Springer Undergraduate Texts
in Mathematics and Technology

Jonathan M. Borwein
Matthew P. Skerritt

An Introduction to
Modern Mathematical
Computing

With Mathematica®

@ Springer

Springer Undergraduate Texts
in Mathematics and Technology

Series Editors:
J. M. Borwein, Callaghan, NSW, Australia
H. Holden, Trondheim, Norway

Editorial Board:

L. Goldberg, Berkeley, CA, USA

A. Iske, Hamburg, Germany

P.E.T. Jorgensen, Iowa City, IA, USA
S. M. Robinson, Madison, WI, USA

For further volumes:
http://www.springer.com/series/7438

Jonathan M. Borwein * Matthew P. Skerritt

An Introduction to Modern
Mathematical Computing

With Mathematica®

@ Springer

Jonathan M. Borwein

Director, Centre for Computer Assisted Research
Mathematics and its Applications (CARMA)

University of Newcastle

Callaghan, NSW 2308

Australia

jon.borwein@gmail.com

Matthew P. Skerritt

Centre for Computer Assisted Research
Mathematics and its Applications (CARMA)

University of Newcastle

Callaghan, NSW 2308

Australia

matt.skerritt@gmail.com

Wolfram Mathematica® is a registered trademark of Wolfram Research, Inc.

ISSN 1867-5506

ISBN 978-1-4614-4252-3

DOI 10.1007/978-1-4614-4253-0
Springer New York Heidelberg Dordrecht London

ISSN 1867-5514 (electronic)
ISBN 978-1-4614-4253-0 (eBook)

Library of Congress Control Number: 2012942931

© Springer Science+Business Media, LLC 2012

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrievel, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained
from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.
Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To my grandsons Jakob and Skye, and
granddaughter Zée.
Jonathan Borwein

To my late grandmother, Pegqgy, who ever urged me
to hurry up with my PhD, lest she not be around to

see 1t.
Matthew Skerritt

Preface

Thirty years ago mathematical, as opposed to applied numerical, computation was
difficult to perform and so relatively little used. Three threads changed that:

e The emergence of the personal computer, identified with the iconic Macintosh but
made ubiquitous by the IBM PC.

e The discovery of fiber-optics and the consequent development of the modern Inter-
net culminating with the foundation of the World Wide Web in 1989 made possible
by the invention of hypertext earlier in the decade.

e The building of the “Three Ms”: Maple™, Wolfram Mathematica®, and MATLAB.
Each of these is a complete mathematical computation workspace with a large
and constantly expanding built-in “knowledge base”. The first two are known as
“computer algebra” or “symbolic computation” systems, sometimes written CAS.
They aim to provide exact mathematical answers to mathematical questions such

as what is
o0 2
/ e " dux,
— 00

what is the real root of 2* + = 1, or what is the next prime number after
1,000,000,0007 The answers, respectively, are

v/ 108 + 1293 2
N +1293 and 1,000,000,007.

6 3108 + 1293

The third M is primarily numerically based. The distinction, however, is not a sim-
ple one. Moreover, more and more modern mathematical computation requires a
mixture of so-called hybrid numeric/symbolic computation and also relies on signif-
icant use of geometric, graphic and, visualization tools. It is even possible to mix
these technologies, for example, to make use of MATLAB through a Maple interface;
see also [6]. MATLAB is the preferred tool of many engineers and other scientists
who need easy access to efficient numerical computation.

Of course each of these threads rely on earlier related events and projects, and there
are many other open source and commercial software packages. For example, Sage is an
open-source CAS, GeoGebra an open-source interactive geometry package, and Octave
is an open-source counterpart of MATLAB. But this is not the place to discuss the merits
and demerits of open source alternatives. For many purposes Mathematica and Maple
are interchangeable as adjuncts to mathematical learning. We propose to use the latter.
After reading this book, you should find it easy to pick up the requisite skills to use
Mathematica [14] or MATLAB.

vii

viii Preface

Many introductions to computer packages aim to teach the syntaz (rules and struc-
ture) and semantics (meaning) of the system as efficiently as possible [7, 8, 9, 13]. They
assume one knows why one wishes to learn such things. By contrast, we intend to per-
suade that Maple and other like tools are worth knowing assuming only that one wishes
to be a mathematician, a mathematics educator, a computer scientist, an engineer, or
scientist, or anyone else who wishes/needs to use mathematics better. We also hope
to explain how to become an experimental mathematician while learning to be better
at proving things. To accomplish this our material is divided into three main chapters
followed by a postscript. These cover the following topics:

e Elementary number theory. Using only mathematics that should be familiar
from high school, we introduce most of the basic computational ideas behind Maple.
By the end of this chapter the hope is that the reader can learn new features of
Maple while also learning more mathematics.

e Calculus of one and several variables. In this chapter we revisit ideas met
in first-year calculus and introduce the basic ways to plot and explore functions
graphically in Maple. Many have been taught not to trust pictures in mathematics.
This is bad advice. Rather, one has to learn how to draw trustworthy pictures.

In[1]:= Plot[x*Sin[1/x], {x, -1/2, 1/2}]
04l
0.3;

02f

A AVAMA\/A v

Out[1]= 02

e Introductory linear algebra. In this chapter we show how much of linear algebra
can be animated (i.e. brought to life) within a computer algebra system. We suppose
the underlying concepts are familiar, but this is not necessary. One of the powerful
attractions of computer-assisted mathematics is that it allows for a lot of “learning
while doing” that may be achieved by using the help files in the system and also
by consulting Internet mathematics resources such as MathWorld, PlanetMath or
Wikipedia.

e Visualization and interactive geometric computation. Finally, we explore
more carefully how visual computing [10, 11] can help build mathematical intuition
and knowledge. This is a theme we will emphasize throughout the book.

Each chapter has three main sections forming that chapter’s core content. The fourth
section of each chapter has exercises and additional examples. The final section of each
chapter is entitled “Further Explorations,” and is intended to provide extra material
for more mathematically advanced readers.

Based on these principles, An Introduction to Modern Mathematical Computing with
Maple™ was published in July 2011, using Maple as the software tool. This book
is, essentially, the same text corresponding to the Mathematica system. For the most
part the same examples and techniques have been “translated” to Mathematica, but

Preface ix

occasionally the structure of Mathematica’s language, or other particulars of the system
have necessitated a divergence from the previous book.

In particular, the entire section on geometric constructions from Section 4.2 needed
to be performed in Cinderella. Additionally, several errors made by Maple to do with
infinite sums and products which lead to interesting mathematical explorations are
simply not made by Mathematica. In all cases, the author has endeavored to adhere to
the principles described above.

A more detailed discussion relating to many of these brief remarks may be followed
up in [2, 3, 4] or [5], and in the references given therein.

The authors would like to thank Wilhelm Forst for his comments, corrections and
suggestions, Joshua Borwein-Nevin for his work helping to change Maple code to Math-
ematica code, and Shoham Sabach and James Wan for their help proofreading prelim-
inary versions of the Maple version of the book.

Additional Reading and References

We also supply a list of largely recent books at various levels that the reader may find
useful or stimulating. Some are technical and some are more general.

1. George Boros and Victor Moll, Irresistible Integrals, Cambridge University Press,
New York, 2004.

2. Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM: A Study in Analytic
Number Theory and Computational Complexity, John Wiley & Sons, New York,
1987 (Paperback, 1998).

3. Christian S. Calude, Randomness and Complexity, from Leibniz To Chaitin, World
Scientific Press, Singapore, 2007.

4. Gregory Chaitin and Paul Davies, Thinking About Gdédel and Turing: FEssays on
Complezity, 1970-2007, World Scientific, Singapore, 2007.

5. Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspec-
tive, Springer, New York, 2001

6. Philip J. Davis, Mathematics and Common Sense: A Case of Creative Tension,
A K. Peters, Natick, MA, 2006.

7. Stephen R. Finch, Mathematical Constants, Cambridge University Press, Cam-
bridge, UK, 2003.

8. Marius Giaguinto, Visual Thinking in Mathematics, Oxford University, Oxford,
2007.

9. Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics,
Addison-Wesley, Boston, 1994.

10. Bonnie Gold and Roger Simons (Eds.), Proof and Other Dilemmas: Mathematics
and Philosophy, Mathematical Association of America, Washington, DC, in press,
2008.

11. Richard K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, Heidel-
berg, 1994.

12. Reuben Hersh, What Is Mathematics Really? Oxford University Press, Oxford,
1999.

13. J. Havil, Gamma: Ezploring Euler’s Constant, Princeton University Press, Prince-
ton, NJ, 2003.

14. Steven G. Krantz, The Proof Is in the Pudding: A Look at the Changing Nature of
Mathematical Proof, Springer, New York, 2010.

15.

16.

17.

18.

19.

20.

21.

22.

Preface

Marko Petkovsek, Herbert Wilf, and Doron Zeilberger, A=B, A.K. Peters, Natick,
MA, 1996.

Nathalie Sinclair, David Pimm, and William Higginson (Eds.), Mathematics and the
Aesthetic. New Approaches to an Ancient Affinity, CMS Books in Math, Springer-
Verlag, New York, 2007.

J. M. Steele, The Cauchy-Schwarz Master Class, Mathematical Association of
America, Washington, DC, 2004.

Karl R. Stromberg, An Introduction to Classical Real Analysis, Wadsworth, Bel-
mont, CA, 1981.

Richard P. Stanley, Enumerative Combinatorics, Volumes 1 and 2, Cambridge Uni-
versity Press, New York, 1999.

Terence Tao, Solving Mathematical Problems, Oxford University Press, New York,
2006.

Nico M. Temme, Special Functions, an Introduction to the Classical Functions of
Mathematical Physics, John Wiley, New York, 1996.

Fernando R. Villegas, Fxperimental Number Theory, Oxford University Press, New
York, 2007.

Many other useful links are maintained by the authors of Mathematics by Experiment

[3] at http://www.experimentalmath.info/.

Finally, errata and other information relating to this book can be found online at

http://carma.newcastle.edu.au/books/mathematicalcomputing/.

Jonathan Borwein
Matthew Skerritt
May 31, 2012

Contents

Preface vii
Conventions and Notation xiii
1 Number Theoryo e e 1
1.1 Introduction to Mathematica i, 1
1.1.1 Inputting Basic Mathematica Expressions 1

1.1.2 Variables 3

1.1.3 Functions 6

1.1.4 Lists, Sets, and Sequenceso i, 7

1.1.5 Sums and Products.......... 11

1.1.6 Pre-, Post-, and Infix Function Notation...................... 13

1.2 Putting It Together i 15
1.2.1 Creating Functions i 15

1.2.2 L00DS - ¢ vt 18

1.2.3 Decision Structures 23

1.2.4 Functions Revisited and Pattern Matching................. ... 33

125 Nesting ...t 38

1.2.6 Recursive Functions 42

1.2.7 Computation Time 43

1.3 Enough Code, Already. Show Me Some Math!....................... 49
1.3.1 Induction....... 49

1.3.2 Continued Fractionsc. ... 53

1.3.3 Recurrence Relations 57

1.3.4 The Sieve of Eratosthenes 61

1.4 Problems and EXercisesc..uiiiitiniiinian.. 67

1.5 Further Explorations. i 74

2 Calculus e 77
2.1 Revision and Introduction 7
2.1.1 Plotting . ..o 7

2.1.2 Multiple Plots 82

2.1.3 LAmits ..o 85

2.1.4 Differentiation 92

2.1.5 Imtegration 95

2.2 Univariate Calculus 96
2.2.1 Optimizationttt e 96

xi

xii Contents
2.2.2 Integral Evaluation i 98
2.2.3 Differential Equations............. i 101
2.2.4 Parametric Equations, Alternative co-ordinates, and Other
Esoteric Plotting Fun 105
2.3 Multivariate Calculus 0 112
2.3.1 Three-Dimensional Plotting. 112
2.3.2 Surfaces and Volumes of Rotation 116
2.3.3 Partial and Directional Derivatives 122
2.3.4 Double Integrals 129
2.4 EXEICISES . vttt ittt e 134
2.5 Further Explorations......... i 136
3 Linear Algebra 139
3.1 Introduction and Review i, 139
3.1.1 Vectors and Matrices in Mathematica 139
3.1.2 Simultaneous Linear Equations.............. 143
3.1.3 Elementary Row Operationso, .. 148
3.2 VeCtOr SPaCES . o ottt et e e 157
3.2. 1 VECtor SPacCES -« . v v vttt et 157
3.2.2 Linear Combinations.oiiiitirinininenan.. 159
3.2.3 Linear Independence i 162
3.2.4 Basisand Dimension.......... i i 167
3.3 Linear Transformationsuuirininintrnninnnnnn. 169
3.3.1 Introduction to Linear Transformations 169
3.3.2 Linear Transformations as Matrices.......................... 170
3.3.3 Eigenvectors and Eigenvalues 174
3.3.4 Diagonalization 179
3.4 EXEICISES . .\ttt 187
3.5 Further Explorations.......... 191
4 Visualization and Geometry: A Postscript 195
4.1 Useful Visualization Tools 0., 195
4.1.1 Interactive Mathematica and Demonstrations 195
4.1.2 Animation. 196
4.1.3 Text and Labeling i 197
4.1.4 Polygons, Polyhedra, and soon 201
4.2 Geometry and Geometric Constructionso .. 204
4.2.1 Constructing a Circle Given Three Points 204
4.2.2 Constructing the Orthocenter of a Triangle 207
A Sample QUizzes 211
A1 Number Theoryot e 211
A2 Calculus. . ..o 213
A3 Linear Algebra oo 215
References 217

Conventions and Notation

Mathematica

For the purposes of this book, we assume that Mathematica is operating according to
the system defaults that are set in version 8. Mathematica examples in this book are
formatted to look like they would in a Mathematica notebook using these defaults, and
look like the following

In[2]:= Input
Input; Input

Errors »
Out[2]= Output
Out[3]= Output

Each input—and its associated output—are numbered. Multiple commands may be
input together at the same prompt, and the input may even be spread over multiple
lines. Multiple input lines may form a block have a single number, however correspond-
ing outputs will each be numbered individually. Note that in some cases Mathematica
might produce output that is not numbered, however we have opted for the purposes
in this book to number such outputs. Do not be overly concerned if your copy of Math-
ematica does not number output that the book has numbered.

Input is colored black and appears in a bold monospaced “typewriter” (Courier) font.
Note that some input characters might have other colors. Output is black and is typeset
like regular mathematics. Errors are orange-ish in a small sans-serif font, and terminate
with a » character. Clicking on this character in a notebook will bring up extra help for
the error in question.

When entering input into Mathematica, pressing the enter (or return) key will move
to a new line of the same input block. In order to make the commands run, and generate
output, then shift-enter must be pressed. That is, holding down the shift key while also
pressing the enter (or return) key.

Basic arithmetic symbols are as follows. Note that multiplication may be achieved
using either the asterisk (), or with a space. Using the asterisk leaves no ambiguity
as to the nature of the calculation, whereas a space might easily be missed. As such
the reader should feel free to use whichever method he or she prefers, but should be
aware that the Mathematica examples in this book will endeavor to use the asterisk to

xiii

Xiv Conventions and Notation

denote multiplication, unless there can be no ambiguity (for instance, with polynomial
coefficients).

Desired Effect Key Combination Example

Addition + a+b
Subtraction - a-b
Multiplication * axb

L ab
Division / a/b
Raise to a power ~ a’b
New Line <enter>

Run Command <shift-enter>

Table P.1 Essential Mathematica Key Combinations

Standard order of operations is followed, and so the use of parentheses is required
for explicit operation ordering.

The Documentation Center

Mathematica provides electronic documentation as part of its functionality. This docu-
mentation is called the Documentation Center. This book will, on many occasions, refer
the reader to the Documentation Center for further reference.

Additionally, the reader is expected and encouraged to turn to the Documentation
Center whenever they are trying to work out how to do something in Mathematica.
Several exercises will require students to find functions in the Documentation Center.

The Documentation Center can be accessed through the Help menu of the program.
Additionally, an online copy of the Documentation Center is available at:
http://reference.wolfram.com/mathematica/guide/Mathematica.html

Useful Functions

We list here, for convenience, a small list of Mathematica functions and key words
which are arguably essential to know. These are commonly used constants, as well as
functions to perform elementary mathematical operations (for example, square roots)
or for simplification. The list is in Table P.2. Consult the Documentation Center about
these functions for more specific details on their use. Note that many more functions
are introduced and explained within the main text of this book.

Some comments:

e Powers of e may be obtained with the Exp function, or simply by raising the constant
E to a power.

e The Log command may also be directed to perform logs to a base other than e if
desired, but will perform natural logs unless specifically told otherwise. For example,
the command Log[3, 2] will calculate the log of 3 to the base 2.

Conventions and Notation XV

Desired Effect Command

Value of 7 Pi

Value of e E

Value of co Infinity

Square root of a number (1/7) Sart [x]

nth root of a number (/z) x~(1/n)

Power of e (e”) Exp[x]
E°x

Natural logarithm (log x) Logl[x]

Rearrange an algebraic expression Simplifyl[...]
Factor[...]
Expand[...]

Force evaluation Evaluatel...]

Numeric Computation N[...]
NIntegratel[...]
NSum[...]

Table P.2 Essential Mathematica Functions

The Mathematica keyword Pi must have a capital ‘P’ and a lower case ‘i’. Any other
combination of cases for these letters is a different name, and will not be recognized
by Mathematica as m.

The commands for algebraic rearrangement work primarily as one would expect
from their names. However, it should be noted that when faced with a complicated
answer from Mathematica it is sometimes the case that Factor, or Expand will
produce a more simplified answer than the Simplify function does. Furthermore,
these commands used in conjunction with each other can produce superior results.
Numeric computations of symbolic expressions can be computed directly with the N
function. However, Mathematica provides several functions for numerically comput-
ing specific things, such as integration (via NIntegrate) or sums (via NSum). For a
full list, the Documentation Center entry named “Numerical Calculations” should
be consulted.

Mathematica numeric precision handled on a value by value basis, not on a
notebook-wide basis. To force a particular precision, the N function can be invoked
with an optional argument for precision, see Exercise 2 from Chapter 1. Addition-
ally, the other numeric functions (such as NIntegrate and NSum) may be invoked
with a WorkingPrecision option; the Documentation Center should be consulted
for more information.

Mathematical Conventions

Included in Table P.3 is a list of mathematical notation, and its meaning.

Note: In the case of the log, sin, cos, and similar functions, if there is any ambiguity

as to what the function in question is and is not to be applied to, then parentheses or
brackets are used to make it clear. For example 2 + sin(3z + 1).

xvi Conventions and Notation

Notation Meaning

N The set of natural numbers

Z The set of integers

Q The set of rational numbers
R The set of real numbers

C The set of complex numbers

logz The natural logarithm of x

log, z The logarithm of = (base b)

sinz The sine function applied to x

sin” z The nth power of the sine function applied to z. That is (sinz)".
sin”" x The inverse-sine function applied to x
arcsinz The inverse-sine function applied to =

cosxz The cosine function applied to x

cos™ z The nth power of the cosine function applied to z. That is (cosz)".
cos~1z The inverse-cosine function applied to =
arccosx The inverse-cosine function applied to =

Table P.3 Mathematical Notation

Chapter 1
Number Theory

This chapter includes the basics of the use of Mathematica, illustrated by fairly simple
examples mostly involving integers. For this chapter you need to know what a sequence
is, an infinite sum, summation notation, what a function is, and what a polynomial is. By
the end of the chapter you should be comfortable using Mathematica for moderately
complex tasks, and should be ready to learn the new commands required for doing
specific mathematics such as calculus or linear algebra.

1.1 Introduction to Mathematica

Before we can set about exploring mathematics with Mathematica we need to know
how to input basic commands into it. This section will introduce Mathematica and its
most basic commands.

1.1.1 Inputting Basic Mathematica Expressions

At its absolute most basic, Mathematica can be used as sort of an overblown pocket
calculator. We give it an expression to calculate, and Mathematica performs the cal-
culation. Note, that to perform the computation, it is required to use shift-enter after
typing the command; that is to hold the shift key down whilst typing the enter key.

In[l]:= 1+2

Out[l]= 3

In[2:= 2%3°5+12-2
Out[2]= 496

Mathematica input is formatted, by default, as text and is not typeset in the same
manner as we would write the mathematics on paper. In the above example we asked
Mathematica to calculate 2 - 3% + 12 — 2. Order of operations is important here, and if
we are ever in doubt, we can always force the desired ordering by using parentheses,
just as we would when writing mathematics on paper.

We can have Mathematica compute even more complicated statements involving
factorials, trigonometric functions, and a lot more besides. In the following example, we
calculate (sin(7/2) +12!-v/12) /€.

J.M. Borwein and M.P. Skerritt, An Introduction to Modern Mathematical Computing: With Mathematica®, 1
Springer Undergraduate Texts in Mathematics and Technology, DOI 10.1007/978-1-4614-4253-0 1,
© Springer Science+Business Media, LLC 2012

2 1 Number Theory

In[3]:= (Sin[Pi /2] +12! *xSqrt[12]) /E 4

1 + 958003200 v/3
64

Out[3]=

Notice that in this last example that Mathematica didn’t provide a decimal num-
ber as the answer to the input. This rather nicely illustrates a key difference between
Mathematica and your pocket calculator. Mathematica is a Computer Algebra System
(CAS), and performs its calculations as exactly as possible. When no exact number oc-
curs, Mathematica provides an exact expression. So e* and v/3 are exact values, whereas
54.59815003 and 1.732050808 (respectively) are decimal approximations. Mathematica
gives us the exact value unless we specifically ask it otherwise. To accomplish this we
either use the N command, or put a decimal point next to a constant.

In[4]:= N[(Sin[Pi /2] +12! *Sqrt[12]) /E"4]
Out[4]= 3.03913 x 107

In[5]:= (Sin[Pi/2] + 12! *Sqrt[12.]) /E"4
Out[5]= 3.03913 x 107

Attention should be drawn, in the second example, to the period after the 12 in
the square root. This is a shorthand for—in this case—12.0, and tells Mathematica
that the value is a decimal. The inclusion of a decimal in an expression is one way
to tell Mathematica that we wish a numeric (rather than symbolic) calculation to be
performed.

Inasmuch as Mathematica is a CAS, we ought to expect that it can do some basic
algebra. In point of fact it can, and a good start is to work with basic polynomials.

In[6]:= 3x"2+2x"3+3
out[s]= 3 + 32 + 222

In[7]:= 4x°2+9x"2
Out[7]= 13z2

Notice that Mathematica automatically adds the like terms together.

In[8]:= 3x"4%3y"2
Out[8]= 9z%y?

Notice the coloring on the variable. A blue variable signifies that the variable is
unknown, or has no value. We’ll make sense of this shortly. Notice, also, that we did not
need to specify the * operator for the multiplication x and it’s coefficient. Mathematica
automatically understands that a number followed by an algebraic variable (see below)
signifies that the two are multiplied. Furthermore, we may use a space instead of the *
operator to signify multiplication if we wish.

In general, Mathematica considers any word it does not otherwise know to be an
algebraic variable. We could use the strings “alice” and “bob” in place of z and y and
Mathematica will treat them just like any other algebraic variable.

In[9]:= alice + bob
%h+ 2
h+5

Out[9]= alice 4+ bob

1.1 Introduction to Mathematica 3

Out[10]= 2 + alice + bob
Out[ll]= 7 + alice + bod

The previous example demonstrates a couple of things that we have not yet seen
before, which we take some time to highlight.

First there were three commands inside of the one input. Each command was on its
own line, which is how Mathematica identifies the individual commands. Alternatively,
a command may be ended by a semicolon (;) if we wish for the output of that command
not to be displayed. Doing so is called “output suppression”. Make no mistake, however,
only the output is being suppressed, the command is still performed.

In[12]:= alice + bob;
h o+ 2;
h+5

Out[12]= 7 + alice + bob

In the above example we chose to see only the output of the final command, but
we could, should we have wished, chosen differently. We may have elected to see only
the output of the second command, or perhaps only the output of the first and third
commands. To achieve such a thing, we would simply suppress the output of our choice
with a semicolon, and leave the commands whose output we wished to see with no
semicolon.

In addition to allowing the suppression of output, the use of the semicolon also
allows multiple commands to co-exist on the same line. When this is done, the line of
input is known as a “compound expression.” Note that only the final sub-expression
may omit the semicolon, and so only the final sub-expression may produce output.
Note, also, that it turns out that compound expressions do not interact well with the
% operator (see below). The interested reader should search for “compound expression”
in Mathematica’s Documentation Center for more information.

The above examples show another thing which we have not seen before; the special
operator %. This operator is used to refer to the value of the most recent calculation.
Even if the output of the most recent calculation was suppressed with a semicolon, the
% will still refer to the value of the computation. The % is a very useful tool, but be
careful when using it, as the most recent calculation performed may not be the one
performed on the previous input (see Exercise 3).

1.1.2 Variables

In addition to providing an unknown quantity for working with algebra, Mathematica
variables (any string of characters that Mathematica doesn’t know to be something else)
can also have values assigned to them. There are two primary reasons to do this. The
first is to give a name to an expression you want to use later; the other is to store a
value that might change. In reality, these are two sides to the same coin. To assign a
value to a variable, we use the assignment operator (=).

In[13]:= A =2
Out[13]= 2

Note that the A variable is colored black instead of blue. This is because it is now
a known variable, as it has a value assigned to it. Once we have assigned a value to a

4 1 Number Theory

variable, when we use the variable name, Mathematica automatically uses its value for
the computation.

In[14]:= A
A+2
A"10
Out[14]= 2
Out[15]= 4
Out[16]= 1024
In[17]:= poly=3x"3+2x"2+3x

Out[17]=
Out[18]=

poly+3x~2+x
3z + 222 + 322
4z + 52% + 323

If we were to assign a value to x, then the poly variable would then be the polynomial
for that particular x. Alternatively, if we want to keep both the general polynomial as
well as calculate its value for different values of x, then we may use the substitution
operator (/.).

In[19]:= poly /. x -> 3
poly /. x->a"2
poly
Out[19]= 108
Out[20]= 3a® + 2a* + 3a°
out[21]= 3z + 222 + 323
We can even use variable names as input to functions, and Mathematica still uses the
value of the variable. We look at exactly what a function is in the next subsection, but for

now notice that in the example below, Mathematica has plotted the cubic 323422+ 3z
to which we gave the name poly in an earlier example above.

In[22]:= Plot[poly, {x, -1, 1}]

8k

-1.0 -0.5 E 0.5 1.0

Out[22]= -

We may assign any valid Mathematica input to a variable, and Mathematica will
always use the value of the variable wherever we use its name. This can be very useful,
if occasionally confusing. A common theme throughout the course of the book is that
one must remain aware of the subtleties of the system when utilizing it. With great
power comes great responsibility.

1.1 Introduction to Mathematica 5

We can, if we wish, have Mathematica perform a calculation, and store the result of
that calculation in the variable.

In[23]:= value =4*12+13"5

Out[23]= 371341

So far we have used variables to give a name to something we wish to somehow
utilize later on. However, as mentioned above, sometimes we want to use a variable

as a storage box for values that can and will change. This is really no different from
reassigning a variable name to a different expression.

In[24]:= a=2
2a
Out[24]= 2
Out[25]= 4
In[26]:= a=4
2a
Out[26]= 4
Out[27]= 8

Such a technique, however, lets us use a variable to store intermediate results of a
calculation in progress.
In[28]:= total =0
Out[28]= 0

In[29]:= total = total+12
Out[29]= 12

In[30]:= total = total+11
Out[30]= 23
Note here that not only are we reassigning the value of the variable named total but
we are also using its current value to calculate its new value. The line total = total +12
means, in English, something along the line of “set the value of total to be its current
value plus 12.” What Mathematica actually does is evaluate the right-hand side of the
definition (which in this case is total+12) and assign the result of that calculation

back to the variable name on the left-hand side. These need not be the same variable,
for instance:

In[31]:= subtotall =12
subtotal2 = 23

Out[31]= 12

Out[32]= 23

In[33]:= total = subtotall +subtotal2
Out[33]= 35

6 1 Number Theory

The above code is perfectly valid, and is really just another case of the basic assign-
ment of a variable we saw at the beginning of the subsection.

Finally, we note that there are, in fact, two assignment operators; = and :=. We have
already seen the former, and we will see the latter again when we begin making our
own function in Section 1.2.1. The difference between the two lies in when Mathematica
will evaluate the expression being assigned to the variable. With the = operator, the
expression to be assigned is evaluated first, and then assigned to the variable. With
the := operator, the expression being assigned is not evaluated at all before assignment
to a variable, but is instead evaluated each time the variable is used. This is called a
delayed definition. The distinction is subtle, and in many cases behaves identically, but
it is worth being aware of it.

1.1.3 Functions

Having dealt with basic input and variables, we now move on to another key Math-
ematica concept, that of functions. A function, simplistically speaking, is just some-
thing that takes an input (perhaps several inputs) and produces output. In order to
avoid confusion between a function input and Mathematica input, we will call the
function inputs either arguments or parameters. We have already seen a couple of
functions in our examples thus far such as Sin and N. Functions are written in the
form of Name [argument, argument, ...] where name is the name of the function, and
argument, argument, ... is a comma separated list of the function arguments. To start
with we deal mostly with functions that take a single argument, and which should look
very similar to the functions seen in first-year calculus.

In[34]:= FactorInteger[1573]
out[34]= {{11,2},{13,1}}

In[35]:= Factor[x"4-2x"3-13x"2+14x+24]
out[3s]= (—4+z)(-24+2)(1+z)(3+x)

In[36]:= Simplify[(x"2+x) / (x"3+2x)]
1+

Out[36]: m

Note here that every one of the above functions had only a single argument. In several
cases that argument was a moderately complicated Mathematica expression, but it was
a single argument nonetheless.

A list of commonly used basic functions is included at the very beginning of this book,
just after the preface. For more complicated functions, Mathematica’s own help files are
always a good source of information. Every example thus far has been a function that
comes built-in to Mathematica. In the next section we start creating our own functions,
but for now we look at an example of a function that takes multiple arguments.

In[37]:= Collect[x"2*y+x*y+x"2%z+x*z+x*xy " 2%2z"2, x]
out[37]= z(y + 2) + x (y+2z+ y2z2)

The astute reader will also recognize that the plot function we saw earlier was also
a function that took multiple inputs.

1.1 Introduction to Mathematica 7

1.1.4 Lists, Sets, and Sequences

In Mathematica, a list refers to a group of expressions separated by commas, and con-
tained within braces ({,}). For example, the following demonstrates two Mathematica
lists.

In[38]:= {1, 2, 3}
{poly, 5, bob}

out[38]= {1,2,3}
out[39]= {3z + 222 + 32°, 5, bob}

Note how, in the case of the second list, the poly variable was replaced by its value in
the output. This was to be expected; in fact any valid Mathematica expression may be
an element of a list. Furthermore, a list as a whole is a valid Mathematica expression, and
may potentially be used anywhere an expression is appropriate. The astute reader might
have even noticed that the Plot function, earlier, had a list as its second parameter. A
more straightforward example is to store a list in a variable.

In[40]:= L1 ={a, b, c}
L2=1{1, 2, 3}
L3={i, ii, iii}
Out[40]= {a,b,c}
outfa1]= {1,2,3}
out[42]= {i, ii,iii}
Inasmuch as a list is a valid Mathematica expression, it may even be an element of
another list. Note, however that If we have two lists and use them as the elements of

a single list, the result is a list with two elements, each of which is also a list. This is
known as a nested list.

In[43]:= {L1, L2, L3}
OUt[43]: {{a7b7 C},{1,2,3},{’L,’LZ,ZZZ}}

This behavior should be familiar to any reader who has studied elementary set theory;
it is reminiscent of sets within sets. However, while similar in some ways, a list is different
to a set. We look at this more closely, as well as how to use lists as sets below.

The preceding example was a nested list of depth 2; that is we had lists within a list.
There’s no reason we could not nest deeper. In fact we may combine lists and other
elements within a list. Below is a complicated, and contrived®, example.

In[44]:= {1, 2, Sin[7], {{}, {{{}, {x, {y}3}3}, Sart[12]}, 43}
outa= {1,2,8in(7], {{}, {{{} {=. {w}}} ,2V3} 4} }

If we did not wish to nest the lists, but instead wished to create a list whose elements
were the collection of all the elements of the lists L1, L2, and L3, we could have achieved
this using the Join function.

! The astute reader might well point out that most of the examples in this section are contrived.
This is a fair point, so long as one does not lose sight of the fact that the point of such examples are
to demonstrate language features of Mathematica. More natural examples will begin in Section 1.3
and will continue throughout the book.

8 1 Number Theory

In[45]:= Join[L1, L2, L3]

Out[45]= {a,b,c,1,2,3,14,4i,iii}

Lists can also be a convenient way of assigning multiple variables in a single com-
mand. For instance, if we wish to assign ¢ = 1, j = 2, and k& = 3 then we could use

Inf46]:= {i, j, k} = {1, 2, 3}

Out[46]= {1,2,3}

In[47]:=

i
J
k
Out[47]= 1
Out[48]= 2
Out[49]= 3

A list may contain no elements at all, in which case it is an empty list.. This is again
reminiscent of set theory in which the empty set is the set with no elements. An empty
list in Mathematica is referenced by an opening and closing brace with nothing (except,
perhaps, space) between them. An empty list is still a valid list in its own right, and
will nest inside of other lists as we saw above, however joining an empty list to any
other list doesn’t change the other list all.

In[50]:= Join[{}, {a, b, c}]
Join[{a, b, c}, {}]
Join[{a, b}, {}, {c}]

Out[50]= {a,b,c}
out[51]= {a,b,c}
out[52]= {a,b,c}

Using an empty list allows a list to be built up by parts within a variable, a little
like the total variable was in the previous subsection.

In[53]:= 8 ={}
S = Join[S, {a, b, c}]
S = Join[S, {d, e}]

out[53]= {}

Out[54]= {a,b,c}

Out[55]= {a,b,c,d, e}

It should be understood that the elements within a list have a very definite order.
There is a first element, second element, third element, and so on and so forth. Fur-
thermore, the elements of a list need not be unique. In the following list the first, third,
and fifth elements are all the same. Similarly the fourth, sixth, and seventh elements
are all the same as well.

In[56]:= {1, a, 1, b, 1, b, b}

Out[56]= {1,a,1,b,1,b,b}

1.1 Introduction to Mathematica 9

This is a key way in which lists differ from sets. We may, if we wish, refer directly
to an element of a list by using its numeric position, which is sometimes called the
“index” of the element. Mathematica allows this through use of the indexing operator
(LL...11), or alternatively through the Part function.

In[57]:= S={a, b, c,d, e, f, g, h, i, j}
OUt[57]: {a7 b7 C? d7 67 f797 h7 Z’j}
In[58]:= Part[S, 3]

S[[31]
Out[58]= ¢
Out[59]= ¢

Note that the Part function is more limited in its use than the [[...]] operator.
If we want to refer to a sub-list we must use the indexing operator. Sublists may be
referred to either by specifying a list of the indices we want, or by specifying a range
of indices in the form m; ;n. Note that when we ask for a sublist, the output is, itself, a
list.

In[60]:= S[[{2, 4, 6, 8}1]
S[[5;;81]
SLL;;41]
S[[6;;1]

out[60]= {b,d, f,h}

out[6l]= {e, f,g,h}
out[62]= {a,b,c,d}

out[63]= {f,g,h,i,5}

The latter two commands in the above example show “half ranges” (;;n and m; ;)
which mean “the first n elements” and “from the mth to the last element,” respectively.
An alternate way of thinking of these ranges is to consider that Mathematica automat-
ically inserts the beginning or the end index for the missing number as appropriate.

We have seen many similarities between lists and sets, and very few differences.
The primary difference is the allowance of repeated elements in a list. Nonetheless, we
may treat a list as a set, if need be. In fact, if we wish to perform set computations, we
must use lists. Mathematica provides functions to perform the usual union, intersection,
and set minus operations (Union, Intersection, and Complement respectively). Each
of these functions will always produce a list whose elements are sorted, and with no
duplicates.

If we wish to take a regular list and turn it into a list that we can think of as a set,
a simple method is to use the Union command as follows

In[64]:= Union[{3, 1, 2, 2, 1}]
Out[64]= {1,2,3}

This behavior is merely a special case of the general behavior of the Union function,
which is to take a collection of lists as function arguments, and to calculate a sorted,
duplicate-free list containing all elements found in those lists. The lists that are the
arguments may contain duplicates, and need not be sorted; the function takes these in
its stride. In the above example we had only one argument, yet the output was precisely
a sorted, duplicate-free list containing elements of that one argument. There is no limit
to the number of arguments that the Union argument can take.

10 1 Number Theory

In[65]:= Union[{1, 2, 3, 5}, {4, 2, 3}]
Union[{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {7}]

outss]= {1,2,3,4,5}
out[66]= {1,2,3,4,5,6,7}

The Intersection command works similarly; it takes a collection of lists as function
arguments, and calculates a sorted, duplicate-free list containing the elements which are
common to the all those lists. There is no limit to the number of arguments, and the
arguments may contain duplicates, and need not be sorted. Note that if we try to
compute the intersection of a single list, the output will be the same as if we had tried
to compute the union of that same single list; a sorted, duplicate-free list of all the
items in that one list.

In[67]:= Intersection[{3, 1, 2, 2, 1}]
out[67]= {1,2,3}

In[68]:= Intersection[{1, 2, 3, 5}, {4, 2, 3}]
Intersection[{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {7}]

out[68]= {2,3}
out[69]= {}

These functions work as should be expected to anybody familiar with elementary
set theory, with the extra flexibility that they may be performed on arbitrary lists, not
just on sorted, duplicate-free lists. This extra flexibility allows us, for practical intents
and purposes, to consider any Mathematica list to be a set. Be aware that we may only
treat finite sets in this manner; the author knows no easy way of having Mathematica
perform computations involving infinite sets.

We come now to the Complement function. In elementary set theory, the complement
of a set, S say, often written S is the set of all elements which are not contained in
S (compared against some understood universal set, U say). We can think of this as
S\ U if we wish. This is not, however, what the Complement function calculates for us.
Instead, as mentioned above, the Complement function is more of a set minus operation.
It takes a collection of lists as function arguments, and calculates a sorted, duplicate-
free list containing all the elements from the first list which do not appear in any of the
subsequent lists. As such, if we call Complement with a single argument, we will see the
same behavior we would see with either Union and Intersection called with the same
single list. This may potentially be confusing for readers familiar with the elementary
set theory described above.

In[70]:= Complement[{3, 1, 2, 2, 1}]
out[70]= {1,2,3}

In[71]:= Complement [{1, 2, 3, 5}, {4, 2, 3}]

Complement [{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {7}]

out[71]= {1,5}
Out[72]= {1}

In many cases, we will want the elements of a list to follow a fairly predictable pattern.

We may produce some such lists using the handy command, Table. The simplest such

list is a list which has the same element repeated some number of times. To do this we
use the Table function in the following manner:

1.1 Introduction to Mathematica 11

In[73]:= Table[x, {4}]
out[73]= {z,z,z,x}

In this case, x could have been any expression we liked. For patterns other than a
single repeated expression, we will need an expression involving an unknown variable of
our choosing, k in the proceeding examples, that will compute the kth element of the
list. For instance, to print out the first ten squares we simply input the following:

In[74]:= Table[k~2, {k, 1, 10}]
out[74]= {1,4,9,16, 25, 36,49, 64, 81,100}

or for something a little more complicated:

In[75]:= Table[3*k"2+k/2, {k, 4, 15}]
155 301 495 737 1027 1365 }

_ 299 911, 28 196, 222 305, 1°F 4
Out[75] {50, 2111, 5,196, =2, 305, -, 438, =, 595, —

Note the argument {k, 4, 15}, above. This is known as an iterator. It tells the Table
function that the variable k will begin at 4 and will increment until it reaches 15. We
will see many other functions that use iterators over the course of the book, and we even
explore some of the complexities of iterators in Exercise 5. Regrettably, information on
iterators is a little tricky to find. The interested user will need to search for “Some
General Notations and Conventions” in the Documentation Center.

First-year calculus students that have studied sequences will be familiar with se-
quences written in the form {xk}?:a where x;, is an expression in k. Finite sequences
are often written in the form {mk}zz .- This is precisely what the Table command lets us
compute; finite sequences of this form. For the first example we computed the sequence
{k2}11:)=1, and in the second example, above, we computed the sequence

k 15
{3-k2+}
2 k=4
b

In general, to have Mathematica print out the sequence {z,}, .,
expression involving n, we use the command Table[x,, {n, a, b}].

There are a couple of other forms of the Table function which can produce more
complicated—usually nested—TIists. We do not discuss these here, however the interested
user is encouraged to look up both of these function in the help files. Additionally,
there is a similar function to Table named Array that work specifically with functions
instead of more general expressions. There are some technical reasons one might use
Array instead of Table, none of which will concern us during the course of this book.
We merely mention it here so the interested reader may find out more by reading the
help files.

where z,, is some

1.1.5 Sums and Products

Having dealt with the basics of Mathematica, we can now move onto some mathematics
a little more like we might see at the beginning of a first-year math course. We begin
by looking at how Mathematica can handle sums and products, both of the finite and
the infinite variety. Recall that infinite sums are often called “series” when encountered
in first-year calculus.

12 1 Number Theory

For large additions (or, indeed, for anything too complicated to use the 4+ operator
practically) Mathematica provides the Sum function. The Sum function works in a very
similar manner to the Table command. The simplest usage of Sum is to add a bunch of
terms together. For instance, to add the first 10 squares together, we input the following:

In[76]:= Sum[k~2, {k, 1, 10}]

Out[76]= 385

Note the similarity to the Table function; the syntax is identical, with the difference
being that one function returns the terms in a list, while the other adds the terms

together. If we happen to already have a list of the terms we wish to sum, then we may
use the Total function to add them together.

In[77]:= Totall{1, 4, 9, 16, 25, 36, 49, 64, 81, 100}]
Out[77]= 385

The Sum function can also handle symbolic partial sums, and even series. This is
achieved by simply modifying the bounds of the sum. For instance, to find an expression
for the partial sum

N
>k
k=1

we would input:
In[78]:= Sum[k"2, {k, 1, N}]
Out(78]= é N (14 N) (1+2N)
For an infinite sum, we simply use Infinity as the upper bound. In this case, it

should be clear to anybody familiar with sequences and series that the sum of squares
will not converge.

In[79]:= Sum[k"2, {k, 1, Infinity}]

Sum::div: Sum does not converge. »

Out[79]= » k?
k=1

Inasmuch as the sum does not converge, Mathematica gives us an error message that
the sum does not converge, and outputs the symbolic form of the sum. For the sakes of
good demonstration, let’s go and compute a sum that we know does converge.

In[80]:= Sum[1/k"2, {k, 1, Infinity}]

Out[80]= —
u = —
6

As well as sums, Mathematica can also handle products with the Product function.
This function operates pretty much identically to the Sum function.
In[81]:= Product[k~2, {k, 1, 10}]
Out[81]= 13168 189440000
Unfortunately, Mathematica provides no function to multiply the elements of a list

for in a manner analogous the Total function. We may, however, achieve this result
using the indexing operator.

1.1 Introduction to Mathematica 13
In[82]:= L = {1, 4, 9, 16, 25, 36, 49, 64, 81, 100}
Product [L[[k]], {k, 1, 10}]
Out[82]= 13168 189440 000
We may handle symbolic partial products and infinite products in precisely the same
manner as with the Sum function.
In[83]:= Product[k~2, {k, 1, N}]
out[s3]= (N!)?

In[84]:= Product[k~2, {k, 1, Infinity}]

Product::div: Product does not converge. »

Out[84]= ﬁ k>

k=1

Finally, to see an example of an infinite product that does converge we take the
following calculation, known as the Wallis product.

In[85]:= Product[4n~2/ (4n"2-1), {n, 1, Infinity}]

i
Out[85]: 5

1.1.6 Pre-, Post-, and Infix Function Notation

Functions, as we introduced them in Section 1.1.3 and have since seen them have always
had the form Name[argument, argument, ...]. This is all well and good, however
sometimes this can get cumbersome, especially if we have a few functions interacting
with each other. Take for example the following computation.

In[86]:= N[Sqrt[Sin[3/2]1]]
Out[86]= 0.998747

We have asked Mathematica to compute for us a numeric approximation of /sin 3/2.
While relatively straightforward, this is already becoming a little cumbersome to read.
We may produce the same result using the “postfix” form of the function N.

In[87]:= Sqrt[Sin[3/2]1]1 // N
Out[s7]= 0.998747

The // N here means “apply the N function to this”. Whatever appears on the left
hand side of the // operator is considered an argument, and whatever appears on the
right hand side is considered to be a function name. In other words, the postfix form of
a function is argument // Function. Note that that this form of a function only makes
sense for a function that takes a single input; it cannot work for functions of more than
one input. However, this function form will work for any function that takes a single
argument; nothing special needs to be done to allow a function to work this way. Postfix
notation is just another way to tell Mathematica to use a function.

In a very similar manner, there is also a “prefix” notation. In this case the operator
is @, and the left hand side of this operator is considered to be a function name, and the
right hand side a single argument. In other words, the form is Function @ argument.

14 1 Number Theory

Everything else that was stated, above, for prefix notation, is true for postfix notation.
In the case of our numeric approximation, above, if we were to use prefix notation the
command would be as follows.

In[88]:= N @ Sqrt[Sin[3/2]]
Out[88]= 0.998747

Finally we have the “infix” notation. Unlike the pre- and postfix notations, infix
notation applies only to functions that take exactly two arguments. The form the func-
tion takes is argument1 ~Function~ argument?2, and is equivalent to the function in the
form of Function[argumentl, argument2]. Observe.

In[89]:= a~F~b
Out[89]= Fa, b

It should hopefully be expected, in light of the both pre- and postfix notation, that
any function that can take exactly two inputs may be used in infix notation. Unfortu-
nately, our previous example is not appropriate for infix notation; it does not have any
functions that take two arguments. However, we have already seen a function which
lends itself very nicely to infix notation, the Join function.

In[90]:= {1, 2, 3} ~Join~ {3, 4, 5}
out[90]= {1,2,3,3,4,5}

We may chain these notations together, if we wish, and the results are fairly pre-
dictable. For instance both a // F // G and G @ F @ a are equivalent to G[F[al]. How-
ever, the effect of chaining infix notations together is not immediately obvious. Observe
the following.

In[91]:= {1, 2, 3} ~Join~ {3, 4, 5} ~Join~ {5, 6, 7}
out[o1]= {1,2,3,3,4,5,5,6,7}

We have produced exactly the same output, as if we had issued the command
Join[{1, 2, 3}, {3, 4, 5}, {5, 6, 7}]. It might be tempting to think that combing
infix notations like a ~F~b ~F~ ¢ would be equivalent to F[a, b, c], but this is not the
case. Remember that infix notation works on functions of exactly two arguments. The
Join function can, in fact, work on any number of arguments. Nonetheless, the Join
can certainly be called with exactly two arguments, and this is what happens when we
use the infix notation with that function. To better demonstrate what happens when
we chain infix functions together, observe the following.

In[92]:= a ~F~ b ~G~ ¢
out[92]= G[F[a,b],]

What we see here is a nested function. If we think about this for a minute, hopefully
this makes perfect sense. This is equivalent to (a ~F~b) ~G~ c. The first infix function
was found, evaluated, and treated as an argument to the second infix function. The
reason this worked the way it did with the Join function is that joining lists is transitive.
Suppose we have lists A, B, and C, say. If we join A and B first, and then join the
result with C' we have a list containing all the elements of all three. If we were to join
B and C first, then join the result to A we would still have the same result. Of course,
both of these are also equivalent to just joining all three lists in one go.

1.2 Putting It Together 15

In[93]:= Join[Join[{1, 2, 3}, {3, 4, 5}1, {5, 6, 7}]
Join[{1, 2, 3}, Join[{3, 4, 5}, {5, 6, 7}]1]
Join[{1, 2, 3}, {3, 4, 5}, {5, 6, 7}]

out[93)= {1,2,3,3,4,5,5,6,7}
out[o4]= {1,2,3,3,4,5,5,6,7}
out[s]= {1,2,3,3,4,5,5,6,7}

It is left to the discretion of the reader as to how they use these alternate notations
for functions. If used poorly, they can become just as confusing as many nested func-
tions with the usual F[...] form. If used cleverly, however, these alternate forms can
potentially make our input commands much easier to understand.

1.2 Putting It Together

In the previous section, we looked at inputting single commands into Mathematica.
These may be thought of as building blocks. In this section we begin to put these
building blocks together to produce more complicated calculations. We also begin to
introduce some more serious mathematics in order to motivate or illustrate the partic-
ular Mathematica constructions with which we are dealing.

1.2.1 Creating Functions

In the previous section we have seen what a function is. In addition to the built-in
functions, we may create our own. A function definition, at it’s simplest, takes the form
function[arguments] := Expression. In this case the arguments will be a comma
separated sequence of variable names, each one ending with an underscore (_), otherwise
known as a “blank.”

In[96]:= plx_]1 :=3x"2+4x-2

The above function takes a single expression as input (which it calls), and then uses
that expression to perform the calculation 322 4 4z — 2. The name of the input variable
is entirely arbitrary and could be any valid Mathematica variable name. The blank
(_) after the variable name is very important, however. The blank tells Mathematica
that the x variable can be any valid mathematica expression. This is a form of pattern
matching inside of Mathematica which we will later use to restrict the arguments of our
functions to particular types of mathematical objects or Mathematica expressions. For
the moment, however, we content ourselves with allowing any valid expression for our
arguments. Fortunately, our function behaves quite sensibly with a variety of different
arguments.

In[96]:= p[2]
pl4]
plA]
pl{2, 4}]

Out[96]= 18

Out[97]= 62

16 1 Number Theory

Out[98]= — 2+ 4A + 342
Out[99]= {18,62}

It is interesting to see that in the last example above that the function was applied
to each element of the list we used as our argument. Many single-argument functions,
when given a list as an argument, will perform their operation individually on each
element of the list. The most obvious exception to this behavior will be from functions
which are written to operate on lists specifically, such as the Reverse function (the
reader should look this function up in the Documentation Center).

How about we look at something something that might be a bit more familiar. Recall
from first-year calculus that

NE
> =

x>
I
—

diverges, whereas
oo
1
25
k=1
converges. This is a good reminder that the divergence test is inconclusive in the case

where the sequence has a limit of 0 because 1/k — 0 (as k — 00) yet the series diverges
but 1/k? — 0 yet the series converges.

In[100]:= aln_] :=1/n"2
In[100]:= Limit[a[N], N -> Infinity]
Out[100]= 0

To attempt to verify the convergence of the 1/k? series, we can try the ratio test
with Mathematica, but unfortunately this test also proves inconclusive.

In[101]:= Abs[a[N+1] /a[N]]
Limit[%, N -> Infinity]
2

=y

Out[101]= Abs{
Out[102]= 1
We side-track for a moment and notice that for every N we have

a(N +1)
a(N)

<

This is not hard to verify by hand, but we ask Mathematica for a verification anyway.
Observe that the fraction is undefined for V = —1, but this isn’t a concern for us as
we’re only interested in natural values of N. However, we may need to be a little specific
in what we ask Mathematica.

In[103]:= Abs[a[N+1] /a[N]] <1
N2
Out[103]= Abs [2 - N] <1

The less than operator (<) should have produced an output of either True or False.
The fact that it simply re-iterated the input tells us that Mathematica does not know
the answer. With a bit of thought this is hopefully not too surprising. We already know

1.2 Putting It Together 17

the question doesn’t make any sense for N = —1, and the statement is false for N < —1.
As observed above, however, we're only interested in strictly positive values of N.

In[104]:= Refine[%, N > 0]
Out[104]= True

The Refine function tells Mathematica to evaluate the expression just as it always
would, but with some extra assumptions. These extra assumptions form a single ar-
gument to the function; multiple assumptions should be joined using logical and (&&)
and/or logical or (|]) operators. In the above example, we had a single assumption that
that N > 0. Note that the Simplify function may also accept an assumption as its
second argument. The difference between Simplify and Refine is that Simplify will
always take pains to try to find the simplest form for output, whereas Refine will not.
The interested reader should look up “Assumptions and Domains” in Mathematica’s
Documentation Center.

Now, returning to the question of convergence of 1/k?, we have yet to verify ana-
lytically whether the series converges or diverges. At this stage it is often a good idea
to postpone our desire for an analytic answer in favor of an more computational (or
experimental) approach. With this in mind, recall that an infinite sum is a limit of

partial sums. That is,
N

> alk) = Jim > a(k)

k=1 k=1

As our next attempt we attempt to see how the partial sums behave. To do this we
begin by creating a function to compute the Nth partial sum of the 1/k? series.

In[105]:= par[N_] :=Sum[alk], {k, 1, N}]

We now have par as a function of N where N is the number of terms to sum. Let us
now see how this sum behaves with increasing values

In[106]:= par[1]

par[10]

par [50]
Out[106]= 1
Out[107]— 1968 329

1270080

3121579929551 692678 469 635 660 835 626 209 661 709
Out[108]=

1920815367859 463 099 600 511 526 151 929 560 192 000

Unfortunately, that wasn’t particularly helpful. We now make two refinements.
Firstly, we will use a Table instead of typing the function for each partial sum at the
command prompt. Secondly, we will ask for a numerical approximation of the partial
sums using the postfix notation from Section 1.1.6 for readability purposes. In addition
to these refinements, we will try some more ambitious partial sums, going as high as
the 100,000th in increasing powers of 10.

In[109]:= Table[par[10°p] // N, {p, 1, 5}]
Out[109]= {1.54977,1.63498,1.64393, 1.64483,1.64492}
We should perhaps be a little careful here. We used the temporary variable p in the

previous example, although prior to that we defined p to be a function. Fortunately for
us, Mathematica understood p to be a temporary variable for the Table command, and

18 1 Number Theory

did not confuse it with the function we defined earlier. In fact, the variable p found in
the arguments of the Table function is a completely different variable to the one we
defined previously. This new p exists only temporarily, yet while it exists it supersedes
any previous definition of p. This is very convenient, unless we happened to want to use
the function p within the list we were creating, in which case we should use a different
temporary variable. We would have a similar situation if we were foolish enough use N
as a temporary variable, when we wanted to obtain decimal approximations with the
N.

Getting back to our partial sums, we have computed the 10th, 100th, 1,000th,
10,000th, and 100,000th partial sums and can see some evidence that the series con-
verges to a value somewhere in the vicinity of 1.644.... As we calculate progressively
larger and larger partial sums, the value of those partial sums seems to change less and
less. At this point we may as well ask Mathematica if it can give us an answer for the
infinite sum.

In[110]:= par[Infinity]
N[%]

Out[110] s
u = —
6

Out[111]= 1.64493

Alternatively, we could have simply had the Sum function compute the infinite sum
for us directly (without the need for the Limit function).

In[112]:= N[Infinity]
Out[112]= i
AT

Th either case, there we have it. It looks very much as if the series converges to
1/6 72, provided we trust Mathematica’s limit computation. To verify this analytically
we would need to use the integral test, but we shall not do so here. We will see how to
perform calculus with Mathematica in Chapter 2, but performing the integral test for
this series is left as an exercise to the reader.

1.2.2 Loops

Until now if we wanted to perform something several times, we either typed it in multiple
times at the command prompt, or we constructed a list. Sometimes these options aren’t
satisfactory. Let us revisit our example of the series Y (1/k?). Earlier we used Table to
print out the sequence

10V 1

2

k=1 Ne1
which quite conveniently demonstrated the convergence of the series. The list was easy
enough to read and understand. However, suppose we wanted to see more values of
the sequence. Let’s look at the values of the partial sums for values of N as the first
17 powers of 2. That is, N = 2,4,8,16,...,131,072. We have chosen 17 as our limit
because 217 is the first power of 2 that is larger than our previously computed largest
partial sum of 100,000.

1.2 Putting It Together 19

In[113]:= Table[par[2~p] // N, {p, 1, 17}]
Out[113]= {1.25,1.42361,1.52742, 1.58435, 1.61417, 1.62943, 1.63715, 1.64104,
1.64298,1.64396, 1.64445,1.64469, 1.64481,1.64487,1.6449,1.64492,
1.64493)

That’s a bit of a mess, but not completely unreadable. Now, we would like to see
which values of 2P produce which of those outputs. We can work it out by counting
from the left and working out the corresponding power of 2, but it would be nicer if we
could just see it. As such, we tell Mathematica to compute a list whose elements are of
the form par[n] == m where m is the value of the nth partial sum.

In[114]:= Table["par"[2°p] == (par[2°p] // N), {p, 1, 17}]
Out[114]= { par[2] == 1.25, par[4] == 1.42361, par[8] == 1.52742,
par[16] == 1.58435, par[32] == 1.61417, par[64] == 1.62943,
par[128] == 1.63715, par[256] == 1.64104, par[512] == 1.64298,
par[1024] == 1.64396, par[2 048] == 1.64445, par[4 096] == 1.64469,
par[8 192] == 1.64481, par[16 384] == 1.64487, par[32 768] == 1.6449,
par[65 535] == 1.64492, par[131 072] == 1.64493 }

Note the quotes around the first "par". These quotes tell Mathematicathat we want
to refer to the variable as a symbol only, and not to evaluate it.> We’ve been careful to
only put the “par” in quotes, not the entire expression, so that the 2°p expression was
evaluated. The end result was, as we saw, was output of par[2], par[4], par[8], and so
on without the value of the function being computed.

This evaluation suppression, as we might call it, has also allowed us to cheat a
little with the == operator. Note here that the == operator is for evaluating whether
expressions are equal, and is similar to the < operator we have used previously. It
is important not to get this confused with the = operator, which is for assignment of
variables. Ordinarily, the == operator (much like the < operator) will produce an output
of “true” or “false”, based on whether the expressions it operates on are equal when they
are evaluated. Like the < operator and, in fact, all of these logical comparison operators
(i-e., operators which compare two things and report back a “true” or “false”), the ==
operator will simply return the expression un-evaluated if it does not know the answer.
By telling Mathematica not to evaluate the par function on the left hand side, we
have prevented the operator from being able to determine equality, and so it simply
returns the whole expression as output. The end result, from our point of view, is a
very readable output with the function and its input argument on one side, and the
evaluated example on the other side.

Unfortunately, even with the extra readability afforded by our cunning suppression of
the evaluation of par, the list we’ve produced is still a mess. We might improve matters
if we could somehow put each equality on its own line, instead the one big sequence we
currently have. We might achieve this by simply typing out all 20 expressions one after
the other, but this would be slow and tedious, and would not work well if we wanted
many computations to be performed. Fortunately, Mathematica provides a mechanism
for such repeating calculations as these, the Do function.

2 In fact, this technique may be applied to any Mathematica expression, however it’s a little simpler
to think about if we restrict it to only variables.

20 1 Number Theory

In[115]:= Do[
Print ["par"[2°p] == (par[2°p] // N)],
{p, 1, 17}
]
Out[115]= par[2] == 1.25,

Out[116]=
Out[117]=
Out[118]=
Out[119]=
Out[120]=
Out[121]= par[128] == 1.63715,
Out[122]= par[256] == 1.64104,

par[2]
par[4] == 1.42361,
par(8]
par|
par|
par|
par|
par|
Out[123]= par[512] == 1.64298,
par|
par|
par|
par|
par|
par|
par|
par|

r[8] == 1.52742,

r[16] == 1.58435,
r[32] == 1.61417,
r[64] == 1.62943,

Out[124]= par|1024] == 1.64396,
Out[125]=
Out[126]=
Out[127]=
Out[128]=
Out[129]=

]
r[2 048] == 1.64445,
1[4 096] == 1.64469,
1[8192] == 1.64481,
r[16 384] == 1.64487,
r[32 768] == 1.6449,
r[65 535] == 1.64492,
r[131072] == 1.64493

Out[130]=
Out[131]=

Now this is much easier to read. Mathematica has happily calculated the expression
"par"[2°p] == par[2°p] // N for us, and has done so 20 times, each time with the
value of p increased by 1. After each calculation it has output the result of the calculation
just as it would have if we had entered it manually at the command prompt, although
we did need to specifically ask for this output using the Print function. If we had not
used the Print function, there would have been no output; it would be as if we had
manually input each line with a ; to suppress the output.

In[132]:= Dol[
"par" [2°p] == (par[2°p] // N),
{p, 1, 17}
]

Notice that, in the previous two examples, we have spread the function over 4 lines;
this also contributes to the easier readability. Note that the indenting is performed auto-
matically by Mathematica. Mathematica quite happily accepts this as a single function.
We could have, should we have wished, issued the command as a single-line command,
although it would have been harder to read. Perhaps a more straightforward approach
might have been the following.

In[133]:= Do[{2"p, par[2°pl} // Print, {p, 1, 17}]
Out[133]= {2,1.25}
Out[134]= {4,1.42361}

1.2 Putting It Together 21

Out[135]= {8,1.52742}

Out[136]= {16,1.58435}

Out[137]= {32,1.61417}

Out[138]= {64, 1.62943}

Out[139]= {128,1.63715}

Out[140]= {256,1.64104}

Out[141]= {512, 1.64298}

Out[142]= {1024,1.64396}

Out[143]= {2048,1.64445}

Out[144]= {4096, 1.64469}

Out[145]= {8192,1.64481}

Out[146]= {16384, 1.64487}

Out[147]= {32768, 1.6449}

Out[148]= {65535,1.64492}

out[149]= {131072,1.64493}

We have calculated some remarkably large partial sums here. It seems that we can

blithely ask Mathematica to calculate some truly extraordinary large partial sums, and

it will give us an answer almost instantaneously. If we get adventurous, we might try
to find the 10'2th partial sum

In[150]:= par[10~12]
1
Out[150]= 5 (71'2 — 6 Zeta[2, 1000000000 001])

Notice that we didn’t ask for a numeric approximation this time. Previously, in
Section 1.2 when we computed the partial sums symbolically Mathematica computed
a rational number with large numerator and denominator. The larger the partial sum,
the larger the numerator and denominator. However this time we have been given an
answer in terms of the zeta (¢) function, and 7%/6. Looking a bit closer, we see that
the answer amounts to 72/6 — Zeta(2, 102 + 1).

Looking up the zeta function in the Documentation Center, we find out that the
zeta function is defined in terms of these infinite sums like the one we are currently

exploring.
=1
()= w
k=1

and
> 1
C(p,a) = ; Gitap

It seems, then, that we’ve been calculating partial sums of {(2). Furthermore, inasmuch
as we know the value of our infinite sum is 72 /6, we should expect (2,102 + 1) to be
very small. It looks a little like we should expect the kth partial sum to be equal to
72/6 — ((2,k + 1). We have not yet actually tried to find a general form for the kth
partial sum. This is an egregious oversight which we now correct.

In[151]:= par[k]

22 1 Number Theory

Out[151]= HarmonicNumber|k, 2]

This is not quite what we were expecting. If we look up the HarmonicNumber function
in the Documentation Center we will see that HarmonicNumber [n, r] is the Mathemat-
ica function to compute Hr(f) where

E

H = -

n
1=

1

In other words, these harmonic numbers are precisely the partial sums we have been
computing. This isn’t really telling us very much, but we have digressed somewhat, so
we do not explore this avenue any further.

Getting back to the topic of large partial sums being computed quickly, we might
be tempted to conclude that computer technology is just so fast nowadays that such a
performance is simply to be expected. Unfortunately, this is not true. For instance, if
we try to compute the 1,000,000th partial sum, we find it to be surprisingly slow.

In[152]:= par[10°6] // N
Out[152]= $Aborted

The author stopped the computation after approximately thirty to sixty seconds had
elapsed. It turned out, upon later investigation, that the computation would only have
taken approximately ten minutes. It’s important to remember here that the reason we
have been performing these computations has been to get a quick feel for the convergence
of a system. There may very well be times when we should be happy to let a calculation
run for perhaps even weeks or months if the value of the computation is sufficiently
important. Computations of 7 to exceptionally large precision have been run that have
taken months to perform. This is not such a case, however. It is important to remember
our goals in order to ascertain how long a wait is too long.

It is interesting that the 10'2th partial sum computed so quickly, but the 10%th is
incredibly slow. For some reason, Mathematica suddenly starts giving quick answers of
the form 72/6 — ((2,k + 1) once k is sufficiently large; k > 10'° or so. Before this point,
however, the kth partial sums take longer and longer to compute as k increases. We
computed partial sums up to k = 27, above, mostly because partial sums for k = 2'8
and above were too slow to be practical.

If we modify our approach only slightly, we are able to calculate the millionth partial
sum without the issues we saw earlier. We have already tried first computing par [1076]
symbolically and we did not fare well. Instead, we calculate the decimal approximation
of each term, and add these decimals together using the Sum function.

In[153]:= Npar[n_] :=Suml[a[k] // N, {k, 1, n}]
In[154]:= Npar[10°6]
Out[154]= 1.64493

The computation took approximately three seconds on the author’s computer. Note
that in order to use the N function, we could not use the variable N as the argument to
our function. Instead we used n.

It might be tempting to view the above numerical computation with some contempt.
Decimal approximations are just that, approximations. Worse still, the above compu-
tation is adding approximations to approximations at every step, and doing it a million
times. What’s more, we are using a CAS, the whole point of which is to allow the com-
puter to perform exact symbolic calculations. Surely it would seem reasonable, even

1.2 Putting It Together 23

preferable, to perform all computations symbolically, and to obtain decimal approxi-
mations from these exact mathematical constructs. This was certainly the opinion of
one of the authors before the commencement of this book.

The astute reader may try to directly compute a numeric approximation of the
HarmonicNumber function, remembering that par [k] is equal to HarmonicNumber [k, 2].
This technique works, but turns out to be about twice to three times as slow as using
Npar.

In[155]:= HarmonicNumber [k, 2] // N
Out[155]= 1.64493

What we are seeing is an example of a case where obtaining decimal approximations
of previous symbolic computations is simply not feasible. Sometimes we have to work
purely numerically, and the reality is that numeric computations aren’t as bad as all
that. We should, of course, be quite aware of the fact that numerical approximation can
introduce errors in our calculations, and be on the lookout for them, but this should
not and does not detract from the usefulness of symbolic computation.

Now that we have computed the 10%th partial sum, we might try something more
ambitious. We try the 10%th partial sum. Unfortunately, we find that this computation
is too slow to be practical. The following computation was, out of the curiosity of the
author, left overnight to run using the timing techniques introduced in Section 1.2.7
and took approximately 3,000 seconds (a little under an hour).

In[156]:= Npar[10°9]
Out[156]= 1.64493

Note that this long computation time is about 1000 times as long as the 105th numeric
partial sum. This is perhaps not surprising, if we consider that the 10%th partial sum
has a thousand times as many terms. We will revisit this idea again, as well as introduce
the techniques for measuring computations, below in Section 1.2.7.

We leave our exploration there, except to mention that the above example is a
particular case of a slightly more general result. This result states that the p-series

<1
>
k=1

where p € R, converges only when p > 1. It is left as an exercise to the reader to explore
this further.

1.2.3 Decistion Structures

There are times when, as part of a computation we are performing, we need to make
some sort of decision in order to proceed. To illustrate this idea, and how we implement
decisions in Mathematica we look at the following problem.

Let us say we have a natural number n. Recall that if n can be divided by another
natural number a evenly—that is, n/a is a natural number—we use the notation a|n
and say that a divides n or that a is a divisor of n. Furthermore, if a|n then n = ka for
some k € N and so, recalling modular arithmetic, n =0 mod a.

The problem we now try to solve now with Mathematica is to find all the divisors of
a number. To begin with, it is helpful to know that Mathematica can perform modular

24 1 Number Theory

arithmetic using the Mod function. Simply put, entering Mod[a, b] will calculate the
modulus of a (modulo b).

In[157]:= Mod[3, 4]

Mod [9, 7]

Mod[10, 5]
Out[157]= 3
Out[158]= 2
Out[159]= 0

If we recall the infix notation of a function from Section 1.1.6, we may use it to

perhaps make the input a little more intuitive. In this case a ~Mod~b will compute the
modulus of a (modulo b).

In[160]:= 3 ~Mod~ 4

9 ~Mod~ 7
10 ~Mod~ 5
Out[160]= 3
Out[161]= 2
Out[162]= 0

Returning to the question of finding the divisors of a number, we start with a straight-
forward approach. Given our number n, whatever it happens to be, we recognize that
no number bigger than n can possibly be a divisor of n, so we check every single number

a less than n and see if a|n. This is just the thing for which a loop would be good. We’ll
start small with n = 6

In[163]:= With[{n = 63},

Dol[
Print[n/al,
{a, 1, n}
]
]
Out[163]= 6
Out[164]= 3
Out[165]= 2
Out[166]= §
utl166]= 7
Out[167]= §
utl167)= 2
Out[168]= 1

The With function allows us to temporarily set some variables for the purpose of a
computation; in this case we set n = 6. Setting variables in this manner means they
are not set throughout the worksheet as a whole. This is very much like the temporary
variables we discussed earlier in Section 1.2.1, when we were constructing lists of partial
sums using the Table command. Doing this allows us to phrase our computations in
terms of n, without having to set the value of it globally. Note, however, that these
variables are constant variables; they cannot be modified at all. They are simply a

1.2 Putting It Together 25

convenient name that is substituted with the appropriate value in the expressions found
within the With function. If we wish to have modifiable temporary variables, we need
to use the Block function instead, which otherwise works identically to With. We will
see the use of Block shortly, but for now we only need n to be a temporary constant.

We can see from the output that the divisors of 6 are 6,3,2, and 1. It would be
nice if we could have Mathematica only show the divisors, and not the fractions that
are clearly not divisors. To do this we have Mathematica make a decision using an If
function.

Now, we need Mathematica to recognize which of the calculations are fractions, and
which are whole numbers, but unfortunately we currently have no idea how we might
do this. One possible answer is to use the modular arithmetic calculations from above,
remembering that if n/a € N then n = 0 mod a. This is something we already know
how to express in Mathematica. In order to see if, say, 3 was a divisor of our 6 then we
could issue the command

In[169]:= If[6 ~Mod~3 ==0, 6/ 3]
Out[169]= 2

The above code should be read as “If 6 is equal to 0 modulo 3 then calculate 6/3,” and
because 6 is most certainly equivalent to 0 modulo 3, Mathematica has correctly gone
on to calculate 6/3 = 2. Note that if, instead of 6, we had used some other number such
that was not equivalent to 0 (modulo 3) then Mathematica would have performed no
calculation at all. Similarly, if we had picked a different number to 3 to whose modulus
6 was not equivalent to 0, Mathematica would have performed no calculation at all.

The first argument to the If function is a criterion for the expression that is the
second argument to be carried out. If the criterion is met, the expression is evaluated,
and if the criterion is not met, the expression is not evaluated. Note that in some cases
(which we look at later), we may add an additional expression as a third argument,
which will be carried out in the case that the criterion is not met. For the moment, let’s
look at an example with a single piece of code that does not execute

In[170]:= If[6~Mod~4 ==0, 6/ 3]

Of course, we don’t want to have to type all of these in individually, so we now
incorporate these decisions into our loop.

In[170]:= With[{n = 6},

Dol
If[n~Mod~a==0,n/a// Print],
{a, 1, n}
]
]
Out[170]= 6
Out[171]= 3
Out[172]= 2
Out[173]= 1

In fact, it is usually quite rare that we use a decision manually when using Mathe-
matica, where we can make these decisions for ourselves. It is much more common that
a decision would be part of a function or a loop where we do not have the luxury of
being certain what values our variables contain.

26 1 Number Theory

The astute reader may have noticed that each of our divisors—which were all of the
form n/a—were, themselves, also values of a at some point in the loop. To see this a
little more clearly, we modify our loop to print both n/a and a on the same line.

In[174]:= With[{n = 6},

Dol
If[n~Mod~a==0, {a, n/a} // Print],
{a, 1, n}

]

]
Out[174]= {1,6}
out[175]= {2,3}
out[176]= {3,2}
Out[177]= {6,1}

We have, essentially, found each divisor twice. We checked every integer less than
n (6 in our previous examples) to see if it was a divisor, but we need only check the
numbers less than or equal to /n (= 2.449 in our previous examples). We can see, by
inspection above, that after our second repetition we had already found all the divisors
of 6.

This is true in general because for any divisor a of a number, n say, we have a
codivisor b such that a - b = n. This is simply what it means to be a divisor. Now
suppose that a < y/n. It must, necessarily, be the case that b > /n, because

b<Vk = ab< Vnvn=n

which would contradict a and b being codivisors. Similarly, if a > \/n then b < \/n. Tt
follows, then, that once we’ve found all the divisors less than or equal to y/n then we
have also found all the larger divisors in the codivisors.

We can use this fact to modify our loop and make it a little more efficient. There
is a small problem here, however, because the square root of a number is not always a
natural number. Luckily for us Mathematica iterators have no trouble with their upper
bound being unnatural (in the number-theoretic sense), and will simply keep iterating
until the iteration variable is larger than the upper bound.

In[178]:= With[{n = 63},
Do[
If[n~Mod~a==0, {a, n/a} // Print],
{a, 1, Sqrt[nl}
]
]

Oout[178]= {1,6}
out[179]= {2,3}

Such an improvement may not seem particularly worthwhile for the case of cal-
culating the divisors of 6. However, for calculating the divisors of a large number,
1,000,000 say, then our modified loop would be performing only 1000 decisions, instead
of 1,000,000, which is a more significant difference.

We now make one more refinement to this loop. Instead of outputting the divisors two
to a line—which the author finds, frankly, distasteful—we will produce a set containing
all the divisors. We do this simply by creating a temporary set which we will begin

1.2 Putting It Together 27

empty, and which we will Union with a set containing each pair of divisors as we find
them. Since we will need to modify this temporary set, we must needs use the Block
function instead of the With function we have previously been using.

In[180]:= Block[{n =6, divisors = {}},

Dol
If[n~Mod~a ==0, divisors =divisors ~Union~{a, n/a}],
{a, 1, Sqrt[nl}
1;
divisors

]
Out[180]= {1,2,3,6}

Note that the second argument to the Block function consisted of a compound
expression. We have already seen compound expressions on a single line of output, when
we used the ; operator to suppress output. We now see that compound expressions also
allow us to use multiple commands as a single argument inside a function like Block
or With. Inasmuch as only the final individual expression may omit the semicolon, the
final individual sub-expression may produce output. In the above case, this expression
was the expression divisors which has the effect of outputting the set of divisors that
was computed by the Do function.

We now calculate the divisors of 999 (so chosen because the number of its divisors is
manageable?), which requires only 31 iterations of our loop. Note here that our previous
use of With and Block pay off, as we may copy and paste the previous loop, and need
only change the single declaration of n = 6 with our new number.

In[181]:= Block[{n =999, divisors = {}},

Dol
If[n~Mod~a ==0, divisors =divisors ~Union~{a, n/a}],
{a, 1, Sqrt[nl]}
1;
divisors

]
out[181]= {1,3,9,27,37,111, 333,999}

It was stated above that the Mod function was one way to have Mathematica deter-
mine whether a number was natural. Another such way is to use the Cases function,
along with pattern matching—the same pattern matching we use for arguments when
defining functions. The Cases function will take a list, and will compute a new list
containing all the elements of the old list that match some pattern. Often this pattern
will describe the form of an expression, such as expressions of the form x%, however we
may also construct patterns that have criteria such as those we have used with the If
function, above. As such, Cases with patterns present another form of decision making,
and can be very convenient.

To use this method for our divisor computations, we first need to construct a list.
Fortunately, the properties that make our initial simple approach (dividing n by every
natural number smaller than or equal to it) perfect for a loop, also make it perfect for
the Table function. We start, therefore, by computing the set {6/a |1 < a < 6} as a
Mathematica list, and from that we pick only the integers.

3 By “manageable”, the author means “easily fits on a single line of output when typeset in this
book”

28 1 Number Theory

In[182]:= With[{n = 63},
Table[n/a, {a, 1, n}]
]
Cases[%, _Integer]
3 6
Out[182]= {6,3, 2,55 1}
out[183]= {6,3,2,1}

Take note of the pattern in this case; it is _Integer. Just as when we define a
function the blank means “any expression”, in this case the blank followed by the key
word Integer means “any integer.” The Cases function computed for us a new list
consisting of all the elements of the previous list which which matched the pattern;
that is the elements that were integers. Inasmuch as we were only dealing with positive
integers to begin with, this had the effect of giving us only natural numbers. If we wish,
in general, to make sure we only pick positive integers, we should use the following
instead.

In[184]:= Block[{n =6, div},
div = Table[n/a, {a, 1, n}];
Cases[div, m_Integer /; m > 0]

]
Out[184]= {6,3,2,1}

In this case the pattern m_Integer /; m > 0 should be read as “any integer, which
we shall name m, with the condition that m > 0.” The /; is the operator for applying
conditions to patterns. Patterns are a very flexible and useful mechanism within Math-
ematica. Unfortunately they are also very complicated. We shall use them from time
to time within this book, and explain their usage as best we can, however the reader is
actively encouraged to learn more through Mathematica’s Documentation Center. One
should start with the entry named “Introduction to Patterns.”

Additionally, note in the previous example that we used a single Block function,
instead of a With function followed by the Cases externally. This was done to make
the input a single expression. Previously, our command was two expressions, and while
we could have made it a compound expression with the use of an ; operator, the %
operator does unpredictable things when used as part of a compound expression. The
Block function allows us to avoid the use of the % operator in this case. Further note
that we did not need to assign an initial value to the temporary div variable, we simply
declared it and that was sufficient. We can get away with this because we assign it with
the Table function as part of the expression inside of the Block.

The astute reader might hopefully be seeing how they might modify and use these
ideas when creating functions using the methods we saw in Section 1.2.1. We shall look
at this in detail in Section 1.2.4. Now, however, for the sakes of completeness we will
re-compute the divisors of 999 using this alternate technique. It is left as an exercise to
the reader to modify these list methods so as to sort the list from smallest to largest
divisor (just as the output form the Do function produced).

In[185]:= Block[{n =999, div},
div = Table[n/a, {a, 1, n}];
Cases[div, m_Integer /; m > 0]

1
out[185]= {999,333, 111,37,27,9,3,1}

1.2 Putting It Together 29

It might not surprise the reader to discover that Mathematica in fact has a built-in
function that will calculate the divisors of a number. This function is the Divisors
function.

In[186]:= Divisors[6]
Divisors[999]

Out[186]= {1,2,3,6}
out[187]= {1,3,9,27,37,111, 333,999}

The reader may now find cause to wonder why we went through the above rigmarole
of loops, decisions, lists and patterns to compute the divisors of a number, when we could
have just used this Divisors function right from the start. This is not an unfair question,
and there are two primary reasons for this approach. The immediately obvious answer
is we wished to introduce the reader to Mathematica’s loop and decision structures, and
the divisor calculation seemed a natural example that lent itself nicely to demonstrating
these structures. Furthermore we have demonstrated the ability to use the more basic
building blocks of Mathematica to perform mathematics and solve problems when we
don’t know a more direct way of having Mathematica perform the calculation. By
taking this longer route, we perhaps also allow ourselves to learn a little more about
the mathematics than we might have if we had just asked for an answer directly.

This is illustrative of an approach that is used repeatedly by the authors in this
book. We repeatedly construct mathematics and calculations from first (or, at least,
earlier) principles before introducing the Mathematica command that would perform
the calculation directly. The reader should be sure to understand both the Mathematica
and the mathematics involved in these constructions, but should feel free to use the
“direct” methods once they have been introduced. In fact, several exercises require the
use of these direct methods seemingly blindly, and it is expected that knowledge of
the underlying concepts will allow the reader to confirm the answers that Mathematica
provides, even though the reader may not have the tools to produce the answer without
the aid of the computer.

We now return to our discussion of divisors and of Mathematica decision structures,
exploring both a little further. We introduce the notion of proper divisors and perfect
numbers. When considering the divisors of some number, n say, it should be clear that
n is always a divisor of itself. The set of proper divisors of n are simply all of its divisors,
except for n itself. So the proper divisors of 6 are {1,2,3}. If we add the proper divisors
together, we see that 3 +2 + 1 = 6, and that the sum of the proper divisors of 6 is
6 itself. This is an example of a perfect number, which is any number n whose proper
divisors sum to the value of n.

We use Mathematica to calculate whether some numbers are perfect, starting with
6. We need to use a decision, but this time we have two options: either the number is
perfect, or it is not. We want an answer in either case, so we need to use the optional
third argument to the If function. First we must find the proper divisors and add them.

In[188]:= With[{n = 6},
(Divisors[n] // Total) -n
]

Out[188]= 6
Note that we only wanted to sum the proper divisors, but the Total command we

used will sum every divisor, so we needed to subtract out n to compensate for this
unwanted addition. We can clearly see that 6 is perfect (which we already knew).

30 1 Number Theory

Despite the fact that we already know the answer, we will have Mathematica compute
whether 6 is perfect, using the If function. We do this to demonstrate the optional third
argument. The function with this optional arguments works almost identically to the
way we have already seen it operate. If the condition is met, then the expression that is
the second argument is evaluated, but if the condition is not met, then the expression
that is the third argument is evaluated.

In[189]:= With[{n = 6},
If[
(Divisors([n] // Total) ==2 *n,
Print[nisperfect],
Print[nis imperfect]
]
]

Out[189]= 6 is perfect

Note that, in the interests of readability, we have broken the If function over mul-
tiple lines, with the criterion taking up a single line, as well as each of the two possible
expressions to be evaluated based on that criterion. We have also simplified the expres-
sion. Instead of checking whether the sum of the divisors minus the number is equal to
the number, we are simply checking whether the sum of the divisors is equal to twice
the number.

We have cheated somewhat here with the message we are printing. It looks like we
have printed “6 is perfect”, and to a certain extend that is true. However in order for
this to happen the expression we used is, in fact, a multiplication; it is the product
of the number 6, and two mathematica variables is and perfect. The coloring of the
variables should have given us a clue to this effect, nonetheless the end result is that the
desired was output. We have also used the regular method of calling the Print function,
instead of the postfix we have been using previously. Previously, we have had to use
Print because if we did not, we would see no output, however it was superfluous to the
computation, and as such we have used the postfix notation so that its existence did
not interfere with the readability of the computation we were performing. In this case,
however, the action we are performing is not a computation, but is to print a message
to the screen, as such the Print is key, and takes centre stage, so to speak, when we
read the input.

To be properly illustrative, we should see a case where the If function evaluates its
third argument. That is, we should see a case where the criterion fails. To this end, we
will try n = 7. Note that this also illustrates a weakness with the cheat we performed
to write a message to the output; the english becomes broken due to Mathematica
re-ordering the unknowns when it outputs the expression.

In[190]:= With[{n =7},
If[
(Divisors([n] // Total) ==2%*n,
Print[nisperfect],
Print[nis imperfect]
]
]

Out[190]= 7 imperfect is

Let’s see if there are any perfect numbers less than some upper bound N. We’ll start
with N = 6. Currently if we want to know if a number is perfect, we have a whole mess

1.2 Putting It Together 31

of calculations to perform taking up seven lines; if we were to start at n = 1 and test up
until n = N we would end up with forty-two lines of code in the case of N = 6 and more
for larger N. Such would be more than a little cumbersome even if we were to copy
and paste. Now that we have seen compound expressions, it should not be a stretch
to expect that the Do function ought to be able to loop a compound expression for us,
and so it can. We therefore use a loop. Also, in light of the earlier observations with
regards to printing strings, we shall compute a list containing all the perfect numbers
less than N. Note that we needed only the first form of the If function—the one with
only a single expression to be evaluated—for this computation.

In[191]:= Block[{N =6, P = {}},
Do[
If [(Divisors[n] // Total) ==2%*n, P = P ~Union~ {n}],
{n, 1, N}
1;
P
]

Out[191]= {6}

It seems, then, that 6 is the first perfect number. It turns out that there are precious
few perfect numbers. We compute, below, the set of all perfect numbers less than or
equal to 10,000, and see that there are only four.

In[192]:= Block[{N = 10000, P = {}},
Do[
If[(Divisors[n] // Total) ==2*n, P = P ~Union~ {n}],
{n, 1, N}
1;
P
]

out[192]= {6, 28,496, 8128}

We may perform these same computations of perfect numbers less than N using lists
and Cases if we so wish. The commands to do so are more succinct, but perhaps harder
to understand at a quick glance. We use the Range function to first compute the list of
integers from 1 to N, and then use Cases to choose from that list the elements which
match our criterion.

In[193]:= With[{N = 10000},
Cases[Range[N], n_Integer /; (Divisors[n] // Total) ==2%*n]
]

Out[193]= {6, 28,496, 8128}

Finally, we apply these same concepts directly to a new problem. Suppose we have a
natural number, n, that is not perfect. Let m be the sum of the proper divisors of n. It
is possible (but not necessarily likely) that n also happens to be equal to the sum of the
proper divisors of m. If this happens, then n, m are called a pair of amicable numbers.

Our problem is to find all the amicable pairs where at least one of the pair is less
than 10,000.

Applying some thought to the problem, we should realize that for any n there can
only be one possible candidate for its amicable partner m, that candidate being the
sum of the proper divisors of n. If n is a perfect number, then the candidate for its

32 1 Number Theory

amicable partner is itself, but remember we stipulated initially that n was not perfect,
so we must make sure to somehow exclude perfect numbers in our computation.

Our approach, then, is clear. Given n, we calculate the candidate, m, directly, and
then sum of the divisors of m. We then check to see if the sum of m’s divisors is equal
to n, and we also check that n is not perfect. The numbers n, m form an amicable pair
so long as both of these checks are true. That is, n, m (with m computed as described
above) is an amicable pair if and only if the sum of m’s divisors is equal to n and n is
not perfect. This leaves us with two criteria, which we are able to express as a single
criterion for the If function by using the && logical ‘and’ operator. We implement this
approach using a loop similar to that used above.

In[194]:= Block[{N = 10000, m},
Dol
m = (Divisors[n] // Total) -n
If[
m !'=n && (Divisors[m] // Total) -m==n,
{n, m} // Print
1,
{n, 1, N}
1;
]

Out[194]= {220,284}

Out[195]= {284,220}

Out[196]= {1184, 1210}
out[197]= {1210, 1184}
Out[198]= {2620, 2924}
Out[199]= {2924,2620}
Out[200]= {5020, 5564}
Out[201]= {5564, 5020}
Out[202]= {6232, 6368}
Out[203]= {6368, 6232}

To compute this with lists and cases, we first compute the list containing all candidate
pairs of n, m where m is the sum of the proper divisors of m, and then apply a pattern
to the Cases function which matches a list of 2 elements, with the elements named n
and m, and choose those pairs which match our criteria, above. Due to the complexity
of the Table function, we need to use a temporary variable L to hold the set.

In[204]:= Block [{N = 10000, L},
L = Table[{n, (Divisors[n] // Total) -n}, {n, 1, N}];
Cases[L, {n_,m_}/; m '=n && (Divisors[m] // Total) -m == n]
]

out[204]= { {220,284}, {284,220}, {1184, 1210}, {1210, 1184}, {2620, 2924},
{2924, 2620}, {5020, 5564}, {5564, 5020}, {6232, 6368}, {6368, 6232} }

Notice that, with both methods, we have found each pair twice, once starting with
the smaller of the two, and once starting with the larger. We can see then that there
are only five amicable pairs less than 10,000. It is left as an exercise for the reader to
modify the loop so that it only prints each pair once.

1.2 Putting It Together 33

1.2.4 Functions Revisited and Pattern Matching

When we created our own functions earlier, they computed only simple, single expres-
sions. We have seen, in the previous sub-section, some computations requiring multiple
lines of input, and relatively completed combinations of expressions. Having many of
these as functions would be convenient. Fortunately, in order to facilitate these compu-
tations, we used special functions that enclosed them, causing the entire several lines
of input to be a single expression; specifically a function call. Examples of these were
Do, If, With and Block. Using these, we may create more complicated functions than
we have previously. We do so now.

To start with we will create a function to compute whether or not a number is
positive. We'll call this function PerfectQ, adopting the naming style of Mathematica
inbuilt functions for querying properties, such as IntegerQ for determining whether or
not its argument is an integer. These functions return either True or False, and so
shall ours. Our first attempt will be to use a pattern, mimicking our pattern from the
previous sub-section

In[205]:= PerfectQ[n_Integer /; n >0] :=If[
Divisors[n] // Total ==2n,
True,
False

]

In[206]:= PerfectQ[6]
PerfectQ[10]
PerfectQ[27]

Out[206]= True
Out[207]= False
Out[208]= True

Note that we have used a pattern to describe the parameters that the function may
take. The pattern used is precisely the same pattern we demonstrated in Section 1.2.3;
any integer which is greater than 0. If we attempt to call the function with any other
argument, Mathematica acts as if the function has not been defined.

In[209]:= PerfectQ[-1]
PerfectQ[0.5]
PerfectQ[x]
PerfectQ[{6, 10, 28}]

Out[209]= PerfectQ[—1]
Out[210]= PerfectQ[0.5]
Out[211]= PerfectQ[x]

Out[212]= PerfectQ[{6, 10, 28}]

Note that our function didn’t neatly apply itself to the elements of a list, like our
created functions did in Section 1.2.1. This is because a list does not match the argument
pattern we gave our function. If we want this new function to apply to the elements of
a list we need to use either the Map function, or the map operator /@.

In[213]:= Map[PerfectQ, {6, 10, 28}]
PerfectQ /@ {6, 10, 28}

34 1 Number Theory

Out[213]= {True, False, True}
Out[214]= {True, False, True}

Unfortunately, the pattern in our PerfectQ function causes another small problem.
Our function is supposed to report whether its argument is a perfect number, but in
many cases it does nothing at all. Any argument which is not a positive integer cannot
possibly be a perfect number, and so our function should return False in these cases.
Observe that the IntegerQ function behaves precisely like this, although it also doesn’t
automatically apply itself to the contents of lists.

In[215]:= IntegerQ[-1]
IntegerQ[0.5]
IntegerQ[x]
IntegerQ[{6, 10, 28}]

Out[215]= True
Out[216]= False
Out[217]= False
Out[218]= False

We therefore re-write our PerfectQ function to be a little more flexible. This means
losing the pattern, although we shall make use of it again when it is more appropriate
to the desired actions of a function. Instead, we will use the IntegerQ function as part
of our computation, as this should ensure that our function behaves similarly.

In[219]:= PerfectQ[n_] :=If[
IntegerQ[n] && n > 0 && (Divisors[n] // Total) ==2n,
True,
False

]

In[220]:= PerfectQ[6]
PerfectQ[10]
PerfectQ[27]
IntegerQ[-1]
IntegerQ[0.5]
IntegerQ[x]
IntegerQ[{6, 10, 28}]

Out[220]= True
Out[221]= False
Out[222]= True
Out[223]= False
Out[224]= False
Out[225]= False
Out[226]= False

One advantage of having this function as a function is that it greatly simplifies our
code to compute perfect numbers less than N. We may compute a list of perfect numbers
in a single line. We may even safely omit the With or Block functions here, because
we only ever have the upper bound in a single location, and so no extra convenience is
given by specifying temporary variables.

1.2 Putting It Together 35

In[227]:= Cases[Range[10000], n_Integer /; PerfectQ[n]]
out[227]= {6, 28,496, 8128}

We may use our PerfectQ function as the criterion for the If function too, if we like,
although such code is far less elegant than the previous single-line list computation.

In[228]:= Block[{N = 10000, L = {}},
Do[
If[IntegerQ[n], L =L ~Union~ {n}],
{n, 1, N}
]
]

out[228]= {6, 28, 496, 8128}

We now look at a slightly more complicated example. We shall create a function
named AmicableQ which will answer True or False to the question of whether a pair of
numbers are amicable. We start by creating a function which takes two arguments. If
we stop to think about this for a minute before proceeding, we should realize that we
have 4 conditions to meet. We need to make sure that both our arguments are integers,
and then we need to check that each one is equal to the sum of the divisors of the other.
That’s going to be a large, and unwieldy, If statement. To alleviate this, we will use
patterns to make sure the arguments are integers.

In[229]:= AmicableQ[n_Integer /; n >0, m_Integer /; m >0] :=If[
(Divisors[m] // Total) -m == n && (Divisors[n] // Total) -n ==m,
True,
False

]

This function, however, is a query function; it ought to always return True or False.
It is, therefore, going to have exactly the same problem we had the last time we used
patterns to define a query function.

In[230]:= AmicableQ[x]
AmicableQ[{220, 284}]

Out[230]= AmicableQ][z]

Out[231]= AmicableQ[{220, 284}]

We may avoid this by defining a function with the same name, but a different input
pattern.

In[232]:= AmicableQ[_] :=False

In[233]:= AmicableQ[220, 284]
AmicableQ[x]
AmicableQ[{220, 284}]

Out[233]= T'rue
Out[234]= False
Out[235]= Flalse

36 1 Number Theory

It is instructive to think of these definitions in terms of rules. We have defined a
rule for AmicableQ in the case that it has two positive integer arguments, and we have
defined a rule for AmicableQ in the case that it has a single argument which may be any
expression. Note that in the latter case we did not even deign to name the expression, for
we knew that the function must return False in that case, irrespective of the argument.
We may think of this as the default case.

The astute reader will have noticed that our function returned False when given the
argument {220, 284}, even though that pair of numbers is, indeed amicable. This is
because {220, 284} is a list, and consequently a single argument to the AmicableQ
function. The rule for single argument input is to return false. However, if we wish to
use our AmicableQ function to help us compute amicable numbers in lists, as we did at
the end of Section 1.2.3, then we need it to be able to recognize amicable pairs in a list,
as well. With patterns, this is easy! We simply create a new rule that matches to a list.

In[236]:= AmicableQ[{n_Integer, m_Integer} /; n >0 && m > 0] :=
Amicable[n, m]

The pattern, above, should be read as “any list of exactly two integers, which we
shall call n and m with the condition that both n and m are greater than 0.” Note that
because a list is a single argument, we have only one pattern in this example, whereas
our first AmicableQ rule had two patterns—one for each argument. Because of this the
conditions on n and m are really a single logical condition, and must be joined with the
&& operator.

In[236]:= AmicableQ[{220, 284}]
Out[236]= True

Patterns, as we see above, allow us to describe the structure of an expression, and
even to assign names to arbitrary sub-expressions. In the example above, we were able
to describe a list of exactly two elements, and to give those elements individual names,
as well as provide extra stipulations for them. By doing this we were able to make
use of our previous rule definition to perform the actual computation. It is important
to remember that these rules do not, by default, over-ride each other, unless we re-
define a rule whose pattern had been previously defined. We currently have 3 rules for
our AmicableQ function; one for a pair of positive integer arguments, one for a single
argument list containing exactly two positive integers as elements, and a default rule.

We close this subsection by using this function to find, again, the amicable pairs where
at least one of of the pair is less than some number N. We have already computed, in
Section 1.2.3 the case of N = 10,000, although we computed each pair twice. What’s
more, the astute reader may have noticed that our previous computation was in fact a
computation of all amicable pairs where one of the pair was less than N = 10,000. Here
we will fix both problems*

We shall construct a function to do this, and name it findAmicable. The function
shall take as a single argument the upper bound for the amicable pairs. Doing so will
allow us to demonstrate how the Block function (and, by extension, the With) function
interacts with functions we create.

Recall that in Section 1.2.3 we required a compound expression to compute the list
of amicable numbers we computed. The expression consisted of two sub-expressions;
one to compute an initial list of candidate pairs, and a second to choose the correct

4 That only one of the pair was less than N is not a problem per-se, although it is easier to talk
about pairs less than N than pairs where one of the pair is less than N, so we shall “correct” it
anyway to make our discussion easier.

1.2 Putting It Together 37

pairs from the candidates. It might be tempting to try and define our function this
compound function directly, but unfortunately this does not work.

In[237]:= findAmicable[N_Integer /; N > 0] :=
L = Table[{n, (Divisors[n] // Total) -n}, {n, 1, N}]1;
Cases[L, {n_,m }/; m '=n && (Divisors[m] // Total) -m == n]

Oout[237]= {}

There are two problems with this approach. Our first clue that there’s a prob-
lem should be the indenting; recall that Mathematica automatically performs the in-
denting for us. The fact that the second line is not indented should be a clue that
it is not considered part of the previous command. Another clue is that there is
an output of an empty set; it looks very much like Mathematica has evaluated the
second expression. In fact, this is precisely what’s happened. The Mathematica lan-
guage provides no mechanism for grouping expressions within a function definition.
The above example is a compound expressions, consisting of a function definition
(findAmicable[N_Integer /; N >0] := ... ;) followed by a call to the Cases func-
tion. This is not what we wanted at all. We intended the input L = Table[...];
Cases[...] to be a compound expression which was evaluated when the function was
called.

That was all problem number one. The second problem is that the L variable should
only be temporary, yet in the above case it is not. This is the reason for the empty
output, as the Cases function has tried to extract elements from a variable with no
value, and finding no elements which matches the pattern, promptly returns to us an
empty list.

The solution to both of these problems is the same; we must use either the Block or
With function. In general, the only mechanism Mathematica provides us for computing
compound expressions as part of a function is for that compound expression to be an
argument to a function. This is because a function is very clearly delimited by its opening
and closing brackets (‘[" and ‘]’) as well as the commas which separate its arguments.
In principle any function will do, but in practice it will mostly be the functions we have
already seen (Block, Cases, Do, If, etc). In this case, we need a temporary variable,
and we need to modify that temporary variable, so we must use a Block.

Our function, then, behaves as follows. We use a pattern to make sure that only
positive integer arguments are accepted, and because we do not need to always produce
an output, we will not bother with a default rule. The upper bound, N, is given by
the function argument, so it does not need to be stipulated as a temporary variable in
the Block. Furthermore, we may use it to initialize variables inside of the Block, and
so we do so for the temporary list L. We then use the Cases function twice; firstly to
choose only the pairs where both elements are smaller than N and the first element is
smaller than the second, and secondly to choose which of those pairs are amicable. It
is possible to compress this down to a single use of Cases with the && operator, but we
shall not do this here.

In[238]:= findAmicable[N_Integer /; N > 0] :=Block[
{L = Table[{n, (Divisors([n] // Total) -n}, {n, 1, N}13},
L=Cases[L, {n_,m_}/; n<m<NJ];
Cases[L, el_ /; AmicableQ[el]]
]

In[239]:= findAmicable[10000]
Out[239]= {{220, 284}, {1184,1210}, {2620, 2924}, {5020, 5564}, {6232, 6368} }

38 1 Number Theory

Note that, because of the way we constructed our list, L, combined with our careful
setting up of rules for the AmicableQ function, we did not need to be very fussy with the
patterns inside of the Cases function. The first pattern matched any list of two elements,
with no conditions on those elements, the second pattern accepted any expression. The
pattern matching work was really all done by the rules of the AmicableQ function; we
know that the elements of L are all lists of two positive integers, because that’s how
we constructed it, so we can rely on the appropriate rule in the AmicableQ function to
take effect. The first pattern could have equally well just matched any expression, but
it was more convenient to have the individual elements named, than to use the [[...]]
operator in the condition.

To close with, we will use this new function to compute all amicable pairs less than
100,000. The following computation takes a second or two on the authors home com-
puter.

In[240]:= findAmicable[10000]
Out[240]= { {220,284}, {1184, 1210}, {2620, 2924}, {5020, 5564}, {6232, 6368},
{10744, 10856}, {12285, 14595}, {17296, 18416}, {63020, 76084},
{66928, 66992}, {67095, 71145}, {69615, 87633}, {79750, 88730} }

1.2.5 Nesting

We have looked at loops and decisions in the previous sections. Inside a loop, or a deci-
sion, we may have any valid Mathematica expression, and even compound expressions.
Inasmuch as loops and decisions are created with functions, which are valid expressions
in their own right, it should not have greatly surprising when we saw decisions inside
of a loops. It should be a great stretch, therefore, to expect that we may have a loop
inside a loop, or a decision inside a decision. Doing such a thing is often called nesting
in languages were loops and decisions are not functions, and we shall also refer to it as
such in this book.

To illustrate this idea, let’s look at some related notions to divisors and perfect
numbers. Observe that if a number n is not perfect, then the sum of the proper divisors
is either strictly greater, or strictly less than n itself. If the sum of the proper divisors
is less than n we say the number is deficient, and if the sum of the proper divisors is
greater than n then we say that n is abundant. We now have three mutually exclusive
options for any natural number.

This idea lends itself nicely to a nested decision. We must first make a decision to
see if the number is perfect, and if it is not then we must make a second decision as
to whether it is abundant or deficient. We would implement this in Mathematica as
follows.

In[241]:= classify[n_Integer /; n > 0] :=With[
{N = (Divisors([n] // Total) -n},
If[N>n,
abundant,
If[N<n,
deficient,
perfect

]

1.2 Putting It Together 39

]
]

In[242]:= Do[{n, classify([n]} // Print, {n, 6, 12}]
Out[242]= {6, perfect}

Out[243]= {7,deficient}

Out[244]= {8, deficient}

Out[245]= {9, deficient}

Out[246]= {10, deficient}

Out[247]= {11, deficient}

Out[248]= {12, abundant}

It is quite important here to notice the If within the If above; specifically it is the
third argument, meaning that it will only be evaluated if the first criterion is false.
As such, our function first checks to see if its argument is abundant, if not, then the
function checks to see if the argument is deficient, and if it is neither of those, then it
declares the number to be perfect. Note that we needed to use the sum of the proper
divisors several times, so we stored the value in a temporary constant.

There is no necessary requirement that the innermost decision be within the third
argument to the outermost decision, and furthermore we may nest potentially any
number of decisions.

Note that abundant, deficient, and perfect are unassigned variables. We need
to be a little careful here in making sure that those variables remain unassigned. We
could avoid the problem by putting the variables in inverted commas, like we did in
Section 1.2.2, but ultimately using variables as text messages is really a kludge. We
would do better to crate decision functions, much like our previous PerfectQ. We did
not do so because the goal of our earlier code was to demonstrate how we may nest a
decision within another decision.

Let us now, on a whim, find all the abundant numbers less than or equal to 100, and
collect them into a list. Note that even though the abundant, deficient, and perfect
are unassigned, we may still use them in a comparison with the == operator.

In[249]:= Cases[Range[100], n_ /; classify[n] == abundant]
out[249]= {12, 18,20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100}

We leave our discussion of the properties of numbers and their divisors there for now.
Before we move to nested loops, we show one more example of a nested decision. This
time we use a nested decision to decide in which quadrant a point in the real plan lies.
For the sake of simplicity, we consider any point that lies on the z-axis to be in the
upper half-plane, and any point on the y-axis to be in the right half-plane. This means,
in particular, that the point (0,0) is considered to be in the first quadrant.

We construct a function that takes two arguments: = and y, as well as a function
which takes a list of exactly two elements. For our decision, we observe that when y > 0
we are in either the first (z > 0) or second (z < 0) quadrant. Otherwise y < 0 and we
are in either the third (z < 0) or fourth (x > 0) quadrant. Our nested decisions use
this logic. We will return unassigned variables with this function, even though it is not
the best idea. Remember our goal here is to demonstrate nesting decisions.

In[250]:= quadrant[x_ /; -Infinity < x < Infinity,
y_ /; -Infinity < y < Infinity] :=

40 1 Number Theory

If[y >=0,
If[x >=0,
first,
second
] B
If[x <0,
third,
fourth
]
]
quadrant [{x_, y_}] :=quadrant[x, y]

In[251]:= quadrant[1, 1]
quadrant[1, -2]
quadrant [-4, -3]
quadrant [{-7, 12}]

Out[251]= first
Out[252]= fourth
Out[253]= third
Out[254]= second

Note that in order to match any real number, we had to use the pattern of x being
any expression with the condition that —oo < x < oo, and similarly for y. It is un-
fortunate that the pattern x_Real will only match decimal numbers (not integers or
rationals). There is a function named NumberQ which might would have allowed us to
use x_ /; NumberQ[x], however that would have also matched complex numbers, so we
did not use it.

Frustratingly, and a little surprisingly, there is no function named RealQ, nor
RationalQ. If there were, we may have used the logical or operator (|1) to construct
the pattern x_ /; IntegerQ[x] || RationalQ[x] || RealQ[x]. On balance, however,
this is ugly and inelegant, and pattern we did use is preferable to this hypothetical
monstrosity.

With the question of complex numbers having cropped up, we can easily extend our
quadrant function to also compute the quadrant of a complex number. We simply create
a new rule that matches a single complex variable, since complex numbers are, by their
very nature, two dimensional. Fortunately, complex numbers are easier to match than
real numbers. We use the Re and Im functions to extract the real and imaginary parts
respectively.

In[255]:= quadrant[z_Complex] := quadrant[Re[z], Im[z]]

In[256]:= quadrant[2 + 3 I]
Out[256]= first

We now move on to nested loops. As the nested decisions above should suggest, a
nested loop is simply a loop inside another loop. As with decisions, we may nest any
number of loops, but we concern ?Vurseh](?s initially with just a pair of nested loops.

If we think of a double sum 3 ;~, > 5, f(4,) then

1.2 Putting It Together 41

N M N [M
PN IIED DI
i=1 j=1 i=1 \j=1
N
i=1
= L)+ 4 FOLM) + o+ SN 1)+ f(N, M)
The dummy variable, ¢ in this case, assumes a set of values 1,..., N and for each of
these another sum is to be computed. For this second sum, the dummy variable j also
assumes a set of values 1,..., M and the ¢ value stays (temporarily) fixed. The final

result is the pattern we see above. A nested loop will behave in a very similar way. In
fact, we may calculate a double sum with a nested loop, as we do below.

In[257]:= Block[{S =0},
Do[
Do[
S=8+f[i, jl,
{j, 1, 3}
1,
{i, 1, 3}
1;
S
]

out[257]= f[1,1]+ f[1,2] + f[1,3] + f[2, 1] + f[2,2] + f[2,3] + f[3,1] + f[3,2] + f[3, 3]

For each (temporarily) fixed value of i, the entirety of the innermost loop is cal-
culated. We may achieve this same result using only the Sum function, but the above
nicely demonstrates the behavior of a nested loop.

In[258]:= Sum[Sum[£[i, j1, {j, 1, 3}], {i, 1, 3}]
Out[258]= f[1, 1]+ f[1,2] + f[1,3] + f[2, 1] + f[2,2] + f[2,3] + f[3,1] + f[3,2] + f[3, 3]

Note, in both cases above, that because our innermost loop (or Sum) is the one
corresponding to the j variable, the parameters for this variable appear before those for
the i variable. This is perhaps a little counter intuitive, when the i variable takes logical
precedence. Fortunately both the Do and Sum variables offer an easier-to-use alternative.
If we specify multiple iterators, it is understood we mean them to be nested. When we
nest in this manner, we put the variables in the more intuitive logical order.

In[259]:= Block[{S = 0},
DO[S=S+f[i, J], {1: 1, 3}: {J9 1, 3}]
S
]

out[259]= f[1,1]+ f[1,2] + f[1,3] + f[2,1] + f[2,2] + f[2,3] + f[3,1] + f[3,2] + f[3, 3]
In[260]:= Sum[f[i, j1, {i, 1, 331, {j, 1, 3}]

out[260]= f[1,1]+ f[1,2] + f[1,3] + f[2,1] + f[2,2] + f[2, 3] + f[3,1] + f[3,2] + f[3, 3]
This technique of multiple iterators is the preferred method of nesting when it is

available; it is quicker to type, takes up less space on the screen, is easier to read, and
has the variables in the intuitive order. We may use it with other functions as well.

42 1 Number Theory

For instance, if we wanted to nest lists using a nested Table function, we may use
this method. Doing so also nicely demonstrates the ordering of the variables. With our
above sums Mathematica is helpful and sorts the output for us, so even if we had put
the dummy variables in the wrong order, it wouldn’t have mattered (and the astute
reader may very well be quick to point out that addition is commutative, thus rending
the question of order moot). Lists, however, are a different matter.

In[261]:= Table[{i, j}, {i, 1, 3}1, {j, 1, 3}]
Table[{i, j}, {j, 1, 3}], {i, 1, 3}]

Outf261]= {{{1,1},{1,2},{1,3}}, {{2,1},{2,2},{2,3}}, {{3, 1}, {3,2}, {3, 3} }}
Out[262= {{{1,1},{2,1}, {3, 1}}, {{1,2},{2,2}, {3,2}}, {{1, 3}, {2, 3}, {3,3}}}

Each of these commands produces a list containing three sub-lists. Each of these sub
lists contains three pairs of elements. The first output is computed with the i variable
taking precedence. That is, for each i, every possible value of j is computed, and the
corresponding pairs are a sub-list. WIth the second output, however, the j variable
takes precedence. That is, for each j, every possible value of i is computed, and the
corresponding pairs are a sub-list.

The difference is perhaps subtle, and is moot in the case of sums, but this example
demonstrates that not all nestings are as nicely commutative as a sum. We see that
the ordering of the nested variables can make a difference. It is left as an exercise
to the reader to experiment with nesting the Table function within itself (using the
technique prior to the multiple-iterators technique) to see the difference the ordering of
the iterators makes.

1.2.6 Recursive Functions

For some calculations, it is mathematically convenient to have a function use itself as
part of its own calculation. Such a technique is called recursion. As a natural example
of this we look at the Fibonacci numbers.

Recall that the Fibonacci numbers are given by the relation f,, = f,—1 + fn—2. This
is an example of a recurrence relation, which we look at in more detail in Section 1.3.3.
Nonetheless, it should be clear that in order to calculate any Fibonacci number, we need
to know the previous two. Each of these two numbers is, itself, a Fibonacci number,
they therefore may be calculated in turn by knowing the prior numbers. In order to
prevent forever looking backwards we need a starting point, or some known Fibonacci
numbers, and so we also stipulate that f; = fo = 1.

We may implement this in Mathematica fairly simply with a function that uses
decision and recursion. If f; or fo are asked for (these will be £ib[1] or £ib[2] because
of the way functions and procedures work in Mathematica) then we return the value
1, and otherwise we will use the same procedure again to calculate the previous two
Fibonacci numbers. In this way we will eventually work our way back to either f; or

fa.

In[263]:= fib[n_Integer /; n > 0] :=If[
==1||n==2,
1,
fib[n -1] +£fib[n - 2]
]

1.2 Putting It Together 43

Note that, because the function rule states that it only applies to positive integers,
we may instead have used the criterion n <= 2 and we would have been computing the
same result. Doing so would be a little less intuitive, and require a little more thinking
when reading the code, whereas the logical or (| |) operator allows us to describe criteria
in much the same way as we describe the Fibonacci sequence on paper or in prose.

Let us now compute the first twenty Fibonacci numbers.

In[264]:= Array[fib, 20]
out[264]= {1,1,2,3,5,8,13,21, 34, 55,89, 144, 233, 377,610, 987, 1597, 2584, 4181, 6765}

The Array function here acts as a sort of shorthand version of Table. The differences
are that Array takes a function, f say, as its first argument, and a positive integer, n
say, as its second argument. It computes the list {f(1), f(2),..., f(n)}. We could have
produced the same output with the command Table[fib[n], {n, 1, 20}], however
the Array was somewhat more succinct.

To make the function a little more intuitive to read we may, if we wish, eschew the
decision completely and simply write only the recursive part of the procedure. If we do
this, we also need to tell Mathematica directly what fib[1] and fib[2] are supposed to
be. This is a lot more in line with the way we handle recurrence relations on paper, and
so should be intuitively more familiar.

In[265]:= £ib[1] = £ib[2] = 1;
fib[n_Integer /; n > 0] :=fib[n-1] +£fib[n - 2]

In[266]:= Array[fib, 20]
out[266]= {1,1,2,3,5,8,13,21,34, 55,89, 144, 233,377,610, 987, 1597, 2584, 4181, 6765}

We may think of this style of function definition in terms of the rules we talked
about in Section 1.2.4. We have a rule for when the argument is 1, a rule for when the
argument is 2 and a default-ish rule for when the argument is a positive integer. The
more specific rules take precedence, and so arguments of 1 or 2 use the correct rule,
even though they do technically match the pattern of being a positive integer.

Note that because we did not use a delayed assignment for fib[1] or £ib[2] we
suppressed the output. If we did not do this Mathematica would have produced an
output of 1 because of the assignment, but such output makes little sense in the context
in which we are working.

As it was with divisors, so it is with the Fibonacci numbers; Mathematica contains
an inbuilt function for their direct calculation. The function is the Fibonacci function.

In[267]:= Array[Fibonacci, 20]
out[267]= {1,1,2,3,5,8,13,21, 34, 55,89, 144, 233,377,610, 987, 1597, 2584, 4181, 6765}
Using this function we do not need to write our own Fibonacci computing functions,
no matter how simple they are. The reader, nonetheless, should take pains to understand
the concepts in the Fibonacci computations we constructed above, for the Fibonacci

numbers are not the only recurrence relation, and Mathematica will most certainly not
always be so forthcoming with inbuilt functions for our convenience.

1.2.7 Computation Time

The previous section gives rise to the question of how long a computation will take
to perform. It may not be obvious from the computation of the early terms of the Fi-

44 1 Number Theory

bonacci sequence, but the above recursive function we wrote in Section 1.2.6 is actually
quite slow. The problem stems from the fact that it does not remember previous calcu-
lations. For instance, suppose we ask for £ib[5], the 5th Fibonacci number. Mathemat-
ica—acting in accord with our instructions—will first compute £ib[4] which involves
computing £ib[3] and £ib[2], and computing £ib[3] involves, in turn, computing
fib[2] and £ib[1]. Mathematica performs each of these computations, including com-
puting £ib[2] twice. Fortunately, we specified the value of £ib[2] directly, so the extra
computation is quick, just a simple matter of recalling the stored value. This is more
easily seen with the tree diagram shown in Figure 1.1.

f(3)

f(4)/ \
/ \}(2) / \}(1
f2/ \(1)

Fig. 1.1 Computation of the 5th Fibonacci number performed by the recursive [fib] function.

In total, from a single request, Mathematica has performed nine different compu-
tations (although five of these were simply looking up the specified initial values). If
now we were to ask for £ib[6], then our recursive function would calculate £ib[5] in
its entirety, as well as £ib[4] also in its entirety for a total of fifteen computations as
shown in Figure 1.2. For large Fibonacci numbers, this recursive method will perform
a staggering number of computations.

f(5)/f(6)\f(4)
SN N

f4) f@3) f3) f2)

/NN N

FACIR ()R ()N (C N () R A

/\

[r
Fig. 1.2 Computation of the 6th Fibonacci number performed by the recursive [fib] function.
This, however, turns out to be a small issue. We may have Mathematica remember

previous computations of a function, so that if we ask for that computation again,
Mathematica need only look up the answer from a table of remembered values, rather

1.2 Putting It Together 45

than performing the full computation. We do this, quite simply, by having an assignment
as part of the function definition.

In[268]:= fib[1] = fib[2] = 1;
fib[n_Integer /; n >0] :=£fib[n] = fib[n-1] +£fib[n - 2]

In[269]:= Array[fib, 20]
out[269]= {1,1,2,3,5,8,13,21, 34, 55,89, 144, 233,377,610, 987, 1597, 2584, 4181, 6765}

When we call the function, Mathematica will perform an assignment. This works be-
cause the function is defined with a delayed assignment, but the function itself computes
an immediate assignment. The net effect is that the first time the function is called for
any particular argument, it will compute the appropriate Fibonacci number, and store
the value in the same manner that we did with the initial conditions. This will greatly
improve computation performance, at the expense of some extra memory usage. We
show the tree diagram (Figure 1.3) for the computation of £ib[6] with this technique.
For this diagram, the left branch of any node represents the first computation. Once
a node is computed for the first time, the value is remembered, and it need not be
computed again.

f(6)
/N
f(5) f(4)
RN
f(4) f3)
/N
f3) f2)
RN
f2) f)

Fig. 1.3 Computations performed by the recursive [fib] function with stored results.

We may measure the time taken for a computation and thereby see the effect of
this growing number of computations. Mathematica provides a function called Timing
to measure computation time. The time is measured in seconds, and is a measure of
CPU time as opposed to actual elapsed time. The Documentation Center entry for this
function explains the specifics. We do not worry ourselves with the technical specifics
too much, and just consider this measurement as internally consistent and suitable as
a comparison tool.

We start by measuring the time taken to calculate single Fibonacci numbers. We've
already implemented the £ib function above as our faster (or so we claim) procedure,
for Fibonacci number computation. To see the difference in speed, we need something
to compare against. So we’ll re-implement the slower variant, but call it FIB so we can
test both variants together, and tell them apart.

In[270]:= FIB[1] = FIB[2] = 1;
FIB[n_Integer /; n > 0] :=FIB[n-]+FIB[n-2]

46 1 Number Theory

In[271]:= FIB[30] // Timing
out[271]= {1.36608, 832040}

The output should be interpreted as a list of time and result in that order. That is it
took a bit more than 1.3 seconds to compute 832040 as the output for FIB[30]. Note
that the execution time for a single command will always vary a little bit each time the
command is executed. The important thing is that the times are always very close, “in
the ballpark” if you like.

The 30th Fibonacci number was chosen because it took about a second to compute,
with the slow variant, on one of the authors computers. Anything smaller was a little too
quick to be useful for illustrating the concepts illustrated in this section. The reader,
when trying to replicate the above, might very well find that even this number is a
little too quick if they are using a computer that is faster than the author’s, which
is likely. Some trial and error may be needed to find a Fibonacci number that takes,
approximately, a second to calculate.

Let’s see how long it takes for the 31st—35th Fibonacci numbers to compute (indi-
vidually).

In[272]:= Table[FIB[k], {k, 31, 35}]
out[272]= { {2.22808, 1346269}, {3.57574, 2178309},
{5.85781, 3524578}, {9.56354, 5702887}, {15.3638, 9227465} }

That’s a bit of a mess to read. We extract out only the timing information using
the Cases function with a pattern that also includes a transformation rule using the ->
operator.

In[273]:= Cases[%, {time_,val_} -> time]
Out[273]= {2.22808, 3.57574,5.85781,9.56354, 15.3638 }

The pattern here should be read as any list of exactly two elements, which may each
be any expression and which we will name “time” and “val” respectively, and transform
this list into the expression “time.” In this case then the Cases function chooses the
elements that match the pattern, and constructs the list containing the transformation
of these elements.

We can see now that computing FIB[31] took more than half as long again as
FIB[30], and FIB[32] took more than twice the computation time of FIB[30]. What
is striking is that these times also exhibit a Fibonacci-like relationship.

time(FIB[32]) = time(FIB[30]) + time(FIB[31])
time(FIB[33]) ~ time(FIB[31]) + time(FIB[32])

This is in keeping with, and explained by, our earlier observations. The computation
for, say, FIB[32] would involve calculating both FIB[31] and FIB[30] in their entirety.
So it stands to reason that the computation times should sum in this Fibonacci-like
way. We should expect, then, that FIB[36] should take something in the vicinity of 24
seconds to compute.

In[274]:= FIB[36] // Timing
Out[274]= {25.4651,14930352}

1.2 Putting It Together 47

Let us look at the faster variant now. This variant only ever calculates a previous
Fibonacci number once, so if we calculate a Fibonacci number with it, then it will
calculate every previous Fibonacci number only once as part of the computation. We
should expect, then, that the speed should be roughly linear with the position of the
Fibonacci number to be computed. That is, if it takes, say, 1 second to calculate the
nth Fibonacci number, then we would expect around 2 seconds to calculate the (2n)th
Fibonacci number.

To begin with, we make sure to clear and re-define the old f£ib function just to make
sure we don’t have any previously remembered values that might effect our timings.

In[275]:= Clear [fib]
fib[1] = £fib[2] = 1;
fib[n_Integer /; n > 0] :=fib[n] = fib[n-1] +£fib[n - 2]

We can now safely perform our timings. In order to only see the timing information,
we use the replace all operator (/.) to reply a transformation rule to the output of the
Table function. The pattern is the same as we used above, but this time the replace-all
operator modifies the output from the Table function. The differences between /. and
Cases is that Cases constructs a new list consisting of only those elements in the old
list that match the pattern (either the elements themselves, or a transformation of those
elements), whereas the replace-all (/.) operator works on any expression, and leaves
any parts of that expression that do not match the pattern intact. In the case below,
our pattern matches every element of the list computed by the Table function, and so
there is no practical difference between /. and Table in this case.

In[276]:= Table[fib[k], {k, 31, 35}] /. {time_,val_} -> time
Out[276]= {0.000152, 5. x 107%, 5. x 1075, 6. x 107, 6. x 107}

The function is clearly an improvement, however, the above does not really give us
very much more information than that. Let’s try something bigger. However, by default
Mathematica will only perform so many recursive calls from a function. This limit is
controlled by the $RecursionLimit variable, and is 256 by default. This is set for safety
reasons, so we do not wish to change it lightly, but we may change it temporarily using
a Block, and this we do here. Note the semicolon suppressing the output of the £fib
function. This is the reason for the “Null” as the second element in the timing list. We
have done this because the 5000th Fibonacci number is, well, huge and the point of
what we're doing here is to see how long it takes to compute; a large number in the
output will just get in the way.

In[277]:= Block[{$RecursionLimit = Infinity}, £ib[5000]; // Timing]
Out[277]= {0.023104, Null}

That is exceptionally quick. Unfortunately, due of a limitation of this style of func-
tion, it is impractical to find a value that takes approximately a second to calculate.
Nonetheless, we can test our earlier expectation, that fs, should take approximately
twice as long as f,. In this case we expect £ib[10000] to take approximately 0.04
seconds.

In[278]:= Block[{$RecursionLimit = Infinity}, £ib[10000]; // Timing]

Out[278]= {0.025374, Null}

This is not quite what we expected. If we think a little, however, about the conse-
quences of remembering previous computations we should actually find the above result

48 1 Number Theory

is not so surprising. When we calculated £ib[5000], above, Mathematica saved, and
remembered, the values of the first 5000 Fibonacci numbers. So when we then went
on to calculate £ib[10000], the first 5000 Fibonacci numbers would not have needed
to be calculated again and so only 5000 more computations (£ib[5001]1-£ib[10 000])
needed to be performed, and so the computation times ought to have been similar,
which they were.

We perform two more computations in order to better support this idea. If the above
claim is correct, then we should expect that a second calculation of £ib[10000] should
take almost no time at all, and neither should a calculation of £ib[10001]. If the claim
is not correct, then £ib[10000] and £ib[10001] should both take similar amounts of
time to calculate as the previous computation (0.025 seconds).

In[279]:= £ib[10000]; // Timing
fib[10001]; // Timing

Out[279]= {8. x 1075 Null}
out[280]= {0.000018, Null}

It would be nice at this stage to clear and redefine the £ib function so as to compute
and time £ib[10000] to see if it took approximately 5 seconds as we might expect.
Unfortunately, it turns out that computing more than around 7000 recursions at once
causes Mathematica to silently fail on the author’s computer®. This means that it is
tricky to directly time the computation of £ib[10000], and we do not pursue it any
further here.

This technique of storing and recalling previous computations of a function is very
useful, but does make execution times less precise as we have seen. It is probably most
useful to think of the time taken worst case scenario (that no values have been previously
calculated and stored) as a baseline, with the idea that computations will often be better
than this. In the case we have been dealing with, the Fibonacci number calculator £ib
will, in the very worst case, only need to calculate each previous Fibonacci number
once. This is significantly better than the earlier attempts.

We close this section with a slightly surprising result. Later, in Section 1.3.3 we
look at the Fibonacci numbers again, and find a formula for calculating them. Some
readers may already know of this formula. Such a formula would allow a function to
perform only a single computation when computing any Fibonacci number. Contrast
this with our best approach so far which involves (in the worse case) n computations
when computing the nth Fibonacci number. It would seem reasonable to think that the
inbuilt Mathematica function for Fibonacci numbers would exploit this. However, when
we measure the time taken for each technique to compute the first 100,000 Fibonacci
numbers we see something perhaps a little surprising.

In[281]:= Clear [fib]
fib[1] = fib[2] =1;
fib[n_Integer /; n > 0] :=fib[n] = £fib[n-1] +£ib[n - 2]

In[282]:= Do[fib[k]l, {k, 1, 100000}] // Timing
Do[Fibonaccil[k], {k, 1, 100000}] // Timing

Out[282]= {0.739743, Null}

Out[283]= {6.52814, Null}

5 Specifically, Mathematica emits a quiet beep, and seems to completely forget the definition of fib.

1.3 Enough Code, Already. Show Me Some Math! 49

We have been very careful here to clear and redefine our functions so as to make
sure our measurements are not skewed by previously performed and remembered com-
putations. We have also been careful to apply the Timing function so as to time the
execution of the entire loop, and not each individual sub-computation. What we see is
that our £ib function is not only impressively fast, but is also drastically quicker than
the inbuilt function. Upon first seeing this, one of the authors was quite surprised, how-
ever, further thought has lessened this surprise a little. It is left as an exercise for the
reader to explore this. As a starting point, one thing to notice is that the £ib function
is exceptionally well suited to sequential computation of Fibonacci numbers—reducing
each subsequent computation to a single addition—but there may be other factors as
well. Be careful, however; storing too many previous values at once can cause system
slowdown in extreme cases.

In closing this section, we note that there are many other small and subtle com-
plexities to the detailed structures (loops, decisions and function) than we have been
able to cover. What has been covered is, however, a very good introduction and should
serve—along with the relevant exercises—as an excellent and solid starting point for the
readers’ own computations. Be sure to examine Mathematica’s Documentation Center
for more information.

1.3 Enough Code, Already. Show Me Some Math!

We have spent the previous two sections learning Mathematica code mostly for its own
sake. Even when we have tackled mathematical problems, we have done so to understand
or illustrate particular Mathematica language concepts. By now we hope to be, at the
very least, passably familiar with instructing Mathematica to perform calculations.

The point of using Mathematica, however, is to allow us to perform and explore
mathematics, not the other way around. So, from this section onwards we move the
emphasis away from Mathematica itself and onto mathematical concepts and problems.
Our Mathematica skills learned in the previous sections are used to explore the math-
ematics, and new Mathematica concepts, functions, and so on are introduced as they
are needed for the problems at hand.

To begin with, we should make sure that any previous assignments are cleared, in
order to avoid any unintentional conflicts. This is achieved with the following command.

In[284]:= ClearAll["Global *"]

1.3.1 Induction

In general, the work we do in Mathematica does not constitute a mathematical proof.

Mathematica is more a tool for exploring mathematics that will often lead to greater

understanding and perhaps the production of a proof by the usual (non-computer-

related) means. However, we may use it to perform some basic induction for us.
Recall the formula for the sum of the first n squares is

- ~nn+1)(2n+1)
Z T

50 1 Number Theory
Suppose we only want to add the first n even squares. It’s not hard to manipulate the
sum to an expression involving the above sum.

n

QM2:71M3:4 ”k2:2mn+1xmw+n
3
k=1 k=1

k=1

and we can certainly check Mathematica to see if it provides the same answer.
In[285]:= Sum[(2 k)"2, {k, 1, n}]
2
Out[285]= 3" (I4+n)(1+2n)

That is all well and good, but it’s not induction. How about we try the first n odd

squares:
n

> 2k - 1)?

k=1
We could follow the same approach as above, and expand the summand into a quadratic,
and apply the formulae we already know for Y ,_, k%, Y}_, k, and Y }_, C, respec-
tively, and indeed a good number of first-year students would probably prefer this to
induction. We do not do that this time, however. Instead we ask Mathematica what it
thinks the answer is, and verify it using induction (also within Mathematica).

To begin with, we set up a function to more easily reuse the calculations. Note that,
above, we were careful to use a small n, so as not to cause confusion with the function
N. We have previously gotten away with using capital ‘N’ because we have been able to
re-define its meaning thanks to Block and With functions. We did not have this luxury,
above, although the computation would still have worked OK, it was a better idea to
avoid the whole problem in the absence of an explicit redefine. We continue with this
choice in the function, below, even though the pattern N_ is, practically speaking, a
re-definition.

In[286]:= f[n_Integer /; n >0] :=Sum[(2k-1)"2, {k, 1, n}]
Now we see what Mathematica thinks the function should look like for arbitrary n.
In[286]:= expr = £ [n]

Out[286]= f[n]

We have been a little too smart for our own good, here. Our function has a pattern
to only match positive integers for our variable n. This seems reasonable enough, as we
are computing a finite sum, beginning with k¥ = 1. Unfortunately, this rule means we
cannot use our function to do any symbolic computations, which defeats the purpose
of what we are doing here. We need to re-define our function, and to be less strict on
the types of input. In fact, this time we will not apply any specific pattern at all.

In[287]:= Clear[f]
fln_] :=Sum[(2k-1)"2, {k, 1, n}]

In[287]:= expr = f [n]
Out[287)= % (—n + 4n®)

So now we have a candidate for a formula, which we have assigned the result to the
variable expr for future reference. We can be pretty confident that it is correct because

1.3 Enough Code, Already. Show Me Some Math! 51

Mathematica provided it, but it never hurts to check, especially since we don’t know
yet exactly how Mathematica’s Sum function handles an indefinite sum like that. This
we now do. First we begin with a basis case.

In[288]:= £[1] == expr /. n->1
Out[288]= True

Note here the use of the /. operator. We used this operator previously with the
Cases function, but we see here that it works perfectly well with other expressions. In
this case, we used it to substitute the value 1 for the expression n in the expression we
stored in the variable expr. Note that there is no pattern matching going on here, we’re
simply performing a replacement.

We're told that the equality is true, but we’re not really any the wiser as to why. It
is best to see the statement written out in its entirety before asking for an answer of
true or false, but doing so is often tricky with Mathematica. We circumvent this here
by computing a list consisting of the left hand side, and the right hand side of the
equality, but note that this particular example is easy enough that we could just verify
the equality by hand.

In[289]:= {f[1], expr /. n -> 1}
Out[289]= {1,1}

It is clear then from the Mathematica output that the formula is correct for the basis
case of N = 1.
Now we may complete the induction. Assuming that

Z(Qk —1)2 = % (4n® — n)

k=1
we want to show that
n+1 1
> @k 1) = 3 (4-(n+1)>—(n+1))
k=1

which we do by showing that

(i(%l)z) +(2-(n+1)71)2—é(4~(n+1)3—(n+1)):0

k=1
In[290]:= f[n] + (2% (n+1)-1)"2-(expr /. n->n+1)
Out[290]= % (—n+4n®) + (-14+2(1+n))* + é (1+n—4(1+n)*)
In[291]:= Simplify[%]
Out[291]= 0

And we’re done. We may not be sure how Mathematica handles an indefinite sum,
but we can be extremely confident with its ability to do basic algebra. If we want to
completely remove the question of the behavior of Mathematica’s Sum function out of
the equation—as it is technically in question here—we can do the same thing with expr
alone.

In[292]:= expr+ (2*x (n+1)-1)"2==(expr /. n->n+1)

52 1 Number Theory

outpe2]= — (—n+4n®) + (—=1+2(1+n))*> === (-1 —n+4(1+n)*)

w| =

In[293]:= Simplify[%]
Out[293]= True

Note that in this case we computed an equality, instead of a subtraction. The end
result is that our simplify returns True, instead of returning 0. Either technique is fine,
and it is often useful to know both. If Mathematica cannot provide a true or false
answer, it might be able to perform the arithmetic. Broadly speaking, the author (due,
mostly, to experiences with other languages) tends to trust Mathematica’s ability to
perform subtraction better than it’s ability to evaluate the truth of statements. As a
counterpoint, however, two expressions separated by an == might well be easier to read
and understand.

Getting back to the induction, we ought to advise caution here. It might be very
tempting to attempt to do our induction using something like the following.

In[294]:= f[N+1] ==expr /. n->n+1

Out[294]= % (—n+4n®) + (-1+2(1+n))? == % (-1 —n + 4(1 + n)*)

In[295]:= % /. (lhs_ == rhs_) -> (lhs-rhs) // Simplify
Out[295]= 0

Note the use of pattern matching and the /. operator to turn the equality into a
subtraction. Note also the that the Simplify command is applied to the entire result,
after the substitution is performed.

Although the above may be tempting, it is not induction because we have not used
the assumption that f(n) = cand in order to show that f(n + 1) has the required
form. All we have done in this case is verify that Mathematica’s Sum command produces
consistent output when given arguments of n and n+1. We have not proved the relation
using induction.

We do one more induction with Mathematica. This time we verify a well known one,
and because we won’t be explaining every step of the way, the process is much shorter.
We verify the formula

ikB ~ n?(n+1)>
=1 4

We can verify in our heads that the relation is true when N = 1 so we may eschew the
basis step in Mathematica, leaving us just the inductive step itself. We will construct
an equality statement, and trust Mathematica to give us a correct true or false answer.

In[296]:= With[{expr =n"2#* (n+1)"2/4]1}]
expr+(n+1)°3==(expr /. n->n+1)
]
Simplify[%]
Out[296]= i n?(1+n)*+ (1 +n)® == i (1+n)%(2+n)?

Out[297]= True

1.3 Enough Code, Already. Show Me Some Math! 53

1.3.2 Continued Fractions

Real numbers may, as we should already be aware, be expressed by decimals that
either terminate or continue (countably) infinitely. The latter category may be further
partitioned into recurring and nonrecurring infinite decimal representations. Rational
numbers may be written as terminating or recurring decimals, and irrational numbers
have only infinite nonrecurring decimal representations.

Another way to represent real numbers is with so-called continued fractions. A con-
tinued fraction is a, potentially infinite, fraction of the form

bo
ag + ——— where a;,b; € Z

b1
a1+7b
az—i-*2

However, for the purposes of this section, we concentrate on simple continued fractions,

where the b; are all 1

1
a0+

a _
1+ 1
as + —

often abbreviated to just [ag;aq,aq,...].

The procedure for calculating the continued fraction of a number is quite straight-
forward. Let z € R. We let £y = = and separate the integer part from the fractional
part. That is, we take ag = |20/,

1
x:ao—i—(:vo—ao):ao—&—f
=

We now invert the fractional part for 71 = (zg — ag) ™! and set a; = |21, yielding

1 1
a; + (z1 —aq) 1

T = ag+

Inverting the fractional part again we end up with xo = (z1 — a1)~! and repeat the
process.

We explore this idea in Mathematica with a terminating decimal x = 1.23456789. We
use the Floor function to extract the integer part The reader is encouraged to read the
help documentation regarding this function. Note that the Floor function corresponds
to | - | mathematically. That is |z] corresponds to the Mathematica command Floor [x]
(or, equivalently, x // Floor).

We are careful to make sure we use the rational representation of our number, rather
than the decimal representation, in order to allow Mathematica to keep the calculations
exact. Mathematica provides a function, Rationalize, to compute rational approxima-
tions of numbers, but unfortunately this function fails to produce the exact rational

54 1 Number Theory

that is equal to our z. It is simple enough in this case to see that x = 123456789/10%,
and to simply input this manually.

In[208]:= x[0] = 123456789 / 10"8
a[0] =x[0] // Floor

Ou29] 123 456 789
e 100000000
Out[299]= 1

In[300]:= x[1] =1/ (x[0] -a[0])
a[1] =x[1] // Floor

ouclzool. 100000000
ut3001= 3 156789
Out[301]= 4

In[302:= x[2] =1/ (x[1] -al1])
a[2] =x[2] // Floor

oulaga 23456789
w302 o saa
Out[303]= 3

Note that we are using something that looks very much like functional notation to
store these values. We have used x[0], x[1], and x[2] in Mathematica to refer to xg,
1, and xo, respectively. Similarly we have used a[0], a[1], and a[2] in Mathematica
to refer to ag, a1, and as, respectively. If we think of these in terms of the function rules
we saw above, we have a rule for arguments 0, 1, and 2, but nothing else. It is useful
in this case to think of these as a single variable with an index, instead of a function.
Practically speaking, either way of thinking about the notation is equivalent.

So we currently have ag = 1, a; = 4, and ay = 3 for our continued fraction. Next we
need to calculate 73 = (22 —3)~! so we can calculate ag = |23], and so on, and so forth.
Eventually, we hope, we will reach some n € N where z,, — a,, = 0, at which point we
must stop. We started off with a terminating decimal, therefore we should expect the
continued fraction also to terminate. So instead of tiring our fingers typing the same
two commands over and over again, we write a loop to finish the process for us.

In[304]:= Block[{i = 2},

While[x[i] -al[i]] !'=0,
i=1i+1;
x[il =1/ (x[i-1]-al[i-11);
ali] =x[i] // Floor;

1;

Table[al[k], {k, 0, i}]

]

out[304]= {1,4,3,1,3,1,13565,1,8,10}

Note that we did not know ahead of time how many times we would need to perform
this loop, so we could not specify an iterator for a Do loop. Instead we must used a While
loop, which meant we needed to manually create and manage the temporary variable,
i. Note also that we did not define either z, or ¢ within the Block, and so when we
used these variables, we used (and set) the non-temporary (i.e., global) variables which
we were using outside of the Block environment. This is explored a little more in
Exercise 77.

1.3 Enough Code, Already. Show Me Some Math! 55

We now have the continued fraction representation of 1.23456789 as

1

1+

4+
3+

1+

3+

1+ 1
13565-!-71
1+

1
8+ 0
or, more compactly, [1;4,3,1,3,1,13565,1,8,10]. For the remainder of this book we
only use this more compact notation when referring to continued fractions.

We pause here and talk briefly about the mysterious 13565 which appears in the
middle of this continued fraction. It perhaps seems a little incongruous sitting there
in the middle of a collection of predominantly single digit numbers. Or, at least, it
should look incongruous. Inasmuch as we’ve been working with rational numbers for
the calculations in question, we can be quite confident that it is not a mistake. However,
we should be aware that, in general, when we see such unexpected numbers pop up,
that we may have a sign of numeric roundoff error (or some other mistake), and should
be on our guard. Increasing the digit precision to see if the (apparent) anomaly persists
is a good first step. Computing the number from its continued faction is another good
step, and we shall do so quickly now.

In[305]:= 1+1/(4+1/(3+1/(1+1/(3+1/(1+1/(13565+1/(1+1/(8+1/10
)N

123456 789

100000 000

We started the above computation manually, then concluded it with a loop. A tidier

approach would be to have the whole thing encased within a Block, with all variables
being temporary. Such an approach would look like the following:

Out[305]=

In[306]:= Block[{n = 123456789 / 10°8, x, a, i = 0},
x[0] =n;
a[0] =x[0] // Floor;
While[x[i] -al[il] !=0,
i=1i+1;
x[il =1/ (x[i-1]-ali-1]1);
ali] =x[i] // Floor;
1;
Table[al[k], {k, 0, i}]
]

out[306]= {1,4,3,1,3,1,13565,1,8,10}

Note that we called the number n, instead of x; this is because we cannot use the
functional notation if x is assigned a value. Note also that because we defined x and a
locally to the Block this time, the functions within the block use the local versions of
the variables, not the global ones, leaving our previously defined x and a’s untouched.

56 1 Number Theory

Of course, because we performed exactly the same computation, they will, in this case,
hold the same values, but this is coincidence. Again, we explore this phenomenon in
Exercise 77.

As the reader might very well have come to expect by now, Mathematica has an
functions inbuilt for dealing with continued fractions. These are ContinuedFraction
for the conversion of a real or rational number to a continued fraction, as well as
WithContinuedFraction for computing a number from its continued fraction represen-
tation. These functions report, and accept as arguments, the list notation for continued
fractions. The author knows of no simple way to have Mathematica output the continued
fraction in its extended, rational form.5

In[307]:= ContinuedFraction[123456789/10°8]
Out[307]= {1,4,3,1,3,1,13565,1,8,10}
In[308]:= WithContinuedFraction[{1, 4, 3, 1, 3, 1, 13565, 1, 8, 10}]

123 456 789
100000000

Let us explore continued fractions with some irrational numbers now. We start with
the golden ratio ¢ = (1 + /5)/2.

Out[308]=

In[309]:= With[{phi = (1+8Sqrt[5]) /2}, ContinuedFraction[phi]]
Oout[309]= {1,{1}}

Well that’s interesting, we have not seen this notation before, but if we have a look
inside the Documentation Center for the details on the ContinuedFraction function, we
see that this the sub-list indicates an infinitely recurring pattern.” That is, the continued
fraction for phi is [1;1,1,1,1,...], or perhaps [1; 1] depending on our preference for
notation.

As it happens, being an irrational number, the continued fraction representa-
tion of ¢ is infinite, just as its decimal representation. However, unlike its decimal
representation—which exhibits no particularly discernible pattern—the continued frac-
tion representation does indeed exhibit a clear pattern. The pattern we have seen above
continues infinitely for a continued fraction representation that is all 1.

So why is this? Well, first notice that 2 < /5 < 3 because 4 < 5 < 9, and so
1 < ¢ < 2. This tells us straight away that the integer part of ¢ is 1. Subtracting this

yields
¢71_1+\/372_\/5—1
2 2 2

Inverting this we get

2 2 W41 2(WE+1) 145
Vi—-1 V6—-1 V5+1 4 -2

which is back where we started from. It should be clear from this then that ¢ — 1 =
1/¢ and that we can continue the continued fraction process begun above indefinitely
providing the continued fraction [1; i].

Finally, let us look at the continued fractions of some other irrationals.

¢

6 That is, no simple way that doesn’t involve writing ones own recursive function, and using the
HoldForm function, which is outside the scope of this book. The interested reader is encouraged to
pursue this themselves.

7 One needs to extend the “More Information” drop-down to find this detail.

1.3 Enough Code, Already. Show Me Some Math! 57

In[310]:= ContinuedFraction[Sqrt[2]]
ContinuedFraction[Sqrt[5]]
ContinuedFraction[E]

out[310]= {1,{2}}
out[311]= {2,{4}}

ContinuedFraction::noterms: e does not have a terminating or periodic continued fraction
expansion; specify an explicit number of terms to generate. »

Out[312]= ContinuedFraction[e]

It seems that e doesn’t have a nice pattern to its continued fraction representation,
and that the ContinuedFraction function needs to be told explicitly how many terms
to compute in this case. We'll try 20 as a large-ish round number.

In[313]:= ContinuedFraction[E, 20]
Out[313]= {2,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,1}

We now see that there was a nice pattern after all, but not a recurring one which could
be displayed using a sub-list. We should expect the next four terms of the continued
fraction to be 14, 1, 1, and 16. This is precisely what we see when we compute the extra
terms.

In[314]:= ContinuedFraction[E, 24]
Oout[314]= {2,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,1,14,1,1,16}

It should hopefully be apparent, then, that continued fractions may give more infor-
mation regarding the patterns behind a real number than its decimal expansion might.
When exploring an unknown number, we should look at both a decimal approxima-
tion, as well as its continued fraction. However, not all numbers have a nice continued
fraction representation, as we explore in Exercise 23.

1.3.3 Recurrence Relations

We should recall from Section 1.2.6 the Fibonacci numbers, and their formulation as
f(n)=f(n—1)+ f(n—2) where n € N and f(1) = f(2) = 1. This is an example of a
recurrence relation, a sequence where the value of each element is dependent on one or
more previous elements.

The requirement that n be natural is important here, because the recurrence relation
describes a sequence and not a function, even though we have used functional notation
so far. Recurrence relations are often written using the subscript notation more usu-
ally associated with a sequence, in which case the Fibonacci numbers are defined as a
sequence {fn}, cy Where f, = fn_1 + fn2 and f1 = fo = 1. However, due to the way
Mathematica handles recurrence relations, we continue to use the functional notation
instead of the subscript notation.

The order of a recurrence relation is how far back one must look in order to calculate
a term. The Fibonacci numbers are therefore of order two because one needs to know
the two previous terms in order to calculate any term. A recurrence relation may have
other properties, but for the sake of simplicity let us say that a constant coefficient,
linear, homogeneous recurrence relation of order k is a recurrence relation that has the
form

58 1 Number Theory

a(n)=c1-an—1)+ - +ck-aln—k)

where the ¢; are constants.

To begin we look at some first-order recurrence relations. In fact, we look in full
generality at first order linear recurrence relations with constant coefficients. Let a(n) =
¢1 - a(n — 1). This is the general form of a first-order linear homogeneous recurrence
relation. If we wish to know what the 100th term in the sequence was—provided, of
course that we know both the first term a(0), and the coefficient (c;), then we would
have to calculate the second term before we could calculate the third term and so on.
All in all we would have to perform 99 calculations. In fact, this is exactly what we have
had to do when we wrote loops and procedures to calculate the Fibonacci numbers in
Sections 1.2.2 and 1.2.4.

What we would ideally like is some formula or function of n that would always
calculate the nth term in the sequence. The act of finding such a formula is called
solving the recurrence relation. In the case of first-order relations, and especially first-
order linear homogeneous recurrence relations with constant coefficients, doing so is
quite straightforward. Observe that

a(0) =1 a(0) = (c1)” - a(0)
a(1) = ¢1 - a(0) = (c1)" - a(0)
a(2) = c1-a(l) =cr-(er-a(0)) = (c1)®-a(0)
a(3) = c1-a(2) = c1 - ((c1)? - a(0)) = (c1) - a(0)

and so on. The pattern here is quite clear.

a(n) = (c1)" - a(0)

We may easily now, if we wish, calculate the 100th element of the sequence as (¢1)%?-a(0).

A simple example of such a recurrence relation is a bank account that earns, say, 5%
compound interest both calculated and paid annually. If we let a(n) be the amount of
money at the end of n years, then a(0) is the initial deposit, and a(n) = 1.05 - a(0). If
we start with $5000 then we know, thanks to the analysis performed above, that after
5 years we will have (1.05)% - 5000 = $6381.41.

We can explore recurrence relations inside Mathematica, of course. Mathematica pro-
vides the RSolve command for solving recurrence relations. Happily, this function is
not limited to only linear, homogeneous, constant coefficient recurrence relations. Un-
fortunately, not all recurrence relations are solvable. Let us see what Mathematica says
about our earlier analysis.

In[315]:= RSolve[{al[n] == cl*a[n-1], a[0] == a0}, a[n], n]
out[315]= {{a[n] = a0cl™}}

Here we asked Mathematica to solve the recurrence relation a,, = ¢1 - a,—1 and asked
it to solve for a,,, but we did so using the mathematica functional notation. The answer
we received could be used as a replacement rule for a[n]. As we should have hoped,
Mathematica gave us the answer we already knew. That the answer is a list within a
list suggests the possibility that RSolve might sometimes provide us with more than
one solution.

Let us now, quickly, drop the constant coefficient condition, and see what happens.
For maximum generality, we assume that a function, f(n) say, multiplies the previous
term in the recurrence.

1.3 Enough Code, Already. Show Me Some Math! 59

In[316]:= RSolve[{aln] == f[n] *aln-1], a[0] == a0}, aln], nl]
—14n

Out[316]= {{a[n} — a0 H fIL+ K[l]]}}

K[1]=1

We may confirm the result using a very similar analysis to that performed for the
constant coefficient case. Note that K[1], from the above computation, is a temporary
summation variable. Its naming suggests that if there were more than one then they
might be named K[2], K[3], and so on. For the purposes of our analysis, we will just
call this variable k.

a(1) = f(1) a(0) = <H f(k)> a(0) = a(0) 1:[flk+1)
k=1 k=0

a(2) = f(2)a(l) = F2)f(1)a(0) = (H f(’f)) a(0) = a(0) 1:[flk+1)
k=1 k=0

3 3—1
a(3) = f(3)a(2) = f(3)f(2)f(1)a(0) = (f(/f)) a(0) = a(0) [T f(k+1)
1 k=0

k=

a(n) = f)f(n—1)--- f1)a(0) = (H f(k)> a(0) = a(0) T #(k+ 1)
k=1 k=0

Let us now look at second-order linear recurrence relations with constant coefficients.
Performing an analysis like the ones above that we performed for first-order recurrence
relations is of limited to no use with second-order relations. In short, there’s too much
going on to see a clear pattern. Fortunately there are some nice theorems that allow for
easy solution.

Given a second order linear, homogeneous recurrence relation with constant coeffi-
cients,

a(n)=c1-aln—1)+ca-a(n—2)

we construct the characteristic polynomial x? — cix — co and find the roots. Note that
the recurrence may be re-written as

a(n)—c1-an—1)4+c-a(n—2)=0

and so the transformation to the characteristic polynomial should be clearer now. Once
we have the roots rq, 7o of the characteristic polynomial, then the recurrence relation
has a formula depending on whether the roots are distinct. The general form of the
solution is
() . A-(Tl)"—l—B-(TQ)n if r1 £ 1o
o A-(r))"+n-B-(r)" ifr;=rg

where A and B are constants. If we know some initial conditions, then we may substitute
them into the general form of a(n) in order to calculate exactly what the constants A
and B are. What is interesting here is that the general form will always satisfy the
recurrence relation no matter the choice of constants.

Let us explore this with the Fibonacci numbers. The characteristic polynomial we
need to find the roots of is is 22 —z — 1. Using the quadratic formula z = (1/2a) - (—b=+

60 1 Number Theory

Vb2 — dac) we have x = 2(1 +v/5). So 71 = 2(1+ v/5), which is the golden ratio that
we looked at in Section 1.3.2, and ry = %(f) Turning to Mathematica now,

In[317]:= £[n_] := A* ((1+8qrt[5]) /2)"n+B* ((1-Sqrt[6])/2)"n

In[318]:= f[n] ==f[n-1] +f[n-2]

Out[318]— (; (1+ ﬁ))_nA + (1 (1- \/5))n B——
<1+2«/5) <1+f) .
) o)

In[319]:= Simplify[%]
Out[319]= True

That’s a bit of a mess, but the answer of “true” is promising. It’s probably illustrative
here to just look at the right hand side of the equality.

In[320]:= f[n-1] +f[n-2]

9 1—-n 9 2—n
owtsr (+22) " (1)

~24n
+ (; (1 - \/S)> '
In[321]:= Expand [%]
Out[321]= 227" (1 + \/3) T g gt (1 + \/5) T 4oz (1 - \/5>
+217 (1 V5) B
In[322]:= Simplify[%]
Out[322]= 27" ((1 + \/5)n A+ (1 - \/5>n B)

In[323]:= Expand [%]

Out[323]— G (1 +\/5)>HA+ <; (1 - \/5>>nB

We have verified that we get the formula for f(n) when we simplify f(n—1)+ f(n—2),
and that the choice of constants A and B does not matter.

In order to find the constants for the specific case of the Fibonacci numbers we could
plug f(1) =1 and f(2) =1 into our equation above and solve for A and B. Instead of
this, however, we just ask Mathematica to solve the recursion for us. We have already
defined the variable f, above, so we make sure to use a different variable name this
time.

—14+n

B+<;(1—\/5)> B

—24n

In[324]:= RSolve[{F[n] ==F[n-1] +F[n-2], F[1] ==F[2] == 1}, F[n], n]
Out[324]= {{F[n] — Fibonacci[n]}}

1.3 Enough Code, Already. Show Me Some Math! 61

Well, thankyou Captain Obvious! That wasn’t quite the answer we were perhaps
hoping for, although it’s perfectly correct. It seems we’ll have to use the Solve function
after all.

In[325]:= Solve[{f[1] == f[2] == 1}]

—-5—-+/5 B 1 }}

sa+ve) D Vs

In[326]:= Simplify[%]

Out[326]= {{A — %,B — —%}}

and so it would seem that A = (v/5)~! and B = —(v/5)"1.

Out[325]= {{A —

1.3.4 The Sieve of Eratosthenes

It would be hard to justify this chapter as being about number theory if we didn’t
mention prime numbers at some stage. Here we look at the problem of listing numbers
that are prime, and use a technique known to the ancient Greeks. In particular, it was
a man named Eratosthenes who is responsible for this technique.

Suppose we want to find all the prime numbers less than some number, 100 say. First
we write the numbers in a square (or rectangle) thusly

2345678910
111213141516 1718 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
717273747576 777879 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

We know that 1 is not prime, therefore we start by crossing it out. We now find the
first uncrossed number, 2 in this case. This number is prime and so no multiple of is
can be prime. So we go and cross out all the multiples of this number.

23456789 K
112131415 617 1819 20
21 27 23 2425 26 27 26 29 30
3137 33 3435 36 37 3839 4
41 47 43 44 45 46 AT 4849 B0
51 57 53 54 55 56 57 58 59 60
61 67 63 64 65 66 67 68 69 AT
TLPZ 737475 76 77 78 79 30
81 87 83 34 85 36 87 3889 9
91 97 93 94 95 96 97 98 99 160

Having done that, we find the next number along (after 2, which was our previous
number) which is not crossed out. In this case it’s 3. This number must be prime because

62 1 Number Theory

it is not a multiple of any prime number less than it, of which there was only one in
this case. We now cross out all multiples of 3. Note that some of the multiples of 3 are
already crossed out, because they were also multiples of 2.

2 3 5 7 9
11 1713 1115 1617 14 19
2 2723 2125 26 27 27 29
312738 2135 3637 25 39
41 17 43 1148 16 AT 14 49
51 57 53 5155 56 57 57 59
61 07 68 01 65 6 67 07 69
71 7773 B 6T A T9
81 57 83 5185 40 87 44 89
91 07 98 01 95 06 97 07 98

The next number that is not crossed out is 5, which must be prime because it is not
a multiple of any prime smaller than it. We repeat this process and eventually there
will be no new “next” uncrossed number, in which case we will have found all primes
less than or equal to 100 (our chosen upper bound for this example). This yields the
following final table.

2 3 5 7

11 1713 17 1519
23 29

31 37

41 17 43 47
93 59

61 67
717273 79
83 89

97

We can see then that our list of prime numbers less than 100 is
2,3,5,7,11,13,17,19,23,29, 31, 37,41, 43,47,53,59,61, 67,71, 73,79, 83,89, 97

When completing the previous example—and the reader is encouraged to do so by
hand—we find that once we have crossed off all the multiples of 7, then all multiples of
all later primes are already crossed off. In fact, this is a phenomenon that we always see
when performing the Eratosthenes’ sieve for any upper bound. The special property of
7 in our particular case, above, is that it is the largest prime less than or equal to /100.
In general, when using Eratosthenes sieve to find prime numbers less than or equal to
some bound, n say, we may always end the process when we’ve found all primes less
than or equal to y/n.

Recall from Section 1.2.3 that when finding the divisors of a number, n say, we need
only to check the numbers less than or equal to v/n. In a similar vein, when performing
the Eratosthenes’ sieve to find all primes less than n, when we find a prime, p say,
we then proceed to cross off any number for which p is a divisor. We have effectively
marked all numbers less than n that have p as a divisor. We only need a single divisor
to decide a number is not prime, and it follows from our observations in Section 1.2.3
that if a number has a divisor, then it has a divisor less than its square root. Finally,
the simple fact that

a<b = Va< Vb

1.3 Enough Code, Already. Show Me Some Math! 63

leads us to the conclusion that once we have crossed off all multiples of all primes less
than /n then we must have found a divisor for every number less than n, as long as
there was one to find in the first place. Anything not crossed out must, therefore, be
prime.

In our particular example, above, once we get past 10, we have crossed off every
multiple of every prime less than or equal to v/100 and so we must have found at least
one divisor for every number less than or equal to 100, as long as there was a divisor
to find. This is exactly the observation that led us to this line of inquiry.

Now we implement this technique in Mathematica. We make a procedure that we
will name eratosthenes that will return a list of all the primes less than some given
number, N, which must be a positive integer.

In order to represent in Mathematica the “crossing out” of numbers as we performed
in the sieve (above), we are going to perform set minus operations on this list with the
Complement function. In order to do this we will first create a list P that contains the
first IV integers. This process is very dependent on the upper bound being a positive
integer, there is no real scope here for symbolic computation, so we are particular about
the pattern matching for the argument.

In[327]:= eratosthenes[N_Integer /; N > 1] :=Block[

{P = Range[N] ~Complement~ {1}},

Dol
P =P ~Complement~ Table[m*n, {m, 2, N /n}],
{n, 2, Sqrt[N]1}
1;

P

]

In[327]:= eratosthenes[100]
out[327]= {2,3,5,7,11,13,17,19, 23,29, 31, 37,41, 43,47, 53,59, 61,67,71,73,79, 83,
89,97}

This function is relatively straightforward, if a little dense. We start with the list of
the first N positive integers (Range[N]), and remove 1 from that list. This is done in
the initialization of the list P within the Block. We then begin a loop with the variable
n beginning at 2 (which we know is the first prime), and continuing on until it is larger
than v/N. For each of these values of n we construct the table of all multiples m - n
such that 2 < m < N/n. Note that m must begin at 2 in order to avoid removing the
number itself from P, and we have chosen the upper bound of N/n because anything
larger will give us multiples of n which are larger than N.

The astute reader may have noticed that the eratosthenes function doesn’t quite
follow the Eratosthenes sieve procedure we described at the beginning of the chapter.
The difference is that the procedure as described removes only multiples of primes
from the set of numbers, whereas the function we wrote removes multiples of every
integer —primes and integers between 2 and /N, that is.

The function we wrote will still produce correct output, and it is left as an exercise
to the reader to verify this. The function we wrote is quite compact, and not too
troublesome to read, however it is performing more computations than it needs to, and
this might well mean that for large N it is slower than it needs to be. We will refine it
to be more in keeping with the sieve procedure as originally described.

In[328]:= eratosthenes[N_Integer /; N > 1] :=Block[
{P = Range[N] ~Complement~ {1}, p},

64 1 Number Theory

Dol

p=PI[[i]1];

P =P ~Complement~ Table[m*p, {m, 2, N/p}],

{i, 1, Sqrt[N]}

1
P

]

In[328]:= eratosthenes[100]
out[328]= {2,3,5,7,11,13,17,19, 23,29, 31, 37,41, 43,47, 53,59, 61,67,71,73,79, 83,
89,97 }

In this version, we have renamed the loop variable to be i, and it begins counting
from 1 instead of from 2. We have also added a new temporary variable, p, which is set
to the ith element of the list P. In particular, this means that p is first set to be the
number 2 (i.e., the first element of P). Recall that once we remove all the multiples of
2, then the next uncrossed number must be the next prime (3), therefore once we have
removed the multiples of 2 in our function, the 2nd element of the list P must be the
next prime, 3. This is true for each prime, p, and so at each iteration of our loop, the
ith element of the list will be the ith prime number.

In short, we have modified our function so that it only removes multiples of primes.
Unfortunately, we still haven’t quite precisely implemented the Eratosthenes sieve. Ac-
cording to our earlier description, we keep crossing out multiples of primes, until we run
out of primes smaller than v/N. Our function as it is currently implemented, however,
crosses out multiples of the first v/N primes it finds. It should be clear that for any
M € N there are less than M primes. So it is hopefully clear that we are crossing out
more primes than we need to.

The reader may consider this a negligible difference, and ignore it. Indeed, the reader
may even consider the previous refinement unnecessary. We are certainly trading ele-
gance and readability for efficiency. Nonetheless, we will correct this last difference here,
just to have a “proper” implementation if for no other reason. The interested reader is
encouraged to apply the timing techniques introduced in Section 1.2.7 to these three
sieve variants to see just how much difference there is. The use of large integer arguments
is recommended for this purpose.

In[329]:= eratosthenes[N_Integer /; N > 1] :=Block[
{P = Range[N] ~Complement~ {1}, p},
Dol
p=P[[i]];
If[p > Sqrt[N], Break];
P =P ~Complement~ Table[m*p, {m, p, N/p}],
{i, 1, Sqrt[N]}
1;
P
]

In[329]:= eratosthenes[100]
out[329]= {2,3,5,7,11,13,17,19, 23,29, 31, 37,41, 43,47, 53,59, 61,67,71,73,79, 83,
89,97}

This variant is almost identical to the prior one. The difference is that we have added
the line If [p > Sqrt[N], Break]. The Break function will stop the processing of a loop

1.3 Enough Code, Already. Show Me Some Math! 65

(either a Do, While, or For function). In this case, if we find that our prime p is greater
than v/N then we stop processing the Do loop immediately.

We have made an additional refinement, as it happens. Previously, when we con-
structed our list of multiples of a prime p, we would start at 2p, and compute as high
as [(N/p) - p|. However, any multiple of p less than p? will have already been crossed
out in previous iterations; 2p, 4p, etc will have been crossed out with the multiples of 2,
similarly 3p, 6p, etc will have been crossed out with the multiples of 3, and so on and
so forth. As such, when constructing these sets of multiples, we need only construct the
multiples beginning at p?, and this is what the most recent variant does.

We now use this latest variant to compute the primes less than 1000.

In[330]:= eratosthenes[1000]

Out[330]= {2,3,5,7,11,13,17,19,23,29, 31, 37,41,43,47,53,59,61,67,71,73,79, 83,
89,97,101,103,107,109, 113,127,131, 137,139, 149, 151, 157, 163, 167, 173,
179,181,191,193,197,199, 2, 223, 227,229, 233, 239, 241, 251, 257, 263, 269,
271,277,281, 283,293, 307,311, 313, 317, 331, 337, 347, 349, 353, 359, 367,
373,379, 383, 389, 397,401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461,
463,467,479,487,491,499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571,
577,587,593, 599,601, 607,613,617,619, 631, 641, 643,647,653, 659, 661,
673,677,683,691, 701,709, 719,727,733, 739,743, 751, 757,761, 769, 773,
787,797,809, 811,821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883,
887,907,911,919, 929,937,941, 947, 953,967,971, 977,983,991, 997 }

Generating prime numbers is actually a fairly computationally intensive task. The
sieve of Eratosthenes is quite interesting in its own right, and is reasonably efficient
for such a simple algorithm. However, for primes larger than 10,000 it starts to get
noticeably slow. Of course, as we should have well and truly come to expect by now,
Mathematica provides inbuilt functions for finding primes, as well as testing primality.
The big advantage to the inbuilt functions is that they perform all sorts of tricks to
keep the execution times remarkably quick.

These functions are Prime which calculates the kth prime number, NextPrime which

calculates the kth prime number after (or before if k is negative) a given number, and
finally PrimeQ which gives a true or false answer as to whether a given number is prime.

In[331]:= Prime[5]
NextPrime [5]
NextPrime [6]
NextPrime[5, 2]
NextPrime[5, -1]

PrimeQ[5]

PrimeQ[4]
Out[331]= 11
Out[332]= 7
Out[333]= 7
Out[334]= 11

Out[335]= 3

66 1 Number Theory

Out[336]= True
Out[337]= False

The reader is encouraged to look these functions up in the Documentation Center.

1.4 Problems and Exercises 67

1.4 Problems and Exercises

1. Enter the following expressions into Mathematica

a 1 c. 24zx—-1
: 2

22 42 +1
b. e 21

Perform the following calculations in Mathematica. Obtain a decimal approximation
as well as simplified exact values.

(3T 12! + 23
e. sin 5 g. —3
15 81n2()
. 2
Ly h. 22

2. We now explore Mathematica’s digit precision for decimal approximations. Enter
the following commands into Mathematica and explain how the precision has been
modified. Try some entries of your own if you are still unsure, or to test your

explanation.

a. N[Pi] d. N[E, 25]
b. N[E] e. N[Pi, 35]
c. N[Pi, 20] f. N[E, 30]

Obtain numeric approximations of the following expressions, to the indicated digit
precision

g. w2 to 10 significant figures
h. sin(1) to 10 significant figures
i. €™ to 15 significant figures
j. log(m) to 22 significant figures

3. This exercise shows two cautionary scenarios.

a. Some variables in Mathematica are protected, which means their values cannot
be changed. Enter the following into Mathematica.
i. Sin=E"2
ii. Log=x"2+3x-2
iii. Sum= (x+1)/(2x-2)
Why might these names be protected?
b. We look at why caution should be taken when using the % operator. Follow the
instructions below.
i. Enter the following Mathematica commands. Make sure to keep each entry
as a separate input.
o (x+y)°3
e Expand[%]
oW/ . y—>1
ii. Edit the first command to instead read (x+y)~3. Be sure to remember to
hit shift-enter to perform the new calculation
iii. Go back to the third calculation and press shift-enter. What happened?

68

1 Number Theory

. We have seen the Table function used to create lists with particular patterns.

We mentioned, briefly, the existence of the Array function. Enter the following
commands, and explain how the Array function works. Try some entries of your
own if you are still unsure, or to test your explanation. Confirm your guess with
Mathematica’s Documentation Center.

a. Array[Exp, 10] c. Array[Sin, 5]
b. Array[Exp, 5, 0] d. Array[Sin, 6,4]

We briefly look now at the notion of a pure function. These are functions which
may be given as arguments to functions without the need to be defined beforehand.
Enter the following commands, and take a guess at the format of a pure function.
Verify your guess by looking up pure functions in the Documentation Center.

e. Array[1/# &, 7] g. Array[Subscript["a", #] &, 4, 3]
f. Array[#°2 &, 7, 4] h. Array[# &, 3, 3]

Mathematica’s iterator notation (such as we have seen with the Table function) is
capable of describing indices which increases by more than 1 at each step, or even
where the index variable takes on arbitrary values entirely. Enter the following into
Mathematica and explain what is happening. Note that the index variable can be
any valid variable.

a. Table[i, {i, 1, 10, 3}]

b. Table[a"2-a-1, {a, 1, 10, 2}]

c. Table[2/n, {n,{2, 3, 5, 7, 11, 12}}]
d. Table[fib~2, {fib,{1, 1, 2, 3, 5, 8}}]

Now produce the following sequences using the Table function, and the ideas above.

e. 9,25,49,81 g r11 11

Note that inasmuch as the Array function does not take an iterator as an argument,
these techniques can be used with the Array function; see Exercise 4.

For lists and sequences—and many other Mathematica constructs that use natural
indices—indexing may be performed by using a negative index that begins counting
from the end, instead of the beginning. To illustrate this, create in Mathematica a
list L={1, 2, 3,4,5,6,7, 8,9, 10}, and issue the following commands.

a. L[[-1]] d. LL[-7 ;; -5]]
b. LL[-3]] e. L[[-4;;]1]
c. L[[-4;; -2]] f. LLL;; -6]1]

Which of the following commands do you expect to fail? Enter them into Mathe-
matica and see if you were correct. Explain why the failures occurred.

g. LI[-1;; -3]] i. LI[4;; -7]1]
h. L[[3;; -3]] j. LLL-7 ;; 211

Hint: Try to change the negative index into the usual positive index.
Enter the following commands into Mathematica. For the purposes of these com-
mands L ={x, y, z, x, y}.

1.4 Problems and Exercises 69

10.

a. Length[{1, 2, 3, 4, 5}] c. Length[L]
b. Count[{1, 2, 3, 4, 5}, 3] d. Count[L, x]

Now change L to be L = {{1, 2}, {2, 3}, {3, 4}} and consider the following.

e. Length[L]
f. Count[L, 3]
g. Count[L, {1, 2}]

What does it look like the Length, and Count functions are doing? Finally, redefine
Ltobel={{1, 2}, {3, 4}, 5, 2, {1, 2}} and calculate the following. You should
be able to verify the answers by eye.

h. The number of occurrences of the element [1,2] in the list L.
i. The number of occurrences of the element 5 in the list L.
j. The number of occurrences of the element x in the list L.
k. The number of occurrences of the element [y, z] in the list L.

Can you get the Count function to count all occurrences of the number 2 in the list,
regardless of how deeply embedded they are in sublists? (The answer is 3).

Create a list containing the first 1000 digits of 7, and count the number of times
each digit occurs.

Hint: You will need to either find a function to extract digits from a number, or to
write one yourself.

Calculate the following sums and products.

100 1 oo 1
a. Z 5 C. ZO E
i=1 n=
6 . e 4]{}2
n=1 k=1

The following should look familiar from first-year calculus.

e}
T
2 n

k:O

2n n 2n+1

fZ 2n+

Convert the following sums to sigma notation, and then use that to implement them
using the Sum command.

g 1+8+274---+n?

1

h. 14-+- =

totgte +2$
T3 35 5T (2k — 1)(2k + 1)

Use Mathematica’s Sum command to explore the binomial formula. Recall that the
binomial theorem states that

n __ - n n—=k,_ k n _ n!
(x +v) —I;)(k)m y", where (k) DI

You should also use Mathematica’s help to find a built-in function that will calculate
the binomial coefficients (7).

70

11.

12.

1 Number Theory

a. Create a function, f say, that expands (x + y)".

b. Create another function, g say, that uses Mathematica’s Sum command to eval-
uate the sum in the binomial formula.

c. Choose some values for n and check that f(n) = g(n).

d. Ask Mathematica to evaluate f(N). To what does it evaluate?

Perform these tasks twice: once using Mathematica’s built-in function for binomial
coeflicients and once using the formula for the coefficients.
We explore the following relationship between infinite sums and infinite products.

log (H f(k)> = log(f(k))
k=a k=a

. = T
a. Find the value of the product: kl:[gcos<k>
b. Why did this product need to begin at k = 37
. Find the value of th log (cos(7))
c. Fin e value o ebumZog cos| -

d. Verify that the relationship for the above values.
e. Can you justify the relationship in general?

Hint: Recall that Y p- f(k) = lim, oo (35—, f(k)), and similarly for products.
An arithmetic sequence is a sequence where each term differs from the previous
term by a fixed amount. This “fixed amount” is called the common difference of the
sequence. For example,

a=1{1,2,3,4,...}, b=1{1,3,5,7,...}, and ¢={1,4,7,10,...}
are arithmetic sequences with a common difference of 1, 2, and 3, respectively.

a. Determine a formula for the nth element of an arbitrary arithmetic sequence
starting at 1, with common difference d.

b. Write functions that will calculate the first n terms in the arithmetic sequences
a,b, and ¢ (above).
Hint: Use part (a) in combination with a Table command.

Arithmetic sequences may have any first element, but those beginning at 1 generate
the so-called polygonal numbers. The sequence a generates the triangular numbers;
the nth triangular number is the sum of the first n terms in the arithmetic progres-

sion a (above). That is,
N (o)
T .= {Z ak}
k=1 N=1

Similarly the nth square number is the sum of the first n terms in the arithmetic
progression b and the nth pentagonal number is the sum of the first n terms in the
arithmetic sequence c.

Note: The square numbers are precisely the numbers that are perfect squares.

c. Write functions that will calculate the nth triangular, square, and pentagonal
numbers.

d. Repeat (b) and (c) for the hexagonal numbers. (You will need to extrapolate
which arithmetic sequence generates the hexagonal numbers).

1.4 Problems and Exercises 71

13.

14.

If we wish to apply a function to every item in a list, Mathematica provides a
function named Map, with a corresponding map operator, /@. Enter the following
commands, and read the entry on the Map function in Mathematica’s Documentation
Center.

a. Map[Exp, {1, 2, 3, 4, 5}] b. Sin /@ {Pi/2, Pi, 3Pi/2, 2Pi}

The following use the Block so as to avoid permanently defining the function f£.
Enter the following.

c. Block[{f}, d. Block[{f},
flx] :=x"2; flx] :=x/2;
Map[f, {0, 2, 4, 6, 8}] f/e{0,1/2,1,3/2, 2}
]]

Recall pure functions from Exercise 4. Enter the following.

e. With[{L = {2, Pi, E, Log[Pil}}, f. With[{C =Tablel[k+1I], {k, 1, 10}},
Map[1/# &, L] (Abs[#] &) /@ C
]]

Create a list P that contains the first five prime numbers [2,3,5,7, 11]. Use Map or
/@ as you choose, combined with the list P to create the following lists.

g {3,4,6,8,12}
h. {5,10,26,50,122}
i. {In(27),In(37),In(57),In(7x),In(117)}

Just as with the Table (see Exercise 5) Mathematica Do loops are capable of using
the same iterator notation to cause their counter increase by more than 1 at each
step, or even have the counter take on arbitrary values entirely from a list. Enter
the following into Mathematica and explain what is happening.

a. Do[c. Do[
i*2 // Print, 2/n// Print,
{i, 1, 10, 3} {n,{2, 3,5, 7, 11, 12}}
]]
b. Dol d. Dol
a*“2-a-1//Print, fib~2 // Print,
{a, 1, 10, 2} {fib,{1, 1, 2, 3, 5, 8}}
]]

Loops in Mathematica may also continue indefinitely until some criterion is met.
This is achieved with the While and For functions. Examine the documentation
on the While and For functions from the Documentation Center, then enter the
following, and explain what the loop is doing.

e. Block[{i =1}, f. Block[{N =1},
While[i~2 < 1000, While[N~"3 < 10000,
i // Print; {N, N°3, N"3-N"2} // Print;
i=1i+1; N=N+2;
]]

]]

72

15.

16.

17.

18.

19.

20.

21.

1 Number Theory

Create loops to calculate the following.
g. Decimal approximations of e, €, e!! and so on where the power of e is less than

100.

h. Decimal approximations of I, g, %, ;, %

i. The Fibonacci numbers less than 1200.
Note: Recall from Section 1.3.3 that the nth Fibonacci number can be calculated
using the Fibonacci function.
Write functions to perform the following. Your functions may have two or more
input variables with an appropriate pattern to match. For example £ [x_, y_1 would
define a function accepting two arguments which may each be any expression, with
the first one named x and the second one named y.

a. Add all multiples of 5 and 7 less than an arbitrary number.
b. Generate a sequence using the Fibonacci equation, but from an arbitrary pair
of initial conditions.

Be sure to test your functions with small cases that you can verify by hand.
Use nesting to perform the following.

a. Print out the first 5 rows of Pascal’s triangle.
b. Create a function or procedure that prints out the first NV rows of Pascal’s
triangle

Hint: Try asking Mathematica what it knows about Pascal’s triangle. You might
need to not use punctuation. Also recall that Exercise 10 dealt with the binomial
formula, which is related to Pascal’s triangle.

Implement the numeric partial sums for the functions in Section 1.2.2 using NSum,
as well as the method already used. Compare execution times between the two
methods.

Write a function to compute the nthFibonacci number using a loop, instead of using
recursion. Measure the time it takes this function to compute successive Fibonacci
numbers, in a manner like that performed in Section 1.2.7. Find a Fibonacci number
that takes approximately thirty seconds to compute.

One should be careful when using the % operator for creating functions. Enter the
following into Mathematica.

a. Sum[k, {k, 1, n}] b. Sum([k, {k, 1, n}]
fln 1 :=9% f[n_] :=Evaluatel[%]
"fr[2] == £[2] "fr[2] == £[2]

What appears to have happened here?
Recall the definition of an arithmetic sequences and polygonal numbers from Exer-
cise 12. Using the Sum function, find a formula for

a. An arbitrary polygonal number, that is, the sum of the first n terms of an
arbitrary arithmetic sequence beginning at 1 with common difference d

b. The sum of the first n terms of an arbitrary arithmetic sequence beginning at
a with common difference d

Use induction to prove these formulae.

Perform the manual calculation of the continued fraction of 1.23456789 (the one
involving the Do loop) from Section 1.3.2 without starting with a rational number.
What happens? Why do you think this is happening?

1.4 Problems and Exercises 73

22.

23.

24.

25.

26.

27.

WARNING: Save your worksheet before attempting this. You will probably want
to use the “stop sign” icon to cancel computations, when things seem to be going
on for too long.

Use the ContinuedFraction function to change the following continued fractions
into rational numbers.

a. {1,2} c. {1,1,1,2}
b. {1,1,2} d. {1,1,1,1,2}

Do you notice an interesting pattern with these examples? Formulate a conjecture
regarding this pattern of continued fractions and the rational numbers they are
equal to, and test your conjecture.

Hint: This behavior is related to the Fibonacci numbers and their relation to the
golden ratio.

Have Mathematica calculate the continued fractions for the following numbers.

a. V2 b. (v/2)3 c. m

Can you see any pattern? Be sure to try several computations, computing different
amounts of quotients each time.
What is the solution to the general first order recurrence relation

a(n) = f(n)a(n — 1)

where p > 1 is a positive power?

Test this answer by picking some simple functions f(n) (polynomials are recom-
mended) and powers of p and seeing if the first however-many terms in the sequences
agree when you calculate the terms both using recursion, and the formula given by
RSolve.

Find general solutions to the following recurrence relations. Verify the solutions.

a. a(n) =5a(n —1) — 6a(n — 2)
b. s(n) =2s(n —2)

Now find the solutions to the following recurrence relations with initial values.
Test the solutions both by testing that the formula satisfies the recurrence, and by
having Mathematica calculate the first 10 or 20 terms of the sequence from both
the recurrence and the solution.

c. f(n)=/fn—1)+2f(n—2) where f(0)=1, f(1) = -2
d. a(n) =a(n —1)-a(n — 2)? where a(0) = 2,a(1) =3

Find a formula for the number of ways to climb a flight of steps of height n if 1 or
2 steps may be taken at a time.

Hint: Formulate the problem as a recurrence relation.

Use the techniques from Exercise 1.2.7 to measure the time taken for the sieve of
Eratosthenes from Section 1.3.4

a. Measure the time taken to calculate the first 10,000, 20, 000, 30,000, and so on
up to the first 90, 000 primes. Use this information to estimate the time required
to calculate the first 100,000 primes.

b. Remove the part of the procedure that collects the primes into a list. Repeat
the previous part with this modified procedure.

74

1 Number Theory

c. Attempt to modify the procedure to more efficiently collate the primes into a
list or sequence.

Produce the same lists of primes using Mathematica’s Table function and the inbuilt
prime number functions, and measure how much time these take. Were these quicker
or slower than the Eratosthenes’ sieve procedure?

1.5 Further Explorations

This section presents open ended problems for the interested reader. The idea is to
introduce mathematics that may be explored with no real constraints. Each topic may
ask specific questions, or state particular calculations to be performed, however, these
should be considered to be a beginning to exploration, and not an exhaustive set of steps
to be performed. It is expected and encouraged that one explore these topics using one’s
own means.

1.

The field of rational numbers may be extended to incorporate irrational numbers
in a way similar to the way in which the real numbers are extended to the complex
numbers. If R is the solution of the equation x? = 2, then it must be that R? = 2,
and we know that R must be an irrational number.

If we include our new number R into the rationals (i.e., consider @' = QU {R})
then our new set Q" will no longer be a field. In particular, what is 1 + R? In order
to have a field, we need to add every rational multiple of R as well as addition of
every rational number with every multiple of R.

We end up with what is known as a field extension

Q(R) :={a+bR|a,be Q}
with the operations

a+bR+c+dR=(a+c)+ (b+d)R
(a+bR)(c+ dR) = ac + (ad + bc)R + bdR? = (ac + 2bd) + (ad + bc)R

where a,b,c,d € Q.

Mathematica allows exploration of these ideas with a group of functions, includ-
ing the AlgebraicNumber and Root functions. The particulars are detailed in the
Documentation Center page named “Algebraic Number Fields”.

. The 3n+1 Problem. This problem has many other names: Collatz’s problem, the

Syracuse problem, Kakutani’s problem, Hase’s algorithm, and Ulam’s problem.
We begin with the following simple algorithm that we apply recursively, starting
with an arbitrary natural number, n say.

e If n is even then halve it.
e If n is odd then multiply it by 3 and then add 1.

We continue this process with each new number obtained until we end up at 1.
The actual problem is does this procedure always terminate? An equivalent formu-
lation of the problem is, if we think of the numbers produced as an infinite sequence,
does the sequence always end with a repetition of the subsequence 4, 2,17

For example, if we start with the number 13, then we get

1.5 Further Explorations 75
13-+40—-20-10—-5—-16—-8—=4—-2—1
or, equivalently, the infinite sequence
{13,40,20,10,5,16,8,4,2,1,4,2,1,...}

For some starting values it will take a large number of steps, and on the way very
large numbers might be encountered before the sequence finally begins to drop back
to 1. Such sequences are sometimes called hailstone or juggler sequences.
Implement this algorithm in Mathematica. See what happens when you start with
7 (you can even check this particular one without the help of Mathematica). Then
try some other starting values. The sequence starting at 27 takes one hundred and
eleven steps to reach 1. You might experiment with the rule a little: for example,
what happens if you change the 3 to a 5, thus making a “5m + 1”7 rule?

You should ask yourself how (i.e., under what circumstances) the system could
possibly fail to terminate. For this to happen there must be a starting value that
either diverges or settles into an infinite loop (other than 4,2, 1).

3. A real number is said to be normal if its numeric expansion in any base has a
normal distribution. This is to say that each single digit is equally likely to appear,
as is each pair of digits, each triple of digits, and so on. There are not many known
normal numbers, and none are known that were not constructed to be normal in
the first place. It has been conjectured, however, that the number 7 is normal.

We may obtain a “feel” for whether a number may be normal by counting its digits.
If we count, say, 100 digits of a number, and find that there are, give or take, 10
of each digit then it’s possible the number is normal. If we find this general idea
holds for 1000, and even 10,000 digits (with approximately 100 or 1000 of each
digit, respectively) the hypothesis looks even stronger. We could carry on and then
count each pair of digits and see if there’s roughly an even number of those. We
could continue in this fashion, and even perform the same sort of analysis using a
different base.

Note that a number may be normally distributed in a particular base representation,
but not be a normal number. Such a number, if normally distributed in base b is
said to be b-normal.

Some good numbers to begin looking at for possible normality are

1+v5 [1+45

5 5 ., e log2, V2

Generate 100, 1000, and 10000 decimal digits of these numbers (more, if you wish),
and count the digits, and pairs of digits. If you're feeling adventurous try triples
and even quadruples.

Try with another base, binary say. You’ll need to ask yourself, with what probability
should each binary digit occur for normal distribution. With what probability should
each double (as well as triple or quadruple if you test those) occur?

There is a similar analysis that can be performed on the continued fraction of a real
number. The Gauss—Kuz'min distribution states that the probability that a, = k
(in the continued fraction expansion [a1, asg, .. .| of a random real number) is

Prob(a,, = k) = log, {1 - (]Hll)z}

76

1 Number Theory

In other words, approximately 42% of numbers in a continued fraction expansion
will be 1, approximately 17% will be 2, around 9.4% will be 3, and so on. Note
that because this is a continued fraction expansion, then it is possible for numbers
greater than 9 to be in the expansion; in fact any natural number may be included
(you should find that the infinite sum of these probabilities is equal to 1 as you
would expect). As such, the distribution also tells us that approximately 1.4% of
numbers in the expansion will be 10, 0.55% will be 50, and 0.14% will be 100.

Chapter 2
Calculus

In this chapter we explore calculus with the help of Mathematica. Much of what is seen
in this chapter should be familiar (or at least recognized) from first-year study. We
aim to revise this material, as well as visualize it in ways that are, one hopes, easily
accessible and in addition provide new insight even to the more capable reader. We also
attempt to introduce some newer (or, at least, less familiar) material. In all cases here
the aim is to use Mathematica to complement and improve our own calculus skills; the
goal is one of a human/machine collaboration, not that of an electronic replacement for
calculus skills.

2.1 Revision and Introduction

In this section we introduce the Mathematica commands best suited for studying and
performing calculus. In addition we recall key concepts from typical first-year calcu-
lus courses. It is, however, expected that the reader is familiar with the underlying
concepts and is able to perform such first-year calculus including (but not limited to)
differentiation and integration of single variable functions, evaluation of limits, and
curve sketching, among others. The reader is encouraged to review his or her favorite
(or most readily available) calculus text.

2.1.1 Plotting

In much first-year calculus the ability to be able to visualize the functions and concepts
being studied is quite valuable, but usually not readily available. Indeed in almost
anything involving calculus visualization is a powerful tool. So we begin this calculus
chapter by looking at how to have Mathematica plot functions.

Briefly in Section 1.1.2 we saw a plot of a cubic. The Mathematica command to plot
a function is, unsurprisingly, Plot. The most basic use of the Plot function is to simply
give it an expression involving a single variable, usually x but any valid Mathematica
variable name will work just as well, and an iterator to specify the bounds of this
variable.

In[1]:= Plot[x"2, {x, -10, 10}]

J.M. Borwein and M.P. Skerritt, An Introduction to Modern Mathematical Computing: With Mathematica®, 77
Springer Undergraduate Texts in Mathematics and Technology, DOI 10.1007/978-1-4614-4253-0 2,
© Springer Science+Business Media, LLC 2012

78 2 Calculus

Out[1]= —‘10‘ T 5 10

Mathematica automatically assigns the horizontal axis to be the axis for the indepen-
dent variable (z in the previous example) but does not label it by default. The vertical
axis is also unlabeled, but depicts—as it always does—the values of the function (or
the dependent variable).

In[2J:= Plot[Sin[t], {t, 0, 2Pi}]

1.0F

0.5+

-0.5

Out[2]= -tof

Notice the vertical axis in these two examples. The values of the vertical axis auto-
matically adjust to suit the function we are trying to plot. For the parabola the vertical
axis was between 0 and 100, corresponding to the values the parabola would have for
—10 < z < 10, and the sine curve used vertical range (—1,1) just as we would have
hoped it did. It should be interesting to note that the actual screen space taken up by
the two plots is the same in both cases, showing that the vertical scale is different in
both cases. In fact, the vertical scale and horizontal scale may be different even in the
same plot, as is the case in both of these examples.

This automatic axis adjustment is actually a bit more clever than simply making
sure that the vertical range corresponds exactly to the maximum and minimum values
of the expression being plotted. For example, consider the following plot of the tan
function between its asymptotes.

In[3]:= Plot[Tan[theta], {theta, -Pi /2, Pi/2}]

2.1 Revision and Introduction 79

Out[3]=

Mathematicahas limited the vertical range to (—6,6), although we should know that
tan(#) approaches infinity as 8 increases toward /2. If we look carefully, we can see that
the graph is only drawn for the horizontal range (—1.4,1.4), even though we specified
that the plot should be in the range (—7/2,7/2). By and large, Mathematicatends to
be pretty smart with its plot ranges.

If, for some reason, we really did want the vertical range to correspond exactly
to the maximum and minimum values of the expression being plotted, we may add
PlotRange -> Full as an argument to the Plot function. This argument can be thought
of as a plot option. There are many such options, and their order as function arguments
does not matter, so long as they appear after the iterator.

In[4]:= Plot[Tan[thetal, {theta, -Pi/2, Pi/ 2}, PlotRange -> Full]

1.5x107
10x10” F

5.0 10“}

S S S R N PR
15 -1.0 -0.5 [0.5 1.0 15

—5.0% 100

-1.0x 107 [~

Out[4]= —1sx107F

Unfortunately the plot we see certainly doesn’t look like the tan function that we
all know and love. Looking closely at this plot, we should notice that the scale of the
vertical axis is exceptionally large, and that we have two seemingly vertical lines at
the end of the graph. This is in keeping with our earlier observation of the behavior of
tan(f) as theta approaches /2.

In addition to either having the vertical range chosen automatically by Mathematica,
or having a full vertical range—full in the sense that the range corresponds directly to
the largest and smallest expression values being plotted, that is—we may also specify
an exact plot range. To do this we use the PlotRange option again. To limit the vertical
range to +n, we would use PlotRange -> n. To limit the vertical range to (m,n) then
we would use PlotRange -> {m, n}.

In[5]:= Plot[Tan[thetal], {theta, -Pi/2, Pi/ 2}, PlotRange -> 2]
Plot[Tan[thetal], {theta, -Pi/2, Pi/ 2}, PlotRange -> {-1, 2}]

80 2 Calculus

2,
N
L L L L L L L L L L L L L L L L i L L L L L L L L L L L L L L L

-5 ~10 ~0.5 [0.5 1.0 1.5
Sk
Out[5]= -2
20-
15k
ok
05k

L L L L L L L L

“15 ~10 ~0.5 [0.5 1.0 1.5
—05k
Out[6]= -1ob

When Mathematica plots an expression it evaluates, or “samples” that expression at
various points along the horizontal interval and fits a curve to the sampled points. We
may request to see these sampling points with the Mesh plot option.

In[7:= Plot[Sin[thetal], {theta, 0, 2Pi}, Mesh -> Fulll]

1.0F

-0.5

Out[7]= 1ok

By default, Mathematica automatically chooses the number of sample points, but
number of points may be explicitly specified with the PlotPoints plot option. We
see approximately fifty in the above plot. Sample points are evenly spaced along the
plot range, however Mathematica is rather clever and if it detects that the values of the
expression are changing too quickly between sample points, it will sample the expression
at an extra point between them to try to obtain more and better information with which
to plot the function. This is known as “subdivision”, and we may observe this by using
the Mesh -> A1l option.

2.1 Revision and Introduction 81

In[8]:= Plot[Sin[thetal, {theta, 0, 2Pi}, Mesh -> All]

1.0F

0.5

—05}

Out[8]= 1ok

The difference between Mesh -> Full and Mesh -> A11 is that the former shows us
the initial sampling values, while the latter shows us the final sampling values, after sub-
division has occurred. The number of subdivisions is, much like the number of sample
points, automatically decided by Mathematica, but may be explicitly specified with the
MaxRecursion plot option. In light of subdivision, one should be aware that Mathemat-
ica could potentially end up evaluating a function many more times than the number of
sampling points requested. Mostly, however, we can just trust the Mathematica defaults
to automatically do the sensible thing for us.

Now, armed with this knowledge, we’ll have a look at the sampling values of
above the tan plot with full plot range. In order to see only the mesh we specify
PlotStyle -> None, however this also causes the mesh to not be displayed, so we also
specify MeshStyle -> Blue to explicitly set the mesh to be blue, without changing the
style of the plot.

In[9]:= Plot[Tan[thetal, {theta, -Pi/2, Pi/ 2},
PlotRange -> Full, Mesh -> All,
PlotStyle -> None, MeshStyle -> Blue,

]

1.5%107 -
1.0x107}

50%10°F

~50%10°

—1,0><107}

Out[o]= - —15x107F

We see two extreme points far to the top and bottom of the graph, with the remainder
of the sampled points on or very near the z-axis. Of course, with the vertical range so
large, the scale is such that the points seemingly on the z-axis could have values varying
anywhere between +1,000,000 or more and we wouldn’t be able to tell the difference.
This is in interesting, but not entirely surprising. We know how the function behaves
near +7/2, and it seems that even with subdivision, the Plot function still couldn’t
draw a good picture with full range.

]2 2 Calculus

Without explicitly specifying the vertical range, Mathematica automatically produces
a very sensible picture. It should be understood that explicitly requesting a full range
will not always produce such a bad picture as we saw with the tan function, and may
even be desirable for some plots. Modifying the plot range can be useful, and should
be kept in the back of our minds when plotting functions. If ever we get a bad plot,
modifying the plot range is a good first thing to try in order to get a better plot.

2.1.2 Multiple Plots

An interesting example comes to us from Borwein and Devlin [5]. Suppose we have two
expressions, y — y? and —y? log(y), and wish to know (and eventually prove) which (if
either) is always larger when y € (0,1). A good first step would be to plot the two
expressions over the unit interval, to see if the curves cross each other. However, up
until now we have only plotted single expressions. Two separate plots are of limited (if
any) use to us. We need a way to plot the two expressions on the same pair of axes.
This is made possible in one of two ways.

The first method is far and away the simplest. Mathematica’s Plot command will
happily plot a list of expressions. In place of a single expression we simply provide a list,
and any parameters that modify the plots must also be provided in a list. For example,
to plot the above two functions, with the first one being colored the usual dark blue,
and the second colored red (so we may identify which is which) we would enter the
following.

In[10]:= Plot[{y-y~2, -y"2*Loglyl}, {y, 0, 1},
PlotStyle -> {Automatic, Red}
]

0.25

010l
0.05

Out[lO]: 2 0.4 0.6 08 10

Note that we specified a PlotStyle of Automatic here, whereas in the previous sub-
section we used Blue. The astute reader might notice that the Blue plot style produces a
slightly different color of blue to the usual plots. Specifying Automatic as a plot style, in
this case, tells the Plot command to use the regular style for that expression. Note also
that PlotStyle allows a much richer control of the look of a plot than simply changing
colors, although. The reader is encouraged to explore this more in the Documentation
Center.

For the second method, let us now consider a modified version of our example. This
time we compare y? — y* and —y?log(y) (also from [5]). First we will make a simple
observation: up until now, any valid Mathematica expression could be assigned to a

2.1 Revision and Introduction 83

variable name. It should, then, be a natural question to ask whether the same can be
done with the plot function. The answer is that yes it can, although the logistics of such
an assignment are probably not obvious. Let’s try this.

In[11]:= plotl =Plot[y"2-y~4, {y, 0, 1}]
plot2 = Plot[-y"2*Loglyl}, {y, 0, 1}, PlotStyle -> Red]
0.25j
0.20}
0.15}

0.10:

0.05 [

Out[11]=
015k

0.10 -

Out[12]: 2 0.4 0.6 08 10

Mathematica has stored the plots in the variables plot1 and plot2, and has output
them as well, just like it does with any assignment. Note that we may, if we wish, use
a delayed assignment instead of a direct assignment. Doing so will essentially cause
Mathematica to remember the plot command, instead of the plot image itself. In either
case, if we wish to see one of the plots again, we need only to ask Mathematica for the
contents of the variable in the usual way.

In[13]:= plotl

0.25 -
0.20 -

0.15 -

0.05 -

Out[13]=

’4 2 Calculus

This is all well and good, but it doesn’t really help us show multiple plots on the
same axes, at least not in any different way from the method we have already used. The
key to this lies in the Show function, whose purpose is either to display a single stored
plot using extra plot options which were not present when the plot was stored, or to
display but multiple stored plots on a single set of axes. It is in this second capacity that
we are currently interested. The Show function accepts an arbitrary number of stored
plots as arguments, each plot as a separate argument, and display them all on the same
axes. The Show function will also accept lists of stored plots as an individual arguments,
and will display all the plots in all the arguments on the same axes, however the use of
sets is not required.

In[14]:= Show[plotl, plot2]

0.25 r
0.20 ;
0.15 ;
0.10 ;

0.05 -

Out[14]: o2 0.4 0.6 s 10

The use of Show for the above example above may seem unnecessarily long and
complicated, when we could more easily use just a single Plot as we did in the first
example. Such an observation is quite well founded. However, there are situations where
the easier method is either impossible, or impractical to use. It is these cases where Show
really shines.

To illustrate this utility, we show the previous example and a plot of its sample points
at the same time. It does not seem possible to produce the same result with a single
Plot command, if we want the meshes to be the same color as their corresponding plot.
Trying to do so is left as an exercise to the interested reader.

In[15]:= Block[{plot},
plot[1] =Plot[y"2-y~4, {y, 0, 1}1;
plot[2] =Plot[-y"2*Loglyl}, {y, 0, 1}, PlotStyle -> Red];
Show[plot[1], plot[2]]
]

0.25 r
0.20 :
0.15 :
0.10

0.05 |

Out[15]=

2.1 Revision and Introduction 85

Inasmuch as the stored plots, plot [1] and plot [2] are only being plotted and stored
so that we may produce the final picture, we use a Block and store them in temporary
variables.

Storing plots in variables, along with the Show function, is also a very valuable tool
when a plot is difficult and time consuming and we want to reuse it quickly and with
certainty that it is what we wanted to draw.

2.1.3 Limits

Calculus, ultimately, all comes down to limits. So it is with limits that we begin our
exploration of calculus proper. We have already seen and used very briefly in the previ-
ous chapter, the Mathematica Limit command. We look at it in more detail here, and
recall quickly the math behind limits.

We may take a limit of a sequence (of the infinite variety) or of a function. The intu-
itive (and mathematically imprecise) notion of a limit is a value that we may approach
as closely as we could ever wish, just by traveling sufficiently far along the sequence or
function.

We start with sequences. Recall that the limit, L say, of some sequence

{xn}Z‘;l =T1,T2,T3," "

written

lim z, =L
n—oo

is a number such that for every e > 0 we can find a natural number N so that whenever
we have any other number n > N it will be the case that |z, — L| <.

The sequence
{1}00 11
- =1,=,-,...
k)1 2°3

should be familiar and has, of course, limit 0. We ask Mathematica to verify this. The
Mathematica Limit command.

In[16]:= Limit[1/k, k => Infinity]
Out[16]= 0

If we want to see something a little more mathematical, we can use the HoldForm
function to prevent the Limit from being evaluated. We may combine this with the
TraditionalForm function to tell Mathematica to print the limit in traditional mathe-
matical notation, as well as the ReleaseHold function to tell Mathematica to evaluate
the un-evaluated limit. To simplify this a little, we use the With function, with the held
limit as a constant temporary variable.

In[17]:= With [{L =Limit[1/k, k -> Infinity] // HoldForm},
(L // TraditionalForm) == (L // ReleaseHold)
]

.1
Out[17]= khm P
—00

This is not something we will do often. The mathematical nature of the output is
nice, but the effort required to produce it is, in the opinion of the author at least, not

36 2 Calculus

worth persisting with. The technique gets particularly troublesome when the expressions
involved begin to involve either expressions stored in variables, or nested functions. For
example, producing mathematical notation output for the limit of partial sums, seen
below, proved to be quite tedious. The interested reader is encouraged to look up these
functions in the Documentation Center, and to experiment with them. In the interests
of simplicity, however, we avoid this technique.

Returning to the matter of the converging series, if we wish a more visual clarification
of the convergence, we may plot the series. We might simply plot the continuous, real-
valued, function 1/x to see the convergence (using the fact that if the function converges,
then the sequence evaluated only at integer points also converges). Instead, however,
we use Mathematica’s ListPlot function and see only the points of the sequence in our
visualization.

To do this we construct a list corresponding to a sub-sequence of the form {1/k}7_,
for some n. The ListPlot function will understand that the first element of the list
corresponds to the value of k = 1, the 2nd element to k£ = 2, and so on and so forth.

In[18]:= Table[1/k, {k, 1, 100}] // ListPlot

0.12 -

0.08 -
0.06 -
0.04 -

0.02 -

Out[18]= T T Tw e T s T

The ListPlot function will also accept a list of 2-element lists, where the internal
lists are understood to be points on the cartesian plane, and will plot those points.
Using this method, we may produce the same plot by constructing the sequence of
pairs {k, 1/k} as follows, although the above method is perhaps easier to understand
at a glance.

In[19]:= {Table[{k, 1/k}, {k, 1, 100}]} // ListPlot

0.12 -
0.10 - .

0.08 -

0.04

0.02 -

Out[19]: 0 T e s T

The convergence is visually pretty clear. Notice that the automatic scaling we saw
from the Plot function in Section 2.1.1 is well and truly in effect here. This is not a

2.1 Revision and Introduction 87

bad thing in this case, as convergence is only concerned with what how the sequence
behaves in the long term, not how it behaves at the beginning. We may, of course, insist
on seeing all of the hundred points we computed, and doing so certainly isn’t a bad
idea. Note that to do this we need to add an argument to the ListPlot function, and
doing this means that it has become a function of two arguments, and therefore not
susceptible to the postfix notation. We use the regular notation instead.

In[20]:= ListPlot[Table[1/k, {k, 1, 100}], PlotRange -> Full]

1.0

0.6 -
0.4

02F o

I L L L ?

Out[20]= “ 20 W e 80 100

It is worth stressing at this point, however, that these plots give an indication of con-
vergence, not a proof of convergence. There is always the possibility that the sequence
does something odd after the interval we have plotted. So we must still perform regular
mathematics to verify the limits, or at the very least ask Mathematica to evaluate the
limit.

Recall now that an infinite sum is defined to be a limit of its partial sums. Mathe-
matically, that is,

oo
= 1'
D fk) = Jim f(k)
k=1 k=
We have already used Mathematica’s Sum command to calculate infinite sums for us in
Section 1.1.5, but we do this again now, and demonstrate the limit property. Let us use
the series 1/k? again, which we know from the previous section converges to w2 /6.

In[21]:= Sum[1/%k"2, {k, 1, n}]
Limit[%, n -> Infinity]

Out[21]= HarmonicNumber[n, 2]

7r
Out[22]= 5

We have not seen the HarmonicNumber function before, although we may ask
Mathematica about it by consulting the Documentation Center. We discover that
HarmonicNumber [n, r] corresponds to the harmonic number which is denoted mathe-
matically by Hff), where

n

1
(r) — il
H = =

i=1
As such, Mathematica has just told us that our partial sum is equal to itself. This is not
as insignificant as it may appear, as it also tells us that Mathematica knows no better

closed form than the harmonic number. Of course, the limit of 7/6 is exactly what we

88 2 Calculus

know the sum to converge to, and this is what Mathematica also computes the limit of
the HarmonicNumber function to be in this case.

Now let us look at limits of continuous functions. For this purpose we consider the
function f(z) = 1/(2® — 22?). Our first impulse should be to plot the function to see
what it looks like. In order to plot, we need bounds to plot over, and we choose the
range (—10,10), for no better reason than it is the default plotting range for another
program the author uses from time to time.

In[23]:= Plot[1/ (x"3=2x"2), {x, -10, -10}]

02

01F

Out[23]=

This is not a very useful plot, although precisely why that is may not be readily
apparent. We could attempt to use trial and error to find a good interval to plot over, but
on reflection, perhaps a little elementary calculus might have indicated better bounds
to begin with, so we will do that now.

First note that the denominator is equal to 2% (z —2), which tells us that the function
is not defined at x = 0 or x = 2 and that we should probably expect vertical asymptotes
at those points. This we already see in the plot, however the function is well-defined
everywhere else, and so we should see plot lines between these vertical asymptotes,
which are not apparent in the above plot. It should also be clear, using the algebra of
limits, that

lim 1 = lim ?13 _ limaa %3

zoa s — 222 roa]l — % 1 —limg,_,q %

and so for a = £oo the limit will be 0.
The limits at @ = 0 and @ = 2 are only a little bit trickier to work out. We again
look at the factored denominator z2?(x — 2) and observe that
lim #*(z — 2) =0 and lim 2%(z —2) =0
z—0 r—2
Furthermore we can see that z? will always be > 0, and that for all points near a = 0
it is the case that z — 2 < 0 so the denominator near a = 0 must always be negative.
We conclude therefore that the limit at @ = 0 is —oo. Finally observe that for x > 2 we
have x — 2 > 0 and that for z < 2 we have z — 2 < 0 which tells us that f(z) - —oc0
as x — 27 and that f(z) — oo as x — 27
We now have plenty of information for us to choose appropriate plotting ranges. In
order to put the undefined points (with the vertical asymptotes) evenly spread across
the z-axis we plot across the interval z € (—2,4). However, also we know that the
function has vertical asymptotes, and that the Plot function, which normally handles
the vertical range well, didn’t do so well with the previous plot. We should, therefore,
consider the y-axis range. A quick substitution of x = 1 into the function shows that

2.1 Revision and Introduction 89

the midpoint between the vertical asymptotes attains the value —1, yet the above plot
limited the range to, roughly, (—0.4,0.25). If we want to see the asymptotes shooting
off a little ways, a reasonable guess is that y € (=5, 5) should suffice. First, however we
will see if the plot behaves better now that we have more sensible bounds on .

In[24]:= Plot[1/ (x"3=2x"2), {x, -2, 4}]

4+

-2 = L 1

Out[24]=

Well, that’s much better. Notice that the automatic vertical range of, approximately,
(—6,4) is quite close to the one we guessed at, above. The discontinuity at z = 2
produces a vertical line in the plot, which we know shouldn’t be there. Despite the fact
that the Documentation Center tells us that the default behavior of certain plot options
is to detect discontinuities, and to plot them properly, this line persists despite the best
efforts of the author. We shall just have to live with it.

We now verify the limits with Mathematica. We provide, as the second argument to
the Limit function, a list of bounds for the limit. The Limit function understands that
this means we want to calculate the limit for each of these cases, and gives the answer
back in a list.

In[25]:= With[{p=1/(x"3=2x"2)}
Limit[p, {x -> -Infinity, x -> 0, x => 2, x -> Infinity}]
]

Out[25]= {0, —00, 00,0}

The undefined limit at ¢ = 2 should be surprising, thanks both to the plot and the
calculus we performed above. The limit from below and the limit from above are not
the same, and therefore the limit should not exist, yet Mathematica has told us that
the limit is co. Recall that lim,_,,- = lim, ,,+ = L if and only if lim,_,, = L. That
Mathematica gives us an answer for the limit as — 2 at all—at least any answer other
than “undefined”—is misleading. This is a good reminder that we should not blindly
trust the answers the computer gives us, and that we should keep our wits about us
when using a CAS.

As it happens, Mathematica can actually handle single directional limits by allow-
ing the Limit command to take a third input variable for this purpose, which is the
Direction option. This may be either of Direction -> 1 for the limit from below (in-
creasing values of the variable) or Direction -> -1 for the limit from above (decreasing
values of the variable). Somewhat confusingly, this means that for the limit at a when
x — a~, we must use Direction -> 1, and for the limit at a is when — a™ we must
use Direction -> -1.

90 2 Calculus

In[26]:= With[{p=1/(x"3=2x"2)}
Limit[p, x->2, Direction->-1], Limit[p, x->2, Direction->1]

]
Out[26]= {—00, 00}

Now we see the answers that we should expect. Note that there wasn’t a particularly
simple way to use the Direction option with the nifty list technique we used, above,
to produce the list of limits. As such, we simply computed the list directly, typing out
the Limit command twice, once with each Direction option.

We now return to sequence limits, and a cautionary example. Mathematica’s Limit
function calculates real- or complex-valued (function) limits. When we used it to cal-
culate sequence limits above, what we were really doing was evaluating the real-valued
limit at infinity of the functions in question, and using the theorem which states that if
f(z) = L as * — oo exists for a real-valued function f, then the sequence {f(n)},en
converges to the same limit as n — oo.

However, caution is advised. This relationship between limits of functions and limits
of sequences does not always work the other way around. Consider the function

f(z) = zsin(Pi - z) + 2 tanh(z — 5)

and the corresponding sequence {f(n)}nen. If we evaluate limits or plot the function
we might very well be tempted to conclude that the sequence does not converge.

In[27):= £[x_] := x*Sin[Pi* x] +2* Tanh[x - 5]

In[28]:= Limit[f[x], x -> Infinity]
Out[28]= Interval[{—o0, 00}]

In[29]:= Plot[f[x], {x, -10, 10}]

10~

5L

A A
VAV

Out[29]=

We clearly see a function with no limit at infinity. However, plotting only the sequence
points shows an entirely different picture. Note that we have not made £ a local variable,
but a global one. This has allowed (and continues to allow) us to reuse the expression
with a minimum of typing. Because we are working with this expression interactively,
we are unable to use a Block or a With function. At least, if we want the convenience of
being able to choose each command based the output we see from a previous command,
we can’t use the those functions.

In[30]:= Table[f[n], {n, 1, 100}] // ListPlot

2.1 Revision and Introduction 91

2L

Out[30]= - S T

Our sequence has what looks very much like a limit. Applying our calculus knowledge,
we see that nsin(mn) = 0 for n € N, and so that part of the function will not affect the
sequence at all. Furthermore, because tanh(z) — 1 as x — oo it must be the case that
2tanh(z — 5) — 2 as — oo. In short, the sequence {f(n)},en ought to converge to
the value 2, and the plot of the sequence points exhibited precisely this behavior.

If we plot the real-valued function and the sequence on the same axes, we can see
the convergence a little better. We color the continuous function light gray, so that it
won’t over-shadow the points of the sequence. Note that Mathematica puts the vertical
axis at = 5, not the usual x = 0 that we might have been expecting.

In[31]:= Block[{p},
pl[1] =Plot[f[n], {n, 1, 20}, PlotStyle -> LightGray]
pl[2] = ListPlot[Table[f[n], {n, 1, 20}]1]
Show [{p[1], p[2]1}]
]

20F

Out[31]=

All that remains is to see if we may convince Mathematica to provide us with the
correct answer for the sequence limit. Note that because we are evaluating a limit at
infinity we are already evaluating a limit from below, and so we do not need to worry
about specifying the direction of the limit. In order to tell Mathematica that we are
only interested in the integers, we use the Assumptions option to the Limit function.

In[32]:= Limit[f[n], n -> Infinity, Assumptions -> n ~Element~ Integers]
Out[32]= 2

We have used the assumption that n € Z here by using the Element function, and
the Integers keyword. We might have been tempted to try the IntegerQ function

92 2 Calculus

instead, but its behavior of always returning either true or false means that, in this
case, it evaluates to false before Mathematica has even had a chance to try evaluating
the limit. We might also have be tempted to use the Refine function that we saw in
Section 1.2.1, however that also proves not to work. That the Limit function, as well
as some others, provides its own mechanism for specifying assumptions ought to be an
indication that this is the preferred way to go about specifying assumptions for limits.

To reiterate the key points here, the lack of a limit of a real valued function does
not imply the lack of a limit of a sequence of evaluations of that function, and—more
important—one must always keep one’s wits about one when using a CAS (of course
this is true when reading a book or taking a bus too).

2.1.4 Differentiation

Differentiation is, fundamentally, all about calculating rates of change. Recall that the
derivative of a function, f(x) say, at any point a is the slope of the tangent line to f
at the point a. Recall, also, that the tangent at a is defined to be the line through a
with slope equal to the limit of the slopes of lines drawn between a and points near a,
as depicted in Figure 2.1. So it is that we come to the limit definition of the derivative

Fig. 2.1 Depiction of the convergence of lines to the tangent.

at a point a as
Fla) tim L0 =T @t — (@)

T—a Tr—a h—0 h

2.1 Revision and Introduction 93

Let us explore this a little before we introduce Mathematica’s native differentiation
commands. We start with a parabola f(x) = 2% which we know has derivative f/(x) =
2x meaning that the tangent to the parabola at any point a has slope 2a. Let’s have a
look at this in Mathematica. First, we make sure to clear our previous definitions and
assignments.

In[33]:= ClearAll["Global *"]

In[33]:= Block[{f, a, h},

flx_] :=x"2;
(f[a+h]l -f[al) /nh
]
Limit [%, h -> 0]
) 2
Out[33]— w
Out[34]= 2a

If we look a little closer at the expression in the limit, we should see that
(a+h)* —a® = a® +2ha + h? — a®> = h(2a + h)

and so the limit then becomes

lim h(2a + h)

f, S5 = (e +4) =20

thus verifying both Mathematica’s limit calculation and our regular differentiation tech-
nique (for the parabola, at least).

Turning our eye now to trigonometric functions, we choose the sin function and the
point @ = 7/2. This produces a limit that is a little trickier to work out on paper.

In[35]:= With[{a =Pi/ 2},
(Sin[a+h] -Sin[al) /h

]

Limit [%, {h -> 0}]
Out[35]— —1%003[}4
Out[36]= 0

As ever, our instinct should be to plot the function. However, try to get a good idea
of the behavior near the undefined point at h = 0, we ask for a lot of sample points.

In[37]:= Plot[(Cos[h] -1) /h, {h, -1, 1}, PlotPoints -> 1000]

0.4

0.2

-1.0 -0.5 L 0.5 1.0

—041

Out[37]=

94 2 Calculus

Of course, in order to perform differentiation in Mathematica we need not perform
limit calculations each and every time. The function for computing derivatives is the D
function. It takes an expression as its first argument, and a variable name as its second
argument, and computes the derivative of that expression with respect to that variable.

In[38]:= D[x"2, x]
D[Sin[x], x]
D[t "2+t+1, t]
D[E~ (2 var), var]

Out[38]= 2z

Out[39]= Cos|z]
Out[40]= 1 + 2t
Out[4l]= 22"

If we wish to calculate a second derivative, we do the following.

In[42):= D[t"2+t+1, {t, 2}]
Out[42]= 2

In general, for the kth derivative of some expression, expr say, we use the command
D[expr, {x, k}].

In[43]:= With[{p=4x"5-3 x"2+x-2}
D[p, {x, k}] // Print,

{x, 1, 6}

]
Out[43]= 1 — 6x + 20z*
Out[44]= — 6 + 802°
Out[45]= 24022
Out[d6]= 480z
Out[47]= 480
Out[48]= 0

If we have a function we want to differentiate, we may use the more familiar -
notation, as we’re used to seeing with, say f’. Doing so produces a new function which
we may then give arguments for computation. For instance.

In[49]:= Exp~ [x]

Cos” [x]
Sin~ [Pi]
Sin" [Pi/ 2]
Out[49]= €”
Out[50]= — Sin[x]
Out[sl]= —1

Out[52]= 0

2.1 Revision and Introduction 95

2.1.5 Integration

Integration grows out of the problem of calculating area underneath a curve, although
its applications are far more wide and varied than that. Recall that a definite integral
of a continuous function f between two points a and b may be approximated by a limit
of rectangles.

b—a
/ flz) dez = hm (sz fla+ kAm)) where Ax := -

k=1

In fact, the approximation can be made from rectangles coming from an arbitrary parti-
tioning of the interval (a, b) with the heights of the rectangles being taken from arbitrary
points within each of the partition elements. See [12] or any elementary calculus text
for more details.

In[53]:= int[f_, {a_, b_}] :=With[{delta=(b-2a) /n},
delta*Sum[f [a+k*deltal], {k, 1, n}]
]

In[54]:= Block [{f},
flx_] :=x"2;
int [f, {0, 23}]
]
Limit[%, n -> Infinity]
4(1+n)(1+ 2n)
3n2

Out[54]=
Out[55]= §
B

In[56]:= int[Sin, 0, Pil
Limit[%, n -> Infinity]

(][] o[] [157]

Out[56]=
ut[56] o

Out[57]= 2

In[58]:= int[Sin, 0, 2Pi]
Limit[%, n -> Infinity]

m(Cse [2] sin [5mn] 4 Cse | 2] sin [25007])

n

Out[58]=
Out[59]= 0

Once this limit is established, then we are presented with the fundamental theorem
of calculus which states that

b
/ f(@) dz = F(b) — F(a) where F' = f

and nicely links differentiation and definite integrals. We also, by convention, denote
the indefinite integral

f@)de=F(z) = F' =f

96 2 Calculus

We may use this to check the limits found above. First we have 23 /3 as an antideriva-
tive of 22, and evaluating
22 0 8

3 3 3
verifies the integral. Similarly we have — cos as an antiderivative of sin leading us to
—cos(m) — (—cos(0)) =1+ 1=2and (—cos(2m) — (—cos(0))) = -1 + 1 = 0. In fact,
the final integral can be verified by the symmetric nature of the sine graph between 0
and 27.

Again, as with differentiation, we need not perform limit calculations within Mathe-
matica if we wish to calculate an integral, as there is a handy function named Integrate.
The Integrate function can handle both definite and indefinite integrals and takes an
expression as its first argument, and either a variable, or an iterator as its second argu-
ment. If the second parameter is an iterator, it is understood that we wish to perform
a definite integral with respect to the variable, over the range specified in the iterator.
In the case that the second argument is just a variable, then it is understood that we
wish to perform an indefinite integral with respect to that variable.

In[60]:= Integratel[x, {x, 1, 3}]
Integrate[Sin[x], x]
26

Out[60]: ?

Out[6l]= — Cos[z]

2.2 Univariate Calculus

2.2.1 Optimization

Suppose we wish to calculate the longest ladder that we may carry around a corner
with one corridor 2 meters in width, and the other 1 meter in width. This is an example
of an Optimization problem. We may use calculus (specifically, differentiation) to solve
problems along these lines.

Given any angle § we know that

2
sin(6)

1
= — d =
v cos(f) ance v

Therefore, the length L of a ladder that touches the corner, and the opposite walls of
each corridor at an angle of 6 to the corner, is given by the formula

1 + 2
~ cos(f) sin(6)

We can see straight away that 0 < 6 < 7/2 and that 1/ cos(f) — oo as § — (7/2)~ as
well as 2/sin(d) — oo as § — 07 which tells us that our L function will tend toward
infinity at its endpoints. We also know that L > 0 for all values of 6, just as we would
expect for the length of a ladder. We plot the function, being sure to limit the y-axis.

In[62]:= L[theta_] :=1/Cos[thetal +2/8Sin[thetal

In[63]:= Plot[L[thetal, {theta, 0, Pi / 2}]

2.2 Univariate Calculus 97

Out[63]= T s 1.0 Ls

What is interesting here is that the function is concave up and has no maximum
values, although it does have a minimum value. What’s going on here? Well, our function
L, as we know, calculates the length of a ladder at an angle of 8 that touches both the
far walls of the two corridors as well as the corner. Such a ladder is the longest possible
ladder that can rest at that particular angle. However, if a ladder is to be carried around
the corner, then it must go through all angles from # = 0 to 8 = 7/2 and not become
stuck. What we are, in essence, looking for is the shortest of all such longest ladders,
and hence a minimum of the function L.

We can see that the minimum value lies somewhere in the range 0.5 < 6 < 1. With
a little trial and error, we may find the following plot and so can do a little better with
these bounds. Looking at the plot (below) we can clearly see the the minimum lies to
the right of the midpoint of the f-axis. Even though it is not labelled, we know this
midpoint must be 7/4 because our plot is for theta between 0 and 7/2. Our minimum,
therefore, must lie in the range /4 < 6 < 1.

In[64]:= Plot[L[thetal], {theta, 0, Pi/ 2}, PlotRange -> {4, 10}]

10

Out[64]= 00 s 1.0 15

We could, if we wished “zoom in” by plotting the region 7/4 <0 <land4 <L <5
in the hopes of obtaining better bounds. We could even continue along these lines for
some time. There is little point in doing so, at least in this case. Instead we proceed
to find the minimum symbolically. The minimum is a turning point, and so will have a
derivative of 0. We therefore solve L'(6) = 0.

In[65]:= L~ [thetal
Solvel[’% == 0, thetal

out[65]= — 2 Cot[theta] Csc[theta] + Sec[theta] Tan[thetal

98 2 Calculus

Solve::ifun: Inverse functions are being used by Solve, so some solutions may not be found;
use Reduce for complete solution information. »

Out[66]= { {theta — ArcCot {21—1/3} }, {theta — ¢ ArcCoth E (—i2%/3 22/3\/?:)} },

theta — —i ArcCoth 1 i22/3 — 922/3\/3) | §,
4
{theta — i ArcCoth E (—i2%2/3 4 22/3\/5)] },

{theta — —i ArcCoth E (i22/3 + 22/3\/3)} } }

Well, that’s a bit of a mess. Mathematica seems to have given us five solutions, four
of which appear to be complex, and has even warned us that some solutions may not
have been found. Nonetheless, there is clearly a real solution there, and evaluating it
numerically shows it to be in the range we were expecting.

In[67]:= guess = ArcCot[2°(-1/3)]
guess // N

Oout[67]= ArcCot [
Out[68]= 0.899908

1
2178

In[69]:= L[guess]
h//N

out[69]= /1 + 22/3 4 22/3\/1 4 22/3

Out[70]= 4.16194

And so there we have it. A ladder of approximately 4.16 meters in length is the
longest we may carry around the corner. We can see quite well from the plots above
that this is clearly a local minimum, however, a quick second derivative test won’t hurt.

In[71]:= L~ [guess]

%> 0
outf71]= \/1+ 22/3 4 2%/3\/1 4 22/3 4 9(1 + 22/3)/?
Out[72]= True

In[73]:= %% // N
Out[73]= 12.4858

So there we are. A positive second derivative indicates that the graph is concave-
up, which we already knew from our plot. Furthermore, a positive second derivative
indicates a local minimum when it coincides with a critical point. Our answer of ap-
proximately 4.16 meters should be considered well and truly confirmed.

2.2.2 Integral Fvaluation

Integral evaluation can, at times, be quite tricky. A tool such as Mathematica can indeed
be an asset, however, even it may be unable to perform cer3tain integrals symbolically.
For example, suppose we ask Mathematica to integrate xe® between 0 and 1.

2.2 Univariate Calculus 99
In[74]:= Integrate[x*E~(x"3), {x, 0, 1}]

Out[74]= %(71)1/3< — Gamma [%} + Gamma E, 71])

Note that if the integrand were $€$2, then the task would be trifling easy by hand,
however if we tried to use hand-methods to solve the above integral, we would very likely
be frustrated. Mathematica has given us an answer involving the gamma function, which
the reader may or may not find to be illuminating. Looking up Gamma in Mathematica’s
Documentation Center we find that the gamma function, denoted mathematically by
I' is defined as follows

I'(z) ::/ t*~Let dt
0
I'(a,z) :z/ to et dt

Again, this may or may not be illuminating. The only other thing we might try is to
ask for a numerical answer

In[75]:= N[%, 50]
Out[75]= 0.78119703110865591510743281434829950577669739096218 + 0. x 1074

That’s interesting, we have a complex answer, although the complex part is infinites-
imally small. Nonetheless, this shouldn’t happen; a definite integral of a real-valued
function should, itself, be a real number. It seems that Mathematica is perhaps being
a little more general than we wanted it to be. We could guess that the real part of the
answer, 0.78119703110865591510743281434829950577669739096218, might be a good
approximation of the integral, but this would just be a guess. Alternatively, we may ask
Mathematica to perform the integration numerically, instead of symbolically, using the
NIntegrate function.

In[76]:= NIntegrate[x*E~(x"3), {x, 0, 1}, WorkingPrecision -> 50]
Out[76]= 0.78119703110865591510743281434829950577669739096218

It seems that the real-part of our complex answer was a good approximation of the
integral after all.

We pause here to mention that, when we have a numeric value of an integral (or
any other numeric value, for that matter), one approach we may take is to use online
systems to try and find a probable symbolic (closed form) identity for the decimal
number. Both the Inverse Symbolic Calculator!, and Sloane’s On-line Encyclopedia of
Integer Sequences? are good resources. Unfortunately, neither one turns up anything
with the above fifty digits, but it it worth remembering their existence. At least one
of the integrals from Exercise 6 requires some form of inverse symbolic calculation to
identify.

Moving on, suppose we wish to evaluate the integral

T xsin(z)
/0 1+ cos?(xz) de

Our first attempt should be to see what Mathematica thinks.

! nttp://isc.carma.newcastle.edu.au/ at the time of writing
2 http://oeis.org/ at the time of writing

100 2 Calculus

In[77]:= Integrate[x *Sin[x] / (1+Cos[x]"2), {x, 0, Pi}]
2
Out[77]= 1
That was easy. We might, if we wish to check this, evaluate both the integral, as well
as 2 /4 numerically, and subtract them to see how close they are. We’ll do this to fifty
digits of precision.

In[78]:= NIntegrate[x*Sin[x] / (1+Cos[x]"2), {x, 0, Pi},
WorkingPrecision -> 50
]
%-N[Pi~2/4, 50]

Out[78]= 2.4674011002723396547086227499690377838284248518102
Out[79]= 0. x 10759

Of course, such a check is only interesting if the NIntegrate function uses a purely
numerical approach to integration—using, say, some variant on a Riemann sum. It’s
possible, in principle, that NIntegrate might perform regular integration first (if it
can), and produce a numerical approximation of that. Were this the case, then it’s not
at all surprising that the two values, above, coincide. Looking at the Documentation
Center we see—under the More Information dropdown—that NIntegrate has a number
of possible rules it may use, which include Riemann and trapezoidal rules. Furthermore,
we see that the N function, when applied to the regular Integrate function will go and
call NIntegrate function if the integral cannot be performed symbolically. This suggests
somewhat strongly that Mathematica’s numerical integration does behave differently to
its symbolic integration.

To explore this integral a little more, we may apply the following fact. It can be
shown that

/ xf(sin(z)) dx = z/ f(sin(z)) dx
0 2 Jo
and it should be pretty clear that

sin(z) sin(z) . e
14cos?(z) 2 —sin?(z) f(sin(z)) where f = 5=

which leaves us with the slightly simpler integral

T xsin(z) 7w [T sin(2)
/0 1+ cos?(x) de = 2 /0 1+ cos?(x) de

We should expect Mathematica to give the same answer of 72 /4 for this integral.

In[80]:= Pi/2* Integrate[Sin[x] / (1+Cos[x]"2), {x, 0, Pi}]
Out[80]= s

T
Let us perform one more integral. This time we evaluate

o) 3?2
/ LA
0o Vet — 1

As a first attempt, we see what Mathematica makes of the integral.

2.2 Univariate Calculus 101

In[81]:= Integrate[x"2/Sqrt[E"x-1], {x, 0, Infinity}]
3
Out[81]= % + 7 Log[4]?

Having a closer look at the integral, such as we might do before we tried a hand
calculation, we see a possible substitution we might perform. Looking at the denomina-
tor, /e — 1, a substitution of x = log(u) will change the denominator to v/u — 1 thus
eliminating the exponent term. Performing this substitution, we see that

d 1 d
&=

du u U

It is also the case that log(0) = 1 and log(x) — oo as & — oo so that
/ /°° log(u

dm =

Ve u\/u -

Turning again to Mathematica with this new integral we see, as we should hope, the
same answer as for the original integral.

du

In[82]:= Integrate[Logl[u]l 2/ (u*xSqrtlu-1]1), {u, 1, Infinity}]
3
Out[82]= % + 7 Log[4]?

This integral gives rise to an illustrative phenomenon if we evaluate it numerically.
Specifically, evaluating it to ten digits gives a value of 16.37297602. Using the Inverse
Symbolic Calculator with this value gives a probable identity as 16 + 1/v/61/4 + 103/4.
A competing product to Mathematica identifies® the same decimal value as v/3 - ¢(5)?
9/ 22/5_ Both of these identifications differ from the answer provided by Mathematica
above. It turns out that if we obtain even one more digit of precision, then neither
system can identify the number anymore. This should shatter any confidence we had
in either of those two values, and serves as a good reminder that inverse symbolic
computation, while immensely useful, does not provide certain results.

We should take pains to stress that Mathematica is not a substitution for poor cal-
culus skills (or, at least, it is a poor one). It is a good idea to check answers—especially
answers from any inverse symbolic computation—f{rom a number of avenues before ac-
cepting them. Human /machine collaboration is the name of the game here. Mathematica
can be wonderful for performing tedious calculations quickly, and is remarkably adept
at performing integral calculus, but a correct substitution, or other mathematical in-
sight on our part might mean the difference between successfully obtaining a symbolic
answer, or not.

2.2.3 Differential Equations

Differential equations are equations that relate a function to its derivatives. A solu-
tion to a differential equation is a function that has the required relationship with its
derivatives. The simplest differential equation is ' = y which has the solution y = Ce*
(where C is an arbitrary constant). This should be nothing new to anybody who has
studied first-year calculus.

3 Identifies by means of a similar inverse symbolic calculation employed by the Inverse Symbolic
Calculator

102 2 Calculus
A first-order linear differential equation can always be re-written to have the form
Y+ Pa)y =Q(x)
and can be solved by use of an integrating factor

I(z) == eJ P@)d

which has the property that

/ (1)y' +1(2) P(2)y) do = I(x)y

It is fairly simple to verify the claimed property of the integrating factor by hand.
We check it in Mathematica. Note that it is understood, above, that y is a function of
z. It is important to make this explicit when dealing with Mathematica.

In[83]:= Block[{P, I, y, x},
I[x_] :=E"Integrate[P[x], x];
Integrate[I[x] * (y’ [x] +P[x] *y[x]), x] == I[x] *xy[x]
]

Outfs3)= / eJ Pt (Plalyla] + y'[a]) do ==] P14 o]
In[84]:= Simplify[%]
Outfsd]— / o) P1El9e (Plafyla) 4 3/ [a]) do == e P14 y o]

This is a relatively easy integral to do by hand, and the reader is actively encouraged
to do so. Unfortunately, Mathematica seems to be struggling with it somewhat. Instead,
we try the equivalent formulation, that

— ((x)y) =1(z) (y + P(z)y)
which we know is true because of the fundamental theorem of calculus.

In[85]:= Block[{P, I, vy, x},
I[x_] :=E"Integrate[P[x], x];
D[Ix] *y[x] ==I[x]* (y’>[x]+P[x]*y[x])
]

outlgsl= ef P19 pla)yla] + ef P9y (3] = o] PRI (Pl yla] + o/ [a))
In[86]:= Simplify[%]
Out[86]= True

With this identity available to us, we may solve the equation by multiplying the left-
hand and right-hand sides by the integrating factor, integrating both sides, and solving
for y. The solution, therefore, to the differential equation is

v+ P(x)y =Q(x) :>/)y + P(2))dx:/l(z)Q(x)da:
= I(z)yz/[(z)Q(z)dm

2.2 Univariate Calculus 103

and so the solution is
/I(m) Q(z) dx
T I

Let us now consider the linear differential equation xy’ + y = 322, which may be
rewritten as y’ + 7'y = 322; then we may use Mathematica

In[87]:= Block[{P, Q, I, x, C},
Plx_]:=1/x;
Qlx_] :=3x"2;
I[x_] :=E"Integrate[P[x], x];
(Integrate[I[x] *Q[x], x]+C) /I[x]

3

Out[87]= ——4-
X

Note, however, that for a general solution we needed to add manually the constant
of integration when calculating the answer, because Mathematica’s Integrate function
does not include this constant.

It is a good idea to check the solution by substituting it into the differential equation.
In this case, we expect that if we calculate 3 + 2~y we should get 322.

In[88]:= D[k, x]1 +%/x
Out[88]= 3z

We may further cross-check this using Mathematica’s inbuilt differential equation
solving function DSolve.

In[89]:= DSolvely [x] +y[x] /x==3x"2, y[x], x]

Out[89]= {{y[l’] - 3Tx3 ™ %H

Note that, in a manner similar to the RSolve function, we had to specify the dif-
ferential equation itself, the function for which we were solving, and the independent
variable, in that order.

Moving on now to second-order differential equations. A second-order linear differ-
ential equation is a differential equation of the form

P(x)y" +Q(x)y' + R(x)y = G(x)

and is furthermore said to be homogeneous if G(x) = 0. Finally, if the functions P(x),
Q(x), and R(z) are constant functions then the differential equation is said to have
constant coefficients; however, if the differential equation is still to be second-order
then P(z) # 0.

Homogeneous second-order linear differential equations with constant coefficients
may be solved in a manner almost identical to that used to solve homogeneous second-
order linear recurrence relations with constant coefficients, which we looked at in Sec-
tion 1.3.3.

Given the equation ay” + by’ + ¢ = 0 we construct the characteristic equation at® +
bt + ¢ = 0 and solve for t. There are only three possibilities for the roots rq,ry of the
equation. The general formula is as follows.

104 2 Calculus

Ae™?® 4 Be® T F# T2
y(z) = { Ae™* + Bre™® L =T2
e (Asin(Bx) + Beos(fzx)) m,ro =aLif

where A and B are arbitrary constants.

Let’s look at some examples. We start with a differential equation that has the
same characteristic equation as the Fibonacci numbers, y” — 4y’ — y = 0. Because this
has characteristic equation t?> — ¢ — 1, we know from Section 1.3.2 that the roots are
t = 1(1£/5). As such, the solution to the differential equation should be

y :Aez-(1+\/5)/2+Bex~(1—\/5)/2

We check this in Mathematica.

In[90]:= Blockl[{A, B, x, y},
ylx_] :=A*E"(x* (1+Sqrt[5])/2) +B*E~(x* (1-S8qrt[5])/2);
y lx] -y [x] -y[x]]
1

o it(vB)e L 10-vB)z , L (i A\ R l(1-vB)x_
out[oo]= — Be¥(1-V5) 2(1 \/5)36(>+4(1 \/B)Be()

1 1 2 1
Aes (1+VB)e _ % (1 + \/5> Ae3(1+VB)e 4 i (1 + \/3) Ae3(1+V5)e

In[91]:= Simplify[%]
out[91]= 0

And asking Mathematica for the solution directly also gives the expected result
(which is always nice).

In[92]:= DSolvely " [x] -y’ [x] -y[x] ==0, y[x], x]
ou2l= {{vla] » 3= F) 0+ FF) 70}

In the case of nonhomogeneous second-order linear differential equations with con-
stant coefficients the solution is obtained by first calculating the solution to the equiva-
lent homogeneous differential equation (essentially just pretending that G(x) = 0) and
adding to that a particular solution.

To be more mathematically rigorous here, given the equation

ay” + by + cy = G(x)

the general solution is
Y="Yp+Yec

where y,, is some (any) solution to the equation, and y,. is the solution to the comple-
mentary homogeneous equation

ay’ +by +cy=0

which is henceforth referred to only as the complementary equation.

Ordinarily in first-year courses the particular solution is obtained by a guess-and-
check approach. A more systematic method named variation of parameters is described
n [12], but tends to be trickier and slower to implement in practice, at least for the
sorts of problems studied in first-year calculus.

2.2 Univariate Calculus 105

We eschew the entire business, and go straight to the “just ask Mathematica” method.
We extend our previous example to a nonhomogeneous problem where G(x) = sin z.

In[93]:= DSolvely " [x] -y’ [x] -y[x] ==0, y[x], x]

Out[93]= {{y[a:] S e F)rep) 4 (%) 0p) - El(g(f[f/]g; (25Si+n£§]g)) }}

We can clearly see our homogeneous solution there, and an extra bit at the end
which is, presumably, a particular solution. We have a closer look at that. Firstly, it is
in need of some simplification. A quick computation in our heads should tell us that
the denominator will simplify to —20. As such, the expression can be simplified to
something along the lines of £(cosz — 2sinz).

In[94]:= Simplify[-4* (Cos[x] -2 8Sin[x]) / ((-5+Sqrt[6]) * (6+8Sqrt[5]))]

out[94]= —(Cos[z] — 2sin[z])

1
5

If this expression is a solution to the differential equation, as we suspect it to be, then
substituting the expression into the differential equation should produce an outcome of
sin x.

In[95]:= Block[{y, x},
y[x_1 := (Cos[x]-2%*8in[x]) /5;
y [zl -y’ [x] -y [x]
]

Out[95]= %(2 Cos[z] + Sin[z]) + %(— Cos[z] + 2 Sin[z])

In[96]:= Simplify [%]
Out[96]= Sin[x]

So it is clear that %(cosx — 2sinz) is a solution to the original nonhomogeneous
problem. It should be clear, using the fact that

L0 = N+ (g)

that the entire expression returned by Mathematica’s DSolve function is also a solution
to the equation as well.

One might well ask why, when we have a perfectly good and easy-to-write solution
such as & (cosz — 2sinz) would we ever want to bother with adding in the extra mess
of the solution to the complementary equation as well. The answer is that y. + y, is
the general solution to the equation. That is to say that any and every solution to the
equation can be written in that form. The proof of this fact is quite elementary, and
can be found in [12] if desired. Certainly, the particular solution, above, was the same
as the general solution with the constants C[1] = C[2] = 0.

2.2.4 Parametric Equations, Alternative co-ordinates, and
Other Esoteric Plotting Fun

Recall that when a graph is plotted, what we are seeing is a graphical representation

of pairs of points that satisfy some relationship. The parabola, for example, is the

collection of all points (z,y) in R x R where y = 22.

106 2 Calculus

We may also plot functions from parametric equations, where a parameter, ¢ say,
varies, and the points in the plot are of the form (z,y) = («(¢),y(¢)). There is not
necessarily a relationship between the x and y co-ordinates in a parametric equation,
apart from the fact that they share the same t-value. Of course, any function f(z) may
be turned into a parametric equation (x,y) = (¢, f(t)).

If we wish to plot a parametric equation, then Mathematica’s ParametricPlot func-
tion will allow us to do so. The ParametricPlot function accepts a two-element list as
its first argument. This elements of list is interpreted as x(t) and y(t) respectively where
t is any valid Mathematica variable name, and x(t) and y(¢) are arbitrary expressions
involving that variable. Note that Mathematica will automatically scale the horizontal
and vertical axes to fit the plot, based on the values of z(t) and y(t) as t varies through
its range.

For example, to plot our parabola using parametric equations, we would input the
following.

In[97]:= ParametricPlot[{t, t"2}, {t, -10, 10}]

0
|
\ |

Out[97]= s

Note that the ParametricPlot function has produced a picture which is tall and
thin. It appears as if the function has used the same scale for both horizontal and
vertical axes, and has chosen the dimensions of the image accordingly. We can change
this behavior with the AspectRatio option. The aspect ratio is the ratio of the height
and width of an image*. Looking at the Documentation Center, we find that the default
AspectRatio for the Plot function, is 1/ GoldenRatio, so we use that value.

In[98]:= ParametricPlot[{t, t"2}, {t, -10, 10},
AspectRatio -> 1/ GoldenRatio
]

4 Most modern television sets have an aspect ratio of 16:9. Note that a television aspect ratio is
width:height, whereas Mathematica’s AspectRatio option expects a ratio of height:width

2.2 Univariate Calculus 107

100 -

80 -

40r

20

Out[98]= —‘10‘ T 5 10

Let’s look at something that parametric equations allow us to plot, that the regu-
lar Plot command cannot do. To this end recall the parametric equations of a circle
centered at an arbitrary point, (zg,yo) say, are

(z,y) = (zo,y0) + (rcosb,rsinf) = (xg + rcosb, yo + rsinb)

This is easiest to see by treating these parametric equations as vector equations, and
recalling that the parametric equations of a circle centered at the origin are (z,y) =
(rcos@,rsinf).

We plot a circle, centered at (1,2), with radius 3.

In[99]:= ParametricPlot[{1+3Cos[t], 2+3Sin[t]}, {t, 0, 2Pi}]

Sp— —

Out[99] = 1k -

Inasmuch as we knew both the center and the radius of the circle, we should have
expected the horizontal range to be (—2,4) and the vertical range to be (—1,5), which
was precisely what we saw. However, we should point out at that the axis ranges are
independent of the parameter range, and all three may be modified separately. Ordi-
narily, Mathematica will calculate the axis ranges based on the values the parametric
equation takes over the parameter range. In order to demonstrate this independence of
axis and parameter ranges, we plot the same circle, but this time specifically instruct
Mathematica to plot for the range —3 < x <5 and -2 <y <6.

108 2 Calculus

In[100]:= ParametricPlot[{1+3Cos[t], 2+38in[t]}, {t, 0, 2Pi},
PlotRange->{{-3, 5}, {-2, 6}}
]

Out[100]= L

We can clearly see the same circle circle as before, happily plotted within the larger
ranges as defined in the PlotRange option. Note that in this case we specified both the
horizontal range as well as the vertical range, whereas previously we used PlotRange to
only specify a vertical range. If the range we specify is a list containing two lists each of
which has two elements, it is understood that the first two-element list is the horizontal
range, and the second two-element list is the vertical range.

In a lot of (if not most) cases separately modifying the horizontal, vertical, and
parameter ranges will not be necessary. Nonetheless, it is worth being aware of the fact
that they may be independently specified.

The circle example demonstrates a very useful feature of parametric plots, which is
that they may be used to plot curves that are not the result of functions. The circle is
clearly not a function, as it violates the vertical line test. Recall that a function always
associates a single value in the range with each single value in the domain. This is
not the case with a circle; we cannot assign a function y = f(z) that will produce all
the points in a circle. We can, of course, simply plot y = £+/1 — 22 and display them
together, but doing this is often neither easy nor even possible.

To further illustrate this advantage of parametric equations, we plot a spiral using
parametric equations. We use the parametric equations (z,y) = (tcost,tsint). This
differs from the circle in that the radius is no longer fixed. If we think of the points
(z,y) as vectors, then each point on the curve will be a vector of length ¢ and angle
t. As t increases, then the angle will cycle, but the length will continue increasing. We
plot four full revolutions of this spiral.

In[101]:= ParametricPlot[{t *Cos[t], t*Sin[t]}, {t, 0, 8Pi}]

2.2 Univariate Calculus 109

\ /

/

%

Returning to our circle plots, the reader may well recall that although there is no
explicit function for a circle, there most certainly is an equation that gives an implicit
function for the circle. That equation is, of course, (x—x¢)?4(y—yo)? = r2 where (29, y0)
is the center of the circle and r is the radius. One may well wonder if Mathematica can
plot such implicit equations. The answer is that yes it can, thanks to the ContourPlot
function.

Out[101]=

In[102]:= ContourPlot[(x—l)‘2+ (y—2)‘2 ==9, {x, -2, 4}, {y, -1, 5}]

N
/

/
N

1k
L

Out[102]= =

Ordinarily, the ContourPlot function is used for plotting contours of surfaces that
results from functions of two variables (see Section ?7?). However, it is also the go-to
function for plotting implicit functions as well, and supersedes an older function for
implicit function plotting.

So far we have considered only Cartesian co-ordinates (of the form (x,y) in relation
to two axes) when plotting. Another common co-ordinate system is the so-called polar
co-ordinates, which are co-ordinates of the form (r,0) where 6 is the angle, and r is
the distance traveled in that direction. The polar co-ordinates (v/2, iw), for example,
correspond to the Cartesian co-ordinates (1,1). We may freely convert between polar
and Cartesian co-ordinates with the identities r = /22 +y2, = rcosf, and y =
rsin . These identities may easily be confirmed by drawing up a trigonometric triangle.

110 2 Calculus

Mathematica will happily plot polar equations (i.e., equations given in terms of polar
co-ordinates) for us using the PolarPlot function. We may plot on regular Cartesian
pair of axes, or on a special background more suited to the polar co-ordinates. The
latter requires some rather particular options to be specified. Polar plots expect an
expression for r to be a function of 6 (just as regular plots expect an expression for y
as a function of x). This should be unsurprising, given that polar equations are usually
written as r = r(6).

Let us start with a circle, as it is quite simple. A circle contains points that are
equidistant from its center, hence r is the constant radius, and 6 may take any value.
So our polar equation is simply » = C where C'is a constant. Such a circle, however, will
always be centered at the origin. Plotting, in polar co-ordinates, a circle not centered
at the origin is trickier. See Exercise 9b.

Let us look at the spiral again. The spiral construction with parametric equations
(x,y) = (tcost,tsint) was constructed in a way that is very amenable to a polar
equation. Recall that our ¢ parameter varied as both an angle and a distance. This
sounds very much like a polar equation. It should come as no surprise then that the
polar equation of the spiral is simply » = 6. To plot this, we simply pass the parameter
coords=polar to the Plot function.

In[103]:= PolarPlot[theta, {theta, 0, 8Pi}]

/ \

!/ \\
| / / ,
[|

.
b
. LN ///) /
\ /

Unfortunately, here, the axes are drawn and labelled as they would be for the carte-
sian co-ordinate system; we have an x-axis and a y-axis. This is not particularly helpful
for identifying which polar co-ordinates correspond to any given point on the curve.
If we want to avoid this problem, and correctly label the r and 6 parameters of the
polar coordinate system, we specify the PolarAxes and PolarGridLines options, set-
ting them both to Automatic. Doing so will show the r-values as circles centred at the
origin, and the 6 values as radial line. These markings allow us to much more easily
read the coordinates directly from the plot in much the same way we might read (z,y)
value pairs from a plot on the plane.

)
/

201

Out[103]= —

In[104]:= PolarPlot[theta, {theta, 0, 8Pi},
PolarAxes -> Automatic,
PolarGridLines->Automatic

2.2 Univariate Calculus 111

3 Un [CEN

Out[104]= o5

For a more interesting and complicated example, we now look at a more complicated
polar plot; » = sin(86/5). This is clearly a cyclic equation, however the precise nature
of the cycling needs some thought. It is clear that r will cycle every time 6 changes
through 57 /4 radians. In order to cycle fully through all possible pairs of (r,6) we need
to find integers a, b such that a-27m = b-57/4 and the smallest such value for a is a = 5,
corresponding to b = 8. We therefore plot this function for 0 < 6 < 10m.

In[105]:= PolarPlot[Sin[8* theta /5], {theta, 0, 10Pi}]

Out[105]=

Finally, we look at plotting ranges of inequalities. If we have an inequality, and wish
to plot it, we use the RegionPlot function. We look at a couple of simple examples to
close this section. The general approach is similar to that used for the ContourPlot
function, and is basically as one would expect; we replace the equation to be plotted
with the inequality. For instance, if we wish to see the inequality 4z — 2y < 3, we would
try the following.

In[106]:= RegionPlot[4x-27y <3, {x, -1, 1}, {y, -1, 1}]

112 2 Calculus

1.0 ‘,
0.5
0.0 -

Out[106]= B E T 05 1.0

To close off this section, we plot our familiar radius-3 circle, centered at (1,2) with
a red interior, and a thick black boundary.

In[107]:= RegionPlot[(x-1)"2+ (y-2)"2<=9, {x, -2, 4}, {y, -1, 5},
PlotStyle -> Red, BoundaryStyle —> Thick
]

s

-1

Out[107]=) 4 0 i p 3 3

2.3 Multivariate Calculus

2.3.1 Three-Dimensional Plotting

The Plot function, which is for two-dimensional plots, has a counterpart named P1ot3D
which is rather unsurprisingly for three-dimensional plots. Ordinarily, P1ot3D will plot
a function z = f(x,y). To plot, for example, the paraboloid z = 2 +y? we simply input
the following.

In[108]:= Plot3D[x"2+y~2, {x, -1, 1}, {y, -1, 1}]

2.3 Multivariate Calculus 113

(11} 05

Out[108]= o

Note that we needed two iterators for the Plot3Dfunction—one for each of the vari-
ables in the two-variable expression we were plotting. Also be aware that 3-D plots
default to having the z-axis pointing “up” (which is to say up with respect to the
screen), unlike 2-D plots which have the y-axis pointing up. An advantage to these
plots is that they may be rotated by dragging them with the mouse, which allows a
better appreciation of the overall three-dimensional shape, even though we ultimately
only have a two-dimensional projection on our computer screen. Of course, such rota-
tion will almost always change which, if any, axis is pointing up with respect to the
screen.

Just as with two-dimensional plots, we may parameterize surfaces and may plot them
with the ParametricPlot3D function. In much the same way that our ParametricPlot
accepted a two-element list for its first argument, ParametricPlot3D takes a three-
element list as its first argument. The three-element list is interpreted to be the para-
metric expressions for points (z,y, 2).

In[109]:= ParametricPlot3D[{v*Cos[ul, v*Sin[ul, v},
{u, 0, 2Pi}, {v, -1, 1}

Out[109]=

Three-dimensional plots are usually—although not always—parameterized with two
parameters. The trivial parameterization, for a function f(xz,y) is simply (u, v, f(u,v)),
and should look quite similar to the trivial parameterization of a function of one variable.

We look quickly at two alternative co-ordinate systems for three-dimensional surfaces.
These are cylindrical and spherical co-ordinates.

114 2 Calculus

Cylindrical co-ordinates are an extension of polar co-ordinates. Any point in 3-space
may be located by specifying an angle on the zy-plane, and a distance from the origin
at that angle (which is identical to polar co-ordinates), and finally by a height above (or
below) the zy-plane. As such a point in cylindrical co-ordinates is of the form (r, 6,).

In order to plot surfaces given in terms of cylindrical coordinates, we must use the
RevolutionPlot3D function. This function is designed for drawing surfaces of revolution
(see Section 2.3.2), however we may also use it for cylindrical coordinate plotting. The
cone (which we plotted above with parametric cartesian equations of (v cos u, v sin u, v))
may be expressed, in cylindrical coordinates, by the function z = r.

In[110]:= RevolutionPlot3D[r, {r, -1, 1}]

Out[llO]: g’ =

Note here that we did not need to specify an iterator for 6. This is due to two
factors acting in concert. Firstly, our expression did not involve 6 at all. Secondly,
RevolutionPlot3D will, by default, apply the rotation angle through a range of 0 to
2m. We may specify a different rotation angle by providing a second iterator, which will
be understood to be the angle, regardless of which name we give it.

In[111]:= RevolutionPlot3D[r, {r, -1, 1}, {bob, 0, 3 Pi/2}]

Out[lll]: F ki

Spherical co-ordinates are similar to cylindrical, differing only in the final co-ordinate.
As with cylindrical co-ordinates, we have an 7,60 pair that locates a point on the xy-
plane. We then rotate that point vertically by an angle ¢ € [0..7] where the angle is
measured against the z-axis, with 0 pointing upwards, and 7 pointing downward. Thus
a point in 3-space in spherical co-ordinates has the form (r,8, ¢). Our r co-ordinate in
this system will always be the distance of a point from the origin (note that this is
not the case with cylindrical co-ordinates). As the name might suggest, this co-ordinate
system is very well suited to locating points on a sphere. Indeed, anybody familiar with
longitude and latitude on maps of earth will have seen this concept before.

2.3 Multivariate Calculus 115

Unlike cylindrical coordinates, there is a function specifically for expressions given
in terms of spherical co-ordinates named SphericalPlot3D. This function expects its
first argument to be an expression for r to be as a function of § and ¢. For example, a
sphere of radius 1 has the simple cylindrical expression r = 1.

In[112]:= SphericalPlot3D[1, {theta, 0, 2 Pi}, {phi, O, Pi}]

[

05

-05,

-10.
(1

on

Out[l 12]: in

We may also describe the sphere in terms of implicit functions. As such we may
plot it using the ContourPlot3D function, which is a three-dimensional analogue of the
ContourPlot function from Section 2.2.4. As one might expect, the three-dimensional
version takes an expression in three variables, as well as three iterators.

In[113]:= ContourPlot3D[x"2+y 2+z"2==1,
{x, -1, 1}, {y, -1, 1}, {z, -1, 1}
]

o
-05

-1
1o

|
J

on

Out[113]=

Note that if we want to perform parametric plots of functions in either cylindrical
or spherical coordinates, we will need to convert them back to cartesian coordinate
parametric equations, and use the ParametricPlot3D. In fact, this is essentially what

116 2 Calculus

SphericalPlot3D already does. The interested reader is encouraged to check out Math-
ematicas Documentation Center for more information on any of the plotting functions,
described above.

2.3.2 Surfaces and Volumes of Rotation

In general, calculating volumes is usually a job for iterated integrals (see Section 2.3.4).
However, volumes of solids of revolution may be calculated with a single integral. A
solid of revolution is produced by rotating a curve in the plane about a line. Usually,
but not always, one of the axes is chosen. As an example, let us consider the sine curve
between 0 and 7.

In[114]:= Plot[Sin[x], {x, O, Pi}, AspectRatio -> Automatic]
1.0
0.8
0.6
04

0.2

Out[114]= 05 10 L5 20 25 3.0

If we rotate the above sine curve about the z-axis we can imagine a sort of symmet-
rical teardrop shape. In fact, we can do better than imagine. We can have Mathematica
draw us a picture. We have already seen the RevolutionPlot3D function, and noted
that it is for plotting surfaces of revolution. However, this function produces surfaces
by rotating a curve around the vertical axis, whereas here we are rotating around the
horizontal axis. Instead, it is simplest to use a parametric equation.

To this end, notice that at any point « € [0, 7], our rotated surface will have a cross-
section, parallel to the yz-plane which is a circle or radius sin(xz). We may, therefore,
parameterize the surface of the rotated surface by

[,y, z] = [t,sin(t) sin(), sin(¢) cos(0)]

where ¢ € [0, 7] and € € [0,27). This we may now plot.

In[115]:= ParametricPlot3d[{t, Sin[t] *Sin[thetal], Sin[t] *Cos[thetal},
{t, 0, Pi}, {theta, 0, 2Pi}

Out[115]: 5. B S

2.3 Multivariate Calculus 117

The parameterization of this surface gives us a hint as to how to use integration
to calculate the volume. We think of the volume as an infinite number of infinitely
small disks (otherwise known as “circles”), and add up the area of each circle over an
interval, the interval being [0..7] in this case. The accumulated area is the volume.
This is, incidentally, identical to a Riemann sum where we (more or less) add up the
height of an infinite number of infinitely small boxes (otherwise known as “lines”) and
accumulate these heights over an interval to obtain an area. The disks we are calculating
are perpendicular to the axis of rotation.

We know that the area of any particular disk is 772, and because our radius is
sin(x), each disk in our particular example will have area A(z) = 7sin(z)?. So the area,
remembering we have only rotated the portion of the sine curve between 0 and m, is

/OﬂA(x) dr = /Oﬂw sin(z)? do = W/Oﬂsin(q;)2 L

This we may now calculate in Mathematica or manually, as we see fit.

In[116]:= Pi* Integrate[Sin[x]"2, {x, 0, Pi}]
Out[116]= 12
HERIE

In general, the volume of a solid produced by rotating a function f(x) inside an
interval [a, b] around the x-axis is given by the integral

7r/abf(av)2 dx

If we wish to rotate a function f(z) around the y-axis, then we need to rewrite
the function as a function of y instead. Note that this is more complicated than just
replacing every z in the function with a y. For example, let us rotate the parabola
y = 2% around the y-axis for z € [0, 2].

We start by plotting what we want to see. First, however, remember that with a three-
dimensional plot it is the z-axis which is pointing upwards, but for a two-dimensional
plot it is the y-axis that is pointing upwards. This is easily fixed by just renaming the
y-axis to be the z-axis instead, giving us our “new” function of z = x2, being rotated
around the z-axis. For the remainder of this section, and any time we discuss volumes
of revolution, we consider the 2-D plots to be in the xz-plane.

We are rotating a curve that sits in the zy-plane around the z-axis. Mathematica
provides a function specifically for plotting such things, called RevolutionPlot3D. We
simply give the function the same expression we would use to plot the curve in two
dimensions, and it takes care of the rest.

In[117]:= RevolutionPlot3D[r~2, {r, 0, 2}]

Out[117]=

118 2 Calculus

Straight away we have an issue (although it is not immediately obvious). It is not
clear from this plot whether we mean the volume between the paraboloid and the z-
axis, or the volume “below” the paraboloid, down to the zy-plane. In fact we meant the
latter, which is troublesome to visualize on that plot.

We remedy matters here. It is useful to be explicit about precisely which area we are
rotating around the z-axis. In this case, we wish to take the volume under the curve
z = z2, but above the z-axis, and between the values z = 0 and = 2. By plotting
these bounds in two dimensions we should make it clearer exactly which area will be
rotated.

In[118]:= Block[{p, x, z},
P[1] = ParametricPlot [{x, x"2}, {x, 0, 2}]
P[2] = ParametricPlot [{x, 0}, {x, 0, 2}]
P[3] = ParametricPlot [{2, x"2}, {x, 0, 4}]
Show[P[1], P[2], P[3]]

Out[118]= s 1.0 s 20

We can’t see the line that forms the lower bound, because the z-axis is obscuring
it, nonetheless it is quite clear now exactly which area is being rotated. We plot the
volume of revolution now, and again—just as with the 2-D plot above—we include the
bounds as well. The line where z = 2 becomes a cylinder when rotated, and the line
at the bottom of the plot becomes a disk. We are also cunning and leave a part of the
solid open, so that we can see inside for a better impression of the solid in question.

In[119]:= RevolutionPlot3D[{{x, x"2}, {x, 0}, {2, x"2}}
{x, 0, 2}, {theta, 0, 5Pi/ 3}

Out[119]=

2.3 Multivariate Calculus 119

Note that instead of a list of expressions, we have instead used two-dimensional
parametric equations in the RevolutionPlot3D command, above. The function has no
trouble with this, and simply takes the two-dimensional curve described by these para-
metric equations, and rotates them around the vertical axis. Be careful here, these are
cartesian parametric equations rotated around an axis. They are not cylindrical para-
metric equations. Unfortunately, the RevolutionP1lot3D function will not plot cylindri-
cal parametric equations.

Now in order to compute the volume using our integral, above, we need to be rotating
around the same axis as the independent variable of our function. Here, however, we are
rotating a function of around the z-axis (still using the z-axis as the upward pointing
one). We need to rewrite our function as x = f(z). Rearranging z = 22 in this manner
produces © = /z. We also notice that z =0 = z=0and z =2 = z =4, so we
may equivalently consider our rotation as rotating the function @ = /z for z € [0, 4]
around the z-axis. However, it is the area of the function above x = /z that we are
rotating around the z-axis. The upper bound for this function is the line x = 2.

In[120]:= Plot[{Sqrt[z], 2}, {z, 0, 4}]

20

0.5

Out[120]= T 2 3 4

Keep in mind that we are now rotating around the horizontal axis. So, what we
actually want is the area between the two curves = 2 and x = /2 for 0 < 2z < 4 to be
rotated. That’s easy. Observe that 2 = 2 is always larger than z = /2 on the interval in
question. For the area itself, we could happily calculate the integral of the larger minus
the integral of the smaller. We may take the same approach with the volume integral. If
we calculate the volume of the cylinder we obtain by rotating x = 2 around the z-axis,
and subtract from that the volume of the paraboloid (obtained by rotating the volume
under the function z = 1/z) then we have calculated the precise area we wanted. This
is demonstrated in Figure 2.2.

In short, we wish to calculate

4 4, 4
7r/22dz—7r/\/2 dz:w/él—zdz
0 0 0

In[121]:= Pi* Integrate[4-z, {z, 0, 4}]
Out[121]= 87

Let us return now to our sine function, plotted between x = 0 and x = w. We now
rotate this around the z-axis (treating z as the axis pointing “up” again, as we did with
the last example). We start as we have each other time, with plotting the surface to see
with what we’re dealing.

120 2 Calculus

Fig. 2.2 Cylinder with paraboloid removed.

In[122]:= RevolutionPlot3D[{{x, Sin[x]}, {x, 0}},
{x, 0, Pi}, {theta, 0, 5Pi/ 3}
]

Out[122]=

Note the parametric equations used in the above plot. We also used parametric
equations when plotting the paraboloid volume earlier. The astute reader may realize
that we might have avoided parametric equations, since both z = sin(x) and z = 0 are
regular functions. We might have tried the following.

In[123]:= RevolutionPlot3D[{Sin[x], O},
{x, 0, Pi}, {theta, 0, 5Pi/ 3}
]

Out[123]=

2.3 Multivariate Calculus 121

All we got was the disc, and not the sine curve. This is because the expres-
sion {Sin[x], 0} was interpreted as a single cartesian parametric equation. The z-
coordinate is equal to sinz, and the y-coordinate is equal to 0, with the parame-
ter x varying from 0 to 7. In other words, we have described a line segment on the
z-axis between x = 0 and x = 1. When rotated around the vertical axis by the
RevolutionPlot3D function, we have a disc. In order to avoid this problem, we in-
stead, above, used parametric equations to describe both curves we wished to rotate,
and there was no confusion on the part of Mathematica with regards to what we wished
drawn.

Back to the volume we wish to calculate, we have a problem inasmuch as there’s no
particularly easy or, at least, obvious way to rewrite z = sin(z) as a function of z. The
z-interval is clearly [0, 1], however, for any given value of z there are two values of x.
This is easily seen with a plot.

In[124]:= Plot[{Sin[x], 0.9}, {x, 0, Pi}, AspectRatio -> Automatic]
10}

0.8

0.6

0.4

021

Out[124]= 03 Io Is 20 25 30

The line z = 0.9 clearly cuts the sine function in two places.

Now, we may try and express the solid of rotation as an area between two functions,
f(2),g(2) and calculate the integral accordingly. However finding these two functions is
tedious and time consuming®. Instead, we use a slightly different integral to calculate the
area. Our previous method used disks that were perpendicular to the axis of rotation.
This time we use a method known as “shells”. To do this, we approximate the area as
infinitely many cylinders, centered at the origin, and with radius z and height sin(z).
The surface area of each cylinder is the circumference multiplied by the height. As such,
the area function is A(x) = 27z sin(x), and our volume may now be calculated as

/ A(z)dx = / 2mx sin(z) dx = 27r/ xsin(x) dx
0 0 0

In[125]:= 2*Pi* Integrate[x*Sin[x], {x, 0, Pi}]
Out[125]= 27

And, in general, if we rotate a function y = f(x) between x = a and = b around
the y-axis then the volume of the solid of revolution is given by the integral

27r/bxf(x) dx

And we always have the possibility of changing between these two integrals, by re-
writing the function and interchanging the dependent and independent variables if the
integration in one method proves too troublesome.

We may check our paraboloid volume calculation using this method.

5 The astute reader may notice the symmetrical nature of the sin function, and might try computing
the volume over the interval 0 < z < 7/2, and doubling it. This is an admirable approach, but does
not lead to us introducing the shells method integral.

122 2 Calculus

In[126]:= 2*Pi* Integratel[x*x"2, {x, 0, 2}]
Out[126]= 8

2.3.8 Partial and Directional Derivatives

Recall that for a function of two or more variables, the derivatives are taken with
respect to one of the variables at a time. These are known as partial derivatives. There
are several ways to denote partial derivatives, of which we use the following two. Let
f :R? = R. Then the first partial derivative of f with respect to z is denoted by

fz or g—i

and the first partial derivative of f with respect to y is denoted by

Both of these are functions (R? — R) in their own right.
Note that, if we do not have a name for our function, we may write the function in
brackets after the 0 notation. For example,

0 (2% +y?
Ox \ 22 — 42
would be the first partial derivative with respect to x of the rational polynomial (22 +
2 2 _ 2
W)/ —).

If we take the derivative of one of these derivatives, then we again may take a partial
derivative. By doing so we obtain a second partial derivative. The variable with respect
to which the second derivative is taken may be different from that with respect to which
the first derivative was taken (because a first partial derivative is still a valid function
in its own right). The four possibilities for a second partial derivative are as follows.

02 f 02 f
Jow or Ox2 Jay or Oyox

0% f 0% f
fy,m or axay f?hy or ayg

In general if we have a function that is an nth partial derivative, which we then take
yet another partial derivative of, then we have the following scenario.

9 o g
(fm,.u,:rn)szrl - fm1,.u,xn+1 or axn+1 (8% . 8901) - axn-i-l . axl

Note that the above also demonstrates why the 0 notation has the variables written
backwards.

Like standard derivatives, partial derivatives are defined in terms of the limit of the
slopes of a series of lines between the point at which we wish to calculate the derivative,
and another point near to it, as follows.

2.3 Multivariate Calculus 123

fz(af,y) = %li% f(l‘ +h y})L — f(x,y) or fy(x,y) = }lﬁ_}rno f(x’y + h}z — f(x,y)

Mathematica may perform partial derivatives. Indeed, the D function we have already
used for regular differentiation will happily perform partial differentiation. In fact, if
we look it up in the Documentation Center we are told that the very purpose of D is to
compute partial derivatives. Note that in the case of a single variable function, there is
no distinction between a partial derivative, and a For a first partial derivative, we tell
Diff with respect to which variable we want to take the derivative.

In[127]:= With[{p = Sum[x~i*y~j, {i, 0, 2}, {j, 0, 2}1},
p // Print;
D[p, x] // Print;
D[p, y] // Print;
]

out[127]= 1+ z + 22 + y + zy + 2%y + v* + 2° + 223>
Out[128]= 1+ 2z + y + 2xy + y* + 2zy°
out[129]= 1+ z + 22 + 2y + 2zy + 222y

And for second and later partial derivatives, we simply list the derivatives in the order
they are to be taken. For example, 82 f /0x? is calculated with D[£ [x], x, x] which tells
Mathematica to take the first derivative with respect to x and then the second derivative
with respect to x. Mixed partial derivatives are achieved by specifying the variable in
which we wish to derive with respect to as each argument. The order of the arguments
is the order of the differentiation. Observe.

In[130]:= With[{p = Sum[x"i=*y~j, {i, 0, 2}, {j, 0, 2}1},
Dlp, {x, 2}] // Print;
Dlp, x, y] // Print;
Dlp, y, x] // Print;
Dlp, {y, 2}] // Print;
]

Out[130]= 2 + 2y + 2¢/>
Out[131]= 1+ 2z + 2y + 4zy
Out[132]= 14 2z + 2y + 4zy
Out[133]= 2 + 2z + 222
Note that in Section 2.1.4, we performed kth derivatives of one variable with the
input D[expr, x, k]. We may do this for multivariate expressions as well, however this
input form will only work for successive differentiation with respect to only one of the

variables. That is, it will only work for 9%/0xF, 9% /0y, 9%/0zF, etc. To put it yet
another way, we cannot express mixed partial derivatives this way.

In[134):= With[{p = Sum[x"i*y"j, {i, 0, 2}, {j, 0, 211},
Dlp, {x, 2}] // Print;
Dlp, {y, 2}] // Print;

Out[134]= 2 + 2y + 232
Out[135]= 2 + 2z + 222

124 2 Calculus

There is no ~ notation for computing partial derivatives of functions, like we had for
regular derivatives. However, the -~ notation is shorthand for the Derivative function.
That is, £~ [x] is shorthand for Derivative [f] [x]. For a function of multiple variables,
to compute the first partial derivative with respect to the first variable, we use the
command Derivative[1, 0]. To compute the first partial derivative with respect to
the second variable, we use the command Derivative[0, 1]. For example,

In[136]:= Block[{f, x, y}
flx_,y. 1:=x"2-y " 2+x*y;
flx, yl // Print;
Derivative[1, 0] [£f] [x, y] // Print;
Derivative[0, 1] [£f] [x, y] // Print;
]

Out[136]= z? + TY — y2
Out[137]= 2z +y
Out[138]= = — 2y

Note that Derivative [f], which is equivalent to £~ remember, is, itself, a function
which will take a single argument and will output the derivative of £ evaluated at that
argument. This allows us to make sense of the input Derivative[f] [x] or, equivalently,
£ [x]. Similarly Derivative[0, 1] [£f] is also a function which will take arguments;
in this case, we should expect it to take two. This allows us to make sense of the
input Derivative [0, 1] [x,y]. There’s no reason these arguments have to be unknown
variables. For instance, the first partial derivative with respect to x of the polynomial
in the example, above, is 2z 4+ y. This partial derivative, evaluated at the point (1,2) is
equal to 4. To compute this using the Derivative function, we may do the following.

In[139]:= Block[{f, x, vy}
flx_,y. 1 :=x"2-y " 2+x*y;
Derivativel[1l, 0] [f]1[1, 2]
]

Out[139]= 4
In this case, the following might be simpler, however.
In[140]:= D[x"2-y 2+x*y, x] /. {x->1, y->2}
Out[140]= 4

Returning to the Derivative function, the numbers within the first set of brackets
indicate how many times to take the derivative with respect to each variable. For ex-
ample, Derivative[1, 0] [f] indicates that we wish to derive with respect to the first
variable once, and the second variable not at all. To compute second partial derivatives,
then, we simply use larger numbers. The following examples may be quickly checked
by hand.

In[141]:= Block[{f, x, y}
flx_,y. 1:=x"2-y " 2+x*y;
Derivative[1, 0] [f][1, 2]
]

Out[141]= 4

2.3 Multivariate Calculus 125

The above commands correspond to fy 4, fuz.y, and fy 4 respectively. Note that this
method gives us no way of determining the order in which the partial derivatives are
given. That is, we cannot specify whether to derive with respect to z first, then y, or
the other way around.

Recall that for a function with continuous second partial derivatives, then the second
partial derivatives, f, , and f; , will be equal. This is Clairaut’s theorem (see [12]). More
precisely:

Theorem 1 (Clairaut’s). Let f be a function defined on a disk D C R?, such that

all the second partial derivatives are continuous on D. Then f, »(a,b) = fy(a,b) for
every (a,b) € D.

It follows, of course, that if the function f is defined for all of R? and its partial
derivatives are continuous on all of R? then it will certainly be the case that fy , = fs,-

We have seen an example of this above, with the second partial derivatives of our
polynomial p. A quick check of our first partial derivatives of our function f shows
that the second partial derivatives f; , and f, , are clearly equal. Let’s look at another
example.

In[142]:= Block[{exp, x, y}
exp = S8in[x"2+y"2]
D[exp, x, y]
D[exp, y, x]
]

Out[142]= — 4zy Sin [x2 + yQ}
out[143]= — 4ay Sin [2® + y?]
This even extends to higher partial derivatives.

In[144]:= Block[{exp, x, y}
exp = Sin[x"2+y~2]
D[exp, x, x, y]
D[exp, x, v, x]
D[exp, y, x, x]

]
Out[144]= — 8z%y Cos [332 + y2] — 4y Sin [x2 + yz]
Out[145]= — 822y Cos [x2 + y2] — 4y Sin [x2 + y2]
Out[146]= — 8z%y Cos [x2 + y2] — 4y Sin [Jc2 + yz]

For an example where Clairaut’s theorem does not hold, see Exercise 13.

The partial derivatives, just as regular derivatives, allow calculation of a line that
is tangent to a surface, f(x,y) say. However, there are potentially many such tangent
lines in a three-dimensional space. As such, the partial derivatives f, and f, give the
slope of a tangent line parallel to the x- or y-axes, respectively.

Lines in three-dimensional space are tricky, but may be described by a parametric
equation. In the case of our directional derivatives, we know a point on the line, the
direction each line is traveling, and the rate at which the height of each line changes
(the slope). In short, we have all the information we need to plot the tangent lines.

For a surface f(x,y) we may use the following parameterization of the tangent lines.

(zo +u, Yo, f(xo,y0) + u- fx(xo,yg)) in the z direction
(mo, Yo + v, f(zo,y0) +v- fy(xo,yo)) in the y direction

126 2 Calculus

and, of course, the obvious parameterization of the surface itself as [u, v, f(u,v)].
We may (and, indeed, do) explore this in Mathematica.

In[147]:= Block[{t1lx, tly, p, f, u, v, x0=0, yO =1}
flx_,y. 1 :=x"2+y"2;
tlx = {x0+u, y0, f[x0, yO] +u*Derivative[1, 0] [£] [x0, y01};
tly = {x0, yO+v, £[x0, yO] +v *Derivative[0, 1] [f] [x0, yO]};
p=A{u, v, £lu, v1};
ParametricPlot3D[{p, tlx, tly}, {u, -1, 1}, {v, -1, 1},
BoxRatios -> {1, 1, 1}

]
]

Out[147]: 210

Note that the author needed to manually rotate the plot in order to see its “best
angle”. Also note the BoxRatios option which was used to force the plot volume to be
scaled to a cube. The reader is encouraged to look up this option in the Documentation
Center for more information.

The directional derivatives allow us to calculate the tangent plane to a surface in 3-D.
Given a function, f(z,y) say, with continuous derivatives the equation of the tangent
plane to the surface of f at a point (zo, yo, 20) is

0 0
z—20 = é(xo,yo) (= xo) + afg(xo,yo) (¥ — %)

which may be rewritten as

°T %(%’yo) (x— o) + %(woayo) “(y —yo) + 20

= %(:Eo,yo) . ({E - xO) + %(xo,yo) . (y — yo) + f(w07y0)

because if (xo, Yo, 20) is a point on the surface of f(z,y), then it must be the case that
z0 = f(z0,Y0)-

Turning to Mathematica now. First we’ll look at the generic tangent plane equation
for the paraboloid.

In[148]:= Block[{f, x0 = "a", y0 = "b"},
flx_,y. 1 :=x"2+y"2;
£ [x0, y0] +Derivative[1, 0] [£] [x0, yO] * (x-x0) +

2.3 Multivariate Calculus 127
Derivative[0, 1] [£] [x0, yO] * (y -y0)
1
Out[148]= a? + b? + 2a(—a + z) + 2b(—b + 7)

Well, that’s all well and good, but it’s about time we produced some plots.

In[149]:= Block[{f, tp, x0 =0, yO =0},
flx_,y. 1 :=x"2+y"2;
tplx_, y_] :=£[x0, yO] +Derivative[1, 0] [£] [x0, yO] * (x -x0)
+Derivative[0, 1] [£f][x0, yO] * (y -y0);
Plot3D[{f [x, y]l, tplx, y1}, {x, -1, 1}, {y, -1, 13}]

-1 f.l 5 o 0ns 1

{1

Out[149]= n

In[150]:= Block[{f, tp, x0 =1, y0 =2},
flx_,y. 1 :=x"2+y"2;
tplx_, y_] :=£[x0, yO] +Derivative[1, 0] [£] [x0, yO] * (x -x0)
+Derivative[0, 1] [£f] [x0, yO] * (y -y0);
Plot3D[{f [x, y]l, tplx, y1}, {x, -2, 2}, {y, -2, 2}]

Out[150]=

We may, as we have seen, calculate tangent lines (and so instantaneous rate of change)
at any point in either the x- or y-directions as we wish. Furthermore, we may use this
information to calculate the tangent plane at the same point. It should follow, therefore,
that we ought to be able to calculate the slope of a tangent line in any direction, and
also that it should lie on the tangent plane we have already calculated.

128 2 Calculus

To do this, we need a vector of unit length pointing in the direction we wish to
calculate the slope. Call this vector u = (a,b). Then we may calculate the directional
derivative in the direction of u at any point (x,y)

We show that this vector is on the tangent plane. If we ignore the z-axis for the
moment, we can parameterize the line from a point (zg,yo) in the direction of u as
[zo+t-a, yo+t-b] (think of the vector equation (zg, yo)+t-(a, b)). Getting back to thinking
three-dimensionally, we know that this line is climbing at the rate of D, f(xo, o) in the
z axis for each unit moved in the direction of u, which is supposed to be of unit length
anyway.

This leads us to the parameterization of the line as

($O+t'a'a y0+tb7 f(man0)+tDuf(x07y0))

and so if a point on this line is on the plane, which we should recall has equation

z = f(xo0,y0) + fo(x0,90) - (x — x0) + fy(l’o,yo) (¥ — %) (2.1)

then it must be the case that the point satisfies equation 2.1. Therefore, if the entire line
as parameterized above lies on the plane, then every point on it satisfies equation 2.1.
So if we substitute x = zg +¢-a and y = yo + ¢t - b into 2.1 we should get z =

f(x(JayO) +t- Duf($0»y0)~
Over to Mathematica now.

In[151]:= Block[{f, tp, du, %0, y0, x, y, t, a, b},

tp = £ [x0, yO] +Derivative[1, 0] [£] [x0, yO] * (x-x0) +
Derivative[0, 1] [£] [x0, yO] * (y-y0);

du = Derivative[1, 0] [£] [x0, yO] xa+
Derivative[0, 1] [£] [x0, yO] *b

f[x0, yO] +t *du ==
(tp/. {x->x0+t*a, y->x0+t*Db})

]

Out[151]= f[x0,y0] +¢ (vf(o’l)[XO, yO] + uft0 [XO,yO]) ==
Fx0,50] + tof O [x0, y0] + tuf 0 [x0, y0]

In[152]:= Simplify [%]
Out[152]= True

And there we have it. We could probably have done without the final simplification,
inasmuch as it was clear that the two calculated expressions were the same, but it never
hurts to check and we didn’t have to go out of our way to do so. In any event, it is clear
that the directional derivative in the direction of a unit vector u will give us the slope
of a tangent line that lies on the tangent plane and travels parallel to the direction of
u.

2.3 Multivariate Calculus 129

2.3.4 Double Integrals

Just as the space under a curve, but above the z-axis, may be calculated as an area
via integration, so too can the space under a surface (i.e., a function z = f(z,y)), and
above the x-y plane, may be calculated as a volume using integration.

The same basic approach applies. Given a range for x and y we have a rectangle that
is a subsection of the xy-plane. We partition the x and y ranges, resulting in the area
under the surface being partitioned into rectangles. We then create rectangular prisms
by choosing a point inside every rectangle, and setting the height of that rectangular
prism to be the height of the function evaluated at that point. This should sound awfully
similar to the method of approximating the area under a curve with rectangles.

If we let A;; be the area of the (i, j)th sub-rectangle (i.e., the rectangle that is at the
intersection of the ith z-partition and jth y-partition), and (x7;,y;;) be a point inside
that sub-rectangle, then the area of the resulting rectangular prism is f (xz‘j,y;“j)AU.
The volume underneath the surface (and above the zy-plane) may be approximated by
adding up the volumes of all the rectangular prisms.

Fig. 2.3 Approximation of volume under a surface by rectangular prisms.

Figure 2.3 demonstrates this technique by using midpoints as the sample points
(z};,v;;)- Random points work just as well, as it happens (and, incidentally, also work
for Riemann sums of single variable functions).

We obtain the volume under the curve by taking progressively more and more rect-
angular prisms (which are, in turn, smaller and smaller). As such the volume under the
surface may be approximated by the double sum

SO raui) A
i=1 j=1
and the volume as the limit of this sum as both n and m approach co.
V= lim YN fag,) Aid

n,m—0o0
i=1j=1

130 2 Calculus

The question now is, how do we turn this into an integral? The key lies in recognizing
that the two sums (above) may be taken to infinity independently. In integration terms,
fix y as a constant, and calculate the integral of the function as if it were just a function
of the single variable x. The result will be a function of y that tells us the area under the
surface for any given y value. Integrating this function with respect to y will give us the
volume. This is, in fact, very similar to our volumes of revolution from Section 2.3.2. If
we think of this as accumulation, we accumulate an infinite amount of areas to obtain
a volume, just as we did with the disks or cylinders of the solids of revolution.

To make this more rigorous, let f(z,y) be a function of two variables. We wish to find
the volume under the surface of f for x € [z1, z2] and y € [y1,y2]. In other words we want
to integrate over the rectangle [x1, 23] X [y1, y2]. Furthermore, suppose that f(z,y) is
continuous over that rectangle. The integral f;f f(z,y) dz is used to denote integrating

with respect to while holding y fixed. Similarly ﬁf f(z,y) dy denotes integrating with

respect to y while holding x to be fixed. These are called partial integrals (compare to
partial derivatives).
Then the volume can be calculated as

[([o)

which, for simplicity’s sake is usually just written without the bracketing, as it is un-
derstood that the innermost integral needs to be performed first, before the outermost

integral may be performed
Y2 T2
V= / / [, y) dady
Y1 x1

Let’s look at this in Mathematica using our favorite paraboloid, over the rectangle
[725 2] X [727 2]

In[153]:= Integrate[x"2+y~2, {x, -2, 2}] Integratel%, {y, -2, 2}]

16
Out[153]= 5 + 4y
outlisa— =2
T T

We see from the above that the first integration did indeed leave us with a function
of y. We also see that, apparently, the volume is 128/3 cubic units. We should hope,
given the double sum definition, and the basic idea that we are calculating a volume,
that if the order of integration is reversed, we should obtain the same answer. As it
happens, we do indeed.

In[155]:= Integrate[x~2+y~2, {y, -2, 2}] Integratel%, {x, -2, 2}]
16

Out[155]= — + 422
Out[156]= 128
HRE TR

A guarantee that the double integral will always give the same answer, no matter
the order the integrals are performed in, is given by Fubini’s theorem. The guarantee
is dependent on the function f being continuous over the rectangle in question. In fact,
it is even true sometimes when f is not continuous over the rectangle, but we do not
concern ourselves with the generalization.

2.3 Multivariate Calculus 131

Mathematica is often capable, it should come as no surprise to find, of handling
double (even multiple) integrals without the need to manually perform each single
integral. This is achieved by simply having multiple iterator arguments, much like we
did for the Sum and Table functions back in Section 1.2.5.

In[157]:= Integratel[x"2+y~2, {x, -2, 2}, {y, -2, 2}]
Integrate[x"2+y~2, {y, -2, 2}, {x, -2, 2}]

Outf1s7}= 2>
3
Outf1sel= 2>
3

The reader may have noticed that the volume we get for this paraboloid is somewhat
larger than the 87 cubic units of the paraboloid we obtained from revolving z = 22
around the z-axis. Observe.

In[159]:= {128 /3, 8Pi} // N
Out[159]= {42.6667,25.1327}

This is explained by remembering that the volume of revolution was calculated with
a circular base, whereas our paraboloid has a square base. The extra area under the
corners (where, incidentally, the paraboloid realizes its largest values) explains the dis-
crepancy.

To see this, we can adopt a couple of approaches. The first (and least satisfying) is
to plot both surfaces together and see if we can see one completely contained in the
other.

In[160]:= Block[{P},

P[1] =Plot3D[x"2+y"2, {x, -2, 2}, {y, -2, 2},
PlotStyle -> Blue
1;
p[2] = RevolutionPlot3D[r"2, {r, 0, 2}, PlotStyle -> Red] ;
Show[P[1], P[2]]

]

Out[160]=

We can see where the revolved paraboloid stops, and the other continues, but it’s
messy to say the least. A more compelling way of convincing ourselves would be to
make a new function that is 22 + y? as long as v/z2 + y2 < 2 and 0 otherwise. That is,

we want
224+ y? if a2+ y2 <2
F(ﬂf,y)—{

0 otherwise

132 2 Calculus

Integrating this function then should only give us the area of the paraboloid under the
circle of radius 2 centered at the origin, and thus our 8 volume. To achieve this we use
the Piecewise function.

In[161]:= Piecewise[{{x"2+y~2, Sqrt[x"2+y~2 <= 2}}, 0]]
Integratel[%, {x, -2, 2}, {y, -2, 2}]

2 2 2 2<9
w161l {:g +y? V2R <

True
Out[162]= 87

Readers familiar with iterated integrals should be able to verify this using integration
techniques for type I or type II regions (see [12]). We content ourselves with the above.

Let us return to the idea of partial integration. We should expect the notions of
integrals as antiderivatives to extend to partial integrals and partial differentiation. We
explore this in Mathematica.

In[163]:= Integrate[x"2+y~2, x]
D[%, x]
3

z 2
Out[163]= 3 + zy

Out[164]= z2 + y2

In[165]:= Integrate[x"2+y"2, y]
D[%, yl
3

Out[165]= x2y + %

out[166]= % + 12

That certainly looks promising. Partial integration with respect to x or y is undone
by partial differentiation with respect to x or y as appropriate. Also interesting is that
if we follow the usual substitution done by hand in integration, we can probably obtain
the definite integrals Mathematica calculated for us earlier.

In[167]:= With[{int =x"2+y~2, x},
(int /. x->2) - (int /. x => =-2)

]
1
Out[167]= 36 + 49

In[168]:= With[{int =x"2+y~2, vy},
(int /. y->2)-(int /. y->-2)
]

16
Out[168]= —= + 422

That is, we have shown that

=42+

y=2 E
3

r=2
1 16 1
|:3 z° + yzx] =3 +4y* and [$2y + 3 y?

r=—2 y=—2

which is all as it should be, but is nonetheless nice to have verified.
Finally, we try a truly general function, and see if Mathematica’s partial differentia-
tion and partial integration still undo each other.

2.3 Multivariate Calculus 133

In[169]:= D[Integratelf[x, yl, x], x]
Integrate[D[f[x, yl, x], x]
Out[169]= f[x,y]
Out[170]= f[z,y]

In[171]:= D[Integratel[f[x, yl, yl, vl
Integrate[D[f[x, y]l, yl, vyl

Oout[171]= flx,y]
Oout[172]= f[x,y]

Mathematica certainly seems to think that partial differentiation and partial inte-
gration are inverse procedures.

We have only just scraped the surface here with double integrals in particular, and
multivariate calculus in general. The interested reader is encouraged to read [12] and/or
any other good calculus texts. Exploration and confirmation of such material should be
possible with the tools used and discussed in this section.

134 2 Calculus

2.4 Exercises

The exercises for this, and subsequent, chapters are less numerous and slightly longer
in duration when compared to the exercises from Chapter 1. An effort has been made
to keep the amount of work each question requires roughly the same for each question,
and also for each question to be more or less self-contained. However, no guarantees to
this effect are made.

1. Plot the following functions. Make sure that, where possible, you plot all important
information to the plot; turning points, zeroes, and so on.

a. 25 — Tz — 16227 4 87822 + 3937z — 15015
b S T

T
cosr —1

x
d 2 -3zt +22 -2 -5
e. sin(z)? + cos(x)?

2. Consider the expressions p(y) = —y%log(y) and q(y) = y- (log(y))?, with 0 <y < 2.

a. For what ranges of y is p(y) < q(y)?

b. For what ranges of y is q(y) < p(y)?

c. How do these expressions behave when y > 27 Is one always larger than the
other? Can you be sure?

3. Evaluate the limits of the following functions for x = +o00 as well as any undefined
points. Produce appropriate plots to demonstrate these limits.

a. tanhx c. sin =

x
22 +1

b, ——
2 —1

1
d. cos —
T

4. Find all critical points, maxima and minima, and inflection points for the function
Yy = zt + .

5. A cone may be constructed by cutting a sector out of a circle,
and then joining the two straight lines CA and CB (from the
diagram to the right) which are created by the removal of arc.
If the circle has radius R, then find a formula for the maximum
volume that such a cone may have.

Hint: Try finding the circumference of the circle at the top of
the cone.
Hint2: You will probably need to tell Mathematica some as-

sumptions about your variables.
6. Evaluate the following integrals. In each case the answer is a combination (i.e., sums

or products) of constants such as e, v/2, v/3, 7, ¢(3), log2, and v (Euler’s gamma
constant). At least one even involves logm. If Mathematica cannot calculate the
integral directly, evaluate it numerically and try to identify the result.

z 2
2 €T s 4 \/5 3 3
z arcsm(— sin x) sin x
a./ ——dx . 2
o sSin“x :)
0 V4 —2sin“x

% 4 [e%¢) 1
b. / L dr d. / —EL da
o Sin“x o cosh“zx

dzx

2.4 Exercises 135

10.

11.

The following two integrals arise from mathematical physics, but neither had a
known closed form as of 2009. This may have changed.

. /110g(\/w+1)—10g(\/m—1)

1+y?

dy

arcsec(x
E / =)
v 4x -
Solve the following linear differential equations, verify the solution, and plot it for
some values of the constant.

a. zy’ +y =xcosz (for z > 0) b. y' + (cosz)y = cosx

How do the solution curves change as the constant changes?
The differential equation

2y +ay' + (2 = a®)y =0
is known as the Bessel equation. The solutions to this equation give rise to the so-
called Bessel functions of the first and second kind, J,(x) and Y, (x), respectively.

a. Solve the Bessel equation for the special cases of o = % and o = % Verify the
solutions.

b. Solve the Bessel equation for the general case. Verify the solution.

c. Plot the Bessel functions J, and Y, for some values of a of your choosing.

The modified Bessel functions of the first and second kind—I,(z) and K,(z),
respectively—are solutions of the modified Bessel equation,

22y +ay — (22 +a®)y=0

d. Solve the modified Bessel equation for the general case. Verify the solution.
e. Plot the modified Bessel functions I, and K, for some values of « of your
choosing.

a. Plot Pac-Man® on a set of Cartesian axes. You need only produce the basic
outline.
Hint: Try using multiple polar co-ordinate plots and the Show function.
b. Find a polar equation for the circle of radius 3 with center (1,2). Plot the circle
using this equation.
a. Find the volume obtained by rotating the area between by the curve z = x
and the z-axis for z € [0, 1] around the z-axis. Notice anything interesting?
b. Plot and calculate the volumes obtained by rotating the following areas around
the z-axis. In all cases the curve is z = log x with z € [0, 1].
i. The area underneath the curve (between the curve and the z-axis)
ii. The area between the curve and the z-axis.
Check your answers by calculating both the disks and the shells method.
Find and classify the critical points of the following functions of two variables.
Recall that critical points occur where f;(a,b) = fy(a,b) = 0. A critical point may
be a maximum, a minimum, or a saddle point.

2

6 Pac-Man is a video game character from the early 1980s. A quick Internet search should be all
that is needed in order to know what the plot must look like.

136 2 Calculus
a. f(z,y) =32y +y° —32% = 3y* + 2.b. f(z,y) := aye v
12. Verify that the following functions are solutions to the partial differential equation

fz + fy = sin(z) + cos(y). A solution to a partial differential equation is a function
whose partial derivatives satisfy the equation (compare to an ordinary differential

equation).
a. sin(y) — cos(z) + C - (y — x) c. sin(y) —cos(z) +y — §
b. sin(y) — cos(z) + (y — z)™ d. sin(y) — cos(z) + e (¥=2)

What do you think the general solution might be?
13. Let f be the function defined below.

ay(@® —y?)
fag) = 4 arggr @D # 0.0
0 if (,9) = (0,0)

a. Verify—visually or otherwise—that f is continuous at the origin.
b. Show that f;,(0,0) # f,z(0,0) and so Clairaut’s theorem does not apply to this
function.

Note: You need to use the limit definition on all functions to establish the value of
their partial derivatives at the point (0, 0).
14. Plot the following, and calculate their area using iterated integrals.

a. The area underneath z = xjy‘gewy for0<z<land0<y<1

b. The area between z = e~ cos(z? + y?) and z = 2 — 2% — y? for 2| < 1 and
lyl <1

The following iterated integrals are volumes underneath surfaces (z = f(z,y)) for

points (z,y) that do not lie inside a rectangle. Calculate the integrals. Can you
work out the bounding curves for the points (z,y)?

A 2 5
c. // z7y” dxdy d. // S S dy dx
170 0o Jo V14242

2.5 Further Explorations

1. Finding limits.

a. Let ag =0,a1 = % and define

1+a,+ad_,

Ap+t1 = 3

Determine the limit as n — oo, and find out what happens when a; = a is
allowed to vary.

b. Let a; = 1 and define
3+ 2a,

34+ an,

Determine the limit and find out what happens when a; = a is allowed to vary.

Ap+1 =

2.5 Further Explorations 137

The above two limits are easy enough to find and (depending on what you know)
to prove.

c. Let a; > 1 be given and determine the limit of the iteration

an

Upyl = Qp — ———x
Vita

+ sin(#)

for arbitrary 6.

2. A (strict) mean M(a,b) is a continuous function of two positive numbers that
calculates a number ¢ lying between a and b (strictly between them as long as
a # b). The arithmetic and geometric means are clearly such objects.
A mean iteration takes two means, M and N say, and iterates by setting ag = a,
bp = b and
ant1 = M(an,bpn), bpt1:= N(an,by)

The limit of such a strict mean iteration always exists and is denoted by M ® N (a, b).
Identify the limits of the mean iteration defined by the means in the following.

a+b 2ab
. M(a,b) := ——, N(a,b) :=
a M b) =20 N b = 20
Vab b+ vab
b. M(a,b) == HTG N(a,b) := %
3. Define .
sinc(z) := ST
oz

and explore the following integrals. Calculate them for all (natural) values of N
from 1 to 8 at least (more if you wish), and measure the time each calculation takes
to perform. Can you work out what is going on?

Chapter 3
Linear Algebra

3.1 Introduction and Review

In this section we introduce Mathematica’s linear algebra capabilities, and examine
some of the basic linear algebra that should already be familiar (or, at least, have been
seen before now). We presume that the reader is proficient, at least, in Gaussian and
Gauss—Jordan elimination of matrices.

3.1.1 Vectors and Matrices in Mathematica

Before we can start to explore much linear algebra in Mathematica, we must first know
how to create the basic building blocks required. As such, this section is essentially
devoted solely to Mathematica syntax and semantics for the basic building blocks of
linear algebra; matrices and vectors. This is unfortunate, but necessary, and we return
to more predominant mathematical endeavors as quickly as possible.

As previous stated, linear algebra more or less boils down to vectors and matrices
(although the distinction is not all that clear and students of second-year or later linear
algebra should see that matrices may, themselves, be the vectors of a vector space).
Mathematica handles both vectors and matrices, using lists.

To declare a vector, we simply declare a list that has no sublists as elements.

In[1:= {1, 2, 3, 4}
out[1]= {1,2,3,4}
Mathematica makes no effective differentiation between a column or a row vector.
However, if we wish to see our vectors displayed as a row vector we may use the
MatrixForm function. Be aware that once we do this, Mathematica no longer considers

the output to be a vector (or matrix, if we are working with matrices), and so the
MatrixForm function should only be used for “prettying-up” output.

In[2]:= {a, b, c}

a
Out[2]= b
C
J.M. Borwein and M.P. Skerritt, An Introduction to Modern Mathematical Computing: With Mathematica®, 139

Springer Undergraduate Texts in Mathematics and Technology, DOI 10.1007/978-1-4614-4253-0 3,
© Springer Science+Business Media, LLC 2012

140 3 Linear Algebra

Inasmuch as we use lists to represent vectors in Mathematica, we may use the Table
or Array commands to produce vectors whose elements have some sort of predictable
pattern.

In[3]:= Table[3i, {i, 1, 5}]
Array[v, 4]

out3]= {3,6,9,12,15}
out[4]= {v[1],v[2],v[3],v[4]}

Matrices may be declared in a similar fashion. We declare a matrix as a list of
vectors, where the vectors are the row vectors of the matrix. If we wish the output to
be displayed in the usual matrix form, we again use the MatrixForm function.

In[s]:= {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}
% // MatrixForm

out[s]= {{1,2,3},{4,5,6},{7,8,9}}

123
outls]= | 456
789

If we want to declare the matrix in terms of its column vectors, instead of its row
vectors, then we are a little stuck. We dodge this limitation in Mathematica’s list repre-
sentation by using the Transpose function to compute the transpose of a matrix. The
transpose of a matrix, A say, is the matrix created when column vectors are changed to
be row vectors, or—equivalently—vice versa, and is usually denoted AT

In[7):= {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}} // Transpose
% // MatrixForm

outl7= {{1,4,7},{2,5,8},{3,6,9}}

147
outlgl= [258
369

Just as with vectors, we may also use the Table and Array functions for declaration
of matrices. If we give two iterators to the Table function, then it is understood that
the first iterator refers to the outer-most list, and the second iterator to the inner lists.
For the Array function, we simply give a list of the dimensions of the matrix as the
second argument.

In[9]:= Table[10 i + j, {i, 1, 4}, {j, 1, 4}]
% // MatrixForm
Array[A, {3, 3}] // MatrixForm

outo]= {{11,12,13,14},{21,22,23,24}, {31, 32,33, 34}, {41,42, 43, 44}}

111213 14
21222324
31 32 33 34
41 42 43 44

A[1,1] A1, 2
out[ll]= [A[2,1] A[2,2]
A[3,1] A[3,2]

Out[10]=
[1,3]
2, 3]
3,3]

3.1 Introduction and Review 141

Now that we know how to produce vectors and matrices in Mathematica, we should
expect to be able to perform the usual arithmetic with them. Matrices and vectors may
both be added and subtracted with the usual Mathematica operators for those purposes.
They may be scaled using the multiplication and division operators (note that division
by a is the same as scaling the vector by a~!). Similarly, matrices must be of the same
size to be able to added.

In[12]:= {ul, u2} + {v1, v2}
ax{ul, u2}

Out[12]= {ul 4+ vl,u2 + v2}
Out[13]= {aul,au2}

In[14]:= {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}+{{a, b, ¢}, {d, e, £}, {g, h, i}}
% // MatrixForm
ax{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}
% // MatrixForm

out14]= {{14+a,2+b,3+¢c},{4+d,5+¢,6+ f},{7T+9,8+h,9+i}}

14a2+b3+c
Out[15]= [4+d5+e6+ f
T+g8+h9+i

out[16]= {{a,2a,3a},{4a,5a,6a},{7a,8a,9a}}

a 2a 3a
Out[17]= 4a 5a 6a
Ta 8a 9a

Matrices and vectors may also be operated on together together using the . (dot)
operator. In the case of vectors, this will compute the dot product, and in the case of
vectors it will be matrix multiplication. In the case of a matrix and a vector, it will be
the usual operation of a matrix begin applied to a vector; that is, matrix multiplication
as if the vector is a matrix with a single column. Note that the dot operator is a “full
stop” (a period).

In[18]:= {1, 2, 3} . {a, b, c}
{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}} . {{a, b, ¢}, {4, e, £}, {g, h, i}}
// MatrixForm
{{a, b, c}, {d, e, £}, {g, b, i}} . {1, 2, 3}

Out[18]= ul +2u2 + 3u3

a+2d+3g9g b+2e+3h c+2f+3i
Out[19]= | 4a + 5d + 6g 4b + 5e + 6h 4c + 5f + 6i
T7a+8d+9g Tb+8e+9h 7Tc+8f + 9i

Out[20]= {a +2b+ 3¢,d + 2e + 3f,g+ 2h + 3i}

The matrix multiplication is handy to see symbolically. We use the the fact that after
the use of MatrixForm, Mathematicano longer recognizes the output as a list, and thus
as a matrix or vector. This prevents operations from being carried out, and thus allows
us to view the matrix equations.

In[21]:= With[{M = {{a, b, c}, {d, e, £}, {g, b, i}}, v={1, 2, 3}},
(M//MatrixForm) . (v //MatrixForm) == (M.v //MatrixForm)
]

142 3 Linear Algebra

abec 1 a-+2b+ 3¢
OutRll= [def|.| 2| ==|d+2e+3f
ghi 3 g+ 2h+ 3i

Note that if the vector is on the left, the multiplication is performed as if the vector is
a matrix with a single row. Mathematica does not, remember, distinguish between row
and column vectors, but nonetheless applies the correct vector/matrix multiplication
as is appropriate. Observe.

In[22]:= With[{M = {{a, b, c}, {d, e, £}, {g, h, i}}, v={1, 2, 3}},
v.(M//MatrixForm) == (v.M//MatrixForm)

]
abec a+2d+ 3g
out22]= {1,2,3}. | de f | == | b+2e+3h
ghi c+2f+3i

We pause to mention here that the Dot function is equivalent to the . operator. That
is u . v is the same as Dot [u, v]. Similarly u . v . w is the same as Dot [u, v, w] and so
on and so forth. We shall not make any use of the Dot function explicitly in this book,
preferring instead the . operator notation.

Finally, before we move on to something more mathematical, we demonstrate look
at powers and inverses of matrices. Unfortunately, the usual ~ operator for powers or
inverses won’t work with matrices. Instead, the operator is applied to each element of
the list.

In[23:= {{1, 2}, {3, 4}}.{{1, 2}, {3, 4}} // MatrixForm
{{1, 23}, {8, 4}}"2 // MatrixForm

7 10
Out[23]= <15 22>

Out[24]= <£1) 146)

Calculating powers of a matrix is easy enough with the . operator for squares or
cubes, but if we wish to do large powers, it is better to use the MatrixPower function.
This function accepts a matrix as its first argument, and an integer as its second. The
function simply computes the matrix to the power of the second argument.

In[25]:= MatrixPower [{{1, 2}, {3, 4}}, 2] // MatrixForm
MatrixPower [{{1, 2}, {3, 4}}, 10] // MatrixForm

Out[25]= (; 146)

ouiag (ATE380T 6972050
utl261={ 10458075 15241882

Inasmuch as the ~ operator does not work with matrices, we can hardly expect to
be able to use it to compute matrix inverses using the usual ~-1 notation. Instead, we
must use the Inverse function to compute the inverse of a matrix (if it exists). Recall
that for a square matrix A the inverse matrix is the unique matrix (usually written
A~1) with the property that A=1A = AA~1 =].

In[27]:= {{1, 2}, {3, 4}} // Inverse // MatrixForm

Out[27]= (_32 1

1)
2 2

3.1 Introduction and Review 143

In[28]:= Block[{A, Ai},
A={{1, 2}, {3, 4}};
Ai = A // Inverse;
{(A.Ai) // MatrixForm, (Ai . A) // MatrixForm}
]

Out[28]= { (é ?) ’ (é 2) }

Further discussion on functions relating to vectors, matrices, and Mathematica re-
lated approaches to linear algebra in general takes place as and when they are needed in
the course of the mathematics that follows. The reader is encouraged to supplement the
information presented above by referring to the Documentation Center. A good start
is to read the pages on “Vectors and Matrices” as well as “Linear Algebra”.

3.1.2 Simultaneous Linear Equations

One of the first parts of linear algebra a student sees is the method of solving systems
of linear equations using matrices and Gauss—Jordan elimination. We re-examine this
topic now.

Let’s start with a simple example. We want to find values for z and y that satisfy
both the equations z +y = 2 and 2x 4+ y = 3 simultaneously. This we should be able to
do quickly in our heads, or on paper. If we were to use Mathematica we would probably
use the Solve command.

In[29]:= Solve[{x+y==2, 2 x +y == 3}]
out29]= {{z — 1,y — 1}}
However, we can also attack this problem using our tools from linear algebra. Let’s

start by constructing a vector where the elements inside the vector are the equations
we are trying to simultaneously solve

r+y=2
20 +y=3

Tty | _ |2
2e+y| |3
which in turn can be thought of as
11| |z| |2
21| |yl |3
which is an equation of the form Az = b where A is a matrix, and = and b are matrices.
The solution to this problem is to construct the augmented matriz

112
213

and to perform Gaussian elimination in order that the matrix be in row echelon form,
or Gauss—Jordan elimination in order that the matrix be in reduced row echelon form.

This can be thought of as

144 3 Linear Algebra

Reduced row echelon is the easier form to see the solutions directly, but is usually a
little tricky (or, at least fiddly) to produce by hand. Fortunately, we do not have such
problems when using a CAS, and Mathematica includes a function that will calculate
the reduced row echelon form of a matrix named RowReduce.

In[30]:= With[{A ={{1, 1, 2}, {2, 1, 3}}},
RowReduce[A] // MatrixForm
]

101
Out[30]= (0(1)1>

We can read the answer that x = 1 and y = 1 directly from this matrix, remembering
that it is an augmented matrix representing the vector equation

o)=

which is equivalent to our original equations (due to the fact that elementary row
operations, as performed in Gauss—Jordan elimination do not change the solution of a
system of equations).

In general, for a system of m simultaneous linear equations in n unknowns, we
construct the m xn coefficient matrix, A say, and the vector of constants (the right-hand
sides of the equations) b. The system may then be considered as the vector equation

Az =10

where z is the vector of the unknown values. We then calculate the solution by reducing
the augmented matrix [A|b] into reduced row echelon form. (Note here that [A]b] is
the matrix A with b added in as a final column vector). This should not be anything
new to any student who has studied first-year university mathematics.

In the case of systems of equations with two or three unknowns, there is a clear
geometric interpretation of these systems of linear equations. The equation ax + by = ¢
describes a unique line in the Euclidean plane. This line can be thought of as the col-
lection of all points (z,y) in the plane that satisfy the equation ax + by = ¢. When
evaluating two such equations simultaneously, we are looking for the collection of all
points (z,y) that satisfy both equations at the same time, or—geometrically—the col-
lection of all points that lie on both lines (the intersection of the two lines).

With the plane, there are not very many different things that can happen. Either
the equations all describe the same line, in which case we should see infinitely many
solutions, or the lines will meet at a point somewhere, in which case there will be one
solution, or the lines are parallel in which case there will be no solutions.

Let’s have a look at the example from above, x +y = 2 and 2x + y = 3. We already
know that the only solution to this system of equations is x = 1,y = 1. When we plot
these lines we should expect to see them crossing at the point (1,1). Note that in order
to plot these lines, we needed to manipulate the equations into the equivalent forms of
y=2—xand y=3— 2z.

In[31]:= Plot[{2-x, 3-2x}, {x, -1, 2}, PlotStyle -> {Automatic, Red}]

3.1 Introduction and Review

5
4
1

P S S S SRR R e
-1.0 -0.5 r 0.5 1.0 1.5 2.0

Out[31]= -1k

145

When more than two lines are introduced, the chances that there is any point at which
they all intersect becomes smaller (it is quite likely that any two lines will intersect; the
point here is that a solution to the simultaneous equations must be a point where all
the lines intersect at the same point). For instance, if we extend the system above to
also include the equations —3x + y = 4 and —z 4+ y = —2, plotting all four lines shows

clearly that there is no common intersection point for the four lines

In[32):= Plot[{2-x, 3-2x, 4+3x, x-2}, {x, -5, 5},
PlotStyle -> {Blue, Blue, Red, Black}
]

Out[32]=
And the linear algebra produces the expected result.

In[33]: M= {{1, 1}: {2; 1}: {-3: 1}, {_1: 1}};
b=1{2, 3, 4, -2};
{"M" == (M // MatrixForm), "b" == (b // MatrixForm)}

11 2
2 1 3

Out[33]= {M —=| 5= }
11 2

Note here that we have set the M and b variables globally. We expect to be using
them over multiple input commands, and so did not have the luxury of hiding them

away within a Block or a With function.
Continuing on, let’s have a look at the matrix equation.

In[34]:= (M. {x, y} // MatrixForm) == (b // MatrixForm)

146 3 Linear Algebra

T+y 2

B 2c+y | | 3
Out[34]= saty | 7T 4
—x+y -2

That’s all well and good, we can see the four equations, and it’s a simple task to
check that they’re the same equations that we plotted, above. All that remains is to
row-reduce the augmented matrix.

In[35]:= With[{Aug = Join[M, Partition[b, 1], 2]},
RowReduce [Aug] // MatrixForm
]

100
010
001
000

Out[35]=

We can read directly from this reduced row echelon form augmented matrix in that
there is no solution. In particular, the second row from the bottom which should be
read Oz + Oy = 1 indicates the lack of any solution.

Note the use of both the Join and Partition functions. The Join function, pre-
viously used to join elements of lists together, can also be used to join the elements
of sub-lists together. In the above case, the final argument of 2 tells Join that we
wish to join the second level of lists (that is lists as direct elements of the outer-most
list) together. The Partition function has the effect, in this case, of changing the list
{2, 3, 4, -2} into the list {{2}, {3}, {4}, {-2}}, thus ensuring that it has second
level lists for the Join function to use. Observe.

In[36]:= M
Partition[b, 1]
Join[%%, %, 2]

out[36]= {{1,1},{2,1},{-3,1},{~1,1}}
out37]= {{2}, {3}, {4}, {-2}}
out[38]= {{1,1,2},{2,1,3},{-3,1,4},{-1,1,-2}}

As it happens, Mathematicahas another function for solving linear systems which
has the advantage of giving us the solution directly, without having to construct and
read from the augmented matrix. That function is LinearSolve function, and takes
as its arguments a matrix and a vector, in that order. If we suppose that the matrix
is M and the vector b, then LinearSolve effectively solves the vector vector equation
M -x =0 for .

In[39]:= LinearSolve[M, bl
LinearSolve::nosol: Linear equation encountered that has no solution. »
OUt[39]: LinearSolve[{{L 1}7 {27 1}7 {_37 1}7 {_L 1}}7 {27 3a 47 _2}]

It doesn’t really come much clearer than that error message, so long as we know that
an inconsistent system of linear equations has no solution. Even if we didn’t know this,
it should be quite clear form the context.

We quickly look again at the first system of linear equations from the beginning of
this subsection, and solve it with the LinearSolve function. Recall that the solution

3.1 Introduction and Review 147

was ¢ = y = 1, so we should expect the vector (z,y) solution to the vector equation to
be (1,1).

In[40]:= LinearSolve[{{1, 1}, {2, 1}}, {2, 3}]
Out[40]= {1,1}

Let’s now have a look at this in three dimensions. Recall that in real 3-space, the
equation ax + by + cz = d describes a plane. The intersection of any three or more
different planes will either be a line, a point, or nonexistent. In the case of only two
distinct planes then the intersection can only be a line or nonexistent. We start with
the following set of equations.

zr+y+z=3
—rz—y+z=-2
20 +y+2=0

Our aim here is to see how the planes intersect (if they do at all). To do this most
effectively we need to know if they intersect, and if so then where. So we first solve the
system of equations. We solve these equations using the LinearSolve function.

In[41]:= With[{M={{1, 1, 1}, {-1, -1, 1}, {2, 1, 1}},b={3, -2, 0}},
LinearSolve[M, bl
]
Out[41 3 111
o= { =355}

And so we now see that there is but a single point, [—3, %, %] at which the three
planes intersect. We can now plot the planes in such a way as to see this intersection
clearly. In order to have the intersection point close to the middle of the plot (so as,
we hope, to see the most of the interrelations of the planes) we plot over the xz-range
(—4,—2) and the y-range (4,6).

In[42]:= Plot3D[{3-x-y, -2+x+y, -2x-y},{x, -4, -2},{y, 4, 6}
PlotStyle -> {Blue, Red, White}

]

Out[42]=

To close with, we clean up after ourselves, unsetting everything we have set in the
subsection.

In[43]:= ClearAll["Global *"]

148 3 Linear Algebra

3.1.3 Elementary Row Operations

We now look more closely at the elementary row (and, equivalently, column) operations.
There are three basic operations that may be performed:

e Swap two rows.
e Multiply a row by a constant.
e Add a row to another row.

It is expected that none of this is new to the reader.

What may be new, however, is that it is possible to construct matrices that perform
these row operations when they are multiplied (on the left) with another matrix. It is
this idea that we explore. It is important to note at this point that there is no practical
purpose to performing row operations with matrix multiplication and, indeed, directly
performing the operations is quicker and easier. However, the mere fact that we can do
this allows us to prove some facts about invertible matrices.

To construct these row-operation matrices, called elementary matrices, we simply
perform a row operation manually on the identity matrix. The resulting matrix will
then perform that same row operation when it is multiplied with another matrix. We
demonstrate this for the case of 2 x 2 matrices.

First we must write some functions to perform the elementary row operations for
us, because Mathematica does not have any such functions itself. The functions will
take two arguments, the first one being a matrix, and the second being a list of two
numbers, {7, j} say. In the case of swapping rows, we swap the rows i and j, in the
case of adding rows, we add row ¢ to row j, and in the case of multiplying a row by a
constant we multiply row ¢ by j. We take some pains in pattern matching to make sure
the arguments are of the appropriate type.

In[44]:= RowSwp [
M_ /; MatrixQ[M],
{ri1_Integer, ri_Integer} /; (r1>0&&r2>0)
] :=
Block[{N = M},
N[[r1]1] = M[[r2]11;
N[[r2]] =M[[r1]1];
N
]

In[45]:= RowMul [
M_ /; MatrixQ[M],
{r_Integer, k_} /; (r>0)
1 :=
Block [{N = M},
N[[r]1]l =k*M[[r]1];
N
]

In[46]:= RowAdd [
M_ /; MatrixQ[M],
{ri_Integer, ri_Integer} /; (r1>0&&r2>0)
1 :=
Block[{N = M},
N[[r1]1] =N[[r11]1 + M[[r2]1];

3.1 Introduction and Review 149

N
]

Note that we have placed no restriction on the variable, k, used for multiplying rows
of a matrix in the RowMul function. This is to allow us to multiply matrix rows by
arbitrary variables, or even expressions if we wish to later. Also note that while we have
taken pains with the pattern matching, we have not put any upper bounds on the rows
we may select. It is entirely possible with these functions to try and swap rows 30 and
147, say, of a 2 x 2 Matrix. If we try to do this, however, we are met with Mathematica
errors, so we consider the function to be good enough for our purposes.

In[47]:= RowSwp [{{1, 2}, {3, 4}}, {30, 147}]
Part::partw: "Part 147 of 1,2,3,4 does not exist." »
Set::partw: "Part 30 of 1,2,3,4 does not exist. " »
Part::partw: "Part 30 of 1,2,3,4 does not exist. " »

Set::partw: "Part 147 of 1,2,3,4 does not exist." »
Out[47]= {{17 2}; {Sﬂ 4}}

We observe now what happens when we now take the 2 x 2 identity matrix (obtained
using the IdentityMatrix function), and swap its rows. Specifically, we observe what
happens when the resulting matrix is multiplied against an arbitrary matrix.

In[48]:= With[{G = {{a, b}, {c, d}}, S = RowSwp[IdentityMatrix[2], {1, 231},
S // MatrixForm // Print;
S.G // MatrixForm // Print;
G.S // MatrixForm // Print;
]

Out[48]= ((1) (1))
Out[49]= (Zg)
Out[50]= (ZZ)

When we multiply our matrix S on the left against an arbitrary matrix, we can see
that it swaps the rows as claimed. This behavior can be verified on paper, and doing
so should demonstrate just why the matrix does this. Furthermore, when we multiply
on the right by our matrix, it performs the swap as a column operation. This may also
be confirmed on paper.

Continuing on in this manner, we now observe the behavior matrices for multiplying
a given row by a constant.

In[51]:= With[{G = {{a, b}, {c, d}}, S = RowMul[IdentityMatrix[2], {1, k}]1},
S // MatrixForm // Print;
S.G // MatrixForm // Print;
G.S // MatrixForm // Print;
]

Out[51]= (lg (1))

150 3 Linear Algebra

Out[52]= (ack bj;)

Out[53]= <Z: Z)

In[54]:= With[{G = {{a, b}, {c, d}}, S = RowMul [IdentityMatrix[2], {2, k}]},
S // MatrixForm // Print;
S.G // MatrixForm // Print;
G.S // MatrixForm // Print;
]

Out[54]= <(1)2>
b
Out[55]= <C‘;€ dk)

Out[56]= (? ZZ)

Sure enough these two matrices behave just as we should have expected. Multiplying
on the left against an arbitrary matrix performs the row operation, and multiplying on
the right performs the equivalent column operation.

Finally, we observe the behavior of the matrices for adding a row to another row.
Unsurprisingly, we see the same behavior as we did with the other matrices.

In[57]:= With[{G = {{a, b}, {c, d}}, S = RowAdd[IdentityMatrix[2], {1, 2}]1},
S // MatrixForm // Print;
S.G// MatrixForm // Print;
G .S // MatrixForm // Print;
]

Out[57]= ((1) })

Out[58]= (‘”Crc bzd)

aa+b
Out[59]= (c ot d)
In[60]:= With[{G = {{a, b}, {c, d}}, S = RowAdd[IdentityMatrix[2], {2, 1}]},
S // MatrixForm // Print;
S .G // MatrixForm // Print;

G.S // MatrixForm // Print;
]

Out[60]= (1 (1))

a b
Out{61]= (a+cb+d>

Out[62]= (Z‘IZ Z)

It should be mentioned at this point that these elementary matrices need not be
multiplied with only square matrices. The elementary matrices themselves will always

3.1 Introduction and Review 151

be square (because they are obtained by performing a row operation on an identity
matrix, which is always square). However, just as row operations may be performed on
any size matrix, so will the elementary matrices perform their appropriate row operation
on any size matrix. The only stipulation is the usual one for matrix multiplication, which
is that when multiplying matrices A and B together, A must have the same number of
columns as B has rows.

What this means for our elementary matrices is that an n X n elementary matrix will
perform its row operation when multiplying on the left any matrix with exactly n rows.
Similarly, when multiplying on the right said matrix will perform column operations on
any matrix with n columns

In[63]:= With[

{
G={{a, b, c}, {d, e, £}},
S = RowSwp[IdentityMatrix[2], {1, 2}]1},
M = RowMul [IdentityMatrix[2], {1, k}]},
A = RowAdd[IdentityMatrix[2], {1, 2}]},

}’

G // MatrixForm // Print;

S.G// MatrixForm // Print;

M.G // MatrixForm // Print;

A .G // MatrixForm // Print;

G .S // MatrixForm // Print;

]
Out[63]= (; Z ;)
Out[64]= <Z Z ch)
Out[65]= <adk bek 3?)
Outlos] (a;db:ec?f)

Dot::dotsh: "Tensors {{a,b,c}{d,e,f}} and {{0,1},{1,0}} have incompatible shapes." »
out[67]= {{a,b,c},{d,e, f}}.{{0,1},{1,0}}

Notice that the final thing we tried was to multiply on the right instead of on the left,
and Mathematica issued an error to tell us that the matrices could not be multiplied in
that order, just as we already knew they couldn’t.

In[68]:= With[

{
G={{a, b, c}, {d, e, £}} // Transpose,
S = RowSwp [IdentityMatrix[2], {1, 2}1},
M = RowMul [IdentityMatrix[2], {1, k}1},
A = RowAdd[IdentityMatrix[2], {1, 2}]},

}s

G // MatrixForm // Print;

G.S // MatrixForm // Print;

G.M// MatrixForm // Print;

G.A // MatrixForm // Print;

152 3 Linear Algebra

S.G// MatrixForm // Print;
]
ad
Out[68]= [b e
cf
da
Out[69]= eb
fec
ak d
Out[70]= bk e
ck f
aa+d
out[7l]= | b b+e
cc+ f
Dot::dotsh: "Tensors {{0,1},{1,0}} and {{a,d},{b,e},{c,f}} have incompatible shapes." »

Out[72]= {{0,1},{1,0}}.{{a,d}, {b, e}, {c, f}}

We now put all this together with a real (pun intended) matrix. In order to allow us
to properly use the S, M, and A matrices more robustly, we create functions that allow us
to choose the particular rows we wish to operate on, and multiples we wish to multiply
with.

In[73]:= S[ri_, r2_] :=Block[{Id = IdentityMatrix[2]},
RowSwp[Id, {r1, r2}]
1
M[ri_, r2_] :=Block[{Id = IdentityMatrix[2]3},
RowMul[Id, {r1, r2}]
]
Alri_, r2_] :=Block[{Id = IdentityMatrix[2]},
RowAdd[Id, {r1, r2}]
1

We add one more function to make our lives easier. Notice that and RowAdd [r1, r2]
and consequently A[rl, r2] add row r2 to row ril. Suppose now that we multiply row
r2 by some value, k say, before adding it to row r1. Suppose further that we multiply
row r2 by 1/k immediately after having added it to row r2. If this were to happen, we
would have effectively added k lots of row r2 to row ri.

We produce a new rule for the A function which performs precisely this combination
operations. The rule will take a third argument which will be the value to multiply by. In
other words, Alr1, r2, k] will add k times row r2 to row ri. Remember that matrix
multiplication is associative (that is (A.B).C = A.(B.C)), and that the elementary
matrices must be multiplied on the left in order to perform row operations.

In[74]:= Alri_, r2_, k_] :=Block[{Id = IdentityMatrix[2]},
RowMul [Id, {r2, 1/ k}] . RowAdd[Id, {r1, r2}].RowMul [Id, {r2, k}]
]

In[75]:= A[1, 2, k] . IdentityMatrix[2] // MatrixForm

Out[75]= <(1)]f>

3.1 Introduction and Review 153

Now we perform row operation—via multiplication with elementary matrices—to
reduce our matrix R into reduced row echelon form. Note that we use the MatrixForm
function to show our outputs in the more mathematical matrix format, and this does
not cause our matrix arithmetic to stop working, as it has done in the past. This is
entirely due to the use of the % operator, which seems to somehow forget the format of
the output on the previous line.!

In[76]:= R = {{1, 2}, {3, 4}} // Transpose
OUt[76]: {{17 3}) {25 4}}
In[77]:= % // MatrixForm

Out[77]= (; Z)

In[78]:= A[2, 1, -2].% // MatrixForm

Out[78]= ((1) _32)

In[79]:= M[2, -1/-2].% // MatrixForm

Out[79]= <(1) il’))

In[80]:= A[1, 2, -3] .% // MatrixForm

Out[80]= (é?)

We should note here that we have inadvertently found an inverse matrix for R.
That inverse is the product of the three elementary matrices we used in the correct
order. Because we were multiplying on the left the entire way, the correct order for
multiplication is to start with the final elementary matrix, and work our way backwards.

In[81]:= A[1, 2, -3] . M[2, -1/-2] . A[2, 1, -2] // MatrixForm
{%.R // MatrixForm, R.% // MatrixForm}

3
Out[81]= (_12 _21)
2
1 1
ous2)= { (0 (1)> ! (0 (1)) J

Sure enough, if we ask Mathematica directly for the inverse of our matrix R then it
gives us the matrix we just calculated.

In[83]:= R // Inverse // MatrixForm

Out[83]= (_12 _%; >
2

This is no coincidence. It is necessarily the case that an invertible matrix will always
become the identity matrix when changed into reduced row echelon form. Furthermore
any invertible matrix can always be created by multiplying some sequence of elementary
matrices together.

! The interested reader is encouraged to explore this difference by looking at the difference between,
say, {{1,2},{3,4}} // MatrixForm followed by % .% and M= {{1, 2}, {3, 4}} // MatrixForm fol-
lowed by M. M

154 3 Linear Algebra

Let’s look at a three-dimensional example, and consequently the elementary matrices.
First we should reassign the S, M, and A functions we used for the various flavors of
elementary matrices earlier, so that they use the three-dimensional identity matrix
instead of the two-dimensional one. We will only use the three-argument form of A, as
we can always perform the earlier function by using a multiple of 1.

In[84]:= S[ri_, r2] :=Block[{Id = IdentityMatrix[3]},
RowSwp[Id, {r1, r2}]
]
M[ri_, r2_] :=Block[{Id = IdentityMatrix[3]},
RowMul[Id, {r1, r2}]
]
Alri_, r2_, k_] :=Block[{Id = IdentityMatrix[3]},
RowMul [Id, {r2, 1/ k}].RowAdd[Id, {r1, r2}].RowMul[Id, {r2, k}]
]

Let us have a look at our fresh new elementary matrices now. Note the use of the /@
operator, which causes a function to be applied to all elements of a list, much the same
as the Map function.

In[85]:= MatrixForm/@{S[1, 21, S[1, 31, S[2, 31}
MatrixForm/@{S[1, k], S[2, k], S[3, k1}
MatrixForm/@{A[1, 2, kI, A[1, 3, k], A[2, 1, k], A[2, 3, kI,

A[3, 1, k], A[3, 2, k1}
010 100 001

OmBﬂ:{ 100],loo1], {010 }

001 010 100
k00 100 100
OMBW:{ 010],loko], {010 }

001 001 00k

10 10k 100 100 100 100
OmBﬂ:{ o1o],loto0],lk10],l0o1k],|l010],{010 }
001 001 001 001 ko1 0k1

We now perform row reduction again on a real 3 x 3 matrix, just as we did above
for our 2 x 2 matrix R. In fact, we even reuse the name. However, we proceed a little
more quickly, and take multiple steps at a time, where it is obvious to do so.

|n[88]: R= {{1, 4-7,}, {_2, 5, 8’ }: {3’ _6’ 9}}
out[88]= {{1,4,—7},{-2,5,8},{3,—6,9}}

In[89]:= % // MatrixForm

1 4 -7
Out[89]= -2 5 8
3 -6 9
In[90]:= A[2, 1, 2] . A[3, 1, -3] .% // MatrixForm
1 4 -7
Out[90]= 0 13 -6
0—18 30

In[91]:= M[2, -1/13] . % // MatrixForm

3.1 Introduction and Review 155

1 4 -7
oupil= (0 1 —-&
0—-18 30
In[92]:= A[1, 2, -4] . A[3, 2, 18].% // MatrixForm
10—%
00 2=
In[93]:= M[2, 13/282] . % // MatrixForm
10-%
00 1
In[94]:= A[1, 3, 67/13] . A[2, 3, 6/13] .% // MatrixForm
100
Out[94]= 010
001

And so it is that we may replay this sequence of moves to find the inverse of R.

In[95]:= A[1, 3, 67/13] . A[2, 3, 6/13] . M[3, 13/282] . A[1, 2, -4] . A[3, 2, 18].
M[2, 1/13] . A[2, 1, 2] . A[3, 1, -3] // MatrixForm
{%.R // MatrixForm, R.% // MatrixForm}

% T
owos (8 L%
94 47 282
100\ /100
Omp&:{ 010,010 }
001/ \oo1

For simplicity’s sake, let’s call this sequence of elementary matrices
Ey, By, B3, Ey, Es, Eg, E7, Ex
(because it’s easier to write and type). We know that
E1\ByFsEyEsEgErEsR = I or equivalently By FoE3EyEsEgE7Ey = R~

Now, observe that every elementary matrix is invertible. This is a direct consequence
of the fact that the row operations themselves are invertible processes. We can, very
simply, undo any row operation we perform as follows:

Operation Inverse

Swap rows a and b Swap rows a and b

Multiply a row a by a constant & Multiply a row a by the constant %
Add k times row a to row b Add —Fk times row a to row b

Note that the final inverse process implies that both of our two variants of the row
add operation are invertible, inasmuch as adding a row to another row is equivalent to
adding 1 times the one row to the other row.

We know, therefore, that all of the E; matrices are invertible, and we already knew
that the R matrix are invertible. Recalling that (AB)~! = B7'A~! then it must be
the case that

156 3 Linear Algebra
R=FE;'E;'E; ' BBV ES By VR
Checking this in Mathematica for our above example:

In[97]:= A[3, 1, 31 . A[2, 1, -2] . M[2, 13] . A[3, 2, -18] . A[1, 2, 4] .
M[3, 282/13] . A[2, 3, -6/13] . A[1, 3, -67/13] // MatrixForm
%::

1 4 -7
Out[97]= -2 5 8

3 69
Out[98]= True

In fact, this will always happen for an invertible matrix. We have the following
theorem.

Theorem 2. Let A be a square matrixz. The following are equivalent.

1. A is invertible.

2. The linear system Az = 0 has only the trivial solution (i.e., x =0).
8. The reduced row echelon form of A is the identity matriz.

4. A may be expressed as a product of elementary matrices.

Proof. Observe that if A is invertible, then
Az =0 = A1 (A2) =470 = (A 'A)z=0 = =0

showing that the x vector must be the zero vector.

If x = 0 is the only solution to the linear system Az = 0 then the augmented matrix
[A]0] must have reduced row echelon form [I|0] (corresponding to the solution z = 0).
And so the reduced row echelon form of A is I.

If the I is the reduced row echelon form of A then it must be the case that there is
some set of elementary matrices such that

E\Ey - BEA=1 = A=E"' - E;'E/"

showing that A is expressible as the product of elementary matrices.
And finally if A is expressible as the product of elementary matrices, then A must
be invertible, inasmuch as the elementary matrices are all invertible, so

A Y= FE\Fy--E;
O

It is precisely this theorem that allows us to find the inverse of an invertible matrix A
by using row operations on the augmented matrix [A|I] where I is the identity matrix.
The sequence of row operations which transforms a matrix, M say, into the identity
matrix is precisely the same sequence of row operations which turns the identity matrix
into the inverse of M. Furthermore, the theorem guarantees that this happens when
and only when the matrix is invertible. By constructing the augmented matrix, we are
effectively performing the row operations on both the matrix M and the identity matrix
simultaneously.

In[99]:= Join[R, IdentityMatrix[3], 2] // MatrixForm
RowReduce[%] // MatrixForm

3.2 Vector Spaces 157

1 4 -7100

Out[99]= —-25 8010
3 —6 9 001

31 1 67

0l ¥ T
001 —5; 2 35

Remember, however, that in practice there’s no point to performing the row opera-
tions with the elementary matrices, as directly performing row operations on a matrix
is far faster (both for a computer and for a human). However, the existence of the ele-
mentary matrices allows us to prove the above theorem, whose utility is quite significant
indeed.

3.2 Vector Spaces

3.2.1 Vector Spaces

Until now we have been using vectors without really saying what they are. However.
before we can do much more with linear algebra, we need to define exactly what a
vector, or rather a vector space is.

If V is a set of objects, and F is a field, then we call V' a vector space—or, more
accurately, a vector space over F—if the elements of V' and F interact as described
below. Note that fields for our purposes are nearly always real numbers R and sometimes
complex numbers C, although other fields do exist and may be used in place of F. The
elements of V' are, not surprisingly, the vectors, and the elements of F are referred to
as scalars.

For V to be a vector space (over the field F, remember), then there must be an
addition operator on V (i.e., a way of adding any two vectors in such a way as to always
result in a vector) and a scalar multiplication operation (i.e., a way of multiplying any
scalar and any vector in such a way as to always result in a vector). In addition, the
following axioms must hold for u,v,w € V and a,b € F

1. u+v = v+ u (Commutativity of vector addition).

2. (u+v)+w=u+ (v+ w) (Associativity of vector addition).

3. There is an element 0 € V such that 0 4+ u = u (Additive identity, or zero vector).
4. There is an element —v € V such that v 4+ (—v) = 0 (Additive inverse).

Anybody who has studied abstract algebra should recognize that the above four axioms
show that V must be an Abelian group. Continuing on:

o

a(u + v) = au + av (Distributive property).

(a + b)u = au + bu (Distributive property).

(ab)u = a(bu) (Associativity of scalar multiplication).
. lv = v where 1 € F is the multiplicative identity.

i I

Scalar multiplication and vector addition interact in a very similar fashion to the
way the more familiar addition and multiplication of real or complex numbers interact.
We should already be familiar with some vector spaces, even if we have never thought
of them in such terms. The points of the Cartesian plane can be thought of as vectors,
and indeed we have used Mathematica to manipulate or produce them earlier. To be

158 3 Linear Algebra

specific, the set V in this case is the set R? or R x R which consists of ordered pairs of
real numbers (R? := {(z,y) |z € R and y € R}) and the field is the real numbers R. It
is straightforward to check that these two sets satisfy all the axioms above.

In a similar fashion we can see that the points in three-dimensional real space, or R?
also form a vector space over the real numbers. In fact, any n-dimensional real space
R™ := {(x1,...,2n) | z; € R} forms a vector space over the real numbers, with vector
addition and scalar multiplication working as it does for R? and R3.

We can extend this idea a little further by replacing the real numbers with complex
numbers and end up with C” := {(z1,...,25) |2z € C} with vector addition and scalar
multiplication working in precisely the same way as with the real case (excepting, of
course, that we perform complex multiplication). Let’s have a quick look at that in
Mathematica.

In[101]:= With[{u={1+21,2+3I, 3+4I},v={5+61,6+7I,7+8I}},
u+v // Print;
(9+101I) *xu // Print;
]

Out[101]= {6 + 8,8 + 104,10 + 124}
Out[102]= {—11 + 28i, —12 + 47i, —13 + 66i}

We may even construct vector spaces of polynomials of fixed degree, or matrices of
a fixed size. It is left as an exercise for the reader to verify the vector space axioms for
both of these cases. We denote the space of m x n matrices as M,, ,(F), and the space
of degree n polynomials as P, (F) (both over the field F).

We now demonstrate a useful correlation between the vector space P,(F) and the
vector space F*"*1. Let po + prax + -+ + ppa™ € P,(F) (so p; € F). We take the
vector (po,p1,---,Pn) € F*T1 and consider it as being equivalent.We can freely change
between these forms; given the vector we can easily construct the equivalent polynomial,
and given the polynomial we can easily construct the vector.

In[103]:= With[

{
p=pO0+pl*x+p2*xx~2+p3*x"3+pd*xx"4,
q=q9q0+ql*x+g2*x"2+q3*x"3+q4*xx"4,
u={p0, p1, p2, p3, p4},

v ={q0, a1, 92, g3, g4}

}’

k*p // Expand // Print;

k*p // Expand // Print;

Collect[p+q, x] // Print;

u+v // Print;

]
Out[103]= kp0 + kpla + kp22? + kp3a® + kpdz*
Out[104]= {kp0, kpl, kp2, kp3, kpd}
Out[105]= p0 + q0 + (p1 + ql)z + (p2 + ¢2)x? + (p3 + ¢3)2°> + (p4 + ¢4)z*
Out[106]= {p0 + q0,pl + ¢q1,p2 + ¢2,p3 + ¢3,p4 + ¢4}
We have demonstrated that vector addition and polynomial addition produce equiv-

alent results, as do vector and polynomial scaling. Note that for the above example
we used n = 4, however this idea works for any n (which should hopefully be clear,

3.2 Vector Spaces 159

given what we know about vectors and polynomials). We have, in effect, shown that
polynomials can be thought of as n + 1 vectors, and that the two vector spaces can be
interchangeably used.

This is all a special case of a result we look at a little later; that any finite-dimensional
vector space with dimension n can be thought of as F™. This is of key use to us with
Mathematica.

Incidentally, converting between forms in Mathematica is quite straightforward. We
simply declare two functions, one which takes a polynomial as an argument to produce
a vector, and one which takes a vector as an argument and produces a polynomial.

In[107]:= f£[p_ /; PolynomialQ[p, x] && Exponent[p, x] <=4] :=
Table[Coefficient[p, x, n], {n, 0, 4}]
£{p0_, p1_, p2_, p3_, p4_}] :=

pO_+pl_*xx+p2_ *x"2+p3_*x"3+pé_*xx"4

In[108]:= f[1+x+3x"3]
£[{0, 4, 0, 5, 0}]

Out[108]= {1,1,0,3,0}
Out[109]= 4z + 53

We have used the PolynomialQ function to test for an argument being a polynomial,
and the Exponent function to find the degree of the polynomial. To construct the
vector, we have used the Coefficient function which will return the coefficient in the
first argument of the unknown given in the second argument to the power of the value
of the third argument. That is, Coefficient[p, x, n] will return the coefficient of 2"
in the polynomial p.

Note that we have specifically written both functions for the case of n = 4. This
allows us to use polynomials of lower degree and still get the correct sized vector.
However, this comes at the expense of having to write a new function if we wish to
convert between different vector spaces. In practice there are many vector spaces we
might wish to convert between, and so we are likely going to have to write specific
conversion functions between the spaces we are using, so doing so here does not really
hamper us much. We will see and use this technique again several times before the end
of the chapter.

3.2.2 Linear Combinations

Let V be a vector space, and let vy, va,...,vr € V. A linear combination of these vectors
is a new vector of the form v = aj v1 + ag vo + - - - + ay v where the a; are scalars (i.e.,
a; € F). That v € V follows directly from the axioms of a vector space.

We may wish to consider the set of all possible linear combinations of a set of vectors,
which we call the span of those vectors, for example, span({vy, va, ..., vy }) which is equal
to {agva + -+ + ap v : a; € F}.

Let S C V be a nonempty and finite set of vectors. A natural question arises as
to how we may tell whether a vector v is a linear combination of the vectors in S.
Equivalently this same question may be phrased as whether a vector is in the span of

S. For example, is the vector (7,8,9) a linear combination of the vectors (1,2,3) and
(4,5,6)?

160 3 Linear Algebra

For simplicity, we consider only the case of the vector spaces F™. Think of what a
linear combination would mean in this case. If v is a linear combination of vectors in S
then

V1, V2, Uk U1
ap | | Fax| |+ tag| | =v=

U1, V2 Uk

n n

which is equivalent to

V1, V2, """ Vg, aq U1

v, V2, " Uk, QA | Un

which, in turn, is a system of linear equations, just as we dealt with in Section 3.1.2.
If the linear system has at least one solution, then the vector v is a linear combination
of the vectors in S. Indeed if there are many solutions, then there are many ways to
represent v as such a linear combination, but this does not detract in any way from the
fact that it is a linear combination. If, however, there is no solution to the system, then
v cannot be written as a linear combination of the vectors in S.

This will be true for any set of vectors vy, ..., vk, as long as our vector space is F".
We know how to solve such systems, so we can now easily answer our example question
from above.

In[110]:= LinearSolve[{{1, 2, 3}, {4, 5, 6}} // Transpose, {7, 8, 9}]
Out[110]= {-1,2}
It would seem that there is a linear combination here, with coefficients —1 and 2. We
can, of course, check this easily.
In[111]:= -1*{1, 2, 3}+2* {4, 5, 6}
Out[111]= {7,8,9}
This gives us a new way to look at simultaneous linear equations as well. Recall from

Section 3.1.2 our first (and simplest) example = + y = 2 and 2z + y = 3 which had
solution x = 1,y = 1. We constructed from this the linear system

11] [2] _[2

21| ly| |3
which we may now, equivalently, consider as finding (2,3) as a linear combination of
(1,2) and (1,1). The solution 1,1 clearly works for this interpretation.

In[112]:= ({{1, 2}, {1, 1}} // Transpose) .{1, 1}
1*{1, 2} +1x{1, 1}

out[112]= {2,3}
out[113]= {2,3}

We may use this same linear system technique with polynomials, as well, because
we established a correspondence between polynomials and n-tuples (meaning vectors in
F"). Let us then ascertain whether —4z* + 23 + 522 4+ 3z — 13 is a linear combination
of % 4+ 322 + 722 — 6, 22* + 422 — 52 + 2 and 523 — 322 + 122 — 5. To do this, we
need to consider them as the vectors (—13,3,5,1,—4), (—6,0,7,3,1), (2,—5,4,0,2), and

3.2 Vector Spaces 161

(=5,12,-3,5,0), which we can do in Mathematica with the use of the £ function, we
defined at the end of Section 3.2.1.2

In[114]:= p1 =x"4+3x"3+7x"2-6
pP2=1x"4+4x"2-5x+2
p3=5x"3-3x"2+12x-5
q=4x"4+x"3+5x"2+3x-13

Out[114]= — 6 + 722 + 32° + 2*
Out[115]= 2 — 5z + 422 + 22*
Out[116]= — 5+ 12z — 322 + 52°
Out[117]= — 13+ 3z + 522 + 2 — 42*

In[118]:= M = {f[p1], £[p2] £[p3]1} // Transpose
v =f[ql

out[118]= {{-6,2,-5},{0,—5,12},{7,4,-3},{3,0,5},{1,2,0}}
Out[119]= {—13,3,5,1,—4}

Note that we have declared these variables globally, as we wish to use them sev-
eral times before we have been finished. Unfortunately, it is a little difficult to see our
polynomial coefficients in that matrix when it is in list form, but were we to use the
MatrixForm function, then the M variable would not be recognized as a matrix by Math-
ematica’s matrix manipulation functions. We should be confident that our conversion
function, £, will have produced the correct vectors. Nonetheless, it will be illustrative
to view the matrix/vector problem we are solving, and we may double-check the matrix
while we're at it.

In[120]:= (M // MatrixForm) . ({x1, x2, x3} // MatrixForm) == (v // MatrixForm)

—6 2 -5 ~13
0 —5 12 1 3
oufi2oj= | 7 4 -3 |.lz2]|==]| 5
30 5 3 1
1 20 —4

We should be able to see our polynomial coefficients in there. Remember that pg +
p1 @+ p2 22+ p3 2® + py 2t corresponds to the vector vector (po,p1,p2, P3, pa), and that
we have transposed these vectors. As such, the vectors are columns in the matrix,
where the top-most elements are the constant, and the bottom-most elements are the
x4 coefficients.

We may now solve the problem

In[121]:= LinearSolve[M, v]

Out[121]= {2,-3,—1}
and check the solution
In[122]:= 2% pl -3 *p2-p3
Out[122]= 5 — 12z + 32 — 5a® + 2 (=6 + T2® + 32° + 2) — 3 (2 — 5z + 42 + 227)

2 If the reader is not following the book sequentially, then that function may need to be manually
defined now, so that the following commands will work. The reader in this position should find the
definition from Section 3.2.1 and apply it to their Mathematica notebook file before proceeding.

162 3 Linear Algebra

In[123]:= Expand [%]
Out[123]= — 13 + 3z + 5z + 23 — 424

and there we have it.
To close with, we note that we have defined a number of global variables, and so we
should make sure we clean up after ourselves now.

In[124]:= ClearAll["Global "]

3.2.3 Linear Independence

Along with the question of whether a vector may be expressed as a linear combination
of other vectors comes a related but different question. If we have a nonempty and finite
set S C V, can we express one of them (any one) as a linear combination of the others?
If we can, then we say that the set S is linearly dependent. Conversely, if we cannot
express any of the vectors in S as a linear combination of the others, then we say the
set is linearly independent.

This is different from the question of whether an arbitrary vector v € V is in the
span of S. The difference here is that previously v could have been any vector at all,
whereas now we are asking whether vectors in the subset S are linear combinations
of other vectors in the same subset which is a more specific question. Another way to
think about this idea is whether we can remove vectors from S and still have the same
span.

Another, equivalent, formulation of linear (in)dependence is to say that a finite set
{v1,...,v,} of vectors is linearly independent if and only if the only solution to ajv; +
asVy + -+ + a,v, = 0 is the trivial solution a; = a9 = --- = a,, = 0. To see that this is
an equivalent notion, suppose that v; # 0 can be expressed as a linear combination of
the other vectors,

v = aoUs + -+ anvy, = 0=agvs+- -+ apv, —v1

showing that the zero vector can be obtained as a nontrivial linear combination of
the vectors. If vy or any other v; can be expressed as a linear combination of the
other vectors, then we may similarly construct the zero-vector as a non-trivial linear
combination. Conversely, now suppose that

a1v1 + agvg + - - - + apv, =0 where a3 #0

Then

showing that v; can be written as a linear combination of the other vectors. If vy or
any other v; is nonzero, then we can similarly show that it can be written as a linear
combination of the other vectors.

We have now shown that the two notions of linear independence (and, thus, linear
dependence) are equivalent.

This, in turn, allows us to link these linear independence notions to systems of linear
equations and matrix invertibility. If we wish to see if a set, S, of vectors is linearly
independent, we need to see if the zero vector can be expressed as a linear combination

3.2 Vector Spaces 163

of the vectors in S. This, as we have seen, can be accomplished by solving a linear
system.

For example, we have a look at the vectors (—1,2,3,4), (1,—2,3,4),(1,2,—3,4), and
(1,2,3,—4), and see if they are a linearly independent set. We do this by solving the
linear system

-11 1 1 1

2 -2 2 2 To
3 3 -33 T3
4 4 4 -4 Ty

o o o o

and seeing whether the solution is the zero vector, or not.
In[125]:= v = {{-1, 2, 3, 4}, {1, -2, 3, 4}, {1, 2, -3, 4}, {1, 2, 3, -4}}
out[125]= {{-1,2,3,4},{1,-2,3,4},{1,2,-3,4},{1,2,3,—4}}
In[126]:= With[{A = v // Transposel,

A // MatrixForm // Print;
LinearSolve[A, {0, 0, O, 0}] // Print;

]
-1 1 1 1
Out[126]= g _32 _23 g
4 4 4 —4

Out[127]= {0,0,0,0}

The solution is the trivial solution, and so it would seem that the the vectors are
linearly independent. However, the LinearSolve function is not guaranteed to give us
all solutions; it will just give us a solution. However, the trivial solution is always a
possible solution. so we aren’t really any the wiser here.

Fortunately, Mathematica provides a function for specifically answering the question
of when Ma = 0 that we are asking here. The function in question is named NullSpace.
The null space of a matrix, M say, is the set of all vectors with the property that Mv = 0.
The NullSpace function computes a set of vectors which span the null space.

In[128]:= NullSpace[v // Transpose]
Out[128]= {}

We are presented with the empty set here, which indicates that the null space is
trivial. That is the only vector in the null space is the zero vector, which is always in
the null space. Mathematica omits it for simplicity.

If we add a new vector into the mix, (1,2,3,4), we can ask the same question of
linear independence about the new set.

In[129]:= v ~Join~{1, 2, 3, 4}
out[129]= {{-1,2,3,4},{1,-2,3,4},{1,2,-3,4},{1,2,3,-4},{1,2,3,4}}

In[130]:= With[{A =v // Transposel,
A // MatrixForm // Print;
LinearSolve[A, {0, 0, 0, 0}] // Print;
NullSpace[A] // Print;
]

164 3 Linear Algebra

-11 1 11
2 —22 22
outf130= | 3 o 55 3
4 4 4 —-44

Out[131]= {0,0,0,0,0}
out[132]= {{-1,—1,—1,-1,2}}

This time we have a linearly independent set. Note that the LinearSolve function
still returned the zero vector as a solution to the linear system. Clearly NullSpace is
a much better choice for ascertaining whether vectors are linearly dependent or inde-
pendent. We can read straight from the solution that —v; — vy — v3 — v4 + 2v5 = 0 or,
equivalently, 2vs = vy + v +v3+v4. However, recall that is is the span of the vectors re-
turned by NullSpace that forms the null space of the matrix. As such we should expect
that M -¢(—1,—1,—1,—1,2) = 0, or in other words that 2tvs = tvy + tvy + tvs + tvy.

In[133]:= (v // Transpose) . (t*{-1, -1, -1, -1, 2})
txv[[1]]+t*v[[2]] +t*xv[[3]] +t*v[[4]]

Out[133]= {0,0,0,0}
Out[134]= {2t, 4¢, 6t, 8t}

When looking at the question of linear dependence as a linear system problem, in the
case of F", if we have more than n vectors, then we have a linear system with an infinite
number of solutions. This linear system would correspond to a set of simultaneous
equations with more unknowns than equations. As such, any set of more than n vectors
from the vector space F” must be linearly dependent.

Furthermore, if we have exactly n vectors then we have a square matrix, and so we
know by the theorem in Section 3.1.3 that if the only solution to Ax = 0 is the trivial
solution, then the matrix is invertible, and vice-versa. Inasmuch as the column vectors
of a matrix are linearly independent if and only if the only solution to Az = 0 is the
trivial solution, we now have a new equivalence to add to our theorem. That is, the
column vectors of a square matrix being linearly independent is equivalent to the matrix
being invertible, and hence is equivalent to all the other things which we already knew
were equivalent to a matrix being invertible.

We now look at this same phenomenon with polynomials and their correspondence
to m-tuples which we have been using. We start by using the same polynomials from
Section 3.2.2, as we already know the answer to the linear system. Recall that 2p; —
3p2 — p3 = q or, in other words 2p; + 3ps — p3 — g = 0 and so the set {p1,p2, ps, ¢} is
linearly dependent.

In[135]:= With[

{
pl=x"4+3x"3+7x"2-6,
p2=1x"4+4x"2-5x+2,
p3=5x"3-3x"2+12x-5,
q=4x"4+x"3+5x"2+3x-13

}’

2%xpl-3*p2-p3-q

]

Out[135]= 18—15z—22°—62° +42"+2 (—6 + T2” + 32° + 2*) =3 (2 — Bz + 42® + 22*)

In[136]:= Expand [%]

3.2 Vector Spaces 165
Out[136]= 0

Let’s try some larger polynomials. We use 902° 4 80x* + 1923 + 8822 — 822 — 70,
4125 + 912t + 2923 + 702% — 32z — 1 and 522° — 132* + 8223 + 7222 + 42z + 18.
Inasmuch as we’re using now using degree 5 polynomials, we will need to change our
conversion function to handle the larger polynomials and vectors. Also, we cleared all
of our previous definitions at the end of the last subsection.

In[137):= f£[p_ /; PolynomialQ[p, x] && Exponent[p, x] <=5] :=
Table[Coefficient[p, x, n], {n, 0, 5}]
f{p0_, p1_, p2_,p3_,p4 ,p5_3} :=
pO_+pl_*x+p2_ *x"2+p3_*x"3+p4_*x"4+p5_*x"5

We are going to do some exploration of these concepts, and so we are going to want
to use the polynomials several times. As such, we continue to declare the variables
globally. It will be simpler if we keep all the polynomials in a list, so this we do.

In[138]:= p = {
90x"5+80x"4+19x~3+88x"2-82x-70,
41x°5+91x74+29x"3+70x"2-32x-1,
52x°5-13x"4+82x"3+72x"2+42x+18

}

out[138]= { — 70 — 82z + 882> + 192° + 802" + 902°,
—1— 322+ 702% + 2927 + 912t + 4125,
18 + 42z + 722% + 822° — 132 + 522° }

In[139]:= M := (£ /@p) // Transpose

Note that we have been clever here, and have used a delayed definition for our matrix
M. By the use of the map operator we turn our list of polynomials into a list of vectors,
and hence a matrix. Of course, this new matrix will have the converted vectors as rows
when we want them as columns, so we transpose the matrix, just as we have done with
our previous matrices. The delayed definition means that our matrix, M, will always use
the current contents of the list p at the time of use. The reason for this will become
apparent shortly. For now, we should have a look at our matrix, and see if the vectors,
and hence the polynomials, are linearly dependent.

In[140]:= M // MatrixForm

NullSpace [M]

-70 —1 18

—82 —32 42

88 70 72
Outll40l= " 19 99 g2

80 91 —-13

90 41 52
Out[141]= {}

We can see that our polynomials are linearly independent. We now add two more
polynomials to this list, —192° — 68 z* — 8923 4+ 66 x + 77 and —80x° — 19 2* — 6223 +
8122 4 22z + 50.

166 3 Linear Algebra

In[142]:= p =p ~Join~ {
-19x"5-68x"4-89x"3+66x+77
-80x"5-19x"4-62x"3+81x"2+22x+50

}

out[142]= { — 70 — 82 + 88z + 192° + 80z + 902°,
—1— 322+ 702% + 2927 + 912t + 4125,
18 4 42x + 722 + 822 — 132 + 522°, 77 + 662 — 892> — 68z* — 192°,
50 + 22z + 812” — 622° — 19z* — 802° }

The delayed definition of M now begins to work for us. We have modified p, and so
when next we use M, it will use the new contents of p.

In[143]:= M // MatrixForm
NullSpace [M]

-70 -1 18 77 50
—82 —32 42 66 22
88 70 72 0 81

Outll43l= | 19 99 82 —89 —62
80 91 —13 —68 —19
90 41 52 —19 —80
Out[144]= {}

Our collection of vectors is still linearly independent. We add one more polynomial
1622° — 732 + 4523 + 922 + 36 x — 24. Note that this brings us to six vectors, each
with six elements, and so our matrix M will be square. As such, we may check the linear
dependence of the column vectors using any of the equivalences of an invertible matrix,
as well as with the methods we have been using previously.

In[145]:= p =p ~Join~ {162x"5-73x"4+45x"3+9x"2+36x-24}

out[145]= { — 70 — 82z + 882> + 192° + 802" + 902°,
—1— 32z + 7022 + 2922 + 91zt + 412°,
18 + 422 + 7222 4 822% — 132 4 522°, 77 + 662 — 8923 — 68z* — 192°,
50 4 222 + 8122 — 6223 — 192* — 8025,
— 24 4 362 + 92% 4 452° — 732" + 1622° }
In[146]:= M // MatrixForm
Det [M]

—-70 -1 18 77 50 —-24
—82-32 42 66 22 36
88 70 72 0 81 9

Outll46l= | 19 99 82 —89 —62 45
80 91 —13 —68 —19 —73
90 41 52 —19 —80 162
Out[147]= 0

We have used the Det function to compute the determinant of our matrix as 0, which
tells us that the matrix is not invertible, which in turn tells us that the column vectors
are linearly dependent. This, in turn, tells us that we have a linearly dependent set of
polynomials. We go ahead and compute the null space anyway.

3.2 Vector Spaces

In[148]:= NullSpace [M]
Out[148]= {{-1,1,-1,-1,1,1}}

167

We may read directly from this solution that —t-p;+t-po—t-p3—t-ps+t-ps = —t-ps-

In[149]:= -t *p[[1]] +t*p[[2]]1 -t *p[[3]11 -t *pl[[4]]1 +t*pl[5]]
Out[149]= ¢ (50 + 22z + 812% — 622° — 192" — 802°) —
t (77 + 662 — 892° — 682" — 192°) +
t (—1— 32z + 702% + 292° + 912" + 412°) —
t (18 + 422 + 722 + 822° — 132" + 522°) —
t (=70 — 82z + 882> 4 192° + 802" + 90z°)
In[150]:= Expand [%]
Out[150]= 24t — 36tz — 9ta® — 45t2 + 73ta* — 162t2°
In[151]:= % == -t *p[[6]]
Out[151]= 24t — 36tz — 9ta® — 45tz + 73tz — 162t2° ==
—t (=24 + 36z + 92° + 452° — 732" + 1622°)
In[152]:= Simplify [%]
Out[152]= True

As ever when we have made global definitions, it is prudent to clean up after ourselves.

In[153]:= ClearAll["Global "]

3.2.4 Basis and Dimenstion

Having discussed linear combinations and linear independence, we now come to the
notion of the basis for a vector space. If we have a subset S C V of vectors, then it is
possible that the span of S (the collection of all linear combinations of the vectors) may
indeed be the entire vector space V. If, in addition, S is linearly independent, then we

say that S is a basis of V.

Because a basis, B say, must be linearly independent, then no vector in B can be
made from a linear combination of the other vectors, and so if we remove a basis vector,
the span of the resultant set will no longer be all of V. Furthermore, if we add any vector,
v € V to B, then the new set will no longer be linearly independent (because v will be
able to be written as a linear combination of the other basis vectors). As such we can

think of a basis as the smallest set of vectors that span a given vector space.

We should be familiar with some standard bases. For example, F? has basis (1,0, 0),

(0,1,0), and (0,0,1). In fact F™ has a standard basis of n vectors

17 [o 0
o| |1 0
0) 0 P 3 :

0

168 3 Linear Algebra

An interesting result, which we do not prove, is that any basis for a given vector space
will always have the same number of elements. This gives rise to the notion of dimension
of a vector space. The dimension of a vector space V is the number of elements in any
basis for the space.

If we look to polynomial spaces again, we may see that the space of all degree-n poly-
nomials has a basis consisting of the n + 1 elements {1,z,22,...,2"} or, alternatively,
{xk :0 <k <nandk € Z}. In fact, what we have been doing with our correspondence
between polynomials and n-tuples has been to establish a correspondence between their
basis vectors. More correctly, we have established a correspondence between degree-n
polynomials and (n + 1)-tuples.

In fact, this notion extends to any finite-dimensional vector space, and allows us to
treat any n-dimensional vector space as being F”. This allows us to use Mathematica
vectors to perform calculations with any finite-dimensional vector space, just as we have
previously been doing with polynomial spaces. This result is nontrivial, and should be
proved in any good linear algebra text. We do not prove it here.

The standard bases are not the only basis for any given space; in fact there are many.
In fact, if V' is an n-dimensional vector space, then any linearly independent subset of
V with exactly n elements will be a basis for V. We explore this a little now.

We choose (1,2) and (—1,3) as a linearly independent set of vectors in R2. That
these vectors are linearly independent should be clear, but we shall verify this with
Mathematica regardless.

In[154]:= v = {{1, 2}, {-1, 3}}
NullSpace[v // Transposel

Out[154]= {{17 2}7 {_17 3}}
Out[155]= {}
Our claim is that any vector (a,b) in R? may be expressed as a linear combination

of our basis vectors. If we ask Mathematica for an arbitrary linear combination directly,
we do not get an entirely satisfactory answer.

In[156]:= c1*v[[1]] +c2*v[[2]]
Out[156]= {a — b,2a + 3b}

However, we are asking a question about when (or, in this case, if) a vector is a linear
combination of other vectors. We know that this problem can be solved with a linear
system. Attacking the problem in this way gives a better answer.

In[157]:= LinearSolvel[v // Transpose, {a, b}]
Out[157]= {3—a + b 1(—2a + b)}
In[158]:= % L[11]1 *v[[11]1 +%[[2]1]1 *v[[2]]

5 55
3a 1 b 3a b 3
Out[158]= ¢« — +=(2a—b)+ -, 2| — + = —(—2a+0
ut[158] {5 +£(2a—b)+ 2, <5 +5>+5(a+b)}
In[159]:= Simplify[%]
Out[159]= {a,b}
In fact, we may use this technique to verify the claim that any n linearly independent

vectors of an n-dimensional vector space will form a basis for the space. We do this by
treating the problem as the equivalent question of whether an arbitrary vector may

3.3 Linear Transformations 169

be constructed as a linear combination of the basis vectors, which in turn may be
thought of as solving the vector equation Ax = b. In this case, A is the square matrix
constructed with the columns being the column vectors of the (alleged) basis vectors.
If the basis vectors are linearly independent, then the matrix is invertible, and so the
solution Az = b has a unique solution for every b.

Let’s look at this with some polynomials now.

In[160]:= p={x"3, x"3+1, x"3+x+1, x"3+x+x"2+1}
out[160]= {2°, 1+2° 14+ z+2° 1+a+2°+2°}

We have defined 4 linearly independent degree-3 polynomials. We convert these into
equivalent 4-tuples, and verify the linear independence.

In[161]:= f£[p_ /; PolynomialQ[p, x] && Exponent[p, x] <=3] :=
Table[Coefficient[p, x, n], {n, 0, 3}]
f{p0_, p1_, p2_, p3_} :=
pO+pl*x+p2*xx"2+p3*x~3

In[162]:= M := (f /@p) // Transpose
M // MatrixForm

NullSpace [M]
0111
ouiea | 0011
1111
Out[163]= {}

Now all that remains to be seen is whether a general polynomial dz> + cx? 4 bx + a
can be constructed as a linear combination of the polynomials in our list p. We answer
this question in F* using our equivalencies, and verify the answer in Ps(FF).

In[164]:= LinearSolve[M, {a, b, c, d}]

out[164]= {—a+d, a—b, b—c, c}
In[165]:= Sum[%[[i]11 *p[[il], {i, 1, Length[pl}]

out[165]= (—a+d)z® + (a—b) (1+2z°) + (b—¢c) 1+ z+2°) + ¢ (1 +z +2” + 2°)
In[166]:= Expand [%]

Out[166]= a + bz + cz® + da?

And so, not only can we see that the polynomials form a basis for P3(F), but we even
have a formula for the coefficients the basis vectors will have for any given polynomial.
As always, we clean up our global definitions.

In[167]:= ClearAll["Global *"]
3.3 Linear Transformations

3.3.1 Introduction to Linear Transformations

We now look at functions between vector spaces. Such functions are sometimes called
transformations. We say a function (or transformation) is linear if it preserves linear

170 3 Linear Algebra

combinations. That is if we have vector spaces U, V', and a function f: V — V, we say
that f is linear if

flervr + crv1) = 1 f(v1) + caf (v2) for each c¢1,c0 € F and vy,v9 € V

or, in other words if we put a linear combination of vectors into the function, what we
get out is the same linear combination, but of the images of our original vectors.
Let’s look at two simple examples of functions from R? — R2.

f:R? - R? g:R? > R?

al 2a + b al a?
b b—a b b
We'll begin with f.

In[168]:= Block[{f, u = {ul, u2}, v={vl, v2}, ci1, c2},
f[{a_, b_}] :={2a+b, b-a}
flci*xu+c2%v] ==cl*xf[u] +c2x*f[v]

]

Out[168]= {clu2+2(clul 4+ c2vl) + 2v2, —clul + clu2 — c2vl + 2v2} ==
{c1(2ul + u2) 4+ 2(2v1 + v2), cl(—ul +u2) + 2(—vl +v2)}

In[169]:= Simplify[%]
Out[169]= True

We see that f is linear. Now for g.

In[170]:= Block[{g, u = {ul, u2}, v ={v1, v2}, c1, c2},
gl{a_, b_3}1 :={a"2, b}
glel*u+c2%v] == clxgul +c2*glv]
]

out[170]= {(clul + c2v1)?, clu2 + 2v2} == {cl ul® + c2v1?, clu2 + c2v2}
In[171]:= Simplify[%]
out[171]= {—clul® — 2v1* + (clul 4+ c2v1)?, 0} == {0, 0}

We see that because, in general, —clul? —c2v1% + (clul +c2v1)? # 0 it is the case
that g is not linear.

3.3.2 Linear Transformations as Matrices

We know that every vector in a given vector space may be written as a linear com-
bination of basis vectors. We also know that a linear transformation preserves linear
combination. It follows then that once we know how a linear transformation modifies
the basis vectors of a vector space, we know how it will modify any vector in the space.

We now extend our equivalence between vector spaces and n-tuples a little. If
v1,...,U, is a basis for an n-dimensional vector space, then we may write an arbi-
trary vector u = cjvy + -+ + ¢, v, simply as the n-tuple (c1,...,¢,). This is precisely
what we have been doing previously with polynomials and matrices. However, we may
use this idea to write the same vector in F” in many different ways.

3.3 Linear Transformations 171

Let us recall an example from Section 3.2.4, where we showed that the vectors (1,2)
and (—1,3) formed a basis for R?. Of course, these vectors are already written in terms
of the standard basis (1,0) and (0,1) in that (1,2) =1-(1,0)+2-(0,1) and (-1,3) =
—1-(1,0)4+3-(0,1). We already see our principle in action. However, things can become
confusing, as we are not altogether accustomed to thinking of (a,b) as a shorthand
notation for these linear combinations, and worse still we are about to be comparing
different bases. So we now give these bases names. Let S (for “standard”) be the basis
{(1,0),(0,1)} and let B (for, simply, “basis”) be our alternate basis {(1,2), (-1, 3)}.

At this stage, it is quite important that we be aware of just which basis we are
referring to at any one time. We do this by denoting what basis a vector is in respect to
by using a subscript. That is, for some basis A = {a1,...,a,}, the vector (u1,...,u,)a
denotes the vector that is equal to wia; + - - - + una,,. If we do not specify a basis in
this way, and it is not abundantly clear from the context which we mean, then we mean
the standard basis.

Returning to our example, let us take the vector v = (5,15). To be more clear, we
mean (5,15)gs. We know from our example in Section 3.2.4 that we can write this vector
as a linear combination of our basis B with the coefficients ¢; = 2 -5 + % -15 =6 and
co=—2-5+ 115 =1 so0 that (5,15) = 6-(1,2) + 1 - (—1,3). All of this is with
respect to the usual basis, remember, and so should feel familiar. However, because of
this, we could equally well write the vector with respect to the alternate basis B and
say that v = (6, 1) g. There is no question that we refer to the same actual vector within
our vector space. The reader who is familiar with representation of natural numbers in
different bases should see a similarity with this idea.

So now, when we see a vector written as an n-tuple we should think of this as the list
of coefficients of some basis, even if that basis is simply the standard basis. In particular
the vector (¢, 0,...,0) represents the vector which is the first basis vector scaled by a
constant ¢, (0,¢,0,...,0) as the second basis vector scaled by a constant ¢, and so on.

Observe, now, the effect matrix multiplication has on these vectors. We think of a
matrix as being a collection of column vectors.

|

~—

In[172]:= With[{M = {{ul, u2}, {v1, v2}} // Transpose},
M // MatrixForm // Print;
M. {c, 0} // Print;
M. {0, d} // Print;
]

Out[172]= (Z; Z;)

Oout[173]= {cul, cu2}
Out[174]= {dwvl, dv2}

Observe that due to the nature of matrix multiplication, multiplying M on the right
by the vector (¢, 0) will yield the column vector (cuy, cus). Similarly multiplying M on
the right by the vector (0,d) will yield the column vector (dvy, dvs). It should be clear
that this will hold for any n x m matrix and n-tuple. Furthermore multiplying M on the
right by the vector (¢, d) will yield the vector (cuq+dvy, cus+dvs) = c(ug, uz)+d(vy, va).

In[175]:= With[{M = {{ul, u2}, {v1, v2}} // Transpose},
M.{c, d} // Print;
c*{ul, u2}+dx*{vl, v2} // Print
]

Out[175]= {cul +dvl, cu2+ dv2}

172 3 Linear Algebra

Out[176]= {cul +dvl, cu2 + dv2}

Again, because of the way matrix multiplication is performed, this idea extends to
any n X m matrix and n-tuple.

The point to all this is to demonstrate that matrix multiplication coincides with a lin-
ear combination of the column vectors of the matrix. It can be fairly easily checked that
matrix multiplication itself is a linear transformation. What is less immediately obvious
(but is strongly suggested by the above observations) is that every linear transformation
between finite-dimensional vector spaces can be represented by matrix multiplication,
for a suitable matrix.

We put this information together now. We know that a vector is just a shorthand
way of writing a linear combination of basis vectors. We also know that linear transfor-
mations preserve linear combinations. Finally we know multiplying a matrix on the left
by a vector creates a linear combination of the column vectors of that matrix. So, if we
calculate the image of the basis vectors under the transformation, and then construct
the matrix whose column vectors are those image vectors (in the correct order), then
multiplying that matrix on the right by any vector (written with respect to the basis)
will be exactly the same as applying the linear transformation to the vector directly.

For example, using our linear function f from Section 3.3.1,

In[177]:= Block[{f, M},
f[{a_, b_}] :={2a+b, b-a};
M={f[{1, 0}], £[{0, 1}]} // Transpose
M // MatrixForm // Print;
f[{a, b}] // Print
M. {a, b} // Print
]

Out[177]= (_21 1)

Out[178]= {2a +b, —a + b}
Out[179]= {2a + b, —a + b}

We use this concept now to rotate some plots in R2. Specifically, to rotate them
around the origin (as rotation around an arbitrary point is not, in general, a linear trans-
formation). We need only know what happens to the standard basis vectors (1,0), (0, 1)
under the rotation. It is simpler to use polar co-ordinates, however, be warned that
polar co-ordinates (r,6) most emphatically are not a linear combination of basis vec-
tors. They refer to a distance from the origin and an angle from the z-axis. To avoid
confusion, we use the polar form of complex numbers e*’ when referring to points in
polar form.

As complex numbers, our basis vectors are simply 1 = ¢?* and e’Z. Rotating anti-
clockwise by an angle of 8 we have that

(LO)= 1 _eie = (cos(#),sin(6))
(0,1) = e'% = G0 = (cos (£ +0) ,sin (§ +6))

and we can now construct our matrix, which we construct as a function of 8 so that we
may reuse it for different angles.

In[180]:= R[th_] := Transposel[
{{Cos[th], Sin[th]}, {Cos[Pi/2+th], Sin[Pi/2+th]}
]

3.3 Linear Transformations 173
In[181]:= R[t] // MatrixForm

Cos[t] — Sin[t]
Out[181]= <Sjn[t] Coslt] >

The observant reader will notice that Mathematica has simplified our second column
vector for us. These verifications can easily be verified (cos(w/2 + 0) = —sin(6) and
sin(m/2 + 6) = costheta). This is the standard form for a rotation matrix in R2.

Let us first rotate a parabola through an angle of %w. In order for this linear function
to be applied, the matrix must be multiplied with a vector, so we need to use the vector
equation (or parameterized equation) for the parabola. That is, (x,y) = (¢,t2).

In[182]:= R[Pi /3] .{t, t"2}
ParametricPlot[%, {t, -2, 2}]

t V3t V3t 2
Out[182)= {5‘ 7 o 5}

Out[183]= I

And now we rotate a sine curve clockwise by iw.

In[184]:= ParametricPlot[R[-Pi/4] . {t, Sin[t]}, {t, -2Pi, 2Pi}]

~ |

\

Out[184]= B \

174 3 Linear Algebra

Note that inasmuch as vectors are implements by lists, the vector form of the param-
eterization is automatically in a suitable form to use directly in the ParametricPlot
function. Note, also, that by choosing —2 < ¢ < 2 we have rotated the parabola that
would normally lie above the region —2 < x < 2.

Finally we make an observation. Because every linear transformation can be repre-
sented as matrix multiplication, it should then be clear that a linear transformation
may only produce linear combinations of the components of a vector. In other words,
given an arbitrary vector (vq,...,v,) we should never see vf, v;v; or anything similar
as components of the resultant vector. We can only see linear combinations of the v;,
as a result of matrix multiplication. Looking back at our examples from Section 3.3.1
it should be quite clear now that g : (a,b) + (a?,b) could not possibly be a linear
mapping, whereas f : (a,b) — (2a + b,b — a) clearly is.

3.3.3 Figenvectors and Eigenvalues

If we have a linear transformation, 7' : V' — V say, operating on a vector space V', then
it might be the case that there is a vector v € V that doesn’t get moved at all by T,
and is only scaled. That is, T'(v) = Av. We call such a vector an eigenvector, and A the
eigenvalue corresponding to the eigenvector. Because 0 always remains unchanged by
a linear transformation, we do not consider it to be an eigenvector. Note that if A =1
then v is not only an eigenvector, but it is a fixed point of the mapping (as it remains
unchanged by the transformation).

The question now is how do we find these eigenvectors? First, instead of thinking
of T'(v) as the image of v under the transformation T', we consider T to be a matrix
(which we can do in light of the previous section). So we are looking for solutions to
the vector equation Tv = Av, which we may equivalently write Tv = Alv, where [is
the identity matrix. Then

Tv=Mv = Tv—Xv=0 = (T—-A)v=0

and we now have a vector equation corresponding to a linear system of the sort we have
dealt with earlier in Sections 3.1.2 and 3.2.

We know that 0 is not an eigenvector, but will be a solution to the linear system,
so we need the linear system to have a nontrivial solution. We know from our theorem
that this will not happen if the determinant of the matrix is nonzero (i.e., if the matrix
is invertible), so we are looking for values of A where the determinant of T'— AT is zero.

Let us have a look at our linear transformation f from Section 3.3.1, remembering
that it has the matrix

21
kN

In[185]:= T = {{-2, 1}, {-1, 1}}
Out[185]: {{27 1}3 {_17 1}}
In order to get the A symbol in Mathematica, we use the input command \ [Lambda].

In[186]:= T - \ [Lambda] * IdentityMatrix[2] // MatrixForm

Out[186]= (21’\) i)\)

3.3 Linear Transformations 175

The resultant matrix 7" — Al is simply the matrix 7" with A\ subtracted from each
entry on the diagonal. This always happens no matter the size of the matrix. When we
calculate the determinant of this (or any other) matrix, we end up with a polynomial
in A.

In[187]:= T - \ [Lambda] * IdentityMatrix[2] // Det
Out[187]= 3 — 3\ + A2

This polynomial is called the characteristic polynomial of T'. Mathematica can calcu-
late this directly using the CharacteristicPolynomial function. To use this function
we also need to tell it the name we want to use for the variable of the polynomial.

In[188]:= CharacteristicPolynomiall[T, \[Lambda]]
Out[188]= 3 — 3\ + \?

We may now easily find solutions for A. We know that we know the only possible
eigenvalues are the values of A that solve x(\) = 0 where x is the characteristic polyno-
mial. Once we find the values for A (of which there can only be finitely many, for they
are the roots of a polynomial) then we may substitute them into our linear system and
solve for v in order to find the corresponding eigenvectors.

In[189]:= Solve[CharacteristicPolynomial[T, \[Lambda]] == 0]
Out[189]= {{)\ — % (3 - z\/§) } {A - % (3+z‘\/§) }}

We can see straight away that our linear transformation f has no eigenvectors, be-
cause the possible eigenvalues are all complex, and there is no possible way our integer-
valued matrix multiplied by any real-valued vector could produce a complex scaling of
that vector.

Let us look at another example—one that actually has eigenvectors this time—and
in three dimensions.

In[190]:= T = {{-1, 2, 0}, {-6, 6, 0}, {4, -2, 1}}
T // MatrixForm

Out[190]= {{_]—7 2, 0}7 {_67 6, 0}1 {4a -2, 1}}

120
out[191]= | =6 6 0
4 -21

In[192]:= CharacteristicPolynomial [T, \[Lambdal]
Factor [%]

Out[192]= 6 — 11X 4 6% — A3
Out[193]= — (=3 + AN)(=2+ M) (—-1+)

We can see straight away that A € {1,2,3} are solutions to the characteristic poly-
nomial, and so are eigenvalues of the matrix T". This is great, but we still need to know
what the corresponding eigenvectors are. All we know at the moment is that, for our
linear map T, there is a vector which stays the same (after T is applied), there is an-
other vector which becomes twice as large, and yet another vector which becomes three
times as large. But we have no idea which vectors they may be.?

3 The astute reader who is familiar with matrix operations should be able to make a good guess,
from the matrix of T" alone, as to which vector remains unchanged.

176 3 Linear Algebra

In order to find the vectors, we return to our vector equation (T'—\I)v = 0. However,
we now know the only values of A that could possibly satisfy this equation, and if we
substitute these values into the above equation (one by one) we have three separate
equations of the form Mv = 0 where M = (T — AI). These are, of course, linear systems
that we should be quite familiar and adept with by now. So we simply solve these linear
systems.

Note that the Solve command returns a list of substitution rules. Using a list of
rules with the substitution operator will produce a list of expressions; one for each of
the rules. We use this here, and call the list of matrices L.

In[194]:= Solve[CharacteristicPolynomial[T, \[Lambdal] == 0]
L =T - \[Lambda] * IdentityMatrix[3] /. %
MatrixForm /@ L

out[194]= {{} — 1},{\ — 2}, {A — 3}}
out[195= {{{~2,2,0},{—6,5,0}, {4,~2,0}}, {{~3,2,0}, {—6,4,0}, {4, ~2, —1}},
{{—4,2,0},{-6,3,0},{4,—2,-2}}}

220 32 0 42 0
Out[196]= { 650|,1-64 01],[-63 0
4 —20 4 —2-1 4 -2 -2

The list of eigenvalues was in the order of 1, 2, then 3, and so the vectors correspond
to the eigenvalues in that same order. We may quickly verify this if we are unsure. In
order to find the eigenvectors corresponding to our eigenvalues, we need to know for
which vectors, v say, that M v = 0 for each matrix M in our list, L. To do this we need
to apply the NullSpace function to each of the matrices.

In[197]:= NullSpace /@L
OUt[197]: {{{07 Oa 1}}7 {{27 37 2}}7 {{17 27 0}}}

And we have our answer, although we should think about it for a second. If we have
an eigenvector v, then Tv = Av for some A. But because T is linear, then T(kv) =
kTv = kv for any k € F in our field of scalars. So any scale of v is also an eigenvector
corresponding to the eigenvector A\. What we usually do here is pick a vector to represent
all of the possible vectors. Inasmuch as the NullSpace function provides a basis for the
null space of the matrix, those basis vectors would seem to be the obvious choices. As
such, we declare that (0,0,1),(2,3,2) and (1,2,0) are the eigenvectors corresponding
to the eigenvectors 1,2, and 3, respectively. To demonstrate this, we check this answer
in Mathematica.

In[198]:= T . (t*0, 0, 1)
T.(t*2,3,2)
T.(t*x1,2,0)

Out[198]= {0,0,t}
Out[199]= {4t, 6t, 4t}
Out[200]= {3t,6t,0}
We explore one more example. In the previous example we had a 3 x 3 matrix, and we

ended up with three distinct eigenvalues, and three distinct single-dimensional families
of eigenvectors, each one corresponding to a particular eigenvalue. This does not always

3.3 Linear Transformations 177

happen in general.* Furthermore, there is no requirement that eigenvalues be nonzero
(unlike eigenvectors). The example we now look at demonstrates both of these points.

In[201]:= T = {{2, -5, 6, 0}, {4, -19, 24, 0}, {3, -15, 19, 0}, {1, -29, 38, 2}}
T // MatrixForm

out201]= {{2,-5,6,0}, {4, —19,24,0}, {3, —15,19,0}, {1, —29, 38, 2}}

2 =560
4-19240
3-15190
1-29382

Out[202]=

In[203]:= CharacteristicPolynomial [T, \[Lambdal]
Factor[%]

Out[203]= — 2\ + 5A% —4)3 + *
Out[204]= (=24 A)(=1+ A%\
This time we have 0,1, and 2 as the only eigenvalues, however, notice that in this
case 1 is a repeated root of the characteristic polynomial, and so we also consider it to

be a repeated eigenvalue of the linear operator (or, equivalently, matrix) 7. We now
find the eigenvectors.

In[205]:= Solve[CharacteristicPolynomial [T, \[Lambda]] == 0]
L =T - \[Lambda] * IdentityMatrix[4] /. %
MatrixForm /@ L

out[205]= {{\ = 0},{\ = 1},{ = 1},{ = 2}}

out[206]= {{{2,-5,6,0},{4,—19,24,0}, {3, —15,19,0}, {1, —29, 38,2} },
{{1,-5,6,0},{4,—20,24,0}, {3, —15,18,0},{1,—29,38,1}},
{{1,-5,6,0}, {4, —20,24,0}, {3, —15, 18,0}, {1, —29, 38,1} },
{{0,-5,6,0},{4, —21,24,0},{3,-15,17,0},{1,—29,38,0} } }

2 -560 1 -560 1 -560 0-5 60
4-19240 4-20240 4-20240 4-21240
3-15190)’|3-15180 |’ 3—-15180 |’ 3-15170 }
1-29382 1-29381 1-29381 1-29380

Out[207]= {

Note that the Solve function produced a duplicate rule for the duplicate solution of
A =1, and so we also have a duplicate matrix in our list. We quickly fix this with the
DeleteDuplicates function before proceeding.

In[208]:= L = DeleteDuplicates[L]
MatrixForm /@ L
out[208]= {{{2,-5,6,0},{4,—-19,24,0}, {3,—15,19,0},{1,—29,38,2}},
{{1,-5,6,0},{4,—20,24,0}, {3, -15,18,0},{1,—29,38,1}},
{{0,-5,6,0}, {4, —21,24,0},{3,-15,17,0},{1,—29,38,0} } }

2560 1 -560 0-560
4-19240 4-20240 4-21240
3-15190’|3-15180 || 3-15170 }
1-29382 1-29381 1-29380

Out[200]= {

4 Indeed, we have already seen an example with no eigenvalues or eigenvectors.

178 3 Linear Algebra

In[210]:= NullSpace /@L
out[210]= {{{2,8,6,1}},{{5,1,0,24},{2,4,3,0}},{{0,0,0,1}}}

Now, we have (2,8,6,1) as “the” eigenvector corresponding to eigenvalue 0 as well
as (0,0,0,1) as “the” eigenvector corresponding to eigenvalue 2. Of course, any scale
multiple of these vectors is also a corresponding eigenvector. In particular, this means
that any scale of the vector (2,8,6,1) will be turned into the zero vector by our trans-
formation T'. Eigenvalue 1 is more interesting, but we verify the easy ones first.

In211]:= T . (¢.{2, 8, 6, 1})
T.(t.{0,0,0, 1})

out[211]= {0,0,0,0}
Out[212]= {0,0,0, 2t}

Now, to our repeated eigenvalue, 1: note that Mathematica has given us a list of
two vectors, and so the null space of the matrix T"— 21 is spanned by two vectors, and
so is a two-dimensional space. We could think of the two eigenvectors, (5,1,0,24) and
(2,4,3,0) as being two separate eigenvectors of T', both corresponding to the eigenvalue
1 (and, of course, any scale of each vector) as follows.

In[213]:= T. (t.{5, 1, 0, 24})
T. (t.{2, 4, 3, 0}
out[213]= {5t,t,0,24t}
Out[214]= {2t,4t,3t,0}
However, this is really only half the story. The two vectors together span the null

space of T'— 21, and so any linear combination of these two vectors ought to be left
unchanged by our transformation 7.

In[215]:= t . {5, 1, 0, 24} +s . {2, 4, 3, 0}
T.%

Out[215]= {2s + 5t,4s + t, 3s, 24t}
Out[216]= {18s — 5(4s +t) + 2(2s + 5t), 72s — 19(4s + t) + 4(2s + 5t),
57s — 15(4s + t) + 3(2s + 5t), 1165 + 53t — 29(4s + £)}

In[217):= Simplify[%]
Out[217]= {2s+ 5t,4s + t, 3s, 24t}

Observe, firstly, that each family of eigenvectors is, in fact, a vector subspace of the
space which the matrix acts on; verification is left as an exercise for the reader. These
spaces are called eigenspaces.

Observe, secondly, that in this, and the previous, example the dimensions of the
eigenspaces all add up to the dimension of the whole space. In the most recent case we
had eigenspaces of degree 2, 1, and 1 which add together to give us 4 which was the
dimension of the vector space upon which the matrix acted. This is not always the case,
but we explore the cases in which it happens in the next section.

3.3 Linear Transformations 179

3.3.4 Diagonalization

We motivate this section with an observation regarding a previous example. Let us look
at our 3 x 3 matrix from the previous section,

-1 20
—6 6 0
4 =21

and its eigenvectors, (0,0,1),(1,3/2,1) and (1, 2,0) which correspond to eigenvalues 1, 2
and 3 respectively. In order to avoid messy fractions, we use the vector (2, 3,2) instead
of (1,3/2,1) as they are from the same eigenspace.

In[218]:= T = {{-1, 2, 0}, {-6, 6, 0}, {4, -2, 1}}
e ={{0, 0, 1}, {2, 3, 2}, {1, 2, 03}

Out[218]= {{_17 2, O}a {_67 6, O}a {4a -2, 1}}

out219)~ {{0,0,1},{2,3,2}, {1,2,0}}

The observation we make is simple. These eigenvectors are linearly independent,
and because there are three of them, they form an alternate basis for R3. This is
an observation that we can easily check in Mathematica thanks to our work back in
Section 3.2.

In[220]:= NullSpacel[e // Transpose]

Out[220]= {}

Now, inasmuch as our vectors e, es, and ez form a basis (which we call B), then
we can write any vector v € R? as a linear combination of these new basis vectors. We
use Mathematica to find an explicit formula for this new combination, by solving the
appropriate linear system (just as we did in Section 3.2.4).

In[221]:= LinearSolve[e // Transpose, {x, y, x}]

Out[221]= {—4z + 2y + 2,2z — y, —3z + 2y}

It is left as an exercise to the reader to check this. We now set up a function, which
we name ChgBasis, to perform this basis conversion for us.

In[222]:= ChgBasis[{x_, y_, z_}] :=LinearSolve[e // Transpose, {x, y, x}]
Let’s see what the vector (1,1,1) becomes in terms of the basis B.

In[222]:= ChgBasis[{1, 1, 1}]
Out[222]= {-1,1,-1}

It is quite elementary to verify that (—1,1,—1)p = —1-(0,0,1) +1-(2,3,2) — 1-
(1,2,0) = (1,1,1).

The question that may occur now, is what will our linear operator T' do to vectors
written in terms of our new basis? Clearly T has not changed, and neither have the
vectors themselves, just how we write them. However, because we are writing the vectors
slightly differently now, our old matrix for T will probably not be appropriate anymore,
as it was expecting to be multiplied by a vector that contained the coefficients of the
standard basis, and not our new basis.

180 3 Linear Algebra

If we think about this for a bit, we can apply what we already know about linear
transformations to obtain an answer. We know that, because T is linear, then T'(q1v1 +
asve) = a1 T(v1) + asT (ve). We apply this to an arbitrary vector v written in terms of
our basis B; that is, v = a1e; + ases + azes. When we do this we get that

T(v) = T(are1 + azes + azes)
= alT(el) + O[QT(@Q) + agT(eg)
:Oé1'1'61—|—062'2'62—|—013'3'63

because, in this case e, es, and e3 are eigenvectors corresponding to eigenvalues 1, 2,
and 3, respectively. To put this more succinctly

T((a1,a2,a3)3) = (a1,2a2,3a3)3 (31)
which can be achieved by multiplication (on the left) by the matrix

100
020
003

We demonstrate this for an arbitrary three-dimensional vector, v = (x,y, z). First,
we show what the transformation does to the vector directly. We call this new vector
w.

In[223]:= v ={x, y, z}
w=T.v
out[223]= {z,y, 2}
Out[224]= {—x + 2y, —6x + 6y, 4 — 2y + z}

Recall from earlier that v when written as a vector with respect to the basis B is
v=(—4x +2y+2,2r —y,—3x + 2y)B (3.2)
Now, from Equation (3.1), we should expect T'(v) to be equal to
T(v) = (1-(—4z+2y+2),2-2z—y),3-(-3z+2y)) p = (—da+2y+z,40—2y, —9z+6y)
which is, as it happens, exactly what happens.
In[225]:= ChgBasis [w]
Out[225]= {—4x + 2y + 2,4z — 2y, —3(3z — 2y)}

Let us look a little more closely at the change of basis. One should notice that it is
a linear transformation, as it is the solution of a linear system of equations. As such
we should be able to represent it as matrix multiplication. We construct the matrix as
we did in Section 3.3.2, by seeing what the change of basis does to the standard basis
vectors. We call the matrix P.

In[226]:= P = (ChgBasis /@ {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}) // Transpose
P // MatrixForm

OUt[226]: {{_47 27 1}7 {27 _1a 0}3 {_37 2, 0}}

3.3 Linear Transformations 181

421
out271= [2 =10
320

The form of this matrix should not be surprising when we compare it to the ele-
ments of the of an arbitrary vector written with regards to the basis B, as we did in
Equation (3.2). We see, in our matrix, a column of 4, 2, and —3 which are precisely the
coefficients of z, another column of 2, —1, and 2 which are the coefficients of y, and 1,
0, and 0 which are the coefficients of z. In other words, we see the matrix which, when
multiplied on the left against (z,y, z) will produce exactly the vector in Equation (3.2).

With this information we may now calculate T'v, written with respect to the basis B,
with only simple matrix multiplication. We do this using the matrix P, and the diagonal
matrix of eigenvalues, above, which we name Di. We would prefer to call this diagonal
matrix simply D, but recall that Mathematica uses D for differentiation, and it is a
reserved name. We use Mathematica’s DiagonalMatrix function to more easily create
the diagonal matrix. We see that we compute precisely the same vector we computed
with ChgBasis [w].

In[228]:= Di = DiagonalMatrix[{1, 2, 3}]1},
Di // MatrixForm

Di.P.v
out[228]= {{1,0,0},{0,2,0},{0,0,3}}
100
out[229]= [020
003

Out[230]= {—4z + 2y + z,4x — 2y, —9z + 6y}

It should follow that if we can change our basis from the standard basis to the basis
B, then we should be able to freely change back. That is, the change of basis should be
an invertible function. This is reinforced when we remember that the coefficients of the
standard basis are unique to each unique vector, as are the coefficients of the vectors in
our basis B. What we have here is an isomorphism, which really ought to be invertible.
We should expect, then, that the matrix P has an inverse, and that multiplying by this
inverse should undo the basis change, as clearly P~'P = I.

In[231]:= (P // Inverse).%

out[231]= {—9z +2(4x — 2y) + 6y, 3(4x — 2y) +2(—9z +6y), —4x + 2(4x — 2y) + 2y + =}
In[232]:= Simplify[%]
Out[232]= {—x + 2y, —6x + 6y, 4z — 2y + =}

This is the same vector we computed as Tv, above, and named w.

In[233]:= % ==
Out[233]= True
So now we have two matrix representations for our linear operator T'. One is just the

matrix we started with, and the other is the product of three matrices, P~! Di P, one
of which is diagonal. In fact, we should expect that T = P~! Di P.

In[234]:= {(T // MatrixForm), (P // Inverse) .Di.P // MatrixForm}
HL011] ==7%[[2]]

182 3 Linear Algebra

120 120
Out[234]:{ 660]|,[-660 }
4 21 4 21

Out[235]= True

So now, one might ask, just what is P~1?

In[236]:= P // Inverse // MatrixForm

021
Out[236]= | 032

120

It is precisely the matrix consisting of our eigenvectors, in the exact order we used
them back when we solved the linear system for the ChgBasis function we wrote.
In[237]:= e // Transpose // MatrixForm

021
out[237]= | 032
120

This is an example of a diagonalizable matrix. That is, an n X n matrix, M say,
which may be written as a product of matrices P D P~! where D is a diagonal matrix.
Alternately, we might say that P~! M P is a diagonal matrix, because

M=PDP ! — P 'M=DP ! — P'MP=D

If we rename P~! to be P in the previous example, then we see that this is satisfied.

In[238]:= P =P // Inverse
P.Di. (P // Inverse) // MatrixForm
(P // Inverse) .T.P // MatrixForm

Out[238]= {{07 2, 1}7 {07 3, 2}7 {17 2, 0}}

~120

out239]= [=6 6 0
4 21
100

outl40)= [020
003

Let us look now at the next example from the previous section (Section 3.3.3).

In[241]:= T = {{2, -5, 6, 0}, {4, -19, 24, 0}, {3, -15, 19, 0}, {1, -29, 38, 2}}
T // MatrixForm

out241]= {{2,-5,6,0}, {4, —19,24,0}, {3, —15,19,0}, {1, —29, 38, 2}}

2-560
4-19240
Out[242]= 315190
1-29382

We should remember that this example had eigenvalues 0, 1,2 and that the eigenspace
associated with eigenvalue 1 was two-dimensional. Specifically, we had eigenvector
(2,8,6,1) corresponding to eigenvalue 0, eigenvectors (5,1,0,24) and (2,4,3,0) formed

3.3 Linear Transformations 183

a basis for the eigenspace corresponding to eigenvalue 1, and eigenvector (0,0,0,1)
corresponded to eigenvalue 2.

It is prudent to talk about the multiplicity of an eigenvalue as well as the dimension
of the eigenspace. The multiplicity of the eigenvalue, is simply its multiplicity in as a
root of the characteristic polynomial. In this example the characteristic polynomial is
z(r —2)(z — 1)%, and so = 0 and = = 2 are single roots, whereas = = 1 is a double
root. Hence the eigenvalues 0 and 2 had multiplicity 1, and eigenvalue 1 had multiplicity
2. Similarly the dimensions of the eigenspaces are the same as the multiplicity of the
corresponding eigenvalue.

We ask Mathematica to calculate the eigenvectors and eigenvalues directly using the
Eigenvectors and Eigenvalues functions.

In[243]:= vec = Eigenvectors[T]
val = Eigenvalues[T]
out[243]= {{0,0,0,1},{5,1,0,24},{2,4,3,0},{2,8,6,1}}
Out[244]= {2,1,1,0}

We can now produce our diagonal matrix, and see if we can diagonalize the original
matrix.

In[245]:= Di = DiagonalMatrix[val]
P = vec // Transpose
{P // MatrixForm, Di // MatrixForm}

Out[245]= {{2, 0,0, O}, {O, 1,0, 0}, {0, 0,1, 0}, {0, 0,0, O}}
Out[246]= {{07 5,2, 2}7 {07 1,4, 8}3 {Oa 0,3, 6}7 {la 24,0, 1}}

0522 2000
0148 0100 }
0036]°10010
12401 0000

Out[247]= {

We could, at this point, simply calculate P Di P! and see if the matrix we get is
equal to T', however, it is probably prudent and illustrative to check that the eigenvectors
we have are all linearly independent (and thus form a basis for R*). Fortunately, we
already have the eigenvectors handily arranged into the matrix named P, so establishing
the linear independence is precisely the same as verifying that the vector equation
Pz = 0 has only the trivial solution.

In[248]:= NullSpace [P]
Out[248]= {}

Thus we see that these vectors form the required basis, and so we can be quite sure
that diagonalization will work. We see that indeed it does.

In[249]:= P .Di. (P // Inverse) // MatrixForm

2 -5 60
4-19240
Out49l="| 515190
1-29 38 2

In both of the above examples, our matrix has had exactly as many linearly indepen-
dent eigenvectors in number as the dimension of the vector space upon which it acts.

184 3 Linear Algebra

That is, we had a 3 x 3 matrix with 3 linearly independent eigenvectors, and also a 4 x 4
matrix with 4 linearly independent eigenvectors. The process of diagonalization that we
have used in both of these examples is one of using these eigenvectors as a basis for the
underlying space. With this basis we find that we may apply the function simply by
multiplying the coefficients of the basis vectors by fixed values (and hence the diagonal
matrix), and then change back to the regular basis.

It should be clear then that as long as we have n linearly independent eigenvectors
for an n x n matrix, M say, we can always follow this procedure, and we will thus
always have a diagonalizable matrix. It turns out that this must always happen and
that, in fact, an equivalent definition of an n x n matrix being diagonalizable is that it
has exactly n linearly independent eigenvectors. To see that this is equivalent, we must
see that a diagonalizable matrix M will always have exactly n linearly independent
eigenvectors. We do not prove this here, but the proof is quite elementary and can be
found in any good linear algebra text.

Why is diagonalization desirable? Well, diagonalization has applications in the solv-
ing of differential equations, as well as recurrence relations, and more besides. However,
a more down to earth reason is that it can make taking powers of the matrix much
simpler.

Without diagonalization, to compute 7" (which is just TT---T where there are
n multiplications) we would have to compute n matrix multiplications. In the case
where n is large, such a computation might be prohibitively time consuming, even for
a computer.

In the case that T is diagonalizable, then we can write 7= PDP~!, and so

™ =7T---T=PDP~'PDP'...PDP ' = pprpP~!

where each P~! is canceled out by multiplication by P in the middle of the expression,
leaving only a single P on the left and P~! on the right, and n Ds all multiplied together
in the middle forming D™.

Now, the power of a diagonal matrix is very simple to take. One simply raises each
entry on the diagonal to the power n. The reader is encouraged to experiment with some
simple 2 x 2 or 3 x 3 examples of diagonal matrices to see why. For this it is actually
more illustrative to perform the calculations by hand in order to see the pattern of
multiplication.

Clearly this is a potentially very great decrease in time taken to find large powers
of a matrix. Imagine trying to find 7% the long way, compared to just three matrix
multiplications, plus some work to find eigenvectors and eigenvalues. This is not just
a speedup of hand calculations, either. Matrix multiplication on computers can be
similarly sped up this way, and it is quite likely that Mathematica itself uses such
techniques (and likely more sophisticated ones as well).

We look at one more example of a diagonalizable matrix. This time, we do so in
complex space. We take this example from the previous section as well.

In[250]:= T = {{2, 1}, {-1, 1}}
T // MatrixForm
OUt[25O]: {{27 1}5 {717 1}}

Out[251]= (_21 i)

We should remember, from our earlier computation, that this example had no real
eigenvalues, but it did have complex eigenvalues. If we think about this matrix as a

3.3 Linear Transformations 185

linear transformation from C? — C2, then the roots of the characteristic equation, and
thus the eigenvalues are (3 +1iv/3) and £(3 — iv/3).

In[252]:= Di = DiagonalMatrix[Eigenvalues[T]]
P = Eigenvectors[T] // Transpose

Out[252]= {{% (34—2\/3)7 0}, {0, %(3—1'\/??) }}
Out[253]= {{1+%(—3—i\/§>, 1+%(—3+i\/§> } {1, 1}}

We see that the vectors are linearly independent by finding the determinant of the
matrix P, remembering that a nonzero determinant is equivalent to the expression
Tz = 0 having only the trivial solution, and thus the column vectors being linearly
independent. We could just as easily compute the null space of P, if we wish, but we’ll
use the determinant for a bit of variety.

In[254]:= P // Det
Out[254]= —iv/3

We have exactly two linearly independent, complex eigenvectors, which must there-
fore form a basis for C2. We can diagonalize the matrix.

In[255]:= P .Di. (P // Inverse) // Simplify // MatrixForm

21
Out[255]= <_1 1>

And there we have it. Note that we need to simplify the expression. The result of
the computation P. Di .P~! on its own is complicated, and messy, and too troublesome
to print.

Finally we look at an example of a matrix that is not diagonal. We have not proven
that an n X n matrix must have n linearly independent eigenvectors for it to be diag-
onalizable, although we have referred the reader to where such a proof may be found.
We take this as read, however, and show a matrix with too few eigenvectors.

In[256]:= T = {{6, -9}, {4, -6}}
T // MatrixForm
Out[256]= {{6,—9},{4,—6}}

Out[257]= (2 _2)

In[258]:= vec = Eigenvectors[T]
val = Eigenvalues[T]

Out[258]= {{37 2}; {Oﬂ 0}}
Out[259]= {0,0}

Interpreting the output, we have a repeated eigenvalue of 0, and two eigenvectors,
(3,2) and (0,0). However, we know the zero vector cannot be an eigenvector. Fur-
thermore, taking linear combinations of these vectors yields only a one-dimensional
eigenspace. Let’s look at this a little closer to see what’s going on.

In[260]:= CharacteristicPolynomial[T, \[Lambda]ll
Out[260]= >

186 3 Linear Algebra

Well that’s an easy one to solve. Clearly A = 0 is the only eigenvalue with multiplicity
of 2. We will now manually calculate the eigenvectors. Recall that we need to find the
null space of the matrix (7' — AI), which in this case collapses to T' thanks to the
eigenvalues of 0.

In[261]:= NullSpace[T]
Out[261]= {{3,2}}
And here we see only a single vector, and hence only a one dimensional eigenspace.
Because the multiplicity of the eigenvalue is greater than the dimension of the eigenspace

we say that the eigenspace is deficient. This is sufficient to render our matrix 7' as not
being invertible.

3.4 Exercises 187

3.4 Exercises

1. a. Create the following vectors and matrices using the angle bracket () notation.

1 1-27
i | x ii. (z,y,2,w) iii. |8 4 -5
x3 79 2

Create the matrix twice, once using the column vectors and then using the row
vectors.
b. Create the following vectors using the Table function.
i (m,m,m,m,m)
ii. (1,2,3,4,5,6,7,8,9,10)
iii. w= (u1,...,us) where u; = i’.
iv. v = (v1,...,v10) where v; is the ith Fibonacci number.
Create the following matrices using the Table function

2,2 .2 .2

e“e“ e’ e miy1 Myi2 -+ M110
e? e? e2 ¢2 ma1 M232 -+ M210
v 02 o2 o2 2 vi.
e? e? e? e?
ms51 M52 -+ M510

c. Create functions to produce the following general matrices.
i. Ann xn matrix A = [a; ;] where a; ; = () + (1) and (¥) are the binomial
coefficients.
ii. An n x m matrix B = [b; ;] where b; ; = i + j2.
iii. An n x m matrix C' = [¢; ;] where ¢; ; = f(¢,7) for an arbitrary 2-variable
function f.
2. a. Calculate the following matrix products

159
123 45
2610 1234 b
i 16 78 910 ii .
3711 5678 c
1112131415
4812 d

b. Recall that the dot product between two vectors allows the calculation of the
angle between the vectors with the formula

w.v = |ul - |v| - cosf

Use this formula to find the angle between the following vectors. Also, find an
in-built function for calculating the angle between vectors, and use it to verify
your calculations.

i. (1,0,1) and (1,1,0) iii. (1,2,3
2,3

4,5,6) and (6,5,4,3,2,1)
ii. (2,2,2,2) and (3,0,3,3) iv. (1,2,3) a

) and (4,5,6)

188 3 Linear Algebra

Note: For a vector v, the value |v| may be calculated in Mathematica with the
Norm command.

c. Recall that the vector cross-product is an operation that can only be performed
on three-dimensional vectors, and that it calculates a new vector perpendicular
to the two vectors used in its calculation.

Find a Mathematica command to perform cross-products, or write your own,
and use it to calculate the cross-product of the following vectors. Verify that
the cross-product is, indeed, perpendicular to the two vectors.

i. (1,0,0) and (0,0,1) ii. (1,-2,3) and (3,2,—1)
3. a. Plot the following systems of equations, and attempt to identify from the plot

whether the system is solvable. Solve the system using linear algebraic tech-
niques. Plot the solution space if there is more than one solution.

i 2z —3y= -2 iii. 2x+4+z2=1
2+ y=1 —3r+z=3
3z +2y=1 20+ 2=4

—2y+2=2

ii. —x+y=16 iv. z4+y+ z=3
2 +y=—17 —x+y+32=3
6z + 2y = —56 dr+y—22=3

b. Solve the following linear systems and verify the solution. Express the solutions
as vector equations.

i dxe+3y+224+ w=1 ii. 22+ y+ z4+ w=1
T4+ 2y+3z+4w =2 T+2y+ 2+ w=2
z+ y+22+ w=3

T+ y+ z4+2w=4

4. Let A, be the n x n matrix where

2ifi=j
a; ; =
d 1 otherwise

and let b = (by,...,b,) be the n-vector where b; = i.
Solve the linear system A, x = b for all values of n up to 10. Form a hypothesis
about the solution for general n, and test that hypothesis for n = 100, and any
other values of n that you choose.

5. Use row reduction to attempt to find inverses for the following matrices. If they
are invertible, then give the inverse matrix, otherwise explain why they are not

invertible.
90 30 —4 40 71 40 72
a. | =54 57 17) ~51 —44 83 —26
—27 —69 —40 "l =21 79 41 -39

-5 17 =76 =58

3.4 Exercises 189
[22 -3 —56 —18 —72]
20 7 80 —94 —55
c. | —84 —62 —42 —26 89
64 —84 —12 23 59
| 7 —65-30 27 60 |

6. Which of the following matrices will always give a unique solution to the vector
equation Ax = b, which are invertible, and which will become the identity matrix
in reduced row echelon form?

(15 33 0 —97 47 48] [76 66 98 —37 82 —153]
~70 0 0 —84 66 65 93 —18 —89 —10 —88 76
0 —-19-65 13 0 0 56 —18 —50 87 —85 —26
Y10 —61 65 0 —55-78 “ |58 79 92 46 34 —35
—38 0 0 64 —42 0 68 10 —89—16 1 46
|53 0 —41 0 -9 0 | 40 —72 32 78 —26 —196 |
—62 32 0 61 31 —124 [25 —16 —38 57 —32 99
0 940 93 —1 0 94 —9 —18 27 —74 29
~74 0 51 0 —23 —46 12 =50 87 —93 —4 44
b —86-2539 0 —72 —94 ¢ —2-22 33 —76 27 92
~36-20 0 0 —56 —72 50 45 —98 —72 8 —31
| 0 690 -26-95 0 | |10 —81 —77 —2 69 67 |

7. For the matrices in Exercise 6 that were invertible, find a sequence of row operations
that will produce the matrix when performed on the identity matrix. (In other
words, find the expression of the matrix as a product of elementary matrices).

8. a. For the following, state whether the first vector is a linear combination of the

other vectors.
i. (1,2), (~1,4), (2, -3)
i (1,2,3),(~1,2,3), (1, -2,3)
i (~1,2,3),(1,2,-3), (1, 10 ~3)
v. (-1,2,3,-4),(3,-2,-1,5),(7,-2,3,7),(1,2,5,—-3)
b. For the following, state whether the first polynomial is a linear combination of
the other polynomials.
i 7Tla* —1362% 4 14227 + 264 2 + 265

—31z* — 5423+ 88z + 31
—822% — 1323 — 7122 — 86
ii. 672° =312 4922 + 4422 + 292 + 99
692° + 8z +272% —42% — 74z — 32
2% — 722 — 762> — 9322 + 272 + 57

—772° — 982 +332% 4 872% — 182 — 38
9. Which of the sets of vectors and polynomials from Exercise 8 are linearly indepen-
dent, and which are linearly dependent?

190 3 Linear Algebra

10. The matrix space M3(R) has a standard basis:
10 00 01 00
00] |to] |oo] o1

a. Extend this notion to find a standard basis for M,,(R). What is the dimension
of M, (R)? Use this to establish a correspondence between matrices in M, (R)
and R™ for suitable m.

b. For the following sets of matrices calculate whether the first is a linear combi-
nation of the others. Which of these sets are linearly independent, and which
are linearly dependent?

And so has dimension 4.

- [-50 45 50 —16 25 12 31 —80
l' b b b

| —22 81 10 —9 94 —2 —50 43

o [-361 —61 77 248 [—25 76

11. , , ,
| —99 53 —48 9 65 20 | 51 —44
[—67 16 60 82 18 —62] [—=70 29 -1 —1421 19

ii. | 22 9 —95|,(72-59-33|,| 41 70 52 |,| 60 90 88
| 14 99 —20 42 12 —68 | 91 —32-13 —35 80 —82

11. A vector in R3 may be rotated around any of the three axes. Rotation around the
z-axis is equivalent to rotating in the xy plane. Similarly rotating around the y-axis
is equivalent to rotating in the zz plane and rotating around the z-axis is equivalent
to rotating in the yz plane. We call these rotations R;,, R, and R.,, respectively.

a. Convince yourself that each of these rotations is a linear transformation on R3.

b. Construct rotation matrices for R;,, R, ., and R, for a rotation by an arbitrary
angle 6.

c. Show that any one of these rotations can be realized as a composite transfor-
mation using only the other two and their inverses.

d. How would you rotate a vector around an arbitrary line in R3?

e. Plot a cube with a face pointing in the direction of the vector (1,1,1).

12. Find the eigenvectors and eigenvalues of the following matrices.

[—300 296 —36 24 0] [1277 —336 —1668 1572 288 |
—-309 305 —36 24 0 744 —187 =972 900 168
a. | =365 356 —40 27 0 b. | 1634 —432 —2138 2021 370
—699 680 —92 61 0 548 —144 —718 679 124
| 328 —320 44 244 | | 1722 —456 —2259 2133 395 |

13. We may generalise the notion of square roots to matrices by defining the square
root of a (square) matrix, M say, as a matrix A such that A- A = M.
Using this definition of a matrix square root:

a. Find the square root of the following matrices.

3.5 Further Explorations

16 0 00
04900
0 0640
0001

ii.

191

(36 000 00]
160000
01000

00040

0
0
0 00490 0
0
0

000 081]

What is the square root of an arbitrary diagonal matrix? (Justify your answer)
b. Find the square root of the following diagonalizable matrices from Sections 3.3.3

and 3.3.4.
-1 20
i. |—-6 60
4 -21

ii.

2 =560
4 19240
33 -15190
17 —29 38 2

Hint: Use the fact that these matrices are diagonalizable, and the properties
of powers of diagonalizable matrices.

14. Diagonalize the following matrices.

(9 —459 —9
00 00
22102 —2
3-153 -3
[~300 296 —36 24 0]
~309 305 —36 24 0
d. | -365 356 —40 27 0

—699 680 —92 61 O

| 328 320 44 244

3.5 Further Explorations

4 10 —16 44
=315 -9 24
—-816 2 —4
-24 -1 5

18 =80 —16

18 =70 —18
c.

0 020

8§ —40 —6

1. A positive matrix A = (a; ;) is a matrix over R where a; ; > 0 for every ¢ and j.
In other words it is a real matrix with all positive entries. The Perron—Frobenius
theorem states that such a matrix has a unique, largest, real eigenvalue, and a
corresponding eigenvalue with all positive entries.

More technically stated:

Theorem 3 (Perron—Frobenius). Let A = (a;;) be an n X n positive matriz.

Then the following hold.

192

3 Linear Algebra

a. There is a unique eigenvalue v € R with the property that for every other eigen-
value X\ it is the case that |\ < r.

b. The eigenvalue T is a simple root of the characteristic polynomial, and so is a
degree 1 eigenvalue.

c. There is an eigenvector v = (v1,...,vy,) corresponding to the eigenvalue r has
the property that v; > 0 for every 1 <i < n.

d. The eigenvector v (above) is the only eigenvector with nonnegative entries.

The eigenvalue r is sometimes called the Perron root or the Perron—Frobenius eigen-
value.

Be aware that the eigenvalues A in la could potentially be complex, in which case
the absolute value is the complex modulus. Similarly, as a consequence of 1d any
other eigenvector of A (i.e., an eigenvector corresponding to a different eigenvalue)
must have either a negative entry, or a complex one.

. Recall recurrence relations from Section 1.3.3. The solution to a first order re-

currence relation is quite straightforward. We may use a similarly straightforward
approach to systems of recurrence relations (often called difference equations). Sup-
pose we have n recurrence relations aq(k),. .., a,(k) which are interlinked in some
way. That is,

a1 (k)
ag(k)

)\11041(]6 — 1) +)\12(L2(k — 1) + -4 Alnan(k — 1)
)\Qlal(k — 1) +)\220,2(]{3 — 1) + 4)\gnan(k — 1)

an(k) = Apjar(k— 1)+ Appas(k—1) 4+ - + Ay an(k = 1)

We may decompose this into something very reminiscent of a linear system. Let

)\11 /\12 e)\1" al(k)

)\21)\22 e)\Qn ag(k)
=1 . . . | and a(k) := .

Ang Ang -+ An, an (k)

then
alk)=A-a(k-1)

and by the same argument we used in Section 1.3.3 we can see that
a(k) = A* - a(0)

How would you ascertain the long-term behavior of such a system?

In the special case that the elements of every row of A add to 1, we have a rep-
resentation of a time-homogeneous Markov chain. This is not actually a difference
equation, however. In this case we are representing some system with n states that
between which it may transition. Each state is represented by a row and a column.
The element a; ; (being the element in row ¢ and column j) is the probability that
the system will move to the state represented by column j if it is currently in the
state represented by row .

The similarity to difference equations is in taking higher powers of the matrix A in
order to obtain a solution. If we have an n-vector, vy say, whose elements sum to 1,
we can consider it to be a probability distribution of the states. That is, we consider

3.5 Further Explorations 193

the element v; as being the probability that the state is in the state represented by
row ¢, then the vector v1 = A - v is the probability distribution of the system after
a single transition, and the vector vy, = AF - v is the probability distribution of the
system after k transitions.

How would you ascertain the long term behavior of such a system?

3. Recall differential equations from Section 2.2.3. We may have interrelated differen-
tial equations in a similar manner to our difference equations above. Such equations
are sometimes called coupled differential equations. Suppose we have the following
system of differential equations.

Yi(t) = Ay (t) + Ayya(t) + - + A, yn(t)
Yy (t) = Ao,y (t) + Ay ya(t) + -+ - + Ao, yn(t)

y:z (1) = Ay y1(t) + A2 (t) + -+ - + A yn (1)

We construct a linear system. Let

AL, A1, oee A1, f1(®) f1(®)

Ao Ao, .. A 4
_ :21 ?2 ; 2 = fQ;(t) and f(t) = f2;(t)

)"Vll /\nz >‘7Ln f’fb(t) ;L(t)

Then our system of differential equations can be written as
flt)y=A-f(t)

If py, . .., pp are distinct eigenvalues of A with corresponding eigenvectors vy, . .., vy,
then

F) =3 et
=1

is the general form of the solution to where ¢; are arbitrary constants. You can
easily show that e#'v is a solution, and it’s an easy step from there to see that a
linear combination of solutions must also be a solution.
For second-order differential equations, ay” + by’ + cy = 0, we introduce a new
function x such that z =y’ and we now have the following system of equations
y =z
b c
/
r(t)=——x——
(t)=——z——y
which we can now evaluate using the matrix method above. Doing so will verify the
characteristic polynomial method.
Extend this method to deal with higher-degree differential equations, and systems
of coupled higher-degree differential equations. How might you cope with inhomo-
geneous cases?

Chapter 4
Visualization and Geometry: A Postscript

We conclude with a brief chapter on visualization and geometry. We will look at a
number of tools which can be used either to enhance the visuals we have already been
producing during the book (with Plot and the like), as well as some more general func-
tions for producing images. We will finish up with a very quick look at some “interactive
geometry” using the software known as Cinderella.

4.1 Useful Visualization Tools

Mathematica contains some useful tools for visualization that we discuss briefly here.

4.1.1 Interactive Mathematica and Demonstrations

Mathematica comes with some tools to produce interactive elements within a Mathe-
maticanotebook. They are perhaps a little cumbersome to use, and are, sadly, outside
the scope of this book to detail. They are, nonetheless, deserving of attention, and
the reader is encouraged to look further into them. The Documentation Center pages
named: “Interactive Manipulation” as well as “Introduction to Manipulate” and “In-
troduction to Dynamic” to begin with. The Documentation Center entry “Build an
Interactive Application” is also worth looking at.

An extensive library of interactive Mathematica demonstrations can be found online
at http://demonstrations.wolfram.com/, as well as a free player for the demonstra-
tion files available at http://www.wolfram.com/cdf-player/. Anybody with a Math-
ematica license, may create and distribute their own demonstrations. Readers from an
educational background might be particularly interested in this. The Documentation
Center page “Create a Demonstration” should be a good place to start for the inter-
ested reader. The player will also display and print mathematica notebook files, with
all inputs and outputs that were present at the time the file was saved, but will not
allow them to be modified in any way.

J.M. Borwein and M.P. Skerritt, An Introduction to Modern Mathematical Computing: With Mathematica®, 195
Springer Undergraduate Texts in Mathematics and Technology, DOI 10.1007/978-1-4614-4253-0_4,
© Springer Science+Business Media, LLC 2012

196 4 Visualization and Geometry: A Postscript

4.1.2 Animation

For plots with a single parameter, the Animate function may be used as a “field
expedient” method of producing a quick interactive Mathematica element. It’s also

useful for creating animations.
For example, to see the pointwise convergence of the bell-curve like function e~
as k — oo, we could issue the following command.

ka?

In[1]:= Animatel[
Plot[E~(-k*x"2), {x, -5, 5}, PlotRange ->Full],
{k, 1, 10}
]

Out[1]:“—4“ ER T

Note that the actual notebook will have a frame around the graphic, with a slidebar
for controlling the value of k, as well as play, pause, and other controls for the animation.

We may use this technique to better see the change of parameter of a parametric
equation. We revisit an example from Section 2.2.4 to demonstrate this.

In[2]:= Animatel[
PolarPlot [Sin[8* theta /5], {theta, 0, k}, PlotRange -> 1]
{k, 0.01, 10Pi}
]

Out[2]= —=rof

The reader should refer to the Documentation Center for more information.

4.1 Useful Visualization Tools 197

4.1.3 Text and Labeling

Many of the plots we produce may be enhanced with the addition of text to the plot
to explain or label. Up until now the only labeling our plots have had have been nu-
meric values, and tickmarks to indicate sub-values. We show here a variety of labeling
methods; the Mathematica plotting functions have a number of built-in labeling op-
tions, and the reader is encouraged to reference the Documentation Center regarding
for more details, or to find further options not mentioned here.

First, we look at labeling the axes. The Mathematica plotting functions, by default,
will not label axes, but there is an option we may set if we wish it to happen. This option
is the AxesLabel option. Usually when we plot a function, we are plotting an expression
with a well-defined unknown (or unknowns), and so the vertical axis corresponds to an
easily identified variable. The vertical axis, however, often does not correspond to an
easily identifiable variable, although convention is often to consider it the “y” axis. By
default, if we use AxesLabel -> Automatic the Plot command will label the vertical
axis with the obvious variable, and will not label the vertical axis. (The P1lot3d function
behaves analogously by labeling the obvious two horizontal axes, but not the vertical
axis).

In[3]:= Plot[Sin[\[Thetall, {\[Thetal, 0, 2Pi}]

1.0F

Out[3]= 10}

We see that Plot has labelled the horizontal axis with a 6 to the right of the axis. If
we wish, we may choose our own labels by giving a list to the AxesLabel option. That
list will be interpreted as the horizontal, and the vertical axis labels, in that order.

In[4]:= Plot [Sin[\[Thetal]l, {\[Thetal, 0, 2Pi},
AxisLabel -> {\[Theta], Sin[\[Thetall}
]

sin(6)
1.0F

—05F

Out[4]= 1ok

198 4 Visualization and Geometry: A Postscript

Another option we may change, with regards to marking and labeling of plots, is to
change which values are marked along the axes. In our example above, Mathematica has
helpfully marked out 1, 2, etc all the way up to 6, and then a bit for us on the horizontal
axis, with smaller ticks to indicate increments of 0.2. However, we are plotting the sin
function, and so markings of 7/2 would be more appropriate.

The markings on any axis are called tickmarks, and are modified using the Ticks
option. The simplest version of this is to specify either the Automatic or None keywords
for the Ticks option. Both of these options do as we should expect; to provide the
behavior we see by default and to completely remove tickmarks respectively. We do not
demonstrate these here.

If we do not specify either of the above key words, we may give a list to the Ticks
option. This list will be interpreted as a list of tickmark specifications, one for each
axis. There are several forms the tickmark specifications can take, but we will only
concern ourselves with one in particular; a list of the values to be marked. Note that
this specification is, itself, a list that will be an element of the list of axis specifications.

In[5]:= Plot[Sin[\[Thetal]l, {\[Thetal, 0, 2Pi},
AxisLabel -> {\[Thetal, Sin[\[Thetall},
Ticks -> {{0, Pi/2, Pi, 3Pi/2, 2Pi}}
]

sin(6)
1.0

0.5

ws b

—05}F

Out[5]= -10}

In our case we wanted the tickmarks on the horizontal axis to be shown at regular
intervals of %7‘(‘ in order to have the critical points of the sine curve suitably marked. We
did not need, nor wish, for the vertical axis to be marked any differently from usual,
and so we simply omitted a specification for that axis, and it was left as default.

For the sakes of demonstration, let us produce a plot of the sin function, marking
off all multiples of 7/4, as well as the corresponding values of sin at those values. Note
that there are only five distinct values of sin for those values of 6.

In[6]:= With[{values = Table[k*Pi /4, {k, 0, 8}]},
Plot[Sin[\ [Thetal]l, {\[Thetal, 0, 2Pi},
Ticks —> {values, Sin/@values}]

]

4.1 Useful Visualization Tools 199

1k

5

IS
s -
w
B

vz
Out[6]= -1+

We may, if we wish, attach a label to an entire plot. The PlotLabel plot option
allows us to do this.

In[7]:= With[{values = Table[k*Pi /4, {k, 0, 8}1},
Plot[Sin[\[Thetal], {\[Thetal, 0, 2Pi},
Ticks -> {values, Sin/@values},
PlotLabel -> "A plot of the sine function"
]
]

A plot of the sine function

o

an
S

vz
Out[7]= -1F

We pause to mention that we may label any Mathematica output (not just plots) with
the use of the Labeled function, however we will not look at that function here. The
interested reader is encouraged to look the function up in the Documentation Center.

Getting back to plotting, we may, if we wish, place arbitrary text anywhere on a plot
using the Text and Graphics functions. The Graphics function is a generic function for
producing 2-D graphics, and serves to collect together functions which produce graphics
primitives, such as Text, Circle, Polygon, etc. We will look at some more of these in
Section 4.1.4, but for now we’ll look at Text specifically.

As an example, let’s look at the cubic 2® + 22 — 52 — 5, which we call p. Through
simple analysis (which we leave as an exercise to the reader) we discover that p has
zeroes at © = 1 and = £+/5. We also discover that p has turning points at (1, —8)
and (—5/3,40/27) which are a local minimum and maximum, respectively. We intend
to plot this cubic, and label these interesting points.

To begin with, we plot the curve, with as many markings as we can manage. We use
the Ticks option to mark the zeroes, and we use a new option, Epilog, to add two
points onto the plot at the critical points.

In8l:= p=x"3+x"2-5x-5
pl =Plot[p, {x, -3.25, 2.75},

200 4 Visualization and Geometry: A Postscript

PlotLabel -> y==p,
AxesLabel -> {x, y},
Ticks —> {{-Sqrt[5], -1, Sqrt[5]}},
Epilog -> {
PointSize[0.015], Point[{-5/3, 40/27}], Point [{1, -8}]
}
]

out[8]= —5— bz + 2% + 23
y=x+x*-5x-5
y
10+

Out[9]=

Now we mark the critical points. It should be noted here that the Graphics function
produces a plot, just as do any of our other plotting functions. If we want to put the
text near the plot of our curve, we need to use the Show function. It is for this reason
that we assigned our first plot to the variable pl, above.

We want the label for the local maximum to sit immediately above the point in
question, and the label for the local minimum to sit immediately below the point. We
use the Text function to achieve this, although it produces a lot of whitespace here.

In[10]:= cp = Graphics[
{
Text[{-5/3, 40/27}, {-5/3, 40/27},{0, -1.5}]
Text [{1, -8}, {1, -8}, {0, 1.5}]
}

5 40

=3

327

Out[lO]: 11,8

4.1 Useful Visualization Tools 201

The Text function takes the form Text [expr, coord, offset], where expr is the
expression whose text is to be plotted, coord is a list describing the coordinates at which
to plot the expression, and offset is an offset from that position. In this case, we have
printed the coordinates, at their location, but offset slightly up, or down, so that they’re
not directly on top of the plot curve, or point. Note that the Text function needs to be
use inside the Graphics function.

The offset describes not just how far away from the specified coordinates to put the
text, but also how to align the text. In our case {0, —1.5} specifies that the expression
is to be centered 1.5 units above the specified coordinates. Similarly, {0, -1.5} specifies
that the expression is to be centered 1.5 units below the specified coordinates. Specifying
{a, 0} or {-a, 0} will align the right or left edge of the expression at the specified
coordinates, respectively, with an appropriate shift by a units. Diagonal alignment is
possible with a non-zero entry for each element of the list.

All that remains now, is to look at the final plot.

In[11]:= Show[pl, cp]
y=x+x>-5x-5

10

Out[11]=
As always, we should clean up after ourselves, and clear our global definitions.

In[12]:= ClearAll["Global *"]

4.1.4 Polygons, Polyhedra, and so on

In addition to plotting functions (implicit or otherwise), there may be other things we
wish to visualize. We have already seen the Graphics function in Section 4.1.3, when
we used it to add text to plots. We look at some more uses of this function, as well as
some other potentially useful visualization functions.

We start by visualizing basic polygons and polyhedra. The Polygon function, which
must be used in conjunction with the Graphics function, takes a list of points which it
then uses to create a polygon.

In[12]:= Graphics[{Blue, Polygon[{{0, 0}, {3, 1}, {2, 1}}1}]

202 4 Visualization and Geometry: A Postscript

Out[12]=

With a judicious use of the Table command we can create a regular 11-gon.
We find eleven equidistant points on the unit circle. These points have the form
(cos(2km/11),sin(2km/11)) with 1 < k < 11. Note the Blue directive, which appears as
a list element before the Polygon function.

In[13]:= With[
{V =Table[{Cos[2*Pixk/11], Sin[2*Pi*k/11]}, {k, 1, 11}1},
Graphics[{Blue, Polygon[V]}]
]

Out[13]=

The order of the vertices is important here. The Polygon function draws the bound-
ary of the polygon by drawing lines between the vertices in the order they appear (1st
to 2nd then 2nd to 3rd and so on until the nth and then finally from the nth to the
1st). If the boundary lines intersect, then the interior changes appropriately.

In[14]:= Graphics[{Blue, Polygon[{{0, 0}, {1, 0}, {0, 1}, {1, 1}}1}]

Out[14]=

4.1 Useful Visualization Tools 203

Note here that there is also a three-dimensional variant of Graphics called, unsur-
prisingly, Graphics3D. We will not look at that here, and the interested reader is, as
always, encouraged to look it up in the Documentation Center.

We will, however, look at some three-dimensional visualization. Specifically, we will
visualize the regular polyhedra. The function in question is the PolyhedronData, and
takes a string as an argument, describing the polyhedron we wish to see.

In[15]:= PolyhedronData["Icosahedron"]

Out[15]=

In fact, the PolyhedronData function is much more complicated than just a function
to plot regular polyhedra. The reader is encouraged to look into this themselves, but
we will show one other use of this function. We will use it to see the two dimensional
net for the icosahedron.

In[16]:= PolyhedronData["Icosahedron", "NetImage"]

Out[16]=

We leave the discussion of polygons, polyhedra and so on there. Mathematica has
a great number of functions for graphic visualization, and we could dedicate an entire
book if we wanted to. The reader should be capable of finding more information through
the Documentation Center.

204 4 Visualization and Geometry: A Postscript

4.2 Geometry and Geometric Constructions

Mathematica, somewhat surprisingly, does not come with a geometry package capable
of performing geometric computations.! We have seen the Graphics function, which is
capable of drawing geometric shapes, but not, apparently, performing geometric con-
structions of the sort we will look at in this section. As such, we will shift our attentions
from Mathematica to the interactive geometry package Cinderella.

Interactive geometry packages are wonderful tools for learning geometry; the points
and lines created may be moved about the screen freely, and the software computes the
changes in real time. This allows us to see a very large number of different cases very
quickly, and even of easily realizing truths which are not so plain with a pen-and-paper
construction. Unfortunately, the dynamic nature of such software is difficult to convey
in the strictly static nature of a book such as this one. We will persist nonetheless, but
the reader should be aware that we are not even really scratching the surface in this
section. Exploration is highly encouraged, and we hope that this small taste wets the
readers appetite.

Cinderella is available from http://www.cinderella.de/. At the time of writing,
a basic version of the software was available for download and use free of charge, with
an advanced version available for use under a paid license. All constructions found in
this book are possible with the basic version. A similar, open source program named
GeoGebra is available from http://www.geogebra.org/.

We do not attempt to explain the operation of the Cinderella software here; we leave
that up to the reader. Instead, we present the logic of the constructions themselves,
along with the images produced by Cinderella, and trust the reader to be able to follow
the reasoning.

4.2.1 Constructing a Circle Given Three Points

Given three points, we may find a unique circle that passes through all three of those
points. This fact is related to the fact that the perpendicular bisector of any two chords
on a circle will always intersect at the center of that circle.

Let us start with three points.

1.0

L At the very least, the author was unable to identify one.

4.2 Geometry and Geometric Constructions 205

These could, in principle, quite happily be any three points. However, the author has
taken pains to choose three particular points that lie on a familiar circle.

A=(1,5),B=(4,2) and C = <1+ @,24- W)
10 10
the reader should use any three points they so choose.
The way in which we construct the circle is to suppose that our three points lie on
the surface of some circle. If this were the case, then we could create up to three chords
of that circle by drawing line segments between the three points.

1.0

In order to find the center of our hypothetical circle, we need only two of these
chords. For simplicity’s sake, we chose the chords A B and B C'. Observe, however, that
whichever two chords we chose would always have had a point in common. This is
critical. We now construct the perpendicular bisector of each of these chords. First we
need to find the midpoints of the two line segments.

1.0

The perpendicular bisector of the chord a is the line perpendicular to a that passes
through the midpoint of a, which is the point D. Similarly, the perpendicular bisector
of the chord b is the line perpendicular to it that passes through its midpoint, E. We
construct these lines now.

206 4 Visualization and Geometry: A Postscript

1.0

So now we have an intersection of two perpendicular bisectors drawn from chords
on a hypothetical circle. How do we know this circle even exists? One way would be
to try to draw the circle whose center is at the intersection of the two bisectors and
using one of the points as a radius. If we did this then maybe that circle would also
pass through the other three points in which case we would have our desired circle.
Doing this, however, would not guarantee that the same construction would work for a
different three points.

So instead, let’s think about these bisector lines for a bit. If we take any point, P
say, on the bisector of, say, A B, then we know that point is equidistant from A and
B. If we imagine the isosceles triangle P A B we should be convinced of this fact. In
particular, then, the point of intersection between our two bisectors—Ilet’s call it F—is
equidistant to A and B.

1.0

By a similar argument, applied to the chord B C, the intersection point F' is also
equidistant from the points B and C. So it must be the case that all three of our points
are equidistant from F', which is the same as saying that they lie on a circle whose
center is F' and whose radius is the distance between the points and F'.

We now know that not only is our hypothetical circle actually a real circle, but that
it makes no difference which three points we choose. This is because as we observed
above, there must always be a common point that our two chords share. The proof that
this circle is unique is left as an exercise for the reader. All that remains is to draw the
circle.

4.2 Geometry and Geometric Constructions 207

/ |10

The reader should recognise the circle of radius 3, centered at the point (1,2) that
we plotted several times in Section 2.2.4.

As is usually the case with these things, Cinderella as an in-built tool which will
calculate the unique circle from three arbitrary points. We might simply have used
thistool for computing a circle given three points, and it would have produced the
correct circle for us. If we had done so, however, we would not have led us to the proof
of correctness of the above technique. By taking the longer route, we have led ourselves
to a greater understanding

Nonetheless, doing so allows us to see our circle without the extra construction lines
and points.

1.0

4.2.2 Constructing the Orthocenter of a Triangle

We perform one more construction. We start with a triangle, the points of which have
been chosen arbitrarily for no particular reason other than they fit fairly neatly within
the a golden rectangle, and thus will look good on the page. In other words, the choice
was made with an eye to the constraints of publishing, not of geometry. As with the
previous example, the choice of points is not important; all that is important is that
they form a triangle.

208 4 Visualization and Geometry: A Postscript

To construct the orthocenter of the triangle, we draw the line perpendicular to each
side and passing though that side’s opposite corner. In this case, we take the lines
perpendicular to a passing though C', the line perpendicular to b passing though A, and
the line perpendicular to ¢ passing through B.

These lines, appear to intersect at a single point. In fact, performing this construction
for any given triangle will always produce a single intersection point. We call this point
the orthocenter. We give no proof that the lines always intersect at a single point, nor
does our construction shed any light on why this might be. What we have done is to
produce but a single example.

A single example, whether on paper or on screen, should not be very compelling,
however the interactive nature of Cinderella allows us to see many more configurations
of the three points, very quickly. If we drag points around the screen we will see a
dynamically changing triangle, with the perpendicular lines always, apparently at least,
meeting at a single point. This should be at least a little more compelling than a single
image.

If we drag points around for long enough, we may even discover a configuration that
looks something like the following, with the so called “center” lying outside the triangle.
Now we're beginning to see both the complexities of the geometric construction we’re
performing, as well as the benefits of interactive geometry. This is something that we
might sink our teeth into and get to the bottom of.

4.2 Geometry and Geometric Constructions 209

d f

If we look closely, we see that the line f is acutally perpendicular to the line ¢ and
passes through the point B, just as it’s supposed to. Similarly the line e is perpendicular
to the line a and passes through the point C. The problem lies in the fact that the
triangle A B C has, in this specific case, an obtuse angle. Verifying this fact is left as
an exercise to the reader.

We leave the discussion of geometry there. Take note that the interactive nature of
Cinderella has allowed us to quickly find and see degenerate configurations that likely
would not have been immediately obvious with more static methods. The reader is, as
always, encouraged to experiment on their own. Have fun!

Appendix A
Sample Quizzes

A.1 Number Theory

Short Answer Section

The following questions are worth 1 point each. Answer the questions in your Mathe-
matica notebook file.

1. What is e'? evaluated to 23 significant figures?
. Factorize 2'? + 3210 — 23 2% — 5125 + 94 2% + 120 2.

2x

2

3. Convert ———— into an expression involving trig functions.
xe x

4

. What is the partial fraction decomposition of the rational polynomial.

'+ 428 +252% — 2023 + 5322 — 422+ 33
8 — 227+ 726 —122° + 1824 — 2423 + 2022 — 162 + 8

1 o0
5. What are the first 20 terms of the sequence {} ?
k(k+1)J,_,

= 1
6. Evaluate ’; m

b 1
7. Evaluate H (1 — 22)
T

k=1
8. What is the 100,000,000th prime number?

J.M. Borwein and M.P. Skerritt, An Introduction to Modern Mathematical Computing: With Mathematica®, 211
Springer Undergraduate Texts in Mathematics and Technology, DOI 10.1007/978-1-4614-4253-0,
© Springer Science+Business Media, LLC 2012

212 A Sample Quizzes

Long Answer Section

The following questions are worth 3 points each. Points are given for working. Answer
the questions in your Mathematica notebook file.

9. Let a, = 2n — 1 and s,, = n? and define the sequences
A= {an}?:l S = {Sn}zozl

It should be clear then that A = {1,3,5,...} and S = {1,4,9,16,...}.

a. Calculate the first 20 terms of the sequence

{Sn+1 - Sn}zozl

What is sp41 — S 7
b. Calculate the first 20 terms of the sequence

n o
k=1 n=1
What is Y, ai ?

10. Recall that >" k~! diverges. It may be shown that Zk_(1+€) converges for any

€ > 0. For this question we let € = 1—(1)0

a. Evaluate the series Y 7o, 1/ k160, and obtain a decimal approximation.
b. Calculate decimal approximations of the partial sums

N

1
> oty for IV = 10,100, 1000, 10000, 100000
k=1

and measure how much time each takes to calculate.

Notice that this series converges very slowly.
11. Let {f,} be the Fibonacci-like sequence defined by

fn = fn71+fn72 f1:_2,f2:3

a. Write a function to calculate the terms of this sequence.

b. What are the first 10 terms of this sequence?

c. What is the largest number in this sequence less than 1,000,000, and what is
its index?

12. Let s be the first-order nonlinear recurrence relation defined by

Sp=ns2_,

a. Let sg = C and calculate the first 5 or so terms of the recurrence.

b. Solve the recurrence.

c. Verify the solution for at least 20 terms of the sequence, and in general if you
can.

A.2 Calculus

A.2 Calculus

Short Answer Section

The following questions are worth 1 point each. Answer the questions in your Mathe-

matica notebook file.

1

2.

C
4. What is the slope of the tangent to the curve y =

o Ne >

T +sinz
. What is the limit of rsmw at — 00?
T
—coshz
Find lim ——.
z—0t xT

cos T
What is the derivative of ?
x

0S T
at x = 77

1
Evaluate log x dx.

Find a fungtion whose derivative is tanh x.
Find the first partial derivatives of z = z? — 2.
How many critical points does z = 22
are they?

— 92 have, and what kind of critical points

214 A Sample Quizzes

Long Answer Section

The following questions are worth 3 points each. Points are given for working. Answer
the questions in your Mathematica notebook file.

9. A length of wire 10 meters long is cut in two. One of the pieces is bent into a square,
the other into an equilateral triangle. Let = be the length of wire that is bent into
the square (meaning that 10 — x is the length of wire bent into the triangle). Let
A be the area of the square and let A; be the area of the triangle.

a. Define A to be the formula for the total area of the two shapes (ie., A :=
As + Ay). Plot A.

b. How much wire should be used for the square to maximize the total area?

¢. How much wire should be used for the square to minimize the total area?

10. The Airy functions Ai(z), Bi(z) are the two independent solutions to the differential
equation
y'—z2y=0 (A1)

a. Solve the differential equation (A.1), and verify the solution.

b. Plot the Airy functions together on the same axes. Make sure to show good
detail of what the functions are doing.

¢. Find and plot a third solution, other than y = Ai(z) and y = Bi(z), to equa-
tion (A.1).

11. Use solids of revolution to verify the following volumes.

a. The volume of a sphere with radius r (4/37r®)
b. The volume of a cone with height h and radius r (1/37r2h)

12. Consider the surface z = sin(z) cos(y).

a. Plot the surface z.

b. Find a general formula, or formulae, for the critical points.

c. Which critical points are maxima, which are minima, and which are saddle
points?

A.3 Linear Algebra 215

A.3 Linear Algebra

The following questions are worth 1 point each. Answer the questions in your Mathe-
matica notebook file.

1. Calculate the vector 7 - (8,1,5,1,9) + e (1,2,5,6,6).

316
2. Calculate the matrix product [0 07 00

Calculate the dot product of the vectors (3,3,2,3,3,3) and (3,2,3,3,2,1) .

Find the angle between the vectors (3,3,2,3,3,3) and (3,2,3,3,2,1).

Find a vector perpendicular to the vectors (5,5,3) and (5,5,5).

Create the 9 x 10 matrix M whose entries m; ; = 1717 j.

Find the elementary matrix that will add k& multiplied by row 7 to row 9 of a 10 x 10
matrix.

8. How many solutions are there to the vector equation M - z = 0 where

NSOt

[94785]
47348

M:=|77057
74644

(76226

216 A Sample Quizzes

Long Answer Section

The following questions are worth 3 points each. Points are given for working. Answer
the questions in your Mathematica notebook file.

9. This question refers to the following simultaneous equations.

y+3z2=2
8r+2y+22=3
3r+3y+52=2

a. Solve the simultaneous equations. How many solutions are there?
b. Plot the three surfaces in such a way that clearly shows the solution.

10. This question refers to the following three matrices

1172 0414 0111
2209 0211 6100
7725 3344 2266
0015 6495 9444

a. Which of the matrices may be expressed as a product of elementary matrices?

b. For the matrices that may be expressed as a product of elementary matrices,
find the sequence of elementary matrices whose product is that matrix. (Equiv-
alently, you may find the sequence of row operations performed on the identity
matrix.)

11. Let A be the matrix below, and let p,q € R.

q 1-p—gq D

a. Create A in Mathematica as a function of p and gq.
b. By examining various numerical cases where p > 0, ¢ >0and 1 —p—q > 0,
conjecture the behavior of the matrix A™ as n — oo.

12. This question refers to the following set of matrices

7297 [847] [060] [074
126,674, [240],[279

248 957 925 937
009 101 791 974 508

371(,[739],|145(,[214]|,|754
003 004 163 590 9438
a. Do the matrices form a basis for M3(R)? Justify your answer.

b. Find the coefficients of a linear combination of these matrices for an arbitrary
3 X 3 matrix.

References

—_

11.
. STEWART, J. Calculus, 6th ed. Brooks/Cole, 2008.
13.
14.

S © XN

ANTON, H., AND RORRES, C. Elementary Linear Algebra, 7th ed. John Wiley and Sons Inc,
Brisbane, 1994.

. BAiLEY, D., BORWEIN, J., CALKIN, N., GIRGENSOHN, R., LUKE, R., AND MoLL, V. Ezperi-

mental Mathematics in Action, 1st ed. AK Peters, Wellesley, MA, 2007.

BORWEIN, J., AND BAILEY, D. Mathematics by Experiment: Plausible Reasoning in the 21st
Century, 2nd ed. AK Peters, Wellesley, MA, 2008.

BORWEIN, J., BAILEY, D., AND GIRGENSOHN, R. Ezxperimentation in Mathematics: Computa-
tional Paths to Discovery, 1st ed. AK Peters, Natick, MA, 2004.

BoOrwEIN, J., AND DEVLIN, K. The Computer as Crucible: An Introduction to Ezperimental
Mathematics. AK Peters, Wellesley, MA, 2009.

GANDER, W., AND HREBK, J. Solving Problems in Scientific Computing Using Maple and
MATLAB, 4th ed. Springer, New York, 2008.

GARVAN, F. The Maple 5 Primer Rel 4. Prentice Hall, Englewood Cliffs, NJ, 1997.

GARVAN, F. The Maple Book. Chapman and Hall/CRC, Boca Raton, FL, 2001.

Heck, A. Introduction to Maple, 3rd ed. Springer, New York, 2003.

KuiMEK, G., AND KLIMEK, M. Discovering Curves and Surfaces with Maple. Springer, New
York, 1997.

ROVENSKI, V. Y. Geometry of Curves and Surfaces with MAPLE. Springer, New York, 2000.

TroTT, M. The Mathematica Guidebooks, 3rd ed. Springer, New York, 2004—-2006.
WAGON, S. Mathematica in Action, 2nd ed. Springer, New York, 1999.

J.M. Borwein and M.P. Skerritt, An Introduction to Modern Mathematical Computing: With Mathematica®, 217
Springer Undergraduate Texts in Mathematics and Technology, DOI 10.1007/978-1-4614-4253-0,
© Springer Science+Business Media, LLC 2012

Index

3n + 1 Problem, 74

* (operator), 2

-> (operator), 46

. (operator), 141, 142

/. (operator), 4, 47, 51, 52, 176
// (operator), 13
/; (operator), 28
/@ (operator), 33, 71, 154, 165

:= (operator), 6

; (operator), 3, 20, 27, 28

< (operator), 16, 19

= (operator), 3, 6, 19

== (operator), 19, 39, 52

@ (operator), 13

[L...1] (operator), 9, 38

% (operator), 3, 28, 67, 72, 153
&& (operator), 17, 32, 36, 37

“ (operator), 124

" (operator), 142

_ (operator), 15

Logical OR (operator), 17, 40, 43

abundant number, 38, 39
AlgebraicNumber (function), 74
amicable numbers, 31, 32, 35-38
amicable pair, 31, 32, 35-38

Animate (function), 196

argument, 6

arithmetic sequence, 70, 72

Array (function), 11, 43, 68, 140
AspectRatio (keyword), 106
Assumptions (keyword), 91
assumptions, specifying, 16-17, 91-92
augmented matrix, 143, 144, 146, 156
Automatic (keyword), 82, 198
AxesLabel (keyword), 197

Bessel equation, 135
modified, 135
Bessel function, 135

Bessel functions of the first and second kind,

135
modified, 135

Block (function), 25, 27, 28, 33, 34, 36, 37, 47,
50, 54, 55, 63, 71, 85, 90, 145

Blue (keyword), 82, 202

BoxRatios (keyword), 126

Break (function), 64

Cases (function), 27, 28, 31, 32, 37, 38, 46, 47,
51
characteristic equation, 103, 104
characteristic polynomial, 59, 175, 177, 183,
192, 193
CharacteristicPolynomial (function), 175
Circle (function), 199
Clairaut’s theorem, 125
failure of, 136
co-ordinates
cylindrical, 113
polar, 109
polar, conversion to Cartesian, 109
spherical, 114
Coefficient (function), 159
Collatz’s conjecture, 74
command separation, 3
command termination, 3
Complement (function), 9, 10, 63
compound expression, 3, 27
computation time, 23, 43
measuring, 45
constant variable, 24
continued fraction, 53-57, 73
ContinuedFraction (function), 56, 57, 73
ContourPlot (function), 109, 111, 115
ContourPlot3D (function), 115
conversion between P (F) and F", 158, 160,
164, 168
Count (function), 69
cylindrical co-ordinates, 113

D (function), 94, 123, 181
deficient number, 38

definition, delayed, 6
definition,delayed, 165

delayed definition, 6, 165
DeleteDuplicates (function), 177

J.M. Borwein and M.P. Skerritt, An Introduction to Modern Mathematical Computing: With Mathematica®, 219
Springer Undergraduate Texts in Mathematics and Technology, DOI 10.1007/978-1-4614-4253-0,

© Springer Science+Business Media, LLC 2012

220

derivative
limit definition, 92
partial, 122
Derivative (function), 124
Det (function), 166, 175, 185
determinant, 166, 174, 175, 185
diagonalizable matrix, 182, 184, 185, 191
DiagonalMatrix (function), 181
Diff (function), 123
difference equation, 192
differential equation
complementary equation, 104
coupled, 193
first order linear, 101, 103, 135
high degree as system of, 193
second-order as system of, 193
second-order linear, 103
homogeneous, 103
homogenous w/ constant coeffs, 103
nonhomogeneous w/ constant coeffs, 104,
105
second-order solution, general form, 105
solving, 102-104
system of, 193
Direction (keyword), 89, 90
disks method (volumes of revolution), 117
divergence test, 16
divisor, 23-27, 29, 32, 38, 62, 63
proper, 29, 31, 38
Divisors (function), 29
Do (function), 19, 27, 28, 31, 33, 37, 41, 54, 65,
71, 72
Documentation Center, xiv
Dot (function), 142
double sum, 40, 41, 129
DSolve (function), 103, 105

E (keyword), xv

eigenspace, 178, 179, 182, 183, 185, 186
deficient, 186
dimension, 183, 185, 186

eigenvalue, 174-180, 182-186, 190-193
multiplicity, 183, 186
Perron-Frobenius, 192
repeated, 177, 178, 185

Eigenvalues (function), 183

eigenvector, 174-180, 182-186, 190, 192, 193
linearly independent, 183—-185

Eigenvectors (function), 183

Element (function), 91

elementary matrix, 148, 150, 151, 153-157

empty list, 8

Epilog (keyword), 199

Eratosthenes (sieve), 61, 73

Evaluate (function), xv

evaluation suppression, 19

Exp (function), xiv, xv

Expand (function), xv

Exponent (function), 159

expression
compound, 3, 27

Index

Factor (function), xv
Fibonacci (function), 43, 72
Fibonacci numbers, 42-46, 48, 57, 59, 60, 72, 73
Field extension, 74
fixed point, 174
Floor (function), 53
For (function), 65, 71
Fubini’s theorem, 130
function
applying to list elements, 33
argument, 6
implicit, 109, 115
infix notation, 14
parameter, 6
postfix notation, 13
prefix notation, 13
function, pure, 68, 71
Functions
AlgebraicNumber, 74
Array, 11, 43, 68, 140
Block, 25, 27, 28, 33, 34, 36, 37, 47, 50, 54,
55, 63, 71, 85, 90, 145
Break, 64
Cases, 27, 28, 31, 32, 37, 38, 46, 47, 51
CharacteristicPolynomial, 175
Circle, 199
Coefficient, 159
Complement, 9, 10, 63
ContinuedFraction, 56, 57, 73
ContourPlot3D, 115
ContourPlot, 109, 111, 115
Count, 69
DSolve, 103, 105
D, 94, 123, 181
DeleteDuplicates, 177
Derivative, 124
Det, 166, 175, 185
DiagonalMatrix, 181
Diff, 123
Divisors, 29
Do, 19, 27, 28, 31, 33, 37, 41, 54, 65, 71, 72
Dot, 142
Eigenvalues, 183
Eigenvectors, 183
Element, 91
Evaluate, xv
Exp, xiv, xv
Expand, xv
Exponent, 159
Factor, xv
Fibonacci, 43, 72
Floor, 53
For, 65, 71
Graphics3D, 203
Graphics, 199-201, 203, 204
HarmonicNumber, 22, 23, 87, 88
HoldForm, 56, 85
IdentityMatrix, 149
If, 25, 27, 29-33, 35, 37, 39
Im, 40
IntegerQ, 33, 34, 91

Index

Integrate, 96, 100, 103

Intersection, 9, 10

Inverse, 142

Join, 7, 14, 146

Labeled, 199

Length, 69

Limit, 18, 85, 89-92

LinearSolve, 146, 147, 163, 164

ListPlot, 86, 87

Log, xiv, Xv

Map, 33, 71, 154

MatrixForm, 139-141, 153, 161

MatrixPower, 142

Mod, 24, 27

NIntegrate, xv, 99, 100

NSum, xv, 72

N, xv, 2, 6, 13, 18, 22, 50, 100

NextPrime, 65

Norm, 188

NullSpace, 163, 164, 176

NumberQ, 40

ParametricPlot3D, 113, 115

ParametricPlot, 106, 113, 174

Part, 9

Partition, 146

Piecewise, 132

Plot3D, 112, 113

Plot3d, 197

Plot, 7, 77, 79, 81, 82, 84, 86, 88, 106, 107,
110, 112, 195, 197

PolarPlot, 110

Polygon, 199, 201, 202

PolyhedronData, 203

PolynomialQ, 159

PrimeQ, 65

Prime, 65

Print, 20, 30

Product, 12

RSolve, 58, 73, 103

Range, 31

Rationalize, 53

Re, 40

Refine, 17, 92

RegionPlot, 111

ReleaseHold, 85

Reverse, 16

RevolutionPlot3D, 114, 116, 117, 119, 121

Root, 74

RowReduce, 144

Show, 84, 85, 135, 200

Simplify, xv, 17, 52

Sin, 6

Solve, 61, 143, 176, 177

SphericalPlot3D, 115, 116

Sqrt, xv

Sum, 12, 13, 18, 22, 41, 51, 52, 69, 70, 72, 87,
131

Table, 10-12, 17, 18, 24, 27, 28, 32, 42, 43,
47, 68, 70, 71, 74, 131, 140, 187, 202

Text, 199, 201

Timing, 45, 49

Total, 12, 29
TraditionalForm, 85
Transpose, 140

Union, 9, 10, 27

While, 54, 65, 71
WithContinuedFraction, 56

with, 24, 25, 27, 28, 33, 34, 36, 37, 50, 85, 90,

145
Animate, 196
Text, 200
fundamental theorem of calculus, 95

Gauss—Jordan elimination, 143, 144
Gaussian elimination, 143

geometry, interactive, 195, 204, 208, 209
golden ratio, 56, 60

Graphics (function), 199-201, 203, 204
Graphics3D (function), 203

half range, 9

harmonic series, 16

HarmonicNumber (function), 22, 23, 87, 88
hexagonal number, 70

HoldForm (function), 56, 85

icosahedron, 203
IdentityMatrix (function), 149
If (function), 25, 27, 29-33, 35, 37, 39
Im (function), 40
implicit function, 109, 115
Infinity (keyword), xv, 12
infix function notation, 14
Integer (keyword), 28
IntegerQ (function), 33, 34, 91
Integers (keyword), 91
integral
indefinite, 95
limit definition, 95
Integrate (function), 96, 100, 103
integrating factor, 102
interactive geometry, 195, 204, 208, 209
Intersection (function), 9, 10
Inverse (function), 142
inverse (matrix), 142
inverse of matrix product, 155
inverse symbolic computation, 99, 101, 134
invertible matrix equivalences, 156, 162, 164
iterator, 11, 26, 41, 42, 54, 68, 71
Documentation Center, 11
multiple, 41, 42

Join (function), 7, 14, 146

Keywords
AspectRatio, 106
Assumptions, 91
Automatic, 82, 198
AxesLabel, 197
Blue, 82, 202
BoxRatios, 126
Direction, 89, 90

222

E, xv

Epilog, 199
Infinity, xv, 12
Integer, 28
Integers, 91
MaxRecursion, 81
Mesh, 80

None, 198

Pi, xv
PlotLabel, 199
PlotPoints, 80
PlotRange, 108
PlotStyle, 82
PolarAxes, 110
PolarGridLines, 110
Ticks, 198, 199
WorkingPrecision, xv

Labeled (function), 199

Length (function), 69

Limit (function), 18, 85, 89-92

linear algebra w/ arbitrary finite dimensional
vector spaces, 168

linear combination, 159

LinearSolve (function), 146, 147, 163, 164

ListPlot (function), 86, 87

Log (function), xiv, xv

Map (function), 33, 71, 154
matrix
augmented, 143, 144, 146, 156
determinant, 166, 174, 175, 185
diagonalizable, 182, 184, 185, 191
elementary, 148, 150, 151, 153-157
inverse, 142
of product, 155
null space, 163, 164, 166, 176, 178, 185, 186
of rotation, 172, 173
positive, 191
power of, 142
powers of, 184
reduced row echelon form, 143, 144, 146, 153,
156, 189
row echelon form, 143
square root, 190
transpose, 140
matrix operations, 141
MatrixForm (function), 139-141, 153, 161
MatrixPower (function), 142
MaxRecursion (keyword), 81
mean (strict), 137
Mesh (keyword), 80
method of disks (volumes of revolution), 117
method of shells (volumes of revolution), 121
Mod (function), 24, 27
multiple commands, 3

N (function), xv, 2, 6, 13, 18, 22, 50, 100
NextPrime (function), 65

NIntegrate (function), xv, 99, 100
None (keyword), 198

Index

Norm (function), 188

norm (vector), 187

normal number, 75

NSum (function), xv, 72

null space, 163, 164, 166, 176, 178, 185, 186
NullSpace (function), 163, 164, 176
NumberQ (function), 40

Operators
* 2
->, 46
., 141, 142
/., 4,47, 51, 52, 176
//,13
/;, 28
/@, 33, 71, 154, 165
=6
5, 3, 20, 27, 28
<, 16, 19
==,19, 39, 52
= 3,6, 19
Q, 13
[[...11,9,38
%, 3, 28, 67, 72, 153
&&, 17, 32, 36, 37
°, 124
", 142
_, 15
Logical OR, 17, 40, 43
output suppression, 3

p-series, 16, 17
Pac-Man, 135
paraboloid, 112, 118-121, 130-132
parameter, 6
parametric equation, 106, 108, 110, 116, 125
parametric surface, 113, 116
ParametricPlot (function), 106, 113, 174
ParametricPlot3D (function), 113, 115
Part (function), 9
partial derivative, 122
partial sum, 17, 18, 21, 22
Partition (function), 146
patterns, 28
pentagonal number, 70
perfect number, 29-32, 38
Perron root, 192
Perron—Frobenius theorem, 191
Pi (keyword), xv
Piecewise (function), 132
Plot (function), 7, 77, 79, 81, 82, 84, 86, 88,
106, 107, 110, 112, 195, 197
plot modification
axis labeling, 197
tickmarks, 198
P1ot3D (function), 112, 113
Plot3d (function), 197
PlotLabel (keyword), 199
PlotPoints (keyword), 80
PlotRange (keyword), 108
PlotStyle (keyword), 82

Index

polar co-ordinates, 109, 110

PolarAxes (keyword), 110

PolarGridLines (keyword), 110

PolarPlot (function), 110

Polygon (function), 199, 201, 202

polygonal numbers, 70, 72

PolyhedronData (function), 203

PolynomialQ (function), 159

positive matrix, 191

postfix function notation, 13

prefix function notation, 13

Prime (function), 65

prime number functions, inbuilt, 65

PrimeQ (function), 65

Print (function), 20, 30

Product (function), 12

product (mathematical)
conversion into sum, 70
infinite, 11, 70

proper divisor, 29, 31, 38

pure function, 68, 71

Range (function), 31
ratio test, 16
Rationalize (function), 53
Re (function), 40
recurrence relation, 42, 43, 57-59, 192
first order w/ constant coeffs, 58
first-order general form, 58
linear homogeneous w/ constant coeffs, 57
order, 57
second order linear homogeneous w/ constant
coeffs, 59
second order linear w/ constant coeffs, 59
solving, 58
system of, 192
recursion, 42—44
reduced row echelon form, 143, 144, 146, 153,
156, 189
Refine (function), 17, 92
RegionPlot (function), 111
ReleaseHold (function), 85
replacement rule, 46, 47
Reverse (function), 16
RevolutionPlot3D (function), 114, 116, 117,
119, 121
Root (function), 74
rotation matrix, 172, 173
row echelon form, 143
RowReduce (function), 144
RSolve (function), 58, 73, 103
rule
replacement, 46, 47
transformation, 46, 47

sequence (mathematical)
arithmetic, 70, 72
plotting, 86, 87

series, 11, 16, 18, 21, 23, 87
harmonic, 16
p-series, 16, 17

223

shells method (volumes of rotation), 121
Show (function), 84, 85, 135, 200
Sieve of Eratosthenes, 61
Simplify (function), xv, 17, 52
Sin (function), 6
sinc (trigonometric function), 137
Solve (function), 61, 143, 176, 177
span, 159, 162, 163, 167
spherical co-ordinates, 114
SphericalPlot3D (function), 115, 116
Sart (function), xv
square number, 70
substitution, 4
Sum (function), 12, 13, 18, 22, 41, 51, 52, 69, 70,
72, 87, 131
sum (mathematical)
p-series, 18
conversion from product, 70
divergence test, 16
double, 40, 41, 129
first n squares, 49
indefinite, 50, 51
infinite, 11, 16, 18, 21, 23, 70, 87
p-series, 18, 21, 23
partial, 17, 18, 21, 22, 87
ratio test, 16
suppression
of evaluation, 19
of output, 3
systems of linear equations
augmented matrix, 143, 144, 146, 156
Gauss—Jordan elimination, 143, 144
Gaussian elimination, 143
geometric interpretation, 144
inconsistent system, 146

Table (function), 10-12, 17, 18, 24, 27, 28, 32
42, 43, 47, 68, 70, T1, 74, 131, 140, 187
202

tangent plane, 126-128

Text (function), 200

Text (function), 199, 201

Ticks (keyword), 198, 199

Timing (function), 45, 49

Total (function), 12, 29

TraditionalForm (function), 85

transformation rule, 46, 47

Transpose (function), 140

transpose of matrix, 140

triangular number, 70

Union (function), 9, 10, 27

variable
constant, 24
vector norm, 187
vector operations, 141
vector space
conversion between P, (F) and F", 158, 160,
164, 168
definition, 157

224

equivalence of finite dimensional and F", 159,
168
vector span, 159, 162, 163, 167
volumes of revolution
disks method, 117
shells method, 121

While (function), 54, 65, 71

Index

With (function), 24, 25, 27, 28, 33, 34, 36, 37,
50, 85, 90, 145

WithContinuedFraction (function), 56

WorkingPrecision (keyword), xv

zeta function (mathematical), 21
¢-function, 21

	Cover
	An Introduction to Modern Mathematical Computing
	Preface
	Contents
	Conventions and Notation

	Chapter 1 Number Theory
	1.1 Introduction to Mathematica

	1.1.1 Inputting Basic Mathematica Expressions
	1.1.2 Variables
	1.1.3 Functions
	1.1.4 Lists, Sets, and Sequences
	1.1.5 Sums and Products
	1.1.6 Pre-, Post-, and Infix Function Notation

	1.2 Putting It Together
	1.2.1 Creating Functions
	1.2.2 Loops
	1.2.3 Decision Structures
	1.2.4 Functions Revisited and Pattern Matching
	1.2.5 Nesting
	1.2.6 Recursive Functions
	1.2.7 Computation Time

	1.3 Enough Code, Already. Show Me Some Math!
	1.3.1 Induction
	1.3.2 Continued Fractions
	1.3.3 Recurrence Relations
	1.3.4 The Sieve of Eratosthenes

	1.4 Problems and Exercises
	1.5 Further Explorations

	Chapter 2 Calculus
	2.1 Revision and Introduction
	2.1.1 Plotting
	2.1.2 Multiple Plots
	2.1.3 Limits
	2.1.4 Differentiation
	2.1.5 Integration

	2.2 Univariate Calculus
	2.2.1 Optimization
	2.2.2 Integral Evaluation
	2.2.3 Differential Equations
	2.2.4 Parametric Equations, Alternative co-ordinates, and Other Esoteric Plotting Fun

	2.3 Multivariate Calculus
	2.3.1 Three-Dimensional Plotting
	2.3.2 Surfaces and Volumes of Rotation
	2.3.3 Partial and Directional Derivatives
	2.3.4 Double Integrals

	2.4 Exercises
	2.5 Further Explorations

	Chapter 3 Linear Algebra
	3.1 Introduction and Review
	3.1.1 Vectors and Matrices in Mathematica
	3.1.2 Simultaneous Linear Equations
	3.1.3 Elementary Row Operations

	3.2 Vector Spaces
	3.2.1 Vector Spaces
	3.2.2 Linear Combinations
	3.2.3 Linear Independence
	3.2.4 Basis and Dimension

	3.3 Linear Transformations
	3.3.1 Introduction to Linear Transformations
	3.3.2 Linear Transformations as Matrices
	3.3.3 Eigenvectors and Eigenvalues
	3.3.4 Diagonalization

	3.4 Exercises
	3.5 Further Explorations

	Chapter 4 Visualization and Geometry: A Postscript
	4.1 Useful Visualization Tools
	4.1.1 Interactive Mathematica and Demonstrations
	4.1.2 Animation
	4.1.3 Text and Labeling
	4.1.4 Polygons, Polyhedra, and so on

	4.2 Geometry and Geometric Constructions
	4.2.1 Constructing a Circle Given Three Points
	4.2.2 Constructing the Orthocenter of a Triangle

	Appendix A Sample Quizzes
	A.1 Number Theory
	A.2 Calculus
	A.3 Linear Algebra

	References
	Index

