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Computer algebra systems have revolutionized the use of computers within
mathematics research and are currently extending that revolution to the
undergraduate curriculum. But the power of such systems goes beyond simple
algebraic or numerical manipulation. This book shows how computer-aided
mathematics has reached a level where it can support effectively many of
the computations in science and engineering. In addition to treating tradi-
tional computer science topics, an introductory course should show scientists
and engineers how these computer-based tools can be used to do scientific
computations.

This introduction to computer science studies algorithms through use of
Mathematica. This powerful interactive tool encourages experimentation
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semiconductors, mechanical engineering, celestial mechanics, and chaotic
systems are included. Computer science topics include abstract data types,
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functional and object-oriented programming, term rewriting, computability,
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A valuable text for introductory courses in computer science for mathe-
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Mathematica users at all levels. Covering Version 4, the latest release of
Mathematica, the book includes useful tips and techniques that will help even
seasoned users.
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Preface

This book provides an inwoduction to computer science, and shows how modern computer-
based tools can be used in science, mathematics, and engineering. Computer-aided math-
ematics has reached a level where it can support effectively many computations in science
and engineering. In addition to treating traditional computer-science topics, an introductory
book should show scientists and engineers how these computer-based tools can be used to
do scientific computations. Students must get to know these possibilities, and they must gain
practical experience. Learning a traditional programming language becomes less important,
just as learning arithmetic is not a main topic of mathematics education. In an introductory
book, it is clearly necessary to limit ourselves to a small part of the huge field of computer
science. We emphasize topics that are related to possible applications in mathematics and the
sciences. Technical and practical computer science have therefore been neglected.

It is certainly worthwhile to combine an introductory computer-science course with exer-
cises. In the same way as we learn a foreign language by speaking the language and by studying
literature in that language, we should apply algorithmic knowledge by studying programs and
writing our own. If we can solve an interesting problem from mathematics or the sciences at
the same time, all the better! Traditionally, such introductory courses use languages such as
Pascal, C, or FORTRAN. These languages have in common that the effort to develop even a
small program (one that adds two numbers, for example) is considerable. One has to write
a main program that deals with input and output, and to compile the program. Furthermore,
these languages cannot be used easily to solve nonnumerical problems. Leaving aside these
practical difficulties gives us room to look at other topics in computer science, an extension that
is not offered in traditional programming courses. In this way, we gain insight into computer
science, which consists of much more than writing small programs.

Another disadvantage of traditional languages is that they support only procedural pro-
gramming. This style is an important one, but it is not the only option and it is not always the
best approach. 1 prefer a language that does not force this programming style on programmers.
The programming style should be chosen to fit the problem to be solved, rather than vice
versa. The language should be interactive, to encourage experimentation and to allow us to
call individual functions without having to write a whole program.

Mathematica was first released in 1988, and it is being used with increasing frequency
in teaching, research, and industry. A by-product of the symbolic computation system, it
is a programming language that differs from traditional languages in many important ways.

ix



X Preface

Conventional languages are not well suited to expressing mathematical formulae and algo-
rithms. LISP and other functional languages showed alternatives. An important aspect of
scientific computation is an easy way to express mathematical rules. Application of rules by
machine requires good pattern-matching capabilities of the kind found in Prolog. Another
prerequisite is that it be simple to manipulate structured data. Such structural operations have
been pioneered by APL. Object-oriented elements and modularization are important tools for
developing larger projects. Ideas were taken from Simula, Smalltalk, and C++. We also want
to support traditional procedural programming in the style of Pascal and C. All these objec-
tives lead to a large language with many built-in functions. It nevertheless has a consistent
and uniform style, made possible through the use of rewrite rules, which underly all other
programming constructs. Such a language is also interactive and therefore easy to use. It is
not necessary to compile functions or to embed them into a main program to use them. The
additional step of compilation increases the difficulty of program development and requires
special tools (debuggers) to study the behavior of programs.

Because Mathematica also contains most operations needed in mathematics and physics,
it is especially well suited for an introductory course in computer science for readers interested
primarily in the sciences and engineering. It allows us to treat interesting examples easily.
There is no good reason, for example, to restrict the range of integers to 2, 147,483, 647, as
is done in most programming languages. This restriction makes no sense in mathematics.
Programming with recursively defined functions is often treated as extraordinary and difficult.
We can express naturally many mathematical algorithms, however, by using recursion, and it
should be possible to formulate recursion easily in a language. For example, the properties of
the greatest common divisor of two integers leading directly to Euclid’s algorithm,

ged(a, b)
ged(a, 0)

ged(b, a mod b)

a,

can beexpressed verbatim in Mathematica and tried out immediately. As in LISP, the technique
of tail-recursion elimination in Mathematica ensures that the corresponding program runs as
fast as the loop that is normally used (which is not the case in most procedural languages).
Deriving the loop invariant and programming the same function as a loop leads naturally to
systematic programming and considerations of program correctness.

Mathematica is helpful in all areas of computer use in mathematics, in the sciences, and
in engineering:

= Its numerical part, which allows arithmetic to arbitrary precision, can be used to treat
numerical mathematics, including traditional floating-point arithmetic.

= [ts symbolic part does computations with formulae, solves equations, performs series ex-
pansions and transformations, and knows calculus to the level required for an undergraduate
degree.



Preface xi

» The programming language supports all traditional programming styles, including proce-
dural programming. The language can therefore be used for wraditional computer-science
classes (algorithms and data structures) as well.

» The rule-based programming system allows a natural expression of scientific facts.

» Graphics allows the meaningful presentation of results and experimental data. It is also
useful for showing how algorithms work.

= We can call external programs and exchange results, so we can use external software
libraries and even control laboratory experiments.

This book grew out of class notes for a course given at the Department of Mathematics and
Physics at the Swiss Federal Institute of Technology, Zurich. It was originally published in
my native German language [48], and T am glad to present now my own English translation
and adaptation.

I am thankful to Erwin Engeler, John Gray, and Stephen Wolfram for their inspiration and
many interesting discussions. Helpful suggestions on particular topics came from R. Marti
and H. Mdssenbock. Lyn Dupré proofread an early version of the manuscript, and Karen
Tongish copyedited the final version. The publishers of the German and English editions,
Ekkehard Hundt and Alan Harvey, helped me to keep going. Many thanks to the anonymous
reviewer whose favorable comments and useful suggestions motivated me to finish this project.

R.E. M.
Wollerau, March 1999



About This Book

The emphasis of this introduction to computer science is algorithmics - that is, the study
of algorithms. We do not want this activity to become a dry exercise, so we shall try out
all algorithms as soon as possible. Our programs will often consist of only a few lines of
code. Such simplicity allows us to concentrate on the essentials and to ignore peripheral
matters such as input, output, and driver programs. Often, however, we shall develop whole
packages, collections of various procedures grouped around a topic. The methods for writing
such packages will be explained in Chapter 4. After all, computer science is not about writing
small, throwaway programs but rather developing larger applications. In addition to finding
suitable algorithms, this entails techniques of documentation and maintenance of software.
We shall present some of these techniques.

Mathematica does have a major advantage over traditional programming languages: It
is interactive. Interactivity encourages experimentation and allows us to test each function
separately and to study its behavior. In the first section we shall study recursively defined
functions, a topic often considered difficult and therefore treated with caution. We also have
at our disposal a symbolic, numerical, and graphic computation system — an added benefit that
we shall use in many ways.

Overview of Contents

Each chapter after the first two introductory ones presents a topic from computer science
together with its applications and examples in mathematics, the sciences, and engineering. You
can choose from the many applications presented those that correspond to your background.
Because only one system (Mathematica) is used for all programs and all calculations, the
extra work of leaming about practical matters such as editing or working with the application
is minimized. My experiences have shown that Mathematica is rather easy to leam; you
will be able to work with it quite soon, after overcoming any initial difficulties you might
encounter.

Chapter 1 is not a prerequisite for the rest of the text, if you already know something about
computers. It shows how computers can be used in the sciences, explains the history and
current state of computers, and discusses what computer science is all about.

The quick introduction to Mathematica’s syntax in Chapter 2 should be studied with a
computer at hand, so you can try out the calculations for yourself and get a feeling for what it

xiii



xiv 7 About This Book

is like to work with Mathematica. The elements of programming presented in Sections 2.1-2.3
are the foundation of our programs.

In Chapter 3, we use two simple examples to show how mathematical questions can be
turned into computer programs. The most important concepts are iteration and recursion. The
section on loop invariants gives a method for proving programs correct.

Chapter 4 explains how programs in Mathematica are swuctured. We start with simple
commands, which we turn into a program by defining a few functions. We will give guidelines
for turning a program into a package. Packages allow for easier use of programs and prevent
unwanted side effects on other programs, which might have similar function names. The tools
we use are modularization and separation of the interface (for the user of our program) and the
implementation (for the program developer). You can use these techniques as recipes, even if
you do not know how they work in detail. You can use our template package as a starting point.

Abstract data types, presented in Chapter 5, constitute one of the most important tools for
the design of programs. These methods allow a clean separation of design and implementation.
We shall use them in most of our programs in this book.

Algorithms for searching and sorting are the basic building blocks of many programs. The
algorithms presented in Chapter 6 are part of basic computer-science knowledge.

Problems can be solved in many ways. One aspect to consider when choosing a method
is the complexity of the resulting algorithm. Chapter 7 provides an introduction to algorith-
mic complexity. As an example, we look at the computation of large Fibonacci numbers,
optimization problems, and arbitrary-precision arithmetic.

Vectors and matrices are important data structures for mathematical applications. We
present several important operations on them and look at a few algorithms from linear algebra
in Chapter 8.

In Chapter 9, we program in LISP, a language that we can interpret in Mathematica easily.
Recursion is the most important tool for solving problems in LISP, where it replaces iteration.

For many scientific problems, rule-based programming is the simplest method of solution.
Itis also the foundation of Mathematica’s programming language. In Chapter 10, we shall look
at the important concepts of simplification and normal forms, as well as at some applications.

Functions are of central importance in mathematics. They play a lesser role in computer
science, because many programming languages have only rudimentary means of dealing
with them. An important exception are the functional languages, including Mathematica.
Functions are the topic of Chapter 11. That chapter highlights the differences between the
symbolic computation system Mathematica and ordinary languages.

In Chapter 12, we give a short introduction to theoretical computer science. There we see
that this topic is not necessarily as “theoretical” as is often feared. We answer the question of
what the fundamental limits of computers are and show that some problems cannot be solved
by machine, even disregarding the practical matters of limited memory and computing time.

Databases are the most important commercial application of computers. Managing large
volumes of data demands reliable and powerful programs. A precise mathematical model of
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collections of data provides the tools for their easy manipulation. We treat these concepts in
Chapter 13.

Chapter 14 introduces an important programming style: object-oriented programming. It
is especially useful for larger applications and for the design of reusable software.

Appendix A is an annotated bibliography on the topics programming methods, teaching
with Mathematica, and literature about Mathematica; it includes a section with references for
the topics treated in this book, followed by the bibliographical data.

The more detailed explanations about the swucture of Mathematica given in Appendix B
are useful for self-study and are also meant as a reference. For a complete reference to
Mathematica, you should consult The Mathematica Book [74). The appendix of that manual
contains an alphabetical listing of all built-in functions, commands, and other objects. This
listing, as well as the complete manual, is available on-line in Mathematica (in the Help
Browser). Looking up an item there is much easier than is looking it up in a heavy book.
Studying the Mathematica manual is not a prerequisite for reading this book.

Appendix B also contains a section that demonstrates Mathematica’s more advanced
capabilities. Finally, we give the programs used to generate the chapter-opener pictures.

Certain sections are labeled “Advanced Topic.” They presume that the reader has a more
complete mathematical background than is required for the rest of the book; they are optional.

Sections marked “Special Topic” are independent from the rest of the book. Sections
marked “Example” or “Application” develop a topic using a larger example that is of interest
in its ownright.

Atthe end of most sections, there is a review list, entitled *Key Concepts,” of new concepts
that have been introduced. At the end of the chapters, you will find numerous exercises.

The verso page following a chapter title contains a brief overview of the sections in the
chapter, and an explanation of the graphic illustration on the title page. The programs for
generating these pictures are in the package Pictures.m; see Section B.2.

Comments on Exercises

We assume that you already know how to work with your computer. The installation of Math-
ematicaon your machine is explained in the documentation that comes with the software. This
documentation includes a manual that explains the machine-specific features of Mathematica.
The best way to learn Mathematica is to do practical exercises at the machine. In the beginning,
you may want to look at one of the included demonstration documents before moving on to your
own small examples. You can also find simple examples in the section titled “A Tour of Math-
ematica” in The Mathematica Book. We recommend that you work through such examples.
There are two ways to use Mathematica on a computer: the Notebook frontend and a
simple dialog with the kemel of Mathematica (the kernel is the part that does the actual
computations; the frontend serves as a user interface to the kernel). The Notebook frontend
is more comfortable to use, but is not required for the examples in this book, which have
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all been computed by direct interaction with the kernel. All examples have been tested with
Version 4.0 of Mathematica.

If you use the Notebook frontend, your interaction with Mathematica will look a bit
different from the way it is presented in the book, but the results will be the same. Numbering
of your inputs happens only after they have been sent to kernel for evaluation (with SHIFT-
RETURN or ENTER), because the number is given out by the kernel, rather than by the frontend.
An example Notebook is reproduced on page 95.

Please note that each example has been computed in a fresh Mathematica session. We
recommend that you begin new sessions to avoid any influences from previous computations
whenever the numbering of the input lines restarts at 1. Under the Notebook frontend, you
can choose the menu command Quit Kernel to start a fresh kernel.

The frontend allows you to store your programs and your sample computations in the same
document (the Notebook) and to open them again in the future. We recommend, however,
that you store packages in separate files, and read them into Mathematica using <<file* . This
command to read in a package is often not shown in the dialogs in this book. If you want to
reproduce the examples, you must read the appropriate programs into Mathematica first.

Electronic Resources

All programs mentioned in this book are available in machine-readable form
from the book’s Web site, located at http://www.mathconsult.ch/CSM/.
There, you will find compressed archives of all files ready to download. Pack-
ages have the extension .m; Notebooks have the extension .nb. Both kinds of
files can be opened with the frontend. Packages can be read into the kernel
directly (using <<CSM* file‘ ) and can also be opened with any text editor (in ASCII mode).
The archive should be extracted into the AddOns/Applications subdirectory of your Mathe-
matica installation directory. Extraction will create a subdirectory CSM inside the Applications
directory.

Mathematica can display its own installation ~ In[1]:= $TopDirectory
directory. The value of $TopDirectory
will reflect the actual place where you in-
stalled Mathematica on your computer.

Out[1]= /usr/local/Mathematica

If you installed the files correctly, this simple ~ In[2]:= << CSM‘Test®
test should give the result shown here. Note
the use of the backquote * as a machine-
independent way to specify directories and /usr/local/Mathematica/AddOns/Applications/CSM

files.

The CSM packages are correctly installed in

All packages mentioned in this book canbe  In[3]:= << CSM‘ComplexParametricPlot"
loaded by prefixing their name with the di-
rectory, CSM.
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Please refer to the book’s Web site for up-to-date information on available archive formats and
detailed installation instructions.

The programs are protected by copyright. You may copy them only for your personal use.
If this book is a required text in a class you teach, you may also make the programs available
1o your students on the computer network used for the exercise sessions. To copy otherwise
requires prior written permission from the author.

The author and Cambridge University Press, Ltd., make no representations, expressed or
implied, with respect to this software, including, without limitations, any implied warranties
of merchantability or fitness for a particular purpose, all of which are disclaimed expressly.
The author or Cambridge University Press, their licensees, distributors, or dealers shall in
no event be liable for any indirect, incidental, or consequential damages.

In addition to the programs, the book’s Web site contains other information, such as
notebooks, updates, a list of errata, and the archive of the mailing list intended for readers of
this book. I encourage you to join the mailing list. Please see the Web site for details.

Notation and Terminology

Mathematica input and output is typeset in a typewriterlike style (in the Courier font):
Expand [ (x+y) 9] . Parts of Mathematica expressions not to be entered verbatim, but denot-
ing (meta) variables, are set in italic: £(var_] := body.

Functions or commands are denoted by their name, followed by an empty argument list in
square brackets: Expand[]. Program listings are delimited by horizontal lines:

al1] = a[2] = 1

aln_Integer?Positive] := a[n] = alal[n-1]] + a[n-1-a[n-1]]

A sequence by John H. Conway.

A program package is identified by name (the context name, as we shall see) — for example,
Complex. The files used for storing successive versions of this package will be named
Complex1.m, Complex2.m, and so on. The final version will be called Complex.m.

Mathematicadialog is set in two columns. The left column contains explanations; the right
column contains input and output, including graphics. This form of presentation is derived
from The Mathematica Book.

As usual, we will clarify program structure by indentation. Mathematica allows writing
deeply nested expressions. It is, therefore, often necessary to break such expressions into
multiple lines.
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Here is an example of such a dialog. You In[1]:= Factor[ x34 - 1 ]
would enter only the input set in boldface.  guer13= (-1 + x) (1 + %)
The prompt In[1]:= is printed by Math-

P £ 2 3 4 5 6 7 8 9
ematica. If you work with the Notebook (A oxtxmx ax mr 45 mx +x -x +
frontend, this prompt will appear after you
evaluate your input with ENTER. 10 1 12 13 14 15 16

X -x + X -x + x -x +x )

2 3 4 5 6 7 8 9
(1 +x+x +x +X +#X +X +X +X +Xx +

10 1 12 13 14 15 16
b 4 + X + x + X +x + x + X

In most programming languages, you can define procedures, functions, or subroutines. Mathe-
matica uses only one mechanism, called definitions, which look like f(z_] := def. Chapter 2
provides a short explanation of the elements of Mathematica’s programming language. A more
in-depth presentation is given in Appendix B.

The table on page xx lists the mathematical notations that we use. Equations, figures,
program listings, and tables are numbered by section. For example, Equation 3.1-1 is the first
equation in Section 3.1.

Colophon

Mathematica dialogs were computed on a Sun ULTR Asparc [l with Version 4.0 of Mathematica
using the initialization file init.m reproduced here.

Format[Continuation[_]] := ""
SeedRandom[10000]
0ff[ General::spell, General::spelll ]

Unprotect[Short]
Short[e_] := Shortl[e, 2] (* lines are very short *)
Protect[Short]

SetOptions[ Plot3D, AspectRatio -> Automatic, PlotPoints -> 35 ]
SetOptions[ Graphics3D, AspectRatio -> Automatic ]

SetOptions[ ParametricPlot, AspectRatio -> Automatic ]
SetOptions[ ParametricPlot3D, Axes -> None ]

Needs["ProgrammingInMathematica‘'Options‘"]
SetAl10ptions[ ColorOutput -> GrayLevel ]

$DefaultFont = {"Times-Roman", 9.0} (* font in graphics *)
SetOptions["stdout", PageWidth->56] (* line width *)

init.m: Mathematica initialization for this book.

The manuscript is written in I&TEX [40] (with many custom macros). It contains only the input
of the sample computations. The results were computed by Mathematica and were inserted
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automatically into the file. The bibliography was produced with BIBIgX [59], and the index
was sorted with makeindex [41]. Those figures not produced with Mathematica were designed
with FrameMaker and included in PostScript form. The reproductions of Notebooks and help
screens were taken from the computer’s screen. Finally, the output of IAIgX was converted
into PostScript and phototypeset.
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lgz logarithm to base 2, log, =
logx natural logarithm (base €)
ged(a,b)  greatest common divisor
alb a divides b

amodb remainder when a is divided by b
a div b integer part of the quotient a/b

signz sign of x

n! n factorial, n! =n(n— D(n—2)---1; 0! =1
N set of nonnegative integers {0, 1,2, ...}
v/ ring of integers {0, £1,+2,...}
z, residue classes modulo p

R field of real numbers

C field of complex numbers

i imaginary unit, i = V-1

(7] largest integer < r

(7] smallest integer > r

TRy approximate equality of = and y
(x) number of primes < z

at transpose of matrix ¢

vaw dot product of vectors » and w
a®b outer product of tensors @ and b
divv divergence of vector field v

grad s gradient of scalar field s

Vs Laplace operator, V25 = div grad s
% total derivative w.r.t. =

3% partial derivative w.r.t. =

Ty mapping of z to y

Az.t(T) lambda expression (pure function)
[r — ale substitution of z by aine

pPAq PANDg

pVy pPORg

p—q p implies q

rUs union of sets r and s

rNs intersection of sets 7 and s
T—38§ difference of sets r and s
rMs join of relations 7 and s

Mathematical Notation Used in This Book.



Chapter 1

Computers and Science




In the first section of this chapter we show how typical scientific problems can be solved with
the help of a computer. We also discuss methods to develop programs to solve these problems.
Section 1.2 covers computers and operating systems. We describe the historic development
and operating principles of a modem workstation.

Programming languages have developed along with hardware. In Section 1.3, we look at a
program in several forms — from machine language to a higher-level programming language.
An overview over the branches of computer science (Section 1.4) concludes the chapter.

About the illustration overleaf:
The illustration shows one of the simplest functions leading to chaotic behavior. We iterated
the map

fiz—dz(l — ).

The first nine iterations with three nearby starting values are displayed. These values separate
more and more, and show quite different behavior after only eight iterations. The picture was
produced with the command (see Pictures.m):

Animate[ FunctionIteration[4#(1-#)&, {0.099,0.1,0.101}, O, n, {0, 1},
Frame->True, FrameTicks->None],
{n, 1, 9, 1} 1;.
With the Mathematica frontend you can produce a genuine animation; here, on paper, we have
to put the frames next to each other.
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1.1 From Problems to Programs

For computer users, the possibility of solving problems by machine is the most interesting
aspect of computer science. Many textbooks and introductory classes deal exclusively with
(procedural) programming, however. Programming constructs are explained with the help of
simple programming exercises. Because traditional languages are not well suited to solving
mathematical and scientific problems, the courses usually fail to show how such problems
- which are, after all, our main interest — can be solved. The overhead stemming from
the low mathematical level of even so-called higher-level programming languages shadows
the underlying scientific problem and requires knowledge of memory organization, operating
systems, and so on. Many of these languages were developed by computer scientists for their
own use (e.g., to write compilers). In this book, we want to show that there is another way of
studying both computer science and its application to the sciences and engineering.

The following subsections describe some typical uses of computers in the sciences. The
examples are simpler than what you would encounter in practice, however.

We have not yet talked about how to program in Mathematica, so do not dwell on the
syntactic details; instead, observe how easy it is to solve a problem by computer. Most of the
time, the syntax will be similar to traditional mathematical notation. In the rest of this book,
you will learn how to express your computations in Mathematica.

1.1.1 Newton’s Formula

A zero of a function f is a value z, such that f(x) = 0. Newton’s method for approximate
determination of zeroes of functions f proceeds as follows. From a rough estimate xg of the
zero, we can find a better estimate «r; according to the formula

T =10~ J{,((‘f:f:))) (1.1-1)
where f’ denotes the derivative of f. This formula is of the form
x1 = g(xo), (1.1-2)
with
gx) =z — ff,((‘;)) (1.1-3)

We apply the same method to z| to get an even better approximation z2 = g(x), then repeat
the process. This method leads to the following iteration:

Ty = g(z;), i=0,1,2,.... (1.14)
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If this sequence converges, we have found a zero of f. For an example, let us compute square

roots.

The function RootD£2 has /2 as its zero.

Here is the right-hand side of the iteration.

This equivalent form is often given in the
literature.

Let us define the iteration function g.

The start value o = 1 gives this value of z,.

Here is z2. The shorthand notation ¥ refers
to the previous result in Out[5] above.

After seven iterations, successive values of z
are already equal; that is. we have found the
solution. This computation was done to 30-
digit accuracy.

For verification of the result, we squarc the
final value. It1s correctto29 decimal places.

In[1]:= Root0f2[x_] := xa2 - 2

In[2]:= x - RootDf2[x]/Root0£2’[x]

2
-2 + x

2 x

OQut[2]= x -

In[3]:= (2/x + x)/2

2

-+ x

X
Out([3]=

2

In[4):= glx_] = (2/x + x)/2;

In[5]:= g[1.0]
Out[5]= 1.5

In[6]:= g[%]
Out[6]= 1.41667

In[7]):= NestList[ g, N[1, 30], 7 ] // TableForm
Out[7]//TableForm= 1.00000000000000000000000000000
1.50000000000000000000000000000
.41666666666666666666666666667
.41421568627450980392156862745
.41421356237468991062629557889
.41421356237309504880168962350
.41421356237309504880168872421
.41421356237309504880168872421

_ e e

In[8]):= Last[%]a2
Out[8]= 2.00000000000000000000000000000

Here is another example that shows that Newton’s method does not always perform this well.

The zero of this function is 0, of course.

Again, we define the iteration function h.

In(9]):= slow[x_] := xa3

In[10]:= slow[0]
Out[10]= 0O

In[11]):= hix_] = x - slow[x]/slow’[x]

2 x
Out[11])= —
3
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With the function A we gel slow conver- In[12]:= NestList[ h, N[1, 30], 22 ] // TableForm
gence, as you can see here. Out[12]//TableForm= 1.00000000000000000000000000000

0.666666666666666666666666666667
0.4444444444444444444444444449444
0.296296296296296296296296296296
0.197530864197530864197530864198
0.1316872427983539094656020576132
0.0877914951989026063100137174211
0.0585276634659350708733424782807
0.0390184423106233805822283188538
0.0260122948737489203881522125692
0.01734165299158326135921014750461
0.0115610199438884090614009833641
0.00770734662925893937426732224273
0.00513823108617262624951154816182
0.00342548739078175083300769877455
0.00228365826062116722200513251637
0.00152243884034744481467008834424
0.00101495922689829664311339222950
0.000676639484598864362075594819664
0.000451092989732576241383729879776
0.0003007286598217174942658199198561
0.000200485773214478329503879946567
0.0001336571821429855653002686631045

Even after 100 iterations, we have only 18  In[13]:= Nest[h, N[1, 30], 100]
digits of the zero.

-18
Out[13]= 2.45965442657982926924379399594 10

We can visualize easily the progress of Newton’s method. We draw a line from the point (2, 0)
up to (zo, f(x0)), then along the tangent to the intersection with the z axis, which is the
point (z), 0), then back to (2, f(x)), and so on.

These steps have been collected in an ex-  In[14):= << CSM‘Iterate'
tension of Mathematica, which we can read

into our session. Doing so will define the

command NewtonIteration.

The start value is 2, and we perform four  In[15]:= NewtonIteration[ Root0f2, 2, 4, {1, 2} 1;
steps. Because of the fast convergence of

the square-root iteration, we can see only 2[
the first two steps; the remaining lines are L.5:
too close to the graph of the function. I

0.5 ‘

1.2 4 16 1.8 3
0.5
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The second example shows slow conver- In[16):= Newtonlteration[ slow, 0.6, 6, {0, 0.65},
gence so we can see several more steps. PlotRange->All ];
0.25
0.2
0.15
0.l
0.85

== . . .._..._....—_._.___..
01 02 03 04 05 06

The zero of the cosine at z = /2 can also  In[17]:= NewtonIteration[ Cos, 0.5, 4, {0, 3} 1;
be found with this method. The values x:

alternate between being too small and too !
large, giving this picture.

Numerical approximation techniques were among the first algorithms developed for computers.
One of the most important methods for numerical approximation is iterasion. It is also used to
solve systems of equations and differential equations.

1.1.2 Formulae: Uniformly Accelerated Motion

A standard topic in an introductory physics course is uniformly accelerated motion. The
formulae for its special cases, such as free fall and braking distance, are easily derived from
the general formula by symbolic manipulation.

The velocity at time ¢ is () = vo + at. The  In[1):=v[t_) =vO + a t
constant acceleration is denoted by @, and %o gue[1]= a t + vO
is the initial velocity.

The distance traveled is the integral of thc  In[2]):= s[t_] = Integrate[v[tt], {tt, 0, t}]
velocity 2

t at
s(t)=/ v(1)dT Out[2]= 2 +t v0
0
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IfwesetugtoOand ato g, wegetthe formula  In[3]:= s[t] /. {vO -> 0, a -> g}
for the distance traveled in free fall. 2
t
Out[3]= g8~
2

The time it takes to bring a vehicletoa com-  In[4]:= Solve[v[tb] == 0, tb]l[[1]]
plete stop is obtained as the solution of this

0
equation for final velocity 0. Outl4l= {tb -> ~()}
a
This time gets us the braking distance. The  In[5]:= s[tb] /. %
value grows quadratically with initial veloc- 2
ity vo. When the brakes are applied, the ac- -v0

celeration a is negative. The value is there- Out(5]

fore positive, despite the minus sign. 2a

This kind of formula manipulation is typical of many scientific problems. A symbolic compu-
tation system can work with formulae and equations just as easily as an ordinary programming
language can work with numbers.

How such a symbolic computation system works is quite a different matter. The first
symbolic computation systems were written in LISP, which allows us to work with symbolic
expressions directly. We need ““only” implement the underlying mathematical algorithms. We
shall take a look at LISP in Section 9.2.

1.1.3 Simulation: The Value of

A simple physical experiment allows us to measure the area of a quarter of a disk and thus
to determine the value of &. We choose repeatedly a uniformly distributed random point in
the unit square and count how often it lies in the unit circle as well. The ratio of the number
of points in the unit circle to the total number of points is equal to the ratio of the areas of
the quarter disk and the unit square. Instead of performing the experiment in reality, we can
simulate it on the computer.

Each invocasion of Random[] retums areal  In[1]:= Random[]
number distributed uniformly in the interval  gu¢r17= 0.753989
fromOto 1.

This funcéion (which has no arguments) In[2):= randomPoint := { Random[], Random[] }

gives a randomly chosen point in the unit

square,
Here is a list of 200 simulations in abbrevi- In[3]:= (data = Tablel randomPoint, {200} 1) // Short
ated form. Out[3]//Short=

{{0.524444, 0.759749}, {0.989753, 0.518709},
{0.46092, <<7>>31}, <<196>>, {0.51534, 0.801726}}
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Wecan take abetterlook atthe simulationre-  In[4]:= ListPlot[ data, AspectRatio->Automatic J;
sults by drawing the points in the unit square. | ,

0.8
06

04

0.2

02 04 06 03 1

We are interested in the number of pointsin =~ In[5]:= Show[
the circle. This picture highlights the circle Graphics[{
inside the unit square. {GrayLevel[0.89], Disk[{0,0}, 1, {0,Pi/2}]},
Line[{{0,0},{1,0},{1,1},{0,1},{0,0}}] }],
%, AspectRatio->Automatic ];

1

This predicate tests whether a point lies in  In[6]:= inCircle[pt_] := Apply[Plus, pta2] <= 1
the circle, that is, whether the point's dis-
tance from the origin is < 1.

Here is the fraction of points lying in the  In[7]:= Count[ data, _?inCircle ] / Length[datal // N

circle. Out[7]= 0.845

We repeat the experiment with 100,000 1In[8]:= data = Table[ randomPoint, {100000} 1; \
points. The result is an approximation Count[ data, _?inCircle ] / Length[datal // N
ofmn/4. Out[8]= 0.78338

Here are six exact decimals of /4. In[9]):= N[ Pi/4 ]

Out[9]= 0.785398
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This example uses the computer to simulate a physical experiment. One requirement for such
a simulation is a random-number generator. It is used in Monte Carlo simulation methods to
simulate a large number of trials. The results are then evaluated statistically. (Here, we simply
calculated an average.)

1.1.4 Solution of Equations: Operational Amplifiers

The circuit shown on the left is a noninverting amplifier,

<1_ realized using an operational amplifier (op amp). Because
Rlé of the almost ideal properties of op amps, this circuit can
be computed with a linear system of equations. We can
assume that the difference of the two input voltages is zero,
that is, V; = V. Furthermore, the input resistance is infinite,
which implies that the current through the two resistors R,
and R, is the same. From Ohm’s law, we arrive at equations

Vi = IR;and V, — V) = IR;. We are interested in the
— voltage gain A, =V, /V;.

Here are the equations. In[1):= gl = { vi == v1,
vl == i r2,
vo - vl == i ri,

av == vo/vi };

Solving for A,, we immediately getthestan-  In[2]):= Solvel gl, av, {vi, vo, v1, i} ]
dard formula for the voltage gain. i+ 2

Out[2]= {{av -> 1}
r2
1..5 Numerical Computation: Kepler’s Equation
P’ A planet P moves on an elliptic orbit with one focal point S
being the sun. Todetermine its location on the orbit, according
P to the illustration, we need to determine the angle w, the true

anomaly. The time M, called the mean anomaly, is measured
starting from the point closest to the sun, such that one revo-
a lution is equal to 27.

First, we determine the angle E, called the eccentric anom-
aly, according to Kepler’s equation:

M=E-¢sinE, (1.1-5)

where € = (a? — b?)/a denotes the eccentricity of the ellipse
with semimajor axes a and b. Equation 1.1-5 cannot be solved for E in closed form, but we
can use an iterative method.



10 ! Computers and Science

We write the equation in the form

E=M+esinE. (1.1-6)

The equation is now of the form E = f(E), with f(E) = M + esin E, and it can be solved by
iteration. We let eg = M and iterate e; = f(e;—1), forz=1,2,3,. ...

In our example, theratioof the axes is a/b =
3/2. Here is the corresponding value of the
eccentricity.

Here is the iteration function.

We perform 14 iterations for M = nt/2, that
is, after one-quarter of a revolution. We can
sec that values converge quickly toward a
solution.

The command FixedPoint[] performs the
iteration as many times as is necessary to find
the solution.

The function Kepler[M] allows us to
compute E for any given value of M.

Again, hereis the solution for M = /2.

This curve shows the difference between
mean and eccentric anomalies during one
revolution of the planet.

In[1):= eps = N[ Sqrt[3+2 - 242]/3 ]
Out[1])= 0.745356

In[2]:= f[E_, M_] := M + eps Sin[E]

In[3]:= NestList[ Punction[E, f£[E, Pi/2]], N[Pi/2], 14 ]

Out[3]= {1.5708, 2.31615, 2.11852, 2.20712, 2.17028,
2.18618, 2.17942, 2.18231, 2.18108, 2.18161, 2.18138,
2.18148, 2.18144, 2.18145, 2.18145}

In[4]):= FixedPoint[ Function[E, f[E, Pi/2]], N[Pi/2] ]
Out[4]= 2.18145

In[5]:= Kepler[M_] :=
FixedPoint[ Function(E, £[E, M]], N[M],
SameTest -> Equal ]

In[6]:= Kepler[ Pi/2 ]
Out[6]= 2.18145

In[7]):= Plot[ Kepler[M] - M, {M, 0, 2Pi} ];

0.6
04
0.2

02
-0.4|
06|

This example uses one of the simplest approximation methods for solving equations that do
not have a solution in closed form. Because most equations occurring in practice are of this

kind, such methods are important.
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1.1.6 Everything Together: The Diode Equation

This example shows the interplay of symbolic computation, numerics, and graphics for solving
a problem from electronics.

The relationship between voltage V and current I of a diode is

I = Io(e?/%1 — 1), (1.1=7)
where Ij is the leakage current, q is the elementary charge, k is the Boltzmann constant, and T’
is (absolute) temperature. Mathematica contains a table of such physical quantities. We read
it in and verify first that the dimensions in the equation are correct.

This package contains conversion functions  In[1]):= Needs["Miscellaneous‘'Units‘"]

for all units imaginable (and then some).

We read in a table of physical constants. In[2]:= Needs["Miscellaneous'PhysicalConstants'"]

This symbol is the elementary charge. In[3]:= q = ElectronCharge

-19
Out[3]= 1.60218 10 Coulomb
Finally, we introduce Boltzmann's constant.  In[4]:= k = BoltzmannConstant

ST units are used. -23
1.38066 10 Joule

Out(4])=
Kelvin

Here is the dimension of the exponent In[5]:= q Volt/(k Kelvin)
q'b'/k’r. The units should Cancel. 11604.4 Coulomb Volt
Out[5]=

Joule

This command converts the units to funda-  In[6]:= Convert[%, 1]
mental SI units and shows that the result is Out[6]= 11604.4
correct,

Let us now replace q and k by dimension- In[7):= q = q/Coulomb; k = k Kelvin/Joule;

less numbers to simplify the following com-
putations.

Next, we define the diode equation and investigate the relationship between current and voltage.

This definition gives the current in terms of  In[8]:= Diodelv_, t_] := iO0(Explq v/(k t)] - 1)
voltage and temperature.

The leakage current is Lypically of this mag-  In[9]:= i0 = 10.04-9;
nitude.
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This diagram shows the current for a voltage
from0to 0.5V atroom temperature (70°F =
294 K). In the forward direction, the current
increases rapidly above 0.5 V because the
diode becomes a conductor.

For an exponential relationship, a log-linear
plot shows more detail. The LogPlot[]

1 Computers and Science

In[10]:= Plot[ Diode([v, 294], {v, 0, 0.5},

i
0.35;
0.3}
0.25
02
0.15}
0.1}
0.05

PlotRange->A11, AxesLabel->{v, i} 1;

0.1

v

0.2 0.3 0.4 0.5

In[11]:= LogPlot[ Diode[v, 294], {v, 0.001, 0.6} 1;

command is from the standard package 10 7
Graphics‘Graphics®. o
0.0 e
e
0.00001 | 7
-
I.x1078} //
0 01 02 03 04 05 06
So that the diode is not destroyed, it is usually put in series with a
V; . ; . .
resistor R, as shown here. This resistor limits current. The current
R becomes equal to (V; — V,)/R, according to Ohm’s law. The current
through the resistor and that through the diode are equal. By combining
Ohm’s law with the diode equation, we get
I Va (Vi = Va)/R = Io(e?*/*T — 1), (1.1-8)

We are mainly interested in the output voltage V, in relation to the
input voltage V;. Because of the transcendent dependency, this equation
cannot be solved exactly for V,, so we use a numerical approximation
technique.

The function FindRoot[equation, {var, start}] solves the given
equation for the unknown var. The search for a solution starts with the

value start. We know that the voltage across the diode is about (.5 V, and so we use this value
as our start value. This simple equation does not need a good initial value.
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We can solve the equation with FindRoot.
Here, we set Vi = 12 Vand R = 100 Q.

This definition solves the equation for V,,
and returns the solution.

Here, we can see how the diode works as
rectifier. It cuts off voltages above = 0.5 V.

Our circuit dampens variations of input volt-
age by this factor.

Here is the temperature coefficient. A tem-
perature change of 1 K changes the voltage
by only this much.

In[12]:= FindRoot[ (12-va)/100 == Diode[va, 294],
{va, 0.5} ]

Out[12]= {va -> 0.470296}

Val[vi_, r_, t.] :=
va /. FindRoot[ (vi-va)/r == Diode[va, t],

{va, 0.5} 1[[1]]

In[13]:

In[14]:= Plot[ Valvi, 100, 294], {vi, -2, 5},
AxesLabel -> {Subscript[V,i], Subscript[V,al}

1;
Va
0.25F_’Pt
22 -1 S
~0.2
-5
-4.75
-1
-1.25|

In[15]:= (11 - 10)/(Va[11, 100, 294] - Va[10, 100, 294])
Out[15]= 396.695

In(16]:= (va[10, 100, 294] - va{10, 100, 293])

Out[16]= 0.00157909
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1.2 Computers

Although they are called computers, these machines can do much more than compute. The
term hints at their first use. Before the age of computers, a computer was a human, equipped
with a mechanical calculator, who performed numerical computations. The first machines
in the United States (Howard Aiken’s Mark I and the first machine with electron tubes, the
ENIAC) were used to solve numerical problems. The first machine using the binary number
system, Konrad Zuse's Z1, was developed to solve large computations in fluid dynamics. Alan
Turing was one of the first people to use such machines for nonnumerical purposes, namely.
for cryptanalysis.

1.2.1 Programmable Machines

The difference between a calculator and a computer is that the latter is programmable. Instead
of building a machine specific to a certain problem or rewiring one for a new problem, we
simply write a new program. On the first machines, these programs were written onto paper
tape, with each command on a line. A command was read and was executed immediately, and
then the tape was advanced by one position. Programmers implemented loops by gluing the
ends of the tape together.

The next major advance was storing programs inside the machine itself, as was first done on
the EDSAC, the successor of the ENTAC. This new idea allowed the implementation of jumps,
that is, commands that continue the program at a different place. Moreover, the place where
the program would continue could depend on the data being processed. Such conditional
statements were a major breakthrough. Konrad Zuse said:

This idea often scared me in the beginning, because until then with the computers Z1-
Z4 one could understand what was going on. You could even follow the calculations.
In the moment that 1 allowed the computed data to influence the program — for that
only a small wire connecting the arithmetic unit and the stored program is required -1
could no longer monitor the calculations. [75, p. 25]

The programs for such computers were also often stored on tape or punched cards, but the
whole program was read into the machine before it was executed. Today, programs are stored
like data, and they are loaded into main memory as needed.

1.2.2 Computer Architecture

Computer architecture is the study of the various functional units and their connections.
Figure 1.2-1 shows the main parts of a modern workstation computer. The way such a
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4 Register file

ALU

F'y
v

. ¢—P»| Address unit Q—D{Program counter

Control unit

'
:
«P> Decoder
'
:
'

Addresses

10 unit Frame buffer

Main memory

Figure 1.2-1 Building blocks of a computer.

machine works has not changed much since John von Neumann formulated the von Neumann
architecture in 1945. Accordingly, a computer consists of the following building blocks:

1. The control unit loads instructions from memory and decodes them. Depending on the
kind of instruction, it configures the other parts of the machine to execute the instruction.

o

The arithmetic and logic unit (ALU) performs arithmetic and logic computations.

3. The main memory is divided into sequentially numbered cells each of which contains a
word of memory of a certain size. The address tells the memory unit which word to read
or write. Words are represented in binary. The main memory contains both instructions
and data.

4. Theinput—output (10) unit is used to exchange data with external devices, such as secondary
memory, printer, keyboard, mouse, terminal, or the network.



16 1 Computers and Science

Modern computers contain additional parts, which do not change the overall structure funda-
mentally:

5. The register file is a collection of registers, which are a fast version of main memory.
The number of comparatively slow accesses to main memory is reduced by organizing a
computation so that operands can be read from a register, instead of from main memory.

6. The frame buffer is a part of main memory whose contents can be displayed on a screen.
Consecutive memory words correspond to consecutive pixels (picture elements), that is.
dots on the screen that can each display a color or graylevel from a certain range. The
frame buffer can be used to display text and graphics.

The instruction set of a modern computer can be divided into the following main groups. How
many instructions there are depends on the machine; there are substantial differences.

1. Arithmetic operations are performed on the contents of certain registers. The result is
written back into a register. Register contents are interpreted as binary coded numbers.
Examples are addition, subtraction, and multiplication. Few computers have instructions
for division; division is usually carried out by a small program.

2. Logical operations operate bit by bit on the contents of registers. Examples are AND, OR,
and NOT.

3. Comparisons perform Boolean operations on the registers and store the result in a status
register. They are used mainly to prepare conditional jumps. Examples are r, =0, r; #0,
71 > 0, and r{ = 7;.

4. Memory operations transfer data between registers and memory.

5. Jumps change the ordinary sequential instruction sequence by writing a new value into the
program counter. Jumps can be conditional. A conditional jump is executed only if the
status register contains a certain value. If the condition is not satisfied, the next instruction
in sequence is executed. The value of the status register is set by a preceding comparison
instruction.

6. Subroutine calls are unconditional jumps that write the old value of the program counter
into another register. The return instruction restores the program counter from this saved
value, which causes the previous program to be continued.

The control unit can also react to external influences. A key being pressed, for example,
creates an impulse that causes the control unit to interrupt the current instruction sequence,
and to jump to another one. This interrupt sequence can use the IO unit to find out which key
was pressed. As soon as the key has been identified, a return instruction is used to continue
the interrupted program. Most external devices can generate such interrupts.
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1.2.3 Operating Systems

Running a modern computer itself requires a large program: the operating system. The
operating system coordinates the different parts of the computer and guides the correct running
of user programs. Most of today’s computers work in time-sharing mode, meaning that several
programs can run concurrently. Chunks of the available processor time and the peripheral
devices are made available to the programs in tumn.

The kernel is the program that starts running when a computer is powered on. It maintains
the interface between programs and the hardware. In addition to this kermel, an operating
system consists of several utilities, or auxiliary programs that are needed to operate a computer.
The linker, or loader, takes programs from secondary memory, connects them with the kernel,
and puts them into main memory for execution. The back-up program writes copies of files
from secondary memory onto off-line storage devices, such as magnetic tape, to protect the
liles in case of human or technical error. The command interpreter reads the commands
entered on the keyboard and runs the corresponding programs. Many of these interpreters are
small interpreted languages in their own right. An example is the Unix shell.

More and more frequently, graphical user interfaces (GUIs) that use a mouse or another
pointing device are taking over the task of the command interpreter. A GUI performs two
main functions:

» It manages the windows, that is, the rectangular areas on the screen that are used to interact
with programs.

« [torganizes your “desktop.” It shows icons — graphical representations of your files — and
allows you to perform such tasks as copying or deleting files or to start programs by a few
clicks with the buttons of the mouse.

The first GUI was developed by Xerox. The first commercially successful GUI was part of the
Macintosh operating system. The Macintosh interface’s ease of use is Jegendary, whereas the
two competing systems initially developed for the IBM PC -~ Windows 3 and the Presentation
Manager of OS/2 ~ failed on this measure. True progress was made only with NextStep.
Most high-end Unix-based scientific workstations use graphical interfaces derived from the
X Window System.
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1.3 Programming Languages

With the increasing performance levels and growing commercial use of computers, people
came to realize that writing programs is a difficult task. What was more natural than to use
computers to write programs?

1.3.1 Machine Language and Assembler Programming

The first step toward easier programming was the simplification of producing machine-
language programs. People built assemblers — programs that allow you to write machine
instructions in symbolic form and that can compute jump addresses. Listing 1.3—1 shows an
example of an assembly-language program. It was written for Sun Microsystems’ SPARC
Processor.

.proc 16 cmp %il1,%i2

.global _vecMultLoop inc 2,%i0
~vecMultLoop: bne L77016

save %sp,-96,%sp srl %i5,16,%i5

sll %i2,16,%i2 L77018:

srl %i2,16,%i4 tst %i5

sll %i3,1,%i3 be L77023

add %il,%i3,%i2 nop

cmp %i1l,%i2 L77020:

be L77018 1duh [%i0],%07

mov 0,%i5 add %i5,%07,%i5
L77016: sth %i5, [%i0]

1duh [%i1],%o1 srl %i5,16,%1i5

call .umul,?2 tst %is

mov %i4, %00 bne L77020

1duh [%4i0],%03 inc 2,%i0

inc 2,%i1 L77023:

add %03,%00, %03 Tet

add %i5,%03,%15 restore

sth %is, [%io]

Listing 1.3-1 An assembly program (written in two columns).

Typically, assembly-language programs contain labels: symbolic names of program lines (in
our example, they begin in column 1 and are terminated by a colon - e.g., L77016:). The
names of machine instructions are indented: for example, add is used to add the contents
of two registers. Instructions are followed by their arguments, that is, by the names of the
registers or the memory addresses to use. The instruction bne L77016 is a conditional jump.
If the result of the preceding test is not equal to zero, the program will jump back to label
L77016. This test is the preceding instruction cmp %i1,%i2, which compares registers il
and i2.
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The assembler transforms the assembly-language program into machine language by gen-
erating the bit patterns that correspond to the individual instructions and by replacing the
labels in the jump instructions by the length of the jump, that is, by the number of instructions
between the jump instruction and its target. The machine program generated from the program
in Listing 1.3-1 is shown in Listing 1.3-2. Nowadays, it is almost never necessary to work
with a program at this low level. Disassemblers and debuggers can transform such programs
back into higher-level languages.

0000000 0103 0107 0000 0080 0000 0000 0000 0000
0000020 0000 0018 0000 0000 0000 000c 0000 0000
0000040 9de3 bfa0 b52e a010 b936 a010 b72e e001
0000060 b406 401b 80a6 401a 0280 000e balld 2000
0000100 d216 4000 4000 0000 9010 001c d616 0000
0000120 b206 6002 9602 c008 ba07 400b fa36 0000
0000140 80a6 401a b0O06 2002 12bf fff6 bb37 6010
0000160 8090 001d 0280 0009 0100 0000 del6 0000
0000200 ba07 400f fa36 0000 bb37 6010 8090 001d
0000220 12bf fffb b006 2002 81c7 e008 81e8 0000
0000240 0000 0024 0000 0186 ffff ffdc 0000 0004
0000260 0500 0000 0000 0000 0000 0011 0100 0000
0000300 0000 0000 0000 0018 5£76 6563 4d75 6¢c74
0000320 4c6f 6£70 002e 756d 756¢c 00a3

Listing 1.3-2 A machine program in hexadecimal notation.

1.3.2 Higher-Level Languages

The next step in the development of programming languages was the advent of higher-level
languages. In a higher-level language, we use symbolic names, or variables, instead of
memory addresses to denote values. Another important aspect is that we can write loops and
branches in a more human-readable form than is possible with assembler. One of the first
higher-level languages was FORTRAN. Over time, many other languages have been developed.
Depending on their intended usage and the personal preferences of their developers, they show
a (sometimes too) rich variety of features. A few of the better-known examples are LISP,
BASIC, COBOL, ALGOL 60, Prolog, C, Pascal, and Java. Listing 1.3-3 shows a small
program in C.

Eventually, a program written in a higher-level language, like one in assembler, must also
be converted into machine language so that it can be run on a computer. The translation from
higher-level language to assembler is done by a compiler. Because of the power of expression
that such languages offer, compilers are usually very complicated programs. Incidentally, the
assembly-language program in Listing 1.3-1 is the result of compilation of the C program
from Listing 1.3-3. It is the inner loop of the multiplication of two long integers, carried out
as in Mathematica.
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typedef unsigned short bigit;
typedef unsigned int accu;

const BigBits = 16;

#define BigRem(a) ((bigit) (a))
#define Carry(a) ((a) > BigBits)

void vecMultLoop(bigit a, bigit b, unsigned int si, unsigned int 1b)

{ /* inner multiplication loop: al0 .. 1b-1] += sxb[0 .. 1b-1] */
accu ac = 0;
bigit s = si, *bil;
for (bii = b + 1b; b != bil; b++, a++) {
ac += *a + 8 * *b;

*a = BigRem(ac) ;
ac = Carry(ac);

}

while (ac !'= 0) {
ac += *a;
*a++ = BigRem(ac);
ac = Carry(ac);

}

Listing 1.3-3 A C program.

1.3.3 Application-Specific Environments

After the development of higher-level languages, the emphasis in research and in commercial
software production shifted toward application-specific problem-solving environments. These
programs “know” the language of the application and have built in the most important meth-
ods used in a certain area. Examples are database systems, spreadsheets, expert systems,
desktop-publishing systems, and symbolic computation systems — among them Mathematica.
Mathematica, in turn, offers a programming language — the one we are using in this book.

Scientific Astronomer is an application In[0):= Needs["Astronomer‘"];
package wrillen in Mathematica. Astronomer is Copyright (c) 1997 Stellar Software

We can specify our location on Earth; the  In[1):= SetLocation[ {8+23/60., 47.0},
Biirgenstock mountain in Switzerland, in GeoAltitude -> 0.8 KiloMeter, TimeZone -> 2]

this case. Out[1]= {GeoLongitude -> 8.38333 Degree,

GeoLatitude -> 47. Degree,

GeoAltitude -> 0.8 KiloMeter, TimeZone -> 2}
Figure 1.3-1 shows a view of the northern  In[2]:= CompassStarChart[ North, {1997,8,17,21,30,0},
night sky over Biirgenstock at the given date Mesh -> True, MagnitudeRange -> 4.0,

and time. ConstellationLabels -> True, MilkyWay -> True
5;
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Figure 1.3-1 The northern night sky on August 17, 1997.

1.34 Problem Solving by Computer

We do not do programming for its own sake. It is only one part of problem solving. Solving
a problem begins with analyzing that problem. If you ask a stupid machine to perform a task,
you have to spell out all the steps accurately. As the saying goes,

The computer does not do what you want it to do; it does only what you tell it to do.

There is usually a broad choice of methods for solving any given problem, and the next step
is selecting one. Experience will teach you which ones to use in which situations. Once
you choose a method, you begin programming. Programming is an interactive process in
Mathematica: you can try out each small program piece immediately and see whether it
does what it should do. Thus you can do testing both as you write your program as well as
once you finish it. Part of testing is the simple but often-neglected step of thinking about
whether the output could be right. An important part of programming is writing the program
documentation. Then, if you are convinced that the program is correct, you can solve the
original problem. Finally, you need to format the output. There are few cases where the output
of a program is already the final answer to a scientific problem. Using graphics is often a good
way to present a result, as demonstrated by the examples given in Section 1.1.

If software is developed commercially, these steps are formalized in a software project.
The project documentation becomes an important part of software development and the work
is often split among many people.
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Another important aspect of software development is software maintenance: the ongoing
development of the program in response to bug reports or changed requirements. Mathematica
itself is such a software project. Since its initial release in June 1988, it has gone through many
new versions. These new versions solved identified problems and added new functionality.
The area of computer science that deals with methods of commercial software development is
called software engineering. We shall look at it in Chapter 4.

1.3.5 Programming Styles

Procedural languages have arisen more or less directly from assembly language. A procedural
program performs a computation one step at a time by modifying values of program variables.
Typical features are assignments, loops, conditional statements, and subroutines. The first of
these languages, FORTRAN, is still used for numerical computations. The most advanced
family of such languages originated with ALGOL 60, notable successors being Pascal and C,
both of which are in widespread use today.

Another path was taken by McCarthy in the development of LISP. A number of languages
evolved from LISP, and they are used mainly in artificial intelligence and in symbolic compu-
tation. A moderm member of this family of functional languages is Standard ML. A functional
program performs a computation by applying functions to values. This style of programming
is often neglected when traditional procedural languages are taught. We shall treat functional
programming in Section 9.2,

Declarative programming, or logic programming, is exemplified by the language Prolog.
A logic program states logic properties of predicates. A computation is a proof of the validity
of a predicate. We shall discuss rule-based programming — another variant of declarative
programming — in Section 10.1.

Object-oriented programming is rapidly gaining in popularity. It began with Simula.
Nowadays, Smalltalk and C++ are widely used, with Java rapidly gaining in popularity.
Objects are collections of data and procedures. Computations are performed by sending
messages to objects. We shall treat object-oriented programming in Chapter 14.

Apart from these major languages, many other languages have been developed for specific
problems and cannot be put into one of the main categories. COBOL is the most widely used
programming language because it is used for commercial data processing. PostScript has
become the standard for the description of printed material, especially for laser printers. APL
and BASIC are other members of this heterogeneous group.

Mathematica incorporates features from all major programming styles, which allows us to
use the one best suited for a given problem.
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1.4 Computer Science

Computershavebecome so important in science and engineering — and in everyday life — thata
new science has been established to deal with all aspects of computers. Its origins include both
electronics and mathematics. The earliest research institutes for computer science belonged
to one of these two fields. At most universities, independent departments of computer science
have been established during the last 20 years. Here is a somewhat biased overview of the
branches of computer science.

14.1 Theoretical Computer Science

Theoretical computer science studies the mathematical foundations of computer science. One
area is theory of computation, which investigates the relation between programs and mathe-
matical functions. Are there functions that cannot be computed by a program, even if we have
unlimited memory and time? We shall answer this question in Chapter 12.

Complexity theory is the second main topic of theoretical computer science. It focuses on
the difficulty of computing functions. How many operations does it take to solve a certain
problem? Are there lower bounds and, if so, can we write an optimal program? We shall look
ataspects of algorithmic complexity in Chapter 7.

Semantics is an important aspect of theoretical computer science. The semantics of a
program is its meaning. On the lowest level, the meaning of a program is the sequence of
states of the computer that executes the program. The final state after the completion of the
program is the result of the program. The state of a computer is the complete information
about the contents of each register and each word of memory. Usually, we are interested in
only a small subset of this state — for example, the contents of the frame buffer. This semantics
is called operational semantics. Tt is not satisfactory because it depends too much on the
details of the machine on which the program is run. A better approach to semantics is to find
a well-defined mathematical function that describes the program’s output in terms of its input.
Because of the self-referential nature of programs (programs can have other programs as their
input or can produce programs as output), and because of recursion, the domains and ranges of
these mathematical functions are complicated. They are called universal domains. This kind
of semantics is termed denotational semantics. The denotation of a program is the function
it computes. Axiomatic semantics proves statements about the values of program variables
hefore and after a program is executed. We shall look at axiomatic semantics in Section 3.3.

1.4.2 Practical Computer Science

Practical computer science examines the tools needed to use computers efficiently. These
tools are the compilers and interpreters for our languages and the operating systems (described
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in Section 1.2.3). Gaining in importance are computer-aided tools for software development
— CASE tools — as well as the other problem-solving tools mentioned in Section 1.3.

1.4.3 Technical Computer Science

Technical computer science studies the computers themselves, from how to design integrated
circuits (chips) to how best to connect the parts of a computer (see Section 1.2.2). The main
area of research is to find alternatives to the traditional von Neumann architecture, such as
parallel and vector computers, often termed supercomputers. Development of peripherals,
secondary storage devices such as hard disks, and fast data-transmission channels also is part
of technical computer science.

1.4.4 Applied Computer Science

As a universal machine, computers can be found in almost all areas of science and engineering.
Applications in these areas cannot all be taken to be part of computer science, of course. Certain
types of applications, however, have been recognized as important areas of computer science
and have become part of applied computer science. Examples are numerical analysis, scientific
computation, computer graphics, databases, and real-time computation.

1.4.S Computer Algebra

A significant part of Mathematica owes its existence to computer algebra, the study of al-
gorithms for symbolic (nonnumeric) computation. This field started soon after LISP was
developed. Early progress showed that it was feasible to perform many of the seemingly hard
computations from high-school mathematics efficiently by computer, and computer algebra
benefitted in turn from the increasing demand for tools for computer-aided mathematics in
research and industry.
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In this chapter, we examine Mathematica’'s programming language. Every language has a
unique syntax that we must understand before we can write even a simple program. Leaming
an interactive language is easier than leaming a language that has to be compiled. We
recommend strongly that you try out the examples on your own machine; only by working
them through will you get practical experience with Mathematica.

Section 2.1 covers arithmetic and logic expressions. Such expressions appear in most
programs. In Mathematica, we can do computations with arithmetic expressions immediately.
we do not have to write a whole program just to compute 2'%, for example.

Building blocks for programs are the topic of Sections 2.2 and 2.3. The concept of
variables, or symbols, is of central importance in programming languages. Many languages
treat symbols only as program variables — that is, as notations for values stored in the computer.
Mathematica allows us to do computations with symbols. Symbols are also used to organiz
function definitions. Using definitions is the most important way to program in Mathematica.
We shall also talk about the more traditional concepts of conditional statements, loops, and
procedures. We shall briefly discuss pure functions, which we shall use in many situations.

The theory behind Mathematica’s expressive power is treated in Section 2.4. It should give
you an idea about how expressions are built up and help you to understand how the concepls
treated earlier in this chapter fit together.

Finally, we give practical hints about on-line help and syntax errors in Section 2.5.

About the illustration overleaf:
The distribution of Gaussian primes (black dots) among x + 2y for0 < 2 < 255,0 <y <25
The origin is in the lower left comer. The plot was made with this command (see Pictures.m):

grid = Table[If([PrimeQ(x + I y], 0, 1], {x, 0, 255}, {y, O, 255}];
Show[Graphics[Raster([grid]], AspectRatio -> Automatic].
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2.1 Arithmetic and Logic

Arithmetic expressions can be found in nearly every program. Most languages — includ-
ing Mathematica — allow you to write arithmetic expressions with traditional mathematical
notation. Logic expressions are used to test properties of numbers.

2.1.1 Arithmetic Expressions

Mathematica can be used like a calculator. Using the four arithmetic operations and parenthe-
ses, you can enter arbitrarily complex expressions, the results of which will then be displayed.

(3 + 4)*5
35

The arithmetic operations have their usual  In[1]:
precedence: therefore.the sum3+4 mustbe gy
in parentheses.

Without parentheses, we get this result, cor-  In[2]:= 3 + 4+5

responding to 3 + (4 - 5). Out[2]= 23
The multiplication sign can be left out. In(3]:= (3 + 4)5
Out[3]= 35
Mathematica always computes an exact rc-  In[4]:= 1 + 1/3
sult, if all inputs are exact numbers. a
Out[4]= -
3
Youhavetoask explicitly for afloating-point ~ In[5]:= N[%]
upproximation. Out[5]= 1.33333
Exponentiation e® is written as aab. In[6]:= 2410

Dut[6]= 1024

Observe that exponentiation is right asso-  In[7]:= asbac

ciative. This input is read as aa (bac) . c

b
Dut([7]= a
Parentheses are necessary for (a®)°. In[8]:= (aab)ac
bc
Out[8]= (a )

There is no built-in limit for the size of the  In[9]:= 100!

numbers you can use. (Only available mem-  gy419]= 93326215443944152681699238856266700490715968264\

ory will set practical limits.) The number

100! has 158 digits. 38162146859296389521759999322991560894146397 615651828\
62536979208272237582511852109168640000000000000000000\

00000
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Here is a sum of three fourth powers. In[10]:= 95800a4 + 21761944 + 41456044
Out[10]= 31858749840007945920321

The result is again a fourth power, asthiscal-  In[11]:= % » (1/4)
culation shows. The fourth rootis computed  g,+111]= 422481
only if doing so is possible exactly.

2.1.2 Logical (Boolean) Expressions

Logical, or Boolean, expressions are tests whose results can be true or false. Mathematica uses
the symbols True and False to denote the two truth values. Ordering relations are expressed
with the usual symbols: n; < ny, n; >= ny, and so on. Equality of numbers is written with
two equal signs:

n ==nz.
Inequality is expressed as follows:
n '=ny.
Negation of a logical expression r is written as !r. The AND connection of two expressions 7|

and 7, is written
T && T,

and the OR connection as
Ty 1 mp.

Mathematica can figure out this inequality In[12]:= 2 < 5

immediately. Out[12]= True

Different comparison operators can be In[13]:=0<=2< 5

mixed. The result is True. because both Out[13]= True
0 < 2and 2 < 5 are true.
The same test can be expressed like this. In[14]:= 0 <= 2 82 2 < 6

Out[14]= True

Negation changes a truth value to the oppo-  In[15]:= (!False)
site value. Out[15]= True

Because variables can have symbolic values, not every logical expression can be figured out
immediately. If Mathematica finds a logical expression whose value cannot be determined
that expression is left as is.

Because the variables @ and b have no val- In[16):= a == b
ues, the value of this equation cannot yetbe  g,4r16]= a == b
found: the expression is left as is.
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The first expression 2<5 returns True;the In[17]:=2< 6 |[ a == b
second one does not matter anymore. Out[17]= True

Forthe ANDconnection, all parts mustretum =~ In[18]:= 2 < 6 && a = b
True, The first expression is already True; g, [18]= a == b
therefore, only the second one matters.

Mathematica looks ahead and sees the sec- In[19]:= a == b || 2 < 6
ond expression, which returns True. Out[19]= True

213 Lists

Lists are linearly ordered collections of data. In Mathematica, lists are written with curly
braces, as {e;, ez, ..., en}. The e; are the elements of the list, n is the length of the list.

Lists can hold together arbitrary elements.  In[1]:= {a, 2., Pi, {1, 0}}
The last element of this list is again a list  g,4r97= {a, 2, Pi, {1, 0}}
(with two elements). ’

Mathematica provides many operations on  In[2]:= Reverse[ X 1
lists; here we reverse the order of the ele-  ,¢191= ({1, 0}, Pi, 2, a}
ments of the preceding list.

Here is the list’s length. In[3]:= Lengthl % ]
Out[3]= 4

The function Part[list, i] retumns a list’s ith element. It is most often written with double
square brackets, as list([i]]. This notation was chosen in analogy to the notation for array
elements in many traditional programming languages.

Here is the second element of the list In[4]:= Part[{a, b, c}, 2]

{a, b, c}. Out[4]= b

This alternate syntax gives the same result. In[5]:= {a, b, c}[[2]]
Out[5]= b

Negative indices count from the end of the  In[6]:= Part[{a, b, c}, -1]
list Here is the list’s /ast element. out[6]= ¢

Mathematica uses lists to represent arrays or vectors; nested lists are used for matrices, see
Chapter 8.
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2.2 Definitions

Simple mathematical functions can be defined almost in the usual notation. The function that
squares its argument is normally written as follows:

f(z)y=22. (2.2-1)

Mathematica uses square brackets for function arguments. The operator for definition is :=.
The formal parameter = corresponds to a pattern that is denoted by x_. We have already seen
how powers are written. Therefore, in Mathematica Equation 2.2—1 looks like this:

flx_] :=xa2. (2272

The function £ is defined like this. In[1]:= £[x.] := xa2

Weuse the new function £ immediately. For  In[2]:= £[2]
numerical arguments, the result can be cal-  gyy(2]= 4
culated.

For symbolic arguments, no further simpli-  In[3]:= 2[1 + y]
fication takes place. 2
Out[3]= (1 + y)

A question mark at the beginning of a line  In[4]:= 72
can be used to show all definitions made for gy pa1 ¢

a symbol.
flx_] = xa2

2.2.1 Several Definitions

A new definition for a symbol overwrites an existing one only if the left side is the same.

This definition overwrites the old one given  In[5):= £[x_] := xa3
for £.
We can see that only the new one remains. In[6]:= ?7¢

Global‘f

flx_] := xa3

If the left side of a new definition is different from those already stored, the new definition is
added to the list of definitions. Definitions that are more specialized than existing ones are put
before more general ones.

Here isthe general rule for the factorial func-  In[1]:= factorialln_] := a factorialln-1]
tion.
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This definition establishes the initial condi- In[2]:= factoriall0] = 1

tion, Out[2]= 1
Even though the initial condition is given = In[3]:= 7factorial
second, it is put before the general rule. Global‘factorial
factorial[0] =
factorialln_] := n*factorialln - 1]

Only in this way can the function work at  In[4]:= factoriall[30]

all Out[4]= 265252859812191058636308480000000
Clear[f] clears all definitions made fora  In[5]:= Clear[factoriall

symbol f.

Mathematica no longer knows any defini- In{6]:= ?factorial

tions for the symbol factorial. Global: factorial

Ifyou set up deﬁmtlons mteracnvely and want o modlfy exlstmg ones, you  should make sure
that the new ones:do i fact overwrite the old ones. Often, it is Better touse Clear [symbol]
10 clear all definition: and'then to start: 0ver Wxth ?symbol, you can a.lways check whlch
deﬁmnons are in effec co R

2.22 Piecewise-Defined Functions

Piecewise-defined functions can be implemented with several definitions with the appropriate
conditions on their validity. Definitions valid under only certain conditions are given as
follows:

Is /; cond :=

The condition cond is a logical expression.
The absolute value of a real number is defined thus:

abs(z) = {:r forz > 0;

—r forx<O. (22-3)

These two conditional definitions can be entered into Mathematica similarly as two separate
definitions.

The absolute value of z is equal to x, if In[7]:= abs(x_] /; x >= 0 :=x
z20.

The absolute value of z is equal to —z, if In[8]:= abs[x_] /; x < 0 := -x
z<0.
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The first rule that matches is used. In[9]:= {abs[-1], abs[0], abs[1]}
Out[9]= {1, 0, 1}

Of course, our own functions can also be  In[10]:= Plot[ abs[x], {x, -1, 1} ]1;

plotted. ;

0.8

0.6/
0.4}
.2

1 05

For symbolic arguments, nothing is known In[11]:= abs[a]
about their sign. The function abs[] there-  g,:7117= abs[a]
fore remains unevaluated.

2.2.3 Immediate and Delayed Definitions

You will encounter two kinds of definitions; those with Is = rs, and those with Is := rs. The
difference lies in when the right side (rs) is evaluated. The first kind, immediate definitions,
evaluates the right side when the definition is given; the second kind evaluates it only when
the definition is used later on. The second kind, delayed definition, should be used if the
left side (/s) contains pattern variables — for example, in £[x_] := xa2. As we have seenin
the preceding sections, these definitions are usually used to define functions. The right side
of function definitions, called the body of the function, should be evaluated only when the
function is used, not when it is defined.

Immediate definitions can be used if the left side is constant — for example, in £ib[0] = 1,
or when a value for a symbol is defined, asin a = 5.

To make the difference visible, we give a  In[1]:= x = 77
value to the variable x. Out[1]= 77

This delayed definition is not influenced by  In[2]:= £[x_] := xa2
the global value of x.

First, the value of the pattern variable x is  In[3]:= £[2]
inserted; then, the right side is evaluated. Out[3]= 4

As you can see, the definition for £ still  In[4]:= 7¢
contains x, not its value. Global‘f

flx_] := xa2
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The right side of this definition is evaluated
immediately.

The value of the pattern variable x is not
used at all because it does not appear in the
evaluated right side. Normally, this is not
what we want.

Here, you can see that the definition for g
does not contain x at all. It was replaced by
its value when the definition was made.

In[5]:= glx_] = xa2
Out[5]= 5929

In[6]:= gl[2]
Out[6]= 5929

In[7]:= ?g
Global‘g
glx_] = 5929

Pamctions should normally be set up with delayed definitions (with :=).

“For constants and for symbols, immediate definitions (with =) can be given.
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2.3 Simple Program Structures

In this section, we shall look at building blocks of programs. Every program in the rest of this
book is composed of the language elements described here.

2.3.1 Variables and Symbols

You can use variables for symbolic computation (without giving them a value).

Thevariable x istreated as anindeterminate,
as is customary in mathematics.

Even without a value for x, we know that it
is equal to itself.

Here is a symbolic sum of the powers 0
through 5 of x.

You can assign values to variables.

variable is used, its value is inserted.

We set the value of the variable n to 4.
This value of a is now used in this formula,
The value of x is another formula.

This value, too, is used.

By expanding products and powers with
the command Expand[], we get the well-
known formula (a + b)* = a? + 2ab + b°.

You can do assignments in parallel by en-
closing the left and right sides in lists (curly
braces).

Theassignments are done in parallel. There-
fore, this command interchanges the values
of x and y.

In[1]:= Bxpand[(1+x)46]

2 3 4 5 6
Out{i]lJ=1+6x+ 156 x +20x +15x +6x +x
In[2]:=

Out[2]= True

X == X

In[3]:= Sum[ xAi, {i, 0, 5} ]

2 3 4 5
Qut[3]=1 +x+x +x +x +x

The values can be numbers or formulae. Every timea

In[4]:=n =4
Out[4)= 4

In[5]:= 1 + n + na2
Out[5]= 21

In[6]:=
Out[6]=

x = a+b

a+b

In[7]:= xa2

2
Out[7]= (a + b)

In[8]:= Expand[%]

2 2

Out[8l]=a +2ab+b

In[9]:=
Out[9]=

{z, Y} = {2, 3}
{2, 3}

In[10]:= {x, y} = {y,-x}
Out[10]= {3, 2}
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232 Sequences of Assignments

Expressions or statements can be separated by a semicolon ( ; ). They are then evaluated one
after the other.

The commands are executed in the order giv-  In[1]:=n = 6; a = (1 + n)a6; Expand[(a + x)42]
en. The value of the last one is returned. 2
Out[1]= 60466176 + 15652 x + x

If the last command (after the semicolon)is  In[2]:= Expand[(1+x)a100];
empty, no value is returned.

The percent sign (%) can still be used to  In[3):= Length[ % ]
access the value of the lastexpression before  g,¢133= 101

the semicolon. This possibility is useful if a

command would produce a large output.

2.33 Conditional Expressions

Conditional expressions are programmed with If[]. The syntax is
If(predicate, true, false].

First, the predicate (a logical expression) is tested. If it evaluates to True, the value returned
is equal to the value of the expression rrue. If it evaluates to False, the value returned is the

value of false.
Thisis a second way of defining the absolute ~ In[1]:= abs[x_] := If[ x >= 0, x, -x ]
value: If z > 0, then z; else, —z.

This dgﬁnition works exactly like the ones  In[2]):= abs[-2]
in Section 2.2.2. Out[2]= 2

The 1£[] expression also remains unevalu- In[3]:= abs[a]
ated, if the truthvalue of the predicate cannot 5,4 [3]= If[a >= 0, a, -a]
be determined.

234 Loops
Loops are programmed with While[]. The syntax is

While([predicate, statements].
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First, the predicate (a logical expression) is tested. If it evaluates to True, the expres-
sion statements is evaluated once. Then, predicate is evaluated again, and so on, until the
value of predicate is no longer True.

Here is a parallel assignment for the vari- In[4]:= {a, b} = {1999, 2999}
ables a and b. Outf4)= {1999, 2999}

This loop computes the greatest common di-  In[5):= While[ b != 0, {a, b} = {b, Mod[a, bl} ]

visor of the integers a and b. (See also
Section 3.1.)

The greatest common divisor of 1999  In[6]:= a
and 2999 is now in the variable a. Cut[6]= 1

There are two ways to change the flow of control in a loop: Break([] and Continue([], which
can be used in exceptional circumstances.

The Break[] command exits the loop immediately. The following loop searches for an
element e in a list 1 and exits the loop as soon as e has been found:

i=1;

n = Length[1];

While[ i <= n,
If[ 1[[i]] === e, Break[] ];
i=i+1

You can often avoid such a special exit by changing the loop predicate accordingly. The
preceding example would be expressed more clearly as follows:

1;

Length[1];

hile[ i <= n && 1[[i]] =I= e,
i=3i+1

i
n
W

(W)

Sometimes we use Break[] because it makes certain programs more readable (see Sec-
tions 6.1.1 and 8.4.3). Before using it, however, you should try to find a more elegant way
to express your loop because jumping around in a program usually makes it more difficult to
understand.

The Continue[] command causes the rest of the current loop iteration to be skipped. The
program continues testing the loop predicate. An example using Continue([] can be seenin
the function walk[] in Listing 8.5-1.
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2.3.5 Ilterators

An iterator evaluates an expression several times, while changing the value of an iterator
variable. The general form is

command[expression, iterator] ,
where command is Do, Table, Sum, or Product. The iterations are specified by iterator,

which gives the values over which the iterator variable ranges. There four forms; in the
following box, var is the iterator variable taking on certain values in turn:

{var, from, 1o} var takes successive values from, from+ 1, ..., to0
{var, to} initial value from defauits to 1
{var, from, to, step} step size is step (instead of 1)
{n} evaluates expression i times, without an iterator variable

Forms of iterators in Mathematica.

The iterator Do[statements, iterator] simply evaluates statements without returning a value.
To see what happens, we can use a Print[] command, for example.

The iterator is evaluated five times, with  In[1]:= Dol Print[i], {i, 1, 6} ]
itakingonthe values 1, 2, ..., 5.

AW R

Here, the value of i is incremented by 2 and  In[2]:= Do[ Print[il, {i, 1, 9, 2} ]
ends at 9.

O©O~NOWE

Let’s set z to 1.0. In[3]:= x = 1.0
Out[3]= 1.

Now, we replace z by 1 + 1/z, a total of In[4):= Dol x = 1 + 1/x, {10} ]
10 ames.

This value is the final value of z — an ap-  In[5):= x

proximation to the Golden Ratio. Out[5]= 1.61798
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We can see all intermediate values with a  In[6):= x = 1.0; Do[ x = 1 + 1/x; Print[x], {10} ]
Print[] staterment.

.5
.66667
-6
.625
.615638
.61906
.61765
.61818
.61798

e V)

Normally, we see only a few digits of a  In[7]:= InputForm[x]

floating-point number. With this command,  gy¢(7]//InputForm= 1.6179776280898876
we can see all digits.

The iterator Table[] returns the results of the iterations in a list.

Table[] collects theresults of alliterations In[8]:= Table[ is2, {i, 1, 10} ]
in a list. Out[8)= {1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

This list contains the first 10 primes. In[9]):= Table[ Prime[j], {j, 10} ]
OQut[9]= {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}

Sum[] and Product[] give sums and products, respectively, according to the mathematical
notation ) and [].

oW In[1):= Sum[ iA2, {i, 1, 100} ]

Zi' Out[1]= 338350

izl

S In[2):= Product[ x-k, {k, 1, 6} ]

H(I ~ k) Out[2])= (-6 + x) (-4 + x) (-3 + x) (-2 + x) (-1 +x)

k=]

2.3.6 Local Variables

In Section 2.3.4, we saw how we can compute easily the greatest common divisor (ged) of
two numbers. Now we want to define a function to perform these calculations, taking the two
numbers as arguments. Inside this function, we need two local variables a and b, to which
we assign the values of the arguments in the same way as we did it on page 35. Local variables
are declared with Module[{variables}, body]. The function is shown in Listing 2.3-1.

The two local variables a and b get the arguments of the function as initial values.
The body of the module consists of the two expressions While[...] and a, separated by a
semicolon. The value of last expression (simply a in our case) is returned.
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gedfad_, b0_] :=
Hodule[{a = a0, b = b0},
while[ b != 0, {a, b} = {b, Mod[a, b]} ];
a

Listing 2.3-1 A function for the gcd.

Now we can compute the gcd of two num-  In[1]:= gcd[ 1999, 2999 ]
Lfcrs without having toenter all the calcula- )0 r19= ¢
tion steps every time.

The declaration of local variables with initial values is necessary here. The reason is that the
pattern variables a0 and b0 are not program variables! Their values are inserted into the body
of the definition. Let’s see what the consequences are. Without local variables, our program
would look like the one shown in Listing 2.3-2.

gedla_, b_] :=
While[ b != 0, {a, b} = {b, Mod[a, bl} ];
a

Listing2.3-2 An erroneous function for the gcd.

If we call the function as gcd[1999, 2999], all occurrences of a and b are replaced by
the arguments 1999 and 2999. The resulting expression is

while[ 2999 '= 0, {1999, 2999} = {2999, Mod[1999, 2999]} 1;
1999

There are many errors in this expression (can you find them?). Therefore, we must assign the
parameter values to local variables, and then do all computations with these local variables.
That is the purpose of

Module[{var; = val;, var; = valp, ...}, body] .

Local variables are not used only for parameters of functions. Auxiliary variables also
should be declared in a Module. These are variables used inside the body of a definition. If
there was no parallel assignment of the form {var;, var;} = {e1, ez} in Mathematica, we
would need an additional variable to exchange the values of the variables a and b, as shown
in Listing 2.3-3.

Hint: the program in Listing 2.3-3 would run even if we did not declare the local variables.
Mathematica would simply use global symbols with names a, b, and c. Using a function
that changes the values of global variables is bad programming style and can introduce errors
that are hard to find.



gedlao_, b0_] :=
Module[{a = a0, b = bO, c},
Whilel[ b != O,
c=0Db;
b = Mod[a, b);
a=c

Listing 2.3-3 Exchanging values using an auxiliary variable.

Here is the last version of the ged func-
tion without declarations for the local vari-
ables. Observe the parentheses: They make
all statements be part of the definition.

Perhaps we performed other computations
before using our gcd function. If so, the
symbol c may already have a value.

Now, we compute a ged.

As a side effect, the value of ¢ has changed.

2.3.7 Constants

Closely related to Module(] is

In[1):= gecdla0_, b0O.] := (

)

a=a0; b= b0;
While[ b != O,

c =b;
b = Mod[a, b];
acsc

1

a

In[2]:= ¢ = SpeedDfLight

Out(2]=

299792468 Meter

Second

In[3]:= gca[1999, 2999]

Out{3]= 1

In[4):= ¢
Outf{4])= 1

with{{var; = val;, var; =

val,

...}, body]

that introduces local constants. A local constant is similar to a local variable (as declared with
Module[]), but it cannot be changed after its initialization. The use of constants can make
program easier to read and can also make it more efficient.

This function definition is a bit inefficient
because x42 is computed twice.

In this equivalent definition, x42 is comput-
ed only once.

In(1):= £[x_] := (xa2-1) (xa2+1)

Inf2]:= £[x_] := With[ {x2 = xa2}, (x2-1)(x2+1) ]
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With this definition we intend to measurethe  In[3]:= timei[n_] := Timing[ (10an-1)+(10an-3); ]
time it takes to multiply two n-digit num-

bers, but we also measure the time it takes to

compute the two numbers in the first place.

Here we compute the two numbers outside  In[4):= time2[n_.] :=
Timing{), and then insert their values in With[ {a = 10an-1, b = 10sn-3}, Timing[a*b;] ]
the timing command (see Section 7.4.3).

238 Pure Functions
Pure functions are treated in detail in Chapter 11. Because we use them in many places, we

present the basic idea here.

Before we can use a function, we have to  In[1]):= £[x_] := xa2
define it.

We apply a function f to an argument by  In(2}:= £(5]
putting the argument inside square brackets. g, [2]= 25

Here is another way to specify a function.  In[3]:= Function[x, x+2][5]
A preceding definition is not necessary. The Out[3])= 25
function that squares its argument can be

applied immediately.

This expression is the function itself. Itcan  In[4):= Punction[x, x42]
be read as “the function whose value at z 2
szl Out[4]= Functionlx, x ]

This function (on the preceding line) canbe  In[6]:= %[6]
applied to an argument. Out[5]= 26

We can differentiate a function. The result In[6]:= Function[x, xa2]’
is the function that multiplies its argument 5, 167= Function[x, 2 x]

by 2, according to the formula Zz? = 23.

The valueon the preceding line is a function  1In[7] := %[6]
that we canapply to an argument in theusual g, r73= 10
way.

The spacial symbol # can be used as the  In[8]:= Function[#a2]
variable in a function. In need not be de- 2

clared, so this form of the pure function has  Out[8)= #1 &

only oneelement.

This short form, given inthe previous output,  In[9):= #2&
can be input as well. We say more about the 2
operator % in Section 11.1.3. Dut[9]= #1 &
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2.3.9 Functional Operations

With a simple way to specify a function we can take a look at Mathematica’s many functions)
operations, that is, commands that take a function as argument. Here is a short introductionto
four of these functional operations: Map, Apply, Nest, and Fold.

We can show how a functional operation works by giving it an undefined, symbolic
function, such as f, as argument. The result will still contain the symbol £ so we can see
what is going on.

Map applies a function toeach element ofa  In{1):= Map[ £, {a, b, c, d} ]
listinwm. Itreturns thelist of the results of 0 111= {£{a), £[b], £[c], 2[d]}
these applications.

Here we apply the function that squares its  In[2):= Map[ #«2&, {1, 2, 3, 4} ]
argument 10 a list of integers. Theresultis g 4701= (1, 4, 9, 16
the list of the squares of these numbers. ut(2] Y

Apply applies a function to all elements of  In[3]:= Apply[ £, {e1, e2, e3, e4} ]
alist. Out[3]= f[el, e2, e3, e4]

Applying the function Plus gives the sum  In[4]:= Apply[ Plus, {el, e2, o3, ed} )
of the elements of a list. Out[4]= el + e2 + e3 + ed

Nest applies a function repeatedly to the  In[5):= Nest[ £, x, 5 ]
result of the previous application, starting g, rgy= £{2[£[£[£[x]]11]]
with the value x.

The repeated application of the function In[6]):= Nest[ Function[x, 1+1/x], x, 7 ]
f(z) =14+ 1/z to a symbol x gives a con- 1
tinued fraction. Out[6]= 1 +

The same function applied to an integer gives ~ In[7]:= Nest[ Function[x, 1+1/x], 1, 200 ]
a rational number. Here we nested the func- 734544867167818093234908902110449296423361
tion 200 times. Out[7)=

453973694165307953197296969697410619233826

Fold applies a function g of two arguments  In(8]:= Pold[ g, x0, {x1, x2, x3} ]
repeatedly to the result of the previous ap- .+ (8] g[glg(x0. x1], x2], x3]
plication (as first argument) and another el- ue(81- glglglx0. x1], x2]. x
ement from the given list (as second argu-

ment).
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This function multiplies the previous result
by z and adds the next element from the list.
The result is the Homer form of a polyno-
mial,

The expanded form shows that the a; are
the coefficients of an ordinary polynomial.
The Homer from is often used for numeri-
cal computations because it is more efficient
than the expanded form.

In(9):= Fold[ Punctionf{x,y}, x z + y], O,
{a5, a4, a3, a2, al, a0}]

Out[9]= a0 + z (a1 + z (a2 + z (a3 + z (a4 + a5 2))))

In[10]:= Expand[ ¥ ]

2 3 4
Out(10J= a0 + a1l z + a2 z + a3 z + a4 z + ab z

Functional operations are treated in more detail in Section 11.2.3.
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2.4 Structure of Expressions

Programming languages usually have a rigid structure with precise rules about the form of
valid expressions. A program is understood by the interpreter or compiler only if it satisfies
these syntactic requirements. In Sections 2.4-2.4.4, we examine fundamental aspects of the
structure of the expressions that are understood by Mathematica.

In the preceding sections, we saw some of the possible forms of expressions in Mathe-
matica. Even though it contains a large collection of operators, the language has a simple
fundamental structure. It is the same as the structure of the language LISP, one of the oldest
languages still in use today. All expressions are built from fundamental building blocks with
a single method. The building blocks are termed atoms. Formally, an expression is either an
atom or a normal expression.

2.4.1 Normal Expressions

A normal expression has the form

h[el’ €2y -1y en]a (2‘4—1)

where h and the e; are themselves expressions. Such an inductive definition of expressions
is typical for formal languages. The A is called the head of the expression; the e; are the
elements. The number of elements may be zero. In this case, the expression looks as follows:

h(1]. (24-2)
Here, for example, is an expression according to the preceding definition:
fla,bl(1[ gl11, hix, y1 1. (24-3)

It has two elements: g[1] and h[x, y]. Its head is £[a,b] [], which is again a normal
expression (without elements), whose head is f[a, b], and so on.

The head of an expression expr can be extracted with Head[expr]. The ith element
is obtained by Part(expr, ¢]. Instead of Part[expr, i], you can also write expr([]].
Length[expr] gives the length of a normal expression, that is, the number of elements.

Here again is an example of a normal ex-  In[1]:= expr = £(a,b][][ g[1], hlx, 31 };
pression.

It has two elements. In[2]:= Length[ expr ]
Out[2]= 2
Here is the first element. In(3):= Part[ expr, 1 ]

Cut[3]= gl1]
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Here is the secondelement. Part[expr, 3]
can alternatively be written as expr((:]]
(with double square brackets).

Thehead of expr is again a normal expres-
sion.

Its head is a normal expression, too.

At some point, we always reach an atom;
here, it is a symbol.

24.2 Atoms

There are three kinds of atoms:

In(4]:= expr([2]]
Out[4])= h[x, y]

In[5]:= Headl expr ]
Out[5)= f[a, bl[]

In[6]:= Head[ % )
Out[6]= f[a, b]

In[7]:= Head[ % 1]
Out[7]= £

1. Symbols are the identifiers; they are words beginning with a letter and containing only
letters or digits. The dollar sign, $, is treated as a letter.

2. Strings are sequences of arbitrary characters, enclosed in quotation marks. They are used
mainly to denote external objects, such as file names.

3. Numbers include integers, rational numbers, floating-point numbers, and complex num-

bers.

Even though they are not normal expressions, atoms also have heads. This head describes the
type of the atom according to the preceding list.

Thehead of a symbol is the symbol Symbol .
Its head is again the same symbol, of course.
The head of an integer is the symbol

Integer.

The head of a rational number is the symbol
Rational.

The head of a floating-point number is the
symbol Real.

The head of acomplex number is the symbol
Complex.

The head of a string is the symbol String.

In[8]:= Head[ aSymbol ]
Out[8]= Symbol

In[9]:= Head[%]
Out[9]= Symbol

In[10]:= Head[ 1024 J
Out[10]= Integer

In[11):= Head[ 1/3 ]
Out[11]= Rational

In[12]:= Head[ 3.14158 ]
Out[12]= Real

In(13]:= Head[ 1 + I ]
Out[13]= Complex

In[14]:= Head[ "a string" ]
Out[14]= String
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2.4.3 Operators

Having a large number of operators simplifies input and makes output more readable. Inputs
in operator notation are transformed into internal form by the parser. We could refrain from
using operators, and instead write a + b as Plus(a, b], for example. This notation, however,
would be cumbersome and nonstandard. Any expression using operators is transformed
into an internal form (as a normal expression). You can look at this internal form with
FullForm(expr].

The head belonging to addition is the sym-
bol Plus.

Even a list is an ordinary normal expression
with head List.

A subtraction is turned into an addition and
multiplicationby —1.

A division is turned into a multiplication and
exponentiation by — 1.

In[15]):= FullForm[ a + b + ¢ ]
Out[15]//FullForm= Plus[a, b, c]

In[16]):= FullForm[ {x, y, 2z} ]
Outf{16]//FullForm= List[x, y, z]

In[17):= FullForm[ x - y ]
Out[17])//FullForm= Plus[x, Times[-1, y]]

In[18]:= FullForm[ 2/x ]
Out[18)//FullForm= Times[2, Power[x, -1]]

Because FullForm(] evaluates its argument in the usual way, what we just saw was the
internal form of the result, rather than of the input, as claimed. In the preceding examples, no
evaluation took place, so there was no difference. If you want to see the internal form of an
expression before evaluation, enclose the expression in HoldForm(expr] .

Even typical assignments are ordinary ex-
pressions.

Without the wrapper HoldForm[], this as-
signment is evaluated, and we see only the
internal form of the resuit.

The operator // allows us to write function
application with a trailing function symbol
(instead of £[xz], as usual).

Sometimes we use this notation to apply
commands such as Short[] and N[] to
an input line.

In[18] := FullForm[HoldPora[ x = 2 ]]
Out[19]//FullForm= HoldForm[Set[x, 2]]

In[20] := FullForm[ x = 2 ]
Out[20]//FullForm= 2

In[21):=a // ¢
Out[21])= f[a]

In[22]):= Expand[ (1 + a + b)a10 ] // Short
Out[22]//Short=

2 3 4
1+10a+45a + 120 a + 210 a + <<59> +

] 10
10ab +b

Section B.4 contains a list of operators and their internal forms.
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24.4 The Meaning of Expressions

All inputs are nothing but ordinary expressions. Depending on usage, we nevertheless talk
about different kinds of expressions.

This expression is understood as a function  In[1]:= Sin[x]
call sin z. Observe the square brackets. Out[1]= Sin[x]

Ordinary parentheses are used for grouping  In[2]:= a(b + ¢)
only. They are necessary here because mul- Out[2]= a (b + ¢)
tiplication has a higher precedence than does

addition.

A list serves to hold together expressions. In[3]):= {x, y, 2}
Out[3]= {x, y, z}

This expression serves as a definition of a  In[4]:= £[x_] := x4a2
function.

This command calls an internal algorithm  In[6):= Solvel x+2 + x + 1 == 0, x ]
for solving equations.

1/3 2/3
Out[5)= {{x -> =(-1) }, {x-> (-1) }}

Here is a sequence of statements. In[6]:= alpha = Sqrt[2]; beta = 1-alpha; gamma = betaa2

2
Out[6]= (1 - Sqrt[2])

2.4.5 Structural Operations

Structural operations change the structure of an expression. Many of the operations available
inMathematica are inspired by the language APL, which is particularly rich in such operations.
Here we look at Apply, Flatten, Transpose, and Thread.

Apply changes the head of an expressionto  In[1):= Apply[ h, f[a, b, c, d] ]
the given new head h. Out[1]= h[a, b, ¢, dJ

In this way we can easily compute the prod-  In[2]:= Applyl[ Times, {a, b, ¢, d} ]
uct of the elements of a list. See also Sec- Out[2]= abc d
tion 2.3.9.

Flatten removes nested occurrences ofthe  In[3]:= Flattem[{a, {b, {c, 4}, {}}, (e, £}}]
head of an expression; here this head is  gu¢[3]= {a, b, ¢, d, e, £}
List.

Transpose exchanges the levels of nested  In[4]:= Transposel {{a, b, c}, {x, y, z}} ]
lists. The result corresponds to the transpose  guy[a]= {{a, x} , {b, y}, {c, z}}
of a matrix written as a nested list. ’ o
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Thread exchanges the head of the whole
expression £ with the head List of the el-
ements of the expression. It is a generaliza-
tion of Transpose.

We can use it to turn an equation involving
lists into a list of equations, see Section 8.1.2.

In[5]:= Thread{ f{{a, b, c}, {z, y, z}1 ]
Out[5]= {f[a, x], £[b, y], flc, 2]}

In[6]:= Thread[ {x, y} == {1, 2} ]
Out(6]= {x == 1, y == 2}
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2.5 Help with Problems

Mathematica is documented in The Mathematica Book. Simply to find out what a certain
command does, you need not consult this manual, however; the information is available
on-line. Section 2.5.1 describes two ways to obtain on-line help.

When you read a program into Mathematica from a file or when you enter a definition
directly, Mathematica signals any syntax errors it encounters. Section 2.5.2 shows what error
messages look like and points out a few common sources of errrors.

2.5.1 Information about Commands

One possibility to obtain information about a command is the on-line help that you can look
at by using 7symbol at the beginning of a line. Figure 2.5—-1 shows an example in which we
ask for information about NestList. The message always begins with the template, here
NestList[f, expr, n]. The template shows a typical call of the command with symbolic
arguments. This form of description is also used in this book. Using the Notebook frontend,
you can extract the template from the message with the menu command Make Template and
then fill in your values for the symbolic arguments, as shown.

A question mexk gives on-line help.

7NestList

NestList[f, expr, n] gives a list of the results of
applying f to expr 0 through n times.

4 Themenu command Make Template gives atemplate.

. oxpr. 1l
Now you can fill in the terplate and then evaluate the input.

NestList[Cos, 1.0, 10]

{1.., 0.540302, 0.857553, 0.65429, 0. 79348, 0.701369,
0.76396, 0.722102, 0.750418, 0.731404, 0.744237)

Figure 2.5-1 On-line help and templates.

The second information source is the Help Browser. It gives you access to the on-line
help, including information about all commands. In Figure 2.5-2, you can see the topic
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“Programming,” again with NestList. The reference to The Mathematica Book is a hyperlink
that you can click to obtain immediate access to the section mentioned.

{Input and Qutput Pattern Hatching ~ @B|FixedPoint
Motebooks . . F|Rule Application " Ii{FixedPoimiist
System Interface s e e lestiile: L - :
- ‘ String Hanipulationfif|Nestbhi leList, .
P : ) ) 9 ‘ ) N i -
/1
NestList i
sNestList(f, expr, 2] gives alist of the results of applying ftoexpr 0 through » times.
sExample: NestList[f, x, 3]—(x, £[x]. £1£f(x]], £(E(£[x11]).
mNestList(f, expr, n] gives alistoflengthn + 1.

uSee The MathemazicaBook: Secion222.
=See also: Nest, NestWhileList, FoldList, ComposeList.

< Further Examples

This nests the fanction £ fourtimes startng with imigel value x.

m{1):a NestList[f, x, 4] j]
oul)s {x, £[x], £1£f[x])}), ELE(E(xI1), EAELELE(xID))) 3

Figure 2.5-2 The Help Browser.

2.5.2 Syntax Errors

Because of its many built-in operators, Mathematica has a rich syntax. A list of operators and
special characters is given in Section B.4. If an input is syntactically incorrect, Mathematica
displays an error message. In the following dialog with the kemnel, a curly brace has been
used instead of a square bracket. Because the same error could also be caused by a forgotten
opening brace, such error messages are not always accurate.
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s1

In[i):= NestList[ 1 + 1/#&, N[1, 20}, 5]

Syntax::bktmch: "N[1, 20" must be followed by "]", not "}".

Inf1]:= NestList[ 1 + 1/#&, N[1, 20], 5]

Outf1]= {1.0000000000000000000, 2.0000000000000000000,

1.50000000000000000000, 1.66666666666666666667,

1.60000000000000000000, 1.625000000000000000000}

If input comes from a Notebook, the cursor is put at the place where the error occurred, and a
beep is sounded. It is then easy to correct the input and to evaluate it again. The frontend can

even help you to balance parentheses.

One particular kind of error is worth pointing out. Because Mathematica does not require
a multiplication sign, expressions with missing operators, such as the comma or semicolon,
can nevertheless be syntactically correct. Of course, they are wrong semantically; that is, they
do not have the intended meaning. In many such cases, a warning message is printed. Here is

an example.

In our first attempt, the semicolon ( ;) be-
tween the two statements in the loop is miss-
ing. As a consequence, the body of the loop
isread as

x = (x + 2/x)/2*Print[x] .

The value of the Print statement is Null.
Therefore, x is setto 1.5 Null.

Here is the correctpiece of code. It computes
an approximation to v/2 (see page 3).

There is always one more bug!

In[1]):= x = 1.0;\
While[ x != (x + 2/x)/2,
x = (x + 2/x)/2

Print[x]
I x
Syntax::newl:
The newline character after " x = (x + 2/x)/2"

is understood as a multiplication operator.

1.

Out[1]= 1.5 Null

In[2]:= x = 1.0;\
While[ x != (x + 2/x)/2,
x = (x + 2/x)/2;
Print[x]
I x
1.5
1.41667
1.41422
1.41421
1.41421

Out(2]= 1.41421
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2.6 Exercises

2.1 Operators

1. Go through the examples given in Sections 2.1-2.3, and determine the internal forms of the
expressions that occur in these examples. Mathematica can help you; see Section 2.4.3.

2. What is the internal form of these expressions before evaluation?

a f@ {a, b, c}
b. £ /Q@{a, b, c}
c. f@ {a, b, c}

2.2 Structure of Expressions

Investigate this expression:
f/[x+1]1/5!

1. Write the expression in internal form, without using any operators.

2. Denote the building blocks of the expression, that is, head and elements. Continue in this
way with any parts that are still composite. Give the type of atomic parts.

3. To what does this expression evaluate?

Hint: Use the tables in Appendix B.4.

2.3 Simple Evaluations'

Give the result of evaluating the following expressions. If there are any nested functions, also
give the most important intermediate steps. Assume that each example is evaluated in a fresh
Mathematica session. Consecutive expressions in one example are evaluated one after another
in the same session.

1. Sum[ zai/i!, {i, 0, 4} ]

2. Sum[ Product[(x - i)~j, {i, 0, 2}], {j, 2} ]
3. Expand[ Product[x - i, {i, -2, 2}] ]

4, {1, 2, 3}2+1

'Written examination, ETH Ziirich, Department of Mathematics and Physics.
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5. a=5; b:=6;

c=a; d=b;
e :=a; f:=b;
a=7;b:=8;

{ao b, c, d, e, f}

24 The Arithmetic-Geometric Mean (AGM)

For positive reals @ and g, the two sequences a; and b;, with

ag
g0
Qi4l
i+l

aQ

(2.6-1)

i+gi
2

Veigi

converge to a common limit. Observe that a;, is the arithmetic mean of a; and g;, and that

gi+1 is the geometric mean.

1. Compute the common limit numerically for a few values of a and g with a simple While

loop.

2. Define a function AGM[a, g] that computes this limit.
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In this chapter, we introduce algorithmics. We develop systematically a few small example
programs. Often, we have a choice among different methods to solve a problem. Two of
the most important methods are loops and recursion. We can program recursion easily in
Mathematica by giving a few definitions.

In Section 3.1, we look at the oldest known algorithm, Euclid’s algorithm for the compu-
tation of the greatest common divisor (gcd) of two numbers. Starting with the definition of the
gcd, we derive several programs for its computation.

The problem in Section 3.2 is both an interesting example for computer experiments in
mathematics and an unsolved mathematical problem.

Section 3.3 provides a systematic treatment of an important method to prove the correctness
of loops and simple recursive programs. We can use this method to develop programs from
scratch and to verify existing programs. The main tool is the loop invariant, which we shall
use later in many of our examples.

In Section 3.4, we show an important application of function iteration: numerical solution
of differential equations.

About the illustration overleaf:
The length of the Collatz sequence for the first 1000 integers (see Section 3.2). The picture
was produced with the command (see Pictures.m):

ListPlot[Table[CollatzLength[i],{i,1,1000}]]}
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3.1 The Greatest Common Divisor

The greatest common divisor (gcd) of two integers a and b (not both zero) is the largest integer ¢
that divides both a and b:

ged(a,b) =max(c:c|aAc|b). (3.1-1)

(The notation = | y means “z divides y.”) We shall look only at nonnegative integers a and b.

To find the gcd, we need to turn this definition into an algorithm. This translation is
possible only if the definition is constructive — that is, if it gives a method to compute the result
in principle. We note that there are infinitely many integers; it is therefore not immediately
obvious that we can find the gcd in finite time. By deriving further properties of the gcd, we
can see that we can indeed do so.

3.1.1 Finite Search

An immediate consequence of the properties of divisibility (a divisor cannot be greater than
the number it divides) is gcd(a,b) < min(a,b) (for @ # 0, b # 0). Because the integer 1 is
always a divisor of a and b, we have restricted the search for the gcd to a finite set of numbers.
(If @ = 0, the gcd is equal to b; if b = 0, the ged is equal to @.) In our program, shown in
Listing 3.1-1, we first define an auxiliary function Divides[], give the definitions for the
two special cases a = 0 or b = 0, and then define the general case with the loop that searches
for the ged.

Divides[x_, y_] := Mod[y, x] == (» x divides y *)
ged[0, b_] := b (* special cases *)
gedla_, 0] := a
gedla_, b_.] :=
Module[{c},

c = Min[a, bl;
While[ !(Divides[c, al] &% Divides[c, bl), c-- J1;
[

Listing 3.1-1 GCD1.m: First version of the ged algorithm.

The auxiliary function Divides[z, y] checks whetherz | y. It returns True if the remainder
of the division of y by z is zero. In the loop, we start with the largest possible value — the
minimum of a and b — and search downward. The local variable c is initialized with the
minimum of a and b. As long as the value of c does not divide both g and b, it is decremented
by 1. The first number found to divide both a and b is the gcd. Because there is at least one
divisor (1), we know that the search terminates after a finite number of steps. The maximum
number of loop traversals is equal to min(a, b). (When is this maximum attained?)
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3.1.2 The Division Method

We are not satisfied with the first algorithm found in Section 3.1.1, so we try to find a better
one. Such an algorithm could be especially simple, or it could find the result with fewer
operations.

To improve the gcd algorithm, we continue to find additional properties of the gcd. Looking
at division properties leads to success. If ¢ is a divisor of a and b, b # 0, then it also divides
the remainder of the division of a by b. Thus,

claAnc|b— c|(amodb). (3.1-2)
Therefore,
ged(a, b) = ged(b, a mod b). (3.1-3)
If b =0, we have
ged(a,0) = a. (3.14)

Equations 3.1-3 and 3.1-4 lead to a much faster and simpler algorithm, which is shown in
Lissng 3.1-2. The two equations can be programmed into Mathematica directly!

gedla_, 0] := a
gedla_, b_] := gedlb, Mod[a, b]]

Listing 3.1-2 GCDR.m: A rule-based algorithm forthe gcd.

We read in the file with the two rules. In[1]:= << CSM‘GCDR*
The gcd of 1999 and 2999 is 1. In[2]:= gcda[1999, 2999]
Out[2]= 1

If one of the two numbers is zero, the gcd is  In[3):= gcd[0, 5]
equal to the other one. Out[3)= 6

This command makes the application of In[4]:= Trace[ gcd[6, 8], gcd[__Integer] ] // TableForm
rules visible. We see how the rules first  Qut[4]//TableForm= gcd[6, 8]

interchange the wguments, and then make gcd[8, 6]
them smaller step by step, until one of them ged[5, 3]
becomes zero. ged[3, 2]
gedl[2, 1]
ged[1, 0]

3.1.3 The Division Method in a Loop

The two rules derived in Section 3.1.2 are probably the best way to program the gcd in
Mathematica. Many conventional languages do not allow this kind of programming. There
are also cases (see Section 3.2.1) where such rules are inefficient — even in Mathematica.
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Therefore, we shall show how we can derive a program working with a loop from these two
rules. The rule

gcdla_, b_] := gcd[b, Mod[a, b]]

says basically that the two arguments a and b should be replaced by b and (a mod b), after
which we continue in the same way. This formulation leads to a loop. The termination
condition for the loop is obtained from the other rule gcd[a_, 0] := a. Because we must
test this rule first (if b happens to be zero in the beginning), we shall use a While-loop (see
Section 2.3.4): As long as b is not yet zero, we replace a and b by b and (a mod b). The two
assignments to a and b must happen simultaneously (see Section 2.3.1). We declare a and b
as local variables in the way shown in Section 2.3.6. The program is given in Listing 3.1-3.

ged[a0_, b0_] :=
Module[{a = a0, b = b0},
While[ b != 0, {a, b} = {b, Mod[a, b} ];
a

Listing 3.1-3 GCDS.m: The division method in a loop.

The correctness of this program can be shown in the following way. Let a and b be the values
of the variables a and b on entering the loop, and let a’ and ¥’ be their values at the end of one
iteration of the loop. At the end of the iteration the following three conditions hold:

a >Vv,
ged(a’, b’) = ged(a, b), (3.1-5)
b’ < b.

Then we set a = o’ and b = ¥/, and run through the loop once more. Because the numbers
get smaller and smaller, we eventually reach b = 0. (If a < b holds at the beginning, the first
iteration will simply interchange the two values.)

3.1.4 Key Concepts
1. The properties of the gecd lead directly to an algorithm for the computation of the gcd.

2. We can derive more efficient algorithms by taking into account further properties of the
ged. This allows us to narrow the range of the search or to proceed in larger step sizes.

3. Rule-based or recursive programs can often be converted to loops, and vice versa.
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3.2 The 3x + 1 Problem

The 3z + 1 problem is also known as the Collatz problem. The structure of the iterations of
the function c is an unsolved mathematical problem:

n/2, neven (3.2-1)

{ 3n+1, nodd;

c(n) =

Starting with an integer, we get a sequence of integers by repeatedly applying c to the previous

term. If the number is even, it is halved; if it is odd, it is multiplied by 3 and | is added to the

result. For example, for n = 1, we get this sequence by iteratingc: 1,4, 2, 1,4, ....
Formally, we define the sequence ny, n3, ... as follows:

n, = n, _

niy1 = c(ny), i=1,2,.... (3.2-2)
A few experiments show that the sequence {n;} falls into the cycle 1, 4, 2, 1, ... for each
choice of ny = n.

These two rules define the function c. Note  In[1]:= c[n_704dQ] := 3n + 1; \
that you can put the predicates directly into c[n_?EvenQ] := n/2

the left side of the rules with the notation

flx_?pred].

This loop applies the function c repeatedly  In[2):= n = 5; While[ n != 1, n = c[nl; Print[n] ]
to S until the result is 1 for the first time. 6

=N e

The same computation, starting with 11. In[3):= n = 11; Vhile[ n != 1, n = c[n); Print[n] ]
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So far, nobody has been able to prove that this property does indeed hold for all positive
integers or to find any counterexample. We shall study experimentally some properties of
this sequence. We are especially interested in how long it takes to reach 1, starting from a
number n.

3.2.1 The Length of the Collatz Sequence

The length L(n) of the Collatz sequence is defined as the smallest index 7 such that n; = 1.
We simply count how long it takes to reach 1 for the first time. By induction,
L(1) 1,
L(n) 1 + L(e(n)), n>1,

(3.2-3)

we immediately get this definition for computing the length in the function CollatzLength.

CollatzLength[1] = 1
CollatzLength[n_] := 1 + CollatzLength[c[n]]

Listing 3.2-1 Part of Collatz1.m: Recursive computation of the length.

With this computation method, the intermediate results accumulate and the program needs
more space for larger results. (The gcd program in Section 3.1.2 did not suffer from this
drawback.) An iterative version that does not have this problem can be obtained easily. The
number of evaluations of the second rule is obviously equal to the value of CollatzLength
because we add 1 to the previous result. So, we simply count this number in a While-loop.
The termination condition is obtained from the first rule. If the input is 1, the loop is never
executed.

CollatzLength(nO0_] :=
Module[{n = n0, 1 = 1},
While[ n !'= 1, n=c¢c[n]; 1 =1+ 1 ];
1

Listing 3.2-2  Part of Collatz2.m: Iterative computation of the length.

You can see a graph of the length of the Collatz sequence for the integers up to 1,000 on
page 55. Here we look at the length for much larger inputs.

Weread in the improved package. In[1]:= << CSM'Collatz2‘

Here is the length of the Collatz sequence = In[2]:= CollatzLength[ 24100-1 ]
forn=2'%_1, Out[2]= 1466

With this command, we generate the 1,466  In[3]:= seq = NestListl c, 24100-1, %-1 1;
elements of the sequence.
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We want to measure the size of these num-  In[4]:= logs = Log[ 10.0, seq 1;
bers. The size of a number is equal to the
latter’s logarithm to base 10.

Here is a diagram of the sizes of the ele-  In[6]:= ListPlot[ logs J;

ments. First, the size increases rapidly; fi-
nally, it drops to zero.

40
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10

200 400 600 800 1000 1200 1400

Disglay::pserr:
ostScript language error:
Warning: substituting font Utopia-Regular for
Times-Roman

3.2.2 Computation of the Collatz Sequence

Like the length, the sequence itself can be computed inductively (as a list). Instead of adding 1
at each iteration, we prepend the current value in front of the list. We call this function
CollatzSequence. Program Collatz1.m is shown in Listing 3.2-3.

c[n_?0ddQ] := 3n + 1 (* for n odd *)
c[n_?EvenQ] := n/2 (* for n even  *)
CollatzLength[1] = 1

CollatzLength[n_] := 1 + CollatzLength[c[n]]
CollatzSequence[1] = {1}

CollatzSequence[n_] := Prepend[ CollatzSequence([c[n]], n ]

Listing 3.2-3 Collatz1.m: Recursive computation of the Collatz sequence.

The function Prepend [list, elem] adds the element elem to the front of the list lisz. (If you
reach the default recursion limit of Mathematica during a longer computation you can turn it
off with $RecursionLimit = Infinity.)

The function Prepend[] adds a new ele- In[6):= Prepend[ {a, b, c}, x ]
ment to the front of a list. outl6])= {x, a, b, c}

In[7]:= << CSM‘Collatz1‘
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Theis the Collatz sequence forthe integer23 ~ In[8]:= CollatzSequence[23]
until it reaches 1 for the first time. oOut[8]= {23, 70, 35, 106, 63, 160, 80, 40, 20, 10, 5,
16, 8, 4, 2, 1}

Here, too, we can avoid recursion. The operation [ = [ + 1, which increases the value of [
by 1, corresponds to var=Append[var, elem], which adds an element to the value of var at
the end. The computation now takes place in the opposite order (the order did not matter for
computing the length because addition of numbers is commutative). Program Collatz2.m is
reproduced in Listing 3.2—4.

c[n_70d44Q] 3n + 1 (* for n odd *)
c[n_?EvenQ] n/2 (x for n even *)

CollatzLength[nO_]
Modulel{n = n0, 1 = 1},
While[ n != 1, n = c[n];
1

1+11];

[
]

]

CollatzSequence[n0_] :=
Module[{n = n0, 1 = {n0}},
While[ n !'= 1, n = ¢c[n); 1
1

Append(1, n] J;

Listing 3.2-4 Collatz2.m: Iterative computation of the Collatz sequence.

Operations such as Prepend[] and Append[] are inefficient when used in a loop. For this
example, there is no simpler, more efficient solution because the length of the result is not
known at the beginning. If we knew the length of the result beforehand, it would be better
to generate the whole result with Table[], NestList[], or FoldList[].

3.2.3 Key Concepts
1. Iterations with an unknown number of repetitions lead to While loops.
2. An inductive proof generates a recursive program.

3. Recursive function calls inside another function can lead to inefficient programs. If
possible, such a program should be turned into a loop.
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3.3 Advanced Topic: Loop Invariants

There is one important question that we must ask ourselves each time we write a program:
Does it do what we want it to do? We have seen a few algorithmic problems that lead to simple
programs with a loop or recursive rules. For such programs, there is a method to prove them
correct. The most important tool is the loop invariant.

3.3.1 Deriving the Loop Invariant

A loop invariant is a statement about the values of the variables occurring in a loop that is
valid at each iteration of the loop. Such an invariant gives us a tool for proving a loop correct.
Let us look at a simple example:

0;
1;

=
nan

(* 1: before the loop *)
While[i != n,
(= 2: before an iteration x*)
kx(i+1);
i+l;

(« 3: after an iteration *)

(* 4: after the loop *)

We analyze the program in four places:
1. Before entering the loop
2. Before an iteration of the loop body
3. Afteran iteration of the loop body
4. After leaving the loop
After the two assignments, immediately before the loop, we have
k = 3! (3.3-1)

(3! is 7 factorial) because 0! = 1. Before an iteration, we still have k = i!. Because of
@+ 1) =41 (i+1), we get k = (i+ 1)! after the first statement in the loop: then 7 is incremented
by 1, and we have, at the end of an iteration, £ = ¢!. This equation is our loop invariant. After
leaving the loop, we also have ¢ = n, the negation of the termination condition for the loop,
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because the loop is left as soon as the condition is no longer satisfied. After the loop, we
therefore have
i = n,

ko= il (3.3-2)
and we have shown that, at the end, we have k = n!; that is, we have computed n! with the
resultin k.

We still have to think about whether the loop terminates at all. Assume that n is a
nonnegative integer. Therefore, we have ¢ < n before the loop. In the loop, we increment ¢
by 1 in each iteration, and we must reach 7 = n sometime (after n steps), which means that the
loop terminates. The precondition n € Z, n > 0 implies the postcondition k = n!.

This kind of concluding a desired postcondition from a necessary precondition and the
termination of the loop is typical for analysis of loop programs. We already used it when we
looked at the loop for the gcd in Section 3.1.3. The invariant was gcd(a’, b’) = gcd(a, b).

Because we regard our small program as a function of n, we should write it as such.
We can use the precondition to test the input n of the function. We restrict the argument of
factorial[n] to be a nonnegative integer. Listing 3.3—1 shows the program.

factorial[n_Integer?NonNegative] :=
Module[{i = 0, k = 1},
While[i != n,
k = kx(i+l);
i=1i+1;
1;
k

Listing 3.3-1 Factorial.m: A definition of the factorial function.

3.3.2 Correctness Proofs
We can derive the following steps for finding a correctness proof:

1. Formulate the loop invariant. It can be derived from the desired result and the loop body.
(This step requires some clever thinking or intuition.)

2. Make sure that the loop invariant is satisfied before entering the loop. We can make this
assurance by correctly initializing the local variables.

3. Show that the invariant is satisfied at the end of an iteration if it was satisfied before that
iteration.

4. Derive the postcondition from the loop invariant and the negation of the termination test.

5. Find the necessary precondition under which the loop terminates.
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Another example will explain these steps in more detail. The program given in Listing 3.3-2
computes the sum of the integers g and yg exclusively by adding 1 to numbers. We want to
prove that it behaves correctly.

x = x0;

y=0;

While(y != yO,
x=x+1;
y=y+1;

Listing 3.3-2 Computing the sum of two numbers by elementary operations.
Here are the five steps in the proof for this program:
I. The invariant is £ — y = xg.

2. The invariant is satisfied with the assignments z = = and y = 0 before the loop because in
this case * — y = g — 0 = z.

3. Ifx —y =uxyholds before an iteration, it also holds afterward because  — y is not changed
if we increment z and y bothby I: (z+ 1) -+ D)=z+1—-y—-1=z—y.

4. After the loop, we have the invariant £ — y = z( as well as the negation y = yg of the
termination test y ¥ yo. Therefore, £ = g + y = T + Yo, and we did, in fact, compute the
sum of iy and yg in the variable .

5. The precondition for termination is that yy must be nonnegative. Because y is incremented
by 1, starting with 0, it must eventually reach yq (after yo + 1 steps).

To summarize. we just proved:
For zg,y0 € Z,yo > 0 our program computes £ = g + Y.

Note that the elementary operation “add 1” plays an important role in theory of computation;
see Section 12.1.

3.3.3 Recursions and Loops

We would like to show how simple recursion can be transformed into a loop systematically,
and vice versa.

For the conversion of a loop into a recursion, let us look once more at the factorial function
in the package Factorialm (see Listing 3.3-1). The input is in the variable n, and the output
is in the variable k. Which function f(n) = k does our program compute?
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If n = 0, the loop is never traversed. Therefore, we get

F(0) =1 (3.3-3)

from the initialization k = 1.

Let f(n — 1) be the value obtained after we traverse the loop n — 1 times. If we traverse
the loop one more time, we get

fy=@+1D)- f(n-1=n-f(n-1), (3.34)

because ¢ + 1 is equal to 7 in the last traversal. Thus we have derived the well-known recursive
form of the definition of the factorial function

f0) =1

f(n) n,- f(n-1). (3.3-5)

We can also transform a simple recursive definition into a loop. Here is the recursive
definition of addition from Section 12.1:

z+0 = =z,
z+@y+1) = (x+y)+1. (3.3-6)
The recursion is by y. From the termination condition z + 0 = z, we derive the necessary
initialization and the following skeleton for the loop, using y as the loop variable.

y=0;
While[y != 7,

y=y+t1;
1;

X

Togofromy toy+ 1, we simply add 1 to the old result in z, according to the recursive equation
r+@y+1)=(z+y)+1,s0 we get:

y=0;
Vhile(y != 7,
x=x+1;

y=y +1;
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The loop should terminate when we reach the desired value yq of y, and we may want to
initialize = with the desired value zo. The loop is the one we just studied in Section 3.3.2
(Listing 3.3-2).

3.3.4 Key Concepts

1.

Loop invariants are statements about values of program variables that are valid before and
after a loop.

The loop invariant and the negation of the termination condition give the postcondition of
the loop.

Loop invariants can be used in correctness proofs for programs.

Recursive and iterative programs can be transformed into each other with the help of a
loop invariant.
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3.4 Application: Differential Equations

Iterative methods for the numerical solution of ordinary differential equations are of great
practical importance because most equations cannot be solved in closed form.

3.4.1 Systems of First-Order Equations

A system of n autonomous differential equations of first order has the form

1:;1 = fl(:ljl,...,.'l:n),
I — fz(ﬁ],...,.’l]n), (34_])
-'i:n = fn(mh-"am'n)'

The quantities z; are functions of the independent variable ¢, and < is the differentiation with
respect to ¢. In addition, we have an initial condition

z1(0) = ay,

w0 = o (3.4-2)

zn(0) = a,.
This is called an autonomous system, because the functions f, do not depend explicitly on ¢.
Itis easier to write such systems in vector notation. With the definitions x = (zy, z2,...,Tp)
and f(x) = (f1(x), ..., fn(x)), we get

G asy
3.4.2 Example: The Harmonic Oscillator
The equation of an harmonic oscillator is

I=—-rxr—0x. (3.44)

Equation 3.44 is a second-order equation. We can write it as a system of two first-order
equations by setting ) = z and z; = :

i‘l = I,

) (3.4-5)
b)) - —ox;y.
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We can get an overview over the system by looking at the direction field.

<< Graphics‘PlotField'

This standard package draws vector fields. In[1]:=
Now we can plot the direction field of an  In[2]:= ho = PlotVectorPield[{x2, -x1 - 0.1 x2},
harmonic oscillator. We set o = 0.1. The _ {x1, -2, 2}, {x2, -2, 2}, Frame->Truel;
first argument of PlotVectorField is the
list of the right sides of Equation 3.4-5. 2l ML Sl q
AR A : : ::::: R
LA : R
1 L R )
e ., , i R N T
e,
LI B P, . : A Y
[ s
0 [N : : : : ‘ : oy oy, v‘
SRy : = Py,
L R : : : e
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L T R
NN I
Ve el 4, o0
_2 A R ..,

3.4.3 The Euler-Cauchy Method for Numerical Solution

The simplest solution method for ordinary differential equations

start with a vector (¥ set equal to x at time O:
x@ =x(0) =a, (3.4-6)

is that of Euler—Cauchy. We

and we go a small step J in the direction given by the direction field. Thus, we arrive at the

point
xD = x@ 4 §(x@). (3.4-7)

We can iterate this procedure, which leads to

©0)
X a (3.4-8)

9
xD = x4 §px®) §=0,1,2,...

It is not difficult to write a small function to compute the list of the xX®. It is given in

Listing 3.4-1.

In[3]:= << CSM‘ODE1*

Weread in the function ODE1[].
Here, we define £ for the harmonic oscilla-  In[4):= £[{x1_, x2_}] := {x2, -x1 - 0.1x2}

tor.
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ODE1[f_, x0_List, delta_, n_Integer] :=
Module[{xi = x0, res = {x0}},
Do[ xi = xi + delta f[xi]; AppendTo[res, xil,
{n} J;

res

Listing 3.4-1 ODE1.m: A simple loop.

We set the step size & = 0.05, and perform  In[5):= ODE1(£, {1.5, 0}, 0.05, 250] // Short
250 steps, starting at the point {1.5, 0}. .. [5]//Short=
The result is a list with 251 coordinates.

{{1.5, 0}, {1.5, -0.075}, {1.49625, -0.149625},

<<247>>, {1.09159, 0.0671304}}

We can plotthe result. Such plots are called  In[6]:= ListPlot[%, PlotJoined->True, AspectRatio->1];
phase portruits, because they show the solu-
tion in phase space with position and veloc-
ity coordinates (z, &).

0.5 1 1/5

Itis also interesting to superimpose the so-  In[7]:
lution and the direction field.

2
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3.4.4 Iteration of Function Application

Our program becomes even simpler if we adopt a functional viewpoint. Equation 3.4-8
describes how x*!) is obtained from x®. This formula does not depend on i (i.e., it is the
same for every step). Therefore, we can write

XD = 5(x1), (3.4-9)
where the step function s is given by
s(x) = x + of (x) . (3.4-10)
Now the iteration looks like this:

x@th = gx®) i=0,1,2,...

(3.4-11)

NestList[s, z, n] applies the function s repeatedly to x, and returns the list of all inter-
mediate steps. It is the basis of our program ODE2[], shown in Listing 3.4-2. We already
used this idea in Section 3.2.

ODE2[f_, xO_List, delta_, n_Integer] :=
Module([{s, x},
s[x_] := x + delta f[x];
NestList[s, x0, n]

Listing 3.4-2 ODE2.m: lteration of functions.

Weread in the function ODE2[]. In[8]:= << CSM‘0DE2'

ODE2 works Lhe same way that ODE1 does.  In[9]:= ListPlot[ODE2[f, {1.5, 0}, 0.1, 125],

Here, we doubled the step size (and halved PlotJoined->True, AspectRatio->1];
the number of steps) compared to the previ-
ous example. It is easy to see that this step
size is toolarge, the solution differs substan-
tially from the previous one.

-5 -l
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With half the step size (0.025) and twice  In[10]:= ListPlot[ODE2(f, {1.5, 0}, 0.025, 500],
the number of steps, we get amore accurate PlotJoined->True, AspectRatio->1];
result.

3.4.5 Example: van der Pol’s Equation

Van der Pol’s equation describes a simple electron-tube oscillator with a resonator consisting
of a capacitor and a coil. Its equation is

z+i=¢e(l — ). (3.4-12)

The variable x represents the charge in the capacitor, whichis also the voltage across the latter.
The first derivative i is the change in voltage, that is, the current. The change in current # is
the induced voltage in the coil. A feedback provided by the tube serves to excite the resonator.
The value of € describes the coupling constant and the amplification of the tube.

Again, we can write Equation 3.4-12 as a system of two first-order equations:

i‘l = I,

3.4-13
I el — 22— 2 . ( )

We want to show that the system approaches a limit cycle for any initial condition. We shall
generate the solutions for various starting points and combine them in one picture.

Here is the right side of the equation with  In{11]:= vdP{{x1_, x2_}] := {x2, 0.9 (1-x142) x2 - x1}
£=0.9.

We compute the solution starting at (3, =3).  In[12]:= 11 = ODE2[vdP, {3, -3}, 0.05, 500];
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Here is the picture.

This auxiliary function produces a graph-
ic like the one here for a given initial
point. We can suppress generation of
the picture itself with the option setting
DisplayFunction->Ideatity.

Here, we generate several solutions whose
initial points lie on the top margin of the
picture (with y = 4),

These initial points lie at the lower margin.
Now, we can combine the graphics and ren-

der the image. We need to reset the option
DisplayFunction to its normal value.

In[13]):= gl1 = ListPlot[11, PlotJoined->True,
AspectRatio->1];

In[14]):= ODEGraphics[ £_, xO_, delta_, n_ ] :=
ListPlot[ ODE2[f, x0, delta, n],
PlotJoined->True,
DisplayFunction->Identity

]
In[15]:= top =
Table[ ODEGraphics[vdP, {i, 4}, 0.05, 100],
{i; _4v 0} ];
In[16]:= bot =

Table[ ODBGraphics[vdP, {i, -4}, 0.05, 1001,
{i, 0, 4} I;

In[17):= Show[ {top, bot}, AspectRatio->1, Frame->True,
PlotRange->{{-4.5, 4.5}, {-6, 5}},
DisplayFunction->$DisplayFunction ];

(] »
—_—
/_/

-4 2 0 2 3

o

/
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3.4.6 Advanced Topic: Higher-Order Methods

The simple numerical methods presented so far are not efficient. We have to choose small step
sizes to obtain a reasonable accuracy for the result, and — more important — we do not know
how accurate our results are. For practical applications, there are more efficient methods.
One of them, the Runge—Kutta Method, is described in our book [54]. Even more advanced
methods can predict the numerical error and choose the step size accordingly. The built-in
function NDSolve[] uses such methods.

Here is again van der Pol’s equation with
a starting point of (0.1,0). The result is
returned in terms of an interpolating function
object.

In this way, we get the values of z1(t)
and z»(t) for the first (and only) solution.

Because the result is returned as a function,
instead of as a simple list of values, we can
produce a parametric plot of it. This picture
shows how the solution approaches the limit
cycle from a point in the latter’s interior,
rather than from the exterior, as we showed
on page 74.

3.4.7 Key Concepts

In[1]:= NDSolvel {x1’[t] == x2[t],
x2/[t] == 0.9(1-x1[t]A2)x2[t] - x1[t],
x1[0] == 0.1, x2[0] == 0},
{x1, x2}, {t, 0, 6Pi} ]

Out[1]= {{x1 ->
InterpolatingFunction[{{0., 18.8496}}, <>],
x2 ~> InterpolatingFunction[{{0., 18.8496}}, <>]}}

In[2]):= {x1[t], x2[¢]} /. %[[1]];

In[3):= ParametricPlot[ Evaluate[%], {t, 0, 6Pi},
AspectRatio->1 ];

1/“\

1. Differential equations can be solved numerically by proceeding along the direction field

in small time steps.

2. An equation of higher order can be transformed into a system of first-order equations.

3. Mechanical systems can be visualized in phase space.



76 ) 3 Iteration and Recursion

3.5 Exercises

3.1 Reduction Rules for the GCD

With the following rules, we can find the gcd of two nonnegative integers.

Gcdla_, 0] := a
Ged[a_, b_] := Gecd[b, Mod[a, b]]

1. Find the evaluation steps for the example Gcd[8, 13].

2. For which numbers a and b, with @ > b > 0, are these rules applied exactly twice to find
their ged?

3. For which numbers less than 100 do we need the largest number of rule applications to
find their gcd?

3.2 The Subtraction Method for the GCD

A third method for computing the gcd (in addition to the two methods presented in Section 3.1)
is obtained from the property c | a Ac | b,a > bimplies c | a — b.

1. What is the termination condition?

2. Find rules that implement this method, similar to the rules for the division method from
Section 3.1.2.

3. Write a function with a While[] loop that uses this idea.

4. Find the loop invariant and prove correctness and termination using the methods outlined
in Section 3.3.2.

Test your programs for a set of inputs that includes all special cases.

Hints: The result a — b is generally not smaller than b. If necessary, the variables a and b
should be exchanged. Rules that are applicable under only certain conditions can be given as
follows (our condition is @ > b):

Gecdla_, b_] /; a>b := ...
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33 Local Maxima of the Collatz Sequence

In this exercise, we want to find numbers whose Collatz sequence is longer than the sequence
of all other numbers in a certain range. See Section 3.2 for an explanation of Collatz sequences.

1. Write a function FindMax[a_, b_] that finds the maximal length of the Collatz sequence
for all numbers between a and b. The value of the function should be the number whose
Collatz sequence is the longest.

2. Which number n < 1,000 has the longest Collatz sequence?

34 Invariants for the Fibonacci Numbers

Prove the correctness of the program f ibc [2] from Section 7.2.2 (Listing 7.2-2) by following
the methods given in Section 3.3.2.

fibec[n_] := Module[{fi = 1, fi1l = 0},
Dol {fi, fi1} = {fi + fi1, fi}, {o - 1} J;
fi

Listing 7.2-2 A loop for the nth Fibonacci number.

Hint: First transform the Do loop into a While loop.

3.5 Continued Fractions!

The continued fraction expansion of an irrational number r is the sequence ag. a|, a2, ...,a; €
N, such that (in the limit)
1
T=ap+

a) + .

a+...

The a; can be found as follows. Let ro = 7. The first term, ag, is equal to the integer part of r:

ag = LT‘()J .
The fractional part of g is 7o — ag. Its reciprocal, 7y = 1/(rg — ap), is therefore

1
TI=a) +

Thus, we get
a1 =],

and so on.

'Written examination, ETH Ziirich, Department of Mathematics and Physics.
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1. Write a function continuedFraction[r_, n_Integer] that computes the first n ele-
ments of the continued fraction expansion of  as the list {ag, @}, ..., ap—1}. Youcan
use a loop or program recursively.

2. Write a functioncontinuedValue[1_List] that returns the number belonging to the
initial segment [ = {ag, a1, ..., an—1} of a continued fraction.

3. Write a simple definition for continuedError[r, nl, which finds the absolute error of
the continued fraction approximation of length n. This error is the absolute value of the
difference of r and the approximation with n terms.

Here are the first 10 elements of t’s contin-  In[1):= continuedFraction[Pi, 10]

ued fraction expansion. Out[1]= {3, 7, 15, 1, 292, 1, 1, 1, 2, 1}
The numerical value of the previous contin-  In[2]:= continuedValuel[%]
ued fraction is this rational number. 1146408
Out[2]=
364913

Here is the error of the 10-term approxima-  In[3]:= H[continuedError[Pi, 10]]
tion of . -12
Out[3]= 1.61071 10

Note that coth 1 has an interesting expan-  In[4]:= continuedPFraction[Coth[1], 12]
sion. Out[4]= {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23}

Hint: The function Floor[r] gives the integer part of r.






In this chapter, we use the example of plotting complex-valued parametric lines to discuss
the development of programs. The methods used for structuring programs can be used like
recipies in a cookbook, but it is nevertheless a good idea to understand something about how
they work.

The method presented in this chapter is the framework for building packages in Mathe-
matica. It is used for all nontrivial programs in the rest of this book. The material is adapted
from Chapter 1 of Programming in Mathematica |54].

About the illustration overleaf:

The picture shows the transformation of the unit circle in the complex plane under a randomly
chosen polynomial of degree 20 whose coefficients are all 1 or —1. The picture was produced
with this command (see Pictures.m):

randCoeff := 2Random[Integer, {0, 1}] - 1
RandHorner[n_Integer, x_] := Nest[Function[p, p x + randCoeff], 1, n]
ComplexParametricPlot[ RandHorner[20, Exp[I t]]/Sqrt[21], {t, 0, 2Pil}].

The command ComplexParametricPlot is developed in this chapter. The idea for this
picture is from A. Odlyzko.
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4.1 Complex Parametric Lines

This chapter explains step by step how a package is built in Mathematica. A package consists
of the definitions that constitute the program itself, as well as documentation and declarations
for interfacing the programs with Mathematica. To show you how to build packages, we use
a realistic example, complete with all necessary details. The package should plot parametric
lines in the complex plane.

A complex number consists of two components: the real and imaginary parts. They can
be viewed as the coordinates of a point in the plane. The complex number describing the point
with coordinates (a, b) is written as a + ib, where i is the imaginary unit and stands for v/—1.
In Mathematica, we have to write it as I or 1 instead of i, because by convention, all built-in
symbols begin with a capital letter.

4.1.1 Plotting Lines

A complex-valued function z(t), depending on a real parameter ¢ describes a line in the
complex plane. Mathematica’s ParametricPlot command requires a list with two explicit
coordinates for plotting parametric lines. We can simply calculate the real and imaginary parts
of 2(¢) to draw the line.

Here is the lormula for the unitcirclein the  In[1]:= 21 = Exp[I t]
complex plane. It
Out[1]= E

By calculating its real and imaginary part, In[2):= ParametricPlot[{Re[z1], Im[z1]}, {t, 0, 2Pi}];
we can easily plot it. The paramcter ¢ ranges 4

from O to 27 for one revolution around the e
circle. .
0.5 N

To see how a complex-valued function transforms these lines, we can simply apply the function
to the parametric representation of the desired line, then plot it as before.

Here is the unit circle transformed by the  In[3]:= 22 = Sin[ Exp[I t] 1
complex-valued sine function. It
Out[3]= Sin[E ]
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We can plot it as before. By comparing the  In[4]:= ParametricPlot[{Re[z2], Im[z2]}, {t, O, 2Pi}];
previous graphic with this one, you can see

how the sine function transforms the unit 1
circle.
! 0.5
\ I
s 0s 1
t : |
\ 05; '
\ |
. -1‘
— ! —_

4.1.2 A Simple Procedure to Draw the Lines

If we want to draw pictures of several different lines, it is worthwhile to collect the nec-
essary commands in a procedure, so that we do not have to enter them every time. The
variable parts of the computation — that is, the expression that describes the line and the
range of the parameter — are defined as arguments of the procedure. This first version of
ComplexParametricPlot[z, {t, fp, £1}] in the file ComplexParametricPlott.m is shown
in Listing 4.1-1.

ComplexParametricPlot[z_, range_List]:=
ParametricPlot[{Re[z],Im[z]}, range]

Listing4.1-1 ComplexParametricPlot1.m: The first version of ComplexParametricPlot[].

Here is an example for the use of this definition.

Before using the commands we havetoread  In[5):= << CSM‘ComplexParametricPlot1‘
in the file containing them.

Here is a picture of the unit circle trans-  In[6]:= ComplexParametricPlot[
formed by the tangent function. Tan[Exp(I t]], {t, 0, 2Pi} ];
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4.1.3 Drawing Several Lines

We can greatly enhance the visual presentation of a complex function by drawing several
parametric lines in one picture. ParametricPlot[] allows us to give a list of coordinate
pairs to draw several lines at once.

Here is an expression for the transformation ~ In[1]:= z = Tan[r Exp[I t]]
of circles with radius 7 under the tangent It
function. Out[1]= Tan[E r]

We generate a list of pairs of real and imagi-  In[2):= Table[{Re[z], Im[z]}, {r, 0.1, 1, 0.1}] // Short
nary parts, using Table[],forr =0.1,0.2, Out[2])//Short=
.., 1.0.

It It
{{Re[Tan[0.1 E 1], Im[Tan[0.1 E 1]}, <<8>>,
It It

{Re[Tan[1. E )], Im[Tan([1. E ]]}}

Here we plot the resulting lines for0 < ¢ <  In[3):= ParametricPlot[ Evaluate[%], {t, 0, 2Pi} ];
2m.

There is no need to define a new function for drawing several lines. This capability is a natural
extension of our command ComplexParametricPlot[]. We can simply give a second
definition with an additional parameter to be used as the range in the table. The result is the
second version of our package, in ComplexParametricPlot2.m, see Listing 4.1-2.

ComplexParametricPlot[z_, range_List]:=
ParametricPlot[{Re[z],Im[z]}, range]

ComplexParametricPlot[z_, range_List, table_List]:=
ParametricPlot[Evaluate[Table[{Re[z],Im[z]}, table]l], rangel

Listing 4.1-2 ComplexParametricPlot2.m: An extension for several lines.

We read the new version of our package. In[4]:= << CSM'ComplexParametricPlot2
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The exponential function converts vertical In[5):= ComplexParametricPlot[ Exp[x + I y],
lines into circles around the origin. This {y, -Pi, Pi}, {x, -1, 1, 0.2} 1;
follows frome®**¥ = e®e'¥, whichis acircle
e’¥ with radius e”.

4.1.4 Key Concepts

1. We can visualize complex-valued functions by showing the images of parametric lines in
the complex plane.

2. Procedures combine statements that we want to execute for different parameter values.
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4.2 The First Package

In Section 4.1, we developed the first version of ComplexParametricPlot[]. Although
already useful, it is not yet in a state to be published or made available to other users. The goal
of writing a package is to make the defined commands behave as much as possible like built-in
commands. They should have documentation, accessible with ?ComplexParametricPlot,
and their working should not depend on any other calculations we may have performed before
reading the package.

The commands BeginPackage[], Begin[], End[], and EndPackage[] are used to
make definitions in a package independent from other calculations. For this purpose, every
symbol belongs to a context. Searching for symbols and creating new ones (if a symbol entered
at the keyboard is not found) are governed by two global variables:

$Context the context in which new symbols are created

$ContextPath a list of contexts to be searched

These two variables govern the lookup of contexts.

Context names are strings, ending in a backquote ( *) — for example, "Global‘". Note that
youmust enclose strings in quotation marks to enter them into Mathematica; the normal output
form does not show these quotation marks, however. Context[symbol] returns the context
of symbol.

If a symbol is entered, Mathematica searches the current context (the value of $Context)
and all contexts on the list $ContextPath for the symbol. If none is found, a new one is
created in the current context. More information about the details of this process can be found
in Programming in Mathematica [54].

Normally, the value of $Context is 1In[1]:= $Context
‘Globalt". Out[1]= Global®

Input form shows the quotation marks. In[2]:= InputForm[ % ]
Out[2]//InputForm= "Global‘"

These contexts are searchedbeforenew sym-  In[3]:= $ContextPath
bols are created. Out[3]= {Global‘', System'}

This symbol does not exist yet, and a new  In[4]:= newSymbol
one is created. Out[4]= newSymbol

A new symbol is put into the context In[5]:= Context[ newSymbol ]
$Context. Out[5]= Global®
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Symbols already existing in one of the con-  In[6]:= Context[ Integrate ]
texts in $ContextPath are not created Out[6]= System®
anew.

ComplexParametricPlot3.m (Listing 4.2-1) contains our program as a complete package.
The part of the package between BeginPackage["CSM*ComplexParametricPlot‘"] and
Begin["‘Private"] is the interface part. It declares the functions exported by this package
— that is, the functions that the package provides. The best way to declare a function is to
give it a usage message — that is, a documentation for the function. The argument of
BeginPackage[] is the context for the functions in the package.

BeginPackage["CSM‘ComplexParametricPlot'"]

ComplexParametricPlot: :usage =
"ComplexParametricPlot[z, {t, tO, t1}] plots a complex parametric line.
ComplexParametricPlot[z, {t, tO, t1}, {r, r0, r1, dr}] plot several lines."

Begin[" ‘Private‘"]

ComplexParametricPlot[z_, range_List]:=
ParametricPlot[{Rel[z],Im[z]}, range]

ComplexParametricPlot[z_, range_List, table_List]:=
ParametricPlot[Evaluate[Table[{Re(z],Im[z]}, table]], range]

End[]
EndPackagel[]

Listing 4.2-1 ComplexParametricPlot3.m: Our functions in a package.

The part of the package between Begin["‘Private‘"] and End[] is the implementation
part. Here, the already-declared functions are implemented. The implementation part uses its
own private context. The use of a separate context prevents details of the implementation from
being exported: The implementation is encapsulated. This implementation part is identical to
the code in ComplexParametricPlot2.m from Listing 4.1-2.

Users of our package should have to look at only the interface to use the package. This
separation of interface and implementation is an important principle of software engineering.
Software engineering studies the methods and principles of good programming. One of these
principles is that declaration and implementation should be separated. Separation establishes
aclear interface between user and programmer. The declaration contains all aspects important
for the user. The implementation realizes these aspects. How we do the implementation
is unimportant for users. Users must not depend on the properties of the program that
are mentioned only in the implementation part. Programmers are then free to change the
implementation at any time provided the declaration is not affected by the change.

Contexts are a means for realizing this separation of declaration and implementation. We
just saw how it works. This knowledge is, however, not important for us. Our package is
rather small, and it may seem that the use of all of this overhead is not justified. Because the
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package is only the first in a series, however,

developments.

The command << for reading in the package
does not return a value, because the com-
mand EndPackage[], which is the last one
in the package, does not return one.

ComplexParametricPlot has been de-
fined in this context.

The context of our package has been put on
the search path. That is why we found the
symbol CartesianMap.

The function works as before. Here is the
image of several circles with radii r = 0,
0.2, ..., 2 under the sine function, rotated
by 90°.

Inf1):= << CSW'ComplexParametricPlot3*

In{2]:= Context[ ComplexParametricPlot J

Out[2])= CSM'ComplexParametricPlot*

In[3]:= $ContextPath

we are providing a good foundation for future

Out[3]= {CSM'ComplexParametricPlot‘, Global‘', System‘'}

In[4]:= ComplexParametricPlot[ I Sin[r Exp[I t]],
{t, 0, 2Pi}, {r, 0, 2, 0.2} ];

>

421 A Second Function in the Package

To help visualize the effect of a complex-valued function on a set of parametric lines, it is
convenient to draw the lines and their images side by side.

Here are several circles around the origin.

In[5]:= ComplexParametricPlot[ r Exp[I t],
{t, -3.1, 3.1}, {r, 0.01, 2.01, 0.2} 1;
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Here are their imagés under the logarithm  In[6]:= ComplexParametricPlot[ Log[r Exp[I t1],
function. {t, -3.1, 3.1}, {r, 0.01, 2.01, 0.2} J;

it

Here the two pictures are shown side by
side. GraphicsArray({gr,, ..., gr,}]
assembles several graphics in a row.

g )
L

1t is easy to see that the logarithm maps cir-  In[8]:= PowerBxpand[ Log[r Bxp[I t]] ]
cles into vertical straight lines. Out[8]= I t + Loglr)

Listing 4.2-2 shows the code for the command -ComplexParametricMap[] that takes the
function to map, the expression for the lines, and the ranges as arguments. It gener-
ates the two pictures without showing them (by setting the option DisplayFunction to
Identity), then combines them in the way just shown. The display function is reset to its
default value $DisplayFunction. The argument ranges__ is declared with two under-
score characters, because it should match one or two parameters, depending on whether we
want to draw a single line or several lines. The parameter is simply passed unchanged to
ComplexParametricPlot[].

4.2.2 Key Concepts
1. Each symbol belongs to a context.

2. New symbols are created in the current context.
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3. A package consists of an interface and an implementation part.
4, A package uses its own context for the exported functions.

5. The implementation is hidden in its own private context.

BeginPackage["CSM'ComplexParametricPlot‘"]

ComplexParametricPlot::usage =
"ComplexParametricPlot[z, {t, tO, t1}] plots a complex parametric linme.
ComplexParametricPlot[z, {t, tO, t1}, {r, rO, r1, dr}] plot several lines."

ComplexParametricMap::usage = "ComplexParametricMap[f, z, ranges..] shows
the image of the parametric lines defined by z and their images
under f side by side."

Begin["‘Private‘"]

ComplexParametricPlot[z_, range_List]:=
ParametricPlot[{Re(z],Im(z]}, range]

ComplexParametricPlot[z_, range_List, table_List]:=
ParametricPlot[Evaluate[Table[{Re[z],Im[z]}, table]], range]

ComplexParametricMap[f_, z_, ranges__]:=

Module[{pre,post},
pre = ComplexParametricPlotl[z, ranges, DisplayFunction->Identity];
post = ComplexParametricPlot[f[z], ranges, DisplayFunction->Identity];
Show[ GraphicsArray[{pre,post}], DisplayFunction:>$DisplayFunction ]

]

End[]
EndPackage[]

Listing 4.2-2 ComplexParametricPlot4.m: A second function in the package.
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4.3 Optional Arguments

Optional arguments of a procedure are arguments that you can leave out when calling the
procedure. In this case, a default value is used.

A (constant) default for an argument can be declared with var_:default. If an argument
in a definition is declared in this way (i.e., with a default), the definition is also applied if the
argument is missing. The pattern variable var takes on the value default in this case.

This rule says that the default forthe second  In[1]:= £[ x_, y_:17 ] := {x, y}
argument of £ should be 17.

If the second argument is given, the default  In[2):= £[ 4, 6 ]
is ignored. Out[2]= {4, 6}

If the second argument is missing, the de-  In[3):= £[ 4 ]
fault value is used, and the rule matcheseven  g,4131= {4, 17}
though only one argument was given.

4.3.1 Options

If a command takes many optional arguments, this solution will become confusing; there is
a better way to specify optional arguments out of a large number of such arguments. The
arguments are given in the form name -> value. These are named optional arguments, in
Mathematica referred to simply as options.

Inthis parametric plot we change the settings ~ In[4]:= ParametricPlot[

of the AspectRatio and Frame options. {sinlt], Sin[2t]/2}, {t, 0, 2Pi},
AspectRatio -> 0.5,
Frame -> True

1;

04

0.2

a7 205 0 05 1
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Graphics commands have many suchoption-  In[6]:= Options[ParametricPlot]
al arguments. Normally, you need to specify
only a small number of them when you use o .
the command. All other options assume the AxesLabel -> None, AxesOrigin -> Automatic,

default values shown here. AxesStyle -> Automatic, Background -> Automatic,

Out[6]= {AspectRatio -> Automatic, Axes -> Automatic,

ColorOutput -> GrayLevel, Compiled -> True,

DefaultColor -> Automatic, Epilog -> {},

Frame -> False, FrameLabel -> None,

FrameStyle -> Automatic, FrameTicks -> Automatic,

GridLines -> None, ImageSize -> Automatic,

MaxBend -> 10., PlotDivision -> 30.,

PlotLabel -> None, PlotPoints -> 25,

PlotRange ~> Automatic, PlotRegion -> Automatic,

PlotStyle -> Automatic, Prolog -> {},

RotateLabel -> True, Ticks -> Automatic,

DefaultFont :> $DefaultFont,

DisplayFunction :> $DisplayFunction,

FormatType :> $FormatType, TextStyle :> $TextStyle}
You can also change the default value. We  In[6]:= SetOptions[ ParametricPlot,

did so for all images in this chapter to pre- AspectRatio -> Automatic ];
serve the true aspect ratio.

4.3.2 Handling Options

Inour commands ComplexParametricPlot[] and ComplexParametricMap[] wecall the
graphic functions ParametricPlot[] and GraphicsArray[]. These graphic functions
have many options that we may want to change. To make such changes possible, we should
allow options to be given for our commands and pass these options along to the graphic
commands.

We declare an additional parameter opts___70ptionQ, which accepts any options giv-
en after the required arguments. The built-in predicate OptionQ gives true if the extra
arguments are valid options, that is, rules of the form name -> value or name :> value.
The triple blank ___ matches any number of such options, including none at all. Inside
ComplexParametricPlot[], we can simply pass the parameter opts to the command
ParametricPlot[].

In ComplexParametricMap[] we invoke two commands whose options we may want to
change, our own ComplexParametricPlot and the standard GraphicsArray[]. We have
to be careful to pass on only those options that are valid for the respective graphic function. The
auxiliary function FilterOptions[] selects from a sequence of options those that are valid
for a certain function. It is defined in the standard package Utilities‘FilterOptions®.
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To use the function FilterOptions[], we have to import this package into our own package.
We do so by mentioning the imported package as a second argument of BeginPackage[].
The imported package is then read in, and its functions can be used in the implementation part
of our own package. This final version of our package, ComplexParametricPlot.m, is given in
Listing 4.3-1.

Now that our package is final and its file- In[1]:= Needs["CSM'ComplexParametricPlot‘"]
name corresponds to the name of the con-

text given in BeginPackage[ " Contex:*"],

we should read it in with the command

Needs["Context* "] .

The function f(2) = z+ 1/z maps the unit  In[2):= ComplexParametricMap[Function[z, z + 1/z],

circle to the real line segment between —2 r Bxp[I t], {t, 0, 2Pi}, {r, 1, 2, 0.1},
and 2 and the outside of the unit circle tothe AspectRatio -> Automatic, GraphicsSpacing ->
whole complex plane. 0.2];

Similarly, the inside of the unit circle is also  In[3):= ComplexParametricMap[Punction[z, z + 1/z],
mapped to the whole complex plane. r Exp[I t], {t, O, 2Pi}, {r, 0.2, 1, 0.1},
AspectRatio -> Automatic, PlotRange -> All];

4.3.3 Key Concepts
1. Optional arguments of a functions have a default that is used if the argument is left out.
2. Options are named arguments that can be given in any order.

3. Options look like rules.
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BeginPackage["CSM*ComplexParametricPlot*", "Utilities‘FilterOptions‘"]

ComplexParametricPlot::usage =
"ComplexParametricPlot[z, {t, tO, t1}] plots a complex parametric line.
ComplexParametricPlot[z, {t, t0, ti}, {r, r0, r1, dr}} plot several lines."

ComplexParametricMap: :usage = "ComplexParametricMap[f, z, ranges..] shows
the image of the parametric lines defined by z and their images
under f side by side."

Begin["‘Private‘"]

ComplexParametricPlot[z_, range_List, opts___?0ptionQ]:=
ParametricPlot[{Re[z],Im[z]}, range, opts]

ComplexParametricPlot[z_, range_List, table_List, opts___?0OptionQ]:=
ParametricPlot[Evaluate[Table[{Re(z],Im[z]}, tablel]], range, opts]

ComplexParametricMap[f_, z_, ranges__, opts___70ption@Q]:=
Module[{pre,post},
pre = ComplexParametricPlot[z, ranges,
DisplayFunction->Identity, FilterOptions[ParametricPlot,opts]];
post = ComplexParametricPlot[£f[z], ranges,
DisplayFunction->Identity, FilterOptions[ParametricPlot,opts]];
Show[GraphicsArray[{pre,post}], FilterOptions[GraphicsArray,opts],
DisplayFunction:>$DisplayFunction]
]

End[]
EndPackagel[]

Listing 4.3-1 ComplexParametricPlot.m: The final version of complex lines.
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4.4 A Template Package

You can use Template.m (Listing 4.4-1) as the starting point for your own packages. Copy
it to a new file and change the context name in the command BeginPackage["Context*"].
Normally, the file name is chosen as Context.m. The template contains the package framework,
as discussed in Section 4.2.

BeginPackage["Template‘"]
Functionl::usage = "Functioni(n] does nothing."
Function2::usage = "Function2[n, (m:17)] does even less."

Begin["‘Private‘"]

Aux[f_] := Do[something] (* an auxiliary functiom *)
Functioni[n_] :=n

Function2[n_, m_:17] /; n <5 ;= n m

End(]

EndPackagel]

Listing 4.4-1 Template.m: A template package.

In addition to the direct interaction with the kerel of Mathematica as it is used in the examples
in this book, there is the Notebook frontend, with which you will most likely work. A Notebook
is a structured document that contains text and graphics, as well as Mathematica input and
output. It allows calculations to be annotated.

A package can also be developed as a Notebook. A Notebook version of Template.m with
name Template.nb is shown in Figure 4.4—1. In this example, you can see a few of the features
of Notebooks. A Notebook is divided into cells. The cells are marked at the right margin
by cell brackets. Groups of cells are kept together by the outer brackets. The squares mark
sections and subsections. In the section “Examples,” the function just defined is immediately
tried out. The visual presentation of a Notebook depends on what kind of operating system is
used. The files themselves, however, are portable between different operating systems.

The cells marked by a short vertical line are initialization cells. These are the cells that
contain the package proper. The menu command Kernel>Evaluate Initialization allows you
to have your package evaluated by the kernel just as if you had read in the corresponding
Template.m package. When you save this Notebook, the initialization cells are optionally
written into a package (Template.m) file, so you can read it in later with the usual command
<<Template‘ or Needs["Template‘"].
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Template.nb

Roman E. Maeder

You can use this package as a template for your own packages. When you save it, the corresponding package (with the .m
exwension) is created automatically; it will contain ail cells marked as initialization cells (vertical mark in cell bracket).

=& Implementation

» Definition of the package context

BeginPackage{"Template’*]

s Declaration of exported functions
Punctionl:iusage = “Punctionl(n) does nothing.*

Function2::usage = "Function2{n, (m:17)) does even less."’

u Begin the implementation part

Begin(*‘Private‘"|

u Definition of auxiliary functions

Aux(f_) := Dolsomething)

= Definition of exported functions
Functionl(n_] t= n

Punction2(n_, m_:17) tsam /7 1 < S

= Epilogue
End{) (* end of the implementation part *)

EndPackage(]l (* end of package *)

m Examples

Functionl([5]

S

Figure4.4-1 The template package as a Notebook Template.nb.
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4.5 Exercises

4.1 A Package for the Collatz Problem

Collect the functions that we developed for the Collatz sequence (Section 3.2) in a package
Collatz.m. They are:

CollatzLength[n]
CollatzSequence[n]
CollatzMaximum[a, b] (FindMax in Exercise 3.3)

Auxiliary functions should be defined in the implementation part. Add documentation and the

necessary context declarations.

4.2 Mobius Transforms

A Mobius transform is a complex-valued function of the form

az+b
f(z) = >t d (4.5-1)
(a, b, ¢, and d are complex numbers).
1. Find q, b, ¢, and d, such that
£(0) = 1,
f) = 1+4, (4.5-2)
fA+3) = oo.

2. Illustrate f using ComplexParametricMap[] by choosing suitable sets of lines that show
the essential features of f. Identify the values f(0) and f(oo) in the diagrams.



Chapter 5

Abstract Data Types




In this chapter, we look at one of the most important concepts in programming languages:
data types. A data type is a set of elements together with the operations defined on them.
This simple definition implies an important assertion: Data and operations belong together.
Modern programming languages allow us to make this connection visible by special means of
defining new data types.

A data type is abstract if it is defined only in terms of its properties, without concern for its
possible implementation. This separation of specification and implementation is an important
tool for the development of good software. We have already seen a similar separation of
specification and implementation on the level of packages in Chapter 4.

Our first example will be the abstract definition of the integers. In Section 5.2, we define
our own data type for computations with modular numbers. Then, we discuss the methods for
the design of such data types. We use this method in the rest of the book for all our data types.

About the illustration overleaf:

This image comprises 500 unit cubes whose coordinates have been chosen as random integers
in the range 0. .. 19. The picture was produced with this command (see Pictures.m):
Cuboids[n_, m_] :=

Graphics3D[Cuboid /@ Table[Random[Integer, {0, m-1}], {n}, {3}]1]
Show[ Cuboids[500, 20] ].
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5.1 Definition of Abstract Data Types

A data type is a set of elements (the data of this type) and the operations defined on them,
together with their relationships (equations between the operations).

An example is the data type Integer. The data elements are the integers, the operations
are addition +, multiplication *, and so on. Integer is a built-in type that we can use as is.

In Mathematica and in many other programming languages, we can define new data types
ourselves. The data elements of type Integer are atomic, that is, they cannot be subdivided
further. In general, data elements are composite meaning that they consist of several parts. A
data type for addresses, for example, contains at least these parts: name, street, ZIP code, and
city. All these parts have their own type.

A data type is abstract if it is defined solely in terms of its properties, without regard to
possible implementation. This separation of definition or specification and implementation
is an important tool for the design of good software. It serves the user of the software who
can rely on a specification without having to know the implementation, and it also serves the
programmer who can choose a suitable implementation as long as the specification is satisfied.
The choice of implementation has then no consequences for the user.

These aspects of software development are of ten neglected in teaching because we usually
work with small programs consisting of a few lines of code (in contrast to Mathematica itself,
for example, which consists of more than 500,000 lines of code). But we always define
abstract data types in the rest of this book, even for small programs. Because abstract data
types are wholly defined by their specification, these ideas are independent of the programming
language chosen. If you ever have to program in C or Java, you can still use these concepts —
only the implementation will look different.

5.1.1 Example: Abstract Definition of the Natural Numbers

The well-known natural numbers N = {0, 1,2, ...} can also be defined in an abstract way.
This has always been done in mathematics, long before the introduction of abstract data types.
It is the description of natural numbers by Peano. The natural numbers can be defined from a
constant 0 and the successor function s as the smallest set N with these properties:

0eN ¢.1-1

neN=s(n)eN (5.1-2)

Intuitively, s is the function that adds 1 to a number. This construction obviously gives us all
natural numbers if we start with zero.

Let us now look at a set Ty of Mathematica expressions with these properties:
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s The expression z (a symbol) is an element of Tiy:
z€TnN. (5.1-3)
= All expressions of the form s[s[...s[z]...]] are elements of T:

slsl...s[z]...1] € T, n=12,.... (5.14)

n limes S

That is, the expressions s[z], s[s[z]],....

A function s operating on these expressions can be defined as follows:
s:t — s[t]. (5.1-5)

For example, s(z) = s[z], s(s[z]) = s[s[z]]. Please observe the distinction between the
function s and the symbol s. We use these similar notations on purpose.

It is easy to see that Ty and the function s satisfy the conditions of Equations 5.1-1
and 5.1-2 because we constructed the set T’y such that the result of applying s to an element
gives another element of the set. The expression z serves as our zero. The set Ty is therefore
a model of the natural numbers — the terrn model.

Addition add and multiplication mult can be defined inductively:

add('n,O) = n,
add(n,s(m)) = s(add(n,m)),
mult(n,0) = O, (5.1-6)

mult(n,s(m)) = add(mult(n, m), n).

You can easily verify that ordinary addition and multiplication of natural numbers satisfy these
equations.

These equations can be realized in Mathematica as rules. We can enter them almost
verbatim. We have only to mark the variables n and m on the left side as pattern variables
by appending an underscore character. Note that the symbol z is not a variable, but rather a
constant.

add[n_, z] :=n
add[n_, s[m_]] := s[add[n, m]]

multln_, 2] := z
mult[n_, s[m_]] := add[mult[n, m], n]

This example computes 2 + 1 in the term  In[1]:= edd[ slslz]], s[2] ]

model. Out[1]= s[s(s[2]]]

Hereis2 x 2 =4, In[2]):= mult[ 8[s[z]], s(s(z]] ]
out[2]= s[s[s[s[z]]1]]



5.1 Definition of Abstract Data Types 101

It is easy to prove that Ty is isomorphic to N. The term z corresponds to the natural
number 0. The term s[s[...s[z]...]] corresponds to the number n, where there are exactly
n occurrences of s[...]. The built-in nonnegative integers are also a model of N. The
function s-becomes

s(n_.] :=n+1.

Note that the data type int (or integer) in most programming languages is not a model
of N, because there is a limit on the size of these numbers (often this limit is 23! — 1). In this
number system, we have

@' -1 +1=-2%,

which is rather strange.

5.1.2 Composite Data Types in Mathematica

For composite data types, there is a simple representation as normal expressions in Mathemat-
ica (see Section 2.4). The name type of the data type is used as head for the data elements. All
information that describes a data element is stored as elements e; of the normal expression. A
data element therefore looks as follows:

vpeley, ez, ..., e,].

These ideas are best made clear with an example. We introduce a data type for modular
numbers in Section 5.2.

5.1.3 Key Concepts
1. A data type consists of elements and operations.
2. The natural numbers are defined by the number zero and the successor function.

3. Theterm model is a set of formal expressions that satisfy certain equations.
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5.2 Example: Modular Numbers

Let us look at modular numbers for an example of the design and implementation of a new
data type. The ring of modular numbers is normally designated by Z,, for p > 0 (often chosen
to be a prime number). We use the name mod for this data type. A modular number can be
described by a representative (an integer) and the modulus p. This observation suggests the
implementation mod[n, p]. The component n is a representative of the residue class n + kp,
for k € Z. The choice is not unique: Each number congruent to n (modulo p) is also a
representative.

5.2.1 Unique Representation of Data Elements

If possible, data elements should be represented in a unique way. In our example, we can
always find a representative n with 0 < n < p. A simple rule reduces representations outside
this interval to standard form:

mod{ n_, p_ 1/; n < 0 |l n >= p := modl Mod[n, pl, p]

(Mod[n, p] is the built-in integer remainder function whose result for positive p is always in
the range 0 < n < p.) One advantage of a unique representation is that equality of two data
elements is easy to check.

5.2.2 Arithmetic with Modular Numbers

The sum of two modular numbers is found by adding the representatives, and then reducing
to normal form; in a similar way we can find the product of two modular numbers. Here are
these simple definitions for modPlus and modTimes, respectively:

modPlus[ mod[a_,p_], modlb_,p_]1 1
modTimes[ mod[a_,p_], mod[b_,p_] ]

mod[ a + b, p ]
mod[ a * b, p ]

Observe that we use the same pattern variable p_ for the modulus in the two arguments on
the left side of the definitions. This restriction ensures that both operands have the same
modulus. Note that we do not need to program the reduction to normal form; this task is
already performed by the code of mod.

This solution is rather cumbersome. We would better express the sum of two modular
numbers m; and m; in the form m; + m; instead of modPlus[m;, m3]. That is, we want
to use the existing operator + also for our new data type. Not many programming languages
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allow us to overload existing operators to work with new data types in the way we can in
Mathematica.

Overloading an operator means adding definitions for an existing operator in such a way
that it can handle new data types. Here are the new definitions in terms of + and *, instead of
modPlus and modTimes, respectively:

mod/: mod[a_,p_] + mod[b_,p_] := modl a + b, p ]
mod/: mod[a_,p_] * mod[b_,p_] := mod[ a * b, p ]

The declaration mod/ : binds the definitions to the data type mod, instead of to the operations
Plus and Times. This binding emphasizes the close connection of data and operations, and
leads to more efficient evaluation.

The additive inverse —a mod p can be found as follows, by overloading the unary minus
operator:

mod/: -mod[a_, p_] := mod(-a, p]

We can use the built-in function PowerMod[a, n, p] for positive integer powers of mod-
ular numbers. This function computes a™ mod p faster than does the integer operation
Mod[asn, p]. With n = —1, we get the modular inverse in the same way.

mod/: mod[a_,p_] » n_Integer := mod[ PowerMod[a, n, p], p ]

This modular number is immediately re- In[1]:= mod[13, 7]
duced to normal form. Obviously, we have  g,¢117= mod[6, 7]

13=6 (mod 7).

Thesumof 5 and 3 is 1. In[2):= mod[5, 7] + mod[3, 7]
Out[2)= mod[1, 7]

The product 5 x 4 is 6. In[3]:= mod[5, 7] mod[4, 7]
Out[3]= mod[6, 7]

The negative of S is 2. In[4):= -mod[6, 7]

Out[4])= mod[2, 7]

Subtraction is turned into addition withthe  In[5]:= mod[6, 7] - mod[4, 7]
negative automatically. Therefore, we do  gyu¢[6]= mod[1, 7]

not need to give any additional rules for sub-

traction.

The inverse of 5 is 3. In[6]:= mod[6, 7]a-1
Out[6]= mod[3, 7]
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By muitiplying the inverse with the original
number, we can verify the preceding result.
The inverse of 5 multiplied by 5 must give 1.

Very big powers (here, 2'°'” mod 7) can be
found in a fraction of a second.

5.2.3 Output Formatting

In[7]):= % mod(6, 7]
Dut[7]= mod[1, 7]

In[8]:= mod[2, 7]a104100
Dut[8]= mod[2, 7]

The (external) representation is also a part of a data type. The usual notation in mathematics
is n mod p, which we can program as follows:

Format[m_mod] := Infix[m," mod "]

The formatting rule is applied to each result.

Formatting does not influence our computa-
lions. Internally, modular numbers are still
stored in the same way.

InputForm[] allows us to look at this in-
ternal form.

5.2.4 Type Conversion

In[1):= mod[13, 7]
Dut[1)= 6 mod 7
In[2):=9% « 2
Dut[2]= 1 mod 7

In[3):= InputForm[ % ]
Out(3]//InputForm= mod[1, 7]

Itis convenient to extend arithmetic to combinations of modular numbers andintegers (which is
justified mathematically by the canonical homomorphismZ — Z,). We can do this extension
by defining additional rules for mixed argument types.

mod/: mod[a_,p_] + b_Integer :
mod/: mod[a_,p_] * b_Integer :

[l
B
o
Q
~
»

Integers are transformed into modular num-
bers whenever they come in contact with the
latter.

The order of the operands does not matter;
Mathematica knows that addition and mul-
tiplication are commutative.

In(4]):= 2 mod[6, 7]
Out[4]= 3 mod 7

In[6]:= mod(5, 7] 2
Dut[5]= 3 mod 7

The complete package for computing with modular numbers is in Modular.m; it is reproduced

in Listing 5.2-1.
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BeginPackage [ "CSM‘Modular*"]
mod: :usage = "mod[n, p] is a representation of the number (n mod p)."
Begin["‘Private‘"]

(* Constructor and Normal Form *)

mod(n_, p_.}/i n <0 || n>=p:
(* Arithmetic *)

mod/: mod[a_,p_] + mod[b_,p_]
mod/: mod[a_,p_] * mod[b_,p._]
mod/: mod[a_,p_] s q_Integer

mod[ Mod[n, pl, p ]

mod[ a + b, p ]
mod[ a * b, p ]
mod[ PowerMod[a, q, pl, p ]

(* Output Formatting x*)
Format[m_mod] := Infix[m," mod "]

(*+ Type Conversion of Integers *)

mod/: mod[a_,p_] + b_Integer := mod[ a + b, p ]
mod/: mod[a_,p_] * b_Integer := mod[ a * b, p ]
End[]

EndPackage(]

Listing §.2-1 Modular.m.

5.2.5 Key Concepts
1. Modular numbers are described by a representative and the modulus.
2. A unique representation of data elements simplifies equality tests.

3. The standard arithmetic operators can be overloaded for new data types.
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5.3 Design of Abstract Data Types

For most programming projects, designing the data types should be the first activity of the
programmer. A good data type design helps the implementation of the algorithms in the
program.

5.3.1 Constructors and Selectors

We are not yet satisfied with the data type of modular numbers. We violated one important
principle: We should not access the internal representation of data elements directly. If we
define the operations on modular numbers as we did in Section 5.2, we have to change all
our definitions if the representation of our data type needs to be changed for some reason.
To avoid this undesirable dependency, we try to formulate our algorithms independently of
the implementation. Access to data elements happens then exclusively through certain access
functions: the constructors and selectors. A constructor is a function that creates new data
elements; a selector is a function that returns a component of a data element.

In our example of modular numbers, we need one constructor to create modular numbers
and two selectors, one each for the two components, the representative and the modulus. We
can define the constructor Modular[n, p] and the selectors Representative[mod] and
Modulus [mod] as follows:

Modular[n_Integer, p_Integer?Positive] := mod[Mod[n, p], p]

Representative(mod[n_, p_]] :=n
Modulus[mod[n_, p_]] := p

The constructor Modular[n, p] assembles n and p to a modular number mod[n, p]. Atthe
same time, we make the representation unique as we did at the beginning of Section 5.2. The
selectors simply return the components » and p. Using these access functions, we can write
the rule for addition in the following implementation-independent way:

mod/: a_mod + b_mod /; Modulus[a] == Modulus[b] :=
Modular[ Representative[a] + Representative[b], Modulus([a] ]

Weno longer use patterns in the form mod[n_, p_] that access the representation of a modular
number directly. Instead, we declare only variables of type mod using a_mod, and so on. We
access the components of the modular number using the selectors Representative[a] and
Modulus[a]. We build the result of addition using the constructor. We implement the test for
equality of the two moduli with a condition.
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Constructors and selectors must fit together. The conditions can be expressed as equations.
Here, we have the usual laws about modular numbers.

Modular[ Representative[n], Modulus[n] ] ==n,
Representative[ Modular[n, p] ] ==n (mod p), (5.3-1)
Modulus[ Modular[n, p] ] == p.

The first equation says that we must get the same modular number m if we take it apart (using
the selectors) and then put it back together (using the constructor). The second equation says
that the chosen representative must be congruent to n.

The correctness of the definition for the addition can now be proved using these identities
alone. We no longer have to know how modular numbers are implemented. This fact ensures
the desired independence of representation. Assume that a and b have the same modulus. Let
us look at Representativela + b]. According to our definition of addition, we get

Representative[ Modular[Representative[a] + Representative[b],
Modulus([a]] 1,

which, according to Equation 5.3-1, is congruent to
Representative[a] + Representative[b] .

This last form is exactly the definition of modular addition, which is defined in terms of
representatives.

5.3.2 Design Principles for Abstract Data Types

The task of finding a useful data type for a problem can be divided into two parts: specification
and implementation. These two steps are independent. In larger programming projects, they
might even be done by different programmers. Specification declares which operations are
needed and which properties they should have. A specification consists of the following
elements:

» Constants are the fundamental building blocks of data structures. Often, they are termed
atoms.

s Constructors, selectors, and predicates are the functions used to build and to access data
elements. If used exclusively, such access functions make algorithms using the data type
independent of implementation.

» Equations describe the properties of constructors, selectors, and predicates.
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5.3.3 Implementation of Data Types

Implementation takes the specification and tries to satisfy it as well as possible. The measure
of satisfaction may be efficiency (in terms of run time or memory usage), or our goal may be
to produce a working prototype as quickly as possible. This prototype allows us to test the
design. Later, we can change the implementation to be more efficient without making any
changes to existing code, as we have seen. Implementation consists of these elements:

= A representation of data elements; often, we can use normal expressions with the name of
the data type as head

» Definitions for the constructors, selectors, and predicates

s Rules for reduction to normal form; these rules are derived from the equations and can
often be built into the constructors

= A useful output representation; a good output format makes data more readable and hides
the implementation

s Overloading of standard operators, where useful

» Automatic type conversion

We present only one more example at this point because these design principles are used in
the rest of the book in many places.

5.3.4 Example: Mathematica Expressions

The expressions used by Mathematica can also be defined as elements of an abstract data type,
of course. We have already defined them as such in Section 2.4. The constants are the atoms
(numbers, symbols, and strings). For every integer n > 0, there is one constructor

h[el, €25 -0y en],

which produces a normal expression with a head and n elements. The selectors are Head[e]
and Part[e, ], for | <7 < n. Theequations are of the form

Head[ h[el, €2,y .- en] ] == h)
Part[ hle;, e2, .-.» €nl, i1 ==¢;, (5.3-2)
Head[e] [ Partle, 1], ..., Partle, n] ] ==e.

See also Section 9.1.2, where a similar data type for LISP is presented.

This example is special insofar as we do not have to implement anything. Expressions are
already built into Mathematica. But we can see that, to use these expressions, we do not have
to know how they have been implemented. All we need is the specification.
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5.3.5 Key Concepts
1. Constructors build elements of data types.

2. Selectors return components of data elements.

3. Equations between constructors and selectors lead to simplification of data elements and
to unique representations.
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5.4 Exercises

5.1 Rational Numbers!

A data type for rational numbers can be defined with the constructor makeRationall[n, d]
and the selectors numerator[r] and denominator[r]. Therepresentation of a data element
is simply rationalln, d]. It should represent the rational number n/d. In this exercise,
you should not use the built-in rational numbers; use only integers.

1. Give the definitions of makeRational, numerator, and denominator. Complete the
right side:

makeRational[n_, d_] :
numerator [rational[n_, d_]] :=
denominator[rational(n_, d_]] :

2. Therepresentation rational[n, d] forrational numbers is not yet unique. For example,
the expressions rational[-1, 2], rational[1, -2],and rational[-2, 4] describe
the same number. The representation becomes unique if we demand that the denominator
is always positive and the numerator and denominator are relatively prime; that is, they
have no factors in common. Find two rules for rational[n_, d_] that ensure that data
elements are transformed into a unique form.

Hint: the function GCD[] computes the greatest common divisor (gcd) of two integers.

3. Give definitions for addition and multiplication of rational numbers that work exclusively
with constructors and selectors. Complete the right side:

rational/: a_rational + b_rational :
rational/: a_rational * b_rational :

5.2 Complex Numbers'

A data type for complex numbers can be defined with a constructor complexCartesian[z, y]
and the selectors rel[c] and im[c]. The representation is by a data element of the form
cartesian(z, y]. It describes the number z + iy. These definitions implement the con-
structor and the selectors (The built-in complex numbers must not be used for this exercise).

complexCartesian[x_, y_] := cartesian(x, y]
re[cartesian[x_, y_]] := x
im[cartesian[x_, y_1] := ¥y

'Written examination, ETH Ziirich, Department of Mathematics and Physics.



54 Exercises ] 111

1.

Give definitions for addition, multiplication, and inverse of complex numbers that work
exclusively with constructors and selectors. Complete the right side:

cartesian/: a_cartesian + b_cartesian :=
cartesian/: a_cartesian * b_cartesian :
cartesian/: a_cartesian a -1 :=

Give similar definitions for the sum of a complex number and an integer or a rational
number, as well as the product of a complex number with an integer or a rational number.

Are the rules from part 1 sufficient for all four arithmetic operations (addition, subtraction,
multiplication, and division)?

» If yes, show how cartesian[1, 2] - cartesian[0, 1]
and cartesian[1, 2] / cartesian[0, 1] are computed.

= If no, give more definitions sufficient for all four arithmetic operations. Show how the
above two examples are now computed.

Complex numbers can also be given in polar coordinates as 7e’® = rcos@ + irsin ¢.
Here is the definition of a constructor complexPolar[r, @] that creates a data element
polar([r, ¢] describing the complex number re*?:

complexPolar(r_, p_] := polar([r, p].

Give definitions for the selectors re[] and im[] for data of type polar. With these
definitions, re[polar[1, Pi/4]] evaluates to Sqrt[21/2, because ¢™™/* = /2/2 +

iVv2/2.



Chapter 6

Algorithms for Searching and Sorting




In this chapter, we present algorithms forsorting collections of data and for searching in ordered
collections. The algorithms treated here are fundamental to computer science. Algorithms for
sorting and searching are part of many programs. In a broad sense, they serve to collect and
process data.

In this chapter we use Mathematica’s graphics capabilities to visualize the behavior of
algorithms. One of the features of an interactive symbolic computation systems is that program
runs are themselves data and can be processed accordingly.

Section 6.1 treats searching in ordered collections of data. Ordering is the key to fast
searching, for example in a phone directory. In Section 6.2, we treat sorting. Because sorted
data collections are so important, it is also important to know how data becomes sorted in the
first place.

Binary trees are the topic of Section 6.3. They are a classic dynamic data structure that
can be used for sorting and searching.

About the illustration overleaf:
A picture of a binary tree. It was obtained by inserting 30 random numbers into an empty tree.
The picture was produced with this command (see also Pictures.m):

TreePlot[RandomTree[30]];
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6.1 Searching Ordered Data

Itis easy to find the phone number of a person in the phone directory, but difficult to find the
name, given the number. The reason is that the directory is sorzed by name. Let us see how we
can take advantage of the order present in a collection of data. The most important searching
technique is binary search, or bisection, which we treat in this section.

6.1.1 Bisection (Binary Search)

How can we find an entry in a sorted directory? If we search by hand, we use our experience
to find the approximate location of the entry, and then search sequentially through the page
that contains the entry. This is a heuristic method, which is not well suited for computers. We
need a purely algorithmic procedure, one that can be explained to a machine.

We want to solve this task with the minimum number of accesses to the directory. First, we
look at the entry in the middle of the directory and compare it with the entry we are looking for.
This step tells us in which half of the directory the entry must lie. The other half does not have
to be looked at again. The part of the directory that contains the entry can again be divided
into two halves, and so on. Each step halves the number of entries in which we have to search.
After log, n steps, where n is the number of entries in the original directory, the directory has
been reduced to a single entry. If it is the one we are looking for, we have located it; otherwise,
itis not in the directory at all. Of course, if at any step the entry in the middle happens to be
the right one, we can stop the search immediately. The function BinarySearch[] shown in
Listing 6.1-1 finds the position of a number in a sorted list using bisection.

BinarySearch::usage = "BinarySearch[list, elem] finds the position of elem
in the sorted list. If elem does not occur in list, O is returned."

BinarySearch[list_, elem_] :=
Module[{n0O = 1, n1 = Length[list], m},

While[nO <= ni,
m = Floor[(n0 + n1)/2];
If[ 1list[(m]] == elem, Return[m] ]; (* found *)
If( list[(m]] < elem, nO0 = m+1, n1 = m-1 ] (* continue *)

1

0 (* not found *)

Listing 6.1-1 BinarySearch1.m: The bisection method for searching.

A directory with 1 million entries can be  In[1):= Log[2.0, 1046]
searched with at most 20 accesses. Out[1]= 19.9316
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The number 5 occurs in the third positionin  In[2):= BinarySearch[

the list. {1, 3,6, 7, 9, 11, 13, 15, 17},
51
Out[2]= 3
The number 6 does not occur. Zero is re- In[3]:= BinarySearch(
turned to indicate this fact. {1, 3, 6, 7, 9, 11, 13, 15, 17},
6]
Out[3]= 0

To prove correctness of this algorithm, we look at the loop invariant:
If elem occurs in list, then it is in the range ng, ...,n;.

This invariant is satisfied trivially if elem does not occur at all or if the list is empty. In the
beginning, it is always satisfied if we set ng = 1 and ny = n. Then, we look at the middle
element with index m = [30*2’—"1J . If the mth element happens to be the one we are looking
for, we can terminate the loop and return m. Otherwise, we continue the search in that half
that must contain the element, if it occurs at all. Therefore, we can either set ng to m + 1 to
search in the upper half, or we can set n) to m — 1 to search in the lower half. In each case, the
loop invariant remains true and the range ng...n; is made smaller. After a few steps of the
algorithm, we must reach ng > n;. Because the range to be searched is then empty, it is clear
that the element did not occur in the list. In this case, we return O to indicate an unsuccessful
search.

Such considerations have to be performed with care. A special case exists for n; = ng + 1.
We cannot find an m in between the only two elements present. Please convince yourself that
the algorithm also works in this case. How does the program work if the list contains just one
element?

6.1.2 Observation of the Algorithm

Mathematica makes it easy to observe how an algorithm works. In the simplest case, we can
insert a Print[] command in the loop. This statement allows us to see the progress of the
computation. The information of interest in binary search is the value of the pair {ng,n;}.
We print it out at the beginning and after each iteration of the loop. The modified program is
shown in Listing 6.1-2.

We see the values of no and n) atthebegin-  In[1]:= BinarySearch(

ning and after each iteration. {1, 3, 6, 7, 9, 11, 13, 15, 17},
5]
{1, s}
{1, 4}
{3, 4}

Out[1]= 3
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BinarySearch[list_, elem_] :=
Module[{n0 = 1, n1 = Length[list], m},

Print[{n0, n1}];

While[nO <= ni,
m = Floor((n0 + n1)/2];
If[ list[[m]] == elem, Return[m] J; (x found *)
If[ 1ist[(m]]) < elem, nO = m+1, n1 = m-1 ]; (* continue *)
Print[{n0, ni}]

1;

0 (*x not found *)

- Listing 6.1-2 BinarySearchA.m: Print commands in the loop.

The algorithm needs the largest number of  In[2]:= BinarySearch(
iterations if the element does not occur. {1, 3,5, 7,9, 11, 13, 15, 17},
61
{1, 9}
{1, 4}
{3, 4}
{4, 4}
{4, 3}

Out[2]= 0
A better idea is to generate the information about the algorithm as a Mathematica object itself.

We can then process it further. The version of BinarySearch[] shown in Listing 6.1-3
returns the list of all ng, n; pairs.

BinarySearch[list_, elem_] :=
Module({nO = 1, n1 = Length[list], m, res = {}},

AppendTo[res, {n0, ni}];

While (n0 <= ni,
m = Floor[(n0 + n1)/2];
If[ list[[m]] == elem, Break[] J;
If[ list[[m]] < elem, n0 = m+1, nl = m-1 ];
AppendTo[res, {n0, ni}];

res

Listing 6.1-3 BinarySearchB.m: Returning trace information.

Wegenerate a list of the first 10,000 integers.  In[1]:= Short[ 1 = Range[10000] ]
Out[1]//Short=
{1, 2, 3, 4, 5,6, 7, 8,9, 10, 11, 12, 13, <<9981>>,
9995, 9996, 9997, 9998, 9999, 10000}
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We search for a number that does not occur  In[2]:= pairs = BinarySearch[ 1, 7200.5 ]

in 1. The result is the list of all no, 2y pairs  guer23= ({1, 10000}, {5001, 10000}, {5001, 7499},

generated during the search.
{6251, 7499}, {6876, 7499}, {7188, 7499},
{7188, 7342}, {7188, 7264}, {7188, 7225},
{7188, 7205}, {7197, 7205}, {7197, 7200},
{7199, 7200}, {7200, 7200}, {7201, 7200}}

In this way, we generate rectangles that cor-  In[3]:= Table[

respond to the intervals in our search. The Rectangle[ {pairs[[i, 111, -i+1/2},
lower left corner is (o, —(¢ — 1/2)); the up- {pairs[(i, 211, -i} ],
per right corner is (ny, —2). {i, Length[pairs]} J;

This command shows the rectangles. We  In[4]:= Show[ Graphics[%], Axes->None, Frame->True,

can see how the intervals are halved at each FrameTicks-~>{Automatic,None,None,None},
step (from top to bottom). AspectRatio->1/3, PlotRange->211 ];
0 2000 4000 6000 8000 10000

6.1.3 Abstract Formulation of Binary Search

Searching and sorting benefits much from an abstract formulation. The details of the algorithm
do not depend on the kind of data searched or sorted. All we need is that the data elements
contain a key field that can be compared with key fields of other data elements. Therefore, we
need to know only the selector for the key field. The data elements are usually called records.
One component of these records is the key. The possible values of the key can be ordered
linearly. (Such an order is called a total order.) Mathematica provides a general comparison
function Order (e;, c;] that returns 1, 0, or —1, depending on whether e; < e;, €] = €3, or
e1 > ez holds.

The selector GetKey[record], which returns the key, is made an additional argument of
the binary search procedure. The procedure can, therefore, be used to sort arbitrary types of
records. The program BinarySearch.m is reproduced in Listing 6.1-—4.

The package Telephone.m (Listing 6.1-5) contains the definition of an abstract data type
for a simple phone directory. We use the name as key.

We need these two packages. In[5]:= << CSM'Telephone‘; \
<< CSM'BinarySearch";
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Here, we enter a few records into the directo-
ry. These records are the phone numbers of
branches and offices of Cambridge Univer-
sity Press in varieus countries. Note that we
must enter the records in alphabetical order.

In[6]:= directory = {
entry["Argentina",
entry["Australia”,
entry["Brazil”,
entry["Egypt",
entry["France”,
entry["Greece",
entry["India",
entry["Japan”,
entry["Poland",
entry["Spain",
entry["Thailand"”,
entry["Turkey",
entry["UsSA",

};

"+541 322-5040"],
"+61 3 9568 0322 9"],
"+55 11 259 2122"],
"+202 3935157"],
"+331 39 14 46 91"],
"+30 1 9213020"],
"+91 11 3274196"],
"+81 813 32914541"],
"+48 2 654 18 09"],
"+34 1 360 45 65"],
"+66 2 255 4620"],
"+216 346 3046"],
"+1 212 924 3900"]

We can extract a record with the name as
key.

In[7]:= BinarySearch[ directory, "Brazil"”, name ]
Out[7]= phonerecord[Brazil, +565 11 259 2122]

The procedure BinarySearch is a polymorphic operation. It can be used to search collections

of data of different types.

BinarySearch: :usage =

"BinarySearch[list, key, getkey] finds the position

in list of a record whose key value is equal to key. The function getkey
is applied to records to retrieve the key for comparisons."

BinarySearch[list_, key_, getkey_] :=
Module[{n0 = 1, nl = Length[list], m},
While [n0 <= ni,
m = Floor[(n0 + ni1)/2];
Switch[ Order[ getkey[list[[m]]], key 1,

1, n0=m+ 1, (* record is above m *)
0, Return[ list[[m]] ], (* found! *)
-1, nl=m-1 (* record is below m *)
]
);
Null (* record is not in list x)

Listing 6.1-4 BinarySearch.m.

entry[name_String, number_String] :=
phonerecord[name, number]

number [phonerecord[name_, number_]] := number (* selector *)

name [phonerecord[name_, number_]] := name (* selector *)

(* constructor *)

Listing 6.1-S Telephone.m.
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6.1.4 Key Concepts
1. Anordered list of data can be searched in logarithmic time.

2. The key of arecord is the field used for sorting and searching.
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6.2 Sorting Data

For simplicity, we shall sort only lists of numbers. We saw in Section 6.1.3 how methods for
searching can be extended to arbitrary data types. The same extension is possible for sorting
algorithms. The algorithms we discuss are internal sorting algorithms. They are used to sort
a list of numbers residing in the main memory of our computer. The sorting of external data
(residing on the hard disk) requires different methods. All our algorithms work in place, that
is, they sort the data without requiring any auxiliary memory. The elementary operation for
internal, in-place sorting is the exchange, or swap, of two elements. A list can be sorted by a
sequence of such exchanges.

Here is a list of numbers. In[1):=1 = {3, 1, 2, 4}
Out[1]= {3, 1, 2, 4}

This command exchanges the first and sec-  In[2):= {1[[1]], 1[[2]1]} = {1[[2]], 1[[1]]}; 1
ond element. It is an example of parallel out[21= {1, 3, 2, 4}
assignment (see Section 2.3.1). ’

After exchanging the second and third ele-  1n[3]:= {1[[2]], 1[[3]1]} = {1[[3]], 1[[2]]}; 1
ment, the list is sorted. Out[3]= {1, 2, 3, 4}

The auxiliary command swap[l, i, j] performs such an exchange on the value of I. The
attribute HoldFirst prevents the evaluation of [ as argument of swap[]. We shall use
program SortAux.m (Listing 6.2-1) in all sorting programs to follow.

BeginPackage["CSM'SortAux*"]

swap::usage = "swap[l, i, j] exchanges elements i and j of the value of 1."
Begin["‘Private‘"]

SetAttributes[swap, {HoldFirst}]

swap[l_Symbol, i_, j.J := ({1[[il], 1[[313} = {1C[3j]13, 1[[i11}; 1)

End[]

EndPackagel[]

Listing 6.2-1 SortAux.m: Exchanging elements of a list.

The use of swap[] instead of the explicit  In[4]:= swap[l, 1, 3]
assignment will make our sorting programs gyt r4]= {3, 2, 1, 4}
more readable.
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We shall compare the algorithms by the number of comparisons C(n) and the number of
exchanges E(n) necessary to sort a list of length n. In most algorithms, these numbers depend
on the input and are lower for input lists that are almost sorted. This dependency makes it
necessary to look at the best and worst cases. Most important, however, is the expected average
performance. In the formulae we assume that our input is the list [ = {e;, e2, ..., ey} with
n elements.

6.2.1 Selection Sort

The idea of selection sort is to gradually build up the sorted list. The first element of the sorted
list is the smallest of all elements of /. It is brought at position 1 of the result by exchanging
it with the element that happens to be in position 1 of I. Then, the smallest among elements 2
through n is found. It comes in second place in the sorted list. Before the ith step, the first
i — 1 elements are the initial part of the final result; the remaining elements are still unsorted.
This partition of / into two parts is shown here:

€l...€i—1€...€pn (6.2-1)
——
final unsorted

These considerations lead to the following loop invariant:
Elements e .. . e;_1 are the initial segment of the sorted version of .

In the beginning, we set ¢ = 1 to satisfy the loop invariant trivially. If elements e ...e;—
are the initial segment of the sorted version of /, they must be smaller than the remaining
elements e; ...e,. We locate the smallest among these elements. It belongs in position ¢
in the sorted list because it is larger than elements €, ... ¢;—; but smaller than the remaining
elements. An exchange puts it into position 7. This operation establishes the loop invariant
for  + 1. Finally, we reach ¢ = n, and the whole list is sorted. (Strictly speaking, only
elements e; ... e,_| are sorted, but this is sufficient!)

The smallest element among e;...e, is found in an inner loop by sequential search.
Sequential search is performed by looking at the elements in turn and recording the smallest
one found so far, as well as its index. Program Selection.m is shown in Listing 6.2-2.

The number of comparisons Cs(n) is approximately equal to n2/2, because we perform
one comparison in the body of the inner loop. The number of iterations of the inner loop is
n—(i+ 1) + 1 = n — 7. In the outer loop, 7 varies from 1 to n — 1. Together, we get

n—1 n—1 2
Cs(n) = Z(n —i)= Zz = %n(n -= % . (6.2-2)
i=1 i=l

The number of exchanges Ey(n) is n — | = n, because we perform one exchange in the outer
loop. Note that these numbers do not depend on the input.
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Needs["CSM‘SortAux*"]
SelectionSort: :usage = "SelectionSort[1] sorts the list 1."

SelectionSort[list_List] :=
Module[{1 = list, i, n = Length[list], min, minj, j},

Dol
min = 1[[i]]); minj = i;
Dol If[1([j]] < min, min = 1((jl]); minj = jl, {j, i+1, n} ];
swap[l, i, minj],
{i: 1’ n_i}];
1

Listing 6.2-2 Selection.m: Selection sort.

6.2.2 Insertion Sort

Insertion sort works by maintaining a sorted list of elements of I. Elements of [ are taken
one by one and inserted into this list in their proper place. This sorted list is kept at the
beginning of /. Before the ith step, the first 7 elements are sorted; the remaining elements are
still unsorted. This arrangement is similar to selection sort (see Section 6.2.1), but here we do
not require this sorted part to be the beginning of the final result; we require only that it be
sorted. The partition of [ into two parts is shown here:

€l...€i€Cisl---Cp (6.2-3)
S——N——

sorted unsorted

The loop invariant is the following:
Elements ¢, . .. e; are sorted.

In the beginning, we set 7 = | to satisfy the loop invariant trivially. We look at element €;,
and put it at its proper place among e ...e;,1. We do this by first comparing e;,; with e;.
Ife;r; > e;, element ¢;4 is already in the right place (e; is the largest element amonge; .. . e;
because these elements are sorted). If e;4; < e;, we exchange elements e; and e;4; and
continue comparing e;—; and e;. Eventually, the two elements compared are in their proper
order, or we reach ¢z = 1. When this happens, the elements €, . . . e;;, are sorted, and we have
established the loop invariant for z + 1. As soon as we reach ¢ = n, the whole list is sorted.
Listing 6.2-3 shows the program.

The number of comparisons and exchanges are of the same order because each comparison
is immediately followed by an exchange, except possibly the last one in the inner loop. How
often the inner loop is traversed depends on the input list [. On average, we can expect the
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Needs["CSM*SortAux*"]
InsertionSort::usage = "InsertionSort[l] sorts the list 1."

InsertionSort[list_List] :=
Module[{1l = list, i, n = Length[list], jJ},

Dol
j = i-1;
Whilel j >= 1 && 1[[j]] > 1[[j+1]], swapll, j, j+11; j-- 1,
{i, 2, n}];

1

Listing 6.2-3 Insertion.m: Insertion sort.

inner loop to be traversed about (¢ — 1)/2 times. This consideration leads to

n n—1

i—1 1 . n?
Vi(n>~Ai<n>=_Z_zj T =32 d=gn—D~ . (6.2-4)
In the worst case (for which inputs does it happen?), the algorithm takes twice this number of
steps. If the input is already sorted, there will be only n comparisons and no exchanges. This

number is optimal because we have to perform at least that many comparisons just to find out
whether the input is sorted.

6.2.3 Quicksort

Quicksort (Listing 6.2—4) is the most often used algorithm because it performs better on average
than the algorithms we have looked at so far. Its implementation is more complicated than that
of insertion sort or selection sort. The idea is to partition the input list into two parts (using
exchanges), so that all elements in the first part are smaller than the elements in the second
part. Wedo not require the two parts to be sorted. The key observation is that the two parts can
now be sorted independently. We do this sorting by two recursive calls to quicksort. In these
recursive calls, we have to specify which part of the original list is to be sorted. Therefore,
we define an auxiliary function QSort[l, ng, m1] that sorts only the range e, ...e,, of l.
To sort the whole list, we simply call this auxiliary function with bounds g = 1 and n; = n:
QSort([!, 1, n].

The recursion ends as soon as 19 > n;. This case is treated with a separate definition for
QSort[]. For the following analysis of the algorithm, we can assume 1 < ng < n; < n. The
partition is obtained by maintaining two indices, ¢ and j. Here is our loop invariant:

Elements e, ... e;—; are smaller or equal to e,
Elements ¢, . . . ey, are larger or equal to e,

where e is an arbitrary element among en, ... en,. The invariant is satisfied trivially with
1 =ng, j =n;. Wetry to increase ¢ and decrease j, and maintain the invariant. In general, our
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list is divided into three parts:

€ng--+€i—-16€i...€5 €41 ceeCp . (62—5)
N e’ e,

<e ? e

Our goal is to reach either? = j + 1, or ¢ = j and e; = e. If one of these two cases is satisfied,
we have obtained the partitioning of the list into two parts that can be sorted independently.

i=3: €ng -« €i—1 €€j+l -+ - Eny

Ve

<e e
i=j+1: €ng - -+ €im1€j4l -+ Eny -

(6.2-6)

<e e
Increasing i and decreasing j is done as follows: While e; < e holds, we can increment ¢;
while e; > e holds, we can decrement j. This operation is done in the two inner While loops.
Because e occurs among ey, . .. ey, thereis ani < n; withe; > e, and there is a j > ng with
e; < e. The loops will therefore terminate with valid values of ¢ and j. After the two loops,
one of the following three cases is true:

= If7 < j, we can exchange e; and e;, and then increment ¢ and decrement j. This operation
keeps the invariant valid and we can continue with the outer loop.

» If ¢ = j, we have e; = e = ¢;, and all elements e, ...e;_; are < e, and all elements
€j+1 - - - €n, are > e. We can terminate the loop because the partitioning has been obtained.

Needs["CSM‘SortAux‘"]

QuickSort: :usage = "QuickSort[list] sorts the list."
QuickSort[list_] := Module[ {1 = list}, QSort[1l, 1, Lengthf1]]; 1 ]
SetAttributes[QSort, HoldFirst]

QSort[1_, nO_, n1_1/; n0 >= nl :=1 (% nothing to do *)

QSort[1_, nO_, ni1_] :=
Module[{1m = 1[[ Floor[(nO + n1)/2] ]], i = n0, j = ni},
While[ True,
While[ 1[[i]] < 1m, i++ ];
whilel 1[[j1] > 1m, j-- 1;

If[ i >= j, Break[] 1; (* 1 is partitioned *)
swap(1, i, j1;
i++; j--

1;
QSort[ 1, n0, i-1 ]; (* recursion *)
QSort[ 1, j+1, n1 ] (* recursion *)

Listing 6.2-4 QSort.m: Quicksort.
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= If ¢ > j, the partitioning has been obtained as well. This case can happen only after at
least one exchange has taken place. Therefore, we are sure that ¢ < n; and that j > ng
(furthermore, 2 = j + 1).

After termination of the loop, the list has been partitioned into the parts e, ...e;—; and
€j+1 . . - €n,. Both of them are shorter than the input list e, . . . €5, and can now be sorted by a
recursive call of QSort[]. The whole list is sorted with a call of QSort[] withng=1,n; =n.

We still must determine the element e used for partitioning. The algorithm runs best if e is
chosen from the middle of the sorted list. Both partitions are then of half the original length.
Because we do not yet know which element will lie in the middle of the sorted list, we have to
use some other means of selecting e. In our program, we simply choose an element from the
middle of the unsorted input.

The number of comparisons in the main loop is equal to n because we compare each
element of the list once with e. This comparison happens in the two inner loops. In the best
case, ¢ and j will meet in the middle, and we obtain the following equation for the number of
comparisons Cy(n):

Cyln) =n + ZCq(g). (6.2-7)

The second term on the right is the contribution of the two recursive calls of half the original
length. This recursive equation can be solved exactly (see Section 7.1.2). The solution is

Cy(n) = nlgn. (6.2-8)

(Ig n is the logarithm to base 2.) A deeper analysis for the average case shows that we need
approximately
Cq(n) = 2nlogn =~ 1.38nlgn (6.2-9)

comparisons. The function nlgn grows slower than n?. This property is the reason that

quicksort is preferred to insertion or selection sort for most applications.

In the worst case, quicksort is much slower than in the average case. If we happen to choose
the element e that is always equal to the smallest of the remaining elements, we always get
1= ng, j = ng. The first of the two recursive calls is then trivial, but the second one is shorter
by only one element. The depth of the recursion is equal to n, and we need n2 /2 comparisons
(and a lot of computer memory).

6.2.4 Observation of Quicksort

The following pictures show the state of the list to be sorted after the two inner loops (see
Listing 6.2-4), that is, at the place where the invariant is violated. Elements e; and e; are shown
by gray squares. These are the elements that are then exchanged. Afterreaching: > j, the place
of partitioning is shown by a vertical bar. The special case where the partitioning happens with
¢ = j is shown by a frame around the square ¢. The pictures for the two recursive calls follow.
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This version of the package draws the pic-
tures.

After one exchange, we get a left part of
length four and a right part of length two. In
the left part, the element e2 = 1 is selected,
which leads to a bad partitioning; only one
element is removed. The right part is sorted
with a single exchange.

This picture shows how quicksort behaves if
the input is sorted in reverse.

Here is an example for the worst case. Only
a single element is removed in every parti-
tioning.

Try to find an example of this behavior
for each length n.

In[1]:= << CSM'QSortG*

In[2]):= QuickSort[{2, 1, 5, 3, 6, 4}];

In[3):= QuickSort[{8, 7, 6, 5, 4, 3, 2, 1}]1;

ll 2l 5] 4“7,1-8,|

(1 273 AN 6]7(8:

(1 2]3;4]5]6'7]8
B

sEl|s

- B

In[4]:= QuickSort[{2, 4, 6, 7, 1, 5, 3}];

3le 6[3[1]5]7]
pp Bn |
2[4 -6
2[4
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6.2.5 Key Concepts
1. A list of records can be sorted by a sequence of exchanges.
2. The simplest sorting methods are selection sort and insertion sort.

3. Quicksort works recursively and has a better average running time than other sorting
methods.
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6.3 Binary Trees

A dynamic data structure is a means to maintain a collection of data elements (records). It
allows insertion and deletion of records and provides a function for locating records by a key
field (retrieval if records). The phone directory from Section 6.1.3 was an example. There are
many implementations of dynamic date structures. The choice of an implementation depends
on many aspects. Some data structures allow fast insertion or retrieval of data, but are slow
for deletion of records. Often, data structures maintain their contents at least partially ordered.
This ordering speeds up retrieval operations, as we have seen in Section 6.1. The study of
dynamic data structures is one of the most important fields of computer science. Here are
some of the aspects to consider when choosing a data structure for an application:

» The expected relative frequency of the various operations such as insertion, retrieval, and
deletion

« The maximal number of records needed (if known)

s Whether several records with identical keys should be allowed

A simple dynamic data structure is the binary tree. Binary trees are easy to implement.
Insertion of records is fast, and retrieval is also fast (it is similar to binary search). The total
number of records in a binary tree is not limited. Deletion of records is a bit more complicated,
however.

In computer science, trees are drawn with  In[1]:= plotTree[ Tree[{3, 7, 5, 4, 8, 6, 2}] 1;
the root pointing upward. There are at most
two branches at each node. The numbers
are stored in the nodes. A binary tee is
ordered: The numbers in the left subtcee are
smaller than the number in the node itself;
the numbers in the right subtree are larger.
This condition holds for every node.

Anode of a binary tree consists of a data, or information, field, and aleftand right subtree. The
information field is used to store the records contained in the tree. Binary trees are ordered.
The keys of the information fields in the left subtree are smaller than the key in the node; the
keys in the right subtree are larger. If a tree is balanced, it can be searched in logarithmic time
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because each subtree has only half the size of the whole tree. We assume that key values are
unique. An abstract data type for trees is the following:

Constants emptyTree an empty tree

Constructors nodelinfo, left, right] atree with this root

Selectors information[tree] the information at the root
leftTree [tree] the left subtree
rightTree[tree] the right subtree

Here is an implementation. A node is represented by treelinfo, left, right]. This repre-
sentation makes constructors and selectors quite simple. All code shown in this section is part
of the package BinaryTree.m.

node[info_, left_, right_] := tree[info, left, right]

leftTree[tree[_, left_, _]] := left
rightTree[tree[_, _, right_]] := right
information[tree[info_, _, _]] := info

Key fields are compared with the built-in function Order([e;, e>]. We assume that we can
extract the key from the information with the selector Key. A default value of Identity for
this selector (see Section 4.3) causes the whole record to be treated as key. For simplicity, we
will use numbers as our data. Such a default is therefore convenient.

A binary tree is either empty or consists of a left and right subtree. Most functions on
binary trees can therefore be implemented with two definitions: one for the empty tree and a
recursive one for the general case.

6.3.1 Insertion of a Node

The function insertTreel[tree, info, Key] inserts the record info into the tree by creating a
new node in the right position. It returns the new tree.
If the tree is empty, the new node comes at the root and its two subtrees are empty:

insertTree[emptyTree, info_, Key_:Identity] :=
node[info, emptyTree, emptyTree]

If the key of the root is equal to the key of the new record, we do not insert it because keys are
supposed to be unique. (We could perhaps generate an error message in this case.)

insertTree[tree_, info_, Key_:Identityl /;
Order[Key[info], Key[information[tree]]]l == 0 := tree
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If the new key is smaller than the key at the root, the new node must go into the left subtree.
It is inserted there recursively. Because the left subtree might change as a consequence of this
insertion, we have to assemble it together with the old right subtree and the information at the
root into a new tree.

insertTreel[tree_, info_, Key_:Identity] /;
Order[Key[info], Key[information[tree]l] > 0 :=
node[ information[tree],
insertTree[leftTree[tree], info, Key],
rightTree[tree]
1

Otherwise, the new key is larger than the key at the root, and the new node must go into the
right subtree. The roles of left and right are simply interchanged.

insertTree[tree_, info_, Key_:Identity] :=
node[ information[tree],
leftTree[tree],
insertTree[rightTree[tree], info, Key]

1

Observe that the algorithm for insertion has been derived directly from the defining properties
of abinary tree. A binary tree is ordered. By inserting a new node at the right place, this order
is preserved. The rest is done by recursion. Nothing could be simpler!

This command inserts the number S into an  In[1]:= b = insertTreelemptyTree, 5]
empty tree. The wholc record (a simple  gu411]
number in our case) is the key.

tree[5, emptyTree, emptyTreel

The number 3 is inserted into the previous  In[2]:= b = insertTree[b, 3]

tree. Out[2]= tree[5, tree(3, emptyTree, emptyTree],
emptyTree]
Now, we insert the number 7. In[3]:= b = insertTreel[b, 7]

Out[3])= tree[5, tree[3, emptyTree, emptyTreel,
tree[7, emptyTree, emptyTreell

A diagram provides us with a better look at  In[4]:= plotTree[b];
the tree than the nested expression does.
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Note that we assigned the result of an inser-  In[5]:= plotTreel b = insertTree[b, 4] 1;
tionback to the variable holding the previous
tree. This technique allows us to build a tree
step by step. Here we insert the number 4
into the previous tree.

The following constructor is useful for inserting a list of records one by one into a tree:

Tree[l_List, Key_:Identity] :=
Foldl Function[{t, i}, insertTree[t, i, Keyl], emptyTree, 1 ]

The function insertTreel] is applied to the result of the previous application and the next
element from the list. This iteration is performed by Fold[], see Section 2.3.9.

The tree obtained from a list depends on the order of the elements in the list. In the next
two examples, we build two trees with the same elements, but inserted in different order.

This picture shows the tree obtained from  In[6]:= plotTree[ Tree[{5, 4, 7, 3, 2, 8, 6}] 1;
inserting the numbers 5, 3, 7, 4, 2, 8, and 6
in this order.

If we insert the same numbers in a different  In(7]:= plotTree[ Tree({3, 7, 5, 4, 8, 6, 2}] 1;
order, we get a different tree.
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6.3.2 Retrieval of a Node

The function searchTree[tree, key, Key] returns the information of a node whose key is
equal to key and where Key is the name of the selector for the key field. Its default is again the
identity. We can proceed in the same way we did with insertion.

The method is similar to binary search. The key is compared with the key at the root of
the tree. If it is identical, we have found the record. Otherwise, we search in the left or right
half, depending on whether the key is smaller or larger than the key in the root. If we reach the
empty tree, we know that the record is not in the tree, and we return Null to signal this fact.

searchTree[ emptyTree, key_, Key_:Identity ] := Null

searchTree[ tree_, key_, Key_:Identity ] /;
Order[ Keyl[information[treel], key ] == 0 :=
information[ tree ]

searchTree[ tree_, key_, Key_:Identity ] /;
Order[ Key[information[treell, key ] < 0 :=
searchTree[ leftTree[tree], key, Key ]

searchTree[ tree_, key_, Key_:Identity ] :=
searchTree[ rightTreeltree], key, Key ]

6.3.3 Balanced Trees

The depth of a tree is the maximum number of nodes between the root and a leaf. A leaf is a
node without any subtrees. The depth can be computed recursively:

depth[emptyTree] := 0
depth(tree_] := 1 + Max[ depth[leftTreel[treel], depth[rightTree([tree]] ]

Letus investigate trees obtained by inserting the numbers 1 to 7 in different orders.

This tree is perfectly balanced. All leaves In[8]:= plotTreel b1l = Tree[{4, 2, 1, 3, 6, 5, T}] 1;
are at the same level (the tree does not have
any holes).
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This tree degenerates into a linear list be-  In[9]:= plotTree[ b2 = Tree[{1, 2, 3, 4, 5, 6, 7}]1 1;
cause each node has at most one nonempty
subtree.

The second tree is far deeper than is the first  In[10]:= {depth[b1], depth[b2]}
one. Out[10]= {3, 7}

The depth of a tree with n nodes is at least 1gn. This fact follows from the observation that a
tree with depth & can have at most 2¥ — 1 nodes because

k-1

z 2=k, (6.3-1)

=0

6.3.4 Advanced Topic: Deletion of Nodes

We said that deletions are not as simple as insertions. If the node to be deleted has at most one
subtree, deleting it is easy, however. The root of its single subtree can be put at its place.

This is again thetree from Section 6.3.1. In{1):= plotTree[ b1l = Tree[{5, 4, 7, 3, 2, 8, 6}] 1;
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The node with information 4 can be deleted  In[2]):= plotTree[ b2 = deleteTreelbl, 4] 1;
easily. Its successor 3 is put at its place.

Thenode 6 has no successors and can simply ~ In[3]:= plotTree[ b3 = deleteTree[b2, 6] 1;
be removed.

The following rules implement recursion. The place of deletion is found with a variant of the
search from Section 6.3.2.

deleteTree[emptyTree, key_, Key_:Identity ] := emptyTree

deleteTree[ tree_, key_, Key_:Identity 1 /;
Order[ Key[information[tree]], key ] < 0 :=
node[ information[treel],
deleteTree[leftTree[treel, key, Keyl,
rightTree[treel
]

deleteTree[ tree_, key_, Key_:Identity 1 /;
Order[ Key[information[treel], key 1 > 0 :=
node[ information[tree],
leftTree[tree],
deleteTree[rightTree[tree], key, Keyl

Here are the rules for the cases where the deleted node has at most one subtree.

deleteTree[ tree_, key_, Key_:Identity ] /;
leftTree[tree] == emptyTree := rightTree[tree]

deleteTree[ tree_, key_, Key_:Identity 1 /;
rightTree[tree] == emptyTree := leftTreeltree]
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Now we treat the difficult case where the deleted node d has two subtrees. If d is removed,
there are two subtrees that have to be put somewhere but only one place to put them — the place
of d. The idea is to take another node and put it in place of d. We must be careful to choose a
node that does not violate the ordering of the tree if it is moved. A candidate is the node with
the next higher key value than the key of d. This node can be found as the smallest node in the
right subtree of d. It is guaranteed to have at most one subtree itself, so we can easily remove it.

The node 5 has two successors an cannot be ~ In[4]:= plotTree[bi];
removed easily.

The next higher node 6 is put at its place.  In[5]:= plotTreel deleteTree(bi, 5] 1;
The left and right subtrees of 5 are made
subwrees of 6. In the right subtree we have
to remove the node 6, because it is now in
another place in the tree.

The auxiliary function smallestNodel[tree] finds the node with the smallest key in tree. We
simply descend along the left subtree. If the left subtree is empty the current node is the
smallest one.

smallestNode[emptyTree] = Null
smallestNode[tree_] /; leftTree[tree] === emptyTree := information[treel
smallestNode[tree_] := smallestNode[ leftTree[tree] ]

The new tree without d consists, therefore, of the information in the smallest node in the right
subtree at the root, and of the former left and right subtrees — with the smallest node removed
from the right subtree.
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deleteTree[ tree_, key_, Key_:Identity ] :=
With[{nextinfo = smallestNode[ rightTree[tree] ]},
node[ nextinfo,
leftTree[tree],
deleteTree[rightTree[tree], Key[nextinfo], Key]

6.3.5 Key Concepts

1. Binary trees are the most important dynamic data structure.

2. Binary trees are ordered.

3. Different orders of insertion of the same set of nodes leads to different binary trees.
4

. Binary trees can be searched in logarithmic time.
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6.4 Exercises

6.1 Counting Prime Numbers

Write a function primePi[z] that finds the number n(x) of primes < z using binary search

(see Section 6.1.1). (This function already exists in Mathematica under the name PrimePi[].)
Hints:

= The function Prime[n] computes the nth prime number.
= z can be an arbitrary real number.

= An upper bound for primePi[z] for x > 2 is obtained by the logarithmic integral
LogIntegral(z].

= You can use bisection without first generating the list to be searched. Generate only the
primes that are actually needed.

Examples:

Because Prime is quite fast, large argu- In[1):= {PrimePi[-2], PrimePi[1.5], PrimePi[2],
ments of PrimePi[] arc no problem. PrimePi[10], PrimePi[1048]}

Out[1]= {0, 0, 1, 4, 5761455}

The function is defined for all real numbers  In[2]:= Plot[ PrimePi[x], {x, 1, 20} ];
and can, therefore, be plotted. 8:
1

5 10 15 20

6.2 Binary Trees

Binary trees can be used to implement a sorting method.

1. Extend the package BinaryTree.m from Section 6.3 by a function InOrder[tree]. The
function should return all records of the tree in a list in the following order: first, the
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elements of the left subtree (recursively); then, the element at the root; finally, the elements
of the right subtree. Because of the ordering of the binary tree, the resulting list will be
sorted.

2. Use InOrder/(tree] to implement a sorting function TreeSort [list] that sorts the list by
first inserting all its elements into a binary wee and then converting the wee back into a list.

6.3 Merging Lists'

Write a function Merge [{;, [2] that merges the elements of the two lists /; and {; into a single
list. The elements of /| and [ are assumed to be numbers sorted in ascending order (you do
not have to check this property). The result should also be sorted in ascending order. The
result should be obtained without sorting the list anew.

Write a single procedural definition that works on the input lists in a loop. You can use
any list operations, such as First[!], Rest[l], Prepend[!, elem], Append[l, elem], or
Join[!}, [;]. Use Modulel[] todeclare local variables.

The result contains all elements of the two  In[1]:= Merge[{1, 5, 7}, {2, 3, 8}]
input lists in ascending order. Out[1]= Merge[{1, 5, 7}, {2, 3, 8}]

Your function should also treat such special  In[2]:= Merge[{}, {2, 3}]
inputs correctly. Out[2]= Merge[{}, {2, 3}]

If an element appears more than once, it  In[3]:= Merge[{1, 1, 2, 3}, {2, 3}]
must appear in the result the same number g, 13- Merge[{1, 1, 2, 3}, {2, 3}]
of times. T

6.4 Observation of a Sorting Algorithm

We restrict the inputs of our sorting functions to permutations of the numbers 1 ... n. A simple
way to visualize the amount of “sortedness” in such a list of numbers is a picture obtained
with ListPlot.

This definition is used to plot permutations  In[1]:= PermutationPlot[1_List, opts___] :=
of the numbers 1. ..n with suitable settings ListPlot[ 1,
of graphics options. PlotRange -> { {0.5, Length[1]+0.5},
{0.5, Length[1]+0.5} },
PlotStyle->PointSize[0.75/Length[1]],
opts, Axes->None, FrameTicks->None,
Frame->True, AspectRatio->1 ]

Here is a random permutation. In[2]:= p1 = PermutationPlot[
{9, 10, 6, 8, 2, 4, 12, 1, 7, 5, 3, 11},
DisplayFunction->Identity ];

'Written examination, ETH Ziirich, Department of Mathematics and Physics.
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Here is the list after the first phase of In[3]:= p2 = PermutationPlot[
QuickSort (Section 6.2.3). {3, 1, 4, 2, 8, 6, 12, 10, 7, 5, 9, 11},
DisplayFunction->Identity ];

Now, the list is sorted. In[4]):= p3 = PermutationPlotl
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},
DisplayFunction->Identity 1;

Here, finally, are the three pictures. In[5]:= Show[GraphicsArray[{p1, p2, p3}1];

Write a program that allows you to draw such pictures after each exchange step in the sorting
procedures (insertion sort, selection sort, and quicksort). If you wish, you can animate these
sequences of pictures to see how the algorithm runs.

Hint: You do not have to change anything in the sorting procedures themselves. A special
version of SortAux.m (see Listing 6.2—1) is all you need.

6.5 Abstract Sorting Algorithm

Develop an abstract version of quicksort (see Section 6.2.3). As in the abstract searching
procedure from Section 6.1.3, you should assume that arbitrary records are to be sorted. The
records have a key field that is used for comparisons.
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Complexity of Algorithms




In this chapter we study complexity of algorithms. Complexity theory studies the amount of
computations necessary for solving a certain problem. One important question in complexity
is how the number of computation steps grows with the size of the input, disregarding machine-
specific details. The main results concern the asymptotic behavior of an algorithm - that is,
the number of steps for arbitrarily large inputs.

Section 7.1 discusses the main complexity classes for algorithms. Then, in Section 7.2,
welook atone algorithm in detail: the computation of Fibonacci numbers. We present several
algorithms that differ in their complexity. Another topic is the practical improvement of an
algorithm. Such an improvement does not lower an algorithm’s complexity, but makes it run
faster by a constant factor.

Section 7.3 deals with an important method for solving optimization problems. Many
such problems can be solved only by trying out all possible cases, which is usually too time
consuming. Sometimes, there are better methods, as we shall see.

Arbitrary-precision arithmetic is an interesting problem and a good example for studying
complexity of algorithms. In Section 7.4, we present a method for multiplying numbers much
faster than is possible with the usual schoolbook method. Because many algorithms built into
Mathematica use large numbers internally, this method is of practical use.

About the illustration overleaf:

The picture illustrates the recursive computation of fo, the ninth Fibonacci number. The
formula is

fl = 1,
f2 = 1,
fn = fn—l+fn~2-

The y-axis corresponds to the values of n. Each point is connected to the points for fr_
and f,_>. The z-axis shows successive time steps. You can see that many values of f; are
computed several times. The picture was produced with the command

FibonacciPlot[9] .
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7.1 Complexity of Computations

The complexity R(n) of an algorithm is the number of computation steps necessary to solve a
problem of input size n. An algorithm is of order not larger than g(n), if there is a constant ¢
such that

R(n) < cg(n), Vn. 7.1-1)

We write R(n) = O(g(n)). This definition means that R(n) does not grow essentially faster
than g(n). Of course, we are interested in small functions g.

The binary searching method in Section 6.1 needs at mostlog,(n) steps tosearch n records.
Itis of complexity O(log n). (Logarithms of different bases differ only by a constant; therefore,
we can use the natural logarithm.) Observe that we weat several elementary computation steps
as a single step, for example, the whole body of the While loop in program BinarySearch.
This simplification is possible if the computations inside the loop take a constant number of
more elementary steps, independent of input size. Also, we assume that we can access an
elementin a list of records in constant time. This kind of idealizations is typical for complexity
considerations. All these simplifications affect only the constant ¢ in Equation 7.1-1.

7.1.1 Input Size

The definition of input size depends on the kind of problem we are analyzing. For the sorting
and searching algorithms presented in Chapter 6, the input size is the number of data elements
to sort or to search through.

If we perform calculations with big numbers, the measure of input size is the length of the
number. The length of a number m is the number of digits we need to write down the number;
itis equal to log,(m), where b is the base of the positional number system used to represent m
(our ordinary decimal system uses base 10, the base of the binary system is 2). The base does
not matter for complexity; it is customary to use the natural logarithm logm.

7.1.2 Complexity Classes

The functions g used to measure the complexity of computations can be divided into different
complexity classes. An algorithm of order O(logn) has logarithmic complexity. Searching
algorithms are often in this class. Logarithmic algorithms are very efficient: If the input size
doubles, we need only one additional computation step.

An algorithm of order O(n) is linear. For many problems, this complexity is the best
possible because we have to look at the whole input at least once, which takes already
O(n) steps. Searching in an unordered collection of data is an example of a linear algorithm.
Addition of two numbers of length n is another example.
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The phone directory of New York City has  In[1]:= entries = 685750;
about 685, 750 entries for residents.

Searching for an entry by name has loga- In[2]:= Ceiling[ Log[2, entries] )
rithmic complexity; it takes only this many  gyyr2]= 20
steps (see Section 6.1.1).

A sequential search for a phone number, for  In[3]:= entries/2
example, is a linear algorithm; it would take g4 [3]= 342875
on average this many steps.

Another important complexity class arealgorithms of order O(n logn). Many sorting problems
are of this leind. Let us consider quicksort from Section 6.2.3. In the first phase, we look at
each element once, which takes n steps. Then, the problem is subdivided into two problems of
half size. From these considerations we can establish the following equation for the number
of steps R(n):

R(n) =n +2R(n/2), (7.1-2)

as well as the boundary condition R(1) = 0. This recursive equation has the following solution:
R(n)=nlgn (7.1-3)

(Ig n is the logarithm with base 2, log, n). This result can easily be proved by induction. The
equation is exact only for input sizes of the form n = 2* (that is, powers of two). For such
input sizes, the induction proof is sketched here:

R(n) = n+2R(n/2)
n+2(31&(3))
n+nlg(3)
n+n(lgn —1g2)
n+n(lgn —1)

= nlgn.

7.14)

If g(n) is a polynomial in n, the algorithm has polynomial complexity. Many important
algorithms are in the range O(n?) to O(n3). For larger exponents, polynomial algorithms
usually become impractical.

If g(n) is an exponential function of 7, we say that the algorithm has exponential complexity.
Most of these algorithms are not practical. We can reverse the statement about logarithmic
problems for exponential ones: If the speed of our computer is doubled, we can solve only a
problem that is larger by one. Even a base b of the exponential function that is near 1 leads to
an asymptotic growth far larger than that of any polynomial. If we compare p(n) = n'% with
e(n) = 1.01™, for example, the polynomial p(n) grows much faster at first, butat n ~ 117,308,
the exponential takes over.
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Here is a diagram of the ratio of the In[4]:= Plot[ 10am Log[1.01] / (100 m Log[10.]),

logarithm of the two functions for n = {m, 1, 6.6}, PlotRange->All,
10...10° 3, thatis, of Frame->True, GridLines->Automatic J];
Tog(1.01'"™) _ 10™ log 1.01 25 '
log(10m1%) ~ 100m log 10 ’ ) /
formm = 1...5.5. The exponential grows
faster than the polynomial. The point where 1.5 1
the ratio becomes 1 is where the two func-
tions are equal. 1
0.5
ot

1 2 3 4 5

The solution of this numerical equation iS  In[5]:= FindRoot[ 10am Log[1.01] == 100m Log[10.0],
the point where numerator and denominator {m, 5.1} ]
are equal, that is, where p(10™) = e(10™). Out[51= {m -> §.06933}

Here is the corresponding value of n = 10™.  In[6]:= 10am /. %
Out[6]= 117308.

The point n = 10™, where the two functions p(n) and e(n) are equal, corresponds to a number
of computation steps equal to p(n) = e(n) = 10°%7. This number of steps is far beyond the
practical range. The conclusion is that in this example the exponential function is smaller in
the whole range where we could actually perform such a computation, even though it grows
much faster asymptotically. We can see that asymptotic complexity considerations are not the
only important aspect of an algorithm.

7.1.3 Example: Fast Integer Powers

Often, computations can be rearranged for an impressive run-time improvement. Let us look
at the computation of integer powers.

The straightforward method to compute m™, where n is a nonnegative integer, starts with
an intermediate result of 1, and multiplies it successively by m, a total of n times. This method
takes n steps. There is a much faster method that takes only Ig n steps. To see how it works,
we write the exponent n in the binary number system as

k—1
n= Z n2t, (7.1-5)
=0

where the n, are the binary digits, or bits (all either 0 or 1), and & is the number of binary
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digits of n. Now, we can express m™ as

mt —mzew 2 H = H mzi. (7.1-6)

i=0 iin;=

(The product ranges over all z such that n; = 1.) The powers m2 can be found by successive
squaring of of the previous power of m, because m? = (m? ')2, and m2’ = m. Foreach 1 in
the exponent, the current result is multiplied by the corresponding power of m.

BinaryPower[m_, n_] :=
Module[{result = 1, nn = n, s = m},
While[ nn > 1,
If[0ddQ[nn], result = result * s];
S =8 x8;
nn = Floor[nn/2];
);

result * s

Listing 7.1-1  Fast computation of powers.

The binary digits of n can be found iteratively. First we determine 7, the last bit of the
number n. It is equal to 1 for odd numbers and equal to O for even numbers. Afterward,
we divide n by 2, discarding any remainder. This operation brings the second to-last bit n;
into last posmon In this way, the method can be continued. If n = Zz-O n;2%, we get

|n/2| = Z 1 T ng2i=! = Zf:o nis12%. ([n/2] is the result of the division without remainder
of n by 2.) Observe that we run the loop only to nn = 1, and that we perform the last
multiplication result * s outside the loop. This method avoids squaring s once more. The
new value of s would not be used anymore. This last squaring would take about half of the
total run time of the algorithm.

7.1.4 Key Concepts

1. Algorithmic complexity describes the relation between input size and the number of
computation steps.

A complexity class is a set of problems with the same asymptotic behavior.
Logarithmic complexity is typical for searching in ordered data.
Linear complexity is the best possible if the whole input needs to be examined.

Exponential complexity is almost always impractical.

AN S

An nth power can be computed in log n steps.
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7.2 Example: Computing the nth Fibonacci Number

We use the computation of the nth Fibonacci number as anexample to compare the complexity
of different algorithms. We shall see algorithms of different asymptotic complexity, as well as
algorithms of different run time (but equal complexity). We shall see that Fibonacci numbers
grow exponentially. As a consequence, the computing time for ordinary arithmetic influences
the complexity. We can no longer treat an arithmetic calculation as a single step in the
computation.

Fibonacci numbers f, are defined by this second-order recurrence:

fl = 1’
f2 = 1, (7.2-1)
fn = fn—l*‘fn—Z-

All methods for the computation of Fibonacci numbers in this section are in the package Fib.m.

7.2.1 A Recursive Algorithm

As usual, Equation 7.2-1 can be programmed directly. This translation leads to a recursive
computation, shown in Listing 7.2-1.

fiba[1] = fiba[2] = 1;
fiba[n_] := fiba[n-1] + fiba[n-2]

Listing 7.2-1 Recursive computation of Fibonacci numbers.

Here are the first 10 Fibonacci numbers. In[1]):= Table[ fibali], {i, 1, 10} ]
Out[1])= {1, 1, 2, 3, 5, 8, 13, 21, 34, 55}

A measure of the complexity of this method is the number t(n) of recursive calls of fiba
necessary for the computation of fiba[n]. fiba[1] and fiba[2] need one call each.
For larger n, the number of calls is equal to the number of calls for n — 1 and n — 2. This
observation leads to the following equation for t(n):

t(l) = 1,

t(2) 1, (7.2-2)
t(n) ttn — 1)+ t(n — 2).

This equation is the same as Equation 7.2-1 for f(n) itself. Therefore, t(n) = f,. We shall
seethat f,, grows exponentially in n. This algorithm is therefore inefficient: it has exponential
complexity. An improvement by dynamic programming is treated in Section 7.3.1.
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Here is a table of the computation times for  In[2]:= Table[ Pirst[Timing[ fiba[i] 1],
fi. for i = 10, ..., 25. The times grow {i, 10, 25} 1 /. Second->1

rapidly. Observe that each time is approxi-  g,¢[2]= 0., 0.01, 0.01, 0.02, 0.03, 0.05, 0.08, 0.12,
mately equal to the sum of the preceding two
imes. 0.21, 0.33, 0.54, 0.87, 1.41, 2.29, 3.71, 6.}

7.2.2 A Loop

The Fibonacci recursion can be turned into iteration (see Section 3.3.3). The computation of
each Fibonacci number requires only the two previous values. Therefore, we need two local
variables for these two values, as shown in Listing 7.2-2,

fibeln_] :=
Module[{fi = 1, fil = 0},
Dol {fi, fi1} = {fi + fi1, fi}, {n - 1} ];
fi

Listing 7.2-2 A loop for the nth Fibonacci number.

Starting with ¢ = 1, the value of fi is f;, and the value of £il is f;_;. This fact is the loop
invariant. The sum of f; and f;—; is f;»1. Therefore, we must set £fi to £fi + £i1, and fil
to £i (simultaneously), to fulfill the invariant for 7 + 1. After n — 1 iterations, the value of fi
is fn, as desired.

What is the complexity of this loop? The length of the :th Fibonacci number is proportional
to ¢, as we shall see. In the ith iteration, we therefore add two numbers of length ¢. This
addition takes ¢ steps. The total number of steps is the sum over all iterations:

n—1

Zz’ = "(”T_” ~ n? (7.2-3)

i=1

This algorithm has quadratic complexity. It is quite fast for small n, but there are better
algorithms for larger », as we shall see soon.

Here is a lable of computation times for f;, In[3]:= Tablel First[Timing[ £ibc[10000 il 11,
i+ = 10,000, 20,000, ..., 100,000. This {i, 1, 10} 1 /. Second->1
method allows much larger values than the Out[3]= {0.64, 1.55, 2.67, 4.15, 6.08, 7.96, 10.32,

recursive one does.
12.93, 15.64, 18.35}

A least-squares fit of the measured times to  In[4):= Fit[ %, {1, i, is2}, i ]
a quadratic functions shows the linear and 2
quadratic terms. Out[4]= -0.198833 + 0.616992 i + 0.125568 i
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7.2.3 A Formula for f,

To be faster than the simple loop in Section 7.2.2, we must find a method to compute f,
without computing all previous f;. Indeed, there is a closed formula for Fibonacci numbers.
The equation f, = f,_| + fr—2, or fr, — fn—1 — frn—2 = 0, is an example of a second-order
recurrence. The general form of such an iteration is f,, + bfn,_1 + cfn_2 = 0. Its solutions are
of the form

fn = a1€] +azey, (7.2—4)

where e; and e; are the two solutions of the characteristic equation
?+br+c=0. (7.2-5)

For Fibonacci numbers, we have b = —1 and ¢ = —1. We can use Mathematica to help us
solve the characteristic equation for e and e, and find the coefficients a; and a>.

Here are the two solutions of the character- In[1]:= Solve[ xa2 - x - 1 == 0, x ]
istic equation for Fibonacci numbers. 1 - Sqrt[s] 1 + Sqrt[s]
Out[1])= {{x -> —2-}. {x > —-—+1—}}

We assign them to the two variables el  In[2]:= {el, €2} = x /. %

and e2.
1 -S 5 1 + Sqrt[5]
Out[2]= { :rt[ ! :r }

The two constants g, and a; can be determined from the initial conditions f; =1 and f; = 1:

fi=aie; +aze; = 1,

2

fz =aey+ aze% = (7.2-6)

Here is Equation 7.2-6 in Mathematica.  In[3]:= Solvel {al el + a2 e2 == 1,
There is a unique solution. al e1a2 + a2 €242 == 1},
{a1, a2} ] // FullSimplify

Out[3]= {{a1 -> -(

)- a2 >
Sqrt[5] Sqrt[5]

We assign the solution to the two variables  In[4]:= {a1, a2} = {a1, a2} /. %[[1]]
al and a2. 1

Out[4]= {-( ), }
Sqrt[5]  Sqrt[s]

By expansion and simplification of the pow-  In[5]:= f£ibd[n_] := Expand[ al elan + a2 e2an ]
ers of the square roots, we can compute f,
according to Equation 7.2-4.
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The complicated symbolic computations In[6]:= Timing[£ibd[1000]]

make this method rather slow. Observe that g,y 16]= {1.36 Second, 434665576869374564356885276750406\

all square roots cancel, and we do get an

integer answer. 2580256466051737178040248172908953665541794905189040\
3879840079255169295922593080322634775209689623239873\
3224711616429964409065331879382989696499285160037044\

76137795166849228875}

The asymptotic complexity of this method depends on the internal algorithms used for simpli-
fying symbolic powers and can, therefore, not be analyzed exactly.

7.24 Numerical Computation

Equation 7.2—4 allows us to find the length of f,,. The number of digits is the logarithm log f,.
Because |e;| is smaller than 1, higher powers e} do not contribute anything to the length.
Therefore, we get

log fr = log(aiel +aze}) =~ log(azey) = log(az) + nlog(ez) =~ nlog(es). 72-7

The length of f, is proportional to . The Fibonacci numbers themselves grow exponentially!

In Section 7.2.3, we evaluated Equation 7.2—4 exactly. A approximate numerical evaluation
is sufficient, however. Because a;e7 is smaller than 0.5 for large n, we can simply compute ae3
numerically with sufficient precision, and then round it to the nearest integer (we know that
the result must be an integer). The necessary precision is at least the number of digits of the
result. We can find it as log,y(az2e3) = log;q(a2) + nlog,o(e2). Machine precision is sufficient
for this calculation of the length of the result. Now, we can compute a,e3 again, but this time
using the extended precision just determined. To perform a calculation with precision prec,
we can use N[expr, prec]. The resulting program is fibe[], shown in Listing 7.2-3.

fibve[n_] :=
Module({digits, approx},
digits = N[Log[10, a2] + n Log[10, e2]];

digits = Ceiling[digits] + 10; (* some digits extra *)
approx = N[a2, digits] N[e2, digits]sn;
Round[approx]

Listing 7.2-3 Numerical computation of Fibonacci numbers.

The numerical method is quite fast, due to  In[7]:= Timing[fibe[1045];]
Mathematica’s efficient numerical compu- Out[7]= {1.54 Second, Null}
tations. Note that it is much faster than the

loop-based computation with fibc.
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Note that Mathematica can figure out the  In[8]:= Timing[Round[a2 e241045];]
required precision for the rounding all by  gyut[8]= {2.93 Second, Null}

itself, which allows us to express this method

in a natural way. Some overhead is involved

in the exact computation of the power of e1,

however.

An nth power can be computed in logn steps (see Section 7.1.3). Each step requires the
multiplication of two numbers with n digits. Let M(n) be the complexity of multiplying
two n-digit numbers. The complexity of the numerical computation is therefore M (n)logn.
For ordinary (schoolbook) multiplication, we have M(n) ~ n?. Therefore, this method is
asymptotically worse than the simple loop, even though it is faster for small n.

There are faster methods for multiplying numbers, for example the Karatsuba algorithm
(see Section 7.4.3) with M (n) ~ n'-3%, used in Mathematica Version 3, and the fast Fourier
transform (FFT) with M (n) = nlog(n), used in Mathematica Version 4for very large numbers.
With one of these algorithms, our numerical computation becomes asymptotically faster than
the loop.

7.2.5 Matrix Methods

We can use the method of iterated squaring from Section 7.1.3 to compute Fibonacci numbers,
if we apply it to matrices m. The Fibonacci numbers appear in the powers of the matrix

1 1
m= <1 0) ] (7.2-8)
The number f, is at the top left corner of mn™~1 because
m’n—l = le. fn—l) X 72_9
<.fn-d fn—Z ( )
Here is the initial matrix m. In(1]:= m = {{1, 1}, {1, 0}}

Outl1]= {{1, 1}, {1, 0}}

MatrixPower[] computes powers of ma-  In[2]:= MatrixPower[m, 9] // MatrixForm

trices. The elements of m’ are (ff';’ ;{:) Out[2]//MatrixForm= 55 34
34 21

The reason for this property of m is that In[3]:= Det[ m - x IdentityMatrix[2] ]
the characteristic polynomial of m is equal 2

to the characteristic equation (7.2-5) of the  Out[3]= -1 - x + x

Fibonacci numbers.
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fibf[n_] :=
Module[{result = IdentityMatrix[2], nn = n-1, s = {{1, 1}, {1, 0}}},
While[ nn > 1,
I£f[0ddQ[nn), result = result . sl;
s =8 . s;
nn = Floor[nn/2];
1;
result = result . s;
result[[1, 1]] (* top left element *)

Listing 7.2—-4 Fast matrix powers.

The program in Listing 7.2—4 is somewhat slower than is using MatrixPower[], due to the
overhead of the interpreted program.

The method is the same as BinaryPower (Listing 7.1-1). The variables result and s
are now matrices. Therefore, we use the matrix product (written as . ) instead of ordinary mul-
tiplication. The variable result is initialized to the identity matrix, which plays the role of 1.

This method is a bit slower than is fibe. In[4]):= Timing[fib£[1045];]
Out[4]= {2.24 Second, Null}

Computing the elements of the product of two 2 x 2 matrices takes eight integer multiplications.
We need only one element of the result of the last multiplication outside the loop. This single
element can be computed with just two integer multiplications. Therefore, we should not
compute the whole matrix result.s, but only element (1,1). The elements v;; of 75 - 8¢
are found with the usual formula for matrix products

Vik = Z Tijsjk . (7.2—10)
j

This formula implies that v}, is ;8 + 7(282;. If we insert this formula into our program,
we arrive at the new program fibg[] (Listing 7.2-5), which runs about twice as fast as
does fibf[], but the asymptotic complexity remains the same.

fibg[n_] :=
Module[{result = IdentityMatrix[2], mn = n-1, s = {{1, 1}, {1, 0}}},

While[ nn > 1,
If[(0ddQ[nn], result = result . s];
s =8 .s;
nn = Floor[nn/2];

);

result[[1,1]] s[[1,1]] + result[[1,2]] s[[2,1]]

Listing 7.2-5 Saving on the last multiplication.
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This method is about twice as fastas fibf. In[5):= Timing[£ibg[1045];]
Out[5]= {1.03 Second, Null}

7.2.6 Utilizing Symmetries

The matrices result and s are rather special. First, they are symmetric — that is, mj2 = my).
Therefore, we need to compute only three of their four elements. Second, their entries are
successive Fibonacci numbers. Each one of them can be computed from the two others by a
simple addition or subtraction. These two observations show that we need to compute only
two of the four elements by expensive multiplications. To find the formulae for the elements,
let us write the elements of s as s;;, and the elements of result as r;;. The square of s,
t = s.s, can be found as follows (here, we use a new variable ¢ for the result. In the programs

we can assign the result back to the original variable s because the latter’s old value is no
longer needed.)

tir = 811811 + 812821 = 321"'3%2)
t22 = 821812+ 822822 = 81, + 3825 (7.2-11)
tiz = tn —ta,
ta1 = ti2.
The result of u = 7.8 is
U = T11811 + 72821 = T11811 + 712812,
U2 = 721812 + 722822 =T12812 + 722822, (7.2-12)
U = uy — U2,
u2; = uj2.

In both cases, two of the four products involved are the same! We conclude that we can find
these matrix products with three instead of eight scalar multiplications. Outside the loop, we
need only two multiplications, as we saw earlier. To take advantage of this result, we shall
no longer use variables for the whole matrices s and result, but work directly with their
elements. We shall use variables s11, s12, and s22, and so on. We do not need s21 because
itisequal to s12. The resulting program, fibh[], is shown in Listing 7.2-6.

Thismethod is almost twice asfastas fibg. In[6]:= Timing[f£ibh[1045];]
Out[6]= {0.65 Second, Null}

The number of iterations of the loop is Ign (the size of n in binary). The numbers that
appear in the loop double at each iteration (the Fibonacci numbers are proportional to ).
The whole computation takes, therefore, only a constant times the number of steps for single
multiplication of numbers of length n. We can compute f,, in M (n) steps! Mathematica uses
an integer multiplication algorithm with M (n) =~ nlog(n). It follows that we can compute
large Fibonacci numbers asymptotically much faster than with the loop from Section 7.2.2.
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fibh[n_] :=
Module[{r11 =1, r12 =0, r22 =1, s11 =1, s12 =1, s22 = 0, nn = n-1},
While[ nn > 1,
If[ 0ddQ[nn],
{r11, r22} = r12 s12 + {ri11 si11, r22 s22};
ri2 = ri1 - r22
1;
{s11, 822} = 51242 + {s1142, s2242};
s12 = s11 - 822;
nn = Quotient[nn, 2]
1
ril sil1 + ri12 si2

Listing 7.2-6  Utilizing symmetries.

7.2.7 Special Topic: An Even Faster Method

We can perform binary exponentiation also by traversing the exponent from bit n;_; down
to no; see Exercise 7.1. If done this way, additional identities between Fibonacci numbers can
be used, for example

Faifas — f2=(=D)". (7.2-13)

Such formulae allow us to compute Fibonacci numbers with two multiplications inside the
loop, and a single one outside [43]; see Listing 7.2-7 for the fastest known program, £ibj[].
This method is now also used by the built-in function Fibonaccil[].

fibj[n_] :=
Module[{r11 = 1, r12 = 0, r22 = 1, digits = IntegerDigits[n-1, 2], i, t},
Do[ If[ digits[[il] == 1, (* odd *)
{r11, r22} = {r1i1(ri1 + 2ri2), r12(ri1 + r22)};
ri2 = ri1 - r22
, (* else even *)
t = r12(ril + r22);
{ri11, r12} = {r1i(ril + 2r12) - t, t};
r22 = ri11 - ri2
1,
{i, Length[digits]-1}
1;
If[ digits[[-1]] == 1,
rii(ril + 2r12), (* odd =*)
r11(ri1l + r22) - (-1)a((n-1)/2) (* even *)

Listing 7.2-7 The fastest method known.
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This method gives us another significant  In[7]:= Timing[£ibj[1045];]
speed-up compared with fibg. out[7]= {0.12 Second, Null}

A variant of this method is built into Mathe-  In[8]:= Timing[Fibonacci[1045];]

matica. The function is called Fibonacci.

Out[8]= {0.14 Second, Null}

For example, we can compute the 10,000,000th Fibonacci number in about 19 seconds. The
result is approximately

fior & 1.12983 4378225399 76032 - 10089876 (7.2-14)

It has 2,089,877 digits. Here are the first 1,997 of them:;

11 29834 37822 53997 60317 06363 77458 66372 94483 71904 89040 88151 35776 43245 53473 11679

33137 52421 97774 58247 74548 85033 29541 52973 79829 17618 97527 39285 43637 91302 93205 11080
39360 71609 47067 63227 61568 28424 89700 64197 36620 68255 55962 86851 20016 48785 24757 14279
90297 63435 33146 25437 48832 57472 80191 86803 44260 93376 13122 07871 80932 24952 47383 54896
45047 69641 15588 24438 10352 68921 04885 86302 82891 08325 78052 82510 91973 20550 13131 75430
39524 69745 20951 52991 52873 87889 12305 99963 21337 22895 61482 69938 55354 51421 38923 14918
16430 27404 15815 45933 03207 25972 48442 29945 90179 13355 42836 23442 60263 65272 46154 31201
28900 97417 31430 05927 26773 08812 15160 46861 80694 93942 72896 43128 03903 73271 84149 59744
80169 90022 35274 71956 09146 99473 75021 19772 50980 61063 48102 75868 45300 81480 44619 51748
27027 79357 34157 91787 70484 17134 44329 21027 34454 31566 67707 80853 58747 88855 76158 01979
11236 29805 11728 00438 66560 80547 84281 30090 93716 94862 21261 26722 04174 75093 59669 00205
85968 51837 15710 97533 70537 53104 17021 72377 50901 97191 26460 14841 94860 76150 31148 62814
48806 74336 82961 59389 40690 71537 46665 17020 19734 62650 50695 76052 88875 12885 85986 98715
41591 23306 40482 55866 33385 39959 34344 86481 73242 99707 28906 02522 43329 68148 31452 05324
34378 80699 34922 16228 25899 30595 61216 15723 38485 54057 29916 89169 14292 91942 57813 15246
48791 85431 96568 98393 94181 31716 36926 01546 64821 43144 35163 59574 57100 43018 24045 38253
3379278975 38541 09280 30853 00212 72528 29224 22404 80298 13626 06558 85259 06745 67933 88589
4037597341 01675 25755 53016 12822 58334 75708 19947 11991 30880 46978 54604 93179 12021 18241
23551 59596 46175 49536 47096 73339 66204 23680 17443 14372 37841 44707 28325 59840 45186 21030
71071 79856 62538 52983 33063 47356 19374 55610 74814 45416 60062 06636 98325 54254 26613 99152
47626 47328 19871 28825 46372 24608 02548 96453 24511 64839 34508 98390 23304 08830 90456 55981
27645 69943 79092 61067 88985 52277 58863 13325 76070 50615 49300 50850 37135 84630 45255 92491
15617 33946 39227 93051 39866 78790 93658 14542 23230 60592 15723 07483 68955 23891 12899 23625
87601 78719 80946 33679 50864 18634 26151 82841 05316 15376 43064 69492 90834 71924 84233 10087
86403 35046 59727 94929 54107 96696 2274007367 36711 91419 35463 70034 08327 38470 09819 64960

7.2.8 Key Concepts

1.
2
3

Recursive algorithms are inefficient if values are computed repeatedly.
Fibonacci numbers grow exponentially.

Computing the nth Fibonacci number has the same complexity as multiplying two n-digit
numbers.
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7.3 Special Topic: Dynamic Programming

Dynamic programming is a technique for avoiding the repeated computation of the same values
in a recursive program. Each value computed is immediately stored. If the value is needed
again, it is not computed but simply looked up in the table.

7.3.1 Recursion Can Be Expensive

In Section 7.2.1, we saw an example where the direct transformation of an inductive definition
(of Fibonacci numbers) into a recursive set of rules gives an inefficient algorithm. Recall that
Fibonacci numbers f,, are defined by this second order iteration (Equation 7.2-1):

fl = ls
f2 = 1,
fn = far+ fra

The resulting program fibal[],

fiba[1] = fiba[2] = 1;
fiba[n_] := fibaln-1] + fiba[n-2]

exhibits an exponential growth of computing time. The reason is the multiple computation of
the same Fibonacci numbers f;, for 2 < ¢ < n. See the illustration at the beginning of this
chapter (on page 141).

A simple programming device, dynamic programming, lets us store each computed Fibo-
nacci number as a new rule. If this number is needed again, it can be found immediately and
needs not be recomputed. The program is given in Listing 7.3-1.

fibb[1] = £ibb[2]

= 1;
fibb[n_] := fibb[n] =

fibb[n-1] + fibb[n-2]

Listing 7.3-1 Fibonacci numbers computed with dynamic programming.

How does it work? Definitions are right associative; therefore, the second definition is read
as follows:
fibb[n_] := (fibb[n] = fibb[n-1] + fibb[n-2]). (7.3-1)

If we ask for the value of £ibb[10], for example, Mathematica evaluates the right side of
this definition — that is,

fibb[10] = fibb[9] + fibb[8]. (7.3-2)
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Its right side, £ibb[9] + £ibb[8], is now evaluated (giving 55). Now, the definition
fibb[10] = 55 (7.3-3)

is carried out — that is, a new definition for £ibb is added. This new definition is more specific
than the existing one for £ibb[n_] and is, therefore, put before the latter. If £ibb[10] is
needed again, the new definition returns the result immediately.

Initially, only these three definitions are giv-  In[1]:= ?fibb
en. Global‘fibb
£ibb[1] = 1
fibb[2]) = 1
£ibb[n_] := fibb[n] = fibb[n - 1] + fibb[n - 2]

The computation of fio needs all smaller In[2]:= £ibb[10]

values. Out[2]= 55

These values have been defined during the  In[3]:= ?f£ibb

previous computation. Global'*fibb
fibb[1] = 1
£fibb[2] = 1
£ibb[3] = 2
fibb[4] = 3
fibb[5] = 5
£ibb(6] = 8
£ibb[7] = 13
fibb[8] = 21
fibb[9] = 34

£ibb[10] = 55
fibb[n_] := fibb[n] = fibbln - 1] + fibb[n - 2]

The number of calls of fibb is reduced to n, but the additional definitions need much
memory. Storing these definitions takes also some time, of order nZ. Because there are more
efficient ways to compute Fibonacci numbers, this method is not used in practice. There are
many problems, however, where no better algorithm is known. We shall look one of them —
optimization — in the next section.

7.3.2 Example: The Knapsack Problem

Dynamic programming is used to solve many optimization problems. In an optimization
problem, we try to maximize a certain function without violating given constraints.

The task in the knapsack problem is to fill a knapsack of given size optimally. There is
a number of objects, each one having a given size and value. Which combination of objects
maximizes the total value without violating the size limit?

Let there be n different kinds of objects. Let s; be the size, and v; be the value of the
objects of type i. The knapsack has capacity s. The solution of the knapsack problem is
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described by n nonnegative integers m; that give the number of objects of type ¢ in the optimal
knapsack. The knapsack problem can now be given formally as maximizing the value

Z mivs (7.34)

with the size constraint n
Zmisi <s. (7.3-5)
i=1
Let us assume that the objects are ordered by size —that is, §; < s < ... < 5,. Itis easy to
see that of two different objects of the same size only the more valuable one will be part of the
optimal solution. Therefore, we can even assume s; < s; < ... < 8. Also, we can assume

that the values are increasing, too: v; < v2 < ... < vp.
The knapsack problem can be solved recursively. The function

Knapsack[{{sl, 'U]}, “evy {Sn) vn}}: S]

finds the solution (and returns the optimal value) for given s;, v;, and s according to the
following considerations.

1. If there are no objects — that is, n = 0 - the solution is O:

Knapsack[{ }, s] =0

2a. Otherwise, we can find recursively a solution that does not involve the last kind of object:

ki = Knapsack[{{s1, v1}, ..., {sn—1» Un—1}}, 5]

2b. If s > sy, we can tentatively put an object of type n into the knapsack and try to fill the
remaining capacity s — s, optimally:

ky, = Knapsack[{{s|, v1}, ..., {sn, vn}}, s - sp]l + vn

Note that we must not exclude objects of type n in this recursive call because there might
be more than one object of type n in the optimal solution.

3. The optimal solution is the larger one of &; and k.

Please convince yourself that the recursion always terminates. Correctness follows from the
general principle that any part of the optimal solution is itself optimal. If the optimal solution
contains one object of type i, the solution without this object is optimal for a knapsack of
size s — 8;. Otherwise, there would be a better solution for the whole knapsack. We could
simply add an object of type ¢ back to the different optimal solution for size s — s;.
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In program Knapsack1.m (Listing 7.3-2), the function Knapsack[] does not return the
optimal value but the packing list, that is, the list of objects in the optimal solution. The total
value can be computed according to Equation 7.3—4. We perform this computation in the
auxiliary function total[]. The objects are given as a list of size—value pairs.

size[object_] := object[[1]]
value[object_] := object[[2]]

totallknapsack_, vs_] := Plus @@ value /@ vs[[knapsack]] (* total value *)
contents[knapsack_, vs_] := Plus Q@ size /@ vs[[knapsack]] (* total size *)

Knapsack[{}, s_Integer?NonNegative] := {} (* Case 1 *)

Knapsack[vs_List, s_Integer?NonNegative] :=
Module[{sn = size[Last[vs]],

n = Length[vs], rest = Droplvs, -1], k1, k2},

k1 = Knapsack[rest, s]; (* 2a: without last object *)

If[ s >= sn,
k2 = Knapsack[vs, s - sn]; (* 2b: with one last object *)
k2 = Append[k2, n];
If[ total[ki, vs] >= totallk2, vs], ki1, k2 ] (* 3: the maximum *)
k1

]

Listing 7.3-2 Knapsack1.m.

In this example, the sizes are (3,4,7,8,9); In[1]:= objects =
the values are (4,5, 10, 11, 13). {3, 4}, {4, s}, {7, 10}, {8, 11}, {9, 13}};

The optimal solution consists of one object  In[2]:
of type 1 and two objects of type 3. out[2]

Knapsack[ objects, 17 ]
{1, 3, 3}

Here is the optimal value achieved with this  In[3]:= totall %, objects ]
solution. Out[3]= 24

The recursive computation can be illustrated graphically. For each recursive call of
Knapsack[{{s1, 1}, ..., {sn, va}}, s],

we draw one node, labeled with the maximum reached. The two recursive calls that find k;
and k2 are connected by a line. The line corresponding the the larger value is drawn in bold.

This version of the package produces the  In[4]:= << CSM'KnapsackG'
illustrations.
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Here is the graphic for the previous example.  In[5]:= KnapsackPlot[objects, 17];
The computation starts in the upper right
corner with the largest values of n and s.

A vertical line from a node the the node
below it corresponds to a solution according
to 2a, without the last kind of objects. A
horizontal line to the left corresponds to a
solution according to 2b, where the size of
the knapsack has been reduced by the size of
the last object; the length of this line equals
the size of the corresponding object.

The vertical axis shows the number of
different kinds of objects available, and the
horizontal axis shows the size of the knap-
sack.

¢ Z 4 6 2 19 12

1+

16

As in the program for Fibonacci numbers (see Section 7.3.1), certain values are computed
several times. We can use the same idea of dynamic programming to store intermediate results
to avoid this repeated computation. The final package Knapsack.m (Listing 7.3-3) shows
dynamic programming for the knapsack problem.

We do the recursive computation locally inside the function Knapsack[]. The recursive
function is a local variable named ks. The code for ks can determine the values and sizes

size[object_] := object[[1]]

value[object_] := object[[2]]
total[knapsack_, vs_] := Plus @@ value /@ vs[[knapsack]] (* total value *)
contents[knapsack_, vs_] := Plus QQ size /@ vs[[knapsack]] (* total size *)

Knapsack[vs_List, s_Integer?NonNegative] :=
Module[{ks},
ks[0, in_] = {};
ks[n_, in_] := ks[n, in] =
Module[{gn = size[vs[[n]]], k1, k2},
k1 = ks[n-1, in];
If[ in >= ga,
k2 = ks[n, in - gnl]; k2 = Append[k2, n];
If[ totallki, vs] >= totallk2, vsl, ki, k2 ]

’

]

k1

1;
ks[Length[vs], s]

Listing 7.3-3 Knapsack.m.
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of the objects by consulting the parameter vs. Therefore, we do not need to pass the list of
remaining objects as an argument of ks; it is sufficient to give the number of remaining types
as argument. Any optimal solutions for smaller problems found during the recursion are stored
as new definitions for ks, using ks[n_, in_] := ks[n, in] = .... There are at most s
different sizes of smaller knapsacks and n different numbers of object types. The number of
calls to ks[] is therefore certainly less than ns. Note that ns is the number of points in the
rectangle shown in the previous picture. This method is quite efficient.
The following example shows us the values actually computed.

Here is a problem with only three kinds of  In[1]:= Knapsack[{{3, 4}, {4, 6}, {7, 10}}, 8]
objects. Out[1]= {2, 2}

This table shows the values stored. (Don’t  In[2]:= Casesl
askme how this works. ...) DownValues(ks],
(_[.[n_Integer, i_Integer]]l:>r.) :>
(knapsack[n, i]->r)
1 // TableForm
Out[2]//TableForm= knapsack[1, 0] -> {}
knapsack[1, 1] -> {}
knapsack[1, 2] -> {}
knapsack[1, 4] -> {1}
knapsack[1, 5] -> {1}
knapsack[1, 8] -> {1, 1}
knapsack[2, 0] -> {}
knapsack[2, 1] ~> {}
knapsack[2, 4] -> {2}
knapsack[2, 8] -> {2, 2}
knapsack(3, 1] -> {}
knapsack[3, 8] -> {2, 2}

7.3.3 Key Concepts
1. Dynamic programming allows the reuse of intermediate results.
2. Dynamic programming reduces the complexity of complicated recursive computations.

3. Many optimization problems can be solved by dynamic programming.
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7.4 Long-Integer Arithmetic and Fast Multiplication

This section studies integer arithmetic. We shall look at the representation of big integers on
computers and study typical algorithms. Computers have memory cells of a fixed size, which
allow us to store only numbers of a certain maximum size. If we want to perform calculations
with arbitrary-sized numbers (so-called long integers), we have to program their representation
and the arithmetic ourselves. Long-integer arithmetic is already built into Mathematica; here,
we see how it works.

7.4.1 Long Integers

The obvious representation of integers of arbitrary size is a generalization of the positional
number system (binary, decimal) with a base B > 1. A number is represented as an array ao,
al, - - ., an—1 Of digits with

n—1
a=)Y a;B', 0<a;<B. (7.4-1)
=0

The sign is stored separately and does not concemn us here.

If we write our own program for long-integer arithmetic, we can choose the base B as we
wish. If we set B = 10, we get our familiar decimal arithmetic. Because we are used to it, this
choice makes it easier to understand the programs.

A long integer can simply be represented as the list of its digits a;, fors =0, 1, ..., n — 1.
Because list elements are numbered starting with 1, the element a[[¢]] is the digit a;—).
Addition or multiplication of digits can give intermediate values z that are larger than B — 1,
the largest possible digit. If this happens, there is a carry into the next digit. This carry is
equal to z div B, the quotient z/ B rounded down. The function carry[z] retums this carry;
rem[ 2] is the remainder of the digit without the carry. It is equal to @ mod B, the remainder
of the division of z by B. The data type for long integers contains these auxiliary functions,
as well as constructors and selectors, as usual. The functions are in the package Bignum.m.
Here is the specification and the simple implementation:

Function Implementation Description

digit[a, 7] alli+1]] the ith digit of a

newNumber[n] Tablel[0, {n}] skeleton of a number of length n
length[a] Length[a] number of digits of a

carry[z] Quotient[z, B] carry into the next digit

rem[z] Mod[z, B] remainder after removing carry
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The selector digit[] can be used also on the left side of an assignment, to change a digit in
anumber:

digit[sym, ¢] = new.

"To redeﬁne the asmgnment Is = s, a deﬁnmon of the form sym/ (l.s r.s) = expr can
be given. Of course, the varlable parts in s and rs must be marked as pattern vanables sym
is the head of Is. For dlglt we used this deﬁmtxon

dls:Lt/ (algm[a_; 1 - new) o= Galli+1]) = new)

We set the base to 10. In[1]:= B = 10;

The variable a is assigned anew longinteger  In[2]:= a = newNumber[2]

with length 2. out[2]= {0, 0O}

Now, we can define thedigits. Theunitdigit  In[3]:= digit[a, 0] = 1
issettol, Out[3]= 1

the tens digit is set to 2. In[4]:= digit[a, 1] = 2;

The number a has digits ap = 1, @j = 2.  In[5]:= a
Observe that the order of digitsis thereverse  guer57= {1, 2}
of the usual notation.

The value of the number is computed ac- In[6]:= Sum[ digit[a, il Bai,
cording to Equation 7.4-1. {i, 0, length[al-1} ]

Out[6]= 21

74.2 Addition

For an example of an algorithm on long integers, let us look at addition. The method works
in the way we learned it at school. The two numbers are added digit by digit, and the carry
is added to the next digit. If the number a has n digits, and b has m digits, with m < n, the
addition ¢ = a + b looks as follows:

aAn—-1 --- QGn AGm-1 ... @1 Q
+ bmet ... b1 bo (7.4-2)
Ch Cn—1 --- Cm Cm-1 ... C O

We start with the digit at position zero. If we store the sum of a;, b;, and the carry in the
auxiliary variables d;, we get these formulae for the digits c;:
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d() = ay+ b(), (¢)) = d() mod B,
d; = a)+b+dpdiv B, C1 = d; mod B,
dp-1 = Gm-1+ b1 + dm—2 div B, ¢m-1 = dm—1 mod B, (7.4-3)
dm = @y +dm-1 div B, Cm = d,, mod B, )
dn—l = @p—| +dp_p div B, Ch—] = dn—l mod B,
dn = d,— div B, Cn = dp.
We can write them in a more uniform way be defining d_; = 0:
di = a;j+bj+di_;divB, ¢, = dimodB, i=0,1,...,m—1,
d; = a;+d;—; div B, ¢ = dimodB, i=m,...,n—1, (7.44)

Observe that we no longer need the value of d;_; after having computed d;. Therefore, we
need only one variable d, not a whole array. We can perform the calculations for each i in a
loop. Listing 7.4-1 shows the resulting program.

plus[a_, b_] := plus[b, al /; lengthla] < length[b]

plusfa_, b_] :=
Module[{c, n = length[a], m = length[bl, i, d = 0},

¢ = newNumber[n+1];

Do[ d = digit[a, i] + digit[b, i] + carry[d];
digit[c, i) = rem[d],
{i: 0: m_l} ];

Do[ d = digit[a, i] + carry[d];
digit[c, il = rem[d],

{i; m, n-l} ];
digit[c, n] = carryldl;
If[ digit[c, n] == 0, c = Droplc, -1] ]; (* normalize *)

C

Listing 7.4-1 Addition of two long integers.

The first definition exchanges the two numbers if a is shorter than b. It may happen that the
highest digit of the result ¢, is equal to zero, if there was no carry into it. In this case, we
remove digit ¢, to keep the numbers normalized. In a normalized number, the highest digit is
always nonzero.

Here are two numbers, a = 9,899 and b= In[7]:= a = {9, 9, 8, 9};\
101. b= {1, 0, 1};
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Their sum is 10,000. In(8]:= plus[a, b]
Out(8]= {0, 0, 0, O, 1}
In this example, there is no carry into the  In[9]:= plus[{9, 9, 8}, {1, 1}]

first digit; the sum has, therefore, alengthof . (9l= {0, 1, o}
three instead of four. T

7.4.3 Multiplication: The Karatsuba Method

If we multiply two long integers with n digits in the naive way (the so-called schoolbook
method), we need n? multiplications of digits. This number can be reduced drastically with
the Karatsuba method. The Karatsuba method is not the asymptotically best possible, but it
is efficient and easy to implement. It is also used in Mathematica for medium-sized numbers.
An overview over the fastest methods for multiplication can be found in Knuth’s book [35].

Let a and b be two long integers with n digits. We can view them as two-digit numbers
with base B™, where m = [n/2]:

a = agp+aB™,
b = by+biB™. (7.4-3)
The product ab can be expressed as follows:
ab = agbo+ (aph +a1bp)B™ + alblem (7.4-6)

agbo + (a9 + a1)(bo + b1) — agbo — a1b1)B™ + a b B*™

We see that we need only three multiplications of half size (instead of the expected four). The
three multiplications are aobo, a, b1, and (ag +a;)(bp +b;). This fact leads to an asymptotic im-
provement, if we use it recursively for the three multiplications. The number of multiplications,
T(n), is

T(n) = 3T(n/2),

() = 1. (7.4-7)
The solution of this recursive equation is

T(n) = n'83 ~ n!-% (7.4-8)

which is far better than n2. The overhead for the extra additions and subtractions can be

neglected because these operations are of order O(n).

Mathematica uses a long integer base of 2! In[1]:
on the computer on which this book was
formatted.

1l =16; B = 2al;

MultiplicationTime measures the time  In[2]:= MultiplicationTime[n_] :=

needed to multiply two numbers of length n. With[ {a = Ban - 1, b = Ban - 3},

The numbers are chosc such that most of Timing[ a b J[[1]] /. Second -> 1
their bits are one. 1



166

7 Complexity of Algorithms

Here is a table of the times for n = 1,000,
2,000, ..., 10,000.

This graphic shows a comparison with Ver-
sions 2.0 and 3.0 of Mathematica that used
the naive algorithm and the Karatsuba algo-
rithm, respectively. Version 4.0 uses even
faster methods for such large numbers; see
Section 7.2.

74.4 Key Concepts

In[3]:= v40 = Table[ {n, MultiplicationTime[n]},
{a, 1000, 10000, 1000} ]

Out[3]= {{1000, 0.05}, {2000, 0.02}, {3000, 0.02},
{4000, 0.03}, {5000, 0.06}, {6000, 0.06},
{7000, 0.07}, {8000, 0.09}, {9000, 0.1},
{10000, 0.11}}

20
Time (sec.) 3.0
5t //
4} //
/
3 /
/ e
2 /
/ L
1 // R

1. Arbitrary-size numbers can be realized using a positional number system.

2. The schoolbook methods for arithmetic can easily be programmed for long integers.

3. Two numbers with n digits can be multiplied with fewer than n? digit multiplications.
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7.5 Exercises

71 Repeated Squaring from Left to Right

Powers of numbers or matrices m™ can be computed by working on the exponent n from left
to right (from the most significant to the least significant bit). This method has the advantage
that each iteration of the loop requires only one multiplication with large numbers, whereas
the second multiplication — if the bit is equal to one — is with the original m. For Fibonacci
numbers, this matrix m consists only of zeroes and ones.

1. Program the left-to-right method in general form (for powers of numbers), similar to the
definition of BinaryPower[] in Section 7.1.3.

2. Write a special version of the definition for the computation of the nth Fibonacci number
and compare its run time with method £ibh[] from Section 7.2.6.

7.2 Experimental Complexity

Make some experiments with the loop for computing the nthe Fibonacci number (program
fibc[] in Section 7.2.2) and estimate the time it would take to compute £ibc[10a7].

Hint: Use Fit[] to fit the measured times to the expected asymptotic expansion of the
run time.

7.3 Long-Integer Arithmetic
In this exercise, we want to experiment with long-integer multiplication algorithms.

1. Write a program times[a, b] for the multiplication of two long integers similar to the
program plus[] in Section 7.4.1. Use the naive schoolbook method for multiplication.

2. Implement the Karatsuba method.

Hint: Numbers with a small number of digits should be multiplied with the naive method
above.

3. For what size of numbers is the Karatsuba method faster than the simple algorithm?



Chapter 8

Operations on Vectors and Matrices




In this chapter, we look at arrays and a few of their uses. Vectors and matrices are important data
structures for mathematical applications. They are simply represented as lists in Mathematica.

Section 8.1 studies one of the simplest operations on matrices: transposition. Its gen-
eralization leads to interesting applications. Inner and outer products (Section 8.2) are also
important operations on matrices. They have many applications, especially when they are
treated as generally as is possible in Mathematica.

From the large topic of linear algebra we treat, in Section 8.3, the solution of systems of
equations and — as an application — the computation of electronic circuits.

Traditional programming languages represent vectors and matrices as arrays that allow
only elementwise access. In Mathematica, arrays can be manipulated as a whole, which
makes many programs simpler. Nevertheless, we shall have a look at elementwise access in
Section 8.4. These methods are important if you have to use one of the other languages at a
later time.

Section 8.5 introduces an important application for the simulation of physical phenomena:
aggregation of particles in a grid.

About the illustration overleaf:

The illustration shows an aggregation of 2,001 particles in a 101 x 101 grid. It was produced
with the command

Show[ gridGraphics[aggregate[initialGrid[50], 2000]] ].
The package Aggregate.m is developed in Section 8.5.
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8.1 Vectors and Matrices

Mathematica represents vectors, matrices, and higher-order tensors as nested lists and provides
many commands for manipulating them.

A vector (v;) in an n-dimensional space R" is represented as the list {v1, vz, ..., v,}.
Anm x n matrix (a;;) is represented as a list of m rows with n components each.

Here is a 3 x 3 matrix with symbolic ele- In[1]:= mat = {{a11, al2, a13},
ments. It is written as a list consisting of {a21, a22, a23},
three sublists, each of length 3. {a31, a32, a33}};

MatrixForm[] gives us the usual formatof  In[2):= MatrixForm[ mat ]
a masix. Out[2)//MatrixForm= aii al12 ai3

a21 a22 a23
a31 a32 a33

When you try this example in the Mathematica frontend, you will even see the customary
parentheses:

an a2 a3

az a2 a3

as ax as3

Atensoris a higher-dimensional generalization of vectors and matrices. A tensorof rank k

is described by elements with k indices, and represented by k-fold nested lists. Accordingly,
a vector is a tensor of rank 1, and a matrix is a tensor of rank 2.

8.1.1 Transposition

A transposition (of a matrix) is a permutation of the indices or an interchange of rows and
columns. The transpose a® of an m x n matrix

air a2 ... GQin
a=| ™ a:n v af" (8.1-1)
Am] Am2 ... Qmn
isthe n x m matrix
ail (15} cee o Al
at _ a}2 a:’),z e a,.nz . (8.1—2)

Qlp A2n ... GOma
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The relation between a matrix and its transpose is best expressed in terms of matrix elements:

(@")i; = aji. (8.1-3)

The transposed matrix is obtained by inter-  In[3]:= MatrixForm[ Transpose[mat] ]
changing rows and columns. Out[3]//MatrizForm= al1 a2l a31
al2 a22 a32
al3 a23 a33

The operation Transpose[] can perform more general index permutations than the simple
transposition in Equation 8.1-3. The default levels permuted are {2, 1}, which means

(tr21(m))'i|i2 = My (81—4)

that is, the usual transposition. You can use repetition of levels to select diagonal elements. A
level specification of {1, 1} gives the vector of diagonal matrix elements:

Eri(m));, = my;, (8.1-5)

Level specifications are given as an optional second argument of Transpose[].

Here is the list (or vector) of all diagonal In[4]:= Transposel mat, {1, 1} ]
elements. Out[4]= {a1l, a22, a33}

The trace of a matrix is defined as the sum of its diagonal elements. It can be programmed in
this easy way.

Plus @@ /ist replaces list by the sumof its  In[5]:= MatrixTrace[m_] := Plus @@ Transpose[m, {1, 1}]
elements. (@@ or Apply is explained in
Section 11.2.3.2.)

In this way, we get the trace of mat. In[6]:= MatrixTrace[ mat ]
Out[6]= all + a22 + a33

Transposition can be generalized to tensors.

To improve readability, we shall write ten-  In[7):= Format[t_a] := Subscripted[t]
sors with subscripts.

Here, we generate a2 x 2 x 2 x 2 tensor, In(8]:= t = Table[ ali, j, k, 1], {i,2},
that is, a tensor of rank four. {j,2}, {x,2}, {1,2} 1;
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This command writes it in matrix form.

Now we exchange levels two and three, that
is,

(t7r132())iy 405355 = yininis -

8.1.2 Exchange of Operations

In(9]:= MatrixForm[t]
Out[9]//MatrixForm=

a a a a
1,1,1,1 1,1,1,2 1,2,1,1 1,2,1,2
a a a a
1,1,2,1 1,1,2,2 1,2,2,1 1,2,2,2
a a a a
2,1,1,1 2,1,1,2 2,2,1,1 2,2,1,2
a a a a
2,1,2,1 2,1,2,2 2,2,2,1 2,2,2,2
In[10]:= Transposel t, {1, 3, 2} ] // MatrixForm

Out[10]//MatrixForm=

a a a a
1,1,1,1 1,1,1,2 1,1,2,1 1,1,2,2

a a a a
1,2,1,1 1,2,1,2 1,2,2,1 1,2,2,2

a a a a
2,1,1,1 2,1,1,2 2,1,2,1 2,1,2,2
a a a a
2,2,1,1 2,2,1,2 2,2,2,1 2,2,2,2

A transposition requires the operations on the two levels that are exchanged to be the same. In
the previous example, this operation was List, because a matrix is a list of lists. You can use
Thread[expr] to exchange operations other than List.

The operations on the first level is £; the
operation on the second level is List.

Thread[] exchanges the two operations.
We get a list of £ objects.

Elements that are not lists are duplicated as
often as necessary.

In[l]:= t[{a, b}, {Cr d}]
Outl1]l= f£[{a, b}, {c, d}]

In[2]:= Thread[ % ]

Out[2]= {f(a, c], £[b, d1}

In[3]:= Thread[ f[{a, b, c}, x] ]
Out[3]= {f[a, x], £f[b, x], flc, x1}

This exchange is made automatically for most built-in mathematical functions. Whenever the
arguments of these functions are lists, the function is applied to the elements of the lists, and

the list of results is returned.

The square root is applied to the elements of
thelist. Theresultis a list of square roots.

Here is a sum of (wo lists. The elements are
added pairwise.

The second operand of Power is not a list
and is duplicated. We get a list of second
powers (squares).

In[4]):= Sqrt( {1, 2, 3, 4, 6} ]
Out(4]= {1, Sqrt[2], Sqrt[3], 2, Sqrt[5]}

In[5]:= {1, 2} + {a, b}
Out[5]= {1 + a, 2 + b}

In[6]:= {a, b, c}a2

2 2 2
Out[6]={a , b, c}
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If you want to diswibute (“thread”) an op- In[7]:= Thread[ h[a, b, c]a2, h ]
eration other than list (h in this example), 2 2 2

you must give the name of the operation as  Out[7)= h[a , b , c ]

a second argument to Thread[].

8.1.3 Example: Manipulation of Equations

The operations performed to solve a simple equation by isolating the unknown variable are an
example for the use of Threadl[].

Here is an equation that we want to solve  In[1]:= a Loglx] + b == 0
for z. Out[1]= b + a Logl[x] ==

First, we subtract b on both sides. The sub-  In[2]:= % - b
traction is not dislributefl onto the elements Out[2]= -b + (b + a Loglx] == 0)
of the equation automatically.

Only with Thread[], do we get the desired  In[3]:= Thread[ %, Equal ]

result. Out[3]= a Loglx] == -b
Now, we can divide both sides by a. In[4):= Thread[ ¥ / a, Equal ]

b

Out[4]= Loglx] == -(-)

a

Finally, we use exponentiation — the inverse ~ In[6]:= Thread[ Exp[%], Equal ]
of the logarithm - to isolate . -(b/a)
Out(5)= x == E

8.1.4 Key Concepts

1. Vectors, matrices, and tensors are represented in Mathematica as nested lists.

2. Transposition of matrices can be generalized to permutation of indices of tensors.
3. The trace of a matrix is the sum of its diagonal elements.
4

Thread[] exchanges operations with arguments that are lists.
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8.2 Inner and Outer Products

Many operations on vectors can be viewed as generalized inner and outer products, where we
use functions other than multiplication and addition.

8.2.1 Inner Products

The dot product of two vectors is a special case of the inner product of vectors, matrices, or —
more generally — tensors.

The dot product is written as vy .v2. The arguments v; and v can be vectors or matrices.
Mathematica does not distinguish between row and column vectors. A vector is simply a list
of components and used as needed.

Thesetwo commands cause vectors a and b In[1]:= Format[t_a] := Subscripted[t]; \
to be printed with indices. Pormat[t_b] := Subscripted[t];

This command causes all results to be print-  In[2]:= $PrePrint = MatrixForm;
ed in matrix form.

Hereis a 3 x 3 matrix. In[3]:

m = Table[ ali, jl, {i, 3}, {j, 3} ]
Out[3]= a a a

a a
3,1 3,2 3,3

We set v to a vector with three components.  In[4]:= v = Tablel blil, {i, 3} ]
Out[4]= b

The vector is considered a column vector In[5]:=m . v
(3x 1). Theresultis againacolumn vector. gy¢[s]=a b +a b +a b
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Now itistreated as row vector (1 x 3). The In[6l:=v . m
result is again a row vector. Out[6]= a

Ordinary multiplication is done element by  In[7li=m v
element. Therefore, the result is again a Out[7]= a b a b a b
3 x 3 matrix. 1,1 1 1,2 1 1,3 1

The inner product of two tensors (a;,i,...1,, ) and (b,k,. &, ) is a tensor of rank m + n — 2 with
these elements;

d
(a : b)i]lz...‘zm-lkz...k,,, = z aulz...z",_]jb]kz...kn ) (82_1)
=1

where the sum ranges over all indices of dimension m in a, and of dimension 1 in b (these
two dimensions must agree). In the previous example, a was a 3 x 3 matrix (a;,;), and b was a
3 vector (b). The result is, therefore, a 3 vector (c,) obtained by the ordinary formula for the
multiplication of a matrix by a vector,

3
ci=Y apb;. (8.2-2)
j=|
The dot product of two vectors (u,) and (v;) is

d
u-v:ZujvJ, (8.2-3)
j=1

that is, a scalar.

The computation of an inner product requires two operations. A multiplication is used
to combine corresponding elements, and an addition is used to sum the partial results. The
operation Inner[mult, m,, my, add] allows you to use arbitrary (binary) multiplication
and addition operations instead of the default Times and Plus. The ordinary dot product
v .vy, or Dot[v;, v2].is the same as Inner[Times, vy, v,, Plus].

The ordinary mner product is simply thedot  In[1]:= Inner[Times, {a, b, c}, {x, y, z}, Plus]

product. Out{1lJ=ax+by+cz
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If we useundefined operations (notethelow-  In[2]:= Inner[times, {a, b, c}, {x, y, z}, plusl]
ercase symbols times and plus), we can

Out[2]= plus[times[a, x], tames[b, y], timeslc, z]]
see how Inner[] works.

8.2.2 Example: Connected Components

In an electronic circuit, certain points are connected by wires. If there are n points, we can
represent the connections in a Boolean n X n matrix (a,;), that is, a matrix whose elements
are the Boolean values True or False. If there is a connection from point ¢ to j, we set a,, to
True, otherwise to False. Observe that the matrix is symmetric because a connection from ¢
to j is also a connection from j to ¢ —that is, a,; = a,,.

Let us look at the Boolean inner product

a-a = Inner[And, a, a, Or],

where the logical AND is used as multiplication and OR is used as addition. According to
formula 8.2-1, this operation gives

n
(@-a) =\ @ Aagk. (8.2-4)
i=1

Element ¢k of a - a is true if and only if there is a connection from : to some j and from there
1o k; that is, if there is an indirect connection of length two. This computation can be iterated:

(1,(0) E7
a® = a(l—l).a, i=1,2,....n

(8.2-5)

Matrix a® describes the connections of length i. E is the Boolean identity matrix having the
values True in its diagonal (and False otherwise). It describes the trivial connections of
length zero, because each point is connected to itself.

If we add up the matrices a®® element by element with OR,

b=a®vaPv.. vae™, (8.2-6)

we get a matrix b whose elements b, are equal to True if there is some connection between %
and j. If all elements of b are True, our circuit is connected; otherwise it consists of several
components that are completely independent of each other (indicating most likely an error in
the wiring).

The Boolean sum can be taken inside the iteration. We get

a©@ E
a® = g-Dygli-D. g i=12,....n

(82-7)
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identity[n_] := Table[i===j, {i, n}, {j, n}]
innerfa_, b_] := Inner[And, a, b, Or]
or[a_, b_] := MapThread[Or, {a,b}, 2]

Components[a_] :=
With({n = Length[al},
Nest[ Function[{ai}, or[ai, inner[ai, all], identity[n], n ]

]

Listing 8.2-1 BooleMatm.

Listing 8.2-1 shows the corresponding program. The operation inner[a, b] computes the
Boolean inner product; or[a, b] is the Boolean sum. Components[a] finds the connected
components.

In this example, we print all results in matrix ~ In[1):= $PrePrint =
form with labels forrows and columns. Here MatrixForm[#, TableHeadings->Automaticl¥;
is how we can specify such formatting.

Here is an example of a circuit with six  In[2):= circuitil
points. There are wires between 1-2, 1-3, Out[2]=
2-3,2-4,3-4,4-5, and 5-6.

1 2 3 4 5 6
1 False True True False False False
2 True False True True False False
3 True True False True False False
4 False True True False True False
65 False False False True False True
6 False False False False True False

This matrix shows all connections of length  In[3):= inner[%, %)

two. Out[3]=
1 2 3 4 5 6
1 True True True True False False
2 True True True True True False
3 True True True True True False
4 True True True True False True
5 False True True False True False
6 False False False True False True
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All points are connected, as this matrix con-  In[4]:= Components[circuit1]
sisting only of True shows. Dut[4]= 1 2 3 4 5 6

True True True True True True
True True True True True True

True True True True True True

1
2
3
4 True True True True True True
6§ True True True True True True
6

True True True True True True

In this circuit, the connection 4-5 is missing.  In[5]:= circuit2

Dut[5]=
1 2 3 4 5 6
1 False True True False False False
2 True False True True False False
3 True True False True False False
4 False True True False False False
5 False False False False False True

6 False False False False True False

As aconsequence, the circuit consists of two ~ In[6]:= Components[circuit2]
components. Points 1 to 4 are connected,  g,¢[6]=
and so are points 5 and 6. There is no con-

nection between these two sets of points. 1 2 3 4 5 6
1 True True True True False False
2 True True True True False False
3 True True True True False False
4 True True True True False False
5 False False False False True True
6 False False False False True True

Boolean n x n matrices of the form used in this section are adjacency matrices of graphs.
They specify which vertices in the graph are connected by an edge. The standard Mathematica
package DiscreteMath'Combinatorica‘ contains many functions on graphs. Here, we
solve the connection problem using the Combinatorica package [63].

We read the package. In(7]:= Heeds[“"DiscreteMath‘'Combinatorica‘"]

Combinatorica needs graphs representedas  In[8]:= Position[circuit2, True]

lists of edges. The edges are the pairs of g/ +1g1= {1, 2, {1, 3%, {2, 13, {2, 3}, {2, 4},
vertices whose corresponding entry in our _
adjacency matrix is True. 3, 1}, 3, 2}, {3, 4}, {4, 2}, {4, 3}, {5, 6},

{6, 5}}
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This function converts the edge list into an  In[9]:= gr2 = FromUnorderedPairs[%];
internal representation of the graph.

Here we find its components. As we have  In[10]:= ConnectedComponents[gr2]
already seen, there are two components. Out[10)= {{1, 2, 3, 4}, {5, 6}}

The package also contains commands to  In[11):= ShowLabeledGraph[gr2];
draw pictures of graphs.

8.2.3 Outer Products

The outer product of two tensors (a;,s,.
elements '

) and (bj,j,...j,) is a tensor of rank m + n with

ol

(@ R )iig...imirdrein = Bivizoim 012 in - (8.2-8)

The outer product is computed by Outer[Times, a, b].

The outer product of two vectors is a matrix ~ In{1]):= Outer[Times, {a, b, c}, {x, y, z}] // MatrizForm
containing all possible products of elements  g,+117//MatrixForn= a x

ay az
of the two vectors.

bx by bz

cx cy cz

In a way similar to inner products, we can use another binary operation in place of mul-
tiplication. Outer[mult, a, b] uses the operation mult for combining the elements of &
and b.

In this example, theelements of the two vec-  In[2):= Outer[ g, {a, b, ¢}, {x, y, z} 1 // MatrixForm
tors are combined with g. Vectors areten-  g,¢[2]//MatrixForm= gla, x]
sors of rank one; the result is, therefore, a

tensor of rank two — that is. an ordinary ma- glv, x1 glb, vy glb, z]

trix. glec, x1  gle, y1 glc, 2]

gla, y]l gla, z]
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8.2.4 Special Topic: Vector Calculus

Many operations of vector calculus can be written as generalized inner and outer products.
This formalism leads to compact programs.

8.2.4.1 Divergence

The divergence of an n-dimensional vector field v = (ej, ey, . . . , €,), depending on n variables
(z1,22,...,Tq), isdefined as

divv=%+ Oez . + Oen

9z, " 92, "t 3z, (8.2-9)

This is an inner “product,” with differentiation D[e, z] instead of multiplication.

Div[v_List, vars_List] := Inner[D, v, vars, Plus]

As an example, we compute the divergence of the ordinary gravitational or electric field in
vacuum.

The radius or distance from the center is  In[1]l:= r = Sqrt[xa2 + ya2 + za2]
equal to the square root of the sum of the 2 2 2
squares of the coordinates. Out[1}= Sqrtlx +y + z ]

The magnitude of the fieldis 1/7> Thefield In[2]:= e = -1/ra2 {x, y, z}/r
points toward the origin. —(z,y, 2)/7 is a x y

unit vector pointing toward the origin. Out[2]= {-( ), =( ),
2 2 2 3/2 2 2 2 3/2
(x +y +z) (x +y +z)

_— )}
2 2 2 3/2
(x +y +2z2)

-(

Here is its divergence. We know that it  In[3]:= Div[ e, {x, y, 2} ]

should be zero. It is not trivial to see that 2 2
this expression is indeed zero. 3 x 3y
Out[3]= + +
2 2 5/2 2 2 2 5/2
(x +y +2) (x +y +2)
2
3z 3
2 2 2 6/2 2 2 2 3/2
(x +y +2z) (x +y +2)

Simplifying it with Together returns the  In[4]:= Together[%]
expected result. Out[4]= 0
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8.2.4.2 Gradient

The gradient is the vector of partial derivatives of a scalar field s(z,, z2, . .., z,) with respect
to the coordinates:
ds O0s Os

(9:1:1,(9:132,“.,67:”

The scalar s must be differentiated with respect to each of the variables 1, z2, ..., . We
simply map the differentiation function over the list of variables.

grad s = ( ). (8.2-10)

Grad[s_, vars_List] := Map[ Function[{v}, D[s, v]], vars ]

The operation Map[] is explained in Section 11.2.3.1.

The vector field e from the previous section  In[5):= Grad[ 1/r, {x, y, z} ]
is the gradient of the potential 1/7.

Out[61= {-( : ), - ! ),
2 2 232 2 2 23/
(x +y +2) (x +y +2z)
b4
-( )}
2 23/2
(x +y +2z

8.2.4.3 Jacobian
The Jacobian of a vector (ey, €2, ...,en) with m components with respect to n variables

(z1,x2,...,2y) is the m x n matrix of partial derivatives

Oeg 3 %)

o] Be Be
o5 b v e (8.2-11)

Dem e de

This operation is an outer “product” with differentiation instead of multiplication.

Jacobian[f_List, vars_List] := Outer[D, f, vars])

Here is a symbolic Jacobian of three func-  In[6]:= Jacobian[{f[x, y], glx, yl, hlx, yl},

tions depending on two variables. The {z, y} 1 // MatrixForm
notation 7 denotes a partial derivative: g, [6]/ /MatrixForn= (1,0) €0,1)
i times with respect to the first variable, £ " Ix, 5] f [z, ¥yl
Jj times with respect to the second variable. (1,0) ©,1)
g  Ix,y] g [x, y]
1,0 (0,1)
h [x, y] h [x, ¥l
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The internal form of the symbolic deriva-  In[7]:= InputForm[ D[£f[x, yl, {x, i}, {y, j}] ]
tive f*7 is Derivativels, j1[f]. Out[71//InputForm= Derivativel[i, jI1[£1[x, y]

8.2.4.4 Laplacian
The Laplacian V? of a scalar field s is defined as
V2s = div grad s, (8.2-12)

which leads to this program:

Laplacian[s_, vars_List] := Div[ Grad[s, vars], vars ]

Here is the Laplacian of a general potential.  In[8]:= Laplacian[ s[x, y, z], {x, y» 2z} ]

(0,0,2) (0,2,0)
Out[8]= s [x, y, z] + & [x, y, 2] +

(2,0,0)
s [x, y, z]

Harmonic functions are funchons whose  In[9):= Together{ Laplacian[ 1/r, {x, y, z} ] ]
Laplacian is zero, for example the func-  gu¢193= 0
tion 1 /7 from the previous sections.

8.2.4.5 A Package for Vector Calculus

The package DivGrad.m (Listing 8.2-2) contains all functions defined in Section 8.2.4. Observe
how easy it was to program these functions. In particular, we did not use any explicit loops,
and the functions work with vectors of any number of components.

8.2.5 Key Concepts
1. The inner product is a generalization of the dot product.

2. Instead of addition and multiplication, other operations (e.g., Boolean operations) can be
used in inner and outer products.

3. Outer products form all possible combinations of the elements of two tensors.

4. The operations of vector calculus can be described as generalized inner or outer products.
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BeginPackage["CSM'DivGrad‘"]
(* simple vector calculus in Cartesian coordinates *)

Div::usage = "Div[v, varlist] computes the divergence of the vector field v
w.r.t. the Cartesian coordinates varlist."

Laplacian: :usage = "Laplacian[s, varlist] computes the Laplacian of the scalar
field s w.r.t. the variables varlist."

Grad::usage = "Grad[s, varlist] computes the gradient of the scalar field s
w.r.t. the variables varlist."

Jacobian: :usage = "Jacobian[flist, varlist] computes the Jacobian of
the functions flist w.r.t. the variables varlist."

Begin["'Private'"]

protected = Unprotect[{Jacobian}]

Div[v_List, vars_List] := Inner[D, v, vars, Plus]

Grad[s_, vars_List] := Map[ Function[{v}, D[s, v]], vars ]
Laplacian[s_, vars_List] := Div[ Grad[s, vars], vars ]
Jacobian[f_List, vars_List] := Outer[D, f, vars]
Protect[Evaluate[protected]]

End[]

EndPackagel[]

Listing 8.2-2 DivGrad.m.
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8.3 Linear Algebra

Linear algebra is the foundation for many numerical problem-solving methods. We present a

simple algorithm for the solution of linear e i icati
Lgor s quations and show an applic : i
electronic circuits. plication: the analysis of

8.3.1 Linear Equations

A system of linear equations with m equations and m unknowns (z1, T2, - - - » Tm) loOkS as
follows:

anry + Qar2z2 + ... + QmTm = bl,
anTy + apz2 + ... + aAamTm = I)z,

. . 8.3-1)
amiry + am2r2 t+ ...+ AqmmTm = br..

Often, such a system is written in matrix notation. With A = (ai;), X = (z5), and b = (b;), we
get,

A-x=b, (8.3-2)
or, written out in full:
ain 4z .- Cm z| b1
caom eem | T2 (83-3)
Ami Am2 --- Gmm T'm bm

Gaussian elimination is a simple method for the solution of such systems. Tt is based on the
fact that the solution does not change if a multiple of one row of the matrix is added to another
row. If we add ¢ times row i to row j, we get

a'jk = ajk + CQik, k=1,...,m, 834)

and, on the right side:

b; = bj +¢b; . (83—-5)
Such a transformation is called a row operation. To make notation simpler, the matrix A and
the right side b are combined to an m X (m + 1) matrix A:

an ap ... am b

A-| o o O b2 , (83-6)

Qnt Om2 -+ CGmm bm
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In this notation, a row operation is expressed simply as
g = G + Clik, k=1,....m+1. (8.3-7)

Our goal is to perform such row operations to put the matrix into triangular form. In triangular
form, it looks like this:

ayl a2 @3 ... Gim b
! ! ! /
0 ayp a3 . Gom b’z’
0 0 a3 ... a3, b; . (8.3-8)
n...t /)...1
0 0 0 ... aks b

This goal is achieved step by step. To set the the entries in the first column (in rows 2 to m) to
zero, we can add ¢ = —a;1/ay) times the first row to the jth row. According to Equation 8.3-7,
the entries a;; will become zero. If we do this operation for all rows, we get

aj] a2 @3 ... Gy by
I ! ! /
0 a,22 a’23 . a,Zm b,2
0 a3 ay ... a3, b3 | (8.3-9)
!/ ! 7 /
0 a, a.,3 --- Gum by

Next, we can eliminate the second column in rows 3 to m, and so on.

Mathematica makes it easy to program these elementary operations. A matrix is a list of
rows, each row is a list (of elements). The ith row can simply be extracted as mar[[:]].
Arithmetic operations are automatically distributed on the elements of a list. Therefore, a row
operation according to Equation 8.3-7 is simply mat[[j]1] = mat[[j]] + ¢ mat[[i]1]; you
need not program the loop over k. As usual, we can store the modified jth row in the original
matrix because we no longer need the old values.

We ask for elements of the form ali, jlto In[1]:= Format[t_a] = Subscripted[t];
be written in the usual form with indices.

Here is the original matrix with m = 3. In(2] := MatrixForm[
mat = Table[ ali, jl, {i, 3}, {j, 4} ]
]
Out[2]//MatrixForm= a a a a

1,1 1,2 1,3 1,4

a a a a
2,1 2,2 2,3 2,4

a a a a
3,1 3,2 3,3 3,4
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Here is the row operation that adds ¢ times  In[3]:= mat[[2]] + c mat[[1]]
the first row to the second row in symbolic  gy¢[3]= {c a

+ a , Ca + a , Ca + a
form.

1,1 2,1 1,2 2,2 1,3 2,3

ca + a }
1,4 2,4

The command eliminateColumn[mat, %] iterates the row operation overrowsz+1 tom. Itis
used in GaussianElimination[mat] to put the matrix into triangular form, by performing

itfort =1, 2, ..., m All these commands are in the package Linalg.m, reproduced in
Listing 8.3-1.

nRows[mat_] := Dimensions[mat][[1]]
nColumns[mat_] := Dimensions[mat][[2]]

addColumn[mat_?MatrixQ, col_List] /; nRows[mat] == Length[col] :=
Transpose[ Append[Transpose[mat], col] ]

eliminateColumn[ mat_?MatrixQ, i_Integer ] /; 1 <= i <= nColumns[mat] :=
Module[{res = mat, m = nRows[mat], j, c},
Dol ¢ = -res[[j, ill/res[[i, il];
res[[j]] = res[[jl] + c res[[il]
» {j, i+1, m} 1;
res

]

GaussianElimination[ mat_?MatrixQ ] :=
Module[{res = mat, m = Min[nRows[mat], nColumns[mat]], i},
Do[ res = eliminateColumn[res, i], {i, 1, m-1} ];
res

1

backSubstitution[mat_?MatrixQ] /; nColumns[mat] == 1 + nRows[mat] :=

Module[{m = nRows[mat], i, k, x},

x = Table[0, {m}];

Do[ x[[i]] = (mat[[i, -1]] -

Sum[ x[[k]] mat([i, k], {k, i+1, m} 1)/
mat[[i, i]];
> {11 m, 1) _1} ];
x

]

linearSystem[ a_?MatrixQ, b_?VectorQ ] /; nRows[a] === nColumns[a] === Length[b] :=
backSubstitution[ GaussianElimination[ addColumn[a, b] ] ]

Listing 8.3-1 Linalg.m.

If the matrix is in triangular form, as shown in Equation 8.3-8, the solution (z1, z3, ..., zm)
is easy to find. Multiplying the last row of the matrix by the vector x gives

!

Ay Tm = b, (8.3-10)
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or
bim
Tm=——- (8.3-11)
amm
From the second-to-last row, we get
a';n—l,m—lxm—lalm—l,mmm = b;n_l, (8.3-12)
or @ ’ )
P R
Ty = 2ol _molmTe (8.3-13)
a’m—l,m—l

The general formula for row i is

! m !
_ %ma D kwisl %k Tk)
Ty = 7 .
aj;

(8.3-14)

Note that b; is equal to @} ., ,. In Mathematica, this formula looks like this:

x[[i]] = (mat[[i,m+1]] - Sum[x[[k]] mat[[i, k1], {k,i+1,m}])/mat[[i,i]].

As you can see in the command backSubstitutionl[mar], x is initialized to a list of
length m. The values z,, T;,—1, ..., 2y are then computed in this order; therefore, the name
back substitution.

Time for an example! First, we read the In[1]:= << CSM‘'Linalg';
package.

This definition prints all outputs in matrix = In[2]:= $PrePrint = MatrixForm;
form.

We generate a 3 x 3 matrix with randkom  In[3]:= a = Table[ Random[Real, {-1, 1}], {3}, {3} ]
elements. Out[3]= 0.507978 0.048887 0.519499

0.979505 0.0374185 -0.0781593
-0.882894 0.903669 0.0224132

Here is the right side of the equation. In(4]:= b = Table[ Random[Real, {-1, 1}1, {3} ]
Out[4]= -0.435791
-0.753735
0.352373

Weadd therightside as the lastcolumnof a.  In[5]:= addColumn[a, b]

Out[5]=
0.507978 0.048887 0.519499 -0.435791
0.979505 0.0374185 ~-0.0781593 -0.763735

~0.882894 0.903669 0.0224132 0.352373



8.3 Linear Algebra

Elements of the first column are eliminated
according to Equation 8.3-7.

Next, the second column. The matrix is now
in triangular form.

The solution is obtained by back substitu-
tion.

The verify the solution, we insert it into the
equation.

The result should be equal to b. We check it
by subtraction. It is not completely accurate
because of roundoff errors.

Chop[] can be used to remove small non-
zero parts.

This function performs all solution steps and
gives us the solution of A - = = b directly.

The method works also for symbolic sys-
tems! Inthis way. we cancan find the formu-
la for the solution of a gencral 2 x 2 system.
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In[6]:= eliminateColumn[ %, 1 ]
Out[6]=

0.507978 0.048887 0.519499
0. -0.0568476 -1.07988
0. 0.988637 0.925331

In[7]:= eliminateColumn[ %, 2 ]
Out[7]=

0.507978 0.048887 0.519499
0. -0.0568476 -1.07988
0. 0. -17.8549

In[8]:= x = backSubstitution[ % ]
Out[8]= -0.760977
-0.352017
-0.0616415
In[9]):=a . x
Out[9]= -0.435791
-0.753735
0.352373
In(10):= % - b

Out[10]=
0.

-16
1.11022 10

-17
-5.55112 10
In[11):= Chop[ % 1]
Out([11]= 0
0
0
In[12]:= linearSystem[ a, b ]
Out[12]= -0.760977
-0.352017
-0.0616415

-0.435791
0.0865768
-0.405056

-0.435791
0.0865768
1.1006

In(13]:= Simplify[ linearSystem[ {{a11,a12}, {a21,a22}},

{b1,b2} 11

Out[13]= a22 b1l - al2 b2
~(a12 a21i) + all a22
a21 bl - all b2

al2 a2l - all a22
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So far, we assumed that the elements a;i are always different from zero, because we have to
divide by them. These elements are called pivots. A pivot may be zero even if the system of
equations is regular — that is, has exactly one solution. If element a;; is zero, we can find an
element below it — that is, one of a; ;41, . . ., ajm, that is different from zero. We exchange the
two rows, and the algorithm can continue. We have to undo the exchanges at the end to put
the solution into the righ