

Computer Science with Mathematica
Theory and Practice for Science, Mathematics,
and Engineering
Roman E. Maeder

CAMBRIDGE
UNIVERSITY PRESS

Pt:BLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE

The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE l:N!VERS!TY PRF.SS

The Edinburgh Building, Cambridge CB2 2RU, UK http://www.cup.cam.ac.uk
40 West 20th Street, New York, NY 10011-4211. USA http://www.cup.org
10 Stamford Road, OakJeigh, Melbourne 3166, Australia
Ruiz de Alarc6n 13. 28014 Madrid, Spain

© Roman E. Maeder 2000

Till.� book is in copyright. Subject to stattltory exception
and to the provisions of relevant collective licensing agreements.
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2000

Printed in the United States of America

Typeset by the author using Mathematica 4.0 and the TEX typesetting language on a Sun ULTRAsparc ll computer.

A catalox record for this book is available from the British Library'

Library· of Congress Catalog inK in Publication Data

Maeder, Roman.
Computer science with Mathematica : theory and practice for

science, mathematics, and engineering I Roman E. Maeder.
p. em.

Includes index.
ISBN 0-521-63172-6.- ISBN 0-521-66395-4 (pbk.)
I. Mathematica (Computer file) 2. Mathematics- Data processing.

3. Mathematica (Computer programming language) I. Title.
QA76.95.M34 1999
510'.285'5369-dc21 99-38932

CIP

The author and Cambridge University Press, Inc., make no representations, expressed or implied, with respect to this
documentation or the software it describes, including, without limitations, any implied warranties of merchantability or fitn
for a particular purpose, all of which are expressly disclaimed. The author, or Cambridge University Press, their licensees,
distributors, and dealers shall in no event be liable for any indirect, incidental, or consequential damages.

ISBN (1 521 63172 6 hardback
ISBN 0 521 66395 4 paperback

Contents

Preface ix

About This Book xili
1 Computers and Science

1.1 From Problems to Programs 3

1.2 Computers 14

1.3 Programming Languages 18

1.4 Computer Science 23

2 Mathematica's Programming Language
2.1 Arithmetic and Logic 27

2.2 Definitions 30

2.3 Simple Program Structures 34

2.4 Structure of Expressions 44
2.5 Help with Problems . 49

2.6 Exercises 52

3 Iteration and Recursion
3.1 The Greatest Common Divisor 57

3.2 The 3x + l Problem . 60

3.3 Advanced Topic: Loop Invariants 64
3.4 Application: Differential Equations 69

3.5 Exercises 76

4 Structure of Programs
4.1 Complex Parametric Lines 81

4.2 The First Package 85

4.3 Optional Arguments 90

4.4 A Template Package 94

4.5 Exercises 96

5 Abstract Data Types
5.1 Definition of Abstract Data Types 99

5.2 Example: Modular Numbers 102
5.3 Design of Abstract Data 'JYpes 106

5.4 Exercises . 110

v

Algorithms for Searching and Sorting
6.1 Searching Ordered Data

6.2 Sorting Data

6.3 Binary Trees

6.4 Exercises . .

Complexity of Algorithms
7.1 Complexity of Computations

7.2 Example: Computing the nth Fibonacci Number

7.3 Special Topic: Dynamic Programming

7.4 Long-Integer Arithmetic and Fast Multiplication

7.5 Exercises

Operations on Vectors and Matrices
8.1 Vectors and Matrices . .

8.2 Inner and Outer Products

8.3 Linear Algebra

8.4 Programs with Arrays . .

8.5 Application: Aggregation

8.6 Exercises

List Processing and Recursion
9.1 Symbolic Expressions and Lists

9.2 List Processing

9.3 Exercises

Rule-Based Programming
I 0.1 Pattern Matching

10.2 Rules and Term Rewriting

I 0.3 Simplification Rules and Normal Forms .

10.4 Application: Trigonometric Simplifications

I 0.5 Exercises

Functions
11.1 A Notation for Functions (A Calculus)

11.2 Functions as Values

11.3 Example: Simulation of Shift Registers

11.4 Exercises

Theory of Computation
12.1 Computable Functions

12.2 Models of Computation

12.3 Turing Machines . . .

12.4 Recursive Functions Are Turing Computable .

12. 5 Exercises

Contents

115

121

129

138

143

147

15 6

162

167

171

175

185

194

202

207

213

217

223

227

231

235

241

248

255

260

266

268

273

280

282

293

299

Contents

13 Databases
13.1 Database Design

13.2 Relational Databases .

13.3 Data Entry and Queries

13.4 Commercial Databases

13.5 Exercises

14 Object-Oriented Programming
14.1 Introduction

14.2 Example: Bank Accounts

14.3 Principles of Object-Oriented Programming

14.4 Application: Collections .

14.5 Exercises

Appendix A Further Reading
A.l A Guide to the Literature

A.2 References

Appendix B More Information About Mathematica
B.l Computations You Can Do with Mathematica
B.2 The Code for the Illustrations in this Book .

B.3 Mathematica's Evaluation Method

B.4 Syntax of Operators

Index .

vii

303

308

314

319

321

325

327

330

332

341

345

347

353

364

368

374

377

Preface

This book provides an introduction to computer science, and shows how modern computer­
based tools can be used in science, mathematics, and engineering. Computer-aided math­
ematics has reached a level where it can support effectively many computations in science
and engineering. In addition to treating traditional computer-science topics, an introductory
book should show scientists and engineers how these computer-based tools can be used to
do scientific computations. Students must get to know these possibilities, and they must gain
practical experience. Learning a traditional programming language becomes less important,
just as learning arithmetic is not a main topic of mathematics education. In an introductory
book, it is clearly necessary to limit ourselves to a small part of the huge field of computer
science. We emphasize topics that are related to possible applications in mathematics and the
sciences. Technical and practical computer science have therefore been neglected.

It is certainly worthwhile to combine an introductory computer-science course with exer­
cises. In the same way as we learn a foreign language by speaking the language and by studying
literature in that language, we should apply algorithmic knowledge by studying programs and
writing our own. If we can solve an interesting problem from mathematics or the sciences at
the same time, all the better! Traditionally, such introductory courses use languages such as
Pascal, C, or FORTRAN. These languages have in common that the effort to develop even a
small program (one that adds two numbers, for example) is considerable. One has to write
a main program that deals with input and output, and to compile the program. Furthermore,
these languages cannot be used easily to solve nonnumerical problems. Leaving aside these
practical difficulties gives us room to look at other topics in computer science, an extension that
is not offered in traditional programming courses. In this way, we gain insight into computer
science, which consists of much more than writing small programs.

Another disadvantage of traditional languages is that they support only procedural pro­
gramming. This style is an important one, but it is not the only option and it is not always the
best approach. I prefer a language that does not force this programming style on programmers.
The programming style should be chosen to fit the problem to be solved, rather than vice
versa. The language should be interactive, to encourage experimentation and to allow us to
call individual functions without having to write a whole program.

Mathematica was first released in 1988, and it is being used with increasing frequency
in teaching, research, and industry. A by-product of the symbolic computation system, it
is a programming language that differs from traditional languages in many important ways.

ix

X Preface

Conventional languages are not well suited to expressing mathematical formulae and algo­
rithms. LISP and other functional languages showed alternatives. An important aspect of
scientific computation is an easy way to express mathematical rules. Application of rules by
machine requires good pattern-matching capabilities of the kind found in Prolog. Another
prerequisite is that it be simple to manipulate structured data. Such structural operations have
been pioneered by APL. Object-oriented elements and modularization are important tools for
developing larger projects. Ideas were taken from Simula, Smalltalk, and C++. We also want
to support traditional procedural programming in the style of Pascal and C. All these objec­
tives lead to a large language with many built-in functions. It nevertheless has a consistent
and uniform style, made possible throllgh the use of rewrite rules, which underly all other
programming constructs. Such a language is also interactive and therefore easy to use. It is
not necessary to compile functions or to embed them into a main program to use them. The
additional step of compilation increases the difficulty of program development and requires
special tools (debuggers) to study the behavior of programs.

Because Mathematica also contains most operations needed in mathematics and physics,
it is especially well suited for an introductory course in computer science for readers interested
primarily in the sciences and engineering. It allows us to treat interesting examples easily.
There is no good reason, for example, to restrict the range of integers to 2, 147,483,647, as
is done in most programming languages. This restriction makes no sense in mathematics.
Programming with recursively defined functions is often treated as extraordinary and difficult.
We can express naturally many mathematical algorithms, however, by using recursion, and it
should be possible to formulate recursion easily in a language. For example, the properties of
the greatest common divisor of two integers leading directly to Euclid's algorithm,

gcd(a., b) = gcd(b, a mod b)
gcd(a, 0) = a,

can be expressed verbatim in Mathematica and tried out immediately. As in LISP, the technique
of tail-recursion elimination in Mathematica ensures that the corresponding program runs as
fast as the loop that is normally used (which is not the case in most procedural languages).
Deriving the loop invariant and programming the same function as a loop leads naturally to
systematic programming and considerations of program correctness.

Mathematica is helpful in all areas of computer use in mathematics, in the sciences, and
in engineering:

• Its numerical part, which allows arithmetic to arbitrary precision, can be used to treat
numerical mathematics, including traditional floating-point arithmetic.

• Its symbolic part does computations with formulae, solves equations, performs series ex­
pansions and transformations, and knows calculus to the level required for an undergraduate
degree.

Preface xi

• The programming language supports all traditional programming styles, including proce­
dural programming. The language can therefore be used for traditional computer-science
classes (algorithms and data structures) as well.

• The rule-based programming system allows a natural expression of scientific facts.

• Graphics allows the meaningful presentation of results and experimental data. It is also
useful for showing how algorithms work.

• We can call external programs and exchange results, so we can use external software
libraries and even control laboratory experiments.

This book grew out of class notes for a course given at the Department of Mathematics and
Physics at the Swiss Federal Institute of Technology, Zurich. It was originally published in
my native German language [48], and I am glad to present now my own English translation
and adaptation.

I am thankful to Erwin Engeler, John Gray, and Stephen Wolfram for their inspiration and
many interesting discussions. Helpful suggestions on particular topics came from R. Marti
and H. Mossenbock . Lyn Dupre proofread an early version of the manuscript, and Karen
Tongish copyedited the final version . The publishers of the German and English editions,
Ekkehard Hundt and Alan Harvey, helped me to keep going. Many thanks to the anonymous
reviewer whose favorable comments and useful suggestions motivated me to finish this project.

R.E.M.
Wollerau, March 1999

About This Book

The emphasis of this introduction to computer science is algorithmics - that is, the study
of algorithms. We do not want this activity to become a dry exercise, so we shall try out
all algorithms as soon as possible. Our programs will often consist of only a few lines of
code. Such simplicity allows us to concentrate on the essentials and to ignore peripheral
matters such as input, output, and driver programs. Often, however, we shall develop whole
packages, collections of various procedures grouped around a topic. The methods for writing
such packages will be explained in Chapter 4. After all, computer science is not about writing
small, throwaway programs but rather developing larger applications. In addition to finding
suitable algorithms, this entails techniques of documentation and maintenance of software.
We shall present some of these techniques.

Mathematica does have a major advantage over traditional programming languages: It
is interactive. lnteractivity encourages experimentation and allows us to test each function
separately and to study its behavior. In the first section we shall study recursively defined
functions, a topic often considered difficult and therefore treated with caution. We also have
at our disposal a symbolic, numerical, and graphic computation system- an added benefit that
we shall use in many ways.

Overview of Contents

Each chapter after the first two introductory ones presents a topic from computer science
together with its applications and examples in mathematics, the sciences, and engineering. You
can choose from the many applications presented those that correspond to your background.
Because only one system (Mathematica) is used for all programs and all calculations, the
extra work of learning about practical matters such as editing or working with the application
is minimized. My experiences have shown that Mathematica is rather easy to learn; you
will be able to work with it quite soon, after overcoming any initial difficulties you might
encounter.

Chapter I is not a prerequisite for the rest of the text, if you already know something about
computers. It shows how computers can be used in the sciences, explains the history and
current state of computers, and discusses what computer science is all about.

The quick introduction to Mathematica's syntax in Chapter 2 should be studied with a
computer at hand, so you can try out the calculations for yourself and get a feeling for what it

xiii

xiv About This Book

is like to work with Mathematica. The elements of programming presented in Sections 2. 1 -2.3
are the foundation of our programs.

In Chapter 3, we use two simple examples to show how mathematical questions can be
turned into computer programs. The most important concepts are iteration and recursion. The
section on loop invariants gives a method for proving programs correct.

Chapter 4 explains how programs in Mathematica are structured. We start with simple
commands, which we turn into a program by defining a few functions. We will give guidelines
for turning a program into a package. Packages allow for easier use of programs and prevent
unwanted side effects on other programs, which might have similar function names. The tools
we use are modularization and separation of the interface (for the user of our program) and the
implementation (for the program developer). You can use these techniques as recipes, even if
you do not know how they work in detail. You can use our template package as a starting point.

Abstract data types, presented in Chapter 5, constitute one of the most important tools for
the design of programs. These methods allow a clean separation of design and implementation.
We shall use them in most of our programs in this book.

Algorithms for searching and sorting are the basic building blocks of many programs. The
algorithms presented in Chapter 6 are part of basic computer-science knowledge.

Problems can be solved in many ways. One aspect to consider when choosing a method
is the complexity of the resulting algorithm. Chapter 7 provides an introduction to algorith­
mic complexity. As an example, we look at the computation of large Fibonacci numbers,
optimization problems, and arbitrary-precision arithmetic.

Vectors and matrices are important data structures for mathematical applications. We
present several important operations on them and look at a few algorithms from linear algebra
in Chapter 8.

In Chapter 9, we program in LISP, a language that we can interpret in Mathematica easily.
Recursion is the most important tool for solving problems in LISP, where it replaces iteration.

For many scientific problems, rule-based programming is the simplest method of solution.
It is also the foundation of Mathematica's programming language. In Chapter 1 0, we shall look
at the important concepts of simplification and normal forms, as well as at some applications.

Functions are of central importance in mathematics. They play a lesser role in computer
science, because many programming languages have only rudimentary means of dealing
with them. An important exception are the functional languages, including Mathematica.
Functions are the topic of Chapter 1 1 . That chapter highlights the differences between the
symbolic computation system Mathematica and ordinary languages.

In Chapter 12, we give a short introduction to theoretical computer science. There we see
that this topic is not necessarily as "theoretical" as is often feared. We answer the question of
what the fundamental limits of computers are and show that some problems cannot be solved
by machine, even disregarding the practical matters of limited memory and computing time.

Databases are the most important commercial application of computers. Managing large
volumes of data demands reliable and powerful programs. A precise mathematical model of

About This Book XV

co11ections of data provides the tools for their easy manipulation. We treat these concepts in
Chapter 13 .

Chapter 14 introduces a n important programming style: object-oriented programming. It
is especially useful for larger applications and for the design of reusable software.

Appendix A is an annotated bibliography on the topics programming methods, teaching
with Mathematica , and literature about Mathematica; it includes a section with references for
the topics treated in this book, followed by the bibliographical data.

The more detailed explanations about the structure of Mathematica given in Appendix B
are useful for self-study and are also meant as a reference. For a complete reference to
Mathematica, you should consult The Mathematica Book 174]. The appendix of that manual
contains an alphabetical listing of all built-in functions, commands, and other objects. This
listing, as well as the complete manual, is available on-line in Mathematica (in the Help
Browser). Looking up an item there is much easier than is looking it up in a heavy book.
Studying the Mathematica manual is not a prerequisite for reading this book.

Appendix B also contains a section that demonstrates Mathematica's more advanced
capabilities. Finally, we give the programs used to generate the chapter-opener pictures.

Certain sections are labeled "Advanced Topic." They presume that the reader has a more
complete mathematical background than is required for the rest of the book; they are optional.

Sections marked "Special Topic" are independent from the rest of the book. Sections
marked "Example" or "Application" develop a topic using a larger example that is of interest
in its own right.

At the end of most sections, there is a review list, entitled "Key Concepts," of new concepts
that have been introduced. At the end of the chapters, you will find numerous exercises.

The verso page following a chapter title contains a brief overview of the sections in the
chapter, and an explanation of the graphic illustration on the title page. The programs for
generating these pictures are in the package Pictures.m; see Section B.2.

Comments on Exercises

We assume that you already know how to work with your computer. T he installation of Math­
ematica on your machine is explained in the documentation that comes with the software. This
documentation includes a manual that explains the machine-specific features of Mathematica.
The best way to learn Mathematica is to do practical exercises at the machine. In the beginning,
you may want to look at one of the included demonstration documents before moving on to your
own small examples. You can also find simple examples in the section titled "A Tour of Math­
ematica" in The Mathematica Book. We recommend that you work through such examples.

There are two ways to use Mathematica on a computer: the Notebook frontend and a
simple dialog with the kernel of Mathematica (the kernel is the part that does the actual
computations; the frontend serves as a user interface to the kernel). The Notebook frontend
is more comfortable to use, but is not required for the examples in this book, which have

xvi
--- About This Book

all been computed by direct interaction with the kernel. All examples have been tested with
Version 4.0 of Mathematica.

If you use the Notebook frontend, your interaction with Mathematica will look a bit
different from the way it is presented in the book, but the results will be the same. Numbering
of your inputs happens only after they have been sent to kernel for evaluation (with SHIFT­
RETURN or ENTER), because the number is given out by the kernel, rather than by the frontend.
An example Notebook is reproduced on page 95.

Please note that each example has been computed in a fresh Mathematica session. We
recommend that you begin new sessions to avoid any influences from previous computations
whenever the numbering of the input lines restarts at 1. Under the Notebook frontend, you
can choose the menu command Quit Kernel to start a fresh kernel.

The frontend allows you to store your programs and your sample computations in the same
document (the Notebook) and to open them again in the future. We recommend, however,
that you store packages in separate files, and read them into Mathematica using <<file ' . This
command to read in a package is often not shown in the dialogs in this book. If you want to
reproduce the examples, you must read the appropriate programs into Mathematica first.

Electronic Resources

•
All programs mentioned in this book are available in machine-readable form
from the book's Web site, located at http : I /www .mathconsult . ch/CSM/.
There, you will find compressed archives of all files ready to download. Pack­
ages have the extension .m; Notebooks have the extension .nb. Both kinds of
files can be opened with the frontend. Packages can be read into the kernel

directly (using «CSM' file ') and can also be opened with any text editor (in ASCII mode).
The archive should be extracted into the AddOns/Applications subdirectory of your Mathe­

matica installation directory. Extraction will create a subdirectory CSM inside the Applications

directory.

Mathematica can display its own installation
directory. The value of $TopDirectory
will reflect the actual place where you in­
stalled Mathematica on your computer.

If you installed the files correctly, this simple
test should give the result shown here. Note
the use of the backquote ' as a machine­
independent way to specify directories and
flies.

All packages mentioned in this book can be
loaded by prefixing their name with the di­
rectory, CSM.

In[1] : 2 $TopDirectory

Out[l]� /usr/local/Mathematica

In[2] :� << CSM'Test'

The CSM packages are correctly installed in

/usr/loca1/Mathematica/Add0ns/Applications/CSM

In[3] : = << CSM'ComplexParametricP1ot'

About This Book xvii

Please refer to the book's Web site for up-to-date information on available archive formats and
detailed installation instructions.

The programs are protected by copyright. You may copy them only for your personal use.
If this book is a required text in a class you teach, you may also make the programs available
to your students on the computer network used for the exercise sessions. To copy otherwise
requires prior written permission from the author.

The author and Cambridge University Press, Ltd., make no representations, expressed or
implied, with respect to this software, including, without limitations, any implied warranties
of merchantability or fitne.-;s for a particular purpose, all of which are disclaimed expressly.
The author or Cambridge University Press, their licensees, distributors, or dealers shall in
no event be liable for any indirect, incidental, or consequential damages.

In addition to the programs, the book's Web site contains other information, such a�
notebooks, updates, a list of errata, and the archive of the mailing list intended for readers of
this book. I encourage you to join the mailing list. Please see the Web site for details.

Notation and TermL11ology

Mathemarica input and output is typeset in a typewriterlike style (in the Courier font):
Expand[(x+y) ;..9] . Parts of Mathematica expressions not to be entered verbatim, but denot­
ing (meta) variables, are set in italic: f [var _] : = body.

Functions or commands are denoted by their name, followed by an empty argument list in
square brackets: Expand[] . Program listings are delimited by horizontal lines:

a[l] = a(2] = 1
a[n_Integer?Positive] := a(n] = a [a [n-1]] + a(n-1-a[n-1]]

A sequence by John H. Conway.

A program package is identified by name (the context name, as we shall see) - for example,
Complex. The files used for storing successive versions of this package will be named
Complex1 .m, Complex2.m, and so on. The final version will be called Complex.m.

Mathematica dialog is set in two columns. The left column contains explanations; the right
column contains input and output, including graphics. This form of presentation is derived
from The Mathematica Book.

As usual, we will clarify program structure by indentation. Mathematica allows writing
deeply nested expressions. It is, therefore, often necessary to break such expressions into
multiple lines.

xviii

In[1] : = Factor [XA34 - 1]

Out [1] = (- 1 + x) (1 + x)

About This Book

Here is an example of such a dialog. You
would enter only the input set in boldface.
The prompt In[1] : = is printed by Math­
ematica. If you work with the Notebook
frontend, this prompt will appear after you
evaluate your input with ENTER.

2 3 4 5 6 7 8 9
(1 - X + X - X + X - X + X - X + X - X +

10 11 12 13 14 15 16
X - X + X - X + X - X + X)

2 3 4 5 6 7 8 9
(1 + X + X + X + X + X + X + X + X + X +

10 11 12 13 14 15 16
X + X + X + X + X + X + X)

In most programming languages, you can define procedures, functions, or subroutines. Mathe­
matica uses only one mechanism, called definitions, which look like f [x_] : = def. Chapter 2
provides a short explanation of the elements of Mathematica's programming language. A more
in-depth presentation is given in Appendix B.

The table on page xx lists the mathematical notations that we use. Equations, figures,
program listings, and tables are numbered by section. For example, Equation 3.1-1 is the first
equation in Section 3. 1 .

Colophon

Mathematica dialogs were computed on a Sun ULTRAsparc II with Version 4.0 of Mathematica
using the initialization file init.m reproduced here.

Format [Continuation(_]] '2 ""

SeedRandom(10000]

Off (General : : spell , General : : spell1]

Unprotect [Short]
Short (e_] : = Short (e , 2]
Protect [Short]

(* lines are very short *)

SetOptions (Plot3D, AspectRat io -> Automat ic , PlotPoints - > 3 5]
SetOpt ions [Graphics3D , AspectRat io -> Automatic]
SetOptions [ParametricPlot , AspectRat io -> Automatic
SetDptions[ParametricPlot3D , Axes -> None]

Needs ("Programming!nMathematica' Options ' "]
SetAllDpt ions(ColorOutput -> GrayLevel]

$DefaultFont = {"Times-Roman" , 9.0} (* font in graphics *)

SetOptions (" stdout", PageWidth->56] (* line width *)

init.m: Matlzematica initialization for this book.

The manuscript is written in Ib.Tpc [40] (with many custom macros). It contains only the input
of the sample computations. The results were computed by Mathematica and were inserted

About This Book xix

automatically into the file. The bibliography was produced with BmT_EX [59], and the index
was sorted with makeindex [41]. Those figures not produced with Mathematica were designed
with FrameMaker and included in PostScript form. The reproductions of Notebooks and help
screens were taken from the computer's screen. Finally, the output of M.Tp. was converted
into PostScript and phototypeset.

lgx
logx
gcd(a, b)
alb
a mod b
a div b
signx
n!
N
z
Zp
R
c

lrJ
[rl

x�y
1t(X)
at
v.w
a�·b
divv
grads
\/2s
d dx
a ax

Xi--tY
A.x.t(x)
Lx ---t a]e
p/\q
pVq
p---tq
rU8
rns
r-s
.,. � .�

logarithm to base 2, log2 x
natural logarithm (base e)
greatest common divisor
a divides b
remainder when a is divided by b
integer part of the quotient ajb
sign of x
n factorial, n! = n(n- l)(n- 2) · · · 1; 0! = 1
set of nonnegative integers {0, l, 2, . .. }
ring of integers { 0, ±I, ±2, . . . }
residue classes modulo p
field of real numbers
field of complex numbers
imaginary unit, i = R
largest integer ::; r
smallest integer 2:: r
approximate equality of x and y
number of primes ::; x
transpose of matrix a
dot product of vectors v and w
outer product of tensors a and b
divergence of vector field v
gradient of scalar field s
Laplace operator, \/2.c:; = div grads

total derivative w.r.t. x

partial derivative w.r.t. x
mapping of x to y
lambda expression (pure function)
substitution of x by a in e
pAND q
pORq
p implies q
union of sets r and s
intersection of sets rands
difference of sets r and s
join of relations rands

Mathematical Notation Used in This Book.

About This Book

Chapter 1

Computers and Science

In the first section of this chapter we show how typical scientific problems can be solved with
the help of a computer. We also discuss methods to develop programs to solve these problems.
Section 1.2 covers computers and operating systems. We describe the historic development
and operating principles of a modem workstation.

Programming languages have developed along with hardware. In Section 1.3, we look at a
program in several forms - from machine language to a higher-level programming language.
An overview over the branches of computer science (Section 1.4) concludes the chapter.

About the illustration overleaf:
The illustration shows one of the simplest functions leading to chaotic behavior. We iterated
the map

f: x 1---t 4x(l - x).
The first nine iterations with three nearby starting values are displayed. These values separate
more and more, and show quite different behavior after only eight iterations. The picture was
produced with the command (see Pictures.m):

Animate [Functionlteration[4# (1-#) & , {0 . 099 , 0 . 1 , 0.101} , 0 , n , {0, 1} ,
Frame->True , FrameTicks->None] ,

{n , 1 , 9 , 1}] ; .
With the Mathematica frontend you can produce a genuine animation; here, on paper, we have
to put the frames next to each other.

1.1 From Problems to Programs

1.1 From Problems to Programs

3

For computer users, the possibility of solving problems by machine is the most interesting
aspect of computer science. Many textbooks and introductory classes deal exclusively with
(procedural) programming, however. Programming constructs are explained with the help of
simple programming exercises. Because traditional languages are not well suited to solving
mathematical and scientific problems, the courses usually fail to show how such problems
- which are, after all, our main interest - can be solved. The overhead stemming from
the low mathematical level of even so-called higher-level programming languages shadows
the underlying scientific problem and requires knowledge of memory organization, operating
systems, and so on. Many of these languages were developed by computer scientists for their
own use (e.g., to write compilers). In this book, we want to show that there is another way of
studying both computer science and its application to the sciences and engineering.

The following subsections describe some typical uses of computers in the sciences. The
examples are simpler than what you would encounter in practice, however.

We have not yet talked about how to program in Mathematica, so do not dwell on the
syntactic details; instead, observe how easy it is to solve a problem by computer. Most of the
time, the syntax will be similar to traditional mathematical notation. In the rest of this book,
you will learn how to express your computations in Mathematica.

1.1.1 Newton's Formula

A zero of a function f is a value x, such that f(x) = 0. Newton's method for approximate
determination of zeroes of functions f proceeds as follows. From a rough estimate xo of the
zero, we can find a better estimate x 1 according to the formula

f(xo) XJ = X() - -
f

-- ,
'(xo) ·

where !'denotes the derivative off. This formula is of the form

with

:r 1 == g(xo) ,

f(x) g(:r) = x - -- . f'(x)

(1. 1- 1)

(1. 1-2)

(l. l-3)

We appl y the same method to XI to get an even better approximation x2 = g(XJ), then repeat
the process. This method leads to the following iteration:

i = 0, 1' 2, (1 . 1-4)

4 1 Computers and Science

If this sequence converges, we have found a zero of f. For an example, let us compute square
roots.

The function Root0f2 has vl2 as its zero.

Here is the right-hand side of the iteration.

This equivalent form is often given in the
literature.

In[1] : = Root0f2 [x_] :• XA2 - 2

In[2] : = x - Root0f2[x] IRoot0f2 ' [x]

2
-2 + X

0ut [2)= X - ----
2 X

In[3] : a (2lx + x)l2

2
- + X
%

Out [3] = --
2

Let us define the iteration function g. In[4] : a g[x_] a (2/x + x) l2 ;

The start value xo = 1 gives this value o f x1• In[5] : 2 g[l . O]

Out [6]2 1 . 5

Here is x2. The shorthand notation Y. refer!>
to the previous result in Dut [5] above.

After seven iterations, successive values of x
are already equal; that is. we have found the
solution. This computation was done to 30-
digit accuracy.

In[6] : = g[Y.J

Out [6]a 1 . 41667

In[7]:= HestList [g, H [1 , 30] , 7] II TableForm
Out [7JIITableForma 1 . 00000000000000000000000000000

1 . 50000000000000000000000000000
1 . 41666666666666666666666666667
1 . 41421568627450980392156862745
1 . 41421356237468991062629557889
1 . 41421356237309504880168962350
1 . 41421356237309504880168872421
1 . 4142 1356237309504880168872421

For verification of the result, we square the In[8] := Last [Y,] A2
final value. It 1S correct to 29 decimal place1.. Out c8J = 2 . ooooooooooooooooooooooooooooo

Here is another example that shows that Newton's method does not always perform this well.

The zero of this function is 0, of course.

Again, we define the Iteration function h.

In[9] : a slov[x_] :• %A3

In[10] : 2 slov[O]

Out [10]= 0

In[1 1] : = h[x_] • x - slov[x] lslov'[x]

2 X
Out [l 1]2 -

3

1.1 From Problems to Programs

With the function h. we get slow conver­
gence, as you can see here.

5

In[12] : = lestList[h, N[1 , 30] , 22] II TablePorm
Out [12]//TableForm= l .OOOOOOOOOOOOOOOOOOOOOOOOOOOOO

0 . 666666666666666666666666666667
0 . 444444444444444444444444444444
0 . 296296296296296296296296296296
0 . 197530864197530864197530864198
0.131687242798353909465020576132
0 . 0877914951989026063100137174211
0 . 0585276634659350708733424782807
0 . 0390184423106233805822283188538
0 . 0260122948737489203881522125692
0 . 0173415299158326135921014750461
0 . 0115610199438884090614009833641
0 . 00770734662925893937426732224273
0 . 00513823108617262624951154816182
0 . 00342548739078175083300769877455
0 . 00228365826052116722200513251637
0 . 00152243884034744481467008834424
0 . 00101495922689829654311339222950
0 . 000676639484598864362075594819664
0 . 000451092989732576241383729879776
0 . 000300728659821717494255819919851
0 . 000200485773214478329503879946567
0 . 000133657182142985553002586631045

Even after 1 00 iterations, we have only 1 8 In [13] : = Nest [h, N[1 , 30] , 100]
digits of the zero.

-18
Out [13]= 2 . 45965442657982926924379399594 10

We can visualize easily the progress of Newton's method. We draw a line from the point (xo, 0)
up to (xo, j(xo)), then along the tangent to the intersection with the x axis, which is the
point (x1, 0), then back to (x 1, f(x 1)), and so on.

These steps have been collected in an ex­
tension of Mathematica, which we can read
into our session. Doing so will define the
command Newtoniteration.

The start value is 2, and we perform four
steps. Because of the fast convergence of
the square-root iteration, we can see only
the first two steps; the remaining lines are
too close to the graph of the function.

In[14] : = << CSM'Iterate'

In [15] : � Nevtoniteration[Root0f2 , 2 , 4, {1, 2}] ;

2 1
l.5�

1:
I

0.5

-0.5

- 1

6

The second example shows slow conver­
gence so we can see several more steps.

The zero of the cosine at x = 1t/2 can also
be found with this method. The values Xi
alternate between being too small and too
large, giving this picture.

1 Computers and Science

In[16]:� Nevtonlteration[slov, 0 . 6 , 6 , {0 , 0 . 65},
PlotRange->All] ;

0.25

0.2

0.15

0.1

0.05

In [17] : = Nevtonlteration[Cos , 0 . 5 , 4 , {0 , 3}] ;

1 -._

0.5

-0.5

-I

T_ 2 2.5 3

Numerical approximation techniques were among the first algorithms developed for computers.
One of the most important methods for numerical approximation is iteration. It is also used to
solve systems of equations and differential equations.

1.1.2 Fonnulae: Uniformly Accelerated Motion

A standard topic in an introductory physics course is uniformly accelerated motion. The
formulae for its special cases, such as free fall and braking distance, are easily derived from
the general formula by symbolic manipulation.

The velocity at timet is v(t) = vo + at. The
constant acceleration is denoted by a, and vo
is the initial velocity.

The distance traveled is the integral of the
velocity

s(t) = lt v("t}d"t

In[1] : = v[t_] � vO + a t

Out [1]= a t + vO

In[2] : = s [t_] = Integrate[v[tt] , {tt , 0 , t}]

2
a t

Out [2]= ---- + t vO
2

1.1 From Problems to Programs

Ifwesetvn toO and a tog, we get the formula
for the distance traveled in free fall.

The time it takes to bring a vehicle to a com­
plete stop is obtained as the solution of this
equation for final velocity 0.

This time gets us the braking distance. The
value grows quadratically with initial veloc­
ity vn. When the brakes are applied, the ac­
celeration a is negative. The value is there­
fore positive, despi te the minus sign .

In [3] : = s [t] / . {vO -> 0 , a -> g}

2
g t

Out [3]= -
2

In[4] : = Solve [v[tb] ·� 0, tb] [[l]]

vO
Out [4) R {tb -> - (--) }

a

In[5] : = s [tb] / . 1.
2 -vo

Out[5]= -
2 a

7

This kind of formula manipulation is typical of many scientific problems. A symbolic compu­
tation system can work with formulae and equations just as easily as an ordinary programming
language can work with numbers.

How such a symbolic computation system works is quite a different matter. The first
symbolic computation systems were written in LISP, which allows us to work with symbolic
expressions directly. We need "only" implement the underlying mathematical algorithms. We
shall take a look at LISP in Section 9.2.

1.1.3 Simulation: The Value of 1t

A simple physical experiment allows us to measure the area of a quarter of a disk and thus
to determine the value of 1t. We choose repeatedly a uniformly distributed random point in
the unit square and count how often it lies in the unit circle as well. The ratio of the number
of points in the unit circle to the total number of points is equal to the ratio of the areas of
the quarter disk and the unit square. Instead of performing the experiment in reality, we can
simulate it on the computer.

Each invocation of Random[] returns a real In[l] := Random[)
number distributed uniformly in the interval Out [1) R o. 753989
fromO to I .

This function (which has no arguments) In[2) : = randomPoint :• { Random[] , Random[] }
gives a randomly chosen point in the unit
square.

Here is a Jist of 200 simulations in abbrevi­
ated form.

In[3] : = (data R Table[randomPoint , {200}]) // Short

Out [3] //Short=

{{0 . 524444 , 0 . 759749} , {0 . 989753 , 0;5 18709} ,

{0 . 46092 , <<7>>31}, <<196>>, {0 . 51534 , 0 . 801726}}

8

We can take a better look at the simulation re­
sults by drawing the points in the unit square.

We are interested in the number of points in
the circle. This picture highlights the circle
inside the unit square.

This predicate tests whether a point lies in
the circle, that is, whether the point's dis­
tance from the origin is :5 1 .

Here is the fraction of points lying in the
circle.

We repeat the experiment with 1 00,000
points. The result is an approximation
ofrc/4.

Here are six exact decimals of rc/4.

1 Computers and Science

In[4) : = ListPlot [data, AspectRatio->Automatic] ; 0.8 0.6 0 .4

"t-;;:0";<"2-- ----:0::-.4;-- 0.6 0.8 -�1

In[5] : = Show [
Graphics[{

{GrayLevel[0 . 89] , Disk[{O , O} , 1 , {O ,Pi/2}]},
Line [{{0 , 0} , {1 , 0} ,{1 , 1} , {0 , 1} ,{0 , 0}}] }] ,

X , AspectRatio->Automatic] ;

l

_j
In[S] : = inCircle[pt_] : = Apply[Plus , pt�2] <= 1

In[7] : = Count [data, _?inCircle] I Length[data] // N

Out [7]= 0 . 845

In [8] : = data = Table [randomPoint , {100000}] ; \
Count [data, _?inCircle] I Length[data] // N

Out [8}= 0. 78338

In[9) : = N[Pi/4]

Out [9]= 0 . 785398

1.1 From Problems to Programs 9

This example uses the computer to simulate a physical experiment. One requirement for such
a simulation is a random-number generator. It is used in Monte Carlo simulation methods to
simulate a large number of trials. The results are then evaluated statistically. (Here, we simply
calculated an average.)

1.1.4 Solution of Equations: Operational Amplifiers

Here are the equations.

The circuit shown on the left is a noninverting amplifier,
realized using an operational amplifier (op amp). Because
of the almost ideal properties of op amps, this circuit can
be computed with a linear system of equations. We can

Vo assume that the difference of the two input voltages is zero,
that is, Vi = � . Furthermore, the input resistance is infinite,
which implies that the current through the two resistors R1
and R2 is the same. From Ohm's law, we arrive at equations
V1 = I R2 and V0 - Vj = I RJ . We are interested in the
voltage gain Av = Vof\ti.

In[1) : � gl � { vi == v1 ,
vl == i r2 ,
vo - v1 -- i r1 ,
av == vo/vi } ;

Solving for A,, we immediately get thestan­
dard formula for the voltage gain.

In[2] : = Solve [gl , av , {vi , vo , v 1 , i}]

r1 + r2
Out [2]� {{av -> --}}

r2

U.S Numerical Computation: Kepler's Equation

A planet P moves on an elliptic orbit with one focal point S
being the sun. To determine its location on the orbit, according
to the illustration, we need to determine the angle w, the true
anomaly. The time Jvf, called the mean anomaly, is measured

w starting from the point closest to the sun, such that one revo­
�--�--��----�� lution is equru to 2n.

First, we determine the angle E, called the eccentric anom­
aly, according to Kepler's equation:

Jt;f = E - E sin E , (1 . 1 -5)

where E. = (a2 - b2)ja denotes the eccentricity of the ellipse
with semimajor axes a and b. Equation 1 . 1 -5 cannot be solved for E in closed form, but we
can use an iterative method.

10 I Computers and Science

We write the equation in the form

E = M + E sin E . (1 .1--6)

The equation is now of the form E = f(E), with f(E) = M + E sin E, and it can be solved by
iteration. We let eo = JM and iterate ei = f(ei- 1), for i = 1, 2, 3,

In our example, the ratio of the axes is a/b =
3/2. Here is the corresponding val ue of the
eccentricity.

Here is the iteration function.

We perform 14 iterations for M = rc/2, that
is, after one-q uarter of a revolution. We can
see that values converge quickly toward a
solution.

The command FixedPoint [] performs the
iteration as many times as is necessary to find
the solution.

The function Kepler[M] allows us to
compute E for any given value of M.

Again, here is the solution for M = rc/2.

This curve shows the difference between
mean and eccentric anomalies during one
revolution of the planet.

In[1) : = eps = I[Sqrt [3�2 - 2�2]/3]

Out [1) = 0 . 745356

In[2] : = f [E_ , M_] : = M + eps Sin[E]

In(3] : = NestList [Punction[E, f [E , Pi/2]] , N[Pi/2] , 14]

Out (3] = {1 . 5708 , 2 . 31615, 2 . 1 1852 , 2 . 20712 , 2 . 17028,

2 . 18618, 2 . 17942 , 2 . 18231 , 2 . 18108 , 2 . 18161 , 2 . 18138 ,

2 . 18148, 2 . 18144, 2 . 18145 , 2 . 18145}

In[4] : = FixedPoint [Function[! , f [E , Pi/2)] , N[Pi/2]]

Out [4] � 2 . 18145

In[5] : = Kepler[M_] · =
FixedPoint [Function[E , f [E, K]] , N[K] ,

SameTest -> Equal]

In[6] : � Kepler [Pi/2]

Out [6]= 2 . 18145

In [7] := Plot [Kepler[M] - M, {M , 0, 2Pi}] ;

2 3 4 5
-0.2 �
-0.4

-0.6

6

This example uses one of the simplest approximation methods for solving equations that do
not have a solution in closed form. Because most equations occurring in practice are of this
kind, such methods are important.

I. I From Problems to Programs

1.1.6 Everything Together: The Diode Equation

11

This example shows the interplay of symbolic computation, numerics, and graphics for solving
a problem from electronics.

The relationship between voltage V and current I of a diode is

I = Io(eqV/k1' - 1) , (1 . 1-7)

where Io is the leakage current, q is the elementary charge, k is the Boltzmann constant, and T
is (absolute) temperature. Mathematica contains a table of such physical quantities. We read
it in and verify first that the dimensions in the equation are correct.

This package contains conversion functions
for all units imaginable (and then some).

We read in a table of physical constants.

This symbol is the elementary charge.

Finally, we introduce Boltzmann's constant.
Sl units are used.

In [1] := Needs ["Miscellaneous ' Units"']

In[2] : = Needs ["Miscellaneous ' PhysicalConstants ' "]

In[3] : = q = ElectronCharge

-19
Out [3]= 1 . 60218 10 Coulomb

In[4] : = k = BoltzmannConstant

-23
1 . 38066 10 Joule

Out [4)= --------
Kelvin

Here is the dimension of the exponent In [5] : = q Volt / (k Kelvin) qv/kT. The units should cancel. 1 1604 . 4 Coulomb Volt
Out [5]= --------

Joule

This command convetts the units to funda- In[6] : = Convert [Y, , 1]
mental SI units and shows that the result is Out [6)s 1 1604 . 4
correct.

Let us now replace q and k by dimension- In[7] : = q = q/Coulomb ; k = k Kelvin/ Joule ;
less numbers to simplify the following com-
putations.

Next, we define the diode equation and investigate the relationship between current and voltage.

This definition gives the current in terms of In[8] : = Diode [v_ , t_] := iO (Exp[q v/ (k t)] - 1)
voltage and temperature.

The leakage current is typically of this mag- In[9] : = iO = 10 . o�-9 ;
nitudc.

12

This diagram shows the current for a voltage
from 0 to 0.5V atroom temperature (70°F =
294 K). In the forward direction, the current
increases rapidly above 0.5 V because the
diode becomes a conductor.

For an exponential relationship, a log-linear
plot shows more detail. The LogPlot []
command i s from the standard package
Graphic s ' Graphics ' .

1 Computers and Science

In [10] : = Plot [Diode[v, 294] , {v, 0 , 0 . 5} ,
PlotRange->All , AxesLabel->{v, i}] ;

0.35 [
0.3 f

0.25

0.2

0. 1 5

0. 1

0.05
+---��--��--��---=�--� v

0. 1 0.2 0.3 0.4 0.5

In[11] : = LogPlot[Diode[v, 294] , {v , 0 .001 , 0 . 6}] ;

l O

0.0 1

0.0000 1

t . x w-s

0 0.1 0.2 0.3 0.4 0.5 0.6

V;
So that the diode is not destroyed, it is usually put in series with a
resistor R, as shown here . This resistor limits current. The current
becomes equal to (Vi - Va)/ R, according to Ohm's law. The current
through the resistor and that through the diode are equal. By combining
Ohm's law with the diode equation, we get

(Vi - Va)/ R = lo(eqv'afkT - 1) . (1 . 1-8)
We are mainly interested in the output voltage Va in relation to the
input voltage Vi. Because of the transcendent dependency, this equation
cannot be solved exactly for Va so we use a numerical approximation
technique.

The function FindRoot [equation , { var, start}] solves the given
equation for the unknown var. The search for a solution starts with the

value start. We know that the voltage across the diode is about 0.5 V, and so we use this value
as our start value. This simple equation does not need a good initial value.

l.l From Problems to Programs

We can solve the equation with FindRoot .
Here, we set V; = 12 V and R = 100 Q.

This definition solves the equation for v .. ,
and returns the solution.

Here, we can see how the diode works as
rectifier. It cuts off voltages above � 0.5 V.

Our circuit dampens variations of input volt­
age by this factor.

Here is the temperature coefficient. A tem­
perature change of 1 K changes the voltage
by only this much.

In[12] : = FindRoot [(12-va)/100 =• Diode [va, 294] ,
{va , 0 . 5}]

Out [12]= {va -> 0 .470296}

In[13] : = Va[vi_ , r_ , t_] : =

13

v a / . FindRoot[{vi-va) /r == Diode[va, t] ,
{va , 0 . 5}] [[1]]

In[14] : R Plot [Va[vi , 100 , 294] , {vi , -2 , 5} ,
!xesLabel -> {Subscript[V , i] , Subscript [V,a] }

] ;

.75

- 1

- 1 .25 f
In[15] : R (11 - 10) / (Va[1 1 , 100, 294] - Va[10, 100 , 294])

Out [15]= 396 . 695

In[16] : = (Va[10, 100, 294] - Va(10 , 100, 293])

Out [16]= 0 . 00157909

14 1 Computers and Science

1.2 Computers

Although they are called computers, these machines can do much more than compute. The
term hints at their first use. Before the age of computers, a computer was a human, equipped
with a mechanical calculator, who performed numerical computations. The first machines
in the United States (Howard Aiken's Mark I and the first machine with electron tubes, the
ENTAC) were used to solve numerical problems. The first machine using the binary number
system, Konrad Zuse's Z l , was developed to solve large computations in fluid dynamics. Alan
Turing was one of the first people to use such machines for nonnumerical purposes, namely.
for cryptanalysis.

1.2.1 Programmable Machines

The difference between a calculator and a computer is that the latter is programmable. Instead
of building a machine specific to a certain problem or rewiring one for a new problem, we
simply write a new program. On the first machines, these programs were written onto paper
tape, with each command on a line. A command was read and was executed immediately, and
then the tape was advanced by one position. Programmers implemented loops by gluing the
ends of the tape together.

The next major advance was storing programs inside the machine itself, as was first done on
the EDSAC, the successor of the ENIAC. This new idea allowed the implementation of jumps,
that is, commands that continue the program at a different place. Moreover, the place where
the program would continue could depend on the data being processed. Such conditional
statements were a major breakthrough. Konrad Zuse said:

This idea often scared me in the beginning, because until then with the computers ZI­
Z4 one could understand what was going on. You could even follow the calculations.
In the moment that I allowed the computed data to influence the program - for that
only a small wire connecting the arithmetic unit and the stored program is required - I
could no longer monitor the calculations. [75, p. 25]

The programs for such computers were also often stored on tape or punched cards, but the
whole program was read into the machine before it was executed. Today, programs are stored
like data, and they are loaded into main memory as needed.

1.2.2 Computer Architecture

Computer architecture is the study of the various functional units and their connections.
Figure 1 .2-1 shows the main parts of a modern workstation computer. The way such a

1.2 Computers

ALU

Main memory

Data

Addresses

10 unit

Figure 1.2-1 Building blocks of a computer.

15

Frame buffer

machine works has not changed much since John von Neumann formulated the von Neumann
architecture in 1 945. Accordingly, a computer consists of the following building blocks:

1 . The control unit loads instructions from memory and decodes them. Depending on the
kind of instruction, it configures the other parts of the machine to execute the instruction.

2. The arithmetic and logic unit (ALU) performs arithmetic and logic computations.

3. The nuzin memory is divided into sequentially numbered cells each of which contains a

word of memory of a certain size. The address tells the memory unit which word to read
or write. Words are represented in binary. The main memory contains both instructions
and data.

4. The input-output (10) unit is used to exchange data with external devices, such as secondary
memory, printer, keyboard, mouse, terminal , or the network.

16 1 Computers and Science

Modem computers contain additional parts, which do not change the overall structure funda­
mentally:

5. The register file is a collection of registers, which are a fast version of main memory.
The number of comparatively slow accesses to main memory is reduced by organizing a
computation so that operands can be read from a register, instead of from main memory.

6. The frame buffer is a part of main memory whose contents can be displayed on a screen.
Consecutive memory words correspond to consecutive pixels (picture elements), that is.
dots on the screen that can each display a color or graylevel from a certain range. The
frame buffer can be used to display text and graphics.

The instruction set of a modem computer can be divided into the following main groups. How
many instructions there are depends on the machine; there are substantial differences.

l . Arithmetic operations are performed on the contents of certain registers. The result is
written back into a register. Register contents are interpreted as binary coded numbers.
Examples are addition, subtraction, and multiplication. Few computers have instructions
for division; division is usually carried out by a small program.

2. Logical operations operate bit by bit on the contents of registers. Examples are AND, OR,

and NOT.

3. Comparisons perform Boolean operations on the registers and store the result in a status
register. They are used mainly to prepare conditional jumps. Examples are r1 = 0, r1 :/0,
r·1 > 0, and ·rt = rz.

4 . Memory operations transfer data between registers and memory.

5. Jumps change the ordinary sequential instruction sequence by writing a new value into the
program counter. Jumps can be conditional. A conditional jump is executed only if the
status register contains a certain value. If the condition is not satisfied, the next instruction
in sequence is executed. The value of the status register is set by a preceding comparison
instruction.

6. Subroutine calls are unconditional jumps that write the old value of the program counter
into another register. The return instruction restores the program counter from this saved
value, which causes the previous program to be continued.

The control unit can also react to external influences. A key being pressed, for example,
creates an impulse that causes the control unit to interrupt the current instruction sequence,
and to jump to another one. This interrupt sequence can use the 10 unit to find out which key
was pressed. As soon as the key has been identified, a return instruction is used to continue
the interrupted program. Most external devices can generate such interrupts.

1.2 Computers 17

1.2.3 Operating Systems

Running a modern computer itself requires a large program: the operating system. The
operating system coordinates the different parts of the computer and guides the correct running
of user programs. Most of today's computers work in time-sharing mode, meaning that several
programs can run concurrently. Chunks of the available processor time and the peripheral
devices are made available to the programs in turn.

The kernel is the program that starts running when a computer is powered on. It maintains
the interface between programs and the hardware. In addition to this kernel, an operating
system consists of several utilities, or auxiliary programs that are needed to operate a computer.
The linker, or loader, takes programs from secondary memory, connects them with the kernel,
and puts them into main memory for execution. The back-up program writes copies of files
from secondary memory onto off-line storage devices, such as magnetic tape, to protect the
Jiles in case of human or technical error. The command interpreter reads the commands
entered on the keyboard and runs the corresponding programs. Many of these interpreters are
small interpreted languages in their own right. An example is the Unix shell.

More and more frequently, graphical user interfaces (GUis) that use a mouse or another
pointing device are taking over the task of the command interpreter. A GUI performs two
main functions:

1 It manages the windows, that is, the rectangular areas on the screen that are used to interact
with programs.

1 It organizes your "desktop." It shows icons - graphical representations of your files - and
allows you to perform such tasks as copying or deleting files or to start programs by a few
clicks with the buttons of the mouse.

The first GUI was developed by Xerox. The first commercially successful GUI was part of the
Macintosh operating system. The Macintosh interface's ease of use is legendary, whereas the
two competing systems initially developed for the IBM PC - Windows 3 and the Presentation

Manager of OS/2 - failed on this measure. True progress was made only with NextStep.
Most high-end Unix-based scientific workstations use graphical interfaces derived from the
X Window System.

18 1 Computers and Science -------------------------

1.3 Programming Languages

With the increasing performance levels and growing commercial use of computers, people
came to realize that writing programs is a difficult task. What was more natural than to use
computers to write programs?

1.3.1 Machine Language and Assembler Programming

The first step toward easier programming was the simplification of producing machine­
language programs. People built assemblers - programs that allow you to write machine
instructions in symbol ic form and that can compute jump addresses. Listing 1.3-1 shows an
example of an assembly-language program. It was written for Sun Microsystems' SPARC
processor.

. proc 16 cmp %i1 , %i2

. global _vecMultLoop inc 2 , %i0
_vecMultLoop : bne L77016

save %sp , -96 , %sp srl %i5 , 16 , %i5
sll %i2 , 16 , 'l.i2 177018 :
srl %i2 , 16 , %i4 tst 'l.i5
sll 'l.i3, 1 , 'l.i3 be 177023
add 'l.i 1 , 'l.i3, 'l.i2 nop
cmp 'l,i1 , %i2 L77020 :
be 17701 8 lduh [%i0] , %o7
mov O , %i5 add %i5 , %o7 , %i5

177016 : sth %i5 , [%iO]
lduh [%i 1] , %o1 srl %i5 , 16 , %i5
call . umul , 2 tst 'l,i5
mov 'l.i4 , %o0 bne 177020
lduh [%i0] , %o3 inc 2 , %i 0
inc 2 , %i1 177023 :
add %o3 , %oO , %o3 ret
add 'l.i5 , %o3 , 'l.i5 restore
sth %i5 , ['l,iO]

Listing 1.3-1 An assembly program (written in two columns).

Typically, assembly-language programs contain labels: symbolic names of program lines (in
our example, they begin in column 1 and are terminated by a colon - e.g., L 77016 :). The
names of machine instructions are indented: for example, add is used to add the contents
of two registers. Instructions are followed by their arguments, that is, by the names of the
registers or the memory addresses to use. The instruction bne L 77016 is a conditional jump.
If the result of the preceding test is not equal to zero, the program will jump back to label
L 77016. This test is the preceding instruction crop %i 1 , %i2 , which compares registers i1
and i2 .

1.3 Programming Languages 19

The assembler transforms the assembly-language program into machine language by gen­
erating the bit patterns that correspond to the individual instructions and by replacing the
labels in the jump instructions by the length of the jump, that is, by the number of instructions
between the jump instruction and its target. The machine program generated from the program
in Listing 1 .3-1 is shown in Listing 1 .3-2. Nowadays, it is almost never necessary to work
with a program at this low level . Disassemblers and debuggers can transform such programs
back into higher-level languages.

0000000 0103 0107 0000 0080 0000 0000 0000 0000
0000020 0000 0018 0000 0000 0000 OOOc 0000 0000
0000040 9de3 bfaO b52e a0 10 b936 a010 b72e e001
0000060 b406 401b 80a6 401a 0280 OOOe ba10 2000
0000100 d216 4000 4000 0000 9010 001c d616 0000
0000120 b206 6002 9602 c008 ba07 400b fa36 0000
0000140 80a6 401a b006 2002 12bf fff6 bb37 6010
0000160 8090 001d 0280 0009 0100 0000 de16 0000
0000200 ba07 400£ fa36 0000 bb37 6010 8090 001d
0000220 12bf fffb b006 2002 81c7 e008 81e8 0000
0000240 0000 0024 0000 0186 ffff ffdc 0000 0004
0000260 0500 0000 0000 0000 0000 0011 0100 0000
0000300 0000 0000 0000 0018 5£76 6563 4d75 6c74
0000320 4c6f 6£70 002e 756d 756c 00a3

Li'lting 1.3-2 A machine program in hexadecimal notation.

1.3.2 Higher-Level Languages

The next step in the development of programming languages was the advent of higher-level

languages. In a higher-level language, we use symbolic names, or variables, instead of
memory addresses to denote values. Another important aspect is that we can write loops and
branches in a more human-readable form than is possible with assembler. One of the first
higher-level languages was FORTRAN. Over time, many other languages have been developed.
Depending on their intended usage and the personal preferences of their developers, they show
a (sometimes too) rich variety of features. A few of the better-known examples are LISP,
BASIC, COBOL, ALGOL 60, Prolog, C, Pascal, and Java. Listing 1 .3-3 shows a small
program in C.

Eventually, a program written in a higher-level language, like one in assembler, must also
be converted into machine language so that it can be run on a computer. The translation from
higher-level language to assembler is done by a compiler. Because of the power of expression
that such languages offer, compilers are usually very complicated programs. Incidentally, the
assembly-language program in Listing 1 .3-1 is the result of compilation of the C program
from Listing 1 .3-3. It is the inner loop of the multiplication of two long integers, carried out
as in Mathematica.

20

typedef unsigned short bigit ;
typedef unsigned int accu ;
canst BigBits � 1 6 ;
#define BigRem(a) ((bigit) (a))
#define Carry (a) ((a) >> BigBits)

1 Computers and Science

void vecMultLoop (bigit a , bigit b , unsigned int s i , unsigned int lb)

{ I* inner multiplication loop : a[O . . lb-1] +� s*b[O . . lb- 1] *I
accu ac = 0 ;
bigit s � si , *bi l ;

for (bil b + lb ; b !� bil ; b++ , a++) {
ac +� *a + s * *b ;

}

*a = BigRem(ac) ;
ac = Carry (ac) ;

}
while (ac ! = 0) {

ac +� *a ;

}
*a++ = BigRem (ac) ;
ac � Carry (ac) ;

Listing 1 .3-3 A C program.

1.3.3 Application-Specific Environments

After the development of higher-level languages, the emphasis in research and in commercial
software production shifted toward application-specific problem-solving environments. These
programs "know" the language of the application and have built in the most important meth­
ods used in a certain area. Examples are database systems, spreadsheets, expert systems,
desktop-publishing systems, and symbolic computation systems - among them Mathematica.
Mathematica, in turn, offers a programming language - the one we are using in this book.

Scientific Astronomer is an application
package written in Mathematica.

We can specify our location on Earth; the
Biirgenstock mountain in Switzerland, in
this case.

Figure 1 .3-1 shows a view of the northern
night sky over Biirgenstock at the given date
and time.

In[O] : = Needs["Astronomer ' "] ;

Astronomer i s Copyright (c) 1997 Stellar Software

In[1] : = SetLocation [{8+23/60 . , 47 . 0} ,
GeoAltitude -> 0 . 8 KiloMeter , TimeZone -> 2]

Out[1]= {GeoLongitude -> 8 . 38333 Degree ,

GeoLatitude -> 47 . Degree ,

GeoAltitude -> 0 . 8 KiloMeter , TimeZone -> 2}

In[2] : = CompassStarChart [North , {1997 , 8 , 17 , 2 1 , 30,0},
Mesh -> True , MagnitudeRange -> 4 . 0 ,
ConstellationLabels - > True , MilkyVay -> True

] ;

1.3 Programming Languages

Latitude
47 North

West North

Figure 1.3-1 The northern night sky on August 17, 1997.

1.3.4 Problem Solving by Computer

Aug 1 7
2 1 :30

East

21

We do not do programming for its own sake. It is only one part of problem solving. Solving
a problem begins with analyzing that problem. If you ask a stupid machine to perform a task,
you have to spell out all the steps accurately. As the saying goes,

The computer does not do what you want it to do; it does only what you tell it to do.

There is usually a broad choice of methods for solving any given problem, and the next step
is selecting one. Experience will teach you which ones to use in which situations. Once
you choose a method, you begin programming. Programming is an interactive process in
Mathematica: you can try out each small program piece immediately and see whether it
does what it should do. Thus you can do testing both as you write your program as well as
once you finish it. Part of testing is the simple but often-neglected step of thinking about
whether the output could be right. An important part of programming is writing the program
documentation. Then, if you are convinced that the program is correct, you can solve the
original problem. Finally, you need to format the output. There are few cases where the output
of a program is already the final answer to a scientific problem. Using graphics is often a good
way to present a result, as demonstrated by the examples given in Section 1 . 1 .

If software is developed commercially, these steps are formalized in a software project.
The project documentation becomes an important part of software development and the work
is often split among many people.

22 1 Computers and Science

Another important aspect of software development is software maintenance: the ongoing
development of the program in response to bug reports or changed requirements. Mathematica
itself is such a software project. Since its initial release in June 1 988, it has gone through many
new versions. These new versions solved identified problems and added new functionality.
The area of computer science that deals with methods of commercial software development is
called software engineering. We shall look at it in Chapter 4.

1.3.5 Programming Styles

Procedural languages have arisen more or less directly from assembly language. A procedural
program performs a computation one step at a time by modifying values of program variables.
Typical features are assignments, loops, conditional statements, and subroutines. The first of
these languages, FORTRAN, is still used for numerical computations. The most advanced
family of such languages originated with ALGOL 60, notable successors being Pascal and C,
both of which are in widespread use today.

Another path was taken by McCarthy in the development of LISP. A number of languages
evolved from LISP, and they are used mainly in artificial intelligence and in symbolic compu­
tation. A modem member of this family offunctional languages is Standard ML. A functional
program performs a computation by applying functions to values. This style of programming
is often neglected when traditional procedural languages are taught. We shall treat functional
programming in Section 9.2.

Declarative programming, or logic programming, is exemplified by the language Prolog.
A logic program states logic properties of predicates. A computation is a proof of the validity
of a predicate. We shall discuss rule-based programming - another variant of declarative
programming - in Section 1 0. 1 .

Object-oriented programming i s rapidly gaining in popularity. It began with Simula.
Nowadays, Smalltalk and C++ are widely used, with Java rapidly gaining in popularity.
Objects are collections of data and procedures. Computations are performed by sending
messages to objects. We shall treat object-oriented programming in Chapter 14.

Apart from these major languages, many other languages have been developed for specific
problems and cannot be put into one of the main categories. COBOL is the most widely used
programming language because it is used for commercial data processing. PostScript has
become the standard for the description of printed material, especially for laser printers. APL
and BASIC are other members of this heterogeneous group.

Mathematica incorporates features from all major programming styles, which allows us to
use the one best suited for a given problem.

1.4 Computer Science 23

1.4 Computer Science

Computers have become so important in science and engineering - and in everyday life - that a
new science has been established to deal with all aspects of computers. Its origins include both
electronics and mathematics. The earliest research institutes for computer science belonged
to one of these two fields. At most universities, independent departments of computer science
have been established during the last 20 years. Here is a somewhat biased overview of the
branches of computer science.

1.4.1 Theoretical Computer Science

Theoretical computer science studies the mathematical foundations of computer science. One
area is theory of computation, which investigates the relation between programs and mathe­
matical functions. Are there functions that cannot be computed by a program, even if we have
unlimited memory and time? We shall answer this question in Chapter 1 2.

Complexity theory is the second main topic of theoretical computer science. It focuses on
lhe difficulty of computing functions. How many operations does it take to solve a certain
problem? Are there lower bounds and, if so, can we write an optimal program? We shall look
at aspects of algorithmic complexity in Chapter 7.

Semantics is an important aspect of theoretical computer science. The semantics of a
program is its meaning. On the lowest level, the meaning of a program is the sequence of
states of the computer that executes the program. The final state after the completion of the
program is the result of the program. The state of a computer is the complete information
aoout the contents of each register and each word of memory. Usually, we are interested in
only a small subset of this state - for example, the contents of the frame buffer. This semantics
is called operational semantics. It is not satisfactory because it depends too much on the
details of the machine on which the program is run. A better approach to semantics is to find
a well-defined mathematical function that describes the program's output in terms of its input.
Because of the self-referential nature of programs (programs can have other programs as their
input or can produce programs as output), and because of recursion, the domains and ranges of
these mathematical functions are complicated. They are called universal domains. This kind
of semantics is termed denotational semantics. The denotation of a program is the function
it computes. Axiomatic semantics proves statements about the values of program variables
before and after a program is executed. We shall look at axiomatic semantics in Section 3.3.

1.4.2 Practical Computer Science

Practical computer science examines the tools needed to use computerS efficiently. These
tools are the compilers and interpreters for our languages and the operating systems (described

24 1 Computers and Science

in Section 1 .2.3). Gaining in importance are computer-aided tools for software development
- CASE tools - as well as the other problem-solving tools mentioned in Section 1 .3.

1.4.3 Technical Computer Science

Technical computer science studies the computers themselves, from how to design integrated
circuits (chips) to how best to connect the parts of a computer (see Section 1 .2.2). The main
area of research is to find alternatives to the traditional von Neumann architecture, such as
parallel and vector computers, often termed supercomputers. Development of peripherals,
secondary storage devices such as hard disks, and fast data-transmission channels also is part
of technical computer science.

1.4.4 Applied Computer Science

As a universal machine, computers can be found in almost all areas of science and engineering.
Applications in these areas cannot all be taken to be part of computer science, of course. Certain
types of applications, however, have been recognized as important areas of computer science
and have become part of applied computer science. Examples are numerical analysis, scientific
computation, computer graphics, databases, and real-time computation.

1.4.5 Computer Algebra

A significant part of Mathematica owes its existence to computer algebra, the study of al­
gorithms for symbolic (nonnumeric) computation. This field started soon after LISP was
developed. Early progress showed that it was feasible to perform many of the seemingly hard
computations from high-school mathematics efficiently by computer, and computer algebra
benefitted in turn from the increasing demand for tools for computer-aided mathematics in
research and industry.

�M_ ... JC..'",.._C '") • ' •• '"' '"'!'..'" -w" "" ... '"'" ._v _, • • • . • ._y, •• ... _.,._ ,. .._ ., .,. Y " .. ,., _-co-:{ •• :; ... ' ::=.� � " : : <.._':;..' �:..-A";'t .. �: · ._· .�,· •• _.: .. •• .r:.-. :'" �...,:�. :.: :-.� ."":�, :,"':. ,.: • .. "; .. • .. ·: , �'fY.)"Y • ., Y..- .)Vi •• f .., <) .)> • • '"'")._ ••) • . •-: -.<,.' �v ,. • •:> -.. • • ' • v Y • '" '!..' •''" ..,... '" • �.. ." Jf: :.·;..;_-:.�-,; """':': : '; < .:· ... "'..c : -� �y � .. �h. .. h . .. r .. :·� . �t: : ..:- .. :·.:-- : :,._. -- . :; .· ; ---: .· � ... �:.,..::}..c ::-. .:;�.,., . . · ,� "": ...):'·\�)·· .. :;:.v· .. · : :.= v,·.· .. ·.):.:�;·(.) : � .. :· . !J : :-:,'
-0o ..,-•• _.coO-• �: • 1 • •y{'!.1 •• -. y-. -. "./'1 • " ,P._ ,..) • .. • : . • ! ,. '!'\. '") • ::(". • � • -c,--. ':Jf'!'-• ._

•�)'=� • ! '" oC-_. � · �"to��.) N ! ?, :_y �; ::�-co',.• •::.: •; • .. • • ·.• ; -!. : • ! :; . •'" ·� : . :.: .. '"• •,.•: .�
<.:J• _':J> ... :,.":i.-c- -:" • ;$:.. :.��-;.,h ... ": ;.,• .. (..

'"_.. • $.,�•. I , ... :.. .. ./' :.•.,-..;:. ,."'>• �· : ... <-:-- � ... "v,. : :-,: e "./'• • .,' � • •..- • o(ei' (: -A.y .._ e ,o(�V • ..., ... e ,. J",.. �/o: ..-• •.• '<h-,, v, . .. •'< .,•• • ,. :,)" ••" .. ,..,...<- "11\. .((Y .II(• . .. • • :-(" ,... • . y •••) "S · �· . .. • • • "' . , • .._ .. ._ ,. ,., . r < -.. ,
·=:.:� ·.f. �·.-=. :.v.<·=-/�·:

�
·.::- ... ·:.,·::: ·::;-

· <
.; ... � � ... � " : :·::-: .. �' :... �·,-:; -�· · : ·�· :-....

.... ..,. . • ,_,.,.. . .. -" ' - �v: ·· ' ., . .. ;,1'- . 'lc , , ,., ' ' • • \._••>.--.) --: •' '!'\, � · • ·-. ,�· ,) , • ;,• :- "" v •• .,.. • '· .,. <. � · • • • ._ •.t�:··· · · · • • -. • " · • . "" : � : ·":(:"y; : .. ji,: :,N .. -;:� -: ! -� . .. ·. � · -'<� �< : ·, ;:, -; : i' .. /: <''!}: .. -..;. ";.,:\.. : ":! �:
A:" "'"' ••"" ... � y::. · >-. , .. : . � .. �)·�).(. , ·<' � -- · "·<- · · ... : · ·< ,jA , . < ,. •
. • ·· -.. ':.-·�-.. : •. :<.-.·

. :-.'·"': .·. <- .·>-= · !"' .··: -: r,-:· :,",,... · ,...."Y v' :· . .. ':, (... -.··-:.:"). .. <\..
. ... ":. .. < -:.. ··:-:.-·��-:- � ··: . :; · ·, ,)'_. .. .c ... � Y·.:·: ·.� =-:--:_ :. ·)'.< ·· '(y"'!· · r:- :,:>·:" .. . :" .. '�= ... • ;<v• =Y) � =-· < ..,� (," ... : • ,"'Y. , . : .-. .. : "' · -<.. ··�..- : ·"_• < ".., . · " :--. • .. . ,.. • . ,.. ,..... , -., .;- �-== � .. ; .. :"': ··v .:

·
· • ;..,· ."1 ."> "<-": .-� ::t.".• � "':.>< :.: • "'." ..)·:· .. ·,. : .. :..-j.�· "'(,� .-.�·· . ._ .,."' :> "• : .. · •. �·:·:...,

:-:, ·'...:"" · ... < .. 'f" V." -� · :) .. � ·� .. � ... :.·. · ·."t .. ,"'! .. « .. :--:_· · ... : ;. � : ._.
, .

...... .. :� ·,"f.._: . . ": .. ._o(• o •,•:y
.' ,_,� ! ·.,,.._Y.,._ -:-=""'• • :.•.� .)'._ -=-�h 'o(Jl, "'.:;•�./' Y· • ••

• • ' :<;•."._• • :..�.� ,) .� J(_ "' • • 1 • :: �. : • .. . • 'Iii,"-• ... • '! "').J',oOo I)." .. ' • :. ('• e e� ;(..., .. . I " ./' "' �/ ... "' "' -..(• ! :... � �
:· --:_ .=�,· .. �.:.:--.:.· .. � ·):>� : <_: ·. :< � "-- ·�.· ·."'- ; ... < · • • • · ·: : : ·.:. .. "')! f." ... · .. : :" .. � :; ...
·(.· :)'•.> ·.� .. . '!. -..:."'·""� ;. ••

. i . >�-o. .. : � ·.: , .. � -c'< :V:.:"� •• "-� • • ·.f" • •
• • .;" • "', .< .. � Y ": . : � : ·:"; '! Y_. � --:,<.• yt:.....-_.:-:.._ � •(1 .. • "'"'"'., • • ; •. -.:-:.,.,Y.� ... <.=._#;. -. ::.• ./'� '" _. "'<_. ; , • . -. 'f !.r-... • "•-."' '! • •"' "'

· "·
• "' h _./(.• � • • • , • . -.-. • Y ._. : .• ;, ... • •,(" "' •)<-/:'\ ... ,. •• '\ o "' ; •• •: • (,•; :..h "': .. � ... •; -_, "'••�'\ ".<,.., •>' • � •):.._ •.< .,Y! 1 • : 1Y)• .):. • •• • • (o l' "'.,• , <.;. · · < : ... <-; :> = · ... �:' ='· · · : :V '"")'.:: · :·· · :-: . . . ·� ··· .. I ,· •• (

� = ·;=._' - ��� ".-.v\· : ,.. . . -... .:>""/. ·:-! "' : .. -:. : ,,·:. .. <.:." �
V

A:< -..·. Y_. :>"'." .":...rv:·� ... : .:_�. : •
• :" ... • <:.,. :: • .,< N : :,.': ... "'.,:.•= •:e :.,.

�-:_,;.'-..; • " -. :_y: : • ;..,•, :
.,/:,.,... .. :Y., "•"'•� • •-c • .•;..__.

.. -:=--<· . �= = ·,= =· · .. ·. , ... , ·.� • • :> :r .. ::>' , -:� <(·y : "= . :.- Y � r.: ., -:.' .. -�.· = = ,... , . =l ... :'$. � '.-.: · · · .. . ,. -..< ·' • , � < "".-· • ...
... ... ··. · = · . . , ,<. :;,• ,. ::,c. :: ,. ·< :> ... J" .· •,:e.· .· . , . . ., .· .. :.·< > "'� y .
.. •• :• "f. _. :: ,'! ... : :._ .. : •) " . �·. --. "'.r.,}o : ,Y••• . :· ·.:�• .·��"'. = ... · '\o:rv:. ;. . •:.;,_,. "• .._ ... • ':
::<�y ··.; , ·, :> : ·. · .:..' � .. . '.-. • • · ,· �" · l. ?� t ..- . . ·.� . .e • ..-,"'· .1; : :: : : • . ;_. . -.._ . ..,)_.. . :"� P :
.. "': � � = ?<.· : =\,.::---,··· :-. .. _,.,,-:, : : :> "'!:£::;· . . �-· ;� . .:..-:- .<_ :"': : : ·:· ...
.. ·: ·-"' . ·--= -..< "' :W:<-)' : ·<.-..· • : : - ·� -<.." ' ... -... �· ,
-. ·; ; <. = ·�:;; t·: : ... ·� · · .·\ ·::. -:: :> ,.,. A:'":: ,...:.. --. .", : ... "': :.: .· : , �··;' > " ... • • • •• :..-.�"'· - �·:> ... ·: � .: -,. . •• •• ;":·· =.'': t". '"'> .>. < : ·· ·� .. "' � -� .) . =-· ' < ·. ·-..� ' .. ,y., : :.v.· •• . 'l"' .;�·· -� ·)'==···. ·.·": · ·: :: < : ,. . , �- < "

• " � I ,•
... ·'<"' . (., :-, ... : •-. : ." · . e� .· .. � ; • :-.. • > •""'.-."' ''(..." • • ... �1 I �� =-... . • �")" • • •• > ... � . - · · : :.,. · • .-.,. ... · � · _.;.).< :"· .. : .. . :) .. :")'::' . · · : ,.,·.··'":'_. :. y< . � ,O)o)ou,. o •:)') .• • --c • � • .. rl'... ._), � Y ! •• • • • :-- . <(· ·' ,.;- • • ,./'o -...., (• #'•

;,,_,.. < ,v;.._ • • • "· .. ·.;:; · .. ·.:.. r:-. � ". :-- . = <� · -� .. • • · � ·-:_.,.:._ ... ·= · ·-: : :.� :· ·:; · ;.:,-o..' .. :>:..· •) • , • ., • y •., "' I' '{'_..-.. • ... � Y•).' • "' "• • • • l' .t :..• (,"' ' . �)'_.) ... , . ., ., • ., .-. .,.._ •
, ... : • • • • • .. ,":) " "'." .. .(<(·,. .. , ... y " J(. ··":.. ;: . � .. •).� • ,(... ·· :-. (:· "',:> : :· : .· · : :

� ·,.._. :.:, : � -;� < "' : '"':' v f.),." . · : ·· ·[,. :,. . • • ·,., .,.�"': = . · ·._ ·,.... . :",rt � Y ._: · :,... : . :-""'<- "-.: •• • ! :
·.� ... :)' .�. · :. ·::.t·

·
: .. , ·. · ..:� , , · ·. ,. . : ·.-. ·'j " .. � ·!'":_ ·-. · • • � .. ·.: ·, <-"": . "' ::_<-, , . ;_ . · � . . ·':e: ':,'! . ·.:)�: � . . < • • =<. ... :_.-. � ·: ·.f; ... ·"t< ··.": ,. ·.!" . ,., _� • • ., · �·.· '! ·,.,: ·, • . • • .r; .- • • •• • • · -.-.. < ·,.-. .': ..,:' · ·�_.v · f : ·.· :v., <- •• •. • ":,. <

'! ... ;'"· ·· :t .. · "!,"'. · · >..-. �,": : � : · � ·· � .. , . .. ·. ·." .. • · : • • •• ; :" : . ·. ·-:-"'� � : � ... < ..
.... ... " _. • •• • ,') . -. ! , : • • •, y ._-. ('! ..-:. :: •._ : • •• "')./' � '" Y�.,, (_. y • •,. <-o, • "'o : • •• :- · � .. oe ee 10 Y JI ,. '\, ... • 1 I ,1\ e 1 I : ... I I e II ./' I h ,/ e

� � {1 =-=

� s. "t:S
f'+ ft)

= �
..,

= N
(JC � � ::::-. �

�
....

ri'J
�
.., =

(JC
..,
= = =
jllllll .
=

(JC

In this chapter, we examine Mathematica's programming language. Every language has a
unique syntax that we must understand before we can write even a simple program. Learning
an interactive language is easier than learning a language that has to be compiled. We
recommend strongly that you try out the examples on your own machine; only by working
them through will you get practical experience with Mathematica.

Section 2. 1 covers arithmetic and logic expressions. Such expressions appear in mos[
programs. In Mathematica, we can do computations with arithmetic expressions immediately;
we do not have to write a whole program just to compute 2100, for example.

Building blocks for programs are the topic of Sections 2.2 and 2.3. The concept of
variables, or symbols, is of central importance in programming languages. Many languages
treat symbols only as program variables - that is, as notations for values stored in the computer.
Mathematica allows us to do computations with symbols. Symbols are also used to organize
function definitions. Using definitions is the most important way to program in Mathematica.
We shall also talk about the more traditional concepts of conditional statements, loops, and
procedures. We shall briefly discuss pure functions, which we shall use in many situations.

The theory behind Mathematica's expressive power is treated in Section 2.4. It should give
you an idea about how expressions are built up and help you to understand how the concepts
treated earlier in this chapter fit together.

Finally, we give practical hints about on-l ine help and syntax errors in Section 2.5.

About the illustration overleaf:
The distribution of Gaussian primes (black dots) among ;z· + iy for 0 :::; x :::; 255, 0 :::; y :S 255.
The origin is in the lower left comer. The plot was made with this command (see Pictures.m):

grid = Table [If [PrimeQ[x + I y] , 0 , 1] , {x , 0 , 255} , {y , 0 , 255}] ;
Show [Graphics [Raster [grid]] , AspectRat io -> Automatic] .

2. 1 Arithmetic and Logic 27

2.1 Arithmetic and Logic

Arithmetic expressions can be found in nearly every program. Most languages - includ­
ing Mathematica - allow you to write arithmetic expressions with traditional mathematical
notation. Logic expressions are used to test properties of numbers.

2.1.1 Arithmetic Expressions

Mathematica can be used like a calculator. Using the four arithmetic operations and parenthe­
ses, you can enter arbitrarily complex expressions, the results of which will then be displayed.

The arithmetic operations have their usual
precedence: therefore. the sum 3 + 4 must be
in parentheses.

Without parentheses, we get this result, cor­
responding to 3 + (4 · 5).

The mulliplication sign can be left out.

Mathematica always computes an exact rc­
�ult, if all inputs are exact numbers.

You have to ask explicitly for a floating-point
approximation.

Exponentiation ab is written as a"b.

Oh�erve that exponentiation is right asso­
ciative. This input is read as a" (b .. c) .

Parentheses are necessary for (ab)c .

There is no built-in limit for the size of the
numbers you can use. (Only available mem­
ory will set practical limits.) The number
1 110! has 158 digits.

In [1) : = (3 + 4) •6

Out [1) = 35

In [2] : = 3 + 4•6

Out [2)"' 23

In[3) : "' (3 + 4) 6

Out [3)"' 35

In[4] : = 1 + 1/3

4
Out [4)"' -

3

In [5) : "' !l [%]

Out [5] = 1 . 33333

In[6) : "' 2A10

Dut [6)"' 1024

c
b

Dut [7)"' a

In[8) : = (a�>b) AC

b c
Dut [8)"' (a)

In[9) : = 100 !

Out [9)= 93326215443944152681699238856266700490715968264\

38162146859296389521759999322991560894146397615651828\

6253697920827223758251 1852109168640000000000000000000\

00000

28 2 Mathematica 's Programming Languagtt

Here is a sum of three fourth powers. In[lO] : • 95800A4 + 217619A4 + 414660A4

Out [10]• 31858749840007945920321

The result is again a fourth power, as this cal- In(U] : • X A (1/4)
culation shows. The fourth root is computed Out [1 1] . 422481
only if doing so is possible exactly.

2.1.2 Logical (Boolean) Expressions

Logical, or Boolean, expressions are tests whose results can be true or false. Mathematica uses
the symbols True and False to denote the two truth values. Ordering relations are expressed
with the usual symbols: n1 < n2 , n1 >= n2 , and so on. Equality of numbers is written with
two equal signs:

Inequality is expressed as follows:

Negation of a logical expression r is written as ! r . The AND connection of two expressions r1
and r-2 is written

and the OR connection as

Mathematica can figure out this inequality
immediately.

Different comparison operators can be
mixed. The result is True , because both
0 :::; 2 and 2 < 5 are true.

The same test can be expressed like this.

Negation changes a truth value to the oppo­
site value.

r, I I r·2 .
In [1 2] : • 2 < 5

Out[12]• True

In[13] : � 0 <• 2 < 5

Out [13]= True

In[14] : � 0 <• 2 ll 2 < 6

Out [14]= True

In[15] : = (! False)

Out [15]= True

Because variables can have symbol ic values, not every logical expression can be figured out
immediately. If Mathematica finds a logical expression whose value cannot be determined
that expression is left as is.

Because the variables a and b have no val- In[16] : = a •• b
ues, the value of this equation cannot yet be Out [161� a -= b
found; the expression is left as is.

2.1 Arithmetic and Logic

The first expression 2<5 returns True ; the
second one does not matter anymore.

For the AND connection, all parts must return
True . The first expression is already True ;
therefore, only the second one matters.

Matllematica looks ahead and sees the sec­
ond expression, which returns True .

2.1.3 Lists

In[17] : � 2 < 5 I I a •• b

Out [17l � True

In[18] : • 2 < 5 lt a .. b

0Ut [18] = a == b

In[19] : � a .. b I I 2 < 6

Out [19]� True

29

Lists are linearly ordered collections of data. In Mathematica, lists are written with curly
braces, as {el , ez , . . . , en} . The ei are the elements of the list, n is the length of the list.

List� can hold together arbitrary elements.
The last element of this list is again a list
(with two elements).

Mathematica provides many operations on
list�; here we reverse the order of the ele­
ments of the preceding list.

Here is the list's length.

ln[l l : � {a , 2 , Pi , {1 , 0}}

OUt [l] = {a , 2, Pi , {1 , 0}}

In[2] : � Reverse [X 1
0Ut [2] � {{1 , 0}, Pi , 2 , a}

ln[3] : = Length[X]

0Ut [3] • 4

The function Part [list , i] returns a list's ith element. It is most often written with double

square brackets, as list [[i]] . This notation was chosen in analogy to the notation for array
elements in many traditional programming languages.

Here is the second element of the list
{a, b, c} .
This alternate syntax gives the same result.

Negative indices count from the end of the
list. Here is the list's last element.

In[4] : = Part [{a, b , c} , 2]

Out [4]= b

In[5] : a {a, b , c} [[2]]

Out [5]a b
In[6] : � Part[{a, b , c} , -1]

0Ut [6)a C

Mathematica uses lists to represent arrays or vectors; nested lists are used for matrices, see
Chapter S.

30 2 Mathematica 's Programming Langooge

2.2 Definitions

Simple mathematical functions can be defined almost in the usual notation. The function that
squares its argument is normally written as follows:

f(x) = x2 • (2.2-1)

Mathematica uses square brackets for function arguments. The operator for definition is : = .

The formal parameter x corresponds to a pattern that is denoted by x_ . We have already seen
how powers are written. Therefore, in Mathematica Equation 2.2-l looks like this:

The function f is defined like this.

We use the new function f inunediately. For
numerical arguments, the result can be cal­
culated.

For symbolic arguments, no further simpli­
fication takes place.

A question mark at the beginning of a line
can be used to show all definitions made for
a symbol.

2.2.1 Several Definitions

f [x_] : = x112 .

In[l] : = f [x_] : • XA2

In[2] : = f [2]

Out [2] = 4

In[3] : • f [1 + y]

2
Out [3]= (1 + y)

In[4] : � ?f

Global' £

f (x_] : " XA2

(2.2-2)

A new definition for a symbol overwrites an existing one only if the left side is the same.

This definition overwrites the old one given In[5] : = f [x_] : • :J:A3
for f .

We can see that only the new one remains. In [6] : " ?f

Global ' £

f (%_] : =' XA3

If the left side of a new definition is different from those already stored, the new definition is
added to the list of definitions. Definitions that are more specialized than existing ones are put
before more general ones.

Here is the general rule for the factorial func- In[l] : = factorial[n_] :a n factorial.[n-1]
tion.

2.2 Definitions

This definition establishes the initial condi­
tion.

Even though the initial condition is given
second, it is put before the general rule.

Only in this way can the function work at
all.

Clear[!J clears all definitions made for a
symbol f.
Mathematica no longer knows any defini­
tions for the symbol factorial .

In[2] : a factorial[O] • 1

Out [2]= 1

In[3] : a ?factorial

Global ' factorial

factorial [O] = 1

factorial[n_] : = n•factorial[n - 1]

In[4] : = factorial [30]

Out [4]a 265252859812191058636308480000000

In[5] : = Clear [factorial]

In[6] : a ?factorial

Global' factorial

31

. Ifyonsetup de!fuitioh� int�actively andwant to modify existing ohes,yO.u should make sure .

tbattlle newories d� in fi�t ove(\\'rite ihe old ones� Often, it is better to use ciear[symbolJ
to clear all definitions aild ihen to. start (:w�; With ? symbol� you can always dteck which ··

. �finiti?�s are in effec��
··

. , .•. . ·
·

_ , ... , w • • • __ • • __ ,

2.2.2 Piecewise-Defined Functions

Piecewise-definedfunctions can be implemented with several definitions with the appropriate
conditions on their validity. Definitions valid under only certain conditions are given as
follows:

Is I ; cond : = rs .

The condition cond is a logical expression.
The absolute value of a real number is defined thus:

abs(x) = { x
-x

for x � 0 ;
for x < 0 .

(2.2-3)

These two conditional definitions can be entered into Mathematica similarly as two separate
definitions.

The absolute value of x is equal to x, if In[7] : a abs [x_] / ; x >• 0 : • x
X � 0.

The absolute value of x is equal to -x, if In[8] := abe [x_] /; x < 0 :• -x
X < 0.

32 2 Mathematica 's Programming Language

The first rule that matches is used. In[9] : = {abs [-1 1 . abs[O] , abs[l]}

Out(9]= {1 , 0 , 1}

Of course, our own functions can also be In[10] : = Plot [abs [xl , b, -1 , 1}] ;
plotted.

0.8

0.6

0.4

- � ---
-0.5 0.5

For symbolic arguments, nothing is known In[11] : = abs [a]
about their sign. The function abs [] there- Out [11] = abs [a]
fore remains unevaluated.

2.2.3 Immediate and Delayed Definitions

You will encounter two kinds of definitions; those with ls = rs , and those with ls : = rs. The
difference lies in when the right side (rs) is evaluated. The first kind, immediate definitions,
evaluates the right side when the definition is given; the second kind evaluates it only when
the definition is used later on. The second kind, delayed definition, should be used if the
left side (Is) contains pattern variables - for example, in f [x_] : = XA2 . As we have seen in
the preceding sections, these definitions are usually used to define functions. The right side
of function definitions, called the body of the function, should be evaluated only when the
function is used, not when it is defined.

Immediate definitions can be used if the left side is constant - for example, in f ib [0] = 1,
or when a value for a symbol is defined, as in a = 5 .

To make the difference visible, we give a
value to the variable x .

In[1] : = x = 77

Out [1] = 77

This delayed definition is not influenced by In[2] : = f [x_] : = x"2
the global value of x .

First, the value of the pattern variable x is
inserted; then, the right side is evaluated.

As you can see, the definition for f still
contains x, not its value.

ln(3] : s £ [2]

Out [3] .. 4

In(4] : = ?f

Global' £

f (X_] : = XA2

2.2 Definitions

The right side of this definition is evaluated
Immediately.

The value of the pattern variable x is not
used at all because it does not appear in the
evaluated right side. NonnaHy, this is not
what we want.

Here, you can see that the definition for g
does not contain x at all. It was replaced by
its value when the definition was made.

In[5] : = g[x_] • x�2

Out [5]= 5929

In[6] : • g[2]

Out [5] .. 5929

In[7] : = ?g

Global ' g

g[x_] = 5929

"&ldions should nonnally be set up with delayed definitions {with : =).

'Fotoonstants and for symbols, immediate definitions (with =) can be given.

33

34 2 Mathematica 's Programming Languagt

2.3 Simple Program Structures

In this section, we shall look at building blocks of programs. Every program in the rest of this
book is composed of the language elements described here.

2.3.1 Variables and Symbols

You can use variables for symbolic computation (without giving them a value).

The variable x is treated as an indeterminate,
as is customary in mathematics.

Even without a value for x, we know that it
is equal to itself.

Here is a symbolic sum of the powers 0
through 5 of x .

In[1] : • Bxpand[(1+x) A6]

2 3 4 5 6
0ut (1] = 1 + 6 X + 15 X + 20 X + 15 X + 6 X + X

In(2] : = X a• X

Out [2]= True

In[3] : • Sum[x"i • {i , 0, 5}]

2 3 4 5
0ut(3]= 1 + X + X + X + X + X

You can assign values to variables. The values can be numbers or formulae. Every time a
variable is used, its value is inserted.

We set the value of the variable n to 4. In[4] :a n = 4

Out [4]• 4

This value of n is now used in this formula. In[5] := 1 + n + n"2

Out [5]• 21

The value of x is another formula.

This value, too, is used.

By expanding products and powers with
the command Expand[) , we get the well­
known formula (a + b)2 = a2 + 2ab + b2•

You can do assignments in parallel by en­
closing the left and right sides in lists (curly
braces).

The assignments are done in parallel. There­
fore, this command interchanges the values
of x and y .

ln[6] : = x • a+b

Out [6]= a + b

In [7] : = x"2

2
Out [7] • (a + b)

In[8] : = Expand[X]

2 2
Out [8]= a + 2 a b + b

In [9] : • {x , y} a {2 , 3}

Out [9] • {2 , 3}

In[10] : � {x, y} • {y , - x}

Out [10]� {3 , 2}

2.3 Simple Program Structures 35

2.3.2 Sequences of Assignments

Expressions or statements can be separated by a semicolon (;). They are then evaluated one
after the other.

The commands are executed in the order giv •

en. The value of the last one is returned.

If !he last command (after the semicolon) is
empty, no value is returned.

The percent sign (Y.) can still be used to
access the value of the last expression before
the semicolon. This possibility is useful if a
command would produce a large output.

2.3.3 Conditional Expressions

In[1] : • n • 6 ; a • (1 + n) A6 ; Expand[(a + x) A2]

2
Out [1]= 60466176 + 15652 x + x

In[2] : • Expand[(1+x) A 100] ;

In[3] : = Length[�]

Out [3]= 101

Conditional expressions are programmed with If [] . The syntax is

If [predicate , true , false] .

First, the predicate (a logical expression) is tested. If it evaluates to True , the value returned
is equal to the value of the expression true. If it evaluates to False , the value returned is the

value of false.
This is a second way ofdefining the absolute In[l] : • abs [x_] : • I f [x >• o , x, -x]
value: If x ?. 0, then x; else, -x.

This definition works exactly like the ones In[2] : • abs [-2]
in Section 2.2.2. out [2]• 2

The If(] expression also remains unevalu- In[3] : • abs [a)
aled, ifthe truthvalue ofthe predicate cannot Out [a]• If [a >• o , a, -a]
be detennined.

2.3.4 Loops

Loops are programmed with While [] . The syntax is

While [predicate , statements] .

36 2 Mathematica 's Programming lAnguage

First, the predicate (a logical expression) is tested. If it evaluates to True , the expres­
sion statements is evaluated once. Then, predicate is evaluated again, and so on, until the
value of predicate is no longer True .

Here is a parallel assignment for the vari­
ables a and b .

This loop computes the greatest common di­
visor of the integers a and b . (See also
Section 3 . 1 .)

The greatest common divisor of 1 999
and 2999 is now in the variable a .

ln[4] : = {a, b} • {1999, 2999}

Out [4]= {1999 , 2999}

In[5] : = While[b !• 0 , {a, b} • {b , Mod[a, b]}]

In[6] : = a

Out (6]= 1

There are two ways to change the flow of control in a loop: Break[] and Continue [] , which
can be used in exceptional circumstances.

The Break [] command exits the loop immediately. The following loop searches for an
element e in a list 1 and exits the loop as soon as e has been found:

i = 1 ;
n = Length[l] ;
While[i <E n ,

I f [l ([i]] === e , Break[]] ;
i = i + 1

You can often avoid such a special exit by changing the loop predicate accordingly. The
preceding example would be expressed more clearly as follows:

i = 1 ;
n = Length[l] ;
While [i <= n && l [[i]] • ! = e ,

i = i + 1

Sometimes we use Break [] because it makes certain programs more readable (see Sec­
tions 6. 1 . 1 and 8.4.3). Before using it, however, you should try to find a more elegant way
to express your loop because jumping around in a program usually makes it more difficult to
understand.

The Continue [] command causes the rest of the current loop iteration to be skipped. The
program continues testing the loop predicate. An example using Continue(] can be seen io
the function walk[] in Listing 8.5- 1 .

2.3 Simple Program Structures 37

2.3.5 Iterators
An iterator evaluates an expression several times, while changing the value of an iterator
variable. The general form is

command[expression , iterator] ,

where command is Do , Table , Sum, or Product . The iterations are specified by iterator,
which gives the va1ues over which the iterator variable ranges. There four forms; in the
following box, var is the iterator variable taking on certain values in tum:

{var, from, to}
{var, to}

{var. from, to , step}
{n}

var takes successive valuesfrom,from + 1 , . . • , to
initial value from defaults to 1
step size is step (instead of 1)
evaluates expression n times, without an iterator variable

Forms of iterators in Mathematica.

The iterator Do [statements , iterator] simply evaluates statements without returning a value.
To see what happens, we can use a Print [] command, for example.

The iterator is evaluated five times, with
i takmg on the values I , 2, . . . • 5.

Here, the value of i is incremented by 2 and
end� at 9.

Let's set x to 1 .0.

Now, we replace x by I + I / x, a total of
IO Umes.

This value is the final value of x - an ap­
proximation to the Golden Ratio.

In[1] : - Do [Print [i] , {i , 1 , 5}]

1
2
3
4
5

In[2] : : Do [Print [i] , {i, 1 , 9 , 2}]

1
3
5
7
9

In[3] : • x z 1 . 0

Out [3]• 1 .

In[4) : : Do [x • 1 + 1/x, {10}]

In[5) : • X

Out [5]• 1 . 61798

38 2 Mathematica 's Programming Language
- - - - - - - - - --- ----- - - - --

We can see all intermediate values with a
Print [) statement.

In[6] : • x • 1 . 0 ; Do [x • 1 + 1/x; Print [x] , {10}]

2 .
1 . 5
1 . 66667
1 . 6
1 . 625
1 . 61538
1 . 61906
1 . 61765
1 . 61818
1 . 61798

Normally, we see only a few digits of a :n[7] : • InputFora[x)
floating-point number. With this command, out [7] 1 /InputForm= 1 . 6179776280898876
we can see all digits.

The iterator Table [] returns the results of the iterations in a list.

Table [) collects the resultc; of all iterations
in a list.

This list contains the first 10 primes.

In[8] : • Table [iA2, {i , 1 , 10}]

Dut [8)• {1 , 4 , 9 , 16 , 26 , 36 , 49 , 64 , 814 100}

In[9] : • Table[Prime[j] , {j , 10}

Out [9]• {2, 3 , 5 , 7 , 1 1 , 13, 17 , 19 , 23 , 29}

Sum[] and Product [] give sums and products, respectively, according to the mathematical
notation 2: and n 0

i=l

s IJ<x - k)
k=l

2.3.6 Local Variables

In[1] : • Sum[iA2, {i , 1, 100}]

Out [1] • 338350

In[2) : • Product [x-k, {t , 1 , 6}]

Out [2)• (-5 + x) (-4 + x) (-3 + x) (-2 + x) (-1 + x)

In Section 2.3.4, we saw how we can compute easily the greatest common divisor (gcd) of
two numbers. Now we want to define afunction to perform these calculations. taking the two
numbers as arguments. Inside this function, we need two local variables a and b, to which
we assign the values of the arguments in the same way as we did it on page 35. Local variables
are declared with Module [{variables} , body] . The function is shown in Listing 2.3- 1 .

The two local variables a and b get the arguments of the function as initial values.
The body of the module consists of the two expressions While [. . .] and a, separated by a
semicolon. The value of last expression (simply a in our case) is returned.

2.3 Simple Program Structures

gcd[aO_ , bO_] : "'
Module[{a = aO, b z bO} ,

While [b ! • 0 , {a, b} = {b , Mod[a, b]}) ;
a

Listing 2.3-1 A function for the gcd.

Now we can compute the gcd of two num- In[l] := gcd[1999 , 2999]
bers without having to enter all the calcula- Out [l)• 1 lion steps every time.

39

The declaration of local variables with initial values is necessary here. The reason is that the
pattern variables aO and bO are not program variables ! Their values are inserted into the body
of the definition. Let's see what the consequences are. Without local variables, our program
would look like the one shown in Listing 2.3-2.

gcd[a_ , b_] : •
While [b ! • 0 , {a , b} = {b , Mod[a, b]}) ;
a

Listing 2.3-2 An erroneous function for the gcd.

If we call the function as gcd [1999 , 2999] , all occurrences of a and b are replaced by
the arguments 1999 and 2999. The resulting expression is

While [2999 ! = 0 , { 1999 , 2999} = {2999 , Mod [1999 , 2999] }] ;
1999

There are many errors in this expression (can you find them?). Therefore, we must assign the
parameter values to local variables, and then do all computations with these local variables.
That is the purpose of

Module [{varl = va/1 , var2 = va/2 , . . . } , body] .

Local variables are not used only for parameters of functions. Auxiliary variables also
should be declared in a Module . These are variables used inside the body of a definition. If
there was no parallel assignment of the form {varJ , var2} = {e1 , ez} in Mathematica, we
would need an additional variable to exchange the values of the variables a and b , as shown
in Listing 2.3-3.

Hint: the program in Listing 2.3-3 would run even if we did not declare the local variables.
Mathematica would simply use global symbols with names a, b , and c . Using a function
that changes the values of global variables is bad programming style and can introduce errors
that are hard to find.

40 - ---- - - - -----
gcd[ao_ , bO_] : •

Kodule[{a • ao , b = bO , c } ,
While [b ! • 0,

) ;
a

c - b ;
b • Kod[a, b] ;

2 Mathematica 's Programming lAnguage

Listing 2.3-3 Exchanging values using an auxiliary variable.

Here is the last version of the gcd func- In[1] : • gcd[aO_ , bO_] :• (
tion without declarations for the local vari- a • aO ; b • bO ;
able.'>. Observe the parentheses: They make While[b ! c 0 ,
all statements be part o f the definition. c • b ;

Perhaps we performed other computations
before using our gcd function. If so, the
symbol c may already have a value.

Now, we compute a gcd.

As a side effect, the value of c has changed.

2.3. 7 Constants

Closely related to Module [] is

] ;
a

In[2] : • c • SpeedDfLight

299792468 Meter
Out [2]•

Second

In[3] : • gcd[1999 , 2999]

Out [3] • 1
In[4) : • c

Out [4)• 1

b • Mod[a , b] ;
a .. c

With[{var/ = va/1 , var2 = val2 , . . . } , body]

that introduces local constants. A local constant is similar to a local variable (as declared with
Module []), but it cannot be changed after its initialization. The use of constants can make a
program easier to read and can also make it more efficient.

This function definition is a bit inefficient In[1] : • f [x_] :• (x .. 2-1) (x .. 2+1)
because X"2 is computed twice.

In this equivalent definition, x"2 is comput- In[2] : • f[x_] : • With[{x2 • J:A2} , (x2-1) (x2+1)]
ed only once.

2.3 Simple Program Structures 41

With this definition we intend to measure the In[3] : = timel[n_] :• Timing[(10 .. n-1) • (10 .. n-3) ; J
time it takes to multiply two n-digit num-
bers, but we also measure the time it takes to
compute the two numbers in the first place.

Here we compute the two numbers outside In[4] : = time2[n_] : •
Ti.JIIing[) , and then insert their values in With[{a • 10 .. n-1 , b • to .. n-3} . Timing[a•b ;]]
the timing command (see Section 7 .4.3).

2.3.8 Pure Functions

Pure functions are treated in detail in Chapter 1 1 . Because we use them in many places, we
present the basic idea here.

Before we can use a function, we have to
define it

We apply a function f to an argument by
putting the argument inside square brackets.

Here is another way to specify a function.
A preceding definition is not necessary. The
function that squares its argument can be
applied immediately.

This expression is the function itself. It can
be read as ''the function whose value at x
is x2."

This function (on the preceding line) can be
applied to an argument.

We can differentiate a function. The result
is the function that multiplies its argument
by 2, according to the formula d

dr x2 = 2x.

The value on the preceding line is a function
that we can apply to an argument in the usual
way.

The special symbol # can be used as the
variable in a function. In need not be de­
clared, so this form of the pure function has
only one element.

This short fonn, given in the previous output,
can be input as well. We say more about the
operator � in Section l l . 1 .3.

In[1] : • f [x_] : • XA2

In[2] : = £ [6]

Out [2]= 26

In[3] : = Punction[x, x .. 2] [6]

Out [3]= 25

In[4) :• Punction[x , x .. 2]

2
Out [4]= Function[x , x]

In[6] : = �[6]

Out [6]= 26

In[6] := Punction[x, x .. 2] '

Out [6]= Function[x, 2 x]

In[7] :• n 6J

Out [7]= 10

In[S] : • Punction[t .. 2]

2
Out [S]= #1 a:

In[9] : • '"2t
2

Dut [9]= #1 a:

42 2 Mathematica 's Programming Languagt
- - - - --- - - - --- - - - - --- --- - ---- -----

2.3.9 Functional Operations

With a simple way to specify a function we can take a look at Mathematica's many functional
operations, that is, commands that take a function as argument. Here is a short introduction to
four of these functional operations: Map , Apply , Nest , and Fold.

We can show how a functional operation works by giving it an undefined, symbolic
function, such as f , as argument. The result will still contain the symbol f so we can see
what is going on.

Map applies a function to each element of a
list in tum. lt returns the list of the results of
these applications.

Here we apply the function that squares its
argument to a list of integers. The result is
the list of the squares of these numbers.

Apply applies a function to all elements of
a list.

Applying the function Plus gives the sum
of the elements of a list.

Nest applies a function repeatedly to the
result of the previous application, starting
with the value x .
The repeated application of the function
f(x) = l + 1 /x to a symbol x gives a con­
tinued fraction.

The same function applied to an integer gives
a rational number. Here we nested the func­
tion 200 times.

Fold applies a function g of two arguments
repeatedly to the result of the previous ap­
plication (as first argument) and another el­
ement from the given list (as second argu­
ment).

In(1] : • Map[f , {a, b, c , d}]

Out [1) • {f(a] , f [b) , f [c) , f [d) }

In[2) : • Map[1•2& , {1 , 2, 3, 4}]

Out [2)• { 1 , 4, 9 , 16}

ln[3] : • Apply[f, {e1 , e2 , e3 , e4}]

Out [3]• f [e1 , e2 , e3 , e4]

In[4] : • Apply[Plus , {e1 , e2 , e3 , e4}]

Out [4)• e1 + e2 + e3 + e4

In[5] : = lest [f , x, 6]

Out (6]• f [f(f[f(f [x]])]]

In[6] : • lest[Punction[x , 1+1/x] , x , 7]

1
Out [6] • 1 + ----------

1
1 +--------

1 + -------
1

1 + -----
1

1 + ---

1
1 + --

1
1 + -

X

In(7] : • lest [Punction[x, 1+1/x] , 1 , 200]

7345448671678180932349089021 10449296423361
Out (7]• ---------------

463973694166307963197296969697410619233826

ln[8] : • Pold[g, xO, {x1 , x2 , x3}]

Out [S]• g[g(g[xO , x1] , x2] , x3]

2.3 Simple Program Structures

This function multiplies the previous result
by z and adds the next element from the list.
The result is the Homer fonn of a polyno­
mial.

The expanded form shows that the a; are
lhe coefficients of an ordinary polynomial.
The Homer from is often used for numeri­
cal computations because it is more efficient
than the expanded form.

ln[9] : • P�ld[Punction[{z ,y} , z z + y] , 0 ,
{a5 , a4 , a3, a2 , a1 , aO}]

Out [9]= aO + z (a1 + z (a2 + z (a3 + z (a4 + a5 z))))

In[10] : • Bzpand[�]

2 3 4 6
Out [10]• aO + a1 z + a2 z + a3 z + a4 z + a6 z

Functional operations are treated in more detail in Section 1 1 .2.3.

43

44 2 Mathematica 's Programming Language

2.4 Structure of Expressions

Programming languages usually have a rigid structure with precise rules about the fonn of
valid expressions. A program is understood by the interpreter or compiler only if it satisfies
these syntactic requirements. In Sections 2.4-2.4.4, we examine fundamental aspects of the
structure of the expressions that are understood by Mathematica.

In the preceding sections, we saw some of the possible forms of expressions in Mathe­
matica. Even though it contains a large collection of operators, the language has a simple
fundamental structure. It is the same as the structure of the language LISP, one of the oldest
languages still in use today. All expressions are built from fundamental building blocks with
a single method. The building blocks are termed atoms. Formally, an expression is either an
atom or a norrrull expression.

2.4.1 Normal Expressions

A normal expression has the form

h [e 1 , ez , . . . , en] , (2.4-1)

where h and the ei are themselves expressions. Such an inductive definition of expressions
is typical for formal languages. The h is called the head of the expression; the ei are the
elements. The number of elements may be zero. In this case, the expression looks as follows:

h [] . (2.4-2)

Here, for example, is an expression according to the preceding definition:

f [a, b] [] [g [l] . h[x , y]] . (2.4-3)

It has two elements: g[l) and h[x , y] . Its head is f [a , b] [] , which is again a normal
expression (without elements), whose head is f [a, b) , and so on.

The head of an expression expr can be extracted with Head[expr] . The ith element
is obtained by Part [expr, i] . Instead of Part [expr, i] , you can also write expr[[i]] .
Length [expr] gives the length of a normal expression, that is, the number of elements.

Here again is an example of a normal ex- In[l] : • expr • t [a,b] (] [g[l] , h[z , y] 1 ;
pression.

It has two elements.

Here is the first element.

In[2] : • Length[expr]

Dut [2]• 2

In[3] : • Part [expr , 1]

Out [3]• g[l]

2.4 Structure of Expressions

Here is the second element. Part [expr, i]
c an alternatively be written as expr[[i]]
(with double square brackets).

The head of expr is again a normal expres­
sion.

Its head is a normal expression, too.

In[4] : = expr [[2]]

Out [4]" h[x, y]

In[S] : " Bead[expr J

Out [S]= f [a , b) []

ln[6] : • Bead[X]

Out [6]• f [a , b)

At some point, we always reach an atom; In[7J : • Bead[X J
here, it is a symbol. out [7J : f

ZA.Z Atoms

There are three kinds of atoms:

45

1 . Symbols are the identifiers; they are words beginning with a letter and containing only
letters or digits. The dollar sign, $, is treated as a letter.

2. Strings are sequences of arbitrary characters, enclosed in quotation marks. They are used
mainly to denote external objects, such as file names.

3. Numbers include integers, rational numbers, floating-point numbers, and complex num­
bers.

Even though they are not normal expressions, atoms also have heads. This head describes the
type of the atom according to the preceding list.

The head of a symbol is the symbol Symbol . In[8] : "' Read[aSJlllbol J

Out [S]= Symbol

Its head is again the same symbol, of course. In[9] : "' Read[Xl

The head of an integer is the symbol
Integer .

The head of a rational number is the symbol
Rational .

The head of a floating-point number is the
symbol Real .

The head of a complex number is the symbol
Complex .

The head of a string is the symbol String .

Out [9]• Symbol

In[10] : • Read[1024]
Out [10]• Integer

In[11] : • Bead[1/3]
Out [11]• Rational

In[12] : • Head[3. 14159]
Out [12]• Real
In[13] : • Bead[1 + I]
Out [13]= Complex

In[14] : • Bellld["a string" J

Out [14]• String

46 2 Mathematica 's Programming Language
-- - - --- -- -------------------------

2.4.3 Operators

Having a large number of operators simplifies input and makes output more readable. Inputs
in operator notation are transformed into internal form by the parser. We could refrain from
using operators, and instead write a + b as Plus [a , b] , for example. This notation, however,
would be cumbersome and nonstandard. Any expression using operators is transformed
into an internal form (as a normal expression). You can look at this internal form with
FullForm[expr] .

The head belonging to addition is the sym­
bol Plus .

Even a list is an ordinary nonnal expression
with head List .

A subtraction is turned into an addition and
multiplication by - I .

A division is turned into a multiplication and
exponentiation by - I .

In[16) : c PullPora[a + b + c]

Out [16] //FullForm= Plus [a, b, c)

In[16) :• PullPora[{z, y, z}]

Out[16)//FullForm= List [z , y , z]

ln[17] : • PullPora[z - y]

OUt [17) //FullForm• Plus [z, Times [- 1 , y]]

In[18] : • PullPora[2/z]

Out [18] //Ful1Porm= Times [2 , Power [z , - 1]]

Because FullForm[] evaluates its argument in the usual way, what we just saw was the
internal form of the result, rather than of the input, as claimed. In the preceding examples, no
evaluation took place, so there was no difference. If you want to see the internal form of an
expression before evaluation, enclose the expression in HoldForm[expr] .

Even typical assignments are ordinary ex­
pressions.

Without the wrapper HoldForm [] . this as­
signment is evaluated, and we see only the
internal fonn of the result.
The operator II allows us to write function
application with a trailing function symbol
(instead of f [z] . as usual).

Sometimes we use this notation to apply
commands such as Short [] and N [] to
an input line.

In[19] := PullPora[RoldPora[z = 2]]

Out [19]//FullForm= RoldForm[Set [z , 2]]

In[20] : c PullPora[z = 2]

Out [20] //FullForm= 2

In[21) : • a II f
Out [21)• f [a]

In[22] : • Ezpand[(1 + a + b)A10] II Short

Out [22) //Short•

2 3 4
1 + 10 a + 46 a + 120 a + 210 a + <<59>> +

9 10
10 a b + b

Section B.4 contains a list of operators and their internal forms.

2.4 Structure of Expressions 47

2.4.4 The Meaning of Expressions

All inputs are nothing but ordinary expressions. Depending on usage, we nevertheless talk
about different kinds of expressions.

This expression is understood as a function In[1] : = Sin[x]
call sin x. Observe the square brackets. Out [l]• Sin[x]

Ordinary parentheses are used for grouping In[2) : .. a(b + c)
only. They are necessary here because mul- Out [2J .. a (b + c)
tiplication has a higher precedence than does
addition.

A list serves to hold together expressions. In[3] : • {x , y , z}

Out [3]• {x , y , z}

This expression serves as a definition of a ln[4J : "' f [x_J : = x,.2
function.

This command calls an internal algorithm In[6) : = Solve [x,.2 + x + 1 •• 0 , x l
for solving equations. 1/3 2/3

Out [5)• {{x -> - (-1) }, {x -> (-1) }}

Here is a sequence of statements. In[6] : = alpha .. Sqrt [2) ; beta • 1-alpha; gamma "' beta ... 2

2
Out [6]= {1 - Sqrt [2])

2.4.5 Structural Operations

Structural operations change the structure of an expression. Many of the operations available
inMathematica are inspired by the language APL, which is particularly rich in such operations.
Here we look at Apply , Flatten , Transpose , and Thread .

Apply changes the head of an expression to
the given new head h .

In this way we can easily compute the prod­
uct of the elements of a list. See also Sec­
tion 2.3.9.

Flatten removes nested occurrences of the
head of an expression; here this head is
List .

Transpose exchanges the levels of nested
lists. The result corresponds to the transpose
of a matrix written as a nested list.

In[l) : "' Apply [h, f [a, b , c , d]]

Out [l]"' h[a, b, c , d)

In[2] : • Apply[Times , {a, b, c, d}]

Out [2] .. a b c d

In[3] : • Platten[{a, {b, {c , d} , {}} , {e , f}}]

Out [3]• {a, b , c , d, e, f}

In[4] : = Transpose[{{a, b , c}, {x, y , z}}]

Out [4J .. {{a , x} , {b , y} , {c , z}}

48

Thread exchanges the head of the whole
expression f with the head List of the el­
ements of the expression. It is a generaliza­
tion of Transpose.

We can use i t to tu m an equation involving
lists into a list of equations, see Section 8.1 .2.

2 Mathematica 's Programming Lan

In[5) : • Thread(f[{a, b , c} , {z , y , z}]]

Out[5]= {f [a, z] , f [b, y] , f [c , z] }

In[6] : = Thread[{x, y} -- {1 , 2}]

Out [6)= {x == 1 , y == 2}

2.5 Help with Problems 49

2.5 Help with Problems

Mathematica is documented in The Mathematica Book. Simply to find out what a certain
command does, you need not consult this manual, however; the information is available
on-line. Section 2.5. 1 describes two ways to obtain on-line help.

When you read a program into Mathematica from a file or when you enter a definition
directly, Mathematica signals any syntax errors it encounters. Section 2.5.2 shows what error
messages look like and pointli out a few common sources of errrors.

2.5.1 Information about Commands

One possibility to obtain information about a command is the on-line help that you can look
at by using ?symbol at the beginning of a line. Figure 2.5-1 shows an example in which we
ask for information about NestList . The message always begins with the template, here
NestList [f , expr, n] . The template shows a typical call of the command with symbolic
arguments. This form of description is also used in this book. Using the Notebook frontend,
you can extract the template from the message with the menu command Make Template and
then fill in your values for the symbolic arguments, as shown.

mestl.ist
NestList[f, expr, n) gives a list of the results of

!!pplying f to expr 0 through n times.

The menu coxnmand l'!llke Template gives a template .

••• [f, expr, nl

Now you can fill in the template and then evaluate the input.

Nestl.ist[Cos, 1 . 0, 10)
{1 . • 0 . 540302, 0 . 857553, 0 . 65429, 0. 79348, 0 . 701369,

0. 76396, 0. 722102. 0. 750418, 0. 731404, 0. 744237 }

Figure 2.5-1 On-line help and templates.

The second information source is the Help Browser. It gives you access to the on-line
help, including infonnation about all commands. In Figure 2.5-2, you can see the topic

50 2 Mathenwtica 's Programming Language
- - - - - - - - - - ----- - - - - - - - - - - -

"Programming," again with NestList . The reference to The Mathematica Book is a hyperlink
that you can click to obtain immediate access to the section mentioned.

NestList
• Nes tLis t v. expr, n) givr.s a list of the results of applying! to expr 0 through n times.

• Exa:mple: Ne:stList [f, x, 3) -{x, f (x) . f (f (x)) . f (f [f (x))) } .

• NestL i st V, expr. n) gives a list of lr.ngth n + 1.

• See The Ma:thunaticaBoolc: St.ction 2 2 2.
• See also: Nest. NestWhileList, FoldLi:st, ComposeList.

This nests the function f four tlmes starting with imtial value x.

In(I):• Nestl.ist[f. x, 4]
Out[IJ• {x, f [x) . f (f (x)) , f (f (f [x]]) . f (f (f (f (x))) J }

2.5.2 Syntax Errors

Figure 2.5-2 The Help Browser.

Because of its many built-in operators, Mathenwtica has a rich syntax. A list of operators and
special characters is given in Section B.4. If an input is syntactically incorrect, Mathenwtica
displays an error message. In the following dialog with the kernel, a curly brace has been
used instead of a square bracket. Because the same error could also be caused by a forgotten
opening brace, such error messages are not always accurate.

2.5 Help with Problems

In [1] : = NestList [1 + 1/#& , N [1 , 20} , 5]

Syntax : : bktmch : "N [1 , 20" must be followed by "] " , not "}" .

In [1) : = NestList [1 + 1/#& , N [1 , 20] , 5]

Out [1]= {1 . 0000000000000000000 , 2 . 0000000000000000000 .

1 . 50000000000000000000 . 1 . 66666666666666666667 ,

1 . 60000000000000000000 , 1 . 625000000000000000000}

51

If input comes from a Notebook, the cursor is put at the place where the error occurred, and a
beep is sounded. It is then easy to correct the input and to evaluate it again. The frontend can
even help you to balance parentheses.

One particular kind of error is worth pointing out. Because Mathematica does not require
a multiplication sign, expressions with missing operators, such as the comma or semicolon,
can nevertheless be syntactically correct. Of course, they are wrong semantically; that is, they
do not have the intended meaning. In many such cases, a warning message is printed. Here is
an example.

In our first attempt, the semicolon (;) be­
tween the two statements in the loop is miss­
ing. As a consequence, the body of the loop
is read as

x = (x + 2/x) 12*Print [x] .

The value of the Print statement is Null .
Therefore, x is !>et to 1 . 5 Null .

Here is the correct piece of code. It computes

an approximation to J2 (see page 3).

There is always one more bug!

In[l) : : x a 1 . 0 ; \
While [x ! a (x + 2/x) /2 ,

x • (x + 2/x) /2
Print [x]

] ; X

Syntax : :newl :
The newline character after " x • (x + 2/x) /2"

is understood as a multiplication operator .

1 .

Out (l]: 1 . 5 Null

In[2] : = X a 1 . 0 ; \

1 . 5
1 . 41667
1 . 41422
1 . 41421
1 . 41421

While[x ! a (x + 2/x) /2 ,
x "' (x + 2/x)/2;
Print [x]

] ; X

Out (2] : 1 . 41421

52

2.6 Exercises

2.1 Operators

2 Mathematica 's Programming Language

I . Go through the examples given in Sections 2. 1 -2.3, and determine the internal forms of the
expressions that occur in these examples. Mathematica can help you; see Section 2.4.3.

2. What is the internal form of these expressions before evaluation?

a. f � {a , b , c}

b. f /� {a, b , c}

c. f � {a , b, c}

2.2 Structure of Expressions

Investigate this expression:
f ' [x+ 1] /5 !

I . Write the expression in internal form, without using any operators.

2. Denote the building blocks of the expression, that is, head and elements. Continue in this
way with any parts that are still composite. Give the type of atomic parts.

3. To what does this expression evaluate?

Hint: Use the tables in Appendix B.4.

2.3 Simple Evaluations 1

Give the result of evaluating the following expressions. If there are any nested functions, also
give the most important intermediate steps. Assume that each example is evaluated in a fresh
Mathematica session. Consecutive expressions in one example are evaluated one after another
in the same session.

1 . Sum[z,.i/i ! , {i , 0 , 4}]

2. Sum[Product [(x - i) ,.j , {i , 0 , 2}] . {j , 2}]

3. Expand[Product [x - i , {i , - 2 , 2}]]

4. { 1 , 2 , 3}A2 + 1

1 Written examination, ETH ZUrich, Department of Mathematics and Physics.

2.6 Exercises 53
----- ------ ------- ------

5. a = 5 ; b : = 6 ;
c = .a ; d = b ;
e : = a ; f : = b ;
a = 7 ; b : = 8 ;
{a , b , c , d , e , f}

2.4 The Arithmetic-Geometric Mean (AGM)

For positive reals a and g, the two sequences ai and bi, with

ao = a

go = g

ai+I = ai+Yi
2

9i+l = y'ai9i
(2.6-l)

converge to a common limit. Observe that ai+l is the arithmetic mean of ai and 9i. and that

9i+l is the geometric mean.

1 . Compute the common limit numerically for a few values of a and g with a simple While
loop.

2. Define a function AGM [a , g] that computes this limit.

Chapter 3

Iteration and Recursion

1 75

1 50

125

100

75

50

25 ..
..

200 400 600 800 1000

In this chapter, we introduce algorithmics. We develop systematically a few small example
programs. Often, we have a choice among different methods to solve a problem. Two of
the most important methods are loops and recursion. We can program recursion easily in
Mathematica by giving a few definitions.

In Section 3. 1 , we look at the oldest known algorithm, Euclid's algorithm for the compu­
tation of the greatest common divisor (gcd) of two numbers. Starting with the definition of the
gcd, we derive several programs for its computation.

The problem in Section 3.2 is both an interesting example for computer experiments in
mathematics and an unsolved mathematical problem.

Section 3.3 provides a systematic treatment of an important method to prove the correctness
of loops and simple recursive programs. We can use this method to develop programs from
scratch and to verify existing programs. The main tool is the loop invariant, which we shall
use later in many of our examples.

In Section 3.4, we show an important application of function iteration: numerical solution
of differential equations.

About the illustration overleaf:
The length of the Collatz sequence for the first 1000 integers (see Section 3.2). The picture
was produced with the command (see Pictures.m):

ListPlot [Table [CollatzLength[i] , {i , 1 , 1000})]

3.1 The Greatest Common Divisor

3.1 The Greatest Common Divisor

57

The greatest common divisor (gcd) of two integers a and b (not both zero) is the largest integer c
that divides both a and b:

gcd(a, b) = max(c : c I a 1\ c I b) . (3. 1-1)

(The notation x I y means "x divides y.") We shall look only at nonnegative integers a and b.
To find the gcd, we need to tum this definition into an algorithm. This translation is

possible only if the definition is constructive - that is, if it gives a method to compute the result
in principle. We note that there are infinitely many integers; it is therefore not immediately
obvious that we can find the gcd in finite time. By deriving further properties of the gcd, we
can see that we can indeed do so.

3.1.1 Finite Search

An immediate consequence of the properties of divisibility (a divisor cannot be greater than
the number it divides) is gcd(a, b) ::; min(a, b) (for a =I 0, b =I 0). Because the integer I is
always a divisor of a and b, we have restricted the search for the gcd to a finite set of numbers.
(If a = 0, the gcd is equal to b; if b = 0, the gcd is equal to a.) In our program, shown in
Listing 3 . 1- 1 , we first define an auxiliary function Divides [] , give the definitions for the
two special cases a = 0 or b = 0, and then define the general case with the loop that searches
for the gcd.

Divides [x_ , y_] : : Mod[y , x] :: 0 (* x divides y *)

gcd[O, b_] : = b (* special cases *)
gcd[a_ , O] : = a

gcd[a_ , b_] : =
Module [{c} ,

c = Min[a, b] ;
While [! (Divides [c , a] && Divides [c , b]) , c--] ;
c

Listing 3.1-1 GC01 .m: First version of the gcd algorithm.

The auxiliary function Divides [x , y] checks whether x I y. It returns True if the remainder
of the division of y by x is zero. In the loop, we start with the largest possible value - the
minimum of a and b - and search downward. The local variable c is initialized with the
minimum of a and b. As long as the value of c does not divide both a and b, it is decremented
by 1 . The first number found to divide both a and b is the gcd. Because there is at least one
divisor (l), we know that the search terminates after a finite number of steps. The maximum
number of loop traversals is equal to min(a, b). (When is this maximum attained?)

58 3 Iteration and Recursion
- - - - - - - - -----

3.1.2 The Division Method

We are not satisfied with the first algorithm found in Section 3 . l . l , so we try to find a better
one. Such an algorithm could be especially simple, or it could find the result with fewer
operations.

To improve the gcd algorithm, we continue to find additional properties of the gcd. Looking
at division properties leads to success. If c is a divisor of a and b, b =I 0, then it also divides
the remainder of the division of a by b. Thus,

c I a 1\ c I b -+ c I (a mod b). (3. 1-2)

Therefore,
gcd(a, b) = gcd(b, a mod b). (3. 1 -3)

If b = 0, we have
gcd(a, 0) = a. (3. 1 -4)

Equations 3. 1 -3 and 3. 1-4 lead to a much faster and simpler algorithm, which is shown in
Listing 3 . 1-2. The two equations can be programmed into Mathematica directly !

gcd[a_ , 0] : = a

gcd[a_ , b_] : • gcd [b , Mod[a, b]]

Listing 3.1-2 GCDR.m: A rule-based algorithm for the gcd.

We read in the file with the two rules.

The gcd of 1999 and 2999 is I .

If one of the two numbers is zero, the gcd is
equal to the other one.

This command makes the application of
rules visible. We see how the rules first
interchange the .u·guments. and then make
them smaller step by step, until one of them
becomes zero.

In[1] : • << CSM'GCDR '

In[2] : • gcd[1999 , 2999]

Out[2]• 1

In[3] : = gcd[O, 6]

Out [3)= 6

In[4] : • Trace[gcd[6 , 8] , gcd[__ Integer]] II TableForm

Out [4]//TableForm• gcd[6 , 8]
gcd[8, 6]
gcd[6, 3]
gcd[3 , 2]
gcd[2, 1]
gcd[1 , 0]

3.1.3 The Division Method in a Loop

The two rules derived in Section 3. 1 .2 are probably the best way to program the gcd in
Mathematica. Many conventional languages do not allow this kind of programming. There
are also cases (see Section 3.2. 1) where such rules are inefficient - even in Mathematica.

3.1 The Greatest Common Divisor 59

Therefore, we shall show how we can derive a program working with a loop from these two
rules. The rule

gcd[a_ , b_] : = gcd[b , Mod[a , b]]

says basically that the two arguments a and b should be replaced by b and (a mod b), after
which we continue in the same way. This formulation leads to a loop. The termination
condition for the loop is obtained from the other rule gcd [a_ , 0] : = a. Because we must
test this rule first (if b happens to be zero in the beginning), we shall use a While -loop (see
Section 2.3.4): As long as b is not yet zero, we replace a and b by b and (a mod b). The two
assignments to a and b must happen simultaneously (see Section 2.3 . 1). We declare a and b
as local variables in the way shown in Section 2.3.6. The program is given in Listing 3. 1 -3.

gcd[aO_ , bO_] : =
Module[{a = aO , b = bO} ,

While [b ! = 0 , {a, b} = {b , Mod [a, b] }] ;
a

Listing 3.1-3 GCDS.m: The division method in a loop.

The correctness of this program can be shown in the following way. Let a and b be the values
of the variables a and b on entering the loop, and let a' and b' be their values at the end of one
iteration of the loop. At the end of the iteration the following three conditions hold:

a' > b' ,
gcd(a' , b') = gcd(a, b),

b' < b.
(3. 1-5)

Then we set a = a' and b = b', and run through the loop once more. Because the numbers
get smaller and smaller, we eventually reach b = 0. (If a < b holds at the beginning, the first
iteration will simply interchange the two values.)

3.1.4 Key Concepts

1 . The properties of the gcd lead directly to an algorithm for the computation of the gcd.

2. We can derive more efficient algorithms by taking into account further properties of the
gcd. This allows us to narrow the range of the search or to proceed in larger step sizes.

3. Rule-based or recursive programs can often be converted to loops, and vice versa.

60 3 Iteration and Recursion - - - ------- ------ - - - - - ------ - --- - - -

3.2 The 3x + 1 Problem

The 3x + 1 problem is also known as the Collatz problem. The structure of the iterations of
the function c is an unsolved mathematical problem:

(
)

_ { 3n + I ,
c n - n/2,

n odd;
n even.

(3.2-1)

Starting with an integer, we get a sequence of integers by repeatedly applying c to the previous
term. If the number is even, it is halved; if it is odd, it is multiplied by 3 and 1 is added to the
result. For example, for n = l , we get this sequence by iterating c: 1 , 4, 2, 1 , 4,

Formally, we define the sequence n h n1, . . . as follows:

n 1 = n,
ni+l = c(ni), i = 1 , 2,

(3.2-2)

A few experiments show that the sequence {ni} falls into the cycle 1 , 4, 2, 1 , . . . for each
choice of n 1 = n.

1bese two rules define the function c. Note
that you can put the predicates directly into
the left side of the rules with the notation
f [x_ ?pred] .

This loop applies the function c repeatedly
to S until the result is I for the first time.

The same computation. starting with I I .

In[1] : • c [n_?OddQ] : • 3n + 1 ; \
c[n_?BvenQ] : • n/2

In[2) : • n • 5; While[n ! a 1, n • c [n] ; Print [n)]

16
8
4
2
1

ln[3] : = n • 11 ; While[n !a 1 , n • c (n] ; Print [n]]
34
17
62
26
13
40
20
10
6
16
8
4
2
1

3.2 The 3x + 1 Problem

61

So far, nobody has been able to prove that this property does indeed hold for all positive
integers or to find any counterexample. We shall study experimentally some properties of
this sequence. We are especially interested in how long it takes to reach 1 , starting from a
number n.

3.2.1 The Length of the Collatz Sequence

The length L(n) of the Collatz sequence is defined as the smallest index i such that ni = I .
We simply count how long it takes to reach 1 for the first time. By induction,

L(1) = 1 ,
L(n) = 1 + L(c(n)), n > 1 ,

(3 .2-3)

we immediately get this definition for computing the length in the function CollatzLength .
CollatzLength [1] � 1
CollatzLength [n_] : = 1 + CollatzLength [c [n]]

Listing 3.2-1 Part of Collatz1 .m: Recursive computation of the length.

With this computation method, the intermediate results accumulate and the program needs
more space for larger results. (The gcd program in Section 3 . 1 .2 did not suffer from this
drawback.) An iterative version that does not have this problem can be obtained easily. The
number of evaluations of the second rule is obviously equal to the value of CollatzLength
because we add l to the previous result. So, we simply count this number in a While -loop.
The termination condition is obtained from the first rule. If the input is l , the loop is never
executed.

Col1atzLength[nO_] · �

Module [{n = nO , 1 = 1 } ,
While [n ! = 1 , n � c [n] ; 1 = 1 + 1] ;
1

Listing 3.2-2 Part of Collatz2.m: Iterative computation of the length.

You can see a graph of the length of the Collatz sequence for the integers up to 1 ,000 on
page 55. Here we look at the length for much larger inputs.

We read in the improved package.

Here is the length of the Collatz sequence

for n = 2100 - 1 .

With this command, we generate the I , 466
elements of the sequence.

In[1] : = << CSM' Collatz2'

In[2] : m CollatzLength[2A 100-1]

Out [2]= 1466

In[3] : = seq a NestList[c , 2A100-1 , X-1] ;

62 3 Iteration and Recursion

We want to measure the size of these num- In[4] : = logs = Log[10 . 0 , seq] ;
bers. The size of a number is equal to the
latter's logarithm to base 10.

Here is a diagram of the sizes of the ele- In[6] := ListPlot [logs] ;
ments. First, the size increases rapidly; fi-
nally, it drops to zero.

40

30 l

20

'"J�::-=-:-- --- · -::----::-::-:::--:-::-"::"":�·::-"::-::---:-7":.
200 400 600 800 1000 1200 1400

Display: :pserr :
PostScript language error :
Warning : subst�tuting font Utopia-Regular for

Times-Roman

3.2.2 Computation of the Collatz Sequence

Like the length, the sequence itself can be computed inductively (as a Jist). Instead of adding 1
at each iteration, we prepend the current value in front of the list. We call this function
CollatzSequence . Program Collatz1 .m is shown in Listing 3.2-3.

c [n_?OddQ] := 3n + 1
c [n_?EvenQ] : = n/2

(* for n odd *)
(* for n even •)

CollatzLength [1] 1
CollatzLength [n_] : = 1 + CollatzLength[c [n]]

CollatzSequence [1] {1}
CollatzSequence [n_] : = Prepend [CollatzSequence [c [n]] , n]

Listing 3.2-3 Collatz1 .m: Recursive computation of the Collatz sequence.

The function Prep end [list , elem] adds the element elem to the front of the list list. (If you
reach the default recursion limit of Mathematica during a longer computation you can turn it
off with $RecursionLimit = Infinity .)

The function Prepend[] adds a new ele­
ment to the front of a list.

In[6] : = Prepend[{a , b, c} , x]

Dut [6]= {x, a , b , c}

In[7] : = << CSM ' Collatzl '

3.2 The 3x + 1 Problem

The is the Collatz sequence for the integer 23
until it reaches I for the first time.

In[8] : = CollatzSequence [23]

Out [8]= {23 , 70 , 35, 106 , 63 , 160 , 80 , 40, 20 , 10 , 5 ,

16 , 8 , 4 , 2 , 1}

63

Here, too, we can avoid recursion. The operation l = l + l , which increases the value of l
by I , corresponds to var=Append [var, elem] , which adds an element to the value of var at
the end. The computation now takes place in the opposite order (the order did not matter for
computing the length because addition of numbers is commutative). Program Collatz2. m is
reproduced in Listing 3.2-4.

c[n_?OddQ] : = 3n + 1 (* for n odd •)
c[n_?EvenQ] := n/2 (• for n even •)
CollatzLength[nO_] : =

Module[{n = nO , 1 = 1} ,
While[n ! = 1 , n = c [n] ; 1 = 1 + 1] ;
1

CollatzSequence[nO_] : =
Module [{n = nO , 1 = {nO}} ,

While [n ! = 1 , n = c [n] ; 1 = Append [l , n]] ;
1

Listing 3.2-4 Collatz2.m: Iterative computation of the Collatz sequence.

Operations such as Prepend [] and Append [] are inefficient when used in a loop. For this
example, there is no simpler, more efficient solution because the length of the result is not
known at the beginning. If we knew the length of the result beforehand, it would be better
to generate the whole result with Table [] , NestList [] , or FoldList [] .

3.2.3 Key Concepts

1 . Iterations with an unknown number of repetitions lead to While loops.

2. An inductive proof generates a recursive program.

3. Recursive function calls inside another function can lead to inefficient programs. If
possible, such a program should be turned into a loop.

64 3 Iteration and Recursion

3.3 Advanced Topic: Loop Invariants

There is one important question that we must ask ourselves each time we write a program:
Does it do what we want it to do? We have seen a few algorithmic problems that lead to simple
programs with a loop or recursive rules. For such programs, there is a method to prove them
correct. The most important tool is the loop invariant.

3.3.1 Deriving the Loop Invariant

A loop invariant is a statement about the values of the variables occurring in a loop that is
valid at each iteration of the loop. Such an invariant gives us a tool for proving a loop correct.
Let us look at a simple example:

i = 0 ;
k = 1 ;

(• 1 : before the loop •)
While [i ! = n ,

(• 2 : before an iteration •)
k = k• (i+ O ;
i = i+1 ;

(• 3 : after an iteration •)
] ;

(* 4 : after the loop •)
k

We analyze the program in four places:

1 . Before entering the loop

2. Before an iteration of the loop body

3. After an iteration of the loop body

4. After leaving the loop

After the two assignments, immediately before the loop, we have

k = i ! (3.3-1)

(i ! is i factorial) because 0! = I . Before an iteration, we still have k = i ! . Because of
(i + I)! = i ! · (i + 1), we get k = (i + I) ! after the first statement in the loop: then i is incremented
by I , and we have, at the end of an iteration, k = i ! . This equation is our loop invariant. After
leaving the loop, we also have i = n. the negation of the termination condition for the loop,

3.3 Advanced Topic: Loop Invariants 65

because the loop is left as soon as the condition is no longer satisfied. After the loop, we
therefore have

i = n,
k = i ! ,

(3.3-2)

and we have shown that, at the end, we have k = n ! ; that is, we have computed n ! with the
result in k.

We still have to think about whether the loop tenninates at all. Assume that n is a
nonnegative integer. Therefore, we have i ::; n before the loop. In the loop, we increment i
by I in each iteration, and we must reach i = n sometime (after n steps), which means that the
loop terminates. The precondition n E Z, n ;::: 0 implies the postcondition k = n! .

This kind of concluding a desired postcondition from a necessary precondition and the
termination of the loop is typical for analysis of loop programs. We already used it when we
looked at the loop for the gcd in Section 3 . 1 .3 . The invariant was gcd(a', b') = gcd(a, b).

Because we regard our small program as a function of n, we should write it as such.
We can use the precondition to test the input n of the function. We restrict the argument of
factorial [n] to be a nonnegative integer. Listing 3.3-l shows the program.

factorial [n_Integer?NonNegative] : =
Module [{i = 0 , k = 1 } ,

While [i ! = n ,

] ;
k

k = k* (i+1) ;
i = i+1 ;

Listing 3.3-1 Factorial.m: A definition of the factorial function.

3.3.2 Correctness Proofs

We can derive the following steps for finding a correctness proof:

I . Formulate the loop invariant. It can be derived from the desired result and the loop body.
(This step requires some clever thinking or intuition.)

2. Make sure that the loop invariant is satisfied before entering the loop. We can make this
assurance by correctly initializing the local variables.

3. Show that the invariant is satisfied at the end of an iteration if it was satisfied before that
iteration.

4. Derive the postcondition from the loop invariant and the negation ofthe termination test.

5. Find the necessary precondition under which the loop tenninates.

66 3 Iteration and Recursion

Another example will explain these steps in more detail. The program given in Listing 3.3-2
computes the sum of the integers xo and Yo exclusively by adding 1 to numbers. We want to
prove that it behaves correctly.

X = xO ;
y = 0 ;
While [y ! • yO ,

X = X + 1 ;
y = y + 1 ;

] ;
X

Listing 3.�2 Computing the sum of two numbers by elementary operations.

Here are the five steps in the proof for this program:

l . The invariant is x - y = xo.

2. The invariant is satisfied with the assignments x = x0 and y = 0 before the loop because in
this case x - y = xo - 0 = xo.

3. If x - y = x0 holds before an iteration, i t also holds afterward because x - y is not changed
if we increment x and y both by 1 : (x + l) - (y + I) = x + I - y - I = x - y.

4. After the loop. we have the invariant x - y = xo as well as the negation y = yo of the
termination test y =I YO· Therefore, x = ;z;0 + y = x0 + yo, and we did, in fact, compute the
sum of xu and y0 in the variable x.

5. The precondition for termination is that yo must be nonnegative. Because y is incremented
by I , starting with 0, it must eventually reach Yo (after y0 + 1 steps).

To summarize. we just proved:

For xo, Yo E Z, yo 2: 0 our program computes x = xo + Yo·

Note that the elementary operation "add l " plays an important role in theory of computation;
see Section 1 2. 1 .

3.3.3 Recursions and Loops

We would like to show how simple recursion can be transformed into a loop systematically,
and vice versa.

For the conversion of a loop into a recursion, let us look once more at the factorial function
in the package Factorial.m (see Listing 3.3- 1). The input is in the variable n, and the output
is in the variable k. Which function j(n) = k does our program compute?

3.3 Advanced Topic: Loop Invariants

If n = 0, the loop is never traversed. Therefore, we get

f(O) = 1

from the initialization k = 1 .

67

(3.3-3)

Let f(n - 1) be the value obtained after we traverse the loop n - 1 times. If we traverse
the loop one more time, we get

f(n) = (i + 1) · f(n - 1) = n · f(n - 1) , (3.3-4)

because i + 1 is equal to n in the last traversal. Thus we have derived the well-known recursive
fonn of the definition of the factorial function

f(O) = 1 ,
f(n) = n · f(n - 1) .

(3.3-5)

We can also transform a simple recursive definition into a loop. Here is the recursive
definition of addition from Section 1 2. 1 :

X + 0 = X ,
x + (y + l) = (x + y) + 1 . (3.3-6)

The recursion is by y. From the termination condition x + 0 = x, we derive the necessary
initialization and the following skeleton for the loop, using y as the loop variable.

y "' 0 ;
While [y ... ? . . '

y = y + 1 ;

] ;
X

To go from y to y + 1 , we simply add I to the old result in x, according to the recursive equation
x + (y + 1) = (x + y) + I , so we get:

y = 0 ;
While [y . .. ? . . '

X "' X + 1 ;
y .. y + 1 ;

] ;
X

68 3 Iteration and Recursion

The loop should terminate when we reach the desired value y0 of y, and we may want to
initialize x with the desired value x0. The loop is the one we just studied in Section 3.3.2
(Listing 3.3-2).

3.3.4 Key Concepts

t . Loop invariants are statements about values of program variables that are valid before and
after a loop.

2. The loop invariant and the negation of the termination condition give the postcondition of
the loop.

3. Loop invariants can be used in correctness proofs for programs.

4. Recursive and iterative programs can be transformed into each other with the help of a
loop invariant.

3.4 Application: Differential Equations 69

3.4 Application: Differential Equations

Iterative methods for the numerical solution of ordinary differential equations are of great
practical importance because most equations cannot be solved in closed form.

3.4.1 Systems of First-Order Equations

A system of n autonomous differential equations of first order has the form

X i = fi (X J , . . . , xn),
x2 = f2(XJ ' . . . ' Xn),

(3.4-1)

Xn = fn(X J , . . . , Xn) .

The quantities Xi are functions of the independent variable t, and x is the differentiation with
respect to t. In addition, we have an initial condition

X J (O) = U J ,
X2(Q) = a2,

(3.4-2)

Xn (O) = Un •

This is called an autonomous system, because the functions j1 do not depend explicitly on t .
It is easier to write such systems in vector notation. With the definitions x = (x1 , x2 , . . . , Xn)
and f(x) = Cf1 (x), . . . , fn(x)), we get

x = f(x),
x(O) = a .

3.4.2 Example: The Harmonic Oscillator

The equation of an harmonic oscillator is

x = -x - ax .

(3.4-3)

(3.4-4)

Equation 3.4-4 is a second-order equation. We can write it as a system of two first-order
equations by setting x 1 = x and x2 = :t:

X] = X2,

±2 = -XI - CX.X2 .
(3.4-5)

70 3 Iteration and Recursion

We can get an overview over the system by looking at the direction field.

In [l] : = << Graphics' PlotField'

In[2] : = ho • PlotVectorPield[{x2, -x1 - 0 . 1 x2} ,

This standard package draws vector fields.

Now we can plot the direction field of an
harmonic oscillator. We set a = 0. 1 . The
first argument of PlotVectorField is the
list of the right sides of Equation 3.4-5.

{x1 , - 2 , 2} , {x2, -2 , 2} , Prame->True] ;

3.4.3 The Euler-Cauchy Method for Numerical Solution

The simplest solution method for ordinary differential equations is that of Euler-Cauchy. We
start with a vector x<0> set equal to x at time 0:

x<0> = x(O) = a, (3 .4-6)

and we go a small step B in the direction given by the direction field. Thus, we arrive at the
point

We can iterate this procedure, which leads to

x<0> = a,
x(i+l) = x(i) + of(x(il) i = 0, 1' 2: . . .

(3.4-7)

(3 .4-8)

It is not difficult to write a small function to compute the 1ist of the x(il . It is given in
Listing 3.4-1 .

We read in the function ODE1 [] . In[3] : = « CSM' ODE 1 '

Here, we define f for the harmonic oscilla- In[4] : = f [{d_ , x2_}] : = b2 , -d - 0 . 1%2}
tor.

3.4 Application: Differential Equations

ODE1 [f_ , xO_List , delta_ , n_Integer] : =
Modul e [{xi = xO , res = {xO}} ,

Do[xi = xi + delta f [xi] ; AppendTo [res , xi] ,
{n}] ;

res

Listing 3.4-1 ODE1 .m: A simple loop.

We set the step size B = 0.05, and perform
250 steps, starting at the point { 1 . 5 , 0} .
The result is a list with 251 coordinates.

In [5] : s ODE1 [f , {1 . 5 , 0} , 0 . 06 , 260] // Short

Out [5] //Shorts

{{1 . 5 , 0}, {1 . 5 , -0 . 075} , { 1 . 49625 , -0 . 149625} ,

<<247>> , {1 . 09159 , 0 . 0671304}}

71

We can plot the result. Such plots are called
phase portraits, because they show the solu­
tion in phase space with position and veloc­
ity coordinates (x, :t).

ln[6] : = ListPlot [� , PlotJoined->True , AspectRatio-> 1] ;

It is also interesting to superimpose the so­
lution and the direction field.

ln[7] : = Show[ho, Y.J ;

2

0

- 1

-� �------�-----, / ' '
.. � · , ' ' '
... ' ' '

- 4 ... ,.. . .
...

0

; ;"

, ,

2

72 3 Iteration and Recursion

3.4.4 Iteration of Function Application

Our program becomes even simpler if we adopt a functional viewpoint. Equation 3.4-8
describes how x<i+l) is obtained from x<i) . This formula does not depend on i (i.e. , it is the
same for every step). Therefore, we can write

where the step function s is given by

s(x) = X + Of(x) .

Now the iteration looks l ike this:

x<0> a,
xCi+l) = s(x{il) i = 0, 1 , 2, . . .

(3.4-9)

(3.4-10)

(3.4-1 1)

NestList [s , x, n] applies the function s repeatedly to x, and returns the list of all inter­
mediate steps. It is the basis of our program ODE2 [] , shown in Listing 3.4-2. We already
used this idea in Section 3.2.

ODE2 [f_ , xO_List , delta_ , n_Integer] · =
Module [{s , x} ,

s [x_] : = x + delta f [x] ;
NestList [s , xO , n]

Listing 3.4-2 ODE2.m: Iteration of functions.

We read in the function ODE2 [] . In[8] := « CSM' ODE2'

ODE2 works lhe same way that ODE1 does. In[9] : s ListPlot [ODE2 [f , {1 . 6 , 0} , 0 . 1 , 125] ,

Here, we doubled the step size (and halved PlotJoined->True , .lspectRe.tio-> 1] ;
the number of steps) compared to the previ­
ous example. It is easy to see that this step
size is too large, the solution differs substan­
tially from the previous one.

0.5

3.4 Application: Differential Equations

With half the step size (0.025) and twice In [10] : z ListPlot [ODR2[f , { 1 . 6 , 0} , 0 . 026 , 500] ,
the number of steps, we get a more accurate PlotJoined->True , AspectRe.tio->1] ;
result.

115

3.4.5 Example: van der Pol's Equation

73

Van der Pol's equation describes a simple electron-tube oscillator with a resonator consisting
of a capacitor and a coil. Its equation is

(3.4-12)

The variable x represents the charge in the capacitor, which is also the voltage across the latter.
The first derivative x is the change in voltage, that is, the current. The change in current x is
the induced voltage in the coil. A feedback provided by the tube serves to excite the resonator.
The value of c: describes the coupling constant and the amplification of the tube.

Again, we can write Equation 3.4-12 as a system of two first-order equations:

XJ = X2 ,
X2 = c:(l - XT)X2 - XI •

(3.4-13)

We want to show that the system approaches a limit cycle for any initial condition. We shall
generate the solutions for various starting points and combine them in one picture.

Here is the right side of the equation with In[U] := vdP[b:1_ , x2_}] : s {:1:2 , 0 . 9 (1-:1:1•2) x2 - d}
E = 0.9.

We compute the solution starting at (3, -3). In[12] : = 11 • ODR2 [vdP, {3 , -3} , 6 . 05 , 500] ;

74

Here is the picture.

This auxiliary function produces a graph­
ic like the one here for a given initial
point. We can suppress generation of
the picture itself with the option setting
DisplayFunction->Identity .

Here, we generate several solutions whose
initial points lie on the top margin of the
picture (with y = 4).
These initial points lie at the lower margin.

Now, we can combine the graphics and ren­
der the image. We need to reset the option
DisplayFunction to its normal value.

3 Iteration and Recursion

In[13] : � gl1 • ListPlot [l1 , PlotJoined->True ,
AspectRatio-> 1] ;

;:---------_�, 'I�� �3
- 1 \
-3 \

In[14) : s ODRGraphics [f_, xO_ , delta_ , n_] : •
ListPlot [ODR2[f , xO, delta, n] ,

PlotJoined->True ,
DisplayPunction->Identity

1

In[15] : � top s
Table[ODRGraphic s[vdP , {i , 4} , 0 . 06 , 100] ,

{i, -4, O}] ;

In[16] : s bot •
Table [ODBGraphics [vdP , {i, -4} , 0 . 05 , 100] ,

{i , 0 , 4}] ;

In[17) : s Show[{top, bot}, !spectRatio->1 , Prame->True ,
PlotRange->{{-4 . 5 , 4 . 5} , {-6 , 5}} ,
DisplayFunction->$DisplayFunction] ;

4 1 11 � l
2

. I

-� I � ' I t\
0 ·�

-2 u -4 \
-4 2 4

3.4 Application: Differential Equations 75

3.4.6 Advanced Topic: Higher-Order Methods

The simple numerical methods presented so far are not efficient. We have to choose small step
sizes to obtain a reasonable accuracy for the result, and - more important - we do not know
how accurate our results are. For practical applications, there are more efficient methods.
One of them, the Runge-Kutta Method, is described in our book [54] . Even more advanced
methods can predict the numerical error and choose the step size accordingly. The built-in
function NDSolve [] uses such methods.

Here is again van der Pol's equation with
a starting point of (0. 1 , 0). The result is
returned in terms of an interpolating function
object.

In [l] : = NDSolve[{xl ' [t] == x2[t] ,

Out [l] = {{xl ->

x2 ' [t] •• 0 . 9 (1-x1 [t] A2) x2[t] - xl[t] ,
x1 [0] •• 0 . 1 , x2 [0] z• 0} ,

{xl , x2} , {t , 0 , 6Pi}]

InterpolatingFunction[{{O . , 18 . 8496}} , <>] ,

x2 -> InterpolatingFunction[{{O . , 18 . 8496}} , <>]}}

In this way, we get the values of x1 (t) In[2] : = b1[t] , x2[t] } / . X [[1]] ;
and x2(t) for the first (and only) solution.

Because the result is returned as a function, In[3] : • ParametricPlot[l!.value.te [X] , {t , 0 , 6Pi} ,
instead of as a simple list of values, we can AspectRe.tio->1] ;

produce a parametric plot of it. This picture
shows how the solution approaches the limit
cycle from a point in the latter's interior,
rather than from the exterior, as we showed
on page 74.

3.4. 7 Key Concepts

t . Differential equations can be solved numerically by proceeding along the direction field
in small time steps.

2. An equation of higher order can be transformed into a system of first-order equations.

3. Mechanical systems can be visualized in phase space.

76 3 Iteration and Recursion

3.5 Exercises

3.1 Reduction Rules for the GCD

With the following rules, we can find the gcd of two nonnegative integers.

Gcd[a_ , 0] : = a

Gcd[a_ , b_] : = Gcd[b , Mod[a, b]]

1 . Find the evaluation steps for the example Gcd[8 , 13] .

2. For which numbers a and b, with a � b > 0, are these rules applied exactly twice to find
their gcd?

3. For which numbers less than 100 do we need the largest number of rule applications to
find their gcd?

3.2 The Subtraction Method for the GCD

A third method for computing the gcd (in addition to the two methods presented in Section 3 . 1)
is obtained from the property c I a 1\ c I b , a > b implies c I a - b.

1 . What is the termination condition?

2. Find rules that implement this method, similar to the rules for the division method from
Section 3 . 1 .2.

3. Write a function with a While [] loop that uses this idea.

4 . Find the loop invariant and prove correctness and termination using the methods outlined
in Section 3 .3.2.

Test your programs for a set of inputs that includes all special cases.

Hints: The result a - b is generally not smaller than b. If necessary, the variables a and b
should be exchanged. Rules that are applicable under only certain conditions can be given as
follows (our condition is a > b):

Gcd[a_ , b_] / ; a > b : =

3.5 Exercises 77

3.3 Local Maxima of the Collatz Sequence

In this exercise, we want to find numbers whose Collatz sequence is longer than the sequence
of all other numbers in a certain range. See Section 3 .2 for an explanation ofCollatz sequences.

l . Write a function FindMax [a_ , b_] that finds the maximal length of the Collatz sequence
for all numbers between a and b. The value of the function should be the number whose
Collatz sequence is the longest.

2. Which number n < 1 , 000 has the longest Collatz sequence?

3.4 Invariants for the Fibonacci Numbers

Prove the correctness of the program f ibc [n] from Section 7 .2 .2 (Listing 7 . 2-2) by following
the methods given in Section 3.3 .2.

fibc [n_] := Module [{fi = 1 , fil = 0} ,
Do [{fi , fil} = {fi + fi l , fi} , {n - 1}] ;
fi

Listing 7.2-2 A loop for the nth Fibonacci number.

Hint: First transform the Do loop into a While loop.

3.5 Continued Fractions1

The continued fraction expansion of an irrational number r is the sequence a.o, a 1 , a.2 , . . . , ai E
N, suclJ. that (in the limit)

I
r = ao + 1 a , + -­az+ . . .

The ai can be found as follows. Let r0 = r. The first term, ao, is equal to the integer part of r0:

ao = lroJ .

The fractional part of ro is ro - a0. Its reciprocal, r· , = 1 /(ro - ao), is therefore

I

Thus, we get

and so on.

r, = a. , + 1 a2 + a,+ . . .

1Written examination, ETH Ziirich, Department of Mathematics and Physics.

78 3 Iteration and Recursion

I . Write a function continuedFract ion [r_ , n_Integer] that computes the first n ele­
ments of the continued fraction expansion of r as the list {a0 , a 1 , . • • , an- I } . You can
use a loop or program recursively.

2. Write a function cont inuedValue [l_List] that returns the number belonging to the
initial segment l = {ao , a 1 , • . • , an- I } of a continued fraction.

3. Write a simple definition for continuedError [r , n] , which finds the absolute error of
the continued fraction approximation of length n. This error is the absolute value of the
difference of r and the approximation with n terms.

Here are the first 10 elements of n's contin­
ued fraction expansion.

The numerical value of the previous contin­
ued fraction is this rational number.

Here is the error of the I 0-term approxima­
tion of 1t.

Note that coth I has an interesting expan­
sion.

In[1] : z continuedFraction[Pi , 10]

Out [1]� {3, 7 , 15 , 1, 292 , 1 , 1, 1, 2, 1}

In[2] : � continuedValue[�]

1146408
Out [2]a ---

364913

In[3] : = H[continuedError [Pi , 10]]

-12
Out [3]z 1 . 61071 10

ln[4] : = continuedFraction [Coth[1] , 12]

Out [4]= {1, 3 , 5 , 7, 9, 1 1 , 13, 15, 17, 19, 2 1 , 23}

Hint: The function Floor [r] gives the integer part of r.

Chapter 4

Structure of Programs

In this chapter, we use the example of plotting complex-valued parametric lines to discuss
the development of programs. The methods used for structuring programs can be used like
recipies in a cookbook, but it is nevertheless a good idea to understand something about how
they work.

The method presented in this chapter is the framework for building packages in Mathe­
matica. It is used for all nontrivial programs in the rest of this book. The material is adapted
from Chapter 1 of Programming in Mathematica l54].

About the illustration overleaf:
The picture shows the transformation of the unit circle in the complex plane under a randomly
chosen polynomial of degree 20 whose coefficients are all 1 or - 1 . The picture was produced
with this command (see Pictures.m):

randCoeff : = 2Random[Integer , {0 , 1}] - 1
RandHorner [n_Integer , x_] : = Nest [Function[p , p x + randCoeff] , 1 , n]
ComplexParametricPlot [RandHorner [20 , Exp [I t]] /Sqrt [2 1] , {t , 0 , 2Pi}] .

The command ComplexParametricPlot is developed in this chapter. The idea for this
picture is from A. Odlyzko.

4.1 Complex Parametric Lines 81

4.1 Complex Parametric Lines

This chapter explains step by step how a package is built in Mathematica. A package consists
of the definitions that constitute the program itself, as well as documentation and declarations
for interfacing the programs with Mathematica. To show you how to build packages, we use
a realistic example, complete with all necessary details. The package should plot parametric
lines in the complex plane.

A complex number consists of two components : the real and imaginary parts. Tht:y can
be viewed as the coordinates of a point in the plane. The complex number describing the point
with coordinates (a, b) is written as a + ib, where i is the imaginary unit and stands for ;=T.
In Mathematica, we have to write it as I or :iJ.. instead of i , because by convention, all built-in
symbols begin with a capital letter.

4.1.1 Plotting Lines

A complex-valued function z(t), depending on a real parameter t describes a line in the
complex plane. Mathematica's ParametricPlot command requires a list with two explicit
coordinates for plotting parametric lines. We can simply calculate the real and imaginary parts
of z(t) to draw the line.

Here is the formula for the unit circle in the
complex plane.

By calculating its real and imaginary part,
we can easily plot it. The parameter t ranges
from 0 to 27t for one revolution around the
circle.

In[l) : = zl s Exp[I t]

I t
Out [1]s E

In[2] : = ParametricPlot[{Re [z1] , Im[zl] } , {t , 0 , 2Pi}] ;

To see how a complex-valued function transforms these lines, we can simply apply the function
to the parametric representation of the desired line, then plot it as before.

Here is the unit circle transformed by the In[3) : = z2 = Sin[Exp [I t]
complex-valued sine function. I t

Out [3] = Sin[E)

82 4 Structure of Programs

We can plot it as before. By comparing the In[4] : .. ParametricP1ot [{Re[z2] , Im[z2] } , {t , 0 , 2Pi}] ;
previous graphic with this one, you can see
how the sine function transforms the unit
circle.

I 0.5

-=r\ I , I -0.5 0.5 1
I I

\ -· : ,) '�_/
4.1.2 A Simple Procedure to Draw the Lines

If we want to draw pictures of several different lines, it i s worthwhile to collect the nec­
essary commands in a procedure, so that we do not have to enter them every time. The
variable parts of the computation - that is, the expression that describes the line and the
range of the parameter - are defined as arguments of the procedure. This first version of
ComplexParametricPlot [z , {t , to , t 1 }] in the file ComplexParametricPiot1 .m is shown
in Listing 4. 1-1 .

ComplexParametricPlot [z_ , range_List] : =
ParametricPlot [{Re [z] , Im[z] } , range]

Listing 4.1-1 ComplexParametricPiot1 .m: The first version of ComplexParametricPlot [] .

Here is an example for the use of this definition.

Before using the commands we have to read
in the file containing them.

Here is a picture of the unit circle trans­
formed by the tangent function.

ln[5] : = << CSM' Comp1exParametricP1ot1 '

ln[6] : = ComplexParametricP1ot [
Tan[Exp[I t]] , {t , 0, 2Pi}] ;

0.5

0.25

- .5 - I -0.5 0.5
-0.25

-0.5

4. 1 Complex Parametric Lines 83

4.1.3 Drawing Several Lines

We can greatly enhance the visual presentation of a complex function by drawing several
parametric lines in one picture. Parametri cPlot [] allows us to give a list of coordinate
pairs to draw several lines at once.

Here is an expression for the transformation
of circles with radius r under the tangent
function.

We generate a list of pairs of real and imagi­
nary parts, using Table [] , for r = 0. 1 , 0.2,
. . . ' 1 .0.

In[l) : = z � Tan[r Exp [I t]]

I t
Out [l] = Tan[E r]

In[2] : s Tab1e [{Re[z] , Im[z]} , {r , 0 . 1 , 1 , 0 . 1}] // Short

Out [2]//Shortz

I t I t
{{Re [Tan[0 . 1 E]] , Im[Tan[0 . 1 E]] } , <<8>> ,

I t I t
{Re [Tan [l . E)] , Im[Tan [l . E]] }}

Here we plot the resulting lines for 0 ::; t ::; In[3] : s ParametricPlot [Evaluate [:(] , {t , 0 , 2Pi}] ;
2lt.

There is no need to define a new function for drawing several lines. This capability is a natural
extension of our command ComplexParametricPlot [] . We can simply give a second
definition with an additional parameter to be used as the range in the table. The result is the
second version of our package, in ComplexParametricPiot2.m, see Listing 4. 1 -2.

ComplexParametricPlot [z_ , range_List) : =
ParametricPlot [{Re [z) , Im[z) } , range]

ComplexParametricPlot [z_ , range_List , table_List] : =
ParametricPlot [Evaluate [Table [{Re [z] , Im[z) } , table)) , range)

Listing 4.1-2 ComplexParametricPiot2.m: An extension for several lines.

We read the new version of our package. In[4] : = << CSM' ComplexParametricPlot2'

84

The exponential function converts vertical
lines into circles around the origin. This
follows from ex+iy = e"' eiy , which is a circle
e iy with radius ex.

4.1.4 Key Concepts

4 Structure of Programs

In[5] : s ComplexParametricPlot[Exp[x + I y] ,
{y, -Pi , Pi} , {x , - 1 , 1 , 0 . 2}] ;

1 . We can visualize complex-valued functions by showing the images of parametric lines in
the complex plane.

2. Procedures combine statements that we want to execute for different parameter values.

4.2 The First Package 85

4.2 The First Package

In Section 4. 1 , we developed the first version of ComplexParametricPlot [] . Although
already useful, it is not yet in a state to be published or made available to other users. The goal
of writing a package is to make the defined commands behave as much as possible like built-in
commands. They should have documentation, accessible with ?ComplexParametricPlot ,
and their working should not depend on any other calculations we may have performed before
reading the package.

The commands BeginPackage [] , Begin [] , End [] , and EndPackage [] are used to
make definitions in a package independent from other calculations. For this purpose, every
symbol belongs to a context. Searching for symbols and creating new ones (if a symbol entered
at the keyboard is not found) are governed by two global variables:

$Context the context in which new symbols are created

$ContextPath a list of contexts to be searched

These two variables govern the lookup of contexts.

Context names are strings, ending in a backquote (') - for example, " Global ' " . Note that
you must enclose strings in quotation marks to enter them into Mathematica� the normal output
form does not show these quotation marks, however. Context [symbol] returns the context
of symbol.

If a symbol is entered, Mathematica searches the current context (the value of $Context)
and all contexts on the list $ContextPath for the symbol. If none is found, a new one is
created in the current context. More information about the details of this process can be found
in Programming in Mathematica [54].

Normally, the value of $Context is
"Global ' " .

Input fonn shows the quotation marks.

These contexts are searched before new sym­
bols are created.

This symbol does not exist yet, and a new
one is created.

A new symbol is put into the context
$Context .

In [l) : z $Context

Out [l) z Global '

In [2) : ; InputForm[Y.]

Out [2] //InputForm= "Global ' "

In[3) : = $ContextPath

Out [3] s {Global ' , System ' }

In[4] : = nevSymbol

Out [4]= newSymbol

ln[5) : ; Context [nevSymbol]

Out [5] = Global '

86

Symbols already existing in one of the con­
texts in $ContextPath are not created
anew.

In[6] : � Context [Integrate]

Out [6]• System '

4 Structure of Programs

ComplexParametricPiot3.m (Listing 4.2-1) contains our program as a complete package.
The part of the package between BeginPackage [11 CSM ' ComplexParametri cPlot ' 11] and
Begin [11 ' Private ' 11] is the inteiface part. It declares the functions exported by this package
- that is, the functions that the package provides. The best way to declare a function is to
give it a usage message - that is, a documentation for the function. The argument of
BeginPackage [] is the context for the functions in the package.

BeginPackage [" CSM ' ComplexParametricPlot ' "]

ComplexParametricPlot : : usage =
"ComplexParametricPlot [z, {t , tO , tl}] plots a complex parametric line .
ComplexParametricPlot [z , {t , tO , tl} , {r , rO , r1 , dr}] plot several lines . "

Begin[" ' Private ' "]

ComplexParametricPlot [z_ , range_List] : =
ParametricPlot [{Re [z) , Im[z] } , range]

ComplexParametricPlot [z_ , range_List , table_List] : •
ParametricPlot [Evaluate [Table [{Re [z) , Im[z] } , table]] , range]

End[)

EndPackage []

Listing 4.2-1 ComplexParametricPiot3.m: Our functions in a package.

The part of the package between Begin [11 ' Private ' 11] and End [] is the implementation
part. Here, the already-declared functions are implemented. The implementation part uses its
own private context. The use of a separate context prevents details of the implementation from
being exported: The implementation is encapsulated. This implementation part is identical to
the code in ComplexParametricPiot2.m from Listing 4. 1-2.

Users of our package should have to look at only the interface to use the package. This
separation of interface and implementation is an important principle of software engineering.
Software engineering studies the methods and principles of good programming. One of these
principles is that declaration and implementation should be separated. Separation establishes
a clear inteiface between user and programmer. The declaration contains all aspects important
for the user. The implementation realizes these aspects. How we do the implementation
is unimportant for users. Users must not depend on the properties of the program that
are mentioned only in the implementation part. Programmers are then free to change the
implementation at any time provided the declaration is not affected by the change.

Contexts are a means for realizing this separation of declaration and implementation. We
just saw how it works. This knowledge is, however, not important for us. Our package is
rather small, and it may seem that the use of all of this overhead is not justified. Because the

4.2 The First Package 87

package is only the first in a series, however, we are providing a good foundation for future
developments .

The command << for reading in the package
does not return a value, because the com­
mand EndPackage [) , which is the last one
in the package, does not return one.

ComplexPara.metricPlot has been de­
fined in this context.

The context of our package has been put on
the search path. That is why we found the
symbol CartesianMap .

The function works as before. Here is the
image of several circles with radii r = 0,
0.2, . . . , 2 under the sine function, rotated
by 90° .

ln[l] := << CSK' ComplexParametricPlot3'

In[2) : = Context [ComplexParametricPlot

Out (2] � CSM' ComplexParametricPlot '

In[3] : = $ContextPath

Out (3]= {CSM' ComplexParametricPlot ' , Global ' , System'}

In[4) : = ComplexParametricPlot [I Sin[r Exp [I t]] ,
{t , 0 , 2Pi} , {r , 0 , 2 , 0 . 2}] ;

4.2.1 A Second Function in the Package

To help visualize the effect of a complex-valued function on a set of parametric lines, it is
convenient to draw the lines and their images side by side.

Here are several circles around the origin. In[S] : = ComplexParametricPlot [r Exp [I t] ,
{t , -3 . 1 , 3 . 1} , {r , 0 . 01 , 2 . 01 , 0 . 2}] ;

88 4 Structure of Programs

Here are their images under the logarithm In[6] : � ComplexParametricPlot [Log[r B:r;p[I t]] ,
function. {t , -3 . 1 , 3 . 1} , {r , 0 . 01 , 2 . 0 1 , 0 . 2}] ;

- 1

Here the two pictures are shown side by
side. GraphicsArray [{grJ , . . . , grn}]
assembles several graphics in a row.

In[?] :� Show[Graphicsirray[{XX , Y,}]] ;

-4 -3 -2 -1 '

It is easy to see that the logarithm maps cir- In[S] : K PoverBxpand[Log[r B:r;p[I t]]
cles into vertical straight lines. Out [S]K 1 t + Log[r]

I -r
-3

Listing 4.2-2 shows the code for the command ·ComplexParametricMap [] that takes the
function to map, the expression for the lines, and the ranges as arguments. It gener­
ates the two pictures without showing them (by setting the option DisplayFunction to
Identity), then combines them in the way just shown. The display function is reset to its
default value $DisplayFunction . The argument ranges __ is declared with two under­
score characters, because it should match one or two parameters, depending on whether we
want to draw a single line or several lines. The parameter is simply passed unchanged to
ComplexParametricPlot [] .

4.2.2 Key Concepts

l . Each symbol belongs to a context.

2. New symbols are created in the current context.

4.2 The First Package

3. A package consists of an interface and an implementation part.

4. A package uses its own context for the exported functions.

5. The implementation is hidden in its own private context.

BeginPackage["CSM ' ComplexParametricPlot ' "]

ComplexParametricPlot : :usage =
"ComplexParametricPlot [z, {t , tO , tl}] plots a complex parametric line .
ComplexParametricPlot [z , {t , tO , t l } , {r , rO, rl , dr}] plot several lines . "

ComplexParametricMap : : usage = "ComplexParametricMap[f , z , ranges . .] shows
the image of the parametric lines defined by z and their images
under f side by side . "

Begin[" ' Private ' ")

ComplexParametricPlot [z_ , range_List] : =
ParametricPlot [{Re [z) , Im[z] } , range]

ComplexParametricPlot [z_ , range_List , table_List] : =
ParametricPlot [Evaluate [Table [{Re [z) , Im[z] } , table]] , range]

ComplexParametricMap[f_ , z_ , ranges __] : =
Module[{pre ,post} ,

pre = ComplexParametricPlot [z , ranges , DisplayFunction->Identity] ;
post = ComplexParametricPlot [f [z] , range s , DisplayFunction->Identity] ;
Show[GraphicsArray[{pre , post}] , DisplayFunction : >$DisplayFunction]

End[]

EndPackage []

Listing 4.2-2 ComplexParametricPiot4.m: A second function in the package.

89

90 4 Structure of Programs

4.3 Optional Arguments

Optional arguments of a procedure are arguments that you can leave out when calling the
procedure. In this case, a default value is used.

A (constant) default for an argument can be declared with var _ : default. If an argument
in a definition is declared in this way (i.e., with a default), the definition is also applied if the
argument is missing. The pattern variable var takes on the value default in this case.

This rule says that the default for the second
argument of f should be I 7.

If the second argument is given, the default
is ignored.

If the second argument is missing, the de­
fault value is used, and the rule matches even
though only one argument was given.

4.3.1 Options

In[l) : ; f [x_ , y_ : 17] := {x, y}

In[2) : ; f[4 , 6]

Out [2]K {4 , 6}

In[3) : ; f[4)

Out [3]; {4 , 17}

If a command takes many optional arguments, this solution will become confusing; there is
a better way to specify optional arguments out of a large number of such arguments. The
arguments are given in the form name -> value . These are named optional arguments, in
Mathematica referred to simply as options.

In this parametric plot we change the settings
of the AspectRatio and Frame options.

In[4] : ; ParametricPlot [

0.4

-1

] ;

{Sin[t] , Sin[2t]/2}, {t , 0, 2Pi} ,
AspectRatio -> 0 . 5 ,
Frame - > True

4.3 Optional Arguments

Graphics commands have many such option- In[5] : = Options [ParametricPlot]
al arguments. Normally, you need to specify Out [5]= {AspectRat io -> Automat ic , Axes -> Automatic,
only a small number of them when you use
the command. All other options assume the b:esLabel -> None , Axes Origin -> Automatic ,

default values shown here. AxesStyle -> Automatic , Background -> Automati c ,

ColorOutput -> GrayLevel, Compiled - > True ,

DefaultColor -> Automatic , Epilog -> {} ,

You can also change the default value. We
did so for all images in this chapter to pre­
serve the true aspect ratio.

4.3.2 Handling Options

Frame -> False , FrameLabel -> None ,

FrameStyle -> Automatic , FrameTicks -> Automat ic ,

GridLines -> None , ImageSize -> Automatic,

MaxBend -> 10 . , PlotDivision -> 30 . ,

PlotLabel -> None , PlotPoints -> 25,

PlotRange -> Automat i c , PlotRegion -> Automat i c ,

PlotStyle -> Automat i c , Prolog -> {} ,

RotateLabel -> True , Ticks -> Automatic,

DefaultFont :> $DefaultFont ,

DisplayFunction : > $DisplayFunction,

FormatType : > $FormatType , TextStyle : > $TextStyle}

In[6] : K SetOptions[ParametricPlot ,
!spectRatio -> Automat ic] ;

91

In our commands ComplexParametricPlot [] and ComplexParametricMap [] we call the
graphic functions ParametricPlot [] and GraphicsArray [] . These graphic functions
have many options that we may want to change. To make such changes possible, we should
allow options to be given for our commands and pass these options along to the graphic
commands.

We declare an additional parameter opts _ _ _ ?OptionQ , which accepts any options giv-
en after the required arguments. The built-in predicate OptionQ gives true if the extra
arguments are valid options, that is, rules of the form name -> value or name : > value .
The triple blank ___ matches any number of such options, including none at all . Inside
ComplexParametricPlot [] , we can simply pass the parameter opts to the command
Parametri cPlot [] .

In ComplexParametricMap [] we invoke two commands whose options we may want to
change, our own ComplexParametricPlot and the standard GraphicsArray [] . We have
to be careful to pass on only those options that are valid for the respective graphic function. The
auxiliary function FilterOptions [] selects from a sequence of options those that are valid
for a certain function. It is defined in the standard package Utili t ies ' Fil terOptions ' .

92 4 Structure of Programs

To use the function FilterOptions [] , we have to import this package into our own package.
We do so by mentioning the imported package as a second argument of BeginPackage [] .
The imported package is then read in, and its functions can be used in the implementation part
of our own package. This final version of our package, ComplexParametricPiot.m, is given in
Listing 4.3-1 .

Now that our package is final and its file- In[1] : = Needs ["CSM' ComplexParametricPlot ' "]
name corresponds to the name o f th e con-
text given in BeginPackage [" Context ' 11] ,
we should read it in with the command
Needs [11 Com ext' 11] •

The function f(z) = z + I / z maps the unit
circle to the real line segment between -2
and 2 and the outside of the unit circle to the
whole complex plane.

Similarly, the inside of the unit circle is also
mapped to the whole complex plane.

4.3.3 Key Concepts

In[2) : = Compleli:ParametricMap[Function[z , z + 1/z] ,
r Exp[I t] , {t , 0 , 2Pi } , {r , 1 , 2 , 0 . 1} ,
AspectRatio - > Automatic , GraphicsSpacing ->

0 . 2] ;

In[3] : = Compleli:ParametricMap[Function[z, z + 1/z] ,
r Exp [I t] , {t , 0, 2Pi} , {r , 0 . 2 , 1 , 0 . 1} ,
AspectRatio - > Automat ic , PlotRange - > All] ;

1 . Optional arguments of a functions have a default that is used if the argument is left out.

2. Options are named arguments that can be given in any order.

3 . Options look like rules.

4.3 Optional Arguments

BeginPackage [" CSM' ComplexParametricPlot ' " , "Utilities ' FilterOptions' "]

ComplexParametricPlot : : usage =
"ComplexParametricPlot [z , {t , tO , t 1}] plots a complex parametric line .
ComplexParametricPlot [z , {t , tO , t1} , {r , rO , r1 , dr}) plot several lines . "

ComplexParametricMap : :usage = "ComplexParametricMap[f , z , ranges . .] shows
the image of the parametric lines defined by z and their images
under f side by side . "

Begin[" ' Private ' "]

ComplexParametricPlot [z_ , range_List , opts ___ ?OptionQ] : =
ParametricPlot [{Re [z] , Im[z] } , range , opts]

ComplexParametricPlot [z_ , range_List , table_List , opts ___ ?OptionQ] : =
Para.metricPlot [Evaluate [Table [{Re [z] , Im[z]}, table]] , range , opts]

ComplexParametricMap[f_ , z_ , ranges __ , opts ___ ?OptionQ] : =
Module[{pre , post} ,

pre = ComplexParametricPlot [z , ranges ,
DisplayFunction->Identity , FilterOptions[ParametricPlot , opts]] ;

post = ComplexParametricPlot [f[z] , ranges ,
DisplayFunction->Identity , FilterOptions [ParametricPlot , opts)] ;

Show[GraphicsArray[{pre ,post}] , FilterOptions [GraphicsArray , opts] ,
DisplayFunction : >$DisplayFunction]

End[]

EndPackage []

Listing 4.3-l ComplexParametricPiot.m: The final version of complex lines.

93

94 4 Structure of Programs

4.4 A Template Package

You can use Template.m (Listing 4.4-l) as the starting point for your own packages. Copy
it to a new file and change the context name in the command BeginPackage [" Context' "] .
Normally, the file name is chosen as Context . m. The template contains the package framework,
as discussed in Section 4.2.

BeginPackage ["Template ' "]

Function1 : : usage = "Function1 [n) does nothing . "

Function2 : : usage = "Function2[n, (m: 17)] does even less . "

Begin[" ' Private ' "]

Aux[f_] : = Do[something]

Functionl[n_] : = n

(* an auxiliary function *)

Function2 [n_ , m_ : 17] / ; n < 5 := n m

End[]

EndPackage []

Listing 4.4-1 Template.m: A template package.

In addition to the direct interaction with the kernel of Mathematica as it is used in the examples
in this book, there is the Notebook frontend, with which you will most likely work. A Notebook
is a structured document that contains text and graphics, as well as Mathematica input and
output. It allows calculations to be annotated.

A package can also be developed as a Notebook. A Notebook version of Template.m with
name Template.nb is shown in Figure 4.4-1 . In this example, you can see a few of the features
of Notebooks. A Notebook is divided into cells. The cel ls are marked at the right margin
by cell brackets. Groups of cells are kept together by the outer brackets. The squares mark
sections and subsections. In the section "Examples," the function just defined is immediately
tried out. The visual presentation of a Notebook depends on what kind of operating system is
used. The files themselves, however, are portable between different operating systems.

The cells marked by a short vertical line are initialization cells. These are the cells that
contain the package proper. The menu command Kernei>Evaluate Initialization allows you
to have your package evaluated by the kernel just as if you had read in the corresponding
Template.m package. When you save this Notebook, the initialization cells are optionally
written into a package (Template.m) file, so you can read it in later with the usual command
<<Template ' or Needs ["Template ' "] .

4.4 A Template Package

Template.nb
Roman E. Maeder
You can use this package as a template for your own packages. When you save it, the corresponding package (with the .m
extension) is created automatically; it will contain all cells marked as initialization cells (vertical marl< in cell bracket).

• Implementation

• Definition of the package context

BevinPac:kage (" Teo�Pla.te' "]

• Declaration of exported functions

Puuctionl • I \ISa.ge • " Pwlgtionl [nJ does nothing. •

Punction2 : 1 \l&a.ge • "J'uDgtion2 (n, (m: 17)] doe• ev.en less. •

• Begin the implementation part
Begin [• ' Private • " I

• Definition or auxiUary functions

Aux (f_] : • Do (somethiDg]

• Definition of exported functions

Functionl [n_] • • u

l'ungtiou2 [n_, Jll..& 17) I • n J1L II n < 5

• Epilogue

End () (* end o f the J..mplementation part *)

EndPackage (I (* end of package *)

• Examples
l"unctionl [5]

Figure 4.4-1 The template package as a Notebook Template.nb.

J

r

� 1

r
j_

r
jJ

�]

95

96 4 Structure of Programs

4.5 Exercises

4.1 A Package for the CoUatz Problem

Collect the functions that we developed for the Collatz sequence (Section 3.2) in a package
Collatz.m. They are:

CollatzLength[n]
CollatzSequence [n]
CollatzMaximum[a , b] (Find.Max in Exercise 3.3)

Auxiliary functions should be defined in the implementation part. Add documentation and the
necessary context declarations.

4.2 Mobius Transforms

A Mobius transform is a complex-valued function of the form

az + b
f(z) =

cz + d
(a, b, c, and d are complex numbers).

1 . Find a, b, c, and d, such that
f(O)
f(l)

= I ,
= 1 + i,

f(l + i) = 00.

(4.5-1)

(4.5-2)

2. Illustrate f using ComplexParametricMap [] by choosing suitable sets of lines that show
the essential features of f. Identify the values f(O) and f(oo) in the diagrams.

Chapter 5

Abstract Data Types

In this chapter, we look at one of the most important concepts in programming languages:
data types. A data type is a set of elements together with the operations defined on them.
This simple definition implies an important assertion: Data and operations belong together.
Modem programming languages allow us to make this connection visible by special means of
defining new data types.

A data type is abstract if it is defined only in terms of its properties, without concern for its
possible implementation. This separation of specification and implementation is an important
tool for the development of good software. We have already seen a similar separation of
specification and implementation on the level of packages in Chapter 4.

Our first example will be the abstract definition of the integers. In Section 5.2, we define
our own data type for computations with modular numbers. Then, we discuss the methods for
the design of such data types. We use this method in the rest of the book for all our data types.

About the illustration overleaf:
This image comprises 500 unit cubes whose coordinates have been chosen as random integers
in the range 0 . . . 19 . The picture was produced with this command (see Pictures.m):

Cuboids [n_ , m_] : =
Graphics3D[Cuboid /� Table [Random [Integer , {0 , m-1}] , {n} , {3}]]

Show [Cuboids [500 , 20]] .

5. 1 Definition of Abstract Data Types
--------- - - - -

5.1 Definition of Abstract Data Types

99

A data type is a set of elements (the data of this type) and the operations defined on them,
together with their relationships (equations between the operations).

An example is the data type Integer . The data elements are the integers, the operations
are addition + , multiplication * , and so on. Integer is a built-in type that we can use as is.

In Mathematica and in many other programming languages, we can define new data types
ourselves. The data elements of type Integer are atomic, that is, they cannot be subdivided
further. In general, data elements are composite meaning that they consist of several parts. A

data type for addresses, for example, contains at least these parts: name, street, ZIP code, and
city. All these parts have their own type.

A data type is abstract if it is defined solely in terms of its properties, without regard to
possible implementation. This separation of definition or specification and implementation
is an important tool for the design of good software. It serves the user of the software who
can rely on a specification without having to know the implementation, and it also serves the
programmer who can choose a suitable implementation as long as the specification is satisfied.
The choice of implementation has then no consequences for the user.

These aspects of software development are often neglected in teaching because we usually
work with small programs consisting of a few lines of code (in contrast to Mathematica itself,
for example, which consists of more than 500,000 lines of code). But we always define
abstract data types in the rest of this book, even for small programs. Because abstract data
types are wholly defined by their specification, these ideas are independent of the programming
language chosen. If you ever have to program in C or Java, you can still use these concepts ­
only the implementation will look different.

5.1.1 Example: Abstract Definition of the Natural Numbers

The well-known natural numbers N = { 0, 1 , 2, . . . } can also be defined in an abstract way.
This has always been done in mathematics, long before the introduction of abstract data types.
It is the description of natural numbers by Peano. The natural numbers can be defined from a
constant 0 and the successor function s as the smallest set N with these properties:

O E N (5 . 1- 1)

n E N => s(n) E N (5. 1-2)

Intuitively, s is the function that adds 1 to a number. This construction obviously gives us all
natur al numbers if we start with zero.

Let us now look at a set TN of Mathematica expressions with these properties:

100 5 Abstract Data Types

• The expression z (a symbol) is an element of TN :

z E TN .

• All expressions of the form s [s [. . . s [z] . . .]] are elements of TN :

s [s [. . . s [z] . . .]] E TN, n = 1 , 2,

n times S
That is, the expressions s [z] , s [s [z]] ,

A function s operating on these expressions can be defined as follows:

s: t s [t] .

(5 . 1-3)

(5. 1 -4)

(5 . 1 -5)

For example, s(z) = s [z] , s (s [z]) = s [s [z]] . Please observe the distinction between the
function s and the symbol s . We use these similar notations on purpose.

It is easy to see that TN and the function s satisfy the conditions of Equations 5. 1-1
and 5. 1 -2 because we constructed the set TN such that the result of applying s to an element
gives another element of the set. The expression z serves as our zero. The set TN is therefore
a model of the natural numbers - the tenn model.

Addition add and multiplication mult can be defined inductively:

add(n, 0) = n,
add(n, s(m)) = s(add(n, m)),

mult(n, 0) = 0,
mult(n, s(m)) = add(mult(n, m), n).

(5. 1-6)

You can easily verify that ordinary addition and multiplication of natural numbers satisfy these
equations.

These equations can be realized in Mathematica as rules. We can enter them almost
verbatim. We have only to mark the variables n and m on the left side as pattern variables
by appending an underscore character. Note that the symbol z is not a variable, but rather a
constant.

add[n_ , z] : = n
add[n_ , s [m_]] : = s [add[n, m]]

mult [n_ , z] : = z
mult [n_ , s [m_]] : = add[mult [n, m] , n]

This example computes 2 + l in the term
model.

Here is 2 x 2 = 4.

In[1] : = add[s [s [z]] , s [z]]

Out [l]= s [s [s [z]]]

In[2] : = mu1t [s [s [z]] , s [s [z]]

Out [2]= s [s [s [s [z]]]]

5.1 Definition of Abstract Data Types

101

It is easy to prove that TN is isomorphic to N. The term z corresponds to the natural
number 0. The term s [s [. . . s [z] . . .]] corresponds to the number n, where there are exactly
n occurrences of s [. . .] . The built-in nonnegative integers are also a model of N. The
function s ·becomes

s [n_] : = n + 1 .

Note that the data type int (or integer) in most programming languages is not a model
of N, because there is a limit on the size of these numbers (often this limit is 231 - I). In this
number system, we have

(231 - 1) + 1 = -231 ,

which is rather strange.

5.1.2 Composite Data Types in Mathematica
For composite data types, there is a simple representation as normal expressions in Mathemat­
ica (see Section 2.4). The name type of the data type is used as head for the data elements. All
information that describes a data element is stored as elements ei of the normal expression. A
data element therefore looks as follows:

These ideas are best made clear with an example. We introduce a data type for modular
numbers in Section 5.2.

5.1.3 Key Concepts

1 . A data type consists of elements and operations.

2. The natural numbers are defined by the number zero and the successor function.

3. The term model is a set of formal expressions that satisfy certain equations.

102 5 Abstract Data Types

5.2 Example: Modular Numbers

Let us look at modular numbers for an example of the design and implementation of a new
data type. The ring of modular numbers is normally designated by Zp. for p > 0 (often chosen
to be a prime number). We use the name mod for this data type. A modular number can be
described by a representative (an integer) and the modulus p. This observation suggests the
implementation mod[n , p] . The component n is a representative of the residue class n + kp,
for k E Z. The choice is not unique: Each number congruent to n (modulo p) is also a
representative.

5.2.1 Unique Representation of Data Elements

If possible, data elements should be represented in a unique way. In our example, we can
always find a representative n with 0 � n < p. A simple rule reduces representations outside
this interval to standard form:

mod[n_ , p_] / ; n < 0 I I n >= p : = mod[Mod[n, p] , p]

(Mod[n , p] is the built-in integer remainder function whose result for positive p is always in
the range 0 � n < p.) One advantage of a unique representation is that equality of two data
elements is easy to check.

5.2.2 Arithmetic with Modular Numbers

The sum of two modular numbers is found by adding the representatives, and then reducing
to normal form; in a similar way we can find the product of two modular numbers. Here are
these simple definitions for modPlus and mod Times , respectively:

modPlus [mod[a_ ,p_] , mod[b_ ,p_]] : = mod[a + b , p]
modTimes [mod[a_ , p_] , mod[b_ ,p_]] : = mod [a * b , p]

Observe that we use the same pattern variable p_ for the modulus in the two arguments on
the left side of the definitions. This restriction ensures that both operands have the same
modulus. Note that we do not need to program the reduction to normal form; this task is
already performed by the code of mod .

This solution is rather cumbersome. We would better express the sum of two modular
numbers m1 and m2 in the form m1 + m2 instead of modPlus [m1 , mz] . That is, we want
to use the existing operator + also for our new data type. Not many programming languages

5.2 Example: Modular Numbers 103

allow us to overload existing operators to work with new data types in the way we can in
Mathematica.

Overloading an operator means adding definitions for an existing operator in such a way
that it can handle new data types. Here are the new definitions in terms of + and * , instead of
modPlus and modTimes , respectively:

mod/ : mod[a_ ,p_] + mod[b_ ,p_] : = mod[a + b , p
mod/ : mod[a_ ,p_] * mod[b_ ,p_] : = mod[a * b , p

The declaration mod/ : binds the definitions to the data type mod , instead of to the operations
Plus and Times . This binding emphasizes the close connection of data and operations, and
leads to more efficient evaluation.

The additive inverse -a mod p can be found as follows, by overloading the unary minus
operator:

mod/ : -mod[a_ , p_] : = mod[-a, p]

We can use the built-in function PowerMod[a , n, p] for positive integer powers of mod­
ular numbers. This function computes an mod p faster than does the integer operation
Mod[a"n , p] . With n = - 1, we get the modular inverse in the same way.

mod/ : mod(a_ , p_] A n_Integer : = mod[PowerMod[a, n , p] , p]

This modular number is immediately re- In [l] : = m.od[13 , 7]
duced to normal form. Obviously, we have Out [l]= mod[6 , 7]
13 = 6 (mod 7).

The sum of 5 and 3 is 1 . In[2] : = mod[5 , 7] + mod [3 , 7]

Out [2]= mod [l , 7]

The product 5 x 4 is 6.

The negative of 5 is 2.

Subtraction is turned into addition with the
negative automatically. Therefore, we do
not need to give any additional rules for sub­
traction.

The inverse of 5 is 3.

In [3) : = mod[5 , 7] m.od[4 , 7]

Out [3]= mod[6, 7]

In[4) : = -m.od[6 , 7]

Out [4]= mod [2 , 7]

In[5] : = m.od[6 , 7] - mod[4 , 7]

Out [6]= mod [l , 7]

In[6] := mod[6 , 7] �-1

Out [6]= mod[3, 7]

104

By multiplying the inverse with the original
number, we can verify the preceding result.
The inverse of 5 multiplied by 5 must give I .

100
Very big powers (here, 210 mod 7) can be
found in a fraction of a second.

5.2.3 Output Fonnatting

In[7] : = Y. mod [6 , 7]

Out [7]= mod [l , 7]

In[8] : = mod[2 , 7]A10A100

Out [8]= mod[2 , 7]

5 Abstract Data Types

The (external) representation is also a part of a data type. The usual notation in mathematics
is n mod p, which we can program as follows:

Format [m_mod] : = Infix[m, " mod "]

The formatting rule is applied to each result. In[l] : = mod[13, 7]

Out [l] = 6 mod 7

Formatting does not influence our computa­
Iions. Internally, modular numbers are still
stored in the same way.

InputForm[] allows us to look at this in­
ternal form.

5.2.4 Type Conversion

In[2] : = Y. A 2

Out [2]� 1 mod 7

In[3] : = InputForm[Y.]

Out [3] //InputForm� mod [l , 7]

It is convenient to extend arithmetic to combinations of modular numbers and integers (which is
justified mathematically by the canonical homomorphism Z ---4 Zp). We can do this extension
by defining additional rules for mixed argument types.

mod/ : mod[a_ , p_] + b_Integer : = mod[a + b , p]
mod/ : mod[a_ , p_] * b_Integer : = mod[a * b , p]

Integers are transformed into modular num­
bers whenever they come in contact with the
latter.

The order of the operands does not matter;
Mathematica knows that addition and mul­
tiplication are commutative.

In[4] : = 2 mod [6 , 7]

Out [4]= 3 mod 7

In[6] : = mod[S , 7] 2

Out [5] = 3 mod 7

The complete package for computing with modular numbers is in Modular.m; it is reproduced
in Listing 5 .2-1 .

5.2 Example: Modular Numbers

BeginPackage ["CSM' Modular' "]

mod: : usage = "mod[n, p] is a representation o f the number (n mod p) . "

Begin[" ' Private ' "]

(• Constructor and Normal Form •)

mod[n_ , p_] / ; n < 0 I I n >= p : = mod[Mod[n, pl . p]

(* Arithmetic •)

mod/ : mod[a_ .p_] + mod[b_ ,p_]
mod/ : mod[a_ ,p_] * mod[b_ ,p_]
mod/ : mod[a_ ,p_] � q_Integer

: = mod[a + b, p]
: = mod[a * b , p]
: = mod[PowerMod[a, q, p] . p]

(* Output Formatting •)

Format [m_mod] : = Infix[m . " mod "]

(• Type ·Conversion of Integers •)

mod/ : mod[a_ , p_] + b_Integer : = mod[a + b , p
mod/ : mod[a_ , p_] * b_Integer : = mod[a * b , p

End[]

EndPackage []
Listing 5.2-1 Modular.m.

5.2.5 Key Concepts

1. Modular numbers are described by a representative and the modulus.

2. A unique representation of data elements simplifies equality tests.

3. The standard arithmetic operators can be overloaded for new data types.

105

106

5.3 Design of Abstract Data Types

5 Abstract Data Types

For most programming projects, designing the data types should be the first activity of the
programmer. A good data type design helps the implementation of the algorithms in the
program.

5.3.1 Constructors and Selectors

We are not yet satisfied with the data type of modular numbers. We violated one important
principle: We should not access the internal representation of data elements directly. If we
define the operations on modular numbers as we did in Section 5.2, we have to change all
our definitions if the representation of our data type needs to be changed for some reason.
To avoid this undesirable dependency, we try to formulate our algorithms independently of
the implementation. Access to data elements happens then exclusively through certain access
functions: the constructors and selectors. A constructor is a function that creates new data
elements ; a selector is a function that returns a component of a data element.

In our example of modular numbers, we need one constructor to create modular numbers
and two selectors, one each for the two components, the representative and the modulus. We
can define the constructor Modular [n , p] and the selectors Representative [mod] and
Modulus [mod] as follows:

Modular [n_Integer , p_Integer?Positive] : = mod[Mod[n , p] , p]

Representative [mod[n_ , p_]] : = n
Modulus [mod[n_ , p_]] : = p

The constructor Modular [n , p] assembles n and p to a modular number mod[n , p] . At the
same time, we make the representation unique as we did at the beginning of Section 5.2. The
selectors simply return the components n and p. Using these access functions, we can write
the rule for addition in the following implementation-independent way:

mod/ : a_mod + b_mod / ; Modulus [a] aa Modulus [b] : =
Modular [Representative [a] + Representative [b] , Modulus [a]]

We no longer use patterns in the form mod[n_ , p_] that access the representation of a modular
number directly. Instead, we declare only variables of type mod using a_mod , and so on. We
access the components of the modular number using the selectors Representative [a] and
Modulus [a] . We build the result of addition using the constructor. We implement the test for
equality of the two moduli with a condition.

5.3 Design of Abstract Data Types 107

Constructors and selectors must fit together. The conditions can be expressed as equations.
Here, we have the usual laws about modular numbers.

Modular[.Representative [n] , Modulus [n]] == n ,
Representative [Modular [n, p]] == n (mod p),

Modulus [Modular [n, p]] == p . (5 .3-1)

The first equation says that we must get the same modular number m if we take it apart (using
the selectors) and then put it back together (using the constructor). The second equation says
that the chosen representative must be congruent to n.

The correctness of the definition for the addition can now be proved using these identities
alone. We no longer have to know how modular numbers are implemented. This fact ensures
the desired independence of representation. Assume that a and b have the same modulus. Let
us look at Representative [a + b] . According to our definition of addition, we get

Representative [Modular [Representative [a] + Representative [b] ,
Modulus [a]]] ,

which, according to Equation 5.3-1 , is congruent to

Representative [a] + Representative [b] .

This last form is exactJy the definition of modular addition, which is defined in terms of
representatives.

5.3.2 Design Principles for Abstract Data Types

The task of finding a useful data type for a problem can be divided into two parts: specification
and implementation. These two steps are independent. In larger programming projects, they
might even be done by different programmers. Specification declares which operations are
needed and which properties they should have. A specification consists of the following
elements:

• Constants are the fundamental building blocks of data structures. Often, they are termed
atoms.

• Constructors, selectors, and predicates are the functions used to build and to access data
elements. If used exclusively, such access functions make algorithms using the data type
independent of implementation.

• Equations describe the properties of constructors, selectors, and predicates.

108 5 Abstract Data Types

5.3.3 Implementation of Data Types

Implementation takes the specification and tries to satisfy it as well as possible. The measure
of satisfaction may be efficiency (in terms of run time or memory usage), or our goal may be
to produce a working prototype as quickly as possible. This prototype allows us to test the
design. Later, we can change the implementation to be more efficient without making any
changes to existing code, as we have seen. Implementation consists of these elements:

• A representation of data elements; often, we can use normal expressions with the name of
the data type as head

• Definitions for the constructors, selectors, and predicates

• Rules for reduction to normal form; these rules are derived from the equations and can
often be built into the constructors

• A useful output representation; a good output format makes data more readable and hides
the implementation

• Overloading of standard operators, where useful

• Automatic type conversion

We present only one more example at this point because these design principles are used in
the rest of the book in many places.

5.3.4 Example: Mathematica Expressions

The expressions used by Mathematica can also be defined as elements of an abstract data type,
of course. We have already defined them as such in Section 2.4. The constants are the atoms
(numbers, symbols, and strings). For every integer n � 0, there is one constructor

which produces a normal expression with a head and n elements. The selectors are Head[e]
and Part [e , i] , for 1 ::; i ::; n. The equations are of the form

Head[h[e l , e2 , . . . , en]] == h ,
Part [h [el , e2 , . . . , en] , i] == ei , (5.3-2)

Head [e] [Part [e , 1] , . . . , Part [e , n]] == e .

See also Section 9. 1 .2, where a similar data type for LISP is presented.
This example is special insofar as we do not have to implement anything. Expressions are

already built into Mathematica. But we can see that, to use these expressions, we do not have
to know how they have been implemented. All we need is the specification.

5.3 Design of Abstract Data Types

5.3.5 Key Concepts

1 . Constructors build elements of data types.

2. Selectors return components of data elements.

109

3. Equations between constructors and selectors lead to simplification of data elements and
to unique representations.

110 5 Abstract Data Types

5.4 Exercises

5.1 Rational Numbers1

A data type for rational numbers can be defined with the constructor makeRational [n , d]
and the selectors numerator[r] and denominator [r] . The representation of a data element
is simply rational [n , d] . It should represent the rational number n/ d. In this exercise,
you should not use the built-in rational numbers ; use only integers.

I . Give the definitions of makeRational , numerator, and denominator . Complete the
right side:

makeRational [n_ , d_] : =
numerator [rational [n_ , d_]] : =

denominator [rational [n_ , d_]] : =

2. The representation rational [n , d] for rational numbers is not yet unique. For example,
the expressions rational [- 1 , 2] , rational [1 , -2] , and rational [-2 , 4] describe
the same number. The representation becomes unique if we demand that the denominator
is always positive and the numerator and denominator are relatively prime; that is, they
have no factors in common. Find two rules for rational [n_ , d_] that ensure that data
elements are transformed into a unique form.

Hint: the function GCD [] computes the greatest common divisor (gcd) of two integers.

3 . Give definitions for addition and multiplication of rational numbers that work exclusively
with constructors and selectors. Complete the right side:

rational/ : a_rational + b_rational : =

rational/ : a_rational * b rational : =

5.2 Complex Numbers1

A data type for complex numbers can be defined with a constructor complexCartesian [x , y]
and the selectors re [c] and im[c] . The representation is by a data element of the form
cartesian [x , y] . It describes the number x + iy. These definitions implement the con­
structor and the selectors (The built-in complex numbers must not be used for this exercise).

complexCartesian[x_ , y_) : = cartesian[x, y]
re[cartesian[x_ , y_]] := x
im[cartesian[x_ , y_)] : = y

1 Written examination, ETH Ziirich, Department of Mathematics and Physics.

5.4 Exercises 111

1 . Give definitions for addition, multiplication, and inverse of complex numbers that work
exclusively with constructors and selectors. Complete the right side:

cartesian/ : a_cartesian + b_cartesian : =

cartesian/ : a_cartes ian * b_cartesian : =

cartesian/ : a_cartesian A - 1 : =

Give similar definitions for the sum of a complex number and an integer or a rational
number, as well as the product of a complex number with an integer or a rational number.

2. Are the rules from part 1 sufficient for all four arithmetic operations (addition, subtraction,
multiplication, and division)?

• If yes, show how cartesian [l , 2] - cartesian [O , 1]
and cartesian [! , 2] I cartesian [O , 1] are computed.

• If no, give more definitions sufficient for all four arithmetic operations. Show how the
above two examples are now computed.

3. Complex numbers can also be given in polar coordinates as reiq> = r cos <p + ir sin <p.
Here is the definition of a constructor complexPolar [r , cp] that creates a data element
polar [r , cp] describing the complex number reiiP:

complexPolar [r_ , p_] : = polar [r , p] .

Give definitions for the selectors re [] and im[] for data of type polar . With these
definitions, re [polar [1 , Pi/4]] evaluates to Sqrt [2] /2 , because eirc/4 = v'2/2 +
iv'2/2.

Chapter 6

Algorithms for Searching and Sorting

In this chapter, we present algorithms for sorting collections of data and for searching in ordered
collections. The algorithms treated here are fundamental to computer science. Algorithms for
sorting and searching are part of many programs. In a broad sense, they serve to collect and
process data.

In this chapter we use Mathematica's graphics capabilities to visualize the behavior of
algorithms. One of the features of an interactive symbolic computation systems is that program
runs are themselves data and can be processed accordingly.

Section 6. 1 treats searching in ordered collections of data. Ordering is the key to fast
searching, for example in a phone directory. In Section 6.2, we treat sorting. Because sorted
data collections are so important, it is also important to know how data becomes sorted in the
first place.

Binary trees are the topic of Section 6.3. They are a classic dynamic data structure that
can be used for sorting and searching.

About the illustration overleaf:
A picture of a binary tree. It was obtained by inserting 30 random numbers into an empty tree.
The picture was produced with this command (see also Pictures.m):

TreePlot [RandomTree [30]] ;

6.1 Searching Ordered Data 1 15

6.1 Searching Ordered Data

It is easy to find the phone number of a person in the phone directory, but difficult to find the
name, given the number. The reason is that the directory is sorted by name. Let us see how we
can take advantage of the order present in a collection of data. The most important searching
technique is binary search, or bisection, which we treat in this section.

6.1.1 Bisection (Binary Search)

How can we find an entry in a sorted directory? If we search by hand, we use our experience
to find the approximate location of the entry, and then search sequentially through the page
that contains the entry. This is a heuristic method, which is not well suited for computers. We
need a purely algorithmic procedure, one that can be explained to a machine.

We want to solve this task with the minimum number of accesses to the directory. First, we
look at the entry in the middle of the directory and compare it with the entry we are looking for.
This step tells us in which half of the directory the entry must lie. The other half does not have
to be looked at again. The part of the directory that contains the entry can again be divided
into two halves, and so on. Each step halves the number of entries in which we have to search.
After log2 n steps, where n i s the number of entries in the original directory, the directory has
been reduced to a single entry. If it is the one we are looking for, we have located it; otherwise,
it is not in the directory at all. Of course, if at any step the entry in the middle happens to be
the right one, we can stop the search immediately. The function BinarySearch [] shown in
Listing 6. 1-1 finds the position of a number in a sorted list using bisection.

BinarySearch : : usage = "BinarySearch[list , elem] finds the position of elem
in the sorted list . If elem does not occur in list , 0 is returned. "

BinarySearch[list _ , elem_] : =
Module [{nO = 1 , n1 = Length[list] , m} ,

While [nO <= n1 ,

] ;

m = Floor[(nO + nl) /2] ;
If [list [(m]] == elem , Return[m]] ; (* found •)
If [list [(m]] < elem , nO = m+1 , n1 = m-1 (* continue •)

0 (* not found •)

Listing 6.1-1 BinarySearch1 .m: The bisection method for searching.

A directory with I million entries can be
searched with at most 20 accesses.

In[1] : = Log[2 . 0 , 10A6]

Out [1]• 19 . 9316

116 6 Algorithms for Searching and Sorting

The number 5 occurs in the third position in In[2] : � Binary-Search[
the list. { 1 , 3 , 5 , 7, 9, 11 , 13, 15 , 17} ,

5]

Out [2)= 3

The number 6 does not occur. Zero is re- In[3] : = Binary-Search[
tumed to indicate this fact. {1 , 3 , 5 , 7, 9 , 1 1 , 13 , 1 5 , 17} ,

6]

Out [3]� 0

To prove correctness of this algorithm, we look at the loop invariant:

If elem occurs in list, then it is in the range no, . . . , n 1 .

This invariant is satisfied trivially i f elem does not occur at all or if the list is empty. In the
beginning, it is always satisfied if we set no = 1 and n1 = n. Then, we look at the middle
element with index m = l no;n1 J . If the mth element happens to be the one we are looking
for, we can terminate the loop and return m. Otherwise, we continue the search in that half
that must contain the element, if it occurs at all. Therefore, we can either set n0 to m + 1 to
search in the upper half, or we can set n 1 to m - 1 to search in the lower half. In each case, the
loop invariant remains true and the range no . . . n t is made smaller. After a few steps of the
algorithm, we must reach no > nt . Because the range to be searched is then empty, it is clear
that the element did not occur in the list. In this case, we return 0 to indicate an unsuccessful
search.

Such considerations have to be performed with care. A special case exists for nt = no + I .
We cannot find an m in between the only two elements present. Please convince yourself that
the algorithm also works in this case. How does the program work if the list contains just one
element?

6.1.2 Observation of the Algorithm

Mathematica makes it easy to observe how an algorithm works. In the simplest case, we can
insert a Print [] command in the loop. This statement allows us to see the progress of the
computation. The information of interest in binary search is the value of the pair { n0, nt } .
We print it out at the beginning and after each iteration of the loop. The modified program is
shown in Listing 6.1-2.

We �>ee the values of no and n 1 at the begin­
ning and after each iteration.

In [1] : = BinarySearch[

{ 1 , 9}
{ 1 , 4}
{3 , 4}

Out [1] = 3

{1 , 3, 5 , 7 , 9 , 11 , 13 , 1 5 , 17} ,
5]

6.1 Searching Ordered Data

BinarySearch[list_ , elem_] : =
Module[{nO m 1 , n 1 m Length[list] , m} ,

Print [{nO , n1}] ;
While [nO <m n1 ,

m m Floor[(nO + n1) /2] ;
If [list [[m]] == elem , Return[m]] ; (* found *)
If [list [(m]] < elem, nO = m+1 , n1 = m-1
Print [{nO , nl}]

] ; (* continue *)

]

] ;
0 (* not found *)

Listing 6.1-2 BinarySearchA.m: Print commands in the loop.

The algorithm needs the largest number of
iterations if the element does not occur.

In[2] : � BinarySearch[

{ 1 , 9}
{ 1 , 4}
{3, 4}
{4 , 4}
{4 , 3}

Out [2] = 0

{1 , 3 , 5 , 7 . 9 , 1 1 , 1 3 , 1 5 , 17} ,
6]

117

A better idea is to generate the information about the algorithm as a Mathematica object itself.
We can then process it further. The version of BinarySearch [] shown in Listing 6. 1-3
returns the list of all no, n1 pairs.

BinarySearch[list _ , elem_] : m
Module [{nO = 1 , n1 = Length[list] , m , res = {}} ,

AppendTo [res , {nO , n1}] ;
While [nO <= n1 ,

] ;
res

m = Floor [(nO + n1) /2] ;
If [list [(m]) == elem, Break[]] ;
If [list [[m]] < elem, nO = m+1 , n1 = m-1] ;
AppendTo [res , {nO , n1}] ;

Listing 6.1-3 BinarySearchB.m: Returning trace information.

Wegenerate a list ofthe first l O,OOO integers. In[1] : = Short[1 = Range[10000]]

Out [1]//Shorta

{ 1 , 2 , 3, 4, 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12, 13 , <<9981>> ,

9995 , 9996 , 9997 , 9998, 9999 , 10000}

118

We search for a number that does not occur
in 1 . The result is the list of all no, n1 pairs
generated during the search.

In this way, we generate rectangles that cor­
respond to the intervals in our search. The
lower left corner is (no, -(i - I /2)); the up­
per right corner is (n 1 , -i).
This command shows the rectangles. We
can see how the intervals are halved at each
step (from top to bottom).

6 Algorithms for Searching and Sorting

ln[2] : = pairs = BinarySearch[1 , 7200 . 5]

Out [2] = {{1 , 10000} , {500 1 , 10000} , {500 1 , 7499} ,

{6251 , 7499}, {6876 , 7499} , {7188 , 7499} ,

{7188 , 7342} , {7188 , 7264} , {7188 , 7225} ,

{7188, 7205} , {7197 , 7205} , {7197 , 7200} ,

{7199 , 7200} , {7200 , 7200} , {720 1 , 7200}}

In[3] : = Table [
Rectangle[{pairs [[i , 1]] , -i+1/2} ,

{pairs [[i , 2]] , -i}] ,
{i , Length[pairs]}] ;

ln[4] : = Show[Graphics [%] , Axes->None , Prame->True ,
PrameTicks->{Automatic ,None ,None , None} ,
AspectRatio->1/3 , PlotRange->All] ;

0 2000 4000

-

6000

-
.
.
I
' l

8000 10000

6.1.3 Abstract Formulation of Binary Search

Searching and sorting benefits much from an abstract formulation. The details of the algorithm
do not depend on the kind of data searched or sorted. All we need is that the data elements
contain a key field that can be compared with key fields of other data elements. Therefore, we
need to know only the selector for the key field. The data elements are usually called records.
One component of these records is the key. The possible values of the key can be ordered
linearly. (Such an order is called a total order.) Mathematica provides a general comparison
function Order [e1 , c2] that returns 1 , 0, or - 1 , depending on whether e 1 < e2, e 1 = e2, or
e 1 > ez holds.

The selector GetKey[record] , which returns the key, is made an additional argument of
the binary search procedure. The procedure can, therefore, be used to sort arbitrary types of
records. The program BinarySearch.m is reproduced in Listing 6. I -4.

The package Telephone.m (Listing 6. 1 -5) contains the definition of an abstract data type
for a simple phone directory. We use the name as key.

We need these two packages. In[5] : = << CSM' Telephone ' ; \
<< CSM' BinarySearch' ;

6. 1 Searching Ordered Data

Here, we enter a few records into the directo­
ry. These records are the phone numbers of
branches and offices of Cambridge Univer­
sity Press in various countries. Note that we
must enter the records in alphabetical order.

We can extract a record with the name as
key.

In[6] : � directory � {
entry[".A.rgentina" ,
entry ["Austral.ia" ,
entry ["Brazil" ,
entry ["Egypt " ,
entry["Prance" ,
entry["Greece" ,
entry["lndia" ,
entry["Japan" ,
entry["Poland" ,
entry["Spain" ,
entry["Thailand" ,
entry["Turkey" ,
entry["USA" ,

} ;

"+541 322-5040"] ,
"+61 3 9568 0322 9"] ,
"+55 1 1 259 2122"] ,
"+202 3935157"] ,
"+331 39 14 46 91 "] ,
"+30 1 9213020"] ,
"+91 11 3274196"] .
"+81 813 32914541 "] ,
"+48 2 654 18 09"] ,
"+34 1 360 45 65"] ,
"+66 2 255 4620"] ,
"+216 346 3046"] ,
"+1 212 924 3900"]

In[7] : � BinarySearch[directory , "Brazil" , name

Out [7]= phonerecord[Brazil , +55 1 1 259 2122]

119

The procedure BinarySearch is a polymorphic operation. It can be used to search collections
of data of different types.

BinarySearch : : usage = "BinarySearch[list , key , getkey] f inds the position
in list of a record whose key value is equal to key . The function getkey
is applied to records to retrieve the key for comparisons . "

BinarySearch[list_ , key_ , getkey_] : =
Module[{nO = 1 , n1 = Length[list] , m} ,

While [nO <= n1 ,

] ;

m = Floor[(nO + n1) /2] ;
Switch[Order [getkey[list [[m]]] , key] ,

1 , nO = m + 1 , (* record is above m *)
0 , Return[list [[m]]] , (* found! *)
-1 , n1 = m - 1 (* record is below m *)

Null (* record is not in list *)

Listing 6.1-4 BinarySearch.m.

entry[name_String , number_String] : =
phonerecord[name , number] (* constructor •)

number [phonerecord[name_ , number_]] := number (* selector *)

name [phonerecord[name _ , number_]] : = name (* selector •)

Listing 6.1-5 Telephone.m.

120 6 Algorithms for Se

6.1.4 Key Concepts

1 . An ordered list of data can be searched in logarithmic time.

2. The key of a record is the field used for sorting and searching.

6.2 Sorting Data 121

6.2 Sorting Data

For simplicity, we shall sort only lists of numbers. We saw in Section 6. 1 .3 how methods for
searching can be extended to arbitrary data types. The same extension is possible for sorting
algorithms. The algorithms we discuss are internal sorting algorithms. They are used to sort
a list of numbers residing in the main memory of our computer. The sorting of external data
(residing on the hard disk) requires different methods. All our algorithms work in place, that
is, they sort the data without requiring any auxiliary memory. The elementary operation for
internal, in-place sorting is the exchange, or swap, of two elements . A list can be sorted by a
sequence of such exchanges.

Here is a list of numbers. In[1] : = 1 • {3 , 1 , 2 , 4}

Out [1] = {3 , 1 , 2, 4}

This command exchanges the first and sec- In [2] : = {1 [[1]] , 1 [[2]] } = {1[[2]] , 1 [[1]] } ; 1
ond element. It is an example of parallel Out [2]= { 1 , 3 , 2 , 4}
assignment (see Section 2.3. 1).

After exchanging the second and third ele- In[3] : = {1 [[2]] , 1 [[3]]} • {1 [[3]] , 1 [[2]] } ; 1
ment, the list is sorted. Out [3]= { 1 , 2 , 3 , 4}

The auxiliary command swap [l , i , j] performs such an exchange on the value of l. The
attribute HoldFirst prevents the evaluation of l as argument of swap [] . We shall use
program SortAux.m (Listing 6.2- 1) in all sorting programs to follow.

BeginPackage [11CSM' SortAux ' 11]

swap : : usage = 11 swap[l , i , j] exchanges elements i and j of the value of 1 . 11

Begin[11 ' Private ' 11]

SetAttributes [swap , {HoldFirst}]

swap[l_Symbol , i _ , j_] : = ({l [[i]] , l [[j]]} = {l [[j]] , l [[i]] } ; 1)

End[]

EndPackage []

Listing 6.2-1 SortAux.m: Exchanging elements of a list.

The use of swap[] instead of the explicit
assignment will make our sorting programs
more readable.

In[4] : = svap[1, 1 , 3]

Out [4] = {3 , 2, 1, 4}

122 6 Algorithms for Searching and Sorting

We shall compare the algorithms by the number of comparisons C(n) and the number of
exchanges E(n) necessary to sort a list of length n. In most algorithms, these numbers depend
on the input and are lower for input lists that are almost sorted. This dependency makes it
necessary to look at the best and worst cases. Most important, however, is the expected average
performance. In the formulae we assume that our input is the list l = {et , e2 , . . . , en} with
n elements.

6.2.1 Selection Sort

The idea of selection sort is to gradually build up the sorted list. The first element of the sorted
list is the smallest of all elements of l . It is brought at position 1 of the result by exchanging
it with the element that happens to be in position I of l. Then, the smallest among elements 2
through n is found. It comes in second place in the sorted list. Before the ith step, the first
i - I elements are the initial part of the final result; the remaining elements are still unsorted.
This partition of l into two parts is shown here:

C J • • • Ci- 1 Ci • . . Cn
.........___., �

final unsorted

These considerations lead to the following loop invariant:

Elements e 1 • • • ei - 1 are the initial segment of the sorted version of l .

(6.2-1)

In the beginning, we set i = 1 to satisfy the loop invariant trivially. If elements e1 . . . Ci- l
are the initial segment of the sorted version of l, they must be smaller than the remaining
elements Ci • • • en. We locate the smallest among these elements. It belongs in position i
in the sorted list because it is larger than elements e 1 . • . Ci- t but smaller than the remaining
elements. An exchange puts it into position i. This operation establishes the loop invariant
for i + 1 . Finally, we reach i = n, and the whole list is sorted. (Strictly speaking, only
elements e 1 • • • en- I are sorted, but this is sufficient !)

The smallest element among ei . . . en is found in an inner loop by sequential search.
Sequential search is performed by looking at the elements in turn and recording the smallest
one found so far, as well as its index. Program Selection.m is shown in Listing 6.2-2.

The number of comparisons Cs(n) is approximately equal to n2 /2, because we perform
one comparison in the body of the inner loop. The number of iterations of the inner loop is
n - (i + 1) + 1 = n - i. In the outer loop, i varies from I to n - 1 . Together, we get

n-1 n- l 2 � . " . I n C8(n) = �(n - z) = � z = 2n(n - 1) � 2 .
i=1 i=l

(6.2-2)

The number of exchanges E5(n) is n - 1 � n, because we perform one exchange in the outer
loop. Note that these numbers do not depend on the input.

6.2 Sorting Data

Needs [" CSM' SortAux ' "]

SelectionSort : : usage = "SelectionSort [1] sorts the list 1 . "

SelectionSort [list_List] : =
Module [{! = list , i , n = Length[list] , min , minj , j } ,

Do [

1

min = l [[i]] ; minj = i ;
Do [If [l [[j]) < min , min = l [[j]] ; minj = j] , {j , i+1 , n}] ;
swap [l , i , minj] ,

{i , 1 , n-1}] ;

Listing 6.2-2 Selection.m: Selection sort.

6.2.2 Insertion Sort

123

Insertion sort works by maintaining a sorted list of elements of l. Elements of l are taken
one by one and inserted into this l ist in their proper place. This sorted list is kept at the
beginning of l. Before the ith step, the first i elements are sorted; the remaining elements are
still unsorted. This arrangement is similar to selection sort (see Section 6.2. 1), but here we do
not require this sorted part to be the beginning of the final result; we require only that it be
sorted. The partition of l into two parts is shown here:

The loop invariant is the following:

e 1 • • • ei ei+ 1 • . • en
.__.._.,.�

sorted unsorted

Elements e 1 • • • ei are sorted.

(6.2-3)

In the beginning, we set i = 1 to satisfy the loop invariant trivially. We look at element ei+l

and put it at its proper place among e1 . . . ei+l · We do this by first comparing ei+l with ei .

If ei+I 2 ei, element ci+l is already in the right place (ei is the largest element among e 1 . . . ei

because these elements are sorted). If ei+l < ei, we exchange elements ei and ei+ l and
continue comparing ei- l and ei . Eventually, the two elements compared are in their proper
order, or we reach i = 1 . When this happens, the elements e 1 . . . ei+l are sorted, and we have
established the loop invariant for i + 1 . As soon as we reach i = n, the whole list is sorted.
Listing 6.2-3 shows the program.

The number of comparisons and exchanges are of the same order because each comparison
is immediately followed by an exchange, except possibly the last one in the inner loop. How
often the inner loop is traversed depends on the input list l. On average, we can expect the

124 6 Algorithms for Searching and Sorting

Needs ["CSM' SortAux ' "]

InsertionSort : :usage = " InsertionSort [l] sorts the list 1 . "

InsertionSort [list_List] : =
Module [{! = list , i , n a Length[list] , j } ,

Do [

1
]

j = i-1 ;
While [j >= 1 && l [[j]] > l [[j+1]] , swap[l , j , j+1] ; j --] ,

{i , 2 , n}] ;

Listing 6.2-3 lnsertion.m: Insertion sort.

inner loop to be traversed about (i - 1)/2 times. This consideration leads to
n i - 1 1 n- l 1 n2 Vi(n) � Ai(n) = L -2- = 2 L j = 4n(n - 1) � 4 .

i=2 j=1
(6.2-4)

In the worst case (for which inputs does it happen?), the algorithm takes twice this number of
steps. If the input is already sorted, there will be only n comparisons and no exchanges. This
number is optimal because we have to perform at least that many comparisons just to find out
whether the input is sorted.

6.2.3 Quicksort

Quicksort (Listing 6.2-4) is the most often used algorithm because it performs better on average
than the algorithms we have looked at so far. Its implementation is more complicated than that
of insertion sort or selection sort. The idea is to partition the input list into two parts (using
exchanges), so that all elements in the first part are smaller than the elements in the second
part. We do not require the two parts to be sorted. The key observation is that the two parts can
now be sorted independently. We do this sorting by two recursive calls to quicksort. In these
recursive calls, we have to specify which part of the original list is to be sorted. Therefore,
we define an auxiliary function QSort [l , n0 , n1] that sorts only the range e71D • • • en1 of l .
To sort the whole list, we simply call this auxiliary function with bounds n0 = 1 and n1 = n:
QSort [1 , 1 , n] .

The recursion ends as soon as n0 2 n 1 • This case is treated with a separate definition for
QSort [] . For the following analysis of the algorithm, we can assume 1 ::; no < n1 ::; n. The
partition is obtained by maintaining two indices, i and j . Here is our loop invariant:

Elements e71D • • • ei- 1 are smal1er or equal to e,
Elements ej+1 • • • en1 are larger or equal to e,

where e is an arbitrary element among en0 • • • en1 • The invariant is satisfied trivially with
i = n0, j = n 1 • We try to increase i and decrease j, and maintain the invariant. In general, our

6.2 Sorting Data 125

list is divided into three parts:

(6.2-5)

Our goal is to reach either i = j + 1 , or i = j and ei = e. If one of these two cases is satisfied,
we have obtained the partitioning of the list into two parts that can be sorted independently.

�e 2-:e (6.2-6) i = j + l :

Increasing i and decreasing j is done as follows: While ei < e holds, we can increment i;
while ei > e holds, we can decrement j . This operation is done in the two inner While loops.
Because e occurs among en0 • • • en1 , there is an i ::; n1 with ei 2 e, and there is a j 2 no with
ei ::; e. The loops will therefore terminate with valid values of i and j. After the two loops,
one of the following three cases is true:

• If i < j, we can exchange ei and ej , and then increment i and decrement j . This operation
keeps the invariant valid and we can continue with the outer loop.

• If i = j, we have ei = e = ej , and all elements en0 • • • ei- 1 are ::; e, and all elements
ei+l . . . eno are 2 e. We can terminate the loop because the partitioning has been obtained.

Needs [" CSM' SortAux ' "]

QuickSort : : usage = "QuickSort [list] sorts the list . "

QuickSort [list_] : = Module [{1 = list } , QSort [l , 1 , Length[l)] ; 1]

SetAttributes [QSort , HoldFirst]

QSort [l_ , nO_ , nl_] / ; nO >= nl : = 1 (* nothing to do *)

QSort [l_ , nO_ , nl_] : =
Module [{lm = 1 [[Floor [(nO + nl) /2]]] , i m nO , j = n1} ,

While [True ,

] ;

While [l [[i]] < lm, i++] ;
While [l [[j]] > lm, j--] ;
If [i >= j , Break[]] ; (* 1 is partitioned *)
swap [l , i , j] ;
i++ ; j --

QSort [1 , nO , i-1] ; (* recursion *)
QSort [1, j+1 , nl] (* recursion *)

Listing 6.2-4 QSort.m: Quicksort.

126 6 Algorithms for Searching and Sorting ---
• If i > j, the partitioning has been obtained as well. 1bis case can happen only after at

least one exchange has taken place. Therefore, we are sure that i :::; rq and that .i 2 no
(furthermore, i = j + 1) .

Mter termination of the loop, the list has been partitioned into the parts en0 • • • ei- 1 and
Cj+l . . . en1 • Both of them are shorter than the input list en0 • • • en1 and can now be sorted by a
recursive call of QSort [] . The whole list is sorted with a call of QSort [] with n0 = 1 , n 1 = n.

We still must determine the element e used for partitioning. The algorithm runs best if e is
chosen from the middle of the sorted list. Both partitions are then of half the original length.
Because we do not yet know which element will lie in the middle of the sorted list, we have to
use some other means of selecting e. In our program, we simply choose an element from the
middle of the unsorted input.

The number of comparisons in the main loop is equal to n because we compare each
element of the list once with e. This comparison happens in the two inner loops. In the best
case, i and j will meet in the middle, and we obtain the following equation for the number of
comparisons Cq(n):

n
Cq(n) = n + 2Cq(2) . (6.2-7)

The second term on the right is the contribution of the two recursive calls of half the original
length. This recursive equation can be solved exactly (see Section 7 . 1 .2). The solution is

Cq(n) � n lg n . (6 .2-8)
(lg n is the logarithm to base 2.) A deeper analysis for the average case shows that we need
approximately

Cq(n) � 2n log n � 1 .38n lg n (6.2-9)

comparisons. The function n lg n grows slower than n2 • This property is the reason that
quicksort is preferred to insertion or selection sort for most applications.

In the worst case, quicksort is much slower than in the average case. If we happen to choose
the element e that is always equal to the smallest of the remaining elements, we always get
i = no, j = no. The first of the two recursive calls is then trivial, but the second one is shorter
by only one element. The depth of the recursion is equal to n, and we need n2 /2 comparisons
(and a lot of computer memory).

6.2.4 Observation of Quicksort

The following pictures show the state of the list to be sorted after the two inner loops (see
Listing 6.2-4), that is, at the place where the invariant is violated. Elements ei and ej are shown
by gray squares. These are the elements that are then exchanged. After reaching i > j, the place
of partitioning is shown by a vertical bar. The special case where the partitioning happens with
i = j is shown by a frame around the square i. The pictures for the two recursive calls follow.

6.2 Sorting Data

This version of the package draws the pic­
tures.

After one exchange, we get a left part of
length four and a right part of length two. In
the left part, the element e2 = 1 is selected,
which leads to a bad partitioning; only one
element is removed. The right part is sorted
with a single exchange.

This picture shows how quicksort behaves if
the input is sorted in reverse.

Here is an example for the worst case. Only
a single element is removed in every parti­
tioning.

Try to find an example of this behavior
for each length n.

In[l] : = << CSM' QSortG'

In[2] : = Quick5ort [{2 , 1 , 5 , 3, 6 , 4}] ;

] 2 1 . 3] 6 .
] 2 1 1] 4] 3 l 6] 5

4] 3

-
i 5 l6 1

In[3] : = QuickSort [{8 , 7, 6, 5 , 4 , 3 , 2 , 1}] ;

. 7] 6 ; 5] 4 3] 2 .
] 1 • 6 5] 4 3 . 8]
] 1 2 . 5] 4 . 7 ; 8]
] 1 2] 3 6_[1 Ls :
] 1 2}3 ; 4_[5j 6_�
] 1 . 3] 4]

�
5 . 7] �

.-s
In[4] : = QuickSort [{2, 4, 6 , 7, 1 , 5 , 3}] ;

127

128

6.2.5 Key Concepts

6 Algorithms for Searching and Sorting

1 . A list of records can be sorted by a sequence of exchanges.

2. The simplest sorting methods are selection sort and insertion sort.

3. Quicksort works recursively and has a better average running time than other sorting
methods.

6.3 Binary Trees 129

6.3 Binary Trees

A dynamic data structure is a means to maintain a collection of data elements (records). It
allows insertion and deletion of records and provides a function for locating records by a key
field (retrieval if records). The phone directory from Section 6. 1.3 was an example. There are
many implementations of dynamic dat::- structures. The choice of an implementation depends
on many aspects. Some data structures allow fast insertion or retrieval of data, but are slow
for deletion of records. Often, data structures maintain their contents at least partially ordered.
This ordering speeds up retrieval operations, as we have seen in Section 6. 1 . The study of
dynamic data structures is one of the most important fields of computer science. Here are
some of the aspects to consider when choosing a data structure for an application:

• The expected relative frequency of the various operations such as insertion, retrieval, and
deletion

• The maximal number of records needed (if known)

• Whether several records with identical keys should be allowed

A simple dynamic data structure is the binary tree. Binary trees are easy to implement.
Insertion of records is fast, and retrieval is also fast (it is similar to binary search). The total
number of records in a binary tree is not limited. Deletion of records is a bit more complicated,
however.

In computer science, trees are drawn with In [l] : = p1otTree[Tree[{3 , 7, 5 , 4 , a, 6, 2}]] ;
the root pointing upward. There are at most
two branches at each node. The numbers
are stored in the nodes. A binary tree is
ordered: The numbers in the left subtree are
smaller than the number in the node itself;
the numbers in the right subtree are larger.
This condition holds for every node.

A node of a binary tree consists of a data, or information, field, and a left and right subtree. The
information field is used to store the records contained in the tree. Binary trees are ordered.
The keys of the information fields in the left subtree are smaller than the key in the node; the
keys in the right subtree are larger. If a tree is balanced, it can be searched_ in logarithmic time

130 6 Algorithms for Searching and Sorting

because each subtree has only half the size of the whole tree. We assume that key values are
unique. An abstract data type for trees is the following:

Constants
Constructors
Selectors

emptyTree
node Unfo , left, right]
information[tree]
left Tree [tree]
right Tree [tree]

an empty tree
a tree with this root
the information at the root
the left subtree
the right subtree

Here is an implementation. A node is represented by tree [info , left , right] . This repre­
sentation makes constructors and selectors quite simple. All code shown in this section is part
of the package BinaryTree.m.

node [info_ , left_ , right_] : = tree [info , left , right]

leftTree [tree [_ , left_ , _]] : = left
rightTree[tree [_ , _ , right _]] : = right
information [tree [info_ , _ , _]] : = info

Key fields are compared with the built-in function Drder [e1 , e2J . We assume that we can
extract the key from the information with the selector Key . A default value of Identity for
this selector (see Section 4.3) causes the whole record to be treated as key. For simplicity, we
will use numbers as our data. Such a default is therefore convenient.

A binary tree is either empty or consists of a left and right subtree. Most functions on
binary trees can therefore be implemented with two definitions: one for the empty tree and a
recursive one for the general case.

6.3.1 Insertion of a Node

The function insert Tree [tree , info , Key] inserts the record info into the tree by creating a
new node in the right position. It returns the new tree.

If the tree is empty, the new node comes at the root and its two subtrees are empty:

insertTree [emptyTree , info_ , Key_ : Identity] · =
node [info , emptyTree , emptyTree]

If the key of the root is equal to the key of the new record, we do not insert it because keys are
supposed to be unique. (We could perhaps generate an error message in this case.)

insertTree [tree_ , info_ , Key_ : Identity] / ;
Order [Key [inf o] , Key [information[tree] J J == 0 : = tree

6.3 Binary Trees 131

If the new key is smaller than the key at the root, the new node must go into the left subtree.
It is inserted there recursively. Because the left subtree might change as a consequence of this
insertion, we have to assemble it together with the old right subtree and the information at the
root into a new tree.

insertTree[tree_ , info_ , Key_ : Identity] / ;
Order[Key [info] , Key [information[tree]]] > 0 : =

node [information[tree] ,
insertTree[leftTree [tree] , info , Key] ,
rightTree[tree]

Otherwise, the new key is larger than the key at the root, and the new node must go into the
right subtree. The roles of left and right are simply interchanged.

insertTree [tree_ , info_ , Key_ : Identity] : =
node [information[tree] ,

leftTree [tree] ,
insertTree[rightTree [tree] , inf o , Key]

Observe that the algorithm for insertion has been derived directly from the defining properties
of a binary tree. A binary tree is ordered. By inserting a new node at the right place, this order
is preserved. The rest is done by recursion. Nothing could be simpler !

This command inserts the number 5 into an
empty tree. The whole record (a simple
number in our case) is the key.

The number 3 is inserted into the previous
tree.

Now, we insert the number 7.

A diagram provides us with a better look at
the tree than the nested expression does.

In[l] : = b • insertTree [emptyTree , 5]

Out [!] = tree [5 , emptyTree, emptyTree]

In [2] : = b a insertTree [b , 3]

Out [2]= tree [5 , tree [3, emptyTree , emptyTree] ,

emptyTree]

In[3] : = b • insertTree [b , 7]

Out [3]= tree [5 , tree [3, emptyTree , emptyTree] ,

tree[? , emptyTree , emptyTree]]

In[4] : = p1otTree[b] ;

132 6 Algorithms for Searching and Smting

Note that we assigned the result of an inser- In[5] : • plot Tree [b .. insertTree[b, 4]] ;
tion back to the variable holding the previous
tree. This technique allows us to build a tree
step by step. Here we insert the number 4
into the previous tree.

The following constructor is useful for inserting a Jist of records one by one into a tree:

Tree[l_List , Key_ : Identity] : =
Fold[Function[{t , i} , insertTree[t , i , Key]] , emptyTree , 1]

The function insert Tree [] is applied to the result of the previous application and the next
element from the list. This iteration is performed by Fold [] , see Section 2.3.9.

The tree obtained from a list depends on the order of the elements in the list. In the next
two examples, we build two trees with the same elements, but inserted in different order.

This picture shows the tree obtained from In[6] : = plotTree[Tree[{5 , 4, 7, 3 , 2 , 8 , 6}]] ;
inserting the numbers 5, 3, 7, 4, 2, 8, and 6
in this order.

I f we insert the same numbers in a different In[7] :; plotTree[Tree[{3 , 7 , 5 , 4 , 8 , 6 , 2}]] ;
order, we get a different tree.

6.3 Binary Trees 133

6.3.2 Retrieval of a Node

The function search Tree [tree , key , Key] returns the information of a node whose key is

equal to key and where Key is the name of the selector for the key field. Its default is again the
identity. We can proceed in the same way we did with insertion.

The method is similar to binary search. The key is compared with the key at the root of
the tree. If it is identical, we have found the record. Otherwise, we search in the left or right
half, depending on whether the key is smaller or larger than the key in the root. If we reach the
empty tree, we know that the record is not in the tree, and we return Null to signal this fact.

searchTree[emptyTree , key_ , Key_ : Identity] : = Null

searchTree [tree _ , key_ , Key_ : Identity] / ;
Order[Key [information [tree]] , key] == 0 : =

information [tree]

searchTree [tree_ , key_ , Key_ : ldentity] / ;
Order[Key [information[tree]] , key] < 0 · =

searchTree[leftTree [tree] , key , Key]

searchTree [tree_ , key_ , Key_ : Identity] : =
searchTre�[rightTree [tree] , key , Key]

6.3.3 Balanced Trees

The depth of a tree is the maximum number of nodes between the root and a leaf. A leaf is a
node without any subtrees. The depth can be computed recursively:

depth[emptyTree] : = 0
depth[tree_] : = 1 + Max[depth[leftTree [tree]] , depth[rightTree [tree]]]

Let us investigate trees obtained by inserting the numbers 1 to 7 in different orders.

This tree is perfectly balanced. All leaves In[8] : = plotTree[bl .. Tree [{4 , 2 , 1 , 3 , 6 , 5 , 7}]] ;
are at the same level (the tree does not have
any holes).

134

This tree degenerates into a linear list be­
cause each node has at most one nonempty
subtree.

The second tree is far deeper than is the first
one.

6 Algorithms for Searching and Sorting

In [9] : = plotTree[b2 = Tree [{l , 2 , 3 , 4 , 5 , 6 , 7}]] ;

In[10] : = {depth[bl] , depth[b2]}

Out [lO] .. {3, 7}

The depth of a tree with n nodes is at least lg n. This fact follows from the observation that a
tree with depth k can have at most 2k - 1 nodes because

k- 1 2: 2i = 2k - 1 . (6.3-1)
i=O

6.3.4 Advanced Topic: Deletion of Nodes

We said that deletions are not as simple as insertions. If the node to be deleted has at most one
subtree, deleting it is easy, however. The root of its single subtree can be put at its place.

This is again the tree from Section 6.3. 1 . In [l] : = plotTree [b l = Tree [{S, 4 , 7 , 3 , 2 , 8 , 6}]] ;

6.3 Binary Trees

The node with information 4 can be deleted In[2) : � p1otTree[b2 • de1eteTree[b1 , 4]] ;
easily. Its successor 3 is put at its place.

The node 6 has no successors and can simply In[3] : = p1otTree[b3 • de1eteTree [b2 , 6]] ;
be removed.

135

The following rules implement recursion. The place of deletion is found with a variant of the
search from Section 6.3.2.

deleteTree [emptyTree , key_ , Key_ : Identity] := emptyTree

deleteTree [tree_ , key_ , Key_ : Identity
Order[Key [information[tree]] , key]

node [inf ormation[tree] ,
deleteTree[leftTree [tree] ,
rightTree [tree]

deleteTree [tree_ , key_ , Key_ : Identity
Order [Key[inf ormat ion [tree]] , key

node [information[tree] ,
leftTree [tree] ,
deleteTree [rightTree [tree] ,

/ ;
< 0 : =

key , Key] ,

/ ;
> 0 · =

key , Key]

Here are the rules for the cases where the deleted node has at most one subtree.

deleteTree [tree _ , key_ , Key_ : Identity] / ;
leftTree[tree] == emptyTree : = rightTree[tree]

deleteTree [tree_ , key_ , Key_ : Identity] / ;
rightTree [tree] == emptyTree : = leftTree[tree]

136 6 Algorithms for Searching and Sorting

Now we treat the difficult case where the deleted node d has two subtrees. If d is removed,
there are two subtrees that have to be put somewhere but only one place to put them - the place
of d. The idea is to take another node and put it in place of d. We must be careful to choose a
node that does not violate the ordering of the tree if it is moved. A candidate is the node with
the next higher key value than the key of d. This node can be found as the smallest node in the
right subtree of d. It is guaranteed to have at most one subtree itself, so we can easily remove it.

The node 5 has two successors an cannot be In[4] : = p1otTree[b1] ;
removed easily.

The next higher node 6 is put at its place. In[5] : = plotTree [d.eleteTree[bl , 5] J ;
The left and right subtrees of 5 are made
subtrees of 6. In the right subtree we have
to remove the node 6, because it is now in
another place in the tree.

The auxiliary function smallestNode [tree] finds the node with the smallest key in tree. We
simply descend along the left subtree. If the left subtree is empty the current node is the
smallest one.

smallestNode [emptyTree] = Null
smallestNode [tree_] / ; leftTree [tree] === emptyTree := information[tree]
smallestNode [tree_] := smallestNode [leftTree [tree]

The new tree without d consists, therefore, of the information in the smallest node in the right
subtree at the root, and of the former left and right subtrees - with the smallest node removed
from the right subtree.

6.3 Binary Trees 137

deleteTree [tree_ , key_ , Key_ : Identity] : =
With[{nextinfo = smallestNode [rightTree [tree]] } ,

node [nextinf o ,
leftTree [tree] ,
deleteTree[rightTree[tree] , Key[nextinfo] , Key]

]

6.3.5 Key Concepts

I . Binary trees are the most important dynamic data structure.

2. Binary trees are ordered.

3. Different orders of insertion of the same set of nodes leads to different binary trees.

4. Binary trees can be searched in logarithmic time.

138 6 Algorithms for Searching and Sorting ----------------------

6.4 Exercises

6.1 Counting Prime Numbers

Write a function primePi [x] that finds the number n:(x) of primes � x using binary search
(see Section 6. 1 . 1) . (This function already exists in Mathematica under the name Prime Pi [] .)
Hints:

• The function Prime [n] computes the nth prime number.

• x can be an arbitrary real number.

• An upper bound for primePi [x] for x > 2 is obtained by the logarithmic integral
Logintegral [x] .

• You can use bisection without first generating the list to be searched. Generate only the
primes that are actually needed.

Examples:

Because Prime is quite fast, large argu­
ments of PrimePi [] arc no problem.

The function is defined for all real numbers
and can, therefore, be plotted.

6.2 Binary Trees

In[1] : = {PrimePi [-2] , PrimePi [1 . 5] , PrimePi[2] ,
PrimePi[10] , PrimePi[10A8]}

Out [1] = {0 , 0, 1 , 4 , 5761455}

In[2] : = Plot[PrimePi[x] , {x, 1 , 20}] ;

Binary trees can be used to implement a sorting method.

1 . Extend the package BinaryTree.m from Section 6.3 by a function InOrder [tree] . The
function should return all records of the tree in a list in the following order: first, the

6.4 Exercises 139

elements of the left subtree (recursively); then, the element at the root; finally, the elements
of the right subtree. Because of the ordering of the binary tree, the resulting list will be
sorted.

2. Use InOrder [tree] to implement a sorting function TreeSort [list] that sorts the list by
first inserting al1 its elements into a binary tree and then converting the tree back into a list.

6.3 Merging Lists 1

Write a function Merge [l 1 , l2] that merges the elements of the two lists l1 and lz into a single
tist. The elements of l1 and l2 are assumed to be numbers sorted in ascending order (you do
not have to check this property). The result should also be sorted in ascending order. The
result should be obtained without sorting the list anew.

Write a single procedural definition that works on the input lists in a loop. You can use
any list operations, such as First [l] , Rest [l] , Prepend[l , elem] , Append[[, elem] , or
Join[/ , , lz] . Use Module [] to declare local variables.

The result contains all elements of the two In[1] : = Merge [{1 , 5 , 7} , {2 , 3 , 8}]
input lists in ascending order. Out [1]= Merge [{ 1 , 5 , 7} , {2 , 3 , 8}]

Your function should also treat such special In[2] : = Merge[{} , {2 , 3}]
inputs correctly. Out [2] = Merge [{} , {2 , 3}]

If an element appears more than once, it In[3] : = Merge [{1 , 1 , 2 , 3} , {2 , 3}]
must appear in the result the same number Out [3] = Merge [{1 , 1 , 2 , 3} , {2 , 3}]
of times.

6.4 Observation of a Sorting Algorithm

We restrict the inputs of our sorting functions to permutations of the numbers 1 . . . n. A simple
way to visualize the amount of "sortedness" in such a list of numbers is a picture obtained
with ListPlot .

This definition is used to plot permutations
of the numbers 1 . . . n with suitable settings
of graphics options.

Here is a random permutation.

In [1] : = PermutationPlot [l_List, opts ___] : a
ListPlot [1 ,

PlotRange - > { {0 . 5 , Length[l]+0 . 5} ,
{0 . 5 , Length[l]+0 . 5} } ,

PlotStyle->PointSize [0. 75/Length[l]] ,
opts , Axes->None , PrameTicks->None ,
Prame->True , AspectRat io->1]

In[2] : = p1 = Permutat ionPlot[
{9 , 10 , 6, 8, 2, 4, 12 , 1 , 7 , 5, 3, 11} ,
DisplayPunction->Identity] ;

1 Written examination, ETH ZUrich, Department of Mathematics and Physics.

140 6 Algorithms for Searching and Sorting

Here is the list after the first phase of
QuickSort (Section 6.2.3).

Now, the list is sorted.

Here, finally, are the three pictures.

In[3) : a p2 • PermutationPlot [
{3 , 1 , 4 , 2 , 8 , 6 , 12, 10 , 7 , 5 , 9, 11},
DisplayFunction->Identity] ;

In[4] : = p3 • PermutationPlot[
{1, 2, 3, 4, 5, 6, 7, a, 9, 10 , 1 1 , 12} ,
DisplayFunction->Identity] ;

In[5] : a Show[GraphicsArray[{pl, p2, p3}]] ;

,------.----. . •
•

'--"'------------'

• • •

• • • •

• •

••
•

Write a program that allows you to draw such pictures after each exchange step in the sorting
procedures (insertion sort, selection sort, and quicksort). If you wish, you can animate these
sequences of pictures to see how the algorithm runs.

Hint: You do not have to change anything in the sorting procedures themselves. A special
version of SortAux.m (see Listing 6.2- 1) is all you need.

6.5 Abstract Sorting Algorithm

Develop an abstract version of quicksort (see Section 6.2.3). As in the abstract searching
procedure from Section 6. 1 .3, you should assume that arbitrary records are to be sorted. The
records have a key field that is used for comparisons.

Chapter 7

Complexity of Algorithms

8 "

6 -

4 -

2 -

-----'--- - - - .
0 10 20

- ' I - --��-----,

I

30 40 50 60

In this chapter we study complexity of algorithms. Complexity theory studies the amount of
computations necessary for solving a certain problem. One important question in complexity
is how the number of computation steps grows with the size of the input, disregarding machine­
specific details. The main results concern the asymptotic behavior of an algorithm - that is,
the number of steps for arbitrarily large inputs.

Section 7 . 1 discusses the main complexity classes for algorithms. Then, in Section 7.2,
we look at one algorithm in detail: the computation of Fibonacci numbers. We present several
algorithms that differ in their complexity. Another topic is the practical improvement of an
algorithm. Such an improvement does not lower an algorithm's complexity, but makes it run
faster by a constant factor.

Section 7 .3 deals with an important method for solving optimization problems. Many
such problems can be solved only by trying out all possible cases, which i s usually too time
consuming. Sometimes, there are better methods, as we shall see.

Arbitrary-precision arithmetic is an interesting problem and a good example for studying
complexity of algorithms. In Section 7.4, we present a method for multiplying numbers much
faster than is possible with the usual schoolbook method. Because many algorithms built into
Mathematica use large numbers internally, this method is of practical use.

About the illustration overleaf:
The picture illustrates the recursive computation of !9, the ninth Fibonacci number. The
formula is

!I = 1 ,
h 1 '
fn = fn- 1 + fn-2 ·

The y-axis corresponds to the values o f n. Each point i s connected to the points for fn-1
and f n-2• The x-axis shows successive time steps. You can see that many values of fi are
computed several times. The picture was produced with the command

FibonacciPlot [9] .

7. 1 Complexity of Computations 143

7.1 Complexity of Computations

The complexity R(n) of an algorithm is the number of computation steps necessary to solve a
problem of input size n. An algorithm is of order not larger than g(n), if there is a constant c
such that

R(n) < cg(n), "dn . (7 . 1-1)

We write R(n) = O(g(n)). This definition means that R(n) does not grow essentially faster
than g(n). Of course, we are interested in small functions g.

The binary searching method in Section 6. 1 needs at most log2(n) steps to search n records.
It is of complexity O(log n). (Logarithms of different bases differ only by a constant; therefore,
we can use the natural logarithm.) Observe that we treat several elementary computation steps
as a single step, for example, the whole body of the While loop in program BinarySearch .
This simplification is possible if the computations inside the loop take a constant number of
more elementary steps, independent of input size. Also, we assume that we can access an
element in a list of records in constant time. This kind of idealizations is typical for complexity
considerations. All these simplifications affect only the constant c in Equation 7 . 1- 1 .

7.1.1 Input Size

The definition of input size depends on the kind of problem we are analyzing. For the sorting
and searching algorithms presented in Chapter 6, the input size is the number of data elements
to sort or to search through.

If we perform calculations with big numbers, the measure of input size is the length of the
number. The length of a number m is the number of digits we need to write down the number;
it is equal to logb(m), where b is the base of the positional number system used to represent m
(our ordinary decimal system uses base 1 0, the base of the binary system is 2). The base does
not matter for complexity; it is customary to use the natural logarithm log m.

7.1.2 Complexity Classes

The functions g used to measure the complexity of computations can be divided into different
complexity classes. An algorithm of order O(log n) has logarithmic complexity. Searching
algorithms are often in this class. Logarithmic algorithms are very efficient: If the input size
doubles, we need only one additional computation step.

An algorithm of order O(n) is linear. For many problems, this complexity is the best
possible because we have to look at the whole input at least once, which takes already
O(n) steps. Searching in an unordered collection of data is an example of a linear algorithm.
Addition of two numbers of length n is another example.

144

The phone directory of New York City has
about 685, 750 entries for residents.

Searching for an entry by name has loga­
rithmic complexity; it takes only this many
steps (see Section 6. 1 . 1).
A sequential search for a phone number, for
example, is a linear algorithm; it would take
on average this many steps.

7 Complexity of Algorithms

In[l] : = entries • 685750;

In[2] : = Ceiling[Log[2 , entries]

Out [2] = 20

In[3] : = entries/2

Out (3]= 342875

Another important complexity class are algorithms of order 0(n log n). Many sorting problems
are of this kind. Let us consider quicksort from Section 6.2.3 . In the first phase, we look at
each element once, which takes n steps. Then, the problem is subdivided into two problems of
half size. From these considerations we can establish the following equation for the number
of steps R(n):

R(n) = n + 2R(nj2), (7. 1-2)

as well as the boundary condition R(1) = 0. This recursive equation has the following solution:

R(n) = n lg n (7. 1-3)

(lg n is the logarithm with base 2, log2 n). This result can easily be proved by induction. The
equation is exact only for input sizes of the form n = 2k (that is, powers of two). For such
input sizes, the induction proof is sketched here:

R(n) = n + 2R(nj2)
= n + 2(� lg(�))
= n + n lg(I))
= n + n(lg n - lg 2) (7. 1-4)

= n + n(lg n - l)
= n lg n.

If g(n) is a polynomial in n, the algorithm has polynomial complexity. Many important
algorithms are in the range 0(n2) to 0(n3). For larger exponents, polynomial algorithms
usually become impractical.

If g(n) is an exponential function of n, we say that the algorithm has exponential complexity.
Most of these algorithms are not practical . We can reverse the statement about logarithmic
problems for exponential ones: If the speed of our computer is doubled, we can solve only a
problem that is larger by one. Even a base b of the exponential function that is near 1 leads to
an asymptotic growth far larger than that of any polynomial. If we compare p(n) == n 100 with
e(n) = 1 .0 I n , for example, the polynomial p(n) grows much faster at first, but at n ;:::: 1 17 , 308,
the exponential takes over.

7. 1 Complexity of Computations

Here is a diagram of the ratio of the
logarithm of the two functions for n =
lO . . . lOS 5, that is, of

In[4] : = Plot [lOAm Log[1 .01] I (100 m Log[10.]) ,
{m, 1 , 6 . 6} , PlotRange->All,
Prame->True , GridLines->Automatic] ;

Jog(1 .0 1 1 0m) _ 1 0m Jog 1 .0 I

log(I Om100)
-

100m log 10 '

for m = I . . . 5.5. The exponential grows
faster than the polynomial. The point where
the ratio becomes 1 is where the two func­
tions are equal.

2.5

2

1 .5

0.5

l l 0
1

I
-l

-_71
2 3 4 5

The solution of this numerical equation is In[5) := PindRoot [lOAm Log[1 .01] •= 100m Log[10 . o] ,
the point where numerator and denominator {m, 5 . 1}]
are equal, that is, where p(lOm) = e(lOm). Out [5]= {m -> 5 . 06933}

Here is the corresponding value of n = wm. In[6] : = lOAm I . 7.
Out [6] = 1 17308 .

145

The point n = 1om, where the two functions p(n) and e(n) are equal, corresponds to a number
of computation steps equal to p(n) = e(n) = 1 0507 . This number of steps is far beyond the
practical range. The conclusion is that in this example the exponential function is smaller in
the whole range where we could actually perform such a computation, even though it grows
much faster asymptotically. We can see that asymptotic complexity considerations are not the
only important aspect of an algorithm.

7.1.3 Example: Fast Integer Powers

Often, computations can be rearranged for an impressive run-time improvement. Let us look
at the computation of integer powers.

The straightforward method to compute m
n

, where n is a nonnegative integer, starts with
an intermediate result of 1, and multiplies it successively by m, a total of n times. This method
takes n steps. There is a much faster method that takes only lg n steps. To see how it works,
we write the exponent n in the binary number system as

k- l n = L n�2i , t=O (7 . 1-5)

where the nt are the binary digits, or bits (all either 0 or 1), and k is the number of binary

146 7 Complexity of Algorithms

digits of n. Now, we can express mn as

k- l
mn = mE��� n;2; = II mn;2i = II rn2i .

i=O i :n;=!
(7 . 1--{))

(The product ranges over all i such that ni = 1 .) The powers m2i can be found by successive

squaring of of the previous power of m, because m2; = (m2i- I)2, and m2" = m. For each 1 in
the exponent, the current result is multiplied by the corresponding power of m.

BinaryPower [m_ , n_] : =
Module[{re sult = 1 , nn = n , s = m} ,

While [nn > 1 ,
If [OddQ [nn] , result = result * s] ;
s = s * s ;
nn = Floor[nn/2] ;

] ;
result * s

Listing 7.1-1 Fast computation of powers.

The binary digits of n can be found iteratively. First we determine n0, the last bit of the
number n. It is equal to 1 for odd numbers and equal to 0 for even numbers. Afterward,
we divide n by 2, discarding any remainder. This operation brings the second-to-last bit n1
into last position. In this way, the method can be continued. If n = L:7=o 1 ni2i , we get

ln/2J = :E7=11 ni2i-l = :E7=o2 ni+ l2i . C ln/2J is the result of the division without remainder
of n by 2.) Observe that we run the loop only to nn = 1 , and that we perform the last
multiplication result * s outside the loop. This method avoids squaring s once more. The
new value of s would not be used anymore. This last squaring would take about half of the
total run time of the algorithm.

7 .1.4 Key Concepts

1 . Algorithmic complexity describes the relation between input size and the number of
computation steps.

2. A complexity class is a set of problems with the same asymptotic behavior.

3 . Logarithmic complexity is typical for searching in ordered data.

4. Linear complexity is the best possible if the whole input needs to be examined.

5. Exponential complexity is almost always impractical.

6. An nth power can be computed in log n steps.

7.2 Example: Computing the nth Fibonacci Number

7.2 Example: Computing the nth Fibonacci Number

147

We use the computation of the nth Fibonacci number as an example to compare the complexity
of different algorithms. We shall see algorithms of different asymptotic complexity, as well as
algorithms of different run time (but equal complexity). We shall see that Fibonacci numbers
grow exponentially. As a consequence, the computing time for ordinary arithmetic influences
the complexity. We can no longer treat an arithmetic calculation as a single step in the
computation.

Fibonacci numbers fn are defined by this second-order recurrence:

ft = 1 ,

fz = 1 ,
fn = fn- 1 + fn-2 ·

(7.2-1)

All methods for the computation of Fibonacci numbers in this section are in the package Fib.m.

7.2.1 A Recursive Algorithm

As usual, Equation 7.2-1 can be programmed directly. This translation leads to a recursive
computation, shown in Listing 7 .2-1 .

fiba [1] = f iba[2] = 1 ;
fiba[n_] : = fiba[n-1] + fiba[n-2]

Listing 7.2-1 Recursive computation of Fibonacci numbers.

Here are the first 10 Fibonacci numbers. In[1] : • Table[fiba [i] , { i , 1 , 10}]

Out[1]• { 1 , 1 , 2 , 3 , 5 , 8 , 1 3 , 21 , 34 , 55}

A measure of the complexity of this method is the number t(n) of recursive calls of fiba
necessary for the computation of f iba[n] . fiba [1] and fiba [2] need one call each.
For larger n, the number of calls is equal to the number of calls for n - 1 and n - 2. This
observation leads to the following equation for t(n):

t(l)
t(2)
t(n)

1)
1 ,
t(n - 1) + t(n - 2).

(7.2-2)

This equation is the same as Equation 7.2-1 for j(n) itself. Therefore, t(n) = fn· We shall
see that f n grows exponentially in n. This algorithm is therefore inefficient: it has exponential
complexity. An improvement by dynamic programming is treated in Section 7.3 . 1 .

148 7 Complexity of Algorithms

In(2] : = Table [Pirst[Timing[fiba(i]]] ,
{i , 10, 25}] / . Second->1

Here is a table of the computation times for
f,, for i = 10, . . . , 25. The times grow
rapidly. Observe that each time is approxi­
mately equal to the sum of the preceding two
times.

Out [2] = {0 . , 0 . 01 , 0 . 01 , 0 . 02 , 0 . 03 , 0 . 05 , 0 . 08 , 0 . 12 ,

0 . 21 , 0 . 33 , 0 . 54 , 0 . 87 , 1 . 41 , 2 . 29 , 3 . 7 1 , 6 . }

7.2.2 A Loop

The Fibonacci recursion can be turned into iteration (see Section 3 .3.3). The computation of
each Fibonacci number requires only the two previous values. Therefore, we need two local
variables for these two values, as shown in Listing 7.2-2.

fibc [n_] : =
Module[{fi = 1 , fil = 0} ,

Do [{fi , fi1} = {fi + f i 1 , fi} , {n - 1}] ;
fi

Listing 7.2-2 A loop for the nth Fibonacci number.

Starting with i = l , the value of f i is fi, and the value of f i 1 is fi-t · This fact is the loop
invariant. The sum of fi and fi- t is fi+ 1 · Therefore, we must set f i to f i + f i 1 , and fit
to f i (simultaneously), to fulfill the invariant for i + 1 . After n - 1 iterations, the value of fi
is fn, as desired.

What is the complexity of this loop? The length of the ith Fibonacci number is proportional
to i, as we shall see. In the ith iteration, we therefore add two numbers of length i . This
addition takes i steps. The total number of steps is the sum over all iterations:

n- 1
'"' i = n(n - 1) � n 2 . � 2 7.=1

(7.2-3)

This algorithm has quadratic complexity. It is quite fast for small n, but there are better
algorithms for larger n, as we shall see soon.

Here is a table of computation times for f;,
i = 10, 000, 20,000, . . . , I 00,000. This
method allows much larger values than the
recursive one does.

A least-squares fit of the measured times to
a quadratic functions shows the linear and
quadratic terms.

ln[3] : = Table[Pirst[Timing[fibc[lOOOO i]]] ,
{i, 1 , 10}] / . Second->1

Out [3]= {0 . 64 , 1 . 55 , 2 . 67 , 4 . 15 , 6 . 08 , 7 . 96 , 10 . 32 ,

12 . 93 , 15 . 64 , 18 . 35}

In[4] : • Pit [Y. , {1 , i, ih2}, i]

2
Out [4]= -0 . 198833 + 0 . 616992 i + 0 . 125568 i

7.2 Example: Computing the nth Fibonacci Number

7.2.3 A Formula for In

149

To be faster than the simple loop in Section 7.2.2, we must find a method to compute fn
without computing all previous fi. Indeed, there is a closed formula for Fibonacci numbers.
The equation fn = fn- 1 + fn-2• or fn - fn-1 - fn-2 = 0, is an example of a second-order
recurrence. The general form of such an iteration is fn + bfn-1 + cfn-2 = 0. Its solutions are

of the form

(7.2-4)

where e1 and e2 are the two solutions of the characteristic equation

x2 + bx + c = 0 . (7.2-5)

For Fibonacci numbers, we have b = - 1 and c = - 1 . We can use Mathematica to help us
solve the characteristic equation for e 1 and e2 and find the coefficients a1 and a2.

Here are the two solutions of the character­
istic equation for Fibonacci numbers.

We assign them to the two variables e l
and e2 .

In[1] : = Solve[XA2 - x - 1 •• 0, x]

1 - Sqrt [5] 1 + Sqrt [5]
Out [1)• {{x -> } , {x -> }}

2 2

In[2) : = {e1 , e2} � x / . Y.

1 - Sqrt [5] 1 + Sqrt [5]
Out [2]= { , }

2 2

The two constants a1 and a2 can be determined from the initial conditions j1 = 1 and h = I :

Here is Equation 7.2-6 in Mathematica.
There is a unique solution.

We assign the solution to the two variables
a1 and a2.

By expansion and simplification of the pow­
ers of the square roots, we can compute f n
according to Equation 7.2-4.

ft = a1 e1 + a2e2 = I ,
h = a1 er + a2e� = 1 .

In[3] : = Solve[{a1 e1 + a2 e2 •• 1 ,
a1 e 1A2 + a2 e2A2 •• 1 } ,

{al , a2}] / / FullSimplify

1 1
Out [3)• {{al -> - (---) , a2 -> --}}

Sqrt [5] Sqrt [5]

In[4) : • {al , a2} � {a1 , a2} /. Y, [[l]]

1 1
Out [4]= {- (---) , ---}

Sqrt [5] Sqrt [5]

In[5] := fibd[n_] :• Expand[al elAn + a2 e2An]

(7.2-6)

150 7 Complexity of Algorithms

In[6] : D Timing[fibd[1000]] The complicated symbolic computations
make this method rather slow. Observe that
all square roots cancel, and we do get an
integer answer.

Out [6]= {1 . 36 Second , 434665576869374564356885276750406\

2580256466051737178040248172908953665541794905189040\

3879840079255169295922593080322634775209689623239873\

322471 1616429964409065331879382989696499285160037044\

76137795166849228875}

The asymptotic complexity of this method depends on the internal algorithms used for simpli­
fying symbolic powers and can, therefore, not be analyzed exactly.

7.2.4 Numerical Computation

Equation 7.2-4 allows us to find the length of fn· The number of digits is the logarithm log fn·
Because let I is smaller than 1, higher powers ei do not contribute anything to the length.
Therefore, we get

(7 .2-7)

The length of fn is proportional to n. The Fibonacci numbers themselves grow exponentially!
In Section 7 .2.3, we evaluated Equation 7 .2-4 exactly. A approximate numerical evaluation

is sufficient, however. Because a1 e! is smaller than 0.5 for large n, we can simply compute a2e2
numerically with sufficient precision, and then round it to the nearest integer (we know that
the result must be an integer). The necessary precision is at least the number of digits of the
result. We can find it as log10(a2e2) = log10(a2) + n log10(e2). Machine precision is sufficient
for this calculation of the length of the result. Now, we can compute a2e2 again, but this time
using the extended precision just determined. To perform a calculation with precision prec,
we can use N [expr , prec] . The resulting program is f ibe [] , shown in Listing 7.2-3.

fibe [n_] : =
Module [{digits , approx} ,

digits = N [Log [1 0 , a2] + n Log [1 0 , e2)] ;
digits = Ceiling[digits] + 10; (* some digits extra *)
approx = N [a2 , digits] N [e2 , digits] An ;
Round[approx]

Listing 7.2-3 Numerical computation of Fibonacci numbers.

The numerical method is quite fast, due to In[7] : D Timing[fibe [10A6] ; J
Mathematica's efficient numerical compu- Out [7]= {1 . 54 Second , Null}
tations. Note that it is much faster than the
loop-based computation with fibc .

7.2 Example: Computing the nth Fibonacci Number

Note that Mathematica can figure out the
required precision for the rounding all by
itself, which allows us to express this method
in a natural way. Some overhead is involved
in the exact computation of the power of e 1 ,
however.

In[8] : = Timing[Round[a2 e2h10h5] ;]

Out [8]= {2 . 93 Second , Null}

151

An nth power can be computed in log n steps (see Section 7 . 1 .3). Each step requires the
multiplication of two numbers with n digits. Let M(n) be the complexity of multiplying
two n-digit numbers. The complexity of the numerical computation is therefore M(n) log n.
For ordinary (schoolbook) multiplication, we have AJ(n) � n2 . Therefore, this method is
asymptotically worse than the simple loop, even though it is faster for small n.

There are faster methods for multiplying numbers, for example the Karatsuba algorithm
(see Section 7 .4.3) with M(n) � nl .58 , used in Mathematica Version 3, and the fast Fourier
transform (FFT) with M (n) ;:::::; nlog(n), used in Mathematica Version 4 for very large numbers.
With one of these algorithms, our numerical computation becomes asymptotically faster than
the loop.

7.2.5 Matrix Methods

We can use the method of iterated squaring from Section 7. 1 .3 to compute Fibonacci numbers,
if we apply it to matrices m. The Fibonacci numbers appear in the powers of the matrix

m = (� b) ·
The number fn is at the top left comer of mn- l because

m.n- 1 = (fn
fn- 1

fn- 1) fn-2

Here is the initial matrix m.

MatrixPower [] computes powers of ma­

trices. The elements of m9 are (�; �:) .
The reason for this property of m is that
the characteristic polynomial of m is equal
to the characteristic equation (7 .2-5) of the
Fibonacci numbers.

In[1] : D m • {{1 , 1} , { 1 , 0}}

Out [1]• {{1 , 1} , { 1 , 0}}

In[2] : = MatrixPover[m, 9] // MatrixForm

Out [2] //MatrixForm= 55 34

34 21

In[3] : = Det [m - x IdentityMatrix[2)]

2
0ut [3] = - 1 - X + X

(7.2-8)

(7.2-9)

152 7 Complexity of Algorithms

f ibf [n_] : =
Module [{result = IdentityMatrix[2] , nn = n- 1 , s = {{1 , 1} , { 1 , 0}}} ,

While [nn > 1 ,
If [OddQ [nn] , result = result . s] ;
s = s . s ;
nn = Floor [nn/2] ;

] ;
result = result . s ;
result [[1 , 1]] (* top left element *)

Listing 7.2-4 Fast matrix powers.

The program in Listing 7.2-4 is somewhat slower than is using MatrixPower [] . due to the
overhead of the interpreted program.

The method is the same as BinaryPower (Listing 7. 1-1). The variables result and s
are now matrices. Therefore, we use the matrix product (written as .) instead of ordinary mul­
tiplication. The variable result is initialized to the identity matrix, which plays the role of l .

This method is a bit slower than is fibe . In[4] : • Timing[fibf [10A5] ;]

Out [4]• {2 . 24 Second, Null}

Computing the elements of the product of two 2 x 2 matrices takes eight integer multiplications.
We need only one element of the result of the last multiplication outside the loop. This single
element can be computed with just two integer multiplications. Therefore, we should not
compute the whole matrix result . s , but only element (l , 1) . The elements Vik of Tij • Sjk
are found with the usual formula for matrix products

Vik = L TijSjk .
j

(7 .2-10)

This formula implies that VI I is TI I B I I + r1 2s21 · If we insert this formula into our program,
we arrive at the new program fibg [] (Listing 7.2-5), which runs about twice as fast as
does f i bf [] , but the asymptotic complexity remains the same.

fibg[n_] : =
Module [{result = IdentityMatrix [2] , nn = n-1 , s = {{1 , 1} , { 1 , 0}}} ,

While [nn > 1 ,

] ;

If [OddQ [nn] , result = result . s] ;
s = s . s ;
nn = Floor [nn/2] ;

result [[1 , 1]] s [[1 , 1]] + result [[1 , 2]] s [[2 , 1]]

Listing 7.2-5 Saving on the last multiplication.

7.2 Example: Computing the nth Fibonacci Number

This method is about twice a� fast as fibf . In[5] : • Timing[f ibg[10"5] ;]

Out [5]• { 1 . 03 Second, Null}

7.2.6 Utilizing Symmetries

153

The matrices result and s are rather special. First, they are symmetric - that is, m12 = m21 ·
Therefore, we need to compute only three of their four elements. Second, their entries are
successive Fibonacci numbers. Each one of them can be computed from the two others by a
simple addition or subtraction. These two observations show that we need to compute only
two of the four elements by expensive multiplications. To find the formulae for the elements,
let us write the elements of s as 8ij • and the elements of result as Tij · The square of 8,
t = s.s, can be found as follows (here, we use a new variable t for the result. In the programs
we can assign the result back to the original variable s because the latter's old value is no
longer needed.)

t n = 8 1 l 8 1 l + s12821 = 8�1 + 8i2 ,
t22 = 821 s 12 + s22822 = 8 12 + 8�2 ,
t12 = t 1 1 - tzz,

(7.2-1 1)

t21 = t J2 .

The result of u = r.s is

U t t = Tl l 81 1 + T t2821 = Tt 1 S l l + Tt2812 ,
uzz = rz1 s 12 + rzz8zz = rtzs12 + rzzSzz ,
U12 = UJ t - Uzz,

(7.2-12)

U2l = UJ2·

In both cases, two of the four products involved are the same ! We conclude that we can find
these matrix products with three instead of eight scalar multiplications. Outside the loop, we
need only two multiplications, as we saw earlier. To take advantage of this result, we shall
no longer use variables for the whole matrices s and result , but work directly with their
elements. We shall use variables s1 1 , s12 , and s22 , and so on. We do not need s21 because
it is equal to s12 . The resulting program, fibh [] , is shown in Listing 7.2-6.

This method is almost twice as fast as fibg . In[6] : • Timing[fibh [10A5] ;]

Out [6]• {0. 65 Second , Null}

The number of iterations of the loop is lg n (the size of n in binary). The numbers that
appear in the loop double at each iteration (the Fibonacci numbers are proportional to i).
The whole computation takes, therefore, only a constant times the number of steps for single
multiplication of numbers of length n. We can compute f n in M (n) steps ! Mathematica uses
an integer multiplication algorithm with M(n) � nlog(n). It follows that we can compute
large Fibonacci numbers asymptotically much faster than with the loop from Section 7.2.2.

154 7 Complexity of Algorithms

fibh[n_] : =
Module [{r1 1 = 1 , r12 = 0 , r22 = 1 , s11 = 1 , s12 = 1 , s22 = 0 , nn = n- 1} ,

While[nn > 1 ,

] ;

If [OddQ [nn] ,

] ;

{r1 1 , r22} = r12 s12 + {r1 1 s 1 1 , r22 s22} ;
r12 = r11 - r22

{s1 1 , s22} = s12A2 + {s11A2, s22A2} ;
s12 = s 1 1 - s22 ;
nn = Quotient [nn, 2]

r11 s11 + r12 s12

Listing 7.2--() Utilizing symmetries.

7.2.7 Special Topic: An Even Faster Method

We can perform binary exponentiation also by traversing the exponent from bit nk- I down
to no; see Exercise 7 . 1 . If done this way, additional identities between Fibonacci numbers can
be used, for example

fn-Ifn+I - {;; = (- I t . (7.2-13)

Such formulae allow us to compute Fibonacci numbers with two multiplications inside the
loop, and a single one outside [43]; see Listing 7.2-7 for the fastest known program, fibj [] .
This method is now also used by the built-in function Fibonacci [] .

fibj [n_] : =
Module [{r11 = 1 , r12 = 0 , r22 = 1 , digits = IntegerDigits [n-1 , 2] , i , t} ,

Do [If [digits [[i]] == 1 , (* odd *)

] ,

{r1 1 , r22} = {r1 1 (r11 + 2r12) , r12(r11 + r22) } ;
r12 = r 1 1 - r22

(* else even *)
t = r1 2 (r11 + r22) ;
{r1 1 , r 12} = {r1 1 (r11 + 2r12) - t , t} ;
r22 = r 1 1 - r12

{ i , Length[digits]-1}
] ;

If[digits [[-1]] == 1 ,
r1 1 (r1 1 + 2r12) , (* odd *)
r 1 1 (r1 1 + r22) - (-1) A ((n- 1) /2) (* even *)

Listing 7.Z-7 The fastest method known.

7.2 Example: Computing the nth Fibonacci Number

This method gives us another significant
speed-up compared with fibg .

A variant of this method is built into Mathe­
matica. The function is called Fibonacci .

ln[7) : = Timing[fibj [10h5] ;]

Out [7)= {0 . 12 Second, Null}

ln[8] : = Timing[Fibonacci [10A5] ;]

Out [B]= {0 . 14 Second, Null}

155

For example, we can compute the l O,OOO,OOOth Fibonacci number in about 19 seconds. The
result is approximately

fw � I . 1 2983 43782 25399 76032 . 1 02 089 876
.

It has 2,089,877 digits. Here are the first 1 ,997 of them:

(7.2-14)

1 1 29834 37822 53997 603 1 7 06363 77458 66372 94483 7 1 904 89040 881 5 1 35776 43245 53473 1 1 679
33 1 37 52421 97774 58247 74548 85033 29541 52973 79829 1 76 1 8 97527 39285 43637 9 1 302 93205 1 1080
39360 7 1 609 47067 63227 61568 28424 89700 64 1 97 36620 68255 55962 8685 I 200 1 6 48785 24757 14279
90297 63435 33 146 25437 48832 57472 80 1 9 1 86803 44260 93376 1 3 122 0787 1 80932 24952 47383 54896
45047 69641 15588 24438 10352 68921 04885 86302 8289 1 08325 78052 825 10 91973 20550 1 3 1 3 1 75430
39524 69745 2095 1 5299 1 52873 87889 12305 99963 2 1 337 22895 6 1 482 69938 55354 5 1421 38923 149 1 8
16430 27404 15815 45933 03207 25972 48442 29945 90179 1 3355 42836 23442 60263 65272 46154 31201
28900 974 1 7 3 1 430 05927 26773 088 12 1 5 1 60 4686 1 80694 93942 72896 43 1 28 03903 7327 1 84149 59744
80169 90022 35274 7 1 956 09146 99473 75021 19772 50980 6 1 063 481 02 75868 45300 81480 4461 9 5 1748
27027 79357 34157 9 1 787 70484 1 7 1 34 44329 21027 34454 3 1 566 67707 80853 58747 88855 76158 01979
1 1 236 29805 1 1728 00438 66560 80547 84281 30090 937 16 94862 2 1 26 1 26722 041 74 75093 59669 00205
85968 5 1 837 1 57 1 0 97533 70537 53 1 04 1 702 1 72377 50901 97 191 26460 14841 94860 76150 3 1 148 62814
48806 74336 8296 1 59389 40690 71537 46665 17020 19734 62650 50695 76052 88875 1 2885 85986 987 1 5
41591 23306 40482 55866 33385 39959 34344 86481 73242 99707 28906 02522 43329 68148 31452 05324
34378 80699 34922 1 6228 25899 30595 6 1 2 1 6 1 5723 38485 54057 2991 6 89169 14292 9 1 942 578 1 3 15246
48791 85431 96568 98393 94 1 8 1 3 1 7 1 6 36926 01 546 6482 1 43 144 35 1 63 59574 57100 43018 24045 38253
33792 78975 38541 09280 30853 002 1 2 72528 29224 22404 80298 1 3626 06558 85259 06745 67933 88589
40375 97341 01675 25755 53016 1 2822 58334 75708 19947 1 1991 30880 46978 54604 93 1 79 12021 1 8241
2355 1 59596 46 175 49536 47096 73339 66204 23680 17443 14372 37841 44707 28325 59840 45 186 21030
71071 79856 62538 52983 33063 47356 19374 556 1 0 7481 4 45416 60062 06636 98325 54254 266 1 3 991 52
47626 47328 1987 1 28825 46372 24608 02548 96453 245 1 1 64839 34508 98390 23304 08830 90456 5598 1
27645 69943 79092 6 1 067 88985 52277 58863 13325 76070 506 1 5 49300 50850 37 135 84630 45255 9249 1 I 56 17 33946 39227 9305 1 39866 78790 93658 14542 23230 60592 1 5723 07483 68955 23891 12899 23625
87601 787 1 9 80946 33679 50864 1 8634 261 5 1 8284 1 053 1 6 15376 43064 69492 90834 7 1 924 84233 I 0087
86403 35046 59727 94929 54 1 07 96696 22740 07367 367 1 1 9 1 4 1 9 35463 70034 08327 38470 098 1 9 64960

7.2.8 Key Concepts

I . Recursive algorithms are inefficient if values are computed repeatedly.

2. Fibonacci numbers grow exponentially.

3. Computing the nth Fibonacci number has the same complexity as multiplying two n-digit
numbers.

156 7 Complexity of Algorithms

7.3 Special Topic: Dynamic Programming

Dynamic programming is a technique for avoiding the repeated computation of the same values
in a recursive program. Each value computed is immediately stored. If the value is needed
again, it is not computed but simply looked up in the table.

7 .3.1 Recursion Can Be Expensive

In Section 7.2. 1 , we saw an example where the direct transformation of an inductive definition
(of Fibonacci numbers) into a recursive set of rules gives an inefficient algorithm. Recall that
Fibonacci numbers fn are defined by this second order iteration (Equation 7.2-1):

The resulting program fiba [] ,

fiba [1] = f iba[2] = 1 ;
fiba[n_] : = fiba[n- 1] + f iba[n-2]

/I = 1 ,
h = 1 ,
fn = fn- l + fn-2 ·

exhibits an exponential growth of computing time. The reason is the multiple computation of
the same Fibonacci numbers fi, for 2 < i < n. See the illustration at the beginning of this
chapter (on page 141).

A simple programming device, dynamic programming, lets us store each computed Fibo­
nacci number as a new rule. If this number is needed again, it can be found immediately and
needs not be recomputed. The program is given in Listing 7 .3- 1 .

fibb [1] = fibb [2] = 1 ;
fibb [n_] : = fibb [n] = fibb [n-1] + fibb[n-2]

Listing 7.3-1 Fibonacci numbers computed with dynamic programming.

How does it work? Definitions are right associative; therefore, the second definition is read
as follows:

f ibb [n_] : = (f ibb [n] = f ibb [n-1] + f ibb [n-2]) . (7 .3-1)

If we ask for the value of fibb [10] , for example, Mathematica evaluates the right side of
this definition - that is,

f ibb [10] = f ibb [9] + f ibb [8] . (7.3-2)

7.3 Special Topic: Dynamic Programming

Its right side, fibb [9] + fibb [8] , is now evaluated (giving 55). Now, the definition

fibb [10] = 55

157

(7.3-3)

is carried out - that is, a new definition for f ibb is added. This new definition is more specific
than the existing one for f ibb [n_] and is, therefore, put before the latter. If f ibb [10] is
needed again, the new definition returns the result immediately.

Initially, only these three definitions are giv- In[1] : = ?fibb
en.

The computation of /10 needs all smaller
values.

These values have been defined during the
previous computation.

Global ' f ibb
fibb[1] = 1
f ibb[2] = 1
f ibb[n_] : = fibb(n] = fibb[n - 1] + f ibb[n - 2]

In[2] : = f ibb[10]

Out [2] = 55

In[3] := ?fibb
Global' fibb
fibb[1] = 1
fibb[2] = 1
fibb [3] = 2
fibb[4] = 3
f ibb [5] = 5
f ibb[6] = 8
f ibb [7] = 13
f ibb[8] = 21
f ibb[9] = 34
fibb[10] = 55
f ibb[n_] := f ibb [n] = f ibb[n - 1] + fibb[n - 2]

The number of calls of fibb is reduced to n, but the additional definitions need much
memory. Storing these definitions takes also some time, of order n2• Because there are more
efficient ways to compute Fibonacci numbers, this method is not used in practice. There are
many problems, however, where no better algorithm is known. We shall look one of them -
optimization - in the next section.

7.3.2 Example: The Knapsack Problem

Dynamic programming is used to solve many optimization problems. In an optimization
problem, we try to maximize a certain function without violating given constraints.

The task in the knapsack problem is to fill a knapsack of given size optimally. There is
a number of objects, each one having a given size and value. Which combination of objects
maximizes the total value without violating the size limit?

Let there be n different kinds of objects. Let Si be the size, and Vi be the value of the
objects of type i. The knapsack has capacity s. The solution of the knapsack problem is

158 7 Complexity of Algorithms

described by n nonnegative integers mi that give the number of objects of type i in the optimal
knapsack. The knapsack problem can now be given formally as maximizing the value

with the size constraint
n 2:: Tni Si � S .

i= 1

(7.3-4)

(7.3-5)

Let us assume that the objects are ordered by size - that is, St � s2 � . • . � Sn. It is easy to
see that of two different objects of the same size only the more valuable one will be part of the
optimal solution. Therefore, we can even assume St < s2 < . . . < sn . Also, we can assume
that the values are increasing, too: v1 < vz < . . . < Vn .

The knapsack problem can be solved recursively. The function

Knapsack [{{s l , VJ} , . . . , {sn , Vn}} , s]

finds the solution (and returns the optimal value) for given si, vi, and s according to the
following considerations.

1 . If there are no objects - that is, n = 0 - the solution is 0:

Knapsack [{ } , s] = 0

2a. Otherwise, we can find recursively a solution that does not involve the last kind of object:

k1 = Knapsack [{ {sl , v1 } , . . . , {sn- 1 , Vn- 1 }} , s]

2b. If s � sn, we can tentatively put an object of type n jnto the knapsack and try to fill the
remaining capacity s - sn optimally:

kz = Knapsack [{{s 1 , v1 } , . . . , {sn , Vn}} , s - Sn] + Vn

Note that we must not exclude objects of type n in this recursive call because there might
be more than one object of type n in the optimal solution.

3 . The optimal solution is the larger one of k1 and kz.

Please convince yourself that the recursion always terminates. Correctness follows from the
general principle that any part of the optimal solution is itself optimal. If the optimal solution
contains one object of type i, the solution without this object is optimal for a knapsack of
size s - Si . Otherwise, there would be a better solution for the whole knapsack. We could
simply add an object of type i back to the different optimal solution for size s - Si .

7.3 Special Topic: Dynamic Programming

159

In program Knapsack1 .m (Listing 7 .3-2), the function Knapsack [] does not return the
optimal value but the packing list, that is, the list of objects in the optimal solution. The total
value can be computed according to Equation 7.3-4. We perform this computation in the
auxiliary function total [] . The objects are given as a list of size-value pairs.

size [obj ect_] : = obj ect [[1]]
value [obj ect_] : = obj ect [[2]]

total[knapsack_ , vs_] : = Plus �� value /� vs [[knapsack]] (* total value •)
contents [knapsack_ , vs_] : = Plus �� size /� vs [[knapsack]] (* total size •)

Knapsack [{} , s_Integer?NonNegative] := {} <• Case 1 *)

Knapsack [vs_List , s_Integer?NonNegative] : �
Module [{sn = size [Last [vs]] ,

n = Length[vs] , rest = Drop [vs , - 1] , kl , k2} ,
k1 = Knapsack[rest , s] ; (* 2a: without last obj ect •)
If [s >� sn ,

k2 = Knapsack [vs , s - sn] ; (* 2b : with one last obj ect •)
k2 = Append [k2 , n] ;
If [total [kl , vs] >= total[k2 , vs] , k1 , k2] (* 3 : the maximum *)

kl
]

Listing 7.3-2 Knapsack1 .m.

In this example, the sizes are (3, 4, 7, 8, 9);
the values are (4, 5, 10, 1 1 , 1 3).

The optimal solution consists of one object
of type I and two objects of type 3.

Here is the optimal value achieved with this
solution.

In[1] : = objects =
{{3 , 4} , {4 , 5} , {7, 10}, {8 , 11} , {9 , 13}} ;

In[2] : � Knapsack[objects , 17]

Out [2] = {1 , 3 , 3}

In[3] : = total[� . objects]

Out [3] = 24

The recursive computation can be illustrated graphically. For each recursive call of

Knapsack[Hst , Vt } , . . . , {s11 , vnH , s] ,

we draw one node, labeled with the maximum reached. The two recursive calls that find kt
and k2 are connected by a line. The line corresponding the the larger value is drawn in bold.

This version of the package produces the In[4] := « CSM' KnapsackG'
illustrations.

160 7 Complexity of Algorithms

Here is the graphic for the previous example.
The computation starts in the upper right
corner with the largest values of n and s.

A vertical line from a node the the node
below it corresponds to a solution according
to 2a, without the last kind of objects. A
horizontal line to the left corresponds to a
solution according to 2b, where the size of
the knapsack has been reduced by the size of
the last object; the length of this line equals
the size of the corresponding object.

The vertical axis shows the number of
different kinds of objects available, and the
horizontal axis shows the size of the knap­
sack.

In[5] : = KnapsackPlot [objects , 17] ;

As in the program for Fibonacci numbers (see Section 7.3. 1), certain values are computed
several times. We can use the same idea of dynamic programming to store intermediate results
to avoid this repeated computation. The final package Knapsack.m (Listing 7.3-3) shows
dynamic programming for the knapsack problem.

We do the recursive computation locally inside the function Knapsack [] . The recursive
function is a local variable named ks . The code for ks can detennine the values and sizes

size [obj ect _] : = obj ect [[!]]
value [object_] : = object [[2]]

total [knapsack_ , vs_] : = Plus �� value /� vs[[knapsack]] (* total value •)
contents [knapsack_ , vs_] : = Plus �� size /� vs [[knapsack]] (* total size *)

Knapsack [vs_List , s_Integer?NonNegative] : =
Module[{ks} ,

ks [O , in_] = {} ;
ks [n_ , in_] : = ks [n, in] =

Module[{gn = size [vs [[n]]] , k1 , k2} ,
k1 = ks[n- 1 , in] ;
If [in >= gll ,

k2 = ks [n , in - gn] ; k2 = Append [k2 , n] ;
If [total [k1 , vs] >= total [k2 , vs] , k1 , k2]

k1

] j
ks [Length [vs] , s]

Listing 7.3-3 Knapsack.m.

7.3 Special Topic: Dynamic Programming 161

of the objects by consulting the parameter vs . Therefore. we do not need to pass the list of
remaining objects as an argument of ks ; it is sufficient to give the number of remaining types
as argument. Any optimal solutions for smaller problems found during the recursion are stored
as new definitions for ks . using ks [n_ , in_] : = ks [n , in] = There are at most s
different sizes of smaller knapsacks and n different numbers of object types. The number of
calls to ks [] is therefore certainly less than ns. Note that ns is the number of points in the
rectangle shown in the previous picture. This method is quite efficient.

The following example shows us the values actually computed.

Here is a problem with only three kinds of
objects.

This table shows the values stored. (Don't
ask me how this works)

7 .3.3 Key Concepts

In[1] : = Knapsack[{{3 , 4} , {4, 6}, {7 , 10}} , 8]

Out [1] = {2 , 2}

In [2] : = Cases [
DovnValues[ks] ,
(_ [_ [n_Integer , i_Integer]] : >r_) : >

(knapsack[n, i]->r)
] // TableForm

Out [2]//TableForm= knapsack[1 , 0] -> {}
knapsack [1 , 1] -> {}
knapsack [1 , 2] -> {}
knapsack [1 , 4] -> {1}
knapsack [1 , 5] -> {1}
knapsack [1 , 8] -> {1 , 1}
knapsack[2 , 0] -> {}
knapsack[2 , 1] -> {}
knapsack[2 , 4] -> {2}
knapsack[2 , 8] -> {2 , 2}
knapsack [3 , 1] -> {}
knapsack [3 , 8] -> {2, 2}

1. Dynamic programming allows the reuse of intermediate results.

2. Dynamic programming reduces the complexity of complicated recursive computations.

3. Many optimization problems can be solved by dynamic programming.

162 7 Complexity of Algorithms

7.4 Long-Integer Arithmetic and Fast Multiplication

This section studies integer arithmetic. We shall look at the representation of big integers on
computers and study typical algorithms. Computers have memory cells of a fixed size, which
allow us to store only numbers of a certain maximum size. If we want to perform calculations
with arbitrary-sized numbers (so-called long integers), we have to program their representation
and the arithmetic ourselves. Long-integer arithmetic is already built into Mathematica; here,
we see how it works.

7.4.1 Long Integers

The obvious representation of integers of arbitrary size is a generalization of the positional
number system (binary, decimal) with a base B > 1 . A number is represented as an array ao,

a1 , . . . , an- I of digits with

n- 1

a = L aiBi,
i=O

The sign is stored separately and does not concern us here.

(7.4-1)

If we write our own program for long-integer arithmetic, we can choose the base B as we
wish. If we set B = 10, we get our familiar decimal arithmetic. Because we are used to it, this
choice makes it easier to understand the programs.

A long integer can simply be represented as the list of its digits ai, for i = 0, 1, . . . , n - I .
Because list elements are numbered starting with 1 , the element a [[i]] is the digit ai- l ·

Addition or multiplication of digits can give intermediate values z that are larger than B - I ,
the largest possible digit. If this happens, there i s a carry into the next digit. This carry is
equal to z div B, the quotient z/ B rounded down. The function carry [z] returns this carry;
rem[z] is the remainder of the digit without the carry. It is equal to a mod B, the remainder
of the division of z by B. The data type for long integers contains these auxiliary functions,
as well as constructors and selectors, as usual. The functions are in the package Bignum.m.

Here is the specification and the simple implementation:

Function Implementation Description
digit [a , i] a [[i+1]] the ith digit of a

newNumber [n] Table [0 , {n}] skeleton of a number of length n
length [a] Length [a] number of digits of a

carry [z] Quot ient [z , B] carry into the next digit
rem[z] Mod [z , B] remainder after removing carry

7.4 Long-Integer Arithmetic and Fast Multiplication 163

The selector digit [] can be used also on the left side of an assignment, to change a digit in
a number:

digit [sym , i] = new .

To redefine th� as�igninent is = rs , a definition of the fonn syml : (ls = rs) : = expt can
be given. Of co�rse, the variable parts in Is and rs must be marked as pattern variables. sym

is the head of ls. For �igi.t , �e used this definition: : . . .
dig�t/ : . . (digit[a_ , i_] = new_) : = (a[[i+1]] = new)

We set the base to 10.

The variable a is assigned a new long integer
with length 2.

Now, we can define the digits. The unit digit
is set to l ,

the tens digit is set to 2.

The number a has digits ao = I, a 1 = 2.
Observe that the order of digits is the reverse
of the usual notation.

The value of the number is computed ac­
cording to Equation 7 .4-1 .

7 .4.2 Addition

In[1] : � B • 10 ;

In[2] : : a • newNumber[2]

Out[2]: {0 , 0}

In[3] : � digit [a, 0] • 1

Out [3] � 1

In[4] : � digit [a, 1] • 2 ;

In[5] : = a

Out [5]= { 1 , 2}

In[6) : = Sum[digit[a, i] BAi ,
{i , 0 , length[a]-1}]

Out [6)� 21

For an example of an algorithm on long integers, let us look at addition. The method works
in the way we learned it at school. The two numbers are added digit by digit, and the carry
is added to the next digit. If the number a has n digits, and b has m digits, with m :::; n, the
addition c = a + b looks as follows:

+ (7.4-2)
Cn Cn- 1 Cm Cm-1 CJ C()

We start with the digit at position zero. If we store the sum of ai, bi, and the carry in the
auxiliary variables di, we get these formulae for the digits ci :

164 7 Complexity of Algorithms

do = ao + bo, C() = do mod B,
dl = a 1 + b1 + d0 div B, C J = d1 mod B,

dm- 1 = Um-1 + bm- 1 + dm-2 div B, Cm- 1 = dm- 1 mod B,
(7.4-3) dm = Urn + dm- 1 div B, Cm = dm mod E,

dn-1 Un- 1 + dn-2 div B, Cn- 1 = dn- 1 mod B,
dn = dn- 1 div B, Cn = dn.

We can write them in a more uniform way be defining d_ 1 = 0:

di = ai + bi + di- 1 div B, C.i = di mod B, i = 0, 1 , . . . , m - 1 ,
d · ' = ai + di- 1 div B, Ci = di mod B, i = m, . . . , n - 1, (7.4-4)

Cn = dn- 1 div B.

Observe that we no longer need the value of di- 1 after having computed di. Therefore, we
need only one variable d, not a whole array. We can perform the calculations for each i in a
loop. Listing 7.4-1 shows the resulting program.

plus [a_ , b_] : ; plus [b , a] / ; length [a] < length[b]

plus [a_ , b_] : =
Module [{c , n = length [a] , m =· length[b] , i , d = 0} ,

c = newNumber [n+l] ;

]

Do [d = digit [a , i] + digit [b , i] + carry[d] ;
digit [c , i] = rem[d] ,

{i , 0 , m-1 }] ;
Do[d = digit [a , i] + carry [d] ;

digit [c , i] = rem[d] ,
{ i , m, n-1}] ;

digit [c , n] = carry [d] ;
I f [digit [c , n] == 0 , c = Drop [c , - 1]] ; (• normalize •)
c

Listing 7.4-1 Addition of two long integers.

The first definition exchanges the two numbers if a is shorter than b. It may happen that the
highest digit of the result e-n is equal to zero, if there was no carry into it. In this case, we
remove digit en to keep the numbers normalized. In a normalized number, the highest digit is
always nonzero.

Here are two numbers, a = 9, 899 and b = In[7] : = a - {9 , 9, a , 9} ; \

10 1 . b - {1 , 0 , 1 } ;

7.4 Long-Integer Arithmetic and Fast Multiplication 165

Their sum is I 0,000.

In this example, there is no carry into the
first digit; the sum has, therefore, a length of
three instead of four.

In[8] : = plus[a, b)

Out [8]= {0 , o , o, 0, 1}

In[9] : = plus [{9, 9 , 8} , {1 , 1}]

Out [9]= {0 , 1, 9}

7 .4.3 Multiplication: The Karatsuba Method

If we multiply two long integers with n digits in the naive way (the so-called schoolbook
method), we need n2 multiplications of digits. This number can be reduced drastically with
the Karatsuba method. The Karatsuba method is not the asymptotically best possible, but it
is efficient and easy to implement. It is also used in Mathematica for medium-sized numbers.
An overview over the fastest methods for multiplication can be found in Knuth's book [35] .

Let a and b be two long integers with n digits. We can view them as two-digit numbers
with base Bm, where m = I n/21 :

a = ao + a 1 Bm :
b = bo + b1 Bm .

The product ab can be expressed as follows:

ab = aobo + (aobl + at bo)Brn + at bi B2m
= aobo + ((a.o + ai)(bo + b 1) - aobo - a 1 b 1)Bm + a t b t B2m

(7.4-5)

(7.4-6)

We see that we need only three multiplications of half size (instead of the expected four). The
three multiplications are aobo, a 1 b 1 , and (a0 + a 1)(bo + b1). This fact leads to an asymptotic im­
provement, if we use it recursively for the three multiplications. The number of multiplications, T(n), is

T(n)
T(l)

The solution of this recursive equation is

3T(n/2):
I .

T(n) = nlg 3 ::::::: nl .SB
'

(7.4-7)

(7.4-8)

which is far better than n2 . The overhead for the extra additions and subtractions can be
neglected because these operations are of order O(n).
Mathematica uses a long integer base of 216
on the computer on which this hook was
formatted.

MultiplicationTime measures the time
needed to multiply two numbers of length n.
The numbers are chose such that most of
their bits are one.

In[1] : = 1 z 16 ; B � 2Al ;

In[2] : = MultiplicationTime [n_] : •
With[{ a z BAn - 1 , b = BAn - 3} ,

Timing[a b] [[1]] / . Second -> 1

166
--------- - - � -

Here is a table of the times for n = l , 000,
2,000, . . . , I 0,000.

This graphic shows a comparison with Ver­
sions 2.0 and 3.0 of Mathematica that used
the naive algorithm and the Karatsuba algo­
rithm, respectively. Version 4.0 uses even
faster methods for such large numbers; see
Section 7.2.

7 .4.4 Key Concepts

7 Complexity of Algorithms

ln[3] : = v40 • Table [{n, MultiplicationTime [n]} ,
{n, 1000 , 10000, 1000}]

Out [3]= {{1000 , 0 . 05} , {2000 , 0 . 02}, {3000 , 0 . 02} ,

{4000, 0 . 03} , {5000 , 0 . 06} , {6000, 0 . 06} ,

{7000 , 0 . 07} , {8000 , 0 . 09} , {9000, 0 . 1} ,

{10000 , 0 . U}}

Time (sec.)

5

4

3
2

/ / /

I I
I I

I
I

I
I

I

_ _ _ ..
2000 4000

2.0

3.0

� � � 4.0

... - - -

- - -

6000 sooo i oooJ.ength

l . Arbitrary-size numbers can be realized using a positional number system.

2. The schoolbook methods for arithmetic can easily be programmed for long integers.

3. Two numbers with n digits can be multiplied with fewer than n2 digit multiplications.

7.5 Exercises 167

7.5 Exercises

7.1 Repeated Squaring from Left to Right

Powers of numbers or matrices mn can be computed by working on the exponent n from left
to right (from the most significant to the least significant bit). This method has the advantage
that each iteration of the loop requires only one multiplication with large numbers, whereas
the second multiplication - if the bit is equal to one - is with the original m . For Fibonacci
numbers, this matrix m consists only of zeroes and ones.

1 . Program the left-to-right method in general form (for powers of numbers), similar to the
definition of BinaryPower [] in Section 7 . 1 .3 .

2. Write a special version of the definition for the computation of the nth Fibonacci number
and compare its run time with method fibh [] from Section 7.2.6.

7.2 Experimental Complexity

Make some experiments with the loop for computing the nthe Fibonacci number (program
fibc [] in Section 7 .2.2) and estimate the time it would take to compute f ibc [10,.7] .

Hint: Use Fit [] to fit the measured times to the expected asymptotic expansion of the
run time.

7.3 Long-Integer Arithmetic

In this exercise, we want to experiment with long-integer multiplication algorithms.

I . Write a program t imes [a , b] for the multiplication of two long integers similar to the
program plus [] in Section 7.4. 1 . Use the naive schoolbook method for multiplication.

2. Implement the Karatsuba method.
Hint: Numbers with a small number of digits should be multiplied with the naive method
above.

3. For what size of numbers is the Karatsuba method faster than the simple algorithm?

Chapter 8

Operations on Vectors and Matrices

In this chapter, we look at arrays and a few of their uses. Vectors and matrices are important data
structures for mathematical applications. They are simply represented as lists in Mathematica.

Section 8.1 studies one of the simplest operations on matrices: transposition. Its gen­
eralization leads to interesting applications. Inner and outer products (Section 8.2) are also
important operations on matrices. They have many applications, especially when they are
treated as generally as is possible in Mathematica.

From the large topic of linear algebra we treat, in Section 8.3, the solution of systems of
equations and - as an application - the computation of electronic circuits.

Traditional programming languages represent vectors and matrices as arrays that allow
only elementwise access. In Mathematica, arrays can be manipulated as a whole, which
makes many programs simpler. Nevertheless, we shall have a look at elementwise access in
Section 8.4. These methods are important if you have to use one of the other languages at a
later time.

Section 8.5 introduces an important application for the simulation of physical phenomena:
aggregation of particles in a grid.

About the illustration overleaf:
The illustration shows an aggregation of 2,001 particles in a 1 01 x 1 0 1 grid. It was produced
with the command

Show [gridGraphics[aggregat e [initialGrid[50] , 2000]]] .

The package Aggregate.m is developed in Section 8.5.

8.1 Vectors arul Matrices 171

8.1 Vectors and Matrices

Mathematica represents vectors, matrices, and higher-order tensors as nested lists and provides
many commands for manipulating them.

A vector (vi) in an n-dimensional space Rn is represented as the list {vt , vz , . .
.
, Vn} .

An m x n matrix (aij) is represented as a list of m rows with n components each.

Here is a 3 x 3 matrix with symbolic ele­
ments. It is written as a list consisting of
three sublists, each of length 3.

MatrixForm[] gives us the usual format of
a matrix.

In[1] : � mat � {{a11 , a12 , a13} ,
{a2 1 , a22 , a23} ,
{a3 1 , a32 , a33}} ;

In[2] :a KatrixPorm[mat]

Out [2] //MatrixForms a11 a12 a13

a21 a22 a23

a31 a32 a33

When you try this example in the Mathematica frontend, you will even see the customary
parentheses:

(��: ��� ���) .
a31 a32 a33

A tensor is a higher-dimensional generalization of vectors and matrices. A tensor of rank k
is described by elements with k indices, and represented by k-fold nested lists. Accordingly,
a vector is a tensor of rank I , and a matrix is a tensor of rank 2.

8.1.1 Transposition

A transposition (of a matrix) is a permutation of the indices or an interchange of rows and
columns. The transpose at of an m x n matrix

C" al2
azt azz

a =

aml amz

is the n x m matrix

C" az1

at =
al2 azz

atn azn

. ,.) azn

amn

Oml) amz
. .

amn

(8. 1-1)

(8. 1-2)

172 8 Operations on Vectors and Matrices

The relation between a matrix and its transpose i s best expressed in terms of matrix elements:

The transposed matrix is obtained by inter- In [3] : = KatrixForm[Transpose[mat]
changing rows and columns. Out [3] //MatrixForm= a11 a21 a31

a12 a22 a32

a13 a23 a33

(8. 1-3)

The operation Transpose [] can perform more general index permutations than the simple
transposition in Equation 8. 1-3. The default levels permuted are {2 , 1} , which means

(8. 1-4)

that is, the usual transposition. You can use repetition of levels to select diagonal elements. A
level specification of { 1 , 1} gives the vector of diagonal matrix elements:

Level specifications are given as an optional second argument of Transpose [] .

Here is the list (or vector) of all diagonal
elements.

In[4] : = Transpose[mat , { 1 , 1 }]

Out [4]= {a11 , a22 , a33}

(8. 1-5)

The trace of a matrix is defined as the sum of its diagonal elements. It can be programmed in
this easy way.

Plus �� list replaces list by the sum of its In[5] : a KatrixTrace[m_] : a Plus 111111 Transpose [m, {1 , 1}]
elements. (�� or Apply is explained in
Section 1 1 .2.3.2.)

In this way, we get the trace of mat . In[6] : = KatrixTrace [mat

Out [6]= a11 + a22 + a33

Transposition can be generalized to tensors.

To improve readability, we shall write ten­
sors with subscripts.

Here, we generate a 2 x 2 x 2 x 2 tensor,
that is, a tensor of rank four.

In[7] : = Format[t_a] : = Subscripted[t]

In[8] := t = Table[a [i , j , k, 1] , {i , 2} ,
{j ,2}, {k , 2} , {1 ,2}] ;

8. I Vectors and Matrices

This command writes it in matrix form. In[9] : = MatrixPorm[t]

Out [9]//MatrixForm=

a a
1 , 1 , 1 , 1 1 , 1 , 1 , 2

a a
1 , 1 , 2 , 1 1 , 1 , 2 , 2

a a
2 , 1 , 1 , 1 2 , 1 , 1 , 2

a a
2 , 1 , 2 , 1 2 , 1 , 2 , 2

a a
1 , 2 , 1 , 1 1 , 2 , 1 , 2

a a
1 , 2 , 2 , 1 1 , 2 , 2 , 2

a a
2 , 2 , 1 , 1 2 , 2 , 1 , 2

a a
2 , 2 , 2 , 1 2 , 2 , 2 , 2

Now we exchange levels two and three, that In[10] : = Transpose[t , { 1 , 3, 2}] II MatrixForm

is, Out [10]//MatrixForm=

8.1.2 Exchange of Operations

a a
1 , 1 , 1 , 1 1 , 1 , 1 , 2

a a
1 , 2 , 1 , 1 1 , 2 , 1 , 2

a a
2 , 1 , 1 , 1 2 , 1 , 1 , 2

a a
2 , 2 , 1 , 1 2 , 2 , 1 , 2

a a
1 , 1 , 2 , 1 1 , 1 , 2 , 2

a a
1 , 2 , 2 , 1 1 , 2 , 2 , 2

a a
2 , 1 , 2 , 1 2 , 1 , 2 , 2

a a
2 , 2 , 2 , 1 2 , 2 , 2 , 2

173

A transposition requires the operations on the two levels that are exchanged to be the same. In
the previous example, this operation was List , because a matrix is a list of lists. You can use
Thread[expr] to exchange operations other than List .

The operations on the first level is f ; the
operation on the second level is List .

Thread [] exchanges the two operations.
We get a list of f objects.

Elements that are not lists are duplicated as
often as necessary.

In[1] : = f [{a , b} , {c, d}]

Out [1] = f [{a, b} , {c , d}]

In[2] : = Thread[Y.]

Out[2] = {f [a, c] , f [b , d] }

In[3] : = Thread[f [{a, b , c} , x]

Out [3]= {f [a, x] , f [b , x] , f [c , x]}

This exchange is made automatically for most built-in mathematical functions. Whenever the
arguments of these functions are lists, the function is applied to the elements of the lists, and
the list of results is returned.

The square root is applied to the elements of
the list. The result is a list of square roots.

Here is a sum of two l ists. The elements are
added pairwise.

The second operand of Power is not a list
and is duplicated. We get a list of second
powers (squares).

In[4] : = Sqrt [{1 , 2 , 3, 4 , 5}]

Out [4] = {1 , Sqrt [2] , Sqrt [3] , 2 , Sqrt [5] }

In[5] : = {1 , 2} + {a , b}

Out [5]= {1 + a, 2 + b}

In[6] := {a , b , c}A2

2 2 2
Out [6] = {a , b , c }

174 8 Operations on Vectors arul Matrices

If you want to distribute (''thread") an op- In[7] : = Thread[h[a, b , c]A2 , h]
eration other than list (h in this example), 2 2 2
you must give the name of the operation as Out [7]a h[a , b , c]
a second argument to Thread [] .

8.1.3 Example: Manipulation of Equations

The operations performed to solve a simple equation by isolating the unknown variable are an
example for the use of Thread [] .

Here is an equation that we want to solve
for x.

First, we �ubtract b on both sides. The sub­
traction is not distributed onto the elements
of the equation automatically.

Only with Thread [] , do we get the desired
result.

Now, we can divide both sides by a.

Finally, we use exponentiation - the inverse
of the logarithm - to isolate x.

8.1.4 Key Concepts

In[1] : = a Log[x] + b == 0

Out[1]= b + a Log[x] == 0

In[2] : = Y. - b

Out [2]= -b + (b + a Log[x] == 0)

In[3] : = Thread[X , Equa1]

Out (3]= a Log(x] == -b

In[4] : = Thread[Y. I a , Equal]

b
Out [4]= Log[x] == - (-)

a

In[5] : = Thread[Exp [Y.] , Equa1]

- (b/a)
Out [5]a X == E

I . Vectors, matrices, and tensors are represented in Mathematica as nested lists.

2. Transposition of matrices can be generalized to permutation of indices of tensors.

3 . The trace of a matrix is the sum of its diagonal elements.

4. Thread[] exchanges operations with arguments that are lists.

8.2 Inner and Outer Products

8.2 Inner and Outer Products

175

Many operations on vectors can be viewed as generalized inner and outer products. where we
use functions other than multiplication and addition.

8.2.1 Inner Products

The dot product of two vectors is a special case of the inner product of vectors. matrices. or ­
more generally - tensors.

The dot product is written as Vt • vz . The arguments Vt and vz can be vectors or matrices.
Mathematica does not distinguish between row and column vectors. A vector is simply a list
of components and used as needed.

These two commands cause vectors a and b
to be printed with indices.

This command causes all results to be print­
ed in matrix form.

Here is a 3 x 3 matrix..

In[1] : ; Format[t_a] := Subscripted[t] ; \
Format [t_b] := Subs cripted[t] ;

In[2] : = $PrePrint = KatrixPorm;

In[3] : = m • Table[a[i , j] , {i , 3} , {j , 3}]

Out [3]a a a a
1 , 1 1 , 2 1 , 3

a a a
2 , 1 2 , 2 2 , 3

a a a
3 , 1 3 , 2 3 , 3

We set v to a vector with three components. In[4] ; ; v = Table [b[i] , {i, 3}]

Out [4]; b
1

b
2

b
3

The vector is considered a column vector In [5] ; ; m • v
(3 x 1) . The result is again a column vector. Out [5] ; a b + a b + a b

1 , 1 1 1 , 2 2 1 , 3 3

a b + a b + a b
2 , 1 1 2 , 2 2 2 , 3 3

a b + a b + a b
3 , 1 1 3 , 2 2 3 , 3 3

176

Now it is treated as row vector (1 x 3). The
result is again a row vector.

Ordinary multiplication is done element by
element. Therefore, the result is again a
3 x 3 matrix.

In[6] : � v . m

8 Operations on Vectors and Matrices

Out [6]� a b + a b + a b
1 , 1 1 2 , 1 2 3 , 1 3

a b + a b + a b
1 , 2 1 2 , 2 2 3 , 2 3

a b + a b + a b
1 , 3 1 2 , 3 2 3 , 3 3

In[7] : � m v
Out [7]� a b a b a b

1 , 1 1 1 , 2 1 1 , 3 1

a b a b a b
2 , 1 2 2 , 2 2 2 , 3 2

a b a b a b
3 , 1 3 3 , 2 3 3 , 3 3

The inner product of two tensors (ai 1 i2 . . . tm) and (bk1k2 • • kn) is a tensor of rank m + n - 2 with
these elements:

d

<a · b)iJl2 . . ·lm- lk2 . . . kn = z:: al . l2 . . . l.,. _ .J b)k2 . . . kn , (8.2-1)
;:..:!

where the sum ranges over all indices of dimension m in a, and of dimension 1 in b (these
two dimensions must agree). In the previous example, a was a 3 x 3 matrix (ai1), and b was a
3 vector (bk). The result is, therefore, a 3 vector (ex) obtained by the ordinary formula for the
multiplication of a matrix by a vector,

3
Ci = Lai1b1 .

j=l

The dot product of two vectors (nz) and (vk) is

that is, a scalar.

d
n · v = Z:: uJ v1 ,

j=l

(8.2-2)

(8.2-3)

The computation of an inner product requires two operations. A multiplication is used
to combine corresponding elements, and an addition is used to sum the partial results. The
operation Inner [mult , m 1 , mz , add] allows you to use arbitrary (binary) multiplication
and addition operations instead of the default Times and Plus . The ordinary dot product
VJ . Vz , or Dot [VJ , vz] , is the same as Inner [Time s , VJ , vz , Plus] .

The ordinary mner product i� �imply the dot
product.

In[1] : = Inner[Time s , {a, b , c} , {x , y , z} , Plus]

Out [1] = a x + b y + c z

8.2 Inner and Outer Products 177

If we use undefined operation� (note the low­
ercase symbols t imes and plus), we can
see how Inner [] works.

In[2] : � Inner[time s , {a, b, c} , {x, y, z}, plus]

Out [2]� plus [times[a, x] , t1mes [b , y] , t1mes [c, z]]

8.2.2 Example: Connected Components

In an electronic circuit, certain points are connected by wires. If there are n points, we can
represent the connections in a Boolean n x n matrix (at1), that is, a matrix whose elements
are the Boolean values True or False . If there is a connection from point i to j, we set at; to
True , otherwise to False . Observe that the matrix is symmetric because a connection from i
to j is also a connection from j to i - that is, atJ = aJt .

Let us look at the Boolean inner product

a · a = Inner [And, a , a , Or] ,

where the logical AND is used as multiplication and OR is used as addition. According to
formula 8.2-1 , this operation gives

n

(a · a)tk = V ati A. a1k .
j=l

(8.2-4)

Element ik of a · a is true if and only if there is a connection from i to some j and from there
to k; that is, if there is an indirect connection of length two. This computation can be iterated:

E,
a<z- 0 · a , i = I , 2 , . . . , n. (8.2-5)

Matrix a h) describes the connection� of length i. E is the Boolean identity matrix having the
values True in its diagonal (and False otherwise). It describes the trivial connections of
length zero, because each point is connected to itself.

If we add up the matrices aCt) element by element with OR,

b = a(O) V a(!) V . . . V a(n) , (8.2-6)

we get a matrix b whose elements blJ are equal to True if there is some connection between i
and j. If all elements of b are True , our circuit is connected; otherwise it consists of several
components that are completely independent of each other (indicating most likely an error in
the wiring).

The Boolean sum can be taken inside the iteration. We get

a(i- 1) V aCi- 1) · a ' i = 1 , 2 1 • • • , n. (8.2-7)

178 8 Operations on Vectors and Matrices

identity[n_] : = Table [i===j , {i , n} , {j , n}]

inner [a_ , b_] : = Inner[And, a, b, Or]

or [a_ , b_] : = MapThread[Or , {a , b} , 2]

Components [a_] : =
With({n = Length(a] } ,

Nest [Function [{ai } , or [ai , inner[ai , a]]] , ident ity[n] , n]

Listing 8.2-1 BooleMat.m.

Listing 8.2-1 shows the corresponding program. The operation inner [a , b] computes the
Boolean inner product; or [a , b] is the Boolean sum. Components [a] finds the connected
components.

In this example, we print all results in matrix In[1] : = $PrePrint a

fonu with labels for rows and columns. Here MatrixForm[l , TableHeadings->Automatic]l;
is how we can specify such fonuatting.

Here is an example of a circuit with six In(2] : • circuit1
points. There are wires between 1-2, 1-3, Out (2] =
2-3, 2-4, 3-4, 4-5, and 5-6.

1 2 3 4 5 6

1 False True True False False False

2 True False True True False False

3 True True False True False False

4 False True True False True False

5 False False False True False True

6 False False False False True False

This matrix shows all connections of length In[3) : = inner[Y., Y.J
two. Out[3]•

1 2 3 4 5 6

1 True True True True False False

2 True True True True True False

3 True True True True True False

4 True True True True False True

5 False True True False True False

6 False False False True False True

8.2 Inner and Outer Products 179

All points are connected, as this matrix con- In[4] : = Components[circuit1]
sisting only of True shows. Out [4] = 1 2 3 4 5 6

1 True True True True True True

2 True True True True True True

3 True True True True True True

4 True True True True True True

5 True True True True True True

6 True True True True True True

In this circuit, the connection 4-5 is missing. In[5] : = circuit2

Out [5]=

1 2 3 4 5 6

1 False True True False False False

2 True False True True False False

3 True True False True False False

4 False True True False False False

5 False False False False False True

6 False False False False True False

As a consequence, the circuit consists of two In[6] : = Components[circuit2]
components. Points 1 to 4 are connected, Out [6] =
and so are points 5 and 6. There is n o con-

1 2 3 4 5 6 nection between these two sets of points.
1 True True True True False False

2 True True True True False False

3 True True True True False False

4 True True True True False False

5 False False False False True True

6 False False False False True True

Boolean n x n matrices of the form used in this section are adjacency matrices of graphs.
They specify which vertices in the graph are connected by an edge. The standard Mathe11Ultica
package DiscreteMath' Combinatoric a' contains many functions on graphs. Here, we
solve the connection problem using the Combinatorica package [63] .

We read the package.

Combinatorica needs graphs represented as
lists of edges. The edges are the pairs of
vertices whose corresponding entry in our
adjacency matrix is True .

In[7] : • llleeds ["DiscreteMath'Combinatorica ' "]

In[8] : • Position[circuit2 , True]

Out [8]• {{1 , 2} , {1 , 3} , {2 , 1} , {2 , 3} , {2 , 4} ,

{3 , 1 } , {3 , 2} , {3, 4} , {4 , 2} , {4 , 3} , {5 , 6},

{6 , 5}}

180

This function converts the edge list into an
internal representation of the graph.

Here we find its components. As we have
already seen, there are two components.

The package also contains commands to
draw pictures of graphs.

8.2.3 Outer Products

8 Operations on Vectors and Matrices

In [9] : � gr2 = FromUnorderedPairs [Y.] ;

In[10] : � ConnectedComponents [gr2]

Out [10]� {{ 1 , 2, 3, 4} , {5 , 6}}

In[1 1] : = ShowLabeledGraph[gr2] ;

I
4 5

The outer product of two tensors (ai1 i2 . . . i ,,.) and (bj1h . . jn) is a tensor of rank m + n with
elements

(8.2-8)

The outer product is computed by Duter [Times , a , b] .

The outer product of two vectors is a matrix In[l] : � Outer [Times , {a , b , c} , {x , y , z}] II MatrixForm
containing all possible products of elements Out [1 J IIMatrixForm= a x a y a z
of the two vectors.

b X b y b Z

C X C y C Z

In a way similar to inner products, we can use another binary operation in place of mul­
tiplication. Outer [mult , a , b] uses the operation mult for combining the elements of a
and b.

In this example, the elements of the two vee- In[2) : • Outer[g, {a, b , c } , {x , y , z}] II MatrixForm
tors are combined with g. Vectors are ten- Out [2] 11MatrixForm= g [a, x] g [a, y) g[a, z]
sors of rank one; the result is, therefore, a
tensor of rank two - that is. an ordinary rna- g[b, x] g[b , y) g[b, z]

trix. g [c , x] g[c • y] g[c , z]

8.2 Inner and Outer Products

8.2.4 Special Topic: Vector Calculus

181

Many operations of vector calculus can be written as generalized inner and outer products.
This formalism leads to compact programs.

8.2.4.1 Divergence

The divergence of an n-dimensional vector field v = (e1 , ez, . . . , en). depending on n variables
(X t , xz , . . . , xn). is defined as

. De 1 Dez Den
d!V V = - + - + · · · + -- .

Dx1 Dxz Dxn

This is an inner "product," with differentiation D [e , x] instead of multiplication.

Div [v_List , vars_List] : = Inner[D , v , vars , Plus]

(8.2-9)

As an example, we compute the divergence of the ordinary gravitational or electric field in
vacuum.

The radius or distance from the center is
equal to the square root of the sum of the
squares of the coordinates.

The magnitude of the field is 1 / r2• The field
points toward the origin. -(x, y, z)/r is a
unit vector pointing toward the origin.

Here is its divergence. We know that it
should be zero. It is not trivial to see that
this expression is indeed zero.

Simplifying it with Together returns the
expected resul t.

In[l] : = r a Sqrt [XA2 + yA2 + ZA2]

2 2 2
Out [l]= Sqrt[x + y + z]

In[2] : = e = - 1/rA2 {x , y, z}/r

X y
Out [2]= {-(--------) , - () ,

2 2 2 3/2 2 2 2 3/2
(x + y + z) (x + y + z)

z
- () }

2 2 2 3/2
(x + y + z)

In[3) : = Div [e , {x , y , z}]

2
3 X

2
3 y

Out [3]= ------- + ------- +
2 2 2 5/2 2 2 2 5/2

(x + y + z) (x + y + z)

2
3 z 3

2 2 2 5/2 2 2 2 3/2
(x + y + z) (x + y + z)

In[4] : = Together['l.]

Out [4] = 0

182 8 Operations on Vectors and Matrices

8.2.4.2 Gradient

The gradient is the vector of partial derivatives of a scalar field s(x1 , x2 , . . . , Xn) with respect
to the coordinates : 8s 8s 8s grad s = (-8 ' -8 ' . . . ' -8) .

X1 X2 Xn
(8.2-10)

The scalar s must be differentiated with respect to each of the variables x1 , x2, . . • , Xn· We
simply map the differentiation function over the list of variables.

Grad[s_, vars_List] : = Map[Funct ion [{v}, D [s , v]] , vars]

The operation Map [] is explained in Section 1 1 .2.3 . 1 .

The vector field e from the previous section
is the gradient of the potential l/r.

In[5) : z Grad[1/r , {x , y, z}]

X y
Out [6]• {- (------------) . - () •

2 2 2 3/2 2 2 2 3/2

8.2.4.3 Jacobian

(x + y + z) (x + y + z)

z
- () }

2 2 2 3/2
(x + y + z)

The Jacobian of a vector (e1 , e2 , . . . , em) with rn components with respect to n variables
(xt , x2, . . . , Xn) is the m x n matrix of partial derivatives

� � 8
OXj 2 �
fu fu .§El.. ax, 8x2 OXn

�em
1

�em
2 � n

This operation is an outer "product" with differentiation instead of multiplication.

Jacobian[f_List , vars_List] : = Outer [D, f , vars]

Here is a symbolic Jacobian of three func­
tions depending on two variables. The
notation f(i.,j) denotes a partial derivative:
i times with respect to the first variable,
j times with respect to the second variable.

In[6] : = Jacobian[{f [x, y] , g[x , y] , h[x , y]} ,
{x , y}] II KatrixPorm

Out [6] / /MatrixForm= (1 , 0) (0, 1)
£ [x, y] £ [x , y]

(1 ,0) (0 , 1)
g [x , y] g [x , y]

(1 , 0) (0 , 1)
h [x , y] h [x , y]

(8.2-1 1)

8.2 Inner and Outer Products 183

The internal form of the symbolic deriva- In[7] : - InputForm[D[f[x, y] , {x , i} , {y, j}]

tive f(i,j) is Derivative [i , j] [j] . Out [7] //InputForm= Derivative [i , j] [f] [x , y]

8.2.4.4 Laplacian

The Laplacian V'2 of a scalar field s is defined as

V'2s = div grad s ,

which leads to this program:

Laplacian[s_ , vars_List] : = Div [Grad [s , vars] , vars]

Here is the Laplacian of a general potential. In[8] : • Laplacian[s [x , y , z] , {x , y , z}]

Harmonic functions are functions whose
Laplacian is zero, for example the func­
tion 1 /r from the previous sections.

(0 , 0 , 2) (0 , 2 , 0)
Out [8]= s [x , y, z] + s [x , y, z] +

(2 , 0 , 0)
s [x, y , z]

In [9] : = Together[Laplacian[1/r , {x , y, z}]]

Out [9] = 0

8.2.4.5 A Package for Vector Calculus

(8.2-12)

The package DivGrad.m (Listing 8 .2-2) contains all functions defined in Section 8.2.4. Observe
how easy it was to program these functions. In particular, we did not use any explicit loops,
and the functions work with vectors of any number of components.

8.2.5 Key Concepts

1 . The inner product is a generalization of the dot product.

2. Instead of addition and multiplication, other operations (e.g., Boolean operations) can be
used in inner and outer products.

3. Outer products form all possible combinations of the elements of two tensors.

4. The operations of vector calculus can be described as generalized inner or outer products.

184 8 Operations on Vectors and Matrices

BeginPackage [" CSM ' DivGrad ' "]

(* simple vector calculus in Cartesian coordinates *)

Div : : usage = "Div [v , varlist] computes the divergence of the vector field v
w . r . t . the Cartesian coordinates varlist . "

Laplacian : : usage = "Laplacian [s , varlist] computes the Laplacian of the scalar
field s w . r . t . the variables varlist . "

Grad : : usage = "Grad [s , varlist] computes the gradient of the scalar f ield s
w . r . t . the variables varlist . "

Jacobian : : usage = " Jacobian[flist , varlist] computes the Jacobian of
the functions flist w . r . t . the variables varlist . "

Begin [" ' Privat e ' "]

protected = Unprotect [{Jacobian}]

Div [v_List , vars_List] : = Inner [D , v , vars , Plus]

Grad[s_ , vars_List] : = Map[Funct ion[{v}, D [s , v]] , vars

Laplacian [s_ , vars_List] : = Div [Grad [s , vars] , vars]

Jacobian [f_List , vars_List] : = Outer[D , f , vars]

Protect [Evaluate [protected]]

End []

EndPackage []

Listing 8.2-2 DivGrad.m.

8.3 Linear Algebra
185

8.3 Linear Algebra

Linear algebra is the foundation for many numerical problem-solving methods. We present a
simple algorithm for the solution of linear equations and show an application: the analysis of
electronic circuits.

8.3.1 Linear Equations

A system of linear equations with rn equations and rn unknowns (xr , xz , . . . , Xm) looks as

follows:
UJ J XJ + UJzXz + + UrmXm = br ,

U2] Xt + azzxz + + UzmXm bz, (8.3-1)

UmiXI + Um2X2 + . . . + UmmXrn = bm .

Often, such a system i s written i n matrix notation. With A = (aij). x = (xj). and b = (bi), we

get,

or, written out in full: (an
az t

Umi Um2

A · x = b ,

:

:
:
) . (::) = (

�

)
Umm Xm bm

(8.3-2)

(8.3-3)

Gaussian elimination is a simple method for the solution of such systems. Jt is based on the

fact that the solution does not change if a multiple of one row of the matrix is added to another

row. If we add c times row i to row j, we get

k = l , . . . , rn , (8.3--4)

and, on the right side: (8.3-5)

Such a transformation is called a row operation. To make notation simpler, the matrix A and

the right side b are combined to an rn x (m + I) matrix A:

(" "

- az r
A = .

Urn !

al2
azz (8.3--6)

amz

186 8 Operations on Vectors and Matrices

In this notation, a row operation is expressed simply as

k = l , . . . , m + l . (8.3-7)

Our goal is to perform such row operations to put the matrix into triangular form. In triangular
form, it looks like this:

U ! ! a l 2 al 3 a lrn b l
0 I I I b' a22 a23 a2rn 2
0 0 a" 33 a" 3m b" 3 (8.3-8)

0 0 0 a"·· ·' mm b"· · ·'
rn

This goal is achieved step by step. To set the the entries in the first column (in rows 2 to m) to
zero, we can add c = -aj 1 / a 1 1 times the first row to the jth row. According to Equation 8.3-7,
the entries aj 1 will become zero. If we do this operation for all rows, we get

au ar2 a13 a rm br
0 I I I b' az2 az3 azm 2
0 I I I b' a32 a33 a 3m 3 (8.3-9)

0 I I a�rn b' arn2 am3 m

Next, we can eliminate the second column in rows 3 to m, and so on.
Mathematica makes it easy to program these elementary operations. A matrix is a list of

rows, each row is a list (of elements). The ith row can simply be extracted as mat [[i]] .
Arithmetic operations are automatically distributed on the elements of a list. Therefore, a row
operation according to Equation 8.3-7 is simply mat[[j]] = mat [[j]] + c mat[[i]] ; you
need not program the loop over k. As usual, we can store the modified jth row in the original
matrix because we no longer need the old values.

We ask for elements of the form a[i , j] to In[1] : � Format [t_a] • Subscripted [t] ;
be written in the usual form with indices.

Here is the original matrix with m = 3. In[2] :� MatrixForm[
mat • Table [a[i , j] , {i , 3} , {j , 4}]

Out [2] //MatrixForm= a a a a
1 , 1 1 , 2 1 , 3 1 ,4

a a a a
2 , 1 2 , 2 2 , 3 2 ,4

a a a a
3 , 1 3 , 2 3 , 3 3 ,4

8.3 Linear Algebra -------------------

Here is the row operation that adds c times In[3) := mat [[2]] + c mat [[1]]

187

the first row to the second row in symbolic Out [3]= {c a + a , c a + a , c a + a ,
form. 1 , 1 2 , 1 1 , 2 2 , 2 1 , 3 2 , 3

c a + a }
1 , 4 2 , 4

The command eliminateColumn [mat , i] iterates the row operation over rows i+ I to m. It is
used in GaussianElimination[mat] to put the matrix into triangular fonn, by performing
it for i = 1 , 2, . . . , m All these commands are in the package Linalg.m, reproduced in
Listing 8.3-1 .

nRows[mat_] : = Dimensions [mat] [[1]]

nColumns [mat_] : = Dimensions [mat] [[2]]

addColumn [mat_?MatrixQ , col_List] / ; nRows [mat] == Length [col] : =
Transpose [Append [Transpose [mat] , col]]

eliminateColumn[mat_?MatrixQ , i_Integer] / ; 1 <= i <= nColumns[mat] · =
Module [{res = mat , m = nRows [mat] , j , c } ,

Do [c = -res [[j , i]] /res [[i , i]] ;
res [[j]] = res [[j]] + c res [[i]]

• {j , i+1 , m}] ;
res

GaussianElimination[mat_?MatrixQ] : =
Module [{res = mat , m = Min[nRows [mat] , nColumns[mat]] , i} ,

Do [res = eliminat eColumn[res , i] , {i , 1 , m-1 }] ;
res

backSubstitution[mat_?MatrixQ] / ; nColumns [mat] 1 + nRows [mat] : =
Module [{m = nRows [mat] , i , k , x},

x = Table [O , {m}] ;
Do [x [[i]] = (mat [[i , - 1]] -

X

Sum[x [[k]] mat ([i , k]] , {k , i+1 , m}]) /
mat [[i , i]] ;

, {i , m , 1 , - 1 }] ;

linearSystem[a_?MatrixQ, b_?VectorQ] / ; nRows[a] === nColumns [a]
backSubstitution[GaussianElimination[addColumn [a , b]]]

Length[b] : =

Listing 8.3-1 Linalg.m.

If the matrix is in triangular fonn, as shown in Equation 8.3-8, the solution (xt , xz, . . . , xm)
is easy to find. Multiplying the last row of the matrix by the vector x gives

(8.3-1 0)

188

or

From the second-to-last row, we get

or

The general formula for row i is

b'
Xm = ---f!l- .

amm

8 Operations on Vectors and Matrices

(8.3-11)

(8.3-12)

(8.3-13)

(8.3-14)

Note that b; is equal to a� m+I · In Mathematica, this formula looks l ike this:
'

x [[i]] = (mat [[i ,m+l]] - Sum[x [[k]] mat [[i , k]] , {k , i+1 ,m}]) /mat [[i , iJ J .

As you can see in the command backSubstitution[mat] , x is initialized to a list of
length m. The values Xm, Xm- 1 • • • . , x 1 are then computed in this order; therefore, the name
back substitution.

Time for an example! First, we read the
package.

This definition prints all outputs in matrix
form.

We generate a 3 x 3 matrix with random
elements.

Here is the right side of the equation.

In[l] : = « CSM'Linalg' ;

In[2] : = $PrePrint • MatrixForm;

In[3] : = a • Table [Random[Real , {-1 , 1}] , {3} , {3}]

Out [3]= 0 . 507978 0 . 048887 0 . 519499

0 . 979505

-0 . 882894

0 . 0374185

0 . 903669

-0 . 0781593

0 . 0224132

In[4] : = b • Table[Random[Real, {-1 , 1}] , {3}]

Out [4]= -0 . 435791

-0 . 753735

0 . 352373

We add the right side as the last column of a . In[5] : = addColumn[a, b]

Out [5]=

0 . 507978

0 . 979505

-0. 882894

0 . 048887

0 . 0374185

0 . 903669

0 . 519499 -0 . 435791

-0 . 0781593 -0 . 753735

0 . 0224132 0 . 352373

8.3 Linear Algebra

Elements of the first column are eliminated
according to Equation 8.3-7.

Next, the second column. The matrix is now
in triangular form.

The solution is obtained by back substitu­
tion.

The verify the solution, we insert it into the
equation.

The result should be equal to b. We check it
by subtraction. It is not completely accurate
because of roundoff errors.

In[6] : = eliminateColumn[Y., 1]

Out [6]=

0 . 507978

o .
0 .

0 . 048887 0 . 519499

-0 . 0568476 -1 . 07988

0 . 988637 0 . 925331

In[7] : = elimiDateColumn[1. , 2]

Out [7] =

0. 507978 0 . 048887 0 . 519499

0 . -0 . 0568476 -1 . 07988

o . 0 . -17 . 8549

In[8] : • x • backSubstitution[1.
Out [8]= -0. 760977

-0 . 352017

-0 . 0616415

In[9] : • a . x
Out [9]= -0 . 435791

-0 . 753735

0 . 352373

In[10] : "' 1. - b

Out [10] •
0 .

-16
1 . 1 1022 10

-17
-5 . 55112 10

Chop [] can be used to remove small non- In[11] : = Chop[Y. J
zero parts. Out [11]= 0

This function performs all solution steps and
gives us the solution of A · x = b directly.

0

0

In[12] : = linearSystem[a , b]

Out [12]= -0. 760977

-0. 352017

-0. 0616415

-0 .435791

0 . 0865768

-0 . 405056

-0. 435791

0 . 0865768

1 . 1006

189

The method works also for symbolic sys­
tems! In this way. we can can find the formu­
la for the solution of a gencral 2 x 2 system.

In[13] : = Simplify[linearSystem[{{a1 1 , a12} , {a21 , a22}} ,
{b1 ,b2}]]

Out [13]= a22 b1 - a12 b2

- (a12 a21) + all a22

a21 :t>1 - al l b2

a12 a21 - a11 a22

190 8 Operations on Vectors and Matrices

So far, we assumed that the elements a�i are always different from zero, because we have to
divide by them. These elements are called pivots. A pivot may be zero even if the system of
equations is regular - that is, has exactly one solution. If element aii is zero, we can find an
element below it - that is, one of ai,i+l , . . . , aim • that is different from zero. We exchange the
two rows, and the algorithm can continue. We have to undo the exchanges at the end to put
the solution into the right order. These manipulations are called pivoting. Pivoting is the topic
of Exercise 8.6.

An algorithm for solutions of linear systems is already built into Mathematica. The function
is called LinearSolve [] , and it can be used in the same way as our linearSystem[] .

8.3.2 Example: Passive Electronic Circuits

In electrical engineering, the imaginary unit is usually denoted by j instead of i, because
current is denoted by i. In a Mathematica Notebook you can use the symbol j) on input, but
the output will still be given in terms of :it or I . In this book, we want to use the symbol j on
input and output; it is not difficult to teach Mathematica this convention.

This definition allows us to use the symbol j
on input
. . . and this format achieves the correspond­
ing output.

We can work with complex numbers in j no­
tation in the usual way.

In[l] : � j = I ;

ln[2] : � Unprotect[Complex] ; \
Format [c_Complex] : • Re [c] + HoldPorm[j] Im[c] ; \
Protect [Complex] ;

In[3] : = (1 + j) A2

Out [3]= 2 j

These two definitions are in the package Electronics.m. A definition that makes the frontend
print I as j) is also in Electronics.m.

The analysis of passive circuits under a stationary alternating current leads to linear systems
of equations. In equilibrium, all currents and voltages oscillate with a certain frequency ro and
can be expressed as u(t) = uoejcot, and so on. The time dependency can be removed with the
impedance formulation. For ordinary resistors, we have the equation U = IR (Ohm's law).
We can also apply this to the other two passive elements: capacitances and inductances. For a
capacitor C, we have

I U = jroC
;

its impedance is 1/(jroC). For an inductance L, we get

U = J(jroL) ;

its impedance is jroL.

(8.3-15)

(8.3-16)

8.3 Linear Algebra 191

In the resonator shown at left, the total impedance is computed
from the parallel impedances in the two branches. In the left
branch, we get

1
Zl = jroC ; (8.3-17)

c in the right branch, we have a sum of two impedances (because
they are in series)

zz = R + jroL. (8.3-18)

These two branches are in parallel, which gives

Here are the two expressions in Mathemati­
ca.

Here is the formula for the impedance of the
resonator.

Let us define it as a function. Note: if you
use Y. in the body of a function, you must use
an immediate definition (with =), instead of
the usual delayed definition (with : =).
In this way, we can plot the frequency re­
sponse - that is, the impedance as a function
of frequency - from 0 to 100 kHz. There is
the characteristic maximum at the resonating
frequency. Here it is for a resistor of 10 n
and C = 1)lF, L = I mH.

1

In[4] : = z1 = 1/(j omega c) ; \
z2 = r + j omega 1 ;

In[5] : = z = Together[1/(1/z1 + 1/z2)

-j (1 omega - j r)
Out [5] = __ __;;_ __ _;:_ _ _:__ __ _

2
-1 + c 1 omega - j c omega r

In[6] : = impedance[r_ , 1_ , c_] • 1. ;

In[7] : = Plot[

(8.3-19)

Bvaluate [Abs [impedance[10, 1 . 0 10A-3 , 10A-6]]] ,
{omega, 0 , 100 .0 10A3}

J ;

1 00

80

60

40

20

-+----,-20000�-· 40000 60000 80000 100000

192

We can vary two parameters. Here we see
the quality Q of the resonator. It depends
on the damping resistor. With larger R, the
maximum becomes flatter and shifts toward
lower frequencies.

8 Operations on Vectors and Matrices

In[S] : = Plot3D[
Bvaluate [Abs [impedance[r , 1 . 0 10A-3 , 10A-6]]] ,
{omega, 0 . 0 , 6 2 10A3} , {r , 9 , 50 . 0} ,
PlotRange->All, Axeslabel->{oo,r, Q}] ;

Instead of deriving the formula for the impedance step by step from the circuit, we can derive
the relationship between current and voltage in the various points of the circuit in a mechanical
way by using Kirchhoff's law. The resulting equations are linear and can be solved easily.

The first equation is Kirchhoff's law. The
next two are the equations for the relation­
ship between current and voltage in the two
branches.

The equations are linear in i, i 1 . and i2 and
can be solved.

In[1] : = gl = { i == i1 + i2 ,
u == i1/(j omega c) ,
u == i2 r + i2 j omega 1 } ;

In[2] : = Solve[gl , {i , i1 , i2}]

j u
Out [2]= {{i -> j c omega u - --'-----

1 omega - j r

-j u
i1 -> j c omega u, i2 -> }} 1 omega - j r

Now we know the current i as it depends on voltage u. The overall impedance is simply the
quotient z = uji.

We substitute the solution in u/i and sim­
plify the result. Please convince yourself
that the result is the same as in the previous
calculation on page 1 9 1 .

The interesting quantity z can be comput­
ed directly by adding an equation for it and
asking Solve [] to eliminate the auxiliary
variables u, i, i 1 , and i2.

In[3] : = Together[u/i /. X [[1]]

- j (l omega - j r)
Out [3]• ---=----=---=----

2
-1 + c 1 omega - j c omega r

In[4] : = Solve[Append[gl , z •• u/i] , {z} , {u, i, i1 , i2}]

-j (l omega - j r)
Out [4]= {{z -> ---=----=------}}

2
-1 + c l omega - j c omega r

8.3 Linear Algebra 193

8.3.3 Key Concepts

I . Linear systems of equations can be solved by simple matrix operations.

2. Impedance formalism provides for an easy calculation of electronic circuits under station­
ary alternating currents.

194 8 Operations on Vectors and Matrices

8.4 Programs with Arrays

Programming with dynamic data structures in Mathematica and LISP is quite different from
programming in traditional languages such as Pascal or C. We shall discuss the differences
in the memory management underlying these two programming styles and then show how
C-style programming with arrays looks like in Mathematica.

8.4.1 Memory Management

Working with dynamic data structures is quite simple in Mathematica. We saw examples in
Section 6.3 (binary trees), and we shall see more in Section 9.2, where we work with lists.
Such simple programs are possible only because Mathematica performs memory management
itself. Every time we build a new expression with e = h [e 1 , • • • , en] and assign it to a
variable, a portion of our computer's memory must be reserved. A pointer to this part of
the memory is then stored in the value field of the internal data structure for the symbol e .
I f we use the expression h [e1 , • • • , en] itself as an element of another expression, as in

f [e , . . . J , another pointer to the same piece of memory occupied by e is stored in this new
expression. The expression is not duplicated. This method saves a lot of memory.

During a symbolic computation many expressions are created that are no longer in use
at a later time. For example, if we assign a new value to the variable e , the old pointer
to h [e 1 , • • • , en J is overwritten. As soon as the last pointer to this expression has been
overwritten, the expression can no longer be accessed; it has become garbage. This garbage
accumulates in memory and would soon take up all available space.

One part of Mathematica serves to find and collect this garbage. Once reclaimed, we
can use this memory to store new expressions. This action - called garbage collection - is
automatic and invisible to the user. 1

Traditional programming languages do not offer such garbage collection. It is left to us
programmers to do it ourselves. To give you an idea of how it works, we can simulate such
memory management techniques in Mathematica.

8.4.2 A Memory Model

The computer's memory is viewed as an array of cells. Each cell can store an integer. Cells
are numbered sequentially, starting with 1 . (In some programming languages, arrays start with
index 0.) To represent n cells of memory, we use a list with n elements. The whole list is
assigned to the variable a . The ith cell can be accessed using a[[i] J , and a new value can be

1This necessary task uses about 10% of the total computing time.

8.4 Programs with Arrays 195

stored there with a [[i]] = val . In many programming languages, the notation a [i] is used
instead; it means something different in Mathematica.

We create an array with 10 elements. The In[1] : = a = Table[Null , {10}] ;
value Null marks the elements as uninitial-
ized.

We define two of the elements. In[2] : = a[[1]] = 6 ; a[[2]] = 7 ;

Here, we retrieve element a2. In[3] := a[[2]]

Out [3]= 7

8.4.3 Example: The Heap

A heap is a data structure similar to the binary tree. In this section, we shall store heaps in
arrays and look at the most important algorithms in this representation. All functions described
in this section are part of Heap.m.

Here is an array of l O numbers. In[1] : = h • {21 , 1 9 , 19 , 9 , 17, 5 , 8 , 6 , 4, 1 1} ;

We can treat such an array as a binary tree. In[2] : = HeapPlot [h, 10] ;
The root is at position I , and the two suc­
cessors of the node i are at positions 2i
and 2i + 1 . The predecessor of node k is
at position Lk/2J .

This picture shows the node numbers them­
selves. You can easily verify that the po­
sitions of successors and predecessors of
nodes are as just described.

In[3] : • ReapPlot [
{ 1 , 2 , 3 , 4, 5 , 6 , 7, 8 , 9 , 10} , 10] ;

By storing the successors of a node at fixed positions, we need not store the structure of the
tree explicitly. Compare this method with the data structure for binary trees in Section 6.3,

196 8 Operations on Vectors and Matrices

where we needed the two fields leftTree and rightTree to store the successors. Note that
a heap is always a complete binary tree - that is, the lowest level is filled in from the left, and
it does not contain any holes.

A heap is partially ordered. The value at a node must be larger than the values in the two
successors of the node (if it has any successors). In our example, the root (node 1) has two
successors at positions 2 and 3 ; the nodes at positions 2--4 have also two successors each; the
node at position 5 has one successor (at position 1 0), and the nodes at positions 6--10 have no
successors. The partial order does not imply that the heap is completely ordered like a binary
tree. All we can say is that the largest node is at the root.

In a heap of size n, the following conditions must be satisfied for all indices i

=

1 , . . . , n:

or, expressed differently :

hi 2': h2i ,
h i 2': h2i+l •

if 2i :S n,
if 2i + I :S n, (8.4-1)

(8.4-2)

It turns out that it is easy to insert a new element into a heap so that these conditions are
maintained.

8.4.3.1 Insertion of Elements into a Heap

If elements h 1 , . • • , hn form a heap, a new element can first be put at position n + I . This
placement may violate the heap condition Equation 8.4-2, but only at position k = n + I . If
hk > h lk/2J . the condition is violated, and we can exchange elements k and Lk/2J to satisfy
the heap condition at position n + 1 . We can then set k = lk/2J , which is the next position
at which the heap condition may now be violated. Again, we compare hk with h lk/2J and
continue in this way, until either the heap condition is already satisfied (if hk :S h lk/2J), or
until we reach k = 1 .

The function upHeap [h , k] implements these steps for restoring the heap condition
(Listing 8.4-1). Because the element v = hk takes part in all exchanges, we perform only half
exchanges and put v at its final place only at the end. This idea saves half of all assignments.

We must give the function upHeap [h , ko] the attribute HoldFirst to prevent evaluation
of its first argument h . Inside the function, we want to modify the value of h (the list
representing the heap). We can perform this modification only if h is not evaluated.
Normally, arguments of functions are evaluated, however.

The first nine elements forrn a heap, the !ast In[4] : � h � {21 , 19 , 19 , 9 , 17 , 5 , a , 6 , 4 , 20} ;
one violates the heap condition.

8.4 Programs with Arrays

p[k_Integer?Positive] : = Floor [k/2] (* Predecessor node *)

SetAttributes [upHeap , HoldFirst]

upHeap [h_Symbol , kO_] : =
Module [{v = h[[kO]] , k = kO} ,

While [p[k] > 0 && h [[p [k)]] < v ,
h [[k]) = h [[p [k]]] ;
k = p [k]

] ;
h[[k]) = v ;
h

Listing 8.4-1 Restoring the heap condition at the end of the heap.

This graphic shows it clearly. The predeces- In[5] : z HeapPlot [h, 10] ;
sor of20 is 1 7. Its predecessor 1 9 is also too
small.

A sequence of exchanges puts the tenth ele- In [6] : • upHeap[h, 10]
ment at the right place. Out [6]= {21 , 20 , 19 , 9 , 19, 5 , a , 6 , 4, 17}

Now, the heap condition is satisfied every- In[7] : "' HeapPlot [h, 10] ;
where.

197

Insertion of elements into a heap is now a simple matter. We increase the size of the heap
by I , put the new element at the end, and call upHeap[] (Listing 8.4-2). This function, too,
needs the attribute HoldAll to keep the second argument n unevaluated. The size of the heap
is stored in a variable whose value is modified inside insert to keep track of any changes
in size.

198

SetAttributes [insert , HoldAll]

8 Operations on Vectors and Matrices

insert [h_Symbol , n_Symbol , v_] : = (h[[++n]] = v ; upHeap [h , n] ; h)

Listing 8.4-2 Inserting an element into a heap.

The variables h and n describe an empty In[8] : • h • nevReap [10] ; n • 0 ;
heap with room for at most 10 elements.

This loop inserts eight random numbers into In[9] : = Do [insert [h , n, Random[Integer , {0, 20}]] ,
the heap. {B}

Here is the resulting heap. In[10] : • ReapPlot [h, n] ;

8.4.3.2 Deletion of the Largest Element

How can we remove the first (and largest) element from a heap? Because the heap must not
have any holes, we can tentatively put the last element at the empty root i = 1 . This placement
may violate the heap condition Equation 8.4--1 . To restore it, we find the larger of the two
successors at positions 2i and 2i + 1 and exchange it with position i . Then, we can set i = 2i
or i = 2i + 1 , and continue until there are no more successors, which happens for i > n/2, or
until the heap condition is no longer violated.

The function downHeap [h , n] implements these steps to restore the heap condition.
Again, we perform only half exchanges and put the element v = h1 at its final position at the
end (Listing 8.4-3).

In the heap from the previous example, we
exchange the first and last elements. Now,
the heap condition is violated.

A few exchanges restore it.

In[11] : • {h[[1]] , h[[n]] } • {h[[n]] , h [[1]] } ; \
h

Out [1 1] = { 1 1 , 14, 5 , 13 , 13, 2 , 0 , 19, Null , Null}

In[12] : = dovnReap[h, n]

Out [12]• { 14 , 13 , 5 , 19 , 13 , 2 , 0 , 1 1 , Null , Null}

8.4 Programs with Arrays

SetAttributes [downHeap , HoldFirst]

downHeap [h_Symbol , n_] : =
Module [{v = h [[1]] , i = 1 , j } ,

While [i <= n/2 ,
j = 2i ;
(• f ind larger successor *)

]

] ;

If [j < n && h[[j]] < h [[j+1]] , j ++] ;
If [v > h [[j]] , Break []] ; (* ok •)
h [[i]] = h [[j]] ;
i = j

h [[i]] = v ;
h

Listing 8.4-3 Restoring the heap condition at the root of the heap.

Here is the result. ln [13] : = ReapPlot [h, n-1] ;

199

The deletion operation combines these steps into a function. It decrements to value of n by 1 .
For reasons soon to be seen, the function delete [] returns the element that was deleted
(Listing 8.4-4).

SetAttributes [delete , HoldAll

delete [h_Symbol , n_Symbol] : =
Module [{v = h [[1]] } ,

h [[1]] = h [[n--]] ;
downHeap [h, n] ;
v

]

8.4.3.3 Heapsort

Listing 8.4-4 Deleting the largest element from a heap.

We can use the functions for inserting and deleting elements in a heap to implement an efficient
sorting method. (See Section 6.2 for other sorting methods.) To sort a list, we insert all of its

200 8 Operations on Vectors and Matrices

elements into a heap. The largest element is at the root of the heap. We can remove it with
delete [] . Now the second largest element is at the root. We can remove it, and so on. We
can, therefore, read out the elements in decreasing order.

We can put the removed elements at the end of the array used to store the heap. This part
of the array is no longer used to hold the shrinking heap. In this way, the elements are put into
the array with the largest one at the end; in other words, they are sorted in ascending order.
The program is quite simple. It consists of two loops, first iterating from 1 to n, then from n
down to 1 .

HeapSort [a_List] · =
Module [{n = 0 , h = a , i } ,

Do [insert [h , n , h [[i]]] , {i , 1 , Length[a] }] ;
Do [h [[i]] = delete [h, n] , {i , Length [a] , 1 , -1}] ;
h

Listing 8.4-S Sorting with a heap.

We wrote a special version of HeapSort [] In[14] : = HeapSortList [{1 , 5 , 2 , 4 , 3 , 7 , 6}] / / TableForm
that returns the list of all intermediate steps. Out [14] //TableForm� 1 5 2 4 3 7 6
In the first half of the algorithm, the heap 1 5 2 4 3 7 6
is built up with a few exchanges. Then the 5 1 2 4 3 7 6
largest element is in first position. It is ex- 5 1 2 4 3 7 6
changed with the last element. This last el- 5 4 2 1 3 7 6
ement is now sifted into the heap to restore 5 4 2 1 3 7 6
the heap condition. Then, the (new) first el- 7 4 5 1 3 2 6
ement is exchanged with the second-to-last 7 4 6 1 3 2 5
one, and so on. 6 4 5 1 3 2 7

5 4 2 1 3 6 7
4 3 2 1 5 6 7
3 1 2 4 5 6 7
2 1 3 4 5 6 7
1 2 3 4 5 6 7
1 2 3 4 5 6 7

Heapsort has the same asymptotic complexity as Quicksort (i .e., O(n log n), see Section 6.2.3),
but the inner loop is more complicated; so it runs only half as fast in practice.

8.4.3.4 A Look at Other Programming Languages

Listing 8.4-6 shows the fundamental heap operations in the language C. The programs are
similar to the ones we developed for Mathematica. The syntax of the procedural part of
Mathematica is (intentionally) similar to C. Note that we use pointers for the arguments that
require the attributes HoldFirst or HoldAll .

8.4 Programs with Arrays

8.4.4 Key Concepts

I . A heap is a partially ordered binary tree.

2. It is easy to insert an element or to delete the largest element in a heap.

3. We can use a heap for an efficient sorting method.

void
upheap (int *h , int k)
{

int v = h [k] ;

while (k/2 > 0 && h [k/2] < v) {
h [k] = h [k/2] ;
k = k/2 ;

}
h[k] = v ;

}

void
insert (int *h, int *pn, int v)
{

}

h[++*pn] = v ;
upheap (h, *pn) ;

void
downheap(int *h, int n)
{

int v = h [1] , k = 1 , j ;

}

int

while (k <= n/2) {

}

j = 2 * k ;
i f (j < n && h [j] < h[j + 1]) j ++ ;
i f (v > h[j]) break ;
h [k] = h [j] ;
k = j ;

h[k] = v ;

delete (int *h , int *pn)
{

}

int v = h [1] ;

h[1] = h [(*pn) --] ;
downheap (h, *pn) ;
return v ;

Listing 8.4-6 heap.c: Heap operations in C.

201

202 8 Operations on Vectors and Matrices

8.5 Application: Aggregation

This section presents a simple model for the aggregation of particles in a grid. A particle
starts at a randomly chosen point and walks to one of the four neighboring points at each time
step. If it comes next to an already aggregated particle, it stays where it is. The experiment is
repeated many times, starting in a configuration with just one particle in the middle.

The grid positions are represented in a two-dimensional array. The value 0 denotes an
empty position, 2 is used for an occupied site. The package Aggregate.m (Listing 8.5-1 on
page 206) implements these functions:

initialGrid[n]

o ccupy [grid , {x , y}]

randomDirection

walk [grid]

aggregate [grid, n]

gridGraphics [grid]

create initial configuration, grid size 2n + 1
occupy grid position (x, y)
give a random direction (left, right, up, down)

aggregate one particle

aggrcigate n particles

draw the grid

The functions from Aggregate.m.

ini tialGrid [n] creates a new grid with one particle in the center. The function walk [grid]
chooses a random starting point in the grid and walks the particle until it comes next to an
already occupied site or until it gets too far away. If the second case happens, it creates another
particle until one has been successfully aggregated. To speed up the test whether the particle
is next to another one, we mark the neighboring positions at the time a particle is aggregated
(in the auxiliary function occupy []). In this way, we can test whether a site is next to an
occupied one by looking at this site only, not at all of its neighbors. This idea makes the program
run faster because aggregation happens less frequently than moving around. Taking expensive
calculations outside of inner loops is an important tool for improving the run time of programs.

Here is our initial configuration. Note the 2 ln[1] : = initia1Grid[3] // MatrixForm
in the center (marking it as occupied) and Out [1] //MatrixForm= 0 0 0 0 0 0 0
the neighborhood consisting of I .

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 2 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

8.5 Application: Aggregation

We aggregate one particle.

This iteration aggregates I I particles in a
grid with radius five, and returns all inter­
mediate grids.

In[2] : = val.lr:[Y.l II MatrixForm

Out[2]11MatrixForm= 0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 1 2 1

0 0 1 2 1

0 0 0 1 0

0 0 0 0 0

In [3] : = HestList [vaJ.Ir: , initial.Grid[5] ,

0

0

0

0

0

0

0

11] ;

Now, we generate graphics of all intermedi- In[4] : = Partition[gridGraphics IG Y., 4] ;
ate grids in a 3 x 4 matrix.

Here are the pictures. They show how the In[5] : = Shov[GraphicsArray[Y.J] ;
aggregate grows one by one.

203

0

0

0

0

0

0

0

So far, we chose one of the four orthogonal directions. Another model allows also for diagonal
movements, which gives a total of eight possible directions. The possible directions are stored
in the list neighborhood and can easily be changed. Any change needs to be taken into
account in the function occupy [] as well. This behavior is automatic because occupy[]
uses the same list neighborhood to help mark the neighboring sites.

We generate a picture with 20 particles for
the orthogonal neighborhood.

Now, a picture with 20 particles, but for a
diagonal neighborhood.

In[6] : = neighborhood = orthogonal. ; \
gro •

gridGraphics[aggregate [initiaJ.Grid[6] , 20]] ;

In[7] : = neighborhood • diagonal; \
grd •

gridGraphics[aggregate [initiaJ.Grid[6] , 20]] ;

204 8 Operations on Vectors and Matrices

Here, both pictures are shown next to each ln[8] : = Shov [Graphicslrray[{gro , grd}]] ;
other.

I
I _ ______ ___J

Let us explain a few details of the programs in Aggregate.m (see Listing 8.5-1).

To generate the diagonal neighborhood, we
first form an outer "product" (see Sec­
tion 8.2.3) in which we combine all elements
of the first list with all elements of the second
list.

Flatten [] removes the outermost list
brackets, leaving a list of pairs.

We must remove the point {0 , 0} , which
does not belong to the neighborhood.

We obtain a random direction by choosing a
random element from the list of directions.

In[9] : = Outer[List , {-1 , 0 , 1} , {-1 , 0 , 1}]

Out [9]= {{{- 1 , -1} , {- 1 , 0} , {-1 , 1}} ,

{{0 , -1} , {0 , 0} , {0 , 1}} , {{1, -1}, { 1 , 0} , { 1 , 1}}}

ln [10] : = Flatten[Y. , 1]

Out [10] = {{- 1 , -1} , {-1 , 0} , {-1 , 1} , {0 , - 1 } , {0 , 0} ,

{0 , 1} , { 1 , - 1} , {1 , 0} , { 1 , 1}}

In[1 1] : � Complement [Y., {{0 , 0}}]

Out [11]= {{-1 , - 1 } , {-1 , 0} , {-1 , 1} , {0 , - 1 } , {0 , 1} ,

{ 1 , -1} , { 1 , 0} , { 1 , 1}}

In[12] : = neighborhood[[
Random[lnteger , { 1 , Length[neighborhood]}]

]]

Out [12] = {- 1 , 1}

To occupy a point {x , y} with a particle, we must mark all neighboring points with
the value neighboring, unless they are already occupied. We can avoid a condition­
al statement by taking the maximum of the old value and neighboring , provided that
occupied > neighboring . Because we chose integer values I and 2 for neighboring
and occupied, respectively, this condition is satisfied. We can obtain the coordinates of the
neighboring points by adding to {x , y} all elements of the array neighborhood in tum. The
variable f contains the grid values in a two-dimensional array (a matrix). Therefore, we must
perform the assignment

f [[x+dx , y+dy]] = Max [f [[x+dx , y+dy]] , neighboring]

for all pairs {dx , dy} . We write the assignment as a pure function g with parameters dx

8.5 Application: Aggregation 205

and dy,

Function [{dx , dy} , f [[x+dx , y+dy]] = Max [f [[x+dx , y+dy]] , neighboring]] ,

and apply it with
Apply [g , neighborhood, {1}]

to all pairs {dx , dy} in the variable neighborhood.
We build the initial configuration by first creating an empty array with dimensions (2n +

I) x (2n + 1) (using Table []), and then occupying the central cite. Because walk [] returns
the new grid after aggregating a particle, we can apply it repeatedly to aggregate several
particles. This iteration is best done with Nest [] .

The graphics function Raster(] takes an
array of graylevels as argument. 0 is black
and 1 is white. Raster [] is used to make
the grid graphics. Because the grid is already
an array, we need only change the values 0,
I , and 2 into graylevels 0 and l . The best
way to do this is with a replacement rule.

8.5.1 Key Concepts

In [13] : � Shov[Graphics[
Raster[{{0 , 0 . 25 , 0 .5 , 0 .75 , 1 .0} ,

{ 1 . 0 , 0 . 75 , 0 . 5 , 0 . 25 , 0}}] ,
lspectRatio->lutomatic , Frame->True ,
FrameTicks->Hone]] ;

I . Aggregation is a model of physical processes such as cloud formation, freezing, or sedi­
mentation .

2. A simulation requires random numbers.

3. We can often take expensive calculations out of an inner loop to speed up the program.

206 8 Operations on Vectors and Matrices

BeginPackage [" CSM' Aggregate ' "]

initialGrid: : usage = "init ialGrid[n) gives the initial configuration
with a radius n . "

occupy : : usage = " occupy [grid, {x , y}] occupies the grid position {x , y} . "
walk : : usage = "walk [grid] aggregates one particle . "
gridGraphics : : usage = "gridGraphics [g] generates a graphics o:f grid g . "
aggregate : : usage = "aggregate [grid , n] performs n experiments (with walk[]) . "
orthogonal : : usage = " orthogonal is the orthogonal neighborhood . "
diagonal : : usage = " diagonal is the diagonal neighborhood . "
neighborhood : : usage = "ne ighborhood is the current neighborhood . "

Begin [" ' Private' "]

orthogonal = {{1 , 0} , {0 , 1} , {-1 , 0} , {0 , - 1}}
diagonal = Complement [Flatten[Outer [List , {-1 , 0 , 1 } , {-1 , 0 , 1}] , 1] , {{0 , 0}}]
neighborhood = orthogonal (• default •)
randomDirection :=

neighborhood[[Random[Integer , {1 , Length[neighborhood] }]]]

occupied = 2 ; neighboring = 1 ; empty = 0 ;

occupy [grid_ , {x_ , y_}] : =
Module [{£ = grid} ,

Apply [Function [{dx , dy} , f [[x+dx , y+dy]]
neighborhood , {1}] ;

f [[x , y]] = occupied ;
f]

Max [f [[x+dx , y+dy]] , neighboring]] ,

walk[grid_] : =
Module[{x, y , n = Length[grid] , c = (Length [grid] -1) /2} ,
While [True ,

]]

{x , y} = Table [Random[Integer , {2, n-1}] , {2}] ;
I f [grid [[x , y]] == occupied , Continue []] ; (• already occupied •)
While [1 < x < n && 1 < y < n && grid[[x , y]] == empty ,

{x , y} = {x , y} + randomDirection] ;
I f [1 < x < n && 1 < y < n ,

Return [occupy [grid , {x , y}]]] (• ok *)

initialGrid[n_] : = occupy[Table [O, {2n+1} , {2n+1}] , {n+1 , n+1}]
aggregate [grid_ , m_] : = Nest [walk , grid , m]

coloring = {occupied -> 0 , neighboring -> 1 , empty -> 1 } ;
gridGraphic s [grid_ , opts ___] : = Graphics [Raster[grid / . coloring] ,

opt s , AspectRat io-> 1 , Frame->True , FrameTicks->None]

End []

Protect [initialGrid , occupy , walk, gridGraphic s , aggregate]
Protect [orthogonal , di agonal]

EndPackage []

Listing 8.5-1 Aggregate.m.

8.6 Exercises 207

8.6 Exercises

8.1 Simple Evaluations2

Give the result of evaluating the following expressions. If there are any nested functions, also
give the most important intermediate steps. Assume that each example is evaluated in a fresh
Mathematica session. Consecutive expressions in one example are evaluated one after another
in the same session.

I . p [x_ , y_Integer] : = X" (y- 1)
Thread[p [1 . 1 , {1 , 2 , 3 . 5}]]

2. m = {{a1 1 , a12 , a13} , {a21 , a22 , a23} , {a31 , a32 , a33}} ;
Rest [Transpose [Rest [Transpose [m]]]]

3. Inner [Power , {a, b , c} , {x , y , z} , Times]

4. Outer [D , {x - y, x y} , {x , y}]

5. Inner [List , {a , b} , {x , y} , Dot]

8.2 Partitioning Lists3

Write a function split [list , s] that takes two lists as arguments. The first J ist, list, is any
Jist, the second list, s, is a list of nonnegative integers. The result should be the partitioning of
the first list into sublists whose lengths are given by the elements of s in turn.

The sublists have lengths 3, 0, 3, and 2, re- In[1] : = split [{a, b , c , d , e , f , g , h} , {3 , 0 , 3 , 2}]
spectively. Out [1] = {{a , b , c} , {} , {d, e , f} , {g , h}}

If the inner list brackets are removed, the In[2] : = Flatten[%]
original list is restored. o [2] { b } ut = a , , c , d, e , f , g , h

This partitioning is possible only if the sum of the elements of s is equal to the length of list.
Formally, the result of

split [{el , e2 , . . . , Cn} , {s l , s2 , . . . , Sm}]

is equal to

with n = s 1 + . . . + sm .

2Written examination, ETH ZUrich, Department o f Mathematics and Physics.
3Programming competition, Mathematica Conference 1992, Rotterdam.

208

8.3 Relative Maxima of a List4

8 Operations on Vectors and Matrices

Write a function Maxima[llst] that finds all numbers in the list list that are larger than all
preceding numbers in the list.

The result i<� a h<�t ofall tho<;e elements ofthe In[3] : = Ma.xJ.m.a[{4 , 7, 6 , 2, 7 , 9, 1}]
hst that are larger than all precedmg ones Out [3]= Ma.xJ.ma[{4 , 7 , 6 , 2 , 7 , 9 , 1}]

8.4 Frequency Count

Write a function that counts how often each of the numbers 1 . . . n occurs in a list of positive
numbers. The result should be a hst of frequencies {fi , h , . . . , f n} , where ft is the number
of occurrences of i, and n is the largest number occurring in the list.

In this example, the number I occurs once,
2 does not occur at all, 3 occurs three tunes,
and �o on.

8.5 Run-Length Coding5

In[4] : = PrequencJ.es [{1 , 3 , 3 , 4 , 3 , 6}]

Out [4]= {1 , 0 , 3 , 1 , 1}

The run-length coding of a hst l is a list of pairs

r = {{eJ , kJ } , {e2 , k2} ,

The et are any expressions, the kt are integers ;::: 1 , and m ;::: 0. The list r describes (encodes)
the list

where each element et occurs exactly kt time<> in sequence. If the list l contains many
repetitions of elements, the run-length coding i-; a short description of l.

Write a function RunLength [l] that finds the run-length coding of l.

In this h<;t, the element a occurs once

Here, we have one a and two b

The order of element<; I<; Important The
<;econd a cannot be combmed w1th the first
one.

In[1] : = RunLength[{a}]

Out [1] = {{a, 1}}

In(2] := RunLength[{a , b, b}]

Out (2]= {{a, 1 } , {b , 2}}

In[3] : = RunLength[{a, b, a}]

Out (3] = {{a, 1} , {b , 1} , {a, 1}}

4Programmmg competitiOn, Mathemauca Conference 1 992, Boston
�Programmmg competitiOn, Muthemauca Conference 1991, San Franc1sco

8.6 Exercises 209

8.6 Pivoting Strategies

Modify the program for the solution of linear systems of equations Linalg.m such that pivots
are searched in a column. Choose the element with the largest absolute value. See page 185.

8.7 Inverting Op Amp

V· I

The circuit shown on the left is an inverting amplifier.
Compute the voltage gain Av = Vo/Vi (see also Sec­
tion 1 . 1 .4).

The solution is valid also for arbitrary impedances
Vo instead of the resistors R 1 and R2. Plot the frequency

response for RI = c = 2.0 J.lF and R2 = 1 00 n.

Chapter 9

List Processing and Recursion

In this chapter, we study operations on nested data structures that are accessed exclusively by
their selectors and constructors. This style of programming is typical for the language LISP.
It is not particularly efficient in Mathematica, but it is simple to use. LISP is one of the oldest
programming languages still used today. Its main application areas are artificial intelligence
and symbolic computation. Many predecessors of Mathematica were written in LISP.

Section 9. 1 defines the abstract data types for symbolic expressions and for lists and their
simple implementations. In Section 9.2, we present the typical recursive programming style
of LISP.

About the illustration overleaf:
The picture shows a fractal landscape. It was generated from a surface defined by the
function sin(xy) by repeated subdivision with random vertical displacement. The commands
used are (see Pictures.m):

Plot3D [Sin [x y] , {x , 0 , 3} , {y , 0 , 3} , PlotPoints->8] ;
Show[Refine [% , 0 . 4 , 0 . 9 , 3] , Axes->None] ;

9. 1 Symbolic Expressions and Lists 213
-- -----------------

9.1 Symbolic Expressions and Lists

List processing has been the foundation of symbolic computation and artificial intelligence
since the sixties. The programming language LISP uses list processing as fundamental opera­
tion. Lists are general data structures because they can be nested arbitrarily. In addition to list
processing, recursion and functional programming are the most important features of LISP.
Mathematica contains all operations available in LISP. It is, therefore, not difficult to program
in the same way as one would in LISP. Lists are simply defined as an abstract data type.

9.1.1 Symbolic Expressions

LISP operates not only on lists, but on symbolic expressions (S-expr). LISP distinguishes
between atoms and composite expressions. There is a similar distinction for expressions in
Mathematica, see Section 2.4. Here is the abstract data type for symbolic expressions:

• Constants:

• Constructors :

• Selectors:

• Predicates:

• Equations:

all atoms: numbers, symbols, strings

cons [e 1 , e2J , a pair of expressions

car [e] , the first element of the pair c
cdr [e] , the second element of the pair e

pairQ [e] , is e a pair?

atomQ [e] , is e an atom?

car [cons [e t , e2J]
cdr [cons [et , e2J J

atomQ [a]
atomQ [cons [e , , ez]]

pairQ [e]

= C J
= e2
= True (for each atom a)
= False
= ! atomQ [e]

(9. 1-1)

Observe, that the number of equations is infinite. There is one equation for atomQ [a] for
each atom a .

214

BeginPackage ["CSM '"Sexpr ' "]

cons : : usage " cons [a, b] i s the pair (a . b) . "

9 List Processing and Recursion

car : : usage = " car [pair] is the first element of pair . "
cdr : : usage = 11 cdr [pair] is the second element of pair . "

pairQ : : usage = "pairQ [e] is True if e is a pair . "
atomQ : : usage = "atomQ [e] is True if e is an atom. 11

Begin[" ' Private ' "]

car [cons [e_ , l_]] : = e
cdr [cons [e_ , 1_]] : = 1

atomQ [_?AtomQ] = True
atomQ [_cons] = False
pairQ [e_] : = ! atomQ [e]

(* output formatt ing *)

(* True for l'1athematica atoms *)
(* pairs are not atoms *)
(* pairQ is the negation of atomQ *)

Format [l_cons] := SequenceForm[" (" , Infix[l , " . "] , 11) 11]
End []

Protect [c ar , cdr , cons , pairQ , atomQ]

EndPackage []

Listing 9.1-1 Sexpr.m: Symbolic expressions in Muthematica.

The implementation of this data type in Mathematica is simple (see Listing 9. 1-1) . We use
cons [] as constructor without any definitions for it. We can turn Equations 9. 1 - 1 into rewrite
rules almost verbatim.

LISP Atoms are all atoms in Mathematica (AtomQ [] is a built in function). In LISP, pairs
cons [e1 , e2] are normally written in the form (eJ . e2) . It is easy to simulate this notation.

The symbol a is an atom.

Here is a pair with the atoms a and b as
elements.

Its second element is b , of course.

9.1.2 Lists in LISP

In[l) : = atomQ [a)

Out [l)= True

In[2) : = cons [a, b)

Out [2)= (a . b)

In [3] : = cdr[7.]

Out [3]= b

Most LISP programs operate only on a subset of all symbolic expressions, the lists. Although
they are similar to lists in Mathematica, these LISP lists have different access functions. All
lists in this chapter are LISP lists, rather than Mathematica lists. A list is either equal to nil
(the empty list), or it is made up from a list l and an element e by cons [e , l] . The element e
is either an atom or another list. Some additional constants, constructors, and predicates are
defined for lists:

9. 1 Symbolic Expressions and Lists

• Constants:
nil, the empty list

• Constructors :
list [e J , e2 , . . . , en] , for n 2 0

(There is one constructor for each n 2 0)

• Predicates :

• Equations:

nullQ [nil]
nullQ [cons [e l , e2J J

list []

nullQ [e] , is c equal to nil ?

True
= False
= nil

list [e J , e2 , . . . , en] = cons [e l , list [e2 , . . . , en]] , n > 0

215

(9. 1-2)

According to the equations, the list list [e 1 , e2 , . . . , en] is represented by the symbol­
ic expression cons [el , cons [e2 , . . . , cons [en , nil] . . .]] . The operation cons [e , l]
prepends a new element e to the list l . Again, we can derive the implementation directly from
the equations. We use Sexpr.m, augmented by additional definitions, as shown in Listing 9. 1 -2.

list : : usage = "list [el , e2 , . . . , en] is the Lisp list (el e2 . . . en) . "
nil : : usage = "nil is the empty Lisp list . "
nullQ : : usage = "nullQ [l] is True if 1 is the empty l ist . "

list [] = ni l
list [e_ , r _ _ _] : = cons [e , list [r]]

nullQ [nil] = True
nullQ [_cons] = False

Listing 9.1-2 Part of Lisp.m: extensions for LISP lists.

The usual output format of a list list [eJ , e2 , . . . , en] is Ce 1 e2 . . . en) , that is, with round
parentheses and no comma between elements.

Here is the empty list.

We prepend the atom a to it.

An now the atom b .

In[1] : = nil

Out[1]= 0

In[2] : = cons [a, Y.J

Out [2]= (a)

In[3] : = cons [b , Y.J

Out [3] = (b a)

216

Here is the list of the numbers 1, 2, . . . , 5.

The selector car [l] gives the first element
of a list.

The selector cdr[[] gives the rest of a list,
that is, the list without its first element.

The elements of a list can themselves be lists.

9.1.3 Key Concepts

9 List Processing and Recursi01

In[4] : = 11 • list [1 , 2 , 3 , 4 , 6]

Out [4]• (1 2 3 4 6)

In[6] : = car[ll]

Out [6] = 1

In[6] : = cdr[l1]

Out [6]= (2 3 4 6)

In[7] : = list [nil , list [a, b] , 2]

Out [7]= (() (a b) 2)

1 . Symbolic expressions are formed from atoms by a simple construction principle.

2. Lists in LISP are special symbolic expressions.

3. A nonempty list consists of a first element and a rest.

4. The empty list nil is both a list and an atom.

9.2 List Processing 217

9.2 List Processing

In this section, we use the data type of LISP lists from Section 9 . 1 .2 for the presentation of a
few typical LISP programs. All programs are in the package Lists.m.

9.2.1 Recursion

Recursion is an important programming tool in LISP. Access to lists is rather special. We can
access only the first element (with car [l]) and the rest of a list (with cdr [l]) directly. The
rest of a nonempty list is also a list, which leads naturally to recursion. The parts of a list can
be put together with cons [e , l] .

The programming principle is as follows: An operation on a data structure is given by
a number of ru1es. Among them are ru]es for special cases (empty structure, etc.) and ­
normaHy recursive - rules for the general case. These recursive rules take the data structure
apart, perform the operation on the parts, and put the results back together with the recursively
computed result of the rest of the structure.

Each recursive invocation must make some progress and call itself with a simpler problem.
Only in this way can we guarantee that the recursion terminates always. This principle is
analogous to induction proofs in mathematics.

Here is a simple example that illustrates these points. Let us deve1op a function squares [l]
that squares the e1ements of a 1ist of numbers. Because a list is either empty, or has been bui1t
by cons [e , ld from another 1ist 1 1 , we must consider these cases:

• If l is empty, there is nothing to do. The result is again the empty list nil .

• Otherwise, l is of the form cons [e , 1 1] . The first e1ement is e. Its square becomes the
first element of the desired result. The rest of the result is obtained by a recursive call of
squares [] with argument cdr[l].

• The result of squaring the first element is combined with the result of the recursive can by
cons [] to give the fin a] result.

We obtain the following program:

squares [1_] : =
If[nullQ [l] ,

nil ,
cons [car [l] A2 , squares [cdr [l]]]

218

If we square the elements of the empty list.
we get back the empty list.

The first element of the result is the square
of the first element of the input. The rest of
the result is equal to the squares of the rest
or the input.

9 List Processing and Recursion

In[l] : � squares[nil]

Out [l] � ()

ln[2] :� squares[list [2, 3, 4 , 5]

Out [2] � (4 9 16 25)

9.2.2 Applying Functions to Elements of Lists

The example in the preceding subsection can be generalized to a function map [/ , l] that
applies the function f to the elements of l and returns the Jist of the results.

map[f_ , l_] : =
If [nullQ [l] ,

nil ,
cons [f [car [l]] , map[f , cdr [l]]]

The principle is simple: if the list l is not empty, we apply f to the first element and recursively
to the rest of l. We combine the two results with cons [] .

This call applies the ractorial function to the
numbers I to 6.

If we choose a symbolic (undefined) func­
tion f and symbolic arguments, we can eas­
ily see what happens.

In [l] : � map[Factorial , list [l , 2 , 3 , 4, 6, 6]]

Out [l] � (1 2 6 24 120 720)

In[2] : = map[f , list [a, b, c]]

Out [2)= (f[a] f [b] f [c])

9.2.3 Appending at the End of a List

The constructor cons [] prepends an element to a list. Appending an element is not that easy.
Because we know how we can append an element to the empty list (how?), we can write a
recursive program for append[! , e] that appends the element e at the end of the list Z. We
append e recursively at the end of the rest of l and combine the result with the unchanged first
element of l.

append[l_ , e_] : �
If [nullQ [l] ,

list [e] ,
cons [car [l] , append [cdr[l] , e]]

The new element x3 is put at the end of the In[3] : = append[list [xl , x2] , x3]
list (xl x2) . Out [3] = (xl x2 x3)

9.2 List Processing 219

9.2.4 Reversing Lists

To reverse the elements of a list, we append the first element at the end of the reversal of the
rest of the list. (It's that simple!)

reverse [!_] : =
If [nullQ [l] ,

nil ,
append [reverse[cdr[l]] , car [l]]

]

This kind of reversal has quadratic complex- In[4) := reverse[list [1 , 2 , 3 , 4, 5]]
ity, which is not optimal. See Exercise 9.3 Out [4]= (5 4 3 2 1)
for a faster version of reverse [] .

9.2.5 Deleting Elements

To identify elements, we need a predicate that finds out whether two elements are the same.
This predicate is SameQ [el , ez] , often written in the form e 1 === e2 . An element e can be
removed from a list l in the following ways:

• If l is empty, there is nothing to do, because e does not occur in the list.

• If the first element of l is equal to e, the result is the rest of l.

• Otherwise, the first element of the result is the first element of l, and the rest of the result
is the rest of l after having removed e from it.

This program requires a threefold branch, which we can program with

Which[test, , val1 , test2 , val2 , . . . , testn , valn] .

The tests are evaluated in sequence until one is found that returns True . The result is the
corresponding va/1 • The last test in the following Which [] statement is always True . There
is nothing left to test in this case.

remove [l_ , e_] : =
Which[

nullQ [l] , nil ,
car [l] ===e , cdr[l] ,
True , cons [car[l] , remove [cdr[l] , e]]

220 9 List Processing and Recursion

This command removes the number 3 from
the list (1 2 3 4 5) .

In[5) : = remove [1ist [1 , 2 , 3 , 4, 5] , 3]

Out [5]• (1 2 4 5)

If the element to be removed does not occur,
the list is returned unchanged.

remove [] removes only the first occur­
rence!

9.2.6 Inserting into Ordered Lists

In[6] : • remove [list[a, b , c) , d]

Out [6)= (a b c)

In[7) : = remove [1ist [1 , 2, 3, 2, 1] , 2]

Out [7)= (1 3 2 1)

The command insert [l , e] inserts a number e into an ordered list at the right place. If the
new number is smaller than the first element of the list, it is put at the beginning; otherwise, it
is inserted recursively.

insert [!_ , e_] : =
Which[

nullQ [l) , list [e] ,
e < car [l] , cons [e , 1] ,
True , cons [car [l] , insert [cdr[l] , e)]

]

In an empty list, the new element becomes In[8) : = insert [nil , 5]
the only element. Out [SJ = (5)

Smaller elements are inserted at the begin- In [9) : • insert [%, 3]
ning. out [9]� (3 5)

Larger elements are put at the end. In[lO) : = insert[%, 7]

Out [lO)= (3 5 7)

9 .2. 7 Nested Lists

All functions so far operated on Linear lists - that is, we assumed that the elements of the lists
are not lists themselves. If lists can be nested, we have to use recursion also along the first
element, if it is a list. Because each element is either a list or an atom, we use atomQ [e] for
this test. For example, let us replace all occurrences of the atom a by b in a nested list.

substAll [l_ , a_ , b_] : =
Which[

nullQ [l] , nil ,
atomQ [l] , If [1 === a , b , 1] ,
True , cons [substAll [car [l] , a , b] ,

substA11 [cdr [l] , a, b)]

9.2 List Processing 221

We need to substitute only if l is an atom. If it is equal to a it is replaced by b; otherwise, it
remains unchanged. If l is not an atom, we recurse along car [l] and cdr[l] .

Here is a nested list.

All occurrences of a are replaced by ap .

9.2.8 Predicates

In[ll] : = list[a, nil , list [b , list[a] , c] , c]

Out [ll]= (a () (b (a) c) c)

In[12] : = subst!ll[X , a, ap]

Out [12]• (ap () (b (ap) c) c)

All examples so far returned modified data structures as results. Predicates, however, test
whether a condition is satisfied; they return only True or False . For example, consider a
membership test: Is an element a member of a linear list?

memberQ [l_ , e_] : =
Which[

]

nullQ [l] , False ,
e===car [l] , True ,
True , memberQ [cdr [l] , e]

If the list l is empty, the element is not a member, and we return False . Otherwise, if the first
element of l is equal to e, we can immediately return True ; otherwise, we continue the search
in the rest of l. Such programs are slowest when the condition is not satisfied. In a predicate,
the recursion does not build up a new data structure; the given structure is only analyzed.

The membership test for nested lists needs to recur along car [l] and cdr [l] . The element
occurs if it occurs in at least one of these parts. Therefore, the two results must be combined
with OR. Note that we must test for l being an atom first because l is not always a list (in the
first recursion), and nullQ is defined only for lists.

memberAllQ [l_ , e_] : =
Whi ch [

]

atomQ [l] , 1 === e ,
nullQ [l) , False ,
True , memberAllQ [car[l] , e] I I memberAllQ [cdr[l] , e]

Note the result l === e for the case where l is an atom. This is far more elegant than is
If [l === e, True , False] , an expression often written by beginners. The expression
l === e is itself a predicate, returning True or False .

222

This list contains a nested sublist.

delta is an element of the linear list 1 .

beta, however, is not an element of 1 .

It occurs somewhere inside the nested list,
however.

9.2.9 Key Concepts

9 List Processing and Recursion

In[13] : • 1 • list [alpha, list [beta, gamma] , delta]

Out [13]= (alpha (beta gamma) delta)

In[14] : = memberQ[1 , delta]

Out [14]"' True

In[15] : = memberQ [1, beta]

Out [15]= False

In[16] : = memberAllQ [1 , beta)

Out [16l= True

I . Recursion is the natural programming style in LISP.

2 . Loops can be replaced by the application of functions to elements of lists.

3. Which[] is used for a multi-way branch.

9.3 Exercises 223

9.3 Exercises

9.1 Operations on Lists1
Here is an abstract data type for lists:

• Constants:
{} , the empty list

• Selectors:
First [list] , the first element of the list
Rest [List] , the rest of the list without its first element

• Constructors:
Prepend [list, elem] , gives a new list whose first element is elem and whose rest is list

• Predicates:
ListQ [list] , returns True , if list is a list

Define the following functions on lists, using rules (no loops or branches, but conditional rules
if necessary) . Lists may be accessed only with the given selectors and predicates.

1 . j oin [l J , hJ : this function joins two lists

2. flatten [list] : this function turns a nested list into a linear list

3. count [l , e] : counts how often the element c occurs in the Linear list l (Use === for
testing equality)

Examples:

These two lists are simply spliced together.

Make sure to treat special cases correctly.

All inner parentheses are removed.

An empty list is removed completely

The element a occurs twice.

In[l] : = j oin[{a, b, c} , {x , y}]

Out [l) = {a, b, c , x , y}

In[2) : = j oin[{}, {x , {y, z}}]

Out [2)= {x , {y , z}}

In[3) : = flatten[{{a} , {b, c} , d}]

Out [3)= {a, b, c , d}

In[4] : = flatten [{{} , {{1} , 2}}]

Out [4]= {1 , 2}

In[5) : = count [{a, b, a, x} , a]

Out [5)= 2

1Written examination, ETH ZUrich, Department of Mathematics and Physics.

224 9 List Processing and Recursion

In this list it occurs only once because the
list {a} is not the same as the symbol a .

In[6) : = count [{{a} , a, b} , a]

Out [6]= 1

9.2 Program Analysis 1

Consider these definitions. What does the function f [] do?

a [{} , e_] : = {}

a [l_List , e_] := Prepend [a[Rest [l] , e] , Prepend [First [l] , e]]

f [{}] : = {{}}

f [l_List] : = Join[a[f [Rest [l]] , First [l]] , f [Rest [l]]]

1 . What is f [{x}] , f [{x , y}] and f [{x , y , z}] ?

2. If f is called with a list of n ;::: 0 elements (i.e., in the form f [{e1 , ez , . . . , en}]), what
length does the result have?

3 . Which well-known function is implemented by f [{el , e2 , . . . , en}] ? Assume that
all ei are pairwise distinct.

9.3 Operations on Linear Lists 1

Consider the function Mystery [list] (list is a LISP list, see Section 9. 1 .2):

Mystery [!_] : = mystery [! , nil]

mystery [ni l , r_] : = r

mystery [!_ , r_] : = mystery[cdr [l] , cons [car [l] , r]

I . Describe what the function Mystery [list] does.

2. How many calls of mystery [] occur in the computation of Mystery [l] , if l is a list of
length n?

3. Implement Mystery [] directly with a While loop (i.e., without the auxiliary function
mystery []). Use Module to declare local variables.

9.4 Sorting Lists

Choose one of the sorting methods from Section 6.2 that can be used for sorting LISP lists
(Section 9.2) and implement it. The asymmetric access to lists (access is possible only to the
first element and to the rest of a list) makes it necessary to adapt the algorithms for efficiency.

Chapter 10

Rule-Based Programming

Tn this chapter, we discuss programming with rewrite rules. A rewrite rule is an equation that
is used to rewrite an expression that matches the left side of the rule by the rule's right side.
Mathematica offers a unique way to program formulae (from a handbook, say) directly as
rewrite rules. In Section l 0. 1 , we look at the foundation of rule-based programming: pattern
matching. Section 1 0.2 shows how to use patterns in rewrite rules.

Then, in Section I 0.3, we present the theory behind rule-based programming: normal
forms and confluent rewrite systems. As an example, we treat normal forms of odd and even
functions.

A larger application is trigonometric simplifications. As we know from high school,
there are many formulae for transforming trigonometric functions. They can all be applied
mechanically.

About the illustration overleaf:
The image displays the first 64 (of 256 possible) cellular automata with two states and a
neighborhood of size 3. The state (black or white) of each point in a row is a function of
the states of three points in the previous row: the one directly above the new point, and the
former's left and right neighbors. The first row has been chosen at random and is the same in
all pictures. The commands for this illustration are in the package Pictures.m.

10.1 Pattern Matching 227

10.1 Pattern Matching

Rule-based programming requires a mechanism for pattern matching. In Mathematica, pattern
matching is a central part of the evaluator. How does it work? To understand it, we recall from
Section 2.4 the structure of expressions. A composite expression (called a normal expression)
has the form

h [e 1 , e2 , . . • , Cn] ,

where h and the ei are themselves expressions; h is the head of the expression, and the ei are
the elements.

10.1.1 Patterns

A pattern is an expression in which certain parts are marked as holes. Such an expression
describes a whole class of possible expressions: all expressions that we can obtain by filling
in the holes. A hole is marked with the character _ , which is called blank. Pattern matching
consists of deciding whether a given expression matches the pattern. An expression matches a
pattern if the holes in the pattern can be filled (with expressions) such that the filled-in pattern
becomes equal to our expression.

For example, the expression f [5] matches the pattern f [_] , because we can fill the hole
in f [_] simply with the expression 5, to make it equal to f [5] . The expression f [5 , 6]
does not match the pattern. Whatever we fill in for the hole, we get an expression with one
element, whereas f [5 , 6] has two elements. The predicate MatchQ [expr , pattern] can be
used to test whether an expression matches a pattern.

As we have seen, the expression f [5] In[l] := KatchQ[f [5] , f [_]
matches the pattern f [_] . Out [l]= True

This expression does not match the pattern. In[2] : = MatchQ [£ [5, 6] , f [_]]

Out [2]= False

The function Cases [{e1 , • • • , en} , pattern] selects those Ci that match the pattern. It is well
suited to conducting pattern-matching experiments because we can give it a list of candidate
expressions and then see which ones match the pattern.

With Cases [] , we can select from a list of
expressions those that match the pattern.

A pattern does not need to contain any holes.
In this case, only expressions that are iden­
tical to the pattern match the pattern.

In[3] : = Cases [{f [5] , f [5 , 6] , f [Sin[x]] } , f [_]]

Out [3]= {f [5] , f [Sin[x]] }

In[4] : = Cases [{£ [5] , f [x] , f [y] , f [Sin[x]] } , f [x]

Out [4]= {f [x] }

228 10 Rule-Based Programming

A pattern can contain several holes. They can be filled in independently.

This pattern describes all expressions with
head f and exactly two (arbitrary) elements.

This pattern describes all expressions with
head f and two elements. The first element
must have the fonn g[_] .

In[5) : "' Cases[

]

{f[a] , f[a, b) , f [a, b, c) , f [g[6] , h[6))} ,
f [_ , _]

Out [5]= {f[a, b] , f [g [5) , h[6]]}

In[6) : = Cases [
{f [a, b] , f [g[a] , b] , f [g [5] , z] , f [x , g[y]]} ,
f [g[_] ' _]

Out [6) = {f[g[a) , b) , f [g[5] , z)}

The holes in a pattern can be named. A named blank is written name_ . The name is a symbol.
Pattern matching requires that two blanks having the same name must be filled in with the
same expression. The object name_ is also called a pattern variable. The blank alone, _ , is
called an anonymous pattern variable.

This pattern describes exactly the expres­
sion with head f and two identical elements.
Note that the numbers 2 and 2 . 0 are not
considered identical.

Patterns can have holes in the head posi­
tion. Here, we describe all expressions with
head f that have two elements with identical
heads and an arbitrary element.

In[7] : "' Cases [

]

{f [5 , 6] , £ [5 , 5] , f [g[y] , g [y]] , £ [2 , 2 . 0] } ,
f [x_, x_]

Out [7) "' {f[5, 5] , f [g [y) , g[y]] }

In[S) : = Cases[

]

{f [g[y] , g[y]] , f [h[2) , hh[2]] , f[g[y] , g[z)] } ,
f [a_ [_] , a_ [_]]

Out [8]"' {f[g[y] , g [y)] , f [g[y] , g [z]] }

1 0.1.2 Expressions of a Certain Type

Expressions to be filled in for a blank can be restricted to a certain type. The type of an
expression is the latter's head. To allow only expressions with head type, we write _type
for an anonymous pattern variable with the desired head, and v_type for a named pattern
variable v. The type must be a symbol.

This pattern selects all expressions with
head h. Note that the last expression h itself
does not match: It!> head is Symbol .

Here, we select all expressions with head f
and an element of type Integer .

In[l] : "' Cases[{h [5] , h[g[1]] , hh[a] , h[) , h} ,
_h]

Out [t] � {h[5) , h[g[1]) , h [] }

In[2] : � Cases [{f [1] , £ [1 . 0] , f [Pi]} ,
f [_Integer]]

Out [2) = {f [1]}

10. 1 Pattern Matching 229

10.1.3 Predicates

Expressions can be restricted to those satisfying a given predicate. A predicate is a function
that returns either True or False . We write _ ?pred for an anonymous pattern variable with
a predicate, and v_ ?pred for a named pattern variable v with a predicate. An expression e
matches a pattern with a predicate only if the application of the predicate to the expression,
that is, pred [e] , gives True .

This pattern selects expressions of the
form a[n] , where n must be a prime num­
ber.

Here we ask for expressions having the
form f [n] . where n is a nonnegative num­
ber.

In[3] : = Cases[
{a[1] , a [2] , a[3] , a[4] , a[5] , a [6] , a[7]} ,
a [_ ?PrimeQ]

Out (3]E {a(2] , a[3] , a[5] , a[7]}

In[4] : = Cases[
{f [-1] , £ [0] , £ [1] , £ [2 . 5] , f (z] } ,
f [_?NonHegative]

Out [4] = {£ (0] , £ [1] , £ [2 . 5] }

Note that the expression matches only i f the predicate returns True . In the last example,
NonNegative [z] returned neither True nor False . because z is not a number, and we,
therefore, do not known whether it is negative. Examples of built-in predicates can be found
in The Mathematica Book in Section 2.3.5. You can define your own predicates .

Here is a definition of a predicate that is true
if the argument is larger than 5.

Now we can select expressions whose
element is larger than 5. The error
message is generated by the evaluation
moreThan5 [I] , whichMathematicacarries
out to determine whether the predicate is
satisfied. Complex numbers cannot be com­
pared for size.

10.1.4 Side Conditions

In[5] : = moreThan5[n_] : • n > 5

In[6] : • Cases[
{f [-1] , £ [4] , £ (5] , £ [5 . 5] , f(I]} ,
f [_?moreThan5]

Greater : : nord : Invalid comparison with I attempted .

Out [6] = {£ [5 . 5] }

A mechanism more general than predicates is side conditions. To restrict a pattern, we write
pattern/ ; cond . The side condition cond is any expression that may contain the pattern
variables of pattern. If an expression matches the pattern in the first place, the condition is
evaluated. If this evaluation returns True , the expression matches pattern/ ; cond. Therefore,
an expression matches a conditional pattern only if it matches the pattern itself and if the
condition is satisfied.

230

This pattern selects ail expressions with two
elements, the first of which is smaller than
is the second. Note the use of the pattern
variables in the condition.

10 Rule-Based Programming

In[7] : = Cases [

]

{£ [2 , 3] , f [a , b] , £ [3 , 3]},
f [x_ , y_] / ; x < y

Out [7]= {f [2, 3] }

Side conditions are more general than predicates. That is, we could do without predicates
because each predicate can also be used in a side condition. Instead of f [_ ?p] , we can use
f [x_/ ; p [x]] . These two forms are equivalent, but often, the form with the predicate is
easier to read.

This pattern describes the same expression
as does the pattern f [_ ?moreThan5] in
Section 1 0. 1 .3 .

One advantage of side conditions is that we
do not need to define a predicate first. We
can simply insert its definition right into the
pattern.

In[8] : = Cases[
{f [-1] , £ [4] , £ [5] , £ [5 . 5] , f [I] } ,
f [n_/ ; moreThan5[n]]

Greater : : nord : Invalid comparison with I attempted .

Out [8] • {£[5 . 5] }

In[9] : = Cases [

]

{f [-1] , £ [4] , £ [5] , £ [5 . 5] , f [I] } ,
f [n_l ; n>5]

Greater : : nord: Invalid comparison with I attempted.

Out [9]= {£ [5 . 5] }

The three ways to restrict pattern matching can be combined. For example, the pattern

f [n_Integer?Posi ti ve/ ; IntegerQ [Sqrt [n]]]

describes expressions with positive integer arguments that are squares (whose square root is
an integer).

There are other kinds of patterns not treated here. A list of all pattern objects is given on
page 376.

10.1.5 Key Concepts

1 . Patterns describe classes of expressions.

2. An expression matches a pattern if the latter's holes can be filled to make the filled pattern
equal to the expression.

3. The class of expressions that match a pattern can be restricted by type or side conditions.

10.2 Rules and Term Rewriting

10.2 Rules and Term Rewriting

We have used patterns before we introduced them in this chapter. In a definition such as

gcd [a_ , b_] : = gcd [b , Mod [a , b]]

231

the left side is a pattern. The notation has been chosen to resemble ordinary function definitions
in other programming languages. This chapter emphasizes the use of patterns for term
rewriting.

10.2.1 Rewrite Rules

Term rewriting is done with rewrite rules. A rule has the form

pattern -> repl

or

pattern : > rep/ .

A rule specifies that we want to replace an expression matching the pattern by a new expres­
sion rep/. Rules are applied to expressions with

expr I . rule .

Mathematica searches expr for parts that it can replace using the rule; it then performs the
replacement. A few examples will clarify these notions.

The expression

f [a, g[x] , XA2 , Sin[x] , g [Pi]]

is searched for occurrences of the pattern x
(which does not contain any variables), and
each occurrence is replaced by 17. There
are three such occurrences. The result is
then evaluated further.

Here, each occurrence of the pattern g[_]
is replaced by gg . There are two instances
of g[_] in the expression.

In[1] : = f[a , g[x] , XA2 , Sin[x] , g[Pi]] / . x -> 17

Out [1]• f [a, g[17] , 289 , Sin[17] , g [Pi])

In[2] : = f[a , g[x] , XA 2 , Sin[x] , g[Pi]] / . g[_] - > gg

2
Out [2] = f[a, gg, x , Sin[x] , gg]

232 10 Rule-Based Programming

More interesting examples are those where the pattern contains variables. The names of the
pattern variables can be used on the right side of the rule. They are replaced by the expression
that matched the pattern variable.

On the right side, t is replaced by the ex­
pression filled in for the pattern variable t_ .
The pattern occurs twice in this example.

Names of pattern variables are independent
of symbol� that may appear in the expres­
sion. The pattern variable x_ has nothing
to do with the symbol x occurring a few
times in the expression.

To verify this independence, we can rename
the pattern variable (to y) and see that we
get the same result a!> before.

A mistake often made by beginners is to
forget the underscore symbol. The pat­
tern g[x] does not contain any variables;
only literal occurrences are replaced (there
is one). The expression g[Pi] does not
match and is not replaced (compare it with
the previous example).

In[3] : = f [a , g[x] , Sin[x] , g[Pi]] / . g[t_] -> tA3

3 3
Out [3] = f [a , x , Sin[x] , P i]

In[4] : = f [a , g[x] , Sin[x] , g[Pi]] / . g[x_] -> XA3

3 3
Out [4]= f [a , x , S1n[x] , Pi]

In[5] : = f [a , g[x] , Sin[x) , g[Pi]] / . g[y_] -> yA3

3 3
Out [5]= f [a , x , Sin[x] , Pi]

In[6] : = f[a, g[x] , Sin[x] , g[Pi]] / . g [x] -> XA3

3
Out [6]= f [a, x , S1n[x] , g[Pi]]

Mathematica evaluates the left side of a replacement expr I . rule before the rule is applied.
The mathematical formula

(1 0.2-1)

for the calculation of the derivative of a function f at x = x o can therefore be written exactly
as follows in Mathematica:

f ' [x] I . x -> xO .

As you know, it would be wrong first to replace the variable x and then to differentiate.

Here is the derivative of the sine function
at zero.

In[7] : • Sin' [x) / . x -> 0

Out [7)• 1

The only difference between pattern -> repl and pattern : > rep/ is the time the right
side repl is evaluated. In the first form, the right side is evaluated when the rule is encounN
tered; in the second form, it is evaluated only after the rule has been applied. As a rule of
thumb, we can say that : > should be used if the pattern contains variables that are used
inside repl (for example, f [x_] : > X" 2). If no pattern variables occur, the first form with
-> can be used.

10.2 Rules and Term Rewriting

10.2.2 Several Rules

233

The replacement operator I . can take a list of rules as its right argument. The rules are tried
in order until one is found that matches.

The expression fk[3] does not match the In[8] : • fk[3] 1 . {fk[1] -> 1 , fk[n_] : > n fk[n-1]}
first rule. Therefore, the second rule is ex- Out [S]= 3 fk[2]
amined. It matches and is applied.

Rules are applied only once to each part of In[9] : ..): 1 . {fk(1] -> 1 , fk[n_] : > n fk[n-1]}
an expression, even if the result of the first Out [g] .. 6 fk [1]
application would match the rule again. To
evaluate the result further, we have to use the
replacement operator again.

Now the first rule matches and is applied. In[10] : = Y. 1 . {fk[1] -> 1 , fk[n_] : > n fk[n-1]}
The result is then simplified in the usual way. Out [1o]• 6

The repeated replacement operator // . ap- In[ll] : • fk[3] 1/ . {fk [1] -> 1 , fk[n_] : > n fk[n-1]}
plies rules several times, until none of them Out[ll]= 6
matches anymore.

The rules in this example are the rules for the computation of the factorial function n! =
n(n - 1) · · · 1 . Such rules can therefore be used to compute functions. So far, we defined
functions in the form

fk [1] = 1 '
fk [n_] : = n fk [n-1] .

These two possibilities are equivalent. If we perform the definitions with = and : = , they are
applied automatically to all expressions evaluated later on. Mathematica uses essentially I I .
to apply the definitions. Mathematica treats definitions as rewrite rules. The theoretical
connection between functions and term rewriting is explained in Section 1 1 . 1 .

If we give a definition of the form pattern : = repl, Mathematica will, from then on, perform
the replacement expr I/ . pattern : > repl automatically with all expressions to be evaluat­
ed. A definition of the form x = val leads to the automatic replacement expr I I . x -> val.

10.2.3 Key Concepts

I . Rules have the form pattern -> repl or pattern : > repl .

2. A replacement looks like this : expr I . rule .

234 10 Rule-Based Programming

3. In a replacement with several rules,

expr I . {rule 1 , rule2 , . . . , rulen} ,

the rules are tried in order.

4. No further rules are applied to the result of a rule application.

5. The operator I . traverses the rules once. The operator I I . performs replacements until
no more can be performed.

6. Definitions with = and : = are like rules with -> and : > applied automatically to all
expressions.

10.3 Simplification Rules and Normal Forms

10.3 Simplification Rules and Normal Forms

235

Mathematica uses rewrite rules as the basis for its programming language. In this section,
we look at rule-based programming proper. Rules allow you to perform simplifications
mechanically. The result of a simplification is a normal form that can be used to decide
whether two expressions are equivalent. The applications in this and next section are taken
from mathematics, where transformations and simplifications play an important role.

10.3.1 The Normal Form of an Expression

An important concept for the simplification of expressions is the normal form. The num­
ber zero, for example, can be written in many different ways, such as 0 , 1-1 , i"2+1 , or
Cos [Pi/2] . All of them are equivalent, but we a have a clear notion of which of them is
the simplest. Furthermore, we know how to convert the others into this simplest form. We
write 0 = 1-1 , to express equivalence of expressions. The expressions 0 and 1-1 are not
identical, however. The distinction between expressions and their meaning (the number zero)
is often blurred in mathematics. It is essential in symbolic computation, however.

A simplifier S(e) is a function that transforms an expression e into another, equivalent
expression, with the property that S(S(e)) = S(e), or, in other words, that the result of a
simplification cannot be simplified further. An expression e with S(e) = e is called irreducible
(it cannot be simplified). A simplifier is canonical if two equivalent expressions are simplified
to the same expression; that is,

(1 0.3-1)

If S is a canonical simplifier, the expression S(e) is called a normal form of e. Every expression
has exactly one normal form, and we have e = S(e).

If we can define a normal form for a class of expressions, two different but equivalent
expressions can be simplified to the same normal form. Therefore, it becomes easy to decide
whether two expressions are equivalent. To see whether e 1 = ez, we simply compute the
normal forms S(e 1) and S(e2) and see whether they are identical.

A normal form does not need to be the intuitively simplest form. For polynomials, for
example, the fully expanded form is a normal form. We know how to expand polynomials,
and two equal polynomials have the same expanded form. Expansion is a canonical simplifier.
For some polynomials, the factored form is simpler, however.

To see whether these two polynomials are
equivalent, we shall expand them.

In[l] : • {xA2- 1 , (x-l) (x+l)}

2
Out [l] = {-1 + x , (-1 + x) (1 + x)}

236

The expanded forms are identical. The poly­
nomials are, therefore, equivalent.

In this example, the nonnal fonn (the ex­
panded fonn) is more complicated than is
the factored fonn.

In this example, the expanded form is sim­
pler.

Mathematica perfonns certain simplifica­
tions automatically. For these examples, a
canonical simplifier is applied without our
intervention.

10 Rule-Based Programming

In[2] : = Expand[�)

2 2
0ut [2]= {-1 + x , -1 + x }

In[3] : • Expand[(x+l) A5]

2 3 4 5
0ut [3]= 1 + 5 X + 10 X + 10 X + 5 X + X

In[4] : = Expand[{-1 + x) { 1 + x) { 1 + XA2) (1 + XA4)]

8
Out [4]= - 1 + x

In[5] : = {0, 1-1 , IA2+ 1 , Cos [Pi/2] }

Out [5] = {0 , 0 , 0 , 0}

Two expressions are equivalent if their meaning is the same.
Two expressions are identical if they look the same.

10.3.2 Term Rewriting as a Simplifier

An important class of simplifiers is obtained from rewrite rules. If r is a list of rules, the
function S [e.xpr] , defined as

S [expr _] : = expr I I . r ,

is a simplifier provided that two conditions are satisfied.
First, the application of rules must not lead to an infinite reduction. After finitely many

rule applications, we must arrive at an irreducible expression. Rule sets with this property are
called Noetherian (after the mathematician Emmy Nother). An example of a rule that is not
Noetherian is f [x_] : > f [g [x]] .

The second condition is that the final result of the rule applications must not depend on the
order in which the rules are applied. Such rule sets are called confluent.

These two rules are not confluent. Here is
the result obtained if the first one i� used
first.

We obtain a different result if the second rule
is used first.

The:,e two rules are Noetherian and conflu­
ent

In[1] : = x // . {x -> a , x -> b}

Out[1)= a

In[2] : = x // . {x -> b , x -> a}

Out [2] = b

In[3] : = f[g[2 , 3] , 4] // .
{f[a_ , b_] : > a b , g[x_ , y_] : > x + y}

Out [3)= 20

10.3 Simplification Rules and Normal Forms 237

A rule set is called complete if the corresponding simplifier S is canonical. If it is, we can
determine the equivalence of two expressions simply by applying the rules to both expressions,
and then seeing whether the results are identical.

This rule implements the distributive law a(b1 + b2 + . . . + bn) = ab1 + abz + . . . + ab ...
A symbolic example shows us how this rule
works.

Application of the rules to the two expres­
sions in the list shows us that the latter are
equivalent.

In[4] : = dist = {a_*b_P1us : > Map[Function[e, a*e] , b] } ;

In[5] : = a(b1 + b2 + b3 + b4) / / . dist

Out [5]� a bl + a b2 + a b3 + a b4

In[6] : = { a(c + d) + b c + b d ,
c (a + b) + a d + b d } // . dist

Out [6] � {a c + b c + a d + b d, a c + b c + a d + b d}

Application of simplification rules is the main principle of Mathematica's evaluator. If we
give rules as definitions, they are used automatically to simplify expressions.

10.3.3 Example: Normal Forms of Even and Odd Functions

A function f is even if f(-x) = f(x); it is odd if j(-x) = -j(x). Examples of such functions
are the trigonometric functions: They are all either even or odd.

An even function can be written in two ways, as f(x) or as j(-x). An odd function can
be written as f(x) or as -f(-x). If we want to arrive at normal forms for such functions, we
must decide on a single way of writing the functions. We demand that the argument not be
negative in the normal form. The two rules given in Listing 1 0.3-1 perform this simplification.

oddEvenRules = {
(f_Symbol?OddQ) [x_?Negative] : > -f [-x] ,
(f_Symbol?EvenQ) [x_?Negative] : > f [-x]

}

Listing 10.3-1 OERules1 .m: Simplification for negative arguments.

We use the standard predicates EvenQ and OddQ , which are defined for integers, to declare
functions as even or odd. We do the declaration with a definition of the form

f I : OddQ [j] = True .

The restriction of the pattern L to symbols is used for efficiency so that Mathematica's
evaluator will not have to consider too many expressions in pattern matching. These rules
allow us to perform several simplifications.

We declare e as even and o as odd. In[l] : � e/ : EvenQ [e] = True ; \
o/ : OddQ [o) • True ;

238

Application of the rules puts this expression
into normal form. The usual rules of arith­
metic lead to further simplifications.

The simplification makes it clear that this
sum is O.

Our rules are not yet complete. This expres­
sion is not simplified because -a does not
satisfy the predicate Negative [] .

10.3.3.1 Symbolic Arguments

10 Rule-Based Programming

In[2] : = o[-2) + o[2] + e[-1) + e[1] / .
od.dEvenRules

Out [2]= 2 e [1]

In[3] : = o [2] + o [-2) / . oddEvenRules

Out [3)= 0

ln[4) : = e [-a] / . oddEvenRules

Out [4]= e[-a]

We cannot say whether a symbolic argument is negative. Therefore, we want the normal form
not to contain an explicit minus sign. Let us express this requirement using rules.

The obvious rule works in this simple ca�e.

but it is not sufficiently general .

If we look at the internal forms of e [-2a]
and of the pauem e [-x_] , we can see why
the expression does not match.

In[5] : = e[-a] / . e[-x_] : > e[x]

Out [5]= e[a]

In[6] : = e[-2a] / . e[-x_] : > e [x]

Out [6]= e [-2 a]

ln[7] : & Ful1Form[{e(-2a] , e [-x_]}]

Out [7] //Ful1Form=

List [e [Times [-2 , a]] ,

e [Times [-1 , Pattern[x , Blank []]]]]

This pattem is more general. It allows an In[8] : = e [-2a] / . e[n_?Negative x_) : > e [-n x]
arbitrary negative number as a factor. Out [8]= e [2 a]

We can declare x_ as optional. In this way, In[9] : = e [-2) / . e [n_?Negative x_ .] : > e[-n x]
the rule also works for a purely numerical out [9]= e[2]
argument.

Listing 10.3-2 shows the improved rules for numerical and symbolic arguments.

oddEvenRules = {

}

(f_Symbol?DddQ) [n_?Negative x_ .] : > -f [-n x] ,
(f_Symbol?EvenQ) [n_?Negative x_ .] : > f [-n x]

Listing 10.3-2 OERules2.m: Simplification of numerical and symbolic arguments.

10.3.3.2 Ordering of Expressions

If you enter b+a, it is turned into a+b . This form can hardly be called simpler, but the built-in
ordering of expressions nevertheless defines a normal form for sums and products. Such

10.3 Simplification Rules and Normal Forms 239

an ordering is an important tool. Sorting a long sum makes it easy to combine like terms
and to add all numbers occurring in the sum because numbers are ordered before symbolic
expressions.

With the help of the ordering, we can define a normal form for even and odd functions
having sums as arguments: The normal form shall not have a minus �ign in the first term
of the sum. Again, we try to find corresponding rules. This time it is not as easy because
Mathematica will always examine all possible orderings of terms for pattern matching. In this
case, we do not want it to do so.

Thi� rule seems to work. It removes the
minus �ign in the first term.

But it transform1> the result back to the orig­
inal expression, even though the fir::.t term
does not have a minus sign.

We can prevent this loop from happening by
requiring that the negative term x be the first
term.

This expres::.ion is simplified as it should be
because the fir�t term is a, rather than b .

Again, we can declare x as optional to treat
single numbers correctly.

In[l] : � o[-a + b) / . o[n_?Negative x_ + y_] : >
- o[-n x - y]

Out [l] � -o[a - b)

In[2] : = Y. /. o[n_?Negative x_ + y_] : >
- o[-n x - y]

Out [2]� o[-a + b)

In[3] : � o[a - b) / . o [n_?Negative x_ + y_] : >
- o[-n x - y] / ; OrderedQ [{x , y}]

Out [3]= o[a - b)

In[4] : = o [b - a] / . o[n_?Negative x_ + y_] : >
- o[-n x - y] / ; OrderedQ[{x, y}]

Out [4] = -o[a - b)

In[5] : = o[a - 1] /. o[n_?Negative x_ . + y_] :>
- o[-n x - y] /; OrderedQ [{x, y}]

Out [5)= -o [l - a]

The rule just found cannot be used for sums of more than two terms. In such cases, the
pattern y _ is matched with the sum of all remaining terms. Many single terms of the
form n_ ?Negative x_ . are ordered before sums, which allows the rule to be used in more
than one way.

The ::.ingle term -b is ordered before the
sum a + c . and the rule is applied even
though o [a - b + c] is in normal form.

In [6] : = o [a - b + c) / . o[n_?Negative x_ . + y_] : >
- o[-n x - y] / ; OrderedQ [{x, y}]

Out [6]= -o[-a + b - c]

The solution is a bit tricky. We must describe the whole sequence of summands with the
pattern y __ , and then test the ordering of the list of terms.

This rule is not applied here because the li1>t
{-b, a, c} is not ordered.

In[7] : = o[a - b + c) / . o[n_?Negative x_ . + y __] : >
- o[-n x - Plus [y]] / ; OrderedQ [{x , y}]

Out [7]= o [a - b + c]

240 10 Rule-Based Programming

In this case the rule is applied, as it should In[S] : = o[-a + b - c] / . o[n_ ?Negative x_. + y __] : >
be. - o[-n :z: - Plus [y]] / ; OrderedQ [{:z:, y}]

Out [S]= -o[a - b + c]

Listing 1 0.3-3 shows the complete rules for simplification of odd and even functions.

oddEvenRules = {

}

(f_Symbol?OddQ) [n_?Negative x_ .] : > -f [-n x] ,
(f_Symbol?OddQ) [n_?Negative x_ . + y _ _] : > -f [-n x - Plus [y]] / ;

OrderedQ [{n x , y}] ,
(f_Symbol?EvenQ) [n_?Negative x_ .] : > f [-n x] ,
(f_Symbol?EvenQ) [n_?Negative x_ . + y __] : > f [-n x - Plus [y]] / ;

OrderedQ [{n x , y})

Listing 10.3-3 OERules.m: Normal forms for odd and even functions.

10.3.4 Key Concepts

1 . Normal forms are unique forms of many equivalent, but different looking, expressions.

2. A simplifier is an idempotent function on expressions.

3. A canonical simplifier computes normal forms.

4. Noetherian and confluent reduction systems lead to canonical simplifiers.

10.4 Application: Trigonometric Simplifications 241

10.4 Application: Trigonometric Simplifications

The simplifications discussed in Section 1 0.3.3 are performed automatically for trigonometric
functions.

All these expressions have a minus sign in In [1] : = {Sin[-1] , Cos [-x] , Tan[b - a]}
the first position. The cosine is even; the out [1]= {-Sin[l] , Cos[x] , -Tan[a - b]}
other functions are odd.

Trigonometric functions satisfy a number of further identities that we shall look at next. The
presence of identities such as sin2 x + cos2 x = 1 means that there are many ways to write a
trigonometric expressions. Let us try to find a normal form for them.

10.4.1 Normal Forms

Just as we did for ordinary polynomials (see Section 1 0.3 . 1), we can find a normal form for
trigonometric expression by expanding them. Products and powers of trigonometric functions
can be turned into sums using these three identities:

sin X sin y = cos(�-y) - cos(;+y)
sin x cos y = sin(�+y) + sin(�-y) , (I 0.4-1)

COS X COSY =
cos(x+y) + cos(x-y)

2 2
An expression that does not contain any more products of trigonometric functions is a linear
expression. Such an expression is a normal form. Listing 10.4-l shows the three identities
from Equation I 0.4-1 as rewrite rules in Mathematica. As we shall see, they are not sufficient
for transforming all trigonometric expressions into normal form.

trigLinearRules = {

}

Sin [x_) Cos [y_] : > Sin[x+y] /2 + Sin[x-y] /2 ,
Sin [x_] Sin[y_] : > Cos [x-y]/2 - Cos [x+y) /2 ,
Cos [x_] Cos [y_) : > Cos [x+y) /2 + Cos [x-y] /2

Listing 10.4-1 Triglinear1 .m: Products of trigonometric functions as sums.

Here, all products are written as sums. In[2] : = Sin[a] Cos[b] + Sin[a] Cos[a] +
Cos [2a] Cos[3a] / . trigLinearRules

Cos [a] Cos [5 a] Sin[2 a] Sin[a - b]
Out [2]= -- + + + +

2 2 2 2

Sin[a + b]

2

242

The operator I . apphe� the rules only once
to each expre�<>lOn A<> a con\equem .. e, \Ome
products remam

The operator I I apphes the rule\ \everal
time�. until no more rules can be applied
Now, there are no more exphc1t product� 1t
smes and cosmes

The re�ult •� not m the des1red form, howev­
er, becau�e 1t sllll conldms (1mphctt) prod­
ucts of tngonometnc functJOm Only af­
ter the d1stnbut1"e law Is apphed (w1th
Expand []) can the rules be apphed agam

Expandmg the result agam <>how<; that the
rules cannot be applied agam Note that
there are \till power' of tngonometnc func­
llons left

Becau<>e we do not know beforehand how of­
ten we have to expand out products, 1t 1� be�t
to U\e a fixed-pomt con�trucuon that applies
the Simplifier function as often a!> neces�ary
(Functl.on[] ts explamed m Sect10n I I I)

1 0 Rule-Based Programmmg

In[3] = Cos [a] Cos [2a] Cos[3a] Cos [4a] / .
tr1gL1nearRul.es

Cos[a] Cos [3 a]
Out [3]= (-- +) Cos[3 a] Cos [4 a]

2 2

In[4] = Cos [a] Cos [2a] Cos [3a] Cos [4a] // .
tr1gL1nearRul.es

Cos [a] Cos [3 a] Cos [a) Cos [7 a]
Out [4] = (-- +) (-- +)

2 2 2 2

In[5] = Expand [%] // . tr1gL1nearRules

Cos [2 a] Cos [4 a]
2 +

Cos[a] 2 2
Out [5]= --- + +

4 4

Cos [6 a] Cos [8 a] Cos [4 a] Cos [lO a]
+ +

2 2 2 2
+

4 4

In[6] = Expand[%]

2
Cos[a] Cos [2 a] Cos [4 a] Cos [6 a]

Out [6]= --- + + + +
4 8 4 8

Cos [8 a] Cos [10 a] --- + ----
8 8

In(7] = P1xedPo1nt [
Funct1on[e, Expand[e // . tr1gL1nearRules]] ,
Cos [a] Cos[2a] Cos[3a] Cos [4a]

2
Cos [a] Cos [2 a] Cos [4 a] Cos [6 a]

Out [7]= --- + + + +
4 8 4 8

Cos [S a] Cos [10 a]
--- + ----

8 8

The precedmg example shows that we need add1honal rules to stmphfy powers of trigonometnc
functwns. Mathemaucally, Cos [x] A2 is the same a!> Cos [r J Cos [x] . The square ts stored
dtfferently (as Power [Cos [x] , 2]), and, a� a con�equence, our rules do not match. The stm­
plest way to denve the new rules is to view Cos [x] An a!> Cos [x] Cos [x] Cos [x] A (n-2) ,
and then to use the previous rules to rewrite Cos [x] Cos[x] . We get

S1n [x_] An_Integer?Pos1t1ve · > (1 12 - Cos [2x] l2) S1n [x] A (n-2)
Cos [x_] An_Integer?Pos1t1ve : > (1 12 + Cos [2x] /2) Cos [x] A (n-2)

10.4 Application: Trigonometric Simplifications 243

The restriction of the exponent n to positive integers with n_Integer?Posi ti ve is necessary
because rational or negative exponents lead to infinite application of the rules. (Can you explain
why?)

As we have seen, it is necessary to multiply out intermediate results, and then to ap­
ply the rules again. We can write a function that performs these steps for us. We call it
TrigLinear [expr] . Furthermore, we turn our small program into a package. It is shown in
Listing 10.4-2.

BeginPackage [" CSM'TrigLinear ' "]

TrigLinear : : usage = "TrigLinear [e] expands products and powers of
trigonometric functions . "

Begin[" ' Private' "]

trigLinearRules = {
Sin[x_] Cos [y_] : > S in[x+y] /2 + Sin[x-y] / 2 ,
Sin[x_] S in[y_] : > Cos [x-y] /2 - Cos [x+y] /2 ,
Cos [x_] Cos [y_] : > Cos [x+y] /2 + Cos [x-y] /2 ,
Sin[x_] An_Integer?Positive : > (1/2 - Cos [2x]/2) Sin[x] A (n-2) ,
Cos [x_] An_Integer?Positive : > (1 /2 + Cos [2x] /2) Cos [x] A (n-2)

}

SetAttributes[TrigLinear , Listable]

TrigLinear [expr_] : =
FixedPoint [Function[e , Expand[e // . trigLinearRules]] , expr]

End[]

Protect [TrigLinear]

EndPackage []

Listing 10.4-2 The first version Triglinear.m.

The expression is simplified until all trigo­
nometric functions occur only linearly.

In[l] : = TrigLinear[Sin[x]A2 Cos[x] A3]

Cos [x] Cos [3 x] Cos [5 x]
Out [l] = -- - ---

8 16 16

An important application of normal forms is to decide whether two different-looking expres­
sions describe the same function. If we integrate a function and differentiate the result, we
should get back the original function. Often, however, the result will look different. Because
the linear form is a normal form for trigonometric functions, we can use TrigLinear[] to
check the result.

First, we integrate sin2 x cos2 x. In[2] : = Integrate[Sin [x] A2 Cos [x] A2, x

x Sin[4 x]
Out [2]= - - ---

8 32

244 10 Rule-Based Programming

Then, we differentiate
·
the result. It looks

different from the original expression.

We put the result into normal form. (It hap­
pens already to be in normal form.)

Our original expression also is put into nor­
mal form. Now we can see immediately that
the two expressions are the same.

In[3] : = D[X. x]

1 Cos [4 x]
Out [3)m - - ---

8 8

In[4] : = TrigLinear[Y.]

1 Cos [4 x]
Out [4]= - - ---

8 8

In[5] : = TrigLinear[Sin[x] A2 Cos[x]A2]

1 Cos [4 x]
Out [5]• - - ---

8 8

We can check the equality of the expressions by putting both of them into normal form. This
procedure is usually simpler than is trying to transform one expression into the other.

10.4.2 Simplifying Arguments

TrigLinear [] linearizes trigonometric functions and in doing so can introduce more com­
plicated arguments of these functions.

The simple arguments x and y are turned
into more complicated ones.

In[l] : • TrigLinear[Cos [x] Cos [y] Sin[x]

Sin [2 x - y] Sin[2 x + y]
Out [l) = + ___:_

4 4

We can try to find rules that will express functions with complicated arguments in terms of
· functions with simpler arguments. These two formulae allow the simplification of arguments
involving sums of angles:

sin(x + y) = sin x cos y + cos x sin y ,
cos(x + y) = cos x cos y - sin x sin y .

It is not difficult to find rules that perform these simplifications.

(10.4-2)

Again, we have to think about special cases, multiples of an angle, in this case. The term
sin(2x) is the same as sin(x + x), but it is stored differently; therefore, we need a special
rule. More generally, we can write sin nx, for positive integers n, as sin(x + (n - l)x)
and then use Equation I 0.4-2. Note that we do not need any rules for negative multiples.
Trigonometric functions are put into normal form by Mathematica, and these normal forms
do not contain minus signs, as we saw at the beginning of Section 10.4. The rules and the
function TrigArgument [] , which applies them, are in the package TrigArgument1 .m, shown
in Listing 1 0.4-3. TrigArgument [] uses Together [] to simplify the result (in the same
way as Expand [] was used in TrigLinear []).

10.4 Application: Trigonometric Simplifications

BeginPackage [" CSM ' TrigArgument ' "]

TrigArgument : : usage = "TrigArgument [e] writes trigonometric functions
of sums and products as products of simple trigonometric functions . "

Begin[" ' Private ' "]

trigArgumentRules = {
Sin[x_ + y_] : > Sin [x] Cos [y] + S in[y] Cos[x] ,
Cos[x_ + y_] : > Cos [x] Cos [y) - S in[x] Sin[y] ,
Sin[n_Integer?Positive x_ .] : > S in[x) Cos [(n- 1) x] + Sin[(n- 1) x] Cos [x) ,
Cos [n_Integer?Positive x_ .] : > Cos[x] Cos [(n- 1) x] - Sin[x] Sin[(n- 1) x]

}

SetAttributes [TrigArgument , Listable]

TrigArgument [expr_] : =
Together [FixedPoint [Function[e , e // . trigArgumentRules] , expr]]

End [)

Protect [TrigArgument

EndPackage []

Listing 10.4-3 TrigArgument1 .m: Simplification of arguments.

In this way, we can get back the input from
line l .

Here is another example. First, w e expand
it out.

Now, we try to get back the original expres­
sion. The result looks different, however.

To prove that it is right, we put it into normal
form.

In[2) : • TrigArgument [Xl

Out [2] • Cos [x] Cos[y) Sin[x]

In[3) :; TrigLinear[Sin[x)A2]

1 Cos [2 x)
Out [3)• - - ---

2 2

In[4] : : TrigArgument [Xl

2 2
1 - Cos[x) + Sin[x)

Out[4]= --------
2

In[5] : = TrigLinear[Xl

1 Cos [2 x]
Out[5]= - - ---

2 2

245

The preceding example shows that TrigArgument [] does not give normal forms. There are
several possible ways to write a trigonometric expression, if we allow products of trigonometric
functions. This fact is a consequence of identities such as sin2 x + cos2 x = 1 .

10.4.3 Advanced Topic: The Complexity of Rule Application

In our rules for TrigArgument [] , we replaced Sin[n x] by an expression involving
Sin[(n-1) x] . The advantage of this method is that the rule is easy to derive. Repeat-

246 I 0 Rule-Based Programming

ed application of rules performs the iteration automatically. The disadvantage is the slow
speed of such rules for large values of n, as run-time measurements show.

This conunand generates a table of the time
needed for the application of our rules for
sin(nx), for n = 5, 6, . . . , 15. The times
double for each successive expression.

In[1] : = Table [Timing[TrigArgument [Sin[n x]]] [[1]] ,
{n, 4 , 14}] / . Second -> 1

Out[1]= {0 . 01 , 0 . 03 , 0 . 04 , 0 . 08 , 0 . 1 6 , 0 . 32 , 0 . 64 ,

1 . 28 , 2 . 57 , 5 . 23 , 10 .47}

We can find much faster rules if we use a formula that expresses sin(nx) and cos(nx) directly
in terms of sin x and cos x. Such formulae can be found in mathematics handbooks.

sin(nx) = n cosn- l x - (�) cosn-3 x sin3 x + · · ·

cos(nx) = cosn x - (;) cosn-Z x sin2 x + · · · .
(10.4-3)

An important aspect of Mathematica is that is very easy to program such formulae directly as
rules. The result is shown in Listing 10.4-4.

Sin[n_Integer?Positive x_ .] : >
Sum[(-1) A ((i-1) /2) Binomial [n, i] Cos [x] A (n-i) Sin[x] A i , {i , 1 , n , 2}] ,

Cos [n_Integer?Positive x_ .] : >
Sum[(-l) A (i/2) Binomial [n , i] Cos [x] A (n-i) Sin[x) A i , {i , 0 , n , 2}

Listing 10.� TrigArgument2.m: A formula for multiple angles.

The new rules are much faster and show only
a linear growth of run time that is almost
unnoticeable here.

In[1] : = Table [Timing[TrigArgument [Sin[n x]]] [[1]] ,
{n, 20 , 35}] / . Second -> 1

Out [1]= {0 . 02 , 0 . 01 , 0 . 02 , 0 . 02 , 0 . 02 , 0 . 01 , 0 . 02 ,

0 . 02 , 0 . 02 , 0 . 03 , 0 . 02 , 0 . 02 , 0 . 02 , 0 . 03 , 0 . 02 , 0 . 03}

If there was no formula for expressing powers and multiples directly in terms of single
functions, we could still improve efficiency by expressing sin(nx) as sin(!x + !x) for even n,

and as sin(n�l x + nz l x) for odd n. This method is often called divide and conquer. Here are
the corresponding rules. They are part of TrigArgument3.m, shown in Listing 1 0.4-5.

Run times tum out to be irregular. They
depend on the representation of n in bi­
nary. Asymptotically, they are of the or­
der O(n logn). This complexity is between
those of the previous two versions.

In[1] : = Table[Timing[TrigArgument [Sin[n x]]] [[1]] ,
{n, 20, 35}] / . Second -> 1

Out [1]= {0 . 07 , 0 . 17 , 0 . 1 , 0 . 16 , 0 . 05 , 0 . 18 , 0 . 13 , 0 . 22 ,

0 . 09 , 0 . 22 , 0 . 12 , 0 . 19 , 0 . 05 , 0 . 27 , 0 . 22 , 0 . 38}

These improvements can also be applied to TrigLinear [] from Section 10.4. 1 to express
sinn x directly in terms of sin x and cos x.

10.4 Application: Trigonometric Simplifications 247

Functions for transforming trigonometric expressions in many ways are now built in­
to Mathematica. Our TrigLinear [] is called TrigReduc e [] , and TrigArgument [] is
TrigExpand[] .

Sin[n_Integer?EvenQ x_ .] : >
Sin[n/2 x] Cos [n/2 x] + Sin[n/2 x] Cos [n/2 x]

Sin[n_Integer?OddQ x_ .] : >
Sin [(n+l) /2 x] Cos [(n- 1) /2 x] + Sin [(n- 1) /2 x] Cos [(n+ l) /2 x]

Cos[n_Integer?EvenQ x_ .] : >
Cos[n/2 x] Cos [n/2 x] - Sin[n/2 x] Sin[n/2 x]

Cos [n_ Integer? OddQ x_ .] : >
Cos [(n+1) /2 x] Cos [(n- 1) /2 xl - Sin[(n+ 1) /2 x] Sin[(n- 1) /2 x]

10.4.4 Key Concepts

Listing 10.4-5 TrigArgument3.m: Divide and conquer.

1 . The fully linearized form of trigonometric expressions is a normal form.

2. Even though integer powers are products, they need to be treated specially in pattern
matching.

248 I 0 Rule-Based Programming

10.5 Exercises

10.1 Simple Evaluations 1

Give the result of evaluating the following expressions. If there are any nested functions, also
give the most important intermediate steps. Assume that each example is evaluated in a fresh
Mathematica session. Consecutive expressions in one example are evaluated one after another
in the same session.

1 . 0 <= X < y <= 7 I . { X -> 5 . y -> 7 }

2. abs [x_] : = x I ; x > 0
abs [x_] : = -x I ; x < 0
Map [abs , {-1 , 113 , 0 , I}]

3. sign [x_] : = If [x < 0 , -1 , 1]
{sign[-2 . 33] , s ign [c] , sign[sign[-1]] }

10.2 Pattern Matching2

Describe the terms that match this pattern:

g [x_ + n_Integer y_ .] .

Which parts (if any) of the following expressions can be filJed in for the pattern variables x_ ,

y_ , and n_ ?

1 .

2.

3.

4.

5.

6.

g[U + 3 X + 2]

g [2 UA2 + V)

g [6]

g [a u + 6]

g [UA3 - V)

g [UA3 I 2]

1 Written examination, ETH Zurich, Department of Mathematics and Physics.
2Beatrice Amrhein, ETH Zurich.

10.5 Exercises 249

10.3 Differentiation of Expressions3

Write a package that defines a function diff [expr. var] to differentiate expressions sym­
bolically.

The derivative of an arithmetic expression U with respect to x, (��) , is defined recursively
by differentiation rules that are applied to U. From a handbook, we take the following rules
(U and V are arbitrary arithmetic expressions, and c is a constant):

de ----* dx
dx ----* dx
d-U ----* �
dU+V ----* -rx-
dUV --+ �
dUe ----* """"di:
dexp(U) --+ dx
d ln(U) --+ dx
dUV --+ -a:x

0

1

dU
- dx
dU + dV
dx dx
du v + udv
dx dx
cuc- l dU

dx

exp(U)��
l dU U dx

UV dV ln{U)
dx

1 . Write these rules as definitions for diff [] . Not all of these rules are strictly necessary.
Which ones are sufficient to differentiate all the functions given?

2. These definitions can be augmented by rules for special functions, such as sine, cosine,
and so on. The function diff [] becomes more powerful in this way. Implement a few of
these rules.

10.4 L-Systems

An L-System consists of a word over some alphabet and a set of rewrite rules for replacing
symbols or subwords by other words.

Words are associative, so we should define In[1] : z SetAttributes [word, {Plat , Dneldentity}]
these attributes for our data type for words.

Here is a word over the alphabet consisting In[2] : � gen � vord[m, r, r , m, r, r, m]
of the three symbols m, 1 , and r . Out [2]� word[m, r , r , m , r , r , m]

Our set of rules consists of a single rule for In[3] : � rules .. {m -> vord[m, 1 , m, r , r , m, 1 , m]}
replacing the symbol m by the given word. Out[3]z {m -> word[m, 1, m, r , r , m, . l , m] }

3Dominik Gruntz, ETH Ziirich.

250

One application of the rules replaces every
occurrence of m by a word; the result is
flattened out, due to the attribute Flat .

1 0 Rule-Based Programming

In[4] : = gen1 = gen / . rules

Out [4]= word [m, 1 , m, r , r , m, 1 , m, r , r , m, 1 , m, r ,

r , m , 1 , m, r , r , m, 1 , m , r ll r , m, 1 , m]

We can visualize the resulting words using an idea from Turtle graphics, a simple graphic
model used in the language Logo. The turtle sits originally at the origin and faces right. Each
letter in our word is interpreted as a command for the turtle to change either its location by
moving a certain distance in the current direction, or by turning a certain amount. As the turtle
moves, it leaves a visible trail behind.

By interpreting m as a move, and 1 and r as
turns by 60° to the left and right, respective­
ly, the generator gen describes a triangle,
and the first iteration gen1 corresponds to
the figure on the left.

If we apply the rules four times to the
generator. using

Nest [# / . rules & , gen , 4]

we arrive at a word whose interpretation is
shown on the right. This example generates
the Koch curve or .mmvflake fractal curve.

1 . Define a suitable data type for representing the possible states of the turtle.

2. Design a way to specify an interpretation of a word by giving the effect each letter of the
alphabet has on the state of the turtle.

3. Program a function for converting a word to a list of points, given an interpretation and the
start state of the turtle.

4. Plot the line connecting the points to obtain pictures similar to the ones given here.

5. Optionally remove duplicate points from the line before plotting it. The words will often
consist of long sequences of turns between the moves, leading to many occurrences of the
same point in lines. For better rendering, only one of a sequence of identical points should
be drawn.

Experiment with various generators, rule sets, and interpretations, such as theflowsnake. The
alphabet consists of {m1 , m2 , r , l} , the rules are

m1 -> word [1 , m2 , r , m1 , m1 , r , r , m1 , r , m2 , 1 , l , m2 , 1 , m1]
m2 -> word [m2 , r, m1 , r, r , m1 , 1 , m2 , 1 , l , m2 , m2 , 1 , m1 , r]

Both, m1 and m2 are interpreted as moves, and r and 1 as 60° turns as before.

10.5 Exercises

Here is the fourth iteration of the flowsnake.
The generator is simply a straight line, that
is, word [m1] .

251

Chapter 11

Functions

In this chapter, we study functions. Functions are of central importance in mathematics,
but they play a peripheral role in computer science because many programming languages
have only rudimentary means of working with them. The functional languages, including
Mathematica, are an important exception.

The ideas used in functional languages go back to A calculus, which we explain in Sec­
tion 1 1 . 1 . Then, we show how we can program with functions as values. This possibility often
leads to programs that are more elegant than the corresponding procedural programs.

The last section, Section 1 1 .3 , presents an application of functions: the simulation of linear
shift registers.

About the illustration overleaf:
The picture shows a Picagon. The picagon is formed by putting certain pyramids onto the
faces of a dodecahedron. The graphic was produced with this command (see Pictures.m):

Show [Polyhedron [Picagon] . Boxed->False] .

1 1 . 1 A Notation for Functions (A Calculus) 255

11.1 A Notation for Functions (A. Calculus)

Functions are the most important concept in mathematics. Interestingly, there is no universally
adopted notation for functions. To define the function that squares its argument, for example,
we may write

f(x) = x2 , (1 1 . 1-1)

and then use the expression f(x) sometimes for the function itself, sometimes for the function
value at x. We would like to make a definition of the form

f = ? (1 1 . 1-2)

instead. Sometimes one writes
(1 1 . 1-3) .

11.1.1 A. Notation

As a notation for functions, the A. notation was proposed in the thirties by A. Church. In this
notation, we write

f = A.x.x2 . (1 1 . 1-4)

for the function that squares its argument. The function A.x .x2 can be applied to an argument a.
The result (the value of the function at a) is obtained by substituting the argument for the
A. variable x.

(1 1 . 1-5)

In general, we can turn an expression e involving the variable x into a function of x. This
function is denoted by A.x.e. Mathematica offers this possibility as well. Instead of A., we use
the symbol Function, and we write Function[x , e] . The new mechanism allows us to
use a function without defining it beforehand or even giving it a name. Without it, we would
always have to define a function by name using

f [x_] : = e . (1 1 . 1-6)

Both, f and Function [x , c] , are a notation for the function and the two are interchange­
able. To apply the function to an argument a, we write either f [a] or Function [x , e] [a] .
The latter form looks probably strange at first. The expression Function[x , e] is called a
pure function.

This command defines f as the function with In[1] : = f [x_] :• 1 + x"2

f(x) = I + x2•

256

The variable g b assigned a pure function
that is the same as f .

Both can be used in the same way.

In[2] : - g - Function[x , 1 + XA2]

2
Out [2] - Function[x, 1 + x]

In[3) : - {£ [3] , g[3]}

Out [3]- {10 , 10}

In thi� way, the function can be used without In[4] : - Function[x, 1 + x .. 2] [3)
a prior definition and without a name for it. Out [41 _ 1o

11.1.2 Advanced Topic: Properties of Pure Functions

1 1 Functions

A. calculus is the mathematical study of formal systems of functions. Three properties of pure
functions are of particular interest for us . They are called � reduction, a conversion, and
11 conversion. In the pure function A.x .e, the variable x is called the formal parameter, and e
is the body of the function.

The first property (� reduction) describes how pure functions are applied to their arguments.
We write (A.x.e)(a) for the application of the function A.x.e to argument a. We do the application
by substituting the argument for every occurrence of the formal parameter in the body of the
function. The substitution of the variable x by the expression a in e is written

[x ----* a)e . (1 1 . 1-7)

Therefore, (/....L.e)(a) is equal to [x ----* a]e. For example,

(1 1 . 1-8)

In Mathematica, the application of a pure function looks as follows:

Funct ion[x , e] [a] .

A substitution mechanism is part of the language (see Section I 0.2). We can, therefore, express
the rule for � reduction [x ----* a]e in Mathematica as

The result of function application is 4, as
expected.

This expression is equivalent to the previ­
ous function application. It show� how pure
functions are applied to arguments.

e I . x -> a .

In[1] : - Function[x , XA2] [2)

Out [l]= 4

In [2] : = XA2 / . x -> 2

Out [2]- 4

I I. I A Notationfor Functions ().. Calculus)

257

There is one subtlety. In the expression e I . x -> a the terms e and x are evaluated before
substitution takes place. However, in a function application Function[x , e] [a] , the body e
is evaluated only after replacing the formal parameter x by its value a. We can preserve this
behavior by using the more complicated form

ReleaseHold [Hold [e] I . HoldPattern [x] -> a]

for the substitution. This expression is essentially the same as e I . x -> a, except that e
and x are not evaluated before the substitution takes place.

To show why Hold [] and HoldPattern []
are necessary, we give the global variable x
a value.

In [3] : = X = 17

Out [3] = 17

Even with the global value for x, this ex­
pression is still evaluated correctly.

In[4] : = Re1easeHo1d[Hold[XA2] / . BoldPattern[x] -> 2]

Out [4]= 4

The simplified form of the replacement,
however, gives an incorrect result.

In [5] : = XA2 / . x -> 2

Out [5]= 289

The second property (a conversion) says that the name of the formal parameter does not matter.
If we replace the variable x in Funct ion[x , e] by y , wherever it occurs, we get the same
function. The function (A.x.e) is therefore the same as (A.y.[x ---+ y]e).

Here is an example of a pure function. In[1] : = Function[x, Sqrt[x] + Sin[x]

Out [1] = Function[x , Sqrt [x] + Sin[x]

This expression describes the exact same In[2] : = Y. / . X -> y
function.

Out [2]= Function[y , Sqrt [y] + Sin[y]

+ EA (2x)]

2 X
+ E]

2 y
+ E]

As we have seen, the expression Funct ion[x , e] [a] is evaluated by replacing each occur­
rence of x in e by the argument a. It is intuitively clear that the name of the variable does not
matter. This is true, however, only if the new name y did not already occur in e. Mathematica
treats names of formal parameter as local variables and renames them if necessary to avoid
naming conflicts with other variables. A detailed explanation of how this is done can be found
in [54]. This kind of substitution (that respects names offormal parameters) must be performed
using With[{x = y} , e] . Ordinary substitution, e I . x -> y , does not care about naming
conflicts.

Ordinary substitution violates the semantics In[3] : = Function[x , x + y] / . y -> x
ofA. calculus. The resulting function doubles Out [3]= Function[x , x + x]
its argument. instead of adding the global
symbol x to the argument.

258

With[] gives the correct result, that is, a
function that adds x to its argument. The
variable x outside Funct ion [] is different
from the formal parameter sharing its name.
Mathematica renamed the formal parameter
to x$.

1 1 Functions

In[4] : • With[{y • x} , Function[x , x + y]]

Out [4]� Function[x$, x$ + x]

The third property (11 conversion) says that a pure function of the form /..x.f(x) is the same
as f. In Mathematica, Function[x , f [x]] is simply f itself.

This pure function is merely a complicated
way to write the sine function.

It� application to an argument returns the
�arne result as the application of Sin itself.

In(5] : � Punction[x, Sin[x]]

Out [5]� Funct1on[x, Sin[x]]

In[6] : = { Function[x, Sin[x]] [a] , Sin[a] }

Out [6]= {S1n(a] , S1n[a] }

1 1.1.3 Short Forms of Pure Functions

Because the name of the formal parameter in a pure function is unimportant, Mathematica can
provide special symbols for the use as formal parameters. The expressions #1 , #2 , and so on
are used for the first, second, and so on formal parameters of a pure function. Their internal
form is Slot [i] . If you use these formal parameters, you do not have to declare them, and you
can leave out the first argument of Function [] . Instead of Funct ion [{#1 , #2} , e] , you
can write Function[e] . Another (small) abbreviation allows you to use # for #1 . The short
form Funct ion[e] can be written using the special postfix operator & . You can therefore
write e& for Funct ion[e] . The operator & has low priority, just above assignment (see
Section B.4).

The whole expression the the left of & is part

of the body of the pure function. l + 5 + 52

gives 3 1 .

In this context, you must write the paren­
theses around the pure function to avoid the
whole substitution to be treated as the func­
tion's body.

11.1.4 Constant Pure Functions

In[1] : = 1 + # + #A2 & [5]

Out [1] = 31

In[2] : = f [a] /. f -> (1+# &)

Out [2] = 1 + a

The formal parameter need not necessarily occur in the body. If it does not occur, the function
value does not depend on the argument, the function is constant. The expression 1& , or
Function [1] , for example, describes a constant function that gives - independent of its
argument - always the value I .

11.1 A Notation for Functions (A. Calculus)

Independent of its argument (5, here) we In[3] : � 18:[6]
always get the value I . out [3]= 1

11.1.5 Key Concepts

1 . Functions themselves are values that can be used in our programs.

2. A concise notation for functions is A calculus.

259

3. The application of a function to its argument happens by substitution for the formal
parameter.

4. Names of formal parameters are unimportant as long as no naming conflicts occur.

260 1 1 Functions

11.2 Functions as Values

Traditional programming languages make it hard to work with functions. Functions have to
be defined and then compiled. Little can be done with such static objects. As we have just
seen, Mathematica makes it easy to define and use functions. Functions are, therefore, values
that you can pass around as parameters, return as values of functions, and so on. This section
explores some of the possibilities of the functional programming style.

1 1.2.1 Functions Returning Functions

Because we now have a way to describe new functions without having to make a definition for
a symbol, we can return such functions as values of other functions.

Here is the definition of constant [va/] , In[1] : � constant [x_] : • d
a function whose result is a constant pure
function that always returns val.

k7 is now a constant pure function. In[2] : = lt7 • constant [7]

Out [2]= 7 .t

It always returns the value 7. In[3] : = lt7 [666]

Out [3]= 7

ll.2.2 Application: Infinite Data Structures

In Section 1 2.3, we need to model a potentially infinite memory. Potentially infinite means
that we will never, of course, store an infinite number of data elements at the same time, but
that we do not know beforehand how many there will be. If we knew that there were never
more than n elements, we could simply store them in a l ist of length n. 1 = Table [0 , {n}]
could be used to initialize the list with zeroes, and ReplacePart [1 , new , i] could be used
to change the value at position i . The value at position i could be looked at with 1 [[i]] .

In this example we set n = 10. In[1] : = 1 • Table[O , {10}]

Out [1]= {0 , 0, 0, 0, 0, 0, 0, 0, 0, 0}

The number 77 is stored at po�ition 2. In[2] : � 11 • Rep1acePart [1 , 77, 2] ;

Here are the elements no. 2 and 3 of l1 . In[3] : = {11 [[2]] , 11 [[3]] }

Out [3]= {77 , 0}

Observe that we did not modify the original In[4] : = 1[[2]]
list 1 . This property will be important in Out [41 = 0
our application.

1 1.2 Functions as Values 261

If we were allowed to destructively modify the list, the solution to our problem would be
simple. We could store the values as rules for the "function" 1 .

This definition establishes the default value.

The "list" 1 behaves like an infinite list that
contains the value 0 everywhere.

To store the value 77 at position 2, we simply
make this definition.

Here are the elements no. 2 and 3 of 1 .

In[1] : ; 1[_] : • 0

In[2] : = 1 [10000000]

Out [2] = 0

In[3] : = 1[2] • 77;

In[4] := {1[2] , 1[3]}

Out [4]= {77 , 0}

How can we combine both properties, potentially infinite and nondestructive? Mathematically,
an infinite list l is a function from Z to the set of expressions. The function value at i, l(i),
is the value stored at position i. If we want to store the value e at position i, we get a new
function l' with the definition

z'(j) = { �0) if i = j ;
otherwise ,

(1 1 .2-1)

because the new function differs only at position i from the old one; it is the same everywhere
else. We need an implementation of this abstract data type:

Constants
Constructors
Selectors

empty
updat e ([, e , i]
l [i]

an empty list
a new list with e at position i
the value at position i

One possible implementation uses functions. Translated into Mathematica, Equation 1 1 .2-1
means that l' is

Function[j , If [j===i , e , l [j]] .

The constructor update [l , e , i] can be implemented as

update [l_ , e_ , i_] : = Function[j , I f [j ===i , e , l [j]]] ,

and the empty list is simply a constant pure function:

empty = Function[i , O] .

Initially, the list is a constant pure function In[1] ; ; 1 • Punction[i , 0] ;
that always returns zero.

1 behaves like an infinite list. In[2] : = 1[10000000]

Out [2]= 0

262

We use update [] to store the number 77 at In[3] : • 11 • update [1, 77 , 2] ;
position 2.

Here are the elements no. 2 and 3 of 11 . In[4] : = {11[2] , 11[3]}

Out [4]= {77 , 0}

The original list has not been modified. In[5] : = 1[2]

Out [5]= 0

11.2.3 Functions as Arguments

1 1 Functions

We have seen that it is easy to define functions. There are two ways to define them: definitions
and pure functions.

We can make a definition to define the func- In[1] : = f l [:z:_] : = x"2
tion f l .

Instead, we can also use a pure function. In[2] : = f2 = Function[x, XA2]

2
Out [2]= Function[x , x]

The two possibilities are equivalent and they In[3] : = {£ 1 [5] , £2[5] }
give the same result. Out [3]= {25 , 25}

Pure functions can be used to give functions as arguments to other functions. Let us describe
the most important of these functional operations.

ll.2.3.1 Applying Functions to Elements (Map)

Functional thinking can lead to simple programs. Let us look at an example: we want to
square the elements of a list 1 . Many languages leave us no other option than to write a loop
in which we assign the squares of the elements of 1 to the elements of a new list r .

qi [l_List] : =
Module[{r , n = Length[l] } ,

r = Table [O , {n}] ;
Do [r [[i]] = l [[i]] ,. 2 ,

{i , 1 , n}
] ;
r

(* Result array •)
(* assign elements •)

Mathematica makes it unnecessary to create the list of results explicitly. We can simply use
Table [elem , iterator] to generate the elements. They are collected in a list automatically.

1 1.2 Functions as Values

q2 [l_List] : =
Module [{n = Length[l] , i} ,

Table [l [[i]] A 2 , (* generate elements *)
{i , 1 , n}

263

The body of Table is of the form f [1 [[i J J J , that is, the same function is applied to
all elements of 1 . The operation that applies functions to elements of a list is built into
Mathematica. It is Map [junction , list] . Using it, we arrive at a much simpler program.

q3[l_List] : = Map [Function[x , XA2] , 1]

The operation Map [J takes a function as its first argument. This is a good place to use pure
functions.

The way such operations work is easy to see
if we use purely symbolic arguments.

To square the elements, we use a pure func­
tion that squares its argument.

In this easy way, we get the squares of num­
bers in a list.

The infix operator /10 can be used in place
of Map [] .

In[4] : = Hap[f , {e1 , e2 , e3, e4 , e5}]

Out [4] = {f [e1] , f [e2] , f [e3] , f [e4] , f [e5]}

In[5] : = Map[Function[x , XA2] , {e1 , e2 , e3 , e4 , e5}]

2 2 2 2 2
Out [5] = {e1 , e2 , e3 , e4 , e5 }

In[6] : = Map [Function[x, XA2] , {1 , 2 , 3 , -1 , I}]

Out [6]= { 1 , 4, 9 , 1 , -1}

ln[7] : = f /G {e1 , e2 , e3 , e4 , e6}

Out [7]= {f[e1] , f [e2] , f [e3] , f [e4] , f [e6]}

We do not want to fail to mention that this particular example can be computed in an even
simpler way. Mathematica applies arithmetic and mathematical functions automatically to
elements of lists.

There cannot be a simpler way ! Iu [B] : = {1 , 2 , 3 , - 1 , I} A 2

Out [BJ� {1 , 4, 9 , 1 , -1}

11.2.3.2 Applying Functions to Expressions (Apply)

The operation Apply [/ , expr] performs a simple operation: It replaces the head of expr
by f. This operation has surprisingly diverse uses.

The expression {a, b, c} has head List . In[1] : = App1y [f , {a , b , c} J
lf we replace the head by f , we get this Out [1] = f [a, b, c]
result.

264

The new head ts now Plus we get the �um
ot the elements of the hst'

Tin!> stmple defimt10n 1� all tt takes to com­
pute the average of the e\ement� of a \J�t
Agam, symbohl. argument� make 1t easy to
see what 1� gomg on Here 1� the formula tor
the average of two numbers

We can compute the expected value when
throwmg an ordmary dte

Thts defimhon 1� for the t-akulatum of the
absolute value of vector<> F1r<>t, we �quare
the clements, then, we sum them, and final ly,

we extract the square root

Here IS the formula for

Note that the defimt10n works for vector� of
arbitrary dtmcnswn

The mfix operator �ID can be used m place
ot Apply []

In [2] = Apply[Plus , {a, b , c }]

Out [2]= a + b + c

In[3] = average[l_L1st] : =
Apply[Plus , 1) J Length[l)

In[4] = average[{a , b}]

a + b
Out [4] = --

2

In [5] = average [{! , 2, 3 , 4 , 6 , 6}]

7
Out [5]= -

2

1 1 Functions

In[6] = abs[v_L1st] : = Sqrt [Apply[Plus , VA2]]

In [7] = abs[{x , y , z}]

2 2 2
Out [7]= Sqrt [x + y + z]

In[B] = f aa g[x , y]

Out [S]= f [x , y]

11.2.3.3 Iterating Function Application (Nest)

Iterated function application consists m applying a function again and agam to the result of
the previous apphcation, that IS, we build the sequence :r, f(:r), f(f(x)), . . The operation
Nest [/ , x , n] apphe� the function f n times to the 1mtial value x.

Here t� the tenfold ne�ung with purely !>ym­
bohc values

The funct10n 'Ax I + � ts apphed 10 ume� to
the value I 0 The result 1s an approxtmauon
of the Golden RatiO <p

NestL1st [] , m�>tead of Nest [] , shows all
mtermedtate value\

In[9] · = Nest [f , x , 10]

Out [9] = f [f [f [f [f [f [f [f [f [f [x]]]]]]]]]]

In[10] . = Nest[Funct1on[x, 1 + 1/x] , 1 . 0 , 10]

Out [10]= 1 61798

In[11] = NestL1st [Funct1on[x, 1 + 1/x] , 1 . 0 , 10]

Out [ll]= {1 , 2 , 1 5 , 1 . 66667 , 1 6 , 1 625 , 1 61538 ,

1 61906 , 1 61765 , 1 6 1818, 1 61798}

1 1.2 Functions as Values

[f we choose an exact number as starting
point, we get a rational approximation of <p.

A symbolic starting point gives a continued
fraction.

A finite approximation of a continued frac­
tion is an ordinary rational expression.
Together [] puts it over a common denom­
inator.

Interestingly, the coefficients of the rational
approximation of the Golden Ratio are suc­
cessive Fibonacci numbers. See also Sec­
tion 7.2.

In[12] : = Nest(Function[x, 1 + 1/x] , 1, 10]

144
Out [12]= -89
In [13] : = Nest[Function[x , 1 + 1/x] , a, 5]

1
Out [13] = 1 + -------

1
1 + -----

1
1 + ----

In[14] : = Together[1.
5 + 8 a

Out [14]= ---

3 + 5 a

1
1 + --

1 1 + -
a

265

In[15] : = NestList [Function[x, Together[1 + 1/x]] , a , 5]

1 + a 1 + 2 a 2 + 3 a 3 + 5 a 5 + 8 a
Out [15]= {a, , , ---}

a 1 + a 1 + 2 a 2 + 3 a 3 + 5 a

We used such function iteration mostly for numerical computations, for example in Sec­
tion 1 . 1 . 1 and in Section 3.4.4.

11.2.4 Key Concepts

1 . Potentially infinite data structures are finite but have no fixed limit on size.

2. Iteration offunctions is an important tool for efficient programs and for finding approximate
numerical solutions.

3. If an iteration converges, the limit is a fixed point of the iterated function.

266 1 1 Functions

1 1.3 Example: Simulation of Shift Registers

An application of Nest [] and NestList [] is the simulation of systems that evolve in discrete
time steps. At each time step, the system is in a certain state. The new state in the next time step
is a function of the old state. If we program the state transition as a function, we can perform
the simulation with Nest [] . NestList [] returns the evolution history of the system.

A linear shift register with feedback of length k consists of k cells that hold the values 0
or 1 . At each time step, the contents of the cells are shifted to the right and the new content of
the first cell is the sum (modulo 2) of certain other cells (the so-called taps).

We can treat a shift register as a function that computes the new cell contents from the old
ones. The contents of the cells are described as a list of zeroes and ones. The constructor
shiftRegister [taps] creates this function for a shift register whose taps are given by the list
of positions taps. The program is shown in Listing 1 1 .3-1 . (Think about how the definition
of shiftRegister works.)

Here is a shift register with taps at the given
positions.

We choose a random initial configuration of
15 bits.

Here are the contents after one time step. All
bits moved to the right, and the new first bit
is a function of the bits at the tap positions.

We can let the register run for 25 steps.

It is best to draw a picture of the states of
the register. The contents of the cells at one
time step are shown vertically (from bottom
to top). Successive steps are shown next to
each other. Ones are shown in white, and
zeroes are in black.

In[1] : = s = shiftRegister[{5, 7 , 10 , 15}] ;

In[2] : = zO • Table [Random[Integer] , {15}]

Out [2)= {1 , 1, 0 , 1 , 0, 1, 1 , 0, 0, 0, 1, 1, 0, 1, 0}

In[3] : = s [zO]

Out [3]= { 1 , 1 , 1, 0, 1 , 0, 1 , 1 , 0, 0, 0, 1 , 1 , 0 , 1}

In[4] : � NestList [s , zO, 26] // Short

Out [4] //Short�

{{1 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 0 , 0 , 1 , 1 , 0 , 1 , 0} , <<26>>}

In [5] : � Show[Graphics [Raster[Transpose[X]]] ,
AspectRatio->Automatic] ;

1 1.3 Example: Simulation of Shift Registers

In[6] : = First /G Y.Y.

267

For many of these shift registers, the se­
quence derived from the contents of the first
cell is a good pseudorandom sequence.

Out [6] = {1 , 1 , 1 , 0 , 0 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 1 ,

shiftRegister[taps_List] : =
Function[cells ,

0 ' 1 ' 1 , 1 , 0 ' 1 , 1 , 0 ' 0 ' 1 ' 1}

Prepend[Drop[cell s , -1] ,

]

Mod[Plus �� cells [[taps]] , 2]

Listing 11.3-1 LSR.m: Shift registers.

268 1 1 Functions

11.4 Exercises

11.1 Simple Evaluations1

Give the result of evaluating the fol1owing expressions. If there are any nested functions, also
give the most important intermediate steps. Assume that each example is evaluated in a fresh
Mathematica session. Consecutive expressions in one example are evaluated one after another
in the same session.

1 . g [x_] : = 1 + 1/x
Nest [g , a, 2]

2. i [i_] : = i"l
Nest [i , I , 2]

11 .2 Unbounded Data Structures

Realize some other implementation for the potentially infinite lists from Section 1 1 .2.2. Some
Ideas:

1 . Binary trees (see Section 6.3). Note that old information has to be overwritten if an already
existing key is inserted again.

2 . A list of rules of the form {i J ->el , . . . , in->en} . To store a new value at position i, you
can simply prepend a new rule. For efficiency reasons it may be necessary to remove other
rules for the same i to prevent the rule list from growing too much.

3. Your own idea.

Compare efficiency (run time and memory needed) of various implementations.

11.3 Shift Registers

Use the package LSR.m to implement a random number generator, as indicated in Section 1 1 .3 .

1 1.4 Bell Polynomials

The nth Bell polynomial Bn(x; g(t)) is the coefficient of tn in the Taylor series of exg(t) at
t = 0. We assume g(O) = 0. The formula for the Taylor series gives:

oo tn exg(t) = " Bn(X) -� n! k=O
1 Written examination, ETH ZUrich, Department of Mathematics and Physics.

(1 1 .4-1)

11.4 Exercises

• Example 1 : g(t) = t :
xt "oo n t" e = L...k=O x n!

Bn(x; t) = xn

• Example 2: g(t) = log(l + t):

Bn(x; log(l + t))

The falling factorial x!!. is defined as

n-1

x!!. = II (x - i) = x(x - 1) . . . (x - n + 1) .
i=O

269

(1 1 .4-2)

(1 1 .4-3)

(1 1 .4-4)

Write a package that implements the function BellP [n , x , g] to compute the Bell polyno­
mial Bn(x; g).

The identity is a good way to test our func­
tion (Example 1) .

Here are the falling factorials up to degree
four. (Example 2).

Their construction becomes apparent in fac­
tored form.

ln[1] : = BellP[10, x, Identity]

10
0ut [1)• X

In[2] : = Table [BellP[i , x , Log [1+1]t] , {i , 0 , 4}]

2 2 3
0ut [2J � {1 , X, -x + X , 2 X - 3 X + X ,

2 3 4
-6 X + 11 X - 6 X + X }

ln[3] : • Factor[�]

Out [3] � {1 , x, (-1 + x) x, (-2 + x) (-1 + x) x,

(-3 + x) (-2 + x) (-1 + x) x}

Chapter 12

Theory of Computation

I ! Uotl l l I I
2 [1 II I I 1:=-J
3 1 I . I I I I I
2 1 D�ar r:::LJ
4 1 I 1*0 I ! I
:') ! I 1*8 I I , 1 I
6 o-r·Tlll' o
8 1 I l•i M · I I
9 Q I•I a I I

10 0-I•Rr- · I I
12 1 I I•M I , I I I
13 ITLLL._:..D
1 4 ITW n� ::0
13 1 M•l I I : I I
15 LD�L u_ : __ (I
16 CTITTI - n
1 7 1 I M I I I I
1 8 �
1 9 1 I M I I I : I
20 1 La I I I I I
21 ITL•W TT I ' 1
22 1 I . I I I ! I
23 1 I I . I I I I
24 1 I I I•U I ! I
25 ITLILITIJ
26 1 I I I . I ! I '
27 1 I I I '"'. ! J I
28 LL I_ Lk:LIL
29 • I I I I B I j j
30 1 I I I M I I · I
32 _LL.LILLLJ
33 -rrw r·l I' I
3j I I 8 I I I · :
36 I • I I I I I I
38 ·Ta c n r

. .

.19 M I I I I I ,
4l :::W::LmiJ_,
42 I M I I I I I ,
44 . L R l LL.LL
45 =rriTTIT
67 1 I ! . I I I I

68 ' : I ra_nT
90 1 I I M I I I

91 1 I ! M I I I I · 188 I I I I Mto! I I
93 1 I I M I I I 0 210 ._ 0J.Ia:!Lli
94 ! 1 • 1 1 1 1 1 , 2 1 1 rrTrTTITJ
96 1 I M I I I I I i 2 1 2 I I I I I M I I
97 f TT1111 D ITJ 21 1 J] I I I •a l
99 1 I I M I I I I I 213 I I I I I .. a I

100 1 I La LOJ 214 I I I I I II I I
102 1 I I II I I I I 215 :TQTLRIJ
103 1 I 1 I 8 I I I 214 · I I I I M•' I I
105 ITL:liL 0 216 . I I I I II•: I I
106 1 I I I I a I I 21FCLDIIr?Tl
108 1 I I ! I 8 I l 219 I I I M *" I I
109 1 I I 1 D I I I 220 .. ITB:LE:IJ
I I I I I I I ' • I I I 222 ;-:=r .-o;:n
1 12 [_j I 1 M I I I I 223 I • I I ilj I I
1 14 UIIliiTT.n 225 ll:IIIE:Ll
1 1 j l l l l M ! i l 226 i ! M i l• I I
1 1 7 L.l.lJ=::JLill 262 I I II I I• I I m l I I I U 1-1 263 LlEJlJ,::.L I
130 1 ! ! ! a t t 264 1 I M I I>� ! 1 I
1 3 1 1 I I I I M I I I 265 L0Il!......L I
U.\ 1 I I I I 8 I I I 266 1 I I 1*••1 I
134 LU.LIILILLJ 267 1 I I a I• I 1 I
136 1 I I I M I I I] 26H [:IJ] a•'D
137 LLI 8 I I I I 269 1 I I I I*M 1 I
1 39 0 I . I I I I 269 1 : I I I !•! .. II
140 I I M I . I I I I 270 I ; 1 I I I•M I
142 1 I • I I I I I I 271 1 I I I 1*1 • I
143 ITLill Ll I 272 1 1 , I I 1•1 1•11
171 1 I I M I I I I 273 1 I I I 1•1 M I
1 72 1 I I I M 1 I I I 274 1 i I I 1•1 I 8
174 l llLillD 275 I 1 I I 1•1 II i
175 1 1 1 1 1 11 1 1 1 m cc n m-.-;
177 1 I I I I M I I I 278 1 I I I I I•M I
178 LULILI:l l 280 LLTO±a::::::;
!HO I I I I I . a I I 281 u-=ITIT�
181 l.JTI:II:::!IJ 2R2 I I · I I II I ,
1s2 ITLO r:a::rJ 2HI [(TTa'LfT
183 1 I I I I ! M I I 2�tl l I I M•l I i
182LI I I I 11•1 I I 284 0J.a::J•.LJ::r::
1 84 1 I I I I Mt<l I I 2U [JTW-[!ITTI
IR5 Llll::a::All 2R7 1 I II I 1•1 I I
187 1 I I I II •I I I 289 1 l I r 1•1 I l 1

290 c::JlJiCTJ
J20 I i 1 8 I• I . I I
321 1 ' I I•M•I · �J
322 1 I I • 1•1 I I
323 u __ La!.L:LJ
324 1 ! I I•M [� I
324 1 I I I*I*I'BI I
325 1 I I I•M I I
326 1 I ! 1•1 M I
327 1 I I It:! 1"8 I
328 LLIELa=J
329 cr:rEITIJ
330 I I I 1•1 • I I
332 1 1 1•1 8 1
333 1 ! · I•• I I
.l.lS I I i lt:M I I
336 c:o::=a:rn::
337 1 I I M I ! I
336 [.[I I!LLIL
?-38 1 I I M•l I I ! ·
339 LLILL!IJlL·
341 1 TIT•] TT]-
342 1 I I M•l I I I I
366 0 l •!TTl 0
367 1 I I '*M I I I I
367 L l LE!RDTI
368 LLIFJ!Till
369 1 I I !¥. M I I I
370 I I I I•· lt:M I I
371 DTEaTIJ
372 1 I I 13 I M I I
.173 1 I I !¥ M I I I
375 DTVTJTJ
376 DT]!ITI TJ
378 1 I I 1•8 I I I I
379 1 I I M I I I I I
380 1 I I M I ! I ! I
379 LII!Lil l I I
381 1 1 •· � 1 1 rn
382 1 M 1•1 I I I I
384 I M I• I , ! fTJ

1 6 1 I M,.J ! I I I
m cr.:a•r�

3H6 LDTIL:ITI --1
387 I 1 8•1 I I I I
4 1 1 L;:JH I I I . I
412 1 I •• I I ! I
412 I I •I•E I I I
413 LL-•a r ri · 1
414 1 I t<l • I ! I
415 I:::L"LEU _ I
416 1 I '"' M I I !
41 7 1 I I·· I e I ;
4 1 8 0_E&:LL ,
420 LlJ!Ta:::LLT-
421 1 I I•D I I I I
423 1 I I•M I I I
424 1 I M I I I I I
425 1 I M I I I I I
424 Lll'n=Lm
426 1 M•l I I I I I
427 1 I M I t I I]
428 II a I I I I I
429 1 I D I , I I I I
43o rn·a· r o n
431 . I M I I I I I I
432 · I I • I I I I I
433 I I l:td · I I I
434 :::J I a I · I I I
435 :IILJ£:JTI
436 I I M I I I I
438 I I M I I I I
439 ::T:IIICTll
441 I B I I I I I
442 B I I I I I I
444 ;_ M I I I 1 I I
427 iTa I l - ; l I
445 1 I • I I · I I
446 LJ!JLJ. ::r::J. J
447 1 • I I I I I
448 1. .La .I . l I I
449 1=-rr· rr
451 I M I I I I I
452 CIT J--=cUJ
454 1 B I I I I I

O nllfTTTTJ.l

In this chapter, we present one foundation of theoretical computer science. Theory of com­
putation studies the fundamental limits of algorithmic computation - independent of practical
considerations of run time and memory size. We shall characterize the class of computable
functions and show that there are functions that cannot be computed by any machine.

Section 12 .3 presents Thring machines, one of the abstract machine models used as a
tool for proving theorems about computability. Despite its abstract nature, we will be able
to develop real programs for it and run them on a simulator. This material is adapted from
[50, 53] . Finally, in Section 1 2.4 we show exactly how the partial recursive functions can be
computed on Turing machines.

About the illustration overleaf:
This picture shows the computation of the predecessor function on a Turing machine. See
Section 1 2.4.

12. 1 Computable Functions 273

12.1 Computable Functions

A program (a definition in Mathematica) computes a function transforming its input into an
output. Theory of computation investigates the question of which functions are computable
in principle without regard to limits of memory size and run time. That is, we assume that we
have all the memory needed and that the computer is fast enough, whatever the computation
performed. The large number of different data types and program constructs offered in real
programming languages make such fundamental questions difficult to answer. It is easy to
see, however, that we can restrict ourselves to programs working with natural numbers. All
other data types, such as strings, can be represented easily as numbers. In the end, every
computation takes place on a computer whose memory cells can be viewed as numbers.

We can restrict ourselves to functions on natural numbers, having some number k of
arguments, that is, functions

k ?:: O . (1 2 . 1- 1)
The case k = 0 describes functions of no arguments, that is, constants. Zero is considered a
natural number: N = {0, 1 , 2 , . . . } .

In this section, we shall define a class of mathematical functions, the partial recursive
functions, and show that we can compute all of them on a computer.

12.1.1 The Natural Numbers

As a data type, the natural numbers are defined by the constant 0, and the successor function
s : n r--+ n + 1 (see Section 5. 1 . 1) . A set of natural numbers containing 0, and, with each n also
the number s(n), contains all natural numbers. This property is the foundation of proofs by
induction, see Section 5. 1 . 1 . We can define addition and multiplication inductively as follows:

m + O = m,
m + s(k) = s(m + k),

(12. 1 -2)
m · O = 0,

m · s(k) = m · k + m.

It is not difficult to write a Mathematica program for such definitions. Obviously, these
functions can be computed.

12.1.2 The Primitive Recursive Functions

We want to formalize the informal principle of recursion to obtain a rigorously defined class of
functions. An inductive definition of a class of objects defines certain fundamental objects and
provides construction methods for obtaining new objects from already constructed ones. This

274 12 Theory of Computation

principle is similar to the definition of a data type from constants (the fundamental objects)
and constructors (see Chapter 5). The most important of these construction methods is the
schema of primitive recursion, which we used in Equation 12 . 1-2. We want to generalize and
formalize it. The result is the class of primitive recursive functions. The class of primitive
recursive functions is defined inductively as follows:

1 . The constant 0 is a (nullary) primitive recursive function.

2. The successor function s is a (unary) primitive recursive function.

3 . For each n 2:: 1 and k � n, the projection function p'k, with

is a primitive recursive function.

4. The composition of primitive recursive functions is primitive recursive:
Let J, 91 , . . . , 9p be primitive recursive, n 2:: 0, then h, with

is a primitive recursive function.

5 . Let f and g be primitive recursive, n 2:: 0, and

h(O, m , , . . . , mn) = f(mt , . . . , mn),
h(s(k), m1 , . . . , mn) = g(k, h(k, m, , . . . , mn) , mt , . . . , mn) ,

Then, h is a primitive recursive function (schema of recursion).

(1 2. 1-3)

(1 2 . 1-4)

(1 2. 1-5)

It is rather cumbersome to adhere strictly to this formalism. To see that the addition +(m1 , m2)
is primitive recursive, for example, we need to write Equation 1 2. 1 -2 in this way:

+(0, m) = Pl (m),
+(s(k) , m) = g(k, +(k, m), m),
g(k, l, m) = s(p�(k, l, m)) .

(1 2. 1--6)

In particular, the projection functions are mostly notational inconvenience. We shall, therefore,
simply insert the corresponding arguments. For example, we can define g as g(k, l , m) = s(l).
It should be obvious which projections to use, if we wanted to be strict.

We still have to prove that the schema of recursion 1 2. 1-5 does indeed define a proper
function h. The method of proof is, of course, induction (see Exercise 1 2. 1) .

12. 1 Computable Functions

12.1.3 Which Functions Are Primitive Recursive?

275

All basic arithmetic functions are primitive recursive. We looked already at addition and
multiplication. The predecessor function p(n), with

is also primitive recursive:

p(O) = 0,
p(n) = n - l , n > 0,

p(O) = 0,
p(s(k)) = k.

Note that p(O) = 0 because we deal only with nonnegative integers.

(12. 1-7)

(1 2 . 1-8)

The arithmetic difference rn ..:.. n is used in place of ordinary subtraction because there are
no negative numbers. . { m - n. if m > n; rn - n =

0 . other;ise.

It is easy to show that the arithmetic difference is primitive recursive:

rn ..:.. 0 = 1n,
rn ..:.. s(n) = p(m ..:.. n).

For the last operation, division, see Exercise 1 2.3.

12.1.4 Programming Constructs

(12. 1-9)

(1 2. 1-10)

Programs are our main source of functions. If we assume that we work only with natural
numbers, every program (or subprogram) is a function of natura1 numbers.

Let us now look at programming constructs and find out which ones lead to primitive
recursive functions. The simplest programming constructs are predicates, branches, and
loops. We can view predicates as functions returning a natural number. We use the value 0 for
True , and any value greater than 0 means False .

The conditional statement or branch If [pred , then , else] is also primitive recursive
because we can define it strictly as a primitive recursive function if(k, m 1 , mz) that returns m ,
for k = 0, and rnz for k > 0:

if(O, m1 , rn2) = Pi(rn , , rnz) = m r ,
if(s(k), rn, , rn2) = P!(k, if(k, m 1 , mz) , m , , mz) = mz .

(1 2. 1-1 1)

Functions defined with bounded iteration are primitive recursive. A bounded iteration is a loop
whose number of iterations is known already at the beginning - that is, the number of iterations
does not depend on values computed during the iteration. The Do loop in Mathematica is
such a bounded iteration; the While loop is not, in general. Here is an example of a function
computed with a Do loop. We want to show that it corresponds to a primitive recursive
function.

276 12 Theory of Computation

x2 = 1 ;
Do [x2 = x2 * x3 , {x3 , 1 , x1}]

This program uses the variables x1 , x2, and X3 . The value of x2 after program termination is,
therefore, a function of x1 , xz, and XJ, <p(x1 , xz, x3). Which well-known function is it? The
iteration is over x 1 • U x1 = 0, the loop is never executed, and we get

<j>(O, xz, XJ) = 1 . (1 2. 1-12)

Now, the induction step. For x 1 + 1 instead of x . , the loop is iterated one more time, and in the
last traversal x3 is equal to x 1 + 1 . After the next-to-last traversal, xz i s equal to <j>(Xt , xz, X3)
(by induction), and we get

(1 2. 1- 13)

Equations 12.1-12 and 1 2. 1-1 3 together are an example of the schema of primitive recursion.
The function computed by them is the factorial function of x1

12.1.5 The Partial Recursive Functions

(1 2. 1-14)

The class of primitive recursive functions is too small for the notion of computability.
While loops, for example, often lead to functions that are not primitive recursive. There
are also programs that do not halt for every input value. Such behavior leads to partial func­
tions. A function is partial if its domain is not necessarily the whole of Nk . A simple example
of a partial function is the square root. It is defined only for natural numbers that are perfect
squares, that is, for n = 0, 1 , 4, 9,

We can describe partial functions by a single new construction in addition to the primitive
recursive functions, the � schema. The functions defined in this way are called the partial
recursive functions.

6. (� schema). Let f and g be primitive recursive; then h, with

(1 2. 1-15)

is a partial recursive function. �k[g(m, , . . . , mn , k)} is the least k with g(m 1 , • • • , mn , k) =

0, if one exists, undefined otherwise.

As an example, consider the square root function just mentioned. Let

(1 2. 1-16)

12.1 Computable Functions 277

S(n, , nz) is zero if and only if n, = nz. Now, we can define the square root w(m):

w(m) = J!k[O(m, k · k)] . (12 . 1-17)

If rn is a square, then w(m) = ..jm; otherwise, w(m) is undefined.
The Jl schema formalizes the While loop. The square root function can be programmed

as follows:

k = 0 ;
While [Not [m == kA2] , k++] ;
k

If you run this program with an input m that is not a square, the loop will never termi­
nate ! "Undefined" usually means for functions given by programs that the program does not
terminate.

12.1.6 The Ackermann Function

All primitive recursive functions are total. Partial recursive function may be - but need not be
- total, as we have seen. The class of recursive functions is the class of all partial recursive
functions that are total. The question arises whether this class is larger than is the class of
primitive recursive functions: Are there functions that are total, but not primitive recursive?

An example of a total function that is not primitive recursive is the Ackennannfunction. It
is a binary function defined as

A(O, y) = y + 1 ,
A(x, O) = A(x - 1 , 1),
A(x, y) = A(x - 1 , A(x, y - 1)).

(1 2.1-18)

It can be shown that primitive recursive functions cannot grow too fast. A primitive recursive
function <p(y), obtained by n-fold application of the schema of primitive recursion 12 . 1-5,
cannot grow faster than A(n, y). If A(x, y) were primitive recursive, then f(n) = A(n, n) would
also be primitive recursive. This is impossible because A(n1 , y) grows faster than A(n2, y) for
n, > n2. There should be a no, such that f(n) < A(no, n).

The Ackermann function can easily be de- In [1] : = .l.ckermann[0 , y_] : = y + 1 ; \
fined in Mathematica. .l.ckerm&ruL[x_, 0] : = .l.ckermann[x - 1 , 1] ; \

.l.ckerm&ruL[x_ , Y-] : =
.l.ckermann[x - 1 , .l.ckermann[x , y- 1]] ;

A(l , i) is equal to i + 2. In[2] : = Table [.l.ctermann[1 , i] , {i , 0 , 10}]

Out [2]= {2, 3 , 4, 5, 6, 7, 8, 9, 10 , 1 1 , 12}

278

A(2, i) is equal to 2i + l .

Because of the deep recursion involved, the
recursion limit has to be increased.

A(3, i) is equal to 2i+J - 3.

12 Theory of Computation

In[3] : = Table[1ckermann[2 , i] , {i, 0 , 10}]

Out [3]= {3, 5, 7 , 9, 1 1 , 13 , 15, 17, 19, 21 , 23}

In[4] : = $RecursionLimit = Infinity

Out [4]= Infinity

In[5] : = Table[Ackermann[3 , i] , {i , 0, 4})

Out [5)• {5, 13, 29 , 6 1 , 125}

The value A(4, 1) = A(3, A(4, 0)) = A(3 , A(3, 1)) = A(3 , 1 3)

=

216 - 3 = 65533 cannot be
computed with this method in reasonable time.

Our knowledge of A(3, y) allows us to speed In [6] : = 1ckermann[3 , y_) : • 211 (y + 3) - 3
up the calculations.

Now we can even compute A(4, 2) quickly, In[7] : = Timing[a42 = 1ckermann[4, 2] ;]
but we cannot print out the result. Out [7]= {0 . Second , Null}

The result has 19,729 digits. In[8] : = l[a42]

Out [8]= 2 . 003529930406846 10

The nex.t number, A(4, 3), already has 6 .03 · In[9] : = Log[10. 0 , 2] %

19728

1019727 digits! The whole universe is not big 19727
enough to print this number. Out [9]= 6 . 03122606263029 10

12.1. 7 Recursive Functions Are Computable

It is not difficult to see that all partial recursive functions can be computed (in principle) on
a computer. We have to convince ourselves that the schema of primitive recursion (Equa­
tion 12. 1-5), and the ll schema (Equation 12. 1 -1 5) can be programmed. As an example, let
us look at the definition of addition according to Equations 1 2. 1 -2 and 12 . 1-6. They can be
programmed like this in Mathematica:

plus [O , m_] : = m

plus [s [k_] , m_] : = s [plus [k , m]]

Here is the computation of 2 + I = 3. In[1] : = plus[s [s [O]] , s [O]]

Out [1]= s [s [s [O]]]

Primitive recursion corresponds to the definition of the data type for natural numbers (see also
Section 5. 1 . 1). Induction for k can be used to show that the computation of h is finite for
any k. The ll schema leads to a While loop.

12. 1 Computable Functions 279

12.1.8 Key Concepts

I . Arbitrary data processing on computers can be reduced to the computation of functions of
natural numbers.

2. Computability is a theoretical concept, independent of any restrictions on memory size
and run time.

3. Partial functions can also be regarded as computable.

4. Undefined places of a function correspond to programs that do not halt.

280 12 Theory of Computation

12.2 Models of Computation

After we saw that recursive functions are computable, we are interested in the reverse question:
Which functions can be computed at all? It is obvious that there are functions that cannot
be computed: The number of possible programs is countable, but the number of functions
N ----* N is uncountable.

12.2.1 Machine Models

To see which functions can be computed in principle, we have to think about what kinds of
computers we can reasonably imagine. To answer this question, we study abstract machine
models. Such models are free of restrictions concerning memory size and computing time.
The most important of these models is the Tur;ng machine, named after the computer pioneer
Alan Turing. This model is very simple, but it is obvious that none of the sophisticated features
of today's computers extend the class of functions computable on them. Every computation
on one of today's computers could be done in principle on a Turing machine.

The simplicity of the Turing machine allows us to prove that every function computable on
it is partial recursive. (We cannot give this proof here; it is too complicated.) Both theorems
taken together show that the computable functions are exactly the partial recursive functions.

12.2.2 Equivalence of Machine Models

Over time, many different machine models have been proposed. In each case, it turned out
that the functions computable on the new models are exactly the partial recursive functions.
An important tool for proving two models equivalent is simulation. A program is developed
that runs on one machine and that interprets programs written for the other machine. That is,
one machine is simulated on another machine. We can think of Mathematica's programming
language as a machine model . The program Mathematica is nothing but an interpreter of
Mathematica's programming language on a certain computer. An interpreter for Turing
machines in Mathematica is developed in Section 12.3 .

A. Church summed up these insights in what is now called Church 's thesis:

The computable functions are exactly the partial recursive functions.

This statement cannot be proved. We cannot exclude the possibility that some day a physical
process will be discovered that can be used to compute nonrecursive functions.

12.2.3 The Halting Problem

An important noncomputable function is the halting problem. Computer programs can be
encoded as numbers. This encoding allows us to think about functions operating on programs.

12.2 Models of Computation 281

Because computable functions can themselves be represented as programs, we can see that
programs can receive other programs as input. This statement is not as strange as it may
seem at first. A compiler, for example, is a program that takes another program as input and
produces a program as output (normally written in machine language). An interpreter is also
such a program. It takes another program P and its input E as inputs, and produces the same
output that the program P would have produced with input E. If the program P with input E
got into an infinite loop, the interpreter would also fail to halt.

An interesting question is: Is there a program H that can find out whether another
program P with input E will halt in finite time (without taking an infinite amount of time to
find out). That is, we ask for a total function H(P, E) that returns 0 (for True) if P halts with
input E, and 1 (for False) otherwise. The predicate

H(P, E) : Program P halts with input E in finite time

cannot be computable. The assumption that it is computable, that there is a program comput­
ing H, leads to a contradiction. Define

G(z) = if(H(z, z) = 0, loop, halt) .

(loop means to go into an infinite loop. for example, IJ.k[1 J .)
If H were computable, G would be, too. Look at G(G): The execution of program G

with input G terminates if and only if H(G, G) > 0, that is, if program G with input G does
not halt ! Therefore, the halting problem is undecidable, that is, there is no program that can
decide whether any program halts on any given input.

The undecidability of the halting problem does not mean that we can never decide whether
a particular program halts. But there is no single program that can answer this question for all
programs.

A related intriguing concept is the halting probability, explained in Chaitin's book [1 1] .

282 12 Theory of Computation

12.3 Thring Machines

The Turing machine was devised by Alan Turing as a theoretical model of a computer. On
one hand, the machine is simple enough that the class of functions computable on it can be
described exactly (the partial recursive functions); on the other hand, the model is universal
- that is, all functions computable on any other model can also be computed on the Thring
machine. This property is shown by simulating the other models on the Thring machine.

In this section we want to develop a simulator for Turing machines themselves. In the next
section, we shall show that the partial recursive functions are Turing computable.

12.3.1 The Machine Model

The Turing machine consists of an infinite memory (of which we will always use only a finite
portion). The memory can be thought of as a linear arrangement of cells. We call the memory
the tape of the Turing machine. Each cell contains one symbol taken from a finite alphabet. We
shall develop only machines whose alphabet consists of two symbols, empty (_) and mark (*).
All but finitely many cells contain the empty symbol.

The Thring machine can access only one cell at a time. We can think of this cell as the
position of a read/write head. The machine i s in one of finitely many states, which we can label
with positive integers. The program of a Turing machine consists of finitely many instructions.
An instruction reads the symbol under the head and performs three actions:

• It writes a symbol into the cell under the head, overwriting the symbol present. The new
symbol may be the same as the old one, in which case the contents of the cell are not
changed.

• It moves the head one cell to the right or left, or it stays where it is. We denote this action
by 1 , r , and s .

• The machiTle enters a new state.

The cycle is then repeated: The machine reads the symbol under the head, and so on.
The behavior of the Turing machine is given completely by the list of instructions (the

Turing table) and the original contents of the tape. Instructions are quintuplets of the form

instruction[state , symbol , newsymbol, move , newstate] .

The machine halts if the new state is equal to 0. We assume that the machine starts in state 1 .
It is taken to be an error i f there is no instruction for the current state and symbol read. We
shall not (knowingly) develop machines that fall into an emor state for a correct input.

12.3 Turing Machines 283

We can use a simulator for Turing machines to assemble instruction sequences in Mathe­
matica and then look at the actions of the corresponding Turing machine step by step. Here is
an example. This is the list of instructions:

state symbol new symbol move new state
1 r
2 * * r
2 * 1
3 * * 1
3 s

The course of a computation is best visualized with a picture.

Each line depicts the configuration before
the execution of an instruction. On the left
is the current state, followed by a portion of
the tape. The position of the head is marked
by a gray square.

t l 11 * 1 * * I I I
2 LC.* >l I I I
2 1 I l * .i'J l .lJ
2 I I * I * • I ;] l
2 r 1 * 1 * 1 * 111
3 1 .] * 1 * 111 * 1
3 LJ * EI * I
3 1 Ill * * 1 '-'J

3 1 111 * 1 * * 1 * 1 ' I
o LIE!� * I * 1 --=:D

2
2
3
3
0

The machine starts in state 1 with a blank under the head. According to the first instruction it
writes a blank, moves to the right, and goes into state 2. Now it finds a mark, writes another
mark, moves to the right, and stays in state 2. After three more steps it finds a blank, writes a
mark, moves to the left, and continues in state 3. In state 3 it skips all further marks going left
and, finally, comes to a halt on the cell it started from.

Overall, this machine increments the number of consecutive marks by 1 . It implements
the successor function, if we represent natural numbers as sequences of marks.

12.3.2 The Tape of the Thring Machine

The first thing we need is a data type for the tape of the Turing machine. We developed a
suitable data type for infinite lists in Section 1 1 .2.2. Because the head of a Turing machine
moves only a little, writing over an old part of the tape happens much more frequently than
does venturing into new parts of the tape. The implementation given in Section 1 1 .2.2 is not

284 12 Theory of Computation

particularly efficient for this kind of usage. We can keep the abstract data type, however, with
a few additional functions:

Constants emptyTape [b]
Constructors update [t , s . i]

newT ape [list , b. po]
Selectors t [i]

low [t]
high[t]

an empty tape
same tape as t, but with s in cell i
a new tape from a list
the symbol in cell i
the smallest nonempty cell
the largest nonempty cell

Observe that the constructor emptyTape [b] takes an argument that specifies the chosen empty
symbol. Our implementation in the package Tape.m, shown in Listing 1 2.3-1, uses an ordinary
list that is enlarged as needed. In addition, we must store the true index of the first element of
the list. Tapes are, therefore, represented as

tape [list, offset , b] .

Please try to understand the functions in the package. As output format we choose

showing a portion of the tape. The variables b and m contain the symbols used for empty and
mark.

nevTape (] makes iteasy to set up the initial In[3] : a t a nevTape[{b . m, m, m} . b]
tape contents for a Turing machine. Out [3]a < _ * * * _ _ . . . >

Here is how we give a new value for the tape In[4] : a tl • update [t , m, 6]
position 6. Out [4]a < _ * * * _ * . . . >

12.3.3 Instructions and Configurations

We saw already how we can specify instructions. Internally, however, we want to store them
as rules

{state , symbol} -> {newsymbol , move , new state} ,

to allow us to use the built-in mechanism of rule application for finding the instruction for a
given state and symbol. The data type for instructions defines the five selectors state [] ,
symbol [] , newstate [] , newsymbol [] , and move [] for extracting the respective compo­
nents of instructions. The Turing table is stored as a list (of instructions). Listing 1 2.3-2
shows the simple implementation of the data type.

12.3 Turing Machines 285

The configuration of a Thring machine is given by the current state, the contents of the
tape, and the position of the head. We use the data type

conf ig[state, tape , head]

with the expected selectors state [] , tape [] and head [] , as well as symbol [con.fig] as an

BeginPackage ["CSM ' Tape ' "]

emptyTape : : usage = " emptyTape(b] is an empty tape vith blank b . "
update : : usage • "update[tape , sym , i] is a tape differing from t ape at position i

where its value is sym . 11

newTape : : usage "" 11newTape [list , b , p0 : 1] is a tape taken from a list .
The f irst element is at position p0 . 11

low : : usage • 11 lov[tape] is the least index of a nonempty cell . 11

high : : usage .. 11high[tape] is the largest index of a nonempty cell . "

Begin [" 'Privat e ' "]

(* list [(j]] i s the posit ion i = offset + j •)

emptyTape[b_] : • tape [{} , 0 , b]

tape [list _ , offset _ , b_] (i_Integer] / ; 0 < i-offset <= Length[list] • a
list [[i-offset]]

tape [list _ , offset _ , b_] [i_Integer] : = b

tape/ : updat e [tape [list_ , offset _ , b_] , new_ , i_Integer] : =
Which[i-offset <• 0 ,

tape [Join[{new}, Table[b, {offset-i}] , l ist] , i-1 , b] ,
i-offset > Length[list] ,

tape [Join [list , Table [b , {i-offset-Length[list] - 1}] , {nev}] ,
offset , b] ,

True ,
tape [ReplacePart [l ist , new , i-offset] , offset , b]]

nevTape [l_List , b_ , p0_ : 1] : = tape [1 , p0- 1 , b]

tape/ : lov[tape [list_ , offset _ , b_]] : •
Module [{j = 1},

While[j <= Length[list] && list [[j]] =•= b, j ++] ;
If [j <= Length[list] , offset + j , Infinity]]

tape/ : high[tape [list_ , offset_ , b_]] : •
Module [{j a Length[list] } ,

While [j >• 1 && list [[j]] b , j --] ;
If [j >= 1 , offset + j , -Infinity]]

Format [t_tape] : = SequenceForm["< " , Infix[Array[t , 6, 1] , 11 "] , " • • • > 11]
Protect[tape]

End[]
Protect [emptyTape , updat e , nevTape , low , high]
EndPackage []

Listing 12.3-1 Tape.m.

286 12 Theory of Computation

abbreviation for tape [config] [head [config]] , to make it easier to look at the symbol under
the head.

instruction[state_ , symbol _ , newsym_ , move _ , newst_] : =
{state , symbol} - > {newsym, move , newst}

state[instruction [state_ , symbol_ , newsym_ , move_ , newst_]] : = state

symbol [instruction [state_ , symbol_ , newsym_ , move_, newst_]] : = symbol

newsymbol[instruction [state_ , symbol _ , newsym_ , move_ , newst_]] : = newsym

move [instruction[state_ , symbol_ , newsym_ , move_ , newst_]] : = move

newstate[instruction[state_ , symbol_ , newsym_ , move_ , newst_]] : = newst

12.3.4 Simulation

Listing 12.3-2 Part of Turing.m: Instructions.

The execution of an instruction leads from the old configuration to a new configuration that
reflects the effects of the instruction. The pair (state, symbol under head) determines which
instruction is executed. Because we store instructions as rules, we can simply apply the list of
instructions to this pair to get the new state, new symbol, and the movement of the head. These
three pieces of information allow us to change the configuration accordingly. The function
nextConfiguration [config , instructions] performs these steps, see Listing 1 2.3-3.

nextConfiguration[c_config/ ; state [c] ==O , instructions_] : = c

nextConfiguration [c_config, instr_List] : =
Module [{newst , newsym, move},

{newsym , move , newst} = {state [c] , symbol [c]} / . instr ;
If [Head[newst] === Symbol ,

Message [nextConfiguration : : noinstr , state [c] , symbol [c]] ;
Return[c]] ;

config[newst ,
update[tape [c] , newsym, head[c]] ,
head[c] + move / . moverules

moverules = {r -> 1 , 1 -> - 1 , s -> 0}

nextConfiguration : : noinstr = "No instruction with state ' 1 ' and symbol ' 2 ' found . "

Listing 12.3-3 Part of Turing.m: Configurations.

The first definition makes sure that no more changes take place after entering the halt state
(state 0). The error message is generated if no instruction is applicable to the current state and
symbol. This condition means an error in either the instructions or the contents of the tape.
In general, the new state is taken from the instruction, the tape is updated by writing the new

12.3 Turing Machines 287

symbol at the current head position, and the head position is changed according to the move.
The symbolic moves r , l , and s are first translated into corresponding offsets in the positions
(-1 , l , or O).

An auxiliary function initialConfiguration [list] creates an initial configuration by
creating an initial tape from the given list of symbols, setting the state to 1 and the putting the
head over the first symbol in the list.

To simulate a computation, we need to set up the initial configuration, and then repeatedly
apply the function nextConf iguration [] . It is best to use Nest [] for this iteration. To
simulate n computation steps, we use

Nest [nextConfiguration[# , instructions] & , config , n] .

If we want to see the intermediate steps, we use NestList [] instead.

These are the instructions of the machine we
showed in action on page 283.

In[5] : � addOne // Tab1eForm
Out [5] //Tab1eForm� {1 , _} -> {_ ,

{2, *} -> {• ,
{2 , _} -> {* ,
{3, *} -> {* ,
{3 , _} -> {_,

r , 2}
r , 2}
1 , 3}
1 , 3}
s , 0}

Here is an initial configuration with three In[6] : � mO = initia1Con1iguration[{b , m, m , m}]
marks on the tape. The head is on the blank Out [S]• config[1 , < _ * * * _ _ . . . > , 1]
before the marks.

We execute nine steps. The machine is now
in state 0, that is, it has halted.

In[7] : : HestList [nextConfiguration[• , addOne]& ,
mO , 9] I I Tab1eForm

Out [7]//Tab1eForm� config[1 , < * * * . . . > ,
config[2, < * * * . . . > ,
config[2 , < * * * . . . > ,
config[2 , < * * * . . . > ,
config[2, < * * * . . . > ,
config[3, < * * * * . . . > ,
config[3, < * * * * . . . > ,
config[3, < * * * * . . . > ,
config[3, < * * * * . . . > ,
config[O, < * * * • . . . > ,

1]
2]
3]
4]
5)
4]
3]
2]
1]
1]

Most of the time we want to let the machine run until it halts. We made sure that the function
nextConfiguration [] does not modify the halt state. A configuration with state 0 is,
therefore, a .fixed point of nextConfiguration [] . The operation FixedPoint [] works
like Nest [] , but it continues applying the function until a fixed point is reached.

The machine runs until it comes to a halt. In[S] : � Pi:l:edPoint [nextCon1iguration[•, addOne]&, mO]
The result is the final configuration. Out [8)� con1ig[O, < _ * * * * _ . . . > , 1]

288 12 Theory of Computation
--

FixedPo intLi st [] , instead of FixedPoint [] , returns the list of intermediate configuration
(l ike NestList []).

The command run[config , instructions] , shown in Listing 1 2.3-4, uses FixedPoint []
in the way just shown. An optional third argument specifies the maximal number of steps
to perform. It is meant as an "emergency exit" for machines that may not halt. runList []
returns all intermediate configurations. In addition to an initial configuration, both commands
can take also a list describing the initial contents of the tape as an argument.

run[c_config, instr_List , n_ : Infinity] : =
FixedPoint [nextConfiguration [# , instr] & , c , n]

run[init_List , instructions _ , n_ : Infinity] : =
run [initialConfiguration[init] , instructions, n]

runList [c_config , instr_List , n_ : Infinity] : =
Module [{configs} ,

]

configs = FixedPointList [nextConfiguration [# , instr] & , c , n] ;
If [Length[configs] < n + 1 , Drop [configs , - 1] , configs]

runList [init_List , instructions_ , n_ : Infinity] : =
runList [initialConfiguration [init] , instructions , n]

Listing 12.3-4 Part of Turing.m: Rmming the simulator.

A programming detail: If a fixed point is reached, that is, if the machine halts in fewer than
n steps, the output of FixedPointList [] contains the last configuration twice, and we
remove the last one. If we stop because of the limit on the number of steps instead, the result
is a l ist of length n + I , and we leave it alone.

This machine removes the last one of a se­
quence of marks. It implements the prede­
cessor function.

We let it run to completion.

In(9] : = subl a {
instruction[1 , b , b ,
instruction[2 , m, m,
instruction[2 , b , b ,
instruction[3, m , b,
instruction[3, b, b ,
instruction[4 , m , m ,
instruction[4 , b , b ,

} ;

In[10] : = runList[{b , m, m} , subl
Out [10] 11Tab1ePorm= config[1 , <

config[2, <
config[2, <
config[2, <
config[3, <
conf ig[4, <
config[4 , <
config[O, <

r , 2] ,
r , 2] .
1 , 3] ,
1 , 4] ,
s , 0] .
1 , 4] '
s , 0]

II Tab1ePorm
* * . . . > ,
* * . . . > ,
* * . . . > ,
* * . . . > ,
* * . . . > J

* • . . > ,
* . . . > .
* . . . > ,

1]
2]
3]
4]
3]
2]
1]
1]

12.3 Turing Machines 289

A picture makes it easier to see how it works. In[ll] : = P1otTuring[X J ;

This machine with three states is called a
busy beaver. If it i.s .started on an empty
tape, it runs for 21 steps before halting. No
other machine with three states runs for more
steps before halting.

Here, we see the busy beaver in action. It
writes five marks on the tape. There are
five different machines with three states that
write a total of six marks before halting (but
taking less than 2 1 steps to do so). Can you
find one of them?

The option Columns->n causes the
configurations to be shown in n columns in­
stead of in only one.

12.3.5 Assembly Programming

I I . * ' * I I I I
2 c--.·*-- rJ - � - rJ
2 o�u_J _ _ I_ 1 _ �
2 1�-=:=1 *�I:;:;* ����I :::;:1 �I=
3 �' �] *;;.·�1 �1=:1=
4 I I Ill I I I I
4 I B * l I I l r ·
o I Ill * I J=r=JTI

In[12] : = beaver3a a {
instruction[1 , b , m, r , 2] ,
instruction[1 , m, m, r , 0] ,
instruction[2 , b , m, 1, 2] ,
instruction[2 , m, b , r, 3] ,
instruction[3 , b , m, 1 , 3] ,
instruction[3 , m, m, 1 , 1]

} ;

In[13] : • PlotTuring[runList[{} , beaver3a] , Columns->2] ;

I I • I
2 [1 * 11
2 1 Ill * I
3 1 I •
I 11111 * 1 I I
2 -EJr[C" � - --1-:
3 _ECLLL_JJ
3 1 * 11 * 1 I I I I
3 :I*l * rT r � - -�-,
I . * ' * ' * ' I I
2 1 * 111 * ' * 1 I I

3 1 * 1 111 * 1 I W _ _l
1 *I*"""-;[[1_ 1_ []
2 * ' * . * ' I I I
3 * · * 1 Ill I I :
1 * * II* I]_LITI
2 * * I * II I I I I
3 * * H ill I I I
3 * * 1 * 111 * 1
3 l*i*ll-*'1 *-· '1 ,---"
1 [* 11 * * ' * ' i
o I* I* MYl·; rr-fTI

Programming Turing machines is rather cumbersome. It resembles programming today's
computers in machine language. The first tool to simplify this task is an assembler (see
also Section 1 .3). Assemblers provide for the definition of macros. Macros are instruction

290 /2 Theory of Computation

sequences for often-used subprograms that can be inserted (expanded) inside other programs.
The simplest of these macros are moves to the right and left. The instruction sequence

right moves the head one position to the right without changing the contents of the tape:

state symbol newsymbol move
1 r
1 * * r

new state
0
0

A similar sequence can be given for a move to the left. The following sequence, called noop,
does nothing at all :

state symbol newsymbol move newstate
1 s 0
l * * s 0

It is often needed as a filler in more complicated constructions.
Our most important tool for developing programs is the composition of instruction se­

quences in a way that the second sequence is executed after the first one. For this composition
to work, we first have to relabel to states in the second sequence so that they do not collide
with the states of the first sequence. Then we replace each halt state (new state 0) in the
first sequence by the first state of the second sequence. In this way we ''jump" to the second
sequence after the first one has completed. The term relocation is used for such manipulations
of machine programs. The command relocate [instructions , offset , return] adds offset to
all states in the list of instructions and replaces each halt state by the return state.

relocate[instr_List , offset_ , return_] : =
instr / . {instruction [st_ , sy_ , nsy_ , mv_ , 0] : >

instruction [st+offset , sy, nsy, mv , return] ,
instruction[st_ , sy_ , nsy_ , mv_ , nst_] : >

instruction [st+offset , sy, nsy, mv , nst+offset] }

Listing 12.3-5 Part of TuringMacros.m: Relocating instructions.

Here is the instruction sequence for the move
to the right.

We relocate it by adding one to all states.

Here, we change each halt state by a jump to
state 2.

The combined sequence causes a move by
two cells to the right.

In[l] : = right

Out [1] = {{1 , _} -> {_ , r , 0} , { 1 , *} -> {* , r , 0}}

In[2] : = r2 � relocate [right , 1 , 0]

Out [2]= {{2 , _} -> {_ , r, 0} , {2, *} -> {* , r , 0}}

In[3] : = rl � relocate[right , O , 2]

Out [3] = {{1 , _} -> {_ , r, 2} , { 1 , *} -> {• , r, 2}}

In[4] : = Join[r1 , r2]

Out [4]= {{ 1 , _} -> {_ , r , 2} , { 1 , *} -> {* , r , 2} ,

{2 , _} -> {_ , r , 0} , {2 , •} -> {* , r , 0}}

12.3 Turing Machines 291

To compose two instruction sequences, we find the highest state in the first one and then
relocate the second sequence by this amount, and, finally, change each halt state in the first
sequence as indicated. Composition is associative, that is, we can compose an arbitrary number
of sequences. To take advantage of a..'>sociativity, we need only give the symbol compose the
attributes Flat and One!denti ty.

maxState [{}] = 0
maxStat e [instr_List] : = Max [state /� instr

SetAttributes [compose , {Flat , Oneidentity}

compose[instr1_ , instr2_] :=
With[{offset = maxState [instr1] } ,

Join[relocate [instr1 , 0 , offset+1] ,
relocate [instr2 , offset , 0]]

compose [instr1_] := instr1

Listing 12.3-6 Part of TuringMacros.m: Composing instructions.

Here is a composed sequence for a move by
three places to the right.

In[5] : = compose[right , right , right]

Out [5] = {{1 , _} -> {_ , r , 2} , {1 , •} -> {•, r , 2} ,

{2 , _} -> {_ , r, 3}, {2 , •} -> {• , r , 3} ,

{3 , _} -> {_, r, 0}, {3 , •} -> {• , r , 0}}

A conditional loop is another useful tool. As long as the symbol under the head is a mark,
we execute an instruction sequence once, then we test the symbol again, and so on. The
implementation is simple:

while [instr_] : =
Join[{ instruction[1 , b , b , s , 0] ,

instruction [1 , m, m, s , 2] } ,
relocate [instr , 1 , 1]

Listing 12.3-7 Part ofTuringMacros.m: The while loop.

The while loop allows us to assemble a pro­
gram that jumps over a sequence of marks.
First, we move to the right (because we al­
ways start on the cell before the marks); then
we move right while the current symbol is
still a mark.

In[6] : a compose[
right ,
vhile [right

Out [6]= {{1 , _} -> {_ , r , 2}, {1 , •} -> {• , r , 2} ,

{2, _} -> {_ , s , 0} , {2 , •} -> {• . s , 3} ,

{3 , _} -> {_ , r , 2} , {3 , •} -> {•, r , 2}}

292 12 Theory of Computation

We test the program on a tape having three In(7] : � runList[{b, m, m, m} , X] ;
marks.

The graphic shows you how it works. You In[S] : .. PlotTuring[Y.] ;
can also see that programs assembled with
macros are often not as efficient as possible.
Can you find a more efficient version?

I L • * 1 * 1 * 1 [�=rJ
2 1 I • * , *I I I I I
3 1 I • * 1 * 1 I I J
2 1 1 * . * 1 I I I I
3 1 , * . * 1 I I I
2 1 1 * 1 * • I
3 ! I l * i * • I l
2 n l * l*! * • I lj
o U 1*1 * 1 * . I TI

In the next section, we shall need a few more macros. They are also defined in the package
TuringMacros.m. These macros work on tapes on which a number of arguments are encoded.
An argument is a sequence of marks. Arguments are separated from each other by exactly one
blank.

skip[n] skip n arguments to the right
skip[-n] skip n arguments to the left

shiftlef t [n] shift n arguments one cell to the left
eatl [n] delete the first of n arguments

copy [n , m] copy n arguments over m others

Additional macros defined in TuringMacros.m.

12.3.6 Key Concepts

I . The Thring machine is an idealization of a computer.

2. A simulator is a program that performs Turing machine calculations in some other com­
putation model (e.g., in Mathematica).

12.4 Recursive Functions Are Turing Computable

12.4 Recursive Functions Are Thring Computable

293

We presented the partial recursive functions in Section 1 2. 1 . Now, we want to show that
these functions can be computed on Turing machines. We have to show how we can program
the six construction principles for partial recursive functions (pages 274 and 276). Because
we frequently combine small programs to form larger ones, we have to make sure that the
programs fit together well. We have the following requirements:

• The natural number n is represented by n consecutive marks.

• Arguments of a function are separated by exactly one blank.

• The tape to the right of the arguments is empty.

• The computation starts in state 1 with the head on the blank immediately before the first
argument.

• The machine does not use the tape to the left of the initial cell.

• At the end of a computation, the head is again on the initial cell with the result following
on the right.

Such conventions are called a calling convention. A calling convention defines the interface
between the calling program and the called subprogram. It plays an important role in the
compilation of higher-level languages.

All functions presented here are in the packageTuringRecursive.m.

12.4.1 The Basic Functions

The first two constructions, zero and the successor, are simple.

Zero is a a function of no arguments that
must write zero marks on the tape, that is, it
does nothing at all .

The successor skips its argument, adds a
mark, and skips back.

ln[1] : � zero • noop

Out [1] � {{1, _} -> {_ , s , 0} , {1 , •} -> {• , s , 0}}

ln[2] : � plus1 "'
compose[

stip [1] ,

] ;

{instruction[! , b , m, r, 0]}, (• write 1 •)
stip[-1]

294 12 Theory of Computation

In this picture, we see how it works. We In [3] : � PlotTuring[runList[{b, m, m} , plus1] ,
compute s(2) = 3. Columns->2] ;

1 B * l * I I I I
2 1 I B * l I .]
3 I . B * I__[I I
2 1 I I * • I T'

3 1 I ' * B I I I
2 ' I * I * • I I
4 1 I * * B I I
s l I * '*I * • 1 - 1

6 : I I * * B
1 LU * I * •
6 1 I * B * I
7 1 1 * • * 1
6 1 B * G 1
7 ' • * 1*1
6 1 . * 1 * 1*1
0 C:.!J* I * I

It is a good idea to check that such defini- In[4] : � Plot Turing[runList [{b} , plusl] ,
tions also work for special inputs, such as Columns->2] ;
the number 0.

I I • ! I � I
2 1 • I I I
4 U • I I I I
s l I 1 * . I I I I i

12.4.2 Projections

6 0 •
7 1 •
6 r- • * 1
o l • * I

1 I I
I I Tl
I I I I
r · I I

I I
I I n

i
I I
' Tl

The projection pk(m1 , . • • , mn) returns argument mk. Therefore, we must delete the first
k - 1 arguments, shifting the remaining ones to the left; then, we skip the result and delete
any remaining arguments mk+l to mn.

The conditional If [] in this macro is used only for efficiency: If we project onto the last
argument, there are no remaining ones to delete.

p [k_ , n_] : =
compose[

compose @@ Table [eat 1 [j] , {j , n , n-k+2 , -1}] ,
I f [k < n ,
compose [

noop
]

skip [1] ,
compose @� Table [eat l [j) , {j , n-k, 1 , -1}] ,
skip [-1]] ,

Listing 12.4-1 Part of TuringRecursive.m: Projections.

12.4 Recursive Functions Are Turing Computable 295

Here is the computation of p�(1 , 2, 1) = 2. It
is rather long.

In[5] : � runList [{b , m, b , m, m, b , m} , p[2, 3]] // Short

Out [5]//Short�

{config [1 , < _ * _ * * _ . . . > , 1] , <<77>> ,

config[O , < _ * * _ _ _ . . . > , 1) }

12.4.3 Composition

The macro comp [n , f , {91 , . . . , 9p}] generates the program for a function h, with

h [m1_ , m2_ , . . . , mn_] : =
/ [9r [m1 , m2 , . . . , mn] , 92 [. . .] , . . . , 9p [m1 , m2 , . . . , mn]] ,

provided that J, 9 1 , . . . , 9p are programs for the corresponding functions. First, we must
evaluate the functions 91 , . . . , 9p with arguments m 1 , . . . , mn, and then apply the function f
to the p results. Because we need the original arguments several times, we copy them to the
end of the tape and run the program for 9i on this copy.

a)
· I mn . m1 l 1 . . · I mn J

c) I ml · I mn . rl

d) I ml · I mn I I rl • m1 l I " · I mn I
e) . ml . • · I mn I I r, I I r2 I 1 . . · I rp

t) . ft r2 I I · . -:-5l
g) . r

Figure 12.4-1 Composition of functions on a Turing machine.

I

Figure 1 2.4-1 shows the idea. Line a shows the initial configuration with n arguments on
the tape. We copy them to the end (line b). Now, we can run the program for g1 ; it leaves a
result r" as shown in line c. According to our calling convention, the program does not use
the tape to the left of the initial position, a property that is important here. Now, we copy
the arguments again, ready to run 92 (line d). Line e shows the tape after all programs 91
through 9p were run. We can now delete the original arguments and run f, as shown in line f.
The last line shows the final result. Listing 1 2.4-2 shows the code that implements these
steps.

296 12 Theory of Computation

comp[n_ , f _ , gs_List] : =
With[{p = Length[gs] } ,

compose [
compose �� Table [

compose [
copy [n , n+i-1] ,
gs [[i]] ,
skip [- (n+i-1)]

(* copy arguments *)
(* execute g_i *)
(* back to the beginning *)

] , {i , 1 , p}] ,
compose @@ Table [eat l [i+p] ,
f

{i , n , 1 , -1}] ,

Listing 12.4-2 Part of TuringRecursive.m: Composition.

12.4.4 Primitive Recursion

The macro pr [n , f , g] generates the program for a function h , with

h [O , m1_ , m2_ , . . . , mn_] : = j [m1 , m2 , . . . , mn] ,
h [k_ , ml_ , m2_ , . . . , mn_] : =

g [k-1 , h[k-1 , m1 , m2 , . . . , mn] , ml , m2 , . . . , mn] ,

provided that f and g are programs for the respective functions. The Turing machine does not
offer recursion, so we have to tum it into iteration.

First, we compute ho = h[O , m1 , m2 , . . . , mn] , by calling j [ml , m2 , . . . , mn] .
In the loop, we repeatedly compute hi+l = g [i , hi , m1 , m2 , . . . , mn] for i = O, 1 ,
After each iteration, we decrement k until we reach k = 0. The details are rather awkward.
The comments in the program in Listing 1 2.4--3 show the tape in an abbreviated way. The
head position is marked by : , unless the head happens to be inside an argument.

The auxiliary function subl [n] decrements the first of n + 1 arguments by 1 . The
remaining n arguments are shifted left by one cell.

As an example of a primitive recursive function, we look at the predecessor function shown
to be primitive recursive in Section 1 2. 1 .3 . Written strictly, its definition is

p(O) = 0,
p(s(k))

=

pf(k, p(k)),

that is, f = 0 and g = PT.
First, we generate the programs for the aux- In[6] : • f • zero;
iliary functions f and g.

In[7] : • g � p [1 , 2] ;

(12.4--1)

12.4 Recursive Functions Are Turing Computable

Here is the program for the predecessor. It
consists of 722 instructions.

In[S] : ; (predecessor • pr[0 , f , g]) // Short

Out [8] //Short;

{{ 1 , · _} -> {_ , r, 2} , { 1 , *} -> {* , r, 2} , <<719>> ,

{454 , *} -> {* , s , 0}}

The computation of the predecessor of 1
takes already 2 1 5 steps. The result is 0, of
course. The graphic on the title page of this
chapter (page 27 1) shows the computation.

In[9] : = runList [{b , m} , predecessor] // Short

Out [9]//Short=

{config[1 , < * . . . > , 1] , <<213>> ,

config[O , < . . . > , 1] }

The ll schema is left as Exercise 12.5.

pr[n_ , f_ , g_] · =
compose [

skip[n+1] ,
zero ,
skip[-n] ,
copy [n , n+1] ,
f ,
skip [- (n+2)] ,
right ,

(* : k mi . . . mn
(* k mi . . . mn :
(* k mi . . . mn : O
(* k : m1 . . . mn 0
(* k m1 . . . mn O : ml . . . mn
(* k m1 . . . mn O :hO
(* : k m1 . . . mn 0 hO
(* k m1 . . . mn 0 hO

while[(* k > 0 *)

] ,

co�ose [
left ,
subl [n+2] ,
skip[n+1] ,
copy [2 , 2] ,
skip[- (n+2)] ,
copy[n , n+4] ,
skip[-2] ,
g ,
skip[-2] ,
copy [l , 3] ,
plus1 ,
skip[-1] ,
copy [l , 2] ,
skip[-4] ,
eat 1 [5] ,
eat 1 [4] ,
eat 1 [3] ,
skip [- (n+1)] ,
right

left ,
p[n+3 , n+3]

(* : k' m1 . . . mn: i hi *)
(* : k m 1 . . . mn i hi *)
(* k m1 . . . mn:i hi *)
(* k m1 . . . mn i hi : i hi *)
(* k :ml . . . mn i hi i hi *)
(* k m1 . . . mn i hi i hi : ml . . . mn *)
(* k m1 . . . mn i hi : i hi m1 . . . mn *)
(* k m1 . . . mn i hi : hi ' *)
(* k m1 . . . mn : i hi hi ' *)
(* k m1 . . . mn i h i hi' : i *)
(* k mi . . . mn i h i hi ' : i ' *)
(* k ml . . . mn i hi : hi ' i ' *)
(* k ml . . . mn i hi hi ' i ' : h i ' *)
(* k m1 . . . mn:i hi hi ' i ' hi' *)
(* k m1 . . . mn : hi hi ' i ' hi ' *)
(* k m1 . . . mn : hi' i ' hi' *)
(* k m1 . . . mn : i ' hi ' *)
(* : k m l . . . mn i ' hi ' *)
(* k m1 . . . mn i ' hi ' *)

(* : 0 m l . . . mn k hk
(* : hk

Listing 12.4-3 Part of TuringRecursive.m: Primitive recursion.

297

298 12 Theory of Computation

We showed that the partial recursive functions are Turing computable. The converse could
be shown as well: all Turing computable functions are partial recursive. The tool for this proof
is the universal Turing machine. The details are too involved to be presented here.

12.4.5 Key Concepts

I . On Turing machines, all functions can be computed that are also computable on any other
computer.

2. The Turing machine computes exactly the partial recursive functions.

12.5 Exercises

12.5 Exercises

12.1 Recursion Schema and Induction Proofs

299

Give the proof mentioned at the end of Section 1 2. 1 .2 that the recursion 12 . 1-5 defines a total
function.

12.2 Programming Re�ursive Functions

We saw that recursive functions are programmable. Give a practical proof by showing how
they can be programmed in Mathematica.

I . Show in detail how each function defined strictly by primitive recursion (Section 1 2. 1 .2)
can be programmed in Mathematica. Show that the computation terminates for each value
of the arguments.

2. Show how the 11 schema can be programmed in Mathematica.

12.3 Integer Division

Show that integer division, a div b, and remainder, a mod b, are primitive recursive. For two
integers a. and b, with b > 0, the so-called div-mod identity holds:

a = (a div b) b + (a mod b) . (1 2 .5- 1)

Furthermore, w e have

0 ::; (a mod b) < b. (1 2.5-2)

(In Mathematica these two functions are Quotient [a , b] and Mod [a , b] .)

12.4 Addition on a Thring Machine

This exercise will show you that programs constructed strictly according to the schema of
primitive recursion are usually very inefficient.

1 . Generate the instructions for addition according to the schema of primitive recursion (see
Sections 1 2.4 and 1 2. 1 .2 .) How many instructions do you get? How many steps does the
program take to add I and 1 ?

2. Find a much simpler and faster program for adding two numbers.

300 12 Theory of ComputaJ

12.5 The � Schema on Thring Machines

Write a macro mu[n, f , g] , that generates the Thring program for the 1.1. schema

h(mi , . . . , mn) = f(l.l.k[g(mi , . . . , mn , k)]) .

See Section 1 2.4.

Chapter 13

Databases

In this chapter, we give an introduction to databases. As an example, we discuss a database
of classical music recordings. Databases are the most important commercial application of
computers. Large collections of data are valuable resources of companies. The administration
of such collections of data requires reliable and powerful database management programs. A
precise mathematical modeling of databases provides a tool for their simple maintenance. The
most often used model is the relational database model.

Section 1 3. 1 discusses the design of databases. We show how redundancy in the data is
removed by splitting the tables into several connected parts. In Section 1 3.2, we discuss the
fundamental operations of relational algebra.

Data entry and queries are the topic of Section 1 3 .3. We show how we can enter data into
a database, and how we can formulate queries to extract the information in a readable form.
Finally, in Section 1 3 .4, we mention some aspects of larger, commercial database applications.

About the illustration overleaf:
The illustration shows a fractal curve by B . Mandelbrot, described in [56]. The picture is
from [44, 5 1] . The commands for this illustration are in the package Pictures.m.

13. 1 Database Design 303

13.1 Database Design

Databases model aspects of the real world. Objects from the real world are called entities.
Entities are related through certain relationships. An entity is described by attributes, that is,
the properties we are interested in for our application.

A database models only part of reality. In a diary, for example, the entities are persons.
As attributes we may use name, first name, address, phone number, date of birth, that is, only
a few of the properties of these persons. There may also be legal restrictions on what kind of
personal data can be stored.

13.1 .1 A Database of Music Recordings

Here i s a simple example of a database. We want to maintain data about our record co1 1ection.
This example shows well the hierarchical organization of many collections of data. On a record
(nowadays more likely on a CD), we find recordings of several works. The record has a number,
a label (the publishing company), and a title. Each work has a title and a composer. Our first
attempt simply l ists the attributes, one line per recording. Table 1 3. 1-1 shows such a list.

Music

record title label record
number

work title composer

Das Konzert November 1 989 Sony 45830 Cone. for Piano and Oreh. No. I Beethoven, L. v.
Das Konzert November 1 989 Sony 45830 Symphony No. 7 Beethoven, L. v.
Horovitz at Carnegie Hall RCA 7992-2 Cone. for Piano and Orch. No. 5 Beethoven, L. v.
Horovitz at Carnegie Hall RCA 7992-2 Cone. No. 1 for Piano and Orch. Tehaikovsky, P. I.
Beethoven's Symphonies London 430400-2 Symphony No. 6 Beethoven, L. v.
Beethoven's Symphonies London 430400-2 Symphony No. 7 Beethoven, L. v.
Beethoven: The Piano Cone. Angel 63360 Cone. for Piano and Oreh. No. I Beethoven, L. v.
Beethoven: The Piano Cone. Angel 63360 Cone. for Piano and Oreh. No. 4 Beethoven, L. v.
Beethoven: The Piano Cone. Angel 63360 Cone. for Piano and Oreh. No. 5 Beethoven. L. v.

Table 13.1-1 A simple list of music recordings.

Many database programs for personal computers work in this simple way. It has an important
drawback: There is redundancy in the database. The record title and the label, for example, are
uniquely determined by the record number. We can see that the values of these two attributes
are the same in all l ines with the same record number. Such redundancy wastes storage space.
Worse, it may lead to inconsistent updates of the database. If we wanted to translate the
record title into a foreign language, for example, we have to perform the same change in many
different lines. During such work, errors can creep in easily.

304 I 3 Databases

13.1.2 Splitting the Lists

We can solve the redundancy problems by splitting the Jist. We define two entities with the
following attributes:

• The entity records has attributes record title, label, and record number.

• The entity recordings has attributes work title and composer.

The connection between the two lists is given by the relationship between the two entities.

I records
1
n

I recordings

The relationship between records and recordings,

Record x contains recording y,
is a 1--n (one-to-many) relationship, because each record may con­
tain several recordings, but each recording is contained on exactly
one record. The figure on the left describes this relationship. Note
how the line between the two entities is labeled to express the 1-n re­
lationship. The relationship is established by including the attribute
record number in the list recordings. This attribute is a key in the

list records. A key is an attribute whose values are unique in a list. Table 1 3. 1-2 shows the
two new l ists corresponding to the entities records and recordings.

Records

record title label
Das Konzert November 1989
Horovitz at Carnegie Hall
Beethoven's Symphonies
Beethoven: The Piano Cone.

Sony Classical
RCA
London
Angel

record number
45830
45830
7992-2
7992-2
430400-2
430400-2
63360
63360
63360

Recordings

work title
Cone. for Piano and Orch. No. 1
Symphony No. 7
Cone. for Piano and Orch. No. 5
Cone. No. 1 for Piano and Orch.
Symphony No. 6
Symphony No. 7
Cone. for Piano and Orch. No. 1
Cone. for Piano and Orch. No. 4
Cone. for Piano and Orch. No. 5

record number
45830
7992-2
430400-2
63360

composer
Beethoven, L. v.
Beethoven, L. v.
Beethoven, L. v.
Tchaikovsky, P. I .
Beethoven, L. v.
Beethoven, L. v.
Beethoven, L. v.
Beethoven, L. v.
Beethoven, L. v.

Table 13.1-2 Splitting into lists for records and recordings.

13. 1 Database Design 305

A one�to�many relationship in a list is resolved by splitting the list into two list�. The
relationship is then established by including a key for the first list in the second list.

Another source of redundancy lies in the attribute pairs work title and composer name. Each

records

1
n

reeordin�
n

1

works
n
1

composers

-

such pair describes a work of classical music uniquely and can occur
several times if we own several recordings of the same work. (In
our example, Beethoven's seventh symphony occurs twice) . Fur�
thermore, there is usually more than one work by a given composer.
To remove these redundancies, we define the new entity works,
with attributes workKey, work title, and compKey, and the entity
composers, with attributes compKey and composer name. In both
cases, there is no attribute that could naturally be used as key. To
remedy this situation, we create the artificial attributes compKey and
workKey. The values of these attributes do not matter; we can use
symbols. Often, numbers are used for this purpose as well. We
need only ensure that each value occurs at most once.

The relationship between works and recordings is l-n. A work
can occur in several recordings, and each recording consists of ex�
actly one work. Therefore, we replace the columns work title and
composer name in the list recordings by workKey. The relationship
between composers and works is also 1-n. The figure on the left
shows the new relationships and Table 1 3. 1-3 shows the new lists.

Another attribute, recKey, serves as key in the list recordings. We shall need it soon.
Splitting the lists to remove redundancy puts the database into normal form.

13.1.3 Many-to-Many Relationships

We would like also to store some information about the musicians performing in a recording.
The relationship between artist<; and recordings,

Artist x performs in recording y ,

is an n-m or many-to-many relationship because each artist may perform in several works,
and each work may have several artists performing it. The only possibility we have to establish
such a relationship without redundancy, is to define another list performers for it. The new
information about performers gives rise to these two new entities:

• artists, with attributes artist name, instrument, and the key artistKey

• performers, with attributes recKey, and artistKey

306 13 Databases

Note that the list performers contains only pairs of keys from other lists. It is used only
to implement a relationship and does not correspond to a natural entity in the real world.
Table 13. 1-4 shows a few sample entries in the two new lists. Observe that the orchestra is
treated as the instrument of the conductor. Figure 13 . 1-1 shows the final layout of our music
database.

recKey
ree l
ree2
ree3
ree4
ree5
ree6
ree7
rec10
ree11

artist Key
art l
art2
art3
art4
art5
art6

workKey
work!
work2
work3
work4
work5
work9

Works

work title
Cone. for Piano and Orch. No. 1
Symphony No. 7
Cone. for Piano and Orch. No. 5
Cone. No. 1 for Piano and Orch.
Symphony No. 6
Cone. for Piano and Orch. No. 4

Recordings

compKey
eompKey1
eompKey1
eompKey1
compKey2
eompKey1
compKey1

Composers

workKey record number compKey composer name
work! 45830 eompKey1
work2 45830 eompKey2
work3 7992-2
work4 7992-2
work5 430400-2
work2 430400-2
work! 63360
work9 63360
work3 63360

Table 13.1-3 Second split of the music database.

Artists

artist name instrument
B arenboim, Daniel Berliner Philharmoniker
Barenboim, Daniel Piano
Horovitz, Vladimir Piano
Reiner, Fritz RCA Victor Symphony
Solti, Sir Georg Chicago Symphony Orch.
Klemperer, Otto New Philharmonia Orch.

Beethoven, L. v.
Tchaikovsky, P. I .

Performers

recKey artist Key
ree l art 1
reel art2
ree2 art 1

ree 1 1 art6

Table 13.1-4 Information about interpreters of works.

13. 1 Database Design 307

13.1.4 Key Concepts

n
1

records
1
n

Figure 13.1-1 Layout of the music database.

1 . Data about aspects of the real world are represented by entities, attributes, and relationships.

2. Redundancy in a list is removed by splitting the list into several lists.

3. Relationships are of kind 1-1, 1-n, or n-m.

4. The layout of a database shows entities and their relationships.

308 13 Databases

13.2 Relational Databases

So far, we have discussed lists and attributes rather informally. We need formalize these notions
for two reasons. First, we need an exact specification if we want to implement databases on
a computer. Second, precise definitions form the basis for a clean mathematical treatment of
database operations. We shall see that we can define these operations simply as operations on
sets.

Each attribute can take values from a certain set. Often, this set is the set of al1 strings over
some alphabet or the set of integers. Attributes are also termed fields. A relation is a subset
of the Cartesian product of certain sets. The elements of a relation are called tuples. Because
relations are sets of tuples, two tuples in a relation cannot be identical. They must differ in at
least one attribute value. Also, there is no implied ordering of tuples in a relation. Because
we implement relations as lists, we nevertheless have an implementation-dependent ordering;
We will never rely on this ordering, however. A database, finally, is a set of relations .

. The Cartesian product of two sets A and B is denoted by A x B. The elements of A x B .

are all tuples of thefo!'m (a., b) with a E A and b E B. In our application; the sets A and B •
will be the sets of all possible values of attributes.

·

The lists in Section 1 3 . 1 are such relations. The list artists from Table 1 3 . 1-4, for example,
contains the attributes artistKey , artist name, and instrument. The values of artistKey are
symbols; the values of artist name and instrument are strings . The relation contains six tuples;
here is one of them:

{ art 1 , "Barenboim , Daniel" , "Berliner Philharmoniker" } .

A tuple is, therefore, a row in the list. Table 1 3.2-1 describes all relations and attributes of
the music database. The field "type" describes the type of values of the attributes . Keys are
denoted by an asterisk.

13.2.1 An Implementation of Relations

We can implement a relation as a data type with this representation:

relat ion[{attributes . . . } , {tuples . . . }] .

The two components can be extracted with the selectors Fields [ref] and Tuples [rei] .
Fields [] gives the list of fields or attributes. The constructor

newRelation[{attributes . . . } , {tuples . . . }]

13.2 Relational Databases 309

creates a new relation with the given attributes and tuples. The output format for relations is

R[{attributes . . . } , Short [{tuples . . . }]] ,

which prints the tuples in abbreviated form. Later we will show how information from a
database is presented in human-readable form. All of these functions are part of the package
DB.m.

The variable artists contains the relation In [1] : � artists
artists from our example. Out [1) � R[{artistKey , artistName , instrument} , {«12»})

Here are its attributes. In [2] :'* Fields [artists]

Out [2] • {artistKey , artistName , instrument}

Here is a shortened list of its tuples. In [3] : � Short [Tuples [artists]]

Out [3] //Short•

{{artistKey$108 , Klemperer , Otto ,

New Philharmonia Orch . } , <<1 1>>}

To explain the database operations, we shall In[4] : = r1 ,. nevRelation[{A , B} , {{a1 , b1} , {a2 , b2}}]
often use relations with symbolic attributes out [4]= R[{A, B} , {{al , bl} , {a2 , b2}})
and values.

Music

Relation Attributes Type
records record title string

label string
record number* string

recordings recKey* symbol
workKey symbol
record number string

works work Key* symbol
compKey symbol
work title string

composers compKey* symbol
composer name string

artists artistKey* symbol
artist name string
instrument string

performers recKey symbol
artistKey symbol

Table 13.2-1 Relations and attributes of the music database.

310 13 Databases -------------------------------

13.2.2 Relational Algebra

This section presents the operations of relational algebra. Certain operations are defined on
relations, much like arithmetic operations are defined on numbers. These operations are used
to formulate database queries (in Section 13 .3). To visualize these operations, we shall use ­
in addition to the relations of our music database - small relations with symbolic entries. Here
is a list of these relations:

Name Attributes Tuples
r1 A, B (at , bt), (az , bz)
r2 n, m, o (x, 2, 1 .44), (y, 3, 2.50), (z, 4, 1 .20)
r3 A t , A2, A3 (a, b, c), (a, b, d), (a, j, c)
r4 A, B (a, a), (b, a), (c, o), (c, y)
r5 B, C (a, 5), (y, 6), (y, 8), (K, 7)
r6 A t , A2, A3 (a, b, c), (e, b, d)

Relations are sets. We can, therefore, apply the ordinary set operations union r U s,
intersection r n s, and difference r - s to relations, provided that the relations involved have
the same attributes. In Mathematica, these operations are called Union [] , Intersection r] ,
and Complement [] , respectively.

The union contains all tuples occurring in at
least one of the relations.

The intersection contains only those tuples
that occur in both relations.

The difference (or complement) contains
those tuples occurring in the first but not
in the second relation.

13.2.3 Selection

In[5] : = Union[r3 , r6]

Out [5]= R[{Al , A2 , A3},

{{a, b, c}, {a, b , d} , <<1>> , {e , b, d}}]

In[6] : = Intersection[r3 , r6]

Out [6]= R[{Al , A2 , A3} , {{a , b , c}}]

In[7] : = Complement [r3, r6]

Out [7]• R[{Al , A2 , A3} , {{a, b, d} , {a , f , c}}]

An important operation is the selection of a subset of the tuples according to some criteria. The
function Select [relation , cond] is provided for this purpose. The condition is written as a
Boolean expression involving the names of the attributes. The result of selection is another
relation with the same attributes as the input relation.

Only one tuple in r2 satisfies this condition,
so the result is a relation with only one tuple.

In[8] : = Select [r2 , m < 4 aa o > 2 . 0]

Out [8] = R[{n, m, o} , {{y , 3 , 2 . 5}}]

13.2 Relational Databases

Here, we select from the relation records
all tuples in which the attribute label has the
value Sony Classical.

13.2.4 Projection

In[9] : = Select[records , label """' "Sony Classical"]

Out [9]= R[{recordTitle , label , recordNumber} ,

{{Das Konzert November 1989 , <<1>> , 45830}}]

311

The projection of a relation onto a subset of its attributes is a new relation containing only the
projected attributes. Remaining ones are removed. In the tuples, the values corresponding to
the removed attributes are also removed. This operation corresponds to deletion of columns
in a list. It may happen that formerly different tuples become equal after projection. Only one
of each set of equal tuples is retained.

Consider the following example. The relation r3 has attributes AJ , A2, and A3 . Its
tuples are {(a, b, c), (a, b, d), (a, f, c)} . The projection onto attributes A1 and A2, denoted by
1tAt ,A2(r3}, would contain the tuples {(a, b), (a, b), (a, f)} because we have to remove the third
element of each tuple. The first two of these tuples are now equal, and only { (a., b), (a, f)}
remain.

Here is the example we just explained in
detail.

This projection removes the attributes m1ist­
Key and instrument. Only the name remains.

Here are the names of all artists in the
database.

13.2.5 The Join

In[10] : = Proj ection[r3 , {!1 , A2}]

Out [10]= R[{A 1 , A2} , {{a, b} , {a, f}}]

In [11] : = Proj ection[artists , {artistHame}]

Out [l l] = R[{artistName} ,

{{Barenboim, Daniel} , <<9>> , {Wand , Guenter}}]

In[12] : = Tuples [X]

Out [12]= {{Barenboim, Daniel} , {Horovitz , Vladimir},

{Klemperer , Otto} , {Norman , Jessye} , {Reiner , Fritz} ,

{Runkel , Reinhild} , {Schunk , Robert} ,

{Solt i , Sir Georg} , {Sotin, Hans } ,

{Toscanini , Arturo} , {Wand, Guenter}}

In Section 1 3. 1 , we removed redundancy in a database by splitting the lists. We established
the relationships by an attribute occurring in both lists. To work with a database, there must
be a possibility to reverse this process, that is, to join two relations into one. This operation
is the natural join. It combines tuples from two relations into tuples of a new relation. The
selection of tuples to combine is done through the common attribute.

A simple example shows how the join works. Let the relation r have attributes A and B,
and the relation s have the attributes B and C. The join r � .'1 has attributes A, B, and C. It
consists of all tuples (a, b, c) for which (a, b) E r and (b, c) E s hold.

312 ----

Here is relation r4 with four tuples.

Here is relation r5 .

The join r4 � rs has attributes A , B , and C .

In[13] : � r4 z newRelation[{! , B} , {
{a, alpha} , {b , alpha} ,
{c , delta} , {c , gamma}}] ;

In[14] : = r5 z newRelation[{B , C} , {
{alpha, 5} , {gamma , 6} ,
{gamma , 8} , {kappa, 7}}] ;

In [15] : � Join[r4 , r5

13 Databases

Out [15]= R[{! , B , C} , {{a , alpha, 5} , <<2> > ,

{ c , gamma , 8}}]

Here are its tuples. Please convince yourself In[16] : = Tuples[Y.
that this output is correct. 0 [6] {{ 1 h 5} {b 1 h 5} { 6} ut 1 .. a, a p a , , , a p a, , c , gamma, ,

{c , gamma , 8}}

Often, the common attribute is a key. In this case, the join undoes the split of the list into two
relations.

Earlier, we split the list of works to avoid
redundancy. The join reverses this step.

The keys are no longer needed and can be
projected away.

These operations give a human-readable list
of the works and their composers.

In[17] : = Join[works , composers]

Out [17)• R[{workKey , compKey , workTitle, composerName} ,

{«18»}]

In[18] : � Projection[Y., {workTitle , composerHame}

Out [18]• R[{workTitle , composerHame} , {<<18>>}]

In[19] : � Tuples [Y.] II TableForm
Out [19J IITableForm=

Cone . for Piano and Orch . No . 1
Cone . for Piano and Orch . No . 2
Cone . for Piano and Orch. No . 3
Cone . for Piano and Orch. No . 4
Cone . for Piano and Orch . No . 5
Cone . No . 1 for Piano and Orch .
Pictures at an Exhibition
Symphony N o . 1
Symphony No . 1
Symphony No . 2
Symphony No . 2
Symphony No . 3
Symphony No . 4
Symphony No . 5
Symphony No . 6
Symphony No . 7
Symphony No . 8
Symphony No . 9

Beethoven, L . v .
Beethoven, L . v .
Beethoven, L . v .
Beethoven , L . v .
Beethoven , L . v .
Tchaikovsky , P .
Mussorgsky , M .
Beethoven , L . v .
Schubert , Franz
Beethoven , L . v .
Schubert , Franz
Beethoven , L . v .
Beethoven, L . v .
Beethoven, L . v .
Beethoven, L . v .
Beethoven , L . v .
Beethoven , L . v .
Beethoven, L . v .

I .

The join i s also defined in other cases, where relations have more than one, or no attributes
in common. If there are several common attributes, the values of all of them must agree. If

I 3.2 Relational Databases 313

two relations have no common attributes, there is no restriction on the combination of tuples.
Each tuple in the first relation is combined with each tuple in the second relation. The result
is the Cartesian product of the two relations.

Relations r1 and r2 have no conunon at­
tributes. The join consists of all attributes of
r1 and r2 .

Its tuples are all possible combinations of
tuples from r1 and r2 . Their number is,
therefore, equal to the product of the number
of tuples of r1 and r2 , that is, 2 x 3 = 6.

13.2.6 Renaming Attributes

In[20] : s Join[rl , r2]

Out [20] = R[{A, B , n � m , o } ,

{{a1 , b 1 , x , 2 , 1 . 44} , <<5>>}]

In[21] : = Tuples [�] // TableForm
Out [21]//TableForm= a1 bl X

al b 1 y
al b1 z
a2 b2 X
a2 b2 y
a2 b2 z

2 1 . 44
3 2 . 5
4 1 . 2
2 1 . 44
3 2 . 5
4 1 . 2

Renaming is an auxiliary function that changes the name of the attributes without affecting the
tuples.

Here we rename the attribute A of r4 to As.
Renamings are simply given as replacement
rules.

In[22] : = r4a � Rename [r4 , A -> As]

Out [22] = R[{As , B} , {{a, alpha} , {b , alpha} , <<1>> ,

{ c , gamma}}]

Renaming becomes necessary if we want to In[23] : = s4 '"' Join[r4 , r4a]
form the join of a relation with itself. Out [23]= R[{A, B , As} ,

Here are the tuples of this join.

13.2.7 Key Concepts

{{a, alpha, a} , <<4>> , { c , gamma, c}}]

In[24] : = Tuples [�] // TableForm
Out [24]//TableForm= a alpha a

a alpha b
b alpha a
b alpha b
c delta c
c gamma c

l. Relations are subsets of a Cartesian product.

2. The operations of relational algebra are the set operations, selection, projection, and the
natural join.

3. The join undoes a split of a list.

314 13 Databases -------

13.3 Data Entry and Queries

Data entry studies the methods used to put information into a database. This operation i s not
as simple as it may seem, however, because we must be careful to maintain consistency of the
database.

Queries return the stored information in a readable form. The main problem is to combine
and select data in a way that gives us exactly the information we are interested in. A query
does not modify the database.

13.3.1 Database Queries

The relational algebra from Section 13 .2.2 is the main tool for formulating queries. It allows
us to select data according to various criteria. Here are two examples of queries.

First, we are interested in the contents of the CD Das Konzert November 1989, given in
Berlin after the opening of the Berlin Wall.

We begin by choosing from the recordings In[1] : "' Select [recordings , recordNumber "'= "45830"]
those that are present on the CD, whose num- Out [1] = R[{recKey, workKey , recordNumber} ,
ber is 45830.

Now, we join the result with the relations
needed to get all information.

Finally, we project onto the interesting at­
tributes, removing in particular all keys.

We have the information, but it is not yet in
a readable form.

{{recKey$16 , workKey$14 , 45830} , <<1>>}]

In[2] : "' Join[Y., works , composers ,
performers, artists] ;

In[3] : � Projection[% , {composerHame , workTitle ,
artistHame , instrument}] ;

In[4] := Tuples[%]

Out [4]= {{Beethoven , L . v . ,

Cone . for Piano and Orch. No . 1 , Barenboim, Daniel ,

Berliner Philharmoniker} ,

{Beethoven, L . v . , Cone . for Piano and Orch. No . 1 ,

Barenboim , Daniel , Piano} ,

{Beethoven , L . v . , Symphony No . 7 , Barenboim, Daniel ,

Berliner Philharmoniker}}

There is a standard way to present such hierarchical data in a readable way, the report. The
operation

Report [relation , n 1 , • • • , nk]
prints the tuples of a relation in an easy-to-read way. It shows subordinate information using
indentation. Each line contains ni attributes. Information that is the same as in the previous

13.3 Data Entry and Queries 315

tuple is not repeated. Our example shows immediately how this command works. The
attributes composer name and work title are subordinate and are printed on different lines.
Attributes artist name and instrument are at the same level, and are, therefore, printed on the
same line.

As we explained, this report consists of three
levels. The lowest level contains two at­
tributes, the other two levels contain one
each. We can see at a glance that two works
by Ludwig van Beethoven were performed
at this concert.

ln[5] : = Report [Y.Y., 1 , 1 , 2] ;

Beethoven , L . v .
Cone . for Piano and Orch . No .

Barenboim, Daniel , Berliner Philharmoniker
Barenboim, Daniel , Piano

Symphony No . 7
Barenboim, Danie l , Berliner Philharmoniker

The second example presents a more complicated query: Find all records that do not contain
any works by Beethoven. Negation can be implemented by finding first all tuples violating the
condition (that do contain at least one work by Beethoven), and then computing a complement.

This relation contains all records and the In[6] : = Join[records , recordings , vorks , composers] ;
composers of all works present on them.

We need only the record number and the In[7] : = Projection[X , {recordNumber , composerName}] ;
names of the composers.

We select all tuples with the composer In[S] : = Select [Y., composerName •• "Beethoven , L . v . "] ;
Beethoven.

Here is a list of all records containing works
by Beethoven.

Here is a list of all records.

The difference a - b is the desired list of
all records without any Beethoven. There
are two such records.

If we want more information about these
records, we have to add it back with a
join, and then project onto the interesting
attributes.

In[9] : = b z Proj ection[X, {recordNumber})

Out [9] = R[{recordNumber} ,

{{430400-2} , {45830} , {63360} , {7992-2}}]

In[lO] : s a s Projection[records , {recordNumber}

Out [lO] = R [{recordNumber} ,

{{430400-2} , {45830} , <<3>> , {GD 60 449 QH}}]

In[l l] : � Complement [a, b]

Out [1 1] � R[{recordNumber} ,

{{CDC 7 47874 2} , {GO 60 449 QH}}]

In[12] : � Join[X ,
records ,
recordings ,
works ,
composers] ;

In[13] : = Proj ection[Y, , {label , recordNumber,
recordTitle , workTitle , composerHame}] ;

316 ---

Here are the titles of these records and the
works contained on them.

13.3.2 Data Entry

I 3 Databases

In[14] : s Report [% , 3 , 2] ;

EMI , CDC 7 47874 2 , Schubert , Symphonies Nos . 1&2 , Wand
Symphony No . 1 , Schubert , Franz
Symphony No . 2 , Schubert , Franz

RCA, GO 60 449 QH , Mussorgsky/Tchaikovsky
Cone . No . 1 for Piano and Orch . , Tchaikovsky , P . I .
Pictures at an Exhibition, Mussorgsky , M .

Before we can work with a database, we have to enter the data somehow. Entering new
information into a database has to be done in such a way that it does not violate the consistency
of the database. If we enter new tuples into the relation works, for example, we also have to
enter the corresponding composers into the relation composers, if they are not there already.
If we do it wrong, there will either be dangling references - that is, values of compKey that do
not have an entry in composers - or we may enter the same composer with two different keys.

To ensure consistency, we will not manipulate the relations directly, but instead will write
a data entry program that guarantees these dependencies. Only this program will modify the
relations. These operations can be used in such a program:

• addTupleTo [relation , tuple] adds a new tuple to a relation.

• addWi thKeyTo [relation , tuple , key] generates a new value for the key attribute key and
then inserts a tuple with this key value. This operation is used to generate unique key
values.

• InputField[attribute , type , prompt] asks for the value of the given attribute. This
function performs the actual input from the user.

• FindOrAdd[relation , attributes , defaults , key] implements the entry of dependent in­
formation. The information is first searched in the database. It is requested from the user

only if it is not there.

The hierarchical division of the database into records, recordings, and artists leads to a data
entry program with three nested loops. The outermost loop asks for the data for a whole
record; within it, there is a loop over the recordings on this record; innermost is the loop over

the performers of a work. The function DataEntry is part of the package Music.m, and it is
shown in Listing 1 3.3- 1 .

Here is a sample data entry session. We enter a CD with two violin concertos by Mozart.
The program continues to ask for more information until we tell it with "D that no more data
are to follow. Under the Notebook frontend, the dialogues appear in their own window. Data
entry can by terminated by . in this window. The lines

Found : {tuple}

13.3 Data Entry and Queries 317

are printed if dependent information is already in the database. In our example, this happens
when the second work on the record is entered because we just entered the composer a few
lines before.

In[15] : = DataEntry
recordNumber : 4 1 0 020-2
label : Deutsche Grammophon
recordTi tle : Mozart Violin Concertos Nos. 3&5

next work on record 410 020-2
composerName : Mozart, VV. A.
workTi tle : Violin Cone. No. 3

next performer of Violin Cone . No . 3
artistName : Perlman, Itzhak
instrument : Violine
next performer of Violin Cone . No . 3
artistName : Levine, James
instrument : VViener Philharmoniker
next performer of Violin Cone . No . 3
artistName : AD

next work on record 410 020-2
composerName : Mozart, VV. A.
Found : {compKey$1 6 , Mozart , W. A . }
workTi tle : Violin Cone. No. 5

next performer oi Violin Cone . No . 5
artistName : Perlman, Itzhak
instrument : Violine
Found : {artistKey$29 , Perlman , Itzhak , Violine}
next performer of Violin Cone . No . 5
artistName : Levine, James
instrument : VViener Philharmoniker
Found : {artistKey$35 , Levine , James , Wiener Philharmoniker}
next performer of Violin Cone . No . 5
artistName : AD

next work on record 410 020-2
composerName : �>D

recordNumber : AD

13.3.3 Key Concepts

1 . The two main operations on databases are queries and data entry.

2. A report is a list of hierarchical information.

3. Negations in a query lead to expressions involving the difference of relations.

4. Data entry consists of several operations that belong together to keep the database consis­
tent.

318 -------

DataEntry : =
Module ({record , recno , work , workt , workk,

perfk, artist , ak} ,
While (True , (* loop over records *)

record = FindOrAdd[records , {recordNumber}] ;
If [record === EndOfFile , Break[]] ;
recno = recordNumber / . rules [records , record] ;
While [True , (* loop over works/recordings *)

Print ["next work o n record " , recno] ;
composer = FindOrAdd [composers , {composerName},

{} , compKey] ;
If [composer === EndOfFile , Break[]] ;
compk = compKey / . rules [composers , composer] ;
work = FindOrAdd[works , {workTitle} ,

{compKey->compk} , workKey] ;
If [work === EndOfFile , Break[]] ;
workk = workKey / . rules [works , work] ;
workt workTitle / . rules [works , work] ;
perfk = addWithKeyTo [recordings , {workk , recno} ,

recKey] ;
While [True , (* loop over artists *)

Print ["next performer of " , workt] ;
artist = FindOrAdd[artist s , {artistName , instrument} ,

{} , artistKey] ;
If [artist === EndOfFile , Break []] ;
ak = artistKey / . rules [artist s , artist] ;
addTupleTo [performers , {perfk , ak}]

] ;
Print [" "] ;

Listing 13.3-1 DataEntry from Music.m.

13 Databases

13.4 Commercial Databases 319

13.4 Commercial Databases

There is much more to say about databases than we could fit in this chapter. In conclusion, we
mention some topics important for real-world databases.

13.4.1 Database Management Programs

Consistency of databases is so important that our naive solution with special data entry
programs is insufficient for larger applications. The problem is made worse by the fact that in
a large organization many users (humans and programs) access a database concurrently. Think
about a bank where many transactions take place simultaneously in various branch offices. A
database system is therefore separated into two components:

• The server maintains the data and allows only well-defined access through an interface.
It also enforces consistency conditions. Another task of the server is to maintain data
integrity in case of computer malfunction or a loss of power.

• The access programs use the interface to the server for queries and data entry. Using the
interface guarantees that no inconsistent modifications can take place. On-line programs
allow real-time access to the database, for example, at a cashier's register in a bank. Batch
programs run overnight or on weekends and print account statements, for example.

13.4.2 Query Languages

One of the most often used interfaces or query languages is named SQL. In SQL, our example
from page 3 1 4 would look like this:

select composerName , workTitle , artistName , instrument
of recordings , works , composers , performers , artists
where recordings . recordNumber = 1145830 11 and

recordings . workKey = works . workKey and
works . compKey = composers . compKey and
recordings . recKey = performers . re cKey and
performers . artistKey = artists . artistKey

go

Projection, selection, and join can be combined in one command. This language is an example
of relational calculus, an alternative to our relational algebra. The operations of relational
algebra are easier to implement, but relational calculus is easier to use.

320 13 Databases ----------------

13.4.3 Data Storage

Larger databases no longer fit into the main memory of a computer. Data are stored on
secondary storage devices, such as disks and tapes. Only a small part of the data are brought
into main memory to perform the relational operations. Because access to secondary storage
is comparatively slow, the efficient organization of such accesses is an important part of
implementing the operations. One tool for speeding up access is an index. An index is a small
table that lists for each occurring key value the address of the tuples having this key value.
Because keys are often used in natural joins, indices make this operation much faster.

13.4.4 Transactions

A transaction is a sequence of related elementary updates. In our example, entering the data
for a whole CD is a transaction. If a transaction is interrupted because of a hardware of
software failure, the database might be left in an inconsistent state. Database servers therefore
guarantee that a transaction either completes successfully or is completely undone. This
mechanism guarantees consistency of the database under all circumstances.

13.5 Exercises 321

13.5 Exercises

13.1 An Exercise Database1

The database of classical music recordings used in this chapter is available for your own
exercises.

The package Music.m contains the auxiliary
functions for working with the database.

The command load loads the example data
from the file music.db.

Here, for example, is a report listing all
records and the works contained on these
records.

1 From "Databases" l47], reprinted in [5 1] .

In[1] : = < < CSM'Music'

In[2] : = load;

In[3] : = report[allrecords] ;

Beethoven' s Symphonies , London, 430400-2
Beethoven, L . v .

Symphony No . 1
Symphony No . 2
Symphony No . 3
Symphony N o . 4
Symphony No . 5
Symphony No . 6
Symphony No . 7
Symphony No . 8
Symphony No . 9

Beethoven : The Piano Concertos , Ange l , 63360
Beethoven, L . v .

Cone . for Piano and Orch. No . 1
Cone . for Piano and Orch . No . 2
Cone . for Piano and Orch. N o . 3
Cone . for Piano and Orch. N o . 4
Cone . for Piano and Orch. No . 5

Das Konzert November 1989 , Sony Classical , 45830
Beethoven , L. v .

Cone . for Piano and Orch. No . 1
Symphony N o . 7

Horovitz at Carnegie Hall , RCA, 7992-2
Beethoven , L . v .

Cone . for Piano and Orch. No . 5
Tchaikovsky , P . I .

Cone . No . 1 for Piano and Orch.
Mussorgsky/Tchaikovsky , RCA, GD 60 449 QH

Mussorgsky , M .
Pictures at an Exhibition

Tchaikovsky , P . I .
Cone . No . 1 for Piano and Orch.

Schubert , Symphonies Nos . 1&2 , Wand , EMI , CDC 7 47874 2
Schubert , Franz

Symphony No . 1
Symphony N o . 2

322 I 3 Databases ----

Some standard queries of the form report [name] are predefined. Here, for example, is the
code that produced the report:

report [allrecords] : =
Module [{rel} ,

rel = records ;
rel = Join[rel , recordings] ;
rel = Join[rel , works] ;
rel = Join[rel , composers] ;
rel = Projection [rel ,

{recordTitle , label , recordNumber ,
composerName , workTitle}] ;

Report [re l , 3 , 1]

The data entry command DataEntry is defined also in Music.m. After entering new data, you
can write the modified database to the file music.db using save . A backup copy of the old
file is first put into music.db.bak.

13.2 An Address Database

Find entities, attributes, and relationships for a simple address database. Develop the corre­
sponding layout of relations. Which attributes can be used as keys? Provide for the entry
of optional information, such as phone and fax number(s), occupation, and so on. Test your
design by solving the following problems with it:

1 . Print a list of all persons having the same address.

2. Make entries for father and son having the same first and last names and living at the same
address.

3. Change of name at marriage.

4. Addresses in various countries, for example:

MathConsult Dr. R. Mader
SamstagemstraBe 58a
8832 Wollerau
Switzerland

Tel: +4 1 1 687 405 1 , Fax: +41 1 687 4054

Chapter 14

Object-Oriented Programming

In this chapter, we introduce object-oriented programming, a programming style that is rapidly
gaining in importance.

Section 1 4. 1 introduces the concepts of object-oriented programming: objects, methods,
and classes. In Section 14.2, we shall look at a simple example of an object-oriented program:
maintenance of bank accounts. The section shows how classes can be used to share code

between closely related data types.
A list of principles of object-oriented programming is given in Section 14.3. The last

section, Section 1 4.4, presents a larger application: collections.

About the illustration overleaf:
The graphic shows four stellations of the icosahedron. Top left: the original icosahedron;
top right the compound of five octahedra; lower left: the compound of five tetrahedra; Lower
right: the compound of tne tetrahedra. See [52] for a description of all stellations and for
Mathematica code to generate them.

14. 1 Introduction 325

14.1 Introduction

We always emphasized two principles of good programming: abstract data types and modu­
larization (packages). So far, we have not implemented the idea that data and functions belong
together on the lowest level of individual data elements. The components of abstract data
types are themselves data elements; there is no room for functions. So far, we could combine

data and functions only at the level of a package.

14.1.1 Objects and Methods

The combination of data and operations at the level of single objects is the first important idea
behind object-oriented programming. An object is, therefore, a collection of data elements
together with the functions operating on them. These functions are called methods. Methods
are always applied to an object, which is called the receiver of the method invocation. We
shall represent method invocation as an ordinary function call, that is, as

method[object , arguments . . .] .

The first argument is the receiver, any remaining arguments are additional parameters of the
method.

14.1.2 Classes

Methods are normally not defined for each object separately, but only for classes of objects.
A class is characterized by the fact that all objects belonging to this class know the same
methods, that is, they show they same behavior.

In addition to the methods, objects contain also data elements. The data elements of
an object are called instance variables. Such an instance variable is like a component in a
composite data type (see Section 5 . 1). All objects in a class have the same set of variables, but
each object has its own private values for these variables. An object is also called an instance
of its class.

14.1.3 Inheritance

The second important concept in object-oriented programming is inheritance. Often, related
data types have common characteristics. We can take advantage of these common aspects
and program some of the methods in a way that does not depend on which of the similar
classes an object belongs to. The program works in the same way for objects from any of
the related classes. The common characteristics can, therefore, be extracted and can be put

326 14 Object-Oriented Programming

into a new class. The other classes are then made subclasses of the new class. They inherit
instance variables and methods from their superclass, and need to define only those variables
and methods that are special to them. This code sharing in a superclass makes programs easier
to maintain because there is no duplication of almost identical pieces of code scattered over
several data types. A modification needs to be programmed only once and is made available
to all subclasses automatically.

14.1.4 Object-Oriented Programming in Mathematica
Object-oriented programming is not built into Mathematica. It has been implemented in
the package Classes.m. This package needs to be read in for all examples in this chapter
(using Needs [" CSM' Classes ' "]). We shall not show the command for reading it in, but
always assume that it has been read. How the package Classes.m works is unimportant for
our applications of object-oriented programming. Readers interested in this question should
consult [5 1], where the package Classes.m is explained.

14.2 Example: Bank Accounts 327

14.2 Example: Bank Accounts

A simple version of account management software is well suited to explain the ideas of object­
oriented programming. The instance variables of an account object describe its internal state.
The balance is such a variable. In addition, we store the name of the owner of the account as an
additional instance variable. Which methods are needed? First, we need a way to create new
accounts. Then, there are methods for depositing and withdrawing money from the account,
and for balance enquiry. These instance variables and methods define the class Account . The
following syntax is used to declare classes:

Class [class , superclass , {ivars . . . } , {methods . . . }] .

The ivars are the instance variables; a method is a pair

{name , implementation} .

Listing 1 4.2-1 shows the declaration of the class Account .

Class [Account , Object ,
{balance , owner} ,
{{new , Function[{bal , own} , new[super] ; balance=bal ; owner=own] } ,

}

{Balance , Funct ion[{} , balance] } ,
{Deposit , Function[{amt } , balance += amt] } ,
{Withdraw , Function[{amt } , balance - = amt] } ,
{Owner , Function[{} , owner] }

Listing 14.2-1 Accounts.m: The class Account .

The superclass of Account is Obj ect , the superclass of all classes. This class is used if there
is no other class that we can use as a superclass. The two instance variables are balance
and owner .

Now we consider the methods. Methods are implemented as pure functions. Please make
sure that you understand Section 1 1 . 1 , where pure functions are explained. The method new
is used to create instances of Account . The arguments bal and own in the method are used
to initialize the instance variables, the initial balance and the name of the owner of the new
account. The body of the method new is

new [super] ; balance=bal ; owner=own .

The first action, new [super] , invokes the method new in the superclass of the new object.
Jn this way, the superclass can perform its own initializations. Afterward, the two instance
variables are initialized from the values of the two parameters.

328 14 Object-Oriented Programming

When we read in the file Accounts.m, the In[1] : ; « CSM' J.ccount s '
class Accounts i s defined.

Now we can create new account objects by In [2] : = a1 ,. nev[.lccount , 1000 , "Roman E . Maeder"]
sending the message new to the class. The Out [2J= -Account-
result is an object whose internal structure is
invisible.

The method new is special (it is called a class method) because its receiver is not an object,
but a class. Because it is used to create objects in the first place, there is no object on which
we could invoke this method.

The method Balance should return the current balance. It does not need any parameters,
and we can, therefore, write it as a constant pure function that returns the value of the instance
variable balance - that is, simply as Function [balance] , or Function[{} , balance]
to make it clear that it does not take any arguments. The same is true for the method Owner
that returns the owner's name, which is the value of the instance variable owner .

Objects behave like ordinary data elements
to which we can apply functions.

In[3) : = Balance[a1]

Out [3] .. 1000

If we deposit an amount amt in the account, the balance is increased accordingly. The amount
deposited is the argument of the method Deposit . Its implementation simply increments the
balance - that is, we can use Function [{amt } , balance += amt] . Similar remarks apply
to withdrawal.

The new balance is returned as value.

A withdrawal decreases the balance.

In[4] : ; Deposit [a1 , 200]

Out [4]= 1200

In[5] : = Withdraw[a1 , 500]

Out [5]= 700

In addition to the user-defined methods, each class inherits certain standard methods from the
class Obj ect .

The method Class returns the class to In[6] : '" Clas s [a1]
which an object belongs. Out [6] .. Account

Methods gives a list of all known methods. In[7) : .. Methods [a1]

Out [7]= {Balance , Class , delete , Deposit ,

InstanceVariables , isa, Methods , new , NIM, Owner ,

SuperClass , Withdraw}

The method InstanceVariables returns In[8] : = InstanceVariables [a1]
the names of all instance variables. Out [8) = {balance , owner}

14.2 Example: Bank Accounts 329

Note that objects have many properties of abstract data types. The instance variables can be
accessed only using the defined methods. The methods Balance and Owner correspond to
selectors, new is a constructor. In a moment, we shall see the advantages of object-oriented
programming over ordinary data types. We want to define a subclass of Account .

A savings account is an account whose balance must always be positive (you do not get
credit on a savings account). All other properties can be inherited from the class Account -

that is, we can make savings accounts a subclass of Account . Only the method for withdrawals

needs to be redefined to check the balance before allowing a withdrawal. Everything else is
inherited from the superclass. The definition of class SavingsAccount is in Listing 1 4.2-2.

Clas s [SavingsAccount , Account ,
{ } ,
{{Withdraw , Function[{amt} , I f [Balance [self] < amt ,

]}
}

Message [Account : : nomoney , Balance [self] , amt] ,
Withdraw[super , amt]]

Account : : nomoney � "Balance ' 1 ' insufficient for withdrawal of ' 2 ' . "

Listing 14.2-2 Accounts.m: The class SavingsAccount .

No new instance variables are needed; therefore, the empty list is given as second argument
in the declaration. The method Withdraw first checks whether the balance is sufficient by
comparing the balance with the amount to be withdrawn. The balance is obtained with the

method Balance sent to the receiver, denoted by the variable self , whose value is always
the receiver of the currently executing method. If the balance is insufficient, an error message
is generated. Otherwise, the withdrawal can take place. We perform it by invoking the same
method Withdraw of the superclass of the receiver! Similar to self , the variable super
stands for the receiver of the current method, but viewed as a member of its superclass. This
mechanism causes the code from the superclass to be invoked, performing the withdrawal.

The method new is inherited from the class
Account .

If we lry to withdraw too much money, an
error message is generated.

Smaller amounts can be withdrawn as usual.

In[9] : � sal � nev[Savings.lccount , 100 , "Janet Smith"]

Out [9]= -SavingsAccount-

In[10] : = Withdrav[sal , 110]

Account : : nomoney :
Balance 100 1nsufficient for withdrawal of 110 .

In [11] : = Withdrav[sal , 90]

Out[11]= 10

330 14 Object-Oriented Programming

14.3 Principles of Object-Oriented Programming

Here are a few guidelines for object-oriented programming. Examples of programs can be
found in the previous and following sections.

1 . A class combines data (instance variables) and functions (methods).

2. An object is an instance of a class. Each object has its own values of the instance variables
and reacts to all methods defined in its class.

3 . A class inherits all variables and methods from its superclass.

4. An object is created with the class method new [class , . . .] . The first action in the body
of the method new should be an invocation of new [super] .

5. Method invocation has the form message [object , arguments . . .] . The first parameter is
the receiver of the method.

6. Methods are pure functions that take the arguments of a method invocation as parameters.

7. Inside the body of a method, the names of the instance variables stand for the variables of
the receiver of the method.

8. Other methods of the receiver can be called by using the object self as the receiver.

9. A method having the same name as a method in the superclass specializes this method. In
this way, the behavior of objects of the subclass is modified.

1 0. To call a method of the superclass that has been specialized, use super as the receiver.

1 1 . An abstract class is a class of which there will never be any objects. It serves to define the
common characteristics of a number of subclasses.

1 2. The class Dbj ect is the abstract superclass of all other classes.

Table 1 4.3-1 lists the methods that are predefined for all classes in our implementation of
object-oriented programming.

14.3 Principles of Object-Oriented Programming

Method

new [class , . . .]
Methods [obj]

InstanceVariables [obj)

Class (obj]

SuperClass [obj]

is a[obj , class]

Description

create a new object

give all known methods of obj

give the names of all instance variables of obj

give the class of obj

give the superclass of the class of ob}

return True , if obj belongs to class or one

of its subclasses

delete[obj] delete the object (normally not needed)

Table 14.3-1 Standard methods for all classes.

331

332 14 Object-Oriented Programming

14.4 Application: Collections

A collection is a container for data. We have seen examples of collections in other parts of
this book: binary trees in Section 6.3, lists in Section 9.2, and heaps in Section 8.4.3. The
object-oriented language Smalltalk provides a well-designed set of collections that we want to
implement in Mathematica. The package Collect.m contains the code for all classes described
here.

The abstract base class is collecti on . There will be no objects of this class; it serves
only to describe the common characteristics of all kinds of collections. An important subclass
is the class of indexed collections, whose elements are accessed using a key. The complete
hierarchy of classes is shown in Figure 1 4.4-1 .

Table 1 4.4-1 shows all methods to be implemented for collections. Remarkably, all
methods from the first group can be implemented in the abstract class collection in tenns
of the method do , as shown in Listing 14.4-1 . Only the iterator do needs to be defined in the
subclasses. This kind of code sharing is typical of well-written object-oriented programs. It
also means that it is easy to add new collections: All we need is figure out a way to apply a
function to all of its elements in tum.

The operation of folding fold[coll, vo , g] applies the binary function g to aU elements
of the collection coli and the result of the last application, respectively. It corresponds to
the operation Fold [g , v0 , list] (see Section 2.3.9). fold is implemented by initializing a
local variable v with the initial value v0 and then iterating Function[v = g [v , #]] over the

•
��� ·

Figure 14.4-1 The class hierarchy of collections.

14.4 Application: Collections 333

collection (using do). The final value of v is the result.
The number of elements in a collection can be found by folding the function #1 +1&: . It

simply counts the elements. The collection is empty if the number of elements is zero.
To find out whether a certain element elem is a member of the collection, we iterate over

the collection and compare elem with all elements present. If we find one that is equal,
we can immediately return True . We can perform such an exit from a running loop with
Th.row[result] . It terminates any computation going on inside Catch [] . If we do not find
the element, the loop runs to completion, and we return False .

The method select [coli , predicate] generates a list (one of the collections treated in
Section 14.4. 1) containing all elements of coli satisfying the given predicate. It is implemented
by folding

Function[If [predicate[#2] , add [#1 , #2]] ; #1] .

The second argument of the folded function is one of the elements of the collection. The

Methods definedfor all collections

do [col!, j] apply the function f to all elements of coil

fold [co/l , vo , g] iterate the binary operation 9 over coli, initialized
with vo

s ize [coil] the number elements in coil

isEm.pty [coli] True , if coil is empty

includes [coil , elem] True , if elem is an element of colt

select [coil , predicate] give the list of elements satisfying predicate

Additional methods for lists and sets

add [list, elem] insert elem into the list or set list

Additional methods for indexed collections

b inaryDo [icoll , f] apply the function f to all (key, value) pairs

includesKey[icoll , key]

at [icoll , key]

atPut [icoll , key , val]

True , if key occurs as key in icoll

returns the value stored under the key key

insert a value under the given key

Table 14.4-1 Methods for collections.

334 14 Object-Oriented Programming

element is tested with the given predicate. If we get True we add the element to the list, which
is the first argument of the folded function. If the predicate is not satisfied, we return the old
list to allow the folding to continue correctly. Initially, the list is set to a new empty list with
new[list] .

Clas s [collection , Object ,
{} ,
{{fold,

}

{size ,
{isEmpty ,
{includes ,

{select ,

Function [{vO , g} ,
Module [{v � vO} , do [self , (v = g[v, #]) &] ; v]] } ,

Function[{}, fold[self , 0 , #1+1&]] } ,
Function[{} , size [self] == 0] } ,
Function[{elem} ,

Catch[do[self , If[#=�=elem , Throw[True]] &] ; False]] } ,
Function[{pred} ,

fold[self , new[list] , (If [pred[#2] , add[#1 , #2]] ; #1) &]] }

Listing 14.4-1 The abstract class collection .

14.4.1 Ordinary Collections

So far, we programmed only the abstract base class collection . Now we tum to the sub­
classes, the collections we can use to store data. Each collection needs only an implementation
of the method do and the constructor new .

14.4.1.1 Interval

The simplest collection is the interval. An interval is created with

new [interval , l , u , s] .

Its elements are the numbers l, l + s, l + 2s, . . . , u. In Mathematica, we would use
Range [l , u , s] to generate these elements in a list. The declaration of interval is shown
in Listing 1 4.4-2.

Class [interval , collection ,
{lower, upper , step} ,
{{do , Function [{£} , Do [f [i] , {i , lower , upper , step}]] } ,

}
{new , Function [{! , u , s}, new[super] ; {lower , upper , step}={l , u , s}]}

Listing 14.4-2 The collection interval .

14.4 Application: Collections 335

Note that we do not need to generate and store the elements of the interval explicitly. We need
only to remember the bounds and the increment (these three instance variables are initialized
when the interval is created). We can perform the iteration do using the command Do [] .

We generate the interval ! , 2, 3, 4, 5.

To look at its elements, we can simply apply
the function Print to its elements.

Folding with Plus gives us the sum of the
elements.

The number of elements is five.

The number 3 is a member of the interval .

The number 7 is not included.

The language Smalltalk uses intervals for
iteration. Here is a loop in typical Smalltalk
fashion. It prints the squares of I , 3, 5, 7,
and 9.

14.4.1.2 List

ln[1] : = i1 = new[interval , 1 , 5 , 1]

Out [1]= -interval-

In[2] : = do[i1 , Print]

1
2
3
4
5

In[3) : = fold[i1, 0 , Plus]

Out [3]= 15

In[4] : = size[i1]

Out [4]= 5

In[5] : = includes[i 1 , 3]

Out [5]= True

In[6] : = includes[i1 , 7]

Out [6]= False

In[7] : = do[new[interval , 1 , 9 , 2] , Print [#A2]&]

1
9
25
49
8 1

Lists are implemented with an auxiliary data type, the link . A link consists of three parts: a key
field, a value field, and a field for the next link. Links are used to implement linked l ists, another
important dynamic data structure (other than binary trees and heaps, see Section 9 .2). Links are
indexed collections (see Section 14.4.2) whose implementation is not treated here. (The class
definition is in the package Collect.m.) A link is created with new [link , key , val , next] .
The class list needs one instance variable for the head of the linked list of its elements. A
new list is created with

new [list] .

We implement the iteration do by passing it on to the first link. We add an element with
add [list , elem] . To add an element, we create a new link with the element as its value field
and the old l ist head as the next l ink. The key field is not used, because l ists are not indexed
collections. See Listing 14.4-3.

336 14 Object-Oriented Programming

Class[list , collection ,
{head} ,
{{do ,

{add ,
{new ,

Function[{£} , do[head , £]] } ,
Function[{elem} , head = new[link , 0 , elem , head] ; self] } ,
Function[{}, new[super] ; head=nullLink]}

}

Listing 14A-3 The collection list .

We create a new empty list and assign it
to 11 .

We add two elements to it.

To look at the list, we iterate the Print func­
tion over it.

The result of a selection is a list. In this
example, we select all prime numbers from
the interval I . . . 25.

Instead of printing the elements, we can al­
ternatively put them into an ordinary list to
see them.

14.4.1.3 Set

In[8] : • 11 • new[list]

Out [S]• -list-

In[9] : = 11 = add[l 1 , a] ; \
1 1 • add[l 1 , b] ;

In[10] : • do[11 , Print

b
a

In[11] : • select[new[interval , 1 , 26 , 1] , PrimeQ]

Out [ll]• -list-

In[12] : • res•{} ; do [Y., PrependTo [res , #]&] ; res

Out [12] • {2, 3, 5 , 7 , 1 1 , 1 3 , 17 , 19 , 23}

Sets can be implemented in terms of lists. Therefore, we declare the class set as a subclass
of list ; see Listing 14.4-4. The only difference between a set and a list is that an element
cannot be a member of a set more than once. Therefore, we specialize the method add to test
the new element before adding it to the list. We used this idea already for our savings accounts
in Listing 1 4.2-2.

Clas s [set , list ,
{} ,
{{add , Function[{elem} , If [! includes [self , elem] , add[super , elem]] ; self] }
}

Listing 14.4-4 The collection set .

14.4.2 Indexed Collections

The abstract base class indexedCollection (Listing 14.4-5) implements many of the ad­
ditional methods of indexed collections. They need three basic methods that have to be im-

14.4 Application: Collections 337

plemented in all subclasses. The iterator binaryDo [icoll , f] applies the binary function f
to all keys and values. The method atPut [icoll , key , val] adds a value under the key key,
and at If Absent [icoll , key, proc] returns the value stored under key, if such a key exists;
otherwise, it calls the parameterless procedure proc. The other methods do , includesKey,
and at can be implemented in terms of the three basic methods.

Clas s [indexedCollection , collection,
{} ,
{{do ,

{includesKey ,

{at ,

}

Function[{£} , binaryDo[self , £ [#2]&]] } ,
Function[{key} ,

Catch[atifAbsent [self , key , Throw [False]&] ; True]] } ,
Function[{key} ,

atifAbsent [self , key ,
Message [indexedCollection: : nsk, key, self] &]

] }

indexedCollection : : nsk = "Key ' 1 ' i s not i n ' 2 ' . "

Listing 14.4-5 Indexed collections.

The method do uses binaryDo to apply the function f to the values only. The method
includesKey [icoll , key] tries to find the value under the given key. If it succeeds, we know
that the key is in fact present, and we can return True ; otherwise, the exception procedure
in atifAbsent is called, and it returns with False . Finally, at is implemented in terms of
atifAbsent as well. If the key does not exist, an error message is generated.

14.4.2.1 Array

The simplest indexed collection is the array (Listing 1 4.4-6). The keys are the integers from 1
to the size of the array. An array is created with

new [array , size , vo] .

Its elements are initialized with the default value vo. Because the keys are successive integers,
we need not store them. We need to store only the values (in a Mathematica list). For the
iteration binaryDo , we generate the keys as an interval and then iterate over the interval.
atifAbsent simply tests whether the key is in the range I . . . n, where n is the size of the
array. The auxiliary method boundCheck performs this test.

Arrays have a special version of the method size that is much faster than is the default
method in the base class collection . We are always free to specialize methods for efficiency
reasons, even it is not strictly required to do so.

Here, we create an array with 10 elements,
initialized to 0.

In[13] : = al = new[array, 10, 0]

Out [13]= -array-

338 14 Object-Oriented Programming

This loop stores the value -i2 in the element In [14] : = binaryDo[a1 ,
with index i. Function[{i , val}, atPut [a1 , i , i,.2]]]

Here i s the element with index 8. In[15] : = at [a1 , 8]

Out [15] = 64

Class [array , indexedCollection ,
{ar} ,
{{binaryDo ,

}

{at If Absent ,

{atPut ,

{size ,
{boundCheck,
{new,

Function[{f } ,
do [new [interval , 1 , size [self] , 1] , f [# , at [self , #]] &]] } ,

Function[{key , proc} ,
If [boundCheck[self , key] , ar[[key]] , proc []]] } ,

Function[{key, val} ,
If [boundCheck[self , key] ,

ar [[key]] = val ,
Message [array : : nsk , key , size[self]]] ;

self] } ,
Function[{} , Length[ar]] } ,
Function [{i} , TrueQ[1 < = i < = size [self]]] } ,
Function[{size , vO} , new[super] ; ar = Table [vO , {size}]] }

array : :nsk = "Array index ' 1 ' i s not in the range (1 . . . ' 2 ') . "

Listing 14.4-6 The collection array .

14.4.2.2 Dictionary

Our last example is the dictionary. A dictionary is an indexed collection where keys and values
can be arbitrary expressions. The simplest implementation is a linked l ist (using the link, as in
the collection list). Such an implementation is rather inefficient, because keys can be found
only by linear search.

A useful technique for improving access times is hashing. A hashing function computes
an integer value from any expression. It may happen that two expressions will be hashed to
the same integer, but a good hashing function will distribute the possible values evenly over
the range of expressions. Other possible implementations for dictionaries are binary trees and
ordered lists (see Exercise 14.2).

A hashing function is built into Mathemati­
ca.

In[16] : = Hash /G {1 , 1 . 5 , I , a , f [x] }

Out [16]= {659992243 , 676422052 , 389582518, 13947657 ,

544912441}

In our dictionary, the expressions are classified into a number of bins (see Listing 14.4-7).
The hashing function Mod[Hash[expr] , n] gives n different values (from 0 to n - 1). It can

14.4 Application: Collections 339

Clas s [dictionary,
{linktable} ,
{{binaryDo ,

{atifAbsent ,

{atPut ,

{new,
{bin ,

}

indexedCollection,

Function[{£} , do[linktable , binaryDo[# , f]&]] } ,
Function[{key , proc} ,

atifAbsent [at [linktable , bin[self , key]] , key , proc]] } ,
Function[{key , val} , With[{slot � bin [self , key] } ,

atPut [linktable , slot , atPut [at [linktable , slot] , key , val]] ;
self]] } ,

Function[{n} , new[super] ; linktable = new[array , n , nullLink]] } ,
Function[{key} , Mod[Hash[key] , size [linktable]] + 1] }

Listing 14.4-7 The collection dictionary .

be used to find the bin for an expression. All keys ending up in the same bin are then stored
in a linked list. If we choose the number of bins larger than the expected number of entries of
the dictionary, these lists will be short and can be searched quickly.

A dictionary is, therefore, an array of links. The size of the array (the number of bins) is
set when the dictionary is created with

new [dictionary , n] .

The only instance variable of dictionary is the array linktable . At initialization, it is set
to an array of empty links (the constant nullLink is an empty link). The auxiliary method
bin[dict , key] returns the number of the bin to use for the given key. The method binaryDo
iterates over the array (using do) and calls binaryDo again for the elements of the array (these
elements are links, which are an indexed collection). The methods atifAbsent and atPut
first determine the bin to use and then call the same method for the corresponding link.

The implementation of dictionary makes heavy use of other collections. As a conse­
quence, this rather complicated collection has a very short implementation.

We generate a dictionary with 10 bins.

We enter data of offices of Cambridge Uni­
versity Press in various countries. The coun­
tries are the keys, the phone numbers are the
values. These data were also used in Sec­
tion 6.1 .3.

In[17] : = cup = new[dictionary , 10]

Out [17]= -dictionary-

In[18] : = atPut [cup, "USA" , "+1 212 924 3900"] ; \
atPut[cup, "Austral.ia" , "+61 3 9568 0322 9"] ; \
atPut [cup , 11Spain11 , "+34 1 360 45 65"] ; \
atPut [cup , "Argentina" , "+541 322-5040"] ; \
atPut [cup , 11Brazil" , "+55 11 259 2122"] ; \
atPut [cup , "Egypt" , 11+202 3935157"] ; \
atPut [cup, uFranceu , "+331 39 14 46 91"] ; \
atPut [cup, "Greece11 , "+30 1 9213020"] ; \
atPut [cup, "lndia11 , "+91 11 3274196"] ; \
atPut [cup, "Poland" , "+48 2 654 18 09"] ; \
atPut [cup, "Thailand" , "+66 2 255 4620"] ; \
atPut [cup , "Turkey" , "+216 346 3046"] ; \
atPut [cup, "Japan11 , "+81 813 32914541 "] ;

340

Now, we can easily find the phone numbers.

On the other hand, we have to search the
whole dictionary to find the country, given
the number +202 3935 157.

14 Object-Oriented Programming

ln[19] : • at[cup, "Thailand"

Out [19]� +66 2 255 4620

In[20] : = binaryDo [cup , Function[{key , val},
lf[val ••• "+202 3935157" , Print [key]]]

Egypt

This example shows how we can exploit common characteristics of related data types in object­
oriented programming. This kind of programming is typical for the language Smalltalk.

14.5 Exercises 341

14.5 Exercises

14.1 Binary Trees as Collections

Implement binary trees (Section 6.3) as an indexed collection (Section 14.4). The nodes should
have a key and value field each.

14.2 Different Implementations of Dictionaries

Implement the class dictionary in another way than was done in Listing 1 4.4--7. Here are
a few possibil ities:

1 . Using binary trees (see Section 6.3)

2. As an ordered list (see Section 6. 1 .3)

3. Your own idea

Appendix A

Further Reading

This appendix contains an annotated bibliography for the topics programming styles, teaching
with Mathematica, literature on Mathematica, and computer science. Section A. l .5 provides
the references for the topics treated in this book. Section A. l .5 gives the concise bibliographical
data.

About the illustration overleaf:
The picture shows the four regular star polyhedra (Kepler-Poinsot polyhedra). They are
regular by definition but not convex. From the left to right and top to bottom: small stellated
dodecahedron, great dodecahedron, great stellated dodecahedron, great icosahedron. The code
for this picture is taken from [5 1] and shown in Pictures.m.

A. l A Guide to the Literature

A.l A Guide to the Literature

A.l.l Programming

345

Functional programming originated with the language LISP in 1 960 [55] . A clean implemen­
tation is the dialect Scheme, developed at MIT [1 , 64]. A delightful introduction to LISP is
The Little USPer [20] . This booklet starts with the basics and leads right into the center of
the programming style so typical of LISP. Pure functions (see Section 1 1 . 1) are of central
importance in LISP, where they are called Lambda expressions. The theoretical background
of functional programming is /.. calculus. A comprehensive presentation can be found in
Barendregt's book [4]. We look at functional programming in Chapter 9 and in Section 1 1 .2.

Object-oriented programming got its start with the language Simula 1 5]. Today, the
languages Smalltalk [25] and C++ [66] are widely used, with Java [3] quickly catching up.
A particularly recommended book on object-oriented programming is [1 0] . It discusses the
concepts using four object-oriented languages: Smalltalk, C++, Object Pascal and Objective C.
Other recommended books are [6, 1 4, 57]. In this book, Chapter 14 is about object-oriented
programming.

The important concept of modularization, with its two central ideas of encapsulation and
interface definition, is realized in many procedural languages such as Ada and Modula-2. The
theoretical background was described by Parnas in 1 972 [58]. We treat these concepts in
Chapter 4.

An overview over the various programming styles in the way they present themselves in
Mathematica can be found in [45] and [5 1] .

Readers interested in the development of programming languages can find a collection of
the most important works on the origin of all major languages in Horowitz's book [29].

A.1.2 Teaching with Mathematica
Mathematica is used more and more in teaching. A complete introductory course in calculus
has been developed by H. Porta und J. Uhl at the University of illinois [1 7] . Its authors
described the underlying ideas in an excellent article in the Mathematica Journal [9]. Other
examples of classroom material using Mathematica are in [7, 16, 19, 24, 30, 3 1]. There is also
a journal devoted to Mathematica in education, aptly named Mathematica in Education and
Research.

A.l.3 Literature on Mathematica
The official Mathematica manual is Wolfram's book [74] . The Mathematica Journal contains
articles on all aspects of Mathematica. Further material on programming in Mathematica can

346 A Further Readinx

be found in our books [54, 5 1 , 53]. Various Mathematica topics are treated in the books by
Wickham-Janes [73] and Wagon [72] . Applications of Mathematica in various sciences are in
[1 5, 22, 26, 70, 7 1] , among many others.

A.1.4 Other Topics in Computer Science

Everything about discrete mathematics (recursion equations, closed form solution of sums,
combinatorics, and so on) can be found in [37] . A good reference for algorithrnics is
Sedgewick [6 1] , and, of course, there are the volumes of Knuth's The Art of Computer
Programming [34, 35, 36].

Gersting's text [23] contains elements of discrete mathematics and some chapters on the
theory of computation and finite automata. An impressive collection of survey articles on
the occasion of the 50th anniversary of Turing's important work on computability [67] was
edited by Herken [27]. A new approach, algorithmic information theory, was pioneered by
Chaitin [1 1] , who uses Mathematica for some of his programs.

A newer book on numerical mathematics of special interest to Mathematica users is [62].
A recommended book on databases is [68].

A.1.5 Various References

The Collatz or 3x+ I problem from Section 3.2 is discussed further in an article by Lagarias [39] .
A description of fast searching methods for the 3x + 1 problem can be found in [42] . The
diode equation from Section 1 . 1 .6 is taken from (1 5] . The proof that there are three fourth
powers whose sum is again a forth power (Section 2. 1 . 1) is by Elkies [18] . The various
computation methods for Fibonacci numbers in Section 7.2 are taken from f 43]. The Karatsuba
multiplication method from Section 7.4.3 originated in [32] (English translation in [33]).

/.. calculus was introduced by Church [1 2] (Section 1 1 . 1). The collections in Section 14.4
are from Budd's book [10]. Their implementation in Mathematica was first given in [49].

Turing's work for the British defense is described in his interesting biography [28] (Sec­
tion 1 .2). The Turing machine is from his work in 1936 [67] . Church's thesis was also
postulated in 1 936 [13] .

The Ackermann function was given in [2] as an example of a total but not primitive
recursive function. The busy beaver problem is by Rado [60]. An overview of the current
research in this area can be found in [8] .

The oscillator in Section 3.4.5 is named after van der Pol who described it in 1926 [69].
The examples with op amps in Section 1 . 1 .4 and in Exercise 8.7 are taken from the book [65].
The Koch curve is from [38] the flowsnake is due to W. Gosper [21] (Exercise 10.4).

A.2 References

A.2 References

[1] H . Abelson and G. J . Sussman. Structure and Interpretation of Computer Programs. The MIT Press,
Cambridge, MA, 1 985.

[2] W. Ackermann. Zum Hilbertschen Aufbau der ree11en Zahlen. Math. Ann., 99: 1 1 8-33, 1928.

[3] Ken Arnold and James Gosling. The Java Programming Language, 2nd edition. Addison Wesley
Longman, Reading, MA, 1 998.

347

[4] H. P. Barendregt. The Lambda Calculus, revised edition. Studies in Logic 103. North Holland, Amsterdam,
1 984.

[5] G. M. Birtwistle, 0.-J. Dahl, B. Myhrhaug, and K. Nygaard. SIMULA Begin. Studentlitteratur Sweden,
Lund, 1979.

[6] Grady Booch. Object Oriented Design with Applications. The Benjamin/Cummings Publishing Company,
Redwood City, CA, 199 1 .

[7] Bart Braden. Discovering Calculus with Mathemutica. John Wiley & Sons, New York, 1992.

[8] Allen H. Brady. The busy beaver game and the meaning of life. In Rolf Herken, The Universal Turing
Machine: A Half Century Survey. Kammerer & Unverzagt, Hamburg-Berlin, 1 988.

[9] Don Brown, Horacio Porta, and Jerry Uhl. Calculus&Mathematica: Courseware for the nineties. The
Mathematica Journal, I (I), 1 990.

[10 1 Timothy Budd. A n Introduction to Object-Oriented Programming. Addison-Wesley, Reading, MA, 1 99 1 .

[1 1] Gregory J . Chaitin. The Limits of Mathematics. Springer-Verlag, New York, 1 998.

[1 21 A. Church. A set of postulates for the foundation of logic. Annals of Math., 33-34, 1 932-33.

[1 3] A. Church. An unsolvable problem in elementary number theory. Amer. J. Math., 58:345-63, 1936.

[14] Brad J. Cox and Andrew J. Novobilski. Object-Oriented Programming, second edition. Addison-Wesley,
Reading, MA, 1 99 1 .

[1 5] Richard Crandall. Mathematicafor the Sciences. Addison-Wesley, Reading, MA, 199 1 .

[1 6] Philip Crooke and John Ratcliffe. A Guidebook to Calculus with Mathematica. Wadsworth Publishing
Company, 1 99 1 .

(1 7) Bill Davis, Horacio Porta, and Jerry Uhl. Calculus&Mathematica. Addison-Wesley, Reading, MA, 1 994.

[1 8] Noam D. Elkies. On A4 + B4 + C4 = D4• Math. of Computation, 5 1 :825-35, October 1 982.

[1 91 James K. Finch and Millanne Lehmann. Exploring Calculus with Mathematica. Addison-Wesley, Reading,
MA, 1992.

[20] Daniel P. Friedman and Matthia� Felleisen. The little USPer. The MIT Press, Cambridge, MA, 1987.

[21 1 M. Gardner. Mathematical games. Scientific Amen'can, December 1976.

[22] Richard J. Gaylord and Paul R. Wellin. Computer Simulations with Mathematica. TELOS/Springer-Verlag,
Santa Clara, CA, 1 994.

[23 J Judith L. Gersting. Mathematical Structures for Computer Science, second edition. W. H. Freeman, San
Francisco, CA, 1 987.

(241 Oliver Gloor, Beatrice Amrhein, and Roman E. Maeder. Illustrated Mathematics. TELOS/Springer-Verlag,
Santa Clara, CA, 1 995. CD-ROM with booklet.

348 A Further Reading

[251 Adele Goldberg and David Robson. Smalltalk-80: The lAnguage. Addison-Wesley, Reading, MA, 1989.

[26] Theodore Gray and Jerry Glynn. Exploring Mathematics with Mathematica. Addison-Wesley, Reading,
MA, 199 1 .

[27] Rolf Herken, editor. The Universal Turing Machine: A Half Century Survey. Kammerer & Unverzagt,
Hamburg-Berlin, 1988.

[28] Andrew Hodges. Alan Turing: the Enigma. Burnett Books, London, 1983.

[29] E. Horowitz, editor. Programming lAnguages: A Grand Tour, second edition. Computer Science Press,
New York, 1985.

[30] Cliff J. Huang and Philip S. Crooke. Mathematics and Mathematicafor Economists. Blackwell Publishers,
Malden, MA, 1 997.

(3 1 (E. Johnson. Linear Algebra with Mathematica. Brooks/Cole, Pacific Grove, CA, 1995.

[32] A. Karatsuba and Yu. Ofman. Multiplication of many-digital numbers by automatic computers. Doklady
Akademii nauk SSSR, 1 45(2):293-94, 1962. (in Russian).

[33] A. Karatsuba and Yu. Ofman. Multiplication of multidigit numbers on automata. Soviet physics doklady,
7(7):595-96, 1963.

[34] D. E. Knuth. Fundamental Algorithms, The Art of Computer Programming, Vol. 1 , 3rd edition.
Addison-Wesley, Reading, MA, 1 997.

[35] D. E. Knuth. Seminumerical Algorithms, The Art of Computer Programming, Vol. 2. 3rd edition.
Addison-Wesley, Reading, MA, 1 997.

[36] D. E. Knuth. Sorting and Searching, The A11 of Computer Programming, Vol. 3, 3rd edition.
Addison-Wesley, Reading, MA, 1997.

[37] Donald E. Knuth, Ronald L. Graham, and Oren Patashnik. Concrete Mathematics. Addison-Wesley,
Reading, MA, 1989.

[38] H. von Koch. Sur une courbe continue sans tangente, obtenue par une construction geometrique
elementaire. Arkiv for Matematik, Astronomi och Fysik, 1 :681-704, 1 904.

[391 Jeffrey C. Lagarias. The 3x+ 1 problem and its generalizations. The American Mathematical Monthly,
92(I):3-23, Jan. 1 985.

[40] Leslie Lamport. �TJ?C: A Document Preparation System. Addison-Wesley, Reading, MA, 1 986.

(4 1 1 Leslie Lamport. Makelndex: An Index Processor for �Tpc, Software Manual, February 1 7, 1 987.

[42] Gary T. Leavens and Mike Vermeulen. 3x + 1 search programs. Computers and Mathematics with
Applications, 24(I I):79-99, December 1992.

(43] Roman E. Maeder. Fibonacci on the fast track. The Mathematica Journal, 1 (3):42-46, 1 99 1 .

1441 Roman E. Maeder. Fractal curves. The Mathematica Journal, 1 (4):28-33, 199 1 .

[45] Roman E. Maeder. Mathematica as a programming language. D1: Dobbs Journal, February 1992.

[461 Roman E. Maeder. Minimal surfaces. The Mathematica Journal. 2(2):25-30, 1 992.

[47] Roman E. Maeder. Databases. The Mathematicu Journal, 3(2):40-47, 1 993.

[48] Roman E. Maeder. lnformatikfiir Mathematiker und Naturwissensclluftler - Eine EiT!fiihrung mit
Mathemalica. Addison-Wesley (Germany), Bonn, 1 993.

1 49) Roman E. Maeder. Object-oriented programming. The Mathematica Journal, 3(1):23-3 1 , 1993.

[50] Roman E. Maeder. Turing machines and code-optimization. The Mathematica Journal, 3(3): 36-45, 1993.

A.2 References
----------------------�

[5 1] Roman E . Maeder. The Mathematica Programmer. AP Professional, San Diego, CA, 1 994.

[52] Roman E. Maeder. The stellated icosahedra. Mathematica in Education, 3(1) , 1994.

[53] Roman E. Maeder. The Mathematica Programmer II. Academic Press, New York, 1996.

349

[54] Roman E. Maeder. Programming in Mathematica, third edition. Addison-Wesley, Reading, MA, 1 996.

[55] John McCarthy. Recursive functions of symbolic expressions and their computation by machine I. l ACM,
3 : 1 84-95, 1960.

[56] Michael McGuire. An Eye for Fractals. Addison-Wesley, Reading, MA, 1 99 1 .

[57] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, Englewood Cliffs, NJ, 1 988.

[58] D. L. Parnas. A technique for software module specification with examples. Comm. ACM, 15(5), May 1 972.

[59] Oren Patashnik. BIBTEXing, February 8, 1 988.

[60] T. Rado. On non-computable functions. Bell Sys. Tech. J., 877-84, May 1 962.

[61] Robert Sedgewick. Algorithms in C . Addison-Wesley, Reading, MA, 1990.

[62] R. Skeel and Jerry Keiper. Elementary Numerical Computing with Mathematica. McGraw-Hill, New York,
1 993.

[63] Steven S. Skiena. Implementing Discrete Mathematics: Combinatorics and Graph Theory with
Mathematica. Addison-Wesley, Reading, MA, 1 990.

[64] George Springer and Daniel P. Friedman. Scheme and the Art of Programming. McGraw-Hill, New York,
1989.

[65] David F. Stout and Milton Kaufman. Handbook of Microcircuit Design and Application. McGraw-Hi ll,
New York, 1980.

[66] Bjarne Stroustrup. The C++ Programming Language, second edition. Addison-Wesley, Reading, MA,
1 99 1 .

[67] Alan M. Thring. On computable numbers with an application to the entscheidungsproblem. P. Lond. Math.
Soc. (2), 42:230-65, 1 936-37.

[68] Jeffrey D. Ullman. Principles of Database and Knowledge-base Systems, volume 14 of Principles of
Computer Science Series. Computer Science Press, Rockville, Maryland, 1 988.

[69] B. van der Pol. On relaxation oscillations. Phil. Mag. , 2:978-92, 1926.

[70] H. Varian, editor. Economic and Financial Modeling with Mathematica. Springer Verlag, 1 992.

[7 1] H . Varian, editor. Computational Economics and Finance. TELOS/Springer Verlag, New York. 1 996.

[72] Stan Wagon. Mathematicu in Action. W. H. Freeman, San Francisco, 1 990.

[73 j Tom Wickham-Jones. Mathematica Graphics: Techniques and Applications. TELOS/Springer-Verlag,
Santa Clara, CA, 1 994.

[74] Stephen Wolfram. The Mathematica Book, 4th edition. Wolfram Media/Cambridge University Press, New
York, l999.

[75] Konrad Zuse. Computerarchitektur aus damaliger und heutiger S icht. Technical Report 1 80, Informatik
ETH, Zurich, 1 992.

Appendix B

More Information About Mathematica

Section B. I gives an overview of Mathematica's capabilities; is best used for a computer
demonstration. The emphasis in this book has been on programming and not on the many
functions built into Mathematica. Nevertheless, it is useful to know more about the things
you can do. Graphics, especially, have been used in many places to illustrate algorithms.
Section B.2 contains the programs for the graphics on the title pages of all chapters.

Sections B.3 and B.4 are a concise reference for Mathematica's programming language. It
does not replace the manual but is sufficient for those parts of Mathematica used in this book.

About the illustration overleaf:
A butterfly-shaped parametric curve. The picture was produced with this command (see
Pictures.m):

ParametricPlot [
(Exp [Cos [phi]] - 2Cos [4phi] + Sin[phi/12] A5) *{Cos [phi] , Sin[phi] } ,
{phi , 0 , 12Pi} , PlotPoints -> 100 , Axes -> None] ;

B. I Computations You Can Do with Mathematica 353

B.l Computations You Can Do with Mathematica

This section gives some examples from mathematics, the sciences, and engineering, which
can be computed with Mathematica. It provides an overview of the built-in functions and the
use of numerical, symbolic, and graphical methods. Further examples can be found in The
Mathematica Book.

B.l.l Calculations with Arbitrary-Size Numbers

Complex numbers with integer real and
imaginary parts are called Gaussian inte­
gers. Here, 2 + 3i is raised to the power 77.

Here is the sum of the first 120 terms of the
harmonic series as an exact rational number.

Here is a 40-digit approximation of it.

In[l] := (2 + 31) �77
Out [1] • 7412304432076046690897601378247253624267882 +

2106528086205905836243917075081134694382203 I

In[2] : = Sum[1/i , {i , 1 , 120}]

Out [2]=

18661952910524692834612799443020757786224277983797

3475956553913558034594585593659201286533187398464

In[3] : = N[Y,, 40]

Out [3]= 5 . 368868287363394912822 154939438701013894

Mathematical constants, such as 1t, can be In[4] : � N[Pi , 200]
computed to arbitrary precision. out [4]= 3 . 141592653589793238462643383279502884197169399\

37510582097494459230781640628620899862803482534211706\

79821480865132823066470938446095505822317253594081284\

811 174502841027019385211055596446229489549303820

Mathematica keeps track of the precision of all numbers it works with. Every computation
introduces a certain amount of roundoff error, so that the precision of intermediate results
usually decreases gradually.

We start with the number 100 exact to 60
decimal digits of precision.

The exponential e100 does not decrease the
precision noticeably, but the number of dig­
its to the right ofthe decimal points decreas­
es.

In[5] : � N[100 , 60]

Out [5]� 100. 000\

00000000000000

In[6] : � Exp[Y,]

Out [6]� 2 . 6881 1714181613544841262555158001358736 1111877\

43
374192241519 10

354 B More Information About Mathematica

The precision of the sine function sin e HJO de- In[7] : � Sin[X J
pends essentially on the number of available Out [7]� o . 14219812365824
digits after the decimal point. As a conse-
quence, this result has much less than 100
digits precision.

If possible, Mathematica computes ahead and may be able to figure out the required input
precision to achieve a result of a desired precision. This adaptive precision control is a major
new feature of Version 3.0.

If we ask for 60 digits of sin e 100 direct! y, we
get the desired precision. The computation
we just performed step by step is done at a
higher precision automatically.

In[8] : � N[Sin[Exp[100]] , 60]

Out [8]� 0. 142198123658238637772450306478685256334737609\

563878023658927

The same method can also be used to decide exact computations by performing a suitable
numerical computation to a high-enough precision. Even though the computations involve
numerical approximations, the results is guaranteed to be correct, due to careful control of
precision.

Is e11 less than 1te? We can decide if we know
both values to sufficient precision.

The two values are close enough that a sim­
ple calculation in our head would not ea<>ily
find the correct answer.

8.1.2 Numerical Methods

Numerical integration can find approxima­
tions to integrals that cannot be comput­
ed in closed form, such as this example, J011 sin sin xdx.

Integrals with infinite domain of integration
can also be computed numerically.

NSum [] finds numerical approximations for
infinite sums. Here is the sum 2:::'1 1 / i2•

The exact value for this sum is known (rr/6),
which allows us to confirm the accuracy of
the numerical approximation.

In[9] := BAPi < PiAB

Out [9]� False

In[10] : � N[{EAPi , PiAE})

0Ut [10]� {23 . 1407, 22 . 4592}

In[1] : � Nintegrate[Sin[Sin[x]] , {x, 0, Pi}]

Out [1]� 1 . 78649

In[2] : � Nlntegrate [Exp[-xA2] , {x, 0 , Infinitr}]

Out [2]� 0 . 886227

In[3) : � NSum[1/iA2 , {i, 1 , Infinity}]

Out [3]• 1 . 64493

In[4] : � N[PiA2/6]

Out [4]= 1 . 64493

B. I Computations You Can Do with Mathematica 355
-- - -- -------------

B.1.3 Graphs of Functions

This command plots the graph of sin x in the In[5] : � Plot [Sin[x] , {x, o, 2Pi}]
range (0, 27t). The output line -Graphics-
represents the internal symbolic form of the
graphic object.

0.5

2

-0.5

- I

Out [5]� -Graphics-

4 5 6

Certain aspects of previous graphics can be
changed in a new rendering. Here, we add a
plot label. Normally, we terminate graphics
commands with the semicolon to suppress
to output of -Graphics- .

In[6] : � Shov[Y. , PlotLabel -> "The Sine Flmction"] ;

The Sine Function

0.5

2 4

-0.5

- l

If a function has singularities, Mathematica In[7] : � Plot [Tan[x] , {x , 0 , 2Pi}] ;
limits the plot range and does not try to plot
all function values. 40

20

-20

-40

3 4

5 6

6

356 B More Information About Mathematica

Nevertheless, it is often useful to give the In[S) : • Shov[Y. , PlotRange -> { -5 , 5}] ;
plot range explicitly.

Plot3D [] is used to plot the graph of a
function of two variables.

The option PlotPoints gives the number
of places to evaluate the function in each
dimension. A higher value gives a nicer pic­
ture but increases the computing time con­
siderably. Axes->None suppresses the axes
and tick marks.

4

2

2 4 5

-2

-4

In[9] : � Plot3D[Sin[x y] , {x, -3 , 3} , {y, -3 , 3}] ;

In[10) : ; Plot3D[Sin[x y] , {x, -3 , 3} , {y, -3 , 3} ,
PlotPoints -> 40 , !xes -> None] ;

B. I Computations You Can Do with Mathematica

B.1.4 Parametric Curves and Surfaces

357

A parametric curve is given by the x and y
coordinates as a function of a parameter t.
Here is an example of a Lissajous curve.

In[l] : � ParametricPlot[{Sin[2t] , Sin[3t] } , {t , 0 , 2Pi}] ;

Here is a spiral, a parametric curve in three
dimensions.

If the x, y, and z coordinates depend on
two parameters, we get a parametric surface.
Here is a catenoid.

In[2] : � ParametricPlot3D[{Sin(t] , Cos [t] , t /6} ,
{t , -2Pi , 2Pi}] ;

In[3] : � ParametricPlot3D[
{Cosh[z] Cos [phi] , Cosh[z] Sin[phi] , z} ,
{phi, 0, 2Pi} , {z , - 1 , 1}] ;

358

B.l.S Special Functions

B More Information About Mathematica

All built-in functions can be evaluated in the complex plane to arbitrary precision. We can,
therefore, plot all of these functions.

Here is the absolute value of the Riemann
� function on the critical line, that is, the
numbers of the form 1 /2 + yi, here for y =
0 . . . 3 1 . We can see the first four zeroes
of the � function on the critical line. One
of the most important unsolved problems in
mathematics is the question of whether all
zeroes lie exactly on this line.

We generate a table of the first ten Chebyshev
polynomials T;(x). Ti(X) is of degree i.

In the shortened output form (using
Short []) any suppressed terms are marked
by «n» , where n indicates the number of
terms left out.

A picture shows immediately the character­
istic properties of these polynomials. Their
values in the range - 1 :::; x :::; 1 all lie in
the interval (- 1 , 1]. These polynomials are,
therefore, often used for interpolation.

In[1) : = Plot [1bs [Zeta[0 . 6 + 1 I]] , {1, 0 , 31}] ;

t
2.5 ;

t

2

1 .5

0.5

5 10

In[2] : = Table[ChebrshevT[i, x] , {i , 1 , 10}] II Short

Out [2]11Short=

2
{x, -1 + 2 X 1 -3 X + <<1>> , <<6>> ,

2 4 6 8 10
-1 + 50 X - 400 X + 1 120 X - 1280 X + 512 X }

In[3] : • Plot [Evaluate[7.) , {x, -1 . 1 , 1 . 1} ,
PlotRange->{-2 , 2} ,
PlotStrle->Thickness[0 . 001]

] ;

-1 .5

-2

B. I Computations You Can Do with Mathematica 359

B.1.6 Calculus and Algebra

Differentiation is a purely mechanical oper­
ation (because of the chain rule), which is
best left to a machine.

Mathematica employs methods to find inner
derivatives, making it easy to perform this
integration back to the expression we started
with.

Integrals of rational functions can be found
by partial fraction expansion.

This integral cannot be expressed in terms of
elementary functions. Mathematica knows
most nonelementary functions, such as the
error function erf(x).

The definite integral

can be found only with advanced methods.

These methods can also deal with unbound­
ed integration domains.

The limit lim., 0 "�"' can easily be found
with de l'Hopital's rule.

Mathematica can find (generalized) Taylor
series. This example has the remarkable
property that the coefficient of xn- l in the
series expansion of

(1 - e "')"
is always one. Here is n = 9.

There are also methods for finding infinite
sums exactly.

In[1) : = D[Log[Log[Log[Log[x)])] , x]

1
Out [1) = --------------­

x Log[x] Log[Log[x]] Log[Log[Log[x)]]

In[2] : = Integrate['l. , x]

Out [2]= Log[Log[Log[Log[x]]]]

In[3] : = Integrate[(1+2x) / (xA2-1) , x]

3 Log[-1 + x] Log[1 + x]
Out [3]= + __;:,__ __

2 2

In[4] : = Integrate [EA-xA2 , x]

Sqrt [Pi] Erf [x]
Out [4]= ------

2

In[5] : = Integrate[xA2/ (Sqrt [1-xA4] (1+xA4)) , {x, 0, 1}]

Pi
Out [5]= -

8

In[6) : = Integrate[Log[x] (1 + XA2) A (-2) ,
{x, ! , Infinity}]

4 Catalan - Pi
Out [6]= ------

8

In[7] : = Limit[Sin[x]/x, x -> 0]

Out [7]= 1

In[8] : = Series [XA9/ (1 - EA-X) A9, {x, 0 , 9}]

2 3 4 5
9 X 39 X 27 X 1069 X 801 X

Out [8]= 1 + - + -- + + --- + -- +

6
29531 X

5040

2 4 2 80 80

7
761 X 8

9
25713 X 10

+ -- + x + --- + O [x]
280 89600

In[9] : = Sum[1/iA2 , {i , 1 , Infinity}]

2
Pi

Out [9]= -
6

360

B.1.7 Differential Equations

Some simple differential equations can be
solved exactly. Here is the harmonic oscil­
lator. C [1] and C [2] are the two constants
of integration.

If initial conditions are given, the constants
of integration are determined fully.

This command asks for the numerical solu­
tion of the system of differential equations

X� = Xz, x� = -x, - ax2 + (3 cos(rot),

for t = 0 . . . 127t, with a. = 0.01 , (3 = 0. 1,
and ro = I . I . The two solutions are returned
as interpolating functions.

The solutions are assigned to the variables
:z:1 and :z:2 .

Interpolating functions can be evaluated for
arbitrary values of t and can also be plotted.
Here is a phase space representation of the
solution.

B More Information About Mathematica

In[l] : • DSolve[{x' ' [t] + x[t] == 0} , x[t] , t

Out (l]• {{x[t] -> C [2] Cos[t) - C[1] Sin [t]}}

In[2] : = DSolve[{x' ' (t] + x [t] == 0 ,
x [O] =• 0 , x' [O] == 1 } ,

x[t] , t]

Out [2]= {{x [t] -> Sin[t]}}

In[3] : = IDSolve[{x1 ' [t] •= x2 [t] , x2 ' [t] ==

Out [3]= {{x1 ->

-x1 [t] - . 01 x2(t] + . 1 Cos [1 . 1t] ,
x1 [0] •= 2 , x2 [0] == 0} ,

{x1 , x2} , {t , 0 , 12Pi} , MaxSteps-> 1000]

InterpolatingFunction[{{O . , 37 . 6991}} , <>] ,

x2 -> InterpolatingFunction[{{O . , 37 . 6991}} , <>] }}

In[4] : = {x1 , x2} = {x1 , x2} / . Y, [[1]] ;

In[6] : = ParametricPlot [{x1 [t] , x2[t]} , {t , 0 , 12Pi} ,
!spectRatio->1] ;

B. I Computations You Can Do with Mathematica 361
--

B.1.8 Systems of Equations

Here, we compute the intersection of a
circle and a hyperbola, that is, the com­
mon solutions of the equations for the cir­
cle x2

+ y2 = 4 and the hyperbola xy = 1 .
The four solutions are given i n exact form.

The nested roots can be simplified further.

As usual, N [] gives us a numerical approx­
imation.

This equation of fifth degree cannot be
solved in closed form. Mathematica returns
the solutions in a symbolic form (as alge­
braic numbers) that can be used for further
manipulations or numerical approximation.

Here is a 1 0-digit approximation of the five
solutions. One of them is real valued, the
other four are complex.

In[1] : = Solve[{x�2 + y�2 == 4 , x y == 1} , {x , y}]//
Simplify

Out [1]= {{x -> - (Sqrt [2 - Sqrt [3]] (2 + Sqrt [3])) ,

y - > -Sqrt [2 - Sqrt [3]] } ,

{ x - > Sqrt [2 - Sqrt [3]] (2 + Sqrt [3]) ,

y -> Sqrt [2 - Sqrt [3]] } ,

{x - > - ((-2 + Sqrt [3]) Sqrt [2 + Sqrt [3]]) ,

y - > Sqrt [2 + Sqrt [3]] } ,

{x - > (-2 + Sqrt [3]) Sqrt [2 + Sqrt [3]] ,

y - > -Sqrt [2 + Sqrt [3]] }}

In[2] : = ToRadicals[RootReduce[7.]]

Out [2]= {{x -> -Sqrt [2 + Sqrt [3]] ,

y -> -Sqrt [2 - Sqrt [3]] } ,

{x - > Sqrt [2 + Sqrt [3]] , y -> Sqrt [2 - Sqrt [3]] } ,

{x -> Sqrt [2 - Sqrt[3]] , y -> Sqrt [2 + Sqrt [3]] } ,

{x - > -Sqrt [2 - Sqrt [3]] , y - > -Sqrt [2 + Sqrt [3]] }}

In[3] : = N[7.]

Out [3]= {{x -> - 1 . 93185, y -> -0 . 5 17638},

{x -> 1 . 93185 , y -> 0 . 5 17638} ,

{x -> 0 . 517638, y -> 1 . 93185},

{x -> -0 . 5 17638 , y -> -1 . 93 185}}

In[4] : = Solve [x�s + 2x + 1 == 0]

5
Out [4]• {{x -> Root [1 + 2 #1 + #1 & , 1]} ,

5
{x -> Root [1 + 2 #1 + #1 & , 2] } ,

5
{x -> Root [l + 2 #1 + #1 & , 3]} ,

5
{x -> Root [1 + 2 #1 + #1 & , 4] } ,

5
{x -> Root [1 + 2 #1 + #1 & , 5]}}

In[5] : = N[7. , 10]

Out [5]= {{x -> -0 . 486389} ,

{x -> -0 . 701874 - 0 . 879697 I},

{x -> -0 . 701874 + 0 . 879697 I},

{x -> 0 . 945068 - 0 . 854518 I},

{x -> 0 . 945068 + 0 . 854518 I}}

362

Mathematica can perform a complete case
analysis. If a =I 0, there are two solu­
tions according to the well-known formula
for quadratic equations. If a = 0 and b ::/ 0,
the equation is linear. Otherwise, a, b, and c
must all be zero, and any x is a solution.

Using purely symbolic coefficients, we can
find the general solution (x1, x2) of the l inear
system

B.1.9 Animated Graphics

B More Information About Mathematica

In[6] : � Reduce [a XA2 + b x + c •= 0 , x]

2
-b - Sqrt [b - 4 a c)

Out [6]= x == && a ! = 0 I I
2 a

2
-b + Sqrt [b - 4 a c]

x �� && a ! � 0 I I
2 a

a == o && b == o && c == o I I
c

a =� 0 && x �= - (-) && b ! = 0
b

In[7] : = Together[
LinearSolve [{{ml l , m12} , {m21 , m22}},

{bl , b2}]

b2 m12 - b1 m22 b2 m11 - b1 m21
Out [7]= { , }

m12 m21 - m11 m22 - (m12. m21) + mll m22

Unfortunately, we cannot show animated graphics in a book, but we can at least show the
individual frames of an animation sequence. The package Graphics ' Animation ' contains
the animation commands, and FlipBookAnimation.m causes the static rendering of the frames.

Figure B. l-1 shows eight frames of the transition from the catenoid to the helicoid. The
command CartesianSurf ace [] is taken from the package MathProg' MinimalSurface s '
described in [46] and [5 1] .

Needs ["Graphics ' Animation' "]

< < FlipBookAnimation . m

Needs ["MathProg' MinimalSurfaces ' "]

Animate [CartesianSurface [Exp[I arg] EA-z, EAz , z , {-2 , 2 , 4/20} , {-Pi , Pi , Pi/14} ,
PlotRange->{{-7 . 5 , 7 . 5} , {-7 . 5 , 7 . 5 } , {-7 . 5 , 7 . 5}},
Boxed->False , Axes->None] ,

{arg, 0 , Pi/2} , Frames->8 , Closed->False
] ;

B. l Computations You Can Do with Mathematica

Figure 8.1-1 The transition from the catenoid to the helicoid.

363

364 B More Information About Mathematica

B.2 The Code for the Illustrations in this Book

Here is the package Pictures.m used to produce the graphics on the title pages of the chapters.
The graphics for Chapter n is obtained by evaluation of the symbol chaptern . The symbol
appendixn gives the picture for Appendix n.

Reading the package sets up the definitions, In[1] : = « CSM' Pictures'
but does not produce any graphic output.

The symbols chaptern and appendixn In[2] := che.pter6 ;
were defined with : = (so-called delayed val­
ues). Their evaluation, here for chapter6 ,
triggers the computation and renders the
graphic.

Some pictures, such as this one, use ran­
dom numbers and wiJI look different each
time you reevaluate them.

The pictures for Chapters 1 3 and 14 and for Appendix A require packages from The Math­
ematica Programmer [53]; they are not included with this book. The picture for Chap­
ter 10 requires a package for cellular automata that is no longer part of the standard Math­
ematica packages. It is available from MathSource, however (item No. 0200-282, see
http : //www .mathsource . com/Content22/Applicat ions/Complexity/0200-282).

Please note that some graphics may take a long time to compute. You can look at them
first at a lower quality by changing parameters and options, such as PlotPoint s .

(* packages from Computer Science with Mathematica *)
Needs [" CSM'BinaryTree ' "]
Needs ["CSM' ComplexParametricPlot ' "]
Needs ["CSM' Aggregate ' "]
Needs ["CSM' Iterate ' "]
Needs (" CSM' TuringRecursive ' "]
Get ["CSM' Collatz2 ' "]

B.2 The Code for the Illustrations in this Book

(• standard packages *)

Needs ["Graphics ' Animation' "]
Get [" FlipBookAnimation' "]

(* not part of this book' s packages : *)

Get ["CellularAutomata' "] (* from Mathematica 2 . 2 or from MathSource •)
Needs ["MathProg' FractalExamples "'] C• The Mathematica Programmer *)
Needs ["MathProg' Icosahedra' "] (* The Mathematica Programmer •)
Needs ["MathProg'UniformPolyhedra' "] (* The Mathematica Programmer *)

(* more standard packages •)

Needs ["Geometry ' Polytopes' "]
Needs ["Graphics' Polyhedra' "]

chapter1 : =
Animate [Functioniteration[4# (1-#)& , {0 . 099 , 0 . 1 , 0 . 101} , 0 , n , {0 , 1 } ,

Frame->True , FrameTicks->None] ,
{n , 1 , 9 , 1}] ;

grid : = grid = Table [If [PrimeQ[x + I y] , 0 , 1] , {x, 0 , 255} , {y , 0 , 255}]

chapter2 : = Show [Graphics [Raster[grid]] , AspectRatio -> Automatic]

chapter3 := ListPlot [Table [CollatzLength[i] , {i , 1 , 1000}]]

randCoeff : = 2Random[Integer , {0 , 1}] - 1
RandHorner [n_Integer , x_] : = Nest [Function[p , p x + randCoeff] , 1 , n]

chapter4 := ComplexParametricPlot [RandHorner[20 ,Exp[I t]] /Sqrt [21] ,
{t , 0 , 2Pi} , PlotStyle->Thickness [0 . 002] ,
PlotPoints->100 , AspectRatio->Automatic]

365

Cuboids [n_ , m_] : = Graphics3D [Cuboid /� Table [Random[Integer, {0 , m-1}] , {n} , {3}]]

chapterS : = Show[Cuboids [SOO , 20]]

RandomTree [n_] : = Tree [Table [Random[Integer , {0 , 3n}] , {n}] , Identity]
CSM' BinaryTree ' Private ' diskr = 0 . 5 (• make nodes larger •)
CSM ' BinaryTree ' Private ' ys = 2 (* more vertical space •)

chapter6 := plotTree [RandomTree [30] , DefaultFont->{"Times-Roman" , 8} ,
Prolog->Thickness (0 . 001]]

' fibx
fib [1] : = {Point [{fibx++ , 1 }] }
fib[2] : = {Point [{fibx++, 2 }] }
fib(n_] : =

Module [{n1 = n- 1 , n2 = n-2 , xo = fibx++ , a , b , c , d} ,
a = Line [{ {xo , n} , {fibx , nl} }] ; b f ib [n1] ;
c = Line ({ {xo , n} , {fibx, n2} }] ; d = fib (n2] ;
{Point [{xo , n}] , a, b , c , d}]

FibonacciPlot [n_] : =
Module ({lines} ,

fibx = 0 ;

366

lines "' fib [n] ;
lines = {PointSize [1 . 0/fibx] , lines};

B More Information About Mathematica

Show [Graphies [Flatten[lines]] , Frame->True ,
PlotRange -> {All, {0 . 5 , n + 0 . 5}}]]

chapter? · = FibonaeciPlot [9]

chapterS :"' Show (gridGraphies [aggregate [initialGrid [50] , 2000]]]

InsertMiddle [l_List] : =
Flatten[Apply[{# 1 , (#1+#2) /2}& , Partition [l , 2 , 1] , {1}] , 1] NJoinN {1 [[- 1]] }

DoOrDie [e_ , d_ , {i_ , j _}/ ; OddQ(i+j]] : = e + Random(Real , {-d , d}]
DoOrDie [e_ , d_ , {_ , _}] : = e

Refine [SurfaeeGraphics (gr_ , opts ___] , d_ ; a
Module [{net} ,

net = Map [InsertMiddle , gr , {0 , 1 }] ;
net = Mapindexed(DoOrDie [#1 , d , #2] & , net , {2}] ;
SurfaeeGraphies (net , opts]]

Refine [s_SurfaeeGraphies , d_ , r_ , 0] : = s
Refine (s_SurfaeeGraphies , d_ , r_ , n_Integer?Positive] : "'

Refine [Refine [s , d] , r d/2 , r , n- 1]

graph : = graph = Plot3D[Sin (x y] , {x , 0 , 3} , {y , 0 , 3 } ,
PlotPoints->8 , Di splayFunction->Identity]

ehapter9 : = Show [Refine [graph , 0 . 4 , 0 . 9 , 3] , Axes->None ,
DisplayFunction->$DisplayFunct ion]

automata [n_] : =
Module ({init , pies} ,

init = Table [Random[Integer , {0 , 1}] , {n}] ;
Block[{$Di splayFunction=Identity} ,

pies "' Table [ShowCA[EvolveCA [init , NumberedRule [i] , n-1]] , {i , 0 , 63}]
] ;
pies "' GraphicsArray[Partition[pies , 8]] ;
Show [pics , DisplayFunction->$DisplayFunction , AspectRatio-> 1]]

ehapter10 : = automata[40]

SuperStellateFace [face_] : =
Module[{apex , i , i 1 , r = Norm(face [[1]]] , 1 = Length [faee] , nf} ,

apex = r Unitize [Plus QQ face I 1] ;
nf "' Table (i1 a Mod[i , 1] + 1 ;

nv "' r Unitize [face [(i]] + faee [[i 1]]] ;
{Polygon[{face [[i]] , apex, nv}] ,

Polygon[{nv, apex , face ([i 1]] }] } ,
{i , 1}] ;

Flatten [nf , 1]]

Norm[v_] : = Sqrt [Plus QQ (vA2)]
Unitize[v_] : = v/Norm[v]

SuperStellate [thing_] : = thing / . Polygon [vl_] : > SuperStellateFace (vl]

chapter11 : = Show [SuperStellate (Polyhedron[Dodeeahedron]] , Boxed->False

B.2 The Code for the Illustrations in this Book

chapter 12 : = PlotTuring [runList [{b , m} , pr [O, zero , p [1 , 2]]] ,
Columns->5 , DefaultFont->{"Times-Roman" , 6 . 0}]

chapter13 : = Show [Mandelbrot [4]

icosa = {{1 , 3} , {36 , 1 8}} ;

chapter14 : = Show [GraphicsArray [Map [Icosahedra[#, Boxed->False] & , icosa, {2}]] ,
GraphicsSpacing -> 0]

polyopts = Sequence QQ {PlotRange->All , Boxed->False}
p1 : = pi = Graphics3D [MakeUniform[w 1 [5 , 2 , 5/2]] , polyopts] ;
p2 : = p2 = Graphics3D [MakeUniform[w1 [5/2 , 2 , 5]] , polyopts] ;
p3 : = p3 = Graphics3D[MakeUniform[w 1 [3 , 2 , 5/2]] , polyopts] ;
p4 := p4 = Graphics3D [MakeUniform[w 1 [5/2 , 2 , 3]] , polyopts] ;

appendixA : = Show[GraphicsArray [{{p1 , p2} , {p3 , p4}} , GraphicsSpacing->0]

appendixB : = ParametricPlot [
(Exp[Cos [phi]] - 2Cos [4phi] + Sin[phi/12] A5) •{Cos [phi] , Sin[phi] } ,
{phi , 0 , 12Pi} , PlotPoints->100 , AspectRatio->Automati c , Axes->None

index : = Show [Graphics3D [MakeUniform[w1 [2 , 5/2 , 3]]]]

367

368 B More Information About Mathematica

B.3 Mathematica's Evaluation Method

Mathematica performs a computation in three phases:

• Read the input and convert it into internal form as an expression.

• Evaluate the expression.

• Format the result for output.

After outputting the result, Mathematica is once more ready for new input. This cycle repeats
until Mathematica itself is terminated.

Under the Notebook frontend, the input consists of the contents of the cell that is sent to
the kernel with the Evaluate Selection menu command or the ENTER key. In the direct dialog
with the kernel, lines are read until a syntactically complete expression has been input.

B.3.1 Conversion into Internal Form

Expressions in internal form are either atoms (numbers, symbols, or strings), or they are
composite expression of the form

where h and the ei are themselves expressions. We looked at this building principle for
expressions in Section 2.4.

Expressions can be entered in this form, if desired. Much easier for us humans is, however,
the use of operators. There are prefix operators, such as -x , postfix operators, such as f ' ,
and infix operators, such as a + b + c, as well as some special cases, such as {a , b , c}
and l [[i]] . Mathematica's parser, which reads your input, converts expressions involving
operators into internal form. The most important operators and their internal forms are listed in
the tables in Section B .4. To guarantee a unique way of conversion, each operator is equipped
with a priority. Such priorities are familiar from mathematics: multiplication, for example,
has a higher priority than addition.

B.3.2 Evaluation of Expressions

Mathematica evaluates an expression by applying various transformation rules to it. Many
such rules are built into Mathematica; others can be defined by the user. For example, if we
evaluate the definition f [x_] : = xt.2 , a new rule is established that from now on is applied
to all matching expressions (see also Section 10.2).

B.3 Mathematica 's Evaluation Method

B.3.2.1 The Different Kinds of Rules

369

To restrict the number of rules that have to be tried on each expression, each rule is associated
with a symbol. There are several cases (h, f, and s denote symbols) :

• A definition of the form
h : = body

belongs to the symbol h. Such a rule is called an ownvalue.

• A definition of the form
h [. . . J : = body

belongs to the symbol h. Such a rule is called a downvalue.

• A definition of the form

f I : h [. . . , f [. . .] , . . .] : = body

or
f I : h [. . . , f , . . .] : = body

belongs to the symbol f. Such a rule is called an upvalue. Upvalues are associated with
symbols occurring as arguments of the left side.

• A definition of the form
s [f [. . .] , . . .] : = body ,

where s is one the special symbols N , Default , Attributes, or Format , belongs to f.
The declaration f I : is not needed in these cases.

• A definition of the form
h [. . .] [. . .] : = body

belongs to the symbol h. Such a rule is called a subvalue. Because the head of the left
side is not a symbol, no rule can be associated to it.

Together with the built-in rules of the same types, these user-defined rules form the set of rules
according to which every expression is evaluated.

B.3.2.2 The Evaluator

Th evaluator works in a loop and continues until no more rules can be applied to an expression.
Whenever the application of a rule changed an expression, it starts again from the beginning.

Atoms are easy to evaluate. Numbers and strings evaluate to themselves, that is, no change
takes place. Symbols having a value (defined with symbol = val or symbol : = val) evaluate
to this value. Symbols without a value evaluate to themselves.

370 B More Information About Mathematica

The evaluation of composite expressions is more complicated. First, the head and the
elements are evaluated recursively. The evaluation of certain elements can be prevented by
the attributes HoldFirst and HoldRest .

s [e 1 , e2 , • • • , en]

Attribute of s Meaning
HoldFirst et is not evaluated
HoldRest e2 through en are not evaluated
HoldAll no element is evaluated

Other nonstandard evaluation of elements takes place for many programming constructs, such
as definitions, loops, conditional statements, and logical operations. See Section A.4.2 of The
Mathematica Book.

Mter the evaluation of head and elements, the attributes Flat and Orderless are taken
into account. If the head has the attribute Orderless , the elements are sorted into standard
order. The attribute Flat causes nested occurrences of the head to be flattened out.

Attributes are set in this way.

All nested occurrences of f are flattened.

Elements of g are sorted.

Addition is associative and commutative,
that is, it has both of these attributes (among
others).

In[1] : = SetAttributes[f , Plat] ; \
SetAttributes[g , Orderless] ;

In[2] : = f [x , f [a, b] , y , f[c]]

Out [2]= f [x , a, b , y , c]

In[3] : = g[a, 2, -3 . 5 , z]

Out [3]= g [-3 . 5 , 2 , a , z]

In[4] : = Attributes[Plus]

Out [4]= {Flat , Listable , NumericFunction, Oneidentity ,

Orderless , Protected}

The next step in evaluation is governed by the attribute Listable . If the head h has this
attribute and if there are any lists among the elements, these lists are exchanged with h (using
Thread[] , as explained in Section 8.1 .2).

Most mathematical functions have the at­
tribute Listable .

In[5] : = Sin[{a, 1 , Pi}]

Out [5]= {Sin [a] , Sin[1] , 0}

Finally, rules are applied. Applicable rules are those that are associated with the head of the
expression or with the heads of elements. Rules are examined in the following order:

• User-defined rules with a left side

h [. . . • j [. . .] , . . .]

B.3 Mathematica 's Evaluation Method 371
--

or
h [. . . • j • . . .] ,

associated with f (upvalues).

• Built-in upvalues.

• User-defined rules with a left side
h [" .]

or
h [. . .] [. . .] ,

associated with h (downvalues and subvalues).

• Built-in downvalues and subvalues.

In each case, pattern matching (see Section 10. 1) is used to find out whether a rule is applicable.
If a rule is applicable, the expression is replaced by the right side of the rule, and evaluation
starts over. An example of a user-defined upvalue can be found on page 163. There, we
modified assignment for digit [] .

B.3.2.3 Control of Run-Away Evaluations

The evaluator has safeguards against infinite recursion (when evaluating the head or the
elements) and against infinite iteration (when applying rules).

\fariable �eaning
$RecursionLimit limit for the recursion
$IterationLimit limit for the iteration

For these examples, we set the limits to small In[1] : = $RecursionLimit .. 20 ; \
values. $Itere.tionLimit • 100 ;

Such a definition leads to infinite recursion. In[2] : = f [:z:_] :"' h[f [:z:]]

After reaching the recursion limit, further In[3] := f [1]
evaluation is prevented b y Hold . $RecursionLimit : : reclim: Recursion depth of 20 exceeded .

Out [3]a h[h[h[h[h[h[h[h[h[h [h[h[h[h(h[h[h[h[h[

Hold[f[1)])))]]]))]]]]])]]]]]

Such a definition leads to infinite iteration. In[4) := g[:z:_] : = g[2:z:]

After reaching the iteration limit, further In[5] : = g[ll
evaluation is prevented by Hold · $Itere.tionLimi t : : i tlim: Iteration limit of 100 exceeded .

Out [5)= Hold[g[2 6338253001 14114700748351602688])

372

B.3.3 Output Formatting

B More Information About Mathematica

The internal form of the result is converted into print form by application of format rules.
Mathematica supports several formats . The most important formats are OutputForm (a two­
dimensional representation), InputForm (a form that can be read back into Mathematica),
FullForm (the unchanged internal form), as well as TeXForm, CForm, and so on for special
applications.

The frontend offers print-quality mathematical typesetting through the new format types
StandardForm and TraditionalForm .

The default format is output form, a two­
dimensional representation.

Input form can be read back into Mathemat­
ica.

Here is the internal fomt of the expression.

In[l] : e expr • E%p[xA2]/3

2
X

E
Out [l] ; -

3

In[2] : = InputForm[expr]

Out [2]//InputForm= EAXA2/3

In[3] : = FullForm[expr]

Out [3]//Ful1Form=

Times [Rational [l , 3] , Power[E, Power [x, 2))]

This form i s suitable for input into T:sX. For- In[4] : = TeXForm[expr]

matted, it looks like this: Out [4]//TeXForm= \frac{eA{XA2} }{3}

This form can be inserted into C programs. In[5) : = CForm[expr]

Out [5)//CForm= Power (E,Power (x,2))/3 .

For formatting, the expression Format [result , format] is evaluated (in the standard way, as
explained in Section B.3.2). The default for format is OutputForm. Many formatting rules
are built in. You can also define your own formatting rules. We have done so in some places in
this book, for example in Section 5 .2.3. Please consult The Mathematica Book (Section 2.8)
for more information on formatting.

B.3.4 The Main Loop

In addition to the three main actions input, evaluation, and output, a number of other things
take place during a computation. Here is the complete description of an evaluation.

B.3 Mathematica 's Evaluation Method

• Print the input prompt In[n] : = (not under the frontend).

• Read input (as a string).

• Apply the function $PreRead, if it is defined, to the input string.

• Print syntax errors, if necessary.

• Assign InString [n] .

• Convert input string into internal form.

• Apply the function $Pre , if it is defined, to the input expression.

• Assign In[n] .

• Evaluate expression.

• Apply the function $Post , if it is defined, to the result.

• Assign Out [n] .

• Apply the function $PrePrint , if it is defined, to the result.

• Print expression if it is not Null .

• Increment $Line .

373

The variables $Pre , $Post , and $PrePrint allow us to change the behavior of Mathe­
matica at will. If we work frequently with vectors and matrices, for example, we can use
$PrePrint = MatrixForm to force all results in matrix form (we did so in Section 8.2).

374 B More Information About Mathematica

B.4 Syntax of Operators

In the following table, operators are ordered by decreasing priority. Operators in the same
group have equal priorities. The Grouping column explains how several consecutive binary
operators are grouped. If no parentheses are given, the operator can take an arbitrary number
of arguments (it is associative). If there is no entry, the operator cannot be used without explicit
parentheses. (For example, expr1 ?expr2 ?expr3 is not possible.) The column is also empty for
unary operators.

Input Form Internal Form Grouping

digits . digits (floating-point number)
expr : : string MessageName [expr, "string"]
expr : : string1 : : string2 MessageName [expr , "string1 " , "string2 "]
expressions with # (see below)

expressions with % (see below)

expressions with _ (see below)

« filename Get ["filename"]
expr1 ?expr2 PatternTest [expr1 , expr2]
expr1 [expr2 , . . .] expr1 [expr2 , . . .] (e [e]) [e]
expr1 [[expr2 , . . .]] Part [expr1 , expr2 , . . .] (e [[e]]) [[e]]
expr++ Increment [expr]
expr-- Decrement [expr]
++expr Pre!ncrement [expr]
--expr PreDecrement [expr]
expr1 @ expr2 expr1 [expr2] e @ (e @ e)
expr1 /@ expr2 Map[expr1 , expr2] e /@ (e /@ e)
expr1 I/@ expr2 MapAll [expr1 , expr2] e I/@ (e I /CD e)
expr1 @@ expr2 Apply [expr1 , expr2] e @@ (e @@ e)
expr ! Factorial [expr]
expr ! ! Factorial2 [expr]
expr' Derivative [1] [expr]
expr1 <> expr2 StringJoin[expr1 , expr2] e <> e <> e
expr 1 �o.expr2 Power [expr1 , expr2] e�o. (e�o.e)
expr1 . expr2 . expr3 Dot [expr1 , expr2 , expr3] e . e . e
-expr Times [- 1 , expr]
+expr expr

Syntax, Part 1 .

B.4 Syntax of Operators 375

Input Form Internal Form Grouping

expr11expr2 Times [expr1 , Power [expr2 , - 1]] (e I e) I e
expr1 expr2 expr3 Time s [expr1 , expr2 , expr3] e e e
expr1 * expr2 * expr3 Times [expr1 , expr2 , expr3] e * e * e
expr1 + expr2 + expr3 Plus [expr1 , expr2 , expr3] e + e + e
expr1 - expr2 Plus [expr1 , Times [-1 , expr2]] (e - e) - e
expr1 == expr2 Equal [expr1 , expr2] e == e ::= e
expr1 ! = expr2 Unequal [e.xpr1 , expr2] e ! = e ! = e
expr1 > expr2 Greater [expr1 , expr2] e > e > e
expr 1 >= expr 2 GreaterEqual [expr1 , expr2] e >= e >= e
expr1 < expr2 Less [expr1 , expr2] e < e < e
expr1 <= expr2 LessEqual [expr1 , expr2] e <= e <= e
expr1 === expr2 SameQ[expr1 , expr2] e === e === e
expr1 = ! = expr2 UnsameQ [expr1 , expr2] e = ! = e = ! = e
! expr Not [expr] ! (! e)
expr1 && expr2 And[expr1 , expr2] e && e && e
expr1 I I expr2 Or [expr1 , expr2] e I I e I I e
expr1 I expr2 Alternative s [e.xpr1 , expr2] e I e I e
symb : expr Pattern[symb , expr]
expr 1 I ; expr2 Condition [expr1 , expr2] (el ; e) l ; e
expr1 - > expr2 Rule [expr1 , expr2] e-> (e->e)
expr1 : > expr2 RuleDelayed [expr1 , expr2] e-> (e->e)
expr 1 I . expr2 ReplaceAll [expr1 , expr2] (el . e) l . e
expr1 I I . expr2 ReplaceRepeated[expr1 , expr2] (ell . e) ll . e
expr 1 += expr2 AddTo [expr1 , expr2]
e.xpr 1 -= expr2 SubtractFrom[expr1 , expr2]
expr1 *= expr2 TimesBy [expr1 , expr2]
expr 1 I= expr2 DivideBy[expr1 , expr2]
expr & Function[expr]
expr1 I I expr2 expr2 [expr1] (e I I e) I I e
expr1 = expr2 Set [expr1 , expr2] e = (e "" e)
expr1 : = expr2 SetDelayed [expr1 , expr2]
expr1 A= expr2 UpSet [expr1 , expr2] e = (e == e)
expr1 A : = expr2 UpSetDelayed[expr1 , expr2]
symbl : expr1 = expr2 TagSet [symb , expr1 , expr2]
symb I : expr 1 : = expr2 TagSetDelayed[symb, expr1 , expr2]
expr1 ; expr2 CompoundExpression[expr1 , expr2] e . , e ; e
expr1 ; CompoundExpress ion[expr1 , Null] e · , e ; e j

Syntax, Part 2.

376

Input Form

#n
%
%%
%% . . . %
%n

-
_h
- -

__ h

___ h

-
symb_
symb_h
symb __
symb __ h
symb ___
symb ___ h
symb_ .

expr and e.xpri
symb, h

string and string;

filename

n

digits

Internal Form

Slot [1]
Slot [n]
Out []
Out [-2]
Out [-n]
Out [n]
Blank []
Blank [h]

B More Information About Mathematica

BlankSequence []
BlankSequence [h]
BlankNullSequence []
BlankNullSequence [h]
Optional [Blank[]]
Pattern[symb , Blank[]]
Pattern[symb , Blank [h]]
Pattern [symb , BlankSequence []]
Pattern[symb , BlankSequence [h]]
Pattern [symb , BlankNullSequence []]
Pattern[symb , BlankNullSequence [h]]
Optional [Pattern[symb , Blank[]]]

Special Input Fonns.

any expression

a symbol

a string

a file name

an integer (in decimal)

a sequence of digits

Meaning of variables in the tables.

Complete tables of all special input forms are given in Appendix A.2.7 of The Mathematica
Book. These tables are also available on-line in the Help Browser.

Index

A complete index for Mathematica is in The Mathematica Book. Mathematica commands are
listed here only if they are used in this book. You will find here all the commands developed
in our example packages. These commands are not part of Mathematica and are, therefore,
not listed in The Mathematica Book.

The main entry is shown with boldface page numbers. Symbols beginning with a dollar
sign, $, are listed under the following letter. Names of persons are given in italics. Further
typographical conventions are explained on page xvii.

About the illustration overleaf:
The great icosidodecahedron. It consists of triangles and pentagrams arranged alternatingly.

Index ! - BooleMat.m

! , Factorial, 27
! , Not, 28
#, 376
' . 1 83
*. 27
->, 231
. , 1 75
/ ; , 229
/ . , 231, 257
//, 46
I : , 103, 369
/�. 263
: =, 30
: >, 231
; , 35, 5 1
«, 87
==, 1 74
?, 30, 49, 229
��. 264
%, 35, 376
&:, 258
_, 376
' . xvi, 85

0, 99
1-n, 304

a conversion, 257
abs, 264
Absolute value, 35
Abstract

class, 330
data type, 99

Account, 327
Accounts. 327
Accounts.m, 327

Accuracy, 75, I SO
Ackermann function, 277
Addition, 1 00, 163, 273, 299

of integers, 66
Addresses, 99, 322
aggregate, 202
Aggregate.m, 206
Aggregation, 202-205

(Fig.). 1 7 1
AGM, 53
Algebra, 359

computer, 24
relational, 3 1 0

ALGOL, 22
Algorithms, 2 1

complexity of, 143

for gcd, 57
for multiplication, 1 65
for searching, 1 1 5
for sorting, 1 2 1

Alphabet, 249, 282, 308
ALU, 1 5
AND, 28, 1 77
Animation, of minimal surface, 362
Anomaly, 9
Append, 63
append, 2 1 8
Apply, 42, 47, 263
Architecture, Computer, 14
Arguments, 32, 238
Arithmetic, 27-29, 1 62, 167
Arrays, 1 94, 337
Assembler. 289
Assignments, 36, 233, 369

redefining, 1 63
Associativity, 27, 1 56, 29 1 , 370
at, 337
atlfAbsent, 337
AtomQ, 2 1 4
atomQ, 2 1 3
Atoms, 44, 45, 2 1 4
Attributes, 303, 308
Autonomous (equation), 69
Axes, 356

13 reduction. 256
Backup, 1 7
Base, 1 62
BASIC, 22
van Beethoven, Ludwig, 305, 315
Begin, 85
BeginPackage, 85
Bell polynomials, 268
Bignum.m. 1 64
Bin, 338
Binary, 1 62
BinaryPover, 146
BinarySearch, 1 1 5
BinarySearch.m, 1 19
BinarySearch1 .m, l i S
BinarySearchB.m, 1 17
BinaryTree.m, 1 30
Bisection, 1 1 5
Bits, 1 45
Body, 32, 38, 256
BoltzmannConstant, I I
Boole, 1 77
BooleMat.m, 1 78

379

380 _____ Braces - Count -----

Braces, 34
Brackets, 30, 47, 260

double, 45
Branches, 275
Break, 36
Browser, 50
Bugs, 22
Busy beaver, 289, 346
Butterfly (Fig.), 353

C (capacitance), I 90
C++, 345
C, 19, 99, 200
Calculator, 27
Calculus, 359

relational, 319
vector, 1 8 1

Calling convention, 293
Cambridge University Press, 1 19, 339
Capacitance, 190
car, 2 1 3
Carry, 162
CartesianSurface, 362
CASE, 24
Cases, 227
Catch, 333
Catenoid (Fig.). 357, 362
Cauchy, Augustin-Louis, 70
cdr. 2 1 3
Cellular automata (Fig.), 227
CForm, 372
Chain rule, 359
Chaotic map (Fig.), 3
Characteristic equation, 1 49
Characteristic polynomial, ! 5 1
Chebyshev polynomials (Fig.), 358
Chop, 1 89
Church, Alonzo, 280, 346
Circle, 361
Circuits, 1 77
Class, 327, 33 1
Classes, 325

abstract, 330
complexity , 1 43
for objects, 330

Clear, 3 1
Collalz problem, 60--63, 77, 96, 346
Collatz sequence (Fig.), 57
Collatz1 .m, 62
Collatz2.m, 63
CollatzLength, 6 1
CollatzSequence, 62

Collect.m, 332
collection, 332
Collections, 332-341
Column vectors, 175
Columns, 289
Commands, 47

Notation for, xvii
Commutativity, 370
Comparisons, 16
Compi ler, 1 9, 23, 44
Complement, 3 10
Complex, 45
Complex numbers, see Numbers, comple
Complexity, 1 43, 1 67, 245, 277

logarithmic, 246
ComplexParametricMap, 88
ComplexParametricPlot , 82
ComplexParametricPlot.m, 93
ComplexParametricPiot1 .m, 82
ComplexParametricPiot2.m, 83
ComplexParametricPiot3. m, 86
ComplexParametricPiot4.m, 89
Components, 1 78
compose, 29 1
Composition, 274, 290, 295
Computability, 273-279
Computer, 1 4, 280
Computer science, 23-24

theoretical, 273
Conditional Statements, 35
Conditions, 229, 275

initial, 3 1
Configurations, 284
Connections, 1 77
cons, 2 1 3
Consistency, 3 1 6, 3 19
constant, 260
Constants, 40
Constraints, 157
Constructors, 106
$Context, 85
$ContextPath, 85
Continue , 36, 202
control unit, 1 5
Conversion, 108

of types, 104
Convert, 1 l
Conway, John H. , x vii
copy, 292
Correctness, 65, 1 07
Count, 8

Index

CSM' , xvi
Cuboid, 99
Curves, 357
Cycle, 60

D, 359
Data entry, 3 14, 3 19
Data structures, 1 29, 194, 2 14, 260, 332
Data types, 99-10 1 , 130, 2 1 3, 283, 325
Databases, 20, 303, 32 1

relational, 308-3 1 3
DataEntry, 3 1 6
Decimal, 1 62
Default, 90
Definitions, xviii, 30--33, 47, 369

of data types, 99
delayed, 364
dynamic, 1 57
inductive, 44, 274
nested, 1 56

delete, 33 1
deleteTree, 1 35
Deletion

in heap, 1 98
in trees, 134

Depth
of recursion, 1 26
of tree, 1 33

depth, 1 33
Derivative, 1 83
Diagonal, 203
Dictionary, 338
Difference, 275, 3 10
Differential Equations, 360
Differentiation, 4 1 , 52, 69, 249, 359
Digits, 38, 1 50, 353

binary, 1 46
decimal, 1 62

Diode, I I
Directory, 1 1 5
DisplayFunction, 74
Divergence, 1 8 1
DivGrad.m, 1 84
Divide and conquer, 246
Divides, 57
Divisibility, 57
Division, 46, 299

for gcd, 58
Do, 37, 275
do, 337
Documentation, 2 1 , 86

CSM' - Examples

Dodecahedron, 254
(Fig.), 344

Dot, 1 76
downHeap, 198
Downvalues, 369
DSolve, 360

rr conversion, 258
eat1, 292
Eccentricity, 9
Efficiency, 103

of algorithms, 143
list operations, 63
of rewrite rules, 245

Electronics.m, 190
Elementary charge, ElectronCharge, 1 1
Elements, 99

evaluation of, 370
of an expression, 44
of a list, 29

eliminateColumn, 1 87
Ellipse, 9
empty, 261
emptyTape, 284
Encapsulation, 86
End, 85
EndPackage, 85
Engineering

electrical, 177, 190
mechanical, 6

ENIAC, 14
Entity, 303
Equality, 28

of expressions, 244
Equations, 9, 1 74, 361

characteristic, 149
for data types, 107
differential, 69-75, 360
linear, 185
recursive, 144
unsolvable, 361

Equivalence, 235
erf(x), 359
Euler. Leonhard, 70
Evaluation, 52, 207, 237, 248, 268, 368, 372

of pure functions, 256
EvenQ, 60, 237
Examples

accounts, 327
aggregation, 202
constant pure functions, 258
differential equation, 69

381

382

Examples (cont.)
Fibonacci numbers, 147
heap, 195
Integration and Differentiation, 243
knapsack problem, !57
numbers, modular, 102
oscillator, 69
parametric plots, 81
van der Pol's equation, 73
repeated application of rules, 24 1
shift registers, 266
trigonometry, 241
wiring, 178

Exchange, 1 2 1
Exercises

AGM, 53
Bell polynomials, 268
binary trees, 1 38, 341
coding, 208
Collatz problem, 77, 96
complexity, 167
continued fractions, 77
data structures, 268, 341
data types, 1 l0, 140
databases, 321, 322
dictionaries, 34 1
differentiation, 249
evaluations, 52, 207, 248, 268
Fibonacci numbers, 77
frequency, 208
Gaussian elimination, 209
GCD, 76
iteration, 76
L-Systems, 249
lists, 1 39, 207, 208, 223, 224
long integer arithmetic, 1 67
1.1 schema, 300
Mobius transforms, 96
numbers, 1 10
op amps, 209
operators, 52
pattern matching, 248
prime numbers, 1 38
random numbers, 268
recursion, 76, 299
repeated squaring, 1 67
shift registers, 268
sorting, 1 39, 1 40
syntax, 52
Thring machine, 299

Expand, 34

Examples - Function

Expansion, 241
partial fractions, 359

Expert systems, 20
Exponential (complexity), 144
Exponentials, 1 44
Exponentiation, 27

fast, 145, 1 5 1
left to right, 1 54
of matrices, 151

Expressions, 44, 1 08, 227, 368
Boolean (logical), 28
normal, 44, 101
Ordering, 238

Factorial, 30, 65, 67, 276
Factorial.m, 65
False, 28
Feedback, 266
FFf, 1 5 1
Fib.m, 1 47
Fibonacci, 1 54
Fibonacci numbers, 77, 1 47-1 56, 167, 3

(Fig.), 143
Fields

in physics, 181
of relations, 308

Fields, 308
Filenames, xvii
Filter0ptions, 91
FindRoot, 1 3, 145
Fit, 148
FixedPoint, 287
FixedPointList, 288
Flat, 29 1 , 370
Flatten, 47
Floating point, 45
Floor, 1 46
Flowsnake, 250
Fold, 42, l32
Folding, 332
Format, 1 04, 372
Formatting, 372
FORTRAN, 22
Fractals, 249

(Fig.), 2 13, 302
Fractions

continued, 77, 265
partial, 359

Frequency response, 1 9 1
Frontend, xvi, 94, 368
FullForm, 46, 372
Funct ion, 4 1 , 255

Index

Functions, xviii, 8 1 , 325
Ackermann, 277
application to arguments, 256
as arguments, 262
built-in, 85, 358
computable, 273
constant, 258
definition of, 233
even and odd, 237
formal parameters, 257
graphs of, 355
growth of, 277
harmonic, 183
interpolating, 360
piecewise definition, 3 1
powers o f trigonometric, 242
pure, 4 1 , 255-259, 345
recursive, xiii, 6 1 , 1 24, 1 33, 147

partial recursive, 276, 282, 293
primitive recursive, 274

Simplification, 239
as values, 260

Garbage, 1 94
Gaufl, Carl Friedrich, 1 85
GaussianElimination, 1 87
gcd, 36, 57, 76
gcd, 40
GCD1 .m, 57
GCDR.m, 58
GCDS.m, 59
GetKey, 1 1 8
Global ' , 85
Golden Ratio, 37, 264
Gradient, 1 82
Graphics, 355-357
Grid, 202
gridGraphics, 202
Grouping, of expressions, 47

Halting problem, 280
Halving, 1 1 5
Hash, 338
Hashing, 338
Head, 44, I 01, 228

of atoms, 45
Head, 44, 1 08
Heap, 1 95
heap.c, 20 1
Heap.m, 1 95
Heapsort, 199
Helicoid (Fig.), 362

Functions - Integration

Help browser, 50
Hints, practical, 3 1
History, 345
Hold, 371
HoldFirst , 1 2 1
HoldForm, 46
Holes, 227
Marquis de L'Hopital, Guillaume F. A., 359
Horner, William G., 43, 80
Hyperbola, 361

i, I, 8 1 , 1 90
Icosahedron (Fig.), 325, 344
lcosidodecahedron, great, 379
Identifier, 45
I£, 35, 275
Imaginary part, 8 1
Impedance, 1 90
Implementation, 86, 99, 108
In, 373
includesKey, 337
Increment, 66
Index, 320, 379-389
indexedCollect ion, 336
Induction, 100, 217, 299
Inductivity, 190
Inequality, 28
Information, ?, 49
Inheritance, 325
init.m, xviii
initia1Configuration, 287
initia1Grid, 202
Inner, l76, 207
InOrder, 139
Input, 368, 376

operators, 46
InputForm, 104, 372
insert, 220
Insertion

in heap, 196
into tree, 1 30

lnsertion.m, I 24
insertTree, 1 30
InstanceVariables, 328, 331
InString, 373
Instruction set, 1 6
Instructions, 282
Integer, 45
Integers, see Numbers, integer
Integrate, 359
Integration, 359

numerical, 354

383

384 Interface - Mechanics

Interface, 86
Interpreter, 44

command. 1 7
Intersection, 3 1 0
Intersection, 3 10
Interval, 334
Invariants, 64
Inverse, 103

modular, 1 03
10 unit, 1 5
isa, 33 1
Iteration, 3, 72, 149, 335

bounded, 275
Collatz problem, 60
Fibonacci numbers, 1 47, 1 48
solutions of, 149

$IterationLimit, 37l
Iterators, 37

j, as imaginary unit, 1 90
Jacobian, 1 82
Java, 99, 345
Join, 31 1
Join, 3 1 1
Jumps, 1 6

Karatsuba method, 165, 1 67, 346
Karatsuba, A. , 1 5 1
Kepler; Johannes, 9
Kernel

of Mathemalica, xvi, 368
operating system, 1 7

Key, 1 1 8, 130, 304
removal of, 3 1 2

Kirc:lzhoff, Gustav Robert, 192
Knapsack, 1 57
Knapsack.m, 1 60
von Koch, H. , 250

L (inductivity), 190
L-Systems, 249
Label, 1 8
A. calculus, 256-258, 345, 346
Laplacian, 1 83
Leaf, 1 33
Length

Collatz sequence, 6 1
of a computation, 1 43
of a list, 29
of numbers, 143

Length, 44
Limit, 359

Limit, 359
Linalg.m, 1 87
$Line, 373
Line number, 373
Linear (complexity), 143
LinearSolve, 190, 362
Link, 335
Linker, 17
L1SP, 22, 24, 44, 2 17-222, 345
Lisp.m, 2 1 5
Lissajous curves, 357
List, 46
l ist, 2 1 5
Listable, 370
ListPlot, 1 39
Lis�, 47, 1 39, 207, 214, 223, 224, 335

infinite, 260, 268, 283
linear, 134
mailing, xvii
nested, 220

Lists.m, 217
Literature, 345-346
load, 32 1
Loader, 17
Logarithm, 62, 143
Logintegral, 1 38
Logo, 250
LogPlot, 12
Loop invariant, 64, 1 16, 1 22-1 24
Loops, 19, 35, 66, 148, 275

for gcd, 58
LSR.m, 267

Macros, 289
Mandelbrot, Benoit, 302
many-to-many, 305
Map, 42, 262
map, 2 1 8
Matching, 227
MatchQ, 227
MathConsult, 322
Mathematics, 34, 255, 346

computer-aided, 24
Matrices, 171

Boolean, I 77
Fibonacci numbers, 1 5 1
Jacobian, 1 82

MatrixForm, 1 72
MatrixPower, 1 5 1
MatrixTrace, 172
Maximum, 208
Mechanics, 6

Index

Memory, 282
main, 1 5

Memory management, 1 94
Methods, 32S, 330

numerical, 354
Methods, 328, 331
Mobius transform, 96
Mod, 58, 1 02
Models

of computation, 280
of natural numbers, I 00

Modular, 1 06
Modular.m, 1 05
Modularization, 325, 345
Module, 38
Modulus, 106
Modulus, 1 06
Monte Carlo, 9
Mozart, Wolfgang Amadeus, 3 1 6
Multiplication, 27, 100, 1 65, 273

complexity of, lS I
Music, 303, 32 1
Music.m, 318

N, 27, 1 50, 354, 361
n-m, 305
NDSolve, 75, 360
Negation, 28
Nest, 42, 264, 287
NestList, 72, 264, 287
von Neumann, John, 1 5
new, 327, 330, 33l
newRelat ion, 309
newTape, 284
Newton, Sir Isaac, 3
Newtoniterat ion, 5
nextConf iguration, 286
NextStep, 1 7
nil, 215
Nintegrate, 354
Noetherian, 236
Normal fonns, 235

of odd and even functions, 239
Not, 28
Notation, xvii, 376

mathematical, xx
Notebook, 94
Nother, Emmy, 236
NSum, 354
Null, 1 95
nullQ, 215

Memory - Out

Numbers, 45
big, 143, 1 62- 1 67, 353
very big, 155, 278
complex, 8 1 , 1 10
Fibonacci, 147
Gaussian, 27, 353
integer, 99, 1 62
large, 27
modular, 102
natural, 99, 273
prime, 138
random, 9, 267, 268, 364
rational, I 10

Numerics
differential equations, 69
Fibonacci numbers, 150

O(g(n)), 143
Obj ect, 327, 330
Objects, 325, 330
occupy, 202
oddEvenRules, 237, 240
OddQ, 60, 237
ODE1 .m, 7 1
ODE2.m, 72
Odlyzlw, Andrew, 80
OERules.m, 240
Ohm, Georg Simon, 190
one-to-many, 304
Oneldentity, 291
Op amp, 9, 209, 346
Operating system, 1 7
Operations, 99

arithmetic and logical, 16
destructive, 26 1
functional, 42, 262

Operators, 44, 46, 52, 368, 374-376
overloading of, 103

Optimization, 1 57
OR, 28, 177, 221
Order

alphabetic, 1 1 9
asymptotic, 143
first, 69

Order, 1 30
Ordering, 1 1 5

of expressions, 238, 370
Drderless, 370
Orthogonal, 203
Oscillator, 69, 73, 346

harmonic, 360
Dut, 373

385

386 Outer - Products
-------------------------- �--------------------

Outer, l80, 207
Output, 372

operators, 46
OutputForm, 372
Overloading, I 03, I 08
Ownvalues, 369

Packages, 8 1
in files, xvii

pairQ, 2 1 3
Parameter, 256
ParametricPlot, 75, 81 , 357
ParametricPlot3D, 357
Parentheses, 30, 374

wrong ones, 50
Parser, 46, 368
Part, 44, 108
Pattern, 30, 227�230

for negative arguments, 238
Pattern matching, 248
Peano, Giuseppe, 99
PermutationPlot, 1 39
Permutations, 1 7 1
Phase space, 360
cp, 264
PhysicalConstants, 1 1
1t, 7
n(x), 1 38
Picagon (Fig.), 255
Pictures

aggregation, 1 7 1
binary search, 1 1 8
butterfly, 353
catenoid, 357, 362
cellular automata, 227
chaotic map, 3
Chebyshev polynomials, 358
Collatz sequence, 57
Fibonacci numbers, 143
fractals, 2 1 3, 302
Gaussian primes, 27
heap, 1 95-1 99
helicoid, 362
icosahedra, stellated, 325
knapsack problem, 160
multiplication time, 1 66
phase space, 360
polyhedra, 255, 344, 379
programs for, 364
quicksort, 1 27
shift register, 266
sine function, 87, 355

tangent function, 83, 355
tree, binary, I I S
Turing machine, 273
unit circle, 8 1

Pictures.m, 364
Pivot, 1 90, 209
Plot, 355
Plot3D, 356
PlotLabel, 355
PlotPoints, 356
PlotVectorField, 70
Plus, 46, 1 03
Pointer, 1 94
van der Pol, B., 73
Polyhedra (Fig.), 344, 379
Polynomial (complexity), 144
Polynomials

characteristic, 1 5 1
normal form, 235

$Post, 373
Postcondition, 65
Postfix, 46
Potential, 1 82
PoYerMod, 103
Powers, 144

binary expansion, 145, 1 67
expansion of, 241
of matrices, 1 5 1

$Pre, 373
Precedence, 27
Precision, ! 50
Precondition, 65
Predecessor, 275, 288, 296
Predicates, 22 1 , 229, 275
Prepend, 62
$PrePrint, 1 75, 1 78, 1 88, 373
$PreRead, 373
PrimePi, 138
Primes, 102

Gaussian (Fig.), 27
Print, 37
Priority, 368, 374
Procedures, xviii
Product, 38
Products

Boolean, 177
Cartesian, 308, 3 1 3
dot, 1 75
expansion of, 241
inner, l75-1 80
outer, 1 80- 1 8 1

Index Program structures - Simplifications

Program structures, 34-42
Programming

constraint, ! 57
dynamic, 156-161
functional, 2 1 7, 260
object-oriented, 325-326, 345
procedural, 22, 200
recursive, x, 61 , 124, 1 3 1 , 147, 217

Programming languages, 22, 345
Programming tricks, 239
Projection, 274, 294, 3 1 1
Proj ection, 3 1 1
Prompt, 373
Proofs, 1 07

QSort.m, 1 25
Query, 3 14
Quicksort, 1 24, 144, 200

R (resistor), 1 90
Random, 7
randomDirect ion, 202
randomPoint, 7
Raster, 205
Rational, 45
Rational numbers, see Numbers, rational
Real, 45
Real part, 8 1
Receiver, 325, 330
Record, 1 1 8
Recurrence, 149
Recursion, 66, 1 24, 147, 1 56, 1 65, 217

graphical representation, 143
inefficient, 61

$RecursionLimit, 62, 278, 37 1
Reduce, 362
Redundancy, 303
Register, 1 6
relation, 308
Relational calculus, 3 1 9
Relations, 308
Relationship, 304
Relocation, 290
remove, 2 1 9
ReplacePart, 260
Report, 3 14
Representative, 102
Representative, 106
Resistor, 1 90
Resonance, 1 9 1
Return, 16
reverse, 219

Riemann � function, 358
RLL, 208
Roots, 4, 28, 276
Rounding, 150
Row vectors, 1 76
Rules, 231

chain, 359
global, xviii
L-system, 249
for powers, 242
run time, 246

run, 288
Run time

for multiplication, 166
of repeated rules, 246

Runge-Kutta, 75
runList, 288

s(n) (successor), 273
Schema

J.!, 276, 300
recursion, 274, 296, 299

Scheme, 345
Schoolbook, 165
Searching, 57, 1 1 5- 1 20, 133
Select, 310
Selection, 122, 310
Selection.m, 123
Selectors, 106
self, 329, 330
Semantics, 23

of pure functions, 256
Sequence, Collatz, 60
Sequences, 47

of instructions, 290
Series

harmonic, 353
Taylor, 359

Series, 359
Server, 3 1 9
Session, 372
Sets, 3 1 0, 336
S-Expr, 2 1 3
Sexpr.m, 214
Shift registers, 266-268
shiftleft, 292
shiftRegister, 267
Short, 358
SI, I I
Simplifications, 236

of negative arguments, 238
trigonometric, 241-247

387

388

Simula, 345
Simulation, 266, 283
Sine function (Fig.), 87, 355
Size

of heap, 1 97
ofinput, 1 43
memory, 273

skip, 292
Slot, 258
Smalltalk, 332, 345
Snowflake, 250
Software engineering, 22, 86
Solution

of equation, 144, 1 85
numerical, 4, 70
optimal, 1 58

Solve, 1 49, 361
SortAux.m, 121
Soning, 1 2 1-128, 1 40, 224

with a heap, 1 99
with binary trees, 139

Space
phase, 7 1
vector, 1 7 1

SPARC, 18
Specification, 99, 1 07
Speed0£Light, 40
Split, 304
split, 207
Spreadsheets, 20
SQL, 3 19
Star polyhedra, 344
Step size, 72
String, 45
Strings, 45
Structure, of expressions, 44-47, 374
Subroutines, xviii, 16
Substitution, 256

semantics of, 257
With, 257

Subtraction, 46, I 03
Subvalues, 369
Successor, 66, 99, 273, 283, 293
Sum, 38, 359
Summation

Boolean, 1 77
numerical, 354
symbolic, 359

super, 327, 329, 330
SuperClass, 33 1
Surfaces, 357

Simula - True

Swap, 121
swap, 1 2 1
Symbol, 45
Symbols, 34-35, 45, 369

explanation of, xvii
Syrrunenies, of naanices, 153
Syntax, 50, 52, 368

Table, 38, 63, 260
Tables, 303
Tangent (Fig.), 83, 355
Tape, 282
Tape.m, 285
Taylor series, 359
Teaching, 345
Telephone.m, 1 1 9
Temperature coefficient, 13
Template.m, 94
Templates, 49, 94
Tensors, 171
Term model, 1 00
Term rewriting, 231
Terminology, xvii
Test.m, xvi
TeXForm, 372
Thread, l73, 207
Throw, 333
Times, 103
Timing, 1 48
Together, 265
Trace, 58, 1 72
Transaction, 320
Transformation

of complex plane, 8 1
o f equations, 69
into internal form, 46
into normal form, 235
of programs, 66

Transpose, 47, 172, 207
Transposition, 1 7 1
Trees, binary, 1 29, I 38, 34 1

(Fig.), l i S
TrigArgument, 244
TrigArgument1 .m, 245
TrigArgument2.m, 246
TrigArgument3.m, 247
TrigLinear, 243
TrigLinear.m, 243
TrigLinear1 . m, 241
trigLinearRules, 24 1
Trigonometry, 241-247
True, 28

Index

Truth values, 1 77
Tuples, 308
Tuples, 308
Turing machine, 282-292, 346

(Fig.), 273
Turing.m, 286
Turing, Alan, 1 4, 280
TuringMacros.m, 290
TuringRecursive.m, 294
Type (data), 99
Types

of expressions, 228
of rules, 369

Typewriter style, xvii

Undecidability. 281
Union. 3 1 0
Union, 3 1 0
Unit circle (Fig.), 8 1
Units, 1 1
update, 26 1 , 284
upHeap, 1 96
Upvalues, 1 03, 1 63, 369
usage, 86

Value, absolute, 3 1

Truth values - Zero

Values, 34
delayed, 364
ownvalues, 369
upva1ues and downvalues, 369

Variables, 19, 34-35, 38
dependent, 69
in pure functions, 257, 258
instance, 325
Meta-, xvii
pattern, 228

Vector calculus, 1 8 1-1 83

Yalk, 202
Which, 219
While, 35, 64. 275, 277
Wirings, I 77
With, 40, 257

Xl l , 1 7
Xerox, 1 7

� function, 358
Z1, 14
Zero, 99, 1 00, 293

of functions, 4
simplification to, 1 8 1

389

