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is the co-author of monographs Mathematical Theory of Elastic and
Elasto-plastic bodies: An Introduction (with I. Solutions of
Variational Inequalities in Mechanics (with I. , Haslinger
a ). Let us also mention the theory of elastoplastic bodies
admitting plastic flow and reinforcement, as well as the theory of contact
problems with friction. It was J. who initiated interest
in transonic flow where he achieved remarkable results by using the
method of entropic compactification and the method of viscosity. These
results raised deep interest of the mathematical community,
published the monograph Écoulement de fluide, compacité par entropie.
In 1986 M. Padula presented her proof of the global existence of
non-steady isothermal compressible fluids. This article led and

to introduce a model of multipolar fluids satisfying the laws of
thermodynamics. In this model the higher order stress tensor and its
dependence on higher order velocity gradients are taking into account,
the well-posedness of the model, the natural and logical construction of
fundamental laws, and deep existence results were settled.

The most recent considerations are devoted to classical incompressible
fluids, namely, to the Navier-Stokes fluids and to the power-law fluids.
Essentially new existence, uniquenesss and regularity results are given
for space periodic problem and for Dirichlet boundary value problem.
Large time behaviour of solutions is analysed via the concept of short
trajectories. A comprehensive survey of these results can be found
in Weak and Measure Valued Solutions to Evolutionary PDE’s (with
J. Málek, M. Rokyta and j.

The central theme in the mathematical theory of the Navier-Stokes
fluids, i.e. the question of global existence of uniquely determined
solution, has also become central in the research activities of J.
in the past five years. Attention has been given to the proof that the
possibility of constructing a singular solution in the self-similar form
proposed by J. Leray in 1934, is excluded for the Cauchy problem,

concentrates his energy to find the way of generalization of
this result and to the resolution of the initial problem as well as to the
study of influence of boundary conditions on the behaviour of the fluid
described by Navier-Stokes equations.

A significant feature of scientific work is his intensive and
inspiring collaboration with many mathematicians ranging from the
youngest to well-known and experienced colleagues from all over the
world. Among them (without trying to get a complete list) we would like
to mention: H. Bellout, F. Bloom, Ph. Ciarlet, A. Doktor, M. Feistauer,
A. Friedman, M. Giaquinta, K. Gröger, Ch.P. Gupta, W. Hao,

R. Kodnár, V. Kondratiev, Y.C. Kwong, A. Lehtonen,
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PREFACE

This book is meant as a present to honor Professor on the
occasion of his 70th birthday.

It collects refereed contributions from sixty-one mathematicians from
eleven countries. They cover many different areas of research related
to the work of Professor including Navier-Stokes equations,
nonlinear elasticity, non-Newtonian fluids, regularity of solutions of
parabolic and elliptic problems, operator theory and numerical methods.

The realization of this book could not have been made possible
without the generous support of Centro de Matemática Aplicada
(CMA/IST) and Fundação Calouste Gulbenkian.

Special thanks are due to Dr. Ulrych for the careful
preparation of the final version of this book.

Last but not least, we wish to express our gratitude to Dr.
for her invaluable assistance from the very beginning.

This project could not have been successfully concluded without her
enthusiasm and loving care for her father.

On behalf of the editors

ADÉLIA SEQUEIRA
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Elasticity by Rektorys and It was mechanics which
naturally directed him to applications of mathematics.

This period ended in 1957 with his defence of the dissertation
Solution of the Biharmonic Problem for Convex Polygons. His interests
gradually shifted to the functional analytic methods of solutions to
partial differential equations. It was again I. who oriented him
in this direction, introduced him to S. L. Sobolev and arranged his trip
to Italy. His visits to Italy and France, where he got acquainted with the
renowned schools of M. Picone, G. Fichera, E. Magenes and J. L. Lions
deeply influenced the second period of career.

Here we can find the fundamental contributions of to the linear
theory: Rellich’s identities and inequalities made it possible to prove the
solvability of a wide class of boundary value problems for generalized
data. They are important also for the application of the finite element
method. This period culminated with the monograph Les méthodes
directes en théorie des équations elliptiques. It became a standard
reference book and found its way into the world of mathematical
literature. We have only to regret that it has never been reedited
(and translated into English). Its originality and richness of ideas was
more than sufficient for to receive the Doctor of Science degree
in 1966.

Without exaggeration, we can consider him the founder of the
Czechoslovak school of modern methods of investigation of both
boundary and initial value problems for partial differential equations.
An excellent teacher, he influenced many students by his enthusiasm,
never ceasing work in mathematics, organizing lectures and seminars
and supervising many students to their diploma and Ph.D. thesis.
Let us mention here two series of Summer Schools—one devoted to
nonlinear partial differential equations and second interested in the
recent results connected with Navier-Stokes equations. Both of them
have had fundamental significance for the development of these areas.

While giving his monograph the final touch, already worked
on another important research project. He studied and promoted the
methods of solving nonlinear problems, and helped numerous young
Czechoslovak mathematicians to start their careers in this domain.
He also organized many international events and—last but not least—
achieved many important results himself.

Nonlinear differential equations naturally lead to the study of
nonlinear functional analysis and thus the monograph Spectral Analysis
of Nonlinear Operators appeared in 1973. Among the many outstanding
results let us mention the infinite dimensional version of Sard’s theorem
for analytic functionals which makes it possible to prove denumerability
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of the spectrum of a nonlinear operator. Theorems of the type of
Fredholm’s alternative represent another leading topic. The choice of the
subject was extremely well-timed and many successors were appearing
soon after the book had been published. This interest has not ceased
till now and has resulted in deep and exact conditions of solvability of
nonlinear boundary value problems. Svatopluk who appeared as
one of the co-authors of the monograph, together with Jan Kadlec, who
worked primarily on problems characteristic for the previous period,
and with younger Rudolf —were among the most talented and
promising of students. It is to be deeply regretted that the
premature death of all three prevented them from gaining the kind of
international fame as that of their teacher.

The period of nonlinearities, describing stationary phenomena,
reached its top in the monograph Introduction to the Theory of Nonlinear
Elliptic Equations. Before giving account of the next period, we must
not omit one direction of his interest, namely, the problem of regularity
of solutions to partial differential equations. If there is a leitmotif that
can be heard through all of work, then it is exactly this problem,
closely connected to the solution of Hilbert’s nineteenth problem.

In 1967 published his crucial work in this field, solving the
problem of regularity of generalized solutions of elliptic equations of
arbitrarily high order with nonlinear growth in a plane domain. His
results allow a generalization for solutions to elliptic systems. In 1968
E. De Giorgi, E. Giusti and M. Miranda published counterexamples
convincingly demonstrating that analogous theorems on regularity for
systems fail to hold in space dimension greater then two. The series of
papers by devoted to regularity in more dimensional domains can
be divided into two groups. One of them can be characterized by the
effort to find conditions guaranteeing regularity of weak solutions. Here
an important result is an equivalent characterization of elliptic systems
whose weak solutions are regular. This characterization is based on
theorems of Liouville’s type. The fact that method can be applied
to the study of regularity of solutions of both elliptic and parabolic
systems demonstrates its general character. During this period
collaborated also with many mathematicians (M. Giaquinta, B. Kawohl,
J. Naumann). The other group of papers consists of those that aim
at a deeper study of singularities of systems. is the author
of numerous examples and counterexamples which help to map the
situation.

In the next period, resumed his study of continuum mechanics.
Again we can distinguish two fundamental groups of his interest.
The former concerns the mechanics of elasto-plastic bodies.
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D.M. Lekveishvili, P.L. Lions, D. Mayer, M. Müller,
P. Neittaanmäki, I. Netuka, A. Novotný, O.A, Oleinik,
M. Rokyta. M. M. Schönbeck,

We tried to collect some of the most important contributions of
and to display the breadth of his interests and strivings, his

encouragement of young people, his never ending enthusiasm, his deep
and lively interest in mathematics. All these features of his personality
have attracted students everywhere he has been working and have
influenced many mathematicians.

JOSEF MÁLEK, JANA STARÁ
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THE MOST SIGNIFICANT WORKS
OF PROF.

Monographs

[1] . and Einführung
in die Variationsrechnung. B. G. Teubner Verlagsgesellschaft,
Leipzig, 1977. Mit englischen und russischen Zusammenfassungen,
Teubner-Texte zur Mathematik.

[2] and
Spectral analysis of nonlinear operators. Springer-Verlag, Berlin,
1973. Lecture Notes in Mathematics, Vol. 346.

[3] J. Haslinger, and
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[4] J. Haslinger, and Solution of
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ematical Sciences. Springer-Verlag, New York, 1988. Translated
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& Hall, London, 1996.
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[7] Introduction to the theory of nonlinear elliptic
equations, volume 52 of Teubner-Texte zur Mathematik [Teubner
Texts in Mathematics]. BSB B. G. Teubner Verlagsgesellschaft,
Leipzig, 1983. With German, French and Russian summaries.
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1980.

Papers

[11] Hamid Bellout, Frederick Bloom, and Young
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Comm. Partial Differential Equations, 19(11-12):1763–1803, 1994.

[12] Hamid Bellout and Existence of global weak solu-
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291, 1994.

[13] Hamid Bellout, Frederick Bloom, and Existence
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Anal., 24(l):36–45, 1993.
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Sér. I Math., 298(8):189–192, 1984.
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tridimensionnelle. C. R. Acad. Sci. Paris Sér. I Math.,
301(11):621–624, 1985.

[16] Philippe G. Ciarlet and Unilateral problems in
nonlinear, three-dimensional elasticity. Arch. Rational Mech.
Anal, 87(4):319–338, 1985.
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honored by the Order of Merit of the Czech Republic
by Václav Havel, President of the Czech Republic, on the October 28,
1998, Professor Emeritus of Mathematics at the Charles University
in Prague, Presidential Research Professor at the Northern Illinois
University and Doctor Honoris Causa at the Technical University of
Dresden, has been enriching the Czech and world mathematics with
his new ideas in the areas of partial differential equations, nonlinear
functional analysis and applications of the both disciplines in continuum
mechanics and hydrodynamics for more than forty years.

Born in Prague in December 14, 1929, spent his youth
in the nearby town of He studied mathematics at the Faculty of
Sciences of the Charles University in Prague between 1948-1952. After
a short period at the Faculty of Civil Engineering of the Czech Technical
University he joined the Mathematical Institute of the Czechoslovak
Academy of Sciences where he headed the Department of Partial
Differential Equations. Since 1977 he has been a member of the staff of
the Faculty of Mathematics and Physics of the Charles University being
in 1967-1971 the head of the Department of Mathematical Analysis,
for many years the head of the Department of Mathematical Modelling
and an active and distinguished member of the Scientific Council of the
Faculty.

Let us go back to first steps in mathematical research. He was
the first PhD. student of I. whom he still recalls with gratitude.
As one of his first serious tasks he cooperated in the preparation of the
pioneering monograph Mathematical Methods of the Theory of Plane
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ON THE REGULARITY AND DECAY OF
THE WEAK SOLUTIONS TO THE STEADY-
STATE NAVIER-STOKES EQUATIONS IN
EXTERIOR DOMAINS

Frédéric Alliot, Cherif Amrouche

Abstract: In this article, we study the regularity properties of the weak solutions to
the steady-state Navier-Stokes equations in exterior domains of Our
approach is based on a combination of the properties of Stokes problems
in and in bounded domains. We obtain in particular a decomposition
result for the pressure and some sufficient conditions for the velocity to
vanish at infinity.

Keywords: Exterior flows, Navier-Stokes, weak solutions, regularity, behaviour at
infinity.

This paper is devoted to some mathematical questions related to the
steady-state motion of an incompressible viscous fluid past a bounded
body In the three-dimensional space let us denote by the
exterior of which is filled by the fluid. Then, the velocity field u and
the pressure in the fluid satisfy the Navier-Stokes system:

where f is a given external force-field and stands for the kinematic
viscosity of the fluid. The last equation of the system states that the
fluid adheres at the surface of the body, which is the common no-slip
condition. We shall moreover assume that the fluid is at rest at infinity
and thus consider the additional condition:

Applied Nonlinear Analysis, edited by Sequcira et al.
Kluwer Academic / Plenum Publishers, New York, 1999. 1
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Our purpose is to study some regularity properties of weak solutions
to the problem (NS) (see Definition 1.1 below), keeping in mind that
we wish the decay condition (0.1) to be fulfilled.

The paper is organized as follows: In Section 1, we recall a well-known
result about existence of weak solutions for the problem (NS). The
data and solutions will be chosen in weighted Sobolev spaces, in which
distributions are well controlled at infinity. The second section is devoted
to some regularity properties of the weak solutions u and the associated
pressure We first obtain, with no additional assumption, the
regularity of that leads to a “natural” decomposition of this term into
a “viscous pressure” and a “convective pressure” (see Proposition 2.3
and Remark 2.4 below). Then, our main result establishes the
regularity of and under some rather weak assumptions. Moreover,
we deduce from this result some sufficient conditions on f such that
each weak solution satisfies (0.1). The proof relies on the combination
of the regularity properties of the Stokes problem in bounded domains
and in With similar arguments, we study the regularity of
higher-order derivatives of u and and their decay at infinity. The
last section is devoted to the regularity, in the Hardy space of the
second derivatives of the pressure in the whole space and is based
on sharp properties of the non-linear term.

We now conclude this introduction by giving some definitions and
notation that we shall use throughout the paper.

Let us first settle the geometry of Let be a bounded open region
of not necessarily connected, with a Lipschitz-continuous boundary
and let the fluid fill the complement of denoted by We assume that

has a finite number of connected components and that each connected
component has a connected boundary, so that is connected. In the
sequel, such a set will be referred to as an exterior domain.

We shall also denote by the open ball of radius centered at
the origin. In particular, since is bounded, we can find some
such that and we introduce, for any the sets

and

Let be an open region of As usual, denotes the space
of indefinitely differentiable functions with compact support in and

denotes its dual space which is the space of distributions. For each
the conjugate exponent is given by the relation

We recall that is the space of measurable functions such that
With its natural norm: it is

a Banach space whose dual space is When we shall
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also use the Sobolev exponent of p that is Recall that
the space stands for the Sobolev space of functions
with distributional derivatives in endowed with its natural norm.

Moreover. is the closure of in and is

the dual space of When we shall also use the standard
notation

Finally, we use bold type characters to denote vector distributions
or spaces of vector distributions with 3 components. For instance,

means

1. EXISTENCE OF WEAK SOLUTIONS IN
WEIGHTED SOBOLEV SPACES

The study of the steady-state Navier-Stokes problem in general
domains was initiated by the fundamental works of J. Leray [13] who
introduced the concept of weak solution:

Definition 1.1. A weak solution to the problem ( N S ) is a field
vanishing on with and such that for all

When is an exterior domain, a weak solution u is only constrained
at infinity by the condition But such a condition is not
sufficient to ensure that u satisfies (0.1), or even that u vanishes in
a weaker sense at infinity. Hence, the general class of fields
vanishing on with is too large for our purpose. It is
more appropriate to control both and itself at infinity, which can
be achieved in a natural way in some weighted Sobolev spaces. Define
the weight function then we can state the

Definition 1.2. Let be either an exterior domain or and
let p and be real numbers with Then, we set

and



4 Alliot F., Amrouche C.

Each of these spaces is a reflexive Banach space when endowed with the
norm:

In the definition above, the powers of the weight function and
the introduction of the logarithmic weight when are
not anecdotal. Indeed, this definition allows to prove some weighted
Poincaré inequalities which are the main interest of the spaces (see
Theorem 1.1 below).

Define now the space as the closure of for the norm

Then, the dual space of which we denote by

is a space of distributions. When is an exterior domain,

and since each function of locally belongs to the classical
Sobolev space it is standard to check that

where stands for the trace operator on the Lipschitz-continuous

boundary However, when we have
(see [3], Th. 7.2).

We now recall a fundamental property of the spaces

Theorem 1.1. (Amrouche-Girault-Giroire [3, 4]) Let and

i) Let be an exterior domain. There exists a constant
such that

ii) There exists a constant such that

otherwise,

where stands for the subspace of constant functions in when
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Remark 1.2. Theorem 1.1 for instance states that the semi-norm

defines a norm on which is equivalent to the natural
norm of this space.

We now turn to the question of existence of weak solutions to the
exterior problem (NS). The key idea for proving existence, which has
also been pointed out by J. Leray, is to find approximate solutions un

that satisfy a uniform estimate:

and then to pass to the limit. Following this idea, we state and prove
the

Theorem 1.3. Let be a Lipschitz exterior domain or
Given a force , the problem (NS) has a weak solution

such that:

Besides, there exists a function for all unique
up to a constant, such that solves problem (NS ) in the sense of
distributions.

Proof. Let be an increasing sequence of real numbers with
fixed in the introduction and such that We

approximate problem (NS ) by the following sequence of problems on
the bounded domains

Find such that

First remark that each function of with support in also
belongs to Then, since its restriction to
satisfies

Therefore, we know from [17](Th. 1.2, p. 164) that for each
problem (1.3) has a solution un such that
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We extend by zero in and still denote the extended function

that belongs to In view of (1.4) and (1.5), we thus have:

Hence, Theorem 1.1 (with and (1.6) yield that

is bounded in which is reflexive. Therefore, extracting
subsequences if necessary, we have:

Let us now check that u is a weak solution. Let and
be an integer such that supp Then, we deduce from (1.3)
that

In view of (1.7), we can pass to limit in the first integral. Moreover,
extracting a subsequence if necessary, we know that converges
strongly to u in since the imbedding
is compact. Hence, this convergence together with (1.7) ensures the

convergence of the second integral of (1.8) and therefore
satisfies (1.1).

Finally, existence of a pressure such that satisfies
system (NS ) in the sense of distributions follows from (1.1) and from
a well-known consequence of a very general theorem of G. de Rham.

Moreover, is unique up to a constant because is connected. Besides,
the local regularity of can be deduced from standard local properties
of the distribution and from a result of L. Tartar [16]
(lemma 9, p. 30) and Girault-Raviart [10].

Remark 1.4. In this paper, we only focus on the regularity and
decay of weak solutions in three-dimensional exterior domains. Let
us nevertheless mention that many problems remain open for weak
solutions that satisfy (0.1). For instance, it is not known whether such
solutions are unique for “small” data, while such a property is established
in bounded domains (See Temam [17], Ch. II and Girault-Raviart [10]
for the case of bounded domains and Galdi [8], Ch. IX, for partial
uniqueness properties in exterior domains).
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The study of weak solutions in two-dimensional exterior domains
is even more difficult. Although some existence results are known,
the arguments developed in the proofs of our results below fail in
two dimensions. As a matter of fact, the existence of weak solutions
satisfying (0.1) for a large class of data is not established so far. We
shall however give a positive answer to this problem for some particular
data in a further work.

2. THE REGULARITY OF WEAK
SOLUTIONS

Our approach relies on a localization argument which we develop in
the paragraph below. This argument enables us to study on the one
hand the regularity of a solution near infinity and on the other hand the
regularity near the boundary.

2.1. Separating the regularity near infinity and
near the boundary

Let be an exterior domain. We introduce the following partition
of unity: Let and be real numbers such that and
choose some functions such that:

Consider now a solution to problem (NS) such that
and belongs to for all (think of a solution given by
Theorem 1.3). Then, define as follows:

in in

and set in
It is easy to check that (compute the

weak derivatives of and use the fact that vanishes at the boundary
We also note that clearly belongs to

Moreover, further elementary calculations in the sense of distributions
enable us to establish the equalities (respectively in and
in

where
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Since is on with supp we have naturally denoted by
the distribution on given by:

This notation also applies to each other term in the definition (2.4) with

Finally, considering (2.3) and (2.4) with the regularity of u and
near the boundary depends on the regularity of and on the

properties of the Stokes problem in the bounded domain Similarly,
the regularity of and near infinity depends on the regularity of

and on the properties of the Stokes problem in
Regularity properties for the Stokes problem in bounded domains have

been first studied by L. Cattabriga [6] but we shall use more general
results from [2] (see pp. 134-136).

Theorem 2.1. (Amrouche-Girault [2]) Let be a bounded
domain with boundary. Let with

and assume that Then, the problem:
Find such that

has a unique solution such that If f and moreover belong
to then and also belong to

The Stokes problem in the whole space has been recently much studied
in various functional spaces (see for instance Borchers-Miyakawa [5],
Girault-Sequeira [9], Kozono-Sohr [11, 12] or Specovius Neugebauer
[15]). The authors have also provided a rather complete study of this
problem in weighted Sobolev spaces in [1]. For instance, as a particular
case of the results established in the latter reference (section 3), we can
state the:

Theorem 2.2. (Alliot-Amrouche [1]) Let be an integer and
such that is not an integer smaller than or equal to

For each the Stokes problem:

has a solution such that If f and
moreover belong to then and also belong to
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2.2. A decomposition result for the pressure
We have seen in Theorem 1.3 that we can associate with each weak

solution u a pressure that locally belongs to But, we do not have
yet any information concerning the integrability at infinity of Our
first result is dedicated to this question.

Proposition 2.3. Let be an exterior domain or
and let The pressure obtained in Theorem 1.3 has
a representative such that

with

Proof. Let be a weak solution to the problem (NS) given
by Theorem 1.3 and let be the associated pressure.
First recall the decomposition introduced in paragraph 2.1.
Since we obtain that belongs to Thus,
the main part of the proof deals with the properties of and therefore
of

i) We first consider the term Prom Sobolev’s imbedding
theorem, we know that Then, we have
and Since is bounded and supported in Holder’s
inequality yields:

But we have: which is the dual imbedding
of (the latter is obvious from the definition of

Hence, in view of Theorem 2.2

there exists such that

Considering (2.5), Theorem 2.2 yields besides that and

so we get that

ii) We consider now the other terms of Since is bounded and
has bounded derivatives with compact support, it is easy to check
that the terms and belong to
Proving that is even simpler. Then,
applying Theorem 2.2 (with we get the existence of

such that
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i i i ) Let us finally set and Subtracting
(2.6) and (2.7) from (2.3) yields the relations:

Then, computing the divergence of the first equation yields that is
harmonic. Therefore, considering (2.8), is also harmonic. Thus,
w is a tempered biharmonic distribution on  and thus a polynomial.
But this polynomial moreover belongs to so that
it has to be constant (a complete proof of this statement relies on some
estimates of the on the sphere of radius R of the functions
of when R tends to infinity ; see [1], Lemma 1.1). Since w
is constant, we deduce from (2.8) that and by the way the
existence of a constant c such that Hence, we have the
equality in and the proposition is
proved setting and

Remark 2.4. The decomposition of the pressure established in Propo-
sition 2.3 allows to rewrite the first equation of the system (NS ) as
follows:

Here, the first term belongs to The second term is more regular
since it belongs to In a certain sense, the pressure is associated
with the viscosity term while is associated with the convection
term

2.3. First regularity results
Prom now on, we assume that the force ƒ is more regular than needed

in Theorem 1.3 and prove that weak solutions are also more regular. As
in the previous paragraph, we consider separately the regularity near
the boundary and near infinity. Let us begin with a few properties of
the non-linear term.

Lemma 2.5. Let be an exterior domain or
i) Let then
ii) Let then if

and if

Proof. The proof relies on the Sobolev’s imbedding theorem which
implies that if then and therefore by duality
that
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i) If then v belongs to and Therefore,
Holder’s inequality yields that which space is imbedded
into in view of (2.9).

ii) Let Since we also have
Since v also belongs to the Gagliardo-

Nirenberg inequalities (see for instance, Nirenberg [14], p. 125, with
and ) imply that provided that

Hence, Holder’s inequality yields that
for all such that

We now prove the

Theorem 2.6. Let be an exterior domain with boundary or
Given and each weak solution

to the problem (NS) also satisfies Moreover,
the associated pressure has a representative in

Proof. We use once again the auxiliary problems introduced in
paragraph 2.1. We first prove the case and then consider the
case

i) The case In view of Lemma 2.5, we know that
and therefore Moreover,

since and since the derivatives of have
compact support, we deduce from Sobolev injections theorem that

Hence, the pair (see (2.4)) belongs to
Then, there exists (Theorem 2.2 with some functions

such that:

Subtracting these equalities from (2.3), we get:

Therefore, following the proof of Proposition 2.3 (iii), we prove
that is a polynomial. Since this polynomial belongs to

, it must be a constant polynomial c. But constant
polynomials belong to (because of the logarithmic weight), so
that
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Besides, since is constant, it follows from (2.10) that
in Therefore, there exists a constant function d such that

Let us now come to the regularity near the boundary. Recall
that the auxiliary functions satisfy
(2.3) with Moreover, we can prove -as we proved that

but applying local Sobolev’s imbedding
results- that With such data, and
since has boundary, we can deduce from Theorem 2.1 that

, which immediately imply that

Finally, since our claim results from (2.11),
(2.12) and (2.13). Note that we can also prove that the representative of

in is nothing but the representative obtained in Proposition 2.3.

ii) The case Owing to an
interpolation argument, we can prove that and since
we have proved the theorem for we know that

and we can choose Then, Lemma 2.5 ( i i) implies
that and therefore that
Besides, Sobolev’s imbedding theorem yields that and so,
as in the case we prove that

and

Starting with this regularity, each argument used in the point (i) can be
restated replacing the exponent 3 with p and so the proof is complete.

Now, the existence of weak solutions to the problem (NS) that satisfy
the decay condition (0.1) is a rather simple consequence of Theorem 2.6.

Corollary 2.7. Assume that Then,
each weak solution to the problem (NS) satisfies

Proof. We know from Theorem 2.6 that and
therefore

and

which property is known to imply (2.14).
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Remark 2.8. Let us mention a different version of Theorem 2.6 which
focuses only on the properties at infinity of the solution. Owing to
the partition of unit (2.1),(2.2), we have seen that the behaviour of the
solution near the boundary and near infinity can be obtained separately.
In fact, looking more carefully, we see that the properties of only
depend on the regularity of the restrictions of ƒ and g to . Therefore,
if we only assume that with
we can still prove that each weak solution also satisfies

and that the associated pressure has a representative
such that The main interest of this version is that it
requires no smoothness assumption on the boundary and therefore
applies to a wider class of domains.

2.4. More regularity and decay
In this paragraph, we are interested in the regularity of and

In particular we shall need the following imbedding results:

Lemma 2.9. Let be an exterior domain or Assume
that and satisfy Then,
the following relations hold

with continuous imbeddings.

Proof. i) Let , Theassumption yields that

Since there exists a real number such that and
Then, the inequality (2.15) implies that

and Hölder’s inequality yields that

which proves the first imbedding.

ii) The second imbedding is a straightforward consequence of the first
one if (there is no logarithmic weight in When

we remark that (2.15) also implies that
Hence, Hölder’s inequality yields the result because

We now prove the following theorem:
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Theorem 2.10. Let _ be an exterior domain with boundary
or and let

i) Assume that Then, each
weak solution to the problem satisfies

and the pressure has a representative such that
and

ii) Assume that with Then, each weak solution
to the problem satisfies

and the pressure has a representative such that and

Proof. We first prove the first part of the theorem: Since
with q > 3, we know from Theorem 2.6 that

In particular, we have and we now have to prove
the regularity of and But, and obvious interpolation
arguments imply that,

and

In particular, we have Besides, Corollary 2.7 yields that
so that we obtain

Since we can easily deduce from (2.16) and from (2.18) that:

and

Then, the regularity properties of the Stokes problem in bounded
domains (Theorem 2.1) and the equalities (2.3) with yield that

On the other hand, we can choose in (2.17) so that we
have Then, Lemma 2.9 yields that

which implies that

In view of (2.19) and (2.21), we can apply the regularity statement of
Theorem 2.2 with This yields that
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which, together with (2.20), completes the proof, since and

ii) We now turn to the second point of the theorem. First remark
that since with then the imbedding (2.9) implies
that In particular, all the arguments of the
latter proof can be restated with instead of q, except the proofs of
(2.18) and (2.21) where some modifications occur. Indeed, in this case
the relation (2.18) follows from Lemma 2.5 since we can set in
(2.17). The modified proof of (2.21) involves two cases. If we
can choose in (2.17) and then conclude with Lemma
2.9. In the remaining case we use on the one hand the fact

that in view of Lemma 2.9. Therefore, we obtain

that On the other hand, we recall that

with and (Proposition 2.3). Then, the

imbedding is obvious, and Lemma 2.9 proves that

so that

The following is an easy consequence of Theorem 2.10.

Corollary 2.11. Let be an exterior domain with boundary
or and let
i) Assume that Then, each weak
solution to the problem (NS) satisfies (0.1). Moreover,

and

ii) Assume that Then, each weak solution
to the problem (NS ) satisfies (0.1).

Proof. i) If then Corollary 2.7 applies
and so (0.1) holds. Besides, Theorem 2.10 yields that and
that with p > 3, which properties imply the result.

ii) If then (2.9) implies that
with and thus Corollary 2.7 applies.

Remark 2.12. i) The statement (i) in Theorem 2.10 still holds if
The adaptations of the proof to this case are straightforward.

In contrast, the proof does not extend if Indeed, we would
have to apply Theorem 2.2 with and which case is excluded
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(we insist on the fact that the conclusions of Theorem 2.2 are false if 3/p
is an integer smaller than or equal to –l).

ii) The method we used in this section also allows to prove more
regularity properties. Assume for instance that the boundary
Then, if and if one of the following conditions holds:

then we can prove that each weak solution satisfies
We obtain simultaneously that Besides,

when assumption (6) holds, then we can establish that both and
are bounded and vanish at infinity.

2.5. Improved regularity for the pressure in

This last section is devoted to some sharp regularity properties of the
pressure when the domain is the whole space It is based on a
result of R. Coifman, P.L.Lions, Y.Meyer and S. Semmes ([7], Th. II.1)
that deals with the regularity of various non-linear quantities. This
result is of particular interest to our problem since it establishes that

if

Here, the Hardy space stands for the following subspace of

where the three-dimensional Riesz transforms are given by :

Therefore, we prove the following:

Theorem 2.13. Let and let be a weak
solution to the problem If then the associated
pressure has a representative such that:

Proof.
i) Let us assume in view of Proposition 2.3 that
Since div we obtain by computing the divergence of the first
equation of the problem that
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In particular, if div and in view of (2.23), we have

ii) We shall now obtain the regularity of considering some regularity
properties of the Laplacian in First note that

where

Now, we know from [3](Th. 5.1) that the Laplacian is an isomorphism

from onto Therefore, there exists

such that

Moreover, since the Riesz transforms are continuous from
into , the following identity

yields together with (2.23) that

iii) Finally, we are going to prove that which completes
the proof. Indeed, we obtain by subtracting (2.26) from (2.24) that

is an harmonic function. Then, is
a polynomial that moreover belongs to ; and so it must
be identically zero.

Remark 2.14. We are not able to prove a similar result when is
an exterior domain. If we assume that, near infinity, div ƒ is the
restriction of a function belonging to it seems difficult to
establish that enjoys the same regularity. For instance, we cannot
use efficiently the cut-off procedure of Section 2. Indeed, it is easy to
check that satisfies

but we cannot even prove that div belongs to
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A NOTE ON TURBULENCE MODELING

G. Q. Chen, K. R. Rajagopal, Luoyi Tao

Abstract: The main thrust of this work is developing the basis for a mixed
formulation of turbulence modeling, combining analytical theories
and engineering modeling, which includes second order two-point
correlations of velocity and pressure. Related issues such as the different
outcomes that stem from differently chosen sets of ensemble averaging,
the approximate nature and the advantages and disadvantages of such
a formulation, and the choices of closure schemes are addressed.

Keywords: Closure, averaging Reynolds stress, dissipation.

1. INTRODUCTION

Analytical theories of turbulence, on the one side, deal with multi-
point correlations of velocity restricting themselves to homogeneous
turbulence (Orszag [11], Proudman and Reid [12], Tatsumi [17]). On the
other side, engineering turbulence modeling deals with general turbulent
flows restricting itself to single-point correlations of velocity and pressure
(Launder [7], Rodi [13]). It seems worthwhile to develop a mixed
formulation, combining these two methods, to obtain information on
multi-point correlations of fluctuating velocity and pressure to general
turbulent flows, a formulation that we discuss here.

The importance of multi-point correlations in turbulence, especially
the two-point correlation of fluctuating velocity lies in that
they provide some information on the basic structure of turbulent
motions, such as the various scales of length (dissipative, integral), the
direct interaction between the fluctuations of different positions and
the distribution (transfer) of fluctuation energy on (between) different
eddies (Batchelor [1], Hinze [6]). The mixed formulation contains
the equations governing the two-point correlation of
fluctuating velocity and pressure. In such a formulation, some difficulties
arise, compared with single-point correlation models, which include (i)
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how to model a two-point correlation of three fluctuating velocities
how to prescribe physically sound initial and boundary

conditions for and boundary condition for and (iii) how to
solve the equation in the seven-dimensions space (six for space and
one for time) in which the equations are formulated. Despite these
difficulties, the formulation has great advantages: (i) is obtained
whose importance was mentioned above; (ii) only one quantity,
needs to be modeled; and (iii) the need to prescribe the initial and the
boundary conditions for implies that the formulation may
have wider applicability than single-point correlation modeling since the
latter cannot account for such information.

This formulation is based on ensemble averaging the solutions of
the Navier-Stokes equations under proper conditions to be discussed.
Various sets of solutions can be employed, depending on which pattern
of turbulent flows is to be modeled. For example, a proper subset of
the solutions can be chosen to get a large eddy simulation type model,
or the whole set of solutions can be used to formulate a model without
any fluctuations. In the case of the former, if the filtering scale is very
small, the multi-point correlations may not be necessary and a lower
level model of closure will yield reasonable results like the Smagorinsky
eddy viscosity model for some flows (Smagorinsky [16]). However, in the
latter example, the multi-point correlations are quite important since all
scales of fluctuations are filtered out and the interaction among these
fluctuations need to be taken into account by the correlations.

We will demonstrate that the present formulation is not simply an
extension of analytical theories of homogeneous turbulence. As only

are included to simplify the modeling, some function
may need to be introduced to ensure the divergence-free condition for

due to the incompressibility of the fluid. We will discuss the
approximate nature of such a formulation, with the implication that
an averaged model of general applicability may be out of reach and
models appropriate to different classes of turbulent flows should be
pursued. It will also be self-evident that the present formulation is
not a simple extension of single-point correlation modeling since the
former cannot reduce to the latter without the assumption to handle the
reduction of the dimension of the space where the former is constructed.
We will show that there are several schemes for modeling and
the choice of the scheme depends on whether we emphasize simplicity
or comprehensiveness. Other issues are also to be discussed such as
the consequences of the symmetries of the Navier-Stokes equations,
realizability and molecular dissipation.
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Our main concern at this moment is the basis for the formulation.
A great deal of effort has to be expended yet to construct concrete
models to solve problems.

2. FORMULATION
Suppose that the Navier-Stokes equations can describe the turbulent

motion of incompressible Newtonian fluids in a flow domain (here it
is tacitly assumed whether a physical fluid is a Newtonian fluid or not
is determined by its behavior in laminar states), that is, the velocity u
and the pressure are determined by, together with proper initial and
boundary conditions,

where and are, respectively, the mass density and the kinetic viscosity
of the fluid. Following the standard practice in turbulence modeling of
averaging, we consider the ensemble of solutions to (2.1) and (2.2)
under “the same flow conditions” which are identified with some global
(or large scale) quantities characterizing the flows (Monin and Yaglom
[9]). Next, instead of carrying out the ensemble averaging on we
choose a suitable subset which is to be discussed later, and
introduce the ensemble averaging to define

and the decomposition,

where v is the fluctuating velocity relative to and the fluctuating
pressure relative to Consequently, equations and result
in (Hinze [6])

and
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We now introduce the multi-point correlations such as

which have the following symmetry properties (Proudman and Reid [12])

and

Then, equations (2.7) and (2.8) yield (Hinze [6], Proudman and
Reid [12])

with and
If we take and as the primary field quantities and

model in terms of these primary fields appropriately, we will
find out that there are 14 equations consisting of (2.5), (2.6) and (2.13)
through (2.15), but there are only 13 primary quantities. Therefore, we
may need to introduce a scalar function S with
in to the formulation through equation (2.15), say, according to

Here is the Kronecker delta. We may associate this introduction
of S with the constraint (2.13) in the sense that S is not needed if
(2.13) is not enforced, since we have 13 equations for the 13 primary
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quantities. Therefore S could be considered physically as a force-like
quantity resulting from the constraint (2.13) or a force-like quantity
imposing (2.13) on the averaged field Next, we justify the term S
in (2.16) with the following argument. Assume that

and

where is due to (2.13) and is to be modeled
in terms of those primary fields chosen previously. This treatment
is analogous to the introduction of the hydrodynamic pressure to the
Cauchy stress tensor of an incompressible material. One reason for
modeling is to avoid the need for prescribing

boundary conditions for and also
for keeping the form simple. Now we have

Substituting this relation into (2.15) and dropping the hat we obtain
(2.16). This replacement of with should
not cause any confusion based on the fact that (i) both of the quantities
have to be modeled; and (ii) in case that is constructed under
(2.12), results from (2.17) below and we can take

It is easy to verify that (2.13), (2.14) and (2.16) yield

and

Equation (2.17) shows that S can be solved in terms of and

can occur when the model of meets the constraint (2.12).
This also implies that the introduction of S can be considered as part
of the modeling of

Thus, we have a determinate set of equations for
(and S) consisting of (2.5), (2.6), (2.13), (2.14) and (2.16), provided
that is appropriately modeled in terms of these primary field
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quantities. The approximate nature of this truncation scheme is easily
understood as follows. together with S, though the latter is
determined by the former, is supposed to account for the interaction
between the lower order correlations (the primary fields chosen above)
and the higher order correlations. Here, the modeling of
essentially serves to characterize this interaction through some specific
structure in terms of the lower order correlations, and consequently it
restricts the interaction to some special form, and some information
related to the higher order correlations is left out. For example, a specific
structure of cannot accommodate all the possible initial and
boundary conditions of itself and the higher order correlations because
the structure is assumed to be fixed in terms of those lower order
correlations. And thus the motion is completely determined from the
model as long as proper initial and boundary conditions of the lower
order correlations are prescribed, disregarding any initial and boundary
conditions for the higher order correlations. A possible implication of
this argument is that there may be no one general structure for
which can model optimally all turbulent flows.

Another limitation of the scheme, or any scheme based on averaging in
fact, needs to be addressed, namely what is the class of turbulent flows
for which an averaging scheme can be applied to produce physically
meaningful results. We should restrict the model to flows where the
fluctuation is relatively small, for instance,

(Here, we adopt the convention that the summation rule is suspended
if Greek subscripts are used.) This restriction is physically essential,
otherwise the large fluctuation will make the averaged velocity field
practically useless.

On selecting a set of solutions from on which the averaging
operates, we have two cases in mind. One is the assumption in
standard engineering turbulence modeling, which supposedly smoothes
out the fluctuation of all scales so that the resultant averaged equations
are not of a chaotic nature. The other deals with a proper subset of
For the sake of demonstration, let us choose a length scale l, much
smaller than the characteristic length of and a subset of whose
members display almost the same flow structures on the scales larger
than l. Then, the ensemble averaging of relation (2.3) on is to filter
out the fluctuations on the length scales smaller than l, under the premise
that contains enough members so that the operation can effectively
smooth the flow details on the scales smaller than l. Therefore we
can, based on this argument, relate this case of averaging to large eddy
simulation (LES) (Ferziger [3], [4]). This formulation has the advantage
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that both the commutativity of the averaging and differentiation and
hold and it is clearly connected to the standard turbulence

modeling of averaging (different subsets of U). Its disadvantage may
be that the fields do not seem to be defined as concretely as those
of LES. In both cases of and each motion
is decomposed into a main flow field and a fluctuating part

the former varies relatively slowly in time and space and the
latter changes rather randomly and rapidly in time and space. The
averaging formulation seeks to reformulate the equations of motion
within the frame of the characteristic time-space scale of the main
flow field. The direct interaction between the fluctuations of different
positions is described by the two-point correlations.

Now we present some justifications for introducing the above two-
point correlation formulation. Firstly, this formulation is an extension
of both the standard engineering turbulence modeling of single-point
correlations and the analytic theory of homogeneous turbulence of multi-
point correlations. Secondly, the model can be closed provided that
the quantity is formulated properly, while s is introduced. The
interaction among fluctuations of different positions and the averaged
velocity field can be characterized through (The field is
affected by through but a nontrivial will influence

directly.) Finally, this two-point correlation model is
much simpler than any formulation involved in higher order correlation
quantities. For example, it follows from (2.7) and (2.8) that

where
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We now have an extended model consisting of equations (2.5), (2.6),
(2.12) to (2.14), (2.16) and (2.20) for and

provided that is properly modeled. We notice that the
divergence-free condition may not be enforced generally

here unless the model of meets some symmetry constraints
or a vectoral function is introduced in (2.20), similar to the previous
introduction of to handle (2.16). This treatment is not needed under
some special form for like, in the case of

as suggested in the scheme of quasi-normal approximation (Proudman
and Reid [12], Tatsumi [17]).1 The advantage of this extended
formulation is that (2.11)2 and (2.12) will be satisfied, which has the
following consequences: (i) can be achieved (see equation (2.17));
(ii) In the case of in homogeneous turbulence we have from (2.16)

with which reflects the fact that in homogeneous turbulence
the mean turbulent kinetic energy is conserved by the non-linear terms
of the Navier-Stokes equations (due to the absence of the correlation
of three velocity components from the equation) and dissipated by
molecular viscosity (Lesieur [8]); (iii) We have from (2.6) and (2.16),

with being an arbitrary control volume in D and N the normal to
This equation shows that the direct effect of on the kinetic

energy of the fluid in can be absorbed into a surface integral term.
The disadvantages, however, include that (i) many more equations,
(2.12) and (2.20), need to be solved which are involved in a high
dimensional space; (ii) the initial and boundary conditions for
and the boundary condition for need to be specified. These
disadvantages will not only cause difficulties to the application of the
model but also cause problems in calibrating the model in the first
place. Certainly, similar disadvantages are also inherent in the two-
point correlation formulation proposed in the present work, compared



A note on turbulence modeling 27

with any one-point correlation model. In the case of one-point
correlation models may be appropriate if the scale l is very small, but
the case of is involved in eliminating all scales of disturbance and
the two-point correlations and are needed to account for the
interaction among different scales of fluctuations, and it is expected that
this two-point correlation formulation is more general and appropriate
than one-point correlation models.

There is no clear scheme for formulating corresponding to S
though the former is supposedly free from any chaotic

behavior and the latter has a characteristic length I. In both cases
should be formulated so that (i) the solutions and of the
model satisfy, from their definitions (2.10) and the Schwartz inequality
(Schumann [14]),

which guarantees the positive (semi)-definiteness of to yield non-
negative fluctuation energy and an estimate of the fluctuation around

and

and (ii) the model is dissipative, that is, the source term in the equation
on has to be a sink due to the molecular dissipation,
which reduces to

in case that (2.11)2 and (2.12) are met. Next, the structure of
has to meet two invariance requirements. One is related to Galilean
invariance: Though is frame indifferent since v can be viewed
as a velocity difference based on the ensemble averaging, whether
such a restriction should be imposed on its modeling is another issue.
Obviously, if we resort to the restriction, we would get a differential
equation on (2.16), which is not frame indifferent, while
is frame indifferent due to the same reason as that for which
is frame indifferent. To avoid such a dilemma, we will merely require
that the model for satisfy the principle of relativity of Galilei
and Newton (Frisch [5], Sedov [15]), which is the very symmetry
possessed by the original equations (2.1) and (2.2); Another invariance
to consider is the scaling invariance possessed by equations (2.1) and
(2.2): , .
that is, if is a solution to (2.1) and (2.2) with the viscosity

then is a solution with the viscosity
(Carbone and Aubry [2], Frisch [5]). This same scaling invariance should
also hold for the quantities from the ensemble averaging. Consequently
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we should not introduce any new dimensional constant, except and
to model Finally, in both cases chaotic motions up to some scale
need to be smoothed out. One way to achieve this is through adopting
a gradient structure for which is motivated by the diffusive
terms of molecular viscosity in the equations; an artificial viscosity
is introduced both to simulate the intensified momentum transfer in
turbulence and to dampen the fluctuation as intended by the averaging.
This scheme has been widely used in turbulence modeling, such as
the Smagorinsky eddy viscosity model in LES (Smagorinsky [16]), the
Boussinesq assumption concerning the Reynolds stress in zero-equation
models and two-equation models and the flux form in Reynolds stress
equation models in engineering turbulence modeling (Rodi [13]). This
treatment, however, is flawed in that the exact corresponding to
the choice just plays the role of redistributing the fluctuation
kinetic energy among its components and so
conserves in homogeneous turbulence (see equation (2.23)). To
remedy this flaw, the model for has to meet both symmetry
conditions of (2.11)2 and (2.12), which will result in too complicated
a structure for that can be demonstrated by considering the
modeling of  as follows. Let be a non-
zero basic form and Then

meets (2.11)2. Next, to satisfy (2.12), we propose

with

in order that we have six equations (2.12) with six undetermined
functions The following special solution of can be
obtained under trivial boundary condition,
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and G is the Green’s function from, under some homogeneous boundary
condition on D,

Then a relation for can be derived from (2.27). One major
problem with this relation is the explicit presence of the Green’s function
G which can be quite difficult to find if the flow domain is not simple
enough. Also, it is not clear what homogeneous boundary conditions for
G need to be adopted. The other problem is that multiple integrations
and differentiations are involved. Thus we have to keep a balance
between the simplicity and the comprehensiveness of the model for

To achieve the simplicity, we may need to allow the presence of
dissipation caused by the artificial viscosity by relaxing the symmetry
constraints, say, by removing This relaxation is formally
allowable by observing that the term

instead of is present in (2.16), always holds
regardless of whether the symmetry condition is satisfied by

or not, since in the symmetry of with respect
to k" and j" is suppressed by the divergence operation, and the
appropriate modeling of should be the primary concern in order
to get reasonable flow fields of

Let us consider a possible model of guided by the constraints
mentioned above. The simple ones are

for and

for with



30 Chen G. Q., Rajagopal K. R., Tao L.

and both and are dimensionless, positive (semi-)definite tensor
functions as

The specific forms of and have to be fixed either directly or
indirectly with the help of the experimental data, under the constraints
of (2.25) and (2.26), the closed model being dissipative. If the data on

can be obtained directly, either by
experimental measurement or by direct numerical simulation, the form

may be found by correlating according to (2.31)
or (2.32). Though it bypasses solving the equations as well as prescribing
the initial and boundary conditions, this procedure does not necessarily
guarantee a proper model for due to the approximate nature
of the model; for instance, depends on then
and the closed set of equations may not yield solutions for
compatible with that directly obtained for To remedy this
flaw, we may propose a form for according to the criterion for
producing reasonable solutions for from the closed model,
instead of focusing on the matching of This scheme can

be used even if is not available. It remains to be resolved how to
evaluate the appropriateness of the model.

3. SUMMARY

We have presented a mixed formulation for turbulence modeling,
a combined version of analytical theories and engineering modeling. The
equations for the two-point correlations and are discussed,
and the related issues are addressed which include the necessity for
introducing the function S, the approximate nature of any specific
turbulence model of averaging, the different outcomes from differently
chosen set of solutions on which the ensemble averaging is based, and
the constraints on modeling to make the equations determinate
such as realizability and the symmetry properties of the Navier-
Stokes equations. We have delineated the appealing side of such
a formulation, and moreover, its disadvantages with regard to simplicity
when compared with models of single-point correlations, like that
involved in working in a higher dimensional space and the difficulty
associated with prescribing initial and boundary conditions for
and the boundary conditions for Future work has to resolve
these problems and computational schemes have to be devised to help
modeling.
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Notes
1. This relation might be derived simply from (i) the properties of such as,

its symmetry with respect to its indices, formally linear in
and so on; and (ii) the assumptions that v is of normal distribution at one point and that

depends on and the like. This relation unfortunately has the flaw of
yielding negative energy spectra in isotropic turbulence at high Reynolds number

with being the dissipation length (Ogura [10], Orszag [11]). One reason for
this failure might be explained by observing that

from (2.22) where the left-hand side is physically expected to be small for large
but the right-hand side can be quite great under large fluctuations especially in homogeneous
turbulence. Based on this observation, we may modify (2.22) to eliminate this flaw.
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REGULARITY FOR NONLINEAR
ELLIPTIC SYSTEMS OF SECOND ORDER

Eugen Viszus

Abstract: There is shown the regularity of the gradient of weak solutions of
nonlinear elliptic systems.

Keywords: Nonlinear equations, regularity, Morrey spaces.

1. INTRODUCTION
In this paper we consider the problem of the regularity of the first

derivatives of weak solutions to the nonlinear elliptic system

where are Caratheodorian mappings from
into R. A function is called a weak

solution of (1.1) in if

As it is known, in case of a general system (1.1) only partial regularity
can be expected for (see e.g. [2], [4], [7]). Under the assumptions
below we will prove regularity of gradient of weak
solutions for the system (1.1) whose coefficients have the
form

Here is a matrix of functions, the following condition of strong
ellipticity

holds and are smooth functions with sublinear growth in z.
In what follows, we formulate the conditions on the smoothness and the
growth of the functions and precisely.
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Such result may open a way to prove BMO-regularity of gradient.
In [3] the first author has proved - regularity of gradient of
weak solutions to (1.1) in the situation when the coefficients . are

continuous. In this paper the coefficients are discontinuous in
general.

If we want to sketch our method of proof, we have to say that its
crucial point is the assumption on (for
the definition see below). Taking into account higher integrability of
gradient Du we obtain regularity of gradient.

2. NOTATIONS AND DEFINITIONS

We consider bounded open set with points
is a vector-valued

function, we use the summation
convention over repeated indices. The meaning of is that the
closure of is contained in i.e. For the sake of simplicity we
denote by and (.,.) the norm and scalar product in as well as in
and If and r is a positive real number, we denote

i.e., the open ball in
Denote by the mean

value of the function over the set where
is the n-dimensional Lebesgue measure of Beside the usually
used space Holder spaces

and Sobolev spaces (see,

e.g., [6]) we use the following Morrey spaces.

Definition 1. Let A function is
said to belong to if

Remark. iff for each
For more details see [2], [4], [6] and [7].

The generalization of Campanato spaces are the classes
introduced by Spanne [8].

Definition 2. A function is said to belong to
if
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and by we denote subspace of all such that

as where
Some basic properties of above mentioned spaces are formulated in

the following proposition (for the proofs see [1], [2], [6] and [8]).

Proposition 1. For a domain of the class we have the
following

(i) is isomorphic to the

(ii) and then

(iii) is a Banach space with norm

(iv) and

are not empty.

(v) For and
set

Then we have for each

3. MAIN RESULTS
Suppose that for all the following conditions

hold:
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where L, are positive constants, _ , _ _
We

put

Theorem. Let be a weak solution to the system
(1.1) and the conditions (1.2), (1.3), (3.1), (3.2) and (3.3) be satisfied.
Suppose further that .

Then for and in the case

where is an arbitrary.

Corollary. Let the assumptions of Theorem be satisfied.
If then

Proof. It follows from Proposition l(ii).

4. SOME LEMMAS
In this section we present the results needed for the proof of Theorem.

In we consider a linear elliptic system

with constant coefficients for which (1.3) holds.

Lemma 1. ( Let be a weak solution
to the system (4-1)- Then for each

holds.

Lemma 2. ([4]) Let be a nonnegative
function and let A, B, C, a, b be nonnegative constants. Suppose that
for all and all

holds. Further, let be such that
Then

where sup
The following Lemma is the special case of Lemma 3.4 from the

paper [3].

Lemma 3. ([3], pp.757–758) Let
and (3.1) and (3.2) are satisfied with
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(i) Then and for each ball we have

where , diam
and

(ii) For each and all

Here diam
for and is an arbitrary for

Proof. For the proof (i) see [2], pp. 106-107. According to (3.2) it
follows that

By Young inequality we obtain

for each and (4.3) easily follows.
In the following considerations we will use a result about higher

integrability of gradient of weak solution of the system (1.1).

Proposition 4. ([4], p.138) Suppose that (1.2), (1.3), (3.1)–(3.3) are
fulfilled and let be a weak solutions of (1.1). Then
there exists an exponent such that Moreover
there exists constant and such that for all
balls the following inequality is satisfied
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5. PROOF OF THEOREM
Let be an arbitrary ball and let

be a solution of the following system

for all It is known that under the assumption
of theorem such solution exists and it is unique for all is
sufficiently small).

We can put in (5.1) and using ellipticity, Hölder and Sobolev
inequalities we get

Taking into account the properties of matrix Proposition
1(v), Proposition 4 with and Hölder inequality we
obtain
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To the estimate the last integral in above inequality we use Proposition
4 and we get

where

We can estimate II and III by means of Lemma 3 (with and we
have

where
min because

The function is the solution of the
system

for all Prom Lemma 1 we have for

By means of (5.2) and (5.3) we obtain for and
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For the above inequality is trivial and we obtain for all

where the constants and depends only above mentioned parameters.
Now from Lemma 2 we get the result of the following manner. If we

put and

we can choose such that  (in the case
we have where is from Lemma 3(ii)). It is

obvious that the constants exist such that
and then for all the

assumptions of Lemma 2 are satisfied and therefore

If Theorem is proved. If the previous procedure can be
repeated with in Lemma 3. It is clear that after a finite number
of steps (since increases in each step as it follows from Lemma 3) we
obtain
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ON THE FREDHOLM ALTERNATIVE
FOR NONLINEAR HOMOGENEOUS
OPERATORS

Pavel Drábek

Abstract:  In this paper we discuss some issues concerning the generalization
of the Fredholm alternative for nonlinear operators. We deal with
both nonresonant and resonant cases which makes the situation fairly
subtle. That is why we restrict ourselves on the case of one dimensional
p-Laplacian.

Keywords: Nonlinear Fredholm alternative, p-Laplacian, eigenvalues, solvability,
resonance.

1. INTRODUCTION
In this paper we want to discuss some aspects of the generalization

of the Fredholm alternative for nonlinear operators. One of the first
attempts to give a systematic treatment of this issue was done by

and his pupils and collaborators Svatopluk
and Vladimír in their book [FNSS] in early seventies. It

follows from their very general results that if we drop the linear structure
of the operator a lot of properties connected with the geometry of its
range (and also the spaces considered) are lost or modified. The situation
appears to be so complicated that in order to illustrate some of these
phenomena we have to restrict our attention to a very special class of
nonlinear operators.

Namely, we restrict ourselves to the second order o.d.e. operator
where is a real number. This is one dimensional

analogue of the p–Laplacian which is frequently
mentioned in many nonlinear mathematical models arising in various
applications. From the theoretical point of view this (in general non
additive for operator plays a special role because it preserves
homogeneity of order p – 1. This is very important because even if we

Applied Nonlinear Analysis, edited by Sequeira et al.
Kluwer Academic / Plenum Publishers, New York, 1999. 41



42 Drábek P.

loose linear structure of the operator for we “stay not too far”
from it for

The purpose of this paper is to illustrate that on one hand the operator
has very similar properties for and but on

the other hand to show that the case is singular in some sense.
The former case concerns the structure of the spectrum of nonlinear

eigenvalue problem

It was proved that the set of all eigenvalues of (EP) and the properties
of the corresponding eigenfunctions are very similar for any

The latter case concerns the fact that the structure of the right hand
sides f of the problem

where being an eigenvalue or not), as well as the number of
solutions to (RP), depend strongly on the fact whether or not.

This paper is organized as follows. In section 2 we summarize the
properties of all eigenvalues and eigenfunctions of the eigenvalue problem
(EP). In section 3 we discuss existence and multiplicity of solutions to
the problem (RP) for not an eigenvalue of (EP). We also point out
some geometrical properties of the energy functional

associated with (RP). The last section 4 is devoted exclusively to the
case (the principal eigenvalue of (EP)). In this case the striking
difference between and is shown. This difference concerns
not only the structure of all right hand sides  f for which (RP) is solvable,
but it clarifies also the role of the conditions and in
apriori estimates of the solutions as well as in the geometry of the energy
functional

This is a survey paper where the author was intended to summarize
the research motivated by Professor J. more than twenty years
ago. The author would like to express his gratitude to all his
collaborators (Y. X. Huang, P. A. Binding, P. M. del Pino,
R. Manásevich) and to the following grants for the support during the
work on this issue: the Grant Agency of the Czech Republic, grant

201/97/03595, the Ministery of Education of the Czech Republic,
grant  VS97156, NATO Collaborative Research Grant OUTR. CRG
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961190, FONDAP de Matemáticas Aplicadas (Chile), the University of
Calgary and the University of Rostock.

2. NONLINEAR HOMOGENEOUS
EIGENVALUE PROBLEM

Let us consider eigenvalue problem

with a spectral parameter Define

Then and it was shown for instance in [DEM] that the set of all
eigenvalues of (2.1) (i.e. the set of all values of for which (2.1) has
a nonzero solution) is given by the sequence

The set of eigenfunctions associated with corresponds precisely
to that of constant multiples of the function where is the
solution of the initial value problem

which for can be described implicitly by the formula

Furthermore, this function satisfies

and can be uniquely extended as a periodic function on the whole
The set of eigenfunctions associated with are

then constant multiples of the function
For and setting
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we have the validity of formulas

These formulas fit with corresponding well known formulas for

Also the properties of eigenvalues

and eigenfunctions equidistant nodes in (0,1),
validity of formulas (2.3), etc.) for general are similar to those
already known before for

Let us conclude this section by mentioning the paper of [N],
where the eigenvalue problem of the type (2.1) was studied. Actually,
the problem considered in [N] is more general (non autonomous) and so
the results concerning the structure of the eigenvalues and associated
eigenfunctions are not so accurate. The problem (2.1) was then studied
by Drábek [Dl], [D2] and Otani [O] where more accurate results were
proved using autonomy of the equation in (2.1). The work of del
Pino, Elgueta and Manásevich [DEM] provided then a very nice and
transparent description of the eigenvalue problem (2.1) based on the
generalization of “sin” function given implicitly by (2.2).

3. NONRESONANCE FOR THE
P–LAPLACIAN

In this section we study the nonlinear boundary value problem

and associated energy functional

where is not and eigenvalue of (2.1)
For simplicity we shall deal with and the solution of (3.1)

will be such a function for which and
u satisfies the equation and the boundary conditions. It is not difficult
to show that the critical points of are in one to one correspondence
with the solutions of (3.1).

Due to the variational characterization of
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where minimum is taken over all nonzero elements of and due

to the monotonicity of the operators
defined by

(here is the duality pairing between and
it is easy to prove that for the energy functional has unique

minimizer in for arbitrary In particular, it
follows from here that given arbitrary , the problem (3.1) has
unique solution. So from this point of view, the situation is the same for

and
The case is different. It is well known that for

and for any the problem (3.1) has
unique solution, which follows e.g. from the Fredholm alternative.
Let us consider now and Due to the variational
characterization of given by (3.3) the energy functional is still coercive
but the monotone operators A and B “compete” because of the positive
sign of While in the linear case this fact does not affect
uniqueness, for the following interesting phenomenon is observed.
There exist functions  has at least two critical

points. One of them corresponds to the global minimizer of on

(which does exist due to and the other is a critical
point of “saddle” type. As an immediate consequence we obtain that
for certain the problem (3.1) has at least two solutions.

The examples which illustrate these facts were given by Fleckinger,
Hernández, and deThélin [FHTT] for and del Pino,
Elgueta and Manásevich [DEM] for The result was generalized
for general by Drábek and [DT].

As a summary of this section we point out that in the nonresonant
case for the p–Laplacian we observe a lack of uniqueness for (3.1) with
certain f when This makes the nonlinear case qualitatively very
different from the linear one.

4. RESONANCE FOR THE P–LAPLACIAN

The case in (3.1) is even more interesting and
challenging. We shall restrict ourselves to i.e. we study the
nonlinear boundary value problem
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where is the principal eigenvalue of (2.1).
For this problem reduces to the simple linear problem

whose solvability is fully described for instance by the linear Fredholm
alternative. Namely, (4.2) is solvable if and only if

In such case, the solution set is a continuum constituted by a one–
dimensional linear manifold. Needless to say, such a nice characterization
uses the underlying linear structure of the problem (4.2) in essential way.

It is natural to ask what is the role, if any, of the corresponding
analogue of (4.3) for general i.e.

In fact, for instance it is shown in del Pino and Manásevich [DM] that
no solution to (4.1) exists in the case case in which
of course condition (4.4) is violated. However, in Binding, Drábek and
Huang [BDH] an example is constructed which shows that (4.4) is not
necessary for the existence of the solution to (4.1). This observation was
refined by del Pino, Drábek and Manásevich [DDM] in the following way.

Theorem 4.1. Then there exists an open cone
such that for all problem (4.1) has at least two solutions.
Moreover,

for all

So, if the situation is completely different from the linear case.
On the other hand, as it follows from [DDM], satisfies

the orthogonality condition (4.4), linear in nature, then it is sufficient for
solvability of (4.1) for any In other words, the set of f´s for which
(4.1) is solvable contains at least the linear space of all functions
satisfying (4.4). More precisely we have

Theorem 4.2. Let us assume that satisfies
condition (4.4). Then the problem (4.1) has at least one solution.
Moreover, if then the set of all possible solutions is bounded
in
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We observe that also Theorem 4.2 reveals a striking difference between
the cases and since in the latter case the solution set is an
unbounded continuum.

A by product of the proof of Theorem 2 is the fact that the degree
of the associated  operator with respect to a large ball in

becomes if while it equals if
Let us consider on the energy functional

associated with (4.1). Assume that (4.4) holds. In case this
functional is bounded from below and it achieves its minimum in every
solution of (4.1). The set of all solutions to (4.1) forms linear unbounded
continuum in In case the situation is completely
different. The following result is also proved in [DDM].

Theorem 4.3. Assume that and f satisfies (4.4).
Then

(i) for the functional is unbounded from  The set
of its critical points is nonempty and bounded;

(ii) for the functional is bounded from below and has a global

minimizer. The set of its critical points is bounded, however
does not satisfy the Palais – Smale condition at the level 0.

Let us emphasize that changing p from to the following
qualitative change of occurs. The structure of shifts from
a saddle–point geometry to a global minima geometry for its level
sets. The “singular value” corresponds to a convex functional
with a whole ray of minimizers. These facts open an interesting issue
concerning the geometry of and the structure of Poincaré-
type inequalities.
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EXISTENCE OF SOLUTIONS
TO A NONLINEAR COUPLED
THERMO-VISCOELASTIC CONTACT
PROBLEM WITH SMALL
COULOMB FRICTION

Christof Eck,

Abstract: The solvability of a coupled thermoviscoelastic contact problem with
Coulomb friction is investigated. The heat generated by friction is
described by a boundary term of quadratic order. The tensor of thermal
conductivity is dependent on the temperature gradient and satisfies
a certain growth condition.

Keywords: Dynamic contact problems, Signorini contact condition, nonlinear heat
equation, viscoelasticity, Coulomb law of friction, existence of solutions.

1. INTRODUCTION
The investigation of contact problems with Coulomb friction started

from an idea of to prove the existence of its solutions via the
regularity of the solution of some approximate problem, [9]. This idea
was also employed in the first existence results in dynamic contact
problems derived for a viscoelastic body and a rigid undeformable
support with a Signorini condition formulated in velocities, [5], [6].
As the friction represents an important heat source, the aspect of
heat conduction and heat deformation must be included into the
investigation. In [3] the linearized system of equations was treated.
The linear character of the heat conduction equation forced us to
limit there the growth of the heat generated by friction by a linear
term. In the present paper the existence of a solution for a frictional
thermoviscoelastic contact problem including the full quadratic growth
of the heat generated by friction is proved for the first time. For
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the viscoelastic material we employed the nonlinear constitutive law
investigated in Ne  as works [8], [10] and [11].

In the paper we use the standard notation and

for isotropic Sobolev-Slobodeckii spaces with and
If the first and second index corresponds to the time

and the space variables, respectively. The spaces with range in are
denoted by bold letters.

2. DESCRIPTION OF THE PROBLEM

We consider a body occupying in some reference configuration the
domain of dimension or with a Lipschitz boundary

composed of the three measurable, mutually disjoint parts and
Let be the considered time interval of the problem, let

denote the time–space domain and let
be its lateral boundary consisting of the parts for

For we shall denote and analogously
The problem studied here consists of a dynamic contact problem

with Coulomb friction coupled with a heat conduction equation. The
contact problem is given by the set of relations

Here and in the sequel, the summation convention is employed. By we
denote the derivative of a function v with respect to the space variable

The respective time derivatives are denoted by dots. By u and
we denote the displacement field and the temperature, respectively. The
strain–stress relation is given by a linear thermoviscoelastic law of the
Kelvin–Voight type,

with The tensors and are

assumed to depend Lipschitz–continuously on the space variable and
shall be symmetric, i.e. as well as bounded and
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elliptic, i.e.

for all symmetric tensors with constants
The tensor of thermal expansion shall be symmetric,

Lipschitz with respect to the space variable and globally bounded.
Moreover, n denotes the outer normal vector of the boundary,

the components of the boundary traction; the subscripts n and
t denote the normal and tangential components of the corresponding
vectors. In particular, we have and
Observe that the Signorini condition (the first row of (2.4)) is formulated
in velocities.

The temperature field satisfies the heat conduction problem

The tensor of thermal conductivity is assumed to be symmetric and
to depend locally Lipschitz–continuously on the temperature gradient
such that it satisfies the growth condition

the strong monotonicity

for each and the continuity relation

for strongly in An example for such a matrix-
valued function is with the Kronecker
symbol and measurable functions and such that
0,1, for some positive real constants In equation (2.7), the
quadratic term describing the generation of heat by the viscosity (cf. [13])
has been neglected. Both the heat generated by friction and the heat
exchange of the contact surface with the foundation is included into
(2.10).
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The variational formulation of the problem is given as follows. The
sets of admissible functions for the viscoelastic equation of motion and
the heat equation, respectively, are given by

A weak solution of the thermoviscoelastic contact problem is a pair of
functions with which
satisfy the initial conditions and
such that the variational inequality of the contact problem and the
variational equation of the heat conduction problem are simultaneously
satisfied. For a measurable set S let denote the generalized
scalar product. Then the variational inequality of the thermoviscoelastic
contact problem is given by

for all with the bilinear forms of elastic and viscoelastic energy

The variational equation of the heat conduction problem is defined by

for all
The existence of solutions is proved in two steps: Using the penalty

method, the contact problem (2.18) is replaced by an approximate
variational inequality of the normal–compliance type. The existence
of solutions to this problem is proved via a fixed point approach. In the
second step we verify the convergence of solutions of the approximate
problem to a solution of the original thermoviscoelastic contact problem.

3. APPROXIMATE  CONTACT PROBLEM
Replacing the contact condition in (2.4) by the nonlinear boundary

condition
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we arrive at the following variational inequality:
Find a function u with and such

that for all there holds

Here, the temperature field has been replaced by some given
temperature In the heat equation only the definition of the
term describing the generation of heat by friction is changed; instead
of there appears A solution of the coupled
problem consisting both of the contact problem (3.1) and of the modified
heat conduction problem (2.19) can be constructed as a fixed point:
Let be a fixed temperature field. Then the solution of
problem (3.1) with defines a displacement field with

Solving the heat conduction problem with
we obtain a function If the problems

(3.1) and (2.19) are uniquely solvable, then by this procedure an operator

is defined and a solution of the approximate thermoviscoelastic contact
problem is given by a fixed point of this operator and the corresponding
solution u of the contact problem. In order to prove the existence of such
a fixed point, we apply the fixed point theorem of Schauder, cf. [15]:

Theorem 3.1. Let be a Banach space, be a bounded, convex,
closed subset and be a completely continuous mapping from
C into C. Then there exists at least one fixed point of in C.

Let us start with the investigation of the solvability of the approximate
contact problem. In this section, all constants may
depend on the geometry of the domain on the given tensors

and and on the given data but neither
on the function nor on the solution of the problems to be
solved. Some of the constants may also depend on the penalty parameter

this is then explicitly indicated by

Proposition 1. Let be a fixed temperature field.
In addition to the assumptions concerning the regularity of the domain
and the coefficients of the tensors and let

and
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Let the compatibility conditions _ and on be
satisfied. Let the coefficient of friction be bounded and nonnegative.
Then the approximate contact problem (3.1) has a unique solution which
satisfies the a–priori estimates

The solution u depends continuously on the temperature: if and
are two solutions with corresponding temperature fields and
then

Proof. All of the assertions have been proved in [3], see Proposition 1,
except the boundedness of This is proved by the

standard shift technique with respect to the time variable. For simplicity
let us assume that variational inequality (3.1) is defined on the whole
time axis . This can be achieved by a suitable localization
technique, see. e.g. [6]. For a function g(t,x), let
denote the shift with respect to the time variable and
the corresponding difference. We put the test function into the
variational inequality, then we shift the inequality into the direction q
and put the test function into the shifted inequality. Then we

add both inequalities, multiply the result with and integrate with
respect to q. Using the technique described in [6], the inequality

is obtained. This and the localization technique yield estimate (3.4).
For the heat conduction problem (2.19) the following existence result

is valid:

Proposition 2. Let be
a fixed displacement velocity and let the assumptions mentioned above
concerning the regularity of the domain and the properties of the tensor
of heat conduction be valid. In addition, the Dirichlet part of
the boundary for the heat equation shall have positive measure. Let
the tensor of thermal expansion be bounded and symmetric. Let,
moreover, the coefficient of heat exchange K and the coefficient of
friction be bounded and non-negative. Finally, let Then
problem (2.19) (with replaced by has a unique solution
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which satisfies the a–priori estimate

for each The mapping is strongly continuous from

Proof. The existence of solutions is proved by the usual Galerkin
method. Set let be an increasing

sequence of m–dimensional subspaces such that is dense in

(its existence is ensured by the separability of and

for an basis Then, via the standard
proof of the density of card in

and the easy approximability of functions from by elements from

we can see that is dense in A Galerkin solution

of the heat conduction problem is a function from which satisfies
for all test functions and almost every the Galerkin
equations

and the initial condition Equation (3.7) is equivalent to
a system of ordinary differential equations. According to the well–known
existence theorem about the Carathéodory solutions, this system has
a solution. If we integrate the Galerkin equation (3.7) in time over

with any and the test function employ the
monotonicity (2.13) of the tensor as well as the equivalence of the
norms and we derive the estimate

Due to the trace theorem and continuous embedding theorems there
holds for dimension and



56 Eck C., Jarušek J.

With the help of suitable Hölder
inequalities we obtain

hence

with independent of m, and Consequently,
there exists a sequence converging to and a corresponding
sequence of solutions to the Galerkin equations such that
in and i = 1, . . . , N,

with certain limits Moreover, from (3.7) and (3.8)

it follows that  is bounded. Hence by a standard
diagonal method we obtain a functional and a subsequence indexed
by again such that for any there holds
Clearly, and is linear there. Hence
A and its norm in is bounded by It is standard to
show that Passing to the limit we prove that is
a solution of the equation

It remains to prove Therefore we first investigate
the regularity of and with respect to the time variable. For

we put the test function into
the Galerkin equations at time we multiply the result by
with a parameter and integrate the result both with respect
to from to and with respect to over Then we
obtain the equation

After performing the integration with respect to one observes that
the left hand side of this equation is equivalent to the square of the
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seminorm of in the space On the right hand side
there are expressions of the type

Such expressions are bounded by with a constant
independent of f and g if Hence we obtain the estimate

This implies that is bounded uniformly with respect to m in
for all Interpolation with gives

This space is compactly embedded
into for a suitable choice of As a consequence, the
sequence mentioned above has an appropriate subsequence, denoted
by again, which converges also strongly in to the limit

From the inequality

there follows strongly in With this strong conver-
gence we are able to verify In fact, from the mono-
tonicity condition (2.13) we derive lim inf

Employing both the Galerkin equation for and the
equation (3.9) for we obtain lim sup

Therefore we have lim

and from the limit in the monotonicity equation

there follows that the convergence is in fact strong in
As a consequence

strongly in and The a priori estimates (3.8)

and (3.10) are also valid for the limit what proves estimate (3.6).
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In order to prove uniqueness, we assume that there are two solutions
of the heat equation with the same velocity field Let

denote the difference and let a test function be
defined by Putting into the
equation with solution putting into the equation with solution

and adding the results we arrive at the inequality

valid for any parameter For dimension the space
is embedded into and is embedded

into hence from the previous equation there follows with the
application of the Gronwall lemma the equation for all

The continuity of the mapping is seen as follows: Let
be a sequence of displacement velocities converging to strongly in the
space and let be the sequence of corresponding solutions
of the heat conduction problem. Since these solutions are uniformly
bounded in there exists a weakly
convergent subsequence with limit As in the proof of the convergence
of the Galerkin solutions above it is seen that is a solution to the heat
equation with corresponding displacement velocity field and that the
convergence is in fact strong in The solution

is unique, hence every convergent subsequence of has this limit.
Due to the interpolation inequality

valid for the strong convergence in follows.
With the help of Propositions 1 and 2 the existence of solutions to

the approximate thermoviscoelastic contact problem can be formulated
as follows:

Proposition 3. Let the assumptions of Propositions 1 and 2 be valid.
Then the thermoviscoelastic contact problem (3.1), (2.19) has a solution

which satisfies for all the a-priori estimate
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Proof. We must verify that the mapping defined in (3.2) satisfies the
assumptions of Theorem 3.1. Let and let

with be the convex closed subset. If then, according
to the estimates (3.3) and (3.6), the image satisfies the
inequality

Moreover, due to inequality (3.10) there holds

with the solution of the approximate contact problem (3.1) to the
temperature field . From the previous estimates and inequality (3.3)
we derive

with constants and independent of and R. Hence
there exists a value such that  maps C(R) into itself. Due to the
continuity results of Propositions 1 and 2 the mapping is continuous
in Moreover, combining the a priori estimates of Propositions 1 and
2 we see that maps bounded subsets of into bounded
subsets of hence is completely continuous.
According to Theorem 3.1 possesses a fixed point in The a priori
estimate (3.11) follows from the inequalities (3.12), (3.3) and (3.6).

4. EXISTENCE OF THE SOLUTION TO THE
THERMOVISCOELASTIC CONTACT
PROBLEM

The existence of solutions to the original contact problem is proved by
the investigation of the limit of the penalty parameter. Therefore
it is necessary to have a priori estimates uniform with respect to the
penalty parameter. For the contact problem such an estimate has been
derived in [3]:

Proposition 4. In addition to the assertions of Proposition 1 we

assume and

The coefficient of friction shall depend on the space
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variable such that supp
for some Moreover, shall be uniformly bounded by the constant

given in [6], Proposition 3.1 and formula (4-23) for anisotropic
material and in [4] for isotropic material in two  Then the
solution to the approximate contact problem (3.1) satisfies the inequality

with and constants independent of
and

With the help of this Proposition it is possible to derive uniform esti-
mates for the pair of solutions of the coupled thermoviscoelastic
contact problem.

Proposition 5. Let the assumptions of Propositions 2 and 4
be valid. Then the temperature field of the solution

of the coupled approximate contact problem (3.1), (2.19) satisfies the
inequality

for all and all with dependent on the given data but
neither on the solution nor on the penalty parameter

Proof. The usual a priori estimate of the heat equation (2.19) yields

with such that for The constants
i = 46 , . . . employed here and in the sequel are independent both of
the investigated solutions and of the penalty parameter The estimate

1For anisotropic material this constant is given by

with where and are

the constants of ellipticity and boundedness of the viscous part from formula (2.6).
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(3.10) can be easily modified to

The previous two estimates together with (3.3) lead after some
calculation to the inequality

valid for an appropriate independent of the penalty parameter.
From the trace estimate valid for all

and from the interpolation estimate

it is possible to derive

(4.4)

This together with the a priori estimate (3.3) of the contact problem
yields

The norm can be estimated with the help of
suitable embedding theorems by

for any Now we use the interpolation inequality

valid for all with and
This inequality is proved in [14], Theorem l(d) in Section

2.4.2, relation (7) in Definition l(d) on page 169 and Remark 2 on page
185 for arbitrary for , its generalization for M with
boundary is included into that book, too. The validity can be extended
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both to and to its boundary by the usual localization
technique and straightening of the boundary, provided and

Employing this interpolation result for
and with an arbitrarily small

and the usual trace theorem, we obtain

The parameter is the solution of the equation

and It holds with for
Hence we obtain

The estimate of is more complicated. The embedding
theorem and the trace theorem for Sobolev spaces yield for arbitrary

This gives

with , Now, we use the interpolation inequality (4.5) with
and and the Holder inequality

with and Here shall be valid; this is

equivalent to Then we obtain



Nonlinear thermoviscoelastic contact problems with friction 63

with which must be positive. Choosing
the values and some it follows

for all with and the estimate is done. We insert this
estimate into (4.6) and then both (4.6) and (4.4) into (4.3) and then,
after use of the interpolation

which is valid for we arrive at the estimate

Here, can be arbitrarily small, therefore an easy Hölder inequality
yields

arbitrarily small.

Hence, and then using (4.7) we

obtain (4.2). Therefore the proposition is proved.
From the inequalities (4.1) and (4.2) we can derive that there exist

sequences and such that
and strongly both in and in for any

in and in

and strongly both in  and in for
Regarding these convergence properties we can prove the convergence in
the energy term like in the proof of Proposition 2
and, in particular, the strong convergence of in
Passing to the limit in the variational inequality (3.1) with
test function and in the penalized version of variational equation
(2.19) for test functions therefore shows that the limit
functions solve the original non-smoothed problem (2.18), (2.19)
for all test functions and The estimates (4.1)
and (4.2) remain valid for the limit functions and Using appropriate
embedding theorems it is possible to verify that the linear functionals

and are bounded in the
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dual space of Since is dense in we see
that variatiorial equation (2.19) is satisfied for all test functions

Let us collect the assumptions for the final result derived above:

Assumptions:           is a bounded domain with a boundary of the
class consisting of the measurable parts and with

The time interval is given by with

The given data satisfy the properties
on

and

The coefficients and are symmetric, depend
Lipschitz–continuously on the space variable, are globally bounded and
satisfy the conditions (2.6), (2.12), (2.13) and (2.14). The coefficient of
friction is nonnegative, bounded by the constant and vanishes outside
the set for some as in Proposition 4. The coefficient K in the
heat exchange is non-negative and belongs to

Theorem 4.1. Let the assumptions collected above be valid. Then the
thermoviscoelastic contact problem with Coulomb friction (2.18), (2.19)
has at least one solution.

Remark. The assumptions of vanishing initial conditions
and Dirichlet–conditions on is not essential here. The result
is also true for  data and on

with and The changes
in the proofs are not substantial. For simplicity of the presentation we
have omitted this case.
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ON SOME GLOBAL EXISTENCE
THEOREMS FOR A SEMILINEAR
PARABOLIC PROBLEM

Yuri Vladimirovich Egorov, Vladimir Alexandrovich Kondratiev

Abstract: Some conditions are obtained sufficient for solutions to a non-linear
parabolic equation of second order with non-linear boundary conditions
to be bounded or to tend to infinity at a finite time.

Keywords: Parabolic equations, semilinear boundary value problem, blow-up.

Let be a bounded domain in with a smooth boundary Set
Consider

the boundary value problem

where

is the outer normal unit vector, are increasing smooth
non-linear functions, positive for positive tending to as

We suppose that the coefficients are smooth enough
and the solution to the problem (l)-(3) can be extended for all or
until the moment T when sup becomes equal to In particular,
we assume that on We are interested in the
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study of the asymptotic behavior of the classical solution as or
as in the case of explosion.

A function is said to be a classical solution in if is
bounded and uniformly continuous in the functions
are continuous in A global solution is a function, denned in whose
restriction to is a classical solution for any The existence of
the solution to the considered problems can be usually proved locally,
on a finite interval of T. We use in this paper the term “blowup” as
a pseudonym for “global nonexistence”, i.e. “a solution blowups” means
that the maximal interval of its existence is bounded.

The following theorems generalize the results of H.A. Levine,
L.E. Payne [3], W. Walter [4], J. Esher [5], J.L. Gómez, V. Márquez,
N. Wolanski [8], M. Chipot, M. Fila, P. Quittner [9], P. Quittner [10],
authors [11] and others.

Theorem 1. Suppose that Let
be continuous, positive functions for    Let

the functions be increasing for Assume
that there exists a unit vector and two positive constants A
such that

Let be so small that on Let for

Then there exist a and a positive function continuous in
for and tending to infinity as such that

for any classical solution of the problem (1) – (3) in satisfying
we have in and

Proof. It suffices to prove that there exists a positive function
satisfying the conditions
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continuous in and tending to infinity as
The function constructed in below depends only on  f, g and
the diameter of   .

We are looking for the function v in the form

where

where c is such that in is a solution to the
equation

where is a positive constant.
Assume at first that Then is defined for all

Let h satisfy the relation

Then h(t) is defined for all for We have

in the value will be indicated in below.
On the other hand,

Remark that the above stated inequalities are valid for the functions
if 0 By the maximum principle,

the condition implies the relation

in for
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On the other hand, the function h is such that

Here we have used the substitution Now we obtain the result,
since the last integral converges as We can put

where
If the integral is convergent, then the function is

defined for and The function is defined
for and Therefore, the function
h(t) is defined for the function is defined
for and

Then the rest of the above proof goes through.

Corollary 1. Let
Then there exists

a constant such that all solutions of the problem

blow-up if

Theorem 2. Let Let  f(z),
g(z), be continuous, positive functions for z > 0. Suppose that
there exists A > 0 such that

Suppose also that there exists a function such that
in and on Suppose that there

exists such that

Let

in
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Put where
If the function

is decreasing for and

then the solution to the problem (1) – (3) can be defined for all
Moreover, there exists a function continuous in such
that for any classical solution of the problem (1) – (3) satisfying

with the relation

holds in The function depends only on f, g, and
If there exists such that

then all solutions of the problem (1) – (3) are bounded.

Proof. Let the function be the solution to the problem

where is a positive constant.
Let at first Then the function is defined for

and grows monotonically at infinity. Moreover, is also
monotone. Put now

where and Then

Moreover,

in Q.
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Let the function h be the solution to the Cauchy problem

Then

in for Now if is determined for a given solution in such
a way that

in
then by the maximum principle the function is an
upper bound for Therefore, the function has
the properties stated in Theorem 2.

If then the function is defined for
and grows monotonically to infinity as The function h is defined
as above and for Then for

and the first statement of Theorem 2 is proved.
Let the condition (8) be fulfilled. Let Then

for where is such that Set

Now put

for and

for
Then

for all and the rest of the above proof goes through.

Corollary 2. Let
and and

Then all solutions of the problem (5) – (7) are defined for all
and are bounded.

Theorem 3. Let be a positive solution to the problem

in
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and

Then there exists such that

lim sup

Proof. Put

Then and We have

in

on

in

Put

Then

Therefore,

The function in the right-hand side tends to when
Therefore, there exists such that Then there exists

such that and therefore •

Corollary 3. Let

Then all positive solutions of the problem blow-up at some finite
moment of t.
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Consider now the boundary value problem As we saw before,
all solutions u satisfying the condition

with a sufficiently large constant are blowing-up at a finite
moment if At the same time, if then by Theorem 3
all solutions are blowing-up if just . Now we can
precise this result:

Theorem 4. If and the constant b/a is large enough,
then all solutions of the problem are blowing-up if

This theorem generalizes the results of W. Walter [4], M.Chipot,
M.Fila, P.Quittner [9], P.Quittner [10], and some others in the spirit
of H.Fujita, see [1], [2], [7].

In particular, in [9] it is shown that for small values of the constant
b/a the stationary problem

admits non-trivial positive solutions, so that the solution of the problem
(5)-(7)with positive initial data  can tend to one of them as

Our proof is based on the following lemma of S.Kamin, L.A.Peletier,
J.L.Vazquez ( see [6], Lemma 3.1, p.608).

Lemma 2. Let u be a positive solution of the equation (5) bounded in
Q. Then there exists a positive constant C such that

where d(x) is the distance of the point x from
Therefore, for any and we

have

where the constant depends on p, n and

Proof of Theorem 4. Consider the integral

Since we have by Lemma 2 that
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and therefore,

and we have a contradiction as

Other our result is concerning the solutions of the equation

satisfying the boundary condition

We suppose that the functions f and g are
positive increasing.

As we showed before, the solutions of the problem (10), (11), (7) are
blowing-up at a finite time, if

We show that this condition is sufficient for explosion even if the
boundary condition (11) is fulfilled on a part of only.

Theorem 5. Let be a part of having positive Hausdorff
(n – 1)-measure which is a smooth connected (n – 1)-dimensional
manifold and u be a positive classical solution of (10) satisfying the
boundary condition

Let the function g(u)/u be increasing and tending to as

Let also

and

If and H is large enough, then there exists a positive
such that

Moreover, for any there exists a constant H such that the
explosion happens before if
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Let meas Let be a smooth (n – 1)-
dimensional manifold containing in such that serves as a smooth
boundary of a domain Our proof uses the following lemmas.

Lemma 3. There exists a positive constant k and a positive in
function satisfying the equation

such that on and on
This function is larger than a positive constant on

Proof. Put

Evidently, and if k is large, because the functional
takes negative values if a function is fixed and k is big. By continuity,
there exists a k such that Obviously there exists a positive
function on which the functional takes its minimal value. This
function satisfies the equation and by the maximum
principle cannot vanish on

We can assume that

Lemma 4. Let u be a function satisfying the conditions of Theorem 5 in
for Let m be a constant such that

for where k is the constant found in Lemma 3. If on
for then in for

Proof. We have

Therefore, in

Lemma 5. Let u be a function satisfying the conditions of Theorem 5 in
for and m be the constant defined in Lemma 3. Let

Then m on for and therefore, in
for

Proof. We have m on at Let m on
for but and . By Lemma 4 we have

a contradiction.
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Proof of Theorem 5. Let be a subdomain of and the part of
its boundary common with contains and is contained in Let
be a positive function minimizing the functional

in the class of functions from vanishing on Then
in and

Let G be such a function that and
as

Consider the integral

where A is a constant independent of T. We have used here the fact
that

By Lemma 5, on where We have
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where the constants are independent of T and M,
It implies that

This leads to contradiction if M and T are large enough. Therefore, the
solution u(t, x) cannot exist for big t.
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BIFURCATION OF SOLUTIONS
TO REACTION-DIFFUSION SYSTEMS
WITH JUMPING NONLINEARITIES

Jan Eisner, Milan

Abstract: Bifurcation of stationary solutions to reaction-diffusion systems of acti-
vator-inhibitor type with jumping nonlinearities are located. The result
can be understood as a certain destabilizing effect of jumping terms.

 Keywords: Jumping nonlinearities, bifurcation, reaction-diffusion systems, spatial
 patterns.

1. INTRODUCTION
Let us consider a boundary value problem

where is a bounded domain in with a lipschitzian boundary
are given reals, and

denote respectively the positive and negative parts of u,v (i.e.,
are positive

parameters. Our aim is to locate bifurcation points under certain
assumptions.

The problem (1.1) can be written as

with ess
We will suppose that
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and consider a fixed such that the following condition holds: there
is an eigenfunction corresponding to the p-th eigenvalue of the
Laplacian with (1.2) such that

where (The last
condition in (1.5) is automatically fulfilled in reasonable situations.)

As a consequence of our general result, we will obtain the following
assertion:

Let , be fixed and let be the bifurcation parameter. Then
there exists a bifurcation point of (1.1) greater than the largest
bifurcation point of the stationary problem corresponding to (1.7), (1.8)
below. Precisely, for any small enough there exist
satisfying (1.1), (1.2),

All solutions are understood in a weak sense. In fact, we will consider
(1.1) with changing along a given general curve described by
a parameter and s will be a bifurcation parameter.

Notice that in the case the eigenvalue is simple, the
corresponding eigenfunctions do not change their sign and if
are constant then the validity of the condition (1.5) with

defined as above is ensured if

either

(The first and the second possibility corresponds respectively to the
choice of the negative and positive eigenfunction in (1.5)).

The assumption (1.4) ensures that the diffusion driven instability
occurs for the problem

as well as for (1.7) with the Neumann boundary conditions. More
precisely, the trivial solution is stable as a solution of the ordinary
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differential equations
but as a solution of (1.7), (1.8), the trivial solution is stable

only for some parameters (the domain of stability) and unstable
for the other (the domain of instability) – see Proposition 2.4,
Fig. 1. Spatially nonhomogeneous stationary solutions (spatial patterns)
of (1.7), (1.8) bifurcate from the trivial solutions at the boundary of the
domain of stability, bifurcation is excluded in the domain of stability.
The same holds for (1.7) with the Neumann boundary conditions. See,
e.g., [15].

The bifurcation point of (1.1), (1.2) we obtain can lie in the domain of
stability of the problem (1.7), (1.8) where bifurcation for (1.7), (1.8) is
excluded. This can be understood as a destabilizing effect of the terms
with positive and negative parts in (1.3) (Remark 2.7).

Our system can correspond to a reaction which changes by a jump,
or it can describe an additional source which is switched on (off) if the
concentration crosses the value of the basic steady state (which need not
be trivial in general – see a note below).

If are constant and (1.4), (1.6) hold then the bifurcation
point of (1.1), (1.2) can be located in an elementary way – see Remark
3.12. In the general case of the assumption (1.5), the method is
the same as in the papers [11] and [3] where a destabilizing effect
(with respect to spatial patterning) of unilateral boundary conditions
described respectively by variational inequalities and inclusions was
proved. The main idea is taken from [7]. Notice that P. Quittner found
a simpler method for the proof of existence of bifurcations for unilateral
problems (see [18]). Unfortunately, it is not clear how to use it in our
situation or in the situation of [11], [3] where unilateral conditions are
prescribed for both u and v.

replaced by

In the proof, only this weaker condition will be used. In this case the
picture of hyperbolas in the first quadrant described below (Fig. 1)
and the domains of stability and instability can be more complicated.
Diffusion driven instability does not occur in general.

We consider here bifurcation from the branch of trivial solutions. In
fact, from the point of view of applications, rather the situation when
a fixed constant positive solution loses the stability for a para-
meter crossing a critical value is of interest and bifurcation of spatially
nonconstant solutions is considered. Of course, in this case it is possible
to transfer the basic constant solution to the trivial one and consider

In fact, our bifurcation result remains valid if the assumption (1.4) is
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bifurcation from the trivial solutions again. Hence, our results can be
reformulated for bifurcation from a constant positive solution.

2. MAIN RESULT

Notation 2.1. Define the inner product on the space (the
space of functions from the usual Sobolev space with zero traces) by

Then the corresponding norm is equivalent to the usual Sobolev
norm. Set The symbols and will be
used also for the inner product and the norm in V, respectively, i.e.,

for We will always suppose that there is
such that for all with some

for and Then it follows from the
compactness of the embedding and from the Nemytskij
theorem (see, e.g., [5]) that the operators

defined by

for all u,v, have the following properties:

A is linear, symmetric, positive and completely continuous, (2.1)

are completely continuous,

(see Appendix in [12] for the detailed proof of the last condition). Set

for all

We will denote by and the strong convergence and the weak
convergence, respectively.

A weak solution of the stationary problem corresponding to (1.7),
(1.8) is a solution of the system of operator equations
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which can be written in the vector form as

Notation 2.2. Let us define operators by

for all

Set

A weak solution of the problem (1.1), (1.2), (i.e., of (1.3), (1.2)) can
be introduced as a solution of the equation

We will need also the “linearized” equation

Of course (2.4) is nonlinear again. Our problem cannot be approximated
by a linear equation and therefore standard methods of the bifurcation
theory cannot be used.

Notation 2.3. the set of all positive reals,
the eigenvalues and orthogonal eigenfunctions

of with (1.2);

(Fig. 1);

domain of stability of the problem (1.7), (1.8) – the set of all
lying to the right from all (see Fig. 1);

domain of instability of the problem (1.7), (1.8) – the set of all
lying to the left from for at least one j (see Fig. 1);

bifurcation point of (2.7) or (2.8) — a parameter R such that in
any neighbourhood of in there is
satisfying (2.7) or (2.8), respectively.

Recall that if Re for all eigenvalues of the problem
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with the boundary conditions (1.2) then the trivial solution of (1.7),
(1.8) is stable (e.g. with respect to the -norm) and if there is an
eigenvalue of (2.5), (1.2) satisfying then the trivial solution
of (1.7), (1.8) is unstable (see, e.g., [6], [20]). Hence, our definition of
the domain of stability and instability in Notation 2.3 is justified by the
following statement.

Proposition 2.4. Let the assumption (1.4) be fulfilled. Then
is the set of all d such that is an eigenvalue of (2.5), (1.2).
Further, for any there is such that all eigenvalues of (2.5),
(1.2) satisfy and for any there exists at least one
positive (real) eigenvalue of (2.5), (1.2).

Proof. See e.g. [14], [16] for Neumann boundary conditions, or
[2] for the general case.

Consider a differentiable curve such that
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(Note that the line is the asymptote to – see Fig. 1.) We will
study the problems (2.2), (2.3) only on the curve i.e., the problems

with the single bifurcation parameter

Consequence 2.5.    If then there is no
bifurcation point of (2.7) in the interval This follows directly
from Proposition 2.4 and the fact that for
any bifurcation point s of (2.7).

Note that is a bifurcation point of (2.7) under reasonable assumptions
(cf. [14], [16]).

Theorem 2.6. Let us suppose that (1.4) holds and there exists an
eigenfunction corresponding to the eigenvalue of the Laplacian
such that (1.5) is fulfilled. Consider a differentiable curve satisfying
(2.6). Then there is a bifurcation point of (2.8). For any

small) there exist satisfying (2.8) (i.e., (1.1),
(1.2) with in the weak sense),

for

Note that the assumption (1.5) can be generalized – see the end of
Remark 3.7.

Remark 2.7. Consider the case when from (2.6) is in the part of
lying to the right from all (i.e., on the boundary of

the domain of stability of (1.7), (1.8)). Then Theorem 2.6 asserts that
bifurcation of nontrivial solutions to (2.8) (i.e., nontrivial weak solutions
to (1.1), (1.2)) occurs in the domain where bifurcation for the problem
(2.7) (i.e., that of stationary solutions of (1.7), (1.8)) is excluded by
Consequence 2.5. This means that spatial patterns for (1.1), (1.2) arise
in a certain sense sooner than for (1.7), (1.8) (see [8] – Introduction,
or [12] – Interpretation). This can be understood as a destabilizing
effect of the “jumping terms” in (1.3) – cf. e.g. [8], [9], [11], [3] where a
destabilizing effect of unilateral boundary conditions was proved. Notice
that also a stabilizing effect of unilateral conditions can be shown in some
cases (see e.g. [10], [12]).

3. PROOF OF THE MAIN RESULT

In the sequel we will always suppose that the eigenvalues and the
eigenfunctions of the Laplacian with (1.2) are numbered so that
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is the eigenfunction from the assumption (1.5), is
the multiplicity of

Let us consider the eigenvalue problem

Proposition 3.1. Let be a curve satisfying (2.6). //
k is the multiplicity of for all

then there is an eigenvalue of (3.1) (depending
continuously on s) losing positiveness as s crosses in the following
sense: there exists such that is positive in one of the one-
sided neighbourhoods and is either negative or
complex in the other one. For any this eigenvalue
has multiplicity k and the corresponding eigenvectors have the form

We have

where we denote to emphasize the importance of
this vector for our considerations.

Further, let for some where
has multiplicity l. If only touches (but does not intersect) at
then the same assertion as above remains valid. If really crosses

also at then there exist precisely two different eigenvalues
losing positiveness in the sense

explained above. (In fact, in this case these eigenvalues are always real
and change their sign as s crosses For
has multiplicity The eigenvectors corresponding to
are

Setting again, we have

Proof. See [3], Observations  4.1, 4.2.
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Remark 3.2. Set

where is introduced in Proposition 3.1. Clearly

A jump of the Leray-Schauder degree of a certain mapping will be
essential for our considerations (see Proof of Theorem 2.6 for details).
If dim Ker then there is only one eigenvalue losing
positiveness in the sense of Proposition 3.1 and the jump of the degree
follows – see Proof  of Theorem 2.6. In the general case, the number of the
eigenvalues losing positiveness can be greater than one (see Proposition
3.1) and we must consider a suitable perturbation of (3.1) such that the
assertion of Lemma 3.5 below holds. This is the reason for introducing
the operator L below.

Notation 3.3. Set Note that if
dim Ker Let be from Proposition 3.1. Let us
choose (0, min ). Hence, for by
(2.6). Let be a continuous function such that
for and for Set

(cf. [3]). For any fixed, is a linear completely
continuous operator.

Remark 3.4. We have if
i.e.,if dim Ker Further, it follows from the
orthogonality of and the form of (see Proposition 3.1 and
Remark 3.2) that for all and

Lemma 3.5. We can choose and (see Notation
3.3) such that for any we have

Further, for all where v(s) is the
sum of algebraic multiplicities of all positive eigenvalues of the operator
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Proof. follows from Proposition 3.1 and the properties of L – see [3],
Lemma 4.1.

Notation 3.6.  Set
Clearly

by (1.5). The set K is a closed convex cone in V with its vertex at the
origin.

Remark 3.7. Let and be from Proposition
3.1 and Remark 3.2. It follows from (1.4) that and
(see Notation 3.6). Moreover, let us show that for any

If W is
of the form considered then a.e. in
a.e. in , and 0 a.e. in a.e. in with

(see Proposition 3.1). Multiplying by z, integrating
over and using the orthogonality of and the last condition in
(1.5) we obtain

This is possible only for i = 1, 2 , . . . , r, which is a contradiction
with

Note that Theorem 2.6 remains valid if we replace the positiveness
of in (1.5) by the positiveness only on some subsets

such that meas
meas In fact, only this is
used in our proof.

Observation 3.8. The operator has the following properties:
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Observation 3.9. We will show that for all In
particular, if for some then «•£.,
A special choice gives and
by Remark 3.7. Indeed, means that there is
such that meas and one of the following four cases occurs:

Hence, we obtain by using (1.4), (1.5), Notation 2.2 and Remark 3.2
that

Lemma 3.10. (Cf. [4].) Let (1.4) and (1.5) hold.
(i.e., if in the notation of [4]), then

the only solution of

is trivial. (Let us recall that the line is the asymptote to
see Fig. 1.)

Proof. Let be fixed, We can write (3.12) in the
form

We have

and it follows by using (3.10) that

for all with It follows that

is well-defined (see, e.g., [13]). From the first
equation of (3.13), we can express
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and put it into the second equation to obtain

It follows from (2.1), (3.14), (3.8) that
Hence, multiplying (3.16) by v we obtain by using (1.4), (2.1), (3.8) that

provided This implies and (3.15) gives also

Similarly as in [11] and [3], for the proof of Theorem 2.6 we will choose
a small and consider a penalty equation

together with the norm condition

Here is a given small number, is an additional parameter. The
equation (3.17) can be understood as a homotopy joining the linea-
rization of (2.7) perturbed by the operator (obtained for

with our equation with the jumping nonlinearity (2.8) (obtained
for The common idea of the papers mentioned is to prove
the existence of a branch of satisfying (3.17), (3.18) starting at

which is unbounded in The limiting process along
this branch gives a solution of (2.8) with some Any
accumulation point of is a bifurcation point of (2.8).

Lemma 3.11. (Cf. [4]-) Let be from the assumption (2.6). For any
there exists such that there is no nontrivial solution U

of (3.17) with and

Proof. Suppose by contradiction that there exist and
such that satisfy (3.17)

with Note that (see (2.6) and Notation 3.3).
Multiplying (3.17) by and passing to the limit we obtain by using
(2.1), (3.7), (3.9) that is a nontrivial solution of (3.12)

with (see (2.6)). This is a contradiction
with Lemma 3.10.

Proof of Theorem 2.6. Let us choose and small enough so that
the assertion of Lemma 3.5 holds. Let be fixed where is
from the assumption (2.6). Let be the corresponding number



Bifurcation to R-D systems with jumping nonlinearities 91

from Lemma 3.11. Consider fixed. The equations (3.17),
(3.18) are equivalent to

in the space (with points and the norm
where

The operators T, G have the following properties:

If T is a compact linear operator in a Banach space,
then ind where ind denotes the Leray-Schauder
index, is the sum of the algebraic multiplicities of all positive
eigenvalues of (see, e.g., [17]). It is easy to see that is an
eigenvalue of multiplicity k of T(s) (for some ) and is the
corresponding eigenvector if and only if is an eigenvalue of multiplicity

and U is the corresponding eigenvector,
Thus, it follows from Lemma 3.5 that

and there is such that

(Recall that the vector is from Proposition 3.1.) Set

and let be the component of C containing Analogously as
in [1] we can define subcontinua and of starting at in
the direction and respectively, with See [1], [7] for
details. In particular, and contain and

there are
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Under the assumptions (3.20)–(3.24), considerations from the proof of
the global Dancer’s bifurcation theorem ([1], Theorem 2) can be used
and an analogue of this theorem for the equation (3.19) can be proved
(cf. [7], Theorem 4.1). That means

(cf. [1] or [7] for details in the classical case or in our situation,
respectively).

We will write instead of in order to
emphasize the role of from the norm condition (3.18). We shall
prove successively that could be chosen such that the following
statements hold if

(the branch starts downwards from starts upwards from ),

cannot intersect the level with the exception of the starting
point),

(where is from (2.6)). Suppose for a moment that (3.28) – (3.31) hold.
It follows from (3.28), (3.29), (3.30) and the definition of and

(see [1], [7] for details) that and remain below and above

respectively, with the exception of and therefore
Hence (3.27) implies that are unbounded. However,

(3.31) together with (3.18) imply the boundedness of in s and

and therefore is unbounded in It is easy to see that for all

In particular, there exists a sequence
satisfying (3.17), (3.18) with We can
suppose with some and it follows
from (3.17) by using the compactness of the operators A, L and that

is a solution of (2.8) with We would
like to know that
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Suppose by contradiction that there are and

Dividing (3.33) by and using (2.1), (3.7), (3.9) we obtain
and W is a solution of (2.4) with Multiply (2.4)

(with and ) by (3.4) by W and subtract. We
obtain Observation 3.9 implies and consequently,

by (3.8). It follows from (2.4) with  U  = W  and               that
Simultaneously, we obtain from Remark 3.7

and (3.2) or (3.3) in Proposition 3.1 that This is a contradiction
and (3.32) is proved. Moreover, could be chosen arbitrarily small
and therefore, any accumulation point of for (which is
simultaneously a bifurcation point of (2.8)) satisfies

To complete the proof it is sufficient to show that (3.28) – (3.31) hold.
Proof of (3.28): Multiply the equation

by and subtract. A simple calculus using (2.1), (3.9),

(3.5) yields

with some between where
Further, it follows from the formula for (see Proposition 3.1
and Remark 3.2), the equation defining Cp and the assumption (2.6)
(the transversality and orientation of ) that

Hence, it follows by using (2.1) and Observation 3.9 that
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Proof of (3.29) is the same but we have
Proof of (3.30) for small enough: suppose by contradiction that

there are and Then (3.34)
holds with We can suppose without loss of generality that

and [0,1]. We obtain from
(3.34) (with ) divided by (by using (2.1), (3.7), (3.9)) that

Multiply (3.35) by (3.4) by W and subtract. We get
by using (3.5). If then by Observation 3.9. Hence,
(3.35) gives Ker if or

One of the possibilities (3.6),
(3.2), (3.3) holds (see Proposition 3.1, Lemma 3.5) and it follows from
Remark 3.7 that which is a contradiction. Thus i.e.,

Multiply (3.34) (with ) by (3.4) by and
subtract. We obtain

Using (2.1), (3.5), dividing by and letting we get
and this leads to a contradiction as above.

Proof of (3.31) follows directly from the conectedness of the fact
that Lemma 3.11 and the choice of at the beginning
of the proof.

Remark 3.12. Consider the particular case when are
constants, (1.4) and the first condition from (1.6) are fulfilled. The
problem (1.1) can be written as (1.3) with

We have
and therefore, all positive solutions of

are simultaneously solutions of (1.3) (i.e., also of (1.1)). Define in the
same way as but with the coefficient replaced by The first
part of Proposition 2.4 and the formulas (3.2), (3.3) in Proposition 3.1
remain valid if we replace the assumption (1.4) by (1.9) (see the proof
in [2]). It follows that the linearization of (3.36), (1.2) (i.e., (3.36),
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(1.2) with has a nontrivial solution
where is the principal eigenfunction of the Laplacian which does not
change its sign. If we take positive then clearly is simultaneously
a solution of (1.3), (1.2) (i.e., (1.1), (1.2)) without the terms If  is
a curve intersecting at then it follows from the classical
bifurcation results ([19] or [1]) that there is a global bifurcation branch of
solutions to (3.36), (1.2) starting at in the direction . It is not hard
to show by using a regularity argument that the positiveness of both
components of bifurcating solutions lying on this branch is preserved
in a neighbourhood of Hence, these solutions are simultaneously
solutions of (1.3), (1.2). Similarly, in the case of the second condition

in (1.6), we obtain a nontrivial solution of the

linearization of (3.36) with replaced by for d defined
in the same way as but with the coefficient replaced now by

If we choose negative then is simultaneously a solution of
(1.3), (1.2) (i.e., (1.1), (1.2)) without the terms The solutions of
(3.36), (1.2) with replaced by lying in the bifurcation branch
starting in the direction are negative near and are simultaneously
solutions of our original problem (1.1), (1.2). Hence, in the particular
case under consideration, some bifurcation points of our problem with
jumping nonlinearities can be obtained elementarily as a bifurcation of
a modified classical problem. Note that in both cases lies below

and if is the curve from the assumptions of Theorem 2.6 then its
assertion is an easy consequence of our considerations.
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COUPLED PROBLEMS FOR VISCOUS
INCOMPRESSIBLE FLOW IN EXTERIOR
DOMAINS

Miloslav Feistauer, Christoph Schwab

Abstract: The formulation of the fluid flow in an unbounded exterior domain is
not always convenient for computations and, therefore, the problem is
often truncated to a bounded domain with an artificial exterior
boundary . Then the problem of the choice of suitable “transparent”
boundary conditions on appears. Another possibility is to simulate
the presence of the fluid in the domain exterior to with the use of
a suitable (preferably linear) approximation of the equations describing
the flow. The interior and exterior problems are coupled with the aid
of transmission conditions on the interface

Here we briefly describe the formulation and analysis of the coupling
of the interior Navier–Stokes problem and the exterior Stokes problem
and Oseen problem. At the end we give the reformulation of the coupled
problems with the aid of integral equations on the artificial interface.

Keywords:  Stokes problem, Oseen problem, Navier-Stokes equations, coupled
procedures, boundary integral equations.

1. COUPLING OF INTERIOR
NAVIER-STOKES PROBLEM WITH
EXTERIOR STOKES PROBLEM

Let be an unbounded domain which is the complement of the
closure of a bounded open set (representing, e. g., a body emerged into
a moving fluid). We set and introduce an artificial interface

dividing into two subdomains, a bounded interior domain with
boundary and an unbounded domain with

Classical formulation of the coupled problem: Find the velocity
and the pressure such

Applied Nonlinear Analysis, edited by Sequeira et al.
Kluwer Academic / Plenum Publishers, New York, 1999. 97
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that

denotes the hydrostatic stress tensor for the Stokes problem.
We prescribe the following data: – constant viscosity,

volume force with support supp,
the free-stream velocity at By n we denote the unit outer normal to

on (pointing from into ). ID(u) is the velocity deformation
tensor with components

In the domain and the Navier–Stokes system and the Stokes
system are considered, respectively. The coupling conditions on
representing the continuity of the velocity and the normal stress,
augmented in by the kinetic energy, were chosen in accordance with
[16], [1].

1.1. Weak formulation

In order to reformulate the above problem in a weak sense, we
introduce the following function spaces ([4], [6], [10], [12], [13]):
– the Sobolev space equipped with the standard norm
–    Sobolev–Slobodetskii space of traces on of functions

equipped with norm - dual of

– weighted Sobolev space
equipped with the norm
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where the seminorm

is a norm equivalent to the norm We set
The space can be interpreted as

the space of traces of all on By we denote the
duality between and induced by the – scalar
product.

If X is a Banach space with a norm then we define the space
equipped with the norm

Now we set

We have for

It is possible to show that for any there exists its
extension such that

For the weak formulation we introduce the following forms:
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Let us assume that and denote by
the duality between and

Starting from the classical formulation (1.1), using suitable (smooth)
test functions (with compact supports) and Green’s theorem, we arrive
at the following weak formulations:

Weak formulation in Assume that is
given. Find such that

Weak formulation in Assume that is given.
Find satisfying the following conditions:

Using the Lax-Milgram lemma and results from [4] and [10], it is
possible to establish

Theorem 1.1. There exists a unique solution of problem (1.4).
This solution is independent of the choice of the extension

from onto The velocity can be associated
with a uniquely determined pressure such that

Assuming that it is possible to define a generalization
of the normal stress for from Theorem 1.1, we arrive

at the weak formulation of the coupled problem:
Find satisfying (1.3) and (1.4) with

1.2. Abstract problem
Let us assume for now that is known. Then we solve problem

(1.4) with the Dirichlet boundary condition (1.6). If the solution
and the pressure associated with by Theorem 1.1 allow to
express we see that is a function
of

The operator converting Dirichlet data
into “Neumann” data via the solution of the exterior Stokes problem
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(1.4), is called the Steklov-Poincaré operator. It allows us to
reformulate the coupled problem as the abstract problem: Given

and find such that

The investigation of problem (1.8) yields the following result:

Theorem 1.2. Let the operator be weakly sequentially contin-
uous and weakly noncoercive, i. e.,

and there exist constants such that

respectively. Then problem (1.8) has at least one solution.

Proof. of this theorem is carried out by the Galerkin method, similarly
as, e.g., in [6, Par. 8.4.20] or [12, Theorem 1.2, page 280] with the aid
of the compact imbeddings
Korn’s inequality and the relation valid for
all

1.3. Properties of the Steklov-Poincaré
operator

It remains to establish the existence of the operator and its
properties (1.9) and (1.10):

Theorem 1.3. Let be the solution of the exterior problem (1.4)
and be the associated pressure by relation (1.5). Then, for all

such that the formula

determines a unique element If and are
sufficiently regular, then this element can be identified with the function

defined in (1.1, j). Further, the Steklov-Poincaré operator
defined by (1.7) has properties (1.9) and (1.10).
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The results of Theorem 1.1–1.3 imply the existence of a weak solution
of the coupled problem (1.1). All details can be found in [8].

2. COUPLING OF INTERIOR
NAVIER-STOKES PROBLEM WITH
EXTERIOR OSEEN PROBLEM

In this section we are concerned with the modelling of viscous
incompressible flow in an unbounded exterior domain with the aid of
the coupling of the nonlinear Navier-Stokes equations considered in
a bounded domain with the linear Oseen system in an exterior domain.

Similarly as in the case of the coupling of the Navier-Stokes problem
with the Stokes problem, an important question is the choice of
transmission conditions on the artificial interface . The transmission
condition used in Section 1 is not suitable in the case of the exterior
Oseen problem and, therefore, we propose its modification resembling
a “natural” boundary condition from [3]. We arrive then at the
following classical formulation of the coupled problem: Find

such that

Here, and throughout we understand (u, p) in the context of the Oseen
problem as

denotes the hydrostatic stress tensor for the Oseen problem.
Other than that, we use the same notation as in Section 1.

Remark 2.1. For simplicity we consider the terms in (2.1, j),
corresponding naturally to equations (2.1,b) and e). If we use the
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relations

valid for with div then  can be replaced by
as in Section 1.

2.1. Weak formulation
In what follows we will assume that _ is Lipschitz-

continuous. If is a domain, then by and we denote
the Lebesgue and Sobolev spaces, respectively, defined over
For a bounded domain we set the

trace of on we can use two equivalent norms

and

It is well-known that

where is the space of all infinitely continuously differentiable
functions with compact supports in supp

For the unbounded domain we define the weighted Sobolev space

where and for
equipped with the norm

which is equivalent to the seminorm

(See, e.g., [4, Theorem 1, page 118] or [10, Vol. I, page 60].)
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Further, we put

Then

We write for every bounded domain

Let us define subspaces of

For functions from subspaces of Sobolev spaces, the restrictions
etc. will be understood in the sense of traces.

For the limit at is zero and In order to realize
condition (2.1,g) in the weak formulation, we introduce a function
defined in the following way. Let be a sufficiently large ball with centre

at the origin such that Then and
where and is the interior and exterior component of

respectively. Since in virtue of [12, Lemma 2.2,
page 24], there exists a function such that

Now we define

Obviously, and div (= almost everywhere)
in

Let us assume that form a classical solution of the coupled
problem (2.1). Let Multiplying equation (2.1,b) by

and (2.1,e) by integrating over and respectively,
summing these integrals, applying Green’s theorem and using the fact
that div in and and putting

we obtain the identity
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Let us introduce the forms

On the basis of the above considerations we come to the following
concept:

Definition 2.2. We call a vector valued function a weak
solution of the coupled problem (2.1), if the following conditions are
satisfied:

Remark 2.3. Prom above it follows that the classical solution yields
the weak solution. In (2.2, a), conditions (2.1, c, d, f, g) are hidden and

Since has compact support, all integrals over
in (2.2) have sense. Moreover, also the form is well defined as follows
from the trace theorem for functions from where is
a bounded domain with However, it is not possible to use

as test functions in (2.3, b), because the form is not
defined for and in general (cf. [10]). This is the
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reason that we cannot carry out the existence treatment as in Section 1.
We apply now a completely different approach for proving the existence
of a solution of problem (2.3). In fact, this new technique can also be
applied to the coupling of the interior Navier–Stokes problem with the
exterior Stokes problem. (Details will appear in [9].)

Remark 2.4. On the basis of results from [10], Chap. VII, the
weak solution of problem (2.3) can be associated with the pressure

such that

2.2. Existence of a weak solution

First we prove some important properties of the forms
defined in (2.2). These forms have sense, of course, also for functions
from the space as follows from the continuous imbedding

and the continuity of the trace operator from the
space ) into (We simply write

Let us set

Lemma 2.5. is a continuous bilinear form on Further,
and are continuous trilinear forms on
For we have

Let us define the form

Then it holds: If and if

then
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The solvability of the coupled problem in the unbounded domain is
established with the aid of coupled problems considered on a monotone
sequence of bounded subdomains. For any positive integer n we denote
by the ball with radius n and centre at the origin. We will consider

with fixed such that where is the
ball used in the definition of the function Hence, and

We set and
Then for we have
and Moreover, and is the
exterior component of and

For we define the forms

For every we introduce the spaces

and consider the following auxiliary problem in Find
such that

(the form has sense for extended by zero on ).
Conditions (2.10) represent the weak formulation of a coupled “Navier–
Stokes – Oseen” problem in the bounded domain

The solution of problem (2.3) can be written in the form

Hence, (2.3) is equivalent to finding such that
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Similarly we can reformulate problem (2.10): Find such
that

Then From the definition of it follows that
in

The solvability of the above auxiliary problems is proved with the aid
of the following results:

Lemma 2.6. For each we have

Theorem 2.7. For each problem (2.13) has at least one
solution There exists a constant independent of n such
that

Proof. is carried out with the aid of the Galerkin method in a standard
way as, e.g., in [12], Theorem 1.2, page 280, [17], Chap. II, or [6],
Par. 8.4.20. •

The main result of this section reads:

Theorem 2.8. There exists at least one solution of problem (2.3)
This is a weak solution of the coupled problem (2.1).

Proof. As was stated above, problem (2.3) is equivalent to problem
(2.12). In order to prove the solvability of problem (2.12), we extend the
solution of problem (2.13) by zero from the domain onto

. For simplicity, we will denote this extension again by Hence, we
have a sequence such that

Since the space ) is reflexive and the sequence is bounded
in there exists and a subsequence of (let us
denote it again by such that
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Our goal is to show that z is a solution of problem (2.12).
Let Then there exists such that supp

and, in virtue of (2.13), (2.2) and (2.9) we have for
and

Taking into account that from (2.15) we see
that the sequence is bounded in Thus, we can
suppose that

This and the compact imbeddings and
imply that

Now we are ready to carry out the limit process in (2.17) for
Linearity and continuity of the forms

and (let us remind that
imply that

From (2.15) and (2.19) we see that the sequence satisfies
conditions This and Lemma 2.5 imply that

Now, from (2.17), (2.20) and (2.21) we conclude that the function
satisfies the identity

which means that z is a solution of problem (2.12) and is
a solution of problem (2.3), which we wanted to prove. •

3. FORMULATION OF THE COUPLED
PROBLEMS WITH THE AID OF
BOUNDARY INTEGRAL EQUATIONS

The fact that the Stokes equations as well as the Oseen equations
possess fundamental solutions allows us to reformulate the exterior
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Stokes and Oseen problem as integral equation on the coupling interface
This may be used to reduce the coupled problems on the unbounded

domain analyzed above to equivalent problems in the bounded domain
which are equipped with nonlocal boundary conditions on . In

this section, we derive explicit representations of the nonlocal boundary
operators in terms of the Calderón Projector of the linear exterior
problem which describes the far-field. The nonlocal boundary operators
for the Navier-Stokes equations coupled with the exterior Stokes and
Oseen problems will turn out to be strongly elliptic boundary integral
operators which can be discretized by Galerkin boundary element
methods. This approach was used for the solution of a number of elliptic
problems in exterior domains in e.g., [2, 7, 11, 16].

As it is well-known, there are generally many possible approaches
to reformulate exterior boundary value problems in terms of boundary
integral equations. Correspondingly there are many ways to represent
the Poincaré-Steklov operators. For the exterior Stokes problem of
Section 1, we present a formulation in terms of single layer potentials
based on indirect boundary reduction by potentials. The resulting
representation of the Poincaré Steklov operator requires the inversion
of a coercive, self-adjoint boundary integral operator of order on

For the Oseen problem, there is an analogous formulation; however,
the coercivity of the first kind boundary operator to be inverted is open
— only a weaker Gårding-Inequality can be established then. Therefore,
we present a different formulation based on a pure double layer ansatz
for the exterior velocity field in the Oseen problem [5]. Contrary
to the Stokes problem, this is admissible in the Oseen case due to the
different decay behaviour of the Oseen fundamental solution as
Here, the boundary reduction is direct, via the Faxén-formulas on

3.1. Exterior Stokes Problem
For the integral equation of the exterior Stokes problem, we

shall require hydrodynamic potentials that are defined in terms of
fundamental solutions of the Stokes operator (1.1, e). We shall in
particular require the velocity fundamental tensor E(z) given by

where

Further, we shall also use the pressure fundamental vector e(z)
given by
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To obtain an expression of in (1.8) in terms of boundary integral
operators, we require a certain factor space of we set

where denotes the equivalence relation

for some (recall that n denotes the exterior unit normal to
pointing into ). Then there holds

Theorem 3.1. Assume that the coupling boundary is smooth. The
solution of the exterior Stokes Problem in can be
represented in the form of the Odqvist hydrodynamic potentials

for some boundary densities which are the unique solutions
of the first kind boundary integral equations:

or, more precisely, in variational form: find such that

where the bilinear form given by

is symmetric and coercive on T: there exists such that

For the proof, we refer to [4], Chap. VI, Theorem 1. We remark that
the symmetry and coercivity of the bilinear form b(·, ·) in (3.9) gives,
upon discretization with a Galerkin boundary element method on
a symmetric and positive-definite stiffness matrix corresponding to the
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hydrodynamic single layer operator S on the left hand side of (3.7). The
operator S is continuous from Using (3.7) and
(1.6), we get the nonlocal boundary condition

where denotes the duality pairing. By (3.10),
S is invertible on T and we get that

Having obtained t by (3.8), the exterior Stokes flow is given
by (3.5). In particular, we get with normal stress operator
applied to (3.5), (3.6), for a point with the jump relations of the
Odqvist potentials that

where the integral over has to be understood in the Cauchy principal
value sense and the subscript indicates that the differentiations are
with respect to The expression is interpreted as the vector
with components where
are components of the tensor using the notation and
for the row of E and the component of e, respectively.

We therefore obtain with the weak formulation (1.3) in the
following, nonlocal boundary problem in which is equivalent
to the weak formulation of the coupled problem (1.8):
Find such that

With (3.12) and (3.13) we obtain the representation of the Steklov–
Poincaré operator in terms of  boundary integral operators

Naturally, in a numerical implementation of the nonlocal boundary
condition (1.1, i) in (1.3), the discrete inverse of S should not be
explicitly calculated, but rather realized numerically by a fast algorithm.
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3.2. Exterior Oseen Problem

We consider now the exterior Oseen Problem (2.1,e) - (2.1,j). We
will use once again the Odqvist hydrodynamic potentials to reduce
the coupled problem (2.1) to a nonlocal boundary value problem in

. We shall now, however, not use a single layer ansatz (the so-
called “indirect” method of boundary reduction), but rather the “direct”
method based on the Faxén representation formula on leading to the
“one integral equation” approach of [11].

To do so, we require once more for the exterior Oseen problem the
velocity fundamental tensor E(z) and the pressure fundamental vector
e(z). To define them, we assume without loss of generality that

Then E and e are once more defined by (3.1), (3.2), however now with
given by [15]

We recall further that for the Oseen problem the hydrostatic stress is
given by

We shall also require the adjoint stress operator

Then there holds the Faxén representation formula:
Any solving (2.1,e) - (2.1,j) can
be represented in the form: for any

where p ( x ) is determined only mod   are as in (3.18), (3.19),
with the subscript y indicating that the differentiations are with respect
to y and where
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is the pressure corresponding to the velocity field e (z). The expression
is interpreted in an analogous way as

in Par. 3.1.
We observe that the leading singularities of E (z) and of e (z) at

in the Oseen and the Stokes case are identical. More precisely,
for small

The hydrodynamic potentials admit therefore the same jump relations
in the Stokes and the Oseen case. We reduce the exterior Oseen
problem to by passing with x in (3.20) to For any

the jump relations give

or, symbolically,

where K denotes the hydrodynamic double layer operator, or, equiva-
lently

We emphasize that now S is neither symmetric nor coercive, generally.
Using the continuity of the velocities (1.6), and casting (3.25) in weak
form, we find the integral equation for the hydrodynamic normal stress

corresponding to the exterior Oseen problem due to the velocity
on

for all
The hydrodynamic single layer potential

is continuous and satisfies, in virtue of (3.23) and (3.10), the Gårding
inequality: there is such that
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where k(·, ·) is a compact form on Equation (3.26) gives now,
together with the (formal) weak form (1.3) of the Navier-Stokes system
in the desired nonlocal boundary value problem in Find

such that

Here the nonlinear form a(·, ·) is as in (1.2).
Whereas the nonlocal problem (3.14) and the corresponding one (3.27)

for the exterior Stokes equation are mathematically on solid ground due
to Theorem 1.3 and 3.1, in the Oseen case research is in progress on the
following questions:

a) Existence of solutions to the nonlocal problems (3.14), (3.27) in
the exterior Oseen case,

b) Coercivity of S in the Oseen case,

c) Convergence of Galerkin-discretizations of (3.14), (3.27) in the
Stokes and Oseen case (note that the nonlinearity is not of the
type treated in [11]).
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REMARKS ON THE DETERMINANT
IN NONLINEAR ELASTICITY
AND FRACTURE MECHANICS

Irene Fonseca, Jan Malý

Abstract:   The role of the determinant in ensuring local invertibility of Sobolev
functions in is studied. Weak continuity of minors of
gradients of functions in for is fully characterized.
Properties of the determinant are addressed within the framework of
functions of bounded variation, and a change of variables formula
is obtained. These results are relevant in the study of equilibria,
cavitation, and fracture of nonlinear elastic materials.

Keywords:   Topological degree, weak lower semicontinuity, functions of bounded
variation.

1. INTRODUCTION

Remarkable advances in industry and technology have motivated
the study of instabilities in certain advanced materials. The need to
understand and predict macroscopic behavior from microscopic and
mesoscopic data, as well and the analysis of questions related to phase
transformations, defectiveness, the onset of microstructures in smart
materials, and other issues related to optimal design and homogenization
of composite materials and very thin films, have opened new areas
of mathematics virtually unexplored until recently. As it turns out,
mathematical models for equilibria and dynamical evolution of phase
boundaries for these materials fall outside the scope of classical theories,
mostly due to the facts that the underlying energies are nonconvex, or
that the admissible fields may exhibit discontinuities. Indeed, spaces
of discontinuous mappings have proven to be useful in the modeling of
deformations of continua which may undergo fracture or develop defects
(see e.g. [13], [14], [15], [27]). A natural space for the underlying
deformations is that of functions of bounded variation, BV, or its
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subclass introduced by De Giorgi and Ambrosio [24] of functions of
special bounded variation, SBV.

It is well known that in nonlinear elasticity interpenetration of matter
is prevented by assuming that energy densities blow up as the jacobian
of the deformation gradient approaches zero. Precisely, if
represents the reference configuration of an elastic body, and if the bulk
energy of an admissible deformation is given by

where is the energy density, then it is
commonly assumed that det a.e. in and
as det Under this degeneracy hypothesis, a question that
has challenged mathematicians for several years concerns the search for
physically reasonable hypotheses on W and on the class of admissible
fields guaranteeing weak lower semicontinuity of the energy E.

Ciarlet and [18] introduced a “local invertibility condition”

where stands for the Lebesgue measure in which, together with
the condition det , ensures local invertibility of u in
appropriate Sobolev spaces.

In this paper, we start by recalling a local inverse function theorem
obtained by Fonseca and Gangbo [28] for mappings u in
such that det

If we require less regularity of the admissible fields, as it happens in
the study of cavitation in rubber-like materials, then weak continuity
properties of minors become very challenging. To this end, we fully
characterize weak convergence of det in Sobolev spaces for

This analysis was carried out in Fonseca and Malý [32].
Finally, and drawing on the work of Choksi and Fonseca [17], we

show how properties of det may ensure a change of variables formula
for functions of bounded variation, where denotes the part of the
distributional derivative which is absolutely continuous with respect
to      .

In what follows, if is a matrix then Ml | stands for the
list of all minors of and denotes all minors of order k, with

min{d, N}. If then adj is the adjugate of i.e. the matrix
of minors of order so that
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If is a Radon measure in and if is a Borel set, then
stands for the restriction of to B, i.e. for all
Borel set

2. LOCAL INVERTIBILITY IN SOBOLEV
SPACES

The study of equilibria for defective crystals has motivated the
introduction of variational problems where the domain of integration
is varying as well as its deformations. In particular, Fonseca and Parry
[35] proposed a model where the underlying energy is given by

where denotes a deformation of and represents the slip or plastic
deformation, with det Invertibility of will guarantee that the
energy may be reformulated as

where now the domain of integration is held fixed.
The theorem below provides sufficient conditions under which we may

ensure local invertibility (see [28]).

Theorem 2.1. Let be a bounded, open subset of and let
be such that det for a.e. Then for

almost every the function is locally almost invertible
in a neighborhood of i.e., there exist an open set

and a function with
such that

and

If, in addition,

The latter part of this result was independently obtained by

If u is more regular, precisely if with
then and are homeomorphisms, and there
exists a set with such that



120 Fonseca I., Malý J.

is an open mapping (see also [44], where a stronger version of this
result was established). Also, Heinonen and Koskela [43] showed that if

with det a.e. in and
then is open and discrete.

We note that there are Lipschitz homeomorphisms which do not
satisfy det a.e. in Indeed, Martio and Ziemer [50] proved
that for every bounded, open set there exist a measurable set

with and a homeomorphism such
that det for every

The proof of Theorem 2.1 uses properties of degree theory, and
departs considerably from earlier work on this subject (see e.g. [8],
[18], [59], [60]). We remark that we cannot expect to prove this result
by approximating by a sequence of smooth functions with positive
determinant, since Ball [9] has provided an example of a mapping

with det in and for which there is no
sequence such that uniformly and det
in

Theorem 2.1 illustrates how in the determinant still
behaves, essentially, as the Jacobian of a smooth deformation. There
are situations, however, where we are led to the study of properties of
minors for deformations in for This question is
addressed in the next section.

3. WEAK CONTINUITY OF THE JACOBIAN
INTEGRAL

In [32] we search for minimal conditions ensuring weak convergence
of minors in Sobolev spaces.

Certain energies for nonlinear elastic materials may be represented as

where W is a polyconvex integrand, i.e. W is a convex function of
It follows that E is W1,p

-sequentially  weakly lower semicontinuous, i.e.

if

in the sense of measures.

We recall that if then we say that in the sense of
measures if
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for all
Weak continuity of minors has been studied in depth by Murat and

Tartar (see [56], [61]) within the framework of compensated compactness,
and lower semicontinuity for polyconvex functions was undertaken by
several authors (e.g. see [2], [7], [8], [10], [16], [20], [21], [23], [30], [36],
[37], [38], [45], [51], [52], [55], [61]).

Here, and for simplicity, we are going to restrict the study to the
higher order minor, det, and when d = N, although most of the results
may be extended to lower order minors. As it is usual, the admissible
fields are assumed to be in because in this space we may
integrate by parts and write the determinant as a divergence operator.
Precisely, if then

where

The relation (3.2) may fail if is not sufficiently regular. As an example,
consider

Then for all det in B(0,1),
but

Moreover, it was proven by Müller [54] (see also [53]) that if S is
a closed set with Hausdorff dimension then there exists

for all such that

where is a positive Radon measure, singular with respect to the
Lebesgue measure and such that supp

Further results by Miiller, Tang and Yan [55] established that if
with then (3.3) holds, and

if

The exploitation of spaces such as BMO and Hardy spaces allows one
to refine these results along the lines of the work of Müller [52], [53],
[54], and Coifman, Lions, Meyers and Semmes [19], and, in particular,
it can be shown that if is such that det and
adj then
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In earlier works, Ball [8], Dal Maso and Celada [16], Dacorogna and
Murat [22], Dal Maso and Sbordone [23], Giaquinta, Modica and
[38], [39], [40], (see also [41]), and Reshetnyak [57] established that

where the convergence is in the sense of measures. Moreover, if
and with then

we still have

in the sense of distributions. (3.4)

Also, if and if with equi-
integrable, then (3.4) is still valid (see [21]).

A complete characterization of weak convergence of the determinant
has been obtained by Fonseca and Malý in [32], where the results below
may be found.

Theorem 3.1. If the sequence converges to u in

is bounded in and if is equi-
integrable, then

Remarks 3.2. (i) This result was proven earlier by Giaquinta, Modica
and see [41], Theorem II.3.2.1, under the additional assumption
that all minors of all orders are equi-integrable. Their proof relies of
tools from Geometric Measure Theory. The proof presented in [32] is
entirely analytical.
(ii) Note that from the hypotheses of Theorem 3.1, one can only
guarantee apriori that so must be understood as the Radon
Nikodym derivative of the distributional derivative with respect to
the Lebesgue measure
(iii) In Theorem 3.1 equi-integrability is necessary. Indeed, it is possible
to construct a sequence such that weakly in

is affine, is bounded in and still

where is a nonzero Radon measure singular with respect to Let
us consider a nonincreasing smooth function such that
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and set

where Then where and the
weak* limit of  is equal to det where the
density of the singular measure is supported on the

Theorem 3.3. If the sequence converges to u in
is bounded in and if det

for some Radon measure then

The two theorems above are sharp, in that they are complemented by
the following result.

Theorem 3.4.
   (i)  Let be a Radon measure on and let Then

there exists a sequence such that

and det

(ii) Let Then there exists a sequence
such that

Finally, we notice that the argument of the proof of Theorem 3.1
may be used to provide an alternative proof for the following lower
semicontinuity result of Dal Maso and Sbordone [23] and Celada and
Dal Maso [16] (see [32], and also the paper by Fusco and Hutchinson
[36] for analytical proofs which do not need Geometric Measure Theory
tools such as currents).

Theorem 3.5. Let         and let
be bounded in If g is a nonnegative, convex function,

then

We end this section with a brief overview of some recently obtained
relaxation results for quasiconvex and polyconvex energies (see [1], [12],
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[30], [33], [31], [46], [49]). If f : is a Carathéodory
function, then the effective (or relaxed) energy is defined as

First we consider the case where

is a convex function. We have shown that (see [32])

and if then (see [12], [31])

for some Radon measure singular with respect to the Lebesgue
measure For a general f , and under the growth condition

and

we have

where (see [1])

and is a singular measure. In the case where we have

where Qf stands for the quasiconvexification of f , precisely,

This may no longer be valid when f depends also on x and
Indeed, Gangbo [37] has constructed an example where

and if and only if Hence, in general, (3.5) fails and

is the only known lower estimate.
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4. A CHANGE OF VARIABLES FORMULA
IN BV

In the previous two sections we dealt with properties of det for
and for certain ranges of p. Here we go outside the

Sobolev spaces framework to handle situations relevant to the study
of phase transitions of incoherent phase deformations, to the analysis
of fracture, or to tackle problems where the growth of bulk energy
densities is at most linear. In the latter case minimizing sequences may
convergence to macroscopic states which are only in BV (see [6], [34]).

Given , its distributional derivative may be written as

where denotes the (N – l)-dimensional Hausdorff measure,
is the jump set of u, which differs from the complement of the set of
Lebesgue points, , by a set of measure zero, is the
Cantor part, and are the traces of on at x, v(x) is the unit
normal vector to pointing towards the side of (see [25], [62]).
Here, and in the sequel, we assume that u is appropriately represented,
namely that

whenever the limit on the right exists.
We remark that does not have the structure of a gradient, i.e. it is

not necessarily curl-free. Indeed, according to a result by Alberti [3]
may be any function. In spite of this degeneracy, the usual change
of variables formula still holds (see [29]).

It is well known that the change of variables formula

holds for a set G of full measure in provided is an almost everywhere
approximately differentiable function (hence, if has the
N-property on G, and is a measurable function on such that

Here is the Jacobian computed from the approximate
derivative, which, in turn, coincides a.e. with the absolutely continuous
part of We recall that is said to have the N-property on G if

for each set with
In the case where equation (4.1) is often called the area formula.
Federer (see [26], 3.2.1) showed that has the N-property on G if
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In [17] another class of admissible domains was proposed. We denote
by the Hardy-Littlewood maximal function of the total
variation measure computed using the balls contained in As
it is usual, it is a finite, positive Radon measure on we define the
maximal function  of as (see [58])

and it can be shown that (see [4])

Theorem 4.1.

be a measurable set with Then the change of variables
(4.1) holds on G for any measurable function such that

Proof. Set

By Poincaré’s inequality,

Iterating this inequality for r, r/2, r /4 , . . . , we obtain

for all Using Poincaré’s inequality once again on a ball B(x, R),
where R = 2dist (x , y) and B(x, R) is contained in we obtain the
Bojarski-Hajlasz inequality (see [11])

Hence the graph of can be covered by a countable union of graphs of
Lipschitz functions and thus from the N-property of Lipschitz functions
we conclude the N-property of on G.

A consequence of the above theorem results in conservation of volume.

Corollary 4.2. Let be such that |det for
and let
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be a measurable set such that

Then for any measurable set we have

Next we present another another version of change of variable formula
for BV functions. Namely, we show that if the absolutely continuous
part of is in we may essentially enlarge the set G for which (4.1)
is valid. This is a generalization of change of variable formula for
functions by Malý and Martio [48] and Malý [46], following some ideas
from the above mentioned works (see also [43], [44], [47], [50]).

If a function then we write

We recall that for

therefore for all

hence

Theorem 4.3. Let be such that Let

be a measurable set with Let be a measurable
function on such that Then the change of variables
formula (4.1) holds on G.

Proof. We will verify the N-property of on G. Let be a set of
measure zero, and choose an open set containing E. For
write
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Fix a point and find an according to the definition of
With each we associate a value such

that

Notice that, by Chebychev’s inequality and the definition of

for some We write

and set

If is finite, then the sequence is bounded and thus is
infinite. It follows that is infinite. We claim that

where is a positive constant which may depend on x and u
but not on k. Let be an auxiliary smooth function with values

and satisfying

Set

By the chain rule (see Ambrosio and Dal Maso [5]),
and

In order to estimate without loss of generality we may
assume that . We have
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and thus by a Poincaré type inequality and (4.7) we obtain

where we have used the fact that and that
Now, if then by (4.4) we have

and this asserts (4.5). If then by (4.8)

which yields (4.5) as well. We conclude the proof using Vitali’s covering
argument. We write the set E as

It is enough to show that for a fixed
We cover with balls where and
Notice that we add ; to only to avoid degeneracy when We
have

Since I(x) is infinite, by virtue of (4.4) we obtain a fine covering of E;
hence; hence we may extract a disjoint subcover up to
a set of measure zero. If is one of selected
balls, then the corresponding radius is denoted by and the
corresponding set Notice that the sets are disjoint.
By (4.5) and (4.9) we obtain

A suitable choice of the set U allows us to deduce that the right hand
side on the above set of inequalities may be rendered as small as we
want. Hence the N-property is verified, which, in turn, implies that the
(4.1) holds as well.
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ON MODELLING
OF CZOCHRALSKI FLOW,
THE CASE
OF NON PLANE FREE SURFACE

Jan

Abstract: The flow of the melt during the industrial production of single crystal
from melt by Czochralski method is called Czochralski flow. The
mathematical description of the flow consists of a coupled system of
six P.D.E. in cylindrical coordinates containing Navier-Stokes equations
(with the stream function vorticity and swirl), heat convection-
conduction equation, convection-diffusion equation for oxygen impurity
and an equation describing magnetic field effect.

The paper deals with analysis of the system in the form used for
numerical simulation. Weak formulation and existence of the weak
solution to stationary and evolution problem is studied. The results
from paper [J. Modelling of Czochralski flow, Abstract and
Applied Analysis, 3 (1998) No.1–2, pp. 1–39] are extended to the case
of non-plane free surface of the melt.

Keywords: Navier-Stokes equations, Czochralski method, single crystal growth,
operator equation, existence theorem, weighted Sobolev spaces, Rothe
method.

1. INTRODUCTION
Czochralski method is one of the most important methods for

industrial production of silicon single crystals. It consists in pulling up
the single crystal from silicon melt in a device called Czochralski device.
Since impurities in the melt (mostly oxygen atoms from the silica
walls of the pot) build in the single crystal, the producers are interested
in character of the melt flow. The flow is not visible, it is very hard
to measure during the procedure, therefore producers are interested in
mathematical modelling of the flow on computers.
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We shall call the flow of the melt in the Czochralski device during
the single crystal growth Czochralski flow. Mathematical model of
the flow used for numerical simulation is represented by a system of
six coupled partial differential equations (2.1)–(2.6) with boundary and
initial conditions.

A brief derivation of the system, weak formulation and proof of
existence to stationary (4.3) and evolution problem (4.4) is introduced in
[3]. In this paper we extend the result in the following way. We remove
the assumption of plane free surface of the melt, in this paper we assume
that the free surface of the melt is known and axially symmetric. (Let
us remark that free surface does not mean free boundary, the problem
is not “free boundary problem” since the shape of the free surface of the
melt is considered to be known.) This is a non-trivial generalization.
We derive conditions on free surface for swirl and vorticity S. In
later we neglect a term corresponding to curvature. On the other hand
the curvature was not taken into account in (2.8). In weak formulation
due to special type of boundary conditions (2.22) on the free surface

we must change bilinear form for to (3.7) to enable application of
existence result for weakly continuous operators [2] and to follow Rothe
method in evolution problem [4].

This research was initiated by professor In a small group leaded
by professor Litzman at Masaryk University in Brno we were developing
numerical simulations of the Czochralski flow for Tesla company.
In 1990 in a conference I referred on the model and its numerical
computation. In discussion professor proclaimed that he thought
that it was possible to prove existence of the weak solution to this
problem.

He was true but it took several years to overcome many troubles
connected with the problem. The existence results were first proved
only for small material constants see [1] in 1992.
A discussion with Dr. Knobloch inspired me to find a way of removing
these restrictions. In 1996 professor Tobiska inspired me to try to
generalize the result to the case of non-plane free surface of the melt.

Most paper dealing with modelling of Czochralski flow were devoted
to numerical experiments and schemes for numerical computations. On
the other hand there is an extensive bibliography dealing with the
Navier-Stokes system and its analysis, e.g. [4]. But the Navier-Stokes
system is usually uncoupled, formulated in terms of velocity vector
(not in terms of the flow function) in Cartesian coordinates (not in
the cylindrical coordinates) and mostly with homogeneous Dirichlet
boundary conditions. Only in [6] there is a mathematical analysis
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including existence proof and numerical experiments to the model of
Czochralski flow formulated in Cartesian coordinates.

In the paper we give a precise weak formulation of the problem and
prove existence of the weak solution. We investigate the system in the
form which is used for numerical simulation. Thus we use cylindrical
coordinates, Navier-Stokes equations with the flow function and derived
variables Svanberg vorticity S, swirl etc.

The problem is rather complicated. Special difficulties arise from
the so-called “wet axis”, in the cylindrical coordinates the coefficients
have singularities, which involves use of weighted Sobolev spaces, see [5].
The Navier-Stokes equations are formulated in terms of stream function,
vorticity and swirl. They are coupled with heat convection-conduction
equation and oxygen concentration convection-diffusion equation. The
last equation in the system describes the effect of the axial magnetic
field. The system is evolutionary but not in all unknowns, it is elliptic
in

In this short paper we follow notation of [3]. The parts formulated in
details in [3] are only mentioned. More space is devoted only to parts
which differ from the comprehensive paper [3].

2. MATHEMATICAL MODEL
We shall deal with modelling of melt flow during single crystal growth

by the Czochralski method in a device called crystal puller or Czochralski
device.

2.1. Czochralski device
The heart of the device consists of a melting pot (crucible) set on

a turning base. Polycrystalline silicon is put into the pot (crucible) and
heated by electric heaters around the pot. When the silicon is melted,
a single crystal nucleus tightened in a turning hanger touches the surface
of the melt. The single crystal starts “growing” as the silicon melt
contacts the silicon solid. Both the pot and the hanger rotate around
the common vertical axis to obtain the axially symmetric single crystal.
It grows in a protective inert atmosphere and often in an axial magnetic
field produced by an electromagnetic coil.

Our modelling is confined to the region V of the melt in the melting
pot. We assume axial symmetry of the problem. Derivation of the
system of partial differential equations with corresponding boundary
conditions is in [3].
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2.2. Geometry of the problem
We assume that the region occupied by the melt is constant and

known. It is denoted by V in Cartesian coordinates. In the cylindrical
coordinates the region V corresponds (up to a zero measure set)
to Thus the domain G represents a radial cross-section of
V in the r, z–half plane

Due to axial symmetry of the problem all variables are independent
of The problem is considered in the domain G. Boundary of the
domain G is divided into four parts, see Fig. 2:

— contact with the bottom and wall of the melting pot,
— free surface of the melt,
— contact with the crystal and
— axis of the symmetry.
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In [3] we assumed that the free surface of the melt has a plane shape,
in this paper we admit non-plane but known and axially symmetric free
surface of the melt.

2.3. System of differential equations

The mathematical model of Czochralski flow usually used in the
literature dealing with its numeric computations consists of the following
coupled system of differential equations:
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for unknown functions where
see (2.7).

2.4. Comments to the equations

Derivation of the system can be found in [3]. In this paper we give
brief comments only.

The first equations (2.1), (2.2) with (2.5) represent the system of
Navier-Stokes equations for incompressible viscous flow in the cylindrical
coordinates with the corresponding components of velocity vector
u,v,w. The system is formulated in terms of Stokes stream function
Svanberg vorticity S and swirl instead of velocity components u, v, w.
The unknown called swirl is angular moment. The equation
(2.2) represents the equation for component of velocity rewritten for

Variable S called Svanberg vorticity is a negative multiple of the
component of vorticity

The equation (2.1) represents equations for r, z components of velocity
u, w rewritten for S. Continuity equation enabled to introduce the
Stokes stream function replacing the velocity components u, w by

Combining the last two equalities we obtain (2.5) — the relation between

The equation (2.3) is heat conduction and convection equation for
the unknown temperature T. The equation (2.4) models diffusion
and convection of oxygen in the melt; the unknown C is oxygen
concentration. The last equation (2.6) describes the effect of magnetic
field. The unknown is the stream function for induced electric current
in the melt.

The equations are coupled: convection term with the stream function
appears in (2.1), (2.2), (2.3) and (2.4), stream function  is in (2.2).

Variables T, C in (2.1) describe natural convection caused by buoyance
due to density gradient of the melt in gravitational field.

In the equations two types of operators appear: a generalized Laplace
operator and a convection operator. Denoting the former by  and the
latter by B
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and inserting from (2.7) we can rewrite the system as follows:

2.5. Boundary conditions
The system of differential equations is completed with boundary

conditions:
— at the melting pot wall

— at the crystal interface

— at the free surface

— and at the symmetry axis
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2.6. Comments to the boundary conditions

The forced convection is caused by rotation of the melting pot and by
rotation or counter-rotation of the crystal. Denoting the angular velocity
of the pot by and of the crystal by we obtained nonslip conditions
for on which yield the conditions for on and On

and the normal component of the velocity vector equals to zero.
Thus the stream function has zero tangent derivatives on the whole
boundary and we put on Moreover on
Similarly, due to insulating boundary the stream function for induced
electric current satisfies on

We assume that the temperature T is known at the pot walls and
crystal interface. At the free surface we consider a linearized law for heat
flow. At the axis the symmetry conditions are assumed. Concerning
oxygen concentration C we assume that it is known at the pot walls, is
symmetric at the axis and no segregation occurs at the crystal interface.
On the free surface we consider a linearized law for oxygen flow due to
evaporating. This condition is often replaced by

2.7. The surface tension on the free surface
In contrast to [3] we assume the non-plane free surface of the melt.

We shall deal with the conditions in details.
On the free surface of the melt the surface tension variations occur

due to temperature and concentration gradients. This surface tension
variations produce shear stress which generates a surface flow — the
so-called Marangoni effect.

We assume linear dependence of the surface tension A on T and C

The shear stress is given by the surface gradient of A and it represents
the only tangential surface force acting on the free surface. Denoting
the stress tensor by we have

for any tangential t and the normal vector to the
surface. Between the stress tensor and the stretching tensor

we assume linear dependence (Newton law)
Combining these relations we obtain
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In our case of axially symmetric free surface the curve can be
described by functions satisfying as follows

In cylindric coordinates we have

We choose a tangent vector, transform the relation (2.21) into cylindric
coordinates and rewrite it for our unknowns.

First in (2.21) we take the tangent vector in cylindrical coordinates
Since A, u, w are independent of on the plane surface

after some computation we obtain

which rewritten for yields the condition

Then in (2.21) we take the tangent vector t2 in the r , z plane, in
cylindrical coordinates After some
computation we obtain

Since normal component of velocity is zero, its tangent derivative is
zero, too. Neglecting the second derivatives of the condition

yields

Combining these relations we obtain

The left hand side equals to –Sr. Inserting for A we obtain the condition
for S in (2.17) with material constants and
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2.8. Summary of the data

The material constants used in the system are:
— silicon melt viscosity,

— thermal diffusivity of the silicon melt,
— oxygen diffusion coefficient in the silicon melt,
— coefficient of buoyance caused by thermal and oxygen

volume expansion in the gravitation field.
The other “data” in the system are:

— coefficients of condition describing the surface flow in the
free surface,

— data in conditions describing the linearized
heat and oxygen flow on the free surface. They depend also on the
surrounding walls and on the flow of cooling gas.

3. INTEGRAL IDENTITIES
The integral identities are the base for weak formulation of the

problems. Since the identities except for (3.2) are same as in [3] their
derivation will be only outlined.

Lemma. Let the functions satisfy the system of
equations (2.9)–(2.14) with the boundary conditions (2.15)–(2.18). Then
they satisfy the following integral identities
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with test functions satisfying

In the identities means the scalar product with weight

the bilinear forms corresponding to operators are defined by

and the trilinear form corresponding to operator is given by

On the other hand if the functions satisfy the derived
integral identities for all smooth test functions satisfying
(3.6) and the functions are sufficiently smooth, then
they also satisfy the system of differential equations (2.9)–(2.14) with
boundary conditions (2.15)–(2.18) where S is given by (2.13).

3.1. Comment to derivation of the identities
All identities are derived in usual way. Each equation of (2.10), (2.11),

(2.12), (2.14) is multiplied with a test function satisfying the conditions
(3.6) and the weight r in case of (3.3), (3.4). In the other equations the
weight is The second order operators are converted
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using integration by parts in the plane to the corresponding bilinear form

In the curve integral we use boundary condition for the unknowns and
the test functions.

The equations (2.9) and (2.13) are “processed” together since on
boundary the second order equation (2.13) for  has two boundary
conditions while equation (2.9) for S has no boundary
condition. Thus we express S by using equation (2.13)

and insert it into equation (2.9) to obtain a fourth order equation for
which has two boundary conditions along the whole

The equation (2.9) is multiplied by and integrated over domain G.
The first integral can be rewritten to the form of bilinear form
The second integral with operator is transformed to the
bilinear form by double “integration by parts” and conversion of two
“mixed” terms with integrand of type to the form In the integrals
over the boundary conditions are used.

3.2. Identity for swirl
As in the other cases we multiplied the equation (2.10) by and

integrated over G. The problem was with the integral containing
In case of plane free surface the Newton condition on reduces to
Neuman condition and one can use the bilinear form In our
case of non plane free surface the condition (2.17) is not convenient since
T has opposite sign and it would cause troubles in proof of coercivity.

Thus we shall use other integration by parts

where we obtained other bilinear form defined by (3.7). Since

we can use the boundary condition to eliminate the boundary integral.
The other terms are converted in usual way.
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4. SOLVABILITY OF THE PROBLEMS

The following weak formulations and solvability of the problems
are similar to those in [3]. We choose convenient function spaces,
the problem is reformulated into an operator equation with a vector
of unknowns. We shift the problem to homogeneous boundary
conditions. In the stationary problem existence proof consists in
verifying assumption of an abstract existence theorem. In the evolution
problem we follow Rothe method.

For the unknowns we introduce weighted Sobolev spaces with weight
such that the bilinear forms are continuous. Thus the forms

and define weighted Sobolev spaces
and respectively. Namely

The weighted Sobolev spaces are studied in [5].
Then according to various boundary conditions for the test functions

we introduce function spaces denoted by subscript of the unknown

The bilinear forms define equivalent norms on these subspaces.
Since have nonhomogeneous boundary conditions we

introduce auxiliary functions satisfying these boundary
conditions. We assume

4.1. Function  spaces
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4.2. Vector formulation

We gather all the unknowns into a vector U of unknown functions and
all the test functions into a vector V of test functions

We introduce a basic space for the vector functions U and V

its subspace of functions with prescribed zero traces for the test vector
V by

and a vector of functions determining the nonhomogeneous boundary
conditions

4.3. Stationary problem
We take the integral identities (3.1), (3.2), (3.3), (3.4), (3.5) without

the first evolution terms with time derivative. We multiply them with
positive constants , respectively and sum them up. We
choose the constants will be chosen later such
that they ensure coerciveness of the operator.

Summing the identities we obtain an identity containing 17 terms,
we associate them into four groups, the first three represent defining
formulae for operators

— the first principal linear operator contains all scalar product
type terms,

— the second convective nonlinear operator . consists of all trilinear
forms,

— the third coupling operator contains remaining bilinear terms,
— the remaining terms form a functional on [3].

Thus the problem is converted into an operator equation

Finally we get rid of nonhomogeneous boundary conditions. In the
equation we replace the unknown with and rewrite
the equation to the form

where the operator contains all the new terms linear in the unknown
U and the other terms. Now we formulate the stationary problem:
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Stationary problem. The function  is  called the  weak solution
to the stationary problem iff and the operator equation (4.3)
holds on

Theorem 4.1. Let the assumption (4.1) and (4.2) be satisfied. Then
the Stationary problem is well defined and admits a weak solution.

The proof of existence of the solution consists in verifying assumptions
of the following existence theorem, see [2]:

The operator equation on a separable reflexive Banach space
V with coercive and weakly continuous implies
operator admits a solution.

Weak continuity of the operator can be proved using linearity in the
highest derivatives and compact imbedding which makes lower order
terms converging strongly. Coerciveness is ensured by the first term
with The second term and the other terms can be
made arbitrary small by a special choice of auxiliary functions in with
a cut off function when the convective operator is estimated and by
a special choice of constants when the coupling operator is
estimated. For detailed proof see [3].

4.4. Evolution problem

Using the same vector and operator formulation starting from integral
identities including their evolution terms which forms another operator
we obtain the operator equation

We complete it with initial conditions.
The problem admits a solution. The proof follows the Rothe method,

see [4]. The evolution problem is semidiscretized to a sequence of
stationary problems whose solvability is ensured in previous paragraph.
Using the corresponding sequence of solutions we construct the Rothe
piecewise constant function and the continuous piecewise linear function.
A priori estimates yield existence of a weakly converging subsequence.
Justification of the limit procedure ensures that the limit solves the
evolution problem and completes the proof.
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SYMMETRIC STATIONARY SOLUTIONS
TO THE PLANE EXTERIOR NAVIER-
STOKES PROBLEM FOR ARBITRARY
LARGE REYNOLDS NUMBER

Giovanni Paolo Galdi

Abstract:   We show that the two-dimensional stationary exterior Navier-Stokes
problem is solvable for arbitrary large Reynolds number, in the class of
symmetric solutions, provided the corresponding homogeneous problem
has only the zero solution.

Keywords:   Navier-Stokes equations, existence, stationary solution, two-dimensional
exterior problem.

1. INTRODUCTION
In his celebrated paper of 1933, J.Leray studied the solvability of an

exterior boundary-value problem related to the Navier-Stokes equations.
In a suitable dimensionless form, the problem can be written as follows

As is known, these equations describe the steady motion of a viscous
liquid around a body , translating with a prescribed constant velocity

, when the motion is viewed from a frame attached to . In our
dimensionless form, the magnitude of can be identified with the
“Reynolds number” of the problem. The vector field v and the scalar
field p are velocity and pressure, respectively, associated with the flow of
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is the complement of and represents the relevant region occupied
by , and it can be a domain of or of according to whether the
motion of may be considered plane or fully threedimensional.

Undoubtedly, the most significative contribution of Leray to problem
(1.1), (1.2) was to show that, for any prescribed nonzero there is at
least one solution to (1.1). Moreover, in the case he also showed
the validity of (1.2), in a suitable generalized sense. (1) Therefore, in the
threedimensional case, Leray proved the solvability of (1.1), (1.2) for
arbitrary Reynolds number. However, for , namely, in the case
of plane flow, he was not able to get the same type of result, since he
could not establish (1.2), in any sense.

The question of whether Leray’s solution satisfies (1.2), and, more
generally, the question of the solvability of (1.1), (1.2) for has
become the object of deep researches by many authors. Among others,
D.Gilbarg and H.Weinberger [9], [10] have shown that the solution
constructed by Leray is always bounded and that it converges at large
distances, in the mean square over the angle, to a certain vector More
detailed information about convergence can be given if the solution is
symmetric. Specifically, a pair  p is said symmetric if u and p
are even in and w is odd in If is symmetric around the -axis,
and , with e unit vector along Leray’s construction leads
to a symmetric solution. In such a case, C.Amick [1] has shown that v
tends to uniformly pointwise. However, it is not known whether or
not ( may be even zero!) and, consequently, the question of
whether Leray’s solution satisfies (1.2) remains open.

Solvability of problem (1.1), (1-2), with methods completely different
than Leray’s, was considered by R.Finn and D.R.Smith [4], [5], [13], and,
more recently, by me [6], [7]. In these papers it is shown that the problem
has one solution, at least for Reynolds number of restricted size (small
translational velocity). Moreover, the solution is physically reasonable
in the sense of Finn [13], and it is locally unique.

In view of all the above considerations, the fundamental question that
remains still open is whether or not (1.1), (1.2) is solvable for arbitrary
large Reynolds number.

The objective of this note is to give a contribution along this direction.
We shall limit ourselves to give the main ideas of proofs, referring the
reader to a forthcoming full detailed paper, that will appear elsewhere.
Denote by the problem (1.1), (1.2) with where (1.2)
is understood in the sense of pointwise, uniform convergence. Clearly,

(1)The validity of (1.2), pointwise and uniformly, was first proved by R.Finn [3].
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the zero solution const is a solution to Furthermore,
assume symmetric around the -axis (say) and denote by the class
of symmetric pairs v, p with v having a finite Dirichlet integral. Our
result states that if the zero solution is the only solution to in
the class then problem (1.1), (1.2) is solvable in for arbitrary
large Reynolds numbers and the corresponding solutions are physically
reasonable. In particular, denoting by M the set of for which (1.1),
(1.2) has at least one symmetric solution associated to a given
we show that M contains an unbounded set of the positive real axis. (2)

Stated in a different way, for our result to be true it is sufficient
that every symmetric solution to the homogeneous problem with
v having a finite Dirichlet integral is identically zero. We wish to
emphasize that the problem here is not related to local regularity of
solutions to (they are real-analytic in but to their behavior at
large distances.

The paper is organized as follows. In section 2 we collect some
known results concerning Leray’s solutions. Section 3 is devoted to
sketch the proof of a result which is crucial for the proof of our main
theorem. The result shows, in particular, that the velocity field of
any symmetric solution constructed by Leray’s method is bounded from
below by a constant (depending only on times a suitable power of
(see Theorem 3.1). To our knowledge, this is the first explicit relation
between these two quantities. Finally, in Section 4, we give a proof of
our main theorem.

Throughout the paper we shall use standard notations for function
spaces. So, for instance, etc., will denote the usual
Lebesgue and Sobolev spaces on the domain A, with norms and

respectively. Whenever confusion will not arise, we shall omit
the subscript A. Moreover, we represent a function, say u, at a point in

by either or in polar coordinates. This latter is used
as a notation for

2. SYMMETRIC LERAY SOLUTIONS AND
RELATED PROPERTIES

In this section we shall consider Leray solutions and recall some related
properties that we shall use later in the paper. Even though several of
the results we shall state continue to hold for more general situations, we
shall restrict our attention to the class of symmetric solutions. To this
end, we denote by a smooth compact, connected set of symmetric

(2)Without loss of generality, we may take



152 Galdi P.G.

around the -axis. We also denote by its boundary, and by its
complement. We take the origin of coordinates in the interior of and
assume, without loss, Finally, we set

Let and let e be the unit vector (1,0). Then, by a symmetric
solution to the exterior Navier-Stokes problem in corresponding to
we mean a pair constituted by a vector field and a scalar field
p, where u and p even in and w odd in satisfying the following
equations

along with the condition at infinity

A solution to (2.1)-(2.2) was sought by Leray [12] by means of the
following procedure of “invading domains”. Let be an
unbounded, increasing sequence of positive numbers, with For
each k, consider the sequence of problems:

Combining the work of Leray with classical regularity theory (see,
e.g., [7]) we obtain the following result.

Lemma 2.1. There exist a subsequence of that we still denote
by and two fields and p such that

(i) for some M depending only on and

(ii) for all bounded
subdomains

(    ( i i i )  a s

(iv) v,p is symmetric and satisfies (2.1),
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(v) and the following energy inequality holds

where

Throughout this paper, solutions v,p to (2.1)-(2.2) described in
Lemma 2.1 will be referred to as symmetric Leray solutions.

As is well-known, Leray’s result recalled in Lemma 2.1 does not
establish the validity of (2.2) for v. In fact, it does not even ensure
the boundedness of v or of the approximating velocity field These
issues were later considered by several authors. We will collect the results
we need in the following lemma, where part (i) is due to Gilbarg and
Weinberger [9], [10], part (ii) is due to Amick [1], and part (iii) is proved
by Amick [2] in conjunction with a result of Smith [13]; for part (iii), see
also [7], Section X.6, and [8].

Lemma 2.2. (i) There exists a positive constant depending only on
and such that

Thus, as a consequence of Lemma 2.1 (iii), v is bounded.
(ii) There is such that

uniformly.

(iii) If we have, for all sufficiently large

with c independent of x.

This lemma does not ensure that However, one can prove
the following result.

Lemma 2.3. Let be as in Lemma 2.2(ii). Then, where
for some

3. A KEY RESULT
Throughout this section, we denote by a symmet-

ric solution to (2.3) and by the corresponding
vorticity. We also set
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and

where v,p is a symmetric Leray solution. Furthermore, we put

Finally, we indicate by c a constant depending at most on and whose
numerical value is not essential to our aims. In particular, c may have
several different values in a single computation. For example, we may
have, in the same line,

The main objective of this section is to sketch a proof of the following
key result.

Theorem 3.1. Let v, p be a symmetric Leray solution corresponding to
a given Then, there exists a homogeneous polynomial with
coefficients depending only on such that

Remark 3.1. The proof of this theorem is a consequence of several
intermediate steps. Before doing this, however, we wish to point
out a particular, immediate consequence of our result, namely, that
a symmetric Leray solution corresponding to can never be trivial,
i.e, const. This was proved for the first time by Amick [1],
Theorem 29. It is not known if the same result is true for non-symmetric
solutions.

Lemma 3.1. The following inequality holds, for all

We recall that the vorticity satisfies the following equation

By using suitable “cut-off ” and “energy” arguments, from (3.1) and
(2.3) we can show the following lemmas.

Lemma 3.2. The following inequality holds

where M and are the constants introduced in Lemma 2.1(i) and
Lemma 2.2(i), respectively.
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Lemma 3.3. There exists such that

(i)

(ii)

(iii)

where the quantity is defined in Lemma 3.2.

Lemma 3.4. Let be the number defined in Lemma 3.3. The
following inequality holds

Using a result of Amick [1], we can show the following one.

Lemma 3.5. The following inequality holds

The following two results are based on energy estimates for (2.3), and
on classical local estimates for the Stokes problem, respectively.

Lemma 3.6. Let v,p be a symmetric Leray solution corresponding to
Then, the following inequality holds

where

Lemma 3.7. Let v,p be as in Lemma 3.6. Then,

where

We are now in a position to give a proof of Theorem 3.1. In fact, it is
an immediate consequence of Lemma 3.6 and Lemma 3.7.
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4. EXISTENCE OF SYMMETRIC
SOLUTIONS FOR ARBITRARY LARGE
REYNOLDS NUMBER

We begin to introduce a suitable regularity class. Specifically we
denote by the class of pairs constituted by a vector field
and scalar field such that:

(i) Symmetry:

(ii) Finite Dirichlet Integral:

The objective of this section is to prove the following result.

Theorem 4.1. Let be symmetric around the axis. Assume that
the following problem

uniformly

has only the zero solution in the class Then, there is a set M with
the following properties:

(i)

(ii)

(iii) M is unbounded;

(iv) For any the problem

has at least one solution in the class

Before we give the proof of Theorem 4.1, we wish to make the following
remarks.

Remark 4.1. In the case when (an unrealistic assumption in our
present situation) the uniqueness of the zero solution to (4.1) is a simple
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consequence of the maximum principle applied to the vorticity equation;
see [10], Theorem 2.

Remark 4.2. All possible solutions to (4.1) in the class C are smooth
and satisfy the following asymptotic conditions ([7], Theorem X.3.2,
Theorem X.3.3)

where represents a derivative of arbitrary order Further-
more, denoting by the vorticity field associated to u, we have ([10],
Theorem 6)

Let us now come back to the proof of Theorem 4.1. To this end, we
need the following auxiliary result, that can be obtained by means of
a suitable variation of the classical Hopf extension method.

Lemma 4.1. Let and let be a solution to (4.2) corresponding
to Then, there exists a positive constant depending only
on and such that

We are now in a position to give the proof of Theorem 4.1. Let
us denote by M the set of those for which problem (4.2) has
a corresponding solution From the work of Finn and Smith [5] and
Galdi [6], we know that . for some positive We shall
now show that where enjoys the properties:

(i)

(ii) is unbounded.

Actually, let be defined as follows:

if and only if uniformly

where is a symmetric Leray solution corresponding to a given
Clearly, Also, by Lemma 2.2, Furthermore,

In fact, by Lemma 2.3, However,
because, otherwise, v, p satisfy the homogeneous equation (4.1), and
this, by assumption, would imply So, by Theorem 3.1, we would
conclude which leads to a contradiction. This proves property (i)
of Let us show (ii). Assuming bounded means
for some Thus, from Lemma 4.1, we have
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for all symmetric Leray solutions corresponding to arbitrary
Using (4.3) into Theorem 3.1, we obtain

for arbitrary which gives a contradiction. The theorem is,
therefore, completely proved.
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A FICTITIOUS-DOMAIN METHOD WITH
DISTRIBUTED MULTIPLIER FOR THE
STOKES PROBLEM

Vivette Girault, Roland Glowinski, T.W. Pan

Abstract: This article is devoted to the numerical analysis of a fictitious domain
method for the Stokes problem, where the boundary condition is
enforced weakly by means of a multiplier defined in a portion of the
domain. In practice, this is applied for example to the sedimentation of
many particles in a fluid. It is found that the multiplier is divergence-
free. We present here sufficient conditions on the relative mesh sizes for
convergence of the discrete method. Also, we show how the constraint
on the divergence of the discrete multiplier can be relaxed when such
a sedimentation problem is discretized.

Keywords: Fictitious domain, distributed multiplier, particle sedimentation.

The fictitious-domain method presented here is motivated by the
numerical simulation of an incompressible flow around moving rigid
bodies, when the rigid-body motions are caused by hydrodynamical
forces and for example, gravity. One example is the problem of
sedimentation of particles. Our method consists in filling the moving
bodies by the surrounding fluid and imposing weakly the rigid-body
motions, in this region, by means of a distributed Lagrange multiplier.
This leads to a modified flow problem in the entire region. The advantage
of this approach is that a single uniform mesh is used for the entire region
and the particles are meshed independently, once and for all. On the
other hand, as we shall see here, the corresponding scheme has a low
order of convergence. The numerical analysis of this problem is difficult,
and to simplify, we shall mostly consider the case of a single particle
with a known rigid-body motion, immersed in a fluid whose equation of
motion is a steady Stokes system of equations in two dimensions.

In the next section, we shall state the fictitious-domain formulation of
an exterior Stokes problem with a non-homogeneous Dirichlet boundary
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condition, interpret the new problem and show that it is well-posed. We
shall see that the Lagrange multiplier is determined by a divergence-free
condition. Section 2 is devoted to the numerical discretization of this
problem, characterized by the fact that the fluid mesh and the Lagrange
multiplier mesh are unrelated, up to a mesh-length ratio. Particular
emphasis is placed on the proof of a discrete uniform inf-sup condition.
Section 3 studies briefly the particular case where the Dirichlet boundary
condition is given by a rigid-body motion. In this case, the discrete
divergence-free constraint on the multiplier can be relaxed.

The fictitious-domain method discussed in this article has been
generalized to the solution of the full time-dependent Navier-Stokes
equations modelling incompressible viscous flow in regions with moving
boundaries. The corresponding computational methods are described
in [9], [10], [11]. In [10], the motion of the moving boundary is known
in advance, while [9] and [11] discuss the simulation of particulate flow,
with up to 500 particles. Simulations involving particles
in two dimensions (resp. three dimensions) have become routines for
Newtonian viscous fluids. In articles to appear or in preparation, one
describes further applications to particulate flow with more than
particles in three dimensions (for Newtonian fluids) and of the order of
10 particles in two dimensions for visco-elastic liquids of the Oldroyd-B
type. Via parallel computing, one expects being able to simulate in
a near future particulate flow with more than particles in three
dimensions for visco-elastic liquids.

1. A FICTITIOUS-DOMAIN FORMULATION
OF THE STOKES PROBLEM

We consider the case of a single particle occupying a bounded plane
domain B, immersed in a fluid contained in a rectangular domain
so that the original domain of interest is We assume that the
boundary of B is Lipschitz-continuous, that is large enough so that

is far enough from the boundary of and has sides parallel
to the axes. We do not suppose from the onset that particle B has
a rigid-body motion, but we assume that the given velocity on is
the trace of a known function defined in B, with zero divergence. If this
function were not known, and a lifting had been explicitly constructed,
the method discussed here would lose much interest. We introduce the
spaces, on a domain
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(we refer the reader to [15] or [1] for the properties of Sobolev spaces).
Then, for f given in and g given in W(B), we want to derive
an equivalent variational formulation for the following Stokes problem:
Find u in and p in solution of

where is the given viscosity constant. Since by assumption,
g belongs to W(B), it satisfies the compatibility condition

where n denotes the unit normal to directed inside B. This Stokes
problem has a unique solution. Note that the boundary condition (1.3)
on is chosen according to convenience and can be replaced by another
one.

As explained in the introduction, we propose to impose weakly (1.3)
on by means of a Lagrange multiplier defined in B, and to set
our problem in the whole domain The reader will see below that
it is reasonable to take with regularity. Since the pressure p is
the multiplier associated with the divergence constraint, we consider the
following bilinear form

The next lemma shows that we must impose on the volume multiplier
a zero divergence constraint, because otherwise it is not determined.

Lemma 1.1. If div the equation: Find in
such that

has the only solution If div then (1.5) has an
infinity of nontrivial solutions.

Thus, we choose W(B) as space for the volume multiplier. Then, we
extend f in B by a function (for instance, in B),
and we propose the following fictitious-domain variational formulation
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of (1.1)–(1.3): Find in solution of

To interpret this problem, let be a solution of (1.6)–(1.8). We
easily derive that:

where

denotes the jump of v across and is extended by zero in
in order to define the jump of Hence, the restriction of (u,p) is
a solution of the original Stokes problem (1.1)–(1.3), u satisfies (1.9),
and the pair is the solution of a Stokes problem in B with
a Neumann boundary condition:

This problem has a unique solution because (u,p) is known in
Note also that it simplifies when belongs to and this always
holds in the applications we have in mind.

Conversely, if (u,p) is a solution of (1.1)-(1.3), then extending u by
g in B, f by in B and defining the pair in B by (1.10)–(1.12),
the triple satisfies (1.6)–(1.8), except that the mean-value of p
is generally not zero in
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Problem (1.6)–(1.8) is a mixed variational problem. Since the bilinear
form is elliptic on to show that this
problem is well-posed, we must establish the following inf-sup condition
(cf. [12], [6]).

Theorem 1.2. There exists a constant such that, for all
in

Proof. For an arbitrary we first construct z in
satisfying

that depends continously on p:

Next, as

we extend z in by constructing in such that

div in
on on

By construction, the extended function z belongs to
in z satisfies(1.14) and depends continuously on p:

Finally, we extend to so that the extended function belongs to
has zero divergence and

The choice verifies

Remark 1. As a consequence, problem (1.6)–(1.8) has a unique solution
in that depends continuously on the

data and g. However, even if g is smooth (which is the case in
practice), it is unlikely that globally (u, p) have a stronger regularity
than because of the jump of n across

(cf. [13]). In contrast, it is possible that belongs to
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2. DISCRETIZATION

To simplify the discussion, we assume from now on that the boundary
is a polygon. The case of a curved boundary is more technical

but brings no essential difficulty. Since the mesh of the fictitious
domain and the particle B are unrelated, we choose two independent
discretization parameters, and that will tend to zero. Let

be a uniform triangulation of composed of squares divided into
two triangles along the same diagonal, let be a regular triangulation
of (cf. [7]) and define the two finite-element spaces

where the step-size of is sufficiently large with respect to the step-
size of so that this pair satisfies a uniform discrete inf-sup condition
(cf. [12]): there exists a constant independent of h, such that

Here we shall impose this condition by asking that the support of the
basis functions of be spread over an adequate number of triangles
of so that the mesh-size of say is for instance the double of
that of To be precise, we should use a different index h for and

but for the sake of simplicity, we only make this distinction when
it is necessary.

Let be a standard discretization of

In order to approximate W(B), we observe that in (1.10) and (1.11),
the restriction of p to B is the Lagrange multiplier associated with the
divergence constraint on This suggests to retain the same structure
at the discrete level. But, we cannot ask that for

in without considering the intersection of the support of with
B. If this support is too small, we run the risk of imposing too many
conditions on Hence we discretize W(B) by
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where is an adequate parameter. Then we approximate
(1.6)–(1.8) by: Find solution of

Again, this is a mixed problem and since the bilinear form
is elliptic on we must check that the bilinear

form b satisfies a uniform discrete inf-sup condition. It is convenient to
split it as follows: for each there exists
such that

where and are two constants independent of h, and

Theorem 2.1. Assume (2.3) and suppose is uniformly regular.
There exists a constant independent of h and such that, if

and if

then there exist two constants and independent of h,
and such that (2.9) and (2.10) are satisfied for all

Proof. Let be arbitrary. First, we extend to
so that the extended function v satisfies for all supports T of the

basis functions in
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Let be the set of supports of the basis functions for
which

set

and define a piecewise constant function in by

div in

elsewhere.

In view of (2.5), we have

Furthermore, belongs to and belongs in particular
to . Therefore, we choose where is the
operator defined by Theorem 7.1 of [2]; more precisely, we have

Thus, v belongs to and, with the same constant we
have

On one hand, (2.13) implies that

Hence

On the other hand, since belongs to . and vanishes on
all elements except on the sets , whose measure is bounded
below by and since is uniformly regular, we can
apply the following inverse inequality (cf. [4]):
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where the constant is independent of and Therefore,

Then, we set in B. By construction, v belongs to and
to . it satisfies

and it satisfies in inequalities similar to (2.14) and (2.16).

Next, we construct an approximation of v in  that preserves (2.17).
For this, we choose an approximation operator such
that (cf. [8], [3], [16]):

Then, by virtue of the inf-sup condition (2.3), there exists an operator
satisfying for all

Finally, owing again to (2.3), there exists such that

Then we consider the linear combination, for an adequate parameter

By construction, and using (2.17) and (2.18), we obtain

Now, on one hand, for any we can write
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where is the constant of Poincare’s inequality. On the other hand, we
derive from the definition of v:

By using (2.19), the above approximation properties of and
interpolation between spaces (cf. [14]), we obtain

Owing to (2.16) and applying again the inverse inequality (2.15), we
obtain

Collecting (2.20)–(2.23), we derive the lower bound:

Let us choose for example

This choice and (2.12) imply

Thus, by choosing such that

we derive (2.9) with The proof of the estimate (2.10)
is straightforward.

Remark 2. Let denote the set of all satisfying
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Then, the inf-sup condition (2.9), (2.10) implies in particular:

with a constant C independent of u, h, and

It remains to lift the constraint on the functions of For this, it
suffices to find a constant independent of and such that for all

in satisfying

we have

Lemma 2.2. There exists a constant independent of and
such that if

then the inf-sup condition (2.27) holds, with a constant that is
proportional to for all satisfying (2.26).

Proof. Let us choose once and for all a domain with smooth
boundary that contains the support of all satisfying (2.26).
(Here we assume that is large enough with respect to B). We take

satisfying (2.26) and in we solve the problem:

As contains the support of then and this problem has
a unique solution Since is smooth, belongs
to

The smoothness of also implies that

where we have applied again the inverse inequality (2.15). In addition,
in view of (2.26),
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Next, we set and we choose where
is the analogue of the approximation operator

Thus

Therefore,

If we choose for example

then so

that (2.27) holds with

Remark 3. Summing up, with the choices (2.31) and (2.12), we obtain
the condition

Note that the largest bound is likely to be the second one. However,
(2.24) and (2.28) are both theoretical bounds and are usually ignored
in practice: is often taken slightly larger than h and is often the
double of h. Nevertheless, there are cases where this simple choice leads
to an unstable solution in some elements near the boundary

Remark 4. The inf-sup condition (2.27) implies in particular

and observe that the constant of (2.32) is large if is small.

As the inf-sup condition (2.9), (2.10) is satisfied, problem (2.6)–
(2.8) has a unique solution and standard results on mixed methods
(cf. [12], [6], [5]), together with (2.25) and (2.32) yield the following
error estimate.
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Theorem 2.3. Assume that is uniformly regular and that (2.11),
(2.12) and (2.28) hold. Then we have the following error bounds

where C is the constant of (2.25) and

This theorem states that the accuracy of (2.6)–(2.8) depends on the
global regularity of u, p and But we have mentioned in Remark 1
that this regularity is not high. Thus, we have the following corollary.

Corollary 2.4. Under the assumptions of Theorem 2.3 and if
then there exists a con-

stant C, such that

3. THE CASE OF A RIGID BODY

Here, we retain the setting and assumptions of the preceding section.
When g is a rigid-body motion:

the constraint (2.5) on can be relaxed. For this, we first construct
an adequate lifting of g.

Lemma 3.1. Assume that is large enough and is such that there
exists a rectangle R containing B and strictly contained in such that
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the support T of any basis function satisfies either or
Then, for any g of the form (3.1), there exists

satisfying

Proof. Since and div it suffices to correct g so that it
vanishes on First note that where

Next, we choose once and for all a smooth truncating function
such that in has compact support in and we set

Let be the standard Lagrange interpolation operator in Then
and the assumption on R implies that in

because preserves in each triangle. Consequently,

where n is the unit normal to pointing inside R. The above
assumption on R and the imbedding of the mesh of into that of

imply that the inf-sup condition (2.3) also holds for the restrictions
of and Thus there exists a function that
vanishes in R, such that

The desired lifting is

As a consequence, we consider the following version without constraint
of (2.6)–(2.8): Find such that
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Theorem 3.2. Let be as in Lemma 3.1. Then problem
has at least one solution. The multipliers and are not necessarily
unique, but the unique solution of

Proof. Prom the existence of a lifting satisfying (3.2) and (3.3), it
is easy to prove that has at least one solution
In addition, the inf-sup condition (2.9), (2.10) allows us to construct

and such that

In view of (3.4), we find that is a solution of and
the uniqueness of this solution shows that In particular, this
means that satisfies

and hence (2.8) holds for all

It is well-known that in this situation, even if the multipliers are not
unique, we can use a gradient algorithm to solve efficiently the systems
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RELIABLE SOLUTION OF A UNILATERAL
CONTACT PROBLEM WITH FRICTION,
CONSIDERING UNCERTAIN INPUT DATA

Ivan

Abstract: A Signorini contact problem with an approximate model of friction is
analyzed, when Lamé’s coefficients, body forces and friction coefficients
are uncertain, being prescribed in a given set of admissible functions.
Three kinds of criteria, characterizing the stress intensity, are chosen
to define three maximization problems. Approximate problems are
proposed on the basis of a mixed finite element method. Some
theoretical convergence analysis is presented.

Keywords: Uncertain data, unilateral contact, Coulomb friction.

Introduction
Mathematical models involve data (coefficients, right-hand side,

boundary values), which cannot be sometimes determined uniquely, but
only in some intervals, which result from experimental measurements
and inverse (identification) problems.

Assume that the main aim of the computations is to find maximal
value of certain functional, which depends on the solution of the mathe-
matical model. Then we can formulate a corresponding maximization
problem and employ methods of Optimal Design. Such a general
approach has been proposed in [6] and applied to nonlinear elliptic
problems in heat conduction [7], elasto-plasticity [8] - [10] and to
parabolic problems [11].

The aim of the present paper is to apply the general approach to
a unilateral contact problem for an elastic body, with an approximate
Coulomb friction. Problems of this kind with uncertain input data occur
e.g. in modelling of plate tectonics, based on the global geodynamics. If
a litospheric plate is obducting with time onto the oceanic litospheric
plate, the model can be represented by a Signorini problem with
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uncertain Lamé’s coefficients, body forces and a coefficient of the friction
— see, e.g., [14]. Another example is a model of interaction between
a tunnel wall and the rock [13], where the Lamé’s coefficients of the rock
and the friction coefficients are uncertain.

In the first Section we introduce a unilateral Signorini problem with
approximate friction and define a set of admissible uncertain data. Then
Maximization Problems are formulated for three kinds of the criterion:
(i) the intensity of shear stresses, (ii) the normal component of the
surface traction or (iii) a norm of the surface traction. The existence of
a maximizing data is proved in Section 2 on the basis of the continuous
dependence of the solution of the contact problem on the data.

We introduce approximate maximization problems in Section 3, using
a mixed finite element method to solve the contact problem [1, 3, 4]
and prove the solvability of the approximate problems. In Section 4 we
show the existence of sequences of approximate solutions, which tend to
a solution of the original Maximization Problem, when the mesh-sizes of
the discretizations tend to zero and that the approximate maxima tend
to the maximum of the original problem.

1. SETTING OF MAXIMIZATION
PROBLEMS

Let an elastic piecewise homogeneous isotropic body occupy a bounded
domain with Lipschitz boundary We assume that

is a disjoint decomposition, meas meas We introduce
the bilinear form

where

and the virtual work of external forces

The Coulomb friction will be approximated by the functional
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is the tangential component of the displacement).
Here the repeated index implies a summation within {1,2}. The input

data are

where the sets of admissible data will be defined as follows.
Let

be a given partition of the domain and of respectively.
We define

where

are given constants.
Furthermore, let be a given surface load and let a function

be given, such that where v denotes
the unit outward normal to the boundary.

We introduce the set

and the following (state) problem for any given

find such that

holds for all
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Proposition 1.1. There exists a unique solution of  the  problem
(1.3) for any

Proof is based on the equivalence of the variational inequality (1.3)
with the minimization of the following functional

over the set K.

Let us choose a finite number of (small) subdomains (adjacent
to for example), and define

where denotes the “intensity of shear stress”, i.e., an invariant of
the stress tensor deviator We have the formulae

corresponding to the plane strain elasticity.
Let us consider the functional

and the following Maximization Problem: find

If is polygonal and the friction can be neglected (as in [14]), we
set and define (instead of (1.4)) for instance

If a norm of the surface traction vector

on a part of the boundary is the most important aim of computations,
we can extend the formula (1.8), which holds for enough smooth stress
tensors only, to cover the general case, when
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is the only assumed regularity of the stress field. To this end, we find
a solution z(A; u) of an auxiliary elliptic boundary value problem — see,
e.g., [1], [5]. Then we define

since this functional equals to the square of a norm of the surface traction
vector.

2. EXISTENCE OF A SOLUTION TO
MAXIMIZATION PROBLEMS

To prove the solvability of the problem (1.6), we have to verify
a continuity of the mapping on the set We introduce the
space

and prove the crucial

Proposition 2.1. Then

Proof is based on the following observation: if in
U and (weakly) in then

First, we show that the sequence is bounded, so that a weak
cluster point exists. Second, we verify that and the
uniqueness (Proposition 1.1) implies that the whole sequence
tends to u(A) weakly. Third, we prove the strong convergence. For
detailed proof— see the paper [12].

Lemma 2.2. Let the criterion-functional be defined either by (1.5)
(with (1.4) or (1.7)), or by (1.9). Let in U and

in as
Then

Theorem 2.3. There exists at least one solution of the Maximization
Problem (1.6).

Proof. By Lemma 2.2 and Proposition 2.1, the functional
is continuous on the set Since the set is compact in

U, the existence of a maximizer follows.
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3. APPROXIMATE MAXIMIZATION
PROBLEMS

Assume that is a polygonal domain and that consists of
a finite number of points. Let be an integer and let every be

partitioned into M equal segments
Denote the above partition of by We define

(i.e., piecewise linear functions) and denote

The state problem (1.3) can be solved by various methods — see, e.g.,
[1-4]. Here we choose a mixed finite element method, which removes the
unpleasant presence of the nondifferentiable term j ( v ) .

Let be a triangulation of the domain consistent with the
partitions (1.1), with the decomposition of the boundary and with the
boundaries from (1.4), (1.7). Let h denote the length of the maximal
side of all triangles in We introduce a finite-dimensional subspace

of piecewise linear vector functions

and a subset

The nodes need not coincide with those of the partition
Let any segment be divided into equal subsegments We define

(i.e., a set of bounded piecewise constant functions) and denote the above
partition of by

By a mixed finite element approximation of the problem (1.3) we call
the problem of finding a saddle-point of the following Lagrangian

on the set i.e., a couple satisfying the
inequalities

for all
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The problem (3.1) has a solution for all The first component
(A) is uniquely determined. For the proof— see [3 -  2.5.41, Theorem

5.5] or [4 - Theorem 9.2].

Proposition 3.1. If in U, then

Proof—see [12].
We introduce the following Approximate Maximization Problem:

given a triangulation a partition and the set find

In case of the criterion (1.9) we define a finite element approximation
of z(A; u), the functional

and replace the functional in (3.2) by

Lemma 3.2.   If in U and in as
then

Theorem 3.3. The Approximate Maximization Problem (3.2) has at
least one solution for any and

Proof follows from the compactness of the set in U and the
continuity of the mapping which is a consequence
of Proposition 3.1 and Lemma 2.2 or Lemma 3.2.

4. SOME CONVERGENCE ANALYSIS
We will study the behavior of and

when the mesh-sizes h, H tend to zero and
M tends to infinity. To this end, we need the following result (see [3 -
2.5.41, Theorems 5.7, 5.4]).

Proposition 4.1. Let be a regular family of
triangulations, let and be fixed. Then

where u(A) is the solution of the state problem (1.3).

Lemma 4.2. For any there exists a sequence
such that and in U.
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Proof is based on the Lagrange linear interpolate of any on
the partition

Theorem 4.3. Let be a regular family of triangulations.
Let be a sequence
of solutions of the Approximate Maximization Problem (3.2), where

is some function, such that

lim

Then there exists a subsequence such that

where is a solution of the Maximization Problem (1.6) for the
functional (1.5) with (1.4) or (1.7).

Proof. Let be arbitrary. By Lemma 4.2, there is a sequence
in U, as By definition, we have

for all triples (h , H; M) under consideration. Since and is
compact, there exists and a subsequence such
that (4.1) holds. Using Proposition 3.1 and 4.1, we obtain that (4.2)
holds provided is “sufficiently fast growing” function. In the same
way, we deduce that

Let us consider (4.4) for triples and pass to the limit with
Using (4.1), (4.2), (4.5) and Lemma 2.2, we arrive at (4.3) and

so that is a solution of the problem (1.6). •

Remark 4.4. The most important result is the convergence (4.3). In
fact, whereas the “most dangerous” data are not required in practice,
the maximal stress intensity is the main aim of computations.

Remark 4.5. An analogous convergence result can be derived for the
case of the criterion (1.9) and (3.3) (see [12 - Theorem 4.2]).
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DOMAIN DECOMPOSITION ALGORITHM
FOR COMPUTER AIDED DESIGN

Frédéric Hecht, Jacques-Louis Lions, Olivier Pironneau

Abstract: We present a decomposition algorithm similar to Schwarz for the
numerical solution of partial differential equations in complex domains.
The method is well suited to domains described by Constructive Solid
Geometry (CSG), i.e. by set operations on simple shapes, a data
structure often used in image synthesis and Virtual Reality. This work
extends the algorithms presented in [1], [2], [3] which were based on
“virtual controls”, whereas here compactness is used for convergence
proofs.

Keywords: Partial differential equations, domain decomposition, virtual reality,
finite element method, chimera.

1. INTRODUCTION
In many areas, such as architecture, style departments, image

synthesis, one has to solve Partial Differential Equations (PDE) in
domains of or of which are described by set operations on
simple shapes, but the number of elementary shapes is large.

For such situations, which are referred to as Constructive Solid
Geometry (CSG), and which are often used in image synthesis and
Virtual Reality (VR) (cf [8] for instance), it is difficult to construct
a global triangulation of the domain while it is simple to triangulate
each individual domains.

Thus DDM (Domain Decomposition Methods) is certainly a very
natural approach for such problems.

In a series of notes, two of the authors (cf. [1],[2],[3]) have introduced
a systematic method to address DDM, based on the idea of Virtual
Control. In the third note [3], our motivation is explained at length,
namely
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1. To compute with the data structures of VR without having to
translate CSG data.

2. But also to extend and improve on the Chimera method [4].

In this paper we do not use virtual control but rather an alternative,
based on a fixed-point algorithm. It is less flexible and less general than
the “virtual control” approach, but as in the classical Schwarz algorithm
– to which the method presented here is an alternative – it has the
advantage of not requiring the computation of boundary integrals. It is
even better than Schwarz’ in that it does not require the computation
of interpolations on boundaries.

In each elementary shape of we compute, iteratively, a function
of the solution u of the PDE (in fact the boundary value problem

we want to solve). In order to proceed with the iterations (cf. (3.3),
Section 3 below) each may have to be interpolated on any
of course at a reasonable cost. We present here such an interpolator
(explained in [4] with more details) which is efficient even on multiply
connected domains.

We consider four geometrical cases, the general case immediately
following. The convergence proof (presented in Section 3) is general.
The error estimates are presented in a partly formal fashion in Section 3,
the method being rigorous for other geometrical cases.

2. THE MODEL PROBLEM

Let be a bounded open set of We wish to solve the following:
find

where a is a bilinear coercive form on V and ( f , . ) is a continuous linear
form on V, for instance, with

The domain is obtained by sets operations on a family of bounded
open sets The sets operations are:

- Union:
- Difference: provided that
- Extrusion:
- Intersection:

We analyze the four cases independently, then the general case will
be straightforward.
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There are also other cases which ought to receive a separate treatment
but which we will not investigate here, such as the case of two tangent
objects, for example a book on a table.

3. THE DOMAIN IS THE UNION OF TWO
OVERLAPPING SETS

Assume that and that denote by
and and set

Note that the Schwarz domain decomposition algorithm can be used
here:

3.1 Algorithm 1. (Schwarz)
Choose set n = 0.
Begin loop

Find such that by solving

End loop

The convergence has been analyzed by P.L. Lions [6]. In search for
precision, we present the following alternative

3.2 Algorithm 2. (fixed-point)
Let b(,) be an equivalent scalar product on for instance

for some positive scalar and choose two arbitrary functions
in
Once are chosen, set
Begin loop
Find by solving

End loop

Remark 1. When Algorithm 2 is identical to Algorithm 1 with
replaced by



188 Hecht F., Lions J.-L., Pironneau O.

Let A be the second order operator associated with a, i.e.

Theorem 1. When a(·,·) is symmetric, Algorithm 2 converges in the
sense that weakly in with solution of (2.1)
and the decomposition is uniquely defined in by

Proof. Assume for the moment that the algorithm converges:
weakly in Note that the decomposition

is not unique and so it is natural that the limits ui depend on the initial
guesses By passing to the limit in (3.3) we obtain

and since any can be decomposed into
equation (2.1) follows by summing the two equations of (3.6). It remains
to see (assuming that weak convergence holds) towards which of the
decomposition (3.5) convergence takes place.
Let be given in (the set of functions with compact
support in We can take in (3.3). Subtracting, we
obtain

Summing (3.7) with respect to n, we obtain

Hence letting

This is equivalent to
Since we already know that (3.5) holds true, it is equivalent to

(3.10)
which defines uniquely (hence ) in Therefore, if Algorithm 2
converges, it converges to the unique decomposition (3.5), (3.9).
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Let us prove weak convergence in the symmetric case
To simplify we take Moreover we will show that

where is the norm (recall that the functions with subscript i
are extended by 0 outside
For the proof let us consider an arbitrary decomposition

We introduce

One has

Taking and writing for we obtain

Owing to the symmetry of a, one has and it
follows from (3.15) that

Summing up in n it follows that

Together with the coercivity of a, and the uniqueness of the limit, this
proves that the whole sequence converges weakly in Furthermore
(3.11) follows from (3.18).

4. DISCRETIZATION
For clarity we assume that the are polygonal and that
Let and be two Lagrange conforming continuous finite element
approximation spaces of order p of and
Then the discrete version of Algorithm 2 is:
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Find such that

Find such that

5. ERROR ESTIMATE
We state the result with but when it comes to quadrature errors
we will control the error for linear elements only

Theorem 2. Assume that the solution of (2.2) is in for some
Assume that every element u of can be decomposed in

where restricted to is in and outside
If is computed with Lagrange conforming finite

elements of order p, then

Proof. The proof of convergence is the same as for the continuous case,
so there exists such that

or equivalently

This means that also solves

Hence if denotes the finite element interpolator from to
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Remark 2. Let us comment on the decomposition Assume
that is one on and zero on
and has p on Then it can be extended
in by one and zero and

has the desired property.
If is decomposed into slices then such functions exist.

5.1. Quadratures
As such the scheme is too costly to implement because it requires the
intersection of triangulations. Integrals of piecewise constant functions

are computed exactly by

where is the number of triangles of the triangulation of and is
the chosen quadrature point in triangle (its center for instance).
To compute integrals involving products of functions on two triangula-
tions like we propose the following formula

This can be summarized by saying that when and
then a(·,·) is replaced by with

and when

Applied to this formula requires the computation of
on the mesh of and then its computation at which in turn requires
to identify the position of this point in the mesh of

With such definitions we propose to solve the discrete problems:

- Find such that
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Clearly these equations define uniquely. At convergence the
problem solved is

- Find such that

The bilinear form is symmetric but this discrete problem may not have
a solution because the form may not be coercive. For this there is
clearly a compatibility condition between the triangulation which we
haven’t found yet but which will be investigate in the future; if it is too
restrictive the same idea can be used with more quadrature points. So
we state only a partial result below, but it circumscribes the difficulty.

5.1.1. Quadrature error. We prove here a partial result which
has the merit of showing were lies the difficulty, and hope to solve it
later.
Proposition. Assume that the triangulations of and are
compatible in the sense that they give a coercive bilinear form. Then
the error between the approximate problem (5.13) and the continuous
problem is

Proof. Recall Strang’s Lemma (see Ciarlet, [9,pl86])

where by we mean the interpolation of on plus that of on
for some decomposition of u into

Here, with linear elements on triangles and a( ,) defined from the Laplace
equation, quadrature errors are only on mixed integrals.
For a decomposition of u into another way of writing

is
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because is equal to Hence

Now can be bounded like an interpolation error by rewriting
it as

So

Each four pieces are bounded independently; the parts that involve a( ,)
are easy to bound, the parts that involve ( , ) are treated as follows.
By definition

This proves that

Since is an equivalent norm in the quadrature error
is bounded by h.

6. OTHER CASES

6.1. The domain is the difference of two sets
Now assume that where
We take a larger set containing C and inside For we choose
a set containing C but inside

Then we take

Obviously we have so we can apply Algorithm 1.

Remark 4. This idea is borrowed from the Chimera method except
that the latter is framed in the context of Schwarz algorithm.

Remark 5. In the discrete case, the domains are found automatically
by finding first all the triangles of which are touching C then taking
one or two layers of triangles around it; this determines the boundary

Then surrounding C with a boundary of the same type as
which contains in its interior and is contained in This may not
be possible if the triangles of are too large.
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6.2. The domain is obtained by extrusion

Consider the case where a portion of volume, (7, is extruded from the
primary volume

As before we construct an auxiliary domain which is around C and
an auxiliary domain which is exterior to C but intersect Let
be the part of in ans the part of in The boundary
conditions on in Algorithm 1 will be

Note that a condition on is on a boundary strictly inside If this
causes a difficulty then the fictitious domain method may be used to
impose this condition.

6.3. The domain is the intersection of two sets
Extending the idea used for the extrusion we simply compute the
in with homogeneous Dirichlet conditions on both boundaries
i.e. on Again the fictitious domain method will avoid the
need for intersecting both domains.



Domain decomposition algorithm for computed aided design 195

7. A FAST FINITE ELEMENT
INTERPOLATOR

In practice one may discretize the variational equations by the Finite
Element method. Then there will be one mesh for and another one
for The computation of integrals of products of functions defined
on different meshes is difficult. Quadrature formulae and interpolations
from one mesh to another at quadrature points are needed. We present
below the interpolation operator which we have used and which is new,
to the best of our knowledge.

Let be two triangulations of a domain Let

be the spaces of continuous piecewise affine functions on each triangula-
tion.
Let The problem is to find such that

Although this is a seemingly simple problem, finding an efficient
algorithm is difficult in practice. We propose an algorithm which is
of complexity where is the number of vertices of and
which is very fast for most practical 2D applications.

Algorithm 4. The method has 5 steps. First a quadtree is built
containing all the vertices of mesh such that in each terminal cell
there are at least one, and at most 4, vertices of
For each vertex of do:

Step 1 Find the terminal cell of the quadtree containing

Step 2 Find the the nearest vertex in that cell.

Step 3 Choose one triangle which has for vertex.

Step 4 Compute the barycentric coordinates in

– if all barycentric coordinates are positive, go to Step 5

– else if one barycentric coordinate is negative replace by the
adjacent triangle opposite and go to Step 4.

– else two barycentric coordinates are negative so take one of the
two randomly and replace by the adjacent triangle as above.

Step 5 compute on by linear interpolation of f:
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End
Two problems need to be solved:

• What if is not in ? Then Step 5 will stop with a boundary
triangle. So we add a step which tests the distance of to the
two adjacent boundary edges and select the nearest, and so on till
the distance grows.

• What if is not convex and the marching process of Step 4
locks on a boundary?

By construction Delaunay-Voronoi mesh generators always triangulate
the convex hull of the vertices of the domain. So we make sure that this
information is not lost when are constructed and we keep the
triangles which are outside the domain in a special list. Hence in step 5
we can use that list to step over holes if needed.

Remark. Step 3 requires an array of pointers such that each vertex
points to one triangle of the triangulation.

8. NUMERICAL EXAMPLES
The test case is geared to reproduce the situation of scientific computing
with CAD data. The temperature equation is solved for an object, a
stylized spanner, described by set operations on 4 elementary shapes,
A,B,C,D. A is a rectangle, B is a circle, C is a trapezoidal quadrangle
and D is a circle. The spanner is the union of B and C with A extruded
and D removed.
We do not have yet the software to treat extrusions so A is intersected
with B first so as to reduce the case to a set difference rather than an
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extrusion. Then A and D are surrounded by artificial domains, some
elements of B and C are removed so that the final domain becomes the
union of 4 sets feasible for Schwarz algorithm.

The geometry is prepared with the software (see [5] for more
details).
The PDE is a simple Laplacian with non-homogeneous Dirichlet data:
the temperature is 100° in the mouth of the spanner and in the hole in
the handle and zero in the remaining boundaries.
Freefem contains also a PDE solver capable of handling several meshes
within one program and which uses triangular conforming finite elements
of degree 1 and Gauss factorizations to solve the linear systems. Mixed
integrals are computed with quadrature points on the mid-edges of the
triangles, which is similar to formula (3.9) when the function is piecewise
constant. Naturally the interpolation operator for the computation of
integrals is the one presented above.
We have tested the method for different values of and for two cases:
- I. In the first case the boundaries of the subdomains are edges of the
triangulations of the other domains.
- II. In the second case the triangulations are completely independent
from one another.
Figure 5 shows the convergence behavior for these two cases (I on the
left, II on the right) for and 10. (recall that is Schwarz'
algorithm).
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Figure 6 shows the solution with the standard finite element method
(top) compared with the solution on each domain.
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SOLUTION OF CONVECTION-DIFFUSION
PROBLEMS WITH THE MEMORY TERMS

Jozef

Abstract: A new numerical scheme is proposed for solving a contaminant transport
problem with adsorption. Both, equilibrium and nonequilibrium
sorption modes with Freundlich and langmiur type isotherms are
included in the considered mathematical model. The approximation
scheme is based on a relaxation scheme and on the method of
characteristics. The convergence of approximation scheme is proved
and some numerical experiments are presented.

Keywords: Method of characteristics, convection-diffusion, contaminant transport,
memory effects.

1. INTRODUCTION

In this paper an approximation solution of the following convection
diffusion problem is discussed

where is a bounded domain with a Lipschitz continuous
boundary

We consider the mixed boundary conditions

where and
Together with (1.1), (1.2) we consider the initial condition

We assume that b(s) is strictly increasing in s, is Lipschitz
continuous in x, s and are sublinear in u. Problem (1.1)-(1.3) has
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been studied in [9] for a special case when i.e., without
memory term.

As an example we present a model of contaminant transport in porous
media intensively studied in the last years, see [1, 3, 4, 5, 10, 11, 12]

where C is the concentration of the contaminant, is (Darcy) velocity
field of water, D is diffusion tensor, is bulkdensity, is sorption
isotherm of the porous media with porosity Here S is the mass of
contaminant adsorbed by unit mass of porous medium. Coefficient d
describes the rate of adsorption. If then equilibrium sorption
process occurs and consequently Then
generates the parabolic term in (1.1) with Moreover, when

(so called Freundlich isotherm) then for
which occurs in most practical situations. In that case (1.1) is of

porous media type with convective term and the support of contaminant
develops with the finite speed. In the nonequilibrium case we
can eliminate S from ODE and we obtain

and

In the case of Freundlich isotherm with the function is not
Lipschitz continuous.

Numerical analysis of the model with the equilibrium sorption process
(i.e. is included in our previous paper [9]. The contribution of
the present paper is the numerical analysis of the mathematical model
(1) which includes both equilibrium and nonequilibrium sorption process
in (E). The degeneracy in some points is included and thus
convective term can be strongly dominant. Numerical solution of (1.1)-
(1.3) thus represents a delicate problem. We extend our concept of
approximation introduced in [9] for the case We prove the
convergence of the approximate solution. The existence and uniqueness
of the variational solution is discussed in [12] where

Our concept of approximation is based on the relaxation schemes
developed by W. Jäger and J. in [6, 7] and on the method
of characteristics initiated by O. Pironneau [14] and J. Douglas and
T. Russel [2].
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2. APPROXIMATION SCHEME
The transport part of (1.1) is of the form

which formally we can rewrite into the form

and hence the corresponding velocity field is depending on
the unknown u and cannot be expected to be smooth. Thus we regularize
b by with the properties listed below. The transport part with the
velocity field can be realized by means of characteristics X(s;t,x)
governed by ODE

Their Euler backwards type approximation between time levels
is given by Then concentration

profile at after the transport along approximated
characteristics prolonging became The transport can
be realized if characteristics X or their approximations do not intersect
each other which requires the boundedness of and small time
step In our case we cannot guarantee it. As it was proven
in [9] a smoothing (or averaging) of velocity field can guarantee that the
corresponding characteristic will not intersect provided the time step

is small. Applying the method of characteristics the points
can cross the boundary and in such case we understand by

where is an extension of
with so that

We realize smoothing of by convolution where is

standard mollifier with where

We consider nonstandard time discretization of (1.1) with time step
and is an approximation of at time

level We have to determine from linear elliptic
equation coupled with a relaxation parameter
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where

and the following “convergence conditions” (2.2), (2.3) have to be
satisfied

where

is norm and is a regularization of 6) and

The scheme is implicit and to guarantee (2.2), (2.3) we propose the
iterations

These iterations are not coupled with (2.2). If

then we put
To obtain we propose fixed point type iterations

and when then we put and obtain
(2.2) (with in the place of i). Then we continue (2.1) on the next
time level
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3. ASSUMPTIONS AND CONVERGENCE
OF (2.5

l
)

By c we denote generic positive constants. We shall assume

b is increasing, absolutely continuous function satisfying
We assume that there exist
with locally Lipschitz continuous such that:

(i) locally uniformly;

(ii)
(iii)

(iv) min for some

(v)

is continuous and

are continuous and

We also assume that can be extended to so that
the estimates hold true for and

are continuous in their variables and

is continuous and

We denote the standard functional spaces by
- see [13]. By

we denote the norms in
respectively. We denote by uvdx, and

the dual space to V. In the sequel we drop the variable x in the
terms

We use the concept of variational solution. Let represents
the duality between and V.

Definition 3.1. is a variational solution of (1.1)-(1.3) iff
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Also in (2.1) is a variational solution of (2.1)

If then the existence of in (3.1) is guaranteed
by Lax-Milgram lemma. To obtain the a priori estimates for and to
prove that the crucial role place the estimate (see [9]
Lemma 11)

uniformly for provided for any
and Then provided Hence

satisfying (3.1) is guaranteed.
In the following we shall assume that

without any structural restrictions on is not
dependent on s (i.e. the memory term is not considered in (1.1)) then
(3.3) has been proved in [9], Lemma 15 under the following structural
restrictions:

In our situation the result (3.3) hold true in the case (ii). Indeed as
in [9] we obtain estimate
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where we estimate in terms of using Then we
obtain

since Gronwall argument implies the estimate (3.3).
The convergence of iterations has been proved in [9] under the

assumptions:

where

Remark 3.2. The convergence of iterations in has been analyzed
in [8].

Remark 3.3. The regularization of in is not so much
restrictive with respect to asymptotic behaviour of For example,
let us consider sgn s, We can take for

and for and similarly for
Then we have for
any and with We can verify easily
(i)-(v) in

4. CONVERGENCE OF THE METHOD
To obtain a priori estimates for we follow [9] and only sketch

the additional terms on R.H.S. in (3.1) concerning memory. We obtain

Lemma 4.1. Under the assumptions (3.3) and
the following a priori estimates hold true

uniformly for u, where
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Sketch of the proof. We put into (3.1) and sum it up for
Similarly as in [9] we obtain

where the last term arises in estimation of memory terms. Since
we estimate the last term by a constant. Then

we take sufficiently small and consequently we obtain the
required a priori estimate.

By means of we construct Rothe’s functions

with

Lemma 4.2. is compact in i.e. there exists
and such that

The proof is based on the a priori estimate

which can be obtained in the same way as in [9] estimating the memory
terms using (3.3). This a priori estimates can be rewritten in the form

uniformly for Prom this and the estimate
(see Lemma 4.1) we deduce that a.e. in because
b is strictly increasing and because of the regularization properties of
— see [7]. Then (3.3) implies convergence.

As a consequence we obtain (I , V) and in
Now we can prove our main result.

Theorem 4.3. Let the assumptions (3.3) and
be satisfied. Then in . and

in where is from (2.1)-(2.3) and u is a variational
solution of (1.1). If the variational solution u is unique then the original
sequence is convergent.
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Sketch of the proof. We rewrite (3.1) in the form

where Then we consider with
for t in a neighbourhood of T and put it into (4.1). Then we

integrate it over I and denote the corresponding terms by
Similarly as in [9] we obtain

where we have rearranged

with Here we use also
for where

for . Similarly we obtain

Easily we deduce

and

For the last term we have to use the following facts
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Hence as a special case we obtain

and consequently

Then we take the limit in

and obtain

where we have added together terms and Hence we deduce that
there exists similarly as in [9]. Then we conclude
that u is a variational solution of (1.1)-(1.3).

The uniqueness of variational solution has been studied in [12].
The more strong convergence results we obtain under the regularity

assumptions on b.

Theorem 4.4. Let the assumptions of Theorem 4.3 be satisfied. Sup-
pose that (2.2), (2.3) are satisfied with the norm in the place of

and let in and in
Then

The proof of Theorem 4.4 is the same as that one in [9] (Theorem 48) and
the presence of the memory term represents no substantial difficulties.

5. NUMERICAL IMPLEMENTATION
The numerical implementation of (2.1)-(2.3) is rather costly also

without the presence of memory term - see [9]. The additional difficulties
arise including the memory terms since at the time level we need
for evaluation of the values of for all In the
numerical realization of (2.1) we project it into finite dimensional space

using FEM. We assume that for in canonical
sense ( being the discretization parameter). Then instead of
we obtain as a solution of projected equation (2.1). Then by
means of we construct Rothe’s function as our
approximate solution. For the convergence for we obtain
the same results as in Theorems 4.3, 4.4. In the projected problem
(2.1) we assume that is a projection of into and that
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in The evaluation of is the most costly from the
numerical point of view. As an alternative to the standard back tracing
we can use the following procedure. On each time level we construct
a new basis which we obtain by shifting along characteristics
of the basis corresponding to The new basis
elements are locally completed by new elements or locally reduced with
respect to the density of the grid points which is changing by means of
characteristics. This process is simply realizable when, e.g., piecewise
linear elements are used. Then, in the place of back tracing in
we obtain immediately the values in nodal points for the new basis on
time level Additional treatment needs the extension of outside
(using boundary conditions).

We shall discuss now the treatment of memory terms. For realistic
contaminant transport problem (E) with sorption isotherms (e.g.

for Freunlich type, for Langmuir type etc.)
we can express

and when we insert into transport equation we obtain a memory
term with and

provided

In that case we can verify that since
ds and

As a consequence we do not need to store the values of
for evaluation of

Example 1. We apply the proposed method in numerical solution for
the problem (E) with equilibrium sorption isotherm i.e. which
implies Then (E) with specific data (in 1D) reduces
to

We shall consider and the
Dirichlet boundary condition
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with the corresponding initial conditions

Here are piecewise linear functions of the following
form: for for
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for The
solutions are drawn in three time moments for various
dash-dash-dotted line, - full line, - dash-dotted line,

- dashed line, - dotted line) in Figure 1 for in
Figure 2 for and in Figure 3 for in the case (i). The case (ii)
is drawn in Figure 4 for in Figure 5 for and in Figure 6 for
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ON GLOBAL EXISTENCE OF SMOOTH
TWO-DIMENSIONAL STEADY FLOWS
FOR A CLASS OF NON-NEWTONIAN
FLUIDS UNDER VARIOUS BOUNDARY
CONDITIONS

Josef Málek, Jana Stará

Abstract:    We study steady two-dimensional flows of shear dependent fluids in
a bounded domain subjected to three kinds of boundary conditions:
(i) general nonhomogeneous Dirichlet, (ii) nonhomogeneous Dirichlet
with zero normal component at the boundary (fixed wall) and (iii) free-
stick (slippery boundary). The existence of a is proved:
while condition (i) requires smallness of a given function at boundary,
conditions (ii) provide smooth solutions for all choice of data. Some
results regarding a special construction of an extension operator are
interesting on their own.

Keywords: Non Newtonian fluids, shear dependent viscosity, regularity, Hölder
continuity of gradients, non homogeneous Dirichlet boundary condition,
free stick boundary condition.

1. INTRODUCTION
Non-newtonian fluid mechanics involves all problems described by the

system of equations where the constitutive relation between the stress
tensor T and the symmetric part of the velocity gradient D is not
linear. One of the simplest examples of a nonlinear relation between T
and D is given by the form

where v : is a nonlinear, typically monotone function of the
modulus of D(v).

Model (1.1) has the ability to shear thicken (when the generalized
viscosity function is increasing) or to shear thin (when is decreasing),

Applied Nonlinear Analysis, edited by Sequeira et al.
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however it cannot capture further phenomena of nonlinear fluids as
normal stress differences, stress relaxation, nonlinear creep or yield
stress. On the other hand, the ability to shear thin is exhibited by
a significant amount of materials, as polymers, dyes, chemical solutions,
glaciers, geological materials, blood, etc. (See [17] for explanations of
the notions, and [10], [11] and [17] for further references.)

When restricted to isothermal process of incompressible materials in
a bounded set then governing equations read1

Here, is the unknown velocity field, is the unknown
pressure, is a given positive constant expressing the density of the fluid
and stands for the vector of external body forces.

Although (1.2) together with (1.1) represents the simplest deviation
from the Navier-Stokes system (that can be obtained by setting

being a positive constant), the mathematical analysis
of (1.2) with (1.1) differs from the analysis of the Navier-Stokes equations
tremendously. We are going to illustrate it discussing the question
of full regularity in two space dimensions, when equations (1.2) are
supplemented by the Dirichlet boundary condition, and by the initial
condition i.e.,

Here, div on and
Set for simplicity in the following exposition.
It is nowadays well-known that the Navier-Stokes equations in two

dimensions possess global uniquely defined weak solution provided that
is -integrable. It is also standard to observe that if data and
are smooth then the solution is also smooth.

Completely different situation concerns the system (1.2) with (1.1)
even in the case when is bounded (but nonconstant) function of

while the global-in-time existence of weak solution is available,
and also -integrability of the second derivatives is known, the question
of higher regularity (up to the boundary) is completely open. The
essential step is how to pass from -integrability of the second spatial
derivatives and first time derivatives to the boundedness of the first
gradient. To our knowledge, except for the paper of Seregin [18], who
proved recently interior -regularity of solution to (1.1), (1.2) with

1The summation convention is used throughout the whole paper.
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bounded, there are no other results. Closely related is a paper by
Šverák [16], where the nonlinear parabolic systems are studied and local

-regularity is proved.
In order to understand better both the passage from ” re-

gularity to regularity" and the analysis near the boundary,
we have started to treat the steady case first. The presented paper
is a continuation of our previous studies, where we treated the space
periodic case (see [8]) and the homogeneous Dirichlet problem (see

In this paper, we deal with steady problem in two dimensions and we
consider three kinds of boundary conditions:

1. nonhomogeneous Dirichlet boundary conditions with two types of
restrictions on boundary data

(where denotes the outer normal vector to without any
restrictions on smallness of in tangential direction.

2. free-stick boundary conditions

(where denotes a tangent vector to See [3] for more details
on this condition.

2. DEFINITION OF THE PROBLEM AND
MAIN RESULTS

We investigate the following problem: to construct
and solving

together with one of the boundary conditions (1.3)-(1.5) and satisfying
for a certain

Note that higher regularity of and (corresponding to the smoothness
of data) is a consequence of linear theory, see [8] for more details if
needed.

Let S be the set of symmetric matrices of the type Recall
that denotes the symmetrized gradient of with components



216 Málek J., Stará J.

Throughout the whole paper we suppose that:
is a bounded open set with the boundary

function satisfies for a given

there exists such that and
for all

there exist such that

and (for all )

is given: for
and with a certain for

Now, we are going to give an overview of our main results stated
in Theorems 2.1, 2.2, 2.3 and 2.4; proofs of Theorems 2.1 and 2.2
treating the nonhomogeneous Dirichlet boundary condition will be given
in Section 2, proofs of Theorems 2.3 and 2.4 dealing with free-stick
boundary conditions are contained in Section 3.

Theorem 2.1. and hold. Suppose that

Then there exist and at least one solution
satisfying (2.1) and (1.4).

Theorem 2.2. and hold. Then there
exists a constant may depend on f ) so that for any boundary
condition satisfying (2.5) and

there exist and
satisfying (2.1) and (1.3). Moreover, if then for sufficiently

2Notation: if Z : (or S), then denotes partial derivative
of Z with respect to the independent variable at the point
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small there exist a positive and
satisfying (2.1) and (1.3).

Theorem 2.3. be a non circular domain and
hold. Then there exist a positive and

satisfying (2.1) and (1.5). Moreover, if
then there exist a positive and

satisfying (2.1) and (1.5).

Theorem 2.4. be a circle and hold. Then
there exist a positive and
satisfying (2.1), (1.5) and

Moreover, if then there exist a positive and

satisfying (2.1) and (1.5).

The idea of the proof of Theorems 2.1 - 2.4 has similar structure3:

First we show that for p = 2 there exists at least one weak solution
of the problem and that all such solutions are smooth.

Then we approximate function T with a growth by
functions with linear growth defining for

Thus satisfies assumptions (1.2)-(1.4) above with It
means that we can use previous step and obtain existence of apro-
ximating regular solutions.

The last step consists in finding estimates for approximating
solutions in and in uniform with respect to

It is easy to see that satisfies (for )

with constants and that do not depend on It allows
us to obtain the above mentioned uniform estimates and then

3 It is worth remarking that we work only with divergence-free test functions to gain estimates
for the velocity field. The properties of the pressure are obtained only at the final stage by
a variant of the De Rham theorem.
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choose a sequence denoted converging weakly to a function
in The final passage from the approximating problems
to the original problem for is then easy.

This structure of the proof is successfully applied and explained in
[9] in detail, where homogeneous Dirichlet boundary conditions are
considered. The scheme carry on the method developed by and
Stará to prove regularity of weak solutions to nonlinear elliptic equations
and systems of an arbitrary growth in two dimensions, see
[13], [14] and [20].

Here we extend the results from [9] to boundary conditions (1.3)-
(1.5). Using the paper [9] as a reference, we concentrate on and present
only those parts of the proofs that are different or new. Thus the most
difficult step 3 is not discussed here at all, as it follows [9] line by line.

A final remark concerns interior regularity. As stated in above
Theorems 2.2, 2.3 and 2.4, -regularity of holds for larger range
of namely As the introduction of -approximating problems
differs from case to case we prefer not to formulate one general theorem
on interior regularity for all kinds of boundary condition. In fact, the
method of the proof of Theorem 2.1 does not allow to show interior
regularity for On the other hand, when the existence of
approximations is achieved, the regularity procedure coincides with
homogeneous Dirichlet problem performed in [9] in detail. This is why
we completely skip this part here.

3. PROOFS OF THEOREMS 2.1 AND 2.2
Before starting with the proofs we give two auxiliary lemmas on the

properties of an extension of boundary conditions.

Lemma 3.1. bounded and be a trace of on
and Then there exists a prolongation such that

is a trace of on and

Proof. A construction following Hopf can be found in [21] or [5].
The following lemma generalizes this result for and gives

estimates of in

Lemma 3.2. for
some and satisfy (1.4). Then there exists such
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that

Proof. An analogous lemma for (following Miranville and Wang)
is sketched in [22]. We use the same construction here, what differs are
the estimates.

Since is bounded and regular enough, there exists such that
the interior normals to do not intersect in the neighborhood of
of width We denote this neighborhood of located inside by

Moreover, due to regularity of for every
there exists a unique point  such that

denote the clockwise tangent vector to at
the point Then represents the outer
normal to

We consider a smooth function such that

and we set

We finally set

Thus in we can compute

and
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Since and these
relations reduce to

from which we can easily observe that at the boundary, where
and we have

and because of (1.4).

Thus (3.2) holds.
Next, as and and depend smoothly on

one can obtain (3.4) looking at the values of
and their tangential and normal derivatives.

Indeed, as are bounded uniformly with respect to and they
have the support in an -neighbourhood of the boundary, we get (3.4)1.

Computing tangential and normal derivatives of and we see
that all of them are bounded uniformly with respect to except for

bounded

which implies

which is (3.4)2.
Finally, with help of (3.7) we also have

where constant C does not depend on
Using Holder inequality with we estimate as

Since we can use imbedding theorems to the
second integral and the Hardy inequality to the first integral at the right
hand side to obtain
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Inserting (3.9) into (3.8) leads to (3.3) (realizing that
The proof is complete.

Now, we come to the proofs of Theorems 2.1, 2.2. They follow
the scheme sketched above and detailed in [9] with two important
modifications clarified in the following two lemmas. The first one
concerns the coerciveness needed for the existence of solutions in case

for which the Hopf construction of prolongation of the boundary
value (see Lemma 3.1) is used. It then allows us to show that all
solutions of the quadratic problem (2.7) are smooth as stated in the
following lemma.

Lemma 3.3.
Then every solution of (2.1) and (1.4) satisfies

for some

Proof. Proof of this Lemma with can be found in [9], Section 3.
Here we proceed analogously. The only difference is that for the use of
Leray - Lions theorem as well as for the first apriori estimate we have to
apply Lemma 3.1 in order to obtain a bound of depending only
on the data. The rest of the proof follows closely [9].

The second modification is needed in order to show that approximat-
ing problems parametrized by are uniformly bounded in For
this purpose we use two ingredients (as explained in Lemma 2.4 be-
low): (i) the generalized estimates with for the prolongation of

constructed in Lemma 3.2 (recall that it requires the restriction to
assumption (1.4)); (ii) the procedure of Blavier and Mikelic' (see [2]) to
obtain uniform bounds in

Once the uniform estimates in are achieved, one can derive
the uniform estimates in as in [9].

Lemma 3.4. Let the assumptions of Theorem A hold. Then for every
there exists at least one solution of the approximated

system

with given by (2.7) and a constant C independent of such that

Proof. We will construct solutions via Galerkin approximations.
Let be basis of smooth functions of

. Let be a function with trace which is a suitable
prolongation of (the existence of is ensured by Lemma 3.2) with
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small specified precisely later. We look for such that
solve the following system of algebraic equations

The existence of at least one solution of (3.11) can be shown
by Brouwer Fixed Point Theorem.

Let us define a continuous mapping on

If we show that there exists K > 0 such that

then we obtain the existence of a solution such that
by Brouwer Fixed Point Theorem. We shall prove that K can be found
independent of and N. By standard monotone operator theory we can
then pass to the limit and obtain the existence of a solution to (3.10)

with uniformly bounded, which then implies the statement of

Lemma 3.4.
Let us now prove (3.12). First we write some estimates. (Note that

constants C’s do not depend on in what follows.)

Here, we used the fact that the Holder, Korn,
Young inequalities and properties of function $** from Lemma 3.2.

All together we obtain
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where (choice of and

Denoting we want to
show that for a positive K.

The function attains its maximum at the point and

Denoting by A and realizing that

due to (3.4) we see that

As for we see that it is possible to choose so small
that holds.

The lemma is proved.

Corollary 3.5. Let be the solution from Lemma 3.4. Then
and for some Moreover, there

exists a constant C that does not depend on so that

The uniform apriori estimates of in needed for the proof
of the Theorem 2.1 can the be proved as in [9].

Regarding the proof of Theorem 2.2 it is enough to notice that to
achieve the positive maximum of function in Lemma 3.4 we can use
sufficiently small norm of in estimates of convective term instead of
Lemma 3.2. The rest of the proof is analogous.

4. PROOFS OF THEOREMS 2.3 AND 2.4
In this part we mean by the space

A function is a weak solution of (2.1), (1.5) iff  for any test function
the equality

holds. We introduce the operator A : given by the main part
of (4.1), i.e.,
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Let us start with smoothness of solutions for quadratically approx-
imated systems (3.10) with given by (2.7). Then A is continuous
and

As is not a circle, we can use the Korn inequality (see [7]) and
get coerciveness of A (i.e. As the first part of A is
strongly monotone, we can obtain by Leray-Lions argument the existence
of a weak solution Moreover, for any there is a
such that

Now, we are going to prove that for any the corresponding solution
belongs to (in fact, we will discuss in detail

the step “from and in the second step we find estimates of
in that do not depend on approximation

parameter
Let be fixed. We want to show that any solution

belongs to As interior regularity is same as in the case of
the homogeneous Dirichlet problem (see [9], Section 3) we prove here
the estimates near the boundary only.

We shall use the local description of the boundary related to
the domain This means that is locally described by
maps In the corresponding -th coordinate system

we suppose that for a fixed positive and

We also assume that

Further, we denote

and choose an open smooth set so that

In this description the tangent derivative on is defined by
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and the outer normal vector (up to a multiplicative constant) is given
by

In what follows we shall omit indices (counting coverings of and
(approximation parameter).
We shall test (4.1) by

where is a cut-off function in and is chosen so that

Function is defined as a solution of

By Amrouche, Girault (see [1]) we know that for any there
exists a

As we have at and also Thus

Finally we obtain

Let us denote

where is defined by (4.3). After integration by parts and
rearrangement, we see that u solves the equation:

with and given by (4.2) and (4.3). The terms
that are not written explicitly here can be estimated by
Inserting in (4.4) we obtain (using ellipticity condition (2.4))
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The last term in (4.5) can be estimated by for an
arbitrarily small

The Korn inequality ([7]) implies that we can estimate symmetric
gradient by gradient in (4.5) and for all there exists such
that

Using condition (2.4) we realize easily that to estimate normal
derivatives of it is enough to estimate As div we

obtain and it is controlled by (4.6) for a sufficiently

fine covering The estimate of can be extracted directly

from (4.1). Taking curl of (4.1)4 (in distributional sense) we get (the
empty brackets () abbreviates

Set Then clearly ( )

Next, by (2.4),

Finally, from (4.7), we have

Now, we can apply the theorem on negative norms (cf. [15] or
[10] for a formulation of theorem) to obtain

From the definition of G, we observe

4 Recall that curlz =
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Using the fact that for the last term, and the facts that

and by (2.3), we can

conclude from (4.9) and (4.8) that

Then (4.10) together with (4.1)-(4.6) lead to

If is chosen so that

the last term in (4.11) can be moved to the left-hand side and

Adding these estimates and choosing sufficiently small we obtain

which means that Remind that we omitted index so
that by this way we proved

It implies that the right-hand side in (4.4) belongs certainly to
for We can thus complete the first part of the proof combining
the scheme from [9] with for the Stokes system with the
boundary conditions of the type (1.5) proved in [19]. (They can be
also deduced from the results of Grubb [6] studying the evolutionary
Stokes system.) The first part of the proof (dealing with fixed) of
Theorem C is complete.

To obtain estimates uniform with respect to we repeat this
procedure again using the estimates (2.8), (2.9) (uniform with respect
to ) instead of (2.3) and (2.4). Testing equation (2.1) by and using
the p-version of the Korn inequality (see [12]), we obtain

The rest of the proof is analogous to [9]. The only substantial changes
are in using the -theory for Stokes problem for boundary conditions
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(1.5) (performed in [19]) instead for homogeneous Dirichlet problem.
Theorem 2.3 is proved.

In order to prove Theorem 2.4, it is possible to proceed as in the
proof above provided that the Korn inequality holds. As is a circle we
modify the definition of the space and set

Then, by [7] and [12], we see that the Korn inequality
holds for all The rest of the proof follows lines of the proof
above.
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VISCOSITY SOLUTIONS FOR
DEGENERATE AND NONMONOTONE
ELLIPTIC EQUATIONS

Bernd Kawohl, Nikolay Kutev

Abstract: Motivated by the theory of viscosity solutions we suggest and discuss
criteria to choose a particular solution from possibly many solutions
in situations where there is nonuniqueness or discontinuity. Particular
examples include the Cahn-Hilliard equation.

Keywords: Viscosity solution, Perron method, Cahn Hilliard equation, gradient
blow-up, discontinuity.

1. INTRODUCTION AND MOTIVATION
The aim of this paper is to extend the notion of continuous viscosity

solutions of M.Crandall and P.L.Lions [8], [21] to a wide class of
degenerate nonlinear elliptic equations which are not proper, i.e.
equations without the fundamental monotonicity condition with respect
to the solution Originally viscosity solutions were introduced for
first order equations by the method of vanishing viscosity. Later on
for second order fully nonlinear elliptic and parabolic equations the
existence of viscosity solutions was proved by means of the Perron
method. That is why the unique viscosity solution obtained by Perron’s
procedure is automatically a continuous function. However there are
many examples of equations which have either discontinuous solutions
or more than one continuous viscosity solution. This is our motivation
to introduce a notion of discontinuous solutions which are stable under
small perturbations and are still unique in the class of discontinuous
solutions, and which we will call later on limit solutions. This new
definition is a natural extension of the classical one of M.Crandall and
P.L.Lions. In fact, if the problem has a unique continuous viscosity

Applied Nonlinear Analysis, edited by Sequeira et al.
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solution, then this solution is also the unique limit solution of the
problem according to the new definition.

The most important example which motivates such considerations
is the Cahn-Hilliard equation. It is well known from the abundant
literature that this problem has discontinuous solutions. The reason for
this phenomenon is the fact that the equation is not proper, combined
with the high degeneracy of the equation. One can see from the analysis
of the solutions of the regularized problem

that in some sense the discontinuity of the solution as is
a consequence of “an interior gradient blow up” of the perturbed
solutions

This is more clear in the problem considered by M.Bertsch and
R.dal Passo [4], arising in the theory of phase transitions where the
corresponding free-energy functional has a linear growth rate with
respect to the gradient, i.e.

where are smooth, is odd and has the following
asymptotic behaviour at infinity:

Since the equation, in general, is nonmonotone and highly degenerate,
the gradient of the solution blows up after a finite time and then the
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solution becomes discontinuous, where the discontinuity is only as in
Figure 3a) but not as in Figure 3b).
The paper of Angenent and Fila [2] treats strictly parabolic nonmono-
tone equations, a typical example of which is the problem

for for constants and for sufficiently large

The authors prove that after a finite time the gradient of the solution
will blow up at some interior nodal point of provided the oscillation
of the data, is large enough. They did not investigate the
behaviour of the solution after the blow up time but one can prove
that the solution will be discontinuous as in Figure 3a). The reason for
the interior gradient blow up and the discontinuity of the solution is the
supergrowth of the gradient term and the large oscillation of the
data. Boundary gradient blow up can be excluded due to the concavity
(or convexity) of the solution on the boundary (1, t) (or ), see
[2]. In this case the nodal line of the solution, where the gradient blows
up, is called interior boundary of the equation, see [11], and it should not
be confused with the topological boundary of the domain. If we interpret
the lower order term as a zero order term with coefficient

of the wrong sign, we see that the maximum principle does
not apply when In some sense this equation can be considered
as an implicit degenerate parabolic equation, because if we divide the
equation by the new equation will be a degenerate one.

A more sophisticated problem was considered by Y.Giga [12], the
typical example is the following equation
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where This type of nonuniformly, nonmonotone parabolic
equation appears in some geometric problems with the mean curvature
flow. In this case interior gradient blow up (with discontinuity of the
solution after the blow up time) is due to the choice of special initial
data and to the fact that implies superquadratic growth in
Since the solution is equal to zero on the boundary, boundary gradient
blow up is eliminated.

In all these examples (1.1)–(1.4) the gradient of the solution blows
up in an interior point and after the blow up time the solution is
a discontinuous function. Note that in (1.1)–(1.4) the equation is
not monotone with respect to and implicitly degenerate. On the
contrary, if the equation is uniformly proper (see (2.3) below), i.e.
uniformly monotone in viscosity solutions are known to be unique
and continuous in the interior, see [9]. The inbetween case, that the
equation is proper but not uniformly proper, can lead to blow up of the
gradient or the second derivatives and to subsequent discontinuity on
the boundary as in [19], or even to nonuniqueness of viscosity solutions.

Let us discuss uniqueness and nonuniqueness of viscosity solutions
in more detail. A simple example of nonuniqueness of the viscosity
solutions was considered by H.Ishii and N.Ramaswany [16] for first order
Hamilton-Jacobi equations, namely

This problem has infinitely many continuous viscosity solutions

The authors explain the nonuniqueness of the viscosity solutions with the
degeneracy of the right-hand side of the equation. Indeed, considering
the new equation with singular coefficients, they
“naturally” regularized it to so that the
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perturbed problem has a unique viscosity solution for every
and tends to the maximal solution when
However, as we will see in Theorems 1 and 2 below, the comparison
principle and the uniqueness result for viscosity solutions of degenerate
elliptic equations is true provided the equation is strictly proper, see
(2.11). Note that (nonstrict) properness, as in (1.5) does not suffice.

2. DEFINITION AND COMPARISON
RESULTS

Let us recall the definition of viscosity solutions. For simplicity we
will illustrate the definitions only in the one dimensional case for the
equation

which is independent of
Definition 1. i) An upper-semicontinuous function  u(x ) is a viscosity
subsolution of (2.1) if for every and for every

such that and the inequality
holds.

ii) A lower-semicontinuous function is a viscosity supersolution of
(2.1) if for every and for every such that

the inequality holds.
iii) A continuous function u(x) is a viscosity solution of (2.1) if u(x) is
a viscosity sub- and supersolution

The main assumptions under which the theory of the viscosity solutions
works are
• Degenerate ellipticity

whenever and (2.2)

• Uniform proper operator (uniform monotonicity w.r.t. )

whenever (2.3)

Note that (2.2) is weaker than ellipticity,

whenever
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in which the inequality signs are strict. Under the above conditions
(2.2) and (2.3) the classical Dirichlet problem has a unique continuous
viscosity solution. The uniqueness follows from the comparison principle
for USC subsolutions and LSC supersolutions while the existence results
are based on Perron’s method.

However, in the case of degenerate elliptic equations in general the
classical Dirichlet problem does not have a solution. To understand this
phenomenon, recall that viscosity solutions are stable in the sense that
viscosity solutions of regularized problems converge (in a suitable
sense) to a viscosity solution of the limit problem. Sometimes this limit
solution violates the Dirichlet condition in the classical sense. A typical
example is the elliptic problem

with Dirichlet data on the entire boundary. In the limit
we obtain a degenerate elliptic equation, whose solution satisfies

also for but not necessarily for
For linear degenerate elliptic equations of type

it is still possible to define the right boundary value problem by means of

the so-called Fichera function where

is the exterior unit normal to the boundary of such that the classical
Dirichlet problem has a solution (see [10, 24]). The Dirichlet data are
prescribed only on the part of the boundary where the elliptic equation
is nondegenerate in normal direction, i.e. where and on
the characteristic one, i.e. where only in those points
where the Fichera function is positive. Now, if we want to define the
right Dirichlet problem for nonlinear  degenerate elliptic equations and to
find a solution of the problem we have to know a priori the value of the
Fichera function which is impossible. In fact, will depend on the
unknown solution by means of the coefficients of the equation and,
in general, we will not know the sign of A suitable definition which
overcomes all these difficulties and is stable under small perturbations
of the domain and data was suggested in [9]. In contrast to equation
(2.1) we speak now about the Dirichlet problem (2.6):

Definition 2. i) An upper semicontinuous function is a viscosity
subsolution of the Dirichlet problem (2.6) if is a viscosity
subsolution of (2.1) in (a,b) and if it satisfies the inequalities
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for every and

ii) A lower semicontinuous function is a viscosity supersolution of
the Dirichlet problem (2.6) if is a viscosity supersolution of (2.1) in
(a, b) and if it satisfies the inequalities

for every and

iii) A continuous function is a viscosity solution of the
Dirichlet problem (2.6) if is both a viscosity sub- and supersolution.

Loosely speaking, Definition 2 says that either the solution satisfies the
Dirichlet data in a classical sense, or it satisfies the equation on the
boundary in the viscosity sense. Let us note, however, that if the solution

satisfies the equation in a classical sense at the boundary, then
Definition 2 is not automatically satisfied. In fact, if is
a viscosity solution of (2.6) and then according to (2.7) the
inequality

holds for every These are more
admissible functions than described in Definition 1, because for interior
points and we have as an additional constraint
in Definition 1. If is an admissible test function at a, then so is

for any Hence (2.9) implies
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for any and if F is nondegenerate elliptic as in (2.11) we would
reach a contradiction by varying µ . Hence F must be degenerate on the
boundary, if violates Dirichlet data in the classical sense.

Remark 1. A similar situations occurs in several space dimensions. In
fact, if is a smooth solution of the degenerate linear elliptic problem

if at some and if is a test function at then
for any and the function

is also an admissible test function at Here is the exterior normal
to at (Equivalently, if we work with the upper superjet, we have
that when then
too, see [20]. Thus condition (2.7) boils down to

for every but this can only happen if
and The same condition holds if we consider the
corresponding inequality for the supersolutions. In this way we naturally
obtain Fichera’s formulation (see [10]) of the “right” Dirichlet problem
assuming, so to speak, that some part of belongs to the interior of
the domain. In fact the Fichera function was
originally introduced for the solvability of the Dirichlet problem in
by means of the energy method and “naturally” appears if one rewrites
equation (2.5) in divergence form

However, in the necessary condition of D.Gilbarg and N.Trudinger [13]
for the classical solvability of (2.10) in the important
function on the boundary instead of the Fichera function is the

function where are the principal directions

and are the principal curvatures of at the point In general,
the Fichera function and the Gilbarg-Trudinger function are different
and coincide when the matrix is a nonnegative one
in a larger domain and the set of the chracteristic points of the
boundary, i.e. has a nonempty interior.

Now, going back to our original problem (2.6), let us first understand
why the notion of viscosity solution, i.e. Definition 2, is useful in
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the context of the Dirichlet problem. Since uniqueness and existence
theorems are based on a comparison principle we will first focus on this
question. In [9, Thm. 7.9] it was proved that a comparison principle
holds for continuous viscosity sub- and supersolutions of problem (2.6),
provided that the operator F is degenerate elliptic (2.2) and uniform
proper (2.3) and that it satisfies an additional technical assumption,
namely [9, (7.15)]. This condition (7.15) is, in general, hard to check for
nonlinear equations. We will show in Theorem 1 that this condition is
not necessary, at least when the function F is independent of In this
case even the uniform monotonicity condition (2.3) can be weakened to
the strict monotonicity condition (2.11)

However, if the strict monotonicity condition (2.11) is replaced by the
weak monotonicity condition (2.12)

then even for uniformly elliptic equations the comparison principle fails.
Uniform ellipticity is characterized by

while locally uniform ellipticity means

In fact, we show in Theorem 2 that when the operator F satisfies (2.12)
and (2.14), then the comparison principle for problem (2.6) is true,
aside for some special cases of so-called extremal solutions. Those are
characterized by a gradient blow up or a blow up of the second derivatives
on the whole boundary of the domain, and then viscosity solutions are
unique modulo additive constants.

Theorem 1. Suppose satisfies the degene-
rate ellipticity condition (2.2) and the strict monotonicity condition
(2.11). If and are viscosity sub- and supersolutions of
problem (2.6), then in [a,b].

The proof of this and the following theorem are given in Section 4.

Theorem 2. Suppose satisfies the lo-
cally uniform ellipticity condition (2.14) and the weak monotonicity
condition (2.12). Furthermore suppose that F(r,p,X) is locally
Lipschitz continuous in p. If are viscosity sub- and
supersolutions of the Dirichlet problem (2.6) then either
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in [a, b], or

ii) in [a, 6] for some positive constant

In fact, case ii) in Theorem 2 appears iff either the gradient of the
solution blows up or the second derivatives of the solution blow up on
the whole boundary. These types of solution were mentioned in passing
only for the mean curvature equation as so-called extremal solutions, see
[14]. They are the unique classical solutions of the equation without any
boundary conditions. Depending on the mean curvature of they are
unbounded or bounded with infinite gradient. Here we will not give the
precise conditions which guarantee either gradient or Hessian blow up of
the solution on the boundary. Let us just illustrate part ii) of Theorem 2
with the following two typical Examples 1 and 2.
Example 1. Consider first the problem

or its multidimensional analogue for

This Dirichlet problem (2.15) has infinitely many continuous viscosity
solutions

but only one of them, is a classical solution of (2.15).

Since the solution is
Holder continuous up to the bound-
ary it is clear from Figure 7 that the
set of the test functions from above
at the boundary points is
empty, so that according to (2.7)

is automatically a subsolution
of (2.15). Moreover, satisfies
(2.8) and is a supersolution of (2.15)
even in the classical sense. There-
fore problem (2.15) has infinitely
many continuous viscosity solutions
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Example 2.

where for and for
is a function depicted in Figure 8.

Problem (2.16) has infinitely many viscosity solutions

for every and but only one of them,
is a classical one.

According to Definition 2, trivially are viscosity supersolutions
because they are classical supersolutions. As for the proof that
are viscosity subsolutions, it follows from in the boundary
points and , that every test function from above
satisfies the inequality (see Figure 9) and hence that the
inequality

holds because

Let us comment that in some sense the results in Theorems 1 and 2
can be considered as an extension of the comparison result of R. Jensen
in [17 , Thm. 3.1]. The result of R. Jensen is for viscosity solutions
in of equations satisfying (2.13), so that case ii) of
Theorem 2 cannot occur.

Remark 2. In the multidimensional case the results in Theorems 1 and
2 hold under the additional smoothness of the solution on the "free
boundary”, i.e. the part of where the solution satisfies the equation
but not the boundary data.
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3. LIMIT OF VISCOSITY SOLUTIONS
FOR NONMONOTONE EQUATIONS

The discontinuous solutions which appear in Section 1, namely (1.1)-
(1.5), are not viscosity solutions in the sense of Definition 1 or 2 because
of their lack of regularity. And the last two examples (2.15) and (2.16)
are not compatible with the basic concept of viscosity solutions, namely
that problem (2.6) should have a unique viscosity solutions in the class
C([a,b]). In fact, the Dirichlet problem (2.6) in these examples has
a unique classical solution, but also infinitely many continuous viscosity
solutions. It is therefore clear that for equations satisfying (2.12) a major
feature (uniqueness) from the theory of viscosity solutions breaks down
and that in this case new concepts must be developed.

Motivated by the stability properties of viscosity solutions for
monotone problems [8], we suggest selection criteria that may lead
to a new concept of a solution. Like viscosity solutions, this vague
concept of a new solution should be stable under small perturbations
of the coefficients, in particular under vanishing viscosity. Roughly
speaking, we regularize a possibly (explicitly or implicitly) degenerate
equation by means of small viscosity depending on so that the
new equation is no longer explicitly or implicitly degenerate. If the
regularized problem has a unique viscosity solution for every
small then the pointwise limit of may or may
not exist, but its upper semicontinuous enveloppe and its lower
semicontinuous enveloppe defined in [9, (6.1), (6.4)] do exist, as
long as are bounded. If they coincide, they define a continuous
viscosity solution. Otherwise the setvalued map
will be called a limit solution of the original problem. This notion
allows for an extension of comparison principles and stability properties
for discontinuous solutions. Uniqueness of could follow from weak
monotonicity (2.12), for instance, but if (2.12) is violated, we give cases
below where the are not unique, so that we have many limit solutions.
If the limit solution is not single valued (i.e. discontinuous) only on the
boundary, it may be modified to be continuous up to the boundary.

In some sense the concept of a limit solution can be considered as an
equivalent of the existence of a global minimizer for variational problems,
for example for the Cahn-Hilliard equation. However our concept has
the potential to be applicable to nonvariational problems as well. As we
shall see in Examples 4 and 5 below, our limit solutions have certain
Perron properties, i.e. their minimal and maximal elements and

are infima of continuous supersolutions or suprema of continuous
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subsolutions. This gives an idea how to prove existence for nonmonotone
equations.

This intuitive notion of limit solutions is an extension of the concept
of viscosity solutions to degenerate and nonmonotone equations. Indeed,
if the classical Dirichlet problem has a unique viscosity solution, then as
is well known, the limit solution will coincide with the unique viscosity
solution. If problem (2.6), however, has a unique viscosity solution, then
the limit solution obtained by means of a pointwise limit procedure will
coincide with the viscosity solution, in general, only in the interior of
the domain. On the boundary, there can be nonuniqueness, but loosely
speaking by continuous continuation one can get uniqueness. In fact the
special upper or lower star limits yield the maximal or minimal viscosity
solution which coincide if the viscosity solution is unique. Otherwise one
can identify a maximal and minimal viscosity solution.

In the light of these considerations recall that (1.1)–(1.5) have
discontinuous solutions and the regularized problems have a unique
solution which becomes discontinuous in a special point as
see Figures 1,2 and 3. After the onset of discontinuity nothing seemed
to be known for the time dependent problems (1.2) (1.3) (1.4).

It is interesting to note that in the example (1.5) of H. Ishii and
N. Ramaswamy [16] the limit solution of the regularized equation

under zero boundary darta in is unique and coincides with the
maximal solution which was obtained in [16] by regularization of
the equation with singular coefficients to and
Incidentally the limit solution for is the minimal
one of (1.5).

As for the nonuniqueness part ii) of Theorem 2, one can easily
see (e.g. from Examples 1,2 and 3 below) that in the class of limit
solutions the second statement ii) of Theorem 2 simply disappears. Thus
Theorems 1 and 2 can be considered as a standard comparison principle
for continuous limit solutions of (2.6).

Let us illustrate the above phenomena of degeneracy of the equation
on the boundary with a more general example.

Example 3. Consider

where F is a smooth function which satisfies the uniform monotonicity
condition (2.3), the equation is uniformly elliptic, F is a convex function
w.r.t. the variables, and all “natural” structure conditions of
N.Trudinger (see [26] are fulfilled so that (3.1) has a unique classical
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solution. If is a smooth function such that
in and on then let us look at the

modified problem

This equation is degenerate elliptic on the boundary with Fichera
function on According to Fichera’s notion (see line below
(2.5)) of the right boundary value problem (at least for linear equations)
the whole boundary should be free from boundary data. One can easily
check that every classical solution of (3.1) with arbitrary Dirichlet data

on will be a viscosity solution of (3.2).
Thus (3.2) has infinitely many viscosity solutions. However, (3.2) has
a unique limit solution u(x) which is the unique classical solution of (3.1)
with prescribed zero Dirichlet data. In fact, after the regularization of
equation (3.2), i.e.,

the perturbed problem (3.3) has a unique classical solution One
can easily prove global a priori estimates for in for instance

and global boundary gradient estimates, such as

with N sufficiently large and
sufficiently small, which are uniform w.r.t. the small parameter
Using the interior gradient and a priori estimates (see [26]) after
the limit we obtain the unique limit solution of (3.2). Note
that problems (3.1) and (3.2) are not equivalent in the class of viscosity
solutions but they are equivalent in the class of limit solutions.

The remaining examples illustrate the situation when the limit
problem has more than one viscosity solution. This happens when the
weak monotonicity condition (2.12), which was satisfied in Examples 1,2
and 3, fails.

Example 4. Cahn Hilliard

Example 5. Quasilinear Cahn Hilliard
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for Notice that (3.5) is a special case of (3.6), and that
(3.4) is a limiting case of (3.6). For (space dimension)
problem (3.6) was suggested in [5].

There is no difference in the qualitative properties of the solutions of
(3.5) and (3.6), except the regularity of solutions so that we will consider
only (3.5).

The Dirichlet problem for the simplest Cahn-Hillard equation (3.4)
has three (even continuous) viscosity solutions
independently of the choice of boundary data. Checking this is a simple
exercise using Definition 2, and we omit it. Moreover, it has infinitely
many discontinuous viscosity solutions in the sense of Definition 2,
namely the set of functions taking values in

Note that in Examples 4 and 5 the uniform monotonicity condition
(2.3) holds only if however, Figure 10
indicates that for small this cannot be expected. Consequently
uniqueness of the viscosity solutions cannot be expected either. Let
us now look for limit solutions in some special, but typical cases. For

and problem (3.4) has a unique limit solution (see
left part of Figure 10).

In this case the pointwise and upper star limit is
for but the lower star limit is
on [0,b]‚ and because it has maximal smoothness, we pick this one as
limit solution. When for instance, the pointwise
limit solution U(x) is neither upper nor lower semicontinuos and the
unique limit solution U(x) is a discontinuous function on the boundary,

in (a,b) (see right half of Figure 11). In
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this case again on [0, b] has maximal continuity and will be the
unique limit solution.

In contrast, when and we have an interior discontinuity
of the limit solution at the center b/2 of the domain (0,b) (see Figure 12).

If, for example, the pointwise limit solution
for for is neither upper
nor lower semicontinuos. In this case we shall speak of the upper and
lower semicontious envelope of U as (two) limit solutions, because they
have maximal smoothness.

It is interesting to point out that these limit solutions of (3.4) are not
limit solutions on a subinterval any more, e.g. on the subinterval (b/3, b)
with boundary data and In fact limit solutions on
(b/3, b) are discontinuos in 2b/3. This distinguishes them from classical
solutions and is due to the degeneracy of the equation. In other words,
the union of the unique limit solution on (0,b/3) with boundary data

and of a limit solution on (b/3,b) with boundary data
and is not a limit solution of (3.4).
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To better understand this nonlocal phenomenon of the limit solutions
let us consider problem (3.5) in the interval with data

(3.5) has infinitely many continuous viscosity solutions.

The unique limit solution of problem (3.5) is the function
defined by in in and

in Any horizontal shift of by at most of
is again a viscosity solution of (3.5). Note that the limit solution

is not the maximal viscosity solution defined by in
and

If we divide now the interval into two subintervals
with then the union of the two unique limit

solutions in and coincides with the unique limit solution on the
whole interval However, if then
we have the same nonlocal effects as in (3.4), see right part of Figure
13. It is due to the fact that both boundary points of the subinterval
are characteristic in the sense of Remark 1, iff when the
nonlocal effect occurs. On the other hand, c is noncharacteristic when

and then the nonlocal phenomenon does not occur.

We will finish these examples with the case Let
us first consider the simplest subcase Now solutions
of have three pointwise limits which take values

0 or Moreover, for and they can have many pointwise
limits which are periodic functions. To see this is left as an
exercise to the reader. Note that the three limit solutions of (3.4) have
Perron properties from above (infimum of supersolutions) or from below
(supremum of subsolutions). The unique classical solution of
(3.4) has both Perron properties from below and from above in a trivial
way, because both the set of supersolutions and the set of subsolutions
contain only one function, namely the solution itself. This explains
the unstable character of the trivial solution
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There are various selection criteria in the literature that lead to
uniqueness results for nonmonotone problems. Some of them consider
the unique positive solution, the unique convex solution or the unique
maximal solution depending on the equations under consideration. We
focus on solutions with maximal regularity. Our Examples show that
those have Perron properties, and that they are sometimes convex,
sometimes positive, sometimes maximal, but not always. In some sense
Perron properties of the solutions correspond to being global minimizers
of the variational problems.

It remains to discuss the typical cases or
These lead like in the case of zero boundary data

to one or two limit functions If A and B have different sign,
can also be a limit solution, but is not a limit solution, because
it is not a pointwise limit a.e. of see Figure 14. What happens with
problem (3.5) when and Also in this case there
exist two limit solutions U and V with Perron properties, and many
periodic limits in without Perron properties (see Figure 15).

The cause for such a difference in regularity of the solutions of (3.4) and
(3.5) is the high degeneracy of equation (3.4) compared to (3.5). The
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limit solution in Figure 15 is an infimum of viscosity supersolutions
of (3.5) while the limit solution in Figure 15 is a supremum of
viscosity subsolutions of (3.5).

Let us note that a comparison principle holds for all limit solutions
which have the same Perron properties as sub- or supersolutions.
The comparison theorem fails for limit solutions with different Perron
properties (see Figure 16 below). In fact, in Figure 16

but it is not true that

A similar phenomenon of periodic structure and infinitely many
solutions of the problem was noticed by St.Müller [23] in some variational
problems, i.e.,

which appear in solid-solid phase transitions in crystals.

The results mentioned in examples 4 and 5 are true also for more
general degenerate elliptic equations

for which for every X.

4. PROOF OF THEOREMS 1 AND 2
Proof of Theorem 1: If Theorem 1 is not true then
has a positive maximum in [a, b] at some point and

Let us first consider the case that const,
i.e, there exists such that Without loss of
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generality we will consider the interval [z, b] and assume
If then either or or both. For
simplicity suppose that Let and consider

similar considerations apply to
Since attains its positive maximum

at some points It is clear that as
Moreover, the inequality holds for

all large i.e.,

From the continuity of v we conclude that

so that whenever is a limit
point of
a) If then are interior points for large From
maximizing h it follows [9, Thm. 3.2] that the set of test fuctions for u,
v at is not empty. More precisely, there exist constants X, Y,

and -functions and with the properties:

According to Definition
1 and (2.2), (2.11) we get the chain of inequalities

an obvious contradiction.
b) Since by construction cannot be an accumulation point of
we have to check only the remaining case that As long as
and are interior points of (z ,b ) , the same contradiction as in a) can
be reached. Hence either or or both as is large enough.
Suppose that Noting that

we get a contradiction to (4.1). Finally, if and
we can use Definition 2 and the fact that to derive from

(2.7): for every test function satisfying
and Choosing from a) we can reach

again a contradiction.
To complete the proof of Theorem 1, we still have to bring the

assumption to a contradiction. In this case
we will show that in a given small subintervall in which
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the function is either convex (or concave) on [t,s].
For every with we will show that
lies either entirely below (or above) the line segment l (x) connecting
(p,v(p)) with (q,v (q). Otherwise there exist linear functions and

parallel to l(x) which are tangent to v(x) from below at a point
and to at a point from above, see Figure 17. Without
loss of generality (otherwise vary p, q) we may assume

Using and as test functions in Definition 1 and the strict
monotonicity (2.11) of F with respect to u, as well as the fact that by
choice of [t, s] we have inf sup in [t,s], we arrive at

another contradiction. Therefore v is either convex or concave in every
subinterval [t, s] such that But as is well
known, see e.g. [9, Thm.A2], continuous convex (or concave) functions
are almost everywhere twice differentiable.

Let be a point where u (and thus is twice
differentiable. Then there exist constants r, X such that

Hence for every we have test functions in the sense of Definition 1

Definition 1 implies now
for every and by continuity of F also for Hence, using
the strict monotonicity (2.11) we reach another contradiction, namely

This completes
the proof of Theorem 1.
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Proof of Theorem 2: Suppose that
then statement ii)

of Theorem 2 holds and there is nothing to prove. Otherwise there
exists a point such that Without loss
of generality The following two subcases can occur: a)

In case b) either or
or both. We will cover only the case since the other

one is symmetric, see proof of Theorem 1.
Independent from case a) or b) choose and consider the
function

in for all positive parameters and As in the proof of Theorem 1
we can show for the maximum points of h on (with

that

From [9, Thm. 3.2] there exist test functions such that

and where X, Y satisfy the inequalities [9, (3.8) with

From the right inequality of (4.3) we have

because we can multiply the matrix inequality (4.3) with the vector (1,1)
from the right and from the left.
In case a) all accumulation points of and are in the open interval

while in case b) they can also accumulate in b. However, even in
this case as in the proof of Theorem 1 it follows from (4.2) that either

or  for large    and This means that in any
case we can apply (2.7), (2.8) and, using (2.2), (2.13) and (4.4), arrive
at the following absurd chain of inequalities
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where

and is the ellipticity constant from (2.14) corresponding to

In fact, to see the last strict inequality, note that for fixed and large  the
numbers and C are independent of Hence
provides the contradiction and completes the proof of Theorem 2.
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REMARKS ON COMPACTNESS IN THE
FORMATION OF FINE STRUCTURES

Petr

Abstract: We investigate the interplay and intertwining of the amplitude and fre-
quency of highly oscillatory sequences of bounded weakly differentiable
maps forming laminated microstructures and fine structures.

Keywords: Microstructures, fine structures, weak convergence, strong convergence,
finite elements.

1. INTRODUCTION
Processes involving phase-separation kinetics and dynamics of inter-

faces are often very complicated. For active materials, such as magne-
tostrictive, ferroelectric or shape memory alloys, the phase-separation
kinetics and dynamics of coherent or semi-coherent phase boundaries
depend on a domain microstructure. For these materials, it is crucial to
understand how structures with a variety of tiny length scales arise with
changes of temperature and stress in order to model and to understand
their responsivness to external macroscopic stimuli.

Phase-separation kinetics involves a continuum description down to
a scale slightly greater than atomic dimensions. Thus, a study of
formation of microstructures has to deal with length scales which
vary from nanometers to centimeters. Traditionally, one is not
attempting to study details at the atomic scale but is trying to find
a correlation between microscopic structure and large-scale material
properties. This approach is less desirable for understanding of
formation of microstructures in active materials because many such
patterns are only meta-stable. Hence, such patterns are confined to
compact subsets of some Sobolev spaces. Meta-stable microstructures
with a wide variety of different scales determine fundamental properties
of active materials through exchange of stability among competing
microstructures. Laboratory experiments and recent theoretical work
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[2], [9], [10], [13], indicate that spatial microstructural complexity
depends on the rate of pattern formation. This issue has received a
little attention so far compared to the analysis and computation of
macroscopic equilibrium properties of constrained crystalline materials
studied in [6], [15], [13], [19], [17] among others.

Alloys such as Nickel-Titanium or Indium-Thallium are typical
examples of active materials. These alloys exhibit multiscale domain
patterns, c.f. Figure 1, described in part by binomial microstructures [3],
[18]. Such patterns can be modeled by gradients of weakly differentiable
maps that can come close to the solution of the following
differential inclusion:

The matrices are assumed to be positive definite and linearly
independent. Typical examples of these matrices are associated with
crystallographic theories. For the face-centered cubic to face-centered
tetragonal phase change, these matrices are given by

where are canonical basis vectors in
Another example is associated with the orthorhombic to monoclinic
transformations. In this case

It is possible to show [20], [13] that suitable use of self-similar
scaling (homogenization) leads to approximation techniques for such
differential inclusions. We note that there does not exist any functional
representation for the solution of (1.1). This is because it is necessary
to create oscillations in the gradients with unlimited frequency to meet
the boundary condition.

Minimization of a stored energy with local minima at
where SO(N) is the set of proper rotations in is the direct
counterpart of the differential inclusions such as (1.1). The lack



Formation of micro structures and fine structures 257

of a functional representation manifests itself in the minimization
framework as the lack of quasi-convexity. Thus the minimizing sequences
do not carry, in the limit, any point-wise information about the pattern
structure. It is remarkable that dynamical systems associated with
such non-attainment problems seem to favor creation of patterns with
finite scales (patterns with limited structural frequency) [9], [10], [14].
This means that the microstructural patterns obtained by dynamical
processes represent local minima rather than the global minimum of
the associated non-quasiconvex energy [2]. We introduce in this paper
comparison principles that will help us to study the compactness of
multiscale pattern formation. We anticipate that dynamics, as well
as nonlinear optimization and approximation biases, could serve as
“selection mechanisms” missing in the continuum equilibrium models
of crystalline and polycrystalline materials.

2. COMPARISON PRINCIPLES
be an open bounded domain with a Lipschitz

(or "smooth" if necessary) boundary. We will understand to
be a column vector of partial derivatives taken with respect to the
untransformed domain We denote by the space of
real matrices. Matrix multiplication in this space is understood in the

sense where the matrix is obtained by
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standard matrix multiplication. Consequently, the matrix norm is given
by which is the natural Euclidian norm on the space

We will use to denote a norm on the space of N–dimensional
vectors.

Lemma 2.1. Let Then there
exists a continuous function , which converges to
zero as and there exists a positive constant C, independent of m
and n, such that for any sufficiently small, we have

where

Proof. We shall consider any function defined on to be extended
outside of by zero. Let be the Friedrich’s mollifier. We write

The p–mean continuity of yields a positive continuous
function such that

Integration by parts and the Holder inequality yield a positive constant
independent of m and n, such that for and

conjugate we have

Thus
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The Mean Value Theorem and definition of the Friedrich’s mollifier yield,
for any and sufficiently small so that
a differentiable map such that

The integration by parts with respect to the variable yields

Using the Poincaré inequality for the unit ball, and the continuous
imbedding of into the space we obtain a positive
constant C, independent of m and n, such that

The proof follows from (2.3), (2.5) and the above estimates.

Theorem 2.2. Let and let be
a sequence such that

Let us assume moreover that
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Then

Proof. We take

in Lemma 2.1 and obtain a function such that
as and

We have for any smooth function which vanishes on

where is the radius of curvature of The radius is positive if is
convex. Hence the locally strong convergence of the gradients follows
from (2.12), (2.13), and assumption (2.9).

Corollary 2.3 (The Uncertainty Principle). Let and let
be a subset of Let us assume that

Then

if and only if

Proof. (i) Let us assume that (2.15) is true. Then Theorem 2.2 and
(2.15) yield

for any
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The continuous imbedding of into and (2.17), (2.13)
give (2.16).

(ii) Let us assume that (2.16) is true. In order to deduce (2.15) we
will prove that if (2.15) is false then (2.16) is false as well. The
strong convergence of the sequence yields weak
convergence of this sequence in Reflexivity of the
for gives in turn a uniform upper bound

Hence the proof follows.

2.1. Piecewise affine functions
Theorem 2.4. Let and let be a sequence of
continuous, piecewise affine functions such that

Then

if and only if

Proof. (i) Let us assume that (2.20) is true. Strong convergence of
the sequence in yields weak convergence of this
sequence in Reflexivity of the for
gives, in turn, a uniform upper bound for Hence (2.20)
yields

We obtain from (2.22) a constant C, independent of m, such that, for
any and we have

and (2.21) follows.
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(ii) Let us assume that (2.21) is true. We have again for any
the relation

Rellich’s Theorem, (2.24), and weak convergence (2.19) yield

Let us denote by the set of all maximal simply-connected subdomains
E of such that Using the definition of duality
pairing, the fact that

integration by parts, and the trace theorem, we obtain, for any

where

The vector n(s) is the unit outward normal to at Since
the domain is bounded, there exists a finite, positive constant C,
independent of m, such that
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Thus we obtain from (2.25), (2.27), the assumption (2.21), and (2.29)

which concludes the proof.

3. MICRO STRUCTURES

Let us return to the problem of approximating the differential
inclusion (1.1). The condition rank is required by
the Hadamard jump condition in order to allow a continuous map

such that The possible discontinuities
in the gradient occur along planar interfaces with the normal b. The
boundary condition excludes the solvability of (1.1), however.

Let us define a projection by

This projection may not be invertible. If we
can find for any nonsingular matrix A a matrix B(A) such that

We observe that any sequence of finite
dimensional weakly differentiable functions converging to the solution of
(1.1) has to satisfy the following two conditions

Let and let D be an open measurable subset of We define

The approximate Young’s measure [1] is given by

where is an open ball with radius contained in
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We have the following Theorem [12]: Let the sequence
dim satisfies (3.3).
Then

The convergence is weak-* in a sense of measure. The results (3.5)
yield the following Theorem.

Theorem 3.1. Let be a sequence of continuous, piecewise
affine functions satisfying (3.3). Then

Thus, in particular, there does not exists a solution to the differential
inclusion (1.1).

Proof. (i) We first show that there exists such that for any
we have

Let D is an arbitrary open measurable subset of We have

It follows from the definition of that

Hence, we have from (3.8) and (3.9)
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We can write the first two terms on the right-hand side of (3.10) as

Thus taking we obtain

Weak–* convergence in measure (3.5) and (3.3) yield

Hence (3.7) follows from (3.13) and (3.12).

(ii) The Hadamard jump condition, the fact that rank
and the convergence in measure (3.5) yield existence of a continuous,
piecewise affine function such that

The strong convergence of directional derivatives of parallel to b
guaranteed by the inequality [19], [12]

yields

Thus we have from (3.7), (3.14) and (3.16)
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Since is a piecewise affine function we have

where we denote by the set of all maximal simply connected
subdomains E of with Lipschitz boundary such that is
independent of x and . The inequality (3.6) now
follows from (3.17) and (3.18) upon the replacement of by
Nonexistence of a solution to (1.1) follows from (3.17) and Theorem 2.4.

We can use the inequality (3.6) to derive a lower estimate for the
convergence of the “macroscopic” quantities such as

Corollary 3.2. Let be a sequence of continuous, piecewise af-
fine functions satisfying (3.3). Then

Consequently,

Let us assume, moreover, that there exists a positive constant C such
that

Then there exist and a positive constant C, independent of h,
such that

The function is defined by (3.14).

Proof. (i) The discrete inverse inequality [4] implies that for any subset
D of such that where is a subset of we have

We note that (3.23) holds true because The positive constant
C in (3.23) depends on the uniformity and regularity of the partition
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and also on p and q. This constant is uniformly bounded with respect to
p and q, though. Taking in (3.23) and recalling (3.7), we obtain

Thus in (3.24) and (3.14), (3.15) of Theorem 3.1 yields (3.20)

(ii) We have for some (0,1) from (3.17)

The upper estimate of

follows from [[12], Theorem 9 . 1 ] .

Remark 3.3. We note that it does not seem at all possible to derive an
upper bound for without any additional structural
analysis.

Corollary 3.4. Let be a sequence of continuous, piecewise af-
fine functions satisfying (3.3). Let us assume, moreover, that

Then

Proof. The proof follows from Theorem 3.1 and the discrete inverse
inequalities (3.23) because for any

Remark 3.5. It has been proven in [12] that

Here D is an arbitrary “laminate”, i.e. the maximal simply connected
subdomain of such that is independent of x. We can draw
the following conclusion from this implication:

The faster the formation of a micro structure occurs, the coarser it will
be.
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4. FINE STRUCTURES
It has been proven in [20] that there exists a sequence of approxima-

tions of u such that

A typical sequence of approximate functions that satisfy (4.1) is
displayed in Figure 2.

Crystallographic theory does not allow relaxation of the structure
of the matrices yielding the equilibrium configurations. Theorem 3.1
shows that if we cannot reach an equilibrium with matrices other than
those from the only possibility left is to relax
the boundary condition. In other words, we may seek a fine structure
generated by compact or pre-compact sequences of weakly differentiable
functions with gradients approaching the set and
such that their values on the boundary will be in some sense close to
the desired condition This possibility is studied in [20]
using convex integration [11].

Definition 4.1. The laminated convex hull of a set
is the smallest set that contains with any rank
also the convex combination

It is proved in [20] that differential inclusions such as (1.1) are
sometimes solvable by fine structures if the boundary condition is
generated by a matrix that is in the interior of the laminated convex
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hull of Following this hint we have the following
conjecture.

Conjecture 4.2. Let . be the laminated convex hull of the set
N = 2, and let be a sequence of

continuous, piecewise affine functions such that

Let us assume, moreover, that

where int and dist
Then
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FINITE ELEMENT ANALYSIS
OF A NONLINEAR ELLIPTIC PROBLEM
WITH A PURE RADIATION CONDITION

Michael Liping Liu, Pekka Neittaanmäki

Abstract: We deal with a second order elliptic problem in a bounded plane domain
with a pure Stefan-Boltzmann condition on the whole boundary. We
prove that the finite element method converges in the without
any additional smoothness assumptions on the true solution.

Keywords: Finite elements, nonlinear boundary conditions, error estimates.

1. INTRODUCTION

There is a great amount of monographs dealing with nonlinear elliptic
problems (see, e.g., [2, 3, 5, 6] and the references therein). In [3, Chapt.
8], we propose a finite element analysis for solving a second order elliptic
equation

with mixed boundary conditions: on a relatively open part of
the boundary we prescribe nonhomogeneous Dirichlet boundary
conditions, and on the remaining part we consider a nonlinear Stefan-
Boltzmann radiation condition (compare also [1, 7])

where is a bounded domain with a Lipschitz-continuous
boundary is the outward unit normal to is
a symmetric uniformly positive definite matrix of heat conductivities,

is a nonnegative heat transfer coefficient,
is the Stefan-Boltzmann constant, is

the relative emissivity function from is the density
of volume heat sources and is the density of surface heat
sources.
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If or is positive on some part of with a positive measure,
then we can use Friedrichs’ inequality [4, p. 20] to prove that the problem
is elliptic (cf. [3]).

The aim of this paper is to extend the above problem to the case
on the whole boundary In this case we are not able to

use Friedrichs’ inequality like in [3]. That is why we have to develop
another approach to prove the existence and uniqueness of the weak and
discrete solutions, etc. We also prove the convergence of finite element
approximations to the weak solution from the Sobolev space
without any additional regularity assumptions upon

2. WEAK FORMULATION
Consider equation (1.1) with the pure radiation boundary condition

Remark 2.1. The case on means that there is no heat transfer
caused by a conduction through the boundary, i.e., the heat does not
leave the body by a conductive process. An example of such a situation
can be a star, which is surrounded by vacuum, and all escaping heat is
thus produced by radiation only. By the Kirchhoff law, energy losses are
proportional to the fourth power of the surface temperature.

Set

and

We see that the bilinear from a ( - , •) is not V-elliptic, which is the
main source of all difficulties. From the heat conduction equation (1.1),
Green’s formula and the boundary condition (2.1) we get the problem:
Find such that

Throughout this and next section we shall assume that on some
nonempty relatively open subset
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Remark 2.2. The case on means that the whole boundary
is “isolated”. This corresponds to the standard Neumann boundary
conditions, which are well-studied in [3, p. 35].

Define the set of admissible temperatures

We will use the following lemma instead of Friedrichs’ inequality to prove
that the energy functional J is coercive on U.

Lemma 2.3. Let be a bounded domain with a Lipschitz
continuous boundary. Let on where is a relatively
open set in Then there exists a constant such that

Proof. First, we show that there exists a constant such that for
any we have

On the contrary, assume that (2.3) does not hold. Then there exists
a sequence such that

I

Since V is reflexive, we may choose, by the Eberlein-Schrnulyan
Theorem, a subsequence, still denoted by such that for some

By the Rellich Theorem (see [4, p. 17]), the space   is
compactly imbedded into That is why Since
are nonnegative, their limit function z is also nonnegative, i.e.,

According to [4, p. 107], the trace operator from to is
compact. Therefore,

Obviously, the seminorm is a convex and continuous functional in
Hence, it is lower weakly semicontinuous functional and thus

from (2.4), we have

As in the both terms are equal to zero. Therefore, since
we find that z is constant almost everywhere in The

condition on guarantees that on and thus in
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We know that in i.e.,

Prom (2.4) we further see that

But this is a contradiction, because

Hence, (2.3) holds.
Second, we choose an arbitrary and set

Then by (2.3),

If then clearly

which proves the lemma.
Lemma 2.3 will help us now to prove that the functional J is coercive

on U. Indeed,

. (2.5)

The existence of a constant is guaranteed by Lemma 2.3 and
from the continuity of the linear functional F we get a constant

Definition 2.4. A weak solution of the classical problem is
a function which satisfies the variational inequality

(2.6)

If some satisfies (2.2), then obviously it satisfies (2.6).
Therefore, any classical solution is also a weak solution.

Let us consider the above variational inequality (2.6) in the form

(2.7)
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where is the scalar product in the space and the operator
is uniquely determined (due to the Riesz, compare [3, p.

136]) by the relation

since the right-hand side is a linear continuous functional for

Lemma 2.5. Let the assumptions of Lemma 2.3 hold. Then the operator
is strictly monotone on U.

Proof. Let be two arbitrary elements from U. Then

We see that

If there exists a subset of with nonzero measure, where then
by Friedrichs' inequality there exists a constant such that

If such a set does not exist, then

on some subset of with nonzero measure. Hence, again

and the lemma is proved.

Theorem 2.6. Let the assumptions of Lemma 2.3 hold. Then there
exists exactly one weak solution of the problem (1.1)+(2.1). This
solution is the unique point of minimum of the functional J on U.

Proof. The functional J is clearly convex on U, by (2.5) it is coercive and
like in [3, p. 152] we find that it is continuous on V. Therefore, J attains
minimum over U in some point u. Since J is Gateaux differentiable, we
get that

However, this inequality is equivalent to (2.6) (and also to (2.7)). The
function is thus the weak solution of the classical problem
(1.1)+(2.1).

From Lemma 2.5 we know that is strictly monotone. This implies
the uniqueness of u (compare [3, p. 132]).
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3. FINITE ELEMENT ANALYSIS
Denote by a finite dimensional space of continuous piecewise linear

functions over a triangulation By [3, p. 59],

Let be a standard linear interpolation operator and let

This set is clearly closed, convex, and nonempty.

Lemma 3.1. Let be a bounded domain with a Lipschitz
continuous boundary. Let
as and let

Then as
Proof. We have

Since as in the . then also
and thus as

For an arbitrary denote by the standard regularization
operator, which assigns to any function a function

(see [4, p. 58]):

where

By a simple calculation we get

Recall (see [3, p. 67]) that a family of triangulations is said to
satisfy the maximum angle condition if there exists a constant such
that for any and any we have



Finite element analysis of a nonlinear elliptic problem... 277

where is the maximum angle of the triangle K.

Theorem 3.2. Let be a bounded domain with a polygonal
Lipschitz continuous boundary. Let the family of
triangulations satisfy the maximum angle condition. Then for each

there exists such that

Proof. Let be given. We know from the density
that there exists a sequence such that in the 

and extend by zero outside Then, and Since
we find by Lemma 3.1 that

Now let us fix k and perform the regularization of Choose
The functions are from . From the definition of it is

By [4,p.59],

Since we   know  (see  [3, p. 72] ) due to the    maximum 

Moreover, obviously and from the triangle inequality

For a given we find, by (3.1), (3.2) and (3.3), that there exist k
and such that for all all three terms in the right-hand side
are less than

Since is convex, closed and nonempty for any we may
show like in Theorem 2.6, that there exists exactly one discrete solution

of the problem

and that (3.4) is equivalent to the problem: Find such that

angle condition  that
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where is a linear continuous functional defined on subspace

Lemma 3.3. Let the assumptions of Lemma 2.3 hold and let F be
a family of triangulations satisfying the maximum angle condition. Then
the sequence of the discrete solutions of (3.4) weakly converges to
the weak solution u.

Proof. By (2.8) and the trace theorem the operator is continuous.
Since it is also monotone, the problem (3.5) is equivalent to (see [2, p.
321])

By Theorem 3.2, there exists a sequence such that in
the Then,

We know that and that J is coercive (see (2.5)).
Consequently, the sequence is bounded in the norm.

From the reflexivity of the Sobolev space it follows that there
exists a subsequence of which we denote again by which
weakly converges to some element Since for all

and U is a convex closed set, we have
Now choose arbitrarily some function Then, by Theorem 3.2,

we can find a sequence and in According
to (3.6), we have

i

Obviously, in Hence, from the continuity of
, we get by (3.7) that

Moreover, since  is monotone, we get again by [2, p. 321] that

and thus, by Theorem 2.6, is the weak solution of the problem

Lemma 3.4. Let the assumptions of Lemma 3.3 hold. Then

where u and are weak and discrete solutions, respectively, of the
radiation problem

Proof. From the definition of A we have
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Since

we have

A grad (3.8)

where C a positive constant.
Moreover, by (2.7), we find that

According to Theorem 3.2, there exists a sequence such
that

Clearly,

and thus

since solves the inequality

From (3.8), (3.9), (3.11) and (3.12), we get

By Lemma 3.3, and thus the sequence is bounded. By (2.8)
and the trace theorem the sequence is also bounded. Hence, by
(3.10),

where is a constant independent of h. From here and (3.13) the
lemma follows.

Theorem 3.5. Let the assumptions of Lemma 3.3 hold. Then

Proof. By Lemma 3.3, in . Due to the compact imbedding
of into (the Rellich Theorem [4, p. 17]), we have

Now Lemma 3.4, (3.14) and the equality yield

which proves the theorem.
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ESTIMATES OF THREE-DIMENSIONAL
OSEEN KERNELS
IN WEIGHTED SPACES

Abstract: We study convolutions with Oseen kernels (weakly singular and
singular) in three-dimensional space. We give a detailed weighted
theory for for anisotropic weights.

Keywords: Oseen fundamental solution, anisotropically weighted spaces, singu-
lar integrals.

1. INTRODUCTION AND BASIC NOTATION

This paper concerns convolution integrals whose kernels are given by
the Oseen fundamental tensor and its first or second gradients

as well as by the being the
fundamental solution to the Laplace equation, which play the role of the
fundamental pressure. We derive estimates of these weakly and strongly
singular integral operators in anisotropically weighted spaces. Such
estimates can be applied to the investigation of qualitative properties
of solutions of the stationary compressible Navier–Stokes equations in
exterior domains using the method of decomposition, see e.g. [8]. They
can also be applied with some modifications to the case of stationary
flows of certain non–Newtonian fluids, see e.g. [9].

It is well known that the Oseen tensor exhibits various decay
properties in various directions in this is the mathematical reason for
dealing with anisotropically weighted spaces. Our work is based on
the technique proposed by Farwig in [2], [3], where the volume potentials

are studied in anisotropically weighted spaces with
the weight function given by the formula

We also used the results of Kurtz and Wheeden
concerning singular integrals in weight spaces, see [7]. The aim of
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our work was to generalize Farwig's results on the case of
with the weight function and with the weight function

In order to study the dependence of estimates on
Reynolds number Re, the weight functions

are also used.
Our paper is organized as follows. We first introduce the fundamental

Oseen solution and show its asymptotic properties. In Section 3 we
calculate –weighted estimates of a certain convolution which plays an
essential role in the next section where the –estimates of convolutions
with Oseen kernels are studied. Applying this results we get, in Sections
5 and 6, the –weighted theory of Oseen potentials (both weakly
singular and singular kernels).

In this paper, we use the following notation

— positive constants

— fundamental solution of the Laplace equation

— fundamental solution of the Oseen problem

— fundamental solution of the Stokes problem

(usually

norm in

2. OSEEN FUNDAMENTAL SOLUTION
In this section we recall some basic facts about the fundamental

solution to the Oseen problem. Denote by
its fundamental solution; it satisfies the identities
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in the sense of distributions, where denotes the Kronecker delta, while
denotes the Dirac delta–distribution. The latter is equivalent to

In particular, it holds,

pointwise in
In three space dimensions we can easily verify (see e.g. [6]) that the

fundamental solution can be written as

where

with

and

The formulas (2.4)–(2.6) yield useful rescaling property

The integral representation (2.5) implies

The representation by the sum in (2.5) yields,

When differentiating (2.6), we obtain
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From here we get the estimates

From (2.4)–(2.6) and (2.10) it is seen that
and for fixed is an analytic function.

Now we calculate the derivatives of in order to establish the
asymptotic behaviour of and of its first and second derivatives
near zero and at infinity.

These formulas, together with (2.8), (2.10) and (2.3) yield

where is the Stokes fundamental solution (see e.g. [6]),

It can be shown (see e.g. [6] and also Section 6) that both the second
derivative of and represent Calderón–Zygmund singular integral
kernels.
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In particular, for

For any formulas (2.3) and (2.10) together with the properties of
the function s(x) give

This yields for and any

Formulas (2.12) and (2.15) give us in particular that and are
analogous to weakly singular kernels while the second derivative of
can be written as a sum of a singular kernel and a weakly singular
part.

With at hand, we can write explicitly a –solution of the
problem

with Namely

In the case of we have

where is a constant.
Let us summarize the asymptotic behaviour of and its derivatives

using the weights , introduced in Section 1. Moreover,
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we assume and for we may use the homogeneity property
(2.7). Then we have for

3. –ESTIMATES OF A CONVOLUTION
IN

This section is devoted to the study of an auxiliary problem — the
estimates of certain convolution which will play a fundamental role

in the following sections. Our aim is to give conditions on a, b, c, d, e,
f such that

We shall calculate the estimates for Since we study the
physically interesting case the results will be summarized in
Tables 1 and 2 only in this situation. Nevertheless, the calculations will
be performed for general dimensions and the results can be easily read
from the integrals

Before calculating estimates of the type (3.1), we shall first study the
asymptotic behaviour of the function

Let us denote by x' the vector of the last N – 1 components of x, i.e.
We have

Lemma 3.1.   If      then otherwise

Proof. Introducing the generalized spherical coordinates

where we have
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For we have

which implies

Analogously we proceed for where and
If we use the polar coordinates and the only

change consists in the fact that for and

Next we study the integral of over the sphere for sufficiently
large In what follows, by we mean the
following: there exist and U(A), a neighbourhood of A, such
that

for all x such that is from U(A).

Lemma 3.2. Let Then for the exponents a, we have

as
Consequently,

Proof. Using the generalized spherical coordinates see
(3.2)) or the polar ones we get

Changing the variables we estimate the last integral
by

We estimate the integral (3.4) over three subintervals. Let us also
note that for N = 3 it can be calculated explicitly. We have
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which implies (3.3). the condition implying global
integrability follows trivially.

We can start to deal with the convolution (3.1). Recall that similar
estimates were for the first time studied by Finn (see [4], [5]) in the three-
dimensional case (but only for special values of c, d) and by Smith (see
[10]) in the two-dimensional case. A generalization of their approach due
to Farwig (see [2]) for the three-dimensional case was adapted to the two-
dimensional case by Dutto (see [1]). We shall repeat their calculation in
N dimensions where arbitrary.

Finally note that the estimate (3.1) remains true if we replace the
kernel by

(see also below).
In the sequel we shall use the following notation

In order to capture the anisotropic structure of the function we
shall study the convolution (3.1) in four different situations:

Using Lemma 3.1 we easily verify that

(3.7)
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For notational convenience we denote and
analogously

We start with the case A). Applying Lemma 3.2 to the halfspaces
and we find that the convolution is uniformly bounded if

Next we continue with the most complicated case C). We follow Farwig
(see [2]) and divide into 16 subdomains as shown in Figure 1. If

the subdomains are plane, otherwise they are cylindrical.

We calculate the convolutions separately on each subdomain. For the
reader’s convenience, the results are summarized in Tables 1 and 2 (for
N = 3). We denote by the corresponding part of the integral (3.1)
over We shall get

Unfortunately in many cases additional logarithmic terms will appear
which will cause some losses in the weighted estimates later on.

Remark 3.3. Let A be a positive function. We denote
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We start by estimating the convolutions over the sixteen subdomains.

We have and therefore
Applying

Lemma 3.2 we get

The results are summarized in Tables 1 and 2.

The integral can be estimated in the same way by exchanging a, b
for c, d. Assuming the kernel (3.5) instead of we have

since Again, the summarized results can be found in
Tables 1 and 2.

We have in that . So for
Further

and therefore , Thus

In order to verify the last equivalence it is enough to consider first
and then i.e. and

estimate the integrals.
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Let us divide J into two parts — the integral over and the
integralover We estimate these two parts separately.

We used the fact that and In

In Analogously

The results may again be found in Tables 1 and 2.

We proceed analogously as for exchanging a, b for c, d.

can be considered as a subset of and Therefore can
be estimated by and

We have in so or

where varies between 0 and
Further As we have

It is sufficient to interchange a, b by c, d and use the result for

Denoting we have in that
Therefore
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and

We get the result by interchanging a, b by c, d and using the result
for

Analogously as in we have
and

If the significant term in the inner integral will be the
lower bound and we can use . If _ the significant term in
the inner integral will be the upper bound and we can use If

then

In comparison with we get some additional logarithmic factors

As in we may use for for and get some
additional logarithmic factors to for

The domain is unbounded. We have
Therefore and
applying Lemma 3.2 under the assumption we
get

We proceed as in the previous case and under the assumption
we get
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The domain can be considered as a subset of and
Therefore can be bounded by and

In this subdomain we have Moreover
Then

if and if
Let us note that the strip has no influence on

the asymptotic behaviour since there.

Now we distinguish three cases.

a)
then

while for we have

b)

and the integral can be estimated by

c)

Now for

and for

which can be estimated by

Interchanging a, b by c, d we can use the results from
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We have now completed investigation of the situation C). The results
are summarized in Tables 1 and 2

The situation D) is almost trivial since we are left with subdomains
of the type and The integrals can be estimated
by the corresponding integrals in C) taking i.e.

Finally in the case B) we proceed as in case C) but the subdomains
and coincide. The other integrals can again be estimated by

the corresponding ones from the part C) taking i.e.
The study of the convolution (3.1) is therefore completed. In the

next section, we shall apply the results in the study of of
convolutions with the Oseen kernels.

4. FOR WEAKLY
SINGULAR OSEEN KERNELS

Now we intend to get estimates for the functions by analogy
with the preceding section,

This is the aim of Lemma 4.1 and Lemma 4.2. We will formulate
these lemmas in the case of Afterward, we apply
the lemmas in the study of of convolutions with Oseen
kernels. Let denote the following integral

where For the notational convenience we also denote
for

Lemma 4.1. For there exists a positive constant
such that for

Moreover, there exists a positive constant such that for

Proof. We divide the proof into two parts:

a) First we assume We will estimate integrals over sets, whose
union contains unit ball
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here we use inequality

The last integral can be estimated by by
if and by some constant if

b) Now we assume

The assertion of Lemma 4.1 follows from these five estimates of
convolution integrals.

We define for pairs of real numbers and
It is evident that if

In the formulation of Lemma 4.2 we use functions

Let us note that

Lemma 4.2. Let a, b, c, d, e, and positive constant C be such that
for all

Let Then there exists
a positive constant such that the following inequality is satisfied for
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Proof. Evidently, for there exist positive constants
and such that

Now we will prove the assertion of the Lemma 4.2:

We will study these two integrals separately. By using Lemma 4.1 we
get the estimate of

In the second inequality we use Lemma 4.1 and the relation b). In the
last inequality we take into account the assumption

We estimate the remaining integral for
in the following way:

The proof of Lemma 4.2 follows from these estimates.



Weighted estimates of Oseen kernels 299

We now formulate main results of this section. We will use the
following notation

if no logarithmic factor appears, and

if there are logarithmic factors,

where function P(•) is a polynomial of the first or the second order, see
also Remark 4.4. Similarly we define Then we have

Theorem 4.3. Let Let
Then where

with logarithmic factors

(see Remark 4.4). Moreover we have

Let in addition for A, B the following conditions be satisfied

or

Then for we have
and

Remark 4.4. The inequalities (4.1), (4.2) must be understood in the
following sense. If no logarithmic terms appear then

Analogously for the weight But for or
we have
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and for

where P(•) is a polynomial. (The order of polynomial P(•) can be traced
out from the proof of Theorem 4.3 using Tables 1 and 2.) Analogously
for the weights We can use instead of (4.3), (4.4) for

respectively.
Finally, in the case of f = 0 in (this is usually the case for

exterior domain) we can get for the weight

Proof of Theorem 4.3. Let Recalling that
we have

We have therefore to study the convolution (4.5); we apply Tables 1
and 2 with and we get, under the condition

that (we skip the logarithmic factors, for the moment)

with

We therefore easily get (i) and ( i i ) , see Fig. 2 below:
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Let us now regard the logarithmic factors. Prom we have
whenever and min

min Therefore, if the factor
must be taken into account. But for we

have therefore, we can
assume only here.

Next in we have due to But

min and So for we easily
see but for we have

therefore, we must assume in this case.
Analogously we proceed in other sub-domains and get ( i i i) and (iv).

The estimate (4.1) for is therefore shown. In order to show (4.1) for
let us recall the homogeneity property of Namely,

for we have and therefore

and so, as we have (4.1).
Let us study the weight Prom Lemma 4.2 we have the

following conditions max (0, A — 2) and . and therefore we
get on that on that and on
i.e. Finally, to show (4.2) we proceed as in the case of the
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estimate (4.1). Evidently, (4.2) holds for Therefore

Theorem 4.5. Let Then for
where

with logarithmic factors

Moreover we have

Let in addition for A, B the following conditions be satisfied:

Then for
and
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The theorem (and the following theorems of this section) can be
proved by analogy with Theorem 4.3.

Theorem 4.6. Let Let
or Then for we have

where

with logarithmic factors

Moreover we have

Let in addition for A, B the following conditions be satisfied

Then for we have and

Theorem 4.7. Let and Then for
we have where

with logarithmic factors
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Moreover we have

Let in addition for A, B the following conditions be satisfied

Then for we have and

5. FOR WEAKLY
SINGULAR OSEEN KERNELS

This section is devoted to the of convolutions with Oseen
kernels. Here we shall use the results from the previous section, i.e. the

Theorem 5.1. Let T be an integral operator with the kernel
and let Then T is a well

defined continuous operator:

Moreover we have for specified in a) and 6), respectively

ad a)
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Proof. We proceed similarly as in the case of . estimates.
Studying first weights we show (5.1) for Applying the
homogeneity properties of we get (5.1) in the general situation

Next, using the results from a) together with Lemma 4.2 we
show (5.2).

Let us denote

We easily observe that, in order to verify (5.1) with it is sufficient
to show that there exists independent of f , such that

Let L(•) and M(•) be non-negative functions defined on such that
for all :

where and Then relation (5.3) is
satisfied. Indeed,

i.e. we get (5.3). We shall suppose the functions L(•), M(•) in the form
Denoting

we get that in order to verify (5.4) we have to find such that
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for all and in order to verify (5.5) we have to find such that

for all
Applying Theorem 4.3 with we get for the first inequality

the following set of conditions

while for the second inequality we directly apply Tables 1 and 2 to

defined in (5.6). The conditions on can be satisfied for some
if we have for

Thus (5.1) is proved for .
Next let we easily have

and we have (5.1) with
In order to prove (5.2) we redefine functions and

We will now proceed as in the first part of the proof, but now
we search the functions L ( • ) , M(•) in the form

Denoting

1The convolution on the left-hand side of (5.5) is again the same convolution as treated in
Section 3, but at the point – y.
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we see that in order to verify (5.4) and (5.5) we have to find such
see (5.6), (5.7) and such that

Recalling that we get from Lemma 4.2
the following two possible sets of conditions for

where in both cases Conditions for are the same as in
the first part of this proof. From the conditions (i) we get the following
additional condition

Case (ii) gives more restrictive conditions on no extension of the
result. So, (5.2) is proved in the case

Finally to get (5.2) with we proceed as in the case of the weights
We have

and we have (5.2) with This completes our proof.

Theorem 5.2. Let T be an integral operator with the kernel
Then T is a well defined

continuous operator:
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for
Moreover we have for specified in a) and b), respectively

ad a)

ad b)

The theorem (and the following theorems of this section) can be proved
analogously as Theorem 5.1.

Theorem 5.3. Let Let
T be an integral operator with the kernel and let

Then T is a well defined continuous operator:

Moreover we have for specified in a) and b) respectively

ad a)

ad b)
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Theorem 5.4. Let T be an integral operator with the kernel T :
and let Then T is a well defined

continuous operator:

for

for
Moreover we have for specified in a) and b), respectively

ad a)

ad b)

6. SINGULAR INTEGRALS
The aim of this section is to present some results concerning

of certain singular operators and finally to apply them on
the convolutions (defined in the sense of principal value) of the type

We shall use the idea of Farwig (see [2]). Before formulating the result
from [7] we need to define some notation.

Definition 6.1. The weight belongs to the Muckenhoupt
class if there is a constant C such that

for and respectively. In the first case, the supremum
is taken over all cubes Q in in the second case only over those
cubes which contain denotes the Lebesgue measure of Q. The
constant does not depend on

Remark 6.2.

a) For the condition (6.1)2 can be replaced by
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where Mg(x) is the Hardy-Littlewood maximal function which is
defined by the left hand side in

b) In (6.1) it is enough to take the supremum over all cubes with edges
parallel to an arbitrary chosen Cartesian system X.

To show this, let X be a Cartesian system in and another one
arising from X by any rotation. Then we have

for any locally integrable function In (6.3) is a cube with edges
parallel to the axes of is the greatest cube with edges parallel
to the axes of X such that and is the smallest cube with
edges parallel to the axes of X such that

Next part is devoted to the investigation under what condition the
weights defined in Section 1 belong to for some First
we recall several general results:

Lemma 6.3.

a) // then for any the weight

b) // for some then for any

c) // for some then for any

Proof. It follows directly from the definition of and in case b) from
the Holder inequality.

Definition 6.4. Let be a non-negative Borel measure. We define the
maximal function

where the supremum is taken over all cubes Q such that
Analogously we define Mf(x) for replacing by

(See also Remark 6.2 a) and b) ).

The proof of the following lemma can be found in [11] (Theorems
IX.5.5 and IX.3.4).
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Lemma 6.5.

a) If is finite for a.a. then, for any

b) Let Then there exists a function such that

Using Lemma 6.5 we can easily show

Lemma 6.6. The weights and satisfy the
on for each

Proof. We have that for the maximal function
and so | Further, if we define
then and again Lemma 6.5b) furnishes the result.
•
Lemma 6.7. For and the function

is a weight of the class in

Proof. For the proof see [2].
Using this result we can now show the following

Lemma 6.8. For and the function

is a weight of class in

Proof. We have to verify that a.e. in Let
denotes a closed cube with sides parallel to the axes and with the

side length a; R will be a sufficiently large constant. We distinguish
several cases:

A)

Then for all we have that and

Now and
proceeding analogously as in Lemma 3.2 we get
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In this case all such that are contained in the ball
and therefore similarly as above

Evidently,

B)
Now, as and we have

and so

Therefore for all we have that But then,

as we have

As we have and the
required inequality follows.

C)

a) If then trivially

If then and analogously as in
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Lemma 6.9. For and the function

is a weight of class

Proof. We proceed as in Lemma 6.8. Part A ) remains the same. In
part B ) we use the fact that for some

for all such that In part the

condition is satisfied without the necessity of
any additional condition on b. In part we proceed as in Lemma 6.8
but we use

Combining Lemmas 6.7, 6.8 and 6.9 with the properties of Mucken-
houpt classes we can show the following

Theorem 6.10. Then the
weights and are in for

Let Then
the weight is in for

In order to formulate the fundamental theorem used in this section
we need to define the so called condition. We will use the
following notation in the definition.

- the unit ball with the center at the point 0 in
of with magnitude

Definition 6.11. Let be a function defined on
We say that function satisfies the condition if

where

Notation:

For the proof of the following theorem see [7].

Theorem 6.12. Let
is a positively homogeneous function of degree zero,
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Let T be an operator with the kernel R, i.e. in the
principal–value sense and Then T is a continuous
operator

Remark 6.13. The fact, that R(•) satisfies the conditions formulated in
Theorem 6.12 means that R(•) represents a Calderón-Zygmund singular
integral kernel. We will write in this case It is known that

Remark 6.14. If is a weight such that
and then it is an easy matter to see

that and coincide. The weights have this
property. For the other weights we will distinguish spaces
and

As the corollary of Theorem 6.12 we get

Corollary 6.15. Let . R be either
and where w stands for with

and be such that the corresponding weights are
weights. Then and

We will now formulate the results for which follow from
Theorem 6.12.

Theorem 6.16. defines continuous operators:

The last theorem follows from Theorem 5.3, Theorem 6.10 and
Corollary 6.15.

Theorem 6.17. Let T be an integral operator in the principal-value
sense with the kernel and
let Then T is a well defined continuous operator:
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for max

for max

min an arbitrary domain,

Moreover, we have for specified in a) and b), respectively

ad a)

ad  b)
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HARDY’S INEQUALITY AND SPECTRAL
PROBLEMS OF NONLINEAR OPERATORS

Alois Kufner

Abstract: It will be shown how the Hardy inequality is connected with the
spectral properties of certain degenerated/singular nonlinear operators.
A problem will be formulated.

Keywords: Hardy's inequality, spectral analysis, degenerated differential operators.

1. INTRODUCTION
1.1. The N-dimensional case. It is well known that the constant C
in the Friedrichs (Poincaré) inequality

is closely connected with the value of the first eigenvalue for the Dirichlet
(Neumann) problem for the Laplace operator, i.e., for the equation

(see, e.g., MICHLIN [7]).
Much less is known, if the Laplace operator is replaced by the

p-Laplace operator

or, more generally, for the equation

(see, e.g., LINQVIST [5]). Here, the Sobolev inequality

plays an important role.
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In Section 2, we will shortly indicate how the N-dimensional Hardy
inequality

with given weight functions (i.e., functions measurable and
positive a.e. in is connected with the spectral problem

where A is the perturbed (degenerated and/or singular) p-Laplace
operator:

1.2. Remark. More about the connection between the Hardy inequality
(1.5) and differential equations can be found in OPIC and KUFNER [9],
Section 14.

1.3. The one dimensional case. The spectral theory of the Sturm-
Liouville problem

is well elaborated. For the nonlinear analogue of (1.8), i.e., for the
equation

the structure of the spectrum was described by and numerous
results are known for the special case (see, e.g.,
LINDQVIST [5]).

Recently, DRÁBEK and MANÁSEVICH [1] have given a complete
description of the spectrum and a closed form representation of the
corresponding eigenfunctions for the problem

using sharp Poincaré (Sobolev) inequalities of the type

In Section 3, we will formulate a problem about the connection of the
Hardy inequality
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(which is obviously a generalization of (1.11)) with the boundedness
below and discreteness of the spectrum of the equation

Moreover, we will formulate the problem for the higher order equation

in connection with the k-th order Hardy inequality

2. THE MORE DIMENSIONAL CASE
2.1. Let us consider the spectral problem (1.6) for i.e.

In its weak formulation, it means that the integral
identity

holds for all with an appropriate Banach space V, which is
a subspace of the weighted Sobolev space normed by

Here and are (given) weight functions on
Assume that the N-dimensional Hardy inequality (1.5) holds for

with i.e., we have

Taking in (2.2) and using the inequality (2.3), we obtain that

.e. or

Thus, the spectrum is bounded from below and one can expect that its
infimum (the smallest eigenvalue) is with C the best constant in
Hardy's inequality (2.3).
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2.2. Remark. Inequality (2.3) tells in fact that the imbedding

[where is the weighted Lebesgue space normed by
is continuous. Thus the foregoing result can be

formulated also in the following form: The continuity of the imbedding
(2.5) implies the boundedness of the spectrum of the problem (2.1) from
below.

2.3. Problem. Does the inverse implication hold, too?

2.4. Remark. Moreover, as it will be seen in Section 3, one could expect
also some information about the connection between the compactness of
the imbedding (2.5) and the discreteness of the spectrum of the problem
(2.1).

3. THE ONE DIMENSIONAL HIGHER
ORDER CASE

3.1. The k-th order Hardy inequality. For simplicity, we will deal
with the case i.e., we will consider the inequality

with and
Furthermore, we introduce the functions

with

If we denote by the weighted Sobolev space of
functions satisfying the “right endpoint conditions”

and with finite norm

then inequality (3.1) expresses the continuity of the imbedding
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Necessary and sufficient conditions for the continuity and, moreover,
for the compactness of this imbedding are given by the following
assertion (see, e.g., [9]]).

3.2. Proposition. Let Then inequality (3.1)
holds for every function u satisfying (3.3) if and only if

Moreover, the imbedding (3.4) is compact if and only if

3.3. A linear spectral problem. As it was shown in GLAZMAN [2],
the spectrum of the operator

with a weight function such that is discrete and
bounded from below  (= the operator A  has the so-called property BD)
if the following condition is satisfied:

In 1973, KALYABIN [3], and in 1974, LEWIS [4] showed (independently)
that condition (3.8) is also necessary for A to have property BD.

Now, the spectral problem

with A given by (3.7) is exactly the problem (1.14) for
and and the corresponding k-th order Hardy

inequality (1.15) has the form

and the functions from (3.2) have the form

Now, it is
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and a comparison with condition (3.8) indicates, that the property BD of
the operator A from (3.7) is connected with the condition (3.6)
which is necessary and sufficient for the compactness of the imbedding

expressed by the Hardy inequality (3.9).
This gives rise to the following question:

3.4. Problem. Is it possible to obtain some information about the
spectrum of the problem (1.14) via the Hardy inequality (1.15)? More
precisely, does the validity of inequality (1.15) — i.e., the continuity of
the corresponding imbedding

guarantee the boundedness of the spectrum from below, and does
the compactness of the imbedding guarantee the discreteness of the
spectrum?

In particular, if we consider the case i.e., a second order
differential operator

is it possible to extend the results concerning the linear case and
mentioned in Subsection 3.3, also to the nonlinear spectral problem

and show that the condition

with

is necessary and sufficient for A to have the property BD?
(Notice that for the functions from (3.2) coincide:
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REMARKS ON THE REGULARITY OF
SOLUTIONS OF ELLIPTIC SYSTEMS

Salvatore Leonardi

Abstract: We obtain a result contained in [10] in a different manner.
An optimal sufficient condition is supplied in order to get the interior

Hölder regularity of a weak H1-solution to a linear elliptic system with
measurable bounded coefficients. Explicit estimate of the norm of the
gradient of a solution in a suitable weighted Morrey space is given.

The condition obtained is then applied to quasilinear and nonlinear
elliptic systems.

Keywords: Linear elliptic systems, quasilinear elliptic systems, Hölder regularity.

1. INTRODUCTION
We will prove, in an easy way, an optimal sufficient condition which

allows us to select a class of linear elliptic systems with measurable
bounded coefficients having Hölder continuous weak solutions (see [10]).
Such systems will be named De Giorgi systems.

We will also provide an explicit estimate of the norm of the gradient
of a solution in a suitable weighted Campanato-Morrey space (see also
[13]) and moreover we will apply the condition found to quasilinear and
nonlinear systems with nonregular coefficients.

It is well known that the strong ellipticity condition is not generally
sufficient to ensure the Hölder regularity in the interior of the domain
for a solution to a linear elliptic system with measurable bounded
coefficients in dimension
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In fact, while in 1957 De Giorgi [3] had proved that a weak solution
of the single equation ( l )

was of class for any in 1968 he showed that, when
the previous regularity result could not be extended to systems

i.e. to systems with satisfying only the strong ellipticity
condition (1.7) (see also [13]); he presented the following counterexample

If  m = 2  it is known that a solution of the system (1.5)-(1.8) is Hölder
continuous.

De Giorgi’s counterexample was modified by Giusti-Miranda [7] to
construct, for a quasilinear system of the type

bounded real analytic,

(solution)

1The Einstein convention will be used.
2B(0,1) is the unit ball centered at the origin.
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and also by and Stará [20] to provide a system of the type

bounded continuous,

(solution)

For what concerns the nonlinear case, John and Stará [19] (see
also [5]) constructed, for a counterexample of the type

bounded real analytic (1.9)

(solution),

while for systems of the Euler-Lagrange type, again with bounded real
analytic coefficients like (1.9), it is available for a counterexample
from [9] showing that such systems have Lipschitz but not Cl - solution;
the question of the regularity for is still an open interesting
problem.

The author is deeply indebted to Prof. for suggesting the idea
of this work and for his constant guidance, help and encouragement
throughout its writing and the years of studying at the Departments of
Mathematics of Northern Illinois University and Prague.

2. NOTATIONS, FUNCTION SPACES,
PRELIMINARY RESULTS

In with a generic point we shall
denote by an open nonempty bounded set with diameter and
smooth boundary

Let be a positive integer.
For we define

If A being an open nonempty set of then we will set

3With respect to the previous counterexample, in this case the solution can be unbounded.
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Definition 2.1. (Morrey space) Let and By
we denote the linear space of functions such

that

equipped with the norm (2.1) is a Banach space.

Definition 2.2. (Campanato space) Let and
By we denote the linear space of functions
such that

Definition 2.3. (Weighted Morrey space) Let and
m. By we denote the linear space of functions

such that

equipped with the norm (2.3) is a Banach space.

Definition 2.4. (Weighted Campanato space) Let and
we denote the linear space of functions

such that

In the space we can introduce also the following norm
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Proposition 2.1. The norms (2.3) and (2.5) are equivalent.

Proof. Let and extend it outside with zero value.
We also fix in and without loss of generality (see [15] p. 214) we
suppose it be a Lebesgue point of

Thus, integration by parts gives:

and taking the supremum for we get the thesis.

Proposition 2.2. If then

Proof. Let Prom (2.6) we have

for a. a.
On the other hand

and thus from (2.7) and (2.8) we deduce

Theorem 2.1. If

with then
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Proof. Fixed from Holder inequality it turns out

Because

one has

so that

From last inequality and formula (2.9) we infer

Integrating (2.10) on and applying again Holder inequality to
the right side of (2.10) we obtain

The thesis now follows readily from (2.11) and the embedding of
into
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Remark 2.1. Proposition 2.2 and Theorem 2.1 hold also for weighted
Campanato spaces i.e.:

Proposition 2.3. If          then

Proof. Let Thus

and so

On the other hand

and thus from (2.12), (2.13) and (2.14) the thesis follows.
Let us now define Morrey and Campanato spaces when

Definition 2.5. Let and By we  denote
the linear space of functions such that

equipped with the norm (2.15) is a Banach space.

4We shall always assume
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Definition 2.6. Let and By we
denote the linear space of functions such that

Definition 2.7. (Weighted Morrey space) Let and
m. By we denote the linear space of functions

such that

equipped with the norm (2.17) is a Banach space.

Definition 2.8. (Weighted Campanato space) Let and
we denote the linear space of functions

such that

Remark 2.2. In the space we can introduce also the
norm

Observe that propositions 2.1 and 2.2 continue to hold for
and

The following Hardy type inequality (see also [21], Sec. 14.3) will be
helpful in the sequel.

Theorem 2.2. Let and Let   be such
that
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Then

Proof. Fixed let us introduce radial and angular coordinates
and let us write

For a.a. such that we have:

Let us set

Thus we deduce

On the other hand

and so, by (2.21), (2.22) and (2.23), letting we obtain

Integrating (2.24) for and taking the supremum for
we achieve the thesis.

5 In what follows we will omit the explicit dependence on
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3.         HÖLDER REGULARITY:
THE  PERTURBATION   METHOD

In we will be concerned with the interior Holder
regularity of a weak solution of the linear system

under the conditions

As explained in the introduction, De Giorgi's counterexample shows
that, when systems of the above type satisfying only the
strong ellipticity condition (3.4) do not generally have Holder-continuous
solutions even if

Definition 3.1. Let conditions (3.2) through (3.5) be satisfied. We
say that the system (3.1) is a De Giorgi system if any weak solution

belongs to

Our final goal will be to prove the following

Theorem 3.1. Let the conditions (3.2) through (3.5) and the condi-
tions

be satisfied and let be a solution of the system (3.1).
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Then there exists a constant such that

i.e. u is of class and (3.1) is a De Giorgi system.

Remark 3.1. It has been already observed in [10] that the condition
(3.7) is optimal.

We will deduce the interior regularity from the regularity in the whole
space.

For this purpose, let us now consider in the diagonal system

with

and let us suppose

From the general theory of one single elliptic equation (see [13]) we
know that for the solution of the
system (3.9) (7) the following estimates holds

where has been explicitly calculated in [13]).
Thus, we can establish the following fundamental

Theorem 3.2. Let be the solution (7) of the system

6Recall that and that, by virtue of known properties of the spaces
(see [2]), inequality (3.8) implies that where B is for example a ball in

the interior of
7Existence and uniqueness of the solution in are ensured by the Lax-Milgram
theorem.
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with the structural conditions

Then it holds

Proof. Fix and set

Fixed moreover and a ball let us observe that, by
virtue of (3.17)1 and Holder inequality, it turns out

for any
Thus, from the above formula we have

8 and are the constants from (3.10) and (3.11).
9 Recall that

see Miranda [15].
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where and so from (3.20), multiplying by
and integrating in it follows

Analogously we deduce

Fixed now a function such that
let us consider the problem of finding weak
solution of the system

By the Lax-Milgrarn theorem the problem (3.23) is uniquely solvable
in moreover, from the previous remarks, (3.10), (3.11) and
(3.19) we get the following estimates

Let

be the operator, which maps defined through the law given by
(3.23) and assume as a norm in S the following

S equipped with the above norm is a Banach space.
Then, for every from (3.23), (3.24) and (3.25) we deduce

i.e., due to (3.17)2, T is a contraction and so there exists a unique
such that
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But this means that is a solution of the system (3.12) and that it
turns out

Being necessarily the thesis follows from (3.26).

Remark 3.2. If the hypotheses (3.13)-(3.17) hold then, by virtue of
remark 2.2, (3.12) is a De Giorgi system.

3.1. Proof of theorem 3.1
Let us premise the following two theorems.

Theorem 3.3. Let

and let be compactly supported. Let
be the solution of the problem

Then it holds

being

Theorem 3.4. Let the conditions (3.13) through (3.16) and the condi-
tions



Remarks on the regularity of solutions of elliptic systems 339

be satisfied and let be the solution of the system (3.12).
Then it holds

Proof. Proceeding as in the proof of Theorem 3.2, let us perturb the
given system by the operator

Then observe that

Now, being sufficiently close to by virtue of (3.29) we deduce

so that, to verify (3.17)2 from Theorem 3.2, by virtue of remark 2.2, it
will be sufficient to show that

But, since is sufficiently close to the above inequality follows
from (3.29) and (3.31).

Proof of Theorem 3.1. The proof is based on an iterative process.

10 is the constant from (3.28)
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Let be a solution of the system (3.1) satisfying, besides
conditions (3.2) through (3.5), also the conditions (3.6) and (3.7).

Let such that and

For let us put

Then one has

That is is variational solution in of the problem

Let us put

and observe that and that by virtue of Theorem 2.2
also

Set now

taking into account that has compact support, let us solve in
the problem

Then it follows
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and so by Theorem 2.2 we infer

Let us define

1) If being we deduce
and then from Theorem 3.4 it follows

Finally, from (3.40), (3.33), (3.35), (3.37) and (3.39) we infer

so that, due to proposition 2.2 and the known properties of Morrey
spaces, u is locally Hölder continuous i.e. (3.1) is a De Giorgi system.
2) If then and thus arguing
analogously to the case 1), from Theorem 3.4, we get

From (3.42) and Poincaré inequality we deduce that

2i) Property (3.43), in the case infers again the Holder
continuity of u (see remark 2.1).

2ii) If from (3.36), (3.37), (3.42) and from

inequality (2.20) it follows and .

from which we deduce again (3.41) and thus the Holder continuity of u.
2iii) If as in case 2) we have

2iv) From (3.44) we get • from which, if we obtain
immediately the Holder regularity of u.

2v) If and arguing as in the case 2ii) it follows

and from here we can go on as in 2iii) iterating the process a finite
number of times.

This completes the proof.
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4. APPLICATIONS: QUASILINEAR AND
NONLINEAR SYSTEMS

The results of the previous sections can be readily applied in any
to a H1-solution of the following quasilinear system

with

bounded Carathéodory functions on

Furthermore, in our framework we can consider the nonlinear system

with
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As it is well known (see [2, 5, 6]), without the condition (4.11) the
only available result for such systems is the following

Theorem 4.1. Let be a solution of the system (4.7)-
(4-10) then and the derivatives of u satisfy the
quasilinear system

where

Indeed, a solution of the system (4.7)- (4.10), without (4.11), is Holder
continuous only for and its gradient is only partially Holder
continuous (see [2]).

With condition (4.11) we obtain the local Hölderianity of the gradient
of a solution for any dimension.
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SINGULAR PERTURBATIONS
IN OPTIMAL CONTROL PROBLEM

Ján Lovíšek

Abstract: This paper concerns an optimal control problem of elliptic singular
perturbations in variational inequalities (with controls appearing in
coefficients, right hand sides an convex sets of states as well). The
existence of an optimal control is verified.

Keywords: Optimal control problem, singular perturbations in variational inequal-
ities, convex set.

1. INTRODUCTION

Some interesting optimal design problems of structural analysis can
be solved within the range of the Optimal Control Theory of variational
inequalities. The coefficients of the nonlinear operator, occuring in the
inequality play the role of control variables. The aim of asymptotic
methods on optimal control is to simplify the state inequality. The
most classical approach is the use of asymptotic expansion in terms of
small parameter that may enter the state inequality, i.e. the method
of perturbations, in particular the method of singular perturbations.
Singular perturbations play a special role as an adequate mathematical
tool for describing several problems in the plasticity or elasticity theory.

We introduce an abstract framework for the theoretical study of an
optimal control problem governed by the variational inequality for the
operators: plays the role of control
variables. We present a general theorem, yielding the existence of at
least one optimal control for and We prove the convergence
of solutions of optimal control problems when tends to zero.
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Kluwer Academic / Plenum Publishers, New York, 1999. 345



346 Lovíšek J.

2. EXISTENCE OF A SOLUTION TO THE
OPTIMAL CONTROL PROBLEMS

Let the control space be a reflexive Banach space with a norm
be the set of admissible controls in

Let be a real Hilbert space with the inner product
Furthermore, let and be two Banach spaces with norms

being compactly imbedded into by imbeddings
respectively, such that the ranges are dense

for Let us denote by and
the dual spaces of and and by their
norms with respect to given duality pairings where, by
convention, for
and which is dense in and will be identified with

For a Banach space and two nonnegative constants we
denote by the set of all operators D from into for
which the inequalities

hold. We assume

We introduce the system of
nonempty closed convex sets ,

and the family of operators acting from
into and acting from into

satisfying the following assumptions
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and

Note that continuously, and one has the transposition
formula

for any and for any

We assume, moreover, that

is a continuous operator. (B0)

For every and for every there exists a unique
state function such that

for all
Indeed, thanks to the general theory of variational inequalities enough

to prove that there is such that

and this immediately follows from (e.g. by
contradiction).

Thanks to for any

Let us consider a functional
for which the following condition holds
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We introduce the functional by

where is the uniquely determined solution of (2.2),
We shall solve the following optimization problem

Find a control such that

We say that is an optimal control of the problem

Theorem 2.1. Let the assumptions and
be satisfied. Then there exists at least one solution to for any

Proof. Due to the compactness of in there exists
a sequence such that

For any consider the following variational inequality:

for all

We take an arbitrary and
a sequence such that strongly
in Putting in (2.7),

adding to its both sides and multiplying
the resulting inequality by minus one, we obtain
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for Prom (2.3), (2.8), and it
follows that

This yields the existence of a subsequence and of an
element such that

As the assumption yields

By there exists a sequence
such that strongly in . Inserting in (2.7),
adding

to its both sides and multiplying the resulting inequality by minus one,
we obtain

The last inequality follows from and from the facts

which are consequence of respectively.
Due to the uniform monotonicity of
we obtain the strong convergence
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Moreover, (2.15) together with (2.13) and (2.14) yield

for Given a by the assumption
there exists a sequence strongly
in Limiting (2.7) with we have

and, as is chosen arbitrarily, we get

Then and (2.18) yield

Hence which com-
pletes the proof.

Limit state function and limit cost function. We define the
limit state function for any by the variational inequality

and the limit cost function

In this case one has the limit control problem defined as follows

Theorem 2.2. Let the assumptions and be
satisfied. Then there exists at least one solution to

The proof is analogous to that of Theorem 2.1.
There arises a natural question concerning the type of

relation between solutions to and if
We prove the following theorem.
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Theorem 2.3. Let the assumption and
be satisfied. Let be solutions of the problem

respectively, Then there exists a sequence
for such that

Proof. Due to compactness of there exists
such that strongly in The “state function”

is a solution of the state variational inequality

We take an arbitrary and sequence
I such that strongly in In the equality

(2.23) we take the fixed add
to both sides of (2.23), multiply the

resulting inequality by minus one and use and
It follows that

Setting applying we get

where are constants which do not depend on n.
Hence we conclude that

for some constants independent of n.
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We can therefore extract a subsequence such that

exploiting the assumption too. Moreover, there is a sequence
such that and strongly in

We put into (2.23) formulated for the index add

to its both sides, multiply the resulting inequality by minus one and
employ (B0), (2.13) and (2.14) again. As the
right hand side of the resulting inequality tends to zero (cf. (2.12)), we
obtain

We take arbitrary. We can find such
that and strongly in To prove

we return to (2.23) for the index and put there. Due to (B0),
(2.25) and (2.26) it is easy to see that for we obtain

and (2.27) is valid. Moreover, the method of the proof shows that the
convergence

holds. Indeed, if it were not true, there would be a sequence and
a constant independent of k such that

Putting an arbitrary fixed into the appropriate variational
inequalities, we arrive at
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where constants do not depend on k. The existing weak limit
of a suitable subsequence must be
due to and due to quite analogous arguments to those used
in deriving (2.27) through (2.26) and (2.28). This is a contradiction to
(2.30).

Now, from (2.29), from the fact that . for all
and all k, and from we get

Furthermore, we observe that (2.26) and (2.27) imply
lim Comparing this result
with (2.32) we see that necessarily

Theorem 2.3 is proved.
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OPTIMIZATION OF STEADY FLOWS FOR
INCOMPRESSIBLE VISCOUS FLUIDS

Abstract:    An optimal-control problem for the stationary Navier-Stokes system are
investigated. The maximum principle is derived by a suitable relaxation.
Its sufficiency is shown provided data involved in the control problem
are small enough (depending on the Reynolds number). Regularity of
the Navier-Stokes system and its adjoint problem is used.

Keywords: Navier-Stokes equations, regularity, optimal control, existence, relax-
ation, maximum principle, sufficiency.

Introduction
In this paper we deal with optimization of steady two- and three-

dimensional fluid flows governed by the Navier-Stokes system. Analysis
of the various problems of optimal control of viscous flows enjoys recently
significant attention within mathematical comunity. Optimal control
problem of this sort was already studied in [1, 2, 3, 7, 18, 19, 20] and [25,
Section III.11]. For an optimal shape design problem see [21]. Besides,
optimal control of evolutionary Navier-Stokes system was treated in
[4, 5, 8, 9, 10, 11, 12, 13, 14, 22, 29, 32, 33, 34, 35] and also in [25,
Section I.18].

Our main goal is to adapt the relaxation method by convex
compactification [30] for Navier-Stokes equations and to exploit (quite
standard) regularity results for the stationary (linearized) Navier-
Stokes system to derive nontrivial results concerning sufficiency of the
maximum principle.

The scheme of the paper is the following. In Section 1, we specify
an optimal-control problem we will deal with, and in Section 2
we pose the relaxed problem to and show its correctness under
the assumption that a driving force is sufficiently small so that the
state response is uniquely defined. In Section 3, we confine ourselves
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to a special form of the data and derive the corresponding maximum
principle (i.e. necessary condition of optimality), and show that this
maximum principle forms a sufficient condition provided that the desired
velocity profile and the driving force are small enough (depending on
the Reynolds number), which ensures that the relaxed cost functional is
“enough” uniformly convex with respect to the state; cf. Remark 4
below. For this purpose, results for a dual (adjoint)
equation to the linearized Navier-Stokes system are exploited.

We wish to remark that the result presented here can be extended to
the power-law-like fluids in two dimensions (at least for where
p denotes the power-law exponent, see [26] for more details). While
the regularity results applied here to the Navier-Stokes system are well
traced in the literature, their extension to the power-law fluids is possible
because of recent nontrivial results for this class of fluids
performed in [24] (see also contribution of the same authors in this
volume); the method is based on the approach introduced in [27] and
[28] but will not be presented in this paper.

1. AN OPTIMAL-CONTROL PROBLEM
We will confine ourselves to steady flows of an incompressible fluid in

a two- or three-dimensional bounded domain
with no-slip (i.e. homogeneous Dirichlet) boundary condition.

We will first deal with the following optimal control problem for flows
governed by the Navier-Stokes system:

Here, z denotes the control, u represents the velocity field and p is
the pressure. Not completely rigorous but frequently used notation

means By we denote a fluid viscosity
which is indirectly proportional to the Reynolds number. Further,

are given
Carathéodory functions. Finally, is a given multi-valued
function forming the control constraints.

We use standard notation of function spaces: C(·) for the spaces
of bounded continuous functions; for the space of continuous
functions on vanishing at infinity; for the
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Lebesgue spaces and for the Sobolev spaces having zero trace
at the boundary The corresponding vector-valued spaces are
denoted by and respectively. By (g, f) we
mean Finally we use the shorthand notation
and for subspaces of zero-mean-value functions in

and divergence-free functions in respectively, i.e.

Of course, the solution (u,p) to the Navier-Stokes system in is
understood in the weak sense, which means that
and, for a given z,

The basic data qualification we will need are the following:

where is a continuous increasing function with

Remark 1. Let us recall that, having a solution
satisfying (1.2) and assuming that f fulfills (1.3d), it is standard (see
[35]) to construct the corresponding pressure such that

for all We will involve the pressure only in the
formulations of the theorems and lemmas but not in the proofs,
because p can always be reconstructed uniquely if one knows that

satisfies (1.2),

Remark 2. Note that (1.3d) leads, just by taking v := u in (1.2), to
the energy estimate

where the constant comes from the Poincaré inequality.
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2. RELAXED PROBLEM
We will extend continuously the problem on a suitable convex

locally (sequentially) compact envelope of the set of admissible controls

note that (1.3f) just means that To do this, we take
a suitable linear space of Carathéodory integrands containing all possible
nonlinearities occurring in the problem e.g.

where and similarly
It is natural to equip H by

which is a norm (see [30, Example 3.4.13]) making H separable (see [31,
Lemma 1] ). Then we imbed (norm, )-continuously into

and define the set of the so-called generalized Young functionals by
It is known (cf. [30]) that, as

a consequence of (2.2) with (1.3a-e), is a convex locally
(sequentially) compact envelope of The set of admissible
relaxed controls is then defined by

Thanks to the special form (2.1), also the set is convex and locally
compact in H* if the weak* topology on H* is considered.

We will need a continuous extension of the mapping
with some

satisfying forsome This
extension is defined by

for any where
Note that, due to is continuous
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because and is linear; cf. [30,
Example 3.6.3]. Obviously, We will use this extension
for (and and also for (and In
the later case, we always have due to (1.3d).

Then the continuous extension of the original problem looks
naturally as follows:

Again, by (u,p) we understand a weak solution, which means analo-
gously to (1.2) that and, for a given

the following identity holds:

or, in accord with Remark 1, for all

Next lemma shows that, in fact, the solution to (2.7) is regular and
the Navier-Stokes system in holds almost everywhere. Moreover,
assuming certain condition on the smallness of and occurring at
(1.3d,e) we obtain the continuous dependence of u on Note that
regularity of the velocity will be used in assumption (1.3b,e) (because
may have an arbitrary growth) and in other places, too.

Lemma 1. Let be a and (1.3d) hold. Let
denote the solution to the Navier-Stokes system with the

relaxed control Then

Moreover, let also (1.3e) hold and and be two
solutions to the Navier-Stokes system with relaxed controls and

respectively. Then

provided that and c occurring at (1.3d,e) satisfy
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where comes from the Poincaré inequality (cf. Remark 2) and
comes from the inequality

Proof. Due to (1.3d), the right-hand side of the relaxed Navier-

Stokes equation (2.7) is bounded in if ranges
Then we can directly use nowdays standard regularity approach to the
stationary Navier-Stokes equations (cf. [16], or [6]) to obtain (2.9).

Next, let and solve the identity (2.7) with and ,
respectively. Subtracting these identities and putting gives

Due to divergence-free constraint, the last term vanishes. The other
terms are estimated by means of (1.3d,e). Thus, we obtain

where we used also the estimate

which follows by the Hölder inequality from (1.3d) and (2.3). By (2.9),
for As is increasing we

see that Using (2.12),
Poincaré inequality (see (1.5)) and Young inequality, we have

for arbitrary which implies (2.10) if (2.11) holds. •
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In particular, (2.11) ensures a unique response for to
a given generalized control Hencefore, we can then put

Although the unique response is desirable, some results, as e.g.
Proposition 1 below, hold even without this assumption.

Now, we can state the existence of a solution to the relaxed problem
and relations between this problem and the original one, see also [30] for
such a kind of results.

Proposition 1. Let be a and let (1.3) and (2.10) be
satisfied. Then

1. possesses at least one optimal control.

2. Moreover,

3. For any optimal solution
to and any sequence such that

solves the Navier-Stokes system in with
and weakly* in H*, it holds so

that this sequence is minimizing for

4. Conversely, having a minimizing sequence for
there exists a subsequence of converging

weakly* in and the limit of any such
subsequence solves

Sketch of the proof. In accord with Remark 1, we will omit p’s in this
proof. Always, there is a minimizing sequence for In
view of (1.2), it holds

for all By Then, by (1.3c),
the following apriori estimate holds:

This implies bounded in Then converges
weakly* to some if a suitable subsequence is selected. Due to
(1.5) and the Poincaré inequality, is bounded in
Thus, taking another subsequence if necessary, we obtain that



362

u weakly in which implies that strongly in
Thus, for any

Moreover, by is bounded in and, by
using also weakly in cf. [30,

Lemma 3.6.7]. Similarly, by (1.3a,b) we can see that is
bounded in and converges to weakly* in

Altogether, it enables us to pass to the limit in the integral identity
(2.14), which gives just (2.7). Thus u satisfies (2.7), i.e. is
admissible for

Moreover,

As we showed so that certainly
inf

Taking a minimizing sequence for we can prove
similarly as above that converges (after taking possibly a
subsequence) weakly* in H* and the limit solves as claimed in 1.

Taking a solution to there is a sequence
bounded in such that Then one can
prove similarly as above that so
that

Thus 2 was proved, justifying also the points 3–4 as a side effect. •

Remark 3. If were only a Lipschitz domain, we do not know whether
(2.9) holds; then the growth of in (1.3) would have to be specified
appropriately.

Remark 4. As H is separable and h(x, r, ·) has a q-growth while
f(x,r, ·) is bounded (see (1.3c,d)), by using [30, Lemmas 4.2.3–4] one can
see that any optimal relaxed control is q-nonconcetrating
in the sense that there is a sequence of controls such that w*-

and the set is relatively weakly compact
in Every such has a so-called representation

(possibly not determined uniquely) satisfying

where denotes the set of all measures, i.e. weakly
measurable families of probability Radon measures
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on satisfying the adjective “weakly
measurable” means that for any the mapping

is measurable in the usual sense.
If S is measurable and closed-valued, the relaxed problem can

be rewritten in terms of measure into the following form:

For an extension in terms of classical relaxed controls (i.e.
measures) we refer also [8, 12, 13, 33, 34].

An example for usage of is the following existence result.

Proposition 2. Let be a let (1.3) and (2.11) hold, let
S be measurable and closed-valued. Denote by the mapping of

onto such that
Assume that for all and

where the “orientor field” Q is defined by

Then has a solution.

Sketch of the proof. (For more details see [31, Lemma 2].) Take a
solution which does exist by Proposition l(i). By Remark 4, is
q-nonconcentrating and (every) its -measure representation v
solves . For any for which we have

where we used also (2.18). Let us put
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By (2.19), for any there is such that
and Hence, for the particular choice

the inclusion (2.20) implies that and
for some hence Besides, the multi-

valued mapping defined by (2.21) is measurable and
closed-valued, thus it possesses a measurable selection In
particular, Moreover, in view of (3.1) with (3.3),

for a.a. so that z and v give the same response u, i.e.
with given by (2.17). Hence the pair (z, u)

is admissible for Moreover, by using also Proposition l(ii), we
get

In particular, the coercivity (1.3c)
implies note
that (1.3a,d,f) makes indeed finite. Therefore,
which completes the proof that z solves

Remark 5. Note that (2.18) is fulfilled if for example Q(x,r) is convex
and compact. This is ensured if S(x) is compact for a.a. x (as h, f
are Carathéodory functions) and Q(x, r) is convex, which is a slightly
generalized variant of the Filippov–Roxin condition. A very special case
that can be however handled by a direct method occurs if S(x) is convex,
f(x,r, ·) is affine and h(x,r, ·) is convex on S(x) for a.a. cf. e.g.
[19] for such a type of existence result.

3. MAXIMUM PRINCIPLE
In this section we formulate first-order necessary optimality conditions

for in terms of a maximum principle. For maximum principle for
Navier-Stokes optimal control problems, we refer also to [4, 13, 33] or
for other type of first-order optimality conditions also to [3, 5, 7, 19, 20,
22, 25, 29, 35]. To give as simple proofs as possible, we confine ourselves
to the special case

where is a desired (given) velocity profile, and
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The first term in (3.1) realizes the so-called flow tracking often used in
literature, cf. [5, 2, 18, 19, 22, 23, 25, 29].

To formulate the maximum principle we will need the so-called adjoint
state satisfying the integral identity

It is worth mentioning that in (3.3) is a weak solution of the adjoint
system to the linearized Navier-Stokes equations, i.e.

where cf. Remark 1. The following regularity of the adjoint
state, higher than e.g. in [19, Theorem 3.2], will be essential for (3.18)
below. Let us remark that, in context of fluid control, condition (3.5)
was already used by [1].

Lemma 2. Let be a let (1.3) with (3.1) with
hold, and let from (1.3d) satisfy

Then there is depending on and such that for arbitrary
small

where (3.3)

Proof. Let us first observe that (3.5) implies the existence of C depending
on the above mentioned quantities such that

Indeed, testing in (3.3) by and using the Hölder inequality and
(1.5) we obtain (notice that
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Therefore

and (3.7) follows due to (3.5).
Now, using the facts that and we

can view (3.4) as the Stokes system with the right-hand side belonging
at least to (the restriction comes from the term
Then applying standard result for the Stokes system one
obtains with

However, using this we easily observe that the right-hand side of (3.4a)
belongs now to The
theory for the Stokes system (cf. [16] for example) then implies

The assertion then follows from the imbedding into
Then is multiplied by the norm of the imbedding

Lemma 3. Defining the so-called Hamiltonian by

the following increment formula holds

provided and the adjoint state
solves (3.3).

Proof. We use successively the formula for the Hamiltonian (3.10),
the weak formulation (2.7) both for and for with

the adjoint equation (3.3) with the algebraic identity
and the Green

theorem. Thus we can obtain:



Optimization of steady flows for incompressible viscous fluids 367

As a simple consequence we can now get the integral maximum
principle for the relaxed problem as the first-order necessary optimality
condition.

Proposition 3. Let the assumptions of Lemma 2 hold, and let
be an optimal solution for Then there

is solving (3.3) such that, for the Hamiltonian
from (3.10), the following maximum principle holds:

Sketch of the proof. Let us calculate the directional derivative of
which is by definition:

where we used also (3.11) with denoting the solution of the
relaxed Navier-Stokes equation (2.7) but with in place
of Let us agree to consider only and which will be
sufficient for usage in (3.14) and which will guarantee

Note that (3.5) now implies (2.11) because (1.3e) now holds with with
and Hencefore we have Lemma 1 at our disposal, so that

(2.10) gives

This yields Similarly, the term

is because is bounded in due to (3.6) with (1.5).
Altogether, we have proved the expression for the directional derivative,
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which apparently depends linearly and continuously on the direction as
soon as Thus has a Gateaux differential given by

solves (3.3) with (3.13)

Then solves which means that minimizes on implies
that belongs to the normal cone to the convex set at
which is just equivalent to

This means precisely

As in [30, Theorem 4.2.2], one can modify the integral maximum
principle (3.12) to a pointwise (sometimes called Pontryagin’s) maximum
principle (cf. also [4, 13, 33]):

Corollary 1. Let the assumptions of Lemma 2 hold, and let S be
measurable and closed-valued. Then for any solution to it
holds

with the Hamiltonian from (3.10) with solving
(3.3).

Having an -Young-measure representation v of an optimal relaxed
control (3.16) says that is supported on the set where
attains its maximum. By Lemma 2, we have in particular an
regularity of the multiplier which then gives the following assertion:

Corollary 2. If and are independent of then any optimal
relaxed control for has an -Young measure representation v,
i.e. is compactly supported independently of

The following assertion states an important global property of if
the Reynolds number is small, see Remark 6 below.

Lemma 4. Let the assumptions of Lemma 2 hold, and let from
(1.3d) satisfy (3.5) and also
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with from Lemma 2 and denoting the
norm of the imbedding Then the extended cost
functional is convex with respect to the geometry of the

space H*.

Proof. Using (1.5), Lemma 2 and (3.17), the second-order term in (3.11)
in nonnegative because of the following estimate:

By (3.17) and the proof of Proposition 3, we have just obtained
and, replacing the roles of and

also Therefore, by addition, we
obtain which just says that is monotone,
from which the convexity of follows by well-known arguments.

We are now ready to state also the sufficiency of the maximum
principle (3.12).

Proposition 4. Let condition (3.17) be satisfy. Then the maximum
principle consisting of (3.3), (3.10), and (3.12) is sufficient in the sense
that, having a triple such that u solves
the Navier-Stokes system (2.7), and solves the adjoint problem to the
linearized Navier-Stokes system (3.3), and the maximum principle (3.12)
holds, then is the optimal solution to

Proof. By Lemma 4, is convex, so that (3.14) is also a sufficient
optimality condition. Yet, (3.14) is equivalent with (3.15).

Remark 6. The constant from (3.6) depends on as Then,
for given and the condition (3.17) requires sufficiently large.
Hencefore, (3.17) needs a sufficiently small Reynolds number. As the
fluid (and its viscosity is usually given, we rather need a sufficiently
small driving force and desired velocity profile, as expressed in (3.17),
indeed.
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ASYMPTOTIC BEHAVIOUR
OF COMPRESSIBLE MAXWELL FLUIDS
IN EXTERIOR DOMAINS

Šárka Adélia Sequeira, Juha Hans Videman

Abstract: This article is concerned with the steady motion of a compressible
viscoelastic non-Newtonian fluid of Maxwell type around a three-
dimensional rigid body. Results on existence, uniqueness and asymp-
totic behaviour of the solution are obtained for small data.

The method of proof is based on an appropriate decomposition of
the original nonlinear set of equations into auxiliary problems (Neumann
problem for the Laplacian, Stokes problem and two transport equations)
and on a suitable fixed point argument. The asymptotic decay of the
solution, as regards the velocity and pressure, is defined by the linearized
part, i.e. by the asymptotic behaviour of the fundamental solution of
the Stokes system.

Keywords: Viscoelastic fluid, compressible fluid, Maxwell fluid, exterior domain,
asymptotic behaviour.

1. INTRODUCTION
Over the past 50 years, the motion of viscoelastic non-Newtonian

fluids has been modelled by several authors, cf. e.g. [16, 28, 22, 18] and
all the references cited therein. A significant number of mathematical
results has been obtained, as it comes to existence, uniqueness and
asymptotic behaviour of solutions to the equations governing the motion
of viscoelastic fluids, see e.g. [1, 20, 21, 7, 4, 29].

All the above mentioned articles focus on incompressible viscoelastic
fluids. However, since viscoelastic fluids have certain properties similar
to compressible gases, it is natural to consider also compressible
viscoelastic fluids. One of the first works towards this direction can
be found in [19], where the authors consider compressible viscoelastic
fluids of integral type. As the fluids of the Maxwell type are
concerned, even a small degree of compressibility changes the character
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of the governing equations from hyperbolic-parabolic type to pure
hyperbolic type, see [2]. From a numerical point of view, this allows
the application of numerical methods designed specifically for solving
hyperbolic problems, [17].

As it comes to the mathematical analysis, the equations governing the
steady motion of slightly compressible viscoelastic fluids and of (fully)
compressible viscoelastic fluids of White-Metzner type have been shown
to admit a unique classical solution under suitable smallness conditions
on the data, see Talhouk [27] and Sy [26].

More recently, Sequeira and Videman [8, 9] have investi-
gated the existence of classical solutions for the compressible viscoelas-
tic fluids of the Oldroyd type in an exterior domain both for zero and
nonzero velocity at infinity.

In this paper, we shall consider the steady flow of compressible
viscoelastic fluids of the Maxwell type around a three-dimensional
obstacle The main idea behind our proof is a suitable decomposition
of the problem into a coupled system consisting of an elliptic equation for
the velocity field and of two hyperbolic equations, one for the density and
the other one for the elastic part of the stress tensor. Consequently, by
linearizing the nonlinear coupled system, we obtain four linear problems;
the Neumann problem for the Laplacian, the Stokes problem and two
transport equations. After proving existence to the linearized problem,
an appropriate contraction argument provides, for sufficiently small
data, the existence of a unique solution to the original problem in
a functional framework that readily yields the asymptotic behaviour of
the solution.

The decomposition procedure and the functional setting is similar to
the one used in [12, 13] for the compressible Navier-Stokes equations.
The equations governing the steady flow of incompressible viscoelastic
fluids past an obstacle were studied in [5, 14, 15].

The paper is organized as follows. After formulating the problem in
Section 2, we introduce our notations and recall some auxiliary results
in Section 3. Finally, in Section 4 we prove two main theorems; the
first one is concerned with the linearized decomposed problem and the
second one yields existence, uniqueness and asymptotic behaviour for
a nonlinear system of equations corresponding to the original problem.

2. FORMULATION OF THE PROBLEM
We consider the following system of equations modeling the steady

motion of a compressible non-Newtonian fluid of Maxwell type in an
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exterior domain

Here, denotes the fluid density, v the velocity field,
the pressure, T the elastic part of the stress tensor and f the external
force. Moreover, denotes the rate of deformation
tensor and is a quadratic function given by

Finally, stands for the elastic viscosity coefficient and
denotes the relaxation time1. We supplement equations (2.1) with the
boundary condition

and with the conditions on the asymptotic behaviour

Taking (formally) the divergence of substituting into
and assuming that the fluid motion is isothermal, i.e. with  k
a positive constant, ( for simplicity), we rewrite the equations
(2.1)-(2.3) for the perturbation with obtaining (see
[20] for similar splitting of the problem in the case of an incompressible
Maxwell fluid)

where

with

system (2.1) reduces to the compressible Navier-Stokes equations.



376 Videman J. H.

Let us start by linearizing system (2.4). This yields the set of
equations

Assuming that and S are given with as
we analyse the solvability of (2.5). Observe that (2.5) consists

of two separate problems: compressible Stokes equations
and linear transport equation for T. To investigate the system

we shall decouple its elliptic and hyperbolic parts. Towards
this end, recall that in view of the Helmholtz decomposition we can
uniquely write v in the form

This splits into a coupled system for and that can
be studied by considering a mapping

defined in the following way:
Assuming that and are given, we solve the Stokes

problem for

After is obtained from (2.7) and given z, we look for as a solution
to the transport equation

Finally, is obtained as the solution of the Neumann problem for the
Laplacian
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Provided the mapping admits a unique fixed point it is easy to
check that the pair where solves uniquely
After obtaining v, one may consider the solvability of for given

and z, and conclude that the linearized system (2.5) admits
a unique solution Finally, we look for a solution to
the nonlinear system (2.4) as a fixed point of the map

defined in an obvious way by (2.5).

3. MATHEMATICAL PRELIMINARIES.
NOTATIONS AND AUXILIARY LEMMAS.

First, we introduce our notations. By we denote a domain
exterior to a simply-connected compact set .   For simplicity, we assume
that the origin of coordinates is located in     By we denote the
boundary of and stands for a generic point in We
set

The regularity of the domain is defined by the regularity of its
boundary i.e. we say that is of class if is of class with

an integer, see [10] for more details.
The Lebesgue spaces are denoted by and equipped

with the norms By an integer, we
denote the usual Sobolev spaces with the norms

where is the standard multi-index. We set
Further, for we define the

banach space

equipped with the norm . The dual space of is
denoted by its norm by with
the norm Moreover, the Banach spaces are obtained as
a completion of -functions in the norm One has the
following characterization for the space
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In particular, for all the Sobolev inequality
is valid and All the corresponding spaces for vector-
or tensor-valued functions are denoted by the boldface letter.

For an integer, and for
we define the following function spaces

equipped with the corresponding product norms
Finally, we remark that throughout the paper c denotes a generic

positive constant that may depend on several parameters and may take
different values even within the same calculation, but does not depend
on the data.

We shall recall existence results in a three-dimensional exterior
domain for the following linear problems: the Neumann problem for
the Laplacian, the Stokes problem and two transport equations.

First, let us consider the Neumann problem

One has the following result, cf. [23].

Lemma 3.1. Let let be an exterior domain of class
and suppose that _ and

Then problem (3.1) admits a unique solution satisfying the
estimate
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Next, let us consider the Stokes problem

for which we recall the following lemma, cf. [6, 3].

Lemma 3.2. Let an integer, be an exterior
domain in assume that
and There exists a unique solution to problem
(3.3) such that Moreover, this solution
satisfies the estimate

Moreover, for the transport equation

one has the following result, cf. [12, 11].

Lemma 3.3. Let with an integer be an exterior
domain in Moreover, let and let
be such that v · at There exists a constant such
that if sufficiently small, problem (3.4) has
a unique solution such that and

Moreover, this solution satisfies the estimates

where c denotes a positive constant depending in particular on

The asymptotic behaviour of the solution of the transport problem
(3.4) is characterized by the following lemma, see [15] for similar
considerations.

Lemma 3.4. Let be an exterior domain in an integer.
Let and v · at Further, assume that

There exists a constant such that if
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then the unique solution of the problem (3.4) belongs to and satisfies
the estimate

The following lemmas are concerned with the decay at infinity of
weakly singular integrals of the form

where is a smooth function in having the decay
property The behaviour of these type of
integrals has been studied in full generality, e.g., in [24].

Lemma 3.5. Let with
Then and

Lemma 3.6. i) Let Then
and it holds

ii) Let Then and it holds

iii) Let with Then
and

iv) Assume further that and that
with and • Then

and it holds

Finally, we present a lemma about the decay of singular integrals of
the Calderon-Zygmund type, i.e. we consider the integral



Asymptotic behaviour of compressible Maxwell fluids in exterior domains 381

where is Hölder continuous on the unit sphere and such that
The following lemma is due to Stein [25].

Lemma 3.7. Let Let

and

4. MAIN RESULTS

Here, we shall present two theorems containing the main results. The
first one deals with the solvability of the linearized system (2.5), and
the second theorem provides the existence of a unique solution to the
nonlinear system (2.1).

Theorem 4.1. Let and let be an exterior domain of
class Suppose that z, P, g are given and such that

and There exist constant such that if

then problem (2.5) admits a unique solution

satisfying the estimate

with

Proof. By the results of Novotný and Padula [12] problem
has a unique solution satisfying the estimate

provided is chosen sufficiently small.
Now consider the transport equation for given z, g and v. In

view of Lemma 3.3, one sees that, if is chosen small enough,
admits a unique solution satisfying the estimate

Now, joining estimates (4.2) and (4.3), one obtains (4.1).
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Theorem 4.2. Let be an integer and let be an exterior
domain of Given

there exists a constant depending on and such that if

then problem (2.1) admits a unique solution with and
such that

Moreover, this solution satisfies the estimate

with some constant

Proof. Let us define the set

where, for all an integer,

Note that is a closed, convex and bounded subset of
First, let us show that the map introduced in (2.10) is well defined

from into provided and are chosen sufficiently small.
In fact, it suffices to show that the nonlinear terms and

meet the regularity requirements of Theorem 4.1 and that
and T have the same decay properties as and S, respectively.

By interpolation, one gets

On the other hand, for and it holds

where Therefore

Furthermore, since and
we obtain by Sobolev imbeddings
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On the other hand, one readily gets

In order to get the asymptotic behaviour of v and we consider
the splitting (2.7) – (2.9) of system into a Stokes system,
transport equation and the Neumann problem. It is straightforward to
show, cf. [12], that under the hypotheses of Theorem 4.1 there exists
a unique solution to the coupled problem

Now, let us consider the Stokes problem (4.8). We may derive the
following representation for u and see [3]

Here is the fundamental solution of the
Stokes operator, i.e.



384 Sequeira A., Videman J. H.

and the following estimates hold true

The decay estimates for u and can be easily obtained by fixing
in such a way that for all and

In one gets

Next, let us define a tensor field in such a way that
Taking into account the decay properties (4.12) and using

Lemmas 3.5 and 3.6, one gets from the representation formulas (4.11)
the following estimates

Differentiating the formulas (4.11) with respect to x and using
integration by part when necessary, one obtains
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On the other hand, it is easy to check that

Using estimates (4.5) and (4.6) together with Theorem 4.1, and
collecting estimates (4.13), (4.14), (4.15), (4.16), (4.17) and (4.18), we
conclude that there exists a unique solution problem (4.8) satisfying the
estimate

Now, concerning the asymptotic behaviour of the transport equation
(4.9), it follows from estimate (3.7) of Lemma 3.4 that, for small
enough, the unique solution of problem (4.9) satisfies the estimate

Next, let us investigate the Neumann problem (4.10). The
representation formula for the solution is given by, cf. e.g. [3]

where

and

Dividing into and as in above while getting the estimates for
the solution of the Stokes problem and using Lemmas 3.6 and 3.7 in
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order to estimate the volume integrals in (4.21), one obtains2

Since it follows from (4.23) in particular that

Recalling Lemma 3.1 and using estimates (4.22)–(4.24), one easily
deduces that

Finally, let us study the asymptotic behaviour of the solution T of the
transport equation Provided is chosen sufficiently small,
one readily obtains by direct estimations

Hence, from Lemma 3.3 and estimates (4.27), (4.25), (4.7) one concludes
that

Collecting the estimates (4.19), (4.20), (4.26) and (4.28) and observing
in particular that one finally obtains

with where is a unit sphere , is a
singular kernel of the Calderon-Zygmund type, see [25]
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From this estimate it follows that the operator      maps the set into
itself and if and are chosen sufficiently small, it holds

Hence
Now, it remains to prove that    is a contraction in the topology of

Let us take and denote by and
their corresponding images via the mapping    Further, let

us set

One obtains the following equations for the triple

Considering as a (compressible) Stokes system, we get for
sufficiently small

For the transport equation one obtains, for sufficiently small

Now, a straightforward calculation implies that
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Hence, one concludes from (4.30), (4.31) and (4.32) that

Therefore, if and are chosen sufficiently small,    is a contraction
in and consequently the mapping    has a unique
fixed point in the ball Hence, we have found a unique solution to
the system (2.4) and returning to the original variables we obtain the
statement of the theorem.
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REGULARITY OF A SUITABLE WEAK
SOLUTION TO THE NAVIER-STOKES
EQUATIONS AS A CONSEQUENCE
OF REGULARITY OF ONE VELOCITY
COMPONENT

Neustupa, Patrick Penel

Abstract: We show that if (v; p) is a suitable weak solution to the Navier-Stokes
equations (in the sense of L.Caffarelli, R.Kohn & L.Nirenberg - see [1])
such that (the third component of v) is essentially bounded in a sub-
domain D of a time–space cylinder then v has no singular points
in D.

Keywords: Navier-Stokes equations, weak solutions, regularity.

1. INTRODUCTION
Let be either or a bounded domain in with the boundary

of the class for some and let T be a positive number. Denote
We will deal with the Navier-Stokes initial-boundary

value problem for viscous incompressible fluids which is defined by the
following equations and conditions

where and p denote the unknown velocity and pressure,
 f is the external body force and is the viscosity coefficient. We
shall assume, for simplicity, that
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Qualitative properties of the problem (1.1)–(1.4) are discussed in
many books (see, e.g., O.A.Ladyzhenskaya [12], R.Temam [19] or
G.P.Galdi [3] and [4]) and at least hundreds of articles. It is well known
that a weak solution v of (1.1)–(1.4) belongs to and

The detailed information about the most of the known
results on the existence and regularity of weak solutions can be found
e.g. in the recent works of H.Kozono [11] and G.P.Galdi [4]. The global
in time existence of the weak solutions is known already for a long time
(see J.Leray [13] and E.Hopf [7]). The uniqueness is known only in the
class where and
(see e.g. G.Prodi [15], H.Sohr & W.von Wahl [17], H.Kozono & H.Sohr
[10], H.Kozono [11], G.P.Galdi [4]). Furthermore, it is known that if

and f are “smooth” then the weak solution v of the problem (1.1)–
(1.4) is “smooth” locally in time (K.K.Kiselev & O.A.Ladyzhenskaya [9],
V.A.Solonnikov [18], G.P.Galdi [4]). If, moreover, and f are “small
enough” then v remains “smooth” globally in time (O.A.Ladyzhenskaya
[12], J.G.Heywood [6], G.P.Galdi [4]). The regularity was also proved
for the weak solutions which belong to the class where

(S.Kaniel & M.Shinbrot [8],
Y.Giga [5], G.P.Galdi [4]). The regularity of weak solutions in the class

still remains an open problem.

J.Leray [13] proposed a possible counter–example to the global in
time regularity of weak solutions. Nevertheless, this type of blow-up
was later excluded by & V.Šverák [14]. Thus, in
spite of an enormous effort of many mathematicians, the question of the
global in time uniqueness and regularity of weak solutions of the problem
(1.1)–(1.4) (with and f  “smooth enough”) still remains, in its whole
generality, open.

When trying to construct an example of a blow up of solutions of the
problem (1.1)–(1.4) (i.e. an irregularity of a weak solution), it seems
interesting to know whether the components of each weak solution v
are coupled. A question is how some regularity of one of them already
implies the regularity of all components. This paper gives the answer to
this question in the case when v is a suitable weak solution.

denotes the set of all infinitely differentiable vector–functions
defined in with a compact support in is a set of all
divergence–free vector functions which belong to is the
closure of

We shall denote by U open balls in and by B open balls in
(Thus, e.g. will be an open ball in with the center x and

radius )



Regularity of a suitable weak solution to the Navier-Stokes equations 393

A pair (v;p ) of measurable functions on is called a suitable weak
solution of the problem (1.1)–(1.4) (with ) if

1.

2. v is a weak solution of the problem (1.1)–(1.4) and p is an
associated pressure,

3. (v;p) satisfies the so called generalized energy inequality

for every  infinitely differentiable  function on  with a compact
support in

L.Caffarelli, R.Kohn & L.Nirenberg [1] proved the existence of
a suitable weak solution of the problem (1.1)–(1.4) under the assumption
that the initial data is in and moreover, under the additional
assumption that (the space of vector functions whose
components have fractional derivatives up to the order
in the case when is bounded. (In fact, L.Caffarelli, R.Kohn &
L.Nirenberg work with the external force f which need not be equal
to zero and they also require some smoothness of f, but we wish not to
go into details in this point because our f equals identically zero.)

A point is called a regular point of the weak solution v if
there exists a neighbourhood U of (x, t) in  such that
Points of which are not regular are called singular. Let us denote by

the set of all singular points of v. It is obvious that is closed
in

A further important result of the paper [1] says that if (v;p) is
a suitable weak solution of the problem (1.1)–(1.4) then its singular
set has a so called 1–dimensional parabolic measure equal to zero.
Since the parabolic measure dominates the Hausdorff measure, this
result implies that the 1–dimensional Hausdorff measure of equals
zero.

The main result of this paper is the following:

Theorem 1. Let (v;p ) be a suitable weak
solution to the problem (1.1)–(1.4) (with ). Suppose that there
exists a sub–domain D  of  such that is essentially bounded in D.
Then v has no singular points in D (i.e. the set is empty).
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2. AUXILIARY RESULTS
Suppose in the following that (v;p) is a suitable weak solution to

the problem (1.1)–(1.4) (with ) which satisfies the assumptions of
Theorem 1.

It is known that the interval can be expressed as
where set is at most countable, are disjoint open
intervals in the -dimensional Hausdorff measure of G is finite
and v is of the class on the set for every interval _ whose clo-
sure is contained in some of the intervals (This follows e.g. from
the results of J.Heywood [6], C.Foias & R.Temam [2] and G.P.Galdi [4].)
Functions v and p satisfy equations (1.1) and (1.2) in a strong sense on
each of the time intervals In accordance with G.P.Galdi [4], the
time instants can be called epochs of possible irregularity.

Suppose further that D' is a domain in D such that and
Then is closed. The orthogonal projection

of . onto the time axis t is a closed subset of G. Let us denote
this subset by G'. (Thus, G' is a set of times at which solution v has
irregular points in D'.) The time interval can now be written
as where set is at most countable and (for

are disjoint open intervals in Moreover, v is of the class
on every set where is an arbitrary interval

whose closure is contained in some of the intervals We shall call
the time instants D'–epochs of irregularity.

Lemma 1. Suppose that is a D'–epoch of irregularity (i.e.
for some and Then there exist positive numbers

such that and

1. is so small that

4. v and p have all space derivatives continuous in

Proof. Since D' is open, there exists and such that
can surely be chosen so small that

Further, we claim that there exists such that the set
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has an empty intersection with S(v). Suppose the opposite. Then to
each there exists a point Since the

1–dimensional Hausdorff measure of is zero, it

can be covered by m 4-dimensional balls with
radii such that

The balls can be chosen so that their centers
successively belong to for some

Then the intervals
form a covering of the interval (Indeed, if and

for some Since
we also have

This and (2.1) is the contradiction with the fact that the length of the
interval is

The existence of such that statement 3 of the lemma is true
now follows from the compactness of the set and the closedness of

The statement in item 4 is a consequence of the interior regularity
results, due essentially to J.Serrin [16]. (See also G.P.Galdi [4].)

Let us further denote for simplicity
Put and
Suppose that is an infinitely differentiable function on such that
its values are in the interval on and on

From now will  denote  curl  v.

Lemma 2. Suppose that is a D' -epoch of irregularity and
D'. Let and _ be positive numbers given by Lemma 1. Then

Proof. Applying operator curl to equation (1.1), we obtain a vector
equation for Its third component is

Multiplying equation (2.2) by integrating on applying the
integration by parts and using the essential boundedness of we can
obtain the estimate

(Of course, the constant does not depend on t.) The integrability of
the right hand side of inequality (2.3) on the time interval
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and the form of function imply that
Using the regularity of v and on

(see statement 4 of Lemma 1), we obtain that

Lemma 3. Let be a bounded Lipschitz domain in Let further
and Then there exists a linear operator R

from into with the properties:

for all with

for all

Lemma 3 immediately follows from G.P.Galdi [3, Theorem 3.2,
Chap. III.3].

3. PROOF OF THEOREM 1
Let be a domain in D such that and

Let the sets and have the same meaning as in
the previous section.

If set is empty then v has no singular points in

Suppose that is nonempty, is a –epoch of irregularity and
Suppose further that are the numbers given by

Lemma 1, are the balls defined in Section 2 and is the
function which was also defined in Section 2.

We set where R is the operator from Lemma
3 (with It follows from the proof of Lemma 3 (see G.P.Galdi
[3, Chap. III.3]) that since has a compact support in V also has
a compact support in We have

where n is the outer normal vector to Thus, in
and are essentially bounded in

and moreover,

The Navier–Stokes equation (1.1) (with ) can be written in the
form
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We put It can be verified that u is a strong solution of the
following problem:

where

The third component of vector function u is obviously bounded at
least on

We shall now suppose that t is a fixed time from the interval
We shall multiply equation (3.4) by and integrate over Since
u and have a compact support in we have

Thus, we obtain

In the following estimates, and will be generic constants,
i.e. constants whose values may change from one line to the
next. While will depend only on domain function and
sup will also depend on a certain number

They will not depend on t.
Using the properties of functions V and and the boundedness of p

and v on supp we can estimate the first integral on the
right hand side of (3.7):

The second integral on the right hand side of (3.7) can be written as
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(For example, denotes the partial derivative of with respect to
Analogously, will later denote the second partial derivative of
with respect to etc.) We shall further use the compact imbedding

of into and the estimate

(for every and ) which follows from this
imbedding. We shall work with and so we shall have
Using also the essential boundedness of and on
the boundedness of on the time interval and the
properties of following from Lemma 2, we can estimate the terms on
the right hand side of (3.9) in this way:

The integrals of and on can be estimated quite
analogously. The integral of can be estimated in this way:

Using the boundedness of in the first integral and applying twice
the integration by parts to the third integral on the right hand side, we
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obtain:

Applying now estimate (3.10) to we get:

Further, we have:

Integrating again twice by parts in the second integral, we obtain:
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All remaining terms on the right hand side of (3.9) can be estimated in
a similar way. Thus, estimate (3.7) now gives:

Using the equality on and the regularity of v on
we obtain

Choosing now so small that

The integrability of the right hand side of (3.15) on the time interval
implies that

Since ' we have:

It is known that every weak solution to the problem (1.1)-(!.4)
can be redefined on a set of measure zero in so that it becomes
a weakly continuous mapping from the interval (See
e.g. G.P.Galdi [4].) Suppose that the weak solution v that we work
with has already been redefined in this way. Then it has a sense to
speak about its value at time it is a function from . .
We claim that the function (the restriction of to

belongs to . I f is a sequence of time instants which
converges to from the left then contains a subsequence
which is weakly convergent in (This follows from (3.16) and
from the reflexivity of the space The weak limit of the
subsequence, which is in coincides with
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Put for It follows from
the regularity of v in (see statement 4 of
Lemma 1) that h is of the class

Function v, restricted in space variables to and in time to the
interval satisfies in a weak sense the problem given by the
equations

by the boundary condition

and by the initial condition

Due to the higher smoothness of functions h and there exists
such that the problem (3.17)–(3.20) has a strong solution

on the time interval (This follows e.g. from the results of
K.K.Kiselev & O.A.Ladyzhenskaya [9] and V.A.Solonnikov [18].) This
solution is unique even in the class of weak solutions and so it coincides
with our suitable weak solution v on It satisfies

However, this fact and (3.16) imply that is a regular point of
solution v. (We can obtain this conclusion e.g. if we apply Theorem 7
from H.Kozono [11].) Since was an arbitrary point in such that

there cannot exist which is a D'–epoch of irregularity.
This means that solution v has no singular points in set D'.

We can now show that v cannot have a singular point even in
D: If is a singular point of v in D then there surely exists
and a 4-dimensional ball with the radius r and the center
such that (Otherwise we could easily
derive a contradiction with the fact that the 1-dimensional Hausdorff
measure of S(v) is zero.) Putting and using the result saying
that we obtain the contradiction with the assumption
that is a singular point of v in D. This completes the proof of
Theorem 1.
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ON A CLASS OF HIGH RESOLUTION
METHODS FOR SOLVING HYPERBOLIC
CONSERVATION LAWS WITH SOURCE
TERMS

Paula de Oliveira, José Santos

Abstract:  A class of conservative numerical methods for solving hyperbolic
nonhomogeneous scalar conservation laws is presented. Convergence
and stability properties are studied. Particular attention is devoted
to time depending point sources. Several numerical examples are
presented.

Keywords:  Conservation laws, point sources, finite volume methods, conservative
numerical methods.

1. INTRODUCTION
Pollution problems can be modeled by convection-reaction equations

in a case that diffusion can be neglected. These equations are
nonhomogeneous scalar conservation laws of the type

Here f is a smooth function, depending in general nonlinearly on u, and
q is a bounded, piecewise smooth function.

In a large class of such convection-reaction problems the reaction term
is represented by time depending point sources. In order to represent
a point source localized at we consider for instance

thus obtaining in the distributional sense, where
is the Dirac delta function.
For this class of problems, standard numerical methods obtained by

a direct discretization of the differential form fail to converge even in the
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linear case. Let us consider for example

with If we solve this
problem using the upwind finite difference scheme

with which means that we are integrating along the characteristic
lines, we observe the vanishing of the numerical solution as h goes to
zero. The numerical solution does not converge to the weak solution. We
can see this fact in Figure 1, where is represented the numerical solution
obtained at computed, respectively, with and

The exact solution is represented with a continuous line.

Hyperbolic conservation laws with source terms have recently been
analysed by several authors ( see e.g., [1], [3], [4], [7], [10]). In particular
in [3] a conservation law of type (1.1) with a steady source term
is studied. stable Godunov-type difference schemes, which have
a similar equilibrium structure to the continuous case, are constructed.
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Convergence problems are not considered. Koren in [4] suggests that
by taking a steady source term as the derivative of a certain function,
more accurate results can be achieved. In citeSantos, the authors
present a general convergence result for a class of conservative numerical
methods. Stability and entropy conditions are also established.
Following the previous results, in the present paper, we study the
convergence properties of a class of high resolution methods which are at
least second order accurate on smooth solutions and give well resolved
nonoscillatory discontinuities.

The paper is organized as follows. In Section 2 we recall briefly some
convergence results established in [9]. In Section 3 we construct a class
of high resolution methods and prove its convergence properties by using
the concept of total variation diminishing (TVD). Finally, in Section 4
some numerical simulations are presented.

2. BASIC CONCEPTS AND CONVERGENCE
RESULTS

In this section we present some preliminary concepts used in the
study of convergence. We also present some of the convergence results
established in [9] under a slightly modified version.

Let us consider the nonhomogeneous scalar conservation law (1.1)
with the initial data

A weak solution u(x ,t), of (1.1) and (2.1), satisfies the integral form

In what follows we consider conservative numerical methods in the
general form
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functions of arguments. F is called the numerical homogeneous
flux function and S is called the numerical source flux function,
can be considered as an extended numerical flux function.

Method (2.3) is consistent with the nonhomogeneous conservation
law (1.1) if the numerical homogeneous flux function reduces to the true
homogeneous flux for the case of a constant flow and the numerical
source flux satisfies

In order to extend the grid function we define for a piecewise
constant function for all x and t,

where for a fixed
We define the total variation of

Theorem 2.1. Let a sequence of grids indexed by with
mesh parameters be given. Let be
a sequence of numerical solutions as defined in (2.3) and (2.4) with
respect to and the initial values

Assume that

(i) the method is consistent with the nonhomogeneous conservation
law (1.1);

(ii) the numerical homogeneous flux function F and the numerical
source flux function S are Lipschitz continuous functions;

(iii) for each T there exist and such that

where, for each t, TV denotes the total variation defined in (2.5);

(iv) over every bounded set in the space,
where is the norm over

the set

Then u(x,t) is a weak solution of the conservation law (1.1).

When nonlinear problems are considered, we need some form of
nonlinear stability to prove convergence results.
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We will say that a numerical method is total variation stable [6], or
simply TV-stable, if the approximations lie in some fixed
set of the form

where consists of all functions of x and t for which the norm

is finite, and

represents the total variation of u over [0, T].
represents the vector of approximations at time

Since the functions are piecewise constant, the definition of
reduces simply to

or, in terms of the one-dimensional total variation and the discrete
norm,

In the definition of the set R and M may depend on the initial
data the flux function f ( u ) and the source term but not on m.

We note that is a compact set in

Theorem 2.2. Let us consider a conservative numerical method in the
general form (2.3), where the numerical homogeneous flux F and the
numerical source flux S are Lipschitz continuous functions. Suppose that
for each initial data with compact support, there exist
such that
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Then the method is TV-stable. Moreover, if the method is consistent
with the scalar nonhomogeneous conservation law (1.1), then the method
is convergent to a weak solution of (1.1).

Proof. We prove that there exists such that
with Let us consider a method in the conservation

form (2.3). Then, we have

that is,

Using the bounds and together with
the fact that has compact support, we easily establish that

and with (note that approach

constant values as for each with because
is finite). Considering these uniform bounds and the continuity

of and we have the following estimates

and

that is,

From (2.10) we have
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for all This shows that is uniformly bounded as
The other requirement for TV-stability is Supp (u) to be uniformly
bounded over [0, T ] , but this is always satisfied for any explicit method
if is constant as Then all lie in a set of the form (2.8) for
all " " and the method is TV-stable.

Finally, we want to prove that if the method is TV-stable and
consistent with the scalar nonhomogeneous conservation law (1.1) then
the method is convergent. Let

is a weak solution of the conservation law (1.1)} .

If the global error, defined by dist does

not converge to zero, then there exist some ~ and some sequence of
approximations such that

Since for all j, there exists a subsequence converging to some
function Moreover, since the are generated by a conservative
and consistent method, it follows from Theorem 2.1, that the limit v
must be a weak solution of the conservation law, i.e., which
contradicts (2.16). Hence, a sequence satisfying (2.16) cannot exist and
we conclude that dist as

Sufficient conditions that guarantee the convergence of the numerical
solution to the entropy solution have been established in [9].

3. A CLASS OF HIGH RESOLUTION
METHODS

In this section we construct a class of numerical methods that are
convergent, in the sense of Theorem 2.2, and are at least second
order accurate on smooth solutions giving well resolved nonoscillatory
discontinuities.

We consider the general initial value problem

where q is a bounded piecewise smooth function and has compact
support.

We will use conservative methods in the general form (2.2), that is
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where

and

We suppose that, the numerical homogeneous flux F and the
numerical source flux S are Lipshitz continuous functions,

is a function of variables and
with This last bound together with the continuity of
allows us to derive a bound of the form (2.15).

From (3.2) we have that
We begin by establishing an estimate for Prom (3.4), we

have

and then by (2.15)

The last inequality can take the form

that is

where
Now, let us analyze We note that if a total variation

diminishing (TVD) method is used to solve (3.3) for each time level
then we have
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for all grid functions with Thus, considering that
L, it is a straightforward task, to show that

where
From the previous considerations we can conclude, using Theorem 2.2,

that the methods of class (3.2) produce convergent numerical solutions.
Let us construct now a family of methods of class (3.2). For the

homogeneous part of the problem we use a one-step non-linear TVD
version of the Lax-Wendroff scheme [2]. If we consider
this method can be written in the conservative form (3.3), with

where can be evaluated by the following formula

In (3.8) represents a flux-limiter, and

At each grid point we define a local Courant number by
In order that (3.3) is, locally, a TVD method and considering Theorem

16.3 (Harten) [6], it is sufficient that conditions

are satisfied. We note that for linear problems the first stability condition
can be replaced by

In the numerical examples of Section 4 the so-called “superbee”
limiter of Roe [8], will be used. This limiter, well adapted for sharp
discontinuities, is defined by
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To solve the nonhomogeneous problem we use an extended Lax-
Wendroff method with a flux-limiter procedure, that is, we consider

where represents the flux-limiter (3.9) and

4. NUMERICAL EXAMPLES
In this section we solve problems using the family of high resolu-

tion methods previously constructed. The computations have been per-
formed using the program package Mathematica, a powerful computer
algebra system.

Example 1. We consider the initial boundary value problem

The exact solution is

In this case as we have
Numerically As

in this case we have a linear problem, expressions are simplified and, of
course, we have only one Courant number

To outline the robustness of our approach we assume, for example,
that is, we do not integrate along the characteristic lines. We

analyse the behaviour of the numerical solution for two values of the
spatial stepsize, and in three moments:

(Figure 2). The numerical solution is represented with a dashed
line and the exact solution is represented with a continuous line.

If had been used, similar results would have been achieved.
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Example 2. We consider the inviscid Burger’s equation with a point
source,

In this problem and then,
We consider We solve

it numerically with the method defined above.
In Figure 3 we present the numerical solutions obtained at three

distinct moments, with two different pairs
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of values of and In this
problem the “exact” solution has been obtained with a fine fixed mesh
and it is represented with a continuous line. The numerical solution is
represented with a dashed line.

Example 3. We consider the initial value problem with a point
source,
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The exact solution is

In Figure 4 we present the numerical solutions obtained at three
distinct moments, with two different couple of
values of and

Figure 4. Numerical solutions at t = 0.2, t = 0.4 and t = 0.5 for h = 1/20, k =

0.0125 (in the left side) and for h = 1/40, k = 0.00625 (in the right side).
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ON THE DECAY TO ZERO OF
THE OF PERTURBATIONS
TO A VISCOUS COMPRESSIBLE FLUID
MOTION EXTERIOR TO A COMPACT
OBSTACLE

Mariarosaria Padula

Abstract: We prove that the rest state of a viscous isothermal fluid filling a region
exterior to a compact rigid obstacle, is stable with respect a class of
sufficiently weak perturbations to the density and velocity fields
(provided they exist globally in time). Under hypothesis of summability
f or a weighted norm of perturbations at initial time we also prove
the decay to z ero for of perturbations along infinitely many
sequences of times.

Keywords: Nonlinear stability, energy methods, Navier-Stokes equations, compress-
ible fluids, exterior domains, qualitative methods.

1. INTRODUCTION

It is known that a homogeneous basic rest state is unconditionally
(for arbitrary large initial data) stable with respect to all values of
the parameters in the class of incompressible fluid perturbations. The
type of stability achieved is exponential for flows occurring in bounded
domains, furthermore, while for flows occurring in exterior domains is
only asymptotical, say the kinetic energy decays to zero.

For compressible fluids a nonhomogeneous rest state continues to
be stable with respect to all values of the parameters, however, the
stability has been proven only for small initial data, in bounded domains
[8]. Recently, it has been proved unconditional exponential stability
for a non homogeneous rest state in the class of viscous compressible
fluid flows, corresponding to large potential forces, and for a steady flow
corresponing to small external forces, in bounded rigid fixed domains

Applied Nonlinear Analysis, edited by Sequeira et al.
Kluwer Academic / Plenum Publishers, New York, 1999. 417
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[11], [13], [14]. In this note, we are not interested to the problem of
existence of solutions, only we make some qualitative considerations on
the stability problem.

Aim of this paper is the proof of the unconditional decay to zero, along
a sequence of instants going to infinity, of the total energy (summ of the
kinetic energy and the enthalpy) of perturbations of a isothermal viscous
fluid flow in domains exterior to a fixed obstacle in corrispondence of
zero external forces.

As known, the motions of a viscous compressible fluid, in are
governed by the Poisson-Stokes equations

where denote the density, the velocity and the external force, at
the point x, at the instant t. Moreover, are the constant viscosity
coefficients, verifying where n is the dimension of the space.
Furthermore, for isothermal fluids the pressure is supposed
a linear function of the density, where R is the
universal constant of the gas and is a basic uniform temperature.

System (1.1) admits the rest solution

with in correspondence of the initial data and
Decay to the rest of nonsteady solutions corresponding to large

initial data constitutes an interesting problem, to our knowledge, first
results in this direction have been furnished in [2], [3], furthermore, for
the linearized equations a local energy decay is given in [5], [6]. In [12] it
was proposed a sketch of proof of stability in unbounded domains based
on the energy method, here we develop the ideas of [12] and furnish
a complete proof of unconditional stability of the rest in a exterior
domain, moreover, we prove the decay to zero for the norms of the
perturbations.

In this note, we prove that the rest state is stable in the mean, in
a class of suitably regular perturbations.
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In a work in preparation we give the proof of the decay to zero
of perturbations to a steady flow corresponding to nonzero external
forces, whathever large are taken the potential forces and the initial
data (unconditional). We remind that in [9], [10] it has been proved
existence of such steady flows.

In order to state our theorem we introduce the following regularity
class

and its subset

In we prove the stability result, in the decay to zero for the .
norms of the perturbations. In the class equations (1.1) can be written
pointwise. Of course, such assumptions can be fairly weakened, however
this is not in the aims of our note.

The result we prove is the following:

Theorem 1. Assume there exist solutions to
corresponding to the initial data

with constant. Then, the -norm of the perturbations in the class
decays to zero along infinitely many sequences of times

2. PRELIMINARY LEMMAS
In this section we furnish some preliminary lemmas which will be used

in the proof of the non linear stability given in section 3. Recall that
denotes the region of the space, exterior to a compact, fixed, rigid

obstacle In the sequel, O indicates a fixed point in and
denote a spherical coordinate system with the origin in O. With

such choice it will be in the sequel we also assume

The Lemma below, proved in Lemma 3.1 p.36, [4], furnishes
a weighted Poincare’ inequality.
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Lemma 2.1. Weighted Poincare’ inequality - be a positive
function, non decreasing in r. In the class of functions u such that

the following inequality holds

The above Lemma is a generalization of a inequality first derived by
Leray in [7], it will be used below with The interest of this
Lemma lies in the value of the constant which has a universal value.

Lemma 2.2. Denote by the intersection of with a ball of radius
R centered at O, and by its complementary in say
Then, for any there exists a R, such that, for all sufficiently regular
fields the following estimates hold true

Proof. The proof follows easily by taking and using the
Poincare' inequality in for u.

Lemma 2.3. Weighted Poincare’ inequality - Given the vector field
with then the following inequality holds

Lemma 2.4. Divergence problem - Given the scalar fields
there exists a unique vector field z with solution of the
following problem

Moreover, there exists a constant function of and such that
the following estimate holds true

the proof continues to hold provided we take with
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3. PROOF OF NON LINEAR STABILITY
In this section we give the proof of non linear stability in mean. We

begin by deriving the following energy identity for perturbations

Theorem 2. — Energy identity.
with
Then, the following identity holds

where

and is a value between and

Proof. The pair represents the perturbation to the basic rest state
it will satisfy the following system

Notice that it holds

where the integration element dx is omitted, and

Developing around it delivers

where is between and
Multiply (3.1) by and integrate over we find
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where

The regularity class ensures that are equivalent to the
norms of u and respectively.

We are, now, in position to prove the main theorem.

Proof of Theorem 1.

Multiply by integrate over to get

Devide . b y take the on both sides, and multiply by
integrating over we obtain

Multiplying (3.5) times k, and adding it to (3.4) we deduce

where using the regularity properties of the class Lemma 2.1 with
and Cauchy inequality, we have

In order to obtain the decay for the '-norms of the perturbations, we
need a dissipative term in the -norm of This will be achieved by
using the auxiliary lemmas given in section 2.

To this end, we rewrite equation in the equivalent form:
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Multiply (3.7) by V, with V given in Lemma 2.4, integrating by parts,
we get

where

Applying Lemma 2.3, we deduce

where c is function of and u. We add (3.1) to (3.6) multiplied by
plus (3.8) multiplied by it delivers

where

and

Suppose we take

then, it is

From (3.9) it follows
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In particular, since

we deduce the boundedness of the norm of the perturbations in terms
of the initial data. The stability of the rest with respect to arbitrary
perturbations is so completely proved.

4. DECAY TO ZERO OF THE     -NORM OF
THEPERTURBATIONS

The lack of validity of the Poincare’ inequality in unbounded domains
does not allow us to deduce the decay of the norm of perturbations from
(3.10). In this section we wish to prove the decay to zero of the sum of
the kinetic energy plus the enthalpy of the perturbations u which is
equivalent to their norms. To this end, we employ again the lemmas
of section 2 and energy methods.

First of all we write the continuity equation in the following form

Multiply (4.1), and respectively by with
integrating over after several integrations by parts and using

the transport theorem, it furnishes

Add the two resulting equations, in such a way the pressure term at the
right hand side vanishes, and we obtain
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where

By Lemma 2.1, the properties of class we check that

which claims that Moreover, from (4.3) we infer that

that is equivalent to

By use of Lemma 2.2 we know that

The decay to zero of along a sequence of times it is now
almost achieved. To this end, we use the summability of D> which states
the existence of a sequence along which Therefore,
for all there exists a N such that for all it is

Moreover, for all there exists a R such that

which delivers

Then, for all we fix Substituting these values in

(4.4) we deduce that for all there exisists a N such that for all
it holds

and the decay of the -norm of the perturbation is proved.
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GLOBAL BEHAVIOR OF COMPRESSIBLE
FLUID WITH A FREE BOUNDARY AND
LARGE DATA

Patrick Penel, Ivan

Abstract: The global behavior of the solutions to one-dimensional Navier-Stokes
system with a free boundary is investigated for large data. It is shown
that the solutions stabilize to equilibrium in general on subsequences,
and completely, if the body force is such that the corresponding
equilibrium is unique. Mild condition on state equation is imposed
which is satisfied in important physical situations.

Keywords: Navier-Stokes equations, global behavior, free boundary, large data,
compressible fluids, one-dimensional case.

1. INTRODUCTION
We consider the problem

which is known [1] as the Navier-Stokes system for compressible
isentropic flow with a free boundary. The unknown quantities are the
density velocity u and the trajectory of the free boundary.
The given data are the functional dependance between the
density and the pressure p, viscosity constant density of external
forces the pressure outside the free boundary, the initial
position of the free boundary and initial distribution and of the
velocity and density, respectively. Along with the problem (1.1) - (1.5)
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consider the problem

Our intention is to prove that if p(.) satisfies certain natural assumptions
then

where is suitably extended if and is arbitrary.
A similar result has been proved in [10], when the equations (1.1)
- (1.5) are written in Lagrangian mass coordinates, and in [7] in the
Euler coordinates and for Dirichlet boundary conditions but under the
restrictive condition Recently, this assumption has been removed
in [8] and we are now going to do the same for the case of boundary
conditions (1.3). Let us note that in threedimensional case, recently
a similar result has been proved for space periodic [6] and Dirichlet [2]
boundary conditions, with global weak solutions assumed (but still in
the class of existence).

The Euler coordinates approach makes it possible to include also the
cases when, for some tends to zero as Since in our
case the global existence of solutions for arbitrarily large data is known
[9] we need only to find sufficient uniform estimates which would lead
(similarly as in [7]) to (1.8), (1.9). The crucial role plays the estimate

which will be derived in Section 3. As a consequence of (1.10) and energy
equality (3.2) below we obtain (1.8). Then, in Section 3, with the help
of a comparative “quasistationary” problem we find a function
which is for equivalent to The result then follows from
compactness of the solution operator of the “quasistationary” problem
in question.

It should be mentioned that [3] considered the free boundary problem
with zero external body force but nonlinear viscosity and nonmonotone
equation of state, and [5] examined it taking into account the energy
equation. The spherically symmetric case is investigated in [4].

We adopt the usual notation, namely, for spaces of k-times
continuously differentiable functions, for the Sobolev spaces of
k-th order and power for Lebesgue spaces with power The
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norm in will be denoted by and in , Besides, given
we denote for

2. STATIONARY PROBLEM

In this section the stationary problem to the evolutionary problem
(1.1) - (1.5) will be studied. First, let us define the solution of the
general problem we intend to work with.

Definition 2.1. A triple is called the solution of (1.1) - (1.5)
on the interval if

with the
equations (1.1), (1.2) are satisfied in the sense of the equation
(1.4) in the sense of and (1.3), (1.5) hold in the sense of traces
in the spaces and respectively.

Next, let us make the following fundamental assumptions:

The stationary problem corresponding to (1.1) - (1.5) is given by the
equations

Definition 2.2. A triple is called the solution of (2.4) - (2.7)
the equations (2.4),

(2.5) hold a.e. in and (2.7) hold.

Theorem 2.3. Let be a solution of (2.4) - (2.7). Then
and satisfy (1.6), (1.7).

Proof. Let If satisfy (2.4) - (2.7) then by
integration by parts we get
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Define Then, by
continuity of is open and hence there exists

such that Since
on and const in the same interval, we have on
. This and (2.5) implies

So we have

which, by summation, yields

Then by (2.8), (2.9) we find

Since on the last identity implies

This yields for and followsfrom
Now the assertion easily follows.

Later, in Section 4 we shall prove existence of the equilibrium state as
a limit of the evolutionary solution, but uniqueness will not follow from
this process. Here we give one sufficient condition for the uniqueness of
the rest state.

Theorem 2.4. If are two rest states, say with
and then and

Proof. Assume we have two couples such that
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First, it is clear that inf Indeed, by
assumption and are nonincreasing and so, if there is an

such that then necessarily

which is a contradiction. Define Then clearly

If there is an such that then clearly,
and consequently otherwise must be

zero on which is a contradiction. So let for all
Then necessarily in since otherwise we

had But by
(2.11) we have
which is a contradiction.

3. ENERGY EQUALITY AND GLOBAL
BOUNDEDNESS OF DENSITY

In this section we derive energy equality and the estimate (1.10).

Proposition 3.1. Let be a solution of (1.1) - (1.5) and
a function satisfying

Then the following energy equality holds:

Proof. Multiply (1.2) by u and integrate Since
we have

Further, by (1.3), (1.4) we find

The choice of P in (3.1) and (1.2) gives
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Finally, with the help of (1.2) we get

and (3.2) easily follows.

Lemma 3.2. Let the assumptions (2.1) - (2.3) be satisfied and let

Then P (1) in (3.1) can be chosen in such a way that

Proof. Since and P is convex, by (3.1) and Jensen
inequality we have

The result immediately follows.

Lemma 3.3. Let the assumptions of Lemma 3.2 be satisfied. Then

in particular

Proof. The integration ds of (3.2) yields

Since by (3.4), the relations (3.5) follow immediately.

Let us now prove the estimate (1.10).
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Lemma 3.4. Let besides the assumptions (2.1) - (2.3), (3.3) the
function P given by (3.1) satisfy

Then (1.10) holds.

Proof. Denote By integration the equation
(1.1) we get Hence by (1.2)

Since and

we have

This, together with (3.8) yields

which can also be written as

where By integration of
(3.2) we get
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So we have

for Now, let be arbitrary
but fixed. If for all such that then we have

for this particular x and all So let us
assume that there is a such that and
Denote by a function satisfying the equations

where By the regularity of the
solution such a function exists and for
any such that Clearly, for z smooth enough we have

Let be a minimal number such that
for all Then either and or

and by (2.3) we have
Consider (3.9) along the curve

Then by integration we get

Since the last term on the right-hand side of (3.12) is negative, with the
help of (3.11) we find

Since x was arbitrary and the constants depend on the data
only, (1.10) readily follows.

4. STABILIZATION OF SOLUTIONS
Lemmas 3.3 and 3.4 allow us to show that the solution stabilizes to

equilibrium, more precisely, we are able to prove the following

Theorem 4.1. Let in addition to the assumptions (2.1) - (2.3) we
have and (3.7) with P defined by (3.1) with P(l) sufficiently
large (see Lemma 3.2). Then
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and if and is arbitrary then there exists a subsequence
of and such that

Moreover, if is determined by (4.3) uniquely as it is the case for
example when (see Theorem 2.4), then the above convergence
holds for all

Proof. The energy equality (3.2) can be written in the form

Integrate (4.5)

Now, integrate (4.6) with

Show that the right-hand side of (4.7) tends to zero as First,
putting by (3.6) we have

Second, by (1.10), (3.10) and Poincaré inequality
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Finally,

Now, from (4.7) and the above relations the first relation in (4.1) follows
immediately.

It remains to prove the convergence of y and on some subsequence
of a given sequence To this purpose put

Later, we will see that w, m, and their derivatives may be well globally
estimated. First, it is easy to see that
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Consequently, putting

we get So we have

Show that

In what follows we heavily rely on the estimate (1.10). First, if we
assume (3.7) then it is easy to show that

By (3.2) we get So we have

as

Using (1.10) again, we find also

It remains to estimate

First of all, by global boundedness of and ρ we have
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Further, since we have

(4.12)

To estimate show that

(4.13)

holds true. By differentiation in and using (1.2) and its
consequence for after some evident cancellations we find

First of all, it follows from (1.10) that Secondly,
it is inf _ Indeed, by (3.2), y (t) is globally bounded and

for all , If there were such that
then by (1.10) as
which is a contradiction. So we have Then, again by
(1.10), we find (4.13) true. Further, by (1.2), (1.4) we obviously have

and consequently

As we have clearly

it remains to show that

Since for the first two terms in the expression on the right of (4.12) for
it is the same job as above we need only to show that

for all
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But we have

which yields

This completes the proof of (4.11). Now, show that

By (4.10) we have

Consequently, by boundedness of p we find

With the integral we can proceed as with estimating above to obtain

So we find

Since

(4.11) and (4.14) imply or equivalently

Next we show that To this purpose, let us
introduce and Then by
(1.2), (1.3), (1.4) we have
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By (1.10) we apriori know that r is bounded from above on
Hence by (4.15), is globally bounded as well. So given
we can select such that
with some If then there are
such that for all Then given such there
exists a maximal interval where If > then by
moriotonicity of r on we have But then

in some neighbourhood of and r would be unbounded.
In the case this is a contradiction to the boundedness
from above of r. If then and consequently

which is impossible. Hence necessarily
Then and for and

for is a solution of (4.15). By uniqueness, in
and Going back to p and we have proved

Now, let be arbitrary.
Then we can select such that

Note, that if eventually for some sufficiently large n we have
then we can prolong by

where Indeed, the function under is close to
and so it belongs to the definition region of But this

yields (modulo further selection)

strongly in with some constant Further, by (4.15) and
(4.17) we have

This together with (4.18) yields
a.e. in and in As

weakly and, I strongly, we
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have for a.e. , which yields
in Since for large n,

in a neighbourhood of we have Finally,

since we have also Now, we put
and the proof is complete. Of course, by standard

argument we get that in the case of uniqueness of equilibrium (see for
example Theorem 2.4) in
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A GEOMETRIC APPROACH TO
DYNAMICAL SYSTEMS IN

Reimund Rautmann

Abstract: In 2-dimensional dynamical systems defined by some differential
equation global existence and asymptotics of the solutions
follow from a geometric condition concerning the characteristics, on
which one component of the vector function f is vanishing. By
extending this geometric condition to n dimensions we find 2 classes of
differential equations which have global solutions for all positive times.
Additional monotonicity of the characteristics implies the existence of
a unique stationary point which is asymptotically stable and globally
attractive.

Keywords: Dynamical systems, characteristics condition, flow invariant rectangles,
global existence, attractors.

Introduction
Global existence and asymptotic behaviour of dynamical systems

which are defined by a differential equation in the n-dimensional
Euclidean space belong to the classical problems in mathematics.
For the study of autonomous systems given by with
a function being defined on some open subset ,
some important tools are well known: (i) asymptotical growth conditions

for [27], (ii) conditions for in case [5, 7, 15], (iii)
monotonicity conditions, [8, 9, 11, 23, 24], (iv) Ljapunov functions in

[13, 14, 22], (v) direction conditions for / on or on
the boundaries of n-dimensional rectangles contained in respectively,
and resulting flow invariance [3, 4, 12, 17, 21, 25]. A survey of these
methods, most of which apply to the non-autonomous case, too, can be
found from the many citations in [1, 9, 12, 13, 24].

Working with one of the latter two approaches above we have to
overcome the difficulty how to find a Ljapunov function or how to verify
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the required direction conditions for f in any concrete case. Precisely
this is the starting point of the following studies: We will see that
a geometric condition for the characteristics of the differential equation

implies the existence of flow invariant rectangles, the union of
which is the whole of the domain o f . In section 1 we will demonstrate
the geometric condition above in two-dimensional model problems which
(in section 2) will lead us to the results established in – By means of
the well known comparison theorems for quasimonotone weakly coupled
parabolic systems, [26 p. 259, p. 267 ] from the results of section 2 there
follow asymptotic estimates for solutions of reaction-diffusion problems,
[16, 19], which will be studied elsewhere. Since – looking towards these
applications – we are mainly interested in non-negative solutions, we will
consider differential equations in the positive cone

1. CHARACTERISTICS OF A
DIFFERENTIAL EQUATION IN
MODEL PROBLEMS IN

By we will denote the
open positive cone in by the positive -axis.

Definition 1.1. Let denote a continuous
map. For we consider the (eventually void) sets

which represent the characteristics of the differential equation

and we will write

for the point sets of constant sign of in (The notation here
and below means either "+" or "-" on both sides of the equation.)

We will always consider t as the time variable and use the point
notation for the velocity vector In the following, a subset S
of the domain of the direction field f will be called flow invariant for
(1.1), if any solution x ( t ) of (1.1) starting at remains in S for
all t of its maximum right-hand interval of existence. Since we
will only suppose continuity of f, the initial value problem of (1.1) may
have several local solutions.
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In for differential equations having the general size

with figure 1 demonstrates the case of oscillating characteris-
tics, figure 2 below the case of monotone increasing characteristics.

In figure 1 we find the
Characteristics Condition

Because of (CC ) we can draw axis-parallel rectangles
which are flow invariant for (1.2 ), since on

their boundaries the direction field in (1.2) is pointing strictly inwards.
We note

Observation 1.2. [19]: Assume

(2) (CC ) holds,
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(3) in any neighborhood of there is a point with

(4) in any neighborhood of there is a point with

Then all solutions x(t) of (1.1)
with

exist for all and each solution remains in a suitable axis-parallel
rectangle , which is flow invariant for (1-1).

Monotone Characteristics Condition

As sketched in figure 2, the characteristics condition (CC ) holds there
with the additional
Monotonicity Condition:
The functions are strictly monotone and fulfil

Due to (M) and (CC ) we can draw a sequence of axis-parallel rectangles
like which are contracting to {(1,1)}. We note

Observation 1.3. 18: Assume
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(1) continuous,

(2) (CC ),(M) hold.

Then all solutions x ( t ) of (1.1)
with

exist for all each solution enters each member of a suitable
monotone family of axis parallel rectangles, which are flow invariant
and contracting to the unique limit set {(1,1)} of all solutions of (1.1)
in

In quite another approach to models for cooperating species,
monotone characteristics have been used in [23 ,p. 372].

2. SOME GLOBAL RESULTS IN
Notation: In order to translate our observations above to we
consider n-dimensional axis-parallel rectangles

containing all points between the lowest or uppest corner or
respectively, for all i. The upper or lower

(n-l)-dimensional face of Q is

respectively.

By

for all or

we will denote the closed neighborhood of Q or respectively,

Finally for arbitrary we define the -retract

of Q by

Definition 2.1. We will say that the map fulfills the
direction condition on if

holds for all i. Here stands for the restriction of to



448 Rautmann R.

Remark 2.2. By definition 1.1 of (2.1) is equivalent to

In order to extend the relation “x between and to we assume
to be an open neighborhood of in the closed positive cone

Then in case the relation “x between and clearly means

Lemma 2.3. Let the continuous map obey the direction
condition (2.1). Then

(a) Q is flow invariant for (1.1), and

(b) each solution x ( t ) of ( 1.1 ) starting at at any point
exists for all in Q.

Proof of (a) by contradiction: Assume for that there is
a solution x ( t) of (1.1), thus for at least one
index i we must have If we take

either
holds by continuity of x ( t). Integrating (1.1) along x ( t ) gives

But this contradicts the definition of t* e.g. in case Then
for all but holds for all s in a

neighborhood of t* because of the direction condition (2.1) and the
uniform continuity of f on the compact set In case
we conclude similarly.
Proof of ( b ): Since f does not depend on t, we can consider f as
a continuous map Denoting by

the right maximum interval of existence of a solution x( t ) of (1.1)
starting at we see from (a) if
but this contradicts the well known fact that (t, x ( t ) ) cannot remain in

any compact subset of the open set where is continuous [6, p.
13]. Thus must hold.

Lemma 2.4. Let the continuous map fulfil the direction
condition (2.1). Then there are and such that
is attractor for (1.1) in and each solution x ( t ) of (1.1) starting at

fulfills , i.e. x ( t ) has entered at the latest
at
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Proof: Because of the direction condition, on (some of) the
compact sets some of the continuous functions take on the negative
maximum and on (some of) the compact sets the positive
minimum respectively. Thus with we have

Prom this, recalling the uniform continuity of f on the compact set we

get the direction condition for f even on suitable neighborhoods

Namely, we can find such that

holds for all i for the negative upper or positive lower bound of the
velocity component , respectively. Therefore by
Lemma 2.3, the rectangles and

are flow invariant for (1.1), too, and any solution x(t) of (1.1) starting at
or exists inside of respectively, for all

Thus for each solution x (t) of (1.1) starting at for
which

holds initially at this inequality remains valid for all , We
will prove that after a suitable time (2.4) must hold for all components
of if

We write

for the maximum absolute value of the velocity in any Thus
the estimate follows. Taking any time length with

we find that implies for all and any
solution x (t) of (1.1). Now we take some distance fulfilling

Then if for the component of any solution x (t) of (1.1) starting at
any one of the inequalities
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holds, from the flow invariance of and (2.3) we conclude

which means

by the definition of This proves the statement of Lemma 2.4

Definition 2.5. By we will denote two continuous,
in the component-wise order of strictly monotone increasing or
decreasing maps, respectively. We will require

for all i = 1 , . . . , n. Then a monotone family of rectangles is given
by

Proposition 2.6. Let denote a monotone family of rectangles.
Then we have

Statements (a) and (b) of Proposition 2.6 result immediately from our
requirements concerning monotonicity and asymptotics of the functions

To get (c) from these requirements, for given

take which fulfills

For proving which fulfills
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Evidently this is always possible because of the continuity and strict
monotonicity of •

Lemma 2.7. [20]: Let

a monotone family of rectangles, such that the direction
condition (2.1):

holds for all

Then, for all , each solution x (t) of (1.1) with exists
for all . Its limit set is precisely {E}.

Note: under the conditions above:

Each rectangle is flow invariant,

f has precisely the one critical point

E is asymptotically stable, {E} being a global attractor of (1.1) in

Proof of Lemma 2.7. Because of
and Lemma 2.3, we only have to prove that each solution x (t) of (1.1)
starting at in for some will enter at finite
time for all s The entrance time may depend on s and the
solution x (t) under consideration.

Let x (t) denote a fixed solution of (1.1), In order
to prove by contradiction, we assume

By our assumption concerning , the direction condition (2.1) holds
on Thus by Lemma 2.4 we can find such that is
attractor in and implies By definition
of there is a sequence for which some
exists with for all

Recalling the monotonicity of and we see
Therefore for sufficiently large we have

for all thus However, than follows
from Lemma 2.4, and we have for sufficiently small

and suitable by Proposition 2.6, thus
in contradiction to the definition of
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Notation: For any we define

Its norm
equals the distance from x to the positive

As we will see below, under the following conditions, which altogether
concern the geometry of the characteristics in (1.1), Observation 1.2 will
extend to

Theorem 2.8. For all assume

and

(1) continuous, odd, strictly monotone increasing, thus

(2) continuous,
where

(3) continuous.

Then, if there exists some point for which

(4) holds for all i,

all solutions x (t) of (1.1)

with

exist for all and each solution remains in a suitable rectangle

Proof of Theorem 2.8. Recalling Lemma 2.3, in order to prove
Theorem 2.8 we only have to show that each starting point
of a solution of (1.1) is contained in a rectangle Q with boundary
on which the direction condition (2.1) holds.

Consider the family of rectangles

with a vector from condition (4) in Theorem
2.8We find

from (4) for sufficiently small and from (2) in Theorem 2.8 for
sufficiently large s and all i. Similarly we get

(2.6)
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for sufficiently large s arid all i, which shows the existence of points

Prom (2.5), (2.6) recalling

and any i, and from for any we see
which proves the direction condition (2.1) on Finally because of
Proposition 2.6(a), any initial value is contained in some
flow-invariant rectangle

In order to extend Observation 1.3 to additionally we have to
assume monotonicity of the characteristics in (1.1):

Corollary 2.9. For all i, assume

with and from Theorem 2.1. Then, if condition (4) of
Theorem 2.8 holds, all solutions x (t) of (1.1) exist for all each

solution remains in the smallest con-

taining x (0), and has the limit set {(1, . . . 1)}.

Proof of Corollary 2.9. In the case (2.5) and (2.6) hold
for all s > 1, thus the direction condition (2.1) holds on the boundary

of each rectangle Since the family is monotone, the
statement of Corollary 2.9 follows from Lemma 2.7

In (1.1) with / from Corollary 2.9 reads

and we have

Inequality (*) is the global stability condition for (1.1) in with

For more general questions of global existence it would be desirable to
have all sets as small as possible, because they restrict the admissible
asymptotic growth of the direction field f. The sets in the next
Theorem 2.10 (roughly spoken) can be made smaller than the in
Theorem 2.8

Theorem 2.10. For all i = 1,.. . ,n, assume

and

(1) continuous, odd, strictly monotone increasing, thus
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(2) continuous,

(3) continuous,

(4)
Then, if in addition we assume

(5) there is a point and

(6) holds for all i,

then all solutions x (t) of (1.1)

with

exist for all and each solution remains in a suitable rectangle

Note: Assumption (5) holds if and only if the matrix belongs

to the class of M-matrices [2, p. 136].
Proof of Theorem 2.10. For the proof of Theorem 2.10 recalling again
Lemma 2.3 we will show that on the boundary of the rectangle

the direction condition (2.1) holds, if s is large enough. From (4) in
Theorem 2.10, for any we see

because of (5), being sufficiently small. Thus follows
from

which holds by (2) in Theorem 2.10 for sufficiently large s. Similarly for
any for s large enough. Thus for s sufficiently
large, the direction condition (2.1) holds on and evidently with

any initial value is contained in some flow invariant
rectangle •

Corollary 2.11. For all i, assume

with from Theorem 2.10, Then, if also (5) holds,
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all solutions x (t) of (1.1) starting at any exist for all
each solution remains in the smallest rectangle

containing x (0), and has the limit set {(1,... 1)}.

Proof of Corollary 2.11. In the case the inequalities
(2.7), (2.8) and therefore as well as hold for all

Thus the direction condition (2.1) holds on the boundary of
each rectangle The family being monotone, the statement of
Corollary 2.11 follows from Lemma 2.7
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ON A THREE-DIMENSIONAL
CONVECTIVE STEFAN PROBLEM
FOR A NON-NEWTONIAN FLUID

José Francisco Rodrigues, José Miguel Urbano

Abstract: The coupling of diffusion and convection phenomena ina material under
a change of phase is presented. The Stefan problem is adopt with
convection only in the liquid phase. The existence result for weak
solutions is proved.

Keywords: Non-Newtonian fluids, convective Stefan problem.

1. INTRODUCTION

In this work we consider the coupling of diffusion and convection
phenomena in a material under a change of phase. As a model we
adopt the Stefan problem, with convection only in the liquid phase. The
main mathematical difficulty lies in the interesting and delicate question
of defining the liquid zone and the corresponding formulation of the
motion equations. The liquid zone can be defined as the set
where is the renormalized temperature. A natural requirement is the
continuity of the temperature (or at least the lower semicontinuity) that
leads to an open set where the equations for the velocity v can
be suitably formulated in a weak sense. To deal with this main issue we
consider a non-Newtonian fluid of dilatant type for which with

This restriction is sufficient to assure enough integrability
of the convective term in the Stefan problem to obtain a continuous
solution.

Other conduction–convection problems, similar to this one from
the point of view of the mathematical analysis, have been considered
previously. We mention in particular the works [CDK1], where
the Stefan problem is coupled with the Navier–Stokes equations in
a stationary setting, the extension to the evolutionary problem in
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[CDK2], that was successful only for (the Stokes system and) two spatial
variables, and the partial regularity obtained in [DO1] and [DO2] in the
three-dimensional case, respectively for the Stokes and Navier–Stokes
equations. Related contributions are given in [Rl,2] and [RU], where
the stationary problem is studied in a very general setting. In [RU] the
Stefan problem for the p-Laplacian operator is coupled with
a variational inequality modeling a non-Newtonian flow with
and a continuous temperature is obtained provided N being
the spatial dimension, thus showing the existence of a weak solution.

For the problem considered here we obtain an existence result for
weak solutions via an approximation and penalization procedure and
the consequent passage to the limit using appropriate a priori estimates.
We combine monotonicity methods with a local compactness argument
needed to show the convergence of the nonlinear convective term in
the flow equations. The continuity of the temperature is obtained
using the techniques developed by DiBenedetto (see [Dl,2]). The proof
lies on energy and logarithmic estimates, that are possible due to the
integrability of the velocity that follows from our essential assumption
that

2. THE MATHEMATICAL FORMULATION
AND MAIN RESULT

We consider a material occupying a bounded regular domain
and coexisting in two phases, a solid phase, corresponding to a region S,
and a liquid phase, corresponding to a region The two regions are
separated by a surface , through which the change of phase occurs, that
constitutes a free boundary and is one of the unknowns of the problem.

With the aid of the usual transformation of Kirchoff we work with the
renormalized temperature and make the assumption that the phase
change occurs at the fixed temperature Then we can write

The strong formulation of the Stefan problem with convection reads
(see [R3], [M])

where is the normal vector to in the space-time cylinder
w the velocity of and the latent heat. The Stefan

condition (2) measures, roughly speaking, the amount of heat used in
the phase transition. To (1) and (2) we must add boundary conditions
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at the fixed boundary of and also an initial condition. We
take, to simplify, but non-homogeneous boundary
conditions or the Neumann type conditions can equally be treated.

As is physically natural we suppose that in the solid region
In the liquid bulk, convection is ruled by the following system

where is the viscous stress tensor, p is the pressure and f
a density of forces, that may depend continuously on the temperature
The constitutive assumption we choose is given by the relation

where is a (temperature dependent) viscosity coefficient,
is the second scalar invariant with

We use the usual summation convention throughout.
A fluid governed by (3), (4) and (5) with is called a dilatant

fluid (see [C], for instance).
We also assume that the fluid adheres to the solid boundary so that

and prescribe an initial condition
We next formulate the problem in a weak form following the standard

procedure of multiplication by test functions and formal integration by
parts, assuming, in addition, that is a smooth surface.

Let be a smooth test function and multiply (1) by separately in
Upon addition and the use of the boundary

conditions we arrive at

We introduce the maximal monotone graph

and using (2) and with a surface, we get
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Introducing the enthalpy we rewrite (7) in the form

which means that

Concerning the flow equations we need to introduce the spaces of
solenoidal vectorial functions

where

Assuming that is a bounded domain with a Lipschitz boundary, Korn's
inequality is valid and we can characterize

The integration by parts of the flow equation (4), with solenoidal smooth
test functions, holds only in the liquid zone, so the test function must
be supported in which will be required to be an open subset
of Q.

We are now in conditions of presenting the main result on the existence
of a weak solution. The spaces of test functions are respectively

when and are given continuous functions in Q and
respectively.
In order to obtain the existence result we suppose the following

assumptions hold:
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Theorem. There exists at least one weak solution of the
conduction-convection problem with change of phase for a dilatant fluid
with such that

Remark 1. In (13) we have added a term corresponding to an initial
condition that has to be prescribed for the enthalpy and not for the
temperature:

In fact carries some additional information concerning the initial state
with respect to the one given by the initial temperature

Remark 2. The continuity of given by (10) assures the subset
representing the liquid zone,

is an open subset, and therefore (14) is well defined.

3. PROOF OF THE THEOREM
The proof consists in the study of an approximated problem penalized

in the solid region and the consequent passage to the limit based on
a priori estimates, monotonicity methods and a technical lemma.

Given define the continuous functions
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Consider the regularized and penalized problem

Find such that

where is an approximation of such that

and is a smooth mollification of that preserves its solenoidal
property.

This approximated problem is solved with the use of Leray–Schauder's
fixed point method. Given solve (20)-(21) with using
a Galerkin procedure as for instance in [L], where the uniqueness is also
established (cf. page 84). Obtaining

with this we solve (19) with using the results of [R3], that
yields

Define an application putting

in a ball of of the form

where is a constant that is obtained using a standard estimate such
that
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The application can be seen to be continuous and it is also compact
due to the compactness of the injection of

We can also show that the following a priori properties hold (see next
section for the proof of (27))

is equicontinuous in any compact subset

From these results we can extract subsequences such that

strongly in and uniformly in

These convergences are enough to pass to the limit in the temperature
equation and we find that solves (19) in the definition of weak solution.
We can show using a monotonicity argument.

Passing to the limit in the flow equation (20) has a delicate point
which is the nonlinear convective term. We use the strong convergence
for the in the interior of the liquid zone obtained with the
limit function from (28).

Indeed, the uniform convergence (28) implies that, for any compact
subset there exists an such that, due to the
definition (16),

Hence, in the distributional sense in any open subset from
(20) we have
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for any such that supp which means, in particular, that

belongs to a bounded set of

for any open subset Since the
embedding is compact for by well-known

compactness results (see [S], for instance), we may conclude that

Consequently, we may now let in (34), obtaining the condition
(14) for the equation of motion.

The conclusion of the proof follows now the same lines as in [CDK2]
or in [RU].

Remark 3. In [DO1], since the equicontinuity in the case was
shown only up to a possible singular closed subset of Hausdorff
dimension at most 5/3 and Hausdorff measure arbitrarily small, the flow
Stokes equations hold only in The extension of this
case to the Navier–Stokes equations done in [DO2] is similar but
also requires an additional Lemma, based in the Galerkin approximation,
to show the strong convergence of the velocity field in the interior of the
liquid zone. Our local compactness argument described above seems
simpler than [DO2] and independent of the Galerkin approximation to
the regularized–penalized problem (17)–(21).

4. THE EQUICONTINUITY OF THE
TEMPERATURE

In this section we show that the equibounded sequence is also
equicontinuous thus proving the uniform convergence and the
continuity of The idea is to obtain an implicit modulus of continuity
for each that is independent of using the refinement of De Giorgi’s
iteration technique developed by DiBenedetto (see [Dl] and [D2]). At
the basis of this reasoning lie energy and logarithmic estimates that we
derive in the next two lemmas.

We start with some notation and in order to show the dependence on
the space dimension we work in Given a point
let denote the N-dimensional cube with center at and wedge
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We'll write the inequalities in the following two lemmas for cylinders
centered at the origin, the changes being obvious for a cylinder centered
at a generic point

Given a cylinder consider a piecewise smooth cut off
function such that

Lemma 1. Let be a solution of and There exists
a constant independent of such that

Proof. We take as a test function for the approximate
equation

and integrate in time in with The first term gives

since From the second term we obtain

by a simple use of Young's inequality. Finally, the convective term
produces
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using again Young's inequalities and the fact that
To conclude, we observe that due to the estimate

(that obviously still holds for ) and a well known embedding theorem
(see [LSU, pp. 74-78]), we have

and so

Putting all the terms together we have the desired conclusion.

Remark 4. A similar estimate holds with but we will not
reproduce it here. The difference is that in the right-hand side, in all the
terms involving this quantity is raised to the power 2. That
is due to the fact that for we are above the singularity of so

For the details see [Dl] or [U].

We turn to the logarithmic estimate. Consider the now standard
function

where As before,
consider a cutoff function satisfying (36), but independent of

Lemma 2. Let be a solution of i and There exists a
constant independent of such that

For the proof see [Dl], [D2] or [U]; the last two references treat the
more general degenerate problem.
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Remark 5. We don't need a logarithmic estimate for

The uniform convergence on the compacts follows easily from
the theorem of Ascoli-Arzelá and the

Proposition. The sequence is locally equicontinuous, i.e., there
exists an interior modulus of continuity for each which is independent
of

Proof. Given the inequalities established in the lemmas we can use the
technique developed by DiBenedetto to obtain the result. See [Dl] and
[U] for further details.

We only remark that the exponent α in the term that, in the
inequalities, comes from the lower order convective term of the equation
is sufficiently large. Observe that, for example, the energy inequality
corresponds to inequality (27) in [Dl] for the choices

The condition needed for our proof to work is

which in this case reads

and is precisely the assumption we made with

Remark 6. An interesting open problem is the case in which the
convective term depends on the enthalpy. The proof of estimates that
are independent of ε becomes a much more delicate matter.
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REPLACING H BY H2

Mirko Rokyta

Abstract: We study higher order MUSCL type finite volume scheme applied to
linear convection dominated diffusion problem in a bounded convex
domain . Although the original problem is linear, the numerical
problem becomes non-linear, due to MUSCL type reconstruction/limiter
technique. For second order schemes, an a-priori estimate of order for
the discrete norm is obtained. Moreover, we discuss the solvability
of the corresponding nonlinear discrete problem.

Keywords: Convection dominated diffusion equation in 2D, upwind finite volume
scheme, higher order finite volume scheme, a-priori error estimates,
MUSCL type reconstruction/limiter.

1. FOREWORD
One of the privileges which I have obtained from the life was

undoubtedly the privilege to attend lectures delivered by Professor
During the years of my undergraduate and graduate

study at Faculty of Mathematics and Physics of the Charles University
in Prague, I was often a member of the audience on Professor
courses. I remember that listening to his enthusiastic way of delivering
lectures I learned successively that the life of a mathematician is not only
the life framed by the formulas, but also a life full of fun and happiness,
if one wants to. Besides the first class mathematics, we were presented
a lot of stories and jokes, and a great passion and love for science.

When it became more or less obvious that my mathematical career
is bound towards the numerical analysis, I occasionally mentioned this
fact in front of Professor I remember him making a little pause
to clear his throat, and then stating to me, with smile in his eyes: “You
know, numerical people always work hard to replace h by .” As usual,
he was both brilliant and true in his observation.

I want to dedicate this contribution on replacing h by to Professor
on the occasion of his jubilee.

Applied Nonlinear Analysis, edited by Sequeira et al.
Kluwer Academic / Plenum Publishers, New York, 1999. 469
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2. INTRODUCTION

In the theory of numerical algorithms for solving partial differential
equations, independently of whether they are based on the concept of
finite difference, finite element or finite volume, the basic role plays the
concept of accuracy of a numerical approximation. In other words,
if v denotes the exact solution of a continuous problem and the
approximative numerical solution corresponding to the parameter h of
approximation, we are interested not only in the convergence result (in
the suitable topology)

but also in the accuracy of approximation, i.e., closeness of to v for
small h. A useful information of this kind can be given by a-priori or
a-posteriori error estimates, i.e. the estimates of the form

respectively, with suitably chosen norms. While a-priori error estimates
are more suitable for theoretical analysis of the problem, a-posteriori
estimates are used in the context of practical computations, since the
right-hand side of the estimate can be often explicitly computed, after
the approximate solution has been numerically evaluated.

In estimates (2.1), the denotes the order (or rate) of
convergence, and we speak about schemes of first and higher order for

and respectively. In the context of finite volume methods,
theoretically justified distinction between first and higher order schemes
is still not quite satisfactorily developed. In the literature, one can find
a-priori error estimates of the type (2.1), e.g. for first order finite volume
schemes on unstructured grids applied to nonlinear problems, cf. [1], [2],
with cf. [15]. Also, one has estimates for the streamline diffusion
shock capturing method applied to the linear transport equation with

, cf. [10], and for the streamline diffusion finite element method
applied to the quasilinear convection-diffusion equation with . For
diffusion problems there are results for first order schemes (cf. [9] for
stationary case, [6] for combined finite volume-finite element method in
non-stationary case) indicating . for first order schemes. However,
numerical experiments for upwind finite volume methods of second order
[16] indicate that, at least for smooth solutions, one should expect

In this contribution we will be dealing with upwind finite volume
schemes applied to linear convection dominated diffusion equation in 2D
(cf. [14]). We use the so-called Engquist-Osher upwind numerical flux in
the approximation of the convective term. In order to obtain a scheme
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which is hoped to be of higher order, we use the so-called MUSCL-type
reconstruction (cf. [5]) in the evaluation of the convective term. For
the resulting scheme, we get an a-priori error estimate of the type (2.1)
with Thus, the convergence rate for higher order MUSCL type
schemes is theoretically justified. To obtain this result, we work on
regular triangular grids using linear reconstruction operators modified
on those triangles where the discrete solution has a local extremum (see
Definition 3.3, cf. [5]).

It is worth noting that, even if the continuous problem is linear, the
discrete problem becomes highly non-linear due to the reconstruction
process. Moreover, the resulting discrete operator fails to be continuous,
since the reconstruction process is not so (see Example 5.2). Therefore,
a question of solvability of the discrete problem is in order. We will
discuss this question in the last section of this contribution.

The text of this contribution was presented in the form of a lecture
on the International Conference on Applied Analysis, Lisbon, Portugal,
February 26–March 1, 1997. The conference was dedicated to Professor

The results of this contribution were partly obtained
in cooperation with Dietmar Kroner (Freiburg University, Germany).
Namely, the higher order error estimation part of this contribution is
accepted for publication as an independent paper (cf. [13]).

3. THE PROBLEM AND ITS
APPROXIMATION

Consider the following boundary value problem

where is a convex polygonal domain in and b (x), c (x),
f (x) are functions which are sufficiently smooth on and such that

Notation 3.1. a) We denote by and the volume and the center
of gravity of a triangle respectively. Denoting   the set of the
numbers of the neighbouring triangles to we denote by
the joint edge of We further denote by the mid-point of
and by the outward unit normal to in the direction of Moreover
we put: and
By we denote the piecewise constant approximant of
defined by
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b) If is a quantity assigned to an ordered pair of indices
with for we have

where and stand for the sum over all triangles of the
triangulation and over all edges of the triangulation, respectively.

Assumption 3.2. Throughout this contribution we will assume that
where are equalsided triangles with side length h.

This rather restrictive assumption is due to the technique used—see
Section 4. In view of this assumption we have

Let We will give a-priori error estimates of the
type (2.1) in case that is a solution of the discrete problem

with the discrete operator given by

The first term in (3.8) approximates the diffusion term while the

convective term div(bv) is approximated by
Here, stands for an upwind finite volume flux. The easiest choice of
its arguments,

converts the scheme (3.8) into a first order numerical scheme. We
will show that the more sophisticated definition of
namely using the MUSCL type reconstruction (see Definition 3.3) will
turn (3.8) into a second order numerical scheme. The higher order of
the scheme will be theoretically justified.

The upwind finite volume flux is, in general, any locally Lipschitz
continuous function, satisfying the following three basic properties:
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which are referred to as consistency, conservativity, and monotonicity of
the numerical flux respectively. (See [11] or [12] for more discussion
on general upwind finite volume numerical fluxes.) Moreover, due to
(3.10) and div we have that

It is quite natural to use upwind numerical fluxes to approximate
convective terms in the context of hyperbolic conservation laws. In
fact, the amount of numerical viscosity introduced by upwinding (which
is, from the point of view of a mathematician, encrypted in the
monotonicity condition (3.12)), corresponds to small artificial viscosity,
added to the original continuous problem. In view of this, solving
hyperbolic conservation laws by upwind finite volume method, means
solving the viscous parabolic perturbation of the original hyperbolic
problem with small viscosity parameter. It is therefore not surprising
that the convergence of upwind schemes to the weak entropy solution of
conservation law was proven in the beginning of 1990's. For more details
see [3], [10], [12].

Since in our case we still are dealing with equation containing just
a small diffusion parameter i.e., the equation in which convection
is dominating the diffusion, we are using the same idea of improving the
properties of numerical scheme by handling the convective term the same
way as it is natural in the case of conservation laws. Namely, we suggest
to use upwind finite volume discretization of the convective term. In
such a way, we therefore introduce an artificial viscosity, corresponding
to the parameter h of the grid, into the scheme. Of course, at least
from the intuitive point of view, since there is already viscous term in
our equation, with diffusion parameter the interplay between h and

will be important in our analysis. We will discuss this question more
carefully at the end of this section (see Remark 3.5 a)).

Throughout this contribution, we will be using a particular numerical
flux, namely the Engquist-Osher type upwind finite volume flux
defined by

It can be easily shown that (3.10)–(3.13) is satisfied by this particular
numerical flux.

In the following definition we will describe the MUSCL type
reconstruction function which introduces the higher order
approximation of the convective term into our considerations.
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Definition 3.3. Let be all neighbouring triangles to with
centers of gravity respectively. Let with

and for respectively. Let

be a plane passing through

be a plane passing through
be a plane passing through

Define an index i by

and put

If or we say that is a
local extremum. Let the coefficients . be such that

Then define

In what follows we state main result of this section as a theorem. It
concerns a-priori error estimate for the higher order scheme (3.6), (3.7),
(3.8), (3.18). The difficulties in proofs arise due to the nonlinearity of
the higher order part of the scheme (cf. (3.15)).

Theorem 3.4. Let be the
solution of (3.1), (3.2). Let be the solution of (3.6), (3.7), with the
discrete operator given by (3.8), (3.18). Denote

Then there exists a constant independent of  and h such that
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Remark 3.5. a) For the terms and we have the
following estimates (cf. [13]):

Employing these estimates, we obtain finally the desired estimate:

We see from (3.21) the interplay between h and The final estimate
is not uniform with respect to and therefore cannot be used to study
what happens when However, we see that for any
arbitrarily small but fixed, the convergence rate is of order in

—see (3.19)) norm, as
b) We need the exact solution to be more regular, namely we assume

Conditions under which if is a convex
domain, are given e.g. in [7]. The assumption implies

for instance if all angles in the corners of are less than
This together with Assumption 3.2 forces to be an equalsided

triangle.

4. THE SKETCH OF PROOF OF THE MAIN
THEOREM

To prove Theorem 3.4, we estimate the term

both from above and from below. Combining these two estimates, we
obtain the statement of Theorem 3.4. From the technical point of view,
we use the Bramble-Hilbert lemma (see for example [8]), which needs
all triangles to be equalsided. Furthermore, we employ the particular
form of both the Engquist-Osher numerical flux (cf. (3.14)) and the
reconstruction functional (cf. (3.18)). The latter information allows
us, among other, to develop the estimates

holding for all which control both size and the sign of the
reconstructed value The idea of “switching back to first order in
local extrema” (i.e., using (3.17)) plays an important role in the above
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presented estimates. We refer the reader to [13] for the details on these
estimates.

We proceed by formulating two basic lemmas and sketching their
proofs. Combining these two lemmas, one immediately gets the assertion
of Theorem 3.4. All main steps to follow the suggested strategy and
the technical details necessary to prove all statements of this particular
section can be found in [13].

Lemma 4.1. (Estimates from below) Under the assumptions of
Theorem 3-4 there exists a constant independent of and h such
that

Lemma 4.2. (Estimates from above) Under the assumptions of
Theorem 3.4 there exists a constant independent of and h such
that

Proof of Theorem 3.4: The assertion of the theorem follows
immediately from the assertions of Lemma 4.1 and Lemma 4.2.

An outline of the proof of Lemma 4.1: Using the fact that
and the definition of one can write

where
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We have straightforwardly that and
Therefore it remains to estimate . Using the definition

(3.14) of we can write

Then, using (3.18), we have

and similarly for Therefore,

Firstly, we have due to and In order
to estimate terms and we use the definition (3.18) to see that

and we proceed by discussing
the three possible cases: If and stencil of contains then

If and stencil of does not contain we
have

with

Finally, if then However, implies
that there is local extremum in Therefore, we have also in this case
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We conclude that in any case,

By similar considerations we get that

This particular part of the proof shows the way we employ the
information that “switching back to first order” (i.e., choosing
takes place only in local extrema.

In order to estimate (4.5), we use the Bramble-Hilbert technique. We
define

Using then the technique of the reference triangles and Bramble-Hilbert
lemma, we eventually obtain

with independent both of h and of the domain
The same estimate holds when replacing j by l and vice versa. Using
now (4.7) and Young inequality, we obtain

while (4.4) implies, in a similar way, that

Moreover, it can be shown that (cf. [13]) there is a constant c
independent of such that

This together with (4.2) and the fact that finishes the proof.

An outline of the proof of Lemma 4.2: We obtain, using the
convention (3.4), that
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It can be shown that there is a constant c independent of both h and
the domain such that (see [13] for the details)

With these estimates, the proof can be straightforwardly finished using
the Young inequality.

We refer the reader to [13] for the remaining technical details.

5. SOLVABILITY OF THE DISCRETE
PROBLEM

Even if the original continuous problem is linear, the discrete
problem (3.6), (3.7), (3.8) becomes nonlinear, since the MUSCL type
reconstruction (3.18) is used in the approximation of the convective
term. In this section we will be interested in questions of solvability
of the resulting nonlinear discrete equation (3.6).

One of the possibilities to attack the solvability question could be
the following result due to Deimling (cf. [4], Theorem 2): if A is
a continuous mapping such that

then A maps onto
In the following lemma we will show that the discrete operator

satisfies the coercivity condition (5.1). Therefore it is tempting to
proclaim the problem to be solved, using the above Deimling result.

Unfortunately, the result of Deimling cannot be used, since the
discrete operator is not continuous. We will show this fact
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by constructing an explicit Example 5.2 and discuss the difficulties
connected to this discontinuity later on. But first, for the sake of
completeness, let us formulate and prove Lemma 5.1.

Lemma 5.1. Let N be the number of triangles of and
an element of Defining the scalar product in as

we have

Therefore, satisfies (5.1), namely,

Proof: We obtain from (3.8) that

and therefore it remains to show that

We get that is equal to
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Now since

(see (4.1)), we can continue

which proves the lemma.

Example 5.2. The higher order discrete operator is not continuous.
We will demonstrate this fact by constructing an explicit example.
Let be a discrete function defined on the regular
triangulation All the values of are equal to zero, except the three
values where

Hence, (a) depends on the real parameter a.
The values of are chosen in such a way that the triangle

lying inside of has one of its sides parallel to the x-axis while is
its neighbour "to the left" and is its neighbour “to the right”. We
define the function of one real variable by

using (a) to evaluate the numerical flux on the right-hand side. We
put, for simplicity, for the purpose of these calculations. Then it
can be explicitly, though tediously, computed that

This shows that the operator is not continuous (cf. (3.8)).

The discontinuity of the operator implies that there is no hope to
prove the solvability of the discrete problem, at least in the general case.
Discontinuity produces “jumps” and therefore “the holes” in the range
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of the operator can occur, implying that there can be right-hand
sides for which the equation is not solvable.

Fortunately, at least partial result in this direction can be proven.
Namely, we can "estimate the size of holes in the range" showing that
to every right-hand side there is another function which
is “reasonably close” (in terms of h) to and for which the problem

is solvable.

Theorem 5.3. Let Consider the convection-diffusion
problem (3.1), (3.2). Let be the discrete right-hand
side of the discrete equation Then there exist such
that

and

where is independent of h and

Proof: Since we have Define

Then clearly Range Moreover we have

Using then the estimates (4.8)–(4.10), we see that there is a constant c
independent of both h and the domain such that

By the Cauchy-Schwartz inequality,
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and therefore, with

by (3.20), and the proof follows.
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FLOW OF SHEAR DEPENDENT
ELECTRORHEOLOGICAL FLUIDS:
UNSTEADY SPACE PERIODIC CASE

Michael

Abstract: We study the existence of weak and strong solutions to the unsteady and
steady system of partial differential equations with non-standard growth
conditions describing the flow of shear dependent electrorheological
fluids in the case of space periodic boundary conditions.

Keywords: Non-Newtonian fluid, weak and strong solutions, nonlinear elliptic and
parabolic system with non-standard growth.

1. FORMULATION OF THE PROBLEM AND
RESULTS

Electrorheological fluids are special viscous fluids, which are character-
ized by the ability to change dramatically their mechanical properties in
dependence on an applied electric field. This behaviour can be exploited
in many technological applications, as clutches, actuators, medical reha-
bilitation equipment and valves, to name a few.

Recently, Rajagopal, [9], [10] (see also [11]) have
developed a model which treats the electric field not as a given constant
but as a variable, which has to be determined. Thus this approach
takes into account the complicated interactions between the electro-
magnetic fields and the moving fluid, which have been neglected in
previous investigations. The starting point are the general balance
laws of thermodynamics and electrodynamics, which are simplified by
incorporating the physical properties of electrorheological fluids and
accomplishing a dimensional analysis and a subsequent approximation.

Applied Nonlinear Analysis, edited by Sequeira et al.

Kluwer Academic / Plenum Publishers, New York, 1999. 485
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The resulting system, which has to be completed by initial and
boundary conditions, reads

where1 E is the electric field, v the velocity, S the extra stress tensor,
the pressure, f the mechanical force and the constant dielectric

suspectibility. The material properties are modeled through the form of
the extra stress, which is assumed to

where is a such that

We require that the coefficients and the function p are such that the
operator induced by – div S(D,E) is coercive, i.e.

holds for all and uniformly monotone,
i.e.

is satisfied for all B,
The quasi-static Maxwell’s equations (1.1) are widely studied in the

literature and thus we will investigate in this paper the system (1.2)
only, in which E is assumed to be any given vector field, having certain
regularity properties. System (1.2) is completed by space periodic
boundary conditions and an initial condition

1Here and in the following we use the notation where the

summation convention over repeated indices is used. Moreover, we have divided equation
(1.2)1 by the constant density and adapted the notation appropriately.
2This form of the extra stress is a prototype for a class of models, which is capable to explain
many experimental observations (cf. Rajagopal, [9] or [11] for details).
3Conditions for and that ensure the validity of (1.5) and (1.6) can be found in
[11] Chapter 1.
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Before we state our results, we shall introduce some notation. Let
be a cube of given length L, and a given length of the time

interval We denote by and
the usual Lebesgue and Sobolev spaces of periodic

functions with mean value zero. The space of divergence free smooth
functions is denoted by The closure of in the and the

resp. is labeled H and resp. We use the notation
for Bochner spaces with values in some function space over

We also need Lebesgue and Sobolev spaces with variable exponents,
which are denoted by and respectively. For given

we define the modular

which can be used to define a norm on the generalized Lebesgue space

Generalized Sobolev spaces are defined analogously. We refer to
Rákosník [3] for a detailed treatment of these spaces.

For given we consider the system (1.2), where
S is given by (1.3), (1.4) and satisfies (1.5), (1.6), on the time-space
cylinder together with an initial condition

Then we have

Theorem 1.1. Let be a given cube and assume that
and

are given.
(i) Whenever

there exists a solution v of the problem (1.2), (1.7) such that

which satisfies (1.2) in the weak sense, i.e. for almost all and all
we have
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(ii) Moreover, if

there exists a unique solution of the problem (1.2), (1.7) with the
additional property.

The main problem in the proof of the previous theorem consists in
the identification of the limit

where is some approximate solution of (1.2). The method used here
is based on Vitali's convergence theorem and the almost everywhere
convergence of This basic idea was initiated by [8] and
developed in Málek, [5], [6], Bellout, Bloom,
[1], Málek, Rokyta, [4] to handle situations, when
monotonicity methods fail to identify the above limit. Theorem 1.1
contains the results in [5] as a special case (put and
thus shows that the basic idea is widely applicable. It is worth noticing
that unsteady problems for electrorheological fluids cannot be treated
with the help of monotonicity methods even for large due to the
non-standard growth of the governing system. Besides the results of the
author [11] it seems that Theorem 1.1 is the only result for parabolic
systems with non-standard growth and a nonlinear right-hand side.

The next section is devoted to the proof of Theorem 1.1. In the course
of this we can easily derive the following result for the steady system.

Theorem 1.2. Let be a given cube and assume that
and are given. Then there

exists a solution v of the steady problem (1.2) such that

which satisfies the steady version of (1.10), whenever

2. PROOF OF THEOREM 1.1

First we show the existence of solutions to the Galerkin approximation
of the system (1.2) and then we derive apriori estimates, which enable
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the limiting process in the weak formulation (1.10) in all terms except
the elliptic nonlinearity. In order to identify the limit also for this
term we derive an additional apriori estimate, which ensures the almost
everywhere convergence of and we can apply Vitali's convergence
theorem.

(i) Galerkin approximation and apriori estimates

Let be the eigenfunctions of the Stokes operator
i.e.,

The set forms a basis4 in the space which is orthonormal in
Let us denote by the orthogonal continuous projector of H onto

the linear hull of the first N eigenvectors We define

where the coefficients solve the so-called Galerkin system, for

which initial condition One easily checks that the
Galerkin system is solvable locally in time. The global solvability follows
from the following apriori estimate

where the constant c depends on To show this inequality we
multiply the r-th equation in (2.3) by and sum up, to obtain

4We refer to Constantin, Foias [2] for a discussion of the properties of the Stokes operator.
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From (1.5) and the pointwise inequalities

we deduce that the second term on the left-hand side of (2.5) is bounded
from below by

The terms on the right-hand side of (2.5) are bounded from above by

Estimate (2.4) follows from (2.5) and the previous estimates if we use
Korn's inequality and integrate over (0, T). Estimate (2.4) implies that

This information together with an appropriate estimate of which
will be proved later on, is sufficient to pass to the limit as in all
terms of (2.3) except the elliptic nonlinearity. In order to identify the
limiting element also for this term (cf. (1.13)) we need some additional
information, which we shall derive next.

(ii) Additional apriori estimates

Multiplying the r-th equation of (2.3) by where are the
eigenvalues of the Stokes operator, we easily obtain

Due to the space periodic boundary conditions we have that

and thus we compute
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From (1.6) follows that the second term on the right-hand side of (2.8)
is bounded from below by

The term plays an important role and thus we establish various
lower bounds.

Lemma 2.1. There are constants depending only on and p such that

Moreover, for and we have

Proof. One easily computes for

Choosing q such that and using the embedding

we easily conclude that

with which yields (2.11). For we use that

and (2.12) follows. In both cases we have used
Korn's inequality. Using the inequality
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which holds for all one deduces that, for s > 1,

which together with the embedding and the
equivalence of the with the -norm gives
(2.13). .

From (1.3) one easily computes that

Using (2.14) we can bound the first term on the right-hand side of (2.8)
by

The right-hand side of (2.10) is bounded by

while the second term on the right-hand side of (2.7) can be estimated
by (cf. the definition of and

From (2.7)–(2.10), (2.15)–(2.17) we therefore deduce (put q = 2 in (2.13)
and use Young's inequality for the last term in (2.17))
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For brevity we denote

From (1.4) and Korn's inequality we obtain that for all

Moreover we can rewrite (2.13), for as

and from (2.4) we see that

Using (2.19) and (2.21) in (2.18) yields

Let us distinguish the cases when (a)

In this case we see, using (2.20), that the right-hand side of (2.23) is
bounded from above by

In order to bound the of we use the following
interpolation inequalities

which hold for Using the splitting
and (2.20), (2.25) we obtain
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where we used Young's inequality with

Now we require that

which enables us to compute and This yields

Note, that and if

for s chosen appropriately near 1. Putting the above calculation together
we deduce from (2.23), (2.24) and (2.26)

where

Note, that we can chose arbitrarily small for Dividing(2.29)
by and integrating over (0, t) yields

where and where we used the notation (2.22). Taking the
supremum over we obtain that

is bounded in

and consequently also (cf. (2.12), (2.19), (2.20))

is bounded in
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In this case we also have to handle the first term on the right-hand
side of (2.23). We have the interpolation inequalities

and thus we obtain using (2.20)

where we used Young's inequality with

If we now require

we can compute and We obtain

and one sees that and if Prom (2.23)-
(2.30) and (2.34)-(2.36) we conclude

with
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We used that can be chosen arbitrarily small. Dividing (2.37) by
and integrating over (0, t) yields5

where The first term in (2.39) gives only an information
if which is equivalent to the requirement

which is the lower bound in the second part of Theorem 1.1. If (2.40) is
satisfied we again obtain (2.32), (2.33) as in the case (a). In the other
case, i.e. the first term in (2.39) is negative, but it can be
moved to the right-hand side and estimated there by In this
case we obtain from (2.39) that

In order to derive the final estimate, which we need, we must distinguish
the following two cases

Using estimate (2.41) and inequality (2.12) we show that, for

Indeed, the quantity on the left-hand side of (2.42) is bounded by

provided that and

5Note, that the first term in (2.39) should be replaced by In
us have this in mind in all following considerations.
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which immediately gives the above formula for To proceed further we
use the interpolation inequality

which holds for and We chose
and compute that, using (2.4) and (2.42),

provided that

which implies that is given by The estimate (2.43)
implies that

is bounded in

where

We proceed similarly as in the case and show that, for

Since we want that the lower bound for in case (i) of Theorem
1.1 appears. Using (2.11) we have

The interpolation inequality
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together with the embedding implies that

provided that

which implies the above formula for The estimate (2.46) now follows
from (2.47), (2.48) and (2.41) since

holds exactly if From (2.46) and the interpolation inequality

which holds for we deduce as in the case
that

provided that

Therefore we obtain also in the case the information
(2.44), with and q now satisfying (2.49). Now, it remains to derive
estimates for in order to conclude our proof.

(iii) Estimate of the time derivative

Let us start with some observations for the Stokes operator and the
projection We define the operator
with domain of definition



Flow of electrorheological fluids 499

Note, that for space periodic boundary conditions we can characterize
In the following we shall need the inequality

In order to show this we first realize that for

(2.51)

which follows easily from the definition of and Moreover, based
on the regularity properties of the Stokes system one can show that for
all

The crucial point in (2.52) is that for holds

where we used the definition of and that is
valid for space periodic boundary conditions. The second inequality in
(2.52) is trivial. Now, (2.50) follows, since

where we used (2.51), the continuity of and (2.52).
Since we have different information in the cases and

we distinguish these two cases.

From the Galerkin system (2.3) we obtain for all

Using the embedding we easily see that

Moreover, we have
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provided that

which gives the upper bound in the first part of the theorem. For the
remaining term we get

From (2.53)-(2.57), (2.4) and the assumptions on the data we conclude
that

is bounded in

provided

In this case we can also use (2.32), (2.33), which implies via the
interpolation of between that

is bounded in

The terms and in (2.53) are treated as in the case For the
remaining term we have

where we used Hölder’s inequality with Note, that
for which is the upper bound in the second part of the
theorem. Therefore, we obtain from (2.7), (2.54), (2.61), (2.57), (2.60)
and (2.4) that (2.58) holds with

(iv) Limiting process

In the preceding paragraphs we have shown that our sequence of
Galerkin solutions fulfills (2.6), (2.58), (2.59) resp. (2.62). Moreover,
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we have that (2.44), (2.45) resp. (2.49) is satisfied for
and that (2.32), (2.33) and (2.60) hold for This information
implies that we can chose a subsequence, still labeled such that

where the last line is a consequence of (2.6), (2.58) and the Aubin-Lions
lemma. In the case we additionally can ensure that

The convergence indicated in (2.63) is sufficient for the limiting process
in all terms of the weak formulation of (1.2), which holds for

all

except the nonlinear extra stress tensor. The details are omitted here,
since the treatment is exactly the same as in the case of generalized
Newtonian fluids (cf. Málek, Rokyta, [4] Sections 5.2,
5.3). Finally, from (2.44), (2.45) resp. (2.49) in the case (9/5,11/5)
and (2.32) in the case the Aubin-Lions lemma and the
compact embedding

resp.

we deduce that

strongly in

where with r given by (2.45) resp. (2.49).
This in turn implies that almost everywhere in and thus
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Moreover, we have that for all measurable sets

with s given in (2.59) resp. (2.62). Vitali’s convergence theorem together
with (2.66) and (2.67) yields that also the limiting element for the
nonlinear extra stress tensor can be identified (cf. (1.13)). Finally, one
deduces from (2.65) the weak formulation (1.10) in a standard way. The
uniqueness in the second part of Theorem 1.1 follows exactly as in the
case of generalized Newtonian fluids (cf. Malek, Rokyta,
[4]). The proof of Theorem 1.1 is finished.

(v) Steady case

The proof in this situation follows the lines indicated in the previous
paragraphs with considerable simplifications due to the fact that we do
not have to guard the time integrability. Let us outline the basic steps
of the proof of Theorem 1.2. Again we consider a solution of the
Galerkin system for the steady system

The energy estimate now reads (cf. (2.4))

which implies that

Proceeding exactly as in the derivation of (2.23) we obtain

where To obtain the
desired information from (2.71) is now easier, since we do not need to



Flow of electrorheological fluids 503

split the powers in the terms on the right-hand side into We
distinguish again the cases (a)

We obtain using (2.24), (2.25)1, (2.69) and (2.20) that the right-hand
side of (2.71) is bounded by

For s (1,5/3) the right-hand side in this inequality can be absorbed
in the left-hand side of (2.71) and thus we obtain

which implies that (cf. Lemma 2.1)

In this case we treat the second term on the right-hand side of (2.71)
as in the case (a) and the first term we bound using (2.34)1, (2.20). Thus
we have

The exponents on the right-hand side are smaller than 1 if

which gives the lower bound in Theorem 1.2. Thus we obtain also in
this case that (2.72) and (2.73) hold. From (2.70) and (2.73) we deduce,
that we can choose a subsequence such that

This information is sufficient for the limiting process in all terms in
the weak formulation of the steady problem (2.68) if we can show the
analogue of (2.67). Indeed, for all measurable sets we have
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provided that

which is the upper bound from the theorem. The proof of Theorem 1.2
is finished.
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ON DECAY OF SOLUTIONS
TO THE NAVIER-STOKES EQUATIONS

Maria Elena Schonbek

Abstract: We first recall results on space-time decay of solutions to the Navier-
Stokes equation in the whole space which were developed in [9]
and [1]. Next we give an example of a solution with radial vorticity to
the Navier-Stokes equations in 2D, where the space-time decay rate can
be computed explicitly.

Keywords: Navier-Stokes equations, space-time decay in solutions with radial
vorticity in

1. INTRODUCTION
In this note we discuss the pointwise space time decay of solutions to

the Navier-Stokes equations in the whole space We
present some results that show the interplay between the space and time
decay of the solutions and give an example of an explicit solution were
this relation is clear. This kind of interplay is already present at the
level of the solutions to the Heat equation. In particular for the Heat
kernel sharp rates can be established.

The space time decay for solutions to the Navier-Stokes equations is
algebraic and seems not to be as fast as for the heat kernel itself. This
raises questions of what causes the loss of decay. The proofs developed
in [1] and [9] for solutions to the Navier-Stokes equations will naturally
also work for solutions to the Heat equation. The question stands if
for solutions to the Heat equations and solutions to the Navier-Stokes
equations depending on the data one could refine our results to obtain
faster decay. The example we give at the end seems to indicate that this
rates could be optimal.

We present only the results. For details on the proofs we refer the
reader to our joint papers with T. P. Schonbek [9] and with Amrouche,
Girault and T.P. Schonbek[l]. Questions of time decay of solutions
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to the Navier-Stokes equations in different norms have been studied,
among many others, by R. Kajikiya and T. Miyakawa [2], T. Kato [3],
H. Kozono [4], H. Kozono and T. Ogawa [5], M.E. Schonbek [7], [8], M.
Wiegner [13], and Zhang-Linghai [14]. In the direction of space-time
decay of particular interest in the are the results by Takahashi [12].
In this reference, Takahashi studies the pointwise decay in space and
time of the solutions, and their first derivatives, to the Navier-Stokes
equations with zero initial data and an external force which decays at
an algebraic rate in both space and time. In our case the data is nonzero
and the external force vanishes. Our results follow by moment estimates
combined with a Gagliardo-Nirenberg estimate. Specifically in [1] we
show that strong solutions to the Navier-Stokes equations with data in
appropriate spaces for

where and where
is the time rate of decay of the solution. We recall that this decay
depends only on norms of the data [6], [7], [13].

In this paper we first recall the results obtained in the papers we
mention above, the we discuss questions of optimality related to the
rates we obtained. Finally we analyze an explicit example. This example
is a solution to the Navier-Stokes in 2 dimensions with radial vorticity,
which turns out to be simultaneously a solution to the Heat equation,
[10] with very special data which depends on the initial vorticity.
Extensions of these types of solutions can be constructed in all even
space dimensions [10].

We use the notation
Let be a multi-index with

where

and

For any integer we set
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where The norm (or energy norm) will be denoted
by

where More generally we denote the norm for
by

and the norm by

The norm is defined by

For we define the moments

and in particular for we define the moment of order s of u
by

2. POINTWISE DECAY
The main difficulty in establishing spatial-time decay is to obtain

a time independent estimate for the moments of the solution and their
derivatives. In the presence of such a bound the time decay of the
moments is straightforward. Once the estimates on the moments are
established we use a Gagliardo-Nirenberg’s estimate to obtain an
algebraic time decay for From where
the space time decay will follow. Specifically we use Gagliardo-Nirenberg
inequality to show

We note that the norms on the right are nothing else than
energy norms of the moments of the solution and the moments of their
derivatives. Thus the decay is a consequence of the following theorem.
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For its statement, we need to introduce the real numbers v, q, r and
which satisfy the relations

Theorem 2.1. Let as above.
Let u be a strong solution of the Navier-Stokes equations with data

satisfying

Then

for

Proof. For a proof we refer the reader to [1]. As remarked above that the
main step in this proof is a uniform bound on the moments of the solution
and derivatives. The decay will follow by an appropriately chosen Hölder
inequality.

This theorem combined with (2.1) yields

Theorem 2.2. Let We retain the assumptions of the
last theorem and we consider a strong solution u of the Navier-Stokes
equations with data Let Then

where

Proof. See [1] and [9]. The restriction to dimensions n = 2,3,4,5
is due to the fact that we are using decay results for the derivatives
of the solutions to Navier-Stokes which were established under those
conditions, [11].

3. QUESTIONS ON OPTIMALITY OF THE
DECAY

In order to understand the interplay between the time and space decay
of our solutions we compare the situation with solutions to the Heat
equation. In particular we first recall the behavior of the Heat Kernel.
It is easy to show that the fundamental solution of the Heat equation,
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has the following asymptotic behavior:

where a + 2b = n + m, with The proof of the last fact follows
by a simple induction argument on the order of derivation. On the other
hand depending on the data, solutions to the Heat equation will decay
at different algebraic order. If the data is compact it is easy to show
that the solution decays at the same rates as the Heat Kernel. On the
other extreme if the data is constant there is no decay. A simplified
version of the proofs used for solutions to the Navier-Stokes equations
can also be used for solutions to the Heat equation. The question that
remains is if given appropriate data this decay rate for the solutions
to the Navier-Stokes equations can be improved. Even if the data is
compact our method will only show the decay obtained in Theorem 2.2.

For solutions to the Navier-Stokes equations, the interplay between
the time and space decay can be described as follows. Let
be such that

Note that such type of decay in the norm can be obtained easily
when the appropriate data is given. See [6], [7], [13].

The relation that holds between the space and time decay which
follows by Theorem 2.2 is

For k = 0, we recover the same decay of the Heat equation, but
this only gives decay in time, [11]. If m = 0 we have the relation

the decay improves since
To have the same interplay between the space and time decay

as for the Heat Kernel,

we would need and this would imply that as
Since determines the order of the time decay of the

norm of the solution, this would be equivalent to require that there is
exponential time decay for the solutions. The above comments leave
open the question of optimality of the decay rates.

4. A SPECIAL EXAMPLE

We will first give an example in two spatial dimensions and then
mention how to extend it to all even spatial dimensions. The main



510 Schonbek M. E.

purpose of this 2D example is to show explicitly the interplay between
the time and space decay. In this case we compute directly the space-
time decay of the solution and show that it agrees with the one obtained
in the general theorem. We are going to require less conditions on the
data and thus our resulting decay will only be for the solution and not
for the derivatives.

Let u(x,t) be a solution to the 2-D Navier-Stokes equation with radial
vorticity. Suppose that Let

It is well known that a solution can be
expressed as

where is the vorticity and

One can show that in this case the nonlinear term of the solution
is a gradient of some function p. (See [10]). Thus u is a solution to both
the Navier-Stokes equation and the Heat equation with data

We can bound the solution pointwise in the following manner.
Let then

Now let then the right hand side of equation (4.1) can be
bounded as follows

Combining equations (4.1) and (4.2) yields
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Since is the radial vorticity of a solution to the 2D Navier-Stokes
equation it satisfies the Heat equation, which in our case has data in

Thus we know that the vorticity is bounded in since
Moreover since the data it follows that
decays in at a rate of with Thus estimate
(4.3) yields

From the last equation we have a clear interplay between the time
and space decay. Moreover we can check the relation we had obtained in
(3.1). In our case we have and (3.1) thus reduces
to

This relation holds in our example, since we have
and thus the last relation translates for into

which follows by the definition of

To extend this example to all even dimensions we use the solution
constructed in [10]. We quote the theorem that gives the extension.

Theorem 4.1. Suppose n is even and let 1.
such that the function is a solution of the Heat equation

is an matrix with real entries such that

for some

Then the function satisfies
a)
b) There exists a function p such that (u,p) is a solution to the

incompressible Navier-Stokes equations.

Proof. See [10].

We note that the matrix A will be an and will have block in
the diagonal of order which will coincide with the block for the 2D
case. The rest of the matrix will have zeroes.
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Since the solutions constructed in Theorem 4.1 is of similar structure
as the 2D solutions with radial vorticity one can compute the space-time
decay as in the example above.
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CONVEXITY CONDITIONS FOR
ROTATIONALLY INVARIANT
FUNCTIONS IN TWO DIMENSIONS

Miloslav

Abstract: Rotationally invariant functions can be represented as functions of the
(signed) singular values of their tensor arguments. In two dimensions,
the paper expresses the ordinary convexity, polyconvexity, and rank
1 convexity of the rotationally invariant function in terms of its
representation, with the emphasis on the functions invariant only with
respect to the proper orthogonal group.

Keywords: Rank one convexity, isotropy, stored energies.

1. INTRODUCTION

Let L denote the set of all second-order tensors on a two-dimensional
space, which may be identified with the set of all 2 by 2 matrices.
A function is said to be rotationally invariant
(briefly, invariant) if for every and every Q, R proper orthogonal
tensors we have and

The representation theorem for invariant functions (Proposition 2.1) says
that

where are the signed singular values of A, defined as the
eigenvalues of if det and as
if det and where f is a function defined on a suitable domain

symmetric, and even if The function f is fully invariant
if (1.1) holds for every orthogonal Q, R, even improper. To distinguish an
invariant function from a fully invariant one, the term proper invariant
is used for the former occasionally.

Applied Nonlinear Analysis, edited by Sequeira et al.

Kluwer Academic / Plenum Publishers, New York, 1999. 513



514 M.

The paper gives equivalent conditions for the convexity, polyconvexity,
and rank 1 convexity of f in terms of when either the set
of all second-order tensors with positive determinant, or The
reader is referred to [4] or [11] for the motivations of these concepts in
the calculus of variations and elasticity; the definitions are given below.
The reader is also referred to [6] for treating the convexity conditions of
proper invariant functions.

In Section 3, necessary and sufficient conditions are given in terms
of for f to be convex. The case and f fully invariant is
well known (see [3; Theorem 5.1]), the case is the content
of [11; Proposition 18.3.5(2)], and thus only the case and f
proper invariant is proved here. In Section 4 a necessary and sufficient
condition for f to be globally polyconvex is given, which is less restrictive
than BALL’S [3] sufficient condition. The difference is connected with
the distinction between invariant and fully invariant functions (see the
remark following Proposition 4.2). For invariant functions f on
the condition equivalent to the rank 1 convexity in terms of has been
given by AUBERT [1], and this condition is extended in Section 5 to
include the cases and f proper invariant or f fully invariant. The
form is somewhat different from AUBERT’S; see (5.16).

One might be tempted to think that the rank 1 convexity translates
into the ordinary convexity provided appropriate variables are used. The
results of Section 6 show that this is (only) partly true. Namely, it
turns out that (5.16) in the case simplifies into the ordinary
convexity in terms of (but
only on a certain angle with vertex at x, see Figure 1). The case

in (5.16) translates into the ordinary convexity in terms of
(again only on a certain angle

with vertex at y, see Figure 2). One is thus led to consider simultaneously
two more representations For the
global rank 1 convexity this gives a rather satisfactory result: the
global rank 1 convexity translates into following three conditions, to be
satisfied simultaneously: (1) the Baker-Ericksen inequality, (2) ordinary
convexity of along specific lines in the domain of definition of
and (3) ordinary convexity of along specific lines in the domain of
definition of

To simplify the treatment, it is mostly assumed that the functions are
continuously differentiable, only where the differentiability is not under
control, less stringent assumptions are made. Most of the results can be
generalized to functions with lower degree of smoothness.
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2. SIGNED SINGULAR VALUES
Throughout, direct vector and tensor notation is used [11]. The

symbol V denotes a 2-dimensional real vector space with scalar product
u · v. We write A second-order tensor A is
a linear transformation on V with the product AB of two second order
tensors the composition of the transformations. The scalar product of
tensors is defined by and the associated euclidean
norm is denoted In addition to the terminology and notation
of Introduction, S and denote the sets of symmetric and positive
definite symmetric tensors, respectively, is the unit sphere in V and

We furthermore denote by the
nonnegative (positive) half-axis; have obvious meanings.
The direct notation is used for the derivatives of real-valued functions
f on an open subset U of L; for the derivative is in
L. We use the index notation for the partial derivatives of a real-valued
function on on an open subset U of

We denote by the ordered pair of singular values and
by the ordered pair of signed singular values of

respectively, as defined in Introduction. If we say that are the
signed singular values of A it is always understood that The
same convention applies to the (ordinary) singular values.

Let denote the linear transformation
An is said to be symmetric if P(D) = D

and for every f is said to be even if for every
also and for every f is said to

be fully even if it is even and for every also and

2.1 Proposition. Let or , be an
invariant function. Then there exists a unique where

if and if such that the following two
conditions hold:
(1) for every we have where are the signed

singular values of A;
(2)     is symmetric if is symmetric and even if
The function f satisfying (1), (2) has the following additional properties:
(3)  If  then f is fully invariant if and only if is fully even;
(4)  If f is continuously differentiable then is continuously differen-

tiable; if where then and
where

The function is called the representation of f.
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Proof. In the case this is the familiar representation
theorem for objective-isotropic functions, see, e.g., [11; Chapter 8], and
a generalization to is immediate. D

3. INVARIANT CONVEX FUNCTIONS
a function on a possibly nonconvex subset D of

a finite-dimensional real vector space X. The vector is said to be
a subgradient

for The function f is said to be convex on D if f
has a convex extension to a convex hull co(D) of D.
A necessary and sufficient condition that f is a convex function is that
f has a subgradient at every point x of D.

3.1 Proposition. Let be a symmetric convex function.
A necessary and sufficient condition that f have a convex, symmetric,
and even is that for there exists
a subgradient of f at such that

Proof. The necessity: Let s be a subgradient of the extension of f at
Setting in (3.1) we obtain (3.2). Sufficiency:

Assume that (3.2) holds. denote by
the even extension of f and prove that f is a convex function

on a nonconvex domain. The convexity inequality

holds as a consequence of the hypothesis on f. To prove (3.3)
when , let and note

using (3.2) and The even character of implies (3.3) also
for any and Let be the lower convex
hull of f which is an extension of and hence also of f since is convex
on D. One easily finds that is symmetric and even as a consequence
of the properties of
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3.2 Proposition. Let be an invariant continuously
differentiable function and its representation. Then f is convex if
and only if is convex.

By mollification, the result holds also without the continuous differentia-
bility assumption. If f is convex, then as a consequence of the convexity,
symmetry, and even nature of satisfy

at every if additionally f is fully invariant then is fully even
and

Proof. That the convexity of f implies the convexity of is immediate.
Assume that and verify that

for every By the invariance it suffices to consider the case when
is symmetric with the eigenvalues Let be the signed

singular values of G and set hence
As we have If both these inequalities
are strict, then (3.4) imply

if any of the inequalities is nonstrict, then (3.7)
still holds by continuity. We have generally that if (3.7) holds then

If then s are the
(ordinary) singular values of A, S, respectively and (3.8) follows from
the trace inequality of von Neumann (see [3; Lemmas 5.1 & 5.2]). (ii)
If then where is proper orthogonal,

and are the ordered eigenvalues of V. Hence
and the inequality is the content of the direct implication
of [11; Proposition 18.3.2(2)]. (iii) the case is treated
similarly. By (3.8),

and the last term is nonnegative by the convexity of f.

3.3 Proposition. Let be an invariant function and
its representation. Then f is convex if and only if

is convex and for every there exists a subgradient s of
at such that (3.7) hold.

The result is a specialization of [11; Proposition 18.3.5(2)] to the case
dim
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4. INVARIANT POLYCONVEX FUNCTIONS
A function where is said to be polyconvex at

if there exists and such that

for every where The function f is said to
be polyconvex if it is polyconvex at every point of its domain. If f is
differentiable at F, one obtains

where If additionally f is invariant with the
representation f and has the eigenvalues
then U and S are diagonal in the basis of eigenvectors of U and (4.2)
implies that also C is diagonal. Denoting

we have

4.1 Proposition. Let where or be
an invariant continuously differentiable function with the representation

where if and if let
have the signed singular values and let Then f
is polyconvex at F if and only if there exists a constant satisfying

such that

for every where If additionally f is fully invariant,
then (4.5) implies that

can be rewritten as

As a consequence we have the Baker-Ericksen inequality

Proof. It suffices to consider the case symmetric with eigenvalues
Let f be polyconvex at U; the discussion preceding the proposition

shows that C in (4.1) is diagonal with diagonal elements let finally
c be as in (4.1). Testing (4.1) on
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and using that one finds that
respectively. We have

as a consequence of If the first or the second of these inequalities
is strict then

respectively and (4.3) gives (4.4). If if or then
(4.4) holds again by the symmetry of the first derivatives of symmetric
functions. Let set and write (4.1) for this G to
obtain

Using (4.3), this can be rewritten as (4.5), which completes the proof of
the direct implication. Conversely, assume that there exists a c such that
(4.4) and (4.5) hold. Defining by (4.3) we find that (4.4) imply
(4.8); moreover (4.5) may be rewritten as (4.9). Define and
prove (4.1). Given with singular values (3.8) and (4.8) say

and

This completes the proof of the main statement. If additionally f is fully
invariant, then the application of (4.5) to leads to
Inequality is proved similarly. D

Let us now proceed to the global polyconvexity. Let
be polyconvex, define and

by If and C, c are as
in (4.1), then is a subgradient of g at (F,detF), and hence
g is a convex function on a nonconvex domain. Thus g has a convex
extension where Z is the convex hull of V. Hence the function
f is polyconvex if and only if there exists a convex function
defined on the convex hull of V such that for every

If then and if then (see
[3; Theorem 4.3]).

4.2 Proposition. Let where or be an
invariant continuously differentiable function. Then f is polyconvex if
and only if there exists a convex function where if

and if such that the following three conditions
hold simultaneously:

for every furthermore, if
then for every
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(2) for every where are the signed
singular values of F;

(3) then at every ' has a subgradient
satisfying (3.2).

In the case BALL [3; Theorem 5.2] gave a sufficient condition for
polyconvexity which amounts to (l)-(3) above with (3.2) strengthened
to assert that

Proof. Let f be polyconvex, let , V be as in the discussion preceding
the proposition, and let be the lower convex hull of
which by the polyconvexity hypothesis is an extension of Hence

One easily finds that is an invariant
function depending parametrically on Moreover, h is convex. The
invariant function has by Proposition 2.1 a representation

where if and if
such that for each where

are the signed singular values of F, and is symmetric and
even with respect to the first two arguments. be the
restriction of and if Then is convex
and satisfies (l)-(3). Here the convexity of and (3) follow from the
convexity of h and Proposition 3.3 if and from Proposition
3.2 if U = L, using that (3) is vacuous in this case. It is also noted
that the validity of Propositions 3.3 and 3.2 extends to the present case
of convex functions depending jointly on F and the scalar parameter
Furthermore, (1) is implied by the representation theorem and (2) follows
from the construction. Assume conversely that there exists a convex

function satisfying (l)-(3) and prove that f is polyconvex.
one first extends into a convex, symmetric and even function

using Proposition 3.1. Here the symmetry and the
even nature concerns the dependence on the first two arguments when
the third is held fixed (as in (1)) while the convexity is joint with respect
to all arguments. It is again noted that Proposition 3.1 extends to the
present case. If set The function defines, via the
representation theorem 2.1, a function which is invariant
(with respect to the first argument) and convex by Proposition 3.2.
This function satisfies for every and thus
f  is  polyconvex.
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5.       INVARIANT RANK 1 CONVEX
FUNCTIONS

Throughout the rest of the paper, we set
where have the current

local meaning specified by the surrounding text.

5.1 Remark. Let have the eigenvalues let
V, set and let Then are the signed
singular values of F if and only if

Proof. Equation is immediate. Evaluating one finds
and the Cayley-Hamilton theorem

gives This gives The converse
implication follows by reversing the steps in the above argument.

5.2 Remark. Let have the eigenvalues Then
are the signed singular values of some rank 1 perturbation of U if and
only if

This is well-known [2]. The set of satisfying (5.2) is the union
of the two shaded regions in Figures l(a) and 2(a).

We shall now exhibit special rank 1 perturbations.

5.3 Proposition. Let have the eigenvalues let
satisfy inequalities (5.2), set

and let (a, n) be any pair of vectors satisfying
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and

where denote the components of n in any basis of eigenvectors of
U. Then has the signed singular values

It is a part of the assertion that the denominators in (5.4)-(5.6)
are nonzero, that the expressions giving the squares of are
nonnegative, and that these expressions give a unit vector. Note, e.g.,
that if then (5.2) implies that hence

moreover, combining with we find that
Inequality implies that only (5.6) applies in this case, and thus
the formulas (5.4) with vanishing denominators do not intervene.

Proof. The proof is left to the reader. See also [13; Section 4] for the
analogue if n = dim V is arbitrary.

5.4 Lemma. Let have the eigenvalues let
satisfy inequalities (5.2), and set

Then

where If the maximum is realized on any pair
described in Proposition 5.3.

That the denominator in (5.8) is nonzero is part of the assertion: if
then the cannot occur as a consequence of

(5.2). We denote by the right-hand side of (5.8) considered as
function of arising from those which satisfy (5.2).
Proof. By Remark 5.1, M is the maximum of a · n over all
which satisfy (5.1). Let us first prove that

and if additionally then also
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for every satisfying (5.1). Taking the square of

and combining with we obtain (5.9). To prove (5.10), we
prove preliminarily

where in the basis of eigenvectors of provided
The constraint equation can be written in the following

two equivalent forms:

from which

Eliminating a · n via (5.11) we obtain

Combining with and taking the square root gives
which yields (5.12). An elimination of â · n

from (5.13) via (5.12) leads to (5.10). Combining inequalities (5.9) and
(5.10) with the definition of R, we see that we have proved that
is an upper bound for M. A calculation that is left to the reader shows
that this bound is attained on any pair (a, n) of vectors described in
Proposition 5.3.

A continuously differentiable function defined on an open
subset U of L is said to be rank 1 convex at

for every such that here The
function f is said to be rank 1 convex if it is rank 1 convex at every
point of its domain.

5.5 Proposition. Let where or
be a continuously differentiable invariant function and
its representation, where if and if

Let have the signed singular values and set
Then f is rank 1 convex at F if and only if the

following two conditions hold simultaneously:
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we have the inequality

where

5.6 Remarks.
(1) The case is due to AUBERT [1; Theorems 3.1 &

3.2].
(2) As in Proposition 5.3 and Lemma 5.4, the expressions with vanishing

denominators in (5.16) never intervene because of the constraints
imposed on by (5.15).

(3) If (5.16) can be written equivalently

If we have from and the second and
the third cases of (5.16) give

where If which can happen only if
U = L, then and (5.16) reduces to

where If  and hence inequalities (5.15)
imply and (5.16) reduces to

(4) Higher dimensional generalizations of Proposition 5.5 are treated in
[13].

Proof. It suffices to consider the case when F = U is symmetric with
eigenvalues Let f be rank 1 convex at U. (1): The Baker-Ericksen
inequality is well-known, see, satisfy (5.15),
and let us apply the rank 1 convexity inequality

to any a, n such that has the signed singular values The
invariance of f ensures that the left-hand side of (5.19) is constant and
equal Taking the maximum over all a, n we are led to
the maximum
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Assume first that In the basis of eigenvectors of U we have
and one finds that

where we have used (5.1)2. Since the coefficient in front of a · n is
nonnegative by (1), we have

where M is given by (5.7), and Lemma 5.4 leads to the left-hand side
of (5.16), which completes the proof of (2) in this case. If finally

invoking
Lemma 5.4, we find that (5.16) again holds (cf. the text preceding the
proof). This completes the proof of the direct implication. The converse
implication is proved by reversing the direction of the arguments.

For fully invariant functions on L the rank 1 convexity implies that
and if this is known, it suffices to verify (5.16) only

on the nonnegative part of the space of signed singular values:

5.7 Proposition. be a continuously differentiable fully
invariant function its representation. have
the (ordinary) singular values and let
Then f is rank 1 convex at F if and only if the following three conditions
hold simultaneously:

inequality (5.16) holds.
If det then equivalently f is rank 1 convex at F if and only if the
restriction of is rank 1 convex and Item (1) above holds.

Proof. Let first det and prove the equivalent assertion at the
end of the proposition. In view of the full invariance it suffices to treat
the case Let f be rank 1 convex at U and prove (1).
In the basis of eigenvectors of U we have and let
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Note that G is a rank 1 perturbation of U (with
negative determinant), the full invariance implies that and
the rank 1 convexity inequality (5.14) The inequality
is proved similarly. Let now the restriction of be rank 1 convex at
U, let (1) hold and prove that f is rank 1 convex at U. By hypothesis, the
rank 1 convexity inequality (5.19) holds for all rank 1 perturbations of

with positive determinant. Assume that is a rank
1 perturbation of U with negative determinant and with the singular

Let a be given by Then
is a rank 1 perturbation of U with positive determinant and

with the singular The full invariance gives
We have

and hence
which proves the rank 1 convexity inequality for the rank 1 perturbations
with negative determinant. Finally, the rank 1 perturbations with
determinant 0 are obtained as limits.

6. RANK 1 CONVEXITY IN TERMS OF
INVARIANTS

The are called the invariants of and the are
called the signed invariants of in this paper. The map

bijectively onto where

with the where

maps the intersection with the upper
(lower) halfplane to the intersection with the upper (lower)
halfplane. The Jacobian
and fails to be a local diffeomorphism on the lines

on the boundary Because of the
specific form of (6.1), map the horizontal and vertical line segments
in to line segments in
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Let and satisfy We denote by
the union of all straight lines through x whose slope s satisfies

Recall from Proposition 5.5 the sets of signed singular
values of the rank 1 perturbations of a given tensor and the subsets of
this set satisfying and respectively. The following
lemma, whose immediate proof is omitted, determines the images of
these sets under

6.1 Lemma. Let and denote

where

Then

See Figures 1 and 2. The boundary of consists of the two
tangents to the parabola which pass through
x. The boundary of consists of the two tangents to

which pass through y.
Let where be a continuously differentiable

invariant function with the representation where
or , respectively. We introduce two more representations

of f in terms of the invariants and the signed
invariants

for every where are given by (6.1) and

and
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The mappings have their Jacobians different from 0 everywhere in
except on the lines on the boundary
of Thus the continuous differentiability of implies the continuous
differentiability of in the interior of , and a calculation gives

at the points related by where The formulas are meaningful
everywhere except the lines where the Jacobian of vanishes.
We extend the meaning of the partial derivatives of to interpret
them consistently as the usual partial derivatives in the interiors of the
domains of definition of and as the expressions given by (6.5) on
those parts of the boundary of the domains of definition of where
the formulas are meaningful. Note also that if U = L then f is fully
invariant if and only if for every

6.2 Proposition. Let where be
a continuously differentiable invariant function with
introduced above (see (6.1)–(6.4)), let have the signed singular
values , and let x, y be given by (6.1). Then f is rank 1 convex at F if
and only if the following three conditions hold simultaneously:

then equivalently if
then equivalently,
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then (2) is not in force, while the derivatives
must be interpreted in the sense of (6.5) in this case; in
then (3) is not in force while the derivatives of in (2) must again be
interpreted in the sense of (6.5).

Proof. This is just a reformulation of Proposition 5.5 using (6.5) and
Lemma 6.1.

Let us now proceed to the conditions of global rank 1 convexity in
terms of the representations

6.3 Lemma. Consider the straight line L given parametrically by

where are constants. Then

6.4 Proposition.
a continuously differentiable invariant function with
introduced above (see (6.1)–(6.4)). Then f is rank 1 convex if and only
if the following three conditions hold simultaneously:

If, moreover, U = L  and f is fully invariant, then conditions (2) and
(3) are equivalent and thus f is rank 1 convex if and only if conditions
(1) and (2) above hold.

By Lemma 6.3, the lines L in (2), (3) are exactly those which do
not intersect the parabolas
respectively; they can at most touch them tangentially.
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Other characterizations of global rank 1 convexity as a convexity
condition (in different representations) are given in [5; Proposition 1.1]
and [10; Proposition 4.1].

Proof. This follows from Proposition 6.2 and Lemma 6.3.

Remark. The preprint [12] was written without knowing the paper of
AUBERT [1], to which I would have referred had I seen it in time. Since
this work was completed, I became aware of a related work by ROSAKIS
[9] which contains the special case of Proposition 4.2 with
without the continuous differentiability assumption and Proposition
3.2 for arbitrary dimension without the continuous differentiability
assumption.
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HÖLDER CONTINUITY OF WEAK
SOLUTIONS TO CERTAIN NONLINEAR
PARABOLIC SYSTEMS IN TWO SPACE
DIMENSIONS

Joerg Wolf

Abstract:  In the present paper we prove the Hölder continuity of weak solutions
to a nonlinear parabolic system in two space dimensions

where the coefficients
are measurable in x, continuous in t, and Lipschitz

continuous in whereas the right hand side satisfies the controlled
growth condition.

Keywords: Nonlinear parabolic systems, controlled growth, Holder continuity.

1. INTRODUCTION
Let be an open and bounded set. Given

we denote the cylinder We consider the
following parabolic system of PDE’s:

where

We assume that and
are Carathéodory functions satisfying the following

1 Here denotes the matrix of spatial derivatives
Throughout the paper repeated Greek indices (Latin indices resp.) imply

summation over 1,2
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conditions:

and for the right hand side we assume controlled grows,

5)

Next, define

Let X be any Banach space whose norm is denoted by Then
by we denote the space of all (classes of
equivalent) Bochner measurable functions such that,

By we denote the usual
Sobolev spaces.
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Definition 1.1. Let (1.4) and (1.5) be fulfilled. A vector valued
function is said to be a weak solution to the system
(1.1) if the following integral identity is valid for all

REMARKS: 1.) In the particular case N = 1 it is well known that weak
solutions to the system (1.1) are Holder continuous. This result has
been proved first by De Giorgi and Nash for weak solutions to a linear
elliptic PDE with bounded coefficients (cf. [2]). The same result has
been obtained by Moser using the so called Harnack inequality and later
these result has been generalized by Ladyzenskaya and Ural’ceva both
for the elliptic case (cf. in [8]) and for the parabolic case (cf. in [9]).

In contrary, it is well known that in case of systems
the results stated above doesn’t continue to hold. Indeed, in recent
time several counterexamples have been constructed for example by De
Giorgi, Giusti, Giaquinta, Campanato, (cf. [4]). However, in
the case of two dimensions no discontinuous counterexample are known.
Therefore it is our conjecture that one shall obtain regularity of the weak
solution in this particular case. For elliptic systems such a result has been
proved by Giaquinta and Modica having employed the result of higher
integrability via Reverse Hölder Inequality which is a generalization of
an idea introduced by Gehring (cf.[3]).
2.) Studying the linear parabolic case, with measurable bounded

coefficients being either continuous in t or in x the Hölder continuity
of the weak solution has been proved in [6].

In and Šverák [14] the Hölder continuity of the weak solution
of the system (1.1) in two, three and four space dimensions has been
obtained for the case, that the coefficients depend on the gradient
matrix only. In recent time the Hölder continuity of the weak solution of
the system (1.1) has been obtained in [12] under the additional
assumption that the coefficients are Hölder continuous with respect
to t sufficiently near to 1.

The aim of the present work is to establish an analogous result as in
[12] under weaker assumptions on the coefficients. Our main result is
the following

Theorem 1.2. Assume (1.2), (1.3), (1.4) and (1.5).
be a weak solution to the system (1.1). Then there exists
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The paper is organized as follows. In Section 2 we prove some lemmas
which will be used in the sequence of the work.

Sections 3 is dedicated to a fundamental estimate (cf. Theorem 3.1)
for weak solutions to (1.1), where and where the coefficients
does not depend on t. The proof of this fundamental estimate are based
on the so called Caccioppoli inequalities and the reverse inequality via
Giaquinta, Modica (cf. [5]).

Finally, in Section 4 we complete the proof of Theorem 1.2 by freezing
the  coefficients   in t and by making use of the fundamental estimate
provided in Section 3.

2. PRELIMINARIES

denote some Banach spaces. Let
be given. For we define the mean value

Lemma2.1. Let Then for all
we have

Proof. 1°) First, assume that is continuously
differentiable. Clearly, by the mean value theorem we evaluate for all

Next, using Hölder’s inequality and Fubini’s theorem, we estimate,

2 A function v belongs to if there exists a constant c depending on v such that
The expression

says that
3 Remark that dv/dt has to be understood in sense of distribution.
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Then the assertion (2.1) easily follows from the estimate above after
having applied the transformation formula of the Lebesgue integral.

2°) Secondly, in the general case the inequality (2.1) is obtained by
an approximation argument which is well known in the literature (for
instance cf. [11]) . This concludes the proof of the lemma.

The following result is due to Campanato

Lemma 2.2. If there are some constants
such that for each :

then v belongs to In addition, we have

Next we are going to introduce an interpolation result whose proof is
based on the two lemmas stated above.

Lemma 2.3. Assume that the
interpolation space exists (cf. Triebel

Then we have

In particular, the following inequality holds true for all and
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Proof. Let be arbitrarily chosen. With help of
Hölder’s inequality and lemma 2.1 we estimate

Now, making use of lemma 2.2 we easily verify that

Moreover, combining (2.3) and (2.6) we get

(c=const).
To prove the second part of the theorem we first consider the case

By (2.7) we estimate for

Whence (2.5).
In order to verify assertion (2.5) for the general case we consider the

change of variables and apply the transformation formula
of the Lebesgue integral.

Next, given the parabolic cylinder
is defined by
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For the sake of simplicity if no confusion is possible to arise we will use
the shorter notation instead of resp.).

Now, we shall introduce a well known result of higher integrability
which is based on a method developed by Gehring, Giuquinta, Modica

Lemma 2.4. Assume (1.2), (1.4) and (1.5).
a weak solution to the system (1.1). Then there exists some real number

such that Moreover, for
each pair of concentric subcylinder we have,

where depending only on v0,c0,c1,c2 and N.

We close this section with a technical lemma which can be found in

[4].

Lemma 2.5. Let f be a nonnegative and bounded function defined on
the interval Furthermore, let A, B, and

be positive constants such that for all a

Then there exists a positive constant such that for all

3. THE CASE
In this section with aid of suitable Caccioppoli inequalities we shall

derive a fundamental estimate which plays the main role in proving
Theorem 1.2. An inspection of the proofs below shows that (with
a slightly modification) all the results continue to hold even in the case
of more than two space dimensions, whereas the Holder continuity of
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the weak solution to the system (1.1) is verified only in case of two
dimensions.

We start with a differentiability result which one may easily obtain
by using the method provided in [12]. We have

Lemma 3.1. be a weak solution of the following
parabolic system,

where are Carathéodory functions
satisfying (1.2), (1.3) and (1.4). Then we have

Next, we are going to prove the following Caccioppoli type inequali-
ties.

Lemma3.2. Assume (1.2), (1.3) and (1.4). Let be
a weak solution of the system (3.1). Then for each pair of concentric
subcylinder we have

where c = const > 0 depending on v0,c0,c1 and N only.

Proof. First of all, we observe that the weak solution v to (3.1) obeys
the identity

Let and 0 < to < T. Then, making use of the Steklov mean
we may localize (3.5) with respect to t (cf. [13]),
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Next, given min
we may insert

into (3.6), where denotes a cut-off function
such that in on and
(const)). Integrating over the interval and employing Holder’s
inequality gives

Then, observing (1.4) applying Nirenberg’s lemma and making use of
Young’s and Hölder’s inequality gives,

By virtue of reflexivity there exists an infinitesimal subsequence

7 Here denotes the Steklov mean and denotes the difference
For the properties of the Steklov mean and the differences

see in [13]. - Notice that the set of measure zero of those t for which (3.6) fails, does not
depend on h.
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Hence, in (3.7) passing to the limit implies

doesn’t depend on r, and v).
Next, let and form the difference in (3.1). It follows

that

Let be arbitrarily chosen. Then we may localize (3.9)
with respect to t arguing as in [13] we derive the following Caccioppoli
inequality

Then, from (3.10) letting we obtain,

Inserting (3.11) into (3.8) and using Young’s inequality gives,

for all
Now, after having applied the technical Lemma 2.5 we have for every
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where does not depend on and v. Hence, from (3.12)
putting and therein we get (3.1). Finally, the second
inequality (3.2) we receive by combining (3.12) and (3.11).

The next result includes a fundamental estimate, which is crucial to
prove the Hölder continuity of weak solutions of (1.1).

Theorem 3.1. Assume (1.2), (1.3) and (1.4). Then there exists some
real number and a constant . depending
on and N such that whenever is a weak
solution to (3.1) the following fundamental estimate holds true for any

subcylinder and for each

Proof. Let and be
arbitrarily fixed. Since in the case the inequality (3.13)
is trivially fulfilled without loss of generality we may assume that

1° Firstly, having set
8 with help of Hölder’s inequality and (2.5) (cf. Lemma 2.3) putting

and therein we estimate,

Using Holder's inequality from (2.8) we get

8 Here q refers to the exponent which occurs in the reverse inequality (2.8) (cf. Lemma2.4) .
9 Here we have identified the spaces and by the
linear isometry
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Now, the right hand side of (3.14) may be estimated by (3.4) and
(3.15). Thus,

where depending only on and N.
2° Secondly, since by virtue of

Sobolev’s imbedding theorem we surely have
Then applying Hölder’s inequality making use of (3.3) and (3.4) we get

To estimate the second integral on the right hand side of (3.17) we argue
as in [13] and apply Hölder’s inequality. Then it follows,

Hence, the desired estimate (3.13) follows after having combined (3.16)
and (3.18).

4. PROOF OF THEOREM 1.2
Let be a weak solution of (4.1). Let

be any fixed subcylinder. As it has been shown in [10] there exists
an uniquely defined weak solution of the following
Dirichlét problem:

Having defined
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with help of (3.13) (cf. theorem 2) by means of the triangle inequality
we easily deduce that

To estimate the integral of the right hand side in (4.2) we proceed as
follows. Combining (4.1) and (1.1) we get the following integral identity
for any with supp

Next, by we denote the extension of to by
zero. Furthermore, we set,

Observing that w we may
extend (4.3) via Kaplan’s method provided in [7]. Thus, with the
notation introduced above we have

By we denote the space of all such that
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be any real number. Then, we may localize (4.4)
with respect to t using the argument mentioned before. It follows,

Now, for a.a. we insert
into (4.5), integrate over the interval

and let tend It follows that

Observing (1.2), (1.3) and (1.5), letting tend using Hölder’s
and Young’s inequality (with ) gives,

Remind that the set of measure zero of those t for which (4.5) fails does not depend on
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On the other hand, by virtue of the imbedding
which is continuous (cf. [9]) we have

Combining (4.8) and (4.7) having chosen sufficiently small implies,

where denotes some nondecreasing positive function which tends
to zero as Thus, combining (4.9) and (4.2) implies

Now, choosing and such that

from (4.10) we infer,

After having applied (4.11) iteratively we get

Consequently,

Finally, using the Poincaré inequality for weak solutions (cf. [13])
from (4.12) we deduce that for all we have
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where

(the constant C depends on and only). Hence, the
Holder continuity of u follows by Campanato’s theory (cf. [1]).
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degenerated differential operators, 317
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global existence, 443
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error estimates, 271
existence, 149
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fine structures, 255

finite element method, 185
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finite volume, 403
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Hardy’s inequality, 317
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solutions with radial vorticity in IR 2,
505
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nonlinear boundary conditions, 271
nonlinear elliptic system, 485
nonlinear equations, 33

regularity, 33
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Holder continuity, 531

operator equation, 133
optimal control problem, 345
Oseen problem, 97

p-Laplacian, 41
parabolic equations, 67

blow-up, 67
semilinear boundary value problem,
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partial differential equations, 185
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point sources, 403
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rank one convexity, 513
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jumping nonlinearities, 79
spatial patterns, 79

reality, 185
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Rothe method, 133

Signorini contact condition, 49
single crystal growth, 133
singular integrals, 281
solvability, 41
spectral analysis, 317
stationary solution, 149
Stokes problem, 97
stored energies, 513
strong convergence, 255
sufficiency, 355

topological degree, 117
two-dimensional exterior problem, 149

uncertain data, 175
unilateral contact, 175
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blow-up, 231
discontinuity, 231
gradient, 231
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weak convergence, 255
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