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Preface

The goal of science is to unlock nature’s secrets. This involves the identification and

understanding of nature’s observable structures or patterns. Our understanding

comes through the development of theoretical models which are capable of explaining

the existing observations as well as making testable predictions. The focus of this book

is on what happens at the interface between the predictions of scientific models and the

data from the latest experiments. The data are always limited in accuracy and

incomplete (we always want more), so we are unable to employ deductive reasoning

to prove or disprove the theory. How do we proceed to extend our theoretical frame-

work of understanding in the face of this? Fortunately, a variety of sophisticated

mathematical and computational approaches have been developed to help us through

this interface, these go under the general heading of statistical inference. Statistical

inference provides a means for assessing the plausibility of one or more competing

models, and estimating the model parameters and their uncertainties. These topics are

commonly referred to as ‘‘data analysis’’ in the jargon of most physicists.

We are currently in the throes of a major paradigm shift in our understanding of

statistical inference based on a powerful theory of extended logic. For historical

reasons, it is referred to as Bayesian Inference or Bayesian Probability Theory. To

get a taste of how significant this development is, consider the following: probabilities

are commonly quantified by a real number between 0 and 1. The end-points, corre-

sponding to absolutely false and absolutely true, are simply the extreme limits of this

infinity of real numbers. Deductive logic, which is based on axiomatic knowledge,

corresponds to these two extremes of 0 and 1. Ask anymathematician or physicist how

important deductive logic is to their discipline! Now try to imagine what you might

achieve with a theory of extended logic that encompassed the whole range from 0 to 1.

This is exactly what is needed in science and real life where we never know anything is

absolutely true or false. Of course, the field of probability has been around for years,

but what is new is the appreciation that the rules of probability are not merely rules for

manipulating random variables. They are now recognized as uniquely valid principles

of logic, for conducting inference about any proposition or hypothesis of interest.

Ordinary deductive logic is just a special case in the idealized limit of complete

information. The reader should be warned that most books on Bayesian statistics
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do not make the connection between probability theory and logic. This connection,

which is captured in the book by physicist E. T. Jaynes,Probability Theory – The Logic

of Science,1 is particularly appealing because of the unifying principles it provides for

scientific reasoning.

What are the important consequences of this development? We are only beginning

to see the tip of the iceberg. Already we have seen that for data with a high signal-to-

noise ratio, a Bayesian analysis can frequently yield many orders of magnitude

improvement in model parameter estimation, through the incorporation of relevant

prior information about the signal model. For several dramatic demonstrations of this

point, have a look at the first four sections of Chapter 13. It also provides a more

powerful way of assessing competing theories at the forefront of science by quantify-

ing Occam’s razor, and sheds a new light on systematic errors (e.g., Section 3.11). For

some problems, a Bayesian analysis may simply lead to a familiar statistic. Even in this

situation it often provides a powerful new insight concerning the interpretation of the

statistic. But most importantly, Bayesian analysis provides an elegantly simple and

rational approach for answering any scientific question for a given state of

information.

This textbook is based on a measurement theory course which is aimed at providing

first year graduate students in the physical sciences with the tools to help them design,

simulate and analyze experimental data. The material is presented at a mathematical

level that should make it accessible to physical science undergraduates in their final

two years. Each chapter begins with an overview and most end with a summary. The

book contains a large number of problems, worked examples and 132 illustrations.

The Bayesian paradigm is becoming very visible at international meetings of

physicists and astronomers (e.g., Statistical Challenges in Modern Astronomy III,

edited by E. D. Feigelson and G. J. Babu, 2002). However, the majority of scientists

are still not at home with the topic and much of the current scientific literature still

employs the conventional ‘‘frequentist’’ statistical paradigm. This book is an attempt

to help new students to make the transition while at the same time exposing them in

Chapters 5, 6, and 7 to some of the essential ideas of the frequentist statistical

paradigm that will allow them to comprehend much of the current and earlier

literature and interface with his or her research supervisor. This also provides an

opportunity to compare and contrast the two different approaches to statistical

inference. No previous background in statistics is required; in fact, Chapter 6 is

entitled ‘‘What is a statistic?’’ For the reader seeking an abridged version of

Bayesian inference, Chapter 3 provides a stand-alone introduction on the ‘‘How-to

of Bayesian inference.’’

1 Early versions of this much celebrated work by Jaynes have been in circulation since at least 1988. The book was finally
submitted for publication in 2002, four years after his death, through the efforts of his former student G. L. Bretthorst.
The book is published by Cambridge University Press (Jaynes, 2003, edited by G. L. Bretthorst).
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The book begins with a look at the role of statistical inference in the scientific

method and the fundamental ideas behind Bayesian Probability Theory (BPT). We

next consider how to encode a given state of information into the form of a probability

distribution, for use as a prior or likelihood function in Bayes’ theorem. We demon-

strate why the Gaussian distribution arises in nature so frequently from a study of the

Central Limit Theorem and gain powerful new insight into the role of the Gaussian

distribution in data analysis from theMaximumEntropy Principle.We also learn how

a quantified Occam’s razor is automatically incorporated into any Bayesian model

comparison and come to understand it at a very fundamental level.

Starting from Bayes’ theorem, we learn how to obtain unique and optimal solutions

to any well-posed inference problem. With this as a foundation, many common

analysis techniques such as linear and nonlinear model fitting are developed and

their limitations appreciated. The Bayesian solution to a problem is often very simple

in principle, however, the calculations require integrals over the model parameter

space which can be very time consuming if there are a large number of parameters.

Fortunately, the last decade has seen remarkable developments in practical algorithms

for performing Bayesian calculations. Chapter 12 provides an introduction to the very

powerful Markov chain Monte Carlo (MCMC) algorithms, and demonstrates an

application of a new automatedMCMCalgorithm to the detection of extrasolar planets.

Although the primary emphasis is on the role of probability theory in inference,

there is also focus on an understanding of how to simulate the measurement process.

This includes learning how to generate pseudo-random numbers with an arbitrary

distribution (in Chapter 5). Any linear measurement process can be modeled as a

convolution of nature’s signal with the measurement point-spread-function, a process

most easily dealt with using the convolution theorem of Fourier analysis. Because of

the importance of this material, I have included Appendix B on the Discrete Fourier

Transform (DFT), the Fast Fourier Transform (FFT), convolution and Weiner

filtering. We consider the limitations of the DFT and learn about the need to zero

pad in convolution to avoid aliasing. From the Nyquist Sampling Theorem we learn

how to minimally sample the signal without losing information and what prefiltering

of the signal is required to prevent aliasing.

In Chapter 13, we apply probability theory to spectral analysis problems and gain a

new insight into the role of the DFT, and explore a Bayesian revolution in spectral

analysis. We also learn that with non-uniform data sampling, the effective bandwidth

(the largest spectral window free of aliases) can be made much wider than for uniform

sampling. The final chapter is devoted to Bayesian inference when our prior informa-

tion leads us to model the probability of the data with a Poisson distribution.

Software support

The material in this book is designed to empower the reader in his or her search to

unlock nature’s secrets. To do this efficiently, one needs both an understanding of the

principles of extended logic, and an efficient computing environment for visualizing
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and mathematically manipulating the data. All of the course assignments involve the

use of a computer. An increasing number of my students are exploiting the power of

integrated platforms for programming, symbolic mathematical computations, and

visualizing tools. Since the majority of my students opted to useMathematica for their

assignments, I adopted Mathematica as a default computing environment for the

course. There are a number of examples in this book employing Mathematica com-

mands, although the book has been designed to be complete without reference to these

Mathematica examples. In addition, I have developed a Mathematica tutorial to

support this book, specifically intended to help students and professional scientists

with no previous experience withMathematica to efficiently exploit it for data analysis

problems. This tutorial also contains many worked examples and is available for

download from http://www.cambridge.org/052184150X.

In any scientific endeavor, a great deal of effort is expended in graphically displaying

the results for presentation and publication. To simplify this aspect of the problem, the

Mathematica tutorial provides a large range of easy to use templates for publication-

quality plotting.

It used to be the case that interpretative languages were not as useful as compiled

languages such as C and Fortran for numerically intensive computations. The last few

years have seen dramatic improvements in the speed of Mathematica. Wolfram

Research now claims2 that for most of Mathematica’s numerical analysis function-

ality (e.g., data analysis, matrix operations, numerical differential equation solvers,

and graphics) Mathematica 5 operates on a par3 with Fortran or MATLAB code. In

the author’s experience, the time required to develop and test programs with

Mathematica is approximately 20 times shorter than the time required to write and

debug the same program in Fortran or C, so the efficiency gain is truly remarkable.

2 http://www.wolfram.com/products/mathematica/; newin5/performance/numericallinear.html.
3 Look up Mathematica gigaNumerics on the Web.
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1

Role of probability theory in science

1.1 Scientific inference

This book is primarily concerned with the philosophy and practice of inferring the

laws of nature from experimental data and prior information. The role of inference in

the larger framework of the scientific method is illustrated in Figure 1.1.

In this simple model, the scientific method is depicted as a loop which is entered

through initial observations of nature, followed by the construction of testable

hypotheses or theories as to the working of nature, which give rise to the prediction

of other properties to be tested by further experimentation or observation. The new

data lead to the refinement of our current theories, and/or development of new

theories, and the process continues.

The role of deductive inference1 in this process, especially with regard to deriving

the testable predictions of a theory, has long been recognized. Of course, any theory

makes certain assumptions about nature which are assumed to be true and these

assumptions form the axioms of the deductive inference process. The terms deductive

inference and deductive reasoning are considered equivalent in this book. For exam-

ple, Einstein’s Special Theory of Relativity rests on two important assumptions;

namely, that the vacuum speed of light is a constant in all inertial reference frames

and that the laws of nature have the same form in all inertial frames.

Unfortunately, experimental tests of theoretical predictions do not provide simple

yes or no answers. Our state of knowledge is always incomplete, there are always more

experiments that could be done and the measurements are limited in their accuracy.

Statistical inference is the process of inferring the truth of our theories of nature on the

basis of the incomplete information. In science we often make progress by starting

with simple models. Usually nature is more complicated and we learn in what direc-

tion tomodify our theories from the differences between themodel predictions and the

measurements. It is much like peeling off layers of an onion. At any stage in this

iterative process, the still hidden layers give rise to differences from the model predic-

tions which guide the next step.

1 Reasoning from one proposition to another using the strong syllogisms of logic (see Section 2.2.4).
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1.2 Inference requires a probability theory

In science, the available information is always incomplete so our knowledge of nature is

necessarily probabilistic. Two different approaches based on different definitions of

probability will be considered. In conventional statistics, the probability of an event is

identified with the long-run relative frequency of occurrence of the event. This is

commonly referred to as the ‘‘frequentist’’ view. In this approach, probabilities are

restricted to a discussion of random variables, quantities that can meaningfully vary

throughout a series of repeated experiments. Two examples are:

1. A measured quantity which contains random errors.

2. Time intervals between successive radioactive decays.

The role of random variables in frequentist statistics is detailed in Section 5.2.

In recent years, a new perception of probability has arisen in recognition that the

mathematical rules of probability are not merely rules for calculating frequencies of

random variables. They are now recognized as uniquely valid principles of logic for

conducting inference about any proposition or hypothesis of interest. This more

powerful viewpoint, ‘‘Probability Theory as Logic,’’ or Bayesian probability theory,

is playing an increasingly important role in physics and astronomy. The Bayesian

approach allows us to directly compute the probability of any particular theory or

particular value of a model parameter, issues that the conventional statistical

approach can attack only indirectly through the use of a random variable statistic.

In this book, I adopt the approach which exposes probability theory as an extended

theory of logic following the lead of E. T. Jaynes in his book,2 Probability Theory –

Testable
Hypothesis

(theory)

Observations
Data

Predictions

Hypothesis testing
Parameter estimation

Statistical (plausible) Inference

Deductive Inference

Figure 1.1 The scientific method.

2 The book was finally submitted for publication four years after his death, through the efforts of his former student
G. Larry Bretthorst.
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The Logic of Science (Jaynes, 2003). The two approaches employ different definitions

of probability which must be carefully understood to avoid confusion.

The two different approaches to statistical inference are outlined in Table 1.1

together with their underlying definition of probability. In this book, we will be

primarily concerned with the Bayesian approach. However, since much of the current

scientific culture is based on ‘‘frequentist’’ statistical inference, some background in

this approach is useful.

The frequentist definition contains the term ‘‘identical repeats.’’ Of course the

repeated experiments can never be identical in all respects. The Bayesian definition

of probability involves the rather vague sounding term ‘‘plausibility,’’ which must be

given a precise meaning (see Chapter 2) for the theory to provide quantitative results.

In Bayesian inference, a probability distribution is an encoding of our uncertainty

about some model parameter or set of competing theories, based on our current state

of information. The approach taken to achieve an operational definition of prob-

ability, together with consistent rules for manipulating probabilities, is discussed in

the next section and details are given in Chapter 2.

In this book, we will adopt the plausibility definition3 of probability given in

Table 1.1 and follow the approach pioneered by E. T. Jaynes that provides for a

unified picture of both deductive and inductive logic. In addition, Jaynes brought

Table 1.1 Frequentist and Bayesian approaches to probability.

Approach Probability definition

FREQUENTIST STATISTICAL

INFERENCE

pðAÞ ¼ long-run relative frequency with which

A occurs in identical repeats of an

experiment.

‘‘A’’ restricted to propositions about

random variables.

BAYESIAN INFERENCE pðAjBÞ ¼ a real number measure of the

plausibility of a proposition/hypothesis A,

given (conditional on) the truth of the

information represented by proposition B.

‘‘A’’ can be any logical proposition, not

restricted to propositions about random

variables.

3 Even within the Bayesian statistical literature, other definitions of probability exist. An alternative definition commonly
employed is the following: ‘‘probability is a measure of the degree of belief that any well-defined proposition (an event)
will turn out to be true.’’ The events are still random variables, but the term is generalized so it can refer to the
distribution of results from repeated measurements, or, to possible values of a physical parameter, depending on the
circumstances. The concept of a coherent bet (e.g., D’Agostini, 1999) is often used to define the value of probability in
an operational way. In practice, the final conditional posteriors are the same as those obtained from the extended logic
approach adopted in this book.
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great clarity to the debate on objectivity and subjectivity with the statement, ‘‘the only

thing objectivity requires of a scientific approach is that experimenters with the same

state of knowledge reach the same conclusion.’’ More on this later.

1.2.1 The two rules for manipulating probabilities

It is now routine to build or program a computer to execute deductive logic. The goal

of Bayesian probability theory as employed in this book is to provide an extension of

logic to handle situations where we have incomplete information so we may arrive at

the relative probabilities of competing hypotheses for a given state of information.

Cox and Jaynes showed that the desired extension can be arrived at uniquely from

three ‘‘desiderata’’ whichwill be introduced in Section 2.5.1. They are called ‘‘desiderata’’

rather than axioms because they do not assert that anything is ‘‘true,’’ but only state

desirable goals of a theory of plausible inference.

The operations for manipulating probabilities that follow from the desiderata are

the sum and product rules. Together with the Bayesian definition of probability, they

provide the desired extension to logic to handle the common situation of incomplete

information. We will simply state these rules here and leave their derivation together

with a precise operational definition of probability to the next chapter.

Sum Rule: pðAjBÞþ pðAjBÞ¼ 1 (1:1)

Product Rule: pðA;BjCÞ¼ pðAjCÞpðBjA;CÞ

¼ pðBjCÞpðAjB;CÞ;
(1:2)

where the symbol A stands for a proposition which asserts that something is true. The

symbol B is a proposition asserting that something else is true, and similarly, C stands

for another proposition. Two symbols separated by a comma represent a compound

proposition which asserts that both propositions are true. Thus A;B indicates that

both propositions A and B are true and pðA;BjCÞ is commonly referred to as the joint

probability. Any proposition to the right of the vertical bar j is assumed to be true.

Thus when we write pðAjBÞ, we mean the probability of the truth of proposition A,

given (conditional on) the truth of the information represented by proposition B.

Examples of propositions:

A � ‘‘The newly discovered radio astronomy object is a galaxy.’’

B � ‘‘The measured redshift of the object is 0:150� 0:005.’’

A � ‘‘Theory X is correct.’’

A � ‘‘Theory X is not correct.’’

A � ‘‘The frequency of the signal is between f and fþ df.’’

We will have much more to say about propositions in the next chapter.
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Bayes’ theorem follows directly from the product rule (a rearrangement of the two

right sides of the equation):

pðAjB;CÞ¼ pðAjCÞpðBjA;CÞ
pðBjCÞ : (1:3)

Another version of the sum rule can be derived (see Equation (2.23)) from the product

and sum rules above:

Extended Sum Rule: pðAþBjCÞ¼ pðAjCÞþ pðBjCÞ� pðA;BjCÞ; (1:4)

whereAþB � propositionA is true orB is true or both are true. If propositionsA and

B are mutually exclusive – only one can be true – then Equation (1.4) becomes

pðAþBjCÞ¼ pðAjCÞþ pðBjCÞ: (1:5)

1.3 Usual form of Bayes’ theorem

pðHijD; IÞ¼
pðHijIÞpðDjHi; IÞ

pðDjIÞ ; (1:6)

where Hi � proposition asserting the truth of a hypothesis of interest

I � proposition representing our prior information

D � proposition representing data

pðDjHi; IÞ¼ probability of obtaining data D; if Hi and I are true

ðalso called the likelihood function LðHiÞÞ
pðHijIÞ ¼ prior probability of hypothesis

pðHijD; IÞ¼ posterior probability of Hi

pðDjIÞ ¼
X

i
pðHijIÞpðDjHi; IÞ

ðnormalization factor which ensures
X

i
pðHijD; IÞ¼ 1Þ:

1.3.1 Discrete hypothesis space

In Bayesian inference, we are interested in assigning probabilities to a set of competing

hypotheses perhaps concerning some aspect of nature that we are studying. This set

of competing hypotheses is called the hypothesis space. For example, a problem

of current interest to astronomers is whether the expansion of the universe is acceler-

ating or decelerating. In this case, we would be dealing with a discrete hypothesis
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space4 consisting of H1 (� accelerating) and H2 (� decelerating). For a discrete

hypothesis space, pðHijD; IÞ is called a probability distribution. Our posterior prob-

abilities for H1 and H2 satisfy the condition that

X2
i¼ 1

pðHijD; IÞ¼ 1: (1:7)

1.3.2 Continuous hypothesis space

In another type of problem we might be dealing with a hypothesis space that is

continuous. This can be considered as the limiting case of an arbitrarily large number

of discrete propositions.5 For example, we have strong evidence from the measured

velocities and distances of galaxies that we live in an expanding universe. Astronomers

are continually seeking to refine the value of Hubble’s constant, H0, which relates the

recession velocity of a galaxy to its distance. Estimating H0 is called a parameter

estimation problem and in this case, our hypothesis space of interest is continuous.

In this case, the propositionH0 asserts that the true value of Hubble’s constant is in the

interval h to hþ dh. The truth of the proposition can be represented by pðH0jD; IÞdH,

where pðH0jD; IÞ is a probability density function (PDF). The probability density

function is defined by

pðH0jD; IÞ¼ lim
�h!0

pðh � H0 < hþ �hjD; IÞ
�h

: (1:8)

Box 1.1 Note about notation

The term ‘‘PDF’’ is also a common abbreviation for probability distribution

function, which can pertain to discrete or continuous sets of probabilities. This

term is particularly useful when dealing with a mixture of discrete and continuous

parameters.

We will use the same symbol, pð. . .Þ, for probabilities and PDFs; the nature of

the argument will identify which use is intended. To arrive at a final numerical

answer for the probability or PDF of interest, we eventually need to convert the

terms in Bayes’ theorem into algebraic expressions, but these expressions can

become very complicated in appearance. It is useful to delay this step until the last

possible moment.

4 Of course, nothing guarantees that future information will not indicate that the correct hypothesis is outside the current
working hypothesis space. With this new information, we might be interested in an expanded hypothesis space.

5 In Jaynes (2003), there is a clear warning that difficulties can arise if we are not careful in carrying out this limiting
procedure explicitly. This is often the underlying cause of so-called paradoxes of probability theory.
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Let W be a proposition asserting that the numerical value of H0 lies in the range

a to b. Then

pðWjD; IÞ¼
Z b

a

pðH0jD; IÞdH0: (1:9)

In the continuum limit, the normalization condition of Equation (1.7) becomesZ
�H

pðHjD; IÞdH¼ 1; (1:10)

where �H designates the range of integration corresponding to the hypothesis space

of interest.

We can also talk about a joint probability distribution, pðX;YjD; IÞ, in which bothX

and Y are continuous, or, one is continuous and the other is discrete. If both are

continuous, then pðX;YjD; IÞ is interpreted to mean

pðX;YjD; IÞ¼ lim
�x;�y!0

pðx � X < xþ �x; y � Y < yþ �yjD; IÞ
�x �y

: (1:11)

In a well-posed problem, the prior information defines our hypothesis space, the

means for computing pðHijIÞ, and the likelihood function given some data D.

1.3.3 Bayes’ theorem – model of the learning process

Bayes’ theorem provides amodel for inductive inference or the learning process. In the

parameter estimation problem of the previous section, H0 is a continuous hypothesis

space. Hubble’s constant has some definite value, but because of our limited state of

knowledge, we cannot be too precise about what that value is. In all Bayesian inference

problems, we proceed in the same way. We start by encoding our prior state of

knowledge into a prior probability distribution, pðH0jIÞ (in this case a density distribu-

tion). We will see a very simple example of how to do this in Section 1.4.1, and many

more examples in subsequent chapters. If our prior information is very vague then

pðH0jIÞ will be very broad, spanning a wide range of possible values of the parameter.

It is important to realize that a Bayesian PDF is ameasure of our state of knowledge

(i.e., ignorance) of the value of the parameter. The actual value of the parameter is not

distributed over this range; it has some definite value. This can sometimes be a serious

point of confusion, because, in frequentist statistics, the argument of a probability is a

random variable, a quantity that can meaningfully take on different values, and these

values correspond to possible outcomes of experiments.

We then acquire some new data,D1. Bayes’ theorem provides a means for combining

what the data have to say about the parameter, through the likelihood function, with

our prior, to arrive at a posterior probability density, pðH0jD1; IÞ, for the parameter.

pðH0jD1; IÞ / pðH0jI0ÞpðD1jH0; IÞ: (1:12)
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Two extreme cases are shown in Figure 1.2. In the first, panel (a), the prior is

much broader than the likelihood. In this case, the posterior PDF is determined

entirely by the new data. In the second extreme, panel (b), the new data are much

less selective than our prior information and hence the posterior is essentially the

prior.

Now suppose we acquire more data represented by proposition D2. We can again

apply Bayes’ theorem to compute a posterior that reflects our new state of knowledge

about the parameter. This time our new prior, I 0, is the posterior derived from D1; I,

i.e., I 0 ¼D1; I. The new posterior is given by

pðH0jD2; I
0Þ / pðH0jI 0ÞpðD2jH0; I

0Þ: (1:13)

1.3.4 Example of the use of Bayes’ theorem

Here we analyze a simple model comparison problem using Bayes’ theorem. We start

by stating our prior information, I, and the new data, D.

I stands for:

a) Model M1 predicts a star’s distance, d1¼ 100 light years (ly).

b) Model M2 predicts a star’s distance, d2¼ 200 ly.

c) The uncertainty, e, in distance measurements is described by a Gaussian distribution of

the form

Parameter H0

(a)

Posterior
p(H0|D,M1,I )

Likelihood
p(D |H0,M1,I )

Prior
p(H0|M1,I )

Parameter H0

(b)

Posterior
p(H0|D,M1,I )

Prior
p(H0|M1,I )

Likelihood
p(D |H0,M1,I )

Figure 1.2 Bayes’ theorem provides a model of the inductive learning process. The posterior
PDF (lower graphs) is proportional to the product of the prior PDF and the likelihood function

(upper graphs). This figure illustrates two extreme cases: (a) the prior much broader than
likelihood, and (b) likelihood much broader than prior.
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pðejIÞ¼ 1ffiffiffiffiffiffi
2p
p

�
exp � e2

2�2

� �
;

where �¼ 40 ly.

d) There is no current basis for preferring M1 over M2 so we set pðM1jIÞ¼ pðM2jIÞ¼ 0:5.

D � ‘‘The measured distance d¼ 120 ly.’’

The prior information tells us that the hypothesis space of interest consists of

models (hypotheses) M1 and M2. We proceed by writing down Bayes’ theorem for

each hypothesis, e.g.,

pðM1jD; IÞ¼
pðM1jIÞpðDjM1; IÞ

pðDjIÞ ; (1:14)

pðM2jD; IÞ¼
pðM2jIÞpðDjM2; IÞ

pðDjIÞ : (1:15)

Since we are interested in comparing the two models, we will compute the odds ratio,

equal to the ratio of the posterior probabilities of the two models. We will abbreviate

the odds ratio of model M1 to model M2 by the symbol O12.

O12¼
pðM1jD; IÞ
pðM2jD; IÞ

¼ pðM1jIÞ
pðM2jIÞ

pðDjM1; IÞ
pðDjM2; IÞ

¼ pðDjM1; IÞ
pðDjM2; IÞ

: (1:16)

The two prior probabilities cancel because they are equal and so does pðDjIÞ since it is
common to both models. To evaluate the likelihood pðDjM1; IÞ, we note that in this

case, we are assumingM1 is true. That being the case, the only reason the measured d

can differ from the prediction d1 is because of measurement uncertainties, e. We can

thus write d¼ d1 þ e or e¼ d� d1. Since d1 is determined by the model, it is certain,

and so the probability,6 pðDjM1; IÞ, of obtaining the measured distance is equal to the

probability of the error. Thus we can write

pðDjM1; IÞ¼
1ffiffiffiffiffiffi
2p
p

�
exp �ðd� d1Þ2

2�2

 !

¼ 1ffiffiffiffiffiffi
2p
p

40
exp �ð120� 100Þ2

2ð40Þ2

 !
¼ 0:00880:

(1:17)

Similarly we can write for model M2

6 See Section 4.8 for a more detailed treatment of this point.
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pðDjM2; IÞ¼
1ffiffiffiffiffiffi
2p
p

�
exp �ðd� d2Þ2

2�2

 !

¼ 1ffiffiffiffiffiffi
2 p
p

40
exp �ð120� 200Þ2

2ð40Þ2

 !
¼ 0:00135:

(1:18)

The evaluation of Equations (1.17) and (1.18) is depicted graphically in Figure 1.3.

The relative likelihood of the two models is proportional to the heights of the two

Gaussian probability distributions at the location of the measured distance.

Substituting into Equation (1.16), we obtain an odds ratio of 6.52 in favor of

model M1.

1.4 Probability and frequency

In Bayesian terminology, a probability is a representation of our state of knowledge

of the real world. A frequency is a factual property of the real world that we measure

or estimate.7 One of the great strengths of Bayesian inference is the ability to

incorporate relevant prior information in the analysis. As a consequence, some

critics have discounted the approach on the grounds that the conclusions are sub-

jective and there has been considerable confusion on that subject. We certainly

expect that when scientists from different laboratories come together at an inter-

national meeting, their state of knowledge about any particular topic will differ, and

as such, they may have arrived at different conclusions. It is important to recognize

0 50 100 150 200 250 300 350
Distance (ly)

0
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bi

lit
y 

de
ns

ity

d1 dmeasured d2

Figure 1.3 Graphical depiction of the evaluation of the likelihood functions, pðDjM1; IÞ and
pðDjM2; IÞ.

7 For example, consider a sample of 400 people attending a conference. Each person sampled has many characteristics or
attributes including sex and eye color. Suppose 56 are found to be female. Based on this sample, the frequency of
occurrence of the attribute female is 56=400 � 14%.
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that the only thing objectivity requires of a scientific approach is that experimenters

with the same state of knowledge reach the same conclusion. Achieving consensus

amongst different experimenters is greatly aided by the requirement to specify how

relevant prior information has been encoded in the analysis. In Bayesian inference, we

can readily incorporate frequency information using Bayes’ theorem and by treating it

as data. In general, probabilities change when we change our state of knowledge;

frequencies do not.

1.4.1 Example: incorporating frequency information

A 1996 newspaper article reported that doctors in Toronto were concerned about

a company selling an unapproved mail-order HIV saliva test. According to labora-

tory tests, the false positive rate for this test was 2.3% and the false negative rate

was 1.4% (i.e., 98.6% reliable based on testing of people who actually have the

disease).

In this example, suppose a new deadly disease is discovered for which there is no

known cause but a saliva test is available with the above specifications.Wewill refer to

this disease by the abbreviation UD, for unknown disease. You have no reason to

suspect you have UD but decide to take the test anyway and test positive. What is the

probability that you really have the disease? Here is a Bayesian analysis of this

situation. For the purpose of this analysis, we will assume that the incidence of the

disease in a random sample of the region is 1:10 000.

Let H � ‘‘You have UD.’’

H � ‘‘You do not have UD.’’

D1 � ‘‘You test positive for UD.’’

I1 � ‘‘No known cause for the UD,

pðD1jH; I1Þ¼ 0:986;

pðD1jH; I1Þ¼ 0:023;

incidence of UD in the population is 1:104:’’

The starting point for any Bayesian analysis is to write down Bayes’ theorem.

pðHjD1; I1Þ¼
pðHjI1ÞpðD1jH; I1Þ

pðD1jI1Þ
: (1:19)

Since pðD1jI1Þ is a normalization factor, which ensures
P

i pðHijD1; I1Þ¼ 1, we

can write

pðD1jI1Þ¼ pðHjI1ÞpðD1jH; I1Þ þ pðHjI1ÞpðD1jH; I1Þ: (1:20)
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In words, this latter equation stands for

prob. of a

þ test

� �
¼

prob. you

have UD

� �
�

prob. of aþ
test when you

have UD

0
B@

1
CA

þ
prob. you

don’t have UD

� �
�

prob. of aþ
test when you

don’t have UD

0
B@

1
CA

¼
incidence of

UD in population

� �
� ðreliability of testÞ

þ 1�
incidence

of UD

� �
� ðfalse positive rateÞ

pðHjD1; I1Þ¼
10�4 � 0:986

10�4 � 0:986þ 0:9999� 0:023
¼ 0:0042:

(1:21)

Thus, the probability you have the disease is 0.4% (not 98.6%).

Question:How would the conclusion change if the false positive rate of the test were

reduced to 0.5%?

Suppose you now have a doctor examine you and obtain new independent dataD2,

perhaps from a blood test.

I2¼New state of knowledge¼D1; I1 ) pðHjD2; I2Þ¼
pðHjI2ÞpðD2jH; I2Þ

pðD2jI2Þ
;

where pðHjI2Þ¼ pðHjD1; I1Þ.

1.5 Marginalization

In this section, we briefly introducemarginalization, but we will learn about important

subtleties to this operation in later chapters. Consider the following parameter

estimation problem. We have acquired some data, D, which our prior information,

I, indicates will contain a periodic signal. Our signal model has two continuous

parameters – an angular frequency, !, and an amplitude, A. We want to focus on

the implications of the data for the !, independent of the signal’s amplitude, A.

We can write the joint probability8 of ! and A given dataD and prior information I

as pð!;AjD; IÞ. In this case !, A is a compound proposition asserting that the two

8 Since a parameter of a model is not a random variable, the frequentist approach is denied the concept of the probability
of a parameter.
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propositions are true. How do we obtain an expression for the probability of the

proposition !? We eliminate the uninteresting parameter A by marginalization. How

do we do this?

For simplicity, we will start by assuming that the parameter A is discrete. In this

case, A can only take on the values A1 or A2 or A3, etc. Since we are assuming the

model to be true, the proposition represented by A1þA2þA3þ � � �, where the þ
stands for the Boolean ‘or’, must be true for some value of Ai and hence,

pðA1þA2þA3þ � � � jIÞ¼ 1: (1:22)

Now !; ½A1 þ A2 þ A3 þ � � �� is a compound proposition which asserts that both !

and ½A1 þ A2 þ A3 þ � � �� are true. The probability that this compound proposition is

true is represented by pð!; ½A1 þ A2 þ A3 þ � � ��jD; IÞ. We use the product rule to

expand the probability of this compound proposition.

pð!; ½A1 þ A2 þ A3 þ � � ��jD; IÞ¼ pð½A1 þ A2 þ A3 þ � � ��jD; IÞ

� pð!j½A1 þ A2 þ A3 þ � � ��;D; IÞ

¼ 1� pð!jD; IÞ:

(1:23)

The second line of the above equation has the quantity ½A1 þ A2 þ A3 þ � � ��;D; I to
the right of the vertical bar which should be read as assuming the truth of

½A1 þ A2 þ A3 þ � � ��;D; I. Now ½A1 þ A2 þ A3 þ � � ��;D; I is a compound proposition

asserting that all three propositions are true. Since proposition ½A1 þ A2 þ A3 þ � � ��
is given as true by our prior information, I, knowledge of its truth is already

contained in proposition I. Thus, we can simplify the expression by replacing

pð!j½A1 þ A2 þ A3 þ � � ��;D; IÞ by pð!jD; IÞ.
Rearranging Equation (1.23), we get

pð!jD; IÞ¼ pð!; ½A1 þ A2 þ A3 þ � � ��jD; IÞ: (1:24)

The left hand side of the equation is the probability we are seeking, but we are not

finished with the right hand side. Now we do a simple expansion of the right hand side

of Equation (1.24) bymultiplying out the two propositions ! and ½A1 þ A2 þ A3 þ � � ��
using a Boolean algebra relation which is discussed in more detail in Chapter 2.

pð!; ½A1 þ A2 þ A3 þ � � ��jD; IÞ¼ pðf!;A1g þ f!;A2g þ f!;A3g þ � � � jD; IÞ: (1:25)

The term f!;A1g þ f!;A2g þ f!;A3g þ � � � is a proposition which asserts that !;A1

is true, or, !;A2 is true, or, !;A3 is true, etc. We have surrounded each of the !;Ai

terms by curly brackets to help with the interpretation, but normally they are not

required because the logical conjunction operation designated by a comma between

two propositions takes precedence over the logical ‘‘or’’ operation designated by

the þ sign.
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The extended sum rule, given by Equation (1.5), says that the probability of the sum

of two mutually exclusive (only one can be true) propositions is the sum of their

individual probabilities. Since the compound propositions !;Ai for different i are

mutually exclusive, we can rewrite Equation (1.25) as

pð!; ½A1 þ A2 þ A3 þ � � ��jD; IÞ¼ pð!;A1jD; IÞ þ pð!;A2jD; IÞ
þpð!;A3jD; IÞ þ � � �

(1:26)

Substitution of Equation (1.26) into Equation (1.24) yields:

pð!jD; IÞ¼
X
i

pð!;AijD; IÞ: (1:27)

Extending this idea to the case whereA is a continuously variable parameter instead

of a discrete parameter, we can write

pð!jD; IÞ¼
Z

dA pð!;AjD; IÞ: (1:28)

The quantity, pð!jD; IÞ, is the marginal posterior distribution for !, which, for a

continuous parameter like !, is a probability density function. It summarizes whatD, I

(our knowledge state) says about the parameter(s) of interest. The probability that !

will lie in any specific range from !1 to !2 is given by
R !2

!1
pð!jD; IÞd!.

Another useful form of the marginalization operation can be obtained by expand-

ing Equation (1.28) using Bayes’ theorem:

pð!;AjD; IÞ¼ pð!;AjIÞpðDj!;A; IÞ
pðDjIÞ : (1:29)

Now expand pð!;AjIÞ on the right hand side of Equation (1.29) using the product rule:

pð!;AjIÞ¼ pð!jIÞpðAj!; IÞ: (1:30)

Now we will assume the priors for ! and A are independent so we can write

pðAj!; IÞ¼ pðAjIÞ. What this is saying is that any prior information we have about

the parameter ! tells us nothing about the parameter A. This assumption is fre-

quently valid and it usually simplifies the calculations. Equation (1.29) can now be

rewritten as

pð!;AjD; IÞ¼ pð!jIÞpðAjIÞpðDj!;A; IÞ
pðDjIÞ : (1:31)

Finally, substitution of Equation (1.31) into Equation (1.28) yields:

pð!jD; IÞ / pð!jIÞ
Z

dA pðAjIÞpðDj!;A; IÞ: (1:32)
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This gives the marginal posterior distribution pð!jD; IÞ, in terms of the weighted

average of the likelihood function, pðDj!;A; IÞ, weighted by pðAjIÞ, the prior prob-

ability density function for A. This is another form of the operation of marginalizing

out the A parameter. The integral in Equation (1.32) can sometimes be evaluated

analytically which can greatly reduce the computational aspects of the problem

especially when many parameters are involved. A dramatic example of this is

given in Gregory and Loredo (1992) which demonstrates how to marginalize analy-

tically over a very large number of parameters in a model describing a waveform of

unknown shape.

1.6 The two basic problems in statistical inference

1. Model selection: Which of two or more competing models is most probable given our present

state of knowledge?

The competing models may have different numbers of parameters. For example, suppose

we have some experimental data consisting of a signal plus some additive noise and we want

to distinguish between two different models for the signal present.ModelM1 predicts that the

signal is a constant equal to zero, i.e., has no unknown (free) parameters. Model M2

predicts that the signal consists of a single sine wave of known frequency f. Let us

further suppose that the amplitude, A, of the sine wave is a free parameter within some

specified prior range. In this problem, M1 has no free parameters and M2 has one free

parameter, A.

Inmodel selection, we are interested in themost probable model, independent of the model

parameters (i.e., marginalize out all parameters). This is illustrated in the equation below for

model M2.

pðM2jD; IÞ¼
Z
�A

dA pðM2;AjD; IÞ; (1:33)

where �A designates the appropriate range of integration of A as specified by our prior

information, I.

We can rearrange Equation (1.33) into another useful form by application of Bayes’

theorem and the product rule, following the example given in the previous section

(Equations (1.28) to (1.32)). The result is

pðM2jD; IÞ¼
pðM2jIÞ

R
�A dA pðAjM2; IÞpðDjM2;A; IÞ

pðDjIÞ : (1:34)

Inmodel selection, the hypothesis space of interest is discrete (although its parameters may be

continous) and M2 stands for the second member of this discrete space.

2. Parameter estimation: Assuming the truth of a model, find the probability density function

for each of its parameters.

Suppose the model M has two free parameters f and A. In this case, we want to solve for

pð fjD;M; IÞ and pðAjD;M; IÞ. The quantity pð fjD;M; IÞ is called the marginal posterior
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distribution for f, which, for a continuous parameter like f, is a probability density function as

defined by Equation (1.8). In Chapter 3, we will work through a detailed example of both

model selection and parameter estimation.

1.7 Advantages of the Bayesian approach

1. Provides an elegantly simple and rational approach for answering, in an optimal way, any

scientific question for a given state of information. This contrasts to the recipe or cookbook

approach of conventional statistical analysis. The procedure is well-defined:

(a) Clearly state your question and prior information.

(b) Apply the sum and product rules. The starting point is always Bayes’ theorem.

For some problems, a Bayesian analysis may simply lead to a familiar statistic. Even in this

situation it often provides a powerful new insight concerning the interpretation of the

statistic. One example of this is shown in Figure 1.4 and discussed in detail in Chapter 13.

2. Calculates probability of hypothesis directly: pðHijD; IÞ.
3. Incorporates relevant prior (e.g., known signal model) information through Bayes’ theorem.

This is one of the great strengths of Bayesian analysis. For data with a high signal-to-noise

ratio, a Bayesian analysis can frequently yield many orders of magnitude improvement in

model parameter estimation, through the incorporation of relevant prior information about

the signal model. This is illustrated in Figure 1.5 and discussed in more detail in Chapter 13.

4. Provides a way of eliminating nuisance parameters through marginalization. For some

problems, the marginalization can be performed analytically, permitting certain calculations

to become computationally tractable (see Section 13.4).

5. Provides a more powerful way of assessing competing theories at the forefront of science

by automatically quantifying Occam’s razor. Occam’s razor is a principle attributed to the

medieval philosopher William of Occam (or Ockham). The principle states that one

should not make more assumptions than the minimum needed. It underlies all scientific

modeling and theory building. It cautions us to choose from a set of otherwise equivalent

models of a given phenomenon the simplest one. In any given model, Occam’s razor

helps us to ‘‘shave off’’ those variables that are not really needed to explain the

phenomenon. It was previously thought to be only a qualitative principle. This topic is

introduced in Section 3.5.

The Bayesian quantitative Occam’s razor can also save a lot of time that might otherwise

be spent chasing noise artifacts that masquerade as possible detections of real phenomena.

One example of this is discussed in Section 12.9 on extrasolar planets.

6. Provides a way for incorporating the effects of systematic errors arising from both the

measurement operation and theoretical model predictions. Figure 1.6 illustrates the effect

of a systematic error in the scale of the cosmic ruler (Hubble’s constant) used to determine the

distance to galaxies. This topic is introduced in Section 3.11.

These advantages will be discussed in detail beginning in Chapter 3. We close with a

reminder that in Bayesian inference probabilities are a measure of our state of know-

ledge about nature, not a measure of nature itself.
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1.8 Problems

1. For the example given in Section 1.3.4, compute pðDjM1; IÞ and pðDjM2; IÞ, for a
�¼ 25 ly.

2. For the example given in Section 1.4.1, compute the probability that the person has

the disease, if the false positive rate for the test¼ 0:5%, and everything else is

the same.
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Figure 1.4 The upper panel shows a simulated time series consisting of a single sinusoidal signal

with added independent Gaussian noise. A common conventional analysis (middle panel)
involves plotting the power spectrum, based on a Discrete Fourier Transform (DFT) statistic
of the data. The Bayesian analysis (lower panel) involves a nonlinear processing of the same

DFT statistic, which suppresses spurious peaks and the width of the spectral peak reflects the
accuracy of the frequency estimate.
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Figure 1.5 Comparison of conventional analysis (middle panel) and Bayesian analysis (lower
panel) of the two-channel nuclear magnetic resonance free induction decay time series (upper
two panels). By incorporating prior information about the signal model, the Bayesian analysis

was able to determine the frequencies and exponential decay rates to an accuracymany orders of
magnitude greater than for a conventional analysis. (Figure credit G. L. Bretthorst, reproduced
by permission from the American Institute of Physics.)
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Figure 1.6 The probability density function for the distance to a galaxy assuming: 1) a fixed value
for Hubble’s constant ðH0Þ, and 2) incorporating a Gaussian prior uncertainty for H0 of �14%.

3. In Section 1.4.1, based on the saliva test result and the prior information, the

probability that the person had the unknown disease (UD) was found to be 0.42%.

Subsequently, the same person received an independent blood test for UD and

again tested positive. If the false negative rate for this test is 1.4% and the false

positive rate is 0.5%, what is the new probability that the person has UD on the

basis of both tests?

4. Joint and marginal probability distributions

(Refer to the example on this topic in the Mathematica tutorial.)

(a) Suppose we are interested in estimating the parameters X and Y of a certain

modelM, where both parameters are continuous as opposed to discrete. Make a

contour plot of the following posterior joint probability density function given by:

pðX;YjD;M; IÞ¼A1 exp �ðx� x1Þ2 þ ðy� y1Þ2

2�21

 !

þA2 exp �ðx� x2Þ2 þ ðy� y2Þ2

2�22

 !
;

where A1¼ 4:82033;A2¼ 4:43181; x1¼ 0:5; y1¼ 0:5; x2¼ 0:65; y2¼ 0:75; �1¼
0:2; �2¼ 0:04, where 0 � x � 1 and 0 � y � 1. Your contour plot should

cover the interval x¼ 0! 1; y¼ 0! 1. In Mathematica, this can be accom-

plished with ContourPlot.

(b) Now make a 3-dimensional plot of pðX;YjD;M; IÞ. In Mathematica, this can

be accomplished with Plot3D.

(c) Now compute the marginal probability distributions pðXjD;M; IÞ and

pðYjD;M; IÞ. The prior information is

I � ‘‘X and Y are only non-zero in the interval 0! 1, and uniform within that

interval.’’

Check that the integral of pðXjD;M; IÞ in the interval 0! 1 is equal to 1.

1.8 Problems 19



(d) In your 3-dimensional plot of part (b), probability is represented by a height

along the z-axis. Now imagine a light source located a great distance away

along the y-axis illuminating the 3-dimensional probability density function.

The shadow cast by pðX;YjD;M; IÞ on the plane defined by y¼ 0, we will call

the projected probability density function of X. Compute and compare the

projected probability density function of X with the marginal distribution on

the same plot. To accomplish this effectively, both density functions should be

normalized to have an integral¼ 1 in the interval x¼ 0! 1.
Note: the location of the peak of the marginal does not correspond to the

location of the projection peak although they would if the joint probability

density function were a single multi-dimensional Gaussian.
(e) Plot the normalizedmarginal and projected probability density functions forY

on one graph.
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2

Probability theory as extended logic

2.1 Overview

The goal of this chapter is to provide an extension of logic to handle situations where

we have incomplete information so we may arrive at the relative probabilities of

competing propositions (theories, hypotheses, or models) for a given state of informa-

tion. We start by reviewing the algebra of logical propositions and explore the

structure (syllogisms) of deductive and plausible inference. We then set off on a course

to come up with a quantitative theory of plausible inference (probability theory as

extended logic) based on the three desirable goals called desiderata. This amounts to

finding an adequate set of mathematical operations for plausible inference that

satisfies the desiderata. The two operations required turn out to be the product rule

and sum rule of probability theory. The process of arriving at these operations

uncovers a precise operational definition of plausibility, which is determined by the

data. The material presented in this chapter is an abridged version of the treatment

given by E. T. Jaynes in his book, Probability Theory – The Logic of Science (Jaynes,

2003), with permission from Cambridge University Press.

2.2 Fundamentals of logic

2.2.1 Logical propositions

In general, we will represent propositions by capital letters fA;B;C; etc:g. A proposi-

tion asserts that something is true.

e:g:;A � ‘‘The age of the specimen is � 106 years:’’

The denial of a proposition is indicated by a bar:

A � ‘‘A is false.’’

We will only be concerned with two-valued logic; thus, any proposition has a truth

value of either
True or False
1 or 0

�
 Truth value:
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2.2.2 Compound propositions

A;B � asserts both A and B are true

ðlogical product or conjunctionÞ
A;A � impossible statement, truth value¼F or zero

Aþ B � asserts A is true or B is true or both are true

ðlogical sum or disjunctionÞ
A;Bþ B;A � asserts either A is true or B is true but both are not true

ðexclusive form of logical sumÞ

2.2.3 Truth tables and Boolean algebra

Consider the two compound propositions A¼B;C and D¼Bþ C. Are the proposi-

tionsA andD equal? Two propositions are equal if they have the same truth value.We

can verify that A¼D by constructing a truth table which lays out the truth values for

A andD for all the possible combinations of the truth values of the propositions B and

C on which they are based (Table 2.1).

SinceA andD have the same truth value for all possible truth values of propositions

B and C, then we can write

A¼D (which means they are logically equivalent):

We have thus established the relationship

B;C¼Bþ C and 6¼ B;C: (2:1)

In addition, the last two columns of the table establish the relationship

B;C¼Bþ C: (2:2)

Boole (1854) pointed out that the propositional statements in symbolic logic obey

the rules of algebra provided one interprets them as having values of 1 or 0 (Boolean

algebra). There are no operations equivalent to subtraction or division. The only

operations required are multiplications (‘and’) and additions (‘or’).

Table 2.1

B C B;C A ¼ B;C D ¼ Bþ C Bþ C Bþ C B;C

T T T F F T F F

T F F T T T F F

F T F T T T F F

F F F T T F T T
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Box 2.1 Worked exercise:

construct a truth table to show A; ðBþ CÞ¼A;Bþ A;C.

Since A; ðBþ CÞ and A;Bþ A;C have the same truth value for all possible truth

values of propositions A, B and C, then we can write

A; ðBþ CÞ¼A;Bþ A;C. (This is a distributivity identity.)

One surprising result of Boolean algebra manipulations is that a given statement

may take several different forms which don’t resemble one another.

For example, show that D¼Aþ B;C¼ðAþ BÞ; ðAþ CÞ.
In the proof below, we make use of the relationships X;Y¼Xþ Y (on line 1), and

X;Y¼Xþ Y (on line 3), from Equations (2.1) and (2.2).

D¼Aþ B;C¼Aþ B;C¼A;B;C

D¼A; ðBþ CÞ

D¼A;Bþ A;C¼ðAþ BÞ þ ðAþ CÞ

D¼ðAþ BÞ; ðAþ CÞ

D¼ðAþ BÞ; ðAþ CÞ

or Aþ B;C¼ðAþ BÞ; ðAþ CÞ:

This can also be verified by constructing a truth table.

A B C Bþ C A; ðBþ CÞ A;B A;C A;Bþ A;C

T T T T T T T T

T F F F F F F F

T T F T T T F T

T F T T T F T T

F T T T F F F F

F F F F F F F F

F T F T F F F F

F F T T F F F F
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By the application of these identities, one can prove any number of further relations,

some highly non-trivial. For example, we shall presently have use for the rather

elementary ‘‘theorem’’:

If B¼A;D

A;B¼A;A;D¼A;D¼B

then A;B¼B:

(2:3)

Also, we can show that:

B;A¼A: (2:4)

Proof of the latter follows from

B¼A;D¼AþD

B;A¼A;Aþ A;D¼Aþ A;D¼A:
(2:5)

Clearly, Equation (2.5) is true if A is true and false if A is false, regardless of the

truth of D.

2.2.4 Deductive inference

Deductive inference is the process of reasoning from one proposition to another. It

was recognized by Aristotle (fourth century BC) that deductive inference can be

analyzed into repeated applications of the strong syllogisms:

1. If A is true, then B is true (major premise)

A is true ðminor premiseÞ
Therefore B is true ðconclusionÞ

2. If A is true, then B is true

B is false

Therefore A is false

Basic Boolean Identities

Idempotence: A;A ¼ A

Aþ A ¼ A

Commutativity: A;B ¼ B;A

Aþ B ¼ Bþ A

Associativity: A; ðB;CÞ ¼ ðA;BÞ;C ¼ A;B;C

Aþ ðBþ CÞ ¼ ðAþ BÞ þ C ¼ Aþ Bþ C

Distributivity: A; ðBþ CÞ ¼ A;Bþ A;C

Aþ ðB;CÞ ¼ ðAþ BÞ; ðAþ CÞ
Duality: If C ¼ A;B, then C ¼ Aþ B

If D ¼ Aþ B, then D ¼ A;B
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In Boolean algebra, these strong syllogisms can be written as:

A¼A;B: (2:6)

This equation says that the truth value of propositionA;B is equal to the truth value of

propositionA. It does not assert that eitherA orB is true. Clearly, ifB is false, then the

right hand side of the equation equals 0, and soAmust be false. On the other hand, ifB

is known to be true, then according to Equation (2.6), proposition A can be true or

false. It is also written as the implication operation A) B.

2.2.5 Inductive or plausible inference

In almost all situations confronting us, we do not have the information required to do

deductive inference. We have to fall back on weaker syllogisms:

If A is true, then B is true

B is true
Therefore A becomes more plausible

Example

A � ‘‘It will start to rain by 10 AM at the latest.’’

B � ‘‘The sky becomes cloudy before 10 AM.’’

Observing clouds at 9:45 AM does not give us logical certainty that rain will follow;

nevertheless, our common sense, obeying the weak syllogism, may induce us to change

our plans and behave as if we believed that it will rain, if the clouds are sufficiently dark.

This example also shows the major premise: ‘‘If A then B’’ expresses B only as a

logical consequence of A and not necessarily as a causal consequence (i.e., the rain is

not the cause of the clouds).

Another weak syllogism:

If A is true, then B is true

A is false
Therefore B becomes less plausible

2.3 Brief history

The early work on probability theory by James Bernoulli (1713), Rev. Thomas Bayes

(1763), and Pierre Simon Laplace (1774), viewed probability as an extension of logic to

the case where, because of incomplete information, Aristotelian deductive reasoning is

unavailable. Unfortunately, Laplace failed to give convincing arguments to show why
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the Bayesian definition of probability uniquely required the sum and product rules for

manipulating probabilities. The frequentist definition of probability was introduced

to satisfy this point, but in the process, eliminated the interpretation of probability as

extended logic. This caused a split in the subject into the Bayesian and frequentist

camps. The frequentist approach dominated statistical inference throughout most of

the twentieth century, but the Bayesian viewpoint was kept alive notably by SirHarold

Jeffreys (1891–1989).

In the 1940s and 1950s, G. Polya, R. T. Cox and E. T. Jaynes provided the missing

rationale for Bayesian probability theory. In his book Mathematics and Plausible

Reasoning, George Polya dissected our ‘‘common sense’’ into a set of elementary

desiderata and showed that mathematicians had been using them all along to guide

the early stages of discovery, which necessarily precede the finding of a rigorous proof.

When one added (see Section 2.5.1) the consistency desiderata of Cox (1946) and

Jaynes, the result was a proof that, if degrees of plausibility are represented by real

numbers, then there is a unique set of rules for conducting inference according to

Polya’s desiderata which provides for an operationally defined scale of plausibility.

The final result was just the standard product and sum rules of probability theory,

given axiomatically by Bernoulli and Laplace! The important new feature is that

these rules are now seen as uniquely valid principles of logic in general, making no

reference to ‘‘random variables’’, so their range of application is vastly greater than

that supposed in the conventional probability theory that was developed in the early

twentieth century. With this came a revival of the notion of probability theory as

extended logic.

The work of Cox and Jaynes was little appreciated at first. Widespread application

of Bayesian methodology did not occur until the 1980s. By this time computers had

become sufficiently powerful to demonstrate that the methodology could outperform

standard techniques in many areas of science. We are now in the midst of a ‘‘Bayesian

Revolution’’ in statistical inference. In spite of this, many scientists are still unaware of

the significance of the revolution and the frequentist approach currently dominates

statistical inference. New graduate students often find themselves caught between the

two cultures. This book represents an attempt to provide a bridge.

2.4 An adequate set of operations

So far, we have discussed the following logical operations:

A;B logical product (conjunction)

Aþ B logical sum (disjunction)

A) B implication

A negation
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By combining these operations repeatedly in every possible way, we can generate

any number of new propositions, such as:

C � ðAþ BÞ; ðAþ A;BÞ þ A;B; ðAþ BÞ: (2:7)

We now consider the following questions:

1. How large is the class of new propositions?

2. Is it infinite or finite?

3. Can every proposition defined fromA and B be represented in terms of the above operations,

or are new operations required?

4. Are the four operations already over-complete?

Note: two propositions are not different from the standpoint of logic if they have the

same truth value. C, in the above equation, is logically the same statement as the

implication C¼ðB) AÞ. Recall that the implication B) A can also be written as

B¼A;B. This does not assert that eitherA or B is true; it only means thatA;B is false,

or equivalently that ðAþ BÞ is true.

Box 2.2 Worked exercise:

expand the right hand side (RHS) of proposition C given by Equation (2.7), and

show that it can be reduced to ðAþ BÞ.

RHS¼A;Aþ A;Bþ A;A;Bþ A;B;Bþ A;A;Bþ A;B;B

Drop all terms that are clearly impossible (false), e.g.,A;A. Adding any number

of impossible propositions to a proposition in a logical sum does not alter the

truth value of the proposition. It is like adding a zero to a function; it doesn’t alter

the value of the function.

¼A;Bþ A;Bþ A;B

¼A; ðBþ BÞ þ A;B¼Aþ A;B

¼Aþ A;B¼A;A;B¼A; ðAþ BÞ¼A;B

¼Aþ B:

2.4.1 Examination of a logic function

Any logic function C¼ fðA;BÞ has only two possible values, and likewise for the

independent variables A and B. A logic function with n variables is defined on a

discrete space consisting of onlym¼ 2n points. For example, in the case ofC¼ fðA;BÞ,
m¼ 4 points; namely those at whichA and B take on the values fTT,TF,FT,FFg. The
number of independent logic functions ¼ 2m¼ 16. Table 2.2 lists these 16 logical

functions.
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We can show that f5 ! f16 are logical sums of f1 ! f4.

Example 1:

f1 þ f3 þ f4¼A;Bþ A;Bþ A;B

¼Bþ A;B¼ðBþ AÞ; ðBþ BÞ
last step is a distributivity identity

¼Bþ A

¼ f8:

(2:8)

Example 2:

f2 þ f4¼A;Bþ A;B

¼ðAþ AÞ;B¼B

¼ f13 :

(2:9)

This method (called ‘‘reduction to disjunctive normal form’’ in logic textbooks) will

work for any n. Thus, one can verify that the three operations:

conjunction; disjunction; negation
logical product; logical sum; negation

AND OR NOT

8<
:

9=
;

Table 2.2 Logic functions of the two propositions A and B.

A;B TT TF FT FF

f1ðA;BÞ T F F F ¼ A;B

f2ðA;BÞ F T F F ¼ A;B

f3ðA;BÞ F F T F ¼ A;B

f4ðA;BÞ F F F T ¼ A;B

f5ðA;BÞ T T T T

f6ðA;BÞ T T T F

f7ðA;BÞ T T F T

f8ðA;BÞ T F T T

f9ðA;BÞ F T T T

f10ðA;BÞ T T F F

f11ðA;BÞ T F T F

f12ðA;BÞ F T T F

f13ðA;BÞ F T F T

f14ðA;BÞ F F T T

f15ðA;BÞ T F F T

f16ðA;BÞ F F F F ¼ A;A
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suffice to generate all logic functions, i.e., form an adequate set. But the logical sum

Aþ B is the same as denying that they are both false: Aþ B¼A;B. Therefore AND

and NOT are already an adequate set.

Is there a still smaller set? Answer: Yes.

NAND, defined as AND which is represented by A " B.

A " B � A;B¼Aþ B

A¼A " A
A;B¼ðA " BÞ " ðA " BÞ
Aþ B¼ðA " AÞ " ðB " BÞ:

Every logic function can be constructed from NAND alone.

The NOR operator is defined by:

A # B � Aþ B¼A;B

and is also powerful enough to generate all logic functions.

A¼A # A
Aþ B¼ðA # BÞ # ðA # BÞ
A;B¼ðA # AÞ # ðB # BÞ:

2.5 Operations for plausible inference

We now turn to the extension of logic for a common situation where we lack the

axiomatic information necessary for deductive logic. The goal according to Jaynes,

is to arrive at a useful mathematical theory of plausible inference which will enable

us to build a robot (write a computer program) to quantify the plausibility of any

hypothesis in our hypothesis space of interest based on incomplete information. For

example, given 107 observations, determine (in the light of these data and whatever

prior information is at hand) the relative plausibilities of many different hypotheses

about the causes at work.

We expect that any mathematical model we succeed in constructing will be replaced

by more complete ones in the future as part of the much grander goal of developing

a theory of common sense reasoning. Experience in physics has shown that as know-

ledge advances, we are able to invent better models, which reproduce more features of

the real world, with more accuracy. We are also accustomed to finding that these

advances lead to consequences of great practical value, like a computer program to

carry out useful plausible inference following clearly defined principles (rules or

operations) expressing an idealized common sense.

The rules of plausible inference are deduced from a set of three desiderata (see

Section 2.5.1) rather than axioms, because they do not assert anything is true, but only

state what appear to be desirable goals. We would definitely want to revise the

2.5 Operations for plausible inference 29



operation of our robot or computer program if they violated one of these elementary

desiderata.Whether these goals are attainable without contradiction andwhether they

determine any unique extension of logic are a matter of mathematical analysis. We

also need to compare the inference of a robot built in this way to our own reasoning, to

decide whether we are prepared to trust the robot to help us with our inference

problems.

2.5.1 The desiderata of Bayesian probability theory

I. Degrees of plausibility are represented by real numbers.

II. The measure of plausibility must exhibit qualitative agreement with rationality. This means

that as new information supporting the truth of a proposition is supplied, the number which

represents the plausibility will increase continuously and monotonically. Also, to maintain

rationality, the deductive limit must be obtained where appropriate.

III. Consistency

(a) Structural consistency: If a conclusion can be reasoned out in more than one way, every

possible way must lead to the same result.

(b) Propriety: The theorymust take account of all information, provided it is relevant to the

question.

(c) Jaynes consistency: Equivalent states of knowledge must be represented by equivalent

plausibility assignments. For example, if A;BjC¼BjC, then the plausibility of A;BjC
must equal the plausibility of BjC.

2.5.2 Development of the product rule

In Section 2.4 we established that the logical product and negation (AND, NOT) are

an adequate set of operations to generate any proposition derivable from

fA1; . . . ;ANg. For Bayesian inference, our goal is to find operations (rules) to deter-

mine the plausibility of logical conjunction and negation that satisfy the above

desiderata. Start with the plausibility of A;B:

Let ðA;BjCÞ � plausibility of A;B supposing the truth of C.

Remember, we are going to represent plausibility by real numbers (desideratum I). Now

ðA;BjCÞ must be a function of some combination of ðAjCÞ, ðBjCÞ, ðBjA;CÞ, ðAjB;CÞ.
There are 11 possibilities:

ðA;BjCÞ¼F1½ðAjCÞ; ðAjB;CÞ�

ðA;BjCÞ¼F2½ðAjCÞ; ðBjCÞ�

ðA;BjCÞ¼F3½ðAjCÞ; ðBjA;CÞ�

ðA;BjCÞ¼F4½ðAjB;CÞ; ðBjCÞ�

ðA;BjCÞ¼F5½ðAjB;CÞ; ðBjA;CÞ�
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ðA;BjCÞ¼F6½ðBjCÞ; ðBjA;CÞ�

ðA;BjCÞ¼F7½ðAjCÞ; ðAjB;CÞ; ðBjCÞ�

ðA;BjCÞ¼F8½ðAjCÞ; ðAjB;CÞ; ðBjA;CÞ�

ðA;BjCÞ¼F9½ðAjCÞ; ðBjCÞ; ðBjA;CÞ�

ðA;BjCÞ¼F10½ðAjB;CÞ; ðBjCÞ; ðBjA;CÞ�

ðA;BjCÞ¼F11½ðAjCÞ; ðAjB;CÞ; ðBjCÞ; ðBjA;CÞ�

Box 2.3 Note on the use of the ‘‘= ’’ sign

1. In Boolean algebra, the equals sign is used to denote equal truth value. By definition,

A¼B asserts that A is true if and only if B is true.

2. When talking about plausibility, which is represented by a real number,

ðA;BjCÞ¼ ðÞðÞ . . . means equal numerically.

3. � means equal by definition.

Now let us examine these 11 different functions more closely. Since the order in which

the symbols A and B appear has no meaning (i.e., A;B¼B;A) it follows that

F1½ðAjCÞ; ðAjB;CÞ� ¼F6½ðBjCÞ; ðBjA;CÞ�

F3½ðAjCÞ; ðBjA;CÞ� ¼F4½ðAjB;CÞ; ðBjCÞ�

F7½ðAjCÞ; ðAjB;CÞ; ðBjCÞ� ¼F9½ðAjCÞ; ðBjCÞ; ðBjA;CÞ�

F8½ðAjCÞ; ðAjB;CÞ; ðBjA;CÞ� ¼F10½ðAjB;CÞ; ðBjCÞ; ðBjA;CÞ�

This reduces the number of equations dramatically from 11 to 7. The seven functions

remaining are F1;F2;F3;F5;F7;F8;F11.

If any function leads to an absurdity in even one example, it must be ruled out, even

if for other examples it would be satisfactory. Consider

ðA;BjCÞ¼F2½ðAjCÞ; ðBjCÞ�:
Suppose A � next person will have blue left eye.

B � next person will have brown right eye.

C � prior information concerning our expectation that the left and right eye

colors of any individual will be very similar.

Now ðAjCÞ could be very plausible as could ðBjCÞ, but ðA;BjCÞ is extremely

implausible. We rule out functions of this form because they have no way of taking

such influence into account. Our robot could not reason the way humans do, even

qualitatively, with that functional form.
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Similarly, we can rule out F1 for the extreme case where the conditional (given)

information represented by proposition C is that ‘‘A and B are independent.’’ In this

extreme case,

ðAjB;CÞ¼ ðAjCÞ:

Therefore,

ðA;BjCÞ¼F1½ðAjCÞ; ðAjB;CÞ�¼F1½ðAjCÞ; ðAjCÞ�; (2:10)

which is clearly absurd because F1 claims that the plausibility of A;BjC depends only

on the plausibility of AjC.
Other extreme conditions are A¼B;A¼C;C¼A, etc. Carrying out this type of

analysis, Tribus (1969) shows that all but one of the remaining possibilities can exhibit

qualitative violations with common sense in some extreme case. There is only one

survivor which can be written in two equivalent ways:

ðA;BjCÞ¼F ½ðBjCÞ; ðAjB;CÞ�
¼F ½ðAjCÞ; ðBjA;CÞ�:

(2:11)

In addition, desideratum II, qualitative agreement with common sense, requires

that F½ðAjCÞ; ðBjA;CÞ� must be a continuous monotonic function of ðAjCÞ and

ðBjA;CÞ. The continuity assumption requires that if ðAjCÞ changes only infinitesim-

ally, it can induce only an infinitesimal change in ðA;BjCÞ or ðAjCÞ.

Now use desideratum III: ‘‘Consistency’’

Suppose we want ðA;B;CjDÞ

1. Consider B;C to be a single proposition at first; then we can apply Equation (2.11):

ðA;B;CjDÞ ¼ F ½ðB;CjDÞ; ðAjB;C;DÞ�
¼ FfF ½ðCjDÞ; ðBjC;DÞ�; ðAjB;C;DÞg:

(2:12)

2. Consider A;B to be a single proposition at first:

ðA;B;CjDÞ¼F ½ðCjDÞ; ðA;BjC;DÞ�
¼FfðCjDÞ;F ½ðBjC;DÞ; ðAjB;C;DÞ�g:

(2:13)

For consistency, 1 and 2 must be equal.

Let x � ðAjB;C;DÞ; y � ðBjC;DÞ; z � ðCjDÞ, then:

Ffx;F ½y; z�g¼FfF ½x; y�; zg: (2:14)

This equation has a long history in mathematics and is called the ‘‘the Associativity

Equation.’’ Aczél (1966) derives the general solution (Equation (2.15) below) without

assuming differentiability; unfortunately, the proof fills 11 pages of his book.

R. T. Cox (1961) provided a shorter proof, but assumed differentiability.
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The solution is

wfF ½x; y�g¼wfxgwfyg; (2:15)

where wfxg is any positive continuous monotonic function.

In the case of just two propositions, A, B given the truth of C, the solution to the

associativity equation becomes

wfðA;BjCÞg¼wfðAjB;CÞgwfðBjCÞg
¼wfðBjA;CÞgwfðAjCÞg:

(2:16)

For simplicity, drop the fg brackets, but it should be remembered that the argument

of w is a plausibility.

wðA;BjCÞ¼wðAjB;CÞwðBjCÞ
¼wðBjA;CÞwðAjCÞ:

(2:17)

Henceforth this will be called the product rule. Recall that at this moment,wðÞ is any
positive, continuous, monotonic function.

Desideratum II: Qualitative correspondence with common sense imposes further restric-

tions on wfxg
Suppose A is certain given C. Then A;BjC¼BjC (i.e., same truth value). By our

primitive axiom that propositions with the same truth value must have the same

plausibility,

ðA;BjCÞ¼ ðBjCÞ
ðAjB;CÞ¼ ðAjCÞ:

(2:18)

Therefore, Equation (2.17), the solution to the associativity equation, becomes

wðBjCÞ¼wðAjCÞwðBjCÞ: (2:19)

This is only true when AjC is certain.

Thus we have arrived at a new constraint on wðÞ; it must equal 1 when the argument is

certain.

For the next constraint, suppose that A is impossible given C . This implies

A;BjC¼AjC
AjB;C¼AjC:

Then

wðA;BjCÞ¼wðAjB;CÞwðBjCÞ (2:20)

becomes

wðAjCÞ¼wðAjCÞwðBjCÞ: (2:21)
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This must be true for any ðBjCÞ. There are only two choices: either wðAjCÞ¼ 0 orþ1.

1. wðxÞ is a positive, increasing function ð0! 1Þ:
2. wðxÞ is a positive, decreasing function ð1 ! 1Þ:

They do not differ in content.

Suppose w1ðxÞ represents impossibility by þ1. We can define w2ðxÞ¼ 1=w1ðxÞ
which represents impossibility by 0. Therefore, there is no loss of generality if we adopt:

0 � wðxÞ � 1:

Summary:

Using our desiderata, we have arrived at our present form of the product rule:

wðA;BjCÞ¼wðAjCÞwðBjA;CÞ¼wðBjCÞwðAjB;CÞ:

At this point we are still not referring to wðxÞ as the probability of x. wðxÞ is any
continuous, monotonic function satisfying:

0 � wðxÞ � 1;

where wðxÞ¼ 0 when the argument x is impossible and 1 when x is certain.

2.5.3 Development of sum rule

We have succeeded in deriving an operation for determining the plausibility of the

logical product (conjunction). We now turn to the problem of finding an operation to

determine the plausibility of negation. Since the logical sum Aþ A is always true, it

follows that the plausibility that A is false must depend on the plausibility that A is

true. Thus, there must exist some functional relation

wðAjBÞ¼SðwðAjBÞÞ: (2:22)

Again, using our desiderata and functional analysis, one can show (Jaynes, 2003)

that the monotonic function wðAjBÞ obeys

wmðAjBÞ þ wmðAjBÞ¼ 1

for positive m. This is known as the sum rule.

The product rule can equally well be written as

wmðA;BjCÞ¼wmðAjCÞwmðBjA;CÞ¼wmðBjCÞwmðAjB;CÞ:

But then we see that the value ofm is actually irrelevant; for whatever value is chosen,

we can define a new function

pðxÞ � wmðxÞ

and our rules take the form
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pðA;BjCÞ¼ pðAjCÞpðBjA;CÞ¼ pðBjCÞpðAjB;CÞ
pðAjBÞ þ pðAjBÞ¼ 1

This entails no loss of generality, for the only requirement we imposed on the

function wðxÞ is that wðxÞ is a continuous, monotonic, increasing function ranging

from w¼ 0 for impossibility to w¼ 1 for certainty. But if wðxÞ satisfies this, so does

wmðxÞ, 0 < m <1.

Reminder: We are still not referring to pðxÞ as a probability.

We showed earlier that conjunction, A, B, and negation, A, are an adequate set of

operations, from which all logic functions can be constructed. Therefore, it ought to be

possible, by repeated applications of the product and sum rules, to arrive at the plausi-

bility of any proposition. To show this, we derive a formula for the logical sum Aþ B.

pðAþ BjCÞ¼ 1� pðAþ BjCÞ¼ 1� pðA;BjCÞ
¼ 1� pðAjCÞpðBjA;CÞ
¼ 1� pðAjCÞ½1� pðBjA;CÞ�
¼ 1� pðAjCÞ þ pðAjCÞpðBjA;CÞ
¼ pðAjCÞ þ pðA;BjCÞ
¼ pðAjCÞ þ pðBjCÞpðAjB;CÞ
¼ pðAjCÞ þ pðBjCÞ½1� pðAjB;CÞ�
¼ pðAjCÞ þ pðBjCÞ � pðBjCÞpðAjB;CÞ

) pðAþ BjCÞ¼ pðAjCÞ þ pðBjCÞ � pðA;BjCÞ:

: (2:23)

This is a very useful relationship and is called the extended sum rule.

Starting with our three desiderata, we arrived at a set of rules for plausible inference:

product rule:

pðA;BjCÞ¼ pðAjCÞpðBjA;CÞ¼ pðBjCÞpðAjB;CÞ;

sum rule:

pðAjBÞ þ pðAjBÞ¼ 1:

We have in the two rules formulae for the plausibility of the conjunction, A, B, and

negation, A, which are an adequate set of operations to generate any proposition

derivable from the set fA1; . . . ;ANg.
Using the product and sum rules, we also derived the extended sum rule

pðAþ BjCÞ¼ pðAjCÞ þ pðBjCÞ � pðA;BjCÞ: (2:24)
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For mutually exclusive propositions pðA;BjCÞ¼ 0, so Equation (2.24) becomes

pðAþ BjCÞ¼ pðAjCÞ þ pðBjCÞ: (2:25)

We will refer to Equation (2.25) as the generalized sum rule.

2.5.4 Qualitative properties of product and sum rules

Check to see if the product and sum rules predict the strong (deductive logic) and weak

(inductive logic) syllogisms.

Strong syllogisms:

(a) (b)

A) B A) B major premise (prior information)

A true B false minor premise (data)

B true A false conclusion

Example:

* Let A � ‘‘Corn was harvested in Eastern Canada in AD 1000.’’
* Let B � ‘‘Corn seed was available in Eastern Canada in AD 1000.’’
* Let I � ‘‘Corn seed is required to grow corn, so if corn was harvested, the seedmust have been

available.’’ This is our prior information or major premise.

In both cases, we start by writing down the product rule:

Syllogism (a) Syllogism (b)

pðA;BjIÞ ¼ pðAjIÞpðBjA; IÞ pðA;BjIÞ ¼ pðBjIÞpðAjB; IÞ

! pðBjA; IÞ ¼ pðA;BjIÞ
pðAjIÞ pðAjB; IÞ ¼ pðA;BjIÞ

pðBjIÞ

Prior info. I � ‘‘A;B ¼ A’’ Prior info. I � ‘‘A;B ¼ A’’

! pðA;BjIÞ ¼ pðAjIÞ ! pðA;BjIÞ ¼ 0

! pðBjA; IÞ ¼ 1

i.e., B is true if A is true

since B could not be false if A is

true according to the information I.

Data: A ¼ 1 (true) Data: B ¼ 1 ( B false)

! pðBjA; IÞ ¼ 1 ! pðAjB; IÞ ¼ 0

Certainty Impossibility

Weak syllogisms:

(a) (b)

A) B A) B prior information

B true A false data

A more plausible B less plausible conclusion
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Start by writing down the product rule in the form of Bayes’ theorem:

Weak Syllogism (a) Weak Syllogism (b)

pðAjB; IÞ ¼ pðAjIÞpðBjA; IÞ
pðBjIÞ pðBjA; IÞ ¼ pðBjIÞpðAjB; IÞ

pðAjIÞ

Prior info. I � ‘‘A;B ¼ A’’ Syllogism (a) gives pðAjB; IÞ � pðAjIÞ
based on the same prior information.

! pðBjA; IÞ ¼ 1

! 1� pð �AjB; IÞ � 1� pð �AjIÞ
and pðBjIÞ � 1

since I says nothing about the truth of B. ! pðAjB; IÞ � pðAjIÞ or pðAjB; IÞ
pðAjIÞ � 1

Substituting into Bayes’ theorem Substituting into Bayes’ theorem

! pðAjB; IÞ � pðAjIÞ ! pðBjA; IÞ � pðBjIÞ

A more plausible B less plausible

2.6 Uniqueness of the product and sum rules

Corresponding to every different choice of continuous monotonic function pðxÞthere
seems to be a different set of rules. Nothing given so far tells us what numerical value

of plausibility should be assigned at the beginning of the problem. To answer both

issues, consider the following: suppose we have N mutually exclusive and exhaustive

propositions fA1; . . . ;ANg.

* Mutually exclusive � only one can be true, i.e., pðAi;AjjBÞ¼ 0 for i 6¼ j

pðA1 þ � � � þ ANjBÞ¼
PN

i¼ 1 pðAijBÞ

* Exhaustive � the true proposition is contained in the set

PN
i¼ 1 pðAijBÞ¼ 1ðcertainÞ

This information is not enough to determine the individual pðAijBÞ since there is no
end to the variety of complicated information that might be contained in B.

Development of new methods for translating prior information to numerical values

of pðAijBÞ is an ongoing research problem. We will discuss several valuable

approaches to this problem in later chapters.

Suppose our information B is indifferent regarding the pðAijBÞ’s. Then the only

possibility that reflects this state of knowledge is:

pðAijBÞ¼
1

N
; (2:26)
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where N is the number of mutually exclusive propositions. This is called the Principle

of Indifference.

In this one particular case, which can be generalized, we see that information B

leads to a definite numerical value for pðAijBÞ, but not the numerical value of the

plausibility ðAijBÞ.
Instead of saying pðAijBÞ is an arbitrary, monotonic function of the plausibility

ðAijBÞ, it is much more useful to turn this around and say: ‘‘the plausibility ðAijBÞ is an
arbitrary, monotonic function of pðÞ, defined in 0 � pðÞ � 1.’’

It is pðÞ that is rigidly fixed by the data, not ðAijBÞ.
The p’s define a particular scale on which degrees of plausibility can be measured. Out

of the possible monotonic functions we pick this particular one, not because it is

‘‘correct,’’ but because it is more convenient. p is the quantity that obeys the product

and sum rules and the numerical value of p is determined by the available information.

From now on we will refer to them as probabilities.

Jaynes (2003) writes, ‘‘This situation is analogous to that in thermodynamics, where

out of all possible empirical temperature scales T, which are monotonic functions of

each other, we finally decide to use the Kelvin scale T; not because it is more ‘correct’

than others, but because it is more convenient; i.e., the laws of thermodynamics take

their simplest form ½dU¼Tds� PdV; dG¼ � SdTþ VdP� in terms of this particular

scale. Because of this, numerical values ofKelvin temperatures are directlymeasurable

in experiments.’’

With this operational definition of probability, we can readily derive another

intuitively pleasing result. In this problem, our prior information is:

I � ‘‘An urn is filled with 10 balls of identical size, weight and texture, labeled

1; 2; . . . ; 10. Three of the balls (numbers 3, 4, 7) are red and the others are

green. We are to shake the urn and draw one ball blindfolded.’’

Define the proposition:

Ei � ‘‘the ith ball is drawn’’; 1 � i � 10:

Since the prior information is indifferent to these ten possibilities, Equation (2.26)

applies.

pðEijIÞ¼
1

10
; 1 � i � 10: (2:27)

The proposition R � ‘‘that we draw a red ball’’ is equivalent to ‘‘we draw ball 3, 4,

or 7.’’ This can be written as the logical sum statement:

R¼E3 þ E4 þ E7: (2:28)

It follows from the extended sum rule that

pðRjIÞ¼ pðE3 þ E4 þ E7jIÞ¼
3

10
; (2:29)
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in accordance with our intuition.

More generally, if there areN such balls, and the proposition R is defined to be true

for any specified subset of M of them, and false on the rest, then we have

pðRjIÞ¼ M

N
: (2:30)

2.7 Summary

Rather remarkably, the three desiderata of Section 2.5.1 have enabled us to arrive at a

theory of extended logic together with a particular scale for measuring the plausibility

of any hypothesis conditional on given information. We have shown that the rules for

manipulating plausibility are the product and sum rules. The particular scale of

plausibility we have adopted, now called probability, is determined by the data in a

way that agrees with our intuition. We also showed that in the limit of complete

information (certainty), the theory gives the same conclusions as the strong syllogisms

of deductive inference.

The main constructive requirement which determined the product and sum rules

was the desideratum of structural consistency, ‘‘If a conclusion can be reasoned out in

more than one way, every possible way must lead to the same result.’’ This does not

mean that our rules have been proved consistent,1 only that any other rules which

represent degrees of plausibility by real numbers, but which differ in content from the

product and sum rules, will lead to a violation of one of our desiderata.

Apart from the justification for probability as extended logic, the value of this

approach to solving inference problems is being demonstrated on a regular basis in a

wide variety of areas leading both to new scientific discoveries and a new level of

understanding. Modern computing power permits a simple comparison of the power

of different approaches in the analysis of well-understood simulated data sets. Some

examples of the power of Bayesian inference will be brought out in later chapters.

2.8 Problems

1. Construct a truth table to show

A;B¼Aþ B:

2. Construct a truth table to show

Aþ ðB;CÞ¼ ðAþ BÞ; ðAþ CÞ:

1 According to Gödel’s theorem, no mathematical system can provide a proof of its own consistency.
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3. With reference to Table 2.2, construct a truth table to show that

f8ðA;BÞ¼Aþ B:

4. Based on the available evidence, the probability that Jones is guilty is equal to 0.7,

the probability that Susan is guilty is equal to 0.6, and the probability that both are

guilty is equal to 0.5. Compute the probability that Jones is guilty and/or Susan is

guilty.

5. The probability that Mr. Smith will make a donation is equal to 0.5, if his brother

Harry has made a donation. The probability that Harry will make a donation is

equal to 0.02. What is the probability that both men will make a donation?
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3

The how-to of Bayesian inference

3.1 Overview

The first part of this chapter is devoted to a brief description of the methods and

terminology employed in Bayesian inference and can be read as a stand-alone intro-

duction on how to do Bayesian analysis.1 Following a review of the basics in Section

3.2, we consider the two main inference problems: parameter estimation and model

selection. This includes how to specify credible regions for parameters and how to

eliminate nuisance parameters through marginalization. We also learn that Bayesian

model comparison has a built-in ‘‘Occam’s razor,’’ which automatically penalizes

complicated models, assigning them large probabilities only if the complexity of the

data justifies the additional complication of the model. We also learn how this penalty

arises through marginalization and depends both on the number of parameters and

the prior ranges of these parameters.

We illustrate these features with a detailed analysis of a toy spectral line problem

and in the process introduce the Jeffreys prior and learn how different choices of priors

affect our conclusions. We also have a look at a general argument for selecting priors

for location and scale parameters in the early phases of an investigation when our state

of ignorance is very high. The final section illustrates how Bayesian analysis provides

valuable new insights on systematic errors and how to deal with them.

I recommend that Sections 3.2 to 3.5 of this chapter be read twice; once quickly,

and again after seeing these ideas applied in the detailed example treated in Sections

3.6 to 3.11.

3.2 Basics

In Bayesian inference, the viability of eachmember of a set of rival hypotheses, fHig, is
assessed in the light of some observed data, D, by calculating the probability of each

hypothesis, given the data and any prior information, I, we may have regarding the

1 The treatment of this topic is a revised version of Section 2 of a paper by Gregory and Loredo (1992), which is
reproduced here with the permission of the Astrophysical Journal.
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hypotheses and data. Following a notation introduced by Jeffreys (1961), we write

such a probability as pðHijD; IÞ, explicitly denoting the prior information by the

proposition, I, to the right of the bar. At the very least, the prior information must

specify the class of alternative hypotheses being considered (hypothesis space of inter-

est), and the relationship between the hypotheses and the data (the statistical model).

The basic rules for manipulating Bayesian probabilities are the sum rule,

pðHijIÞ þ pðHijIÞ¼ 1; (3:1)

and the product rule,

pðHi;DjIÞ¼ pðHijIÞpðDjHi; IÞ

¼ pðDjIÞpðHijD; IÞ:
(3:2)

The various symbols appearing as arguments should be understood as propositions;

for example, D might be the proposition, ‘‘N photons were counted in a time T.’’ The

symbol Hi signifies the negation of Hi (a proposition that is true if one of the

alternatives to Hi is true), and ðHi;DÞ signifies the logical conjunction of Hi and D

(a proposition that is true only if Hi and D are both true). The rules hold for any

propositions, not just those indicated above.

Throughout this work, we will be concerned with exclusive hypotheses, so that if

one particular hypothesis is true, all others are false. For such hypotheses, we saw in

Section 2.5.3 that the sum and product rules imply the generalized sum rule,

pðHi þHjjIÞ¼ pðHijIÞ þ pðHjjIÞ: (3:3)

To say that the hypothesis space of interest consists of nmutually exclusive hypotheses

means that for the purpose of the present analysis, we are assuming that one of them is

true and the objective is to assign a probability to each hypothesis in this space, based

on D; I. We will use normalized prior probability distributions, unless otherwise

stated, such that X
i

pðHijIÞ¼ 1: (3:4)

Here a ‘‘þ’’ within a probability symbol stands for logical disjunction, so that

Hi þHj is a proposition that is true if either Hi or Hj is true.

One of themost important calculating rules in Bayesian inference is Bayes’ theorem,

found by equating the two right hand sides of Equation (3.2) and solving for pðHijD; IÞ:

pðHijD; IÞ¼
pðHijIÞpðDjHi; IÞ

pðDjIÞ : (3:5)
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Bayes’ theorem describes a type of learning: how the probability for eachmember of

a class of hypotheses should be modified on obtaining new information, D. The

probabilities for the hypotheses in the absence of D are called their prior probabilities,

pðHijIÞ, and those including the information D are called their posterior probabilities,

pðHijD; IÞ. The quantity pðDjHi; IÞ is called the sampling probability for D, or the

likelihood ofHi, and the quantity pðDjIÞ is called the prior predictive probability forD,

or the global likelihood for the entire class of hypotheses.

All of the rules we have written down so far show how to manipulate known

probabilities to find the values of other probabilities. But to be useful in applications,

we additionally need rules that assign numerical values or functions to the initial direct

probabilities that will be manipulated. For example, to use Bayes’ theorem, we need to

know the values of the three probabilities on the right side of Equation (3.5). These

three probabilities are not independent. The quantity pðDjIÞ must satisfy the require-

ment that the sum of the posterior probabilities over the hypothesis space of interest is

equal to 1.

X
i

pðHijD; IÞ¼
P

i pðHijIÞpðDjHi; IÞ
pðDjIÞ ¼ 1: (3:6)

Therefore,

pðDjIÞ¼
X
i

pðHijIÞpðDjHi; IÞ: (3:7)

That is, the denominator of Bayes’ theorem, which does not depend onHi, must be

equal to the sum of the numerator over Hi. It thus plays the role of a normalization

constant.

3.3 Parameter estimation

We frequently deal with problems in which a particular model is assumed to be

true and the hypothesis space of interest concerns the values of the model

parameters. For example, in a straight line model, the two parameters are the

intercept and slope. We can look at this problem as a hypothesis space that is

labeled, not by discrete numbers, but by the possible values of two continuous

parameters. In such cases, the quantity of interest (see also Section 1.3.2) is a

probability density function or PDF. More generally, ‘PDF’ is an abbreviation for

a probability distribution function which can apply to both discrete and contin-

uous parameters. For example, given some prior information, M, specifying a

parameterized model with one parameter, �, pð�jMÞ is the prior density for �,

which means that pð�jMÞd� is the prior probability that the true value of the

parameter is in the interval ½�; �þ d��. We use the same symbol, pð. . .Þ, for prob-

abilities and PDFs; the nature of the argument will identify which use is intended.
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Bayes’ theorem, and all the other rules just discussed, hold for PDFs, with all sums

replaced by integrals. For example, the global likelihood for model M can be calcu-

lated with the continuous counterpart of Equation (3.7),

pðDjMÞ¼
Z

d� pð�jMÞpðDj�;MÞ¼LðMÞ: (3:8)

In words, the global likelihood of a model is equal to the weighted average likelihood

for its parameters. We will utilize the global likelihood of a model in Section 3.5 where

we deal with model comparison and Occam’s razor.

If there is more than one parameter, multiple integrals are used. If the prior density

and the likelihood are assigned directly, the global likelihood is an uninteresting

normalization constant. The posterior PDF for the parameters is simply proportional

to the product of the prior and the likelihood.

The use of Bayes’ theorem to determine what one can learn about the values of

parameters from data is called parameter estimation, though strictly speaking,

Bayesian inference does not provide estimates for parameters. Rather, the Bayesian

solution to the parameter estimation problem is the full posterior PDF, pð�jD;MÞ, and
not just a single point in parameter space. Of course, it is useful to summarize this

distribution for textual, graphical, or tabular display in terms of a ‘‘best-fit’’ value and

‘‘error bars.’’ Possible summaries of the best-fit values are the posterior mode (most

probable value of �) or the posterior mean,

h�i¼
Z

d� � pð�jD;MÞ: (3:9)

If the mode and mean are very different, the posterior PDF is too asymmetric to be

adequately summarized by a single estimate. An allowed range for a parameter with

probability content C (e.g., C ¼ 0:95 or 95%) is provided by a credible region, or

highest posterior density region, R, defined by

Z
R

d� pð�jD;MÞ¼C; (3:10)

with the posterior density inside R everywhere greater than that outside it. We some-

times speak picturesquely of the region of parameter space that is assigned a large

density as the ‘‘posterior bubble.’’ In practice, the probability (density function)

pð�jD;MÞ is represented by a finite list of values, pi, representing the probability in

discrete intervals of �.

A simple way to compute the credible region is to sort these probability values in

descending order. Then starting with the largest value, add successively smaller pi
values until adding the next value would exceed the desired value of C. At each step

keep track of the corresponding �i value. The credible region is the range of � that just
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includes all the �i values corresponding to the pi values added. The boundaries of the

credible region are obtained by sorting these �i values and taking the smallest and

largest values.

3.4 Nuisance parameters

Frequently, a parameterized model will have more than one parameter, but we will

want to focus attention on a subset of the parameters. For example, we may want to

focus on the implications of the data for the frequency of a periodic signal, independent

of the signal’s amplitude, shape, or phase. Or we may want to focus on the implications

of spectral data for the parameters of some line feature, independent of the shape of the

background continuum. In such problems, the uninteresting parameters are known as

nuisance parameters. As always, the full Bayesian inference is the full joint posterior

PDF for all of the parameters; but its implications for the parameters of interest can be

simply summarized by integrating out the nuisance parameters. Explicitly, if model M

has two parameters, � and �, and we are interested only in �, then it is a simple

consequence of the sum and product rules (see Section 1.5) that,

pð�jD;MÞ¼
Z

d� pð�; �jD;MÞ: (3:11)

For historical reasons, the procedure of integrating out nuisance parameters is

called marginalization, and pð�jD;MÞ is called the marginal posterior PDF for �.

Equation (3.8) for the global likelihood is a special case of marginalization in which

all of the model parameters are marginalized out of the joint prior distribution,

pðD; �jMÞ.
The use of marginalization to eliminate nuisance parameters is one of the most

important technical advantages of Bayesian inference over standard frequentist sta-

tistics. Indeed, the name ‘‘nuisance parameters’’ originated in frequentist statistics

because there is no general frequentist method for dealing with such parameters; they

are indeed a ‘‘nuisance’’ in frequentist statistics. Marginalization plays a very import-

ant role in this work. We will see a detailed example of marginalization in action in

Section 3.6.

3.5 Model comparison and Occam’s razor

Often, more than one parameterizedmodel will be available to explain a phenomenon,

and we will wish to compare them. The models may differ in form or in number of

parameters. Use of Bayes’ theorem to compare competing models by calculating the

probability of each model as a whole is called model comparison. Bayesian model

comparison has a built-in ‘‘Occam’s razor:’’ Bayes’ theorem automatically penalizes

complicated models, assigning them large probabilities only if the complexity of the
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data justifies the additional complication of the model. See Jeffreys and Berger (1992)

for a historical account of the connection between Occam’s (Ockham’s) razor and

Bayesian analysis.

Model comparison calculations require the explicit specification of two or more

specific alternative models,Mi. We take as our prior information the proposition that

one of the models under consideration is true. Symbolically, we might write this as

I ¼M1 þM2 þ � � � þMN, where the ‘‘þ’’ symbol here stands for disjunction (‘‘or’’).

Given this information, we can calculate the probability for each model with Bayes’

theorem:

pðMijD; IÞ¼
pðMijIÞpðDjMi; IÞ

pðDjIÞ : (3:12)

We recognize pðDjMi; IÞ as the global likelihood for model Mi, which we can

calculate according to Equation (3.8). The term in the denominator is again a normal-

ization constant, obtained by summing the products of the priors and the global

likelihoods of all models being considered. Model comparison is thus completely

analogous to parameter estimation: just as the posterior PDF for a parameter is

proportional to its prior times its likelihood, so the posterior probability for a

model as a whole is proportional to its prior probability times its global likelihood.

It is often useful to consider the ratios of the probabilities of twomodels, rather than

the probabilities directly. The ratio,

Oij¼ pðMijD; IÞ=pðMjjD; IÞ; (3:13)

is called the odds ratio in favor of model Mi over model Mj. From Equation (3.12),

Oij¼
pðMijIÞ
pðMjjIÞ

pðDjMi; IÞ
pðDjMj; IÞ

� pðMijIÞ
pðMjjIÞ

Bij;

(3:14)

where the first factor is the prior odds ratio, and the second factor is called the Bayes

factor. Note: the normalization constant in Equation (3.12) drops out of the odds

ratio; this can make the odds ratio somewhat easier to work with. The odds ratio is

also conceptually useful when one particular model is of special interest. For example,

suppose we want to compare a constant rate model with a class of periodic alternatives,

and will thus calculate the odds in favor of each alternative over the constant

model.

If we have calculated the odds ratios,Oi1, in favor of each model over modelM1, we

can find the probabilities for each model in terms of these odds ratios as follows:

XNmod

i¼1
pðMijD; IÞ¼ 1; (3:15)
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whereNmod is the total number ofmodels considered. Dividing through by pðM1jD; IÞ,
we have

1

pðM1jD; IÞ
¼
XNmod

i¼1
Oi1: (3:16)

Comparing Equation (3.16) to the expression for Oi1, given by

Oi1¼ pðMijD; IÞ=pðM1jD; IÞ; (3:17)

we have the result that

pðMijD; IÞ¼
Oi1PNmod

i¼1 Oi1

; (3:18)

where of courseO11 ¼ 1. If there are only twomodels, the probability ofM2 is given by

pðM2jD; IÞ¼
O21

1þO21
¼ 1

1þ 1
O21

: (3:19)

In this work, we will assume that we have no information leading to a prior

preference for one model over another, so the prior odds ratio will be unity, and the

odds ratio will equal the Bayes factor, the ratio of global likelihoods. A crucial

consequence of the marginalization procedure used to calculate global likelihoods is

that the Bayes factor automatically favors simpler models unless the data justify the

complexity of more complicated alternatives. This is illustrated by the following

simple example.

Imagine comparing two models:M1 with a single parameter, �, andM0 with � fixed

at some default value �0 (soM0 has no free parameters). To calculate the Bayes factor

B10 in favor of model M1, we will need to perform the integral in Equation (3.8) to

compute pðDjM1; IÞ, the global likelihood of M1. To develop our intuition about the

Occam penalty, we will carry out a back-of-the-envelope calculation for the Bayes

factor. Often the data provide us with more information about parameters than we

had without the data, so that the likelihood function, Lð�Þ ¼ pðDj�;M1; IÞ, will be
much more ‘‘peaked’’ than the prior, pð�jM1; IÞ. In Figure 3.1 we show a Gaussian-

looking likelihood centered at �̂, the maximum likelihood value of �, together with

a flat prior for �. Let �� be the characteristic width of the prior. For a flat prior,

we have that

Z
��

d� pð�jM1; IÞ¼ pð�jM1; IÞ��¼ 1: (3:20)

Therefore, pð�jM1; IÞ¼ 1=��.
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The likelihood has a characteristic width2 which we represent by ��. The character-

istic width is defined byZ
��

d� pðDj�;M1; IÞ¼ pðDj�̂;M1; IÞ � ��: (3:21)

Then we can approximate the global likelihood (Equation (3.8)) for M1 in the

following way:

pðDjM1; IÞ¼
Z

d� pð�jM1; IÞpðDj�;M1; IÞ ¼ LðM1Þ

¼ 1

��

Z
d� pðDj�;M1; IÞ

� pðDj�̂;M1; IÞ
��

��

or alternatively; LðM1Þ � Lð�̂Þ
��

��
:

(3:22)

Since model M0 has no free parameters, no integral need be calculated to find its

global likelihood, which is simply equal to the likelihood for model M1 for � ¼ �0,

pðDjM0; IÞ¼ pðDj�0;M1; IÞ¼Lð�0Þ: (3:23)

Thus the Bayes factor in favor of the more complicated model is

B10 �
pðDj�̂;M1; IÞ
pðDj�0;M1; IÞ

��

��
¼ Lð�̂ÞLð�0Þ

��

��
: (3:24)

Parameter θ

p(D|θ, M1, I ) = L(θ)

L(θ) = p(D|θ, M1, I )

p(θ|M1,I ) = 1
∆θ

θ

δθ

∆θ

∧
∧ ∧

Figure 3.1 The characteristic width �� of the likelihood peak and �� of the prior.

2 If the likelihood function is really a Gaussian and the prior is flat, it is simple to show that �� ¼ ��
ffiffiffiffiffiffi
2p
p

, where �� is the
standard deviation of the posterior PDF for �.
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The likelihood ratio in the first factor can never favor the simpler model becauseM1

contains it as a special case. However, since the posterior width, ��, is narrower than

the prior width, ��, the second factor penalizes the complicated model for any

‘‘wasted’’ parameter space that gets ruled out by the data. The Bayes factor will thus

favor the more complicated model only if the likelihood ratio is large enough to

overcome this penalty.

Equation (3.22) has the form of the best-fit likelihood times the factor that penalizes

M1. In the above illustrative calculation we assumed a simple Gaussian likelihood

function for convenience. In general, the actual likelihood function can be very com-

plicated with several peaks. However, one can always write the global likelihood of a

model with parameter �, as the maximum value of its likelihood times some factor, ��:

pðDjM; IÞ � Lmax��: (3:25)

The second factor, ��, is called the Occam factor associated with the parameters, �.

It is so named because it corrects the likelihood ratio usually considered in statistical

tests in a manner that quantifies the qualitative notion behind ‘‘Occam’s razor:’’

simpler explanations are to be preferred unless there is sufficient evidence in favor

of more complicated explanations. Bayes’ theorem both quantifies such evidence and

determines how much additional evidence is ‘‘sufficient’’ through the calculation of

global likelihoods.

Suppose M1 has two parameters � and �, then following Equation (3.22), we can

write

pðDjM1; IÞ¼
ZZ

d�d� pð�jM1; IÞpð�jM1; IÞpðDj�; �;M1; IÞ

� pðDj�̂; �̂;M1; IÞ
��

��

��

��
¼Lmax����:

(3:26)

The above equation assumes independent flat priors for the two parameters. It is clear

from Equation (3.26) that the total Occam penalty, �total ¼ ����, can become very

large. For example, if ��=�� ¼ ��=�� ¼ 0:01 then �total ¼ 10�4. Thus for the Bayes

factor in Equation (3.24) to favor M1, the ratio of the maximum likelihoods,

pðDj�̂; �̂;M1; IÞ
pðDjM0; IÞ

¼ LmaxðM1Þ
LmaxðM0Þ

must be ‡104. Unless the data argue very strongly for the greater complexity of M1

through the likelihood ratio, the Occam factor will ensure we favor the simpler model.

We will explore the Occam factor further in a worked example in Section 3.6.

In the above calculations, we have specifically made a point of identifying the Occam

factors and how they arise. In many instances we are not interested in the value of the

Occam factor, but only in the final posterior probabilities of the competing models.
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Because the Occam factor arises automatically in the marginalization process, its effect

will be present in any model selection calculation.

3.6 Sample spectral line problem

In this section, we will illustrate many of the above points in a detailed Bayesian

analysis of a toy spectral line problem. In a real problem, as opposed to the

hypothetical one discussed below, there could be all sorts of complicated prior

information. Although Bayesian analysis can readily handle these complexities,

our aim here is to bring out the main features of the Bayesian approach as simply

as possible. Be warned; even though it is a relatively simple problem, our detailed

solution, together with commentary and a summary of the lessons learned, will

occupy quite a few pages.

3.6.1 Background information

In this problem, we suppose that two competing grand unification theories have

been proposed. Each one is championed by aNobel prize winner in physics.We want

to compute the relative probability of the truth of each theory based on our prior

(background) information and some new data. Both theories make definite predic-

tions in energy ranges beyond the reach of the present generation of particle accel-

erators. In addition, theory 1 uniquely predicts the existence of a new short-lived

baryon which is expected to form a short-lived atom and give rise to a spectral line at

an accurately calculable radio wavelength. Unfortunately, it is not feasible to detect

the line in the laboratory. The only possibility of obtaining a sufficient column

density of the short-lived atom is in interstellar space. Prior estimates of the

line strength expected from the Orion nebula according to theory 1 range from 0.1

to 100 mK.

Theory 1 also predicts the line will have a Gaussian line shape of the form

T exp
�ð�i � �oÞ2

2�2L

( )
ðabbreviated by TfiÞ; (3:27)

where the signal strength is measured in temperature units of mK and T is the

amplitude of the line. The frequency, �i, is in units of channel number and �o ¼ 37.

The width of the line profile is characterized by �L, and �L ¼ 2 channel numbers. The

predicted line shape is shown in Figure 3.2.

Data:

To test this prediction, a new spectrometer was mounted on the James Clerk Maxwell

telescope on Mauna Kea and the spectrum shown in Figure 3.3 was obtained. The

spectrometer has 64 frequency channels with neighboring channels separated by
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0:5 �L. All channels have Gaussian noise characterized by � ¼ 1mK. The noise in

separate channels is independent. The data are given in Table 3.1.

Let D be a proposition representing the data from the spectrometer.

D � D1;D2; . . . ;DN; N ¼ 64 (3:28)

whereD1 is a proposition that asserts that ‘‘the data value recorded in the first channel

was d1.’’
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Figure 3.3 Measured spectrum.
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Figure 3.2 Predicted spectral shape according to theory 1.
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Question: Which theory is more probable?

Based on our current state of information, which includes just the above prior

information and the measured spectrum, what do we conclude about the relative

probabilities of the two competing theories and what is the posterior PDF for the line

strength?

Hypothesis space:

M1� ‘‘Theory 1 correct, line exists’’

M2 � ‘‘Theory 2 correct, no line predicted’’

3.7 Odds ratio

To answer the above question, we compute the odds ratio (abbreviated simply by the

odds) of model M1 to model M2.

O12¼
pðM1jD; IÞ
pðM2jD; IÞ

: (3:29)

Table 3.1 Spectral line data consisting of 64 frequency channels (#) obtained with a radio

astronomy spectrometer. The output voltage from each channel has been calibrated in units

of effective black body temperature expressed in mK. The existence of negative values arises

from receiver channel noise which gives rise to both positive and negative fluctuations.

# mK # mK # mK # mK

1 1.420 17 �0.937 33 0.248 49 0.001

2 0.468 18 1.331 34 �1.169 50 0.360

3 0.762 19 �1.772 35 0.915 51 �0.497
4 �1.312 20 �0.530 36 1.113 52 �0.072
5 2.029 21 0.330 37 1.463 53 1.094

6 0.086 22 1.205 38 2.732 54 �1.425
7 1.249 23 1.613 39 0.571 55 0.283

8 �0.368 24 0.300 40 0.865 56 �1.526
9 �0.657 25 �0.046 41 �0.849 57 �1.174
10 �1.294 26 �0.026 42 �0.171 58 �0.558
11 0.235 27 �0.519 43 1.031 59 1.282

12 �0.192 28 0.924 44 1.105 60 �0.384
13 �0.269 29 0.230 45 �0.344 61 �0.120
14 0.827 30 0.877 46 �0.087 62 �0.187
15 �0.685 31 �0.650 47 �0.351 63 0.646

16 �0.702 32 �1.004 48 1.248 64 0.399
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From Equation (3.14) we can write

O12¼
pðM1jIÞ
pðM2jIÞ

pðDjM1; IÞ
pðDjM2; IÞ

� pðM1jIÞ
pðM2jIÞ

B12

(3:30)

where pðM1jIÞ=pðM2jIÞ is the prior odds, and pðDjM1; IÞ=pðDjM2; IÞ is the global

likelihood ratio, which is also called the Bayes factor.

Based on the prior information given in the statement of the problem, we assign the

prior odds ¼ 1, so our final odds is given by,

O12¼
pðDjM1; IÞ
pðDjM2; IÞ

ðthe Bayes factorÞ: (3:31)

To obtain pðDjM1; IÞ, the global likelihood of M1, we need to marginalize over its

unknown parameter, T. From Equation (3.8), we can write

pðDjM1; IÞ¼
Z

dT pðTjM1; IÞpðDjM1;T; IÞ: (3:32)

In the following section we will consider what form of prior to use for pðTjM1; IÞ. In
Section 3.7.2 we will show how to evaluate the likelihood, pðDjM1;T; IÞ.

3.7.1 Choice of prior p(T|M1, I )

We need to evaluate the global likelihood of modelM1 for use in the Bayes factor. One

of the items we need in this calculation is pðTjM1; IÞ, the prior for T. Choosing a prior
is an important part of any Bayesian calculation and we will have a lot to say about

this topic in Section 3.10 and other chapters, e.g., Chapter 8, and Sections 9.2.3, 13.3

and 13.4. For this example, we will investigate two common choices: the uniform prior

and the Jeffreys prior.3

Uniform prior

Suppose we chose a uniform prior for pðTjM1; IÞ in the range Tmin � T � Tmax

pðTjM1; IÞ¼
1

�T
; (3:33)

where �T¼Tmax � Tmin.

There is a problem with this prior if the range of T is large. In the current example

Tmax¼ 100 and Tmin¼ 0:1. To illustrate the problem, we compare the probability that

3 If the lower limit on T extended all the way to zero, we would not be able to use a Jeffreys prior because of the infinity
at T ¼ 0. A modified version of the form, pðTjM1; IÞ ¼ 1=fðTþ aÞ ln½ðaþ TmaxÞ=a�g, where a is a constant, eliminates
this singularity. This modified Jeffreys behaves like a uniform prior for T < a and a Jeffreys for T > a.
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T lies in the upper decade of the prior range (10 to 100mK) to the lowest decade (0.1 to

1 mK). This is given by R 100
10 pðTjM1; IÞdTR 1
0:1 pðTjM1; IÞdT

¼ 100: (3:34)

We see that in this case, a uniform prior implies that the line strength is 100 times

more probable to be in the top decade of the predicted range than the bottom, i.e., it is

much more probable that T is strong than weak. Usually, expressing great uncertainty

in some quantity corresponds more closely to a statement of scale invariance or equal

probability per decade. In this situation, we recommend using a Jeffreys prior which is

scale invariant.

Jeffreys prior

The form of the prior which represents equal probability per decade (scale invariance)

is given by pðTjM1; IÞ ¼ k=T, where k ¼ constant.

Z 1

0:1

pðTjM1; IÞdT¼ k

Z 1

0:1

dT

T
¼ k ln 10¼

Z 100

10

pðTjM1; IÞdT: (3:35)

We can evaluate k from the requirement that

Z Tmax

Tmin

pðTjM1; IÞdT¼ 1¼ k ln
Tmax

Tmin

� �
(3:36)

1

k
¼ ln

Tmax

Tmin

� �
: (3:37)

Thus, the form of the Jeffreys prior is given by

pðTjM1; IÞ¼
1

T ln Tmax=Tminð Þ : (3:38)

A convenient way of summarizing the above comparison between the uniform and

Jeffreys prior is to plot the probability of each distribution per logarithmic interval or

pðlnTjM1; IÞ. This can be obtained from the condition that the probability in the

interval T to Tþ dT must equal the probability in the transformed interval lnT to

lnTþ d lnT.

pðTjM1; IÞdT¼ pðlnTjM1; IÞd lnT

pðTjM1; IÞ¼ pðlnTjM1; IÞ
d lnT

dT
¼ 1

T
pðlnTjM1; IÞ

pðlnTjM1; IÞ¼T� pðTjM1; IÞ:

(3:39)
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Figure 3.4 compares plots of the probability density function (PDF), pðTjM1; IÞ
(left panel), and the probability per logarithmic interval (PPLI), T� pðTjM1; IÞ (right
panel), for the uniform and Jeffreys priors.

3.7.2 Calculation of p(D|M1,T, I )

Let di represent the measured data value for the ith channel of the spectrometer.

According to model M1,

di¼Tfi þ ei; (3:40)

where ei is an error term. Our prior information indicates that this error is caused by

receiver noise which has a Gaussian distribution with a standard deviation of �. Also,

from Equation (3.27), we have

fi¼ exp
�ð�i � �oÞ2

2�2L

( )
: (3:41)

AssumingM1 is true, then if it were not for the error ei, di would equal Tfi. Let Ei � ‘‘a

proposition asserting that the ith error value is in the range ei to ei þ dei.’’ In this case,

we can show (see Section 4.8) that pðDijM1;T; IÞ ¼ pðEijM1;T; IÞ. If all the Ei are

independent4 then

pðDjM1;T; IÞ¼ pðD1;D2; . . . ;DNjM1;T; IÞ
¼ pðE1;E2; . . . ;ENjM1;T; IÞ
¼ pðE1jM1;T; IÞpðE2jM1;T; IÞ . . . pðENjM1;T; IÞ

¼
YN
i¼1

pðEijM1;T; IÞ

(3:42)
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Figure 3.4 The left panel shows the probability density function (PDF), pðTjM1; IÞ, for the
uniform and Jeffreys priors. The right panel shows the probability per logarithmic interval
(PPLI), T� pðTjM1; IÞ.

4 We deal with the effect of correlated errors in Section 10.2.2.
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where
QN

i¼1 stands for the product ofN of these terms.From the prior information, we

can write

pðEijM1;T; IÞ¼
1

�
ffiffiffiffiffiffi
2p
p exp � e2i

2�2

� �

¼ 1

�
ffiffiffiffiffiffi
2p
p exp �ðdi � TfiÞ2

2�2

( )
:

(3:43)

It is apparent that pðEijM1;T; IÞ is a probability density function since ei, the value of

the error for channel i, is a continuous variable. The factor ð�
ffiffiffiffiffiffi
2p
p
Þ�1 in the above

equation ensures that the integral over ei from�1 toþ1 is equal to 1. In Figure 3.5,

pðEijM1;T; IÞ is shown proportional to the height of the Gaussian error curve at the

position of the actual data value di.

Combining Equations (3.42) and (3.43), we obtain the probability of the entire data set

pðDjM1;T; IÞ¼
YN
i¼ 1

1

�
ffiffiffiffiffiffi
2p
p exp �ðdi � TfiÞ2

2�2

( )

¼ð2pÞ�N=2��N exp �
P

iðdi � TfiÞ2

2�2

( )
:

(3:44)

In Section 3.7.4, we will need the maximum value of the likelihood given by Equation

(3.44). Since we now know all the quantities in Equation (3.44) except T, we can

readily compute the likelihood as a function ofT in the prior range 0:1 � T � 100. The

likelihood has a maximum ¼ 8:520� 10�37 (called the maximum likelihood) at

T ¼ 1:561mK.
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Figure 3.5 Probability of getting a data value di a distance ei away from the predicted value is
proportional to the height of the Gaussian error curve at that location.
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What we want is pðDjM1; IÞ, the global likelihood ofM1, for use in Equation (3.31).

We now evaluate pðDjM1; IÞ, given by Equation (3.32), for the two different priors

discussed in Section 3.7.1, where we argued that the Jeffreys prior matches muchmore

closely the prior information given in this particular problem. Nevertheless, it is

interesting to explore what effect the choice of a uniform prior would have on our

conclusions. For this reason, we will do the calculations for both priors.

Uniform prior case:

pðDjM1; IÞ¼
ð2pÞ�N=2��N

�T
exp

T
P

difi
�2

� �Z Tmax

Tmin

dT exp
T
P

difi
�2

� �
exp

T
P

difi
�2

� �
¼ 1:131� 10�38:

(3:45)

According to Equation (3.25), we can always write the global likelihood of a model as

the maximum value of its likelihood times an Occam factor, �T, which arises in this

case from marginalizing T.

pðDjM1; IÞ¼LmaxðM1Þ � �T

¼maximum value of ½pðDjM1;T; IÞ� �Occam factor

¼ 8:520� 10�37 �T:

(3:46)

Comparison of the results of Equations (3.45) and (3.46) leads directly to a value for

the Occam factor, associated with our prior uncertainty in the T parameter, of

�T ¼ 0:0133.

Jeffreys prior case:

pðDjM1; IÞ¼
ð2pÞ�N=2��N
lnðTmax=TminÞ

exp
�
P

d2i
2�2

� �

�
Z Tmax

Tmin

dT

exp
T
P

di fi
�2

� �
exp �T2

P
f 2i

2�2

� �
T

¼ 1:239� 10�37:

(3:47)

In this case the Occam factor associated with our prior uncertainty in the T

parameter, based on a Jeffreys prior, is 0.145. Note: the Occam factor based on the

Jeffreys prior is a factor of � 10 less of a penalty than for the uniform prior for the

same parameter.
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3.7.3 Calculation of p(D|M2, I )

ModelM2 assumes the spectrum is consistent with noise and has no free parameters so

in analogy to Equation (3.40), we can write

di ¼ 0þ ei (3:48)

where ei ¼Gaussian noise with a standard deviation of �. AssumingM2 is true, then if

it were not for the noise ei, di would equal 0.

pðDjM2; IÞ¼ ð2pÞ�N=2 ��N exp �
P

d 2
i

2�2

� �
¼ 1:133� 10�38:

(3:49)

Since this model has no free parameters, there is no Occam factor, so the global

likelihood is also the maximum likelihood, LmaxðM2Þ, for M2.

3.7.4 Odds, uniform prior

Substitution of Equations (3.45) and (3.49) into Equation (3.31) leads to an odds ratio

for the uniform prior case given by

odds¼ 1

�T

Z Tmax

Tmin

dT exp
T
P

difi
�2

� �
exp �T 2

P
f 2i

2�2

� �
: (3:50)

For Tmin¼ 0:1mK and Tmax¼ 100mK, the odds¼ 0:9986 and

pðM1jD; IÞ¼
1

1þ 1
odds

¼ 0:4996: (3:51)

Although the ratio of the maximum likelihoods for the two models favors model M1,

by a factor of LmaxðM1Þ=LmaxðM2Þ ¼ 8:520� 10�37=1:131� 10�38 � 75, the ratio of

the global likelihoods marginally favors M2 because of the Occam factor which

penalizes M1 for its extra complexity.

3.7.5 Odds, Jeffreys prior

Substitution of Equations (3.47) and (3.49) into Equation (3.31) leads to an odds ratio

for the Jeffreys prior case, given by

odds¼ 1

lnðTmax=TminÞ

Z Tmax

Tmin

dT

exp
T
P

difi
�2

� �
exp �T 2

P
f 2i

2�2

� �
T

: (3:52)

For Tmin¼ 0:1mK and Tmax¼ 100mK, the odds¼ 10:94, and pðM1jD; IÞ¼ 0:916.
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As noted earlier in this chapter, we consider the Jeffreys prior to be much more

consistent with the large uncertainty in signal strength which was part of the prior

information of the problem. On this basis, we conclude that for our current state of

information, pðM1jD; IÞ ¼ 0:916 and pðM2jD; IÞ ¼ 0:084.

3.8 Parameter estimation problem

Now that we have solved the model selection problem leading to a significant

preference for M1, which argues for the existence of the short-lived baryon, we

would like to compute pðTjD;M1; IÞ, the posterior PDF for the signal strength.

Again we will compute the result for both choices of prior for comparison, but

consider the Jeffreys result to be more reasonable for the current problem.

Again, start with Bayes’ theorem:

pðTjD;M1; IÞ¼
pðTjM1; IÞpðDjM1;T; IÞ

pðDjM1; IÞ
/ pðTjM1; IÞpðDjM1;T; IÞ:

(3:53)

We have already evaluated pðDjM1;T; IÞ in Equation (3.44). All that remains is to plug

in our two different choices for the prior pðTjM1; IÞ.

Uniform prior case:

pðTjD;M1; IÞ / exp
T
P

di fi
�2

� �
exp �T2

P
f 2i

2�2

� �
(3:54)

Jeffreys prior case:

pðTjD;M1; IÞ /
1

T
exp

T
P

di fi
�2

� �
exp �T2

P
f 2i

2�2

� �
: (3:55)

Figure 3.6 shows the posterior PDF for the signal strength for both the uniform and

Jeffreys priors. As we saw earlier, the uniform prior favors stronger signals.

In our original spectrum, the line strength was comparable to the noise level. How

do the results change as we increase the line strength? Figure 3.7 shows a simulated

spectrum for a line strength equal to five times the noise � together with the estimated

posterior PDF for the line strength. The increase in line strength has a dramatic effect

on the odds which rise to 1:6 � 1012 for the uniform prior and 5:3 � 1012 for the

Jeffreys prior.

3.8.1 Sensitivity of odds to Tmax

Figure 3.8 is a plot of the dependence of the odds on the assumed value of Tmax for

both uniform and Jeffreys priors. We see that under the uniform prior, the odds are
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much more strongly dependent on the prior range of T than for the Jeffreys case. In

both cases, the Occam’s razor penalizingM1 compared toM2 for its greater complex-

ity increases as the prior range for T increases. Model complexity depends not only on

the number of free parameters but also on their prior ranges.

In this problem, we assumed that both the center frequency and line width were

accurately predicted byM1; the only uncertain quantity was the line strength. Suppose

the center frequency and/or line width were uncertain as well. In this case, to compute

the odds ratio, we would have to marginalize over the prior ranges for these para-

meters as well, giving rise to additional Occam’s factors and a subsequent lowering of

the odds. This agrees with our intuition: the more uncertain our prior information

about the expected properties of the line, the less significance we attach to any bump in

the spectrum.
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Figure 3.6 Posterior PDF for the line strength, T, for uniform and Jeffreys priors.
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Figure 3.7 The left panel shows a spectrum with a stronger spectral line. The right panel shows
the computed posterior PDF for the line strength.
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3.9 Lessons

1. In themodel selection problem, we are interested in the global probabilities of the twomodels

independent of the most probable model parameters. This was achieved using Bayes’

theorem and marginalizing over model M1’s parameter T, the signal strength (model M2

had no parameters pertaining to the spectral line data). An Occam’s razor automatically

arises each time a model parameter is marginalized, penalizing the model for prior parameter

space that gets ruled out by the data. The larger the prior range that is excluded by the

likelihood function, pðDjM1;T; IÞ, the greater the Occam penalty as can be seen from Figure

3.8. Recall that the global likelihood for a model is the weighted average likelihood for its

parameter(s). The weighting function is the prior for the parameter. Thus, the Occam penalty

can be very different for two different choices of prior (uniform and Jeffreys). The results are

always conditional on the truth of the prior which must be specified in the analysis, and there

is a need to seriously examine the consequences of the choice of prior.

2. When the prior range for a parameter spans many orders of magnitude, a uniform prior

implies that it is much more probable that the true value of the parameter is in the upper

decade. Often, a large prior parameter range can be taken to mean we are ignorant of the

scale, i.e., small values of the parameter are equally likely to large values. For these situations,

a useful choice is a Jeffreys prior, which corresponds to equal probability per decade (scale

invariance). Note: when the range of a prior is a small fraction of the central value, then the

conclusion will be the same whether a uniform or Jeffreys prior is used. In the spectrum

problem just analyzed, we started out with very crude prior information on the line strength

predicted by M1. Now that we have incorporated the new experimental information D, we

have arrived at a posterior probability for the line strength, pðTjD;M1; IÞ. Were we to obtain

more data, D2, we would set our new prior pðTjM1; I2Þ equal to our current posterior

pðTjD;M1; IÞ, i.e., I2 ¼ D; I. The question of whether to use a Jeffreys or uniform prior

would no longer be relevant.

1 1.5 2 2.5 3 3.5 4
Log10Tmax

0

2.5

5

7.5

10

12.5

15

17.5

O
dd

s

Jeffreys

Uniform

Figure 3.8 The odds ratio versus upper limit on the predicted line strength ðTmaxÞ for the

uniform and Jeffreys priors.
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3. If the location and line width were also uncertain, we would have to marginalize over these

parameters as well, giving rise to other Occam factors which would decrease the odds still

further. For example, if the prior range for the expected channel number of the spectral line

were increased from less than 1 to 44 channels, the odds would decrease from � 11 to 1,

assuming a uniform prior for the line location. We can also compute the marginal posterior

PDF for the line frequency for this case which is shown in Figure 3.9. This permits us to

update our knowledge of the line frequency given the data and assuming the theory is

correct. For further insights on this matter, see the discussion on systematic errors in

Section 3.11.

4. Once we established that model M1 was more probable, we were able to apply Bayes’

theorem again, to compute the posterior PDF for the line strength. Note: no Occam factors

arise in parameter estimation. Parameter estimation can be viewed as model selection

where the competing models all have exactly the same complexity so the Occam penalties

are identical and cancel out in the analysis. It can happen that the pðTjD;M1; IÞ can be very

small for values of T close to zero. One might be tempted to rule outM2 because it predicts

T ¼ 0, thus bypassing the model selection problem. This is not wise, however, because the

model selection analysis includes Occam factors that could rule out M1 compared to the

simpler M2. As we noted, these Occam factors do not appear in the parameter estimation

analysis.

5. In this toy problem, the spectral line data assume that any background continuum radiation

or instrumental DC level has been subtracted off, which can only be done to a certain

accuracy. It would be better to parameterize this DC level and marginalize over this para-

meter so that the effect of our uncertainty in this quantity (see Section 3.11) will be included in

our final odds ratio and spectral line parameter estimates. A still more complicated version of

this problem is ifM1 simply predicts a certain prior range for the optical depth of the line but
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Figure 3.9 Marginal posterior PDF for the line frequency, where the line frequency is expressed
as a spectrometer channel number.
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leaves unanswered whether the line will be seen in emission or absorption against the back-

ground continuum. In this problem, a Bayesian solution is still possible but will involve a

more complicated model of the spectral line data.

3.10 Ignorance priors

In the analysis of the spectral line problem of Section 3.7.1, we considered two

different forms of prior (uniform and Jeffreys) for the unknown line temperature

parameter. We learned that there was a strong reason for picking the Jeffreys prior in

this problem. What motivated a consideration of these particular priors in the first

place? In this section we will attempt to answer this question.

As we study any particular phenomenon, our state of knowledge changes. When we

are well into the study, our prior for the analysis of new data will be well defined by our

previous posterior. But in the earliest phase, our state of ‘‘ignorance’’ will be high. It is

therefore useful to have arguments to aid us in selecting an appropriate form of prior

to use in such situations. Of course, if we are completely ignorant we cannot even state

the problem of interest, and in that case we have no use for a prior. Let us suppose our

state of knowledge is sufficient to pose the problem but not much more. For example,

we might be interested in the location of the highest point on the equator of Pluto. Are

there any general arguments to help us select a suitable prior? In Section 2.6 we saw

how to use the Principle of Indifference to arrive at a probability distribution for a

discrete set of hypotheses.

In the discussion that follows, we will consider a general argument that suggests the

form of priors to use for two types of continuous parameters. We will make a

distinction between location parameters, and scale parameters. For example, consider

the location of an event in space. To describe this, we must locate the event with

respect to some origin and specify the size (scale) of our units of space (e.g., ft, m, light

years). The location of an event can be either a positive or negative quantity depending

on our choice of origin but the scale (size of our space units) is always a positive

quantity. We will first consider a prior for a location parameter.

Suppose we are interested in evaluating pðXjIÞ, where X � ‘‘a proposition asserting

that the location of the tallest tree along the shore of Lake Superior is between x and

xþ dx.’’ In this statement of the problem, x is measured with respect to a particular

survey stake. We will represent the probability density by the function fðxÞ.
What if we consider a different statement of the problem in which the only change is

that the origin of our distance measurement has been shifted by an amount c and we

are interested in pðX0jIÞ where x0 ¼ xþ c? If a shift of location (origin) can make the

problem appear in any way different, then it must be that we had some kind of prior

knowledge about location. In the limit of complete ignorance, the choice of prior

would be invariant to a shift in location. Although we are not completely ignorant it

still might be useful, in the earliest phase of an investigation, to adopt a prior which is

invariant to a shift in location. What form of prior does this imply? If we define our
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state of ignorance tomean that the above two statements of the problem are equivalent,

then the desideratum of consistency demands that

pðXjIÞdX¼ pðX0jIÞdX0 ¼ pðX0jIÞdðXþ cÞ¼ pðX0jIÞdX: (3:56)

From this it follows that

fðxÞ¼ fðx0Þ ¼ fðxþ cÞ: (3:57)

The solution of this equation is fðxÞ¼ constant, so

pðXjIÞ¼ constant: (3:58)

In the Lake Superior problem, it is apparent that we have knowledge of the upper

ðxmaxÞ and lower ðxminÞ bounds of x, so the constant ¼ 1=ðxmax � xminÞ. If we are

ignorant of these limits then we refer to pðXjIÞ as an improper prior, meaning that it is

not normalized. An improper prior is useable in parameter estimation problems but is

not suitable for model selection problems, because the Occam factors depend on

knowing the prior range for each model parameter.

Now consider a problem where we are interested in the mean lifetime of a newly

discovered aquatic creature found in the ocean below the ice crust on the moon

Europa.We call the lifetime a scale parameter because it can only have positive values,

unlike a location parameter which can assume both positive and negative values. Let

T � ‘‘the mean lifetime is between � and � þ d� .’’ What form of prior probability

density, pðT jIÞ, should we use in this case?We will represent the probability density by

the function gð�Þ.
What if we consider a different statement of the problem in which the only change is

that the time ismeasured in units differing by a factor � ?Nowwe are interested in pðT 0jIÞ
where � 0 ¼ �� . If we define our state of ignorance to mean that the two statements of the

problems are equivalent, then the desideratum of consistency demands that

pðT jIÞdT ¼ pðT 0jIÞdT 0 ¼ pðT 0jIÞdð�T Þ¼� pðT 0jIÞdT : (3:59)

From this it follows that

gð�Þ¼ �gð� 0Þ ¼ �gð��Þ: (3:60)

The solution of this equation is gð�Þ¼ constant=� , so

pðT jIÞ¼ constant

�
: (3:61)

This form of prior is called the Jeffreys prior after Sir Harold Jeffreys who first

suggested it. If we have knowledge of the upper (�max) and lower (�min) bounds of �

then we can evaluate the normalization constant. The result is

pðT jIÞ¼ 1

� ln ð�max=�minÞ
: (3:62)
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Returning to the spectral line problem, we now see another reason for preferring the

choice of the Jeffreys prior for the temperature parameter, because it is a scale

parameter. In Section 9.2.3, we will discover yet another powerful argument for

selecting the Jeffreys prior for a scale parameter.

3.11 Systematic errors

In scientific inference, we encounter at least two general types of uncertainties which

are broadly classified as random and systematic. Random uncertainties can be

reduced by acquiring and averaging more data. This is the basis behind signal aver-

aging which is discussed in Section 5.11.1. Of course, what appears random for one

state of information might later be discovered to have a predictable pattern as our

state of information changes.

Some typical examples of systematic errors include errors of calibration ofmeters and

rulers,5 and stickiness and wear in the moving parts of meters. For example, over time

an old wooden meter stick may shrink by as much as a few mm. Some potential

systematic errors can be detected by careful analysis of the experiment before perform-

ing it and can then be eliminated either by applying suitable corrections or through

careful experimental design. The remaining systematic errors can be very subtle, and are

detected with certainty only when the same quantity is measured by two or more

completely different experimental methods. The systematic errors are then revealed

by discrepancies between the measurements made by the different methods.

Bayesian inference provides a powerful way of looking and dealing with some of

these subtle systematic errors. We almost always have some prior information about

the accuracy of our ‘‘ruler.’’ Clearly, if we had no information about its accuracy (in

contrast to its repeatability), we would have no logical grounds to use it at all except as

a means for ordering events. In this case, we would be expecting no more from our

ruler and we would have no concern about a systematic error. What this implies is that

we require at least some limited prior information about our ruler’s scale to be

concerned about a systematic error.

As we have seen, a unique feature of the Bayesian approach is the ability to incorporate

prior information and see how it affects our conclusions. In the case of the ruler accuracy,

the approach taken is to introduce the scale of the ruler into the calculation as a

parameter, i.e., we parameterize the systematic error. We can then treat this as a nuisance

parameter and marginalize (integrate over) this parameter to obtain our final inference

about the quantity of interest. If the uncertainty in the accuracy of our scale is very large,

this will be reflected quantitatively in a larger uncertainty in our final inference.

In a complex measurement, many different types of systematic errors can occur,

which in principle, can be parameterized and marginalized. For example, consider the

5 One important ruler in astronomy is the Hubble relation relating redshift or velocity to distance.
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followingmodification to the spectral line problem of Section 3.6. Even if we know the

predicted frequency of the spectral line accurately, the observed frequency depends on

the velocity of the source with respect to the observer through the Doppler effect. The

observed frequency of the line, fo, is related to the emitted frequency, fe by

fo¼ fe 1þ v

c

� �
for

v

c
� 1; (3:63)

where v is the line of sight component of the velocity of the line emitting region and c

equals the velocity of light. In our search for a spectral line, we may be examining a

small portion of the Orion nebula and only know the distribution of velocities for the

integrated emission from the whole nebula, which may be dominated by turbulent and

rotational motion of its parts. The unknown factor v introduces a systematic error in

our frequency scale. In this case, we might choose to parameterize the systematic error

in v by a Gaussian with a mean and � equal to that of the Orion nebula as a whole.

From the Bayesian viewpoint, we can even consider uncertain scales that arise in a

theoretical model as introducing a systematic error on the same footing, for the

purposes of inference, as those associated with a measurement. In the above example,

we may know the velocity of the source accurately but the theory may be imprecise

with regard to its frequency scale.

Of course, the exact form by which we parameterize a systematic error is con-

strained by our available information, and just as our theories of nature are updated as

our state of knowledge changes, so in general will our understanding of these

systematic errors.

It is often the case that we can obtain useful information about a systematic error

from the interaction between measurements and theory in Bayesian inference. In

particular, we can compute the marginal posterior for the parameter characterizing

our systematic error as was done in Figure 3.9. This and other points raised in this

section are brought out by the problems at the end of this chapter.

The effect of marginalizing over any parameter, whether or not it is associated with a

systematic error, is to introduce an Occam factor which penalizes the model for any prior

parameter space that gets ruled out by the data through the likelihood function. The

larger the prior range that is excluded by the likelihood function, the greater the Occam

penalty. It is thus possible to rule out a validmodel by employing an artificially large prior

for some systematic error or model parameter. Fortunately, Bayesian inference requires

one to specify one’s choice of prior so its effect on the conclusions can readily be assessed.

3.11.1 Systematic error example

In 1929, Edwin Hubble found a simple linear relationship between the distance of a

galaxy, x, and its recessional velocity, v, of the form v ¼ H0x, where H0 is known as

Hubble’s constant. Hubble’s constant provides the scale of our ruler for astronomical

distance determination. An error in H0 leads to a systematic error in distance
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determination. A modern value of H0 ¼ 70	 10 km s�1 Mpc�1. Note: astronomical

distances are commonly measured in Mpc (a million parsecs). Suppose a particular

galaxy has a measured recessional velocity vm ¼ ð100	 5Þ � 103 km s�1. Determine

the posterior PDF for the distance to the galaxy assuming:

1) A fixed value of H0 ¼ 70 km s�1 Mpc�1.

2) We allow for uncertainty in the value of Hubble’s constant. We assume a Gaussian prob-

ability density function for H0, of the form

pðH0jIÞ¼ k exp �ðH0 � 70Þ2

2� 102

( )
; (3:64)

where k is a normalization constant.

3) We assume a uniform probability density function for H0, given by

pðH0jIÞ¼
1=ð90� 50Þ; for 50 � H0 � 90
0; elsewhere.

�
(3:65)

4) We assume a Jeffreys probability density function for H0, given by

pðH0jIÞ¼ ½H0 lnð90=50Þ��1; for 50 � H0 � 90
0; elsewhere.

�
(3:66)

As usual, we can write

vm¼ vtrue þ e (3:67)

where vtrue is the true recessional velocity and e represents the noise component of the

measured velocity, vm. Assume that the probability density function for e can be

described by a Gaussian with mean 0 and � ¼ 5 km s�1. To keep the problem simple,

we also assume the error in v is uncorrelated with the uncertainty in H0.

Through the application of Bayes’ theorem, as outlined in earlier sections of

this chapter, we can readily evaluate the posterior PDF, pðxjD; IÞ, for the

distance to the galaxy. The results for the four cases are given below and plotted

in Figure 3.10.

Case 1:

pðxjD; IÞ / pðxjIÞ pðDjx; IÞ¼ pðxjIÞ 1ffiffiffiffiffiffi
2p
p

�
exp � e2

2�2

� �

¼ pðxjIÞ 1ffiffiffiffiffiffi
2p
p

�
exp �ðvm � vtrueÞ2

2�2

( )

¼ pðxjIÞ 1ffiffiffiffiffiffi
2p
p

�
exp �ðvm �H0xÞ2

2�2

( )
:

(3:68)
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Case 2:

In this case, I incorporates a Gaussian prior uncertainty in the value of H0.

pðxjD; IÞ¼
Z 1
�1

dH0 pðx;H0jD; IÞ

/ pðxjIÞ
Z 1
�1

dH0 pðH0jx; IÞ pðDjx;H0; IÞ

¼ pðxjIÞ
Z 1
�1

dH0 pðH0jIÞ pðDjx;H0; IÞ

¼ pðxjIÞ
Z 1
�1

dH0 k exp �ðH0 � 70Þ2

2� 102

( )

� 1ffiffiffiffiffiffi
2p
p

�
exp �ðvm � H0xÞ2

2�2

( )
:

(3:69)

Case 3:

In this case, I incorporates a uniform prior uncertainty in the value of H0.

pðxjD; IÞ / pðxjIÞ
Z 90

50

dH0 pðH0jIÞ pðDjx;H0; IÞ

¼ pðxjIÞ
Z 90

50

dH0
1

ð90� 50Þ
1ffiffiffiffiffiffi
2p
p

�
exp �ðvm � H0xÞ2

2�2

( )
:

(3:70)
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Figure 3.10 Posterior PDF for the galaxy distance, x: 1) assuming a fixed value of Hubble’s
constant (H0), 2) incorporating a Gaussian prior uncertainty forH0, 3) incorporating a uniform
prior uncertainty for H0, and 4) incorporating a Jeffreys prior uncertainty for H0.
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Case 4:

In this case, I incorporates a Jeffreys prior uncertainty in the value of H0.

pðxjD; IÞ / pðxjIÞ
Z 90

50

dH0 pðH0jIÞ pðDjx;H0; IÞ

¼ pðxjIÞ
Z 90

50

dH0
1

H0 lnð90=50Þ
1ffiffiffiffiffiffi
2p
p

�
exp �ðvm � H0xÞ2

2�2

( )
:

(3:71)

Equations (3.68), (3.69), (3.70), and (3.71) have been evaluated assuming a uniform

prior for pðxjIÞ, and are plotted in Figure 3.10. Incorporating the uncertainty in the

scale of our astronomical ruler can lead to two effects. Firstly, the posterior PDF for

the galaxy distance is broader. Secondly the mean of the PDF is clearly shifted to a

larger value. The means of the PDFs for the four cases are 1429, 1486, 1512, and

1556 km s�1, respectively.

It may surprise you that pðxjD; IÞ becomes asymmetric when we allow for the

uncertainty in H0. One way to appreciate this is to approximate the integral by a

weighted summation over a discrete set of choices for H0. For each choice of H0,

pðxjD; IÞ is a symmetric Gaussian offset by a distance �x given by

�x¼ vm
H0 þ�H0

� vm
H0
¼ � �H0

H0 þ�H0

� �
vm
H0

: (3:72)

For �H0¼ þ 20 km s�1 Mpc�1, the bracketed term in Equation (3.72) is equal

to �0:22. For�H0¼ � 20 km s�1 Mpc�1, this term is equal to þ0:4. Thus, the set of
discrete Gaussians is more spread out on one side than the other, which accounts for

the asymmetry.

3.12 Problems

1. Redo the calculation of the odds for the spectral line problem of Section 3.6 for the

case where there is a systematic uncertainty in the line center of 	5 channels.

2. The prior information is the same as that given for the spectral line problem in Section

3.6 of the text. The measured spectrum is given in Table 3.2. The spectrum consists of

64 frequency channels. Theory predicts the spectral line has a Gaussian shape with a

line width �L ¼ 2 frequency channels. The noise in each channel is known to be

Gaussian with a � ¼ 1:0mK and the spectrometer output is in units of mK.

(a) Plot a graph of the raw data.

(b) Compute the posterior probability of M1 � ‘‘theory 1 is correct, the spectral

line exists,’’ for the two cases: (1) Jeffreys prior for the signal strength, and

(2) uniform prior. For this part of the problem, assume that the theory predicts

that the spectral line is in channel 24. The prior range for the signal strength is

0.1 to 100 mK. InMathematica you can use the commandNIntegrate to do the

numerical integration required in marginalizing over the line strength.
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(c) Explain your reasons for preferring one or the other of the two priors.

(d) On the assumption that the model predicting the spectral line is correct,

compute and plot the posterior probability (density function) for the line

strength for both priors.

(e) Summarize the posterior probability for the line strength by quoting the most

probable value and the ðþÞ and ð�Þ error bars that span the 95% credible region

(see the last part of Section 3.3 for a definition of credible region). The credible

region can be evaluated by computing the probability for a discrete grid of

closely spaced line temperature values. Sort these (probability, temperature)

pairs in descending order of probability and then sum the probabilities starting

from the highest until they equal 95%. As each term is added, keep track of the

upper and lower temperature bounds of the terms included in the sum.

Mathematica command Sort[yourdata, OrderedQ[{#2, #1] &];, will sort the

file ‘‘yourdata’’ in descending order according to the first item in each row of

the data list.

(f) Repeat the calculations in (b) and (d), only this time, assume that the prior

prediction on the location of the spectral line frequency is uncertain; it is

predicted to occur somewhere between channels 1 and 50. Assume a uniform

Table 3.2 Spectral line data consisting of 64 frequency channels obtained with a radio

astronomy spectrometer. The output voltage from each channel has been calibrated in

units of effective black body temperature expressed in mK. The existence of negative

values arises from receiver channel noise which gives rise to both positive and negative

fluctuations.

ch. # mK ch. # mK ch. # mK ch. # mK

1 0.25 17 �0.42 33 0.44 49 �1.56
2 �0.19 18 1.43 34 0.05 50 �0.64
3 0.25 19 �1.33 35 0.59 51 0.48

4 �0.56 20 0.06 36 0.94 52 1.79

5 �0.41 21 0.82 37 �0.10 53 0.07

6 �0.94 22 0.42 38 0.57 54 1.30

7 0.84 23 3.76 39 0.40 55 0.29

8 �0.30 24 1.10 40 �0.97 56 �0.23
9 �2.06 25 1.31 41 2.20 57 �0.50
10 �1.39 26 1.86 42 0.15 58 0.93

11 0.07 27 0.32 43 �0.37 59 �1.28
12 1.80 28 �1.14 44 �0.67 60 �1.98
13 �1.02 29 1.24 45 �0.05 61 1.85

14 �0.46 30 �0.29 46 �0.20 62 0.89

15 0.29 31 0.02 47 0.65 63 0.65

16 �0.36 32 �1.52 48 �1.24 64 0.28
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prior for the unknown line center.6 This will involve computing a two-

dimensional likelihood distribution in the variables line frequency and line

strength for a discrete set of values of these parameters, and then using a

summation operation to approximate integration7 (you will probably find

NIntegrate too slow in two dimensions), for marginalizing over both para-

meters to obtain the global likelihood for computing the odds. For this

purpose, you can use a line frequency interval of 1 channel and a signal

strength interval of 0.1 mK for 100 intervals. Although this only spans the

prior range 0.1 to 10 mK the PDF will be so low beyond 10 mK that it will not

contribute significantly to the integral.

(g) Calculate and plot the marginal posterior probabilities for the line frequency.

(h) What additional Occam factor is associated with marginalizing over the prior

line frequency range?

3. Plot pðxjD; IÞ for case 4 (Jeffreys prior) in Section 3.11.1, assuming

pðH0jIÞ¼
1

H0 lnð80=60Þ ; for 60 � H0 � 80

0; elsewhere.

�
(3:73)

Box 3.1

Equation (3.69) can be evaluated using Mathematica.

The evaluation will be faster if you compute a Table of values for

pðx;H0jD; IÞ at equally spaced intervals in x, and use

NIntegrate to integrate over the given range for H0.

p(x|D; I) � Table [

x; NIntegrate
1

H0

ffiffiffiffiffiffi
2p
p

s
exp -

ðum -xH0Þ2

2�2

 !
; {H0; 60; 80}

" #( )
;

{x; 800; 2200; 50}]

6 Note: when the frequency range of the prior is a small fraction of center frequency, the conclusion will be the same
whether a uniform or Jeffreys prior is assumed for the unknown frequency.

7 A convenient way to sum elements in a list is to use the Mathematica command Plus@@list.
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4

Assigning probabilities

4.1 Introduction

When we adopt the approach of probability theory as extended logic, the solution to

any inference problem begins with Bayes’ theorem:

pðHijD; IÞ¼
pðHijIÞpðDjHi; IÞ

pðDjIÞ : (4:1)

In a well-posed problem, the prior information, I, defines the hypothesis space and

provides the information necessary to compute the terms in Bayes’ theorem.

In this chapter we will be concerned with how to encode our prior information, I,

into a probability distribution to use for pðDjHi; IÞ. Different states of knowledge

correspond to different probability distributions. These probability distributions are

frequently called sampling distributions, a carry-over from conventional statistics

literature. Recall that in inference problems, pðDjHi; IÞ gives the probability of obtain-
ing the data, D, that we actually got, under the assumption that Hi is true. Thus,

pðDjHi; IÞ yields how likely it is that Hi is true,1 and hence it is referred to as the

likelihood and frequently written as LðHiÞ.
For example, we might have two competing hypotheses H1 and H2 that each

predicts different values of some temperature, say 1K and 4.5K, respectively. If the

measured value is 1:2� 0:4K then it is clear that H1 is more likely to be true. In

precisely this type of situation we can use pðDjHi; IÞ to compute quantitatively the

relative likelihood of H1 and H2. We saw how to do that in one case (Section 3.6)

where the likelihood was the product of N independent Gaussian distributions.

4.2 Binomial distribution

In this section, we will see how a particular state of knowledge (prior information I) leads

us to the choice of likelihood, pðDjHi; IÞ, which is the well-known binomial distribution

(derivation due to M. Tribus, 1969). In this case, our prior information is as follows:

1 Conversely, if we know that Hi is true, then we can directly calculate the probability of observing any particular data
value. We will use pðDjHi; IÞ in this way to generate simulated data sets in Section 5.13.
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I � ‘‘Proposition E represents an event that is repeated many times and has two

possible outcomes represented by propositions, Q and Q, e.g., tossing a coin. The

probability of outcome Q is constant from event to event, i.e., the probability of getting

an outcomeQ in any individual event is independent of the outcome for any other event.’’

In the Boolean algebra of propositions we can write E as

E¼QþQ; (4:2)

whereQþQ is the logical sum. Then the possible outcomes of n events can be written as

E1;E2; . . . ;En¼ðQ1 þQ1Þ; ðQ2 þQ2Þ; . . . ; ðQn þQnÞ; (4:3)

where Qi � ‘‘outcome Q occurred for the ith event.’’ If the multiplication on the right is

carried out, the result will be a logical sum of 2n terms, each a product of n logical

statements, thereby enumerating all possible outcomes of the n events. For n¼ 3 we find:

E1;E2;E3¼Q1;Q2;Q3 þQ1;Q2;Q3 þQ1;Q2;Q3 þQ1;Q2;Q3

þQ1;Q2;Q3 þQ1;Q2;Q3 þQ1;Q2;Q3 þQ1;Q2;Q3:
(4:4)

The probability of the particular sequence Q1;Q2;Q3 can be obtained from repeated

applications of the product rule.

pðQ1;Q2;Q3Þ¼ pðQ1jIÞ pðQ2;Q3jQ1; IÞ
¼ pðQ1jIÞ pðQ2jQ1; IÞ pðQ3jQ1;Q2; IÞ:

(4:5)

Information I leads us to assign the same probability for outcome Q for each event

independent of what happened earlier or later, so Equation (4.5) becomes

pðQ1;Q2;Q3Þ¼ pðQ1jIÞ pðQ2jIÞ pðQ3jIÞ
¼ pðQjIÞ pðQjIÞ pðQjIÞ
¼ pðQjIÞ pðQjIÞ2:

(4:6)

Thus, the probability of a particular outcome depends only on the number ofQ’s and

Q’s in it and not on the order in which they occur. Returning to Equation (4.4), we

note that:

one outcome, the first, contains three Q’s,

three outcomes contain two Q’s,

three outcomes contain only one Q,

and one outcome contains no Q’s.

More generally, we are going to be interested in the number of ways of getting an

outcome with r Q’s in n events or trials. In each event, it is possible to obtain aQ, so the

question becomes in how many ways can we select r Q’s from n events where their

order is irrelevant, which is given by nCr.
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nCr¼
n!

r!ðn� rÞ! ¼
n
r

� �
: (4:7)

For example,
3
2

� �
¼ 3!

2!1!
¼ 3; Q;Q;Q Q;Q;Q Q;Q;Q.

Thus, the probability of getting r Q’s in n events is the probability of any one sequence

with r Q’s and ðn� rÞ Q’s, multiplied by nCr, themultiplicity of ways of obtaining r Q ’s

in n events or trials. Therefore, we conclude that in n trials, the probability of seeing the

outcome of r Q’s and ðn� rÞ Q’s is

pðrjn; IÞ¼ n!

r!ðn� rÞ! pðQjIÞ
rpðQjIÞn�r: (4:8)

This distribution is called the binomial distribution.

Note the similarity to the binomial expansion

ðxþ yÞn¼
Xn
r¼ 0

n!

r!ðn� rÞ! x
ryn�r: (4:9)

Referring back to Equation (4.4), in the algebra of propositions, we can interpretEn to

mean E carried out n times and write it in a form analogous to Equation (4.9):

En¼ðQþQÞn:

Example:

I � ‘‘You pick up one of two coins which appear identical. One, coinA, is known to be

a fair coin, while coin B is a weighted coin with pðheadÞ¼ 0:2.’’ From this information

and from experimental information you will acquire from tossing the coin, compute

the probability that you picked up coin A.

D � ‘‘3 heads turn up in 5 tosses.’’

What is the probability you picked coin A?

Let odds¼ pðAjD; IÞ
pðBjD; IÞ

¼ pðAjIÞpðDjA; IÞ
pðBjIÞpðDjB; IÞ ¼

1
2 pðDjA; IÞ
1
2 pðDjB; IÞ

:

(4:10)

To evaluate the likelihoods pðDjA; IÞ and pðDjB; IÞ, we use the binomial distribution,

given by

pðrjn; IÞ¼ n!

r!ðn� rÞ! pðheadjA; IÞ
rpðtailjA; IÞn�r;

where pðrjn; IÞ is the probability of obtaining r heads in n tosses and pðheadjA; IÞ is
the probability of obtaining a head in any single toss assuming A is true. Now
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pðDjA; IÞ¼ n
r

� �
pðheadjA; IÞr pðtailjA; IÞn�r¼ 5

3

� �
ð0:5Þ3ð0:5Þ2

and pðDjB; IÞ¼ 5
3

� �
ð0:2Þ3ð0:8Þ2 ! odds¼ 6:1¼ pðAjD;IÞ

1�pðAjD;IÞ and so pðAjD; IÞ¼ 0:86.

Thus, the probability you picked up coin A¼ 0:86, based on our current state of

knowledge.

4.2.1 Bernoulli’s law of large numbers

The binomial distribution allows us to compute pðrjn; IÞ, where r is, for example, the

number of heads occurring in n tosses of a coin. According to Bernoulli’s law of large

numbers, the long-run frequency of occurrence tends to the probability of the event

occurring in any single trial, i.e.,

lim
n!1

r

n
¼ pðheadjIÞ: (4:11)

We can easily demonstrate this using the binomial distribution. If the probability of

a head in any single toss is pðheadjIÞ¼ 0:4, Figure 4.1 shows a plot of pðr=njn; IÞ versus
the fraction r=n for a variety of different choices of n ranging from 20 to 1000.

Box 4.1 Mathematica evaluation of binomial distribution:

Needs[‘‘Statistics ‘DiscreteDistributions’’’]

The line above loads a package containing a wide range of discrete distributions of

importance to statistics, and the following line computes the probability of r heads

in n trials where the probability of a head in any one trial is p.

PDF[Binomial Distribution[n, p], r]

! answer¼ 0:205 ðn¼ 10; p¼ 0:5; r¼ 4Þ

Notice as n increases, the PDF for the frequency becomes progressively more sharply

peaked, converging on a value of 0.4, the probability of a head in any single toss.

Although Bernoulli was able to derive this result, his unfulfilled quest lay in the

inverse process: what could one say about the probability of obtaining a head, in a

single toss, given a finite number of observed outcomes? This turns out to be a

straightforward problem for Bayesian inference as we see in the next section.

4.2.2 The gambler’s coin problem

Let I � ‘‘You have acquired a coin from a gambling table. You want to determine

whether it is a biased coin from the results of tossing the coin many times. You specify

the bias of the coin by a proposition H, representing the probability of a head
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occurring in any single toss. A priori, you assume that H can have any value in the

range 0! 1 with equal probability. You want to see how pðHjD; IÞ evolves as a

function of the number of tosses.’’

Let D � ‘‘You toss the coin 50 times and record the following results: (a) 2 heads in

the first 3 tosses, (b) 7 heads in the first 10 tosses, and (c) 33 heads in 50 tosses.’’

From the prior information, we determine that our hypothesis space H is contin-

uous in the range 0! 1. As usual, our starting point is Bayes’ theorem:

pðHjD; IÞ¼ pðHjIÞpðDjH; IÞ
pðDjIÞ : (4:12)

Since we are assuming a uniform prior for pðHjIÞ, the action will all be in the

likelihood term pðDjH; IÞ, which, in this case, is given by the binomial distribution:

pðrjn; IÞ¼ n!

r!ðn� rÞ!H
rð1�HÞn�r: (4:13)

Note: the symbol H is being employed in two different ways. In Equation (4.13), it is

acting as an ordinary algebraic variable standing for possible numerical values in the

range 0 to 1. When it appears as an argument of a probability or PDF, e.g., pðHjD; IÞ,
it acts as a proposition (obeying the rules of Boolean algebra) and asserts that the true

value lies in the numerical range H to Hþ dH.

Figure 4.2 shows the results from Equation (4.13) as a function of H in the range

0! 1. From the figure, we can clearly see how the evolution of our state of knowledge

of the coin translates into a progressively more sharply peaked posterior PDF. From

this simple example, we can see how Bayes’ theorem solves the inverse problem: find

pðHjD; IÞ given a finite number of observed outcomes represented by D.
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Figure 4.1 A numerical illustration of Bernoulli’s law of large numbers. The PDF for the

frequency of heads, r=n, in n tosses of a coin is shown for three different choices of n. As n
increases, the distribution narrows about the probability of a head in any single toss ¼ 0:4.
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4.2.3 Bayesian analysis of an opinion poll

Let I � ‘‘A number of political parties are seeking election in British Columbia. The

questions to be addressed are: (a) what is the fraction of decided voters that support

the Liberals, and (b) what is the probability that the Liberals will achieve a majority of

at least 51% in the upcoming election, assuming the poll will be representative of the

population at the time of the election?’’

LetD � ‘‘In a poll of 800 decided voters, 18% supported the NewDemocratic Party

versus 55% for the Liberals, 19% for Reform BC and 8% for other parties.’’

Let the propositionH � ‘‘The fraction of the voters that will support the Liberals is

between H and Hþ dH.’’ In this problem our hypothesis space of interest is contin-

uous in the range 0 to 1, so pðHjD; IÞ is a probability density function.

Based only on the prior information as stated, we adopt a flat prior pðHjIÞ¼ 1.

Let r¼ the number of respondents in the poll that support the Liberals. As far as

this problem is concerned, there are only two outcomes of interest; a voter either will

or will not vote for the Liberals. We can therefore use the binomial distribution to

evaluate the likelihood function pðDjH; IÞ. Given a particular value ofH, the binomial

distribution gives the probability of obtaining D¼ r successes in n samples, where in

this case, a success means support for the Liberals.

pðDjH; IÞ¼ n!

r!ðn� rÞ!H
rð1�HÞn�r: (4:14)

In this problem n¼ 800, and r¼ 440. From Bayes’ theorem we can write

pðHjD; IÞ¼ pðHjIÞpðDjH; IÞ
pðDjIÞ ¼ pðDjH; IÞ

pðDjIÞ ¼
pðDjH; IÞR 1

0 dHpðDjH; IÞ
: (4:15)
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Figure 4.2 The posterior PDF for the bias of a coin determined from: (a) 3 tosses, (b) 10 tosses,
and (c) 50 tosses.
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Figure 4.3 shows a graph of the posterior probability ofH for a variety of poll sizes

including n¼ 800. The 95% credible region2 forH is 55þ3:4�3:5%. A frequentist interpreta-

tion of the same poll would express the uncertainty in the fraction of decided voters

supporting the Liberals in the following way: ‘‘The poll of 800 people claims an

accuracy of�3:5%, 19 times out of 20.’’ We will see why when we deal with frequentist

confidence intervals in Section 6.6.

The second question, concerning the probability that the Liberals will achieve a

majority of at least 51% of the vote, is addressed as a model selection problem. The

two models are:

1. ModelM1 � ‘‘the Liberals will achieve amajority.’’ The parameter of themodel isH, which is

assumed to have a uniform prior in the range 0:51 � H � 1:0.

2. Model M2 � ‘‘the Liberals will not achieve a majority.’’ The parameter of the model is H,

which is assumed to have a uniform prior in the range 0 � H 5 0:51.

From Equation (3.14) we can write

odds¼O12¼
pðM1jIÞ
pðM2jIÞ

B12; (4:16)
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Figure 4.3 The posterior PDF for H, the fraction of voters in the province supporting the

Liberals based on polls of size n ¼ 100; 200; 800 decided voters.

2 Note: a Bayesian credible region is not the same as a frequentist confidence interval. For a uniform prior for H the 95%
confidence interval has essentially the same value as the 95% credible region, but the interpretation is very different.
The recipe for computing a credible region was given at the end of Section 3.3.
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where

B12¼
pðDjM1; IÞ
pðDjM2; IÞ

¼
R 1
H¼ 0:51 dH pðHjM1; IÞ pðDjM1;H; IÞR 0:51
H¼ 0 dH pðHjM2; IÞ pðDjM2;H; IÞ

¼
R 1
H¼ 0:51 dHð1=0:49Þ pðDjM1;H; IÞR 0:51
H¼ 0 dHð1=0:51Þ pðDjM2;H; IÞ

¼ 87:68:

(4:17)

Based on I, we have no prior reason to preferM1 overM2, soO12¼B12. The probability

that the Liberal party will win a majority is then given by (see Equation (3.18))

pðM1jD; IÞ¼
1

ð1þ 1=O12Þ
¼ 0:989: (4:18)

Again, we emphasize that our conclusions are conditional on the assumed prior informa-

tion, which includes the assumption that the poll will be representative of the population

at the time of the election. Now thatwe have set up the equations to answer the questions

posed above, it is a simple exercise to recompute the answers assuming different prior

information, e.g., suppose the prior lower bound on H were 0.4 instead of 0.

4.3 Multinomial distribution

When we throw a six-sided die there are six possible outcomes. This motivates the

following question: Is there a generalization of the binomial distribution for the case

where we have more than two possible outcomes? Again we can use probability theory

as extended logic to derive the appropriate distribution starting from a statement of

our prior information.

I � ‘‘Proposition E represents an event that is repeated many times and has m

possible outcomes represented by propositions, O1;O2; . . . ;Om. The outcomes of

individual events are logically independent, i.e., the probability of getting an outcome

Oi in event j is independent of what outcome occurred in any other event.’’

E¼O1 þO2 þO3 þ � � � þOm, then for the event E repeated n times:

En¼ðO1 þO2 þ � � � þOmÞn:

The probability of any particular En having

O1 occurring n1 times
O2 occurring n2 times

..

. ..
. ..

. ..
.

Om occurring nm times

is pðEnjIÞ¼ pðO1jIÞn1 pðO2jIÞn2 . . . pðOmjIÞnm .
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Next we need to find the number of sequences having the same number of

O1;O2; . . . ;Om (multiplicity) independent of the order. We can readily guess at

the form of multiplicity by rewriting Equation (4.7) setting the denominator

r!ðn� rÞ!¼ n1!n2!.

multiplicity for the two-outcome case¼ n!

r!ðn� rÞ! ¼
n!

n1!n2!
; (4:19)

where n1 stands for the number ofA’s and n2 for the number ofA’s. Now in the current

problem, we have m possible outcomes for each event, so,

multiplicity for the m-outcome case¼ n!

n1!n2! . . . nm!
; (4:20)

where n¼
Pm

i¼ 1 ni.

Therefore, the probability of seeing the outcome defined by n1n2 . . . nm where ni �
‘‘Outcome Oi occurred ni times’’ is

pðn1; n2; . . . ; nmjEn; IÞ¼ n!

n1!n2! . . . nm!

Ym
i¼ 1

pðOijIÞni : (4:21)

This is called the multinomial distribution.

Compare this with the multinomial expansion:

ðx1 þ x2 þ � � � þ xmÞn¼
X n!

n1!n2! . . . nm!
xni1 x

n2
2 . . . xnmm ; (4:22)

where the sum is taken over all possible values of ni, subject to the constraint thatPm
i¼ 1 ni¼ n.

4.4 Can you really answer that question?

Let I � ‘‘A tin containsN buttons, identical in all respects except thatM are black and

the remainder are white.’’

What is the probability that you will a pick a black button on the first draw

assuming you are blindfolded? The answer is clearly M/N. What is the probability

that you will a pick a black button on the second draw if you know that a black button

was picked on the first and not put back in the tin (sampling without replacement)?
Let Bi � ‘‘A black button was picked on the ith draw.’’

Let Wi � ‘‘A white button was picked on the ith draw.’’

Then

pðB2jB1; IÞ¼
M� 1

N� 1
;

because for the second draw there is one less black button and one less button

in total.
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Now, what is the probability of picking a black button on the second draw pðB2jIÞ
when we are not told what color was picked on the first draw? In this case the answer

might appear to be indeterminate, but as we shall show, questions of this kind can be

answered using probability theory as extended logic.

We know that either B1 or W1 is true, which can be expressed as the Boolean

equation B1 þW1¼ 1. Thus we can write:

B2¼ðB1 þW1Þ;B2¼B1;B2 þW1;B2:

But according to Jaynes consistency (see Section 2.5.1), equivalent states of knowledge

must be represented by equivalent plausibility assignments. Therefore

pðB2jIÞ¼ pðB1;B2jIÞ þ pðW1;B2jIÞ

¼ pðB1jIÞpðB2jB1; IÞ þ pðW1jIÞpðB2jW1; IÞ

¼ M

N

� �
M� 1

N� 1

� �
þ N�M

N

� �
M

N� 1

� �

¼ M

N
:

(4:23)

In like fashion, we can show

pðB3jIÞ¼
M

N
:

The probability of black at any draw, if we do not know the result of any other draw, is

always the same.

The method used to obtain this result is very useful.

1. Resolve the quantity whose probability is wanted into mutually exclusive sub-propositions:3

B3¼ðB1 þW1Þ; ðB2 þW2Þ;B3

¼B1;B2;B3 þ B1;W2;B3 þW1;B2;B3 þW1;W2;B3:

2. Apply the sum rule.

3. Apply the product rule.

If the sub-propositions are well chosen (i.e., they have a simple meaning in the

context of the problem), their probabilities are often calculable.

While we are on the topic of sampling without replacement, let’s introduce the

hypergeometric distribution (see Jaynes, 2003). This gives the probability of drawing r

3 In his book, Rational Descriptions, Decisions and Designs, M. Tribus refers to this technique as extending the
conversation. In many problems, there are many pieces of information which do not seem to fit together in any simple
mathematical formulation. The technique of extending the conversation provides a formal method for introducing this
information into the calculation of the desired probability.
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black buttons (blindfolded) in n tries from a tin containing N buttons, identical in all

respects except that M are black and the remainder are white.

pðrjN;M; nÞ¼

M
r

� �
N�M
n� r

� �
N
n

� � ; (4:24)

where

M
r

� �
¼ M!

r!ðM� rÞ! etc: (4:25)

Box 4.2 Mathematica evaluation of hypergeometric distribution:

Needs[‘‘Statistics ‘DiscreteDistributions’ ’’]

PDF[HypergeometricDistribution [n, nsucc, ntot], r]

gives the probability of r successes in n trials corresponding to sampling without

replacement from a population of size ntot with nsucc potential successes.

4.5 Logical versus causal connections

We now need to clear up an important distinction between a logical connection

between two propositions and a causal connection. In the previous problem with M

black buttons andN�Mwhite buttons, it is clear that pðBjjBj�1; IÞ < pðBjjIÞ since we
know there is one less black button in the tin when we take our next pick. Clearly, what

was drawn on earlier draws can affect what will happen in later draws. We can say

there is some kind of partial causal influence of Bj�1 on Bj.

Now suppose we ask the question what is the probability pðBj�1jBj; IÞ? Clearly in

this case what we get on a later draw can have no effect on what occurs on an earlier

draw, so it may be surprising to learn that pðBj�1jBj; IÞ¼ pðBjjBj�1; IÞ. Consider the
following simple proof (Jaynes, 2003). From the product rule we write

pðBj�1;BjjIÞ¼ pðBj�1jBj; IÞpðBjjIÞ¼ pðBjjBj�1; IÞpðBj�1jIÞ:

But we have just seen that pðBjjIÞ¼ pðBj�1jIÞ¼M=N for all j, so

pðBj�1jBj; IÞ¼ pðBjjBj�1; IÞ; (4:26)

or more generally,

pðBkjBj; IÞ¼ pðBjjBk; IÞ; for all j; k: (4:27)
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How can information about a later draw affect the probability of an earlier draw?

Recall that in Bayesian analysis, probabilities are an encoding of our state of know-

ledge about some question. Performing the later draw does not physically affect the

numberMj of black buttons in the tin at the jth draw. However, information about the

result of a later draw has the same effect on our state of knowledge about what could

have been taken on the jth draw, as does information about an earlier draw. Bayesian

probability theory is concerned with all logical connections between propositions

independent of whether there are causal connections.

Example 1:

I � ‘‘A shooting has occurred and the police arrest a suspect on the same day.’’

A � ‘‘Suspect is guilty of shooting.’’

B � ‘‘A gun is found seven days after the shooting with suspect’s fingerprints on it.’’

Clearly, B is not a partial cause of A but still we conclude that

pðAjB; IÞ5pðAjIÞ:

Example 2:

I � ‘‘A virulent virus invades Montreal. Anyone infected loses their hair a month
before dying.’’

A � ‘‘The mayor of Montreal lost his hair in September.’’

B � ‘‘The mayor of Montreal died in October.’’

Again, in this case, pðAjB; IÞ5pðAjIÞ.

Although a logical connection does not imply a causal connection, a causal con-

nection does imply a logical connection, so we can certainly use probability theory to

address possible causal connections.

4.6 Exchangeable distributions

In the previous section, we learned that information about the result of a later draw

has the same effect on our state of knowledge about what could have been taken on

the jth draw, as does information about an earlier one. Every draw has the same

relevance to every other draw regardless of their time order. For example,

pðBjjBj�1;Bj�2; IÞ¼ pðBjjBjþ1;Bjþ2; IÞ, where again Bj is the proposition asserting a

black button on the jth draw. The only thing that is significant about the knowledge

of outcomes of other draws is the number of black or white buttons in these draws,

not their time order. Probability distributions of this kind are called exchangeable

distributions. It is clear that the hypergeometric distribution is exchangeable since for

pðrjN;M; nÞ we are not required to specify the exact sequence of the r black button

outcomes. The hypergeometric distribution takes into account the changing
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contents of the tin. The result of any draw changes the probability of a black on any

other draw. If the number,N, of buttons in the tin is much larger than the number of

draws n, then this probability changes very little. In the limit as N!1, the

hypergeometric distribution simplifies to the binomial distribution, another

exchangeable distribution.

The multinomial distribution, discussed in Section 4.3, can be viewed as a general-

ization of the binomial distribution to the case where we have m possible outcomes,

not just two. From its form given in Equation (4.21), which we repeat here,

pðn1; n2; . . . ; nmjEn; IÞ¼ n!

n1!n2! . . . nm!

Ym
i¼ 1

pðOijIÞni ;

we can see that this is another exchangeable distribution because the probability

depends only on the numbers of different outcomes ðn1; n2; . . . ; nmÞ observed and

not on their order.

Worked example:

A spacecraft carrying two female and three male astronauts makes a trip to Mars.

The plan calls for three of the astronauts to board a detachable capsule to land on the

planet, while the other two remain behind in orbit. Which three will board the

capsule is decided by a lottery, consisting of picking names from a box. The first

person selected is to be the captain of the capsule. The second and third names

selected become capsule support crew. What is the probability that the captain is

female if we know that at least one of the support crew members is female? Let Fi

stand for the proposition that the ith name selected is female, and Mi if the person

is male.

Let Flater � ‘‘We learn that at least one of the crew members is female.’’

Flater¼F2 þ F3:

This information reduces the number of females available for the first draw by at

least one. To solve the problem we will make use of Bayes’ theorem and abbreviate

Flater by FL.

pðF1jFL; IÞ¼
pðF1jIÞpðFLjF1; IÞ

pðFLjIÞ
: (4:28)

To evaluate two of the terms on the right, it will be convenient to work with denials of

FL. From the sum rule, pðFLjF1; IÞ¼ 1� pðFLjF1; IÞ. Since FL¼F2 þ F3, we have that

FL¼F2;F3¼M2;M3, according to the duality identity of Boolean algebra (Section
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2.2.3). In words, the denial of at least one female in draws 2 and 3 is a male on both

draws. Therefore,

pðFLjF1; IÞ¼ 1� pðM2;M3jF1; IÞ¼ 1� pðM2jF1; IÞpðM3jM2;F1; IÞ

¼ 1� 3

4

� �
2

3

� �
¼ 1

2
:

(4:29)

Similarly, we can write pðFLjIÞ¼ 1� pðM2;M3jIÞ. By exchangeability, pðM2;M3jIÞ is
the same as the probability of a male on the first two draws given only the conditional

information I, i.e., not F1; I. Therefore,

pðFLjIÞ¼ 1� pðM2;M3jIÞ¼ 1� pðM1;M2jIÞ¼ 1� pðM1jIÞpðM2jM1; IÞ

¼ 1� 3

5

� �
2

4

� �
¼ 7

10
:

(4:30)

Substituting Equations (4.29) and (4.30) into Equation (4.28), we obtain

pðF1jFL; IÞ¼
2
5

� �
1
2

� �
7
10

� � ¼ 2

7
: (4:31)

The property of exchangeability has allowed us to evaluate the desired probability in a

circumstance where we were given less precise information, namely, a female will be

picked at least once on the second and third draws. Note: the result for pðF1jFL; IÞ is
different from these two cases:

pðF1jIÞ¼
2

5

and

pðF1jF2; IÞ¼
2� 1

5� 1

� �
¼ 1

4
:

4.7 Poisson distribution

In this section4 and we will see how a particular state of prior information, I, leads us

to choose the well-known Poisson distribution for the likelihood. Later, in Section

5.7.2, we will derive the Poisson distribution as a limiting ‘‘low count rate’’ approxi-

mation to the binomial distribution.

Prior information: I � ‘‘There is a positive real number r such that, given r, the

probability that an event, or count, will occur in the time interval ðt; tþ dtÞ is ¼ r dt.

Furthermore, knowledge of r makes any information about the occurrence or

4 Section 4.7 is based on a paper by E. T. Jaynes (1989).
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non-occurrence of the event in any other time interval (that does not include ðt; tþ dtÞ)
irrelevant to this probability.’’

Let qðtÞ¼ probability of no count in time interval (0,t).

Let E � ‘‘no count in ð0; tþ dtÞ’’.
E is the conjunction of two propositions A and B given by

E¼ ½‘‘no count in ð0; tÞ’’�; ½‘‘no count in ðt; tþ dtÞ’’� ¼A;B:

From the product rule, pðEjIÞ¼ pðA;BjIÞ¼ pðAjIÞpðBjA; IÞ.
It follows that

pðEjIÞ¼ qðtþ dtÞ¼ qðtÞð1� r dtÞ or
dq

dt
¼ � r qðtÞ:

The solution for the evident initial condition qð0Þ¼ 1 is qðtÞ¼ expð�r tÞ.
Now consider the probability of the proposition:

C � ‘‘In the interval ð0; tÞ, there are exactly n counts which happen at times

ðt1; t2; . . . ; tnÞwith infinitesimal tolerances ðdt1; . . . ;dtnÞ, where ð0< t1 < t2 . . .< tn < tÞ’’
This is the conjunction of 2nþ 1 propositions

C¼ ½‘‘no count in ð0; t1Þ’’�; ð‘‘count in dt1’’Þ;

½‘‘no count in ðt1; t2Þ’’�; ð‘‘count in dt2’’Þ; . . . ;

½‘‘no count in ðtn�1; tnÞ’’�; ð‘‘count in dtn’’Þ; ½‘‘no count in ðtn; tÞ’’�:

By the product rule and the independence of different time intervals,

pðCjr; IÞ¼ expð�r t1Þ: ðr dt1Þ: expð�rðt2 � t1ÞÞ: ðr dt2Þ . . .

� expð�rðtn � tn�1ÞÞ: ðr dtnÞ: ðexp�rðt� tnÞÞ

¼ expð�r tÞrn dt1 . . . dtn:

(4:32)

The probability (given r) that in the interval (0,t) there are exactly n counts,

whatever the times, is given by

pðnjr; t; IÞ¼ expð�rtÞrn
Z t

0

dtn . . .

Z t4

0

dt3

Z t3

0

dt2

Z t2

0

dt1

¼ expð�rtÞrn
Z t

0

dtn . . .

Z t4

0

dt3

Z t3

0

t2
1!
dt2

¼ expð�rtÞrn
Z t

0

dtn . . .

Z t4

0

t23
2!
dt3

¼ expð�rtÞ ðrtÞ
n

n!
Poisson distribution:

(4:33)
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We will return to the Poisson distribution again in Chapter 5. Some sample Poisson

distributions are shown in Figure 5.6, and its relationship to the binomial and

Gaussian distributions is discussed in Section 5.7.2, together with some typical exam-

ples. Chapter 14 is devoted to Bayesian inference with Poisson sampling.

4.7.1 Bayesian and frequentist comparison

Let’s use the Poisson distribution to clarify a fundamental difference between the

Bayesian and frequentist approaches to inference. Consider how the probability

of n1 counts in a time interval ð0; t1Þ changes if we learn that n2 counts occurred

in the interval ð0; t2Þ where t2 > t1. According to I, the occurrence or non-

occurrence of counts in any other time intervals that do not include the interval

ð0; t1Þ is irrelevant to the probability of interest. Since ð0; t2Þ contains ð0; t1Þ it is
contributing information which we can incorporate through Bayes’ theorem

which we write now.

pðn1jn2; r; t1; t2; IÞ¼
pðn1jr; t1; t2; IÞ pðn2jn1; r; t1; t2; IÞ

pðn2jr; t1; t2; IÞ

¼ pðn1jr; t1; IÞ pðn1; ðn2 � n1Þjn1; r; t1; t2; IÞ
pðn2jr; t2; IÞ

:

(4:34)

Using the product rule, we can expand the second term in the numerator of

Equation (4.34):

pðn1; ðn2 � n1Þjn1; r; t1; t2; IÞ¼ pðn1jn1; r; t1; t2; IÞ � pðn2 � n1jn1; r; t1; t2; IÞ
¼ 1� pðn2 � n1jn1; r; t1; t2; IÞ

¼ exp½�rðt2 � t1Þ�
½rðt2 � t1Þ�n2�n1
ðn2 � n1Þ!

:

(4:35)

The other terms in Equation (4.34) can readily be evaluated by reference to

Equation (4.33). Substituting into Equation (4.34) and simplifying, we obtain

pðn1jn2; r; t1; t2; IÞ¼
n2!

n1! ðn2 � n1Þ!
exp½�rt1� exp½�rðt2 � t1Þ�

exp½�rt2�

� ½rt1�
n1 ½rðt2 � t1Þ�n2�n1
½rt2�n2

¼
n2

n1

� �
t1
t2

� �n1

1� t1
t2

� �n2�n1 t1 < t2

n1 < n2

� �
:

(4:36)

The result is rather surprising because the new posterior does not even depend on r.

The point is that r does not determine n1; it only gives probabilities for different values

of n1. If we know the actual value over the interval that includes ð0; t1Þ, then this takes

precedence over anything we could infer from r.
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In frequentist random variable probability theory, one might think that r is the sole

relevant quantity, and thus arrive at a different conclusion, namely,

pðn1jn2; r; t1; t2; IÞ¼ pðn1jr; t1; IÞ¼ expð�rt1Þ
ðrt1Þn1
n1!

� �
: (4:37)

What if we used the measured n2 counts in the time interval t2 to compute a

new estimate of r0 ¼ n2=t2 and then used Equation (4.37) to compute pðn1jr0; t1; IÞ.
Would we get the same result as predicted by Equation (4.36)? The two distribu-

tions are compared in Figure 4.4 for n2¼ 10 counts, t2¼ 10 s and t1¼ 8 s. The two

curves are clearly very different. In addition, the probability distribution given by

Equation (4.37) predicts a tail extending well beyond 10 counts which makes no

physical sense given that we know only 10 counts will occur in the longer interval

t2 which contains t1. From the frequentist point of view, replacing r by r0 would

make little sense regarding long-run performance if the original r were estimated

on the basis of the counts in a much longer time span than t2. However, for any

non-zero value of r, Equation (4.37) predicts there is a finite probability that n1
can exceed the actual measured value n2 in the larger interval, which is clearly

impossible.

In frequentist theory, a probability represents the percentage of time that something

will happen in a very large number of identical repeats of an experiment, i.e., the long-

run relative frequency. As we will learn in Section 6.6 and Chapter 7, frequentist

theory says nothing directly about the probability of any estimate derived from a

single data set. The significance of any frequentist result can only be interpreted with

reference to a population of hypothetical data sets. From this point of view, the
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Figure 4.4 A comparison of the predictions for pðn1jn2; r; t1; t2; IÞ based on Equations (4.36) and
(4.37) where we set r0 ¼ n2=t2. The assumed values are t1 ¼ 8 s, t2 ¼ 10 s and n2 ¼ 10 counts.
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frequentist procedure represented by Equation (4.37) is not intended to be optimum in

the individual case that we are considering here. In contrast, Bayesian probability

theory does apply to the individual case, where the goal is to reason as best we can on

the basis of our current state of information. In a Bayesian analysis, only the data that

were actually measured, combined with relevant prior information, are considered,

hypothetical data sets play no role.

4.8 Constructing likelihood functions

In this section, we amplify on the process of arriving at the likelihood function,

pðDjM; �; IÞ, for use in a Bayesian analysis, where

pðDjM; �; IÞ¼ probability of obtaining data D; if model M

and background (prior) information I are true

(also called the likelihood function LðMÞÞ:

The parameters of model M are collectively designated by the symbol �. We can

write D¼Y1;Y2; . . . ;YN¼fYig, where

* Yi � ‘‘A proposition asserting that the ith data value is in the infinitesimal range yi to

yi þ dyi.’’
* Zi � ‘‘A proposition asserting that the M model prediction for the ith data value is in the

range zi to zi þ dzi.’’
* Ei � ‘‘A proposition asserting that the ith error value is in the range ei to ei þ dei.’’

As usual, we can write

yi¼ zi þ ei: (4:38)

In the simplest case (see Section 4.8.1) the predicted value, zi, is given by a deterministic

model, mðxij�Þ, which is a function of some independent variable(s) xi, like position or

time. More generally, the value of zi itself may be uncertain because of statistical

uncertainties inmðxij�Þ, and/or uncertainties in the value of the independent variable(s)
xi. We will represent the probability distribution for proposition Zi by the function

pðZijM; �; IÞ¼ fZðziÞ: (4:39)

We can also represent the probability distribution for proposition Ei by another

function given by

pðEijM; �; IÞ¼ fEðeiÞ: (4:40)

Our next step is to compute pðYijM; �; IÞ. Now Yi depends on propositions Zi and

Ei. To evaluate pðYijM; �; IÞ, we first extend the conversation (Tribus, 1969) to

include these propositions by writing down the joint probability distribution
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pðYi;Zi;EijM; �; IÞ. We can then solve for pðYijM; �; IÞ by using the marginalizing

operation as follows:

pðYijM; �; IÞ¼
ZZ

dZi dEi pðYi;Zi;EijM; �; IÞ

¼
ZZ

dZi dEi pðZijM; �; IÞ pðEijM; �; IÞ pðYijZi;Ei;M; �; IÞ;
(4:41)

where we assume Zi and Ei are independent.

Since yi¼ zi þ ei,

pðYijZi;Ei;M; �; IÞ¼ �ðyi � zi � eiÞ (4:42)

! pðYijM; �; IÞ¼
Z

dzi fZðziÞ
Z

dei fEðeiÞ�ðyi � zi � eiÞ: (4:43)

The presence of the delta function in the second integral serves to pick out the value

of the integrand at ei¼ yi � zi, so we have:

pðYijM; �; IÞ¼
Z

dzi fZðziÞ fEðyi � ziÞ: (4:44)

The right hand side of the equation is the convolution integral.5 We now evaluate our

equation for pðYijM; �; IÞ for two useful general cases.

4.8.1 Deterministic model

In this case, we assume that for any specific choice of the model parameters there is no

uncertainty in the predicted value, zi. We will refer to models of this kind as determin-

istic models. Given the model and the values of any of its parameters, then

fZðziÞ¼ �ðzi �mðxij�ÞÞ. In this case, Equation (4.44) becomes

pðYijM; �; IÞ¼ fEðyi �mðxij�ÞÞ¼ pðEijM; �; IÞ: (4:45)

Thus, the probability of the ith data value is simply equal to the probability of the ith

error term. If the errors are all independent,6 then

pðDjM; �; IÞ¼ pðY1;Y2; . . . ;YNjM; �; IÞ¼ pðE1;E2; . . . ;ENjM; �; IÞ

¼
YN
i¼ 1

pðEijM; �; IÞ;
(4:46)

where
QN

i¼ 1 stands for the product of N of these terms. We have already encountered

Equation (4.46) in the simple spectral line problem of Section 3.6 (see Equation (4.42)).

5 For more details on the convolution integral and how to evaluate it using the Fast Fourier Transform, see Sections B.4
and B.10.

6 We deal with the effect of correlated errors in Section 10.2.2.
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4.8.2 Probabilistic model

In the second case, our information about the model is uncertain. Here, we will

distinguish between three different situations.

1. The model prediction, zi, includes a statistical noise component �i.

zi¼mðxij�Þ þ �i: (4:47)

Equation (4.38) can be rewritten as

yi¼ zi þ ei¼mðxij�Þ þ �i þ ei: (4:48)

In this case, the data, yi, can differ from the model,mðxij�Þ, because of a component ei
due to measurement errors, and a component �i due to a statistical uncertainty in our

model. The two error terms are assumed to be uncorrelated. For example, suppose our

data consist of a radar return signal from an unidentified aircraft. We could compare

the signal to samples of measured radar return signals from a set of known aircraft for

different orientations to arrive at the most probable identification. In this case, these

sample measurements of known aircraft, which include a noise component, constitute

our model, mðxij�Þ.
Suppose that the probability distribution of �i is described by a Gaussian with

standard deviation �mi. Then

pðZijM; �; IÞ¼ 1ffiffiffiffiffiffi
2p
p

�mi

exp
�ðzi �mðxij�ÞÞ2

2�2mi

( )

¼ 1ffiffiffiffiffiffi
2p
p

�mi

exp
��2i
2�2i

� �
¼ fZðziÞ:

(4:49)

Suppose also that the error term, ei, in Equation (4.38), has a Gaussian probability

distribution with a standard deviation, �i, of the form

pðEijM; �; IÞ¼ 1ffiffiffiffiffiffi
2p
p

�i
exp

�e2i
2�2i

� �
¼ fEðyi � ziÞ: (4:50)

Then according to Equation (4.44), pðYijM; �; IÞ is the convolution of the two

Gaussian probability distributions. It is easy to show7 that the result is another

Gaussian given by

pðYijM; �; IÞ¼ 1ffiffiffiffiffiffi
2p
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2i þ �2mi

p exp
�ðyi �mðxij�ÞÞ2

2ð�2i þ �2miÞ

( )
: (4:51)

7 Simply evaluate Equation (4.44) using Mathematica with limits on the integral of �1 after substituting for fZðziÞ and
fEðyi � ziÞ using Equations (4.49) and (4.50), respectively.
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If the Yi terms are all independent, then

pðDjM; �; IÞ¼ pðY1;Y2; . . . ;YNjM; �; IÞ

¼ ð2pÞ�N=2
YN
i¼ 1

ð�2i þ �2miÞ
�1=2

( )
exp

XN
i¼ 1

�ðyi �mðxij�ÞÞ2

2ð�2i þ �2miÞ

 !( )
:
(4:52)

2. In the second situation, our information about the model prediction, zi, is only

uncertain because of uncertainty in the value of the independent variable xi. For

example, we might be interested in fitting a straight line to some data with errors in

both coordinates. Let xi0 be the nominal value of the independent variable and xi the

true value. Then �xi¼ xi � xi0, is the uncertainty in xi. Now suppose the probability

distribution of xi is a Gaussian given by

pðXijIÞ¼
1ffiffiffiffiffiffi
2p
p

�xi
exp

�ðxi � xi0Þ2

2�2xi

( )
¼ fXðxiÞ; (4:53)

where the scale of �xi is set by �xi.

Our goal here is to compute an expression for pðZijM; �; IÞ¼ fZðziÞ, for use in

Equation (4.44). In Section 5.12, we will show how to compute the probability

distribution of a function of xi if we know the probability distribution of xi. In our

case, this function is zi¼mðxij�Þ. The function mðxij�Þ must be a monotonic and

differentiable function over the range of xi of interest. Then there exists an inverse

function xi¼m�1ðzij�Þwhich is monotonic and differentiable. Thus, for every interval

dxi there is a corresponding interval dzi. The result is

fZðziÞ¼ fXðxiÞ
dxi
dzi










¼ fXðm�1ðzij�ÞÞ

dxi
dzi










; (4:54)

which is valid provided the derivative does not change significantly over a scale of

order 2�xi.

Let’s evaluate Equation (4.54) for the straight-line model, zi¼mðxijA;BÞ¼
Aþ Bxi. In that case,

xi¼m�1ðzijA;BÞ¼
1

B
zi �

A

B
; (4:55)

so

xi � xi0¼
1

B
ðzi � zi0Þ: (4:56)

Also, it is apparent that

dxi
dzi










¼ 1

jBj : (4:57)
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Combining Equations (4.53), (4.54), (4.56) and (4.57), we obtain

fZðziÞ¼
1ffiffiffiffiffiffi

2p
p
jBj�xi

exp
�ðzi � zi0Þ2

2B2�2xi

( )
: (4:58)

We now have everything we need to evaluate Equation (4.44). Again, pðYijM; �; IÞ is
the convolution of the two Gaussian probability distributions. The result is

pðYijM;A;B; IÞ¼ 1ffiffiffiffiffiffi
2p
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2i þ B2�2xi
p exp

�ðyi �mðxi0jA;BÞÞ2

2ð�2i þ B2�2xiÞ

( )
: (4:59)

If the Yi terms are all independent, then,

pðDjM;A;B; IÞ¼ ð2pÞ�N=2
YN
i¼ 1

ð�2i þ B2�2xiÞ
�1=2

 !

� exp
XN
i¼ 1

�ðyi �mðxi0jA;BÞÞ2

2ð�2i þ B2�2xiÞ

( )
:

(4:60)

The reader is directed to Section 11.7 for a worked problem of this kind.

3. The model prediction, zi, is uncertain because of statistical uncertainties in both the

model and the value of the independent variable(s), xi. In this case, if we again assume

Gaussian distributions for the uncertain quantities, Equation (4.60) becomes

pðDjM;A;B; IÞ¼ ð2pÞ�N=2
YN
i¼ 1

ð�2i þ �2mi þ B2�2xiÞ
�1=2

 !

� exp
XN
i¼ 1

�ðyi �mðxi0jA;BÞÞ2

2ð�2i þ �2mi þ B2�2xiÞ

( )
:

(4:61)

4.9 Summary

In any Bayesian analysis, the prior information defines the hypothesis space of

interest, prior probability distributions and the means for computing pðDjHi; IÞ, the
likelihood function. In this chapter, we have given examples of how to encode prior

information into a probability distribution (commonly referred to as the sampling

distribution) for use in computing the likelihood term. We saw how the well-known

binomial, multinomial, hypergeometric and Poisson distributions correspond to dif-

ferent prior information. In the process, we learned that Bayesian inference is con-

cerned with logical connections between propositions which may or may not

correspond to causal physical influences. We introduced the notion of exchangeable

distributions and learned how to compute probabilities for situations where the prior
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information, at first sight, appears very imprecise. In Section 4.7.1, we gained import-

ant insight into the fundamental difference between Bayesian and frequentist

approaches to inference. Finally, in Section 4.8, we learned how to construct like-

lihood functions for both deterministic and probabilistic models.

4.10 Problems

1. A bottle contains 50 black balls and 30 red balls. The bottle is first shaken to mix

up the balls.What is the probability that blindfolded, you will pick two red balls in

three tries?
2. Let I � ‘‘A tin is purchased from a company that makes an equal number of two

types. Both contain 90 buttons which are identical except that 2/3 of the buttons in

one tin are black (the rest are white) and 2/3 of the buttons in the other tin are

white (the rest are black). You can’t distinguish the tins from their outside.’’

Let D � ‘‘In a sample of ten buttons drawn from the tin, seven are black.’’
Let B � ‘‘We are drawing from the black tin.’’
Let W � ‘‘We are drawing from the white tin.’’

Compute the odds¼ pðBjD; IÞ
pðWjD; IÞ, assuming pðBjIÞ¼ pðWjIÞ.

3. A tin contains 17 black buttons and 6 white buttons. The tin is first shaken to mix

up the buttons. What is the probability that blindfolded, you will pick a white

button on the third pick if you don’t know what was picked on the first two picks?

4. A bottle contains three green balls and three red balls. The bottle is first shaken to

mix up the balls. What is the probability that blindfolded, you will pick a red ball

on the third pick, if you learn that at least one red ball was picked on the first two

picks?
5. A spacecraft carrying two female and three male astronauts makes a trip toMars.

The plan calls for a two-person detachable capsule to land at site A on the planet

and a second one-person capsule to land at site B. The other two astronauts

remain in orbit. Which three will board the two capsules is decided by a lottery,

consisting of picking names from a box. What is the probability that a female

occupies the one-person capsule if we know that at least one member of the other

capsule is female, but we are not told the order in which the astronauts were

picked?
6. In a particular water sample, ten bacteria are found, of which three are of type A.

Let Q � ‘‘the probability that any particular bacterium is of type A is between q

and qþ dq.’’ Plot the posterior pðQjD; IÞ. What prior probability distribution did

you assume and why?
7. In a particular water sample, ten bacteria are found, of which three are of type A.

What is the probability of obtaining six type A bacteria, in a second independent

water sample containing 12 bacteria in total?
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8. In a radio astronomy survey, 41 quasars were detected in a total sample of

90 sources. Let F � ‘‘the probability that any particular source is a quasar is

between f and fþ df.’’ Plot the posterior pðFjD; IÞ assuming a uniform prior for F.
9. In problem 7, what is the probability of obtaining at least three type A bacteria?
10. A certain solution contains three types of bacteria: A; B, and C. Given

pðAjIÞ¼ 0:2; pðBjIÞ¼ 0:3, and pðCjIÞ¼ 0:5, what is the probability of obtaining

a sample of ten bacteria with three type A, three type B and four type C?

11. A total of five �-ray photons were detected from a particular star in one hour.

What is the probability that three photons will be detected in the next hour of

observing?

12. On average, five �-ray photons are detected from a particular star each hour.

What is the probability that three photons were detected in the first hour of a two-

hour observation that recorded eight photons in total?

13. In the opinion poll problem of Section 4.2.3, re-plot Figure 4.3 for n¼ 55.

14. In the opinion poll problem of Section 4.2.3, compute the probability that the

Liberals will achieve a majority of at least 51%, for n¼ 55 and everything else the

same.

15. We want to fit a straight line model of the form yi¼ aþ bxi to the list of x; y

pairs given below. The data have Gaussian distributed errors in both the x

and y coordinates with �x¼ 1 and �y¼ 2. Assume uniform priors for a and b,

with boundaries that enclose the range of parameter space where there is a

significant contribution from the likelihood function. This means that we can

treat the prior as a constant, and write pða; bjD;M; IÞ / pðDjM; a; b; IÞ.
ff�5;�1:22g; f�4;�3:28g; f�3;�2:52g; f�2; 3:74g; f�1; 3:01g; f0;�1:80g;
f1; 2:49g; f2; 5:48g; f3; 0:42g; f4; 4:80g; f5; 4:22gg

(a) Plot the data with error bars in both coordinates.

(b) Show a contour plot of the joint posterior PDF, pða; bjD; IÞ.
(c) For what choice of a; b is pða; bjD; IÞ a maximum? You can use the

Mathematica command

FindMaximum[ p(a, b|D, I),{a, 0:0},{b, 0:5}].
(d) Show the best fit line and data with error bars on the same plot.

(e) Compute and plot the marginal distributions pðajD; IÞ and pðbjD; IÞ. One

way to do this is to compute a table of the joint posterior values for a grid of

a; b values and approximate the integrals required for marginalization by a

summation over the rows or columns. Make sure to normalize your mar-

ginal distributions so
R
pðajD; IÞda¼ 1 �

P
i pðaijD; IÞ�a.
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5

Frequentist statistical inference

5.1 Overview

We now begin three chapters which are primarily aimed at a discussion of the main

concepts of frequentist statistical inference. This is currently the prevailing approach to

much of scientific inference, so a student should understand the main ideas to appre-

ciate current literature and understand the strengths and limitations of this approach.
In this chapter, we introduce the concept of a random variable and discuss some

general properties of probability distributions before focusing on a selection of

important sampling distributions and their relationships. We also introduce the very

important Central Limit Theorem in Section 5.9 and examine this from a Bayesian

viewpoint in Section 5.10. The chapter concludes with the topic of how to generate

pseudo-random numbers of any desired distribution, which plays an important role in

Monte Carlo simulations.
In Chapter 6, we address the question of what is a statistic and give some

common important examples. We also consider the meaning of a frequentist

confidence interval for expressing the uncertainty in parameter values. The reader

should be aware that study of different statistics is a very big field which we only

touch on in this book. Some other topics normally covered in a statistics course like

the fitting of models to data are treated from a Bayesian viewpoint in later chapters.
Finally, Chapter 7 concludes our brief summary of frequentist statistical inference

with the important topic of frequentist hypothesis testing and discusses an important

limitation known as the optional stopping problem.

5.2 The concept of a random variable

Recall from Section 1.1 that conventional ‘‘frequentist’’ statistical inference and Bayesian

inference employ fundamentally different definitions of probability. In frequentist

statistics, when we write the probability pðAÞ, the argument of the probability is called

a random variable. It is a quantity that can be considered to take on various values

throughout an ensemble or a series of repeated experiments. For example:

1. A measured quantity which contains random errors.

2. Time intervals between successive radioactive decays.
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Before proceeding, we need an operational definition of a random variable. From

this, we discover that the random variable is not the particular number recorded in one

measurement, but rather, it is an abstraction of the measurement operation or

observation that gives rise to that number.

Definition: A random variable, X, transforms the possible outcomes of an experiment

(measurement operation) to real numbers.

Example: Suppose we are interested in measuring a pollutant’s concentration level for

each of n time intervals. The observations (procedure for producing a real number)

X1;X2; . . . ;Xn form a sample of the pollutant’s concentration. Before the instrument

actually records the concentration level during the ith trial, the observation, Xi, is a

random variable. The recorded value, xi, is not a random variable, but the actual

measured value of the observation, Xi.

Question: Why do we need to have n random variables Xi? Why not one random

variableX for which x1; x2; . . . ; xn are the realizations of the random variable during

the n observations?

Answer: Because we often want to determine the joint probability of getting x1 on trial

1, x2 on trial 2, etc. If we think of each observation as a random variable, then we

can distinguish between situations corresponding to:

1. Sampling with replacement so that no observation is affected by any other (i.e., independent

X1;X2; . . . ;Xn). In this case, all observations are random variables with identical probability

distributions.

2. Sampling without replacement. In this case, the observations are not independent and hence

are characterized by different probability distributions. Think of an urn filled with black and

white balls. When we don’t replace the drawn balls, the probability of say a black on each

draw is different.

5.3 Sampling theory

The most important aspect of frequentist statistics is the process of drawing conclu-

sions based on sample data drawn from the population (which is the collection of all

possible samples). The concept of the population assumes that in principle, an infinite

number of measurements (under identical conditions) are possible. The use of the term

random variable conveys the idea of an intrinsic uncertainty in the measurement

characterized by an underlying population.

Question: What does the term ‘‘random’’ really mean?
Answer: When we randomize a collection of balls in a bottle by shaking it, this is

equivalent to saying that the details of this operation are not understood or too

complicated to handle. It is sometimes necessary to assume that certain complicated

details, while undeniably relevant, might nevertheless have little numerical effect on
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the answers to certain questions, such as the probability of drawing r black balls

from a bottle in n trials when n is sufficiently small.

According to E. T. Jaynes (2003), the belief that ‘‘randomness’’ is some kind of

property existing in nature is a form of Mind Projection Fallacy which says, in effect,

‘‘I don’t know the detailed causes – therefore Nature is indeterminate.’’ For example,

later in this chapter we discuss how to write computer programs which generate

seemingly ‘‘random’’ numbers, yet all these programs are completely deterministic.

If you did not have a copy of the program, there is almost no chance that you could

discover it merely by examining more output from the program. Then the Mind

Projection Fallacy might lead to the claim that no rule exists. At scales where quantum

mechanics becomes important, the prevailing view is that nature is indeterminate. In

spite of the great successes of the theory of quantummechanics, physicists readily admit

that they currently lack a satisfactory understanding of the subject. The Bayesian

viewpoint is that the limitation in scientific inference results from incomplete information.
In both Bayesian and frequentist statistical inference, certain sampling distributions

(e.g., binomial, Poisson,Gaussian) play a central role. To the frequentist, the sampling

distribution is a model of the probability distribution of the underlying population

from which the sample was taken. From this point of view, it makes sense to interpret

probabilities as long-run relative frequencies.
In a Bayesian analysis, the sampling distribution is a mathematical description of

the uncertainty in predicting the data for any particular model because of incomplete

information. It enables us to compute the likelihood pðDjH; IÞ.
In Bayesian analysis, any sampling distribution corresponds to a particular state of

knowledge. But as soon as we start accumulating data, our state of knowledge

changes. The new information necessarily modifies our probabilities in a way that

can be incomprehensible to one who tries to interpret probabilities as physical caus-

ations or long-run relative frequencies.

5.4 Probability distributions

Now that we have a better understanding of what a random variable is let’s restate the

frequentist definition of probability more precisely. It is commonly referred to as the

relative frequency definition.

Relative frequency definition of probability: If an experiment is repeated n times under

identical conditions and nx outcomes yield a value of the random variable X ¼ x, the

limit of nx=n, as n becomes very large,1 is defined as pðxÞ, the probability that X ¼ x.

Experimental outcomes can be either discrete or continuous. Associated with each

random variable is a probability distribution. A probability distribution may be

1 See Bernoulli’s law of large numbers discussed in Section 4.2.1.
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quantitatively and conveniently described by two functions pðxÞ and FðxÞ which are

given below for the discrete and continuous cases.

1. Discrete random variables

Probability distribution function: (Also called the probability mass function). pðxiÞ
gives the probability of obtaining the particular value of the random variable X ¼ xi.

(a) pðxÞ ¼ pfX ¼ xg
(b) pðxÞ � 0 for all x
(c)
P

x pðxÞ ¼ 1

Cumulative probability function: this gives the probability that the random variable

will have a value � x.

(a) FðxÞ ¼ pfX � xg ¼
Xxi¼x
xi¼0

pðxiÞ
(b) 0 � FðxÞ � 1
(c) FðxjÞ > FðxiÞ if xj > xi
(d) FfX > xg ¼ 1� FðxÞ

Figure 5.1 shows the discrete probability distribution (binomial) describing the num-

ber of heads in ten throws of a fair coin. The right panel shows the corresponding

cumulative distribution function.

2. Continuous random variables2

Probability density function: fðxÞ

(a) pfa � X � bg ¼
R b
a fðxÞ dx

(b) fðxÞ � 0ð�1 < x <1Þ
(c)
Rþ1
�1 fðxÞdx ¼ 1

2 4 6 8 10

x (number of heads)

0.1

0.2
p 

(x
)  

2 4 6 8 10

x (number of heads)

0.2
0.4
0.6
0.8

1

F
 (x

)  

Figure 5.1 The left panel shows the discrete probabilities for the number of heads in ten throws
of a fair coin. The right panel shows the corresponding cumulative distribution function.

2 Continuous density function defined by fðX ¼ xÞ ¼ lim
�x!0
½fðx < X < xþ �xÞ�=�x.
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Cumulative probability density function:

(a) FðxÞ ¼ pfX � xg ¼
R x
�1 fðxÞdx

(b) Fð�1Þ ¼ 0; Fðþ1Þ ¼ 1
(c) pfa < X < bg ¼ FðbÞ � FðaÞ
(d)

dFðxÞ
dx ¼ fðxÞ

Figure 5.2 shows an example of a continuous probability density function (left

panel) and the corresponding cumulative probability density function (right panel).

5.5 Descriptive properties of distributions

The expectation value for a function, gðXÞ, of a random variable, X, is the weighted

average of the function over all possible values of x. We will designate the expectation

value of gðXÞ by hgðXÞi, which is given by

hgðXÞi ¼
P

all x gðxÞ pðxÞ (discrete),Rþ1
�1 gðxÞ fðxÞdx (continuous).

�
(5:1)

The result, if it exists, is a fixed number (not a function) and a property of the

probability distribution of X. The expectation defined above is referred to as the

first moment of the distribution gðXÞ. The shape of a probability distribution can be

rigorously described by the value of its moments:

The rth moment of the random variable X about the origin ðx ¼ 0Þ is defined by

�0r ¼ hXri ¼
P

x x
rpðxÞ (discrete),Rþ1

�1 xrfðxÞdx (continuous).

(
(5:2)

Mean ¼ �01 ¼ hXi ¼ � ¼ first moment about the origin. This is the usual measure of

the location of a probability distribution.

The rth central moment ðorigin ¼ meanÞ of X is defined by

�r ¼ hðX� �Þri ¼
P

xðx� �Þ
rpðxÞ (discrete),Rþ1

�1 ðx� �Þ
rfðxÞdx (continuous).

(
(5:3)
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Figure 5.2 The left panel shows a continuous probability density function and the right panel

shows the corresponding cumulative probability density function.

100 Frequentist statistical inference



The distinction between �r and �
0
r is simply that in the calculation of �r the origin is

shifted to the mean value of x.

First central moment: hðX� �Þi ¼ hXi � � ¼ 0.

Second central moment: VarðXÞ ¼ �2x ¼ hðX� �Þ
2i, where �2x ¼ usual measure of

dispersion of a probability distribution.

hðX� �Þ2i ¼ hðX2 � 2�Xþ �2Þi ¼ hX2i � 2�hXi þ �2

¼ hX2i � 2�2 þ �2 ¼ hX2i � �2 ¼ hX2i � hXi2

Therefore; �2 ¼ hX2i � hXi2:

(5:4)

The standard deviation, �, equal to the square root of the variance, is a useful measure

of the width of a probability distribution.
It is frequently desirable to compute an estimate of �2 as the data are being acquired.

Equation (5.4) tells us how to accomplish this, by subtracting the square of the average

of the data from the average of the data values squared. Later, in Section 6.3, we will

introduce a more accurate estimate of �2 called the sample variance.

Box 5.1

Question: What is the variance of the random variable Y ¼ aXþ b?
Solution:

VarðYÞ ¼ hðY� �yÞ2i ¼ hfðaXþ bÞ � ða�X þ bÞg2i

¼ hfaX� a�g2i

¼ ha2X2 � 2a2�Xþ a2�2i ¼ a2ðhX2i � hXi2Þ

¼ a2VarðXÞ

Third central moment: �3 ¼ hðX� �Þ3i:
This is a measurement of the asymmetry or skewness of the distribution. For a

symmetric distribution, �3 ¼ 0 and �2nþ1 ¼ 0 for any integer value of n.

Fourth central moment: �4 ¼ hðX� �Þ4i:
�4 is called kurtosis (another shape factor). It is a measure of how flat-topped a

distribution is near its peak. See Figure 5.3 and discussion in the next section for an

example.

5.5.1 Relative line shape measures for distributions

The shape of a distribution cannot be entirely judged by the values of �3 and �4
because they depend on the units of the random variable. It is better to use measures

relative to the distribution’s dispersion.
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Coefficient of skewness: �3 ¼
�3

ð�2Þ3=2
.

Coefficient of kurtosis: �4 ¼
�4

ð�2Þ2
.

Figure 5.3 illustrates a single peaked distribution for different �3 and �4

coefficients. Note: �4 ¼ 3 for any Gaussian distribution so distributions with

�4 > 3 are more sharply peaked than a Gaussian, while those with �4 < 3 are

more flat-topped.

5.5.2 Standard random variable

A random variable X can always be converted to a standard random variable Z using

the following definition:

Z ¼ X� �
�x

: (5:5)

Z has a mean hZi ¼ 0, and variance hZ2i ¼ �2z ¼ 1.

α3 > 0 ≡ positively skewed →

α3 > 0 ≡ negatively skewed →

α3 = 0 ≡ symmetric →

α3 > 3 leptokurtic ≡ highly-peaked →

α3 > 3 platykurtic ≡ flat-topped →

Figure 5.3 Single peak distributions with different coefficients of skewness and kurtosis.
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For any particular value x ofX, the quantity z ¼ ðx� �Þ=�x indicates the deviation of

x from the expected value of X in terms of standard deviation units. At several points

in this chapter we will find it convenient to make use of the standard random variable.

5.5.3 Other measures of central tendency and dispersion

Median: Themedian is ameasure of the central tendency in the sense that half the area

of the probability distribution lies to the left of the median and half to the right. For

any continuous random variable, the median is defined by

pðX � medianÞ ¼ pðX � medianÞ ¼ 1=2: (5:6)

If a distribution has a strong central peak, so that most of its area is under a single

peak, then the median is an estimator of the central peak. It is a more robust estimator

than the mean: the median fails as an estimator only if the area in the tail region of the

probability distribution is large, while the mean fails if the first moment of the tail is

large. It is easy to construct examples where the first moment of the tail is large even

though the area is negligible.

Mode: Defined to be a value, xm of X, that maximizes the probability function (if X is

discrete) or probability density (if X is continuous). Note: this is only meaningful if

there is a single peak.

If X is continuous, the mode is the solution to

dfðxÞ
dx
¼ 0; for

d2fðxÞ
dx2

< 0: (5:7)

An example of the mode, median and mean for a particular PDF is shown in

Figure 5.4.
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Figure 5.4 The mode, median and mean are three different measures of this probability density

function.
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5.5.4 Median baseline subtraction

Suppose you want to remove the baseline variations in some data without suppressing

the signal. Many automated signal detection schemes only work well if these baselines

variations are removed first. The upper panel of Figure 5.5 depicts the output from a

detector system with a signal profile represented by narrow Gaussian-like features

sitting on top of a slowly varying baseline with noise. How do we handle this problem?

Solution: Use running median subtraction.

One way to remove the slowly varying baseline is to subtract a running median. The

signal at sample location i is replaced by the original signal at iminus the median of all

values within �ðN� 1Þ=2 samples. N is chosen so it is large compared to the signal

profile width and short compared to baseline changes.
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Figure 5.5 (a) A signal profile sitting on top of a slowly varying baseline. (b) The same data with
the baseline variations removed by a running median subtraction. (c) The same data with the
baseline variations removed by a running mean subtraction; notice the negative bowl in the
vicinity of the source profile.
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Question: Why is median subtraction more robust than mean subtraction?
Answer: When the N samples include some of the signal points, both the mean value

and median will be elevated so that when the running subtraction occurs the signal

will sit in a negative bowl as is illustrated in Figure 5.5(c).

With mean subtraction, the size of the bowl will be proportional to the signal

strength. With median subtraction, the size of the bowl is smaller and essentially

independent of the signal strength for signals greater than noise. To understand

why, consider a running median subtraction with N ¼ 21 and a signal profile,

which for simplicity is assumed to have a width of only 1 sample. First, imagine

a histogram of the 21 sample values when no signal is present, i.e., just a

Gaussian noise histogram with some median, m0. Now suppose a signal of

strength S is added to sample 11, shifting it in the direction of increasing signal

strength. Let T11 be the value of sample 11 before the signal was added. There

are two cases of interest. (a) If T11 > m0 then T11 þ S > m0 and the addition of

the signal produces no change in the median value, i.e., the number of sample

values on either side of m0 is unchanged. (b) If T11 < m0, then the addition of S

can cause the sample to move to the other side of m0 thus increasing the median

by a small amount to m1. The size of S required to produce this small shift is S �
the RMS noise. Once sample 11 has been shifted to the other side, no further

increase in the value of S will change the median. Figure 5.5(b) shows the result

of a 21-point running median subtraction. The baseline curvature has been nicely

removed and there is no noticeable negative bowl in the vicinity of the source.
In the case of a running mean subtraction, the change in the mean of our 21 samples

is directly proportional to the signal strength S, which gives rise to the very noticeable

negative bowl that can be seen in Figure 5.5(c).

Mean deviation (alternative measure of dispersion)

hjX� �ji ¼
P

allx jx� �j pðxÞ (discrete),Rþ1
�1 jx� �j fðxÞdx (continuous).

(
(5:8)

For long-tailed distributions, the effect on themean deviation of the values in the tail is

less than the effect on the standard deviation.

5.6 Moment generating functions

In Section 5.5 we looked at various useful moments of a random variable. It would be

convenient if we could describe all moments of a random variable in one function.

This function is called the moment generating function. We will use it directly to

compute moments for a variety of distributions. We will also employ the moment

generating function in the derivation of the Central Limit Theorem, in Section 5.9, and
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in the proof of several theorems in Chapter 6. The moment generating function,mxðtÞ,
of the random variable X is defined by

mxðtÞ ¼ hetXi ¼
P

x e
txpðxÞ (discrete),Rþ1

�1 etxfðxÞdx (continuous),

(
(5:9)

where t is a dummy variable. The moment generating function exists if there is a

positive constant � such thatmxðtÞ is finite for jtj � �. The moments themselves are the

coefficients in a Taylor series expansion of the moment generating function (see

Equation ((5.12)) below) which converges for jtj � �.
It can be shown that if a moment generating function exists, then it completely

determines the probability distribution of X, i.e., if two random variables

have the same moment generating function, they have the same probability

distribution.
The rth moment about the origin (see Equation (5.2)) is obtained by taking the rth

derivative of mxðtÞ with respect to t and then evaluating the derivative at t ¼ 0 as

shown in Equation (5.10).

drmxðtÞ
dtr

����
t¼ 0

¼ dr

dtr
hetXi

����
t¼ 0

¼ dretX

dtr

� �
t¼ 0

¼hXretXit¼ 0 ¼ hXri

¼�0r:

(5:10)

For moments about the mean (central moments), we can use the central moment

generating function.

mx��ðtÞ ¼ hexpftðx� �Þgi: (5:11)

Now we use a Taylor series expansion of the exponential,

hexp½tðX� �Þ�i ¼ 1þ tðX� �Þ þ t2ðX� �Þ2

2!
þ t3ðX� �Þ3

3!
� � �

* +
: (5:12)

From the expansion, one can see clearly that each successive moment is obtained by

taking the next higher derivative with respect to t, each time evaluating the derivative

at t ¼ 0.

Example:

Let X be a random variable with probability density function

fðxÞ ¼
1
� expð�x=�Þ; for x > 0; � > 0

0; elsewhere.

(
(5:13)
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Determine the moment generating function and variance:

mxðtÞ ¼
1

�

Z 1
0

expðtxÞ expð�x=�Þdx

¼ 1

�

Z 1
0

exp½�ð1� �tÞx=��dx

¼ �

�ð1� �tÞ exp½�ð1� �tÞx=��j
1
0

¼ ð1� �tÞ�1 ðfor t < 1=�Þ

(5:14)

dmxðtÞ
dt

t¼ 0j ¼ �ð1� �tÞ�2 t¼ 0j ¼ � ¼ hXi (5:15)

d2mxðtÞ
dt2

t¼ 0j ¼ 2�2ð1� �tÞ�3 t¼ 0j ¼ 2�2 ¼ hX2i: (5:16)

From Equation (5.4), the variance, �2, is given by

�2 ¼ hX2i � hXi2 ¼ 2�2 � �2 ¼ �2: (5:17)

5.7 Some discrete probability distributions

5.7.1 Binomial distribution

The binomial distribution3 is one of the most useful discrete probability distributions

and arises in any repetitive experiment whose result is either the occurrence or non-

occurrence of an event (only two possible outcomes, like tossing a coin). A large

number of experimental measurements contain random errors which can be repre-

sented by a limiting form of the binomial distribution called the normal or Gaussian

distribution (Section 5.8.1).
Let X be a random variable representing the number of successes (occurrences)

out of n independent trials such that the probability of success for any one trial

is p.4 Then X is said to have a binomial distribution with probability mass

function

pðxÞ ¼ pðxjn; pÞ ¼ n!

ðn� xÞ! x! p
xð1� pÞn�x; for x ¼ 0; 1; . . . ; n; 0 � p � 1;

(5:18)

which has two parameters n and p.

3 A Bayesian derivation of the binomial distribution is presented in Section 4.2.
4 Note: any time the symbol p appears without an argument, it will be taken to be a number representing the probability
of a success. pðxÞ is a probability distribution either discrete or continuous.
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Cumulative distribution function:

FðxÞ ¼
Xx
i¼ 0

pðiÞ ¼
Xx
i¼ 0

n

i

� �
pið1� pÞðn� iÞ

n

i

� �
¼ short-hand notation for number of combinations of

n items taken i at a time.
ð5:19Þ

Box 5.2 Mathematica cumulative binomial distribution:

Needs[‘‘Statistics ‘DiscreteDistributions’ ’’]

The probability of at least x successes in n binomial trials is given by

(1 – CDF[BinomialDistribution[n; p], x])

! answer ¼ 0:623 ðn ¼ 10; p ¼ 0:5; x ¼ 4Þ

Moment generating function of a binomial distribution:

We can apply Equation (5.9) to compute the moment generating function of the

binomial distribution.

mxðtÞ ¼ hetxi ¼
Xn
x¼ 0

etx
n

x

� �
pxð1� pÞn�x (5:20)

mxðtÞ ¼
Xn
x¼0

n!

ðn� xÞ! x! ðe
tpÞxð1� pÞn�x

¼ ð1� pÞn þ nð1� pÞn�1ðetpÞ þ � � � þ n!

ðn� kÞ! ð1� pÞn�kðetpÞn

þ � � � þ ðetpÞn

¼ binomial expansion of ½ð1� pÞ þ etp�n:

Therefore, mxðtÞ ¼ ½1� pþ etp�n.
From the first derivative, we compute the mean, which is given by

mean ¼ �01 ¼
dmxðtÞ

dt

���
t¼0
¼ n½1� pþ etp�n�1etp t¼0j ¼ np.

The second derivative yields the second moment:

�02 ¼
d2mxðtÞ
dt2

¼ nðn� 1Þ½1� pþ etp�n�2ðetpÞ2 þ n½1� pþ etp�n�1etp t¼ 0j

¼ nðn� 1Þp2 þ np:
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But �02 ¼ hX2i, and therefore, the variance �2 is given by

�2 ¼ hðX� �Þ2i ¼ hX2i � hXi2 ¼ hX2i � �2

¼ nðn� 1Þp2 þ np� ðnpÞ2

�2 ¼ npð1� pÞ (variance of binomial distribution):

(5:21)

Box 5.3 Mathematica binomial mean and variance

The same results could be obtained in Mathematica with the commands:

Mean[BinomialDistribution[n, p]]
Variance[BinomialDistribution[n, p]].

5.7.2 The Poisson distribution

The Poisson distribution was derived by the French mathematician Poisson in 1837,

and the first application was to the description of the number of deaths by horse

kicking in the Prussian army. The Poisson distribution resembles the binomial dis-

tribution if the probability of occurrence of a particular event is very small. Let X be a

random variable representing the number of independent random events that occur at

a constant average rate in time or space. Then X is said to have a Poisson distribution

with probability function

pðxj�Þ ¼
e���x

x!
; for x ¼ 0; 1; 2; . . . and � > 0

0; elsewhere.

8<
: (5:22)

The parameter of the Poisson distribution is �, the average number of occurrences

of the random event in some time or space interval. pðxj�Þ is the probability of x

occurrences of the event in a specified interval.5

The Poisson distribution is a limiting case of the binomial distribution in the limit of large

n and small p:
The following calculation illustrates the steps in deriving the Poisson distribution as

a limiting case of the binomial distribution.

Binomial distribution : pðxjn; pÞ ¼ n!

ðn� xÞ!x! p
xð1� pÞn�x; (5:24)

5 In Section 4.7, we derived the Poisson distribution by using probability theory as logic, directly from a statement of a
particular state of prior information. In that treatment, the Poisson distribution was written as

pðnjr; t; IÞ ¼ e�rtðrtÞn

n!
: ð5:23Þ

From a comparison of Equations (5.23) and (5.22), it is clear that the symbol �, the average number of occurrences in a
specified interval, is equal to rt where r is rate of occurrence and t is a specified time interval. Also, in the current chapter,
the symbol x will be used in place of n.
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where p is the probability of a single occurrence in a sample n in some time interval.

Multiply the numerator and denominator of Equation (5.24) by nx and substitute the

following expansion:

n!=ðn� xÞ! ¼ nðn� 1Þðn� 2Þ . . . ðn� x� 1Þ: (5:25)

With these changes, Equation (5.24) becomes

pðxjn; pÞ ¼ nðn� 1Þðn� 2Þ . . . ðn� x� 1Þ
nxx!

ðnpÞxð1� pÞn�x

¼ nðn� 1Þ . . . ðn� x� 1Þ
nx

�x

x!
ð1� pÞn�x

¼
1ð1� 1

nÞð1� 2
nÞ . . . ð1�

ðx�1Þ
n Þ

ð1� pÞx
�x

x!
ð1� pÞn;

(5:26)

where � has replaced the product np.

Now ð1� pÞn � ½ð1� pÞ�1=p��np ¼ ½ð1� pÞ�1=p��� and by definition lim
z!0
ð1þ zÞ1=z ¼ e.

Let z ¼ �p, then lim
p!0
½ð1� pÞ�1=p��� ¼ e��.

Moreover,

lim
n!1
ð1� 1=nÞð1� 2=nÞ . . . ð1� ðx� 1Þ=nÞ ¼ 1 (5:27)

and,

lim
p!0
ð1� pÞx ¼ 1: (5:28)

Therefore,

lim
n!1; p!0

pðxjn; pÞ ¼ e���x

x!
; x ¼ 0; 1; 2; . . . (5:29)

Thus, the Poisson distribution is a limiting case of the binomial distribution in the

limit of large n and small p. To make use of the binomial distribution we need to

know both n and p. In some instances the only information we have is the their

product, i.e., the mean number of occurrences, �. For example, traffic accidents are

rare events and the number of accidents per unit of time is well described by the

Poisson distribution. The number of traffic accidents that occur each day is usually

recorded by the police department, but not the number of cars that are not involved

in an accident.

Mean of a Poisson distribution:

� ¼ hXi ¼
X1
x¼ 0

x
�xe��

x!
¼ �e��

X1
x¼ 0

�x�1

ðx� 1Þ! : (5:30)
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Let y ¼ x� 1

� ¼ �e��
X1
y¼ 0

�y

y!
¼ �e��e� ¼ �: (5:31)

The mean of a Poisson distribution ¼ �. (For a binomial distribution � ¼ np)

Cumulative distribution:

Fðxj�Þ ¼
Xx
xi ¼ 0

�xie��

xi!
: (5:32)

Poisson variance:

�2ðXÞ ¼ hX2i � hXi2 (5:33)

hX2i ¼ hXðX� 1Þ þ Xi ¼ hXðX� 1Þi þ hXi: (5:34)

Then

hXðX� 1Þi ¼
X1
x¼0

xðx� 1Þ�xe��
x!

¼ e���2
X1
x¼ 2

�x�2

ðx� 2Þ!

¼ �2e��eþ�

¼ �2 ¼ �2:

(5:35)

Then

hX2i ¼ �2 þ �
�2ðXÞ ¼ �2 þ �� hXi2 ¼ �
! �ðXÞ ¼ ffiffiffi

�
p

:

Note: for a binomial distribution, �2 ¼ npð1� pÞ ! np ¼ � as p! 0.

Figure 5.6 illustrates how the shape of the Poisson distribution varies with �. As �

increases, the shape of the Poisson distribution asymptotically approaches a Gaussian

distribution. The dashed curve in the � ¼ 40 panel is a Gaussian distribution with a

mean¼ � and a standard deviation¼
ffiffiffi
�
p

.

Examples of situations described by a Poisson distribution:

* Number of telephone calls on a line in a given interval.
* Number of shoppers entering a store in a given interval.
* Number of failures of a product in a given interval.
* Number of photons detected from a distant quasar in a given time interval.
* Number of meteorites to fall per unit area of land.
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5.7.3 Negative binomial distribution

Imagine a binomial scenario involving a sequence of independent trials where the

probability of success of each trial is p. Instead of fixing the number of trials, n,

suppose we continue the trials until exactly k successes have occurred.6 Here, the

random variable is n, the number of trials necessary for exactly k successes. If

the independent trials continue until the kth success, then the last trial must have

been a success. Prior to the last trial, there must have been k� 1 successes in n� 1

trials. The number of distinct ways k� 1 successes can be observed in n� 1 trials is
n�1
k�1
� 	

. Therefore, the probability of k successes in the n trials with the last being

a success is

pðnjk; pÞ ¼ n� 1

k� 1


 �
pk�1ð1� pÞn�k 	 p1 ¼ n� 1

k� 1


 �
pkð1� pÞn�k: (5:36)

Equation (5.36) is called the negative binomial distribution.
Let the number of trials required to achieve k successes ¼ Xþ k. Then random

variable X is the number of failures before k successes, which is given by

pðxjk; pÞ ¼

kþ x� 1

k� 1


 �
pkð1� pÞx; x ¼ 0; 1; 2; . . .

k ¼ 1; 2; . . .

0 � p � 1

0; elsewhere.

8>>>><
>>>>:

For the special case of one success k ¼ 1, the above distribution is known as the

geometric distribution.

pðxjpÞ ¼ pð1� pÞx: (5:37)

The geometric random variable represents the number of failures before the first

success.
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Figure 5.6 As � increases, the shape of the Poisson distribution becomes more symmetric.

6 For example, an astronomer could plan to continue taking spectra of candidate stars until exactly 50 white dwarfs have
been detected.
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5.8 Continuous probability distributions

5.8.1 Normal distribution

The normal (Gaussian) distribution is the most important and widely used probability

distribution. One of the reasons why the normal distribution is so useful is because of

theCentral Limit Theorem. This theorem will be discussed in detail later, but briefly, it

says the following: suppose you have a radioactive source and you measure the

average number of decays in one hundred 10-second intervals. (We know that the

individual counts obey a Poisson distribution). If you repeated the experiment many

times and hence determined a large number of averages then, according to the Central

Limit Theorem, the averages will be normally distributed.
The distribution of the sample means (from populations with a finite mean and

variance) approaches a normal distribution as the number of terms in the mean

approaches infinity. It can be shown to be the limit of a binomial distribution as

n!1 and np
 1.

Corollary: Whenever a random variable can be assumed to be the result of a large

number of small effects, the distribution is approximately normal.

Gaussian probability density function:

fXðxÞ ¼ fðxj�; �Þ ¼ 1ffiffiffiffiffiffi
2p
p

�
exp �ðx� �Þ

2

2�2

( )
(5:38)

for�1 < x <1; �1 < � <1; 0 < �2 <1:

Box 5.4 Mathematica evaluation of a Gaussian or normal distribution:

Needs[‘‘Statistics‘ContinuousDistributions ’ ’’]

The line above loads a package containing a wide range of continuous distribu-

tions of importance to statistics, and the following line computes the probability

density function at x for a normal distribution with mean � and standard devia-

tion �.

PDF[NormalDistribution[m, s],x]
! answer ¼ 0:45662 ð� ¼ 2:0; � ¼ 0:4; x ¼ 1:5Þ

The mean and standard deviation of the distribution are given by
Mean[NormalDistribution[m, s]]
! answer ¼ �
StandardDeviation[NormalDistribution[m;s ]]
! answer ¼ �
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Central moment generating function:

mX��ðtÞ ¼ hexpftðX� �Þgi

¼ 1ffiffiffiffiffiffi
2p
p

�

Z þ1
�1

expftðx� �Þg exp �ðx� �Þ
2

2�2

( )
dx

¼ 1ffiffiffiffiffiffi
2p
p

�

Z þ1
�1

exp � 1

2�2
fðx� �Þ2 � 2�2tðx� �Þg


 �
dx:

Adding and subtracting �4t2 in the term in the curly braces:

fðx� �Þ2 � 2�2ðx� �Þtþ �4t2 � �4t2g ¼ f½x� �� �2t�2 � �4t2g

! mX��ðtÞ ¼ exp
�2t2

2


 �
1ffiffiffiffiffiffi
2p
p

�

Z þ1
�1

exp �ðx� �� �
2t2Þ2

2�2

( )
dx

¼ exp
�2t2

2


 �
¼ 1þ �

2t2

2
þ �4t4

4	 2!
þ �6t6

8	 3!
. . .

VarðXÞ ¼ d2mX��ðtÞ
dt2

����
t¼0
¼ �2

�3 ¼ 0 and �4 ¼
4!�4

4	 2!
¼ 3�4

�4 ¼ coefficient of kurtosis ¼ �4

ð�2Þ2
¼ 3.

Note: for a Poisson distribution, �4 ¼ 3þ 1

�
! 3 as �!1.

Also, for a binomial distribution �4 ¼ 3þ ½1� 6pð1� pÞ�
npð1� pÞ ! 3 as n!1.

Convention:

If the random variable X is known to follow a normal distribution with mean � and

variance �2, then it is common to abbreviate this by

X � Nð�; �2Þ:
For convenience, the following transformation to the standard random variable is

often made:

Z ¼ X� �
�
� Nð0; 1Þ:

In terms of Z the normal distribution becomes

fðZÞ ¼ 1ffiffiffiffiffiffi
2p
p exp� z2

2
:

Cumulative distribution function:

FðxÞ � Fðxj�; �Þ ¼ pðX � xÞ ¼ 1ffiffiffiffiffiffi
2p
p

�

Z x

�1
exp �ðt� �Þ

2

2�2

( )
dt:
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This integral cannot be integrated in closed form. Fðxj�; �Þ can be tabulated as a

function of � and �, which requires a separate table for each pair of values. Since there

are an infinite number of values for � and �, this task is not practical.
Instead, it is common to calculate the cumulative distribution function of the

standard random variable Z. Then:

pðX � xÞ ¼ p Z � x� �
�

h i
¼ 1ffiffiffiffiffiffi

2p
p

Z z¼ x��
�ð Þ

�1
exp � z

02

2


 �
dz0 ¼ FðzÞ:

Usually, FðzÞ is expressed in terms of the error function, erf(z).

erfðzÞ ¼ 2ffiffiffi
p
p
Z z

0

exp ð�u2Þdu

erfð�zÞ ¼ �erfðzÞ:
(5:39)

Then FðzÞ ¼ 1
2þ 1

2 erfðz=
ffiffiffi
2
p
Þ. The error function is in many computer libraries.

Box 5.5

In Mathematica, it can be evaluated with the command Erf [z].

However, it is simpler to compute the cumulative probability with the

Mathematica command: CDF[NormalDistribution[m, s ], x].

For any normally distributed random variable:

pð�� � � X � �þ �Þ ¼ 0:683

pð�� 2� � X � �þ 2�Þ ¼ 0:954

pð�� 3� � X � �þ 3�Þ ¼ 0:997

pð�� 4� � X � �þ 4�Þ ¼ 0:999 937

pð�� 5� � X � �þ 5�Þ ¼ 0:999 999 43:

Figure 5.7 shows graphs of the normal distribution (left) and the cumulative normal

distribution (right) for three different values of �.
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Figure 5.7 Graphs of the normal distribution (left) and the cumulative normal distribution (right).
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5.8.2 Uniform distribution

Examples of a uniform distribution include round-off errors and quantization of noise

in linear analog-to-digital conversion.
A random variable is said to be uniformly distributed over the interval (a; b) if

fðxja; bÞ ¼ 1=ðb� aÞ; for a � x � b
0; elsewhere

�
(5:40)

mean ¼ ðaþ bÞ=2; �3 ¼ 0

variance ¼ ðb� aÞ2=12; �4 ¼ 9=5

no mode; median ¼ mean:

The special caseofa ¼ 0 andb ¼ 1 plays akey role in the computer simulationof values

of a random variable with a specified distribution, which will be discussed in Section 5.13.

Cumulative distribution function:

Fðxja; bÞ ¼
0; for x < a
ðx� aÞ=ðb� aÞ; for a � x � b
1; for x > b.

8<
: (5:41)

5.8.3 Gamma distribution

The gamma distribution is used extensively in several diverse areas. For example, it is

used to represent the random time until the occurrence of some event which occurs

only if exactly � independent sub-events occur where the sub-events occur at an

average rate � ¼ 1=� per unit of time.

fðxÞ ¼ fðxj�; �Þ ¼
1

�ð�Þ�� x
��1 exp ð�x=�Þ; for x > 0; �; � > 0

0; elsewhere.

8<
: (5:42)

mean ¼ ��
variance ¼ ��2
�3 ¼ 2=

ffiffiffiffi
�
p

�4 ¼ 3 1þ 2
�

� 	
Note: �ðnÞ, the gamma function ¼

R1
0 un�1 exp ð�uÞdu for n > 0. Some properties

of the gamma function are:

1. �ðnþ 1Þ ¼ n! (for n an integer)

2. �ðnþ 1Þ ¼ n�ðnÞ
3. �ð1=2Þ ¼

ffiffiffi
p
p

Cumulative distribution function:

The cumulative distribution function can be expressed in closed form if the shape

parameter � is a positive integer.
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Fðxj�; �Þ ¼ 1� 1þ x

�
þ 1

2!

x

�

� �2
þ � � � þ 1

ð�� 1Þ!
x

�

� ���1� 

exp ð�x=�Þ: (5:43)

Example:

Suppose a metal specimen will break after exactly two stress cycles. If stress occurs

independently and at an average rate of 2 per 100 hours, determine the probability that

the length of time until failure is within one standard deviation of the average time.
Solution: Let X be a random variable representing the length of time until the second

stress cycle. X is gamma-distributed with � ¼ 2 and � ¼ 50.

� ¼ mean ¼�� ¼ 2	 50 ¼ 100

standard deviation ¼
ffiffiffiffiffiffiffiffi
��2
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2	 502
p

¼ 70:71

pð�� � < X < �þ �Þ ¼ pð29:29 < X < 170:71Þ

¼Fð170:71j2; 50Þ � Fð29:28j2; 50Þ:

Equation (5.43) for the cumulative distribution function reduces to:

Fðxj�; �Þ ¼ 1� ð1þ x=50Þ exp ð�x=50Þ; x > 0

! pð�� � < X < �þ �Þ ¼ 0:7376:

When � is an integer, the gamma distribution is known as the Erlang probability

model after the Danish scientist who used it to study telephone traffic problems.

5.8.4 Beta distribution

While we are on the subject of sampling distribution, here is one that plays a useful role

in Bayesian inference. The family of beta distributions allows for a wide variety of shapes.

fðxÞ � fðxj�; �Þ ¼
�ð�þ �Þ
�ð�Þ�ð�Þ x

��1ð1� xÞ��1; 0 < x < 1
�; � > 0

0; elsewhere.

8><
>: (5:44)

mean ¼ �=ð�þ �Þ; variance ¼ ��

ð1þ �Þ2ð�þ � þ 1Þ
.

Note: the � appearing in the beta distribution has no connection with the � used in the

previously mentioned gamma distribution.
Some examples of the beta distribution are illustrated in Figure 5.8. Any smooth

unimodal distribution in the interval x ¼ 0 to 1 is likely to be reasonably well

approximated by a beta distribution, so it is often possible to approximate a

Bayesian prior distribution in this way. If the likelihood function is a binomial

distribution, then the Bayesian posterior will have a simple analytic form; namely,

another beta distribution. More generally, when both the prior and posterior belong

to the same distribution family (in this case the beta distribution), then the prior and
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likelihood are called conjugate distributions. This can greatly simplify any calculations

that involve the posterior distribution. The beta distribution is often referred to as a

conjugate prior for the binomial likelihood.7 Other well-known examples of conjugate

priors are the Gaussian (when dealing with a Gaussian likelihood) and the gamma

distribution (when dealing with a Poisson likelihood). In each case, the posterior and

prior are members of the same family of distributions.

5.8.5 Negative exponential distribution

The negative exponential distribution is a special case of the gamma distribution for

� ¼ 1.
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Figure 5.8 Graphs of beta density function for various values of �, �.

7 For example, if the prior is a beta distribution, Be(�; � ), then we can write

pðxjI Þ / x��1ð1� xÞ��1 ð0 � x � 1Þ : ð5:45Þ
Suppose the likelihood is a binomial, with pð yjn; xÞ¼ the probability of obtaining y successes in n trials where the
probability of success in any trial is x. Then we can write the likelihood as

pðDjx; I Þ / xyð1� xÞn�y: ð5:46Þ
The posterior is proportional to the product of Equations (5.45) and (5.46), and given by

pðxjD; I Þ / x�þy�1ð1� xÞ�þn�y�1 ð5:47Þ

which is another beta distribution, Beð�þ y; � þ n� yÞ.
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fðxÞ � fðxj�Þ ¼
1

�
exp ð�x=�Þ; for x > 0; � > 0

0; elsewhere.

8<
: (5:48)

The random variable X is the waiting time until the occurrence of the first Poisson

event. That is, the negative exponential distribution can model the length of time

between successive Poisson events. It has been used extensively as a time-to-failure

model in reliability problems and in waiting-line problems. � is the mean time between

Poisson events.
The cumulative negative exponential distribution function is given by

Fðxj�Þ ¼ 1� expð�x=�Þ:

5.9 Central Limit Theorem

Let X1;X2;X3; . . . ;Xn be n independent and identically distributed (IID) random

variables with unspecified probability distributions, and having a finite mean, �, and

variance, �2. The sample average,X ¼ ðX1 þ X2 þ X3 þ � � � þ XnÞ=n has a distribution
with mean � and variance �2=n that tends to a normal (Gaussian) distribution as

n!1. In other words, the standard random variable,

ðX� �Þ
�=

ffiffiffi
n
p ! standard normal distribution:

Proof:

As a proof, we will show that the moment generating function of ðX� �Þ
ffiffiffi
n
p

=� tends

to that of a standard normal as n!1.

Let zi ¼ ðXi � �Þ=�; i ¼ 1; n

hzii ¼ 0

hz2i i ¼ 1

9=
;by definition:

Let Y ¼ ðX� �Þ
�=

ffiffiffi
n
p .

Now
Pn
i¼1

zi ¼ 1
�

P
ðXi � �Þ ¼ n

� ðX� �Þ ¼
ffiffiffi
n
p

Y or Y ¼ 1ffiffi
n
p
Pn
i¼1

zi.

Then the moment generating function mYðtÞ is given by

mYðtÞ ¼ hexpðtYÞi ¼ exp t
Xn
i¼1

ziffiffiffi
n
p

 !* +

¼ exp t
ziffiffiffi
n
p


 �� �n

since the zi’s are IID:
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Now exp t
ziffiffiffi
n
p


 �
¼ 1þ tziffiffiffi

n
p þ t2z2i

2!n
þ t3z3i
3!n3=2

þ � � �

and since hzii ¼ 0; hz2i i ¼ 1 for all i.

exp
tziffiffiffi
n
p

 �� �

¼ 1þ t2

2n
þ t3hz3i i
3!n3=2

þ � � �

mYðtÞ ¼ 1þ t2

2n
þ t3hz3i i
3!n3=2

þ � � �
� 
n

¼ 1þ 1

n

t2

2
þ t3hz3i i

3!
ffiffiffi
n
p þ � � �

� �� 
n

¼ 1þ u

n

h in
; where u ¼ t2

2
þ t3hz3i i

3!
ffiffiffi
n
p þ � � �

� �

lim
n!1

1þ u

n

h in
¼ eu:

In the limit as n!1, all terms in u! 0 except the first, t2=2, since all other terms

have an n in the denominator.

lim
n!1

mYðtÞ ¼ lim
n!1

eu ¼ exp
t2

2

¼ moment generating function of a standard normal.

This completes the proof.

5.10 Bayesian demonstration of the Central Limit Theorem

The proof of the CLT given in Section 5.9 does little to develop the reader’s intuition

on how it works and what are its limitations. To help on both counts, we give the

following demonstration of the CLT which is adapted from the work of M. Tribus

(1969). In data analysis, it is common practice to compute the average of a repeated

measurement and perform subsequent analysis using the average value.
The probability density function (PDF) of the average is simply related to the

PDF of the sum which is evaluated below using probability theory as logic. In this

demonstration, we will be concerned with measurements of the length of a widget8

which is composed of many identical components that have all been manufactured

on the same assembly line. Because of variations in the manufacturing process, the

widgets do not all end up with exactly the same length. The components are

analogs of the data points and the widget is the analog of the sum of a set of

data points.

8 A widget is some unspecified gadget or device.
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I � ‘‘a widget is composed of two components. Length of widget¼ sum of compo-

nent lengths.’’

Y � ‘‘Length of widget lies between y and yþ dy.’’

Note: Y is a logical proposition which appears in the probability function and y is an

ordinary algebraic variable.

X1 � ‘‘Length of component 1 lies between x1 and x1 þ dx1.’’

X2 � ‘‘Length of component 2 lies between x2 and x2 þ dx2.’’

We are given that

pðX1jIÞ ¼ f1ðx1Þ

pðX2jIÞ ¼ f2ðx2Þ:

Problem: Find pðYjIÞ.
Now Y depends on propositions X1 and X2. To evaluate pðYjIÞ, we first extend the

conversation (Tribus, 1969) to include these propositions by writing down the joint

probability distribution pðY;X1;X2jIÞ. We can then solve for pðYjIÞ by using the

marginalizing operation as follows:

pðYjIÞ ¼
Z Z

dX1dX2 pðY;X1;X2jIÞ

¼
Z Z

dX1dX2 pðX1jIÞpðX2jIÞpðYjX1;X2; IÞ;

where we assume X1 and X2 are independent.
Since y ¼ x1 þ x2,

pðYjX1;X2; IÞ ¼ �ðy� x1 � x2Þ

! pðYjIÞ ¼
Z

dx1 f1ðx1Þ
Z

dx2 f2ðx2Þ�ðy� x1 � x2Þ:

The presence of the delta function in the second integral serves to pick out the value

of the integrand at x2 ¼ y� x1, so we have

pðYjIÞ ¼
Z

dx1 f1ðx1Þf2ðy� x1Þ: (5:49)

The right hand side of this equation is the convolution integral.9 The convolution

operation is demonstrated in Figure 5.9 for the case where both f1ðxÞ and f2ðxÞ are
uniform PDFs of the same width. The result is a triangular distribution.

9 For more details on the convolution integral and how to evaluate it using the Fast Fourier Transform, see Sections B.4
and B.10.
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What if the widget is composed of three components?

Let Z � ‘‘Length of widget is between z and zþ dz.’’

pðZjIÞ ¼
Z Z Z

dX1 dX2 dX3 pðZ;X1;X2;X3jIÞ

¼
Z Z

dY dX3 pðZ;X3;YjIÞ

¼
Z

dYpðYjIÞ
Z

dX3 pðX3jIÞ pðZjX3;Y; IÞ

where pðZjX3;Y;IÞ¼ �ðz� y�x3Þ and pðYjIÞ is the solution to the two-component case.

Convolution

−1 0 1 2
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f1(x)

0 1 2
x

f2(y − x)

0 1 2
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0 1 2
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f2(x)

f2(−x)
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x

−1

−1

−1

−1

Figure 5.9 The convolution operation.
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pðZjIÞ ¼
Z

dy pðYjIÞf3ðz� yÞ

¼
Z

dy fðyÞf3ðz� yÞ:

Another convolution!

Shown below, the probability density function (PDF) of the average is simply

related to the PDF of the sum (which we have just evaluated).

Let xA ¼ ðx1 þ x2 þ x3Þ=3 ¼ z=3 or z ¼ 3xA.

fðxAÞdxA ¼ fðzÞdz ¼ 3fðzÞdxA
! pðXAjIÞ ¼ 3pðZjIÞ:

Figure 5.10 compares the PDF of the average for the case of n ¼ 1, 2, 4 and 8

components. According to the Central Limit Theorem, pðXAjIÞ tends to a Gaussian

distribution as the number of data being averaged becomes larger. After averaging

only four components, the PDF has already taken on the appearance of a Gaussian. If

instead of a uniform distribution, our starting PDF had two peaks (bimodal), then a

larger number of components would have been required before the PDF of the average

was a reasonable approximation to aGaussian. On the basis of this analysis, we come to

the following generalization of the Central Limit Theorem: ‘‘Any quantity that stems

from a large number of sub-processes is expected to have a Gaussian distribution.’’

The Central Limit Theorem (CLT) is both remarkable and of great practical value

in data analysis. In frequentist statistics, we are often uncertain of the form of the

sampling distribution the data are drawn from. The equivalent problem in a

Bayesian analysis is the choice of likelihood function to use. By working with

the averages of data points (frequently as few as five points), we can appeal to the

CLT and make use of a Gaussian distribution for the sampling distribution or

likelihood function. The CLT also provides a deep understanding for why meas-

urement uncertainties frequently have a Gaussian distribution. This is because the
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Figure 5.10 The left panel shows a comparison of the probability density function of the average
for the case of n ¼ 1, 2, 4 and 8 components. The right panel compares the n ¼ 8 case to a

Gaussian (dashed curve) with the same mean and variance. The two curves are so similar it is
difficult to separate them.
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measured quantity is often the result of a large number of effects, i.e., is some kind

of averaged resultant of these effects (random variables in frequentist language).

Since the distribution of the average of a collection of random variables tends to a

Gaussian, this is often what we observe.

Two exceptions to the Central Limit Theorem exist. They are:

1. One of the pðXijIÞ is much broader than all of the others. It is apparent from the above

demonstration that convolving a very wide uniform distribution with a narrow uniform

distribution will give a result that is essentially the same as the original wide uniform

distribution.

2. The variances of one or more of the individual pðXijIÞ distributions are infinite. A Cauchy or

Lorentzian distribution is an example of such a distribution:

pðxj�; �; IÞ ¼ �

p½�2 þ ðx� �Þ2�
:

Its very wide wings lead to an infinite second moment, i.e., the variance of X is infinite and

the sample mean is not a useful quantity. One example of this is the natural line shape of a

spectral line.

5.11 Distribution of the sample mean

It is apparent from the previous section that the PDF of the sample mean (average)

rapidly approaches a Gaussian in shape and the width of this Gaussian becomes

narrower as the number of samples in the average increases. In this section, we want to

quantify this latter effect using the frequentist approach.
Let a random sample X1;X2; . . . ;Xn consist of n IID random variables such that

hXii ¼ � and VarðXiÞ ¼ �2:

Then hXi ¼ h1n
P

Xii ¼ 1
n

P
hXii ¼ 1

n

P
�

! hXi ¼ �;

and

VarðXÞ ¼ ðX� �Þ2
D E

¼ 1

n

X
Xi �

1

n

X
�


 �2
* +

¼ 1

n2

X
ðXi � �Þ2

D E
¼ 1

n2

X
ðXi � �Þ2
D E

¼ 1

n2

X
�2 ¼ 1

n2
n�2

VarðXÞ ¼ �
2

n
:

(5:50)
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The following is true for any distribution with a finite variance:

hXi ¼ �

VarðXÞ ¼ �
2

n

Conclusion: The distribution of a sample average X sharpens around � as the

sample size n increases.10 Signal averaging is based on this principle.

5.11.1 Signal averaging example

Every second a spectrometer output consisting of 64 voltage levels corresponding to

64 frequencies, is sampled by the computer. These voltages are added to a memory

buffer containing the results of all previous one-second spectrometer readings. The

accumulated spectra are shown in Figure 5.11 at different stages. Although no signal is

evident above the noise level in the first spectrum, the signal is clearly evident (near

channel 27) after eight spectra have been summed.

Let Si / nXi ¼ the signal in the ith channel of n summed spectra, and

Ni / n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðXiÞ

q
¼ the noise in the ith channel. Then

Si

Ni
¼ nXi

n�=
ffiffiffi
n
p ¼

ffiffiffi
n
p Xi

�
:

In radio astronomy, we are often trying to detect signals which are 10�3 of the noise.

For a S=N � 5, n � 2:5	 107. However, in these cases, the time required for one

independent sample is often much less than onemicrosecond, and is determined by the

radio astronomy receiver bandwidth and detector time constant.

5.12 Transformation of a random variable

In Section 5.13, we will want to generate random variables having a variety of

probability distributions for use in simulating experimental data. To do that, we

must first learn about the probability distribution of a transformed random variable.

10 What happens to the average of samples drawn from a distribution which has an infinite variance? In this case, the
error bar for the sample mean does not decrease with increasing n. Even though the sample mean is not a good
estimator of the distribution mean �, we can still employ Bayes’ theorem to compute the posterior PDF of � from the
available samples. The PDF continues to sharpen about � as the number of samples increases. For a good numerical
demonstration of this point, see the lighthouse problem discussed by Sivia (1996) and Gull (1988a).
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Problem:How do we obtain the probability density function, fYðyÞ, of the transformed

random variable y, where y ¼ gðxÞ, from knowledge of the probability density

function, fXðxÞ, of the original random variable X?

The function y ¼ gðxÞ must be a monotonic (increasing or decreasing), differenti-

able function of x. Then there exists an inverse function x ¼ g�1ðyÞ which is also

monotonic and differentiable and for every interval dx there is a corresponding

interval dy. Then the probability that y � Y � yþ dy must equal the probability

that x � X � xþ dx, or

j fYðyÞdyj ¼ j fXðxÞdxj: (5:51)

Since probabilities are always positive, we can write

fYðyÞ ¼ fXðxÞ
dx

dy

����
����: (5:52)
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Figure 5.11 Signal averaging. Every second a spectrometer output consisting of 64 voltage levels,

corresponding to 64 frequencies, is added to a computer memory buffer. The summed spectra
are shown at different stages. Although no signal is evident above the noise level in the first
spectrum, the signal is clearly evident (near channel 27) after eight spectra have been summed.
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Example:

Find fZðzÞ, where Z is the standard random variable defined by Z ¼ ðX� �Þ=�, where
� ¼ mean and � ¼ standard deviation.

z ¼ gðxÞ ¼ x� �
�

: (5:53)

x ¼ g�1ðzÞ ¼ �zþ � and
dx

dz
¼ �: (5:54)

Then from Equation (5.52), we can write fZðzÞ ¼ fXðxÞ�.

Suppose fXðxÞ ¼
1ffiffiffiffiffiffi
2p
p

�
exp�ðx� �Þ

2

2�2
(normal distribution).

Then from Equations (5.52) and (5.53), we obtain

fZðzÞ ¼
1ffiffiffiffiffiffi
2p
p exp� z2

2
: (5:55)

5.13 Random and pseudo-random numbers

Computer simulations have become an extremely useful tool for testing data analysis

algorithms and analyzing complex systems, which are often comprised of many

interdependent components. Some examples of their use are given below.

* To simulate experimental data in the design of a complex detector system in many branches

of science.
* To test the effectiveness or completeness of some complex analysis program.
* To compute the uncertainties in the parameter estimates derived from nonlinear model fitting.
* To calculate the solution to a statistical mechanics problem which is not amenable to

analytical solution.
* To make unpredictable data for use in cryptography, to deal with a variety of authentication

and confidentiality problems.

What is usually done is to assume an appropriate probability distribution for each

distinct component and to generate a sequence of random or pseudo-random values

for each. There are many procedures, known by the generic name of Monte Carlo,11

that follow these lines and use the commodity called random numbers, which have to

be manufactured somehow. Typically, the sequences of random numbers are gener-

ated by numerical algorithms that can be repeated exactly; such sequences are not

truly random. However, they exhibit enough random properties to be sufficient for

most applications. We consider below, possible ways of generating random values

from some discrete and continuous probability distributions.

11 In Chapter 12, we discuss the important topic of Markov chain Monte Carlo (MCMC) methods, which are
dramatically increasing our ability to evaluate the integrals required in a Bayesian analysis of very complicated
problems.
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The uniform distribution on the interval (0, 1) plays a key role in the generation of

random values. From it, we can generate random numbers for any other distribution

using the following theorem:

Theorem:

For any continuous random variable X, the cumulative distribution function Fðxj�Þ
with parameter � may be represented by a random variable u, which is uniformly

distributed on the unit interval.

Proof:

By definition, Fðxj�Þ ¼
R x
�1 fðtj�Þdt. For each value of x, there is a corresponding

value of Fðxj�Þ which is necessarily in the interval (0,1). Also, Fðxj�Þ is a random

variable by virtue of the randomness of X. For each value u of the random variable u,

the function u ¼ Fðxj�Þ defines a one-to-one correspondence betweenU and X having

an inverse relationship x ¼ F�1ðuÞ.
Recall that it was shown earlier how to obtain the PDF fðyÞ of the transformed

random variable Y ¼ gðXÞ from the knowledge of the PDF of X. The result was

fyðyÞ ¼ fXðxj�Þ
dx

dy

����
���� ¼ fX½g�1ðyÞj��

dg�1ðyÞ
dy

����
����: (5:56)

In the present case, this means

fUðuÞ ¼ fX½F�1ðuÞj��
dx

du

����
����: (5:57)

Since

u ¼ Fðxj�Þ ! du

dx
¼ dFðxj�Þ

dx
¼ fXðxj�Þ

! dx

du
¼ f fXðxj�Þg�1:

(5:58)

But x ¼ F�1ðuÞ. Substituting for x in Equation (5.58), we obtain

dx

du
¼ f fX½F�1ðuÞj��g�1: (5:59)

Substituting Equation (5.59) into Equation (5.57) yields

fUðuÞ ¼
fX½F�1ðuÞj��
fX½F�1ðuÞj��

fUðuÞ ¼ 1; 0 � u � 1:

(5:60)
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The essence of the theorem is that in many instances, we are able to determine the

value of x corresponding to a value of u such that Fðxj�Þ ¼ u. For this reason,

practically all computer systems have a built-in capability of generating random

values for a uniform distribution on the unit interval.
Therefore, to generate random variables for any continuous distribution, we need

only generate a random number, u, from a uniform distribution and then solveZ x

�1
fXðxj�Þdx ¼ u for x;

where fXðxj�Þ is the PDF of distribution of interest.
The procedure is illustrated in Figure 5.12. Suppose we want to generate random

numbers with a PDF represented by panel (a). Construct the cumulative distribution

function, FðxÞ, as shown in panel (b). Generate a sequence of random numbers which

have a uniform distribution in the interval 0 to 1. Locate each of these on the y-axis of

panel (c) and draw a line parallel to the x-axis to intersect FðxÞ. Drop a perpendicular

to the horizontal axis and read off the x value. The distribution of random x values
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Figure 5.12 This figure illustrates the construction of random numbers which have a distribution

corresponding to that shown in panel (a). It makes use of the cumulative distribution function
(CDF) shown in panel (b), and a sequence of randomnumbers that have a uniform distribution in
the interval 0 to 1. The construction is illustrated in panel (c) for 20 random numbers. Panel

(d) shows a histogram of 500 random numbers generated by this process. See the text for details.
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derived in this way will have the desired probability distribution. Panel (c) illustrates

this construction for 20 random numbers. A histogram of 500 of these random x

values is shown in panel (d).

Examples:

1. Uniform distribution on the interval ða; bÞ:

fðxja; bÞ ¼ 1

ðb� aÞ ; ða � x � bÞ:

First, generate a random value of u in the interval (0, 1), equate it to the cumulative

distribution function, integrate and solve:

ðb� aÞ�1
Z x

a

dt ¼ u

x ¼ uðb� aÞ þ a; ða � x � bÞ:

2. Negative exponential distribution:

fðxj�Þ ¼ expð�x=�Þ�; for x > 0; � > 0
0; elsewhere.

�
(5:61)

1

�

Z x

0

exp � t

�

� �
dt ¼ u

1

�


 �
ð��Þ exp � t

�

� ����x
0
¼ u

1� exp � x

�

� �
¼ u

x ¼ � ln 1

1� u


 �
¼ �� lnð1� uÞ ¼ �� lnðuÞ: (5:62)

3. Poisson distribution: recall the probability of exactly x occurrences in a time T is given by

pðxjTÞ ¼ ðrTÞ
x expð�rTÞ

x!
; x ¼ 0; 1; 2; . . .

where r ¼ average rate of occurrences and � ¼ rT is the average number of occurrences in

time T. Since the time difference between independent Poisson occurrences has a negative

exponential distribution, one can generate a random Poisson value by generating successive

negative exponential random values using t ¼ �� lnðuÞ. The process continues until the sum
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of xþ 1 values of t exceeds the prescribed length T. The Poisson random value, therefore,

is x. Recall � ¼ mean time between Poisson events ¼ 1=r.

5.13.1 Pseudo-random number generators

Considerable effort has been focused on finding methods for generating uniform

distributions of numbers in the range [0,1] (Knuth, 1981; Press et al., 1992). These

numbers can then be transformed into other ranges and other types of distributions

(e.g., Poisson, normal) as we have seen.
The procedure below illustrates one approach to pseudo-random number gener-

ation calledLinear Congruent Generators (LCG)which generate a sequence of integers

I1; I2; I3; . . . each between 0 and ðm� 1Þ=m, where m is a large number, by the

following operations:

Step 1: Iiþ 1 ¼ aIi þ c where a and c are integers. This generates an upward-going

sequence from a seed I0.
Step 2: Modulus½I;m� ¼ I� IntegerPart½I=m� 	m

e.g., Modulus½5; 3� ¼ 5� Integer Part½5=3� 	 3 ¼ 2

This reduces the above sequence to a random one with values in the range 0 to m� 1

(actually a distribution of round-off errors).

Also written as Iiþ 1 ¼ aIi þ cðMod mÞ.
Step 3: U ¼ 1

mModulus½I;m�
This gives the desired sequence U between 0 and ðm� 1Þ=m.

Notice the smallest difference between terms is 1=m, which means the numbers a LCG

produces comprise a set of m equally spaced rational fractions in the range

0 � x � ðm� 1Þ=m.

Problems:

1. The sequence repeats itself with some period which is � m.

2. For certain choices of parameters, some generators skip many of the possible numbers and

give an incomplete set. A series that generates all the m distinct integers ð0 < n < m� 1Þ
during each period is called a full period.

3. Contains subtle serial correlations. SeeNumerical Recipes (Press et al., 1992) formore details.

Established rules for choosing parameters that give a long and full period are given

by Knuth (1981) and by Park and Miller (1988). One way to reduce all of the above

problems is to use a compound LCG or shuffling generator which works as follows:

1. Use two LCGs.

2. Use first LCG to generate N lists of random numbers.

3. Use second LCG to calculate a number l between 1 andN, then select top number from lth list

(return this number back to the bottom of that list).

4. Period of compound LCG � product of periods of individual LCGs.
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Box 5.6 Mathematica pseudo-random numbers:

We can useMathematica to generate pseudo-random numbers with a wide range

of probability distributions. The following command will yield a list of 10 000

uniform random numbers in the interval 0! 1:

Table[Random[ ],{10000}]

Random uses the Wolfram rule 30 cellular automaton generator for integers

(Wolfram, 2002).

To obtain a table of pseudo-random numbers with aGaussian distribution use the

following commands. The first line loads a package containing a wide range of

continuous distributions of interest for statistics.

Needs[‘‘Statistics ‘ContinuousDistributions’ ’’]

Table [Random[NormalDistribution[m, s ]], {10000}]

Mathematica uses the time of day as a seed for random number generation. To

ensure you always get the same sequence of pseudo-random numbers, you need to

provide a specific seed (e.g., 99) with the command:

SeedRandom[99]

5.13.2 Tests for randomness

Most computers have lurking in their library routines a random number generator

typically with the nameRAN.X ¼ RAN(ISEED) is a typical calling sequence. ISEED

is some arbitrary initialization value. Any random number generator needs testing

before use as the example discussed below illustrates. Four common approaches to

testing are:

* Random walk.
* Compare the actual distribution of the pseudo-random numbers to a uniform distribution

using a statistical test. Two commonly used frequentist tests are the Kolmogorov–Smirnov

test and the 	2 goodness-of-fit test. The latter is discussed in Section 7.3.1.
* Examine the Fourier spectrum.
* Test for correlations between neighboring random numbers.

Examples of the latter two tests are given in this section.
Panel (a) of Figure 5.13 shows the power spectral density of 262 144 pseudo-random

numbers generated using Mathematica. The frequency axis is the number of cycles in

the 262 144 steps. There do not appear to be any significant peaks indicative of a

periodicity. Note: the uniformly distributed pseudo-random numbers in the interval
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0! 1 were transformed to be uniform in the interval �0:5! 0:5 by subtracting 0.5

from each, so there is no DC (zero frequency) component in the spectrum. Panel (b)

shows a histogram of the real part of the Fourier amplitudes which has a Gaussian

shape. From the Central Limit Theorem, we expect the histogram to be a Gaussian,

since each amplitude corresponds to a weighted sum (weighted by a sine wave) of a

very large number of random values.
Panels (c) and (d) demonstrate how sensitive the power spectral density (PSD) and

Fourier amplitude histogram are to a repeating sequence of random numbers. Panel

(c) shows the PSD for a sequence of 262 144 random numbers consisting of 5.24 cycles

of 50 000 random numbers generated with Mathematica. Again the frequency axis is

the number of cycles in the 262 144 steps. This time, one can clearly see peaks in the

PSD at multiples of 5.24, and the histogram has become much narrower. Note: when

the sequence is an exact multiple of the repeat period, the vast majority of Fourier

amplitudes are zero and the histogram takes on the appearance of a sharp spike or

delta function, sitting on a broad plateau. A program to carry out the above calcula-

tions can be found in the section of theMathematica tutorial entitled, ‘‘Fourier test of

random numbers.’’
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Figure 5.13 Panel (a) shows the power spectral density of 262 144 pseudo-random numbers
generated using Mathematica. The frequency axis is the number of cycles in the 262 144 steps.

Panel (b) shows a histogram of the real part of the Fourier amplitudes. For comparison, panels
(c) and (d) demonstrate how sensitive the PSD and Fourier amplitude histogram are to a
repeating sequence of random numbers (5.24 cycles of 50 000 random numbers).
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Since each pseudo-random number is derived from the previous value, it is important

to test whether successive values are independent or exhibit correlations. We can look

for evidence of correlations between adjacent random numbers by grouping them in

pairs and plotting the value of one against the other. Such a plot is shown in Figure 5.14,

for 3000 pairs of random numbers. If adjacent pairs were completely correlated, we

would expect the points to lie on a straight line. This is clearly not the case as the points

appear to be randomly scattered over the figure.
The right panel of Figure 5.14 shows a similar correlation test involving neighboring

points, taken three at a time, and plotted in three dimensions. If the sequence of

numbers is perfectly random, then we expect the points to have an approximately

uniform distribution, as they appear to do.
It is possible to extend and quantify these correlation tests. The most common

frequentist tool for quantifying correlation is called the autocorrelation function

(ACF). Here is how it works for our problem: let fxig be a list of uniformly distributed

pseudo-random numbers in the interval 0 to 1. Now subtract themean value of the list,

x, to obtain a new list in the interval �0:5 to 0.5. Make a copy of the list fxi � xg and
place it below the first list. Then shift the copy to the left by j terms so the ith term in the

original list is above the ðiþ jÞth term in the copy. This shift is referred to as a lag.

Next, multiply each term in the original list by the term in the shifted list immediately

below, and compute the average of these products (for all terms that overlap in the two

lists), which we designate 
ð jÞ. We can repeat this process and compute 
ðjÞ for a wide
range of lags, ranging from j ¼ 0 to some large value. If the numbers in the list are truly
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Figure 5.14 The left panel shows a correlation test between successive pairs of random numbers,
obtained from the Mathematica pseudo-random number generator. The coordinates of each
point are given by the pair of random numbers. The right panel shows a three-dimensional

correlation test involving successive random numbers taken three at a time. The right panel was
plotted with the Mathematica command ScatterPlot3D.
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random then any term in the original list will be completely independent of any term in

the shifted copy. So each multiplication is equally likely to be a positive or negative

quantity. The average of a large number of random positive and negative quantities

tends to zero. Of course for j ¼ 0 (no shift), the two terms are identical so the products

are all positive quantities and there is no cancellation. Thus, for a list of completely

random numbers, a plot of the ACF, 
ð jÞ, will look like a spike at j ¼ 0 and be close to

zero for all j � 1. If the terms are not completely independent, then we expect the plot

of 
ð jÞ to decay gradually towards zero over a range of j values.
The formula for 
ð jÞ given below differs slightly from the operation just described,

in that instead of computing the average, we sum the product terms for each j and then

normalize by dividing by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
overlap

ðxi � xÞ2
s

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
overlap

ðxiþ j � xÞ2
s

:

With this normalization, the maximum value of the ACF is 1.0 and it allows the ACF

to handle a wider variety of correlation problems than the particular one we are

interested in here:


ð jÞ ¼
P

overlap½ðxi � xÞðxiþ j � xÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
overlapðxi � xÞ2

q
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
overlapðxiþ j � xÞ2

q ; (5:63)

where the summation is carried out over the subset of samples that overlap.

Figure 5.15 shows a plot of the ACF for a sequence of 10 000 uniformly distributed
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Figure 5.15 The autocorrelation function (ACF) for a sequence of 10 000 uniformly distributed
pseudo-random numbers generated by the Mathematica Random command. The larger plot

spans a range of 1000 lags, while the blow-up in the corner shows the first ten lags. Clearly, for
lags � 1, the ACF is essentially zero indicating no detectable correlation.
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pseudo-random numbers generated by the Mathematica Random command. The

larger plot spans a range of 1000 lags, while the blow-up in the corner shows the

first ten lags. Clearly, for lags� 1, the ACF is essentially zero indicating no detectable

correlation. The noise-like fluctuations for j � 1 arise because of incomplete cancella-

tion of the product terms for a finite list of random numbers.
For quite a few years, RAN3 in Numerical Recipes (not an LCG but based on a

subtractivemethod) was considered a reliable portable random number generator, but

even this has been called into question (see Barber et al., 1985; Vattulainen et al., 1994;

Maddox, 1994; and Fernandez and Rivero, 1996). However, what is random enough

for one application may not be random enough for another. In the near future,

random number generators based upon a physical process, like Johnson noise from

a resistor or a reverse-biased zener diode, will be incorporated into every computer.

Intel already supplies such devices on some chipsets for PC-type computers. One can

anticipate that users of these hardware-derived random numbers will again be con-

cerned with just how random these numbers are.

5.14 Summary

The most important aspect of frequentist statistics is the process of drawing conclu-

sions based on sample data drawn from the population (which is the collection of all

possible samples). The use of the term random variable conveys the idea of an intrinsic

uncertainty in themeasurement characterized by an underlying population. A random

variable is not the particular number recorded in one measurement, but rather, it is an

abstraction of the measurement operation or observation that gives rise to that

number, e.g., X may represent the random variable and x the realization of the

random variable in one measurement.
To the frequentist, the sampling distribution is a model of the probability distribu-

tion of the underlying population from which the sample was taken. In a Bayesian

analysis, the sampling distribution is a mathematical description of the uncertainty in

predicting the data for any particular model because of incomplete information. It

enables us to compute the likelihood pðDjH; IÞ.
We considered various descriptive properties of probability distributions: moments,

moment generating functions (useful in proofs of important theorems) and measures

of the central tendency of a distribution (mode, median and mean). This was followed

by a discussion of some important discrete and continuous probability distributions.
Themost important probability distribution is the Gaussian or normal distribution.

This is because a measured quantity is often the result of a large number of effects, i.e.,

is some kind of average of these effects. According to the Central Limit Theorem, the

distribution of the average of a collection of random variables tends to a Gaussian.

We also learned that in most circumstances, the distribution of the sample average

sharpens around the sample mean as the sample size increases, which is the basis of

signal averaging that plays such an important role in experimental work.
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Finally, we learned how to generate pseudo-random samples from an arbitrary

probability distribution, a topic that is of great importance in experimental simula-

tions and Monte Carlo techniques.

5.15 Problems

1. Write a small program to reproduceFigure 5.5 starting from the rawdata ‘‘badbase.dat’’

(supplied with the Mathematica tutorial) and using 21 points for the running median

andmean. For the first and last ten points of the data, just subtract the average of the ten

from each point.
2. When sampling from a normal distribution with mean � ¼ 2 and � ¼ 1, compute

Pð�� 2:7� � X � �þ 2:7�Þ.
3. As one test of your pseudo-random number generator, generate a sample of 50 000

random numbers in the interval 0 to 1 with a uniform distribution. Compare the

mean and variance of the sequence to that expected for a uniform distribution. Does

the sample mean agree with the expected mean to within one standard error of the

sample mean?
4. Generate 10 000 pseudo-random numbers with a beta distribution with �¼ 2 and

�¼ 4. See the Mathematica example in Section 5.13.1 of the book and use

BetaDistribution instead of NormalDistribution. Plot a histogram of your random

numbers, and on the same plot, overlay a beta distribution for comparison.

Compute the mean and median of your simulated data set. See the BinCounts,

Mean, and Median commands in Mathematica.
5. Let X1;X2;X3; . . . ;Xn be n independent and identically distributed (IID) random

variables with a beta PDF given by

fðxÞ � fðxj�; �Þ ¼
�ð�þ �Þ
�ð�Þ�ð�Þ x

��1ð1� xÞ��1; for 0 < x < 1

�; � > 0;

0; elsewhere,

8><
>: (5:64)

where � ¼ 2 and � ¼ 4.

What is the probability density function (PDF) ofX, the average of nmeasurements?

As an alternative to averaging large numbers of samples (simplest approach) you

could make use of the convolution theorem and the Fast Fourier Transform (FFT)

(remember to zero pad). Note: if you are not familiar with using the FFT and zero

padding, you will find this approach much more challenging. Note: the Discrete

Fourier Transform, the FFT and zero padding are discussed in Appendix B.

a) By way of an answer, plot the PDFs for n ¼ 1; 3; 5; 8 and display all four

distributions on the same plot. Be careful to normalize each distribution for

unit area.
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b) Compute the mean and variance of the four PDFs (do not simply quote an

expected theoretical value) for each value of n.

c) Compare your result for the n ¼ 5 case to a Gaussian with the same mean and

variance drawn on the same graph. Repeat for n ¼ 8. What conclusions do

you draw?
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6

What is a statistic?

6.1 Introduction

In this chapter, we address the question ‘‘What is a statistic’’? In particular, we look at

what role statistics play in scientific inference and give some common useful examples.

We will examine their role in the two basic inference problems: hypothesis testing (the

frequentist equivalent of model selection) and parameter estimation, with emphasis on

the latter. Hypothesis testing will be dealt with in Chapter 7.

Recall that an important aspect of frequentist statistical inference is the process of

drawing conclusions based on sample data drawn from the population (which is the

collection of all possible samples). The concept of the population assumes that in

principle, an infinite number of measurements (under identical conditions) are pos-

sible. Suppose X1;X2; . . . ;Xn are n independent and identically distributed (IID)

random variables that constitute a random sample from the population for which

x1; x2; . . . ; xn is one realization. The population is assumed to have an intrinsic

probability distribution (or density function) which, if known, would allow us to

predict the likelihood of the sample x1; x2; . . . ; xn.

For example, suppose the random variable we are measuring is the time interval

between successive decays of a radioactive sample. In this case, the population

probability density function is a negative exponential (see Section 5.8.5), given by

fðxj�Þ¼ ½expð�x=�Þ�/�. The likelihood is given by

Lðx1; x2; . . . ; xnj�Þ¼
Yn
i¼ 1

fðxij�Þ: (6:1)

This particular population probability density function is characterized by a single

parameter �. Another population probability distribution that arises in many prob-

lems is the normal (Gaussian) distribution which has two parameters, � and �2.

Inmost problems, the parameters of the underlying population probability distribution

are not known.Without knowledge of their values, it is impossible to compute the desired

probabilities. However, a population parameter can be estimated from a statistic, which is

determined from the information contained in a random sample. It is for this reason that

the notion of a statistic and its sampling distribution is so important in statistical inference.
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Definition: A statistic is any function of the observed random variables in a sample

such that the function does not contain any unknown quantities.

One important statistic is the sample mean X given by

X¼ðX1 þ X2 þ � � � þ XnÞ=n¼
1

n

Xn
i¼ 1

Xi: (6:2)

Note: we are using a capital X which implies we are talking about a random variable.

All statistics are random variables and to be useful, we need to be able to specify their

sampling distribution.

For example, we might be interested in the mean redshift1 of a population of cosmic

gamma-ray burst (GRB) sources. This would provide information about the distances

of these objects and their mean energy. GRBs are the most powerful type of explosion

known in the universe. The parameter of interest is the mean redshift which we

designate �. A parameter of a population is always regarded as a fixed and usually

unknown constant. Let Z be a random variable representing GRB redshifts. Suppose

the redshifts, fz1; z2; . . . ; z7g, of a sample of seven GRB sources are obtained after a

great deal of effort. What can we conclude about the population mean redshift � from

our sample, i.e., how accurately can we determine � from our sample?

This can be a fairly difficult question to answer using the individual measurements,

zi, because we don’t know the form of the sampling distribution for GRB source

redshifts. Happily, in this case, we can proceed with our objective by exploiting the

Central Limit Theorem (CLT) which predicts the sampling distribution of the sample

mean statistic. The way to think about this is as follows: consider a thought experiment

in which we are able to obtain redshifts for a very large number of samples (hypothet-

ical reference set) of GRB redshifts. Each sample consists of seven redshift measure-

ments. The means of all these samples will have a distribution. According to the CLT,

the distribution of sample means tends to a Gaussian as the number n of observations

tends to infinity. In practice, a Gaussian sampling distribution is often employed when

n � 5. Of course, we don’t have the results from this hypothetical reference set, only

the results from our one sample, but at least we know that the shape of the sampling

distribution characterizing our sample mean statistic is approximately a Gaussian.

This allows us to make a definite statement about the uncertainty in the population

mean redshift �which we derive from our one sample of seven redshift measurements.

Just how we do this is discussed in detail in Section 6.6.2. In the course of answering

that question, we will encounter the sample variance statistic, S2, and develop the

notion of a sampling distribution of a statistic.

1 Redshift is a measure of the wavelength shift produced by the Doppler effect. In 1929, Edwin Hubble showed that we
live in an expanding universe in which the velocity of recession of a galaxy is proportional to its distance. A recession
velocity shifts the observed wavelength of a spectral line to longer wavelengths, i.e., to the red end of the optical
spectrum.
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6.2 The �2 distribution

The sampling distribution of any particular statistic is the probability distribution of

that statistic that would be determined from an infinite number of independent

samples, each of size n, from an underlying population. We start with a treatment

of the �2 sampling distribution.2 We will prove in Section 6.3 that the �2 distribution

describes the distribution of the variances of samples taken from a normal distribu-

tion. The �2 distribution is a special case of the gamma distribution:

fðxj�; �Þ¼ 1

�ð�Þ�� x
��1 exp

�x
�

� �
(6:3)

with �¼ 2 and �¼ �=2, where � is called the degree of freedom.

The �2 distribution has the following properties:

fðxj�Þ¼ 1

� �
2

� �
2
�
2

x
�
2�1 exp � x

2

� �
(6:4)

hxi¼ �; Var½x� ¼ 2�: (6:5)

The coefficients of skewness (�3) and kurtosis (�4) are given by

�3¼
4ffiffiffiffiffi
2�
p ; �4¼ 3 1þ 4

�

� �
: (6:6)

Finally, the moment generating function of �2
� with � degrees of freedom is given by

m�2
�
ðtÞ¼ ð1� 2tÞ�

�
2: (6:7)

We now prove two useful theorems pertaining to the �2 distribution.

Theorem 1:

Let fXig¼X1;X2; . . . ;Xn be an IID sample from a normal distribution Nð�; �Þ.
Let Y¼

Pn
i¼ 1ðXi � �Þ2=�2¼

Pn
i¼ 1 Z

2
i , where Zi are standard random variables.

Then Y has a chi-squared �2
n

� �
distribution with n degrees of freedom.

Proof:

LetmYðtÞ¼ the moment generating function (recall Section 5.6) ofY. From Equation

(5.9), we can write

mYðtÞ¼ hetYi¼ het�iZ
2
i i

¼ hetZ2
1 � etZ

2
2 � � � � � etZ

2
ni:

(6:8)

2 The �2 statistic plays an important role in fitting models to data using the least-squares method, which is discussed in
great detail in Chapters 10 and 11.
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Since the random variable Z is IID then,

mYðtÞ¼ hetZ
2
1i � hetZ2

2i � � � � � hetZ2
ni

¼mZ2
1
ðtÞ �mZ2

2
ðtÞ � � � � �mZ2

n
ðtÞ:

(6:9)

The moment generating function for each Zi is given by

mZ2ðtÞ¼
Z þ1
�1

fðzÞ expðtZ2ÞdZ

¼ 1ffiffiffiffiffiffi
2p
p

Z
expðtZ2Þ exp �Z

2

2

� �
dZ

¼ 1ffiffiffiffiffiffi
2p
p

Z
exp

�Z2

2
ð1� 2tÞ

� 	
dZ;

(6:10)

where we have made use of the fact that fðzÞ is also a normal distribution, i.e., a

Gaussian.

Multiplying and dividing Equation (6.10) by ð1� 2tÞ�
1
2 we get

mZ2ðtÞ¼ ð1� 2tÞ�
1
2

Z þ1
�1

1ffiffiffiffiffiffi
2p
p
ð1� 2tÞ�

1
2

exp
�Z2

2ð1� 2tÞ�1

" #
dZ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Integral of normal distribution¼ 1

) mZ2ðtÞ¼ ð1� 2tÞ�
1
2:

(6:11)

Therefore,

mYðtÞ¼ ð1� 2tÞ�
n
2: (6:12)

Comparison of Equations (6.12) and (6.7) shows that Y has a �2 distribution, with n

degrees of freedom, which we designate by �2
n. Figure 6.1 illustrates the �

2 distribution

for three different choices of the number of degrees of freedom.

Example:

In Section 5.9, we showed that for any IID sampling distribution with a finite variance,

ðX� �Þ
ffiffiffi
n
p

=� tends to Nð0; 1Þ as n!1, and therefore ½ðX� �Þ
ffiffiffi
n
p

=��2 is approxi-

mately �2
1 with one degree of freedom.3

3 When sampling from a normal distribution, the distribution of ðX� �Þ
ffiffiffi
n
p

=� is always N(0, 1) regardless of the value
of n.

142 What is a statistic?



Theorem 2:

If X1 and X2 are two independent �2-distributed random variables with �1 and �2
degrees of freedom, then Y¼X1 þ X2 is also �2-distributed with �1 þ �2 degrees of

freedom.

Proof:

Since X1 and X2 are independent, the moment generating function of Y is given by

myðtÞ¼mX1
ðtÞ �mX2

ðtÞ¼ ð1� 2tÞ�
�1
2 � ð1� 2tÞ�

�2
2 (6:13)

¼ð1� 2tÞ�
ð�1þ�2Þ

2 ; (6:14)

which equals the moment generating function of a �2 random variable with �1 þ �2
degrees of freedom.

6.3 Sample variance S2

We often want to estimate the variance ð�2Þ of a population from an IID sample taken

from a normal distribution. We usually don’t know the mean ð�Þ of the population so

we use the sample mean ðXÞ as an estimate. To estimate �2 we use another random

variable called the sample variance ðS2Þ, defined as follows:

S2¼
Xn
i¼ 1

ðXi � XÞ2

n� 1
: (6:15)
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Figure 6.1 The �2 distribution for three different choices of the number of degrees of freedom.
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Just why we define the sample variance random variable in this way will soon be made

clear. Of course, for any particular sample of n data values, the sample random

variable would take on a particular value designated by lower case s2.

Here is a useful theorem that enables us to estimate � from S:

Theorem 3:

The sampling distribution of ðn� 1ÞS2=�2 is �2 with ðn� 1Þ degrees of freedom.

Proof:

ðn� 1ÞS2¼
Xn
i¼ 1

ðXi � XÞ2¼
X
½ðXi � �Þ � ðX� �Þ�2

¼
X
½ðXi � �Þ2 � 2ðXi � �ÞðX� �Þ þ ðX� �Þ2�

¼
X
ðXi � �Þ2 � 2ðX� �Þ

X
ðXi � �Þ þ

X
ðX� �Þ2

¼
X
ðXi � �Þ2 � 2ðX� �ÞnðX� �Þ þ nðX� �Þ2

¼
X
½ðXi � �Þ2� � nðX� �Þ2:

(6:16)

Therefore,

ðn� 1ÞS2

�2
þ ðX� �Þ

2

�2=n|fflfflfflfflffl{zfflfflfflfflffl}
�2
1

¼
Xn
i¼ 1

ðXi � �Þ2

�2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
�2
n

: (6:17)

From Theorem 2, ðn� 1ÞS2=�2 is �2
n�1 with ðn� 1Þ degrees of freedom.

The expectation value of a quantity that has a �2 distribution with ðn� 1Þ degrees
of freedom is equal to the number of degrees of freedom (see Equation (6.5)).

Therefore,

ðn� 1ÞS2

�2

� �
¼ n� 1: (6:18)

But,

ðn� 1ÞS2

�2

� �
¼hS2i ðn� 1Þ

�2
¼ n� 1: (6:19)

Therefore,

hS2i¼ �2: (6:20)

This provides justification for our definition of S2 – its expectation value is the

population variance. Note: this does not mean that S2 will equal �2 for any particular

sample.
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Note 1: We have just established Equation (6.20) when sampling for a normal

distribution. We now show that Equation (6.20) is valid for IID sampling from any

arbitrary distribution with finite variance. From Equation (6.16), we can write

hS2i¼
P
hðXi � �Þ2i � nhðX� �Þ2i

n� 1
: (6:21)

But hðXi � �Þ2i¼VarðXiÞ¼ �2 by definition, and hðX� �Þ2i¼VarðXÞ¼ �2=n from

Equation (5.50). It follows that

hS2i¼ n�2 � �2
n� 1

¼ �2: (6:22)

Thus, Equation (6.22) is valid for IID sampling from an arbitrary distribution with

finite variance. In the language of frequentist statistics, we say that S2, as defined in

Equation (6.15), is an unbiased estimator of �2.

Standard error of the sample mean: We often want to quote a typical error for the mean

of a population based on our sample. According to Equation (5.50), VarðXÞ¼ �2=n
for any distribution with finite variance. Since we do not normally know �2, the

variance of the population, we use the sample variance as an estimate.

The standard error of the sample mean is defined as
Sffiffiffi
n
p : (6:23)

In Section 6.6.2 we will use a Student’s t distribution to be more precise about

specifying the uncertainty in our estimate of the population mean from the sample

mean.

Note 2: In a situation where we know population � but not �2, define S2:

S2¼
Xn
i¼ 1

ðXi � �Þ2

n
: (6:24)

It is easily shown that with this definition, nS2=�2 is �2
n with n degrees of freedom. We

lose one degree of freedom when we estimate � from X.

Example:

A random sample of size n¼ 16 (IID sample) is drawn from a population with a

normal distribution of unknown mean (�) and variance (�2). We compute the sample

variance, S2, and want to determine

pð�2 < 0:49S2Þ: (6:25)

Solution:Equation (6.25) is equivalent to

p
S2

�2
> 2:041

� �
: (6:26)
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Weknow that the random variableX¼ðn� 1ÞS2=�2 has a�2 distribution with ðn� 1Þ
degrees of freedom. In this case, ðn� 1Þ¼ 15¼ � degrees of freedom. Therefore,

p
S2

�2
> 2:041

� �
¼ p ðn� 1ÞS

2

�2
> 30:61

� �
: (6:27)

Let

�¼ pððn� 1ÞS2=�2 > 30:61Þ:

Then

1� �¼ pððn� 1ÞS2=�2 � 30:61Þ;

or more generally, 1� �¼ pðX � x1��Þ where x1�� is the particular value of the

random variable X for which the cumulative distribution pðX � x1��Þ¼ 1� �. x1��
is called the ð1� �Þ quantile value of the distribution, and pðX � x1��j�Þ is given by

pðX � x1��j�Þ¼
1

� �
2

� �
2
�
2

Z x1��

0

t
�
2�1 exp � t

2

� �
dt¼ 1� �: (6:28)

For �¼ 15 degrees of freedom, 30.61 corresponds to �¼ 0:01 or x0:990. Thus, the

probability that the random variable �2 < 0:49S2¼ 1%. Figure 6.2 shows the �2

distribution for �¼ 15 degrees of freedom and the 1� �¼ 0:99 quantile value.
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Figure 6.2 The �2 distribution for � ¼ 15 degrees of freedom. The vertical line marks the
1� � ¼ 0:99 quantile value. The area to the left of this line corresponds to 1� �.
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We can evaluate Equation (6.28) with the following Mathematica command:

Box 6.1 Mathematica�2 significance

Needs [‘‘Statistics ‘ContinuousDistributions’’’]

The line above loads a package containing a wide range of continuous distribu-

tions of importance to statistics, and the following line computes �, the area in the

tail of the �2 distribution to the right of �2¼ 30:61, for �¼ 15 degrees of freedom.

GammaRegularized
n
2
,
c2

2

� 	
¼GammaRegularized

15

2
,
30:61

2

� 	
¼ 0:01

In statistical hypothesis testing (to be discussed in the next chapter), � is referred to

as the significance or the one-sided P-value of a statistical test.

6.4 The Student’s t distribution

Recall, when sampling from a normal distribution with known standard deviation, �,

the distribution of the standard random variable Z¼ðX� �Þ
ffiffiffi
n
p

=� is Nð0; 1Þ. In
practice, � is usually not known. The logical thing to do is to replace � by the sample

standard deviation S. The usual inference desired is that there is a specified probability

that X lies within �S of the true mean �.

Unfortunately, the distribution of ðX� �Þ
ffiffiffi
n
p

=S is not Nð0; 1Þ. However, it is

possible to determine the exact sampling distribution of ðX� �Þ
ffiffiffi
n
p

=S when sampling

from Nð�; �Þ with both � and �2 unknown. To this end, we examine the Student’s

t distribution.4 The following useful theorem pertaining to the Student’s t distribution

is given without proof.

Theorem 4:

Let Z be a standard normal random variable and let X be a �2 random variable with �

degrees of freedom. If Z and X are independent, then the random variable

T¼ Zffiffiffiffiffiffiffiffiffi
X=�

p (6:29)

has a Student’s t distribution with � degrees of freedom and a probability density given

by

fðtj�Þ¼
�½ð�þ1Þ2 �ffiffiffiffiffiffi
p�
p

�ð�2Þ
1þ t2

�

� �� 	�ð�þ1Þ2

; ð�1 < t < þ1Þ; � > 0: (6:30)

4 The t distribution is named for its discoverer, William Gosset, who wrote a number of statistical papers under the
pseudonym ‘‘Student.’’ He worked as a brewer for the Guinness brewery in Dublin in 1899. He developed the t
distribution in the course of analyzing the variability of various materials used in the brewing process.
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The Student’s t distribution has the following properties:

hT i¼ 0 and VarðT Þ¼ �

ð� � 2Þ � > 2: (6:31)

When sampling Nð�; �Þ we know that ðX� �Þ
ffiffiffi
n
p

=� is Nð0; 1Þ. We also know that

ðn� 1ÞS2=�2 is �2 with ðn� 1Þ degrees of freedom. Therefore, we can identify Z with

ðX� �Þ
ffiffiffi
n
p

=� and X with ðn� 1ÞS2=�2. Therefore,

T¼
ðX��Þ
ð�=

ffiffi
n
p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn�1ÞS2=�2

n�1

q ¼ ðX� �Þð�=
ffiffiffi
n
p
Þ
�

S
¼ ðX� �ÞðS=

ffiffiffi
n
p
Þ : (6:32)

Therefore, ðX� �Þ
ffiffiffi
n
p

=S is a random variable with a Student’s t distribution with

n� 1 degrees of freedom. Figure 6.3 shows a comparison of a Student’s t distribution

for three degrees of freedom, and a standard normal. The broader wings of the

Student’s t distribution are clearly evident.

The ð1� �Þ quantile value for � degrees of freedom, t1��;�, is given by

pðT � t1��;�Þ¼
�½ð�þ1Þ2 �ffiffiffiffiffiffi
p�
p

�ð�2Þ

Z t1��;�

�1
1þ t2

�

� �� 	�ð�þ1Þ2

dt¼ 1� �: (6:33)

Example:

Suppose a cigarette manufacturer claims that one of their brands has an average

nicotine content of 0.6mg per cigarette. An independent testing organization
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Figure 6.3 Comparison of a standard normal distribution and a Student’s t distribution for
3 degrees of freedom.
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measures the nicotine content of 16 such cigarettes and has determined the sample

average and the sample standard deviation to be 0.75 and 0.197 mg, respectively. If we

assume the amount of nicotine is a normal random variable, how likely is the sample

result given the manufacturer’s claim?

T¼ðX� �Þ
ffiffiffi
n
p

=S has a Student’s t distribution.

x¼ 0:75mg; s¼ 0:197mg, and n¼ 16;

so the number of degrees of freedom �¼ 15.

Manufacturer claims �¼ 0:6mg corresponds to a

t¼ ð0:75� 0:6Þ
0:197=

ffiffiffiffiffi
16
p ¼ 3:045: (6:34)

The Student’s t distribution is a continuous distribution, and thus we cannot calculate

the probability of any specific t value since there is no area under a point. The question

of how likely the t value is, given the manufacturer’s claim, is usually interpreted as

what is the probability by chance that T � 3:045. The area of the distribution beyond

the sample t value gives us a measure of how far out in the tail of the distribution the

sample value resides.

Box 6.2 Mathematica solution:

We can solve the above problem with the following commands:

Needs[‘‘Statistics ‘ContinuousDistributions’’’]

The following line computes the area in the tail of the

T distribution beyond T¼ 3:045.

(1 – CDF[StudentTDistribution[n], 3.045])! answer¼ 0:004 ð�¼ 15Þ

where CDF[StudentTDistribution [n], 3.045] stands for the cumulative density

function of the T distribution from T¼�1 ! 3:045.

Therefore, pðT>3:045Þ¼�¼ 0:004 or 0.4%, i.e., the manufacturer’s claim is very

improbable. The way to think of this is to imagine we could repeatedly obtain samples

of 16 cigarettes and compute the value of t for each sample. The fraction of these t

values that we would expect to fall in the tail area beyond t > 3:045 is only 0.4%. If the

manufacturer’s claim were reasonable, we would expect that the t value of our actual

sample would not fall so far out in the tail of the distribution. If you are still puzzled by

this reasoning, we will have a lot more to say about it in Chapter 7. We will revisit this

example in Section 7.2.3.

Note: although ðx� �Þ=s¼ 0:15=0:197 < 1, s is not a meaningful uncertainty for x –

only for xi. The usual measure of the uncertainty in x is s=
ffiffiffi
n
p
¼ 0:049. The quantity

s=
ffiffiffi
n
p

is called the standard error of the sample mean.
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6.5 F distribution (F-test)

The F distribution is used to find out if two data sets have significantly different

variances. For example, we might be interested in the effect of a new catalyst in the

brewing of beer so we compare somemeasurable property of a sample brewed with the

catalyst to a sample from the control batch made without the catalyst. What effect has

the catalyst had on the variance of this property?

Here, we develop the appropriate random variable for use in making inferences

about the variances of two independent normal distributions based on a random

sample from each. Recall that inferences about �2, when sampling from a normal

distribution, are based on the random variable ðn� 1ÞS2=�2, which has a �2
n�1

distribution.

Theorem 5:

Let X and Y be two independent �2 random variables with �1 and �2 degrees of

freedom. Then the random variable

F¼ X=�1
Y=�2

(6:35)

has an F distribution with a probability density function

pð f j�1; �2Þ¼
�½ð�1þ�2Þ=2�

�ð�1=2Þ�ð�2=2Þ
�1
�2

� ��1
2 f

1
2
ð�1�2Þ

ð1þf�1=�2Þ
1
2
ð�1þ�2Þ

; ð f > 0Þ
0; elsewhere.

8<
: (6:36)

An F distribution has the following properties:

hFi¼ �2
�2 � 2

; ð�2 > 2Þ: (6:37)

(Surprisingly, hFi depends only on �2 and not on �1.)

VarðFÞ¼ �22ð2�2 þ 2�1 � 4Þ
�1ð�2 � 1Þ2ð�2 � 4Þ

; ð�2 > 4Þ (6:38)

Mode¼ �2ð�1 � 2Þ
�1ð�2 þ 2Þ : (6:39)

Let X¼ðn1 � 1ÞS2
1=�

2
1 and Y¼ðn2 � 1ÞS2

2=�
2
2. Then,

F12¼
X=�1
Y=�2

¼ X=ðn1 � 1Þ
Y=ðn2 � 1Þ ¼

S2
1=�

2
1

S2
2=�

2
2

: (6:40)
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Box 6.3 Mathematica example:

The sample variance is s21¼ 16:65 for n1¼ 6 IID samples from a normal distribu-

tion with a population variance �21, and s22¼ 5:0 for n2¼ 11 IID samples from a

second independent normal distribution with a population variance �22. If we

assume that �21¼ �22, then from Equation (6.40), we obtain f¼ 3:33 for

�1¼ n1 � 1¼ 5 and �2¼ n2 � 1¼ 10 degrees of freedom. What is the probability

of getting an f value � 3:33 by chance if �21¼ �22?

Needs[‘‘Statistics ‘ContinuousDistributions’’’]

The following line computes the area in the tail of the F distribution beyond f¼ 3:33.

ð1� CDF[FRatioDistribution[n1, n2], 3:33]Þ ! answer¼ 0:05

where CDF[FRatioDistribution[n1, n2], 3:33] stands for the cumulative density

function of the F distribution from f¼ 0! 3:33. Another way to compute this

tail area is with

FRatioPValue[fratio, n1, n2]

The F distribution for this example is shown in Figure 6.4.

What if we had labeled our two measurements of s the other way around so

�1¼ 10; �2¼ 5 and s21=s
2
2¼ 1=3:33? The equivalent question is: what is the probability

that f � 1=3:33 which we can evaluate by

CDF[FRatioDistribution [n1, n2], 1=3:33]? Answer : 0:05

Not surprisingly, we obtain the same probability.
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Figure 6.4 The F distribution for �1 ¼ 5; �2 ¼ 10 degrees of freedom. The measured value of
3.33, indicated by the line, corresponds to f0:95;5;10, the 0.95 quantile value.
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6.6 Confidence intervals

In this section, we consider how to specify the uncertainty of our estimate of any

particular parameter of the population, based on the results of our sample.We start by

considering the uncertainty in the population mean � when it is known that we are

sampling from a population with a normal distribution. There are two cases of

interest. In the first, we will assume that we know the variance �2 of the underlying

population we are sampling from. More commonly, we don’t know the variance and

must estimate it from the sample. This is the second case.

6.6.1 Variance � 2 known

Let fXig be an IID Nð�; �2Þ random sample of n¼ 10 measurements from a popula-

tion with unknown � but known �¼ 1. Let X be the sample mean random variable

which will have a sample mean standard deviation, �m¼ �=
ffiffiffi
n
p
¼ 1=

ffiffiffiffiffi
10
p
¼ 0:32, to two

decimal places. The probability that X will be within one �m¼ 0:32 of � is approxi-

mately 0.68 (from Section 5.8.1). We can write this as

pð�� 0:32 < X < �þ 0:32Þ¼ 0:68: (6:41)

Since we are interested in making inferences about � from our sample, we rearrange

Equation (6.41) as follows:

pð�� 0:32 < X < �þ 0:32Þ¼ pð�0:32 < X� � < 0:32Þ
¼ pð0:32 > �� X > �0:32Þ
¼ pðXþ 0:32 > � > X� 0:32Þ¼ 0:68;

or,

pðX� 0:32 < � < Xþ 0:32Þ¼ 0:68: (6:42)

Suppose the measured sample mean is x¼ 5:40. Can we simply substitute this value

into Equation (6.42), which would yield

pð5:08 < � < 5:72Þ¼ 0:68? (6:43)

We need to be careful how we interpret Equations (6.42) and (6.43).

Equation (6.42) says that if we repeatedly draw samples of the same size from this

population, and each time compute specific values for the random interval

ðX� 0:32;Xþ 0:32Þ, then we would expect 68% of them to contain the unknown

mean �. In frequentist theory, a probability represents the percentage of time that

something will happen. It says nothing directly about the probability that any one

realization of a random interval will contain �. The specific interval (5.08, 5.72) is but

one realization of the random interval ðX� 0:32;Xþ 0:32Þ based on the data of a
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single sample. Since the probability of 0.68 is with reference to the random interval

ðX� 0:32;Xþ 0:32Þ, it would be incorrect to say that the probability of � being

contained in the interval (5.08, 5.72) is 0.68.

However, the 0.68 probability of the random interval does suggest that our con-

fidence in the interval (5.08, 5.72) for containing the unknown mean � is high and we

refer to it as a confidence interval. It is only in this sense that we are willing to assign a

degree of confidence in the statement 5:02 < � < 5:72.

Meaning of a confidence interval: When we write pð5:08 < � < 5:72Þ, we are not

making a probability statement in a classical sense but rather are expressing a

degree of confidence. In general, we write pð5:08 < � < 5:72Þ¼ 1� � where 1� �
is called the confidence coefficient. It is important to remember that the ‘‘68%
confidence’’ refers to the probability of the test, not to the parameter.

If you listen closely to the results of a political poll, you will hear something like the

following: ‘‘In a recent poll, 55% of a sample of 800 voters indicated they would vote

for the Liberals. These results are reliable within�3:5%, 19 times out of 20.’’What this

means is that if you repeated the poll using the samemethodology, then 95% (19 out of

20) of the time you would get the same result within 3.5%. In this case, the 95%
confidence interval is 51.5 to 58.5%. A Bayesian analysis of the same polling data was

given in Section 4.2.3.
Figure 6.5 shows 68% confidence intervals for the means of 20 samples of a random

normal distribution with a �¼ 5:0 and �¼ 1:0. Each sample consists of ten measure-

ments. Notice that 13 out of 20 intervals contain the true mean of 5. The number

expected for 68% confidence intervals is 13.6.

4.25 4.5 4.75 5 5.25 5.5 5.75

Confidence intervals

Figure 6.5 68% confidence intervals for the means of 20 samples of a random normal distribu-
tion with a � ¼ 5:0 and � ¼ 1:0. Each sample consists of ten measurements.
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A general procedure for finding confidence intervals:

If we wish to find a general procedure for finding confidence intervals, we must first

return to Equation (6.42).

pð�0:32 < X� � < 0:32Þ¼ 0:68: (6:44)

More generally, we can write

pðL1 < X� � < L2Þ¼ 1� �; (6:45)

where L1 and L2 stand for the lower and upper limits of our confidence interval. We

need to develop expressions for L1 and L2. The limits are obtained from our sampling

distribution, which in this particular case is the sampling distribution for the sample

mean random variable. Recall that X isNð�; �2=nÞ, so the distribution of the standard

random variable Z¼ðX� �Þ
ffiffiffi
n
p

=� is Nð0; 1Þ. Figure 6.6 shows the distribution of Z.

In terms of Z, we can write Equation (6.45) as

p
L1

�=
ffiffiffi
n
p < Z <

L2

�=
ffiffiffi
n
p

� �
¼ 1� �: (6:46)

The desired sampling distribution is

fðzÞ¼ 1ffiffiffiffiffiffi
2p
p exp � z2

2


 �
: (6:47)
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Figure 6.6 The figure shows the expected distribution for the standard random variable

Z ¼ ðX� �Þ
ffiffiffi
n
p

=� which is N(0,1). The lower ðL1Þ and upper ðL2Þ boundaries of the 1� �
confidence interval are indicated by the vertical lines. The location of L1 is set by the require-
ment that the shaded area to the left of L1 is equal to �=2. Similarly, the shaded area to the right
of L2 is equal to �=2.
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The limits L1 and L2 are evaluated from the following two equations:

Z L1
�=
ffiffi
n
p

�1
fðzÞdz¼ �

2
; (6:48)

and

Z þ1
L2
�=
ffiffi
n
p

fðzÞdz¼ �

2
: (6:49)

Let Z�
2
¼L1

ffiffiffi
n
p

=� and Z1��2 ¼L2

ffiffiffi
n
p

=�. Then

pðZ�
2
< Z < Z1��2Þ¼ 1� �: (6:50)

It follows that

L1¼Z�
2

�ffiffiffi
n
p and L2¼Z1��2

�ffiffiffi
n
p :

But for a standard normal, Z�
2
¼ � Z1��2 ; therefore,

L1¼ � L2¼ � Z1��2
�ffiffiffi
n
p : (6:51)

We can now generalize Equations (6.41) and (6.42) and write

p �� �ffiffiffi
n
p Z1��2 < X < �þ �ffiffiffi

n
p Z1��2

� �
¼ 1� �; (6:52)

and

p X� �ffiffiffi
n
p Z1��2 < � < Xþ �ffiffiffi

n
p Z1��2

� �
¼ 1� �: (6:53)

Therefore, the 100ð1� �Þ% confidence interval for � is

�x� �ffiffiffi
n
p Z1��2 : (6:54)

Clearly, the larger the sample size, the smaller the width of the interval.
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Box 6.4 Mathematica example:

We can compute the 68% confidence interval for the mean of a population, with

known variance ¼ 0:1, from a list of data values with the following commands:

Needs[‘‘Statistics ‘ConfidenceIntervals’’’]

The line above loads the confidence intervals package and the line below computes

the confidence interval for a normal distribution.

MeanCI[data, KnownVariance fi 0.1, ConfidenceLevel fi 0.68]

Where data is a list of the sample data values. If the variance is unknown, leave out

theKnownVariancefi 0.1 option and then the confidence interval will be based on

a Student’s t distribution.

6.6.2 Confidence intervals for �, unknown variance

Again, we know that the distribution ofX isNð�; �2=nÞ, but since we do not know �we
are unable to use this distribution to compute the desired confidence interval.

Fortunately, we can obtain the confidence interval using the Student’s t statistic

which makes use of the sample variance which we can compute. Recall, that the

random variable T¼ðX� �Þ
ffiffiffi
n
p

=S has a Student’s t distribution with ðn� 1Þ degrees
of freedom. Figure 6.7 shows a Student’s t distribution for �¼ n� 1¼ 9 degrees of
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Figure 6.7 The figure shows the Student’s t distribution for the T ¼ ðX� �Þ
ffiffiffi
n
p

=S statistic, for
� ¼ n� 1 ¼ 9 degrees of freedom. The lower ðL1Þ and upper ðL2Þ boundaries of the 1� � con-

fidence interval are indicated by the vertical lines. The location ofL1 is set by the requirement that the
shadedarea to the leftofL1 is equal to�=2.Similarly, the shadedarea to the rightofL2 is equal to�=2.
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freedom. For a Student’s t distribution, the t1��2;n�1 quantile value is defined by the

equation

pð�t1��2; n�1 < T < t1��2; n�1Þ¼ 1� �; (6:55)

which we can rewrite as

p � sffiffiffi
n
p t1��2; n�1 < X� � < sffiffiffi

n
p t1��2; n�1

� �
¼ 1� �: (6:56)

We can obtain values for L1 and L2 by comparing Equation (6.56) to Equation (6.45).

This yields L1¼ � L2¼ � ðs=
ffiffiffi
n
p
Þt1��2; n�1. The final 1� � confidence interval is

x� sffiffiffi
n
p t1��2; n�1: (6:57)

Box 6.5 Mathematica example:

In the introduction to this chapter, we posed a problem concerning the mean

redshift of a population of cosmic gamma-ray bursts (GRB), based on a sample of

seven measured GRB redshifts (the number known at the time of writing). The

redshifts are: 1.61, 0.0083, 1.619, 0.835, 3.420, 1.096, 0.966. We now want to

determine the 68% confidence interval for the mean redshift for the population

GRB sources. We neglect the uncertainties in the individual measured redshifts as

they are much smaller than the spread of the seven values. Although we do not

know the probability density function for the population, we know from the CLT

that the distribution of the sample mean random variable ðXÞ will be approxi-

mately normal for n¼ 7. Furthermore, 5X4¼�, the mean of the population,

and VarðXÞ¼ �2=n, where �2¼ the variance of the population. Since we do not

know �2, we use the measured sample variance,

s2¼
X7
i¼ 1

ðxi � xÞ2

n� 1
:

We can thus evaluate the Student’s t value for our sample and use this to arrive at

our 68% confidence interval for the population mean redshift (recall Equation

(6.56)).

data¼ {1:61, 0:0083, 1:619, 0:835, 3:420, 1:096, 0:966}

MeanCI[data, ConfidenceLevelfi 0:68]¼ {0:93, 1:80}

In this case, we have left out the KnownVariance option to the confidence interval

command, MeanCI, because the population variance is unknown. MeanCI now

returns a confidence interval based on the Student’s t distribution.
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6.6.3 Confidence intervals: difference of two means

One of the most fundamental problems that occurs in experimental science, is that of

analyzing two independent measurements of the same physical quantity, one ‘‘con-

trol’’ and one ‘‘trial,’’ taken under slightly different experimental conditions, e.g., drug

testing. Here, we are interested in computing confidence intervals for the difference in

the means of the control population and the trial population, when sampling from two

independent normal distributions.

1) If �x and �y are unknown and �x and �y are known, then the random variable

Z¼ X� Y� ð�x � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2x=nx þ �2y=ny

q (6:58)

has a normal distribution Nð0; 1Þ. The 100ð1� �Þ% confidence interval for

ð�x � �yÞ is

x� y� Z1��2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2x
nx
þ
�2y
ny

s
; (6:59)

where the quantile Z1��2 is such that

pðZ � Z1��2Þ¼ 1� �
2
: (6:60)

At this point you may be asking yourself what value of � to use in presenting your

results. There are really two types of questions we might be interested in. First, do the

data indicate that the means are significantly different? This type of question is

addressed in Chapter 7, which deals with hypothesis testing. The other type of question,

which is being addressed here, concerns estimating the difference of the two means. For

this question, it is common practice to use an �¼ 0:32, corresponding to a 68%
confidence interval. We will look at this issue again in more detail in Section 7.2.1.

2) If �x and �y are unknown but assumed equal, the random variable

T¼ X� Y� ð�x � �yÞ
SD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=nx þ 1=ny

p
has a Student’s t distribution with ðnx þ ny � 2Þ degrees of freedom, where

S2
D¼
½ðnx � 1ÞS2

x þ ðny � 1ÞS2
y�

ðnx þ ny � 2Þ : (6:61)

The 100ð1� �Þ% confidence interval is

x� y� spt1��2; ðnxþny�2Þ: (6:62)
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3) If �x and �y are unknown and assumed to be unequal, the random variable

T¼ X� Y� ð�x � �yÞ
SD

is distributed approximately as Student’s t with � degrees of freedom (Press et al.,

1992), where

S2
D¼

S2
x

nx
þ
S2
y

ny
; (6:63)

and,

�¼
S2
x

nx
þ S2

y

ny

h i2
½S2

x=nx�
2

nx�1 þ
½S2

y=ny�
2

ny�1 :
(6:64)

See Section 7.2.2 for a worked example of the use of the Student’s t test for these

conditions.

6.6.4 Confidence intervals for �2

Here, we are interested in computing confidence intervals for �2 when sampling from a

normal distribution with unknown mean. Recall that ðn� 1ÞS2=�2 is �2
n�1. Then it

follows that the 100ð1� �Þ% interval for �2 is

ðn� 1Þs2
�2
1��2; n�1

;
ðn� 1Þs2
�2
�
2; n�1

" #
: (6:65)

Box 6.6 Mathematica example:

We can compute the 68% confidence interval for the variance of a population with

unknown mean, from a list of data values designated by data, with the following

command:

VarianceCI[data,ConfidenceLevel fi 0.68]

6.6.5 Confidence intervals: ratio of two variances

In this section, we want to determine confidence intervals for the ratio of two variances

when sampling from two independent normal distributions. In this case, the

100ð1� �Þ% confidence interval for �2y=�
2
x is
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s2y

s2x

1

f1��2; ny�1; nx�1
;
s2y

s2x
f1��2; nx�1; ny�1

" #
: (6:66)

Box 6.7 Mathematica example:

We can compute the 68% confidence interval for the ratio of the population

variance of data1 to the population variance of data2with the following command:

VarianceRatioCI[data1,data2,ConfidenceLevel fi 0.68]

6.7 Summary

In this chapter, we introduced the X, �2, S2, Student’s t and F statistics and showed

how they are useful in making inferences about the mean ð�Þ and variance ð�2Þ of an
underlying population from a random sample. In the frequentist camp, the usefulness

of any particular statistic stems from our ability to predict its distribution for a very

large number of hypothetical repeats of the experiment. In this chapter we have

assumed that each of the data sets, either real or hypothetical, is an IID sample

from a normal distribution, in some cases appealing to the Central Limit Theorem

to satisfy this requirement. For IID normal samples, we found that:

1.

S2¼
Xn
i¼ 1

ðXi � XÞ2

n� 1

is an unbiased estimator of the sample variance, �2.

2. The sampling distribution of

ðn� 1ÞS
2

�2
¼
Xn
i¼ 1

ðXi � XÞ2

�2

is �2 with ðn� 1Þ degrees of freedom. This statistic has a wide range of uses that we will learn

in subsequent chapters (e.g., Method of Least Squares) and is clearly useful in specifying

confidence intervals for estimates of �2 based on the sample variance S2.

3. One familiar form of the Student’s t statistic is

T¼ ðX� �ÞðS=
ffiffiffi
n
p
Þ :

The statistic is particularly useful for computing confidence intervals for the population mean,

�, based on the sampleX and S2. In Chapter 9, we will see the Student’s t distribution reappear

in a Bayesian context characterizing the posterior PDF for a particular state of information.
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4. The F statistic is given by

F12¼
S2
1=�

2
1

S2
2=�

2
2

:

We saw how this can be used to compare the ratio of the variances of two populations from a

measurement of the sample variance of each population.

Once the distribution of the statistic is specified, it is possible to interpret the

significance of the particular value of the statistic corresponding to our one actual

measured sample. For example, we were able to test a cigarette manufacturer’s claim

about the mean nicotine content by comparing the value of the Student’s t statistic for

a measured sample to the distribution for a hypothetical reference set. In case you

didn’t fully comprehend this line of reasoning, we will go into it in more detail in the

next chapter, which deals with frequentist hypothesis testing.

Throughout this chapter, the expression ‘‘number of degrees of freedom’’ has

cropped up in connection with each choice of statistic. Its precise meaning is defined

in the definition of the �2, Student’s t, and F distributions. Roughly, what it translates

to in practice is the number of data points (or data bins if the data are binned) in the

sample used to compute the statistic, minus the number of additional parameters (like

S2 in the Student’s t statistic) that have to be estimated from the same sample.

A major part of inferring the values of the � and �2 of the population concerns their

estimated uncertainties. In the frequentist case, this amounts to estimating a con-

fidence interval, e.g., 68% confidence interval. Keep in mind that a frequentist con-

fidence interval says nothing directly about the probability that a single confidence

interval, derived from your one actual measured sample, will contain the true popula-

tion value. Thenwhat does the 68% confidencemean? It means that if you repeated the

measurement a large number of times, each time computing a 68% confidence interval

from the new sample, then 68% of these intervals will contain the true value.

6.8 Problems

1. Suppose you are given the IID normal data sample f0:753; 3:795; 4:827; 2:025g.
Compute the sample variance and standard deviation. What is the standard error

of the sample mean?

2. What is the 95% confidence interval for the mean of the IID normal sample

f0:753; 3:795; 4:827; 2:025g?
3. Compute the area in the tail of a �2 distribution to the right of �2¼ 30:61, for �¼ 10

degrees of freedom.

4. The sample variance is s21¼ 16:65 for n1¼ 6 IID samples from a normal distribution

with a population variance �21. Also, s22¼ 5:0 for n2¼ 11 IID samples from a second

independent normal distribution with a population variance �22. If we assume that

�21¼ 2�22, then from Equation (6.40), we obtain f¼ 1:665 for �1¼ n1 � 1¼ 5 and

�2¼ n2 � 1¼ 10 degrees of freedom. What is the probability of getting an f value

� 3:33 by chance if �21¼ 2�22?
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7

Frequentist hypothesis testing

7.1 Overview

One of the main objectives in science is that of inferring the truth of one or more

hypotheses about how some aspect of nature works. Because we are always in a state

of incomplete information, we can never prove any hypothesis (theory) is true. In

Bayesian inference, we can compute the probabilities of two or more competing

hypotheses directly for our given state of knowledge.

In this chapter, we will explore the frequentist approach to hypothesis testing which

is considerably less direct. It involves considering each hypothesis individually and

deciding whether to (a) reject the hypothesis, or (b) fail to reject the hypothesis, on the

basis of the computed value of a suitable choice of statistic. This is a very big subject

and we will give only a limited selection of examples in an attempt to convey the main

ideas. The decision on whether to reject a hypothesis is commonly based on a quantity

called a P-value. At the end of the chapter we discuss a serious problem with

frequentist hypothesis testing, called the ‘‘optional stopping problem.’’

7.2 Basic idea

In hypothesis testing we are interested in making inferences about the truth of some

hypothesis. Two examples of hypotheses which we analyze below are:

* The radio emission from a particular galaxy is constant.

* The mean concentration of a particular toxin in river sediment is the same at two locations.

Recall that in frequentist statistics, the argument of a probability is restricted to

a random variable. Since a hypothesis is either true or false, it cannot be considered

a random variable and therefore we must indirectly infer the truth of the hypothesis

(in contrast to the direct Bayesian ).

In the river toxin example, we proceed by assuming that the mean concentration is

the same for both locations and call this the null hypothesis. We then choose a statistic,

such as the sample mean, that can be computed from our one actual data set. The

value of the statistic can also be computed in principle for a very large number of
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hypothetical repeated measurements of the river sediment under identical conditions.

Our choice of statistic must be one whose distribution is predictable for this reference

set of hypothetical repeats, assuming the truth of our null hypothesis. We then

compare the actual value of the statistic, computed from our one actual data set, to

the predicted reference distribution. If it falls in a very unlikely spot (i.e., way out in the

tail of the predicted distribution) we choose to reject the null hypothesis at some

confidence level on the basis of the measured data set.

If the statistic falls in a reasonable part of the distribution, this does not mean that

we accept the hypothesis; only that we fail to reject it. At best, we can substantiate

a particular hypothesis by failing to reject it and rejecting every other competing

hypothesis that has been proposed. It is an argument by contradiction designed to

show that the null hypothesis will lead to an absurd conclusion and should therefore

be rejected on the basis of the measured data set. It is not even logically correct to say

we have disproved the hypothesis, because, for any one data set it is still possible by

chance that the statistic will fall in a very unlikely spot far out in the tail of the

predicted distribution. Instead, we choose to reject the hypothesis because we consider

it more fruitful to consider others.

7.2.1 Hypothesis testing with the �2 statistic

Figure 7.1 shows radio flux density measurements of a radio galaxy over a span of

6100 days made at irregular intervals of time. The observations were obtained as part

of a project to study the variability of galaxies at radio wavelengths. The individual

radio flux density measurements are given in Table 7.1.
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Figure 7.1 Radio astronomy measurements of a galaxy over time.
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Below we outline the steps involved in the current hypothesis test:

1. Choose as our null hypothesis that the galaxy has an unknown but constant flux density.

If we can demonstrate that this hypothesis is absurd at say the 95% confidence level, then this

provides indirect evidence that the radio emission is variable. Previous experience with the

measurement apparatus indicates that the measurement errors are independently normal

with a � ¼ 2:7.

2. Select a suitable statistic that (a) can be computed from the measurements, and (b) has a

predictable distribution. More precisely, (b) means that we can predict the distribution of

values of the statistic that we would expect to obtain from an infinite number of repeats of the

above set of radio measurements under identical conditions. We will refer to these as our

hypothetical reference set. More specifically, we are predicting a probability distribution for

this reference set.

To refute the null hypothesis, we will need to show that scatter of the individual measure-

ments about the mean is larger than would be expected from measurement errors alone.

A useful measure of the scatter in the measurements is the sample variance. We know from

Section 6.3, that the random variable ðn� 1ÞS2=�2 (usually called the �2 statistic) has a �2

distribution with ðn� 1Þ degrees of freedom when the measurement errors are known to be

independently normal. From Equation (6.4), it is clear that the distribution depends only on

the number of degrees of freedom.

3. Evaluate the �2 statistic from the measured data. Let’s start with the expression for the �2

statistic for our data set:

�2 ¼
Xn
i¼1

ðxi � xÞ2

�2
; (7:1)

Table 7.1 Radio astronomy flux density measurements for a galaxy.

Day Number Flux Density (mJy)

0.0 14.2

718.0 5.0

1097.0 3.3

1457.1 15.5

2524.1 4.2

3607.7 9.2

3630.1 8.2

4033.1 3.2

4161.3 5.6

5355.9 9.9

5469.1 7.4

6012.4 6.9

6038.3 10.0

6063.2 5.8

6089.3 11.4
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where xi represents the ith flux density value, x ¼ 7:98mJy is the average of our sample values,

and � ¼ 2:7, as given above. The number of degrees of freedom � ¼ n� 1 ¼ 15� 1 ¼ 14,

where n is the number of flux density measurements.1 Equation (7.1) becomes

�2 ¼
Xn
i¼1

ðxi � xÞ2

�2
¼
Xn
i¼1

ðxi � 7:98Þ2

2:72
¼ 26:76: (7:3)

4. Plot the computed value of �2 ¼ 26:76 on the �2 distribution predicted for 14 degrees of

freedom. This is shown in Figure 7.2. The �2 computed from our one actual data set is shown

by the vertical line. The question of how unlikely is this value of �2 is usually interpreted in

terms of the area in the tail of the �2 distribution to the right of this line which is called the

P-value or significance. We can evaluate this from

P-value ¼ 1� Fð�2Þ ¼ 1�
Z �2

0

1

�ð�2Þ2
�
2
x
�
2�1 exp � x

2

� �
dx; (7:4)

where Fð�2Þ is the cumulative �2 distribution. Alternatively, we can evaluate the P-value with

the following Mathematica command.
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Figure 7.2 The �2 distribution predicted on the basis of our null hypothesis with 14 degrees of

freedom. The value computed from the measurements, �2 ¼ 26:76, is indicated by the vertical
bar.

1 The null hypothesis did not specify the assumed value for �, the constant flux density, so we estimated it from the mean
of the data. Whenever we estimate a model parameter from the data, we lose one degree of freedom. If the null
hypothesis had specified �, then we would have used the following expression for the �2 statistic:

�2 ¼
Xn
i¼1

ðxi � �Þ2

�2
; ð7:2Þ

which has a �2 distribution with n degrees of freedom.
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Box 7.1 Mathematica �2 P-value

Needs[‘‘Statistics ‘HypothesisTests’’’]

The line above loads a package containing a wide range of hypothesis tests, and

the following line computes the P-value for a �2 ¼ 26:76 and 14 degrees of

freedom:

ChiSquarePValue[26.76,14]! 0:02

Note: the ChiSquarePValue has amaximum value of 0.5 andwill measure the area

in the lower tail of the distribution if �2
measured falls in the lower half of the

distribution. In the current problem, we want to be sure we measure the area to

the right of �2
measured, so use the command:

GammaRegularized
h
N�M

2
;
c2
2

i
¼GammaRegularized

�
14
2
; 26:76

2

�
where N is the number of data points and M is the number of parameters

estimated from the data.

Note: in some problems, it is relevant to use a two-sided test (see Section 7.2.3)

using the �2 statistic, e.g., testing that the population variance is equal to a

particular value.

5. Finally, compute our confidence in rejecting the null hypothesis which is equal to the area

of the �2 distribution to the left of �2 ¼ 26:76. This area is equal to ð1� P-valueÞ ¼ 0:98

or 98%.

While the above recipe is easy to compute, it undoubtedly contains many perplexing

features. Most among them is the strangely convoluted definition of the key determi-

nant of falsification, the P-value, also known as the significance �.

What precisely does the P-valuemean? It means that if the flux density of this galaxy

is really constant, and we repeatedly obtained sets of 15 measurements under the same

conditions, then only 2% of the �2 values derived from these sets would be expected to

be greater than our one actual measured value of 26.76. At this point, you may be

asking yourself why we should care about a probability involving results never

actually obtained, or how we choose a P-value to reject the null hypothesis. In some

areas of science, a P-value threshold of 0.05 (confidence of 95%) is used; in other areas,

the accepted threshold for rejection is 0.01,2 i.e., it depends on the scientific culture you

are working in.

Unfortunately, P-values are often incorrectly viewed as the probability that the

hypothesis is true. There is no objective means for deciding the latter without specify-

ing an alternative hypothesis, H1, to the null hypothesis. The point is that any

2 Note: because experimental errors are frequently underestimated, and hence �2 values overestimated, it is not
uncommon to require a P-value < 0:001 before rejecting a hypothesis.
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particular P-valuemight arise even if the alternative hypothesis is true.3 The concept of

an alternative hypothesis is introduced in Section 7.2.3. In Section 9.3, we will consider

a Bayesian analysis of the galaxy variability problem.

There is another useful way of expressing a statistical conclusion like that of the

above hypothesis test. Instead of the P-value, we can measure how far out in the tail

the statistic falls in units of the � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
variance
p

of the reference distribution. For

example, the variance of a �2 distribution ¼ 2� ¼ 28 and the expectation value of

�2 ¼ h�2i ¼ � ¼ 14. Therefore:

�2
obs � h�2i

�
¼ �

2
obs � h�2iffiffiffiffiffi

2�
p ¼ 26:76� 14ffiffiffiffiffi

28
p ¼ 2:4 � 2:4�:

In many branches of science, a minimum of a 3� effect is required for a claim to be

taken with any degree of seriousness. More often, referees of scientific journals will

require a 5� result to recommend publication. It depends somewhat on how difficult

or expensive it is to get more data.

Now suppose we were studying a sample of 50 galaxies for evidence of variable

radio emission. If all 50 galaxies were actually constant, then for a confidence thresh-

old of 98%, we would expect to detect only one false variable in the sample by chance.

If we found that ten galaxies had �2 values that exceeded the 98% quantile value, then

we would expect nine of them were not constant. If, on the other hand, we were

studying a sample of 104 galaxies, we would expect to detect approximately 200 false

variables.

It is easy to see how to extend the use of the �2 test described above to other more

complex situations. Suppose we had reason to believe that the radio flux density was

decreasing linearly with time at a known rate, m, with respect to some reference time,

t0. In that case,

�2 ¼
Xn
i¼ 1

ðxi � ½mðti � t0Þ�Þ2

�2
; (7:5)

where ti is the time of the ith sample. We will have much more use for the �2 statistic in

later chapters dealing with linear and nonlinear model fitting (see Section 10.8).

7.2.2 Hypothesis test on the difference of two means

Table 7.2 gives measurements of a certain toxic substance in the river sediment at two

locations in units of parts per million (ppm). In this example, we want to test the

hypothesis that the mean concentration of this toxin is the same at the two locations.

How dowe proceed? Sample 1 consists of 12measurements taken from location 1, and

3 The difficulty in interpreting P-values has been highlighted in many papers (e.g., Berger and Sellke, 1987; Delampady
and Berger, 1990; Sellke et al., 2001). The focus of these works is that P-values are commonly considered to imply
considerably greater evidence against the null hypothesis H0 than is actually warranted.
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sample 2 consists of 8 measurements from location 2. For each location, we can

compute the sample mean. From the frequentist viewpoint, we can compare sample 1

to an infinite set of hypothetical data sets that could have been realized from location 1.

For each of the hypothetical data sets, we could compute the mean of the 12 values.

According to the Central Limit Theorem, we expect that the means for the hypo-

thetical data sets will have an approximately normal distribution. Let X1 and X2 be

random variables representing means for locations 1 and 2, respectively. It is con-

venient to work with the standard normal distributions given by

Z1 ¼
X1 � �1
�1=

ffiffiffiffiffi
n1
p ; (7:6)

and

Z2 ¼
X2 � �2
�2=

ffiffiffiffiffi
n2
p ; (7:7)

where �1 and �2 are the population means and �1 and �2 the population standard

deviations. Similarly, we expect

Z ¼ X1 � X2 � ð�1 � �2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�21=n1 þ �22=n2

q (7:8)

to be approximately normal as well (see Section 6.6.3). In the present problem, the null

hypothesis represented by H0 corresponds to

H0 � �1� ¼ 0: (7:9)

Table 7.2 River sediment toxin concentration measurements at two locations.

Location 1 (ppm) Location 2 (ppm)

13.2 8.9

13.8 9.1

8.7 8.3

9.0 6.0

8.6 7.7

9.9 9.9

14.2 9.9

9.7 8.9

10.7

8.3

8.5

9.2
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Since we do not know the population standard deviation for Z, we need to estimate

it from our measured sample. Then according to Section 6.6.3, the random variable T

given by

T ¼ X1 � X2 � ð�1 � �2Þ
Sp

(7:10)

has a Student’s t distribution. All that remains is to specify the value of Sp and the

number of degrees of freedom, �, for the Student’s t distribution.

In the present problem, we cannot assume �1 ¼ �2 so we use Equations (6.63) and

(6.64):

S2
p ¼

S2
1

n1
þ S2

2

n2
; (7:11)

and

� ¼
S2
1

n1
þ S2

2

n2

h i2
½S2

1
=n1�2

n1�1 þ
½S2

2
=n2�2

n2�1

: (7:12)

Note: Equation (6.30) for the Student’s t probability density is valid even if � is not an

integer.

Of course, we could test the hypothesis that the standard deviations are the same but

we leave that for a problem at the end of the chapter. Inserting the data we find the t

statistic ¼ 2:23 and � ¼ 17:83 degrees of freedom. We are now ready to test the null

hypothesis by comparing the measured value of the t statistic to the distribution of t

values expected for a reference set of hypothetical data sets for 17.83 degrees of

freedom. Figure 7.3 shows the reference t distribution and the measured value

of 2.23. We can compute the area to the right of t ¼ 2:23 which is called the one-

sided P-value. We can evaluate this with the following Mathematica command:

Needs[‘‘Statistics ‘HypothesisTests’’’]

StudentTPValue[2.23,17.83,OneSided ->True] fi 0:0193

This P-value is the fraction of hypothetical repeats of the experiment that are expected

to have t values � 2:23 if the null hypothesis is true. In this problem, we would expect

an equal number of hypothetical repeats to fall in the same area in the opposite tail

region by chance.

What we are really interested in is the fraction of hypothetical repeats that would be

extreme enough to fall in either of these tail regions (shaded regions of Figure 7.3) or

what is called the two-sided P-value. We can evaluate this with the following

Mathematica command:
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Needs[‘‘Statistics ‘HypothesisTests’’’]

StudentTPValue[2.23,17.83,TwoSided ->True] fi 0:0386

Mathematica provides an easier way of computing this P-value (i.e., computes the

t value and degrees of freedom for you) with

MeanDifferenceTest[data1,data2,diff,TwoSided ->True, FullReport ->True]

where data1 and data2 are the two data lists.

If the variances of the two data sets are known to be the same then use

MeanDifferenceTest[data1,data2,diff,EqualVariances ->True,

TwoSided ->True,FullReport ->True]

Our confidence in rejecting the null hypothesis is equal to the area outside of these

extreme tail regions which equals 1� (two-sided P-value) ¼ 0:961 or 96.1%. If we use

a typical threshold for rejection of say 95%, then in this case, we just reject the null

hypothesis.

7.2.3 One-sided and two-sided hypothesis tests

In the galaxy example, where we used the �2 statistic, we computed the confidence in

rejecting the null hypothesis using a one-sided tail region. Why didn’t we use a two-

sided tail region as in the river toxin problem? Here, we introduce the concept of the
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Figure 7.3 Reference Student’s t distribution with 17.83 degrees of freedom. The measured t
statistic is indicated by a line and the shaded areas correspond to upper and lower tail areas in a
two-sided hypothesis test.
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alternative hypothesis, i.e., alternative to the null hypothesis. In the galaxy problem,

the alternative hypothesis is that the radio emission is variable. If the alternative

hypothesis were true, then examination of Equation (7.1) indicates that for a given

value of the measurement error, �, we expect the value of �2 to be greater4 when the

source is variable than when it is constant. In this case, we would expect to measure �2

values in the upper tail but not the lower, which is why we used a one-sided test. In the

river toxin problem, the alternative hypothesis is that the mean toxin levels at the two

locations are different. In this case, if the alternative were true, we would expect t

values in either tail region, which is why we used the two-sided P-value test.

The rules of the game are that the null hypothesis is regarded as true unless sufficient

evidence to the contrary is presented. If this seems a strange way of proceeding, it might

prove useful to consider the following courtroom analogy. In the courtroom, the null

hypothesis stands for ‘‘the accused is presumed innocent until proven otherwise.’’ Table

7.3 illustrates the possible types of errors that can arise in a hypothesis test.

In hypothesis testing, a type I error is considered more serious (i.e., the possibility of

convicting an innocent party is considered worse than the possibility of acquitting a

guilty party). A type I error is only possible if we rejectH0, the null hypothesis. It is not

possible to minimize both the type I and type II errors. The normal procedure is to

select the maximum size of the type I error we can tolerate and construct a test

procedure that minimizes the type II error.5 This means choosing a threshold value

for the statistic which if exceeded will lead us to rejectH0. For example, suppose we are

dealing with a one-sided upper tail region test and we are willing to accept a maximum

type I error of 5%. This means a threshold value of the test statistic anywhere in the

upper 5% tail area satisfies our type I error requirement. The size of the type II error is

a minimum at the lower boundary of this region, i.e., the larger the value of the test

statistic, the more likely it is we will acquit a possibly guilty party.

Suppose we had used a two-tail test in the radio galaxy problem of Section 7.2.1

rather than the upper tail test. Recall that the alternative hypothesis is only expected to

Table 7.3 Type I and type II errors in hypothesis testing.

Possible decisions Possible consequences Errors

Reject when in fact H0 true  Type I error (conviction)

H0 when in fact H0 false

Fail to reject when in fact H0 true

H0 when in fact H0 false  Type II error (acquittal)

4 The only way for the variability to reduce �2 is if the fluctuations in the galaxies’ output canceled measurement errors.
5 The test that minimizes the type II error is often referred to as having maximum ‘‘power’’ in rejecting the null hypothesis
when it really is false.
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give rise to larger values of �2 than those expected on the basis of the null hypothesis.

In a two-tail test we would divide the rejection area equally between the lower and

upper tails, i.e., for a 98% confidence threshold, that would mean the upper and lower

tail areas would each have an area of 1%. The �2 value required for rejecting the null

hypothesis in the upper tail region would be larger in a two-tail test than for a one-tail

test. Thus, for a given confidence level, the two-tail test would increase the chance of a

type II error, because we would have squandered rejection area in the lower tail region,

a region of �2 that would not be accessed under the assumption of our alternative

hypothesis.

In the river toxin example of Section 7.2.2, the alternative hypothesis can give rise to

values of the Student’s t statistic in either tail region. In this case, we will want to reject

H0 if the t value falls far enough out in either tail region. In this case, divide the area

corresponding to the maximum acceptable type I error equally between the two tail

regions. To minimize the type II area, choose threshold values for the test statistic that

are at the inner boundaries of these two tails.

In practice, the role of the alternative hypothesis is mainly to help decide whether to

use an upper tail region, a lower tail region or both tails in our statistical test. The

choice depends on what is physically meaningful and minimizes the size of the type II

error. In Section 6.4, we used the Student’s t statistic in an analysis of a cigarette

manufacturer’s claim regarding nicotine content. Since we would reject the claim if the t

value fell sufficiently farout in either tail region,we shouldusea two-sided test in this case.

Typically, in frequentist hypothesis testing involving the use of P-values, a specific

value for the type II error is not normally computed. Instead it is used as an argument

to decide where in the tail region to locate the decision value of the test statistic, as

outlined above.

7.3 Are two distributions the same?

We have previously considered tests to compare the means and variances of two

samples. Now generalize the questions and ask the simple question: ‘‘Can we reject the

null hypothesis that the two samples are drawn from the same population?’’ Rejecting

the null hypothesis in effect implies that the two data sets are from different distribu-

tions. Failing to reject the null hypothesis only shows that the data sets can be

consistent with a single distribution.

Deciding whether two distributions are different is a problem that occurs in many

research areas.

Example 1:

Are stars uniformly distributed in the sky? That is, is the distribution of stars as a

function of latitude the same as the distribution of the sky area with latitude? In this

case, the data set (location of stars) and comparison distribution (sky area) are

continuous.
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Example 2:

Are the educational patterns in Vancouver and Toronto the same? Is the distribution

of people as a function of ‘‘last grade attended’’ the same? Here, both data sets are

discrete or binned.

Example 3:

Are the distribution of grades in a particular physics course normally distributed?

Here, the grades are discrete or binned and the distribution we to is continuous. In this

latter case, we might be comparing with a normal distribution with a given � and �2 or

alternatively we might not know � and �2 and be interested only in whether the shape

is normal.

One can always turn continuous data into binned data by grouping the events into

specified ranges of the continuous variable(s). Binning involves a loss of information,

however, and there is considerable arbitrariness as to how the bins should be chosen.

The accepted test for differences between binned distributions is thePearson �2 test.

For continuous data as a function of a simple variable, the most generally accepted

test is the Kolmogorov–Smirnov test.

7.3.1 Pearson �2 goodness-of-fit test

Let a random sample of size n from the distribution of a random variable X be divided

into kmutually exclusive and exhaustive classes (or bins) and letNi ði ¼ 1; . . . ; kÞ be the
number of observations in each class (or bin).Wewant to test the simple null hypothesis

H0 � pðxÞ ¼ p0ðxÞ

where the claimed probability model p0ðxÞ is completely specified with regard to all

parameters. Since p0ðxÞ is completely specified, we can determine the probability pi of

obtaining an observation in the ith class under H0, where by necessity
Pk

i¼ 1 pi ¼ 1.

Let ni ¼ npi ¼ expected number in each class according to the null hypothesis, H0.

Usually, H0 does not predict n, and this is obtained by setting

n ¼
Xk
i¼1

Ni:

This has the effect of reducing the number of degrees of freedom in the �2 test by

one.6 Note: Ni is an integer while the ni’s may not be.

6 Note on the number of degrees of freedom: If H0 does predict the ni’s and there is no a priori constraint on any of the
Ni’s, then �=number of bins, k.

More commonly, the ni’s are normalized after the fact so that their sum equals the sum of the Ni’s, the total number
of events measured. In this case, � ¼ k� 1.
If the model that gives the ni’s had additional free parameters that were adjusted after the fact to agree with the data,

then each of these additional ‘‘fitted’’ parameters reduces the � by one. The number of these additional fitted parameters
(not including the normalization of the ni’s) is commonly called the ‘‘number of constraints’’ so the number of degrees
of freedom is � ¼ k� 1 when there are ‘‘zero constraints.’’
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Question: What is the form of p0ðxÞ?
Answer: Since there are kmutually exclusive categories with probabilities p1; p2; . . . ; pk,

then under the null hypothesis, the probability of the grouped sample is the same as the

probability of a multinomial distribution discussed in Section 4.3.

In what follows, we will deduce the appropriate test statistic forH0 which is known

as the Pearson chi-square goodness-of-fit test. Start with the simple case where k ¼ 2;

thus, p0ðxÞ is a binomial distribution.

pðxjn; pÞ ¼ n!

ðn� xÞ!x! p
xð1� pÞn�x; x ¼ 0; 1; . . . ; n: (7:13)

In this case, x ¼ n1, p ¼ p1, n� x ¼ n2 and ð1� pÞ ¼ p2. Recall that � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞ

p
for the binomial distribution. Consider the standardized random variable

Y ¼ N1 � np1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np1ð1� p1Þ

p : (7:14)

For np1 � 1, the distribution of Y is approximately the standard normal. Recall that

the square of a standard normal variable,

Xn
i¼1

ðxi � �Þ2

�2
;

is �2-distributed with n degrees of freedom. Thus we expect the statistic

ðN1 � np1Þ2

np1ð1� p1Þ
(7:15)

to be approximately �2-distributed with one degree of freedom.

Note:

1

np1
þ 1

np2

� �
¼ nðp1 þ p2Þ

n2p1p2
¼ 1

np1ð1� p1Þ

ðN1 � np1Þ2

np1ð1� p1Þ
¼ ðN1 � np1Þ2

np1
þ ½ðn�N2Þ � nð1� p2Þ�2

np2

¼ ðN1 � np1Þ2

np1
þ ðN2 � np2Þ2

np2

¼
X2
i¼1

ðNi � npiÞ2

npi
:

(7:16)

Following this reasoning, it can be shown that for k � 2 the statistic,

Xk
i¼1

ðNi � npiÞ2

npi
(7:17)
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is approximately �2-distributed with � ¼ k� 1 degrees of freedom.Ni is the observed

frequency of the ith class and npi is the corresponding expected frequency under the

null hypothesis. Any term in Equation (7.17) with Ni ¼ npi ¼ 0 should be omitted

from the sum. A term with pi ¼ 0 andNi 6¼ 0 gives an infinite �2, as it should, since in

this case, the Ni’s cannot possibly be drawn from the pi’s.

Strictly speaking, the �2 P-value is the probability that the sum of squares of �

standard normal random variables will be greater than �2. In general, the terms in the

sum of Equation (7.17) will not be individually normal. However, if either the number

of bins is large ð� 1Þ, or the number of events in each bin is large ð� 1Þ, then the �2

P-value is a good approximation for computing the significance of �2 values given by

Equation (7.17). Its use to estimate the significance of the Pearson �2 goodness-of-fit

test is standard.

Example 1:

In this first example, we apply the Pearson �2 goodness-of-fit test to a k ¼ 2 bin

problem and compare with the exact result expected using a test based on the binomial

distribution. Suppose a certain theory predicts that the fraction of radio sources that

are expected to be quasars at an observing wavelength of 20 cm is 70%. A sample of 90

radio sources is selected and each source is optically identified. Only 54 turn out to be

quasars. At what confidence level can we reject the above theory? Thus, our null

hypothesis is that the theory is true.

Quasars Other
Predicted 63 27
Observed 54 36

Number of degrees of freedom ¼ number of bins� 1 ¼ 1.

�2
��1 ¼

X2
i¼1

ðNi � npiÞ2

npi
¼ ð54� 63Þ2

63
þ ð36� 27Þ2

27
¼ 4:29:

Our alternative hypothesis in this case is that the theory is not true. Based on the

alternative hypothesis, we would choose an upper tail test for the Pearson �2 statistic.

The observed �2 of 4.29 corresponds to a P-value of 3.8%.

What is the corresponding P-value predicted by the binomial distribution? Recall

that the binomial distribution (Equation (7.13)) predicts the probability of x successes

in n trials when the probability of a success in any one trial is p. In this case, a success

means the source is a quasar. According to the theory, p ¼ 0:7. First we calculate the

area in the tail region extending from n ¼ 0 to n ¼ 54 which equals 2.7%. The true

P-value is double this, or 5.4%, because we need to use a two-tailed test since we would

reject the null hypothesis if the observed number fell far enough out in either tail of the

binomial distribution. Examination of Equation (7.15) demonstrates that both of

these binomial tails contribute to a single �2 tail. Thus, using the �2 test, we would

reject the null hypothesis at the 95% confidence level but just fail to reject the
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hypothesis using the more accurate test based on the binomial distribution.

Comparison of the results, P-values ¼ 3:8% ð�2Þ and ¼ 5:4% (binomial) indicates

the approximate level of agreement to be expected from the Pearson �2 test in this

simple two-bin test and an n � 100.

Now repeat the above test; only this time, we will use a sample of 2000 radio sources

of which 1360 prove to be quasars.

�2
��1 ¼

X2
i¼1

ðNi � npiÞ2

npi
¼ ð1360� 1400Þ2

1400
þ ð640� 600Þ2

600
¼ 3:81:

In this case, the observed �2 of 3.81 corresponds to a P-value (significance �) of 5.1%.

The more accurate P-value based on the binomial distribution is equal to 5.4%. As

expected, as we increase the sample size, the agreement between the two tests becomes

much closer. In this case, both tests just fail to reject the null hypothesis at the 95% level.

Example 2:

Now we consider an example involving a large number of bins or classes. Table 7.4

compares the total number of goals scored per game in four seasons of World Cup

soccer matches (years 1990, 1994, 1998, and 2002), with the expected number if the

number of goals is Poisson distributed. Only the goals scored in the 90 minutes

regulation time are considered. This leaves out goals scored in extra time or in penalty

shoot-outs. Based on the information provided, is there reason to believe at the 95%
confidence level that the number of goals is not a Poisson random variable?

The Poisson distribution is given by

pðnÞ ¼ ð�Þ
ne��

n!
;

where � ¼ average number of goals per game (a parameter that must be estimated

from the data). Each parameter estimated from the data decreases the number of

degrees of freedom by one. From the data of Table 7.4, we compute � ¼ 2:4785.

The probability of exactly zero goals under the null hypothesis of a Poisson

distribution is

pð0Þ ¼ ð2:4785Þ
0e�2:4785

0!
¼ 0:0839:

For n ¼ 232 games, the expected number of games with zero goals is

232� 0:0839 ¼ 19:46. Even though the Poisson distribution makes non-zero predic-

tions for seven or more goals, the expected number rapidly falls below the resolution

of our data set. There is no requirement that the bins be of equal size so our last bin is

for � 7 goals.

For k ¼ 8 classes, the number of degrees of freedom ¼ 6. We lose one degree of

freedom from the normalizing n ¼
Pk

i¼1 Ni, and another from estimating � from

the data. The value of �2 ¼ 2:66, which is derived from the data in Table 7.4,
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corresponds to a P-value (significance �) of 0.85. This corresponds to a confidence in

rejecting the null hypothesis of 15%, which is much less than the 95% usually

required. Thus, we fail to reject the null hypothesis that the number of goals scored

is Poisson distributed. For more statistical analysis of the World Cup soccer data,

see Chu (2003).

7.3.2 Comparison of two-binned data sets

In this case,

�2 ¼
X
i

ðRi � SiÞ2

Ri þ Si
; (7:18)

where Ri and Si are the number of events in bin i for the first and second data set,

respectively. It is instructive to compare Equation (7.18) with Equation (7.17). The

term in the denominator of Equation (7.17), the predicted number of counts in the ith

bin, is a measure of the expected variance in the counts. The variance of the difference

of two random variables is the sum of their variances, which explains why the

denominator in Equation (7.18) is Ri þ Si.

If the data were collected in such a way that
P

Ri ¼
P

Si, then � ¼ k� 1. If this

requirement were absent, the number of degrees of freedom would be k.

7.4 Problem with frequentist hypothesis testing

We now consider a serious problem with frequentist hypothesis testing referred to as

the optional stopping problem (e.g., Loredo, 1990; Berger and Berry, 1988). The

optional stopping problem is best illustrated by an example. Consider the following

Table 7.4 World Cup goal statistics.

Number of goals Actual number of

games

Expected number of

games

½Ni � npið�Þ�2

npið�Þ

0 19 19.46 0.0108

1 49 48.23 0.0124

2 60 59.76 0.0009

3 47 49.37 0.1142

4 32 30.59 0.0647

5 18 15.16 0.5302

6 3 6.26 1.7009

�7 4 3.15 0.2267

Totals 232 232 2.6607
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astronomical fable motivated by a tutorial given by Tom Loredo at a Maximum

Entropy and Bayesian Methods meeting:

An Astronomical Fable

Theorist: I predict the fraction of nearby stars that are like the sun (G spectral class) is

f ¼ 0:1.

Observer: I count five G stars out of N ¼ 102 total stars observed. This gives me a

P-value ¼ 4:3%. Your theory is rejected at the 95% level.

Theorist: Let me check that: I can use the binomial distribution to compute the

probability of observing five or fewer G stars out of a total of 102 stars observed

for a predicted probability f ¼ 0:1.

P-value ¼ 2�
X5
n¼0

pðn jN; f Þ; (7:19)

where,

pðn jN; f Þ ¼ N!

n!ðN� nÞ! f
nð1� f ÞN�n: (7:20)

The factor of 2 in Equation (7.19) is because a two-tailed test is required here. My

hypothesis could be rejected if either too few or too many G stars were counted.

I get a P-value¼ 10% so my theory is still alive. You have failed to reject my theory

at the 95% level.

Observer:Never trust a theorist with your data! I plannedmy observations by deciding

beforehand that I would observe until I saw nG ¼ 5 G stars, and then stop. The

random quantity your theory predicts is thus N, not nG. The correct reference

distribution is the negative binomial. Thus,

P-value ¼ 2�
X1
N¼102

pðN jnG; f Þ; (7:21)

where,

pðN jnG; f Þ ¼
N� 1

nG � 1

� �
f nGð1� f ÞN�nG : (7:22)

I get a P-value ¼ 4:3% as I claimed.

Theorist: What if bad weather ended your observations before you saw five G stars?

Observer: I’d either throw out the data, or include the probability of bad weather.
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Theorist: But then you should include it in the analysis now, because the weather could

have been bad.

MORAL: Never trust a frequentist with your data!

The problem with the frequentist approach is that we need to specify a reference set

of hypothetical samples that could have been observed, but were not, in order to

compute the P-value of our observed sample. Thus, the decision on whether to reject

the null hypothesis based on the P-value depends on the thoughts of the investigator

about data that might have been observed but were not. Clearly, the theorist and

observer had different thoughts about what was the appropriate reference set and thus

arrived at quite different conclusions. To avoid this problem, experiments must

therefore be carefully planned beforehand (e.g., the stopping rule specified before

the experiment commences) to be amenable to frequentist analysis and if the plan is

altered during execution for any reason (for example, if the experimenter runs out of

funds), the data are worthless and cannot be analyzed.

The fact that P-value hypothesis testing depends on considerations like the inten-

tions of the investigator and unobserved data indicates a potentially serious flaw in the

logic behind the use of P-values. Surely if our plan for an experiment has to be altered

(e.g., astronomical observations cut short due to bad weather), we should still be able

to analyze the resulting data provided we are fully aware of the physical details of the

experiment. Clearly, our state of information has changed. Fortunately in Bayesian

inference, the stopping rule plays no role in the analysis. There is no ambiguity over

which quantity is to be considered a ‘‘random variable,’’ because the notion of a

random variable and consequent need for a reference set of hypothetical data is absent

from the theory. All that is required is a specification of the state of knowledge that

allows us to compute the likelihood function.

7.4.1 Bayesian resolution to optional stopping problem

In the Bayesian approach, where the probability assignments describe the state of

knowledge defined in the problem, such paradoxes disappear. Here, we are interested

in the posterior probability of f, the fraction of all nearby stars that are G stars.

pð f jD; IÞ ¼ pð f jIÞpðDj f; IÞ
pðDjIÞ : (7:23)

The Bayesian calculation focuses on the functional dependence of the likelihood on

the hypotheses corresponding to different choices of f. Both the binomial and

negative binomial distributions depend on f in the same way, so Bayesian calcul-

ations by the theorist and the observer lead to the same conclusion, as we now

demonstrate.
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1. Binomial case:

pðDj f; IÞ ¼ pðnGjN; f Þ ¼
N!

ðN� nGÞ!ðnGÞ!
f nGð1� f ÞN�nG

pðDjIÞ ¼
Z

df pð f jIÞ pðDj f; IÞ

pð f jD; IÞ ¼ pð f jIÞf nGð1� f ÞN�nGR
df pð f jIÞf nGð1� f ÞN�nG

;

(7:24)

where the factorial terms cancel out because they appear in both the numerator and

denominator.

2. Negative binomial case:

pðDj f; IÞ ¼ pðNjnG; f Þ ¼
N� 1

nG � 1

� �
f nGð1� f ÞN�nG

pð f jD; IÞ ¼ pð f jIÞ f nGð1� f ÞN�nGR
df pð f jIÞf nGð1� f ÞN�nG

:

(7:25)

Again the factorial terms cancel out because they appear in both the numerator and

denominator. Equations (7.24) and (7.25) are identical so the conclusions are the

same; theorist and observer agree. Figure 7.4 shows the Bayesian posterior PDF for

the fraction of G stars assuming a uniform prior for pð f jIÞ.
The frequentist calculations, on the other hand, focus on the dependence of the

sampling distribution on the dataN and nG. Since the binomial and negative binomial

distributions depend on N and nG in different ways, one would be led to different

conclusions depending on the distribution chosen. Variations of weather and
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Figure 7.4 Bayesian posterior PDF for the fraction of G stars.
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equipment can affect N and nG but not f, and thus only the Bayesian conclusion is

consistently the same.

In the frequentist hypothesis test, wewere attempting to reject the null hypothesis that

the theorist’s prediction ð f ¼ 0:1Þ is correct. Recall that in a Bayesian analysis, we

cannot compute the probability of a single hypothesis in isolation but only in compari-

son to one or more alternative hypotheses. The posterior PDF shown in Figure 7.4

allows us to compare the probability density at f ¼ 0:1 to the probability density at any

other value of f. Assuming a uniform prior, the PDF is a maximum close to f � 0:05.

7.5 Problems

1. In Section 7.2.2, we tested the hypothesis that the river sediment toxin concentra-

tions at the two locations are the same. Using the same data, test whether the

variances of the data are the same for the two locations. Should you use a one-sided

or a two-sided hypothesis test in this case? Some choices ofMathematica commands

to use to answer this question are given in the following box:

Needs[‘‘Statistics ‘HypothesisTests’’’]

VarianceRatioTest[data1,data2,ratio,FullReport -<True]

or

VarianceRatioTest[data1,data2,ratio,TwoSided ->True, FullReport ->True]

Note: OneSided ->True, is the default.

Both are based on the FRatioPValue[fratio,numdef,dendef] calculation of Section 6.5.

2. Table 7.5 gives measurements of a certain river sediment toxic substance at two

locations in units of parts per million (ppm). The sampling is assumed to be from

two independent normal populations.

a) Determine the 95% confidence intervals for the means and variances of the two

data sets.

b) At what confidence level (express as a %) can you reject the hypothesis that the

two samples are from populations with the same variance? Explain why you

chose to use a one-sided or two-sided hypothesis test.

c) At what confidence level can you reject the hypothesis that the two samples are

from populations with the same mean? Assume the population variances are

unknown but equal and use a two-sided hypothesis test.

d) At what confidence level can you reject the hypothesis that the two samples are

from populations with the same mean? Assume the population variances are

unknown and unequal, and use a two-sided hypothesis test.
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Tips: The following Mathematica commands may prove useful.

StudentTPValue FRatioPValue VarianceRatioTest MeanDifferenceTest MeanCI

VarianceCI

3. In Example 1 of Section 7.3.1, suppose 41 quasars were detected in a total sample of

90 radio sources. With what confidence could you reject the hypothesis that 70% of

radio sources are quasars?

4. Generate a list of 50 000 random numbers with a uniform distribution in the

interval 0 to 1. Divide this interval into 500 bins of equal size and count the number

Table 7.5 Measurements of the concentration of a river

sediment toxin in ppm at two locations.

Location 1 Location 2

17.1 7.0

11.1 12.0

12.6 6.8

12.1 9.3

5.9 8.9

7.7 9.4

10.5 9.6

15.3 7.6

10.5

10.5

Table 7.6 The distribution of a sample of 100 radiation measurements.

Count Obtained Number of Occurrences

0 1

1 6

2 18

3 17

4 23

5 10

6 15

7 4

8 4

9 1

10 0

11 0

12 1
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of random numbers in each bin (see Mathematica command BinCounts). Use the

Pearson �2 goodness-of-fit test to see if you can reject the hypothesis that the counts

have a uniform distribution at a 95% confidence level.

5. A distribution of background radiation measurements in a radioactively contamin-

ated site are given in Table 7.6 based on a sample of 100 measurements. Use the

Pearson �2 goodness-of-fit test to see if you can reject the hypothesis that the counts

have a Poisson distribution at a 95% confidence level. Include a plot of the data.
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8

Maximum entropy probabilities

8.1 Overview

This chapter can be thought of as an extension of the material covered in Chapter 4

which was concerned with how to encode a given state of knowledge into a probability

distribution suitable for use in Bayes’ theorem. However, sometimes the information

is of a form that does not simply enable us to evaluate a unique probability distribu-

tion pðYjI Þ. For example, suppose our prior information expresses the following

constraint:

I � ‘‘the mean value of cos y ¼ 0:6.’’

This information alone does not determine a unique pðYjI Þ, but we can use I to test

whether any proposed probability distribution is acceptable. For this reason, we call

this type of constraint information testable information. In contrast, consider the

following prior information:

I1 � ‘‘the mean value of cos y is probably > 0:6.’’

This latter information, although clearly relevant to inference aboutY, is too vague to

be testable because of the qualifier ‘‘probably.’’

Jaynes (1957) demonstrated how to combine testable information with Claude

Shannon’s entropy measure of the uncertainty of a probability distribution to arrive

at a unique probability distribution. This principle has become known as the max-

imum entropy principle or simply MaxEnt.

Wewill first investigate how tomeasure the uncertainty of a probability distribution

and then find how it is related to the entropy of the distribution. We will then examine

three simple constraint problems and derive their corresponding probability distribu-

tions. In the course of this examination, we gain further insight into the special

properties of a Gaussian distribution. We also explore the application of MaxEnt to

situations where the constraints are uncertain and consider an application to image
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restoration/reconstruction.1 The last section deals with a promising Bayesian image

reconstruction/compression technique called the PixonTM method.

8.2 The maximum entropy principle

Themajor use of Bayes’ theorem is to update the probability of a hypothesis when new

data become available. However, for certain types of constraint information, it is not

always obvious how to use it directly in Bayes’ theorem. This is because the informa-

tion does not easily enable us to evaluate a prior probability distribution or evaluate

the likelihood function.

As an example, consider the following problem involving a six-sided die: each side

has a unique number of dots on it, ranging in number from one to six. Suppose the

die is thrown a very large number of times and on each throw, the number of dots

appearing on the top face is recorded. The book containing the results of the

individual throws is then unfortunately lost. The only information remaining is

the average number of dots on the repeated throws. Using only this prior informa-

tion, how can we arrive at a unique assignment for the probability that the top face

will have n dots on any one throw (i.e., we want to obtain a prior probability for each

side of the die)?

Principle: Out of all the possible probability distributions which agree with the given

constraint information, select the one that is maximally non-committal with regard

to missing information.

Question: How do we accomplish the goal of being maximally non-committal about

missing information?

Answer: The greater the missing information, the more uncertain the estimate.

Therefore, make estimates that maximize the uncertainty in the probability dis-

tribution, while still being maximally constrained by the given information.

What is uncertainty and how do we measure it?

Jaynes argued that the best measure of uncertainty to maximize is the entropy of the

probability distribution, an idea which was first introduced by Claude Shannon in his

pioneering work on information theory.

We start by developing our intuition about uncertainty:

Example 1:

Consider an experiment with only two possible outcomes. For which of the three

probability distributions listed below is the outcome most uncertain?

1 Image restoration, the recovery of images from image-like data, usually means removing the effects of
point-spread-function blurring and noise. Image reconstruction means the construction of images from more
complexly encoded data (e.g., magnetic resonance imaging data or from the Fourier data measured in radio
astronomy aperture synthesis). In the remainder of the chapter, we will use the term image reconstruction to refer to
both.
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(1) p1 ¼ p2 ¼ 1
2  The outcome here most uncertain

(2) p1 ¼ 1
4 ; p2 ¼ 3

4

(3) p1 ¼ 1
100 ; p2 ¼ 99

100

Example 2:

Consider an experiment with different numbers of outcomes

(1) p1 ¼ p2 ¼ 1
2

(2) p1 ¼ p2 ¼ p3 ¼ p4 ¼ 1
4

(3) p1 ¼ p2 ¼ � � � ¼ p8 ¼ 1
8  Most uncertain

i.e., If there are n equally probable outcomes, the uncertainty / n.

8.3 Shannon’s theorem

In 1948, Claude Shannon published a landmark paper on information theory in which

he developed a measure of the uncertainty of a probability distribution which he

labeled ‘entropy.’ He demonstrated that the expression for entropy has a meaning

quite independent of thermodynamics. Shannon showed that the uncertainty,

Sðp1; p2; . . . ; pnÞ, of a discrete probability distribution pi is given by the entropy of

the distribution, which is

Sð p1; p2; . . . ; pnÞ ¼ �
Xn
i¼1

pi lnð piÞ ¼ entropy: (8:1)

The theorem is based on the following assumptions:

(1) Some real numbered measure of the uncertainty of the probability distribution

ð p1; p2; . . . ; pnÞ exists, which we designate by

Sð p1; p2; . . . ; pnÞ:

(2) S is a continuous function of the pi. Otherwise an arbitrary small change in the probability

distribution could lead to the same big change in the amount of uncertainty as a big change

in the probability distribution.

(3) Sð p1; p2; . . . ; pnÞ should correspond to common sense in that when there are many possibil-

ities, we are more uncertain than when there are few. This condition implies that in the case

where the pi are all equal (i.e., pi ¼ 1=n),

S
1

n
; . . . ;

1

n

� �
¼ nf

1

n

� �

shall be a monotonic increasing function of n:

(4) Sð p1; p2; . . . ; pnÞ is a consistent measure. If there is more than one way of working out its

value, we must get the same answer for every possible way.
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8.4 Alternative justification of MaxEnt

Here, we consider how we might go about assigning a probability distribution for the

sides of a weighted die given only constraint information about the die. Let pi ¼ the

probability of the ith side occurring in any toss where i ¼ number of dots on that side.

We now impose the constraint that

mean number of dots ¼
X6
i¼1

i pðiÞ ¼ 4: (8:2)

Note: the mean value for a fair die is 3.5. Our job is to come up with a unique set of pi
values consistent with this constraint.

As a start, let’s consider what we can infer about the probabilities of the six sides

from prior information consisting of the mean number of dots from ten throws of the

die. Suppose I � ‘‘in ten tosses of a die, the mean number of dots was four.’’ We will

solve this problem and then consider what happens as the number of tosses becomes

very large.

For a finite number of tosses, there are a finite number of possible outcomes. Let

h1 ! hn be the set of hypotheses representing these different outcomes. Some example

outcomes are given in Table 8.1. Which hypothesis is the most probable?

In the die problem just discussed, we can use our information to reject all hypoth-

eses which predict a mean 6¼ 4. This still leaves us a large number of possible

hypotheses.

Our intuition tells us that in the absence of any additional information, certain

hypotheses are more likely than others (e.g., h1 is less likely than h2 or h4). Let’s try and

refine our intuition.

If we knew the individual pi’s, we could calculate the probability of each hi. It is

given by the multinomial distribution

Table 8.1 Some hypotheses about the possible outcomes of tossing a die ten times.

# of dots h1 h2 h3 h4 � � � hn

1 0/10 1/10 1/10 1/10 2/10

2 0/10 1/10 2/10 1/10 1/10

3 0/10 1/10 2/10 1/10 3/10

4 10/10 1/10 2/10 2/10 2/10

5 0/10 6/10 2/10 4/10 1/10

6 0/10 0/10 1/10 1/10 1/10

mean 4.0 4.0 3.5 4.0 � � � 3.2
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pðn1; n2; . . . ; n6jN; p1; p2; . . . ; p6Þ ¼
N!

n1!n2! . . . n6!|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
W

pn11 � pn22 � � � � � pn66|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
P

8>>><
>>>:

(8:3)

where N ¼ �ini ¼ the total number of throws of the die.W is the number of different

ways that hi can occur inN trials, usually called the multiplicity. P is the probability of

any particular realization of hypothesis hi.

Without knowing the pi’s we have no way of computing the P term.2 In what

follows, we will ignore this term and investigate the consequences of theW term alone.

Let’s evaluate the multiplicity, W, for h1 and h4.

Wh1 ¼
10!

0!0!0!10!0!0!
¼ 1;

Wh4 ¼
10!

1!1!1!2!4!1!
¼ 75 600:

It is obvious that h1 can only occur in one way, but to our surprise we find that h4
can occur in 75 600 different ways. In the absence of additional information, if we were

to carry out a large number of repeats of ten tosses, we would expect h4 to occur 75 600

times more often than h1. Thus, amongst the hypotheses that satisfy our constraint,

the one with the largest multiplicity is the one we would consider most probable. Call

this outcome Wmax.

From Wmax we can derive the frequency of occurrence of any particular side of the

die and use this as an estimate of the probability of that side. A problem arises because

for a small number of throws like ten, the frequency determined for one or more sides

might be zero. To set the probability of these sides to zero would be unwarranted since

what it really means is that pi < 1=10.

The general concept of using the multiplicity to select from the hi satisfying the

constraint is good, but we need to refine it further. Suppose we were to use the average

of the ten throws as the best estimate of the average of a much larger number of throws

N� 10. For a much larger N, there would be a correspondingly larger number of

hypotheses about probability distributions which could satisfy the average constraint.

In this case, the smallest increment in pi will be 1=N instead of 1/10. The one with the

largest multiplicity (Wmax) will be a smoother version of what we got earlier with only

ten throws, and ifN is large enough, it will be very unlikely for any of the pi to be exactly

zero, unless of course the average was either one or six dots.

We like the smoother version of the probability distribution that comes about from

using a larger value of N; however, this gives rise to a new difficulty. We will see in

Equation (8.7) that as N increases, Wmax increases at such a rate that there are

2 Clearly, if the mean number of dots is significantly different from 3.5, the value for a fair die, then the constraint
information is telling us that some sides are more probable than others. A challenge for the future is to see how this
information can be used to constrain the P term.
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(essentially) infinitely more ways Wmax can be realized than other not-too-different

probability distributions. Since we started with an average constraint pertaining to only

ten throws, this degree of discrimination against acceptable competing hi is unwar-

ranted.Happily, if we use Stirling’s approximation for lnN!, we can factor lnW into two

terms as we now show. Stirling’s approximation for large N is

lnN! ¼ N lnN�N: (8:4)

Writing ni ¼ Npi, the multiplicity becomes

lnW ¼ N lnN�N�
X6

i¼ 1
Npi lnNpi þ

X6

i¼1 Npi

¼ N lnN�N�
X

Npi lnðNpiÞ þ
X

Npi

¼ N lnN�N�N
X

pi ln pi þ lnN
� �

þN

¼ �N
X6

i¼ 1
pi ln pi

lnW ¼ �N
X6
i¼1

pi ln pi ¼ N� entropy ¼ NS; (8:5)

where

S ¼ �
X6
i¼1

pi ln pi: (8:6)

Equation (8.5) factors lnW into two terms: the number of throws, N, and the

entropy term, which depends only on the desired pi’s. Maximizing entropy achieves

the desired smooth probability distribution.

Since the multiplicity W ¼ expðNSÞ, it follows that

Wmax

W
¼ exp½NðSmax � SÞ� ¼ expðN�SÞ; (8:7)

whereWmax is the multiplicity of the probability distribution with maximum entropy,

Smax, and W is the multiplicity of a distribution with entropy S. The actual relative

probabilities of two different probability distributions is proportional to the ratio of

their multiplicities or / expðN��entropyÞ. Clearly, the degree of discrimination

depends strongly on N. For N large, Equation (8.7) tells us that there are (essentially)

infinitely more ways the outcome corresponding to maximum entropy (MaxEnt) can

be realized than any outcome having a lower entropy.

Jaynes (1982) showed that the quantity 2N�S has a �2 distribution withM� k� 1

degrees of freedom, whereM is the number of possible outcomes and k is the number

of constraints. In our problem of the die,M ¼ 6 and k ¼ 1. This allows us to compute

explicitly the range of S about Smax corresponding to any confidence level.
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8.5 Generalizing MaxEnt

8.5.1 Incorporating a prior

In Equation (8.3), we argued that without knowing the pi’s we have no way of comput-

ing termP. Using the principle of indifference, we assigned the same value forP for each

of the acceptable hypotheses and concluded that the relative probability of acceptable

hypotheses is proportional to the multiplicity term. In the present generalization, we

allow for the possibility of prior information about the fpig. For example, suppose that

the index i enumerates the individual pixels in an image of a very faint galaxy taken with

the Hubble Space Telescope. Our constraint information in this case is the set of

measured image pixel values. However, because of noise, these constraints are uncer-

tain. In Section 8.8.2 we will learn how to make use of MaxEnt with uncertain

constraints. In general, to find the MaxEnt image requires an iterative procedure

which starts from an assumed prior image which is often taken to be flat, i.e., all pi
equal. However, if we already have another lower resolution image of the same galaxy

taken with a ground-based telescope, then this would be a better prior image to start

from. In this way, we can have a prior estimate of the pi values in Equation (8.3).

For the moment we will return to the case where our constraints are certain and we

will let fmig be our prior estimate of fpig. For example, maybe we know that two sides

of the die have two dots and that the other four sides have 3, 4, 5, and 6 dots, respectively.

Substituting into Equation (8.3), and generalizing the discussion to a discrete probability

distribution where i varies from 1 to M (instead of i ¼ 1 to 6 for the die), we obtain

pðn1; n2; . . . ; nMjN; p1; p2; . . . ; pMÞ ¼
N!

n1! n2! . . . nM!
mn1

1 �mn2
2 � � � � �mnM

M : (8:8)

Taking the natural logarithm of both sides yields

ln½ pðn1; n2; . . . ; nMjN; p1; p2; . . . ; pMÞ� ¼
XM
i¼1

ni ln½mi� þ ln½N!� �
XM
i¼1

ln½ni!�

¼
XM
i¼1

ni ln½mi� �N
XM
i¼1

pi ln½ pi�
(8:9)

where we have used Stirling’s approximation (Equation (8.4)) in the last line.

Substituting for ni ¼ Npi, we obtain

1

N
ln½ pðn1; n2; . . . ; nMjN; p1; p2; . . . ; pMÞ� ¼

XM
i¼1

pi ln½mi� �
XM
i¼1

pi ln½ pi�

¼ �
XM
i¼1

pi ln½ pi=mi� ¼ S:

(8:10)

This generalized entropy is known by various names including the Shannon–Jaynes

entropy and the Kullback entropy. It is also sometimes written with the opposite sign

(so it has to be minimized) and referred to as the cross-entropy.
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8.5.2 Continuous probability distributions

The correct measure of uncertainty in the continuous case (Jaynes, 1968; Shore and

Johnson, 1980) is:

Sc ¼ �
Z

pðyÞ ln pðyÞ
mðyÞ

� �
dy: (8:11)

The quantitymðyÞ, called the Lebesgue measure (Sivia, 1996), ensures that the entropy

expression is invariant under a change of variables, y! y0 ¼ f ðyÞ, because both pðyÞ
and mðyÞ transform in the same way. Essentially, the measure takes into account how

the (uniform) bin-widths in y-space translate to a corresponding set of (variable) bin-

widths in the alternative y0-space. If mðyÞ is a constant, this equation reduces to

Sc ¼ �
Z

pðyÞ ln pðyÞdyþ lnmðyÞ
Z

pðyÞdy

¼ �
Z

pðyÞ ln pðyÞdyþ constant:

(8:12)

To find the maximum entropy solution, we are interested in derivatives of Equation

(8.12), and for this, a constant prior has no effect.

8.6 How to apply the MaxEnt principle

In this section, we will demonstrate how to use the MaxEnt principle to encode some

testable information into a probability distribution. We will need to use the Lagrange

multipliers of variational calculus in which MaxEnt plays the role of a variational

principle,3 so we first briefly review that topic.

8.6.1 Lagrange multipliers of variational calculus

Suppose there are M distinct possibilities fyig to be considered where i ¼ 1 to M.

We want to compute pðyijIÞ (abbreviated by pi) subject to a testable constraint.

If S represents the entropy of pðyijIÞ, then the condition for maximum entropy is

given by

dS ¼ @S

@p1
dp1 þ � � � þ

@S

@pM
dpM ¼ 0:

Without employing a constraint, the dpi’s are independent and the only solution is if

all the coefficients are individually equal to 0. Suppose we are given the constraint

3 One desirable feature of a variational principle is that it does not introduce correlations between the pi values unless
information about these correlations is contained in the constraints. In Section 8.8.1, we show that the MaxEnt
variational principle satisfies this condition.
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P
p2i ¼ R, where R is a constant. Rewrite the constraint4 as C ¼

P
p2i � R ¼ 0. With

this constraint, any permissible dpi’s must satisfy

dC ¼ 0 ¼ @C

@p1
dp1 þ � � � þ

@C

@pM
dpM

¼ 2p1dp1 þ � � � þ 2pMdpM:

(8:13)

We can combine dS and dC in the form

dS� �dC ¼ 0; (8:14)

where � is an undetermined multiplier.

@S

@p1
� �2p1

� �
dp1 þ � � � þ

@S

@pM
� �2pM

� �
dpM ¼ 0:

Now if � is chosen so ð@S=@p1 � �2p1Þ ¼ 0, then the equation reduces to

@S

@p2
� �2p2

� �
dp2 þ � � � þ

@S

@pM
� �2pM

� �
dpM ¼ 0: (8:15)

But the remaining M� 1 variables dpi can be considered independent so their coeffi-

cients must also equal zero to satisfy Equation (8.15). This yields a set ofM equations

which can be solved for the fpig. It can be shown that this procedure does lead to a

global maximum in S (e.g., Tribus, 1969).

8.7 MaxEnt distributions

Before derivingMaxEnt probability distributions for some common forms of testable

information, we first examine some general properties of MaxEnt distributions.

8.7.1 General properties

Suppose we are given the following constraints:XM

i¼ 1
pi ¼ 1XM

i¼ 1
f1ðyiÞpi ¼ h f1i ¼ f1

..

.

XM

i¼ 1
frðyiÞpi ¼ h fri ¼ fr

where M is the number of discrete probabilities. For example, suppose we have the

constraint information hcosðyÞi ¼ f1. In this case, f1ðyiÞ ¼ cosðyiÞ. Equation (8.14)

can be written with the help of Equation (8.10) as

4 In principle, R might be a f ðp1; . . . ; pMÞ and thus lead to a term in the differential.
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d �
XM
i¼ 1

pi ln pi þ
XM
i¼ 1

pi lnmi � �
XM
i¼ 1

pi � 1

 !
� �1

XM
i¼ 1

f1ðyiÞpi � f1

 !
�

"

� � � � �r
XM
i¼ 1

frðyiÞpi � fr

 !#
¼ 0:

(8:16)

Assumingmi is a constant, then
PM

i¼ 1 pi lnmi ¼ lnmi

PM
i¼ 1 pi ¼ lnmi and d lnmi ¼ 0.

In this case, the above equation simplifies to

XM
i¼1
� ln pi � pi

@ ln pi
@pi

� �� �1 f1ðyiÞ � � � � � �r frðyiÞ
� �

dpi

¼
XM
i¼1
� ln pi � ð1þ �Þ � �1 f1ðyiÞ � � � � � �r frðyiÞ½ �dpi ¼ 0:

(8:17)

For each i, we can solve for pi.

pi ¼ exp½�ð1þ �Þ� exp½��1 f1ðyiÞ � � � � � �rfrðyiÞ�

¼ exp½��0� exp �
Xr
j¼1

�j fjðyiÞ
" #

;
(8:18)

where �0 ¼ 1þ �. Using the first constraint, we obtain

XM
i¼1

pi ¼ exp½��0�
XM
i¼1

exp �
Xr
j¼1

�j fjðyiÞ
" #

¼ 1; (8:19)

which can be rewritten as

exp½þ�0� ¼
XM
i¼ 1

exp �
Xr
j¼1

�j fjðyiÞ
" #

: (8:20)

Now differentiate Equation (8.20) with respect to �k, and multiply through by

� exp½��0� to obtain

� @�0
@�k
¼
XM
i¼1

exp½��0� exp �
Xr
j¼1

�j fjðyiÞ
" #

fkðyiÞ

¼
XM
i¼1

pi fkðyiÞ ¼ h fki:
(8:21)

This leads to the following useful result, that we make use of in Section 8.7.4.

� @�0
@�k
¼ h fki ¼ fk: (8:22)
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From Equation (5.4), we can write the variance of fk as

Varð fkÞ¼h f 2k i�ðh fkiÞ
2: (8:23)

We obtain h f 2k i from a second derivative of Equation (8.21). Substituting that into

Equation (8.23) yields

Varð fkÞ ¼
@2�0

@�2k
� @�0

@�k

� �2

: (8:24)

8.7.2 Uniform distribution

Suppose the only known constraint is theminimal constraint possible for a probability

distribution
PM

i¼ 1 pi ¼ 1. Following Equation (8.14), we can write

d �
XM
i¼ 1

pi ln½ pi=mi�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
entropy

��
XM
i¼ 1

pi � 1

 !
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
constraint

2
66664

3
77775 ¼ 0

d �
XM
i¼ 1

pi ln pi þ
XM
i¼ 1

pi lnmi � �
XM
i¼ 1

pi � 1

 !" #
¼ 0

(8:25)

XM
i¼ 1

� ln pi � pi
@ ln pi
@pi

þ lnmi � �
@pi
@pi

� �
dpi ¼ 0

XM
i¼ 1

ð� ln½ pi=mi� � 1� �Þdpi ¼ 0:

The addition of the Lagrange undetermined multiplier makes

ð� ln½ pi=mi� � 1� � ¼ 0Þ

for one pi and the remaining ðM� 1Þ of the dpi’s independent. So for all pi, we require

� ln½ pi=mi� � 1� � ¼ 0; (8:26)

or,

pi ¼ mie
�ð1þ�Þ: (8:27)

Since
P

pi ¼ 1, XM
i¼1

mi e
�ð1þ�Þ ¼ 1 ¼ e�ð1þ�Þ

XM
i¼1

mi: (8:28)

Since
PM

i¼ 1 mi ¼ 1, then � ¼ �1 and thus

pi ¼ mi: (8:29)
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Suppose our prior information leads us to assume mi ¼ a constant ¼ 1=M. Then pi
describesauniformdistribution. In the continuumlimit,wewouldwriteEquation (8.29)as

pðyjIÞ ¼ mðyÞ: (8:30)

Thus, for mðyÞ ¼ a constant and the minimal constraint,
R
pðyÞ ¼ 1, the uniform

distribution has maximum entropy.

8.7.3 Exponential distribution

In this case, we assume an additional constraint that the average value of yi is known

and equal to �, so we have two constraints.

(1)
PM

i pi ¼ 1 (constraint 1)

(2)
PM

i yipi ¼ � (constraint 2: known mean)

For example, in the die problem of Section 8.4, we could be told the average number of

dots on a very large number of throws of the die but not be given the results of the

individual throws. In this case, we use two Lagrange multipliers, � and �1. Following

Equation (8.14), we can write

d �
XM
i¼1

pi ln½pi=mi�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
entropy

��
XM
i¼1

pi � 1

 !
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
constraint 1

��1
XM
i¼1

yipi � �
 !
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
constraint 2

2
66664

3
77775¼ 0 (8:31)

XM
i¼1
� ln½pi=mi� � pi

@ ln pi
@pi

� � @pi
@pi
� yi�1

@pi
@pi

� �
dpi¼ 0

XM
i¼1
ð� ln½pi=mi� � 1� �� yi�1Þdpi¼ 0:

(8:32)

Again, the addition of the Lagrange undetermined multipliers makes

ð� ln½ pi=mi� � 1� �� yi �1 ¼ 0Þ for one pi and the remaining ðM� 1Þ of the dpi’s

independent. So for all pi, we require

� ln½ pi=mi� � 1� �� yi�1 ¼ 0; (8:33)

or,

pi ¼ mi e
�ð1þ�Þe��1yi : (8:34)

We can now apply our two constraints to determine the Lagrange multipliers.

XM
i¼1

pi ¼ 1 ¼ e�ð1þ�Þ
XM
i¼1

mi e
��1yi : (8:35)
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Therefore

e�ð1þ�Þ ¼ 1PM
i¼ 1 mie��1yi

: (8:36)

From the second constraint, we have

XM
i¼ 1

yipi ¼ � ¼
PM

i¼ 1 yimie
��1yiPM

i¼ 1 mie��1yi
; (8:37)

or

XM
i¼ 1

yimie
��1yi � �

XM
i¼ 1

mie
��1yi ¼ 0: (8:38)

For any particular value of �, the above equation can be solved numerically for �1. If we

setmi ¼ 1=6 and yi ¼ i, then Equation (8.38) can be used to solve for the probability of

the six sidesof thedieproblemdiscussed inSection8.4.We illustrate thiswith the following

Mathematica commands assuming � ¼ 2:2 and the result is shown in Figure 8.1.

Box 8.1 Mathematica commands: MaxExt die problem

First, we define the function q[m�] for an arbitrary value of m:

q[m�]: =
X6

i¼1 i Exp[� i l1]� m
X6

i¼ 1
Exp[� i l1];

The next line solves for l1 with m ¼ 2:2:

sol = Solve[q[2:2]==0; l1]

For each m; l1 has multiple complex solutions and one real solution l1real.
Pick out the real solution using Cases.

l1real=Cases[l1=:sol, Real][[1]]

Next, evaluate the expression for the probability of the ith side, probi

probi=
Exp[� i l1real]P6
j¼ 1 Exp[� j l1real]

Finally create a table of the probabilities of the 6 sides.

prob=Table[{i, probi}, {i, 6}]

ff1; 0:421273g; f2; 0:251917g; f3; 0:150644g;
f4; 0:0900838g; f5; 0:0538692g; f6; 0:0322133gg
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We can simply generalize Equation (8.34) for pi to the continuous case pðyjIÞ:

pðyjIÞ ¼ mðyÞe�ð1þ�Þe��1y: (8:39)

If we assume mðyÞ is a constant, then we have

pðyjIÞ / e��1y: (8:40)

The normalization and �1 can easily be evaluated if the limits of integration extend

from 0 to1. The result is

pðyj�Þ ¼ 1

�
e�y=� for y � 0: (8:41)

8.7.4 Normal and truncated Gaussian distributions

In this section, we assume mðyÞ, the prior for pðyÞ, has the following form:

mðyÞ ¼ 1=ðyH � yLÞ; if yL � y � yH
0; if yL > y or y > yH.

�
(8:42)

In this case, we assume an additional constraint that the variance of y is equal to �2.

The two constraints in this case are:

(1)
R yH
yL

pðyÞdy ¼ 1

(2)
R yH
yL
ðy� �Þ2pðyÞdy ¼ �2

Because mðyÞ is a constant, we solve for pðyÞ which maximizes

�
Z

pðyÞ ln pðyÞdy

1 2 3 4 5 6
Number of dots

0.1

0.2

0.3

0.4
P

ro
ba

bi
lit

y

Mean number of dots = 2.2

Figure 8.1 The figure shows the probability of the six sides of a die given the constraint that the
average number of dots � ¼ 2:2.
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subject to the constraints 1 and 2. This optimization is best done as the limiting case of

a discrete problem; explicitly, we need to find the solution to

d �
XM
i¼ 1

pi ln pi � �
XM
i¼ 1

pi � 1

" #
� �1

XM
i¼ 1

ðyi � �Þ2pi � �2
" #( )

¼ 0; (8:43)

where M is the number of discrete probabilities. This leads to

XM
i¼ 1

½� ln pi � 1� �� �1ðyi � �Þ2�dpi ¼ 0: (8:44)

For each value of i, we require

� ln pi � 1� �� �1ðyi � �Þ2 ¼ 0; (8:45)

or,

pi ¼ e�ð1þ�Þe��1ðyi��Þ
2

¼ e��0e��1ðyi��Þ
2

;
(8:46)

where �0 ¼ 1þ �. This generalizes to the continuum assignment

pðyÞ ¼ e��0e��1ðy��Þ
2

: (8:47)

We can solve for �1 and �0 from our two constraints. From the first constraint,Z yH

yL

pðyÞdy ¼ 1 ¼ e��0
Z yH

yL

e��1ðy��Þ
2

dy: (8:48)

Compare this equation to the equation for the error function5 erfðzÞ (see Equation

(5.39)) given by

erfðzÞ ¼ 2ffiffiffi
p
p

Z z

0

expð�u2Þ du: (8:49)

The solution for �0 in Equation (8.48), in terms of the error function, is

�0 ¼ ln

ffiffiffi
p
p

2
ffiffiffiffiffi
�1
p

� �
þ ln erf

ffiffiffiffiffi
�1

p
ðyH � �Þ

n o
� erf

ffiffiffiffiffi
�1

p
ðyL � �Þ

n oh i
: (8:50)

We will consider two cases which depend on the limits of integration ðyL; yHÞ.

Case I (Normal Gaussian)

Suppose the limits of integration satisfy the condition6ffiffiffiffiffi
�1

p
ðyH � �Þ � 1 and

ffiffiffiffiffi
�1

p
ðyL � �Þ 	 �1: (8:51)

5 The error function has the following properties: erfð1Þ ¼ 1; erfð�1Þ ¼ �1 and erfð�zÞ ¼ �erfðzÞ.
6 Note: erfð1Þ ¼ 0:843, erfð

ffiffiffi
2
p
Þ ¼ 0:955, erfð2Þ ¼ 0:995, and erfð3Þ ¼ 0:999978.
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In this case,

erf
ffiffiffiffiffi
�1

p
ðyH � �Þ

n o

 1 and erf

ffiffiffiffiffi
�1

p
ðyL � �Þ

n o

 �1;

and Equation (8.50) simplifies to

�0 
 ln

ffiffiffi
p
p

2
ffiffiffiffiffi
�1
p

� �
þ ln½2� ¼ ln

ffiffiffiffiffi
p
�1

r� �
: (8:52)

We now make use of Equation (8.22) to obtain an equation for �1:

� @�0
@�1
¼ �

@ ln
ffiffiffiffiffiffiffiffiffiffi
p=�1

ph i
@�1

¼ 1

2�1
¼ �2: (8:53)

Combining Equations (8.53) and (8.52), we obtain

�1 ¼
1

2�2
; e��0 ¼ 1ffiffiffiffiffiffi

2p
p

�
:

The result,

pðyÞ ¼ 1ffiffiffiffiffiffi
2p
p

�
e�ðy��Þ

2=2�2 ; (8:54)

is a Gaussian. Thus, for a given �2 and a uniform prior that satisfies Equation (8.51), a

Gaussian distribution has the greatest uncertainty (maximum entropy). Now that we

have evaluated �0 and �1, we can rewrite Equation (8.51) in the more useful form

ðyH � �Þffiffiffi
2
p

�
� 1 and

ð�� yLÞffiffiffi
2
p

�
� 1: (8:55)

We frequently deal with problems where the qth data value, yq, is described by an

equation of the form

yq ¼ ypq þ eq ) yq � ypq ¼ eq;

where ypq is the model prediction for the qth data value and eq is an error term. In

Section 4.8.1, we showed that for a deterministic model, Mj, the probability of the

data, pðYqjMj; IÞ, is equal to pðEqjMj; IÞ, the probability of the errors. If we interpret

the � in Equation (8.54) as ypq, the model prediction, then this equation becomes the

MaxEnt sampling distribution for the qth error term in the likelihood function.

This is a very important result. It says that unless we have some additional prior

information which justifies the use of some other sampling distribution, then use a

Gaussian sampling distribution. It makes the fewest assumptions about the informa-

tion you don’t have and will lead to the most conservative estimates (i.e., greater

uncertainty than you would get from choosing a more appropriate distribution based

on more information).

In a situation where we do not know the appropriate sampling distribution, we will

also, in general, not know the actual variance (�2) of the distribution. In that case, we
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can treat the � of the Gaussian sampling distribution as an unknown nuisance

parameter with a range specified by our prior information. The one restriction to

this argument is that the prior upper bound on � must satisfy Equation (8.55). If

possible data values, represented by the variable y, are unrestricted, then this condi-

tion simply requires that the upper bound on � be finite. In some experiments, the

range of possible data values is limited, e.g., positive values only. In that case, the

MaxEnt distributionmay become a truncatedGaussian, as discussed in Case II below.

We now consider a simple example that exploits a MaxEnt Gaussian sampling

distribution with unknown �. We will make considerable use of this approach in

later chapters starting with Section 9.2.3.

Example:

Suppose we want to estimate the location of the start of a stratum in a core sample

taken by aMartian rover. The rover transmits a low resolution scan, which allows the

experimenter to refine the region of interest for analysis by a higher resolution

instrument aboard the rover. Unfortunately, the rover made a rough landing and

ceases operation after only two high resolution measurements have been completed.

In this example, we simulate a sample of two measurements made with the high

resolution instrument for a stratum starting position of 20 units along the core sample.

For the simulation, we assume a bimodal distribution of measurement errors as shown

in panel (a) of Figure 8.2. We further suppose that the distribution of measurement

errors is unknown by the scientist, named Jean, who will perform the analysis.

Jean needs to choose a sampling distribution for use in evaluating the likelihood

function in a Bayesian analysis of the high resolution core sample. In the absence of

additional information, she picks a Gaussian sampling distribution, because from the

above argument, the Gaussian will lead to the most conservative estimates (i.e.,

greater uncertainty than youwould get from choosing amore appropriate distribution

based onmore information). Based on the low resolution core sample measurements, she

assumes a uniformprior for themean location extending from 15 to 25 units. She assumes

a Jeffreys prior for � and estimates a conservative upper limit to � of 4 units. She

estimates the lower limit, � ¼ 0:4 units, by setting it equal to the digital read out accuracy.

To see how well the parameterized Gaussian sampling distribution performs, we

simulated five independent samples, each consisting of two measurements. Panels (b),

(c), (d), (e), and (f) of Figure 8.2 show a comparison of the posterior PDFs for the stratum

start location computed using: (1) the true sampling distribution (solid curve), and (2) a

Gaussian with an unknown � (dotted curve). The actual measurements are indicated by

the arrows in the top of each panel.

It is quite often the case that we don’t know the true likelihood function. In some

cases, we have a sufficient number of repeated measurements (say five or more) that we

can appeal to the CLT (see Section 5.11) and work with the average value, whose

distribution will be closely Gaussian with a � given by Equation (5.50). However, in
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this example, we had only two measurements. Instead, we appealed to the MaxEnt

principle and used a Gaussian likelihood function, marginalizing over the unknown

variance. From Figure 8.2, it is apparent that the Gaussian likelihood function per-

formed quite well compared to the true bimodal likelihood function. The conservative

nature of the Gaussian assumption is apparent from the much broader tails. Further

details of this type of analysis are given in Section 9.2.3.

Case II (Truncated Gaussian)

When the condition specified by Equation (8.55) is not satisfied, it is still possible to

compute a MaxEnt sampling distribution that we refer to as a truncated Gaussian, but

there is no simple analytic solution for the Lagrange multipliers. The �’s need to be

solved for numerically.7
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Figure 8.2 Panel (a) shows the bimodal distribution of instrumental measurement errors. Panels
(b), (c), (d), (e), and (f) show a comparison of the posterior PDFs for the stratum start location

derived from five simulated data samples. Each sample consists of the two data points indicated
by the two arrows at the top of each panel. The solid curve shows the result obtained using the
true sampling distribution. The dotted curve shows the result using aGaussian with unknown �.

7 See Tribus (1969) for a more detailed discussion of this case.
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8.7.5 Multivariate Gaussian distribution

TheMaxEnt procedure is easily extended tomultiple variables by defining the entropy

as a multi-dimensional integral:

S ¼ �
Z

pðYÞ ln½ pðYÞ=mðYÞ�dY; (8:56)

where pðYÞ ¼ pðy1; y2; . . . ; yNjIÞ ¼ pðfyigjIÞ and
R
dY ¼

R
� � �
R
dNy. Suppose the tes-

table information only consists of knowledge of their individual variances,

hðyi � �iÞ2i ¼
Z
ðyi � �iÞ2pðy1; y2; . . . ; yNÞdNy ¼ �ii ¼ �2i ði ¼ 1 to NÞ; (8:57)

and covariances,

hðyi � �iÞðyj � �jÞi ¼
Z
ðyi � �iÞðyj � �jÞ pðy1; y2; . . . ; yNÞdNy ¼ �ij: (8:58)

In Appendix E, we show that provided the prior limits on the range of each variable

satisfy the condition given in Equation (8.55), maximizing Equation (8.56), with

uniform measure, yields the general form of a correlated multivariate Gaussian

distribution:

pðY jf�i; �ijgÞ ¼
1

ð2pÞN=2
ffiffiffiffiffiffiffiffiffiffiffiffi
det E
p exp � 1

2

X
ij

ðyi � �iÞ½E�1�ijðyj � �jÞ
" #

; (8:59)

where

X
ij

¼
XN
i¼1

XN
j¼1
;

and

E ¼

�11 �12 �13 � � � �1N
�21 �22 �23 � � � �2N
� � � � �
�N1 �N2 �N3 � � � �NN

0
BB@

1
CCA: (8:60)

In most applications that we will encounter, the yi variable will represent possible

values of a datum and be labeled di. Equation (8.59) can then be rewritten as a

likelihood:

pðD jM; IÞ ¼ 1

ð2pÞN=2
ffiffiffiffiffiffiffiffiffiffiffiffi
det E
p exp � 1

2

X
ij

ðdi � fiÞ½E�1�ijðdj � fjÞ
" #

; (8:61)

where fi is the model prediction for the ith datum.
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If the variables are all independent, i.e., the covariance terms are all zero, then

Equation (8.61) reduces to

pðDjM; IÞ ¼
YN
i¼ 1

1ffiffiffiffiffiffi
2p
p

�i
exp �ðdi � fiÞ2

2�2i

( )

¼
YN
i¼ 1

1ffiffiffiffiffiffi
2p
p

�i

 !
exp �

XR
r¼ 1

ðdi � fiÞ2

2�2i

( )
:

(8:62)

In Chapter 10, we discuss the concepts of covariance and correlation in more detail

and make use of a multivariate Gaussian in least-squares analysis.

8.8 MaxEnt image reconstruction

It is convenient to think of a probability distribution as a special case of a PAD

(positive, additive distribution). Another example of a PAD is the intensity or power,

fðx; yÞ, of incoherent light as a function of position ðx; yÞ, in an optical image. This is

positive and additive because the integral
RR

fðx; yÞdxdy represents the signal energy

recorded by the image. By contrast, the amplitude of incoherent light, though positive,

is not additive. A probability distribution is a PAD which is normalized so

Z þ1
�1

pðYÞdY ¼ 1:

Question:What form of entropy expression should we maximize in image reconstruc-

tion to best represent the PAD fðx; yÞ values?
Answer: Derived by Skilling (1989).

Sð f;mÞ ¼ �
Z

dy fðx; yÞ �mðx; yÞ � fðx; yÞ ln fðx; yÞ
mðx; yÞ

� �� �
;

wheremðx; yÞ is the prior estimate of fðx; yÞ. If fðx; yÞ andmðx; yÞ are normalized, this

reduces to the simpler form:

�
Z Z

fðx; yÞ ln fðx; yÞ
mðx; yÞ

� �
dxdy:

8.8.1 The kangaroo justification

The following simple argument (Gull and Skilling, 1984) gives additional insight into

the use of entropy for a PAD. Imagine that we are given the following information:

a) One third of kangaroos have blue eyes.

b) One third of kangaroos are left-handed.
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How can we estimate the proportion of kangaroos that are both blue-eyed (BE) and

left-handed (LH) using only the above information? The joint proportions of LH and

BE can be represented by a 2� 2 probability table which is shown in Table 8.2(a). The

probabilities p1; p2; p3 and p4 must satisfy the given constraints:

a) p1 þ p2 ¼ 1
3 (1/3 of kangaroos have blue eyes)

b) p1 þ p3 ¼ 1
3 (1/3 of kangaroos are left-handed)

c) p1 þ p2 þ p3 þ p4 ¼ 1.

Feasible solutions have one remaining degree of freedom which we parameterize by

the variable z. Table 8.2(b) shows the parameterized joint probability table. The

parameter z is constrained by the above three constraints to 0 � z � 1
3. Below we

consider three feasible solutions:

1. The first corresponds to the independent case

pðBE;LHÞ ¼ pðBEÞpðLHÞ ¼ 1

3

� �
1

3

� �
¼ 1

9

z ¼ 1

9

which leads to the contingency table shown in Figure 8.3(a).

2. Case of maximum positive correlation.

pðBE;LHÞ ¼ pðBEÞpðLHjBEÞ ¼ 1

3

� �
ð1Þ ¼ 1

3

z ¼ 1

3
:

3. Case of maximum negative correlation.

pðBE;LHÞ ¼ pðBEÞpðLHjBEÞ ¼ 1

3

� �
ð0Þ ¼ 0

z ¼ 0:

Blue eyes Left-Handed

True
False

True False

p1

p3

p2

p4

(a)

Blue eyes Left-Handed

True
False

0 ≤ z ≤
      – z

1
3

1
3

True False

– z
+ z

1
3
1
3

(b)

Table 8.2 Panel (a) is the joint probability table for the kangaroo problem. In

panel (b), the table is parameterized in terms of the remaining one degree of

freedom represented by the variable z
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Suppose we must choose one answer – which is the best?

The answer we select cannot be thought of as being any more likely than any other

choice, because there may be some degree of genetic correlation between eye color and

handedness. However, it is nonsensical to select either positive or negative correlations

without having any relevant prior information. Therefore, based on the available

information, the independent choice p1 ¼ pðBE;LHÞ ¼ 1=9 is preferred.

Question: Is there some function of the pi which, when maximized subject to the

known constraints, yields the same preferred solution? If so, then it would be a good

candidate for a general variational principle which could be used in situations that

were too complicated for our common sense. Skilling (1988) showed that the only

functions with the desired property, pðBE;LHÞ ¼ 1=9, are those related mono-

tonically to the entropy:

S ¼ �
X4
i¼1

pi ln pi

¼ �z ln z� 2
1

3
� z

� �
ln

1

3
� z

� �
� 1

3
þ z

� �
ln

1

3
þ z

� �
:

Three proposed alternatives are listed in Table 8.3. Only one of the four (�
P

pi ln pi)

gives the preferred uncorrelated result.

Left-Handed Left-Handed Left-Handed
True False True False True False

Blue True 1
9

2
9 Blue True 1

3 0 Blue True 0 1
3

Eyes False 2
9

4
9 Eyes False 0 2

3 Eyes False 1
3

1
3

(a) Independent (b) Positive correlation (c) Negative correlation

Figure 8.3 The three panels give the joint probabilities for (a) the independent case,
(b) maximum positive correlation, and (c) maximum negative correlation.

Table 8.3 Solutions to the kangaroo problem obtained by maximizing four different

functions, subject to the constraints.

Variation Function Optimal z Implied Correlation

�
P

pi ln pi 1=9 ¼ 0:1111 uncorrelated

�
P

p2i 1=12 ¼ 0:0833 negativeP
ln pi 0:1303 positiveP
p
1=2
i 0:1218 positive
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But what have kangaroos got to do with image restoration/reconstruction?

Consider the following restatement of the problem.

a) One third of the flux comes from the top half of the image.

b) One third of the flux comes from the left half of the image.

What proportion of the flux comes from the top left quarter? All the advertised

functionals except (�
P

pi ln pi) imply either a positive or negative correlation in the

distribution of the flux in the four quadrants based on the given information. Thus,

these functionals fail to be consistent with our prior information on even the simplest

non-trivial image problem. Inconsistencies are not expected to disappear just because

practical data are more complicated.

8.8.2 MaxEnt for uncertain constraints

Example:

In image reconstruction, we want the most probable image when the data are incom-

plete and noisy. In this example,

B � ‘‘proposition representing prior information’’

Ii � ‘‘proposition representing a particular image.’’

Apply Bayes’ theorem:

pðIijD;BÞ / pðIijBÞpðDjIi;BÞ: (8:63)

Suppose the image consists of M pixels ð j ¼ 1!MÞ
Let dj ¼ measured value for pixel j

Iij ¼ predicted value for pixel j based on image hypothesis Ii
ej ¼ dj � Iij ¼ error due to noise which is assumed to be IID Gaussian.

In this situation, the measured dj values are the constraints, which are uncertain

because of noise. Thus,

pðdjjIij;BÞ ¼ pðejjIij;BÞ / exp �
e2j

2�2j

" #
¼ exp � dj � Iij

2�j

� �2
" #

(8:64)

and

pðDjIi;BÞ /
Ym
j¼ 1

exp � dj � Iij
2�j

� �2
" #

¼ exp � 1

2

Xm
j¼ 1

dj � Iij
�j

� �2
" #

¼ exp ��
2

2

� �
:

(8:65)
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Determination of p(Ii|B):

Suppose we made trial images, Ii, by taking N quanta and randomly throwing them

into the M image pixels. Then pðIijBÞ is given by a multinomial distribution,

pðIijBÞ ¼
N!

n1! . . . nM!

1

MN
¼ W

MN
; (8:66)

where W is the multiplicity.
Recall for large N,

lnW! �N
X
j

pj ln pj ¼ N� entropy ¼ NS;

where as N!1, pj ! nj=N ¼ constant.
Therefore,

pðIijBÞ ¼
1

MN
expðNSÞ: (8:67)

In general, we don’t know the number of discrete quanta in the image, so we write

pðIijBÞ ¼ expð�SÞ: (8:68)

Substituting Equations (8.68) and (8.65) into Equation (8.63), we obtain

pðIijD;BÞ ¼ exp �S� �
2

2

� �
: (8:69)

We want to maximize pðIi jD;BÞ or ð�S� �2=2Þ.
In ‘‘classic’’ MaxEnt, the � parameter is set so the misfit statistic �2 is equal to the

number of data pointsN. This in effect overestimates �2, since some effective number

�1 parameters are being ‘‘fitted’’ in doing the image reconstruction.

The full Bayesian approach treats � as a parameter of the hypothesis space which

can be estimated by marginalizing over the image hypothesis space. Improved images

can also be obtained by introducing prior information about the correlations between

image pixels, enforcing smoothness. More details on MaxEnt image reconstruction

can be found in Buck (1991), Gull and Skilling (1984), Skilling (1989), Gull (1989a),

and Sivia (1996).

Two examples that illustrate some of the capabilities of MaxEnt image reconstruc-

tion are shown in Figures 8.4 and 8.5. Figure 8.4 illustrates how the maximum entropy

method is capable of increasing the contrast of an image, and can also increase its

sharpness if the measurements are sufficiently accurate. Figure 8.5 illustrates how the

maximum entropy method automatically allows for missing data (Skilling and Gull,

1985). These and other examples, along with information on commercial

software products, are available from Maximum Entropy Data Consultants, Ltd.

(http://www.maxent.co.uk/).
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8.9 Pixon multiresolution image reconstruction

Piña and Puetter (1993) and Puetter (1995) describe another very promising Bayesian

approach to image reconstruction, which they refer to as the PixonTMmethod. Instead

of representing the image with pixels of a constant size, they introduce an imagemodel

where the size of the pixel varies locally according to the structure in the image. Their

generalized pixels are called pixons. A map of the pixon sizes is called an image model.

The Pixonmethod seeks to find the best joint image and imagemodel that is consistent

with the data based on a �2 goodness-of-fit criterion, and that can represent the

structure in the image by the smallest number of pixons. For example, suppose we

have a 1024 by 1024 image of the sky containing a galaxy which occupies the inner 100

(d)
(e)

(b) (c)

(a)

Figure 8.4 The original high-resolution low-noise image is shown in panel (a). Panel (b) shows
the blurred original with high added noise. The MaxEnt reconstruction of the blurred noisy
image is shown in (c). This demonstrates how the maximum entropy method suppresses noise,

yielding a higher contrast image. Panel (d) shows the blurred original with low added noise. The
MaxEnt reconstructed image, shown in (e), demonstrates how well maximum entropy de-blurs
if the data are accurate enough. (Courtesy S. F. Gull, Maximum Entropy Data Consultants.)

208 Maximum entropy probabilities



by 100 pixels. In principle, we need many numbers to encode the significant structure

in the galaxy region, but only one number to encode information in the featureless

remainder of the image. Because the Pixon method constructs a model that represents

the significant structure by the smallest number of parameters (pixons), it has the

smallest Occam penalty.

Figure 8.6 shows an image reconstructions of a mock data set. The original image is

shown on the far left along with a surface plot (center row). The original image is

convolved (blurred) with the point-spread-function (PSF) shown at the bottom of the

first column. Then noise (see bottom of second column) is added to the smoothed

(PSF-convolved) data to produce the input (surface plot in middle panel) to the image

reconstruction algorithm. To the right are a Pixon method reconstruction and a

maximum entropy reconstruction. The algorithms used are the MEMSYS 5

(e)

(c)

(a)

(d)

(f)

(b)

Figure 8.5 This figure demonstrates how the maximum entropy method automatically allows
for missing data. Panel (a) shows the original image when 50% of the pixels, selected at random,

have been removed. Panel (b) shows the corresponding MaxEnt reconstructed image. Panel
(c) shows the original image when 95% of the pixels have been removed. Panel (d) shows the
corresponding MaxEnt reconstructed image. Panel (e) shows the original image when 99% of
the pixels have been removed. Panel (f) shows the corresponding MaxEnt reconstructed image.

(Courtesy S. F. Gull, Maximum Entropy Data Consultants.)
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algorithms, a powerful set of commercial maximum entropy (ME) algorithms avail-

able from Maximum Entropy Data Consultants, Ltd. The ME reconstructions were

performed byNickWeir, a recognizedME andMEMSYS expert. The reconstructions

were supplemented by Nick Weir’s multi-correlation channel approach.

The Pixon method reconstructions use the Fractal–Pixon Basis (FPB) approach

(Piña and Puetter, 1993; Puetter, 1995). The ‘‘Fractal’’ nomenclature has since been

dropped, so the term FPB simply refers to the ‘‘standard’’ Pixonmethod. It can be seen

that the FPB reconstruction has no signal correlated residuals and is effectively

artifact (false-source) free, whereas these problems are obvious in the MEMSYS

reconstruction. The absence of signal correlated residuals and artifacts can be under-

stood from the underlying theory of the Pixon method (Puetter, 1995).

Figure 8.7 shows the Pixon method applied to X-ray mammography, taken from

the PixonTM homepage located at http://www.pixon.com, or alternatively, http://

casswww.ucsd.edu/personal/puetter/pixonpage.html. The raw X-ray image appears

to the left. In this example, a breast phantom is used (material with X-ray absorption

properties similar to the human breast). A small fiber (400 micrometer diameter) is

present in the phantom. The signature of the fiber is rather faint in the direct X-ray

image. The Pixonmethod reconstruction is seen to the right. Here, the signature of the

fiber is obvious. Such image enhancement is of clear benefit to the discovery of weak

True (a) (b) (c) (d)

(h)(g)(f)(e)

(i) (j) (k) (l)NoisePSF Residuals Residuals

MEMSYSFPBInput

Figure 8.6 Reconstruction of a mock data set. The original image is shown on the far left
(a) along with a surface plot (e). This image is convolved (blurred) with the point-spread-

function (PSF) (i) shown at the bottom of the first column. Then noise (j) is added to the
smoothed (PSF-convolved) data to produce the input (b), (f) to the image reconstruction
algorithm. To the right are a Pixon method reconstruction (FPB) and a maximum entropy

reconstruction (MEMSYS). (Courtesy Pixon LLC.)
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X-ray signatures. As can be seen, the X-ray signature of the fiber is very close to the

noise level. This is evidenced by the break-up of the continuous fiber into pieces in the

Pixon image. The Pixon method recognized that in certain locations, the X-ray signal

present is not statistically significant. In these locations, the fiber vanished in the

reconstructed image.

8.10 Problems

1. Use the maximum entropy method to compute and plot the probability of each side

of a six-sided loaded die given that exhaustive tests have determined that the

expectation value of the number of dots on the uppermost face ¼ 4:6.

2. Use the maximum entropy method to compute and plot the probability of each side

of a six-sided loaded die given that exhaustive tests have determined that the

expectation value of the number of dots on the uppermost face ¼ �, for � ¼ 1:1

to 5.9 in steps of 0.1. Plot the probability of each side versus �. Plot the probability

of all six sides on one plot versus �.

3. Evaluate a unique probability distribution for pðYjIÞ (the question posed in Section

8.1) using the MaxEnt principle together with the constraint: ‘‘the mean value of

cos y ¼ 0:6.’’ Our prior information also tells us that mðYjIÞ, the prior estimate of

pðYjIÞ, is a constant in the range 0 to 2p. In working out the solution, you will

encounter the modified Bessel functions of the first kind, designated by BesselI[n; z]

in Mathematica. You may also find the command FindRoot[] useful.

Figure 8.7 An example of the Pixon method applied to X-ray mammography. The raw X-ray
image appears to the left. In this example, a breast phantom is used (material with X-ray

absorption properties similar to the human breast). In this case, a small fiber (400 micrometer
diameter) is present in the phantom. The Pixon method reconstruction is seen to the right.
(Courtesy Pixon LLC.)
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9

Bayesian inference with Gaussian errors

9.1 Overview

In the next three chapters, we will be primarily concerned with estimating model

parameters when our state of knowledge leads us to assign a Gaussian sampling

distribution when calculating the likelihood function. In this chapter, we start with

a simple problem of computing the posterior probability of the mean of a data set.

Initially, we assume the variance of the sampling distribution is known and then

consider the case where the variance is unknown. We next look at the question of how

to determine whether the signal present in the data is constant or variable. In the final

section, we consider a Bayesian treatment of a fundamental problem that occurs in

experimental science – that of analyzing two independent measurements of the same

physical quantity, one ‘‘control’’ and one ‘‘trial.’’

9.2 Bayesian estimate of a mean

Here we suppose that we have collected a set ofN data values fd1; . . . ; dNg and we are

assuming the following model is true:

di ¼ �þ ei;

where ei represents the noise component of the ith data value. For this one data set,

and any prior information, we want to obtain the Bayesian estimate of �. We will

investigate three interesting cases. In all three cases, our prior information about ei
leads us to adopt an independent Gaussian sampling distribution.1 In Section 9.2.1, we

analyze the case where the noise � is the same for all ei. In Section 9.2.2, we treat the

more general situation where the �i are unequal. Section 9.2.3 considers the case where

the �i are assumed equal but the value is unknown.

1 Note: if we had prior evidence of dependence, i.e., correlation, it is a simple computational detail to take this into
account as shown in Section 10.2.2.
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9.2.1 Mean: known noise s

In this situation, we will assume that the variance of the noise is already known. We

might, for example, know this from earlier measurements with the same apparatus in

similar conditions. We also assume the prior information gives us lower and upper

limits on � but no preference for � in that range.

The problem is to solve for pð�jD; IÞ. The first step is to write down Bayes’

theorem:

pð�jD; IÞ ¼ pð�jIÞ pðDj�; IÞ
pðDjIÞ ; (9:1)

where the likelihood pðDj�; IÞ is sometimes written asLð�Þ. Our assumed prior for � is

given by

pð�jIÞ ¼ KðconstantÞ; �L � � � �H
¼ 0; otherwise:

Evaluate K from

Z �H

�L

pð�jIÞd� ¼
Z �H

�L

Kd� ¼ 1:

Therefore,

K ¼ 1

�H � �L
¼ 1

R�
;

where R� � range of �. This gives the normalized prior,

pð�jIÞ ¼ 1

R�
: (9:2)

The likelihood is given by

pðDj�; IÞ ¼
YN
i¼1

1

�
ffiffiffiffiffiffi
2p
p exp �ðdi � �Þ

2

2�2

( )

¼ ��Nð2pÞ�
N
2 exp �

PN
i¼1ðdi � �Þ

2

2�2

( )

¼ ��Nð2pÞ�
N
2 exp � Q

2�2

� �
;

(9:3)

where we have abbreviated
PN

i¼1ðdi � �Þ
2 by Q.
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Expanding Q, we obtain

Q ¼
XN
i¼1
ðdi � �Þ2 ¼

X
d2i þ

X
�2 � 2

X
di�

¼
X

d2i þN�2 � 2N�d fd � 1

N

X
dig

¼ Nð�2 � 2�dþ d
2Þ þ

X
d2i �Nd

2

¼ Nð�� dÞ2 þ
X

d2i �Nd
2

¼ Nð�� dÞ2 þ
X

d2i � 2Nd
2 þNd

2

¼ Nð�� dÞ2 þ
X

d2i � 2d
X

di þ
X

d
2

¼ Nð�� dÞ2 þ
X
ðdi � dÞ2

¼ Nð�� dÞ2 þNr2;

(9:4)

where r2 ¼ 1
N

P
ðdi � dÞ2 is the mean square deviation from d. Now substitute

Equation (9.4) into Equation (9.3):

pðDj�; IÞ ¼ ��Nð2pÞ�
N
2 exp �Nr2

2�2

� �
exp �Nð�� dÞ2

2�2

( )
: (9:5)

We can express pðDjIÞ as

pðDjIÞ ¼
Z �H

�L

d� pð�jIÞpðDj�; IÞ: (9:6)

Substitution of Equations (9.2), (9.5) and (9.6) into Equation (9.1) yields the desired

posterior:

pð�jD; IÞ ¼
1
R�
��Nð2pÞ�

N
2 exp � Nr2

2�2

n o
exp � Nð��dÞ2

2�2

n o
1
R�
��Nð2pÞ�

N
2 exp � Nr2

2�2

� � R �H
�L

d� exp � Nð��dÞ2
2�2

n o : (9:7)

Equation (9.7) simplifies to

pð�jD; IÞ ¼
exp � ð��dÞ

2

2�2=N

n o
R �H
�L

exp � ð��dÞ
2

2�2=N

n o
d�
¼ NUM

DEN
: (9:8)

Therefore,

pð�jD; IÞ ¼ 1

DEN
exp �ð�� dÞ2

2�2=N

( )
: (9:9)
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Since the denominator (DEN) evaluates to a constant (see Equation (9.11), the

posterior, within the range �L to �H, is simply aGaussian with variance equal to �2=N.

Thus, the uncertainty in the mean is inversely proportional to the square root of the

sample size, which is the basis of signal averaging as discussed in Section 5.11.1. Figure

9.1 shows the resulting posterior probability density function for pð�jD; IÞ in the limit

of �H ¼ þ1 and �L ¼ �1.

It is interesting to compare this Bayesian result to the frequentist confidence

intervals for the mean when sampling from a normal distribution as discussed in

Section 6.6. In the frequentist approach, we were not able to make any probability

statement in connection with a single confidence interval derived from one data set

fdig. For example, the interpretation of the 68% confidence interval was: if we

repeatedly draw samples of the same size from a population, and each time compute

specific values for the 68% confidence interval, �d� �=
ffiffiffiffi
N
p

, then we expect 68% of

these confidence intervals to contain the unknown mean �. In the frequentist case, the

problem was to find the mean of a hypothetical population of possible measurements

for which our sample was but one realization.

In the Bayesian case, we are making a probability statement about the value of a

model parameter. From our posterior probability density function, we can always

compute the probability that the model parameter � lies within ��=
ffiffiffiffi
N
p

of the sample

mean d. It turns out that when the prior bounds for � are so wide that they are far

outside the range indicated by the data, the value of this probability is 68%. In this

particular instance, the boundaries of the Bayesian 68% credible region are the same as

the frequentist 68% confidence interval. However, if we decrease the range of the prior

bounds for �, the probability contained within the frequentist 68% confidence bound-

ary increases and reaches 100% when the prior boundaries coincide with ��=
ffiffiffiffi
N
p

.

The differences in conclusions drawn between a Bayesian and a frequentist analysis

of the same data are a consequence of the different definitions of probability used in

the two approaches. Recall that in the frequentist case, the argument of a probability

must be a random variable. Because a parameter is not a random variable, the

frequentist approach does not permit the probability density of a parameter to be

calculated directly or allow for the inclusion of a prior probability for the parameter.

 µ

p(
µ |

D
,I 

)

√N
σ

Figure 9.1 The posterior probability density function for pð�jD; IÞ.
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The interpretation of any frequentist statistic, such as the sample mean, is always in

relation to a hypothetical population of possible samples that could have been

obtained under similar circumstances.

Detail: Calculation of DEN in Equation (9.8)

To evaluate DEN, compare with the error function erfðxÞ (theMathematica command

is Erf[x]).

erfðxÞ ¼ 2ffiffiffi
p
p
Z x

0

expð�u2Þdu; note : erfð�xÞ ¼ �erfðxÞ (9:10)

let

Nð�� dÞ2

2�2
¼ u2 ) u ¼ ð�� dÞð2�

2

N
Þ�

1
2;

therefore,

du ¼ 2�2

N

� ��1
2

d� or d� ¼ 2�2

N

� �1
2

du;

and

DEN ¼ 2�2

N

� �1
2
ffiffiffi
p
p

2

2ffiffiffi
p
p
Z uH

uL

expð�u2Þdu
� 	

:

We can rewrite the integral limits in DEN as follows:Z uH

uL

¼
Z uH

�1
�
Z uL

�1

¼
Z 0

�1
þ
Z uH

0

�
Z 0

�1
�
Z uL

0

¼
Z uH

0

�
Z uL

0

therefore,

DEN ¼ 2�2

N

� �1
2
ffiffiffi
p
p

2
½erfðuHÞ � erfðuLÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl};

ð� 2 if uH � 1 and uL � �1Þ
(9:11)

where

uH ¼
2�2

N

� ��1
2

ð�H � dÞ;

uL ¼
2�2

N

� ��1
2

ð�L � dÞ:

216 Bayesian inference with Gaussian errors



9.2.2 Mean: known noise, unequal s

In this situation, we again assume that the noise variance is known but that it can differ

for each data point. The likelihood is given by

pðDj�; IÞ ¼
YN
i¼1

1

�i
ffiffiffiffiffiffi
2p
p exp �ðdi � �Þ

2

2�2i

( )

¼
YN
i¼1

��1i

" #
ð2pÞ�

N
2 exp �

XN
i¼1

ðdi � �Þ2

2�2i

( )

¼
YN
i¼1

��1i

" #
ð2pÞ�

N
2 exp �

XN
i¼1

wiðdi � �Þ2

2

( )

¼
YN
i¼1

��1i

" #
ð2pÞ�

N
2 exp �Q

2

� �
;

(9:12)

where wi ¼ 1=�2i is called the weight of data value di. In this case, Q is given by

Q ¼
XN
i¼1

wiðdi � �Þ2 ¼
X

wid
2
i þ �2

X
wi � 2�

X
widi

¼
X

wi

� �
�2 � 2�

P
widiP
wi
þ
P

wid
2
iP

wi

� �

¼
X

wi

� �
�2 � 2�

P
widiP
wi
þ ð
P

widiÞ2

ð
P

wiÞ2

 !
� ð
P

widiÞ2

ð
P

wiÞ2
þ
P

wid
2
iP

wi

( )

¼
X

wi

� �
��

P
widiP
wi

� �2

�ð
P

widiÞ2

ð
P

wiÞ2
þ
P

wid
2
iP

wi

( )

¼
X

wi

� �
��

P
widiP
wi

� �2

�ð
P

widiÞ2P
wi

þ
X

wid
2
i :

(9:13)

Only the first term, which contains the unknown mean �, will appear in our final

equation for the posterior probability of the mean, as we see below. Although the

second and third terms do not appear in the final result, they can be shown to equal the

weighted mean square residual (r2w) times the sum of the weights (
P

wi). The weighted

mean square residual, r2w, is given by

r2w ¼
1P
wi

X
wi di �

P
widiP
wi

� �2
( )

; (9:14)

where
P

widi=ð
P

wiÞ ¼ dw is the weighted mean of the data values. Thus

r2w ¼
1P
wi

X
wiðdi � dwÞ2

n o
; (9:15)
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and

Q ¼ ð�� dwÞ2

1=
P

wi
þ r2w

X
wi: (9:16)

Now substitute Equation (9.16) into (9.12).

pðDj�; IÞ ¼
YN
i¼1

��1i

" #
ð2pÞ�

N
2 exp � r2w

P
wi

2

� �
exp �ð�� dwÞ2

2=
P

wi

 !

¼
YN
i¼1

��1i

" #
ð2pÞ�

N
2 exp � r2w

P
wi

2

� �
exp �ð�� dwÞ2

2�2w

 !
;

(9:17)

where �2w ¼ 1=ð
P

wiÞ. Substitution of Equations (9.2), (9.17) and (9.6) into Equation

(9.1) yields the desired posterior:

pð�jD; IÞ ¼
1
R�
½
Q

i �
�1
i �ð2pÞ

�N
2 expð� r2w

P
wi

2 Þ exp � ð��dwÞ
2

2�2w

� �
1
R�
½
Q

i �
�1
i �ð2pÞ

�N
2 expð� r2w

P
wi

2 Þ
R �H
�L

d� exp � ð��dwÞ
2

2�2w

� � : (9:18)

Therefore,

pð�jD; IÞ ¼
exp � ð��dwÞ

2

2�2w

n o
R �H
�L

exp � ð��dwÞ
2

2�2w

n o
d�
: (9:19)

Since the denominator evaluates to a constant, the posterior, within the range �L to

�H, is simply aGaussian with variance �2w ¼ 1=ð
P

wiÞ. Themost probable value of � is

the weighted mean dw ¼
P

widi=ð
P

wiÞ.

9.2.3 Mean: unknown noise s

In this section, we assume that the variance, �2, of the noise is unknown but is assumed

to be the same for each measurement,2 di. As in the previous case, we proceed by

writing down the assumed model:

di ¼ �þ ei:

In general, ei consists of the random measurement errors plus any real signal in the

data that cannot be explained by the model. For example, suppose that unknown to us,

the data contained a periodic signal superposed on the mean. In this connection, the

periodic signalwould act like an additional unknownnoise term. It is often the case, that

nature is more complex than our current model. In the absence of a detailed knowledge

2 See Section 12.9 on extrasolar planets for a discussion of the case where the variance is not constant.
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of the effective noise distribution, we could appeal to the Central Limit Theorem and

argue that if the effective noise stems from a large number of sub-processes then it is

expected to have a Gaussian distribution. Alternatively, the MaxEnt principle tells us

that a Gaussian distribution would be the most conservative choice (i.e., maximally

non-committal about the information we don’t have). For a justification of this argu-

ment, see Section 8.7.4. The only requirement is that the noise variance be finite. Inwhat

follows, we will assume the effective noise has a Gaussian distribution with unknown �.

Now we have two unknowns in our model, � and �. The joint posterior probability

pð�; �jD; IÞ is given by Bayes’ theorem:

pð�; �jD; IÞ ¼ pð�; �jIÞpðDj�; �; IÞ
pðDjIÞ : (9:20)

We are interested in pð�jD; IÞ regardless of what the true value of � is. In this problem,

� is a nuisance parameter so we marginalize over �:

pð�jD; IÞ ¼
Z

pð�; �jD; IÞd�: (9:21)

From the product rule: pð�; �jIÞ ¼ pð�jIÞpð�j�; IÞ.
Assuming the prior for � is independent of the prior for �, then

pð�; �jIÞ ¼ pð�jIÞpð�jIÞ: (9:22)

Combining Equations (9.20), (9.21), and (9.22),

pð�jD; IÞ ¼ pð�jIÞ
R
pð�jIÞpðDj�; �; IÞd�

pðDjIÞ ; (9:23)

where

pðDjIÞ ¼
Z

pð�jIÞ
Z

pð�jIÞpðDj�; �; IÞd�d�: (9:24)

As before we assume a flat prior for � in the range �L to �H. Therefore

pð�jIÞ ¼ 1

R�
; ðR� ¼ �H � �LÞ: (9:25)

� is a scale parameter, so it can only take on positive values 0!1. Realistic limits do

not go all the way to zero and infinity. For example, we always know that � cannot be

less than a value determined by the digitizing accuracy with which we record the data;

nor so great that the noise power wouldmelt the apparatus. Let �L and �H be our prior

limits on �.

We will assume a Jeffreys prior for the scale parameter �:

pð�jIÞ ¼ K=�; �L � � � �H
0; otherwise.

�
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The constant K is determined from the conditionZ �H

�L

pð�jIÞd� ¼ 1 ) K ¼ 1

lnð�H=�LÞ

pð�jIÞ ¼ 1

� ln�H=�L
:

(9:26)

Question: Why did we choose � instead of the variance v ¼ �2 as our second parameter

or does it matter? To the extent that both v and � are ‘‘equally natural’’ parameteriza-

tions of the width of a Gaussian, it is desirable that investigators using either para-

meter reach the same conclusions.

Answer: A feature of the Jeffreys prior is that it is invariant to such a reparameteriza-

tion as we now demonstrate. We start with the requirement that

pðvjIÞdv ¼ pð�jIÞd�: (9:27)

The Jeffreys prior for � can be written as

pð�jIÞd� ¼ K

�
d�; (9:28)

where K is a constant that depends on the prior upper and lower bounds on �.

Since � ¼ v1=2, d� ¼ ð1=2Þv�1=2dv. Upon substitution into Equation (9.28), we

obtain

pðvjIÞdv ¼ K

2v
dv ¼ K0

v
dv: (9:29)

Thus, choosing a Jeffreys prior for � is equivalent to assuming a Jeffreys prior for v. It

is easy to show that this would not be the case for a uniform prior.

Another example of ‘‘equally natural’’ parameters is the choice of whether to use the

frequency or period of an unknown periodic signal. Again, it is easy to show that the

choice of a Jeffreys prior for frequency is equivalent to assuming a Jeffreys prior for

the period.

Calculation of the likelihood function:

Lð�; �Þ ¼ pðDj�; �; IÞ ¼
YN
i¼1

1

�
ffiffiffiffiffiffi
2p
p e�½ðdi��Þ

2�=2�2

¼ ��Nð2pÞ�N=2e�Q=2�2 ;

(9:30)

where Q depends on � and is given by Equation (9.4).

Q ¼ Nð�� dÞ2 þNr2: (9:31)
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Substituting Equations (9.25), (9.26), and (9.30) into Equation (9.23), we obtain

pð�jD; IÞ ¼
ð2pÞ�

N
2 1
R� ln

�H
�L

R �H
�L
��ðNþ1Þe�

Q

2�2d�

ð2pÞ�
N
2 1
R� ln

�H
�L

R �H
�L

R �H
�L
��ðNþ1Þe�

Q

2�2d�d�

¼
R �H
�L
��ðNþ1Þe�

Q

2�2d�R �H
�L

R �H
�L
��ðNþ1Þe�

Q

2�2d�d�
:

(9:32)

Now we change variables. Let � ¼ Q=2�2; therefore,

� ¼
ffiffiffiffiffi
Q

2�

r
and d� ¼ � 1

2
��

3
2

ffiffiffiffi
Q

2

r
d�

��ðNþ1Þ ¼ 2�

Q

� �Nþ1
2

¼ 2
Nþ1
2 �

Nþ1
2 Q�ð

Nþ1
2 Þ

��ðNþ1Þd� ¼ �2N
2�1�

N
2�1Q�ð

N
2Þd�

(9:33)

and therefore,

pð�jD; IÞ ¼
R �H
�L

Q�ð
N
2Þ�

N
2�1e��d�R �H

�L
d�Q�ð

N
2Þ
R �L
�H
�

N
2�1e��d�

� Q�ð
N
2ÞR �H

�L
d�Q�ð

N
2Þ
;

(9:34)

where �L ¼ Q=ð2�2HÞ and �H ¼ Q=ð2�2LÞ:
The integral with respect to � in equation (9.34) can be evaluated in terms of the

incomplete gamma function (see equation (C.15) of Appendix C). The � integral

clearly depends on �, but provided �L � r and �H � r, where r ¼ the RMS residual

of the most probable model fit, the integral is effectively constant. As an example, for

N ¼ 10; �L ¼ 0:5r and �H ¼ 5r; the � integral deviates by � 1% for values of

j�� �dj � 2:3r. However, at jx� �dj ¼ 2:3r, the term Q�N=2 in equation (9.34) has

reached a value of 10–4 of its value at j�� �dj ¼ 0. For larger values of j�� �dj, the �
integral decreases monotonically. At j�� �dj ¼ 3r the integral is only down by 5%, but

now Q�N=2 is down by a factor of 105.

Use Equation (9.31) to substitute for Q:

pð�jD; IÞ � ½Nr2 þNð�� dÞ2��
N
2R �H

�L
d�½Nr2 þNð�� dÞ2��

N
2

pð�jD; IÞ �
1þ ð��dÞ

2

r2

h i�N
2

R �H
�L

d� 1þ ð��dÞ
2

r2

h i�N
2

;

(9:35)
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where the quantity Nr2 ¼
P
ðdi � dÞ2, which is independent of �, has been factored

out of the numerator and denominator and canceled.Now compare

1þ ð�� dÞ2

r2

" #�N
2

(9:36)

with the Student’s t distribution which was discussed in Section 6.4.

fðtj�Þ ¼
�½ð�þ1Þ2 �ffiffiffiffiffiffi
p�
p

� �
2


 � 1þ t2

�

� 	�ð�þ1Þ2

: (9:37)

If we set

t2

�
¼ ð�� dÞ2

r2
; (9:38)

and the number of degrees of freedom � ¼ N� 1, then Equation (9.36) has the same

form as the Student’s t distribution.3

From this comparison, it is clear that the posterior probability for � when � is

unknown is a Student’s t distribution. If �L ¼ �1 and �H ¼ þ1, then

pð�jD; IÞ �
�ðN2Þffiffiffi
p
p

�ðN�12 Þ
1

r
1þ ð�� dÞ2

r2

" #�N
2

: (9:39)

If the limits on � do not extend to�1, then the constant outside the square brackets

will be different but computable from a Student’s t distribution and the known prior

limits on �. In practice, if �L and �H are well outside some measure of the range of �

argued for by the likelihood function, then the result is the same as setting the prior

limits of � to �1.

We can easily generalize the results of this section to more complicated models than

one that predicts the mean. Suppose the data were described by the following model:

di ¼ mið�Þ þ ei;

where � represents a set of model parameters with a prior pð�jIÞ. Then from Equation

(9.34), we can write

pð�jD; IÞ � pð�jIÞQ�ðN2ÞR
d� pð�jIÞQ�ðN2Þ

; (9:40)

where Q is given by

Q ¼
XN
i¼1
ðdi �mið�ÞÞ2: (9:41)

3 In Equation (9.36), r2 ¼ 1
N

P
ðdi � dÞ2 ¼ N�1

N S2, where S2 is the frequentist sample variance as defined in Equation
(6.15).
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Example:

Often we encounter situations in which our model plus known instrumental errors fail

to adequately describe the full range of variability in the data. We illustrate this with

an example from radio astronomy. In this case, we are interested in inferring the mean

flux density of a celestial radio source from repeated measurements with a radio

telescope with well-known noise properties.

Figure 9.2 shows 56 measurements of the radio flux density of a galaxy. The

individual measurement errors are known to have a Gaussian distribution with a

�1 ¼ 30 units of radio flux density. It is obvious from the scatter in the measurements

compared to the error bars that there is some additional source of uncertainty or the

signal strength is variable. For example, additional fluctuations might arise from

propagation effects in the interstellar medium between the source and observer. In

the absence of prior information about the distribution of the additional scatter, both

the Central Limit Theorem and theMaxEnt principle (Section 8.7.4) lead us to adopt a

Gaussian distribution because it is themost conservative choice. Let �2 ¼ the standard

deviation of this Gaussian.4 The resulting likelihood function is the convolution of the

Gaussian model of the additional scatter and the Gaussian measurement error dis-

tribution (see Section 4.8.2). The result is another Gaussian with a variance,

�2 ¼ �21 þ �22.
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Figure 9.2 Plot of the radio source measurements and 1� measurement errors.

4 Since �2 is an unknown nuisance parameter we will need to marginalize over some prior range. For values of �2 close to
the upper bounds of this range, the lower tail of the Gaussian distribution may extend into negative values of source
strength. If the scatter arises from variations in the source strength then this situation is non-physical. Thus, it would be
more exact to adopt a truncated Gaussian but the mathematics is greatly complicated. The current analysis must
therefore be viewed as approximate.
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We have computed the posterior probability of the mean flux density pð�jD; IÞ in
two ways. First, assuming the known measurement errors and Equation (9.8), the

result is shown as the solid curve in Figure 9.3. Next we assumed � was unknown

and plotted the result after marginalizing over values of � in the range 30 to 400

units, using Equation (9.39). This results in the much broader dashed curve shown

in Figure 9.3. In the latter analysis, where we marginalize over �, we are in effect

estimating � from the data and any variability which is not described by the model

is assumed to be noise (the following section provides a justification of this

statement). This approach leads to a broader posterior probability distribution

which reflects the larger effective noise when using a model that assumes the source

flux density is constant. Note: if the effective noise had been equal to the measure-

ment error (� ¼ 30) then the result for pð�jD; IÞ would have been the same as if we

had used a fixed noise of 30. A justification of this claim is given in the following

section.

9.2.4 Bayesian estimate of s

In the previous section, we computed the Bayesian estimate of the mean of a data set

when the � of the Gaussian sampling distribution is unknown. It is also of interest to

see what the data have to say about �. This can be answered by computing pð�jD; IÞ,
the posterior marginal for �. Following Equation (9.23), we write

pð�jD; IÞ ¼ pð�jIÞ
R
pð�jIÞpðDj�; �; IÞd�

pðDjIÞ : (9:42)
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Figure 9.3 Comparison of the computed results for the posterior PDF for the mean radio flux
density assuming � known (solid curve), and marginalizing over an unknown � (dashed curve).
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Substituting Equations (9.30) and (9.31) into Equation (9.42), we obtain

pð�jD; IÞ ¼
ð2pÞ�

N
2 1
R� ln

�H
�L

��ðNþ1Þe�
�Nr2

2�2
R �H
�L

e�
Nð��dÞ2

2�2 d�

ð2pÞ�
N
2 1
R� ln

�H
�L

R �H
�L
��ðNþ1Þe�

�Nr2

2�2
R �H
�L

e�
Nð��dÞ2

2�2 d�d�

pð�jD; IÞ ¼
��ðNþ1Þe�

�Nr2

2�2
R �H
�L

e
�Nð��dÞ2

2�2 d�R �H
�L
��ðNþ1Þe�

�Nr2

2�2
R �H
�L

e
�Nð��dÞ2

2�2 d�d�

¼
��ðNþ1Þe�

�Nr2

2�2
ffiffiffiffiffiffi
2p
p

�ffiffiffi
N
pR �H

�L
��ðNþ1Þe�

�Nr2

2�2
ffiffiffiffiffiffi
2p
p

�ffiffiffi
N
p d�

¼ C��Ne�
�Nr2

2�2 :

(9:43)

In the above equation, we have made use of the fact that the integral of a normalized

Gaussian is equal to 1, i.e.,

1ffiffiffiffiffiffi
2p
p

�ffiffiffi
N
p

Z �H

�L

e
�ð��dÞ

2

2�2=Nd� ¼ 1; (9:44)

therefore,

Z �H

�L

e�
Nð��dÞ2

2�2 d� ¼
ffiffiffiffiffiffi
2p
p �ffiffiffiffi

N
p : (9:45)

The most probable value (mode) of Equation (9.43) is the solution of

@p

@�
¼ ½�N�̂�N�1 þNr2�̂�N�3�Ce�Nr2=2�̂2 ¼ 0: (9:46)

The solution is

�̂ ¼ r: (9:47)

Thus, pð�jD; IÞ has a maximum at � ¼ r, the RMS deviation from d.

Since pð�jD; IÞ is not a simple Gaussian, it is of interest to compare the mode to h�i
and h�2i, the expectation values of � and �2, respectively. They are given by

h�i ¼
Z 1
0

�pð�jD; IÞd�; (9:48)

h�2i ¼
Z 1
0

�2pð�jD; IÞd�: (9:49)
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These equations can be evaluated using an inverse gamma integral and a change of

variables. The results are

h�i ¼
ffiffiffiffi
N
p

rffiffiffi
2
p �½ðN� 2Þ=2�

�½ðN� 1Þ=2� ; (9:50)

and

h�2i ¼ Nr2

N� 1
¼ 1

N� 1

XN
i¼1
ðdi � dÞ2: (9:51)

These three summaries ð�̂; h�i;
ffiffiffiffiffiffiffiffiffi
h�2i

p
Þ of pð�jD; IÞ are all different; the distribution

is not symmetric like a Gaussian. Figure 9.4 illustrates the three summaries assuming a

value of r ¼ 2. For N ¼ 3, h�i can differ from �̂ by as much as a factor � 2, but this

difference drops to 15 % by N ¼ 10. As N increases, the summaries asymptotically

approach r, the RMS residual. Of the three,
ffiffiffiffiffiffiffiffiffi
h�2i

p
is the most representative, lying

between the other two.

The reader should recognize the expression for h�2i is identical to the equation for

the frequentist sample variance, S2 ¼
P
ðdi � dÞ2=ðN� 1Þ, that is used to estimate the

population variance for an IID sample taken from a normal distribution (see Section

6.3). Of course in Bayesian analysis, the concept of a population of hypothetical

samples plays no role.

The main message of this section is that in problems where � is unknown, the effect

of marginalizing over � is roughly equivalent to setting � ¼ RMS residual of the most

probable model. Thus, anything in the data that can’t be explained by the model is

treated as noise, leading to themost conservative estimates of model parameters. It is a

very safe thing to do.
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Figure 9.4 A comparison of the three summaries for the marginal probability density function
for pð�jD; IÞ assuming an RMS residual r ¼ 2.
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Returning to the radio source example (Figure 9.2) of the previous section, we now

use Equation (9.43) to estimate the posterior marginal pð�jD; IÞ for these data, which
are shown in panel (a) of Figure 9.5. The three summaries in this case are

�̂ ¼ 73:8; h�i ¼ 75:6;
ffiffiffiffiffiffiffiffiffi
h�2i

p
¼ 74:5. Recall that in the absence of prior information

on the sampling distribution for the radio source measurements, we adopted a

Gaussian with unknown �. Panel (b) compares the effective Gaussian sampling

distribution (based on
ffiffiffiffiffiffiffiffiffi
h�2i

p
¼ 74:5)) employed in the analysis with a normalized

histogram of the actual data values. TheGaussian is centered at � ¼ 182, the posterior

maximum.

So far in this chapter, we have been concerned with fitting a simple linear model

with one parameter, the mean. In Chapter 10, we will be concerned with linear models

withM parameters. We will also have occasion to marginalize over an unknown noise

�. Again, we can compute the posterior marginal pð�jD; IÞ, after marginalizing over

the M model parameters. Assuming a Jeffreys prior for � with prior boundaries well

outside the region of the posterior peak, it can be shown that the value of h�2i is given by

h�2i ¼ 1

ðN�MÞ
XN
i¼1
ðdi � dÞ2: (9:52)

9.3 Is the signal variable?

In Section 7.2.1, we used a frequentist hypothesis test to decide whether we could

reject, at the 95% confidence level, the null hypothesis that the radio signal from a

galaxy is constant. If we can reject this hypothesis, then it provides indirect evidence

that the signal is variable. A Bayesian analysis of the same data allows one to directly

compare the probabilities of two hypotheses:Hc � ‘‘the signal is constant,’’ andHv �
‘‘the signal is variable.’’ To compute pðHvjD; IÞ, it is first necessary to specify a model
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Figure 9.5 Panel (a) shows the marginal probability density function for pð�jD; IÞ for the radio
galaxy data of Figure 9.2. Panel (b) compares the effective Gaussian sampling distribution

employed in the analysis with a normalized histogram of the actual data values.
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for the signal variability. Some examples of different categories of variability models

are given below.

1. The signal varies according to some specific non-periodic function of time, fðtj�Þ, where �
stands for a set of model parameters, e.g., slope and intercept in a linear model. The model

might make specific predictions concerning the parameters or they may be unknown nuis-

ance parameters. Of course, each nuisance parameter will introduce an Occam penalty in the

calculation of the Bayes factor. Model fitting is discussed in Chapters 10, 11, 12.

2. The signal varies according to some specific periodic function of time. Examples of this are

discussed in Section 12.9 and Chapter 13.

3. The signal varies according to some unknown periodic function of time (Gregory and

Loredo, 1992; Loredo, 1992; Gregory, 1999). In this case, it is possible to proceed if we

assume a model, or family of models, that is capable of describing an arbitrary shape of

periodic variability with the minimum number of parameters. An example of this will be

discussed in Section 13.4.

4. The signal varies according to some unknown non-periodic function of time. Again, it is

possible to proceed if we assume amodel, or family of models, that is capable of describing an

arbitrary shape of variability with the minimum number of parameters. An example of this is

given by Gregory and Loredo (1993).

5. The model only provides information about the statistical properties of the signal variability,

i.e., specifies a probability distribution of the signal fluctuations. When combined with a

model of the measurement errors (see Section 4.8.2), it can be used as a sampling distribution

to compute the likelihood of the data set.

6. Finally, we may only have certain constraints on a model of the signal variability. We can

always exploit the MaxEnt principle to arrive at a form of the signal variability distribution

that reflects our current state of knowledge. Again, when combined with a model of the

measurement errors (see Section 4.8.2), it can be used as a sampling distribution to compute

the likelihood of the data set.

9.4 Comparison of two independent samples

The decisions on whether a particular drug is effective, or some human activity is

proving harmful to the environment, are important topics to which Bayesian analysis

can make a significant contribution. The issue typically boils down to comparing two

independent samples referred to as the trial sample and the control sample. In this

section, we will demonstrate a Bayesian approach to comparing two samples based on

the treatment given by Bretthorst (1993), which is an extension of earlier work by

Dayal (1972), and Dayal and Dickey (1976). His derivation is a generalization of the

Behrens–Fisher and two-sample problems,5 using the traditional F and Student’s t

distributions.

5 In the frequentist statistical literature, estimating the difference in means assuming the same but unknown standard
deviation is referred to as the two-sample problem. Estimating the difference in means assuming different unknown
standard deviations is known as the Behrens–Fisher problem.
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To start, we need to specify the prior information, I, which includes a statement of

the problem, the hypothesis space of interest, and the sampling distribution to be used

in calculating the likelihood function. To illustrate the methodology, we will re-visit a

problem that was considered using frequentist statistical tools in Section 7.2.2, and in

problem 2 at the end of Chapter 7. The problem is to compare the concentrations of a

particular toxin in river sediment samples taken from two locations and tabulated in

Table 7.2. The location 1 sample was taken upriver (control sample) from a processing

plant and the location 2 sample taken downstream (trial sample) from the plant. In

Section 7.2.2 we considered whether we could reject the null hypothesis that the mean

toxin concentrations are the same at the two locations assuming the standard devia-

tions of the two samples were different. Using the frequentist approach, we were just

able to reject the null hypothesis at the 95% confidence level.

The current analysis assumes the two samples can differ in only two ways, the mean

toxin concentrations and/or the sample standard deviations. Let d1;i represent the ith

measurement in the first sample consisting of N1 measurements in total. The symbol

D1 will represent the set of measurements fd1;ig that constitute sample 1. We will

model d1;i by the equation

d1;i ¼ c1 þ e1;i; (9:53)

where, as usual, e1;i represents an unknown error component in the measurement. We

assume that our knowledge of the source of the errors leads us to assume a Gaussian

distribution for e1;i, with a standard deviation of �1. To be more precise, �1 is a

continuous hypothesis asserting that the noise standard deviation in D1 is between �1
and �1 þ d�1. In some cases, we assume a Gaussian distribution because, in the

absence of knowledge of the true sampling distribution, employing a Gaussian

distribution is the most conservative choice for the reasons given in Section 8.7.4.

We also assume that individual measurements that constitute the sample are indepen-

dent, i.e., the e1;i are independent.

In the absence of the error component, the model predicts d1;i ¼ c1. Although c1 will

be referred to as themean ofD1; c1 is more precisely, a continuous hypothesis asserting

that the constant signal component in D1 is between c1 and c1 þ dc1. We can write

a similar equation for the ith measurement of sample 2, which consists of N2

measurements.

d2;i ¼ c2 þ e2;i: (9:54)

Again, we will let �2 represent the standard deviation of the Gaussian error term. The

hypothesis space of interest for our Bayesian analysis is given in Table 9.1.

We will be concerned with answering the following hierarchy of questions:

1. Do the samples differ, i.e., do the mean concentrations and/or the standard deviations

differ?

2. If so, how do they differ; in the mean, standard deviation or both?
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3. If the means differ, what is their difference �?

4. If the standard deviations differ, what is their ratio r?

To answer the above questions, we need to compute the probabilities of the hypoth-

eses listed in Table 9.1. The discrete hypotheses are represented by the capitalized

symbols and the continuous hypotheses by the lower case symbols, � and r. For

example, the symbol C stands for the hypothesis that the means are the same, and C

stands for the hypothesis that they differ.

9.4.1 Do the samples differ?

The answer to question (1) can be obtained by computing pðCþ SjD1;D2; IÞ,
the probability that the means and/or the standard deviations are different given the

sample data (D1 and D2) and the prior information I. Apart from the priors for the

parameters c1; c2; �1; �2, we have already specified the prior information I above. To

compute the probability that the means and/or the standard deviations differ, we note

that from Equation (2.1), we can write

pðCþ SjD1;D2; IÞ ¼ pðC;SjD1;D2; IÞ ¼ 1� pðC;SjD1;D2; IÞ: (9:55)

Equation (9.55) demonstrates that it is sufficient to compute the probability that

the means and the standard deviations are the same. From that, one can compute the

probability that the means and/or the standard deviations differ. The hypothesis

C;S assumes the means and the standard deviations are the same, so only two

Table 9.1 The hypotheses addressed. The symbol in the right hand column is used as an

abbreviation for the hypothesis.

Hypothesis In words Symbol

c1 ¼ c2 Same means C

c1 6¼ c2 Means differ C

�1 ¼ �2 Same standard deviations S

�1 6¼ �2 Standard deviations differ S

c1 ¼ c2 and �1 ¼ �2 Same means and standard deviations C;S

c1 ¼ c2 and �1 6¼ �2 Same means, standard deviations differ C;S

c1 6¼ c2 and �1 ¼ �2 Means differ, same standard deviations C;S

c1 6¼ c2 and �1 6¼ �2 Means and standard deviations differ C;S

c1 6¼ c2 and/or �1 6¼ �2 Means and/or standard deviations differ Cþ S

c1 � c2 ¼ � Difference in means ¼ � �

�1=�2 ¼ r Ratio of standard deviations ¼ r r
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parameters (a constant c1, and a standard deviation �1) have to be removed by

marginalization:

pðC;SjD1;D2; IÞ ¼
Z

dc1d�1pðC;S; c1; �1jD1;D2; IÞ; (9:56)

where c2 ¼ c1 and �2 ¼ �1. The right hand side of this equation may be factored using

Bayes’ theorem to obtain

pðC;SjD1;D2; IÞ ¼ K

Z
dc1d�1pðC;S; c1; �1jIÞpðD1;D2jC;S; c1; �1; IÞ; (9:57)

where,

K ¼ 1

pðD1;D2jIÞ
: (9:58)

We need to evaluate the probabilities of four basic alternative hypotheses. They are

ðC;SÞ; ðC;SÞ; ðC;SÞ and ðC;SÞ. Equation (9.57) gives the posterior for (C;S). We

could similarly write out the posterior for the other three. For hypothesis ðC;SÞ, which
assumes �1 6¼ �2, the result is

pðC;SjD1;D2; IÞ¼K

Z
dc1d�1d�2pðC;S; c1; �1; �2jIÞ

	 pðD1;D2jC;S; c1; �1; �2; IÞ:
(9:59)

Each of the four posteriors has a different numerator on the right hand side but a

common denominator, pðD1;D2jIÞ. Recall that the denominator in Bayes’ theorem,

pðD1;D2jIÞ, ensures that the posterior is normalized over this hypothesis space. In

terms of these basic hypotheses, pðD1;D2jIÞ is the sum of the four numerators and is

given by

pðD1;D2jIÞ ¼
Z

dc1d�1pðC;S; c1; �1jIÞpðD1;D2jC;S; c1; �1; IÞ

þ
Z

dc1d�1d�2pðC;S; c1; �1; �2jIÞpðD1;D2jC;S; c1; �1; �2; IÞ

þ
Z

dc1dc2d�1pðC;S; c1; c2; �1jIÞpðD1;D2jC;S; c1; c2; �1; IÞ

þ
Z

dc1dc2d�1d�2pðC;S; c1; c2; �1; �2jIÞ

	 pðD1;D2jC;S; c1; c2; �1; �2; IÞ:

(9:60)
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Assuming logical independence of the parameters and the data, Equation (9.57)

may be further simplified to obtain

pðC;SjD1;D2; IÞ ¼K
Z

dc1d�1pðC;SjIÞpðc1jIÞpð�1jIÞ

	 pðD1jC;S; c1; �1; IÞpðD2jC;S; c1; �1; IÞ;
(9:61)

where pðC;SjIÞ is the prior probability that the means and the standard deviations are

the same, pðc1jIÞ is the prior probability for the mean, pð�1jIÞ is the prior probability
for the standard deviation, and pðD1jC;S; c1; �1; IÞ and pðD2jC;S; c1; �1; IÞ are the

likelihoods of the two data sets.

Assignment of priors

In this calculation we will adopt bounded uniform priors for the location parameters,

c1 and c2, and Jeffreys priors for the scale parameters, �1 and �2. Thus, for the mean,

c1, we write

pðc1jIÞ ¼
1=Rc; if L � c1 � H
0; otherwise

�
(9:62)

where Rc � H� L, and H and L are the limits on the constant c1 and are assumed

known. The same prior will be used for the c2 constant.

The prior for the standard deviation, �1, of the noise component in D1, is given by

pð�1jIÞ ¼
1=�1 logðR�Þ; if �L � �1 � �H
0; otherwise

�
(9:63)

where R� is the ratio �H=�L, and �H and �L are the limits on the standard deviation �1
and are also assumed known. Again, the same prior will be assumed for �2.

We now come to the difficult issue of choosing prior ranges for the mean toxin

concentrations (the means c1 and c2 in Equations (9.53) and (9.54)), and the standard

deviations (�1 and �2). Recall from Section 3.5 that in a Bayesian model selection

problem, marginalizing over parameters introduces Occam penalties, one for each

parameter. Here, the models all contain the same types of parameters, constants and

standard deviations, but they contain differing numbers of these parameters.

Consequently, the prior ranges are important and will affect model selection conclu-

sions. We also saw in Section 3.8.1 that for a uniform prior, the results are quite

sensitive to the prior boundaries.

In general, any scientific enquiry is motivated from a particular prior state of

knowledge on which we base our selection of prior boundaries. In the current instance,

the motivation is to illustrate some methodology so we will investigate the dependence

of the results on four different choices of prior boundaries as given in Table 9.2.

Finally, we need to assign a prior probability for each of the four fundamental

hypotheses: ðC;SÞ; ðC;SÞ; ðC;SÞ, and ðC;SÞ. Since the given information, I, indicates

no preference, we assign a probability of 1/4 to each.
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There is a danger that the reader will get lost in the forest of calculations required to

evaluate the probabilities of the four fundamental hypotheses so we have moved them

to Appendix C. If you are planning on applying Bayesian analysis to a non-trivial

problem in your own research field, it often helps to see worked examples of other

non-trivial problems. Consider Appendix C as such a worked example. After we have

evaluated the four basic hypotheses, Equation (9.61) can be used to determine if the

data sets are the same. Equation (9.55) can be used to determine the probability that

themeans and/or the standard deviations differ, and thus, answers the first question of

interest, ‘‘Do the samples differ?’’

9.4.2 How do the samples differ?

We now address the second question: assuming that the two samples differ, how do

they differ? There are only three possibilities: the means differ, the standard deviations

differ, or both differ. To determine if the means differ, one computes pðCjD1;D2; IÞ.
Similarly, to determine if the standard deviations differ, one computes pðSjD1;D2; IÞ.
Using the sum rule, these probabilities may be written

pðCjD1;D2; IÞ ¼ pðC;SjD1;D2; IÞ þ pðC;SjD1;D2; IÞ (9:64)

and

pðSjD1;D2; IÞ ¼ pðC;SjD1;D2; IÞ þ pðC;SjD1;D2; IÞ (9:65)

where pðCjD1;D2; IÞ is computed independent of whether or not the standard devia-

tions are the same, while pðSjD1;D2; IÞ is independent of whether or not the means are

the same.

9.4.3 Results

We now have expressions for computing the probability for the first nine hypotheses

appearing in Table 9.1. These calculations have been implemented in a special

Table 9.2 Different choices for lower and upper bounds on the priors for the mean and

standard deviation of the river sediment toxin concentrations.

Case Mean lower (ppm) Mean upper (ppm) �L lower (ppm) �H upper (ppm)

1 2 18 0.4 10

2 7 12 0.4 10

3 2 18 1 4

4 7 12 1 4
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section in the Mathematica tutorial entitled, ‘‘Bayesian analysis of two independent

samples.’’

This analysis program produces three different types of output: (1) the probability

for the four fundamental compound hypotheses; (2) the probability that the means are

different, the probability that the variances are different, and the probability that one

or both are different; and finally (3) the probability for the difference in means and the

ratio of the standard deviations. Table 9.3 illustrates the output for the prior bound-

aries corresponding to case 4 in Table 9.2, i.e., 7:0 � c1; c2 � 12 ppm and for the

standard deviations 1 � �1; �2 � 4. The last line gives an odds ratio of 9.25 in favor

of the means and/or standard deviations being different.

Recall that the posterior probability is proportional to the product of the prior

probability and the likelihood. Following Bretthorst’s analysis, we assumed equal

Table 9.3 Output from Mathematica program: ‘‘Bayesian analysis of two independent

samples,’’ for the river sediment toxin measurements.

Data Summary

No. Standard Deviation Average Data Set

12 2.1771 10.3167 river B.1

8 1.2800 8.5875 river B.2

20 2.0256 9.6251 Combined

Prior mean lower bound 7.0

Prior mean upper bound 12.0

Prior standard deviation lower bound 1.0

Prior standard deviation upper bound 4.0

Number of steps for plotting pð�jD1;D2; IÞ 200

Number of steps for plotting pðrjD1;D2; IÞ 300

Hypothesis Probability

C;S � same means, same standard deviations 0.0975

C;S � different means, same standard deviation 0.2892

C;S � same mean, different standard deviations 0.1443

C;S � different means, different standard deviations 0.4690

C � means are the same 0.2419

C � means are different 0.7581

The odds ratio in favor of different means odds ¼ 3:13

S � standard deviations are the same 0.3867

S � standard deviations are different 0.6133

The odds ratio in favor of different standard deviations odds ¼ 1:59

C;S � same means, same standard deviations 0.0975

Cþ S � one or both are different 0.9025

The odds ratio in favor of a difference odds ¼ 9:25
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prior probabilities for the four compound hypotheses: pðC;SjIÞ, pðC;SjIÞ, pðC;SjIÞ,
and pðC;SjIÞ. With this assumption, the prior odds favoring different means and/or

different standard deviations ðCþ SÞ is 3.0 to 1. The data acting through the like-

lihood term are responsible for increasing this from 3 to 9.25 in this case. If instead we

had taken as our prior that pðC;SjIÞ ¼ pðCþ SjIÞ, then the posterior odds ratio

would be reduced to 3.08. It is important to remember that all Bayesian probabilities

are conditional probabilities, conditional on the truth of the data and prior informa-

tion. It is thus important in any Bayesian analysis to specify the prior used in the

analysis.

Table 9.4 illustrates the dependence of the probabilities of the different hypotheses

on different choices of prior boundaries. It is clear from the table that as we increase

our prior uncertainty, the hypotheses with more parameters to marginalize over suffer

larger Occam penalties and hence their probability is reduced compared to the simpler

hypothesis of no change. This might be a good time to review the material on the

Occam factor in Section 3.5. In all cases, the odds ratio, Oddsdiff, favoring different

means and/or standard deviations, exceeds 1. In this analysis, we have purposely

considered four choices of prior boundaries to see what effect the different boundaries

have on the final results. It often requires some careful thought to translate the

available background information into an appropriate choice of prior parameter

boundaries. Otherwise one might make these boundaries artificially large and as a

consequence, the probability of a possibly correct complex model will decrease in

relation to simpler models.

How do the present results compare to our earlier frequentist test of the null

hypothesis that the mean toxin concentrations are the same (see Section 7.2.2)? On

the basis of that analysis, we obtained a P-value ¼ 0:04 and thus rejected the null

hypothesis at the 96% confidence level. The frequentist P-value is often incorrectly

viewed as the probability that the null hypothesis is true. The Bayesian conclusion

regarding the question of whether the means are the same is given by

pðCÞ ¼ 1� pðCÞ. Although this depends on our prior uncertainty in the means

and standard deviations of two samples, the minimum value for pðCÞ according to

Table 9.4 is� 1� 0:76 ¼ 0:24. The difficulty in interpreting P-values and confidence

Table 9.4 Dependence of the probabilities of the hypotheses of interest on the different

prior boundaries given in Table 9.2. See Table 9.1 for the meaning of the different

hypotheses.

# pðC;SÞ pðC;SÞ pðC;SÞ pðC;SÞ pðCÞ pðSÞ pðCþ SÞ Oddsdiff

1 0.293 0.276 0.209 0.222 0.498 0.431 0.707 2.41

2 0.141 0.420 0.101 0.338 0.757 0.439 0.858 6.06

3 0.202 0.190 0.299 0.308 0.499 0.607 0.798 3.95

4 0.098 0.289 0.144 0.469 0.758 0.613 0.902 9.25

9.4 Comparison of two independent samples 235



levels has been highlighted in many papers (e.g., Berger and Sellke, 1987; Delampady

and Berger, 1990; Sellke et al., 2001). The focus of these works is that P-values are

commonly considered to imply considerably greater evidence against the null

hypothesis than is actually warranted.

Now that one knows that the means and/or standard deviations are not the same, or

at the very least are probably not the same, one would like to know what is different

between the control and the trial. Are the means different? Are the standard deviations

different? Examination of Table 9.4 indicates that the probability the means differ is

0.758, for the choice of prior boundaries corresponding to case 4. The probability that

the standard deviations differ is 0.613.

Using the calculations presented so far, one can determine if something is different,

and then determine what is different. But after determining what is different, again

one’s interest in the problem changes. The next step is to estimate the magnitude of the

changes.

9.4.4 The difference in means

To estimate the difference in means, one must first introduce this difference into the

problem. Defining � and � to be the difference and sum, respectively, of the constants

c1 and c2, one has

� ¼ c1 � c2; � ¼ c1 þ c2: (9:66)

The two constants, c1 and c2, are then given by

c1 ¼
� þ �
2

; c2 ¼
� � �
2

: (9:67)

The probability for the difference, �, is then given by

pð�jD1;D2; IÞ¼ pð�;SjD1;D2; IÞ þ pð�;SjD1;D2; IÞ

¼ pðSjD1;D2; IÞpð�jS;D1;D2; IÞ

þ pðSjD1;D2; IÞpð�jS;D1;D2; IÞ:

(9:68)

This is a weighted average of the probability for the difference in means given that

the standard deviations are the same (the two-sample problem) and the probability for

the difference in means given that the standard deviations are different (the

Behrens–Fisher problem). The weights are just the probabilities that the standard

deviations are the same or different. Two of these four probabilities, pðSjD1;D2; IÞ and
pðSjD1;D2; IÞ ¼ 1� pðSjD1;D2; IÞ, have already been computed in Equation (9.65).

The other two probabilities, pð�jS;D1;D2; IÞ and pð�jS;D1;D2; IÞ, are derived in

Appendix C.3. Figure 9.6 shows the probability density function for the difference

in means for the prior boundaries corresponding to case 4 of Table 9.2. Three curves

are shown: the probability for the difference in means given that the standard
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deviations are the same (dotted line); the probability for the difference in means given

that the the standard deviations are different (dashed line); and the probability for the

difference in means independent of whether or not the standard deviation are the same

(solid line).

All three curves are very similar but it is possible to notice small differences

especially near the peak. The parameters listed along the top border of the figure

are the peak and mean of the distribution, and the lower and upper boundaries of

the 95% credible region. These apply to the weighted average distribution (solid

curve).

9.4.5 Ratio of the standard deviations

To estimate the ratio of the standard deviations, this ratiomust first be introduced into

the problem. Defining r and � to be

r ¼ �1
�2
; � ¼ �2 (9:69)

and substituting these into the model, Equations (9.53) and (9.54), one obtains

d1i ¼ c1 þ noise of standard deviation r�; (9:70)

and

d2i ¼ c2 þ noise of standard deviation �: (9:71)
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Figure 9.6 Three probability density functions are shown: the probability for the difference in
means given that the standard deviations are the same (dotted line); the probability for the
difference in means given that the the standard deviations are different (dashed line); and the

probability for the difference inmeans independent of whether or not the standard deviation are
the same (solid line).
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The probability for the ratio of the standard deviations, pðrjD1;D2; IÞ, is then

given by

pðrjD1;D2; IÞ¼ pðr;CjD1;D2; IÞ þ pðr;CjD1;D2; IÞ
¼ pðCjD1;D2; IÞpðrjC;D1;D2; IÞ
þ pðCjD1;D2; IÞpðrjC;D1;D2; IÞ:

(9:72)

This is a weighted average of the probability for the ratio of the standard deviations

given that the means are the same plus the probability for the ratio of the standard

deviations given that the means are different. The weights are just the probabilities

that the means are the same or not. Two of the four probabilities, pðCjD1;D2; IÞ and
pðCjD1;D2; IÞ ¼ 1� pðCjD1;D2; IÞ, have already been computed in Equation (9.64).

The other two probabilities, pðrjC;D1;D2; IÞ and pðrjC;D1;D2; IÞ, are derived in

Appendix C.4.

In case 4 of Table 9.4, there is significant evidence in favor of the means being

different. Thus, we might expect that the probability for the ratio of the standard

deviations, assuming the same means, will differ from the probability for the ratio of

the standard deviations assuming that the means are different.

These two distributions, as well as the weighted average, are shown in Figure 9.7.

The probability for the ratio of the standard deviations, assuming that the means are

the same, is shown as the dotted line. This model does not fit the data as well (the

pooled data have a larger standard deviation than either data set separately).

Consequently, the uncertainty in this probability distribution is larger compared to
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Figure 9.7 Probability density for the ratio of the standard deviations. Three probability density

functions are shown: the probability for the ratio of standard deviations given that the means
are the same (dotted line); the probability for the ratio of standard deviations given that the
means are different (dashed line); the probability for the ratio of standard deviations indepen-

dent of whether or not the means are the same (solid line).
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the other models and the distribution is more spread out. The probability for the ratio

of standard deviations assuming different means is shown as the dashed line. This

model fits the data better, and results in a more strongly peaked probability distribu-

tion. But probability theory tells one to take a weighted average of these two distribu-

tions, the solid line. The weights are just the probabilities that the means are the same

or different. Here those probabilities are 0.242 and 0.758, respectively. As expected,

the weighted average agrees more closely with pðrjC;D1;D2; IÞ. The parameters listed

along the top border of the figure apply to the weighted average distribution (solid

curve).

9.4.6 Effect of the prior ranges

We have already discussed the effect of different prior ranges on the model selection

conclusions (see Table 9.4). Here we look at their effect on the two-parameter

estimation problems. Figure 9.8 shows the weighted average estimate of the difference

in the means of the two data sets as given by Equation (9.68), for the four choices of

prior boundaries. The results for all four cases are essentially identical. Provided the

prior ranges are outside the parameter range selected by the likelihood function, we

don’t expect much of an effect. This is because in a parameter estimation problem we

are comparing a continuum of hypotheses all with the same number of parameters so

the Occam factors cancel. However, since we are plotting the weighted average of the

two-sample calculation and the Behrens–Fisher calculation, in principle, the prior

ranges can affect the weights differently and lead to a small effect. This is particularly
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Figure 9.8 Posterior probability of the differences in the mean river sediment toxin concentra-
tion for the four different choices of prior boundaries given in Table 9.2. The effects of different
choices of prior boundaries are barely discernible near the peak.
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noticeable in the case of the estimation of the standard deviation ratio shown in Figure

9.9, which is a weighted average (Equation (9.72)) of the result assuming no difference

in the means and the result which assumes the means are different.

9.5 Summary

This whole chapter has been concerned with Bayesian analysis of problems when our

prior information (state of knowledge) leads us to assign a Gaussian sampling

distribution when calculating the likelihood function. In some cases, we do this

because, in the absence of knowledge of the true sampling distribution, employing a

Gaussian distribution is the most conservative choice for the reasons given in Section

8.7.4. We examined a simple model parameter estimation problem – namely, estimat-

ing a mean. We started with data for which the � of the Gaussian sampling distribu-

tion was a known constant. This was extended to the case where � is known but is not

the same for all data. Often, nature is more complex than the assumedmodel and gives

rise to residuals which are larger than the instrumental measurement errors. We dealt

with this by treating � as a nuisance parameter which wemarginalize over, leading to a

Student’s tPDF. This has the desirable effect of treating anything in the data that can’t

be explained by the model as noise, leading to the most conservative estimates of

model parameters.

The final section of this chapter dealt with a Bayesian analysis of two independent

samples of some physical quantity taken under slightly different conditions, and we

wanted to know if there has been a change. The numerical example deals with toxin

concentrations in river sediment which are taken at two different locations. One

location might be upriver from a power plant and the other just downstream. What

other examples can you think of where this type of analysis might be useful? The
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Figure 9.9 Posterior probability for the ratio of standard deviations of the river sediment toxin
concentration for the four different choices of prior boundaries given in Table 9.2.
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Bayesian analysis allows the experimenter to investigate the problem in ways never

before possible. The details of this non-trivial problem are presented in Appendix C,

and Mathematica software to solve the problem is included in the accompanying

Mathematica tutorial.

9.6 Problems

1. Vi is a set of ten voltage measurements with known but unequal independent

Gaussian errors �i.

Vi ¼ f4:36; 4:00; 4:87; 5:64; 6:14; 5:92; 3:93; 6:58; 3:78; 5:84g

�i ¼ f2:24; 1:94; 1:39; 2:55; 1:69; 1:38; 1:00; 1:60; 1:00; 1:00g

a) Compute the weighted mean value of the voltages.

b) Compute and plot the Bayesian posterior probability density for the mean

voltage assuming a uniform prior for the mean in the range 3 to 7.

c) Find the 68.3 % credible region for the mean and compare the upper and lower

boundaries to

�þ �mean

�� �mean

where

� ¼
PN

i widiPN
i wi

; (9:73)

and

�2mean ¼
1PN
i wi

; wi ¼ 1=�2i : (9:74)

d) Compute and plot the Bayesian posterior probability density for the mean

voltage assuming a uniform prior for the mean in the range 4.6 to 5.4. Be sure

your probability density is normalized to an area of 1 in this prior range. Plot the

posterior over themean range 3 to 7. (Hint: For plotting youmay find it useful to

examine the item ‘‘Define a function which has a different meaning in different

ranges of x’’ in the section ‘‘Functions and Plotting’’ of theMathematica tutorial.)

e) Find the new 68 % credible region for the mean based on (d) and compare with

that found in (c).

2. In Section 9.2.3, we derived the Bayesian estimate of the mean assuming the noise �

is unknown. The desired quantity, pð�jD; IÞ, was obtained from the joint posterior
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pð�; �jD; IÞ by marginalizing over the nuisance parameter �, leading to Equation

(9.34). Would we have arrived at the same conclusion if we had started from the

joint posterior pð�; �2jD; IÞ and marginalized over the variance, �2? To answer this

question, re-derive Equation (9.34) for this case.

3. Table 7.5 gives measurements of the concentration of a toxic substance at two

locations in units of parts per million (ppm). The sampling is assumed to be from

two independent normal populations. Assume a uniform prior for the unknown

mean concentrations, and a Jeffreys prior for the unknown �s. Use the material

discussed in Section 9.4 to evaluate the items (a) to (f) listed below, for two different

choices of prior ranges for themeans and standard deviations. These two choices are:

1) mean (1,18), �ð0:1; 12Þ
2) mean (7,13), �ð1:0; 4:0Þ

Note: the prior ranges for the mean and standard deviation are assumed to be the

same at both locations.

a) The probabilities of the four models:

i. two data sets have same mean and same standard deviation,

ii. have different means and same standard deviation,

iii. have same mean and different standard deviations,

iv. have different means and different standard deviations.

b) The odds ratio in favor of different means.

c) The odds ratio in favor of different standard deviations.

d) The odds ratio in favor of different means and/or different standard deviations.

e) Plot a graph of the probability of the difference in means assuming the standard

deviations are (i) the same, (ii) different, and (iii) regardless of whether or not

the standard deviations are the same. Plot the result for all three on the same

graph.

f) Plot a graph of the probability of the ratio of standard deviations assuming the

means are (i) the same, (ii) different, and (iii) regardless of whether or not the

means are the same. Plot all three on the same graph.

g) Explain the changes in the probabilities of the four models that occur as a result

of a change in the prior ranges of the parameters, in terms of the Occam’s

penalty.

These calculations have been implemented in a special section in the Mathematica

tutorial accompanying this book. The section is entitled, ‘‘Bayesian analysis of two

independent samples.’’
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10

Linear model fitting (Gaussian errors)

10.1 Overview

An important part of the life of any physical scientist is comparing theoretical models

to data.We now begin three chapters devoted to the nuts and bolts of model fitting. In

this chapter, we focus on linear models.1 By a linear model, we mean a model that is

linear with respect to the model parameters, not (necessarily) with respect to the

indicator variables labeling the data. We will encounter the method of linear least-

squares, which is so familiar to most undergraduate science students, but we will see it

as a special case in a more general Bayesian treatment.

Examples of linear models:

1. fi ¼ A0 þ A1xi þ A2x
2
i þ � � �

where A0, A1; . . . are the linear model parameters,

and xi is the independent (indicator) variable.

2. fi;j ¼ A0 þ A1xi þ A2yj þ A3xiyj
where A0, A1; . . . are the linear model parameters,

and xi; yj are a pair of independent variables.

3. fi ¼ A1 cos!ti þ A2 sin!ti
where A1, A2 are the linear model parameters,

and ! is a known constant.

4. Ti ¼ Tfi;

where T is the linear parameter,

and fi is a Gaussian line shape of the form fi ¼ exp �ð�i��oÞ2

2�2
L

n o
;

and �o and �L are known constants.

Such a model was considered previously in Section 3.6.

It is important to distinguish between linear and nonlinear models. In the fourth

example,Ti is called a linear model because Ti is linearly dependent onT. On the other

hand, if the center frequency �o and/or line width �L were unknown, then Ti would be

1 About 10 years ago, Tom Loredo circulated some very useful notes on this topic. Those notes formed the starting point
for my own treatment, which is presented in this chapter.
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a nonlinear model. Nonlinear parameter estimation will be considered in the following

chapter.

In Section 10.2, we first derive the posterior distribution for the amplitudes

(i.e., parameters) of a linear model for a signal contaminated with Gaussian noise.

A remarkable feature of linear models is that the joint posterior probability distribu-

tion pðA1; . . . ;AnjD; IÞ of the parameters is a multivariate (multi-dimensional)

Gaussian if we assume a flat prior.2 That means that there is a single peak in the

joint posterior. We derive the most probable amplitudes (which are the same as those

found in linear least-squares) and their errors. The errors are given by an entity called

the covariance matrix of the parameters, which we will introduce in Section 10.5.1.We

also revisit the use of the �2 statistic to assess whether we can reject the model in a

frequentist hypothesis test. In Section 10.3, we briefly consider the relationship

between least-squares model fitting and regression analysis.

In most of this chapter, we assume that the data errors are independent and identi-

cally distributed (IID). In Section 10.2.2, we show how to generalize the results to allow

for data errors with standard deviations that are not equal and also not independent.

We will also show how to find the boundaries of the full joint credible regions using

the �2 distribution. We then consider how to calculate the marginal probability

distribution for individual model parameters, or for a subset of amplitudes of parti-

cular interest. A useful property of Gaussian joint posterior distributions allows us to

calculate any marginal distribution by maximizing with respect to the uninteresting

amplitudes, instead of integrating them in a marginalization operation which is in

general more difficult.

Finally, we derive some results for Bayesian model comparison with Gaussian pos-

teriors and consider some other schemes to decide on the optimum model complexity.

10.2 Parameter estimation

Our task is to infer the parameters of some model function, f, that we sample in the

presence of noise. We assume that we have N data values, di, that are related to N

values of the function fi, according to

di ¼ fi þ ei; (10:1)

where ei represents an unknown ‘‘error’’ component in the measurement of fi. We

assume that our knowledge (or lack thereof !) of the source of the errors is described by

a Gaussian distribution for the ei.
3 For now, we assume the distribution for each ei to

2 Though only a linear model leads to an exactly Gaussian posterior, nonlinear models may be approximately Gaussian
close to the peak of their posterior probability.

3 If the only knowledge we have about the noise is that it has a finite variance, then the MaxEnt principle of Chapter 8
tells us to assume a Gaussian. This is because it makes the fewest assumptions about the information we don’t have and
will lead to the most conservative estimates, i.e., greater uncertainty than we would get from choosing a more
appropriate distribution based on more information.
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be independent of the values of the other errors, and that all of the error distributions

have a common standard deviation, �. We will later generalize the results to remove

the restriction of equal and independent data errors.

By a linear model, we mean that fi can be written as a linear superposition of M

functions, gi�, where gi� is the value of the �th known function for the ith datum. The

M functions are each completely specified (they have no parameters); it is their relative

amplitudes that are unknown and to be inferred. Denoting the coefficients of the

known functions by A�, we thus have

fiðAÞ ¼
XM
�¼1

A�gi�: (10:2)

Our task is to infer fA�g, which we will sometimes denote collectively with an

unadorned A, as we have here. For example, if

fi ¼ A1 þ A2xi þ A3x
2
i þ A4x

3
i þ � � � ¼

XM
�¼1

A�gi�; (10:3)

then gi ¼ f1; xi; x2i ; . . .g.
Note: to avoid confusing the various indices that will arise in this calculation, we

are using Roman indices to label data values and Greek indices to label model basis

functions. Thus, Roman indices can take on values from 1 toN, andGreek indices can

take on values from 1 to M. When limits in a sum are unspecified, the sum should be

taken over the full range appropriate to its index.

Our goal is to compute the joint posterior probability distribution of the parameters,

pðA1; . . . ;AMjD; IÞ. According to Bayes’ theorem, this will require us to specify priors

for the parameters and to evaluate the likelihood function. The likelihood function is

the joint probability for all the data values, which we denote collectively byD, given all

of the parameters specifying the model function, fi. This is just the probability that the

difference between the data and the specified function values is made up by the noise.

With identical, independent Gaussians for the errors, the likelihood function is simply

the product of N Gaussians, one for each of the ei ¼ di � fi. Figure 10.1 illustrates

graphically the basis for the calculation of the likelihood function pðDjfA�gIÞ for a

model fi of the form fi ¼ A1 þ A2xi þ A3x
2
i . The smooth curve is the model prediction

for a specific choice of the parameters, namely A1 ¼ 0:5; A2 ¼ 0:8; A3 ¼ �0:06. The
predicted values of fi for each choice of the independent variable xi are marked by a

dashed line. The actual measured value of di (represented by a cross) is located at the

same value of xi but above or below fi as a result of the uncertainty ei. Since the

distribution of ei values is assumed to be Gaussian, at the location of each fi value,

we have constructed aGaussian probability density function (which we call a tent) for ei
along the line of fixed xi, with probability plotted in the z-coordinate.
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We have assumed that the width of each Gaussian curve, determined by �i, is the

same for all fi but in principle they can all be different. For the assumed choice of

model parameters, the probability of any di is proportional to the height of the

Gaussian curve directly above the data point which is shown by the solid line.

The probability of the data set D is proportional to the product of these Gaussian

heights. As we vary the choice of model parameters, the locations of the fi points and

Gaussian tents move up and down while the measured data points stay fixed. For

some choice of model parameters, the likelihood will be a maximum. It should be clear

that the particular choice of model parameters illustrated in the figure is far from

optimal, since the data values are systematically above the model. A better choice of

parameters would have the data values distributed about the model. Of course, if our

prior information indicated that the probability density function for ei had a different

non-Gaussian shape, then we only need to change the shape of the probability tents.
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Figure 10.1 This figure illustrates graphically the basis for the calculation of the likelihood
function pðDjfA�gIÞ for a model fi of the form fi ¼ A1 þ A2xi þ A3x

2
i . The smooth curve is the

model prediction for a specific choice of the parameters. The predicted values of fi for each
choice of the independent variable xi are marked by a dashed line. The actual measured value of
di (represented by a cross) is located at the same value of xi but above or below fi as a result of the

uncertainty ei. At the location of each fi value we have constructed a Gaussian probability
density function (tent) for ei along the line of fixed xi, with probability plotted in the
z-coordinate. For the assumed choice of model parameters, the probability of any di is propor-

tional to the height of the Gaussian curve directly above the data point which is shown by the
solid line.
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The product of these N IID Gaussians is given by

pðDjfA�g; IÞ ¼
1

�Nð2pÞN=2
exp � 1

2�2

XN
i¼1
ðdi � fiÞ2

" #

¼ 1

�Nð2pÞN=2
e�Q=2�

2

:

(10:4)

In Equation (10.4), the quadratic form QðfA�gÞ is

QðfA�gÞ ¼
XN
i¼1
ðdi � fiÞ2

¼
XN
i¼1

di �
XM
�¼1

A�gi�

 !2

¼
XN
i¼1

d2i þ
XN
i¼1

X
��

A�A�gi�gi� � 2
XN
i¼1

di
XM
�¼1

A�gi�:

(10:5)

To get to our destination, we will take advantage of the quadratic nature of

Gaussians to simplify our notation. The new notation will not only make things

look simpler, it will actually simplify the calculations themselves, and their

interpretation.

The new notation will eliminate Roman (data) indices by denoting such quantities

as vectors. Thus, theN data are written as ~d, theN values of the total model are written

as~f, theN error values are written as~e, and theMmodel functions are written as~g�. In

terms of these N-dimensional vectors, the data equation is

~d ¼ ~fþ~e; (10:6)

with

~f ¼
X
�

A�~g�: (10:7)

Note: ~f is the sum of M vectors, where usually M5N. Thus, the model spans an

M-dimensional subspace of theN-dimensional data space. Actually, if one or more of

the ~g ’s can be written as a linear superposition of the others, the model spans a

subspace of dimension less than M. Hereafter, we will refer to the ~g ’s as the basis

functions for the model.
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The quadratic form isQ ¼ ð~d�~fÞ2 ¼~e �~e ¼ e2, the squared magnitude of the error

vector extending from ~f to ~d. In terms of the basis functions, the quadratic form can be

written

QðfA�gÞ ¼ ð~d�~fÞ2

¼ d2 þ f2 � 2~d �~f
¼ d2 þ

X
��

A�A�~g� �~g� � 2
X
�

A�
~d �~g�

¼ d2 þ
X
�

A2
�~g� �~g� þ 2

X
� 6¼�

A�A�~g� �~g� � 2
X
�

A�
~d �~g�;

(10:8)

where we follow the usual notation, ~a � ~b ¼
P

i aibi, and a2 ¼ ~a �~a. It follows thatX
��

A�A�~g� �~g� ¼
X
��

A�A�

X
i

gi�gi�; (10:9)

where

X
��

¼
XM
�¼1

XM
�¼1

: (10:10)

~g� �~g� and ~d �~g� are easily computable from the data values di and the corresponding

values of the basis functions gi�.

To estimate the amplitudes, we need to assign a prior density to them. We will

simply use a uniform prior that is constant over some range�A� for each parameter,

so that

pðfA�gjIÞ ¼
1Q

��A�
: (10:11)

Then as long as we are inside the prior range, the posterior density for the ampli-

tudes is just proportional to the likelihood function

pðfA�gjD; IÞ ¼ Ce�QðfA�gÞ=2�2 : (10:12)

Outside the prior range, the posterior vanishes. In this equation, C is a normal-

ization constant4

C ¼ pðfA�gjIÞ
pðDjIÞ ; (10:13)

4 This is only true for the choice of a uniform prior for pðfA�gjIÞ appropriate for amplitudes which are location
parameters. For a scale parameter like a temperature, we should use a Jeffreys prior and then C is no longer a constant.
However, for many parameter estimation problems, the likelihood function selects out a very narrow range of the
parameter space over which a Jeffreys prior is effectively constant. Thus, the exact choice of prior used is only critical if
there are few data or we are dealing with a model selection problem. In the latter case, the choice of prior can have a big
effect as we saw in Section 3.8.1.
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where the global likelihood in the denominator is

pðDjIÞ ¼
Z
�A

dMA�pðfA�gjIÞpðDjA�; IÞ

¼ 1Q
��A�

1

�Nð2pÞN=2
Z
�A

dMA�e
�Q=2�2 :

(10:14)

We can calculate the value of C if needed – indeed, we will do so below when we

discuss model comparison – but since it is independent of the A�, we don’t need to

know it to address many parameter estimation questions.

The full joint posterior distribution given by Equation (10.12) is the Bayesian

answer to the question, ‘‘What do the data tell us about the A� parameters?’’ It is

usually useful to have simple summaries of the posterior, especially if it is of high

dimension, in which case it is often difficult to depict it (eithermentally or graphically).

We will devote the next few subsections to finding point estimates for the amplitudes

(most probable and mean values) and credible regions. We’ll also discuss how to

summarize the implications of the data for a subset of the amplitudes bymarginalizing

out the uninteresting amplitudes. In fact, since the mean amplitudes require integrat-

ing the posterior over the A�, we’ll have to learn how to do such marginalization

integrals before we can calculate the mean amplitudes.

10.2.1 Most probable amplitudes

The most probable values for the amplitudes are the values that maximize the pos-

terior (Equation (10.12)), which (because of our uniform prior) are the values that

minimize Q and lead to the ‘‘normal equations’’ of the method of least-squares.

Denoting the most probable values by Â�, we can find them by solving the following

set of M equations (one for each value of �):

@Q

@A�

����
A¼Â
¼ 2

X
�

Â�~g� �~g� � 2~g� � ~d ¼ 0; (10:15)

or, X
�

Â�~g� �~g� ¼ ~g� � ~d: (10:16)

For the M ¼ 2 case, Equation (10.16) corresponds to the two equations

Â1~g1 �~g1 þ Â2~g2 �~g1 ¼ ~g1 � ~d (10:17)

and

Â1~g1 �~g2 þ Â2~g2 �~g2 ¼ ~g2 � ~d: (10:18)
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Define the most probable model vector, ~̂f, by

~̂f ¼
X
�

Â�~g�: (10:19)

Using ~̂f, Equation (10.16) can be written as

~̂f �~g ¼ ~g � ~d: (10:20)

This doesn’t help us solve Equation (10.16), but it gives us a bit of insight: the most

probable total model function is the one whose projection on each basis function

equals the data’s projection on each basis function. Crudely, the most probable model

vector explains as much of the data as can be spanned by the M-dimensional model

basis.

Equations (10.17) and (10.18) can be written in the following matrix form:

~g1 �~g1 ~g2 �~g1
~g1 �~g2 ~g2 �~g2

� �
Â1

Â2

� �
¼ ~g1 � ~d

~g2 � ~d

� �
: (10:21)

Problem: Evaluate Equation (10.21) for a straight line model.

Solution: When fitting a straight line, f ¼ A1 þ A2x, the two basis functions are gi1 ¼ 1

and gi2 ¼ xi. In this case, the matrix elements are given by:

~g1 �~g1 ¼
XN
i

g2i1 ¼
XN
i

1 ¼ N; (10:22)

~g1 �~g2 ¼ ~g2 �~g1 ¼
XN
i

gi1gi2 ¼
XN
i

xi; (10:23)

~g2 �~g2 ¼
XN
i

gi2gi2 ¼
XN
i

x2i ; (10:24)

~g1 � ~d ¼
XN
i

gi1di ¼
XN
i

di; (10:25)

~g2 � ~d ¼
XN
i

dixi; (10:26)
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and Equation (10.21) becomes

N
P

i xiP
i xi

P
i x

2
i

� �
Â1

Â2

� �
¼

P
i diP

i dixi

� �
: (10:27)

It will prove useful to express Equation (10.16) in a more compact matrix form.

Let G be an N�M matrix where the �th column contains N values of the �th basis

function evaluated at each of theN data locations. As an example, consider theM ¼ 2

case again. The two basis functions for the ith data value are gi1 and gi2, andG is given by

G �

g11 g12
g21 g22
� �
� �
� �

gN1 gN2

0
BBBBBB@

1
CCCCCCA
: (10:28)

Now take the transpose of G which is given by

GT � g11 g21 � � � gN1

g12 g22 � � � gN2

� �
: (10:29)

Define the matrix y ¼ GTG, which for M ¼ 2 is given by

y �
P

i g
2
i1

P
i gi1gi2P

i gi2gi1
P

i g
2
i2

 !

¼
g21 ~g1 �~g2

~g2 �~g1 g22

 !

¼
 11  12

 21  22

 !
:

(10:30)

Thus, y is a symmetric matrix because ~g1 �~g2 ¼ ~g2 �~g1. More generally,

 �� ¼ ~g� �~g� ¼  ��: (10:31)

Finally, if D is a column matrix of data values di, then for M ¼ 2

GTD �
P

i gi1diP
i gi2di

� �
¼ ~g1 � ~d

~g2 � ~d

� �
: (10:32)

Equation (10.21) can now be written as

GTGÂ ¼ GTD: (10:33)

The solution to this matrix equation is given by

Â ¼ ðGTGÞ�1GTD ¼ y�1GTD; (10:34)
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or in component form becomes

Â� ¼
X
�

½y�1���~g� � ~d: (10:35)

In the method of least-squares, the set of equations represented by Equation (10.33)

are referred to as the normal equations.

Again, for the M ¼ 2 case, we can write Equation (10.33) in long form:

 11  12

 21  22

� �
Â1

Â2

� �
¼ ~g1 � ~d

~g2 � ~d

� �
; (10:36)

where  12 ¼  21. The solution (Equation (10.34)) is given by

Â1

Â2

� �
¼ 1

�

 22 � 12

� 21  11

� �
~g1 � ~d
~g2 � ~d

� �
; (10:37)

and where  12 ¼  21 and the denominator, �, is the determinant of the y matrix

given by

� ¼ ð 11 22 �  2
12Þ: (10:38)

Â1 ¼
 22ð~g1 � ~dÞ �  12ð~g2 � ~dÞ

 11 22 �  2
12

(10:39)

Â2 ¼
� 12ð~g1 � ~dÞ þ  11ð~g2 � ~dÞ

 11 22 �  2
12

: (10:40)

Note: the matrix must be non-singular – the basis vectors must be linearly independent –

for a solution to exist. We henceforth assume that any redundant basis models have been

eliminated, so that y is non-singular.5

Problem: Evaluate Equation (10.34) for the straight line model.

Solution: Comparison of Equations (10.27) and (10.36) allows an evaluation of all the

terms needed for Equations (10.39) and (10.40).

Â1 ¼
P

i x
2
i

P
i di �

P
i xi
P

i xidi

N
P

i x
2
i � ð

P
i xiÞ

2

Â2 ¼
�
P

i xi
P

i di þN
P

i xidi

N
P

i x
2
i � ð

P
i xiÞ

2
:

5 Sometimes the data do not clearly distinguish between two or more of the basis functions provided, and y gets
sufficiently close to being singular that the answer becomes extremely sensitive to round-off errors. The solution in this
case is to use singular value decomposition which is discussed in Appendix A.
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10.2.2 More powerful matrix formulation

Everything we have done so far has assumed that the error associated with each datum

is independent of the errors for the others, and that the Gaussian describing our

knowledge of the magnitude of the error has the same variance for each datum. In

general, however, the errors can have different variances, and could be correlated. In

that case, we need to replace the likelihood function pðDjfA�g; IÞ, given by Equation

(10.4), by the multivariate Gaussian (Equation (8.61)) which we derived using the

MaxEnt principle in Section 8.7.5 and Appendix E. The new likelihood is

pðDjfA�g; IÞ ¼
1

ð2pÞN=2
ffiffiffiffiffiffiffiffiffiffiffiffi
det E
p exp � 1

2

X
ij

ðdi � fiÞ½E�1�ijðdj � fjÞ
" #

¼ 1

ð2pÞN=2
ffiffiffiffiffiffiffiffiffiffiffiffi
det E
p e��

2=2;

(10:41)

where E is called the data covariance matrix6

E ¼

�11 �12 �13 � � � �1N
�21 �22 �23 � � � �2N
� � � � �
�N1 �N2 �N3 � � � �NN

0
BB@

1
CCA; (10:42)

and

X
ij

¼
XN
i¼1

XN
j¼1

:

How does this affect the ‘‘normal equations’’ of the method of least-squares? We

simply need to replace Q=�2 appearing in the likelihood, Equation (10.4), by

�2 ¼
X
i;j

ðdi � fiÞ½E�1�ijðdj � fjÞ: (10:43)

If the errors are independent, E is diagonal, with entries equal to �2i , and Equation

(10.43) takes the familiar form

�2 ¼
X
i

ðdi � fiÞ2

�2i
¼
X
i

e2i
�2i
: (10:44)

The inverse data covariance matrix, E�1, plays the role of a metric7 in the full

N-dimensional vector space of the data. Thus, if we set � ¼ 1, and understand ~a � ~b

6 If we designate each element in the covariance matrix by �ij, then the diagonal elements are given by �ii ¼ �2i ¼ he2i i,
where he2i i is the expectation value of e2i . The off-diagonal elements are �ij ¼ heieji ði 6¼ jÞ.

7 The metric of a vector space is useful for answering questions having to do with the geometry of the vector space, such
as the distance between two points. In our work, we use it to compute the dot product in the vector space.
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to stand for ~a½E�1�~b everywhere a dot product occurs in the above analysis, then we

already have the desired generalization! Thus, we have that

~d � ~d ¼
X
ij

di½E�1�ijdj (10:45)

and

~g� �~g� ¼
X
ij

gi�½E�1�ijgj�: (10:46)

The new equivalents of Equations (10.33) and (10.34) are

GTE�1GÂ ¼ GTE�1D (10:47)

Â ¼ ðGTE�1GÞ�1GTE�1D ¼ Y�1GTE�1D: (10:48)

To bring out the changes more clearly, we repeat our earlier Equation (10.34) for the

model amplitudes.

Â ¼ ðGTGÞ�1GTD ¼ y�1GTD: (10:49)

Notice that whenever we employ E, we need to replace y by its capitalized form Y.

Recall the matrix y did not incorporate information about the data errors while Y
does. In the case that the data errors all have the same � and are independent, then

Y ¼  =�2. The following problem employs the Y matrix for the case of independent

errors. We consider a problem with correlated errors in Section 10.6 after we have

introduced the correlation coefficient.

Problem: Fit a straight line model to the data given in Table 10.1, where di is the average

of ni data values measured at xi. The probability of the individual di measurements is IID

normal with �2 ¼ 8:1, regardless of the xi value. Recall from the Central Limit Theorem,

Table 10.1 Data table.

xi di ni

10 0.5 14

20 4.67 3

30 6.25 25

40 10.0 2

50 13.5 3

60 13.7 22

70 17.5 5

80 23.0 2
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pðdijIÞ will tend to a Gaussian with variance¼ �2=ni as ni increases even if pðdijIÞ is very
non-Gaussian.

Solution: The data covariance matrix E can be written as

E ¼ �2

1=n1 0 0 � � � 0
0 1=n2 0 � � � 0
0 0 1=n3 � � � 0
� � � � �
0 0 � � � 0 1=nN

0
BBBB@

1
CCCCA: (10:50)

The inverse data covariance matrix E�1 is

E�1 ¼ 1

�2

n1 0 0 � � � 0

0 n2 0 � � � 0

0 0 n3 � � � 0

� � � � �
0 0 � � � 0 nN

0
BBBBBB@

1
CCCCCCA

¼ 1

�2

14 0 0 � � � 0

0 3 0 � � � 0

0 0 25 � � � 0

� � � � �
0 0 � � � 0 2

0
BBBBBB@

1
CCCCCCA
:

(10:51)

Y ¼ GTE�1G

¼
1 1 1 � � � 1

10 20 30 � � � 80

� �
1

�2

14 0 0 � � � 0

0 3 0 � � � 0

0 0 25 � � � 0

� � � � �
0 0 � � � 0 2

0
BBBBBB@

1
CCCCCCA

1 10

1 20

1 30

� �
1 80

0
BBBBBB@

1
CCCCCCA

¼ 1

�2
76 3010

3010 152 300

� �
:

(10:52)

Y�1 ¼ �2 0:061 �0:0012
�0:0012 0:000030

� �
: (10:53)

Let R ¼ GTE�1D

¼ 1 1 1 � � � 1
10 20 30 � � � 80

� �
1

�2

14 0 0 � � � 0
0 3 0 � � � 0
0 0 25 � � � 0
� � � � �
0 0 � � � 0 2

0
BBBB@

1
CCCCA

0:5
4:67
6:25
�

23:0

0
BBBB@

1
CCCCA: (10:54)
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Then,

Â ¼ Y�1R: (10:55)

Â1

Â2

� �
¼ �2:054

0:275

� �
: (10:56)

Figure 10.2 shows the straight line model fit, y ¼ 0:275x� 2:054, with the data plus

error bars overlaid.

Mathematica provides a variety of simple ways to enter the G, E, D matrices and

then we can evaluate the matrix of amplitudes, A, with the commands:

Y ¼ Transpose½G�:Inverse½E�:G
A ¼ Inverse½Y�:Transpose½G�:Inverse½E�:D

10.3 Regression analysis

Least-squares fitting is often called regression analysis for historical reasons. For

example, Mathematica provides the package called Statistics ‘Linear Regression’ for

doing a linear least-squares fit. Regression analysis applies when we have, for example,

two quantities like height and weight, or income and education and we want to predict

one from information about the other. This is possible if there is a correlation between

the two quantities, even if we lack a model to account for the correlation. Typically in

these problems, there is little experimental error in the measurements compared to the

intrinsic spread in their values. Thus, we can talk about the regression line for income

10 20 30 40 50 60 70 80
x-axis

0

5

10

15

20

25

y-
ax

is

Figure 10.2 Straight line model fit with data plus errors overlaid. Clearly, the best fitting line is
mostly determined by the data points with smallest error bars.
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on education. The regression line is often called the least-squares line because it makes

the sum of the squares of the residuals as small as possible.

In contrast, model fitting usually assumes that there is an underlying exact relation-

ship between some measured quantities, and we are interested in the best choice of

model parameters or in comparing competing models. In some areas, especially in the

life sciences, the phenomena under study are sufficiently complex that good models

are hard to come by and regression analysis is the name of the game.

The results from a regression analysis maymake no physical sense butmay point the

way to a physical model. Consider the following simple example which assumes the

experimenter is ignorant of an elementary geometrical relationship, that the area of a

rectangle is equal to the product of the width and height. The experimenter fabricates

many different shaped rectangles and determines the area of each rectangle by count-

ing the number of very small squares that fit into the rectangle. Our experimenter then

examines whether there is a correlation between rectangle area and perimeter. The

resulting regression line would look like a line with considerable scatter, because the

perimeter is not a good physical model for the area. In contrast, a plot of area versus

the product of the width times the height would be an almost perfect straight line,

limited only by the measurement accuracy of the width and height measurements.

10.4 The posterior is a Gaussian

We have succeeded in finding the most probable model parameters. Now we want to

determine the shape of their joint probability distribution with an eye to specifying

credible regions for each parameter. We will continue to work with the simple case

where all the data errors are assumed to be IID so that pðfA�gjD; IÞ is given by

Equation (10.12),

pðfA�gjD; IÞ ¼ Ce�QðfA�gÞ=2�2 : (10:57)

Then maximizing pðfA�gjD; IÞ, corresponds to minimizing Q. Since we’ve already

taken one derivative of Q (Equation (10.15)), let’s see what happens when we take

another. Define �A� ¼ A� � Â�. Call the value ofQ at the modeQmin. Recall that the

mode is the value that maximizes the probability density. Consider a Taylor series

expansion of Q about the Qmin.

Q ¼ Qmin þ
X
�

@Q

@A�

����
min

�A� þ 1=2
X
��

@2Q

@A�@A�

����
min

�A��A�: (10:58)

The first derivative is zero at the minimum and fromEquation (10.8), it is clear there

are no higher derivatives than the second. We are now in the position to write Q in a

form that explicitly reveals the posterior distribution to be a multivariate Gaussian.

Q ¼ Qmin þ�QðAÞ; (10:59)

10.4 The posterior is a Gaussian 257



and

�QðAÞ ¼ 1=2
X
��

@2Q

@A�@A�

����
min

�A��A�: (10:60)

Taking another derivative of Equation (10.15) and substituting from Equation

(10.31), we get the equation8

@2Q

@A�@A�

����
min

¼ 2~g� �~g� ¼ 2 �� ¼ 2 ��: (10:62)

Substituting this into Equation (10.60), we get the equation

�QðAÞ ¼
X
��

�A� ���A�; (10:63)

where y is a symmetricmatrix. Note: the differential dð�A�Þ ¼ dA�, so densities for the

A� are directly equal to densities for the �A�. Thus,

pðfA�gjD; IÞ ¼ C0 exp ��Q

2�2

� �
; (10:64)

where

C0 ¼ C exp �Qmin

2�2

� �
; (10:65)

is an adjusted normalization constant. If we let �A be a column matrix of �A� values,

then Equation (10.64) can be written as

pðfA�gjD; IÞ ¼ C0 exp � �A
Ty�A
2�2

� �
: (10:66)

8 For M=2, y is given by

y � g21 ~g1 �~g2
~g2 �~g1 g22

 !

¼ 1

2

@2Q
@A2

1

@2Q
@A1@A2

@2Q
@A2@A1

@2Q
@A2

2

0
@

1
A:

ð10:61Þ
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Since y is symmetric there is a change of variable, �A ¼ O�X, that transforms9 the

quadratic form �ATy�A into the quadratic form �XTL�X (Principal Axis Theorem).

L is a diagonal matrix whose diagonal elements are the eigenvalues of the ymatrix and

the columns of O are the orthonormal eigenvectors of y.
For the M ¼ 2 case, we have

�Q ¼ ð�X1 �X2Þ
�1 0

0 �2

� �
�X1

�X2

� �
¼ �1�X2

1 þ �2�X2
2;

(10:67)

where �1 and �2 are the eigenvalues of y. They are all positive since y is positive

definite.10 Thus, �Q ¼ k (a constant) defines the ellipse (see Figure 10.3),

�X2
1

k=�1
þ �X2

2

k=�2
¼ 1; (10:68)
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Q = k
k /λ 1√

k /λ 2√

e2
 

e1
   

Figure 10.3 The contour in A1�A2 parameter space for �Q ¼ a constant k. It is an ellipse,
centered at ðÂ1; Â2Þ, whose major and minor axes are determined by the eigenvalues � and

eigenvectors~e of y. Note: dX1 and dX2 in Equation (10.67), are measured in the directions of the
eigenvectors~e1 and~e2, respectively.

9 In two dimensions the transformation O corresponds to a planar rotation followed by a reflection of the �X2 axis.
Since  is symmetric this is equivalent to a rotation of the axes.

10 This would not be the case if the basis vectors were linearly dependent. In that case,  would be singular and  �1

would not exist.
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with major and minor axes given by
ffiffiffiffiffiffiffiffiffiffi
k=�1

p
and

ffiffiffiffiffiffiffiffiffiffi
k=�2

p
, respectively. From Equation

(10.64), we see that �Q ¼ k corresponds to a contour of constant posterior prob-

ability in the space of our two parameters.

Clearly, Figure 10.3 provides information about the joint credible region for the

model parametersA1 andA2.We still need to compute what size of ellipse corresponds

to, say, a 95% credible region. In the next section, we discuss how to find various

summaries of a Gaussian posterior.

Problem: In Section 10.2.2, we fitted a straight line model to the data in Table 10.1.

Find the eigenvalues of the corresponding Y matrix given by Equation (10.52) and

which we repeat here.

Y ¼ 1

�2
76 3010

3010 152 300

� �
; (10:69)

where �2 ¼ 8:1.

In that problem, the errors were not all the same, so we employed the data

covariance matrix E�1. For that situation, Equation (10.66) becomes

pðfA�gjD; IÞ ¼ C0 exp �
P

�� �A�½Y����A�

2

� �
: (10:70)

Since there are only two parameters ðA1;A2Þ, we can rewrite Equation (10.70) as

pðA1;A2jD; IÞ ¼ C0 exp �
P2

�¼1
P2

�¼1 �A�½Y����A�

2

( )
: (10:71)

Solution: We can readily determine the eigenvalues of Y with the following

Mathematica command:

Eigenvalues½Y�
f18 809:8; 2:03766g

So the two eigenvalues are �1 ¼ 18 809:8 and �2 ¼ 2:03766.

10.4.1 Joint credible regions

A credible region is a locus of points of constant probability which surrounds a region

containing a specified probability in the joint probability distribution. Figure 10.3

illustrated that in the two-parameter case, this locus is an ellipse defined by �Q ¼ k

where k is a constant. In this section, we will find out for what value of k the ellipse

contains say 68.3% of the posterior joint probability. The results will be presented in a

more general way so we can specify the credible region corresponding to �Q ¼ k for

an arbitrary number of model parameters, not just the M ¼ 2 case.
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We slightly simplify the notation for this subsection to connect with more familiar

results, by writing the posterior density for the A� as

pðfA�gjD; IÞ ¼ Ce��
2=2; (10:72)

where �2ðfA�gÞ ¼ Q=�2. Let �2
min ¼ Qmin=�

2, and ��2 ¼ �Q=�2. Then from

Equation (10.64), we can write

pðfA�gjD; IÞ ¼ C0e���
2=2: (10:73)

By definition, the boundary of a joint credible region for all the amplitudes is

defined by �2ðfA�gÞ ¼ �2
min þ��2

crit, where ��2
crit is a constant chosen such that

the region contains some specified probability, P. Our task is to find ��2
crit such that

P ¼
Z
��2<��2

crit

dMA pðfA�gjD; IÞ: (10:74)

The result, which is given without proof, is

P ¼ 1� �ðM=2;��2
crit=2Þ

�ðM=2Þ : (10:75)

This is the probability within the joint credible region for all the amplitudes

corresponding to ��2 < ��2
crit. The quantity �ðM=2;��2

crit=2Þ is one form of the

incomplete gamma function,11 which is given by

�ð�=2; xÞ ¼ 1

�ð�=2Þ

Z 1
x

e�tt
�
2�1 dt; (10:76)

where � ¼M is the number of degrees of freedom. Recall from Section 6.2 that

the �2 distribution is a special case of a gamma distribution. In Mathematica

�ð�=2;��2
crit=2Þ is given by the command

Gamma½n=2;Dc2crit=2�

Table 10.2 gives values for ��2
crit as a function of P and � obtained from Equation

(10.75).

For example, the credible region containing probability P ¼ 68:3%, forM ¼ 2 free

model parameters, is bounded by a surface of constant �2 ¼ �2
min þ��2

crit ¼
�2
min þ 2:3. Note: in Table 10.2, the degrees of freedom � ¼M, the number of free

model parameters.

11 See Numerical Recipes by Press et al. (1992).
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Question: Figure 10.3 shows an ellipse of constant probability for a two-parameter

model defined by�Q ¼ k (a constant). For what value of k does the ellipse contain a

probability of 95.4%?

Answer: First we note that�Q ¼ �2��2. From Table 10.2, we obtain��2 ¼ 6:17 for

� ¼ 2 degrees of freedom (for a two-parameter model) and a probability of 95.4%.

The desired value of k ¼ 6:17�2.

Question: Suppose we fit a model with six linear parameters. We are really only inter-

ested in two of these parameters so we remove the other four by marginalization. The

result is the posterior probability distribution for the two interesting parameters. Now

suppose we want to plot the 95.4% credible region (ellipse) for these two parameters.

How many degrees of freedom should be used when consulting Table 10.2?

Answer: 2!

Problem: In Section 10.2.2, we fitted a straight line model to the data in Table 10.1.

Compute and plot the 95.4% joint credible region for the slope and intercept.

Solution:FromTable 10.2,weobtain��2 ¼ 6:17 for� ¼ 2 degreesof freedom(for a two-

parameter model) and a probability of 95.4%. Now��2 is related to theY matrix by

��2 ¼
X2
�¼1

X2
�¼1

�A�½Y����A�; (10:77)

where

Y ¼ 1

�2
76 3010

3010 152 300

� �
¼ 9:383 371:6

371:6 18 802

� �
; (10:78)

Table 10.2 This table allows us to find the value of ��2
crit in Equation (10.74) that

defines the boundary of the joint posterior probability in � model parameters that

contains a specified probability P. Thus, the P ¼ 68:3% joint probability boundary in two

parameters corresponds to a��2
crit ¼ 2:3, where��2

crit is measured from �2
min, the value

corresponding to the peak of the joint posterior probability.

P Degrees of Freedom �

1 2 3 4 5 6

68.3% 1.00 2.30 3.53 4.72 5.89 7.04

90% 2.71 4.61 6.25 7.78 9.24 10.6

95.4% 4.00 6.17 8.02 9.70 11.3 12.8

99% 6.63 9.21 11.3 13.3 15.1 16.8

99.73% 9.00 11.8 14.2 16.3 18.2 20.1

99.99% 15.1 18.4 21.1 23.5 25.7 27.8
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since �2 ¼ 8:1. Combining Equations (10.77) and (10.78), we obtain

��2 ¼ ð�A1 �A2Þ
9:383 371:6
371:6 18 802

� �
�A1

�A2

� �
¼ 6:17: (10:79)

It is convenient to change from rectangular coordinates ð�A1; �A2Þ to polar coordinates
ðr; 	Þ. Equation (10.79) becomes

ðr cos 	 r sin 	Þ 9:383 371:6
371:6 18 802

� �
r cos 	
r sin 	

� �
¼ 6:17: (10:80)

Next, solve this equation for r for a set of values of 	, and by so doing map out the

joint credible region. In Mathematica this can easily be accomplished by:

polarA [r�, q�] :={{r *Cos[q]}, {r * Sin[q]}};
tpolarA[r�, q�] := Transpose[polarA[r, q]];
locus = Table[

{NSolve[Flatten[tpolarA[r, q].Y.polarA[r, q]][[1]]==6:17, r]

[[2]][[1, 2]], q}, {q, 0, 2p, Dq}];

Finally, transform the r; 	 values back to �A1, �A2 and convert them to A1, A2,

where A1¼ �A1þ Â1 and A2¼ �A2þ Â2. Note: Â1 and Â2 are the most probable

values of the intercept and slope, respectively. Figure 10.4(a) shows a plot of the

resulting 95.4% joint credible region (dashed curve). The solid curve shows the 68.3%

joint credible region derived in the same way.

What if we are interested in summarizing what the data and our prior information

have to say about the slope, i.e., determining the marginal PDF, pðA2jD; IÞ? In this
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Figure 10.4 Panel (a) is a plot of the 95.4% (dashed) and 68.3% (solid) joint credible regions for
the slope and intercept of the best-fit straight line to the data of Table 10.1. Panel (b) shows

ellipses corresponding to ��2 ¼ 1:0 and ��2 ¼ 4:0. The two lines labeled A and A0, which are
tangent to the inner ellipse, define the 68.3% credible region for the marginal PDF, pðA2jD; IÞ.
The two lines labeled B and B0, which are tangent to the outer ellipse, define the 95.4% credible
region for pðA2jD; IÞ.
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case, we need to marginalize over all possible values of A1. We will look at this

question more fully in Section 10.5, but we can use the material of this section to

obtain the 68.3% credible region for A2 as follows. By good fortune it turns out that

for Gaussian posteriors, in any number of dimensions, the marginal PDF is also equal

to the projected distribution (projected PDF).What do wemean by the projected PDF

for A2? Imagine a light source located a great distance away along the A1 axis,

illuminating the 3-dimensional probability density function, thought of as an opaque

mountain sitting on the A1;A2 plane. The height of the mountain at any particular

A1;A2 is equal to pðA1;A2jD; IÞ. The shadow cast by this mountain on the plane

defined by A1 ¼ 0 is called the projected probability density function of A2.

To plot out the projected PDF, we can do the following. Each value of A2 in our

final plot corresponds to a line parallel to the A1 axis. Vary A1 along this line and find

the maximum value of pðA1;A2jD; IÞ along the line. If we raise the line to this height it

will be tangent to the surface of the probability mountain for this A2. This is the value

of the projected PDF for that particular value of A2.

Now consider the two lines shown in Figure 10.4(b), labeled A and A0, which define

the borders of the 68.3% credible region for A2. You might naively expect these two

lines to be tangent to the ellipse containing 68.3% of the joint probability,

pðA1;A2jD; IÞ, as illustrated in Figure 10.4(a) for ��2 ¼ 2:3. The correct answer is

that they are tangent to the ellipse shown in Figure 10.4(b), corresponding to

��2 ¼ 1:0, as indicated in Table 10.2 for one degree of freedom. The two lines, B

and B0, which define the 95.4% credible region, are tangent to the ellipse defined by

��2 ¼ 4:0. In a like fashion we could locate the 68.3% and 95.4% credible region

boundaries for A1.

10.5 Model parameter errors

In Sections 10.2.1 and 10.2.2, we found the most probable values of linear model

parameters. To complete the discussion, we need to specify the uncertainties of these

parameters and introduce the parameter covariance matrix.

10.5.1 Marginalization and the covariance matrix

Now suppose that we are only interested in a subset of the model amplitudes (for

example, one amplitude may describe an uninteresting mean background level, or, we

may be interested in the probability density function of only one of the parameters).

We can summarize the implications of the data for the interesting amplitudes by

calculating the marginal distribution for those amplitudes, integrating the uninterest-

ing nuisance parameters out of the full joint posterior. In this subsection we start by

showing how to integrate out a single amplitude; the procedure can be repeated to

remove more parameters. We then consider the special case of a model with only two
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parameters (M ¼ 2) and see how this leads to an understanding of the parameter

errors.

Suppose that the amplitude we want to marginalize out is A1. Returning to the

Q notation and IID Gaussian errors, the marginal distribution for the remaining

amplitudes is then

pðA2; . . . ;AMjD; IÞ ¼
Z
�A1

dA1 pðfA�gjD; IÞ

¼ C0
Z
�A1

dA1 e
��Q=2�2 ;

(10:81)

where

�QðAÞ ¼
X
��

�A� ���A�: (10:82)

To perform the required integral, we first pull out the �A1-dependent terms in �Q,

writing

�Q ¼ ð�A1Þ2 11 þ 2�A1

XM
�¼2

 1��A� þ
XM
�;�¼2

�A� ���A�; (10:83)

where �A1 appears only in the first two terms.

Now we complete the square for �A1 by adding and subtracting a term as

follows:

�Q ¼ ð�A1Þ2 11 þ 2�A1

XM
�¼2

 1��A� þ
1

 11

XM
�¼2

 1��A�

 !2

� 1

 11

XM
�¼2

 1��A�

 !2

þ
XM
�;�¼2

�A� ���A�

¼  11 �A1 þ  �111

XM
�¼2

 1��A�

" #2
þ�Qr:

(10:84)

By construction, �A1 appears only in the squared term, and the terms depending on

the remaining �A’s make up the reduced quadratic form,

�Qr ¼ �
1

 11

XM
�¼2

 1��A�

 !2

þ
XM
�;�¼2

�A� ���A�: (10:85)
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Equation (10.81) can now be written

pðA2; . . . ;AMjD; IÞ ¼ C0e��Qr=2�
2

Z
�A1

dð�A1Þ

� exp �  11

2�2
�A1 þ  �111

XM
�¼2

 1��A�

 !2
2
4

3
5: (10:86)

The integrand is a Gaussian in �A1, with variance �2= 11. If the range of integration,

�A1, were infinite, the integral would merely be a constant (the normalization constant

for the Gaussian, �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p= 11

p
). With a finite range, it can be written in terms of error

functions with arguments that depend onA2 throughAM. But as long as the prior range

is large compared to�=
ffiffiffiffiffiffiffi
 11

p
, this integral will be very nearly constant with respect to the

remaining amplitudes. Thus, to a good approximation, the marginal distribution is

pðA2; . . . ;AMjD; IÞ ¼ C00e��Qr=2�
2

; (10:87)

where C00 ¼ C0�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p= 11

p
is a new normalization constant. In the limit where

�A1 !1, this result is exact.

Again, it is useful to consider the special case of only two parameters,M ¼ 2. In this

case, after marginalizing out A1 we are left with pðA2jD; IÞ. Let’s evaluate this now.

We can rewrite Equation (10.85),

�Qr ¼ �
1

 11
ð 12�A2Þ2 þ �A2 22�A2

¼ �A2
2

 11 22 �  2
12

 11

� �
:

(10:88)

Thus, we can write

pðA2jD; IÞ ¼ C0�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p= 11

p
e��A

2
2
=2�2

2 ; (10:89)

which is a Gaussian with variance �22 given by

�22 ¼ �2
 11

 11 22 �  2
12

� �
: (10:90)

Similarly, if we had marginalized out A2 instead, we would have obtained a

Gaussian PDF for pðA1jD; IÞ with �21 given by

�21 ¼ �2
 22

 11 22 �  2
12

� �
: (10:91)
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Notice that the variances for A1 and A2 can be written in terms of the elements of y�1:

y�1 ¼ 1

 11 22 �  2
12

 22 � 12

� 12  11

� �
: (10:92)

Comparing with Equations (10.91) and (10.90), we can write

�21 ¼ �2½y�1�11; (10:93)

�22 ¼ �2½y�1�22: (10:94)

Thus, we have shown for theM ¼ 2 case, that thematrix y�1 that we needed to solve
for Â� (see Equation (10.34)), when multiplied by the data variances (�2), also

contains information about the errors of the parameters. In Section 10.5.3, we will

generalize this result for the case of a linear model with an arbitrary number of

parameters M, and show that

�2� ¼ �2½y�1���: (10:95)

The matrix V ¼ �2y�1 is given the name parameter variance-covariance matrix or

simply the parameter covariance matrix.12 We shall shortly define what we mean by

covariance.

If we wish to summarize our posterior state of knowledge about the parameters with

a few numbers, then we can write

A1 ¼ Â1 � �1 (10:96)

A2 ¼ Â2 � �2: (10:97)

Formally, the variance ofA1 is defined as the expectation value of the square-of-the-

deviations from the mean 
1;

VarðA1Þ ¼ hðA1 � 
1Þ2i ¼
Z
�A1

dA1ðA1 � 
1Þ2pðA1jD; IÞ: (10:98)

The idea of variance can be broadened to consider the simultaneous deviations of

both A� and A�. The covariance is given by

��� ¼
Z
�A�

Z
�A�

dA�dA�ðA� � 
�ÞðA� � 
�ÞpðA�;A�jD; IÞ (10:99)

and is a measure of the correlation between the inferred parameters. If, for example,

there is a high probability that overestimates of A� are associated with overestimates

12 If we are employing the covariance matrix, E, for our knowledge of the measurement errors, then simply replace y�1
by Y�1,  �� by ��� and drop all the factors of �2 in Equations (10.93), (10.94), (10.101), and (10.100).
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of A�, and underestimates of A� associated with underestimates of A�, then the

covariance will be positive. Negative covariance (anti-correlation) implies that over-

estimates ofA� will be associated with underestimates ofA�. When the estimate of one

parameter has little or no influence on the inferred value of the other, then

the magnitude of the covariance will be negligible in comparison to the variance

terms, j���j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
������
p ¼

ffiffiffiffiffiffiffiffiffiffiffi
�2��

2
�

q
.

By now you may have guessed that the covariance of the inferred parameters is

given by �2 times the off-diagonal elements of the y�1 matrix.

��� ¼ �2½y�1���: (10:100)

Thus, for the M ¼ 2 case, we have

�12 ¼ �2½y�1�12

¼ �2 � 12

 11 22 �  2
12

� �
:

(10:101)

Referring to Figure 10.3, we see that the major axis of the elliptical credible region is

inclined to the A1 axis with a positive slope. This indicates a positive correlation

between the parameters A1 and A2. A value of �12 ¼ 0 would correspond to a major

axis which is aligned with the A1 axis if �1 > �2.

10.5.2 Correlation coefficient

It is useful to summarize the correlation between estimates of any two parameters by a

coefficient in the range from �1 to þ1, where �1 indicates complete negative correl-

ation, þ1 indicates complete positive correlation, and 0 indicates no correlation. The

correlation coefficient is defined by

��� ¼
���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
������
p ¼ ���ffiffiffiffiffiffiffiffiffiffiffi

�2��
2
�

q : (10:102)

In the extreme case of � ¼ �1, the elliptical contours will be infinitely wide in one

direction (with only information in the prior preventing this catastrophe) and oriented

at an angle� tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð 22= 11Þ

p� �
. In this case, the parameter error bars �1 and �2 will

be huge, saying that our individual estimates of A1 and A2 are completely unreliable,

but we can still infer a linear combination of the parameters quite well. For � large

and positive, the probability contours will all bunch up close to the line

A2 ¼ interceptþmA1, where m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð 22= 11Þ

p
. We can rewrite this as A2 �mA1 ¼

intercept. Varying the intercept corresponds to motion perpendicular to this line. The

concentration of probability contours implies that the probability density of the

intercept is quite narrow. Since the intercept is equal to A2 �mA1, this indicates
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that the data contain a lot of information about the difference A2 �mA1. If � is large

and negative, then we can infer the sum A2 þmA1.

Problem: In Section 10.2.2, we fitted a straight line model to the data in Table 10.1.We

are now in a position to evaluate the errors for the marginal posterior density functions

for the intercept, A1, and slope, A2, from the diagonal elements of V ¼ Y�1 ¼
ðGTE�1GÞ�1 which is given by

Y�1 ¼ �2 0:061 �0:0012
�0:0012 0:000030

� �
; (10:103)

where �2 ¼ 8:1.

Solution: Let �1 and �2 be the 1� errors of A1 and A2. Y�1 is the variance-covariance
matrix of the parameter errors. In this case, it includes the data covariance matrix E�1

so we need to use Equations (10.93) and (10.94) without the �2 term in front.

�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Y�1�11

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:061�2
p

¼ 0:70; (10:104)

�2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Y�1�22

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:000030 �2
p

¼ 0:016; (10:105)

and,

Â1

Â2

� �
¼ �2:05� 0:70

0:275� 0:016

� �
: (10:106)

The correlation coefficient is

�12 ¼
�12ffiffiffiffiffiffiffiffiffiffiffiffiffi
�11�22
p ¼ ½Y�1�12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½Y�1�11½Y�1�22
q ¼ �0:0012ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:061� 0:00003
p ¼ �0:885: (10:107)

When there are only two parameters, it is more informative to give a contour plot of

the joint posterior probability density function, which illustrates the correlation in the

parameter error estimates. In Section 10.4.1, we showed how to compute the joint

credible region for the slope and intercept and plotted two examples in Figure 10.4(a).

This figure is repeated in the left panel of Figure 10.5. The two contours shown enclose

95.4% and 68.3% of the probability.

In the previous analysis, the intercept and slope are referenced to the origin of our

data. It turns out that the size of the correlation coefficient depends on the origin we

choose for the x-coordinate, as we demonstrate in Figure 10.6. In fact, if we shift the

origin by just the right amount, call it xw, we can eliminate the correlation altogether.
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From Equation (10.107) it is clear that �12 ¼ 0 if ½Y�1�12 ¼ 0, and it is easy to show

that the off-diagonal elements of Y�1 are zero if the off-diagonal elements of Y are

zero. These modified basis functions are referred to as orthogonal basis functions.

From Equations (10.47) and (10.46) we can write

½Y�12 ¼
X
ij

gi1½E�1�ij gj2: (10:108)
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Figure 10.6 Two straight line fits to some data with an origin well outside the x range of the
data. Clearly, any variation in the slope parameter will have a strongly correlated effect on

the intercept and vice versa. If the x origin had been chosen closer to the middle of the data,
then variations in slope would have a much smaller effect on the intercept.
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Figure 10.5 Panel (a) shows a contour plot of the joint posterior PDF pðA1;A2jD; IÞ. The dashed
and solid contours enclose 95.4% and 68.3% of the probability, respectively. Panel (b) is the
same but using the weighted average x-coordinate as the origin of the fit.
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For the straight line model gi1 ¼ f1; 1; . . . ; 1g and gj2 ¼ fx1; x2; . . . ; xNg. Shifting the

origin to xw changes gj2 to g0j2 ¼ fx1 � xw; x2 � xw; . . . ; xN � xwg. We can solve for xw
by setting

½Y�012 ¼
X
ij

gi1 ½E�1�ij g0j2 ¼ 0: (10:109)

From Equation (10.52), we can rewrite Equation (10.109) as

½Y�012 ¼ ð1; 1; 1; . . . ; 1Þ
1

�2

14 0 0 � � � 0

0 3 0 � � � 0

0 0 25 � � � 0

� � � � �

0 0 � � � 0 2

0
BBBBBBBB@

1
CCCCCCCCA

x1 � xw

x2 � xw

x3 � xw

�

xN � xw

0
BBBBBBBB@

1
CCCCCCCCA

¼ 1

�2
ð14; 3; 25; . . . ; 2Þ

x1 � xw

x2 � xw

x3 � xw

�

xN � xw

0
BBBBBBBB@

1
CCCCCCCCA

¼ ðw1;w2;w3; . . . ;wNÞ

x1 � xw

x2 � xw

x3 � xw

�

xN � xw

0
BBBBBBBB@

1
CCCCCCCCA

¼ w1ðx1 � xwÞ þ w2ðx2 � xwÞ þ � � � þ wNðxn � xwÞ ¼ 0;

(10:110)

where the data weights, wi, are given by the diagonal elements of the inverse data

covariance matrix E�1. The solution of Equation (10.110) is given by

xw ¼
P

wixiP
wi

: (10:111)

Panel (b) of Figure 10.5 shows the joint credible region for the parameters obtained

using the weighted average, xw, as the origin. The major and minor axes of the ellipse

are now parallel to the parameter axes. The sensitivity of the analysis to the choice of

origin arises from the model predictions’ dependence on the origin.
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Suppose that instead of a straight line model, we had wanted to fit a higher order

polynomial to the data. The appropriate function to fit, to ensure the coefficients are

uncorrelated, can be shown to be of the form

yðxiÞ ¼ A1 þ A2ðxi � xwÞ þ A3ðxi � �1Þðxi � �2Þ

þ A4ðxi � �1Þðxi � �2Þðxi � �3Þ þ � � � ;
(10:112)

In the case of a polynomial with just the first 3 terms, we can compute �1 and �2 from

the two equations

½Y�013 ¼
X
ij

gi1 ½E�1�ij g0j3 ¼ 0; (10:113)

½Y�023 ¼
X
jk

g0j2 ½E�1�jk g0k3 ¼ 0; (10:114)

where g0j2 ¼ fx1 � xw; x2 � xw; . . . ; xN � xwg

and g0k3 ¼ fðx1 � �1Þðx1 � �2Þ; ðx2 � �1Þðx2 � �2Þ; . . . ; ðxN � �1ÞðxN � �2Þg: (10:115)

10.5.3 More on model parameter errors

In Sections 10.2.1 and 10.2.2, we found the most probable values of linear model para-

meters. To complete the discussion, we need to specify the uncertainties of these para-

meters.Wemade a start on this in Section 10.5.1 for the special case of a linearmodel with

only two parameters ðM ¼ 2Þ. We also introduced the concept of the covariance of two

parameters and the correlation coefficient. In this section, we will generalize these results

for an arbitrary value of M. In Section 10.4, we showed that the posterior probability

distribution of the parameters pðfA�gjD; IÞ is a multivariate Gaussian given by

pðfA�gjD; IÞ / exp � 1

2�2

X
��

�A� ���A�

" #
: (10:116)

If we use the more powerful matrix formulation which includes the data covariance

matrix E (see Section 10.2.2), then we need to replace

1

2�2

X
��

�A� ���A� by
1

2

X
��

�A�����A�:

Equation (10.116) becomes

pðfA�gjD; IÞ / exp � 1

2

X
��

�A�����A�

" #

¼ exp � 1

2

X
��

ðA� � Â�Þ½Y���ðA� � Â�Þ
" #

:

(10:117)
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Now compare Equation (10.117) with Equation (10.41) for pðDjfA�g; IÞ which is

repeated here.

pðDjfA�g; IÞ / exp � 1

2

X
ij

ðdi � fiÞ½E�1�ijðdj � fjÞ
" #

: (10:118)

Both have the same form. In Equation (10.118), E is the data covariance matrix. By

analogy the inverse of Y; Y�1 is the model parameter covariance matrix. Thus,

everything we need to know about the uncertainties with which the various parameters

have been determined, and their correlations, is given byY�1 ¼ ðGTE�1GÞ�1, amatrix

which we previously computed (Section 10.2.2) in the determination of the most

probable values of the parameters. The variance terms are given by the diagonal

elements of Y�1 and the covariance terms by the off-diagonal elements. We see that

the parameter errors depend on the data errors through E�1 but in a complicated way

which depends on our choice of model basis functions.

In Section 10.2.2, we also saw that E�1 plays the role of a metric in the full

N-dimensional vector space of the data. In a similar fashion, Y plays the role of a

metric in the M-dimensional subspace spanned by the model functions.

10.6 Correlated data errors

In this section, we compute the mean of a data set for which the off-diagonal elements

of the data covariance matrix, E, are not all zero, i.e., the noise components are

correlated. These correlations can be introduced by the experimental apparatus prior

to the digitization of the data, or by subsequent software operations. Panel (a) of

Figure 10.7 shows 100 simulated data samples of a mean, 
 ¼ 0:5, with added IID

Gaussian noise ð� ¼ 1Þ. Panel (b) shows the same data after a smoothing operation

that replaces each original sample ðdiÞ by aweighted average ðziÞ of the original sample

and its nearest neighbors according to Equation (10.119).

zi ¼
0:75di þ 0:25diþ1 for i ¼ 1

0:25di�1 þ 0:5di þ 0:25diþ1 for 1 < i < 100

0:25di�1 þ 0:75di for i ¼ 100.

8<
: (10:119)

If the characteristic width of the signal component in the data is very broad13 (in this

example the signal is a DC offset), then the smoothing will have little effect on the

signal component. However, it will introduce correlations into the independent noise

components. These correlations need to be incorporated in the analysis. The dominant

correlation in the smoothed data is with the nearest neighbor on either side. There is

13 If the smoothing has a significant effect on the signal component then this can be accounted for in the signal model by
a convolution operation, as discussed in Appendix B.4.3.
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also a weaker correlation with the next nearest neighbor14. A common tool for

calculating correlations is the autocorrelation function (ACF), which was introduced

in Section 5.13.2. To compute the ACF of the noise15 we need a sample of data

(without any signal present) which has been smoothed in the same way. Panel (c) of

Figure 10.7 compares the autocorrelation functions for the raw data and smoothed

data. For the smoothed data, the ACF yields a correlation coefficient �1 ¼ 0:68 for

nearest neighbors (lag of 1), and �2 ¼ 0:16 for next nearest neighbors (lag of 2).

Panel (d) shows the Bayesian marginal posterior of the mean, pð
jD; IÞ, computed

for three cases. In case 1, pð
jD; IÞ was computed from the independent samples of

panel (a) following the treatment of Section 9.2.1. In case 2, pð
jD; IÞ was computed
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Figure 10.7 Panel (a) shows 100 independent samples of a mean value 
. In panel (b), the data
have been smoothed using a running average that introduces correlations. Panel (c) compares

the autocorrelation functions (ACF) for the raw data and smoothed data. Panel (d) compares
the posterior density for 
 for three cases. Case 1 is based on an analysis of the independent
samples. The smoothed data results correspond to case 2 (assuming no correlations) and case 3
(including correlations).

14 According to equation (5.63), we first subtract the mean of the noise data which can introduce a correlation between
all the noise terms. If N is large this correlation is very weak and has been neglected in the current analysis.

15 We can write

�12 ¼ he1e2i ¼ he2e3i ¼ heieiþ1i ¼ �2�ðj ¼ 1Þ;

where �ðj ¼ 1Þ is the value of the ACF for lag j ¼ 1.
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from the smoothed data and assuming no correlation. This second case results in

a narrower posterior which is unwarranted because our state of information

is unchanged from case 1, we have simply transformed the original data via

a smoothing operation. In case 3, we incorporated information about the correlations

introduced by the smoothing. This yielded essentially the same result as we obtained

in case 1, as we would expect. In all three cases, we assumed the noise � was

an unknown nuisance parameter. We assumed a Jeffreys prior for � and a uniform

prior for 
.

For case 3, the likelihood was computed from Equation (10.41), which for the

current problem can be written as

pðDj
; �; IÞ ¼ 1

ð2pÞN=2
ffiffiffiffiffiffiffiffiffiffiffi
detE
p exp � 1

2

X
ij

ðdi � fiÞ½E�1�ijðdj � fjÞ
" #

¼ 1

ð2pÞN=2
ffiffiffiffiffiffiffiffiffiffiffi
detE
p exp � 1

2
�YTE�1�Y

	 

;

(10:120)

where �YT ¼ fðd1 � f1Þ; ðd2 � f2Þ; . . . ; ðdN � fNÞg is a vector of the differences between
the measured and predicted data values. From the results of the ACF, the data

covariance matrix, E, is given by

E ¼ �2

1 �1 �2 0 � � � 0 0 0

�1 1 �1 �2 � � � 0 0 0

�2 �1 1 �1 � � � 0 0 0

� � � � � � � �
0 0 0 0 � � � �2 �1 1

0
BBBBBB@

1
CCCCCCA

¼ �2

1 0:68 0:16 0 � � � 0 0 0

0:68 1 0:68 0:16 � � � 0 0 0

0:16 0:68 1 0:68 � � � 0 0 0

� � � � � � � �
0 0 0 0 � � � 0:16 0:68 1

0
BBBBBB@

1
CCCCCCA
:

(10:121)

10.7 Model comparison with Gaussian posteriors

In this section, we are interested in comparing the probabilities of two linear models

with different numbers of amplitude parameters. From our treatment of model

comparison in Section 3.5, it is clear that the key quantity in model comparison is

the evaluation of the global likelihood of a model. Calculation of the global likelihood

requires integrating away all of the model parameters from the product of the prior
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and the likelihood. The integral required to calculate the global likelihood was given

earlier as Equation (10.14), which we repeat here:

pðDjMi; IÞ ¼
1Q

��A�

1

�Nð2pÞN=2
Z
�A

dMA�e
�ðQ=2�2Þ

¼ 1Q
��A�

1

�Nð2pÞN=2
e�ðQmin=2�

2Þ
Z
�A

dMA�e
�ð�Q=2�2Þ;

(10:122)

where we have used Equation (10.59) to expand Q.

We could do the remaining integral by repeating the process of the preceding

Section 10.5.1 for each amplitude: complete the square and integrate, one amplitude

at a time. This gets to be very tedious if there are a large number of parameters. A

mathematically more elegant approach involves transforming to an orthonormal set

of model basis functions. The result is given by

pðDjMi; IÞ ¼
ð2pÞM=2

ffiffiffiffiffiffiffiffiffiffiffi
detV
pQ

��A�

" #
1

�Nð2pÞN=2
e�ð�

2
min
=2Þ

¼ �M Lmax;

(10:123)

where V is the parameter covariancematrix. The quantityLmax is the likelihood for the

model at the mode, which is given by

Lmax ¼ pðDjÂ;MiÞ ¼
1

�Nð2pÞN=2
e�ð�

2
min
=2Þ (10:124)

and the Occam factor for the model is

�M ¼
ð2pÞM=2

ffiffiffiffiffiffiffiffiffiffiffi
detV
pQ

��A�
: (10:125)

Assigning competing models equal prior probabilities, the posterior probability for

a model will be proportional to Equation (10.123). The odds ratio in favor of one

model over a competitor is simply given by the ratio of Equation (10.123) for the two

models. Suppose model 1 has M1 parameters, denoted A�, and has a minimum �2

equal to �2
1;min. Suppose model 2 hasM2 parameters, denoted A0�, and has a minimum

�2 equal to �2
2;min. Then the odds ratio in favor of model 1 over model 2 is

O12 ¼
pðM1jIÞ
pðM2jIÞ

� pðDjM1; IÞ
pðDjM2; IÞ

¼ 1� pðDjM1; IÞ
pðDjM2; IÞ

¼ e��
2
min
=2 ð2pÞðM1�M2Þ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detV1

detV2

s QM2

�¼1 �A�QM1

�¼1 �A0�
;

(10:126)
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where V1 and V2 are the covariance matrices for the estimated parameters and

��2
min ¼ �2

2;min � �2
1;min. If the two models have some parameters in common, then

the ratio of the prior ranges �A� and �A0� for these parameters will cancel.

Problem: In Section 3.6, we considered two competing theories. One theory ðM1Þ
predicted the existence of a spectral line with known Gaussian shape and location,

and a line amplitude in the range 0.1 to 100 units. The other theory ðM2Þ predicted
no spectral line (i.e., an amplitude ¼ 0). We now re-analyze the 64 channel spectral

line data given in Table 3.1 using the linear least-squares method discussed in this

chapter. We will assume a uniform prior for the line amplitude predictions of M1.
16

Solution: First we calculate the most probable amplitude using Equation (10.34),

Â ¼ ðGTE�1GÞ�1GTE�1D ¼ Y�1GTE�1D: (10:127)

For M1, the model prediction, fi, is given by

fi ¼ A1gi ¼ A1 exp �
ð�i � �oÞ2

2�2L

 !
; (10:128)

and so there is only one basis function, gi. Thus, G
T is given by

GT ¼ ðg1; g2; . . . ; g64Þ: (10:129)

Also, for this problem, the inverse data covariance matrix is a 64� 64 matrix given by

E�1 ¼ 1

�2
¼

1 0 0 � � � 0
0 1 0 � � � 0
0 0 1 � � � 0
� � � � �
0 0 � � � 0 1

0
BBBB@

1
CCCCA ¼

1 0 0 � � � 0
0 1 0 � � � 0
0 0 1 � � � 0
� � � � �
0 0 � � � 0 1

0
BBBB@

1
CCCCA; (10:130)

since the errors are independent and identically distributed with a �2 ¼ 1.

The D matrix is a column matrix containing the 64 channel spectrometer measure-

ments given in Table 3.1 of Section 3.6. Now that we have specified all the matrices, we

can evaluate Â from Equation (10.127) using Mathematica.

Since M1 has only one parameter, the parameter covariance matrix V¼Y�1¼
ðGTE�1GÞ�1 is a single number equal to the variance of Â. The final answer for Â is

Â ¼ 1:54� 0:53: (10:131)

Now we want to compute the odds ratio, O12, in favor of M1 over the competing

model M2. Since the two models were assigned equal prior probability, the odds is

16 The diligent reader might object at this point that in Section 3.6, we gave a strong argument for using a Jeffreys prior
for the line amplitude. Linear least-squares analysis is widely used in data analysis and we wanted to highlight its
strengths and weaknesses which are discussed in the conclusions given at the end of the problem.
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given by

O12 ¼
pðM1jIÞ
pðM2jIÞ

� pðDjM1; IÞ
pðDjM2; IÞ

¼ 1� pðDjM1; IÞ
pðDjM2; IÞ

: (10:132)

Model M2 has no undetermined parameter and predicts the spectrum equals zero

apart from noise. The quantity pðDjM2; IÞ is given by

pðDjM2; IÞ ¼
1

�Nð2pÞN=2
e��

2
2;min

=2; (10:133)

where

�2
2;min ¼

XN¼64
i

d2i
�2
¼ 57:13: (10:134)

For model M1 we can use Equation (10.123) with M ¼ 1 parameter, yielding

pðDjM1; IÞ ¼
ð2pÞ1=2

ffiffiffiffiffiffiffiffiffiffiffi
detV
p

�A1

" #
1

�Nð2pÞN=2
e
��2

1;min =2

¼ �1Lmax;

(10:135)

where

�2
1;min ¼

XN¼64
i

ðdi � ÂgiÞ2

�2
¼ 48:49: (10:136)

Equation (10.135) contains an Occam penalty, �1, which penalizes M1 for prior

parameter space that gets ruled out by the data through the likelihood function. The

penalty arises automatically from marginalizing over the prior range�A. In this case,

�1 ¼
ð2pÞ1=2

ffiffiffiffiffiffiffiffiffiffiffi
detV
p

�A1

" #
¼ 0:0133: (10:137)

Substituting Equations (10.133) and (10.135) into Equation (10.132), we get

O12 ¼ �1e
ð�2

2;min
��2

1;min
Þ=2 ¼ 1:0: (10:138)

Conclusions:

a) Not surprisingly, the results obtained here for Â and O12 are the same as we got from the

brute force analysis used in Section 3.6 for the uniform prior assumption for A. In the

current problem, we were dealing with only one parameter (forM1). Some problems involve
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a very large number of linear parameters and in these cases, the linear least-squares

approach is very efficient because no integrals need to be performed.

b) In principle, linear least-squares analysis is only applicable for linear parameters with uniform

priors. In Section 3.10, we learned that there are good reasons for distinguishing between

location parameters, i.e., both positive and negative values are allowed, and scale parameters,

which are always positive. We also learned that there are strong reasons for preferring a

Jeffreys prior over a uniform prior when dealing with a scale parameter. Of course, in some

problems, we are fortunate to have much more selective prior information about parameter

values, e.g., based on the results of previous experiments.

The reader may well ask why we chose the spectral line example where the amplitude is a

scale parameter. Linear least-squares analysis is widely used in data analysis and we wanted

to highlight its strengths and weaknesses. For many parameter estimation problems, the

choice of prior is not too important because the posterior probability density is usually

dominated by the likelihood function which is generally rather strongly peaked except when

there are very little data.

c) In model selection problems, the choice of prior is much more critical. In Section 3.6, we

addressed this question in considerable detail. We showed that using a more appropriate

Jeffreys prior led to an odds ratio favoringM1 which was a factor of�11 larger than for the

uniform prior assumption. The main message here is to only use the material on model

comparison in Section 10.7 when dealing with parameters for which the choice of a uniform

prior is appropriate.

10.8 Frequentist testing and errors

The results in this chapter have been developed from a Bayesian perspective. For

comparison purposes, we now introduce a section on model testing and parameter

errors from a frequentist perspective. My apologies to those of you who have your

Bayesian hat on at this point and can’t face the transition again. You can always skip

over this section now and return to it if youwant to answer question 3(e) in the problems

at the end of this chapter. In Section 7.2.1, we discussed the use of the �2 statistic in

hypothesis testing. Once we have determined the best set of model parameters, we can

use the �2 statistic to test if the model is acceptable by attempting to reject the model at

some confidence level. From Equation (10.41) we see that �2 for the fit17 is given by

�2 ¼
X
ij

ðdi � fiÞ½E�1�ijðdj � fjÞ: (10:139)

If the errors are independent, this reduces to the more familiar form:

�2 ¼
X
i

ðdi � fiÞ2

�2i
: (10:140)

17 In the frequentist context, if the data errors are IID normal, then treated as a random variable, this quantity will have a
�2 distribution with the number of degrees of freedom equal toN �M. If the data covariance matrix E�1 has non-zero
off-diagonal elements, indicating correlations, then the number of degrees of freedom will be less than N �M.
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If the model contains M parameters and there are N data points, then our con-

fidence in rejecting the model is given by the Mathematica command:

1 - GammaRegularized N�M
2
;
c2
2

h i

Some words of caution are in order on the use of the above for rejecting a hypothesis.

FirstGammaRegularized [(N�M)=2; �2=2]measures the significance of the test, which

equals the area of the �2 distribution to the right of our measured value. Again, if the

model is correct and the data errors are known to be IID normal, this area represents the

fraction of hypothetical repeats of the experiment that are expected to fall in this tail area

by chance. If this area is very small, then there are at least three possibilities: (1) we have

underestimated the size of the data errors, (2) the model does a poor job of explaining

the systematic structure in the data, or (3) the model is correct; the result is just a very

unlikely statistical fluctuation. Because experimental errors are frequently underestimated,

it is not uncommon to require a significance < 0:001 before rejecting a hypothesis.

Note: if the significance is very large, e.g.,	 0:5, this is an indication that the data errors

may have been overestimated.

Note: Mathematica provides a command called

ChiSquarePValue½c2;N�M�

which has a maximum value of 0.5. This command can sometimes lead to confusion

because it measures the area in either tail region. Thus, if the measured value of �2 is

less than the number of degrees of freedom (the expectation value for the hypothetical

reference distribution), we would not want to refer to our confidence in rejecting the

model as 1-ChiSquarePValue.

The above model test assumes we know the errors accurately. What if the scatter in

the data from the best fitting model is considerably larger than the data errors used in

the analysis but we are convinced that the model is correct? The other option is that we

have underestimated the errors. Perhaps the model correctly describes some aspect of

the data but in addition something else is going on. Frequently this is how we discover

the presence of some new phenomenon: by looking for systematic effects in the

residuals after subtracting off the best-fit model from the data.

In Section 10.5.1, we saw that information about the model parameter errors is

contained in the covariance matrix, one form of which is given by

V ¼ �2y�1 ¼ �2ðGTGÞ�1: (10:141)

If we have underestimated the data errors (�) then thiswill lead to our underestimating the

parameter errors.We saw in Section 9.2.3 that in a Bayesian analysis, we canmarginalize

over any unknown data error and ensure that our parameter uncertainties properly

reflect the size of the residuals between the best fitting model and data (see Figure 9.3).
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A useful frequentist method for obtaining more robust parameter errors is based on

assuming the model is correct and then adjusting all the assumed measurement errors

by a factor k. The new value of �2 is then given by

�2 ¼
XN
i¼1

ðdi � fiÞ2

k2�2i
¼ �

2
meas

k2
; (10:142)

where�2
meas is the value of �

2 computed using the initial �i error estimates. The factor k

is computed in the following way. When the model is valid, and the data errors are

known, the expected value of �2 for the best choice of model parameters, �2
expect, is

equal to the number of degrees of freedom ¼ N�M, where N ¼ the number of data

points, and M ¼ the number of fit parameters. The procedure then is to adjust the

value of k so that �2 in Equation (10.142) is equal to N�M.

�2 ¼ �
2
meas

k2
¼ �2

expect ¼ N�M: (10:143)

The solution is

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
meas

N�M

r
: (10:144)

Including a factor k is a good thing to do since often nature is more complicated than

either the model or known measurement errors can account for. Increasing all the

measurement errors from � to k� corresponds to increasing the terms in the parameter

covariance matrix (see Equation (10.141)) by k2 or the parameter standard errors by k.

The equivalent operation in Bayesian analysis would be to introduce k as a nuisance

parameter and marginalize over our prior uncertainty in this parameter.

The method just described for obtaining more accurate error estimates assumed

that themodel was true.We cannot turn around and use these errors in a�2 hypothesis

test to see if we can reject the model. In contrast, in a Bayesian analysis, we can allow

for uncertainty in the value of k and also carry out a model selection operation after

marginalizing over the unknown k. Recall that whenever we marginalize over a model

parameter, this introduces an Occam penalty which penalizes the model for our prior

uncertainty in the parameter in a quantitative fashion. If all the models that we are

comparing in themodel selection operation depend on this parameter in the same way,

then these Occam penalties cancel out. If they depend on the parameter in different

ways (e.g., models pðC;SjD; IÞ and pðC;SjD; IÞ in Section 9.4), then the Occam

penalties do not cancel.

10.8.1 Other model comparison methods

It is often useful to plot the variance of the residuals versus the number of model fitting

parameters, M. For example, in the case of a polynomial model we can vary the
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number of parameters. Of course, for M ¼ 0, the residual variance is just the data

variance. We can characterize a model by how quickly the curve of residual variance

versus M drops. Any variance curve which drops below another indicates a model

which is better, in the sense that it achieves a better quality fit to the data with a given

number of model functions. What one would expect to find is a very rapid drop as the

systematic signal is taken up by the model, followed by a slow drop as additional

model functions expand the noise. The total number of useful model parameters is

determined by the break in this curve. In constructing the residual variance curves, we

need to be aware that if we were to rearrange the order in which the bestmodel terms

are incorporated, we can always produce a curve that is above that of the same model

but with a different order. We want to order the model parameters to produce the

lowest residual variance curve before selecting the break point.

The F statistic can also be used to decide which basis functions are significant.

Suppose our null hypothesis is that amodel withM unknown parameters is the correct

model. If the model’s prediction for the ith data point is designated fl, then

�2
v ¼

XN
i¼1

ðdi � fiÞ2

�2
(10:145)

has a �2
v distribution with � ¼ N�M degrees of freedom. Consider the effect on �2

when an extra term is added to the model fitting function so the number of degrees of

freedom is decreased by 1. If the simpler model is true then the effect of the extra term

is to remove some of the noise variation. The expected decrease in �2 is the same as if

we had not added the extra term but simply reduced N by one. Thus

��2 ¼ �2
� � �2

��1 (10:146)

has a �2 distribution with 1 degree of freedom.

According to equation (6.35)

F ¼ ��2

�2
��1=ð� � 1Þ (10:147)

follows an F distribution18 with 1 and � � 1 degrees of freedom. If the simpler model is

correct you expect to get an f ratio near 1.0. If the ratio is much greater than 1.0, there

are two possibilities:

1. The more complicated model is correct.

2. The simpler model is correct, but random scatter led themore complicatedmodel to fit better.

The P-value tells you how rare this coincidence would be.

18 Since �2 is a common factor in the calculation of both ��2 and �2
v�1 we can rewrite equation (10.147) as

F ¼ �N
i¼1ðdi � fiÞ

2 � �N
i¼1ðdi � fþiÞ

2

�N
i¼1ðdi � fþiÞ

2
ð10:148Þ

where f+i¼ the predicted value for the model with the extra term. Thus it is not necessary to know �2 to carry out this
F-test.
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If the P-value is small enough (e.g., 
 5%), reject the simpler model. Otherwise,

conclude that there is no compelling evidence to reject the simpler model.

As an example, we use the F-test to compare models M1 (line exists) and M2 (no

line exists) in the spectral line problem of Section 3.6. The best fit for M1 (63 degrees

of freedom) yielded a �2
v¼ 63 ¼ 48:49. For M2, with 64 degrees of freedom,

�2
v¼ 64 ¼ 57:13. Substituting these values into equation (10.147) yields f¼ 10.5. This

corresponds to a P-value¼ 0.2%. On the basis of this F-test, we can reject the simpler

model M2 at a 99.8% confidence level.

10.9 Summary

Here we briefly summarize the main results of this chapter:

1. We saw how the Bayesian treatment leads to the familiar method of least-squares when we

are interested in the question of the most probable set of model parameters (see Equation

(10.34)), assuming an IID normal distribution for our knowledge of the measurement errors

and a flat prior for each parameter.

2. We then relaxed the IID requirement for our knowledge of the measurement errors by

introducing E, the covariance matrix for the errors. Equation (10.48) gives the revised

solution for the most probable set of parameters. Weighted linear least-squares can be seen

as a special case of this equation.

3. A full description of our knowledge of the model parameters is given by the joint posterior

distribution for the parameters. For a linear model, and a flat prior for each parameter, this

distribution is particularly simple, namely a multivariate Gaussian. Equation (10.75) or

Table 10.2 defines the boundary, ��2
crit, of a (joint) credible region for one or more of the

parameters that contains a specified probability. Also, it turns out that for Gaussian poster-

iors, in any number of dimensions, the marginal PDF is also equal to the projected distribu-

tion (projected PDF).

4. A useful summary of the parameter errors is given by the model parameter covariance

matrix, V ¼ �2y�1. If we are employing the covariance matrix, E, for our knowledge of the

measurement errors, then simply replace y�1 byY�1 ¼ ðGTE�1GÞ�1, �� by��� and drop all

the factors of �2 in Equations (10.93), (10.94), (10.100), and (10.101).

5. The parameter covariance matrix also provides information about the correlation between

the estimates of any pair of model parameters, which is conveniently expressed by the

correlation coefficient (see Equation (10.102)), �, ranging between �1. If � is close to �1
then it will not be possible to estimate reliably the two parameters separately, but we can still

infer a linear combination of the parameters quite well. This comes about because the model

basis functions are not orthogonal. At the end of Section 10.5.2, we show how to construct an

orthogonal polynomial model.

6. The key quantity in Bayesian model comparison is the global likelihood of a model.

Calculation of the global likelihood requires integrating away all of the model parameters.

The final result regarding Bayesian model selection is usually expressed as an odds ratio,

which is given by Equation (10.126). It is important to remember that this equation assumes

uniform parameter priors and prior boundaries well removed from the peak of the posterior.

Where these assumptions do not hold, the necessary marginalizations must in general be
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carried out numerically and the resulting odds ratio can be very different. See Section 3.6 for a

detailed example of this latter point.

7. Common frequentist methods for model testing and estimating robust parameter errors are

discussed in Section 10.8.

10.10 Problems

1. Fit a straight line model to the data given in Table 10.3, where di is the average of ni
data values measured at xi. The probability of the individual di measurements is

normal with � ¼ 4:0, regardless of the xi value.

a) Give the slope and intercept of the best-fit line together with their errors.

b) Plot the best-fit straight line together with the data values and their errors.

c) Give the parameter covariance matrix.

d) Repeat (a) and (c) but this time use the average x-coordinate as the origin.

Comment on the differences between the covariance matrices in (c) and (d).

2. Compute and plot the ellipse that defines the 68.3% and 95.4% joint credible region

for the slope and intercept, for the data given in Table 10.3. The shape of this ellipse

depends on the x-coordinate origin used in the fit (see Figure 10.5). Use the average

x-coordinate as the origin. See the section of the Mathematica tutorial entitled

‘‘Joint Credible Region Contouring.’’

3. Table 10.4 gives measurements of ozone partial pressure, y, in millibars in each of

15 atmospheric layers where each layer, x, is approximately 2 km in height. The

layers have been scaled for convenience from �7 to þ7.
Use the least-squares method to fit the data with

(i) a quadratic model: yðxÞ ¼ A1 þ A2xþ A3x
2

(ii) a cubic model: yðxÞ ¼ A1 þ A2xþ A3x
2 þ A4x

3

Table 10.3 Data table

xi di ni

10 0.387 14

20 5.045 3

30 7.299 25

40 6.870 2

50 16.659 3

60 13.951 22

70 16.781 5

80 20.323 2
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Please include the following items as part of your solution:

a) In this problem, you don’t know that the raw data errors are normally

distributed, or even if the variance is the same from one layer to the next.

Explain how you can take advantage of the Central Limit Theorem (CLT) in

this problem.

Note: real data are seldom as nice as we would like. For some ozone layers

there are fewer than five data values (the approximate number recommended

for applying the CLT), so youmay want to combine data for some of the layers

where this is a problem. Of course, combining layers results in lower structural

resolution.

Note: you must provide a table of the ozone values and computed errors you

actually used in your model fitting. Explain how you computed the errors.

b) Determine the parameters for each model and the variance-covariance matrix.

Quote an error for each parameter and explain what your errors mean.

c) Compare the models with the data by plotting the model fits on the same graph as

your data. Include error bars (as you have determined them to be) on the data

points used for fitting.
d) Compute the Bayesian odds ratio of the cubic model to the quadratic model.

For the purpose of this calculation, assume the prior information warrants a

Table 10.4 Measurements of ozone partial pressure, y, in millibars in each of

15 atmospheric layers where each layer, x, is approximately 2 km in height. The layers

have been scaled for convenience from �7 to þ7.

Layer Pressure Layer Pressure Layer Pressure Layer Pressure

�7 53.8 �5 73.2 �2 97.4 3 93.6

�7 53.3 �5 75.6 �2 98.3 3 86.2

�7 54.8 �5 76.2 �1 102.8 3 87.9

�7 54.6 �5 72.7 �1 96.9 3 89.5

�7 53.7 �4 79.4 �1 98.2 4 74.8

�7 55.2 �4 81.1 0 98.9 4 82.3

�7 55.7 �4 85.2 0 96.1 4 76.9

�7 54.1 �4 83 0 99.6 4 81.2

�6 63.8 �4 84.1 0 91.4 5 73.6

�6 64.2 �4 82.8 1 101.1 5 65.4

�6 66.9 �3 90.3 1 94.6 5 67.1

�6 67.2 �3 84.2 1 95.9 6 60.2

�6 65.4 �3 88.3 2 92.3 6 54.9

�6 67.3 �3 86 2 96.6 6 50.8

�5 71.8 �2 93.2 2 98.5 7 44.7

7 38.5
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flat prior probability for each parameter with ranges �A� given by:

�A1 ¼ 100, �A2 ¼ �A3 ¼ 10, and �A4 ¼ 1.

Explain in words what you conclude from this.

e) Calculate the frequentist �2 goodness-of-fit statistic and the P-value (signifi-

cance) for each model. The confidence in rejecting the model ¼ 1�P-value.
Explain what you conclude from these goodness-of-fit results.

4. Repeat the analysis of the ozone data as described in the previous problem, but this

time adopt the following different strategy: instead of rebinning the data to take

advantage of the CLT, use the original binning as given in Table 10.4. According to

the MaxEnt principle (see Section 8.7.4), unless we have prior information that

justifies the use of some other sampling distribution, then use a Gaussian sampling

distribution. It makes the least assumptions about the information we don’t have

and will lead to the most conservative estimates. Use Equation (9.51) to estimate �

of each layer. In contrast to the approach proposed in the previous problem, we do

not have to sacrifice the resolution of the original data through rebinning.
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11

Nonlinear model fitting

11.1 Introduction

In the last chapter, we learned that the posterior distribution for the parameters in a

linear model with Gaussian errors and flat priors is itself a multivariate Gaussian. The

topology for this distribution in the multi-dimensional parameter space is very simple.

In contrast, even for flat priors, the topology of the posterior for a nonlinear model

can be very complex with many hills and valleys.

Examples of nonlinear models:

1. fi¼A1 cos!tiþA2 sin!ti

where A1, A2 are linear parameters,

and ! is a nonlinear parameter.

2. fi¼A1þA2 exp �ðxi � C1Þ2

2�21

( )
þA3 exp �ðxi � C2Þ2

2�22

( )

where A1;A2;A3 are linear parameters,

and C1;C2; �
2
1; �

2
2 are nonlinear parameters.

In this chapter, we will let � represent the set of all parameters both linear and

nonlinear and �̂ the most probable set of the parameters. Again, the problem is to

find the most probable set of parameters together with an estimate of their errors.

(Of course, if the posterior has several maxima of comparable magnitude then it

doesn’t make sense to talk about a single best set of parameters.) The Bayesian

solution to the problem is very simple in principle but can be very difficult in

practice. The calculations require integrals over the parameter space which can be

difficult to evaluate.

The brute force approach is as follows: for a one-parameter model, the most robust

way is to plot the posterior or �2. This entails division of the parameter range into a

finite number of grid points. As long as there are enough grid points to cover the prior

range (a few hundred is usually adequate), this will usually work. It doesn’t matter

whether the posterior PDF is asymmetric, multi-modal or differentiable.
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This approach can easily be extended to two parameters. It is also easy to compute

marginal distributions. One need only add up the probabilities in the �1 or �2 direction,

as appropriate.

After the two-parameter case, however, this approach rapidly becomes impractical.

In fact, the number of calculations is� ð100ÞM, whereM is the number of parameters.

For example:

2 parameters might take 100 milliseconds to compute

5 parameters might take one day to compute

11 parameters might take the age of the universe to compute.

Fortunately, the last fifteen years have seen remarkable developments in practical

algorithms for performing Bayesian calculations (Loredo, 1999). They can be grouped

into three families: asymptotic approximations; methods for moderate dimensional

models; and methods for high dimensional models. In this chapter, we will mainly

be concerned with solutions that assume the posterior distribution for the parameters

can be approximated by a multivariate Gaussian. We will first illustrate this in a

simulation and then focus on methods for efficiently finding the most probable set of

parameters and their covariance matrix.

In the following chapter, we will give an introduction toMarkov chainMonte Carlo

algorithms which facilitate full Bayesian calulations for nonlinear models involving

very large numbers of parameters.

11.2 Asymptotic normal approximation

Expressed in frequentist language, asymptotic theory tells us that the maximium

likelihood estimator becomes more unbiased, more normally distributed and of

smaller variance as the sample size becomes larger (see Lindley, 1965). In other

words, as the sample size increases, the nonlinear problem asymptotically approaches

a linear problem. From a Bayesian perspective, the posterior distribution for the

parameters asymptotically approaches a multivariate normal (Gaussian) distribution.

We will illustrate this with a simulation.

We simulated data sets with different numbers of data points by randomly sampling

a nonlinear model, represented by fðxj�Þ, which has one nonlinear parameter �. We

also added independent Gaussian noise to each data point with a mean of zero and a

� ¼ 2. The data values are described by the equation

yi¼ fðxij�¼ 2=3Þþ ei: (11:1)

Figure 11.1 illustrates a set of N ¼ 12 simulated data points together with a plot of

the knownmodel prediction. Of course, the data points differ from this model because

of the added noise. We then carry out a Bayesian analysis of the simulated data,

assuming we know the mathematical form of the model but not the value of the model

parameter, �. Our goal is to infer the posterior PDF for � assuming a flat prior. The
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steps involved in calulating the posterior should now be fairly familiar to the reader

(e.g., Section 10.2). The resulting PDFs are graphed in Figure 11.2 for four data sets of

different size, N. It is apparent from this simulation that for small data sets, the

posterior exhibits multiple peaks, but as N increases, the posterior approaches a

Gaussian shape with a decreasing variance. The conclusion is not affected by the

choice of prior; in large samples, the data totally dominate the priors and the result

converges on a value of � ¼ 2=3, the value used to simulate the data. For a nonlinear

model with M parameters, the joint posterior for the parameters asymptotically

approaches an M-dimensional multivariate Gaussian as the number of data points

becomes much greater than the number of unknown parameters.
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Figure 11.1 A simulated set of 12 data points for a nonlinear model with the one parameter
� ¼ 2=3 (solid line) plus added Gaussian noise.
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Figure 11.2 The Bayesian posterior density function for the nonlinear model parameter for four
simulated data sets of different size ranging from N ¼ 5 to N ¼ 80. The N ¼ 5 case has the
broadest distribution and exhibits four maxima.
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In what follows, we will assume that in the vicinity of themode of the joint posterior,

the product of the prior and likelihood can be approximated by a multivariate

Gaussian. We want to develop a convenient mathematical formulation to describe

an approximate multivariate Gaussian. We start with one form of the posterior for a

true multivariate Gaussian we developed for linear models in Section 10.4 which we

repeat here (see Equation (10.66)), only this time we let A stand for the set of linear

model parameters that we previously wrote as fA�g.

pðAjD;M; IÞ¼C0 exp � �A
Ty�A
2�2

� �
: (11:2)

This equation describes the joint posterior for a set of linear model parameters

assuming flat priors for the parameters. When we use the more powerful matrix

formulation which includes the data covariance matrix E (see Section 10.5.3), then

we replace y by Y and rewrite Equation (11.2) as

pðAjD;M; IÞ¼C0e�
1
2ð�A

TY�AÞ: (11:3)

The term C0 is the value of the posterior at the mode, which can be written as the

product of the prior times the maximum value of the likelihood. The exponential term

in Equation (11.3) describes the variation of the likelihood about the mode which has

the form of a multivariate Gaussian. Thus, we can rewrite Equation (11.2) as

pðAjD;M; IÞ/ pðAjM; IÞpðDjA;M; IÞ¼ pðAjM; IÞLðAÞ

¼ pðÂjM; IÞLðÂÞ exp � 1

2

X
��

ðA�� Â�Þ½Y���ðA� � Â�Þ
" #

:
(11:4)

Now take the natural logarithm of both sides.

ln½ pðAjM; IÞLðAÞ� ¼ ln pðÂjM; IÞLðÂÞ
� �
þ � 1

2

X
��

ðA�� Â�Þ½Y���ðA� � Â�Þ
" #

:
(11:5)

We can show that Y is a matrix of second derivatives of ln½ pðAjM; IÞLðAÞ� at A¼ Â.

��� ¼ �
@2

@A�@A�
ln½ pðAjM; IÞLðAÞ� ðat A¼ ÂÞ: (11:6)

For the nonlinear model case, we will represent the set of model parameters by � and

write an equation analogous to (11.4).

pð�jD;M; IÞ� pð�̂jM; IÞLð�̂Þ exp � 1

2

X
��

ð��� �̂�Þ½I���ð�� � �̂�Þ
" #

; (11:7)
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where I is called the Fisher information matrix and is the nonlinear problem analog of

Y in the linear case. The approximate sign in the above equation is there because the

posterior is only approximately a multivariate Gaussian at the mode. We can rewrite

Equation (11.7) as

ln½pð�jM; IÞLð�Þ� ¼ ln pð�̂jM; IÞLð�̂Þ
h i

þ � 1

2

X
��

ð��� �̂�Þ½I���ð�� � �̂�Þ
" #

: (11:8)

I is a matrix of second derivatives of ln½pð�jM; IÞLð�Þ� at � ¼ �̂.

I�� ¼ �
@2

@��@��
ln½pð�jM; IÞLð�Þ� ðat �¼ �̂Þ: (11:9)

Recall that Y�1 is the covariance matrix of the parameters in the linear problem.Y�1

provides a measure of how wide or spread out the Gaussian is. If the posterior in the

nonlinear problem is not Gaussian, but is unimodal (single peak), then I�1 does not

give the variances and covariances of the posterior distribution. However, it may give

a good estimate of them, and is probably easier to calculate than the integrals required

to get the variances and covariances.

A difficulty arising in these computations is that it has not been possible to present

guidelines for how large the sample size must be for asymptotic properties to be closely

approximated. In Section 11.4, we will assume the approximation is good enough, and

focus on useful schemes for finding the most probable parameters, �̂. But first we will

investigate another useful type of approximation that allows us to obtain a better

estimate of the desired Bayesian quantities without having to perform complicated

integrals. These kinds of approximation originated with Laplace, so they are called

Laplacian approximations.

11.3 Laplacian approximations

11.3.1 Bayes factor

Suppose we want to compute the Bayes factor for model comparison (Section 3.5). In

this case, we need to compute the global likelihood, pðDjM; IÞ, by integrating over all
the model parameters (also required for the normalization constant in parameter

estimation). We can evaluate this from Equation (11.7).

pðDjM; IÞ¼
Z
d� pð�jM; IÞLð�Þ

� pð�̂jM; IÞLð�̂Þ
Z
d� exp � 1

2
ð�qTI�qÞ

� �
;

(11:10)

where ½����¼ð��� �̂�Þ. We can use the principal axis theorem to make a change

of variables according to �q¼O�X, that transforms �qTI�q to �XTL�X, where L is
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a diagonal matrix of eigenvalues of the I matrix. The columns of O are the

orthonormal eigenvectors of I. Let �1; �2; . . . ; �M be the eigenvalues of I. Then

we can write

I ¼
Z
d� exp � 1

2
ð�qTI�qÞ

� �

¼ J

Z
dX exp � 1

2
ð�XTL�XÞ

� �
;

(11:11)

where J¼ det O, is the Jacobian of the transformation,
R
d�¼ J

R
dX. Since the

columns of O are orthonormal J¼ 1.

For the M¼ 2 case,

I ¼
Z
dX� exp �

���X
2
�

2

� � Z
dX� exp �

���X
2
�

2

" #

¼ð
ffiffiffiffiffiffi
2p
p
Þ2 1ffiffiffiffiffiffi

��
p 1ffiffiffiffiffi

��
p Z

dX�
1ffiffiffiffiffiffi

2p
p

1=
ffiffiffiffiffiffi
��
p exp � �X2

�

2=��

� �

�
Z
dX�

1ffiffiffiffiffiffi
2p
p

1=
ffiffiffiffiffi
��

p exp �
�X2

�

2=��

" #

¼ð
ffiffiffiffiffiffi
2p
p
Þ2 1ffiffiffiffiffiffi

��
p 1ffiffiffiffiffi

��
p :

(11:12)

For the general case of arbitrary M, we have,

I ¼ ð2pÞM=2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiQ
� ��

q : (11:13)

We can express our result for I in terms of the det I by writing I ¼ OLOT. Then

det I¼ det OT � det L� det O

¼ 1�
Y
�

�� � 1 ¼
Y
�

��:
(11:14)

Substituting Equation (11.14) into Equation (11.13), we obtain

I ¼ ð2pÞM=2ðdet IÞ�1=2: (11:15)

Even if the multivariate Gaussian approximation is not exact, but the posterior

distribution has a single dominant peak located away from the prior boundary of the

parameter space, then the use of Equation (11.15) provides a useful Laplacian

approximation. Thus, the global likelihood can be written as

pðDjM; IÞ � pð�̂jM; IÞLð�̂Þð2pÞM=2ðdet IÞ�1=2: (11:16)
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In the case of a perfect Gaussian approximation and a uniform parameter prior,

Equation (11.16) reduces to Equation (10.123). In Section 11.4, we will discuss how to

locate the best set of parameters, �̂.

11.3.2 Marginal parameter posteriors

We can also use the Laplacian approximation in Equation (11.15) to do the integral

needed to eliminate nuisance parameters. Suppose we want to obtain the marginal

probability distribution for one of the parameters which we will label �.1 We need to

remove the remaining parameters which we label collectively as 	. Instead of integrat-

ing over the 	 parameters, we construct a ‘‘profile’’ function for �, found bymaximizing2

the prior � the likelihood over 	 for each choice of �: fð�Þ ¼ max	 pð�; 	jM; IÞ
Lð�; 	Þ. The profile function is a projection of the posterior onto the � axis. Finding a

maximum is generally much faster than computing the integrals. An efficient method

of finding the maximum, starting from a good guess, is discussed in Section 11.5. We

can construct an approximate marginal distribution for � by multiplying fð�Þ by

a factor that accounts for the volume of 	 space:

pð�jD;M; IÞ / fð�Þ½det Ið�Þ��1=2; (11:17)

where Ið�Þ is the information matrix of the nuisance parameters, with � held fixed.

To illustrate how different the marginal and projected distributions can be, consider

a hypothetical joint probability distribution for the parameters � and 	 as shown in

panel (a) of Figure 11.3. The projected and marginal distributions for � are shown in
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Figure11.3Comparisonof the projected andmarginal probability distribution for the �parameter.

1 More generally, � can represent a subset of one or more parameters of interest, with the remainder considered as
nuisance parameters.

2 This process is easy to visualize if there are only two parameters A1 and A2. The joint probability distribution,
pð ~A1;A2jD; IÞ, is a three-dimensional space with A1 and A2 as the x; y-axes and probability as the z-axis. Each choice of
A2 (i.e., A2 ¼ constant) corresponds to a vertical slice through the probability mountain. We then vary A1 until we find
the maximum value of the probability in that slice. Repeat this process for all possible choices of parameter A2 and
record the probability pð ~A1;A2jD; IÞ. The resulting PDF is a function of A2 and can be seen to be the projection of the
joint probability mountain onto the A2 axis.
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panel (b). Although the peak probability occurs near � ¼ 0:65, more probability

resides in the broad plateau to the left of the peak and this is indicated by the marginal

distribution. The value of the marginal, pð�jD; IÞ, for any particular choice of �, is

proportional to the integral over 	, i.e., the area under a slice of the joint probability

distribution for � fixed. Clearly, this area can be approximated by the peak height of

the slice times a characteristic width of the probability distribution in the slice. In this

two-parameter problem, the projected distribution is converted to an approximation

of the true marginal by multiplying by the factor ½det Ið�Þ��1=2 in Equation (11.17),

which gives the scale of the width of the distribution in the 	 direction for the

particular value of �. Recall from Equation (11.14) the det Ið�Þ is equal to the product

of the eigenvalues of Ið�Þ. At this point, it might be useful to refer back to Figure 10.3,

which shows how the eigenvalues of the corresponding y matrix in the linear model

problem give information on the scale of the width of the posterior.

We explore the Laplacian marginal distribution further in the following example:

consider a nonlinear model of the form fðxj�; �Þ ¼ x��1ð1� xÞ��1 for 0 < x and

�; � > 1. We constructed a simulated data set for 12 values of the independent

variable, x, using this nonlinear model with � ¼ 6; � ¼ 3, and added independent

Gaussian noise with a mean of zero and a � ¼ 0:005. The data values are described by

the equation

yi ¼ fðxij� ¼ 6; � ¼ 3Þ þ ei: (11:18)

The results of this simulation are shown in the four panels of Figure 11.4. Panel (a)

shows the simulated data (diamonds) and model (solid curve). Panel (b) shows a

contour plot of the Bayesian joint posterior probability of � and �, which differs

significantly from a multivariate Gaussian. Panel (c) compares the projected or profile

function (dots) and Bayesian marginal probability density for � (dashed). Panel (d) is

the same as (c) but with the Laplacian approximation of the marginal overlaid,

illustrating the close agreement with the true marginal density. You will have to look

very closely to see any difference. The difference between the derived most probable

values of � ¼ 3:2 and the true value of � ¼ 3 is simply a consequence of the added noise.

The Laplacian marginal distribution can perform remarkably well even for modest

amounts of data, despite the fact that one might expect the underlying Gaussian

approximation to be good only to order 1=
ffiffiffiffi
N
p

, the usual rate of asymptotic conver-

gence to a Gaussian. The Laplacian approximations are good to order 1=N or higher.

For more details on this point, see Tierney and Kadane (1986).

11.4 Finding the most probable parameters

In this section, we will assume flat priors for the model parameters and focus on

methods for finding the peak of the likelihood. Again, we assume the data are given by

di ¼ fi þ ei;
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where fi represents the model function and assume our knowledge of noise ei leads us

to assume Gaussian errors.

Then the likelihood is given by

Lð�Þ¼ pðDj�;M; IÞ¼C exp � 1

2

XN
i; j¼1
ðdi � fiÞ½E�1�ijðdj � fjÞ

" #
; (11:19)

where E ¼ covariance matrix of measurement errors. If the errors are independent,

E is diagonal with entries equal to �2i . In this case

pðDj�;M; IÞ¼ ð2pÞ�N=2
YN
i¼1

��1i exp � 1

2

XN
i¼1

ðdi � fiÞ2

�2i

" #

¼C exp ��
2ð�Þ
2

� �
:

(11:20)

2.8 3 3.2 3.4 3.6 3.8 4
β axis 

0.25

0.5

0.75

1

1.25

1.5

P
ro

ba
bi

lit
y 

de
ns

ity

(c)

2.8 3 3.2 3.4 3.6 3.8 4
β axis

0.25

0.5

0.75

1

1.25

1.5

P
ro

ba
bi

lit
y 

de
ns

ity

(d)

0.2 0.4 0.6 0.8 1
x

– 0.005 

0

0.005

0.01

0.015

0.02

y

(a) Model + Data

4 5 6 7 8
α axis 

2.6
2.8

3
3.2
3.4
3.6
3.8

4

β 
ax

is
 

(b) Probability Contours

Figure 11.4 The figure provides a demonstration of the Laplacian approximation to the

marginal posterior for a model parameter. Panel (a) shows the simulated data (diamonds)
and model (solid curve), which has two nonlinear parameters � and �. (b) shows a contour plot
of the Bayesian joint posterior probability of � and �, which differs significantly from a

multivariate Gaussian. (c) compares the projected or profile function (dots) and Bayesian
marginal probability density for � (dashed). (d) is the same as (c) but with the Laplacian
approximation of the marginal overlaid, illustrating the close agreement with the true marginal
density.
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In general, �2ð�Þmay have many local minima but only one global minimum. For a

nonlinear model, there is no general solution to the global minimization problem.

Some of the approaches to finding the global minimum are as follows:

1. Random search techniques

a) Monte Carlo exploration of parameter space

b) Simulated annealing

c) Genetic algorithm

2. Home in on minimum from initial guess

a) Levenberg Marquardt (iterative linearization)

b) Downhill simplex

3. Combination of above.MINUIT is a very powerful Fortran-based functionminimization and

error analysis tool developed at CERN. It is designed to find the minimum value of a multi-

parameter function and analyze the shape of the function around the minimum. The principal

application is for statistical analysis, working on�2 or log-likelihood functions, to compute the

best-fit parameter values and uncertainties, including correlations between the parameters.

MINUIT contains code for carrying out a combination of the above items 1(a), 1(b), 2(a)

and 2(b). For more information on MINUIT see: http://wwwinfo.cern.ch/asdoc/minuit.

11.4.1 Simulated annealing

The idea of using a temperature parameter in optimization problems started to

become popular with the introduction of the simulated annealing (SA) method by

Kirkpatrick et al. (1983). It is based on a thermodynamic analogy to growing a crystal

starting with the material in a liquid state called a melt. When a melt is slowly cooled,

the atoms will achieve the lowest energy crystal state (i.e., global minimum), whereas if

it is rapidly cooled, it will reach a higher energy amorphous state.

Kirkpatrick et al. (1983) proposed a computer imitation of thermal annealing for

use in optimization problems. In one version of simulated annealing, we construct a

modified posterior probability distribution pTð�jD; IÞ which is given by

pTð�jD; IÞ ¼ exp
ln½ pð�jD; IÞ�

T

� �
; (11:21)

which contains a temperature parameter T. For T ¼ 1, pTð�jD; IÞ is equal to the true

posterior distribution for �. For higher temperatures, pTð�jD; IÞ is a flatter version of

pð�jD; IÞ. The basic scheme involves an exploration of the parameter space by a series

of random changes in the current �c estimate of the solution

�next ¼ �c þ��; (11:22)

where �� is chosen by a random number generator. The proposed update is always

considered advantageous if it yields a higher pTð�jD; IÞ, but bad moves are sometimes
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accepted. This occasional allowance of retrograde steps provides a mechanism for

escaping entrapment in local maxima. The process starts off with T large so the

acceptance rate for unrewarding changes is high. The value ofT is gradually decreased

towards T ¼ 1 as the number of iterations gets larger and the acceptance rate of

unrewarding changes drops. This general scheme, of always accepting an uphill step

while sometimes accepting a downhill step, has become known as the Metropolis

algorithm (Metropolis et al., 1953). At each value of T the Metropolis algorithm is

used to explore the parameter space. The Metropolis algorithm and the related

Metropolis–Hasting algorithms are described in more detail in Section 12.2.

Assuming a flat prior for �, it is frequently the case that pð�jD; IÞ / expf��2=2g.
Simulated annealing works well for a �2 topology like that shown in Figure 11.5,

where there is an underlying trend towards a global minimum.

11.4.2 Genetic algorithm

Genetic algorithms are a class of search techniques inspired from the biological

process of evolution by means of natural selection (Holland, 1992). They can be

used to construct numerical optimization techniques that perform robustly in para-

meter search spaces with complex topology.

Consider the following generic modeling task: a model that depends on a set of

adjustable parameters is used to fit a given dataset; the task consists in finding the

single parameter set that minimizes the difference between themodel’s predictions and

the data. The genetic algorithm consists of the following steps.

1. Start by generating a set (‘‘population’’) of trial solutions, usually by choosing random values

for all model parameters.

2. Evaluate the goodness-of-fit (‘‘fitness’’) of each member of the current population (through a

�2 measure with the data, for example).

3. Select pairs of solutions (‘‘parents’’) from the current population, with the probability of a

given solution being selected made proportional to that solution’s fitness. Breed the two

solutions selected in (2) and produce two new solutions (‘‘offspring’’).

a

χ2(a)

Global and local minima

Figure 11.5 Sample topology of �2 for a nonlinear model with one parameter labeled a.
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4. Repeat steps (2)–(3) until the number of offspring produced equals the number of individuals

in the current population.

5. Use the new population of offspring to replace the old population.

6. Repeat steps (1) through (5) until some termination criterion is satisfied (e.g., the

best solution of the current population reaches a goodness-of-fit exceeding some

preset value).

Superficially, this may look like some peculiar variation of a Monte Carlo theme.

There are two crucial differences: first, the probability of a given solution being

selected to participate in a breeding event is made proportional to that solution’s

fitness (step 2); better trial solutions breed more often, the computational equivalent

of natural selection. Second, the production of new trial solutions from existing ones

occurs through breeding. This involves encoding the parameters defining each solu-

tion as a string-like structure (‘‘chromosome’’), and performing genetically inspired

operations of crossover and mutation to the pair of chromosomes encoding the two

parents, the end result of these operations being two new chromosomes defining the

two offspring. Applying the reverse process of decoding those strings into solution

parameters completes the breeding process and yields two new offspring solutions that

incorporate information from both parents.

If youwant to try out the genetic algorithm andwatch a demonstration, check out the

following web site: http://www.hao.ucar.edu/public/research/si/pikaia/pikaia.html#sec2.

PIKAIA (pronounced ‘‘pee-kah-yah’’) is a general purpose function optimization

Fortran-77 subroutine based on a genetic algorithm. PIKAIA was written by Paul

Charbonneau and Barry Knapp (Charbonneau, 1995; Charbonneau and Knapp,

1995) both at the High Altitude Observatory, a scientific division of the National

Center for Atmospheric Research in Boulder, Colorado. The above web site lists other

useful references.

11.5 Iterative linearization

In this section, we will develop the equations needed for understanding the

Levenberg–Marquardt method which is discussed in Section 11.5.1. This is a widely

used and efficient scheme for homing in on the best set of nonlinear model parameters,

�̂, starting from an initial guess of their values. Start with a Taylor series expansion of

�2 about some point in � parameter space represented by �c (standing for �current) and

keep only the first three terms:

�2ð�Þ � �2ð�cÞ þ
X
k

@�2ð�cÞ
@�k

��k þ
1

2

X
kl

@2�2ð�cÞ
@�k @�l

��k��l; (11:23)

where

�� ¼ �� �c: (11:24)
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For a linear model, �2 is quadratic so there are no higher derivatives. Let


kl ¼
1

2

@2�2ð�cÞ
@�k @�l

be called the curvature matrix. On the topic of nomenclature, in nonlinear analysis

literature, the Hessian (H) matrix is frequently mentioned and is related to our

curvature matrix by H ¼ 2k . In matrix form, Equation (11.23) becomes

�2ð�Þ � �2ð�cÞ þ r�2ð�cÞ�qþ �qTk�q: (11:25)

Take the gradient of both sides of Equation (11.25)

r�2ð�Þ � r�2ð�cÞ þ k �q: (11:26)

The left hand side is the gradient at location �� away from �c.

Now consider the special case where �� takes us from �c to �̂, the best set of

parameter values. At �� ¼ �̂� �c; �2 ¼ �2
min. In this case,

r�2ð�̂Þ ¼ r�2
min ¼ 0 (11:27)

k �q ¼ �r�2ð�cÞ (11:28)

or

�̂ ¼ �c � k�1r�2ð�cÞ (11:29)

where k�1 ¼ inverse of the curvature matrix. For a linear model, �2 is exactly a

quadratic and thus k is constant independent of �c.

For a nonlinear model, we expect that sufficiently close to �2
min; �

2 will be approxi-

mately quadratic so we should be able to ignore higher order terms in the Taylor

expansion. Equation (11.29) should provide a reasonable approximation if �c is close to �̂.

This suggests an iterative algorithm:

1. Start with a good guess �1 of �̂.

2. Evaluate gradient r�2ð�1Þ and curvature matrix kð�1Þ.
3. Calculate improved estimate using Equation (11.29).

4. Repeat process until gradient ¼ 0.

When r�2ð�cÞ ¼ 0 then k�1 ¼ information matrix. Thus, the covariances of the

parameters are to a good approximation given by

�kl ¼ ½k�1�kl: (11:30)

If Equation (11.29) provides a poor approximation to the shape of the model function

at �c, then all we can do is to step down the gradient.

�next ¼ �c � constantr�2ð�cÞ; (11:31)
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where the constant is small enough not to exhaust the downhill direction (more on the

constant later). Note: if you are planning on writing your own program for iterative

linearization, see the useful tips on computing the gradient and curvature (Hessian)

matrices given in Press (1992).

11.5.1 Levenberg–Marquardt method

We can rewrite Equation (11.28) as a set of M simultaneous equations for

k ¼ 1; . . . ;M

XM
l¼1


kl��l ¼ �k; (11:32)

where �k ¼ �@ �2ð�cÞ=@�k; and for M ¼ 2,


11��1 þ 
12��2 ¼ �1,


21��1 þ 
22��2 ¼ �2:

We can also rewrite Equation (11.31) as

��l ¼ constant� �l: (11:33)

Equations (11.32) and (11.33) are central to the discussion of the Levenberg–Marquardt

method which follows.

Far from �2
min, use Equation (11.33) which corresponds to stepping down the

direction of steepest descent on a scale set by the constant. Close to �2
min, use

Equation (11.32) which allows us to jump directly to the minimum.

What sets the scale of the constant in Equation (11.33)? Note: �l ¼ �@�2=@�l
has dimensions of 1=�l which may have dimensions (e.g., m). Each component �l

may have different dimensions. The constant of proportionality between �l and ��l
must therefore have dimensions of �2l . Looking at 
, there is only one obvious

quantity with the above dimension and that is 1=
ll, the reciprocal of the diagonal

element. But the scale might be too big, so divide it by an adjustable non-dimensional

fudge factor �.

��l ¼
1

�
ll
�l (11:34)

or

�
ll��l ¼ �l: (11:35)

The next step is to combine Equations (11.32) and (11.35) by defining a new

curvature matrix k 0


0kk ¼ 
kkð1þ �Þ (11:36)

300 Nonlinear model fitting



and


0kl ¼ 
kl ðk 6¼ lÞ: (11:37)

The new equation is

XM
l¼1


0kl��l ¼ �k: (11:38)

If � is large, k 0 is forced into being dominated by the diagonal elements and becomes

Equation (11.33). If � ! 0, Equation (11.38) ! Equation (11.32). The basis of the

method is that when �c is far from �̂, then Equation (11.33) representing the steepest

descent is best. When �c is close to �̂, then Equation (11.32) is best.

The Levenberg–Marquardt method employs Equation (11.38) which can switch

between these two desirable states (Equations (11.32) and (11.33)) by varying �. Recall

Equation (11.32) can jump to the �2
min in one step if the approximation is valid.

11.5.2 Marquardt’s recipe

1. Compute �2ð�1Þ for guess of �̂.
2. Pick a small value of � � 0:001.

3. Solve Equation (11.38) for �� and evaluate �2ð�1 þ ��Þ.
4. If �2ð�1 þ ��Þ � �2ð�1Þ increase � by factor of 10 and go to (3).

5. If �2ð�1 þ ��Þ < �2ð�1Þ, decrease � by a factor of 10, update trial solution. �2  �1 þ ��.
6. Repeat steps (3) to (5) until the solution converges.

Since k plays the role of a metric on the M-dimensional subspace spanned by the

model functions, the Levenberg–Marquardt method is referred to as a variable metric

approach. The matrix k is the same as the y matrix in the linear model case.

All that is necessary is a condition for stopping the iteration. Iterating to conver-

gence ormachine accuracy is generally wasteful and unnecessary since theminimum at

best is only a statistical estimate of the parameter �. Recall from our earlier discussion

of joint credible regions in Section 10.4.1, that changes in �2 by an amount� 1 are

never statistically meaningful. For M ¼ 2 parameters, the probability ellipse defined

by ��2 ¼ 2:3 away from �2
min encompasses 68.3% of the joint PDF. For M ¼ 1 the

corresponding ��2 ¼ 1. These considerations suggest that, in practice, stop iterating

on the 1st or 2nd iteration that �2 decreases by an amount� 1.

Once the minimum is found, set � ¼ 0 and compute the variance-covariance matrix

V ¼ k�1

to obtain the estimated standard errors of the fitted parameters.Mathematica uses the

Levenberg–Marquardt method in NonlinearRegress analysis. Subroutines are also

available in Press (1992). If the posterior has several maxima of comparable magni-

tude, then in this case it doesn’t make sense to talk about a single best �̂.
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11.6 Mathematica example

In this example, we illustrate the solution of a simple nonlinear model fitting problem

using Mathematica’s NonlinearRegress which implements the Levenberg–Marquardt

method. The data consist of one or possibly two spectral lines sitting on an unknown

constant background. The measurement errors are assumed to be IID normal with a

� ¼ 0:3. Model 1 assumes the spectrum contains a single spectral line while model 2

assumes two spectral lines. The raw data and measurement errors are shown in panel

(a) of Figure 11.6, together with the best fitting model 1 shown by the solid curve. The

parameter values for the best fitting model 1 were obtained with theNonlinearRegress

command as illustrated in Figure 11.7. The arguments to the command are as follows:

1. data is a list of ðx; yÞ pairs of data values where the x value is a frequency and the y value a

signal strength.

2. model[ f ] is the mathematical form of the model for the spectrum signal strength as a function

of frequency, f. This is given by

model[ f ] :¼ a0þ a1 line[ f, f 1]

where,

line[ f ; f1 ] :¼ Sin[2pð f� f 1Þ=Df ]
2pð f� f1Þ=Df

;
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Figure 11.6 Two nonlinear models fitted to simulated spectral line data. Panel (a) shows the raw
data and the best fit (solid curve) for model 1 which assumes a single line. Panel (b) illustrates the
model 1 fit residuals. Panel (c) shows the best-fit model 2 compared to the data. Panel (d) shows
the model 2 residuals.
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where D f ¼ 1:5. Note: line [ f, f 1] becomes indeterminate for ð f� f 1Þ ¼ 0. To avoid the

likelihood of this condition occurring in NonlinearRegress, set the initial estimate of f 1 to a

non-integer number.

3. f is the independent variable frequency.

4. The third item is a list of the unknown model parameters and initial estimates. Since

NonlinearRegress uses the Levenberg–Marquardt method, it is important that the initial

estimates land you somewhere in the neighborhood of the global minimum of �2, where

�2 ¼
XN
i¼1

ðdi �model[ fi]Þ2

�2i
¼
XN
i¼1

wtiðdi �model[ fi]Þ2:

5. wt is an optional list of weights to be assigned to the data points, where wti ¼ 1=�2i .

6. RegressionReport is a list of options for the output of NonlinearRegress.

7. ShowProgressfiTrue shows the value of �2 achieved after each iteration of the

Levenberg–Marquardt method and the parameter values at that step.

result = Nonlinear [Regressdata,

model[f], {f}, {{a0, 1.2), {a1,4}, {f1, 2.6}}, Weights->wt,

RegressionReport->

{BestFitParameters, ParameterCITable,

AsymptoticCovarianceMatrix, FitResiduals, BestFit},

ShowProgress-> True]

Iteration:1 ChiSquared:128.05290737029276` Parameters:{1.2, 4., 2.6}

Iteration:2 ChiSquared:67.07120991521835` Parameters:{1.04667, 3.1995, 2.58491}

Iteration:3 ChiSquared:66.77321228639481` Parameters:{1.04602, 3.20506, 2.57661}

Iteration:4 ChiSquared:66.74836021101748` Parameters:{1.04588, 3.20626, 2.5742}

Iteration:5 ChiSquared:66.74632730538346` Parameters:{1.04587, 3.20636, 2.57351}

Iteration:6 ChiSquared:66.7461616482541` Parameters:{1.04587, 3.20636, 2.57332}

{BestFitParameters→ {a0→1.04587, a1→3.20637, f1→2.57326},

ParameterCITable→

Estimate Asymptotic SE CI
a0 1.04587 0.0545299 {0.936233, 1.15551}
a1 3.20637 0.190783 {2.82277, 3.58996}
f1 2.57326 0.0204051 {2.53224, 2.61429}

AsymptoticCovarianceMatrix→
0.00297351 –0.00434888 –1.20476 × 10–6

–0.00434888 0.036398 1.68676 × 10–6

1.20476 × 10–6 1.68676 × 10–6 0.000416367

,

,

FitResiduals→  {–0.209178, 0.0139153, –0.351702, 0.108264, –0.081711, 0.232977,
–0.0502895, 0.0859089, –0.0988917, –0.181999, 0.0500372, –0.33713, –0.329429,

–0.218716, –0.151456, 0.0154221, –0.264555, 0.496109, 0.256117, 0.616037, –0.194287,

–0.0907203, –0.448441, 0.12935, –0.0518219, 1.02491, 0.559758, 0.660035, 0.980723,

0.291933, –0.133344, –0.389732, –0.0151427, –0.186632, –0.166834, –0.388142,

0.297471, –0.477721, –0.287358, –0.331853, –0.401507, –0.263538, 0.20304, 0.102339,

0.166333, 0.178261, –0.337149, –0.339727, –0.258125, 0.100323, 0.062864},

BestFit→ 1.04587 +
0.182741 Sin[4.18879 (–2.57326 + f)]2

(–2.57326 + f)2
}

Figure 11.7 Example of the use of theMathematica commandNonlinearRegress to fit model 1 to
the spectral data.
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The full NonlinearRegress command together with its arguments is shown in

bold face type in Figure 11.7. The output, shown in normal type face, indicates

that the minimum �2 achieved for model 1 was 66.7.3 Below that is a list of the

various RegressionReport items. The second item lists the parameter values, the

asymptotic standard error for each parameter and the frequentist confidence

interval (95% by default) for each parameter. The asymptotic error for each

parameter is equal to the square root of the corresponding diagonal element in

the AsymptoticCovarianceMatrix. The use of these errors is based on the assump-

tion that in the vicinity of the mode, the joint posterior probability density

function for the parameters is a good approximation to a multivariate Gaussian

(see Section 11.2). The AsymptoticCovarianceMatrix ¼ I�1, the inverse of the

observed information matrix. Note: the AsymptoticCovarianceMatrix elements, as

given by NonlinearRegress, have been scaled by a factor k2 ¼ 1:39 where k is given

by Equation (10.144). This leads to more robust parameter errors but we must

correct for this later on when we compute the Bayesian odds ratio for comparing

models 1 and 2. The values of �2 quoted in the output of Figure 11.7 have not

been modified by the k factor and thus �2
min ¼ 66:7 is the minimum value calcul-

ated on the basis of the input measurement error � ¼ 0:3.

Panel (b) of Figure 11.6 shows the residuals after subtracting model 1 from the data.

There is clear evidence for another spectral line at about 3.6 on the frequency axis. On

the basis of these residuals, a secondmodel was constructed, consisting of two spectral

lines sitting on a constant background. Model 2 has the mathematical form:

model[ f; f�]: = a0 + a1 line[ f1] + a2 line[ f; f2]:

Panel (c) shows the best fitting model 2. The residuals shown in Panel (d) appear to

be consistent with the measurement errors and show no evidence for any further

systematic signal component. The output from Mathematica’s NonlinearRegress

command for model 2 is shown in Figure 11.8.

11.6.1 Model comparison

Here, we compute the Bayesian odds ratio given by

O21 ¼
pðM2jD; IÞ
pðM1jD; IÞ

¼ pðM2jIÞ
pðM1jIÞ

� pðD jM2; IÞ
pðD jM1; IÞ

¼ pðM2jIÞ
pðM1jIÞ

� Bayes factor:

(11:39)

3 Here, we evaluate the frequentist theory confidence in rejecting model 1. Model 1 has three fit parameters
so the number of degrees of freedom ¼ N�M ¼ 51 data points �3 ¼ 48; thus the confidence is ¼
1�GammaRegularized N�M

2
; �

2

2

h i
¼ 0:96.
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Wewill use the Laplace approximation for the Bayes factor described in Section 11.3.1

which expresses the global likelihood, given by Equation (11.16), in terms of the

determinant of the information matrix, I.

pðDjMi; IÞ � pð�̂jMi; IÞLð�̂Þð2pÞM=2ðdet IÞ�1=2

¼ 1Q
����

1

�Nð2pÞN=2
e��

2
min
=2ð2pÞM=2ðdet IÞ�1=2:

(11:40)

LetV stand for the parameter asymptotic covariancematrix in thenonlinear problem, so

ðdet IÞ�1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
det V
p

: (11:41)

Equation (11.40) assumes uniform priors for the model parameters, where ��� is the

prior range for parameter ��. In the current problem, we assume the prior ranges for

the parameters are known to within a factor of three of the initial estimates used in

NonlinearRegress, i.e., 3�� � ��=3 ¼ 2:667��.

Let V� be the asymptotic covariance matrix elements returned by Mathematica’s

NonlinearRegress command. Recall thatMathematica scales the asymptotic covariance

matrix elements by a factor k2, to allow for more robust parameter errors, where k is

given by Equation (10.144). We need to remove this factor for use in Equation (11.40),

result = NonlinearRegress[data,

model2[f], {f}, {{a0, 1.2}, {a1, 3}, {f1, 2.6}, {a2, 1}, {f2, 3.5}},Weights-> wt,

RegressionReport ->

{BestFitParameters, ParameterCITable, BestFit},

ShowProgress -> True]

Iteration:1 ChiSquared:113.44567855780089` Parameters:{1.2, 3., 2.6, 1., 3.5}

Iteration:2 ChiSquared:44.87058091255775`
Parameters:{0.996707, 3.16903, 2.55205, 0.447086, 3.22451}

Iteration:3 ChiSquared:39.478968989091` Parameters:{0.958289, 3.08133, 2.51609, 0.866957, 2.98474}

Iteration:4 ChiSquared:31.202371941916066`

Parameters:{0.934233, 2.99456, 2.48976, 1.14837, 3.12047}

Iteration:5 ChiSquared:30.26136004999436`
Parameters:{0.933864, 2.94356, 2.48483, 1.20244, 3.06137}

Iteration:6 ChiSquared:30.236264668012137`
Parameters:{0.932706, 2.93206, 2.48383, 1.22363, 3.06401}

{BestFitParameters → {a0→0.932717, a1→2.93172, f1→2.48379, a2→1.22387, f2→3.0638},

ParameterCITable →

Estimate Asymptotic SE CI
a0 0.932717 0.0406876 {0.850817,1.01462}

a1 2.93172 0.182306 {2.56476,3.29869}
f1 2.48379 0.0253238 {2.43281,2.53476}
a2 1.22387 0.182139 {0.857242,1.5905}
f2 3.0638 0.0606851 {2.94164,3.18595}

,

BestFit →

0.932717 +
0.0697522 Sin[4.18879(–3.0638 + f)]2

(–3.0638+f)2
0.167088 Sin[4.18879(–2.48379 + f)]2

(–2.48379 + f)2
+

Figure 11.8 The output from Mathematica’s NonlinearRegress command for model 2.
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by multiplying the asymptotic covariance matrix provided by Mathematica by 1=k2,

before computing its determinant, i.e.,

V ¼ 1

k2
V�: (11:42)

We can extract V� from result, the name given to the result of the NonlinearRegress

command. For model 1 (see Figure 11.7) the covariance matrix was the third item in

the RegressionReport. Thus, V� ¼ result½½3; 2��½½1�� is the desired matrix.4 The value of

O21 derived from Equations (11.39), (11.40), (11.41), and (11.42), assuming equal

prior probabilities for the two models, is 1:4� 105.

11.6.2 Marginal and projected distributions

Finally, we will compute the Laplacian approximation to the Bayesian marginal

probability density function pð�jD;M; IÞ and compare it to the frequentist projected

probability, which we refer to as the profile function, fð�Þ, according to Equation

(11.17). We illustrate this calculation for the a2 parameter. The Laplacian marginal is

the profile function fða2Þ times the factor

½det Iða2Þ��1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Vða2Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

1

k2
V�ða2Þ

r
: (11:43)

The quantity V�ða2Þ is the asymptotic covariance matrix evaluated by

NonlinearRegress obtained by fixing a2 and minimizing �2, with all the other para-

meters free to vary. This can be done using a simple Do loop to repeatedly run

NonlinearRegress for different values of a2. For an example of this, see the nonlinear

fitting section of the Mathematica tutorial. The profile function is given by

fða2Þ / exp
��2

minða2Þ
2

� 	
: (11:44)

Let k̂ be the value of k in Equation (11.43) for the fit corresponding to the most

probable set of parameters. If k̂ > 1, this indicates that the data errors may have been

underestimated. An approximate way5 to take account of this, when computing the

marginal parameter PDF, is to modify Equations (11.43) and (11.44) as follows:

½det Iða2Þ��1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Vða2Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det

k̂2

k2
V�ða2Þ

s
(11:45)

fða2Þ / exp
��2

minða2Þ
2 k̂2

� 	
: (11:46)

4 The quantity result[[3,2]] is V� expressed in Mathematica’s MatrixForm. To compute the determinant of this matrix we
need to extract the argument of MatrixForm which is given by result[[3,2]][[1]].

5 A fully Bayesian way of handling this would be to treat k as a parameter and marginalize over a prior range for k.
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The resulting projected and marginal PDF for a2 are shown in Figure 11.9 and are

clearly quite different. It is a common frequentist practice to improve on the asymptotic

standard errors of a parameter by finding the two values of the parameter for which the

projected�2 ¼ �2
min þ 1, in analogy to the linearmodel case (seeTable 10.2).For example,

see the commandMINOS in theMINUIT software (James, 1998). As we have discussed

earlier, theBayesianmarginal distribution should be strongly preferred over the projected,

and the Laplacian approximation provides a quick way of estimating the marginal.

Finally we can readily compute the Bayesian 95% credible region for a2 from the

marginal distribution and compare with the 95% confidence interval returned by

NonlinearRegress. They are:

Bayesian 95% credible region ¼ ð0:74; 1:68Þ
frequentist 95% confidence interval ¼ ð0:86; 1:60Þ:

11.7 Errors in both coordinates

In Section 4.8.2, we derived the likelihood function applicable to the general problem

of fitting an arbitrary model when there are independent errors in both coordinates.

For the special case of a straight line model (see also Gull, 1989b) the likelihood

function, pðDjM;A;B; IÞ, is given by Equation (4.60), which we repeat here after

replacing yi by di.

pðDjM;A;B; IÞ ¼ð2pÞ�N=2
YN
i¼1

�2i þ B2�2xi

 ��1=2 !

� exp
XN
i¼1

�ðdi �mðxi0jA;BÞÞ2

2 �2i þ B2�2xið Þ

( )
:

(11:47)
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Figure 11.9 Comparison of the projected and Laplacian marginal PDF for the a2 parameter.
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Here, A and B are model parameters representing the intercept and slope. It is

apparent that when there are errors in both coordinates, the problem has become

nonlinear in the parameters.

Problem: In Section 10.2.2, we fitted a straight line model to the data given in Table

10.1 using the method of least-squares. This time assume that the xi coordinates are

uncertain with an uncertainty descibed by aGaussian PDFwith a �xi ¼ 3. Using the

likelihood given in Equation (11.47), compute the marginal PDF for the intercept

(A) and the marginal for the slope (B), and compare the results to the case where

�xi ¼ 0. Assume uniform priors with boundaries well outside the region with

significant likelihood.

Solution: Since we are assuming flat priors, the joint posterior pðA;BjD;M; IÞ is directly
proportional to the likelihood. The marginal PDF for the intercept is given by

pðAjD;M; IÞ ¼
Z

dB pðA;BjD;M; IÞ

/ pðAjM; IÞ
Z

dB pðBjM; IÞ pðDjM;A;B; IÞ:
(11:48)

We can write a similar equation for the marginal PDF for the slope. The upper two

panels of Figure 11.10 show plots of the two marginals for two cases. The solid

curves correspond to �xi ¼ 0 (no uncertainty in xi values), and the dashed curves to

�xi ¼ 3. The uncertainty in the xi values results in broader and shifted marginals.
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Figure 11.10 The top two panels show the marginal PDFs for the intercept and slope. The solid
curves show the result when there is no error in the x-coordinate. The dashed curves are the
result when there are errors in both coordinates. The lower panel shows the corresponding
best-fit straight lines.
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The lower panel of Figure 11.10 shows the most probable straight line fits for the

two cases. The likelihood function given by Equation (11.47) contains �xi in two

terms. In both terms, it is multiplied by the slope parameter B. The effect of the first

term is to favor smaller values of B. The effect of the second term is to decrease the

relative weight given tomeasurements with a smaller �i, i.e., this causes the points to

be given more equal weight. In this particular case, the best fitting line has a slope

and intercept which are slightly larger when �xi ¼ 3:0.

11.8 Summary

The problem of finding the best set of parameters for a nonlinear model can be very

challenging, because the posterior distribution for the parameters can be complex with

many hills and valleys. As the sample size increases, the posterior asymptotically

approaches a multivariate normal distribution (Section 11.2). Unfortunately, there are

no clear guidelines for how large the sample size must be. The goal is to find the global

maximum in the posterior, or equivalently, the minimum in �2. A variety of methods are

discussed, including random search techniques like simulated annealing and the genetic

algorithm. The other main approach is to home in on the minimum in �2 from a good

initial guess usingan iterative linearization technique likeLevenberg–Marquardt (Sections

11.5 and 11.5.1), the method used inMathematica’s Non-linearRegress command.

Once the minimum is located, the parameter errors can be approximately estimated

from I�1, the inverse of the information matrix (Section 11.2). I�1 is analogous to the

parameter covariance matrix in linear model fitting. Improved error estimates can be

obtained from the Laplacian approximation to the marginal posterior distribution for

any particular parameter (see Section 11.3.2). For model comparison problems, Section

11.3.1 describes a useful Laplacian approximation for the global likelihood, pðDjM; IÞ,
that is needed in calculating the Bayes factor. Section 11.6 and the section entitled,

‘‘Nonlinear Least-Squares Fitting’’ in the accompanyingMathematica tutorial, provide

useful templates for the analysis of typical nonlinear model fitting problems.

The data from some experiments have errors in both coordinates which can turn a

linear model fitting problem into a nonlinear problem. This issue was discussed earlier

in Section 4.8.2, and a particular example of fitting a straight line model was treated in

Section 11.7.

11.9 Problems

Nonlinear Model Fitting

(See ‘‘Nonlinear Least-Squares Fitting’’ in the Mathematica tutorial.)

Table 11.1 gives a frequency spectrum consisting of 100 pairs of frequency and

voltage (x, y). From measurements when the signal was absent, the noise is known to

be IID normal with a standard deviation � ¼ 0:3 voltage units. The spectrum is
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thought to consist of two or more narrow lines which are broadened by the instru-

mental response of the detector which is well described by a Gaussian with a �L ¼ 1:0

frequency unit. In addition, there is an unknown constant offset. Use a model for the

signal consisting of a sum of Gaussians plus a constant offset of the form

yðxiÞ ¼ A0 þ A1 exp �
ðxi � C1Þ2

2�2L

 !
þ A2 exp �

ðxi � C2Þ2

2�2L

 !
þ 	 	 	

In this problem, refer to the model with two lines as model 2, that with three lines as

model 3, etc.

The objective of this assignment is to determine the most probable model and the

best estimates of the model parameters and their errors. Find the most likely number

Table 11.1 The table contains a frequency spectrum consisting of 100 pairs of frequency

and voltage.

f (Hz) V f (Hz) V f (Hz) V f (Hz) V

1.00 1.391 5.25 5.537 9.50 3.113 13.75 2.038

1.17 1.000 5.42 6.091 9.67 3.293 13.92 2.585

1.34 0.552 5.59 6.163 9.84 3.139 14.09 2.492

1.51 1.249 5.76 5.365 10.01 2.840 14.26 2.193

1.68 0.534 5.93 5.916 10.18 3.119 14.43 1.866

1.85 1.386 6.10 5.530 10.35 3.311 14.60 1.571

2.02 0.971 6.27 4.552 10.52 4.347 14.77 1.779

2.19 0.901 6.44 3.833 10.69 4.819 14.94 1.542

2.36 0.851 6.61 3.756 10.86 4.378 15.11 1.562

2.53 1.334 6.78 3.055 11.03 4.544 15.28 1.666

2.70 0.549 6.95 3.009 11.20 4.562 15.45 0.904

2.87 1.373 7.12 2.855 11.37 5.662 15.62 1.074

3.04 0.997 7.29 2.357 11.54 4.479 15.79 1.530

3.21 1.231 7.46 2.732 11.71 5.373 15.96 0.747

3.38 1.586 7.63 1.836 11.88 4.883 16.13 0.945

3.55 2.244 7.80 1.918 12.05 4.678 16.30 1.301

3.72 1.914 7.97 1.534 12.22 5.100 16.47 1.323

3.89 2.467 8.14 2.238 12.39 3.868 16.64 0.919

4.06 2.609 8.31 2.623 12.56 4.132 16.81 1.320

4.23 3.036 8.48 2.275 12.73 3.702 16.98 0.915

4.40 3.581 8.65 2.408 12.90 3.267 17.15 0.814

4.57 4.073 8.82 2.701 13.07 3.323 17.32 0.983

4.74 5.010 8.99 2.659 13.24 3.413 17.49 1.158

4.91 4.989 9.16 3.224 13.41 2.762 17.66 0.917

5.08 4.940 9.33 2.237 13.58 2.418 17.83 1.355
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of lines by fitting progressively more Gaussians, examining the residuals after each

trial. The following items are required as part of your solution:

1. Plot the raw data together with error bars.NonlinearRegress inMathematica uses the

Levenberg–Marquardt method which requires good initial guesses of the parameter

values. For each model, provide a table of your initial guess of each parameter

value.

2. For each choice of model, give a table of the best-fit parameters and their errors as

derived from the asymptotic covariance matrix. Also list the covariance matrix.

Note: If you are usingMathematica’sNonlinearRegress, remember that it computes

an asymptotic covariance matrix that is scaled by a factor k2. This is an attempt to

obtain more robust parameter errors based on assuming the model is correct and

then adjusting all the assumed measurement errors by a factor k (explained in

Section 11.6; see also Equation (10.142) and discussion). For each choice of model,

compute the factor k.

3. Plot each model on top of the data with error bars.

4. For each model, plot the residuals and decide whether there is evidence for another

line to be fitted. Estimate the parameters of the line from the residuals and then

generate a new model to fit to the data that includes the new line together with the

earlier lines. Note: the residuals may suggest the presence of multiple lines. It is best

to add only the strongest one to your next model. Some of the minor features in the

residuals will disappear as the earlier model lines re-adjust their best locations in

response to the addition of the one new line.

5. For each model, calculate the �2 goodness-of-fit and the frequentist P-value

(significance), which represents the fraction of hypothetical repeats of the experi-

ment that are expected to fall in the tail area by chance if the model is correct. The

confidence in rejecting the model ¼ 1� P-value. Explain what you conclude from

these goodness-of-fit results.

6. For each model, compute the Laplacian estimate of the global likelihood for use

in the model selection problem. Compute the odds ratio for model ðiÞ compared

tomodel ði� 1Þ. Assume a uniform prior for eachmodel amplitude parameter, with

a range of 
 a factor of 3 of your initial guess, Ag, for the parameter, i.e.,

3Ag � Ag=3 ¼ 2:667Ag. Assume a uniform prior for each model line center

frequency parameter within the range 1 to 17 frequency units.

7. For your best model, compute and plot (on the same graph) the projected probability

and the Laplacian approximation to the marginal probability forA3, the amplitude

of the third strongest line. Again, see the Mathematica tutorial for an example.
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12

Markov chain Monte Carlo

12.1 Overview

In the last chapter, we discussed a variety of approaches to estimate the most probable

set of parameters for nonlinear models. The primary rationale for these approaches is

that they circumvent the need to carry out the multi-dimensional integrals required in

a full Bayesian computation of the desired marginal posteriors. This chapter provides

an introduction to a very efficient mathematical tool to estimate the desired posterior

distributions for high-dimensional models that has been receiving a lot of attention

recently. The method is known asMarkov Chain Monte Carlo (MCMC). MCMC was

first introduced in the early 1950s by statistical physicists (N. Metropolis,

A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller) as a method for the simulation

of simple fluids. Monte Carlo methods are now widely employed in all areas of science

and economics to simulate complex systems and to evaluate integrals in many dimen-

sions. Among all Monte Carlo methods, MCMC provides an enormous scope for

dealing with very complicated systems. In this chapter we will focus on its use in

evaluating the multi-dimensional integrals required in a Bayesian analysis of models

with many parameters.

The chapter starts with an introduction to Monte Carlo integration and exam-

ines how a Markov chain, implemented by the Metropolis–Hastings algorithm, can

be employed to concentrate samples to regions with significant probability. Next,

tempering improvements are investigated that prevent the MCMC from getting

stuck in the region of a local peak in the probability distribution. One such method

called parallel tempering is used to re-analyze the spectral line problem of Section 3.6.

We also demonstrate how to use the results of parallel tempering MCMC for model

comparison. Although MCMC methods are relatively simple to implement, in

practice, a great deal of time is expended in optimizing some of the MCMC

parameters. Section 12.8 describes one attempt at automating the selection of

these parameters. The capabilities of this automated MCMC algorithm are demon-

strated in a re-analysis of an astronomical data set used to discover an extrasolar

planet.
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12.2 Metropolis–Hastings algorithm

Suppose we can write down the joint posterior density,1 pðXjD; IÞ, of a set of model

parameters represented byX. We now want to calculate the expectation value of some

function fðXÞ of the parameters. The expectation value is obtained by integrating the

function weighted by pðXjD; IÞ.

h fðXÞi ¼
Z

fðXÞpðXjD; IÞdX ¼
Z

gðXÞdX: (12:1)

For example, if there is only one parameter andwewant to compute itsmean value, then

fðXÞ ¼ X. Also, we frequently want to compute the marginal probability of a subsetXA

of the parameters and need to integrate over the remaining parameters designated XB.

Unfortunately, in many cases, we are unable to perform the integrals required in a

reasonable length of time. In this section, we develop an efficient method to approxi-

mate the desired integrals, starting with a discussion ofMonte Carlo integration. Given

a value of X, the discussion below assumes we can compute the value of gðXÞ.
In straight Monte Carlo integration, the procedure is to pick n points, uniformly

randomly distributed in a multi-dimensional volume (V) of our parameter space X.

The volume must be large enough to contain all regions where gðXÞ contributes
significantly to the integral. Then the basic theorem of Monte Carlo integration

estimates the integral of gðXÞ over the volume V by

h fðXÞi ¼
Z
V

gðXÞdX � V� hgðXÞi � V�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hg2ðXÞi � hgðXÞi2

n

s
; (12:2)

where

hgðXÞi ¼ 1

n

Xn
i¼ 1

gðXiÞ; hg2ðXÞi ¼
1

n

Xn
i¼ 1

g2ðXiÞ: (12:3)

There is no guarantee that the error is distributed as a Gaussian, so the error term is

only a rough indicator of the probable error. When the random samples Xi are

independent, the law of large numbers ensures that the approximation can be made

as accurate as desired by increasing n. Note: n is the number of random samples of

gðXÞ, not the size of the fixed data sample. The problem withMonte Carlo integration

is that too much time is wasted sampling regions where pðXjD; IÞ is very small.

Suppose in a one-parameter problem the fraction of the time spent sampling regions

of high probability is 10�1. Then in an M-parameter problem, this fraction could

easily fall to 10�M. A variation of the simple Monte Carlo described above, which

involves reweighting the integrand and adjusting the sample rules (known as ‘‘import-

ance sampling’’), helps considerably but it is difficult to design the reweighting for

large numbers of parameters.

1 In the literature dealing with MCMC, it is common practice to write pðXÞ instead of pðXjD; IÞ.
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In general, drawing samples independently from pðXjD; IÞ is not currently computa-

tionally feasible for problemswhere there are large numbers of parameters. However, the

samples need not necessarily be independent. They can be generated by any process that

generates samples from the target distribution, pðXjD; IÞ, in the correct proportions. All

MCMC algorithms generate the desired samples by constructing a kind of random walk

in the model parameter space such that the probability for being in a region of this space

is proportional to the posterior density for that region. The randomwalk is accomplished

using a Markov chain, whereby the new sample, Xtþ1, depends on the previous sample

Xt according to an entity called the transition probability or transition kernel, pðXtþ1jXtÞ.
The transition kernel is assumed to be time independent. The remarkable property of

pðXtþ1jXtÞ is that after an initial burn-in period (which is discarded) it generates samples

of X with a probability density equal to the desired posterior pðXjD; IÞ.
How does it work? There are two steps. In the first step, we pick a proposed value for

Xtþ1 which we callY, from a proposal distribution, qðYjXtÞ, which is easy to evaluate. As

we show below, qðYjXtÞ can have almost any form. To help in developing your intuition,

it is perhaps convenient to contemplate amultivariate normal (Gaussian) distribution for

qðYjXtÞ, with a mean equal to the current sample Xt. With such a proposal distribution,

the probability density decreases with distance away from the current sample.

The second step is to decide on whether to accept the candidate Y for Xtþ1 on the

basis of the value of a ratio r given by

r ¼ pðYjD; IÞ
pðXtjD; IÞ

qðXtjYÞ
qðYjXtÞ

; (12:4)

where r is called the Metropolis ratio. If the proposal distribution is symmetric, then the

second factor is ¼ 1. If r � 1, then we set Xtþ1 ¼ Y. If r < 1, then we accept it with a

probability ¼ r. This is done by sampling a random variable U from Uniform(0, 1), a

uniform distribution in the interval 0 to 1. If U � r we set Xtþ1 ¼ Y, otherwise we set

Xtþ1 ¼ Xt. This second step can be summarized by a term called the acceptance prob-

ability �ðXt;YÞ given by

�ðXt;YÞ ¼ minð1; rÞ ¼ min 1;
pðYjD; IÞ qðXtjYÞ
pðXtjD; IÞ qðYjXtÞ

� �
: (12:5)

The MCMC method as initially proposed by Metropolis et al. in 1953, considered

only symmetric proposal distributions, having the form qðYjXtÞ ¼ qðXtjYÞ. Hastings

(1970) generalized the algorithm to include asymmetric proposal distributions and the

generalization is commonly referred to as the Metropolis–Hastings algorithm. There

are now many different versions of the algorithm.

The Metropolis–Hastings algorithm is extremely simple:

1. Initialize X0; set t ¼ 0:
2. Repeat fObtain a new sample Y from qðYjXtÞ

Sample a Uniform(0,1) random variable U
If U � r set Xtþ1 ¼ Y otherwise set Xtþ1 ¼ Xt Increment tg
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Example 1:

Suppose the posterior is a Poisson distribution, pðXjD; IÞ ¼ �Xe��=X!. For our pro-
posal distribution qðYjXtÞ, we will use a simple random walk such that:

1. Given Xt, pick a random number U1 � Uð0; 1Þ
2. If U1 > 0:5, propose Y ¼ Xt þ 1 otherwise Y ¼ Xt � 1
3. Compute the Metropolis ratio r ¼ pðYjD; IÞ=pðXtjD; IÞ ¼ �Y�XtXt!=Y!
4. Acceptance/rejection: U2 � Uð0; 1Þ

Accept Xtþ1 ¼ Y if U2 � r otherwise set Xtþ1 ¼ Xt

Figure 12.1 illustrates the results for the above simple MCMC simulation using a

value of �¼ 3 and starting from an initial X0¼ 10 which is far out in the tail of the

posterior. Panel (a) shows a sequence of 1000 samples from theMCMC. It is clear that

the samples quickly move from our starting point far out in the tail to the vicinity of

the posterior mean. Panel (b) compares a histogram of the last 900 samples from the

MCMC with the true Poisson posterior which is indicated by the solid line. The
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Figure 12.1 The results from a simple one-dimensional Markov chain Monte Carlo simulation
for a Poisson posterior for X. Panel (a) shows a sequence of 1000 samples from the MCMC.
Panel (b) shows a comparison of the last 900 MCMC samples with the true posterior indicated
by the solid curve.
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agreement is very good. We treated the first 100 samples as an estimate of the burn-in

period and did not use them.

Example 2:

Now consider a MCMC simulation of samples from a joint posterior pðX1;X2jD; IÞ in
two parametersX1 andX2, which has a double peak structure. Note: if we want to refer

to the tth time sample of the ith parameter from aMarkov chain, we will do so with the

designationXt;i. We define the posterior inMathematicawith the following commands.

Needs[‘‘Statistics ‘MultinormalDistribution’ ’’]

dist1=MultinormalDistribution [{0; 0}, {{1; 0}, {0; 1}}]

The first argument f0; 0g indicates the multinormal distribution is centered at 0,0.

The second argument ff1; 0g; f0; 1gg gives the covariance of the distribution.
dist2=MultinormalDistribution[{{4; 0}; {{2; 0:8}; {0:8; 2}}]

Posterior=0.5 (PDF[dist1, {X1;X2}]þ PDF[dist2, {X1;X2}])

The factor of 0.5 ensures the posterior is normalized to an area of one.

In this example, we used a proposal density function qðY1;Y2jX1;X2Þ which is a

two-dimensional Gaussian (normal) distribution.

[MultinormalDistribution[{X1,X2}, {{�
2
1,0},{0,�

2
2}}]]

The results for 8000 samples of the posterior generated with this MCMC are shown

in Figure 12.2. Note that the first 50 samples were treated as the burn-in period and are

not included in this plot. Panel (a) shows a sequence of 7950 samples from theMCMC

with �1¼ �2¼ 1. The two model parameters represented by X1 and X2 could be very

different physical quantities each characterized by a different scale. In that case, �1
and �2 could be very different. Panel (b) shows the same points with contours of the

posterior overlaid. The distribution of sample points matches the contours of the true

posterior very well. Panel (c) shows a comparison of the true marginal posterior (solid

curve) for X1 and the MCMC marginal (dots). The MCMC marginal is simply a

normalized histogram of the X1 sample values. Panel (d) shows a comparison of the

true marginal posterior (solid curve) for X2 and the MCMC marginal (dots). In both

cases, the agreement is very good.

We also investigated the evolution of theMCMC samples for proposal distributions

with different values of �. Panel (a) in Figure 12.3 shows the case for a � � 1=10 the

scale of the smallest features in the true posterior. The starting point for each simula-

tion was atX1 ¼ �4:5;X2 ¼ 4:5. In this case, the burn-in period is considerably longer

and it appears that a larger number of samples would be needed to do justice to the

posterior which is indicated by the contours. Panel (b) illustrates the case for � ¼ 1, the

value used for Figure 12.2. Panel (c) uses a � � 10 times the scale of the smallest

features in the posterior. From the density of the points it appears that we have used a
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Figure 12.2 The results from a two-dimensional Markov chain Monte Carlo simulation of a
double peaked posterior. Panel (a) shows a sequence of 7950 samples from the MCMC. Panel
(b) shows the same points with contours of the posterior overlaid. Panel (c) shows a comparison

of the marginal posterior (solid curve) forX1 and theMCMCmarginal (dots). Panel (d) shows a
comparison of the marginal posterior (solid curve) for X2 and the MCMC marginal (dots).
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Figure 12.3 A comparison of the samples from three Markov chain Monte Carlo runs using
Gaussian proposal distributions with differing values of the standard deviation: (a) � ¼ 0:1,
(b) � ¼ 1, (c) � ¼ 10. The starting point for each run was at X1 ¼ �4:5 and X2 ¼ 4:5.
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much smaller number of MCMC samples. In fact we used the same number of

samples. Recall that in MCMC we carry out a test to decide whether to accept the

new proposal (see discussion following Equation (12.4)). If we fail to accept the

proposal, then we set Xtþ1 ¼ Xt. Thus, many of the points in panel (c) are repeats of

the same sample as the proposed sample was rejected on many occasions.

It is commonly agreed that finding an ideal proposal distribution is an art. If we

restrict the conversation to Gaussian proposal distributions then the question

becomes what is the optimum choice of �? As mentioned earlier, the samples from a

MCMC are not independent, but exhibit correlations. In Figure 12.4, we illustrate the

correlations of samples corresponding to the three choices of � used in Figure 12.3 by

plotting the autocorrelation functions (ACFs) for X2. The ACF, �ðhÞ, which was

introduced in Section 5.13.2, is given by

�ðhÞ ¼
P

overlap½ðXt � XÞðXtþh � XÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
overlapðXt � XÞ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
overlapðXtþh � XÞ2

q ; (12:6)

where Xtþh is a shifted version of Xt and the summation is carried out over the subset

of samples that overlap. The shift h is referred to as the lag. It is often observed that

�ðhÞ is roughly exponential in shape so we can model the ACF

�ðhÞ � expf� h

�exp
g: (12:7)

The autocorrelation time constant, �exp, reflects the convergence speed of the MCMC

sampler and is approximately equal to the interval between independent samples. In

general, the smaller the value of �exp the better, i.e., the more efficient, the MCMC
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Figure 12.4 A comparison of the autocorrelation functions for threeMarkov chainMonte Carlo
runs using Gaussian proposal distributions with differing values of the standard deviation:

� ¼ 0:1; � ¼ 1; � ¼ 10.
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sampler is. Examination of Figure 12.4 indicates that of the three choices of � chosen

above, � ¼ 1:0 leads to the smallest values of �exp forX2. Of course, in this example just

considered, we have set �X1
¼ �X2

. In general, they will not be equal. Related to the

optimum choice of � is the average rate at which proposed state changes are accepted,

called the acceptance rate. Based on empirical studies, Roberts, Gelman, and Gilks

(1997) recommend calibrating the acceptance rate to about 25% for a high-dimensional

model and to about 50% for models of one or two dimensions. The acceptance rates

corresponding to our three choices of � in Figure 12.3 are 95%, 63%, and 5%,

respectively.

A number of issues arise from a consideration of these two simple examples. How

do we decide: (a) the length of the burn-in period, (b) when to stop the Markov chain,

and (c) what is a suitable proposal distribution? For a discussion of these points, the

reader is referred to a collection of review and application papers (Gilks, Richardson,

and Spiegelhalter 1996). For an unpublished 1996 roundtable discussion of informal

advice for novice practitioners, moderated by R. E. Kass, see www.amstat.org/

publications/tas/kass.pdf. The treatment of MCMC given in this text is intended

only as an introduction to this topic.

Loredo (1999) gives an interesting perspective on the relationship between the devel-

opment of MCMC in statistics and certain computational physics techniques. Define a

function �ðXÞ ¼ � ln½ pðXjIÞ pðDjX; IÞ�. Then the posterior distribution can be written

as pðXjD; IÞ ¼ e��ðXÞ=Z, whereZ ¼
R
dX e��ðXÞ. Evaluation of the posterior resembles

two classes of problems familiar to physicists: evaluating Boltzmann factors and parti-

tion functions in statistical mechanics, and evaluating Feynman path weights and path

integrals in Euclidean quantum field theory. For a discussion of some useful modern

extensions of the Metropolis algorithm that are particularly accessible to physical

scientists, see Liu (2001) and the first section of Toussaint (1989). A readable tutorial

for statistics students is available in Chib and Greenberg (1995).

12.3 Why does Metropolis–Hastings work?

Remarkably, for a wide range of proposal distributions qðYjXÞ, the

Metropolis–Hastings algorithm generates samples of X with a probability density

which converges on the desired target posterior pðXjD; IÞ, called the stationary dis-

tribution of the Markov chain. For the distribution of Xt to converge to a stationary

distribution, the Markov chain must have three properties (Roberts, 1996). First, it

must be irreducible. That is, from all starting points, the Markov chain must be able

(eventually) to jump to all states in the target distribution with positive probability.

Second it must be aperiodic. This stops the chain from oscillating between different

states in a regular periodic movement. Finally the chain must be positive recurrent.

This can be expressed in terms of the existence of a stationary distribution pðXÞ, say,
such that if an initial value X0 is sampled from pðXÞ, then all subsequent iterates will

also be distributed according to pðXÞ.
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To see that the target distribution is the stationary distribution of the Markov chain

generated by the Metropolis–Hastings algorithm, consider the following: suppose we

start with a sample Xt from the target distribution. The probability of drawing Xt from

the posterior is pðXtjD; IÞ. The probability that we will draw and accept a sampleXtþ1 is

given by the transition kernel, pðXtþ1jXtÞ ¼ qðXtþ1jXtÞ �ðXt;Xtþ1Þ, where �ðXt;Xtþ1Þ
is given by Equation (12.5). The joint probability of Xt and Xtþ1 is then given by

Joint probabilityðXt;Xtþ1Þ ¼ pðXtjD; IÞ pðXtþ1jXtÞ
¼ pðXtjD; IÞ qðXtþ1jXtÞ�ðXt;Xtþ1Þ

¼ pðXtjD; IÞ qðXtþ1jXtÞmin 1;
pðXtþ1jD; IÞ qðXtjXtþ1Þ
pðXtjD; IÞ qðXtþ1jXtÞ

� �
¼ minðpðXtjD; IÞ qðXtþ1jXtÞ; pðXtþ1jD; IÞqðXtjXtþ1ÞÞ
¼ pðXtþ1jD; IÞ qðXtjXtþ1Þ�ðXtþ1;XtÞ
¼ pðXtþ1jD; IÞ pðXtjXtþ1Þ:

(12:8)

Thus, we have shown

pðXtjD; IÞ pðXtþ1jXtÞ ¼ pðXtþ1jD; IÞ pðXtjXtþ1Þ; (12:9)

which is called the detailed balance equation.

In statistical mechanics, detailed balance occurs for systems in thermodynamic

equilibrium.2 In the present case, the condition of detailed balance means that

the Markov chain generated by the Metropolis–Hastings algorithm converges to a

stationary distribution.

Recall from Equation (12.8) that pðXtjD; IÞpðXtþ1jXtÞ is the joint probability of Xt

andXtþ1. We will now integrate this joint probability with respect toXt, making use of

Equation (12.9), and demonstrate that the result is simply the marginal probability

distribution of Xtþ1.Z
pðXtjD; IÞ pðXtþ1jXtÞdXt¼

Z
pðXtþ1jD; IÞpðXtjXtþ1Þ dXt

¼ pðXtþ1jD; IÞ
Z

pðXtjXtþ1Þ dXt

¼ pðXtþ1jD; IÞ:

(12:10)

Thus, we have shown that once a sample from the stationary target distribution has

been obtained, all subsequent samples will be from that distribution.

2 It may help to consider the following analogy: suppose we have a collection of hydrogen atoms. The number of atoms
making a transition from excited state t to state tþ 1 in 1 s is given by N� pðtÞ � pðtþ 1jtÞ, where N equals the total
number of atoms, p(t) is the probability of an atom being in state t, and pðtþ 1jtÞ is the probability that an atom in state
t will make a transition to state tþ 1 in 1 s. Similarly the number making transitions from tþ 1 to t in 1 s is given by
N� pðtþ 1Þ � pðtjtþ 1Þ. In thermodynamic equilibrium, the rate of transition from t to tþ 1 is equal to the rate from
tþ 1 to t, so

pðtÞ � pðtþ 1jtÞ ¼ pðtþ 1Þ � pðtjtþ 1Þ:
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12.4 Simulated tempering

The simple Metropolis–Hastings algorithm outlined in Section 12.2 can run into

difficulties if the target probability distribution ismulti-modal. TheMCMCcan become

stuck in a local mode and fail to fully explore other modes which contain significant

probability. This problem is very similar to the one encountered in finding a global

minimum in a nonlinear model fitting problem. One solution to that problemwas to use

simulated annealing (see Section 11.4.1) by introducing a temperature parameter T . The
analogous process applied to drawing samples from a target probability distribution

(e.g., Geyer and Thompson, 1995) is often referred to as simulated tempering (ST). In

annealing, the temperature parameter is gradually decreased. In ST, we create a discrete

set of progressively flatter versions of the target distribution using a temperature

parameter. For T ¼ 1, the distribution is the desired target distributionwhich is referred

to as the cold sampler. For T 	 1, the distribution is much flatter. The basic idea is that

by repeatedly heating up the distribution (making it flatter), the new sampler can escape

from localmodes and increase its chance of reaching all regions of the target distribution

that contain significant probability. Typical inference is based on samples drawn from

the cold sampler and the remaining observations discarded. Actually, in Section 12.7 we

will see how to use the samples from the hotter distributions to evaluate Bayes factors in

model selection problems.

Again, let pðXjD; IÞ be the target posterior distribution we want to sample.

Applying Bayes’ theorem, we can write this as

pðXjD; IÞ ¼ C pðXjIÞ � pðDjX; IÞ;

whereC ¼ 1=pðDjIÞ is the usual normalization constant which is not important at this

stage and will be dropped. We can construct other flatter distributions as follows:

pðXjD; �; IÞ ¼ pðXjIÞpðDjX; IÞ�

¼ pðXjIÞ expð� ln½ pðDjX; IÞ�Þ; for 0 < � < 1:
(12:11)

Rather than use a temperature which varies from 1 to infinity, we prefer to use its

reciprocal which we label � and refer to as the tempering parameter. Thus � varies

from 1 to zero. We will use a discrete set of � values labeled f1; �2; 
 
 
 ; �mg, where
� ¼ 1 corresponds to the cold sampler (target distribution) and �m corresponds to our

hottest sampler which is generally much flatter. This particular formulation is also

convenient for our later discussion on determining the Bayes factor in model selection

problems. Rather than describe ST in detail, we will describe a more efficient related

algorithm called parallel tempering in the next section.

12.5 Parallel tempering

Parallel tempering (PT) is an attractive alternative to simulated tempering (Liu, 2001).

Again, multiple copies of the simulation are run in parallel, each at a different
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temperature (i.e., a different � ¼ 1=T ). One of the simulations, corresponding to

� ¼ 1=T ¼ 1, is the desired target probability distribution. The other simulations

correspond to a ladder of higher temperature distributions indexed by i. Let n�

equal the number of parallel MCMC simulations. At intervals, a pair of adjacent

simulations on this ladder are chosen at random and a proposal made to swap their

parameter states. Suppose simulations �i and �iþ1 are chosen. At time t, simulation �i
is in state Xt;i and simulation �iþ1 is in state Xt;iþ1. If the swap is accepted by the test

given below then these states are interchanged. In the example discussed in Section

12.6, we specify that on average, a swap is proposed after every ns iterations (ns ¼ 30

was used) of the parallel simulations in the ladder. This is done by choosing a random

number, U1 � Uniform[0,1], at each time iteration and proposing a swap only if

U1 � 1=ns. If a swap is to be proposed, we use a second random number to pick one of

the ladder simulations i in the range i ¼ 1 to ðnb� 1Þ, and propose swapping the

parameter states of i and iþ 1. A Monte Carlo acceptance rule determines the

probability for the proposed swap to occur. Accept the swap with probability

r ¼ min 1;
pðXt;iþ1jD; �i; IÞ pðXt;ijD; �iþ1; IÞ
pðXt;ijD; �i; IÞ pðXt;iþ1jD; �iþ1; IÞ

� �
; (12:12)

where pðXjD; �; IÞ is given by Equation (12.11). We accept the swap if U2 �
Uniform[0,1] � r.

This swap allows for an exchange of information across the population of parallel

simulations. In the higher temperature simulations, radically different configurations

can arise, whereas in lower temperature states, a configuration is given the chance to

refine itself. By making exchanges, we can capture and improve the higher probability

configurations generated by the population by putting them into lower temperature

simulations. Some experimentation is needed to refine suitable choices of �i values.

Adjacent simulations need to have some overlap to achieve a sufficient acceptance

probability for an exchange operation.

12.6 Example

Although MCMC really comes into its own when the number of model parameters is

very large, we will apply it to the toy spectral line problem we analyzed in Section 3.6,

because we can compare with our earlier results. The objective of that problem was to

test two competingmodels, represented byM1 andM2, on the basis of some spectral line

data. OnlyM1 predicts the existence of a particular spectral line. In the simplest version

of the problem, the line frequency and shape is exactly predicted by M1; the only

quantity which is uncertain is the line strength T expressed in temperature units. The

odds ratio in favor of M1 was found to be 11:1 assuming a Jeffreys prior for the line

strength. We also computed the most probable line strength. In Section 3.9, we inves-

tigated how our conclusions would be altered if the line frequency were uncertain, i.e., it
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could occur anywhere between channels 1 to 44. In that case, the odds ratio favoringM1

dropped from 11:1 to � 1:1, assuming a uniform prior for the line center frequency.

Below, we apply both the Metropolis–Hastings and parallel tempering versions of

MCMC to the problem of estimating the marginal posteriors of the line strength and

center frequency to compare with our previous results. In Section 12.7, we will employ

parallel tempering to compute the Bayes factor needed for model comparison.

Metropolis–Hastings results

In this section, we will draw samples from pðXjD;M1; IÞ, where X is a vector repre-

senting the two parameters of modelM1, namely the line strength T and the line center

frequency � expressed as channel number. We use a Jeffreys prior for T in the range

Tmin ¼ 0:1mK to Tmax ¼ 100mK. We assume a uniform prior for � in the range

channel 1 to 44. The steps in the calculation are as follows:

1. Initialize X0; set t ¼ 0:
In this example we set X0 ¼ fT0 ¼ 5; �0 ¼ 30g

2. Repeat f

a) Obtain a new sample Y from qðYjXtÞ
Y ¼ fT0; �0g
we set q(T0|Tt)=Random[NormalDistribution[Tt,�T=1:0]]
and q(n 0jntÞ=Random[NormalDistribution[nt;s f=1:0]]

b) Compute the Metropolis ratio

r ¼ pðY|D;M1; IÞ
pðXtjD;M1; IÞ

¼ pðT 0; �0jM1; IÞ pðDjM1;T
0; �0; IÞ

pðTt; �tjM1; IÞ pðDjM1;Tt; �t; IÞ

where pðDjM1;T; �; IÞ is given by Equations (3.44) and (3.41).
The priors pðT; �jM1; IÞ ¼ pðTjM1; IÞ pð�jM1; IÞ are given by Equations (3.38)
and (3.33).

Note: if T 0 or �0 lie outside the prior boundaries set r ¼ 0.
c) Acceptance/rejection: U � U(0; 1)
d) Accept Xtþ1 ¼ Y if U � r, otherwise set Xtþ1 ¼ Xt

e) Increment tg

Figure 12.5 shows results for 105 iterations of a Metropolis–Hastings Markov chain

Monte Carlo. Panel (a) shows every 50th value of parameter �, expressed as a channel

number, and panel (c) the same for parameter T. It is clear that the � values move

quickly to a region centered on channel 37 with occasional jumps to a region centered

on channel 24 and only one jump to small channel numbers. The T parameter can be

seen to fluctuate between 0.1 and �3:5mK. Panels (b) and (d) show a blow-up of the

first 500 iterations. It is apparent from these panels that the burn-in period is very

short, < 50 iterations for a starting state of T ¼ 5 and � ¼ 30.

Figure 12.6 shows distributions of the two parameters. In panel (a), the joint

distribution of T and � is apparent from the scatter plot of every 20th iteration obtained
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after dropping the burn-in period consisting of the first 50 iterations. To obtain the

marginal posterior density for the � parameter, we simply plot a histogram of all the �

values (post burn-in) normalized by dividing by the sum of the � values multiplied by

the width of each bin. This is shown plotted in panel (b) together with our earlier

marginal distribution (solid curve) computed by numerical integration. It is clear that
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Figure 12.5 Results for 105 iterations of a Metropolis–Hastings Markov chain Monte Carlo.
Panel (a) shows every 50th value of parameter � and panel (c) the same for parameter T. Panels
(b) and (d) show a blow-up of the first 500 iterations.
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105 iterations ofMetropolis–Hastings does a good job of defining the dominant peak of

the probability distribution for � but does a poor job of capturing two other widely

separated islands containing significant probability. On the other hand, it is clear from

panel (c) that it has done a great job of defining the distribution of T.

Parallel tempering results

We also analyzed the spectral line data with a parallel tempering (PT) version of

MCMC described in Section 12.5.We used five values for the tempering parameter, �,
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Figure 12.6 Results for the spectral line problem using a Metropolis–Hastings Markov chain
Monte Carlo analysis. Panel (a) is a scatter plot of the result for every 20th iteration in the two

model parameters, channel number and line strength T. Panel (b) shows the marginal prob-
ability density for channel number (points) compared to our earlier numerical integration result
indicated by the solid curve. Panel (c) shows the marginal probability density for line strength T
(points) compared to our earlier numerical integration result indicated by the solid curve.
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uniformly spaced between 0.01 and 1.0, and ran all five chains in parallel. At intervals

(on average every 50 iterations) a pair of adjacent simulations on this ladder are

chosen at random and a proposal made to swap their parameter states. We used the

same starting state of T ¼ 5; � ¼ 30 and executed 105 iterations. The final results for

the � ¼ 1, corresponding to the target distribution, are shown in Figures 12.7 and

12.8. The acceptance rate for this simulation was 37%.

Comparing panel (a) of Figures 12.7 and 12.5, we see that the PT version visits

the two low-lying regions of � probability much more frequently than the

Metropolis–Hastings version. Comparing the marginal densities of Figures 12.8 and

12.6 we see that the PT marginal density for � is in better agreement with the expected

results indicated by the solid curves. For both versions, the marginal densities for T are

in excellent agreementwith the expected result. Inmore complicated problems, we often

cannot conveniently compute the marginal densities by another method. In this case, it

is useful to compare the results from a number of PT simulations with different starting

parameter states.

12.7 Model comparison

So far we have demonstrated how to use MCMC to compute the marginal posteriors

for model parameters. In this section, we will show how to use the results of parallel

tempering to compute the Bayes factor used in model comparison (Skilling, 1998;

Goggans and Chi, 2004). In the toy spectral line problem of Section 3.6, we were

interested in computing the odds ratio of two models M1 and M2 which from

Equation (3.30) is equal to the prior odds times the Bayes factor given by

B12 ¼
pðDjM1; IÞ
pðDjM2; IÞ

; (12:13)

where pðDjM1; IÞ and pðDjM2; IÞ are the global likelihoods for the two models. In the

version of this problem analyzed in Section 12.6,M1 has two parameters � and T. For

independent priors,

pðDjM1; IÞ ¼
Z

d� pð�jM1; IÞ
Z

dT pðTjM1; IÞpðDjM1; �;T; IÞ: (12:14)

In what follows, we will generalize the model parameter set to an arbitrary number of

parameters which we represent by the vector X.

To evaluate pðDjM1; IÞ, using parallel temperingMCMC, we first define a partition

function

Zð�Þ¼
Z

dX pðXjM1; IÞ pðDjM1;X; IÞ�

¼
Z

dX expfln½ pðXjM1; IÞ�þ � ln½ pðDjM1;X; IÞ�g;
(12:15)
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where � is the tempering parameter introduced in Section 12.4. Now take the deriva-

tive of ln½Zð�Þ�.

d

d�
ln½Zð�Þ� ¼ 1

Zð�Þ
d

d�
Zð�Þ (12:16)
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Figure 12.7 Results for 105 iterations of a parallel tempering Markov chainMonte Carlo. Panel
(a) shows every 50th value of parameter � and panel (c) the same for parameterT. Panels (b) and
(d) show a blow-up of the first 500 iterations.
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d

d�
Zð�Þ ¼

Z
dX ln½ pðDjM1;X; IÞ�

� expfln½ pðXjM1; IÞ� þ � ln½ pðDjM1;X; IÞ�g

¼
Z

dX ln½ pðDjM1;X; IÞ� pðXjM1; IÞ pðDjM1;X; IÞ�:

(12:17)
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Figure 12.8 Results for the spectral line problem using a Markov chain Monte Carlo analysis
with parallel tempering. Panel (a) is a scatter plot of the result for every 20th iteration in the two
model parameters, channel number and line strength T. Panel (b) shows the marginal prob-

ability density for channel number (points) compared to our earlier numerical integration result
indicated by the solid line. Panel (c) shows the marginal probability density for line strength T
(points) compared to our earlier numerical integration result indicated by the solid line.
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Substituting Equation (12.17) into Equation (12.16), we obtain

d

d�
ln½Zð�Þ� ¼

R
dX ln½ pðDjM1;X; IÞ� pðXjM1; IÞ pðDjM1;X; IÞ�R

dX pðXjM1; IÞ pðDjM1;X; IÞ�

¼ hln½ pðDjM1;X; IÞ�i�;
(12:18)

where hln½ pðDjM1;X; IÞ�i� is the expectation value of the ln½ pðDjM1;X; IÞ�. This
quantity is easily evaluated from the MCMC results which consist of sets of Xt

samples, one set for each value of the tempering parameter �. Let fXt;�g represent
the samples for tempering parameter �.

hln½ pðDjM1;X; IÞ�i� ¼
1

n

X
t

ln½ pðDjM1;Xt;�; IÞ�; (12:19)

where n is the number of samples in each set after the burn-in period. From Equation

(12.18) we can write

Z 1

0

d ln½Zð�Þ� ¼ ln½Zð1Þ� � ln½Zð0Þ�

¼
Z

d� hln½ pðDjM1;X; IÞ�i�:
(12:20)

Now from Equation (12.15)

Zð1Þ ¼
Z

dX pðXjM1; IÞ pðDjM1;X; IÞ ¼ pðDjM1; IÞ; (12:21)

and

Zð0Þ ¼
Z

dX pðXjM1; IÞ: (12:22)

From Equations (12.20) and (12.21) we can write

ln½ pðDjM1; IÞ� ¼ ln½Zð0Þ� þ
Z

d�hln½ pðDjM1;X; IÞ�i�: (12:23)

For a normalized prior, Zð0Þ ¼ 1 and Equation (12.23) becomes

ln½ pðDjM1; IÞ� ¼
Z

d�hln½ pðDjM1;X; IÞ�i�: (12:24)

Armed with Equation (12.24) we are now in a position to evaluate the Bayes factor

given by Equation (12.13), which is at the heart of model comparison.

Returning to the spectral line problem,

hln½ pðDjM1; �;T; IÞ�i� ¼
1

n

X
t

ln½ pðDjM1; �t;�;Tt;�; IÞ�: (12:25)
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We evaluated Equation (12.25) for the five values of � ¼ 0:01, 0.2575, 0.505, 0.7525,

1.0 used in the PT MCMC analysis of Section 12.6. The results were

�97:51;�87:1937;�86:4973;�85:9128;�85:1565, respectively. We then evaluated

the integral in Equation (12.24) by generating an interpolating function and integrating

the interpolating function in the interval 0 to 1. This yielded ln½pðDjM1; IÞ� ¼ �87:4462.
A more sophisticated interpolation of the results yielded ln½pðDjM1; IÞ� ¼ �87:3369.
Model M2 had no free parameters and pðDjM2; IÞ ¼ 1:133� 10�38 from Equation

(3.49). The resulting Bayes factors for the two interpolations were B1;2 ¼ 0:93 and

1.04, respectively. This should be compared to B1;2 ¼ 1:06 obtained from our earlier

solution to this problem.

12.8 Towards an automated MCMC

As the number of model parameters increases, so does the time required to choose a

suitable � value for each of the parameter proposal distributions. Suitable means that

MCMC solutions, starting from different locations in the prior parameter space, yield

equilibrium distributions of model parameter values that are not significantly different,

in an acceptable number of iterations. Generally this involves running a series of

chains, each time varying � for one or more of the parameter proposal distributions,

until the chain appears to converge on an equilibrium distribution with a proposal

acceptance rate, �, that is reasonable for the number of parameters involved, e.g.,

approximately 25% for a large number of parameters (Roberts, Gelman, and Gilks,

1997). This is especially time consuming if each parameter corresponds to a different

physical quantity, so that the � values can be very different. In this section, we describe

one attempt at automating this process, which we apply to the detection of an

extrasolar planet using some real astronomical data.

Suppose we are dealing with M parameters that are represented collectively by

fX�g. Let �� represent the characteristic width of a symmetric proposal distribution

for X�. We will assume Gaussian proposal distributions but the general approach

should also be applicable to other forms of proposal distributions. To automate the

MCMC, we need to incorporate a control system that makes use of some form of error

signal to steer the selection of the f��g.
For a manually controlled MCMC, a useful approach is to start with a large value

of ��, approximately one tenth of the prior uncertainty of that parameter. In a PT

MCMC, this will normally be sufficient to provide access to all areas with significant

probability within the prior range, but may result in a very small acceptance rate for

the � ¼ 1 member of the PT MCMC chain. By running a number of smaller iteration

chains, each time perturbing one or more of the f��g, it soon becomes clear which

parameters are restraining the acceptance rate from a more desirable level. Larger

f��g values yield larger jumps in parameter proposal values. The general approach of

refining the f��g towards smaller values is analogous to an annealing operation. The

refinement is terminated when the target proposal acceptance rate is reached.
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In the automated version of this process described below, the error signal used for the

control system is the difference between the current acceptance rate and a target

acceptance rate. The control system steers the proposal �’s to desirable values during

the burn-in stage of a single parallel tempering MCMC run. Although inclusion of the

control systemmay result in a somewhat longer burn-in period, there is a huge saving in

time because it eliminatesmany trial runs tomanually establish a suitable set of f��g. In
addition the control system error monitor provides another indication of the length of

the burn-in period. In practice, it is important to repeat the operation for a few different

choices of initial parameter values, to ensure that the MCMC results converge.

The automatic parallel temperingMCMC (APTMCMC) algorithm contains major

and minor cycles. During the major cycles the current set of f��g are used for n1
iterations. The acceptance rate achieved during this major cycle is compared to the

target acceptance rate. If the difference (control system error signal), �, is greater than

a chosen threshold, tol1, then a set of minor cycles, one cycle of n2 iterations for each

��, are employed to explore the sensitivity of the acceptance rate to each ��. The f��g
are updated and another major cycle run. If tol1 is set ¼ 0, then the minor cycles are

always performed after each major cycle. At this point, the reader might find it useful

to examine the evolution of the error signal, and the {��}, for the examples shown in

Figures 12.12 and 12.13. One can clearly see the expected Poisson fluctuations in the

error signal after the {��} stabilize. For these examples we set tol1=1.5
ffiffiffiffiffiffiffiffi
�n1
p

to reduce

the number of minor cycles. Normally the control system is turned off after � is less

than some threshold, tol2. Typically tol2 ¼
ffiffiffiffiffiffiffiffi
�n1
p

.

Full details of the control system are not included here as it is considered experi-

mental and in a process of evolution. The latest version is included in theMathematica

tutorial in the section entitled ‘‘Automatic parallel tempering MCMC,’’ along with

useful default values for the algorithm parameters and input data format. Figure 12.9

provides a summary of the inputs and outputs for the APT MCMC algorithm. In the

following section we demonstrate the behavior of the algorithm with a set of astro-

nomical data used to detect an extrasolar planet.

12.9 Extrasolar planet example

In this section, we will apply the automated parallel tempering MCMC described

in Section 12.8 to some real astronomical data, which were used to discover (Tinney

et al., 2003) an extrasolar planet orbiting a star with a catalog number HD 2039.

Although light from the planet is too faint to be detected, the gravitational tug of the

planet on the star is sufficient to produce a measurable Doppler shift in the velocity of

absorption lines in the star’s spectrum. By fitting a Keplerian orbit to the measured

radial velocity data, vi, it is possible to obtain information about the orbit and a lower

limit on the mass of the unseen planet. The predicted model radial velocity, fi, for a

particular orbit is given below, and involves six unknowns. The geometry of a stellar

orbit with respect to the observer is shown in Figure 12.10. The points labeled F, P,
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and S, are the location of the focus of the elliptical orbit, periastron, and the star’s

position at time ti, respectively.

fi ¼ Vþ K½cosf	ðti þ t0Þ þ !g þ e cos!�; (12:26)

where

V ¼ the systematic velocity of the system.
K ¼ velocity amplitude ¼ 2pP�1ð1� e2Þ�1=2a sin i.
P ¼ the orbital period.
a ¼ the semi-major axis of the orbit.
e ¼ the eccentricity of the elliptical orbit.
i ¼ the inclination of the orbit as defined in Figure 12.10.
! ¼ the longitude of periastron, angle LFA in Figure 12.10.

 ¼ the fraction of an orbit prior to the start of data-taking that periastron occurred
at. Thus, t0 ¼ 
P ¼ the number of days prior to ti ¼ 0 that the star was at periastron,
for an orbital period of P days. At ti ¼ 0, the star is at an angle AFB from periastron.
	ðti þ t0Þ ¼ the angle (AFS) of the star in its orbit relative to periastron at time ti.

The dependence of 	 on ti, which follows from the conservation of angular momen-

tum, is given by the solution of

d	

dt
� 2p½1þ e cos 	ðti þ t0Þ�2

Pð1� e2Þ3=2
¼ 0: (12:27)
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Figure 12.9 An overview schematic of the inputs and outputs for the automated parallel
tempering MCMC.
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To fit Equation (12.26) to the data, we need to specify the six model parameters,

P;K;V; e; !; 
.

The measured radial velocities and their errors are shown Figure 12.11. As we have

discussed before, it is good idea not to assume that the quoted measurement errors are

the only error component in the data.
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Figure 12.11 HD 2039 radial velocity measurements plotted from the data given in Tinney et al.,
(2003).
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Figure 12.10 The geometry of a stellar orbit with respect to the observer. The sky plane is
perpendicular to the dashed line connecting the star and the observer.
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We can represent the measured velocities by the equation

vi ¼ fi þ ei; (12:28)

where ei is the component of vi which arises frommeasurement errors plus any real signal

in the data that cannot be explained by the model prediction fi. For example, suppose

that the star actually has two planets, and the model assumes only one is present. In

regard to the single planetmodel, the velocity variations induced by the second planet act

like an additional unknown noise term. In the absence of detailed knowledge of the

effective noise distribution, other than that it has a finite variance, the maximum entropy

principle tells us that a Gaussian distribution would be the most conservative choice (i.e.,

maximally non-committal about the information we don’t have). We will assume the

noise variance is finite and adopt a Gaussian distribution for ei with a variance �2i .

In a Bayesian analysis where the variance of ei is unknown, but assumed to be the

same for all data points, we can treat � as an unknown nuisance parameter.

Marginalizing over � has the desirable effect of treating anything in the data that

can’t be explained by the model as noise and this leads to the most conservative

estimates of model parameters.

In the current problem, the quoted measurement errors are not all the same. We let

si ¼ the experimenter’s estimate of �i, prior to fitting the model and examining the

model residuals. The �i values are not known, but the si values are our best initial

estimates. They also contain information on the relative weight we want to associate

with each point. Since we do not know the absolute values of the �i, we introduce a

parameter called the noise scale parameter, b, to allow for this.3 It could also be called

a noise weight parameter. Several different definitions of b are possible including

�2i ¼ bs2i and �i ¼ bsi. The definition we use here is given by

1

�2i
¼ b

s2i
: (12:29)

Again marginalizing over b has the desirable effect of treating anything in the data

that can’t be explained by the model as noise, leading to the most conservative

estimates of orbital parameters. Since b is a scale parameter, we assume a Jeffreys

prior (see Section 3.10).

3 Note added in proof:
A better choice for parameterizing any additional unknown noise term is to rewrite equation (12.28) as

vi ¼ fi þ ei þ e0
where ei is the noise component arising from known but unequal measurement errors, and e0 is the additional unknown
noise term. From the arguments given above, we can characterize the combination of ei þ e0 by a Gaussian distribution
with variance = �2i þ �20. With this form of parameterization we would marginalize over �0 instead of b. The one
advantage of using b is that it can allow for the possibility that the measurement errors have been overestimated.
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pðbjIÞ ¼ 1

b ln bmax

bmin

; (12:30)

with bmax ¼ 2 and bmin ¼ 0:1. We also compute pðbjD;Model; IÞ. If the most probable

estimate of b � 1, then the one-planetmodel is doing a good job accounting for everything

that is not noise based on the si estimates. If b < 1, then either the model is not accounting

for significant real features in the data or the initial noise estimates, si, were low.

12.9.1 Model probabilities

In this section, we set up the equations needed to (a) specify the joint posterior probability

of the model parameters (parameter estimation problem) for use in the MCMC analysis,

and (b) decide if a planet has been detected (model selection problem). To decide if a

planet has been detected, we will compare the probability of M1 � ‘‘the star’s radial

velocity variations are caused by one planet’’ to the probability of M0 � ‘‘the radial

velocity variations are consistent with noise.’’ From Bayes’ theorem, we can write

pðM1jD; IÞ ¼
pðM1jIÞ pðDjM1; IÞ

pðDjIÞ ¼ C pðM1jIÞ pðDjM1; IÞ; (12:31)

where

pðDjM1;IÞ¼
Z

dP

Z
dK

Z
dV

Z
de

Z
d


Z
d!

Z
dbpðP;K;V;e;
;!;bjM1;IÞ

�pðDjM1;P;K;V;e;
;!;b;IÞ:
(12:32)

The joint prior for the model parameters, assuming independence, is given by

pðP;K;V; e; 
; !; bjM1; IÞ ¼
1

P ln Pmax

Pmin

� � 1

K ln Kmax

Kmin

� � 1

ðVmax � VminÞ

� 1

ðemax � eminÞ
1

2p
1

b ln bmax

bmin

� � : (12:33)

Note: we have assumed a uniform prior for 
 in the range 0 to 1, so pð
|M1; IÞ ¼ 1.

pðDjM1;P;K;V; e; 
; !; b; IÞ¼AbN=2 � exp � b

2

XN
i¼ 1

ðvi � fiÞ2

s2i

" #
; (12:34)

where

A ¼ ð2pÞ�N=2
YN
i¼ 1

s�1i

" #
: (12:35)
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For the purposes of estimating the model parameters, we will assume a prior uncer-

tainty in b in the range bmin ¼ 0:1 and bmax ¼ 2.

When it comes to comparing the probability of M1 to M0, or to a model which

assumes there are two planets present, we will set b ¼ 1 and perform the model

comparison based on the errors quoted in Tinney et al., (2003). The probability of

M0 is given by

pðM0jD; IÞ ¼ C pðM0jIÞpðDjM0; IÞ; (12:36)

where

pðDjM0; IÞ ¼
Z

db

Z
dV pðV; bjD;M0; IÞ

¼
Z

db

Z
dV pðV; bjM0; IÞ pðDjM0;V; b; IÞ;

(12:37)

pðVjM0; IÞ ¼
1

ðVmax � VminÞ
1

b ln bmax

bmin

� � ; (12:38)

and

pðDjM0;V; b; IÞ ¼ ð2pÞ�N=2
YN
i¼ 1

s�1i

" #
b

N
2 exp � b

2

XN
i¼ 1

ðvi � VÞ2

s2i

" #
: (12:39)

The integral over V in Equation (12.37) can be performed analytically yielding

pðDjM0; IÞ ¼A

ffiffiffi
p
2

r
W�1=2

Z
db b

N� 3
2 exp � bW

2

XN
i¼ 1

ðv2w � ðvwÞ
2Þ2

" #

� erfðumaxÞ � erfðuminÞ½ �;
(12:40)

where

vw ¼
XN
i¼ 1

wi vi; (12:41)

v2w ¼
XN
i¼ 1

wi v
2
i ; (12:42)

wi ¼ 1=s2i ; (12:43)

W ¼
XN
i¼ 1

wi; (12:44)
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umax ¼
bW

2

� ��1=2
ðVmax � vwÞ; (12:45)

umin ¼
bW

2

� ��1=2
ðVmin � vwÞ: (12:46)

In conclusion, Equations (12.31) and (12.34) are required for the parameter estima-

tion part of the problem, andEquations (12.32) and (12.40) answer themodel selection

part of the problem. Equation (12.32) is evaluated from the results of the parallel

tempering chains according to the method discussed in Section 12.7.

12.9.2 Results

The APT MCMC algorithm described in Section 12.8 was used to re-analyze the

measurements of Tinney et al. (2003). Figures 12.12 and 12.13 show the diagnostic

information output by the MCMC control system for two runs of the APT MCMC

algorithm that use different starting values for the parameters and different starting

values for the proposal �’s. The top left panel shows the evolution of the control

system error for 100 000 iterations. Even for the best set of f��g, the control system
error will exhibit statistical fluctuations of order

ffiffiffiffiffiffiffiffi
�n1
p

which will result in fluctuations

of f��g throughout the run. Recall, � ¼ the target acceptance fraction and n1 ¼ the

number of iterations in major cycles (see Section 12.8). These fluctuations are of no

consequence since the equilibrium distribution of parameter values is insensitive to

small fluctuations in f��g. To reduce the time spent in perturbing f��g values, we set a
threshold on the control system error of 1:5

ffiffiffiffiffiffiffiffi
�n1
p

. When the error is less than this value

no minor cycles are executed. Normally, the control system is disabled the first time

the error is <1:5
ffiffiffiffiffiffiffiffi
�n1
p

. This was not done in the two examples shown in order to

illustrate the behavior of the control system and evolution of the f��g. For the two
runs, the error drops to a level consistent with the minimum threshold set for initiating

a change in f��g in 8000 and 9600 iterations, respectively. The other six panels exhibit

the evolution of the f��g to relatively stable values. Table 12.1 compares the starting

and final values for twoAPTMCMCrunswith a set of f��g values arrived atmanually.

The starting parameter values for the two APT MCMC runs are shown in Table 12.2.

Control system parameters were: scmax ¼ 0:1, n1 ¼ 1000, n2 ¼ 100, � ¼ 0:25, and a

damping factor, � ¼ 1:6. scmax specifies the maximum scaling of f��g to be used in a

minor cycle. Tempering � values used were f0:01; 0:2575; 0:505; 0:7525; 1g. � values are

chosen to give ’50% swap acceptance between adjacent levels.

Figure 12.14 shows the iterations of the six model parameters, P;K;V; e; 
; !, for

the 100 000 iterations of APTMCMC1.Only every 100th value is plotted. The plot for

K shows clear evidence that parallel tempering is doing its job, enabling regions of

significant probability to be explored apart from the biggest peak region. A conser-

vative burn-in period of 8000 samples was arrived at from an examination of the
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control system error, shown in the upper left panel of Figure 12.12, and the parameter

iterations of Figure 12.14.

The level of agreement between two different MCMC runs can be judged from a

comparison of the marginal distributions of the parameters. Figures 12.15 and 12.16

show the posteriormarginals for the sixmodel parameters,P;K;V; e; 
; !, and the noise

scale parameter b for APTMCMC 1 and APTMCMC 2, respectively. The final model
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Figure 12.12 The upper left panel shows the evolution of the APTMCMC control system error
versus iteration number for the first run. The other six panels exhibit the evolution of the

Gaussian parameter proposal distribution �’s.

338 Markov chain Monte Carlo



parameter values are given in Table 12.3, along with values of a sin i, M sin i, and the

Julian date of periastron passage, that were derived from the parameter values.

a sin iðkmÞ ¼ 1:38� 105KP
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

; (12:47)

where K is in units of m s�1 and P is in days.

M sin i ¼ 4:91� 10�3ðM� Þ2=3KP1=3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

; (12:48)
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Figure 12.13 The upper left panel shows the evolution of the APTMCMC control system error

versus iteration number for the second run. The other six panels exhibit the evolution of the
Gaussian parameter proposal distribution �’s.
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where M is the mass of the planet measured in Jupiter masses, and M� is the mass of

the star in units of solar masses.

One important issue concerns what summary statistic to use to represent the best

estimate of the parameter values.We explore the question of a suitable robust summary

statistic further in Section 12.10. In Table 12.3, the final quoted parameter values

correspond to the MAP values. The median values are shown in brackets below. The

error bars correspond to the boundaries of the 68.3% credible region of the marginal

distribution. The MAP parameter values for APTMCMC 1 were used to construct the

model plotted in panel (a) of Figure 12.17. The residuals are shown in panel (b).

Figure 12.18 shows the posterior probability distributions for a sin i,M sin i, and the

Julian date of periastron passage, that are derived from the MCMC samples of the

orbital parameters.

The Bayes factors, pðDjM1; IÞ=pðDjM0; IÞ, determined from the two APT MCMC

runs were 1:4� 1014 and 1:6� 1014. Clearly, both trials overwhelmingly favor M1

over M0.

The upper panel of Figure 12.19 shows a comparison of the marginal and projected

probability density functions for the velocity amplitude, K, derived from the APT

MCMC parameter samples. To understand the difference, it is useful to examine the

strong correlation that is evident betweenK and orbital eccentricity in the lower panel.

Table 12.1 Comparison of the starting and final values of proposal distribution �’s for

two automatic parallel tempering MCMC runs, to manually derived values.

Proposal

�

APT MCMC 1 APT MCMC 2 Manual

Start Final Start Final Final

�P (days) 70 6.2 50 7.8 10

�Kðm s�1Þ 70 5.7 60 6.0 5

�Vðm s�1Þ 20 1.5 10 1.2 2

�e 0.15 0.012 0.1 0.012 0.005

�
 0.15 0.013 0.1 0.009 0.007

�! 0.3 0.023 0.2 0.019 0.05

Table 12.2 Starting parameter values for the two automatic parallel tempering MCMC

runs.

Trial P K V e 
 ! b

1 950 80 �2 0.4 0.0 0.0 1.0

2 1300 250 5 0.2 0.0 0.0 1.0
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Not only is the density of samples much higher at low K values, but the characteristic

width of theK sample distribution is alsomuch broader, giving rise to an enhancement

in the marginal beyond that seen in the projected.

Finally, even though the 68.3% credible region contains b ¼ 1, we decided to

analyze the best-fit residuals, shown in the lower panel of Figure 12.17, to see what

probability theory had to say about the evidence for another planet.4 The APT

MCMC program was re-run on the residuals to look for evidence of a second planet

in the period range 2 to 500 days, K ¼ 1 to 40m s�1, V ¼ �10 to 10m s�1, e ¼ 0 to

0.95, 
 ¼ 0 to 1, and ! ¼ �p to p. The most probable orbital solution had a period of

11:90� 0:02 days, K ¼ 18þ9�15 m s�1, V ¼ �2:7þ2:4�1:6 m s�1, eccentricity ¼ 0:626þ0:16�0:18,

! ¼ 156þ2�4 deg, periastron passage ¼ 1121� 1 days ðJD�2;450;000Þ, and an

M sin i ¼ 0:14þ0:07�0:04. Figure 12.20 shows this orbital solution overlaid on the residuals

for two cycles of phase. Note: the second cycle is just a repeat of the first. The

computed Bayes factor pðDjM2; IÞ=pðDjM1; IÞ ¼ 0:7. Assuming a priori that
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Figure 12.14 The figure shows every 100th APT MCMC iteration of the six model parameters,
P;K;V; e; 
; !.

4 Note: a better approach would be to fit a two-planet model to the original radial velocity data.
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pðM2jIÞ ¼ pðM1jIÞ, this result indicates that it is more probable that the orbital

solution for the residuals arises from fitting a noise feature than from the existence

of a second planet. Thus, there is insufficient evidence at this time to claim the presence

of a second planet.

12.10 MCMC robust summary statistic

In the previous section, the best estimate of each model parameter is based on the

maximum a posteriori (MAP) value. It has been argued, e.g., Fox and Nicholls (2001),
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Figure 12.15 The marginal probabilities for the six model parameters, P;K;V; e; 
; !, and the
noise scale parameter b for the run APT MCMC 1.
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that MAP values are sometimes unrepresentative of the bulk of the posterior prob-

ability. Fox and Nicholls were considering the reconstruction of degraded binary

images. The current problem is very different but the issue remains the same: what

choice of summary statistic to use? Two desirable properties are: a) that it be repre-

sentative of the marginal probability distribution, and b) the set of summary parameter

values provides a good fit to the data. Here, we consider three other possible choices of

summary statistic. They are the mean, the median, and the marginal posterior mode

(MPM), all of which satisfy point (a). In repeated APTMCMC runs, it was found that
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Figure 12.16 The marginal probabilities for the six model parameters, P;K;V; e; 
; !, and the
noise scale parameter b for the run APT MCMC 2.
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the MPM solution provided a relatively poor fit to the data, while the mean was

somewhat better, and in all cases, the median provided a good fit – almost as good as

the MAP fits. One example of the fits is shown in Figure 12.21. The residuals were as

follows: (a) 14:0m s�1 (MAP), (b) 16.1 (mean), (c) 18.7 (MPM), and (d) 14.0 (median).

In the previous example the Bayes factor favored the one-planet model, M1,

compared to the no-planet model, M0, by a factor of approximately 1014. It is also

Table 12.3 Comparison of the results from two parallel tempering MCMC Bayesian runs

with the analysis of Tinney et al. (2003). The values quoted for the two APTMCMC runs

are MAP (maximum a posterior) values. The error bars correspond to the boundaries of

the 68.3% credible region of the marginal distribution. The median values are given in

brackets on the line below. Note: the periastron time and error quoted by Tinney et al. is

identical with their P value and is assumed to be a typographical error.

Parameter Tinney et al.

(2003)

APT MCMC

1

APT MCMC

2

Orbital period 1183� 150 1188þ28�35 1177þ36�21
P (days) (1188) (1188)

Velocity amplitude 130� 20 106þ46�29 116þ56�39
K ðm s�1Þ (115) (125)

Eccentricity e 0:67� 0:1 0:63þ0:12�0:06 0:65þ0:15�0:06
(0.67) (0.68)

Longitude of periastron 333� 15 333þ6�5 332þ8�3
! (deg) (334) (334)

a sin i 1:56� 0:3 1:35þ0:4�0:3 1:4þ0:4�0:4
(units of 106 km) (1.42) (1.66)

Periastron time 1183� 150 864þ18�58 856þ52�28
ðJD�2;450;000Þ (845) (844)

Systematic velocity �0:7þ8�6 1:4þ7�7
V ðm s�1Þ (0.8) (2.1)

M sin i ðMJÞ 4:9� 1:0 4:2þ1:2�1:0 4:5þ1:3�1:3
(4.5) (4.7)

RMS about fit 15 13.8 14.0

(14.1) (14.0)
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interesting to compare the four different summary statistics in the case where the

Bayes factor is close to 1, as we found for the toy spectral line problem in Section 12.7,

i.e., neither model is preferred. Figure 12.22 shows a comparison of the fits obtained

using (a) theMAP, (b) the mean, (c) theMPM, and (d) the median. Both theMAP and

median summary statistic placed the model line at the actual location of the simulated

spectral line (channel 37). The MAP achieved a slightly lower RMS residual

ðRMS ¼ 0:87Þ compared to the median ðRMS ¼ 0:89Þ. The mean statistic performed

rather poorly and the MPM not much better.

The conclusion, based on the current studies, is that the median statistic provides a

robust alternative to the common MAP statistic for summarizing the posterior dis-

tribution. Unfortunately, the median was not one of the statistics considered in Fox

and Nicholls (2001).
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Figure 12.17 Panel (a) shows the raw data with error bars plotted together with the model radial

velocity curve using the MAP (maximum a posteriori) summary statistic. Panel (b) shows the
radial velocity residuals.
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12.11 Summary

This chapter provides a brief introduction to the powerful role MCMC methods can

play in a full Bayesian analysis of a complex inference problem involving models with

large numbers of parameters. We have only demonstrated their use for models with a

small to a moderate number of parameters, where they can easily be compared with

results from other methods. These comparisons will provide a useful introduction and

calibration of these methods for readers wishing to handle more complex problems.

For the examples considered, the median statistic proved to be a robust alternative to

the common MAP statistic for summarizing the MCMC posterior distribution.

The most ambitious topic treated in this chapter dealt with an experimental new

algorithm for automatically annealing the � values for the parameter proposal dis-

tributions in a parallel tempering Markov chain Monte Carlo (APTMCMC) calcula-

tion. This was applied to the analysis of a set of astronomical data used in the detection

of an extrasolar planet. Existing analyses are based on the use of nonlinear least-

squares methods which typically require a good initial guess of the parameter values

(see Section 11.5). Frequently, the first indication of a periodic signal comes from a

periodogram analysis of the data. As we show in the next chapter, a Bayesian analysis

based on prior information of the shape of the periodic signal can frequently do a

better job of detection than the ordinary Fourier power spectrum, otherwise known as

the Schuster periodogram. In the extrasolar planet Kepler problem, the mathematical

form of the signal is well known and is built into the Bayesian analysis. The APT
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M sin i and epoch of periastron passage, that are derived from theMCMC samples of the orbital
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Figure 12.19 The upper panel shows a comparison of the marginal and projected probability
density functions for the velocity amplitude,K. The lower panel illustrates the strong correlation
between K and orbital eccentricity.
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Figure 12.20 The figure shows the most probable orbital solution to the data residuals (for two
cycles of phase), after removing the best fitting model of the first planet.
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Figure 12.21 The four panels illustrate typical fits obtained in the extrasolar planet problem
using different choices of summary statistic to represent the MCMC parameter distributions.

They correspond to: (a) theMAP (maximum a posteriori), (b) the mean, (c) theMPM (marginal
posterior mode), and (d) the median.
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Figure 12.22 The four panels illustrate the fits obtained in the toy spectral line problem using
different choices of summary statistic to represent the MCMC parameter distributions. They

correspond to: (a) the MAP (maximum a posteriori), (b) the mean, (c) the MPM (marginal
posterior mode), and (d) the median.
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MCMC algorithm implemented in Section 12.9 is thus effective for both detecting and

characterizing the orbits of extrasolar planets. Another advantage is that a good initial

guess of the orbital parameter values is not required, which allows for the earliest

possible detection of a new planet. Moreover, the built-in Occam’s razor in the

Bayesian analysis can save a great deal of time in deciding whether a detection is

believable.

Finally, it is important to remember that the MCMC techniques described in this

chapter are basically tools to allow us to evaluate the integrals needed for a full

Bayesian analysis of some problem of interest. The APTMCMC algorithm discussed

in the context of the extrasolar planet problem can readily be modified to tackle other

very different problems.

12.12 Problems

1. In Section 12.6, we used both the Metropolis–Hastings and parallel tempering (PT) versions

of MCMC to re-analyze the toy spectral line problem of Section 3.6. A program to perform

the PT calculations is given in the Markov chain Monte Carlo section of the Mathematica

tutorial. Use this program to analyze the spectrum given in Table 12.4, for n ¼ 10 000 to

50 000 iterations, depending on the speed of your computer. As part of your solution,

recompute Figures 12.7, 12.8, and the Bayes factor used to compare the two competing

models. Explain how you arrived at your choice for the number of burn-in samples.

The prior information is the same as that assumed in Section 12.6. Theory predicts the

spectral line has a Gaussian shape with a line width �L ¼ 2 frequency channels. The noise in

each channel is known to be Gaussian with a � ¼ 1:0mK and the spectrometer output is in

units of mK.

2. Repeat the analysis of problem 1 with the following changes. In addition to the unknown line

strength and center frequency, the line width is also uncertain. Assume a uniform prior for

the line width, with upper and lower bounds of 0.5 and 4 frequency channels, respectively.

You will need to modify the parallel tempering MCMC program to allow for the addition of

the line width parameter. Experiment with your choice of �, for the line width in theGaussian

proposal distribution, to obtain a reasonable value for the acceptance rate somewhere in the

range 0.25 to 0.5. Your solution should include a plot of themarginal probability distribution

for each of the three parameters and a calculation of the Bayes factor for comparing the two

models. Justify your choice for the number of burn-in samples.

3. Carry out the analysis described in problem 2 by modifying the experimental APT MCMC

software provided in the Mathematica tutorial, and discussed in Section 12.8.

4. In Section 11.6, we illustrated the solution of a simple nonlinear model fitting problem using

Mathematica’s NonlinearRegress, which implements the Levenberg–Marquardt method. In

this problem we want to analyze the same spectral line data (Table 12.5) using the experi-

mental APT MCMC software given in the Mathematica tutorial and discussed in Section

12.8. It will yield a fully Bayesian solution to the problem without the need to assume the

asymptotic normal approximation, or to assume the Laplacian approximations for comput-

ing the Bayes factor and marginals. In general, MCMC solutions come into their own for

12.12 Problems 349



Table 12.5 Spectral line data consisting of 51 pairs of frequency and signal strength

(mK) measurements.

f mK f mK f mK f mK

0.00 0.86 1.56 0.97 3.12 1.95 4.68 1.39

0.12 1.08 1.68 0.97 3.24 1.75 4.80 0.64

0.24 0.70 1.80 1.06 3.36 2.03 4.92 0.79

0.36 1.16 1.92 0.85 3.48 1.42 5.04 1.27

0.48 0.98 2.04 1.94 3.60 1.06 5.16 1.17

0.60 1.32 2.16 2.34 3.72 0.79 5.28 1.23

0.72 1.05 2.28 3.55 3.84 1.11 5.40 1.23

0.84 1.17 2.40 3.53 3.96 0.88 5.52 0.71

0.96 0.96 2.52 4.11 4.08 0.88 5.64 0.71

1.08 0.86 2.64 3.72 4.20 0.68 5.76 0.80

1.20 1.12 2.76 3.52 4.32 1.39 5.88 1.16

1.32 0.79 2.88 2.78 4.44 0.62 6.00 1.12

1.44 0.86 3.00 3.03 4.56 0.80

Table 12.4 Spectral line data consisting of 64 frequency channels obtained with a radio

astronomy spectrometer. The output voltage from each channel has been calibrated in

units of effective black body temperature expressed in mK. The existence of negative

values arises from receiver channel noise which gives rise to both positive and negative

fluctuations.

ch. # mK ch. # mK ch. # mK ch. # mK

1 0.82 17 �0.90 33 �0.03 49 �0.72
2 �2.07 18 0.33 34 1.47 50 0.38

3 0.38 19 0.80 35 1.70 51 0.02

4 0.99 20 �1.42 36 1.89 52 �1.26
5 �0.12 21 0.28 37 4.55 53 1.35

6 �1.35 22 �0.42 38 3.59 54 �0.04
7 �0.20 23 0.12 39 2.02 55 �1.45
8 0.36 24 0.14 40 0.21 56 1.48

9 0.78 25 �0.63 41 0.05 57 �1.16
10 1.01 26 �1.77 42 0.54 58 �0.40
11 0.44 27 �0.67 43 �0.09 59 0.01

12 0.34 28 0.55 44 �0.61 60 0.29

13 1.58 29 1.98 45 2.49 61 �1.35
14 0.08 30 �0.08 46 0.07 62 �0.21
15 0.38 31 1.16 47 �1.45 63 �1.67
16 �0.71 32 0.48 48 0.56 64 0.70
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higher dimensional problems but it is desirable to gain experience working with simpler

problems.

Modify the APT MCMC software to analyze these data for the two models described in

Section 11.6.

In Mathematica, model 1 has the form:

model[a0_; a1_; f1_]:=a0þ a1 line[ f1]

where

line[ f 1�] :¼ sin[2p(f�f1)=Df]
2p( f�f1)=Df

and � f ¼ 1:5.

Model 2 has the form:

model[a0�; a1�; a2�; f1�; f2�] :¼ a0þ a1 line[ f1]þ a2 line[ f2];

where f 2 is assumed to be the higher frequency line.

Adopt uniform priors for all parameters and assume a lower bound of 0 and an upper bound

of 10 for a0, a1 and a2. For the two spectral line model, we need to carefully consider the

prior boundaries for f1 and f2 to prevent the occurrence of two degenerate peaks in the joint

posterior. Adopt a range for f2 = 1.0 to 5.0. Since by definition, f1 is the lower frequency

line, at any iteration the current value of f1 must be less than current value of f2. Thus

pðf1jf2;M2; IÞ ¼
1

f2 � 1:0
:
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13

Bayesian revolution in spectral analysis1

13.1 Overview

Science is all about identifying and understanding organized structures or patterns in

nature. In this regard, periodic patterns have proven especially important. Nowhere is

this more evident than in the field of astronomy. Periodic phenomena allow us to

determine fundamental properties like mass and distance, enable us to probe the

interior of stars through the new techniques of stellar seismology, detect new planets,

and discover exotic states of matter like neutron stars and black holes. Clearly, any

fundamental advance in our ability to detect periodic phenomena will have profound

consequences in our ability to unlock nature’s secrets. The purpose of this chapter is to

describe advances that have come about through the application of Bayesian prob-

ability theory,2 and provide illustrations of its power through several examples in

physics and astronomy. We also examine how non-uniform sampling can greatly

reduce some signal aliasing problems.

13.2 New insights on the periodogram

Arthur Schuster introduced the periodogram in 1905, as a means for detecting a

periodicity and estimating its frequency. If the data are evenly spaced, the period-

ogram is determined by the Discrete Fourier Transform (DFT), thus justifying the use

of the DFT for such detection andmeasurement problems. In 1965, Cooley and Tukey

introduced the Fast Discrete Fourier Transform (FFT), a very efficient method of

implementing the DFT that removes certain redundancies in the computation and

greatly speeds up the calculation of the DFT. A detailed treatment of the DFT and

FFT is given in Appendix B.

The Schuster periodogram was introduced largely for intuitive reasons, but in 1987,

Jaynes provided a formal justification by applying the principles of Bayesian inference

1 The term ‘‘spectral analysis’’ has been used in the past to denote a wider class of problems than will be considered in this
chapter. For a brief introduction to stochastic spectrum estimation, see Appendix B.13.4.

2 The first three sections of this chapter are a revised version of an earlier paper by the author (Gregory, 2001), which is
reproduced here with the permission of the American Institute of Physics.
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as follows: suppose we are analyzing data consisting of samples of a continuous

function contaminated with additive independent Gaussian noise with a variance of

�2. Jaynes showed that, presuming the possible periodic signal is sinusoidal (but with

unknown amplitude, frequency, and phase), the Schuster periodogram exhausts all

the information in the data relevant to assessing the possibility that a signal is present,

and to estimating the frequency and amplitude of such a signal. The periodogram is

essentially the squared magnitude of the FFT and can be defined as

periodogram ¼ Cð fnÞ ¼
1

N

XN�1
k¼0

dk ei2pn�fkT

�����
�����
2

¼ 1

N
FFTj j2:

(13:1)

In an FFT, the frequency interval, �f ¼ 1=T , where T is the duration of the data

set. The quantity Cð fnÞ is indeed fundamental to spectral analysis but not because it is

itself a satisfactory spectrum estimator. Jaynes showed that the probability for the

frequency of a periodic sinusoidal signal is given approximately by3

pð fnjD; IÞ / exp
Cð fnÞ
�2

� �
: (13:2)

Thus, the proper algorithm to convert Cð fnÞ to pð fnjD; IÞ involves first dividing Cð fnÞ
by the noise variance and then exponentiating. This naturally suppresses spurious

ripples at the base of the periodogram, usually accomplished with linear smoothing;

but does it by attenuation rather than smearing, and therefore does not sacrifice any

precision. The Bayesian nonlinear processing of Cð fnÞ also yields, when the data give

evidence for them, arbitrarily sharp spectral peaks. Since the peak in pð fn jD; IÞ can be

much sharper than the peak in Cð fnÞ, it is necessary to zero pad the FFT to obtain a

sufficient density of points in Cð fnÞ for use in Equation (13.2) to accurately define a

peak in pð fnjD; IÞ.
Figure 13.1 provides a demonstration of these properties for a simulated data set

consisting of a single sine wave plus additive Gaussian noise given by Equation (13.3).

y ¼ A cos 2pftþGaussian noise ðmean ¼ 0; � ¼ 1Þ; (13:3)

where A ¼ 1, f ¼ 0:1Hz. The upper panel shows 64 simulated data points computed

from Equation (13.3), with one-� error bars. The middle panel is the Fourier

power spectral density or periodogram, computed for this data according to

Equation (13.1).4 The sinusoidal signal is clearly indicated by the prominent peak.

3 Bretthorst (2000) derives the exact result for non-uniformly sampled data which involves an analogous nonlinear
transformation of the Lomb–Scargle periodogram (Lomb, 1976; Scargle, 1982, 1989). Bretthorst (2001) also shows how
to generalize the Lomb–Scargle periodogram for the case of a non-stationary sinusoid. This is discussed further in
Section 13.5.

4 The 64 points were zero padded to provide a total of 512 points for the FFT. See Appendix B.11 for more details on
zero padding.
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The signal-to-noise ratio (S/N), defined as the ratio of the RMS signal amplitude to

the noise �, was 0.7 in the above simulation. If we repeated the simulation with a larger

S/N ratio, the main peak would increase in relation to the noise peaks and we would

start to notice side lobes emerging associated with the finite duration of the data set

(rectangular window function, see Appendix B.7.1). However, a well-known property

of the periodogram is that the width of any spectral peak depends only on the duration

of the data set and not on the signal-to-noise level. Various methods have been used to

determine the accuracy to which the peak frequency can be determined, but, as we see

below, the Bayesian posterior probability for the signal frequency provides this

information directly.
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Figure 13.1 Comparison of conventional (middle panel) and Bayesian analysis (lower panel) of a
simulated time series (upper panel).
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The lower panel of Figure 13.1 shows the Bayesian probability density for the

period of the signal, derived from Equation (13.2). As the figure demonstrates, the

spurious noise features are suppressed and the width of the spectral peak is much

narrower than the peak in the periodogram. In a Bayesian analysis, the width of

spectral peak, which reflects the accuracy of the frequency estimate, is determined by

the duration of the data, the S/N, and the number of data points. More precisely, the

standard deviation of the spectral peak, �f, for a S/N > 1, is given by

�f � 1:6
S

N
T

ffiffiffiffi
N
p� ��1

Hz; (13:4)

where T ¼ the data duration in s, andN ¼ the number of data points in T . To improve

the accuracy of the estimate, the two most important factors are how long we sample

(the T dependence) and the signal-to-noise ratio.

Equation (13.2) assumes that the noise variance is a known quantity. In some

situations, the noise is not well understood, i.e., our state of knowledge is less certain.

Even if the measurement apparatus noise is well understood, the data may contain a

greater complexity of phenomena than the current signal model incorporates. In such

cases, Equation (13.2) is no longer relevant, but again, Bayesian inference can readily

handle this situation by treating the noise variance as a nuisance parameter with a

prior distribution reflecting our uncertainty in this parameter. We saw how to do that

when estimating the mean of a data set in Section 9.2.3. The resulting posterior can be

expressed in the form of a Student’s t distribution. The corresponding result for

estimating the frequency of a single sinusoidal signal (Bretthorst, 1988) is given

approximately5 by

pð fnjD; IÞ/ 1� 2Cð fnÞ
Nd2

� �2�N
2

; (13:5)

whereN is the number of data values and d2 ¼ ð1=NÞ
P

j d
2
i is the mean square average

of the data values. The analysis assumes any DC component in the data has been

removed. If � is not well known, then it is much safer to use Equation (13.5) than

Equation (13.2) because Equation (13.5) will treat anything that cannot be fitted by

the model as noise. This leads to more conservative estimates.

A corollary of Jaynes’ analysis is that for any other problem (e.g., non-sinusoidal

light curve, non-Gaussian noise, or non-uniform sampling) use of the FFT is not

optimal; more information can be extracted from the data if we use more sophisticated

statistics. Jaynes made this point himself, and it has been amply demonstrated in the

work of Bretthorst (1988), who has applied similar methods to signal detection and

estimation problems with non-sinusoidal models with Gaussian noise probabilities.

5 Note: Equations (13.2) and (13.5) do not require the data to be uniformily sampled provided that: 1) the number of
data values N is large, 2) there is no constant (DC) component in the data, and 3) there is no evidence of a low
frequency.
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In the following sections, we will consider two general classes of spectral problems:

(a) those for which we have strong prior information of the signal model, and (b) those

for which we have no specific prior information about the signal.

13.2.1 How to compute p( f |D,I )

In Section 13.2, we saw that the periodogram, Cð fnÞ, follows naturally from Bayesian

probability theory6 when our prior information indicates there is a single sine wave

present in the data and we want to compute the pð fnjD; IÞ. Equation (13.2) gives the

relationship between pð fnjD; IÞ and Cð fnÞ if the noise � is known, and Equation (13.5)

applies when the noise � is unknown. The value of the periodogram at a set of discrete

frequencies, indexed by n, is given by

Cð fnÞ ¼
1

N

XN
j¼ 1

dje
i2pfntj

�����
�����
2

¼ 1

N
FFTj j2

or CðnÞ ¼ 1

N

XN
j¼ 1

dje
i2pnjN

�����
�����
2

¼ jHnj2

N
;

(13:6)

where Hn is the FFT or DFT transform defined by Equations (B.49) and (B.55) in

Appendix B.

We illustrate the calculations in more detail by comparing the Bayesian pðnjD; IÞ to
the one-sided PSD (given in Appendix B.13.2) for two simulated time series shown in

Figure 13.2. The time series consist of 64 samples at one-second intervals of

dj ¼ A cos 2pftj þGaussian noise ð� ¼ 1Þ: (13:7)

The simulated data for two different choices of signal amplitude (A ¼ 0:8 and

A ¼ 10), corresponding to low and high signal-to-noise ratios, are shown in the two

top panels of Figure 13.2. In the computation of the FFT, we take N time samples at

intervals of T seconds and compute N transform points Hn. The value, n ¼ 0, corre-

sponds to the FFT at zero frequency, and n ¼ N=2 to the value at the Nyquist

frequency ¼ 1=ð2TÞ. Values of n between N=2þ 1 to N� 1 correspond to values of

the FFT for negative frequencies. In Appendix B.13.1 we show that jHnj2T=N is the

two-sided PSD (two-sided periodogram) with units of power Hz�1.

6 In general, for a different signal model or noise model, Bayesian inference will lead to an equation involving a different
function or statistic of the data for computing the probability of the signal frequency.
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In the computation of the Bayesian pðnjD; IÞ;CðnÞ is just the positive frequency part
of jHnj2=N.

CðnÞ ¼ jHnj2

N
for n ¼ 0; 1; . . . ;

N

2
: (13:8)

Both CðnÞ and �2 have units of power and thus their ratio is dimensionless.

In general, pðnjD; IÞ will be very narrow when CðnÞ=�2 > 1 because of the expo-

nentiation occurring in Equations (13.2) or (13.5). Thus, to accurately define pðnjD; IÞ
we need to zero pad the FFT to obtain a sufficient density of Hn points to accurately

define the pðnjD; IÞ peak. Zero padding is used to obtain higher frequency resolution

in the transform and is discussed in detail in Appendix B.11. In the zero padding case,

Equation (13.8) becomes

CðnÞ ¼ jHnj2

Norig
for n ¼ 0; 1; . . . ;

Nzp

2
; (13:9)
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Figure 13.2 Comparison of conventional (middle panels) and Bayesian analysis (bottom panels)
of two simulated time series (top panels).
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whereNorig is the number of original time series samples andNzp is the total number of

points including the added zeros. For analysis of the time series in Figure 13.2, we zero

padded to produce Nzp ¼ 512 points.

Box 13.1

Note: Mathematica uses a slightly different definition of Hn to that given in

Equation (13.6), which we designate by ½Hn�Math.

½Hn�Math ¼
1ffiffiffiffi
N
p

XN
j¼ 1

dje
i2pnjN

The modified version of Equation (13.9) is

CðnÞ ¼ Nzp

Norig
j½Hn�Mathj

2 for n ¼ 0; 1; . . . ;
Nzp

2
;

where ½Hn�Math ¼ Fourier[data], and data is a list of dj values.

The bottom two panels of Figure 13.2 show the Bayesian posterior pðnjD; IÞ
computed from Equation (13.2) for the two simulations. The middle panels show

the one-sided PSD for comparison. For the weak signal-to-noise simulation shown on

the left, the PSD display exhibits many spurious noise peaks. The Bayesian pðnjD; IÞ
shows a single strong narrow peakwhile the spurious noise features have been strongly

suppressed. Keep in mind that both quantities were computed from the same FFT of

the time series. The comparison serves to show how much of an improvement can be

obtained by a Bayesian estimation of the period over the intuitive PSD spectrum

estimator even for a RMS signal-to-noise ratio of � 0:6.

The three panels on the right hand side of Figure 13.2 illustrate the corresponding

situation for a RMS signal-to-noise ratio of� 7. In this case, we can clearly see the side

lobes adjacent to the main peak which arise from using a rectangular data windowing

function. In a conventional analysis, these side lobes are reduced by employing a data

windowing function which reduces the relative importance of data at either end and

results in a broadening of the spectral peak. The Bayesian analysis suppresses both the

side lobes and spurious ripples by attenuation, and results in a very much narrower

spectral peak. Also, because we have computed pðnjD; IÞ directly, we can readily

compute the accuracy of our spectral peak frequency estimate.

13.3 Strong prior signal model

Larry Bretthorst (1988, 1990a, b, c, 1991) extended Jaynes’ work to more complex

signal models with additive Gaussian noise and revolutionized the analysis of Nuclear

Magnetic Resonance (NMR) signals. In NMR free-induction decay, the signal
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consists of a sum of exponentially decaying sinusoids of different frequency and decay

rate. The top two panels of Figure 13.3 illustrate the quadrature channel measure-

ments in an NMR free-induction decay experiment. In this example, the S/N is very

high. The middle panel illustrates the conventional absorption spectrum based on an

Figure 13.3 Comparison of conventional analysis (middle panel) and Bayesian analysis (bottom
panel) of the two-channel NMR time series (top two panels). (Figure credit G. L. Bretthorst,
reproduced by permission from the American Institute of Physics.)
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FFT of the data, which shows three obvious spectral peaks with an indication of

further structure in the peaks. The bottom panel illustrates Bretthorst’s Bayesian

analysis of this NMR data, which clearly isolates six separate peaks. The resolution

is so good that the six peaks appear as delta functions in this figure. A similar

improvement was obtained in the estimation of the decay rates. The Bayesian analysis

provides much more reliable and informative results when prior knowledge of the

shape of the signal and noise statistics are incorporated.

The question of how many frequencies are present, and what are the marginal

PDFs for the frequencies and decay rates, can readily be addressed in the Bayesian

framework using a Markov chain Monte Carlo computation. We saw how to do

this in Sections 12.5 to 12.9. Frequently, the physics of the problem provides

additional information about the relationships between pairs of frequencies, which

can be incorporated as useful prior information. Varian Corporation now offers

an expert analysis package with their new NMR machines based on Bretthorst’s

Bayesian algorithm. The manual for this software is available online at http://

bayesiananalysis.wustl.edu/.

13.4 No specific prior signal model

In this case, we are addressing the detection and measurement of a periodic signal in a

time series when we have no specific prior knowledge of the existence of such a signal

or of its characteristics, including its shape. For example, an extraterrestrial civiliza-

tion might be transmitting a repeating pattern of information either intentionally or

unintentionally. What scheme could we use to optimally detect such a signal after we

have made our best guess at a suitable wavelength of observation? Bayesian inference

provides a well-defined procedure for solving any inference problem including ques-

tions of this kind. However, to proceed with the calculation, it is necessary to assume a

model or family of models which is capable of approximating a periodic signal of

arbitrary shape. A very useful Bayesian solution to the problem of detecting a signal of

unknown shape was worked out by the author in collaboration with Tom Loredo

(Gregory and Loredo, 1992, 1993, 1996), for the case of event arrival time data.

The Gregory–Loredo (GL) algorithm was initially motivated by the problem of

detecting periodic signals (pulsars) in X-ray astronomy data. In this case, the time

series consisted of individual photon arrival times where the appropriate sampling

distribution is the Poisson distribution. To address the periodic signal detection

problem, we compute the ratio of the probabilities (odds) of two models MPer and

M1. Model MPer is a family of periodic models capable of describing a background

plus a periodic signal of arbitrary shape. Each member of the family is a histogram

with m bins, with m ranging from 2 to some upper limit, typically 12. Three examples

are shown in Figure 13.4. The prior probability that MPer is true is divided equally

among the members of this family. Model M1 assumes the data are consistent with a
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constant event rate. M1 is a special case of MPer, with m ¼ 1 bin. Model M1 is

illustrated in the bottom right panel of Figure 13.4.

The Bayesian calculation automatically incorporates a quantified Occam’s penalty,

penalizing models with a larger number of bins for their greater complexity.7 The

calculation thus balances model simplicity with goodness-of-fit, allowing us to deter-

mine both whether there is evidence for a periodic signal, and the optimum number of

bins for describing the structure in the data. The parameter space for the m-bin

periodic model consists of the unknown period, an unknown phase (position of the

first bin relative to the start of the data), and m histogram amplitudes describing the

signal shape. A remarkable feature of this particular signal model is that the search in

the m shape parameters can be carried out analytically, permitting the method to be

computationally tractable. Further research is underway to investigate computation-

ally tractable ways of incorporating additional desirable features into the signal

model, such as variable bin widths to allow for a reduction in the number of bins

needed to describe certain types of signal.

The solution in the Poisson case yields a result that is intuitively very satisfying. The

probability for the family of periodic models can be shown to be approximately

inversely proportional to the entropy (Gregory and Loredo, 1992) of any significant

organized periodic structure found in the search parameter space. What structure is

significant is determined through built-in quantified Occam’s penalties in the calcula-

tion. Of course, structure with a high degree of organization corresponds to a state of

low entropy. In the absence of knowledge about the shape of the signal, the method

identifies the most organized significant periodic structure in the model parameter

space.

12–bin periodic model Constant model

2–bin periodic model 6–bin periodic model 

Figure 13.4 Three of the four panels show members of MPer, a family of histogram (piecewise

constant) periodic signal models, with m ¼ 2; 6, and 12 bins, respectively. The constant rate
model,M1, is a special case ofMPer, withm ¼ 1 bin, and is illustrated in the bottom right panel.

7 The Occam penalty becomes so large for m � 12, that the data are generally not good enough to make it worthwhile
including periodic models with larger values of m.
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Some of the capabilities of the GL method are illustrated in the following two

examples, one taken from X-ray astronomy and the other from radio astronomy.

13.4.1 X-ray astronomy example

In 1984, Seward et al. discovered a 50 ms X-ray pulsar at the center of a previously

known radio supernova remnant, SNR 0540-693, located in the Large Magellanic

Cloud. The initial detection of X-ray pulsations was from an FFT periodogram

analysis of the data obtained from the Einstein Observatory. The true pulsar signal

turned out to be the second highest peak in the initial FFT. Confidence in the reality

of the signal was established from FFT runs on other data sets. The pulsar was

re-observed with the ROSAT Observatory by Seward and colleagues, but this time,

an FFT search failed to detect the pulsar. In Gregory and Loredo (1996), we used the

GLmethod on a sample ROSAT data set of 3305 photons provided by F. Seward. The

data spanned an interval of 116 341 s and contained many gaps.

In the first instance, we incorporated the prior information on the period, period

derivative and their uncertainties, obtained from the earlier detection with the Einstein

Observatory data. The Gregory–Loredo method provides a calculation of the global

odds ratio defined as the ratio of the probability for the family of periodic models to

the probability of a constant rate model, regardless of the exact shape, period and

phase of the signal. The resulting odds ratio of 2:6� 1011 indicates near certainty in

the presence of a periodic signal.

It is interesting to consider whether we would still claim the detection of a periodic

signal if we did not have the prior information derived from the earlier detection.

Thus, in the second instance, we assume a prior period search range extending from

the rotational breakup period of a neutron star ð� 1:5msÞ, to half the duration of the

data. This gives an odds ratio of 4:5� 105. This is greatly reduced due to the much

larger Occam penalty associated with not knowing the period. But this still provides

overwhelming evidence for the presence of a periodic signal, despite the fact that it was

undetected by FFT techniques.

In their paper, Seward et al. (1984) used another method commonly employed in

X-ray astronomy, called period folding (also known as epoch folding), to obtain the

pulsar light curve and a best period. Period folding involves dividing the trial period

into m bins (typically five) and binning the data modulo the trial period for a given

trial phase. The �2 statistic is used to decide at some significance level, whether a

constant model can be rejected, and thus indirectly infer the presence of a periodic

signal. In Seward et al. (1984), their period uncertainty was estimated from the half-

width of the�2 peak, which is sometimes used as a naive estimate of the accuracy of the

frequency estimate. Figure 13.5 shows a comparison of the largest frequency peak

comparing the GL marginal probability density for f to the period folding h�2i�
statistic. The width of the GL marginal probability density for f is more than an

order of magnitude smaller.
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13.4.2 Radio astronomy example

In 1999, the author generalized the GL algorithm to the Gaussian noise case.

Application of the method to a radio astronomy data set has resulted in the discovery

of a new periodic phenomenon (Gregory, 1999, 2002; Gregory et al., 1999; Gregory

and Neish, 2002) in the X-ray and radio emitting binary, LS Iþ61�303. LS Iþ61�303
is a remarkable tenth magnitude binary star (Gregory and Taylor, 1978; Hutchings

and Crampton, 1981) that exhibits periodic radio outbursts every 26.5 days (Taylor

and Gregory, 1982), which is the binary orbital period. The radio, infrared, optical,

X-ray and �-ray data indicate that the binary consists of a rapidly rotating massive

young star, called a Be star, together with a neutron star in an eccentric orbit.

The Be star exhibits a dense equatorial wind and the periodic radio outbursts are

thought to arise from variations in wind accretion by the neutron star in its eccentric

orbit. Some of the energy associated with the accretion process is liberated in the form

of outbursts of radio emission. One puzzling feature of the outbursts has been the

variablity of the orbital phase of the outburst maxima, which can range over 180

degrees of phase. In addition, the strength of the outburst peaks was known to vary on

time scales of approximately 4 years (Gregory et al., 1989; Paredes et al., 1990).

Armed with over twenty years of data, we (Gregory, 1999; Gregory et al., 1999)

applied Bayesian inference to assess a variety of hypotheses to explain the outburst

timing residuals and peak flux density variations. The results for both the outburst

peak flux density and timing residuals demonstrated a clear 1667-day periodic modu-

lation in both quantities. The periodic modulation model was found to be � 3� 103
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Figure 13.5 Close-up of largest frequency peak comparing the Gregory–Loredo probability
density for f to the period folding h�2i� statistic (diamonds). The h�2i� statistic versus trial
frequency results from epoch folding analysis using m ¼ 5 bins (Gregory and Loredo, 1996).
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timesmore probable than the sum of the probabilities of three competing non-periodic

models.

Figure 13.6 shows the data and results from the timing residual analysis. Panel (a)

shows the radio outburst peak timing residuals.8 The abscissa is the time interval in

days from the peak of the first outburst in 1977. Very sparsely sampled measurements
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Figure 13.6 Panel (a) shows the outburst timing residuals. A comparison of the predicted
outburst timing residuals with the data versus time is shown in panel (b). The solid curves
show the estimated mean light curve, �1 standard deviation. The new data are indicated

by a filled box symbol. Panel (c) shows the probability for the modulation period of
LS I þ61�303.

8 The timing residuals depend on the assumed orbital period which is not accurately known independent of the radio
data. The GL algorithm was modified to compute the joint probability distribution of the orbital and modulation
periods. Only the marginal distribution for the modulation period is shown.
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were obtained from the initial discovery in 1977 until 1992. However, beginning in

January 1994, Ray et al. (1997) performed detailed monitoring (several times a day)

with the National Radio Astronomy Observatory Green Bank Interferometer. With

such sparsely sampled data, the eye is unable to pick out any obvious periodicity.

Panel (c) shows the Bayesian marginal probability density for the modulation period.

The single well-defined peak provides clear evidence for a periodicity of approxi-

mately 1667 days.

Subsequent monitoring of the binary star system has confirmed and refined the

orbital and modulation period. Panel (b) shows a comparison of the predicted out-

burst timing residuals with the data versus time. The solid curves show the estimated

mean light curve, �1 standard deviation. The new data, indicated by a shaded box,

nicely confirm the periodic modulation model. This discovery has contributed sig-

nificantly to our understanding of Be star winds.

TheMathematica tutorial includes a Markov chain Monte Carlo version of the GL

algorithm, for the Gaussian noise case, in the section entitled, ‘‘MCMC version of the

Gregory–Loredo algorithm.’’

13.5 Generalized Lomb–Scargle periodogram

In Section 13.2, we introduced Jaynes’ insights on the periodogram from probability

theory and discussed how to compute pð fjD; IÞ in more detail in Section 13.2.1.

Bretthorst (2000, 2001) generalized Jaynes’ insights to a broader range of single-

frequency estimation problems and sampling conditions and removed the need for

the approximations made in the derivation of Equations (13.2) and (13.5). In the

course of this development, Bretthorst established a connection between the Bayesian

results and an existing frequentist statistic known as the Lomb–Scargle periodigram

(Lomb, 1976; Scargle, 1982, 1989), which is a widely used replacement for the Schuster

periodogram in the case of non-uniform sampling. We will summarize Bretthorst’s

Bayesian results in this section. In particular, his analysis allows for the following

complications:

1. Either real or quadrature data sampling. Quadrature data involve measurements of the real

and imaginary components of a complex signal. The top two panels of Figure 13.3 show an

example of quadrature signals occurring in NMR.

Let dRðtiÞ denote the real data at time ti and dIðt0iÞ denote the imaginary data at time t0i. There

are NR real samples and NI imaginary samples for a total of N ¼ NR þNI samples.

2. Uniform or non-uniform sampling and for quadrature data with non-simultaneous sam-

pling.

The analysis does not require the ti and t0i to be simultaneous and successive samples can be

unequally spaced in time.

3. Allows for a non-stationary single sinusoid model of the form

dRðtiÞ ¼ A cosð2pfti � �ÞZðtiÞ þ B sinð2pfti � �ÞZðtiÞ þ nRðtiÞ; (13:10)
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where A and B are the cosine and sine amplitudes, and nRðtiÞ denotes the noise at ti. The

function ZðtiÞ describes an arbitrary modulation of the amplitude, e.g., exponential decay as

exhibited in NMR signals. If Z(t) is a function of any parameters, those parameters are

assumed known, e.g., the exponential decay rate.Z(t) is sometimes called aweighting function

or apodizing function.

The corresponding signal model for the imaginary channel is given by

dIðt0jÞ ¼ A cosð2pft0j � �ÞZðt0jÞ þ B sinð2pft0j � �ÞZðt0jÞ þ nIðt0jÞ: (13:11)

The angle � is defined in such a way as to make the cosine and sine functions orthogonal on

the discretely sampled times. This corresponds to the condition

0 ¼
XNR

i¼ 1

cosð2pfti � �Þ sinð2pfti � �ÞZðtiÞ2

�
XNI

j¼ 1

sinð2pft0j � �Þ cosð2pft0j � �ÞZðt0jÞ
2:

(13:12)

The solution of Equation (13.12) is given by

� ¼ 1

2
tan�1

PNR

i¼ 1 sinð4pfti � �ÞZðtiÞ
2 �

PNI

j¼ 1 sinð4pft0j � �ÞZðt0jÞ
2PNR

i¼ 1 cosð4pfti � �ÞZðtiÞ
2 �

PNI

j¼ 1 cosð4pft0j � �ÞZðt0jÞ
2

" #
: (13:13)

Note: if the data are simultaneously sampled, ti ¼ t0j, then the orthogonal condition is

automatically satisfied so � ¼ 0.

4. The noise terms nRðtiÞ and nIðtiÞ are assumed to be IIDGaussian with an unknown �. Thus, �

is a nuisance parameter, which is assumed to have a Jeffreys prior. By marginalizing over �,

any variability in the data that is not described by the model is assumed to be noise.

The final Bayesian expression for pð fjD; IÞ, after marginalizing over the amplitudes A and B

(assuming independent uniform priors), is given by

pð f jD; IÞ/ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð fÞSð fÞ

p ½Nd2 � h2�
2�N
2 ; (13:14)

where the mean-square data value, d2, is defined as

d2 ¼ 1

N

XNR

i¼ 1

dRðtiÞ2 þ
XNI

j¼ 1

dIðt0jÞ
2

" #
: (13:15)

The term h2 is given by

h2 ¼ Rð f Þ2

Cð f Þ þ
Ið f Þ2

Sð f Þ ; (13:16)
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where

Rð f Þ 	
XNR

i¼ 1

dRðtiÞ cosð2pfti � �ÞZðtiÞ �
XNI

j¼ 1

dIðt0jÞ sinð2pft0j � �ÞZðt0jÞ; (13:17)

Ið f Þ 	
XNR

i¼ 1

dRðtiÞ sinð2pfti � �ÞZðtiÞ þ
XNI

j¼ 1

dIðt0jÞ cosð2pft0j � �ÞZðt0jÞ; (13:18)

Cð f Þ 	
XNR

i¼ 1

cos2ð2pfti � �ÞZðtiÞ2 þ
XNI

j¼ 1

sin2ð2pft0j � �ÞZðt0jÞ
2 (13:19)

and

Sð fÞ 	
XNR

i¼ 1

sin2ð2pfti � �ÞZðtiÞ2 þ
XNI

j¼ 1

cos2ð2pft0j � �ÞZðt0jÞ
2: (13:20)

13.5.1 Relationship to Lomb–Scargle periodogram

If the sinusoidal signal is known to be stationary (ZðtiÞ is a constant) and the data are

entirely real, then Equations (13.17) to (13.20) greatly simplify. In this case, the

quantity h2 given by Equation (13.16) corresponds to the Lomb–Scargle periodogram;

however, we now see this statistic in a new light. The Bayesian expression for pð fjD; IÞ
(Equation (13.14)) involves a nonlinear processing of the Lomb–Scargle periodogram,

analogous to the nonlinear processing of the Schuster periodogram in Equation

(13.5). In fact, Bretthorst showed that for uniformly sampled quadrature data and a

stationary sinusoid, the Lomb–Scargle periodogram reduces to a Schuster period-

ogram, the power spectrum of the data. For real data, Equations (13.2) and (13.5) are

only approximately true. As we will demonstrate in Figure 13.7, Equation (13.5) can

provide an excellent approximation to pð fjD; IÞ for uniformly sampled real data and a

stationary sinusoid, and the Schuster periodogram is much faster to compute than the

Lomb–Scargle periodogram.

Equations (13.14) to (13.20) provide the exact answer for pð fjD; IÞ for a much wider

range problems and involve a generalized version of the Lomb–Scargle statistic.

13.5.2 Example

In this example, we compare the Schuster periodogram to the Lomb–Scargle period-

ogram, for the time series simulation involving a stationary sinusoid model and
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uniformily sampled real data that we used in Section 13.2.1. In the first, which is

illustrated in Figure 13.7, the data are uniformly sampled. The top panel shows the

time series and the two middle panels show the Fourier power spectral density

(Schuster periodogram) and Lomb–Scargle periodogram of this time series. The

corresponding Bayesian pð fjD; IÞ probability densities are shown in the bottom two

panels. Clearly, for this example, the Schuster periodogram provides an excellent

approximation to the Lomb–Scargle periodogram, and is much faster to compute.

Recall that the width of the spectral peak in the Bayesian pð fjD; IÞ depends on the

signal-to-noise ratio (SNR). Even for a moderate SNR, the spectral peak can become

very narrow, requiring a large number of evaluations of the Lomb–Scargle statistic at

very closely spaced frequencies.
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Figure 13.7 The middle two panels compare the Fourier power spectral density (Schuster
periodogram) and Lomb–Scargle periodogram for the uniformly sampled time series simulation
shown in the top panel. The bottom two panels compare the Bayesian counterparts for the same

time series.
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The second example, which is illustrated in Figure 13.8, makes use of the same time

series, but has 14 samples removed creating gaps in the otherwise uniform sampling.

These gaps can clearly be seen in the top right panel. To compute the Schuster

periodogram, some assumption must be made regarding the data in the gaps, to

achieve the uniform sampling required for the calculation of the FFT. In the top

left panel, the missing data have been filled in with values equal to the time series

average. In the calculation of the Lomb–Scargle periodogram, only the actual data are

used. The two bottom panels again illustrate the corresponding Bayesian pð f jD; IÞ
probability densities. In this case, it is clear that the Bayesian generalization of the

Lomb–Scargle periodogram does a better job.

In the latter example, the data are uniformly sampled apart from the gaps. In the

next section we will explore the issue of non-uniform sampling in greater detail.
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Figure 13.8 The middle two panels compare the Fourier power spectral density (Schuster
periodogram) and Lomb–Scargle periodogram for a time series with significant data gaps, as
shown in the top right panel. The bottom two panels compare the Bayesian counterparts for the
same time series.
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13.6 Non-uniform sampling

In many cases, the data available are not uniformly sampled in the coordinate of

interest, e.g., time. In some cases this introduces complications, but on the flip side,

there is a distinct advantage. Non-uniform sampling can eliminate the common

problem of aliasing (Bretthorst 1988, 2000a). In this section, we explore this effect

with a demonstration.

We start with a uniform time series of 32 points containing a sinusoidal signal plus

additive independent Gaussian noise. The data are described by the following

equation:

dk ¼ 2 cosð2pfkTÞ þ noise ð� ¼ 1Þ with f ¼ 1:23Hz; (13:21)

where T is the sample interval and k is an index running for 32 points. In this

demonstration, T ¼ 1 s. At 1.23 Hz, the signal frequency is well above the Nyquist

frequency ¼ 1=ð2TÞ ¼ 0:5Hz.

In Figure 13.9 we demonstrate how the aliasing arises. The top panel shows the

Fourier Transform (FT) of the sampling. It is convenient to show both positive and

negative frequencies which arise in the mathematics of the FT. The middle panel

shows the FT of the signal together with the Nyquist frequency. The bottom panel

shows the resulting convolution. There are three aliased signals at f ¼ 0:23, f ¼ 0:77,

and f ¼ 1:77, only one of which, at f ¼ 0:23, is below the Nyquist frequency. For

deeper understanding of this figure, the reader is referred to Appendix B.5 and B.6.

We start by computing the Fourier transform and Bayesian posterior probability

density for the signal frequency of the initial uniformly sampled data. We will replace

some of the samples by samples taken at times that are not an integer multiple of T,

and explore how the spectrum is altered. Since we will be considering non-uniform

samples, we make use of the Lomb–Scargle periodogram, discussed in Section 13.5, to

compute the power spectrum. We also display the Bayesian posterior probability

density for the signal frequency using Bretthorst’s Bayesian generalization of the

Lomb–Scargle algorithm, also discussed in Section 13.5. Figure 13.10 shows the

evolution of both quantities as the number of non-uniform samples is increased. In

the top two panels (a), the original signal frequency at 1.23 Hz is clearly seen together

with three aliased signals. In the second row (b), one uniformly sampled data point has

been replaced by one non-uniform sample. The Lomb–Scargle periodogram shows

only a slight change, but remarkably, the Bayesian probability density has clearly

distinguished the real signal at 1.23 Hz. As more and more uniformly sampled points

are replaced, the amplitudes of the aliases in the Lomb–Scargle periodogram decrease.

Notice that for the non-uniform sampling used in this demonstration, no alias

occurs up to frequencies 
 4 times the effective Nyquist frequency. Of course, it

must be true that the aliasing phenomenon returns at sufficiently high frequencies.

If the sampling times tk, although non-uniform, are all integer multiples of some small

interval �t, then signals at frequencies > 1=ð2�tÞ will still be aliased.
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Consideration of Figure 13.11 shows why aliasing does not occur for the non-

uniform sampling. In this example, we first generated four data points (filled boxes) by

sampling a 1.23Hz sinusoidal signal, with no noise, at one-second intervals. The figure

shows four sinusoids corresponding to the 1.23 Hz signal and the 3 aliases at 0.23, 0.77

and 1.77 Hz, which all pass through these uniformly sampled data points. Next, we

replaced the first uniform sample by one which is non-uniformly sampled in time

(star). In this case, only the 1.23 Hz sinusoid passes through all four points.

There is clearly an advantage to employing non-uniform sampling which needs to

be considered as part of the experimental design. As Figure 13.11 clearly demon-

strates, even the addition of a small number of non-uniform samples (only one

required in this 32-point time series) to an otherwise uniformly sampled data set is

sufficient to strongly suppress aliasing in the Bayesian posterior probability density

for signal frequency.
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Figure 13.9 How aliasing arises. Uniform sampling at an interval T in the time domain
corresponds to convolution in the frequency domain. The top panel shows the Fourier
Transform (FT) of the sampling. The middle panel shows the FT of the signal together with

the Nyquist frequency. The bottom panel shows the resulting convolution. There are 3 aliased
signals at f¼ 0:23, f¼ 0:77, and f¼ 1:77, only one of which, at f¼ 0:23, is below the Nyquist
frequency.
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(c) 5 non-uniform samples out of 32
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(a) Uniform sampling
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Figure 13.10 Evolution of the Lomb–Scargle periodogram (left) and Bretthorst’s Bayesian
generalization of the Lomb–Scargle periodogram (right), with increasing number of non-
uniform samples in the time series. Notice how sensitive the Bayesian result is to a change of

only one sample from a uniform interval to a non-uniform interval.
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13.7 Problems

Table 13.1 is a simulated times series consisting of a single sinusoidal signal with

additive IID Gaussian noise. In this problem, you will compare the usual one-sided

power spectral density discussed in Appendix B to the Bayesian posterior probability

density for the frequency of the model sinusoid.
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Figure 13.11 An illustration of how four different frequencies can all pass through the same set
of four uniformly sampled data points (boxes) but only one passes through all the points when

one sample is relaced by a non-uniform sample (star).

Table 13.1The table contains 64 samples of a simulated times series consisting of a single

sinusoidal signal with additive IID Gaussian noise.

# mK # mK # mK # mK

1 0.474 17 �0.865 33 �0.225 49 0.369

2 0.281 18 0.206 34 �1.017 50 0.695

3 1.227 19 �0.926 35 0.817 51 1.291

4 �1.523 20 2.294 36 �2.064 52 0.978

5 �0.831 21 0.786 37 �0.103 53 �0.592
6 �0.978 22 0.522 38 1.878 54 �0.986
7 0.169 23 �1.04 39 0.625 55 �1.005
8 0.04 24 �0.181 40 1.418 56 �1.268
9 0.76 25 �1.47 41 0.464 57 �0.571
10 0.847 26 �1.837 42 �1.182 58 1.128

11 0.106 27 0.523 43 �1.319 59 0.64

12 �1.814 28 0.605 44 1.354 60 0.144

13 �1.16 29 �1.595 45 �1.784 61 �1.468
14 0.249 30 �0.413 46 �0.989 62 �0.71
15 �1.054 31 1.275 47 �1.52 63 �1.486
16 �0.359 32 �1.644 48 1.239 64 �0.129
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Part 1: Fast Fourier Transform and PSD

a) Use an FFT to determine the one-sided power spectral density (PSD), as defined by

Equation (B.102) in Appendix B. Plot both the raw data and your spectrum and

determine the period of the strongest peak.

b) Toobtain amore accuratedeterminationof thepeak in thePSD, add zeros to the endof

the input data so that the total data set (dataþ appended zeros) is 1024 points and

recompute thePSD.Note: although thenumberof spectral pointswill increase, the 1=N

normalization term inEquation (B.102) still refers to theoriginal numberofdatapoints.

Plot the new PSD.Do you expect the width of the peak to be affected by zero padding?

Part 2: Bayesian posterior probability of signal frequency

The Bayesian posterior probability of the signal frequency, assuming a model of a

single harmonic signal plus independentGaussian noise, is given by Equation (13.2). If

the noise is not well understood, then it is safer to use the Student’s t form of Equation

(13.5) which treats anything that cannot be fitted by the model as noise and leads to

more conservative parameter estimates. Since we are evaluating pðnjD; IÞ at n discrete
frequencies, we rewrite Equation (13.5) as

pðnjD; IÞ ¼
1� 2CðnÞ

Norigd2

� �2�Norig
2

PNzp=2
0 1� 2CðnÞ

Norigd2

� �2�Norig
2

; (13:22)

where d2 ¼ 1
Norig

P
i d

2
i .

In Equation (13.22), the frequency associated with any particular value of n is given

by fn ¼ n=NT. T equals the sample interval in time and N is the total number of

samples. The value n ¼ 0 corresponds to zero frequency. The quantity CðnÞ is the

positive frequency part of the two-sided periodogram (two-sided PSD) given by

Equation (13.6), which we rewrite as

CðnÞ ¼ jHnj2

N
; for n ¼ 0; 1; . . . ;

N

2
: (13:23)

In general, pðnjD; IÞ will be very narrow when CðnÞ=�2 > 1 because of the expo-

nentiation occurring in Equation (13.2). Thus, to accurately define pðnjD; IÞ, we need
to zero pad the FFT to obtain a sufficient density ofHn points to accurately define the

pðnjD; IÞ peak. Zero padding is discussed in detail in Appendix B. In the zero padding

case, Equation (13.23) becomes

CðnÞ ¼ jHnj2

Norig
; for n ¼ 0; 1; . . . ;

Nzp

2
; (13:24)
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whereNorig is the number of original time series samples andNzp is the total number of

points including the added zeros.

(a) Compute and plot pðnjD; �; IÞ from a zero padded FFT of the time series given

above. Assume the variance of the data set ¼ 1.

(b) Measure the width of the peak at half height of pðnjD; �; IÞ and compare the width

of the PSD peak at half height.

(c) Plot the natural logarithmof theBayesian pðnjD; IÞ and compare its shape to the PSD.

Note: Mathematica uses a slightly different definition of Hn to that given in

Equation (B.51), which we designate by ½Hn�Math. The modified version of Equation

(13.24) is given by:

CðnÞ ¼ Nzp

Norig
j½Hn�Mathj

2; for n ¼ 0; 1; . . . ;
Nzp

2
: (13:25)
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14

Bayesian inference with Poisson sampling

14.1 Overview

In many experiments, the basic data consist of a set of discrete events distributed in

space, time, energy, angle or some other coordinate. They include macroscopic events

like a traffic accident or the location of a star. They also include microscopic events

such as the detection of individual particles or photons in time or position. In

experiments of this kind, our prior information often leads us to model the probability

of the data (likelihood function) with a Poisson distribution. See Section 4.7 for

a derivation of the Poisson distribution, and Section 5.7.2 for the relationship between

the binomial and Poisson distributions.

For temporally distributed events, the Poisson distribution is given by

pðnjr; IÞ ¼ ðrTÞ
ne�rT

n!
: (14:1)

It relates the probability that n discrete events will occur in some time interval T to a

positive real-valued Poisson process event rate r. When n and rT are large, the Poisson

distribution can be accurately approximated by a Gaussian distribution. Here, we will

be concerned with situations where the Gaussian approximation is not good enough

and we must work directly with the Poisson distribution.

In this chapter, we employ Bayes’ theorem to solve the following inverse problem:

compute the posterior PDF for r given the data D and prior information I. We divide

this into three common problems:

1. How to infer a Poisson rate r.

2. How to infer a signal in a known background.

3. Analysis of ON/OFF data, where ON is the signalþ background and OFF is a just the

background. The background is only known imprecisely from the OFF measurement.

The treatment is similar to that given by Loredo (1992), but also includes a

treatment of the source detection question in the ON/OFF measurement problem.

In the above three problems, the Poisson rate is assumed to be constant in the ONor

OFF source position. In Section 14.5, we consider a simple radioactive decay problem

in which r varies significantly over the duration of the data.
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14.2 Infer a Poisson rate

The simplest problem is to infer the rate r from a single measurement of n events. From

Bayes’ theorem:

pðrjn; IÞ ¼ pðrjIÞpðnjr; IÞ
pðnjIÞ : (14:2)

The prior information I must specify both pðrjIÞ and the likelihood function pðnjr; IÞ.
In this case, the latter is just the Poisson distribution.

I
likelihood : pðnjr; IÞ ¼ ½ðrTÞne�rT�=n!

prior : pðrjIÞ ¼ ?

(

Our first guess at pðrjIÞ is a Jeffreys prior since r is a scale parameter. However, the

scale invariance argument is not valid if r may vanish. Instead, we adopt a uniform

prior for r based on the following argument: intuition suggests ignorance of r corres-

ponds to not having any prior preference for seeing any particular number of counts,

n. In situations where it is desirable to use the Poisson distribution, the prior range for

n is frequently small, so it is reasonable to use a uniform prior:

pðnjIÞ ¼ constant:

But pðnjIÞ is also the denominator in Equation (14.2), so we can write

pðnjIÞ ¼
Z 1
0

dr pðrjIÞ pðnjr; IÞ

¼ 1

n!T

Z 1
0

dðrTÞ pðrjIÞðrTÞne�rT:
(14:3)

For pðnjIÞ to be constant, it is necessary thatZ 1
0

dðrTÞ pðrjIÞðrTÞne�rT / n!

but Z 1
0

dx xn e�x ¼ �ðnþ 1Þ ¼ n! (14:4)

which implies that pðrjIÞ ¼ constant. Use

pðrjIÞ ¼ 1

rmax
; 0 � r � rmax: (14:5)

Then

pðnjIÞ ¼ 1

Trmax

Z rmax

0

dðrTÞðrTÞne�rT

¼ 1

Trmax

�ðnþ 1; rmaxTÞ
n!

;

(14:6)
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where �ðn; xÞ ¼
R x
0 dy yn�1e�y is one form of the incomplete gamma function.1 Now

substitute Equations (14.1), (14.5), and (14.6) into Equation (14.2) to obtain the

posterior pðrjn; IÞ.

pðrjn; IÞ ¼ TðrTÞne�rT
n!

� n!

�ðnþ 1; rmaxTÞ
; 0 � r � rmax: (14:7)

For rmaxT� n, then �ðnþ 1; rmaxTÞ ’ �ðnþ 1Þ ¼ n! and Equation (14.7) simplifies to

pðrjn; IÞ ¼ TðrTÞne�rT
n!

; r � 0: (14:8)

14.2.1 Summary of posterior

pðrjn; IÞ ¼ TðrTÞne�rT
n!

; r � 0

mode : r ¼ n=T;

mean : < r> ¼ðnþ 1Þ=T;
sigma : �r ¼

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1
p

=T:

Figure 14.1 illustrates the shape of the posterior pðrjn; IÞ, divided by the time

interval T, for four different choices of n ranging from n ¼ 0 to 100. In each case,

the count interval T ¼ 1 s. As n increases, the pðrjn; IÞ becomes more symmetrical and

gradually approaches a Gaussian (shown by the dotted line) with the same mode and

standard deviation. For n ¼ 10, the Gaussian approximation is still a poor fit. By

n ¼ 100, the Gaussian approximation provides a good fit near the mode but still

departs noticeably in the wings.

The 95% credible region can be found by solving for the two values rhigh and rlow
which satisfy the two conditions:

pðrhighjn; IÞ ¼ pðrlowjn; IÞ;

and Z rhigh

rlow

pðrjn; IÞdr ¼ 0:95:

For n ¼ 1 the credible region is

p
0:042

T
� r � 4:78

T

� �
¼ 0:95: (14:9)

1 See Press et al. (1992).
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14.3 Signal+known background

In this case, the measured rate consists of two components, one due to a signal of

interest, s, and the other a known background rate, b.

r ¼ sþ b
s ¼ signal rate

b ¼ known background rate:

(

Since we are assuming the background rate is known,

pðsjn; b; IÞ ¼ pðrjn; b; IÞ:

We can now use Equation (14.8) of the previous section for pðrjn; b; IÞ, and replace r by
sþ b. The result is

pðsjn; b; IÞ ¼ C
T½ðsþ bÞT�ne�ðsþbÞT

n!
(14:10)

C�1 ¼ e�bT

n!

Z 1
0

dðsTÞðsþ bÞn Tne�sT: (14:11)
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Figure 14.1 The posterior PDF, pðrjn; IÞ, divided by the time intervalT, plotted for four different
values of n. For comparison, a Gaussian with the same mode and standard deviation is shown
by the dotted curve for the n ¼ 10 and n ¼ 100 cases.
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The constantC ensures that the area under the probability density function¼ 1. Using

a binomial expansion of ðsþ bÞn (see Equation (D.7) in Appendix D), we can arrive at

the following simple expression for C�1:

C�1 ¼
Xn
i¼0

ðbTÞie�bT
i!

: (14:12)

Equation (14.10) was proposed by Helene (1983, 1984) as a Bayesian solution for

analyzing multichannel spectra in nuclear physics.

14.4 Analysis of ON/OFF measurements

In this section, we want to infer the source rate, s, when the background rate, b, is

imprecisely measured. This is called an ON/OFF measurement.

OFF! detector pointed off source to measure b

ON! detector pointed on source to measure sþ b:

The usual approach is to assume

OFF! b̂� �b
ON! r̂� �r;

where b̂ ¼ Noff=T and �b ¼
ffiffiffiffiffiffiffiffiffi
Noff

p
=T and r̂ ¼ Non=T and �r ¼

ffiffiffiffiffiffiffiffi
Non

p
=T. Then

ŝ ¼ r̂� b̂ and the variance �2s ¼ �2r þ �2b. This procedure works well for the Poisson

case provided both s and b are large enough that the Poisson is well approximated by

aGaussian. But when either or both of the rates are small, the procedure fails. This can

lead to negative estimates of s and/or error bars extending into non-physical negative

values. This is a big problem in �-ray and ultra-high energy astrophysics, where data

are very sparse. First consider the OFF measurement:

pðbjNoff; IbÞ ¼
ToffðbToffÞNoffe�bToff

Noff!
: (14:13)

For the ON measurement, we can write the joint probability of the source and

background rate:

pðs; bjNon; IÞ ¼
pðs; bjIÞpðNonjs; b; IÞ

pðNonjIÞ

¼ pðsjb; IÞpðbjIÞpðNonjs; b; IÞ
pðNonjIÞ

:

(14:14)
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Note: the prior information, I, includes information about the background OFF

measurement in addition to the model Msþb, which asserts that the Poisson rate in

the ON measurement is equal to sþ b. We can express this symbolically by I ¼ Noff,

Ib,Msþb. In the parameter estimation part of the problem, we will estimate the value of

the source rate s in the modelMsþb. Following this, we will evaluate a model selection

problem to compare the probability of modelMsþb, which assumes a source is present,

to the simpler model Mb, which asserts that the Poisson rate in the ON source

measurement is equal to b, i.e., no source is present.

14.4.1 Estimating the source rate

The likelihood for the ON measurement is the Poisson distribution for a source with

strength sþ b:

pðNonjs; b; IÞ ¼
½ðsþ bÞTon�None�ðsþbÞTon

Non!
: (14:15)

We will again assume a constant prior for s, so we write pðsjb; IÞ ¼ 1=smax. The prior

for b is simply the posterior from the background measurement, given by Equation

(14.13). Combining Equations (14.13), (14.14) and (14.15), we can compute the joint

posterior for s and b. To find the posterior for s alone, independent of the background,

we just marginalize with respect to b.

pðsjNon; IÞ ¼
Z bmax

0

db pðs; bjNon; IÞ: (14:16)

The exact integral can be calculated after expanding the binomial, ðsþ bÞNon and

making use of the incomplete gamma function to evaluate the integrals, as we did in

Section 14.2. The details of this calculation are given in Appendix D. The result is

pðsjNon; IÞ ¼
XNon

i¼0
Ci

TonðsTonÞie�sTon

i!
; (14:17)

where

Ci �
1þ Toff

Ton

� �i ðNonþNoff�iÞ!
ðNon�iÞ!PNon

j¼0 1þ Toff

Ton

� �j ðNonþNoff�jÞ!
ðNon�jÞ!

: (14:18)

Note:

XNon

i¼0
Ci ¼ 1:
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Figure 14.2 shows plots of the posterior probability density of the source rate

pðsjNon; IÞ for four different combinations of Non;Noff;Ton; and Toff. Notice that

even in the case thatNon < Noff, the value of pðsjNon; IÞ is always zero for non-physical
negative values of s. It is also clear that increasing the ON measurement time and/or

the OFF measurement time sharpens the definition of pðsjNon; IÞ.
We can gain a better understanding for the meaning of the complicated Ci term in

Equation (14.17) by evaluating pðsjNon; IÞ for a restatement of the problem. The

background information I includes Noff, the number of background events measured

in the off-source measurement as well as Ton and Toff. For the state of information

corresponding to Non; I, we can use Bayes’ theorem to compute pðijNon; IÞ, the prob-
ability that i of the on-source events are due to the source and Non � i are due to the

background. Clearly, i is an integer that can take on values from 0 toNon. We can then

obtain the posterior probability for s, from the joint probability pðs; ijNon; IÞ, by
marginalizing over i as follows:

pðsjNon; IÞ ¼
XNon

i¼0
pðs; ijNon; IÞ ¼

XNon

i¼0
pðijNon; IÞpðsji;Non; IÞ

¼
XNon

i¼0
pðijNon; IÞ

TonðsTonÞie�sTon

i!
;

(14:19)

where we have used Equation (14.8) to evaluate pðsji;Non; IÞ. Comparing Equation

(14.17) with (14.19), we can write Ci ¼ pðijNon; IÞ, the probability that i of the ON

measurement events are due to the source.

We are now able to interpret Equation (14.17) in the following useful way: Bayes’

theorem estimates s by taking a weighted average of the posteriors one would obtain
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Figure 14.2 The posterior probability density of the source rate, pðsjNon; IÞ, plotted for four

different combinations of Non, Noff, Ton, and Toff.
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attributing i ¼ 0; 1; 2; . . . ;Non events to the source. The weight Ci is equal to the

probability of attributing i of the on-source events to the source, or equivalently,

attributing Non � i events to the background, assuming Msþb is true.

Now suppose our question changes from estimating the source rate, s, to the

question of how confidently we can claim to have detected the source in the ON

measurement. We might be tempted to reason as follows: for the source to have been

detected in the ONmeasurement, then at least one of theNon photons must have been

from the source. The probability of attributing at least one of the Non photons to the

source is just the sum of Ci terms for i ¼ 1 to Non, which is given by

pði � 1jNon; IÞ �
PNon

i¼1 1þ Toff

Ton

� �iðNonþNoff�iÞ!
ðNon�iÞ!PNon

j¼0 1þ Toff

Ton

� �jðNonþNoff�jÞ!
ðNon�jÞ!

: (14:20)

In Figure 14.3, we have plotted pði � 1jNon; IÞ versus Non for two different back-

ground OFF measurements. In the first case, Noff ¼ 3 counts in a Toff ¼ 1 s. In the

second case, Noff ¼ 36 counts in a Toff ¼ 12 s. In many experiments, the cost and/or

effort required to obtain ON measurements (e.g., particle accelerator beam ON) is

much greater than for OFF measurements. As our knowledge of the background rate

improves, we see that pði � 1jNon; IÞ decreases for Non � 3, the expected number of

background photons, and increases above this. For Non ¼ 8 and Noff ¼ 3 counts in

Toff ¼ 1 s, the probability is 95.6%. This rises to 98.9% for Noff ¼ 36 counts in

Toff ¼ 12 s.

What is wrong with setting the probability of source detection equal to

pði � 1jNon; IÞ? The answer is that the Ci probabilities are based on assuming that
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Figure 14.3 The probability of attributing at least one of the Non photons to the source,
pði � 1jNon; IÞ, assuming model Msþb is true, versus the number of counts in the ON measure-

ment, for two different durations of the background OFF measurement.
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the model Msþb is true. They do not account for the extra complexity of Msþb when

compared to an intrinsically simpler model,Mb, which asserts that the Poisson rate in

the ON source measurement is equal to b, i.e., no source is present. To answer the

source detection question, we need to compare the probabilities of these two models,

which we do next. This approach automatically introduces an Occam penalty which

penalizes Msþb for its greater complexity.

14.4.2 Source detection question

In the parameter estimation problem above, we assumed the truth of modelMsþb and

estimated the value of s. Here, we will address the source detection (model selection)

problem: ‘‘Have we detected a source in the ON measurement?’’ To answer this, we

will compute the odds ratio, Ofsþb;bg, of two models Msþb and Mb, which have the

following meaning:

Mb 	 ‘‘the ON measurement is solely due to the Poisson background rate, b.’’ The

prior probability for b is derived from the OFF measurement.

Msþb 	 ‘‘the Poisson rate in the ON source measurement is equal to sþ b.’’ The prior

for s is a constant in the range 0 to smax. Again, the prior probability for b is derived

from the OFF measurement.

In our earlier work, our background information was represented by

I ¼ Noff; Ib;Msþb. In the current model selection problem, we will use the abbreviation

Ioff ¼ Noff; Ib: (14:21)

According to Section 3.14, we can write the odds as

Ofsþb;bg ¼
pðMsþbjNon; IoffÞ
pðMbjNon; IoffÞ

¼ pðMsþbjIoffÞ
pðMbjIoffÞ

pðNonjMsþb; IoffÞ
pðNonjMb; IoffÞ

¼ prior odds� Bfsþb;bg;

(14:22)

where Bfsþb;bg is the Bayes factor, the ratio of the global likelihoods for the two

models. The calculation of the global likelihood forMsþb introduces an Occam factor

that penalizes this model for its greater complexity when compared toMb. The Occam

factor depends directly on the prior uncertainty in the additional parameter s (see

Section 3.5). The details behind the calculation of the Bayes factor are again given in

Appendix D.2. The result is

Bfsþb;bg �
Non!

smaxTonðNon þNoffÞ!
XNon

i¼0

ðNon þNoff � iÞ!
ðNon � iÞ! 1þ Toff

Ton

� �i

: (14:23)
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In what follows, we will assume a prior odds ratio of 1, soOfsþb;bg ¼ Bfsþb; bg. Since

pðMsþbjNon; IoffÞ þ pðMbjNon; IoffÞ ¼ 1, we can express pðMsþbjNon; IoffÞ in terms of

the odds ratio:

pðMsþbjNon; IoffÞ ¼
1

ð1þ 1=Ofsþb; bgÞ
: (14:24)

In Figure 14.4, we have plotted PðMsþbjNon; IoffÞ versus Non for two different back-

ground OFF measurements, assuming an smax ¼ 30. In the first case, Noff ¼ 3 counts

in a Toff ¼ 1 s. In the second case, Noff ¼ 36 counts in a Toff ¼ 12 s. For a given value

of Non, the probability that a source is detected decreases for Non � 3, the expected

number of background photons, and increases above this. For Non ¼ 8 and Noff ¼ 3

counts in Toff ¼ 1 s, the probability is 61.0%. This rises to 74.6% for Noff ¼ 36 counts

in Toff ¼ 12 s. These are significantly lower than the corresponding probabilities for

pði � 1jNon; IÞ as shown in Figure 14.3.

Sensitivity to prior information

We close by reminding the reader that the conclusions of any Bayesian analysis are

always conditional on the truth of our prior information. It is clear that in the source

detection (model selection) problem, the Bayes factor (Equation (14.23)) is very

sensitive to the choice of the prior upper boundary,2 smax. Halving the value of smax

causes the Bayes factor to increase by a factor of two. It is useful to consider the

uncertainty in smax as introducing a systematic error into our conclusion. As discussed

in Section 3.6, we can readily allow for the effect of systematic error in a Bayesian
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Figure 14.4 The probability that model Msþb is true, pðMsþbjNon; IoffÞ, versus the number of
counts in the ON measurement, for two different durations of the background OFF
measurement.

2 We met this issue before in Section 3.8.1, for a completely different spectral line problem.
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analysis. The solution is to treat smax as an additional parameter in the problem,

choose a prior for this parameter and marginalize over the parameter. This will

introduce an additional Occam penalty reducing the odds ratio in a way that quanti-

tatively reflects our uncertainties in smax. Depending on the importance of the result,

it may be useful to examine the dependence of the conclusion on the choice of prior

for s, by considering an alternative but reasonable form of prior. One alternative

choice worth considering in this case is a modified Jeffreys of the form

pðsjIÞ ¼ 1=fðsþ aÞ ln½ðaþ smaxÞ=a�g, where a is a constant. This modified Jeffreys

looks like a uniform prior for s < a and a Jeffreys for s > a.

14.5 Time-varying Poisson rate

So far, we have assumed the Poisson rate, r, is a constant. We now analyze a simple

problem in which r is a function of time.

I 	 ‘‘We want to estimate the half-life, � , of a radioactive sample. The sample count

rate is given by

rðtjr0; �Þ ¼ r02
�t=� ; (14:25)

where r0 is the count rate at t ¼ 0. Assume a uniform prior for r0, and an independent

Jeffreys prior for � .’’

The data,D, are a simulated list of times,3 ftig, forN ¼ 60measuredGeiger counter

clicks, for a radioactive sample with a half-life of 30 s. To make use of the full

resolution of the data, we will work with the individual event times.

D ¼ f1:44; 1:64; 2:55; 2:88; 2:9; 3:27; 4:39; 5:01; 5:08; 5:11; 5:33; 5:4; 5:45;
5:58; 5:79; 6:17; 7:84; 7:86; 8:8; 8:9; 11:71; 11:73; 11:78; 14:88; 14:96;

15:61; 18:95; 19:42; 20:11; 20:28; 21:46; 21:52; 23:62; 24:21; 24:38;

24:39; 25:76; 27:92; 28:92; 29:28; 29:74; 30:04; 31:34; 32:08; 34:62;

35:04; 35:38; 36:43; 36:94; 38:97; 40:66; 41:62; 42:69; 43:02; 43:36;

45:11; 47:38; 49:65; 50:52; 51:22g

From Bayes’ theorem we can write

pðr0; � jD; IÞ / pðr0jIÞ pð� jIÞpðDjr0; �; IÞ: (14:26)

The prior ranges’ upper and lower boundaries for r0 and � are assumed to lie well

outside the region of interest defined by the likelihood function. Thus, for our current

parameter estimation problem, we can write

pð� jD; IÞ /
Z
r0

dr0
1

�
pðDjr0; �; IÞ: (14:27)

3 See Problem 6 for hints on how to simulate your own data set.
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The likelihood can be calculated as follows: divide the observation period, T, into

small time intervals, �t, each containing either one event (counter click) or no event.

We assume that �t is sufficiently small that the average rate in the interval �t is

approximately equal to the rate at any time within the interval.

From the Poisson distribution, p0ðtÞ, the probability of no event in �t is given by

p0ðtÞ ¼ e�rðtÞ�t; (14:28)

and the probability of one event is given by

p1ðtÞ ¼ rðtÞ�te�rðtÞ�t: (14:29)

If N and M are the number of time intervals in which one event and no events are

detected, respectively, then the likelihood function is given by

pðDjrðtÞ; IÞ ¼
YN
i¼1

p1ðtiÞ
YM
j¼1

p0ðtjÞ

¼ �tN
YN
i¼1

rðtiÞ
" #

exp �
XNþM
j¼1

rðtjÞ�t

" #

¼ �tN
YN
i¼1

rðtiÞ
" #

exp �
Z
T

dt rðtÞ
� �

:

(14:30)

Note: we have replaced the sum of rðtÞ�t over all the observed intervals by the integral

of the rate over the intervals, with the range of integration T ¼ ðNþMÞ�t. The �tN

factor in the likelihood cancels with the same factor which appears in the denominator

of Bayes’ theorem, so the result does not depend on the size of�t, and is well-behaved

even in the limit where �t become infinitesimal.

Now use Equation (14.25) to substitute for rðtÞ in Equation (14.30):

pðDjr0; �; IÞ ¼ �tN
YN
i¼1

r02
�ti=�

" #
exp �

Z
T

dt r02
�t=�

� �

¼ �tNrN0 2
�1
�

PN

i¼1 ti

� 	
exp � r0�

ln 2
1� 2�T=�
� �h i

;

(14:31)

where T is the duration of the time series data.

The marginal posterior probability density for the half-life can be obtained by

substituting Equation (14.31) into Equation (14.27), and then evaluated numerically.4

14.5.

4 Since there are only two parameters, the joint probability distribution can be quickly evaluated at a finite number of
two-dimensional grid points. Each marginal distribution can be obtained by summing the results for grid points along
the other parameter.
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What if the rate were to vary with time in some unknown fashion, perhaps

periodically? For an interesting treatment of this class of problem, see Gregory and

Loredo (1992, 1993, and 1996) and Loredo (1992).

14.6 Problems

1. The results of an ON/OFF measurement are Non ¼ 5 counts, Noff ¼ 90 counts,

Ton ¼ 1 s, Toff ¼ 100 s. Plot pðsÞ, the posterior probability of the source rate.

2. Using the data given in Problem 1, compute the probability of attributing i of the

on-source events to the source. Plot a graph of this probability for the range i ¼ 0 to 5.

3. Repeat Problem 2, only this time, compute the probability of attributing j of the

on-source events to the background. Plot a graph of this probability for the range

j ¼ 0 to 5.

4. For the radioactive counter times given in Section 14.5, compute and plot the

marginal posterior PDF for the initial count rate r0.

5. Compute and plot the marginal posterior PDF for the radioactive sample half-life,

based on the first 30 counter times given in Section 14.5.

6. Simulate your own radioactive decay time series (N ¼ 100 count times) for an

initial decay rate of one count per second and a half-life of 40 s. Divide the decay

into 20 bins. For each bin, use Equation (5.62) to generate a list of Poisson time

intervals for a Poisson rate corresponding to the time of the middle of the bin.

Convert the time intervals to a sequence of count times and add the start time of the

corresponding bin. You can useMathematica’sSelect[list,# 1< bin boundary time&]

command to select out the times from any particular list that are less than the end

time of the corresponding bin. Use ListPlot[] to plot a graph of your time series.
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Figure 14.5 The marginal posterior for the half-life of a radioactive sample.
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Appendix A
Singular value decomposition

Frequently, the solution of a linear least-squares problem using the normal equations

of Section 10.2.2,

Â ¼ ðGTE�1GÞ�1GTE�1D ¼ Y�1GTE�1D; (A:1)

fails because a zero pivot occurs in the matrix calculation becauseC is singular. If the

matrix is sufficiently close to singular, the answer becomes extremely sensitive to

round-off errors, in which case you typically get fitted A�’s with very large amplitudes

that are delicately balanced to almost precisely cancel out. Here is an example of a

nearly singular matrix:

1:0 1:0
1:0 1:0001

� �
: (A:2)

This arises when the data do not clearly distinguish between two or more of the basis

functions provided.

The solution is to use singular value decomposition (SVD). When some combina-

tion of basis functions is irrelevant to the fit, SVD will drive the amplitudes of these

basis functions down to small values rather than pushing them up to delicately

canceling infinities.

How does SVD work?

First, we need to restate the least-squares problem slightly differently. In least-squares,

we want to minimize

�2 ¼
X
i

ðdi � fiÞ2

�2i
¼
X
i

di
�i
� fi
�i

� �2

; (A:3)

where

fiðAÞ ¼
XM
�¼1

A�gi�: (A:4)
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In matrix form, we can write

�2 ¼ jX A� bj2; (A:5)

where X is the design matrix given by

X ¼
g1ðx1Þ
�1

� gMðx1Þ
�1

� � �
g1ðxNÞ
�N

� gMðxNÞ
�N

0
@

1
A; (A:6)

and

b ¼
d1
�1
�
dN
�N

0
@

1
A: (A:7)

The problem is to find A which minimizes Equation (A.5).

Any rectangular matrix can be written in reduced SVD form as follows1 (see any

good linear algebra text for a proof):

X ¼ UT D V; (A:9)

ðN�MÞ ðN�MÞðM�MÞðM�MÞ

where the columns of U are orthonormal and are the eigenvectors of X XT. The

columns of V are orthonormal and are the eigenvectors of XTX and

XTX ¼ GTE�1G. The elements of the diagonal matrix,D, are called the singular values

of X. These singular values, !1; !1; . . . ; !M, are the square roots of the non-zero

eigenvalues of both XTX and X XT.

D ¼

!1 0 � 0
0 !2 � 0
� � � �
� � � �
0 0 � !M

0
BBBB@

1
CCCCA (A:10)

The number of singular values is equal to the rank of X.

The three matrices U;D;V can be obtained in Mathematica with the command

fU;D;Vg ¼ SingularValues½X�

1 In some texts, Equation (A.9) is written in the form

X ¼ U D VT: ðA:8Þ
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In a least-squares problem, the design matrix,X, does not have an inverse because it

is not a square matrix, but we can use SVD to construct a pseudo-inverse, Xþ, which

provides the best solution in a least-squares sense to Equation (A.5) in terms of the

basis functions that the data can distinguish between. We will designate that solution

Aþ, which is given by

Aþ ¼ Xþb: (A:11)

The pseudo-inverse, in the Mathematica convention, is given by

Xþ ¼ VTD�1U ¼ VT diag
1

!�

� �� �
U: (A:12)

Before using Equation (A.11), it is desirable to investigate the singular values of the

design matrix X. If any singular values !� are close to zero, set 1=!� ¼ 0 for that �.

This corresponds to throwing away one or more basis functions that the data can not

decide on. The condition number of a matrix is defined by

condition number ¼maximum eigenvalue

minimum eigenvalue

¼ maximum singular value

minimum singular value

� �2

:

(A:13)

The matrix becomes ill-conditioned if the reciprocal of its condition number

approaches the floating point accuracy.

The PseudoInverse command in Mathematica allows one to specify a Tolerance

option for throwing away basis functions whose singular values are < Tolerance

multiplied by the maximum singular value. Equation (A.11) becomes

Aþ ¼ PseudoInverse½X;Tolerance� > t�:b

Note: use of the Tolerance option can lead to strange results when fitting poly-

nomials. This is because the range (scale of changes) of the different basis functions

can be very different, e.g., the x3 will have amuch larger range than say the x term. The

different scales of the basis functions make a simple comparison of singular values

difficult. In this case, it is better to rescale x so it lies in the range 0 to 1 or �1 to þ1
before computing the singular values.
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Appendix B
Discrete Fourier Transforms

B.1 Overview

The operations of convolution, correlation and Fourier analysis play an important role

in data analysis and experiment simulations. These operations on digitally sampled data

are efficiently carried out with theDiscrete Fourier Transform (DFT), and in particular

with a fast version of the DFT called the Fast Fourier Transform (FFT). In this section,

we introduce the DFT and FFT and explore their relationship to the analytic Fourier

transform and Fourier series. We investigate Fourier deconvolution of a noisy signal

with an optimal Weiner filter. We also learn how to minimally sample data without

losing any information (Nyquist theorem) and about the aliasing that occurs when a

waveform is sampled at an insufficient rate. Since the DFT is an approximation to the

analytic Fourier transform, we learn how to zero pad a time series to obtain accurate

Fourier amplitudes, and to remove spurious end effects in discrete convolution. Finally,

we explore two commonly used approaches to spectral analysis and how to reduce the

variance of spectral density estimators.

B.2 Orthogonal and orthonormal functions

Beforewe consider the problemof representing a function in terms of a sumof orthogonal

basis functions, we review themore familiar problemof representing a vector in terms of a

set of orthogonal unit vectors. The vector F can be represented as the vector sum

F ¼ Fxîx þ Fyîy þ Fzîz; (B:1)

where the î’s are unit vectors along 3 mutually perpendicular axes. Because the unit

vectors satisfy the relation îx � îy ¼ îy � îz ¼ îz � îx ¼ 0, they are said to be an orthogonal

set. In addition,

îx � îx ¼ îy � îy ¼ îz � îz ¼ 1; (B:2)

so they are called an orthonormal set. They are not the only orthonormal set which can

be used to represent F. Any orthonormal coordinate system can be used. For example,

in spherical coordinates,
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F ¼ Frîr þ F� î� þ F� î�: (B:3)

In summary, we can represent the vector F by

F ¼
XN
n¼1

Fnîn; (B:4)

where the orthonormal set of basis vectors satisfies the condition

îm � în ¼ �m;n ¼ 1 m ¼ n

¼ 0 m 6¼ n:
(B:5)

To find the scalar component along îm, take the scalar product of îm with F.

Fm ¼ F � îm: (B:6)

In an analogous fashion, we would like to represent a function yðtÞ in terms of an

orthonormal set of basis functions,

yðtÞ ¼
XN
n¼1

Yn�nðtÞ: (B:7)

We need to define the equivalent of the scalar product for use with functions, which

is called the inner product for two functions. It is easy to show that

1

p

Z þp
�p

sinmt sin nt dt ¼ �m;n: (B:8)

If this relationship is to be satisfied, then the inner product between two functions

should be defined as
R p
�p xðtÞ yðtÞ dt. Thus, if

yðtÞ ¼
XN
n¼1

Yn �nðtÞ ¼
XN
n¼1

Yn
sin ntffiffiffi

p
p ; (B:9)

then the inner product of yðtÞ and �mðtÞ isZ
yðtÞ�mðtÞdt ¼

XN
n¼1

Yn

Z þp
�p

sin ntffiffiffi
p
p sinmtffiffiffi

p
p dt

¼
XN
n¼1

Yn�m;n ¼ Ym:

(B:10)

The next question is whether any function can be represented by an orthonormal

series like Equation (B.9). Since all terms on the right side of Equation (B.9) are periodic

in t, with period 2p, their sumwill also be periodic. If the original function yðtÞ is periodic
as well, over the same period, then this series representation will be valid for all values

of t. Otherwise, the series will only represent the function yðtÞ in the range �p < t < p.
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What about the question of completeness? Returning to the vector analogy: in

general, a set of unit vectors is not complete if it is possible to find a vector belonging to

the space which is orthogonal to every vector in the set, i.e., 3 basis vectors required for

3-dimensional space. How many dimensions does our function space have? It is clear

from Equation (B.9) that for values n > N, it is possible to find a function sin ntwhich

is orthogonal to all members. Furthermore, even ifN is infinite, cos nt is orthogonal to

every member of the set for any value of n. A complete set must contain at least an

infinite number of functions of the form sin nt and cos nt. We will say more about

completeness later when we discuss the Nyquist sampling theorem.

Many well-known sets of functions exhibit relationships similar to Equation (B.9).

Such function sets, not sinusoidal and usually not periodic, can be used to form

orthogonal series. In general, the inner product can be defined in the interval

a < t < b as follows: Z b

a

xðtÞ y�ðtÞ !ðtÞdt; (B:11)

where y�ðtÞ is the complex conjugate of yðtÞ and !ðtÞ is a weighting function. A set of

functions �nðtÞ is an orthogonal set over the range a < t < b if

�n � �m ¼
Z b

a

�nðtÞ��mðtÞ!ðtÞdt ¼ kn �m;n: (B:12)

The set is orthonormal if kn = 1 for all n.

Examples of useful orthogonal functions are:

1. 1; cos x; sin x; cos 2x; sin 2x; . . . used in a Fourier series

2. Legendre polynomials

3. Spherical harmonics

4. Bessel functions

5. Chebyshev or Tschebyscheff polynomials

6. Laguerre polynomials

7. Hermite polynomials

B.3 Fourier series and integral transform

In the case of the Fourier series, the limits �p to þp correspond to the period of the

function. The limits can be made arbitrary by setting t ¼ 2pt0=T. Then

1

p

Z þp
�p

sin nt sinmt dt ¼ 2

T

Z þT=2
�T=2

sin ð2pn f0t
0Þ sin ð2pm f0t

0Þdt0; (B:13)

where f0 ¼ 1=T.
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B.3.1 Fourier series

The Fourier series representation of yðtÞ is given by

yðtÞ ¼
X1
n¼0
½an cos 2pn f0tþ bn sin 2pn f0t�: (B:14)

To find the coefficients an and bn of yðtÞ, compute the inner product of yðtÞ with the

cosine and sine basis functions. This is analogous to finding the component of a vector

in Equation (B.6).

an ¼
2

T

Z T=2

�T=2
yðtÞ cos 2pn f0tdt; (B:15)

and,

bn ¼
2

T

Z T=2

�T=2
yðtÞ sin 2pn f0tdt; (B:16)

for n ¼ 0; 1; . . .

Exponential notation

We will rewrite Equation (B.14) using the common exponential notation, where

cos 2pn f0t ¼
1

2
ðei2pnf0t þ e�i2pnf0tÞ

sin 2pn f0t ¼
1

2i
ðei2pnf0t � e�i2pnf0tÞ:

Equation (B.14) becomes

yðtÞ ¼ a0 þ
1

2

X1
n¼1
ðan � ibnÞei2pnf0t þ

X1
n¼1
ðan þ ibnÞe�i2pnf0t

" #
: (B:17)

To simplify the expression, negative values of n are introduced. Thus, we can rewrite

Equation (B.17) as

yðtÞ ¼ a0 þ
1

2

X1
n¼1
ðan � ibnÞe�i2pð�nÞf0t þ

X1
n¼1
ðan þ ibnÞe�i2pnf0t

" #

¼ a0 þ
1

2

X�1
n¼�1
ðajnj � ibjnjÞe�i2pnf0t þ

X1
n¼1
ðan þ ibnÞe�i2pnf0t

" #

¼
X1
n¼�1

Yne
�i2pnf0t;

(B:18)
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where

Yn ¼
1
2 ðan þ ibnÞ; n > 0
a0; n = 0
1
2 ðajnj � ibjnjÞ; n < 0.

8<
: (B:19)

In Equation (B.18), we expanded yðtÞ in terms of the e�i2 pnf0t basis set. Alternatively

we could have expanded it in terms of the ei2pnf0t basis set, in which case we would write

yðtÞ ¼
X1
n¼�1

Y0ne
i2pnf0t; (B:20)

where

Y0n ¼
1
2 ðan � ibnÞ; n > 0
a0; n ¼ 0
1
2 ðajnj þ ibjnjÞ; n < 0.

8<
: (B:21)

Both conventions exist in the literature, but we will use the convention specified by

Equations (B.18) and (B.19) to be consistent with the default definitions for the

Discrete Fourier Transform (discussed in Section B.7) used in Mathematica.

B.3.2 Fourier transform

In the Fourier series, the Fourier frequency components are separated by f0 ¼ 1=T. In

the limit as T!1, the Fourier components, Yn, become a continuous function Yð f Þ
where Yð f Þ is called the Fourier transform of yðtÞ.

yðtÞ ¼
Z 1
0

½gð fÞ cos 2pftþ kð fÞ sin 2pft�df: (B:22)

If we define Yð fÞ by

YðfÞ ¼
1
2 fgð fÞ þ ikð fÞg; f > 0
gð0Þ; f = 0
1
2 fgðjfjÞ � ikðjfjÞg; f < 0,

8<
: (B:23)

then Equation (B.22) can be rewritten as

yðtÞ ¼
Z þ1
�1

YðfÞe�i2pftdf where Yð f Þ ¼
Z þ1
�1

yðtÞ ei2pftdt: (B:24)

Designate Fourier transform pairs by

yðtÞ()Yð f Þ: (B:25)

Units: If t is measured in seconds, then f is in units of cycles s�1 ¼ hertz. If t is

measured in minutes, then f is in cycles per minute. Some common Fourier transform

pairs are illustrated in Figure B.1.
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Note: we normally associate the analysis of periodic functions such as a square wave

with Fourier series rather than Fourier transforms. We can show that a Fourier

transform reduces to a Fourier series whenever the function being transformed is

periodic.

Example:

Consider the FT of a pulse time waveform

hðtÞ ¼
A; jtj < T0

A=2; t ¼ �T0

0; jtj > T0.

8<
: (B:26)
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Figure B.1 Some common Fourier transform pairs.
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The value of the function at a discontinuity must be defined to be the mid-value if the

inverse Fourier transform is to hold (Brigham, 1988).

Hð fÞ ¼
Z T0

�T0

Aei2pftdt ¼ A

Z T0

�T0

cos 2p ftdtþ iA

Z T0

�T0

sin 2p ftdt: (B:27)

The final integral ¼ 0 since the integral is odd:

) Hð fÞ ¼ A

2pf
sin 2p ft

� �T0

�T0

¼ 2AT0
sin 2pT0 f

2pT0 f
: (B:28)

Table B.1 gives the correspondence between important symmetry properties in time

and frequency domains.

B.4 Convolution and correlation

We previously considered some fundamental properties of the FT. However, there

exists a class of FT relationships whose importance outranks those previously con-

sidered. These properties are the convolution and correlation theorems. The import-

ance of the convolution operation in science is discussed in Section B.4.3.

Convolution integral

yðtÞ ¼
Z þ1
�1

sð�Þhðt� �Þd� ¼ sðtÞ � hðtÞ (B:29)

or alternatively,

yðtÞ ¼
Z þ1
�1

hð�Þ sðt� �Þd�; (B:30)

where the symbol � in Equation (B.29) stands for convolution. The convolution

procedure is illustrated graphically in Figure B.2.

Table B.1 Correspondence of symmetry properties in the two domains.

If hðtÞ is . . . then Hð f Þ is . . .

real real part even imaginary part odd

imaginary real part odd imaginary part even

real even and imaginary odd real

real odd and imaginary even imaginary

real and even real and even

real and odd imaginary and odd

imaginary and even imaginary and even

imaginary and odd real and odd

complex and even complex and even

complex and odd complex and odd
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B.4.1 Convolution theorem

The convolution theorem is one of the most powerful tools in modern scientific

analysis. According to the convolution theorem, the FT of the convolution of two

functions is equal to the product of the FT of each function separately.

hðtÞ � sðtÞ()Hð fÞSð fÞ: (B:31)

INTEGRATE
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t

y (t )

MULTIPLY

SHIFT

FOLD

h (τ) s (τ)

0 0.5 1 1.5 2 0 0.5 1 1.5 2
τ τ
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h (– τ)

τ

Figure B.2 Graphical illustration of convolution.
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Proof : Z þ1
�1

yðtÞei2pftdt ¼
Z þ1
�1

Z þ1
�1

sð�Þhðt� �Þd�
� �

ei2pftdt: (B:32)

Now interchange the order of integration:

YðfÞ ¼
Z þ1
�1

sð�Þ
Z þ1
�1

hðt� �Þei2pftdt
� �

d�: (B:33)

Let r ¼ ðt� �Þ. Then,Z þ1
�1

hðt� �Þei2pftdt
� �

¼
Z 1
�1

hðrÞei2pfðrþ�Þdr (B:34)

¼ ei2pf�HðfÞ: (B:35)

Therefore,

YðfÞ ¼ HðfÞ
Z 1
�1

sð�Þei2pf�d� ¼ Hð fÞSð fÞ: (B:36)

This relationship allows one the complete freedom to convolve mathematically (or

visually) in the time domain by simple multiplication in the frequency domain. Among

other things, it provides a convenient tool for developing additional FT pairs.

Figure B.3 illustrates the theorem applied to the convolution of a rectangular pulse

of width 2T0 with a bed of nails (an array of uniformly-spaced delta functions).

We can equivalently go from convolution in the frequency domain to multiplication

in the time domain.

hðtÞsðtÞ  ! HðfÞ � SðfÞ: (B:37)

B.4.2 Correlation theorem

The correlation of two functions sðtÞ and hðtÞ is defined by

Corr ðs; hÞ ¼ zðtÞ ¼
Z 1
�1

sð�Þhð� þ tÞd�: (B:38)

It is useful to compare Equation (B.38) with Equation (B.29) for convolution.

Convolution involves a folding of hð�Þ before shifting, while correlation does not.

According to the correlation theorem,

zðtÞ()Hð fÞS�ð fÞ ¼ Zð fÞ: (B:39)

Thus, Corr ðs; hÞ()Hð fÞS�ð fÞ are an FT pair.

Compare with the convolution: sðtÞ � hðtÞ()Sð fÞHð fÞ.
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Note: if sðtÞ is a real and even function, Sð f Þ is real and S�ð f Þ ¼ Sð f Þ. Thus, in this

case, Corr ðs; hÞ ¼ sðtÞ � hðtÞ= convolution.

B.4.3 Importance of convolution in science

The goal of science is to infer how nature works based on measurements or

observations.

Nature) Apparatus
Measurements

) Observation:

Unfortunately, all measurement apparatus introduces distortions which need to be

understood. Often, the most exciting questions of the day require pushing the meas-

urement equipment to its very limits where the distortions are most extreme. Of

course, some of these distortions can be approximately calculated from theory, like

the diffraction effects of a telescope or microscope, but others need to be measured.

Are there any general principles that help us to understand these distortions that we

can apply to any measurement process? The answer is yes for any linear measurement

h (t ) ∗ 
s (t )
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
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Figure B.3 Example of the convolution theorem.
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process where the output is linearly related to the input signal, even if the apparatus is

a very complex piece of equipment consisting of many separate parts, e.g., a

radio telescope consisting of one or more parabolic antennas and a room full of

sophisticated electronics. Any linear measurement process corresponds mathemat-

ically to a convolution of the measurement apparatus point spread function with the

signal from nature. The point spread function is the response of the apparatus to an

input signal that is unresolved in the measurement dimension, e.g., a short pulse in

the time dimension. From an understanding of the equipment, it is often possible to

partially correct for these distortions to better approximate the original signal.

Radio astronomy example

The simplest radio telescope consists of a parabolic collecting antenna which focuses,

amplifies, and detects the radiation arriving within a narrow cone of solid angle (two

angular dimensions). Because of diffraction, the sensitivity within the cone may have

several peaks often referred to as the main beam and side lobes. The angular size of the

main beam in radians is � wavelength=telescope diameter. For example, a 100 m

diameter telescope operating at a wavelength of 3 cm has about the same resolving

power as the human eye at optical wavelengths.

The detailed shape of the main beam and side lobes may be very difficult to

calculate, especially when the telescope is operated at very short wavelengths where

irregularities in the telescope surface and gravitational distortions are most important.

Any image of the intensity distribution of the sky (incident radiation), made with this

instrument, will be blurred by this diffraction pattern or point spread function.

Fortunately, the point spread function can be measured provided it is stable. This

can be achieved by observing a strong ‘‘point’’ source of very small angular extent,

much smaller than the main beam of the telescope.

The use of an unresolved ‘‘point’’ source to measure the telescope point spread

function, and the blurring effect the point spread function has on a model extended

source, are illustrated in Figure B.4 for one angular coordinate, �. The dashed curve in

the upper left panel shows the response of the telescope as a function of � that we wish

to measure. In this example, it consists of a main beam and a strong secondary side

lobe. The solid curve represents the radio intensity distribution of an unresolved point

source. The source is fixed in position but the telescope response, defined by the

location of the center of the main beam and represented by �0, can be steered. By

scanning the telescope (varying �0) across the point source, we can map out the

telescope point spread function as shown in the lower left panel. One can see that

the response of the telescope to the point source (point spread function) in �0 is the

mirror image of the telescope response in �.

Thus, to simulate an observation of an extended source, the model galaxy, we need

to obtain the telescope response in � by folding the measured point spread function in

�0 about the main beam axis. Then for each pointing position of the telescope, we

multiply the telescope response in � times the galaxy intensity distribution and
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integrate. The lower right panel shows the results of such a convolution with our

model galaxy intensity distribution.

The convolution theorem provides what is often a simpler way of computing the

measured galaxy intensity distribution. Just Fourier transform the telescope sensitiv-

ity in � and the galaxy intensity distribution, multiply the two transforms, and then

take the inverse Fourier transform. The inverse of convolution, called deconvolution,

is demonstrated in Section B.10.1.

B.5 Waveform sampling

In many practical situations, we only obtain samples of some continuous function.

How could we go about sampling the continuous voltage function, vðtÞ to obtain a

sample at t ¼ �? One way would be to convert vðtÞ to a frequency fðtÞ ¼ kvðtÞ and
count the number of cycles (N) in some short time interval � to � þ4T.
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Figure B.4 A simulation of the response of a radio telescope to an unresolved ‘‘point’’ source and

an extended source in one angular sky coordinate, �. The dashed curve in the upper panels is the
telescope sensitivity as a function of �. The solid curve in the upper left represents the intensity
distribution of a point source, and in the right panel, a model galaxy intensity distribution. The
lower panels are the measured telescope output versus �0, the telescope pointing position.

Discrete Fourier Transforms 403



N ¼
Z �þ4T

�

fðtÞdt ¼
Z �þ4T

�

k vðtÞdt: (B:40)

If sð�Þ, the time averaged value of vðtÞ around t ¼ � , is the desired sample, then

sð�Þ ¼ N

k4 T
¼
R �þ4T

� k vðtÞdtR �þ4T

� k dt
: (B:41)

We can generalize this to

sð�Þ ¼
Rþ1
�1 kðt� �Þ vðtÞdtRþ1
�1 kðt� �Þdt

; (B:42)

where kðtÞ is some suitable weighting function. One choice of kðtÞ is a square pulse of
width �T and height 1=�T. In this case,

Rþ1
�1 kðt� �Þdt ¼ 1.

The ideal choice which we can only approach in practice is ! kðtÞ ¼ �ðtÞ (the
impulse or Dirac delta function)

�ðt� �Þ ¼ 0 for t 6¼ � and

Z þ1
�1

�ðt� �Þdt ¼ 1: (B:43)

In most texts, sampling at uniform intervals separated by T is represented by

multiplying the waveform by a set of impulse functions with separation T (often

referred as a bed of nails).

Note: the FT of a bed of nails is another bed of nails such that

4ðtÞ ¼
X1
n¼�1

�ðt� nTÞ() 4ðfÞ ¼ 1

T

X1
n¼�1

� f� n

T

� �
; (B:44)

where the area integral of one nail in the frequency domain ¼ 1=T.

We can use the convolution theorem to illustrate (see Figure B.5) how to determine

the FT of a sampled waveform. The FT of the sampled waveform is then a periodic

function where one period is equal to, within the constant ð1=TÞ, the FT of the

continuous function hðtÞ. Notice that in this situation, we have not lost any informa-

tion about the original continuous hðtÞ. By picking out one period of the transform, we

can reconstruct identically the continuous waveform by the inverse FT.

B.6 Nyquist sampling theorem

Consider what would happen in Figure B.5 if the sampling interval were made larger.

In the frequency domain, the separation ð¼ 1=TÞ between impulse functions of Sð f Þ
would decrease. Because of this decreased spacing of the frequency impulses, their

convolution with the frequency function Hð f Þ results in overlapping waveforms as

illustrated in panel (f) of Figure B.6.
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In this case, we can no longer recover an undistorted simple period which is

identical with the FT of the continuous function hðtÞ. This distortion of a

sampled waveform is known as aliasing. It arises because the original waveform

was not sampled at a sufficiently high rate. For a given sampling interval, T, the

Nyquist frequency is defined as 1=ð2TÞ. If the waveform that is being sampled

contains frequency components above the Nyquist frequency, they will give rise

to aliasing.

Examination of Figure B.6(b) and (d) indicates that convolution overlap will occur

until the separation of the impulses of SðfÞ is increased to 1=T ¼ 2fc, where fc is the

highest frequency. Therefore, the sampling interval T must be � 1=ð2fcÞ.
TheNyquist sampling theorem states that if the Fourier transform of a function hðtÞ

is zero for all jfj � fc, then the continuous function hðtÞ can be uniquely determined

from a knowledge of its sampled values at intervals of T � 1=ð2fcÞ. If HðfÞ ¼ 0 for

jfj � fc then we say that HðfÞ is band-limited. In practice, it is a good idea to use a

smaller sample interval T � 1=ð4fcÞ.
Conversely, if hðtÞ is time-limited, that is hðtÞ ¼ 0 for jtj � Tc then hðtÞ can be

uniquely reconstructed from samples of HðfÞ at intervals 4f ¼ 1=ð2TcÞ.
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Figure B.5 The Fourier transform of a sampled waveform illustrated using multiplication in the

time domain and convolution in the frequency domain.
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B.6.1 Astronomy example

In this example, taken from radio astronomy, we are interested in determining the

intensity distribution, bð�; �Þ of a galaxy with the Very Large Array (VLA). The

position of any point in the sky is specified by the two spherical coordinates �; �.

The VLA is an aperture synthesis radio telescope consisting of twenty-seven 25 m

diameter dish antennas which can be moved along railway tracks to achieve a variety

of relative spacings up to amaximumof 21 km. By this means, it canmake images with

an angular resolution equivalent to that of a telescope with a 21 km diameter aperture

(0.08 arcseconds at � ¼ 1 cm). The signal from each antenna is cross-correlated

separately with the signals from all other antennas while all antennas track the same

source. It can be shown that each cross-correlation is directly proportional to a two-

dimensional Fourier component of bð�; �Þ. If there are N antennas, there are

NðN� 1Þ=2 correlation pairs. The VLA records 27ð27�1Þ=2 ¼ 351 Fourier compon-

ents simultaneously.

The FT of bð�; �Þ is equal to Bðu; vÞ. The quantities u and v are called spatial

frequencies and have units ¼ 1=� where � is in radians (dimensionless). Let u ¼ x=�

and v ¼ y=� be the components of the projected separation of any pair of antennas on
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Figure B.6 When the waveform is sampled at an insufficient rate, overlapping (referred to as
aliasing) occurs in the transform domain.
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a plane perpendicular to the line of sight to the distant radio source in units of the

observing wavelength.

In practice, one wants to measure the minimum number of Fourier components

necessary to reconstruct bð�; �Þ, i.e., move the dish antennas along the railway tracks

as little as possible. This is where the sampling theorem comes in handy.

If the galaxy is known to have a finite angular width4� ¼ 4� ¼ 4 , then from the

sampling theorem, this means we only need to sample in u and v at intervals of

4 u ¼ 4v � 1

4 : (B:45)

Note: in this problem,4 is the equivalent to 2fc in Figure B.6 in the time frequency

problem.

Thus, if 4 	 10 arcseconds ¼ 4:8
 10�5 radians,

4 u ¼ 4x

�
¼ 20 833 ¼ 4v ¼ 4y

�
: (B:46)

If the wavelength of observation, � ¼ 6 cm, then 4x ¼ 1:25 km, which means that

the increment in antenna spacing required for complete reconstruction of bð�; �Þ is
1.25 km.

Since the antennas are 25 m in diameter, they could in principle be spaced at intervals

of� 25m and at that increment in spacing, we could obtain all the Fourier components

(coefficients) necessary to reconstruct (synthesize) the image of a source of angular extent

� 8:3 arcmin. Because each antenna will shadow its neighbor at very close spacings, the

limiting angular size that can be completely reconstructed is smaller than this.

B.7 Discrete Fourier Transform

B.7.1 Graphical development

The approach here is to develop the Discrete FT (abbreviated DFT) from a graphical

derivation based on the waveform sampling and the convolution theorem, following

the treatment given by Brigham (1988). The steps in this derivation are illustrated in

Figure B.7.

Panel (a) of Figure B.7 shows the continuous FT pair hðtÞ and HðfÞ. To obtain

discrete samples, we multiply hðtÞ by the bed of nails shown in the time domain which

corresponds to convolving in the f domain, with the result shown in (c). Note: the

effect of sampling is to create a periodic version ofHðfÞ. To represent the fact that we

only want a finite number of samples, we multiply in the time domain by the

rectangular window function of width T0 of panel (d), which corresponds to convolv-

ing with its frequency transform. This has side lobes, which produce an undesirable

ripple in our transform as seen in panel (e). One way to reduce the ripple is to use a

tapered window function instead of a rectangle.

Discrete Fourier Transforms 407



Finally, to manipulate a finite number of samples in the frequency domain, we

multiply in the frequency domain by a bed of nails at a frequency interval

�f ¼ 1=T0 as shown in panels (f) and (g). After taking the DFT of our N samples

of hðtÞ, we obtain an N-sample approximation of the HðfÞ as shown in panel (g).

Note 1: sampling in the frequency domain results in a periodic version of hðtÞ in the

time domain. It is very important to be aware of this periodic property when executing

convolution operations using the DFT.
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Figure B.7 Graphical development of the Discrete Fourier Transform. See discussion in Section
B.7.1.
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Note 2: the location of the rectangular window function wðtÞ is very important. Its

width T0 equalsNT, where T is the sample interval. If wðtÞ had been located so that a

sample value coincided with each end-point, the rectangular function would be

Nþ 1 sample values, and the convolution of hðtÞsðtÞwðtÞ with the impulses spaced

at intervals of T0 as shown in panels (f) and (g) would result in time domain aliasing.

B.7.2 Mathematical development of the DFT

We now estimate the FT of a function from a finite number of samples. Suppose we

have N equally spaced samples hk 	 hðkTÞ at an interval of T seconds, where

k ¼ 0; 1; 2; . . . ;N� 1. From the discussion of the Nyquist sampling theorem, for a

sample interval T, we can only obtain useful frequency information for jfj < fc. We

seek estimates at the discrete values

fn 	
n

NT
; n ¼ �N

2
; . . . ;

N

2
; (B:47)

where the upper and lower limits are �fc. Counting n ¼ 0, this range corresponds to

Nþ 1 values of frequency, but only N values will be unique.

HðfnÞ ¼
Z þ1
�1

hðtÞ ei2pfntdt

�
XN�1
k¼0

hðkTÞ ei2pfnkTT

¼ T
XN�1
k¼0

hk ei2pn�fkT

¼ T
XN�1
k¼0

hk ei2pnk=N

¼ THðn�fÞ ¼ TH
n

NT

� �
¼ THn;

(B:48)

where T ¼ the sample interval and hk for k ¼ 0; . . . ;N� 1, are the sample values of

the truncated hðtÞ waveform.

Hn is defined as the DFT of hk and given by

Hn ¼
XN�1
k¼0

hk ei2pnk=N: (B:49)

Defined in this way, Hn does not depend on the sample interval T.

The relationship between the DFT of a set of samples of a continuous function hðtÞ
at interval T, and the continuous FT of hðtÞ can be written as

HðfnÞ ¼ THn: (B:50)
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We can show that since Equation (B.49) forHn is periodic, there are onlyN distinct

complex values computable. To show this, let n ¼ rþN, where r is an arbitrary

integer from 0 to N� 1.

Hn ¼ H
n

NT

� �
¼
XN�1
k¼0

hk ei2pkðrþNÞ=N

¼
XN�1
k¼0

hk ei2pkr=N ei2pk

¼
XN�1
k¼0

hk ei2pkr=N

¼ H
r

NT

� �
¼ Hr;

(B:51)

since ei2pk ¼ cosð2pkÞ þ i sinð2pkÞ ¼ 1 for k an integer.

Until now, we have assumed that the index n varies from �N=2 to N=2. Since Hn

is periodic, it follows that H�n ¼ HN�n so H�N=2 ¼ HN=2 and thus we only need N

values of n. It is customary to let n vary from 0 toN� 1. Then n ¼ 0 corresponds to the

DFT at zero frequency and n ¼ N=2 to the value at �fc. Values of n between N=2þ 1

and N� 1 correspond to values of the DFT for negative frequencies from

–ðN=2� 1Þ;�ðN=2� 2Þ; . . . ;�1. Thus, to display the DFT in the same way as an

analytic transform is displayed (�f on the left and þf on the right), it is necessary to

reorganize the DFT frequency values.

B.7.3 Inverse DFT

Again, our starting point is the integral FT:

hðkTÞ ¼ hk ¼
Z þ1
�1

HðfÞ e�i2pfkTdf

hðkTÞ �
XN�1
n¼0

HðfnÞ e�i2pfnkT�f:

(B:52)

Now substitute HðfnÞ ¼ THn and �f ¼ ð1=NTÞ:

hk ¼
XN�1
n¼0

THn e�i2pfnkT�f

hk ¼
1

N

XN�1
n¼0

Hn e�i2pfnkT:

(B:53)

Note: the definition of DFT pair given in Mathematica is the more symmetrical

form
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Hn ¼
1ffiffiffiffi
N
p

XN�1
k¼0

hk ei2pnk=N (B:54)

hk ¼
1ffiffiffiffi
N
p

XN�1
n¼0

Hn e�i2pfnkT: (B:55)

Box B.1

The Fourier transform of a list of real or complex numbers,

represented by ui, is given by the Mathematica command
(Fourier [{u1; u2; � � � ; un}].)
The inverse Fourier transform is given by

InverseFourier [{u1; u2; � � � ; un}].
Mathematica can find Fourier transforms for data in any number of dimensions.

In n dimensions, the data is specified by a list nested n levels deep. For two

dimensions, often used in image processing, the command is

Fourier [{{u11; u12; � � � ; u1n}; {u21; u22; � � � ; u2n}; � � � }].
An example of the use of the FFT in the convolution and deconvolution of an

image is given in the accompanying Mathematica tutorial.

B.8 Applying the DFT

We have already developed the relationship between the discrete and continuous

Fourier transforms. Here, we explore the mechanics of applying the DFT to the

computation of Fourier transforms and Fourier series. The primary concern is one

of correctly interpreting these results.

B.8.1 DFT as an approximate Fourier transform

To illustrate the application of the DFT to the computation of Fourier transforms,

consider Figure B.8. Figure B.8(a) shows the real function fðtÞ, given by

fðtÞ ¼ 0; t < 0
e�t; t � 0.

�
(B:56)

We wish to compute by means of the DFT an approximation to the Fourier transform

of this function.

The first step in applying the discrete transform is to choose the number of samples

N and the sample interval T. For T ¼ 0:25, we show the samples of fðtÞ within the

dashed rectangular window function in Figure B.8(b). Note: the start of the window
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function occurs T=2 ahead of the first sample so that there are only N samples within

the window, as discussed in Section B.7.1. Also, the value of the function at a

discontinuity must be defined to be the mid-value if the inverse Fourier transform is

to hold. Since the DFT assumes the function is periodic, we set this value equal to the

average of the function value at both ends to avoid the discontinuity at t ¼ 0.

We next compute the Fourier transform using the DFT approximation

HðfnÞ � THn ¼ TH
n

NT

� �
; (B:57)
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Figure B.8 A 32-point DFT of the function fðtÞ. The function itself is plotted in panel (a). Panel
(b) illustrates the location of the 32 time samples within the rectangular window function
(dashed box). Panel (c) compares the real part of the DFT to the continuous Fourier transform

shown by the solid curve. The imaginary part of the DFT is compared to the continuous case
(solid curve) in panel (d). Panel (e) illustrates the improved agreement obtained by halving the
sample interval in time and doubling the number of samples.
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where

H
n

NT

� �
¼
XN�1
k¼0

e�kT
� �

ei2 pnk=N; n ¼ 0; 1; . . . ;N� 1: (B:58)

Note: the scale factor T in Equation (B.57), is required to produce equivalence

between the continuous and discrete transforms. These results are shown in panels (c)

and (d) of Figure B.8 In Figure B.8(c), we show the real part of the Fourier transform

as computed by Equation (B.58). The index n ¼ 0 corresponds to zero frequency or

the DC term, which is proportional to the data average. Note: the real part of the

discrete transform is symmetrical about n ¼ N=2, the Nyquist frequency sample. The

real part of a Fourier transform of a real function is even and the imaginary part of the

transform is odd. In Figure B.8(b), the results for the real part for n > N=2 are simply

negative frequency results. For T ¼ 0:25 s, the physical frequency associated with

frequency sample n ¼ N=2 is 1=ð2TÞ ¼ 2Hz. Sample ðN=2Þ þ 1 ¼ 17 corresponds to

a negative frequency ¼ �ðN=2� 1Þ=ðNTÞ ¼ �1:875Hz, and sample n ¼ 31 corres-

ponds to the frequency ¼ �1=ðNTÞ ¼ �0:125Hz.

The conventional method of displaying results of the discrete Fourier transform is

to graph the results of Equation (B.58) as a function of the parameter n. As long as we

remember that those results for n > N=2 actually relate to negative frequency results,

then we should encounter no interpretation problems.

In panel (d) of Figure B.8, we illustrate the imaginary part of the Fourier transform

and the discrete transform. As shown, the discrete transform approximates rather

poorly the continuous transform for the higher frequencies. To reduce this error, it is

necessary to decrease the sample interval T and increase N. Panel (e) shows the

improved agreement obtained by halving T and doubling N to 64 samples. We note

that the imaginary function is odd with respect to n ¼ N=2. Again, those results for

n > N=2 are to be interpreted as negative frequency results.

In summary, applying the discrete Fourier transform to the computation of the

Fourier transform only requires that we exercise care in the choice of T and N and

interpret the results correctly. For a worked example of the DFT usingMathematica,

see the section entitled ‘‘Exercise on DFT, Zero Padding and Nyquist Sampling,’’ in

the accompanying Mathematica tutorial.

B.8.2 Inverse discrete Fourier transform

Assume that we are given the continuous real and imaginary frequency functions

considered in the previous discussion and that we wish to determine the corresponding

time function by means of the inverse discrete Fourier transform

hðkTÞ ¼ 4f
XN�1
n¼0
½Rðn4fÞ þ iIðn4fÞ�e�i2pnk=N for k ¼ 0; 1; . . . ;N� 1; (B:59)
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where 4f is the sample interval in frequency. Assume N ¼ 32 and 4f ¼ 1=8.

Since we know that RðfÞ, the real part of the complex frequency function, must be

an even function, then we fold Rð fÞ about the frequency f ¼ 2:0Hz, which corres-

ponds to the sample point n ¼ N=2. As shown in Figure B.9(a), we simply sample the

frequency function up to the point n ¼ N=2 and then fold these values about n ¼ N=2

to obtain the remaining samples.

In Figure B.9(b), we illustrate the method of determining the N samples of the

imaginary part of the frequency function. Because the imaginary frequency function is

odd, we must not only fold about the sample value N=2 but also flip the results. To

preserve symmetry, we set the sample at n ¼ N=2 to zero.

Computation of Equation (B.59) with the sampled function illustrated in Figures

B.9(a) and (b) yields the inverse discrete Fourier transform. The result is a complex

function whose imaginary part is approximately zero and whose real part is as shown

in panel (c).We note that at k ¼ 0, the result is approximately equal to the correct mid-

value and reasonable agreement is obtained for all but the results for k large.

Improvement can be obtained by reducing 4f and increasing N.

The key to using the discrete inverse Fourier transform for obtaining an approxi-

mation to continuous results is to specify the sampled frequency functions correctly.
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Figure B.9 Panels (a) and (b) illustrate the sampling of the real and imaginary parts of the
continuous Fourier transform in readiness for computing the inverse DFT which is shown in
panel (c).
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Figures B.9(a) and (b) illustrate this correct method. One should observe the scale

factor 4f which was required to give a correct approximation to continuous inverse

Fourier transform results.

B.9 The Fast Fourier Transform

The FFT (Cooley and Tukey, 1965) is a very efficient method of implementing the

DFT that removes certain redundancies in the computation and greatly speeds up the

calculation of the DFT. Consider the DFT

AðnÞ ¼
XN�1
k¼0

xðkÞei2pnk=N ðn ¼ 0; 1; . . . ;N� 1Þ; (B:60)

where we have replaced kT by k and n=NT by n for convenience of notation.

Let w ¼ ei2p=N. Equation (B.60) can be written in matrix form:

Að0Þ
Að1Þ
Að2Þ
Að3Þ

2
6664

3
7775
¼
¼
¼
¼

w0 w0 w0 w0

w0 w1 w2 w3

w0 w2 w4 w6

w0 w3 w6 w9

2
66664

3
77775

xð1Þ
xð2Þ
xð3Þ
xð4Þ

2
6664

3
7775 (B:61)

or AðnÞ ¼ wnk xðkÞ: (B:62)

It is clear from thematrix representation that sincew and possibly xðkÞ are complex,

then N2 complex multiplications and ðNÞðN� 1Þ complex additions are necessary to

perform the required matrix computation. The FFT owes its success to the fact that

the algorithm reduces the number of multiplications from N2 to N log2 N.

For example, if N ¼ 1024 ¼ 210

N2 ¼ 220 operations in DFT

N log2 N ¼ 210
10 operations in FFT.

This amounts to a factor of 100 reduction in computer time and round-off errors are

also reduced.

How does it work?

The FFT takes anN-point transform and splits it into twoN=2-point transforms. This

is already a saving, since 2ðN=2Þ2 < N2. TheN=2-point transforms are not computed,

but each split into twoN=4-point transforms. It takes log2 N of these splittings, so that

generating the N-point transform takes a total of approximately N log2 N operations

rather than N2.

The mathematics involves a splitting of the data set xðkÞ into odd and even labeled

points, yðkÞ and zðkÞ.
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Let yðkÞ ¼ xð2kÞ for k ¼ 0; 1; . . . ;N=2� 1

zðkÞ ¼ xð2kþ 1Þ:
(B:63)

Equation (B.60) can be rewritten as:

AðnÞ ¼
XN=2�1
k¼0

yðkÞei4pnk=N þ zðkÞei2pnð2kþ1Þ=N
n o

¼
XN=2�1
k¼0

yðkÞei4pnk=N þ ei2pn=N
XN=2�1
k¼0

zðkÞei4pnk=N:

(B:64)

This will still generate the whole set AðnÞ if n is allowed to vary over the full range

(0 � n � N� 1). First, let n vary over (0 � n � N=2� 1). Then

AðnÞ ¼ BðnÞ þ CðnÞwn ðvalid for 0 � n � N=2� 1Þ; (B:65)

where

BðnÞ ¼
XN=2�1
k¼0

yðkÞw2nk and CðnÞ ¼
XN=2�1
k¼0

zðkÞw2nk

for n ¼ 0; . . . ;
N

2
� 1:

(B:66)

But since BðnÞ and CðnÞ are periodic in the half-interval, generating AðnÞ for
the second half may be done without further computing using the same BðnÞ and
CðnÞ:

A nþN

2

	 

¼ BðnÞ þ CðnÞwnwN=2

¼ BðnÞ � CðnÞwn ð0 � n � N=2� 1Þ;
(B:67)

where

wN=2 ¼ eip ¼ cos p ¼ �1: (B:68)

The work of computing anN-point transform AðnÞ has been reduced to computing

twoN=2 point transforms BðnÞ andCðnÞ and appropriate multiplicative phase factors

wn. Each of these sub-sequences yðkÞ and zðkÞ can be further subdivided with each step

involving a further reduction in operations. These reductions can be carried out as

long as the original sequence is a power of 2.

Consider n ¼ 8 ¼ 23. In 3 divisions we go from 1
 8, to 2
 4, to 4
 2, to 8
 1.

Note: the DFT of one term is simply the term itself,

i:e: Að0Þ ¼
X
k¼0

xðkÞe�i2pkn=N ¼ xð0Þ; for n ¼ 0: (B:69)

In the above we have assumed N ¼ power of 2. (2 is called the radix ¼ r). One can

use other values for the radix, e.g., N ¼ 42
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Speed enhancement: ’ N logr N

N2
:

In addition to the splitting into sub-sequences, the FFT also makes use of period-

icities in the exponential term wnk to eliminate redundant operations.1

wnk ¼ wnk mod N (B:70)

e.g., if N ¼ 4; n ¼ 2 and k ¼ 3, then

wnk¼w6 ¼ exp
i2p
4

	 

ð6Þ

� �
¼ expð�i3pÞ

¼ expð�ipÞ¼exp
i2p
4

	 

ð2Þ

� �
¼ w2

w2 ¼� w0:

(B:71)

Note: the FFT is not an approximation but a method of computing which reduces

the work by recognizing symmetries and by not repeating redundant operations.

B.10 Discrete convolution and correlation

One of the most common uses of the FFT is for computing convolutions and

correlations of two time functions. Discrete convolution can be written as

sðkTÞ ¼
XN�1
i¼0

hðiTÞr½ðk� iÞT� ¼ hðkTÞ � rðkTÞ: (B:72)

According to the Discrete Convolution Theorem,

XN�1
i¼0

hðiTÞr½ðk� iÞT�()H
n

NT

� �
R

n

NT

� �
: (B:73)

Note: the discrete convolution theorem assumes that hðkTÞ and rðkTÞ are periodic
since the DFT is only defined for periodic functions of time. Usually, one is interested

in convolving non-periodic functions. This can be accomplished with the DFT by the

use of zero padding which is discussed in the next section. Reiterating, discrete

convolution is only a special case of continuous convolution; discrete convolution

assumes both functions repeat outside the sampling window.

1 For example,

I mod m ¼ I� Int
I

m

	 


m

6 mod 4 ¼ 6� Int
6

4

	 


 4 ¼ 2
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To efficiently compute the discrete convolution:

1. Use an FFT algorithm to compute RðnÞ and HðnÞ.
2. Multiply the two transforms together, remembering that the transforms consist of complex

numbers.

3. Then use the FFT to inverse transform the product.

4. The answer is the desired convolution hðkÞ � rðkÞ.

If both time functions are real (generally so) both of their transforms can be taken

simultaneously. For details see Press (1992).

What about deconvolution? One is usually more interested in the signal hðkTÞ before
it is smeared by the instrumental response. Deconvolution is the process of undoing

the smearing of the data, due to the effect of a known response function.

Deconvolution in the frequency domain consists of dividing the transform of the

convolution by RðnÞ, e.g.,

HðnÞ ¼ SðnÞ
RðnÞ ; (B:74)

and then transforming back to obtain hðkÞ.
This procedure can go wrong mathematically if RðnÞ is zero for some value of n, so

that we can’t divide by it. This indicates that the original convolution has truly lost all

information at that one frequency so that reconstruction of that component is not

possible. Apart from this mathematical problem, the process is generally very sensitive

to noise in the input data and to the accuracy to which rðkÞ is known. This is the

subject of the next section.

B.10.1 Deconvolving a noisy signal

We already know how to deconvolve the effects of the response function, rðkÞ (short
for rðkTÞ), of the measurement device, in the absence of noise. We transform the

measured output, sðkÞ, and the response, rðkÞ, to the frequency domain yielding SðnÞ
(short for Sðn�fÞ) and RðnÞ. The transform,HðnÞ, of the desired signal, hðkÞ, is given
by Equation (B.74).

Even without additive noise, this can fail because for some n,RðnÞmay equal 0. The

solution in this case is

HðnÞ ¼ SðnÞ
ðRðnÞ þ �Þ ; (B:75)

where � is very small compared to the maximum value of RðnÞ and �=RðnÞ > the

machine precision.

Panel (a) in Figure B.10 shows our earlier result (see Figure B.4) of convolving the

image of a galaxy with the response (beam pattern) of a radio telescope. Panel (b)
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shows the deconvolved version assuming perfect knowledge of RðnÞ and a value of

� ¼ 10�8. In practice, we will only be able to determine RðnÞ to a certain accuracy

which will limit the accuracy of the deconvolution. In panel (c), we have added

independent Gaussian noise to (a), and panel (d) shows the best reconstruction

obtained by varying the size of �, which occurs for an � � 0:15. We now investigate
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Figure B.10 Panel (a) shows the earlier result (see Figure (B.4)) of convolving a model galaxy

with the point spread function of a radio telescope. Panel (b) shows the deconvolved galaxy
image. Panel (c) is the same as (a) but with added Gaussian noise. Panel (d) is the best
deconvolved image without any filtering of noise. Panel (e) shows the result of deconvolution
using an optimal Weiner filter.
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the use of an optimal Weiner filter to improve upon the reconstruction when noise is

present.

B.10.2 Deconvolution with an optimal Weiner filter

If additive noise is present, the output from the measurement system is now cðkÞ, where

cðkÞ ¼ sðkÞ þ nðkÞ: (B:76)

The task is to find the optimum filter �ðkÞ or�ðnÞ, which, when applied to theCðnÞ, the
transform of the measured signal cðkÞ, and then divided by RðnÞ, produces an output
~HðnÞ, that is closest to HðnÞ in a least-squares sense. This translates to the equation

X
n

½SðnÞ þNðnÞ� �ðnÞ
RðnÞ � SðnÞ

RðnÞ

����
����
2

¼
X
n

RðnÞj j�2 SðnÞj j2 1� �ðnÞj j2þ NðnÞj j2 �ðnÞj j2
h i

¼ minimum:

(B:77)

If the signal SðnÞ and noiseNðnÞ are uncorrelated, their cross product when summed

over n can be ignored. Equation (B.77) will be a minimum if and only if the sum is

minimized with respect to �ðnÞ at every value of n. Differentiating with respect to �,

and setting the result equal to zero gives

�ðnÞ ¼ SðnÞj j2

SðnÞj j2þ NðnÞj j2
: (B:78)

The solution contains SðnÞ and NðnÞ but not the CðnÞ, the transform of the measured

quantity cðkÞ. We happen to know SðnÞ and NðnÞ because we are working with a

simulation. In general, we only know CðnÞ, so we estimate SðnÞ and NðnÞ in the

following way: Figure B.11 shows the log of CðnÞj j2; SðnÞj j2 and NðnÞj j2 in panels

(a), (b), (c), respectively. For small n, CðnÞj j2 has the same shape as SðnÞj j2, while at
large n, it looks like the noise spectrum. If we only had CðnÞj j2, we could estimate

SðnÞj j2 by extrapolating the spectrum at high values of n to zero. Similarly, we can

estimate the NðnÞj j2 by extrapolating back into the signal region. Panel (d) shows the

resulting optimal filter� given by Equation (B.78).Where SðnÞj j2� NðnÞj j2,�ðnÞ ¼ 1

and when the noise spectrum dominates, �ðnÞ � 0.

Panel (e) of Figure (B.10) shows the reconstruction ~HðnÞ obtained using Equation

(B.79):

~HðnÞ ¼ CðnÞ�ðnÞ
RðnÞ : (B:79)

We investigate other approaches to image reconstruction in Chapter 8.
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B.10.3 Treatment of end effects by zero padding

Since the discrete convolution theorem assumes that the response function is periodic,

it falsely pollutes some of the initial channels with data from the far end because of the

wrapped-around response arising from the assumed periodic nature of the response

function, hð�Þ. Although the convolution is carried out by multiplying the Fast

Fourier Transforms of hð�Þ and xð�Þ and then inverse transforming back to the

time domain, the polluting effect of the wrap-around is best illustrated by analyzing

the situation completely in the time domain. Figure B.12 illustrates the convolution of

xð�Þ, shown in panel (b), by an exponential decaying response function shown in panel
(a). First, the response function is folded about � ¼ 0, causing it to disappear from the

left of panel (c). Since the DFT assumes that hð�Þ is periodic, a wrap-around copy of

hð��Þ appears at the right of the panel. To compute the convolution at t, we shift the

folded response to the right by t, multiply hðt� �Þ and xð�Þ and integrate. Panel (e)

shows the resulting polluted convolution.

To avoid polluting the initial samples, we add a buffer zone of zeros at the far end of

the data stream. The width of this zero padding is equal to the maximum wrap-around

of the response function (see Figure B.13). Note: if we increase N for the data stream,

we must also add zeros to the response to make up the same number of samples. The

wrap-around response shown in panels (c) and (d) is multiplied by zeros and so does

not pollute the convolution as shown in panel (e).
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Figure B.11 The figure shows the log of CðnÞj j2, SðnÞj j2 and NðnÞj j2 in panels (a), (b), (c),
respectively. Panel (d) shows the optimal Weiner filter.
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AMathematica example of zero padding in the convolution of a two-dimensional

image is given in the accompanying Mathematica tutorial.

B.11 Accurate amplitudes by zero padding

The FFT of hðkÞ produces a spectrum HðnÞ in which any intrinsically narrow

spectral feature is broadened by convolution with the Fourier transform of the

window function. For a rectangular window, this usually results in only two

samples to define a spectral peak in HðnÞ and deductions about the true amplitude

of the peak are usually underestimated unless by chance one of these samples lies

at the center of the peak. This situation is illustrated in Figure B.14. Panel (a)

shows 12 samples of a sine wave taken within a rectangular window function

indicated by the dashed lines. The actual samples are represented by the vertical

solid lines. In panel (b), the DFT (vertical lines) is compared to the analytic

Fourier transform of the windowed continuous sine wave. In this particular
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Figure B.12 Wrap-around effects in FFT convolution.
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example, only two DFT components are visible; the others fall on the zeros of the

analytic transform.

Doubling the length of the window function to 2
 T0 causes the samples to bemore

closely spaced in the frequency domain 4f ¼ 1=ð2T0Þ, but at the same time, the

transform of the window function becomes narrower by the same factor. The net

effect is to not increase the number of samples within the spectral peak. Demonstrate

this for yourself by executing the section entitled ‘‘Exercise on the DFT, Zero Padding

and Nyquist Sampling,’’ in the accompanying Mathematica tutorial.

Consider what happens when we append 3N zeros to hðkÞwhich has been windowed
by a rectangular functionN samples long. This situation is illustrated in panels (c) and

(d) of Figure B.14. There are now four times as many frequency components to define

the spectrum. Even in this situation, noticeable differences between the DFT and

analytic transform start to appear at larger values of f.

In the top panel, we see 12 samples of the data and to the right, the magnitude of

the discrete transform. In the bottom panel, we have four times the number of points

to be transformed by adding 36 zeros to the 12 original data points. Now the spectral

peak remains the same in size but we have four times as many points defining

the peak.
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Figure B.13 Removal of wrap-around effects in FFT convolution by zero padding.
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B.12 Power-spectrum estimation

The measurement of power spectra is a difficult and often misunderstood topic.

Because the FFT yields frequency and amplitude information, many investigators

proceed to estimate the power spectrum from the magnitude of the FFT. If the

waveform is periodic or deterministic, then the correct interpretation of the FFT

result is likely. However, when the waveforms are random processes, it is necessary

to develop a statistical approach to amplitude estimation. We will consider two

approaches to the subject in this section, and Chapter 13 provides a powerful

Bayesian viewpoint of spectral analysis. We start by introducing Parseval’s

theorem.

B.12.1 Parseval’s theorem and power spectral density

Parseval’s theorem states that the energy in a waveform hðtÞ computed in the time

domain must equal the energy as computed in the frequency domain.
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Figure B.14 How to obtain more accurate DFT amplitudes by zero padding. The frequency axis
in the two right hand panels is in units of 1=T, the sampling frequency. On this scale the Nyquist

frequency ¼ 0:5.

424 Appendix B



Energy ¼
Z 1
�1

h2ðtÞdt ¼
Z 1
�1

Hð fÞj j2df: (B:80)

From this equation, it is clear that Hð fÞj j2 is an energy spectral density. Frequently,

one wants to know ‘‘how much energy’’ is contained in the frequency interval between

f and fþ df. In such circumstances, one does not usually distinguish between þf
and �f, but rather regards f as varying from 0 to þ1. In such cases, we define the

one-sided energy spectral density (ESD) of the function hðtÞ as

Ehð fÞ 	 Hð fÞj j2þ Hð�fÞj j2; 0 � f <1: (B:81)

When hðtÞ is real, then the two terms are equal, so

Ehð fÞ ¼ 2 Hð fÞj j2: (B:82)

If hðtÞ goes endlessly from�1 < t <1, then its ESDwill, in general, be infinite. Of

interest then is the one-sided ESD per unit time or power spectral density (PSD). This

is computed from a long but finite stretch of hðtÞ. The PSD is computed for a

function ¼ hðtÞ in the finite stretch which is zero elsewhere, divided by the length of

the stretch used. Parseval’s theorem in this case states that the integral of the one-sided

PSD over positive frequency is equal to the mean-square amplitude of the signal hðtÞ.

Proof of Parseval’s theorem using the convolution theorem:

FT of hðtÞ � hðtÞ ¼ Hð fÞ �Hð fÞ.
That is,

R1
�1h

2ðtÞei2p�tdt ¼
R1
�1HðfÞHð�� fÞdf.

Setting � ¼ 0 yieldsZ 1
�1

h2ðtÞdt ¼
Z 1
�1

Hð fÞHð�fÞdf ¼
Z 1
�1

Hð fÞj j2df: QED (B:83)

The last equality follows since

Hð fÞ ¼ Rð fÞ þ iIð fÞ and thus Hð�fÞ ¼ Rð�fÞ þ iIð�fÞ: (B:84)

For hðtÞ real, Rð fÞ is even and Ið fÞ is odd, and
Hð�fÞ ¼ RðfÞ � iIðfÞ ¼ H �ðfÞ: (B:85)

B.12.2 Periodogram power-spectrum estimation

A common approach used to estimate the spectrum of hðtÞ is by means of the period-

ogram also referred to as the Schuster periodogram after Schuster who first introduced

the method in 1898.

Let P̂pð fÞ ¼
1

L

	 
 Z L=2

�L=2
hðtÞei2pftdt

�����
�����
2

; (B:86)
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where the subscript p denotes periodogram estimate and L is the length of the data set.

An FFT is normally used to compute this.

We define the power spectral density, Pð f Þ, as follows:

Pð fÞ ¼ lim
L!1

1

L

	 
 Z L=2

�L=2
hðtÞei2pftdt

�����
�����
2

: (B:87)

We now develop another power-spectrum estimator which is in common use.

B.12.3 Correlation spectrum estimation

Let hðtÞ be a random function of time (could be the sum of a deterministic function

and noise). In contrast to a pure deterministic function, future values of a random

function cannot be predicted exactly. However, it is possible that the value of the

random function at time t influences the value at a later time tþ � . One way to express

this statistical characteristic is bymeans of the autocorrelation function, which for this

purpose is given by

�ð�Þ ¼ lim
L!1

1=L

Z þL=2
�L=2

hðtÞ½hðtþ �Þ�dt; (B:88)

where hðtÞ extends from �L=2 to þL=2.
In the limit of L ¼ 1, the power spectral density function Pð fÞ and the autocorrel-

ation function �ð�Þ are a Fourier transform pair:

�ð�Þ ¼
Z þ1
�1

Pð fÞe�i2pf�df()Pð fÞ ¼
Z þ1
�1

�ð�Þei2pf�d�: (B:89)

Proof:

From Equation (B.87) and the correlation theorem, we have

Pð fÞ /
Z 1
�1

hðtÞei2pftdt
����

����
2

¼FT ½hðtÞ� 
 FT �½hðtÞ�

¼FT

Z 1
�1

hðtÞhðtþ �Þdt
� �

¼FT �ð�Þ½ �:

(B:90)

In the literature, Pð fÞ is called by many terms including: power spectrum, spectral

density function, and power spectral density function (PSD). If the autocorrelation

function is known, then the calculation of the power spectrum is determined directly

from the Fourier transform.
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Since hðtÞ is known only over a finite interval, we estimate �ð�Þ based on this finite

duration of data. The estimator generally used is

�̂ð�Þ ¼ 1

L� j� j

Z L�j� j

0

hðtÞh½tþ j� j�dt; j� j < L; (B:91)

where hðtÞ is known only over length L.

Notice that Pð fÞ cannot be calculated since �̂ð�Þ is undefined for j� j > L. However,

consider the quantitywð�Þ�̂ð�Þ, wherewð�Þ is a window function which is non-zero for

j� j � L and zero elsewhere. The modified autocorrelation function wð�Þ �̂ð�Þ exists for
all � and hence its FT exists.

P̂cð fÞ ¼
Z 1
�1

wð�Þ �̂ð�Þe�2pf�d�; (B:92)

where wð�Þ ¼ 1 for j� j5L and is zero elsewhere. P̂cð fÞ is called the correlation or

lagged-product estimator of the PSD. This approach to spectral analysis is commonly

referred to as the Blackman–Tukey procedure (Blackman and Tukey, 1958). An instru-

ment for estimating the PSD in this way is called an autocorrelation spectrometer. They

are very common in the field of radio astronomy and especially in aperture synthesis

telescopes where it is already necessary to cross-correlate the signals from different pairs

of telescopes. It is quite convenient to add additional multipliers to calculate the

correlation as a function of delay to obtain the spectral information as well.

Although the periodogram and correlation spectrum estimation procedures appear

quite different, they are equivalent under certain conditions. It can be shown (Jenkins

and Watts, 1968) that

P̂pð fÞ ¼
Z þL=2
�L=2

1� j� j
L

	 

�̂ð�Þei2pf�d�: (B:93)

The inverse FT yields

�̂pð�Þ¼ 1� j� j
L

	 

�̂ð�Þ; j� j < L: (B:94)

Hence, if we modify the lagged-product spectrum estimation technique by simply

using a triangular (Bartlett) window function in Equation (B.92), then the two

procedures are equivalent.

In spectrum estimation problems, one strives to achieve an estimator whose mean

value (the average of multiple estimates) is the parameter being estimated. It can be

shown (Jenkins and Watts, 1968) that the mean value of both the correlation and

periodogram estimation procedures is the true spectrum Pð fÞ convolved with the

frequency-domain window function:

E P̂cð fÞ
� �

¼ E P̂pð fÞ
� �

¼Wð fÞ � Pð fÞ: (B:95)
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Hence, the mean (expectation) value equals the true spectrum only if the frequency-

domain window function is an impulse function (i.e., the data record length is infinite

in duration). If the mean of the estimate is not equal to the true value, then we say that

the estimate is biased.

B.13 Discrete power spectral density estimation

We will develop the discrete form of the PSD from the discrete form of Parseval’s

theorem. We start with a continuous waveform hðtÞ and its transformHðfÞ, which are

related by

hðtÞ ¼
Z þ1
�1

Hð fÞe�i2pftdf where Hð fÞ ¼
Z þ1
�1

hðtÞei2pftdt: (B:96)

We refer toHð fÞ as two-sided because from the mathematics, it has non-zero values at

both ðþÞ and ð�Þ frequencies.
According to Parseval’s theorem,

Energy ¼
Z 1
�1

h2ðtÞdt ¼
Z 1
�1

Hð fÞj j2df: (B:97)

Thus, Hð fÞj j2¼ two-sided energy spectral density.

B.13.1 Discrete form of Parseval’s theorem

Suppose our function hðtÞ is sampled at N uniformly spaced points to produce the

values hk for k ¼ 0 to N� 1 spanning a length of time L ¼ NT with T ¼ the sample

interval.

Energy ¼
XN�1
k¼0

h2kT ¼
XN�1
n¼0

Hð fnÞj j2�f

¼
XN�1
n¼0

THnj j2�f:

(B:98)

Note: the substitution THn ¼ HðfnÞ comes from Equation (B.50). Thus, jTHnj2 ¼
two-sided discrete energy spectral density.

We note in passing that the usual discrete form of Parseval’s theorem is obtained

from Equation (B.98) by rewriting �f ¼ 1=ðNTÞ and then simplifying to give

XN�1
k¼0

h2k ¼
1

N

XN�1
n¼0

Hnj j2: (B:99)
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We will find Equation (B.98) a more useful version of the discrete form of Parseval’s

theorem because it makes clear that jTHnj2 is a discrete energy spectral density.

Average waveform power ¼ waveform energy

waveform duration

¼ 1

NT

XN�1
k¼0

h2kT

¼
XN�1
n¼0

jHnj2T
N

�f

(B:100)

¼ 1

N

XN�1
k¼0

h2k

¼mean squared amplitude: ðB:101Þ

We can identify the two-sided discrete PSD with jHnj2T/N from the RHS of the above

equation, which has units of power per cycle.

B.13.2 One-sided discrete power spectral density

Let Pð fnÞ ¼ the one-sided power spectral density.

Pðf0Þ ¼
T

N
jH0j2

PðfnÞ ¼
T

N
Hnj j2þ HN�nj j2
h i

; n ¼ 1; 2; . . . ; ðN=2� 1Þ

P fN=2
� 


¼ T

N
HN=2

�� ��2;
(B:102)

where fN=2 corresponds to the Nyquist frequency and Pð fnÞ is only defined for zero

and positive frequencies. FromEquation (B.102), it is clear thatPð fnÞ is normalized so

that
PN�1

n¼0 Pð fnÞ�f ¼ the mean squared amplitude. Note: our expression for the one-

sided discrete PSDwhich has units of power per unit of bandwidth differs from the one

given in Press et al., (1992). In particular, the definition used there, PNRð fnÞ, is related
to our Pð fnÞ by PNRð fnÞ ¼ Pð fnÞ�f ¼ Pð fnÞ=ðNTÞ.

B.13.3 Variance of periodogram estimate

What is the variance of Pð fnÞ as N!1? In other words, as we take more sampled

points from the original function (either sampling a longer stretch of data, or else by

resampling the same stretch of data with a faster sampling rate), how much more

accurate do the estimates Pð fnÞ become?
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The unpleasant answer is that periodogram estimates do not become more accurate

at all! It can be shown that in the case of white Gaussian noise2 the standard deviation

at frequency fn is equal to the expectation value of the spectrum of fn (Marple, 1987).

How can this be? Where did this information go as we added more points? It all

went into producing estimates at a greater number of discrete frequencies fn. If we

sample a longer run of data using the same sampling rate, then the Nyquist critical

frequency fc is unchanged, but we now have finer frequency resolution (more fn’s). If

we sample the same length with a finer sampling interval, then our frequency resolu-

tion is unchanged, but the Nyquist range extends to higher frequencies. In neither case

do the additional samples reduce the variance of any one particular frequency’s

estimated PSD. Figure B.15 shows examples for increasing N.

As you will see below, there are ways to reduce the variance of the estimate.

However, this behavior caused many researchers to consider periodograms of noisy
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Figure B.15 Power spectral density (PSD) for white (IID) Gaussian noise for different record
lengths. The frequency axis is in units of 1=T, the sampling frequency. On this scale the Nyquist
frequency ¼ 0:5.

2 The term white noise means that the spectral density of the noise is constant from zero frequency through the
frequencies of interest, i.e., up to the Nyquist frequency. It is really another way of saying the noise is independent. An
independent ensemble of noise values has an autocorrelation function (Equation (B.88)) which is a delta function.
According to equation (B.90), the power spectral density is just the FT of the autocorrelation function, which in this
case would be a constant.
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data to be erratic and this resulted in a certain amount of disenchantment with

periodograms for several decades. However, even Schuster was aware of the solu-

tion. This disenchantment led G. Yule to introduce a notable alternative analysis

method in 1927. Yule’s idea was to model a time series with linear regression analysis

data. This led to the parametric methods which assume a time-series model and solve

for the parameters of the random process. These include autoregressive (AR),moving

average (MA) and autoregressive-moving average (ARMA) process models (see

Priestley, 1981; Marple, 1987 for more details). In contrast, the correlation and

periodogram spectral estimations are referred to as non-parametric statistics of a

random process.

B.13.4 Yule’s stochastic spectrum estimation model

The Schuster periodogram is appropriate to a model of a sinusoid with additive noise.

Suppose the situation were more akin to a pendulum which was being hit by boys

throwing peas randomly from both sides.

The result is simple harmonic motion powered by a random driving force. The

motion is now affected, not by superposed noise, but by a random driving force. As a

result, the graph will be of an entirely different kind to a graph in the case of a sinusoid

with superposed errors. The pendulum graph will remain surprisingly smooth, but the

amplitude and phase will vary continuously as governed by the inhomogeneous

difference equation:

xðnÞ þ a1xðn� 1Þ þ a2xðn� 2Þ ¼ �ðnÞ; (B:103)

where �ðnÞ is the white noise input.
Given an empirical time series, xðnÞ, Yule used the method of regression analysis

to find these coefficients. Because he regressed xðnÞ on its own past instead of some

other variable, he called it autoregression. The least-squares normal equations

involve the empirical autocorrelation coefficients of the time series, and today

these equations are called the Yule–Walker equations. A good example of such a

time series is electronic shot noise passing through some band pass filter which rings

every shot. A detailed discussion of these methods goes beyond the scope of

this book and the interested reader is referred to the works of Priestley (1981) and

Marple (1987).

B.13.5 Reduction of periodogram variance

There are two simple techniques for reducing the variance of a periodogram that are

very nearly identical mathematically, though different in implementation. The first is

to compute a periodogram estimate with finer discrete frequency spacing than you

really need, and then to sum the periodogram estimates at K consecutive discrete
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frequencies to get one ‘‘smoother’’ estimate at the mid frequency of those K.3 The

variance of that summed estimate will be smaller than the estimate itself by a factor of

exactly 1=K, i.e., the standard deviation will be smaller than 100 percent by a factor

1=
ffiffiffiffi
K
p

. Thus, to estimate the power spectrum atMþ 1 discrete frequencies between 0

and fc inclusive, you begin by taking the FFT of 2MK points (which number had better

be an integer power of two!). You then take the modulus squared of the resulting

coefficients, add positive and negative frequency pairs and divide by ð2MKÞ2. Finally,
you ‘‘bin’’ the results into summed (not averaged) groups of K. The reason that you

sum rather than average K consecutive points is so that your final PSD estimate will

preserve the normalization property that the sum of itsMþ 1 values equals the mean

square value of the function.

A second technique for estimating the PSD at Mþ 1 discrete frequencies in the

range of 0 to fc is to partition the original sampled data into K segments each of 2M

consecutive sampled points. Each segment is separately FFT’d to produce a period-

ogram estimate. Finally, theK periodogram estimates are averaged at each frequency.

It is this final averaging that reduces the variance of the estimate by a factor of K

(standard deviation by
ffiffiffiffi
K
p

). The principal advantage of the second technique, how-

ever, is that only 2M data points are manipulated at a single time, not 2KM as in the

first technique. This means that the second technique is the natural choice for pro-

cessing long runs of data, as from a magnetic tape or other data record.

B.14 Problems

1. Exercise on the DFT, zero padding and Nyquist sampling

a) In the accompanying Mathematica tutorial, you will find a section entitled,

‘‘Exercise on the DFT, Zero Padding and Nyquist Sampling.’’ Execute the

notebook and make sure you understand each step. Do not include a copy of

this part in your submission.
b) Repeat the exercise items, but this time with

fn ¼ Cos½2pf1t�+Sin½2pf2t�.

Let f1 ¼ 1Hz; f2 ¼ 0:7Hz;T ¼ 0:25 s and the data window length L ¼ 3 s.
c) Explain why one of the two frequencies only appeared in the real part of the

analytic FT and the other only appeared in the imaginary part.
d) What was the effect of zero padding on the DFT?
e) Comment on the degree of agreement between the FT and the DFT in the

Mathematica tutorial.
f) Repeat item (b), only this time increase the window size L ¼ 8 s. What effect did

this have on the spectrum? Explain why this occurred (see Figure B.7).

3 Of course, if your goal is to detect a very narrow band signal, then smoothing may actually reduce the signal-to-noise
ratio for detecting such a signal.
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g) What is the value of the Nyquist frequency for the sampling interval used?
h) Do the two signals appear at their correct frequencies in the FT and DFT?

Explain why there are low level bumps in the spectrum at other frequencies.
i) Recompute the DFT with a sample interval, T ¼ 0:65 s, and a data window

length L ¼ 65 s. Do the two signals appear at their correct frequencies? If not,

explain why.

2. Exercise on Fourier image convolution and deconvolution

a) In the accompanying Mathematica tutorial, you will find a section entitled

‘‘Exercise on Fourier Image Convolution and Deconvolution.’’ Execute the

notebook and make sure you understand each step.
b) Repeat (a) using a point spread function which is the sum of the following two

multinormal distributions:

Multinormal½f0; 0g; ff1; 0g; f0; 1gg�
Multinormal½f4; 0g; ff2; 0:8g; f0:8; 2gg�
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Appendix C
Difference in two samples

C.1 Outline

In Section 9.4, we explored a Bayesian treatment of the analysis of two independent

measurements of the same physical quantity, the control and the trial, taken under

slightly different experimental conditions. In the next four subsections, we give the

details behind the calculations of the probabilities of the four fundamental hypotheses

ðC;SÞ, ðC;SÞ, ðC;SÞ and ðC;SÞ which arose in Section 9.4.

After determining what is different, the next problem is to estimate the magnitude of

the changes. Section 9.4.4 introduced the calculation for the probability of the difference

in the two means pð�jD1;D2; IÞ. The details of this calculation are given in Section C.3.

Finally, Section 9.4.5 introduced the calculation for the probability for the ratio of

the standard deviations, pðrjD1;D2; IÞ. The details of this calculation are given in

Section C.4.

C.2 Probabilities of the four hypotheses

C.2.1 Evaluation of pðC;SjD1;D2; IÞ

The only quantities that remain to be assigned are the two likelihood functions. The

prior probability for the noise will be taken to be Gaussian.

pðD1jC;S; c1; �1; IÞ and pðD2jC;S; c1; �1; IÞ
D1 � fd11; d12; d13; . . . ; d1N1

g

where D1i ¼ c1 þ e1i; therefore,

pðD1jC;S; c1; �1; IÞ ¼ pðe11; e12; . . . ; e1N1
jc1�1IÞ

¼
YN1

i¼1

1ffiffiffiffiffiffiffiffiffiffi
2p�21

q exp � e2i
2�21

� �2
64

3
75

pðD1jC;S; c1; �1; IÞ ¼ ð2p�21Þ
�N1

2 exp �
XN1

i¼1

ðd1i � c1Þ2

2�21

( ) (C:1)
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pðD2jC;S; c1; �1; IÞ ¼ð2p�21Þ
�N2

2 exp �
XN2

i¼1

ðd2i � c1Þ2

2�21

( )
: (C:2)

Let

 1 ¼
XN1

i¼1
ðd1i � c1Þ2

¼
X

d21i þN1c
2
1 � 2c1

X
d1i

and

 2 ¼
XN2

i¼1
d22i þN2c

2
1 � 2c1

X
d2i

and

 1 þ  2 ¼
XN¼N1þN2

i¼1
d2i þNc21 � 2c1

XN¼N1þN2

i¼1
di

¼ Nd2 þNc21 � 2c1Nd

¼ Nc21 � 2c1NdþNðdÞ2 �NðdÞ2 þNd2

¼ Nðc1 � dÞ2 þNðd2 � ðdÞ2Þ;

(C:3)

where d and d2 are the mean and mean square of the pooled data, N ¼ N1 þN2.

Therefore,

pðD1jC;S; c1; �1; IÞ pðD2jC;S; c1; �1; IÞ ¼ð2p�21Þ
�N

2 exp
�Nðd2 � ðdÞ2Þ

2�21

( )

� exp
�Nðc1 � dÞ2

2�21

( )
:

(C:4)

Now combine the likelihoods with the priors to obtain the posterior probability

pðC;SjD1;D2; IÞ:

pðC;SjD1;D2; IÞ ¼K
Z �H

�L

d�1
ð2p�21Þ

�N
2

4Rc�1 lnðR�Þ
exp

�Nðd2 � ðdÞ2Þ
2�21

( )

�
Z cH

cL

dc1 exp �
Nðc1 � dÞ2

2�21

( )
:

(C:5)

If the limits on the c1 integral extend from minus infinity to plus infinity, and the

limits on the �1 integral extend from zero to infinity, then both integrals can be

Difference in two samples 435



evaluated in closed form. However, with finite limits, either of the two indicated

integrals may be evaluated, but the other must be evaluated numerically. The integral

over amplitude will be evaluated in terms of erf(x), the error function

erfðxÞ ¼ 2ffiffiffi
p
p
Z x

0

e�u
2

du (C:6)

by setting

u2 ¼ Nðc1 � dÞ2

2�21
: (C:7)

Z cH

cL

dc1 exp �
Nðc1 � dÞ2

2�21

( )
¼

ffiffiffiffi
2

N

r
�1

Z XH

XL

e�u
2

du

¼
ffiffiffiffi
2

N

r
�1

ffiffiffi
p
p

2

2ffiffiffi
p
p

Z XH

XL

e�u
2

du

� �

¼
ffiffiffiffiffiffiffi
p
2N

r
�1 ½erfðXHÞ� erfðXLÞ�:

(C:8)

Evaluating the integral over the amplitude, we obtain:

pðC;SjD1;D2; IÞ ¼
Kð2pÞ�N=2

ffiffiffiffiffiffiffiffiffiffiffiffi
p=2N

p
4Rc logðR�Þ

Z �H

�L

d�1 �
�N
1

� exp � z

2�21

� �
erfðXHÞ � erfðXLÞ½ �;

(C:9)

where

XH ¼
ffiffiffiffiffiffiffiffi
N

2�2

r
ðc1H � dÞ; XL ¼

ffiffiffiffiffiffiffiffi
N

2�2

r
ðc1L � dÞ; z ¼ N½d2 � ðdÞ2�: (C:10)

C.2.2 Evaluation of pðC;SjD1;D2; IÞ

Notice that pðC;SjD1;D2; IÞ assumes the constants are the same in both data sets, but

the standard deviations are different. Thus, pðC;SjD1;D2; IÞ is a marginal probability
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density, where the constant and the two standard deviations were removed as nuisance

parameters.

pðC;SjD1;D2; IÞ ¼
Z

dc1d�1d�2 pðC;S; c1; �1; �2jD1;D2; IÞ

¼K
Z

dc1d�1d�2 pðC;S; c1; �1; �2jIÞ

� pðD1;D2jC;S; c1; �1; �2; IÞ

¼K
Z

dc1d�1d�2 pðC;SjIÞ pðc1jIÞ pð�1jIÞ pð�2jIÞ

� pðD1jC;S; c1; �1; IÞ pðD2jC;S; c1; �2; IÞ:

(C:11)

By analogy with Equations (C.1) to (C.3), we can evaluate

pðD1jC;S; c1; �1; �2; IÞ pðD2jC;S; c1; �1; �2; IÞ

¼ ð2pÞ�
N
2��N1

1 exp �U1

�21

� �
��N2

2 exp �U2

�22

� �
;

(C:12)

where

U1 ¼
N1

2
ðd21 � 2c1d1 þ c21Þ; U2 ¼

N2

2
ðd22 � 2c1d2 þ c21Þ (C:13)

and d1, d
2
1, d2, d

2
2 are the means and mean squares of D1 and D2 respectively.

Substituting Equation (C.12) into (C.11) and adding the priors, we have

pðC;SjD1;D2; IÞ ¼
Kð2pÞ�N=2

16Rc½logðR�Þ�2
Z H

L

dc1

Z �H

�L

d�1�
�ðN1þ1Þ
1 exp �U1

�21

� �

�
Z �H

�L

d�2�
�ðN2þ1Þ
2 exp �U2

�22

� �
:

(C:14)

The integrals over �1 and �2 will be evaluated in terms of Qðr; xÞ, one form of the

incomplete gamma function of index r and argument x:

Qðr; xÞ ¼ 1

�ðrÞ

Z 1
x

e�ttr�1 dt: (C:15)

If we let

t ¼ U1

�21
; r ¼ N1

2
; (C:16)
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then we can show thatZ �H

�L

d�1�
�ðN1þ1Þ
1 exp �U1

�21

� �
¼ 1

2
U
�N1

2

1 �ðN1=2Þ

� 1

�ðN1=2Þ

Z 1
XL

e�tt
N1
2 �1dt

� �
� 1

�ðN1=2Þ

Z 1
XH

e�tt
N1
2 �1dt

� �� �

¼ 1

2
U
�N1

2

1 �ðN1=2Þ Q
N1

2
;
U1

�2H

� �
�Q

N1

2
;
U1

�2L

� �� �
:

(C:17)

Evaluating the integral over �1 and �2, one obtains

pðC;SjD1;D2; IÞ ¼
Kð2pÞ�N=2�ðN1=2Þ�ðN2=2Þ

16Rc½logðR�Þ�2
Z H

L

dc1U
�N1

2

1 U
�N2

2

2

� Q
N1

2
;
U1

�2H

� �
�Q

N1

2
;
U1

�2L

� �� �

� Q
N2

2
;
U2

�2H

� �
�Q

N2

2
;
U2

�2L

� �� �
:

(C:18)

C.2.3 Evaluation of pðC;SjD1;D2; IÞ

pðC;SjD1;D2; IÞ ¼
Z

dc1 dc2 d�1 pðC;S; c1; c2; �1jD1;D2; IÞ

¼K
Z

dc1 dc2 d�1 pðC;S; c1; c2; �1jIÞ

� pðD1;D2jC;S; c1; c2; �1; IÞ

¼K
Z

dc1 dc2 d�1 pðC;S; jIÞ pðc1jIÞ pðc2jIÞ pð�1jIÞ

� pðD1jC;S; c1; �1; IÞ pðD2jC;S; c2; �1; IÞ:

(C:19)

Evaluating the integrals over c1 and c2, one obtains

pðC;SjD1;D2; IÞ ¼
Kð2pÞ�N=2p

8R2
c logðR�Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
Z �H

�L

d�1�
�Nþ1
1 exp � z1 þ z2

2�21

� �

� ½erfðX1HÞ � erfðX1LÞ�½erfðX2HÞ � erfðX2LÞ�;
(C:20)

where

z1 ¼ N1½d21 � ðd1Þ
2�; z2 ¼ N2½d22 � ðd2Þ

2�; (C:21)

X1H ¼
ffiffiffiffiffiffiffiffi
N1

2�21

s
ðH� d1Þ; X1L ¼

ffiffiffiffiffiffiffiffi
N1

2�21

s
ðL� d1Þ; (C:22)

438 Appendix C



X2H ¼
ffiffiffiffiffiffiffiffi
N2

2�21

s
ðH� d2Þ; X2L ¼

ffiffiffiffiffiffiffiffi
N2

2�21

s
ðL� d2Þ: (C:23)

C.2.4 Evaluation of pðC;SjD1;D2; IÞ

pðC;SjD1;D2; IÞ ¼
Z

dc1 dc2 d�1 d�2 pðC;S; c1; c2; �1; �2jD1;D2; IÞ

¼K
Z

dc1 dc2 d�1 d�2 pðC;S; c1; c2; �1; �2jIÞ

� pðD1;D2jC;S; c1; c2; �1; �2; IÞ

¼K
Z

dc1 dc2 d�1 d�2 pðC;SjIÞ pðc1jIÞpðc2jIÞ pð�1jIÞ pð�2jIÞ

� pðD1jC;S; c1; �1; IÞ pðD2jC;S; c2; �2; IÞ:
(C:24)

Evaluating the integrals over c1 and c2, one obtains

pðC;SjD1;D2; IÞ ¼
Kð2pÞ�N=2p

8R2
c ½logðR�Þ�2

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p

�
Z �H

�L

d�1�
�N1

1 exp � z1

2�21

� �
½erfðX1HÞ � erfðX1LÞ�

�
Z �H

�L

d�2�
�N2

2 exp � z2

2�22

� �
½erfðX2HÞ � erfðX2LÞ�;

(C:25)

where

X1H ¼
ffiffiffiffiffiffiffiffi
N1

2�21

s
ðc1H � d1Þ; X1L ¼

ffiffiffiffiffiffiffiffi
N1

2�21

s
ðc1L � d1Þ; ðC:26Þ

X2H ¼
ffiffiffiffiffiffiffiffi
N2

2�22

s
ðc1H � d2Þ; X2L ¼

ffiffiffiffiffiffiffiffi
N2

2�22

s
ðc1L � d2Þ; ðC:27Þ

z1 ¼ N1½d21 � ðd1Þ
2�; z2 ¼ N2½d22 � ðd2Þ

2�: ðC:28Þ

C.3 The difference in the means

Section 9.4.4 introduced the calculation for the probability of the difference in the two

means pð�jD1;D2; IÞ, which was expressed in Equation (9.68) as a weighted sum of

pð�jS;D1;D2; IÞ and pð�jS;D1;D2; IÞ, the probability for the difference in means given

that the standard deviations are the same (the two-sample problem) and the
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probability for the difference in means given that the standard deviations are different

(the Behrens–Fisher problem). The details of the calculation of these two probabilities

are given below.

C.3.1 The two-sample problem

pð�jS;D1;D2; IÞ is essentially the two-sample problem. This probability is a marginal

probability where the standard deviation and � have been removed as nuisance

parameters:

pð�jS;D1;D2; IÞ ¼
Z

d� d�1 pð�; �; �1jS;D1;D2; IÞ

/
Z

d� d�1 pð�; �; �1jS; IÞ pðD1;D2jS; �; �; �1; IÞ

¼
Z

d� d�1 pð�jIÞ pð�jIÞ pð�1jIÞ

� pðD1jS; �; �; �1; IÞ pðD2jS; �; �; �1; IÞ;

(C:29)

where pð�jIÞ and pð�jIÞ are assigned bounded uniform priors:

pð�jIÞ ¼
1

2Rc
; if L�H � � � H� L

0; otherwise

�
(C:30)

and

pð�jIÞ ¼
1

2Rc
; if 2L � � � 2H

0; otherwise.

�
(C:31)

We can evaluate pðD1jS; �; �; �1; IÞ by comparison with Equation (C.1), after substi-

tuting for c1 according to Equation (9.67).

pðD1jS; �; �; �1; IÞ ¼ ð2p�21Þ
�N1

2 exp �Q1

�21

� �
; (C:32)

where Q1 is given by:

Q1 ¼
XN1

i¼1
d1i �

ð� þ �Þ
2

� �2

¼ N1

2
d21 � ð� þ �Þd1 þ

�2

4
þ ��

2
þ �

2

4

� �
:

(C:33)

Similarly, pðD2jS; �; �; �1; IÞ is given by

pðD2jS; �; �; �1; IÞ ¼ ð2p�21Þ
�N2

2 exp �Q2

�21

� �
; (C:34)
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where

Q2 ¼
XN2

i¼1
d2i �

ð� � �Þ
2

� �2

¼ N2

2
d22 � ð� � �Þd2 þ

�2

4
� ��

2
þ �

2

4

� �
:

(C:35)

The product of Equations (C.32) and (C.34) can be simplified to

pðD1jS; �; �; �1; IÞ pðD2jS; �; �; �1; IÞ ¼ ð2pÞ�
N
2��N1 exp � V

�21

� �
; (C:36)

where

V ¼ N

2
d2 � 2�b� �dþ �

2

4
þ �

2

4
þ ���

2

� �
; (C:37)

� ¼ N1 �N2

N
; and b ¼ N1d1 �N2d2

2N
: (C:38)

After substituting Equations (C.30) and (C.31) and (C.36) into Equation (C.29), the

integral over �1 is evaluated in terms of incomplete gamma functions.

pð�jS;D1;D2; IÞ /
�ðN=2Þ

8R2
c logðR�Þ

Z 2H

2L

d�V�
N
2

� Q
N

2
;
V

�2H

� �
�Q

N

2
;
V

�2L

� �� �
:

(C:39)

The final integral over � is computed numerically.

C.3.2 The Behrens–Fisher problem

The Behrens–Fisher problem is essentially given by pð�jS;D1;D2; IÞ, the probability

for the difference in means given that the standard deviations are not the same. This

probability is a marginal probability where both the standard deviations and the sum

of the means, �, have been removed as nuisance parameters:

pð�jS;D1;D2; IÞ ¼
Z

d� d�1 d�2 pð�; �; �1; �2jS;D1;D2; IÞ

/
Z

d� d�1 d�2 pð�; �; �1; �2jS; IÞ pðD1;D2jS; �; �; �1; �2; IÞ

¼
Z

d� d�1 d�2 pð�jIÞ pð�jIÞ pð�1jIÞ pð�2jIÞ

� pðD1jS; �; �; �1; IÞ pðD2jS; �; �; �2; IÞ;

(C:40)
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where all of the terms appearing in this probability density function have been

previously assigned.

To evaluate the integrals over �1 and �2, one substitutes Equations (9.63), (C.30)

and (C.31), and a Gaussian noise prior is used in the two likelihoods. Evaluating the

integrals, one obtains

pð�jS;D1;D2; IÞ /
�ðN1=2Þ�ðN2=2Þ
16R2

c ½logðR�Þ�2
Z 2H

2L

d� W
�N1

2

1 W
�N2

2

2

� Q
N1

2
;
W1

�2H

� �
�Q

N1

2
;
W1

�2L

� �� �

� Q
N2

2
;
W2

�2H

� �
�Q

N2

2
;
W2

�2L

� �� �
;

(C:41)

where

W1 ¼
N1

2
d21 � d1ð� þ �Þ þ

ð� þ �Þ2

4

" #
; (C:42)

and

W2 ¼
N2

2
d22 � d2ð� � �Þ þ

ð� � �Þ2

4

" #
: (C:43)

With the completion of this calculation, the probability for the difference in means,

Equation (9.68), is now complete. We now turn our attention to calculation of the

probability for the ratio of the standard deviations.

C.4 The ratio of the standard deviations

Section 9.4.5 introduced the calculation for the probability for the ratio of the

standard deviations, pðrjD1;D2; IÞ, independent of whether the means are the same

or different. This is a weighted average of the probability for the ratio of the standard

deviations given the means are the same, pðrjC;D1;D2; IÞ, and the probability for the

ratio of the standard deviations given that the means are different, pðrjC;D1;D2; IÞ.
These two probabilities are given below.

C.4.1 Estimating the ratio, given the means are the same

The first term to be addressed is pðrjC;D1;D2; IÞ. This probability is a marginal

probability where both � and c1 have been removed as nuisance parameters:
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pðrjC;D1;D2; IÞ ¼
Z

dc1d� pðr; c1; �jC;D1;D2; IÞ

/
Z

dc1d� pðr; c1; �jC; IÞ pðD1;D2jC; r; c1; �; IÞ

¼
Z

dc1d� pðrjIÞpðc1jIÞ pð�jIÞ

� pðD1jC; r; c1; �; IÞ pðD2jC; r; c1; �; IÞ;

(C:44)

where the prior probability for the ratio of the standard deviations is taken to be a

bounded Jeffreys prior:

pðrjIÞ ¼ 1=½2r logðR�Þ�; if �L=�H � r � �H=�L
0; otherwise.

�
(C:45)

To evaluate the integral over c1, one substitutes Equations (9.63) and (C.45), and a

Gaussian noise prior probability is used to assign the two likelihoods. Evaluating the

integral, one obtains

pðrjC;D1;D2; IÞ ¼
ð2pÞ�N=2

ffiffiffiffiffiffiffiffiffiffiffi
p=8w

p
r�N1�1

Rc½logðR�Þ�2

�
Z �H

�L

d� ��N exp � z

2�2

n o
½erfðXHÞ � erfðXHÞ�;

(C:46)

where

XH ¼
ffiffiffiffiffiffiffiffi
w

2�2

r
½c1H � v=w�; XL ¼

ffiffiffiffiffiffiffiffi
w

2�2

r
½c1L � v=w�; ðC:47Þ

u ¼ N1d
2
1

r2
þN2d

2
2; v ¼ N1d1

r2
þN2d2; ðC:48Þ

w ¼ N1

r2
þN2; z ¼ u� v2

w
: ðC:49Þ

C.4.2 Estimating the ratio, given the means are different

The second term that must be computed is pðrjC;D1;D2; IÞ, the probability for the

ratio of standard deviations given that the means are not the same. This is a marginal

probability where �, c1, and c2 have been removed as nuisance parameters:
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pðrjC;D1;D2; IÞ ¼
Z

dc1dc2d� pðr; c1; c2; �jC;D1;D2; IÞ

/
Z

dc1dc2d� pðr; c1; c2; �jC; IÞ pðD1;D2jC; r; c1; c2; �; IÞ

¼
Z

dc1dc2d� pðrjIÞ pðc1jIÞ pðc2jIÞ pð�jIÞ

� pðD1jr;C; c1; �; IÞ pðD2jr;C; c2; �; IÞ;

(C:50)

where all of the terms appearing in this probability density function have been

previously assigned.

To evaluate the integral over c1 and c2, one substitutes Equations (9.62), (9.63) and

(C.45) and a Gaussian noise prior is used in assigning the two likelihoods. Evaluating

the indicated integrals, one obtains

pðrjC;D1;D2; IÞ /
ð2pÞ�N=2p

4R2
c ½logðR�Þ�2

ffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
Z �H

�L

d� r�N1��Nþ1

� exp � z1
2r2�2

� z2
2�2

n o
½erfðX1HÞ � erfðX1LÞ�

� ½erfðX2HÞ � erfðX2LÞ�;

(C:51)

where

X1H ¼
ffiffiffiffiffiffiffiffiffiffiffi
N1

2r2�2

r
½c1H � d1�; X1L ¼

ffiffiffiffiffiffiffiffiffiffiffi
N1

2r2�2

r
½c1L � d1�; ðC:52Þ

X2H ¼
ffiffiffiffiffiffiffiffi
N2

2�2

r
½c2H � d2�; X2L ¼

ffiffiffiffiffiffiffiffi
N2

2�2

r
½c2L � d2�; ðC:53Þ

z1 ¼ N1½d21 � ðd1Þ
2�; z2 ¼ N2½d22 � ðd2Þ

2�: ðC:54Þ
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Appendix D
Poisson ON/OFF details

D.1 Derivation of pðsjNon; IÞ

In Section 14.4, we explored a Bayesian analysis of ON/OFF measurements, where

ON is signalþ background andOFF is a just the background. The background is only

known imprecisely from OFF measurement. In this appendix, we derive Equation

(14.17) for pðsjNon; IÞ, the posterior probability of the signal event rate.

Our starting point is Equation (14.16), which we repeat here together with some of

the other relevant equations:

pðsjNon; IÞ ¼
Z bmax

0

db pðs; bjNon; IÞ (D:1)

pðs; bjNon; IÞ ¼
pðs; bjIÞpðNonjs; b; IÞ

pðNonjIÞ

¼ pðsjb; IÞpðbjIÞpðNjs; b; IÞ
pðNonjIÞ

(D:2)

pðbjNoff; IbÞ ¼ pðbjIÞ ¼ ToffðbToffÞNoffe�bToff

Noff!
(D:3)

pðsjb; IÞ ¼ 1=smax: (D:4)

The denominator of pðs; bjNon; IÞ in Equation (D.2) is given by

pðNonjIÞ ¼
Z smax

s¼0
ds

Z bmax

b¼0
db pðNon; s; bjIÞ

¼
Z smax

s¼0
ds

Z bmax

b¼0
db pðsjb; IÞpðbjIÞpðNonjs; b; IÞ:

(D:5)
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Substituting Equations (D.5), (D.4), (D.3) and (D.2) into Equation (D.1), we

obtain

pðsjNon; IÞ ¼
R bmax

b¼0 db 1
smax

T
ð1þNoffÞ
off

bNoff e�bToff

Noff!
ðsþbÞNonTNon

on e�ðsþbÞTon

Non!R smax

s¼0 ds
R bmax

b¼0 db 1
smax

T
ð1þNoffÞ
off

bNoff e�bToff

Noff!
ðsþbÞNonTNon

on e�ðsþbÞTon

Non!

¼
R bmax

b¼0 db bNoffe�bToffðsþ bÞNone�ðsþbÞTonR smax

s¼0 ds
R bmax

b¼0 db bNoffe�bToffðsþ bÞNone�ðsþbÞTon

¼Num

Den
:

(D:6)

D.1.1 Evaluation of Num

We start with a binomial expansion of ðsþ bÞNon .

ðsþ bÞNon ¼
XNon

i¼0

Non!

i!ðNon � iÞ! s
ibðNon�iÞ: (D:7)

The numerator of Equation (D.6) becomes

Num ¼
Z bmax

b¼0
db bNoffe�bðTonþToffÞ

XNon

i¼0

Non!

i!ðNon � iÞ! s
ibðNon�iÞe�sTon

¼
XNon

i¼0

Non!

i!ðNon � iÞ! s
ie�sTon

Z bmax

b¼0
db bðNonþNoff�iÞe�b½TonþToff�

¼
XNon

i¼0

Non!

i!ðNon � iÞ! s
ie�sTon � integral:

(D:8)

We now want to evaluate the integral in Equation (D.8), which we first rewrite in the

form of an incomplete gamma function:

Integral¼ðTonþToffÞ�ðNonþNoff�iþ1Þ

�
Z bmax½TonþToff�

b¼0
dðb½Ton þ Toff�Þ ðb½Ton þ Toff�ÞðNonþNoff�iÞ

� e�b½TonþToff�:

(D:9)

Compare this to one form of the incomplete gamma function:

�ðnþ 1; xÞ ¼
Z x

0

dy yne�y: (D:10)
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Thus, Equation (D.9) can be rewritten as

Integral ¼ ðTon þ ToffÞ�ðNonþNoff�iþ1Þ

� �ð½Non þNoff � iþ 1�; bmax½Ton þ Toff�Þ:
(D:11)

Provided bmax½Ton þ Toff� � ½Non þNoff � i�, we have that

�ð½Non þNoff � iþ 1�; bmax½Ton þ Toff�Þ � �ð½Non þNoff � iþ 1�Þ

¼ ðNon þNoff � iÞ!
(D:12)

Substituting Equation (D.12) into Equation (D.11), we obtain

Integral � ðTon þ ToffÞ�ðNonþNoff�iþ1ÞðNon þNoff � iÞ! (D:13)

Now substitute Equation (D.13) into Equation (D.8) to obtain

Num � Non!

ðTon þ ToffÞðNonþNoffþ1Þ

XNon

i¼0

ðNon þNoff � iÞ!
i!ðNon � iÞ!

sie�sTon

ðTon þ ToffÞ�i

¼ Non!

TonðTon þ ToffÞðNonþNoffþ1Þ

�
XNon

i¼0

ðNon þNoff � iÞ!
i!ðNon � iÞ!

TonðsTonÞie�sTon

1þ Toff

Ton

� ��i :

(D:14)

D.1.2 Evaluation of Den

The equation for denominator (Den) in Equation (D.6) is the same as Equation (D.14)

for the numerator (Num) except for the additional integral over s.

Den ¼
Z smax

s¼0
ds

Non!

TonðTonþToffÞðNonþNoffþ1Þ

�
XNon

i¼0

ðNon þNoff � iÞ!
i!ðNon � iÞ!

TonðsTonÞie�sTon

1þ Toff

Ton

� ��i
¼ Non!

TonðTon þ ToffÞðNonþNoffþ1Þ

XNon

i¼0

ðNon þNoff � iÞ!
i!ðNon � iÞ! 1þ Toff

Ton

� �i

�
Z smax

s¼0
dðsTonÞðsTonÞie�sTon :

(D:15)
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The integral can be recognized as the incomplete gamma function �ðiþ 1; smaxTonÞ.
Provided smaxTon � iþ 1, we can write �ðiþ 1; smaxTonÞ � i!, and Equation (D.15)

simplifies to

Den � Non!

TonðTon þ ToffÞðNonþNoffþ1Þ

XNon

i¼0

ðNon þNoff � iÞ!
ðNon � iÞ! 1þ Toff

Ton

� �i

: (D:16)

Substitution of Equation (D.14) and (D.16) into Equation (D.17) yields

pðsjNon; IÞ ¼
XNon

i¼0
Ci

TonðsTonÞie�sTon

i!
; (D:17)

where

Ci �
1þ Toff

Ton

� �iðNonþNoff�iÞ!
ðNon�iÞ!PNon

j¼0 1þ Toff

Ton

� �jðNonþNoff�jÞ!
ðNon�jÞ!

: (D:18)

D.2 Derivation of the Bayes factor Bfsþb;bg

Here, we will derive the Bayes factor, Bfsþb;bg, given in Equation (14.23), for the two

models Msþb and Mb, which have the following meaning:

Mb � ‘‘the ONmeasurement is solely due to the Poisson background rate, b, where the

prior probability for b is derived from the OFF measurement.’’

Msþb � ‘‘the ONmeasurement is due to a source with unknown Poisson rate, s, plus a

Poisson background rate b. Again, the prior probability for b is derived from the OFF

measurement.’’

Bfsþb;bg ¼
pðNonjMsþb; IoffÞ
pðNonjMb; IoffÞ

¼
R smax

0 ds
R bmax

0 db pðNon; s; bjMsþb; IoffÞR bmax

0 db pðNon; bjMb; IoffÞ

¼
R smax

0 ds
R bmax

0 db pðsjb;Msþb; IoffÞpðbjMsþb; IoffÞpðNonjs; b;Msþb; IoffÞR bmax

0 db pðbjMb; IoffÞpðNonjb;Mb; IoffÞ

¼
R smax

s¼0 ds
R bmax

b¼0 db 1
smax

T
ð1þNoffÞ
off

bNoff e�bToff

Noff!
ðsþbÞNonTNon

on e�ðsþbÞTon

Non!R bmax

b¼0 db
T
ð1þNoffÞ
off

bNoff e�bToff

Noff!
bNonTNon

on e�bTon

Non!

¼
R smax

s¼0 ds 1
smax

R bmax

b¼0 db bNoffe�bToffðsþ bÞNone�ðsþbÞTonR bmax

b¼0 db bðNonþNoffÞe�bðTonþToffÞ

¼ Num1

Den1
;

(D:19)
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where Ioff ¼ Noff; Ib, as defined in Equation (14.21). Comparing Equation (D.19) to

Equation (D.6), we see that Num1 ¼ 1=smax Den, which we have already evaluated in

Equation (D.16). All that remains is to evaluate Den1, which we do here:

Den1 ¼
Z bmax

b¼0
db bðNonþNoffÞe�bðTonþToffÞ

¼ðTon þ ToffÞ�ðNonþNoffþ1Þ
Z bmax½TonþToff�

b¼0
dðb½Ton þ Toff�Þ

� ðb½Ton þ Toff�ÞðNonþNoffÞ e�bðTonþToffÞ:

(D:20)

The integral in the above equation is the incomplete gamma function

�ð½Non þNoff þ 1�; bmax½Ton þ Toff�Þ;

which can be approximated as

�ð½Non þNoff þ 1�; bmax½Ton þ Toff�Þ � ½Non þNoff�!; (D:21)

provided bmax½Ton þ Toff� � ½Non þNoff�.
Equation (D.20) can be rewritten as

Den1 � ðTon þ ToffÞ�ðNonþNoffþ1Þ½Non þNoff�! (D:22)

Substituting Num1 and Den1 into Equation (D.19), and canceling quantities in

common, yields

Bfsþb;bg �
Non!

smaxTonðNon þNoffÞ!
XNon

i¼0

ðNon þNoff � iÞ!
ðNon � iÞ! 1þ Toff

Ton

� �i

: (D:23)
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Appendix E
Multivariate Gaussian from maximum entropy

In this appendix, we will derive the multivariate Gaussian distribution of Equation

(8.59) from the MaxEnt principle, given constraint information on the variances

and covariances of the multiple variables. We will start with the simpler case of

only two variables, y1 and y2, and then generalize the result to an arbitrary

number of variables. We assume that the priors for y1 and y2 have the following

form:

mðyiÞ ¼
1

yiH�yiL ; if yiL � yi � yiH

0; if yiL > yi or yi > yiH.

(
(E:1)

The constraints in this case are:

1.
R y1H
y1L

R y2H
y2L

pðy1; y2Þdy1dy2 ¼ 1

2.
R y1H
y1L

R y2H
y2L
ðy1 � �1Þ2 pðy1; y2Þ dy1dy2 ¼ �11 ¼ �21

3.
R y1H
y1L

R y2H
y2L
ðy2 � �2Þ2 pðy1; y2Þ dy1dy2 ¼ �22 ¼ �22

4.
R y1H
y1L

R y2H
y2L
ðy1 � �1Þðy2 � �2Þ pðy1; y2Þ dy1dy2 ¼ �12 ¼ �21

Because mðyiÞ is a constant, we solve for pðy1; y2Þ which maximizes

S ¼ �
Z

pðy1; y2Þ ln ½pðy1; y2Þ�dNy; (E:2)

where N ¼ 2 in this case. The problem then is to maximize pðfyigÞ subject to the

constraints 1 to 4. This optimization is best done as the limiting case of a discrete

problem. Let yi and yj (Roman typeface) represent the discrete versions of y1 and y2,

respectively. Explicitly, we need to find the solution to

d �
X
ij

pij ln pi � �
X
ij

pij � 1

( )
� �1

2
A1 �

�2
2
A2 �

�3
2
A3

" #
¼ 0; (E:3)
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where

A1 ¼
X
ij

ðyi � �iÞ2pij � �ii

( )

A2 ¼
X
ij

ðyj � �jÞ2pij � �jj

( )

A3 ¼
X
ij

ðyi � �iÞðyj � �jÞpij � �ij

( )
;

and

X
ij

¼
XN
i¼1

XN
j¼1

:

This leads to

X
ij

� ln pij � 1� �� 1

2
�1ðyi � �iÞ

2
n o�

þ 1

2
�2ðyj � �jÞ2 þ �3ðyi � �iÞðyj � �jÞ
n o� �

dpij ¼ 0:

(E:4)

For each ij, we require

� ln pij � 1� �� 1

2
�1ðyi � �iÞ2 þ �2ðyj � �jÞ2 þ �3ðyi � �iÞðyj � �jÞ
n o

¼ 0; (E:5)

or,

pij ¼ e��0 � exp � 1

2
�1ðyi � �iÞ2 þ �2ðyj � �jÞ2 þ �3ðyi � �iÞðyj � �jÞ
n o� �

; (E:6)

where �0 ¼ 1þ �.
This generalizes to the continuum assignment

pðy1; y2Þ ¼ expf��0g

� exp � 1

2
�1ðy1 � �1Þ2 þ �2ðy2 � �2Þ2 þ �3ðy1 � �1Þðy2 � �2Þ
n o� �

:
(E:7)

To simplify the notation, we will use the abbreviation �y1 ¼ ðy1 � �1Þ and

�y2 ¼ ðy2 � �2Þ. Then Equation (E.7) becomes

pðy1; y2Þ ¼ expf��0g exp �
1

2
�1�y

2
1 þ �2�y22 þ �3�y1�y2

� �� �

¼ expf��0g exp �Q

2

� �� �
;

(E:8)
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where

Q ¼ �1�y21 þ �2�y22 þ �3�y1�y2

¼ �1 �y21 þ 2
�3
2�1

� �
�y1�y2 þ

�23
4�21

�y22

� �
þ �2�y22 �

�23
4�1

�y22

¼ �1 �y1 þ
�3
2�1

�y2

� �2

þ �2 �
�23
4�1

� �
�y22:

(E:9)

In Equation (E.9), we have carried out an operation called completing the squares,

which will help us in our next step, evaluating �0 from constraint number 1.Z y1H

y1L

Z y2H

y2L

pðy1; y2Þdy1dy2 ¼
Z y1H

y1L

Z y2H

y2L

e��0 exp �Q

2

� �

¼e��0
Z y2H

y2L

dy2 exp � 1

2
�2 �

�23
4�1

� �
�y22

� �

�
Z y1H

y1L

dy1 exp ��1
2

�y1 þ
�3
2�1

�y2

� �2
" #

¼ 1:

(E:10)

The second integrand in Equation (E.10) is a Gaussian in dy1, with variance 1=�1. If

the range of integration were infinite, the integral would merely be a constant (the

normalization constant for the Gaussian,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2p=�1

p
). With a finite range, it can be

written in terms of error functions with arguments that depend on �y2. But, as we

showed in Section 8.7.4, as long as the limits y1H and y1L lie well outside the region

where there is a significant contribution to the integral, then the limits can effectively

be replaced by þ1 and �1, which is what we assume here.

The first integrand in Equation (E.10) is another Gaussian in dy2. We will also

assume that range of integration is effectively infinite, so the integrand evaluates to the

normalization constant,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p=ð�2 � �23=4�1Þ

q
. Equation (E.10) thus simplifies to

e��0
2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�1�2 �
�2
3

4

q ¼ 1: (E:11)

The solution is

e��0 ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1�2 �

�23
4

r
: (E:12)

We now make use of Equation (8.22) to evaluate the remaining Lagrange multi-

pliers, �1, �2 and �3.

� @�0
@�1
¼ 1

2
hðy1 � �1Þ2i ¼

�11
2
; (E:13)
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� @�0
@�2
¼ 1

2
hðy2 � �2Þ2i ¼

�22
2
; (E:14)

� @�0
@�3
¼ 1

2
hðy1 � �1Þðy2 � �2Þi ¼

�12
2
: (E:15)

Note: the extra factor of 2 appearing in the denominator on the right hand side of

Equations (E.13), (E.14), (E.15), when compared to Equation (8.22), arises from the

factor of 1/2 introduced in front of �1, �2 and �3 in Equation (E.4), which defines the

meaning of these Lagrange multipliers.

The solutions to Equations (E.13), (E.14), and (E.15) are as follows:

�1 ¼
�22

�11�22 � �212
; (E:16)

�2 ¼
�11

�11�22 � �212
; (E:17)

�3 ¼
�2�12

�11�22 � �212
: (E:18)

Equation (E.12) for the term e��0 can now be expressed in terms of �11, �22 and �12
as follows:

e��0 ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�11�22 � �212

q : (E:19)

At this point, it is convenient to rewriteQ, which first appeared in Equation (E.8), in

the following matrix form:

Q ¼ ð�y1�y2Þ
�1 �3=2

�3=2 �2

 !
�y1

�y2

 !

¼ �YTE�1�Y:

(E:20)

The E�1 matrix, which stands for the inverse of theEmatrix, can be expressed in terms

of �11, �22 and �12 as follows:

E�1 ¼ 1

�11�22 � �212
�22 ��12
��12 �11

� �
: (E:21)

Although E�1 is rather messy, the E matrix itself is a very simple and useful matrix.

E ¼ �11 �12
�12 �22

� �
: (E:22)
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Now substitute Equations (E.20) and (E.19) into Equation (E.8) to obtain a final

equation for pðy1; y2Þ.

pðy1; y2Þ ¼
1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�11�22 � �212

q exp � 1

2
�YTE�1�Y

 �� �

¼ 1

ð2pÞN=2
ffiffiffiffiffiffiffiffiffiffiffi
detE
p exp � 1

2
�YTE�1�Y

 �� �

;

(E:23)

where N ¼ 2 for two variables. Equation (E.23) is also valid for an arbitrary number

of variables,1 which we write as

pðfyigjf�i; �ijgÞ ¼
1

ð2pÞN=2
ffiffiffiffiffiffiffiffiffiffiffi
detE
p exp � 1

2
�YTE�1�Y

 �� �

¼ 1

ð2pÞN=2
ffiffiffiffiffiffiffiffiffiffiffi
detE
p exp � 1

2

X
ij

ðyi � �iÞ½E�1�ijðyj � �jÞ
" #

;

(E:24)

where

E ¼

�11 �12 �13 � � � �1N
�21 �22 �23 � � � �2N
� � � � �
�N1 �N2 �N3 � � � �NN

0
BB@

1
CCA: (E:25)

The E matrix is called the data covariance matrix when each y variable describes

possible values of a datum, di.

1 ?In Equation (E.24), fyig refers to a set of continuous variables.
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Terms followed by [ ] are Mathematica commands.

�2 cumulative distribution, 165

�2 distribution, 141

moment generating function, 142

properties, 141

�2 statistic, 163, 164, 279

absorption lines, 331

acceptance probability, 314

acceptance rate, 319, 331

ACF, 134, 318

adequate set of operations, 26

aliasing, 392, 405

alternative hypothesis, 170

amplitudes, most probable, 249

AND, 28

anti-correlation,

see negative covariance

apodizing function, 366

APT MCMC

automated MCMC, 331, 341

AR, 431

ARMA, 431

asymptotic covariance matrix, 305

asymptotic normal approximation, 288

autocorrelation, 318

autocorrelation function, 134, 274, 318

autocorrelation spectrometer, 427

automated MCMC, 330

autoregressive, see AR

autoregressive-moving average, see ARMA

basis function, 245, 247

Bayes factor, 46, 53, 326

Bayes’ theorem, 42, 45, 61, 72, 76, 77, 84,

125, 184, 206, 213, 219, 231, 245,

321, 377, 382

model of inductive inference, 7

usual form, 5

Bayesian, 87

advantages, 16

frequentist comparison, 87

Bayesian analysis

detailed example, 50

Bayesian inference

basics, 41

how-to, 41

Poisson distribution, 376

Bayesian mean estimate, 212

unknown noise, 218

Bayesian noise estimate, 224

Bayesian probability theory, 2

Bayesian revolution, 26

Bayesian versus frequentist, 87

Be star, 363

bed of nails, 400, 404, 407

Behrens–Fisher problem, 228, 441

Bernoulli’s law of large numbers, 75

illustration, 76

beta distribution, 117

bimodal, 123

binomial distribution, 74

Bayesian, 72

binomial expansion, 74

BinomialDistribution[ ], 75

Blackman–Tukey

procedure, 427

Boolean algebra, 22

Boolean identities, 24

associativity, 24

commutativity, 24

distributivity, 24

duality, 24

idempotence, 24

Bretthorst, G. L., 228

burn-in period, 314, 316, 319,

323, 329, 331
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Cauchy, 124

causal consequence, 25

CDF[ ], 149, 151

CDF[BinomialDistribution½n;p�; x�, 108
CDF[NormalDistribution½�; ��; x�, 113, 115
Central Limit Theorem, 105, 113, 119, 219

Bayesian demonstration, 120

exceptions, 124

central tendency, 103

ChiSquarePValue[ ], 166

coefficient of

kurtosis, 102

skewness, 102

column density, 50

column matrix, 258

common sense, 25, 29

completeness, 394

compound LCG, 131

compound propositions, 22, 42

condition number, 391

confidence coefficient, 153

confidence interval, 78, 153, 215

for �

variance known, 152

variance unknown, 156

for �2, 159

for difference of means, 158

ratio of two variances, 159

conjugate distribution, 118

conjugate prior distributions, 118

constraint

minimal, 194

continuous distributions, 113

continuous hypothesis space, 6

continuous random variable, 99

ContourPlot[ ], 19

control, 158, 434

control system, 331

convention, 114

convolution, 392, 398

importance in science, 401

radio astronomy example, 402

using an FFT, 417

convolution integral, 90, 121, 398

convolution theorem, 399

discrete, 407, 417

core sample, 200

correlation, 318, 392

using an FFT, 417

correlation coefficient, 268, 274

correlation spectrum estimation, 426

correlation theorem, 400

courtroom analogy, 171

covariance matrix, 280, 291

data errors, 253

inverse data, 253

parameters, 264

Cox, R.T., 4, 26

credible region, 44, 78, 215, 260, 378

cross-entropy, 190

cumulative density function, 149

cumulative distribution function, 99, 100, 108

gamma, 116

Gaussian, 114

normal, 114

curvature matrix, 299, 300

data covariance matrix, 253, 454

inverse, 253

deconvolution, 418

deductive inference, 1, 24

degree of confidence, 153

degree of freedom, 141

desiderata, 4, 26, 29, 30

consistency, 30

Jaynes, 30

propriety, 30

structural, 30

rationality, 30

design matrix, 390

detailed balance, 320

DFT, 392, 407

approximation, 411

approximation of inverse, 413

discontinuity treatment, 412

graphical development, 407

interesting results, 411

inverse, 410

mathematical development, 409

diagonal matrix, 259

difference in means and/or variances

hypotheses, 434

difference in two samples, 434

differentiable, 126

Dirac delta function, 404

Discrete Fourier Transform, see DFT

discrete random variables, 99

disjunctive normal form, 28

dispersion, 101, 105

dispersion measure, 103

distribution function

cumulative, see cumulative distribution function

distributions, 98

�2, 141

beta, 117

binomial, 72, 74, 107

continuous, 113

descriptive properties of, 100
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discrete probability, 107

Erlang, 117

exchangeable, 83

F, 150

F statistic, 282

gamma, 116

Gaussian, 113

geometric, 112

hypergeometric, 83

multinomial, 79, 80, 174

negative binomial, 112

negative exponential, 118

normal, 113

Poisson, 85, 109, 376

Student’s t, 147, 222

uniform, 116

Doppler shift, 331

downhill simplex method, 296

eigenvalues, 259

Eigenvalues[ ], 260, 263

eigenvectors, 259, 390

encoding, 72

end effects, 421

energy spectral density, 425

entropy generalization incorporating prior, 190

epoch folding, 362, 363

equally natural parameterization, 220

erf½z�; see error function
Erlang distribution, 117

error function, 115, 198, 436

errors in both coordinates, 92, 307

ESD, see energy spectral density

exchangeable distributions, 83

exclusive hypothesis, 42

exercises

spectral line problem, 69

expectation value, 100, 144

experimental design

non-uniform sampling, 371

exponential notation, 395

extended sum rule, 5, 35

extrasolar planets, 331

F distribution, 150

mode, 150

properties, 150

variance, 150

F-test, 150

Fast Fourier Transform, 392, 415

accurate amplitudes, 422

how it works, 415

zero padding, 422

FFT, see Fast Fourier Transform

first moment, see expectation value

Fisher information matrix, 291

Flatten[ ], 263

Fourier analysis, 392

Fourier series, 394

Fourier spectrum, 132

Fourier transform, 396

Fourier[ ], 358, 411

FRatioPValue[ ], 182

frequency, 10, 11

frequentist, 2, 78, 96, 162

full period, 131

gambler’s coin problem, 75

gamma function, 116

Gamma[�=2;��2
crit=2], 261

GammaRegularized[ ], 147, 166, 280

Gaussian, 48

line shape, 50

noise, 55, 91

Gaussian distributions, 123

Gaussian moment generating function, 114

Gaussian posterior, 257

Geiger counter, 386

generalized sum rule, 36, 42

genetic algorithm, 296, 297

geometric distribution, 112

GL method, 360

global likelihood, 44, 46, 275, 326

global minimization, 296

Gregory–Loredo method, see GL method

half-life, 386

Hessian matrix, 299

historical perspective recent, 25

HIV, 11

Hubble’s constant, 16, 66

hypergeometric distribution, 81

HypergeometricDistribution[ ], 82

hypothesis, 4, 21

exclusive, 42

of interest, 5

hypothesis space, 5, 52

continuous, 6

discrete, 5, 6

hypothesis testing, 162

�2 statistic, 163

difference of two means, 167

one- and two-sided, 170

sameness, 172

ignorance priors, 63

IID, 119

ill-conditioned, 391
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image model, 208

image reconstruction, 203

pixon, 208

implication, 26

implication operation, 25

impulse function, 404

incomplete gamma function, 261, 437, 446

incomplete information, 1, 4, 29, 206

incomplete set, 131

independent errors, 90

independent random events, 55, 109

inductive inference, 25

inference

Bayesian, 5

deductive, 1, 24

inductive, 25

plausible, 25

statistical, 3

inner product, 393

inverse DFT, 410

Inverse[ ], 256

InverseFourier[ ], 411

iterative linearization, 296, 298

Jaynes, E. T., 2, 26

Jeffreys prior, 54, 220

modified, 386

joint posterior, 219

joint prior distribution, 45

joint probability, 7, 19

Keplerian orbit, 331

Kolmogorov–Smirnov test, 173

Kullback entropy, 190

kurtosis, 101

lag, 318

Lagrange multipliers, 191

Laplacian approximations, 291

Bayes factor, 291

marginal parameter posteriors, 293

LCG, 131

least-squares model fitting, 244

least-squares problem, 389

Lebesgue measure, 191

leptokurtic distribution, 102

Levenberg–Marquardt method, 296, 298,

300

lighthouse problem, 125

likelihood

characteristic width of, 47

global, 326

likelihood function, 5, 89

likelihood ratio, 49, 53

line strength

posterior, 60

linear congruential generators, 131

linear least-squares, 243

linear models, 243

linearly independent, 252

logic function, 27

logical disjunction, 42

logical product, 26

logical proposition, 21

logical sum, 26

exclusive form, 22

logical versus causal connections, 82

logically equivalent, 22

Lomb–Scargle periodogram, 367

long-run frequency, 75

long-run relative frequency, 2

Lorentzian, 124

MA, 431

MAP

maximum a posteriori, 343

marginal distribution, 263

marginal PDF, 263

marginal posterior, 45

marginal probability, 19

marginalization, 12, 16, 45

marginalization integral, 249

Markov chain, 314

Markov chain Monte Carlo, 312

Martian rover, 200

matrix formulation, 251, 253

MaxEnt, 184

alternative derivation, 187

classic, 207

computing pi values, 191

continuous probability distribution, 191

exponential distribution, 195

Gaussian distribution, 197

generalization, 190

global maximum, 192

image reconstruction, 203

kangaroo justification, 203

multivariate Gaussian, 450

noisy constraints, 206

uniform distribution, 194

maximally non-committal, 185

maximum entropy principle,

see MaxEnt

maximum likelihood, 56

MCMC, 312

acceptance rate, 319, 330

annealing parameter, 325, 327

aperiodic, 319
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automated, 330

Bayes factor, 326

burn-in period, 331

control system, 330, 331

convergence speed, 318

detailed balance, 320

model comparison, 326

parallel simulations, 322

parallel tempering, 321

partition function, 326

robust summary statistic, 342

sample correlations, 318

simulated tempering, 321

stationary distribution, 319

temperature parameter, 321

when to stop, 319

mean, 44, 100, 343

Poisson, 110

mean deviation, 105

mean square deviation, 214

Mean[BinomialDistribution[n, p]], 109

MeanCI[ ], 182

MeanCI[data, KnownVariance], 156

MeanDifferenceTest[ ], 170, 182

median, 103, 343

baseline subtraction, 104

running subtraction, 104

metric, 253

Metropolis algorithm, 297, 314

Metropolis ratio, 314

Metropolis–Hastings

why it works, 319

Metropolis–Hastings algorithm, 313

mind projection fallacy, 98

mode, 44

model, 21

deterministic, 90

probabilistic, 91

model comparison, 45, 275, 326

other methods, 281

model fitting, 257

model function, 245

model parameter errors, 264

model selection, 15, 335

model testing

frequentist, 279

models

high dimensional, 288

moderate dimensional, 288

modified Jeffreys prior, 53, 386

moment

about the mean, 106

about the origin, 106, 269

first central, 101

fourth central, 101

second central, 101

third central, 101

moment generating function, 105

�2
� , 141

binomial distribution, 99, 108

central, 106

Monte Carlo, 127, 296

Monte Carlo integration, 313

most probable model vector, 250

moving average, see MA

MPM

marginal posterior mode, 343

multinomial distribution, 79, 174, 187

multinomial expansion, 80

Multinormal[ ], 433

MultinormalDistribution[ ], 316

multiplicity, 74, 80, 188

multivariate Gaussian, 202, 244

NAND, 29

negation, 26

negative binomial distribution, 112

negative covariance, 268

negative exponential distribution, 118, 119

negatively skewed distribution, 102

NIntegrate [ ], 71

noise

Bayesian estimate, 224

noise scale parameter, 334

non-uniform sampling, 370

nonlinear models

examples, 243, 287

NonlinearRegress [ ], 302

NOR, 29

normal distribution,

see distributions, normal, 103

normal equations, 252

normal Gaussian, 198

NormalDistribution[ ], 132

NOT, 28

notation, 6

NSolve[ ], 263

nuisance parameters, 16, 45, 264

null hypothesis, 162, 164

Nyquist frequency, 370, 405, 413, 429,

430, 432

Nyquist sampling theorem, 392, 404

astronomy example, 406

objectivity, 11

Occam factor, 49, 239, 276

Occam’s razor, 16, 45, 60

odds, see odds ratio
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odds ratio, 9, 46, 52, 277

Jeffreys prior, 58

prior, 46, 53

sensitivity, 59

uniform prior, 58

versus prior boundary, 61

ON/OFF measurements, 380

operations

implication, 26

logical disjunction, 42

logical product, 26

logical sum, 26

negation, 26

optional stopping problem, 177

Bayesian resolution, 179

OR, 28

orthogonal basis functions, 270

orthogonal functions, 392

orthonormal, 390

orthonormal functions, 276, 392

orthonormal set, 392

P-value, 147, 165, 166

one-sided, 147, 169

PAD, see positive, additive distribution

parallel tempering, 312, 321, 323, 325, 326, 330

parameter

location, 63

scale, 63, 219

parameter covariance matrix, 267, 273, 276, 283

parameter estimation, 12, 15, 43, 59, 244

Parseval’s theorem, 424, 428

discrete form, 428

partition function, 326

PDF, see probability distribution function

Pearson �2

goodness-of-fit test, 173, 175

comparison of two binned data sets, 177

period folding, 362

periodogram, 352

reductive of variance, 431

variance, 429

periodogram power spectrum estimation, 425

Pixon method, 208

planet, 331

platykurtic distribution, 102

plausibility, 3

scale of, 26

plausible inference, 4

Plot3D[ ], 19

point spread function, 402

Poisson

cumulative distribution, 111

mean, 110

time-varying rate, 386

variance, 111

Poisson distribution, 85, 109, 376

Bayesian, 85

examples, 111

infer rate, 377

limiting form of a binomial, 109

ON/OFF measurements, 380

signal and known background,

379

Poisson ON/OFF

details, 445

poll, 153

polling, 77

population, 97

positive definite, 259

positive, additive distribution, 203

positively skewed distribution, 102

posterior

bubble, 44

density, 44

mean, 44

mode, 44

posterior PDF, 44

posterior probability, 5

power spectral density, 425

discrete, 428

one-sided, 429

variance, 429

power spectrum, 426

power-spectrum estimation, 424

power spectral density function, 426

Principal Axis Theorem, 259

Principle of Indifference, 38

prior, 232

choice of, 53

exponential, 195

ignorance, 63

Jeffreys, 54, 57, 220

location parameter, 63

modified Jeffreys, 53

odds ratio, 46

scale parameter, 63

uniform, 53, 57, 377

prior information, 65, 72

prior probability, 5

probability, 10

definition of, 3

distribution, 6

of data value, 56

per logarithmic interval, 54

posterior, 59

relative, 52

relative frequency definition, 98
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rules for manipulating, 4

weighted average, 236

probability and frequency, 10

probability density, 43

probability density function, 6, 99

Gaussian, 113

probability distribution, 72

probability distribution function, 6, 43

definition, 99

probability mass function, 99

probability theory, 21

as logic, 2

requirements of, 2

role of, 1

product rule, 4, 35, 42

development of, 30

qualitative properties, 36

uniqueness, 37

profile function, 293

projected distribution, 264

projected probability density function, 20, 264

proposal distribution, 314

proposition, 21

examples of, 4

logical, 21

PSD, see power spectral density

correlation estimator, 427

lagged-product estimator, 427

pseudo-random, 127

pseudo-random number generation, 131

PseudoInverse[ ], 391

quantile value, 146, 148

Student’s t, 157

radial velocity, 333

radioactivity, 386

radix, 416

RAN3, 136

random number generation, 127

random variable, 2, 96, 113

continuous, 99

generation, 129

random walk, 132

Random[ ], 132

randomness

tests for, 132

ratio of standard deviations, 442

rectangular matrix, 390

regression analysis, 244, 256

relative frequency definition, 98

relative line shape measures, 101

ripple, 407

RMS deviation, 225

sample mean distribution, 124

sample variance, 143, 164

sampling

non-uniform, 370

sampling distribution, 72, 98

sampling probability, 43

sampling theory, 97

scale invariance, 54

scale parameter, 219

Schuster periodogram, 425

scientific inference, 1

scientific method

model of, 1

SeedRandom[99], 132

serial correlations, 131, 191, 205, 207

Shannon, C., 185, 186

Shannon–Jaynes entropy, 190

Shannon’s theorem, 186

shuffling generator

see compound LCG,, 131

signal averaging, 65, 125

signal variability, 227

signal-to-noise ratio, 354

significance, 147, 165

simulated annealing, 296

simulated tempering, 321

singular basis vectors, 252

singular value decomposition, 252, 389, 389

singular values, 390

SingularValues[ ], 390

skewness, 101

Sort[ ], 70

spatial frequency, 406

spectral analysis, 352

spectral line problem, 50, 322, 329

spectral density function, 426

standard deviation, 55, 101

ratio, 237

standard error of the sample mean, 145, 149

standard random variable, 102, 115, 119,

127, 154

state of knowledge, 72

stationary distribution, 319

statistic, 140

statistical inference, 3

statistics

conventional, 2

frequentist, 2, 96

stellar orbit, 331

Stirling’s approximation, 189

stochastic spectrum estimation, 431

straight line fitting, 92, 307

Student’s t distribution, 147, 222

StudentTPValue[ ], 169, 170, 182
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sum rule, 4, 35, 42

development of, 34

generalized, 42

qualitative properties, 36

uniqueness, 37

SVD, see singular value decomposition

syllogisms

strong, 24, 28, 36

weak, 25, 28, 36

symmetric matrix, 251

systematic errors, 16, 65, 66, 385

systematic uncertainty

examples of, 65

parameterization of, 65, 386

tapered window function, 407

target distribution, 314

Taylor series expansion, 257, 298

tempering, 312, 321, 323, 326, 328

testable information, 184

time series, 356

time-to-failure, 119

transformation of random variable, 125

transition

kernel, 314

probability, 314

Transpose[ ], 256

trial, 73, 158, 434

truncated Gaussian, 201

truth tables, 22, 27, 132

truth value, 21, 27

two-sample problem, 228, 440

two-sided test, 166

two-valued logic, 21

uncertainty

random, 65

systematic, 65

undetermined multiplier, 192

uniform distribution, 116

uniform prior, 53, 279

unimodal, 291

variable metric approach, 301

variance, 101, 124, 141, 194

Bayesian estimate, 224

variance curve, 282

Variance[BinomialDistribution[n;p]], 109

VarianceCI[ ], 182

VarianceRatioCI[ ], 160

VarianceRatioTest[ ], 182

vector notation, 247

waveform sampling, 403

weighted average, 100

weighting function, 366

Weiner filter, 420

well-posed problem, 7

white noise, 430

Yule, G., 431

Yule–Walker equations, 431

zero pad, 357, 392, 421

zero padding, 421
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