Applied
Nonlinear
Analysis

Adeélia Sequeira
Hugo Beirdo da Veiga

Juha H. Videman




Applied Nonlinear Analysis

In honor of the 70th birthday of Professor Jindfich Necas



This page intentionally left blank.



Applied Nonlinear Analysis

Edited by
Addia Sequeira

I.ST. Technical University
Lisbon, Portugal

Hugo Beirao da Veiga
University of Pisa
Pisa, Italy

and

Juha Hans Videman

I.ST. Technical University
Lisbon, Portugal

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW



eBook ISBN: 0-306-47096-9
Print ISBN: 0-306-46303-2

©2002 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://www.kluweronline.com
and Kluwer's eBookstore at: http://www.ebooks.kluweronline.com



is the co-author of monographs Mathematical Theory of Elastic and
Elasto-plastic bodies. An Introduction (with I. Hlavacek), Solutions of

Variational Inequalities in Mechanics (with |. Hlavacek, J. Haslinger

aJ. Lovisek). Let us aso mention the theory of elastoplastic bodies
admitting plastic flow and reinforcement, as well as the theory of contact

problems with friction. It was J. Polasek who initiated Necas’ interest

in transonic flow where he achieved remarkable results by using the
method of entropic compactification and the method of viscosity. These
results raised deep interest of the mathematical community, Nedlas
published the monograph Ecoulement de fluide, compacité par entropie.
In 1986 M. Padula presented her proof of the global existence of
non-steady isothermal compressible fluids. This article led Neéas and
Silhavy to introduce a model of multipolar fluids satisfying the laws of
thermodynamics. In this model the higher order stress tensor and its
dependence on higher order velocity gradients are taking into account,
the well-posedness of the model, the natural and logical construction of
fundamental laws, and deep existence results were settled.

The most recent considerations are devoted to classica incompressible
fluids, namely, to the Navier-Stokes fluids and to the power-law fluids.
Essentially new existence, uniquenesss and regularity results are given
for space periodic problem and for Dirichlet boundary value problem.
Large time behaviour of solutions is analysed via the concept of short
trgjectories. A comprehensive survey of these results can be found
in Weak and Measure Valued Solutions to Evolutionary PDE's (with
J. Malek, M. Rokyta and M. Ruzickaj.

The central theme in the mathematical theory of the Navier-Stokes
fluids, i.e. the question of global existence of uniquely determined
solution, has aso become central in the research activities of J. Necas
in the past five years. Attention has been given to the proof that the
possibility of constructing a singular solution in the self-similar form
proposed by J. Leray in 1934, is excluded for the Cauchy problem,
J. Netas concentrates his energy to find the way of generalization of
this result and to the resolution of the initial problem as well as to the
study of influence of boundary conditions on the behaviour of the fluid
described by Navier-Stokes equations.

A significant feature of Necas’ scientific work is his intensive and
inspiring collaboration with many mathematicians ranging from the
youngest to well-known and experienced colleagues from dl over the
world. Among them (without trying to get acomplete list) we would like
to mention: H. Bdlout, F. Bloom, Ph. Ciarlet, A. Doktor, M. Feistauer,
A. Friedman, M. Giaquinta, K. Groger, Ch.P. Gupta, W. Hao,
I. Hlavacek, R. Kodnér, V. Kondratiev, Y.C. Kwong, A. Lehtonen,



PREFACE

This book is meant as a present to honor Professor J. Necas on the
occasion of his 70" birthday.

It collects refereed contributions from sixty-one mathematicians from
eleven countries. They cover many different areas of research related
to the work of Professor Necas, including Navier-Stokes equations,
nonlinear elasticity, non-Newtonian fluids, regularity of solutions of
parabolic and elliptic problems, operator theory and numerical methods.

The realization of this book could not have been made possible
without the generous support of Centro de Matematica Aplicada
(CMA/IST) and Fundacdo Calouste Gulbenkian.

Specia thanks are due to Dr. Oldfich Ulrych for the careful
preparation of the final version of this book.

Last but not least, we wish to express our gratitude to Dr. Sérka
Matusu-Necasova, for her invaluable assistance from the very beginning.
This project could not have been successfully concluded without her
enthusiasm and loving care for her father.

On behalf of the editors

ADELIA SEQUEIRA
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Elasticity by Babuska, Rektorys and Vy¢ichlo. It was mechanics which
naturally directed him to applications of mathematics.

This period ended in 1957 with his defence of the dissertation
Solution of the Biharmonic Problem for Convex Polygons. His interests
gradually shifted to the functional analytic methods of solutions to
partial differential equations. It was again |. Babuska who oriented him
in this direction, introduced him to S, L. Sobolev and arranged his trip
to Italy. His visitsto Italy and France, where he got acquainted with the
renowned schools of M. Picone, G. Fichera, E. Magenes and J. L. Lions
deeply influenced the second period of Necas’ career.

Here we can find the fundamental contributions of Nec¢as to the linear
theory: Rellich’sidentities and inequalities made it possible to prove the
solvability of a wide class of boundary value problems for generalized
data. They are important also for the application of the finite element
method. This period culminated with the monograph Les méthodes
directes en théorie des éguations elliptiques. It became a standard
reference book and found its way into the world of mathematical
literature. We have only to regret that it has never been reedited
(and translated into English). Its originality and richness of ideas was
more than sufficient for J. Necas to receive the Doctor of Science degree
in 1966.

Without exaggeration, we can consider him the founder of the
Czechoslovak school of modern methods of investigation of both
boundary and initial value problems for partial differential equations.
An excellent teacher, he influenced many students by his enthusiasm,
never ceasing work in mathematics, organizing lectures and seminars
and supervising many students to their diploma and Ph.D. thesis.
Let us mention here two series of Summer Schools—one devoted to
nonlinear partial differential equations and second interested in the
recent results connected with Navier-Stokes equations. Both of them
have had fundamental significance for the development of these areas.

While giving his monograph the final touch, J. Ne¢as already worked
on another important research project. He studied and promoted the
methods of solving nonlinear problems, and helped numerous young
Czechoslovak mathematicians to start their careers in this domain.
He aso organized many international events and—last but not least—
achieved many important results himself.

Nonlinear differential equations naturally lead to the study of
nonlinear functional analysis and thus the monograph Spectral Analysis
of Nonlinear Operators appeared in 1973. Among the many outstanding
results let us mention the infinite dimensiona version of Sard’s theorem
for analytic functionals which makes it possible to prove denumerability
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of the spectrum of a nonlinear operator. Theorems of the type of
Fredholm'’ s alternative represent another leading topic. The choice of the
subject was extremely well-timed and many successors were appearing
soon after the book had been published. This interest has not ceased
till now and has resulted in deep and exact conditions of solvability of
nonlinear boundary value problems. Svatopluk Fuéik, who appeared as
one of the co-authors of the monograph, together with Jan Kadlec, who
worked primarily on problems characteristic for the previous period,
and with younger Rudolf Svare—were among the most talented and
promising of Nefas’ students. It is to be deeply regretted that the
premature death of al three prevented them from gaining the kind of
international fame as that of their teacher.

The period of nonlinearities, describing stationary phenomena,
reached its top in the monograph Introduction to the Theory of Nonlinear
Elliptic Equations. Before giving account of the next period, we must
not omit one direction of his interest, namely, the problem of regularity
of solutions to partial differential equations. If there is a leitmotif that
can be heard through all of Necas’ work, then it is exactly this problem,
closdly connected to the solution of Hilbert’s nineteenth problem.

In 1967 Necas published his crucial work in this field, solving the
problem of regularity of generalized solutions of elliptic equations of
arbitrarily high order with nonlinear growth in a plane domain. His
results alow a generaization for solutions to elliptic systems. In 1968
E. De Giorgi, E. Giusti and M. Miranda published counterexamples
convincingly demonstrating that analogous theorems on regularity for
systems fail to hold in space dimension greater then two. The series of
papers by Necas devoted to regularity in more dimensional domains can
be divided into two groups. One of them can be characterized by the
effort to find conditions guaranteeing regularity of weak solutions. Here
an important result is an equivalent characterization of elliptic systems
whose weak solutions are regular. This characterization is based on
theorems of Liouville' stype. Thefact that Ne¢as’ method can be applied
to the study of regularity of solutions of both elliptic and parabolic
systems demonstrates its general character. During this period Necas
collaborated adso with many mathematicians (M. Giaguinta, B. Kawohl,
J. Naumann). The other group of papers consists of those that aim
at a deeper study of singularities of systems. J. Necas is the author
of numerous examples and counterexamples which help to map the
situation.

In the next period, Nedas resumed his study of continuum mechanics.
Again we can distinguish two fundamental groups of his interest.
The former concerns the mechanics of elasto-plastic bodies. J. Neéas



D.M. Lekveishvili, P.L. Lions, J. Lovisek, D. Mayer, M. Miller,
P. Neittaanmaki, |. Netuka, A. Novotny, O.A, Oleinik, M. Ruzicka,
M.Rokyta, T. Roubiéek, M. Silhavy, M.Schonbeck, L. Travnicek.

We tried to collect some of the most important contributions of
J. Necas and to display the breadth of his interests and strivings, his
encouragement of young people, his never ending enthusiasm, his deep
and lively interest in mathematics. All these features of his personality
have attracted students everywhere he has been working and have
influenced many mathematicians.

OLDRICH JOHN, JOSEF MALEK, JANA STARA
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THE MOST SIGNIFICANT WORKS
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Monographs
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in die Variationsrechnung. B. G. Teubner Verlagsgesellschaft,
Leipzig, 1977. Mit englischen und russischen Zusammenfassungen,
Teubner-Texte zur Mathematik.

Svatopluk Fuéik, Jindfich Nefas, and Vliadimir Soucek, Jifi Soudek.
Soectral analysis of nonlinear operators. Springer-Verlag, Berlin,
1973. Lecture Notes in Mathematics, Vol. 346.
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I. Hlavacek, J. Haslinger, J. Neéas, and J. Lovisek. Solution of
variational inequalities in mechanics, volume 66 of Applied Math-
ematical Sciences. Springer-Verlag, New York, 1988. Trandated
from the Slovek by J. Jarnik.

J. Mélek, J. Necfas, M. Rokyta, and M. Ruzicka. Weak and
measure-valued solutions to evolutionary PDEs, volume 13 of
Applied Mathematics and Mathematical Computation. Chapman
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Jindfich Ne€as. Les méthodes directes en théorie des équations
éliptiques. Masson et Cie, Editeurs, Paris, 1967.
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[7] Jindfich Necas. Introduction to the theory of nonlinear elliptic
equations, volume 52 of Teubner-Texte zur Mathematik [Teubner
Texts in Mathematics]. BSB B. G. Teubner Verlagsgesellschaft,
Leipzig, 1983 With German, French and Russian summaries.
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equations. A Wiley-Interscience Publication. John Wiley & Sons
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volume 10 of RMA: Research Notes in Applied Mathematics.
Masson, Paris, 1989.
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Applied Mechanics. Elsevier Scientific Publishing Co., Amsterdam,
1980.

Papers

[11] Hamid Bellout, Frederick Bloom, and Jindfich Necas. Young
measure-valued solutions for non-Newtonian incompressible fluids.
Comm. Partial Differential Equations, 19(11-12):1763-1803, 1994.

[12] Hamid Bellout and Jindrich Nedas. Existence of global weak solu-
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291, 1994.
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JINDRICH NECAS

Jindrich Necas, honored by the Order of Merit of the Czech Republic
by Vaclav Havel, President of the Czech Republic, on the October 28,
1998, Professor Emeritus of Mathematics a the Charles University
in Prague, Presidential Research Professor at the Northern Illinois
University and Doctor Honoris Causa at the Technical University of
Dresden, has been enriching the Czech and world mathematics with
his new ideas in the areas of partial differential equations, nonlinear
functional analysis and applications of the both disciplines in continuum
mechanics and hydrodynamics for more than forty years.

Born in Prague in December 14, 1929, Jindfich Necas spent his youth
in the nearby town of Mélnik. He studied mathematics at the Faculty of
Sciences of the Charles University in Prague between 1948-1952. After
a short period at the Faculty of Civil Engineering of the Czech Technical
University he joined the Mathematical Institute of the Czechosovak
Academy of Sciences where he headed the Department of Partial
Differential Equations. Since 1977 he has been a member of the staff of
the Faculty of Mathematics and Physics of the Charles University being
in 1967-1971 the head of the Department of Mathematical Analysis,
for many years the head of the Department of Mathematical Modelling
and an active and distinguished member of the Scientific Council of the
Faculty.

Let us go back to Necas’ first steps in mathematical research. He was
thefirst PhD. student of I. Babuska, whom he still recalls with gratitude.
As one of his first serious tasks he cooperated in the preparation of the
pioneering monograph Mathematical Methods of the Theory of Plane
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ON THE REGULARITY AND DECAY OF
THE WEAK SOLUTIONSTO THE STEADY -
STATE NAVIER-STOKES EQUATIONS IN
EXTERIOR DOMAINS

Frédéric Alliot, Cherif Amrouche

Abstract: Inthisarticle, we study the regularity properties of the weak solutionsto
the steady-state Navier-Stokes equations in exterior domains of R*. Our
approach is based on acombination of the properties of Stokes problems
in R®and in bounded domains. We obtain in particular a decomposition
result for the pressure and some sufficient conditions for the velocity to
vanish a infinity.

Keywords: Exterior flows, Navier-Stokes, weak solutions, regularity, behaviour at
infinity.

This paper is devoted to some mathematical questions related to the
steady-state motion of an incompressible viscous fluid past a bounded
body €. In the three-dimensional space R3, let us denote by (2 the
exterior of €, which is filled by the fluid. Then, the velocity field u and
the pressure = in the fluid satisfy the Navier-Stokes system:

-vAu+uVu+Vr=f in Q
(NS) divu =0 in €,
ujpn =0,

where f isagiven external force-field and v > 0 stands for the kinematic
viscosity of the fluid. The last equation of the system states that the
fluid adheres at the surface of the body, which is the common no-dip
condition. We shall moreover assume that the fluid is at rest at infinity
and thus consider the additional condition:

lim wu(z)=0. (0.1)

[z]—+o00

Applied Nonlinear Analysis, edited by Sequcira et al.
Kluwer Academic / Plenum Publishers, New York, 1999, 1
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Our purpose is to study some regularity properties of weak solutions
to the problem (NS) (see Definition 11 below), keeping in mind that
we wish the decay condition (0.1) to be fulfilled.

The paper is organized as follows: In Section 1, we recall a well-known
result about existence of weak solutions for the problem (NS). The
data and solutions will be chosen in weighted Sobolev spaces, in which
distributions are well controlled at infinity. The second section is devoted
to some regularity properties of the weak solutions u and the associated
pressure w. We first obtain, with no additional assumption, the
regularity of =, that leads to a “natural” decomposition of this term into
a “viscous pressure” and a “convective pressure” (see Proposition 2.3
and Remark 2.4 below). Then, our main result establishes the L?
regularity of Vu and = under some rather weak assumptions. Moreover,
we deduce from this result some sufficient conditions on f such that
each weak solution satisfies (0.1). The proof relies on the combination
of the regularity properties of the Stokes problem in bounded domains
and in R®. With similar arguments, we study the LP regularity of
higher-order derivatives of u and m and their decay at infinity. The
last section is devoted to the regularity, in the Hardy space H!,of the
second derivatives of the pressure in the whole space R3, and is based
on sharp properties of the non-linear term.

We now conclude this introduction by giving some definitions and
notation that we shall use throughout the paper.

Let usfirst settle the geometry of Q. Let Q' be a bounded open region
of R3, not necessarily connected, with a Lipschitz-continuous boundary
and let the fluid fill the complement of €, denoted by Q. We assume that
Q' has afinite number of connected components and that each connected
component has a connected boundary, so that 2 is connected. In the
sequel, such a set © will be referred to as an exterior domain.

We shall dso denote by Bg the open ball of radius R > 0 centered at

the origin. In particular, since ' is bounded, we can find some Ry > 0
such that Q' C Bpg, and we introduce, for any R > Ry,the sets

Qr=0QNnBp and QF =Q - Q5.

Let O be an open region of R3. Asusua, D(Q) denotes the space
of indefinitely differentiable functions with compact support in @ and
D'(O) denotes its dual space which isthe space of distributions. For each
p €]1, +oo], the conjugate exponent p' is given by the relation ;}+l% =1.
We recall that LP(O) is the space of measurable functions such that
Jo lulPdz < co. With its natural norm: |[ul| (o) = ([, [ulPdz)'/?, it is
a Banach space whose dual spaceis L” (0). When 1 < p < 3, we shall



On the regularity and decay of the Navier-Sokes equations... 3

also use the Sobolev exponent of p that is p* = 3p/(3 — p). Recall that
the space W1?(©) stands for the Sobolev space of functions u € LP(O)
with distributional derivativesin LP{((), endowed with its natural norm.

Moreover. . I/cf/lm((’)) is the closure of D(O) in WLP(®) and W17 (0) is

the dual space of W '2(©). When p = 2, we shall also use the standard
notation

HY(0) =W'3(0), H}©O)=W'*0), H(0)=W"*0).

Finally, we use bold type characters to denote vector distributions
or spaces of vector distributions with 3 components. For instance,
f € LP((’)) means (flaf2,f3) € (LP(O))3

1. EXISTENCE OF WEAK SOLUTIONS IN
WEIGHTED SOBOLEV SPACES

The study of the steady-state Navier-Stokes problem in general
domains was initiated by the fundamental works of J. Leray [13] who
introduced the concept of weak solution:

Definition 1.1. A weak solution to the problem (NS)is a field
u € HL (Q) vanishing on 89, with Vu € L?(Q) and such that for all

loc

p eV(Q) = {veDH),dive =0}

1// VuVpdz +/ uVu.pdz =< f, o >. (1.1)
N Q

When Q is an exterior domain, a weak solution u is only constrained
a infinity by the condition Vu € L?(2). But such a condition is not
sufficient to ensure that u satisfies (0.1), or even that u vanishes in
awesker sense a infinity. Hence, the generd dass of fields u € HY .(Q)
vanishing on 8%, with Vu € L%(Q) is too large for our purpose. It is
more appropriate to control both Vu and witself at infinity, which can
be achieved in a natural way in some weighted Sobolev spaces. Define
the weight function p(z) = (2 + |]?)'/2, then we can state the

Definition 1.2. Let Q be either an exterior domain or Q = R3 and
let p and o be rea numbers with 1 < p < +4oco. Then, we st
LE(Q) = {u € D'(Q), p*u € LP(Q)} and

a—1

WIP(Q) = {u € D'(Q), p*u € LP(Q), p*Vu € LP(Q)}, if 3/p+a # 1,
P

WIP(Q) = {u € D'(Q), u € LP(9), p°Vu € LP(Q)}, if 3/p+a = 1.

Inp
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Each of these spaces is a reflexive Banach space when endowed with the
norm:

lullzz@) = 1o%ullLe(),

lulhyaoy = (162w By + 19Vl 7 i€ 3/p+ a1,

a—1
()&

4 o P l/p _
Inp u “Lp(g) + | p*Vu ”LP(Q)) if3/p+a=1

[| v “W;'P(Q) =

In the definition above, the powers of the weight function p and
the introduction of the logarithmic weight when 3/p + a = 1 are
not anecdotal. Indeed, this definition alows to prove some weighted
Poincaré inequalities which are the main interest of the spaces WaP (see
Theorem 11 below).

Define now the space v?/,l;;”(ﬂ) as the closure of D(f2) for the norm
Il ||W;,,,(Q). Then, the dual space of W &P(f2), which we denote by

W_‘;”"(Q), is a space of distributions. When € is an exterior domain,

and since each function of Wé”’(ﬂ) locally belongs to the classica
Sobolev space WP, it is standard to check that

W LP(Q) = (v € WP(Q),yv = 0}, (1.2)

where~ stands for the trace operator on the Lipschitz-continuous

boundary 892. However, when 2 = R®, we have WiP(R3) = W LP(R3)
(see [3, Th. 7.2).

We now recall a fundamental property of the spaces W2?:

Theorem 1.1. (Amrouche-Girault-Giroire[3, 4]) Let « € R and
1 <p<+oo.

i) Let 2 be an exterior domain. There exists a constant C =
C(p, a,§?) > 0 such that

Vue WEQ), llullyyoq < C I Vulgm,
ii) There exists a constant C = C(p,a) > 0 such that
Vu € W), [lullymms < ClIVulias), #3/p+a>1,
I llyoms)p, < Ol VallLggs), otherwise,

where Py stands for the subspace of constant functions in Wa?P (R3) when
J/p+a<l.
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Remark 1.2. Theorem 11 for instance states that the semi-norm

IV |lL2(qy defines a norm on Vifég(ﬂ) which is equivalent to the natural
norm of this space.

We now turn to the question of existence of weak solutions to the
exterior problem (NS). The key idea for proving existence, which has
aso been pointed out by J. Leray, is to find approximate solutions u,
that satisfy a uniform estimate:

| Vun HLZ’(Q) <M,

and then to pass to the limit. Following this idea, we state and prove
the

Theorem 1.3. Let 2 C R® be a Lipschitz exterior domain or 2 = R®.
Given a force,f € W;*(Q), the problen (NS) has a weak solution

u € Wy () such that:
vl Vu “LZ(Q) <If HWO_I’2(Q)‘

Besides, there exists a function = € L?(2g) for all R > Ry, unique
up to a constant, such that (u,n) solves problem (NS) in the sense of
distributions.

Proof. Let (R,)n>0 be an increasing sequence of real numbers with
Ry > 0 fixed in the introduction and such that lim R, = +oco. We

n—oo

approximate problem (NS) by the following sequence of problems on
the bounded domains Q2 :

Find u, € H}(Qg,) such that

1// Vu,Vedzr + / Un . Vup. pdz =< f, o >, (1.3)
Q Q

Rn Ap

Vo € D(Qg,), dive =0.

First remark that each function of VOV(l)’Q(Q) with support in Q0 aso
belongs to H}(Qg,). Then, since f € W *(Q), its restriction to Qp,
satisfies

1 18-+ @p,) S IS llwsr20) (1.4)
Therefore, we know from [17](Th. 1.2, p. 164) that for each n > 0,
problem (1.3) has a solution u, such that

V[ Vun 20,y < I1f lH-1(08,)- (1.5)
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We extend u,, by zeroin OB~ and still denote u,, the extended function
that belongs to W})‘Q(Q). In view of (1.4) and (1.5), we thus have:

V|| Vu, ”LZ(Q) <\f HWO'I'Z(Q)' (1.6)

Hence, Theorem 11 (with p = 2, « = 0) and (1.6) yield that

un, is bounded in W 3%(2), which is reflexive. Therefore, extracting
subsequences if necessary, we have:

Up — u in VOV(I]’2(Q) and (1.7)
VI Vul 2 < liminf v||Vua|[p2@q) < ”f“wgl»z(g)'

Let us now check that u is aweak solution. Let ¢ € V(2) and N > 0
be an integer such that supp¢ C §lgr,. Then, we deduce from (1.3)
that

Vn > N, 1// Vu,Vedz +/ Un.-Vup.ode =< f,o >. (L.8)
Y’ Q

In view of (1.7), we can pass to limit in the first integral. Moreover,
extracting a subsequence if necessary, we know that wu, converges
strongly to u in L?(Qg,) since the imbedding H!(Qp,) C L?(Qg,)
is compact. Hence, this convergence together with (1.7) ensures the

convergence of the second integral of (1.8) and therefore u € W(IJ’Q(Q)
satisfies (1.1).

Finally, existence of a pressure 7 € D'(2) such that (u,n) satisfies
system (NS) in the sense of distributions follows from (1.1) and from
a well-known consequence of a very genera theorem of G. de Rham.
Moreover, « is unique up to a constant because €1 is connected. Besides,
the local regularity of # can be deduced from standard local properties
of the distribution f — u.Vu + vAu and from aresult of L. Tartar [16]
(lemma9, p. 30) and Girault-Raviart [10]. ¢

Remark 1.4. In this paper, we only focus on the regularity and
decay of weak solutions in three-dimensional exterior domains. Let
us nevertheless mention that many problems remain open for weak
solutions that satisfy (0.1). For instance, it is not known whether such
solutionsare uniquefor “small” data, while such aproperty is established
in bounded domains (See Temam [17], Ch. Il and Girault-Raviart [10]
for the case of bounded domains and Galdi [8], Ch. X, for partial
uniqueness properties in exterior domains).
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The study of weak solutions in two-dimensional exterior domains
is even more difficult. Although some existence results are known,
the arguments developed in the proofs of our results below fail in
two dimensions. As a matter of fact, the existence of weak solutions
satisfying (0.1) for a large class of data is not established 0 far. We
shall however give a positive answer to this problem for some particular
data in a further work.

2. THE REGULARITY OF WEAK
SOLUTIONS

Our approach relies on a localization argument which we develop in
the paragraph below. This argument enables us to study on the one
hand the regularity of a solution near infinity and on the other hand the
regularity near the boundary.

2.1. Separating the regularity near infinity and
near the boundary
Let © be an exterior domain. We introduce the following partition

of unity: Let R; and Ry be real numbers such that Ry > R; > Ry and
choose somefunctions ; and 9 such that:

1 € CP(R®), () =0 if |z < Ry, ¢i(z)
Vz e R, ¢i(z) +yo(z) =

=1if |z| > Ry, (2.1)
1. (2.2)

Consider now asolution (u, 7) to problem (NS) such that u € VOV})’Q(Q)
and 7 belongs to L2(Qg) for dl R > Ry (think of a solution given by
Theorem 1.3). Then, define (u!,n!) asfollows:

(ulaﬂ'l):(u’d)l,ﬂ-qpl) in Qv (ulaﬂl):(()?()) inW,

and set (u2,72) = (uthg, 7h3) in K.

It is essy to check that (u!,7') € Wy?(R®) x L2 _(R3) (compute the
weak derivatives of u! and use the fact that u! vanishes at the boundary
o). We dso note that (u?,7?) clearly belongsto H}(Qg,) x L2(Qk,).
Moreover, further elementary calculations in the sense of distributions
enable us to establish the equalities (respectively in D'(R3) if i = 1 and
in D'(Qg,) if i = 2):

—vAut + V' = i divu® = ¢, (2.3)
where

ft = fi—2wVuV—vulh+ 1V —(u.Vu)y;,  ¢¢ = —u.Vip. (2.4)
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Since v, is C*™ on R?® with supp 1 C €, we have naturally denoted by
f11 the distribution on R? given by:

Vo € D(R), < fih1, >pe=< f, 1 >q.

This notation aso applies to each other term in the definition (2.4) with
1=1.

Finally, considering (2.3) and (2.4) with # = 2, the regularity of u and
7 near the boundary depends on the regularity of (f2,42%) and on the
properties of the Stokes problem in the bounded domain Qg,. Similarly,
the regularity of « and = near infinity depends on the regularity of
(f',¢") and on the properties of the Stokes problem in R3,

Regularity properties for the Stokes problem in bounded domains have
been first studied by L. Cattabriga [6] but we shall use more generd
results from [2] (see pp. 134-136).

Theorem 2.1. (Amrouche-Girault [2]) Let O C R* beabounded
domain with CY!' boundary. Let f € W 19(0),g € L) with
1 < g < +oo and assume that [, g(z)dr = 0. Then, the problem:
Find (w,7) € WH4(0) x LI(O) such that

—vAw+Vr=§f divw=g im0, wpp=0,

has a unique solution such that fo rdr = 0. Iff and V¢ moreover belong
to L¢(0), then V2w and V7 also belong to L¢(O).

The Stokes problem in the whole space has been recently much studied
in various functional spaces (see for instance Borchers-Miyakawa [5],
Girault-Sequeira [9], Kozono-Sohr [11, 12] or Specovius Neugebauer
[15]). The authors have aso provided a rather complete study of this
problem in weighted Sobolev spaces in [1]. For instance, as a particular
case of the results established in the latter reference (section 3), we can
state the:

Theorem 2.2. (Alliot-Amrouche[1]) Let [ < 0 be an integer and
1 < p < +o00 such that 3/p is not an integer smaller than or equal to

—1. For each (f,g) € W; ?(R3) x LP(R?), the Stokes problem:
(S) —Av+Vn=f, dive =¢ in R,

has a solution such that (v,n) € W,;P(R*) x LI(R3). If f and Vg

moreover belong to L7, (R*) then V*» and V7 also belong to Lf+1(R3).
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2.2. A decomposition result for the pressure

We have seen in Theorem 1.3 that we can associate with each weak
solution u a pressure « that locally belongs to L2. But, we do not have
yet any information concerning the integrability at infinity of «. Our
first result is dedicated to this question.

Proposition 2.3. Let @ C R® be an exterior domain or @ = R
and let f € W, (). The pressure = obtained in Theorem 1.3 has
a representative such that

r=7 +72 with 7'¢ W()1’3/2(Q), 2 € L*().

Proof. Let u € W,?(€2) be aweak solution to the problem (NS) given
by Theorem 13 and let m € L?(Qg), VR > Ry be the associated pressure.
First recall the decomposition 7 = 7! + 2 introduced in paragraph 2.1.
Since m € L?(Qg,), we obtain that 72 = my, belongsto L?(2). Thus,
the main part of the proof deals with the properties of ! and therefore
of (f', ")
i) We first consider the term (u.Vu)i; of f1. Prom Sobolev’s imbedding
theorem, we know that Wy#(Q2) ¢ L8(2). Then, we have Vu € L%(Q)
and v € L%(Q). Since ¢, is bounded and supported in €2, Holder's
inequality yields:

(u.Vu)ph € L3 (R?). (2.5)

But we have: L%2(R3) c W_]"*/*(R3) which is the dual imbedding
of W3 (R3) < L3(R3) (the latter is obvious from the definition of
W, *(R?)). Hence, in view of Theorem 2.2 (with p = 3/2,1 = —1),
there exists (v!,n!) € W 3/2(R3) x L¥2(R3) such that

—vAv + V! = —(u.Vu)y, dive! =0, inR3. (2.6)

Considering (2.5), Theorem 2.2 yields besides that V7! € L3/2(R%) and
sowe get that o' € W2 (R3).

i) We consider now the other terms of f!. Since 4, is bounded and
has bounded derivatives with compact support, it is easy to check
that the terms fb;, VuVi, uAy; and 7V, belong to W2 (R?).
Proving that ¢! = —-u.Viy € L?R3) is even simpler. Then,
applying Theorem 2.2 (with p = 2,1 = 0), we get the existence of
(v2,7?) € Wy (R?) x L2(R®) such that

—vAv? + Vn? fin — 20VuVi, — vulep, + 7V,

divu? = —u.Viy,, in R3. (27)
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iii) Letusfinaly st w = u'—v! —v? and 7 = #' —n! —n2. Subtracting
(2.6) and (2.7) from (2.3) yields the relations:

—VvAw+Vr=0, divw=0, inR3. (2.8)

Then, computing the divergence of the first equation yields that 7 is
harmonic. Therefore, considering (2.8), Aw is aso harmonic. Thus,
w is a tempered biharmonic distribution on R®, and thus a polynomial.
But this polynomial moreover belongsto W(R3)+ W23/ ?(R3) so that
it has to be constant (a complete proof of this statement relies on some
estimates of the LP-mean on the sphere of radius R of the functions
of W&P(R3) when R tends to infinity ; see [1], Lemma 1.1). Since w
is constant, we deduce from (2.8) that V7 = 0 and by the way the
existence of a constant ¢ such that 7! = 5! + 52 +¢. Hence, we have the
equality m = 7' + 72 = ! + (n® +7%) + ¢ in Q and the proposition is
proved setting 7! =t and 72 =2 + mPy. O

Remark 2.4. The decomposition of the pressure established in Propo-
sition 2.3 alows to rewrite the first equation of the system (NS) as

follows:
(—vAu + V73 + (u.Vu + V) = f.

Here, the first term belongs to Wo"l’2. The second term is more regular
since it belongsto L3/2. In a certain sense, the pressure 7! is associated
with the viscosity term vAwu while 7! is associated with the convection
term u.Vu.

2.3. First LP regularity results

Prom now on, we assume that the force f is more regular than needed
in Theorem 1.3 and prove that weak solutions are dso more regular. As
in the previous paragraph, we consider separately the regularity near
the boundary and near infinity. Let us begin with a few properties of
the non-linear term.

Lemma 2.5. Let Q C R® be an exterior domain or Q2 = R3.

i) Let v € Wy*(), then (v.Vv) € L3¥2(Q) n W ().

i) Let v € WiA(Q) N W3A(Q), then (v.Vv) € L*1(Q) N W *2(Q), if
3/2S31<3 and if s; > 3.

Proof. The proof relies on the Sobolev’'s imbedding theorem which
implies that if p < 3 then Wol”’(Q) C LP*(Q2), and therefore by duality

that -
Vp <3, LP(Q) C Wy P (Q). (2.9)



On the regularity and decay of the Navier-Sokes equations... 11

i) If v € Wy?(€2), then v belongs to L8(Q) and Vv € L2(§2). Therefore,
Holder's inequality yields that v.Vv € L3/2(Q) which space is imbedded
into W, () in view of (2.9).

i) Let v € W (Q)NW*(Q). Since Vv € LA(Q)N L3 (Q), we also have
Vv e L™(R), 2 < r <3. Since v dso belongs to L8(f2), the Gagliardo-
Nirenberg inequalities (see for instance, Nirenberg [14], p. 125, with
r=3,¢q=6,7=0 axdm = 1) imply that v € L*(Q2) provided that
6 < s < +00. Hence, Holder's inequality yields that (v.Vv) € L% (Q)
for al s; such that 3/2 < s; < 3. O

We now prove the

Theorem 2.6. LetQ C R? be an exterior domain with C*! boundary or
Q=R3. Givenp >3 andf € W; "2(Q)nW, "*(£2), each weak solution
u € Wé’Q(Q) to the problem (NS) also satisfies u € WP (§2). Moreover,
the associated pressure m has a representative in L¥(Q2) N LP($2).

Proof. We use once again the auxiliary problems introduced in
paragraph 2.1. We first prove the case p = 3 and then consider the
casep > 3.

i) The case p = 3: In view of Lemma 2.5, we know that
w.Vu e Wy (Q) and therefore (u.Vu)ih, € W, "*(R®). Moreover,
since u € H, (), 7 € L*(Qg,) and since the derivatives of v, have
compact support, we deduce from Sobolev injections theorem that

—20VuVi) — vulgy + 7V € Wy 3 (R3),  — w.Vyy € L3(RY).

Hence, the pair (f!,g') (see (2.4)) belongs to Wy "*(R?) x L3(R%).
Then, there exists (Theorem 2.2 with p = 3, I = 0) some functions
(v,1) € Wy (R?) x L3(R?) such that:

—vAv+Vn=fl, dive=g¢' inR.
Subtracting these equalities from (2.3), we get:
VA — )+ V@t —n) =0, div(ul-v)=0 inR:. (2.10)

Therefore, following the proof of Proposition 2.3 (iii), we prove
that »! — v is a polynomial. Since this polynomial belongs to
W% (R3) + W2(R3), it must be a constant polynomial c. But constant
polynomials belong to W (R®) (because of the logarithmic weight), so
that

ul = v+c€W(1)’3(R3). (2.11)
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Besides, since u! — v is constant, it follows from (2.10) that V(z!—n) =0
in R3. Therefore, there exists a constant function d such that

ml=n+d, neLl3R?). (2.12)

Let us now come to the regularity near the boundary. Recall
that the auxiliary functions (u?,7?) € H(QR,) x L*(Qg,) satisfy
(2.3) with ¢ = 2. Moreover, we can prove -as we proved that
(f4, g4y € Wi M3 (R®) x L3(R®), but applying local Sobolev’s imbedding
results- that (f2,¢%) € W13(Qg,) x L3(Qg,). With such data, and
since €2, has CY! boundary, we can deduce from Theorem 2.1 that
(u?,m%) € WH3(Qg,) x L3(Qg,), which immediately imply that

(u?,7%) € W(Q) x L3(Q). (2.13)

Finally, since u = u' + u? et 7 = n! + 72, our claim results from (2.11),
(2.12) and (2.13). Note that we can a0 prove that the representative of
7 in L3(2) is nothing but the representative obtained in Proposition 2.3.
i) The case p > 3: Let f € W;"%(Q) n W;'?(Q). Owing to an
interpolation argument, we can prove that f € W;"*(Q) and since
we have proved the theorem for p = 3, we know that « € W;?(€) N
W, (£) and we can choose 7 € L3(£2). Then, Lemma 2.5 (ii) implies
that (v.Vu) € W, "P(Q) and therefore that (u.Vu)yp, € Wy P(R3).
Besides, Sobolev’s imbedding theorem yields that « € LP(Qg,)and so,
as in the case p = 3, we prove that

(1,91 e Wy P(R®) x LP(R®) and (f%,¢%) € W™ 1P(Qg,) x LP(QR,).

Starting with this regularity, each argument used in the point (i) can be
restated replacing the exponent 3 with p and so the proof is complete. ¢

Now, the existence of weak solutions to the problem (NS) that satisfy
the decay condition (0.1) is arather simple consequence of Theorem 2.6.

Corollary 2.7. Assume that f € W, “4(Q) N W, '2(Q), p > 3. Then,
each weak solution u € W[I)’Z(Q) to the problem (NS) satisfies

u € L*(Q) and lim u(z)=0. (2.14)
jz|—o00

Proof. We know from Theorem 2.6 that u € Wé’Q(Q) N W(l)”’(ﬂ) and

therefore
vwel®Q) and Vue LP(Q), p> 3,

which property is known to imply (2.14). $
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Remark 2.8. Let us mention a different version of Theorem 2.6 which
focuses only on the properties at infinity of the solution. Owing to
the partition of unit (2.1),(2.2), we have seen that the behaviour of the
solution near the boundary and near infinity can be obtained separately.
In fact, looking more carefully, we see that the properties of (u!,z!)only
depend on the regularity of the restrictionsof f and g to Q. Therefore,
if we only assume that f € W;"2(QR) n W, P (1) with p > 3,
we can still prove that each weak solution u € Wé’2(Q) aso satisfies
u € W3P(QR2) and that the associated pressure = has a representative
such that 7 € LP(QF2). The main interest of this version is that it
requires no smoothness assumption on the boundary 0} and therefore
applies to a wider class of domains.

2.4. More regularity and decay
In this paragraph, we are interested in the LP regularity of V2« and
Vr. In particular we shall need the following imbedding results:

Lemma 2.9. Let Q@ ¢ R® be an exterior domain or 2 = R3. Assume
thata,F € R and 1 < p < ¢ < +oo satisfy 3/g+ 5 > 3/p+ . Then,
the following relations hold

LY(Q) C IR(Q),  WH(Q) C WiP(Q),
with continuous imbeddings.
Proof. i) Let v € L%(Q)., Theassumption 3/q+ 8 > 3/p+ « yieldsthat
1
a—B<3(E-2y (2.15)
q P

Since 1 < p < g, there exists areal number r such that 1 < r < +ooand
1/r =1/p—1/q. Then, the inequality (2.15) implies that p>=# € L™(Q)
and Holder’ s inequality yields that

o0 o) < N16* P i@l AP e,
which proves the first imbedding.

i) The second imbedding is a straightforward consequence of the first
one if 3/q + B # 1 (there is no logarithmic weight in WBI"’(Q)). When
3/qg + B = 1, we remark that (2.15) aso implies that p®#lnp €
L™(Q). Hence, Holder's inequality yields the result because p®~tv =
(0" Inp).(p"lv/Inp).

We now prove the following theorem:
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Theorem 2.10. Let Q c R3 be an exterior domain with C1! boundary
or @ =R® and let f € W, 1%(Q).

i) Assume that f € LP(Q) N W,;"%),q > p > 3. Then, each

weak solution » € W ?(Q) to the problem (NS) satisfies Vu €
L9(Q), V%u € LP(Q) and the pressure 7 has a representative such that

m e LIQ) and Vr € LP(9Q).

i) Assume that f € LP(Q) with 3/2 < p < 3. Then, each weak solution

u € W) to the problem (NS) satisfies Vu € LP*(Q), Viu € LP(Q)
and the pressure n has a representative such that = € LP*(€2) and
Vr e LP(Q).

Proof. We first prove the first part of the theorem: Since f € Wo_l"’(Q)
with g > 3, we know from Theorem 2.6 that

uwe WHEQ)NWH(Q), =eL3(Q)n LIN). (2.16)

In particular, we have Vu,7 € L%(Q2) and we now have to prove
the regularity of V?u and V7. But, (2.16) and obvious interpolation
arguments imply that,

weE Wy (Q), 2<r<q and 7elL*Q), 3<s<q. (2.17)

In particular, we have Vu € LP(Q). Besdes, Corollary 2.7 yields that
u € L*°(Q2) s0 that we obtain

u.Vu € LP(Q). (2.18)
Since ¢ > p, we can easily deduce from (2.16) and from (2.18) that:

(fl,g") e LP(B) x Wy P(R®) and (f%,¢%) € LP(Qi,) x WP (Qg,).

(2.19)

Then, the regularity properties of the Stokes problem in bounded
domains (Theorem 2.1) and the equalities (2.3) with : = 2 yield that

Viu? € LP(Qg,), Vr? e LP(Qg,). (2.20)

On the other hand, we can choose r = s > p in (217) 0 that we
have 3/r > 0 > 3/p — 1. Then, Lemma 29 yields that (u,m) €
w2P() x LP [ (©), which implies that

(u',7!) € WIP(R®) x LP | (R?). (2.21)

In view of (2.19) and (2.21), we can apply the regularity statement of
Theorem 2.2 with [ = —1. Thisyields that

Viul € LP(R?), Val e LP(R®), (2.22)
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which, together with (2.20), completes the proof, since u = u! + «2and
7 =xl 4 n2

ii) We now turn to the second point of the theorem. First remark
that since f € LP(f2), with p < 3, then the imbedding (2.9) implies
that f € ng’p*(Q),p* > 3. In particular, dl the arguments of the
latter proof can be restated with p* instead of g, except the proofs of
(2.18) and (2.21) where some modifications occur. Indeed, in this case
the relation (2.18) follows from Lemma 2.5 since we can set r = 3 in
(2.17). The modified proof of (2.21) involves two cases. If p > 3/2,we
can choose 3 < r = s < px* in (2.17) and then conclude with Lemma
2.9. In the remaining case p = 3/2, we use on the one hand the fact

that W22(Q) ¢ W¥2(Q)in view of Lemma 2.9. Therefore, we obtain

that u! e Wl_’f/z(lR:*). On the other hand, we recall that = = 71 + 72
with 71 € W2¥3(Q) and 72 € L%(Q) (Proposition 2.3). Then, the
imbedding W01’3/2(Q) C L3_/12(Q) isobvious, and Lemma 2.9 proves that

LX) c L2(Q), sothat »t € L¥2(R3). ¢
The following is an easy consequence of Theorem 2.10.

Corollary 2.11. Let @ C R® be an exterior domain with C!! boundary
or @ =R and let f € W, ().
i) Assume that f € LP(Q) N W, "), ¢ > p > 3. Then, each weak
solution u € Wé’Q(Q) to the problem (NS) satisfies (0.1). Moreover,
Vu,m € L*(§}) and
lim Vu(z)=0, lim =(z)=0.

|z|—+o00 |z} =400
i) Assume that f € LP(2), 3/2 < p < 3. Then, each weak solution
u € Wy?(Q) to the problem (NS) satisfies (0.1).

Proof. i) If f € LP(Q)NW,, 2¥(Q), ¢ > p > 3, then Corollary 2.7 applies
and 0 (0.1) holds. Besides, Theorem 2.10 yields that =, Vu € L9(2) and
that Vrr, V2u € LP(Q) with p > 3, which properties imply the result.

i) If f € LP(), 3/2 < p < 3, then (2.9) impliesthat f € W7 ()
with p* > 3 and thus Corollary 2.7 applies. &

Remark 2.12. i) The statement (i) in Theorem 2.10 still holds if
g > p = 3. The adaptations of the proof to this case are straightforward.
In contrast, the proof does not extend if ¢ = p = 3. Indeed, we would
have to apply Theorem 2.2 with p = 3and [ = —1,which caseisexcluded
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(we insist on the fact that the conclusions of Theorem 2.2 are fase if 3/p
is an integer smaller than or equal to ).

ii) The method we used in this section also allows to prove more
regularity properties. Assumefor instance that the boundary 9% is C*1.
Then, if f € W(}”(Q) and if one of the following conditions holds:

(@) feW,P(Q), 6/5<p<3/2

(b) fe Whr(Q), 3/2<p<3,
then we can prove that each weak solution » € W}\’Q(Q] satisfies
V3u € LP(Q). We obtain simultaneously that V?r € LP(Q). Besides,
when assumption (6) holds, then we can establish that both V2« and
Vr are bounded and vanish at infinity.

2.5. Improved regularity for the pressure in R®

This last section is devoted to some sharp regularity properties of the
pressure = when the domain € is the whole space R3. It is based on a
result of R. Coifman, P.L.Lions, Y.Meyer and S. Semmes ([7], Th. 11.1)
that deals with the regularity of various non-linear quantities. This
result is of particular interest to our problem since it establishes that

if uwe Wy*(R®) then div(u.Vu)e H'(R®). (2.23)
Here, the Hardy space H!(R3) stands for the following subspace of
L'Y(R3):
HYR?) = {u € LY(R®), Rju € LY(R?), Vj =1,2,3},
where the three-dimensional Riesz transforms R; are given by :
Ri(f) =cpv. (f * ;—T;), ji=1,...,3.
Therefore, we prove the following:

Theorem 2.13. Let f € W "%(R3) and let v € W (R®) be aweak
solution to the problem (NS). If divf € H!(R?), then the associated
pressure 7 has a representative such that:

1

e W (RY) and Vir € H'(RY).

Pr oof.

i) Let usassumein view of Proposition 2.3 that = € W01’3/2(R3)+L2(R3).
Since divu = 0, we obtain by computing the divergence of the first
eguation of the problem (N S) that

Am = divf — div (v.Vu) in R (2.24)
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In particular, if divf e #!(R?*) and in view of (2.23), we have

divf — div (u.Vu) € HI(R3). (2.25)

i) We shall now obtain the regularity of 7 considering some regularity
properties of the Laplacian in R®. First note that H'(R?) C

W0'1’3/ %(R3) LPy where
Wo PR LPy = {p e Wy AR, <o 1> 0= 0}

Now, we know from [3](Th. 5.1) that the Laplacian is an isomorphism

from W01’3/2(R3) onto W, 1’3/2(R3)L’P0. Therefore, there exists
n e Wy */*(R3) such that

An = divf — div(u.Vu) in R, (2.26)

Moreover, since the Riesz transforms R;, § = 1, 2,3 are continuous from
HY(R®) into H!(R3), the following identity
0%n
8IL‘j(9:L'k

= —R;Ri(An),

yields together with (2.23) that V2n € H}(R?).

i) Finaly, we are going to prove that « = 5, which completes
the proof. Indeed, we obtain by subtracting (2.26) from (2.24) that
7 —n € L2(R?) + W */*(R3) is an harmonic function. Then, = — 5 is
a polynomial that moreover belongs to L#(R3) + L3(R3) ; and so it must
be identically zero. &

Remark 2.14. We are not able to prove a similar result when € is
an exterior domain. If we assume that, near infinity, div f is the
restriction of a function belonging to H!(R3?), it seems difficult to
establish that V#r enjoys the same regularity. For instance, we cannot
use efficiently the cut-off procedure of Section 2. Indeed, it is easy to
check that #! satisfies

A = divf! + vAgh,

but we cannot even prove that div f! + vAg! belongsto L!(R3).
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A NOTE ON TURBULENCE MODELING

G. Q. Chen, K. R. Rajagopal, Luoyi Tao

Abstract: The main thrust of this work is developing the basis for a mixed
formulation of turbulence modeling, combining analytical theories
and engineering modeling, which includes second order two-point
correlations of velocity and pressure. Related issues such as the different
outcomes that stem from differently chosen sets of ensemble averaging,
the approximate nature and the advantages and disadvantages of such
a formulation, and the choices of closure schemes are addressed.

Keywords: Closure, averaging Reynolds stress, dissipation.

1. INTRODUCTION

Analytical theories of turbulence, on the one side, deal with multi-
point correlations of velocity restricting themselves to homogeneous
turbulence (Orszag [11], Proudman and Reid [12], Tatsumi [17]). Onthe
other side, engineering turbulence modeling deals with general turbulent
flows restricting itself to single-point correlations of velocity and pressure
(Launder [7], Rodi [13]). It seems worthwhile to develop a mixed
formulation, combining these two methods, to obtain information on
multi-point correlations of fluctuating velocity and pressure to general
turbulent flows, a formulation that we discuss here.

The importance of multi-point correlations in turbulence, especially
the two-point correlation of fluctuating velocity (Uy;~), lies in that
they provide some information on the basic structure of turbulent
motions, such as the various scales of length (dissipative, integral), the
direct interaction between the fluctuations of different positions and
the distribution (transfer) of fluctuation energy on (between) different
eddies (Batchelor [1], Hinze [6]). The mixed formulation contains
the equations governing Uy, and Py, the two-point correlation of
fluctuating velocity and pressure. In such aformulation, some difficulties
arise, compared with single-point correlation models, which include (i)
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how to model a two-point correlation of three fluctuating velocities
(Uygrjn), (i) how to prescribe physically sound initial and boundary
conditions for U ;» and boundary condition for Py ;», and (iii) how to
solve the equation in the seven-dimensions space (six for space and
one for time) in which the equations are formulated. Despite these
difficulties, the formulation has great advantages: (i) Uy ;~ is obtained
whose importance was mentioned above; (ii) only one quantity, Uy g e,
needs to be modeled; and (iii) the need to prescribe the initial and the
boundary conditionsfor Uy and Py ;» implies that the formulation may
have wider applicability than single-point correlation modeling since the
latter cannot account for such information.

This formulation is based on ensemble averaging the solutions of
the Navier-Stokes equations under proper conditions to be discussed.
Various sets of solutions can be employed, depending on which pattern
of turbulent flows is to be modeled. For example, a proper subset of
the solutions can be chosen to get a large eddy simulation type model,
or the whole set of solutions can be used to formulate a model without
any fluctuations. In the case of the former, if the filtering scale is very
small, the multi-point correlations may not be necessary and a lower
level model of closure will yield reasonable results like the Smagorinsky
eddy viscosity model for some flows (Smagorinsky [16]). However, in the
latter example, the multi-point correlations are quite important since all
scales of fluctuations are filtered out and the interaction among these
fluctuations need to be taken into account by the correlations.

We will demonstrate that the present formulation is not simply an
extension of analytical theories of homogeneous turbulence. As only
Uiy jn and Py, are included to simplify the modeling, some function
may need to be introduced to ensure the divergence-free condition for
Py due to the incompressibility of the fluid. We will discuss the
approximate nature of such a formulation, with the implication that
an averaged model of general applicability may be out of reach and
models appropriate to different classes of turbulent flows should be
pursued. It will dso be self-evident that the present formulation is
not a simple extension of single-point correlation modeling since the
former cannot reduce to the latter without the assumption to handle the
reduction of the dimension of the space where the former is constructed.
We will show that there are severa schemes for modeling Uj g« j«, and
the choice of the scheme depends on whether we emphasize simplicity
or comprehensiveness. Other issues are aso to be discussed such as
the consequences of the symmetries of the Navier-Stokes equations,
realizability and molecular dissipation.
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Our main concern at this moment is the basis for the formulation.
A great ded of effort has to be expended yet to construct concrete
models to solve problems.

2. FORMULATION

Suppose that the Navier-Stokes equations can describe the turbulent
motion of incompressible Newtonian fluids in aflow domain D, (here it
is tacitly assumed whether a physical fluid is a Newtonian fluid or not
is determined by its behavior in laminar states), that is, the velocity u
and the pressure pg are determined by, together with proper initial and
boundary conditions,

Umem = 0, (2.1)
Ju;

E'*’(uium)am = —qy +VU%mm , (2.2)

where p and v are, respectively, the mass density and the kinetic viscosity
of the fluid. Following the standard practice in turbulence modeling of
averaging, we consider the ensemble of solutions ¢/ to (2.1) and (2.2)
under “the same flow conditions’ which are identified with some globa
(or large scale) quantities characterizing the flows (Monin and Yaglom
[9]). Next, instead of carrying out the ensemble averaging on U, we
choose a suitable subset S of ¢/, which is to be discussed later, and
introduce the ensemble averaging ( ) := ( ) on S to define

Uit=(u), P:={(g), (2.3)
and the decomposition,
Uy = Ui + U, q= P+p1 <U‘i> = 0’ (p> = 07 (24)

where v is the fluctuating velocity relative to U; and pp thefluctuating
pressure relative to pP. Consequently, equations (2.1) and (2.2) result
in (Hinze[6])

Umam = Oa (25)
oU;
ot +UnUismn = —P,;+vUimm — <'Ui'Um>am ) (26)
vm:m = 0’ (27)
a’Ui
- + (’Ui’Um + Ui’Um + UiUm - ('Ui’l)m>),m = —Pyi TVVmm , (28)

ot

and
Pyan = ~ (VmVn + v Upn + 90U — (Vmvn)) yma - (2.9)
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We now introduce the muIti—poi nt correlations such as
Upjn := Uy (x',x", 1) <’U1/’UJH> vp = v (X, t),

III
Ui’j”k’" = U”k(x X x = <’U1/’Uju’l)k///> 5

Pyin := Py(x', %", t) := <p0"Ui”)a po = p(x', t), (2.10)
which have the following symmetry properties (Proudman and Reid [12])
Uiljl/ = Ujll,il, Uilj/lklll = Uj//ilkl/l = Uilkllljll, (2.11)

and P
8—1‘2Ui,j”km =0, etc. (2.12)

Then, equations (2.7) and (2.8) yield (Hinze [6], Proudman and
Reid[12)])

a I3
a [PO”l’ = 0 (213)
8
EEUi’j” =0, (2.14)
0 0 0
——+U +U U -errel )Ul II+U1I,mIU 7]
<8t ™oz " ™ Bz '3 m'j
0 0
+Uj”am” Ui + a—x;ch”k’i’ + @Uﬂk”j” (2.15)
o b 82 32
= 6 /PO/ "—a /[POI”+V(5;W+8’X—”2'>U1"]‘”7

with Uy = UI(X ,t) and Uu = U (X” t)

If we take U;, Ujrjn, P and PO, » & the primary field quantities and
model Uy j» in terms of these primary fields appropriately, we will
find out that there are 14 equations consisting of (2.5), (2.6) and (2.13)
through (2.15), but there are only 13 primary quantities. Therefore, we
may need to introduce a scalar function Swith S(x',x",t) = S(x",x',t)
in to the formulation through equation (2.15), say, according to

0 0 a
" UI -1 Uz’7 ' U 7
(at+U’”a' +Un azm) + Getome Uy
0 0
-f—UJr/ ! Ul 'm Py ' U'Ilklil + ﬂUilk//]ﬂl (216)

0 0 0? 0?
= 8 IPO’ H—a ,,Potllr+V<ax,2+W>UZJJJ+S(S/n

Here 6, ;. isthe Kronecker delta. We may associate this introduction
of S with the constraint (2.13) in the sense that S is not needed if
(2.13) is not enforced, since we have 13 equations for the 13 primary
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quantities. Therefore S could be considered physically as a force-like
quantity resulting from the constraint (2.13) or a force-like quantity
imposing (2.13) on the averaged field Py,». Next, we justify the term S
in (2.16) with the following argument. Assume that

0 . , 0
WUi’k”j” = —S(x’,x/ 7t)6‘z’ o = e ” U,L/klljll
and 9 o .
a I U ”k” = —S(x x t)(sjllzl + 8 / U»llkl,il

where S(x’,x”,t) is due to (2.13) and Uixkuju (Ujuk:l ) is to be modeled
in terms of those primary fields chosen previously. This treatment
is analogous to the introduction of the hydrodynamic pressure to the
Cauchy stress tensor of an incompressible material. One reason for
modeling %,ZUI-: k»j» instead of Uy g jv iSto avoid the need for prescribing

boundary conditions for S(x,x",t) := S(x',x",t) + S(x" x',t) and aso
for keeping the form simple. Now we have
0 a 0
6 , U ”k’ll + 8 ” a /lU/kllle - S(Silj//.
Substltutlng this relatlon into (2.15) and dropplng the hat ~, we obtain
(216) This replacement of 01;%//]-” (Uj”k’i’) with Ui’k”j" (Uj”k’i’) should
not cause any confusion based on the fact that (i) both of the quantities
have to be modeled; and (ii) in case that Oi,k,,j,, is constructed under
(2.12), S =0 resultsfrom (2.17) below and we can takeUi:kuju = Uprgnjn.
It is easy to verify that (2.13), (2.14) and (2.16) yield

%S 0? 0 d
3xk31- = 8:1;;3:1;-’7’ (ax;c Uj"k’i' + gx—ZUi/kuj//> (217)

0
Uzlkll o= 8 , Ullkl 0+

and

9? S 0
a 12 POI 1 = -87 —_ 2Un/ ! a I m ]”
J

0 0 0
_ 8 a I ”k’n' + — 8 ” nlkll 7H BN

Equation (2.17) shows that S can be solved in terms of a—gin/kuju and

S = 0 can occur when the model of Uy ;» meets the constraint (2.12).
This also implies that the introduction of S can be considered as part
of the modeling of Us g ju.

Thus, we have a determinate set of equations for U;, Uy i, P, Py
(and § consisting of (2.5), (2.6), (2.13), (2.14) and (2.16), provided
that Uy j» is appropriately modeled in terms of these primary field

(2.18)
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quantities. The approximate nature of this truncation scheme is easily
understood asfollows. Uyy»j», together with S, though the latter is
determined by the former, ‘is supposed to account for the interaction
between the lower order correlations (the primary fields chosen above)
and the higher order correlations. Here, the modeling of Usguju
essentially serves to characterize this interaction through some specific
structure in terms of the lower order correlations, and consequently it
restricts the interaction to some specia form, and some information
related to the higher order correlationsis left out. For example, a specific
structure of Uygnj» cannot accommodate all the possible initial and
boundary conditions of itself and the higher order correlations because
the structure is assumed to be fixed in terms of those lower order
correlations. And thus the motion is completely determined from the
model as long as proper initial and boundary conditions of the lower
order correlations are prescribed, disregarding any initial and boundary
conditions for the higher order correlations. A possible implication of
this argument is that there may be no one general structure for Uy
which can model optimally all turbulentflows.

Another limitation of the scheme, or any scheme based on averaging in
fact, needs to be addressed, namely what is the class of turbulent flows
for which an averaging scheme can be applied to produce physicaly
meaningful results. We should restrict the model to flows where the
fluctuation is relatively small, for instance,

Una € UyU, for large |Uyl;  Ugq small for small |Uy). (2.19)

(Here, we adopt the convention that the summation rule is suspended
if Greek subscripts are used.) This restriction is physically essential,
otherwise the large fluctuation will make the averaged velocity field
practically usdess.

On selecting S, a set of solutions from U, on which the averaging ( )
operates, we have two cases in mind. Oneis § = U, the assumption in
standard engineering turbulence modeling, which supposedly smoothes
out the fluctuation of all scales so that the resultant averaged equations
are not of a chaotic nature. The other deals with a proper subset of U{.
For the sake of demonstration, let us choose a length scale I, much
smaller than the characteristic length of D, and a subset U, of L/, whose
members display almost the same flow structures on the scdes larger
than |. Then, the ensemble averaging ( ) of relation (2.3) onl{; istofilter
out the fluctuations on the length scaes smaller than |, under the premise
that ¢, contains enough members so that the operation { ) caneffectively
smooth the flow details on the scales smaler than |I. Therefore we
can, based on this argument, relate this case of averaging to large eddy
simulation (LES) (Ferziger [3], [4]). Thisformulation has the advantage
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that both the commutativity of the averaging and differentiation and
(2.4)34 hold and it is clearly connected to the standard turbulence
modeling of averaging (different subsets of /). Its disadvantage may
be that the fields do not seem to be defined as concretely as those
of LES. In both cases of § = Y and S = U, each motion {u;, ¢}
is decomposed into a main flow field {U,, P} and a fluctuating part
{vi, p}; the former varies relatively slowly in time and space and the
latter changes rather randomly and rapidly in time and space. The
averaging formulation seeks to reformulate the equations of motion
within the frame of the characteristic time-space scale of the main
flow field. The direct interaction between the fluctuations of different
positions is described by the two-point correlations.

Now we present some justifications for introducing the above two-
point correlation formulation. Firstly, this formulation is an extension
of both the standard engineering turbulence modeling of single-point
correlations and the analytic theory of homogeneous turbulence of multi-
point correlations. Secondly, the model can be closed provided that
the quantity Uy ;n is formulated properly, while s isintroduced. The
interaction among fluctuations of different positions and the averaged
velocity field can be characterized through Uy,». (The field {U;, P} is
affected by {U; j», Py} through U;;, but a nontrivial U; will influence
{Uiyjn, Py} directly.) Finaly, this two-point correlation model is
much S|mpler than any formulation involved in higher order correlation
quantities. For example, it follows from (2.7) and (2.8) that

0 0 0 0
(6t+U (9 - + Uy 8 i + Uyt Py ,,,)Ui’j”k”’
+U,L ,m/ Um j//kl’/ + UJl/ ,m// UZ ml’kl/( + Ukll/ ,ml// iljllmlll
J 0
= —F_Poljl/klll - a—l (UI/,,n J/lklll - U,L/m/ Uj//k’/l)
€T T
1
J s}
a ,I PO”llkNl -— a—” (Ui/jllmllklll -_ Ujl’m/l Uilk”/)
X
m
3 15}
6 III PO”Il ]// — W (U,,:Ijl/kll’m”l —_ Uk/l/mlll U,i/j”)
T
m
82 82 82
+V<8x’2 + gy + T Uit jim, (2.20)
where
Usjrgmpn 2= Ugra(x, %', %", x" ) := (vjvjognopn)

2.21
P()/i//j/// = POij (X’, X”, X”I, t) = <p01’l)1'uj///> y PO’i”j”’ = P()/jmiu. ( )
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We now have an extended model consisting of equations (2.5), (2.6),
(212) to (214), (216) and (220) for Ui, UzJ s Ui’j”k”’y P, Py and
Py jugn provided that Uy jugm 1S properly modeled. We notice that the
divergence-free condition —,TPOI s = 0 may not be enforced generally

here unless the model of U, m'jrke MEEts some symmetry constraints
or a vectoral function is introduced in (2.20), similar to the previous
introduction of  to handle (2.16). This treatment is not needed under
some specid form for Uy juge like, in the case of S = U,

U’ij’k”l”’ = Uzj'Uk"l’“ -+ Uik”Uj/l”’ —+ Uil’”Uj'k”a (222)

as suggested in the scheme of quasi-normal approximation (Proudman
and Reid [12], Tatsumi [17])." The advantage of this extended
formulation is that (2.11), and (2.12) will be satisfied, which has the
following consequences: (i) S = 0 can be achieved (see equation (2.17));
(ii) In the case of S = U, in homogeneous turbulence we have from (2.16)

aagUkk =0, (2.23)
r=0

with r := x” —x', which reflects the fact that in homogeneous turbulence

the mean turbulent kinetic energy is conserved by the non-linear terms

of the Navier-Stokes equations (due to the absence of the correlation

of three velocity components from the equation) and dissipated by

molecular viscosity (Lesieur [8]); (iii) We have from (2.6) and (2.16),

o
atUkk + (Ukam +Um,k ) Umk

o 1 1
o [ 3 WUk + Une) do + / L Uk + Usk) U Nnda
at Jy 2 oy 2

1 1
= | [—PUm — Py — UpUgm — Ui + Y (UxUx + Ugk) ym | Nmda

2
) dv, (2.24)
x!"=x'=x

with V being an arbitrary control volume in D and N the normal to
V. This equation shows that the direct effect of Uj»;» on the kinetic
energy of the fluid in V can be absorbed into a surface integral term.
The disadvantages, however, include that (i) many more equations,
(2.12) and (2.20), need to be solved which are involved in a high
dimensional space; (ii) the initial and boundary conditionsfor Uj jugm
and the boundary condition for Py need to be specified. These
disadvantages will not only cause difficulties to the application of the
model but aso cause problems in calibrating the model in the first
place. Certainly, similar disadvantages are dso inherent in the two-
point correlation formulation proposed in the present work, compared

02
—V/v (Uk,m Ukym + mUk'k"
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with any one-point correlation model. In the case of S = U, one-point
correlation models may be appropriate if the scale | is very small, but
the case of S = U isinvolved in eliminating all scales of disturbance and
the two-point correlations Uy ;» and Py are needed to account for the
interaction among different scales of fluctuations, and it is expected that
this two-point correlation formulation is more general and appropriate
than one-point correlation models.

There is no clear scheme for formulating U+ corresponding to S
= U or § = Y, though the former is supposedly free from any chaotic
behavior and the latter has acharacteristic length 1. In both cases U;s g i
should be formulated so that (i) the solutions Uy ;» and Py« of the
model satisfy, from their definitions (2.10) and the Schwartz inequality
(Schumann [14]),

Uga 20, UyaUgngn — (Ugpr)® >0, (2.25)

which guarantees the positive (semi)-definiteness of U;; to yield non-
negative fluctuation energy and an estimate of the fluctuation around
Ui, and

PO”a’ = 0, under Ua’a’ = 0; (2.26)
and (ii) the model is dissipative, that is, the source term in the equation
on (UxyUx + Ukk)/2 has to be a sink due to the molecular dissipation,
which reduces to

m m xII=xI
in case that (2.11), and (2.12) are met. Next, the structure of Uy jn
has to meet two invariance requirements. One is related to Galilean
invariance: Though Uy~ is frame indifferent since v can be viewed
as a velocity difference based on the ensemble averaging, whether
such a restriction should be imposed on its modeling is another issue.
Obvioudly, if we resort to the restriction, we would get a differential
equation on Uyj«, (2.16), which is not frame indifferent, while U; ;»
is frame indifferent due to the same reason as that for which Uj g jn
is frame indifferent. To avoid such a dilemma, we will merely require
that the model for Uy + satisfy the principle of relativity of Galilei
and Newton (Frisch [5], Sedov [15]), which is the very symmetry
possessed by the original equations (2.1) and (2.2); Another invariance
to consider is the scaling invariance possessed by equations (2.1) and
2.2): {x,t,v,u,q} = {dx, Al7Rt, ARy ARy, A2} A > 0, B € R;
that is, if {u, q}(x, t) isasolution to (2.1) and (2.2) with the viscosity
v, then {Mu, A%"¢q}(Ax, A\1="t) is a solution with the viscosity At v
(Carbone and Aubry [2], Frisch [5]). Thissame scaling invariance should
dso hold for the quantities from the ensemble averaging. Consequently
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we should not introduce any new dimensional constant, except vand I,
to model Uy ;+. Finaly, in both cases chaotic motions up to some scale
need to be smoothed out. One way to achieve this is through adopting
a gradient structure for Uygrj», which is motivated by the diffusive
terms of molecular viscosity in the equations, an artificial viscosity
is introduced both to simulate the intensified momentum transfer in
turbulence and to dampen the fluctuation as intended by the averaging.

This scheme has been widely used in turbulence modeling, such as
the Smagorinsky eddy viscosity model in LES (Smagorinsky [16]), the
Boussinesg assumption concerning the Reynolds stress in zero-equation

models and two-equation models and the flux form in Reynolds stress
equation models in engineering turbulence modeling (Rodi [13]). This
treatment, however, is flawed in that the exact Uy ;+ corresponding to
the choice § = U/ just plays the role of redistributing the fluctuation
kinetic energy Ui, among its components Ui, Uss and Uss and so
conserves Uy, in homogeneous turbulence (see equation (2.23)). To
remedy this flaw, the model for U;n;» has to meet both symmetry
conditions of (2.11), and (2.12), which will result in too complicated

a structure for Uy that can be demonstrated by considering the
modeling of Uiljukm asfollows. Let hiljllkm = hiik(x’,x”,x’”,t) be a non-
zero basic form and Hi’j"k'” = hi/j//km + hilkmjn. Then

_Ui’j”k'” ~ Hi’j”k”’ + Hj”i’k”’ + Hk:’”j"i’
meets (2.11),. Next, to satisfy (2.12), we propose

—Uyjrgn = Hi'j'/kf”+%R0'j"k"'+Hj"ﬂk'"+a ,,Roﬂ ik
1
0
+ H "']"1'+a g Ry g (2.27)
with
Ry jipm = Ry, Ry jugm = Rojk(x',x",x"’,t), (2.28)

in order that we have six equations (2.12) with six undetermined
functions Ry . The following specia solution of Ry jvm can be
obtained under trivial boundary condition,

1 .
Rol]'//kmzi/DG(x x,

0 = M ~ & -
x [W/Dg(x’x )G(x,x )m(Hmln+Hﬁlm)dde

0 o O _
+ 320;’ AG(X’ X )Bi'laﬂ_?m (Hlk”’m + H'k’”l + Hk”'lm)d
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8 o n 82
+ W/‘DG(X,X )85;181":" (H +H ”l + H,,ln)dx
0 R
+ 255 (H[j”k”’ + Hj”[k'” + Hk”'j”[) dx, (229)

and G is the Green’s function from, under some homogeneous boundary
condition on D,
o G(x,x') = —4(x ! 2.30
pr) (%,x) = -4(x — x). (2.30)
Then a relation for Uy can be derived from (2.27). One major
problem with this relation is the explicit presence of the Green’s function
G which can be quite difficult to find if the flow domain is not simple
enough. Also, it is not clear what homogeneous boundary conditions for
G need to be adopted. The other problem is that multiple integrations
and differentiations are involved. Thus we have to keep a balance
between the simplicity and the comprehensiveness of the model for
Upgnjn. To achieve the simplicity, we may need to alow the presence of
dissipation caused by the artificial viscosity by relaxing the symmetry
constraints, say, by removing (2.11),. This relaxation is formally
allowable by observing that the term
o
Wi’j” = ‘/i’j” + %Hil, V;/J// = @Uilk”jﬂ’

instead of Ujgrjr, is present in (2.16), Wy;w = Win, dways holds
regardless of whether the symmetry condition (2.11), is satisfied by
Ujgnjn O not, since in Vi, the symmetry of Ujgnjn with respect
to K" and j" is suppressed by the divergence operation, and the
appropriate modeling of V;/;» should be the primary concern in order
to get reasonable flow fields of {U;, P, Uy }.

Let us consider a possible model of V;:;» guided by the constraints
mentioned above. The simple ones are

9 9 K" " 0
@Ui'k”j” = —5:;;;,- (mwlﬂn@(]ﬂj”> (231)
for § = U and
0
g Ve = - (l\/ ’"”a - J) (2.32)
for & = U, with
82
" 1"
= 1" patt = U Y]
K Uk k', € 8$k(9.’17 73 . )
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and both ¥” and ®" are dimensionless, positive (semi-)definite tensor
62

P

oz, 0z

functions as
7V )
x' =x!"
@" = Q(Umun//’ Ui'j”a I/, l) .

The specific forms of ¥ and ® have to be fixed either directly or
indirectly with the help of the experimental data, under the constraints
of (2.25) and (2.26), the closed model being dissipative. If the data on
{Virjn, Uiy Uy} or {Vik, UR, Ugn} can be obtained directly, either by
experimental measurement or by direct numerical simulation, the form
on ¥ or @ may be found by correlating Vi, and U, according to (2.31)
or (2.32). Though it bypasses solving the equations as well as prescribing
the initial and boundary conditions, this procedure does not necessarily
guarantee a proper model for {U;, Uy ;»} due to the approximate nature
of the model; for instance, if ¥ or ¢ depends on Uy, then S # 0
and the closed set of equations may not yield solutions for {U;, U}
compatible with that directly obtained for {UZ, U%,,}. To remedy this
flaw, we may propose a form for V;;» according to the criterion for
producing reasonable solutions for {U;, U;;»} from the closed model,

instead of focusing on the matching of V;/;» and Vﬂj,,. This scheme can

be used even if Vi,dj,, is not available. It remains to be resolved how to
evaluate the appropriateness of the model.

3. SUMMARY

We have presented a mixed formulation for turbulence modeling,
a combined version of analytical theories and engineering modeling. The
equations for the two-point correlations Uy ;» and Py are discussed,
and the related issues are addressed which include the necessity for
introducing the function S the approximate nature of any specific
turbulence model of averaging, the different outcomes from differently
chosen set of solutions on which the ensemble averaging is based, and
the constraints on modeling U;x~j» to make the equations determinate
such as realizability and the symmetry properties of the Navier-
Stokes equations. We have delineated the appealing side of such
aformulation, and moreover, its disadvantages with regard to simplicity
when compared with models of single-point correlations, like that
involved in working in a higher dimensional space and the difficulty
associated with prescribing initial and boundary conditions for Uy j»
and the boundary conditions for Py j;». Future work has to resolve
these problems and computational schemes have to be devised to help
modeling.

‘I’” = \I’ (Um”n”, Ui’j”y
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Notes

1 This relation might be derived simply from (i) the properties of Uj,sg i, SUCh as,
its symmetry with respect to its indices, formally linear in v;, (Usjrgrgm )om = Ugim)jrmin
and s0 on; and (ii) the assumptions that v is of normal distribution a one point and that
Uiji gy depends on Uy, Ujjign and the like. This relation unfortunately has the flaw of
yielding negative energy spectra in isotropic turbulence at high Reynolds number Rey =

v/ {v-v)A/v with X being the dissipation length (Ogura [10], Orszag [11]). One reason for
this failure might be explained by observing that
(vivjvp ) = (v Xvpvp) + 2 (vjop ){vjvp)

from (2.22) where the left-hand side is physically expected to be small for large |x — x|,
but the right-hand side can be quite great under large fluctuations especialy in homogeneous
turbulence. Based on this observation, we may modify (2.22) to eliminate this flaw.
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L?>* - REGULARITY FOR NONLINEAR
ELLIPTIC SYSTEMS OF SECOND ORDER

Josef Danééek, Eugen Viszus

Abstract:  There is shown the L2 - regularity of the gradient of wesk solutions of
nonlinear elliptic systems.

Keywords: Nonlinear equations, regularity, Morrey spaces.

1 INTRODUCTION

In this paper we consider the problem of the regularity of the first
derivatives of weak solutions to the nonlinear eliptic system

—Dyal(z,u, Du) = a;(z,u,Du), i=1,...,Nya=1,...,n (1L.1)

where a$(z, u, z), ai(z, u, z) ae Caratheodorian mappings from (z,u, z) €
Q x RV x R™ into R. A function u € W,5*(Q,R") is called a wesk
solution of (1.1) in Q if

/a?(m,u,Du)Dacpidzz/ai(m,u,Du)goid:c, Vo e C(Q,RY).
0 Q

As it is known, in case of a general system (1.1) only partial regularity
can be expected for n > 2 (seeeq.[2], [4], [7]). Under the assumptions
below we will prove L?* - regularity (0 < A < n) of gradient of wesk
solutions for the system (1.1) whose coefficients af*(x,u, Du) have the
form ‘

al(z,u, Du) = Ag-ﬂ(I)DﬂuJ + g3 (z,u, Du). (1.2)
Here A?jﬂ is a matrix of functions, the following condition of strong
ellipticity

Agﬁ(m)fgfg > 1/|£|2, ae. €N VEER™, 1 >0 (1.3)

holds and ¢f*(z,u, z) are smooth functions with sublinear growth in z
In what follows, we formulate the conditions on the smoothness and the
growth of the functions A%’g(m), 9¥(z,u, z) and a;(z,u, z) precisdy.

Applied Nonlinear Analysis, edited by Sequeira et al.
Kluwer Academic / Plenum Publishers, New York, 1999. 3
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Such result may open a way to prove BMO-regularity of gradient.
In [3] the first author has proved L2* - regularity of gradient of

weak solutions to (1.1) in the situation when the coefficients .Af‘jﬁ are

continuous. In this paper the coefficients Azﬂ are discontinuous in
general.

If we want to sketch our method of proof, we have to say that its
crucial point is the assumption on AY?: A% e L(Q) N Lo(Q) (for
the definition see below). Taking into account higher integrability of
gradient Du we obtain L%* - regularity of gradient.

2. NOTATIONS AND DEFINITIONS

We consider bounded open set 2 C R™ with points z = (z1, ... zn),
n>3uQ - RN N>I1, ulx) = (ul(z),...,u"(z)) is a vector-valued
function, Du = (Dyu,...,Dyu), Dy = 8/0z,; we use the summation
convention over repeated indices. The meaning of ©y CC Qs that the
closure of £ is contained in §2,i.e. Qy C (2. For the sake of simplicity we
denote by |-| and (.,.) the norm and scalar product in R*aswell asin RY
and R™V. If z € R™ and r is a positive real number, we denote B, (z) =
{yeR" |y—=z|<r}, ie, the open bal in R, Q(z,r) = B,(z) NS
Denote by u;, = |z, r)|;* fQ(z,r) u(y)dy = fn(z’r) u (y) dy the mean
value of the function u € L'(©, RY) over the set Q(z, ), where |Q(z, 7)|»
is the n-dimensional Lebesgue measure of Q(z,r). Beside the usually

used space C§° (Q,RN), Holder spaces C% (Q,RN), Cla (ﬁ, RN)
and Sobolev spaces W*» (Q,RN), wi? (2, RY), we? (Q,RN) (see,

loc
e.g., [6]) we use the following Morrey spaces.
Definition 1. Let A € [0,n)], g € [1,00). A function v € LY(,RY) is
said to belong to L9 (Q, RY) if

““H%M(Q,RN) = sup {r—)‘ /Q(” lu(y)|9dy : z € Q,r > 0} < 00.
Remark. u € LN (Q,RN) iff u € L9 (9, RY) foreach Qo cC Q.
For more detailssee [2], [4], [6] and [7].
The generalization of Campanato spaces £9*(9, RY) are the classes
Ls introduced by Spanne [§].

Definition 2. A function u € L2(Q,R") issaid to belong to Lo(Q2, RY)
if

1/2
[u]e n=sup {<1>(T)“1 (j{)lzzx(gr/)) ~ g ) dy) crEeQreE (O,diamﬂ]} <00
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and by I5(©2, RN) we denote subspace of all u € Lg(Q2, RY) such that

[“]‘D,Q,ro =

1/2
sup {q)(r)_1 ( |%4(y)) - uz,TIQdy) xEeETreE (O,ro]} = o(1)
Qzx,r

as rg \, 0, where ®(r) = (1 + |Inr|)~}
Some basic properties of above mentioned spaces are formulated in
the following proposition (for the proofs see [1], [2], [6] and [8]).

Proposition 1. For a domain  C R™ of the class C%! we have the
following

(i) Lan (Q,RN) is isomorphic to the L (2, RV).

(i) w € WEE(Q,RN) and Du € L2NQ,R™), n —2 < A < n then

loc

u€ CH(QRY), a=(A+2—-n)/2.

(iii) Lo(Q,RY) is a Banach space with norm
“u”Lq,(Q,RN) = H“||L2(Q,RN) + [ulzo(,RY)-

(iv) CO(Q, RN\ Lo (Q,RVY) and (L°(Q, RV )Nl (Q, RV)H\CY(Q, RY)
are not empty.

(V) Forp € [1,00), Q' CC Q,ry € (0,dist(,00)) and u € Lo(Q, RY)
set

Ny (u; @, 70) =
1/p
= sup <I>(r)‘1< lu(y)—uz,rl"dy) ze,re(0,ro].

z,r)

Then we have for each u € L4(Q, RV)

Ni(u; @, rg) < Np(u; @, 1) < elp,n)[ulo0,-

3. MAIN RESULTS

Suppose that for al (z,u,z) € QxRN x R*V the following conditions
hold:

lai(z,u,2)] < fi(z) + L|2|™ (3.1)
g% (z,u,2)| < f(z)+ Lz (3.2)
98 (zu,2)zh > vl — () (3.3)
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where L, v, are positive constants, 1 < vo < (n+2)/n, 0 <~v < 1, f,
fre LM, 0>2,0< A<, f, € L°P2Q), go = n/(n+2). We

put A = (477), g = (98), a = (@), f = (), F = (f).

Theorem. Let u € W, *(Q,RY) be a weak solution to the system
(1.1) and the conditions (1.2), (1.3), (3.1), (3.2) and (3.3) be satisfied.
Suppose further that .Af'jﬂ € L*(Q) N Ls(), 4, j = 1,...,N, q,
B =1,..,n. Then Du € L2)Q,R™) for A < n and in the case
A=n Due L2 (Q,R™) where ) < n is an arbitrary.

Corollary. Let the assumptions of Theorem be satisfied.

Ifn —2 < A < n, thenu e COO—+2/2(Q RN).

Proof. It follows from Proposition I(ii).

4. SOME LEMMAS

In this section we present the results needed for the proof of Theorem.
In B(z,r) C R" we consider alinear elliptic system
~ Do (A Dgu?) = 0 (4.1)
with constant coefficients for which (1.3) holds.

Lemma 1. ([2] pp. 54-55) Letu € W12(B(z,r), RV) beaweaksolution
to the system (4-1)- Then for each t € [0, 1]

[ 1puwPdy <cr [ ipudy
Btr Br

holds.

Lemma 2. ([4]) Let ¥ = ¥(R), R € (0,d], d > 0 beanonnegative
function and let A, B, C, a, b be nonnegative constants. Suppose that
for all t € (0,1] and al R € (0,d]

¥(tR) < (At®* + B)¥(R) + CR®

holds. Further, let K € (0,1) be such that ¢ = AK%* + BK~% < 1.
Then
¥(R) < cR’, Re€(0,d

where ¢ = max{C/K (1 — €), SUppe(ka,q Y(R)/R"}.

The following Lemma is the specid case of Lemma 34 from the
paper [3].
Lemma 3. ([3], pp.757-758) Let u € W2(Q,RY), Du € L>7(Q, R™Y),
0 <7 <n and (31 and (3.2) are satisfied with f; € L2®*0(Q),
fee L?MQ),0< )< n.
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(i) Then a; € L?%*(Q) and for each ball Br(x) C Q we have

/ \ai(z, u, Du)[?® dy < ¢ R (4.2)
Br(z)

where ¢ = C(‘n,L,’)‘o, diam{, HfHLQqO,)\qO(Q,RN), HDUHL‘Z(Q)RnN))
and A9 = min{Aqo,n — (n — 7)goY0}.

(i) For each e € (0,1) and all Br(z) C Q

/ |gf‘(:c,u,Du)|2 dy < ¢(L) s/ |Dul? dy + ¢ RM (4.3)
Br(z) B

RCL‘

Here ¢ = ¢(L,¢,v, diam@, || fll 2 q@ren ), 1Dull 2@ rem)), At = A
for A\ <n and A\; < n is an arbitrary for A = n.

Proof. For the proof (i) see [2], pp.106-107. According to (3.2) it
follows that

/BR(Z) 9% (y, u, Du))* dy < ¢ (ufn%mm,wv) B +/

Bgr(x

| Du|® dy> :
By Young inequality we obtain
[ putay<e / Duldy + c(n, e, 7)R®
BR(I) BR z

for each ¢ € (0,1) and (4.3) easily follows.
In the following considerations we will use a result about higher
integrability of gradient of weak solution of the system (1.1).

Proposition 4. ([4], p.138) Suppose that (1.2), (1.3), (3.1)«3.3) are
fulfilled and let u € W,?(Q,RY) be a weak solutions of (1.1). Then
there exists an exponent » > 2 such that u € W,f,:(Q RY). Moreover

there exists congtant ¢ = c(v,v1, L, ||A]lo) and R > 0 such that for all
balls Br(z) C Q, R < R the following inequality is satisfied

1/r 1/2
(fara)” < o (fa)
Brya(z) Bpg(z)
1/rqo
' (f(lfrﬂfl ) (ﬂf’%dy) }
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. PROOF OF THEOREM

Let Bgr/a(xo) C Br(zg) C 2 be an arbitrary ball and let
wE Wol’2(BR/2(m0),RN) be a solution of the following system

/ (A?jﬁ)zo,RDﬂ’ija(pi dz
Bp/a(z0)
- Brya(xo) ((A%'ﬂ)zo,R - Azﬂ(x)) DﬂUjDa(pi dz (5‘1)

= [ g(,u Du)Dagt da + a0, Du)y' da
Bp/a(zo)

Bg/2(xo)

foral ¢ € Wol’Z(BRﬂ(xo),RN). It is known that under the assumption
of theorem such solution exists and it is unique for al R < R’ (R'is
sufficiently small).

We can put ¢ = w in (5.1) and using ellipticity, Holder and Sobolev
inequalities we get

1// | Dw|? dz
Bprja(zo)

<o(f M- A@FIDd [l Dl
Bprya(zo

Bpya(zo)
1/go
+ ( / |la(z, u, Du)|2 da:) =c(I+II+1II).
Brya(zo)

Taking into account the properties of matrix A = (A;’f ), Proposition
1(v), Proposition 4 withr > 2 and Holder inequality (r' = r/(r —2)) we
obtain

/7’ 2/r
I'< (/ |A(z) = Azo,r|*" de‘) (/ | Du|” d:x;)
Bpya(zo) Bp/a(xo)

, /v
< _CRYT (1+ 10 R))) [ £|A(z) — Ay, ol d «
= 1+|nR)| (o)~ ZoR2

Bgrya(zo
2/r
X (/ | Dul|” d:l:)
Bprya(zo)

Rn/r’ 2/r
< Nop (A; @, Bryy (0) ’R/2)1—+|TR| (/B (o) | Dul" dﬂ?)
R/2\Z0

Rn/r’ 2/r
s ey @rv) TR </Bﬂ/g(zo) o dz) |
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To the estimate the last integral in above inequality we use Proposition
4 and we get

2/r
(/ | Dul|” da:)
Bpya(x0)

~ 2/r
1 T T
SC{W/BR@) |Du)? dy + (/Bk(x)(lfl + | f] )dy>

2/rqo
+R2(1_2/T) (/ |f|rqo dy)
BR(E)

1 2 M/r | pAr—24A)/r)
<c (Rn(l—?/r) /BR(z) |Dul“dy + R*V" + R

where ¢ = e(r, | fll @y 1l ) 11l oo rao ()

I |Duldz + ¢ (R¥7 + RAT=24N/m)) g/t
)

< ° -
1+ [InR| Bg(zo

We can estimate 11 and 11l by means of Lemma 3 (with 7 = 0) and we
have

1/2/ |Dw|? d (5.2)
Bpr/a(zo)

1
< e+—)/ Dul?dz + RV
_c{( 1+ |InR| B}z(ﬂﬂo)| uf do }

wherey = min{(2A+n(r—2))/r, 2A+(n+2)(r—2))/r,A\,n+2—ny} =
min{\,n + 2 — nyy} because r > 2.

The function v = u — w € Wh2(Bg/2(z0), RY) is the solution of the
system

/ (A28)0.5/2 D0 Dol dz = 0 (5.3)
Br/2(zo)
fordl ¢ € WOI’Q(BRﬂ(xO),RN). Prom Lemma 1 we havefor t € (0, 1]
[ ipe@Pdy<er [ Do) dy.
Biry/2(zo)

Bpya(zo)

By means of (5.2) and (5.3) we obtainfor ¢ € (0,1] and € € (0, 1)

1
/ |Dul?dz < ¢ { (t” +e+ —) / |Du|? dz + R"} :
Bigy2(zo) L+ |InR| Bg(zo)
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For t € [1,2] the above inequality is trivial and we obtain for al ¢ € [0, 1]

1
|Du|? dz < ¢; (t"+6+-——)/ |Du|? dz + ¢y R*
/B,R(xo) 1+ |In B[/ JBr(20) |

where the constants c¢; and c; depends only above mentioned parameters.
Now from Lemma 2 we get the result of the following manner. If we

put Y(R) = [p,(z0) |Du|?dz, A = ¢, B = ci(e +1/(1 + |InR])) and
C = ¢y We can choose 0 < K < 1 such that AK™* < 1/2(in the case

A = n we have AK™M < 1/2, where A; is from Lemma 3(ii)). It is
obvious that the constants ep > 0, Ry > 0 exist such that BK—* < 1/2
(B = g+ 1/(1 + |In Rg])) and then for al ¢t € (0,1), R < Rq the
assumptions of Lemma 2 are satisfied and therefore

/ |Du|*dz < ¢ R*
Bg(zo)

If 4 = A Theorem is proved. If x < A the previous procedure can be
repeated with 7 = ¢ in Lemma 3. It is clear that after a finite number
of steps (since p increases in each step as it follows from Lemma 3) we
obtain p = A.
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ON THE FREDHOLM ALTERNATIVE
FOR NONLINEAR HOMOGENEOUS
OPERATORS

Pavel Dréabek

Abstract:  In this paper we discuss some issues concerning the generalization
of the Fredholm alternative for nonlinear operators. We deal with
both nonresonant and resonant cases which makes the situation fairly
subtle. That is why we restrict ourselves on the case of one dimensional

p-Laplacian.

Keywords: Nonlinear Fredholm alternative, p-Laplacian, eigenvalues, solvability,
resonance.

1. INTRODUCTION

In this paper we want to discuss some aspects of the generalization
of the Fredholm alternative for nonlinear operators. One of the first
attempts to give a systematic treatment of this issue was done by
Jindfich Necas and his pupils and collaborators Svatopluk Fuéik, Jiri
Souéek and Vladimir Soudek in their book [FNSS] in early seventies. It
follows from their very general results that if we drop the linear structure
of the operator a lot of properties connected with the geometry of its
range (and aso the spaces considered) are lost or modified. The situation
appears to be so complicated that in order to illustrate some of these
phenomena we have to restrict our attention to a very specia class of
nonlinear operators.

Namely, we restrict ourselves to the second order o.d.e. operator
u — (Ju'|P~%u'), where p > 1 is areal number. This is one dimensional
analogue of the p-Laplacianu — div(|Vu|P7*Vu) which isfrequently
mentioned in many nonlinear mathematical models arising in various
applications. From the theoretical point of view this (in general non
additive for p # 2) operator plays a special role because it preserves
homogeneity of order p — 1L This is very important because even if we

Applied Nonlinear Analysis, edited by Sequeira et al.
Kluwer Academic / Plenum Publishers, New York, 1999. 41
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loose linear structure of the operator for p # 2, we “stay not too far”
from it for p “close to” 2.
The purpose of this paper isto illustrate that on one hand the operator
u > (Ju/|P~%u') has very similar properties for p = 2 and p # 2 but on
the other hand to show that the case p = 2 is singular in some sense.
The former case concerns the structure of the spectrum of nonlinear
eigenvalue problem

—(Ju'lP~%) — AjufP~?u = 0 in (0,1),

u(0) = u(1) = 0. (EP)

It was proved that the set of all eigenvalues of (EP) and the properties
of the corresponding eigenfunctions are very similar for any p > 1.

The latter case concerns the fact that the structure of the right hand
sdes f of the problem

—(Jw'[P~?u')" = MulP~?u = f in (0, 1),

u(0) = u(1) = 0, (RP)

where A > 0 (A being an eigenvalue or not), as well as the number of
solutions to (RP), depend strongly on the fact whether p = 2 or not.

This paper is organized as follows. In section 2 we summarize the
properties of all eigenvalues and eigenfunctions of the eigenvalue problem
(EP). In section 3 we discuss existence and multiplicity of solutions to
the problem (RP) for A not an eigenvalue of (EP). We aso point out
some geometrical properties of the energy functional

1 1 )Y 1 1
J’\:ur—)—/ u"’——/ u”—/ U
f p0| ' PO|| Of

associated with (RP). The last section 4 is devoted exclusively to the
case A = A (the principal eigenvalue of (EP)). In this case the striking
difference between p = 2 and p # 2 is shown. This difference concerns
not only the structure of al right hand sides f for which (RP) is solvable,
but it clarifies dso the role of the conditions p > 2and p < 2in

apriori estimates of the solutions as well as in the geometry of the energy
functional J3'.

This is a survey paper where the author was intended to summarize
the research motivated by Professor J. Nefas more than twenty years
ago. The author would like to express his gratitude to al his
collaborators (Y. X. Huang, P. A. Binding, P. Takig, M. de Pino,
R. Manasevich) and to the following grants for the support during the
work on this issue. the Grant Agency of the Czech Republic, grant
# 201/97/03595, the Ministery of Education of the Czech Republic,
grant # VS97156, NATO Collaborative Research Grant OUTR. CRG
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961190, FONDAP de Mateméticas Aplicadas (Chile), the University of
Calgary and the University of Rostock.

2. NONLINEAR HOMOGENEOUS
EIGENVALUE PROBLEM
Let us consider eigenvalue problem

(J']P~20!)" + A|u|P~2u = 0 in (0, 1),

w(0) = u(1) = 0 (2.1)

with a spectral parameter A € R. Define
1 ds 27

p = 2 = —.
P 0 (1—sp)p Psing

Then 7y = 7 and it was shown for instance in [DEM] that the set of all
eigenvalues of (2.1) (i.e. the sat of al values of A for which (2.1) has
a nonzero solution) is given by the sequence

A = (p— 1) (kmp)? for k= 1,2,...

The set of eigenfunctions associated with A = A, corresponds precisely
to that of constant multiples of the function sin,(m,t), where sin,  is the
solution of the initial value problem

(ju'P~2u) + (p = Dluf>u =0 in R,
u(0) = 0,u/(0) = 1,

whichfor ¢ € [0, 2] can be described implicitly by the formula

t = /Osm'"t (—ds—. (2.2)

1
1 - sl’)P
Furthermore, this function satisfies

sing(t) = siny(mp — t) for ¢ € 22, 7p),
sing(t) = — siny(—t) for t € [—mp, 0]

and can be uniquely extended as a2, periodic function on the wholeR.
The sat of eigenfunctions associated with A = A,k = 2,3,..., are
then constant multiples of the function sin, (k7pt).
For ¢t € [0, ) and s € [0,1) setting

: d . ¢ tan.t siny t . . 1
COSp t: = — sin an,t:= —P— . arcsing $: = sin, - §
P " P” p cosp t’ P by %



44 Drébek P.

we have the validity of formulas

sinft +cosht =1, cos,t= —tanh ! tcosyt,
— - e 1 (2.3)
tan’pt =1+ tangt = m’ a,rcsm;,s = O—F
—s )p

These formulas fit with corresponding well known formulas for » = 2.
i/p

. : by
Also the properties of eigenvalues (A—’iﬁ,—l =kl )\ 5 cask o oo,
k

k
AL > 0, etc.)
and eigenfunctions (sin,(kmpt) has & — 1 equidistant nodes in (0,1),
validity of formulas (2.3), etc.) for general p > 1 are similar to those
aready known before for p = 2.

Let us conclude this section by mentioning the paper of Necas [N],
where the eigenvaue problem of the type (2.1) was studied. Actually,
the problem considered in [N] is more general (non autonomous) and o0
the results concerning the structure of the eigenvalues and associated
eigenfunctions are not so accurate. The problem (2.1) was then studied
by Drabek [DI], [D2] and Otani [O] where more accurate results were
proved using autonomy of the equation in (2.1). The work of del
Pino, Elgueta and Manéasevich [DEM] provided then a very nice and
transparent description of the eigenvalue problem (2.1) based on the
generalization of “sin” function given implicitly by (2.2).

3. NONRESONANCE FOR THE
P-LAPLACIAN

In this section we study the nonlinear boundary value problem

=(Ju'[P~*u)" = MufP~?u = £ in (0,1),

u(0) =u(l) =0 (3.1)

and associated energy functional W,7(0,1) — R,

Rp= 1 [ =2 e = [ (3.2)

where X is not and eigenvalue of (2.1) (i.e. A # A,k =1,2...).

For simplicity we shall dea with f € C[0, 1] and the solution of (3.1)
will be such a function v € C*[0,1] for which [«/'[P~2%u' € C'[0,1] and
u satisfies the equation and the boundary conditions. It is not difficult
to show that the critical points of J }\ are in one to one correspondence
with the solutions of (3.1).

Due to the variational characterization of A;:

fol |u'|P

1
fo |U|p’

A1 = min (3.3)
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where minimum is taken over all nonzero elements of Wol”’(O, 1), and due
to the monotonicity of the operators A, B : W,?(0,1) — (W, "7(0,1))"
defined by

1 1
< Au,v >= / |u'[P~%u'y', < Bu,v >= / P~ 2uv
0 0

(here < -,- > isthe duality pairing between (W, ”(0,1))* and W,*(0, 1))
it is easy to prove that for A < 0 the energy functional J} has unique
minimizer in W, ?(0,1) for arbitrary f € (W,"*(0,1))*. In particular, it
follows from here that given arbitrary f € C|0, 1], the problem (3.1) has
unique solution. So from this point of view, the situation is the same for
p=2andp#2

The case A > 0 is different. It is wel known that for p = 2
and A # A,k = 1,2,..., forany f € C[0,n] the problem (3.1) has
unique solution, which follows e.,g. from the Fredholm alternative.
Let us consider now p # 2 and 0 < A < A;. Due to the variational
characterization of Ay given by (3.3) theenergy functional isstill coercive
but the monotone operators A and B “ compete” because of the positive
sign of \. While in the linear case (p = 2) this fact does not affect
uniqueness, for p # 2 the following interesting phenomenon is observed.
There exist functions f € C[0, 7} such that J} has at least two critical

points. One of them corresponds to the global minimizer of JfA on

Wol’p(o, 1) (which does exist due to A < A;) and the other is a critical
point of “saddl€’ type. As an immediate consequence we obtain that
for certain f € C[0,1] the problem (3.1) has at least two solutions.

The examples which illustrate these facts were given by Fleckinger,
Hernandez, Taki¢ and deThélin [FHTT] for 1 < p < 2 and del Pino,
Elgueta and Manésevich [DEM] for p > 2. The result was generalized
for general A > 0 by Drabek and Takac¢ [DT].

As a summary of this section we point out that in the nonresonant
case for the p—Laplacian we observe a lack of uniqueness for (3.1) with
certain f when p # 2. This makes the nonlinear case qualitatively very
different from the linear one.

4. RESONANCE FOR THE P-LAPLACIAN

The case A = X, k= 1,2,..., in (3.1) is even more interesting and
challenging. We shall restrict ourselves to £ = 1, i.e. we study the
nonlinear boundary value problem

—([u'[P~2u") ~ Ay|ufP~2%u = f in (0, 1)

w(0) = u(1) = 0, (4.1)
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where: A\, = (p — 1)=} is the principa eigenvalue of (2.1).
For p = z this problem reduces to the simple linear problem

—u" — 7%y = f in (0,1),

u(0) = u(1) =0, (4.2)

whose solvability is fully described for instance by the linear Fredholm
alternative. Namely, (4.2) is solvable if and only if

/0 ' f(t) sintdt = 0. (4.3)

In such case, the solution set is a continuum constituted by a one—
dimensional linear manifold. Needlessto say, such anice characterization
uses the underlying linear structure of the problem (4.2) in essential way.

It is natural to ask what is the role, if any, of the corresponding
analogue of (4.3) for general p > 1,i.e.

/ £ (8) sinp mytdt = 0. (4.4)
0

In fact, for instance it is shown in dd Pino and Manéasevich [DM] that
no solution to (4.1) exists in the case f = constant # 0, case in which
of course condition (4.4) is violated. However, in Binding, Drabek and
Huang [BDH] an example is constructed which shows that (4.4) is not
necessary for the existence of the solution to (4.1). This observation was
refined by del Pino, Drabek and Manésevich [DDM] in the following way.

Theorem 4.1. Let p # 2. Then there exists an open cone C C C[0,1
such that for all f € C problem (4.1) has at least two solutions.
Moreover,

1
/ f(t) sing mptdt # 0
0
for all f eC.

So, if p # 2 the situation is completely different from the linear case.

On the other hand, as it follows from [DDM], if f € C*[0, 1] satisfies
the orthogonality condition (4.4), linear in nature, then it is sufficient for
solvability of (4.1) for any p > 1. In other words, the set of f's for which
(4.1) is solvable contains at least the linear space of adl C! functions
satisfying (4.4). More precisely we have

Theorem 4.2. Let us assume that f € C!0,1], f # 0, satisfies
condition (4.4). Then the problem (4.1) has at least one solution.
Moreover, if p # 2, then the set of all possible solutions is bounded
in C[o,1].
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We observethat aso Theorem 4.2 reveals astriking difference between
the cases p # 2 and p = 2, since in the latter case the solution st is an
unbounded continuum.

A by product of the proof of Theorem 2 is the fact that the degree
of the associated fixed—-point operator with respect to a large ball in
C'[0,T] becomes +1 if p > 2 while it equals —1if p < 2.

Let us consider on Wol”’ (0,1) the energy functional

1 1t )\11 1
J’\‘u:—/ u'p——/ up—/ u
P = [wp-2t e[

associated with (4.1). Assume that (4.4) holds. In case p = 2 this
functional is bounded from below and it achieves its minimum in every
solution of (4.1). The set of dl solutions to (4.1) forms linear unbounded
continuum in Wol”’(O,l). In case p # 2 the situation is completely
different. The following result is dso proved in [DDM].

Theorem 4.3. Assume that f € C'0,1], f #0 and f satisfies (4.4).
Then

(i) for 1 < p < 2 the functional J is unbounded from below. The set
of its critical points is nonempty and bounded,;

(i) for p > 2 the functional J}\‘ is bounded from below and has a global

minimizer. The set of its critical points is bounded, however JM
does not satisfy the Palais — Smale condition at the leve O.

Let us emphasize that changing p from p < 2 to p > 2 the following
gualitative change of JM occurs. The structure of J} shifts from
a saddlepoint geometry to a globa minima geometry for its leve
sets. The “singular value” p = 2 corresponds to a convex functional
with a whole ray of minimizers. These facts open an interesting issue
concerning the geometry of LP-spaces and the structure of Poincaré-
type inequalities.
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EXISTENCE OF SOLUTIONS

TO A NONLINEAR COUPLED
THERMO-VISCOELASTIC CONTACT
PROBLEM WITH SMALL

COULOMB FRICTION

Christof Eck, Jifi Jarugek

Abstract: The solvability of a coupled thermoviscoelastic contact problem with
Coulomb friction is investigated. The heat generated by friction is
described by a boundary term of quadratic order. The tensor of thermal
conductivity is dependent on the temperature gradient and satisfies
a certain growth condition.

Keywords: Dynamic contact problems, Signorini contact condition, nonlinear heat
equation, viscoelasticity, Coulomb law of friction, existence of solutions.

1. INTRODUCTION

The investigation of contact problems with Coulomb friction started
from an idea of Necas to prove the existence of its solutions via the
regularity of the solution of some approximate problem, [9]. This idea
was dso employed in the first existence results in dynamic contact
problems derived for a viscoelastic body and a rigid undeformable
support with a Signorini condition formulated in velocities, [5], [6].
As the friction represents an important heat source, the aspect of
heat conduction and heat deformation must be included into the
investigation. In [3] the linearized system of equations was treated.
The linear character of the heat conduction equation forced us to
limit there the growth of the heat generated by friction by a linear
term. In the present paper the existence of a solution for a frictional
thermoviscoelastic contact problem including the full quadratic growth
of the heat generated by friction is proved for the first time. For
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the viscoelastic material we employed the nonlinear constitutive law
investigated in Ne¢as works [8], [10] and [11].

In the paper we use the standard notation W, H* = Wy, H* and
H™* = H** for isotropic Sobolev-Slobodeckii spaces with £ > 0 and
p > 1. If k € R?, the first and second index corresponds to the time
and the space variables, respectively. The spaces with range in RV are
denoted by bold letters.

2. DESCRIPTION OF THE PROBLEM

We consider a body occupying in some reference configuration the
domain Q ¢ RY of dimension N = 2 or N = 3 with aLipschitz boundary
I' composed of the three measurable, mutually disjoint parts Iy, I'r and
I'c. Let I+ :=[0,7] be the considered time interval of the problem, let
Qr = IT x Q denote the time-space domain and let Sy := I+ x I’
be its lateral boundary consisting of the parts Sx .5 := Iy x I'x for
X =U,F,C. For 7 > 0 we shal denote I, := [0, 7] and analogously @,
S etc. The problem studied here consists of a dynamic contact problem
with Coulomb friction coupled with a heat conduction equation. The
contact problem is given by the set of relations

i; —oy(u)=fi, i=1,...,N, in Qr (2.1)
u=U on Syr, (2.2)
o™ ) =h on SgT, (2.3)

Un <0, 0, <0, onl,=0,

=0 = |0t| < S|on], . on Scr, (2.4)
. U ’

Ut # 0 > o = —8|0n1ﬁ

u(0,z) = ug(z), u(0,z) =wui(z) for z€Q. (2.5)

Here and in the sequel, the summation convention is employed. By v; we
denote the derivative of a function v with respect to the space variable
z;. The respective time derivatives are denoted by dots. By u and ©
we denote the displacement field and the temperature, respectively. The
strain—stress relation is given by a linear thermoviscoelastic law of the
Kelvin—Voight type,

z(;l)ceeke(ﬂ) - b0, 4,j=1,...,N,

oi; = 055(u) = ag?),)ceekg(u) +a
with e;j(u) := 3(u;j + uj3). The tensors {ag),)d} and {ag;,)ce} are
assumed to depend Lipschitz—continuously on the space variable and

shall be symmetric, i.e. ag.}w = a%w = af:e)ij, a well as bounded and
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elliptic, i.e.
e e g e < aAWe ¢ 26
ag fzjfzj S aijkgfzjgkﬁ > Ay &z]&] ( . )

for al symmetric tensors {¢;;} € RMN with constants 0 < aé‘) < AE)L),

= 0,1. The tensor {b;;} of thermal expansion shall be symmetric,
Lipschitz with respect to the space variable and globally bounded.
Moreover, n denotes the outer normal vector of the boundary, af") =
oijn; the components of the boundary traction; the subscripts , and
¢ denote the normal and tangential components of the corresponding
vectors. In particular, we have o, = oyjnin; and o, = o™ — gyn.
Observe that the Signorini condition (the first row of (2.4)) is formulated
in velocities.

The temperature field © satisfies the heat conduction problem

—(€j0,4) + b;OU,; = 0 in Qr, (2.7
0O =0 on SU,T, (2.8
C,’j@ i, = K (T - @) on SF,T) (2.9

;0 jn; = §log||i] + K(T —0O) on Sc7r, (2.10
©0,z) = 0 forz € Q. (2.11

The tensor of thermal conductivity c;; is assumed to be symmetric and
to depend locally Lipschitz—continuously on the temperature gradient
such that it satisfies the growth condition

& (1+|VOP) &g < ¢ij(VO)&E; < & (1 +|VOP) i, € € RY (2.12)

the strong monotonicity
(cij(VO)O,; — ¢ij(VE)E1, 0, — E4) g,
> &)V(0 - B)lL,or) t&lV(® —S)li,g,  (213)
foreach ©,2 € Ly (IT; W}(Q)), and the continuity relation
ci(VOW)OW  ¢;(VO)0; in Ls(Qr), i=1,... ,N, (2.14)

for ©%) — © strongly in Ly(Ir; WE(Q)). Anexamplefor such amatrix-

valued function is ¢;;(z; E) = 8;;(do(z) + d1(z)|E|“) with the Kronecker
symbol §;; and measurablefunctions dp and d; such that d; € [q1, g2, i =
0,1, for some positive real constants ¢;,q2. In equation (2.7), the
quadratic term describing the generation of heat by theviscosity (cf. [13])
has been neglected. Both the heat generated by friction and the heat
exchange of the contact surface with the foundation is included into
(2.10).
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The variational formulation of the problem is given as follows. The
sets of admissible functions for the viscoelastic equation of motion and
the heat equation, respectively, are given by

R= {v € H%’l(QT); v =U on Sy 7 and v, <0 on SC)T}, (2.15)
W= {v € LI H'(Y);v =00n Syr}, (2.16)
U= {ve Ly(Ir;Wi(Q);v=0o0n Syr}. (2.17)

A weak solution of the thermoviscoelastic contact problem is a pair of
functions (u, ©) with @ € &, & € H2(I1; Lo(Q))*, © € U, © € U* which
satisfy the initial conditions u(0,-) = u