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Foreword

This volume contains the proceedings of the conference “Complex and Differential
Geometry 2009”, held at Leibniz Universität Hannover from September 14 – 18,
2009. The aim of the conference was to bring specialists from differential geometry
and (complex) algebraic geometry together, to discuss new developments in and
the interaction between these fields. The articles in this book cover a broad range
of subjects from topics in (classical) algebraic geometry and complex geometry,
including (holomorphic) symplectic and Poisson geometry, to differential geometry
(with an emphasis on curvature flows) and topology.

This volume is based on contributions both by conference speakers and by par-
ticipants, including in two cases articles from mathematicians who were unable to
attend the meeting in Hannover.

The book provides a variety of survey articles giving valuable accounts of impor-
tant developments in the areas discussed. A. Beauville and E. Markman write about
holomorphic symplectic manifolds. Whereas Beauville’s contribution concentrates
on open problems, Markman’s article discusses and develops recent work by Ver-
bitsky on the global Torelli theorem for these manifolds. Bauer, Catanese and Pig-
natelli report on new results concerning the classification of surfaces of general type
with vanishing geometric genus. The paper by S. Rollenske provides the reader with
an overview of Dolbeault cohomology of nilmanifolds with left-invariant complex
structure. In his contribution F. Leitner gives an exposition of some aspects of the
theory of conformal holonomy. Kähler-Einstein manifolds and their classification is
the topic of M. Kühnel’s survey paper, where he also discusses problems concern-
ing the existence and uniqueness of complete Ricci-flat Kähler metrics. M. Lönne
discusses braid monodromy of plane curves and explores the new area of knotted
monodromy. Submanifolds in Poisson geometry are the subject of M. Zambon’s
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Foreword

article, and M. Kureš’ contribution provides a survey of some algebraic and differ-
ential geometric aspects of Weil algebras.

The (classical) theory of special sets of points in projective geometry and Cre-
mona groups are the topic of I. Dolgachev’s contribution, while S. Cynk discusses
the Fulton-Johnson class of complete intersections. T. Peternell’s paper contains
new results concerning generic ampleness of the cotangent bundle of non uni-ruled
projective manifolds. It is shown in G. K. Sankaran’s article that every smooth pro-
jective curve can be embedded into a given toric threefold. J.-M. Hwang and W.-
K. To discuss the Buser-Sarnak invariant and use this to prove results on the projec-
tive normality of abelian varieties. In his contribution N. Mok discusses established
and new results on singularities of holomorphic maps between complex hyperbolic
space forms. In his paper on vector bundles on curves, N. Hitchin studies polyvector
fields on moduli spaces of such bundles.

Flows played an important role in the talks presented at the conference. This
is reflected in a number of papers. T. Behrndt and S. Brendle discuss the general-
ized Lagrangian mean curvature flow in Kähler manifolds and the Ricci flow re-
spectively. Ricci flows also feature in the article by X. Cao and Z. Zhang, who
prove differential Harnack estimates. Y.-I. Lee finally provides detailed computa-
tions for constructing translating solutions from self-similar solutions for the La-
grangian mean curvature flow.

It is our pleasure to thank all the organizations and people who made this con-
ference a success. We are grateful to Leibniz Universität Hannover and the DFG
funded Graduiertenkolleg GRK 1463 “Analysis, Geometry and String Theory” for
financial support. The organization of the conference would not have been possible
without X. Bogomolec, S. Heidemann, K. Ludwig and M. Schunert. We are par-
ticularly indebted to N. Behrens, A. Frühbis-Krüger, S. Gährs and L. Habermann
for their substantial contribution to both the organization of the conference and the
editing of this volume. Finally, thanks go to R. Timpe, whose TEXnical expertise
was invaluable for producing the final form of these Proceedings.

Hannover, February 2011 Wolfgang Ebeling
Klaus Hulek

Knut Smoczyk
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Piotr Pragacz (Warszawa)
Arthur Prendergast-Smith (Cambridge)
Jan Christian Rohde (Hannover)
Sönke Rollenske (Bonn)
Dietmar Salamon (Zürich)
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Surfaces of general type with geometric genus
zero: a survey

Ingrid Bauer, Fabrizio Catanese and Roberto Pignatelli∗

Abstract In the last years there have been several new constructions of surfaces of
general type with pg = 0, and important progress on their classification. The present
paper presents the status of the art on surfaces of general type with pg = 0, and
gives an updated list of the existing surfaces, in the case where K2 = 1, ...,7. It also
focuses on certain important aspects of this classification.
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2 Ingrid Bauer, Fabrizio Catanese and Roberto Pignatelli

1 Introduction

It is nowadays well known that minimal surfaces of general type with pg(S) = 0
have invariants pg(S) = q(S) = 0,1 ≤ K2

S ≤ 9, hence they yield a finite number of
irreducible components of the moduli space of surfaces of general type.

At first glance this class of surfaces seems rather narrow, but we want to report
on recent results showing how varied and rich is the botany of such surfaces, for
which a complete classification is still out of reach.

These surfaces represent for algebraic geometers an almost prohibitive test case
about the possibility of extending the fine Enriques classification of special surfaces
to surfaces of general type.

On the one hand, they are the surfaces of general type which achieve the minimal
value 1 for the holomorphic Euler-Poincaré characteristic χ(S) := pg(S)−q(S)+1,
so a naive (and false) guess is that they should be “easier” to understand than
other surfaces with higher invariants; on the other hand, there are pathologies (espe-
cially concerning the pluricanonical systems) or problems (cf. the Bloch conjecture
([Blo75]) asserting that for surfaces with pg(S) = q(S) = 0 the group of zero cy-
cles modulo rational equivalence should be isomorphic to Z), which only occur for
surfaces with pg = 0.

Surfaces with pg(S) = q(S) = 0 have a very old history, dating back to 1896
([Enr96], see also [EnrMS], I, page 294, and [Cas96]) when Enriques constructed
the so called Enriques surfaces in order to give a counterexample to the conjecture
of Max Noether that any such surface should be rational, immediately followed by
Castelnuovo who constructed a surface with pg(S) = q(S) = 0 whose bicanonical
pencil is elliptic.

The first surfaces of general type with pg = q = 0 were constructed in the 1930’
s by Luigi Campedelli and by Lucien Godeaux (cf. [Cam32], [God35]): in their
honour minimal surfaces of general type with K2

S = 1 are called numerical Godeaux
surfaces, and those with K2

S = 2 are called numerical Campedelli surfaces.

In the 1970’s there was a big revival of interest in the construction of these
surfaces and in a possible attempt to classification.

After rediscoveries of these and other old examples a few new ones were found
through the efforts of several authors, in particular Rebecca Barlow ([Bar85a])
found a simply connected numerical Godeaux surface, which played a decisive role
in the study of the differential topology of algebraic surfaces and 4-manifolds (and
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also in the discovery of Kähler Einstein metrics of opposite sign on the same mani-
fold, see [CL97]).

A (relatively short) list of the existing examples appeared in the book [BPV84],
(see [BPV84], VII, 11 and references therein, and see also [BHPV04] for an updated
slightly longer list).

There has been recently important progress on the topic, and the goal of the
present paper is to present the status of the art on surfaces of general type with
pg = 0, of course focusing only on certain aspects of the story.

Our article is organized as follows: in the first section we explain the “fine” clas-
sification problem for surfaces of general type with pg = q = 0. Since the solution
to this problem is far from sight we pose some easier problems which could have a
greater chance to be solved in the near future.

Moreover, we try to give an update on the current knowledge concerning sur-
faces with pg = q = 0.

In the second section, we shortly review several reasons why there has been a
lot of attention devoted to surfaces with geometric genus pg equal to zero: Bloch’s
conjecture, the exceptional behaviour of the pluricanonical maps and the interesting
questions whether there are surfaces of general type homeomorphic to Del Pezzo
surfaces. It is not possible that a surface of general type be diffeomorphic to a ratio-
nal surface. This follows from Seiberg-Witten theory which brought a breakthrough
establishing in particular that the Kodaira dimension is a differentiable invariant of
the 4-manifold underlying an algebraic surface.

Since the first step towards a classification is always the construction of as many
examples as possible, we describe in section three various construction methods for
algebraic surfaces, showing how they lead to surfaces of general type with pg = 0.
Essentially, there are two different approaches, one is to take quotients, by a finite
or infinite group, of known (possibly non-compact) surfaces, and the other is in a
certain sense the dual one, namely constructing the surfaces as Galois coverings of
known surfaces.

The first approach (i.e., taking quotients) seems at the moment to be far more
successful concerning the number of examples that have been constructed by this
method. On the other hand, the theory of abelian coverings seems much more use-
ful to study the deformations of the constructed surfaces, i.e., to get hold of the
irreducible, resp. connected components of the corresponding moduli spaces.
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In the last section we review some recent results which have been obtained by
the first two authors, concerning the connected components of the moduli spaces
corresponding to Keum-Naie, respectively primary Burniat surfaces.

2 Notation

For typographical reasons, especially lack of space inside the tables, we shall use
the following non standard notation for a finite cyclic group of order m:

Zm := Z/mZ= Z/m.

Furthermore Q8 will denote the quaternion group of order 8,

Q8 := {±1,±i,± j,±k}.

As usual, Sn is the symmetric group in n letters, An is the alternating subgroup.

Dp,q,r is the generalized dihedral group admitting the following presentation:

Dp,q,r = 〈x,y|xp,yq,xyx−1y−r〉,

while Dn = D2,n,−1 is the usual dihedral group of order 2n.

G(n,m) denotes the m-th group of order n in the MAGMA database of small
groups.

Finally, we have semidirect products HoZr; to specify them, one should indi-
cate the image ϕ ∈ Aut(H) of the standard generator of Zr in Aut(H). There is no
space in the tables to indicate ϕ , hence we explain here which automorphism ϕ will
be in the case of the semidirect products occurring as fundamental groups.

For H = Z2 either r is even, and then ϕ is −Id, or r = 3 and ϕ is the matrix(
−1 −1
1 0

)
.

Else H is finite and r = 2; for H = Z2
3, ϕ is −Id; for H = Z4

2, ϕ is(
1 0
1 1

)
⊕
(

1 0
1 1

)
.

Concerning the case where the group G is a semidirect product, we simply refer
to [BCGP08] for more details.
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Finally, Πg is the fundamental group of a compact Riemann surface of genus g.

3 The classification problem and “simpler” sub-problems

The history of surfaces with geometric genus equal to zero starts about 120 years
ago with a question posed by Max Noether.

Assume that S ⊂ PN
C is a smooth projective surface. Recall that the geometric

genus of S:
pg(S) := h0(S,Ω 2

S ) := dimH0(S,Ω 2
S ),

and the irregularity of S:

q(S) := h0(S,Ω 1
S ) := dimH0(S,Ω 1

S ),

are birational invariants of S.

Trying to generalize the one dimensional situation, Max Noether asked the fol-
lowing:

Question 1 Let S be a smooth projective surface with pg(S) = q(S) = 0. Does this
imply that S is rational?

The first negative answer to this question is, as we already wrote, due to Enriques
([Enr96], see also [EnrMS], I, page 294) and Castelnuovo, who constructed coun-
terexamples which are surfaces of special type (this means, with Kodaira dimension
≤ 1. Enriques surfaces have Kodaira dimension equal to 0, Castelnuovo surfaces
have instead Kodaira dimension 1).

After the already mentioned examples by Luigi Campedelli and by Lucien
Godeaux and the new examples found by Pol Burniat ([Bur66]), and by many other
authors, the discovery and understanding of surfaces of general type with pg = 0
was considered as a challenging problem (cf. [Dol77]): a complete fine classifica-
tion however soon seemed to be far out of reach.

Maybe this was the motivation for D. Mumford to ask the following provocative

Question 2 (Montreal 1980) Can a computer classify all surfaces of general type
with pg = 0?
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Before we comment more on Mumford’s question, we shall recall some basic facts
concerning surfaces of general type.

Let S be a minimal surface of general type, i.e., S does not contain any rational
curve of self intersection (−1), or equivalently, the canonical divisor KS of S is nef
and big (K2

S > 0). Then it is well known that

K2
S ≥ 1, χ(S) := 1−q(S)+ pg(S)≥ 1.

In particular, pg(S) = 0 =⇒ q(S) = 0. Moreover, we have a coarse moduli space
parametrizing minimal surfaces of general type with fixed χ and K2.

Theorem 1 For each pair of natural numbers (x,y) we have the Gieseker moduli
space Mcan

(x,y), whose points correspond to the isomorphism classes of minimal sur-

faces S of general type with χ(S) = x and K2
S = y.

It is a quasi projective scheme which is a coarse moduli space for the canonical
models of minimal surfaces S of general type with χ(S) = x and K2

S = y.

An upper bound for K2
S is given by the famous Bogomolov-Miyaoka-Yau in-

equality:

Theorem 2 ([Miy77b], [Yau77], [Yau78], [Miy82]) Let S be a smooth surface of
general type. Then

K2
S ≤ 9χ(S),

and equality holds if and only if the universal covering of S is the complex ball
B2 := {(z,w) ∈C2||z|2 + |w|2 < 1}.

As a note for the non experts: Miyaoka proved in the first paper the general in-
equality, which Yau only proved under the assumption of ampleness of the canonical
divisor KS. But Yau showed that if equality holds, and KS is ample, then the univer-
sal cover is the ball; in the second paper Miyaoka showed that if equality holds, then
necessarily KS is ample.

Remark 1 Classification of surfaces of general type with pg = 0 means therefore to”

understand” the nine moduli spaces Mcan
(1,n) for 1 ≤ n ≤ 9, in particular, the con-

nected components of each Mcan
(1,n) corresponding to surfaces with pg = 0. Here, un-

derstanding means to describe the connected and irreducible components and their
respective dimensions.

Even if this is the

”

test-case” with the lowest possible value for the invariant χ(S)
for surfaces of general type, still nowadays we are quite far from realistically seeing
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how this goal can be achieved. It is in particular a quite non trivial question, given
two explicit surfaces with the same invariants (χ,K2), to decide whether they are in
the same connected component of the moduli space.

An easy observation, which indeed is quite useful, is the following:

Remark 2 Assume that S, S′ are two minimal surfaces of general type which are in
the same connected component of the moduli space. Then S and S′ are orientedly
diffeomorphic through a diffeomorphism preserving the Chern class of the canon-
ical divisor; whence S and S′ are homeomorphic, in particular they have the same
(topological) fundamental group.

Thus the fundamental group π1 is the simplest invariant which distinguishes
connected components of the moduli space Mcan

(x,y).

So, it seems natural to pose the following questions which sound

”

easier” to
solve than the complete classification of surfaces with geometric genus zero.

Question 3 What are the topological fundamental groups of surfaces of general type
with pg = 0 and K2

S = y?

Question 4 Is π1(S) =: Γ residually finite, i.e., is the natural homomorphism
Γ → Γ̂ = limH/ f Γ (Γ /H) from Γ to its profinite completion Γ̂ injective?

Remark 3

1) Note that in general fundamental groups of algebraic surfaces are not residu-
ally finite, but all known examples have pg > 0 (cf. [Tol93], [CK92]).

2) There are examples of surfaces S, S′ with non isomorphic topological fun-
damental groups, but whose profinite completions are isomorphic (cf. [Serre64],
[BCG07]).

Question 5 What are the best possible positive numbers a,b such that

• K2
S ≤ a =⇒ |π1(S)|< ∞,

• K2
S ≥ b =⇒ |π1(S)|= ∞?

In fact, by Yau’s theorem K2
S = 9 =⇒ |π1(S)| = ∞. Moreover by [BCGP08]

there exists a surface S with K2
S = 6 and finite fundamental group, so b ≥ 7. On

the other hand, there are surfaces with K2 = 4 and infinite fundamental group (cf.
[Keu88], [Nai99]), whence a≤ 3.
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Note that all known minimal surfaces of general type S with pg = 0 and K2
S = 8

are uniformized by the bidisk B1×B1.

Question 6 Is the universal covering of S with K2
S = 8 always B1×B1?

An affirmative answer to the above question would give a negative answer to the
following question of F. Hirzebruch:

Question 7 (F. Hirzebruch) Does there exist a surface of general type homeomor-
phic to P1×P1?

Or homeomorphic to the blow up F1 of P2 in one point ?

In the other direction, for K2
S ≤ 2 it is known that the profinite completion π̂1 is

finite. There is the following result:

Theorem 3

1) K2
S = 1 =⇒ π̂1 ∼= Zm for 1≤ m≤ 5 (cf. [Rei78]).

2) K2
S = 2 =⇒ |π̂1| ≤ 9 (cf. [Rei], [Xia85a]).

The bounds are sharp in both cases, indeed for the case K2
S = 1 there are examples

with π1(S)∼= Zm for all 1≤ m≤ 5 and there is the following conjecture

Conjecture 1 (M. Reid) Mcan
(1,1) has exactly five irreducible components correspond-

ing to each choice π1(S)∼= Zm for all 1≤ m≤ 5.

This conjecture is known to hold true for m≥ 3 (cf. [Rei78]).

One can ask similar questions:

Question 8

2) Does K2
S = 2, pg(S) = 0 imply that |π1(S)| ≤ 9?

3) Does K2
S = 3 (and pg(S) = 0) imply that |π1(S)| ≤ 16?

3.1 Update on surfaces with pg = 0

There has been recently important progress on surfaces of general type with pg = 0
and the current situation is as follows:
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K2
S = 9: these surfaces have the unit ball in C2 as universal cover, and their funda-

mental group is an arithmetic subgroup Γ of SU(2,1).

This case seems to be completely classified through exciting new work of Prasad
and Yeung and of Cartright and Steger ([PY07], [PY09], [CS]) asserting that the
moduli space consists exactly of 100 points, corresponding to 50 pairs of complex
conjugate surfaces (cf. [KK02]).

K2
S = 8: we posed the question whether in this case the universal cover must be the

bidisk in C2.

Assuming this, a complete classification should be possible.

The classification has already been accomplished in [BCG08] for the reducible
case where there is a finite étale cover which is isomorphic to a product of curves.
In this case there are exactly 18 irreducible connected components of the moduli
space: in fact, 17 such components are listed in [BCG08], and recently Davide Frap-
porti ([Frap10]), while rerunning the classification program, found one more family
whose existence had been excluded by an incomplete analysis.

There are many examples, due to Kuga and Shavel ([Kug75], [Sha78]) for the
irreducible case, which yield (as in the case K2

S = 9) rigid surfaces (by results of Jost
and Yau [JT85]); but a complete classification of this second case is still missing.

The constructions of minimal surfaces of general type with pg = 0 and with
K2

S ≤ 7 available in the literature (to the best of the authors’ knowledge, and exclud-
ing the recent results of the authors, which will be described later) are listed in table
1.

We proceed to a description, with the aim of putting the recent developments in
proper perspective.

K2
S = 1, i.e., numerical Godeaux surfaces: recall that by conjecture 1 the moduli

space should have exactly five irreducible connected components, distinguished by
the order of the fundamental group, which should be cyclic of order at most 5
([Rei78] settled the case where the order of the first homology group is at least
3; [Bar85a], [Bar84] and [Wer94] were the first to show the occurrence of the two
other groups).

K2
S = 2, i.e., numerical Campedelli surfaces: here, it is known that the order of the

algebraic fundamental group is at most 9, and the cases of order 8,9 have been clas-
sified by Mendes Lopes, Pardini and Reid ([MP08], [MPR09], [Rei]), who showed
in particular that the fundamental group equals the algebraic fundamental group and
cannot be the dihedral group D4 of order 8. Naie ([Nai99]) showed that the group
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Table 1 Minimal surfaces of general type with pg = 0 and K2 ≤ 7 available in the literature

K2 π1 π
alg
1 H1 References

1 Z5 Z5 Z5 [God34][Rei78][Miy76]
Z4 Z4 Z4 [Rei78][OP81][Bar84][Nai94]
? Z3 Z3 [Rei78]
Z2 Z2 Z2 [Bar84][Ino94][KL10]
? Z2 Z2 [Wer94][Wer97]
{1} {1} {0} [Bar85a][LP07]

? {1} {0} [CG94][DW99]
2 Z9 Z9 Z9 [MP08]

Z2
3 Z2

3 Z2
3 [Xia85a][MP08]

Z3
2 Z3

2 Z3
2 [Cam32][Rei][Pet76][Ino94][Nai94]

Z2×Z4 Z2×Z4 Z2×Z4 [Rei][Nai94][Keu88]
Z8 Z8 Z8 [Rei]
Q8 Q8 Z2

2 [Rei] [Bea96]
Z7 Z7 Z7 [Rei91]
? Z6 Z6 [NP09]
Z5 Z5 Z5 [Cat81][Sup98]
Z2

2 Z2
2 Z2

2 [Ino94][Keu88]
? Z3 Z3 [LP09]
Z2 Z2 Z2 [KL10]
? Z2 Z2 [LP09]
{1} {1} {0} [LP07]

3 Z2
2×Z4 Z2

2×Z4 Z2
2×Z4 [Nai94] [Keu88] [MP04a]

Q8×Z2 Q8×Z2 Z3
2 [Bur66][Pet77] [Ino94]

Z14 Z14 Z14 [CS]
Z13 Z13 Z13 [CS]
Q8 Q8 Z2

2 [CS]
D4 D4 Z2

2 [CS]
Z2×Z4 Z2×Z4 Z2×Z4 [CS]
Z7 Z7 Z7 [CS]
S3 S3 Z2 [CS]
Z6 Z6 Z6 [CS]

Z2×Z2 Z2×Z2 Z2×Z2 [CS]
Z4 Z4 Z4 [CS]
Z3 Z3 Z3 [CS]
Z2 Z2 Z2 [KL10][CS]
? ? Z2 [PPS08a]
{1} {1} {0} [PPS09a][CS]

4 1→ Z4→ π1→ Z2
2→ 1 π̂1 Z3

2×Z4 [Nai94][Keu88]
Q8×Z2

2 Q8×Z2
2 Z4

2 [Bur66][Pet77][Ino94]
Z2 Z2 Z2 [Par10]
{1} {1} {0} [PPS09b]

5 Q8×Z3
2 Q8×Z3

2 Z5
2 [Bur66][Pet77][Ino94]

? ? ? [Ino94]

6 1→ Z6→ π1→ Z3
2→ 1 π̂1 Z6

2 [Bur66][Pet77][Ino94]
1→ Z6→ π1→ Z3

3→ 1 π̂1 Z3
3 ⊂ H1 [Kul04]

? ? ? [Ino94][MP04b]

7 1→Π3×Z4→ π1→ Z3
2→ 1 π̂1 ? [Ino94][MP01a] [BCC10]
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D3 of order 6 cannot occur as the fundamental group of a numerical Campedelli
surface. By the work of Lee and Park ([LP07]), one knows that there exist simply
connected numerical Campedelli surfaces.

Recently, in [BCGP08], [BP10], the construction of eight families of numerical
Campedelli surfaces with fundamental group Z3 was given. Neves and Papadakis
([NP09]) constructed a numerical Campedelli surface with algebraic fundamental
group Z6, while Lee and Park ([LP09]) constructed one with algebraic fundamental
group Z2, and one with algebraic fundamental group Z3 was added in the second
version of the same paper. Finally Keum and Lee ([KL10]) constructed examples
with topological fundamental group Z2.

Open conjectures are:

Conjecture 2 Is the fundamental group π1(S) of a numerical Campedelli surface
finite?

Question 9 Does every group of order ≤ 9 except D4 and D3 occur as topological
fundamental group (not only as algebraic fundamental group)?

The answer to question 9 is completely open for Z4; for Z6,Z2 one suspects that
these fundamental groups are realized by the Neves-Papadakis surfaces, respectively
by the Lee-Park surfaces.

Note that the existence of the case where π1(S) = Z7 is shown in the paper
[Rei91] (where the result is not mentioned in the introduction).

K2
S = 3: here there were two examples of non trivial fundamental groups, the first

one due to Burniat and Inoue, the second one to Keum and Naie ([Bur66], [Ino94],
[Keu88] [Nai94]).

It is conjectured that for pg(S) = 0,K2
S = 3 the algebraic fundamental group is

finite, and one can ask as in 1) above whether also π1(S) is finite. Park, Park and
Shin ([PPS09a]) showed the existence of simply connected surfaces, and of surfaces
with torsion Z2 ([PPS08a]). More recently Keum and Lee ([KL10]) constructed an
example with π1(S) = Z2.

Other constructions were given in [Cat98], together with two more examples
with pg(S) = 0,K2 = 4,5: these turned out however to be the same as the Burniat
surfaces.

In [BP10], the existence of four new fundamental groups is shown. Then new
fundamental groups were shown to occur by Cartright and Steger, while considering
quotients of a fake projective plane by an automorphism of order 3.
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With this method Cartright and Steger produced also other examples with
pg(S) = 0, K2

S = 3, and trivial fundamental group, or with π1(S) = Z2.

K2
S = 4: there were known up to now three examples of fundamental groups, the

trivial one (Park, Park and Shin, [PPS09b]), a finite one, and an infinite one. In
[BCGP08], [BP10] the existence of 10 new groups, 6 finite and 4 infinite, is shown:
thus minimal surfaces with K2

S = 4, pg(S) = q(S) = 0 realize at least 13 distinct
topological types. Recently, H. Park constructed one more example in [Par10] rais-
ing the number of topological types to 14.

K2
S = 5,6,7: there was known up to now only one example of a fundamental group

for K2
S = 5,7.

Instead for K2
S = 6, there are the Inoue-Burniat surfaces and an example due to

V. Kulikov (cf. [Kul04]), which contains Z3
3 in its torsion group. Like in the case

of primary Burniat surfaces one can see that the fundamental group of the Kulikov
surface fits into an exact sequence

1→ Z6→ π1→ Z3
3→ 1.

K2
S = 5 : in [BP10] the existence of 7 new groups, four of which finite, is shown:

thus minimal surfaces with K2
S = 5, pg(S) = q(S) = 0 realize at least 8 distinct

topological types.

K2
S = 6 : in [BCGP08] the existence of 6 new groups, three of which finite,

is shown: thus minimal surfaces with K2
S = 6, pg(S) = q(S) = 0 realize at least 7

distinct topological types.

K2
S = 7 : we shall show elsewhere ([BCC10]) that these surfaces, constructed by

Inoue in [Ino94], have a fundamental group fitting into an exact sequence

1→Π3×Z4→ π1→ Z3
2→ 1.

This motivates the following further question (cf. question 5).

Question 10 Is it true that fundamental groups of surfaces of general type with
q = pg = 0 are finite for K2

S ≤ 3, and infinite for K2
S ≥ 7?
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4 Other reasons why surfaces with pg = 0 have been of interest
in the last 30 years

4.1 Bloch’s conjecture

Another important problem concerning surfaces with pg = 0 is related to the prob-
lem of rational equivalence of 0-cycles.

Recall that, for a nonsingular projective variety X , Ai
0(X) is the group of rational

equivalence classes of zero cycles of degree i.

Conjecture 3 Let S be a smooth surface with pg = 0. Then the kernel T (S) of the
natural morphism (the so-called Abel-Jacobi map) A0

0(S)→ Alb(S) is trivial.

By a beautiful result of D. Mumford ([Mum68]), the kernel of the Abel-Jacobi map
is infinite dimensional for surfaces S with pg 6= 0.

The conjecture has been proven for κ(S) < 2 by Bloch, Kas and Liebermann (cf.
[BKL76]). If instead S is of general type, then q(S) = 0, whence Bloch’s conjecture
asserts for those surfaces that A0(S)∼= Z.

Inspite of the efforts of many authors, there are only few cases of surfaces of gen-
eral type for which Bloch’s conjecture has been verified (cf. e.g. [IM79], [Bar85b],
[Keu88], [Voi92]).

Recently S. Kimura introduced the following notion of finite dimensionality of
motives ([Kim05]).

Definition 1 Let M be a motive.

Then M is evenly finite dimensional if there is a natural number n≥ 1 such that
∧nM = 0.

M is oddly finite dimensional if there is a natural number n ≥ 1 such that
Symn M = 0.

And, finally, M is finite dimensional if M = M+⊕M−, where M+ is evenly finite
dimensional and M− is oddly finite dimensional.

Using this notation, he proves the following
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Theorem 4

1) The motive of a smooth projective curve is finite dimensional ([Kim05], cor.
4.4.).

2) The product of finite dimensional motives is finite dimensional (loc. cit., cor.
5.11.).

3) Let f : M → N be a surjective morphism of motives, and assume that M is
finite dimensional. Then N is finite dimensional (loc. cit., prop. 6.9.).

4) Let S be a surface with pg = 0 and suppose that the Chow motive of X is finite
dimensional. Then T (S) = 0 (loc.cit., cor. 7.7.).

Using the above results we obtain

Theorem 5 Let S be the minimal model of a product-quotient surface (i.e., bira-
tional to (C1×C2)/G, where G is a finite group acting effectively on a product of
two compact Riemann surfaces of respective genera gi ≥ 2) with pg = 0.

Then Bloch’s conjecture holds for S, namely, A0(S)∼= Z.

Proof Let S be the minimal model of X = (C1×C2)/G. Since X has rational singu-
larities T (X) = T (S).

By thm. 4, 2), 3) we have that the motive of X is finite dimensional, whence, by
4), T (S) = T (X) = 0.

Since S is of general type we have also q(S) = 0, hence A0
0(S) = T (S) = 0.

Corollary 1 All the surfaces in table 2, 3, and all the surfaces in [BC04], [BCG08]
satisfy Bloch’s conjecture.

4.2 Pluricanonical maps

A further motivation for the study of surfaces with pg = 0 comes from the behavior
of the pluricanonical maps of surfaces of general type.

Definition 2 The n-th pluricanonical map

ϕn := ϕ|nKS| : S 99K PPn−1

is the rational map associated to H0(OS(nKS)).
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We recall that for a curve of general type ϕn is an embedding as soon as n≥ 3,
and also for n = 2, if the curve is not of genus 2. The situation in dimension 2 is
much more complicated. We recall:

Definition 3 The canonical model of a surface of general type is the normal surface

X := Pro j(
∞⊕

n=0

H0(OS(nKS))),

the projective spectrum of the (finitely generated) canonical ring.

X is obtained from its minimal model S by contracting all the curves C with
KS ·C = 0, i.e., all the smooth rational curves with self intersection equal to −2.

The n-th pluricanonical map ϕ|nKS| of a surface of general type is the composition
of the projection onto its canonical model X with ψn := ϕ|nKX |. So it suffices to study
this last map.

This was done by Bombieri, whose results were later improved by the work of
several authors. We summarize these efforts in the following theorem.

Theorem 6 ([Bom73], [Miy76], [BC78], [Cat77], [Reider88], [Fran88], [CC88],
[CFHR99])

Let X be the canonical model of a surface of general type. Then

i) ϕ|nKX | is an embedding for all n≥ 5;

ii) ϕ|4KX | is an embedding if K2
X ≥ 2;

iii)ϕ|3KX | is a morphism if K2
X ≥ 2 and an embedding if K2

X ≥ 3;

iv) ϕ|nKX | is birational for all n≥ 3 unless

a) either K2 = 1, pg = 2, n = 3 or 4.

In this case X is a hypersurface of degree 10 in the weighted projective space
P(1,1,2,5), a finite double cover of the quadric cone Y := P(1,1,2), ϕ|3KX |(X)
is birational to Y and isomorphic to an embedding of the surface F2 in P5, while
ϕ|4KX |(X) is an embedding of Y in P8.

b) Or K2 = 2, pg = 3, n = 3 (in this case X is a double cover of P2 branched
on a curve of degree 8, and ϕ|3KX |(X) is the image of the Veronese embedding
ν3 : P2→ P9).

v) ϕ|2KX | is a morphism if K2
X ≥ 5 or if pg 6= 0.
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vi) If K2
X ≥ 10 then ϕ|2KX | is birational if and only if X does not admit a morphism

onto a curve with general fibre of genus 2.

The surfaces with pg = 0 arose as the difficult case for the understanding of
the tricanonical map, because, in the first version of his theorem, Bombieri could
not determine whether the tricanonical and quadricanonical map of the numerical
Godeaux and of the numerical Campedelli surfaces had to be birational. This was
later proved in [Miy76], in [BC78], and in [Cat77].

It was already known to Kodaira that a morphism onto a smooth curve with gen-
eral fibre of genus 2 forces the bicanonical map to factor through the hyperelliptic
involution of the fibres: this is called the standard case for the nonbirationality of
the bicanonical map. Part vi) of Theorem 6 shows that there are finitely many fam-
ilies of surfaces of general type with bicanonical map nonbirational which do not
present the standard case. These interesting families have been classified under the
hypothesis pg > 1 or pg = 1, q 6= 1: see [BCP06] for a more precise account on this
results.

Again, the surfaces with pg = 0 are the most difficult and hence the most in-
teresting, since there are

”

pathologies” which can happen only for surfaces with
pg = 0.

For example, the bicanonical system of a numerical Godeaux surface is a pencil,
and therefore maps the surface onto P1, while [Xia85b] showed that the bicanonical
map of every other surface of general type has a two dimensional image. Moreover,
obviously for a numerical Godeaux surface ϕ|2KX | is not a morphism, thus showing
that the condition pg 6= 0 in the point v) of the Theorem 6 is sharp.

Recently, Pardini and Mendes Lopes (cf. [MP08]) showed that there are more
examples of surfaces whose bicanonical map is not a morphism, constructing two
families of numerical Campedelli surfaces whose bicanonical system has two base
points.

What it is known on the degree of the bicanonical map of surfaces with pg = 0
can be summarized in the following

Theorem 7 ([MP07a],[MLP02], [MP08]) Let S be a surface with pg = q = 0. Then

• if K2
S = 9⇒ degϕ|2KS| = 1,

• if K2
S = 7,8⇒ degϕ|2KS| = 1 or 2,

• if K2
S = 5,6⇒ degϕ|2KS| = 1, 2 or 4,
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• if K2
S = 3,4 ⇒ degϕ|2KS| ≤ 5; if moreover ϕ|2KS| is a morphism, then

degϕ|2KS| = 1, 2 or 4,

• if K2
S = 2 (since the image of the bicanonical map is P2, the bicanonical map is

non birational), then degϕ|2KS| ≤ 8. In the known examples it has degree 6 (and
the bicanonical system has two base points) or 8 (and the bicanonical system has
no base points).

4.3 Differential topology

The surfaces with pg = 0 are very interesting also from the point of view of dif-
ferential topology, in particular in the simply connected case. We recall Freedman’s
theorem.

Theorem 8 ([Fre82]) Let M be an oriented, closed, simply connected topological
manifold: then M is determined (up to homeomorphism) by its intersection form

q : H2(M,Z)×H2(M,Z)→ Z

and by the Kirby-Siebenmann invariant α(M) ∈ Z2, which vanishes if and only if
M× [0,1] admits a differentiable structure.

If M is a complex surface, the Kirby-Siebenmann invariant automatically van-
ishes and therefore the oriented homeomorphism type of M is determined by the
intersection form.

Combining it with a basic result of Serre on indefinite unimodular forms, and
since by [Yau77] the only simply connected compact complex surface whose inter-
section form is definite is P2 one concludes

Corollary 2 The oriented homeomorphism type of any simply connected complex
surface is determined by the rank, the index and the parity of the intersection form.

This gives a rather easy criterion to decide whether two complex surfaces are
orientedly homeomorphic; anyway two orientedly homeomorphic complex surfaces
are not necessarily diffeomorphic.

In fact, Dolgachev surfaces ([Dol77], see also [BHPV04, IX.5]) give examples
of infinitely many surfaces which are all orientedly homeomorphic, but pairwise not
diffeomorphic; these are elliptic surfaces with pg = q = 0.
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As mentioned, every compact complex surface homeomorphic to P2 is diffeo-
morphic (in fact, algebraically isomorphic) to P2 (cf. [Yau77]), so one can ask a
similar question (cf. e.g. Hirzebruch’s question 7): if a surface is homeomorphic to
a rational surface, is it also diffeomorphic to it?

Simply connected surfaces of general type with pg = 0 give a negative answer
to this question. Indeed, by Freedman’s theorem each simply connected minimal
surface S of general type with pg = 0 is orientedly homeomorphic to a Del Pezzo
surface of degree K2

S . Still these surfaces are not diffeomorphic to a Del Pezzo sur-
face because of the following

Theorem 9 ([FQ94]) Let S be a surface of general type. Then S is not diffeomorphic
to a rational surface.

The first simply connected surface of general type with pg = 0 was constructed
by R. Barlow in the 80’s, and more examples have been constructed recently by Y.
Lee, J. Park, H. Park and D. Shin. We summarize their results in the following

Theorem 10 ([Bar85a], [LP07], [PPS09a], [PPS09b]) ∀1≤ y≤ 4 there are mini-
mal simply connected surfaces of general type with pg = 0 and K2 = y.

5 Construction techniques

As already mentioned, a first step towards a classification is the construction of ex-
amples. Here is a short list of different methods for constructing surfaces of general
type with pg = 0.

5.1 Quotients by a finite (resp. : infinite) group

5.1.1 Ball quotients

By the Bogomolov-Miyaoka-Yau theorem, a surface of general type with pg = 0 is
uniformized by the two dimensional complex ball B2 if and only if K2

S = 9. These
surfaces are classically called fake projective planes, since they have the same Betti
numbers as the projective plane P2.
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The first example of a fake projective plane was constructed by Mumford (cf.
[Mum79]), and later very few other examples were given (cf.[IK98], [Keu06]).

Ball quotients S = B2/Γ , where Γ ≤ PSU(2,1) is a discrete, cocompact, tor-
sionfree subgroup are strongly rigid surfaces in view of Mostow’s rigidity theorem
([Mos73]).

In particular the moduli space M(1,9) consists of a finite number of isolated
points.

The possibility of obtaining a complete list of these fake planes seemed rather
unrealistic until a breakthrough came in 2003: a surprising result by Klingler (cf.
[Kli03]) showed that the cocompact, discrete, torsionfree subgroups Γ ≤ PSU(2,1)
having minimal Betti numbers, i.e., yielding fake planes, are indeed arithmetic.

This allowed a complete classification of these surfaces carried out by Prasad and
Yeung, Steger and Cartright ([PY07], [PY09]): the moduli space contains exactly
100 points, corresponding to 50 pairs of complex conjugate surfaces.

5.1.2 Product quotient surfaces

In a series of papers the following construction was explored systematically by
the authors with the help of the computer algebra program MAGMA (cf. [BC04],
[BCG08], [BCGP08], [BP10]).

Let C1, C2 be two compact curves of respective genera g1,g2≥ 2. Assume further
that G is a finite group acting effectively on C1×C2.

In the case where the action of G is free, the quotient surface is minimal of
general type and is said to be isogenous to a product (see [Cat00]).

If the action is not free we consider the minimal resolution of singularities S′ of
the normal surface X := (C1×C2)/G and its minimal model S. The aim is to give a
complete classification of those S obtained as above which are of general type and
have pg = 0.

One observes that, if the tangent action of the stabilizers is contained in SL(2,C),
then X has Rational Double Points as singularities and is the canonical model of a
surface of general type. In this case S′ is minimal.

Recall the definition of an orbifold surface group (here the word ‘surface’ stands
for ‘Riemann surface’):
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Definition 4 An orbifold surface group of genus g′ and multiplicities
m1, . . .mr ∈N≥2 is the group presented as follows:

T(g′;m1, . . . ,mr) := 〈a1,b1, . . . ,ag′ ,bg′ , c1, . . . ,cr|

cm1
1 , . . . ,cmr

r ,
g′

∏
i=1

[ai,bi] · c1 · . . . · cr〉.

The sequence (g′;m1, . . .mr) is called the signature of the orbifold surface group.

Moreover, recall the following special case of Riemann’s existence theorem:

Theorem 11 A finite group G acts as a group of automorphisms on a compact Rie-
mann surface C of genus g if and only if there are natural numbers g′,m1, . . . ,mr,
and an ‘appropriate’ orbifold homomorphism

ϕ : T(g′;m1, . . . ,mr)→ G

such that the Riemann - Hurwitz relation holds:

2g−2 = |G|

(
2g′ −2+

r

∑
i=1

(
1− 1

mi

))
.

”

Appropriate” means that ϕ is surjective and moreover that the image γi ∈G of
a generator ci has order exactly equal to mi (the order of ci in T(g′;m1, . . . ,mr)).

In the above situation g′ is the genus of C′ := C/G. The G-cover C → C′ is
branched in r points p1, . . . , pr with branching indices m1, . . . ,mr, respectively.

Denote as before ϕ(ci) by γi ∈ G the image of ci under ϕ : then the set of stabi-
lizers for the action of G on C is the set

Σ(γ1, . . . ,γr) := ∪a∈G∪max{mi}
i=0 {aγ

i
1a−1, . . .aγ

i
ra
−1}.

Assume now that there are two epimorphisms

ϕ1 : T(g′1;m1, . . . ,mr)→ G,

ϕ2 : T(g′2;n1, . . . ,ns)→ G,

determined by two Galois covers λi : Ci→C′i , i = 1,2.
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We will assume in the following that g(C1), g(C2) ≥ 2, and we shall consider the
diagonal action of G on C1×C2.

We shall say in this situation that the action of G on C1×C2 is of unmixed type
(indeed, see [Cat00], there is always a subgroup of G of index at most 2 with an
action of unmixed type).

Theorem 12 ([BC04], [BCG05] [BCGP08],[BP10])

1) Surfaces S isogenous to a product with pg(S) = q(S) = 0 form 17 irreducible
connected components of the moduli space Mcan

(1,8).

2) Surfaces with pg = 0, whose canonical model is a singular quotient
X := (C1×C2)/G by an unmixed action of G form 27 further irreducible families.

3) Minimal surfaces with pg = 0 which are the minimal resolution of the singu-
larities of X := C1×C2/G such that the action is of unmixed type and X does not
have canonical singularities form exactly further 32 irreducible families.

Moreover, K2
S = 8 if and only if S is isogenous to a product.

We summarize the above results in tables 2 and 3.

Remark 4 1) Recall that, if a diagonal action of G on C1×C2 is not free, then G has a
finite set of fixed points. The quotient surface X := (C1×C2)/G has a finite number
of singular points. These can be easily found by looking at the given description of
the stabilizers for the action of G on each individual curve.

Assume that x ∈ X is a singular point. Then it is a cyclic quotient singularity of
type 1

n (1,a) with g.c.d(a,n) = 1, i.e., X is, locally around x, biholomorphic to the
quotient of C2 by the action of a diagonal linear automorphism with eigenvalues
exp( 2πi

n ), exp( 2πia
n ). That g.c.d(a,n) = 1 follows since the tangent representation is

faithful on both factors.

2) We denote by KX the canonical (Weil) divisor on the normal surface cor-
responding to i∗(Ω 2

X0), i : X0 → X being the inclusion of the smooth locus of X .
According to Mumford we have an intersection product with values in Q for Weil
divisors on a normal surface, and in particular we consider the selfintersection of the
canonical divisor,

K2
X =

8(g(C1)−1)(g(C2)−1)
|G|

∈Q, (1)

which is not necessarily an integer.

K2
X is however an integer (equal indeed to K2

S ) if X has only RDP’s as singulari-
ties.
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Table 2 Surfaces isogenous to a product and minimal standard isotrivial fibrations with pg = 0,
K2 ≥ 4

K2 Sing X T1 T2 G N H1(S,Z) π1(S)

8 /0 2,52 34 A5 1 Z2
3×Z15 1→Π21×Π4→ π1→ G→ 1

8 /0 53 23,3 A5 1 Z2
10 1→Π6×Π13→ π1→ G→ 1

8 /0 32,5 25 A5 1 Z3
2×Z6 1→Π16×Π5→ π1→ G→ 1

8 /0 2,4,6 26 S4×Z2 1 Z4
2×Z4 1→Π25×Π3→ π1→ G→ 1

8 /0 22,42 23,4 G(32,27) 1 Z2
2×Z4×Z8 1→Π5×Π9→ π1→ G→ 1

8 /0 53 53 Z2
5 2 Z2

5 1→Π6×Π6→ π1→ G→ 1
8 /0 3,42 26 S4 1 Z4

2×Z8 1→Π13×Π3→ π1→ G→ 1
8 /0 22,42 22,42 G(16,3) 1 Z2

2×Z4×Z8 1→Π5×Π5→ π1→ G→ 1
8 /0 23,4 26 D4×Z2 1 Z3

2×Z2
4 1→Π9×Π3→ π1→ G→ 1

8 /0 25 25 Z4
2 1 Z4

2 1→Π5×Π5→ π1→ G→ 1
8 /0 34 34 Z2

3 1 Z4
3 1→Π4×Π4→ π1→ G→ 1

8 /0 25 26 Z3
2 1 Z6

2 1→Π3×Π5→ π1→ G→ 1
8 /0 mixed G(256,3678) 3
8 /0 mixed G(256,3679) 1
8 /0 mixed G(64,92) 1

6 1/22 23,4 24,4 Z2×D4 1 Z2
2×Z2

4 1→ Z2×Π2→ π1→ Z2
2→ 1

6 1/22 24,4 2,4,6 Z2×S4 1 Z3
2×Z4 1→Π2→ π1→ Z2×Z4→ 1

6 1/22 2,52 2,33 A5 1 Z3×Z15 Z2oZ15

6 1/22 2,4,10 2,4,6 Z2×S5 1 Z2×Z4 S3×D4,5,−1

6 1/22 2,72 32,4 PSL(2,7) 2 Z21 Z7×A4

6 1/22 2,52 32,4 A6 2 Z15 Z5×A4

5 1/3,2/3 2,4,6 24,3 Z2×S4 1 Z2
2×Z4 1→ Z2→ π1→ D2,8,3→ 1

5 1/3,2/3 24,3 3,42 S4 1 Z2
2×Z8 1→ Z2→ π1→ Z8→ 1

5 1/3,2/3 42,6 23,3 Z2×S4 1 Z2×Z8 1→ Z2→ π1→ Z8→ 1
5 1/3,2/3 2,5,6 3,42 S5 1 Z8 D8,5,−1

5 1/3,2/3 3,52 23,3 A5 1 Z2×Z10 Z5×Q8

5 1/3,2/3 23,3 3,42 Z4
2oS3 1 Z2×Z8 D8,4,3

5 1/3,2/3 3,52 23,3 A5 1 Z2×Z10 Z2×Z10

4 1/24 25 25 Z3
2 1 Z3

2×Z4 1→ Z4→ π1→ Z2
2→ 1

4 1/24 22,42 22,42 Z2×Z4 1 Z3
2×Z4 1→ Z4→ π1→ Z2

2→ 1
4 1/24 25 23,4 Z2×D4 1 Z2

2×Z4 1→ Z2→ π1→ Z2×Z4→ 1
4 1/24 3,62 22,32 Z3×S3 1 Z2

3 Z2oZ3

4 1/24 3,62 2,4,5 S5 1 Z2
3 Z2oZ3

4 1/24 25 2,4,6 Z2×S4 1 Z3
2 Z2oZ2

4 1/24 22,42 2,4,6 Z2×S4 1 Z2
2×Z4 Z2oZ4

4 1/24 25 3,42 S4 1 Z2
2×Z4 Z2oZ4

4 1/24 23,4 23,4 Z4
2oZ2 1 Z2

4 G(32,2)
4 1/24 2,52 22,32 A5 1 Z15 Z15

4 1/24 22,32 22,32 Z2
3oZ2 1 Z3

3 Z3
3

4 2/52 23,5 32,5 A5 1 Z2×Z6 Z2×Z6

4 2/52 2,4,5 42,5 Z4
2oD5 3 Z8 Z8

4 2/52 2,4,5 32,5 A6 1 Z6 Z6
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Table 3 Minimal standard isotrivial fibrations with pg = 0, K2 ≤ 3

K2 Sing X T1 T2 G N H1(S,Z) π1(S)

3 1/5,4/5 23,5 32,5 A5 1 Z2×Z6 Z2×Z6

3 1/5,4/5 2,4,5 42,5 Z4
2oD5 3 Z8 Z8

3 1/3,1/22,2/3 22,3,4 2,4,6 Z2×S4 1 Z2×Z4 Z2×Z4

3 1/5,4/5 2,4,5 32,5 A6 1 Z6 Z6

2 1/32,2/32 2,62 22,32 Z3
2oZ3 1 Z2

2 Q8

2 1/26 43 43 Z2
4 1 Z3

2 Z3
2

2 1/26 23,4 23,4 Z2×D4 1 Z2×Z4 Z2×Z4

2 1/32,2/32 22,32 3,42 S4 1 Z8 Z8

2 1/32,2/32 32,5 32,5 Z2
5oZ3 2 Z5 Z5

2 1/26 2,52 23,3 A5 1 Z5 Z5

2 1/26 23,4 2,4,6 Z2×S4 1 Z2
2 Z2

2

2 1/32,2/32 32,5 23,3 A5 1 Z2
2 Z2

2

2 1/26 2,3,7 43 PSL(2,7) 2 Z2
2 Z2

2

2 1/26 2,62 23,3 S3×S3 1 Z3 Z3

2 1/26 2,62 2,4,5 S5 1 Z3 Z3

2 1/4,1/22,3/4 2,4,7 32,4 PSL(2,7) 2 Z3 Z3

2 1/4,1/22,3/4 2,4,5 32,4 A6 2 Z3 Z3

2 1/4,1/22,3/4 2,4,6 2,4,5 S5 2 Z3 Z3

1 1/3,1/24,2/3 23,3 3,42 S4 1 Z4 Z4

1 1/3,1/24,2/3 2,3,7 3,42 PSL(2,7) 1 Z2 Z2

1 1/3,1/24,2/3 2,4,6 23,3 Z2×S4 1 Z2 Z2

3) The resolution of a cyclic quotient singularity of type 1
n (1,a) with

g.c.d(a,n) = 1 is well known. These singularities are resolved by the so-called
Hirzebruch-Jung strings. More precisely, let π : S→ X be a minimal resolution of
the singularities and let E =

⋃m
i=1 Ei = π−1(x). Then Ei is a smooth rational curve

with E2
i =−bi and Ei ·E j = 0 if |i− j| ≥ 2, whileEi ·Ei+1 = 1 for i ∈ {1, . . . ,m−1}.

The bi’s are given by the continued fraction

n
a

= b1−
1

b2− 1
b3−...

.
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Since the minimal resolution S′ → X of the singularities of X replaces each sin-
gular point by a tree of smooth rational curves, we have, by van Kampen’s theorem,
that π1(X) = π1(S′) = π1(S).

Moreover, we can read off all invariants of S′ from the group theoretical data.
For details and explicit formulae we refer to [BP10].

Among others, we also prove the following lemma:

Lemma 5.1 There exist positive numbers D, M, R, B, which depend explicitly (and
only) on the singularities of X such that:

1. χ(S′) = 1 =⇒ K2
S′ = 8−B;

2. for the corresponding signatures (0;m1, . . . ,mr) and (0;n1, . . . ,ns) of the orb-
ifold surface groups we have r,s≤ R, ∀ i mi,ni ≤M;

3. |G|= KS′+D
2(−2+∑

r
1(1− 1

mi
))(−2+∑

s
1(1−

1
ni

))
.

Remark 5 The above lemma 5.1 implies that there is an algorithm which computes
all such surfaces S′ with pg = q = 0 and fixed K2

S′ :

a) find all possible configurations (=

”

baskets”) B of singularities with
B = 8−K2

S′ ;

b) for a fixed basket B find all signatures (0;m1, . . . ,mr) satisfying 2);

c) for each pair of signatures check all groups G of order given by 3), whether
there are surjective homomorphisms T(0;mi)→G, T(0;ni)→ G;

d) check whether the surfaces X = (C1×C2)/G thus obtained have the right sin-
gularities.

Still this is not yet the solution of the problem and there are still several difficult
problems to be overcome:

• We have to check whether the groups of a given order admit certain systems of
generators of prescribed orders, and satisfying moreover certain further condi-
tions (forced by the basket of singularities); we encounter in this way groups of
orders 512, 1024, 1536: there are so many groups of these orders that the above
investigation is not feasible for naive computer calculations. Moreover, we have
to deal with groups of orders > 2000: they are not listed in any database
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• If X is singular, we only get subfamilies, not a whole irreducible component of
the moduli space. There remains the problem of studying the deformations of the
minimal models S obtained with the above construction.

• The algorithm is heavy for K2 small. In [BP10] we proved and implemented
much stronger results on the singularities of X and on the possible signatures,
which allowed us to obtain a complete list of surfaces with K2

S ≥ 1.

• We have not yet answered completely the original question. Since, if X does
not have canonical singularities, it may happen that K2

S′ ≤ 0 (recall that S′ is the
minimal resolution of singularities of X , which is not necessarily minimal!).

Concerning product quotient surfaces, we have proven (in a much more general
setting, cf. [BCGP08]) a structure theorem for the fundamental group, which helps
us to explicitly identify the fundamental groups of the surfaces we constructed. In
fact, it is not difficult to obtain a presentation for these fundamental groups, but as
usual having a presentation is not sufficient to determine the group explicitly.

We first need the following

Definition 5 We shall call the fundamental group Πg := π1(C) of a smooth compact
complex curve of genus g a (genus g) surface group.

Note that we admit also the “degenerate cases” g = 0,1.

Theorem 13 Let C1, . . . ,Cn be compact complex curves of respective genera gi ≥ 2
and let G be a finite group acting faithfully on each Ci as a group of biholomorphic
transformations.

Let X = (C1× . . .×Cn)/G, and denote by S a minimal desingularisation of X.
Then the fundamental group π1(X) ∼= π1(S) has a normal subgroup N of finite
index which is isomorphic to the product of surface groups, i.e., there are natural
numbers h1, . . . ,hn ≥ 0 such that N ∼= Πh1× . . .×Πhn .

Remark 6 In the case of dimension n = 2 there is no loss of generality in assuming
that G acts faithfully on each Ci (see [Cat00]). In the general case there will be a
group Gi, quotient of G, acting faithfully on Ci, hence the strategy has to be slightly
changed in the general case. The generalization of the above theorem, where the
assumption that G acts faithfully on each factor is removed, has been proven in
[DP10].

We shall now give a short outline of the proof of theorem 13 in the case n = 2
(the case of arbitrary n is exactly the same).
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We have two appropriate orbifold homomorphisms

ϕ1 : T1 := T(g′1;m1, . . . ,mr)→G,

ϕ2 : T2 := T(g′2;n1, . . . ,ns)→G.

We define the fibre product H :=H(G;ϕ1,ϕ2) as

H :=H(G;ϕ1,ϕ2) := {(x,y) ∈ T1×T2 | ϕ1(x) = ϕ2(y)}. (2)

Then the exact sequence

1→Πg1×Πg2 → T1×T2→G×G→ 1, (3)

where Πgi := π1(Ci), induces an exact sequence

1→Πg1 ×Πg2 →H(G;ϕ1,ϕ2)→G∼= ∆G→ 1. (4)

Here ∆G ⊂ G×G denotes the diagonal subgroup.

Definition 6 Let H be a group. Then its torsion subgroup Tors(H) is the normal
subgroup generated by all elements of finite order in H.

The first observation is that one can calculate our fundamental groups via a sim-
ple algebraic recipe:

π1((C1×C2)/G)∼=H(G;ϕ1,ϕ2)/Tors(H).

The strategy is then the following: using the structure of orbifold surface groups
we construct an exact sequence

1→ E→H/Tors(H)→Ψ (Ĥ)→ 1,

where

i) E is finite,

ii) Ψ(Ĥ) is a subgroup of finite index in a product of orbifold surface groups.

Condition ii) implies that Ψ (Ĥ) is residually finite and “good” according to the
following
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Definition 7 (J.-P. Serre) Let G be a group, and let G̃ be its profinite completion.
Then G is said to be good iff the homomorphism of cohomology groups

Hk(G̃,M)→ Hk(G,M)

is an isomorphism for all k ∈ N and for all finite G - modules M.

Then we use the following result due to F. Grunewald, A. Jaikin-Zapirain, P.
Zalesski.

Theorem 14 ([GJZ08]) Let G be residually finite and good, and let ϕ : H → G be
surjective with finite kernel. Then H is residually finite.

The above theorem implies that H/Tors(H) is residually finite, whence there is
a subgroup Γ ≤H/Tors(H) of finite index such that

Γ ∩E = {1}.

Now, Ψ (Γ ) is a subgroup of Ψ (Ĥ) of finite index, whence of finite index in a prod-
uct of orbifold surface groups, and Ψ |Γ is injective. This easily implies our result.

Remark 7 Note that theorem 13 in fact yields a geometric statement in the case
where the genera of the surface groups are at least 2. Again, for simplicity, we
assume that n = 2, and suppose that π1(S) has a normal subgroup N of finite index
isomorphic to Πg×Πg′ , with g,g′ ≥ 2. Then there is an unramified Galois covering
Ŝ of S such that π1(Ŝ) ∼= Πg×Πg′ . This implies (see [Cat00]) that there is a finite
morphism Ŝ→C×C′, where g(C) = g, g(C′) = g′.

Understanding this morphism can lead to the understanding of the irreducible or
even of the connected component of the moduli space containing the isomorphism
class [S] of S. The method can also work in the case where we only have g,g′ ≥ 1.
We shall explain how this method works in section 6.

We summarize the consequences of theorem 12 in terms of

”

new” fundamental
groups of surfaces with pg = 0, respectively

”

new” connected components of their
moduli space.

Theorem 15 There exist eight families of product-quotient surfaces of un-
mixed type yielding numerical Campedelli surfaces (i.e., minimal surfaces with
K2

S = 2, pg(S) = 0) having fundamental group Z/3.
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Our classification also shows the existence of families of product-quotient sur-
faces yielding numerical Campedelli surfaces with fundamental groups Z/5 (but
numerical Campedelli surfaces with fundamental group Z/5 had already been con-
structed in [Cat81]), respectively with fundamental group (Z/2)2 (but such funda-
mental group already appeared in [Ino94]), respectively with fundamental groups
(Z/2)3, Q8, Z/8 and Z/2×Z/4.

Theorem 16 There exist six families of product-quotient surfaces yielding mini-
mal surfaces with K2

S = 3, pg(S) = 0 realizing four new finite fundamental groups,
Z/2×Z/6, Z/8, Z/6 and Z/2×Z/4.

Theorem 17 There exist sixteen families of product-quotient surfaces yielding min-
imal surfaces with K2

S = 4, pg(S) = 0. Eight of these families realize 6 new finite
fundamental groups, Z/15, G(32,2), (Z/3)3, Z/2×Z/6, Z/8, Z/6. Eight of these
families realize 4 new infinite fundamental groups.

Theorem 18 There exist seven families of product-quotient surfaces yielding mini-
mal surfaces with K2

S = 5, pg(S) = 0. Four of these families realize four new finite
fundamental groups, D8,5,−1, Z/5×Q8, D8,4,3, Z/2×Z/10. Three of these families
realize three new infinite fundamental groups.

Theorem 19 There exist eight families of product-quotient surfaces yielding mini-
mal surfaces with K2

S = 6, pg(S) = 0 and realizing 6 new fundamental groups, three
of them finite and three of them infinite. In particular, there exist minimal surfaces
of general type with pg = 0, K2 = 6 and with finite fundamental group.

5.2 Galois coverings and their deformations

Another standard method for constructing new algebraic surfaces is to consider
abelian Galois-coverings of known surfaces.

We shall in the sequel recall the structure theorem on normal finite Zr
2-coverings,

r ≥ 1, of smooth algebraic surfaces Y . In fact (cf. [Par91], or [BC08] for a more
topological approach) this theory holds more generally for any G-covering, with G
a finite abelian group.

Since however we do not want here to dwell too much into the general theory
and, in most of the applications we consider here only the caseZ2

2 is used, we restrict
ourselves to this more special situation.
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We shall denote by G := Zr
2 the Galois group and by G∗ := Hom(G,C∗) its dual

group of characters which we identify to G∗ := Hom(G,Z/2) .

Since Y is smooth any finite abelian covering f : X → Y is flat hence in the
eigensheaves splitting

f∗OX =
⊕

χ∈G∗
L ∗

χ = OY ⊕
⊕

χ∈G∗\{0}
OY (−Lχ).

each rank 1 sheaf L ∗
χ is invertible and corresponds to a Cartier divisor −Lχ .

For each σ ∈G let Rσ ⊂ X be the divisorial part of the fixed point set of σ . Then
one associates to σ a divisor Dσ given by f (Rσ ) = Dσ ; let xσ be a section such that
div(xσ ) = Dσ .

Then the algebra structure on f∗OX is given by the following (symmetric, bilin-
ear) multiplication maps:

OY (−Lχ)⊗OY (−Lη)→OY (−Lχ+η),

given by the section xχ,η ∈ H0(Y,OY (Lχ +Lη −Lχ+η)), defined by

xχ ,η := ∏
χ(σ)=η(σ)=1

xσ .

It is now not difficult in this case to show directly the associativity of the multipli-
cation defined above (cf. [Par05] for the general case of an abelian cover).

In particular, the G-covering f : X → Y is embedded in the vector bundle
V :=

⊕
χ∈G∗ Lχ , where Lχ is the geometric line bundle whose sheaf of sections

is OY (Lχ), and is there defined by the equations:

zχzη = zχ+η ∏
χ(σ)=η(σ)=1

xσ .

Note the special case where χ = η , when χ + η is the trivial character 1, and
z1 = 1. In particular, let χ1, . . . ,χr be a basis of G∗ = Zr

2, and set zi := zχi . Then we
get the following r equations

z2
i = ∏

χi(σ)=1
xσ . (5)

These equations determine the extension of the function fields, hence one gets
X as the normalization of the Galois covering given by (5). The main point however
is that the previous formulae yield indeed the normalization explicitly under the
conditions summarized in the following
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Proposition 1 A normal finite G∼= Zr
2-covering of a smooth variety Y is completely

determined by the datum of

1. reduced effective divisors Dσ , ∀σ ∈ G, which have no common components,

2. divisor classes L1, . . .Lr, for χ1, . . .χr a basis of G∗, such that we have the fol-
lowing linear equivalence

(#) 2Li ≡ ∑χi(σ)=1 Dσ .

Conversely, given the datum of 1) and 2) such that #) holds, we obtain a normal
scheme X with a finite G∼= Zr

2-covering f : X → Y .

Proof (Idea of the proof.) It suffices to determine the divisor classes Lχ for the
remaining elements of G∗. But since any χ is a sum of basis elements, it suffices to
exploit the fact that the linear equivalences

Lχ+η ≡ Lη +Lχ − ∑
χ(σ)=η(σ)=1

Dσ

must hold, and apply induction. Since the covering is well defined as the normal-
ization of the Galois cover given by (5), each Lχ is well defined. Then the above
formulae determine explicitly the ring structure of f∗OX , hence X . Finally, condi-
tion 1 implies the normality of the cover.

A natural question is of course: when is the scheme X a variety? I.e., X being
normal, when is X connected, or, equivalently, irreducible? The obvious answer is
that X is irreducible if and only if the monodromy homomorphism

µ : H1(Y \ (∪σ Dσ ),Z)→G

is surjective.

Remark 8 From the extension of Riemann’s existence theorem due to Grauert and
Remmert ([GR58]) we know that µ determines the covering. It is therefore worth-
while to see how µ is related to the datum of 1) and 2).

Write for this purpose the branch locus D := ∑σ Dσ as a sum of irreducible com-
ponents Di. To each Di corresponds a simple geometric loop γi around Di, and we
set σi := µ(γi). Then we have that Dσ := ∑σi=σ Di. For each character χ , yielding
a double covering associated to the composition χ ◦µ , we must find a divisor class
Lχ such that 2Lχ ≡ ∑χ(σ)=1 Dσ .
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Consider the exact sequence

H2n−2(Y,Z)→ H2n−2(D,Z) =⊕iZ[Di]→ H1(Y \D,Z)→H1(Y,Z)→ 0

and the similar one with Z replaced by Z2. Denote by ∆ the subgroup image of
⊕iZ2[Di]. The restriction of µ to ∆ is completely determined by the knowledge of
the σi’s, and we have

0→ ∆ → H1(Y \D,Z2)→ H1(Y,Z2)→ 0.

Dualizing, we get

0→H1(Y,Z2)→ H1(Y \D,Z2)→Hom(∆ ,Z2)→ 0.

The datum of χ ◦ µ , extending χ ◦ µ |∆ is then seen to correspond to an
affine space over the vector space H1(Y,Z2): and since H1(Y,Z2) classifies divi-
sor classes of 2-torsion on Y , we infer that the different choices of Lχ such that
2Lχ ≡ ∑χ(σ)=1 Dσ correspond bijectively to all the possible choices for χ ◦µ .

Applying this to all characters, we find how µ determines the building data.

Observe on the other hand that if µ is not surjective, then there is a character χ

vanishing on the image of µ , hence the corresponding double cover is disconnected.

But the above discussion shows that χ ◦ µ is trivial iff this covering is discon-
nected, if and only if the corresponding element in H1(Y \D,Z2) is trivial, or, equiv-
alently, iff the divisor class Lχ is trivial.

We infer then

Corollary 3 Use the same notation as in prop. 1. Then the scheme X is irreducible
if {σ |Dσ > 0} generates G.

Or, more generally, if for each character χ the class in H1(Y \D,Z2) corre-
sponding to χ ◦µ is nontrivial, or, equivalently, the divisor class Lχ is nontrivial.

Proof We have seen that if Dσ ≥Di 6= 0, then µ(γi) = σ , whence we infer that µ is
surjective.

An important role plays here once more the concept of natural deformations.
This concept was introduced for bidouble covers in [Cat84], definition 2.8, and ex-
tended to the case of abelian covers in [Par91], definition 5.1. The two definitions do
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not exactly coincide, because Pardini takes a much larger parameter space: however,
the deformations appearing with both definitions are the same. To avoid confusion
we call Pardini’s case the case of extended natural deformations.

Definition 8 Let f : X → Y be a finite G ∼= Zr
2 covering with Y smooth and X nor-

mal, so that X is embedded in the vector bundle V defined above and is defined by
equations

zχzη = zχ+η ∏
χ(σ)=η(σ)=1

xσ .

Let ψσ ,χ be a section ψσ ,χ ∈ H0(Y,OY (Dσ −Lχ)), given ∀σ ∈ G,χ ∈ G∗. To such
a collection we associate an extended natural deformation, namely, the subscheme
of V defined by equations

zχ zη = zχ+η ∏
χ(σ)=η(σ)=1

(
∑
θ

ψσ ,θ · zθ

)
.

We have instead a (restricted) natural deformation if we restrict ourselves to the
θ ’s such that θ (σ) = 0,and we consider only an equation of the form

zχ zη = zχ+η ∏
χ(σ)=η(σ)=1

(
∑

θ (σ)=0
ψσ ,θ · zθ

)
.

One can generalize some results, even removing the assumption of smoothness
of Y , if one assumes the G ∼= Zr

2-covering to be locally simple, i.e., to enjoy the
property that for each point y ∈ Y the σ ’s such that y ∈ Dσ are a linearly indepen-
dent set. This is a good notion since (compare [Cat84], proposition 1.1) if also X is
smooth the covering is indeed locally simple.

One has for instance the following result (see [Man01], section 3):

Proposition 2 Let f : X → Y be a locally simple G ∼= Zr
2 covering with Y smooth

and X normal. Then we have the exact sequence

⊕χ(σ)=0(H
0(ODσ

(Dσ −Lχ)))→ Ext1OX
(Ω 1

X ,OX )→ Ext1OX
( f ∗Ω 1

Y ,OX ).

In particular, every small deformation of X is a natural deformation if

1. H1(OY (−Lχ)) = 0,

2. Ext1OX
( f ∗Ω 1

Y ,OX ) = 0.
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If moreover

3. H0(OY (Dσ −Lχ)) = 0 ∀σ ∈ G,χ ∈ G∗,

every small deformation of X is again a G∼= Zr
2-covering.

Proof (Comments on the proof.)

In the above proposition condition 1) ensures that

H0(OY (Dσ −Lχ))→ H0(ODσ
(Dσ −Lχ))

is surjective.

Condition 2 and the above exact sequence imply then that the natural deforma-
tions are parametrized by a smooth manifold and have surjective Kodaira-Spencer
map, whence they induce all the infinitesimal deformations.

Remark 9 In the following section we shall see examples where surfaces with pg = 0
arise as double covers and as bidouble covers. In fact there are many more surfaces
arising this way, see e.g. [Cat98].

6 Keum-Naie surfaces and primary Burniat surfaces

In the nineties J.H. Keum and D. Naie (cf. [Nai94], [Keu88]) constructed a family
of surfaces with K2

S = 4 and pg = 0 as double covers of an Enriques surface with
eight nodes and calculated their fundamental group.

We want here to describe explicitly the moduli space of these surfaces.

The motivation for this investigation arose as follows: consider the following two
cases of table 2 whose fundamental group has the form

Z4 ↪→ π1� Z2
2→ 0.

These cases yield 2 families of respective dimensions 2 and 4, which can also
be seen as Z4×Z2, resp. Z3

2, coverings of P1×P1 branched in a divisor of type
(4,4), resp. (5,5), consisting entirely of horizontal and vertical lines. It turns out that
their fundamental groups are isomorphic to the fundamental groups of the surfaces
constructed by Keum-Naie.
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A straightforward computation shows that our family of dimension 4 is equal to
the family constructed by Keum, and that both families are subfamilies of the one
constructed by Naie.

As a matter of fact each surface of our family of Z3
2 - coverings of P1×P1 has 4

nodes. These nodes can be smoothened simultaneously in a 5 - dimensional family
of Z3

2 - Galois coverings of P1×P1.

It suffices to take a smoothing of each Di, which before the smoothing consisted
of a vertical plus a horizontal line.The full six dimensional component is obtained
then as the family of natural deformations of these Galois coverings.

It is a standard computation in local deformation theory to show that the six
dimensional family of natural deformations of smooth Z3

2 - Galois coverings of
P1×P1 is an irreducible component of the moduli space. We will not give the details
of this calculation, since we get a stronger result by another method.

In fact, the main result of [BC09a] is the following:

Theorem 20 Let S be a smooth complex projective surface which is homotopically
equivalent to a Keum-Naie surface. Then S is a Keum-Naie surface.

The moduli space of Keum-Naie surfaces is irreducible, unirational of dimension
equal to six. Moreover, the local moduli space of a Keum-Naie surface is smooth.

The proof resorts to a slightly different construction of Keum-Naie surfaces. We
study a Z2

2-action on the product of two elliptic curves E ′1×E ′2. This action has 16
fixed points and the quotient is an 8-nodal Enriques surface. Constructing S as a dou-
ble cover of the Enriques surface is equivalent to constructing an étale Z2

2-covering
Ŝ of S, whose existence can be inferred from the structure of the fundamental group,
and which is obtained as a double cover of E ′1×E ′2 branched in a Z2

2-invariant divi-
sor of type (4,4). Because S = Ŝ/Z2

2.

The structure of this étale Z2
2-covering Ŝ of S is essentially encoded in the fun-

damental group π1(S), which can be described as an affine group Γ A(2,C). The
key point is that the double cover α̂ : Ŝ→ E ′1×E ′2 is the Albanese map of Ŝ.

Assume now that S′ is homotopically equivalent to a Keum-Naie surface S. Then
the corresponding étale cover Ŝ′ is homotopically equivalent to Ŝ. Since we know
that the degree of the Albanese map of Ŝ is equal to two (by construction), we can
conlude the same for the Albanese map of Ŝ′ and this allows to deduce that also Ŝ′

is a double cover of a product of elliptic curves.

⊂
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A calculation of the invariants of a double cover shows that the branch locus is
a Z2

2-invariant divisor of type (4,4).

We are going to sketch the construction of Keum-Naie surfaces and the proof of
theorem 20 in the sequel. For details we refer to the original article [BC09a].

Let (E,o) be any elliptic curve, with a G =Z2
2 = {0,g1,g2,g1 +g2} action given

by
g1(z) := z+η, g2(z) =−z.

Remark 10 Let η ∈E be a 2 - torsion point of E. Then the divisor [o]+[η ]∈Div2(E)
is invariant under G, hence the invertible sheaf OE([o] + [η]) carries a natural G-
linearization.

In particular, G acts on H0(E,OE([o]+ [η ])), and for the character eigenspaces, we
have the following:

Lemma 6.2 Let E be as above, then:

H0(E,OE([o]+ [η])) = H0(E,OE([o]+ [η ]))++⊕H0(E,OE([o]+ [η]))−−.

I.e., H0(E,OE([o]+ [η]))+− = H0(E,OE([o]+ [η]))−+ = 0.

Remark 6.1 Our notation is self explanatory, e.g.
H0(E,OE([o] + [η]))+− = H0(E,OE([o] + [η]))χ , where χ is the character
of G with χ(g1) = 1, χ(g2) =−1.

Let now E ′i := C/Λi, i = 1,2, where Λi := Zei⊕Ze′i, be two complex elliptic
curves. We consider the affine transformations γ1, γ2 ∈A(2,C), defined as follows:

γ1

(
z1

z2

)
=

(
z1 + e1

2
−z2

)
, γ2

(
z1

z2

)
=

(
−z1

z2 + e2
2

)
,

and let Γ ≤ A(2,C) be the affine group generated by γ1,γ2 and by the translations
e1,e′1,e2,e′2.

Remark 11 i) Γ induces a G := Z2
2-action on E ′1×E ′2.

ii) While γ1, γ2 have no fixed points on E ′1×E ′2, the involution γ1γ2 has 16 fixed
points on E ′1×E ′2. It is easy to see that the quotient Y := (E ′1×E ′2)/G is an En-
riques surface having 8 nodes, with canonical double cover the Kummer surface
(E ′1×E ′2)/ < γ1γ2 >.
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We lift the G-action on E ′1×E ′2 to an appropriate ramified double cover Ŝ such
that G acts freely on Ŝ.

To do this, consider the following geometric line bundle L on E ′1×E ′2, whose
invertible sheaf of sections is given by:

OE ′1×E ′2
(L) := p∗1OE ′1

([o1]+ [
e1

2
])⊗ p∗2OE ′2

([o2]+ [
e2

2
]),

where pi : E ′1×E ′2→ E ′i is the projection to the i-th factor.

By remark 10, the divisor [oi]+ [ ei
2 ] ∈ Div2(E ′i ) is invariant under G. Therefore,

we get a natural G-linearization on the two line bundles OE ′i
([oi]+[ ei

2 ]), whence also
on L.

Any two G-linearizations of L differ by a character χ : G → C∗. We twist
the above obtained linearization of L with the character χ such that χ(γ1) = 1,
χ(γ2) =−1.

Definition 9 Let

f ∈H0(E ′1×E ′2, p∗1OE ′1
(2[o1]+2[

e1

2
])⊗ p∗2OE ′2

(2[o2]+2[
e2

2
]))G

be a G - invariant section of L⊗2 and denote by w a fibre coordinate of L. Let Ŝ be
the double cover of E ′1×E ′2 branched in f , i.e.,

Ŝ = {w2 = f (z1,z2)} ⊂ L.

Then Ŝ is a G - invariant hypersurface in L, and we have a G - action on Ŝ.

We call S := Ŝ/G a Keum - Naie surface, if

• G acts freely on Ŝ, and

• { f = 0} has only non-essential singularities, i.e., Ŝ has at most rational double
points.

Remark 12 If

f ∈H0(E ′1×E ′2, p∗1OE ′1
(2[o1]+2[

e1

2
])⊗ p∗2OE ′2

(2[o2]+2[
e2

2
]))G

is such that {(z1,z2) ∈ E ′1×E ′2 | f (z1,z2) = 0}∩Fix(γ1 + γ2) = /0, then G acts freely
on Ŝ.

Proposition 3 Let S be a Keum - Naie surface. Then S is a minimal surface of gen-
eral type with
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i) K2
S = 4,

ii) pg(S) = q(S) = 0,

iii)π1(S) = Γ .

i) is obvious, since K2
Ŝ

= 16,

ii) is verified via standard arguments of representation theory.

iii) follows since π1(Ŝ) = π1(E ′1×E ′2).

Let now S be a smooth complex projective surface with π1(S) = Γ . Recall that
γ2

i = ei for i = 1,2. Therefore Γ = 〈γ1,e′1,γ2,e′2〉 and we have the exact sequence

1→ Z4 ∼= 〈e1,e′1,e2,e′2〉 → Γ → Z2
2→ 1,

where ei 7→ γ2
i .

We set Λ ′i := Zei⊕Ze′i, hence π1(E ′1×E ′2) = Λ ′1⊕Λ ′2. We also have the two
lattices Λi := Z ei

2 ⊕Ze′i.

Remark 13 1) Γ is a group of affine transformations on Λ1⊕Λ2.

2) We have an étale double cover E ′i = C/Λ ′i → Ei := C/Λi, which is the quotient
by a semiperiod of E ′i .

Γ has two subgroups of index two:

Γ1 := 〈γ1,e′1,e2,e′2〉, Γ2 := 〈e1,e′1,γ2,e′2〉,

corresponding to two étale covers of S: Si→ S, for i = 1,2.

Then one can show:

Lemma 6.3 The Albanese variety of Si is Ei. In particular, q(S1) = q(S2) = 1.

Let Ŝ → S be the étale Z2
2-covering associated to Z4 ∼= 〈e1,e′1,e2,e′2〉 / Γ . Since

Ŝ→ Si→ S, and Si maps to Ei (via the Albanese map), we get a morphism

f : Ŝ→ E1×E2 =C/Λ1×C/Λ2.

Then the covering of E1×E2 associated to Λ ′1⊕Λ ′2 ≤Λ1⊕Λ2 is E ′1×E ′2, and since
π1(Ŝ) = Λ ′1⊕Λ ′2 we see that f factors through E ′1×E ′2 and that the Albanese map
of Ŝ is α̂ : Ŝ→ E ′1×E ′2.

The proof of the main result follows then from
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Proposition 4 Let S be a smooth complex projective surface, which is homotopically
equivalent to a Keum - Naie surface. Let Ŝ→ S be the étale Z2

2-cover associated to
〈e1,e′1,e2,e′2〉/Γ and let

Ŝ
α̂ //

""EE
EE

EE
EE

EE E ′1×E ′2

Y

ϕ

OO

be the Stein factorization of the Albanese map of Ŝ.

Then ϕ has degree 2 and Y is a canonical model of Ŝ.

More precisely, ϕ is a double cover of E ′1×E ′2 branched on a divisor of type
(4,4).

The fact that S is homotopically equivalent to a Keum-Naie surface immediately
implies that the degree of α̂ is equal to two.

The second assertion, i.e., that Y has only canonical singularities, follows instead
from standard formulae on double covers (cf. [Hor75]).

The last assertion follows from K2
Ŝ

= 16 and (Z/2Z)2- invariance.

In fact, we conjecture a stronger statement to hold true:

Conjecture 4 Let S be a minimal smooth projective surface such that

i) K2
S = 4,

ii) π1(S)∼= Γ .

Then S is a Keum-Naie surface.

We can prove

Theorem 21 Let S be a minimal smooth projective surface such that

i) K2
S = 4,

ii) π1(S)∼= Γ ,

iii)there is a deformation of S with ample canonical bundle.

Then S is a Keum-Naie surface.

We recall the following results:
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Theorem 22 (Severi’s conjecture, [Par05]) Let S be a minimal smooth projective
surface of maximal Albanese dimension (i.e., the image of the Albanese map is a
surface), then K2

S ≥ 4χ(S).

M. Manetti proved Severi’s inequality under the assumption that KS is ample,
but he also gave a description of the limit case K2

S = 4χ(S), which will be crucial
for the above theorem 21.

Theorem 23 (M. Manetti, [Man03]) Let S be a minimal smooth projective surface
of maximal Albanese dimension with KS ample then K2

S ≥ 4χ(S), and equality holds
if and only if q(S) = 2, and the Albanese map α : S→Alb(S) is a finite double cover.

Proof (Proof of theorem 21) We know that there is an étale Z2
2-cover Ŝ of S with

Albanese map α̂ : Ŝ→ E ′1×E ′2. Note that K2
Ŝ

= 4K2
S = 16. By Severi’s inequality,

it follows that χ(S) ≤ 4, but since 1 ≤ χ(S) = 1
4 χ(Ŝ), we have χ(S) = 4. Since S

deforms to a surface with KS ample, we can apply Manetti’s result and obtain that
α̂ : Ŝ→ E ′1×E ′2 has degree 2, and we conclude as before.

It seems reasonable to conjecture (cf. [Man03]) the following, which would im-
mediately imply our conjecture 4.

Conjecture 5 Let S be a minimal smooth projective surface of maximal Albanese
dimension. Then K2

S = 4χ(S) if and only if q(S) = 2, and the Albanese map has
degree 2.

During the preparation of the article [BC09a] the authors realized that a com-
pletely similar argument applies to primary Burniat surfaces.

We briefly recall the construction of Burniat surfaces: for more details, and
for the proof that Burniat surfaces are exactly certain Inoue surfaces we refer to
[BC09b].

Burniat surfaces are minimal surfaces of general type with K2 = 6,5,4,3,2 and
pg = 0, which were constructed in [Bur66] as singular bidouble covers (Galois cov-
ers with group Z2

2) of the projective plane branched on 9 lines.

Let P1,P2,P3 ∈ P2 be three non collinear points (which we assume to be the points
(1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1)) and let’s denote by Y := P̂2(P1,P2,P3) the Del
Pezzo surface of degree 6, blow up of P2 in P1,P2,P3.

Y is ‘the’ smooth Del Pezzo surface of degree 6, and it is the closure of the graph
of the rational map
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ε : P2 99K P1×P1×P1

such that
ε(y1 : y2 : y3) = ((y2 : y3),(y3 : y1),(y1 : y2)).

One sees immediately that Y ⊂ P1×P1×P1 is the hypersurface of type (1,1,1):

Y = {((x′1 : x1),(x′2 : x2),(x′3 : x3)) | x1x2x3 = x′1x′2x′3}.

We denote by L the total transform of a general line in P2, by Ei the exceptional
curve lying over Pi, and by Di,1 the unique effective divisor in |L−Ei−Ei+1|, i.e., the
proper transform of the line yi−1 = 0, side of the triangle joining the points Pi,Pi+1.

Consider on Y , for each i ∈ Z3 ∼= {1,2,3}, the following divisors

Di = Di,1 +Di,2 +Di,3 +Ei+2 ∈ |3L−3Ei−Ei+1 +Ei+2|,

other line through Pi and Di,1 ∈ |L−Ei−Ei+1| is as above. Assume also that all the
corresponding lines in P2 are distinct, so that D := ∑i Di is a reduced divisor.

Note that, if we define the divisor Li := 3L−2Ei−1−Ei+1, then

Di−1 +Di+1 = 6L−4Ei−1−2Ei+1 ≡ 2Li,

and we can consider (cf. section 4, [Cat84] and [Cat98]) the associated bidouble
cover X ′ →Y branched on D := ∑i Di (but we take a different ordering of the indices
of the fibre coordinates ui, using the same choice as the one made in [BC09b], except
that X ′ was denoted by X ).

We recall that this precisely means the following: let Di = div(δi), and let ui be
a fibre coordinate of the geometric line bundle Li+1, whose sheaf of holomorphic
sections is OY (Li+1).

Then X ⊂ L1⊕L2⊕L3 is given by the equations:

u1u2 = δ1u3, u2
1 = δ3δ1;

u2u3 = δ2u1, u2
2 = δ1δ2;

u3u1 = δ3u2, u2
3 = δ2δ3.

where Di j ∈ |L−Ei|, for j = 2,3, Di j 6= Di 1, is the proper transform of an-
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From the birational point of view, as done by Burniat, we are simply adjoining

to the function field of P2 two square roots, namely
√

∆1
∆3

and
√

∆2
∆3

, where ∆i is the
cubic polynomial in C[x0,x1,x2] whose zero set has Di−Ei+2 as strict transform.

This shows clearly that we have a Galois cover X ′ → Y with group Z2
2.

The equations above give a biregular model X ′ which is nonsingular exactly if
the divisor D does not have points of multiplicity 3 (there cannot be points of higher
multiplicities!). These points give then quotient singularities of type 1

4 (1,1), i.e.,
isomorphic to the quotient of C2 by the action of Z4 sending (u,v) 7→ (iu, iv) (or,
equivalently, the affine cone over the 4-th Veronese embedding of P1).

Definition 10 A primary Burniat surface is a surface constructed as above, and
which is moreover smooth. It is then a minimal surface S with KS ample, and with
K2

S = 6, pg(S) = q(S) = 0.

A secondary Burniat surface is the minimal resolution of a surface X ′ con-
structed as above, and which moreover has 1 ≤ m ≤ 2 singular points (necessarily
of the type described above). Its minimal resolution is then a minimal surface S with
KS nef and big, and with K2

S = 6−m, pg(S) = q(S) = 0.

A tertiary (respectively, quaternary) Burniat surface is the minimal resolution
of a surface X ′ constructed as above, and which moreover has m = 3 (respectively
m = 4) singular points (necessarily of the type described above). Its minimal res-
olution is then a minimal surface S with KS nef and big, but not ample, and with
K2

S = 6−m, pg(S) = q(S) = 0.

Remark 14 1) We remark that for K2
S = 4 there are two possible types of configu-

rations. The one where there are three collinear points of multiplicity at least 3 for
the plane curve formed by the 9 lines leads to a Burniat surface S which we call of
nodal type, and with KS not ample, since the inverse image of the line joining the 3
collinear points is a (-2)-curve (a smooth rational curve of self intersection −2).

In the other cases with K2
S = 4,5,6, KS is instead ample.

2) In the nodal case, if we blow up the two (1,1,1) points of D, we obtain a weak
Del Pezzo surface Ỹ , since it contains a (-2)-curve. Its anticanonical model Y ′ has a
node (an A1-singularity, corresponding to the contraction of the (-2)-curve). In the
non nodal case, we obtain a smooth Del Pezzo surface Ỹ = Y ′ of degree 4.

With similar methods as in [BC09a] (cf. [BC09b]) the first two authors proved

Theorem 24 The subset of the Gieseker moduli space corresponding to primary
Burniat surfaces is an irreducible connected component, normal, rational and of
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dimension four. More generally, any surface homotopically equivalent to a primary
Burniat surface is indeed a primary Burniat surface.

Remark 15 The assertion that the moduli space corresponding to primary Burniat
surfaces is rational needs indeed a further argument, which is carried out in [BC09b].
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son) make sense for complex manifolds; they turn out to be quite interesting on
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1 Introduction

Though symplectic geometry is usually done on real manifolds, the main defini-
tions (symplectic or contact structures, Poisson bracket) make perfect sense in the
holomorphic setting. What is less obvious is that these structures are indeed quite
interesting in this set-up, in particular on global objects – meaning compact, or pro-
jective, manifolds. The study of these objects has been much developed in the last
30 years – an exhaustive survey would require at least a book. The aim of these
notes is much more modest: we would like to give a (very partial) overview of the
subject by presenting some of the open problems which are currently investigated.
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Most of the paper is devoted to holomorphic symplectic (= hyperkähler) mani-
folds, a subject which has been blossoming in recent years. Two short chapters are
devoted to contact and Poisson structures : in the former we discuss the conjectural
classification of projective contact manifolds, and in the latter an intriguing conjec-
ture of Bondal on the rank of the Poisson tensor.

2 Compact hyperkähler manifolds

2.1 Basic definitions

The interest for holomorphic symplectic manifolds comes from the following result,
stated by Bogomolov in [8] :

Theorem 1 (Decomposition theorem) Let X be a compact, simply-connected
Kähler manifold with trivial canonical bundle. Then X is a product of manifolds
of the following two types:

• projective manifolds Y of dimension ≥ 3, with H0(Y,Ω∗Y ) =C⊕Cω , where ω is
a generator of KY ;

• compact Kähler manifolds Z with H0(Z,Ω ∗Z) = C[σ ], where σ ∈ H0(Z,Ω2
Z) is

everywhere non-degenerate.

This theorem has an important interpretation (and a proof) in terms of Rieman-
nian geometry1. By the fundamental theorem of Yau [42], an n-dimensional com-
pact Kähler manifold X with trivial canonical bundle admits a Kähler metric with
holonomy group contained in SU(n) (this is equivalent to the vanishing of the Ricci
curvature). By the Berger and de Rham theorems, X is a product of manifolds with
holonomy SU(m) or Sp(r); this corresponds to the first and second case of the de-
composition theorem.

We will call the manifolds of the first type Calabi-Yau manifolds, and those of
the second type hyperkähler manifolds (they are also known as irreducible holo-
morphic symplectic).

1 See [5] for a more detailed exposition.
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2.2 Examples

For Calabi-Yau manifolds we know a huge quantity of examples (in dimension 3,
the number of known families approaches 10 000), but relatively little general the-
ory. In contrast, we have much information on hyperkähler manifolds, their period
map, their cohomology (see below); what is lacking severely is examples. In fact, at
this time we know two families in each dimension [2], and two isolated families in
dimension 6 and 10 [32], [33] :

a) Let S be a K3 surface. The symmetric product S(r) := Sr/Sr parametrizes
subsets of r points in S, counted with multiplicities; it is smooth on the open subset
S(r)

o consisting of subsets with r distinct points, but singular otherwise. If we re-
place “subset” by (analytic) “subspace”, we obtain a smooth compact manifold, the
Hilbert scheme S[r]; the natural map S[r]→ S(r) is an isomorphism above S(r)

o , but it
resolves the singularities of S(r).

Let ω be a non-zero holomorphic 2-form on S. The form pr∗1ω + . . . + pr∗r ω

descends to a non-degenerate 2-form on S(r)
o ; it is easy to check that this 2-form

extends to a symplectic structure on S[r].

b) Let T be a 2-dimensional complex torus. The Hilbert scheme T [r] has the
same properties as S[r], but it is not simply connected. This is fixed by considering
the composite map σ : T [r+1] → T (r+1) s−→ T , where s(t1, . . . , tr) = t1 + . . . + tr;
the fibre Kr(T ) := σ−1(0) is a hyperkähler manifold of dimension 2r (“generalized
Kummer manifold”).

c) Let again S be a K3 surface, and M the moduli space of stable rank 2 vector
bundles on S, with Chern classes c1 = 0, c2 = 4. According to Mukai [30], this
space has a holomorphic symplectic structure. It admits a natural compactification
M , obtained by adding classes of semi-stable torsion free sheaves; it is singular
along the boundary, but O’Grady constructs a desingularization of M which is a
new hyperkähler manifold, of dimension 10.

d) The analogous construction can be done starting from rank 2 bundles with
c1 = 0, c2 = 2 on a 2-dimensional complex torus, and taking again some fibre to
ensure the simple connectedness. The upshot is a new hyperkähler manifold of di-
mension 6.

In the two last examples it would seem simpler to start with a moduli space
M for which the natural compactification M is smooth; in that case M is a hy-
perkähler manifold [30], but it turns out that it is a deformation of S[r] or Kr(T )
(Göttsche-Huybrechts, O’Grady, Yoshioka ...). On the other hand, when M is sin-
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gular, it admits a hyperkähler desingularization only in the two cases considered by
O’Grady [23].

Thus it seems that a new idea is required to answer our first problem:

Question 1 Find new examples of hyperkähler manifolds.

2.3 The period map

In dimension 2 the only hyperkähler manifolds are K3 surfaces; we know them
very well thanks to the period map, which associates to a K3 surface S the Hodge
decomposition

H2(S,C) = H2,0⊕H1,1⊕H0,2 .

This is determined by the position of the line H2,0 in H2(S,C) : indeed we have
H0,2 = H2,0, and H1,1 is the orthogonal of H2,0⊕H0,2 with respect to the intersec-
tion form. Note that any non-zero element σ of H2,0 (that is, the class of a non-zero
holomorphic 2-form) satisfies σ 2 = 0 and σ · σ̄ > 0.

To compare the Hodge structures of different K3 surfaces, we consider marked
surfaces (S,λ ), where λ is an isometry of H2(S,Z) onto a fixed lattice L, the unique
even unimodular lattice L of signature (3,19). Then the data of the Hodge structure
on H2(S,Z) is equivalent to that of the period point ℘(S,λ ) := λC(H2,0) ∈ P(LC).
By the above remark this point lies in the domain Ω ⊂ P(LC) defined by the condi-
tions x2 = 0, x · x̄ > 0. There is a moduli space ML for marked K3 surfaces, which is
a non-Hausdorff complex manifold; the period map ℘ : ML→ΩL is holomorphic.
We know a lot about that map, thanks to the work of many people (Piatetski-Shapiro,
Shafarevich, Todorov, Siu, ...):

Theorem 2

1) (“local Torelli”) ℘ is a local isomorphism.

2) (“global Torelli”) If ℘(S,λ ) =℘(S′,λ ′), S and S′ are isomorphic;

3) (“surjectivity”) Every point of Ω is the period of some marked K3 surface.

Another way of stating 2) is that S and S′ are isomorphic if and only if there
is a Hodge isometry H2(S,Z) ∼−→ H2(S′,Z) (that is, an isometry inducing an iso-
morphism of Hodge structures). There is in fact a more precise statement, see e.g.
[1].
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There is a very analogous picture for higher-dimensional hyperkähler manifolds.
The intersection form is replaced by a canonical quadratic form q : H2(X ,Z)→ Z,
primitive2, of signature (3,b2− 3) [2]. The easiest way to define it is through the
Fujiki relation∫

X
α

2r = fX q(α)r for each α ∈ H2(X ,Z) , where dim(X) = 2r ;

this relation determines fX (the Fujiki constant of X ) and the form q; they depend
only on the topological type of X .

Let X be a hyperkähler manifold, and L a lattice. A marking of type L of
X is an isometry λ : (H2(X ,Z),q) ∼−→ L. The period of (X ,λ ) is the point
λC(H2,0) ∈ P(LC); as above it belongs to the period domain

ΩL := {[x] ∈ P(LC) | x2 = 0 , x · x̄ > 0} .

Again we have a non-Hausdorff complex manifold ML parametrizing hyper-
kähler manifolds of a given dimension with a marking of type L; the period map
℘ : ML→ΩL is holomorphic. We have:

Theorem 3

1) The period map ℘ : ML→ΩL is a local isomorphism.

2) The restriction of ℘ to any connected component of ML is surjective.

1) is proved in [2], and 2) in [17]. What is missing is the analogue of the global
Torelli theorem. It has long been known that it cannot hold in the form given in The-
orem 2; in fact, it follows from the results of [17] that any birational map X ∼99K X ′

induces a Hodge isometry H2(X ,Z) ∼−→ H2(X ′,Z). This is not the only obstruc-
tion: Namikawa observed in [31] that if T is a 2-dimensional complex torus, and
T ∗ its dual torus, the Kummer manifolds K2(T ) and K2(T ∗) (1.2.b) have the same
period (with appropriate markings), but are not bimeromorphic in general. Thus we
can only ask:

Question 2 Let X, X ′ be two hyperkähler manifolds of the same dimension. If there
is a Hodge isometry λ : H2(X ,Z) ∼−→ H2(X ′,Z), what can we say of X and X ′?
Can we conclude that X and X ′ are isomorphic by imposing that λ preserves some
extra structure?

2 This means that the associated bilinear form is integral and not divisible by an integer > 1.
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One can formulate analogous questions for polarized hyperkähler manifolds, re-
quiring that λ preserves the polarization classes. Here again Namikawa’s construc-
tion provides a counter-example. Nevertheless the recent work of Markman [27] and
Verbitsky [39] gives a partial answer to question 2 and its “polarized” analogue, in
particular for the case of example 1.2.a); see also the discussion in [15], Question
2.6, and the paper of E. Markman in these Proceedings.

2.4 Cohomology

Let X be a hyperkähler manifold. Since the quadratic form q plays such an important
role, it is natural to expect that it determines most of the cohomology of X . This was
indeed shown by Bogomolov [10] :

Proposition 1 Let X be a hyperkähler manifold, of dimension 2r, and let H be the
subalgebra of H∗(X ,C) spanned by H2(X ,C).

1) H is the quotient of Sym∗H2(X ,C) by the ideal spanned by the classes αr+1

for α ∈ H2(X ,C), qC(α) = 0.

2) H∗(X ,C) = H ⊕H ⊥, where H ⊥ is the orthogonal of H with respect to
the cup-product.

Thus the subalgebra H is completely determined by the form q and the dimen-
sion of X . In contrast, not much is known about the H -module H ⊥. Note that it is
nonzero for the examples a) and b) of 1.2, with the exception of S[2] for a K3 surface
S.

We do not know much about the quadratic form q either. For the two infinite
series of (1.2) we have lattice isomorphisms [2]

H2(S[r],Z) = H2(S,Z)
⊥
⊕ 〈2−2r〉 H2(Kr(T ),Z) = H2(T,Z)

⊥
⊕ 〈−2−2r〉 ;

The lattices of O’Grady’s two examples are computed in [36]; they are also even.

Question 3 Is the quadratic form q always even? More generally, what are the pos-
sibilities for q? What are the possibilities for the Fujiki index fX (see 1.3)?
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2.5 Boundedness

Having so few examples leads naturally to the following question:

Conjecture 1 There are finitely many hyperkähler manifolds (up to deformation) in
each dimension.

Note that the same question can be asked for Calabi-Yau manifolds, but there it
seems completely out of reach.

Huybrechts observes that there are finitely many deformation types of hy-
perkähler manifolds X of dimension 2r such that there exists α ∈ H2(X ,Z) with
q(α) > 0 and

∫
X α2r bounded [18]. As a corollary, given a real number M, there are

finitely many deformation types of hyperkähler manifolds with

fX ≤M , min{q(α) | α ∈H2(X ,Z) , q(α) > 0} ≤M .

A first approximation to finiteness would be to bound the Betti numbers bi of X ,
and in particular b2. Here we have some more information in the case of fourfolds
[16] :

Proposition 2 Let X be a hyperkähler fourfold. Then either b2 = 23, or 3≤ b2 ≤ 8.

Note that b2 is 23 for S[2] and 7 for K2(T ) (1.2). [16] contains some more infor-
mation on the other Betti numbers.

Question 4 Can we exclude some more cases, in particular b2 = 3? If b2 = 23, can
we conclude that X is deformation equivalent to S[2]?

2.6 Lagrangian fibrations

Let (X ,σ) be a holomorphic symplectic manifold (not necessarily compact), of di-
mension 2r. A Lagrangian fibration is a proper map h : X → B onto a manifold
B such that the general fibre F of h is Lagrangian, that is, F is connected, of di-
mension r, and σ |F = 0. This implies that the smooth fibres of h are complex tori
(Arnold-Liouville theorem).

Suppose B = Cr, so that h = (h1, . . . ,hr). The functions hi define what is called
in classical mechanics an algebraically completely integrable hamiltonian system :
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the Poisson brackets {hi,h j} vanish, the hamiltonian vector fields Xhi commute with
each other, they are tangent to the fibres of h and their restriction to a smooth fibre
is a linear vector field on this complex torus (see for instance [3]).

The analogue of this notion when X is compact (hence hyperkähler) is a La-
grangian fibration X → Pr. There are many examples of such fibrations (see a sam-
ple below); moreover they turn out to be the only non-trivial morphisms from a
hyperkähler manifold to a manifold of smaller dimension :

Theorem 4 Let X be a hyperkähler manifold, of dimension 2r, B a Kähler manifold
with 0 < dimB < 2r, and f : X → B a surjective morphism with connected fibres.
Then:

1) f is a Lagrangian fibration;

2) If X is projective, B∼= Pr.

1) is due to Matsushita (see [29], Prop. 24.8), and 2) to Hwang [20]. It is expected
that 2) holds without the projectivity assumption on X (see the discussion in the
introduction of [20]).

How do we detect the existence of a Lagrangian fibration on a given hyperkähler
manifold? In dimension 2 there is a simple answer; a Lagrangian fibration on a K3
surface S is an elliptic fibration, and we have :

Proposition 3 a) Let L be a nontrivial nef line bundle on S with L2 = 0. There exists
an elliptic fibration f : S→ P1 such that L = f ∗OP1(k) for some k ≥ 1.

b) S admits an elliptic fibration if and only if it admits a line bundle L 6= OS with
L2 = 0.

The proof of a) is straightforward. b) is reduced to a) by proving that some
isometry w of Pic(S) maps L to a nef line bundle; see for instance [1], VIII, Lemma
17.4.

Proposition 3 has a natural (conjectural) generalization to higher-dimensional
hyperkähler manifolds3 :

Conjecture 2 a) Let L be a nontrivial nef line bundle on X with q(L) = 0. There
exists a Lagrangian fibration f : X → Pr such that L = f ∗OPr(k) for some k ≥ 1.

3 The conjecture has been known to experts for a long time; see the introduction of [38] for a
discussion of its history.
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b) There exists a hyperkähler manifold X ′ bimeromorphic to X and a Lagrangian
fibration X ′ → Pr if and only if X admits a line bundle L 6= OS with q(L) = 0.

Note that it is not clear whether one of the statements implies the other.

There is some evidence in favor of the conjecture. Let S be a “general” K3 sur-
face of genus g – that is, Pic(S) = Z [L] with L2 = 2g−2. Then Pic(S[r]) is a rank 2
lattice with an orthonormal basis (h,e) satisfying q(h) = 2g−2, q(e) = −(2r− 2)
[2]. Taking r = g we find q(h± e) = 0. The corresponding Lagrangian fibration is
studied in [3]: S[g] is birational to the relative compactified Jacobian J g → |L|,
whose fibre above a curve C ∈ |L| is the compactified Jacobian JgC. J g is hy-
perkähler by [30], and the fibration J g → |L| is Lagrangian. The rational map
S[g] 99K |L| associates to a general set of g points in S the unique curve of |L| pass-
ing through these points.

More generally, suppose that 2g− 2 = (2r− 2)m2 for some integer m. Then
q(h±me) = 0, and indeed S[r] admits a birational model with a Lagrangian fibration.
This fibration has been constructed independently in [28] and [37]; J g is replaced
by a moduli space of twisted sheaves on S.

Another argument in favor of the conjecture has been given by Matsushita [29],
who proved that a) holds “locally”, in the following sense. Let X be a hyperkähler
manifold, with a Lagrangian fibration f : X → Pr, and let Def(X) be the local de-
formation space of X . Then the Lagrangian fibration deforms along a hypersurface
in Def(X). Thus any small deformation of X such that the cohomology class of
f ∗OPr (1) remains algebraic carries a Lagrangian fibration.

A related question, which comes from mathematical physics, is :

Question 5 Does every hyperkähler manifold admit a deformation with a La-
grangian fibration?

If Conjecture 2 holds, the answer is positive if and only if the quadratic form q
is indefinite. I do not know any serious argument either in favor or against this.

Question 6 Let X be a hyperkähler manifold, and T ⊂ X a Lagrangian submanifold
which is a complex torus. Is it the fibre of a Lagrangian fibration X → Pr?

(A less optimistic version would ask only for a bimeromorphic Lagrangian fi-
bration.)
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2.7 Projective families

Deformation theory shows that when the K3 surface S varies, the manifolds S[r] form
a hypersurface in their deformation space; thus a general deformation of S[r] is not
the Hilbert scheme of a K3 – and we do not know how to describe it. This is not
particularly surprising: after all, we do not know either how to describe a general
K3 surface. On the other hand, if we start from the family of polarized K3 surfaces
S of genus g, the projective manifolds S[r] are polarized (in various ways)4, and
the same argument tells us that they form again a hypersurface in their (polarized)
deformation space; we should be able to describe a (locally) complete family of
projective hyperkähler manifolds which specializes to S[r] in codimension 1.

For r = 2 there are indeed a few cases where we can describe the general defor-
mation of S[2] with an appropriate polarization :

1. The Fano variety of lines contained in a cubic fourfold ([7]; g = 8)

2. The “variety of sums of powers” associated to a cubic fourfold ([21]; g = 8)

3. The double cover of certain sextic hypersurfaces in P5 ([34]; g = 6)

4. The subspace of the Grassmannian G(6,10) consisting of 6-planes L such that
σ|L = 0, where σ : ∧3C10→C is a sufficiently general 3-form ([12]; g = 12).

Note that K3 surfaces of genus 8 appear in both cases 1) and 2); what happens
is that the corresponding polarizations on S[2] are different [22]5.

Question 7 Describe the general projective deformation of S[2], for S a polarized
K3 surface of genus 1, 2, 3, ... (and for some choice of polarization on S[2]); or at
least find more examples of locally complete projective families. Same question with
S[r] for r ≥ 3.

(With the notation of footnote 4, a natural choice of polarization for g ≥ 3 is
h− e.)

A different issue concerns the Chow ring of a projective hyperkähler manifold.
In [6] and [40] the following conjecture is proposed :

4 For S general we have Pic(S[r]) = Zh
⊥
⊕ Ze (1.6); the polarizations on S[r] are of the form ah−be

with a,b > 0.
5 The Corollary in [22] is slightly misleading: the moduli spaces of polarized hyperkähler mani-
folds of type 1) and of type 2) are disjoint.
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Conjecture 3 Let D1, . . . ,Dk in Pic(X), and let z ∈ CH(X) be a class which is a
polynomial in D1, . . . ,Dk and the Chern classes ci(X). If z = 0 in H∗(X ,Z), then
z = 0.

This would follow from a much more general (and completely out of reach)
conjecture, for which we refer to the introduction of [6]. Conjecture 3 is proved in
[40] for the Hilbert scheme S[n] of a K3 surface for n≤ 8, and for the Fano variety
of lines on a cubic fourfold.

3 Compact Poisson manifolds

Since hyperkähler manifolds are so rare, it is natural to turn to a more flexible no-
tion. Symplectic geometry provides a natural candidate, Poisson manifolds. Recall
that a (holomorphic) Poisson structure on a complex manifold X is a bivector field
τ ∈ H0(X ,Λ2TX ), such that the bracket { f ,g} := 〈τ,d f ∧dg〉 defines a Lie algebra
structure on OX . A Poisson structure defines a skew-symmetric map τ

] : Ω
1
X → TX ;

the rank of τ at a point x ∈ X is the rank of τ](x). It is even (because τ] is skew-
symmetric). The data of a Poisson structure of rank dimX is equivalent to that of a
(holomorphic) symplectic structure. In general, we have a partition

X =
∐

s even
Xs where Xs := {x ∈ X | rkτ(x) = s} .

The following conjecture is due to Bondal ([11], see also [35]):

Conjecture 4 If X is Fano and s even, X≤s :=
∐
k≤s

Xk contains a component of di-

mension > s.

This is much larger than one would expect from a naive dimension count. It
implies for instance that a Poisson field which vanishes at some point must vanish
along a curve.

The condition “X Fano” is probably far too strong. In fact an optimistic modifi-
cation would be :

Conjecture 5 If Xs is non-empty, it contains a component of dimension > s.

Here are some arguments in favor of this conjecture:
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Proposition 4 Let (X ,τ) be a compact Poisson manifold.

1) Every component of Xs has dimension ≥ s.

2) Let r be the generic rank of τ (r even); assume that c1(X)q 6= 0 in Hq(X ,Ω
q
X ),

where q = dimX − r + 1. Then the degeneracy locus r

of dimension > r−2.

3) Assume that X is a projective threefold. If X0 is non-empty, it contains a curve.

Sketch of proof :

1) Let Z be a component of Xs (with its reduced structure). It is not diffi-
cult to prove that Z is a Poisson subvariety of X (see [35]); this means that at a
smooth point x of Z, the tensor τ(x) lives in Λ2Tx(Z) ⊂ Λ2Tx(X). But this implies
s≤ dimTx(Z) = dimZ.

2) is proved in [35], §9, under the extra hypothesis dimX = r + 1. The proof
extends easily to the slightly more general situation considered here.

3) is proved in [14] by a case-by-case analysis (leading to a complete classifica-
tion of those Poisson threefolds for which X0 = ∅). It would be interesting to have
a more conceptual proof.

The paper [35] contains many interesting results on Poisson manifolds; in par-
ticular, a complete classification of the Poisson structures on P3 for which the zero
locus contains a smooth curve.

4 Compact contact manifolds

Let X be a complex manifold, of odd dimension 2r+1. A contact structure on X is a
one-form θ with values in a line bundle L on X , such that θ ∧(dθ )r 6= 0 at each point
of X (though θ is a twisted 1-form, it is easy to check that θ ∧ (dθ )r makes sense as
a section of KX ⊗Lr+1; in particular, the condition on θ implies KX = L−r−1).

There are only two classes of compact holomorphic contact manifolds known so
far:

a) The projective cotangent bundle PT ∗M , where M is any compact complex man-
ifold;

of τ has a componentX \X
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b) Let g be a simple complex Lie algebra. The action of the adjoint group on
P(g) has a unique closed orbit Xg: every other orbit contains Xg in its closure. Xg is
a contact Fano manifold.

The following conjecture is folklore:

Conjecture 6 Any projective contact manifold is of type a) or b).

Half of this conjecture is now proved, thanks to [24] and [13]: a contact pro-
jective manifold is either Fano with b2 = 1, or of type a). It is easily seen that a
homogeneous Fano contact manifold is of type b), so we can rephrase Conjecture 6
as :

Conjecture 7 A contact Fano manifold is homogeneous.

I refer to [4] for some evidence in favor of this conjecture, and to [5] for its
application to differential geometry, more specifically to quaternion-Kähler mani-
folds. These are Riemannian manifolds with holonomy Sp(1)Sp(r); they are Ein-
stein manifolds, and in particular they have constant scalar curvature. Thanks to
work of Salamon and LeBrun [25, 26], a positive answer to Conjecture 7 would
imply:

Conjecture 8 The only compact quaternion-Kähler manifolds with positive scalar
curvature are homogeneous.

These positive homogeneous quaternion-Kähler manifolds have been classified
by Wolf [41] : there is one, Mg, for each simple complex Lie algebra g.

The link between Conjectures 7 and 8 is provided by the twistor space construc-
tion. To any quaternion-Kähler manifold M is associated a S2-bundle X → M, the
twistor space, which carries a natural complex structure; when M has positive scalar
curvature it turns out that X is a contact Fano manifold – for instance the twistor
space of Mg is Xg. Conjecture 7 implies that X is isomorphic to Xg for some simple
Lie algebra g; this in turn implies that M is isometric to Mg and therefore homoge-
neous.
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France 127 (1999), no. 2, 229–253.

15. V. Gritsenko, K. Hulek, G. Sankaran : Moduli spaces of irreducible symplectic manifolds.
Compositio Math. 146, no. 2, 404–434.

16. D. Guan : On the Betti numbers of irreducible compact hyperkähler manifolds of complex
dimension four. Math. Res. Lett. 8 (2001), no. 5-6, 663–669.

17. D. Huybrechts : Compact hyper-Kähler manifolds: basic results. Invent. Math. 135 (1999), no.
1, 63–113. Erratum: Invent. Math. 152 (2003), no. 1, 209–212.

18. D. Huybrechts : Finiteness results for compact hyperkähler manifolds. J. Reine Angew. Math.
558 (2003), 15–22.

19. D. Huybrechts : Compact hyperkähler manifolds. Calabi-Yau manifolds and related geome-
tries (Nordfjordeid, 2001), 161–225, Universitext, Springer, Berlin (2003).

20. J.-M. Hwang : Base manifolds for fibrations of projective irreducible symplectic manifolds.
Invent. Math. 174 (2008), no. 3, 625–644.

21. A. Iliev, K. Ranestad : K3 surfaces of genus 8 and varieties of sums of powers of cubic four-
folds. Trans. Amer. Math. Soc. 353 (2001), 1455–1468.

22. A. Iliev, K. Ranestad : Addendum to “K3 surfaces of genus 8 and varieties of sums of powers
of cubic fourfolds”. C. R. Acad. Bulgare Sci. 60 (2007), 1265–1270.

23. D. Kaledin, M. Lehn, C. Sorger : Singular symplectic moduli spaces. Invent. Math. 164 (2006),
no. 3, 591–614.

24. S. Kebekus, T. Peternell, A. Sommese, J. Wiśniewski : Projective contact manifolds. Invent.
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Kähler manifolds that are almost Einstein
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Abstract We introduce the notion of Kähler manifolds that are almost Einstein and
we define a generalized mean curvature vector field along submanifolds in them.
We prove that Lagrangian submanifolds remain Lagrangian, when deformed in di-
rection of the generalized mean curvature vector field. For a Kähler manifold that is
almost Einstein, and which in addition has a trivial canonical bundle, we show that
the generalized mean curvature vector field of a Lagrangian submanifold is the dual
vector field associated to the Lagrangian angle.
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1 Introduction

In a Calabi-Yau manifold with parallel holomorphic volume form Ω there is a dis-
tinguished class of submanifolds called special Lagrangian submanifolds. These are
oriented Lagrangian submanifolds, which are calibrated with respect to Re Ω . Spe-
cial Lagrangian submanifolds have received a lot of attention since the work by
Strominger, Yau and Zaslow [14], where mirror symmetry is related to special La-
grangian torus fibrations.
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The notion of special Lagrangian submanifolds can be generalized to the case
when the ambient manifold is almost Calabi-Yau. An almost Calabi-Yau manifold
is a Kähler manifold together with a non-vanishing, not necessarily parallel, holo-
morphic volume form. A nice property of almost Calabi-Yau manifolds is that they
appear in infinite dimensional families, i.e. the moduli space of almost Calabi-Yau
structures is infinite dimensional, while Calabi-Yau structures only appear in finite
dimensional families due to the theorem of Tian and Todorov [16], [17] and Yau’s
proof of the Calabi conjecture [20]. Choosing a generic almost Calabi-Yau metric
is therefore a much more powerful thing to do than choosing a generic Calabi-Yau
metric and, as in the study of moduli spaces of J-holomorphic curves, this could be
of importance for the study of moduli spaces of special Lagrangian submanifolds as
conjectured by Joyce in [4]. Another nice feature of almost Calabi-Yau manifolds
is that explicit almost Calabi-Yau metrics on compact manifolds are known, while
there are no non-trivial Calabi-Yau metrics on compact manifolds explicitly known.
For instance a quintic in CP4 equipped with the restriction of the Fubini-Study met-
ric is an almost Calabi-Yau manifold.

Special Lagrangian submanifolds in (almost) Calabi-Yau manifolds have been
studied extensively by many authors but up to date there is no general method
known how to construct examples of special Lagrangian submanifolds. However,
since special Lagrangian submanifolds are calibrated submanifolds they are vol-
ume minimizing in their homology class and one is tempted to construct special
Lagrangian submanifolds by mean curvature flow of Lagrangian submanifolds. The
existence of the Lagrangian mean curvature flow in Kähler-Einstein manifolds was
first proved by Smoczyk [11]. Smoczyk shows that the mean curvature flow of a
given compact Lagrangian submanifold remains Lagrangian as long as the flow ex-
ists. Thus the problem is to find conditions such that the Lagrangian mean curvature
flow exists for all time and converges to a special Lagrangian submanifold. One
attempt to this was done by Thomas and Yau [15], where they conjecture that a La-
grangian submanifold satisfying a certain stability condition converges smoothly by
Lagrangian mean curvature flow to a non-singular special Lagrangian submanifold
in the same homology class. In general there are two problems occurring. Firstly one
expects that the evolving Lagrangian submanifold develops a finite time singularity.
There are only a few longtime convergence results known for Lagrangian mean cur-
vature flow, for instance by Smoczyk [10], Smoczyk and Wang [13] and Wang [18].
The second problem which occurs is that there exist Lagrangian submanifolds with-
out regular Lagrangian volume minimizers in their homology classes. Examples of
such Lagrangian submanifolds were found by Wolfson in [19].
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In this paper we introduce the notion of Kähler manifolds that are almost Ein-
stein (in particular, these contain the class of almost Calabi-Yau manifolds), and
we define a generalized mean curvature vector field along submanifolds in them.
We show that Lagrangian submanifolds remain Lagrangian under deformation in
direction of the generalized mean curvature vector field and we obtain a generalized
version of Smoczyk’s result. Therefore we call the deformation of Lagrangian sub-
manifolds in direction of the generalized mean curvature vector field a generalized
Lagrangian mean curvature flow. We show that the generalized Lagrangian mean
curvature flow is the negative gradient flow of the volume functional of some con-
formally rescaled metric. Moreover, if the ambient manifold is almost Calabi-Yau,
then we prove that the one-form associated to the generalized mean curvature vector
field of a Lagrangian submanifold is the differential of the Lagrangian angle. As a
consequence we show that if the initial Lagrangian has zero Maslov class, then the
generalized Lagrangian mean curvature flow can be integrated to a scalar equation.

We remark here that recently, after the first version of the present paper,
Smoczyk and Wang showed that in every almost Kähler manifold that admits an
Einstein connection there exists a generalized mean curvature vector field with the
property that Lagrangian submanifolds remain Lagrangian under the deformation in
its direction. The generalized Lagrangian mean curvature flow introduced by them
contains ours in Kähler manifolds that are almost Einstein as an example (see [12]
for more details).

2 Lagrangian mean curvature flow in Kähler-Einstein manifolds

We first recall the definition of the mean curvature flow. Let M be a Riemannian
manifold and let N be a submanifold of M given by an immersion F0 : N −→ M.
Throughout this paper the term submanifold will mean an immersed submanifold.
The second fundamental form of N is defined by

II(X ,Y ) = πνN
(
∇̄dF0(X)dF0(Y )

)
, X ,Y ∈ Γ (T N),

where ∇̄ denotes the Levi-Civita connection of M and πνN the orthogonal projection
onto the normal bundle νN of N. The mean curvature vector field H ∈ Γ (νN) of N
is defined as the trace of the second fundamental form with respect to the induced
Riemannian metric on N.
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Definition 1 A smooth one parameter family {F(., t)}t∈[0,T ), T > 0, of immersions
of N into M is evolving by mean curvature flow if

∂F
∂ t

(x,t) = H(x,t), (x,t) ∈ N× (0,T )

F(x,0) = F0(x), x ∈ N.

(1)

The mean curvature flow is a quasilinear parabolic system and hence, if N is
compact, short time existence and uniqueness for given initial data is guaranteed by
standard theory of quasilinear parabolic PDEs, see for instance Ladyžhenskaja et al.
[6].

From now on and throughout this paper we let (M,J, ω̄, ḡ) denote a com-
pact Kähler manifold of real dimension 2n with complex structure J, Kähler
form ω̄ , and Kähler metric ḡ. The Kähler form and Kähler metric are re-
lated by ḡ(JX ,Y ) = ω̄(X ,Y ), for X ,Y ∈ Γ (T M). The Levi-Civita connec-
tion of ḡ is denoted by ∇̄ and the Riemann curvature tensor R̄ of ḡ is
R̄(X ,Y )Z = ∇̄X ∇̄Y Z− ∇̄Y ∇̄X Z− ∇̄[X ,Y ]Z, for X ,Y,Z ∈ Γ (T M). Moreover the Ricci
tensor R̄ic of ḡ is R̄ic(X ,Y ) = trace R̄(.,X)Y , for X ,Y ∈ Γ (T M), and the Ricci form
ρ̄ , which is a real (1,1)-form, is defined by ρ̄(X ,Y ) = R̄ic(JX ,Y ).

Let L be a compact manifold of real dimension n and F0 : L−→M an immersion
of L into M. The induced Riemannian metric on L is g = F∗0 ḡ, and we set ω = F∗0 ω̄ .
Assume now that F0 is a Lagrangian immersion, i.e. ω = 0. We recall some ba-
sic geometric properties of Lagrangian submanifolds. For any normal vector field
ξ ∈ Γ (νL) there is a corresponding one form αξ on L given by αξ = F∗0 (ξ y ω̄).
The one-form αH = F∗0 (H yω) is called the mean curvature form and it satisfies the
following important relation first proved by Dazord in [1]:

Proposition 1 The mean curvature form αH satisfies

dαH = F∗0 ρ̄.

In particular by Cartan’s formula we find

F∗0 (LH ω̄) = F∗0 (d (H y ω̄))+F∗0 (H y dω̄) = F∗0 ρ̄.

Hence, if M is Kähler-Einstein, i.e. ρ̄ = λω̄ for some λ ∈ R, then it follows that
the deformation of a Lagrangian submanifold in the direction of the mean curvature
vector field is an infinitesimal symplectic motion. A natural question that arises now
is whether the Lagrangian condition is preserved under the mean curvature flow.
This question was answered positively by Smoczyk in [11]:
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Theorem 1 Let L be a compact n-dimensional manifold and let F0 : L −→M be a
Lagrangian immersion into a compact Kähler-Einstein manifold M. Then the mean
curvature flow admits a unique smooth solution for a short time and this solution
consists of Lagrangian submanifolds.

3 Generalized Lagrangian mean curvature flow in Kähler
manifolds that are almost Einstein

Definition 2 An n-dimensional Kähler manifold (M,J, ω̄ , ḡ) is called almost Ein-
stein if

ρ̄ = λω̄ +nddc
ψ

for some constant λ ∈ R and some smooth function ψ on M.

From now on we additionally assume that our Kähler manifold (M,J, ω̄ , ḡ) is
almost Einstein. Given an immersion F0 : N −→ M of a manifold N into M we
define a normal vector field K ∈ Γ (νN) along N by

K = H−nπνN
(
∇̄ψ
)
.

We call K the generalized mean curvature vector field of N. Now let L be an n-
dimensional manifold and F0 : L −→ M a Lagrangian immersion. Then the defor-
mation of L in direction of the generalized mean curvature vector field is an in-
finitesimal symplectic motion. Indeed by Dazord’s result we have

F∗0 (LKω̄) = dαH +nF∗0 (d (dψ ◦ J)) = F∗0 (ρ̄−nddc
ψ) = λF∗0 ω̄ = 0.

Also observe that if M is Kähler-Einstein, then K is the mean curvature vector field.

In the remainder we study the generalized mean curvature flow

∂F
∂ t

(x,t) = K(x,t), (x,t) ∈ L× (0,T )

F(x,0) = F0(x), x ∈ L,

(2)

for a given Lagrangian immersion F0 : L −→ M of a compact n-dimensional man-
ifold L into M and {F(., t)}t∈[0,T ) a smooth one-parameter family of immersions
of L into M. In order to establish the short time existence and uniqueness of this
flow observe that K as a differential operator differs from H just by lower order
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terms. Hence K and H have the same principal symbol, so short time existence and
uniqueness for (2) follows immediately.

Now let {F(., t)}t∈[0,T ) be the solution to the generalized mean curvature flow
(2). In the remaining part of this chapter we show that F(., t) : L −→ M is La-
grangian for each t ∈ (0,T ). As before we denote g = F(., t)∗ḡ and ω = F(., t)∗ω̄ .
Furthermore ∇ will denote the Levi-Civita connection of g and R the Rieman-
nian curvature tensor of g. Let p ∈ L and choose normal coordinates {xi} on
L around p at time t ∈ (0,T ) and coordinates {yα} on M around F(p,t). We
have to introduce some notation. We denote ei = ∂ F

∂ xi (., t) and we define tensors
N and η by Ni = N(ei) = πνL (Jei) and ηi j = η(ei,e j) = ḡ(Nei,Ne j). Moreover
we set hi jk = h(ei,e j,ek) = −ḡ

(
Nei,∇̄e j ek

)
. Observe that hi jk is symmetric in

the last two indices and fully symmetric if F(., t) is Lagrangian. We also denote
R̄kl ji = R̄(ek,el ,e j,N(ei)). The following formula proved by Smoczyk [11, Lem.
1.4] will be of use later:

Lemma 3.1

∇lhki j−∇khli j = R̄kl ji +∇ j∇iωlk +ω
m

i R̄kl jm +ω
m

k Rl jim

+ω
m

l R jkim +η
mn

ω
s

n
(
hml jhski−hmk jhsli

)
.

We start by computing the evolution equations of gi j and ωi j at p ∈ L and time t.

Lemma 3.2

i)
d
dt

ωi j = (dαK)i j

ii)
d
dt

gi j =−2η
mn(αH)mhni j +2ndψ(IIi j).

Proof

d
dt

ωi j = ω̄αβ

{
∂

∂xi
∂ Fα

∂ t
∂Fβ

∂ x j +
∂ Fα

∂ xi
∂

∂ x j
∂Fβ

∂ t

}

= ω̄αβ

{
∂Kα

∂xi
∂Fβ

∂ x j +
∂ Fα

∂xi
∂Kβ

∂ x j

}

= ω̄

(
∂ K
∂ xi ,

∂ F
∂ x j

)
− ω̄

(
∂ K
∂ x j ,

∂ F
∂ xi

)
= (dαK)i j .
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d
dt

gi j = ḡ
(

∂

∂ xi
∂F
∂ t

,
∂F
∂ x j

)
+ ḡ
(

∂ F
∂ xi ,

∂

∂ x j
∂F
∂ t

)
= ḡ

(
∂ K
∂ xi ,

∂ F
∂ x j

)
+ ḡ
(

∂K
∂ x j ,

∂F
∂ xi

)
= −2ḡ

(
H,

∂ 2F
∂ xi∂x j

)
+2nḡ

(
∇̄ψ ,πνL

(
∂ 2F

∂ xi∂x j

))
= −2η

mn(αH)mhni j +2ndψ (IIi j) .

Using Lemma 3.1 and Lemma 3.2 we can now proceed as in [11] to prove the
following lemma.

Lemma 3.3 Let 0 < τ < T , then there exists a constant C > 0 such that for all
t ∈ [0,τ]

d
dt
|ω|2 ≤ ∆ |ω |2 +ndψ

(
∇|ω |2

)
+C|ω |2.

Proof Denote Y = πνL(∇̄ψ), so that K = H−nY . Then

d
dt
|ω |2 =

d
dt

gmkg jl
ωm jωkl

= −2ω
kl

ω
m

l
d
dt

gmk +2ω
kl d

dt
ωkl

= −2ω
kl

ω
m

l
(
−2η

st(αH)shtmk +2ndψ (IImk)
)

+2ω
kl (∇k(αH)l −∇l(αH)k−n(dαY )kl)

= 4ω
kl

ω
m

lη
st(αH)shtmk−4nω

kl
ω

m
ldψ (IImk)

+2ω
kl (∇k(αH)l −∇l(αH)k)−2nω

kl(dαY )kl

= 4ω
kl

ω
m

lη
st(αH)shtmk−4nω

kl
ω

m
ldψ (IImk)

+2ω
klgpq (

∇khl pq−∇lhkpq
)
−2nω

kl(dαY )kl

= 4ω
kl

ω
m

lη
st(αH)shtmk−4nω

kl
ω

m
ldψ (IImk)

+2ω
klgpq

(
R̄lkqp +∇q∇pωkl +ω

s
p R̄lkqs +ω

s
l Rkqps +ω

s
k Rql ps

+η
mt

ω
s

t
(
hmkqhsl p−hmlqhskp

))
−2nω

kl(dαY )kl

= 4ω
kl

ω
m

lη
st(αH)shtmk−4nω

kl
ω

m
ldψ (IImk)+2ω

klR̄ p
lk p +∆ |ω |2

−|∇ω |2 +2ω
kl

ω
s

p R̄ p
lk s +2ω

kl
ω

s
l R p

k ps +2ω
kl

ω
s

k Rp
l ps

+2ω
kl

η
mt

ω
s

t
(
h p

mk hsl p−h p
ml hskp

)
−2nω

kl(dαY )kl .

For terms of the form ω slωm
iT

i
slm we have
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2ω
sl

ω
m

iT
i
slm = 2∑

s,l

(
ωsl ∑

m,i
ωmiTislm

)

≤∑
s,l

(ωsl)2 +∑
s,l

(
∑
m,i

ωmlTislm

)2

≤ |ω |2 +n2
∑

s,l,m,i
(ωml)2(Tislm)2 ≤

(
1+n2|T |2

)
|ω |2.

Since L× [0,τ] is compact we can choose a constant C > 0 such that for all t ∈ [0,τ]

d
dt
|ω|2 ≤ ∆ |ω|2 +C|ω |2 +2ω

klR̄ p
lk p−2nω

kl(dαY )lk.

It remains to find an estimate for the last two terms. We have

(αY )l = ω̄
(
πνL
(
∇̄ψ
)
,el
)

= −ḡ
(
∇̄ψ ,J(el)

)
−gmkḡ

(
∇̄ψ,ek

)
ω̄ (em,el)

= dc
ψ(el)−gmkdψ(ek)ωml,

and hence

(dαY )kl =
∂

∂ xk dc
ψ(el)−

∂

∂ xl dc
ψ(ek)

− ∂

∂ xk

(
gm jdψ(e j)ωml

)
+

∂

∂xl

(
gm jdψ(e j)ωmk

)
= ddc

ψ (ek,el)−gm j
ωml

∂

∂xk dψ(e j)

+gm j
ωmk

∂

∂ xl dψ(e j)−gm jdψ(e j)
∂ωml

∂xk +gm jdψ(e j)
∂ωmk

∂xl .

Multiplying both sides with −2nωkl , using the Kähler and the almost Einstein con-
dition, and estimating the quadratic terms in ω we get

−2nω
kl(dαY )kl ≤C|ω |2−2ω

kl
ρ̄kl +2ngm j

ω
kldψ(e j)

(
∂ωml

∂ xk −
∂ωmk

∂ xl

)
.

Using that ω is closed we find

gm j
ω

kl
(

∂ωml

∂ xk −
∂ωmk

∂xl

)
dψ(e j) = dψ

(
gm jgikgsl

ωis
∂ωkl

∂ xm e j

)
= dψ

(
1
2

gm j ∂ |ω |2

∂ xm e j

)
=

1
2

dψ
(
∇|ω |2

)
.

Putting all together yields
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d
dt
|ω|2 ≤ ∆ |ω |2 +ndψ

(
∇|ω |2

)
+C|ω |2 +2ω

klR̄ p
lk p−2ω

kl
ρ̄kl .

Now by definition of the tensor N we have N(ep) = J(ep)−ω m
p em and so

R̄lkqp = R̄(el ,ek,eq,J(ep))−ω
m

p R̄lkqm.

Multiplying both sides with 2ωklgpq and estimating the quadratic term in ω gives

2ω
klR̄ p

lk p ≤ 2ω
klgpqR̄(el ,ek,eq,J(ep))+C|ω|2.

Using the following well known identity from Kähler geometry

gpqR̄(el ,ek,eq,J(ep)) = ρ̄kl ,

we finally obtain

d
dt
|ω|2 ≤ ∆ |ω |2 +ndψ

(
∇|ω |2

)
+C|ω |2.

Applying the parabolic maximum principle we conclude that F(., t) : L −→M
is Lagrangian for each t ∈ [0,T ). This motivates the following definition:

Definition 3 A family of Lagrangian submanifolds satisfying (2) is said to evolve
by generalized Lagrangian mean curvature flow.

And we have proved the following theorem:

Theorem 2 Let L be a compact n-dimensional manifold and F0 : L −→ M a La-
grangian immersion of L into a compact Kähler manifold M that is almost Einstein.
Then the generalized Lagrangian mean curvature flow admits a unique smooth so-
lution for a short time and this solution consists of Lagrangian submanifolds.

4 A variational approach to the generalized mean curvature flow

Let S be the infinite dimensional manifold consisting of all compact n-dimensional
submanifolds of M. In this chapter we show that the generalized mean curvature
flow is the gradient flow of a volume functional on S . Let N ∈S , then the tangent
space of S at N consists of the normal vector fields along N and for any Riemannian
metric g on M there is a natural L2-metric on S given by
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〈Y,Z〉g,L2 =
∫

N
g(Y,Z)dVg,

for Y,Z ∈ Γ (νN).

We define two conformally rescaled Riemannian metrics g̃ and ĝ on M by

g̃ = e2ψ ḡ and ĝ = e
2n

n+2 ψ ḡ.

Then we have the following variational characterization of the generalized mean
curvature flow:

Proposition 2 The generalized mean curvature flow is the negative gradient flow of
the volume functional Volg̃ on S with respect to the L2-metric 〈., .〉ĝ,L2 .

Proof Let N ∈S and let Y be a normal vector field along N. Then the first variation
of the volume functional gives

δY Volg̃(N) =−
∫

N
g̃(Y, H̃)dVg̃,

where H̃ is the mean curvature vector field on N with respect to the metric on N
which is induces by g̃. It is easy to show that

H̃ = e−2ψ
(
H−nπνN

(
∇̄ψ
))

.

Hence

δY Volg̃(N) = −
∫

N
enψ ḡ(H−nπνN(∇̄ψ),Y )dVḡ

= −
∫

N
e(n− 2n

n+2−
2n

n+2
n
2 )ψ ĝ(K,Y )dVĝ

= −
∫

N
ĝ(K,Y )dVĝ =−〈K,Y 〉ĝ,L2 .

5 The case of almost Calabi-Yau manifolds

We introduce almost Calabi-Yau manifolds and special Lagrangian submanifolds as
defined by Joyce in [3, §8.4].
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Definition 4 An n-dimensional almost Calabi-Yau manifold (M,J, ω̄ , ḡ,Ω) is an n-
dimensional Kähler manifold (M,J, ω̄ , ḡ) together with a non-vanishing holomor-
phic volume form Ω .

Given an n-dimensional almost Calabi-Yau manifold (M,J, ω̄ , ḡ,Ω) we can de-
fine a smooth function ψ on M by

e2nψ ω̄n

n!
= (−1)

n(n−1)
2

(
i
2

)n

Ω ∧ Ω̄ .

Here Ω̄ denotes the complex conjugate of Ω . Then (M,J, ω̄ , ḡ,Ω) is Calabi-Yau
if and only if ψ vanishes identically. Using |Ω |ḡ = 2

n
2 enψ and the following for-

mula for the Ricci form of a Kähler manifold with trivial canonical bundle (see for
instance [3, §7.1])

ρ̄ = ddc log |Ω |ḡ

we find
ρ̄ = nddc

ψ .

Hence almost Calabi-Yau manifolds are almost Einstein and Theorem 2 holds in
this case. Let g̃ be a conformally rescaled metric on M defined by g̃ = e2ψ ḡ. One
easily proves that Re Ω is a calibrating n-form on (M, g̃). This leads to the definition
of special Lagrangian submanifolds in almost Calabi-Yau manifolds.

Definition 5 An oriented Lagrangian submanifold L of an almost Calabi-Yau man-
ifold M is called special Lagrangian if it is calibrated with respect to Re Ω for
the metric g̃. More generally, an oriented Lagrangian submanifold L is special La-
grangian with phase θ0 ∈ R, if L is calibrated with respect to Re(e−iθ0 Ω) for the
metric g̃.

Besides the fact that one is able to write down explicit examples of almost
Calabi-Yau metrics on compact manifolds there is another reason for studying al-
most Calabi-Yau manifolds. Recall that by the theorem of Tian and Todorov the
moduli space MCY of Calabi-Yau metrics of a compact Calabi-Yau manifold is
of dimension h1,1(M)+ 2hn−1,1(M)+ 1, where hi, j(M) are the Hodge numbers of
M. In particular MCY is finite dimensional. In the study of moduli spaces of J-
holomorphic curves in symplectic manifolds it turns out that for a generic almost
complex structure J the moduli space MJ of embedded J-holomorphic curves is
a smooth manifold, while for a fixed almost complex structure J the space MJ

can have singularities (see [8] for details). Now the moduli space MACY of almost
Calabi-Yau structures is of infinite dimension and therefore choosing a generic al-
most Calabi-Yau metric is a more powerful thing to do than choosing a generic
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Calabi-Yau metric. We explain why this is of certain interest. It was proved by
McLean [9] that the moduli space of compact special Lagrangian submanifolds MSL

in a Calabi-Yau manifold is a smooth manifold of dimension b1(L), the first Betti
number of L. An important question is whether it is possible to compactify MSL in
order to count invariants of Calabi-Yau manifolds. One approach to this problem,
due to Joyce, is to study the moduli space of special Lagrangian submanifolds with
conical singularities in almost Calabi-Yau manifolds (see [5] for a survey of his
results). In particular Joyce conjectures that for generic almost Calabi-Yau metrics
the moduli space of special Lagrangian submanifolds with conical singularities is a
smooth finite dimensional manifold.

We come back to the study of the generalized Lagrangian mean curvature flow.
First observe that special Lagrangian submanifolds in an almost Calabi-Yau mani-
fold M are minimal with respect to g̃. By Proposition 2 the generalized Lagrangian
mean curvature flow decreases volume with respect to g̃. Therefore the generalized
Lagrangian mean curvature flow is in this sense the right flow to consider. Harvey
and Lawson show in [2] that

F∗0 Ω = eiθ+nψ dVg,

for F0 : L −→ M a Lagrangian immersion. The map θ : L −→ S1 is called the La-
grangian angle of L. From this we obtain an alternative characterization of special
Lagrangian submanifolds.

Proposition 3 An oriented Lagrangian submanifold L is special Lagrangian with
phase θ0 if and only if

(cosθ0 Im Ω − sinθ0 Re Ω)|L = 0.

In particular, an oriented Lagrangian submanifold is special Lagrangian with phase
θ0 if and only if the Lagrangian angle is constant θ ≡ θ0.

The Lagrangian angle is closely related to the generalized Lagrangian mean cur-
vature flow as proved in the next proposition.

Proposition 4 Let L be a Lagrangian submanifold of M. Then

αK =−dθ .

Proof The decomposition

Λ
nT ∗M⊗C=

⊕
p+q=n

Λ
p,qT ∗M
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is invariant under the holonomy representation of ḡ. Hence there exists a complex
one form η on M satisfying ∇̄Ω = η ⊗Ω . Moreover, since Ω is holomorphic, η

is in fact a one form of type (1,0). Using Ω ∧ Ω̄ = e2nψ dVḡ we find by computing
∇̄
(
Ω ∧ Ω̄

)
the equality

(η + η̄)⊗Ω ∧ Ω̄ = 2ndψ⊗Ω ∧ Ω̄ .

Hence η = 2n∂ψ and so ∇̄Ω = 2n∂ψ⊗Ω . Following the computation by Thomas
and Yau [15, Lem. 2.1] we obtain

∇̄Ω = (idθ +ndψ + iαH)⊗Ω

and establish the equality
αH −ndc

ψ =−dθ .

But αH −ndc
ψ = αK and hence αK =−dθ .

Now let {F(., t)}t∈[0,T ) be the solution to the generalized mean curvature flow
with initial condition F0 : L −→M a Lagrangian immersion. Then we have the fol-
lowing proposition:

Proposition 5 Under the generalized Lagrangian mean curvature flow the La-
grangian angle of L satisfies

d
dt

θ = ∆θ +ndψ(∇θ ).

Proof On the one hand

d
dt

eiθ+nψ dVg = i
dθ

dt
eiθ+nψ dVg +ndψ(K)eiθ+nψ dVg + eiθ+nψ d

dt
dVg

and on the other hand, using F(.,t)∗Ω = eiθ+nψdVg, we have

d
dt

eiθ+nψdVg = F(., t)∗(LKΩ) = F(., t)∗(d(K yΩ))+F(.,t)∗(K y dΩ).

Since Ω is holomorphic, dΩ = 0. Moreover by Proposition 4 we have K = J(∇θ )
and hence

F(.,t)∗(d(K yΩ)) = iF(.,t)∗(d(∇θ yΩ)) = id(eiθ+nψ
∇θ y dVg)

= ieiθ+nψ (d(∇θ y dVg)+ndψ ∧ (∇θ y dVg))

−eiθ+nψdθ ∧ (∇θ y dVg)

= ieiθ+nψ (∆θ +ndψ(∇θ))dVg− eiθ+nψ |∇θ |2dVg.
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Comparing imaginary parts yields

d
dt

θ = ∆θ +ndψ(∇θ ).

We end this paper by showing how the generalized Lagrangian mean curvature
flow in an almost Calabi-Yau manifold can be integrated to a scalar equation. Let
ω̂ be the canonical symplectic structure on the cotangent bundle T ∗L of L. Then by
the Lagrangian neighbourhood theorem [7, Thm. 3.33] there exists an immersion
Φ : U −→ V from an open neighbourhood U of the zero section in T ∗L onto an
open neighbourhood V of L in M, such that ω̂ = Φ∗ω̄ and Φ(x,0) = F0(x) for
x∈ L. It is not hard to see that all Lagrangian submanifolds in M which are C1-close
to L correspond to graphs in T ∗L of closed one-forms on L.

Theorem 3 Let F0 : L−→M be a zero Maslov class Lagrangian, i.e. θ : L−→R is
a well defined smooth function on L, let Φ be as above, and let {u(.,t)}t∈[0,T ) be a
smooth one-parameter family of smooth functions on L satisfying

∂ u
∂ t

(x,t) = θ(x,t), (x, t) ∈ L× (0,T )

u(x,0) = 0, x ∈ L.

Here θ(., t) denotes the Lagrangian angle of the Lagrangian immersion Φ ◦du(.,t)
of L into M. Choosing T > 0 sufficiently small we can assume that the graph
of du(., t) lies in U for t ∈ [0,T ). Then there exists a family of diffeomorphisms
{ϕ(.,t)}t∈[0,T ) of L, such that the immersions {F(., t)}t∈[0,T ) of L into M defined by

F(x,t) = Φ(ϕ(x,t),du(ϕ(x, t),t)), x ∈ L,

evolve by generalized Lagrangian mean curvature flow.

The proof of this theorem can be found in [10] in the case when the ambient
space is Cn. When the ambient space is a general almost Calabi-Yau manifold the
proof is analogous.
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Einstein metrics and preserved curvature
conditions for the Ricci flow

Simon Brendle

Abstract Let C be a cone in the space of algebraic curvature tensors. Moreover, let
(M,g) be a compact Einstein manifold with the property that the curvature tensor of
(M,g) lies in the interior of the cone C at each point on M. We show that (M,g) has
constant sectional curvature if the cone C satisfies certain structure conditions.
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1 Introduction

In this note, we study Riemannian manifolds (M,g) with the property that Ric = ρ g
for some constant ρ . A Riemannian manifold with this property is called an Ein-
stein manifold. Einstein manifolds arise naturally as critical points of the normalized
Einstein-Hilbert action, and have been studied intensively (see e.g. [2]). In particu-
lar, it is of interest to classify all Einstein manifolds satisfying a suitable curvature
condition. This problem was studied by M. Berger [1]. In 1974, S. Tachibana [9]
obtained the following important result:
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Theorem 1 (S. Tachibana) Let (M,g) be a compact Einstein manifold. If (M,g) has
positive curvature operator, then (M,g) has constant sectional curvature. Further-
more, if (M,g) has nonnegative curvature operator, then (M,g) is locally symmetric.

In a recent paper [3], we proved a substantial generalization of Tachibana’s theo-
rem. More precisely, it was shown in [3] that the assumption that (M,g) has positive
curvature operator can be replaced by the weaker condition that (M,g) has positive
isotropic curvature:

Theorem 2 Let (M,g) be a compact Einstein manifold of dimension n≥ 4. If (M,g)
has positive isotropic curvature, then (M,g) has constant sectional curvature. More-
over, if (M,g) has nonnegative isotropic curvature, then (M,g) is locally symmetric.

The proof of Theorem 2 relies on the maximum principle. One of the key ingre-
dients in the proof is the fact that nonnegative isotropic curvature is preserved by
the Ricci flow (cf. [5]).

In this note, we show that the first statement in Theorem 2 can be viewed as a
special case of a more general principle. To explain this, we fix an integer n≥ 4. We
shall denote by CB(Rn) the space of algebraic curvature tensors onRn. Furthermore,
for each R ∈ CB(Rn), we define an algebraic curvature tensor Q(R) ∈ CB(Rn) by

Q(R)i jkl =
n

∑
p,q=1

Ri jpq Rkl pq +2
n

∑
p,q=1

(Ripkq Rjplq−Riplq R jpkq).

The term Q(R) arises naturally in the evolution equation of the curvature tensor
under the Ricci flow (cf. [6]). The ordinary differential equation d

dt R = Q(R) on
CB(Rn) will be referred to as the Hamilton ODE.

We next consider a cone C ⊂ CB(Rn) with the following properties:

(i) C is closed, convex, and O(n)-invariant.

(ii) C is invariant under the Hamilton ODE d
dt R = Q(R).

(iii) If R ∈ C \ {0}, then the scalar curvature of R is nonnegative and the Ricci
tensor of R is non-zero.

(iv) The curvature tensor Ii jkl = δik δ jl−δil δ jk lies in the interior of C.

We now state the main result of this note:

Theorem 3 Let C ⊂ CB(Rn) be a cone which satisfies the conditions (i)–(iv) above,
and let (M,g) be a compact Einstein manifold of dimension n. Moreover, suppose
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that the curvature tensor of (M,g) lies in the interior of the cone C for all points
p ∈M. Then (M,g) has constant sectional curvature.

As an example, let us consider the cone

C = {R ∈ CB(Rn) : R has nonnegative isotropic curvature}.

For this choice of C, the conditions (i) and (iv) are trivially satisfied. Moreover, it
follows from a result of M. Micallef and M. Wang (see [7], Proposition 2.5) that
C satisfies condition (iii) above. Finally, the cone C also satisfies the condition (ii).
This was proved independently in [5] and [8]. Therefore, Theorem 2 is a subcase of
Theorem 3.

2 Proof of Theorem 3

The proof of Theorem 3 is similar to the proof of Theorem 16 in [3]. Let (M,g)
be a compact Einstein manifold of dimension n with the property that the curvature
tensor of (M,g) lies in the interior of C for all points p ∈M. If (M,g) is Ricci flat,
then the curvature tensor of (M,g) vanishes identically. Hence, it suffices to con-
sider the case that (M,g) has positive Einstein constant. After rescaling the metric
if necessary, we may assume that Ric = (n−1)g. As in [3], we define an algebraic
curvature tensor S by

Si jkl = Ri jkl−κ (gik g jl−gil g jk), (1)

where κ is a positive constant. Let κ be the largest real number with the property
that S lies in the cone C for all points p ∈M. Since the curvature tensor R lies in the
interior of the cone C for all points p ∈ M, we conclude that κ > 0. On the other
hand, the curvature tensor S has nonnegative scalar curvature. From this, we deduce
that κ ≤ 1.

Proposition 1 The tensor S satisfies

∆S+Q(S) = 2(n−1)S +2(n−1)κ (κ−1) I,

where Ii jkl = gik g jl−gil g jk.

Proof The curvature tensor of (M,g) satisfies

∆R+Q(R) = 2(n−1)R (2)
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(see [3], Proposition 3). Using (1), we compute

Q(S)i jkl = Q(R)i jkl +2(n−1)κ
2 (gik g jl−gil g jk)

−2κ (Ricik g jl−Ricil g jk−Ric jk gil +Ric jl gik).

Since Ric = (n−1)g, it follows that

Q(S) = Q(R)+2(n−1)κ (κ−2) I. (3)

Combining (2) and (3), we obtain

∆S +Q(S) = 2(n−1)R+2(n−1)κ (κ−2) I.

Since R = S+κI, the assertion follows.

In the following, we denote by TSC the tangent cone to C at S.

Proposition 2 At each point p ∈M, we have ∆S ∈ TSC and Q(S) ∈ TSC.

Proof It follows from the definition of κ that S lies in the cone C for all points
p ∈M. Hence, the maximum principle implies that ∆S ∈ TSC. Moreover, since the
cone C is invariant under the Hamilton ODE, we have Q(S) ∈ TSC.

Proposition 3 Suppose that κ < 1. Then S lies in the interior of the cone C for all
points p ∈M.

Proof Let us fix a point p∈M. By Proposition 2, we have ∆S∈ TSC and Q(S)∈TSC.
Furthermore, we have −S ∈ TSC since C is a cone. Putting these facts together, we
obtain

∆S +Q(S)−2(n−1)S ∈ TSC.

Using Proposition 1, we conclude that

2(n−1)κ (κ−1) I ∈ TSC.

Since 0 < κ < 1, it follows that −2I ∈ TSC. On the other hand, I lies in the interior
of the tangent cone TSC. Hence, the sum −2I + I = −I lies in the interior of the
tangent cone TSC. By Proposition 5.4 in [4], there exists a real number ε > 0 such
that S− εI ∈C. Therefore, S lies in the interior of the cone C, as claimed.

Proposition 4 The algebraic curvature tensor S defined in (1) vanishes identically.
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Proof By definition of κ , there exists a point p0 ∈M such that S ∈ ∂C at p0. Hence,
it follows from Proposition 3 that κ = 1. Consequently, the Ricci tensor of S vanishes
identically. Since S∈C for all points p∈M, we conclude that S vanishes identically.

Since S vanishes identically, the manifold (M,g) has constant sectional curva-
ture. This completes the proof of Theorem 3.
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Abstract Let (M,g(t)) be a solution to the Ricci flow on a closed Riemannian man-
ifold. In this paper, we prove differential Harnack inequalities for positive solutions
of nonlinear parabolic equations of the type

∂

∂ t
f = ∆ f − f ln f +R f .

We also comment on an earlier result of the first author on positive solutions of the
conjugate heat equation under the Ricci flow.
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1 Introduction

Let (M,g(t)), t ∈ [0,T ), be a solution to the Ricci flow on a closed manifold M.
In the first part of this paper, we deal with positive solutions of nonlinear parabolic
equations on M. We establish Li-Yau type differential Harnack inequalities for such
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positive solutions. More precisely, g(t) evolves under the Ricci flow

∂ g(t)
∂ t

=−2Rc, (1)

where Rc denotes the Ricci curvature of g(t). We first assume that the initial metric
g(0) has nonnegative curvature operator, which implies that for all time t ∈ [0,T ),
g(t) has nonnegative curvature operator (for example, in the case that dimension is
4, see [7]). Consider a positive function f (x,t) defined on M× [0,T ), which solves
the following nonlinear parabolic equation,

∂ f
∂ t

=4 f − f ln f +R f , (2)

where the symbol 4 stands for the Laplacian of the evolving metric g(t) and R is
the scalar curvature of g(t). For simplicity, we omit g(t) in the above notations. All
geometry operators are with respect to the evolving metric g(t).

Differential Harnack inequalities were originated by P. Li and S.-T. Yau in [12]
for positive solutions of the heat equation (therefore also known as Li-Yau type Har-
nack estimates). The technique was then brought into the study of geometric evolu-
tion equation by R. Hamilton (for example, see [8]) and has ever since been playing
an important role in the study of geometric flows. Applications include estimates on
the heat kernel; curvature growth control; understanding the ancient solutions for
geometric flows; proving noncollapsing result in the Ricci flow ([17]); etc. See [16]
for a recent survey on this subject by L. Ni.

Using the maximum principle, one can see that the solution for (2) remains pos-
itive along the flow. It exists as long as the solution for (1) exists. The study of the
Ricci flow coupled with a heat-type (or backward heat-type) equation started from
R. Hamilton’s paper [9]. Recently, there has been some interesting study on this
topic. In [17], G. Perelman proved a differential Harnack inequality for the funda-
mental solution of the conjugate heat equation under the Ricci flow. In [2], the first
author proved a differential Harnack inequality for general positive solutions of the
conjugate heat equation, which was also proved independently by S. Kuang and Q.
S. Zhang in [11]. The study has also been pursued in [3, 6, 15, 20]. Various estimates
are obtained recently by M. Bailesteanu, A. Pulemotov and the first author in [1],
and by S. Liu in [13]. For nonlinear parabolic equations under the Ricci flow, local
gradient estimates for positive solutions of equation

∂

∂ t
f = ∆ f +a f ln f +b f ,
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where a and b are constants, have been studied by Y. Yang in [19]. For general
evolving metrics a similar estimate has been obtained by A. Chau, L.-F. Tam and
C. Yu in [4], by S.-Y. Hsu in [10], and by J. Sun in [18]. In [14], L. Ma proved a
gradient estimate for the elliptic equation

∆ f +a f ln f +b f = 0.

In (2), if one defines
u(x,t) =− ln f (x,t),

then the function u = u(x, t) satisfies the following evolution equation

∂u
∂ t

= ∆u−|∇u|2−R−u. (3)

The computation from (2) to (3) is standard, which also gives the explicit relation
between these two equations.

Our motivation to study (2) under the Ricci flow comes from the geometric in-
terpretation of (3), which arises from the study of expanding Ricci solitons. Recall
that given a gradient expanding Ricci soliton (M,g) satisfying

Ri j +∇i∇ jw =−1
4

gi j,

where w is called soliton potential function, we have

R(g)+∆gw =−n
4
.

In sight of this, by taking covariant derivative for the soliton equation and applying
the second Bianchi identity, one can see that

R(g)+ |∇gw|2g +
w
2

= constant.

Also notice that the Ricci soliton potential function w can be differed by a constant
in the above equations. So by choosing this constant properly, we have

R(g)+ |∇gw|2g =−w
2
−

n
8
.

One consequence of the above identities is the following

|∇gw|2g = ∆gw−|∇gw|2g−R(g)−w. (4)
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Recall that the Ricci flow solution for an expanding soliton is g(t) = c(t) ·ϕ(t)∗g
(c.f. [5]), where c(t) = 1 + t

2 and the family of diffeomorphism ϕ(t) satisfies, for
any x ∈M,

∂

∂ t
(ϕ(t)(x)) =

1
c(t)
· (∇gw)(ϕ(t)(x)) .

Thus the corresponding Ricci soliton potential ϕ(t)∗w satisfies

∂ϕ(t)∗w
∂ t

(x) =
1

c(t)
(∇gw)(w)(ϕ(t)(x)) = |∇ϕ(t)∗w|2(x).

Along the Ricci flow, (4) becomes

|∇ϕ
∗w|2 = ∆ϕ

∗w−|∇ϕ
∗w|2−R−

ϕ∗w
c(t)

.

Hence the evolution equation for the Ricci soliton potential is

∂ϕ(t)∗w
∂ t

= ∆ϕ
∗w−|∇ϕ

∗w|2−R− ϕ∗w
c(t)

. (5)

The second nonlinear parabolic equation that we investigate in this paper is

∂ u
∂ t

= ∆u−|∇u|2−R− u
1+ t

2
. (6)

Notice that (3) and (6) are closely related and only differ by their last terms.

Our first result deals with (2) and (3).

Theorem 1 Let (M,g(t)), t ∈ [0,T ), be a solution to the Ricci flow on a closed man-
ifold, and suppose that g(0) (and so g(t)) has weakly positive curvature operator.
Let f be a positive solution to the heat equation (2), u =− ln f and

H = 24u−|∇u|2−3R− 2n
t

. (7)

Then for all time t ∈ (0,T )
H 6

n
4
.

Remark 1 The result can be generalized to the context of M being non-compact. In
order for the same argument to work, we need to assume that the Ricci flow solution
g(t) is complete with the curvature and all the covariant derivatives being uniformly
bounded and the solution u and its derivatives up to the second order are uniformly
bounded (in the space direction) .
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Our next result deals with (6), which is also a natural evolution equation to con-
sider, by the previous motivation.

Theorem 2 Let (M,g(t)), t ∈ [0,T ), be a solution to the Ricci flow on a closed man-
ifold, and suppose that g(0) (and so g(t)) has weakly positive curvature operator.
Let u be a smooth solution to (6), and define

H = 24u−|∇u|2−3R− 2n
t

. (7)

Then for all time t ∈ (0,T )
H 6 0.

Remark 2 If f is a positive function such that f = e−u, then f satisfies the following
evolution equation

∂ f
∂ t

=4 f +R f − f ln f
1+ t

2
.

In [2], the first author studied the conjugate heat equation under the Ricci flow.
In particular, the following theorem was proved.

Theorem 3 [2, Theorem 3.6] Let (M,g(t)), t ∈ [0,T ], be a solution to the Ricci flow,
and suppose that g(t) has nonnegative scalar curvature. Let f be a positive solution
of the conjugate heat equation

∂

∂ t
f =−4 f +R f .

Set v =− ln f − n
2 ln(4πτ), τ = T − t and

P = 24v−|∇v|2 +R− 2n
τ

.

Then we have

∂

∂τ
P =4P−2∇P ·∇v−2|vi j +Ri j−

1
τ

gi j|2−
2
τ

P−2
|∇v|2

τ
−2

R
τ

. (8)

Moreover, for all time t ∈ [0,T ),
P6 0.

In the last section, we apply a similar trick as in the proof of Theorem 1 and
obtain a slightly different result, where we no longer need to assume that g(t) has
nonnegative scalar curvature.
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2 Proof of Theorem 1 and Application

The evolution equation of u is very similar to what is considered in [3]. So the
computation for the very general setting there can be applied.

Proof (Theorem 1) In sight of the definition of H from (7) and comparing with [3,
Corollary 2.2], we have

∂

∂ t
(4u) =4(4u)−4(|∇u|2)−4R+2Ri jui j−∆u,

∂

∂ t
|∇u|2 =4(|∇u|2)−2|∇∇u|2−2∇u ·∇(|∇u|2)−2∇u ·∇R−2|∇u|2.

In fact, one can directly apply the computation result there with the only modifica-
tion because of the extra terms coming from time derivative ∂

∂ t u, which are put at
the end of the right hand side in the above equalities. Then we have

∂

∂ t
H =4H−2∇H ·∇u−2|ui j−Ri j−

1
t

gi j|2−
2
t

H− 2
t
|∇u|2 (9)

−2
(

∂

∂ t
R+

R
t

+2∇R ·∇u+2Ri juiu j

)
−2∆u+2|∇u|2,

where the last two terms of the right hand side coming from the extra term −u in
(3). Plugging in −2∆u+2|∇u|2 =−H + |∇u|2−3R− 2n

t , one arrives at

∂

∂ t
H =4H−2∇H ·∇u−2|ui j−Ri j−

1
t

gi j|2−
(

2
t

+1
)

H (10)

+
(

1− 2
t

)
|∇u|2−3R− 2n

t
−
(

∂

∂ t
R+

R
t

+2∇R ·∇u+2Ri juiu j

)
.

In sight of the definition of H (7), for t small enough, we have H < 0. Since gi j has
weakly positive curvature operator, by the trace Harnack inequality for the Ricci
flow proved by R. Hamilton in [8], we have

∂

∂ t
R+

R
t

+2∇R ·∇u+2Ri juiu j > 0.

Also we have R> 0. Notice that the term
(
1− 2

t

)
|∇u|2 prevents us from obtaining

an upper bound for H for t > 2.

We can deal with this by the following simple manipulation. To begin with, one
observes that from the definition of H,
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|∇u|2 = 2
(

∆u−R− n
t

)
−H−R.

We also have the following equality from definition,

tr
(

ui j−Ri j−
1
t

gi j

)
= ∆u−R− n

t
.

Now we can continue the computation for the evolution of H as follows,

∂

∂ t
H 64H−2∇H ·∇u−2|ui j−Ri j−

1
t

gi j|2−
(

2
t

+1
)

H−
2
t
|∇u|2

−4R+2
(

∆u−R− n
t

)
−H− 2n

t

64H−2∇H ·∇u− 2
n

(
∆u−R− n

t

)2
−
(

2
t

+1
)

H− 2
t
|∇u|2

−4R+2
(

∆u−R− n
t

)
−H− 2n

t

=4H−2∇H ·∇u−
(

2
t

+2
)

H− 2
t
|∇u|2−4R− 2n

t

− 2
n

(
∆u−R− n

t
− n

2

)2
+

n
2

64H−2∇H ·∇u−
(

2
t

+2
)

H− 2
t
|∇u|2−4R− 2n

t
+

n
2
.

The essential step is the second inequality where we make use of the elementary
inequality

|ui j−Ri j−
1
t

gi j|2 >
1
n

(
∆u−R− n

t

)2
.

Now we can apply maximum principle. The value of H for very small positive t
is clearly very negative. So we only need to consider the maximum value point is at
t > 0 for the desired estimate.

For ∀T0 < T , assume that the maximum in (0,T0] is taken at t0 > 0. At the
maximum value point, using the nonnegativity of |∇u|2 and R, one has

H 6
−4n+nt0

4+4t0
=

n
4

(
1− 5

t0 +1

)
6

n
4

(
1− 5

T +1

)
.

So if T 6 4, i.e., for time in [0,4), H 6 0. In general, we have

H 6
n
4
.
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Theorem 1 is thus proved.

As a consequence of Theorem 1, we have

Corollary 1 Let (M,g(t)), t ∈ [0,T ), be a solution to the Ricci flow on a closed man-
ifold, and suppose that g(0) (and so g(t) ) has weakly positive curvature operator.
Let f be a positive solution to the heat equation

∂

∂ t
f = ∆ f − f ln f +R f .

Assume that (x1,t1) and (x2,t2), 0 < t1 < t2, are two points in M× (0,T ). Let

Γ = inf
γ

∫ t2

t1
et
(
|γ̇|2 +R+

2n
t

+
n
4

)
dt,

where γ is any space-time path joining (x1,t1) and (x2,t2). Then we have

et1 ln f (x1,t1)6 et2 ln f (x2,t2)+
Γ

2
.

This inequality is in the type of classical Harnack inequalities. The proof is quite
standard by integrating the differential Harnack inequality. We include it here for
completeness.

Proof Pick a space-time curve connecting (x1,t1) and (x2,t2), γ(t) = (x(t),t) for
t ∈ [t1,t2]. Recall that u(x,t) = − ln f (x,t). Using the evolution equation for u, we
have

d
dt

u(x(t),t) =
∂u
∂ t

+∇u · γ̇

= ∆u−|∇u|2−R−u+∇u · γ̇

6 ∆u− |∇u|2

2
−R−u+

|γ̇|2

2
.

(11)

Now by Theorem 1, we have

∆u =
1
2

(
H + |∇u|2 +3R+

2n
t

)
6

1
2

(
n
4

+ |∇u|2 +3R+
2n
t

)
.

So we have the following estimation,

d
dt

u(x(t),t)6
1
2

(
|γ̇|2 +R+

2n
t

+
n
4

)
−u.

For any space-time curve γ , we arrives at
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d
dt

(et ·u)6
et

2

(
|γ̇|2 +R+

2n
t

+
n
4

)
.

Hence the desired Harnack inequality is proved by integrating t from t1 to t2.

3 Proof of Theorem 2

In this section we study u satisfying the evolution equation (6) originated from gra-
dient expanding Ricci soliton equation. We investigate the same quantity

H = 24u−|∇u|2−3R−
2n
t

as in the last section. The evolution equation of u, is still very similar to what is
considered in [3]. We have slightly different terms coming from time derivative
∂

∂ t u when computing the evolution equation satisfied by H. Comparing with [3,
Corollary 2.2], we proceed as follows.

Proof (Theorem 2) Direct computation gives the following equation. The modifi-
cation from the computation of the reference is minor as illustrated in the proof of
Theorem 1.

∂

∂ t
H =4H−2∇H ·∇u−2|ui j−Ri j−

1
t

gi j|2−
2
t

H− 2
t
|∇u|2 (12)

−2
(

∂

∂ t
R+

R
t

+2∇R ·∇u+2Ri juiu j

)
+

2
t +2

(
−2∆u+2|∇u|2

)
,

where the last two terms of the right hand side come from the extra term − u
1+ t

2
in

(6). Plugging in −2∆u+2|∇u|2 =−H + |∇u|2−3R− 2n
t , one arrives at

∂

∂ t
H =4H−2∇H ·∇u−2|ui j−Ri j−

1
t

gi j|2−
(

2
t

+
2

t +2

)
H− 6

t +2
R (13)

+
(

2
t +2

−
2
t

)
|∇u|2−

4n
t2 +2t

−2
(

∂

∂ t
R+

R
t

+2∇R ·∇u+2Ri juiu j

)
.

By the definition of H, for t small enough, we have H < 0. Since g(t) has weakly
positive curvature operator, by the trace Harnack inequality for the Ricci flow ([8]),
we have

∂

∂ t
R+

R
t

+2∇R ·∇u+2Ri juiu j > 0.
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Notice that now the coefficient for |∇u|2 on the right hand side is 2
t+2 −

2
t < 0,

and we have R > 0. So one can conclude directly from maximum principle that
H 6 0.

4 A Remark on the Conjugate Heat Equation

In this section we point out a simple observation for [2, Theorem 3.6]. The assump-
tion on scalar curvature is not needed below. We follow the original set-up in [2].

Over a closed manifold Mn, g(t) for t ∈ [0,T ] is a solution to the Ricci flow (1),
and f (·,t) is a positive solution of the conjugate heat equation

∂ f
∂ t

=−∆ f +R f , (14)

where ∆ and R are Laplacian and scalar curvature with respect to the evolving metric
g(t). Notice that

∫
M f (·,t)dµg(t) is a constant along the flow.

Set v =− log f − n log(4πτ)
2 , where τ = T − t and define

P := 2∆v−|∇v|2 +R− 2n
τ

.

Now we can prove the following result which is closely related to [2, Theorem 3.6].

Theorem 4 Let (M,g(t)), t ∈ [0,T ], be a solution to the Ricci flow on a closed man-
ifold. f is a positive solution to the conjugate heat equation (14), and v is defined as
above. Then we have

max
M

(2∆v−|∇v|2 +R)

increases along the Ricci flow.

Proof The exact computation in [2, Theorem 3.6] gives

∂P
∂τ

= ∆P−2∇P ·∇v−2|∇2v +Rc− 1
τ

g|2− 2
τ

P− 2
τ
|∇v|2− 2

τ
R.

Applying the elementary inequality

|∇2v+Rc− 1
τ

g|2 > 1
n

(
∆v+R− n

τ

)2
,

and noticing that
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P+ |∇v|2 +R = 2
(

∆v+R− n
τ

)
,

we arrive at

∂P
∂τ
6 ∆P−2∇P ·∇v−

1
2n

(P+ |∇v|2 +R)2−
2
τ
(P+ |∇v|2 +R)

= ∆P−2∇P ·∇v− 1
2n

(
P+ |∇v|2 +R+

2n
τ

)2

+
2n
τ2 .

Thus if one defines
P̃ := P+

2n
τ

= 2∆v−|∇v|2 +R,

we have
∂ P̃
∂τ
6 ∆ P̃−2∇P̃ ·∇v.

Hence maxM(2∆v− |∇v|2 + R) decreases as τ increases, which means that it in-
creases as t increases. This concludes the proof.

Remark 3 Notice that we do not need to introduce τ in Theorem 4, but we keep the
notation here so it is easy to be compared with [2, Theorem 3.6].

Remark 4 Theorem 4 and [2, Theorem 3.6] estimate quantities differ by 2n
τ

. Here
we do not need to assume nonnegative scalar curvature as in [2, Theorem 3.6].
Moreover, one can also prove this result for complete non-compact manifolds with
proper boundness assumption.
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Euler characteristic of a complete intersection
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Abstract In this paper we study the behaviour of the degree of the Fulton–Johnson
class of a complete intersection under a blow–up with a smooth center under the
assumption that the strict transform is again a complete intersection. Our formula is
a generalization of the genus formula for singular curves in smooth surfaces.
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1 Introduction

Let Y = Y1∩·· ·∩Yr be a complete intersection in a smooth algebraic n–fold X . If Y
is smooth then the topological Euler characteristic of Y is uniquely determined by
its cohomology class [Y ] and can be computed using the adjunction formula

e(Y ) = deg
c(TX )∩ [Y ]

c(NY |X )
=
∫
X

n−r

∑
i=0

∑
α∈Zr

|α|=n−i−r

(−1)|α|ci(X)[Y1]α1+1 . . . [Yr]αr+1.
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If Y is singular the situation becomes much more complicated, the above formula
does not hold anymore. In fact the topological Euler characteristic is not determined
by the cohomological classes [Yi]. The number

ẽ(Y ) =
∫
X

n−r

∑
i=0

∑
α∈Zr

|α |=n−i−r

(−1)|α |ci(X)[Y1]α1+1 . . . [Yr]αr+1

can be considered as the “expected Euler characteristic” of Y and is equal to
the degree of the Fulton–Johnson class cFJ (see [10, Examp. 4.2.6] or [11]). The
actual Euler characteristic e(Y ) equals the degree of the Schwartz-MacPherson
class cSM. The difference (up to a sign convention) of these two numbers
is called the Milnor number and is equal to the degree of the Milnor class
M (Y ) := (−1)dimY (cFJ(Y )− cSM(Y )). The notion of the Milnor number goes back
to Milnor’s work ([15]) where the formula for the Milnor number of isolated hyper-
surface singularities was given. Milnor number and Milnor class were studied by
many authors (see f.i. [1, 3, 4, 16, 18]).

The aim of this paper is to give a method for computing the difference between
the degree of the Fulton–Johnson class ẽ(Y ) and the Euler characteristic e(Ỹ ) of
a non–singular model Ỹ of Y . We shall consider a non–singular model satisfying
the following property: there is a sequence of blowing-ups with smooth centers
σ : X̃ −→ X such that Ỹ ⊂ X̃ is the strict transform of Y and moreover it is the
intersection of strict transforms Ỹi of Yi (then Ỹ is also a complete intersection).

We shall study separately every blow–up. If σ : X̃ −→ X is a blow–up of a
smooth (irreducible) subvariety C ⊂ X , then from the formula for Chern classes of
a blow–up ([10, Thm. 15.4]) it follows (Prop. 1) that ẽ(Ỹ )− ẽ(Y ) is a polynomial in
c(NC|X ), c(C), [Yi]∩C, multC Yi (and the polynomial depends only on dimX , dimY
and dimC).

We do not write explicit formulae for ẽ(Ỹ )− ẽ(Y ) for arbitrary values of
dimX , dimY and dimC. The reason is that the general formula is very complicated
even for small values of dimX , dimY and dimC. We shall show instead that for
explicit values of dimX , dimY, dimC the formula for ẽ(Ỹ )− ẽ(Y ) can be written
down explicitly. It is quite easy to compute those formulae with a computer.

Our method is based on expression of the top Fulton–Johnson class in terms
of cohomologies of certain sheaves of differential forms on X with poles at a snc
divisor supported on the sum of hypersurfaces intersecting at Y . This allows us to
consider a smooth ambient space and then study the behavior of those sheaves under
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blow–up at a smooth subvariety. We used a similar method to study the Hodge
numbers of certain hypersurfaces (cf. [5, 6, 8, 19])

Under the additional assumption that the projectivized normal cone P(NC|Y ) to
Y in C is a complete intersection of the normal cones P(NC|Yi) to Yi in C we can in a
similar manner compute its Euler characteristic e(P(NC|Y )) and so also e(Ỹ )−e(Y ).
In this case we can compute not only the Euler characteristic of a smooth model of
Y but also of Y itself. If we can find a stratification of C such that over every stratum
the Euler characteristic of the fiber of the projection P(NC|Y )−→C is constant, then
the computation of e(P(NC|Y )) is reduced to computation of Euler characteristics
of subvarieties of Pn−dimC−1.

In fact we study the homological Euler characteristic χ(Ω i
Ỹ ), so using similar

methods we can compute other invariants of Ỹ like f.i. arithmetic genus, signature
or more generally the χy–genus.

2 Blow–up of the Fulton–Johnson class

Let X be a complete smooth algebraic manifold (over C) of dimension n and let
Y1, . . . ,Yr ⊂ X be reduced divisors such that Y = Y1 ∩ ·· · ∩Yr is a complete inter-
section (i.e. Y is reduced and dimY = n− r). Consider σ : X̃ −→ X a blow–up of
a smooth subvariety C ⊂ X of dimension d, let E be the exceptional divisor of σ .
Denote by Ỹi := σ

∗Yi−miE the strict transform of Yi by σ , where mi = multC Yi.
Assume that Ỹ = Ỹi∩·· ·∩ Ỹr is also a complete intersection.

Proposition 1 For any natural numbers n,r,d there exists a polynomial Wn,r,d with
integer coefficients s.t.

ẽ(Ỹ )− ẽ(Y ) =
∫

C
Wn,r,d

(
c(NC|X ),c(C), [Y1]∩C, . . . , [Yr]∩C,m1, . . . ,mr

)
.
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Proof We have

ẽ(Ỹ )− ẽ(Y ) =

=
∫
X̃

n−r

∑
i=0

∑
α∈Zr

|α|=n−i−r

(−1)|α |ci(X̃)[Ỹ1]α1+1 . . . [Ỹr]αr+1−

−
∫
X

n−r

∑
i=0

∑
α∈Zr

|α|=n−i−r

(−1)|α |ci(X)[Y1]α1+1 . . . [Yr]αr+1 =

=
∫
X̃

(
n−r

∑
i=0

∑
α∈Zr

|α |=n−i−r

(−1)|α |ci(X̃)[Ỹ1]α1+1 . . . [Ỹr]αr+1−

−σ
∗(n−r

∑
i=0

∑
α∈Zr

|α |=n−i−r

(−1)|α |ci(X)[Y1]α1+1 . . . [Yr]αr+1))

(1)

By [10, Thm. 15.4]
c(X̃)−σ

∗c(X) = i∗[ρ∗c(C) ·α],

where ρ : E = P(NC|X ) −→ C is the natural projection (and the restriction of σ ),
i : E −→ X̃ is the inclusion and

α =
1
ζ

[
n−d

∑
k=0

ρ
∗cn−d−k(NC|X )− (1−ζ )

n−d

∑
k=0

(1+ζ )k
ρ
∗cn−d−k(NC|X )

]
,

(ζ = c1(OE(1)) is the generator of the cohomology ring of P(E)), substituting the
above and Ỹi = σ∗Yi−miE into (1) and using the properties of the cohomology ring
H∗(P(E)) we get the required assertion.

Remark 1 The same result holds in fact for the total class cFJ(Ỹ )−σ
∗cFJ(Y ).

Remark 2 The polynomial Wn,r,d is isobaric of degree d in c(NC|X ), c(C), [Yi]∩C
and of degree less than or equal to n in m1, . . . ,mr.

3 Differential forms

The computations in the proof of Proposition 1 use calculations in the cohomology
ring H∗(P3(E)), and so they are not suitable for deriving explicit formulae. In this
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section we shall use another approach. The Euler characteristic of a smooth com-
plete variety Y can be expressed in terms of sheaves of differential forms on Y

e(Y ) = ∑
i
(−1)i

χ(Ω i
Y ).

This formula follows either from the Hodge decomposition or

cdimY (Y ) = ∑
i
(−1)i ch(Ω i

Y )

and the Hirzebruch–Riemann–Roch theorem ([13, Thm. 21.1.1]).

If Y is a smooth hypersurface in a smooth projective variety X then for any p≥ 1
we have the following exact sequences ([9, Prop. 2. 3])

0−→Ω
p
X −→Ω

p
X (logY )−→Ω

p−1
Y −→ 0

0−→Ω
p
X (logY )(−Y )−→Ω

p
X −→Ω

p
Y −→ 0,

where Ω
p
X (logY ) is the (locally free) sheaf of differential forms with loga-

rithmic poles along Y and Ω
p
X (logY )(−Y ) = Ω

p
X (logY ) ⊗ OX (−Y ). The map

Ω
p
X (logY ) −→ Ω

p−1
Y is given by the Poincare residue, Ω

p
X −→ Ω

p
Y is the restric-

tion whereas Ω
p
X −→Ω

p
X (logY ) and Ω

p
X (logY )(−Y )−→Ω

p
X are inclusions.

Playing with the above exact sequences we get

χ(OY ) = χ(OX )− χ(OX (−Y ))

χ(Ω 1
Y ) = χ(Ω 1

X )− χ(Ω 1
X (−Y ))− χ(OX (−Y ))+ χ(OX (−2Y )).

and more generally, for any locally free sheaf F on X and any p = 0, . . . ,n−1

χ(Ω p
Y ⊗F ) =

p

∑
q=0

(−1)q
[
χ(Ω p−q

X (−qY )⊗F )− χ(Ω p−q
X (−(q+1)Y )⊗F )

]
.

If Y = Y1 ∩ ·· · ∩Yr is a transversal intersection of smooth divisors then we can
inductively get a representation of e(Y ) as a linear combination (with integer coef-
ficients) of χ(Ω p

X (−(q1Y1 + · · ·+qrYr))).

Observe that all the summands in the above formula make sense for any divi-
sors Y1, . . . ,Yr, not necessarily smooth. If Y is an arbitrary complete intersection the
above formula gives the degree of the Fulton–Johnson class ẽ(Ỹ ). Our goal is to
compute ẽ(Ỹ )− ẽ(Y ), in order to do this we have to study

χ(Ω1
X̃(−(q1Ỹ1 + · · ·+qrỸr))− χ(Ω 1

X (−(q1Y1 + · · ·+qrYr))),
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so it is enough to compute for an effective line bundle L on X and non–negative
integers m, p the numbers

Dp(L ,m) := χ(Ω p
X̃ ⊗σ

∗L −1⊗OX̃ (mE))−χ(Ω p
X ⊗L −1).

Let k = n− d be the codimension of C in X . Denote by N := NC|Y the normal
bundle of C in Y , by N ∨ its dual and by SlN the l–th symmetric power of N . We
have the following obvious relations

Proposition 2

σ∗OX̃
∼= OX ,

Riσ∗OX̃ = 0 for i > 0,

OX̃ (E)⊗E ∼= OE(−1).
σ∗(OE(l))∼= SlN ∨, for l ≥ 0,

σ∗(OE(l)) = 0, for l < 0,

Riσ∗(OE(l)) = 0, for i 6= 0,k−1,

Rk−1σ∗(OE(l)) = 0, for l >−k,
Rk−1σ∗(OE(l))∼= S−l−kN ⊗

∧k N , for l ≤−k.

Moreover the following “relative Euler sequence”

0−→Ω
p
E/C −→ σ

∗(
∧p N ∨)⊗OE(−p)−→Ω

p−1
E/C −→ 0

is exact.

From the above Proposition and the projection formula we get the following

Corollary 1 Riσ∗Ω
p
E/C(l) = 0 unless

(i) i = p and l = 0,

(ii) i = 0 and l ≥ p+1,

(iii) i = k−1 and l ≤−k.
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Moreover

Ri
σ∗Ω

i
E/C
∼= OC,

0−→ σ∗Ω
p
E/C(l)−→

∧p N ∨⊗Sl−pN ∨ −→

−→
∧p−1 N ∨⊗Sl−p+1N ∨ −→ . . .−→ SlN ∨ −→ 0,

0−→ Rk−1
σ∗Ω

p
E/C(l)−→

∧p N ∨⊗Sp−l−kN ∨⊗
∧k N −→

−→
∧p−1 N ∨⊗Sp−l−k−1N ∨⊗

∧k N −→ . . .

. . .−→ S−l−kN ⊗
∧k N −→ 0.

Proposition 3 For a non–negative integer m we have

1. σ∗OX̃ (mE)∼= OX ,

2. Rk−1σ∗OX̃ (mE)∼=
m−k⊕
j=0

S j(N )⊗
∧k N ,

3. Riσ∗OX̃ (mE) = 0, for i 6= 0,k−1.

Proof The case m = 0 is obvious. The general case follows by induction from the
previous Proposition and the direct image functor applied to the exact sequence

0−→OX̃ ((m−1)E)−→ OX̃ (mE)−→OE(−m)−→ 0.

We shall compute Dp(L ,m) using the Leray spectral sequence, so we need to study
the direct images Ri

σ∗Ω
p
X̃ , for which the description of σ

∗
Ω

p
X is crucial. If σ is a

blow–up of a point then

σ
∗
Ω

p
X
∼= Ω

p
X̃ (logE)(−pE).

and so we have for p = 0, 1

σ
∗OX ∼= OX̃

0−→ σ
∗
Ω

1
X −→Ω

1
X̃ −→Ω

1
E/C −→ 0.

The latter follows easily from the following exact sequences

0−→Ω 1
X̃ (logE)(−E)−→Ω 1

X̃ −→Ω 1
E −→ 0

0−→Ω 1
X̃ (logE)(−E)−→ σ∗Ω 1

X −→ σ∗Ω 1
C −→ 0

0−→ σ∗Ω 1
C −→Ω 1

E −→Ω 1
E/C −→ 0
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For higher values of p the formulae become much more complicated. For p = 2 we
have

0−→Ω 2
X̃ (logE)(−2E)−→Ω 2

X̃ (−E)−→Ω 2
E(1)−→ 0

0−→Ω
2
X̃ (−E)−→Ω

2
X̃ (logE)(−E)−→Ω

1
E(1)−→ 0

0−→Ω 2
X̃ (logE)(−E)−→Ω 2

X̃ −→Ω 2
E −→ 0

The kernel of the map Ω2
E −→ Ω 2

E/C contains σ∗Ω 2
C, which is a proper submodule

with quotient isomorphic to Ω
1
E/C⊗σ

∗
Ω

1
C. Consequently we can write the following

relation in the Grothendieck K0 group

[Ω2
X̃ ] = [Ω 2

X̃ (logE)(−2E)]+ [Ω 2
E/C(1)]+ [σ∗Ω 2

C(1)]+ [Ω 1
E/C(1)⊗σ

∗
Ω

1
C]+

+ χ(Ω1
E/C(1))+ χ(σ∗Ω 1

C(1))+ χ(Ω2
E/C)+ χ(σ∗Ω 2

C)+ χ(Ω 1
E/C⊗σ

∗
Ω

1
C)

In a similar way the kernel of the map σ
∗
Ω

2
X̃ −→ Ω

2
X̃ (logE)(−2E) contains

σ∗Ω1
C(1)⊕σ∗Ω2

C with quotient isomorphic to Ω 1
E/C(1)⊗σ∗Ω 1

C⊕σ∗Ω 2
C(1).

Putting the above formulae together we get

[Ω 2
X̃ ]− [σ∗Ω 2

X ] = [Ω 1
E/C(1)]+ [Ω 2

E/C]+ [Ω 2
E/C(1)]+ [Ω 1

E/C⊗σ
∗
Ω

1
C]. (2)

The above formula can be also easily verified in local coordinates, if we denote by
x1, . . . ,xk,yk+1, . . . ,yn local coordinates in X such that x1, . . . ,xk is a local equation
of C and consider the affine chart on X̃ in which the blow–up σ is given by

σ : (x1,x2, . . . ,xk,yk+1, . . . ,yn) 7→ (x1,x1x2, . . . ,x1xk,yk+1, . . . ,yn).

Now, σ∗Ω 2
X is a locally free module generated (locally) by x1dx1 ∧ dxi(i > 1),

x2
1dxi ∧ dx j(i < j), dx1 ∧ dyi,x1dxi ∧ dy j(i > 1), dyi ∧ dy j(i < j). So the quotient

Ω 2
X̃/σ∗Ω 2

X (which is supported on E) is a locally free sheaf generated (locally) by
restrictions to E of dx1∧dxi(i > 1), dxi∧dx j(i < j), dxi∧dx j(i < j) twisted by the
conormal bundle of E, dxi∧dy j(i > 1). Although we can recognise the above forms
as generators of the vector bundles on the right-hand side of the above formula, we
cannot write the quotient as the direct sum because in general Ω 1

E does not split as
the direct sum of Ω 1

C and Ω 1
E/C. Consequently we have to write the formula in the

Grothendieck Ko group.
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In the same way we can prove the following formula for any p≥ 0:

Proposition 4

[Ω p
X̃ ] = [σ∗Ω p

X ]+
p−1

∑
k=1

k

∑
i=1

[Ω k
E/C(i)⊗σ

∗
Ω

p−k−1
C ]+

p

∑
k=1

k−1

∑
i=0

[Ω k
E/C(i)⊗σ

∗
Ω

p−k
C ].

Using the above Proposition we can easily get formulae for Dp(L ,0). We shall
write down only formulae for p ≤ 2, as for bigger values of p they become more
complicated.

Theorem 5 Let m > 0 be a positive integer.

(1) D0(L ,0) = 0,

(2) D1(L ,0) =−χ(L −1⊗OC),

(3) D2(L ,0) =

−χ(L −1⊗Ω 1
C) if k = 2

−χ(L −1⊗Ω 1
C)+ χ(L −1⊗OC) if k > 2

(4) D0(L ,m) = (−1)k−1
m−k

∑
j=0

χ(L −1⊗S jN ⊗
∧k N ),

(5) D1(L ,m) = (−1)k−1

[
m−k

∑
j=0

χ(Ω1
C⊗L −1⊗S jN ⊗

∧k N )+

+
m−k+1

∑
j=0

χ(N ∨⊗L −1⊗S jN ⊗
∧k N )− χ(L −1⊗Sm−kN ⊗

∧k N )

]

(6) D2(L ,m) = (−1)k−1

[
m−k

∑
j=0

χ(Ω2
C⊗L −1⊗S jN ⊗

∧k N )+

+
m−k+1

∑
j=0

χ(N ∨⊗Ω
1
C⊗L −1⊗S jN ⊗

∧k N )+

+
m−k+2

∑
j=0

χ(
∧2 N ∨⊗L −1⊗S jN ⊗

∧k N )+

+χ(L −1⊗Sm−kN ⊗
∧k N )− χ(N ∨⊗Sm−k+1N ⊗

∧k N ⊗L −1)

−χ(L −1⊗Sm−kN ⊗
∧k N ⊗Ω

1
C)
]

Proof We shall give proofs of the most complicated assertions (3) and (6), proofs
of other assertions are similar (but much simpler). Tensoring the equality (2) with
the line bundle σ∗L −1⊗OX̃ (mE) we get
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[σ∗(Ω 2
X ⊗L −1)⊗OX̃ (mE)] = [Ω 2

X̃ ⊗σ
∗L −1⊗OX̃ (mE)]+

+[Ω1
E/C(1−m)⊗σ∗L −1]+ [Ω 2

E/C(−m)⊗σ∗L −1]+

+[Ω2
E/C(1−m)⊗σ∗L −1]+ [Ω 1

E/C(−m)⊗σ∗(Ω 1
C⊗L −1)].

Compute the Euler characteristic, apply the direct image functor and use Corol-
lary 1. Observe, that we have to consider separately the cases m = 0 and m = 1,
because then we have to compute R1σ∗Ω

1
E/C and R2σ∗Ω

2
E/C. The assertion follows

by simple computations.

Remark 3 The numbers on the righthand sides of the formulae in the above Theorem
represent the holomorphic Euler characteristics of certain locally free sheaves on
C. They can be computed using the Hirzebruch–Riemann–Roch Theorem, so the
numbers can be expressed (for fixed m) in terms of the Chern classes of the center
of the blowing–up C, the normal bundle NC|X and the restriction to C of the line
bundle L .

Example 1 If C is a point then the holomorphic Euler characteristic of any locally
free sheaf on C equals its rank, the sheaf Ω

p
C of p–forms (p > 0) on C is a zero–sheaf.

Simple computations yields

D0(L ,m) = (−1)k−1
(

m
k

)
D1(L ,m) = (−1)k−1

[
k
(

m+1
k

)
−
(

m−1
k−1

)]
D2(L ,m) = (−1)k−1

[(
k
2

)(
m+2

k

)
+
(

m−1
k−1

)
− k
(

m
k−1

)]
Example 2 If C is a curve then the holomorphic Euler characteristic of
any locally free sheaf F on C equals by the Riemann–Roch theorem
deg(c1(F )) + r(1− g), where r is the rank of F , g is the genus of C. Moreover
we have c1(T ⊗F ) = rankF · c1(T ) + rankT · c1(F ), rankS jN =

( j+2
2

)
and

c1(S jN ) =
( j+2

3

)
c1(N ).

If X is a threefold (i.e. the codimension k of the curve C in X is 2) simple com-
putations give
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D0(L ,m) =
1
2
(m2−m)(c1(L ) ·C)+

1
6
(−m3 +m)c1(N )+

+
1
4
(−m2 +m)c1(C),

D1(L ,m) =
1
2
(3m2−m+2)(c1(L ) ·C)+

1
2
(−m3−m)c1(N )+

+
1
4
(−m2−m−2)c1(C)

Similarly if k = 3 (i.e. C is a curve in a fourfold X) then

D0(L ,m) =
1
6
(−m3 +3m2−2m)(c1(L ) ·C)+

+
1

24
(m4−2m3−m2 +2m)c1(N )+

1
12

(m3−3m2 +2m)c1(C),

D1(L ,m) =
1
3
(−2m3 +3m2−4m+3)(c1(L ) ·C)+

+
1
6
(m4−m3 +2m2−2m)c1(N )+

1
6
(m3 +2m−3)c1(C)

Already for the case of C being a surface the formulae become very complicated and
it is very difficult to write them down directly. On the other hand for m big they are
integer valued polynomials in m, the Riemann–Roch theorem allows to represent
them as polynomials in Chern roots of N , TC and OX (Y ) so we can use computers
to find Dp(L ,m) for a few values of m and, then interpolate this to get the formula
for arbitrary m.

Example 3 Using this approach we computed with a computer that for dim(C) = 2,
dim(X) = 4

D0(L ,m) =
( 1

24 m4− 1
12 m3− 1

24 m2 + 1
12 m

)
c2 (N )+

+
(
− 1

24 m2 + 1
24 m

)
c2 (C)+

(
− 1

24 m2 + 1
24 m

)
c2

1 (C)+

+
(
− 1

4 m2 + 1
4 m
)

c2
1(L )C +

( 1
6 m3− 1

6 m
)

c1(L )c1(N )+

+
( 1

4 m2− 1
4 m
)

c1(L )c1 (C)+
(
− 1

24 m4 + 1
24 m2)c2

1 (N )+

+
(
− 1

12 m3 + 1
12 m

)
c1 (C)c1 (N )

D1(L ,m) =
( 1

6 m4− 1
6 m3 + 5

6 m2 + 1
6 m
)

c2(N )+

+
( 1

3 m2− 5
12 m− 1

12

)
c2(C)+

(
− 1

6 m2 + 1
12 m− 1

12

)
c2

1(C)+

+
(
−m2 + 1

2 m− 1
2

)
c2

1(L )C +
( 2

3 m3 + 1
3 m
)

c1(L )c1(N )+

+
( 1

2 m2 + 1
2

)
c1(L )c1(C)+

(
− 1

6 m4− 1
3 m2)c2

1(N )+

+
(
− 1

6 m3− 1
3 m
)

c1(C)c1(N )
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4 Euler characteristic computation

Using the results from previous sections we can write down the formula for the num-
ber ẽ(Ỹ )− ẽ(Y ). The actual formula depends on the dimensions of X , Y and C. Let us
first consider the case of a hypersurface (i.e. r = 1). We have e(Y ) = ∑i(−1)iχ(Ω i

Y ),
moreover by Serre duality χ(Ω i

Y ) = (−1)n−1
χ(Ω n−1−i

Y ) for any smooth variety of
dimension n−1.

4.1 Hypersurface

Theorem 6 If Y is a surface in a threefold X and m is the multiplicity of Y along C
then

ẽ(Ỹ )− ẽ(Y ) =


−m3 +2m2 if dimC = 0

(3m2−2m−1)YC +(−m3 +1)c1(N )+ if dimC = 1

+(−m2 +m)c1(C)

Proof Since Y is a surface we have

ẽ(Y ) = 2χ(OX )− χ(OX (−Y ))− χ(OX (−2Y ))− χ(Ω 1
X )+ χ(Ω 1

X (−Y ))

and consequently

ẽ(Ỹ )− ẽ(Y ) = χ(OC)−D0(L ,m)−D0(L ⊗2,2m)+D1(L ,m),

where L = OX (Y ).

Theorem 7 If Y is a threefold in a fourfold X then

ẽ(Ỹ )− ẽ(Y ) =



m4−3m3 +2m2 +2m if dimC = 0

(−m3 +2m2)c1(C)+(−m4 +m3+ if dimC = 1

+m2−m)c1(N )+(4m3−6m2 +2)YC(
−m4 +m3 +2m2)c2(N )+ if dimC = 2

+
(
m2−m

)
c2(C)+

(
6m2−3m−1

)
Y 2C+

+
(
−4m3 +2m

)
Y c1(N )+

(
−3m2 +2m+1

)
Y c1(C)+

+
(
m4−m2)c2

1(N )+
(
m3−m

)
c1(C)c1(N )
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Proof As Y is a threefold

ẽ(Y ) = 2χ(OX )−2χ(OX (−2Y ))−2χ(Ω 1
X )+2χ(Ω 1

X (−Y ))

and
ẽ(Ỹ )− ẽ(Y ) = 2χ(OC)−2D0(L ⊗2,2m)+2D1(L ,m).

Remark 4 In case we are interested in computing the Euler number of Y itself (not
of a smooth model of it), we have to subtract from ẽ(Ỹ )− ẽ(Y ) the difference
e(Ỹ )−e(Y ) (for every blow–up σ ). But outside the exceptional divisor E = Exc(σ)
the mapping σ is an isomorphism, so

e(Ỹ )− e(Y ) = e(Ỹ ∩E)− e(C).

The exceptional divisor is a projective bundle over C, hence a smooth manifold of
dimension n− 1 and Ỹ ∩E is a hypersurface in E . Iterating the above we are able
to compute Ỹ ∩E and hence e(Y ). Moreover studying a resolution of Ỹ ∩E we can
find a stratification Si of C such that over each stratum the Euler characteristic of
fibers of projection Ỹ ∩E −→ C is constant. Since the fibers of Ỹ ∩E −→ C are
hypersurfaces in a projective space Pn−k−1, we are reduced to computing the Euler
characteristic of hypersurfaces in projective spaces of dimension smaller than n−1
and closures S̄i of the strata.

4.2 Higher codimension complete intersections

When r ≥ 2 then the formulae for Wn,r,d become very complicated even for small
value of n,r,d. For instance when Y = Y1∩Y2 then

χ(OY ) = χ(OX )− χ(OX (−Y1))− χ(OX (−Y2))+ χ(OX (−Y1−Y2)),

χ(Ω 1
Y ) = χ(Ω 1

X )− χ(Ω 1
X (−Y1))− χ(Ω1

X(−Y2))+ χ(Ω 1
X (−Y1−Y2))+

−χ(OX (−Y1))− χ(OX (−Y2))+ χ(OX (−2Y1))+ χ(OX (−2Y2))+

+2χ(OX (−Y1−Y2))− χ(OX (−2Y1−Y2))− χ(OX (−Y1−2Y2)).

So if n = 3 (i.e. Y is a curve) and C is a point

e(Ỹ )− e(Y ) = W3,r,0(m1,m2) = m1m2(m1 +m2−2).



112 Sławomir Cynk

The assumption we made on the resolution of Y in fact concerns not only the
variety Y itself but also its representation as a complete intersection of divisors
Y := Y1∩·· ·∩Yr as can be observed in the following trivial example

Example 4 Let Y1 = {x ∈ P5 : x1x2− x3x4 + x2
5 = 0},Y2 = {x ∈ P5 : x5 = 0}, then

blowing–up the point [1 : 0 : 0 : 0 : 0] we get the strict transform of Y = Y1 ∩Y2 a
(smooth) transversal intersection of strict transforms Ỹ1∩ Ỹ2.

On the other hand Y is also the complete intersection of divisors
Y ′1 = {x ∈ P5 : x1x2− x3x4 + x0x5 = 0} and Y2. Now, both divisors are smooth and
tangent at [1 : 0 : 0 : 0 : 0], so the intersection of their strict transforms under blow–up
at [1 : 0 : 0 : 0 : 0] equals the sum of the strict transform of Y and the projectivization
of the common tangent space.

In our considerations we did not assume that the center of blow–up is contained
in the singular locus of Y . On the other hand in the opposite case, the computations
did not take into account the singularities of Y lying on C. For instance, if a normal
threefold Y contains a smooth surface C, then C is a Cartier divisor on the smooth
part of Y , but it may fail to be Cartier at singular points. In this situation the blow–
up of C is not an isomorphism and the above formulae give some description of the
singularities of Y lying on C.

Example 5 Let Y be a nodal threefold in a smooth, projective fourfold X , assume
that C is a smooth surface containing all nodes of Y . Then the blowing up of C
is a small resolution of Y . Since the Milnor number of a node is 1 and the small
resolution of a node replaces a point by a line, increasing the Euler number by one,
Theorem 7 yields the following formula for the number of singular points of Y :

c2(N )+Y 2C−Y c1(N ).

If C ⊂ Pn is any smooth projective surface, then by [14, Thm. 2.1] a general com-
plete intersection of hypersurfaces of sufficiently large degree satisfies the above
assumptions. If moreover C is a complete intersection of hypersurfaces of degrees
e1, . . . ,en−2, Y is a complete intersection of hypersurfaces of degrees d1, . . . ,dn−3,
then the formula reads(

∑
i< j

eie j−∑
i< j

did j +
(n−3

∑
i=1

di

)2

−
(n−3

∑
i=1

di

)(n−2

∑
i=1

ei

))
e1 . . .en−2
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5 The χy–genus

The presented method computes in fact the holomorphic Euler characteristics of the
sheaves Ω

p
Ỹ . So we can compute with them also the χy–genus of Ỹ defined as

χy(Ỹ ) =
n

∑
p=0

χ(Ω p
Ỹ )yp

and hence some other numerical invariants like f.i. arithmetic genus
pa(Ỹ ) = χ(OỸ ) = χ0(Ỹ ), signature τ(Ỹ ) = χ1(Ỹ ). More generally the χy–
genus is defined for any vector bundle W on Ỹ by a similar formula
χy(Ỹ ,W ) = ∑

n
p=0 χ(Ω p

Ỹ ⊗W )yp. We can apply the presented formulae to compute
χy(W ) for any vector bundle on Ỹ of the form W := σ∗V ⊗OX̃ (mE) for V a vector
bundle on X .
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1992.
10. W. Fulton, Intersection theory, Springer–Verlag, 1984.
11. W. Fulton, K. Johnson, Canonical classes on singular varieties, Manuscripta Math. 32 (1980),

no. 3-4, 381–389.
12. R. Hartshorne, Algebraic geometry. Springer 1977.
13. F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer 1978.
14. G. Kapustka, Primitive contractions of Calabi-Yau threefolds. II. J. Lond. Math. Soc. (2) 79

(2009), no. 1, 259–271.



114 Sławomir Cynk

15. J. Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61
Princeton University Press, 1968.
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Cremona special sets of points in products of
projective spaces
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Abstract A set of points in the projective plane is said to be Cremona special if its
orbit with respect to the Cremona group of birational transformations consists of
finitely many orbits of the projective group. This notion was extended by A. Coble
to sets of points in higher-dimensional projective spaces and by S. Mukai to sets of
points in the product of projective spaces. No classification of such sets is known in
these cases. In the present article we survey Coble’s examples of Cremona special
points in projective spaces and initiate a search for new examples in the case of
products of projective spaces. We also extend to the new setting the classical notion
of associated points sets.
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1 Introduction

Let Wp,q,r denote the Coxeter group defined by the Coxeter graph of type Tp,q,r.

We will be interested in the cases when the group Wp,q,r is infinite. It follows
from the classification of finite reflection groups that Wp,q,r is infinite if and only if
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• • • • • • •

•

•

•

. . .. . .

...

sp sp+1

s1

s2

sp−1

sp+q+r−1

1
p + 1

q + 1
r ≤ 1. Finite groups Wp,q,r are known to be isomorphic to the Weyl groups

of root systems of type A2×A1,An,D5,E6,E7,E8.

It has been known since the fundamental work of A. Coble [2], [4] that the
groups W2,q,r act birationally on the configuration spaces of ordered q+ r points in
Pq modulo projective transformations. Roughly speaking, the subgroup generated
by the generators sp, . . . ,sp+q+r−1 acts by permutations of points and the additional
generator sp−1 acts via the standard Cremona transformation of degree q which in-
verts the coordinates of each point. The stabilizer subgroup of the orbit of a points
set can be interpreted as a group of pseudo-automorphisms of the variety obtained
by blowing-up this set. Here a pseudo-automorphism means a birational automor-
phism which is an isomorphism outside of a closed subset of codimension ≥ 2. For
example, if q = 2, the group of automorphisms of the blow-up surface becomes iso-
morphic to a subgroup of the Coxeter group W2,3,r. This result, sometimes attributed
to M. Nagata [22], goes back to S. Kantor [18], A. Coble [2], and P. Du Val [12].

It is known that, for a general points set, the automorphism group of the blow-up
surface is trivial [15], but in a special case it could be very large in the sense that
it is realized as a subgroup of finite index in W2,3,r. Coble was the first to initiate
a search of points sets in projective spaces which are special in the sense that the
pseudo-automorphism group of the blow-up variety is realized as a subgroup of
finite index in W2,q,r. For example, a set of points in the projective plane is special
if its orbit with respect to the Cremona group contains only finitely many orbits
with respect to the projective group. Coble gave several examples of special sets in
the plane and in three-dimensional space. Among these examples is the set of base
points of a pencil of plane cubic curves, or the set of nodes of a rational plane sextic,
or the set of nodes of a Cayley symmetroid quartic surface. A modern treatment of
Coble’s theory can be found in [9].

A generalization of the Coble representation of W2,q,r in the group of birational
automorphisms of X2,q,r to a representation of an arbitrary Coxeter group Wp,q,r on
the configuration spaces of ordered points sets in the product of projective spaces
was recently given by S. Mukai [21]. He applied this to the construction of new
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counter-examples to Hilbert’s 14th Problem about finite generation of rings of in-
variants. The purpose of the paper is to initiate a search of special sets of points in
this new setting. We also extend the classical notion of association of points sets in
projective space to points sets in the product of projective spaces.

2 The Cremona action of Wp,q,r

We define the configuration space of ordered sets of q + r points in the product of
projective spaces Pp,q := (Pq−1)q+r to be the GIT-quotient

Xp,q,r = (Pp,q)q+r//SL(q)p−1,

where the group SL(q)p−1 acts naturally on the product Pp,q and diagonally
on the product (Pp,q)q+r. We choose a democratic linearization on the product
(Pp,q)q+r ∼= (Pq−1)(p−1)(q+r) defined by the invertible sheaf O(1)�(p−1)(q+r). To ex-
clude the trivial cases, we assume that p,q,r > 1. The variety Xp,q,r is an irreducible
rational variety of dimension D = (p−1)(q−1)(r−1).

The group Sp−1×Sq+r acts naturally on Xp,q,r by permuting the p−1 factors of
Pp,q and q+ r factors of (Pp,q)q+r. It is realized as the subgroup of Wp,q,r generated
by the Coxeter generators s1, . . . ,sp−2 and sp, . . . ,sp+q+r−1. Following Coble, Mukai
extends this action to a homomorphism

crp,q,r : Wp,q,r→ Bir(Xp,q,r)∼= AutC(C(z1, . . . ,zD)) (1)

by defining the action of the remaining generator sp−1 and checking that the rela-
tions between the generators are preserved. Recall that the standard Cremona trans-
formation T in projective space Pq−1 is a birational transformation given by the
formula

z = [z0, . . . ,zq] 7→ [z−1
0 , . . . ,z−1

q ]. (2)

We extend T to the product (Pq−1)p−1 by the formula

(z(1), . . . , z(p−1)) 7→
(

[
1

z(1)
0

, . . . ,
1

z(1)
q−1

], [
z(2)

0

z(1)
0

, . . . ,
z(2)

q−1

z(1)
q−1

], . . . , [
z(p−1)

0

z(1)
0

, . . . ,
z(p−1)

q−1

z(1)
q−1

]
)

. (3)

A general points set can be represented in Xp,q,r by a unique ordered points set
(p1, . . . , pq+r) with the first q+1 points equal to the reference points

[1,0, . . . ,0], . . . , [0, . . . ,0,1], [1, . . . ,1].
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We use projective transformations in each copy of Pq−1 to assume that the projec-
tions of the first q+1 points p1, . . . , pq+1 are the reference points in Pq−1. Then we
apply T to the rest of the points. Note that T is not defined at the intersections of
the pull-backs of coordinate hyperplanes in the first factor Pq−1. One checks that
this action of generators preserves the defining relations of the Coxeter group and
defines the homomorphism (1). We call this homomorphism the Cremona action of
Wp,q,r.

Let P be an ordered set of q+ r distinct points in Pp,q and let

πP : VP → Xq+r

be its blow-up. We consider VP up to a birational isomorphism which is an iso-
morphism outside a closed subset of codimension≥ 2 (a pseudo-isomorphism). The
action of such a birational isomorphism on the group H2(VP ,Z)∼= Pic(VP) is well-
defined. Denote by Ei ∼= Ppq−p−q the exceptional divisor over the point pi and let
ei = [Ei] be its class in H2(VP ,Z). Let pri : Pp,q→ Pq−1 be the projection to the i-th
factor and hi = [π∗(pr∗i (H))], where H is a hyperplane in Pq−1. Then

h1, . . . ,hp−1,e1, . . . ,eq+r

form a basis of H2(VP ,Z). We call it a geometric basis. Let

h1, . . . ,hp−1,e1, . . . ,eq+r

be its dual basis in H2(VP ,Z). We can realize it by taking −ei to be the class of a
line in Ei and hi to be the homology class of a line in Pq−1 embedded in Pp,q under
the inclusion map in the i-th factor ιi : Pq−1→ (Pq−1)p−1. Let

α1 = hp−2−hp−1, . . . ,αp−2 = h1−h2, (4)

αp−1 = h1− e1− . . .− eq,

αp = e1− e2, . . . ,αp+q+r−2 = eq+r−1− eq+r,

and

α
1 = −hp−2 +hp−1, . . . ,α p−2 =−h1 +h2,

α
p−1 = (q−2)h1 +(q−1)h2 + . . .+(q−1)hp−1 + e1 + . . .+ eq,

α
p = e2− e1, . . . ,α p+q+r−2 =−eq+r−1 + eq+r.

We immediately check that the matrix (αi,α
j)+2Ip+q+r−2 is the incidence matrix

of the graph Tp,q,r. The two bases
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α = (α1, . . . ,αp+q+r−2), α
∨ = (α1, . . . ,α p+q+r−2)

form a root basis. The Weyl group of this root basis acts on H2(VP ,Z) (resp. on
H2(VP ,Z)) as the group generated by the simple reflections

si : x→ x +(x,α i)αi (resp. si : y→ y+(y,αi)α i).

Let e = e1 + . . .+ eq+r. It is immediately checked that

1≤ i≤ p−2 : si(hi) = hi+1, s(h j) = h j, j 6= i, i+1,

si(e j) = e j, j = 1, . . . ,q+ r,

i = p−1 : si(h1) = (q−1)h1− (q−2)e,

si(h j) = h j +(q−1)(h1− e), j 6= 1,

si(e j) = h1− e+ e j, 1≤ j ≤ q, si(e j) = e j, j > q.

i > p : si(h j) = h j, j = 1, . . . , p−1,

si(ep−1+i) = ep+i, si(e j) = e j, j 6= p−1+ i, p+ i.

It follows that the Weyl group is isomorphic to the Coxeter group Wp,q,r with Coxeter
generators si.

Note that the following vectors are preserved under the action:

KVP
= −q(h1 + . . .+hp−1)+(pq− p−q)(e1 + . . .+ eq+r) ∈H2(VP ,Z),

kVP
= −q(h1 + . . .+hp−1)+ e1 + . . .+ eq+r ∈H2(VP ,Z).

One recognizes in KVP
the canonical class of VP . One can check that α is a basis of

the orthogonal complement of kVP
in H2(VP ,Z) and α∨ is a basis of the orthogonal

complement of KVP
in H2(VP ,Z).

Another way to look at this is to define a linear map

H2(VP ,Z)→ H2(VP ,Z), γ → γ
∨,

on the basis (hi,e j) by

hi 7→ (q−1)(h1 + . . .+hp−1)−hi, i = 1, . . . , p−1, ei 7→ −ei, i = 1, . . . ,q+ r.

Then x · y := (x,y∨) defines a structure of a quadratic lattice on H2(VP ,Z) with
the Gram matrix in the basis (h1, . . . ,hp−1,e1, . . . ,eq+r) given by block-sum of the
square matrix
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Ap,q :=


q−2 q−1 q−1 . . . q−1
q−1 q−2 q−1 . . . q−1

...
...

...
...

...
q−1 q−1 q−1 . . . q−2


and the matrix −Iq+r. The signature of this lattice is equal to (1, p+q+ r−2) and
the discriminant is equal to (−1)q+r(pq− p−q). We have

K∨VP
= (pq− p−q)kVP

,

so k⊥VP
is mapped onto K⊥VP

and

K2
VP

= (pq− p−q)(pqr− pq− pr−qr).

This implies that the sublattice k⊥VP
with a basis α is an even lattice of signature

(t+,t−) (or (t+,t−,t0) if t0 6= 0):

sign(Ep,q,r) =


(0, p+q+ r−2) if pqr− pq− pr−qr > 0,

(0, p+q+ r−3,1) if pqr− pq− pr−qr = 0,

(1, p+q+ r−3) otherwise.

The group Wp,q,r is finite if and only if pqr− pq− pr− qr > 0 and it contains an
abelian subgroup of finite index if and only if pqr− pq− pr−qr = 0.

It is convenient to introduce an abstract quadratic lattice Ip,q,r defined in a basis
(h1, . . . ,hp−1,e1, . . . ,eq+r) by the matrix Ap,q⊕−Iq+r, a vector

Kp,q,r =−q(h1 + . . .+hp−1)+(pq− p−q)(e1 + . . .+ eq+r),

and the sublattice
Ep,q,r := (Kp,q,r)⊥.

with a canonical basis (α1, . . . ,α p+q+r−2), where α i are expressed in terms
of (h1, . . . ,hp−1,e1, . . . ,eq+r) by formulas (4). We also define the Weyl group
W (Ep,q,r) as the group of orthogonal transformations of the lattice Ep,q,r generated
by reflections with respect to the vectors α i:

si : x 7→ x+(x ·α i)α i.

This is the Coxeter group corresponding to the Tp,q,r-graph. For simplicity of nota-
tion, we set W (Ep,q,r) = Wp,q,r.
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A choice of a geometric basis in H2(VP ,Z) defines a geometric marking of VP ,
i.e. an isometry of lattices ϕ : Ip,q,r→H2(VP ,Z) such that ϕ(Kp,q,r) = KVP

. Under
this isometry the lattice Ep,q,r is mapped onto K⊥VP

.

It is easy to see that Wp,q,r acts transitively on the root basis α of Ep,q,r. An
element of the Wp,q,r-orbit of any element from the canonical basis is called a root.
A root is called positive if it can be written as a linear combination of the canonical
basis with non-negative coefficients. One can show that any root α is either positive
or −α is positive.

Lemma 2.1 Let α = ∑
p−1
i=1 dihi − ∑

q+r
j=1 mie j be a positive root. Let

d = d1 + . . .+dp−1. Suppose that one of the numbers di is positive. Then

(i) qd = ∑
q+r
j=1 m j;

(ii) (q−1)d2−∑
p−1
i=1 d2

i −∑
q+r
k=1 m2

k =−2;

(iii) (q−1)d−d1 < m1 + . . .+mq, if m1 ≥m2 ≥ . . .≥mq+r and d1 ≤ . . .≤ dp−1;

(iv) assume d > 0, then di ≥ 0, i = 1, . . . , p−1, and m j ≥ 0, j = 1, . . . ,q+ r.

Proof The first equality follows from the condition that α ·Kp,q,r = 0. The second
one follows from the condition that α2 =−2.

(iii) The ordering of the coefficients implies that α ◦α i ≥ 0 for i 6= p− 1. One
checks that

α ·α p−1 = (q−1)d−d1−
q

∑
j=1

m j. (5)

Assume the inequality does not hold. Then α ·α i ≥ 0 for all αi. This means that α

belongs to the fundamental chamber of the root system. The proof that it is impos-
sible is the same as in the proof of the corresponding statement for the case p = 2
in [9], p. 75.

(iv) It is checked immediately that d ≥ 0 for a positive root. Let us use induction
on d. Assume d = 1. Then (i) and (ii) give

1−
p−1

∑
j=1

d2
i =

q

∑
j=1

m j(mi−1).

The left-hand side is non-positive, the right-hand-side is non-negative. This gives
that one of the di is equal to 1, all others are zeros. Also, m j = 1 or 0. This checks
the assertion.
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It is known that si transforms the set of positive roots with α i deleted to a subset
of positive roots (see [17], Lemma 1.3). Applying si, i 6= p−1, we may assume that
that di’s and m′j are ordered as in (iii). Using (5), we obtain

α
′ = sp−1(α) =

p−1

∑
i=1

d′ihi−
q+r

∑
j=1

m′ie j, (6)

where

d′1 = (q−1)d−
q

∑
j=1

m j,

m′j = (q−1)d−d1− (m1 + . . .+mq−m j), j = 1, . . . ,q,

and all other di’s and m j’s are unchanged. By (iii), we obtain that d′1 < d1, and
hence d′ = ∑d′i < d. If ∑d′i > 0, we are done by induction. Assume that d′ = 0.
Then (i) and (ii) give 2− ∑d2

i = ∑m2
j . This gives the following possibilities

α
′ = hi−h j,ei− e j, i < j. But then α = sp−1(α ′) satisfies (iv) and (v).

Note that a vector in Ip,q,r satisfying (i)-(iv) from the lemma is not necessarily a
root. An example in the case p = 2,q = 3 is given in [9].

Lemma 2.2 Let α be a root in Ep,q,r and ∆(α) be the subset of Pp,q that consists
of points sets such that ϕP(α) is effective. Then ∆(α) is a closed proper subset of
Pp,q.

Proof If α = α i or its transform under si, i 6= p− 1, the assertion is obvious. The
root α i, i < p− 1, is never effective, the roots α i, i > p− 1, are effective only if
some points coincide, and α p−1 is effective only if the first q + 1 points are in a
hyperplane. A points set for which all such roots are not effective will be called a
regular point set. It follows from Lemma 2.1 that, for roots α with d = ∑di > 0,
the condition that its image is effective reads as the condition of the existence of a
hypersurface of multi-degree (d1, . . . ,dp−1) passing through the points pi ∈P with
multiplicity≥mi. Obviously it is a closed condition. Assume ∆(α) = Pp,q for some
α with ∑di > 0. Without loss of generality, we may assume that m1 ≥ . . . ≥ mq+r

and d1 ≤ . . .≤ dp−1. Also we may assume that P is a regular set. Now we take Q

from the projective equivalence class of crp,q,r(sp−1)([P]). Then ϕQ(sp−1(α)) is an
effective root (the transform under T of the hypersurface defining ϕP(α)). Property
(iii) of a positive root together with (6) implies that the hypersurface defined by the
root ϕQ(sp−1(α)) has multi-degree (d′1, . . . ,d

′
p−1) with d′ = ∑d′i < d. Now we can

use induction on d. We know that ∆ (sp−1(α)) is a proper subset, hence we find a
regular Q such that the root sp−1(α) is not effective.
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Definition 1 A points set P is called unnodal if under the geometric marking
ϕP : Ip,q,r→ Pic(VQ) defined by P, no root is mapped to an effective divisor class.

It follows from Lemma 2.2 that the set of unnodal points sets is the complement
of the union of proper closed subsets ∆ (α), where α is a positive root in Ep,q,r. This
set is infinitely countable if the lattice Ep,q,r is not negatively definite.

Note that we do not know whether the closed subsets ∆ (α) are hypersurfaces in
Pp,q when α is a root different from α i, i 6= p−1. It is true in the cases when Pp,q is
a surface.

Proposition 1 Let P be an unnodal point set. Then, for any w∈Wp,q,r, the marking
wϕ := ϕ ◦w−1 is a geometric marking on VP defined by the points set Q such that
crp,q,r([P]) = [Q].

Proof Let P be a regular set of points. We use that, for Coxeter generator
si ∈Wp,q,r, crp,q,r(si) is defined at [P]. If si 6= sp−1, then siϕP = ϕQ , where Q

is obtained from P by either permuting the points, or as the image of an automor-
phism of Pp,q permuting the (p−1) factors. If i = p−1, then [Q] is defined by the
points set (3), where T is the standard Cremona transformation of Pp,q. Note that
the divisor classes E ′i representing sp−1(ei), i = 1, . . . ,q, are not contractible on VP

if dimPp,q > 2. However, they become contractible when we apply to VP a pseudo-
isomorphism. The geometric marking corresponding to a points set Q representing
crp,q,r(si)([P]) is equal to siϕ . So, if we show that Q is again a regular set, we are
done.

Let l(w) be the minimal length of w as the product of Coxeter generators. This
is well-defined in any Coxeter group. Let us prove by induction on l(w) that the
image of a geometric basis defined by P under w is a geometric basis. Write w as
the product of generators sik · · ·si1 , where k = l(w). Assume i1 6= p−1. Then, as we
have already observed, si1 transforms a geometric basis to a geometric basis. It is
defined by a regular points set Q such that crp,q,r(si1)([P]) = [Q].

Assume i1 = p− 1. Consider the birational transformation crp,q,r(sp−1) of
Xp,q,r. It transforms the point [P] corresponding to a normalized points set
P = (p1, . . . , pq+1, . . . , pq+r) to the point [Q], where

Q = (p1, . . . , pq+1,T (pq+2), . . . ,T (pq+r)) = (p′1, . . . , p′q+r).

Assume that Q is not regular. If it does not satisfy the first condition of regular-
ity, then some points in this set coincide. But this could happen only if one of the
points pi, i > q + 1, in P lies in an exceptional divisor of T (i.e. the closure of



124 Igor V. Dolgachev

points which are mapped to the set of indeterminacy of T−1 = T ). It is easy to see
that this set consists of the union of the pre-images of hyperplanes in the first copy
of Pq−1 which are spanned by all points pr1(p1), . . . ,pr1(pq+1) except one, say p j .
Since h1− e1− . . .− eq + e j− ei is not an effective divisor, the images of the points
{p1, . . . , pq, pi} \ {p j} under the first projection are not contained in a hyperplane.
So the new points set Q consists of distinct points. Next assume that the second con-
dition of regularity is not satisfied. This means that the projections of some points
p′j1 , . . . , p′jq+1

to some t-factor lie in a hyperplane. Applying crp,q,r(si),1≤ i≤ p−2,

we may assume that t = 1. It follows from the definition of the transformation T that
T ∗(h1) = 2h1− e1− . . .− eq. It agrees with the action of sp−1 on the geometric ba-
sis. If the points p′j1 , . . . , p′jq+1

are projected to a hyperplane in the first factor, then
the pre-image of this hyperplane under T is an effective divisor in the class

2h1− e1− . . .− eq− e j1 − . . .− e jq+1 = sp−1(h1− e j1 − . . .− e jq+1),

where we replace e jk with ei if jk = i for some i ≤ q. Since h1− e j1 − . . .− e jq+1 is
a root, and sp−1(h1− e j1 − . . .− e jq+1) is again a root, it cannot be effective. This
proves that si1 is well defined on [P] and transforms it to [Q], where Q is a regular
point set. It remains to apply induction on l(w).

Proposition 2 Let P be an unnodal points set and w ∈ Wp,q,r be such that
crp,q,r(w)([P]) = [P]. Then there exists a pseudo-automorphism τ : VP−→ VP

such that w = ϕ
−1
P ◦ τ∗ ◦ϕP .

Proof Let σ : VP → Pp,q be a birational morphism contracting the divisors
E1, . . . ,Eq+r to points p1, . . . , pq+r ∈P. Then there exists a pseudo-automorphism
Φ : VP− → V ′P and a contraction σ ′ : V ′P → Pp,q of divisors E ′i to the same set
of points P such that Φ∗(E ′i) = ϕP ◦w ◦ ϕ

−1
P . Since two blow-ups of the same

closed subscheme are isomorphic, there exists an isomorphism Ψ : VP− → V ′P
which sends Ei to E ′i . The composition τ = Φ ◦Ψ−1 : VP− → VP is a pseudo-
automorphism of VP whose existence is asserted in the Proposition.

Corollary 1 Let P be an unnodal set in Pp,q. Then the stabilizer subgroup

(Wp,q,r)P := {w ∈Wp,q,r : crp,q,r(w)([P]) = [P]}

is isomorphic to a subgroup of the group Autps(VP) of the group of pseudo-
automorphisms of VP .

Let Φ ∈ Autps(VP) and let Φ
∗ be its action on H2(VP ,Z). We say that Φ is

Cremona-like if there exists w ∈Wp,q,r such that
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w = ϕ
−1
P ◦Φ

∗ ◦ϕP .

Let Autcr(VP) be the subgroup of Autps(VP) of Cremona-like transformations. We
have a natural homomorphism

Autcr(VP)→Wp,q,r, Φ 7→ ϕ
−1
P ◦Φ

∗ ◦ϕP .

It is clear that its kernel is isomorphic to the group of automorphisms of VP lifted
from automorphisms of Pp,q.

Remark 1 In the case p = 2,q = 3, one can prove, using Noether’s Theorem on
generators of the planar Cremona group, that Autcr(VP) = Aut(VP).

It seems that A. Coble [2] and S. Kantor [19] claimed that
Autcr(VP) = Autps(VP) in the cases p = 2 and q is arbitrary. Their claim
was based on their theory of punctual or regular Cremona transformation of Pq−1.
A punctual Cremona transformation is a product of projective transformations
and the standard Cremona transformations. By Noether’s Theorem, any planar
Cremona transformation is punctual. Kantor says that a Cremona transformation
Φ of P3 has no fundamental curves of the 1st kind if the graph of Φ transforms
any fundamental curve to a fundamental curve of the inverse transformation.
He claimed that any such transformation is punctual (citing from [16], p. 318:
“the so-called proof is admittedly “gewagt”, and merits a stronger adjective”).
Another “equivalent definition” ([13], p. 192) of a punctual transformation requires
that all base conditions follow from conditions at points. No rigorous proof of
equivalence of these definitions is available. What we need is to prove (or disprove)
the following assertion:

Let σi : VPi− → Pp,q be two blow-up varieties and Φ : VP1− → VP2

be a pseudo-isomorphism. Then the Cremona transformation
σ2 ◦ Φ ◦ σ

−1
1 : Pp,q− → Pp,q is a composition of the standard transformation

(3) and automorphisms of Pp,q.

3 Examples of Cremona special sets

Definition 2 A points set P is called Cremona special if the image Autcr(VP)∗ of
Autcr(VP) in Wp,q,r is a subgroup of finite index.
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Since the condition is vacuous when Wp,q,r is a finite group, we will additionally
assume that Wp,q,r is an infinite group.

All examples of Cremona special sets that I know use the theory of abelian
fibrations that I remind below.

Let Y be a smooth projective variety over a field L. There exists an abelian variety
Alb0(Y ) and a torsor Alb1(Y ) over Alb0(Y ) satisfying the universal property for
morphisms of Y to torsors over an abelian variety [23], [25]. If Y (K) 6= /0, then
Alb0(Y ) = Alb1(Y ) is the Albanese variety Alb(Y ) of Y . The dual abelian variety
of Alb0(Y ) is isomorphic to the (reduced) Picard variety Pic0

Y/K . We say that Y

is an abelian torsor if the canonical map Y → Alb1(Y ) is an isomorphism. In the
simplest case when dimY = 1, this means that Y is a smooth curve of genus 1, and
Alb0(Y ) = Pic0

Y/K is its Jacobian variety.

Let f : X → S be a projective morphism of irreducible varieties. We assume that
S is smooth and X is Q-factorial with terminal singularities. Assume that a generic
fibre Xη is an abelian torsor over the field of rational functions K = κ(η) of S.
Moreover, assume that f is relatively minimal in the sense that KX ·C ≥ 0 for any
curve C contained in a fibre. Let A = Alb1(Xη), the group A(K) acts biregularly on
Xη via translations

ta : x 7→ x+a, x ∈ Xη(K̄),a ∈A(K).

This action defines a birational action on X , and, the condition of minimality implies
that the action embeds A(K) into the group Autps(X) of pseudo-automorphisms of
X [20], [24], Lemma 6.2.

Assume that the class group Cl(X) of Weyl divisors is finitely generated of rank
ρ (e.g. X is a unirational variety as it will be in all applications). Let

rη : Cl(X)→ Cl(Xη)∼= Pic(Xη)

be the restriction homomorphism. By taking the closure of any point of codimension
1 in Xη , we see that this homomorphism is surjective. Let Pic0(Xη) = Pic0

Xη /K(K)
be the subgroup of Cartier divisor classes of algebraically equivalent to zero. Then
we have an exact sequence of finitely generated abelian groups

0→ Clfib(X)→ Cl(X)0→ Pic(Xη)0→ 0,

where Clfib(X) is the subgroup of Cl(X) generated by the classes of Weil divisors
∑niDi such that codim f (Di) ≥ 1. Since the dual abelian varieties are isogenous,
we obtain that the group A(K) is finite generated. In the case when Xη(K) 6= /0,
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hence Xη
∼= A, the group A(K) is called the Mordell-Weil group of the fibration. We

keep this terminology in the general case and denote the group A(K) by MW( f ).
Counting the ranks, we obtain the Shioda-Tate formula

rank MW( f ) = rank Cl(X)−1− rank Cl(S)− ∑
s∈S(1)

(#Irr(Xs)−1), (7)

where S(1) is the set of points of codimension 1 in S and Irr(Xs) is the set of irre-
ducible components of the fibre Xs.

Example 1 Assume p = 2,q = 3, hence r ≥ 6. The known examples in these cases
are due to A. Coble [1], [4]. The first example is an Halphen set of index m, the set
of 9 base points of an irreducible pencil of curves of degree 3m with nine m-multiple
base points (an Halphen pencil of index m). The proper transform of the pencil in
VP is the linear system |−mKVP

|. We assume that all fibres are irreducible which
is equivalent to the condition that the set P is unnodal. When m = 1 this can be
achieved by assuming that no three points are collinear ([24], Lemma 3.1). Let C be
the unique cubic curve passing through the base points p1, . . . , p9. We assume that
C is nonsingular. Obviously, this is an open condition on P . If we fix a group law
on C with an inflection point as the zero, then the condition that P is an Halphen
set of index m is that the points pi add up in the group law to a point of order m. Let

a : Z9→C, (m1, . . . ,m9) 7→ m1 p1 + . . .+m9 p9,

where the sum is taken in the group law on C. Assume that a(m) 6= 0 for any vector
m = (m1, . . . ,m9) with (m−m1, . . . ,m−m9) ∈ Z9

≥0 and m1 + . . .+m9 < 2m. This is
an open condition on P that guarantees that there are no curves of degree d < 2m
with singular points at the point pi of multiplicity mi. Now, if D is a reducible mem-
ber of the pencil, one of its parts has degree < 2m and passes through the pi with
some multiplicity mi as above. By assumption, this is impossible, so all members
of the pencil are irreducible, and stay the same when we blow-up the nine points.
Since all (−2)-curves on VP are contained in fibres, we obtain that P is unnodal.
Let f : VP → P1 be the elliptic fibration defined by the Halphen pencil. Applying
the Shioda-Tate formula, we find that the rank of the Mordell-Weil group is equal
to 8. Thus Z8 embeds into Autps(VP) = Aut(VP). The known structure of W2,3,6

shows that the image is a normal subgroup of finite index. More detailed analysis
of the action gives that the quotient group is isomorphic to (Z/8Z)8oW2,3,5 (see
[15]).

In the second example, P is a Coble set, the ten nodes p1, . . . , p10 of an ir-
reducible rational plane curve of degree 6. The proper inverse transform C of the
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sextic is equal to the anti-bicanonical linear system | − 2KVP
|. The double cover

of VP branched along C is a K3-surface which can be considered as a degenera-
tion of the étale double cover of an Enriques surface. One uses the period theory
of Enriques surfaces to show that the locus of Coble sets is irreducible. Also, using
some lattice-theoretical methods from [8], one can show that there are only finitely
many closed conditions on P (in fact, exactly 496 conditions) that guarantee that
P is an unnodal set. Let C ob⊂ P10

2 be the subset of projective equivalence classes
of unnodal Coble sets. This is a locally closed subset invariant with respect to the
Cremona action. Let

cr2,3,7 : W2,3,7→ Aut(C ob)

be the action homomorphism. Its kernel is a normal subgroup of W2,3,7. Observe
that any subset of 9 points in P is an Halphen set of index 2, The Halphen pencil
is generated by the sextic curve and the unique cubic curve through the 9 points
taken with multiplicity 2. Conversely, a Coble set is obtained from an Halphen set
of index 2 by choosing a singular member of the pencil, its singular point is the
tenth point of the set. Fix two points, say p1 and p2 and let F1 and F2 be the proper
transforms in VP of the cubic curves through p3, . . . , p10 and pi, i = 1,2. The linear
system |2Fi| is a pencil, the proper transform of the corresponding Halphen pencil.
We have Fi ·F2 = 1 so that (2F1 + 2F2)2 = 8. One can show that the linear system
|2F1 +2F2| defines a degree two map from VP onto a quartic Del Pezzo surface in
P4 with 4 ordinary double points. The image of the curve C is one of these nodes.
The deck transformation of the cover defines an isometry of the lattice K⊥VP

∼= E2,3,7

which is conjugate to the isometry − idE2,3,5⊕ idU , where E2,3,7 ∼= U ⊕E2,3,5 is an
orthogonal decomposition into the sum of two unimodular sublattices. It is known
that the normal subgroup of W2,3,7 containing this isometry has finite quotient group
isomorphic to O(10,F2)+ [7], Theorem 2.10.1.

Recently, in a joint work with S. Cantat, we were able to prove the following.

Coble also constructed examples of Cremona special sets in P3.

Then it  is either anTheorem 1 Let P be a Cremona special set in the plane.
Halphen set, or a Coble set, or a set of ≥10 points on an irreducible cuspidal curve 

>in characteristic p 0.
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Example 2 The first series of examples are analogs of Halphen sets. One considers
an elliptic normal curve C of degree 4 in P3 equipped with the group law defined by
a choice of an osculating point. Choose 8 points P = {p1, . . . , p8} on C in general
position which add up to a point of order m in the group law. Then one shows that
there exists a surface F2m of degree 2m with m-multiple points at p1, . . . , pm which
does not belong to the family of surfaces of the form Gm(q1,q2) = 0, where Gm

is a homogeneous polynomial of degree m and q1 and q2 are quadratic forms in
3 homogeneous coordinates in P3 such that C = V (q1)∩V (q2). The linear system
|OP3(2m)−m(p1 + . . .+ pm)| defines a regular map

f : VP → Pm+1.

Its image is the projective cone over a Veronese curve of degree m in Pm. The image
of C is the vertex of the cone. If we fix a nonsingular quadric Q in the pencil of
quadrics V (λq1 + µq2), then the restriction of the linear system to Q is a pencil of
elliptic curves of degree 4m with eight m-multiple points. Thus a general fibre of f
is an elliptic curve. If we blow-up the proper transform of C in VP , we obtain an
elliptic fibration

f ′ : V ′P → Fm;

the fibres over the points on the exceptional section of Fm are m-multiple elliptic
curves. The case m = 1 corresponds to a well-known set of Cayley octads, the com-
plete intersection of three quadrics. It is discussed in detail in [9]. By choosing the
set P general enough, as in the example of Halphen sets, we find that all fibres over
points of codimension 1 are irreducible. Since rank Pic(V ′P = 10, rank Pic(Fm) = 2,
applying the Shioda-Tate formula (2), we obtain that rank MW( f ′) = 7. Thus the
kernel of cr2,4,4 contains a normal subgroup isomorphic to Z7. It is known to be a
normal subgroup of W2,4,4. If m = 1, the quotient group is isomorphic to W2,3,4. If
m > 1 it must be isomorphic to (Z/mZ)7oW2,3,4; however, I confess that I have not
checked this.

The second series of examples generalizes a Coble set. It is the set of 10 nodes
of a symmetric determinantal quartic surface (Cayley symmetroid). This example
has been worked out in detail in an unpublished manuscript [7] (see also [8]). The
group of pseudo-automorphisms of VP contains a normal subgroup of W2,4,6 with
quotient isomorphic to Sp(8,F2).

Here are some new examples in the cases p > 2.

Example 3 Take p = q = r = 3, so that W3,3,3 is the affine Weyl group of type E6. We
are dealing with the set of 6 points in P2×P2 modulo PGL3×PGL3. Consider the



130 Igor V. Dolgachev

subsets P = (x1, . . . ,x6) such that dim |h1 +h2− x1− . . .− x6|= 3 (one more than
expected). It is known that this is equivalent to that the two projections of P to P2

are associated sets of 6 points in the plane [10]. It is known that the variety of such
pairs modulo projective equivalence is isomorphic to an open subset of P4 [9]. Since
(h1 + h2)4 = 6, for a general set P , the linear system L = |h1 +h2− x1− . . .− x6|
has P as its set of base points, hence defines a morphism

f : VP → P3 (8)

whose general fibre is the intersection of three divisors of type (1,1), hence is an
elliptic curve. The exceptional divisors E1, . . . ,E6 are disjoint sections of this fibra-
tion.

The restriction of f over a general line ` in P3 defines an elliptic fibration
f` : V`→ P1, where V` is the blow-up of 6 points in a complete intersection of two
divisors in |h1 +h2| in P2×P2. The latter is known to be isomorphic to a Del Pezzo
surface of degree 6, the blow-up of three non-collinear points in the plane embedded
into P8 by the linear system of plane cubics through the three points. Thus f` is an
elliptic fibration obtained from an Halphen pencil of index 1.

Let ∆ ⊂ P3 be the locus of points x ∈ P3 such that f−1(x) is a singular fibre.
Assume that P is general enough so that ∆ is reduced. It follows from the the-
ory of elliptic fibrations that reducible fibres f−1(x) over points of codimension
1 lie over singular points of ∆ of codimension 1. Thus, under our assumption all
such fibres are irreducible. We may apply the Shioda-Tate formula to obtain that
rank MW( f ) = 6. Thus the action of the Mordell-Weil group defines a subgroup in
the kernel of cr3,3,3 isomorphic to Z6. This is known to be a normal subgroup of
finite index with quotient isomorphic to W2,3,3. A subgroup of finite index has only
finitely many orbits in the set of roots of E3,3,3. This shows that the infinitely many
discriminant subvarieties of X3,3,3 restrict to finite many subvarieties on the open set
of points [P] such that the elliptic fibration (8) has reduced discriminant surface
∆ . It remains to check that the set of such points is open in the set of points [P]
with dim |h1 + h2− x1− . . .− x6| = 3. For this it is enough to show that this set is
non-empty. This can be done by explicit computation by taking a sufficiently gen-
eral pair of associated sets of 6 points in the plane (see more about the association
in the next section).

Example 4 Take p = q = 3,r = 4. We are dealing with the set of 7 points in P2×P2

modulo PGL3 × PGL3. The linear system of hypersurfaces of bi-degree (2,2) is
of dimension 35. If we take 7 general points p1, . . . , p7 , then we expect a unique
hypersurface with double points at the pi’s. However, there is a pencil L of hyper-
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surfaces of bi-degree (1,1) through these points, so there will be a 2-dimensional
linear system N of hypersurfaces of bi-degree (2,2) with double points at points
at L . Let us consider a set P of 7 points such that there exists a hypersurface Z
of bi-degree (2,2) with double points at p1, . . . , p7 which does not belong to N .
Let C be the intersection of Z with the base surface of the pencil L . It is a curve
of arithmetic genus 7 with 7 double points, hence it is a rational curve. We have
−KVP

= 3(h1 + h2− e1− . . .− e6), hence [C] = (− 2
3 KVP

)3, so the locus of points
[P] in X3,3,4 with the above property is invariant with respect to the Cremona action.

Let Pi = P \ {pi}. The linear system of hypersurfaces of bi-degree (1,1)
through Pi is of dimension 2 and the linear system of hypersurfaces of bi-degree
(2,2) is of dimension 6 and contains Z. Then we get a rational map

fi : VPi → P6

with the image equal to the cone S over the Veronese surface. Its fibres are elliptic
curves, the proper transforms of curves of arithmetic genus 7 with 6 double points.
The exceptional divisors Ei are 2-sections of the elliptic fibration fi. This is all sim-
ilar to the example of a Coble set so that fi is an analog of the Halphen pencil
of index 2 through 9 double points out of ten nodes of the Coble sextic. An elliptic
curve F over a field K and a point x0 ∈ F of degree 2 defines a degree 2 map F→ P1

over K. It is given by the linear series |x0|. We apply this to our situation to obtain a
birational involution σi of VPi over S. This involution extends to the localization of
fi over any point s ∈ S(1). This implies that σi is a pseudo-automorphism of order 2.
This involution is defined at the point pi and extends to a pseudo-automorphism σ̃i

of VP . Following the analogy with Coble sets, I speculate that any two involutions
σ̃i, σ̃ j commute and the product σ = σ̃i ◦ σ̃ j defines an involution of K⊥VP

∼= E3,3,4

conjugate to the involution − idE2,3,3⊕ idU , where E2,3,3 and U are orthogonal sum-
mands ofE3,3,4. Also I speculate that the normal subgroup of W3,3,4 generated by this
involution is of finite index in W3,3,4 and generates the 2-level congruence subgroup
W3,3,4(2). It will follow then that the quotient group is isomorphic to O(6,F2)− (see
[7], Theorem 2.9.1).

4 Association

Examples of Cremona special sets of points in higher-dimensional spaces Pn can be
obtained by the classical construction called the association (in modern time known
as the Gale transform). It is discussed in detail in [9] or [14]. To give an idea, one
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considers a linear map Cq+r+1→Cq+1 defined by the matrix with columns equal to
projective coordinates of the points. The kernel of this linear map is isomorphic to
Cr+1, and the transpose map defines a map Cq+r → Cr+1 representing q + r points
in Pr. This is well-defined on the projective equivalence classes of ordered points
sets. The association defines an isomorphism of GIT-quotients

as : X2,q,r→ X2,r,q.

The Coble action of W2,p,q ∼=W2,q,r commutes with the association so that the image
of a Cremona special set in Pq is a Cremona special set in Pr. However, to see
explicitly the action is rather non-trivial geometric problem.

The following nice example is due to B. Totaro [24].

Example 5 Let p1, . . . , p9 be the image of an Halphen set of index 1 under a Veronese
map P2 → P5. This set is associated to the set P(see [3], Thm. 20, [11], Proposi-
tion 5.4). Consider the linear system of cubic hypersurfaces with double points at
p1, . . . , p9. Its dimension is equal to 3 and its base locus consists of 45 curves:36
lines through pi, p j, and 9 rational normal curves through all points except one. Let
VP−→ P3 be the corresponding rational map. Its base locus consists of 45 disjoint
P1’s with normal bundle OP1(−1)4. One can perform a flip on these curves giving
another smooth 5-fold W in which the 45 curves are replaced with 45 smooth three-
dimensional subvarieties Si isomorphic to P3 with normal bundle OP1(−1)2. Now
we have a morphism Φ : W → P3 with general fibre isomorphic to an abelian sur-
face. The subvarieties Si are sections and generate the Mordell-Weil group of rank
8. The exceptional divisors Ei cut out on the fibres twice a principal polarization.
The abelian fibration Φ is relatively minimal in the sense that KW ·C = 0 for any
curve contained in a fibre. This implies that the translations by sections act on W
by pseudo-automorphism [20]. Thus Autps(VP) ∼= Autps(W ) contains a subgroup
isomorphic to Z8. It is known that the such a group must be of finite index in W2,3,6.

The associated set of the set P = {p1, . . . , p10} of 10 nodes of a quartic sym-
metroid surface is a set of 10 points in P5 which is equal to the intersection of two
Veronese surfaces [3], Theorem 26. The secant variety of a Veronese surface is a
cubic hypersurface singular along the surface. This shows that the associated set
Q = {q1, . . . ,q10} is contained in the base locus of a pencil of cubic hypersurfaces
with double points at the qi’s. The set of 9 points Qi = Q \{qi} is associated to the
set Σi of 9 points in the plane equal to the projection of the set Pi \ {pi} from pi

[9], Chapter 3, Prop. 4. It is known that the set Σi is equal to the set of base points
of a pencil of cubics. In fact, this property distinguishes Cayley symmetroids from
other 10-nodal quartic surfaces [6]. Thus any subset of 9 points Qi in Q is a set
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from Totaro’s example. Let Gi ∼= Z8 be the group of pseudo-automorphisms of VQi

defined by the Mordell-Weil of the corresponding abelian fibration. The point pi is
a singular point of one of its fibres and is a fixed point of Gi. Thus Gi extends to
a group of pseudo-automorphisms of VP . One may ask whether the subgroups Gi

generate a subgroup of finite index in W2,4,6. I do not know the answer.

Note that the permutation group S3 acts on the Weyl group Wp,q,r via permut-
ing (p,q,r). The relation between Xp,q,r and Xp,r,q is the product of p− 1 copies
of the association map. This defines an isomorphism as23 : Xp,q,r → Xp,r,q. The va-
rieties Xq,p,r and Xp,q,r are not isomorphic but there exists a natural birational iso-
morphism. In fact, let us consider Xp,q,r as the GIT-quotient of the product of p−1
copies of (Pq−1)q+r by PGL(q)p−1. Using PGL(q) in each copy we can fix the first
q + 1 points among q + r-points. The quotient becomes birationally isomorphic to
((Pq−1)r−1)p−1, which is birationally isomorphic to C(p−1)(q−1)(r−1). Now if we do
the same with Xq,p,r we obtain a birational model isomorphic to ((Pp−1)r−1)q−1.
which is birationally isomorphic to the same space C(p−1)(q−1)(r−1).

Example 6 Consider the set of Cayley octads in P3 as a generalized Halphen set of
index 1. This is a Cremona special set for W2,4,4. It is self-associated, with respect
to the symmetry of the Dynkin diagram. Now consider the set of 6 points q1, . . . ,q6

in (P1)3. It corresponds to (p,q,r) = (4,2,4). Make the six points Cremona special
by requiring that the linear system of divisors of type (1,1,1) containing P is of
dimension one larger than expected. The rational map given by this linear system
defines an elliptic fibration f : VP → P2. It has 6 disjoint sections defined by the
exceptional divisors E1, . . . ,E6. Applying the Shioda-Tate formula, we obtain that
the rank of the Mordell-Weil group is equal to 7. This is a subgroup of finite index
in W2,4,4.

Conjecture 1 Let σ ∈S3 and σ : Xp,q,r → Xσ(p),σ(q),σ(r) be the birational map de-
scribed above. Then

crσ(p),σ(q),σ(r) = σ ◦ crp,q,r ◦σ
−1.

It follows from this conjecture that the image of a Cremona special set of points
under the σ -association is a Cremona special set of points.
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Abstract We introduce an algebra of Schouten-commuting holomorphic polyvector
fields on the moduli space of stable G-bundles over a curve by using invariant forms
on the Lie algebra. The generators begin in degree three – we prove a vanishing
theorem for degree two in the case of G = GL(n).
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1 Introduction

The moduli space of stable bundles on an algebraic curve C is a much-studied object,
but there are still new things to learn about it. This paper introduces one more aspect
to study, and poses some conjectures about it.

Recall from [7] that, if M is such a moduli space, then its cotangent bundle T ∗M
defines a completely integrable Hamiltonian system. By this we mean that there
are dimM functionally independent holomorphic functions on T ∗M which Poisson-
commute and whose common level set is an open set in an abelian variety, on which
the Hamiltonian vector fields are linear. These functions are polynomial in the fi-
bre directions and can be understood on the moduli space M itself as holomorphic
sections of symmetric powers Symk T of the tangent bundle for various values of k.
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The fact that they Poisson commute is equivalent to the statement that the symmet-
ric tensors commute using the Schouten–Nijenhuis bracket, a natural extension of
the Lie bracket on vector fields.

We introduce here a skew-symmetric version of this, identifying holomorphic
sections of Λ kT for various values of k (so-called polyvector fields) which also
Schouten-commute. More precisely we note that at a smooth point of the moduli
space of stable holomorphic structures on a principal G-bundle, where G is a com-
plex simple Lie group, the cotangent space is isomorphic to H0(C,g⊗K) where g

denotes the adjoint bundle of Lie algebras. Given a bi-invariant differential form ρ

on G of degree k, then for Φi ∈ H0(C,g⊗K), ρ(Φ1, . . . ,Φk) defines a skew form
with values in the line bundle Kk. Dually, it defines a homomorphism

H1(C,K1−k)→ H0(M,Λ kT ).

By analogy with the symmetric case there are three obvious questions to ask:

• Is this map injective?

• Do these polyvector fields Schouten-commute?

• Is the algebra of all polyvector fields on M generated by these?

In this paper we restrict ourselves mainly to the rank one case where the only invari-
ant form is B([X ,Y ],Z) where B is the Killing form, but many of our results hold in
more generality. We answer in the positive the first question (for genus g > 2), and
show that for general reasons the answer is yes to the second. As to the third ques-
tion the Verlinde formula shows that the answer is no, though in the final section we
discuss some related issues.

What we do show, however, is that for g > 4, and in the case of vector bundles
with coprime degree and rank, there are no polyvector fields of degree two. The
vanishing in degree one is well-known [10], [7], so that the first degree where exis-
tence holds is precisely where our construction begins. Our proof of the vanishing
of H0(M,Λ 2T ) requires another feature of the moduli space, which was the original
motivation for this research. In [10], the authors used a holomorphic differential on
C to define on the moduli space a nontrivial extension

0→ T ∗ →
2g−2⊕
i=1

gxi → T → 0
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where gxi is the restriction of the universal adjoint bundle to M×{xi} and xi ∈C is
a zero of the differential. A considerable part of the paper consists of studying the
vector bundles E defined by these extensions in more detail.

The most important point is that the extension class lies in the skew-symmetric
part H1(M,Λ 2T ∗)⊂ H1(M,Hom(T,T ∗)) and realizes the known isomorphism be-
tween the space of differentials H0(C,K) and H1(M,Λ 2T ∗). This provides an or-
thogonal structure on E such that the subbundle T ∗ is maximal isotropic. We also
show that these bundles have a natural Courant algebroid structure arising from an
infinite-dimensional quotient construction.

One result we need is an isomorphism H1(M,T ⊗T ∗) ∼= H1(C,O), proved in
[3]. We shall see this isomorphism being realized as a deformation of the tangent
bundle of M by replacing H1(C,g) by H1(C,g⊗L) for a degree zero line bundle L.

2 Polyvector fields

2.1 The construction

We set up the basic framework in the case of a general simple Lie group G. Let C be
a compact Riemann surface and M be the moduli space of stable principal G-bundles
on C. At a smooth point of M the tangent space T is isomorphic to H1(C,g) where g

denotes the adjoint bundle, and its dual space T ∗ is, by Serre duality, H0(C,g⊗K).
We shall call sections Φ of g⊗K Higgs fields.

Evaluation of a Higgs field at x∈C defines a homomorphism from T ∗ to gx⊗Kx

and so a section
sx ∈H0(M,gx⊗T )⊗Kx.

If g now denotes the universal adjoint bundle over the product M×C, then vary-
ing x we get a tautological section

s ∈H0(M×C,g⊗ (T �K)).

Consider now the ring of bi-invariant differential forms on G. This is an exterior
algebra generated by basic forms whose degrees are given by ki = 2mi +1 where mi

are the exponents of the Lie algebra. For each generator σi we can evaluate on the
section
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s∧ki ∈ H0(M×C,Λ ki(g⊗ (T �K)).

to obtain

si ∈ H0(M×C,Λ ki T �Kki)∼= H0(M,Λ kiT )⊗H0(C,Kki)

or equivalently by Serre duality a homomorphism

A : H1(C,K1−ki)→H0(M,Λ ki T ). (1)

Examples:

1. The simplest invariant form for any G is σ(X ,Y,Z) = B([X ,Y ],Z) where B
is the Killing form. Thus the (5g− 5)-dimensional space H1(C,K−2) maps to
H0(M,Λ 3T ).

2. For each point x ∈ C, evaluation of a section of Kk at x (and a trivialization of
Kk

x ) defines a linear form on H0(C,Kki) and hence an element of its dual space
H1(C,K1−ki), so this defines a section σx ∈ H0(M,Λ kiT ).

2.2 Injectivity

If the map A in (1) for an invariant form σ of degree k has a non-zero kernel
then there is a class α ∈ H1(C,K1−k) such that for all G-bundles and Higgs fields
Φ1, . . . ,Φk

〈α,σ(Φ1, . . . ,Φk)〉= 0

where 〈 , 〉 is the Serre duality pairing. Thus for injectivity we need to show that the
sections σ(Φ1, . . . ,Φk) generate H0(C,Kk). Here for simplicity we restrict to the
rank one case.

Remark: We should make a remark here about which moduli spaces we are con-
cerned with. The setting for the problem is the space of stable principal G-bundles
modulo isomorphism, but the definition of the polyvector fields only depends on the
structure of the Lie algebra so it is really the adjoint group which is relevant here. In
the case of a linear group the most studied moduli space is that of vector bundles of
rank n and degree d with fixed determinant bundle. Especially important is the case
where n and d are coprime for the moduli space then is compact and smooth and has
a universal vector bundle. But it is the (singular) quotient of this by the operation of
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tensoring with a line bundle of order n which gives the adjoint bundle moduli space.
This point will become relevant in the final section.

Proposition 2.1 If g > 2 the map A is injective for G = SL(2) or SO(3).

Remark: The map is not injective for g = 2. In fact there are two spaces, P3 is
the moduli space of bundles for even degree and the intersection of two quadrics
in P5 for bundles of odd degree. In both cases these are acted on trivially by the
hyperelliptic involution τ on C , and in particular the action on sections of Λ3T is
trivial. But H0(C,K3) has both invariant and anti-invariant elements under τ .

Proof: There is just one invariant form here – the three-form σ given by
σ(X ,Y,Z) = B([X ,Y ],Z).

1. We begin with the even degree case, and we may consider a class to be represented
by a rank 2 vector bundle E with Λ 2E trivial. Consider first a non-trivial extension
of degree zero line bundles

0→ L→ E→ L∗ → 0 (2)

defined by α ∈ H1(C,L2). Take a point x ∈ C, and let t denote the tautological
section of O(x). The homomorphism L∗(−x)→ L∗ defined by the product with t
lifts to E if the class αt ∈H1(C,L2(x)) vanishes. The long exact sequence of

0→ OC(L2) t→ OC(L2(x))→Ox(L2(x))→ 0

gives
→ H0(C,L2(x))→ L2(x)|x→ H1(C,L2) t→H1(C,L2(x))→

so if H0(C,L2(x)) = 0 there is a unique α with this property – the image of a vector
in L2(x)|x under the connecting homomorphism. Moreover from the exact sequence
of (2) the lift is then unique.

The lift defines a section of Hom(L∗(−x),E) = EL(x). This is an inclusion un-
less it vanishes at x but if that were so, it would come from a section of EL and in
the long exact sequence of

0→ L2→ EL→ O → 0

we see that the generator of H0(C,O) maps to α ∈H1(C,L2) so if L2 is non-trivial,
H0(C,EL) = 0.

Hence if H0(C,L2(x)) = 0 (which implies L2 is non-trivial), the lift of
t : L∗(−x)→ L∗ to E gives another expression of E as an extension
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0→ L∗(−x)→ E→ L(x)→ 0.

If H0(C,L2(x)) 6= 0 then there is a point y such that the divisor class [L2]∼ y−x.
This defines a two-dimensional subvariety of the Jacobian and hence for g > 2 a
generic line bundle L has the property that for all x, H0(C,L2(x)) = 0.

From [9] a generic element in the (g +1)-dimensional space H1(C,L−2(−2x))
defines an extension as above which is a stable bundle. Thus, as we vary L and
x and the extension class, E belongs to a family whose generic member is stable.
Moreover, although E itself is not stable it is simple, i.e. it has no non-scalar endo-
morphisms. This means that the rank of H0(C,g⊗K) = 3g−3 for all bundles in the
family.

We shall show that, varying L and x, σ(Φ1,Φ2,Φ3) generates H0(C,K3) and
hence will do so in a generic family of stable bundles.

2. We now need to determine the Higgs fields for E. The adjoint bundle g is End0 E ,
the bundle of trace zero endomorphisms. We have an exact sequence

0→ E⊗LK→ End0 E⊗K→ L−2K→ 0

and so a section s of L−2K lifts to a Higgs field Φ1 if it maps in the long exact
sequence to zero in H1(C,E⊗LK). Now H1(C,L2K) is dual to H0(C,L−2) which
vanishes if L2 is non-trivial which means from the long exact sequence of (2) that
H1(C,E⊗LK)∼= H1(C,K) and so s ∈ H0(C,L−2K) extends if its product with the
extension class α ∈ H1(C,L2) vanishes. Choosing the class as above, this means
that s(x) = 0.

Now let Φ1 be a lift of s. In the exact sequence

0→ L2K→ E⊗LK→ K→ 0

since H1(C,L2K) = 0 the map H0(C,E⊗LK)→ H0(C,K) is surjective, so given
a section t of K we can find Φ2 a section of E ⊗LK ⊂ End0 E ⊗K such that Φ2

maps to t. Now choose Φ3 to be any section u of L2K ⊂ E⊗LK ⊂ End0 E⊗K. The
(3g−3)-dimensional space of Higgs fields can now be seen to be constructed from
s, in the (g− 2)-dimensional subspace of H0(C,L−2K) consisting of sections that
vanish at x, a choice of t in the g-dimensional space of differentials, and an arbitrary
section u in the (g−1)-dimensional space of sections of L2K.
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It is easy to see then that σ(Φ1,Φ2,Φ3) ∈ H0(C,K3) is a multiple of stu. We
shall show that we can generate all sections of K3 vanishing at x this way, for L
generic.

3. We use the “base-point free pencil trick” of [1]: let U be a line bundle with
sections s1,s2 having no common zeros and let F be a vector bundle. Then the
kernel of the map

C2⊗H0(C,F)→ H0(C,F⊗U)

defined by (t1,t2) 7→ s1t1 + s2t2 is isomorphic to H0(C,F ⊗U∗). Indeed, if
s1t1 =−s2t2 and s1,s2 have no common zeros then t1 = us2, t2 =−us1 for u a section
of F⊗U∗.

The bundle L2K has a basepoint x if H1(C,L2K(−x)) 6= 0, or by Serre duality if
H0(C,L−2(x)) 6= 0. As above, considering [L2] ∼ y− x, if g > 2 it follows that for
generic L, L2K has no basepoint. Consider the sequence

0→ OCL2K(−x− y)→ OCL2K(−x)→ OyL2K(−x)→ 0.

In the long exact sequence we see that if H1(C,L2K(−x− y))→ H1(C,L2K(−x))
is injective, sections of L2K vanishing at x do not all vanish at a given point y. This
injectivity condition is equivalent to the map H0(C,L−2(x))→ H0(C,L−2(x + y))
being surjective. But if L−2(x + y) has a section then [L2] ∼ x + y− u− v. Thus
if the genus g > 4 then for generic L there are no sections. By Riemann-Roch
dimH0(C,L2K) = g− 1; this system has no basepoint and separates points hence
the map C→ Pg−2 is injective and we can then use general position arguments.

Take a general divisor x1 + · · ·+ x2g−2 of L2K. By general position the space
of sections vanishing on the first (g− 3) of these points is a base-point free two-
dimensional space: sections of L2K(−D) where D = x1 + · · ·+ xg−3. Taking F = K
in the “base-point free pencil trick”, we have, by taking products with s1 and s2, a
subspace of H0(C,L2K2) of dimension 2g−dimH0(C,L−2(D)). But by Riemann-
Roch

dimH0(C,L−2(D))−dimH1(C,L−2(D)) = g−3+1−g =−2

and by Serre duality dimH1(C,L−2(D)) = dimH0(C,L2K(−D)) = 2. Hence we
obtain H0(C,L−2(D)) = 0. This means that s2,s2 generate with sections of K a
2g-dimensional subspace of H0(C,L2K2), which by Riemann-Roch has dimension
(3g−3).
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However, by general position, for each point xi there is a section si of L2K
which vanishes at all points x1, . . . ,xg−3 except xi. Multiplying these by sections
of K gives a complementary (g− 3)-dimensional subspace and hence in total
2g + (g− 3) = 3g− 3 linearly independent sections. Hence sections of L2K2 are
generated by sections of L2K and K.

Given x ∈ C and 2g− 3 general points x1,x2, . . . ,x2g−3 there is a section q
of K3 vanishing at these points since K3 defines an embedding C ⊂ P5g−6. But
since 2g− 3 ≥ g, 2g− 3 general points form the divisor for a generic line bundle
L−2K(−x). Hence the divisor of q is of the form x+D1 +D2 where D1 is the divisor
of a section of L−2K(−x) and D2 of L2K2. Using the above result about sections of
L2K2 we see that sections of L−2K(−x),K,L2K generate H0(C,K3(−x)).

Varying x, by genericity we can generate all sections of K3 from extensions E
and hence also from stable bundles.

There remain the cases g = 3,4. For g = 4 a generic degree 2g−2 = 6 line bun-
dle maps C birationally to a singular sextic curve in P2 and the genericity theorem
holds here. For genus g = 3, the image of H0(C,L2K)⊗H0(C,K) has dimension
2×3 = 6 = 3g−3 by the base-point trick.

The case of odd degree can be considered as the study of the moduli space of
rank 2 vector bundles E with Λ 2E ∼= O(−y). Here, from [9] each non-trivial exten-
sion

0→ L→ E→ L∗(−y)→ 0 (3)

is stable (and indeed each stable bundle arises this way). The extension is defined
by a class α ∈ H1(C,L2(y)) as before and s ∈ H0(C,L−2K(−y)) lifts to a Higgs
field Φ1 if its product with α vanishes. For some point x we can take as above an
extension where, for g > 4, this condition is that s(x) = 0. We now need to prove that
any section of K3 vanishing at x is generated by sections of the g-dimensional spaces
H0(C,L2K(y)),H0(C,K) and the (g−3)-dimensional space H0(C,L−2K(−x− y))
for some y. The argument proceeds as before when L is chosen so that sections of
L−2K map C birationally to its image. For genus 3, L2K(y) defines an embedding
for generic L, so sections of L2K(y) and K generate sections of L2K2(y). 2

Remark: To consider the case of general G we could at this point use our rank
one starting point and take the homomorphism from SL(2) to G given by the prin-
cipal three-dimensional subgroup [5] to define a G-bundle. This breaks up the Lie
algebra g into irreducible representations of SO(3) whose dimensions are precisely
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the degrees of the generators of the algebra of invariant differential forms on G. It
seems reasonable to conjecture that the restriction of a generating form of degree
(2m+1) to the corresponding subspace of the same dimension is non-zero, but this
seems not to have been proved, except for m = 1 where it is clear. If it were true
then a direct generalization of the above would give injectivity in general, though
there may well be other means of achieving this. As it stands we can assert that
H1(C,K−2)→ H0(M,Λ3T ) is injective for all G.

2.3 The Schouten-Nijenhuis bracket

If A,B are sections of Λ pT and ΛqT respectively on any smooth manifold then
one can form the Schouten-Nijenhuis bracket [A,B] which is a section of Λ

p+q−1T ,
generalizing the Lie bracket of two vector fields. It has the basic properties:

• For each vector field X , [X ,A] = LX A

• [A,B] =−(−1)(p−1)(q−1)[B,A]

• [A,B∧C] = [A,B]∧C +(−1)(p−1)qB∧ [A,C]

Remark: There is a similar bracket on sections of Symp T and Symq T which cor-
responds to the Poisson bracket of the corresponding functions on the total space of
the cotangent bundle T ∗ with respect to the canonical symplectic form.

On a complex manifold, the Schouten-Nijenhuis bracket on the sheaf of holo-
morphic polyvector fields extends to give a Gerstenhaber algebra structure on
H∗(M,Λ ∗T ). We shall show here that the global polyvector fields just constructed
commute with respect to this bracket.

We adopt an infinite-dimensional viewpoint which can be made rigorous in a
standard way by using Banach manifolds and slice theorems. Consider the mod-
uli space M of stable bundles as the quotient of an open set in the space A of all
∂̄ -operators ∂̄A on a fixed C∞ bundle by the group G of complex gauge transforma-
tions. The space A is an infinite-dimensional affine space with translation group
Ω

0,1(C,g). The cotangent space at any point is formally Ω
0(C,g⊗K) = Ω

1,0(C,g)
using the pairing for a ∈Ω 0,1(C,g) and Φ ∈Ω 0(C,g⊗K),∫

C
B(Φ ,a)
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where B is the Killing form.

Take α ∈Ω 01(C,K1−k) representing a class in H1(C,K1−k) and an invariant k-
form σ on g. Then define a k-vector field S on A by evaluating on cotangent vectors
Φi ∈Ω 0(C,g⊗K):

S(Φ1, . . . ,Φk) =
∫

C
σ(Φ1, . . . ,Φk)α.

Since α is independent of the operator ∂̄A such a polyvector field on A is translation
invariant (has “constant coefficients”), so any two Schouten-commute.

But S is gauge-invariant because σ is invariant, so under the derivative of the
quotient map from the open set of stable points in A to M,

Λ
kTAA →Λ

kT[A]M

the image is independent of the representative point A, and so defines a polyvector
field S̄ on M. Note that an invariant polyvector field S is not the same as a polyvector
field S̄ on the quotient but S̄ is defined by evaluating on 1-forms which are pulled
back. In our case these are holomorphic sections Φi, and then σ(Φ1, . . . ,Φk) is a
holomorphic section of Kk, and by Stokes’ theorem only the Dolbeault cohomology
class of α contributes in the definition.

We shall show in Section 4 that there are no holomorphic bivector fields, sections
of Λ2T , for g > 4 on the moduli space of stable vector bundles when the rank and
degree are coprime. Since we have seen above that there always exist non-trivial
holomorphic trivector fields, this is some information towards answering the third
question in the Introduction. The result most probably extends to other groups but
we shall use theorems in the literature which relate to this particularly familiar case.

Our approach revisits a vector bundle on the moduli space first introduced by
Narasimhan and Ramanan [10], but where we observe some extra features.

3 Orthogonal bundles on the moduli space

3.1 Courant algebroids

We need the notion of a holomorphic (exact) Courant algebroid. This is a vector
bundle E given as an extension
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0→ T ∗ → E π→ T → 0

with the following properties.

• E has an orthogonal structure – a nondegenerate symmetric form ( , ) such that
T ∗ ⊂ E is isotropic.

• For local sections u,v there is another local section [u,v], skew-symmetric in u,v,
such that :

(i) if f is a local function [u, f v] = f [u,v]+ (π(u) f )v− (u,v)d f

(ii) π(u)(v,w) = ([u,v]+d(u,v),w)+(v, [u,w]+d(u,w))

(iii) [u, [v,w]]+ [v, [w,u]]+ [w, [u,v]] = d(([u,v],w)+([w,u],v)+([v,w],u))/3

The standard example is T ⊕T ∗ with symmetric form

(X +ξ ,X +ξ ) = iX ξ

and bracket

[X +ξ ,Y +η] = [X ,Y ]+LX η−LY ξ − 1
2

d(iX η− iY ξ ).

There is a natural quotient construction for Courant algebroids (see [4]) which
we describe next. Suppose M is a manifold with a free proper action of a Lie group
G, and suppose that there is a lifted action on E preserving all the structure, in par-
ticular being compatible with π : E→ T and the natural action on T . The derivative
of the group action defines a Lie algebra homomorphism a 7→ Xa from g to vector
fields, sections of T , and we ask for an equivariant extended action which is a linear
map e from g to sections of E such that:

• for a,b ∈ g we have [e(a),e(b)] = e([a,b])

• (e(a),e(a)) = 0

• π(e(a)) = Xa

Given this data, e(g) generates a trivial subbundle F ⊂ E of rank dimG.
It is isotropic by the second condition, so F ⊂ F⊥, and F⊥/F inherits a
nondegenerate symmetric form. The latter is a G-invariant bundle of rank
(2dimM− 2dimG) = 2dim(M/G). By G-invariance it descends to a bundle Ē on
M/G. The G-invariant sections of F⊥/F are by definition the sections of Ē on M/G
and the bracket on G-invariant sections defines a bracket on sections of Ē.
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Now π(F) is the tangent bundle along the fibres of M→M/G, so π induces a
map from F⊥/F to T (M/G) and one can easily deduce that Ē is a Courant algebroid
over M/G.

3.2 A family of Courant algebroids

We shall give here an infinite-dimensional example of the above construction to
produce (for general G) a family of Courant algebroids over the moduli space of
stable G-bundles.

As in Section 2.3 let A denote the infinite-dimensional space of all holomorphic
structures on a fixed principal G-bundle. It is acted on by the group G of complex
gauge transformations, and the quotient of the open set of stable holomorphic struc-
tures by G is the finite-dimensional moduli space of dimension dimG(g−1). So A

is our manifold with G -action and we are going to define an extended action on the
trivial Courant algebroid T ⊕T ∗. For this we consider as above the cotangent space
to be Ω 1,0(C,g).

To define an extended action we choose a holomorphic 1-form θ ∈ H0(C,K)
and define, for ψ in the Lie algebra Ω 0(C,g) of G ,

e(ψ)(a) = (∂̄Aψ ,ψθ) ∈Ω
0,1(C,g)⊕Ω

1,0(C,g).

We check the isotropy condition:

(e(ψ),e(ψ)) =
∫

C
B(ψθ , ∂̄Aψ) =

1
2

∫
C

∂̄ (θB(ψ,ψ)) = 0

since θ is holomorphic.

To check the bracket condition [e(ψ),e(ψ ′)] = e([ψ,ψ ′]) note that ψθ is inde-
pendent of A and is thus a translation-invariant 1-form on A and hence is closed.
Thus using LX = diX + iX d we have, for ξ = ψθ ,η = ψ ′θ , X = ∂̄Aψ,Y = ∂̄Aψ ′

LX η−LY ξ − 1
2

d(iX η− iY ξ ) =
1
2

d(iX η− iY ξ ).

Now
iX η− iY ξ =

∫
C

B(ψ ′θ , ∂̄Aψ)−B(ψθ , ∂̄Aψ
′)

and d(iX η− iY ξ ) evaluated on a ∈Ω 0,1(C,g) is
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C

B(ψ ′θ , [a,ψ])−B(ψθ , [a,ψ ′]) =−
∫

C
θB([ψ ′,ψ ],a)−θB([ψ ,ψ ′],a)

= 2
∫

C
θB([ψ ,ψ ′],a).

This does then define an extended action and we can produce a quotient Courant
algebroid as in Section 3.1. In our case the space F generated by the Lie algebra of
G consists of the subspace

B1 = {(∂̄Aψ,ψθ) ∈Ω
0,1(C,g)⊕Ω

1,0(C,g)}

and F⊥ is the space of pairs (a,Φ) ∈Ω 0,1(C,g)⊕Ω 1,0(C,g) such that∫
C

B(Φ , ∂̄Aψ)+B(ψθ ,a) = 0

for all ψ ∈Ω 0(C,g). By integration by parts this is

Z1 = {(a,Φ) ∈Ω
0,1(C,g)⊕Ω

1,0(C,g) : ∂̄AΦ = aθ}.

Hence F⊥/F = Z1/B1 is the first cohomology group of the complex

Ω
0(C,g) ∂̄+θ→ Ω

0,1(C,g)⊕Ω
1,0(C,g) ∂̄+θ→ Ω

1,1(C,g)

or equivalently the hypercohomology H1(C,g) of the short complex of sheaves

O(g) θ→ O(g⊗K).

From the first hypercohomology spectral sequence we have an exact sequence

H0(C,g)→ H0(C,g⊗K)→H1(C,g)→ H1(C,g)→ H1(C,g⊗K)

which for stable bundles gives us the expected extension

0→ T ∗ →H1(C,g)→ T → 0.

For the second sequence, if Q is the quotient sheaf

0→ O(g) θ→ O(g⊗K)→Q→ 0

we have
0→H1(C,g)

∼=→ H0(C,Q)→ 0.

But Q is supported on the zero-set of the differential θ . So for generic θ with simple
zeros x1, . . . ,x2g−2 we have an isomorphism from H1(C,g) to
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2g−2⊕
i=1

(g⊗K)xi .

Denoting by gx the universal adjoint bundle restricted to M×{x} we find that the
Courant algebroid E on M produced by our quotient construction is a direct sum of
bundles

E ∼=
2g−2⊕
i=1

gxi ⊗Kxi . (4)

Remarks:

1. This vector bundle and its description as an extension appeared in the paper [10].
It is the simplest way to see that the total Pontryagin class of M (the total Chern
class of T ⊕T ∗) is of the form p(T ) = c(g)2g−2. Neither the symmetric form nor the
Courant bracket played a role in its initial introduction.

2. The extension 0→ T ∗ → E → T → 0 defines a class in H1(M,T ∗ ⊗ T ∗) but
the orthogonal structure, and the fact that T ∗ is isotropic, tells us that the class lies
in H1(M,Λ 2T ∗). Each such extension depended on a choice of differential θ so
we have a natural homomorphism H0(C,K)→ H1(M,Λ2T ∗). For vector bundles
this is an isomorphism – in fact from [10] deformations of the point x ∈ C give
non-trivial deformations of gx and hence from (4) non-trivial deformations of E,
in particular non-trivial extension classes, so the map is injective; but both spaces
are g-dimensional. The more usual description of this isomorphism is the dual one
– the intermediate Jacobian of M is isomorphic to the Jacobian of C [10] hence
H1(C,O)∼= H2(M,Λ 1T ∗).

3.3 The orthogonal structure

Let A be a holomorphic structure on the principal bundle and e∈ E[A] a vector in the
fibre of E over [A] ∈M. Then e is represented by (a,Φ) ∈ Ω 0,1(C,g)⊕Ω1,0(C,g)
where

∂̄AΦ = aθ .

The inner product is defined by

(e,e) =
∫

C
B(Φ ,a).
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Surround each zero of θ by a small disc and let C′ be the complement of these discs,
then a = θ−1∂̄Aϕ is smooth on C′ and∫

C′
B(Φ,a) =

∫
C′

1
θ

B(Φ , ∂̄AΦ) =
1
2

∫
C′

∂̄ (
1
θ

B(Φ ,Φ)) = 0.

It follows directly on shrinking the discs that, for simple zeros of θ , the orthogonal
structure is

(e,e) = πi
2g−2

∑
i=1

B(Φ,Φ)xi

θ ′(xi)
(5)

where θ ′(xi) ∈ K2
xi

is the derivative of θ at its zero xi.

Remarks:

1. Note from this description of the inner product that the decomposition of E in (4)
is an orthogonal one.

2. Note also that if Φ is holomorphic then B(Φ ,Φ)/θ is a meromorphic differential
and the sum of its residues is therefore zero. Hence from (5) T ∗ ⊂ E is maximally
isotropic.

We can generalize the above by replacing θ by a section s of KL2 where L is a
line bundle of degree zero and considering the hypercohomology of

O(g⊗L∗) s→ O(g⊗KL).

The quadratic form is defined in the same way as (5), and H0(C,g⊗KL) is still
isotropic but we have lost the Courant bracket.

What we obtain this way is a hypercohomology group

0→ T ∗L →H1(C,g⊗L∗)→ TL→ 0.

where TL = H1(C,g⊗L∗). In particular, varying over the moduli space, we see that
each line bundle L of degree zero defines a deformation TL of the tangent bundle.

To summarize, for each effective divisor D of degree 2g−2 we have produced
an orthogonal bundle ED with the following properties

• ED has an orthogonal structure

• there is an exact sequence of vector bundles 0→ T ∗L → ED→ TL→ 0 where KL2

is the line bundle defined by D

• T ∗L is a maximal isotropic subbundle
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• when L is trivial, ED has the structure of a holomorphic Courant algebroid

4 A vanishing theorem

We shall use the bundles ED to prove the following vanishing theorem:

Theorem 4.1 Let M be the moduli space of rank n, degree d bundles of fixed deter-
minant, with n,d coprime, over a curve of genus g > 4. Then H0(M,Λ 2T ) = 0.

Proof: We return to the situation of a 1-form θ defining an extension

0→ T ∗ → E→ T → 0

There is an induced sequence of vector bundles

0→ A→Λ
2E →Λ

2T → 0 (6)

which we shall use to approach Λ 2T . Here A is the bundle of Lie subalgebras pre-
serving T ∗ and is itself an extension

0→Λ
2T ∗ → A→ T ⊗T ∗ → 0. (7)

Consider the bundle Λ2E. From (4) we have

Λ
2E ∼=

⊕
i< j

(gxi ⊗gx j )⊕
⊕

i

Λ
2gxi (8)

The coprime condition means that there is a universal vector bundle. In [8] the au-
thors show that vector bundles Ux on M coming from this universal bundle are stable
and isomorphic if and only if x = y. If gx⊗gy = End0 Ux⊗End0Uy has a holomor-
phic section then by stability this is covariant constant with respect to the connection
defined by the Hermitian-Einstein connections on Ux and Uy. This connection has
holonomy U(n) ·U(n) which means in particular that the section defines an algebra
homomorphism from End0 Ux to End0 Uy. By stability this is an isomorphism which
means that Ux ∼= L⊗Uy for a line bundle L. But the Picard variety of M is Z and
c1(Ux) = c1(Uy) so Ux ∼= Uy and x = y. It follows that H0(M,gxi ⊗gx j) = 0 if i 6= j.
If xi = x j then we similarly deduce that the only holomorphic section of gxi ⊗ gxi

is defined by the Killing form B, which is symmetric and hence H0(M,Λ2gxi) = 0.
From (8) we see that

H0(M,Λ2E) = 0.
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Since E has an orthogonal structure, Λ
2E is isomorphic to the bundle of skew-

adjoint transformations of E and the derivative of any family of deformations of E
as an orthogonal bundle defines an element of H1(C,Λ 2E).

But we saw in the previous section that any holomorphic section with divisor D
of a line bundle KL2 (i.e. any bundle of degree (2g−2)) defines an extension

0→ T ∗L → ED→ TL→ 0

with an orthogonal structure such that T ∗L is isotropic. We therefore have a family
of extensions defined by a 22g-fold covering (the choice of the line bundle L) of the
symmetric product S2g−2C all of which have orthogonal structures. So we have an
effectively parametrized (2g−2)-dimensional family of bundles deforming E. Each
of these bundles has an orthogonal structure so the tangent space to the family is a
distinguished (2g− 2)-dimensional subspace of H1(M,Λ 2E). But this family also
comes with a distinguished maximal isotropic subbundle, so this subspace is the
image of a (2g−2)-dimensional subspace V ⊆H1(M,A).

Now consider the long exact sequence for (7)

→ H0(M,T ⊗T ∗) h→ H1(M,Λ 2T ∗)→ H1(M,A)
p→ H1(M,T ⊗T ∗)→ H2(M,Λ 2T ∗)→

From [3] for g > 4 H0(M,T ⊗ T ∗) consists of multiples of the identity. The
homomorphism h is just the extension class defining E in H1(M,Λ 2T ∗) applied to
the identity and so is injective. We know that H1(M,Λ 2T ∗)∼= H0(C,K), hence from
the exact sequence the kernel of p has dimension (g−1).

Now a deformation of E, as a bundle with distinguished subbundle, defines a
deformation of the subbundle. The map p in the exact sequence is its derivative. Our
(2g− 2)-dimensional family of deformations of E is parametrized by an effective
degree (2g− 2) divisor D and defines the deformation TL of the tangent bundle,
where the divisor class of D is K + 2L. This map factors through the Abel-Jacobi
map u : S2g−2C → J(C) at the divisor of θ , and so p, restricted to the subspace
V ⊆H1(M,A), factors through the derivative of u.

Writing the map u as

uα =
2g−2

∑
i=1

∫ xi

x0

ωα

for a basis {ωα} of differentials we see that the image of its derivative is the (g−1)-
dimensional subspace of H1(C,O) annihilated by θ ∈ H0(C,K) = H1(C,O)∗. The
kernel of p restricted to V is thus (g− 1)-dimensional and hence coincides with
the full kernel of p. Hence p(V ) ⊂ H1(M,T ⊗ T ∗) is (g− 1)-dimensional. From
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[3] H1(M,T ⊗ T ∗) ∼= H1(C,O) and thus has dimension g. We deduce that either
p : H1(M,A)→H1(M,T ⊗T ∗) is surjective, and then dimH1(M,A) = (2g−2)+1
or p maps to a (g− 1)-dimensional space which means that V = H1(M,A) and
dimH1(M,A) = 2g−2.

Now consider the long exact sequence for (6)

→ H0(M,Λ 2E)→ H0(M,Λ 2T )→H1(M,A)→ H1(M,Λ 2E)→ .

If V = H1(M,A) then knowing that V maps injectively to H1(M,Λ 2E) and
H0(M,Λ 2E) = 0, we have the required result H0(M,Λ 2T ) = 0. The other alter-
native is that dimH1(M,A) = 2g−1 in which case dimH0(M,Λ2T )≤ 1

We now use the exact sequence obtained by tensoring E with T

0→ T ⊗T ∗ → T ⊗E→ T ⊗T → 0

to yield the exact cohomology sequence

0→ H0(M,T ⊗T ∗)→ H0(M,T ⊗E)→ H0(M,T ⊗T )→ H1(M,T ⊗T ∗)→ ···

Now

E ∼=
2g−2⊕
i=1

gxi

so for the term H0(M,T ⊗E) we need to understand each H0(M,T ⊗gx). The bun-
dles gx are parametrized by x ∈C and so in the complement of a finite set of points
in C, dimH0(M,T ⊗gx) takes its generic value k, say. For any x we have the section
sx defined in Section 2.1 and so k≥ 1. Since the canonical bundle has no base points,
a generic canonical differential θ vanishes at points in this complement and so for
this bundle E we have

dimH0(M,T ⊗E) =
2g−2

∑
i=1

dimH0(M,T ⊗gxi) = (2g−2)k.

Now H0(M,T ⊗T ) = H0(M,Sym2 T )⊕H0(M,Λ 2T ) and it was proved in [7] that
dimH0(M,Sym2 T ∗) = 3g−3. Let n be the dimension of the image of H0(M,T⊗T )
in H1(M,T ⊗T ∗) in the above sequence then from exactness

n+(2g−2)k = 1+(3g−3)+dimH0(M,Λ 2T )
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using again dimH0(M,T ⊗T ∗) = 1. But n≥ 0 and dimH0(M,Λ2T )≤ 1 so if g > 2
we must have k = 1 and n = g+dimH0(M,Λ 2T ). But n≤ dimH1(M,T ⊗T ∗) = g
and hence H0(M,Λ 2T ) = 0. 2

Remarks:

1. When g = 2, M is the intersection of two quadrics in the 5-dimensional projective
space P(V ). A direct calculation shows that H0(M,Λ 2T )∼= Λ2V ∗.

2. From [12] the infinitesimal deformations of the abelian category of coherent
sheaves are parametrized by the Hochschild cohomology group HH2(M) and the
vanishing of H0(M,Λ2T ) and H2(M,O) means that this is isomorphic to H1(M,T ),
the deformations of the complex structure of M which is well-known to be canoni-
cally isomorphic to the deformations of the curve C.

3. The evaluation map H0(C,g⊗K)→ gx ⊗Kx defines as in Section 2.1 a holo-
morphic section sx of Hom(T ∗,gx) = T ⊗ gx on M. Our calculation above of k = 1
shows that for generic x this is the unique section.

5 Generators and relations

5.1 Generators

Suppose now that M is the moduli space of rank 2 bundles of fixed determinant
over a curve C of genus g. We have seen from Proposition 2.1 that the (5g− 5)-
dimensional space H1(C,K−2) injects into H0(M,Λ 3T ). This generates maps

Λ
kH1(C,K−2)→H0(M,Λ 3kT )

and one may ask whether this is surjective, or more generally is it true that any
polyvector field is generated by these trivector fields?

Since dimM = 3g− 3 we can consider the map from Λ g−1H1(C,K−2) to sec-
tions of the anticanonical bundle K−1

M = Λ3g−3T of M. The Verlinde formula gives
this dimension as

dimH0(M,K−1
M ) = 3g−122g−1±22g−1 +3g−1

(where the sign corresponds to even or odd degree), whereas
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dimΛ
g−1H1(C,K−2) =

(
5g−5
g−1

)
which is smaller.

On the other hand, our polyvector fields are described via the adjoint representa-
tion and so are insensitive to the operation of tensoring a rank n stable vector bundle
V of fixed determinant by a line bundle of order n. So on the moduli space M of
stable vector bundles they are invariant by the action of H1(C,Zn). In the rank 2
case the dimension of the space of invariant sections of K∗ is given in [11] as

dimH0
0 (M,K−1

M ) =
3g±1

2
.

Using the inequality (
n
k

)
≥
(n

k

)k

we have for g > 2

dimΛ
g−1H1(C,K−2) =

(
5g−5
g−1

)
≥ 5g−1 ≥ 3g±1

2
.

It therefore remains a possibility that the invariant trivectors do generate the whole
algebra.

5.2 Some relations

Recall that for each point x ∈C we have (up to a constant) a trivector σx defined by
evaluation at x:

σx(Φ1,Φ2,Φ3) = B(Φ1(x), [Φ2(x),Φ3(x)]).

For SL(2) the three-form B(X , [Y,Z])) is essentially the volume form of the Killing
form on the three-dimensional Lie algebra.

Now take (g− 1) distinct points x1, . . . ,xg−1 on C and consider evaluating a
Higgs field Φ , considered as a cotangent vector to M, at these points. We get a
homomorphism

α : T ∗ →
g−1⊕
i=1

gxi

of bundles of the same rank. Taking the top exterior power
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Λ
3g−3

α : Λ
3g−3T ∗ →

g−1⊗
i=1

Λ
3gxi .

The right hand side is just a trivial bundle so this homomorphism defines a section
of the anticanonical bundle of M naturally associated to the (g−1) points. In fact it
is not hard to see that it is a multiple of

σx1 ∧σx2 ∧·· ·∧σxg−1 .

This vanishes when α has a non-zero kernel, which is the locus of bundles in M for
which there is a Higgs field vanishing at the (g−1) points – a determinant divisor.

If the rank 2 vector bundle has degree zero then by the mod 2 index theorem (as
for example in [2]), if K1/2 is an odd theta characteristic then

dimH0(C,g⊗K1/2) > 0.

So if Ψ ∈ H0(C,g⊗K1/2) and a section s of K1/2 has divisor x1 + x2 + · · ·+ xg−1

then Φ = sΨ is a Higgs field which vanishes at these points. In other words every
bundle has a Higgs field vanishing at these points so

σx1 ∧σx2 ∧·· ·∧σxg−1 = 0.

These are relations in the algebra – one for each of the 2g−1(2g−1) odd theta char-
acteristics. However we still have for g > 4

5g−1−2g−1(2g−1) >
3g +1

2

so there must be more.
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1 Introduction and Statement of Results

Let A be an abelian variety of dimension n, and let L be an ample line bundle over A.
Such a pair (A,L) is called a polarized abelian variety. We are interested in studying
the projective normality of (A,L), which plays an important role in the theory of
linear series associated to (A,L). For each r ≥ 1, we consider the multiplication
map

ρr : SymrH0(A,L)→ H0(A,L⊗r) (1.1)

induced by (σ1, · · · ,σr)→ σ1 · · ·σr for σ1, · · · ,σr ∈ H0(A,L). Here SymrH0(A,L)
denotes the r-fold symmetric tensor power of H0(A,L). Recall that (A,L) (or simply
L) is said to be projectively normal if ρr is surjective for each r ≥ 1. The projective
normality of a polarized abelian variety (A,L) is well-understood in the case when L
is not primitive, i.e., when there exists a line bundle L′ such that L = L′⊗m for some
integer m≥ 2 (cf. the references in [Iy]). However, not much is known for the case
when L is primitive.

In the primitive case, the main interest is to find conditions on the polar-
ization type d1|d2| · · · |dn of (A,L) or on h0(A,L) := dimCH0(A,L) (note that
h0(A,L) = d1 · · ·dn) which will guarantee the projective normality of a general
(A,L) of a given polarization type. Along this line, J. Iyer [Iy] proved the following
result:

Theorem 1.1 ([Iy, Theorem 1.2]) Let (A,L) be a polarized simple abelian variety
of dimension n. If h0(A,L) > 2nn!, then L is projectively normal.

See also [FG] for related results in the lower dimensional cases when n = 3,4.
These works use the theory of theta functions and theta groups.

Our goal is to relate this problem to the Buser-Sarnak invariant m(A,L) of
the polarized abelian variety (cf. [L2, p.291]). Since A is a compact complex
torus, one may write A = Cn/Λ , where Λ is a lattice in Cn. It is well-known
that there exists a unique translation-invariant flat Kähler form ω on A such that
c1(L) = [ω ] ∈ H2(A,Z). The real part of ω gives rise to an inner product 〈 , 〉 on
Cn, and we denote by ‖ ‖ the associated norm on Cn. The Buser-Sarnak invariant is
given by

m(A,L) := min
λ∈Λ\{0}

‖λ‖2. (1.2)

In other words, m(A,L) is the square of the minimal length of a non-zero lattice
vector in Λ with respect to 〈 , 〉. The study of this invariant was initiated by Buser
and Sarnak in [BS], where they studied it for principally polarized abelian varieties
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and Jacobians. In particular, they showed the existence of a principally polarized
abelian variety (A,L) with

m(A,L)≥ 1
π

n√2Ln. (1.3)

In [Ba], Bauer generalized this to abelian varieties of arbitrary polarization type (cf.
[L2, p. 292-293]).

The relevance of the invariant m(A,L) in the study of algebro-geometric ques-
tions was first observed by Lazarsfeld [L1], where he obtained a lower bound for
the Seshadri number of (A,L) in terms of m(A,L) (cf. [L2, p. 293]). In particular,
m(A,L) gives information on generation of jets by H0(A,L). Furthermore, Bauer
used the existence of (A,L) satisfying (1.3) together with Lazarsfeld’s above result
to obtain the following result:

Theorem 1.2 ([Ba, Corollary 2]) Let (A,L) be a general n-dimensional polarized

abelian variety of a given polarization type. If h0(A,L) ≥ 8n

2
· nn

n!
, then L is very

ample.

Now we state our main result in this paper as follows:

Theorem 1.3 A general n-dimensional polarized abelian variety (A,L) of a given

polarization type and satisfying h0(A,L)≥ 8n

2
· n

n

n!
is projectively normal.

Using Stirling’s formula (n!∼
√

2π nn+ 1
2 e−n), one easily sees that our bound in

Theorem 1.3 improves Iyer’s bound in Theorem 1.1 substantially for large n. Note
that our bound in Theorem 1.3 for projective normality is the same as Bauer’s bound
in Theorem 1.2 for very ampleness. To our knowledge, this is just a coincidence. Al-
though the proofs of both theorems use Bauer’s generalization of (1.3), Theorem 1.2
itself is not used in the proof of Theorem 1.3. Finally it is worth comparing Theo-
rem 1.3 with the result in [FG] and [Ru] that there is a polarization type d1|d2| · · · |dn

with d1 · · ·dn = h0(A,L) =
4n

2
such that no abelian varieties of this polarization type

is projectively normal.

We describe briefly our approach as follows. First we obtain an auxiliary result,
which is a sharp lower bound for the volume of a purely one-dimensional complex
analytic subvariety in a geodesic tubular neighborhood of a subtorus of a compact
complex torus (see Proposition 2.3 for the precise statement). As a consequence, we
obtain a lower bound of the Seshadri number of the line bundle p∗1L⊗ p∗2L along
the diagonal of A×A in terms of m(A,L) (see Proposition 3.2). Here pi : A×A→ A
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denotes the projection onto the i-th factor, i = 1,2. We believe that these two aux-
iliary results are of independent interest beside their application to the projective
normality problem. Finally the proof of Theorem 1.3 involves the use of the second
auxiliary result and applying Bauer’s result mentioned above in (1.3).

2 Volume of subvarieties near a complex subtorus

In this section, we are going to obtain a sharp lower bound for the volume of a
purely 1-dimensional complex analytic subvariety in a tubular open neighborhood
of a subtorus of a compact complex torus (see Proposition 2.3). This inequality is
inspired by an analogous inequality in the hyperbolic setting proved in [HT]. The
proof of the current case is much simpler than the one in [HT], using a simple
projection argument and Federer’s volume inequality for analytic subvarieties in a
Euclidean ball in Cn (cf. e.g. [St] or [L2, p. 300]).

Let T =Cn/Λ be an n-dimensional compact complex torus associated to a lattice
Λ ⊂Cn and endowed with a flat translation-invariant Kähler form ω . For simplicity,
we call (T, ω) a polarized compact complex torus. Let 〈 , 〉 and ‖ ‖ be the inner
product and norm on Cn associated to ω as in Section 1. Next we let S be a k-
dimensional compact complex subtorus of T , where 0≤ k < n. It is well-known that
S is the quotient of a k-dimensional linear subspace F ∼= Ck of Cn by a sublattice
ΛS ⊂Λ of rank 2k and such that ΛS = Λ ∩F . Let F⊥ be the orthogonal complement
of F in Cn with respect to 〈 , 〉, and let qF : Cn→ F and qF⊥ :Cn→ F⊥ denote the
associated unitary projection maps. Similar to (1.2), we define the relative Buser-
Sarnak invariant m(T, S, ω) given by

m(T, S, ω) := min
λ∈Λ\ΛS

‖qF⊥(λ )‖2. (2.1)

In other words, m(T, S, ω) is the square of the minimal distance of a vector in Λ \ΛS

from the linear subspace F .

Remark 2.1 (i) The invariant m(A,L) in (1.2) corresponds to the special case when
S = {0} and [ω] = c1(L), i.e., m(A,L) = m(A,{0},ω).

(ii) From the discreteness of Λ , the equality ΛS = Λ ∩F and the compactness of
S = F/ΛS, one easily checks that m(T, S, ω) > 0 and its value is attained by some
λ ∈Λ \ΛS.
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With regard to the Riemannian geometry associated to ω , one also easily sees
that the geodesic distance function dT : T ×T → R of T with respect to ω can be
expressed in terms of ‖ ‖ given by

dT (x,y) = inf{‖z−w‖
∣∣ p(z) = x, p(w) = y}, (2.2)

where p : Cn → T denotes the covering projection map. For any given r > 0, we
consider the open subset of T given by

Wr := {x ∈ T
∣∣dT (x,S) < r} ⊃ S, (2.3)

where as usual,

dT (x,S) := inf
y∈S

dT (x,y) = min{‖qF⊥(z)‖
∣∣ p(z) = x} (2.4)

(note that the second equality in (2.4) follows from standard facts on inner product
spaces, and as in Remark 2.1, the minimum value in the last expression in (2.4) is
attained by some z). We simply call Wr the geodesic tubular neighborhood of S in T
of radius r. Next we consider the biholomorphism ϕ̃ : F×F⊥ → Cn given by

ϕ̃(z1,z2) = z1 + z2 for (z1,z2) ∈ F×F⊥. (2.5)

It is easy to see that the covering projection map p ◦ ϕ̃ : F × F⊥ → T is equiv-
ariant under the action of ΛS on F × F⊥ given by (z1,z2) → (z1 + λ ,z2) for
(z1,z2) ∈ F × F⊥ and λ ∈ ΛS. It follows readily that p ◦ ϕ̃ descends to a well-
defined covering projection map denoted by ϕ : S× F⊥ → T (in particular, ϕ is
a local biholomorphism). Consider the flat translation-invariant Kähler form on Cn

given by

ωCn :=
√
−1
2

∂ ∂‖z‖2, z ∈Cn, (2.6)

which is easily seen to descend to the Kähler form ω on T . Consider also
the flat Kähler form on F⊥ given by ωF⊥ := ωCn

∣∣
F⊥ , and for any r > 0, let

BF⊥(r) := {z ∈ F⊥
∣∣‖z‖ < r} denote the associated open ball of radius r. Let

ωS := ω
∣∣
S. Note that ϕ

∣∣
S×{0} is given by the identity map on S. It admits biholo-

morphic extensions as follows:

Lemma 2.2 For any real number r satisfying 0 < r≤
√

m(T,S,ω)
2 , one has a biholo-

morphic isometry

ϕr : (S, ωS)× (BF⊥(r), ωF⊥
∣∣
BF⊥ (r))→ (Wr, ω

∣∣
Wr

) (2.7)

given by ϕr := ϕ
∣∣
S×BF⊥ (r).
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Proof. First we fix a real number r satisfying 0 < r ≤
√

m(T,S,ω)
2 . From (2.3), (2.4)

and the obvious identity qF⊥(ϕ̃(z1,z2)) = z2 for (z1,z2) ∈ F ×F⊥, one easily sees
that ϕ(S× BF⊥(r)) ⊂Wr, and thus the map ϕr in (2.7) is well-defined. For each
x ∈Wr, it follows from the second equality in (2.4) that there exists z ∈ Cn such
that p(z) = x and ‖qF⊥(z)‖ = dT (x,S) < r. Now, qF (z) descends to a point xS in
S, and one easily sees that ϕr(xS,qF⊥(z)) = x with (xS,qF⊥(z)) ∈ S×BF⊥(r). Thus
ϕr is surjective. Next we are going to prove by contradiction that ϕr is injective.
Suppose ϕr is not injective. Then it implies readily that there exist two points (z1,z2),
(z′1,z

′
2) ∈ F×BF⊥(r) such that

(i) either z1− z′1 /∈ΛS or z2 6= z′2; and

(ii) z1 + z2− (z′1 + z′2) = λ for some λ ∈Λ

(here (i) means that (z1,z2), (z′1,z
′
2) descend to two different points in S×BF⊥(r)).

In both cases in (i), one easily checks that λ ∈ Λ \ΛS. On the other hand, one also
sees from (ii) that qF⊥(λ ) = z2− z′2 and thus

‖qF⊥(λ )‖ ≤ ‖z2‖+‖z′2‖< r + r = 2r ≤
√

m(T, S, ω), (2.8)

which contradicts the definition of m(T, S, ω) in (2.1). Thus, ϕr is injective,
and we have proved that ϕr is a bihomorphism. Finally from the obvious iden-
tity ‖z1‖2 + ‖z2‖2 = ‖z1 + z2‖2 for (z1,z2) ∈ F × F⊥, and upon taking

√
−1
2 ∂ ∂ ,

one easily sees that ϕ̃ : (F, ωF)× (F⊥, ωF⊥) → (Cn, ωCn) is a biholomorphic
isometry (cf. (2.6)). It follows readily that the induced covering projection map
ϕ : (S, ωS) × (F⊥, ωF⊥) → (T, ω) is a local isometry. Upon restricting ϕ to
S×BF⊥(r), one sees that the biholomorphism ϕr is an isometry.

For each x ∈ S and each non-zero holomorphic tangent vector v ∈ Tx,T or-
thogonal to Tx,S, it is easy to see that there exists a unique 1-dimensional totally
geodesic (flat) complex submanifold ` of W√m(T,S,ω)

2

passing through x and such that

Tx,` = Cv. We simply call such ` an S-orthogonal line of W√m(T,S,ω)
2

. For a com-

plex analytic subvariety V in an open subset of T , we simply denote by Vol(V )
its volume with respect to the Kähler form ω , unless otherwise stated. It is easy

to see that for each 0 < r ≤
√

m(T,S,ω)
2 , the values of Vol(`∩Wr) are the same for

all the S-orthogonal lines ` in W√m(T,S,ω)
2

. As such, Vol(`∩Wr) is an unambigu-

ously defined number depending on r only (cf. (2.9) below). Next we consider the
blow-up π : T̃ → T of T along S, and denote the associated exceptional divisor by
E := π−1(S). For a complex analytic subvariety V in an open subset of T such that
V has no component lying in S, we denote its strict transform with respect to π by
Ṽ := π−1(V \S). As usual, for an R-divisor Γ and a complex curve C in a complex
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manifold, we denote by Γ ·C the intersection number of Γ with C. Our main result
in this section is the following

Proposition 2.3 Let (T, ω) a polarized compact complex torus of dimension n, and
let S be a k-dimensional compact complex subtorus of T , where 0 ≤ k < n. Let
π : T̃ → T be the blow-up of T along S with the exceptional divisor E = π−1(S)

as above. Then for any real number r satisfying 0 < r ≤
√

m(T,S,ω)
2 and any purely

1-dimensional complex analytic subvariety V of the geodesic tubular neighborhood
Wr of S such that V has no component lying in S, one has

Vol(V ) ≥ πr2 · (Ṽ ·E) (2.9)

= Vol(`∩Wr) · (Ṽ ·E).

In particular, for each 0 < r≤
√

m(T,S,ω)
2 and each non-negative value s of Ṽ ·E, the

lower bound in (2.9) is attained by the volume of some (and hence any) V consisting
of the intersection of Wr with the union of s copies of S-orthogonal lines counting
multiplicity.

Proof. Let V ⊂ W̃r be as above. It is clear that Proposition 2.3 for the general case
when V is reducible follows from the special case when V is irreducible, and that
(2.9) holds trivially for the case when V ∩S = /0. As such, we will assume without
loss of generality that

V is irreducible, V ∩S 6= /0 and V 6⊂ S. (2.10)

Then Ṽ ∩E consists of a finite number of distinct points y1, · · · ,yκ with intersection
multiplicities m1, · · · ,mκ respectively, so that

Ṽ ·E = m1 + · · ·+mκ . (2.11)

By Lemma 2.2, we have a biholomorphic isometry

(Wr,ω
∣∣
Wr

)∼= (S×F⊥(r), η
∗
1 ωS +η

∗
2 ωF⊥). (2.12)

Here η1 : S×F⊥(r)→ S and η2 : S×F⊥(r)→ F⊥(r) denote the projections onto
the first and second factor respectively. Next we make an identification F⊥ ∼= Cn−k

with Euclidean coordinates z1,z2, · · · ,zn−k associated to an orthonormal basis of
(F⊥,〈 , 〉

∣∣
F⊥). Under this identification, we have
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F⊥(r) = {z = (z1,z2, · · · ,zn−k) ∈ Cn−k ∣∣ |z|< r}, and (2.13)

ωF⊥ =
√
−1
2

n−k

∑
i=1

dzi∧dzi.

Here |z| =
√

∑
n−k
i=1 |zi|2. Note that η2 (and thus also η2

∣∣
V ) is a proper holomorphic

mapping, and thus by the proper mapping theorem, V ′ := η2(V ) is a complex ana-
lytic subvariety of F⊥(r). From (2.10), one easily sees that V ′ is irreducible and of
pure dimension one, and η2

∣∣
V : V → V ′ is a δ -sheeted branched covering for some

δ ∈ N. Note that 0 ∈ V ′ since V ∩ S 6= /0, and we denote by µ the multiplicity of
V ′ at the origin 0 ∈ F⊥(r). Let [V ] (resp. [V ′]) denote the closed positive current
defined by integration over V (resp. V ′) in Wr (resp. F⊥(r)). Then via the identifi-
cations in (2.13), it follows from Federer’s volume inequality for complex analytic
subvarieties in a complex Euclidean ball (see e.g. [St] or [L2, p. 300]) that one has∫

F⊥(r)
[V ′]∧ωF⊥ ≥ µ ·πr2. (2.14)

Next we consider a linear projection map ψ : F⊥ → C from F⊥ onto some one-
dimensional linear subspace (which we identify with C). It follows readily from the
definition of µ that for a generic ψ , ψ

∣∣
V ′ : V ′ → ψ(V ′) is a µ-sheeted branched

covering. Furthermore, by considering the local description of the blow-up map π

(cf. e.g. [GH, p. 603]), one easily sees that for each y j ∈ Ṽ ∩E, 1 ≤ j ≤ κ , there
exists an open neighborhood Uj of y j in Ṽ such that for a generic ψ , the function
ψ ◦η2 ◦π

∣∣
Uj

: Uj→C is a defining function for E∩Uj in Uj, so that ψ ◦η2 ◦π
∣∣
Ṽ∩Uj

is an m j-sheeted branched covering onto its image, shrinking Uj if necessary. Thus
by considering the degree of the map ψ ◦η2 ◦π

∣∣
Ṽ for a generic ψ , one gets

δ ·µ = m1 + · · ·+mκ . (2.15)

Under the identification in (2.12), we have
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Vol(V ) =
∫

Wr

[V ]∧ω (2.16)

=
∫

S×F⊥(r)
[V ]∧ (η∗1 ωS +η

∗
2 ωF⊥)

≥
∫

S×F⊥(r)
[V ]∧η

∗
2 ωF⊥ (since η

∗
1 ωS ≥ 0)

= δ

∫
F⊥(r)

[V ′]∧ωF⊥

(upon taking the direct image η
∗
2 )

≥ δ ·µ ·πr2 (by (2.14))

= πr2 · (Ṽ ·E) (by (2.11) and (2.15)),

which gives the first line of (2.9). Next we take an S-orthogonal line ` of
W√m(T,S,ω)

2

. Then under the identifications in (2.12), (2.13) and upon making a

unitary change of F⊥ if necessary, one easily sees that `∩Wr can be given by
{x}× {(z1,0, · · · ,0) ∈ Cn−k

∣∣ |z1| < r} for some fixed point x ∈ S, and it follows
readily that

Vol(`∩Wr) =
∫
|z1|<r

√
−1
2

dz1∧dz1 = πr2, (2.17)

which gives the second line of (2.9). Finally we remark that the last statement of
Proposition 2.3 is a direct consequence of (2.9), and thus we have finished the proof
of Proposition 2.3.

3 Seshadri number along the diagonal of A×A

In this section, we let (A =Cn/Λ , L) be a polarized abelian variety of dimension n,
and let the associated objects ω , 〈 , 〉, ‖ ‖ and m(A,L) be as defined in Section 1.
Next we consider the Cartesian product A×A, and we denote by pi : A×A→ A the
projection map onto the i-th factor. It is easy to see that p∗1L⊗ p∗2L is an ample line
bundle over the 2n-dimensional (product) abelian variety A×A, and the associated
translation-invariant flat Kähler form on A×A is given by ωA×A := p∗1ω + p∗2ω . In
particular, one has

[ωA×A] = c1(p∗1L⊗ p∗2L) ∈ H2(A×A, Z). (3.1)

Furthermore, it is easy to see that the diagonal of A×A given by

D := {(x,y) ∈ A×A
∣∣x = y} (3.2)
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is an n-dimensional abelian subvariety of A×A. Let m(A×A,D,ωA×A) be the rela-
tive Buser-Sarnak invariant as given in (2.1).

Lemma 3.1 We have

m(A×A,D,ωA×A) =
m(A,L)

2
. (3.3)

Proof. First we write A×A = (Cn×Cn)/(Λ ×Λ ), and we denote by 〈 , 〉Cn×Cn and
‖ ‖Cn×Cn the inner product and norm onCn×Cn associated to ωA×A. It is easy to see
that as a compact complex subtorus of A×A, D is isomorphic to the quotient F/ΛD,
where F := {(z,z)

∣∣z∈Cn}⊂Cn×Cn and ΛD := {(λ ,λ )
∣∣λ ∈Λ}⊂Λ×Λ . Denote

by F⊥ the orthogonal complement of F in Cn×Cn with respect to 〈 , 〉Cn×Cn , and
let qF⊥ : Cn×Cn→ F⊥ be the corresponding unitary projection map. Then for any
(λ1,λ2) ∈Λ ×Λ , one easily checks that qF⊥(λ1,λ2) = (λ1−λ2

2 , λ2−λ1
2 ), and thus

‖qF⊥(λ1,λ2)‖2
Cn×Cn = ‖λ1−λ2

2
‖2 +‖λ2−λ1

2
‖2 =

‖λ1−λ2‖2

2
. (3.4)

Together with the obvious equality {λ1− λ2
∣∣ (λ1,λ2) ∈ (Λ ×Λ ) \ΛD} = Λ \ {0}

(and upon writing λ = λ1−λ2), one gets

inf
(λ1,λ2)∈(Λ×Λ)\ΛD

‖qF⊥(λ1,λ2)‖2
Cn×Cn =

1
2

inf
λ∈Λ\{0}

‖λ‖2, (3.5)

which, upon recalling (1.2) and (2.1), gives (3.3) immediately.

Next we let π : Ã×A→ A×A be the blow-up of A×A along D with the as-
sociated exceptional divisor given by E := π−1(D). We consider the line bundle
p∗1L⊗ p∗2L over A×A, and denote its pull-back to Ã×A by

L := π
∗(p∗1L⊗ p∗2L). (3.6)

Then the Seshadri number ε(p∗1L⊗ p∗2L,D) of p∗1L⊗ p∗2L along D is defined by

ε(p∗1L⊗ p∗2L,D) := sup{ε ∈R
∣∣L − εE is nef on Ã×A} (3.7)

(see e.g. [L2, Remark 5.4.3] for the general definition and [D] for its origin). Here
as usual, an R-divisor Γ on an algebraic manifold M is said to be nef if Γ ·C≥ 0 for
any algebraic curve C ⊂M. Our main result in this section is the following

Proposition 3.2 Let (A,L) be a polarized abelian variety of dimension n, and let
L be as in (3.6). Then L −αE is nef on Ã×A for all 0 ≤ α ≤ π

8 ·m(A,L). In
particular, we have
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ε(p∗1L⊗ p∗2L,D)≥
π

8
·m(A,L). (3.8)

Proof. First it is easy to see from (3.6) that L is nef, and thus the proposition holds
for the case when α = 0. Now we fix a number α satisfying 0 < α ≤ π

8 ·m(A,L).
Then it is easy to see from Lemma 3.1 that α = πr2 for some r satisfying

0 < r ≤
√

m(A×A,D,ωA×A)
2 . For each such r, we let Wr be the geodesic tubular neigh-

borhood of D in A×A of radius r as defined in (2.3) (with T and S there given by
A×A and D respectively). Let C be an algebraic curve in Ã×A. First we consider
the case when C is irreducible and C 6⊂ E, so that π(C) 6⊂ D and C coincides with
the strict transform of π(C) with respect to the blow-up map π (i.e., C = π̃(C) in
terms of the notations in Section 2). Then by (3.1), (3.6) and upon taking the direct
image π∗, we get

L ·C =
∫

Ã×A
[C]∧π

∗
ωA×A (3.9)

=
∫

A×A
[π(C)]∧ωA×A

≥
∫

Wr

[π(C)]∧ωA×A

≥ πr2 · (E ·C) (by Proposition 2.3),

= α · (E ·C).

In other words, we have
(L −αE) ·C ≥ 0. (3.10)

Next we consider the case when C is irreducible and C ⊂ E. By considering
translation-invariant vector fields on D and A×A, one easily sees that the normal
bundle ND|(A×A) is holomorphically trivial over D. It follows readily that the line
bundle [E]

∣∣
E is isomorphic to σ

∗OPn−1(−1), where σ : D×Pn−1 → Pn−1 denotes
the projection onto the second factor. Hence E ·C ≤ 0 for any irreducible curve
C ⊂ E. Together with the nefness of L , it follows readily that (3.10) also holds for
the irreducible case when C ⊂ E. Finally one easily sees that (3.10) for the case
when C is reducible follows readily from the case when C is irreducible. Thus we
have finished the proof of the nefness of L −αD for all 0≤ α ≤ π

8 ·m(A,L), which
also leads to (3.8) readily.
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4 Projective normality

In this section, we are going to give the proof of Theorem 1.3, and we follow the
notation in Section 3. First we have

Proposition 4.1 Let (A,L), n, E and L be as in Proposition 3.2. If L ⊗O(−nE)
is nef and big, then L is projectively normal.

Proof By [Iy, Proposition 2.1], one knows that the surjectivity of the multiplication
maps ρr in (1.1) for all r ≥ 1 will follow from the surjectivity of ρ2 (i.e., the case
when r = 2). Thus to prove that L is projectively normal, it suffices to show that the
multiplication map

ρ : H0(A,L)⊗H0(A,L)−→ H0(A,L⊗2) (4.1)

(as given in (1.1)) is surjective. We are going to reduce this to the question of van-
ishing of a certain cohomology group on Ã×A following the standard approach in
[BEL, Section 3]. Here π : Ã×A→ A×A is the blow-up of A×A along the diagonal
D as in Section 3. Consider the short exact sequence on A×A given by

0−→ p∗1L⊗ p∗2L⊗I −→ p∗1L⊗ p∗2L−→ p∗1L⊗ p∗2L
∣∣
D −→ 0, (4.2)

where I denotes the ideal sheaf of D. Note that p∗1L⊗ p∗2L
∣∣
D
∼= L⊗2 under the nat-

ural isomorphism D∼= A, and one has H0(A×A, p∗1L⊗ p∗2L)∼= H0(A,L)⊗H0(A,L)
by the Künneth formula. Together with the long exact sequence associated to (4.2),
one easily sees that ρ is surjective if H1(A×A, p∗1L⊗ p∗2L⊗I ) = 0. But one also
easily checks that

H1(A×A, p∗1L⊗ p∗2L⊗I ) = H1(Ã×A,L ⊗O(−E))

= H1(Ã×A,KÃ×A⊗L ⊗O(−nE)), (4.3)

where the last line follows from the isomorphism
KÃ×A = π∗KA×A + O((n − 1)E) = O((n − 1)E). Finally if L ⊗ O(−nE) is
nef and big, then it follows from Kawamata-Viehweg vanishing theorem that
H1(Ã×A,KÃ×A⊗L ⊗O(−nE)) = 0, which together with (4.3), imply that ρ is
surjective.

Lemma 4.2 Let (A,L), n, E and L be as in Proposition 3.2. If L ⊗O(−nE) is nef
and Ln > (2n)n, then L ⊗O(−nE) is big.
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Proof Note that

L 2n = (p∗1L⊗ p∗2L)2n =
(2n)!
n! ·n!

Ln ·Ln.

Recall that we have the identification E = D× Pn−1 from the proof of Proposi-
tion 3.2. Denoting by σ : E → Pn−1 and η : E → D = A the projections, we have
O(E)|E = σ∗OPn−1(−1) and L |E = η∗(L⊗L). From these, a straight-forward cal-
culation gives

(L ⊗O(−nE))2n =
(2n)!
n! ·n!

·Ln · (Ln− (2n)n). (4.4)

Together with the well-known fact that a nef line bundle is big if and only if its top
self-intersection number is positive, one obtains the lemma readily.

Finally we complete the proof of our main result as follows:

Proof of Theorem 1.3. Let A(d1,··· ,dn) denote the moduli space of n-dimensional po-
larized abelian varieties (A,L) of a given polarization type d1|d2| · · · |dn and satisfy-
ing

d1 · · ·dn ≥
8n

2
· n

n

n!
, (4.5)

and recall that

h0(A,L) = d1 · · ·dn =
Ln

n!
for all (A,L) ∈A(d1,··· ,dn). (4.6)

By [Ba, Theorem 1], there exists some (Ao,Lo) ∈A(d1,··· ,dn) such that

m(Ao,Lo) =
1
π

n
√

2Ln
o. (4.7)

Let Lo be the line bundle over the blow-up Ão×Ao of Ao×Ao along the diago-
nal (with exceptional divisor Eo) as in Proposition 3.2. From (4.5), (4.6) and (4.7),
one easily checks that n ≤ π

8 ·m(Ao,Lo). Thus it follows from Proposition 3.2 that
Lo⊗O(−nEo) is nef. One also easily checks from (4.5) and (4.6) that Ln

o > (2n)n,
and thus by Lemma 4.2, the nef line bundle Lo⊗O(−nEo) is also big. Then it fol-
lows from Proposition 4.1 that (Ao,Lo) is projectively normal. Finally it is easy to
see that the existence of a projective normal (Ao,Lo) implies readily that a general
(A,L) in A(d1,··· ,dn) is projectively normal.
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Complete Kahler-Einstein manifolds¨

Marco Kühnel

Abstract Classifying Kähler-Einstein manifolds has progressed very far for com-
pact manifolds. In the non-compact setting, a lot of encouraging results have been
obtained, with the greatest gap of knowledge for the Ricci-flat case. This article
wants to present the state of the art of classification and explain current problems
and questions with respect to existence and uniqueness of complete Ricci-flat Kähler
metrics.
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1 The Classification Problem

Let X be a compact complex manifold and let

K(X) := {classes of closed positive (1,1)-forms} ⊂ H1,1(X)

denote the Kähler cone in Dolbeault cohomology. It is the set of fundamental forms
ω of Kähler metrics g. The class of the Ricci form

Ric g :=
i

2π
∂∂ logdetω
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is called the first Chern class c1(X) ∈H1,1(X) and independent of the chosen metric
g. We say α ∈ H1,1(X) is positive (negative) if it can be represented by a positive
(negative) (1,1)-form.

Definition 1.1 A Kähler metric g on X is called Kähler-Einstein if there is a con-
stant K such that Ric g = Kω .

Obviously, existence of a Kähler-Einstein metric implies that c1(X) has a sign.
Roughly, the classification of compact Kähler-Einstein manifolds is the following.

Theorem 1.2 (Aubin [A76], Yau [Y78], Calabi [C54], Futaki [F83], Kobayashi
[K84]) Let X be a compact Kähler manifold.

1. c1(X) > 0 6⇒ ∃ g Kähler-Einstein with K = 1.

2. c1(X) = 0 ∈ H1,1(X)⇒∀ α ∈ K(X) ∃1 g Kähler-Einstein with [g] = α and
K = 0.

3. c1(X) < 0⇒∃1g Kähler-Einstein with K =−1.

Note that the three cases mutually exclude each other.

In the Ricci-positive case, several obstructions are known: The automorphism
group of X has to be reductive ([M57]) and the generalized Futaki invariants have
to vanish in order to allow for a Kähler-Einstein metric.

Switching to non-compact manifolds we have to add another condition: g should
be complete, i.e. all maximal geodesics have infinite length. Otherwise g cannot
possibly relate to the topology of X .

This leads to the following questions:

(Q1) Is there a classification of non-compact Kähler-Einstein manifolds analogues
to Theorem 1.2?

(Q2) Are the three cases of the sign of Ric mutually exclusive also for non-compact
manifolds?

(Q3) What is the correct notion of a Kähler cone for non-compact manifolds?

Let us begin with tackling Q1. Looking at non-compact Kähler manifolds, one
finds by the uniformization theorem an interesting classification in one dimension.

Theorem 1.3 Let X be a non-compact complex curve. Then either
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(i) the universal cover of X is the unit disc and there is a complete Ricci-negative
Kähler-Einstein metric;

(ii) or X =CP1 \{p,q} for points p,q∈CP1 not necessarily distinct; in particular,
the universal cover is C and there is a complete Ricci-flat Kähler metric on X.

In particular, there is no Ricci positive curve. This is a general obstruction for
Kähler-Einstein metrics on non-compact manifolds.

Theorem 1.4 (Bonnet, Myers [M41]) A complete Riemannian manifold with Ricci
curvature bounded from below by a positive constant has bounded diameter. In par-
ticular, every Kähler-Einstein manifold with c1(X) > 0 is compact.

This leaves us with the Ricci-negative and Ricci-flat cases. Question Q2 can now
be answered affirmatively by the Generalized Schwarz Lemma of Yau:

Theorem 1.5 (Yau [Y78b]) Let (M,g) be a complete Kähler manifold with
Sc(g)≥−K1 for some K1 ≥ 0 and (N,h) an hermitian manifold with Ric h≤−K2h
for some K2 > 0. Moreover, we assume dimM = dimN = n. If f : M −→ N is a
holomorphic map, then

f ∗ωn
h ≤ (

K1

nK2
)n

ω
n
g .

Application of Theorem 1.5 to the identity map under the assumption K1 = 0
leads to a contradiction, so there cannot be complete Ricci-flat and Ricci-negative
Kähler metrics at the same time.

Corollary 1.1 A Kähler manifold cannot allow for a complete Ricci-flat Kähler
metric and a complete Kähler-Einstein metric with negative scalar curvature simul-
taneously.

Theorem 1.3 tells us that, apart from C and C∗ every domain in C allows for
a Ricci-negative Kähler-Einstein metric. In higher dimensions, natural domains to
consider are domains of holomorphy.

Theorem 1.6 (Cheng/Yau [CY80], Mok/Yau [MY83]) Let X ⊂ Cn be a bounded
domain. X is a domain of holomorphy if and only if there is a complete Kähler-
Einstein metric on X with negative scalar curvature.

So we have rich examples of complete Kähler-Einstein manifolds with negative
scalar curvature and no non-compact Kähler-Einstein manifolds with positive scalar
curvature; only the non-compact Ricci-flat case remains more elusive.
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2 Open manifolds

According to another version of Yau’s Schwarz Lemma, the only bounded holo-
morphic functions on a complete Ricci-flat Kähler manifold are the constants. In
particular, no bounded domain in Cn allows for a complete Ricci-flat Kähler met-
ric. On the other hand, complements of analytic sets in compact complex manifolds
share this function theoretic property. The easiest case is the complement of a divi-
sor, being a Stein manifold, if the divisor is ample.

Definition 2.1 A complex manifold X is called open, if there is a compact complex
manifold X and an effective divisor D such that X ∼= X \D.

Indeed, if we restrict to open manifolds, there is some kind of classification
like the one in Theorem 1.2. If D ∈ |−KX |, then adjunction yields an isomorphism
Ω n

X
∼= OX , a property sufficient for the existence of a Ricci-flat Kähler metric in

the compact case. So we expect the anticanonical linear system to be distinguished
compactifying divisors, to say the least.

Theorem 2.2 (Tian, Yau [TY90, TY91, TY86, Y93]) Let X be a compact Kähler
manifold, D a normal crossings divisor and X := X \D.

(i) If KX + D is ample, then there exists on X a unique complete Kähler-Einstein
metric with negative scalar curvature.

(ii) If KX +D = 0,−KX is ample and D is smooth, then there is a complete Ricci-flat
Kähler metric on X.

The case of negatively curved Kähler-Einstein metrics satisfactorily settled by
Theorem 2.2, a lot of questions concerning the flat case are still unanswered, in-
cluding uniqueness (cf. Question Q3). So now we concentrate on Ricci-flat open
manifolds.
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3 Complete Ricci-flat open manifolds

3.1 The assumptions of the classification result

The asymmetry of assumptions in Theorem 2.2 is a current field of interest. The
following elementary example of Yu [Yu08] sheds some light on it.

Example 1 Let X :=CPn and D := {p(z)∏
n−1
i=0 zi = 0}, where

p(z) = zm−1
0 zn +P(z0, . . . ,zn−1)

for a homogeneous polynomial P of degree m≥ 2. Then

X ∼= (C∗)n

and hence carries a complete Ricci-flat Kähler metric, although KX + D is ample.
This shows that the normal crossings condition for the negative case is essential, on
the one hand, and that the condition KX + D = 0 is not necessary for the Ricci-flat
case, if one forgets about the smoothness of D, on the other hand.

Theorem 2.2 does not address the case KX +D < 0. Recall that there cannot be
a complete Ricci-positive Kähler-Einstein metric! Indeed, in cases you might think
of as D being non-reduced (in a Q-sense) one obtains a complete Ricci-flat Kähler
metric:

Theorem 3.1 (Tian/Yau [TY91], Bando/Kobayashi [BK90]) Let X be a compact
Kähler manifold with c1(X) > 0 and D a smooth divisor. Assume KX +αD = 0 for
some rational α > 1 and that D allows for a Kähler-Einstein metric. Then there is
a complete Ricci-flat Kähler metric on X.

The condition that D allows for a Kähler-Einstein metric can be weakened by us-
ing the language of Sasakian geometry (cf. [C09]). Of course, there are also singular
reduced D with KX + D ≤ 0 allowing for complete Ricci-flat Kähler metrics on X ,
e.g. X :=CPn,D := H1 + · · ·+Hk for hyperplanes H1, . . . ,Hk and 1≤ k≤ n+1, but
these examples are only so easy to treat because the situation allows an overwhelm-
ing amount of symmetry. Between these two extremes there are singular divisors to
consider, but without particular symmetries. For this situation nothing is known.

The positivity assumptions for −KX given here for the Ricci-flat case can be
weakened (see [TY90], [TY91]) but not beyond nefness.
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3.2 Parametrizing complete Ricci-flat Kähler metrics

Now what about uniqueness? In the compact case, Ricci-flat Kähler metrics were
parametrized by the Kähler cone. Is there an analogue for open manifolds? The rich
use of the ∂∂ -Lemma for compact manifolds suggests to define the Kähler cone via
Bott-Chern-cohomology for open manifolds.

Definition 3.2 Let X be an open manifold. We call

KBC(X) := {ω ∈H1,1(X)| ω positive }/∼

with
ω ∼ ω

′ :⇐⇒ ∃ ϕ ∈C∞(X) : ω−ω
′ = i∂ ∂ϕ

the Bott-Chern-Kähler cone.

Due to the lack of deeper results we discuss again the two extremal cases.

Example 2 Let X = CPn, D = H1 + . . .Hk with hyperplanes H1, . . .Hk and
1 ≤ k ≤ n + 1. Then in every class of KBC(X) there is at least one complete
Ricci-flat Kähler metric. Considering only the symmetric ones with respect to the
group G = X = Cn+1−k × (C∗)k−1 there is an affine vector space of dimension
1
2 (k− 1)(k− 2) of them for every fixed Bott-Chern-Kähler class. (For details and
more general situations cf. [K10].)

So uniqueness in every Bott-Chern-Kähler class cannot be achieved when there
is rich symmetry. In the smooth case, however, the question becomes irrelevant, at
least in topologically simple (resp. generic) situations.

Theorem 3.3 ([KK06]) Let X be a projective manifold of dimension ≥ 3 satisfying
b1(X) = b3(X) = 0,b2(X) = 1. For any smooth, ample divisor D the Bott-Chern-
Kähler cone of X is trivial, i.e. KBC(X) = [0].

Both results suggest that the correct notion of a Kähler cone should use a finer
equivalence relation. One way would be to fix also the asymptotic behaviour of the
metric towards D, but neither existence for nor uniqueness inside an asymptotic
class are settled today. We present the known results.
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3.3 Asymptotic description of the metrics

For comparison we should discuss the negative case first. The asymptotic expansion
of the unique Kähler-Einstein metric has been computed by Schumacher [Sch98]
for smooth divisors and by Wu [W05] also for divisors with normal crossings. For
simplicity, we state here the result for the smooth case.

Let KX +D > 0 and D be a smooth divisor. We introduce local coordinates on U
around D such that the section defining D is the first coordinate, i.e. S = z1. The local
projection onto D is denoted by π : U −→ D. Let g be the unique Kähler-Einstein
metric with K = −1 on X , ‖.‖ a metric on L (D), suitably chosen and gD be the
unique Kähler-Einstein metric on D with K =−1.

Theorem 3.4 ([Sch98]) There exist 0 < α ≤ 1 such that for every k ∈N,0 < λ ≤ 1
there are h,µ ,ν ∈Ck,λ (X)

g =
2h

‖S‖2(− log‖S‖2)2 · (1+ µ(− log‖S‖2)−α)dS⊗dS

+∑
γ

O
(

1
‖S‖(− log‖S‖2)1+α

)
(dzγ ⊗dS+dS⊗dzγ)

+νπ
∗gD.

In particular, the geodesic distance near D is

d(x, p)∼ log(− log‖S(x)‖2),

when p ∈ X is fixed and x is close enough to D.

As it is more generally known, the volume growth of geodesic balls with fixed
center is exponential in this case.

The Ricci-flat case has been treated only recently by Santoro [S08] and indepen-
dently in [KK10]. At first we want to point out the general strategy used by [TY90].
Let D ∈ |−KX | be a smooth, ample divisor given as the zero locus of the section
S ∈L (D) and ‖.‖ a suitably chosen metric on L (D). Then

ω0 := i∂∂ (− log‖S‖2)
n+1

n

gives a good initial metric, “good” meaning that it is a complete Kähler metric and
the volume form is asymptotically flat; moreover, in local coordinates with z1 = S

ω
n =

1
|z1|2 dz1∧dz1∧ π̃

∗
Ω ∧π

∗
Ω̃ + l.o.t.
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for a volume form Ω̃ on D and π : U −→ D being the projection as above. This
metric looks in local coordinates

g0 =
h

‖S‖2(− log‖S‖2)1− 1
n

dS⊗dS

+∑
γ

O

(
1

‖S‖(− log‖S‖2)1− 1
n

)
(dzγ ⊗dS+dS⊗dzγ)

+(− log‖S‖2)
1
n π
∗gD

for a suitable Kähler metric gD on D and function h ∈C∞(X). The question is how
close this is to a Ricci-flat complete Kähler metric.

Theorem 3.5 ([KK10]) Let D ∈ |−KX | be a smooth ample divisor. There is a com-
plete, Ricci-flat Kähler metric g on X with asymptotics as above such that for every
N > 0 there is C > 0 such that

(1−C(− log‖S‖2)−N)g0 ≤ g≤ (1+C(− log‖S‖2)−N)g0

Here, g0 is constructed in essentially the same way as in [TY90].

By solving Laplace equations on the line bundles L (nD)⊗L (kD) Santoro
[S08] obtains a sequence gm of initial metrics constructed explicitely as above with
metrics ‖.‖m on L (D) such that the asymptotics of a Ricci-flat, complete Kähler
metric can be described by those of gm up to order ‖S‖m.

Theorem 3.6 ([S08]) Let D ∈ |−KX | be a smooth ample divisor. There is an ex-
plicitely constructable sequence gm of complete Kähler metrics with asymptotics as
above, Cm > 0 and a Ricci-flat complete Kähler metric g on X such that

(1−Cm(‖S‖2)m)gm ≤ g≤ (1+Cm(‖S‖2)m)gm.

These results imply that the geodesic distance from a fixed point is of order
(− log‖S‖2)

n+1
2n and the volume growth of geodesic balls of radius r around a fixed

point is of order r
2n

n+1 . This is an interesting result when viewed from the symmetric
case. In case X = (C∗)k ×Cl , the volume growth of the symmetric metrics is of
order r2l+k, so the exponent is of integer order and at least n = dimX .
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4 Crepant Resolutions

Here the existence of a complete Ricci-flat Kähler metric is encoded in terms of
Sasakian geometry. At the basis of this technique lies the fact that the metric cone
C(S) = S×R+ with g̃ := dr2 + r2g over a Sasaki manifold (S,g) – called “Kähler
cone” in this context – is Ricci-flat and Kähler if and only if S is Sasaki-Einstein
with positive scalar curvature. Now the aim is to resolve the singularity at the apex
in such a way that a Ricci-flat Kähler metric asymptotic to the cone metric can
be obtained on the resolution. Necessarily, the resolution π : Y −→C(S) has to be
crepant, i.e. π

∗KC(S) = KY . For this class, van Coevering found a beautiful result.

Theorem 4.1 ([C10]) Let π : Y −→ C(S) be a crepant resolution of the Ricci-flat
Kähler cone C(S). Then, for each Kähler class α ∈ H2

c (Y,R) there is a complete
Ricci-flat Kähler metric g with [g] = α and g is asymptotic to the cone metric for
any order of derivatives.

In particular, the volume growth of geodesic balls is of order r2n. Many examples
for this Theorem have been constructed before: Joyce [J01] and Kronheimer [K89]
proved the existence of an almost locally euclidean Ricci-flat Kähler metric in every
Kähler class for crepant resolutions ofCn \{0}/Γ with Γ ⊂ SL(n,C) a finite group.

The conditions of Theorem 4.1 need some discussion. The existence of a crepant
resolution in dimension 3 implies that the singularity of X is Gorenstein. For toric
varieties the situation clarifies further: Futaki, Ono and Wang [FOW06] proved that
a toric Gorenstein metric cone over a Sasaki manifold admits a Ricci-flat Kähler
cone metric. In dimension 3, any toric Gorenstein singularity allows for a crepant
resolution, so that we obtain

Example 3 Let X be a 3-dimensional toric Gorenstein Kähler cone and π : Y −→ X
a crepant resolution. In every class of H2

c (Y,R) there is a complete, Ricci-flat T n-
invariant Kähler metric on X asymptotic to the cone metric.

There are cases of crepant resolutions not covered by Theorem 4.1.

Example 4 Whenever a crepant resolution is small, i.e. the exceptional locus has
codimension > 1, then there cannot be a Kähler class in H2

c (Y,R). For instance, the
total space of the line bundle Y := O(−1)⊕O(−1) −→ CP1 can be obtained by
a small resolution from X = {z2

1 + z2
2 + z2

3 + z2
4 = 0} ⊂ C4, the cone over S2× S3.

The latter allows for a Sasaki-Einstein metric and Y is known to support a complete,
Ricci-flat Kähler metric [CO90].
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This example is also instructive from the viewpoint of open manifolds. Y is an
open manifold in Y := P(O(−1)⊕O(−1)⊕O)−→ P1 with D = O(1). In particu-
lar, −KY is ample and not a multiple of D.

The examples show that as well for open manifolds as for crepant resolutions a
classification of the Ricci-flat case is still missing. Apart from the ambitious goal to
achieve such a classification, one may also ask for a unifying definition of a class
of non-compact manifolds allowing for a classification as systematic as the one for
compact manifolds. But there are still too many questions unanswered to raise such
an issue.
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Fixed point subalgebras of Weil algebras: from
geometric to algebraic questions

Miroslav Kureš

Abstract The paper is a survey of some results about Weil algebras applicable in
differential geometry, especially in some classification questions on bundles of gen-
eralized velocities and contact elements. Mainly, a number of claims concerning the
form of subalgebras of fixed points of various Weil algebras are demonstrated.

Keywords Local algebra, Weil algebra, automorphism, fixed point subalgebra, nat-
ural operator.
Mathematics Subject Classification (2010) Primary 13H99, 16W20. Secondary
58A32.

1 Introduction

Motivated by algebraic geometry, André Weil suggested the treatment of infinites-
imal objects as homomorphisms from algebras of smooth functions into some real
finite-dimensional commutative algebra with unit in 1950’s. In fact, he follows a
certain idea of Sophus Lie: so-called A-near points (defined by Weil in [9]) repre-
sent ‘parametrized infinitesimal submanifolds’. More precisely, let M be a smooth
manifold and let C∞(M,R) be its ring of smooth functions into R: A-near points
of M are defined as R-algebra homomorphism C∞(M,R)→ A, where A is a certain
localR-algebra A (precisely defined below) now called the Weil algebra. This can be
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regarded as the first notable occurrence of local R-algebras in differential geometry.
New concepts, such as Weil algebras, Weil functors, Weil bundles were introduced
and they are widely studied, even to this day, because of their considerable gen-
erality. In a modern categorical approach to differential geometry, if we interpret
geometric objects as bundle functors, then natural transformations represent a num-
ber of geometric constructions. In this context, finding a bijection between natural
transformations of two Weil functors T A, T B (generalizing well-known functors of
higher order velocities and, of course, the tangent functor as the first of them) and
corresponding morphisms of Weil algebras A and B, has fundamental importance.
The theory of natural bundles and operators, including methods for finding natural
operators, is very well presented in the monographical work Natural Operations in
Differential Geometry [1] (Ivan Kolář, Peter Michor and Jan Slovák, 1993). This
paper has the character of a survey: it provides an introduction to Weil algebras and
some selected problems which are geometrically motivated and were studied by the
author and his collaborators from the algebraic point of view.

2 Starting points: product preserving functors

Let F : Mf→ FM be a bundle functor from the category Mf of manifolds (having
smooth manifolds as objects and smooth maps as morphisms) to the category FM of
fibered manifolds (and fibered manifold morphisms). For example, such a functor is
the tangent functor T . For two manifolds M1, M2 we denote the standard projection
onto the i–th factor by pi : M1 ×M2 → Mi, where i = 1,2. F is called product
preserving if the mapping

(F(p1),F(p2)) : F(M1×M2)→ F(M1)×F(M2)

is a diffeomorphism for all manifolds M1, M2. For a product preserving bundle func-
tor we shall always identify F(M1×M2) with F(M1)×F(M2) by the diffeomor-
phism from the definition. The tangent functor T is product preserving. Another
example of a product preserving functor is the functor T r

k of k-dimensional r-th
order velocities with T 1

1 = T . Further, we obtain a product preserving functor by
arbitrary (finite) iterations of product preserving functors.

If we denote by WA the category of Weil algebras (the exact definition of Weil
algebra is postponed to the next section) and Weil algebra homomorphisms, then
the problem of classification of all product preserving functors was solved in works
of Kainz and Michor, Luciano and Eck in the 1980’s and reads as follows (see [1]):
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Product preserving bundle functors from the category Mf of manifolds into the cat-
egory FM of fibered manifolds are in bijection with objects of WA and natural
transformations between two such functors are in bijection with the morphisms of
WA.
The correspondence is determined by the following construction of the bundle func-
tor T A from a given Weil algebra A. Let M be a smooth manifold and let A be a Weil
algebra. Two smooth maps g,h : Rk→M are said to determine the same A-velocity
jAg = jAh, if for every smooth function ϕ : M→ R

πA( jr
0(ϕ ◦g)) = πA( jr

0(ϕ ◦h))

is satisfied. (As usually, we denote here r-jets with the source in 0∈Rk by jr
0 and an

epimorphism from the algebra Dr
k = Jr

0(Rk,R) to the algebra A by πA.) The space
T AM of all A-velocities on M is fibered over M and is called the Weil bundle. The
functor T A from Mf into FM is called the Weil functor.

3 To the definition of the Weil algebra

The Weil algebra is a local commutative R-algebra A with identity, the nilradical
(nilpotent ideal) nA of which has finite dimension as a vector space and A/nA = R.
We call the order of A the minimum ord(A) of the integers r satisfying nr+1

A = 0 and
the width w(A) of A the dimension dimR(nA/n2

A).

One can assume A is expressed as a finite dimensional factor R-algebra of the
algebra R[x1, . . . ,xk] of real polynomials in several indeterminates. Thus, the main
example is

Dr
k = R[x1, . . . ,xk]/mr+1,

m = 〈x1, . . . ,xk〉 being the maximal ideal of R[x1, . . . ,xk]. Evidently, ord(Dr
k) = r

and w(Dr
k) = k. Every other such algebra A of order r can be expressed in a form

A = R[x1, . . . ,xk]/j =R[x1, . . . ,xk]/i+mr+1,

where the ideal i satisfies mr+1 $ i ⊆ m2 and is generated by a finite number of
polynomials, i.e. i = 〈P1, . . . ,Pl〉. The fact i⊆m2 implies that the width of A is k as
well. It is evident, that such expressions of algebras in question are not unique after
all. Clearly, A can be expressed also as

A =Dr
k/i,
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where i is an ideal in Dr
k. This last definition will be prefered in the paper; we will

also frequently move from Dr
k/i to R[x1, . . . ,xk]/j and back.

Let AutA be the group of automorphisms of the algebra A. By a fixed point of A
we mean every a ∈ A satisfying ϕ(a) = a for all ϕ ∈ AutA. Let

SA = {a ∈ A;ϕ(a) = a for all ϕ ∈ AutA}

be the set of all fixed points of A. It is clear, that SA is a subalgebra of A containing
constants (of couse, every automorphism sends 1 into 1), i.e. SA⊇R. If SA =R, we
say that SA is trivial.

4 Weil contact elements

Now, let the Weil algebra A have width w(A) = k < m = dimM and order ord(A) = r.
Every A-velocity V determines an underlying D1

k-velocity V . We say V is regular,
if V is regular, i.e. having maximal rank k (in its local coordinates). Let us denote
regT AM the open subbbundle of T AM of regular velocities on M. The contact ele-
ment of type A or briefly the Weil contact element on M determined by X ∈ regT AM
is the equivalence class

AutAM(X) = {ϕ(X);ϕ ∈AutA}.

We denote by KAM the set of all contact elements of type A on M. Then

KAM = regT AM/AutA

has a differentiable manifold structure and regT AM→ KAM is a principal fiber bun-
dle with structure group AutA. Moreover, KAM is a generalization of the bundle
of higher order contact elements Kr

kM = regT r
k M/Gr

k introduced by Claude Ehres-
mann. We remark that the local description of regular velocities and contact ele-
ments is covered by the paper [2].

Let us write
εA : AutA→ GL(nA/n2

A)

for the canonical group morphism. If we write as usual w(A) = dimR(nA/n2
A), then

GL(nA/n2
A) reads as GL(w(A),R).

Further, the element ϕ ∈ AutA is called orientation preserving, if the determi-
nant of εA(ϕ) is positive.
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The subgroup of all orientation preserving elements of AutA will be denoted by
(AutA)+.

If we factorize
regT AM/(AutA)+,

we obtain the bundle KA+M of Weil oriented contact elements.

As to orientability, we remark that even the case AutA = (AutA)+ can occur.
So, it is suggestive to study the orientability (with interesting references to classical
geometric problems) just from the indicated point of view.

5 Subalgebra of fixed points

We use the fact that a Weil algebra A can also be considered as a factor algebra of
the algebraR[x1, . . . ,xk] of polynomials, i.e. A =R[x1, . . . ,xk]/j and then j=i+mr+1,
where m = 〈x1, . . . ,xk〉 is the maximal ideal inR[x1, . . . ,xk]. Let τ ∈R, τ 6= 0, and let
Hτ : R[x1, . . . ,xk]→R[x1, . . . ,xk] be a (linear diagonal) homomorphism acting by

x1 7→ τx1

. . .

xk 7→ τxk.

Then it is necessary to determine whether Hτ induces a homomorphism H̄τ : A→ A
or not.

Definition 1 The Weil algebra A =Dr
k/i is called monomial, if i is monomial.

Proposition 1 If A is a monomial Weil algebra, then its subalgebra SA of fixed points
is trivial.

Proof It is clear that j can be also generated by monomials. The homomorphism Hτ

sends every such monomial from j again into j, i.e. Hτ(j)⊆ j and we have the induced
homomorphism H̄τ : A→ A. For τ /∈ {−1,0,1}, H̄τ (a) 6= a for every element of
a ∈ nA. Thus, SA is trivial.

Definition 2 The Weil algebra A = Dr
k/i is called homogeneous, if i is homoge-

neous.
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If we have a positive gradation A =
⊕

i≥0 Ai on a Weil algebra A such that
nn

A =
⊕

i≥n Ai for each n ≥ 0, we say that A is gradable by the radical, cf. [8].
We remark that A is gradable by the radical if and only if i is homogeneous.

Proposition 2 If A is a homogeneous Weil algebra, then its subalgebra SA of fixed
points is trivial.

Proof The reason is completely identical to that in the previous proposition (see
[5] for the original proof): the homomorphism Hτ sends a homogeneous polyno-
mial from j again into j, i.e. Hτ(j) ⊆ j and we have the induced homomorphism
H̄τ : A→ A. For τ /∈ {−1,0,1}, H̄τ(a) 6= a for every element of a ∈ nA and SA is
trivial.

The idea of the proofs of the two propositions above lies in the fact that Hτ maps
j into j. Thus, it is not difficult to derive the following slight generalization. Let
τ1, . . . ,τk be non-zero real numbers and Hτ1,...,τk : R[x1, . . . ,xk]→ R[x1, . . . ,xk] be a
(linear diagonal) homomorphism acting by

x1 7→ τ1x1

. . .

xk 7→ τkxk.

Proposition 3 If A = R[x1, . . . ,xk]/j is a Weil algebra with w(A) = k and if
there exist some τ1, . . . ,τk ∈ R− [−1,1] (or τ1, . . . ,τk ∈ (−1,1)−{0}) such that
Hτ1,...,τk(j)⊆ j, then the subalgebra SA of fixed points of A is trivial.

Proof The idea of the proof of this generalization is clear: if Hτ1,...,τk(j) ⊆ j, then
every non-constant monomial from j maps onto a monomial in j (with the same
multidegree), however, not onto the same monomial, because of the impossibility to
obtain 1 as a product of τ’s. The induced homomorphism preserves this property.

The assertions of the previous three propositions do not hold in the
opposite direction — not even the last one, which has the most gen-
eral presumptions. For example A = D4

2/〈x2 + y3,x3 + y4〉 has trivial SA,
but there are no τ1,τ2 ∈ R − [−1,1] (or τ1,τ2 ∈ (−1,1) − {0}) such that
Hτ1,τ2(〈x2 + y3,x3 + y4〉+m5)⊆ 〈x2 + y3,x3 + y4〉+m5, see [5].

It is now the right time to show that there exist Weil algebras for which
their subalgebras of fixed points are not trivial. Examples of such algebras are
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D4
2/〈x2y+ y4,x3 + xy2〉 or D3

3/〈x2 + y3,xy+ z3,y2z+ yz2〉. This can be verified by a
direct computation (although it is not evident at first sight: see Appendix!). More-
over, the following

”

order theorem” holds.

Proposition 4 There is no algebra A with w(A) = 1 and with nontrivial fixed point
subalgebra. There exist algebras A with w(A) = 2 with a nontrivial fixed point sub-
algebra if and only if ord(A)≥ 4. For all k > 2, there exist an algebra with w(A) = k
and with a nontrivial fixed point subalgebra if and only if ord(A)≥ 3.

Proof The proof is based on several technical lemmas and we do not write it here
for its length. We refer mainly to [7] and also to [6].

Let us follow through a slightly different but also fairly good approach. For a
Weil algebra A, the canonical algebra homomorphism κA : A→ R can be viewed
as the endomorphism κA : A→ A. The group AutA of R-algebra automorphisms of
A is a real smooth manifold with the usual Euclidean topology. Then the following
definition is correct.

Definition 3 A Weil algebra A is said to be dwindlable if there is an infinite sequence
{ϕn}∞

n=1 of automorphisms ϕn ∈AutA such that ϕn→ κA for n→ ∞.

Proposition 5 If A is a dwindlable Weil algebra, then its subalgebra SA of fixed
elements is trivial. Apart from that, there are non-dwindlable Weil algebras with
trivial SA.

Proof If A is dwindlable and SA is not trivial, then there exists an element 0 6= a∈ nA

belonging to SA. As there is also an infinite sequence {ϕn}∞
n=1, ϕn ∈AutA, ϕn→ κA

for n→ ∞, we deduce for a that 0 6= a = ϕn(a)→ κA(a) = 0 which is a contra-
diction. On the other hand, D5

2/〈xy2 + x5,x2y + y5〉 represents an example of a non-
dwindlable Weil algebra with trivial SA.

Furthermore, let us remark that for a dwindlable Weil algebra A, the group UA of
unipotent automorphisms (i.e. such automorphisms ϕ for which idA−ϕ is a nilpo-
tent endomorphism of A) is a proper subgroup of the connected identity component
GA of AutA, see [3]. The index of the subgroup GA also represents an important
object of interest, cf. [4].

Let us return to the geometric motivation. From what we have stated, we have
deduced in [5] and [6] the following results:
There is a one-to-one correspondence between all natural operators lifting vector
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fields from m-manifolds to the bundle functor KA of Weil contact elements and the
subalgebra of fixed elements SA of A.
There is a one-to-one correspondence between all natural affinors on KA and the
subalgebra of fixed elements SA of A.
All natural operators lifting 1-forms from m-dimensional manifolds to the bundle
functor KA of Weil contact elements are classified for the case of dwindlable Weil
algebras: they represent constant multiples of the vertical lifting.

To the open problem

We conclude that the main problem of an exact one-to-one characterization of Weil
algebras having non-trivial fixed point subalgebras remains open.

Nevertheless, a number of partial (sub-)problems can be mentioned. For exam-
ple, elements a ∈ A annihilated by any element of the nilradical nA, i.e. having the
property au = 0 for all u ∈ nA, constitute an ideal which is called the socle of A and
denoted by soc(A). Then elements of A in the form r1 + r2a, r1,r2 ∈ R, a ∈ soc(A)
form a subalgebra MA of A. The problem of a relation between SA and MA is also
open (with the conjecture: SA⊆MA).

Appendix: The computation method and two examples

We present a computation method for the description of automorphisms and detect-
ing whether the fixed point subalgebra is trivial or not.

Example 1 The first example is of theoretical importance, see Proposition 4. Let

A = D4
2/〈x2y+ y4,x3 + xy2〉.

The elements of A have the form

k1 + k2x + k3y+ k4x2 + k5xy+ k6y2 + k7x3 + k8x2y+ k9y3

with the simultaneous vanishing of all monomials of the fifth or higher order in com-
mon with x4, x3y, x2y2, xy3, x2y+y4 and x3 +xy2. We shall describe automorphisms
of A. Automorphisms preserve the unit; so, we determine them by saying what is
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mapped to x and y, for clarity, denoted rather by x̄ and ȳ. Thus, the starting point is
a form

x̄ = Ax+By+Cx2 +Dxy+Ey2 +Fx3 +Gx2y+Hy3

ȳ = Ix + Jy+Kx2 +Lxy +My2 +Nx3 +Ox2y+Py3.

The matrix

(
A B
I J

)
must be non-singular and we consider the conditions x̄4 = 0,

x̄3ȳ = 0, x̄2ȳ2 = 0, x̄ȳ3 = 0, x̄2ȳ+ ȳ4 = 0 and x̄3 + x̄ȳ2 = 0 now. The condition x̄4 = 0
gives B = 0. The conditions x̄3ȳ = 0, x̄2ȳ2 = 0, x̄ȳ3 = 0 give no new nontrivial rela-
tion. The condition x̄2ȳ + ȳ4 = 0 gives I = 0, A2 = J3. The condition x̄3 + x̄ȳ2 = 0
gives E = 0, A2 = J2. So, we obtain J = 1 and A = −1 or A = 1. Hence the auto-
morphisms have the following form

x̄ = εx+Cx2 +Dxy+Fx3 +Gx2y+Hy3

ȳ = y+Kx2 +Lxy+My2 +Nx3 +Ox2y+Py3,

where ε ∈ {−1,1}. (We observe that the group AutA of automorphisms has two
connected components.) Finally, we solve the equation

k1 + k2x̄ + k3ȳ+ k4x̄2 + k5x̄ȳ+ k6ȳ2 + k7x̄3 + k8x̄2ȳ+ k9ȳ3 =

k1 + k2x + k3y+ k4x2 + k5xy+ k6y2 + k7x3 + k8x2y+ k9y3

for ki, i = 1, . . . ,9, by using the described automorphisms. By comparing coefficients
at powers of x and y, we find that k2 = k3 = k4 = k5 = k6 = k7 = k9 = 0 and k1,k8

are arbitrary real coefficients. This means

SA = {k1 + k8x2y; k1,k8 ∈ R}

and SA%R.

Example 2 The second example is new. Let

A =D4
3/〈x2 + y3 + z3,x3 + y3 + z4,xyz〉.

We start by expressing of elements of A in the form

k1 + k2x+ k3y+ k4z+ k5x2 + k6xy+ k7y2 + k8xz+ k9yz+ k10z2 +

k11x2y+ k12xy2 + k13x2z+ k14y2z+ k15xz2 + k16yz2 + k17z3 + k18y2z2

with the simultaneous vanishing of all monomials of the fifth or higher in com-
mon with xyz, x2y2, x2z2, x2 + y3 + z3, x2 − x3 + x2z + z3, x2z + z4, x2y + yz3,
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x2 + x2z + z3 + xz3. The algorithm given above yields after a

”

bit of calculation”
a connected group of automorphisms (we leave its exact expression as an exercise
to the reader) and

SA = {k1 + k5x2 + k12xy2 + k13x2z+ k18y2z2; k1,k5,k12,k13,k18 ∈ R}.

Hence, we find that the dimension of the subalgebra SA of fixed points is remarkably
high.

Acknowledgements The author thanks an unknown referee for comments that improved the pa-
per.
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1. Kolář, I., Michor, P.W. and Slovák, J., Natural Operations in Differential Geometry,
Springer Verlag 1993
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Self-similar solutions and translating solutions

Yng-Ing Lee

Abstract In this note, I provide some detailed computation of constructing trans-
lating solutions from self-similar solutions for Lagrangian mean curvature flow dis-
cussed in [6] and explore the related geometric meanings. This method works for all
mean curvature flows and has great potential to find other new translating solutions.

Keywords Mean curvature flow, self-similar solution, translating solution, La-
grangian.
Mathematics Subject Classification (2010) 53C44.

1 Introduction

By the first variation formula of area, the mean curvature vector points in the di-
rection in which the area decreases most rapidly. Mean curvature flow deforms the
submanifold in the direction of the mean curvature vector, and thus is a canonical
way to construct minimal submanifolds. However, finite-time singularities may oc-
cur along the flow. In geometric flows, singularities are often locally modelled on
soliton solutions. In the case of mean curvature flows, two types of soliton solutions
of particular interest are those moved by scaling or translation in Euclidean space.
We recall that solitons moved by scaling must be of the form:
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Definition 1.1 A submanifold L in Euclidean space Rn is called a self-similar so-
lution if H ≡ αF⊥ on L for some constant α in R, where F⊥ is the projection of
the position vector F in Rn to the normal bundle of L, and H is the mean curvature
vector of L in Rn. It is called a self-shrinker if α < 0 and a self-expander if α > 0.
It is a minimal submanifold when α = 0, which is a static solution of the flow.

It is not hard to see that if F is a self-similar solution, then Ft defined by
Ft =

√
2αt F is a solution to the mean curvature flow. By Huisken’s monotonicity

formula [3], any central blow up of a finite-time singularity of the mean curvature
flow must be a self-shrinker (the generalization to type II singularities is due to Ilma-
nen [4] and White). The submanifolds which are moved by translation along mean
curvature flow must be of the form:

Definition 1.2 A submanifold L in Euclidean space Rn is called a translating solu-
tion if there exists a constant vector T in Rn such that H +V ≡ T on L, where V is
the component of T tangent to L, and H is the mean curvature vector of L in Rn. An
equivalent equation is H ≡ T⊥. The 1-parameter family of submanifolds Lt defined
by Lt = L + t T for t ∈ R is then a solution to mean curvature flow, and we call T a
translating vector.

D. Joyce, M. P. Tsui and the author constructed in [6] many self-similar solutions
and translating solutions with different properties for Lagrangian mean curvature
flow which requires the solution to be Lagrangian at each time slice. A Lagrangian in
R2n is an n-dimensional submanifold on which the restriction of ω = ∑

n
j=1 dxj∧dyj

vanishes. Our construction of translating solutions in [6] is in fact derived from tak-
ing a limit of self-similar solutions. The method works for solutions of all mean cur-
vature flow. The construction in [6] for n = 1 gives Grim reapers from self-shrinkers
(or self-expanders) for curve shortening flow. Other translating solutions for mean
curvature flow can also be obtained from the same procedure [8]. Most people are
not aware of this interesting approach and when I discuss with some, they appear
to be quite interested. I thus feel that it might be desirable of explaining this princi-
ple in details. I will first state the method, which is pinned down to the convergent
condition; then use the examples in [6] to demonstrate how the condition can be
justified. Although it requires efforts to verify everything rigorously, it is relatively
easy to find the right family heuristically. I believe that this method will help us to
find more translating solutions for mean curvature flow as [8] being the first attempt
in this direction. The geometric picture for n = 2, i.e. Lagrangian surfaces in R4, is
discussed in details in the last section.
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2 Self-similar solutions to translating solutions

Here we state the principle of constructing translating solutions from self-similar
solutions. The theorem is very simple and the most essential part is to arrange a
sequence of self-similar solutions such that the condition is satisfied. Many discus-
sions presented here have appeared implicitly and briefly in [6].

Theorem 2.1 Suppose we have a sequence of self-similar solutions satisfying
F⊥i ≡ RiHi (or F⊥i ≡−RiHi) with Ri→ ∞. Define

F̄i ≡ Fi− (0, . . . ,0,Ri). (1)

Assume that F̄i converges to F and the corresponding mean curvature vector Hi also
converges to the mean curvature vector H of F. Then F is a translating solution with
translating vector (0, . . . ,0,1).

Proof Because F̄i is just a translation of Fi, it has the same mean curvature vector
Hi. The self-similar equation can be rewritten as

F̄⊥i +(0, . . . ,0,Ri)⊥ ≡ RiHi.

Dividing both sides by Ri, it gives

R−1
i F̄⊥i +(0, . . . ,0,1)⊥ ≡ Hi.

As F̄i converges to F , the related convergent sequence of points are bounded
and hence R−1

i F̄⊥i converges to the zero vector for this sequence. We then have
H ≡ (0, . . . ,0,1)⊥ and show that F is a translating solution.

One may try to scale a single self-similar solution by R, and apply the above
theorem. But this does not work. The sphere is a self-shrinker, and is a good example
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to check the idea. We need genuine parameters to make the procedure work. The
case in [6] has many nontrivial parameters, and becomes an excellent example to
illustrate this method. Note that if we write the self-similar equation in the form
Hi ≡ αiF⊥i as in Definition 1.1, then we require αi→ 0 instead.

Recall that the self-similar solutions obtained in [6] are of the following form:

Theorem 2.2 [6] Let λ1, . . . ,λn,C ∈ R\{0} and α ∈ R be constants, I be an open
interval in R, and θ : I → R or θ : I → R/2πZ and w1, . . . ,wn : I → C \ {0} be
smooth functions. Suppose that

dwj

ds
= λ jeiθ(s) w1 · · ·wj−1wj+1 · · ·wn, j = 1, . . . ,n,

dθ

ds
= α Im(e−iθ (s)w1 · · ·wn),

(2)

hold in I. Then the submanifold L in Cn given by

L =
{(

x1w1(s), . . . ,xnwn(s)
)

: s ∈ I, x j ∈R, ∑
n
j=1 λ jx2

j = C
}
, (3)

is Lagrangian, with Lagrangian angle θ(s) at (x1w1(s), . . . ,xnwn(s)), and its posi-
tion vector F and mean curvature vector H satisfy αF⊥ = CH.

Example 2.3 Give λ1, . . . ,λn−1 and choose λn = R, C = R in Theorem 2.2. For any
initial data which will be specified later, we can solve (2) and find a self-similar
solution FR in the form (3) satisfying F⊥R = R

α
H. Note that we now use complex

coordinates in Cn. Because we want

F̄R = (x1w1(s), . . . ,xnwn(s))− (0, . . . ,0,R)

converge as R→ ∞, we first rewrite

wn = R+β
R and xn = 1+R−1x̄n

to absorb the unbounded vector. In new variables, we have

F̄R = (x1w1(s), . . . , x̄n +β
R(s)+R−1x̄n) (4)

and
λ1x2

1 + . . .+λn−1x2
n−1 +2x̄n +R−1x̄2

n = 0 (5)

We want to study the limit of (4) as R→ ∞ and let us first start with (5). Given
x1, . . . ,xn−1, we have A = ∑

n−1
j=1 λ jx2

j fixed and A+2x̄n +R−1x̄2
n = 0. When λ j are all

positive, we have A ≥ 0, while we have A 6 0 when λ j are all negative, and A can
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be any number for the other cases. Note that we always have real value solutions for
x̄n because the equation is from (3). Simple algebra gives x̄n = −R +

√
R2−RA or

x̄n =−R−
√

R2−RA. As the second root diverges to −∞ as R→ ∞, we investigate
the first one only. When A≥ 0, we have

0≥ x̄n =−R+
√

R2−RA = R
(
−1+

√
1−R−1A

)
≥R
(
−1+1−R−1A

)
≥−A (6)

for R large enough. It follows that R−1x̄2
n→ 0 as R→∞ and the limit of (5) becomes

λ1x2
1 + . . .+λn−1x2

n−1 +2x̄n = 0. (7)

When A < 0, we have 0 < x̄n < −A instead and still have the same conclusion.
Now consider the curve part. We denote the curve satisfying (2) by ΓR and define
Γ̄R = ΓR− (0, . . . ,0,R) which satisfies

dwR
j

ds
= λ jeiθ R

wR
1 · · ·wR

j−1wR
j+1 · · ·wR

n−1(R+β R), j = 1, . . . ,n−1,

dβ R

ds
= Reiθ R

wR
1 · · ·wR

n−1

dθ R

ds
= α Im

(
e−iθ R

wR
1 · · ·wR

n−1(R+β
R)
)
.

(8)

What we concern is the limit of the image, not the parametrization itself. So we will
choose a different parametrization s̃ = Rs to absorb R factor and make the limiting
process more transparent. In this new parameter (8) becomes

dwR
j

ds̃
= λ jeiθ R

wR
1 · · ·wR

j−1wR
j+1 · · ·wR

n−1(1+R−1
β R), j = 1, . . . ,n−1,

dβ R

ds̃
= eiθ R

wR
1 · · ·wR

n−1

dθ
R

ds̃
= α Im

(
e−iθR

wR
1 · · ·wR

n−1(1+R−1
β

R)
)
.

(9)

Choose the initial data in (2) to be
(
w1(0), . . . ,wn−1(0),R + β (0)

)
, i.e. the same

initial data
(
w1(0), . . . ,wn−1(0),β (0)

)
for all R in (9). We need to control R−1β R to

take a limit in (9).

To see this, we first recall Theorem B in [6] where we write wj ≡ r jeiϕ j and
ϕ = ∑

n
j=1 ϕ j, for functions r j : I→ (0,∞) and ϕ1, . . . ,ϕn,θ : I→ R or R/2πZ. Fix

s0 ∈ I and define u : I→R by

u(s) = 2
∫ s

s0

r1(t) · · ·rn(t)cos
(
ϕ(t)−θ (t)

)
dt.
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Then one has r2
j (s) ≡ α j + λ ju(s) for j = 1, . . . ,n and s ∈ I, where α j = r2

j (s0).
Applying the result to the case discussed here, we have

duR

ds
= 2
√

(α1 +λ1uR) . . .(αn−1 +λn−1uR)(|R+β (0)|2 +RuR) cos(ϕR−θ
R)
(10)

or equivalently,

duR

ds̃
= 2
√

(α1 +λ1uR) . . .(αn−1 +λn−1uR)(|1+R−1β (0)|2 +R−1uR) cos(ϕR−θ
R),

(11)
where α j = |wj(0)|2. For R large enough we have

duR

ds̃
6 2
√

(α1 +λ1uR) . . .(αn−1 +λn−1uR)(2+uR). (12)

Hence uR is uniformly bounded for fixed s̃. On the other hand, we have

|R+β (0)|2 +RuR = |R+β
R|2.

Dividing both sides by R2, we obtain

|1+R−1
β (0)|2 +R−1uR = |1+R−1

β
R|2.

For fixed s̃ the left-hand side tends to 1 as R→ ∞, because β (0) is fixed and uR is
uniformly bounded. This shows that R−1β R tends to zero as R→∞, and we can take
a limit in (9), which becomes

dwj

ds̃
= λ jeiθ w1 · · ·w j−1w j+1 · · ·wn−1, j = 1, . . . ,n−1,

dβ

ds̃
= eiθ w1 · · ·wn−1

dθ

ds̃
= α Im

(
e−iθ w1 · · ·wn−1

)
.

(13)

The solution for (13) is the limit curve of Γ̄R and θ being the Lagrangian angle of
F . This shows that F̄R in (4) converges to(

x1w1(s̃), . . . ,xn−1wn−1(s̃),− 1
2 ∑

n−1
j=1 λ jx2

j +β (s̃)
)

(14)

with x j ∈ R, w1, . . . ,wn−1,β satisfying (13) and the mean curvature vector of F̄R

also converges to that of F as we have H = J∇θ for Lagrangians. Thus (14) is a
Lagrangian translating solution with translating vector (0, . . . ,0,α).
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Example 2.4 When n = 1, the system (2) reduce to that for self-similar solutions
of the curve shortening flow. Thus the construction of Example 2.3 gives a way to
obtain grim reapers from the self-shrinkers constructed in [2]. For completeness, we
repeat the argument below briefly.

We take α = 1 (or −1), λ = R and C = R. The solution has two connected
components corresponding to x = 1 and x =−1 respectively. We look at the branch
wR(s) ∈C, and have w⊥R = RHR (or w⊥R =−RHR for α =−1). Define β R = wR−R
and s̃ = Rs. Then

dβ R

ds̃
= eiθ R

and
dθ R

ds̃
= Im

(
e−iθ R

(1+R−1
β

R)
)
. (15)

Choose the initial data to be R + β (0) in (2). To take a limit in (15), we need to
control R−1

β
R. Define

uR(s) = 2
∫ s

0
r(t)cos

(
ϕ

R(t)−θ
R(t)

)
dt.

Proceeding as in Example 2.3, we have

duR(s̃)
ds̃

= 2
√
|1+R−1β (0)|2 +R−1uR cos(ϕR−θ

R)6 2
√

2+uR (16)

for R large enough. Hence uR(s̃) is uniformly bounded for fixed s̃, and

|1+R−1
β (0)|2 +R−1uR(s̃) = |1+R−1

β
R(s̃)|2.

It implies R−1β R(s̃)→ 0 as R→ ∞ for fixed s̃ and the limit of (15) becomes

dβ

ds̃
= eiθ and

dθ

ds̃
= Ime−iθ =−sinθ = N · (1,0), (17)

which is exactly the equation for a grim reaper. When α = −1, we have negative
sign in the second equation of (15) and obtain a grim reaper open to the direction
(−1,0).

Example 2.5 We can choose different families in Example 2.3 to take the limit. For
instance if λn−k = . . . = λn = R, C = (k+1)R, the translating solution obtained will
consist of a k–dimensional plane.
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3 The geometric picture for n = 2

There are different types of soliton solutions constructed in [6]. In this section we
use the 2-dimensional case, i.e. Lagrangian surfaces inC2, to highlight the geometry
of these examples. The properties summarized below have their counterparts (and
even more) for higher dimensional cases.

For n = 2, four types of self-similar solutions are constructed in [6]. They are

(i) Lagrangian self-expanders diffeomorphic to S1×R that are asymptotic to a
pair of Lagrangian planes intersecting at the origin, the Lagrangian angle can
be arbitrarily small, and the Maslov class is zero;

(ii) Compact Lagrangian self-shrinkers diffeomorphic to S1× S1 whose Maslov
class is nonzero;

(iii) Lagrangian self-expanders diffeomorphic to S1×R that are asymptotic to a
pair of Lagrangian cones and the Maslov class is nonzero;

(iv) Lagrangian self-shrinkers diffeomorphic to S1×R that are asymptotic to a pair
of Lagrangian cones and the Maslov class is nonzero.

There are a few parameters for these examples that are related. We can choose
different normalizations according to our need. We first count the dimension of free-
dom. There are two independent families in (i) (up to scaling and U(2) action). They

are determined by the radii
√

1
a1

and
√

1
a2

in z1,z2 planes of the nearest point to the

origin, or equivalently by the angles 0 < ϕ̄1 and 0 < ϕ̄2 with ϕ̄1 + ϕ̄2 < π

2 of the
asymptotic planes

L1 =
{
(eiϕ̄1t1,eiϕ̄2t2) : t1,t2 ∈R

}
, and L2 =

{
(e−iϕ̄1t1,e−iϕ̄2t2) : t1,t2 ∈R

}
.

The examples converge to Lawlor’s special Lagrangians [7] as one of ai → ∞ or
equivalently as ϕ̄1 + ϕ̄2 → π

2 , when α is fixed; or fix a1, a2 and let α → 0. See
Theorem C and D in [6] for more details.

Up to scaling and U(2) action, examples in (ii), (iii), and (iv), are respec-
tively from a dense set of 2-dimensional families (parameterized by the initial
data). The other examples in these 2-dimensional families are respectively non-
closed Lagrangian self-shrinkers diffeomorphic to S1×R, non-closed Lagrangian
self-expanders diffeomorphic to R2, and non-closed Lagrangian self-shrinkers dif-
feomorphic to R2. The examples in (iii) and (iv) converge to special Lagrangians
constructed by Joyce in [5] as α → 0. Self-shrinkers and self-expanders in (iv) and
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(iii) with their same asymptotic cones can be glued together to form an eternal so-
lution of Brakke flow, which is a weak solution of mean curvature flow, without
mass loss as proved in [10]. We remark that Anciaux in [1] constructed special self-
expanders in (i) satisfying ϕ̄1 = ϕ̄2 and obtained some other self-similar solutions;
Smoczyk proved that every compact (without boundary) self-similar solution must
have nonzero Maslov class [12, Theorem 2.3.5]; and Hamiltonian stationary self-
similar Lagrangians as (ii), (iii) and (iv) are constructed by Lee and Wang in [9, 10].

From all our self-similar solutions (including the non-closed ones), we can con-
struct translating solutions.

Example 3.1 For examples in (i), we take λ1 > 0, λ2 = R, C = R, α > 0 and obtain
translating solutions

(
xw(s),− 1

2 λ1x2 + β (s)
)

as discussed in Example 2.3, where
x ∈ R and

dw
ds

= λ1eiθ ,
dβ

ds
= eiθ w̄,

dθ

ds
= α Im

(
e−iθ w

)
. (18)

We can assume λ1 = 1 in (18) as redefining x̂ =
√

λ1x, ŵ = w√
λ1

, ŝ =
√

λ1s will do

the job. Simple calculation gives β (s) = 1
2 |w(s)|2− i

α
θ(s)+K. Since a translating

solution after translation is still a translating solution, we now take the solution to
be (

xw(s),−1
2

x2 +
1
2
|w(s)|2− i

α
θ (s)

)
, (19)

where x ∈R and w(s) is a self-expander for the curve shortening flow satisfying

dw
ds

= eiθ ,
dθ

ds
= α Im

(
e−iθ w

)
, (20)

with α > 0. The solution of (20) can be solved explicitly as in Theorem C of [6].
Namely, if we write w = reiϕ and reparameterize by a new variable −∞ < y < ∞,
then

r =

√
1
a

+ y2, ϕ(y) =
∫ y

0

dt
( 1

a + t2)
√

P(t)
, θ(y) = ϕ(y)+arg

(
y+ i

√
P(y)

)
,

(21)
where P(t) = 1

t2

(
(1+at2)eαt2−1

)
. If we take α = 1, after translation we have (19)

as (
x

√
1
a

+ y2 eiϕ(y),−x2− y2

2
− iθ (y)

)
. (22)

Note that ϕ(−y) = −ϕ(y) and limy→∞ ϕ(y) = ϕ̄ with 0 < ϕ̄ < π

2 . There is an 1–1
correspondence between 0 < a < ∞ and 0 < ϕ̄ < π

2 ; when ϕ̄ = π

2 − ε , the corre-
sponding Lagrangian angle θ(y) lies in

(
π

2 − ε, π

2 +ε
)
. That is, the surface (22) can

be arbitrarily close to special Lagrangians which have constant Lagrangian angle.
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Up to scaling, translation, and U(2) action, we have one parameter family of such
translating solutions.

The blow-down of the solution in (22) is the union of two planes (X1eiϕ̄ ,X2)
and (X1e−iϕ̄ ,X2) in C2 with the negative real line of the z2-plane deleted, where
X1,X2 ∈R. As a→∞, (22) converges to the special Lagrangian plane (X1i,X2) with
multiplicity 2; and as a→ 0, the surfaces converge to a grim reaper in the z2-plane
times the real line in the z1-plane. We can fix a and change α instead, or choose other
families. The limits will be different. The exploration of these and further properties
will be investigated in other places. I would like to thank Fernando Marques for
observing that one may get a grim reaper times R by letting a→ 0. Our examples
are rather surprising and of great interest as almost calibrated Lagrangians, i.e.
when the range of Lagrangian angle is less than π, have better behavior along mean
curvature flow and people had been trying to show that such a translating solution
must be planes. Our examples show that this is not true in general. In [11] Neves
and Tian discuss the relation and importance of understanding translating solutions
to the regularity theory of mean curvature flow, and show that under some additional
conditions the translating solutions must be planes. Our examples are similar to
cigar solutions in Ricci flow, and thus it is very important to rule them out as blow-
ups of Lagrangian mean curvature flow.

Question 3.2 Can the translating solitons with small Lagrangian angle oscillation
constructed above arise as blow-ups of finite time singularities for Lagrangian mean
curvature flow?

Example 3.3 For examples from (ii), we take λ1 > 0, λ2 = R, C = R, α < 0 and
obtain a translating solution satisfying (19) and (20) with α < 0 as discussed in
Example 2.3. These translating solutions have infinite oscillation of the Lagrangian
angle and thus cannot be the blow-ups of Lagrangian mean curvature flow. For ex-
amples from (iii), we take λ1 < 0, λ2 = R, C = R, α > 0 and obtain a translating
solution with related functions satisfying (18). We can change λ1 to −λ1, w to −w,
β to −β , and α to −α . They still satisfy (18) and will give the translating solutions
constructed from (ii). That is, translating solutions constructed from (iii) are the im-
age of those constructed from (ii) under the negative identity map in C2. Similarly,
translating solutions from (iv) are the image of those from (i) under the negative
identity map in C2.
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1 Introduction

A conformal structure on a smooth manifold M is an equivalence class of (pseudo-)
Riemannian metric tensors, in which two metrics g and g̃ are equivalent if and only
if g̃ = e2 f g for some smooth function f ∈C∞(M). Conformal structures are equiva-
lently defined by Cartan and tractor calculus (cf. [53, 6]). In fact, conformal geom-
etry is a special case of parabolic geometry (cf. [16]). Conformal invariant theory
studies geometric properties of manifolds, which characterise and distinguish the
underlying conformal structures. Well known are local curvature invariants like the
Weyl tensor, the Bach tensor in dimension 4, and more generally, the Fefferman-
Graham obstruction tensor (cf. [22]). The Fefferman-Graham obstruction occurs as
the total metric variation of the Q-curvature action (cf. [27]).

Branson’s Q-curvature in turn is closely related to the celebrated GJMS-
operators, which are conformally covariant differential operators whose principal
part is a power of the Laplacian (cf. [28]). In general, the kernel and spectral prop-
erties of conformally covariant differential operators are important invariants as
well (cf. e.g. [11, 31]). For example, solutions of the Dirac equation and Penrose’s
twistor equation [49] are such invariants. The latter PDE system is overdetermined,
hence its solvability forces curvature conditions on the underlying conformal struc-
ture (cf. [8]). Solutions of such PDE systems (like e.g. conformal Killing vector
fields and conformal Killing l-forms) reflect symmetry properties of a conformal
manifold (cf. [51, 20]). Also the existence of Einstein metrics in a given conformal
class is described by the kernel of a conformally covariant, overdetermined differ-
ential operator (cf. [37, 29]). Furthermore, there is an invariant notion of conformal
circles (resp. geodesics; cf. e.g. [16]). Another basic quantity is the famous Yamabe
invariant (cf. e.g. [35]).

In the current article we are mainly interested in the conformal holonomy (cf.
[3, 36, 40, 42, 9]) and its standard representation. This conformal invariant is nat-
urally introduced in the framework of Cartan and tractor calculus as the holonomy
group of the tractor connection. Generically, the conformal holonomy is a subgroup
of the Möbius group. Reduced conformal holonomy is directly linked to the ex-
istence of solutions of certain conformally covariant PDE systems (cf. [36, 37]).
Typically, these PDE systems are overdetermined and describe the kernel of the first
differential operator in a BGG-sequence (cf. [17]).

The methods that we use in this article are based on parabolic Cartan and tractor
calculus. There is also a close link to the Fefferman-Graham ambient and Poincaré-
Einstein models (cf. [22]). The latter is the geometric model, which underlies the
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AdS/CFT-correspondence in quantum gravity (cf. [46, 54]). In Section 5 and 6 other
parabolic geometries like CR-geometry will play an important role. Since the arti-
cle has an expository motivation, we will only sketch proofs. The presented results
about conformal holonomy are collected from various sources of recent times (cf.
[3, 36, 37, 40, 42, 43, 44]). The result on the complete geometric description of de-
composable holonomy is yet not published. A proof of this result will be given in a
forthcoming paper [5]. The current article is based on a lecture, which I gave at the
University of Regensburg in January 2010.

The course of the article is as follows. In Section 2 we introduce the standard
tractor bundle with connection, which then gives rise to the notion of conformal
holonomy. In Section 3 we explain the basic relation of conformal holonomy and
Einstein metrics. This is a special case of decomposable conformal holonomy. In
Section 4 we discuss the general case of decomposable conformal holonomy. In
the compact Riemannian signature case exactly two geometric situations occur, the
special Einstein products, and a degenerate version of these, the collapsing products
with the sphere. In Section 5 we discuss the first known case of irreducible confor-
mal holonomy, which is the case of unitary conformal holonomy corresponding to
the classical Fefferman construction in CR-geometry. In Section 6 we report on a
generalised Fefferman construction due to A. Čap, which gives rise to irreducible
conformal holonomy as well. During the course of the article we will meet sev-
eral conformally covariant, overdetermined PDE systems. In the final Section 7 we
explain the emergence of these by the unified approach of BGG-sequences.

2 Conformal tractor holonomy

Let Mn be a smooth connected manifold of dimension n≥ 3. Recall that a conformal
structure on M is given by a smooth R+-ray subbundle Q ⊂ S2T ∗M, whose fibre
over p ∈M consists of conformally related scalar products on TpM of a fixed signa-
ture (p,q) with n = p +q. Smooth sections of Q are metrics on M, and we denote
the set of all such sections by c. Any two sections g, g̃ ∈ c are related by g̃ = e2 f g
for some function f ∈ C∞(M), i.e., g and g̃ are conformally equivalent metrics on
M. (If g ∈ c then we also write c = [g].)
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2.1 Standard tractors and connection.

The principal R+-bundle π : Q → M induces for any representation
t ∈ R+ 7→ t−w/2 ∈ End(R), w ∈ R, a natural real line bundle E [w] over M,
which is called the conformal density bundle of weight w. The (conformal) standard
tractor bundle T of (M,c) is naturally defined as a quotient bundle of rank n + 2
of the 2-jet prolongation J2(E [1]) of the weighted bundle E [1] and admits a
composition structure

T = E [1] +
�� T M[−1] +
�� E [−1] ; (1)

E [−1] may be naturally identified with a subbundle of T and
T M[−1] = T M ⊗ E [−1] is a subbundle of the quotient bundle T /E [−1] (cf.
[6]). The projection of T onto E [1] will be denoted by Π . The standard tractor bun-
dle T is naturally equipped with a scalar product 〈·, ·〉T of signature (p+1,q+1)
and a covariant derivative ∇, the so-called tractor connection, which preserves the
tractor metric 〈·, ·〉T .

With respect to the choice of a metric g in the given conformal class c on M
the weighted bundles E [w], w ∈ R, are trivialised and the composition structure (1)
splits into the direct sum

T ∼=g R⊕T M⊕R .

Accordingly, any smooth section T ∈ Γ (T ) splits into a triple (a,ψ ,b), where a,b
are smooth functions and ψ is a vector field on M. (By convention, the component
a corresponds via g to the projection Π(T ). Thus we also write a = Πg(T ).) With
respect to this splitting (induced by g ∈ c) the tractor metric applied to standard
tractors T, T̂ is expressed by

〈T, T̂ 〉T = ab̂+ âb + g(ψ , ψ̂) .

And the tractor connection ∇ acts by

∇X

 a
ψ

b

=

 X(a)
∇

g
X ψ

X(b)

+

 −g(X ,ψ)
b ·X−a ·Pg(X)

Pg(X ,ψ)


for any X ∈ T M, where ∇g denotes the Levi-Civita connection of g, and

Pg =
1

n−2

(
scalg

2(n−1)
−Ricg

)
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is the Schouten tensor in terms of the Ricci tensor Ricg and the scalar curvature scalg

of g. With Pg(X) we denote the vector in T M, which is dual to Pg(X , ·) via g. The
conformal curvature Ω

∇ of the tractor connection ∇ consists of the Weyl tensor W g

and the Cotton tensor Cg (cf. e.g. [16, 37]).

Note that under a conformal rescaling of g to g̃ = e2 f ·g with respect to a smooth
function f the triple (a,ψ ,b) transforms by

(ã, ψ̃ , b̃) =
(

e f a , e− f · (ψ +a ·gradg f ) , e− f · (b−d f (ψ)−
a
2
‖gradg f‖2

g)
)

,

(2)
i.e., the metric g̃ gives rise to a different isomorphism for the tractor bundle T with
the direct sum R⊕T M⊕R. Also note that there is an alternative definition of the
standard tractor bundle T with connection ∇ in the framework of conformal Cartan
geometry (cf. Section 7 and [16]).

2.2 Tractor holonomy.

Any connection (or covariant derivative) on a vector bundle over a manifold admits
a holonomy group (with corresponding standard representation) (cf. e.g. [32]). We
briefly recall here the definition of holonomy group for the standard tractor bun-
dle (T ,∇) over a connected conformal manifold (M,c). For this purpose, let xo be
a base point in M and let Γxo be the set of smooth curves γ : [0,1]→ M, starting
and ending in xo. For any tractor To ∈ Tx0 and any γ ∈ Γxo , there exists a unique
covariantly constant tractor field T along γ , i.e., a smooth map T : [0,1] → T

with T (t) ∈ Tγ(t), T (0) = To and ∇γ̇(t)T = 0 for all t ∈ [0,1]. Then the map
Pγ

xo : Txo →Txo , To 7→ T (1), is a linear automorphism, which preserves the tractor
metric 〈·, ·〉T . The collection of all these automorphisms Pγ

xo , γ ∈ Γxo , forms a Lie
subgroup of the orthogonal group O(Txo). To be precise, we define

Holxo(T ,∇) := {Pγ
xo
| γ ∈ Γxo } ⊂ O(Txo) .

Note that with respect to any choice of orthonormal basis in Txo we can under-
stand Holxo(T ,∇) as a Lie subgroup of the orthogonal group O(p+1,q+1). Since,
for any choice of base point xo in M and any orthonormal basis in Txo , the corre-
sponding images of Holxo(T ,∇) are conjugated in O(p+1,q+1), the isomorphism
class of Holxo(T ,∇) is uniquely determined for (T ,∇). Moreover, since (T ,∇) is
a conformally invariant construction for (M,c), we denote this isomorphism class
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simply by Hol(M,c), and call this the conformal holonomy group of (M,c). The
conformal holonomy algebra is denoted by hol(M,c).

EXAMPLE. Let us consider the Möbius sphere Sn of dimension n ≥ 3, which is
the conformal compactification of the Euclidean space Rn by adding one point at
infinity. The sphere Sn is simply connected. Moreover, the Möbius sphere is con-
formally flat, i.e., the Weyl and Cotton tensors vanish identically. This implies that
the tractor connection ∇ on T is flat. Hence, T is parallelisable and the holonomy
group Hol(M,c) is trivial. 3

3 Almost Einstein structures and holonomy

A (pseudo-)Riemannian metric g on a manifold M is called Einstein if the Ricci-
tensor Ricg is a constant multiple of g. This is a PDE for the metric tensor g. Ein-
stein metrics are of central interest in geometry and physics. It is interesting to see
that Einstein’s equations have a natural formulation in the framework of conformal
tractor calculus. Also the conformal holonomy Hol(M,c) is suitable to detect Ein-
stein metrics in a given conformal class. We briefly explain these features here. In
particular, we introduce the notion of almost Einstein structures, which is a slight
extension of the notion of conformally Einstein metrics. Almost Einstein structures
are also related to asymptotically flat and hyperbolic metrics.

Let (M,c) be a connected conformal manifold of dimension n≥ 3 and signature
(p,q) and let (T ,∇) be the standard tractor bundle with connection. The 2-jet of a
section in E [1] gives rise in a natural way to a section of T . The corresponding map
S0 : Γ (E [1])→ Γ (T ) is a conformally covariant second order differential operator
(cf. Section 7). With respect to the choice of a metric g ∈ c we have the splitting
T ∼=g R⊕T M⊕R, and the differential operator S0 is then given by

Sg
0σ = ( σ , gradg(σ) , 2g

σ) , (3)

where 2g :=− 1
n (∆ g− trgPg) and ∆ g = trgHessg = trg(∇g ◦d) is the Laplacian (cf.

[37, 29]).

It is a matter of fact that for densities ω ∈ Γ (E [1]) the equation

∇S0ω = 0 (4)

is equivalent to
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trace-free part of(Hessg
σ − Pg ·σ) = 0 , (5)

where σ is the function which corresponds via g ∈ c to the density ω . In turn, it is
also true that if a tractor T ∈ Γ (T ) satisfies ∇T = 0 (i.e. T is ∇-parallel on M),
then the component σ = Πg(T )∈C∞(M) of T with respect to g ∈ c satisfies (5) and
Sg

0σ = T .

Note that, since a solution σ of (5) on (M,g) corresponds to a conformal density
ω of weight 1 via g ∈ c, the solution σ conformally rescales to a solution σ̃ = e f ·σ
of (5) with respect to g̃ = e2 f g. Hence, if σ is a solution of (5) without zeros, then
σ̃ ≡ 1 is a solution for g̃ = σ−2g, i.e., g̃ is an Einstein metric in the conformal class
c = [g]. On the other hand, if g̃ = σ−2g is an Einstein metric, then σ is a solution
of (5) with respect to g on M. However, in general, the zero set Σ(σ) of a non-
trivial solution σ of (5) is non-empty (with a dense complement in M). For this
reason, we call a generic solution σ of (5) an almost Einstein structure of (M,g)
(cf. [24]). (The corresponding density ω is also called an almost Einstein structure
of (M,c). In [37] we named a generic solution of (5) a nc-Killing function.) In case
Σ(σ) is empty on (M,g), we also say that g is conformally Einstein and (M, [g]) is
a conformal Einstein space.

In the Riemannian signature case the following result on the shape of the zero
set of an almost Einstein structure is known. Note that if σ is a solution of (5) then
S(σ) :=−〈Sg

0σ ,Sg
0σ〉T = scalg

n(n−1) is a well defined real number.

Theorem 1 [24] Let (M,g,σ) be a Riemannian manifold of dimension n ≥ 3 with
almost Einstein structure σ . If S(σ) > 0 then Σ(σ) is empty and (M,σ−2g) is Ein-
stein with positive scalar curvature; if S(σ) = 0 then Σ (σ) is either empty or con-
sists of isolated points and (MrΣ (σ),σ−2g) is Ricci-flat; if S(σ) < 0 then the scale
singularity set Σ(σ) is either empty or else is a smooth umbilic hypersurface, and
(MrΣ(σ),σ−2g) is Einstein of negative scalar curvature.

Note that, if Σ(σ) 6= /0 and S(σ) < 0, then the Einstein metric σ−2g is asymp-
totically hyperbolic at the boundary Σ(σ) of MrΣ(σ), i.e., the sectional curvature
of σ−2g goes to −1 at the boundary. If S(σ) = 0 then σ−2g is asymptotically flat at
the isolated zeros of σ .

As we have seen, the existence of an almost Einstein structure on a manifold
(M,g) is equivalent to a ∇-parallel tractor on (M, [g]). This in turn implies the ex-
istence of a Hol(M, [g])-fixed (non-trivial) vector in Rp+1,q+1. In fact, there is a
natural one-to-one correspondence of almost Einstein structures and Hol(M, [g])-
fixed (non-trivial) vectors in Rp+1,q+1 (with respect to the choice of a basis of T at
some xo ∈M).
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Theorem 2 Let (M,c) be a conformal manifold of dimension n ≥ 3. Then (M,c)
is an almost Einstein space if and only if the standard representation of Hol(M,c)
fixes a non-trivial vector.

Remark 1 If there exists an almost Einstein structure σ with S(σ) �= 0, then the
holonomy representation R

p+1,q+1 of Hol(M,c) is decomposable (cf. Section 4).
For S(σ) = 0 the holonomy representation is reducible, but generically not decom-
posable. The latter property of the holonomy representation is sometimes called
weak irreducibility. �

EXAMPLE: (1) Again, let us consider the Möbius sphere Sn of conformal Rie-
mannian geometry. Since T on Sn is parallelisable, there exist n + 2 linearly inde-
pendent ∇-parallel standard tractors in Γ (T ). Every ∇-parallel standard tractor I

with S(I) := −〈I, I〉T > 0 corresponds to a round metric in the conformal class of
the Möbius sphere Sn.

Now let us think of the Möbius sphere Sn as the unit sphere in R
n+1 with the

conformal class of the round standard metric go
rd (induced by restriction of the Eu-

clidean metric on R
n+1). One can easily check that the restriction of any affine linear

function on R
n+1 is an almost Einstein structure for (Sn,go

rd).

For example, let x be the first coordinate function of R
n+1. Then the restriction

of x to the unit sphere Sn is an almost Einstein structure, whose singularity set Σ(x)
is the intersection of Sn with the hyperplane {x = 0}, i.e., Σ(x) is an equator on
Sn. The rescaled metric x−2go

rd is the hyperbolic metric on the two caps of Sn mi-
nus this equator {x = 0}. Now let σ be the restriction of the function x− 1 to Sn.
Then p := Σ(x) is a single pole on Sn, and (x−1)−2go

rd is the Euclidean metric on
Sn

� {p}. Alternatively, the metric (x− 1)−2go
rd can be understood as the pullback

of the Euclidean metric on R
n via stereographic projection from the pole p.

(2) Let us also consider the real projective space RPn equipped with the standard
metric of constant curvature 1. The only almost Einstein structures on RPn are the
constant functions σ �= 0, whereas e.g. x and x− 1 on Sn only project locally to
almost Einstein structures on RPn. �

Finally, we mention the following characterisation of the Möbius sphere (in Rie-
mannian signature). Let Kc denote the vector space of ∇-parallel sections in T on
a conformal space (Mn,c). Note that the tractor metric 〈·, ·〉T induces a symmetric
bilinear form on Kc.

Theorem 3 [25] Let (Mn,c) be a closed (= compact without boundary) Riemannian

conformal manifold of dimension n ≥ 3 with dim(Kc) ≥ 2. Then either
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(i) (M,c) is the Möbius sphere (Sn, [go
rd ]), or

(ii) for any K ∈Kcr{0}, it is necessarily the case that S(Π(K)) < 0 and Σ(Π(K))
is non-empty (and hence is a totally umbilic hypersurface in (M,c)).

In particular, the result states that the Möbius sphere is the only closed Rie-
mannian conformal manifold, which is conformally Einstein and admits an almost
Einstein structure σ with non-trivial singularity set Σ(σ). The proof of this uses re-
sults about essential conformal transformation groups in Riemannian geometry (cf.
e.g. [1]).

4 Decomposable conformal holonomy

In the preceding section we have seen that the conformal holonomy representation
of an almost Einstein manifold (M,g,σ) with S(σ) 6= 0 decomposes Rp+1,q+1 into a
(timelike or spacelike) one-dimensional subspace and a non-degenerate orthogonal
complement. Recall that the deRham-Wu Theorem [50, 55] states that a (pseudo-)
Riemannian manifold (M,g) with decomposable Riemannian holonomy group is lo-
cally isometric to a product of two (pseudo-)Riemannian manifolds. In this section
we discuss a similar result for the general case of decomposable conformal holon-
omy Hol(M,c). In the Riemannian signature case we will see that there occur two
types of conformal geometries with decomposable holonomy, the special Einstein
products and the collapsing sphere products. The results of this section are based on
the works [36, 43, 44].

4.1 The special Einstein product.

Let (Mn,c) be a connected conformal manifold of dimension n ≥ 3 and signature
(p,q) with tractor bundle (T ,〈·, ·〉T ). Let Λ l+1T ∗ denote the bundle of (l + 1)-
forms on T with induced tractor metric 〈·, ·〉

Λ l+1T ∗ and tractor connection ∇. The
tractor bundle of (l +1)-forms admits (for 1≤ l ≤ n−1) a composition structure

Λ
l+1T ∗ = Λ

lM[l +1] +
�� (Λ l+1M[l +1]⊕Λ

l−1M[l−1]
)

+
��Λ lM[l−1]

(similar to (1)) with natural projection Π : Λ
l+1T ∗ → Λ

lM[l + 1] onto the bun-
dle of l-forms with conformal weight l + 1. With respect to any metric g ∈ c this
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composition structure splits into Λ
lM⊕Λ

l+1M⊕Λ
l−1M⊕Λ

lM, i.e., any tractor
(l +1)-form α (1≤ l ≤ n−1) decomposes into a quadruple (α0,α1,α2,α3) of dif-
ferential forms on M, where the component α0 corresponds via g to Π(α).

Proposition 1 (cf. [36, 40]) Let (M,c) be a conformal manifold of dimension n≥ 3
and let α 6≡ 0 be a ∇-parallel tractor (l +1)-form (1≤ l ≤ n−1). Then with respect
to any metric g ∈ c

(i) the complement of the zero set Σ(α0) of α0 is dense in M.

(ii)

α1 =
1

l +1
dα0 and α2 =

1
n− l +1

d∗α0 .

(iii) The component α0 is a conformal Killing l-form, i.e.,

∇
g
X α0−

1
l +1

ιX dα0 +
1

n− l +1
X [∧d∗α0 = 0 for all X ∈ T M (6)

(with ιX the insertion, X [ = g(X , ·) and d∗ the codifferential).

Note that, if α0 is a conformal Killing 1-form, then the dual vector field X with
respect to g ∈ c is conformal Killing on (M,g), i.e., the Lie derivative LX g is some
multiple λ · g, λ ∈ C∞(M), of the metric tensor g. In general, not every confor-
mal Killing l-form stems from a ∇-parallel tractor (l + 1)-form. In fact, the tractor
equation ∇α = 0 implies further equations on the component α0. If these additional
equations are satisfied, we call α0 a normal conformal Killing l-form (cf. Section 7
and [37]).

We call a differential form α0 6= 0 simple at xo ∈ M if α0 is a simple wedge
product a1 ∧ . . .∧ al of 1-forms. Accordingly, we call a non-trivial tractor (l + 1)-
form α ∈Λ l+1T ∗

xo simple if α is a simple wedge product of tractor 1-forms.

Lemma 4.1 [36, 40] Let (M,c) be a conformal manifold of dimension n≥ 3 and let
α be a simple tractor (l +1)-form (1≤ l ≤ n−1) with 〈α,α〉

Λ l+1T ∗ 6= 0. Then with
respect to any metric g ∈ c

(i) all non-trivial components of (α0,α1,α2,α3) at any xo ∈M are simple. Either
‖α0‖g :=

√
|〈α0,α0〉g| 6= 0 or α0 = 0 at xo.

(ii) In addition, if α is ∇-parallel, then there exist smooth vector fields A,B on
MrΣ (α0) such that

dα0 = A[∧α0 and d∗α0 = ιBα0 .
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Let X ∈ X(M) be a conformal Killing vector field with non-vanishing length
function ‖X‖g 6= 0 on a (pseudo-)Riemannian manifold (M,g). It is a matter of fact
that, if X is in addition hypersurface orthogonal, then the vector field X is paral-
lel with respect to the Levi-Civita connection of the conformally rescaled metric
g̃ = ‖X‖−2

g · g. The following result is a generalisation of this fact to conformal
Killing l-forms.

Lemma 4.2 [36, 40] Let α0 be a simple conformal Killing l-form with ‖α0‖g 6= 0
such that there are vector fields A,B ∈ X(M) with

dα0 = A[∧α0 and d∗α0 = ιBα0 .

Then the l-form α̃0 = ‖α0‖−(p+1)
g ·α0 is ∇

g̃-parallel for g̃ = ‖α0‖−2
g ·g.

We call the holonomy group Hol(M,c) of a conformal manifold (M,c) decom-
posable if there exists a decomposition Rp+1,q+1 = V ⊕W into two Hol(M,c)-
invariant, non-degenerate subspaces V and W . We assume here r := dim(V ) ≥ 2
and s := dim(W ) ≥ 2. (Otherwise, we are in the almost Einstein case of the pre-
ceding section.) Since V,W are non-degenerate, (if M is simply connected) there
exist volume forms α ∈ Γ (Λ rT ∗) to V and β ∈ Γ (Λ sT ∗) to W on M, which are
∇-parallel with constant norm ±1. It follows immediately from Lemma 4.1 and
Lemma 4.2 that there is a unique metric g ∈ c such that the (r−1)-form α0 (which
corresponds to Π(α) via g) is simple and ∇g-parallel on M̃ := MrΣ(α0). For this
metric g the (s− 1)-form β0 (which corresponds to Π(β )) is ∇g-parallel on M̃ as
well. This shows that the metric g on M̃ is locally isometric to a Riemannian product
g1×g2 (even if M is not assumed to be simply connected).

Moreover, since α0 is normal conformal, the additional equations
on α0 imply that both factors g1 and g2 are Einstein metrics with
s(s − 1)scalg1 = −r(r − 1)scalg2 6= 0. (This is exactly the case when the
Schouten tensor P has exactly two distinct constant eigenvalues on M̃; cf. [36, 40].)
We call a (pseudo-)Riemannian metric g1 × g2 of this form a special Einstein
product. Note that, on the other hand, the volume forms of the (oriented) factors
of a special Einstein product give rise to simple ∇-parallel tractor forms (via the
splitting operator; cf. Section 7).

Proposition 2 [3, 36, 40] Let (M,c) be a conformal manifold of dimension n ≥ 3
with arbitrary signature. Then the conformal holonomy group Hol(M,c) is decom-
posable if and only if there exists an open dense submanifold M̃ in M with metric
g ∈ c, which is either
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(i) Einstein with scalg 6= 0 or

(ii) locally isometric to a special Einstein product g1×g2.

4.2 The collapsing sphere product.

In [43] we have invented the collapsing sphere product alias Sl-doubling of an even
asymptotically hyperbolic space (M,g+) with boundary N. This construction works
in the realm of conformal Riemannian geometry and produces manifolds with de-
composable conformal holonomy. We briefly recall the construction for an arbitrary
integer l ≥ 0.

Let Mm+1 be a smooth manifold of dimension m+1≥ 3 with boundary N, and
let g+ be an asymptotically hyperbolic (=AH) metric on the interior M = MrN.
Such a metric can always be written in the form g+ = 1

r2 (dr2 +g(r)) for any special
defining function r of the boundary N. If the Taylor expansion of the symmetric
tensor g(r) at the boundary r = 0 only has development terms of even degree with
respect to any such r, then we call g+ an even AH metric (cf. [23, 43]).

Let us assume now that g+ is an even AH metric on Mm+1. Obviously, the prod-
uct Sl ×M of the l-dimensional standard sphere Sl with M has boundary Sl ×N.
Let

Λ : Sl×M→ DlM

be the map, which identifies the sphere Sl at (each point of) the boundary N to a
single point. The resulting quotient space DlM with final topology is a manifold
without boundary. In fact, since the evenness of g+ induces an even structure on the
boundary N (cf. [43]), the space DlM is in a naturally way a smooth manifold of
dimension n := m+ l +1.

Furthermore, we denote the image Λ(Sl ×N) of identified points in DlM by
Np. The set Np is a smooth submanifold of codimension l + 1 in DlM. We call
Np the pole of DlM, and DlMrNp is the bulk, which is by construction diffeo-
morphic to the product space Sl ×M. The product Sl ×M admits the conformal
structure [go

rd × g+], which is the conformal class of the product metric go
rd × g+.

It is straightforward to show that this conformal structure on the bulk Sl ×M ex-
tends smoothly to DlM. We denote the resulting conformal structure on DlM by
cl [g+], and we call (DlM,cl [g+]) the collapsing l-sphere product (or Sl-doubling)
of (M,g+). (Note that for l = 0 the construction just glues two copies of M via the
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identity map at their boundaries. Since g+ is even, the conformal structure [g+] of
M extends smoothly over N to the other side of the doubling space.)

By the results of the previous section, we know that if g+ is an even AH Einstein
metric on the interior of M, then the bulk of (DlM,cl [g+]) has decomposable con-
formal holonomy. Furthermore, since the pole Np is a singular set in DlM, we can
easily conclude that (DlM,cl [g+]) itself has decomposable conformal holonomy.
This holonomy group Hol(DlM) is equal to that of (M, [g+]). However, the stan-
dard representation of Hol(DlM) onR1,n+1 decomposes into a trivial representation
on the Euclidean space Rl+1 of dimension l + 1 and the holonomy representation
of Hol(M, [g+]) on the Minkowski space R1,m+1. (Recall that, since g+ is Einstein,
the conformal holonomy Hol(M, [g+]) acts trivially on a positive definite line in
R1,m+2.)

If S is a subset of the space Kc of ∇-parallel standard tractors, then we denote
by Σ(S ) the intersection of all singularities sets Σ(Π(I)) for I ∈S . In summary,
we have the following result.

Proposition 3 [43] Let (Mm+1
,g+) be an even AH Einstein space of dimension

m + 1 ≥ 3 with Riemannian signature and let (DlM,cl [g+]) be the corresponding
Sl-doubling space with l ≥ 0. Then

(i) (DlM,cl [g+]) has decomposable conformal holonomy.

(ii) The space Kc of ∇-parallel tractors on DlM decomposes naturally into a direct
sum Kl⊕K+ with dim(Kl) = l+1. The non-trivial I ∈Kl satisfy S(Π(I)) < 0,
and the intersection Σ(Kl) of singularities coincides with the pole Np of DlM.
The elements I of K+r{0} correspond to additional almost Einstein structures
on M.

(iii) If the conformal holonomy Hol(M, [g+]) of the AHE space is non-trivial, then
(DlM,cl [g+]) is not conformally equivalent to a special Einstein product in any
neighbourhood of the pole Np.

EXAMPLE: The Sl-doubling DlHm+1 of the hyperbolic (m + 1)-ball Hm+1

is for any l ≥ 0 conformally equivalent to the Möbius sphere Sn of dimension
n = m + l + 1. In other words, the flat model of conformal Riemannian geometry
arises as the collapsing sphere product of the flat hyperbolic model (cf. [33, 43]).

Note that, even so Sn has trivial conformal holonomy group, it is globally not
a special Einstein product. Any special Einstein product on Sn degenerates at some
pole set. 3
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In [44] we have shown the following reconstruction result for Sl-doublings.

Proposition 4 [44] Let (Fn,c), n ≥ 3, be a closed Riemannian conformal space
admitting an Euclidean subspace Kl ⊂Kc of dimension l +1≥ 2 with Σ(Kl) 6= /0.
Then there exists for any q∈Σ(Kl) a neighbourhood Uq of q in F such that (Uq,c) is
conformally equivalent to the Sl-doubling (DlM,cl [g+]) of some Poincaré-Einstein
space (M,g+) of dimension n− l.

Notice the assumption of closedness on F in Proposition 4, even so the result is
of local nature. The reason for this assumption is that the proof of Proposition 4 in
[44] uses general results for conformal transformation groups on closed Riemannian
manifolds. We remark that, if F is simply connected, then Proposition 4 is globally
true, i.e., in this case (Fn,c) is the Sl-doubling of some compact Poincaré-Einstein
space (M,g+) with boundary. (Also recall that Theorem 3 states that if dim(Kc)≥ 2
then there have to exist almost Einstein structures with hypersurface singularity.
However, there are known cases with dim(Kc)≥ 2 and Σ (Kc) = /0.)

4.3 The classification in Riemannian signature.

We claim now that the special Einstein products and the collapsing sphere products
(which can be understood for obvious reasons as degenerate special Einstein prod-
ucts) are the only possible conformal Riemannian geometries with decomposable
holonomy on closed manifolds! To understand this point we need to show that, if the
conformal holonomy of a closed Riemannian conformal manifold (Fn,c) decom-
poses, but the corresponding special Einstein product degenerates on some singu-
larity set, then the conformal holonomy representation must be trivial on a subspace
of R1,n+1. This implies (locally) the existence of linearly independent ∇-parallel
standard tractors with intersecting scale singularity; then Proposition 4 applies. In
other words, the conformal holonomy representation is a product of two non-trivial,
irreducible representations only if the corresponding special Einstein product does
not collapse. The details of this argument are worked out in [5]. Here is a key lemma
for the argument, which is just a variation of a well known result, which can be found
e.g. in [48] p. 316.

Lemma 4.3 Let (N,h) be a Riemannian manifold, whose Weyl tensor W h and Cot-
ton tensor Ch have bounded norm with respect to h on N, and let X be a nowhere
vanishing smooth conformal Killing vector field on (N,h) with some maximal inte-
gral curve γX : I ⊂ R→ N.
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Then, if inft∈I ‖X(γX (t))‖h = 0, the Weyl tensor W h and the Cotton tensor Ch

vanish at γX(t) ∈ N for all t ∈ I.

Let us consider a (simply connected) conformal Riemannian space (Mn,c),
n≥ 3, such that the holonomy representation R1,n+1 decomposes into V⊕W , where
V is an Euclidean subspace of dimension l := dimV with 2≤ l ≤ n−1. Let α be the
volume form of the ∇-parallel subbundle of the standard tractor bundle T , which
corresponds to the Hol(M,c)-invariant subspace V . The corresponding normal con-
formal Killing (l−1)-form (with respect to some g ∈ c) is denoted by α0.

We assume now that (M,c) is not everywhere locally a special Einstein prod-
uct, i.e., the zero set Σ (α0) of α0 is non-empty. Let q ∈ Σ(α0). A straightfor-
ward conclusion of our discussion so far implies: there exists an open subset
Q ∼= Q1× (0,R)×Q2, R ∈ R+, in M with q ∈ ∂Q and dimQ1 = l − 1 such that
the conformal class c restricted to Q is given by a product metric of the form
h+ dr2

r2 + g(r)
r2 , r ∈ (0,R), where h is an Einstein metric with constant sectional cur-

vature 1 on Q1 for l > 2 (for l = 2 we have dimQ1 = 1), and 1
r2 (dr2 + g(r)) is an

AHE metric for r→ 0 on (0,R)×Q2. Any integral curve of the Euler vector field
X := r∂ r on N := Q1× (0,R) satisfies the assumptions of Lemma 4.3. We conclude
that the metric h + 1

r2 dr2 on N is conformally flat, which implies that h is a round
metric for l > 2 (since h is Einstein). In particular, the holonomy representation on
V has to be trivial (also in the case l = 2). Hence, when M is closed and simply
connected we can apply (the global version of) Proposition 4.

Theorem 4 [5] Let (Fn,c) be a closed, simply connected conformal Riemannian
manifold of dimension n ≥ 3 with decomposable holonomy Hol(F,c). Then one of
the following three cases holds true.

(i) (F,c) is an almost Einstein space, or

(ii) (F,c) is a special Einstein product, or

(iii) (F,c) is the collapsing l-sphere product of some AHE manifold with l ≥ 0.

Note that not every almost Einstein space with hypersurface singularity is the
doubling of some AHE space. And, if F is not simply connected, but the universal
covering is still closed, then the statement of Theorem 4 remains true locally.
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5 The case of unitary conformal holonomy

CR-geometry of hypersurface type is closely related to conformal geometry via the
Fefferman construction. This construction was invented by C. Fefferman in [21]
for boundaries of pseudoconvex domains in Cm+1 in order to study their geomet-
ric properties and invariant theory. He showed that a trivial circle bundle over a
pseudoconvex boundary admits a Lorentzian metric, whose conformal class is in-
variant under biholomorphisms of the domain. The construction was extended to
abstract CR-structures by an intrinsic approach due to J.M. Lee [34], which assigns
to any pseudo-Hermitian structure a so-called Fefferman metric on the canonical cir-
cle bundle. We recall this intrinsic construction. The second part of this section will
briefly explain how the Fefferman construction for CR-structures is characterised
by unitary conformal holonomy (cf. [41]). Thus, in the generic situation here, the
conformal holonomy representation is reduced, but irreducible.

5.1 Fefferman construction reviewed.

Let (Nn,H,J) be an oriented, integrable CR-manifold of dimension n = 2m+1≥ 3
with signature (p,q) (for the Levi form), i.e., H is a contact distribution in T N (of
dimension 2m) and J : H→H is a complex structure such that [JX ,Y ]+ [X ,JY ] is a
section of H and the Nijenhuis tensor

NJ(X ,Y ) := [X ,Y ]− [JX ,JY ]+J([JX ,Y ]+ [X ,JY ])

vanishes for all X ,Y ∈ Γ (H). The canonical (complex) line bundle of (N,H,J) is
defined by

Λ
m+1,0N := { ρ ∈Λ

m+1N⊗C : i · ιX ρ = ι(JX)ρ for all X ∈ H } .

The positive reals R+ act by multiplication on K∗ := Λ
m+1,0N \ {0} (with deleted

zero section), and we set Fc := K∗/R+ . The triple

( Fc , π , N ) (7)

is the canonical S1-principal bundle of the CR-manifold (N,H,J).

Furthermore, let θ be a pseudo-Hermitian structure on (N,H,J), i.e., the kernel
of θ is H. Then the symmetric bilinear form dθ(·,J·) on H has signature (2p,2q).
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The Tanaka-Webster connection ∇
W of θ gives rise to a connection 1-form on the

principal S1-fibre bundle Fc, which we denote by AW : T Fc→ iR. We set

Aθ := AW − i
2(m+1)

scalW θ ,

which is a connection 1-form on Fc as well. Then the Fefferman metric to θ on Fc

is defined by

fθ := π
∗dθ (·,J·)− i

4
m+2

π
∗
θ ◦Aθ

(or simply fθ = dθ(·,J·)− i 4
m+2 θ ◦Aθ ). This is a non-degenerate symmetric 2-

tensor on the real tangent bundle of Fc of signature (2p+1,2q+1). (If the underly-
ing space is strictly pseudoconvex the signature of fθ is Lorentzian.)

The crucial point of the construction is that the Fefferman conformal class [ fθ ]
does not depend on the choice of pseudo-Hermitian form. In fact, rescaling the
pseudo-Hermitian form by θ̃ := e2lθ with some real function l on N produces the
conformally changed Fefferman metric f

θ̃
= e2l fθ on Fc. Thus the Fefferman con-

struction assigns to any integrable CR-manifold in a natural and invariant way a
conformal manifold of one higher dimension.

There exists a famous characterisation result for Fefferman metrics of integrable
CR-manifolds due to G. Sparling in [52] (cf. also [26]) through the existence of a
certain Killing vector, i.e., through a solution of an overdetermined, conformally
covariant system of PDE’s.

Theorem 5 (Sparling’s characterisation) Let (Mn+1,g) be a pseudo-Riemannian
space of dimension n+1≥ 4 and signature (2p+1,2q+1). Suppose that g admits
a Killing vector V (i.e. LV g = 0) such that

(i) g(V,V ) = 0, i.e., V is lightlike,

(ii) ιVW g = 0 and ιVCg = 0,

(iii) Ricg(V,V ) > 0 on M.

Then g is locally isometric to the Fefferman metric of some integrable CR-space
(N,H,J) of hypersurface type with signature (p,q) and dimension n.

On the other hand, any Fefferman metric of an integrable CR-space (N,H,J) of
hypersurface type admits a Killing vector field V satisfying (1) to (3).

Note that, on the principal S1-bundle Fc of the Fefferman construction over N,
the Killing vector field V of Sparling’s characterisation is a fundamental vector field
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of the S1-action, i.e., the Killing vector V is vertical with respect to the projection
π : Fc→ N.

Moreover, it was shown in [45] for the 4-dimensional Lorentzian case that lo-
cally there exists always a (pair of) conformal Killing spinor ϕ ∈ Γ (S ) on Fc. This
result was extended in [7] to a global result for arbitrary even dimensions n + 1.
Recall that a conformal Killing spinor ϕ is a solution to the overdetermined spinor
field equation

∇
S
X ϕ +

1
n+1

X ·D/ ϕ = 0 for all X ∈ T Fc , (8)

where ∇S is the spinor connection and X ·D/ denotes Clifford multiplication with
the Dirac operator. Then the Dirac current (or spinor square) Vϕ ∈X(Fc) of ϕ is the
Killing vector of Sparling’s characterisation.

5.2. Holonomy characterisation

CR geometry and conformal geometry are both parabolic geometries (cf. [16]).
It is a matter of fact that parabolic geometries are equipped with a standard tractor
bundle and canonical connection. In particular, there is a standard CR-tractor bundle
T cr with connection ∇cr (induced by a canonical Cartan connection) over any CR-
manifold (Nn,H,J) of signature (p,q) (in case the canonical line bundle Λm+1,0N
admits an (m+2)nd root). The structure group of this bundle T cr with connection
is G = SU(p+1,q+1).

There are nowadays several works which investigate the Fefferman construction
using the framework of Cartan and tractor calculus (cf. e.g. [14, 2]). The essence is
that the lift of the CR-tractor bundle T cr on a CR-manifold (Nn,H,J) via π to the
corresponding Fefferman space Fc is naturally identified with the conformal trac-
tor bundle T on Fc. Moreover, since (Nn,H,J) is assumed to be integrable, the
lift of the canonical Cartan connection (of CR-geometry) to Fc induces the confor-
mal tractor connection on T , and all vertical tangent vectors of π : Fc → N insert
trivially into the conformal curvature Ω ∇. Hence, movement on Fc in vertical di-
rection does not contribute to the conformal holonomy algebra and, in fact, the re-
stricted holonomy groups of ∇cr on T cr over (Nn,H,J) and of ∇ on T over Fc

are identical. In particular, the conformal holonomy algebra is reduced (at least) to
su(p+1,q+1)⊂ so(2p+2,2q+2).
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Theorem 6 [38, 40] Let Fc be the Fefferman space of an integrable CR-manifold
(Nn,H,J) of signature (p,q). Then

(i) the conformal holonomy algebra hol(Fc) is contained in su(p+1,q+1).

(ii) There exists a ∇-parallel, orthogonal complex structure J on T , which cor-
responds via 〈·, ·〉T and the projection Π : Λ2T ∗ → X(Fc) to a Killing vector
V as in Sparling’s characterisation (with respect to any Fefferman metric g on
Fc).

On the other hand, the reduction to U(p +1,q +1) of the conformal holonomy
group of some conformal manifold F (of even dimension with signature (p,q))
implies the existence of a ∇-parallel orthogonal complex structure J on T over
F . Via Sparling’s characterisation we conclude that the conformal manifold F is
(at least locally) conformally equivalent to the Fefferman space of some integrable
CR-manifold (Nn,H,J). An alternative proof, which relies on the normality of the
canonical Cartan connection, is given in [41].

Theorem 7 [41] Let (Fn+1,c) be a conformal manifold of even dimension n+1≥ 4
and signature (2p + 1,2q + 1). If the conformal holonomy group Hol(F) is con-
tained in U(p + 1,q + 1), then (Fn+1,c) is locally conformally equivalent to the
Fefferman space of some integrable CR-manifold (Nn,H,J).

In particular, Hol(F) 6=U(p+1,q+1) for any conformal manifold F of dimen-
sion n+1 = 2(p+q+1).

5.3 Fefferman-Einstein metrics.

It was pointed out in [34] that a Fefferman metric fθ on Fc is never Einstein! How-
ever, if the conformal holonomy Hol(Fc) of a Fefferman space Fc preserves a stan-
dard tractor, then Fc must be almost Einstein. In fact, any conformally flat space
(which is almost Einstein) is locally the Fefferman space of some flat CR-manifold.

In [39] we describe the situation of Fefferman spaces, which are almost Ein-
stein, in general. The key to this description is the fact that any ∇cr-parallel standard
CR-tractor Icr on an integrable CR-manifold (N,H,J) corresponds via π naturally
to a ∇-parallel standard tractor I on the Fefferman space Fc. And, (N,H,J) admits
a ∇

cr-parallel standard CR-tractor Icr if and only if the CR-structure on N admits
a TSPE structure θ ; that is a pseudo-Hermitian form θ , whose Webster-Ricci cur-
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vature is a multiple of the Levi form dθ(·,J·) on N, and whose Reeb vector Tθ is
a transverse symmetry of the CR-structure, i.e., Tθ is a CR-vector field, which is
transverse to the distribution H. Any such CR-manifold with TSPE structure stems
from a Kähler-Einstein spaces in one dimension lower. Here is the statement of our
result (in Lorentzian signature). For a detailed explanation we refer to [39].

Theorem 8 [39] Let (Q,h,J) be a Riemannian Kähler-Einstein space of dimension
2m with scalar curvature scalh.

(i) If scalh = 0 and the Kähler form is ω = dα for some 1-form α on Q, then the
metric

f̃h = cos−2(t) ·
(

π
∗h+4dt ◦ (π∗α +ds)

)
on Q×{ (s, t) : − π

2 < t < π

2 } ⊂ Q×R2 (with natural projection π onto Q) is
Ricci-flat and (locally) conformally related to a Fefferman metric.

(ii) If scalh 6= 0 then the metric

f̃h = cos−2(t) ·
(

π
∗h− 4m(m+1)

scalh · ( dt2 +
ρ2

ac

(m+1)2 )
)

on Sac(Q)× (− π

2 , π

2 ), where (Sac(Q),π,Q) is the anti-canonical S1-bundle
over Q with Levi-Civita connection ρac : TSac(Q) → iR, is Einstein with
scal f̃h = 2m+1

2m · scalh and (locally) conformally related to a Fefferman metric.

On the other hand, if a Fefferman metric fh of Lorentzian signature over an inte-
grable CR-space is locally conformally Einstein, then any Einstein metric f̃ ∈ [ fh]
can be brought locally into the form (1) or (2).

Note that any almost Einstein structure on a Fefferman space Fc has singularities.
However, since the complex structure J on T induces an action on the space of
∇-parallel standard tractors Kc, the dimension of Kc is even. And for any point
x ∈ Fc there exists an almost Einstein structure, which has no singularity at x.

6 The generalised Fefferman construction

Let G be a semisimple Lie group and P ⊂ G a parabolic subgroup. We call the
pair (G,P) a parabolic Klein geometry. A parabolic geometry (P,ω) on a smooth
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manifold M of type (G,P) is a principal P-fibre bundle P equipped with a Cartan
connection ω : TP→ g, where g denotes the Lie algebra of G (cf. [16]).

EXAMPLE. The structure group of n-dimensional (oriented) Riemannian con-
formal geometry is G = SO(1,n + 1), and the corresponding parabolic subgroup P
is the stabiliser of a null line in (n+2)-dimensional Minkowski space. To any con-
formal manifold (Mn,c) of dimension n ≥ 3 belongs a canonical Cartan geometry
(P,ωnor) of this type (G,P) (cf. e.g. [16]). 3

Now let (G,P) be a parabolic Klein geometry and let ι : G′ ↪→G be an inclusion
of semisimple Lie groups such that the G′-orbit of eP in G/P is open. (This is
equivalent to surjectivity of the map g′ → g/p induced by ι∗ : g′ → g.) The subgroup
Q := ι−1(P) = G′ ∩P is closed in G′, but in general not a parabolic subgroup. For
that reason, we introduce a parabolic subgroup P′ of G′, which contains Q. Thus,
we have the data of a pair of parabolic Klein geometries (G′,P′) and (G,P) with
inclusion ι : G′ ↪→G, P′ ⊃ G′ ∩P and g′/(g′ ∩p)∼= g/p.

Having these ingredients, we can explain the generalised Fefferman construction
for parabolic geometries due to A. Čap (cf. [13]). Let M′ be a smooth manifold with
parabolic geometry (P ′,ω ′) of type (G′,P′). The quotient space M := P ′/Q is
in a natural way a fibre bundle over M′ of type P′/Q with canonical projection π ,
and P ′ is a principal Q-fibre bundle over M. We can extend the principal bundle
P ′ over M by the group P in order to obtain a principal P-fibre bundle P over M.
Furthermore, the Cartan connection ω

′ on P ′ can naturally be lifted and extended to
a Cartan connection ω : TP → g. This is the generalised Fefferman construction,
which generates from a parabolic geometry (P ′,ω ′) on M′ of type (G′,P′) the
parabolic geometry (P,ω) on M := P ′/Q of type (G,P). The codimension of the
Fefferman construction π : M → M′ is the dimension of the homogeneous space
P′/Q.

EXAMPLE. (1) The classical Fefferman construction. Let (H,J) be a strictly
pseudoconvex CR-structure on M′ of dimension n = 2m + 1. In case the canonical
line bundle of (M′,H,J) admits an (m+2)nd root, the CR-structure (H,J) is equiv-
alently given by a parabolic geometry (P ′,ω ′nor) (with normal Cartan connection)
of type (G′,P′), where G′ = SU(1,m+ 1) and P′ is the stabiliser of a complex null
line in C1,m+1 (equipped with SU(1,m+1)-invariant Hermitian form). Then we use
the canonical inclusion SU(1,m + 1) ⊂ SO(2,n + 1). In this case the subgroup Q
of G′ is the stabiliser of a real null line in C1,m+1 (with respect to the real part of
the Hermitian form). Obviously, Q is contained in the parabolic subgroup P′, and
P′/Q is the homogeneous space of real lines in a complex line, i.e., P′/Q is a circle.
In particular, we see that M := P ′/Q π→ M′ is a circle bundle of total dimension
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n+1. The extended lift of (P ′,ω ′nor) to this circle bundle M := P ′/Q gives rise to
a conformal structure on M of Lorentzian signature.

Note that the extended lift of the canonical Cartan connection ω ′nor on P ′ to
P is the canonical Cartan connection ωnor of conformal geometry on M if and
only if (H,J) is integrable on M′ (cf. [14]). Moreover, note that the S1-bundle
M := P ′/Q π→ M′ corresponds to the choice of an (m + 2)nd root of the canoni-
cal line bundle Λ m+1,0M′, i.e., the S1-bundle M is only locally isomorphic to the
S1-bundle Fc over M′ of the classical Fefferman construction, defined in Section 5
(7). 3

For generalised Fefferman constructions, corresponding to pairs (G′,P′) and
(G,P), it is a crucial step to investigate how the canonical Cartan connections on
the underlying manifolds M′ and M := P ′/Q compare to each other! In general,
one can not expect that the extended lift of ω ′nor to P coincides with the canonical
Cartan connection on M. This comparison of the canonical connections has to be
studied in a case by case consideration.

Finally, we mention some generalised Fefferman constructions, which are nowa-
days discussed in the literature, and which generate a conformal structure on the
corresponding Fefferman space (with a certain conformal holonomy reduction). We
only mention the involved structure groups and basic features of these construction
without going into further details.

FURTHER EXAMPLES. (2) Quaternionic contact structures. A quaternionic
contact structure on a smooth manifold M′′ of dimension 4n+3 and signature (p,q)
with n = p + q ≥ 1 is given by a subbundle H ⊂ T M′′ of rank 4n equipped with
an almost quaternionic structure. The graded vector bundle H⊕T M′′/H equipped
with the algebraic bracket {·, ·} : H×H → T M′′/H, which is induced by the Lie
bracket of vector fields, is pointwise (for any p∈M′′) isomorphic to the quaternionic
Heisenberg algebra of signature (p,q) (cf. [10, 16, 2]).

The structure group of quaternionic contact geometry is the symplectic group
G′′ = Sp(p + 1,q + 1) (assuming the existence of a square root of the canonical
complex line bundle over M′′), and the corresponding parabolic subgroup P′′ is the
stabiliser of an isotropic quaternionic line in Hp+q+2 (equipped with quaternionic
Hermitian form of signature (p+1,q+1)).

The twistor space M′ of a quaternionic contact manifold (M′′,H) inherits a nat-
ural CR structure. This is the Fefferman construction, which corresponds to the
standard inclusion of G′′ = Sp(p+1,q+1) in SU(2p+2,2q+2). For p+q≥ 2 the
induced CR structure on the twistor space M′ is integrable of signature (2p,2q) (cf.
[16]).
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Now we can apply the classical Fefferman construction (as in Example (1))
to the twistor space M′, which gives rise to a conformal structure of signature
(4p+3,4q+3) on a smooth manifold M of dimension 4n+6. This Fefferman space
M is also the Fefferman space of the quaternionic contact manifold (M′′,H), which
corresponds to the inclusion of G′′ = Sp(p + 1,q + 1) in G = SO(4p + 4,4q + 4).
For p+q≥ 2 the conformal holonomy of M is contained in G′′ = Sp(p+1,q+1).
If p + q = 1 and the harmonic torsion of (M′′,H) vanishes the same result is true
(cf. [2]).

(3) Generic rank two distributions. Let M be a 5-dimensional manifold. A
generic distribution H of rank two in T M has the property that for any (local) basis
X1,X2 of H the Lie brackets T := [X1,X2], [T,X1] and [T,X2] span (pointwise) the
whole tangent space T M. Such a generic distribution H defines a parabolic geometry
of type (G′,P′) on M5. Here the structure group G′ is the exceptional simply Lie
group G2 of split type, which is naturally contained in G = SO(3,4). The parabolic
subgroup P′ is the intersection of P with G′, where P ⊂ SO(3,4) is the parabolic
subgroup of conformal geometry. (The parabolic subalgebra p′ corresponds to the
cross in the Satake diagram ◦≡〉× of g′ = g2.)

In particular, it follows that on M5 with generic distribution H there exists a
natural construction of a conformal structure of signature (2,3). This is the Feffer-
man construction, which corresponds to the inclusion of G2 in G = SO(3,4), and
which is explicitly explained in [15]. Note that here the Fefferman space coincides
with the base space M5. In any case the conformal holonomy of M5 is contained in
G2. The generic case has irreducible conformal holonomy G2. The almost Einstein
structures on M5 correspond to those conformal Killing vector fields, which are not
infinitesimal automorphisms of the underlying rank two distribution H (cf. [30]).

Note that the geometry of generic rank two distributions was first discovered in
[18]. Recently, P. Nurowski noticed in [47] the relation to conformal geometry.

(4) Generic rank three distributions. Now let M6 be a 6-dimensional smooth
manifold. A generic rank three distribution H in T M has the property that the Lie
brackets of vector fields in H span (pointwise) the whole tangent space T M. Again,
this defines a parabolic geometry on M6. And the Fefferman construction assigns to
H a natural conformal structure of signature (3,3) on M6. This was first observed
by R. Bryant in [12] (cf. also [19]).

The involved structure groups for this Fefferman construction are
G′ = Spin(3,4), which is an irreducible subgroup of G = SO(4,4). The in-
tersection of the parabolic subgroup P in SO(4,4) (of conformal geometry) gives
rise to a parabolic subgroup P′ of G′ = Spin(3,4). The corresponding parabolic
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subalgebra p′ is given by the cross in the Satake diagram ◦−◦=〉× of g′ = so(3,4).
Generically, the Fefferman space M6 has exceptional irreducible conformal
holonomy Spin(3,4) (cf. [4]).

7 Overdetermined PDE and BGG-sequences

So far our discussion was mainly motivated by considerations of the conformal
holonomy group. However, during the course of the article we have also noticed
that, if the conformal holonomy is reduced, then there exist (locally) ∇-parallel trac-
tors, which in turn correspond to solutions of certain overdetermined PDE systems.
In this final section we want to clarify the emergence of these PDE systems. This is
explained in terms of BGG-sequences.

Let (M,c) be an (oriented) conformal manifold of dimension n ≥ 3 and sig-
nature (p,q). The conformal structure c on M gives rise in a natural way to a
parabolic Cartan geometry (P,ωnor) of type (G,P) (with Lie algebras (g,p)),
where G = SO(p+1,q+ 1). Then, to any finite representation V of G we have the
associated tractor bundle V = P ×P V , and the Cartan connection ωnor induces a
covariant derivative ∇ on V . More generally, we have the exterior covariant deriva-
tives d∇ for any k∈ {0,1, . . . ,n}, mapping k-forms Γ (Λ kT ∗M⊗V ) to (k+1)-forms
Γ (Λ k+1T ∗M⊗V ) with values in V .

Furthermore, for any G-representation V we have Kostant’s codifferential

∂
∗ : Λ

k(g/p)∗ ⊗V → Λ
k−1(g/p)∗ ⊗V ,

which computes the Lie algebra cohomology spaces Hk(g−,V ) = Ker∂ ∗/Im∂ ∗.
(Note that p induces a natural |1|-grading g−⊕g0⊕g+ on the Lie algebra g, where
g0 = co(p,q), g+ ∼= (Rn)∗, g− ∼= Rn, p = g0⊕ g+ and g− ∼= g/p.) Since ∂ ∗ is P-
invariant, g∗−

∼= g+ via the Killing-form and T ∗M ∼= P ×P g+, the codifferential
induces bundle homomorphisms

∂
∗ : Λ

kT ∗M⊗V →Λ
k−1T ∗M⊗V

as well. In particular, for any k ∈ {0,1, . . . ,n} we obtain a bundle of cohomology
spaces Ker∂ ∗/Im∂ ∗ on M, which we denote by H kV . The corresponding canonical
projections are denoted by Π : Ker∂ ∗ →H kV . Note that the subgroup P+ in P,
which corresponds to p+ := g+ in p, maps Ker∂ ∗ to Im∂ ∗. Thus, the cohomology
bundles H kV are associated to the principal CO(p,q)-fibre bundle of orthogonal
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frames on (M,c), i.e., the H kV are tensor bundles on (M,c) of a certain conformal
weight (cf. [17]).

Next we observe that for any G-representation V and any k ∈ {0,1, . . . ,n} there
exists a so-called splitting operator

Sk : Γ (H kV ) → Γ (Λ kT ∗M⊗V ) .

This Sk is a conformally covariant differential operator (of a certain order), which is
uniquely determined by the properties that ∂ ∗ ◦Sk = 0, ∂ ∗ ◦d∇ ◦Sk = 0 and Π ◦Sk

is the identity on Γ (H kV ). Having these operators at hand, we define

Dk := Π ◦d∇ ◦Sk : Γ (H kV )→ Γ (H k+1V ) ,

which is by construction a conformally covariant differential operator, mapping ten-
sor fields to tensor fields on M (for any k ∈ {0,1, . . . ,n}). In particular, we obtain
the so-called BGG-sequence

0−→ Γ (H 0V )
D0−→ Γ (H 1V )

D1−→ . . .
Dn−→ Γ (H nV )−→ 0

for any given G-representation V . Note that this sequence is a complex if (M,c)
is conformally flat. If M is the conformally flat model G/P (= Möbius (pseudo)-
sphere), then this is just the tensor product of the deRham complex with V (cf.
[17]).

The first differential operator D0 := Π ◦∇ ◦ S0 of a BGG-sequence we have
met already at several occasions in this text. In fact, in Section 3 (3) we have given
the first splitting operator S0 for the standard representation V = Rp+1,q+1 with
respect to a metric g. The resulting first BGG-operator D0 maps densities Γ (E [1])
of conformal weight 1 to trace-free symmetric bilinear forms Γ (S2

0(T
∗M)) of weight

0. The operator D0 is explicitly given with respect to a metric g ∈ c by

Dg
0 σ = trace-free part of (Hessg

σ − Pg ·σ) .

The kernel of D0 consists of almost Einstein structures on (M,c) (cf. (5)).

More generally, in Section 4 (6) we have introduced the conformal Killing equa-
tion for l-forms. This equation describes the kernel of D0 for the G-representation
Λ l+1(Rp+1,q+1)∗ of tractor (l + 1)-forms. If α is a ∇-parallel tractor (l + 1)-form
and n 6= 2l, then application of the splitting operator S0 to the l-form Π(α) of weight
l +1 is given with respect to a metric g ∈ c by

Sg
0α0 =

(
α0 ,

1
l +1

dα0 ,
1

n− l +1
d∗α0 ,

1
n−2p

(∆l +
scalg

2(n−1)
)α0

)
,
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where ∆l is minus the Bochner-Laplacian (cf. (3) and [37]). For l = 1 the operator
D0 is explicitly given with respect to a metric g ∈ c by

Dg
0 : X(M)∼= Ω 1(M)→ Γ (S2

0(T
∗M)),

X 7→ trace-free part of LX g .

Formulae for Sg
0 and Dg

0 acting on arbitrary l-forms of weight l +1 can be found in
[29].

Recall that ∇-parallel tractor (l +1)-forms correspond to so-called normal con-
formal Killing l-forms (cf. Section 4). These are conformal Killing l-forms, which
satisfy certain additional equations (cf. [36, 37, 29]). In general, the kernel of D0 is
bigger than the set of normal conformal Killing l-forms for 0 < l < n. Obviously,
normal conformal Killing l-forms are directly linked to reduced conformal holon-
omy, and thus occur in several situations of our discussion. In particular, normal
conformal Killing l-forms occur in the case of decomposable conformal holonomy
(as volume forms; cf. Section 4), in Sparling’s characterisation of Fefferman spaces
(as lightlike Killing vectors; cf. Section 5) and, of course, in the generalised Feffer-
man constructions of Section 6 as well.

We also mentioned in Section 5 the existence of conformal Killing spinors on
spin Fefferman spaces. This is also explained by BGG-sequences. Namely, if (M,c)
is a conformal spin manifold of signature (p,q) (with a given spin structure), then
there exists a canonical Cartan geometry (P̃, ω̃nor) of type (G̃, P̃) on (M,c), where
G̃ = Spin(p + 1,q + 1) is the spinorial Möbius group, and the standard (complex)
spinor representation W gives rise to a spinorial BGG-sequence. The first opera-
tor D0 : Γ (S )→ Γ (H 1W ) in this BGG-sequence is Penrose’s twistor operator,
which maps spinors to sections of the kernel of the Clifford multiplication. The
spinors in the kernel of D0 satisfy (with respect to a metric g) the twistor equation
(8).

References

1. D. Alekseevskii. Groups of conformal transformations of Riemannian spaces. Mat. Sbornik
89 (131) 1972 (in Russian), English translation Math. USSR Sbornik 18 (1972), 285-301.

2. J. Alt. Fefferman constructions in conformal holonomy. Dissertation, Humboldt University
Berlin, 2008.

3. S. Armstrong. Definite signature conformal holonomy: a complete classification. J. Geom.
Phys. 57 (2007), no. 10, 2024–2048.

Felipe Leitner



Aspects of conformal holonomy 231

4. S. Armstrong. Free 3-distributions: holonomy, Fefferman constructions and dual distributions.
arXiv:0708.3027 (2008).

5. S. Armstrong, F. Leitner. Decomposable conformal holonomy in Riemannian signature.
Preprint 2010.

6. T.N. Bailey, M. Eastwood, A.R. Gover. Thomas’s structure bundle for conformal, projective
and related structures. Rocky Mountain J. Math. 24 (1994), no. 4, 1191–1217.

7. H. Baum. Lorentzian twistor spinors and CR-geometry. J. Diff. Geom. and its Appl. 11 (1999),
no. 1, p. 69-96.

8. H. Baum, Th. Friedrich, R. Grunewald, I. Kath. Twistor and Killing spinors on Riemannian
manifolds, Teubner-Text Nr. 124, Teubner-Verlag Stuttgart-Leipzig, 1991.

9. H. Baum, A. Juhl. Conformal Differential Geometry. Q-curvatrue and conformal holonomy.
Oberwolfach Seminars, Vol. 40, Birkhäuser-Verlag, 2010.
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Abstract We consider spaces of plane curves in the setting of algebraic geometry
and of singularity theory. On one hand there are the complete linear systems, on
the other we consider unfolding spaces of bivariate polynomials of Brieskorn-Pham
type.
For suitable open subspaces we can define the bifurcation braid monodromy taking
values in the Zariski resp. Artin braid group. In both cases we give the generators of
the image.
These results are compared with the corresponding geometric monodromy. It takes
values in the mapping class group of braided surfaces. Our final result gives a pre-
cise statement about the interdependence of the two monodromy maps.
Our study concludes with some implication with regard to the unfaithfulness of the
geometric monodromy ([W]) and the - yet unexploited - knotted geometric mon-
odromy, which takes the ambient space into account.
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1 Introduction

Algebraic geometry and Singularity theory share their interest in discriminant com-
plements. Though they look at different parameter spaces, there is an apparent com-
mon feature: A closed subset, the discriminant, parametrizes objects which are spe-
cial (singular) in some sense, and thus distinguished from generic objects corre-
sponding to points in the discriminant complement.

Familiar examples are provided by linear systems resp. versal unfoldings, which
contain non-singular and singular elements.

The appropriate tool to study the topology of divisor complements seem to be
braid monodromy maps. They were successfully exploited to determine fundamen-
tal groups. But their domain is naturally the set of regular values of a projection of
the divisor complement.

That is different in the situation considered in [Lö1] where the divisor com-
plement itself is the domain of an interesting braid monodromy map. Therefore
the natural question was raised, whether spaces of hypersurfaces in singularity
theory and projective geometry support braid monodromy maps and can be better
understood by their study.

To get bifurcation braid monodromy we discard the degeneracy locus consisting
of those polynomials which are special with respect to a chosen projection of the
domain. The remaining generic polynomials are those on which the induced map
is a Morse function. In particular its bifurcation set consists of only finitely many
critical values, their constant cardinality is determined by the topology. Of course
paths of such points in the target will precisely be the braids associated to paths of
generic polynomials, cf. section 3.

We focus our study to the case of plane projective curves and their close cousins,
unfoldings of singular bivariate polynomials of Brieskorn-Pham type f = xk +yn+1.

Our results are expressed in terms of the band generators σi j which are natural
conjugates of the Artin generators σi = σi i+1 and which can be identified with the
following braid diagrams:



Bifurcation braid monodromy of plane curves 237

n n−1 j +1 j j−1 i+1 i i−1 2 1

· · · · · ·
· · ·

Fig. 1 A generator σi j of the

’

dual’ or BKL presentation of the braid group.

Theorem 1 Suppose the singular polynomial f = yn+1 +xk of Brieskorn-Pham type
is considered with respect to the projection along the y-coordinate. Then in Brnk the
conjugation class of the bifurcation braid monodromy group is represented by

〈
σ

mi j
i j

∣∣∣∣∣∣∣mi j =


1 if i≡ j mod n,

3 if i≡ j±1,{i, j} 6≡ {0,1} mod n,

2 else

〉
.

b
b
bbb

b
``` b

b
bbb

b
```

Fig. 2 Both figures depict part of the branch points of y4− 4y + 3x4 at the zeroes of x12 = 1, so
k = 4, l = 3. The arcs shown on the left hand side correspond to the twists σi j with mi j = 3, those
on the right hand side correspond to twists σi j with mi j = 2 and mi j = 1 (dotted).

The corresponding result for linear systems of plane curves can be obtained for
the open set of plane curves which are transversal to the line at infinity and which
do not contain the center of projection (0 : 1 : 0):

Theorem 2 The bifurcation braid monodromy group of plane projective curves of
degree d is in the conjugation class of the subgroup of Brd(d−1) generated by the
following elements:
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(i) σi j , if i≡ j mod d−1,

(ii) σ 3
i j , if i≡ j±1,{i, j} 6≡ {0,1} mod d−1,

(iii) σ 2
i j , if i, j not as above, i) or ii),

(iv) σ1σ2 · · ·σd2−d−1σd2−d−1 · · ·σ2σ1 and its conjugates by powers of
σd2−d−1σd2−d−2 · · ·σ2σ1.

Both bifurcation braid monodromy groups are in fact isomorphic to a group
of mapping classes, see Prop. 6 for a proof in case of bivariate polynomials.
These mapping classes are obtained as the natural images of a braided geometric
monodromy to be defined in Section 6.

This isomorphism is another instance of the close connection between algebraic
geometry and low dimensional topology, which is witnessed also by

(i) the isomorphism induced by geometric monodromy between the (orbifold) fun-
damental group of moduli spaces of curves and the mapping class group of the
corresponding topological surface,

(ii) the isomorphism between the fundamental group of the space of simple poly-
nomials and the braid group, see Section 3,

(iii) geometric monodromy of plane curves, which induces an injection of the fun-
damental group of the discriminant complement of polynomials of type An and
Dn into the mapping class group [PV].

Our ongoing projects aim at a corresponding result in the absence of a projection
map. Then there is a kind of knotted geometric monodromy with range in the map-
ping classes of pairs consisting of an ambient space and the embedded hypersurface.

In the basis case that the family of ambient spaces is trivial there is another nat-
ural candidate for the range of the geometric monodromy, the fundamental group of
higher dimensional configuration spaces. Their study was proposed by Dolgachev
and Libgober [DL] as the topological counterpart of spaces of algebraic submani-
folds, e.g. smooth projective plane curves in P2.

The appropriate topological space should contain all topological submanifolds
isotopic to a smooth curve Cd of degree d. It can be identified as a coset space for
the group Diffo(P2) of diffeomorphisms of P2 isotopic to the identity with respect
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to the subgroup Diffo(P2,Cd) of diffeomorphisms which induce a diffeomorphism
of Cd to itself.

This coset space is the natural topological ‘configuration space’ in higher dimen-
sions

FCd [P
2] = Diffo(P2)/Diffo(P2,Cd)

in analogy to Fd [S2] = Diffo(S2)/Diffo(S2,{p1, ..., pd}).

The corresponding quotient map is a fibration which gives rise to a homotopy
exact sequence

π1Diffo(P2)−→ π1(FCd [P
2])−→ π0Diffo(P2,Cd)−→ 1

where of course the middle group should be called the ‘generalised’ braid group of
algebraic curves in P2.

This raises a lot of new questions, about the relation between the knotted map-
ping class group and the fundamental group of higher dimensional configuration
spaces, and the respective geometric monodromy maps.

But with the results of this paper it may be conceivable to get hold on injectivity
and surjectivity properties of these monodromy maps.

2 Singularity theory

Let us first briefly review some basic notions of singularity theory. We restrict our
attention to the case of bivariate polynomials from the beginning. Note that a rigor-
ous treatment would demand the language of germs, but for the sake of clarity we
will naively speak of polynomials, (plane) curves and affine spaces.

Definition 1 A holomorphic function f defined in a neighbourhood of 0 ∈ C2 de-
fines a singular curve, if 0 ∈ C2 is a critical point of f with critical value 0 ∈ C,

f (0) = ∂x f (0) = ∂y f (0) = 0.

Two singular functions are called equivalent, if they differ by a change of coordi-
nates only.
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We are also interested in a more restricted equivalence with respect to a linear
projection

qx : C2→ C, (x,y) 7→ x.

Definition 2 Two singular functions are called equivalent rel qx, if they differ by a
holomorphic change ϕ of coordinates only, which fits into a commutative diagram
with a suitable biholomorphic ψ:

C2 ϕ−→ C2

qx ↓ ↓ qx

C ψ−→ C

The concept of semi-universal unfolding gets hold of all local perturbations of
f , at least up to equivalence, resp. equivalence rel qx.

Suppose now that f and f
∣∣
x=0 are isolated singularities. In that case, the semi-

universal unfolding rel. qx associated to f is given by a function F . It is determined
by the respective equivalence class of f up to non-canonical isomorphism.

F : C2×Cµ+µ ′ −→ C,

where µ is the Milnor number of f and µ ′ the Milnor number of f
∣∣
x=0.

The following bifurcation diagram displays the essential objects and maps for
our set-up:

x,y,u Cµ+µ ′+2 ⊃ C

↓ ↓

x,u Cµ+µ ′+1 ⊃ B

↓ ↓

u Cµ+µ ′ ⊃ D

In this diagram we placed some emphasis on the family of plane curves C , the
zero set of F , on the branch divisor

B := {(x,u) |Fx,u : y 7→ F(x,y,u) has singular zero levelset}
= {(x,u) |Fx,u : y 7→ F(x,y,u) has multiple roots}

and on the degeneracy locus

D := {u |Cu is singular or qx|Cu is not a Morse function}
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We note the following features:

• C →Cµ+µ ′+1 is a finite map with branch locus B,

• B→ Cµ+µ ′ is a finite map with branch locus D ,

• B is the zero set of a monic polynomial p of degree µ + µ ′ in x
with coefficients in C[u].

• D is the locus of parameters such that the corresponding monic polynomial pu

has a multiple root.

In particular there is a well-defined Lyashko-Looijenga map on the complement
of the degeneracy locus

U( f ) := Cµ+µ ′ −D −→ C[x], u 7→ pu,

which maps to monic univariate polynomials of degree µ + µ ′ with simple roots
only.

3 Braid monodromy maps and groups

A braid monodromy in general is the map on fundamental groups induced from
a topological map on a suitable space to a space which has a braid group as its
fundamental group. Here we are only interested in the braid group of the plane and
the sphere, i.e. the fundamental groups of the associated configuration spaces.

The configuration space Ud of d points in C is naturally an open algebraic subset
of the affine space Ad of monic univariate polynomials of degree d. Polynomials in
Ud are characterized by the property that they have simple roots only.

Proposition 1 ([Ar]) The fundamental group of the open subset Ud is isomorphic to
the (planar) braid group Brd. It is finitely presented by generators σi, 1≤ i < d and
by relations

(i) σiσ j = σ jσi, if |i− j|> 1, 1≤ i, j < d,

(ii) σiσi+1σi = σi+1σiσi+1, if 1≤ i < d−1,
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The configuration space of d points on P1, the topological two-sphere, is natu-
rally an open algebraic subset of the projective space associated to the vector space
Vd = SymdC2 of homogenous polynomials of degree d in two variables.

Proposition 2 ([Za]) The fundamental group of the open set in
PH0(OP1(d)) ∼= PVd, which consists of homogeneous polynomials with sim-
ple roots only, is isomorphic to the spherical braid group Brs

d. It is finitely presented
by generators σi, 1≤ i < d and by relations

(i) σiσ j = σ jσi, if |i− j|> 1, 1≤ i, j < d,

(ii) σiσi+1σi = σi+1σiσi+1, if 1≤ i < d−1,

(iii) σ1 · · ·σd−2σ 2
d−1σd−2 · · ·σ1 = 1.

Given now any map to Ad the restriction to the preimage of Ud induces a map
from the fundamental group of the preimage to Brd , the fundamental group of the
image. (There is a close analog in the spherical case, of course.)

In our set-up we may just look at a family of bivariate polynomials fu(x,y) which
maps to a family of monic univariate polynomials pu(x) obtained as the resultant
with respect to y of f and its derivative ∂y f with respect to y,

pu(x) = resy( f ,∂y f ).

The induced map on fundamental groups is called the bifurcation braid monodromy.

In particular, we can apply these considerations to the Lyashko-Looijenga map
of the last section. Note again the point stressed there, that the complement Uk;n of
the degeneracy locus D is mapped to the discriminant complement Unk.

Definition 3 The bifurcation braid monodromy group of a bivariate polynomial f is
the image of the bifurcation braid monodromy for the versal unfolding of f relative
qx.

Example 1 The bifurcation braid monodromy of any generic polynomial deforma-
tion of a function equivalent to y2− xk rel. qx is the full braid group Brk.

To see this it suffices to note that a versal family is parametrized by Ak. More
precisely the complement of D is Uk and the Lyashko-Looijenga map the identity
in this case.
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Example 2 The bifurcation braid monodromy of the function f = yn+1 + x rel. qx is
in the conjugacy class of the subgroup of Brn generated by

σ
3
i ,σ 2

i, j, |i− j| ≥ 2.

In fact the bifurcation diagram for this function is a smooth pull-back of the
discriminant diagram of the function tn+1. In terms of an unfolding F and a truncated
unfolding F ′ of tn+1

F(t,un−1, . . . ,u1,u0) = F ′(t,un−1, . . . ,u1)+u0 = tn+1 +
n−1

∑
i=0

uiti.

the discriminant diagram is given by

u = (un−1, . . . ,u1,u0) Cn ⊃ D = {u |Fu has singular zero-level }

↓ ↓

u′ = (un−1, . . . ,u1) Cn−1 ⊃ B = {u′ |F ′u′ is not a Morse function}.

Then we can refer to the corresponding claim for the braid monodromy group of
the discriminant diagram, which is shown in [Lö4, section 4] and relies on [L] and
[CW].

4 Computation of bifurcation braid monodromy

In this section we want to give the outline of a proof of Theorem 1. The following
proposition has been proved with more detail in [Lö5] in the special case of l = 2.

Proposition 3 The bifurcation braid monodromy group of a plane curve germ
yn+1 + xk projected by the x-coordinate is the subgroup of Brnk generated by

(i) σi j , if i≡ j mod n,

(ii) σ 3
i,i+1, if there is s≡ 0 mod n such that s < i≤ n+ s−1,

(iii) (σ ′i j)
2, if there is s≡ 0 mod n such that s < i, j ≤ n+ s, |i− j|> 1,

where σ ′i j = σ
−1
i,i+1 · · ·σ

−1
j−2, j−1σ j−1, jσ j−2, j−1 · · ·σi,i+1.
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The figure shows part of the branch locus x12 = 1 of y4−4y+3x4, so k = 4,n = 3.

The straight arcs correspond to twists σi j with mi j = 3 and mi j = 1 (dotted),
the curved arcs to twists σ ′i j

2 of the bifurcation braid monodromy group.

Proof To smooth the argument we note one computational detail in advance. The
branch locus of a polynomial f = yn+1− (n+1)p(x)y +nq(x) with respect to qx is
obtained by an elementary elimination:

∂y f = 0 =⇒ yn = p(x)
f=0
=⇒ yp(x) = q(x)

=⇒ yn pn(x) = qn(x)
∂y f=0
=⇒ pn+1(x) = qn(x) (∗)

In the first step we consider the family f = yn+1 − (n + 1)uy + n(xk + v)
parametrized by u,v. By definition the bifurcation braid monodromy is induced by
the map

u,v 7→ pu,v(x) = discry( f ) := resy( f ,∂y f )
(∗)
= (xk + v)n−un+1.

(Let us remark that we feel free to rescale the discriminant without further notice.)

To find the intersection of the uv-parameter plane with the open set of admissible
polynomials we have to find the u,v such that pu,v has a multiple root. Again the
elimination of x from pu,v and ∂x p is quite elementary:

∂x p = 0 =⇒ xk−1(xk + v)n−1 = 0

=⇒ xk(xk + v)n−1 = (v− v)(xk + v)n−1

p=0
=⇒ un+1 = v(xk + v)n−1

p=0
=⇒ un(n+1) = vnu(n−1)(n+1)

=⇒ u(n−1)(n+1)(un+1− vn)= 0 (∗∗)
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To determine now the braid monodromy we fix a base point at (u,v) = (1,0).
The corresponding branch set is given by p(1,0) = xnk−1 = 0, see (∗).

For further use we number these branch points according to increasing arg
ending with ξnk = 1.

The bifurcation braid monodromy is now defined on the fundamental group of
the complement to (∗∗). Natural generators are given by a geometric basis on the
line (1,v) punctured where vn = 1 and a simple closed path around u = 0, see below
for details.

On the line (1,v) it suffices to consider paths where v moves along radial rays
from 0 to a unit root ξik, 1≤ i≤ n. Again from (∗) we have for λ ∈ [0,1]

(xk +λξik)n = 1 ⇔ xk = ξ jk−λξik for some j.

Accordingly the k branch points with indices congruent to i mod n converge along
radial rays to 0 while the remaining branch points stay away from these rays.

The local monodromy at the degeneration points (1,ξik) can be obtained from
the family gt = y2 +xk− t. Its bifurcation divisor xk− t = 0 is the local model of the
singular branch of the bifurcation divisor of f over (1,ξik).

Accordingly the monodromy of gt is mapped to the local monodromy of f by a
transfer map, which identifies a disc containing the solutions of xk = t with the disc
containing the k branch points converging to the origin.

We now get to the final path from (1,v) around the line u = 0. Let ρ be the solu-
tion of ρ2 = ξk with positive imaginary part, then we can consider the degeneration
along (u,v) =

(
(1−λ )

n
n+1 ,λρ

)
with λ ∈ [0,1] and bifurcation according to (∗):

(xk +λρ)n = (1−λ )n

=⇒ xk = (1−λ )ξ jk−λρ for some j ∈ {1, . . . ,n}.

Let xi′ denote the solution which moves to ξi′ for λ → 0. Then one may check for
λ → 1 that the argument arg(xi′) is strictly increasing (resp. decreasing or constant)
for i′ ≡ i mod n, 0 < i < (n+1)/2 (resp. (n+1)/2 < i≤ n or i = (n+1)/2).

Hence the family degenerates at λ = 1 only and all branch points are on distinct
rays for λ ∈ [0,1[. Moreover we observe that for λ → 1 the following n-tuples of
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branch points merge at k distinct points,

Ts := {xs,xs+1, ...,xs+n−1} with s≡ 0 mod n.

The local monodromy at the degeneration point (0,ρ) can be obtained from the
family ft = yn+1−(n+1)ty+nx. Its bifurcation divisor xn = tn+1 is the local model
of each singular branch of the bifurcation divisor of f over (0,ρ).

Accordingly each local monodromy of f is obtained by a transfer map from
the monodromy of ft . The transfer map identifies a disc containing the solutions
of xn = tn+1 with a disc containing an n-tupel Ts of branch points converging to a
singularity over (0,ρ).

From the monodromy of the special family we may get the monodromy of the
versal family by the principles of versal braid monodromy [Lö2]. They tell us how
to replace the generating braids associated to the special family by groups of braids,
which then generate the full braid monodromy group of the versal family.

In fact one has to find first the braid monodromy groups of the local models.
Then the transfer maps mentioned above map these group to subgroups of Brnk

which generate the bifurcation braid monodromy group.

The local model for the degenerations in the line (1,v) is given by example 1,
so for each point (1,ξik) we have to transfer a full braid group Brk into Brnk. This
is done by a topological disc which contains the ξ j with j ≡ i mod k. Thus the
contribution to the bifurcation braid monodromy group is given by the half-twists
σi j with i≡ j mod k.

The local model for the degenerations at (0,ρ) is given by example 2, which
models the degeneration of each of the k tuples Ti of n branch points. Here we have
to transfer the corresponding braids from example 2 to topological discs around the
Ti. In this way we get the remaining braids of the claim.

Remark 1 The last argument admittedly is incomplete, since the transfer map in the
last case is sensitive to the identification of the disc. Since this ambiguity does not
matter in the proof of our theorem, we do not stress the point here.

Proof (of Theorem 1) We have to compare the two subgroups generated by the set
of braids given in the assertion of Prop. 3, respectively the set of braids given in the
theorem.
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Let us focus first on generating braids supported on a topological disc around an
n-tupel Ts. In the proposition these elements are listed in 2) and 3) with n′ = s. As
we remarked above, we did not actually prove that these elements generate the mon-
odromy group. Rather, we showed that under some identification of discs generators
coincide with the generators of example 2.

In the claim of the theorem the elements concerned are σ 2
i j,σ

3
i j listed in 2) and

3) with s < i < j ≤ s + n. They are readily seen to coincide with the generators of
example 2 under a suitable map.

Hence by composition we get a local homeomorphism under which the elements
from the proposition are identified with the elements from the theorem.

Since discs around the Ts may be chosen disjoint we deduce the existence of a
conjugating braid β which induces the above indentifications simultaneously.

In the second step we consider the generators listed under 1) of the proposition
and the theorem. They are the same and generate the same subgroup H of Brnk, but
helas we have now to take the conjugation by β into consideration.

We note that β is symmetric in the sense that it commutes with any rigid rota-
tions, which permutes the n-tuples Ts. Therefore β belongs to the subgroup gener-
ated by

δ1 = σ1σn+1 . . .σ(k−1)n+1, . . . ,δn−1 = σn−1σ2n−1 . . .σnk−1.

The crucial observation is, that H is invariant under conjugation by the δ : In fact δi′

acts on σi, j with i≡ j mod n as

δi′σi, jδ
−1
i′ =


σi, jσi+1, j+1σ

−1
i, j if i′ ≡ i mod n

σi−1, j−1 if i′ ≡ i−1 mod n
σi, j else

So at this stage we have proved that the monodromy group of the proposition conju-
gated by β is contained in the group generated by the elements listed in the theorem.

To finish, it suffices to show that the all elements of the theorem not considered
till now are in fact redundant. But this can be shown inductively using for i < j that
σi, j+nσ j, j+n = σ j, j+nσi, j.

Remark 2 The bifurcation braid monodromy is precisely the subgroup of Brnk gen-
erated by those powers of the band generators σi j which stabilise the periodic se-
quence of transpositions



248 Michael Lönne

(12),(23), · · · ,(k k +1), (12),(23), · · · ,(k k +1), · · · ,(12), · · · ,(k k +1)

of length nk under the Hurwitz action. This sequence encodes of course the finite
branched covering of C by the curve C := { f(1,0) = 0} via qx.

5 Monodromy for spaces of plane projective curves

The space of plane projective curves of degree d is given by PH0
d = PH0(OP2(d)).

In analogy to the situation in singularity theory we consider open subsets of curves
which have a generic branching property. Of course they are open subsets in the
discriminant complement Ud corresponding to the set of smooth curves.

Notation 1 For a given point P0 ∈ P2 we have the subset of smooth curves disjoint
to P0 which are generic with respect to the projection q : P2−{P0}→ P1 from P0:

Fd = {C ∈Ud |P0 /∈C,q|C is Morse }

An open subset is obtained imposing the condition that a line L0 containing P0

(say at infinity) has d simple points of intersection with C.

F ′
d = {C ∈Ud |C ∈Fd,#C∩L0 = d}

Remark 3 Thanks to the homogeneity of P2 these spaces do not depend on the
choice of a projection center and/or line at infinity.

If we introduce homogeneous coordinates (x : y : z) such that P0 = (0 : 1 : 0) and
L0 = {z = 0} we can make the following identifications (with µd = d(d +3)/2):

Aµd = { f ∈C[x,y,z]d
∣∣ f (0,1,0) = 1}

Fd = { f ∈Aµd
∣∣discry( f )has simple roots only}

F ′
d = { f ∈Aµd

∣∣discry( f )(x,1) ∈Ud(d−1)}

The complement of Fd in Aµd is the weak degeneracy locus D , that of F ′
d the

degeneracy locus D ′.

There is a pull-back diagram
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F ′d ↪→ F ′
d 3 f (x,y,z)

↓ ↓ ↓
{yd +1} ↪→ Ud 3 f (1,y,0)

which defines F ′d as the fibre of the map on the right hand side over the element
yd +1.

Of course F ′d consists of the polynomials, which can be written as a sum of
yd + xd with a polynomial of degree d that has z as a factor.

Proposition 4 There is an natural exact sequence of groups

π1(Ud;d)−→ π1(F ′
d)−→ Brd → 1,

where Ud;d is U( f ) on page 241 of section 2 with f = yd + xd.

Proof First we want to apply the Zariski theorem on fundamental groups of divisor
complements as proved by Bessis [B, section 2]. Consider the map

Aµd −→ Aµd−1

f 7→ f (x,y,1)− f (0,0,1)

which is the projection along the coefficient of zd . With a generic choice of param-
eters α1,α2,α3 the fibre F over

{yd +(α1x +α2)y+ xd +α3x} ∈ Aµd−1

intersects the weak degeneracy locus D transversally. The second contribution to
the degeneracy locus is the pull-back P of the discriminant in Vd , the complement
of Ud .

Hence the Zariski theorem asserts that the following sequence is exact:

π1(F−F ∩D)−→ π1(F ′
d)−→ π1(Aµd−1−P ′)−→ 1.

where P ′ is the pullback of the discriminant in Vd to Aµd−1.

Since F −F ∩D is a subset of F ′d , the first map factors through π1(F ′d). With
π1(Aµd−1−P ′) = π1(Ud) = Brd we then get the exact sequence

π1(F ′d)−→ π1(F ′
d)−→ Brd −→ 1.

It remains to identify the fundamental group on the left with π1(Ud;d). To do so it
is natural to consider F ′d as a subspace of a trivial unfolding of Ud;d . We claim that
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the induced map on fundamental groups is then an isomorphism. The proof for that
claim has to be copied from the arguments in [Lö3, section 4].

In fact with some more care, it could be proved that the sequence is even short
exact.

Definition 4 The bifurcation braid monodromy of smooth plane curves of degree d
is given by the map

π1(F ′
d) −→ Brd(d−1)(

resp. π1(Fd) −→ Brs
d(d−1) in the spherical case.

)
which is - in both cases - induced by the map on polynomials

f = f (x,y,z) 7→ resy( f ,∂y f ).

Of course the spherical braid monodromy group can be given with the same
generators, since π1(F ′)→ π1(F ) is surjective.

Proof (of Theorem 2) We can now outline the proof of the second theorem.
By the exact sequence of Prop. 4, the braid monodromy group of plane curves of
degree d contains all braids which belong to the braid monodromy group of the
bivariate Fermat polynomial with exponent d. To get sufficiently many additional
braids, we have to find lifts of generators of π1(Ud) and add their images in Brd(d−1).

Again we investigate a special family of curves (here we work with the homo-
geneous form)

fu = yd−d(uxd−1 + zd−1)y+(d−1)xd.

By (∗) the branch locus for the family is given by

pu(x,z) = (uxd−1 + zd−1)d− xd(d−1)

and we can compute again the degeneracy locus
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∂z p = 0 =⇒ zd−2(uxd−1 + zd−1)d−1 = 0

=⇒ zd−1(uxd−1 + zd−1)d−1 = (uxd−1−uxd−1)(uxd−1 + zd−1)d−1

=⇒ (uxd−1 + zd−1)d = uxd−1(uxd−1 + zd−1)d−1

p=0
=⇒ xd(d−1) = uxd−1(uxd−1 + zd−1)d−1

=⇒ xd2(d−1) = udxd(d−1)(uxd−1 + zd−1)d(d−1)

p=0
=⇒ xd2(d−1) = udxd(d−1)xd(d−1)2

=⇒ xd2(d−1)(ud−1) = 0

This implies ud = 1 since x = 0 is only a solution together with z = 0, which has no
geometric meaning.

We consider now the image of our family under the restriction map:

fu 7→ fu(1,y,0) = yd−duy+(d−1).

The induced mapping on parameter spaces C → Ad is transversal to the dis-
criminant, hence surjective on fundamental groups. Thus it suffices to find braids
associated to a geometric basis of paths in the u-parameter plane punctured at
ud = 1.

For the radial path from u = 0 to a root ξ j(d−1) of ud = 0 the degeneration is
characterized by the following properties:

(i) the order of the punctures according to argument is preserved, which follows
from the provable fact, that two punctures never have the same argument, ie.
belong never to the same radial ray,

(ii) the punctures with index congruent to j mod d converge to infinity,

(iii) the trace of all other punctures remains bounded.

When u turns in a small circle around ξ j(d−1) most punctures move but very
little. In contrast the punctures close to infinity turn on a large circle by the (d−1)th

part of the full circle. With the radial contraction of u they retrace the movement of
their dth neighbour.

Any braid thus obtained is

σ1 · · ·σ(d−1)d−1 σ(d−1)d−1 · · ·σ(d−2)d+1 σ(d−2)d−1 · · ·σ(d−3)d+1 · · · σd−1 · · ·σ1,
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or a conjugate of it by a power of σ(d−1)d−1 · · ·σ1.

We are free to modify these braids by an element from Prop. 3, and we use this
freedom to multiply with braids of the form σ

−1
j · · ·σ

−1
j+d−2σ j+d−1σ j+d−2 · · ·σ j to

get
σ1 · · ·σ(d−1)d−1 σ(d−1)d−1 · · ·σ1,

and its conjugates by σ(d−1)d−1 · · ·σ1.

These braids have to be conjugated as in the proof of Thm. 1 to get braids which
fit with the braids of Thm. 1. To get to our claim we have thus to modify again.

6 Braid monodromies versus geometric monodromies

The topological analogue of a plane curve with simple branching along a preferred
projection is a simply braided surface:

Definition 5 A simply braided surface is a submanifold of dimension two with
boundary

(S,∂ S) ⊂ (D2×C,S1×C)

such that

(i) The induced projection S→ D2 is a simple branched covering.

(ii) The induced projection ∂ S→ S1 is an unbranched covering.

Remark 4 By the Riemann-Hurwitz formula, the branch set b of branch points of
(S,∂S) has cardinality |b|= d− e(S), where d is the degree of the covering.

Accordingly the range of our geometric monodromy will consist of mapping
classes preserving the braided surface structure.

Definition 6 The braided mapping class group M (S) is the group of isotopy classes
of orientation preserving diffeomorphisms of D2×C which

(i) preserve (S,∂ S),

(ii) permute the fibres of D2×C→ D2,

(iii) preserve the fibres of S1×C→ S1,
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(iv) are compactly supported.

In the case of versal unfoldings rel qx of bivariate polynomials the zero set of a
generic polynomial is naturally a simply braided surface.

In the case of projective plane curves we look at curves not in the degeneracy
locus. The intersection of such a curve with the complement of a small tubular
neighbourhood of the line at infinity determines a simply braided surface up to iso-
morphism. The same is true for families of such curves over a loop. The family of
boundaries need not be trivial.

In any case we may define:

Definition 7 The braided geometric monodromy is defined on the fundamental
group of the complement of the degeneracy locus and takes values in the braided
mapping class group of

(i) zero set of a generic polynomial in the case of bivariate polynomials,

(ii) complement of a tubular neighbourhood of the line at infinity in the case of
generic projective plane curves.

Since the magnitude of D2 can be chosen large in comparison with the deforma-
tion parameters, we may deduce that the family of boundaries is trivialisable in the
case of generic bivariate polynomials.

This observation serves well in the proof of the following comparison result.

Proposition 5 The braided geometric monodromy group of versal unfolding rel qx

of a bivariate polynomial with isolated singularity is isomorphic to the bifurcation
braid monodromy group.

Proposition 6 Given a versal unfolding rel qx of a plane curve singularity. Then the
following two monodromy groups are isomorphic:

(i) the bifurcation braid monodromy group,

(ii) the braided geometric monodromy group.

Proof A representative of a braided mapping class induces a diffeomorphism of the
base D2 preserving the singular values b. The braided mapping class thus determines
a mapping class of the punctured base. Hence the bifurcation braid monodromy map
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factors through braided geometric monodromy map. In fact the bifurcation braid is
naturally identified with the induced mapping class of (D2,b).

Conversely we note that a braid in the bifurcation braid monodromy determines
a unique braided mapping class. On one hand it fixes an induced mapping class
on (D2,b). On the other hand the map on the boundary is trivial. Hence there is a
unique lift to the braided mapping class group.

Remark 5 The same result is true in the case of plane projective curves, but the proof
is more involved, since one has to take into account that the map on the boundary
may vary. The crucial step is in fact to determine the map on the boundary from the
braid.

There are obvious maps from the braided geometric monodromy of projection
germs to the knotted geometric monodromy of plane curve singularities and further
to the geometric monodromy.

Proposition 7 The knotted geometric monodromy is injective for plane curve singu-
larities of type An and Dn.

Proof This follows immediately from [PV], since geometric monodromy factors
through knotted geometric monodromy.

We know of the failure of the geometric monodromy to be injective in general
by the result of Wajnryb [W]. We also know of its failure to be surjective, see the
result of Hirose [H] in the case of projective plane curves.

But there is hope that knotted geometric monodromy is better in the sense that
injectivity and surjectivity hold true or fail at least to a lesser extend.
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Abstract We survey recent results about the Torelli question for holomorphic-
symplectic varieties. Following are the main topics. A Hodge theoretic Torelli the-
orem. A study of the subgroup WExc, of the isometry group of the weight 2 Hodge
structure, generated by reflection with respect to exceptional divisors. A description
of the birational Kähler cone as a fundamental domain for the WExc action on the
positive cone. A proof of a weak version of Morrison’s movable cone conjecture. A
description of the moduli spaces of polarized holomorphic symplectic varieties as
monodromy quotients of period domains of type IV.
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1 Introduction

An irreducible holomorphic symplectic manifold is a simply connected compact
Kähler manifold such that H0(X ,Ω 2

X ) is one-dimensional, spanned by an ev-
erywhere non-degenerate holomorphic 2-form [Be1]. There exists a unique non-
degenerate symmetric integral and primitive bilinear pairing (•,•) on H2(X ,Z) of
signature (3,b2(X)−3), with the following property. There exists a positive rational
number λX , such that the equality
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(α,α)n = λX

∫
X

α
2n

holds for all α ∈ H2(X ,Z), where 2n = dimC(X) [Be1]. If b2(X) = 6, then we
require1 further that (α ,α) > 0, for every Kähler class α . The pairing is called the
Beauville-Bogomolov pairing and (α ,α) is called the Beauville-Bogomolov degree
of the class α .

Let S be a K3 surface. Then the Hilbert scheme (or Douady space, in the Kähler
case) S[n], of length n zero-dimensional subschemes of S, is an irreducible holomor-
phic symplectic manifold. If n ≥ 2, then b2(S[n]) = 23 [Be1]. If X is deformation
equivalent to S[n], we will say that X is of K3[n]-type.

Let T be a complex torus with an origin 0∈T . Denote by T (n) the n-th symmetric
product. Let T (n)→ T be the addition morphism. The composite morphism

T [n+1] −→ T (n+1) −→ T

is an isotrivial fibration. Each fiber is a 2n-dimensional irreducible holomorphic
symplectic manifold, called a generalized Kummer variety, and denoted by K[n](T )
[Be1]. If n≥ 2, then b2

(
K[n](T )

)
= 7.

O’Grady constructed two additional irreducible holomorphic symplectic mani-
folds, a 10-dimensional example X with b2(X) = 24, and a 6-dimensional example
Y with b2(Y ) = 8 [O’G2, O’G3, R].

We recommend Huybrechts’ excellent survey of the subject of irreducible holo-
morphic symplectic manifolds [Hu3]. The aim of this note is to survey developments
related to the Torelli problem, obtained by various authors since Huybrechts’ survey
was written. The most important, undoubtedly, is Verbitsky’s proof of his version of
the Global Torelli Theorem [Ver2, Hu6].

1.1 Torelli Theorems

We hope to convince the reader that the concepts of monodromy and parallel-
transport operators are essential for any discussion of the Torelli problem.

Definition 1.1 Let X , X1, and X2 be irreducible holomorphic symplectic manifolds.

1 The condition is satisfied automatically by the assumption that the signature is (3,b2(X)−3), if
b2 6= 6.
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(1) An isomorphism f : H∗(X1,Z)→ H∗(X2,Z) is said to be a parallel-transport
operator, if there exist a smooth and proper family2 π : X → B of irreducible
holomorphic symplectic manifolds, over an analytic base B, points bi ∈ B, iso-
morphisms ψi : Xi→Xbi , i = 1,2, and a continuous path γ : [0,1]→B, satisfying
γ(0) = b1, γ(1) = b2, such that the parallel transport in the local system Rπ∗Z
along γ induces the homomorphism ψ2∗ ◦ f ◦ψ∗1 : H∗(Xb1 ,Z)→ H∗(Xb2 ,Z).
An isomorphism g : Hk(X1,Z)→ Hk(X2,Z) is said to be a parallel-transport
operator, if it is the k-th graded summand of a parallel-transport operator f as
above.

(2) An automorphism f : H∗(X ,Z)→H∗(X ,Z) is said to be a monodromy operator,
if it is a parallel transport operator.

(3) The monodromy group Mon(X) is the subgroup3 of GL[H∗(X ,Z)] consisting
of all monodromy operators. We denote by Mon2(X) the image of Mon(X) in
O[H2(X ,Z)].

(4) Let Hi be an ample line bundle on Xi, i = 1,2. An isomorphism
f : H2(X1,Z)→ H2(X2,Z) is said to be a polarized parallel-transport opera-
tor from (X1,H1) to (X2,H2), if there exists a family π : X → B, satisfying
all the properties of part (1), as well as a flat section h of R2π∗Z, such that
h(bi) = ψi∗(c1(Hi)), i = 1,2, and h(b) is an ample class in H1,1(Xb,Z), for all
b ∈ B.

(5) Given an ample line bundle H on X , we denote by Mon(X ,H) the subgroup
of Mon(X), consisting of polarized parallel transport operators from (X ,H) to
itself. Elements of Mon(X ,H) will be called polarized monodromy operators of
(X ,H).

Following is a necessary condition for an isometry g : H2(X ,Z)→ H2(Y,Z) to
be a parallel transport operator. Denote by C̃X ⊂H2(X ,R) the cone

{α ∈H2(X ,R) : (α,α) > 0}.

Then H2(C̃X ,Z) ∼= Z and it comes with a canonical generator, which we call the
orientation class of C̃X (section 4). Any isometry g : H2(X ,Z)→ H2(Y,Z) induces
an isomorphism ḡ : C̃X → C̃Y . The isometry g is said to be orientation preserving if

2 Note that the family may depend on the isomorphism f .
3 If f ∈ Mon(X) is associated to a family π ′ : X ′ → B′ via an isomorphism X ∼= X ′

b′ , and
g ∈ Mon(X) is associated to a family π ′′ : X ′′ → B′′ via an isomorphism X ∼= X ′′

b′′ , then f g is
easily seen to be associated to the family π : X → B, obtained by “gluing” X ′ and X ′′ via
the isomorphism X ′

b′
∼= X ∼= X ′′

b′′ and connecting B′ and B′′ at the points b′ and b′′ to form the
(reducible) base B.
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ḡ is. A parallel transport operator g : H2(X ,Z)→H2(Y,Z) is orientation preserving.
When X and Y are K3 surfaces, every orientation preserving isometry is a parallel
transport operator. This is no longer the case for higher dimensional irreducible
holomorphic symplectic varieties [Ma5, Nam2]. A necessary and sufficient criterion
for an isometry to be a parallel transport operator is provided in the K3[n]-type case,
for all n≥ 1 (Theorem 9.8).

A marked pair (X ,η) consists of an irreducible holomorphic symplectic man-
ifold X and an isometry η : H2(X ,Z) → Λ onto a fixed lattice Λ . Let M0

Λ
be

a connected component of the moduli space of isomorphism classes of marked
pairs (see section 2). There exists a surjective period map P0 : M0

Λ
→ ΩΛ onto a

period domain ([Hu1], Theorem 8.1). Each point p ∈ ΩΛ determines a weight 2
Hodge structure on Λ ⊗Z C, such that the marking η is an isomorphism of Hodge
structures. The positive cone CX of X is the connected component of the cone
{α ∈ H1,1(X ,R) : (α,α) > 0}, containing the Kähler cone KX . Following is a
concise version of the Global Torelli Theorem ([Ver2], or Theorem 2.2 below).

Theorem 1.2 If P0(X ,η) = P0(X̃ , η̃), then X and X̃ are bimeromorphic. A pair
(X ,η) is the unique point in a fiber of P0, if and only if KX = CX . This is the
case, for example, if the sublattice H1,1(X ,Z) is trivial, or of rank 1, generated by
an element λ , with (λ ,λ )≥ 0.

The following theorem combines the Global Torelli Theorem with results on the
Kähler cone of irreducible holomorphic symplectic manifolds [Hu2, Bou1].

Theorem 1.3 (A Hodge theoretic Torelli theorem) Let X and Y be irreducible holo-
morphic symplectic manifolds, which are deformation equivalent.

(1) X and Y are bimeromorphic, if and only if there exists a parallel transport
operator f : H2(X ,Z)→ H2(Y,Z), which is an isomorphism of integral Hodge
structures.

(2) Let f : H2(X ,Z)→ H2(Y,Z) be a parallel transport operator, which is an iso-
morphism of integral Hodge structures. There exists an isomorphism f̃ : X→Y ,
such that f = f̃∗, if and only if f maps some Kähler class on X to a Kähler class
on Y .

The theorem is proven in section 3.2. It generalizes the Strong Torelli Theorem
of Burns and Rapoport [BR] or ([LP], Theorem 9.1).

Given a bimeromorphic map f : X → Y , of irreducible holomorphic symplectic
manifolds, denote by f∗ : H2(X ,Z)→ H2(Y,Z) the homomorphism induced by the
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closure in X×Y of the graph of f . The homomorphism f∗ is known to be an isometry
([O’G1], Proposition 1.6.2). Set f ∗ := ( f−1)∗.

The birational Kähler cone BKX of X is the union of the cones f ∗KY , as f
ranges through all bimeromorphic maps from X to irreducible holomorphic sym-
plectic manifolds Y . Let Mon2

Hdg(X) be the subgroup of Mon2(X) preserving the
Hodge structure. Results of Boucksom and Huybrechts, on the Kähler and bira-
tional Kähler cones, are surveyed in section 5. We use them to define a chamber
decomposition of the positive cone CX , via Mon2

Hdg(X)-translates of cones of the
form f ∗KY (Lemma 5.11). These chambers are said to be of Kähler type.

Let M0
Λ

be a connected component of the moduli space of marked pairs. A
detailed form of the Torelli theorem provides a description of M0

Λ
as a moduli space

of Hodge theoretic data as follows. A point p ∈ ΩΛ determines a Hodge structure
on Λ , and so a real subspace Λ 1,1(p,R) in Λ ⊗Z R, such that a marking η restricts
to an isometry H1,1(X ,R)→Λ 1,1(p,R), for every pair (X ,η) in the fiber P−1

0 (p).

Theorem 1.4 (Theorem 5.16) The map (X ,η) 7→ η(KX ) establishes a one-to-one
correspondence between points (X ,η) in the fiber P−1

0 (p) and chambers in the
Kähler type chamber decomposition of the positive cone in Λ 1,1(p,R).

1.2 The fundamental exceptional chamber

The next few results are easier to understand when compared to the following basic
fact about K3 surfaces. Let S be a K3 surface and κ0 a Kähler class on S. The
effective cone in H1,1(S,Z) is spanned by classes α , such that (α,α) ≥ −2, and
(α,κ0) > 0 ([BHPV], Ch. VIII Proposition 3.6). Set4

Spe := {e ∈H1,1(S,Z) : (κ0,e) > 0, and (e,e) =−2},
Pex := {[C] ∈H1,1(S,Z) : C ⊂ S is a smooth connected rational curve}.

Clearly, Pex is contained in Spe. Then the Kähler cone admits the following two
characterizations ([BHPV], Ch. VIII Proposition 3.7 and Corollary 3.8).

KS = {κ ∈ CS : (κ,e) > 0, for all e ∈ Spe}. (1.1)

KS = {κ ∈ CS : (κ,e) > 0, for all e ∈ Pex}. (1.2)

4 Pex stands for prime exceptional classes, and Spe stands for stably prime exceptional classes, as
will be explained below.
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Equality (1.1) is the simpler one, depending only on the Hodge structure and the
intersection pairing. Equality (1.2) expresses the fact that a class e ∈ Spe represents
a smooth rational curve, if and only if K S ∩ e⊥ is a co-dimension one face of the
closure of KS in CS.

Let X be a projective irreducible holomorphic symplectic manifold. A prime
exceptional divisor on X is a reduced and irreducible effective divisor E of negative
Beauville-Bogomolov degree. The fundamental exceptional chamber of the positive
cone is the set

FEX := {α ∈CX : (α, [E]) > 0, for every prime exceptional divisor E}. (1.3)

When X is a K3 surface, a prime exceptional divisor is simply a smooth rational
curve. Furthermore, the cones KX , BKX , and FEX are equal. If dim(X) > 2, the
cone BKX need not be convex. The following is thus a generalization of equality
(1.2) in the K3 surface case.

Theorem 1.5 (Theorem 6.17 and Proposition 5.6) FEX is an open cone, which is
the interior of a closed generalized convex polyhedron in CX (Definition 6.13). The
birational Kähler cone BKX is a dense open subset of FEX .

Let E be a prime exceptional divisor on a projective irreducible holomorphic
symplectic manifold X . In section 6 we recall that the reflection

RE : H2(X ,Z) −→ H2(X ,Z),

given by RE(α) := α− 2(α ,[E])
([E],[E]) [E], is an element of Mon2

Hdg(X) ([Ma7], Corollary
3.6, or Proposition 6.2 below). Let WExc(X) ⊂Mon2

Hdg(X) be the subgroup gener-
ated5 by the reflections RE , of all prime exceptional divisors in X . In section 6.4 we
prove the following analogue of a well known result for K3 surfaces ([BHPV], Ch.
VIII, Proposition 3.9).

Theorem 1.6 WExc(X) is a normal subgroup of Mon2
Hdg(X). Let X1

and X2 be projective irreducible holomorphic symplectic manifolds and
f : H2(X1,Z) → H2(X2,Z) a parallel-transport operator, which preserves the
weight 2 Hodge structure. Then there exists a unique element w ∈WExc(X2) and a
birational map g : X1→ X2, such that f = w◦g∗. The map g is determined uniquely,
up to composition with an automorphism of X1, which acts trivially on H2(X1,Z).

5 Definition 6.8 of WExc is different. The two definitions will be shown to be equivalent in Theorem
6.18.
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Let us emphasis the special case X1 = X2 = X of the theorem. Denote by
Mon2

Bir(X) ⊂ O[H2(X ,Z)] the subgroup of isometries induced by birational maps
from X to itself. Then Mon2

Hdg(X) is the semi-direct product of WExc(X) and
Mon2

Bir(X), by Theorem 6.18 part 5. Theorem 1.6 is proven in section 6.4. The proof
relies on a second Mon2

Hdg(X)-equivariant chamber decomposition of the positive
cone CX . We call these the exceptional chambers (Definition 5.10). WExc(X) acts
simply-transitively on the set of exceptional chambers, one of which is the funda-
mental exceptional chamber. The walls of a general exceptional chamber are hyper-
planes orthogonal to classes of stably prime-exceptional line bundles. The latter are
higher-dimensional analogues of effective line bundles of degree −2 on a K3 sur-
face. Roughly, a line bundle L on X is stably prime-exceptional, if a generic small
deformation (X ′,L′) of (X ,L) satisfies L′ ∼= OX ′(E ′), for a prime exceptional divisor
E ′ on X ′ (Definition 6.4).

Let X be a projective irreducible holomorphic symplectic manifold. Denote by
Bir(X) the group of birational self-maps of X . The intersection of FEX with the sub-
space H1,1(X ,Z)⊗Z R is equal to the interior of the movable cone of X (Definition
6.21 and Lemma 6.22). We prove a weak version of Morrison’s movable cone con-
jecture, about the existence of a rational convex polyhedron, which is a fundamental
domain for the action of Bir(X) on the movable cone (Theorem 6.25). We use it to
prove the following result. When X is a K3 surface, Bir(X) = Aut(X). Hence the
following is an analogue of a result of Looijenga and Sterk ([St], Proposition 2.6).

Theorem 1.7 For every integer d 6= 0, the number of Bir(X)-orbits of complete lin-
ear systems, which contain an irreducible divisor of Beauville-Bogomolov degree
d, is finite. For every positive integer k there is only a finite number of Bir(X)-
orbits of complete linear systems, which contain some irreducible divisor D of
Beauville-Bogomolov degree zero, such that the class [D] is k times a primitive class
in H2(X ,Z).

Theorem 1.7 is proven in section 6.5. The proof follows an argument of Looi-
jenga and Sterk, adapted via an analogy between results on the ample cone of a
projective K3 surface and results on the movable cone of a projective irreducible
holomorphic symplectic manifold.

The following is an analogue of the characterization of the Kähler cone of a K3
surface given in equation (1.1).

Proposition 1.8 (Proposition 6.10) The fundamental exceptional chamber FEX ,
defined in equation (1.3), is equal to the set
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{α ∈ CX : (α , `) > 0, for every stably prime exceptional class `}.

The significance of Proposition 1.8 stems from the fact that one has an explicit
characterization of the set of stably prime-exceptional classes, in terms of the weight
2 Hodge structure and a certain discrete monodromy invariant, at least in the K3[n]-
type case (Theorem 9.17). Theorem 1.5 and Proposition 1.8 thus yield an explicit
description of the closure of the birational Kähler cone and of the movable cone.

1.3 Torelli and monodromy in the polarized case

In sections 7 and 8 we consider Torelli-type results for polarized irreducible holo-
morphic symplectic manifolds. Another corollary of the Global Torelli Theorem is
the following.

Proposition 1.9 Mon2(X ,H) is equal to the stabilizer of c1(H) in Mon2(X).

The above proposition is proven in section 7 (see Corollary 7.4).

Coarse moduli spaces of polarized projective irreducible holomorphic symplec-
tic manifolds were constructed by Viehweg as quasi-projective varieties [Vieh].
Given a polarized pair (X ,H) representing a point in such a coarse moduli space
V , the monodromy group Γ := Mon2(X ,H) is an arithmetic group, which acts on
a period domain D associated to V . The quotient D/Γ is a quasi-projective variety
[BB]. The following Theorem is a slight sharpening of Corollary 1.24 in [Ver2].

Theorem 1.10 (Theorem 8.4) The period map V →D/Γ embeds each irreducible
component V , of the coarse moduli space of polarized irreducible holomorphic
symplectic manifolds, as a Zariski open subset of the quasi-projective monodromy-
quotient of the corresponding period domain.

The above theorem provides a bridge between the powerful theory of modular
forms, used to study the quotient spaces D/Γ , and the theory of projective holomor-
phic symplectic varieties. The interested reader is referred to the excellent recent
survey [GHS2] for further reading on this topic.
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1.4 The K3[n]-type

In section 9 we specialize to the case of varieties X of K3[n]-type and review the re-
sults of [Ma2, Ma5, Ma7]. We introduce a Hodge theoretic Torelli data, consisting
of the weight 2 Hodge structure of X and a certain discrete monodromy invariant
(Corollary 9.5). We provide explicit computations, for many of the concepts intro-
duced above, in terms of this Torelli data. We enumerate the connected components
of the moduli space of marked pairs of K3[n]-deformation type (Corollary 9.10).
We determine the monodromy group Mon2(X), as well as a necessary and sufficient
condition for an isometry g : H2(X ,Z)→H2(Y,Z) to be a parallel transport operator
(Theorems 9.1 and 9.8). We provide a numerical characterization of the set of stably
prime-exceptional line bundles on X (Theorem 9.17). The latter, combined with the
general Theorem 1.5 and Proposition 1.8, determines the closure of the birational
Kähler cone of X in terms of its Torelli data.

In section 10 we list a few open problems.
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write this survey, and for many insightful discussions and suggestions. This note
was greatly influenced by numerous conversations with Daniel Huybrechts and by
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bitsky regarding his fundamental paper [Ver2]. I am most grateful for his patience
and for his numerous detailed answers. Artie Prendergast-Smith kindly sent helpful
comments to an earlier version of section 6.5, for which I am grateful. I would like
to thank the two referees for their careful reading and their insightful comments.

2 The Global Torelli Theorem

Fix a positive integer b2 > 3 and an even lattice Λ of signature (3,b2−3). Let X be
an irreducible holomorphic symplectic manifold, such that H2(X ,Z), endowed with
its Beauville-Bogomolov pairing, is isometric to Λ . A marking for X is a choice of
an isometry η : H2(X ,Z)→Λ . Two marked pairs (X1,η1), (X2,η2) are isomorphic,
if there exists an isomorphism f : X1 → X2, such that η1 ◦ f ∗ = η2. There exists a
coarse moduli space MΛ parametrizing isomorphism classes of marked pairs [Hu1].
MΛ is a smooth complex manifold of dimension b2−2, but it is non-Hausdorff.
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The period, of the marked pair (X ,η), is the line η [H2,0(X)] considered as a
point in the projective space P[Λ ⊗Z C]. The period lies in the period domain

ΩΛ := {p : (p, p) = 0 and (p, p̄) > 0}. (2.1)

ΩΛ is an open subset, in the classical topology, of the quadric in P[Λ ⊗C] of
isotropic lines [Be1]. The period map

P : MΛ −→ ΩΛ , (2.2)

(X ,η) 7→ η [H2,0(X)]

is a local isomorphism, by the Local Torelli Theorem [Be1].

Given a point p ∈ΩΛ , set Λ
1,1(p) := {λ ∈ Λ : (λ , p) = 0}. Note that Λ

1,1(p)
is a sublattice of Λ and Λ 1,1(p) = (0), if p does not belong to the countable union
of hyperplane sections ∪λ∈Λ\{0}[λ⊥ ∩ΩΛ ]. Given a marked pair (X ,η), we get the
isomorphism H1,1(X ,Z)∼= Λ 1,1(P(X ,η)), via the restriction of η .

Definition 2.1 Let X be an irreducible holomorphic symplectic manifold. The cone
{α ∈ H1,1(X ,R) : (α,α) > 0} has two connected components. The positive cone
CX is the connected component containing the Kähler cone KX .

Two points x and y of a topological space M are inseparable, if every pair of
open subsets U , V , with x ∈U and y ∈ V , have a non-empty intersection U ∩V . A
point x∈M is a Hausdorff point, if there does not exist any point y∈ [M \{x}], such
that x and y are inseparable.

Theorem 2.2 (The Global Torelli Theorem) Fix a connected component M0
Λ

of
MΛ .

(1) ([Hu1], Theorem 8.1) The period map P restricts to a surjective holomorphic
map P0 : M0

Λ
→ΩΛ .

(2) ([Ver2], Theorem 1.16) The fiber P−1
0 (p) consists of pairwise inseparable

points, for all p ∈ΩΛ .

(3) ([Hu1], Theorem 4.3) Let (X1,η1) and (X2,η2) be two inseparable points of
MΛ . Then X1 and X2 are bimeromorphic.

(4) The marked pair (X ,η) is a Hausdorff point of MΛ , if and only if CX = KX .

(5) The fiber P−1
0 (p), p ∈ ΩΛ , consists of a single Hausdorff point, if Λ 1,1(p) is

trivial, or if Λ1,1(p) is of rank 1, generated by a class α satisfying (α,α)≥ 0.
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Proof Part (4) of the theorem is due to Huybrechts and Verbitsky. See Proposition
5.14 for a more general description of the fiber P−1

0 [P0(X ,η)] in terms of the Kähler-
type chamber decomposition of the positive cone CX , and for further details about
part (4).

Part (5): CX = KX , if H1,1(X ,Z) is trivial, or if H1,1(X ,Z) is of rank 1, generated
by a class α of non-negative Beauville-Bogomolov degree, by ([Hu1], Corollaries
5.7 and 7.2). The statement of part (5) now follows from part (4). 2

Remark 2.3 Verbitsky states part (2) of Theorem 2.2 for a connected component
of the Teichmüller space, but Theorem 1.16 in [Ver2] is a consequence of the two
more general Theorems 4.22 and 6.14 in [Ver2], and both the Teichmüller space
and the moduli space of marked pairs MΛ satisfy the hypothesis of these theorems.
A complete proof of part (2) of Theorem 2.2 can be found in Huybrechts excellent
Bourbaki seminar paper [Hu6].

3 The Hodge theoretic Torelli Theorem

In section 3.1 we review two theorems of Huybrechts, which relate bimeromorphic
maps and parallel-transport operators. The Hodge theoretic Torelli Theorem 1.3 is
proven in section 3.2.

3.1 Parallel transport operators between inseparable marked pairs

Let X1 and X2 be two irreducible holomorphic symplectic manifolds of dimension
2n. Denote by πi the projection from X1×X2 onto Xi, i = 1,2. Given a correspon-
dence Z in X1×X2, of pure complex co-dimension 2n +d, denote by [Z] the coho-
mology class Poincaré dual to Z and by [Z]∗ : H∗(X1)→ H∗+2d(X2) the homomor-
phism defined by [Z]∗α := π2∗ (π

∗
1 (α)∪ [Z]). The following are two fundamental

results of Huybrechts.

Assume that X1 and X2 are bimeromorphic. Denote the graph of a bimeromor-
phic map by Z ⊂ X1×X2.

Theorem 3.1 ([Hu2], Corollary 2.7) There exists an effective cycle Γ := Z + ∑Yj

in X1×X2, of pure dimension 2n, with the following properties.
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(1) The correspondence [Γ ]∗ : H∗(X1,Z)→H∗(X2,Z) is a parallel-transport oper-
ator.

(2) The image πi(Yj) has codimension ≥ 2 in Xi, for all j. In particular, the corre-
spondences [Γ ]∗ and [Z]∗ coincide on H2(X1,Z).

Let (X1,η1), (X2,η2) be two marked pairs corresponding to inseparable points
of MΛ .

Theorem 3.2 ([Hu1], Theorem 4.3 and its proof) There exists an effective cycle
Γ := Z +∑ j Yj in X1×X2, of pure dimension 2n, satisfying the following conditions.

(1) Z is the graph of a bimeromorphic map from X1 to X2.

(2) The correspondence [Γ ]∗ : H∗(X1,Z)→H∗(X2,Z) is a parallel-transport oper-
ator. Furthermore, the composition

η
−1
2 ◦η1 : H2(X1,Z)→ H2(X2,Z)

is equal to the restriction of [Γ ]∗.

(3) ([Hu2], Theorem 2.5 and its proof) The codimensions of π1(Yj) in X1 and of
π2(Yj) in X2 are equal and positive.

(4) If πi(Yj) has codimension 1, then it is supported by a uniruled divisor.

The statement that the isomorphisms [Γ ]∗ in Theorems 3.1 and 3.2 are parallel
transport operators is implicit in Huybrechts proofs, so we clarify that point next. In
each of the proofs Huybrechts shows that there exist two smooth and proper families
X → B and X ′ → B, over the same one-dimensional disk B, a point b0 in B, iso-
morphisms X1 ∼= Xb0 and X2 ∼= X ′

b0
, and an isomorphism f̃ : X|B\{b0}

→X ′
|B\{b0}

,

compatible with projections to B. The cycle Γ ⊂ X1 ×X2 is the fiber over b0 of
the closure in X ×B X ′ of the graph of f̃ . Choose a point b1 in B \ {b0} and let
γ be a continuous path in B from b0 to b1. Let g1 : H∗(Xb0 ,Z)→ H∗(Xb1 ,Z) and
g2 : H∗(X ′

b0
,Z)→H∗(X ′

b1
,Z) be the two parallel transport operators along γ . Then

the isomorphism g−1
2 ◦g1 : H∗(Xb0 ,Z)→H∗(X ′

b0
,Z) is induced by the correspon-

dence [Γ ]∗. Furthermore, g−1
2 ◦ g1 is a parallel transport operator, being a composi-

tion of such operators (parallet transport operators form a groupoid, by an argument
similar to that used in footnote 3).

The reader may wonder why the image in Xi of a component Yj of Γ has codi-
mension≥ 2 in Theorem 3.1, while the codimension is only≥ 1 in Theorem 3.2. The
reason is that in the proof of Theorem 3.2 one does not have control on the choice of
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the above mentioned families X and X ′, beyond the condition that η2 ◦ [Γ ]∗ = η1.
In the proof of Theorem 3.1, given a bimeromorphic map f : X1→ X2, Huybrechts
constructs the above two families X and X ′ in such a way that the following
two properties hold. (1) The bimeromorphic map f̃ from X to X ′ restricts to the
bimeromorphic map f between the fibers X1 and X2 over b0. (2) [Γ ]∗ restricts to the
isometry f∗ : H2(X1,Z)→ H2(X2,Z) (see Theorem 2.5 in [Hu2] and its proof).

3.2 Proof of the Hodge theoretic Torelli Theorem 1.3

Proof of part 1: If X and Y are bimeromorphic, then there exists a parallel-
transport operator f : H2(X ,Z)→ H2(Y,Z), which is an isomorphism of Hodge
structures, by Theorem 3.1. Conversely, assume that such f is given. Let
ηY : H2(Y,Z)→ Λ be a marking. Set ηX := ηY ◦ f . The assumption that f is a
parallel transport operator implies that (X ,ηX) and (Y,ηY ) belong to the same con-
nected component M0

Λ
of MΛ . Both have the same period

P(X ,ηX ) = ηX (H2,0(X)) = ηY ( f (H2,0(X))) = ηY (H2,0(Y )) = P(Y,ηY ),

where the third equality follows from the assumption that f is an isomorphism of
Hodge structures. Hence, (X ,ηX ) and (Y,ηY ) are inseparable points of M0

Λ
, by

Theorem 2.2 part 2. X and Y are thus bimeromorphic, by Theorem 2.2 part 3.

Proof of part 2: Let ηX and ηY be the markings constructed in the proof of part
1. Note that f = η

−1
Y ◦ηX . There exists an effective correspondence Γ = Z +∑

N
i=1 Wi

of pure dimension 2n in X ×Y , such that Z is the graph of a bimeromorphic map,
Wi is irreducible, but not necessarily reduced, the images of the projections Wi→ X ,
Wi→ Y have positive co-dimensions, and [Γ ]∗ : H∗(X ,Z)→ H∗(Y,Z) is a parallel
transport operator, which is equal to f in degree 2, by Theorem 3.2 and the assump-
tion that the two points (X ,ηX ) and (Y,ηY ) are inseparable.

Assume that α ∈KX is a Kähler class, such that f (α) is a Kähler class. The
relationship between f and Γ yields:

f (α) = [Γ ]∗(α) = [Z]∗(α)+
N

∑
i=1

[Wi]∗(α).
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Each class [Wi]∗(α) is either zero or a multiple ci[Di] of the class of a prime divisor
Di, where ci is a positive6 real number.

We prove next that [Wi]∗(α) = 0, for 1 ≤ i ≤ N. Write
f (α) = [Z]∗(α) + ∑

N
i=1 ci[Di], where ci are all positive real numbers, and Di

is either a prime divisor, or zero. Set D := ∑
N
i=1 ciDi. We need to show that all Di

are equal to zero. The Beauville-Bogomolov degree of α satisfies

(α,α) = ( f (α), f (α)) = ([Z]∗α , [Z]∗α)+2
N

∑
i=1

ci([Z]∗α, [Di])+([D], [D]).

The homomorphism [Z]∗, induced by the graph of the bimeromorphic map, is an
isometry, by [O’G1], Proposition 1.6.2 (also by the stronger Theorem 3.1). Further-
more, if Di is non-zero, then Di is the strict transform of a prime divisor D′i on X ,
such that [Z]∗([D′i]) = [Di]. Set D′ := ∑

N
i=1 ciD′i. We get the equalities

([D], [D]) = −2(α, [D′]), (3.1)

[D] = [Z]∗[D′], (3.2)

and

([D], f (α)) = ([D], [Z]∗α)+([D], [D])
(3.2)
= ([D′],α)+([D], [D])

(3.1)
= −(α, [D′]).

Now (α, [D′i]) is zero, if Di = 0, and positive, if Di 6= 0, since α is a Kähler class.
Hence, the right hand side above is ≤ 0. The left hand side is ≥ 0, due to the as-
sumption that the class f (α) is a Kähler class. Hence, D′i = 0, for all i. We conclude
that [Wi]∗(α) = 0, for 1≤ i≤ N, as claimed.

The equality [Z]∗(α) = f (α) was proven above. Consequently, Z is the graph of
a bimeromorphic map, which maps a Kähler class to a Kähler class. Hence, Z is the
graph of an isomorphism, by a theorem of Fujiki [F]. 2

4 Orientation

Let ΩΛ be the period domain (2.1). Following are two examples, in which spaces
arise with two connected components.

(1) Fix a primitive class h ∈Λ , with (h,h) > 0. The hyperplane section

6 The coefficient ci is positive since Γ is effective and α is a Kähler class.
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Ωh⊥ := ΩΛ ∩h⊥

has two connected components.

(2) Let p ∈ΩΛ . Set ΛR := Λ ⊗Z R and Λ 1,1(p,R) := {λ ∈ΛR : (λ , p) = 0}. Then
the cone C ′p := {λ ∈Λ1,1(p,R) : (λ ,λ ) > 0} has two connected components.

We recall in this section that a connected component M0
Λ

, of the moduli space of
marked pairs, determines a choice of a component of Ωh⊥ and of C ′p, for all h ∈ Λ ,
with (h,h) > 0, and for all p ∈ ΩΛ . Let us first relate the choice of one of the two
components in the two examples above. The relation can be explained in terms of
the following larger cone. Set

C̃Λ := {λ ∈ΛR : (λ ,λ ) > 0}.

A subspace W ⊂ ΛR is said to be positive, if the pairing of ΛR restricts to W as a
positive definite pairing.

Lemma 4.1

(1) H2(C̃Λ ,Z) is a free abelian group of rank 1.

(2) Let e ∈ Λ be an element with (e,e) 6= 0 and Re : ΛR→ ΛR the reflection given
by Re(λ ) = λ − 2(e,λ )

(e,e) e. Then Re acts on H2(C̃Λ ,Z) by −1, if (e,e) > 0, and
trivially if (e,e) < 0.

(3) Let W be a positive three dimensional subspace of ΛR. Then W \{0} is a defor-
mation retract of C̃Λ .

Proof (3) Set I := [0,1]. We need to construct a continuous map F : C̃Λ × I→ C̃Λ

satisfying

F(λ ,0) = λ , for all λ ∈ C̃Λ ,

F(λ ,1) ∈ W \{0}, for all λ ∈ C̃Λ ,

F(w,t) = w, for all w ∈W \{0}.

Choose a basis {e1,e2,e3, . . . ,eb2} of ΛR, so that {e1,e2,e3} is a basis of W , and
for λ = ∑

b2
i=1 xiei, we have (λ ,λ ) = x2

1 + x2
2 + x2

3−∑
b2
i=4 x2

i . Then C̃Λ consists of λ

satisfying x2
1 + x2

2 + x2
3 > ∑

b2
i=4 x2

i . Set F
(

∑
b2
i=1 xiei,t

)
= ∑

3
i=1 xiei +(1− t)∑

b2
i=4 xiei.

Then F has the above properties of a deformation retract of C̃Λ onto W \{0}.

Part (1) follows immediately from part (3).
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(2) If (e,e) > 0, we can choose a positive 3 dimensional subspace W containing
e, and if (e,e) < 0 we can choose W to be orthogonal to e. Then W \ {0} is Re

invariant and Re acts as stated on H2(W \{0},Z), hence also on H2(C̃Λ ,Z), by part
(3). 2

The character H2(C̃Λ ,Z) of O(Λ ) is known as the spinor norm.

A point p ∈ Ωh⊥ determines the three dimensional positive definite subspace
Wp := Re(p)⊕ Im(p)⊕ spanR{h}, which comes with an orientation associated to
the basis {Re(σ), Im(σ),h}, for some choice of a non-zero element σ ∈ p ⊂ ΛC.
The orientation of the basis is independent of the choice of σ . Consequently, an
element p∈Ωh⊥ determines a generator of H2(C̃Λ ,Z). The two components of Ωh⊥

are distinguished by the two generators of the rank 1 free abelian group H2(C̃Λ ,Z).
We refer to each of the two generators as an orientation class of the cone C̃Λ .

A point λ ∈ C ′p determines an orientation of C̃Λ as follows. Choose a
class σ ∈ p. Again we get the three dimensional positive definite subspace
Wλ := Re(p)⊕ Im(p)⊕ spanR{λ}, which comes with an orientation associated to
the basis {Re(σ), Im(σ),λ}. Consequently, λ determines an orientation of C̃Λ . The
orientation remains the same as λ varies in a connected component of C ′p. Hence, a
connected component of C ′p determines an orientation of C̃Λ .

Let X be an irreducible holomorphic symplectic manifold. Recall that the pos-
itive cone CX ⊂ H1,1(X ,R) is the distinguished connected component of the cone
C ′X := {λ ∈ H1,1(X ,R) : (λ ,λ ) > 0}, which contains the Kähler cone (Definition
2.1). Denote by C̃X the positive cone in H2(X ,R). We conclude that C̃X comes with
a distinguished orientation.

Let M0
Λ

be a connected component of the moduli space of marked pairs and
P0 : M0

Λ
→ ΩΛ the period map. A marked pair (X ,η) in M0

Λ
determines an orien-

tation of C̃Λ , via the isomorphism C̃X ∼= C̃Λ induced by the marking η . This orien-
tation of C̃Λ is constant throughout the connected component M0

Λ
. In particular, for

each class h ∈Λ , with (h,h) > 0, we get a choice of a connected component

Ω
+
h⊥ (4.1)

of Ωh⊥ , compatible with the orientation of C̃Λ induced by M0
Λ

.

Let Orient(Λ ) be the set of two orientations of the positive cone C̃Λ . Let

orient : MΛ → Orient(Λ ) (4.2)

be the natural map constructed above.
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5 A modular description of each fiber of the period map

We provide a modular description of the fiber of the period map M0
Λ
→ ΩΛ

from a connected component M0
Λ

of the moduli space of marked pairs (Theorem
5.16). Throughout this section X is an irreducible holomorphic symplectic mani-
fold, which need not be projective.

5.1 Exceptional divisors

A reduced and irreducible effective divisor D⊂ X will be called a prime divisor.

Definition 5.1

(1) A set {E1, . . . ,Er} of prime divisors is exceptional, if and only if its Gram matrix
(([Ei], [E j]))i j is negative definite.

(2) An effective divisor E is exceptional, if the support of E is an exceptional set of
prime divisors.

Definition 5.2 The fundamental exceptional chamber FEX is the cone of classes
α , such that α ∈ CX , and (α, [E]) > 0, for every prime exceptional divisor E .

5.1.1 The fundamental exceptional chamber versus the birational Kähler cone

Huybrechts and Boucksom stated an important result (Theorem 5.4 below) in terms
of another chamber, which we introduce next.

Definition 5.3 ([Bou2], Section 4.2.2)

(1) A rational effective 1-cycle C is a linear combination, with positive integral co-
efficients, of irreducible rational curves on X .

(2) A uniruled divisor D is an effective divisor each of which irreducible compo-
nents Di is covered by rational curves.

(3) The fundamental uniruled chamber FUX is the subset of CX consisting of
classes α ∈ CX , such that (α,D) > 0, for every non-zero uniruled divisor D.
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(4) The birational Kähler cone BKX of X is the union of f ∗KY , as f ranges over
all bimeromorphic maps f : X → Y to an irreducible holomorphic symplectic
manifold Y .

Note that the birational Kähler cone is not convex in general.

Theorem 5.4 ([Hu2] and [Bou2], Theorem 4.3)

(1) The Kähler cone KX is equal to the subset of CX consisting of classes α ∈ CX ,
such that

∫
C α > 0, for every non-zero rational effective 1-cycle C.

(2) Let α ∈ CX be a class, such that
∫

C α 6= 0, for every rational 1-cycle. Then α

belongs to FUX , if and only if α belongs to the birational Kähler cone BKX .

(3) ([Bou2], Theorem 4.3 part ii, and [Hu1], Corollary 5.2) Let α ∈ CX be a class,
which does not belong to FUX . Assume that

∫
C α 6= 0, for every rational 1-

cycle. Then there exists an irreducible holomorphic symplectic manifold Y , and
a bimeromorphic map f : X→Y , such that f∗(α) = β +D′, where β is a Kähler
class on Y and D′ is a non-zero linear combination of finitely many uniruled
reduced and irreducible divisors with positive real coefficients.

Remark 5.5 Let X be an irreducible holomorphic symplectic manifold. Part (2) of
the theorem asserts that if a class α satisfies the assumptions stated, then α is con-
tained in FUX , if and only if it is contained in BKX . The ‘only if’ direction of part
(2) is stated in ([Bou2], Theorem 4.3). The ‘if’ part is the obvious direction. Indeed,
let f : X → Y be a birational map, such that f∗(α) is a Kähler class on Y . Let D be
an effective uniruled reduced and irreducible divisor in X , and D′ its strict transform
in Y . We have ([D],α) = ([D′], f∗(α)) > 0. Hence, α is in the fundamental uniruled
chamber.

Let BK X be the closure of the birational Kähler cone BKX in CX .

Proposition 5.6 The following inclusions and equality hold:

BKX ⊂FUX = FEX ⊂BK X .

Proof An exceptional divisor is uniruled, by ([Bou2], Proposition 4.7). The inclu-
sion FUX ⊂FEX follows. We prove next the inclusion FEX ⊂FUX . Let α be a
class in FEX and D a prime uniruled divisor. If [D] belongs to the closure C X of the
positive cone, then (α, [D]) > 0, since α belongs to CX . Otherwise, [D] is a prime
exceptional divisor, and so (α, [D]) > 0. The inclusion FEX ⊂FUX follows.
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The inclusion BKX ⊂FUX follows from the ‘if’ direction of Theorem 5.4 part
2, and the inclusion FEX ⊂BK X follows from the ‘only if’ direction. 2

The notation FEX will replace FUX from now on, in view of Proposition 5.6.
A class α ∈ CX is said to be very general, if α⊥ ∩H1,1(X ,Z) = 0.

Corollary 5.7 Let X1 and X2 be irreducible holomorphic symplectic manifolds,
g : H2(X1,Z)→ H2(X2,Z) a parallel transport operator, which is an isomorphism
of Hodge structures, and α1 ∈FEX1 a very general class. Then g(α1) belongs to
FEX2 , if and only if there exists a bimeromorphic map f : X1→ X2, such that g = f∗.

Proof The ‘if’ part is clear, since f∗ induces a bijection between the sets of ex-
ceptional divisors on Xi, i = 1,2. Set α2 := g(α1). There exist irreducible holo-
morphic symplectic manifolds Yi and bimeromorphic maps fi : Xi → Yi, such that
fi∗(αi) is a Kähler class on Yi, by part (2) of Theorem 5.4. The homomorphisms
fi∗ : H2(Xi,Z)→ H2(Yi,Z) are parallel transport operators, by Theorem 3.1. Thus
( f−1

2 )∗ ◦g◦ f ∗1 : H2(Y1,Z)→H2(Y2,Z) is a parallel transport operator and a Hodge-
isometry, mapping the Kähler class f1∗(α1) to the the Kähler class f2∗(α2). Hence,
there exists an isomorphism h : Y1→Y2, such that h∗ = ( f−1

2 )∗ ◦g◦ f ∗1 , by Theorem
1.3. Thus, g = [( f2)−1h f1]∗. 2

5.1.2 The divisorial Zariski decomposition

The following fundamental result of Bouksom will be needed in section 6.2. The ef-
fective cone of X is the cone in H1,1(X ,Z)⊗ZR generated by the classes of effective
divisors. The algebraic pseudo-effective cone PeffX is the closure of the effective
cone. Boucksom defines a larger transcendental analogue, a cone in H1,1(X ,R),
which he calls the pseudo-effective cone ([Bou2], section 2.3). We will not need
the precise definition, but only the fact that the pseudo-effective cone contains CX

([Bou2], Theorem 4.3 part (i)). The sum CX +PeffX is thus a sub-cone of Bouck-
som’s pseudo-effective cone in H1,1(X ,R). Denote by FE X the closure of the fun-
damental exceptional chamber in H1,1(X ,R).

Theorem 5.8

(1) ([Bou2], Theorem 4.3 part (i), Proposition 4.4, and Theorem 4.8). Let X be
an irreducible holomorphic symplectic manifold and α a class in CX +PeffX .
Then there exists a unique decomposition
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α = P(α)+N(α),

where (P(α),N(α)) = 0, P(α) belongs to FE X , and N(α) is an exceptional
R-divisor.

(2) ([Bou2], Corollary 4.11). Let L be a line bundle with c1(L) ∈ CX +PeffX . Set
α := c1(L). Then the classes P(α) and N(α) correspond to Q-divisors classes,
which we denote by P(α) and N(α) as well. Furthermore, the homomorphism

H0 (X ,OX (kP(α)))→ H0(X ,Lk)

is surjective, for every non-negative integer k, such that kP(α) is an integral
class.

Remark 5.9 The class P(α) is stated as a class in the modified nef cone in ([Bou2],
Theorem 4.8), but the modified nef cone is equal to the closure of the birational
Kähler cone, by ([Bou2], Proposition 4.4), and hence also to FE X .

Part (2) of the above Theorem implies that the exceptional divisor N(kc1(L))
is the fixed part of the linear system |Lk|. In particular, if c1(L) = N(c1(L)), then
the linear system |Lk| is either empty, or consists of a single exceptional divisor.
Exceptional divisors are thus rigid.

5.2 A Kähler-type chamber decomposition of the positive cone

Let X be an irreducible holomorphic symplectic manifold. Denote the subgroup of
Mon2(X) preserving the weight 2 Hodge structure by Mon2

Hdg(X). Note that the

positive cone CX is invariant under Mon2
Hdg(X), since the orientation class of C̃X is

invariant under the whole monodromy group Mon2(X) (see section 4).

Definition 5.10

(1) An exceptional chamber of the positive cone CX is a subset of the form g[FEX ],
g ∈Mon2

Hdg(X).

(2) A Kähler-type chamber of the positive cone CX is a subset of the form
g[ f ∗(KY )], where g ∈ Mon2

Hdg(X), and f : X → Y is a bimeromorphic map to
an irreducible holomorphic symplectic manifold Y .
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Let Mon2
Bir(X)⊂Mon2

Hdg(X) be the subgroup of monodromy operators induced
by bimeromorphic maps from X to itself (see Theorem 3.1).

Lemma 5.11

(1) Every very general class α ∈ CX belongs to some Kähler-type chamber.

(2) Every Kähler-type chamber is contained in some exceptional chamber.

(3) If two Kähler-type chambers intersect, then they are equal.

(4) If two exceptional chambers g1[FEX ] and g2[FEX ] contain a common very
general class α , then they are equal.

(5) Mon2
Hdg(X) acts transitively on the set of exceptional chambers.

(6) The subgroup of Mon2
Hdg(X) stabilizing FEX is equal to Mon2

Bir(X).

Proof Part (1): There exists an irreducible holomorphic symplectic manifold X̃ and
a correspondence Γ := Z +∑iYi in X× X̃ , such that Z is the graph of a bimeromor-
phic map f : X → X̃ , the restriction g : H2(X ,Z)→ H2(X̃ ,Z) of [Γ ]∗ is a parallel
transport operator, and g(α) is a Kähler class of X̃ , by ([Hu1], Corollary 5.2). Set
h := f ∗ ◦ g. Then h belongs to Mon2

Hdg(X), by Theorem 3.1, h(α) = ( f ∗ ◦ g)(α)
belongs to f ∗KX̃ , and f ∗KX̃ is a Kähler-type chamber, by Definition 5.3. Conse-
quently, h−1( f ∗KX̃ ) is a Kähler-type chamber containing α .

Part (2): Let Ch be the Kähler-type chamber g[ f ∗(KY )], where f , g, and Y are as
in Definition 5.10. Then f ∗(FEY ) = FEX , by Corollary 5.7, and so Ch is contained
in the exceptional chamber g[FEX ].

Part (3): Let Yi be irreducible holomorphic symplectic mani-
folds, fi : X → Yi bimeromorphic maps, gi ∈ Mon2

Hdg(X), i = 1,2,
and α a class in g1[ f ∗1 (KY1)] ∩ g2[ f ∗2 (KY2)]. The composition
ϕ := f2∗ ◦ g−1

2 ◦ g1 ◦ f ∗1 : H2(Y1,Z) → H2(Y2,Z) is a parallel-transport operator,
which maps the Kähler class f1∗(g

−1
1 (α)) to the Kähler class f2∗(g

−1
2 (α)).

Hence, ϕ is induced by an isomorphism ϕ̃ : Y1 → Y2, by Theorem 1.3.
We get the equality g−1

1 g2 f ∗2 (KY2) = f ∗1 ϕ̃
∗(KY2) = f ∗1 (KY1). Consequently,

g1[ f ∗1 (KY1)] = g2[ f ∗2 (KY2)].

Part (4): Set g := g−1
2 g1 and β := g−1

2 (α). Then β belongs to the intersection
g[FEX ]∩FEX . So g−1(β ) and β both belong to FEX and g maps the former to
the latter. Hence, g is induced by a birational map from X to itself, by Corollary 5.7.
Thus, g[FEX ] = FEX and so g1[FEX ] = g2[FEX ].

Part (5): The action is transitive, by definition.
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Part (6) is an immediate consequence of Corollary 5.7. 2

Lemma 5.12 Let X1 and X2 be irreducible holomorphic symplectic manifolds and
g : H2(X1,Z)→ H2(X2,Z) a parallel transport operator, which is an isomorphism
of Hodge structures.

(1) g maps each exceptional chamber in CX1 onto an exceptional chamber in CX2 .

(2) g maps each Kähler-type chamber in CX1 onto a Kähler-type chamber in CX2 .

Proof There exists a bimeromorphic map h : X1 → X2, by Theorem 1.3. The ho-
momorphism h∗ : H2(X1,Z)→ H2(X2,Z) is a parallel transport operator, and an
isomorphism of Hodge structures, by Theorem 3.1.

Part (1): Let f be an element of Mon2
Hdg(X1). We need to show that g( f [FEX1 ])

is an exceptional chamber in CX2 . Indeed, we have the equalities

g( f [FEX1 ]) = (g f h∗){h∗[FEX1 ]}= (g f h∗)[FEX2 ],

and g f h∗ belongs to Mon2
Hdg(X2).

Part (2): Any Kähler-type chamber of CX1 is of the form f [h̃∗(KY1)], where
h̃ : X1→Y1 is a bimeromorphic map to an irreducible holomorphic symplectic man-
ifold Y1, and f is an element of Mon2

Hdg(X1). We have the equality

g f [h̃∗(KY1)] = (g f h∗)
{
(hh̃−1)∗(KY1)

}
,

(hh̃−1)∗(KY1) is a Kähler-type chamber of X2 and g f h∗ belongs to Mon2
Hdg(X2), by

Theorem 3.1. Thus g f [h̃∗(KY1)] is a Kähler-type chamber of X2. 2

Corollary 5.13 Let (X1,η1), (X2,η2) be two inseparable points in M0
Λ

.

(1) The composition η
−1
2 ◦ η1 maps each Kähler-type chamber in CX1 onto a

Kähler-type chamber in CX2 . Similarly, η
−1
2 ◦η1 maps each exceptional cham-

ber in CX1 onto an exceptional chamber in CX2 .

(2) (η−1
2 ◦η1)(FEX1) = FEX2 , if and only if there exists a bimeromorphic map f

from X1 to X2, such that η
−1
2 ◦η1 = f∗.

Proof The composition η
−1
2 ◦ η1 is a parallel-transport operator, and a Hodge-

isometry, by Theorem 3.2 part 2. Part (1) follows from Lemma 5.12. Part (2) follows
from Corollary 5.7. 2
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5.3 MΛ as the moduli space of Kähler-type chambers

Consider the period map P0 : M0
Λ
→ ΩΛ from the connected component M0

Λ
con-

taining the isomorphism class of the marked pair (X ,η). Denote by K T (X) the
set of Kähler-type chambers in CX . Let

ρ : P−1
0 [P0(X ,η)] −→ K T (X) (5.1)

be the map given by ρ(X̃ , η̃) = (η−1η̃)(KX̃ ). The map ρ is well defined, by Corol-
lary 5.13. Mon2

Hdg(X) acts on K T (X), by Lemma 5.12.

Note that each period P(X ,η) ∈ΩΛ is invariant under the subgroup

Mon2
Hdg(X)η := {ηgη

−1 : g ∈Mon2
Hdg(X)} (5.2)

of O(Λ ). Consequently, Mon2
Hdg(X) acts on the fiber P−1

0 [P0(X ,η)] of the period
map by

g(X̃ , η̃) := (X̃ ,ηgη
−1

η̃).

Proposition 5.14

(1) The map ρ is a Mon2
Hdg(X)-equivariant bijection.

(2) The marked pair (X ,η) is a Hausdorff point of MΛ , if and only if CX = KX .

(3) ([Hu1], Corollaries 5.7 and 7.2) CX = KX , if H1,1(X ,Z) is trivial, or if
H1,1(X ,Z) is of rank 1, generated by a class α of non-negative Beauville-
Bogomolov degree.

Proof Part (1): Assume that ρ(X1,η1) = ρ(X2,η2). Then η
−1
2 η1(KX1) = KX2 .

Hence, η
−1
2 η1 = f∗, for an isomorphism f : X1 → X2, by Theorem 1.3. Thus,

(X1,η1) and (X2,η2) are isomorphic, and ρ is injective.

Given a Kähler-type chamber Ch in CX and a very general class α in Ch, there
exists an element g ∈ Mon2

Hdg(X), such that g(α) belongs to FEX , by Lemma
5.11 part 5. There exists an irreducible holomorphic symplectic manifold Y and
a bimeromorphic map h : X → Y , such that h∗(g(α)) belongs to KY , by The-
orem 5.4 part 2. Thus, (h∗ ◦ g)(Ch) = KY , by Lemma 5.12. We conclude that
ρ(Y,η ◦g−1 ◦h∗) = g−1h∗(KY ) = Ch and ρ is surjective.

Part (2) follows from part (1). 2

Fix a connected component M0
Λ

of the moduli space of marked pairs. We get
the following modular description of the fiber P−1

0 (p) in terms of the period p. Set
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Λ
1,1(p,R) := {λ ∈Λ ⊗Z R : (λ , p) = 0}. Let Cp be the connected component, of

the cone C ′p in Λ 1,1(p,R), which is compatible with the orientation of the positive
cone C̃Λ determined by M0

Λ
(see section 4).

Definition 5.15 A Kähler-type chamber of Cp is a subset of the form η(Ch)⊂ Cp,
where (X ,η) is a marked pair M0

Λ
and Ch⊂ CX is a Kähler-type chamber of X .

Denote by K T (p) the set of Kähler-type chambers in Cp. The map

η : K T (X) −→ K T (p),

sending a Kähler-type chamber Ch ∈ K T (X) to η(Ch), is a bijection, for ev-
ery marked pair (X ,η) in the fiber P−1

0 (p), by Corollary 5.13 and Proposition
5.14. Mon2

Hdg(X)η , given in equation (5.2), is the same subgroup of O(Λ ), for all
(X ,η) ∈ P−1

0 (p), and we denote it by Mon2
Hdg(p). The following statement is an

immediate corollary of Proposition 5.14.

Theorem 5.16 The map

ρ : P−1
0 (p) −→ K T (p),

given by ρ(X ,η) := η(KX ), is a Mon2
Hdg(p)-equivariant bijection.

Remark 5.17 Compare Theorem 5.16 with the more detailed analogue for K3 sur-
faces, which is provided in ([LP], Theorem 10.5). Ideally, one would like to have
a description of the set K T (p), depending only on the period p, the deformation
type of X , and possibly some additional discrete monodromy invariant of X (see the
invariant ιX introduced in Corollary 9.5). Such a description would depend on the
determination of the Kähler-type chambers in CX . In particular, it requires a deter-
mination of the Kähler cone of an irreducible holomorphic symplectic variety, in
terms of the Hodge structure of H2(X ,Z), the Beauville-Bogomolov pairing, and
the discrete monodromy invariants of X . The determination of the Kähler cone KX

in terms of such data is a very difficult problem addressed in a sequence of papers of
Hassett and Tschinkel [HT1, HT2, HT3, HT4]. Precise conjectures for the determi-
nation of the Kähler cones in the K3[n]-type, for all n, and for generalized Kummer
fourfolds, are provided in [HT4], Conjectures 1.2 and 1.4. The determination of the
birational Kähler cone, in terms of such data, is the subject of section 6.
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6 Mon2
Hdg(X) is generated by reflections and Mon2

Bir(X)

Throughout this section X denotes a projective irreducible holomorphic symplectic
manifold. Under the projectivity assumption, we can define a subgroup WExc of
the Hodge-monodromy group Mon2

Hdg(X), which is generated by reflections with
respect to classes of prime exceptional divisors (Definition 6.8 and Theorem 6.18
part 3). The fundemental exceptional chamber FEX , introduced in Definition 5.2, is
the interior of a fundamental domain for the action of the reflection group WExc on
the positive cone CX . Significant regularity properties follow from this description of
FEX (Theorem 6.17). We prove also that WExc is a normal subgroup of Mon2

Hdg(X)
and the latter is a semi-direct-product of WExc and Mon2

Bir(X) (Theorem 6.18). A
weak version of Morrison’s movable cone conjecture follows from the above results
in the special case of irreducible holomorphic symplectic manifolds (Theorems 1.7
and 6.25).

6.1 Reflections

Let X be a projective irreducible holomorphic symplectic manifold of dimension 2n
and E ⊂ X a prime exceptional divisor (Definition 5.1).

Proposition 6.1 ([Dr], Proposition 1.4) There exists a sequence of flops of X, re-
sulting in a smooth birational model X ′ of X, such that the strict transform E ′ of E
in X ′ is contractible via a projective birational morphism π : X ′ →Y onto a normal
projective variety Y . The exceptional locus of π is equal to the support of E ′.

Identify H2(X ,Q)∗ with H2(X ,Q). Set

[E]∨ :=
−2([E],•)
([E], [E])

∈ H2(X ,Q).

Proposition 6.2 ([Ma7], Corollary 3.6 part 1).

(1) There exists a Zariski dense open subset E0 ⊂ E and a proper holomorphic fi-
bration π : E0→ B, onto a smooth holomorphic symplectic variety of dimension
2n−2, with the following property. The class [E]∨ is the class of a generic fiber
of π . The generic fiber is either a smooth rational curve, or the union of two ho-
mologous smooth rational curves meeting at one point non-tangentially. In par-
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ticular, the class [E]∨ is integral, as is the reflection RE : H2(X ,Z)→H2(X ,Z),
given by RE(x) = x +(x, [E]∨)[E].

(2) The reflection RE belongs to Mon2
Hdg(X).

Remark 6.3

(1) The proof of Proposition 6.2 relies heavily on Druel’s result stated above in
Proposition 6.1. The fact that RE ′ belongs to Mon2

Hdg(X
′) was proven earlier

in ([Ma6], Theorem 1.4), using fundamental work of Namikawa [Nam1] (see
[Nam3] for an alternative proof). The author does not know if the analogue of
Proposition 6.1 holds for a non-projective irreducible holomorphic symplectic
manifold X as well. This is the reason for the projectivity assumption throughout
section 6.

(2) The variety B in part (1) of the proposition is an étale cover of a Zariski open
subset of the image of E ′ in Y ([Nam1], section 1.8).

6.2 Stably prime-exceptional line bundles

Let X be an irreducible holomorphic symplectic manifold. Denote by De f (X) the
local Kuranishi deformation space of X and let 0 ∈De f (X) be the special point cor-
responding to X . Let L be a line bundle on X . Set Λ := H2(X ,Z). The period map
P : De f (X)→ΩΛ embeds De f (X) as an open analytic subset of the period domain
ΩΛ and the intersection De f (X ,L) := De f (X)∩ c1(L)⊥ is the Kuranishi deforma-
tion space of the pair (X ,L), i.e., it consists of deformations of the complex structure
of X along which c1(L) remains of type (1,1). We assume that both De f (X) and the
intersection De f (X ,L) are simply connected, possibly after replacing De f (X) by
a smaller open neighborhood of 0 in the Kuranishi deformation space, which we
denote again by De f (X).

Let π : X → De f (X) be the universal family and denote by Xt the fiber of π

over t ∈ De f (X). Denote by ` the flat section of the local system R2π∗Z through
c1(L) and let `t ∈H1,1(Xt ,Z) be its value at t ∈De f (X ,L). Let Lt be the line bundle
on Xt with c1(Lt) = `t .

Definition 6.4 A line bundle L ∈ Pic(X) is called stably prime-exceptional, if
there exists a closed analytic subset Z ⊂ De f (X ,L), of positive codimension,
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such that the linear system |Lt | consists of a prime exceptional divisor Et , for all
t ∈ [De f (X ,L)\Z].

Note that a stably prime-exceptional line bundle L is effective, by the semi-
continuity theorem. Furthermore, if we set ` := c1(L) and define the reflection
R`(α) := α−2 (α,`)

(`,`) `, then R` belongs to Mon2
Hdg(X).

Remark 6.5 Note that the linear system |L|, of a stably prime-exceptional line bun-
dle L, may have positive dimension, if the Zariski decomposition of Theorem 5.8 is
non-trivial. Even if |L| consists of a single exceptional divisor, it may be reducible
or non-reduced, i.e., the special point 0 may belong to the closed analytic subset Z
in Definition 6.4.

Proposition 6.6 Let E be a prime exceptional divisor on a projective irreducible
holomorphic symplectic manifold X.

(1) ([Ma7], Proposition 5.2) The line bundle OX (E) is stably prime-exceptional.

(2) ([Ma7], Proposition 5.14) Let Y be an irreducible holomorphic symplectic man-
ifold and g : H2(X ,Z)→ H2(Y,Z) a parallel-transport operator, which is an
isomorphism of Hodge structures. Set α := g([E]) ∈ H1,1(Y,Z). Then either α

or −α is the class of a stably prime-exceptional line bundle.

Example 6.7 Let X be a K3 surface. A line bundle L is stably prime-exceptional, if
and only if deg(L) =−2, and (c1(L),κ) > 0, for some Kähler class κ on X .

Denote by Spe ⊂ H1,1(X ,Z) the subset of classes of stably prime-exceptional
divisors.

Definition 6.8 Let WExc ⊂ Mon2
Hdg(X) be the reflection subgroup generated by

{R` : ` ∈ Spe}.

Note that R` = R−`.

Corollary 6.9 The union Spe ∪ −Spe is a Mon2
Hdg(X)-invariant subset of

H1,1(X ,Z). In particular, WExc is a normal subgroup of Mon2
Hdg(X)

Proposition 6.10 The fundamental exceptional chamber FEX , introduced in Defi-
nition 5.2, is equal to the subset

{α ∈ CX : (α, `) > 0, for every ` ∈ Spe}. (6.1)
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Proof Denote the exceptional chamber (6.1) by Ch0. Then Ch0 ⊂ FEX , since a
prime exceptional divisor is stably prime-exceptional, by Proposition 6.6. Let α

be a class in FEX , ` ∈ Spe, and ` = P(`) + N(`) its Zariski decomposition of
Theorem 5.8. Then N(`) is a non-zero exceptional divisor, since (`,`) < 0 and
(P(`),P(`))≥ 0. Furthermore, (α ,P(`))≥ 0, since α and P(`) belong to the closure
of the positive cone. Thus, (α, `) ≥ (α,N(`)) > 0. We conclude that α belongs to
Ch0 and so FEX ⊂Ch0. 2

In section 9.2 we will provide a numerical determination of the set Spe, and
hence of FEX , for X of K3[n]-type.

6.3 Hyperbolic reflection groups

Consider the vector space Rn+1, endowed with the quadratic form
q(x0, . . . ,xn) = x2

0 − ∑
n
i=1 x2

i . We will denote the inner product space (Rn+1,q)
by V and denote by (v,w), v,w ∈ V , the inner product, such that q(v) = (v,v).
Let v := (v0, . . . ,vn) be the coordinates of a vector v in V . The hyperbolic (or
Lobachevsky) space is

Hn := {v ∈V : q(v) = 1 and v0 > 0}.

Hn has two additional descriptions. It is the set of R>0 orbits (half lines) in one of
the two connected component of the cone C ′V := {v∈V : q(v) > 0}. We will denote
by CV the chosen connected component of C ′V and refer to CV as the positive cone.
Hn also naturally embeds in Pn(R) as the image of CV . A hyperplane in Hn is a
non-empty intersection of Hn with a hyperplane in Pn(R).

The first description ofHn above depended on the diagonal form of the quadratic
form q. The last two descriptions of Hn produce a copy of Hn associated more
generally to any quadratic form q(x0, . . . ,xn) = ∑

n
i, j=0 ai jxix j, ai j ∈ Q, of signature

(1,n). We will consider from now on this more general set-up.

Hn admits a metric of constant curvature [VS]. Let O+(V ) be the subgroup of
the isometry group of V mapping CV to itself. Then O+(V ) acts transitively on Hn

via isometries. The stabilizer StabO+(V )(t), of every point t ∈Hn, is compact, since
the hyperplane t⊥ ⊂V is negative definite.

A subgroup Γ ⊂ O+(V ) is said to be a discrete group of motions of Hn, if for
each point t ∈ Hn, the stabilizer StabΓ (t) is finite and the orbit Γ · t is a discrete
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subset of Hn. The arithmetic group O+(V,Z) is a discrete group of motions ([VS],
Ch. 1, section 2.2). Furthermore, if a subgroup Γ ⊂ O+(V ) is commensurable to a
discrete group of motions, then Γ is a discrete group of motions as well ([VS], Ch.
1, Proposition 1.13). Given a group homomorphism Γ̃ →O+(V ), we say that Γ̃ acts
on Hn via a discrete group of motions, if its image Γ ⊂ O+(V ) is a discrete group
of motions.

Lemma 6.11 Let X be a projective irreducible holomorphic symplectic manifold.
Then Mon2

Hdg(X) acts via a discrete group of motions on the hyperbolic space HX

associated to V := H1,1(X ,Z)⊗Z R as well as on the hyperbolic space H̃X associ-
ated to H1,1(X ,R).

Proof Let ρ be the rank of Pic(X). The Beauville-Bogomolov pairing restricts
to H1,1(X ,Z) as a non-degenerate pairing of signature (1,ρ − 1). The action of
Mon2

Hdg(X) on HX factors through the action of O+[H1,1(X ,Z)]. The latter acts as
a discrete group of motions on HX (see [VS], Ch. 1, section 2.2). The statement of
the lemma follows for HX .

Let G be the kernel of the restriction homomorphism
Mon2

Hdg(X) → O+[H1,1(X ,Z)]. We prove next that G is a finite group.
Let T (X) be the subspace of H2(X ,R) orthogonal to H1,1(X ,Z). Set
T 1,1(X) := T (X) ∩ H1,1(X ,R). The Beauville-Bogomolov pairing restricts to
T 1,1(X) as a negative definite pairing. Let T +(X) ⊂ T (X) be the orthogonal com-
plement of T 1,1(X) in T (X). Then T +(X) is the two-dimensional positive definite
subspace of T (X), spanned by the real and imaginary parts of a holomorphic
2-form on X . G acts faithfully on T (X) and it embeds as a discrete subgroup of the
compact group O(T+(X))×O

(
T 1,1(X)

)
. We conclude that G is finite.

The linear subspace P
(
T 1,1(X)

)
of P

(
H1,1(X ,R)

)
is disjoint from H̃X and

so the orthogonal projection H1,1(X ,R)→ V induces a well defined Mon2
Hdg(X)-

equivariant map π : H̃X→HX . Explicitly, a point ṽ in the positive cone of H1,1(X ,R)
can be uniquely decomposed as a sum ṽ = v+ t, with v ∈V and t ∈ T 1,1(X), and π

takes the image of ṽ in H̃X to the image of v in HX .

We show next that Mon2
Hdg(X) acts on H̃X via a discrete group of motions. Set

Γ := Mon2
Hdg(X)/G. Let x̃ be a point of H̃X and set x := π(x̃). The stabilizing

subgroup StabΓ (x) is finite, since Γ acts on HX as a discrete group of motions.
The preimage of StabΓ (x) in Mon2

Hdg(X) is finite and contains the stabilizer of x̃
in Mon2

Hdg(X). Hence, the latter stabilizer is finite. Let y be a point in the orbit
Γ · x in HX . Then π

−1(y) intersects the orbit Mon2
Hdg(X) · x̃ in an orbit of a finite

subgroup, namely, an orbit of the preimage of StabΓ (y) in Mon2
Hdg(X). The orbit
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Mon2
Hdg(X) · x̃ is a discrete subset of H̃X , since π restricts to it as a finite map onto

the discrete orbit of x in HX . 2

Given an element e ∈V , with q(e) < 0, we get the reflection Re ∈O+(V ), given
by Re(w) = w−2 (e,w)

(e,e) e.

Definition 6.12 A hyperbolic reflection group is a discrete group of motions of Hn

generated by reflections.

Given a vector e ∈V , with q(e) < 0, set

H+
e := {v ∈ CV : (v,e) > 0}/R>0.

Define H−e similarly using the inequality (v,e) < 0. Set He := e⊥ ∩Hn, where e⊥ is
the hyperplane of P(V ) orthogonal to e. ThenHn \He is the disjoint union of its two
connected components H+

e and H−e . The closures H±e are called half-spaces.

Definition 6.13

(1) A set {Σi : i ∈ I}, of subsets of a topological space X , is locally finite, if each
point x ∈ X has an open neighborhood Ux, such that the intersection Σi ∩Ux is
empty, for all but finitely many indices i ∈ I.

(2) A decomposition of Hn is a locally finite covering of Hn by closures of open
connected subsets, no two of which have common interior points.

(3) A closure D of an open subset of Hn is said to be a fundamental domain of a
discrete group of motions Γ , if {γ(D) : γ ∈ Γ } is a decomposition of Hn.

(4) ([AVS], Ch. 1, Definition 3.9) A convex polyhedron is an intersection of finitely
many half-spaces, having a non-empty interior.

(5) ([VS], Ch 1, Definition 1.9) A closed subset P⊂Hn is a generalized convex poly-
hedron, if P is the closure of an open subset, and the intersection of P with every
bounded convex polyhedron, containing at least one common interior point, is a
convex polyhedron.

(6) A closed cone in CV is a generalized convex polyhedron, if its image in Hn is a
generalized convex polyhedron.

(7) A closed cone Π in CV is a rational convex polyhedron, if its image in Hn is
a convex polyhedron, which is the intersection of finitely many half spaces H+

e

with e ∈Qn+1.
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Theorem 6.14

(1) ([VS], Ch. 1 Theorem 1.11) Any discrete group of motions of Hn has a funda-
mental domain, which is a generalized convex polyhedron.

(2) ([VS], Ch. 2 Theorem 2.5) The action on Hn of any arithmetic subgroup of
O+(V ) has a fundamental domain, which is a convex polyhedron.

The decomposition of Hn, induced by translates of the fundamental domain in
Theorem 6.14, is not canonical in general. A canonical decomposition exists, if the
discrete group of motions is a reflection group. The hyperplanes of n− 1 dimen-
sional faces of a generalized convex polyhedron are called its walls.

Let Γ be a hyperbolic reflection group and RΓ ⊂ Γ the subset of reflections.
Given a reflection ρ ∈RΓ , let Hρ ⊂ Hn be the hyperplane fixed by ρ . Connected
components of Hn \

⋃
ρ∈RΓ

Hρ are called chambers.

Theorem 6.15 ([VS], Ch. 5 Theorem 1.2 and Proposition 1.4)

(1) The closure of each chamber of Γ in Hn is a generalized convex polyhedron,7

which is a fundamental domain for Γ .

(2) Γ is generated by reflections in the walls of any of its chambers in Hn.

Let Γ be any discrete group of motions of Hn. Denote by Γr the subgroup of Γ

generated by all reflections in Γ . We call Γr the reflection subgroup of Γ . Choose a
chamber D of Γr. Let ΓD ⊂ Γ be the subgroup {γ ∈ Γ : γ(D) = D}.

Theorem 6.16 ([VS], Ch. 5 Proposition 1.5) Γr is a normal subgroup of Γ , and Γ

is the semi-direct product of Γr and ΓD.

We refer the reader to the book [VS] and the interesting recent survey [Do] for
detailed expositions of the subject of hyperbolic reflection groups.

Let X be a projective irreducible holomorphic symplectic manifold.

Theorem 6.17 The fundamental exceptional chamber FEX , introduced in Defini-
tion 5.2, is equal to the connected component of

CX \
⋃
{`⊥ : ` ∈ Spe} (6.2)

7 This polyhedron is moreover a generalized Coxeter polyhedron ([VS], Ch. 5 Definition 1.1), but
we will not use this fact.
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containing the Kähler cone. In particular, FEX is the interior of a generalized con-
vex polyhedron (Definition 6.13).

Proof The group WExc is a hyperbolic reflection group and the set U in equation
(6.2) is an open subset of CX , which is the union of the interiors of the fundamental
chambers of the WExc-action on CX , by Theorem 6.15. The intersection of FEX

and U is the union of connected components of U , by the definitions of FEX and
WExc. FEX is contained in U , by Proposition 6.10. FEX is convex cone, hence a
connected component of U . FEX contains KX , by the definition of FEX . 2

6.4 Mon2
Hdg(X) is a semi-direct product of WExc and Mon2

Bir(X)

Denote by Pex the set of prime exceptional divisors in X . Given E ∈ Pex, denote by
RE the corresponding reflection (Proposition 6.2).

Theorem 6.18

(1) The group Mon2
Hdg(X) acts transitively on the set of exceptional chambers, in-

troduced in Definition 5.10, and the subgroup WExc acts simply-transitively on
this set.

(2) The exceptional chambers are precisely the connected component of the open
set in equation (6.2), i.e., each exceptional chamber is the interior of a funda-
mental domain of the WExc action on CX .

(3) The group WExc is generated by {Re : e ∈ Pex}.

(4) The subgroup of Mon2
Hdg(X) stabilizing the fundamental exceptional chamber

FEX is equal to Mon2
Bir(X).

(5) Mon2
Hdg(X) is the semi-direct product of its subgroups WExc and Mon2

Bir(X).

When X is a K3 surface Mon2
Hdg(X) is equal to the group of Hodge isometries

of H2(X ,Z) preserving the spinor norm and Mon2
Bir(X) is equal to the group of

biregular automorphisms of X . Furthermore, the fundamental exceptional chamber
is equal to the Kähler cone of the K3 surface. Theorem 6.18 is well known in the
case of K3 surfaces [BR, PS], or ([LP], Proposition 1.9).

Proof Parts (1) and (2): Mon2
Hdg(X) acts transitively on the set of exceptional cham-

bers, by their definition. The subgroup WExc acts simply-transitively on the set of
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connected components of the set U in equation (6.2), by Theorem 6.15. One of
these is FEX , by Theorem 6.17. Hence, every connected component of U is an ex-
ceptional chamber. Mon2

Hdg(X) acts on the set of connected component of U , by
Corollary 6.9. Hence, every exceptional chamber is a connected component of U .

Part (3): The walls in the boundary of the fundamental exceptional chamber are
all of the form [E]⊥∩CX , for some prime exceptional divisor E , by definition. FEX

is the interior of a chamber of WExc, by Theorem 6.17. We conclude that WExc is
generated by {Re : e ∈ Pex}, by Theorem 6.15.

Part (4): Mon2
Bir(X) is the subgroup of Mon2

Hdg(X) leaving FEX invariant, by
Lemma 5.11 part 6.

Part (5): Mon2
Hdg(X) is generated by WExc and Mon2

Bir(X), by parts (1) and (4).
The intersection WExc ∩Mon2

Bir(X) is trivial, since the action of WExc on the set of
exceptional chambers is free. WExc is a normal subgroup of Mon2

Hdg(X), by Corol-
lary 6.9. 2

Caution 6.19 When X is a K3 surface, then WExc is the reflection subgroup of
Mon2

Hdg(X), i.e., every reflection g ∈ Mon2
Hdg(X) is of the form R`, for a class `

satisfying (`,`) =−2. This follows easily from the fact that H2(X ,Z) is a unimodu-
lar lattice. WExc may be strictly smaller than the reflection subgroup of Mon2

Hdg(X),
for a higher dimensional irreducible holomorphic symplectic manifold X . In other
words, there are examples of elements α ∈ H1,1(X ,Z), with (α,α) < 0, such that
Rα belongs to Mon2

Hdg(X), but neither α , nor −α , belongs to Spe. Instead, Rα is
induced by a bimeromorphic map from X to itself (see Example 9.20 below, and
section 11 of [Ma7] for additional examples).

Let L be a stably prime-exceptional line bundle and set ` := c1(L). The hyper-
plane `⊥ intersects FE X in a top dimensional cone in `⊥, only if L = OX (E) for
some prime exceptional divisor E , by Proposition 6.10. We show next that the con-
dition is also sufficient.

Lemma 6.20 Let E be a prime exceptional divisor on X. Then E⊥ ∩FE X is a top
dimensional cone in the hyperplane E⊥. Consequently, WExc can not be generated
by any proper subset of {Re : e ∈ Pex}.

Proof Let e be an element of Pex. It suffices to show that e⊥ ∩FE X ∩CX contains
elements, which are not orthogonal to any other e′ ∈ Pex. Choose x ∈FEX and set
y := x− (x,e)

(e,e)e. Then (y,e) = 0. Given e′ ∈Pex, e′ 6= e, then (e,e′)≥ 0 and (x,e′) > 0.
Now (e,e) < 0. We get the following inequalities.
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(e′,y) = (e′,x)− (x,e)
(e,e)

(e′,e) > 0.

(y,y) = (x,x)− (x,e)2

(e,e)
> 0.

We conclude that y belongs to e⊥ ∩FE X ∩CX , and y does not belong to (e′)⊥, for
any e′ ∈ Pex\{e}. 2

Proof of Theorem 1.6: WExc is a normal subgroup of Mon2
Hdg(X), by Corollary

6.9. There exists a bimeromorphic map h : X1 → X2, by Theorem 1.3, and h∗ is
a parallel transport operator, by Theorem 3.1. The composition f ◦ h∗ belongs to
Mon2

Hdg(X2). There exists an element w of WExc(X2), such that w−1 f ◦h∗ belongs to
Mon2

Bir(X2), by Theorem 6.18. Let ϕ : X2→ X2 be a bimeromorphic map, such that
ϕ∗ = w−1 f ◦h∗. Then f = w(ϕh)∗. Set g := ϕh to obtain the desired decomposition
f = w◦g∗.

Assume that g̃ : X1 → X2 is a birational map and w̃ is an element of WExc(X2),
such that f = w̃g̃∗. Then w−1w̃ = (g̃−1g)∗ belongs to the intersection of WExc(X2)
and Mon2

Bir(X2), which is trivial, by Theorem 6.18. Thus, w = w̃ and g∗ = g̃∗. Now,
g̃ = g(g−1g̃), and g−1g̃ is a birational map inducing the identity on H2(X1,Z). In
particular, g−1g̃ maps KX1 to itself, and hence is a biregular automorphism. 2

6.5 Morrison’s movable cone conjecture

Let X be a projective irreducible holomorphic symplectic manifold. We describe
first an analogy between results on the ample cone of a projective K3 surface and
results on the movable cone of X . Set NS := H1,1(X ,Z), NSR := NS⊗Z R, and
NSQ := NS⊗ZQ. Let CNS be the intersection CX ∩NSR.

Definition 6.21

(1) A line bundle L on X is movable, if the base locus of the linear system |L| has
codimension ≥ 2.

(2) The movable cone MVX is the convex hull in NSR of all classes of movable line
bundles.

Let MV 0
X be the interior of MVX and MV X the closure of MVX in NSR.
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Lemma 6.22 The equality MV 0
X = FEX ∩NSR holds. WExc acts faithfully on CNS

and the map Ch 7→Ch∩NSR induces a one-to-one correspondence between the set
of exceptional chambers and the chambers in CNS of the WExc action. In particular,
the closure of MVX in CNS is a fundamental domain for the action of WExc on CNS.

Proof The equality MV 0
X = FEX ∩NSR follows immediately from the Zariski

decomposition (Theorem 5.8). The set Spe is contained in NS, hence the WExc action
on CNS is faithful and the map Ch 7→Ch∩NSR induces a bijection. 2

Let ρ : Mon2
Hdg(X) → O(NS) be the restriction homomorphism. We denote

ρ(WExc) by WExc as well.

Lemma 6.23

(1) The image Γ of ρ is a finite index subgroup of O+(NS).

(2) The kernel of ρ is a subgroup of Mon2
Bir(X).

(3) Γ is a semi-direct product of its normal subgroup WExc and the quotient group
ΓBir := Mon2

Bir(X)/ker(ρ).

Proof (1) The positive cone CX is Mon2
Hdg(X)-invariant and CNS = CX ∩NS is thus

Γ -invariant. Hence, Γ is a subgroup of O+(NS). Let O+
Hdg

(
H2(X ,Z)

)
be the sub-

group of O+ (H2(X ,Z)
)

preserving the Hodge structure. Then O+
Hdg

(
H2(X ,Z)

)
maps onto a finite index subgroup of O+(NS). The index of Mon2(X) in
O+H2(X ,Z) is finite, by a result of Sullivan [Su] (see also [Ver2], Theorem 3.4).
Hence, Mon2

Hdg(X) is a finite index subgroup of O+
Hdg

(
H2(X ,Z)

)
. Part (1) follows.

(2) Let g be an element of ker(ρ). Then g acts trivially on Spe. Hence, g maps
FEX to itself. It follows that g belongs to Mon2

Bir(X), by Theorem 6.18 part 4.

Part (3) is an immediate consequence of part (2) and Theorem 6.18 part 5. 2

Let E ffX ⊂NSR be the convex cone generated by classes of effective divisors on
X . Set MV e

X := MV X ∩E ffX . Following is Morrison’s movable cone conjecture.

Conjecture 6.24 [Mor1, Mor2, Ka] There exists a rational convex polyhedral cone
(Definition 6.13 part 7) Π , which is a fundamental domain for the action of Bir(X)
on MV e

X .

Morrison formulated a version of the conjecture for the ample cone as well. The
two versions coincide in dimension 2 and for abelian varieties. The K3 surface case
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of the conjecture is proven by Looijenga and Sterk ([St], Lemma 2.4), the Enriques
surfaces case by Namikawa ([Nam], Theorem 1.4), the case of abelian and hyper-
elliptic surfaces by Kawamata ([Ka], Theorem 2.1), the case of two-dimensional
Calabi-Yau pairs by Totaro [Tot], and the case of abelian varieties by Prendergast-
Smith [Pre]. A version of the conjectures for fiber spaces was formulated by Kawa-
mata and proven in dimension 3 in [Ka].

The following theorem is a weaker version of Morrison’s movable cone conjec-
ture, in the special case of projective irreducible holomorphic symplectic manifolds.
Let MV +

X be the convex hull of MV X ∩NSQ. Clearly, MV 0
X is equal to the inte-

rior of both MV +
X and MV e

X . When X is a K3 surface the equality MV +
X = MV e

X
holds. In the K3 case the inclusion MV +

X ⊂MV e
X follows from ([BHPV], Propo-

sition 3.6 part i) and the inclusion MV +
X ⊃MV e

X is proven in ([Ka], Proposition
2.4).

Theorem 6.25 There exists a rational convex polyhedral cone Π in MV +
X , such

that Π is a fundamental domain for the action of ΓBir on MV +
X .

Proof The proof is identical to that of Lemma 2.4 in [St], which proves the K3-
surface case of the Theorem. When X is a K3 surface, MV 0

X is the ample cone and
Pex is the set of nodal −2 classes. The proof is lattice theoretic. Following is the
dictionary translating our notation to that of Sterk.

Our notation MV 0
X CNS MV +

X Pex Spe Γ ΓBir WExc

Sterk’s notation K C K∩C+ B ∆+ Γ ΓB W

One slight inaccuracy in the above dictionary is that Sterk chose Γ to be the sub-
group of O+ (H2(X ,Z)

)
acting trivially on the transcendental lattice NS⊥, while we

consider (in case X is a K3 surface) the image of O+
Hdg

(
H2(X ,Z)

)
in O+(NS). So

Sterk’s Γ is the finite index subgroup of our Γ acting trivially on the finite discrim-
inant group NS∗/NS. Both choices satisfy the following complete list of assertions
needed for the Looijenga-Sterk argument (in Sterk’s notation).

(1) NS is a lattice of signature (1,∗) and Γ is an arithmetic subgroup of O+(NS).

(2) W ⊂ O+(NS) is the reflection group generated by reflections in elements of
B⊂NS.

(3) ΓB is equal to the subgroup {g ∈ Γ : g(B) = B}.

(4) W is a normal subgroup of Γ and Γ = ΓB ·W is a semi-direct product decompo-
sition.
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(5) K ∩C is a fundamental domain for the action of W on C , cut-out by closed
half-spaces associated to elements of B.

Assertion (1) is verified in our case in Lemma 6.23 part 1. Assertion (2) is ver-
ified in Theorem 6.18 part 3. Mon2

Bir(X) = {g ∈Mon2
Hdg(X) : g(Pex) = Pex}, by

Theorem 6.18 part 4 and Lemma 6.20. Assertion (3) follows from the latter equality
by Lemma 6.23 part 2. Assertion (4) is verified in Lemma 6.23 part 3. Assertion (5)
is verified in Lemma 6.22.

The argument proceeds roughly as follows. Choose a rational element
x0 ∈MVX which is not fixed by any element of Γ . Let C+ be the convex hull
of C NS∩NSQ in NSR. Set

Π := {x ∈ C+ : (x0,x)≤ (x0,γ(x)), for all γ ∈ Γ }.

Then Π is a fundamental domain for the Γ action on C+, known as the Dirichlet
domain with center x0 (compare8 with [VS], Ch. 1 Proposition 1.10). Π is shown to
be a rational convex polyhedron ([St], Lemma 2.3, see also Theorem 6.14 part (2)
above). The above depends only on Assertion (1). The interior of any fundamental
domain for Γ can not intersect any hyperplane e⊥, e ∈ Pex. Hence, Π is contained
in MV +

X , by Assertions (2) and (5). MV +
X is a fundamental domain for the WExc

action on C+, by Assertion (5). Hence, any fundamental domain for the Γ -action
on C+ which is contained in MV +

X , is a fundamental domain for the ΓBir action on
MV +

X , by Assertions (3) and (4). 2

Proof (Of Theorem 1.7) Assume that D is an irreducible divisor on X . Then D is
either prime exceptional, or the class [D] belongs to MV X , by Theorem 5.8. If D
is prime exceptional, the statement follows by the same argument used in the K3
surface case ([St], Proposition 2.5). Otherwise, [D] belongs to MV +

X , and there
exists g ∈ ΓBir, such that g([D]) belongs to the rational convex polyhedron Π in
Theorem 6.25. The intersection Π ∩NS is a finitely generated semi-group. Choose
generators {x1, . . . ,xm}. Then (xi,xi) ≥ 0, and (xi,x j) > 0, if xi and x j are linearly
independent. It follows that Π ∩NS contains at most finitely many elements of any
given positive Beauville-Bogomolov degree, and at most finitely many primitive
isotropic classes. 2

8 The bilinear pairing (x0,x) in the above definition of the Dirichlet domain is replaced with the
hyperbolic distance ρ(x0,x) in Definition 1.8 in Ch. 1 of [VS]. However, the two definitions are
equivalent, by the relation cosh(ρ(x0,x)) = (x0,x) (see Ch. 1 section 4.2 in [AVS]).
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7 The monodromy and polarized monodromy groups

In section 7.1 we prove Proposition 1.9, stating that the polarized monodromy group
Mon2(X ,H) is the stabilizer of c1(H) in Mon2(X). In section 7.2 we fix a lattice Λ

and define the coarse moduli space of polarized Λ -marked pairs of a given defor-
mation type.

7.1 Polarized parallel transport operators

Let ΩΛ be a period domain as in equation (2.1). Choose a connected component
M0

Λ
of the moduli space of marked pairs, a class h ∈Λ with (h,h) > 0, and let Ω

+
h⊥

be the period domain given in equation (4.1). Let P0 : M0
Λ
→ΩΛ be the period map.

Denote the inverse image P−1
0

(
Ω

+
h⊥

)
by M+

h⊥
. The discussion in section 4 provides

the following modular description of M+
h⊥

. A marked pair (X ,η) belongs to M+
h⊥

,
if and only if (X ,η) belongs to M0

Λ
, the class η−1(h) is of Hodge type (1,1), and

η−1(h) belongs to the positive cone CX .

Proposition 7.1 M+
h⊥

is path-connected.

Proof The proof is similar to that of Proposition 5.11 in [Ma7]. The proof relies on
the Global Torelli Theorem 2.2 and the connectedness of Ω

+
h⊥ . 2

Definition 7.2 Let Mon2 (M0
Λ

)
be the subgroup η ◦Mon2(X) ◦ η

−1 ⊂ O(Λ), for
some marked pair (X ,η) ∈M0

Λ
. Let Mon2

(
M0

Λ

)
h be the subgroup of Mon2

(
M0

Λ

)
stabilizing h.

The subgroup Mon2 (M0
Λ

)
is independent of the choice of (X ,η), since M0

Λ
is

connected, by definition. Mon2
(
M0

Λ

)
h naturally acts on M+

h⊥
.

Let
Ma

h⊥ (7.1)

be the subset of M+
h⊥

, consisting of isomorphism classes of pairs (X ,η), such that
η−1(h) is an ample class of X . The stability of Kähler manifolds implies that Ma

h⊥

is an open subset of M+
h⊥

([Voi], Theorem 9.3.3). We refer to Ma
h⊥ as a connected

component of the moduli space of polarized marked pairs.
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Corollary 7.3 Ma
h⊥ is a Mon2 (M0

Λ

)
h-invariant path-connected open Hausdorff

subset of M+
h⊥

. The period map restricts as an injective open Mon2
(
M0

Λ

)
h-

equivariant morphism from Ma
h⊥ onto an open dense subset of Ω

+
h⊥ .

Proof Let us check first that Ma
h⊥ is Mon2

(
M0

Λ

)
h-invariant. Indeed, let (X ,η) be-

long to Ma
h⊥ and let g be an element of Mon2

(
M0

Λ

)
h. Denote by H the line bundle

with c1(H) = η−1(h). Then g = η f η−1, for some f ∈Mon2(X) stabilizing c1(H),
by definition of Mon2

(
M0

Λ

)
h. The pair (X ,gη) = (X ,η f ) belongs to M0

Λ
, since f

is a monodromy-operator. We have

(gη)−1(h) = f−1(η−1(h)) = f−1(c1(H)) = c1(H).

Hence, (gη)−1(h) is an ample class in H1,1(X ,Z).

Let (X ,η) and (Y,ψ) be two inseparable points of Ma
h⊥ . Then ψ−1η is a

parallel-transport operator, preserving the Hodge structure, by Theorem 3.2. Fur-
thermore, ψ−1η maps the ample class η−1(h) to the ample class ψ−1(h), by def-
inition. Hence, there exists an isomorphism f : X → Y , such that f∗ = ψ

−1
η , by

Theorem 1.3 part 2. The two pairs (X ,η) and (Y,ψ) are thus isomorphic. Hence,
Ma

h⊥ is a Hausdorff subset of M+
h⊥ .

Ma
h⊥ is the complement of a countable union of closed complex analytic subsets

of M+
h⊥

. Hence, Ma
h⊥ is path-connected (see, for example, [Ver2], Lemma 4.10).

The period map restricts to an injective map on any Hausdorff subset of a
connected component of the moduli space of marked pairs, by Theorem 2.2.
The image of Ma

h⊥ contains the subset of Ω
+
h⊥ , consisting of points p, such that

Λ 1,1(p) = spanZ{h}, by Huybrechts’ projectivity criterion [Hu1], and Theorem 2.2.
Hence, the image of Ma

h⊥ is dense in Ω
+
h⊥

. The image is open, since Ma
h⊥ is an open

subset and the period map is open, being a local homeomorphism. 2

Let (Xi,Hi), i = 1,2, be two pairs, each consisting of a projective irreducible
holomorphic symplectic manifold Xi, and an ample line bundle Hi. Set hi := c1(Hi).

Corollary 7.4 A parallel transport operator f : H2(X1,Z)→H2(X2,Z) is a polar-
ized parallel transport operator from (X1,H1) to (X2,H2) (Definition 1.1), if and
only if f (h1) = h2.

Proof The ‘only if’ part is clear. We prove the ‘if’ part. Assume that f (h1) = h2.
Choose a marking η2 : H2(X2,Z)→Λ , and set η1 := η2 ◦ f . Then η1(h1) = η2(h2).
Denote both ηi(hi) by h. Let M0

Λ
be the connected component of (X1,η1). Then

(X2,η2) belongs to M0
Λ

, by the assumption that f is a parallel transport operator.
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Consequently, P0(Xi,ηi), i = 1,2, both belong to the same connected component of
Ωh⊥ . We may choose η2, so that this connected component is Ω

+
h⊥

. Then (X1,η1)
and (X2,η2) both belong to Ma

h⊥ .

Choose a path γ : [0,1]→Ma
h⊥ , with γ(0) = (X1,η1) and γ(1) = (X2,η2). This

is possible, by Corollary 7.3. For each t ∈ [0,1], there exists a simply-connected
open neighborhood Ut of γ(t) in Ma

h⊥ and a semi-universal family πt : Xt →Ut .
The covering {Ut}t∈[0,1] of γ([0,1]) has a finite sub-covering {Vj}k

j=1, for some

integer9 k ≥ 1, with the property that γ

([
j−1
k , j

k

])
is contained in Vj . Consider

the analytic space B, obtained from the disjoint union of Vj , 1 ≤ j ≤ k, by glu-

ing Vj to Vj+1 at the single point γ

(
j
k

)
with transversal Zariski tangent spaces. Let

π j : X j→Vj be the universal family and denote its fiber over v∈Vj by X j,v. Endow
each fiber X j,v, of π j over v∈Vj , with the marking H2(X j,v,Z)→Λ corresponding
to the point v. For 1 ≤ j ≤ k, choose an isomorphism of X

j,γ
(

j
k

) with X
j+1,γ

(
j
k

)
compatible with the marking chosen, and use it to glue the family π j to the fam-

ily π j+1. We get a family π : X → B. The paths γ :
[

j−1
k , j

k

]
→ Vj can now be

reglued to a path γ̃ : [0,1]→ B. Parallel transport along γ̃ induces the isomorphism
η
−1
γ̃(1) ◦ηγ̃(0) = η

−1
γ(1) ◦ηγ(0) = η

−1
2 ◦η1 = f . Hence, f is a polarized parallel transport

operator from (X1,H1) to (X2,H2). 2

7.2 Deformation types of polarized marked pairs

Fix an irreducible holomorphic symplectic manifold X0 and let Λ be the lattice
H2(X0,Z), endowed with the Beauville-Bogomolov pairing. Let τ be the set of con-
nected components of MΛ , consisting of pairs (X ,η), such that X is deformation
equivalent to X0.

Lemma 7.5 The set τ is finite. The group O(Λ ) acts transitively on τ and the sta-
bilizer of a connected component M0

Λ
∈ τ is the subgroup Mon2(M0

Λ
), introduced

in Definition 7.2.

Proof The set O[H2(X ,Z)]/Mon2(X) is finite, by a result of Sullivan [Su] (see also
[Ver2], Theorem 3.4). The rest of the statement is clear. 2

Denote by Mτ
Λ

the disjoint union of connected components parametrized by the
set τ . We refer to Mτ

Λ
as the moduli space of marked pairs of deformation type τ .

9 We could take k = 1, if there exists a universal family over Ma
h⊥ , but such a family need not exist.
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An example would be the moduli space of marked pairs of K3[n]-type. Given a point
t ∈ τ , denote by Mt

Λ
the corresponding connected component of Mτ

Λ
.

Remark 7.6 If Mon2(X) is a normal subgroup of O[H2(X ,Z)], then the subgroup
Mon2(Mt

Λ
) of O(Λ ) is equal to a fixed subgroup Mon2(τ,Λ ) ⊂ O(Λ ), for all

t ∈ τ . This is the case when X is of K3[n]-type (Theorem 9.1). The set τ is an
O(Λ )/Mon2(τ,Λ )-torsor, by Lemma 7.5. We will identify the torsor τ with an ex-
plicit lattice theoretic O(Λ)/Mon2(τ,Λ )-torsor in Corollary 9.10.

We get the refined period map

P̃ : Mτ
Λ −→ ΩΛ × τ, (7.2)

sending a marked pair (X ,η) to the pair (P(X ,η), t), where Mt
Λ

is the connected
component containing (X ,η). Then P̃ is O(Λ )-equivariant with respect to the diag-
onal action of O(Λ) on ΩΛ × τ .

Given h ∈ Λ , with (h,h) > 0, denote by Ω
t,+
h⊥

the period domain associated to
Mt

Λ
in equation (4.1). Set Mt,+

h⊥
:= P̃−1(Ω t,+

h⊥
). Let Mt,a

h⊥
⊂Mt,+

h⊥
be the open subset

of polarized pairs introduced in equation (7.1).

We construct next a polarized analogue of the refined period map. Given an
O(Λ )-orbit h̄⊂Λ × τ , of pairs (h,t) with (h,h) > 0, consider the disjoint unions

M+
h̄ :=

⋃
(h,t)∈h̄

M
t,+
h⊥

,

Ω
+
h̄ :=

⋃
(h,t)∈h̄

Ω
t,+
h⊥

,

and let
P̃ : M+

h̄ −→ Ω
+
h̄ (7.3)

be the map induced by the refined period map on each connected component. Then
P̃ is O(Λ )-equivariant and surjective. The disjoint union

Ma
h̄ :=

⋃
(h,t)∈h̄

Mt,a
h⊥

(7.4)

is an O(Λ )-invariant open subset of M+
h̄ . This open subset will be called the mod-

uli space of polarized marked pairs of deformation type h̄. Indeed, Ma
h̄ coarsely

represents a functor from the category of analytic spaces to sets, associating to a
complex analytic space T the set of all equivalence classes of families of marked
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polarized triples (X ,L,η), where X is of deformation type τ , L is an ample line bun-
dle, and η : H2(X ,Z)→ Λ is an isometry, such that the pair [η(c1(L)),t] belongs
to the O(Λ )-orbit h̄, where Mt

Λ
is the connected component of (X ,η). A family

(π : X → T,L , η̃) consists of a family π, an element L of Pic(X /T ) and a triv-
ialization η̃ : R2π∗Z→ (Λ )T , via isometries. Two families (X → T,L , η̃) and
(X ′ → T,L ′, η̃ ′) are equivalent, if there exists a T -isomorphism f : X →X ′,
such that f ∗L ′ ∼= L and η̃ ′ = η̃ ◦ f ∗. We omit the detailed definition of this func-
tor, as well as the proof that Ma

h̄ coarsely represents it, as we will not use the latter
fact below.

8 Monodromy quotients of type IV period domains

Fix a connected component Ma
h⊥ of the moduli space Ma

h̄ of polarized marked pairs
of polarized deformation type h̄. In the notation of section 7.2, Ma

h⊥ := M
t,a
h⊥

, for
some (h,t) ∈ h̄. Let M0

Λ
be the connected component of MΛ containing Ma

h⊥ . Set
Γ := Mon2 (M0

Λ

)
h (Definition 7.2). The period domain Ω

+
h⊥ is a homogeneous do-

main of type IV ([Sa], Appendix, section 6). Γ is an arithmetic group, by ([Ver2],
Theorem 3.5). The quotient Ω

+
h⊥/Γ is thus a normal quasi-projective variety [BB].

Lemma 8.1 There exist natural isomorphisms of complex analytic spaces

M+
h̄ /O(Λ ) −→M+

h⊥/Γ ,

Ma
h̄/O(Λ ) −→Ma

h⊥/Γ ,

Ω
+
h̄ /O(Λ ) −→ Ω

+
h⊥/Γ .

Furthermore, the period map descends to an open embedding

P : Ma
h̄/O(Λ) ↪→ Ω

+
h⊥/Γ . (8.1)

Proof We have the following commutative equivariant diagram

Ma
h̄

P̃−→ Ω
+
h̄ −→ Ω

+
h̄ /O(Λ )

↑ ↑ ↑
Ma

h⊥
P0−→ Ω

+
h⊥
−→ Ω

+
h⊥

/Γ ,

with respect to the O(Λ ) action on the top row, the Γ -action on the bottom, and the
inclusion homomorphism Γ ↪→ O(Λ). O(Λ ) acts transitively on its orbit h̄, and the
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stabilizer of the pair (h, M+
h⊥) ∈ h̄ is precisely Γ , by Lemma 7.5 and Proposition

1.9.

The morphism (8.1) is an open embedding, since the Γ -equivariant open mor-
phism Ma

h⊥ →Ω
+
h⊥ is injective, by Corollary 7.3. 2

A polarized irreducible holomorphic symplectic manifold is a pair (X ,L), con-
sisting of a smooth projective irreducible holomorphic symplectic variety X and
an ample line bundle L. Consider the contravariant functor F ′ from the category of
schemes overC to the category of sets, which associates to a scheme T the set of iso-
morphism classes of flat families of polarized irreducible holomorphic symplectic
manifolds (X ,L) over T , with a fixed Hilbert polynomial p(n) := χ(Ln). The coarse
moduli space representing the functor F ′ was constructed by Viehweg as a quasi-
projective scheme with quotient singularities [Vieh]. Fix a connected component V

of this moduli space. Then V is a quasi-projective variety. Denote by F the func-
tor represented by the connected component V . The universal property of a coarse
moduli space asserts that there is a natural transformation θ : F → Hom(•,V ), sat-
isfying the following properties.

(1) θ(Spec(C)) : F(Spec(C))→ V is bijective.

(2) Given a scheme B and a natural transformation χ : F → Hom(•,B),
there is a unique morphism ψ : V → B, hence a natural transformation
ψ∗ : Hom(•,V )→ Hom(•,B), with χ = (ψ∗)◦θ .

Remark 8.2 Property (2) replaces the data of a universal family over V , which may
not exist when V fails to be a fine moduli space. When a universal family U ∈F(V )
exists, then the morphism ψ is the image of U via χ : F(V )→ Hom(V ,B).

Denote by h̄ the deformation type of a polarized pair (X ,L) in V . We regard h̄
both as a point in [Λ × τ]/O(Λ ) and as a subset of Λ × τ . Choose a point (h,t) ∈ h̄
and set Ω

+
h⊥

:= Ω
t,+
h⊥

.

Lemma 8.3 There exists a natural injective and surjective morphism
ϕ : V →Ma

h̄/O(Λ) in the category of analytic spaces.

Proof The morphism Φ : V →Ω
+
h̄ /O(Λ)∼= Ω

+
h⊥

/Γ , sending an isomorphism class
of a polarized pair (X ,L) to its period, is constructed in the proof of ([GHS1], The-
orem 1.5). The morphism Φ is set-theoretically injective, by the Hodge theoretic
Torelli Theorem 1.3. The image Φ(V ) is the same subset as the image P

(
Ma

h̄

)
,

by definition of the two moduli spaces. The latter is the image also of the open
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immersion P : Ma
h̄/O(Λ) ↪→ Ω

+
h̄ /O(Λ ), by Lemma 8.1. Hence, the composition

P−1 ◦Φ : V →Ma
h̄/O(Λ) is well defined and we denote it by ϕ . 2

Theorem 8.4 The composition Φ of

V
ϕ−→ Ma

h̄/O(Λ) ∼= Ma
h⊥/Γ

P−→ Ω
+
h⊥/Γ

is an open immersion in the category of algebraic varieties.

Proof The proof is similar to that of Theorem 1.5 in [GHS1] and Claim 5.4 in
[O’G5]. If Γ happens to be torsion free, then any complex analytic morphism, from a
complex algebraic variety to Ω

+
h⊥

/Γ , is an algebraic morphism, as a consequence of
Borel’s extension theorem [Bo]. Γ need not be torsion free, but for sufficiently large
positive integer N, the subgroup Γ (N) ⊂ Γ , acting trivially on Λ/NΛ , is torsion
free, as a consequence of ([Sa], IV, Lemma 7.2). In our situation, where the domain
V of Φ is a moduli space, one can apply Borel’s extension theorem after passage
to a finite cover Ṽ → V , where Ṽ is a connected component of the moduli space
of polarized irreducible holomorphic symplectic manifolds with a level-N structure,
as done in the proofs of ([Has], Proposition 2.2.2) and ([GHS1], Theorem 1.5). The
morphism Φ lifts to a morphism Φ̃ : Ṽ → Ω

+
h⊥

/Γ (N). Φ̃ is algebraic, by Borel’s
extension theorem, and a descent argument implies that so is Φ .

The morphism P : Ma
h̄ → Ω

+
h̄ /O(Λ ) is open. Hence, the image P(Ma

h⊥/Γ ) of
Φ is an open subset of Ω

+
h⊥/Γ in the analytic topology. The image of Φ is also a

constructibe set, in the Zariski topology. The image is thus a Zariski dense open
subset. Φ is thus an algebraic open immersion, by Zariski’s Main Theorem. 2

Remark 8.5 Theorem 8.4 answers Question 2.6 in the paper [GHS1], concerning
the polarized K3[n]-type moduli spaces. The map Φ in Theorem 8.4 is denoted by ϕ̃

in ([GHS1], Question 2.6) and is defined in ([GHS1], Theorem 2.3). There is a typo
in the definition of ϕ̃ in [GHS1]; its target Õ+(L2n−2,h)\Dh should be replaced by
Ô+(L2n−2,h)\Dh. When n = 2, these two quotients are the same, but for n≥ 3, the
former is a branched double cover of the latter. Modulo this minor change, Theorem
8.4 provides an affirmative answer to ([GHS1], Question 2.6).
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9 The K3[n] deformation type

In section 9.1 we review results about parallel-transport operators of K3[n]-type. In
section 9.2 we explicitly calculate the fundamental exceptional chamber FEX of a
projective manifold X of K3[n]-type.

9.1 Characterization of parallel-transport operators of K3[n]-type

In sections 9.1.1, 9.1.2, and 9.1.3, we provide three useful characterizations of the
monodromy group Mon2(X) of an irreducible holomorphic symplectic manifold of
K3[n]-type. Given X1 and X2 of K3[n]-type, we state in section 9.1.4 a necessary
and sufficient condition for an isometry g : H2(X1,Z)→ H2(X2,Z) to be a parallel-
transport operator.

9.1.1 First two characterizations of Mon2(K3[n])

Let X be an irreducible holomorphic symplectic manifold of K3[n]-type. If n = 1,
then X is a K3 surface. In that case it is well known that Mon2(X) = O+H2(X ,Z)
(see [Bor]). From now on we assume that n≥ 2.

Given a class u ∈ H2(X ,Z), with (u,u) 6= 0, let Ru : H2(X ,Q) → H2(X ,Q)

be the reflection Ru(λ ) = λ − 2(u,λ )
(u,u) u. Set ρu :=

{
Ru if (u,u) < 0,

−Ru if (u,u) > 0.
Then ρu be-

longs to O+H2(X ,Q). Note that ρu is an integral isometry, if (u,u) = 2 or −2. Let
N ⊂O+H2(X ,Z) be the subgroup generated by such ρu.

N := 〈ρu : u ∈ H2(X ,Z) and (u,u) = 2 or (u,u) =−2〉. (9.1)

Clearly, N is a normal subgroup.

Theorem 9.1 ([Ma5], Theorem 1.2) Mon2(X) = N .

A second useful description of Mon2(X) depends on the fact that the lattice
H2(X ,Z) is isometric to the orthogonal direct sum

Λ := E8(−1)⊕E8(−1)⊕U⊕U⊕U⊕Zδ ,
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where E8(−1) is the negative definite (unimodular) E8 root lattice, U is the rank 2
unimodular lattice of signature (1,1), and (δ ,δ ) = 2−2n. See [Be1] for a proof of
this fact.

Set Λ∗ := Hom(Λ ,Z). Then Λ∗/Λ is a cyclic group of order 2n− 2. Let
O(Λ ∗/Λ ) be the subgroup of Aut(Λ ∗/Λ ) consisting of multiplication by all el-
ements of t ∈ Z/(2n− 2)Z, such that t2 = 1. Then O(Λ ∗/Λ ) is isomorphic to
(Z/2Z)r, where r is the number of distinct primes in the prime factorization
n−1 = pd1

1 · · · pdr
r of n−1 (see [Ogu]). The isometry group O(Λ ) acts on Λ ∗/Λ and

the image of O+(Λ ) in Aut(Λ ∗/Λ ) is equal to O(Λ ∗/Λ ) ([Ni], Theorem 1.14.2).

Let π : O+(Λ)→O(Λ∗/Λ ) be the natural homomorphism. The following char-
acterization of the monodromy group follows from Theorem 9.1 via lattice theoretic
arguments.

Lemma 9.2 ([Ma5], Lemma 4.2) Mon2(X) is equal to the inverse image via π of
the subgroup {1,−1} ⊂O(Λ ∗/Λ ).

We conclude that the index of Mon2(X) in O+H2(X ,Z) is 2r−1, and
Mon2(X) = O+H2(X ,Z), if and only if n = 2 or n− 1 is a prime power. If n = 7,
for example, then Mon2(X) has index two in O+H2(X ,Z).

9.1.2 A third characterization of Mon2(K3[n])

The third characterization of Mon2(X) is more subtle, as it depends also on
H4(X ,Z). It is however this third characterization that will generalize to the case
of parallel transport operators.

Given a K3 surface S, denote by K(S) the integral K-ring generated by the classes
of complex topological vector bundles over S. Let χ : K(S)→ Z be the Euler char-
acteristic χ(x) =

∫
S ch(x)tdS. Given classes x,y ∈ K(S), let x∨ be the dual class and

set
(x,y) := −χ(x∨⊗ y). (9.2)

The above yields a unimodular symmetric bilinear pairing on K(S), called the Mukai
pairing [Mu1]. The lattice K(S), endowed with the Mukai pairing, is isometric to
the orthogonal direct sum

Λ̃ := E8(−1)⊕E8(−1)⊕U⊕U⊕U⊕U

and is called the Mukai lattice.
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Let Q4(X ,Z) be the quotient of H4(X ,Z) by the image of the cup prod-
uct homomorphism ∪ : H2(X ,Z) ⊗ H2(X ,Z) → H4(X ,Z). Clearly, Q4(X ,Z)
is a Mon(X)-module, and it comes with a pure integral Hodge structure of
weight 4. Let q : H4(X ,Z) → Q4(X ,Z) be the natural homomorphism and set
c̄2(X) := q(c2(T X)).

Theorem 9.3 ([Ma5], Theorem 1.10) Let X be of K3[n]-type, n≥ 4.

(1) Q4(X ,Z) is a free abelian group of rank 24.

(2) The element 1
2 c̄2(X) is an integral and primitive class in Q4(X ,Z).

(3) There exists a unique symmetric, even, integral, unimodular, Mon(X)-invariant

bilinear pairing (•,•) on Q4(X ,Z), such that
(

c̄2(X)
2 , c̄2(X)

2

)
= 2n− 2. The re-

sulting lattice
[
Q4(X ,Z),(•,•)

]
is isometric to the Mukai lattice Λ̃ .

(4) The Mon(X)-module Hom
[
H2(X ,Z),Q4(X ,Z)

]
contains a unique integral

rank 1 saturated Mon(X)-submodule

E(X),

which is a sub-Hodge structure of type (1,1). A generator e ∈ E(X) induces a
Hodge-isometry

e : H2(X ,Z) −→ c̄2(X)⊥

onto the co-rank 1 sublattice of Q4(X ,Z) orthogonal to c̄2(X).

Parts (1), (3), and (4) of the Theorem are explained in the following section
9.1.3.

Denote by O(Λ ,Λ̃ ) the set of primitive isometric embeddings of the K3[n]-lattice
Λ into the Mukai lattice Λ̃ . The isometry groups O(Λ ) and O(Λ̃) act on O(Λ ,Λ̃ ).
The action on ι ∈ O(Λ ,Λ̃ ), of elements g ∈ O(Λ ), and f ∈ O(Λ̃ ), is given by
(g, f )ι = f ◦ ι ◦g−1.

Lemma 9.4 ([Ma5], Lemma 4.3) O+(Λ )×O(Λ̃ ) acts transitively on O(Λ ,Λ̃ ). The
subgroup N ⊂ O+(Λ ), given in (9.1), is equal to the stabilizer in O+(Λ ) of every
point in the orbit space O(Λ ,Λ̃ )/O(Λ̃ ).
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The lemma implies that O(Λ ,Λ̃ ) is a finite set of order [N : O+(Λ )]. The fol-
lowing is our third characterization of Mon2(X).

Corollary 9.5

(1) An irreducible holomorphic symplectic manifold X of K3[n]-type, n≥ 2, comes
with a natural choice of an O(Λ̃ )-orbit ιX of primitive isometric embeddings of
H2(X ,Z) in the Mukai lattice Λ̃ .

(2) The subgroup Mon2(X) of O+[H2(X ,Z)] is equal to the stabilizer of ιX as an

element of the orbit space O
(

H2(X ,Z),Λ̃
)

/O(Λ̃ ).

Proof Part (1): If n = 2, or n = 3, then O(Λ ,Λ̃) is a singleton, and there is nothing to
prove. Assume that n≥ 4. Let e : H2(X ,Z)→Q4(X ,Z) be one of the two generators
of E(X). Choose an isometry g : Q4(X ,Z)→ Λ̃ . This is possible by Theorem 9.3.
Set ι := g◦e : H2(X ,Z)→ Λ̃ and let ιX be the orbit O(Λ̃)ι . Then ιX is independent
of the choice of g. If we choose −e instead we get the same orbit, since −1 belongs
to O(Λ̃ ).

Part (2): Follows immediately from Theorem 9.1 and Lemma 9.4. 2

Example 9.6 Let S be a projective K3 surface, H an ample line bundle on S, and
v ∈ K(S) a class in the K-group. Denote by MH(v) the moduli space of Gieseker-
Maruyama-Simpson H-stable coherent sheaves on S of class v. A good reference
about these moduli spaces is the book [HL]. Assume that MH(v) is smooth and
projective (i.e., we assume that every H-semi-stable sheaf is automatically also H-
stable). Then MH(v) is known to be connected and of K3[n]-type, by a theorem due
to Mukai, Huybrechts, O’Grady, and Yoshioka. It can be found in its final form in
[Y2].

Let πi be the projection from S×MH(v) onto the i-th factor, i = 1,2. Denote by
π2! : K[S×MH(v)]→ K[MH(v)] the Gysin map and by π!

1 : K(S)→ K[S×MH(v)]
the pull-back homomorphism. Assume, further, that there exists a universal sheaf E

over S×MH(v). Let [E ] ∈ K[S×MH(v)] be the class of the universal sheaf in the
K-group. We get the natural homomorphism

u : K(S) → K(MH(v)), (9.3)

given by u(x) := π2!

{
π !

1(x
∨)⊗ [E ]

}
. Let v⊥ ⊂ K(S) be the co-rank 1 sub-lattice of

K(S) orthogonal to the class v and consider Mukai’s homomorphism

θ : v⊥ −→ H2(MH(v),Z), (9.4)
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given by θ(x) = c1 [u(x)]. Then θ is an isometry, with respect to the Mukai pairing
on v⊥, and the Beauville-Bogomolov pairing on H2(MH(v),Z), by the work of
Mukai, Huybrechts, O’Grady, and Yoshioka [Y2]. Furthermore, the orbit ιMH (v) of
Corollary 9.5 is represented by the inverse of θ

ιMH (v) = O[K(S)] ·θ−1, (9.5)

by ([Ma5], Theorem 1.14).

9.1.3 Generators for the cohomology ring H∗(X ,Z)

Part (1) of Theorem 9.3 is a simple consequence of the following result. Consider
the case, where X is a moduli space M of H-stable sheaves on a K3 surface S and
M is of K3[n]-type, as in Example 9.6. Choose a basis {x1,x2, . . . ,x24} of K(S). Let
u : K(S)→ K(M) be the homomorphism given in equation (9.3).

Theorem 9.7 ([Ma4], Theorem 1) The cohomology ring H∗(M,Z) is generated
by the Chern classes c j(u(xi)), for 1 ≤ i ≤ 24, and for j an integer in the range
0≤ j ≤ 2n.

The map ϕ̃ : K(S)→ H4(M,Z), given by ϕ̃(x) = c2(u(x)), is not a group ho-
momorphism. Nevertheless, the composition ϕ := q ◦ ϕ̃ : K(S)→ Q4(M,Z), of ϕ̃

with the projection q : H4(M,Z)→Q4(M,Z), is a homomorphism of abelian groups
([Ma4], Proposition 2.6). We note here only that 2ϕ is clearly a group homomor-
phism, since 2c2(y) = c2

1(y)−2ch2(y), the map 2ch2 : K(M)→ H4(M,Z) is known
to be a group homomorphism, and the term c2

1(y) is annihilated by the projection to
Q4(M,Z).

Part (1) of Theorem 9.3 follows from the fact that ϕ is an isomorphism. The
homomorphism ϕ is surjective, by Theorem 9.7. It remains to prove that ϕ is in-
jective. Injectivity would follow, once we show that Q4(M,Z) has rank 24. Now
cup product induces an injective homomorphism Sym2 H2(M,Q) → H4(M,Q),
for any irreducible holomorphic symplectic manifold of dimension ≥ 4, by
a general result of Verbitsky [Ver1]. When n ≥ 4, i.e., dimC(M) ≥ 8, then
dimH4(M,Q)−dimSym2 H2(M,Q) = 24, by Göttsche’s formula for the Betti num-
bers of S[n] [Gö]. Hence, the rank of Q4(M,Z) is 24.

The bilinear pairing on Q4(M,Z), constructed in part (3) of Theorem 9.3, is sim-
ply the push-forward via the isomorphism ϕ of the Mukai pairing on K(S). We then
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show that this bilinear pairing is monodromy invariant, hence it defines a bilinear
pairing on Q4(X ,Z), for any X of K3[n]-type.

The isometric embedding e : H2(M,Z)→ Q4(M,Z), constructed in part (4) of
Theorem 9.3, is simply the composition ϕ ◦θ−1, where θ is given in equation (9.4).
We show that the composition is Mon(M)-equivariant, up to sign, hence defines the
Mon(X)-submodule E(X) in part (4) of Theorem 9.3, for any X of K3[n]-type.

9.1.4 Parallel transport operators of K3[n]-type

Let X1 and X2 be irreducible holomorphic symplectic manifolds of K3[n]-type. De-
note by ιXi the natural O(Λ̃)-orbit of primitive isometric embedding of H2(Xi,Z)
into the Mukai lattice Λ̃ , given in Corollary 9.5.

Theorem 9.8 An isometry g : H2(X1,Z)→ H2(X2,Z) is a parallel-transport oper-
ator, if and only if g is orientation preserving and

ιX1 = ιX2 ◦g. (9.6)

Proof Assume first that g is a parallel-transport operator. Then g lifts to a parallel-
transport operator g̃ : H∗(X1,Z)→ H∗(X2,Z). Now g̃ induces a parallel-transport
operators g̃4 : Q4(X1,Z)→Q4(X2,Z), as well as

Adg̃ : Hom
[
H2(X1,Z),Q4(X1,Z)

]
−→ Hom

[
H2(X2,Z),Q4(X2,Z)

]
,

given by f 7→ g̃4 ◦ f ◦g−1. We have the equality Adg̃(EX1) = EX2 , by the characteri-
zation of the Mon(Xi)-module E(Xi) provided in Theorem 9.3. Hence, the equality
(9.6) holds, by construction of ιXi .

Conversely, assume that the isometry g satisfies the equality (9.6). There exists a
parallel-transport operator f : H2(X1,Z)→H2(X2,Z), since X1 and X2 are deforma-
tion equivalent. Hence, the equality ιX1 = ιX2 ◦ f holds, as well. We get the equality
ιX1 = ιX1 ◦ f−1g. We conclude that f−1g belongs to Mon2(X1), by Corollary 9.5.
The equality g = f ( f−1g) represents g as a composition of two parallel-transport
operators. Hence, g is a parallel-transport operator. 2

The following statement is an immediate corollary of Theorems 1.3 and 9.8.

Corollary 9.9 Let X and Y be two manifolds of K3[n]-type.
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(1) X and Y are bimeromorphic, if and only if there exists a Hodge-isometry
f : H2(X ,Z)→H2(Y,Z), satisfying ιX = ιY ◦ f .

(2) X and Y are isomorphic, if and only if there exists a Hodge-isometry f as in
part (1), which maps some Kähler class of X to a Kähler class of Y .

We do not require f in part (1) to be orientation preserving, since if it is not then
− f is, and the orbits ιY ◦ f and ιY ◦ (− f ) are equal.

Let τ be the set of connected components of the moduli space of marked pairs
(X ,η), where X is of K3[n]-type, and η : H2(X ,Z)→ Λ is an isometry. Denote by
Mτ

Λ
the moduli space of isomorphism classes of marked pairs (X ,η), where X is

of K3[n]-type. The group O(Λ) acts on the set τ and the stabilizer of a connected
component Mt

Λ
, t ∈ τ , is the monodromy group Mon2(Mt

Λ
) ⊂ O(Λ ) (Definition

7.2). Let
orb : Mτ

Λ → O(Λ ,Λ̃ )/O(Λ̃ )

be the map given by (X ,η) 7→ ιX ◦η
−1. Let orient : Mτ

Λ
→ Orient(Λ ) be the map

given in equation (4.2). The characterization of the monodromy group in Corollary
9.5 yields the following enumeration of τ .

Corollary 9.10 The map (orb,orient) : Mτ
Λ
→O(Λ ,Λ̃)/O(Λ̃ )×Orient(Λ ) factors

through a bijection

τ → O(Λ ,Λ̃)/O(Λ̃ )×Orient(Λ ).

9.2 A numerical determination of the fundamental exceptional
chamber

Definition 9.11 A class `∈H1,1(X ,Z) is called monodromy-reflective, if ` is a prim-
itive class, (`,`) < 0, and R` is a monodromy operator. A holomorphic line bun-
dle L ∈ Pic(X) is called monodromy-reflective, if the class c1(L) is monodromy-
reflective.

Let X be a manifold of K3[n]-type, n ≥ 2. In section 9.2.1 we classify
monodromy-orbits of monodromy-reflective classes. This is done in terms of ex-
plicitly computable monodromy invariants. In section 9.2.2 we describe the values
of the monodromy invariants, for which the monodromy-reflective class is stably
prime-exceptional (Theorem 9.17). When X is projective Theorems 6.17 and 9.17
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combine to provide a determination of the closure BK X of the birational Kähler
cone in CX in terms of explicitly computable invariants.

9.2.1 Monodromy-reflective classes of K3[n]-type

Set Λ := H2(X ,Z). Recall that if ` ∈ Λ is monodromy-reflective, then R` acts on
Λ ∗/Λ via multiplication by ±1 (Lemma 9.2). The set of monodromy-reflective
classes is determined by the following statement.

Proposition 9.12 ([Ma7], Proposition 1.5) Let ` ∈H2(X ,Z) be a primitive class of
negative degree (`,`) < 0. Then R` belongs to Mon2(X), if and only if ` has one of
the following two properties.

(1) (`,`) =−2.

(2) (`,`) = 2−2n, and (n−1) divides the class (`,•) ∈ H2(X ,Z)∗.

R` acts on Λ/Λ ∗ as the identity in case (1), and via multiplication by −1 in case
(2).

Given a primitive class e ∈H2(X ,Z), we denote by div(e,•) the largest positive
integer dividing the class (e,•)∈H2(X ,Z)∗. Let Rn(X)⊂H2(X ,Z) be the subset of
primitive classes of degree 2− 2n, such that n−1 divides div(e,•). Let ` ∈Rn(X)
and choose an embedding ι : H2(X ,Z) ↪→ Λ̃ in the natural orbit ιX provided by
Corollary 9.5. Choose a generator v ∈ Λ̃ of the rank 1 sublattice orthogonal to the
image of ι . Set e := ι(`) and let

L⊂ Λ̃ (9.7)

be the saturation of the rank 2 sublattice spanned by e and v.

Definition 9.13 Two pairs (Li,ei), i = 1,2, each consisting of a lattice Li and a class
ei ∈ Li, are said to be isometric, if there exists an isometry g : L1 → L2, such that
g(e1) = e2.

Given a rank 2 lattice L, let In(L) ⊂ L be the subset of primitive classes e with
(e,e) = 2−2n.

Lemma 9.14 There exists a natural one-to-one correspondence between the orbit
set In(L)/O(L) and the set of isometry classes of pairs (L′,e′), such that L′ is iso-
metric to L and e′ is a primitive class in L′ with (e′,e′) = 2−2n.
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Proof Let P(L,n) be the set of isometry classes of pairs (L′,e′) as above. Define
the map f : P(L,n)→ In(L)/O(L) as follows. Given a pair (L′,e′) representing
a class in P(L,n), choose an isometry g : L′ → L and set f (L′,e′) := O(L)g(e′).
The map f is well defined, since the orbit O(L)g(e′) is clearly independent of
the choice of g. The map f is surjective, since given e ∈ In(L), f (L,e) = O(L)e.
If f (L1,e1) = f (L2,e2), then there exist isometries gi : Li → L and an element
h ∈ O(L), such that g2(e2) = hg1(e1). Then g−1

2 hg1 is an isometry from (L1,e1)
to (L2,e2). Hence, the map f is injective. 2

Let U be the unimodular hyperbolic plane. Let U(2) be the rank 2 lattice

with Gram matrix

(
0 −2
−2 0

)
and let D be the rank 2 lattice with Gram matrix(

−2 0
0 −2

)
.

Proposition 9.15 ([Ma7], Propositions 1.8 and 6.2)

(1) If (`,`) =−2 then the Mon2(X)-orbit of ` is determined by div(`,•).

(2) Let ` ∈Rn(X).

(1) The lattice L, given in (9.7), is isometric to one of the lattices U, U(2), or
D.

(2) Let f : Rn(X) −→ In(U)/O(U) ∪ In(U(2))/O(U(2)) ∪ In(D)/O(D)
be the function, sending a class ` to the isometry class of the pair (L, ι(`)).
Then the values div(`,•) and f (`) determine the Mon2(X)-orbit of `.

The values of the function f can be conveniently enumerated and calculated as
follows. Set e := ι(`) ∈ L. Let ρ be the largest integer, such that (e + v)/ρ is an
integral class of L. Let σ be the largest integer, such that (e− v)/σ is an integral
class of L. If div(`,•) = n−1 and n is even, set {r,s}(`) = {ρ,σ}. Otherwise, set
{r,s}(`) = { ρ

2 , σ

2 }. The unordered pair {r,s} := {r,s}(`) has the following proper-
ties.

Proposition 9.16 ([Ma7], Lemma 6.4)

(1) The isometry class of the lattice L and the product rs are determined in terms of
(`,`), div(`,•), n, and {ρ,σ} by the following table.
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(`,`) div(`,•) n ρσ L {r,s} r · s
1) 2−2n 2n−2 ≥ 2 4n−4 U { ρ

2 , σ

2 } n−1
2) 2−2n n−1 even n−1 D {ρ,σ} n−1
3) 2−2n n−1 odd 2n−2 U(2) { ρ

2 , σ

2 } (n−1)/2
4) 2−2n n−1 ≡ 1 modulo 8 n−1 D { ρ

2 , σ

2 } (n−1)/4

(2) The pair {r,s} consists of relatively prime positive integers. All four rows in
the above table do occur, and every relatively prime decomposition {r,s} of the
integer in the rightmost column occurs, for some ` ∈Rn(X).

(3) If ` ∈Rn(X), then div(`,•) and {r,s}(`) determine the Mon2(X)-orbit of `.

9.2.2 Stably prime-exceptional classes of K3[n]-type

Theorem 9.17 ([Ma7], Theorem 1.12). Let κ ∈ H1,1(X ,R) be a Kähler class and
L a monodromy reflective line bundle. Set ` := c1(L). Assume that (κ, `) > 0.

(1) If (`,`) =−2, then Lk is stably prime-exceptional, where

k =


2, if div(`,•) = 2 and n = 2,

1, if div(`,•) = 2 and n > 2,

1 if div(`,•) = 1.

(2) If div(`,•) = 2n − 2 and {r,s}(`) = {1,n − 1}, then L2 is stably prime-
exceptional.

(3) If div(`,•) = 2n− 2 and {r,s}(`) = {2,(n− 1)/2}, then L is stably prime-
exceptional.

(4) If div(`,•) = n−1, n is even, and {r,s}(`) = {1,n−1}, then L is stably prime-
exceptional.

(5) If div(`,•) = n− 1, n is odd, and {r,s}(`) = {1,(n− 1)/2}, then L is stably
prime-exceptional.

(6) In all other cases, H0(Lk) vanishes, and so Lk is not stably prime-exceptional,
for every non-zero integer k.

When X is projective Proposition 9.12 and Theorem 9.17 determine the set
Spe ⊂ H1,1(X ,Z), of stably prime-exceptional classes, and hence also the funda-
mental exceptional chamber FEX , by Proposition 6.10.
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The proof of Theorem 9.17 has two ingredients. First we deform the pair (X ,L)
to a pair (M,L1), where M is a moduli space of sheaves on a projective K3 surface,
and L1 is a monodromy-reflective line bundle with the same monodromy invariants.
Then L is stably prime-exceptional, if and only if L1 is, by Proposition 6.6. We then
laboriously check an example, one for each value of the monodromy invariants n,
(`,`), div(`,•), and {r,s}(`), and show that either R` is induced by a birational map
f : M→M, such that f ∗(L1) = L−1

1 , or that the linear system |Lk
1| consists of a single

prime exceptional divisor, for the power k prescribed by Theorem 9.17.

The two possible values of the degree −2 or 2− 2n, of a prime exceptional
divisor, correspond to two types of well known constructions in the theory of moduli
spaces of sheaves on a K3 surface S. We briefly describe these constructions below.

Pairs (M,OM(E)), where M := MH(v) is a moduli space of H-stable coher-
ent sheaves of class v ∈ K(S), and E is a prime exceptional divisor of Beauville-
Bogomolov degree −2, arise as follows. The Mukai isometry (9.4) associates to the
line bundle OM(E) a class e ∈ v⊥, with (e,e) = −2. In the examples considered in
[Ma7], e is the class of an H-stable sheaf F on S. Such a sheaf is necessarily rigid,
i.e., Ext1(F,F) = 0. Indeed,

dimExt1(F,F) = dimHom(F,F)+dimExt2(F,F)− χ(F∨⊗F) = 1+1−2 = 0.

Furthermore, the moduli space MH(e) is connected, by a theorem of Mukai, and
consists of the single point {F} (see [Mu1]). The prime exceptional divisor E is the
Brill-Noether locus

{V ∈MH(v) : dimExt1(F,V ) > 0}.

Specific examples are easier to describe using Mukai’s notation. Recall Mukai’s
isomorphism

ch(•)
√

tdS : K(S) −→ H∗(S,Z), (9.8)

sending a class v ∈ K(S) to the integral singular cohomology group. Let
D : H∗(S,Z)→ H∗(S,Z) be the automorphism acting by (−1)i on H2i(S,Z). The
homomorphism (9.8) is an isometry once we endow H∗(S,Z) with the pairing

(x,y) := −
∫

S
D(x)∪ y,

by the Hirzebruch-Riemann-Roch theorem and the definition of the Mukai pairing
in equation (9.2). We have ch(v)

√
tdS = (r,c1(v),s), where r = rank(v), s = χ(v)−r,

and we identify H0(S,Z) and H4(S,Z) with Z, using the classes Poincaré-dual to
S and to a point. Given two classes vi ∈ K(S), with rank(vi) = ri, c1(vi) = αi, and
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si := χ(vi)− ri, then

(v1,v2) =
(∫

S
α1α2

)
− r1s2− r2s1.

Example 9.18 Following is a simple example in which a prime exceptional divisor
E of degree −2 and divisibility div([E],•) = 1 is realized as a Brill-Noether locus.
Consider a K3 surface S, containing a smooth rational curve C. Consider the Hilbert
scheme M := S[n] as the moduli space of ideal sheaves of length n subschemes. Let
F be the torsion sheaf OC(−1), supported on C as a line bundle of degree −1. Let
v ∈ K(S) be the class of an ideal sheaf in S[n] and e the class of F . The Mukai
vector of v is (1,0,1− n), that of e is (0, [C],0), and (v,e) = 0. Let E ⊂ M be the
divisor of ideal sheaves IZ of subscheme Z with non-empty intersection Z∩C. The
space Hom(F, IZ) vanishes for all IZ ∈M, and so dimExt1(F, IZ) = dimExt2(F, IZ),
for all IZ ∈M. Now, Ext2(F, IZ) ∼= Hom(IZ ,F)∗ vanishes, if and only if Z∩C = /0.
Hence, Ext1(F, IZ) 6= 0, if and only if IZ belongs to E. See [Ma1, Y1] for many more
examples of prime exceptional divisors E of degree −2 and div([E],•) = 1. See
[Ma7], Lemma 10.7 for the case (e,e) =−2, div(e,•) = 2, and n≡ 2 modulo 4.

Jun Li constructed a birational morphism from the moduli space of Gieseker-
Maruyama H-stable sheaves on a K3 surface to the Uhlenbeck-Yau compactification
of the moduli space of H-slope-stable locally-free sheaves [Li]. The examples of
prime exceptional divisors of degree 2−2n on a moduli space of sheaves, provided
in [Ma7], were all constructed as exceptional divisors for Jun Li’s morphism.

Example 9.19 The simplest example is the Hilbert-Chow morphism, from the
Hilbert scheme S[n], n ≥ 2, to the symmetric product S(n) of a K3 surface S,
where the exceptional divisor E is the big diagonal. The Mukai vector of the ideal
sheaf is v = (1,0,1− n). In this case [E] = 2δ , where δ = (1,0,n− 1). Note
that (δ ,δ ) = 2− 2n. The second cohomology of S[n] is an orthogonal direct sum
H2(S,Z)⊕Zδ , by [Be1] or by Mukai’s isometry (9.4). Hence, div(δ ,•) = 2n− 2.
The largest integer ρ dividing δ +v = (2,0,0) is 2 and the largest integer σ dividing
δ − v = (0,0,2n− 2) is 2n− 2. Hence, {r,s}(δ ) = {1,n− 1}, by Proposition 9.16
and Equation (9.5).

Example 9.20 Consider, more generally, the moduli space MH(r,0,−s) of H-stable
sheaves with Mukai vector v = (r,0,−s), satisfying s > r≥ 1 and gcd(r,s) = 1. Then
MH(r,0,−s) is of K3[n]-type, n = rs+1. The Mukai vector e := (r,0,s) ∈ v⊥ maps
to a monodromy-reflective class ` ∈ H2(MH(v),Z) of degree (`,`) = 2− 2n, divis-
ibility div(`,•) = 2n− 2, and {r,s}(`) = {r,s}, by Proposition 9.16 and Equation
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(9.5). When r = 2, ` is the class of the exceptional divisor E of Jun Li’s morphism.
E is the locus of sheaves, which are not locally-free or not H-slope-stable ([Ma7],
Lemma 10.16). When r > 2, the exceptional locus has co-dimension ≥ 2, and no
multiple of the class ` is effective. Instead, the reflection R` is induced by the bi-
rational map f : MH(r,0,−s)→MH(r,0,−s), sending a locally-free H-slope stable
sheaf F of class (r,0,−s) to the dual sheaf F∗ ([Ma7], Proposition 11.1).

Remark 9.21 Fix an integer n > 0, such that n−1 is not a prime power, and consider
all possible factorizations n− 1 = rs, with s > r ≥ 1 and gcd(r,s) = 1. The sub-
lattice (r,0,−s)⊥ of the Mukai lattice of a K3 surface S is the orthogonal direct sum
H2(S,Z)⊕Z(r,0,s). We get the isometry

θ : H2(S,Z)⊕Z(r,0,s) −→ H2 (MH(r,0,−s),Z) ,

using Mukai’s isometry given in equation (9.4). Let n− 1 = r1s1 = r2s2 be two
different such factorizations. Then the two moduli spaces MH(r1,0,−s1) and
MH(r2,0,−s2), considered in Example 9.20, come with a natural Hodge isometry

g : H2(MH(r1,0,−s1),Z) −→ H2(MH(r2,0,−s2),Z),

which restricts as the identity on the direct summand θ
(
H2(S,Z)

)
and

maps the class `1 := θ(r1,0,s1) ∈ H2(MH(r1,0,−s1),Z) to the class
`2 := θ (r2,0,s2) ∈ H2(MH(r2,0,−s2),Z). The Hodge isometry g is not a
parallel-transport operator, since the monodromy-invariants {r,s}(`i) = {ri,si}
are distinct. Indeed, these moduli spaces are not birational in general ([Ma5],
Proposition 4.10). Furthermore, if n−1 = rs is such a factorization with r > 2, then
the birational Kähler cones BKS[n] and BKMH (r,0,−s) are not isometric in general.
Indeed, S[n] admits a stably prime-exceptional class, while MH(r,0,−s) does not,
for a K3 surface with a suitably chosen Picard lattice.

10 Open problems

Following is a very brief list of central open problems closely related to this survey.
See [Be2] for a more complete recent survey of open problems in the subject of
irreducible holomorphic symplectic manifolds.

Question 10.1 Let X be one of the known examples of irreducible holomorphic
symplectic manifolds, i.e., of K3[n]-type, a generalized Kummer variety, or one of
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the two exceptional examples of O’Grady [O’G2, O’G3]. Let Y be an irreducible
holomorphic symplectic manifold, with H2(Y,Z) isometric to H2(X ,Z). Is Y nec-
essarily deformation equivalent to X?

Let Λ be a lattice isometric to H2(X ,Z). At present it is only known that the
number of deformation types of irreducible holomorphic symplectic manifolds of
a given dimension 2n, and with second cohomology lattice isometric to Λ , is finite
[Hu4]. The moduli space MΛ , of isomorphism classes of marked pairs (X ,η), with
X of dimension 2n and η : H2(X ,Z)→Λ an isometry, has finitely many connected
components, by Huybrechts’ result and Lemma 7.5. O’Grady has made substan-
tial progress towards the proof of uniqueness of the deformation type in case the
dimension is 4 and the lattice Λ is of K3[2]-type [O’G5].

Problem 10.2 Let X be an irreducible holomorphic symplectic manifold of K3[n]-
type, n≥ 2. Determine the Kähler-type chamber (Definition 5.10) in the fundamental
exceptional chamber FEX of X, containing a given very general class α ∈FEX , in
terms of the weight 2 integral Hodge structure H2(X ,Z), the Beauville-Bogomolov
pairing, and the orbit ιX of isometric embeddings of H2(X ,Z) in the Mukai lattice,
given in Corollary 9.5.

Note that the data specified in Problem 10.2 determines the isomorphism class
of an irreducible holomorphic symplectic manifold Y , bimeromorphic to X , and an
Aut(X)×Aut(Y )-orbit10 of a bimeromorphic map f : Y → X , such that f ∗(α) is
a Kähler class on Y , by Corollaries 5.7 and 9.9. The homomorphism f ∗ takes the
Kähler-type chamber in Problem 10.2 to KY . Hassett and Tschinkel formulated a
precise conjectural solution to problem 10.2 [HT4]. The Kähler cone, according to
their conjecture, does not depend on the orbit ιX . The birational Kähler cone does,
as we saw in Remark 9.21.

Problem 10.3 Find an explicit necessary and sufficient condition for a Hodge isom-
etry g : H2(X ,Z)→ H2(Y,Z) to be a parallel-transport operator, in the case X and
Y are deformation equivalent to generalized Kummer varieties, or to O’Grady’s two
exceptional examples.

Problem 10.4 Let X be deformation equivalent to a generalized Kummer variety,
or to one of O’Grady’s two exceptional examples. Find an explicit necessary and
sufficient condition for a class ` ∈ H1,1(X ,Z) to be stably prime-exceptional (Defi-
nition 6.4).

10 The orbit of f is the set {g1 f g−1
2 : g1 ∈ Aut(X), g2 ∈ Aut(Y )}.
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Problem 10.4 is solved in the K3[n]-type case (Proposition 9.12 and Theorem
9.17). A solution to problem 10.4 yields a determination of the fundamental excep-
tional chamber FEX , by Proposition 1.8, and of the closure of the birational Kähler
cone, by Proposition 5.6. Once solutions to Problems 10.3 and 10.4 are provided,
the analogue of Problem 10.2 may be formulated as well.

Question 10.5 Is the monodromy group Mon2(X), of an irreducible holomorphic
symplectic manifold X , necessarily a normal subgroup of the isometry group of
H2(X ,Z)?

Let X be a generalized Kummer variety of dimension 2n, n≥ 2. Then H2(X ,Z)
is isometric to the lattice Λ := U ⊕U⊕U⊕Zδ , where U is the unimodular rank 2
lattice of signature (1,1), and (δ ,δ ) =−2−2n (see [Be1, Y2]).

Conjecture 10.6 Mon2(X) is equal to the subgroup N (X) of the signed isome-
try group O+H2(X ,Z), generated by products of an even number of reflections
R`1 · · ·R`2k , where (`i, `i) = 2, for an even number of indices i, and (`i, `i) = −2
for the rest of the indices i.

The inclusion N (X) ⊂ Mon2(X) was proven by the author in an unpublished
work. When n = 2, the equality N (X) = Mon2(X) follows from the Global Torelli
Theorem 2.2 and Namikawa’s counter example to the naive Hodge theoretic Torelli
statement [Nam2].

Let X be an irreducible holomorphic symplectic manifold deformation equiva-
lent to O’Grady’s 10-dimensional exceptional example [O’G2]. Then H2(X ,Z) is
isometric to the orthogonal direct sum of H2(S,Z)⊕G2, where S is a K3 surface,

and G2 is the negative definite root lattice of type G2, with Gram matrix

(
−2 3
3 −6

)
(see [R]). The isometry group O(G2) is equal to the Weyl group of G2 and its ex-
tension to H2(X ,Z), via the trivial action on H2(S,Z), is contained in Mon2(X), by
([Ma6], Lemma 5.1).

Conjecture 10.7 Mon2(X) = O+H2(X ,Z).

There are many examples of non-isomorphic K3 surfaces with equivalent
bounded derived categories of coherent sheaves [Or].

Question 10.8 Let X and Y be projective irreducible holomorphic symplectic man-
ifolds, such that H2(X ,Z) and H2(Y,Z) are Hodge isometric. Are their bounded
derived categories of coherent sheaves necessarily equivalent?
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When X = S[n]
1 and Y = S[n]

2 , where S1 and S2 are K3 surfaces, the answer to
Question 10.8 is affirmative (see the proof of [Pl], Proposition 10). See [Hu5] for a
survey on the topic of question 10.8.

Recall that a class ` ∈ H1,1(X ,Z) is monodromy-reflective, if it is a primitive
class, and the reflection R` is a monodromy operator (Definition 9.11).

Question 10.9 Let ` ∈H1,1(X ,Z) be a monodromy-reflective class. Is there always
some non-zero integer λ , such that the class λ (`,•) ∈H2(X ,Z)∗ ∼= H2(X ,Z) corre-
sponds to an effective one-cycle?

An affirmative answer to the above question implies that the reflection R` can
not be induced by a regular automorphism11 of X . It follows that the Kähler cone
is contained in a unique chamber of the subgroup of Mon2

Hdg(X) generated by all
reflections in Mon2

Hdg(X) (see Theorem 6.15).

Problem 10.10 Prove an analogue of Proposition 6.1, about birational con-
tractibility of a prime exceptional divisor, for non-projective irreducible holomor-
phic symplectic manifolds.

Druel’s proof of Proposition 6.1 relies on results in the minimal model program,
which are currently not available in the Kähler category [Dr].

Question 10.11 Let X be a projective irreducible holomorphic symplectic manifold.
Is the semi-group Σ , of effective divisor classes on X , equal to the semi-group Σ ′

generated by the prime exceptional classes and integral points on the closure BK X

of the birational Kähler cone in H1,1(X ,R)?

The answer is affirmative for any K3 surface, even without the projectivity as-
sumption ([BHPV], Ch. IIIV, Proposition 3.7). Stronger results hold true for projec-
tive K3 surfaces [Kov]. The inclusion Σ ⊂ Σ

′ is known in general, by the divisorial
Zariski decomposition (Theorem 5.8). The integral points of CX ∩BK X are known
to be contained in Σ . This is seen as follows. The integral points of the positive cone

11 A weaker version of this assertion, namely the non-existence of a fixed-point free such auto-
morphism g, is always true. Indeed, if g∗ = R`, and g is a fixed-point-free (necessarily symplectic)
automorphism, then g2 acts trivially on H2(X ,Z). Hence, g2 is an isometry with respect to a Kähler
metric. It follows that g has finite order, since it generates a discrete subgroup of the compact isom-
etry group. Thus, X/〈g〉 is a non simply connected holomorphic symplectic Kähler manifold, with
hk,0(X) = 1, for even k in the range 0 ≤ k ≤ dimC(X), and hk,0(X) = 0, otherwise. Such X does
not exist, by [HN], Proposition A.1.
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are known to correspond to big line bundles, by ([Hu1], Corollary 3.10). Each inte-
gral point of CX ∩BK X thus coresponds to a big and nef line bundle L on some
birational irreducible holomorphic symplectic manifold Y , by Theorems 5.4 and
6.17, and so the cohomology groups Hi(Y,L) vanish, for i > 0, by the Kawamata-
Viehweg vanishing theorem. Set ` := c1(L). If X is of K3[n]-type or deformation
equivalent to a generalized Kummer variety, then an explicit formula is known for
the Euler characteristic χ(L) of a line bundle L, in terms of its Beauville-Bogomolov
degree (`,`) ([Hu3], Examples 7 and 8). One sees, in particular, that χ(L) > 0, if
(`,`)≥ 0, and so L is effective.

An affirmative answer to Question 10.11 would thus follow, if one could prove
that nef line bundles with (`,`) = 0 are effective. Some experts conjectured that such
line bundles are related to Lagrangian fibrations ([Marku], Conjecture 1.7; [Saw],
Conjecture 1, [Ver3], Conjecture 1.7). We refer the reader also to the important
work of Matsushita on Lagrangian fibrations [Mat1, Mat2] and to the survey ([Be2],
section 1.6).

Question 10.12 Which components, of the moduli spaces of polarized projective ir-
reducible holomorphic symplectic manifolds, are unirational? Which are of general
type?

Gritsenko, Hulek, and Sankaran had studied this question for fourfolds X of
K3[2]-type, and for primitive polarizations h ∈ H2(X ,Z), with div(h,•) = 2. Let
(h,h) = 2d. They show that for d ≥ 12, the moduli space is of general type ([GHS1],
Theorem 4.1). They use the theory of modular forms to show that the quotient of
the period domain Ω

+
h⊥ , given in equation (4.1), by the polarized monodromy group

Mon2(X ,h), is of general type.

On the other hand, unirational components are those likely to admit explicit and
very beautiful geometric descriptions [BD, DV, IR, Mu2, O’G4].
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On singularities of generically immersive
holomorphic maps between complex hyperbolic
space forms
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Abstract In 1965, Feder proved using a cohomological identity that any holomor-
phic immersion τ : Pn → Pm between complex projective spaces is necessarily a
linear embedding whenever m < 2n. In 1991, Cao-Mok adapted Feder’s identity to
study the dual situation of holomorphic immersions between compact complex hy-
perbolic space forms, proving that any holomorphic immersion f : X → Y from an
n-dimensional compact complex hyperbolic space form X into any m-dimensional
complex hyperbolic space form Y must necessarily be totally geodesic provided
that m < 2n. We study in this article singularity loci of generically injective holo-
morphic immersions between complex hyperbolic space forms. Under dimension
restrictions, we show that the open subset U over which the map is a holomorphic
immersion cannot possibly contain compact complex-analytic subvarieties of large
dimensions which are in some sense sufficiently deformable. While in the finite-
volume case it is enough to apply the arguments of Cao-Mok, the main input of the
current article is to introduce a geometric argument that is completely local. Such a
method applies to f : X → Y in which the complex hyperbolic space form X is pos-
sibly of infinite volume. To start with we make use of the Ahlfors-Schwarz Lemma,
as motivated by recent work of Koziarz-Mok, and reduce the problem to the local
study of contracting leafwise holomorphic maps between open subsets of complex
unit balls. Rigidity results are then derived from a commutation formula on the com-
plex Hessian of the holomorphic map.
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In 1965, Feder [Fe65] proved that any holomorphic immersion τ : Pn → Pm

between complex projective spaces is necessarily a linear embedding whenever
m < 2n. He did this by using Whitney’s formula on Chern classes associated to
the tangent sequence of the holomorphic map, thereby proving that the degree
of τ∗ : H2(Pn,Z) → H2(Pm,Z) must be 1 under the dimension restriction, not-
ing that the restriction m < 2n forces the vanishing of the n-th Chern class of
the normal bundle of the holomorphic immersion. An adaptation of Feder’s iden-
tity was used by Cao-Mok [CM91] to study the Immersion Problem for the dual
situation of holomorphic immersions between compact complex hyperbolic space
forms. By an n-dimensional complex hyperbolic space form we mean the quotient
of the n-dimensional complex unit ball Bn by a torsion-free discrete group of au-
tomorphisms equipped with the complete Kähler metric induced by the canonical
complete Kähler-Einstein metric on Bn. By [CM91] any holomorphic immersion
f : X → Y from an n-dimensional compact complex hyperbolic space form X into
any m-dimensional complex hyperbolic space form Y must necessarily be totally
geodesic provided that m < 2n. A generalization of the latter result to the case of
complex hyperbolic space forms of finite volume was obtained by To [To93].

By the duality between the complex unit ball (Bn,ds2
Bn) equipped with the unique

complete Kähler-Einstein metric of constant holomorphic sectional curvature −K,
K > 0, and the projective space (Pn,ds2

FS) equipped with the Fubini-Study met-
ric of constant holomorphic sectional curvature equal to K, the total Chern class
of a complex hyperbolic space form is determined by its first Chern class. Given a
holomorphic immersion between complex hyperbolic space forms, the first Chern
class can be represented by the first Chern form induced on the domain manifold
from the canonical Kähler-Einstein metric of the target manifold via the immer-
sion. The main entity in the first Chern form is a nonnegative closed (1,1)-form
ρ which is derived from the second fundamental form σ on (1,0)-vectors of the
holomorphic immersion and which enjoys the property that the vanishing of ρ

means equivalently the vanishing of σ , i.e., the total geodesy of the immersion. The
adaptation by Cao-Mok [CM91] of Feder’s identity to the holomorphic immersion
f : X→Y between complex hyperbolic space forms, applied to the tangent sequence
0→ TX → f ∗TY → N → 0, where N stands for the normal bundle of the holomor-
phic immersion f , gives the vanishing ρn ≡ 0 when X is compact, n := dim(X) and
dim(Y ) := m < 2n, and the same holds true when X is noncompact and of finite vol-
ume by To [To93]. At a general point x of X the kernels of ρ were shown to define
a holomorphic foliation E on a neighborhood U of x the leaves of which are totally
geodesic complex submanifolds. This was shown to lead to a contradiction to the
fact that X is of finite volume unless the holomorphic foliation E is trivial.
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Recently, Feder’s identity has been applied by Koziarz-Mok [KM10] to the
Submersion Problem concerning holomorphic submersions between compact com-
plex hyperbolic space forms and more generally between complex hyperbolic space
forms of finite-volume. There, given a holomorphic submersion π : X →Y between
complex hyperbolic space forms, applying Feder’s identity instead to the cotangent
sequence 0→ π∗T ∗Y → T ∗X → T ∗π → 0, where Tπ = Ker(dπ) stands for the relative
tangent bundle π : X →Y , yields the vanishing µn−m+1 ≡ 0 for the closed nonnega-
tive (1,1)-form µ := ωX −π∗ωY , where ωX resp. ωY stands for the Kähler form on
X resp. on Y of the canonical Kähler-Einstein metric of constant holomorphic sec-
tional curvature −K, and the nonnegativity of µ follows from the Ahlfors-Schwarz
Lemma. Using the identity µn−m+1 ≡ 0 it was proven in [KM10] that there does
not exist any holomorphic submersion between compact complex hyperbolic space
forms, and the same was proven in the noncompact finite-volume case provided that
the base manifold is of complex dimension ≥ 2.

Motivated by the use of the Ahlfors-Schwarz Lemma in [KM10], in the current
article we re-visit the topic of holomorphic immersions f : X→Y between complex
hyperbolic space forms. In [CM91] the closed nonnegative (1,1)-form ρ represents
up to a positive constant the cohomology class −c1(X)

n+1 + f ∗c1(Y )
m+1 . The possibility of

representing the latter class by ρ ≥ 0 results from the constancy of holomorphic sec-
tional curvatures and from the monotonicity of holomorphic bisectional curvatures.
The holomorphicity of the foliation defined by Ker(ρ) then follows from the holo-
morphicity of the second fundamental form σ on (1,0)-vectors. On the other hand,
the cohomology class −c1(X)

n+1 + f ∗c1(Y )
m+1 is up to a positive constant represented by

µ := ωX − f ∗ωY ≥ 0. We will make use simultaneously of the closed nonnegative
(1,1)-forms ρ and µ . Motivated by results of [KM10] in the case of compact com-
plex hyperbolic space forms concerning critical values of surjective holomorphic
maps, we will study in this article singularity loci of generically injective holomor-
phic immersions between complex hyperbolic space forms. One of the main results
is applicable also to complex hyperbolic space forms of infinite volume. Under di-
mension restrictions, we will show that the open subset U over which the map is a
holomorphic immersion cannot possibly contain compact complex-analytic subva-
rieties of large dimensions which are in some sense sufficiently deformable.

For results in the finite-volume case it is enough to apply the arguments of Cao-
Mok [CM91]. First of all, when X is compact, we observe that the arguments of
Cao-Mok [CM91] already imply the estimate that dim(Sing( f ))≥ 2n−m−1 unless
f is totally geodesic. For the proof it suffices to restrict the tangent sequence to
linear sections of X (with respect to a projective embedding) which avoid Sing( f )
to deduce total geodesy of f whenever dim(Sing( f )) < 2n−m−1. In the case of a
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noncompact complex hyperbolic space form of finite volume the abundant supply of
linear sections avoiding Sing( f ) is guaranteed in the arithmetic case by the existence
of Satake-Borel-Baily compactifications [Sa60] and [BB66] obtained by adding a
finite number of normal isolated singularities, and in the non-arithmetic case by the
projective-algebraicity proven in [Mk10] of the complex-analytic compactification
obtained in Siu-Yau [SY82] by adding a finite number of points corresponding to
the finite number of ends.

As indicated in the above the dimension estimate on Sing( f ) breaks up into two
parts. The first half is cohomological. In more precise terms, assuming dim(Sing( f ))
< 2n−m− 1 there exists a q-dimensional compact complex submanifold S of
X ′ := X − Sing( f ) with q = n− (2n−m− 1) = m− n + 1 so that, denoting by
N the normal bundle of the holomorphic immersion f |X ′ : X ′ → Y we must have
cm−n+1(N)|S = 0 since rank(N) = m− n. Feder’s identity and the compactness of
S then forces the nonnegative (1,1)-form ρ|S to have a zero eigenvalue everywhere.
By varying S obtained from taking linear sections with respect to a projective em-
bedding one concludes that the closed nonnegative (1,1)-form ρ is degenerate ev-
erywhere on X . The second half of the argument is the same as in Cao-Mok [CM91]
and [To93] where one derives from the degeneracy of X a holomorphic foliation
on some nonempty connected open set by totally geodesic complex submanifolds
consisting of maximal integral submanifolds of Re(Ker(ρ)), and where in the proof
of the identical vanishing of ρ one requires the fact that the fundamental group of
X is a lattice in Aut(Bn). For the sake of brevity we will call the second half the
geometric argument.

The main input of the current article is to introduce a geometric argument that is
completely local. Such a method applies to f : X→Y where the complex hyperbolic
space form X is possibly of infinite volume, with a conclusion that X ′ cannot contain
a sufficiently deformable (m− n + 1)-dimensional compact complex-analytic sub-
variety, where by saying that a q-dimensional compact complex-analytic subvariety
S ⊂ X − Sing( f ) is sufficiently deformable we mean that points corresponding to
tangent q-planes of deformations of S fill up a nonempty open subset of the Grass-
mann bundle of q-planes on X .

Making use of the fact that
−c1(X)

∣∣
X ′

n+1 +
f ∗c1(Y )

∣∣
X ′

m+1 can be represented by a closed
nonnegative (1,1)-form ρ arising from the second fundamental form and another
closed nonnegative (1,1)-form µ encoding the failure of f to be an isometry, rein-
forcing the cohomological argument we obtain a holomorphic foliation on a non-
empty open subset U by totally geodesic submanifolds where f restricts to a totally
geodesic isometric embedding on each of the totally geodesic leaves. Unless ρ ≡ 0
or equivalently µ ≡ 0 we have obtained a nonempty open subset U of Bn, a holomor-
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phic foliation E on U by totally geodesic complex submanifolds and a holomorphic
embedding f of U into some Bm such that f is contracting (distance-decreasing)
and it is a totally geodesic isometric embedding when restricted to any leaf of E ,
and such that Ex = Re (Ker(ρ(x))) for any x ∈U . We call such a map f : U → Bm a
contracting leafwise totally geodesic holomorphic isometric embedding, where im-
plicitly the leaves are assumed to be defined by Re(Ker(ρ)). Under the dimension
restriction m ≤ 2n−4 we prove that no contracting leafwise totally geodesic holo-
morphic isometric embedding exists unless m = n, in which case f is nothing other
than a totally geodesic embedding. This is slightly short of giving a completely local
proof for the geometric argument in the dimension estimate for Sing( f ) even in the
case where X is compact, where we need the local argument of m≤ 2n−1.

Crucial to our geometric argument is a commutation formula concerning the
Hessian of the holomorphic map f , more precisely concerning ∇∂ f , the vanish-
ing of which is equivalent to the total geodesy of the map f . The commutation
formula applies to any contracting leafwise totally geodesic holomorphic isometric
embedding f : U → Bm. However, in the application of the commutation formula,
dimension counts are involved, which is the reason why the dimension restriction
m≤ 2n−4 is imposed. We expect that there is no nontrivial holomorphic embedding
f : U → Bm which is a contracting leafwise totally geodesic isometric embedding,
but the latter remains unproved for m≥ 2n−3.
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1 Background

By a complex hyperbolic space form we mean the quotient of the n-dimensional
complex unit ball Bn for some positive integer n by a torsion-free discrete group of
automorphisms equipped with the complete Kähler metric induced by the canonical
complete Kähler-Einstein metric on Bn. The total geodesy of holomorphic immer-
sions between complex hyperbolic space forms under dimension restrictions was
established in Cao-Mok [CM91] in the compact case and in [To93] in the noncom-
pact finite-volume case. Here the requirement of compactness or of the finiteness of
the volume is imposed only on the domain manifold.
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Theorem (Cao-Mok [CM91], To [To93]). Let n,m be positive integers such that
n ≥ 2 and m < 2n. Let Γ ⊂ Aut(Bn) be a torsion-free lattice of biholomorphic
automorphisms, X := Bn/Γ . Let Y be an n-dimensional complex hyperbolic space
form. Let f : X →Y be a holomorphic immersion. Then, f is totally geodesic.

The proofs of Cao-Mok [CM91] and To [To93] rely on a cohomological argu-
ment and a geometric argument. The starting point of the cohomological argument
is the vanishing of the n-th Chern class of the normal bundle of the holomorphic im-
mersion f : X → Y , given that the normal bundle is of rank m−n < n. The crux of
the cohomological argument is the following algebraic identity adapted from Feder
[Fe65], in which it was proven that any holomorphic immersion f : Pn → Pm is
linear whenever m < 2n.

Lemma 1. For the compact complex hyperbolic space form X = Bn/Γ let
α,β ∈ H2(X ,R). Suppose for 1 ≤ k ≤ n−m there exists γk ∈ H2k(X ,R) such that
(1+α)n+1 = (1+ γ1 + · · ·γn−m)(1+β )m+1. Then, (α−β )n−m+1 = 0.

In the cohomological argument, the main entity is a closed nonnegative (1,1)-
form ρ obtained from the second fundamental form of the holomorphic immersion
and enjoying the property that the second fundamental form vanishes identically if
and only if ρ ≡ 0. By the cohomological argument basing on Lemma 1 one con-
cludes that ρ

n ≡ 0 on X . We lift ρ to ρ̃ defined on some connected open subset
U ⊂ Bn holomorphically foliated by d-dimensional totally geodesic complex sub-
manifolds for some d, 1≤ d ≤ n. Completing these leaves to totally geodesic com-
plex submanifolds (which are d-dimensional affine-linear sections of Bn ⊂ Cn) we
obtain a subset S⊂ Bn swept out by such submanifolds, where S contains W ∩Bn for
some neighborhood W of a boundary point b ∈ ∂Bn. The closed nonnegative (1,1)-
form ρ̃ can be extended to W ∩Bn. The proofs of the results of Cao-Mok [CM91]
and To [To93] are completed by an argument by contradiction. This involves a geo-
metric argument concerning the boundary behavior of ρ̃ on W ∩Bn, where, assum-
ing that d < n, ρ̃ ≥ 0 is degenerate but not identically 0. From asymptotic properties
of the canonical Kähler-Einstein metric on complex unit balls the latter is shown to
be asymptotically of zero length as one approaches W ∩∂Bn. Given that π1(X) = Γ

is a lattice, the asymptotic vanishing of ρ̃ implies ρ ≡ 0, yielding a proof of the
theorem by contradiction.

In addition to holomorphic immersions there is naturally the problem of studying
holomorphic submersions between complex hyperbolic space forms. In this regard
Koziarz-Mok [KM10] has obtained recently the following result.

Theorem (part of Koziarz-Mok [KM10, Theorem 2]). Let n > m≥ 1. Let Z be an
m-dimensional compact complex hyperbolic space form. Let f : X → Z be a surjec-
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tive holomorphic map and denote by E ⊂ Z the smallest subvariety such that f is a
regular holomorphic fibration over Z−E. Then, E ⊂ Z is of complex codimension
1.

Normalizing the canonical Kähler-Einstein metrics on X resp. Z with Kähler
forms ωX resp. ωZ to be of constant holomorphic sectional curvature −K for
the same constant K > 0, the method of Koziarz-Mok [KM10] relies on Feder’s
identity as given in Lemma 1 and the use of a closed nonnegative (1,1)-form
µ := ωX − f ∗ωZ , where the nonnegativity of µ follows from the Ahlfors-Schwarz
Lemma.

Motivated by the above result of Koziarz-Mok [KM10] and the use of a different
type of closed nonnegative (1,1)-form µ basing on the Ahlfors-Schwaz Lemma, we
re-visit the study of holomorphic immersions between complex hyperbolic space
forms, generalizing the context to the study of generically immersive holomorphic
maps f : X → Y between complex hyperbolic space forms where neither X nor
Y is required to be of finite volume with respect to the canonical Kähler-Einstein
metric. Denoting by Sing( f ) the singular locus of such a map, we are led to con-
sider holomorphic immersions from X −Sing( f ) into Y . In this article we present
two main results. The first concerns a lower bound for the complex dimension of
Sing( f ) in the case where X is compact or noncompact but of finite volume. We
will obtain such a result using essentially the arguments of Cao-Mok [CM91] and
of To [To93] by considering furthermore the restriction of the tangent sequence to
compact complex-analytic subvarieties of X − Sing( f ). For the noncompact case
of finite-volume, to obtain compact complex-analytic subvarieties of X −Sing( f )
we make use of the following result on compactifying not necessarily arithmetic
noncompact complex hyperbolic space forms of finite volume.

Theorem (Siu-Yau [SY82], Mok [Mk10]). Let n be a positive integer, and let Γ ⊂
Aut(Bn) be a non-uniform torsion-free lattice; X := Bn/Γ . Then, X can be compact-
ified to a normal projective-algebraic variety Xmin by adjoining a finite number of
isolated normal singularities.

Thus, in the case of a complex hyperbolic space form X := Bn/Γ , where Γ is a
lattice, for our lower estimate on dim(Sing( f )) to be given in Theorem 1 we still rely
on the use of the closed (1,1)-form ρ ≥ 0 arising from the second fundamental form
of the immersion on X −Sing( f ). The second main result, to be given in Theorem
2 concerns the more general case where X may be of infinite volume, and we prove,
under certain dimension restrictions, that the open set X −Sing( f ) does not con-
tain any irreducible compact complex-analytic subvariety of dimension m− n + 1
which is in some sense sufficiently deformable. In this result we make use of both
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the closed (1,1)-forms ρ ≥ 0, which arises from the second fundamental form, and
µ ≥ 0, where nonnegativity results from the Ahlfors-Schwarz Lemma, yielding on
some holomorphically foliated connected open subset a contracting leafwise totally
geodesic holomorphic isometric embedding. On the methodological plane we in-
troduce a method which in principle replaces the geometric argument in Cao-Mok
[Ca91] and To [To93] concerning ρ ≥ 0, which relies on the fact that π1(X) is a
lattice, by a local argument resulting from a commutation formula concerning the
complex Hessian ∇∂ f . For technical reasons we impose the slightly stronger di-
mension restriction m≤ 2n−4 for the local argument.

In the formulation of the second main result on complex hyperbolic space forms
not necessarily of finite volume, we define the notion of sufficiently deformable
compact complex-analytic subvarieties, as follows.

Definition 1 (sufficiently deformable subvariety). Let N be a complex man-
ifold of dimension n, 0 < q < n. Let S ⊂ N be a pure q-dimensional com-
pact complex-analytic subvariety. We say that S ⊂ N is sufficiently deformable if
there exists an irreducible complex space B, 0 ∈ B, a complex-analytic subvariety
S ⊂ N×B for which the canonical projection π : S → B is proper with fibers be-
ing pure q-dimensional compact complex-analytic subvarieties St := π−1(t)⊂N for
t ∈ B, S0 = S, such that the following holds true. Denoting by τ : S →Gr(q,T (N))
the canonical meromorphic map into the Grassmann bundle of q-dimensional vector
subspaces of tangent spaces of N, where τ(x) = [Tx(Sπ(x))] ∈ Gr(q,Tx(N)) when-
ever x is a smooth point of Sπ(x), there is a point y ∈ S such that y is a smooth
point of S , π(y) is a smooth point of B, π is a holomorphic submersion at y, and
τ
∣∣
Uy

: Uy→Gr(q,Tx(N)) is a holomorphic submersion on some open neighborhood
Uy of y in S .

For an n-dimensional projective submanifold N by it is clear that whenever
0 < q < n, any q-dimensional linear section cut out by n− q hyperplanes is suf-
ficiently deformable in N. The same is true for N being an n-dimensional quasi-
projective manifold N ⊂ Pa, and for any q-dimensional linear section S⊂ N cut out
by n− q hyperplanes such that S ⊂ N, where N ⊂ Pa denotes the topological clo-
sure of N in Pa, N ⊂ Pa being a projective-algebraic subvariety. Such q-dimensional
linear sections S always exist whenever q < n−d, where d = dim(N−N).

The first main result concerning singularities of generically immersive maps in
the finite-volume case will be explained in §2. In §3-§5 we consider the more general
situation in which the domain manifold X := Bn/Γ may be of infinite volume. In §3,
assuming the existence of a sufficiently deformable compact complex-analytic sub-
variety of X−Sing( f ) of a certain dimension, we derive the existence of a contract-
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ing leafwise totally geodesic holomorphic isometric embedding from some open
subset U ⊂ Bn into Bm. In §4 we establish a commutation formula for the study of
the complex Hessian ∇∂ f adapted to such maps, and in §5 we deduce consequences
of the commutation formula, especially proving the second main result concerning
compact complex-analytic subvarieties of X−Sing( f ).

2 Singular loci in the finite-volume case

The first main result of the current article is given by the following theorem on the
singular loci of generically immersive holomorphic maps between complex hyper-
bolic space forms in the case where the domain manifold is of finite volume.

Theorem 1. Let n,m be positive integers such that n ≥ 2 and m < 2n. Let Γ ⊂
Aut(Bn) be a torsion-free lattice of automorphisms; X := Bn/Γ ; and let Y be any
m-dimensional complex hyperbolic space form. Suppose f : X→Y is a holomorphic
map such that d f is of rank n at a general point. Assume that the singular locus
Sing( f ) of f is of dimension strictly less than 2n−m− 1, then in fact Sing( f ) = /0
and f is a totally geodesic map.

As will be clear from the proof of Theorem 1, there is an obvious analogue
of Theorem 1 for the dual case of nonconstant holomorphic maps f : Pn → Pm.
Such a holomorphic map is automatically an immersion at a general point since no
algebraic curve on Pn can be collapsed to a point, Pn being of Picard number 1. The
dual analogue of Theorem 1 says

Theorem 1’. Let n,m be positive integers such that n ≥ 2 and m < 2n. Let
f : Pn → Pm be a nonconstant holomorphic map. Then, rank(d f (x)) is equal to
n at a general point x ∈ Pn, and the singular locus Sing( f ) must be of complex
dimension ≥ 2n−m−1 unless f : Pn→ Pm is a projective-linear embedding.

The inequality dim(Sing( f )) ≥ 2n − m − 1 is equivalent to the inequality
codim(Sing( f ))≤ n− (2n−m−1) = m−n+1. For Theorem 1’ it says in particu-
lar that a nonconstant holomorphic map f : Pn→ Pn+1 is either a projective-linear
embedding, or its singular locus is of codimension at most equal to 2. We have the
following example which shows in this case that the codimension may be exactly
equal to 2.

EXAMPLE Let f : P2 → P3 be defined by f ([z0,z1,z2]) = [z3
0,z

3
1,z

3
2,z0z1z2]

in terms of homogeneous coordinates. Then, f is holomorphic. By a straight-
forward computation, f is a holomorphic immersion excepting at the three
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points [1,0,0], [0,1,0] and [0,0,1]. For any integer n ≥ 2 the holomorphic map
f :Pn→Pn+1 defined by f ([z0,z1, · · · ,zn]) = [zn+1

0 ,zn+1
1 , · · ·zn+1

n ,z0z1 · · ·zn] gives an
example where Sing( f ) is of codimension 2. In the latter case, Sing( f ) is the union
of the n(n+1)

2 projective-linear subspaces defined by zp = zq = 0, 0≤ p < q≤ n.

Proof of Theorem 1. Recall that n and m are positive integers, n < m < 2n,
Γ ⊂ Aut(Bn) a torsion-free discrete group of automorphisms, X = Bn/Γ , and
f : X → Y is a generically immersive holomorphic map. Write X ′ := X −Sing( f ).
Consider the tangent sequence 0 → TX ′ → f ∗TY → N → 0 of X ′, where
N = f ∗TY /TX ′ denotes the normal bundle for the holomorphic immersion
f |X ′ : X ′ → Y . Suppose S ⊂ X ′ is an (m− n + 1)-dimensional compact complex
submanifold. Then N|S is a holomorphic vector bundle of rank m−n and we have
cm−n+1(N)|S = cm−n+1(N|S) = 0. By Feder’s identity as given in Lemma 1 it follows
that [νm] = 0, where [· · · ] denotes the de Rham cohomology class, for any closed
smooth (1,1)-form ν representing the cohomology class −c1(X)

n+1 + f ∗c1(Y )
m+1 . Since we

have normalized the choice of the canonical Kähler-Einstein metric to be of constant
holomorphic sectional curvature −4π , from Cao-Mok [CM91] we can take ν to be
ρ , where, denoting by g =

(
g

αβ

)
resp. h =

(
hi j

)
the canonical Kähler-Einstein

metric on Bn resp. Bm of constant holomorphic sectional curvature −4π , we have

ρ
αβ

= ∑
γ,δ ,k,`

gγ ĥk`σ
k
α

σ `
δ
, (1)

where
(

gαβ

)
denotes the conjugate inverse of

(
g

αβ

)
,
(

ĥk`

)
denotes the Hermitian

metric on N induced from h, σ k
α

denotes the (holomorphic) second fundamental
form on (1,0)-vectors for the holomorphic immersion f |X ′ , and the summation is
performed over the ranges 1 ≤ α,β ,γ ,δ ≤ n and 1 ≤ k, ` ≤ n−m. From the cur-
vature formula for Kähler submanifolds given by the Gauss equation we have in
fact

ρ =
−c1(X , f ∗h)

n+1
+

f ∗c1(Y,h)
m+1

. (2)

For the proof of Theorem 1 consider first of all the case where X is compact. Sup-
pose the generically immersive holomorphic map f : X → Y is not totally geodesic
and dim(Sing( f )) < 2n−m−1, i.e., codim(Sing( f )) > n−(2n−m−1) = m−n+1.
Embedding X as a projective manifold and taking intersections of hyperplane sec-
tions for each x∈X ′ there exists a smooth linear section S⊂X passing through x and
of dimension m−n+1 such that S∩Sing( f ) = /0. Then, by Feder’s identity (Lemma
1) we have [(ρ|S)m−n+1] = 0. From ρ ≥ 0 it follows that ρm−n+1|S = 0, so that the
smooth (1,1)-form ρ|S must have a positive-dimensional kernel at each point s ∈ S.
Since x∈X ′ is arbitrary, it follows that ρ(x) must have a positive-dimensional kernel
at each x∈ X ′. There is a real-analytic subvariety of V ( X ′ such that dim(Ker(ρ(x))

δ
γ β

γ
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is the same integer d, 1 ≤ d < n. In particular there exists a non-empty connected
open subset U ⊂ X ′ such dim(Ker(ρ(x)) = d. Since Re(Ker(ρ)) agrees with the
kernel of the second fundamental form σ , the assignment of Re(Ker(ρx)) to x ∈ X
defines a holomorphic foliation Ex on U with d-dimensional leaves consisting of
totally geodesic locally closed complex submanifolds. Taking U to be simply con-
nected we can lift U in a univalent way to a connected open subset Ũ ⊂ Bn, ρ to
a closed nonnegative (1,1)-form ρ̃ on Ũ , and E to a holomorphic foliation Ẽ on Ũ
consisting of totally geodesic complex submanifolds. By extending each leaf of Ẽ

to a complete totally geodesic complex submanifold of Bn, we sweep out W ∩Bn for
some neighborhood W of some boundary point b ∈ ∂ Bn. We derive a contradiction
exactly as in the argument of Cao-Mok [CM91] from the asymptotic behavior of an
extension of ρ̃ to W ∩Bn, which is based on the estimate that the extended closed
(1,1)-form ρ̃ is asymptotically of zero length as one approaches W ∩∂ Bn and hence
of zero length everywhere by the compactness of the fundamental domain of Bn

modulo the action of Γ .

In the case where X = Bn/Γ is noncompact and of finite volume, we adopt the
arguments of To [To93], and the only thing that remains to be verified is that, under
the assumption that dim(Sing( f )) < 2n−m−1 there still exists a compact complex
submanifold S ⊂ X − Sing( f ) of complex dimension exactly equal to m− n + 1
obtained by taking the intersection of 2n−m− 1 hyperplane sections with respect
to some projective embedding of X . That this is so follows readily from the existence
of a projective-algebraic compactification X obtained by adding a finite number of
normal isolated singularities, as follows from Siu-Yau [SY82] and Mok [Mk10] and
stated in §1.

3 Contracting leafwise totally geodesic isometric embeddings

Motivated by the use of the Ahlfors-Schwarz Lemma in conjunction with Feder’s
identity (Lemma 1) in Koziarz-Mok [KM10], we examine further consequences
that can be drawn from cohomological arguments by making use of both the Gauss
equation (via the second fundamental form σ and hence ρ) and of the Ahlfors-
Schwarz Lemma. Thus, in the notation of the proof of Theorem 1, the closed (1,1)-
form ν can be taken to be µ = ωX − f ∗ωY , where ωX denotes the Kähler form of g
on X , and ωY that of h on Y , so that µ = −c1(X ,g)

n+1 + f ∗c1(Y,h)
m+1 . We have ρ ≥ 0 from

the definition of ρ in terms of σ , and µ ≥ 0 by the Ahlfors-Schwarz Lemma. When
S⊂ X−Sing( f ) is smooth we have by Lemma 1
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ρ
m−n+1 = µ

m−n+1 = (ρ + µ)m−n+1 = 0

identically on S, noting that Lemma 1 can be applied also to ν = ρ+µ

2 ≥ 0. When

S is singular we can consider a desingularization ζ : S̃→ S and the smooth closed
(1,1)-form ζ ∗ρ on S̃, etc. in place of considering the restriction of ρ to the singular
variety S. For the sake of brevity in place of specifying a desingularization we will
speak of the restriction of ρ , etc., to the smooth part Reg(S) of S, written ρ|Reg(S).

There is a smallest integer r≥ 1 such that [ν r] = 0 for [ν ] = −c1(X)
n+1 + f ∗c1(Y )

m+1 ≥ 0.
The positive integer r is determined by the fact that the real-analytic semipositive
closed (1,1)−form ρ|Reg(S) has exactly r−1 non-zero eigenvalues on a dense open
subset of S. Since ρ , µ and ρ+µ

2 are cohomologous when pulled back to a desingu-
larized model S̃ we have

ρ
r = µ

r = (ρ + µ)r = 0

on S. Thus, on a dense subset W of S, both ρ and µ have exactly r− 1 non-zero
eigenvalues over W , and they must have the same kernel over W . Note here that for
y∈W , the vector subspaces Ker(ρ(y)) and Ker(µ(y)) of Ty(S) must agree with each
other. Otherwise, dim(Ker(ρ(y))∩Ker(µ(y))) < n− r +1 and (ρ(y)+µ(y))r 6= 0,
while ρr ≡ 0 over Reg(S), violating the fact that ρ+µ

2 and ρ are cohomologous to
each other when pulled back to a desingularized model S̃ of S.

Suppose there exists a sufficiently deformable irreducible compact complex-
analytic (m−n+1)-dimensional subvariety S⊂ X . In the notations of the definition
of such subvarieties as given in Definition 1, without loss of generality we may
assume that there exists a holomorphic family π : S → B of irreducible compact
complex-analytic subvarieties St ⊂ X = π−1(t),t ∈ B, parametrized by the com-
plex unit ball B of a complex Eulcidean space, such that S0 = S and such that
there exists a point x ∈W ⊂ S so that the holomorphic tangent spaces Tx(S′) of
those S′ = St ,t ∈ B, passing through x wipes out an open neighborhood of [Tx(S0)]
on Gr(p,Tx(S)). Thus Ker(ρ(x)|Tx(S′)) and Ker((ρ(x) + µ(x))|Tx(S′)) are of codi-
mension r−1 in Tx(S′). We conclude from the cohomological argument of the last
paragraph that Ker(ρ(x)|Tx(S′)) = Ker(µ(x)|Tx(S′)). For any q-plane E ⊂ Tx(X) suf-
ficiently close to Tx(S) by assumption there exists some t ∈ B such that E = Tx(S′)
for S′ = St . It follows that Ker(ρ(x)) = Ker(µ(x))⊂ Tx(X) is of codimension r−1,
i.e., of dimension n−r+1. For a sufficiently small open neighborhood U of x in the
ambient manifold X , the preceding discussion applies with x replaced by y ∈U and
S replaced by some irreducible compact complex-analytic (m−n+1) dimensional
subvariety belonging to (St)t∈B and passing through y. Write d = n− r +1. Noting
that r ≤m−n+1, we have d ≥ 2n−m. Then, U is foliated by a holomorphic fam-
ily of totally geodesic complex-analytic submanifolds Λ such that Λ ⊂ X is totally



Complex hyperbolic space forms 335

geodesic, and such that f |Λ is a totally geodesic holomorphic isometric embedding.
Lifting U to Bn and lifting Y locally to Bm, we have a holomorphic map f : U → Bm

which is a leafwise totally geodesic holomorphic isometric embedding. It remains
now to investigate whether such holomorphic maps can exist at all. In the next sec-
tions we will show that such maps do not exist under certain dimension restrictions,
viz., we will show that leafwise totally geodesic holomorphic isometric embeddings
are already totally geodesic. In other words, we will derive a contradiction unless
d = n.

For the sake of convenience we introduce the notion of a contracting leafwise
totally geodesic isometric embeddings, as follows.

Definition 2 (Contracting leafwise totally geodesic isometric embedding). Let
n,m be positive integers, n < m, U ⊂Bn be a connected open subset, and f : U→Bm

be a holomorphic map. We say that f is contracting if and only if it is distance-
decreasing when Bn resp. Bm are equipped with the canonical Kähler-Einstein met-
ric ds2

Bn resp. ds2
Bm of constant holomorphic sectional curvature −K for the same

constant K > 0. Suppose f is an immersion and, denoting by σ the (holomorphic)
second fundamental form on (1,0)-vectors for the immersion f : U → Bm with re-
spect to ds2

Bm, Ker(σ(x)) = Ker(ρ(x))) is of the same rank d at every point x ∈U.
Denoting by E = Re(Ker(ρ)) the associated integrable holomorphic foliation, as-
sume that for each leaf Λ of E , the restriction f |Λ : Λ → Bm is a totally geodesic
isometric embedding. Then, we say that f : U→ Bm is a contracting leafwise totally
geodesic isometric embedding (of leaf dimension d).

REMARKS

(a)In place of the complex unit ball Bn resp. Bm we can consider the quotient mani-
fold X := Bn/Γ resp. Y = Bm/Ψ with respect to a torsion-free discrete group of
automorphisms Γ resp. Ψ , a connected open subset U ⊂ X , and a holomorphic
immersion f : U → Y . In this general situation we have analogously the notion
of a contracting leafwise totally geodesic immersion, where the restriction of f
to each totally geodesic leaf Λ of the analogously defined holomorphic foliation
E is only assumed to be an isometric immersion.

(b)By Umehara [Um87] any isometric holomorphic immersion of an open subset
of a complex hyperbolic space form into Bm is necessarily totally geodesic. In
the terminology of a ‘contracting leafwise totally geodesic isometric embedding
(immersion)’, it is implicit that the mapping is totally geodesic.

Summarizing in terms of the newly introduced terminology we have proven in
this section
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Proposition 1 Let n,m be positive integers, n < m, Γ ⊂ Aut(Bn) be a torsion-free
discrete group of automorphisms, X := Bn/Γ , and Ψ ⊂ Aut(Bm) be a torsion-free
discrete group of automorphisms, Y := Bn/Ψ . Let f : X → Y be a generically im-
mersive holomorphic map. Suppose there exists on X − Sing( f ) a sufficiently de-
formable compact complex-analytic subvariety S of dimension m−n+1. Then, for
a general point x ∈ X −Sing( f ), there exists a connected open neighborhood W of
x on X −Sing( f ) and a positive integer d, 2n−m≤ d ≤ n, such that f |W : W → Y
is a contracting leafwise totally geodesic isometric immersion of leaf dimension d.

4 A commutation formula

In this section we will derive a commutation formula for the Hessian of a contract-
ing leafwise totally geodesic holomorphic isometric embedding f : U→ Bm defined
on a connected open subset U ⊂ Bm, where the underlying holomorphic foliation
E is defined by Re(Ker(ρ)) = Re(Ker(σ)). We write E ⊂ TU for the holomor-
phic vector subbundle given by Ex = Ker(ρ(x)). Following the conventions in the
proof of [§2, Theorem 1] we will normalize holomorphic sectional curvatures to
be −4π . Denote by g resp. h the canonical Kähler-Einstein metric on Bn resp. Bm

of constant holomorphic sectional curvature −4π . We will be performing covariant
differentiation on tensors fields on U . By ∇ we will denote covariant differentia-
tion with respect to the canonical connections associated to g and h. Thus, ∂ f is a
holomorphic section of ΩU ⊗ f ∗TBm over U , where ΩU stands for the holomorphic
cotangent bundle T ∗U , and ∇∂ f is a smooth section of ΩU ⊗ΩU ⊗ f ∗TBm defined in
terms of the affine connection on T ∗U ⊗ f ∗TBm induced by the Riemannian connec-
tion of (Bn,g) and the pull-back of the Riemannian connection on (Bm,h). From
the torsion-freeness of Riemannian connections it follows that the tensor field ∇∂ f
takes values in S2ΩU ⊗ f ∗TBm , i.e., ∇α ∂β f is symmetric in α and β . We have the
following commutation formula on ∇∂ f .

Proposition 2 Let x∈U, ξ ∈ Ex and ν ∈ Tx(U). Denote by ξ̃ an extension of ξ ∈ Ex

to a smooth E-valued vector field on some neighborhood of x on U. Then,

1
2π
‖∇ξ ∂ν f ‖2 = ‖ξ‖

(
‖ν‖2−‖∂ f (ν)‖2)−(‖∇ν ξ̃‖2−‖∂ f (∇ν ξ̃ )‖2

)
.

To simplify notations in what follows we will often write ξ for ξ̃ , etc. whenever
there is no risk of confusion. Thus ξ will denote both a vector in Ex and a germ of
smooth E-valued vector field at x extending that vector. Additional conditions may
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be imposed on the choice of smooth extensions for the computations. For the proof
of Proposition 2 we start with a lemma regarding values of ∇∂ f , as follows.

Lemma 2. Let x ∈U and denote by σ , τ arbitrary smooth (1,0)-vector fields on a
neighborhood of x, and ξ any smooth E-valued vector field on a neighborhood of
x. Then, h

(
∇σ ∂τ f (x),∂ξ f

)
= 0.

Proof. For the proof of Lemma 2 without loss of generality we may assume that ξ̃

is a holomorphic E-valued holomorphic vector field on a neighborhood of s in U .
Since f is isometric on each leaf Λ of E , E ⊂Ker(µ) for µ := ωg− f ∗ωh≥ 0, where
ωg is the Kähler form (Bn,g) and ωh is the Kähler form of (Bm,h). In particular, we
have

h(∂τ f ,∂ξ f ) = g
(

τ,ξ
)

. (1)

Differentiating against the vector field σ we have

h
(

∇σ ∂τ f ,∂ξ f
)

+h
(

∂∇σ τ f ,∂ξ f
)

+h
(

∂τ f ,∇σ ∂ξ f
)

+h
(

∂τ f ,∂∇σ ξ f
)

= g
(

∇σ τ,ξ
)

+g
(

τ,∇σ ξ

)
. (2)

For the last term on the left-hand side of (2), by assumption ξ is a holomorphic
vector field, hence ∇σ ξ = 0 and we have

h
(

∂τ f ,∂∇σ ξ f
)

= g
(

τ,∇σ ξ

)
= 0 . (3)

For the third term we have by symmetry

∇σ ∂ξ f = ∇ξ ∂σ f = 0 (4)

since f is holomorphic. For the second term, since ξ (y)∈Ker(µ(y)) where defined,
we have

h
(

∂∇σ τ f ,∂ξ f
)

= g
(

∇σ τ,ξ
)

. (5)

We conclude therefore from (2) that

h
(

∇σ ∂τ f ,∂ξ f
)

= 0 . (6)

as desired.

Next, from standard commutation formulas for covariant differentiation on Her-
mitian holomorphic vector bundles on Kähler manifolds we have

Lemma 3. Denote by R the curvature tensor on (U,g) and by S the curvature tensor
of ( f ∗TBm , f ∗h) on U. Let σ ,τ,ζ be smooth vector fields on U. Then, we have
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∇
ζ

∇σ ∂τ f k = ∑
µ

R
σζ τ

µ
∂µ f k−∑

`

S
σζ `

k
∂τ f ` ,

where at x ∈U, the symbol {µ} runs over the set of indexes of a basis {eµ} of TU,x,
and the symbol ` runs over the set of indexes of a basis {ε`} of f ∗(TBm, f (x)).

Proof. Since f is holomorphic we have ∇
ζ

∂τ f = ∇τ∂
ζ

f = 0. Lemma 3 then follows
from standard commutation formulas for Hermitian holomorphic vector bundles for
the computation of ∇σ ∇

ζ
∂τ f k−∇

ζ
∇σ ∂τ f k =−∇

ζ
∇σ ∂τ f k.

We are now ready to derive Proposition 2.

Proof of Proposition 2. Let x∈U . We apply Lemma 2 to a special choice of vectors
σ ,τ,ζ at x, extended to smooth vector fields on U . Let ζ and σ be the same E-
valued holomorphic vector field ξ on U such that ξ (x) is of unit length, shrinking
the neighborhood U of x if necessary. Let τ be an E⊥-valued smooth vector field
ν such that ν(x) is of unit length. Again shrinking U if necessary let {eµ} be a
smooth basis of TU which is orthonormal at the point x and which includes at x the
orthogonal unit vectors ξ (x) and ν(x). Then, we have

R
σζ τ

µ(x) = R
σζ τµ

(x) = R
ξ ξ νµ

(x)

=

{
−2π if eµ(x) = ν(x)

0 otherwise
.

(1)

Denote by R′ the curvature tensor of (Bm,h). For (1,0)-vectors α,β ,γ at x ∈U we
have

S
αβγ

= f ∗R′
(

∂ f (α),∂ f (β );∂ f (γ)
)
∈ f ∗TBm, f (x) . (2)

At the point x ∈U , for the subset {eλ (x)} of unit vectors in {eµ(x)} belonging to
Ex, define ελ (x) := ∂ f (eλ (x)). Since ∂ f (x) : Tx(U)→ Tf (x)(Bm) restricts to a lin-
ear isometry on Ex ⊂ Tx(U), the set {ελ (x)} constitutes an orthonormal basis of
∂ f (Ex) ⊂ TBm, f (x). In the sequel for simplicity we will sometimes identify TBm, f (x)

with f ∗TBm, f (x) tautologically in the notation. Complete now {ελ} to a smooth basis
{ε`} of f ∗TBm on a neighborhood of x in such a way that {ε`(x)} is an orthonormal
basis of f ∗TBm, f (x) with a further specification, as follows. For ζ ∈ TU,x we will also
write ζ

′ for ∂ f (ζ ). Since Ex ⊂ TU,x lies on Ker(µ), ν
′(x) = ∂ f (ν(x)) is orthogonal

to ∂ f (ξ ) for any ξ ∈ Ex. Thus, the orthonormal basis {ελ (x)} of ∂ f (Ex) can be
completed to an orthonormal basis {ε`(x)} such that one of the basis vectors is the
unit vector ν ′′ := ν ′(x)

‖ν ′(x)‖ , which is proportional to ν ′(x). We will choose a smooth
basis {ε`} of f ∗TBm on some neighborhood of x such that {ε`(x)} is an orthonor-
mal basis of f ∗TBm, f (x) with the latter property. Furthermore such a basis will be
chosen such that {ε`} corresponds on a neighborhood of x ∈U to f ∗ ∂

∂ w`
for some
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holomorphic coordinates (w1, · · · ,wm) on a neighborhood of f (x) in Cm. We have

S
σζ `

= S
νξ `

= R′
ν ′ξ ′`

(x) =

{
−2π‖ν ′(x)‖ν ′′ if ε`(x) = ν ′′

0 otherwise
.

(3)

Let now ξ be an E-valued holomorphic vector field on U . By Lemma 2 we have

h
(

∇ξ ∂ν f (x),∂ξ f
)

= 0 . (4)

Differentiating with respect to ν we have

h
(

∇ν ∇ξ ∂ν f ,∂ξ f
)

+h
(

∇∂ν ξ ∂ν f ,∂ξ f
)

+h
(

∇ξ ∂∇ν ν f ,∂ξ f
)

+h
(

∇ξ ∂ν f ,∇ν ∂ξ f
)

+h
(

∇ξ ∂ν f ,∂∇ν ξ f
)

= 0 .
(5)

By Lemma 2 the second and the third terms on the left-hand side of (5) vanish. By
the symmetry of the Hessian we have ∇ν ∂ξ f = ∇ξ ∂ν f and hence

h
(

∇ν ∇ξ ∂ν f ,∂ξ f
)

+‖∇ξ ∂ν f‖2 +h
(

∇ξ ∂ν f ,∂∇ν ξ f
)

= 0 . (6)

We proceed to compute the first and the third terms of the left-hand side of (6). For
the first term by Lemma 3 and by the symmetry of the Hessian we have

∇ν ∇ξ ∂ν f k(x) = ∇ν∇ν ∂ξ f k(x) = ∑
µ

Rννξ
µ

∂µ f k(x)−∑
`

Sνν`
k

∂ξ f `(x)

= ∑
µ

Rννξ
µ

∂µ f k(x)−∑
`

R′
ν ′ν ′`

k
∂ξ f `(x) . (7)

For the proof of Proposition 2 without loss of generality we may assume that
ξ (x) and ν(x) are (orthogonal) unit vectors. On a neighborhood of x, we use
the same choice of a smooth basis {eµ} and a smooth basis {ε`} of f ∗TBm

as in the above, so that in particular {eµ(x)} is an orthonormal basis of TU,x

at x and {ε`(x)} is an orthonormal basis of f ∗TBm, f (x) at x. Write ξ (x) = ea,
ν(x) = eb. Recall the notation ζ ′ := ∂ f (ζ ) for (1,0)-vectors ζ on U . We write
also ξ ′(x) = εa. Recall also ν ′′ := ν ′(x)

‖ν ′(x)‖ = εb. For the first summation on
the last line of (7) the only possibly non-zero summand arises when µ = a,
giving R

ννξξ
∂ξ f k(x) = −2π∂ξ f a when k = a and 0 otherwise. For the sec-

ond summation the only possibly non-zero summand arises when ` = a, giving
R′

ν ′ν ′`
k ∂ξ f `(x) = ‖ν ′‖2R′

ν ′′ν ′′ξ ′ξ ′
∂ξ f a(x) = −2π∂ξ f a(x) when k = a and 0 oth-

erwise. It follows from (7) that
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∇ν∇ν ∂ξ f (x) = ∑
k

(
∑
µ

Rννξ
µ

∂µ f k(x)−∑
`

R′
ν ′ν ′`

k
∂ξ f `(x)

)
⊗ εk(x)

=−2π
(
∂ξ f (x)−‖∂ν f‖2

∂ξ f (x)
)
. (8)

Plugging into (5) and without assuming that ξ (x) and ν(x) are of unit length the
first term there on the left-hand side is given by

h
(

∇ν ∇ξ ∂ν f ,∂ξ f
)

=−2π‖ξ‖2 (‖ν‖2−‖∂ f (ν)‖2 ) . (9)

For the proof of Proposition 2 it remains to deal with the last term h
(

∇ξ ∂ν f ,∂∇ν ξ f
)

on the left-hand side of (5). Recall that

h
(

∂ξ f ,∂∇ν ξ f
)

= g
(

ξ ,∇ν ξ

)
. (10)

Differentiating against ν we have

h
(

∇ν ∂ξ f ,∂ξ f
)

+h
(

∂∇ν ξ f ,∂∇ν ξ f
)

+h
(

∂ξ f ,∇ν ∂∇ν ξ f
)

+h
(

∂ξ f ,∂∇ν (∇ν ξ ) f
)

= g
(

∇ν ξ ,∇ν ξ

)
+g
(

ξ ,∇ν(∇ν ξ )
)

. (11)

By the symmetry of the Hessian, the pluriharmonicity of f , i.e., ∇∂ f = 0, and the
identity h

(
∂ξ f ,∂τ f

)
= g(ξ ,τ) for any tangent vector field τ , the equation (11)

gives
h
(

∇ξ ∂ν f ,∂ξ f
)

+h
(

∂∇ν ξ f ,∂∇ν ξ f
)

= g
(

∇ν ξ ,∇ν ξ

)
. (12)

In other words, we have

h
(

∇ξ ∂ν f ,∂ξ f
)

= g
(

∇ν ξ ,∇ν ξ

)
−h
(

∂∇ν ξ f ,∂∇ν ξ f
)

= ‖∇νξ‖2−‖∂ f (∇ν ξ )‖2 .
(13)

Substituting (9) and (13) into (6) we deduce

1
2π
‖∇ξ ∂ν f‖2 = ‖ξ‖

(
‖ν‖2−‖∂ f (ν)‖2)−(‖∇νξ‖2−‖∂ f (∇ν ξ )‖2) , (14)

proving Proposition 2, as desired.

REMARKS In the proof of Proposition 2, the expression ∇ν ξ (x) = ∇ν ξ̃ (x) depends
on the choice of extension of the vector ξ ∈ Ex to a germ of E-valued holomorphic
section ξ̃ at x, although the notation ξ̃ is suppressed in the formulas. In the final out-
come as given in the identity (14) there, if ξ̃ is replaced by another smooth extension
ξ

], then

∇ν ξ
](x)−∇ν ξ̃ (x) := η(x) ∈ Ex ; and ∇ν ξ

](x) = ∇ν ξ̃ (x)+η(x)
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is an orthogonal decomposition such that ∂ f
(
∇ν ξ ](x)

)
= ∂ f

(
∇ν ξ̃ (x)

)
+∂ f

(
η(x)

)
is again an orthogonal decomposition, while ‖η(x)‖= ‖∂ f (η(x))‖ since η(x) ∈ Ex

and Ex ⊂Ker(µ(x)).

5 Consequences of the commutation formula

We start with the following general result on contracting leafwise totally geodesic
holomorphic isometric embeddings from connected open subsets of the complex
unit ball into complex unit balls.

Theorem 2. Let n,m,d be positive integers, m ≤ 2n− 4, 3 ≤ d ≤ n. Let U ⊂ Bn

be a nonempty connected open subset, and E be a holomorphic foliation on
U by d-dimensional holomorphic totally geodesic complex submanifolds Λ . Let
f : U → Bm be a contracting (distance-decreasing) holomorphic mapping such
that f |Λ is a totally geodesic isometric embedding for each leaf Λ . Assume
that the foliation E is defined by Re(Ker(ρ)) for the closed (1,1)-form given
by ρ = −c1(X , f ∗h)

n+1 + f ∗c1(Y,h)
m+1 ≥ 0, where g (resp. h) stands for the canonical

Kähler-Einstein metric on Bn (resp. Bm) of constant holomorphic sectional cur-
vature −K for any fixed K > 0. Assume furthermore that Ker(ρ) = Ker(µ) for
µ = −c1(X ,g)

n+1 + f ∗c1(Y,h)
m+1 ≥ 0. Then, ρ ≡ 0, µ ≡ 0, E is trivial, and f : U → Bm

is a totally geodesic isometric embedding.

Proof. For the formulation and proof of Theorem 2 the choice of the constant K > 0
is unimportant. For the sake of uniformity we will choose K to be 4π as in the state-
ment of Proposition 2. In this case µ agrees with the formula µ = ωg− f ∗ωh given
in the proof of Lemma 2. Recall that the holomorphic foliation E on U corresponds
to a d-dimensional holomorphic distribution which we denote by E ⊂ TU . Let now
x ∈U , ξ ∈ Ex and ν ∈ TU,x. By Proposition 2, we have

1
2π
‖∇ξ ∂ν f‖2 = ‖ξ‖

(
‖ν‖2−‖∂ f (ν)‖2)− (‖∇ν ξ‖2−‖∂ f (∇ν ξ )‖2) . (1)

Recall from the Remarks after the proof of Proposition 2 that in the commuta-
tion formula (1) it is understood that ξ is extended to a smooth vector field ξ̃

on a neighborhood of x in U . The expression ∇ν ξ̃ (x) is then uniquely defined
only modulo Ex, but the expression

(
‖∇ν ξ̃‖2−‖∂ f (∇ν ξ̃ )‖2

)
(x) is independent

of the extension ξ̃ since ∂ f (x) is an isometry on Ex, and since ∂ f (Ex) is or-
thogonal to ∂ f (E⊥x ). Define now T : E⊥ ⊗E → E⊥ by T (ν ⊗ ξ ) = prE⊥(∇ν(ξ̃ ))
for ν ∈ E⊥x , ξ ∈ Ex, where prE⊥ : T → E⊥ denotes the orthogonal projection.
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Then,
(
‖∇ν ξ̃‖2−‖∂ f (∇ν ξ̃ )‖2

)
(x) = ‖T (ν ,ξ )(x)‖2. Here we write T (ν,ξ ) for

T (ν ⊗ ξ ) and the same notational convention will be adopted for linear maps on
tensor products will be adopted elsewhere.

Consider now the linear map Q : E ⊗ E⊥ → f ∗TBm given at x ∈ U by
Q(ξ ⊗ν) = Q(ξ ,ν) = ∇ξ ∂ν f for ξ ∈ Ex, ν ∈ E⊥x . The identity (1) translates into
an identity of the form

1
2π
‖Q(ξ ⊗ν)‖2 = P(ξ ⊗ν,ξ ⊗ν)−‖T (ξ ⊗ν)‖2, (2)

where P(·, ·) is the unique Hermitian bilinear form on E ⊗ E⊥ which satisfies
P
(

ξ ⊗ν,ξ ⊗ν

)
= ‖ξ‖2 (‖ν‖2−‖∂ f (ν)‖2). Denote by π(·, ·) the Hermitian bilin-

ear form on E given by π(ν ,µ) = g(ν ,µ)−h
(
∂ f (ν),∂ f (µ)

)
for ν,µ ∈ Ex,x ∈U .

Then π(ν ,ν) > 0 whenever ν ∈ E⊥ is non-zero since ∂ f is strictly distance-
decreasing on E⊥. For x∈U . Let now {ξ1, · · ·ξd} be an orthonormal basis of Ex and
{ν1, · · ·νn−d} be an orthonormal basis of E⊥x consisting of eigenvectors of the Her-
mitian form πx. Thus, π(ν j,ν`) = 0 for j 6= `, 1≤ j, `≤ n−d and π(ν j,ν j) = λ j > 0.
Then, for

τ =
d

∑
i=1

n−d

∑
j=1

ai jξi⊗ν j. (3)

we have

P(τ,τ) =
d

∑
i=1

n−d

∑
j=1

λ
2
j |ai j|2. (4)

In particular P(·, ·) is positive definite. From (2), for τ ∈ E⊗E⊥ we have

1
2π
‖Q(τ)‖2 = P(τ,τ)−‖T (τ)‖2, (5)

We examine further the identity (5). Now rank(E⊥ ⊗ E) = (n − d)d
and rank(E⊥) = n − d. By assumption d ≥ 3 so that
dim(Ker(Tx)) ≥ (n − d)(d − 1) ≥ 2(n − d) > 0 whenever 3 ≤ d < n. (The
case d = n means precisely that f is totally geodesic.) By Lemma 2 we
have h

(
∇ξ ∂ν f ,∂η f

)
= 0 whenever η ∈ Ex, so that Im(Qx) lies in the or-

thogonal complement Hx of ∂ f (Ex) in TBm, f (x), where dim(Hx) = m − d.
By the preceding paragraph dim(Ker(Tx)) = (n − d)(d − 1), hence
dim(Ker(Tx)∩Ker(Qx))≥ (n−d)(d−1)−(m−d)≥ (n−d +1)(d−1)−(2n−5).
Suppose (3≤)d 6= n. Then, (n−d+1)(d−1)≥ 2(n−2), where equality is attained
precisely when d = 3 and d = n−1, and we have dim(Ker(Tx)∩Ker(Qx))≥ 1. Let
τ ∈Ker(Tx)∩Ker(Qx) be a non-zero element. Then from the identity (5) we have
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P(τ,τ) =
1

2π
‖Q(τ)‖2 +‖T (τ)‖2 = 0 , (6)

violating the positivity of P. Thus, a contradiction arises if 3 ≤ d < n. Since by
assumption d ≥ 3 it follows that the only possibility is that d = n. In other words,
f : U → Bm is a totally geodesic embedding, as desired.

Dimension restrictions have been placed on n,m and the leaf dimension d of the
holomorphic foliation ξ . It is tempting to believe that such dimension restrictions
are unnecessary. In the notations used in Theorem 2 we formulate a conjecture as
follows.

Conjecture 1. Let n,m be positive integers. Let U ⊂ Bn be a nonempty con-
nected open subset, f : U → Bm be a holomorphic immersion. Suppose there ex-
ists a nonzero integrable holomorphic distribution E ⊂ TU of rank d > 0 such
that f is a contracting leafwise totally geodesic isometric embedding with re-
spect to the holomorphic foliation E defined by Re(E). Assume furthermore that
E = Ker(ρ) = Ker(µ) on U. Then, E = TU and f is totally geodesic.

As a consequence of Theorem 2 we have the following general result about
holomorphic mappings between complex unit balls equivariant with respect to a
torsion-free discrete subgroup which is not necessarily a lattice. In particular, they
are valid on domain complex hyperbolic space forms X of possibly infinite volume
with respect to the canonical Kähler-Einstein metric.

Theorem 3. Let n,m be positive integers, Γ ⊂ Aut(Bn) be a torsion-free discrete
group of biholomorphic automorphisms, X := Bn/Γ . Let Φ : Γ → Aut(Bm) be a
group homomorphism, and f : Bn→ Bm be a holomorphic mapping which is equiv-
ariant with respect to Φ , i.e., f (γx) = Φ(γ)( f (x)) for any x ∈ Bn and any γ ∈ Γ .
Suppose m ≤ 2n− 4, f is an immersion at a general point x ∈ Bn, and f is not
totally geodesic. Then, writing Sing( f ) for the singular locus of f (which is nec-
essarily invariant under the action of Γ ), E for the subvariety Sing( f )/Γ ⊂ X,
and Z := X−E, there does not exist any sufficiently deformable compact complex-
analytic subvariety S⊂ Z of complex dimension m−n+1.

Proof. Suppose there exists a sufficiently deformable compact complex-analytic
subvariety S⊂ X . By Proposition 1 there exists a non-empty connected open subset
U ⊂Bn such that the restriction f |U :U→Bm is a leafwise totally geodesic isometric
embedding. Here the leaves of the underlying holomorphic foliation E by totally
geodesic complex submanifolds are of complex dimension d, where d is the rank of
Ker(ρ) and of Ker(µ) at each point of U , and d≥ 1+(n−(m−n+1)) = 2n−m≥ 4.
In particular Theorem 2 applies and f is totally geodesic.
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Because of the dimension restriction m ≤ 2n− 4, Theorem 3 does not cover
Theorem 2 for the cases where X is compact or noncompact and of finite volume.
An affirmative solution of Conjecture 1 in the above would yield a geometric argu-
ment (after the global cohomological argument) for the proof of Theorem 2 which is
completely local. For the latter purpose it would also suffice to establish a strength-
ened version of Theorem 2 in which the dimension restrictions in the hypothesis are
relaxed to the conditions m≤ 2n−1 and 1≤ d ≤ n.
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Generically nef vector bundles and geometric
applications

Thomas Peternell

Abstract The cotangent bundle of a non-uniruled projective manifold is generically
nef, due to a theorem of Miyaoka. We show that the cotangent bundle is actually
generically ample, if the manifold is of general type and study in detail the case
of intermediate Kodaira dimension. Moreover, manifolds with generically nef and
ample tangent bundles are investigated as well as connections to classical theorems
on vector fields on projective manifolds.
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1 Introduction

Given a vector field v on a complex projective manifold X , a classical theorem of
Rosenlicht says that X is uniruled, i.e., X covered by rational curves, once v has a
zero. If on the other hand v does not vanish at any point, Lieberman has shown that
there is a finite étale cover π : X̃ → X and a splitting

X̃ ' A×Y

with an abelian variety A such that the vector field π∗(v) comes from a vector field
on A. In particular, if X is of general type, then X does not carry any non-zero vector
field.
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For various reasons it is interesting to ask what happens if v is a section in SmTX , or
(TX )⊗m, or even more general, in (TX )⊗m⊗L with a numerically trivial line bundle
L on X . In particular, one would like to have a vanishing

H0(X ,(TX )⊗m⊗L) = 0 (1)

if X is of general type and ask possibly for structure results in case X is not unir-
uled. The question whether the above vanishing holds was communicated to me by
N. Hitchin. The philosohical reason for the vanishing is quite clear: if X is of gen-
eral type, then the cotangent bundle Ω 1

X should have some ampleness properties.
One way to make this precise is to say that the restriction Ω 1

X |C is ample on suffi-
ciently general curve C ⊂ X .

There are two things to be mentioned immediately. First, a fundamental theorem
of Miyaoka says that Ω 1

X |C is nef on the general curve; we say shortly that Ω 1
X is

generically nef. Second, if KX is ample, then X admits a Kähler-Einstein metric, in
particular Ω 1

X is stable and consequently Ω 1
X |C is stable, from which it is easy to

deduce that Ω
1
X |C is ample.

We therefore ask under which conditions the cotangent bundle of a non-uniruled
manifold is generically ample. We show, based on [BCHM09], [Ts88] and [En88],
that generic ampleness indeed holds if X is of general type, implying the vanishing
1. We also give various results in case X is not of general type, pointing to a gen-
eralization of Lieberman’s structure theorem. In fact, “most” non-uniruled varieties
have generically ample cotangent bundles. Of course, if KX is numerically trivial,
then the cotangent bundle cannot be generically ample, and some vague sense, this
should be the only reason, i.e. if Ω 1

X is not generically ample, then in some sense X
should split off a variety with numerically trivial canonical sheaf. However certain
birational transformations must be allowed as well as étale cover. Also it is advis-
able to deal with singular spaces as they occur in the minimal model program. One
geometric reason for this picture is the fact that a non-uniruled manifold X , whose
cotangent bundle is not generically ample, carries in a natural way a foliation F

whose determinant detF is numerically trivial (we assume that KX is not numer-
ically trivial). If F is chosen suitably, its leaves should be algebraic and lead to a
decomposition of X . Taking determinants, we obtain a section in

∧q TX⊗L for some
numerically trivial line bundle L, giving the connection to the discussion we started
with.

The organization of the paper is as follows. We start with a short section on
the movable cone, because the difference between the movable cone and the “com-
plete intersection cone” is very important in the framework of generic nefness. We
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also give an example where the movable cone and the complete intersection cone
differ (worked out with J.P.Demailly). In section 3 we discuss in general the con-
cept of generic nefness and its relation to stability. The following section is devoted
to the study of generically ample cotangent bundles. In the last part we deal with
generically nef tangent bundles and applications to manifolds with nef anticanoni-
cal bundles.

2 The movable cone

We fix a normal projective variety X of dimension n. Some notations first. Given
ample line bundles H1, . . . ,Hn−1, we set h = (H1, . . . ,Hn−1) and simply say that h is
an ample class. We let

NS(X) = N1(X)⊂ H2(X ,R)

be the subspace generated by the classes of divisors and

N1(X)⊂ H2n−2(X ,R)

be the subspace generated by the classes of curves.

Definition 1 (i) The ample cone A is the open cone in N1(X) generated by the
classes of ample line bundles, its closure is the nef cone.

(ii) The pseudo-effective cone PS is the closed cone in N1(X) of classes of effec-
tive divisors.

(iii) The movable cone ME(X) ⊂ N1(X) is the closed cone generated by classes of
curves of the form

C = µ∗(H̃1∩ . . .∩ H̃n−1);

here µ : X̃ → X is any modification from a projective manifold X and H̃i are
very ample divisors in X̃ . These curves C are called strongly movable.

(iv) NE(X) ⊂ N1(X) is the closed cone generated by the classes of irreducible
curves.

(v) An irreducible curve C is called movable, if C = Ct0 is a member of a family
(Ct) of curves such that X =

⋃
t Ct . The closed cone generated by the classes of

movable curves is denoted by ME(X).
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(vi) The complete intersection cone CI(X) is the closed cone generated by classes
h = (H1, . . . ,Hn−1) with Hi ample.

Recall that a line bundle L is pseudo-effective if c1(L) ∈PS(X). The pseudo-
effective line bundles are exactly those line bundles carrying a singular hermitian
metric with positive curvature current; see [BDPP04] for further information.

Example 1 We construct a smooth projective threefold X with the property

ME(X) 6= CI(X).

This example has been worked out in [DP07]. We will do that by constructing on
X a line bundle which is on the boundary of the pseudo-effective cone, but strictly
positive on CI(X).

We choose two different points p1, p2 ∈ P2 and consider a rank 2-vector bundle E
over P2, given as an extension

0→ O → E →I{p1,p2}(−2)→ 0 (2)

(see e.g. [OSS80]). Observe c1(E) =−2; c2(E) = 2. Moreover, if l ⊂ P2 is the line
through p1 and p2, then

E|l = O(2)⊕O(−4). (3)

Set
X = P(E)

with tautological line bundle
L = OP(E)(1).

First we show that L is strictly positive on CI(X). In fact, fix the unique positive real
number a such that

L+π
∗(O(a))

is nef but not ample. Here π : X→P2 is the projection. Notice that a≥ 4 by Equation
3. The nef cone of X is easily seen to be generated by π∗O(1) and L + π∗O(a),
hence CI(X) is a priori spanned by the three classes (L + π

∗(O(a))2, π
∗(O(1))2

and π∗(O(1)) · (L +π∗(O(a)). However

L2 = c1(E) ·L− c2(E) =−2π
∗O(1) ·L−2π

∗O(1)2,

thus
(L +π

∗(O(a))2 = (2a−2)π∗O(1) ·L +(a2−2)π∗O(1)2,
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and as (a2−2)/(2a−2) < a we see that

π
∗(O(1)) · (L+π

∗(O(a))

is a positive linear combination of (L + π∗(O(a))2 and π∗(O(1))2. Therefore the
boundary of CI(X) is spanned by (L+π∗(O(a))2 and π∗(O(1))2 . Now, using a≥ 4,
we have

L · (L +π
∗(O(a))2 = 2−4a+a2 ≥ 2

and
L ·π∗(O(1))2 = 1,

hence L is strictly positive on CI(X).

On the other hand, L is effective since E has a section, but it is clear from the
exact sequence 2 that L must be on the boundary of the pseudo-effective cone;
otherwise L−π∗(O(ε)) would be effective (actually big) for small positive ε . This
is absurd because the tensor product of the exact sequence 2 by O(−ε) realizes the
Q-vector bundle E⊗O(−ε) as an extension of two strictly negative sheaves (take
symmetric products to avoidQ coefficients !). Therefore L cannot be strictly positive
on ME(X).

The fact that ME(X) and CI(X) disagree in general is very unpleasant and cre-
ates a lot of technical troubles.

It is a classical fact that the dual cone of NE(X) is the nef cone; the main result
of [BDPP04] determines the dual cone to the movable cone:

Theorem 1 The dual cone to ME(X) is the pseudo-effective cone PS(X). Moreover
ME(X) is the closed cone generated by the classes of movable curves.

It is not clear whether the dual cone to CI(X) has a nice description. Nevertheless
we make the following

Definition 2 A line bundle L is generically nef if L ·h≥ 0 for all ample classes h.

In the next section we extend this definition to vector bundles. Although generi-
cally nef line bundles are in general not pseudo-effective as seen in Example 1, this
might still be true for the canonical bundle:

Problem 1 Let X be a projective manifold or a normal projective variety with (say)
only canonical singularities. Suppose KX is generically nef. Is KX pseudo-effective?
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In other words, suppose KX not pseudo-effective, which is the same as to say
that X is uniruled. Is there an ample class h such that KX ·h < 0? This is open even
in dimension 3; see [CP98] for some results.

3 Generically nef vector bundles

In this section we discuss generic nefness of general vector bundles and torsion free
coherent sheaves.

Definition 3

(i) Let h = (H1, . . . ,Hn−1) be an ample class. A vector bundle E is said to
be h− generically nef (ample), if E |C is nef (ample) for a general curve
C = D1∩ . . .∩Dn−1 for general Di ∈ |miHi| and mi� 0. Such a curve is called
MR-general, which is to say “general in the sense of Mehta-Ramanathan”.

(ii) The vector bundle E is called generically nef (ample), if E is (H1, . . . ,Hn−1)−
generically nef (ample) for all Hi.

(iii) E is almost nef [DPS01], if there is a countable union S of algebraic subvarieties
such E |C is nef for all curves C 6⊂ S.

Definition 4 Fix an ample class h on a projective variety X and let E be a vector
bundle on X . Then we define the slope

µh(E ) = c1(E ) ·h

and obtain the usual notion of (semi-)stability w.r.t. h.

The importance of the notion of MR-generality comes from Mehta-
Ranamathan’s theorem [MR82]

Theorem 2 Let X be a projective manifold (or a normal projective variety) and E

a locally free sheaf on X. Then E is semi-stable w.r.t. h if and only E |C for C MR-
general w.r.t. h.

As a consequence one obtains
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Corollary 1 If E is semi-stable w.r.t. h and if c1(E ) ·h≥ 0, then E is generically nef
w.r.t. h; in case of stability E is even generically ample. If c1(E ) ·h = 0, the converse
also holds.

The proof of Corollary 1 follows immediately from Miyaoka’s characterization
of semi-stable bundle on curves:

Proposition 1 Let C be a smooth compact curve and E a vector bundle on C. Then
E is semi-stable if and only if the Q−bundle

E ⊗ detE ∗

r

is nef.

Remark 1 Everything we said in this section remains true for coherent sheaves E of
positive rank r which are locally free in codimension 1, in particular for torsion free
sheaves (the underlying variety being normal).
Recall that detE := (

∧r)∗∗.

For later use we note the following obvious

Lemma 3.1 Let X be a normal projective variety, E a vector bundle or torsion free
sheaf.

(i) If E is h−generically ample for some h, then H0(X ,(E ∗)⊗m⊗ L) = 0 for all
positive integers m and all numerically trivial line bundles L on X .

(ii) If E is h−generically nef for some h and 0 6= s ∈ H0(X ,(E ∗)⊗m⊗L) = 0 for
some positive integer m and some numerically trivial line bundle L, then s does
not have zeroes in codimension 1.

Nef bundles satisfy many Chern class inequalities. Miyaoka [Mi87] has shown
that at least one also holds for generically nef bundles, once the determinant is nef:

Theorem 3 Let X be an n−dimensional normal projective variety which is smooth
in codimension 2. Let E be a torsion free sheaf which is generically nef w.r.t. the
polarization (H1, . . . ,Hn−1). If detE is Q−Cartier and nef, then

c2(X) ·H1 · . . . ·Hn−2 ≥ 0.
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This is not explicitly stated in [Mi87], but follows easily from ibid., Theorem
6.1. A Chern class inequality

c2
1(E ) ·H1 · . . . ·Hn−2 ≥ c2(E )H1 · . . . ·Hn−2

fails to be true: simply take a surface X with KX ample and c2
1(X) < c2(X) and

let E = Ω 1
X (which is a generically nef vector bundle, see the next section). Since

generic nefness is a weak form of semi-stability, one might wonder whether there
are Chern class inequalities of type

c1(E )2 ≤ 2r
r−1

c2(E ) ·h

(once detE is nef). In case E = Ω
1
X , this is true, see again the next section.

If E is a generically nef vector bundle, then in general there will through any
given point be many curves on which the bundle is not nef. For an almost nef bundle
(see Definition 3), this will not be the case. Notice that in case E has rank 1, the no-
tions “almost nefness” and “pseudo-effectivity” coincide. If a bundle is generically
generated by its global sections, then E is almost nef. Conversely, one has

Theorem 4 Let X be a projective manifold and E a vector bundle on X. If E is
almost nef, then for any ample line bundle A, there are positive numbers m0 and
pp0 such that

H0(X ,Sp((SmE )⊗A)) 6= 0

for p≥ p0 and m≥ m0.

For the proof we refer to [BDPP04]. The question remains whether the bundles
Sp((SmE )⊗A) can even be generically generated. Here is a very special case, with
a much stronger conclusion.

Theorem 5 Let X be an almost nef bundle of rank at most 3 on a projective manifold
X. If detE ≡ 0, then E is numerically flat.

A vector bundle E is numerically flat if it admits a filtration by subbundles such
that the graded pieces are unitary flat vector bundles, [DPS94]. For the proof we
refer to [BDPP04],7.6. The idea of the proof is as follows. First notice that E is
semi-stable for all polarizations by Corollary 1. This allows us to reduce to the
case that dimX = 2 and that E is stable for all polarizations. Now recall that if E

is stable w.r.t. some polarization and if c1(E ) = c2(E ) = 0, then E is unitary flat,
[Ko87]. Hence it suffices to show that c2(E) = 0. This is done by direct calculations
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of intersection numbers on P(E ). Of course there should be no reason why Theorem
5 should hold only in low dimensions, but in higher dimensions the calculations get
tedious.

Corollary 2 Let X be a K3 surface or a Calabi-Yau threefold. Then Ω 1
X is not almost

nef.

A standard Hilbert scheme argument implies that there is a covering family (Ct) for
curves (with Ct irreducible for general t), such that Ω1

X |Ct is not nef for general t.

4 The cotangent bundle

In this section we discuss positivity properties of the cotangent bundles of non-
uniruled varieties. At the beginning there is Miyaoka’s

Theorem 6 Let X be projective manifold or more generally, a normal projective
variety. If X is not uniruled, then Ω 1

X is generically nef.

For a proof we refer to [Mi87] and to [SB92]. In [CP07] this was generalized in
the following form

Theorem 7 Let X be a projective manifold which is not uniruled. Let

Ω
1
X → Q→ 0

be a torsion free quotient. Then detQ is pseudo-effective.

Theorem 7 can be generalized to singular spaces as follows; the assumption
on Q−factoriality is needed in order to make sure that detQ is Q−Cartier (so
Q−factoriality could be substituted by simply assuming that the bidual of

∧r Q is
Q−Cartier).

Corollary 3 Let X be a normal Q−factorial variety. If X is not uniruled, then the
conclusion of Theorem 7 still holds.

Proof Choose a desingularization π : X̂ → X and let

Ω
1
X → Q→ 0
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be a torsion free quotient. We may assume that Q̂ = π
∗(Q)/torsion is locally free.

Via the canonical morphism π∗(Ω 1
X )→ Ω 1

X̂ , we obtain a rational map Ω 1
X̂ 99K Q̂.

If E denotes exceptional divisor with irreducible components Ei, then this rational
map yields a generically surjective map

Ω
1
X̂ → Q̂(kE)

for some non-negative integer k. Appyling Theorem 7, (det Q̂)(mE) contains an
pseudo-effective divisor for some m. Now

det Q̂ = π
∗(detQ)+∑aiEi,

with rational numbers ai, hence detQ itself must be pseudo-effective (this can be
easily seen in various ways).

Corollary 4 Let f : X→Y be a fibration with X and Y normalQ−Gorenstein. Sup-
pose X not uniruled. Then the relative canonical bundle KX/Y (which isQ−Cartier)
is pseudo-effective.

A much more general theorem has been proved by Berndtsson and Paun [BP07].

We consider a Q−factorial normal projective variety which is not uniruled. The
cotangent sheaf Ω

1
X being generically nef, we ask how far it is from being generi-

cally ample.

Proposition 2 Let X be a Q−factorial normal n−dimensional projective variety
which is not uniruled. If Ω

1
X is not generically ample for some polarization h, then

there exists a torsion free quotient

Ω
1
X → Q→ 0

of rank 1≤ p≤ n such that detQ≡ 0.

The case p = n occurs exactly when KX ≡ 0.

Proof Let C be MR-general w.r.t h. Let S ⊂Ω
1
X |C be the maximal ample subsheaf

of the nef vector bundle Ω 1
X |C, see [PS00],2.3, [PS04],p.636, [KST07], sect.6. Then

the quotient QC is numerically flat and SC is the maximal destabilizing subsheaf. By
[MR82], SC extends to a reflexive subsheaf S ⊂ Ω 1

X , which is h−maximal desta-
bilizing. If Q = Ω

1
X/S is the quotient, then obviously Q|C = QC. Now by Corollary

3, detQ is pseudo-effective. Since c1(Q) ·C = 0, it follows that detQ≡ 0.

Finally assume p = n. Then Ω
1
X |C does not contain an ample subsheaf, hence Ω

1
X |C
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is numerically flat; in particular KX · h = 0. Since KX is pseudo-effective, we con-
clude KX ≡ 0.

So if X is not uniruled and Ω 1
X not generically ample, then KX ≡ 0, or we have

an exact sequence
0→S →Ω

1
X → Q→ 0

with Q torsion free of rank less than n = dimX and detQ≡ 0. Dually we obtain

0→F → TX → TX/F → 0

with detF ≡ 0. Since (TX/F )|C is negative in the setting of the proof of the last
proposition, the natural morphism∧

2F/torsion→ TX/F ,

given by the Lie bracket, vanishes.Thus the subsheaf F ⊂ TX is a singular foliation,
which we call a numerically trivial foliation. So we may state

Corollary 5 Let X be Q−factorial normal n−dimensional projective variety. Sup-
pose KX 6≡ 0. Then Ω 1

X is not generically ample if and only if X carries a numerically
trivial foliation.

If X is not uniruled, but Ω
1
X not generically ample, then we can take determinants

in the setting of Proposition 2, and obtain

Corollary 6 Let X be a Q−factorial normal n−dimensional projective variety
which is not uniruled. If Ω 1

X is not generically ample, then there exists a Q−Cartier
divisor D≡ 0, a number q and a non-zero section in H0(X ,(

∧q TX )∗∗ ⊗OX (D)∗∗).
In particular, if X is smooth, then there is a numerically flat line bundle L such that
H0(X ,

∧q TX ⊗L) 6= 0.

Observe that the subsheaf S ⊂ Ω 1
X constructed in the proof of Proposition 2 is

α−destabilizing for all α ∈ME \{0}. Therefore we obtain

Corollary 7 Let X be a Q−factorial normal projective variety which is not unir-
uled. If Ω 1

X is α−semi-stable for some α ∈ME \{0}, then Ω 1
X is generically ample

unless KX ≡ 0.

For various purposes which become clear immediately we need to consider cer-
tain singular varieties arising from minimal model theory. We will not try to prove
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things in the greatest possible generality, but restrict to the smallest class of singular
varieties we need. We adopt the following notation.

Definition 5 A terminal n−fold X is a normal projective variety with at most ter-
minal singularities which is also Q−factorial. If additionally KX is nef, X is called
minimal.

Since the (co)tangent sheaf of a minimal variety X is always KX−semi-stable
[Ts88], [En88], we obtain

Corollary 8 Let X be a minimal projective variety such that KX is big. Then Ω1
X is

generically ample.

Actually [En88] gives more: Ω 1
X is generically ample for all smooth X admitting

a holomorphic map to a minimal variety. In general however a manifold of general
type will not admit a holomorphic map to a minimal model. Nevertheless we can
prove

Theorem 8 Let X be a projective manifold or terminal variety of general type. Then
Ω 1

X is generically ample.

Proof If Ω 1
X would not be generically ample, then we obtain a reflexive subsheaf

S ⊂ TX such that detS ≡ 0. By [BCHM09] there exists a sequence of contractions
and flips

f : X 99K X ′ (4)

such that X ′ is minimal. Since f consists only of contractions and flips, we obtain an
induced subsheaf S ′ ⊂ TX ′ such that detS ′ ≡ 0. Here it is important that no blow-
up (“extraction”) is involved in f . From Corollary 4 we obtain a contradiction.

Now Lemma 3.1 gives

Corollary 9 Let X be a projective manifold of general type. Then

H0(X ,(TX )⊗m) = 0

for all positive integers m.

More generally, H0(X ,(TX )⊗m⊗L∗) = 0 if L is a pseudo-effective line bundle.

We now turn to the case that X is not of general type. We start in dimension 2.
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Theorem 9 Let X be a smooth projective surface with κ(X) ≥ 0. Suppose that
H0(X ,TX⊗L) 6= 0, where L is a numerically trivial line bundle. Then the non-trivial
sections of TX ⊗L do not have any zeroes, in particular c2(X) = 0 and one of the
following holds up to finite étale cover.

(i) X is a torus

(ii) κ(X) = 1 and X = B×E with g(B)≥ 2 and E elliptic.

In particular, X is minimal.
Conversely, if X is (up to finite étale cover) a torus or of the form X = B×E with
g(B) ≥ 2 and E elliptic, then H0(X ,TX ⊗L) 6= 0 for some numerically trivial line
bundle L.

Proof Fix a non vanishing section s ∈H0(X ,TX ⊗L). Observe that due to Theorem
6 the section s cannot have zeroes in codimension 1. Thus Z = {s = 0} is at most
finite. Dualizing, we obtain an epimorphism

0→ G →Ω
1
X →IZ⊗L∗ → 0 (5)

with a line bundle G ≡KX . From Bogomolov’s theorem [Bo79], we have κ(G )≤ 1,

hence κ(X) ≤ 1. Next observe that if L is torsion, i.e. L⊗m = OX for some m, then
after finite étale cover, we may assume L = OX ; hence X has a vector field s. This
vector field cannot have a zero, otherwise X would be uniruled (see e.g. [Li78]. Then
a theorem of Lieberman [Li78] applies and X is (up to finite étale cover) a torus or
a poduct E×C with E elliptic and g(C)≥ 2.

So we may assume that L is not torsion; consequently q(X)≥ 1.

We first suppose that X is minimal. If κ(X) = 0, then clearly X is a torus up to
finite étale cover. So let κ(X) = 1.

We start by ruling out g(B) = 0. In fact, if B = P1, then the semi-negativity of
R1 f∗(OX ) together with q(X) ≥ 1 shows via the Leray spectral sequence that
q(X) = 1. Let g : X → C be the Albanese map to an elliptic curve C. Then (pos-
sibly after finite étale cover of X), L = g∗(L′) with a numerically line bundle L′ on
C, which is not torsion. Since the general fiber F of f has an étale map to C, it
follows that L|F is not torsion. But then H0(F,TX ⊗L|F) = 0, a contradiction to the
existence of the section s. Hence g(B)≥ 1.

Consider the natural map

λ : TX ⊗L→ f ∗(TB)⊗L.
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Since L is not torsion, λ (s) = 0 (this property of L is of course only needed when
g(B) = 1). Therefore s = µ(s′), where

µ : TX/B⊗L→ TX ⊗L (6)

is again the natural map. Recall that by definition TX/B = (Ω 1
X/B)∗, which is a re-

flexive sheaf of rank 1, hence a line bundle. Now recall that s has zeroes at most in
a finite set, so does s′. Consequently

TX/B⊗L = OX .

On the other hand

TX/B =−KX ⊗ f ∗(KB)⊗OX (∑(mi−1)Fi),

where the Fi are the multiple fibers. Putting things together, we obtain

KX/B = L⊗OX (∑(mi−1)Fi).

Since KX/B is pseudo-effective (see Corollary 4) we cannot have any multiple fibers,
hence KX/B ≡ 0. It follows that f must be locally trivial (see e.g. [BHPV04], III.18,
and also that g(B)≥ 2. Then X becomes actually a product after finite étale cover.

We finally rule out the case that X is not minimal. So suppose X not minimal
and let σ : X → X ′ be the blow-down of a (−1)−curve to a point p. Then we can
write L = σ∗(L′) with some numerically trivial line bundle L′ on X ′ and the section
s induces a section s′ ∈ H0(X ′,TX ′ ⊗ L′). Notice that σ∗(TX ) = Ip ⊗ TX ′ , hence
s′(p) = 0. Therefore we are reduced to the case where X ′ is minimal and have to
derive a contradiction. Now s′ has no zeroes by what we have proved before. This
gives the contradiction we are looking for.

Corollary 10 Let X be a smooth projective surface with κ(X) ≥ 0. The cotangent
bundle Ω 1

X is not generically ample if and only if X is a minimal surface with κ = 0
(i.e., a torus, hyperelliptic, K3 or Enriques) or X is a minimal surface with κ = 1
and a locally trivial Iitaka fibration; in particular c2(X) = 0 and X is a product
after finite étale cover of the base.

We now turn to the case of threefolds X - subject to the condition that Ω 1
X is

not generically ample. By Theorem 8 X is not of general type; thus we need only to
consider the cases κ(X) = 0,1,2. If KX ≡ 0, then of course Ω 1

X cannot be generically
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ample. However it is still interesting to study numerically trivial foliations in this
case.

Theorem 10 Let X be a minimal projective threefold with κ(X) = 0. Let

0→F → TX → Q→ 0

be a numerically trivial foliation, i.e., detF ≡ 0. Then there exists a finite cover
X ′ → X, étale in codimension 2, such that X ′ is a torus or a product A×S with A an
elliptic curve and S a K3-surface.

Proof By abundance, mKX = OX for some positive integer m, since X is minimal.
By passing to a cover which is étale in codimension 2 and applying Proposition 4
we may assume KX = OX . We claim that

q(X) > 0,

possibly after finite cover étale in codimension 2.
If detQ is not torsion, then q(X) > 0 right away. If theQ−Cartier divisor detQ is tor-
sion, then, after a finite cover étale in codimension 2, we obtain a holomorphic form
of degree 1 or 2. To be more precise, choose m such that mdetQ is Cartier. Then
choose m′ such that m′mdetQ = OX . Then there exists a finite cover h : X̃→ X , étale
in codimension 2, such that the pull-back h∗(detQ) is trivial. In the sheaf-theoretic
language, h∗(detQ)∗∗ = OX . Now pull back the above exact sequence and conclude
the existence of a holomorphic 1-form in case Q has rank 1 and a holomorphic 2-
form in case Q has rank 2.
Since χ(X ,OX )≤ 0 by [Mi87], we conclude q(X) 6= 0.

Hence we have a non-trivial Albanese map

α : X → Alb(X) =: A.

By [Ka85], sect. 8, α is surjective with connected fibers. Moreover, possibly after a
finite étale base change, X is birational to F×A where F is a general fiber of α.

Suppose first that dimα(X) = 1, i.e., q(X) = 1. Then F must be a K3 surface (after
another finite étale cover). Now X is birational to F × A via a sequence of flops
[Ko89] and therefore X itself is smooth ([Ko89], 4.11). Hence by the Beauville-
Bogomolov decomposition theorem, X itself is a product (up to finite étale cover).
The case dimα(X) = 2 cannot occur, since then X is birational to a product of an
elliptic curve and a torus, so that q(X) = 3.

If finally dimα(X) = 3, then X is a torus.
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In the situation of Theorem 10, it is also easy to see that the foliation F is
induced by a foliation F ′ on X ′ in a natural way. Moreover F ′ is trivial sheaf in
case X ′ is a torus and it is given by the relative tangent sheaf of a projection in case
X ′ is a product.

From a variety X whose cotangent bundle is not generically ample, one can
construct new examples by the following devices.

Proposition 3 Let f : X 99K X ′ be a birational map of normalQ−factorial varieties
which is an isomorphism in codimension 1. Then Ω 1

X is generically ample if and
only if Ω 1

X ′ is generically ample.

Proof Suppose that Ω 1
X is generically ample and Ω 1

X ′ is not. Since X ′ is not uniruled,
Ω 1

X ′ is generically nef and by Proposition 2 there is an exact sequence

0→S ′ →Ω
1
X ′ →Q′ → 0

such that detQ′ ≡ 0. Since f is an isomorphism in codimension 1, this sequence
clearly induces a sequence

0→S →Ω
1
X → Q→ 0

such that detQ≡ 0. Since the problem is symmetric in X and X ′, this ends the proof.

Proposition 4 Let f : X → X ′ be a finite surjective map between normal projective
Q−factorial varieties. Assume that f is étale in codimension 1. Then Ω1

X is generi-
cally ample if and only if Ω

1
X ′ is generically ample.

Proof If X ′ is not uniruled and Ω 1
X ′ is not generically ample, we lift a sequence

0→S ′ →Ω
1
X ′ →Q′ → 0

with detQ′ ≡ 0 and conclude that Ω 1
X is not generically ample.

Suppose now that Ω 1
X is not generically ample (and X not uniruled). Then we obtain

a sequence
0→S →Ω

1
X → Q→ 0

with detQ≡ 0. If Ω 1
X ′ would be generically ample, then for a general complete inter-

section curve C′ ⊂ X ′ the bundle Ω 1
X ′ |C

′ is ample. Hence Ω 1
X | f−1(C′) = f ∗(Ω 1

X ′ |C
′)

is ample, a contradiction.
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In view of the minimal model program we are reduced to consider birational
morphisms which are “divisorial” in the sense that their exceptional locus contains
a divisor. In one direction, the situation is neat:

Proposition 5 Let π : X̂ → X be a birational map of normal Q−factorial varieties.
If Ω 1

X is generically ample, so does Ω 1
X̂ .

Proof If Ω 1
X would not be generically ample, we obtain an epimorphism

Ω
1
X̂ → Q̂→ 0 (7)

with a torsion free sheaf Q̂ such that detQ̂≡ 0. Applying π∗ yields a map

µ : π∗(Ω 1
X̂ )→ π∗(Q̂),

which is an epimorphism in codimension 1. Since Ω 1
X = π∗(Ω 1

X̂ ) outside a set of
codimension at least 2, there exists a torsion free sheaf Q coinciding with π∗(Q̂)
outside a set of codimension at least 2 together with an epimorphism

Ω
1
X →Q→ 0.

Since detQ = detπ∗(Q̂)≡ 0, the sheaf Ω 1
X cannot be generically ample.

From a birational point of view, it remains to investigate the following situation.
Let π : X̂ → X be a divisorial contraction of non-uniruled terminal varieties and
suppose that Ω 1

X is not generically ample. Under which conditions is Ω 1
X̂ generically

ample? Generic ampleness is not for free as shown in the following easy

Example 2 Let E be an elliptic curve and S an abelian surface, say. Let Ŝ→ S be the
blow-up at p ∈ S and set X̂ = E× Ŝ. Then X̂ is the blow-up of X = E×S along the
curve E×{p}. Since Ω

1
X̂ = OX̂ ⊕ p∗2(Ω

1
Ŝ
), it cannot be generically ample.

We now study a special case of a point modification: the blow-up of a smooth
point.

Proposition 6 Let X be a non-uniruled n−dimensional projective manifold,
π : X̂ → X the blow-up at the point p. If Ω1

X̂ is not generically ample, then there
exists a number q < n, a numerically trivial line bundle L and a non-zero section
v ∈ H0(X ,

∧q TX ⊗L) vanishing at p: v(p) = 0.

Proof By Corollary 6, we get a non-zero section v̂ ∈ H0(X̂ ,
∧q TX̂ ⊗ L̂) for some

numerically trivial line bundle L̂. Notice that L̂ = π∗(L) for some numerically trivial
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line bundle L on X . Since
π∗(
∧

qTX̂ )⊂
∧

qTX ,

we obtain a section v ∈ H0(X ,
∧q TX ⊗L). It remains to show that v(p) = 0. This

follows easily by taking π∗ of the exact sequence

0→
∧

qTX̂ → π
∗(
∧

qTX )→
∧

q(TE(−1))→ 0.

Here E is the exceptional divisor of π. In fact, taking π∗ gives

π∗(
∧

qTX̂) = Ip⊗TX .

From the Beauville-Bogomolov decomposition of projective manifolds X with
c1(X) = 0, we deduce immediately

Corollary 11 Let X̂ be the blow-up at a point p in a projective manifold X with
c1(X) = 0. Then Ω 1

X̂ is generically ample.

Due to Conjecture 2 below this corollary should generalize to all non-uniruled
manifolds X . Based on the results presented here, one might formulate the following

Conjecture 1 Let X be a non-uniruled terminal n−fold. Suppose that Ω 1
X is not

generically ample and KX 6≡ 0. Then, up to taking finite covers X ′ → X, étale in codi-
mension 1, and birational maps X ′ 99K X ′′,which are biholomorphic in codimension
1, X admits a locally trivial fibration, given by a numerically trivial foliation, which
is trivialized after another finite cover, étale in codimension 1.

More generally, any numerical trivial foliation should yield the same conclusion.

This might require a minimal model program, a study of minimal models in
higher dimensions and possibly also a study of the divisorial Mori contractions. In
a subsequent paper we plan to study minimal threefolds X with κ(X) = 1,2 whose
cotangent bundles is not generically ample and then study the transition from a
general threefold to a minimal model.

We saw that a non-uniruled manifold X whose cotangent bundle is not generi-
cally ample, admits a section v in some bundle

∧ qTX ⊗L, where L is numerically
trivial. It is very plausible that v cannot have zeroes:
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Conjecture 2 Let X be a projective manifold. Let v ∈ H0(X ,
∧q TX ⊗L) be a non-

trivial section for some numerically trivial line bundle L. If v has a zero, then X is
uniruled.

If q = dimX , then the assertion is clear by [MM86]. If q = 1 and L is trivial, then
the conjecture is a classical result, see e.g. [Li78]. We will come back to Conjecture
2 at the end of the next section.

A well-known, already mentioned theorem of Lieberman [Li78] says that if a
vector field v has no zeroes, then some finite étale cover X̃ of X has the form
X̃ = T ×Y with T a torus, and v comes from the torus. One might hope that this
is simply a special case of a more general situation:

Conjecture 3 Let X be a projective manifold, L a numerically trivial line bundle and

v ∈ H0(X ,
∧

qTX ⊗L)

a non-zero section, where q < dimX . Then X admits a finite étale cover X̃→ X such
that X̃ 'Y ×Z where Y is a projective manifold with trivial canonical bundle and v
is induced by a section v′ ∈H0(Y,

∧q TY ⊗L′).

5 The tangent bundle

In this section we discuss the dual case: varieties whose tangent bundles are generi-
cally nef or generically ample. If X is a projective manifold with generically nef tan-
gent bundle TX , then in particular −KX is generically nef. If KX is pseudo-effective,
then KX ≡ 0 and the Bogomolov-Beauville decomposition applies. Therefore we
will always assume that KX is not pseudo-effective, hence X is uniruled. If more-
over TX is generically ample w.r.t some polarization, then X is rationally connected.
Actually much more holds:

Theorem 11 Let X be a projective manifold. Then X is rationally connected if and
only if there exists an irreducible curve C ⊂ X such that TX |C is ample.

For the existence of C if X is rationally connected see [Ko96], IV.3.7; for the
other direction we refer to [BM01], [KST07] and [Pe06].

The first class of varieties to consider are certainly Fano manifolds. One main
problem here is the following standard
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Conjecture 4 The tangent bundle of a Fano manifold X is stable w.r.t. −KX .

This conjecture is known to be true in many cases, but open in general. Here is
what is proved so far if b2(X) = 1.

Theorem 12 Let X be a Fano manifold of dimension n with b2(X) = 1. Under one
of the following conditions the tangent bundle is stable.

• n≤ 5 (and semi-stable if n≤ 6);

• X has index > n+1
2 ;

• X is homogeneous;

• X (of dimension at least
the following operations: first take a smooth weighted complete intersection, then
take a cyclic cover, take again a smooth complete intersections; finally stop ad
libitum.

For the first two assertions see [Hw01]; the third is classical; the last is in
[PW95].

By Corollary 1, generic nefness, even generic ampleness, is a consequence of
stability in case of Fano manifolds. Therefore generic nefness/ampleness is a weak
version of stability. So it is natural to ask for generic nefness/ampleness of the tan-
gent bundle of Fano manifolds:

Theorem 13 Let X be a projective manifold with−KX big and nef. Then TX is gener-
ically ample (with respect to any polarization).

If b2(X)≥ 2, then of course the tangent bundle might not be (semi-)stable w.r.t.
−KX ; consider e.g. the product of projective spaces (of different dimensions).
The proof of Theorem 13 is given in [Pe08]. The key to the proof is the following
observation. Fix a polarization h = (H1, . . . ,Hn−1), where n = dimX . Suppose that
TX is not h−generically ample. Since −KX · h > 0, we may apply Corollary 1 and
therefore TX is not h−semi-stable More precisely, let C be MR-general w.r.t. h, then
TX |C is not ample. Now we consider the Harder-Narasimhan filtration and find a
piece EC which is maximally ample, i.e., EC contains all ample subsheaves of TX |C.

By the theory of Mehta-Ramanathan [MR82], the sheaf EC extends to a saturated
subsheaf E ⊂ TX . The maximal ampleness easily leads to the inequality

(KX +detE ) ·h > 0.

3) arises from a weighted projective space by performing



Generically nef vector bundles and geometric applications 365

On the other hand, KX +detE is a subsheaf of Ω
n−k
X . If X is Fano with b2(X) = 1,

then we conclude that KX + detE must be ample, which is clearly impossible, e.g.
by arguing via rational connectedness. In general we show, based on [BCHM09],
that the movable ME(X) contains an extremal ray R such that

(KX +detE ) ·R > 0.

This eventually leads, possible after passing to a suitable birational model, to a Fano
fibration f : X→Y such that KX +detE is relatively ample. This yields a contradic-
tion in the same spirit as in the Fano case above.

With substantially more efforts, one can extend the last theorem in the following
way.

Theorem 14 Let X be a projective manifold with −KX semi-ample. Then TX is
generically nef.

From Theorem 3 we therefore deduce

Corollary 12 Let X be an n−dimensional projective manifold with −KX semi-
ample. Then

c2(X) ·H1 . . . ·Hn−2 ≥ 0

for all ample line bundles Hj on X.

Of course Theorem 14 should hold for all manifolds X with−KX nef, and there-
fore also the inequality from the last corollary should be true in this case.

For biregular problems generic nefness is not enough; in fact, if x ∈ X is a fixed
point and TX is generically nef, then it is not at all clear whether there is just one
curve C passing through p such that TX |C is nef. Therefore we make the following

Definition 6 Let X be a projective manifold and E a vector bundle on X . We say
that E is sufficiently nef if for any x ∈ X there is a family (Ct) of curves through x
covering X such that E|Ct is nef for general t.

We want to apply this to the study of manifolds X with −KX nef:

Conjecture 5 Let X be a projective manifold with −KX nef. Then the Albanese map
is a surjective submersion.
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Surjectivity is known by Qi Zhang [Zh05] using char p−methods, smoothness
of the Albanese map only in dimension at most 3 by [PS98]. The connection to the
previous definition is given by

Proposition 7 Suppose that TX is sufficiently nef. Then the Albanese map is a sur-
jective submersion.

Proof (cp. [Pe08]). If the Albanese map would not be a surjective submersion, then
there exists a holomorphic 1−form ω on X vanishing at some point x. Now choose
a general curve C from a covering family through x such that TX |C is nef. Then ω|C
is a non-zero section of T ∗X |C having a zero. This contradicts the nefness of TX |C.

Of course, a part of the last proposition works more generally:

Proposition 8 If E is sufficiently nef and if E∗ has a section s, then s does not have
any zeroes.

We collect here some evidence that manifolds with nef anticanonical bundles
have sufficiently nef tangent bundles and refer to [Pe08] for proofs.

Theorem 15 Let X be a projective manifold.

• If E is a generically ample vector bundle, then E is sufficiently ample.

• If −KX is big and nef, then TX is sufficiently ample.

• If −KX is hermitian semi-positive, then TX is sufficiently nef.

Notice however that a generically nef bundle need not be sufficiently nef; see
[Pe08] for an example (a rank 2−bundle on P3).

We finally come back to Conjecture 2. So suppose that X is a projective mani-
fold, let L be numerically trivial and consider a non-zero section

v ∈H0(X ,
∧

qTX ⊗L),

where 1≤ q≤ dimX−1. Applying Proposition 8, Conjecture 2 is therefore a con-
sequence of

Conjecture 6 Let X be a non-uniruled projective manifold. Then Ω
1
X is sufficiently

nef.
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Conjecture 6 is true in dimension 2 (using [Pe08], sect.7 and Corollary 10), and
also if KX ≡ 0 and if Ω 1

X is generically ample, again by [Pe08], sect.7.
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[SB98] Shepherd-Barron,N.: Semi-stability and reduction mod p. Topology 37, 659-664 (1998)
[Ts88] Tsuji,H.: Stability of tangent bundles of minimal algebraic varieties. Topology 27

(1988), no. 4, 429–442.
[Zh05] Zhang,Q.: On projective manifolds with nef anticanonical divisors. Math. Ann. 332

(2005), 697–703



Dolbeault cohomology of nilmanifolds with
left-invariant complex structure
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Abstract We discuss the known evidence for the conjecture that the Dolbeault co-
homology of nilmanifolds with left-invariant complex structure can be computed as
Lie-algebra cohomology and also mention some applications.
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1 Introduction

Dolbeault cohomology is one of the most fundamental holomorphic invariants of a
compact complex manifold X but in general it is quite hard to compute. If X is a
compact Kähler manifold, then this amounts to describing the decomposition of the
de Rham cohomology

Hk
dR(X ,C) =

⊕
p+q=k

H p,q(X) =
⊕

p+q=k

Hq(X ,Ω p
X)

but in general there is only a spectral sequence connecting these invariants.

One case where at least de Rham cohomology is easily computable is the case
of nilmanifolds, that is, compact quotients of real nilpotent Lie groups. If M = Γ \G
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is a nilmanifold and g is the associated nilpotent Lie algebra, Nomizu proved that
we have a natural isomorphism

H∗(g,R)∼= H∗dR(M,R)

where the left hand side is the Lie-algebra cohomology of g. In other words, com-
puting the cohomology of M has become a matter of linear algebra.

There is a natural way to endow an even-dimensional nilmanifold with an almost
complex structure: choose any endomorphism J : g→ g with J2 = − id and extend
it to an endomorphism of T G, also denoted by J, by left-multiplication. Then J is
invariant under the action of Γ and descends to an almost complex structure on M.
If J satisfies the integrability condition

[x,y]− [Jx,Jy]+ J[Jx,y]+ J[x,Jy] = 0 for all x,y ∈ g (1)

then, by Newlander–Nirenberg [28, p.145], it makes MJ = (M,J) into a complex
manifold.

In this survey we want to discuss the conjecture

The Dolbeault cohomology of a nilmanifold with left-invariant complex structure
MJ can be computed using only left-invariant forms.

This was stated as a question in [14, 11] but we decided to call it Conjecture in the
hope that it should motivate other people to come up with a proof or a counterex-
ample. A more precise formulation in terms of Lie-algebra cohomology is given in
Section 3.1.

Before concentrating on this topic, we would like to indicate why nilmanifolds
have attracted much interest over the last years. Their main feature is that the con-
struction and study of left-invariant geometric structures on them usually boils down
to finite dimensional linear algebra. On the other hand, the structure is sufficiently
flexible to allow the construction of many exotic examples. We only want to mention
the three most prominent in complex geometry:

• If G is abelian then MJ is a complex torus.

• The Iwasawa manifold X = Γ \G is obtained as the quotient of the complex Lie
group

G =


1 z1 z3

0 1 z2

0 0 1


⊂ Gl(3,C)
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by the lattice Γ = G∩Gl(3,Z[i]) and as such is complex parallelisable. Nakamura
studied its small deformations and thus showed that a small deformation of a
complex parallelisable manifold need not be complex parallelisable [35].

Observe that X cannot be Kähler since dz3− z2dz1 is a holomorphic 1-form that
is not closed.

• Kodaira surfaces, also known as Kodaira-Thurston manifolds, had appeared in
Kodaira’s classification of compact complex surfaces as non-trivial principal
bundle of elliptic curves over an elliptic curve [29] and were later considered
independently by Thurston as the first example of a manifold that admits both a
symplectic and a complex structure but no Kähler structure. In our context it can
be described as follows: let

G =


1 z̄1 z2

0 1 z1

0 0 1

 | z1,z2 ∈ C

⊂ Gl(3,C)

and Γ = G∩Gl(3,Z[i]). Then G ∼= C2 with coordinates z1,z2 and the action of
Γ on the left is holomorphic; the quotient is a compact complex manifold. If we
set α = dz1 ∧ (dz̄2− z1dz̄1) then α + ᾱ is a left-invariant symplectic form on G
and thus descends to the quotient.

In fact, the first example is the only nilmanifold that can admit a Kähler structure
[5], so none of the familiar techniques available for Kähler manifolds will be useful
in our case.

Some more applications in complex geometry will be given in Section 4. Nil-
manifolds also play a role in hermitian geometry [1, 4, 32], riemannian geometry
[22, 6], ergodic theory [25], arithmetic combinatorics [21], and theoretical physics
[19, 20].

In order to discuss the above conjecture on Dolbeault cohomology, we start by
sketching the proof of Nomizu’s theorem because some of the ideas carry over to
the holomorphic setting. Then we recall the necessary details on Dolbeault coho-
mology to give a precise statement of the conjecture. It turns out that we are in a
good position to prove the conjecture whenever we can inductively decompose the
nilmanifold with left-invariant complex structure into simpler pieces. This is due to
Console and Fino [11], generalising previous results of Cordero, Fernández, Gray
and Ugarte [14].

Section 3.4 contains the only new result in this article. We prove that the con-
jecture always holds true if we pass to a suitable quotient of the nilmanifold with
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left-invariant complex structure and also discuss some possible approaches to attack
the general case.

1.1 Notations

Throughout the paper G will be a simply connected nilpotent real Lie-group with
Lie-algebra g. Every nilpotent Lie group can be realised as a subgroup of the group
of upper triangular matrices with 1’s on the diagonal.

We will always assume that G contains a lattice Γ , thus giving rise to a (compact)
nilmanifold M = Γ \G. Elements in g will usually be interpreted as left-invariant
vector fields on G or on M. We restrict our attention to those complex structures
on M that are induced by an integrable left-invariant complex structure on G and
are thus uniquely determined by an (integrable) complex structure J : g→ g. The
resulting complex manifold is denoted MJ . Note that even on a real torus of even
dimension at least 6 there are many complex structures that do not arise in this way
[7].

The group G is determined up to isomorphism by the fundamental group of M
[44, Corollary 2.8, p.45] and by abuse of notation we sometimes call g the Lie-
algebra of M.

2 Real nilmanifolds and Nomizu’s result on de Rham
cohomology

The aim of this section is to prove Nomizu’s theorem.

Theorem 1 (Nomizu [36]) Let M be a compact nilmanifold. Then the inclusion of
left-invariant differential forms in the de Rham complex

Λ
•g∗ ↪→A •(M)

induces an isomorphism between the Lie-algebra cohomology of g and the de Rham
cohomology of M,

H∗(g,R)∼= H∗dR(M,R).
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Since some of the main results on Dolbeault cohomology discussed in the next sec-
tion rely on similar ideas, we will examine the proof in some detail: at its heart lies
an inductive argument.

Let M = Γ \G be a real nilmanifold with associated Lie algebra g and let Z G be
the centre of G. By [16, p. 208], Z Γ = Γ ∩Z G is again a lattice and the projection
G→G/Z G descends to a fibration M→M′. The fibres are real tori T = Z G/Z Γ .
Since elements in Z G commute with elements in Γ , their action descends to the
quotient and M→M′ is a principal T -bundle.

To iterate this process we recall the following definition.

Definition 1 For a Lie-algebra g we call

Z 0g := 0, Z i+1g := {x ∈ g | [x,g]⊂Z ig}

the ascending central series and

C 0g := g, C i+1g := [C ig,g]

the descending central series of g.

The Lie-algebra is called nilpotent if there is a ν ∈ N such that Z νg = g, or
equivalently C νg = 0. The minimal such ν = ν(g) is called the index of nilpotency
or step-length of g.

The same definition can be made on the level of the Lie-group G and the resulting
sub-algebras and subgroups correspond to each other under the exponential map.

Proceeding inductively, we can use the first filtration on g to decompose M ge-
ometrically; the second one induces a similar decomposition since C ig ⊂ Z ν−ig.
More precisely, if we denote by Ti the torus obtained as a quotient of Z iG/Z i+1G
by Z iΓ /Z i+1Γ , then there is a tower
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T1
� � // M1

π1

��
T2

� � // M2

π2
��
...

��
Tν−1

� � // Mν−1

πν−1

��
Mν

(2)

and each πi : Mi→Mi+1 is a Ti-principal bundle.

This geometric description is crucial in the proof of Nomizu’s Theorem. The
underlying idea is quite simple: we perform induction over the index of nilpotency
ν . If ν = 1, i.e., g is abelian, then M is a torus and the result is well known. For the
induction step, we consider M as a principal torus bundle over a nilmanifold M′ with
lower nilpotency index. Then we have to combine our knowledge of the cohomology
of the fibre and of the base to describe the cohomology of the total space M. This
is achieved by means of two spectral sequences, the Leray-Serre spectral sequence
and the Serre-Hochschild spectral sequence.

Let us work this out a bit more in detail starting on the geometric side: let A k(M)
be the the space of smooth differential k-forms on M and consider the de Rham
complex

0→A 0(M) d−→A 1(M) d−→ . . .
d−→A n(M)→ 0.

The principal bundle π : M → M′ with fibre T induces an inclusion
π∗A 1(M′) ↪→A 1(M) and thus a filtration of A k(M) whose graded pieces are gen-
erated by forms of the type (π∗α)∧β where β is a differential form along the fibres.
Decomposing also the differential and starting with the vertical component, we have
constructed a version of the Leray Serre spectral sequence

E p,q
2 = H p(M′,Hq(T,R)) =⇒ H p+q

dR (M).

In the general case the E2-term has to be interpreted as cohomology with values in a
local system but since we have a principal bundle with connected structure group the
monodromy action on Hq(T,R) is trivial and we have E p,q

2 = H p
dR(M′)⊗Hq

dR(T ).



Dolbeault cohomology of nilmanifolds with left-invariant complex structure 375

Now we repeat the construction on the level of left-invariant forms. Consider
Λ •g∗ as a subcomplex of the de Rham complex (A •,d). The differential of a k-
form α can be defined entirely in terms of the Lie-bracket and the Lie-derivative
as

(dkα)(x1, . . . ,xk+1) :=
k+1

∑
i=1

(−1)i+1xi(α(x1, . . . , x̂i, . . . ,xk+1))

+ ∑
1≤i< j≤k+1

(−1)i+ j
α([xi,x j],x1, . . . , x̂i, . . . , x̂ j, . . . ,xk+1).

For left-invariant α ∈Λ kg∗ and xi ∈ g it reduces to

(dkα)(x1, . . . ,xk+1) = ∑
1≤i< j≤k+1

(−1)i+ j
α([xi,x j],x1, . . . , x̂i, . . . , x̂ j, . . . ,xk+1)

and the complex (Λ •g∗,d) is defined purely algebraically. It is known as Chevalley
complex [10] and computes the Lie-algebra cohomology of g (see also [45, Chapter
7]).

If the fibration π : M→M′ corresponds to the short exact sequence

0→ h→ g→ g/h→ 0

where h = Z g as explained above then the dual sequence induces a filtration on
the exterior powers Λ kg∗ and we can organise the graded pieces into a spectral
sequence, the Hochschild-Serre spectral sequence (see [45, Section 7.5]), with

E p,q
0 = Λ

p(g/h)∗ ⊗Λ
qh∗

E p,q
2 = H p(g/h,Hq(h)) = H p(g/h)⊗Hq(h) =⇒ H p+q(g,R).

The second description of the E2-term holds in our setting since h is contained in
the centre of g, which corresponds to π being a principal bundle.

Now we deduce a proof of Nomizu’s theorem: we know the result for the
torus and then proceed by induction on the nilpotency index. The inclusion
(Λ •g∗,d) ↪→ (A •(M),d) is compatible with the filtrations we introduced and thus
we get an induced homomorphism of spectral sequences. At the E2 level this is

H p(g/h)⊗Hq(h)→ H p
dR(M′)⊗Hq

dR(T )

which is an isomorphism by induction hypothesis. Thus also in the limit we have
the desired isomorphism

H∗(g)
∼=−→ H∗dR(M).
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Remark 1 The statement we just proved extends to solvmanifolds, i.e., compact quo-
tients of solvable groups, that satisfy the so-called Mostow condition [34]. The de
Rham cohomology of more general solvmanifolds can be studied via an auxiliary
construction due to Guan [23] which was recently reconsidered by Console and Fino
[12].

3 Left-invariant complex structures and Dolbeault cohomology

We start this section by recalling the definition of Dolbeault cohomology and giving
the precise statement of the conjecture. Then we discuss to what extent the proof of
Nomizu’s result, discussed in the preceding section, carries over to the holomorphic
setting. After mentioning the openness result of Console and Fino we will also give
some new results and discuss directions of future research.

3.1 Reminder on Dolbeault cohomology

Recall that an (integrable) complex structure on a differentiable manifold M is a
vector bundle endomorphism J of the tangent bundle which satisfies J2 = − id and
the integrability condition (1). The endomorphism J induces a decomposition of the
complexified tangent bundle by letting pointwise T 1,0M ⊂ TCM = T M⊗C be the
i-eigenspace of J. Then the −i-eigenspace is T 0,1M = T 1,0M. Note that T 1,0M is
naturally isomorphic to (T M,J) as a complex vector bundle via the projection, and
the integrability condition can be formulated as [T 1,0M,T 1,0M]⊂ T 1,0M.

The bundle of differential k-forms decomposes

Λ
kT ∗CM =

⊕
p+q=k

Λ
pT ∗1,0M⊗Λ

qT ∗0,1M =
⊕

p+q=k

Λ
p,qT ∗M,

and we denote by A p,q(M) the C ∞-sections of the bundle Λ p,qT ∗M, i.e., the global
differential forms of type (p,q).

The integrability condition (1) is equivalent to the decomposition of the differ-
ential d = ∂ + ∂̄ and for all p we get the Dolbeault complex

(A p,•(MJ), ∂̄ ) : 0→A p,0(M) ∂̄−→A p,1(M) ∂̄−→ . . .



Dolbeault cohomology of nilmanifolds with left-invariant complex structure 377

The Dolbeault cohomology groups H p,q(M) = Hq(A p,•(M), ∂̄ ) are one of the most
fundamental holomorphic invariants of MJ; from another point of view, the Dol-
beault complex computes the cohomology groups of the sheaf Ω

p
MJ

of holomorphic
p-forms.

In case M is a nilmanifold and J is left-invariant, all of the above can be consid-
ered at the level of left-invariant forms. Decomposing g∗C = g∗1,0⊕g∗0,1 and setting
Λ p,qg∗ = Λ pg∗1,0⊗Λqg∗0,1 we get subcomplexes

(Λ p,•g∗, ∂̄ ) ↪→ (A p,•(MJ), ∂̄ ). (3)

In fact, the left hand side has a purely algebraic interpretation worked out in [41]:
g0,1 is a Lie-subalgebra of gC and the adjoint action followed by the projection to the
(1,0)-part makes g1,0 into an g0,1-module. Then the complex (Λ p,•g∗, ∂̄ ) computes
the Lie-algebra cohomology of g0,1 with values in Λ pg∗1,0 and we call

H p,q(g,J) = Hq(g0,1,Λ pg∗1,0) = Hq(Λ p,•g∗, ∂̄ )

the Lie-algebra Dolbeault cohomology of (g,J).

We can now formulate the analogue of Nomizu’s theorem for Dolbeault coho-
mology as a conjecture.

Conjecture 1 Let MJ be a nilmanifold with left-invariant complex structure. Then
the map

ϕJ : H p,q(g,J)→ H p,q(MJ)

induced by (3) is an isomorphism.

It is known that ϕJ is always injective (see [11] or [41]).

We will accumulate evidence for the conjecture over the next sections and also
explain which are the open cases.

3.2 The inductive proof

In order to extend the idea of Nomizu’s proof to Dolbeault cohomology, we need to
have three ingredients:

(i) Can we start the induction, i.e., can we express the Dolbeault cohomology of a
complex torus as a suitable Lie-algebra cohomology?
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(ii) Does the complex geometry of nilmanifolds allow us to proceed by induction?
For example, is every nilmanifold with left-invariant complex structure a holo-
morphic principal bundle?

(iii) Are there spectral sequences that play the role of the Leray-Serre and
Hochschild-Serre spectral sequence for (Lie-algebra) Dolbeault cohomology?

It is well known that the first question has a positive answer (see e.g. [31, p.15]). In
our language, assume that g is abelian and J is a complex structure. Then the differ-
ential in the Lie-algebra Dolbeault complex (Λ p,•g∗, ∂̄ ) is trivial (being induced by
the adjoint action) and thus

H p,q(g,J) = Λ
p,qg∗ = Λ

pg∗ ⊗Λ
qḡ∗ = H p,q(MJ).

Unfortunately, the answer to the second question is negative. We will discuss the
geometry of nilmanifolds with left-invariant complex structure in Section 3.2.1 and
see that nevertheless the inductive approach works in many important special cases.

The positive answer to the third question, important for the induction step, has
been worked out by Cordero, Fernández, Gray and Ugarte [14] for principal holo-
morphic torus bundles and in greater generality by Console and Fino [11]. The extra
grading coming from the (p,q)-type of the differential forms makes the notation and
the construction of the necessary spectral sequences more involved. For the usual
Dolbeault cohomology of a holomorphic fibration the result goes back to Borel [24,
Appendix II, Theorem 2.1].

Proposition 1 (Console, Fino) Let MJ be a nilmanifold with left-invariant complex
structure and let π : M→M′ be a holomorphic fibration with typical fibre F induced
by a Γ -rational and J-invariant ideal h⊂ g (as explained in Section 3.2.1). If for all
p,q we have

H p,q(h,J|h)∼= H p,q(F) and H p,q(g/h,J′)∼= H p,q(M′),

where J′ is the complex structure on g/h induced by J, then also

H p,q(g,J)∼= H p,q(M).

Clearly, with the above proposition we can proceed inductively to compute the Dol-
beault cohomology of iterated holomorphic principal bundles, as we did in the real
case. Unfortunately, considering principal holomorphic torus bundles is not enough,
so we really need to decide when a nilmanifolds with left-invariant complex struc-
ture admits a suitable fibration.
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3.2.1 When is a nilmanifold with left-invariant complex structure an iterated
(principal) bundle?

We have seen that we need to understand the geometry of nilmanifolds with left-
invariant complex structure, in particular whether there are natural fibrations over
nilmanifolds of smaller dimension. In general, the projections in the tower of (real)
principal bundles (2) will not be holomorphic, for example, the centre could be odd-
dimensional.

It would be convenient if we could detect fibrations of M by studying only the
Lie-algebra g. For a universal cover, i.e., the simply connected Lie group, this is
easy: a fibration G→ G′ over another simply connected nilpotent Lie-group corre-
sponds to a short exact sequence of Lie algebras

0→ h→ g→ g′ → 0

or, in other words, to an ideal h ⊂ g. Here we use that, by the Baker-Campell-
Hausdorff formula (see e.g. [27, Section B.4]), the exponential map exp : g→ G is
a diffeomorphism and hence every ideal induces a closed subgroup of G.

If we look at a 2-dimensional torus M = R2/Z2 then every 1-dimensional sub-
space h in the abelian Lie-algebra g = R2 is an ideal. But there is some extra struc-
ture: a basis for the lattice (or, strictly speaking, the logarithm of this basis) generates
a Q-vector space gQ ∼=Q2 ⊂ g such that gQ⊗R= g. Clearly, a 1-dimensional sub-
group corresponding to h ⊂ g closes to a circle in the quotient if and only if it has
rational slope, i.e., if and only if h∩gQ is a Q-vector space of dimension 1.

The general case is captured in the following definition.

Definition 2 Let g be a nilpotent Lie-algebra. A rational structure for g is a subal-
gebra gQ defined over Q such that gQ⊗R= g.

A subalgebra h⊂ g is said to be rational with respect to a given rational structure
gQ if hQ := h∩gQ is a rational structure for h.

If Γ is a lattice in the corresponding simply connected Lie-group G then its
associated rational structure is given by the Q-span of logΓ . A rational subspace
with respect to this structure is called Γ -rational.

Remark 2 One has to check that this is well defined, i.e., that the Q-span of logΓ

gives a rational structure. Indeed more is true: a nilpotent Lie-algebra admits a Q-
structure if and only if the corresponding simply connected Lie-group contains a
lattice [16, Theorem 5.1.8].
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This criterion makes it particularly simple to produce examples: given a nilpotent
Lie-algebra g with rational structure constants, we know that there exists a lattice
Γ in the corresponding Lie-group G and we get a compact nilmanifold M = Γ \G.
Since most properties of M are encoded in g, there is usually no need to specify the
lattice concretely.

Coming back to the original problem we have [16, Lemma 5.1.4, Theorem
5.1.11]:

Lemma 3.1 Let h ⊂ g be an ideal. Then the fibration G→ G/exph descends to a
fibration of compact nilmanifolds π : M→M′ if and only if h is Γ -rational.

In principle, all subspaces that are naturally associated to the Lie-algebra struc-
ture of g are rational with respect to any rational structure in g. In particular this
holds for the subspaces in the ascending and descending central series (Definition
1) and intersections thereof [16, p. 208].

If we add left-invariant complex structures, we would like the fibration
π : MJ → M′J′ to be holomorphic as well, which, by left-invariance, is the same
as to say that g→ g′ is complex linear or equivalently that h is a complex subspace
of (g,J). We have proved

Proposition 2 Let MJ be a nilmanifold with left-invariant complex structure. Then
h⊂ g defines a holomorphic fibration π : MJ →M′J′ if and only if h is a J-invariant
and Γ -rational ideal in g.

It is time for an example that shows what can go wrong:

Example 1 We define a 6-dimensional Lie algebra h7 with basis e1, . . . ,e6 where, up
to anti-commutativity, the only non-zero brackets are

[e1,e2] =−e4, [e1,e3] =−e5, [e2,e3] =−e6.

The vectors e4 . . . ,e6 span the centre Z 1h7 = C 1h7.

Since the structure equations are rational, there is a lattice Γ in the corresponding
simply connected Lie-group H7 and we can consider the nilmanifold M = Γ \H7.

For λ ∈ R we give a left-invariant complex structure Jλ on M by specifying a
basis for the space of (1,0)-vectors:

(h7
1,0)λ := 〈X1 = e1− ie2,Xλ

2 = e3− i(e4−λe1),Xλ
3 =−e5 +λe4 + ie6〉
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One can check that [X1,Xλ
2 ] = Xλ

3 and, since Xλ
3 is contained in the centre, the com-

plex structure is integrable. The largest complex subspace of the centre is spanned
by the real and imaginary part of Xλ

3 since the centre has real dimension three.

The simply connected Lie-group H7 has a filtration by subgroups induced by the
filtration

h7 ⊃V1 = 〈λe2 + e3,e4, Im(Xλ
3 ),Re(Xλ

3 )〉 ⊃V2 = 〈Im(Xλ
3 ),Re(Xλ

3 )〉 ⊃ 0

on the Lie-algebra and, since all these are J invariant, H7 has the structure of a tower
of principal holomorphic bundles with fibre C. In fact, using the results of [43], a
simple calculation shows that every complex structure on h7 is equivalent to J0.

Now we take the compatibility with the lattice into account. The rational struc-
ture induced by Γ coincides with the Q-algebra generated by the basis vectors ek

and, by the criterion in Proposition 2, the fibrations on H7 descends to the compact
nilmanifold M if and only if λ is rational. In fact, one can check that for λ /∈Q the
Lie-algebra h7 does not contain any non-trivial J-invariant and Γ -rational ideals, so
there is no holomorphic fibration at all over a nilmanifold of smaller dimension.

To understand when there is a suitable tower of fibrations on a nilmanifold, the
following definitions turn out to be useful:

Definition 3 Let g be a nilpotent Lie-algebra with rational structure gQ. We call an
ascending filtration

0 = S 0g⊂S 1g⊂ ·· · ⊂S tg = g

a (complex) torus bundle series with respect to a complex structure J if for all
i = 1 . . . , t

S ig is rational with respect to gQ and an ideal in S i+1g, (a)

JS ig = S ig, (b)

S i+1g/S ig is abelian . (c)

If in addition

S i+1g/S ig⊂Z (g/S ig), (c′)

then (S ig)i=0,...,t is called a principal torus bundle series.

An ascending filtration (S ig)i=0,...,t on g is said to be a stable torus bundle
series for g, if (S ig)i=0,...,t is a torus bundle series for every complex structure J
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and every rational structure gQ in g. If also condition (c′) holds, then it is called a
stable principal torus bundle series.

Geometrically, a principal torus bundle series induces the holomorphic analogue of
the tower of real principal torus bundles described in (2).

With a torus bundle series we get in some sense the opposite picture: we start
by fibring M over a complex torus with fibre a nilmanifold with left-invariant com-
plex structure and then proceed by decomposing the fibre further. More precisely,
the complex structure J restricts to each of the sub-algebras S ig, and since they are
rational we get a nilmanifold with left-invariant complex structure Mi = S iΓ \S iG
where S iG = expS ig and S iΓ = Γ ∩SiG. Let Ti be the complex torus associ-
ated to S ig/S i−1g with the induced complex structure and lattice. The short exact
sequences

0→S i−1g→S ig→S ig/S i−1g→ 0

give rise to holomorphic fibre bundles

Mi−1
� � // Mi

πi

��
Ti

for i = 1, . . . , t

(4)

with Mt = M and M1 = T1. Note that these bundles cannot be principal bundles in
general since the fibre is not a complex Lie group.

Thus a torus bundle series gives an inductive decomposition of MJ into complex
tori. Considering the complex structure J0 in Example 1, we see that the length of a
(principal) torus bundle series may be larger than the nilpotency index.

The notions of stable (principal) torus bundle series appear to be quite strong but
in [40] many examples of such have been produced. For example, the classification
of complex structures on Lie-algebras with dimC 1g = 1, worked out independently
by several authors, shows that 0 ⊂Z g ⊂ g is a stable principal torus bundle series
[40, Propostion 3.6]. The notion has the advantage to be independent of the chosen
lattice and complex structure and allows to give structural information valid for all
nilmanifolds with left-invariant complex structure and Lie-algebra g.

If we have a holomorphic decomposition as (2) on page 374 or (4), then, by
Proposition 1, the inductive approach works and we obtain

Theorem 2 (Console, Fino) If MJ is a nilmanifold with left-invariant complex struc-
ture such that g admits a (principal) torus bundle series with respect to J, then Con-
jecture 1 holds for MJ.
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Corollary 1 If g admits a stable (principal) torus bundle series then Conjecture 1
holds for every nilmanifold with left-invariant structure with Lie-algebra g.

All possible types of nilmanifolds with left-invariant complex structure up to
real dimension 4 were mentioned in the introduction – there are only complex tori
and Kodaira surfaces for which the conjecture is well known. In real dimension 6
there are only 34 isomorphism classes of nilpotent Lie-algebras and the 18 classes
admitting a complex structure have been classified by Salamon [42]. We already
met the Lie-algebra h7 in Example 1. The first part of the following result, which
implies the second, is contained in [40, Section 4.2].

Corollary 2 If MJ is a nilmanifold of dimension at most six with Lie-algebra g� h7

then g admits a stable (principal) torus bundle series and Conjecture 1 holds for
MJ.

Roughly half of the Hodge numbers of a nilmanifold (Γ \H7,J) can be checked by
hand to coincide with the predictions but the ones in the middle are not immediately
accessible.

The conjecture is known to be true in other important special cases. If MJ is
the quotient of a complex Lie group, i.e., (g,J) is a complex Lie algebra, then
the tangent bundle of MJ is holomorphically trivial and MJ is complex parallelis-
able. This can be reformulated as [Jx,y] = J[x,y] for all x,y ∈ g or equivalently as
[g1,0,g0,1] = 0.

Complex structures satisfying the opposite condition [g1,0,g1,0] = 0 are called
abelian (because g1,0 is an abelian subalgebra of gC). Such complex structures were
introduced by Barberis [3] and come up in different contexts [2, 17].

In both cases it is straightforward to check that the ascending central series is a
principal torus bundle series and thus we have

Corollary 3 If MJ is a nilmanifold with left-invariant complex structure and J is
abelian or if MJ is complex parallelisable then MJ is an iterated principal holomor-
phic torus bundle and Conjecture 1 holds for MJ.

It was another insight of Console and Fino that the essential issue here is ratio-
nality of ideals: consider the descending central series adapted to J defined by

C i
J(g) = C ig+ JC ig,

in other words C i
Jg is the smallest J-invariant subspace of g containing C ig. Then,

by [11, Lemma 1], these subspaces satisfy condition (b) and (c) of Definition 3.
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Thus they induce a decomposition of the universal cover (G,J) as an iterated holo-
morphic bundle over complex vector spaces similar to (4).

The decomposition of the universal cover descends to the compact manifold MJ

if and only if the subspaces C i
Jg are rational. In particular this is the case, if J itself

is rational, i.e., if J maps gQ to itself. Thus we have

Corollary 4 (Console, Fino) If J is rational, then g admits a torus bundle series
adapted to J and Conjecture 1 holds for MJ.

This result is very useful, since if one is looking for specific examples usually ever-
thing can be chosen to be rational.

3.3 Console and Fino’s result on openness

In the last section we have seen that we can compute Dolbeault cohomology with
left-invariant forms whenever we have some control over the geometry of MJ . Using
deformation theoretic methods one can go further.

Recall that the datum of a complex structure J : g→ g is equivalent to specify-
ing the subspace g1,0 ⊂ gC. So the set of left-invariant complex structures can be
identified with the subset

C (g) = {V ∈Gr(n,gC) |V ∩V̄ = 0, [V,V ]⊂V}

of the Grassmannian of half-dimensional subspaces of gC. The first condition en-
sures that gC = V ⊕ V̄ and the second that the complex structure JV with the corre-
sponding eigenspace decomposition is integrable.

The question when the universal cover decomposes as an iterated principal bun-
dle as in (2) has been studied by Cordero, Fernández, Gray and Ugarte. Such left-
invariant complex structures are called nilpotent and an algebraic characterisation
has been given in [14].

Note that it is a hard problem to decide whether C (g) 6=∅ for a given nilpotent
Lie-algebra g.

Theorem 3 ([11, Theorem A]) Let U ⊂C (g) be the subset of left-invariant complex
structures J for which the inclusion

ϕJ : H p,q(g,J) ↪→ H p,q(MJ)
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is an isomorphism. Then U is an open subset of C (g).

The strategy of the proof is to show that the dimension of the complement of
H p,q(g,J) in H p,q(MJ) is upper-semi-continuous and thus remains equal to zero in
an open neighbourhood of any point J where ϕJ is an isomorphism.

So to prove Conjecture 1 it would be sufficient to show that, for each connected
component of C (g), the subset U as in the Theorem is non-empty and closed. Un-
fortunately Hodge-numbers do behave badly when going to the limit, especially for
non-Kähler manifolds, so closedness is very difficult.

The set of rational complex structures is a good candidate to show that U is non-
empty and dense but it is not clear to me whether C (g) does always contain rational
complex structures provided it is non-empty. Calculations suggest that this will not
be the case but a concrete counterexample is complicated to write down.

Remark 3 In Corollary 3 we saw that the conjecture holds for abelian complex struc-
ture and complex parallelisable nilmanifolds. Small deformations of such struc-
tures have been studied in some detail and deformations of these are again left-
invariant but in general neither abelian nor complex parallelisable (see Section 4.2
and [13, 33, 39]). In this way we can get more examples of interesting complex
structures where the conjecture still holds.

3.4 Some new results and open questions

In this section we first present a result that any nilmanifold with left-invariant com-
plex structure is not too far away from satisfying Conjecture 1, it suffices to take
a finite quotient. This result is new and might lead to a complete proof; we will
discuss some possible approaches below.

We first need a lemma that exploits the especially simple arithmetics of lattices
in nilpotent Lie groups.

Lemma 3.2 Let g be a nilpotent real Lie algebra, Γ ⊂G a lattice and gQ the ratio-
nal structure associated to logΓ . Then for any x ∈ gQ there exists a lattice Γ ′ such
that Γ ⊂ Γ ′ of finite index and exp(x) ∈ Γ ′.

Proof Pick any lattice Γ̃ containing exp(x) and inducing the same rational structure
in g as Γ . This is possible by [16, Lemma 5.1.10]. Then by [16, Theorem 5.1.12]
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Γ ∩ Γ̃ is a lattice in G which is of finite index in both Γ and Γ̃ . If we define Γ
′ to be

the subgroup of G generated by Γ and Γ̃ then Γ ′ is again discrete and contains both
exp(x) and Γ .

Proposition 3 Let MJ = (Γ \G,J) be a nilmanifold with left-invariant complex
structure. Then there exists a lattice Γ ′ ⊂ G with Γ of finite index in Γ ′ such that

ϕJ : H p,q(g)∼= H p,q(Γ ′\G,J).

In other words, given any nilmanifold with left-invariant complex structure MJ there
is a finite regular covering π : MJ →M′J such that the conjecture holds for M′J .

Proof Endow all involved bundles with left-invariant hermitian metrics. Then the
Laplacian ∆

∂̄
= ∂̄ ∂̄ ∗+ ∂̄ ∗∂̄ is a left-invariant elliptic differential operator on G. Let

H (G) := ker(∆
∂̄
) be the space of harmonic forms of type (p,q) on G. We can take

invariants under G and Γ respectively and get

H p,q(M)∼= H (G)Γ ⊃H (G)G = H p,q(g,J).

The last equality comes from the compatibility of the Hodge-decomposition with
the subspace of left-invariant forms; this had been worked out in detail in [41].

We prove our claim by induction on d := dimH (G)Γ −dimH (G)G. If d = 0
we can take Γ ′ = Γ .

If d > 0 there exists an α ∈H (G)Γ and an open subset U ⊂G such that

g∗α 6= α

for g ∈U . Let gQ be the rational structure induced by log(Γ ) ⊂ g. Since the expo-
nential map is a diffeomorphism, the image of gQ is dense in G and we can find an
x ∈ gQ such that exp(x) ∈U .

By Lemma 3.2, we can find a lattice Γ ′ ⊂G such that Γ ⊂ Γ ′ of finite index and
exp(x)∈Γ ′; then α /∈H (G)Γ ′ = H p,q(Γ ′\G,J) and we conclude by induction.

Remark 4 Proposition 3 suggested an approach that unfortunately did not prove suc-
cessful. Assume we have constructed for a nilmanifold with left-invariant complex
structure MJ a lattice Γ ⊂ Γ ′ as above and then manage to find a way to scale it
down, i.e., to find a contracting automorphism µ of G such that µ(Γ ′) = Γ̃ ′ ⊂ Γ .
This is possible if g is naturally graded but not in general [18]. On the level of real
manifolds this corresponds to two regular coverings
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M̃′ = Γ̃
′\G→M→M′ = Γ

′\G

and a (different) isomorphism µ : M′ ∼= M̃′.

If µ preserves the complex structure, i.e., M′J and M̃′J are isomorphic as complex
manifolds, then the injections

H p,q(g,J) = H p,q(M′J) ↪→ H p,q(MJ) ↪→H p,q(M̃′J) = H p,q(g,J)

prove the conjecture for MJ . But this will generally not be the case, as can be worked
out for the Lie-algebra given in Example 1.

Remark 5 We have seen that Conjecture 1 holds if we understand the complex ge-
ometry of a nilmanifold with left-invariant complex structure MJ . In addition we
have the openness result of Console and Fino. Nevertheless the general case remains
open.

There are two other approaches one could try: in the proof of Proposition 3 we
compared G-invariant and Γ -invariant ∆

∂̄
-harmonic differential forms on the univer-

sal cover G after choosing some left-invariant hermitian structure. The study of this
elliptic operator falls into the realm of harmonic analysis but there does not seem to
be a general result that shows that Γ -invariant harmonic forms are G-invariant. One
problem is again that ∆

∂̄
does not need to have any compatibility with the natural

filtrations on g but working on G we might avoid the issue of rationality.

Going back to the compact manifold MJ one might try to use some Weitzenböck
formula to express ∆

∂̄
in a different way. But since MJ is in general not Kähler the

Chern-connection compatible with the hermitian structure will differ from the Levi-
Civita connection and again there does not seem to be an applicable general formula
at the moment. In this context Gromov’s characterisation of nilmanifolds as almost
flat manifolds [22] might play an important role.

4 Applications

As mentioned in the introduction, nilmanifolds can be a convenient source of exam-
ples in many contexts. Integrability conditions for additional left-invariant geomet-
ric structures usually boil down to linear algebra and thus one easily writes down
interesting examples of complex, riemannian, hermitian or symplectic structures.
Proceeding from the examples to general results is more difficult.
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erences to other areas have already been given in the introduction.

4.1 Prescribing cohomology behaviour and the Frolicher spectral¨
sequence

If Conjecture 1 holds for a nilmanifold with left-invariant complex structure MJ ,
the computation of its Dolbeault cohomology H p,q(MJ) = H p,q(g,J) is a matter of
finite-dimensional linear algebra and can be taught to a computer algebra system. In
addition this makes it possible to study the Frolicher spectral sequence¨

E p,q
2 = H p,q(MJ)→ H p+q

dR (M,C),

that measures the difference between Dolbeault cohomology and de Rham coho-
mology. This spectral sequence degenerates at E1 for all compact complex surfaces
but Cordero, Fernández, Gray and Ugarte showed in [15], studying nilmanifolds,
that for complex 3-folds the maximal non-degeneracy E2 � E3 = E∞ is possible.
Later we constructed a family Xn→ Tn of principal torus bundles over tori such that
dn 6= 0 for Xn (see [38]). Probably, starting from dimension 3, the maximal non-
degeneracy is possible but concrete examples are still missing. If we ask in addition
for simply connected manifolds, there are only very few examples with non-zero
higher differentials known [37].

The idea behind these examples is that if we write down some 1-forms and their
differentials carefully enough we get a nilmanifold supporting these forms for free.
For example, let V , W be two complex vector spaces and give an arbitrary map

δ : W ∗ →Λ
2V ∗ ⊗ (V ∗ ⊗V̄ ∗).

Setting g1,0 = V ⊕W and gC := g1,0⊕g1,0 we extend δ to a map

d : g∗C→Λ
2g∗C

which is zero on V ∗⊕V̄ ∗ and δ + δ̄ on W ∗⊕W̄ ∗. There is a natural real vector space
g = {z+ z̄ | z ∈ g1,0} ⊂ gC and via the identity

dα(x,y) =−α([x,y]) for α ∈ g∗ and x,y ∈ g

Here we will discuss two further applications related to complex structures. Ref-
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the vector space g becomes a 2-step nilpotent Lie-algebra. The decomposition of gC
defines an almost complex structure J on g, which is integrable by our choice that
δ has no component mapping to Λ

2V̄ . If we have chosen δ such that the structure
constants of g turn out to be rational, there exists a lattice in the associated nilpotent
Lie-group and we have constructed a nilmanifold MJ with left-invariant complex
structure.

Nearly by definition MJ is a principal holomorphic torus bundle over a torus and
thus we not only have prescribed the differential of some 1-forms quite arbitrarily
but our datum encodes in fact the whole cohomology algebra.

Constructing nilmanifolds with higher nilpotency index in a similar way is more
tedious since one has to take care of the Jacobi identity, equivalent to d2 = 0, as
well.

4.2 Deformations of complex structures

Our main motivation to study Conjecture 1 was the question if small deformations of
left-invariant complex structures remain left-invariant. Generalising results of Con-
sole, Fino and Poon [13] (see also [33]) we proved

Theorem 4 ([41, Theorem 2.6]) If Conjecture 1 holds for a nilmanifold with left-
invariant complex structure MJ then all sufficiently small deformations of J are
again left-invariant complex structures.

The idea of the proof is that small deformations of J are controlled by the first and
second cohomology groups of the holomorphic tangent bundle. By constructing a
version of Serre-duality that works purely on the level of Lie-algebra cohomology
one can represent the elements of Hi(MJ,TMJ ) by left-invariant forms and the result
follows by the standard inductive construction of the Kuranishi space [30].

The space of all integrable complex structures on a nilmanifold M modulo ori-
entation preserving diffeomorphisms isotopic to the identity is called Teichmüller
space T(M). It is (locally) a complex analytic space, the germ at a fixed complex
structure J being the Kuranishi space of (M,J). Thus the theorem says that, under
the assumption of Conjecture 1, the set of left-invariant complex structures is open
in T(M).

If the Lie algebra g of M admits a stable (principal) torus bundle series (see
Definition 3), then Conjecture 1 holds for all left-invariant complex structures on g
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and it is natural to ask if the set of left-invariant complex structures is also closed.
The starting point in this direction is Catanese’s result that all deformations in the
large of a complex torus are complex tori [7]. Generalising results of Catanese and
Frediani [8, 9], this was extended in [40] to a large class of nilmanifolds with left-
invariant complex structure. As an example we would like to mention that every
deformation in the large of the Iwasawa manifold is a nilmanifold with left-invariant
complex structure; in this case the topology of the space of left-invariant complex
structures is known [26].

In this area many interesting questions remain open, we hope to address some
of these in future work. Progress in the direction of Conjecture 1 would encourage
our belief that the complex geometry of nilmanifolds with left-invariant complex
structure can be completely understood via linear algebra.
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38. Rollenske, S.: The Frölicher spectral sequence can be arbitrarily non-degenerate. Math. Ann.
341(3), 623–628 (2008).

39. Rollenske, S.: The Kuranishi space of complex parallelisable nilmanifolds (2008).
arXiv:0803.2048, to appear in JEMS.

40. Rollenske, S.: Geometry of nilmanifolds with left-invariant complex structure and deforma-
tions in the large. Proc. Lond. Math. Soc. (3) 99(2), 425–460 (2009).

41. Rollenske, S.: Lie-algebra Dolbeault-cohomology and small deformations of nilmanifolds. J.
Lond. Math. Soc. (2) 79(2), 346–362 (2009).

42. Salamon, S.M.: Complex structures on nilpotent Lie algebras. J. Pure Appl. Algebra 157(2-3),
311–333 (2001)

43. Ugarte, L.: Hermitian structures on six-dimensional nilmanifolds. Transform. Groups 12(1),
175–202 (2007)

44. Vinberg, E.B., Gorbatsevich, V.V., Shvartsman, O.V.: Discrete subgroups of Lie groups. In:
Lie groups and Lie algebras, II, Encyclopaedia Math. Sci., vol. 21, pp. 1–123, 217–223.
Springer, Berlin (2000)

45. Weibel, C.A.: An introduction to homological algebra, Cambridge Studies in Advanced Math-
ematics, vol. 38. Cambridge University Press, Cambridge (1994)



Smooth rationally connected threefolds contain
all smooth curves
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Abstract We show that if X is a smooth rationally connected threefold and C is a
smooth projective curve then C can be embedded in X . Furthermore, a version of
this property characterises rationally connected varieties of dimension at least 3. We
give some details about the toric case.
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It is very easy to see that every smooth projective curve can be embedded in P3.
Eisenbud and Harris asked whether the same is true if P3 is replaced by an arbitrary
smooth rational projective 3-fold X and Eisenbud suggested starting with the case
where X is toric. In that case the answer is yes, and one can see that in a very explicit
way, as was done in my preprint [Sa2].

In response to [Sa2], it was pointed out by János Kollár that much more is true:
the property of containing every curve sufficiently often actually characterises ratio-
nally connected 3-folds over the complex numbers. In fact, this is already implicit
in the work of Kollár and others on rational curves in algebraic varieties, but had
apparently not been directly noticed.

The purpose of this note is to explain these facts. In the first part I follow
Kollár’s hints and show how to assemble a proof of the characterisation of ratio-
nally connected 3-folds (Theorem 1). In the second part, which is a shortened ver-
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sion of [Sa2], I show explicitly (Theorem 3) how to construct an embedding of a
given curve into a given smooth projective toric 3-fold by toric methods.

Acknowledgements Much of this paper is really due to other people. David Eisenbud asked me
the question and drew Kollár’s attention to my partial solution. Dan Ryder listened patiently to
me while I tried to answer the toric version. The toric case uses ideas developed long ago in
conversation with Tadao Oda. Most importantly, János Kollár pointed out in a series of increasingly
simple emails how to obtain better results, and then allowed me to use his ideas. I thank all of them,
and also the several people who, by asking me about [Sa2], encouraged me to write this version.

1 Rationally connected varieties

In this section X is a smooth projective variety over an algebraically closed field.

1.1 RC and SRC

We recall some standard definitions from [Ko2] and [AK].

Definition 1 [Ko2, IV.3.2.3] X is separably rationally connected, abbreviated SRC,
if there exists a variety W and a morphism u : P1×W → X such that

u(2) : (P1×W )×W (P1×W )∼= P1×P1×W −→ X×X

is dominant.

In other words, X is SRC if for all x1, x2 in some Zariski-dense subset of X we can
find w ∈W and P1, P2 ∈ P1 such that u(Pi,w) = xi for i = 1, 2.

Definition 2 [Ko2, IV.3.2.2] X is rationally connected, abbreviated RC, if there ex-
ists a variety W , a proper family U→W whose fibres are irreducible rational curves,
and a morphism u : U → X such that

u(2) : U×W U −→ X×X

is dominant.
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Clearly SRC =⇒ RC, and the converse is also true in characteristic zero ([Ko2,
IV.3.3.1]).

Definition 3 [AK, Definition 8] A morphism f : P1 → X is said to be very free if
f ∗TX is an ample vector bundle.

Recall that a vector bundle E on P1 is ample if and only if E =
⊕

O(a j) with all
a j > 0.

Lemma 1.1 [Ko2, IV.3.9] If X is a smooth projective SRC variety then there exists
a very free map g0 : P1→ X.

1.2 Maps from curves

We can use Lemma 1.1 to obtain results about maps from curves to SRC varieties.

Lemma 1.2 If X is a smooth projective SRC variety, then for any smooth projective
curve C there is a map g : C→ X such that H1(g∗TX (−P−Q)

)
= 0 for any two

distinct points P, Q ∈C.

Proof Suppose C has genus g. We choose a map g1 : P1→ P1 such that g∗1g∗0TX is
sufficiently ample: it is enough to require that g∗1g∗0TX ∼=

⊕
O(ai) with each ai > 2g,

which can be achieved by taking g1 to have sufficiently high degree. Take any surjec-
tion g2 : C→ P1 and let F be a fibre of g1g2 : C→ P1. If we put g = g0g1g2 : C→ X ,
we have

g∗TX (−P−Q) =
⊕

OC(aiF−P−Q).

This is the direct sum of line bundles of degree > 2g − 2 and therefore
H1
(
g∗TX (−P−Q)

)
= 0.

Proposition 1 If C is any smooth projective curve and X is any smooth SRC projec-
tive variety of dimension ≥ 3, then C can be embedded in X.

Proof Choose g : C → X as in Lemma 1.2. According to [Ko2, II.1.8.2] (with
B = /0), a general deformation of g is an embedding because

dimH1(g∗TX (−P−Q)
)
≤ dimX−3 = 0.
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Over the complex numbers we can show more.

Lemma 1.3 Let X be any smooth quasi-projective variety over C, and suppose
x ∈ X. Then there exists a subset X1(x) ⊂ X, the complement of a countable union
of Zariski-closed sets, such that if y ∈ X1(x) and if the image of f : P1→ X passes
through both x and y then f is very free.

Proof This follows from [AK, Proposition 13], exactly as [AK, Remark 10] follows
from [AK, Proposition 10]. We consider one of the countably many irreducible com-
ponents R of Homx(P1,X) = { f : P1→ X | f (0) = x} and the evaluation morphism
uR : P1×R→ X given by uR(P, f ) = f (P). The morphisms that are not very free
form a closed subscheme R′ ⊆ R: but uR|P1×R′ is not dominant because of [AK,
Proposition 13(2)], so its image lies in a proper closed subset XR ⊂ X . So any f that
is not very free has image contained in some XR, and we take X1 = X \

⋃
R XR.

This yields a characterisation of RC varieties of dimension ≥ 3 in terms of maps
from curves.

Theorem 1 If X is a smooth projective variety of dimension ≥ 3 over C, then X is
rationally connected if and only if the following holds: for every smooth projective
curve C and zero-dimensional subscheme Z ⊂C, and every embedding fZ : Z ↪→ X,
there is an embedding fC : C ↪→ X such that fC|Z = fZ .

Proof One direction is trivial: if every fZ extends then taking C = P1 and Z = {0,1}
we recover the definition of RC.

Conversely, suppose that X is RC of dimension at least 3 and suppose first that
Z = {P1, . . . ,Pn} is reduced, and write xi = f (Pi). If Z = /0 then the statement reduces
to Proposition 1. Otherwise, we may choose x0 ∈ X1(x1) as in Lemma 1.3. By [Ko1,
(4.1.2.4)] we can find a map f0 : P1 → X such that x0, . . . ,xn are all in the image
of f0. See also [Ko1, (5.2)]. If Z is not reduced, we can still arrange for fC|Z = fZ

because [Ko1, (4.1.2.4)] allows us to specify the Taylor expansion of f0 as far as we
like.

The map f0 is very free by Lemma 1.3. Exactly as in Lemma 1.2 we may com-
pose f0 with suitable maps f2 : C→P1 and f1 : P1→P1 so as to get a map f : C→X
such that f |Z = fZ and dimH1(C, f ∗TX ⊗ IZ(−P−Q)

)
= 0 for every P, Q ∈C. To

do this we choose f2 first to be a surjection such that f2|Z is an isomorphism. Then
we choose f1, of sufficiently large degree, so that f |Z = fZ : to do so we need only
choose a polynomial with prescribed values at each point of f2(Z) and injective on
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f2(Z), which is trivial to do as the degree of f1 may be as large as we please. Al-
though f need not be an embedding, we may take fC to be a general deformation of
f preserving f |Z , and this is an embedding by [Ko2, II.1.8.2].

Remark 1 The condition in Theorem 1 that C be smooth is not strictly necessary. It is
enough for C to be a reduced curve whose singularities have embedding dimension
≤ dimX .

Indeed, let ν : C̃ → C be the normalisation. Consider the subscheme
Z′ = Z ∪ SingC ⊂ C and let Z̃ be the subscheme of C̃ given by
IZ̃ = H omOC(OC̃, IZ′) · OC̃. If fZ′ is an embedding of Z′ in X , extending fZ ,
then the argument above allows us to extend fZ̃ = fZ′ν : Z̃ → X to fC̃ : C̃ → X
in such a way that fC̃ is an embedding away from Z̃. The image of fC̃ is then
isomorphic to C.

2 Toric varieties

In this section we look at the particular case in which X is a smooth projective
toric 3-fold over C. As toric varieties are rational, they are in particular SRC, so by
Proposition 1 a smooth projective toric 3-fold contains all curves. However, in the
toric case it is possible to give a more direct proof, and one that shows rather more
concretely how to construct an embedding of a given curve in a given toric variety
X .

2.1 Maps to toric varieties

We need a good description of maps to a smooth projective toric variety. Several
descriptions of maps to toric varieties exist, due to Cox [Co], Kajiwara [Ka] and
others. The version that we use here appeared in [Sa1, Section 2]1 but the proof,
which is largely due to Tadao Oda, is very short, so we give it here. We refer to [Od]
for general background on toric varieties.

Let ∆ be a finite (but not necessarily complete) smooth fan for a freeZ-module N
of rank r. Denote the corresponding toric variety by X , and write M for the dual lat-

1 Warning: some other unrelated parts of [Sa1] are incorrect.
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tice Hom(N,Z), with pairing 〈 , 〉 : M×N→ Z. The torus is then T= Spec(C[M]),
where C[M] =

⊕
m∈MCe(m) is the semigroup ring of M over C. Here, as in [Od,

1.2], the character e(m) : T→ C∗ may be thought of after identifying M with Zn as
(u1, . . . ,un) 7→ um1

1 . . .umn
n for suitable coordinates ui on T∼= (C∗)n.

As usual, ∆(d) denotes the set of d-dimensional cones in ∆ . For each ρ ∈ ∆ (1),
we denote by V (ρ) the corresponding irreducible Weil divisor on X and by nρ the
generator of the semigroup N∩ρ .

Theorem 2 Let Y be a normal algebraic variety over C. A morphism f : Y → X
such that f (Y )∩T 6= /0 corresponds to a collection of effective reduced Weil divisors
D(ρ) on Y indexed by ρ ∈ ∆(1) and a group homomorphism ε : M→ OY (Y0)× to
the multiplicative group of invertible regular functions on Y0 = Y \

⋃
ρ∈∆(1) D(ρ),

such that

D(ρ1)∩D(ρ2)∩·· ·∩D(ρs) = /0 if ρ1 +ρ2 + · · ·+ρs 6∈ ∆ (1)

and

div(ε(m)) = ∑
ρ∈∆ (1)

〈m,nρ〉D(ρ) for all m ∈M. (2)

Proof Suppose f : Y → X is a morphism with f (Y )∩T 6= /0. For each ρ ∈ ∆(1), we
take D(ρ) to be the pull-back Weil divisor f−1(V (ρ)), which is well-defined since
Y is normal, X is smooth and f (Y ) 6⊂V (ρ).

If ρ1 + · · ·+ρs 6∈ ∆ , then V (ρ1)∩·· ·∩V (ρs) = /0 so D(ρ1)∩·· ·∩D(ρs) = /0. In
this case Y0 = f−1(T) is nonempty by assumption, and f |Y0 induces

f |∗Y0
: C[M]→ OY (Y0)×.

The composite ε := f |∗Y0
◦e satisfies (2), since

div(e(m)) = ∑
ρ∈∆ (1)

〈m,nρ〉V (ρ) for all m ∈M.

Conversely, suppose {D(ρ)}ρ∈∆(1) and ε satisfy (1) and (2). For σ ∈ ∆ , put
σ̂ = {ρ ∈ ∆(1) | ρ 6≺ σ}. Then the corresponding open piece Uσ of X satisfies
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Uσ = X \
⋃

ρ∈σ̂

V (ρ)

=
⋂

ρ∈σ̂

(X \V (ρ))

∼= Spec(C[M∩σ
∨]).

Put Yσ = f−1(Uσ ) = Y \
⋃

ρ∈σ̂ D(ρ). Then Y =
⋃

σ∈∆ Yσ since the Uσ cover X (or
one can check this directly).

For each σ ∈ ∆ , M∩σ∨ is the semigroup consisting of m ∈M such that e(m) is
regular on Uσ . Thus ε(M ∩σ∨) consists of regular functions on Yσ , and defines
a morphism fσ : Yσ → Uσ . These morphisms glue together to give a morphism
f : Y → X .

In choosing the collection of divisors {D(ρ)} we determine how the toric divi-
sors are to intersect the image f (Y ). Not all choices are possible: if {Dρ} is chosen
arbitrarily then possibly no map corresponding to that collection exists. Although
the D(ρ) themselves are not required to be Cartier divisors, the left-hand side of (2)
is Cartier, so one necessary condition for such an f to exist is that the right-hand
side of (2) is Cartier.

The condition that X be smooth is stronger than we need. See [Ka] for related
results for singular toric varieties.

2.2 Embedding a curve

Now we apply Theorem 2 to the case where Y = C is a smooth projective curve and
X is projective of dimension 3.

Let L be an effective (hence ample) divisor on C. Let ∆ (1) = {ρ1, . . . ,ρr}, so
r−3 = rkPicX > 0. We write n j and Vj (rather than nρ j and V (ρ j)) for the generator
and the divisor corresponding to ρ j ∈ ∆ (1).

Let {m1,m2,m3} be a Z-basis for M and put ai j = 〈mi,n j〉. The system of lin-
ear equations ∑

r
j=1 ai jξ j = 0 has rank at most 3, so we can find nontrivial integer

solutions. In the projective case we can do better.

Lemma 2.4 If X is projective, then ∑
r
j=1 ai jξ j = 0 has integer solutions with ξ j > 0

for all j.
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Proof Let H be a very ample divisor on X . We have ∑ j ai jVj = 0 in PicX , since it
is the divisor of e(mi). But H2Vj is the degree of the surface Vj in the projective em-
bedding of X under |H| and is therefore positive, so it is enough to take ξ j = H2Vj.

On C we take the line bundles D j = OC(ξ jH), with ξ j as in Lemma 2.4. We may
assume that ξ j > 2g(C) for all j, so that any nonzero linear combination of the D j

with nonnegative integer coefficients is very ample.

We want to specify a map f : C→ X by means of data as in Theorem 2. Thus
we must give elements D j of the linear system |D j|.

Lemma 2.5 If the Dj are general in |D j| then they are reduced divisors and⋂
j D j = /0. In particular they satisfy (1) from Theorem 2.

Proof This follows from the very ampleness of the linear systems |D j|.

To specify a map f : C → X we now need only choose ε according to The-
orem 2. This amounts to choosing suitable trivialisations of each of the three
bundles OC(∑ai jD j), i.e. non-vanishing sections of OC(∑ai jD j) with order
−ai j along D j. Such trivialisations are unique up to multiplication by non-
zero scalars. This means that the map f = fD,t is determined by choices of
D = (D1, . . . ,Dr) ∈ |D1| × · · · × |Dr| together with a choice of an element
t ∈ (C∗)3 = T⊂AutX . In other words, choosing the Dj determines f up to compo-
sition with an element of T acting as an automorphism of X .

We note that the action of T has no effect on the question of whether or not the
map is an embedding, and accordingly we suppress t in the notation.

Later we shall see that fD will turn out to be an embedding for all sufficiently
general D ∈ |D1| × · · · × |Dr|. The next lemma shows that in order to determine
whether the general fD is an immersion, it is enough to check it over the standard
affine pieces of X .

Lemma 2.6 Suppose that, for every τ ∈ ∆ (3), there is a nonempty open subset
Aτ ⊂∏ j |D j| such that

fD : Cτ = f−1
D (Uτ)→Uτ

is a closed immersion if D ∈ Aτ . Then fD : C→ X is a closed immersion for general
D ∈∏ j |D j|.

Proof It is enough to take D ∈
⋂

τ∈∆(3) Aτ .
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Theorem 3 If X is a projective smooth toric 3-fold, C is a smooth projective
curve and D j are as above, the map fD,t : C→ X is an embedding for almost all
D ∈∏ j |D j|.

Proof In view of Lemma 2.6 it remains to check that the set Aτ for which fD is an
embedding above Uτ is indeed nonempty.

After renumbering, we have τ = ρ1 + ρ2 + ρ3 and we consider the semigroup
M ∩ τ∨. It is generated by l1, l2, l3 ∈ M with the property that 〈li,ni〉 > 0 and
〈li,nk〉 = 0 if 1 ≤ k ≤ 3 and k 6= i. The function pi = εD,t(li) = fD,t|Cτ

◦ e(li) fD,t

is the ith coordinate function: it takes the value 0 on Di and is nonzero on Dk for
1≤ k ≤ 3, k 6= i.

We first pick Dj for j > 3 once and for all, only requiring them to be general in
the sense of Lemma 2.5. Now choose D3 so that D3 is also reduced and disjoint from
the other D j chosen so far. This is enough to determine p3 up to the torus action,
since div(p3) = 〈l3,n3〉D3 +∑ j>3 〈l3,n j〉D j is independent of D1 and D2. Similarly
a choice of D1 or of D2 determines p1 or p2 up to the torus action, independently of
the choice of the other two.

After making such a choice of D3, we claim that for general D2 ∈ |D2| the
map (p2, p3) : Cτ → A2 is generically injective. We shall check this by exhibit-
ing a choice of D2 which makes this map injective near D3. Observe that for any
pair P, Q ∈D3 (so p3(P) = p3(Q) = 0) we can find D2 ∈ |D2| such that P ∈ D2 but
Q 6∈D2 (although such a choice of D2 will not be general in the sense of Lemma 2.5),
because D2 is sufficiently ample. For this choice of D2, we have 0 = p2(P) 6= p2(Q),
so p2(P) 6= p2(Q) for general D2 and hence for general D2 the values of p2 on the
points of D3 are all different from one another. In particular (p2, p3) corresponding
to a general D2 is injective at any point of D3 and is therefore injective generically.

By exactly the same argument, a general choice of D1 ∈ |D1| separates points
not separated by the other choices. If P′ and Q′ are (possibly infinitely near) points
such that p2(P′) = p2(Q′) and p3(P′) = p3(Q′), then p1(P′) 6= p1(Q′) if P′ ∈ D1

and Q′ 6∈ D1. Such D1 exist if D1 is sufficiently ample. So for general D1 we also
have p1(P′) 6= p1(Q′), as required.
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Submanifolds in Poisson geometry: a survey

Marco Zambon

Abstract We describe various classes of submanifolds of a Poisson manifold M,
both in terms of tensors on M and of constraints: coisotropic submanifolds, Poisson-
Dirac submanifolds (which inherit a Poisson structure), and the very general class of
pre-Poisson submanifolds. We discuss embedding results for these classes of sub-
manifolds, quotient Poisson algebras associated to them, and their relationship to
subgroupoids of the symplectic groupoid of M.
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1 Poisson geometry

The phase space of a physical system, in the hamiltonian formalism, is usually given
the structure of a symplectic manifold. When the system is invariant under symme-
tries, it makes sense to consider the “reduced” phase space obtained quotienting the
original phase space by the symmetries. The reduced phase space in general is no
longer symplectic, but rather has the structure of a Poisson manifold. We recall some
basic facts about Poisson manifolds (see Weinstein’s seminal 1983 paper [14] or the
book [12] for detailed expositions).

The algebraic definition of Poisson manifold is the following:
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Definition 1 A Poisson manifold is a manifold M such that the algebra of functions
C∞(M) is endowed with a Lie bracket {·, ·} satisfying { f ,gh} = { f ,g}h + g{ f ,h}
for all f ,g,h.

Often it is convenient to use a more geometric definition:

Definition 2 A Poisson manifold is a manifold M endowed with a bivector field
π ∈ Γ (∧2T M) satisfying [π,π] = 0.

Here [·, ·] denotes the Schouten bracket of multivector fields, which extends the
Lie bracket of vector fields on M. The Poisson bracket {·, ·} and π are related by
{ f ,g}= π(d f ,dg).

Let M be a Poisson manifold. The bivector field π ∈ Γ (∧2T M) can be equiva-
lentely described by

] : T ∗M→ T M, ]ξ = π(ξ , ·),

a bundle map which is skew-symmetric (i.e., ]∗ = −]). One can show that
Im(]) ⊂ T M is an involutive singular distribution1, so M is foliated by leaves
(immersed submanifolds of varying dimensions) whose tangent spaces are exactly
given by Im(]).

At every p ∈ M the kernel of ]p : T ∗p M → Im(πp) is the annihilator
(Im(]p))◦ := {ξ ∈ T ∗p M : ξ |Im(]p) = 0}, hence inverting the induced isomorphism

T ∗p M/(Im(]p))◦ ∼= Im(]p)∗ → Im(]p)

we obtain a linear symplectic from ωp on Im(]p). One can show that the 2-form ω

on each leaf O is actually symplectic. So we conclude that an equivalent characteri-
zation of Poisson manifold is the following: a manifold foliated by leaves of varying
dimensions, each of which carries a symplectic form varying smoothly with the leaf.

Example 1 a) A symplectic form ω on a manifold M can be regarded as a Poisson
bivector field, by the requirement ] =−ω̃−1 where ω̃ : T M→ T ∗M,v 7→ ω(v, ·).

b) If g is a finite dimensional real Lie algebra, then g∗ has a natural Poisson
structure, determined by {v,w} = [v,w] where v,w ∈ g are also viewed as linear
functions on g∗. The symplectic leaves of g∗ are the coadjoint orbits.

For instance, the symplectic leaves in su(2)∗ are spheres centered at the origin,
with symplectic form growing linearly with the radius. The Poisson bivector field

1 Indeed T ∗M is a Lie algebroid (see §1.2), and the image of the anchor of any Lie algebroid is an
involutive singular distribution.
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is given by x3
∂

∂ x1
∧ ∂

∂x2
+ x1

∂

∂x2
∧ ∂

∂ x3
+x2

∂

∂ x3
∧ ∂

∂ x1
in suitable linear coordinates on

su(2)∗.

c) On every manifold M, setting π = 0 one obtains a Poisson bivector field. Each
point of M is a symplectic leaf.

1.1 Submanifolds and symplectic leaves

Let (M,π) be a Poisson manifold. In this Subsection we use the symplectic foliation
described above as a guide to determine classes of submanifolds.

A natural class of submanifolds are symplectic leaves (leaves O endowed with
the symplectic form ω as above). Generalizing this slightly, we obtain Poisson sub-
manifolds, which are just unions of (open subsets of) symplectic leaves.

Definition 3 [12, §6.6] N ⊂ (M,π) is a Poisson submanifold iff πp ∈ ∧2TpN for
every p ∈ N.

Equivalent conditions are ]T N◦ = {0} or Im(]|N)⊂ T N.

Given a symplectic vector space (V,ω), an interesting class of subspaces W are
the coisotropic ones, i.e. those for which W ω ⊂W . Another interesting class is given
by the symplectic subspaces, i.e. those for which W ω ∩W = {0}.

It is natural to consider submanifolds of the Poisson manifold (M,π) whose in-
tersections with the symplectic leaves are coisotropic or symplectic submanifolds of
the leaves. Since these intersections are usually not smooth, we are lead to consider
tangent spaces.

Lemma 1.1 Let N be a submanifold of (M,π). For all p ∈ N denote by (O ,ω) the
symplectic leaf through p. The symplectic orthogonal of TpN ∩TpO in (TpO,ωp) is
(TpN∩TpO)ωp = ]TpN◦. Hence:

• TpN∩TpO is a coisotropic subspace of (TpO,ωp)⇔ ]TpN◦ ⊂ TpN,

• TpN∩TpO is a symplectic subspace of (TpO,ωp)⇔ ]TpN◦ ∩TpN = {0}.

The above lemma follows from a simple computation and from
(TpN∩TpO)∩ (TpN∩TpO)ωp = ]TpN◦ ∩TpN.

Submanifolds satisfying the first condition above are called coisotropic. In some
cases they are the replacement in Poisson geometry of the symplectic-geometric
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notion of “Lagrangian”, see Ex. 2 b). Those that satisfy the second condition and an
additional smoothness requirement are called Poisson-Dirac submanifolds. We will
elaborate on them in §2 and §3 respectively. The intersection between the classes of
coisotropic and Poisson-Dirac submanifolds are exactly the Poisson submanifolds.

1.2 Lie algebroids and Dirac manifolds

In order to determine further classes of submanifolds of a Poisson manifold, we
introduce two notions that are canonically associated to Poisson geometry.

A Lie algebroid [12, §16] consists of a vector bundle A→ N together with a Lie
bracket on the space of sections Γ (A) and a bundle map ρ : A→ T N (called anchor)
satisfying [a, f ·b] = ρ(a) f ·b+ f · [a,b] for all sections a,b and functions f . When
N is a point, this notion reduces to that of Lie algebra.

For any Poisson manifold (M,π), T ∗M is naturally a Lie algebroid [12, §13]
with anchor −] : T ∗M→ T M, and bracket determined by [d f ,dg] := d{ f ,g}.

A Dirac manifold [9, §2.2] is a manifold P together with a sub-
bundle L ⊂ T P ⊕ T ∗P which is maximal isotropic w.r.t. the pairing
〈X1 ⊕ ξ1,X2 ⊕ ξ2〉 = 1

2 (iX2ξ1 + iX1ξ2) and whose sections are closed under
the Courant bracket

[X1⊕ξ1,X2⊕ξ2] =
(
[X1,X2] ⊕ LX1 ξ2−LX2ξ1 +

1
2

d(iX2 ξ1− iX1 ξ2)
)
. (1)

on Γ (T P⊕T ∗P). Given any submanifold N ⊂ (P,L), one can pull back the Dirac
structure L to N, by defining LN = L∩ (T N ⊕ T ∗M|N)/L∩ T N◦. This subset of
T N⊕T ∗N is not necessarily a smooth subbundle, but when it is, it is automatically
a Dirac structure on N [9, §3.1].

For any Poisson manifold (M,π), L := graph(π) := {(]ξ ,ξ ) : ξ ∈ T ∗M} is a
Dirac structure. Viewing a Poisson manifold as a Dirac manifold has the advantage
that, even though we can not restrict the Poisson bivector field π to a submanifold
N ⊂ M (except when N is a Poisson submanifold), N is always endowed with the
geometric structure LN , which is a Dirac structure whenever LN is a smooth subbun-
dle.
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2 Coisotropic submanifolds

In this section we elaborate on coisotropic submanifolds [12, §6.4].

Definition 4 N ⊂ (M,π) is a coisotropic submanifold iff ]T N◦ ⊂ T N.

Let N be a submanifold of (M,π). Then

I := { f ∈C∞(M) : f |N = 0}

is a multiplicative ideal of the Poisson algebra C∞(M). The submanifolds for which
I is also a Poisson subalgebra (i.e., {I ,I } ⊂ I ) are exactly the coisotropic
submanifolds. Those satisfying the stronger condition that I is a Poisson ideal
(i.e., {I ,C∞(M)} ⊂I ) are exactly the Poisson submanifolds.

In the physics literature, sometimes submanifolds are specified by constraints,
i.e. open subsets {Uα} of M and, for each α , independent functions ϕ1

α , . . . ,ϕk
α

defined on Uα such that N ∩Uα is the common zero set of ϕ
1
α , . . . ,ϕk

α . As we just
saw, the coisotropic submanifolds are exactly those given by so-called first class
constraints, i.e. constraints satisfying {ϕ i,ϕ j}|N = 0.

Example 2

a) Poisson submanifolds are coisotropic.

b) If ϕ : (M1,π1)→ (M2,π2) is a Poisson morphism, then its graph is coisotropic
in (M1×M2,π1−π2).

c) If h is a Lie subalgebra of the Lie algebra g, then h◦ is a coisotropic submani-
fold of g∗. (See Ex. 5 for an extension of this example.)

Remark 1 The intersection of a coisotropic submanifold with the symplectic leaves
O of M is usually not clean: for instance, the symplectic foliation of su(2)∗ is given
by concentric spheres in R3. Any plane N in su(2)∗ not containing the origin is
coisotropic, has a (unique) point p at which N is tangent to a symplectic sphere O ,
and at that point Tp(N∩O) 6= TpN∩TpO .

Coisotropic submanifolds enjoy nice properties: their conormal bundle T N◦ is a
Lie subalgebroid of T ∗M, and they admit a natural quotient which is again a Pois-
son manifold, provided it is smooth. We will discuss these properties for the more
general class of pre-Poisson submanifolds in §4.3 and §4.2 respectively.
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3 Poisson-Dirac submanifolds

Poisson-Dirac submanifolds, introduced by Crainic and Fernandes [10, §8] in 2002,
are the submanifolds of (M,π) which have a canonically induced Poisson structure.

Definition 5 [10, Def. 4, §8]. N is a Poisson-Dirac submanifold of (M,π) if it has a
Poisson structure such that:

(i) N intersects cleanly2 the symplectic leaves of M, and the symplectic leaves of N
are the connected components of N ∩O as O ranges over all symplectic leaves
of M,

(ii)N ∩O is a symplectic submanifold of O , for every symplectic leaf O of M .

An alternative characterization, along the lines of our reasoning at the end of §1,
is the following. Let N be a submanifold of M such that, for any p ∈ N, TpN∩TpO

is a symplectic subspace of (TpO ,ωp). Here (O,ω) denotes the symplectic leaf
through p. Then the restriction of ωp to TpN ∩ TpO is a non-degenerate bilinear
form, and inverting it we obtain a bivector (πN)p ∈ ∧2TpN. Notice that in general
πN is not a smooth section of ∧2T N (see [10, Ex. 3, §8]).

Definition 6 [10, Cor. 11, §8] N ⊂ (M,π) is a Poisson-Dirac submanifold iff
]T N◦ ∩T N = {0} and the induced tensor πN on N is smooth.

In that case, πN is automatically a Poisson tensor [10, Prop. 6, §8]. The name
“Poisson-Dirac” derives from the fact that graph(πN) is equal to LN , the Dirac
structure obtained pulling back graph(π) via the inclusion N ↪→M.

Any submanifold N such that ]T N◦ ∩T N = {0} and for which ]T N◦ has con-
stant rank, is automatically Poisson-Dirac3. Indeed the latter condition implies
that pulling back the Dirac structure graph(π) we obtain a smooth subbundle of
T N⊕T ∗N (see §1.2), which hence is the graph of a smooth bivector field on N. In
this case the Poisson bracket on N is computed as follows:

{ f ,g} := { f̂ , ĝ}|N

where f̂ , ĝ ∈C∞(M) are extensions of f ,g ∈C∞(N) such that d f |]T N◦ = 0.

2 This means that N∩O is a manifold with T (N ∩O) = T N ∩TO .
3 It also falls into the more restrictive class of quasi-Dirac submanifolds [13, Def. 2.2], see also
[10, Prop. 7, §8].
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Examples of Poisson-Dirac submanifolds are:

Example 3

a) If (M,ω) is a symplectic manifold, then a submanifold N is Poisson-Dirac iff
it is a symplectic submanifold.

b) Poisson submanifolds.

c) Lie-Dirac submanifolds, in particular cosymplectic submanifolds. We will
elaborate on them in §3.1 and §3.2.

Within the class of Poisson-Dirac submanifolds, the cosymplectic ones and the
Poisson submanifolds lie at opposite extremes: for the former the rank of ]T N◦ is
maximized, for the latter it is zero.

3.1 Lie-Dirac submanifolds

Lie-Dirac submanifolds were introduced by Xu4 in 2001 [15]. They are special cases
of Poisson-Dirac submanifolds [10, §8.3].

Definition 7 [15, Def. 2.1] N ⊂ (M,π) is a Lie-Dirac submanifold iff there exists a
subbundle E with T M|N = T N⊕E such that E◦ is a Lie subalgebroid of T ∗M.

Recall [11, Def. 4.3.14] that if A→M is a Lie algebroid with anchor ρ , a subbun-
dle B→ N is a Lie subalgebroid if ρ(B)⊂ T N and for all sections X ,Y of A one has
(X |N ,Y |N ∈ Γ (B)⇒ [X ,Y ]|N ∈ Γ (B)) and (X |N = 0,Y |N ∈ Γ (B)⇒ [X ,Y ]|N = 0).

The embedding T ∗N→ T ∗M, given by the canoncial identification between the
vector bundles T ∗N and E◦, is actually a morphism of Lie algebroids, giving rise to
a Lie subalgebroid of T ∗M [15, Thm. 2.3 iii)]. (Here the Lie algebroid structures
or T ∗N and T ∗M are those given by the Poisson bivector fields on N and M.) The
fact that Lie-Poisson submanifolds come with a canonical Lie subalgebroid of T ∗M
accounts for several good properties of Lie-Poisson submanifolds, see for example
Prop. 4.

A characterization in terms of functions is

4 Xu introduced them with the name “Dirac submanifolds”; the name “Lie-Dirac” was proposed
in [10].
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Definition 8 [13, Def. 2.1] N ⊂ (M,π) is a Lie-Dirac submanifold iff there ex-
ists a subbundle E containing ]T N◦ for which T M|N = T N ⊕E, such that for all
f ,g ∈C∞(M)

d f |E = 0,dg|E = 0⇒ d{ f ,g}|E = 0.

Being a Lie-Dirac submanifold is global property of the submanifold N: if we
can find subbundles as above on open subsets of N, in general we can not glue them
into a subbundle E over N as above.

Example 4 a) Points of Poisson manifolds are Lie-Dirac submanifolds.

b) Cosymplectic submanifolds, which we will introduce in §3.2, are Lie-Dirac
submanifolds [15, Cor 2.11].

c) Symplectic leaves of Poisson manifolds are usually not Lie-Dirac submani-
folds. For instance, the symplectic foliation of su(2)∗ consist of concentric spheres,
and among these only the origin is a Lie-Dirac submanifold. The exact obstruction
for regular5 symplectic leaves is given in [10, Cor 13, §8], see also [15, Ex. 2.17].

3.2 Cosymplectic submanifolds

The notion of cosymplectic submanifold is much older than that of Poisson-Dirac
or Lie-Dirac submanifold.

Definition 9 [14, §1] N ⊂ (M,π) is a cosymplectic submanifold iff
]T N◦ ⊕T N = T M|N .

Hence cosymplectic submanifolds are exactly the submanifolds given by second
class constraints, i.e. constraints {ϕA} such that {ϕA,ϕB}|p is an invertible matrix
at all points p ∈ N. This follows from the fact for any Poisson-Dirac submanifold
]T N◦ is a symplectic subbundle, see Lemma 1.1.

Cosymplectic submanifolds constitute a useful tool in hamiltonian mechanics.
Let (M,π) be the Poisson manifold representing the phase space of a physical sys-
tem. Sometimes the physical system is constrained to a submanifold N ⊂ M with
an induced Poisson structure (a Poisson-Dirac submanifold), and one would like to

5 I.e., leaves such that all the symplectic leaves in a neighborhood have the same dimension.
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express the induced Poisson bracket {·, ·}N on N in terms of the Poisson bracket
{·, ·} on M.

The case when N is cosymplectic is well-known in the physics literature, and
has been threated using the so-called Dirac bracket. We describe it as follows. Let
ϕ1, . . . ,ϕk be constraints for the cosympectic submanifold N defined on an open
subset U ⊂ M. Since the matrix CAB := {ϕA,ϕB} is invertible on N ∩U , we may
assume that it is invertible on U , shrinking U if necessary. We denote its inverse by
CAB. The Dirac bracket is the bracket on C∞(U) defined by

{ f ,g}Dirac := { f ,g}−{ f ,ϕA}CAB{ϕB,g}. (2)

It is a Poisson bracket, and it allows to recover easily the bracket {·, ·}N on N: the
latter is computed extending in any arbitrary way functions on N to functions on
M and taking their Dirac bracket. (Notice that computing {·, ·}N by means of the
Poisson bracket {·, ·} on M, as in §3, requires specific extensions of the functions on
N: the extensions must annihilate ]T N◦.)

We explain the above statement as follows. Denote by πDirac the Poisson bivector
field U given by the Dirac bracket. It can be shown [4, §5.1] that the level sets of
the constraints (in particular N) are cosymplectic submanifolds of (M,π) and also
Poisson submanifolds of (U,πDirac), and that the Poisson structures on the level sets
induced by π and πDirac coincide.

4 Pre-Poisson submanifolds

Given a symplectic manifold (X ,Ω), a submanifold ι : C ↪→ X is called presymplec-
tic if the characteristic distribution ker(ι∗Ω) = TC∩TCΩ has constant rank along
C, or equivalently if TC + TCΩ has constant rank. In this Section we consider an
extension of the notion of presymplectic submanifold to Poisson geometry, and in
the three Subsections we establish various interesting properties.

Let (M,π) be a Poisson manifold and N a submanifold. It is natural to consider
the kernel of ω |TpN∩TpO , where ω is the symplectic form on the symplectic leaf O

through p, and impose that it have constant rank for all p ∈ N. By Lemma 1.1 this
amounts to asking that char(N) := T N∩]T N◦ has constant rank along N. This turns
out not to be a good notion. For instance, char(N)⊂ T M|N may have constant rank
but fail to be a smooth subbundle of T M|N (see Ex. 5.7 of [7]).

Instead of the intersection of T N and ]T N◦, it is better to consider their sum:
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Definition 10 [7, Def. 2.2] A submanifold N of a Poisson manifold (M,π) is called
pre-Poisson if the rank of T N + ]T N◦ is constant along N.

Such submanifolds were first considered by Calvo and Falceto [2, 3] in 2004, and
studied by Cattaneo and the author in [6],[7]. A first good property of T N + ]T N◦

is the following: if the rank of ]T N◦+ T N is constant, then it is automatically a
smooth subbundle of T M|N , because smooth sections spanning ]T N◦+T N can be
easily constructed from a smooth frame for T N and the image under ]|N of a smooth
frame for T N◦.

Example 5 1) If (M,ω) is a symplectic manifold, a submanifold N is pre-Poisson
iff it is presymplectic.

2) Coisotropic submanifolds (see §2) are pre-Poisson.

3) Poisson-Dirac submanifolds (see §3) or even Lie-Dirac submanifolds (see
§3.1) are usually not pre-Poisson, but cosymplectic submanifolds (see §3.2) are.

4) Let h be a Lie subalgebra of a Lie algebra g and fix λ ∈ g∗. Then the affine
subspace h◦+λ is pre-Poisson [6, §5].

To put into perspective Def. 10, let N be an arbitrary submanifold of (M,π) and
consider three “singular subbundles”:

• ]T N◦

• char(N) = T N ∩ ]T N◦

• T N + ]T N◦.

The first two are the domain and kernel respectively of

ϕ : ]T N◦ → νN,

the restriction of the projection prνN : T M|N → νN := T M|N/T N. The image of ϕ

is prνN(]T N◦+T N). Hence it is clear that

Lemma 4.2 Let N be a submanifold of M. Whenever any two of
char(N), ]T N◦, ]T N◦ + T N have constant rank, then the remaining one also
does.

We elaborate on the properties that N has when one of the three above “singular
subbundles” has constant rank. By definition Pre-Poisson submanifolds are exactly
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those for which ]T N◦+ T N, or equivalently the image Im(ϕ), has constant rank.
The following table taken from [7]6 characterizes submanifolds of symplectic and
Poisson manifolds in terms of Im(ϕ):

M symplectic M Poisson
Im(ϕ) = 0 N coisotropic N coisotropic
Im(ϕ) = νN N symplectic N cosymplectic
Rk(Im(ϕ)) =const N presymplectic N pre-Poisson

If ]T N◦ has constant rank, then pulling back the Dirac structure graph(π) via
the inclusion N ↪→M one obtains a smooth Dirac structure on N.

When char(N) has constant rank and is smooth, then char(N) is an involutive
distribution on N, whose quotient (when smooth) has nice properties, see §4.2.

4.1 Embeddings of pre-Poisson submanifolds

In this Subsection we show that pre-Poisson submanifolds of (M,π) can be regarded
as coisotropic ones (in some other Poisson manifold), and hence share many prop-
erties of coisotropic submanifolds.

Given a pre-Poisson submanifold N, one can find constraints (defined on some
open subset U ⊂ M) that are split into first and second class constraints [3, §2.1].
More precisely, choose constraints {ϕν} such that dϕν |]T N◦ = 0, and complete by
adding other constraints {ϕA}. The map ] : T N◦ → ]T N◦ maps ]dϕ

ν into T N, so
the ϕν are first class constraints (i.e., {ϕν ,ϕµ} and {ϕν ,ϕA} vanish along U ∩N).
Further it maps span{dϕ

A} isomorphically onto a complement W of T N∩ ]T N◦ in
]T N◦, and in the basis of W dual to dϕA|W the isomorphism is represented by the
matrix {ϕA,ϕB}. So the ϕ

A are second class constraints (i.e., the matrix {ϕA,ϕB}
is non-degenerate along U ∩N).

The zero level set of the second class constraints ϕA is a cosymplectic submani-
fold M̃ of (M,π), see §3.2. The submanifold U ∩N ⊂ M̃ is given by the remaining
constraints ϕν |M̃ , which are first class, hence U ∩N is a coisotropic submanifold of
M̃.

The above argument is a local one. One can show that the result holds globally,
with a uniqueness statement:

6 [7] considers the map prνN ◦ ] : T N◦ → νN, whose image is of course the same as the one of ϕ .
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Lie−Dirac

Cosymplectic

rank(Char)=const.

Pre−Poisson

Coisotropic

Poisson

Poisson−Dirac

Fig. 1 Relation between the classes of submanifolds considered in this note. Recall that a subman-
ifold N is Pre-Poisson iff rank(]T N◦+T N) = const. and that char(N) = ]T N◦ ∩T N.

Proposition 1 [7, Thm 3.3 and Thm. 4.3] Let N be a pre-Poisson submanifold of a
Poisson manifold (M,π). Then there exists a cosymplectic submanifold M̃ contain-
ing N such that N is coisotropic in M̃.

Further M̃ is unique up to neighborhood equivalence: if M̃0, M̃1 are cosymplec-
tic submanifolds that contain N as a coisotropic submanifold then, shrinking M̃0

and M̃1 to a smaller tubular neighborhood of N if necessary, there is a Poisson
diffeomorphism from M̃0 to M̃1 which is the identity on N.

The above proposition does not imply that all questions involving pre-Poisson
submanifolds can be reduced to questions about coisotropic ones. For instance in
[2, §6] the authors consider two distinct pre-Poisson submanifolds N1 and N2 with
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non-empty intersection, and in general it is not possible to find a cosymplectic sub-
manifold containing coisotropically both N1 and N2.

4.2 Quotients of pre-Poisson submanifolds

In this Subsection we show that every submanifold N of a Poisson manifold has an
associated “reduced” Poisson algebra which – when certain assumptions on N are
satisfied – corresponds to the quotient of N by char(N) = T N ∩ ]T N◦. We follow
[7, §6].

For any submanifold N of (M,π), consider again the multiplicative ideal
I := { f ∈C∞(M) : f |N = 0} of the Poisson algebra C∞(M). Its Poisson normalizer

F := { f̂ ∈C∞(M) : { f̂ ,I } ⊂I }

is a Poisson subalgebra of C∞(M), and by construction F ∩I is a Poisson ideal in
F . Hence the quotient F/(F ∩I ) is a Poisson algebra. Notice that F/(F ∩I )
is exactly the subset of functions f on N which admits an extension to some func-
tion f̂ ∈C∞(M) whose differential annihilates ]T N◦ (or equivalently Xf̂ |N ⊂ T N).
In geometric terms, the induced Poisson bracket on F/(F ∩I ) is computed as
follows:

{ f ,g}= { f̂ , ĝ}|C = Xf̂ (g)|N

for extensions f̂ , ĝ ∈F , where the second Poisson bracket is the one on C∞(M).

On the other hand char(N)p⊂ TpN is the kernel of the bilinear form ι
∗
ωp, where

(O,ω) is the symplectic leaf of M through p and ι : N ∩O ↪→ O the inclusion.
Hence, from a geometric point of view, it is natural to consider the set of basic
functions on N, i.e.

C∞
bas(N) = { f ∈C∞(N) : d f |]T N◦∩T N = 0}.

When char(N) is regular and smooth and the quotient N is a smooth manifold, then
C∞

bas(N) is isomorphic to C∞(N).

In general we have F/(F ∩I )⊂C∞
bas(N). When N is a pre-Poisson subman-

ifold one has equality [2, Thm. 3]. Hence, for pre-Poisson submanifolds, the set of
basic functions has a Poisson algebra structure, and whenever the quotient N is a
smooth manifold, it has an induced Poisson structure.
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4.3 Relation to subgroupoids of Γ (M)

Generalizing the fact that Lie algebras are the infinitesimal objects associated to Lie
groups, Lie algebroids (see §1) are associated to so-called Lie groupoids [12, §13].
A groupoid is a category (so in particular it consists of a set of arrows with two
maps s and t to the set of objects) where every arrow is invertible. For Lie groupoids
we require that the sets involved in the definition be manifolds, the maps be smooth,
and s, t surjective submersions.

Let (M,π) be a Poisson manifold. When certain obstructions vanish [10,
Thm. 2], there exists a Lie groupoid whose Lie algebroid is T ∗M. There exists a
unique (up to isomorphism) such Lie groupoid Γ (M) whose s-fibers are simply
connected. Γ (M) is actually a symplectic groupoid [8], i.e. it carries a symplectic
form Ω such that the graph of the multiplication (composition of arrows) in
(Γ (M)×Γ (M)×Γ (M),Ω ×Ω × (−Ω)) is Lagrangian, and so that the target map
t : Γ (M) → M is a Poisson map. For instance, if (M,ω) is a simply connected
symplectic manifold, then (Γ (M),Ω) = (M ×M,ω × (−ω)), and the groupoid
multiplication of Γ (M) is given by (x,y) · (y,z) = (x,z).

Assume that the Poisson manifold (M,π) admits a symplectic groupoid Γ (M).
“Nice” classes of (immersed) subgroupoids of Γ (M) are given by the subgroupoids
which are coisotropic or symplectic submanifolds, or more generally presymplectic
submanifolds. It is natural to ask which classes of submanifolds of M are the bases
(sets of objects) of “nice” subgroupoids of Γ (M). Given a submanifold N ⊂M, any
Lie subalgebroid of T ∗M over N must be contained in ]−1T N (otherwise there is
no induced anchor). Further, the only subbundle of T ∗M naturally associated to the
submanifold N is T N◦. Hence we are lead to consider

• T N◦ ∩ ]−1T N (it has constant rank iff N a pre-Poisson submanifold)

• ]−1T N (it has constant rank iff its annihilator ]T N◦ does).

When they have constant rank, they are automatically Lie subalgebroids of T ∗M [7,
Prop. 3.6]. Now we look at the corresponding subgroupoids of Γ (M).

Considering the Lie subalgebroid T N◦ ∩ ]−1T N we have:

Proposition 2 [7, Prop. 7.2] Let N be a pre-Poisson submanifold of (M,π). Then
the subgroupoid of Γ (M) integrating T N◦ ∩ ]−1T N is an isotropic subgroupoid of
Γ (M).
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The above subgroupoid is Lagrangian exactly when N is coisotropic [5, §5]. (In
[5] this correspondence is the main tool to show that the integration of Poisson
manifolds can be derived from the one of Lie algebroids). When N is cosymplectic,
then the above subgroupoid is the trivial groupoid N⇒ N.

Next assume that ]T N◦ has constant rank and consider the Lie subalgebroid
]−1T N. A subgroupoid of Γ (M) integrating it is s−1(N)∩ t−1(N).

Remark 2 We saw that the graph of π pulls back to a smooth Dirac structure on
N. It can be shown [7, Rem. 7.3] that s−1(N)∩ t−1(N), with the restriction of the
sympletic form Ω on Γ (M), is an over-pre-symplectic groupoid inducing the same
Dirac structure on N [1, Ex. 6.7].

Proposition 3 [7, Prop. 7.5] Let N be any submanifold of M. Then s−1(N)∩ t−1(N)
is a presymplectic7 submanifold of Γ (M) iff N is pre-Poisson and char(N) has con-
stant rank. In this case the characteristic distribution of s−1(N)∩ t−1(N) has rank
2rk(char(N))+ rk(T N◦ ∩TO◦), where O denotes the symplectic leaves of M inter-
secting N.

We have the following special cases: if N is coisotropic and ]T N◦ has con-
stant rank, then s−1(N) ∩ t−1(N) is also coisotropic; if N is cosymplectic, then
s−1(N)∩ t−1(N) is also cosymplectic [7, Lemma. 7.1].

When N is pre-Poisson and char(N) has constant rank, the quotient N of N
by char(N) (when smooth) is a Poisson manifold, see §4.2. As seen in Prop. 3,
s−1(N)∩ t−1(N) is a Lie subgroupoid and a presymplectic submanifold of Γ (M).
When the quotient s−1(N)∩ t−1(N) by its characteristic distribution (i.e., the leaf-
space) is smooth, one expects it8 to be a symplectic groupoid for N.

The following example, which is the only original contribution of present note,
shows that this is not the case: s−1(N)∩ t−1(N) usually is not even a set-theoretic
groupoid.

Example 6 Let N be the trivial circle bundle over the open 2-disk D, but with one
point removed in the fiber over 0 ∈ D. We write suggestively N = D× Ŝ1, where
Ŝ1 p denotes the circle for all non-zero p ∈ D, while Ŝ10 is the circle with a point

7 Recall that a submanifold S of the symplectic manifold (Γ (M),Ω ) is presymplectic iff its char-
acteristic distribution T S∩T SΩ has constant rank.
8 For N a Poisson-Dirac submanifold this was already pointed out in [10, §8].
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deleted. Notice that π1(N) = Z, generated by any of the circle fibers. It is easy to
see that the universal cover of N is Ñ = (D×R)− ({0}×Z). To emphatize the fact
that Ñ is a bundle over D we write N = D× R̂, where R̂p = R for non-zero p ∈ D
and R̂0 =R−Z.

Now we bring in Poisson structures. Let M = D× Ŝ1× I, where I is the open
interval, and endow it with the symplectic structure Ω obtained as the product of the
symplectic structure on the disk D and the (restriction of) the symplectic structure on
S1× I. The symplectic groupoid of (M,Ω) is Γ (M) = (M̃×Z M̃, t∗Ω−s∗Ω), where
M̃ denotes the universal cover of M and the action of π1(M) =Z is by diagonal deck
transformations.

We view N as a submanifold of M; it is a presymplectic submanifold, and clearly
N ∼= D. We have

s−1(N)∩ t−1(N) = (D× R̂)×Z (D× R̂).

The characteristic leaves of s−1(N) ∩ t−1(N) almost coincide with the
fibers of the natural projection onto D × D: the characteristic leaves are9

F(p1,p2) = {[(p1,t1, p2, t2)] : t1,t2 ∈ R} if (p1, p2) 6= (0,0) ∈ D×D (topologically
these are either cylinders or rectangles), whereas sitting over (0,0) ∈ D×D we
have the quotient of (R−Z)× (R−Z) by the diagonal Z action, which consists of
countably many leaves. Hence the leaf space is

s−1(N)∩ t−1(N) = D×̂D,

where the latter denotes the non-Hausdorff manifold obtained from D×D replacing
(0,0) with a copy of Z.

We ask whether the projection pr : s−1(N)∩ t−1(N)→ s−1(N)∩ t−1(N) induces
a groupoid structure (over N) on the quotient. We have well-defined source and tar-
get maps for s−1(N)∩ t−1(N), but the groupoid multiplication of s−1(N)∩ t−1(N)
does not descend to the quotient. Indeed, consider (0, p) ∈ D×̂D where p is
non-zero. A preimage under pr is [(0,µ1),(p,λ )] where µ1 ∈ R−Z and λ ∈ R
are arbitrary. Similarly, we consider (p,0) ∈ D×̂D and as a preimage we pick
[(p,λ ),(0,µ2)] where again µ2 ∈ R−Z is arbitrary. Now multiplying these two
elements of s−1(N) ∩ t−1(N) we obtain [(0,µ1),(0,µ2)]. The value of its pro-
jection under pr depends on the concrete choice of µ1 and µ2. This shows that
s−1(N)∩ t−1(N) does not have an induced groupoid structure.

9 Square brackets denote equivalence classes under the Z-action on (D× R̂)× (D× R̂).
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In order to obtain a groupoid as a quotient of s−1(N)∩ t−1(N), one would need
to identify all the countably many characteristic leaves sitting over (0,0) ∈ D×D.

To end with, we consider a Lie-Dirac submanifold N. By the very definition (see
§3.1) there is a canonical embedding10 of Lie algebroids ϕ : T ∗N → T ∗M, giving
rise to a subgroupoid of Γ (M). We have

Proposition 4 [15, Thm. 3.7] If Γ ′⇒ N is a symplectic subgroupoid of Γ (M) then
N is a Lie-Dirac submanifold of (M,π). Conversely, if N is a Lie-Dirac submanifold
of (M,π), then ϕ(T ∗N) integrates to a symplectic subgroupoid of Γ (M).
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