
-- 

Y dy2 
= kx2 - 7 = -ky2, (54) 

where we have defined a new constant k, satisfying 

k,’ + ky2 = 5. 

Equations (53) and (54) have solutions 

(55) 

X(x) = E cos(k,x) + Fsin(k,x) (56) 

Y(Y) = Gcos(k,y) + H sin(k,y). (57) 

We now apply the boundary conditions to (56) and (57), 
The conditions ~(0, y, t) = 0 and x(x, 0, t) = 0 mean that 

E=O G=O. (58) 

Similarly, the conditions z(L,, y, t) = 0 and x(x, L,, t) = 
0 give sin(k,L,) = 0 and sin(k,L,) = 0, so L,k, = pn 

and L,k, = g7r, where p and q are INTEGERS. Solving 
for the allowed values of k, and k, then gives 

k =E 
X 

Lx 
k =p 

Y 
L, ’ 

(59) 

Plugging (52), (56), (57), (58), and (59) back into (22) 
gives the solution for particular values of p and 4, 

zPq(x, y, t) = [Cw cos(wt) + D, sin(&)] 

x [F+in(y)] [H,sin (y)] . (60) 
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Lumping the constants together by writing A,, E 
C&II, (we can do this since w  is a function of p and 
q, so Cw can be written as Cpq) and B,, s D, FPHq, we 
obtain 

ZP&Y4) = LAP, cos(w,,t) + BP, sin(w,,t)] 

Xsin(y)sm(y) l  (61) 

Plots of the spatial part for modes (1, l), (1, 2), (2, l), 
and (2, 2) follow. 

The general solution is a sum over all possible values of 
p and q, so the final solution is 

00 00 

2(x, Y7 t> = Tl x[A,, cos(w,,t) + B,, sin(w,,t)] 

p-1 q=l 

Xsin (y) sin (7) , (62) 

where w  is defined by combining (55) and (59) to yield 

Given the initial conditions z(x, y, 0) and g (x, y, 0), we 
can compute the A,,s and Bpqs explicitly. To accom- 
plish this, we make use of the orthogonality of the SINE 
function in the form 

where S,, is the KRONECKER DELTA. This can be 
demonstrated by direct INTEGRATION. Let u z TX/L 
so du = (n/L) dx in (64), then 

T r= I=L J 7T 0 
sin(mzL) sin(nu) du. (65) 

Now use the trigonometric identity 

sina sin0 = +[cos(a - p> - cos(a! + p)] (66) 

to write 

L 7r 
I=-- 

s 

7T 

27T 0 
cos[(m - n)u] du + 

s 
cos[(m + n)u] du. 

0 

Note that for an INTEGER I # 0, the following INTEGRAL 
vanishes 

J 
7r 

0 

COS(Zu) du = f [sin(h)]: = +[sin(h) - sin01 

1 
= i sin(h) = 0, (68) 

since sin&) = 0 when 2 is an INTEGER. Therefore, 
I=OwhenIEm- n # 0. However, I does not vanish 
when I = 0, since 

J 7r 
cos(0 l  u) du = 

0 s 7r 
du = 7~. (69) 

0 

We therefore have that I = L&,/2, so we have derived 
(64). Now we multiply z(z, y, 0) by two sine terms and 
integrate between 0 and L, and between 0 and L,, 

LY 
J [s 

L I= 2(x, y, 0) sin 
0 0 (11 ‘F dx 

X 

Now plug in X(X, y, t), set t = 0, and prime the indices 
to distinguish them from the p and q in (70), 

Making use of (64) in (71), 

Xsin (e) sin(F) dy, (72) 

so the sums over p’ and q’ collapse to a single term 

I = G F, Apqt $aq qt = - LxLY A 
2 , 4 PQ’ (73) 

Equating (72) and (73) and solving for A,, then gives 

L 
z(x, y, 0) sin ()I ‘F dx 

X 
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An analogous derivation gives the B,,s as Wave Surface 

B 
4 

P9 = SLY [/Lx $y,O)sin ('2) dx] 
WP&& 0 0 

The equation of motion for a membrane shaped as a 
RIGHT IS~SCELES TRIANGLE of length c on a side and 
with the sides oriented along the POSITIVE x and y axes 
is given by 

$@, Y, t> = [CP~ cos(wpqt) + Dpq s+,,t)] 

x [sin(y) sin(y) -sin(y) sin(y)] , 

(76) 

where 

WP9 = (77) 

and p, q INTEGERS with p > 4. This solution can be 
obtained by subtracting two wave solutions for a square 
membrane with the indices reversed. Since points on 
the diagonal which are equidistant from the center must 
have the same wave equation solution (by symmetry), 
this procedure gives a wavefunction which will vanish 
along the diagonal as long as p and q are both EVEN or 
ODD. We must further restrict the modes since those 
with p < q give wavefunctions which are just the NEG- 
ATIVE of (4, P> and (P, P) g ive an identically zero wave- 
function. The following plots show (3, l), (4, 2), (5, l), 

and (5,3). 
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Wave Operator 
An OPERATOR relating the asymptotic state of a DY- 

NAMICAL SYSTEM governed by the SchrGdinger equation 

to its original asymptotic state. 

see also SCATTERING OPERATOR 

A SURFACE represented parametrically by ELLIPTIC 
FUNCTIONS. 

Wavelet 
Wavelets are a class of a functions used to localize a 
given function in both space and scaling. A family of 
wavelets can be constructed from a function $J(x), some- 
times known as a “mother wavelet,” which is confined in 
a finite interval. “Daughter wavelets” @“lb(x) are then 
formed by translation (b) and contraction (a). Wavelets 
are especially useful for compressing image data, since a 
WAVELET TRANSFORM has properties which are in some 
ways superior to a conventional FOURIER TRANSFORM. 

An individual wavelet can be defined by 

qpb(x) = 1,1-1’2 4 yJ) , 

Then 

Wdf)(% b) = $sp_ f(t>* ($J) dG (2) 

and CALDER~N'S FORMULA gives 

f(x) = c?b O” S J O” (f, ,,*‘) $agb(x)a-2 dadb. (3) 
--oo --oo 

A common type of wavelet is defined using HAAR FUNC- 
TIONS. 

see &O FOURIER TRANSFORM, IIAAR FUNCTION, 
LEMARI~ WAVELET,~AVELET TRANSFORM 
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Wavelet Matrix 
A MATRIX composedof HAAR FUNCTIONS whichisused 
in the WAVELET TRANSFORM. The fourth-order wavelet 
matrix is given by 

vcr, = 

1 1 

1 1 

1 -1 

1 -1 

- [ 

1 

1 
- 

1 

-1 

0 

0 

1 

-1 

0 
0 
1 

-1 1 
1 

1 I[ 
1 

1 

-1 

1 

X 
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Weak Convergence 
Weak convergence is usually either denoted xn z =I: or 

Xn - 2. A SEQUENCE {xn.} of VECTORS in an IN- 
NER PRODUCT SPACE E is called weakly convergent to 
a VECTOR in Eif 

(XnjY> + (%Y> as n + 00, for all y E E. 

Every STRONGLY CONVERGENT sequence is also weakly 
convergent (but the opposite does not usually hold). 
This can be seen as follows. Consider the sequence 
{xn} that converges strongly to x, i.e., I[xn - xl1 + 0 as 
~2 + 00. SCHWARZ'S INEQUALITY now gives 

The definition of weak convergence is therefore satisfied. 

see &~INNER PRODUCT SPACE,SCHWARZ'S INEQUAL- 
ITY,STRONG CONVERGENCE 

1 
Weak Law of Large Numbers 

1 
Also known as BERNOULLI'S THEOREM. Let zl, . . . . zn 
be a sequence of independent and identically distributed 

0 
random variables, each having a MEAN (xi) = p and 
STANDARD DEVIATION 0. Define a new variable 

1 1 

1 -1 [ 1 x1+...+xn 

1 . 
XE . (1) n 

1 
Then, as n + 00, the sample mean (x) equals the pop- 

A wavelet matrix can be computed in O(n) steps, com- 
pared to O(nlg 2) for the FOURIER MATRIX. 

see also FOURIER MATRIX, WAVELET, WAVELET 
TRANSFORM 

Wavelet Transform 
A transform which localizes a function both in space 
and scaling and has some desirable properties compared 
to the FOURIER TRANSFORM. The transform is based 
on a WAVELET MATRIX, which can be computed more 
quickly than the analogous FOURIER MATRIX. 

see AU DAUBECHIES WAVELET FILTER, LEMARIE'S 
WAVELET 
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ulation MEAN p of each variable. 

() ( 
il:1+...+x?a 

x = 
n > 

= $(x1)+. . .+(xn)) = 2 = p 
n 

(2) 

var(x) = var 
( 

x1+ **a +x2 

n > 
Xl X?-L 

= var - +. . . + var - 
( > n ( > n 

u2 u2 - - n2+...+;;i=~* 
n (3) 

Therefore, by the CHEBYSHEV INEQUALITY, for all E > 

0, 

P(I 
var(x) g2 

x-ppE)~E2=2. 
nc (4) 
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As n + 00, it then follows that 

Web Graph 

where cn is given by 

lim P(lX - PI > E) = 0 - (5) a+00 

for E arbitrarily small; i.e., as n -+ 00, the sample MEAN 
is the same as the population MEAN. 

Stated another way, if an event occurs it: times in s 
TRIALS and if p is the probability of success in a sin- 
gle TRIAL, then the probability that the relative fre- 
quency of successes is x/s differs from p by less than 
any arbitrary POSITIVE quantity c which approaches 1 

ass-+oo. 

see also LAW OF TRULY LARGE NUMBERS, STRONG 
LAW OF LARGE NUMBERS 

Weakly Binary Tree 
NOB. A detailed on-line essay by S. Finch was the start- 

ing point for this entry. 

A ROOTED TREE for which the ROOT is adjacent to 
at most two VERTICES, and all nonroot VERTICES are 

adjacent to at most three VERTICES. Let b(n) be the 
number of weakly binary trees of order n, then b(5) = 6. 

Let 

g(z) = Fgiz”, (1) 
i=o 

where 

go = 0 (2) 
g1 = g2 = g3 = 1 (3) 

g2i+1 = 
E 

gZi+l-j9j (4) 

j=l 

i-l 

g2i = &j&i + 1) + x W-j9j- (5) 

j=l 

Otter (Otter 1948, Harary and Palmer 1973, Knuth 
1969) showed that 

Iim b( > n n3/2 
- = q, 

n+m c 
n (6) 

where 
c  = 2.48325 l  l  . 

(7) 

is the unique POSITIVE ROOT of 

1 
9 ; =l, 0 

and 
q = 0.7916032.. . . (8) 

c is also given by 

t = lim (Cn)2-n, (9) 
n-km 

co = 2 (10) 

cn = (cn-l>2 + 2, (11) 

giving 
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Weakly Complete Sequence 
A SEQUENCE of numbers V = 1~~) is said to be weakly 
complete if every POSITIVE INTEGER n beyond a cer- 
tain point 1v is the sum of some SUBSEQUENCE of V 

(Honsberger 1985). Dropping two terms from the FI- 
BONACCI NUMBERS produces a SEQUENCE which is not 
even weakly complete. However, the SEQUENCE 

FL E Fn - (-1)” 

is weakly complete, even with any finite subsequence 
deleted (Graham 1964). 

see also COMPLETE SEQUENCE 
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Weakly Independent 
An infinite sequence {ai} of POSITIVE INTEGERS is 
called weakly independent if any relation c ~iai with 
pi = 0 or &l and pi = 0, except finitely often, IMPLIES 
Ei = 0 for all i. 

see also STRONGLY INDEPENDENT 

References 
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Weakly Triple-Free Set 

see TRIPLE-FREE SET 

Web Graph 
A graph formed by connecting several concentric 
WHEEL GRAPHS along spokes. 

see also WHEEL GRAPH 
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Weber Differential Equations 
Consider the differential equation satisfied by 

Weber Functions 
Although BESSEL FUNCTIONS OF THE SECOND KIND 

are sometimes called Weber functions, Abramowitz and 
Stegun (1972) define a separate Weber function as W =2 -1i2K,-1,4($z2), (1 

where W is a WHITTAKER FUNCTION. 

d2w 
dz2 + (2k - $,2), = 0. (3) 

This is usually rewritten 

(4 

The solutions are PARABOLIC CYLINDER FUNCTIONS. 

The equations 

$-(c+k2u2)U=0 

$ + (c - k2v2)V = 0, 

(5) 

(6) 

which arise by separating variables in LAPLACE’s EQUA- 

TION in PARABOLIC CYLINDRICAL COORDINATES, are 
also known as the Weber differential equations. As 
above, the solutions are known as PARABOLIC CYLIN- 

DER FUNCTIONS. 

Web&s Discontinuous Integrals 

0 U<C 

Jo(ax) cos(cx) dx = p 
&z a>c 

c 

Srn 

$7 
U<C 

J&x) sin(cz) dx = a 

0 0 a > c, 

where Jo(x) is a zeroth order BESSEL FUNCTION OF THE 

FIRST KIND. 
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Web&s Formula 

ab 1 c-(u2+b2)l(4P2)I 

2P2 ( > y 2p2 

e-p2t2 J,(at)J,(bt)t dt, 

where !I+] > -1, 1 argpl < n/4, and a, b > 0, J,(z) is 
a BESSEL FUNCTION OF THE FIRST KIND, and I&) is 
a MODIFIED BESSEL FUNCTION OF THE FIRST KIND. 

see also BESSEL FUNCTION OF THE FIRST KIND, MOD- 

IFIED BESSEL FUNCTION OF THE FIRST KIND 
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s 

7r 

sin(v0 - z sin8) de. (1) 
0 

Letting c;2 = 15~““~‘~ be a ROOT OF UNITY, another set 
of Weber functions is defined as 

(2) 

y2 = f24(4 - 16 
f8(4 

(3) 

(4) 

(5) 

y3 = [fZ4(4 + 81[fi8W - f2Wl 
f8(4 

(6) 

(Weber 1902, Atkin and Morain 1993), where Y&Z) is 
the DEDEKIND ETA FUNCTION. The Weber functions 
satisfy the identities 

(7) 

f( > z 
fl(Z + 1) = - 

c48 
(8) 

fi(Z + 1) = c*24f2(r) (9) 

f (-;) = f(4 (10) 

f1(-;) = f&4 (11) 

f2 (-;) = fM (12) 

(Weber 1902, Atkin and Morain 1993). 

see ah ANGER FUNCTION, BESSEL FUNCTION OF 

THE SECOND KIND, DEDEKIND ETA FUNCTION, j- 

FUNCTION, JACOBI IDENTITIES, JACOBI TRIPLE PROD- 

UCT, MODIFIED STRUVE FUNCTION, Q-FUNCTION, 

STRUVE FUNCTION 

References 
Abramowita, M. and Stegun, C. A. (Eds.). “Anger and We- 

ber Functions.” $12.3 in Handbook of Mathematical Func- 
tions with Formulas, Gruphs, and Mathematical Tables, 
9th printing. New York: Dover, pp. 498-499, 1972. 

Atkin, A. 0. 1;. and Morain, F. “Elliptic Curves and Primal- 
ity Proving.” Math. Comput. 61, 29-68,1993. 

Borwein, J. M, and Borwein, P. B. Pi & the AGM: A Study in 
Analytic Number Theory and Computational Complexity. 
New York: Wiley, pp. 68-69, 1987. 

Weber, H. Lehrbuch der Algebra, Vols. I-II. New York: 
Chelsea, pp. 113-114, 1902, 



1928 Weber-Sonine Formula Weekday 

Weber-Sonine Formula 

For %[p+nu] > 0, /argpl < r/4, and a > 0, 

Jv(at)e-P2t2tp-1 dt 

where J,(Z) is a BESSEL FUNCTION OF THE FIRST 

KIND, r(z) is the GAMMA FUNCTION, and #~(a; b; Z) 
is a CONFLUENT HYPERGEOMETRIC FUNCTION. 
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Weber’s Theorem 
If two curves of the same GENUS (CURVE) > 1 are in 
rational correspondence, then that correspondence is HI- 
RATIONAL. 
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Wedderburn’s Theorem 
A FINITE DIVISION RING is a FIELD. 

Weddle’s Rule 

s x6n 

f (4 dx = &h(fl + 5f2 + f3 
Xl 

The day of the week W for a given day of the month D, 
month lW, and year 1OOC + Y can be determined from 
the simple equation 

+6f4 + 5f5 + f6 + . . + + 5f6n-1 + f6n) W E D + [Z.SM - 0.21 + l+Y] + l+C] - 2C (mod 7), 

see also BODE'S RULE, HARDY'S RULE, NEWTON- 
COTES FORMULAS, SIMPSON'S 3/8 RULE, SIMPSON'S 
RULE,TRAPEZOIDAL RULE,~EDDLE'S RULE 

Wedge 
A right triangular PRISM turned so that it rests on one 
of its lateral faces. 

see UZSO CONICAL WEDGE, CYLINDRICAL WEDGE, 
PRISM 

Wedge Product 
An antisymmetric operation on DIFFERENTIAL FORMS 
(also called the EXTERIOR DERIVATIVE) 

dxi A dxj = -dxj A dxi, (1) 

which IMPLIES 

dxi A dxi = 0 (2) 

bi A dxj = dxj A bi = bi dxj (3) 

dxi A (bi dxj) = bi dxi A dxj (4) 

01 A 02 = (bl dxl + b2 dxz) A (cl dxl + c2 dx2) 
- - (b~c2 - b4 dxl A dx2 

= -02 A 01. 

The wedge product is ASSOCIATIVE 

(sAt)Au=sA(tAu), (6) 
and BILINEAR 

(am + ~2) A t = a(~1 At) + a~(~2 A t) (7) 

s A (ah + adz) = m(s A tl) + az(s A tz), (8) 

but not (in general) COMMUTATIVE 

s A t = (-l)““(t A s), (9) 

where s is a p-form and t is a q-form. For a O-form s 
and I-form t, 

(s A t)p = st,. (10) 

For a l-form s and l-form t, 

(s At),, = ;(srt, - s&). (11) 

The wedge product is the “correct” typ 
use in computing a VOLUME ELEMENT 

e of product to 

dV = dxl A.. . A dx,. (12) 

see also DIFFERENTIAL FORM, EXTERIOR DERIVATIVE, 
INNER PRODUCT,VOLUME ELEMENT 

Weekday 

where months are numbered beginning with March and 
W = 0 for Sunday, W = 1 for Monday, etc. (Uspensky 
and Heaslet 1939, Vardi 1991). 

A more complicated form is given by 

W G D+M+C+Y (mod 7), 

where W = 1 for Sunday, W = 2 for Monday, etc. and 
the numbers assigned to months, centuries, and years 
are given in the tables below (Kraitchik 1942, pp. llO- 

ill), 

Month il!f 

January 1 
February 4 
March 3 
April 6 

May 1 

June 4 
July 6 
August 2 
September 5 
October 0 
November 3 
December 5 



Weibull Distribution Weierstrarj- Casorati Theorem 1929 

Gregorian 
Century C 

15,19, 23 1 

16, 20,24 0 

17, 21, 25 5 
18, 22, 26 3 

Julian 
Century c 

00,07,14 5 

01, 08, 15 4 
02, 09, 16 3 

03,10, 17 2 

04, 11, 18 1 

05,12, 19 0 

06,13, 20 6 

Year Y 

00 06 17 23 28 34 45 0 

01 07 12 18 29 35 40 46 1 
02 13 19 24 30 41 47 2 

03 08 14 25 31 36 42 3 

09 15 20 26 37 43 48 4 

04 10 21 27 32 38 49 5 

05 11 16 22 33 39 44 50 6 

51 56 62 73 79 84 90 0 

57 63 68 74 85 91 96 1 
52 58 69 75 80 86 97 2 
53 59 64 70 81 87 92 98 3 

54 65 71 76 82 93 99 4 

55 60 66 77 83 88 94 5 

61 67 72 78 89 95 6 

see also FRIDAY THE THIRTEENTH 
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Weibull Distribution 
The Weibull distribution is given by 

(1) 

(2) 

for x E [O,oo) (Mathematics@ StatisticsTontinuous 
Distributions'WeibullDistribution[a,b], Wolfram 
Research, Champaign, IL). The MEAN, VARIANCE, 
SKEWNESS, and KURTOSIS of this distribution are 

p = pr(l+ a-‘) (3) 
o2 = p2[r(l+2a-1)- r"(1+8)] (4) 

y1 = 
2r3(1+d) -3r(i+ d)r(i+2a-l) 

[r(i + 2~: 1) - r2( 1 + Q-1)]3/2 

Iyl+3d) 
+ [r(l+2d) - ryl++)]3/2 

f( > a 
T2 = [r(l+2&)- ry1+cc1)]2' 

where r(z) is the GAMMA FUNCTION and 

(5) 

(6) 

f( > a- -6r4(1 +"-I) +12r2(1+8)r(l+28) 

-3r2(i+2c1)- 4r(1+ 8)r(1+38) 

+r(l+48). (7) 

A slightly different form of the distribution is 

p(,) = $,0-1,-+8 

D(x) = 1 - ,-x”‘p (9) 

(Mendenhall and Sincich 1995). The MEAN and VARI- 
ANCE for this form are 

p z pa r(l+a-l) (10) 
D2 = p"/yr(i+ 2~~) - r2(1 +&)I. (11) 

The Weibull distribution gives the distribution of life- 
times of objects. It was originally proposed to quantify 
fatigue data, but it is also used in analysis of systems 
involving a “weakest link J’ 

see also FISHER-TIPPETT DISTRIBUTION 
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Weierstrafl Approximation Theorem 
If f is continuous on [a, b], then there exists a POLY- 

NOMIAL p on [a, b] such that 

If(x) - P(x)1 < tz 

for all x f [a, b] and E > 0. In words, any continuous 
function on a closed and bounded interval can be uni- 
formly approximated on that interval by POLYNOMIALS 

to any degree of accuracy. 

see also MUNTZ’S THEOREM 

Weierstrd-Casorati Theorem 
An ANALYTIC FUNCTION approaches any given value 
arbitrarily closely in any ~-NEIGHBORHOOD of an ES- 
SENTIAL SINGULARITY. 
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WeierstraB Constant 

4$) = $ rl[ ?I2 (m,n)$ [ 
l- 2(m: ‘) 1 (O!O) 

x ,1/[2~~+ni)l+l/[s(~+~~~21 

_ 25/4 fi I@ 
- 

r2(:) 
= 0.4749493799 l  l  . . 
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WeierstraB Elliptic Function 
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The WeierstraB elliptic functions are elliptic functions 
which, unlike the JACOBI ELLIPTIC FUNCTIONS, have a 
second-order POLE at z = 0. The above plots show the 
WeierstraB elliptic function p(z) and its derivative p’(z) 
for invariants (defined below) of g2 = 0 and g3 = 0. 
WeierstraB elliptic functions are denoted p(z) and can 
be defined by 

d > $+ fy 
[ 

1 
z = 

(2 - 2mwl - 2nw2)2 
m,n=-- 

1 - 1 (2mwl + 2nw2)2 ’ (1) 
Write flmn = 2mwl + 2nw2. Then this can be written 

d 1 Z = ZB2 + x’[(Z - Omn)-2 - flit]. (2) 

m,n 

Weierstralj Elliptic Function 

An equivalent definition which converges more rapidly 
is 

p(z) = (&)2 [-; +J:csc2 (z;zw21i) 

-m 

- g/ c s c 2  (TX)] l  (3) 
n=--00 

p(z) is an EVEN FUNCTION since &-z) gives the 
same terms in a different order. To specify p com- 
pletely, its periods or invariants, written &zlwl, ~2) and 
~(2; 92, gs), respectively, must also be specified. 

The differential equation from which WeierstraB elliptic 
functions arise can be found by expanding about the 
origin the function f(x) E p(z) - zB2. 

64 ) z -23 -2 = f (0) + f’(O)Z + & f”(O)x” . 

+$ f”‘(0)Z3 + a fC4)(0)z4 + l  l  l  l  . (4) 

But f (0) = 0 and the function is even, so f’(0) = 

f”‘(0) = 0 and 

f(z) = p(z) - z-2 = $ f”(O)Z” + +ft4)(0)z4 + ’ mm- (5) 

Taking the derivatives 

f 
I 

= -2E’[(Z - fJmn)-3] (6) 

f ‘I = ~C’(Z - Rmn)-4 (7) 

f 
111 

= -24C’(~ - i2mn)-5 (8) 

f (4) = 12OC’(Z - 0mn)-6* (9) 

so 

f”(0) = 6E’n;, (10) 

f’“‘(0) - 12oc’fP - mn. (11) 

Plugging in, 

d > z -z -2 = 3c’0;:z2 + 5c’&&4 + O(2). (12) 

Define the INVARIANTS 

then 

64 1 z =Z -2 + $g2z2 + &3r4 + Q(z6> (15) 

p’(z) = -2C3 + &2T + +g3z3 + 8(z5). 

Now cube (15) and square (16) 

(16) 

tJ”( > z =z -6 + gg2z-2 + &g3 + O(z2) (17) 
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gd2(r) = 4P - ;g2c2 - +g3 + O(z2). (18) 

Taking (18) - 4 x (17) cancels out the z? term, giving 

a’“(Z) - 4P3W 
- - 

( 
2 3 -- - - 
5 5 g2z-2 + (-f - +) g3 + O(t") 

> 

= -g2y2 - g3 + O(z2) (19) 

p’“(z) - 4p3(z) + g2c2 + g3 = 0(x2). (20) 

But, from (5) 

p(z) = c2 + +J’(0)r2 + &f’“‘(o)z4 +. * ., _ 

so p(z) = r2 + 8(z2) and (20) can be written 

pf2(r) - 4g”(z) +g2&) +93 = O(~“>- (22) 

The Weierstrafi elliptic function is analytic at the ori- 
gin and therefore at all points congruent to the origin. 
There are no other places where a singularity can oc- 
cur, so this function is an ELLIPTIC FUNCTION with no 
SINGULARITIES. By LIOUVILLE'S ELLIPTIC FUNCTION 
THEOREM, it is therefore a constant. But as z + 0, 
6(z2) + 0, so 

fg2(t) = 4p3(z) - g2&) - 93. (23) 

The solution to the differential equation 

12 
Y =4y3 -gay-g3 (24) 

is therefore given by y = ~(2 + a), providing that num- 
bers w1 and w2 exist which satisfy the equations defin- 
ing the INVARIANTS. Writing the differential equation 
in terms of its roots el, e2, and es, 

P2 
Y = 4Y” - gay - 93 = qy - el)(y- e2)(y- e3) (25) 

3 

2 ln(y’) = 1st + x ln(y - e,) 

2y” 
= Yl fJY - 

Y’ 
e,)-l 

r=l 

2y” 3 -- 
Y 

r2 - >: (Y - e,)-l 

T-=1 

2 yt2y”’ 
- y”(2y’y”) 

3 

Y I4 = -yl x(y - eJ2 

2Y”’ 4Y’12 -- 

Y 
13 

Y 
,4 = -&y-eJ2. 

r=l 

(26) 

(27) 

(28) 

(29) 

(30) 

Weiers traB Elliptic Amc tim 1931 

Now take (30)/4 + [(30)/412, 

[$-$]+[$] 
1 3 1 - -- - 
4 y- D eJ2 + le 

r=l 

2 

3 

I 

2 

In 
y - e,)-l (31) 

r=l 

- iy fi(y-er)-‘. (32) 

r=l 

The term on the right is half the SCHWARZIAN DERIV- 
ATIVE. 

The DERIVATIVE of the Weierstrafi elliptic function is 
given by 

=-2y3 - 
I 

2cc 
z - nmn)-3. (33) 

m,n 

This is an ODD FUNCTION which is itself an elliptic func- 
tion with pole of order 3 at z =‘O. The INTEGRAL is 
given by 

Z= (4t” - g2t - g3)-li2 dt. (34) 

A duplication formula is obtained as follows. 

p(2a) = lim p(y + z) = i lim 
[ 

P’(Z) - P’(Y) 2 

Y+= Y+= PC4 - P(Y) I 

- f?(Z) - lim P(Y) 
Y-+X 

1 
=- 

lim 644 - P’b + h) 2 _ 2&) 
4 h-b0 [ p(x) - Pb + h) 1 
1 

=- 
lim P’b) - P’b + h) 

2 

4 h 
lkl 

h 

h+O h-b0 p(z) - P(Z + h) I> 
- %w 

= 1 P’W 2 
4 P’b) [ 1 - %w. (35) 

A general addition theorem is obtained as follows. Given 

p’(x) = &J(Z) + B (36) 

64Y) = MY) +B (37) 

with zero y and z where z $ *y (mod 2wl,2w~), find the 
third zero c. Consider p’(C) - A@(<) - B. This has a 
pole of order three at c = 0, but the sum of zeros (= 0) 
equals the sum of poles for an ELLIPTIC FUNCTION, so 
z+y+[=Oand[=-z-y. 

p’(--z - y) = A&z - Y> + B (38) 
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-p’(z + y) = A& + y) + B. (39) 

Combining (36)) (37)) and (39) gives 

[ 

&> 
P(Y) 

fP(z + Y> 
sp38y) I] [Jj] = [i] > (40) 

so 
PC4 P’W 1 
P(Y) p’(y) 1 = 0. (41) 

dz + Y> -Pb+Y) 1 

Defining u + 21 + w  = 0 where u E z and zf E y gives the 
symmetric form 

p(v) p’(v) 1 = 0. (42) 
k3w P(w) 1 

To get the expression explicitly, start again with 

f?‘(C) - A@(C) - B = 0, (43) 

where c = z, y, --z - y. 

P’“(C) - MC) + B12 = 0. (44) 

But P2 (5) = 4p4K) - i?wK) - 9% so 

4p3(C)-A2p2(C)-(2AB+g2)p(C)-(B2+g3) = 0. (45) 

The solutions p(c) G x are given by 

4x3 - A2z2 - (2AB -t’gz)z - (B2 +g3) = 0. (46) 

But the sum of roots equals the COEFFICIENT of the 
squared term, so 

644 + P(Y) + dz + Y> = iA2 (47) 

P’(x) - P’(Y) = 444 - P(Y)1 (48) 

A _ k3’k) - P’(y) 

i ,:i 

d4 - P(Y) 
(49) 

f 
t++Y)= - z - - ;(y 

2 

- 644 - P(Y). (50) 

Half-period ident it ies include 

x = g3( +wl> = p( -hwl + WI) = e1 + 
(el - e2)(el - e3) 

a(- $1) - el 

= el + 
(a - e2)(el - e3) 

* 
x - e1 

(51) 

Multiplying through, 

x2 - elx = elx - e12 + (el - e2)(el - es) (52) 

x2 - 2431 +[e12 - (el - e2)(el - es)] = 0, (53) 

Weierstralj Elliptic Function 

which gives 

e12 - 4[e12 - (el - ez)(el - es)] 
> 

= el * &a - e2)(el - es). (54) 

From Whittaker and Watson (1990, p. 445), 

The function is HOMOGENEOUS, 

p(~z~Xw1,Xw2) = X-2g3(4wl,W2) (56) 

@(AZ; x492, Pg3) = x-2p(z; $727 93)* (57) 

To invert the function, find 2~1 and 2~2 of &IWI,WZ) 
when given &z;g~,g& Let el, e2, and e3 be the roots 
such that (er - ez)/( el-e3)isnota REAL NUMBER > 1 
or < 0. Determine the PARAMETER 7 from 

Now pick 

el - e2 644(01r) 

- = 834(01T)’ el - e3 

r 

(5% 

As long as gz3 # 2793, the periods are then 

2wl = nA (60) 

2w2 = 7. 

WeierstraB elliptic functions can be expressed in terms 
of JACOBI ELLIPTIC FUNCTIONS by 

p(u; g2,g3) = e3 + (el - e3) 

as2 (dG,/E), (62) 

where 

p(w) = el 

k3(~2) = e2 

p(w3) = --&-WI - ~2) = e3, 

and the INVARIANTS are 

Here, n,, E 2mwl - 2nw2. 

(66) 
(67) 
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An addition formula for the Weierstrafl elliptic function 
can be derived as follows. 

p(z + WI> + PM + dwd 
1 d(4 

2 
- PYWd 1 d2(4 -- -- - [ - 

&I dwd 1 
[p(z) - aI2 l  4 - 4 

(68) 

Use 

r=l 

so 

14n;=,w - 4 p(z + WI) = -p(x) - el + 4 
Id4 - e112 

-- - PC > z -el + bk) ;P;1w - e31m 
z - el 

(70) 

Use Cs=, e, = 0, 

fp(z + WI) = el + 
[-2e1 - fJ(~>l[&> - 4 

PM - el 
+ p2(z) - p(z)+2 + e3) + e2e3 

644 - e1 

-p(z)(el + e2 + e3) + e2e3 + 2el 
2 

= el + 
d > 

. 
z - el 

(71) 

But Cl=, e, = 0 ad 

2e12+e2e3 = e12 -+2+e3)+e2e3 = (el -e2)(el-es), 

(72) 

so 
p(x +wl) = el + 

(a - e2)(el - e3) 

d > 
(73) 

z -el * 

The periods of the Weierstrafl elliptic function are given 
as follows. When g2 and g3 are REAL and gz3 - 279~~ > 
0, then el, e2, and e3 are REAL and defined such that 
el > e2 > e3. 

Wl = s (=(4t3 - g2t - g3)-1/2 dt 
e1 

s 

e3 

w3 = 4 (g3 + g2t - 4t3)-1’2 dt 
--oo 

(74) 

(75) 

w2 = -w1 - w3. (76) 
- 

The roots of the WeierstraB elliptic function satisfy 

el = &WI) (77) 

e2 = &2) (78) 

453 = t+3), (79) 

Weierstralj Function 1933 

where w3 G -01 -u2. The eis are ROOTS of 4t3 -gzt-g3 
and are unequal so that el # e2 # es. They can be 
found from the relationships 

el + e2 + e3 = -a2 = 0 (80) 

e2e3 + e3el + ele2 = al = -ig2 (81) 

ele2e3 = -a0 = ig3* (82) 

see also EQUIANHARMONIC CASE, LEMNISCATE CASE, 
PSEUDOLEMNISCATE CASE 
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Weierstrafi-Erdman Corner Condition 
In the CALCULUS OF VARIATIONS, the condition 

f&7 Yt Y’(4) = f& Y,Y%+H 

must hold at a corner (x, y) of a minimizing arc El2. 

WeierstraB Extreme Value Theorem 

~~~EXTREME VALUE THEOREM 

WeierstraJS Form 
A general form into which an ELLIPTIC CURVE over any 
FIELD K can be transformed is called the WeierstraB 
form, and is given by 

y2 + ay = x3 + bx2 + cxy + dx + e, 

where a, b, c, d, and e are elements of K. 

WeierstraB Function 
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A C~NTIN uous FUNCTION 
EN TIABLE. It is given by 

which is nowhere DIFFER- 

f (2) = T b” cos(un7Tx) 
n=l 

where 72 is an ODD INTEGER, b E (0, l), and ab > 1 + 
3n/2. The above plot is for a = 10 and b = l/Z. 

see UZSO BLANCMANGE FUNCTION, CONTINUOUS FUNC- 
TION, DIFFERENTIABLE 
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WeierstraB’s Gap Theorem 
Given a succession of nonsingular points which are on a 
nonhyperelliptic curve of GENUS p, but are not a group 
of the canonical series, the number of groups of the first 
k which cannot constitute the group of simple POLES 
of a RATIONAL FUNCTION is p. If points next to each 
other are taken, then the theorem becomes: Given a 
nonsingular point of a nonhyperelliptic curve of GENUS 
p, then the orders which it cannot possess as the single 
pole of a RATION AL FUNCTION are p in number. 

References 
Coolidge, J. L. A Treatise on Algebraic Plane Curves. New 

York: Dover, p. 290, 1959* 

Weierstrafi Intermediate Value Theorem 
If a continuous function defined on an interval is some- 
times POXTIVE and sometimes NEGATIVE, it must be 0 
at some point. 

Weierstraf! M-Test 
Let Crzl tin(x) be a SERIES of functions all defined for 
a set E of values of x. If there is a CONVERGENT series 

such that 

for all II: E E, then the series exhibits ABSOLUTE CON- 
VERGENCE for each 61: E E as well as UNIFORM CON- 
VERGENCE in E. 

see also ABSOLUTE CONVERGENCE, UNIFORM CONVER- 
GENCE 
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WeierstraB Point 
A POLE of multiplicity less than p + 1. 
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WeierstrA’s Polynomial Theorem 
A function, continuous in a finite close interval, can be 
approximated with a preassigned accuracy by POLYNO- 
MIALS. A function of a REAL variable which is continu- 
ous and has period 2n can be approximated by trigono- 
metric POLYNOMIALS. 

References 
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WeierstraB Product Inequality 
If 0 5 a,b,c,d < 1, then 

(1 - a)(1 - b)(l - c)(l - d) + a + b + c+ d > 1. - 
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Weierstraf! Sigma Function 
The QUASIPERIODIC FUNCTION defined by 

(1) 

where C(Z) is the WEIERSTRAB ZETA FUNCTION and 

lim a(z> - 1 - . 
;r+o 2 (2) 

Then 

I 

a(z) = z 
NC 

1-L z2 

f-2 =P (3) mn i+s 0 
mn ) ( mn mn )I 

a(z + 2~1) = -e2~r(z+w1~~(z) (4) 

n=1 
0(x + 2wz) = -e2q2(r+w2)Cr(z) (5) 



WeierstraB ‘s Theorem 

(6) 

Weighings 1935 

If Al: + y + z = 0, then 

4+1,w2)= n6' ““:exp(-q&(+2), (7) 

, where v E 7~/(2wl), and 

(8) 

(9) 
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WeierstraPs Theorem 
The only hypercomplex number systems with commu- 
tative multiplication and addition are the algebra with 
one unit such that e = e2 and the GAu ASIAN INTEGERS. 

see UZSO GAUSSIAN INTEGER, PEIRCE'S THEOREM 

Weierstrafi Zeta Function 
The QUASIPERIODIC FUNCTION defined by 

with 
lim[C(x) - z-l] = 0. 
X-b0 

(2) 

Then 

cc > 
-1 

s 
'[P( > 

-2 
z -2 =- z -z Id z 

0 

= -g 
s 

y(z - a-nn)-2 - f-&2,] dz (3) 
0 

5( 1 z =z-l+ 7,’ [(x-n,J1+sl,l,+z~~:] (4) 

m,n=-m 

so c(z) is an ODD FUNCTION. Integrating &z+2w1) = 
p( 2) gives 

c(z + 24 = 5(z) + 2Vl’ (5) 

Letting 2 = - WI gives c(-w)+2q1 = -@1)+Q1, so 

71 = [(WI). Similarly, r/2 = [(wz). From Whittaker and 
Watson (1990), 

7lW2 - r/ZWl = +. (6) 

[C(x) + C(y) + <@)I2 + c1(x) + ~t(Y>w = a 0 

Also, 

I 1 P(X) P”(X) I 
1 P(Y) P2b) 

1 P(4 fP"M 

211 P(X) P'bl 
= <(a: + y + 2) - <(xl - C(Y) - c’(z) 

(Whittaker and Watson 1990, pg 446). 
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Analysis, 4th ed. Cambridge, England: Cambridge Uni- 
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Weighings 
n weighings are SUFFICIENT to find a bad COIN among 

(3 n - 1)/2 COINS. vos Savant (1993) gives an algorithm 
for finding a bad ball among 12 balls in three weighings 
(which, in addition, determines if the bad ball is heavier 
or lighter than the other 11). 

Bachet’s weights problem asks for the minimum number 
of weights (which can be placed in either pan of a two- 
arm balance) required to weigh any integral number of 
pounds from 1 to 40. The solution is 1, 3, 9, and 27: 1, 
2= -1+3,3,4=1+3,5=-l-3+9,6=-3+9, 
7= l-3+9,8 = -1+9,9,10 = 1+9,11= -1+3+9, 
12 = 3 + 9, 13 = 1 + 3 + 9, 14 = -1 - 3 - 9 + 27, 
15 = -3-9+27, 16 = l-3-9+27,17=-1-9+27, 
and so on. 

see also GOLOMB RULER,~ERFECT DIFFERENCE SET, 
THREE JUG PROBLEM 
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Bachet, C. G. Problem 5, Appendix in Problkmes plaisans et 

dklectables, 2nd ed. p. 215, 1624. 
Ball, W. W. R. and Coxeter, H. S. M. Muthematical Recre- 

ations and Essays, 13th ed. New York: Dover, pp. 50-52, 
1987. 
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W. W. Norton, pp* 52-55, 1942. 

Pappas, T. %ounterfeit Coin Puzzle.” The Joy of Mathe- 
matics. San Carlos, CA: Wide World Publ./Tetra, p. 181, 
1989. 

Tart aglia. Book 1, Ch. 16, $32 in Trattato de’ numeri e 
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Weight 
The word weight has many uses in mathematics. It 
can refer to a function w(z) (also called a WEIGHTING 
FUNCTION or WEIGHT FUNCTION) used to normalize 
ORTH~N~RMAL FUNCTIONS. It can also be used to in- 
dicate one of a set of a multiplicative constants placed in 
frontoftermsina MOVING AVERAGE,NEWTON-CITES 
FORMULAS, edge or vertex of a GRAPH or TREE, etc. 

see also WEIGHTED TREE, WEIGHTING FUNCTION 

Weight Function 

see WEIGHTING FUNCTION 

Weighted Tree 
A TREE in which each branch is given a numerical 
WEIGHT (i.e., a labelled TREE). 

see U~SO LABELLED GRAPH, TAYLOR'S CONDITION, 
TREE 

Weighting Function 
A function w(z) used to normalize ORTHONORMAL 
FUNCTIONS 

s [fn(z)12 w(z) da: = AL. 
see also WEIGHT 

Weingart en Equations 
The Weingarten equations express the derivatives of the 
NORMAL using derivatives of the position vector. Let 
X: U + Ik3 a REGULAR PATCH, then the SHAPE OP- 

ERATOR S of x is given in terms of the basis {x,, xv} 

bY 

-S(& 

- SC XV 

)=N,= ~G-;~xu+ eF-fEx, (1) - EG-F2 

where N is the NORMAL VECTOR, E, F, and G the 
coefficients of the first FUNDAMENTAL FORM 

ds2 = Edu’+ 2Fdudv + Gdu2, (3) 

and e, 
MENTA 

f 7 and g the coefficients 
.L FORM given bY 

of the second FUNDA- 

e= -N, . xu = N - xuu 

f =-N,mx,=N-x,, 

= N,, l  x v u  = -N, l  x ,  

9= -Nv’xv =N-xvv. 

(4) 

(5) 

(6) 

see UZSOFUNDAMENTAL FORMS,SHAPE OPERATOR 

fCeferences 
Gray, A. “Calculation of the Shape Operator.” 514.3 in Mod- 

ern Differential Geometry of Curves and Surfaces. Boca 
Raton, FL: CRC Press, pp* 274-277, 1993. 

Weingarten Map ’ 

see SHAPE OPERATOR 

Weird Number 
A number which is ABUNDANT without being SEMIPER- 
FECT. (A SEMIPERFECT NUMBER is the sum of any 
set of its own DIVISORS.) The first few weird numbers 
are 70, 836, 4030, 5830, 7192, 7912, 9272, 10430, . . l  

(Sloane’s A006037). No ODD weird numbers are known, 
but an infinite number of weird numbers are known to 
exist. The SEQUENCE of weird numbers has POSITIVE 
SCHNIRELMANN DENSITY. 

see also ABUNDANT NUMBER, SCHNIRELMANN DEN- 
SITY, SEMIPERFECT NUMBER 

kteferences 
Benkoski, S. “Are All Weird Numbers Even?” Amer. Math. 

Monthly 79, 774, 1972. 
Benkoski, S. J. and Erdiis, P. “On Weird and Pseudoperfect 

Numbers.” Math. Comput. 28, 617-623, 1974. 
Guy, R. K. “Almost Perfect, Quasi-Perfect, Pseudoperfect, 

Harmonic, Weird, Multiperfect and Hyperperfect Num- 
bers.” §B2 in Unsolved Problems in Number Theory, 2nd 
ed. New York: Springer-Verlag, pp. 45-53, 1994. 

Sloane, N. J. A. Sequence A006037/M5339 in ‘&An On-Line 
Version of the Encyclopedia of Integer Sequences." 

Welch Apodization Function 

The APODIZATION FUNCTION 

A(z) = 1- 5. 

Its FULL WIDTH AT HALF MAXIMUM is &. Its IN- 
STRUMENT FUNCTION is 

I(k) 
J3/2 (2Tka) - - aa6 
(2rka)3/2 

=a 
sin( 2rka) - 2nak cos(2;rrak) 

2a3k3n3 
9 

where J*(Z) is a BESSEL FUNCTION OF THE FIRST 
KIND. It has a width of 1.59044, a maximum of $, maxi- 
mum NEGATIVE sidelobe of -0.0861713 times the peak, 
and maximum POSITIVE sidelobe of 0.356044 times the 
peak. 

see also A 
TION 

PODIZATION FUN 

References 

CTIUN, IN STRUMENT FUNC- 

Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetter- 
ling, W. T. Numerical Recipes in FORTRAN: The Art of 
Scient$c Computing, 2nd ed. Cambridge, England: Cam- 
bridge University Press, p* 547, 1992. 
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Well-Defined 
An expression is called well-defined (or UNAMBIGUOUS) 

if its definition assigns it a unique interpretation or 
value. Otherwise, the expression is said to not be well 
defined or to be AMBIGUOUS. 

For example, the expression abc (the PRODUCT) is well- 
defined if a, b, and c are integers. Because integers are 
ASSOCIATIVE, abc has the same value whether it is in- 
terpreted to mean (ab)c or a@). However, if a, b, and 
c are MATRICES or CAYLEY NUMBERS, then the expres- 
sion abc is not well-defined, since MATRICES and CAY- 

LEY NUMBER are not, in general, ASSOCIATIVE, so that 
the two interpretations (ab)c and a(k) can be different. 

Sometimes, ambiguities are implicitly resolved by no- 
tational convention. For example, the conventional in- 
terpretation of a A b A c = abc is acbcJ, never (ab)c, so 
that the expression a A b /\ c is well-defined even though 
exponentiation is nonassociative. 

Well-Ordered Set 
A SET having the property that every nonempty SUBSET 
has a least member. 

see ah AXIOM OF CHOICE, HILBERT’S PROBLEMS, 

SUBSET, WELL-ORDERING PRINCIPLE 

Well-Ordering Principle 
Every nonempty set of POSITIVE integers contains a 
smallest member. 

see also WELL-ORDERED SET 

References 
Shanks, D. Solved and Unsolved Problems in Number Theory, 

4th ed. New York: Chelsea, p. 149, 1993. 

Werner Formulas 

2 sina co@ = sin(a - p) + sin(a + p) (1) 

2 cos a cosp = cos(a - p> + cos(a + p) (2) 
2cosalsinP = sin(a + p) - sin@ - p) (3) 

2 sin a sinp = cos(cy - p) - cos(cr + p)* (4) 

see &o TRIGONOMETRY 

Weyl’s Criterion 
A SEQUENCE {xl, x2,. . +} is EQUID~STRIBUTED IFF 

for each m = 1, 2, l  . l  . 

see also EQUIDISTRIBUTED SEQUENCE, RAMANUJAN'S 

SUM 

References 
Pblya, G. and Szegi;, G. Problems and Theorems in Analysis 

I. New York: Springer-Verlag, 1972. 
Vardi, I. Computational Recreations in Mathematics. Red- 

wood City, CA: Addison-Wesley, pp. 155-156 and 254, 
1991. 

Weyl Tensor 
The TENSOR 

where J?jkl is the RIEMANN TENSOR and R is the CUR- 
VATURE SCALAR. The Weyl tensor is defined so that 
every CONTRACTION between indices gives 0. In partic- 
ular, C’p~n = 0. The number of independent compo- 
nents for a Weyl tensor in N-D is given by 

CN = &N(N + l)(N + 2)(N - 3). 

see also CURVATURE SCALAR,RIEMANN TENSOR 

References 
Weinberg, S. G ravitation and Cosmology: Principles and 

Applications of the General Theory of Relativity. New 
York: Wiley, p. 146, 1972. 

Weyrich’s Formula 
Under appropriate constraints, 

> e iTx dT = 

where Hil’ (z) is a HANKEL FUNCTION OF THE FIRST 

KIND. 

References 
Iyanaga, S. and Kawada, Y. (Eds.). Encyclopedic Dictionary 

of Mathematics. Cambridge, MA: MIT Press, p* 1474, 
1980. 

Wheat and Chessboard Problem 
Let one grain of wheat be placed on the first square of a 
CHESSBOARD, two on the second, three on the third, etc. 
How many grains total are placed on an 8 x 8 CHESS- 

BOARD? Sincethisis a GEOMETRIC SERIES, the answer 
for n squares is 

Plugging in n = 8 x 8 = 64 then gives 264 - 1 = 
18446744073709551615. 

References 
Pappas, T. “The Wheat and & Chessboard.” The Joy of 

Mathematics. San Carlos, CA: Wide World Publ./Tetra, 
p. 17, 1989. 

Wheel 

see ARISTOTLE'S WHEEL PARADOX, BENHAM'S 
WHEEL,WHEEL GRAPH 
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Whirl Wheel Graph 

W4 Ws W6 
A GRAPH W, of order n which contains a CYCLE of 
order n - 1, and for which every NODE in the cycle is 
connected to one other NODE (known as the HUB). In 
a wheel graph, the HUB has DEGREE n - 1, and other 
nodes have degree 3. ry4 = &, where Kd is the COM- 
PLETE GRAPH of order four. 

see also COMPLETE GRAPH,GEAR GRAPH,HUB,WEB 
GRAPH 

Wheel Paradox 

see ARISTOTLE'S WHEEL, PARADOX 

Whewell Equation 
An INTRINSIC EQUATION which expresses a curve in 
terms of its ARC LENGTH s and TANGENTIAL ANGLE 
4 l  

see also ARC LENGTH, CESARO EQUATION, INTRINSIC 
EQUATION, NATURAL EQUATION, TANGENTIAL ANGLE 

References 
Yates, R. C. “Intrinsic Equations.” A Handbook on Curves 

and Their Properties. Ann Arbor, MI: J. W. Edwards, 
pp. 123-126, 1952. 

Whipple’s Transformation 

a, 1 + $a, b, c, d, e, -m 

7F6 ia, 1+ a - b, 1+ a - c, 
l+a-d,l+a-e,l+a+m 1 

(1 + a)& + a - d - e), - - 
(l+ a - d),(l+ a - e), 

x4F3 
1 + a - b - c, d, e, -m 1 l+a-b,l+a-c,d+e-a-m ’ 

where 7F6 and 4F3 are GENERALIZED HYPERGEOMET- 
RIG FUNCTIONS and l?(z) is the GAMMA FUNCTION. 

see also GENERALIZED HYPERGEOMETRIC FUNCTION 

Whirls are figures constructed by nesting a sequence of 
polygons (each having the same number of sides), each 
slightly smaller and rotated relative to the previous one. 

see also DAISY, SWIRL 

References 
Lauwerier, J3. Fractals: Endlessly Repeated Geometric Fig- 

ures. Princeton, NJ: Princeton University Press, p. 66, 
1991. 

Pappas, T. “Spider & Spirals.” The Joy of Mathematics. 
San Carlos, CA: Wide World Publ./Tetra, p. 228, 1989. 

@ Weisstein, E. W. ‘rfiactals.” http: //VW. astro. Virginia. 
edu/-eww6n/math/notebooks/Fractal.m. 

Whisker Plot 

see BOX-AND-WHISKER PLOT 

Whitehead Double 
The SATELLITE KNOT of an UNKNOT twisted inside a 
TORUS. 

see also SATELLITE KNOT, TORUS, UNKNOT 

References 
Adams, C. C. The Knot Book: An Elementary Introduction 

to the Mathematical Theory of Knots. New York: W. H. 
Freeman, pp. 115-116, 1994. 

Whitehead Link 

The LINK 502 --1 ol12illustrated above, with BRAID WORD 
u12u22u1 u2 and JONES POLYNOMIAL 

V(t) = t-3’2(-1 + t - 2t2 + t3 - 2t4 + t”). 

The Whitehead link has LINKING NUMBER 0. 
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Whitehead Manifold 
An open Z-MANIFOLD which is simply connected but is 
topologically distinct from Euclidean 3-space. 

References ~(24 = max 
Rolfsen, D. Knots and Links. Wilmington, DE: Publish or 

Perish Press, p. 82, 1976. 

Whitehead’s Theorem 
MAPS between CW-COMPLEXES that induce ISOMOR- 
PHISMS onall HOMOTOPY GROUPS areactually HOMO- 
ToPY equivalences. 

see also CW-COMPLEX, HOMOTOPY GROUP, ISOMOR- 
PHISM 

Whitney-Graustein Theorem 
A 1937 theorem which classified planar regular closed 
curves up to regular HOMOTOPY by their WINDING 
NUMBERS. In his thesis, S. Smale generalized this re- 
sult to regular closed curves on an ~-MANIFOLD. 

Whitney-Mikhlin Extension Constants 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

Let &(T) be the n-D closed BALL of RADIUS r > 1 
centered at the ORIGIN. A function which is defined 
on B(r) is called an extension to B(r) of a function f 
defined on B( 1) if 

F(x) = f(x)V x E B(1). (1) 

Given 2 BANACH SPACES of functions defined on B(I) 
and B(r), find the extension operator from one to the 
other of minimal norm. Mikhlin (1986) found the best 
constants x such that this condition, corresponding to 
the Sobolev W&2) integral norm, is satisfied, 

x(17 4 = 1. Let 
u = gn - 2), (3) 

then for n > 2, 

L(+L+I(~) + K&)L+l(l) 
L(r)JL(l) - K&)L(l) ’ 

(4) 

where I,(X) is a MODIFIED BESSEL FUNCTION OF THE 
FIRST KIND and K,(r) is a MODIFIED BESSEL FUNC- 
TION OF THE SECOND KIND. For n= 2, 

l + L(l) L(+G+l(l) + K&=)L+dl) 

m I&)Kv(l) - K&)1,(1) 

d l+ 

Il(1) 
h(1)+ 12(l) 

l + k(r)Ko(l) + &(+o(l) 
h(+G(l) - Kl(r)b(l) - 

For 1” -+ 00, 

x(n,m) = ddj 

which is bounded by 

n- 1 < x(n, 00) < Jm. 

For ODD n, the RECURRENCE RELATIONS 

ak+l = t&-l - (2k - l)ak 

bk+l = h-1 +(= - l)bk 

with 

a0 = e + e-l 
-1 

al =e-e 

bo = e -1 

bl = e -1 

where e is the constant 2.71828.. . , give 

(5) 

(6) 

(7) 

(8) 
(9) 

W) 
(11) 
(12) 
(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

Gw 

Similar formulas can be given for even n in terms of 
lo(l), 11(l), Ko(l), Kl(1). 

References 
Finch, S. “Favorite Mathematical Constants.” http: //uww l  

mathsoft.com/asolve/constant/mkhln/mkhln.html. 
Mikhlin, S. G. Constants in Some Inequalities of Analysis. 

New York: Wiley, 1986. 
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Whitney Singularity 

see PINCH POINT 

Whitney Sum 
An operation that takes two VECTOR BUNDLES over a 
fixed SPACE and produces anew VECTOR BUNDLE~~~~ 
the same SPACE. If El and E2 are VECTOR BUNDLES 
over B, then the Whitney sum El @ Ez is the VECTOR 
BUNDLE over B such that each FIBER over B is naturally 
the direct sum of the El and Ez FIBERS over B. 

The Whitney sum is therefore the FIBER for FIBER di- 
rect sum of the two BUNDLES El and Ez. An easy for- 
mal definition of the Whitney sum is that El @ Ez is 
the pull-back BUNDLE of the diagonal map from B to 
B x B, where the BUNDLE over B x B is El x I&. 

see also BUNDLE, FIBER, VECTOR BUNDLE 

Whitney Umbrella 

A surface which can be interpreted as a self-intersecting 
RECTANGLE in 3-D. It is given by the parametric equa- 
t ions 

2 = UZI (1) 

y=u (2) 

z = 2r2 (3) 

for u, w  E [-1, 11. The center of the “plus” shape which 
is the end of the line of self-intersection is a PINCH 
POINT. The coefficients of the first FUNDAMENTAL 
FORM are 

E=O (4) 

F= 
2v 

1/u2 + 4v2 + 4u4 

G=- 
2u 

1/u2 + 4v2 + 4v4 ’ 

(5) 

(6) 

and the coefficients of the second FUNDAMENTAL FORM 

giving GAUSSIAN CURVATURE and MEAN CURVATURE 

4v2 
K = -(u2 +4v2 +4v4)2 

up + 3v2) 
H = -(u2 +4+ +4v4)3/2' (11) 

References 
F’rancis, G. K. A Topological Picturebook. New York: 

Springer-Verlag, pp. 8-9, 1987. 
Geometry Center. “Whitney’s Umbrella.” http://www. 

geom*umn*edu/zoo/features/vhitney/. 
Gray, A. Modern Differential Geometry of Curves and Sur- 

faces. Boca Raton, FL: CRC Press, pp. 225 and 309-310, 
1993. 

Whittaker Differential Equation 

~+~+(~+~)u=o. (1) 

Let u z eBz12 F&,-&z), where M&-,&z) denotes a WHIT- 
TAKER FUNCTION. Then (1)becomes 

d 
-(-- dz ie -%12w + p/zw’) + (+-@w + e-“l2J/v’) 

+(~++p2w=,* (2) 

Rearranging, 

( $e --2/2w- +-/2w _ 3-"337 +e-z/2wlt)p 

+(-+e -Gw + e-42 wf)+(;+k$)e-42w 

= 0 (3) 

so 

w” + 
( 

1 k 1-m2 
-4f++ w=o, 

z > 
(5) 

where W’ = dW/dz. The solutions are known as WHIT- 
TAKER FUNCTIONS. 

References 
Abramowita, M. and Stegun, C. A. (Eds,). Handbook 

of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables, 9th printing. New York: Dover, 
p* 505, 1972. ’ 

e=1+v2 (7) 

f = uv (8) 
g=u2+4v2, (9) 
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Whittaker Function 
Solutions to the WHITTAKER DIFFERENTIAL EQUA- 
TION. The linearly independent solutions are 

X 
i+m-k + (:+m-k)(z+m-k)z2+ 

l+ 1!(2m + 1) 2!(2m+ 1)(2m+ 2) 

(1) 

and Mk,-,Jz), where Mk,m(~) is a CONFLUENT HYPER- 
GEOMETRIC FUNCTION. In terms of CONFLUENT HY- 
PERGEOMETRIC FUNCTIONS, the Whittaker functions 
are 

Mk,m (z) = e-“‘2~m+1’2 d?1(~+m-k,1+2m;z) (2) 

wk,m(z) = 13 
--z/2Zm+1/2 

U(i+m-k,1+2m;z) (3) 

(see Whittaker and Watson 1990, pp. 339-351). How- 
ever, the CONFLUENT HYPERGEOMETRIC FUNCTION 
disappears when 2m is an INTEGER, so Whittaker func- 
tions are often defined instead. The Whittaker functions 
are related to the PARABOLIC CYLINDER FUNCTIONS. 
When [arg zI < 3~/2 and 2m is not an INTEGER, 

wk,&) = r(;(-;ml ,)Mk,&) 

2- 

+ Wm) 
r(+ + m - k) 

Mk,-m(Z). (4) 

When 1 arg(-z)( < 3~/2 and 2m is not an INTEGER, 

w-k,m(-z) = 
r(-2m> Msk m 

I?<; - m-k) ’ ( ) --z 

rk-4 
+r(i +m+k) M-k,-r&z). (5) 

Whittaker functions satisfy the RECURRENCE RELA- 
TIONS 

wk,m(z) = 2 1’2Wk-1/2,,-1/2(Z)+(~-IC+m)Wk--l,m(T) 

(6) 

wk,m(z) = ~1’2wk-1,2,m+~,2(Z)+( $ -k-m)wk--I,&) 

(7) 

zW&,&) = (k-~z)w~,,(z)-[m2-(k-~)2]Wk~~,,(n). 

(8) 
see also CONFLUENT HYPERGEOMETRIC FUNCTION, 

KUMMER'S FORMULAS,PEARSON-CUNNINGHAM FUNC- 
TION, SCHL~MILCH'S FUNCTION, SONINE POLYNOMIAL 

References 
Abramowitz, M. and Stegun, C. A. (Eds.). “Confluent Hy- 

pergeometric Punctions.” Ch. 13 in Handbook of Mathe- 
matical Functions with Formulas, Graphs, and Mathemat- 
ical Tables, 9th printing. New York: Dover, pp. 503-515, 
1972. 

Iyanaga, S. and Kawada, Y. (Eds.). “Whittaker Functions.” 
Appendix A, Table 19.11 in Encyclopedic Dictionary of 
Mathematics. Cambridge, MA: MIT Press, ppm 1469-1471, 
1980. 

Whittaker, E. T. and Watson, G. N. A Course in Modern 

AnaEysis, 4th ed. Cambridge, England: Cambridge Uni- 
versity Press, 1990. 

Whole Number 
One of the numbers 1, 2, 3, l  . . (Sloane’s A000027), also 
calledthe COUNTING NUMBERS or NATURAL NUMBERS. 
0 is sometimes included in the list of “whole” numbers 
(Bourbaki 1968, Halmos 1974), but there seems to be no 
general agreement. Some authors also interpret “whole 
number” to mean “a number having FRACTIONAL PART 
of zero,” making the whole numbers equivalent to the 
integers. 

Due to lack of standard terminology, the following terms 
are recommended in preference to “COUNTING NUM- 
BER, 11 “NATURAL NUMBER,,, and “whole number.” 

Set Name Symbol 

l **, -2, -1, 0, 1, 2, . l  . integers z 
1, 2, 3, 4, . . l  positive integers z” 
0, 1, 2) 3) 4 . . . nonnegative integers Z* 
-1, -2, -3, -4, . . l  negative integers z 

- 

see also COUNTING NUMBER, FRACTIONAL PART, IN- 
TEGER,N,NATURAL NuMBER,&Z+,Z+,~* 

References 
Bourbaki, N. Elements of Mathematics: Theory of Sets. 

Paris, France: Hermann, 1968. 
Halmos, P. R. Naive Set Theory. New York: Springer-Verlag, 

1974. 
Sloane, N. J. A. Sequence A000027/M0472 in “An On-Line 

Version of the Encyclopedia of Integer Sequences.” 

Width (Partial Order) 
For a PARTIAL ORDER, the size of the longest AN- 
TICHAIN is called the width. 

see ~2~0 ANTICHAIN, LENGTH (PARTIAL ORDER), PAR- 
TIAL ORDER 

Width (Size) 
The width of a box is the horizontal distance from side 
to side (usually defined to be greater than the DEPTH, 
the horizontal distance from front to back). 

see also DEPTH (SIZE), HEIGHT 

References 
Eppstein, D. “Width, Diameter, and Geometric Inequali- 

ties.” http://vuw. its l ci. edu/-eppstein/ junkyard/ 
diam.html. 

Wiedersehen Manifold 
The only Wiedersehen manifolds are the standard round 
spheres, as was established by proof of the BLASCHKE 
CONJECTURE. 

see UZSO BLASCHKE CONJECTURE 

Wieferich Prime 
A Wieferich prime is a PRIME p which is a solution to 
the CONGRUENCE equation 

2’-l G 1 (mod p”> . 
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Note the similarity of this expression 

of FERMAT’S LITTLE THEOREM 

to the special case 

2 p-1 E 1 (mod p) 7 

which holds for all ODD PRIMES. However, the only 
Wieferich primes less than 4 x 1012 are p = 1093 and 
3511 (Lehmer 1981, Crandalll986, Crandall et al. 1997). 
Interestingly, one less than these numbers have sugges- 
tive periodic BINARY representations 

1092 = 100010001002 

3510 = 110110110110~. 

A PRIME factor p ofa MERSENNE NUMBERI& =2*-l 
is a Wieferich prime IFF p2 12g - 1. Therefore, MERSENNE 
PRIMES are not Wieferich primes. 

Ifthe first case of FERMAT'S LAST THEOREM is false for 
exponent p, then p must be a Wieferich prime (Wieferich 
1909). If p)2”fl with p and n RELATIVELY PRIME, then 
p is a Wieferich prime IFF p2 also divides 2” 5 1. The 
CONJECTURE that there are no three POWERFUL NUM- 

BERS implies that there are infinitely many Wieferich 
primes (Granville 1986, Vardi 1991). In addition, the 
ABC CONJECTURE implies that there are at least C lnz 
Wieferich primes < II: for some constant C (Silverman 
1988, Vardi 1991) .- 

see also ABC CONJECTURE, FERMAT'S LAST THEO- 

REM, FERMAT QUOTIENT, MERSENNE NUMBER, MIRI- 
MANOFF'S CONGRUENCE,POWERFUL NUMBER 

Heterences 
Brillhart, J.; Tonascia, 3.; and Winberger, P. “On the Fer- 

mat Quotient .” In Computers and Number Theory (Ed. 
A. 0. L. Atkin and B. J. Birch). New York: Academic 
Press, pp. 213-222, 1971. 

Crandall, R. Projects in Scientific Computation. New York: 
Springer-Verlag, 1986. 

Crandall, R.; D&her, K; and Pomerance, C. “A search for 
Wieferich and Wilson Primes.” Math. Comput. 86, 433- 
449, 1997. 

Granville, A. “Powerful Numbers and Fermat’s Last Theo- 
rem.” G. R. Math. Rep. Acad. Sci. Canada 8, 215-218, 
1986. 

Lehmer, D. H. “On Fermat’s Quotient, Base Two.” Math. 
Comput. 38, 289-290, 1981. 

Ribenboim, P. “Wieferich Primes.” $5.3 in The New Book 
of Prime Number Records. New York: Springer-Verlag, 
pp. 333-346, 1996. 

Shanks, D. Solved and Unsolved Problems in Number Theory, 
4th ed, New York: Chelsea, pp. 116 and 157, 1993. 

Silverman, 3. “Wieferich’s Criterion and the abc Conjecture.” 
J. Number Th. 30, 226-237, 1988. 

Vardi, I. “Wieferich.” 55.4 in Cumputational Recreations in 
Mathematics. Reading, MA: Addison-Wesley, pp. 59-62 
and 96-103, 1991. 

Wieferich, A. ‘%rn letzten Fermat’schen Theorem.” J. reine 
angew. Math. 136, 293-302, 1909. 

Wielandt’s Theorem 
Let the n x n MATRIX A satisfy the conditions of the 
PERRON-FROBENIWS THEOREM and then x n MATRIX 
C = Cij satisfy 

JCijJ 5 Gj 

for i,j - 1, 2, . . . , n. Then any EIGENVALUE X0 of C 

satisfies the inequality I&-l < R with the equality sign 
holding only when there exists an n x n MATRIX D = &j 

(where &j is the KRONECKER DELTA) and 

C = +~JD-l. 
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Wiener Filter 
An optimal FILTER used for 
a signal which is corrupted 

itself. 

the removal of noise from 
by the measuring process 

see also FILTER 
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Wiener Function 

see BROWN FUNCTION 

Wiener-Khintchine Theorem 
Recall the definition of the AUTOCORRELATION function 
C(t) of a function E(t), 

C(t) C - s O” E*(T)E(t + 7) dr. (1) -m 
Also recall that the FOURIER TRANSFORM of E(t) is 

defined by 

E(T) = 
r 

Eye-2xiuT du, (2) 
--oo 

giving a COMPLEX CONJUGATE of 

(3) 
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Plugging E*(T) and E(t + T) into the AUTOCORRELA- 
TION function therefore gives 

E;E,r@/ - y)e-2Tiv’t du du’ 

- - r E; Eve-2Tiut du 
--oEl 

(4) 

so, amazingly, the AUTOCORRELATION is simply given 
bythe FO~RIERTRANSFORMO~ the ABSOLUTE SQUARE 
of W), 

w> = mw)121* (5) 
The Wiener-Khintchine theorem is a special case of the 
CROSS-CORRELATION THEOREM with f =g. 

see also AUTOCORRELATION, CROSS-CORRELATION 
THEOREM,FOURIER TRANSFORM 

Wiener Measure 
The distribution which arises whenever a central limit 
scaling procedure is carried out on path-space valued 
random variables. 

Wiener Space 

see MALLIAVIN CALCULUS 

Wigner 3j-Symbol 
The Wigner 3j symbols are written 

( 
jl j2 j 

ml m2 m > 
(1) 

and are sometimes expressed using the related 
CLEBSCH-GORDON COEFFICIENTS 

c3 m1m2 = (jl j2mlm2 Ijlj2 jm) (2) 

(Condon and Shortley 1951, pp. 74-75; Wigner 1959, 
p. 206), or RACAH V-COEFFICIENTS 

V(jlj2 j; mm2m). (3) 

Connections among the three are 

(jlj2mm2 1 jl j2m) 

r (  

.  

-  

(  1) 

-jl+j2-m 

-  -  

2j+ 1 3l ~2 ~ 

‘> ml m2 -m (4) 

(jlj2mm2 1 jl j2 jm) 

= (-V+“&i + lV(jlj2j; mlm2 - m) (5) 

V(jlj2j; mlm2m) = (-1)-jl+j2+j 
( 

i2 zl c2 , 

> 

The Wigner 3j-symbols have the symmetries 

( 
jl j2 j - 

> ( 

j2 j jl 

- ml m2 m m2 m ml > 

- - 
( 

j A j2 _ (++j2+j j2 il 
m > ml m2 - ( m2 ml 

* . . 
- jl+j2+j 31 3 32 - - ( 1) 

( ml m  m2 
> 

( 

. a * 

- 
( 1) 

jl+jz+j 3 J2 31 - - 
m m2 ml > 

- - - ( 1) 
jl +j2 +j 

( 

jl j2 j 

’ --ml -m2 -m > 

The symbols obey the orthogonality relations 

E( 
2j + l) jl j2 j A, j2, i 

( ml m2 m 
km 

>( ml 7732 m > 

= 6mlmf Sm2m’ 
1 2 

j 
m > 

(7) 

(8) 

CC 
jl j2 j jl j2 j’ 

ml m2 m >( 
ml m2 m’ 

> 
= bjjf6,,m; 7 

ml ,m2 

(9) 
where 6ij is the KRONECKER DELTA. 

General formulas are very complicated, but some spe- 
cific cases are 

( jl j2 jl + j2 

> 

- 

m m2 -ml - rn2 -. ( 1) 
jl-jz+ml+mz - 

' [ 

(2jl)Qj2)! 

(2jl + 2j2 + l)!(jl + ml)! x (jl+ j2 + ml + m2)!(jl + j2 - ml - mz)! 
l/2 

(jl - ml)!(j2 + m2)!(j2 - mz)! 1 
(10) 

( 
jl i2 j 

> 

- - 
( 1) 

-jl+jz+m 

- jl -jl-- m 

[ 

(2j$(-jl + j2 + j)! 

x (jl+ja+j+l)!(jl-jjz+j)! 

(jl +j2 + m)!(j - m) !  
l/2 

(jl + j2 - j)!(-jl + j2 - m)!(j + m)! 1 (11) 
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( 9 1) J (2g-Zj1)(2g-2j2)!(2g-2j)! s! - 
&7+1y (9-~1Yb-~2Yk~>! 

- - if J = 2g 
0 

if J = aI+& 

(12) 

for J I= j, + j, + j. 

For SPHERICAL HARMONICS I&,@, @), 

CJ 
(% + 1)(2E2 + 1)(22-t 1) 

i 

21 22 2 
- 
- 

47r ml m2 m 1 
hm \ / 

For values of Z3 obeying the TRIANGLE CONDITION 

qlll2k), 

and 

1 

5 s 
P~,(cos8)P~,(cos0)P~,(cos8) sinBd0 

= (b’ “Dz g2. (15) 

see also CLEBSCH-GORDON COEFFICIENT, RACAH V- 
COEFFICIENT, RACAH IV-COEFFICIENT, WIGNER 6j- 
SYMBOL, WIGNER Sj-SYMBOL 
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Wigner Gj-Symbol 
A generalization of CLEBSCH-GORDON COEFFICIENTS 
and WIGNER 3j-SYMBOL which arises in the coupling of 
three angular momenta. Let tensor operators T(‘) and 
UC”) act, respectively, on subsystems 1 and 2 of a system, 
with subsystem 1 characterized by angular momentum 
jl and subsystem 2 by the angular momentum j2. Then 
the matrix elements of the scalar product of these two 
tensor operators in the coupled basis J = jl + j2 are 
given by 

where is the Wigner Gj-symbol and 71 

and 72 rkpresent additional pertinent quantum numbers 
characterizing subsystems 1 and 2 (Gordy and Cook 
1984). 

Edmonds (1968) gives analytic forms of the Gj-symbol 
for simple cases, and Shore and Menzel (1968) and 
Gordy and Cook (1984) give 

( 1) 
3 - 

= 2/(2b + 1)(2c+ 1) 
(2) 

2(-l)“flX 

= J2b(2b + 1)(2b + 2)2c(2c+ 1)(2c + 2) 

(3) 

2(-1)“[3X(X - 1) - 4b(b + l)c(c + I)] 

(2b - 1)2b(2b + 1)(2b + 2)(2b + 3) 

1 
X 

J(2c - 1)2c(2c + 1)(2c + 2)(2c + 3) ’ 
(4) 

where 

s=a+b+c 

X E b(b + 1) + c(c + 1) - a(a + 1). 

(5) 

(6) 

see &O CLEBSCH-GORDON COEFFICIENT, RACAH V- 
COEFFICIENT, RACAH IV-COEFFICIENT, WIGNER 3j- 
SYMBOL, WIGNER Sj-SYMBOL 
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Wigner Sj-Symbol 
A generalization of CLEBSCH-GORDON COEFFICIENTS 
and WIGNER 3j- and 6j-SYMBOLS which arises in the 
coupling of four angular momenta and can be written in 
terms of the WIGNER 3j- and Gj-SYMBOLS. Let tensor 
operators P1) and Uck2) act, respectively, on subsys- 
tems 1 and 2. Then the reduced matrix element of the 
product T (‘l) x iP2) of these two irreducible operators 
in the coupled representation is given in terms of the 
reduced matrix elements of the individual operators in 
the uncoupled representation by 

Z J(2J + 1)(2J’ + 1)(2k + 1) 

+;j; 1 IT(“l) 1 ~~“~lj1)(~‘~~~j~/IU~lcz)~[7~2j2), (1) 

where 

and Cook 1984). 

is a Wigner Sj-symbol (Gordy 

Shore and Menzel (1968) give the explicit formulas 

= x(-l)2x(2a:+ 1) 

X 

(3) 

see also CLEBSCH-GORDON COEFFICIENT, RACAH V- 
COEFFICIENT, RACAH IV-COEFFICIENT, WIGNER 3j- 
SYMBOL, WIGNER Gj-SYMBOL 
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Wiper-E&art Theorem 
A theorem of fundamental importance in spectroscopy 
and angular momentum theory which provides both (1) 
an explicit form for the dependence of all matrix ele- 
ments of irreducible tensors on the projection quantum 
numbers and (2) a formal expression of the conservation 
laws of angular momentum (Rose 1995). 

The theorem states that the dependence of the ma- 
trix element (j’m’ITLM[jm) on the projection quan- 
tum numbers is entirely contained in the WIGNER 35 
SYMBOL (or, equivalently, the CLEBSCH-GORDON Co- 
EFFICIENT), given by 

(j’m’ITLM]jm) = C(jLj’;mMm’)(j’IITLIlj), 

where C(jLj’; mMm’) is a CLEBSCH-GORDON COEFFI- 
CIENT and T 5~ is a set of tensor operators (Rose 1995, 
p. 85). 

see also CLEBSCH~ORDON COEFFICIENT, WIGNER 3j- 
SYMBOL 
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Wilbraham-Gibbs Constant Wilcoxon Rank Sum Test 
N.B. A detailed on-line essay by S. Finch was the start- A nonparametric alternative to the two-sample t-test. 
ing point for this entry. see also PAIRED t-TEST, PARAMETRIC TEST 

Let a piecewise smooth function f with only finitely 
many discontinuities (which are all jumps) be defined 
on [-TT,TT] with FOURIER SERIES 

1 7F 
-I ak = - f(t) cos(kt) dt 
I’ J-, 

7T 
f(t) sin&t 

-7r 

Sn(f,x) = +0 + f)k cos(kx) -t 
k=l 

> dt 1 (2) 

- &s;n(kx)] . (3) 

I 

Let a discontinuity be at x = c, with 

lim f(z) > lim f(s), (4) 
X-kc- x+c+ 

D = [.;y- f (xl] - [ Jy+ fW] > 0. (5) 

Define 

4( 1 
c =- i [ lim f (2) + x%T+ f (Xl] 7 

x-kc- 
(6) 

and let x = X~ < c be the first local minimum and 
z = & > c the first local maximum of S,(f, x) on either 
side of xn. Then 

lim &(f,xn) = 4(c) + DG’ 7-b-m n- 

lim &(f,&) = 4(c) - DC’, 
n-km 7T 

(7) 

(8) 

where 

s 

T 
G’ E sine 8 d0 = 1.851937052.. . . (9) 

0 

Here, sine x E sinx/x is the SINC FUNCTION. The 
FOURIER SERIES of y = x therefore does not converge 
to ---n and 7r at the ends, but to -2G’ and ZG’. This 
phenomenon was observed by Wilbraham (1848) and 
Gibbs (1899). Although Wilbraham was the first to note 
the phenomenon, the constant G’ is frequently (and un- 
fairly) credited to Gibbs and known as the GIBBS CON- 

STANT. A related constant sometimes also called the 
GIBBS CONSTANT is 

G = 2G1 - -- 2 
s 

7c sincxdx = 1.17897974447216727 . . m 
7T 7T 0 

(10) 
(Le Lionnais 1983) l  
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Wilcoxon Signed Rank Test 
A nonparametric alternative to the PAIRED t-TEST 

which is similar to the FISHER SIGN TEST. This test as- 
sumes that there is information in the magnitudes of the 
differences between paired observations, as well as the 
signs. Take the paired observations, calculate the differ- 
ences, and rank them from smallest to largest by ABSO- 

LUTE VALUE. Add all the ranks associated with POSI- 

TIVE differences, giving the T+ statistic. Finally, the P- 
VALUE associated with this statistic is found from an ap- 
propriate table. The Wilcoxon test is an R-ESTIMATE. 

see also FISHER SIGN TEST, HYPOTHESIS TESTING, 
PAIRED t-TEST, PARAMETRIC TEST 

Wild Knot 
A KNOT which is not a TAME KNOT. 

see also TAME KNOT 
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Wild Point 
For any point P on the boundary of an ordinary BALL, 
find a NEIGHBORHOOD of P in which the intersection 
with the BALL'S boundary cuts the NEIGHBORHOOD 
into two parts, each HOMEOMORPHIC to a BALL. A 
wild point is a point on the boundary that has no such 
NEIGHBORHOOD. 

see ah BALL, HOMEOMORPHIC, NEIGHBORHOOD 

Wilf- Zeilberger Pair 
A pair of CLOSED FORM functions (F, G) is said to be 
a Wilf-Zeilberger pair if 

F(n + 1, k) - F(n, k) = G(n, k + 1) - G(n, k). (1) 

The Wilf-Zeilberger formalism provides succinct proofs 
of known identities and allows new identities to be dis- 
covered whenever it succeeds in finding a proof cer- 
tificate for a known identity. However, if the starting 
point is an unknown hypergeometric sum, then the Wilf- 
Zeilberger method cannot discover a closed form solu- 
tion, while ZEILBERGER'S ALGORITHM can. 

Wilf-Zeilberger pairs are very useful in proving HYPER- 
GEOMETRIC IDENTITIES of the form 

x t(n, k) = rhs(n) 
k 

(2) 

for which the SUMMAND t(n, Ic) vanishes for all k outside 
some finite interval. Now divide by the right-hand side 
to obtain 

y-&k) = 1, (3) 
k 
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where For any Wilf-Zeilberger pair (F, G), 

(4) t(n, JG) F(n,k) E - 
rhs(n) ’ 

NOW use a RATIONAL FUNCTION R(n, k) provided by 
ZEILBERGER'S ALGORITHM, define 

G(n, k) = R(n, k)F(n, k). 

The identity (1) then results. Summing the relation over 
all integers then telescopes the right side to 0, giving 

y4 F(n + 1, k) = x F(% k). (6) 
k k 

Therefore, XI, F(n, k) is independent of n, and so must 
be a constant. If F is properly normalized, then it will 
be true that xk F(0, k) = 1. 

For example, consider the BINOMIAL COEFFLCIEMT 
identity 

the function R(n, k) returned by ZEILBERGER'S ALGO- 
RITHM is T . 

Rh ‘> = 2(k “, _ 1)’ (8) - 

Therefore, 

F(n,k) = L 2-” 
0 

(9) 

and 

G(n,k) = R(n,k)F(n,k) = 2(k -“, _ 1> ; 2-n 
0 

kn!2-” --n-l - 
--2(n+I-k)k!(n-k)! =- ’ 

(10) 

Taking 

F(n + I, k) - F(n,k) = G(n, k + 1) - G(n, k) (11) 

then gives the alleged identity 

(“:‘>2---’ - (;),-- 

4)2-~-l+ (knl)2-“-‘? (12) 

Expanding and evaluating shows that the identity does 
actually hold, and it can also be verified that 

F(0, k) = ; = ; 
0 { 

Fhfr;is; 
9 

(13) 

x G(n, 0) = x[F(n, n - 1) + G(n - 1,n - l)] (14) 
n=O n=l 

whenever either side converges (Zeilberger 1993). In ad- 
dition, 

FG(n,O) =F [F(r(nti).nJ,+~G(sn,+i,n)] , 

n- -0 n=O i=o 
(15) 

k=O 

(16) 
n=O 

and 

w rt-1 

+):G(sn+i,tn,) , (17) 

i=Q 1 

where 

t-1 

E,t (n, k) = F1 F(sn, tk + j) (18) 

j=O 

s-l 

G&x, k) = x G(sn -t i, tk) (19) 
i=o 

(Amdeberhan and Zeilberger 1997). The latter identity 
has been used to compute AP~RY'S CONSTANT to a large 
number of decimal places (Plouffe). 

MENT, ZEILBERGER'S ALGORITHM 
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Wilkie’s Theorem 
Let $(X1,... gn) be an Lxp formula, where Lexp E 
C U {eX } and C is the language of ordered rings C = 

{+ ? -? ‘? <, 0, 1). Then there are n > vz and fi, . l  , , fs E 
z[xl,. . l  ,zcn,ezl,. . . ,ezn] such that @(XI,. . . ,zn) is 
equivalent t 0 

3X m+l" -3xnf1(x1,...,xn,ex1 ,..., exn)=... 

- - fS(xl,. . . ,xn.,exl,. . . ,exn) = 0 

(Wilkie 1996). I n other words, every formula is equiva- 
lent to an existential formula and every definable set is 
the projection of an exponential variety (Marker 1996). 
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Williams p + 1 Factorization Method 
A variant of the POLLARD p - 1 METHOD which uses 
LUCAS SEQUENCES to achieve rapid factorization if some 
factor p of IV has a decomposition of p+l in small PRIME 
factors. 

see also LUCAS SEQUENCE, POLLARD p-l METHOD, 
PRIME FACTORIZATION ALGORITHMS 
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Riesel, H. Prime Numbers and Computer Methods for Fac- 

torization, 2nd ed. Boston, MA: Birkhguser, p. 177, 1994. 
Williams, H. C. “A p+ 1 Method of Factoring.” Math. Com- 

put. 39, 225-234, 1982. 

Wilson Plug 
A 3-D surface with constant VECTOR FIELD on its Wilson’s Theorem (Gauss’s Generalization) 
boundary which traps at least one trajectory which en- Let P be the product of INTEGERS less than or equal to 
ters it. n and RELATIVELY PRIME to n. Then 

see also VECTOR FIELD 

Wilson’s Primality Test 

see WILSON'S THEOREM 

Wilson Prime 
A PRIME satisfying 

W(P) = 0 (mod P) ? 

where W(p) is the WILSON QUOTIENT, or equivalently, 

(p - 1>! E -1 (mod p”> . 

5, 13, and 563 are the only Wilson primes less than 
5 x lo8 (Crandall et al. 1997). 

References 
Crandall, R.; Dilcher, K; and Pomerance, C. “A search for 

Wieferich and Wilson Primes.” Math. Comput. 66, 433- 
449, 1997. 

Ribenboim, P. “Wilson Primes,” $5.4 in The New Book 

of Prime Number Records. New York: Springer-Verlag, 
pp. 346-350, 1996. 

Vardi, I. Computational Recreations in Mathematics. Read- 
ing, MA: Addison-Wesley, p. 73, 1991. 

Wilson Quotient 

p$qp) - (P - w - l - - 
P . 

Wilson’s Theorem 
IFF p is a PRIME, then (p - l)! + 1 is a multiple of p, 
that is 

(p - l)! E -1 (modp). 

This theorem was proposed by John Wilson in 1770 and 
proved by Lagrange in 1773. Unlike FERMAT'S LITTLE 

THEOREM, Wilson’s theorem is both NECESSARY and 
SUFFICIENT for primality. For a COMPOSITE NUMBER, 

( n - l)! z 0 ( mod n) except when n = 4. 

see also FERMAT'S LITTLETHEOREM,WILSON'S THEO- 
REM COROLLARY,WILSON'S THEOREM (GAUSS'S GEN- 
ERALIZATION) 

References 
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recre- 

ations and Essays, 19th ed. New York: Dover, p. 61, 1987. 
Conway, J. H. and Guy, R. K. The Book of Numbers. New 

York: Springer-Verlag, pp* 142-143 and 168-169, 1996. 
Ore, 8. Number Theory and Its History. New York: Dover, 

pp. 259-261, 1988. 
Shanks, D. Solved and Unsolved Problems in Number Theory, 

4th ed. New York: Chelsea, pp. 37-38, 1993. 

Wilson’s Theorem Corollary 
Iff a PRIME p is of the form 42 + 1, then 

[(2x)!12 = -1 (mod p). 

-1 (mod n) for n = 4,pa,2pa 
1 (mod n) otherwise. 

When m = 2, this reduces to P E 1 (mod 2) which is 
equivalent to P E -1 (mod a>. 

see also WILSON 
COROLLA RY 

3 THEOREM, WILSON'S THEOREM 

Winding Number (Contour) 
Denoted n(y,zo) and defined as the number of times a 
path y curve passes around a point. 

1 
n(v) = g 

s 

dz 
- 
z --a’ 

Y 

The contour winding number was part of the inspiration 
for the idea of the DEGREE of a MAP between two COM- 
PACT, oriented MANIFOLDS ofthe same DIMENSION. In 
the language of the DEGREE of a MAP, if y : [0, l] -+ c 



Winding Number (Map) Witch of Agnesi 1949 

is a closed curve (i.e., y(0) = r(l)), then it can be con- 
sidered as a FUNCTION from s1 to c. In that context, 
the winding number of y around a point p in @. is given 
by the degree of the MAP 

Y-P 

I7 -PI 

from the CIRCLE to the CIRCLE. 

Winding Number (Map) 
The winding number of a map is defined by 

which represents the average increase in the angle B per 
unit time (average frequency). A system with a RA- 

TIONAL winding number W = p/q is MODE-LOCKED, 

whereas a system with an IRRATIONAL winding number 
is QUASIPERIODIC. Note that since the RATIONALS are 
a set of zero MEASURE on any finite interval, almost all 
winding numbers will be irrational, so almost all maps 
will be QUASIPERIODIC. 

Windmill 
One name for the figure used by Euclid to prove the 
PYTHAGOREAN THEOREM. 

see I~RIDE’S CHAIR, PEACOCK’S TAIL 

Window Function 

see RECTANGLE FUNCTION 

Winkler Conditions 
Conditions arising in the study of the ROBBINS EQUA- 

TION and its connection with BOOLEAN ALGEBRA. Win- 
kler studied Boolean conditions (such as idempotence or 
existence of a zero) which would make a R~BBINS AL- 

GEBRA become a BOOLEAN ALGEBRA. Winkler showed 
that each of the conditions 

3C,3D,C+D=C 

XT, 3D, n(C + D) = n(C), 

known as the first and second Winkler conditions, SUF- 

FICES. A computer proof demonstrated that every ROB- 
BINS ALGEBRA satisfies the second Winkler condition, 
from which it follows immediately that all ROBBINS AL- 

GEBRAS are BOOLEAN. 

References 
McCune, W. “Robbins Algebras are Boolean.” http: //www . 

mcs.anl.gov/home/mccune/ar/robbins/. 
Winkler, S. “Robbins Algebra: Conditions that Make a Near- 

Boolean Algebra Boolean.” J. Automated Reasoning 6, 
465-489, 1990. 

Winkler, S. “Absorption and Idempotency Criteria for a 
Problem in Near-Boolean Algebra.” J. Algebra 153, 414- 
423, 1992. 

Winograd Transform 
A discrete FAST FOURIER TRANSFORM ALGORITHM 

which can be implemented for nT = 2, 3, 4, 5, 7, 8, 
11, 13, and 16 points. 

see also FAST FOURIER TRANSFORM 

Wirtinger’s Inequality 
If y has period 2n, y’ is L2, and 

s 27r 

ydx = 0, 
0 

then 

12ny2dx < i2ry'2dx 

unless 

Y = Acosx + Bsinz. 

References 
Hardy, G. H.; Littlewood, 3. E.; and Prjlya, G. InequaEities, 

2nd ed. Cambridge, England: Cambridge University Press, 
pp. 184-187, 1988. 

Wirtinger-Sobolev Isoperimetric Constants 
Constants y such that 

where f is a real-valued smooth function on a region s1 
satisfying some BOUNDARY CONDITIONS. 

References 
Finch, S. “Favorite Mathematical Constants.” http: //wwu* 

mathsoft. com/asolve/constant/vs/ws/ws .html. 

Witch of Agnesi 

I 

A curve studied and named “versiera” (Italian for “she- 
devil” or “witch”) by Maria Agnesi in 1748 in her book 
Istituzioni Analifiche (MacTutor Archive). It is also 
known as CUBIQUE D’AGNESI or AGN~SIENNE. Some 
suggest that Agnesi confused an old Italian word mean- 
ing “free to move” with another meaning “witch.” The 
curve had been studied earlier by Fermat and Guido 
Grandi in 1703. 

It is the curve obtained by drawing a line from the origin 
through the CIRCLE of radius 2a (OB), then picking the 
point with the y coordinate of the intersection with the 
circle and the x coordinate of the intersection of the 
extension of line OB with the line y = 2~. The curve 
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has INFLECTION POINTS at y = 3a/2. The line y = 0 is 

an ASYMPTOTE to the curve. 

In parametric form, 

X = 2acoto (1) 
y = a[1 - cos(28)], (2) 

2 = 2at 

2a 
y= - 

l-t- t2 ’ 

(3) 

(4 

In rectangular coordinates, 

(5) 

see UZSO LAMI? CURVE 
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Witness 
A witness is a number which, as a result of its number 
theoretic properties, guarantees either the composite- 
ness or primality of a number n. Witnesses are most 
commonly used in connection with FERMAT'S LITTLE 
THEOREM CONVERSE. A PRATT CERTIFICATE uses 
witnesses to prove primality, and MILLER'S PRIMALITY 
TEST uses witnesses to prove compositeness. 

see &O ADLEMAN-POMERANCE-RUMELY PRIMALITY 

TEST, FERMAT'S LITTLE THEOREM CONVERSE, MIL- 

LER'S PRIMALITYTEST,PRATT CERTIFICATE,~RIMAL- 
ITy CERTIFICATE 

Wit t en’s Equations 
Also called the SEIBERG-WITTEN INVARIANTS. For a 
connection A and a POSITIVE SPINOR q5 E l?(V+), 

DA+=O 

Ff = ia(cp, g5)* 

The solutions are 
of the functional 

called monopoles and are the minima 

see also LICHN ‘EROWICZ 

WEITZENBOCK FORMUL 

TIONS 

FORMULA, 

., SEIBERG- 

LICHNEROWICZ- 

WITTEN EQUA- 
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Seiberg, N. and Witten, E. “Monopoles, Duality, ahd Chi- 
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Wittenbauer’s Parallelogram 

% 
Divide the sides of a QUADRILATERAL into three equal 
parts. The figure formed by connecting and extending 
adjacent points on either side of a VERTEX is a PARAL- 

LELOGRAM known as Wittenbauer’s parallelogram. 

see also QUADRILATERAL, WITTENBAUER’S THEOREM 

Wittenbauer’s Theorem 
The CENTROID of a QUADRILATERAL LAMINA is the 
center of its WITTENBAUER’S PARALLELOGRAM. 

see also CENTROID (GEOMETRIC), LAMINA, 
LATERAL, WITTENB AUER’S PARALLELOGRAM 

Wdstenholme’s Theorem 
If p is a PRIME > 3, then the NUMERATOR of 

is divisible by p2 and the NUMERATOR of 

QUADRI- 

1+ 
1 1 1 

,,t32+...+- 
(P - 1)” 

is divisible by p. These imply that if p >_ 5 is PRIME, 

then 

G 1 (mod p”). 

References 
Guy, FL. IL Unsolved Problems in Number Theory, 2nd ed. 
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Woodall iVumber 

Woodall Number 
Numbers of the form 

IV, = 2% - 1. 

The first few are 1, 7, 23, 63, 159, 383, . . . (Sloane’s 
A003261). The only Woodall numbers W, for n < 
100,000 which are PRIME are for n = 5312, 7755, 9531, 
12379, 15822, 18885, 22971, 23005, 98726, . . . (Sloane’s 
A014617; Ballinger). 

see UZSO CULLEN NUMBER, CUNNINGHAM NUMBER, 

FERMAT NUMBER, MERSENNE NUMBER, SIERPI~~SKI 
NUMBER OF THE FIRST KIND 

References 
Ballinger, R. “Cullen Primes: Definition and Status,” 
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Woodbury Formula 

(A + UVT)-l = A-l - [A-%(1 + VTA-lU)-lVTA-l]. 

Word 
N.B. A detailed on-line essay by S. Finch was the start- 
ing point for this entry. 

A finite sequence of n letters from some ALPHABET is 

said to be an n-ary word. A “square” word consists of 
two identical subwords (for example, UC&~). A square- 
free word contains no square words as subwords (for ex- 
ample, abcacbabcb). The only squarefree binary words 
are a, b, ab, bu, uba, and hub. However, there are ar- 
bitrarily long ternary squarefree words. The number of 
ternary squarefree words of length n is bounded by 

6 l  1.032" < s(n) < 6 l  1.379” - - 

(Brandenburg 1983). In addition, 

(1) 

S E lim [s(n)]“” = 1.302.. . (2) 
n+oo 

(Brinkhuis 1983, Noonan and Zeilberger). Binary cube- 
free words satisfy 

2. 1.080" < c(n) < 2. 1.522”. - - (3) 

A word is said to be overlapfree if it has no subwords of 
the form zyzyz. A squarefree word is overlapfree, and an 

Worm 1951 

overlapfree word is cubefree. The number t(n) of binary 
overlapfree words of length n satisfies 

P.n 1*155 < t(n) 5 q l  nlmE8’ (4) 

for some constants p and q (Restivo and Selemi 1985, 
Kobayashi 1988). In addition, while 

lim In t(n> 
n-b= Inn 

does not exist, 

1.155 < Z-” < 1.276 < 1.332 < TV < 1.587, 

In t(n) 
TL E lim inf - 

~+OO Inn 

In t(n) 
TV E lim sup ~ 

n+oo Inn 

(5) 

(6) 

(7) 

(8) 

(Cassaigne 1993). 

see also ALPHABET 
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World Line 
The path of an object through PHASE SPACE. 

Worm 

8 
A 4-POLYWEX. 

Reierences 
Gardner, M. Mathematical Magic Show: More Puzzles, 
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1952 Wurpi tzky ‘s Identity Wythoff’s Game 

Worpitzky’s Identity 

where (i) is an EULERIAN NUMBER and (i) is a BI- 
NOMIAL COEFFICIENT. 

Writ he 
Also called the TWIST NUMBER. The sum of crossings 
p of a LINK L, 

where E(P) defined to be H if the overpass slants from 
top left to bottom right or bottom left to top right and 
C(L) is the set of crossings of an oriented LINK. If a 
KNOT K is AMPHICHIRAL, then w(K) = 0 (Thistle- 
thwaite). Letting Lk be the LINKING NUMBER of the 
two components of a ribbon, Tw be the TWIST, and Wr 
be the writhe, then 

Lk(K) = Tw(K) + Wr(K). 

(Adams 1994, p. 187). 

see also SCREW, TWIST 

References 
Adams, C. C. The Knot Book: An Elementary Introduction 

to the Mathematical Theory of Knots. New York: W. H. 
Freeman, 1994. 

Wythoff Construction 
A method of constructing UNIFORM POLYHEDRA. 

see also UNIFORM POLYHEDRON 

Wronskian References 
Har’El, Z. “Uniform Solution for Uniform Polyhedra.” Ge- 

ometriae Dedicata 47, 57-110, 1993, 

If the Wronskian is NONZERO in some region, the func- 
tions q& are LINEARLY INDEPENDENT. If W = 0 over 
some range, the functions are linearly dependent some- 
where in the range. 

see UZSO ABEL'S IDENTITY, GRAM DETERMINANT, LIN- 
EARLY DEPENDENT FTJNCTIONS 

References 
Morse, P. M. and Feshbach, H. Methods of Theoretical Phys- 

ics, Part I- New York: McGraw-Hill, pp. 524-525, 1953. 

Wulff Shape 
An equilibrium MINIMAL SURFACE for a crystal which 
has the least anisotropic surface energy for a given vol- 
ume. It is the anisotropic analog of a SPHERE. 

see also SPHERE 

Wynn’s Epsilon Method 
A method for numerical evaluation of SUMS and PROD- 
UCTS which samples a number of additional terms in the 
series and then tries to fit them to a POLYNOMIAL mul- 
tiplied by a decaying exponential. 

see also EULER-MACLAURIN INTEGRATION FORMULAS 

Wythoff Array 
A INTERSPERSION array given by 

1 2 3 5 8 13 21 34 55 l  ** 
4 7 11 18 29 47 76 123 199 l  a. 
6 10 16 26 42 68 110 178 288 -0' 
9 15 24 39 63 102 165 267 432 40 l  

12 20 32 52 84 136 220 356 576 l  -- 

14 23 37 60 97 157 254 411 665 a-. 
17 28 45 73 118 191 309 500 809 l  a. 
19 31 50 81 131 212 343 555 898 a.9 
22 36 58 94 152 246 398 644 1042 l  -. 

. . . l  . . l  . l  

l  . . . . l  . l  . 

. 
m  l  l  . . . . . 

the first row ofwhich is the FIBUNACCI NUMBERS. 

SE &O FIBONACCI NUMBER, INTERSPERSION, STU- 
LARSKY ARRAY 

References 
Kimberling, C. “Fractal Sequences and Interspersions.” Ars 

Combin. 45, 157-168, 1997. 

Wythoff’s Game 
A game played with two heaps of counters in which a 
player may take any number from either heap or the 
same number from both. The player taking the last 
counter wins. The rth SAFE combination is (2,~ + T), 
where II: = [@j, with 4 the GOLDEN RATIO and [zj the 
FLOOR FUNCTION. It is also true that x + T = L@“F]. 
The first few SAFE combinations are (1, 2), (3, 5), (4, 
7), (6, lo), l  . . . 

see also NM, SAFE 
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Wythoff Symbol Wythoff Symbol 

Wythoff Symbol 
A symbol used to describe UNIFORM POLYHEDRA. For 
example, the Wythoff symbol for the TETRAHEDRON 

is 3123. There are three types of Wythoff symbols 
p 1 q r, p q 1 T and p q T 1, and one exceptional symbol 

I 4 9 3 g usedforthe GREAT DIRHOMBICOSIDODECAHE- 
DRON. Some special cases in terms of SCHL;~FLI SYM- 
BOLS are 

P[42=Pl24={q,Pl 

2lPq= p 
0 4 

pq(z=r p 
(> 4 

2qlP=t{PAI 

2pq(=t p 
0 4 

(2pq=s p , 
0 Q 

For the symbol pq T (, permuting the 
same POLYHEDRON. 

see also UNIFORM POLYHEDRON 

gives the 
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X 
x-Axis 

z-axis 

4 

The zeros of S( ) z and of its DERIVATIVES are all located 
on the CRITICAL STRIP z = 0 + it, where 0 < 0 < 1. 
Therefore, the nontrivial zeros of the RIEMANN ZETA 
FUNCTION exactly correspond to those of c(x). The 
function c(x) is related to what Gradshteyn and Ryzhik 
(1980, p. 1074) call Z(t) by 

/c x-axis y-axis 

E(t) = S(z), (3) 

where x E i + it. This function can also be defined as 

The horizontal axis of a 2-D plot in CARTESIAN COOR- 

DINATES, also called the ABSCISSA. 

see also ABSCISSA, ORDINATE, ~-AXIS, Z-AXIS giving 

qit> E gt” - i)7T -t/2-1’4r(+t + +>r<t + $), (4) 

x-Intercept z -(t) = -i(t” + +)7rit’2-1’4r(+ - ;it)[(+ - it). (5) 

y-axis 

k 
y-intercept 

x-intercept 

& 

The DE BRUIJN-NEWMAN CONSTANT is defined in terms 
of the E(t) function. 

4 
x-axis 

The point at which a curve or function crosses the x- 
AXIS (i.e., when y = 0 in 2-D). 

see also LINE, ~-INTERCEPT 

Xi Function 

\ I 0.8 

see also DE BRUIJN-NEWMAN CONSTANT 

References 
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Se- 

ries, and Products, mm enl. 4th ed. San Diego, CA: Aca- 
demic Press, 1980. 

XOR 
An operation in LOGIC known as EXCLUSIVE OR. It 
yields true if exactly one (but not both) of two condi- 
tions is true. The BINARY XOR operator has the fol- 
lowing TRUTH TABLE. 

A B AXORB 

F F F 
F T T 
T F T 
T T F 

The BINOMIAL C~EFFTCIENT (r> mod 2 can be com- 
puted using the XOR operation 72 XOR m, making PAS- 

-4 

Re[xl zl 

2 4 
CAL'S TRIANGLE mod 2 very easy to construct. 

see&o AND, BINARY OPERATORJ~OOLEANALGEBRA, 

Im[xl 21 1x1 zl LOGIC, NOT,,QR,PASCAL'S TRIANGLE,TRUTH TABLE 

where C(Z) is the RIEMANN ZETA FUNCTION and l?(z)is 
the GAMMA FUNCTION (Gradshteyn and Ryzhik 1980, 
p. 1076). The 5 function satisfies the identity 



y-Axis 

Y 
y-Axis 

z-axis 

? x-axis y-axis 

The vertical axis of a 2-D plot in CARTESIAN C~ORDI- 
NATES, also called the ORDINATE. 

see UZSO ABSCISSA, ORDINATE, X-AXIS, Z-AXIS 

y-Intercept 

J y-intercept 

x-intercept 

& rl 
x-axis 

The point at which a curve or function crosses the y- 

AXIS (i.e., when EL: = 0 in 2-D). 

see also LINE, X-INTERCEPT 

Yacht 

B 
A 6-POLYIAMOND. 

References 
Golomb, S. W. Polyominoes: Puzzles, Patterns, Problems, 

and Packings, 2nd ed. Princeton, NJ: Princeton University 
Press, p. 92, 1994. 

Yanghui Triangle 

see PASCAL’S TRIANGLE 

Yff Center of Congruence 
Let three ISOSCELIZERS, one for each side, be con- 

structed on a TRIANGLE such that the four interior 
triangles they determine are congruent. Now parallel- 
displace these ISOSCELIZERS until they concur in a single 

point. This point is called the Yff center of congruence 
and has TRIANGLE CENTER FUNCTION 

a = sec($A). 

see ~2~0 CONGRUENT IS~S~ELIZERS P 
LIZER 

References 
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edu/-ck6/tcenters/recent/yff cc.html, 
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Yff Points 

Yff Points 1957 

A u C’ B 

Let points A’, B’ , and C’ be marked off some fixed dis- 
tance x along each of the sides BC, CA, and AB. Then 
the lines AA’, BB’, and CC’ concur in a point U known 
as the first Yff point if 

x3 = (a - x)(b - x)(c - x). (1) 

This equation has a single real root U, which can by 
obtained by solving the CUBIC EQUATION 

f(x) = 2x3 - px2 + qx - T = 0, (2) 

p=a+b+c (3) 

q = ab + ac + be (4 

T = abc. (5) 

The ISUTOMIC CONJUGATE PRINT U' is called the sec- 
ond Yff point. The TRIANGLE CENTER FUNCTIONS of 
the first and second points are given by 

1 c-u u3 
a=- - 

( > a b-u (6) 

(7) 

respectively. Analogous to the inequality w  5 7r/6 for 
the BROCARD ANGLE w, u 5 p/6 holds for the Yff 
points, with equality in the case of an EQUILATERAL 
TRIANGLE. Analogous to 

w<t&<n-3w 

for i = 1, 2, 3, the Yff points satisfy 

U < ai <p-3U. (9) 

Yff (1963) gives a number of other interesting properties. 
The line UU' is PERPENDICULAR to the line containing 
the INCENTER I and CIRCUMCENTER 0,anditslength 
is given by 

4uIOA 
UU’ = - 

u3 + abc’ 

where a is the AREA of the TRIANGLE. 

see UZSO BROCARD POINTS,YFF TRIANGLES 

References 
Yff, P. “An A nalog of the Brocard 

Monthly 70, 495-501 , 1963. 
Points.” Amer. 

(10) 
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Yff Triangles 

A u C’ B 

The TRIANGLE AA’B’C’ formed by connecting the 
points used to construct the YFF POINTS is called the 
first Yff triangle. The AREA of the triangle is 

U3 

A=%’ 

where R is the CIRCUMRADIUS of the original TRIANGLE 

flABC. The second Yff triangle is formed by connecting 
the ISOTOMIC CONJUGATE POINTS of A’, B’, and C’. 

see also YFF POINTS 

References 

I 
Yff, P. “An Analog of the Brocard Points.” Amer. 1Math. 

MonthEy 70, 495-501, 1963. 

Yin-Yang 

-Q 
A figure used in many Asian cultures to symbolize the 
unity of the two “opposite” male and female elements, 
the “yin” and “yang.” The solid and hollow parts com- 
posing the symbol are similar and combine to make a 
CIRCLE. Each part consists of two equal oppositely ori- 
ented SEMICIRCLES of radius l/2 joined at their edges, 
plus a SEMICIRCLE of radius 1 joining the other edges. 

see UZSO BASEBALL COVER, CIRCLE, PIECEWISE CIR- 

CULAR CURVE,SEMICIRCLE 

References 
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A Young diagram, also called it FERRERS DIAGRAM, rep- 
resents PARTITIONS as patterns of dots, with the nth row 
having the same number of dots as the nth term in the 
PARTITION. A Young diagram of the PARTITION 

n =a+b+...+c, 

for a list a, b, . . . , c of k POSITIVE INTEGERS with a > 
b > . . . - > c is therefore the arrangement of n dots or 
square boxes in k rows, such that the dots or boxes are 
left-justified, the first row is of length a, the second row 
is of length b, and so on, with the kth row of length c. 
The above diagram corresponds to one of the possible 
partitions of 100. 

see also DURFEE SQUARE, HOOK LENGTH FORMULA, 
PARTITION, PARTITION FUNCTION P, YOUNG TABLEAU 

References 
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Young Girl-Old Woman Illusion 

A perceptual ILLUSION in which the brain switches be- 
tween seeing a young girl and an old woman. 

see also RABBIT-DUCK ILLUSION 

References 
Pappas, T. The Joy of Mathematics. San Carlos, CA: Wide 

World Publ./Tetra, p. 173, 1989. 

Young Inequality 
ForO<p<l, 

ab 5 p/(1-l/“) 
l  

Young’s Integral 
Let f(x) be a REAL continuous monotonic strictly in- 
creasing function on the interval [O,a] with f(0) = 0 
and b < f(a), then - 

rb 
ab < - 

J 
f(x) dx + 

J 
f -“(y> dY> 

0 0 

where f-'(y)is the INVERSE FUNCTION. Equality holds 
IFF b = f(a). 

References 
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Young Tableau 
The YOUNG TABLEAU of a YOUNG DIAGRAM is ob- 
tained by placing the numbers 1, . . . , ?z in the r~ 
boxes of the diagram. A “standard” Young tableau 
is a Young tableau in which the numbers form a non- 
decreasing sequence along each line and along each 
column. The standard Young tableaux of size three 

are given bY w, 2,311, {{l, 31, {W, cu7 217 w, 
and {{l}, {2)7 C3)). Th e number of standard Young 
tableaux of size 1, 2, 3, . . . are 1, 2, 4, 10, 26, 76, 232, 
764, 2620, 9496, . . . (Sloane’s AOOOOSS), These numbers 
can be generated by the RECURRENCE RELATION 

a(n) = a(n - I) + (n - l)a(n - 2) 

with a(l) = 1 and a(Z) = 2. 

There is a correspondence between a PERMUTATION 
and a pair of Young tableaux, known as the SCHEN- 

STED CORRESPONDENCE. The number of all standard 
Young tableaux with a given shape (corresponding to a 
given YOUNG DIAGRAM) is calculated with the HOOK 

LENGTH FORMULA. The BUMPING ALGORITHM isused 
to construct a standard Young tableau from a permuta- 
tion of (1, . , . , n}. 

see also BUMPING ALGORITHM, HOOK LENGTH FOR- 

MULA, INVOLUTION (SET), SCHENSTED CORRESPON- 

DENCE,YO~NG DIAGRAM 
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The RING of INTEGERS l  . . , -2, -1, 0, 1, 2, + , . , also 
denoted II. 

see also C, C", COUNTING NUMBER, II, N, NATURAL 
NUMBER,Q,&WHOLE NUMBER$,~- 

z- 
The NEGATIVE INTEGERS . . . . -3, -2, -1. 

see &O COUNTING NUMBER,NATURAL NUMBER, NEG- 
ATIVE,WHOLE NUMBER, Z,z+,z* x-Score 

The x-score associated with the ith observation of a ran- 
dom variable zc is given by z+ 

The POSITIVE INTEGERS 1, 2, 3, . , . , equivalent to N. 

see UZSO COUNTING NUMBER, N, NATURAL NUMBER, 
POSITIVE, WHOLE NUMBER, Z, Z-,Z* 

where or: is the MEAN and v the STANDARD DEVIATION 
of all observations x1, . . . , x~. z * 

The NONNEGATIVE INTEGERS 0, 1, 2, . . . . 

see also COUNTING NUMBER,NATURAL NUMBER,NON- 
NEGATIVE,~HOLE NUMBER&Z-,Z+ 

x-Transform 
The discrete z-transform is defined as 

N-l 

2[a] = >) unzkn* (1) 
n=O 

x-Axis 
Z-axis 

F x-axis y-axis 

The DISCRETE FOURIER TRANSFORM is a special case 
of the z-transform with 

A z-transform with 
Theaxisin3-D CARTESIAN COORDINATES whichisusu- 
ally oriented vertically. CYLINDRICAL COORDINATES 
are defined such that the z-axis is the axis about which 
the azimuthal coordinate 0 is measured. for a # H is called a FRACTIONAL FOURIER TRANS- 

FORM. see also AXIS, X-AXIS, ~-AXIS 

see UZSODISCRETE FOURIERTRANSFORM,FRACTIONAL 
FOURIER TRANSFORM 

References 

z-Distribution 

see FISHER'S Z-DISTRIBUTION, STUDENT'S Z-DISTRIBU- 

Arndt, J. “The x-Transform (ZT).” Ch. 3 in “Remarks on 
FFT Algorithms ,” http://www. jjj .de/fxt/. 

Z-Number 
A Z-number is a REAL NUMBER c such that x-Transform (Population) 

see POPULATION COMPARISON 

Z-Transform 
The Z-transform of F(t) is defined by 

for all IC = 1, 2, . . . , where frac(z) is the fractional part 
of x. Mahler (1968) showed that there is at most one Z- 
number in each interval [n, n + 1) for integral n. Mahler 
(1968) therefore concluded that it is unlikely that any 
Z-numbers exist. The Z-numbers arise in the analysis 
ofthe COLLATZ PROBLEM. 

wv)] = W” (Ql, (1) 

where 

F*(t) = F(t)&(t) = F; F(nT)S(t - nT), (2) 
n=O see also COLLATZ PROBLEM 
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6(t) is the DELTA FUNCTION, 2’ is the sampling period, 
and C is the LAPLACE TRANSFORM. An alternative def- 
inition is 

av)l = 
1 

1 - eTzZ-l > f( > 2 1 (3) 
residues 

where 

f(z) = x F(nT)z? (4) 
n=O 

The inverse Z-transform is 

z-Q(z)] = F*(t) = & 
i 

f( > z P--l dz. (5) 

It satisfies 

Z[aF(t) + E(t)] = evN + ww1 (6) 
Z[F(t + T)] = zZ[F(t)] - zF(O) (7) 

Z[F(t + 2T)] = z2Z[F(t)] - r2F(0) - S(t) (8) 

Z[F(t + mT)] = z”Z[F(t)] - mF; zm-‘F(rt) (9) 
r=o 

Z[F(t - mT)] = z-“Z[F(t)] (10) 
z[eUtF(t)] = Z[CUTz] (11) 

Z[P F(t)] = Z[eUTa] (12) 

tF(t) = -Tz$Z[F(t)] (13) 

t-lF(t) = -+ 
s 

t 
Ldt. f( > 

0 z 
(14) 

Transforms of special functions (Beyer 1987, pp* 426- 
427) include 

2[S(t)] = 1 

qqt - n-XT>] = cm 

z[H(t)] = -z-- 
Z-l 

W(t - mUI = Z&y 1) 
TZ 

WI = (z 

2 ZP 1 - 
T2z(z + 1) 

- 

(z - 1)” 

JW”l 
- T32(z2 + 4x + 1) 
- 

(z - 1)4 

z[COS(Wt)] = 
z sin(wT) 

z2 - 2zcos(wT) + 1 

(15) 
(16) 
(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24 

where H(t) is the HEAWSIDE STEP FUNCTION. In gen- 
eral, 

Z[tn] = (-l)“jeo g ( z z _ e--zT ) (25) 

- - 
(z - 1)n+l 7 (26) 

where the 
n 

0 k 
are EULERIAN NUMBERS. Amazingly, 

the Z-transforms of tn are therefore generators for Eu- 
LER'S TRIANGLE. 

see also EULER’S TRIANGLE, EULERIAN NUMBER 
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Zag Number 
An EVEN ALTERNATING PERMUTATION number, more 
commonly called a TANGENT NUMBER. 

see also ALTERNATING PERMUTATION, TANGENT NUM- 
BER, ZIG NUMBER 

Zarankiewicz’s Conjecture 
The CROSSING NUMBER for a COMPLETE &GRAPH is 

where 1x1 is the FLOOR FUNCTION. This has been 
shown to be true for all m., n < 7. Zarankiewicz has 
shown that, in general, the FORMULA provides an up- 
per bound to the actual number. 

see ~2s~ COMPLETE BIGRAPH, CROSSING NUMBER 
(GRAPH) 

Zariski Topology 
A TOPOLOGY of an infinite set whose OPEN SETS have 
finite complements. 

Zaslavskii Map 
The 2-D map 

zn+l = [xn + ~(1 + pyn) + &VP COS(~~~~)] (mod 1) 

yn+l = e -r [yn + E COS(2TZn)], 

EXPONENTVE 
and CAPACITY 

where 
II = 1 - eSr 

-- 
r 

(Zaslavskii 1978). It has CORRELATION 
1.5 (Grassberger and Procaccia 1983) 
DIMENSION 1.39 (Russell et al. 1980). 
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Zassenhaus-Berlekamp Algorithm 
A method for factoring POLYNOMIALS. 

Zeckendorf Representation 
A number written as a sum of 
BONACCI NUMBERS, 

L 

n= 
x CkFk, 

k=O 

where Ek are 0 or 1 and 

ckEkj-1 = 0. 

Every POSITIVE INTEGER can be 
such a form. 

see UZSU ZECKEND~RF’S THEOREM 

nonconsecutive FI- 

written uniquely in 
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Zeckendorf’s Theorem 
The SEQUENCE {Fn - I} is COMPLETE even if restricted 
to subsequences which contain no two consecutive terms, 
where Fn is a FIBONACCI NUMBER. 

see ~2s~ FIBONACCI DUAL THEOREM, ZECKENDORF 
REPRESENTATION 
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Zeeman’s Paradox 
There is only one point in front of a PERSPECTIVE draw- 
ing where its three mutually PERPENDICULAR VANISH- 

ING POINTS appear in mutually PERPENDICULAR direc- 
tions, but such a drawing nonetheless appears realistic 
from a variety of distances and angles. 

see also LEONARDO'S PARADOX, PERSPECTIVE, VAN- 

ISHING POINT 
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Zeilberger’s Algorithm 
An ALGORITHM which finds a POLYNOMIAL recurrence 

for a terminating HYPERGEOMETRIC IDENTITIES of the 
form 

where 0 i is a BINOMIAL COEFFICIENT, ai, ai, iii, bi, 

b:, bi are constant integers and a:, a:, by, bi, C, X, and 
x are complex numbers (Zeilberger 1990). The method 
was called CREATIVE TELESCOPING by van der Poorten 
(1979), and led to the development of the amazing ma- 
chinery of WILF-ZEILBERGER PAIRS. 

see ~2s~ BINOMIAL SERIES, GOSPER'S ALGORITHM, HY- ’ 

PERGEOMETRIC IDENTITY, SISTER CELINE’S METHOD, 
WILF-ZEILBERGER PAIR 
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Zeisel Number 
A number 1v = plp2 w  9 +pk (where the pis are distinct 
PRIMES) such that 

Pn = Apn-1 + By 

with A and B constants and po = 1. For example, 
1885 = 1 l  5 9 13 . 29 and 114985 = 1 9 5 . 13 0 29 9 61 
are Zeisel numbers with (A, B) = (2,3). 
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Zeno’s Paradoxes 
A set of four PARADOXES dealing with counterintuitive 
aspects of continuous space and time. 

. 

Achilles and the tortoise paradox: A fleet-of-foot 
Achilles is unable to catch a plodding tortoise which 
has been given a head start, since during the time 
it takes Achilles to catch up to a given position, the 
tortoise has moved forward some distance. But this 
is obviously fallacious since Achilles will clearly pass 
the tortoise! The resolution is similar to that of the 
dichotomy paradox. 

Arrow paradox: An arrow in flight has an instanta- 
neous position at a given instant of time. At that 
instant, however, it is indistinguishable from a mo- 
tionless arrow in the same position, so how is the 
motion of the arrow perceived? 

4. Stade paradox: A paradox arising from the assump- 
tion that space and time can be divided only by a 
definite amount. 

Dichotomy paradox: Before an object can travel a 
given distance d, it must travel a distance d/Z. In 
order to travel d/2, it must travel d/4, etc. Since this 
sequence goes on forever, it therefore appears that 
the distance d cannot be traveled. The resolution of 
the paradox awaited CALCULUS and the proof that 
infinite GEOMETRIC SERIES such as cz,( I/2)” = I 
can converge, so that the infinite number of “half- 
steps” needed is balanced by the increasingly short 
amount of time needed to traverse the distances. 
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Zermelo-fiaenkel Axioms 

Zermelo’s Axiom of Choice 

see AXIOM OF CHOICE 

Zermelo-Fraenkel Axioms 
The Zermelo-Fraenkel axioms are the basis for 
ZERMELO-FRAENKEL SET THEORY. In the following, 
3 stands for EXISTS, E for 7s an element of,” V for FOR 
ALL, I for IMPLIES, 1 for NOT(NEGATION),A for AND, 
V for OR , + for “is EQUIVALENT to,” and S denotes the 
union y of all the sets that are the elements of z. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

Existence of the empty set: 3xVu-$u E 2) 

Extensionality axiom: VxVy(Vu(u E x $ u E y) + 
x=y)* 

Unordered pair axiom: VxVy3zVu(u E z $ u = x V 

u = y). 

Union (or “sum-set”) axiom: Vx3yVu(u E y + 
3v(u E v A v E 2)). 

Subset axiom: Vx3yVu(u E y + Vu@ E u -+ v f 

a* 

Replacement axiom: For any set-theoretic formula 

4% 4 9 

VuVvVw(A(u, v) A A(u, w) + v = w) 

+ vx3yvu(u E y + 3u(u E x A A(u,v))). 

Regularity axiom: For any set-theoretic formula 
A(u), 3xA(x) -+ 3x(A(x) A -GIy(A(y) /I y E x)). 

AXIOM OF CHOICE: 

Vx[Vu(u E 2 + 3v(v E u)) 

Avuvv((uExAvExA~u=v) 

+ -dw(w E u A w E v)) + 3y{y C s(x) 

A’&@ f x + %(z E u A z E y 

Avw(w E u A w E y + w = z)))}] 

Infinity axiom: 3x(%@ E x) A h(u E x --+ %(v E 

x A u C u A TI = u))). 

If Axiom 6 is replaced by 

6’. Axiom of subsets: for any set-theoretic formula A(u), 
Vx3yVu(u E y + u E x A A(u)), 

which can be deduced from Axiom 6, then the set theory 
is called ZERMELU SET THEORY instead of ZERMELO- 
FRAENKEL SET THEORY. 

Abian (1969) proved CONSISTENCY and independence 
of four of the Zermelo-Fraenkel axioms. 

see UZSO ZERMELO-FRAENKEL SET THEORY 
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Zermelo-Fraenkel Set Theory 
A version of SET THEORY which is a formal system 
expressed in first-order predicate LOGIC. Zermelo- 
Fraenkel set theory is based on the ZERMELO-FRAENKEL 
AXIOMS. 

see also LOGIC, SET THEORY, ZERMELO-FRAENKEL 
AXIOMS,~ERMELO SET THEORY 

Zermelo Set Theory 
The version of set theory obtained if Axiom 6 of 
ZERMELO-FRAENKEL SET THEORY is replaced by 

6’. Axiom of subsets: for any set-theoretic formula A(u), 
vx3yvu(u E y + u E x A A(u)), 

which can be deduced from Axiom 6. 

see also ZERMELO-FRAENKEL SET THEORY 
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Zernike Polynomial 
ORTHOGONAL POLYNOMIALS which arise in the expan- 
sion of a wavefront function for optical systems with cir- 
cular pupils. The ODD and EVEN Zernike polynomials 
are given by 

with radial function 

b-+-m)/2 
K?(P) = >: 

(-1)+X - 1)! n-21 

l=O 
Z![$(n + m) - Z]![+(n - m) - l]!’ 

for 72 and m integers with 72 > m > 0 and n - m EVEN. - - 
Otherwise, 

R;(p) = 0. (3) 

Here, C$ is the azimuthal angle with 0 < 4 < 27r and p - 
is the radial distance with 0 5 p 5 1 (Prata and Rusch 
1989). The radial functions satisfy the orthogonality 
relation 

s 

1 

R,m(p)R; (p)p dp = L&t,x~, 
2(n + 1) 

(4) 
0 

where Sij is the KRONECKER DELTA, and are related to 
the BESSEL FUNCTION OF THE FIRST KIND by 

s 

1 
R,m(p) Jm(vp)pdp = (-,)'n-m'/zJn+10 

(5) 
0 

V 

(Born and Wolf 1989, p. 466). The radial Zernike poly- 
nomials have the GENERATING FUNCTION 

11 + z- J1 - 2x(1 - 2p2) + x2 1” 
- 
- &Plrn J 

x 
O” t9 Rfm 

7n+2s ( P > 1 1 - 2r(l - 2p2) 
+ 

z2 
S=. 

and are normalized so that 

R,fm(l) = 1 (7) 

(Born and Wolf 1989, p. 465). The first few NONZERO 

radial polynomials are 

R!(P) = 1 
MP) = P 
R;(p) = 2p2 - 1 

G(P) = P2 

R;(p) = 3p3 - 2p 

R:(P) = P3 

R;(p) = 6p4 - 6p2 + 1 

R;(p) = 4p4 - 3p2 

R44(Pl = P4 

(Born and Wolf 1989, p. 465). 

The Zernike polynomial is a special case of the JACOBI 
POLYNOMIAL with 

(8) 

and 

2= 1 - 2p2 

p=0 

CH =m 

n’= $(7x--m>. 

(9) 

(10) 

(11) 

(12) 

The Zernike polynomials: also, satisfy the RECURRENCE 
RELATIONS 

/JR:(P) = -.&---[(n + m + 2)R?$: (P) 

+(n - mwr:: (PII (1% 

Kf+2~P~ = 
n-0 (n + m)2 

(n + 2)2 - m2 4(n + l)” - n 

( n - m + 2)2 R;(p) - +fR,&) 
n+2 1 n2 - (14) 

1 
R:(p) +R:+"(P) = n+l 

d[Jq!.!.,’ (p> - KY (P)l (15) 

dP 

(Prata and Rusch 19S9). The coefficients Ar and B,” 
in the expansion of an arbitrary radial function F(p, 4) 
in terms of Zernike polynomials 

F(p, $) = 5 T [A; “v,“(p, #) + B,” "V,"(P~)] 

m=O n=m 

(16) 
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are given by Zero 

A? b + ‘) ’ 
B,” = z IS 0 0 

(17 
where 

= emn - 
E z 5 for m = 0, rt # 0 
1 otherwise 

(18 

> 

Let a “primary” aberration be given by 

@ = uimn Y 2i+m* (e, lp)p” cosm e 1 (19) 

with 21-+- m + n = 4 and where Y* is the COMPLEX 

CONJUGATE of Y, and define 

giving 

G= +A 
Earn 

lrnnRF (p) cos(me)* (21) 

Then the types of primary aberrations are given in the 
following table (Born and Wolf 1989, p* 470). 

Aberration 1rnnA A’ 

spherical 
aberration 

coma 0 3 1 Aba1p3 cos8 &d?;(p) cos 0 

astigmatism 0 2 2 Abz2p2 ax2 0 AmR;(p) cos(28) 

field curvature 1 2 0 G20P2 4120R;(p) 

distortion 1 1 1 Ail,p cos 0 AuR;(p) cos 8 

see also JACOBI POLYNOMIAL 
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The INTEGER denoted 0 which, when used as a counting 
number, means that no objects are present. It is the only 
INTEGER (and, in fact, the only REAL NUMBER) which 
is neither NEGATIVE nor POSITIVE. A number which is 
not zero is said to be NONZERO. 

Because the number of PERMUTATIONS of 0 elements is 
1, O! (zero FACTORIAL) is often defined as 1. This def- 
inition is useful in expressing many mathematical iden- 
tities in simple form. A number other than 0 taken to 
the POWER 0 is defined to be 1. 0’ is undefined, but 
defining 0’ = 1 allows concise statement of the beauti- 
ful analytical formula for the integral of the generalized 
SING FUNCTION 

I O” sina II: 
ICb dx = 

&-c (-1) b-w21 

0 
2”-“(b - l)! 

x L”~c(-l)k ($ (a - 2J$-‘[In(a - %)I’ 

k=O 

given by Kogan, where a >_ b > c, c z a - b (mod 2), 
and 1x1 is the FLOOR FUNCTION. 

The following table gives the first few numbers n such 
that nk contains no zeros, for small k. The largest known 
n for which 2n contain no zeros is 86 (Madachy 1979), 
with no other n 5 4.6 x LO7 (M. Cook), improving the 
3.0739 x lo7 limit obtained by Beeler et al. (1972). The 
values a(n) such that the positions of the right-most 
zero in 2”(“) increases are 10, 20, 30, 40, 46, 68, 93, 95, 
129, 176, 229, 700, 1757, 1958, 7931, 57356, 269518, g.. 
(Sloane’s A03114O). The positions in which the right- 
most zeros occur are 2, 5, 8, 11, 12, 13, 14, 23, 36, 38, 
54, 57, 59, 93, 115, 119, 120, 121, 136, 138, 164, . . l  

(Sloane’s A031141). The right-most zero of 2781P717g865 
occurs at the 217th decimal place, the farthest over for 
powers up to 2.5 x 10’. 

k Sloane n such that nk contains no OS 

2 007377 
3 030700 
4 030701 
5 008839 
6 030702 
7 030703 
8 030704 
9 030705 

11 030706 

1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 15, 16, . . . 
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, . . . 
1, 2, 3, 4, 7, 8, 9, 12, 14, 16, 17, 18, . . l  

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 17, 18, 30, 4 4. 
1, 2, 3, 4, 5, 6, 7, 8, 12, 17, 24, 29, 44, . l  . 
1, 2, 3, 6, 7, 10, 11, 19, 35, . . . 
1, 2, 3, 5, 6, 8, 9, 11, 12, 13, 17, 24, 27, . . l  

1, 2, 3, 4, 6, 7, 12, 13, 14, 17, 34, . . . 
1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, . . . 

While it has not been proven that the numbers listed 
above are the only ones without zeros for a given base, 
the probability that any additional ones exist is van- 
ishingly small. Under this assumption, the sequence of 
largest n such that V‘ contains no zeros for k = 2, 3, 
l  l  l  is then given by 86, 68, 43, 58, 44, 35, 27, 34, 0, 41, 
. . l  (Sloane’s A020665). 



Zero Divisor Zigzag Permutation 1967 

see also 10, NAUGHT, NEGATIVE, NONNEGATIVE, NON- 

ZERO, ONE, POSITIVE, Two 

References 
Beeler, M.; Gosper, R. W.; and Schroeppel, R+ HAKMEM. 

Cambridge, MA: MIT Artificial Intelligence Laboratory, 
Memo AIM-239, Item 57, Feb. 1972. 

Kogan, S. “A Note on Definite Integrals Involving Trigono- 
metric Functions.” http://uww.mathsoft.com/asolve/ 
constant/pi/sin/sin. html. 

Madachy, J. S. Madachy’s Mathematical Recreations. New 
York: Dover, pp. 127-128, 1979. 

Pappas, T. “Zero-Where & When.” The Joy of Mathemat- 
ics. San Carlos, CA: Wide World Publ./Tetra, p. 162, 
1989. 

Sloane, N. J. A, Sequence A007377/M0485 in “An On-Line 
Version of the Encyclopedia of Integer Sequences.” 

Zero Divisor 
A NONZERO element 2 of a RING for which x . y = 0, 
where y is some other NONZERO element and the vec- 
tor multiplication it: l  y is assumed to be BILINEAR. A 
RING with no zero divisors is known as an INTEGRAL 
DOMAIN. Let A denote an R-algebra, so that A is a 
VECTOR SPACE over Rand 

AxA-+A 

Now define 

2 E {X E A : pi: l  y = 0 for some NONZERO y E A}, 

where 0 E 2. A is said to be TIT-ASSOCIATIVE if there 
exists an m-dimensional SUBSPACE S of A such that 
(y * x) . z = y l  (x . z) for all y, z E A and x E S. A is said 
to be TAME if 2 is a finite union of SUBSPACES of A. 
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Zero (Root) 

see ROOT 

Zero-Sum Game 
A GAME in which players make payments only to each 
other. One player’s loss is the other player’s gain, so the 
total amount of “money” available remains constant. 

see ah FINITE GAME, GAME 
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Zeta Fuchsian 
A class of functions discovered by Poincare which are 
related to the AUTOMORPHIC FUNCTIONS. 

Zeta Function 
A function satisfying certain properties which is com- 
puted as an INFINITE SUM of NEGATIVE POWERS. The 
most commonly encountered zeta function is the RIE- 

MANN ZETA FUNCTION, 

see UZSO DEDEKIND FUNCTION, DIRICHLET BETA 

FUNCTION, DIRICHLET ETA FUNCTION, DIRICHLET 
L-SERIES, DIRICHLET LAMBDA FUNCTION, EPSTEIN 
ZETA FUNCTIONJACOBI ZETA FUNCTION,NINT ZETA 
FUNCTION, PRIME ZETA FUNCTION, RIEMANN ZETA 
FUNCTION 
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Zeut hen’s Rule 
On an ALGEBRAIC CURVE, the sum of the number of 
coincidences at a noncuspidal point C is the sum of the 
orders of the infinitesimal distances from a nearby point 
P to the corresponding points when the distance PC is 
taken as the principal infinitesimal. 

References 
Coolidge, 3. L. A Treatise on Algebraic Plane Curves. New 
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Zeuthen’s Theorem 
If there is a (u, v’) correspondence between two curves 
of GENUS p and p’ and the number of BRANCH PRINTS 
properly counted are p and p’, then 

p + zv’(p - 1) = p’ + 2u(p’ - 1). 

see also CHASLES-CAYLEY-BRILL FORMULA 
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Zig Number 
An ODD ALTERNATING PERMUTATION number, more 
commonly called an EULER NUMBER or SECANT NUM- 

BER. 

see also ALTERNATING PERMUTATION, EULER NUM- 

BER, ZAG NUMBER 

Zig-Zag niangle 

see also SEIDEL-ENTRINGER-ARNOLD TRIANGLE 

Zigzag Permutation 
see also AUTOMORPHIC FUNCTION 

see ALTERNATING PERMUTATION 
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Zillion 
A generic word for a very LARGE NUMBER. The term 
has no well-defined mathematical meaning. Conway and 
Guy (1996) define the nth zillion as 103”+3 in the Ameri- 
can system (million = lo”, billion = log, trillion = 1012, 
. . . ) and 106” in the British system (million = 106, 
billion = 1012, trillion = 1018, . . , ). Conway and Guy 
(1996) also d fi e ne the words TI-PLEX and WMINEX for 
1On and lo-“, respectively. 

see also LARGE NUMBER 
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Zipf’s Law 
In the English language, the probability of encountering 
the rth most common word is given roughly by P(r) = 
0.1/r for T up to 1000 or so. The law breaks down for less 
frequent words, since the HARMONIC SERIES diverges. 
Pierce’s (1980, p. 87) statement that c P(r) > 1 for 
T = 8727 is incorrect. Goetz states the law as follows: 
The frequency of a word is inversely proportional to its 
RANK T such that 

PC ) 
1 

T 
z r ln(L78R) ’ 

where R is the number of different words. 

see also HARMONIC SERIES, RANK (STATISTICS) 
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Zollner’s Illusion 

In this ILLUSION, the VERTICAL lines in the above figure 
are PARALLEL, but appear to be tilted at an angle. 

see dso ILLUSION 
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Zonal Harmonic 
A SPHERICAL HARMONIC which is a product of factors 
linear in x2, y2, and z2, with the product multiplied by 
z when n is ODD. 

see also TESSERAL HARMONIC 

Zone 

The SURFACE AREA of a SPHERICAL SEGMENT. Call the 
RADIUS of the SPHERE R, the upper and lower RADII 
b and a, respectively, and the height of the SPHERICAL 
SEGMENT h. The zone is a SURFACE OF REVOLUTION 
about the Z-AXIS, SO the SURFACE AREA is given by 

s = 2n 
s 

q/wdr. (1) 

In the zt-plane, the equation of the zone is simply that 
of a CIRCLE, 

2+-, (2) 

so 

2’ = -Z(RT - z2)-1/2 (3) 

and 

(4) 

s = 2n s ;R2-b2 &+Gdz 
R2-,2 

s dR2-b2 

= 27rR 
~~ 

dz=2nR(JR2_b2- JR2-az) 

= 2rRh. (5) 

This result is somewhat surprising since it depends only 
on the height of the zone, not its vertical position with 
respect to the SPHERE. 

see also SPHERE, SPHERICAL CAP, SPHERICAL SEG- 

MENTJONOHEDRON 
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Zonohedron 
A convex POLYHEDRON whose faces are PARALLEL-sided 
2m-gons. There exist n(n - 1) PARALLELOGRAMS in a 
nonsingular zonohedron, where n is the number of differ- 
ent directions in which EDGES occur (Ball and Coxeter 
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1987, pp. 141-144). z onohedra include the CUBE, EN- 
NEACONTAHEDRON, GREAT RHOMBIC TRIACONTAHE- 
DRON, MEDIAL RHOMBIC TRIACONTAHEDRON, RHUM- 
BIC DODECAHEDRON, RHOMBIC ICOSAHEDRON, RHOM- 

BIC TRIACONTAHEDRON,RHOMBOHEDRON, and TRUN- 
CATED CUBOCTAHEDRON, as well as the entire class of 
PARALLELEPIPEDS. 

Regular zonohedra have bands of PARALLELOGRAMS 
which form equators and are called YZONES? Ev- 
ery convex polyhedron bounded solely by PARALLELO- 

GRAMS is a zonohedron (Coxeter 1973, p. 27). Plate 
II (following p. 32 of Coxeter 1973) illustrates some 
equilateral zonohedra. Equilateral zonohedra can be 
regarded as 3-dimensional projections of n-D HYPER- 

CUBES (Ball and Coxeter 1987). 

see also HYPERCUBE 
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Zonotype 
The MINKOWSKI SUM of line segments . 

Zorn’s Lemma 
If S is any nonempty PARTIALLY ORDERED SET in 
which every CHAIN has an upper bound, then S has 
a maximal element. This statement is equivalent to the 
AXIOM OF CHOICE. 

see aho AXIOM OF CHOICE 

Zsigmondy Theorem 
If 1 < b < a and (a, b) 
PRIME), then an 

= 1 (i.e., a and b are RELATIVELY 

- b” has a PRIMITIVE PRIME FACTOR 

with the following two possible exceptions: 

1. 26 - P. 

2. 72 = 2 and a + b is a POWER of 2. 

Similarly, if a > b > 1, then an + bn has a PRIMITIVE 
PRIME FACTOR with the exception 23 + l3 = 9. 
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