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PREFACE

This book is intended to cover many topics in mathematics at a level more advanced than
a junior level course in differential equations. The book evolved from a set of notes for a
three-semester course in the application of mathematical methods to scientific and
engineering problems. The courses attract graduate students majoring in engineering
mechanics, engineering science, mechanical, petroleum, electrical, nuclear, civil and
aeronautical engineering, as well as physics, meteorology, geology and geophysics.

The book assumes knowledge of differential and integral calculus and an
introductory level of ordinary differential equations. Thus, the book is intended for
advanced senior and graduate students. Each chapter of the text contains many solved
examples and many problems with answers. Those chapters which cover boundary value
problems and partial differential equations also include derivation of the governing
differential equations in many fields of applied physics and engineering such as wave
mechanics, acoustics, heat flow in solids, diffusion of liquids and gasses and fluid flow.

Chapter 1 briefly reviews methods of integration of ordinary differential
equations. Chapter 2 covers series solutions of ordinary differential equations. This is
followed by methods of solution of singular differential equations. Chapter 3 covers
Bessel functions and Legendre functions in detail, including recurrence relations, series
expansion, integrals, integral representations and generating functions.

Chapter 4 covers the derivation and methods of solution of linear boundary value
problems for physical systems in one spatial dimension governed by ordinary differential
equations. The concepts of eigenfunctions, orthogonality and eigenfunction expansions
are introduced, followed by an extensive treatment of adjoint and self-adjoint systems.
This is followed by coverage of the Sturm-Liouville system for second and fourth order
ordinary differential equations. The chapter concludes with methods of solution of non-
homogeneous boundary value problems.

Chapter 5 covers complex variables, calculus, and integrals. The method of
residues is fully applied to proper and improper integrals, followed by integration of
multi-valued functions. Examples are drawn from Fourier sine, cosine and exponential
transforms as well as the Laplace transform.

Chapter 6 covers linear partial differential equations in classical physics and
engineering. The chapter covers derivation of the governing partial differential equations
for wave equations in acoustics, membranes, plates and beams; strength of materials; heat
flow in solids and diffusion of gasses; temperature distribution in solids and flow of
incompressible ideal fluids. These equations are then shown to obey partial differential
equations of the type: Laplace, Poisson, Helmholtz, wave and diffusion equations.
Uniqueness theorems for these equations are then developed. Solutions by eigenfunction
expansions are explored fully. These are followed by special methods for non-
homogeneous partial differential equations with temporal and spatial source fields.

Chapter 7 covers the derivation of integral transforms such as Fourier complex,
sine and cosine, Generalized Fourier, Laplace and Hankel transforms. The calculus of
each of these transforms is then presented together with special methods for inverse
transformations. Each transform also includes applications to solutions of partial
differential equations for engineering and physical systems.
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Chapter 8 covers Green’s functions for ordinary and partial diffi~rential
equations. The Green’s functions for adjoint and self-adjoint systems of ordinary
differential equations are then presented by use of generalized functions or by
construction. These methods are applied to physical examples in the same fields c, overed
in Chapter 6. These are then followed by derivation of fundamental sohitions for the
Laplace, Helmholtz, wave and diffusion equations in one-, two-, and three-dimensional
space. Finally, the Green’s functions for bounded and semi-infinite media such as half
and quarter spaces, in cartesian, cylindrical and spherical geometry are developed by the
method of images with examples in physical systems.

Chapter 9 covers asymptotic methods aimed at the evaluation of integrals as well
as the asymptotic solution of ordinary differential equations. This chapter covers
asymptotic series and convergence. This is then followed by asymptotic series evaluation
of definite and improper integrals. These include the stationary phase method, the
steepest descent method, the modified saddle point method, method of the subtraction of
poles and Ott’s and Jones’ methods. The chapter then covers asymptotic solutions of
ordinary differential equations, formal solutions, normal and sub-normal solutions and the
WKBJ method.

There are four appendices in the book. Appendix A covers infinite series and
convergence criteria. Appendix B presents a compendium of special functions such as
Beta, Gamma, Zeta, Laguerre, Hermite, Hypergeometric, Chebychev and Fresnel. These
include differential equations, series solutions, integrals, recurrence formulae and integral
representations. Appendix C presents a compendium of formulae for spherical,
cylindrical, ellipsoidal, oblate and prolate spheroidal coordinate systems such as the
divergence, gradient, Laplacian and scalar and vector wave operators. Appendix D
covers calculus of generalized functions such as the Dirac delta functions in n-
dimensional space of zero and higher ranks. Appendix E presents plots of special
functions.

The aim of this book is to present methods of applied mathematics that are
particularly suited for the application of mathematics to physical problems in science and
engineering, with numerous examples that illustrate the methods of solution being
explored. The problems have answers listed at the end of the book.

The book is used in a three-semester course sequence. The author reconamends
Chapters 1, 2, 3, and 4 and Appendix A in the first course, with emphasis on ordinary
differential equations. The second semester would include Chapters 5, 6, and 7 with
emphasis on partial differential equations. The third course would include Appendix D,
and Chapters 8 and 9.
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1
ORDINARY DIFFERENTIAL EQUATIONS

1.1 Definitions

A linear ordinary differential equation is defined as one that relates a dependent
variable, an independent variable and derivatives of the dependent variable with respect to
the independent variable. Thus the equation:

Ly ao(x ) 
d"y da-~Y ~ + an(x) y = f(x) (1.1)= -- + a~(x) d--~ + ... + an_~(x)dxn ox

relates the dependent variable y and its derivatives up to the nth to the independent

variable x, where the coefficient a0(x) does not vanish in < x < b,anda0(x), al(x ) ....

an(X) are continuous and bounded in < x < b.

The order of a differential equation is defined as the order of the highest derivative in

the differential equation. Equation (1.1) is an th order differential e quation. A
homogeneous linear differential equation is one where a function of the independent
variable does not appear explicitly without being multiplied by the dependent variable or
any of its derivatives. Equation (1.1) is a homogeneous equation if f(x) = 0 and 
non-homogeneous equation, if f(x) ~ 0 for some a _< < b. A homogeneous
solution of a differential equation Yh is the solution that satisfies a homogeneous

differential equation:

Lyh = 0 (1.2)

with L representing an nth order linear differential operator of the form:

dn dn-l’

~x
L = a0(x) d---~- + al(x) d--~ + ... + an_l(X) 

If a set of n functions y 1, Y2 ..... Yn, continuous and differentiable n times, satisfies eq.

(1.2), then by superposition, the homogeneous solution of eq. (1.2) 

yh = Clyt + C2y2 + ... + Cnyn

with C1, C2 ..... Cn being arbitrary constants, so that Yh also satisfies eq. (1.2).

A particular solution yp is any solution that satisfies a nonhomogeneous

differential equation, such as eq. (1.1), and contains no arbitrary constants, i.e.:

Lyp = f(x) (1.3)

The complete solution of a differential equation is the sum of the homogeneous and
particular solutions, i.e.:
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Y =Yh + Yp

Example 1.1

The linear differential equation:

d2y
dx’--" ~ +4y=2x2 +1

has a homogeneous solution Yh = C1 sin 2x + C2 cos 2x and a particular solution

yp = x2/2. Each of the functions Yl = sin 2x and Y2 = cos 2x satisfy the equation

(d2y)/(dx2) + 4y = 0, and the constants C1 and C2 are arbitrary.

1.2 Linear Differential Equations of First Order

A linear differential equation of the first order has the form:

~Y ÷ ~(x) :v(x)
dx

where

~b (x) and ~ (x) 
(×) (×)ao a0

(1.4)

The homogeneous solution, involving one arbitrary constant, can be obtained by direct
integration:

dy
-- + ~b(x) y = 
dx

or

dy : -qb(x) 

Y

Integrating the resulting equation gives the homogeneous solution:

with C1 an arbitrary constant.

To obtain the particular solution, one uses an integrating factor g(x), such that:

g(x) [~x + ~b(x) y I = _~x @(x) y): E dy
dx y+ ~

Thus ~(x) can be obtained by equating the ~o sides of eq. (1.6) as follows:

~ = +(x) 

resulting in a closed fo~ for the integrating factor:

(1.5)

(1.6)
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/.t(X) = exp(~¢(x) 

Using the integrating factor, eq, (1.4) can be rewritten in the form:

Thus, the complete solution of (1.4) can be written as:

Y= C1 exp(-~ ~(x)dx)+ exp(-~ ¢(x)dx)~ ~(x)/~(x)dx

(1.7)

(:.8)

(1.9)

1.3 Linear Independence and the Wronskian

Consider a set of functions [yi(x)], i = 1, 2 ..... n. A set of functions are termed

linearly independent on (a, b) if there is no nonvanishing set of constants 1, C2 . .... Cn
which satisfies the following equation identically:

ClYl(X) + C2yz(x) + ... + CnYn(X) (1.10)

If Yl’ Y2 ..... Yn satisfy (I.1), and if there exists a set of constants such that (1.10) 
satisfied, then derivatives of eq. (1.10) are also satisfied, i.e.:

Cly ~ +C2Y ~ +...+CnY ~ =0

Cly ~" +C2Y~ +...+Cny ~ =0

(1.11)

-~ c’ ~,(n-O _ CIY~n-l) + C2Y(2n-l) + ..... n-n -

For a non-zero set of constants [Ci] of the homogeneous algebraic eqs. (1.10) and (1.11),

the determinant of the coefficients of C1, C2 ..... Cn must vanish. The determinant,

generally referred to as the Wronskian of Yl, Y2 ..... Yn, becomes:

W(yl,y:~ .....
yn)=lyyin_l ) y~ ... y~nI

(1.12)

yl°-1) ... y~-’)[
If the Wronskian of a set of functions is not identically zero, the set of functions [Yi] is a

linearly independent set. The non-vanishing of the Wronskian is a necessary and
sufficient condition for linear independence of [Yi] for all x.

Example 1.2

If Yl = sin 2x, Y2 = cos 2x:



CHAPTER 1 4

sin2x cos2x 1=
W(Yt, Y2) = 2 cos 2x -2 sin 2xI -2 ~ 0

Thus, Yl and Y2 are linearly independent.
If the set [Yi] is linearly independent, then another set [zi] which is a linear

combination of [Yi] is defined as:

zl = °q~Yt +/~12Y2 + ,.. + aqnY.

z2 = ~21Yl + (~22Y2 + ..- + (X2nYn

Zn = ~nlYl + ~n2Y2 + "’" + °t~Yn
with¢xij being constants, is also linearly independent provided that:

det[otij] ~ 0, because W(zl)= det[otij]- W(Yi)

1.4 Linear Homogeneous Differential Equation of Order n
with Constant Coefficients

Differential equations of order n with constant coefficients having the form:

Ly = a0Y(n) + aly(n-0 + ... + an_~y’ + any = 0 (1.13)

where ao, a1 ..... an are constants, with a0 ~ 0, can be readily solved.

Since functions emx can be differentiated many times without a change of its
functional dependence on x, then one may try:

y= emx

where m is a constant, as a possible solution of the homogeneous equation. Thus,
operating on y with the differential operator L, results:

Ly = (aomn + aimn-~ +... + an_~m + an)emx (1.14)

which is satisfied by setting the coefficient of emx to zero. The resulting poly~tomial
equation of degree n:

aomn + aimn-~ + ... + a,_lm + an = 0 (1.-15)

is called the characteristic equation.
If the polynomial in eq. (1.15) has n distinct roots, 1, m2 ..... mn, then there are n

solutions of the form:

Yi = emiX, i = 1,2 ..... n (1.16)

each of which satisfies eq. (1.13). The general solution of the homogeneous equation
(1.13) can be written in terms of the n independent solutions of (1.16):

Yh = C1emlx + C2em2x + ". + Cnem*x (1.17)

where Ci are arbitrary constants.
The differential operator L of eq. (1.13) can be written in an expanded form in terms

of the characteristic roots of eq. (1.15) as follows:



ORDINARY DIFFERENTIAL EQUATIONS 5

Ly:a0 (D- ml) (D- m2)...(D- ran) (1.18)

where D = d/dx. It can be shown that any pair of components of the operator L can be
interchanged in their order of appearance in the expression for L in eq. (1.18), i.e.:

(D- mi) (D- m j) = (D- m j) (D- 

such that:

Ly=ao (D- ml) (D- m2)... (D- mj_1) (D- mj+l)... (D- mn) (D- 

Thus, if:

(D-mj) y:0 j= 1,2,3 ..... n

then

yj = e’~jx j = I, 2, 3 .....

satisfies eq. (1.18).
If the roots mi are distinct, then the solutions in eq. (I. 16) are distinct and it can 

shown that they constitute an independent set of solutions of the differential equation. If

there exist repeated roots, for example the jth root is repeated k times, then there are
n - k + 1 independent solutions, and a method must be devised to obtain the remaining
k - 1 solutions. In such a case, the operator L in eq. (1.18) can be rewritten as follows:

Ly=a0 (D-ml)(D-m2)...(D-mj_l)(D-mj+k)...(D-m~)(D-mj) k y=0

(1.19)

To obtain the missing solutions, it would be sufficient to solve the equation:

(D - m j) k y = 0 (1.20)

A trial solution of the form xremix can be substituted in eq. (1.20):

(D - mj)k (xremjX)= r (r- 1)(r- 2)... (r- k + 2)(r-k xr-kemlx

which can be satisfied if r takes any of the integer values:

r=0, 1,2 ..... k-1

Thus, solutions of the type:

Yj+r = xremjX r = 0, 1, 2 ..... k-1

satisfy eq. (1.19) and supply the missing k - 1 solutions, such that the total
homogeneous solution becomes:

Yh = C1emlx + C2em2x + ---+ (Cj + Cj+Ix + C j+2X2 q- ...--t- Cj+k_lxk-1) emJx

+ C j+ k e
mJ÷kx + ... + Cnem*x (1.21)

Example 1.3

Obtain the solution to the following differential equation:
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d3y 3 d2y

dx 3 ~-~+4y = 0

Let y = emx, then the characteristic equation is given by m3 - 3m2 + 4 = 0 such that
m1 = -1, m2 = +2, m3 = +2, and:

Yh = C1e-x + (C2 + C3x) e2X

6

1.5 Euler’s Equation

Euler’s Equation is a special type of a differential equation with non-constant
coefficients which can be transformed to an equation with constant coefficients and solved
by the techniques developed in Section 1.4. The differential equation:

dny dn-ly
+ an_ix ~ + anY = f(x) (1.22)

Ly = aoxn dx---~- + alxn-~ dxn-1 + ...

~lx

is such an equation, generally known as Euler’s Equation, where the ai’s are constants.

Transforming the independent variable x to z by the following transformation:

z = log x x = ez (1.23)

then the first derivative transforms to:

d d dz 1 d =e_Zd

-- d d
dz dx

The second derivative transforms to:

d 2 d d
d-~ = ~xx (~x) = (e-Z ~d~) (e-Z ~z) = e-2Z(~z2

X2 _
""-~ = ~’2 dz

Similarly:

~d by induction:

x 2)... + ,)
dyn

Using the ~ansfo~afion in ~. (1.23), one is thus able to ~ansform ~. (1.22) 
v~able coefficienm on ~e inde~ndent v~able x to one wi~ cons~t coefficienm on z.
~e solution is ~en obtained in terms of z, ~ter which ~ inverse ~ansfo~ation is
peffo~ to ob~n the solution in mrms of x.



ORDINARY DIFFERENTIAL EQUATIONS

Example 1.4

3d3y 2xdY+4y=0
x dx~ Y- dx

Letting x = ez, then the equation transforms to:

~ (~ - 1)(~ - 2) y - 2~y + 4y 

which can be written as:

d3Y 3 d2y

dz---- ~- -~+4y=O

The homogeneous solution of the differential equation in terms of z is:

yh(z) = Cle-z +(C2 + C3z)e+2z

which, after transforming z to x, one obtains the homogeneous solution in terms of x:

yh(x) = x-x q-(C2-I- C3 l ogx) x2

7

1.6 Particular Solutions by Method of Undetermined
Coefficients

The particular solution for non-homogeneous differential equations of the first order

was discussed in Section 1.2. Particular solutions to general nth order linear differential
equations can be obtained by the method of variation of parameters to be discussed later in
this chapter. However, there are simple means for obtaining particular solutions to non-
homogeneous differential equations with constant coefficients such as (1.13), if f(x) is 
elementary function:

(a) f(x) = sin ax or cos 

Co) f(x) = 

(c) f(x) = sinh ax or cosh 

(d) f(x) m

try yp = A sin ax + B .cos ax

try yp = Ce[~x

try yp = D sinh ax + E cosh ax

try yp = F0xm + FlXm-1 +...+ Fm.lX + Fm

If f(x) is a product of the functions given in (a) - (d), then a trial solution 
written in the form of the product of the corresponding trial solutions. Thus if:

f(x) = 2 e-~x sin 3x

then one uses a trial particular solution:

Yp =(F0x2 + Fix + F2) (e-2X)(Asin3x + Bcos3x)

= e-2x (H1X2 sin 3x + H2x2 cos 3x + H3x sin 3x + H4x cos 3x + H5 sin 3x + H6 cos 3x)

If a factor or term of f(x) happens to be one of the solutions of the homogeneous

differential eq. (1.14), then the portion of the trial solution yp corresponding to that term
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or factor of f(x) must be multiplied by k, where an i nteger kischosen such that the
portion of the trial solution is one power of x higher than any of the homogeneous

solutions of (1.13).

Example 1.5

d3y 3 d2y

dx3 ~’T+4Y= 40sin2x + 27x2 e-x + 18x e2x

where

Yh = Cle-x + (C2 + C3x) 2x

For sin (2x) try A sin (2x) + B cos (2x).

For x2e-x try:

yp = (Cx2 + Dx + E) xe-x

since e-x is a solution to the homogeneous equation.

For xe2x try:

yp = (Fx + G) 2 e2x

since e2x and xe2x are both solutions of the homogeneous equation. Thus, the Ixial
particular solution becomes:

yp = A sin (2x) + B cos (2x) + -x + Dx2e-x + Exe- x + Fx3e2x + Gx2e2x

Substitution ofyp into the differential equation and equating the coefficients of like

functions, one obtains:

A=2 B=I C=I D=2 E=2 F=I G=-I

Thus:

y = C1e-x + (C2 + C3x) e2x + 2 sin (2x) + cos (2x)

+ (x3 + 2x2 + 2x) -x +(x3 - x2) e2x

Example 1.6

Obtain the solution to the following equation:
3

x3 d~Y - 2x dy + 4y = 6x2 + 161ogx
dx3 dx

This equation can be solved readily by transformation of the independent variable as in
Section 1.5, such that:

d~33Y - 3 d~22Y + 4y = 6e2Z + 16z

where yh(z) -- e’z + (C2 + C3z) e+2z.
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For e2z try Az2e2z since e2z and ze2z are solutions of the homogeneous equation,
and for z try Bz + C. Substituting in the equation on z, one obtains:

A=I B=4 C=0

yp(z) : z2e2z + 4z

yp(X) : (logx)2 x2 + 41ogx

y=C,x-1 +(C2 + C3 logx) 2 +x2(logx) 2 + 41ogx

1.7 Particular Solutions by the Method of Variations of
Parameters

Except for differential equations with constant coefficients, .it is very difficult to
guess at the form of the particular solution. This section gives a treatment of a general
method by which a particular solution can be obtained.

The homogeneous differential equation (1.2) has n independent solutions, i.e.:

Yh = Clyl + C2Y2 + ... + CnYn

Assume that the particular solution yp of eq. (1.1) can be obtained from n products 

these solutions with n unknown functions Vl(X), v2(x) ..... Vn(X), i.e.:

yp = vly~ + v2y2 + ... + Vnyn (1.24)

Differentiating (1.24) once results in:

yp= v l+v2Y2+...+VnYn + vlyl+v 2 +...+VnY~

Since yp in (1.24) must satisfy one equation, i.e. eq. (1.1), one can arbitrarily specify

(n - 1) more relationships. Thus, let:

v~y~ + v~y~ + ... + v~yn = 0

so that:

’ ’ + v~y~ ’yp = v~yl + ... + Vnyn

Differentiating yp once again gives:

,, ( ...... )( ...... )yp = v~y~ + v~y2 +... + Vnyn + vlY1 + v2y2 + ... + Vnyn

Again let:

v~y~ + v~y~ +... + v;y; = 0

resulting in:

v~yl + +Yp = ,,
,, ,,v2y2+... Vnyn

Carrying this procedure to the (n - 1)st derivative one obtains:

v~y(2n-2) ¯ (n-~)\ / (n-~). v2y(~n-1)(n-1)~
=~v~yin-2)+ +...+Vny n )+~VlYl . ~" +...+VnynYp
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and letting:

’ (~-2)
(2~-2)’

’ @-2)v~ y~ + v2 y + ... + v~ Yn = 0

then

y(pn-1) = vlyln-1) + v2Y(2n-1) + Vny(nn-1)

Thus far (n - 1) conditions have been specified on the functions 1, v2 . .... vn. The nth

derivative is obtained in the form:

y(p") : v~yln-1)+v~y(2n-1)+ ̄ , (,-i) ... + Vnyn -I-Vlyln)+ v2Y(2n) +... + VnY(nn)

Substitution of the solution y and its derivatives into eq. (1.1), and grouping together
derivatives of each solution, one obtains:

v~ [aoYl~) + axyl~-O + ... + anY~ ]+ v2 [aoY~)+ a~ y(~-O + ... + anY2]+ ...

¯ (~-1)1
+v. [aoy(n’~)+ aly(n"-l’ + ... + anYn ] + aO[v~ylr’-l’ + v~Y(2n-" + .., + vnYn ] : l:’(X)

The terms in the square brackets which have the form Ly vanish since each Yi is a

solution of Lyi = 0, resulting in:

v;yl,~_,) + v~y(2n_l) .. . + v:y(nn-1) : f(
a0(x)

The system of algebraic equations on the unknown functions v~, v~ ..... v~ can now be

written as follows:

v~yi + v~Y2

Vly 1 + v2Y2

+ ... + vnyn = 0

+ ... + vnyn = 0

...... (1.25)
v yl°-2/+°-2/+...+ v:y 
v~yln_,) + v~y(zn_l) + ... + v:y(nn_,) = 

a0(x)

The determinant of the coefficients of the unknown functions [v~] is the Wronskian of
the system, which does not vanish for a set of independent solutions [Yi]" Equations in

(1.25) give a unique set of functions [v~], which can be integrated to give [vii, thereby

giving a particular solution yp.

The method of variation of the parameters is now applied to a general 2nd order
differential equation. Let:

a0(x) y’+at(x) y¯+ a2(x) y = f(x)

such that the homogeneous solution is given by:

Yh = C~Yl(X) + C2Y2(X)

and a particular solution can be found in the form:

yp = v~yl + vZy2

where the functions v1 and v2 are solutions of the two algebraic equations:
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and

vt.y~ + v2y2 = 0

_ f(x)v~y~ +v~y[ a0(x)

Solving for v~ and v2, one obtains:

. -Y2 f(x)/a0(x) y2 
V|~

y~y~ - y~y~_ ao(x) W(x)

and

, y, f(x)/ao(x ) =-~ y~ f(x)
V2-- y~y;_ - y~y~ ao(x) W(x)

Direct integration of these two expressions gives:

and

x

v, =-I y:(r/) f(r/) dr/ao(r/)

x

v2 = +j" yl(r/) f(r/) dr/

The unknown functions v I and v2 are then substituted into yp to give:
X

yp =_y,(x) I yz(r/)f(r/) dr~+y_9(x) f Yl(rl)f(r])
a0(r~) W(O) J a~(~ W---~) dr/

x~ y~(r/) y~_(x)- yl(x) Y2(r/) f(r/)
dr/w(.) ,,0(7)

Example 1.7

Obtain the complete solution to the following equation:

y" - 4y = ex

The homogeneous solution is given by:

Yh = CIe2x + C2e-2x

where y~ = eZx, yg_ = e-~-x, ao(x) = 1, and the Wronskian is given by:

W(x)=y~y~ -y~y2 =-4

The particular solution is thus given by the following integral:
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X e2r/ e_2x _ e2x e-Zn
yp = J (-4)

!
dr/= --" ex

3

The complete solution becomes:

y = C1e2x + C2e-2x _ -~ ex

1.8 Abel’s Formula for the Wronskian

The Wronskian for a set of functions [Yi] can be evaluated by using eq. (1.12).

However, one can obtain the Wronskian in a closed form when the set of functions [Yi]

are solutions of an ordinary differential equation. Differentiating the determinant in (1.12)
is equivalent to summing n-determinants where only one row is differentiated in each
determinant i.e.:

dW

dx

~,~.-2)
¢In-l)

y[

y(2n-2)

Y~

Y~

Y:

y(nn-2)

y(nn-l)

Yl

+ y~’

y~n-1)

y~n-1)

Y2 ." Yn

Y~ ." Yn

Y~ "" Yn
y(n-1) y(nn-1)

y(n-l) y(nn-l)

Yl Y2 --. Yn

"" Y.

+

yln-2)

yln)
y(2n -2) ... y(~n -2)

Since there are two identical rows in the first (n - 1) determinants, each of these
determinants vanish, thereby leaving only the non-vanishing last determinant:

dW

Yl Y2 ... Yn

Yl Y[ ... Y~

 In-2)
yl n) y(2 n) ...

Substitution of (1.2) for yl") , i.e.:

y(n-2)11

y!n) =- al(x...~)" (n-l) a2(x). an-l(X)., an(x)

a0(x) Yi
- ~ Yi -

a0(x) ...-~Yi ao(x ) Yi

(1.26)

(].27)
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into the determinant of (dW)/(dx), and manipulating the determinant, by successively
multiplying the first row by an/a0, the second row by an_l/a0, etc., and adding them to

the last row, one obtains:

d__~_W: _ a,(x_~) 

dx a0(x)
which can be integrated to give a closed form formula for the Wronsldan:

( I" a~(x)W(x) = 0 exp~j- a --~ a x~ (1.28)

with W0 = constant. This is known as Abel’s Formula.

It should be noted that W(x) cannot vanish in a region < x < b unless W0vanishes

identically, al(x) --> ~ or ao(x) ---> 0 at some point in a _< < b.Since thelasttwo are

ruled out, then W(x) cannot vanish.

Example 1.8

Consider the differential equation of Example 1.3. The Wronskian is given by:

W(x) = W0 exp(~-3 dx) e-3x

which is the Wronskian of the solutions of the differential equation. To evaluate the
constant W0, one can determine the dominant term(s) of each solutions’ Taylor series,

find the leading term of the resulting Wronskian and then take a limit as x --> 0 in this

special case, resulting in W0 = 9 and W(x) = -3x.

1.9 Initial Value Problems

For a unique solution of an ordinary differential equation of order n, whose complete
solution contains n arbitrary constants, a set of n-conditions on the dependent variable is
required. The set of n-conditions on the dependent variable is a set of the values that the
dependent variable and its first (n - 1) derivatives take at a point x = 0, which can be

given as:

y(x0) = cz0

y’(x0) = 1: a < x,x0 < b (1.29)

y(n-’)(x0) = 1

A unique solution for the set of constants [Ci] in the homogeneous solution Yh can be

obtained. Such problems are known as Initial Value Problems. To prove
uniqueness, let there exist two solutions YI and YlI satisfying the system (1.29) such that:

YI = C~y~ + C2y2 + ,.. + CnYn + yp

YlI = B~y~ + B2y2 + ... + Bnyn + yp
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then, the difference of the two solutions also satisfies the same homogeneous equalion:

L(yi- yn)=0

Yl (Xo)- Yi~(Xo) = 0
(Xo)- y (xo )-- 

y~n-l)(xo)- y(nn-l) (xo)= 0

which results in the following homogeneous algebraic equations:

Aly~ (Xo) + A2y2(xo) + ...+ A,~Y,~(Xo) 

A,y~(Xo) + A2y[(xo) +...+ Any~(Xo) 
: (1.30)

AlYln-1)(Xo) + Azy~n-1)(Xo) +... + Any(~n-1)(Xo) 

where the constants Ai are defined by:

Ai---Ci-Bi i=1,2,3 ..... n

Since the determinant of the coefficients of [Ai] is the Wronskian of the system, which

does not vanish for the independent set [Yi], then Ai = 0, and the two solutions YI and YlI,

satisfying the system (1.29), must be identical.

Example 1.9

Obtain the solution of the following system:

y"+4y=0

y(O) = x _> 0

y’(0) = 

y = Clsin (2x) + 2 cos (2x)

y(0) = 2 =1

y’(0) = 1 = 4 C1 = 2

such that:

y = 2 sin (2x) + cos (2x)
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PROBLEMS

Section 1.2

1. Solve the following differential equations:

(a) d-~Y+xy:e-X~/2 (b) xdY+2y=x2
ax dx

(c) dY+2ycotanx=cosx (d) dy+ytanhx=eX
dx dx

¯ dy

_~
(e) sin x cos x-- + y = sin (f) + y = e-x

dx

Section 1.3

2. Examine the following sets for linear independence:

(a) u](x) = ix u2(x) = e-i x

(b) ul(x) = -x uz(x) = ex

(c) u1(x)=l+x2 u2(x)=l-x
2

vl(x) = ul - v (x) +
2 2

u~(x) and u2(x) are defined in 

Section 1.4

3. Obtain the homogeneous solution to the

(a) dzy dy 2y=0 (b)
dx z dx

d3Y-3dY+2y=0 (d)(c) dx
d4y

(e) ~-T- 16y= (f)

day
(g) d--~- + 16y = (h)

(i) d3--~-Y + 8a3y = (j)
dx3

d4y ~(k) ~-~- + 2   +a4y=O (1)

I13 = sin x

following differential equations:
d3y d2y 1 dy

dx3 dx2 4 dx ÷ Y = 0

d4y
8 d2y

d-’~-- ~x~+ 16y=0

d~y
d---~ + iy = 0 i = ~Z-~

dSY d4Y dd~-~Y3 2 d~y + dy
dx5 dx4 2_.. + dx--- T ~--y=0

d3Y d2Y + 2a3y = 0
~x3 - a dx---T

d~6Y + 64y = 0
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4. If a third order differential equation, with constant coefficients, has three repeated
roots = m, show that emx, xemx, and x2emx make up a linearly independent set.

Section 1.5

5. Obtain the solution to the following differential equations:

(a) x2d2y+xd-~-Y-y=O (b) x2d2Y+3xdy+y=O
dx~ dx dx2 dx

(c) ~ +xdY+4y=O (d)
dx

x3 d3y + x2 d2Y -2xdy + 2y =0
~ dx-’-’T dx

(e) x3 d3-~-y + 3x2 d2-~-y - 2x dy + 2y = 0
dx3 dx2 dx

(f) X4dx"~’~-d4y + 6x3 ~dx + 7x~ ~ d2y + xdydx - 16y = 0

(g) 4x~ d2Y + --dx-- 5- y=O (h) 2dx
2 

d2y+5y=O

Section 1.6

6. Obtain the total solution for the following differential equations:

Ly-- f(x)

(a) L as in Problem 3a and f(x) = lOsinx ÷ x + 9xe-x

(b) L as in Problem 3c and f(x) = 2 ÷ 4e-x + 27xEex

(c) L as in Problem 3d and f(x) = 16sin2x ÷ 8sinh2x

(d) L as in Problem 5a and f(x) = 2 ÷ 4x

(e) L as in Problem 5e and f(x) = 12x ÷ 4x2

Section 1.7

7. Obtain the general solution to the following differential equations:

(a)
d2--~-y + kEy = f(x)
dx2

(b) 2 d2-~-y +xdy - y = f( x)
dx 2 dx

(c) x3 d3y -2x2-~-~-+axdy- - 4y = f(x)
dx30x- dx

l<x-<2

x_>l

l<x<2
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(d)
d2~y - k2y = f(x)
dx2

EQ UA TIONS

l~x~2

17

Section 1.8

8. Obtain the total solution to the following systems:

(a) Problem 6(a)

y(O) = y’(O) = - 

(b) Problem 3(b)

y(1) = y’(1) = 

y’(2) 

x>O

05x52



2
SERIES SOLUTIONS OF ORDINARY

DIFFERENTIAL EQUATIONS

2.1 Introduction

In many instances, it is not possible to obtain the solution of an ordinary differential
equation of the type of eq. (1.2) in a closed form. If the differential equation (1.2) 
ao(x) as a non-vanishing bounded functions and al(x), a2(x) ..... ) are bounded in the

interval a < x < b, satisfying the system in eq. (1.29), then there exists a set of 
solutions yi(x), i = 1, 2 ..... n. Such a solution can be expanded into a Taylor series

about a point xo, a < x0 < b, such that:

y(x): 2Cn(X-X0)n (2.1)

n=O

where

c. : Y<n)’x°" (2.2)
n!

This series is referred to as a Power Series about the point x = xo, refer to Appendix A.

In general, one does not know y(x) a priori, so that the coefficients of the series cn
are not determinable from (2.2). However, one can assume that the solution to eq. (1.2)
has a power series of the form in eq. (2.1) and then the unknown constants n can be

determined by substituting the solution (2.1) into eq. (1.2).
The power series in eq. (2.1) converges in a certain region. Using the ratio test

(Appendix A), then:

xn+l
Lim Cn+l[x - x0)

n-~ ~ Cn(X-X0)n

< 1 series converges

> I series diverges

< p series converges
¯ Ix - x°l > p series diverges

where p is known as the Radius of Convergence.

Thus the series converges for x0 - p < x < xo + p, and diverges outside this region.

The series may or may not converge at the end points, i.e., at x = x0 + p and x = x0 - p,

where:

19
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n .-> oo[ Cn

and the ratio test fails. To test the convergence of the series at the end points, refer to the
tests given in Appendix A.

The radius of convergence for series solutions of a differential equation is limited by
the existence of singularities, i.e., points where ao(x) vanishes. If 1 is t he closest zero

of ao(X) to 0, then the radius of c onvergence p= IxI - x01.

2.2 Power Series Solutions

Power series solutions about x = xo of the form in eq. (2.1) can be transformed to 

power series solution about z = 0.
Let z = x - xo then eq. (1.1) transforms to:

a0(z + Xo/~y + a,(z + Xo)~:-i- + ... + an_l(z + Xo) dY + an(z + Xo) y = f(z 
dn-ly

Thus, power series homogeneous solutions about x = xo become series solutions about

z = 0; i.e.:

y(z)= ~ cruzTM

rn=O

Henceforth, one only needs to discuss power series solutions about the origin, which will
be token to be x = 0 for simplicity, i.e.:

y(x)= ~ xm (2.3)

m=0

Substitution of the series in (2.3) into the differential equation (1.2) and equating 
coefficient 0f each power of x to zero, results in an infinite number of algebraic equations,
each one gives the constant cm in terms of Cm_1, cm_2 ..... c1 and c0, for m = 1, 2 .....

Since the homogeneous differential equation is of order n, then there will be n arbitrary
constants, i.e. the constants c0, c1 ..... cn are arbitrary constants. The constants Cn+l,

Cn+2 ... can then be computed in terms of the arbilrary constants co ..... cn.

Example 2.1

Obtain the solution valid in the neighborhood of x0 -- 0, of the following equation:

d2Y - xy = 0
dx2

Note that ao(X) = I, al(x) = 0, and a2(x) = -x, all bounded and ao(0) 

Let the solution to be in the form of a power series about x0 = 0:
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y= ~Cnxn y’=~nCnxn-1

n=0 0

which, when substituted into the differential equation gives:

Ly = X n(n - 1) CnXn-2 -- Cnxn+l = 0

0 0

Writing out the two series in a power series of ascending powers of x results in:

0.C0x-2 +0.Clx-1 + 2C2 +(6C3 -Co)X + (12C4 -Cl) 2

+(20C5 - C2) 3 +(30C6 -C3) X4+(42C7- C4)5 +...= 0

Since the power series of a null function has zero coefficients, then equating the
coefficient of each power of x to zero, one obtains:

0 0
Co 0 indeterminate Cl -6 indeterminate c2 = 0

C3- CO C----Q-0 - Cl Cl C5- C2 =0
- Y = 2- 3

c4 - 1"~ = 3 .’~"
- 5 "--~

c._~_3 = Co
c6=6-5 2.3.5.6

Thus, the series solution becomes:

C0 x3 + Cl x4
Y=C0+ClX+~ +

2.3 3.4

C4 _ CO
c7=~’.-3.4.6.7

CO x 6 + Cl x7

2.3.5.6 3.4-6.7

=Co 1+--~-+ 6.3"~"~+... +cl x+~+~+...12.42

Since co and cI are arbitrary constants, then:

X3 X6

Yl = 1+--+~+...6 6.30

x4 x7

Y2 = x+--+~+...12 12-42

are the two independent solutions of the homogeneous differential equation.
It is more advantageous to work out the relationship between cn and Cn.1, Cn_2 ..... Cl,

co in a formula known as the Recurrence Formula. Rewriting Ly = 0 again in

expanded form and separating the fh’st few terms of each series, such that the remaining
terms of each series start at the same power of x, i.e.:

~’~ C Xn+l
0"c0x-2+0"Clx-l+2c2 + n(n-1)Cn xn-2- ~ n =0

n=3 n=0

where the first term of each power series starts with x1.
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Letting n = m + 3 in the first series and n = m in the second series, so that the two
series start with the same index m = 0 and the power of x is the same for both series, one
obtains:

Co = indeterminate Cl = indeterminate c2 =: 0

Z[(m+ 2)(m+ 3)Cm+3--Cm]Xm+l :0

m=0

Equating the coefficient of x’~’1 to zero gives the recurrence formula:

= Cm
Cm+3 (m + 2)(m + m = 0, 1, 2 ....

which relates Cm+3 to cm and results in the same constants evaluated earlier. The

recurrence formula reduces the amount of algebraic manipulations needed for evaluating
the coefficients cm.

Note: Henceforth, the coefficient of the power series cn will be replaced by an, which

are not to be confused with a,(x).

Example 2.2

Solve the following ordinary differential equation about xo = 0:

dZy dy

X-d--~-x~ + 3~- + xy = 0
y= anxn

n=0

Note that ao(x) = x, al(x) =1, and a~(x) = x and %(0) = 0, which means that the equation

is singular at x = 0. Attempting a power series solution by substituting into the
differential equation and combining the three series gives:

OO

Z ~’~a xLy= n(n+2) anxn-l+ z~ n =0

n=0 n=0

oo

’~ a x~+1= 0. a0x-1 + 3a1 + n(n + 2) anxn-1 + z_, n = 0

n=2 n=0

Substituting n = m + 2 in the first and n = m in the second series, one obtains:

=0.ao x-1 +3al + Z[(m+2)(m+a)am+2 +am]X m+l =0

m=0

Thus, equating the coefficient of each power of x to zero gives:

a0 = indeterminate aI = 0

as well as the recurrence formula:

am m=0,1,2 ....a~+2 = (m +2)(m 
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The recurrence formula can be used to evaluate the remaining coefficients:

_ a._~.~ = aoao = - a-L = 0 a4 =
24a2 = 22 2! I! aa 15 24 3! 2!

ao- a3-0=a7 =a9 .... a6- 26 4!2!’etc"a5 - - 3"~ - "
Thus, the solution obtainable in the form of a power seri~s is:

(X2

X4 X6

)

y = a0 1 22 2! 1! + 24 3! 2! 2 4g~.~3.~ +’’"

This solution has only one arbitrary constant, thereby giving one solution. The missing
second solution cannot be obtained in a power series form due to the fact that ao(x) = 
vanishes at the point about which the series is expanded, i.e. x = 0 is a singular point of
the differential equation. To obtain the full solution, one needs to deal with differential
equations having singular points at the point of expansion x0.

2.3 Classification of Singularities

Dividing the second order differential equation by ao(x), then it becomes:

Ly : d2~y + El(X)dy + [2(x) y = (2.4)
dxz dx

where ~l(X)= al(x)/ao(X)and [2(x)= a2(x)/ao(X).
If either of the two coefficients ~ 1 (x) or 5 2(x) are unbounded at a point o, then the

equation has a singularity at x = xo.

(i) If ~ l(X) ~2(X) are bothregular (bounded) at xo, then xo iscalleda Regular
Point (RP).

(ii) If x = o i s asingular point and if:

Lim (x- x0)~I(X) ~ finite
x--)x0

and

Lim (x- x0)2 ~2(x) --) finite
x--)x0

xo is a Regular Singular Point (RSP)

(iii) If x -- o is asingular point and either:

Lim (x- Xo)~l(X)~ unbounded
x--)x0

or

Lim (x - Xo)2 ~2(x) --) unbounded
x--)x0

xo is an Irregular Singular Point (ISP)
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Example 2.3

Classify the behavior of each of the following differential equations at x = 0 and at all
the singular points of each equation.

d2y . dy
(a) x d--~+ s~nX~x + x2y = 

Here, ~l(x) = slnx and ~2(X) ---- X
x

Both coefficients are regular at x = 0, thus x = 0 is a RP.

d2y 3dy+x y=0
(b) Xdx----~-+ 

~l(x)=--3 ~2(x) = 
X

Here, x = 0 is the only singular point¯ Classifying the singularity at x = 0:

Lim x(3/=3 Lim x2(1)=0
x-->O kx] x-->O

Thus x = 0 is a RSP.

(c) x2(x2 - 1 +(x-l)2 dY + 

(x-l) 1
~l(X) = x2(x + 1) ~2(x) = (x - m)(x 

Here, there are three singular points; x = -1, 0, and +1. Examining each singularity:

Lim (x+l) (x-l)
x --~ -1 xZ(x + 1)

Lim (x + 1)2 1

x --> -1 (x - 1)(x + 

xo = -1 is a RSP.

-0

Lim x (x - 1)
’ x--~0 x2(x+l)

¯ Lim x2 1
x-->O (x-1)(x+ 

=0

xo = 0 is an ISP
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X_o = +1

Lim (x-1)(T)~ -- 1!, 
x--~l x ix+l)

Lim (x - 1)2 1

x --~ 1 (x - 1)(x + 
=0

x0 = +1 is a RSP

,2.4 Frobenius Solution

If the differential equation (2.4) has a Regular Singular Point at 0, then one or both

solution(s) may not be obtainable by the power series expansion (2.3). If the equation
has a singularity at x = x0, one can perform a linear transformation (discussed in Section

2.2), z = x - 0, and seek asolution about z = 0.Forsimplicity, a so lution valid in t he

neighborhood of x = 0 is presented.
For equations that have a RSP at x = x0, a solution of the form:

y(x)= E an(x- n+a (2.5)

n=0

can be used, wh’ere ~ is an unknown constant. If x0 is a RSP, then the constant ~ cannot

be a positive integer or zero for at least one solution of the homogeneous equation. This
solution is known as the Frobenius Solution.

Since ~ l(X) and ~2(x) can, at most, be singular to the order of (x-x0)-~ and (x-x0)2,

then:

(x-x0)2 2(x/
are regular functions in the neighborhood of x = x0. Thus, expanding the above functions

into a power series about x = x0 results in:

(X - X0) ~l(X) : ~0 + £Zl(X - X0) + ~2(X- X0)2 = E~k(X- X0)k(2.6)

k=0

and

(X--X0) 2 ~2(X)=~0 +[~I(X--X0)+~2(X--X0)2+ E[~k(X-X0)k

k=0

Transforming the equation by z = x - x0 and replacing z by x, one can discuss solutions

about x0 = 0. The Frobenius solution in eq. (2.5) and the series expansions of al(x) 

a2(x) about 0 =0 ofeq.(2.6) are substituted intothe diffe rential equation (2.4), such

that:
~o

[ ~O~kxk-I ~ ~(n+O’)anxn+~r-1
Ly= E(n+cr-1)(n+o’)anxn+a-2 

n = 0 Lk =0 ]Ln =0
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k-2 n+ff
+ kX anX =

Lk = 0 JLn = 0 J

The second term in (2.7) can be written in a Taylor series form as follows:

where

(72.7)

Lk = 0 .JLn = 0

k=n

+((~a°(~2 +((~+ 1) ax(~l +((~+ 2) a2c~°) x2 +"’+I X((~+ 
k,k = 0

O0

= ~ C Xn+O’ -2
L, n

n=0

= xO-2[oo~0a0 + (ga0oq + (~ + 1) al,x0) 

Xn +...]

k=n

Cn = ~_~((r+k)ak C~n-k

k=0

The third term in eq. (2.7) can be expressed in a Taylor series form in a similar manner:

~kxk-2 anXn+a = Z-~ ~ dnxn+°’-2
Ln=O JLn=O J n=O

whem
k=n

X ak ~n-k
k=0

Eq. (2.7) then becomes:

Ly = x°-2 (n + o" - 1)(n + o’) n + cnx n + d~x" (2.8)

Ln=0 n=0 n=0

= x(~-z{[(~((~- 1) + (~C~o +J~o] ao + [((~(~r + 1)+ o + I~o) a, + ((~oq+[],)

+ [((o" + 1)(o" + 2) + ((r o + Po)az+(((r + 1)oq+ 1 + (o’~x~ + fla) ao] xz

+...+ [((n+ (~- 1)(n+ (~) + ((~+ o +l~o) a~ +((( ~+n-1)al+ I~) a

+(((r + n- 2)ctz + j~) a._z +... +(((r + 1) o~._~ +/~._~) al +((ran + j~.) 

Defining the quantifies:

f(cr) = (r(o" - 1) + o + flo
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then eq. (2.8) can be rewritten in a condensed form:

Ly: x°-2 {f(ff)a 0 +[f(ff + 1)aI + fl(ff)ao] x +[f(ff + 2)a2 + fl(6 + 

+ f2 (ff)ao 2 + .. . + [f (ff + n)n + fl(ff + n- 1)an1 + ...+ fn (ff )]xn + ...}

=x°-2 f(~r) 0+ ~f( ff+n) a n+ (~+n-k) an_k x~ (2.9)

n=lL

Each of the cons~ts a~, a~ ..... ~ .... c~ ~ written ~ te~s of %, by equating the

c~fficien~ of x, x~ .... to zero as follows:

a~(a) : f~(a)f(a + 1) 

a2(a) = f~(a + 1) a~ + f2(a) 

-fl(ff) f(ff+l) + f2(ff ) f(ff+l)at g2(ff)

= f(6 + 1) f(6 + f(’~ ~) a°

a3(6) f~(6 + 2)a2 + f2(6 + 1) al + f3(
.... -" :: .... f(6 + 3) ~

and by induction:

gn(6) n > 1an (6) = - ~ -

= f(6+3) a0

(2.10)

Substitution of an(o) n = 1, 2, 3 .... in terms of the coefficient ao into eq. (2.9) results 

the following expression for the differential equation:

Ly = xa-2f(o") ao (2.11)

and consequently the series solution can be written in terms of an(a), which is a function

of 6 and a0:

y(x,6) = x° + Ean(6) Xn +O (2.12)

n=l

For a non-trivial solution; ao ¢ 0~ eq. (2.7) is satisfied if:

f(o-) = a(o- - 1) o"+/30 = 0 (2.13)

Eq. (2.13) is called the Characteristic Equation, which has two roots I and .o2.
Depending on the relationship of the two roots, there are three different cases.

Case (a): Two roots are distinct and do not differ by an integer.

If 61 ¢ 02 and 61 - 02 ¢ integer, then there exists two solutions to eq. (2.7) of the form:
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yl(x) = 2an(or,) xn+~rl

n=0
and (2.14)

y2(x) = ~a.(~r2) 

n=0

Example 2.4

Obtain the solutions of the following differential equation about x0 = O:

Since x = 0 is a RSP, use a Frobenius solution about x0 = 0:

y = ~anxn+~r

n=0
such that when substituted into the differential equation results in:

~ [(n+~)~-~]an xn+~’:2+ 2anxn+°=O
n=0 n=0

Extracting the first two-lowest powered terms of the first series, such that each of the
remaining series starts with x~ one obtains:

+ (n + ~)2 _~ ~" a xanxn+~-2 +’9"~ L,n =0

n=0
Changing the indices n to m + 2 inthe first series and to m in the second and combining
the two resulting series:

m=0
Equating the coefficients of x~-l and xm+~ to zero and assuming ao ~ 0, there results

the following recurrence formulae:

am m=0, 1,2 ....a~÷~= (m+~+:z)2_N
and the characteristic equation:
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The two roots arc ~l = 1/3 and o2 = - 1/3. Note that 01 ~: O2 and o! - if2 is not an

integer.

Since o = +_ 1/3, then (o+1)2 - 1/9 ~ 0 so that the odd coefficients vanish:

a1 =a3 = a5 =...=0

am m=0,2,4 ....am+2= (m +~ + 5/~)(m + ~r +7~)

with

a2(o") = ao

_ a2 ao
a4(ff)= (a + 1~3)(<7 + =~ (~r +5/~)(~+ 7~)(¢y+ 11~)(7 + 13/~)

and by induction:

(_l)m ao
11~ ( 6m-l’~ ( 7~( 13~ (a2m(Cr) = (o + ~)Io 

6m~+ 1)-rj...t<, +--r-). L<, + ~jt<, +-rj...t<, 
These coefficients are substituted in the Frobenius series:

y(x,~r)= Xa2m(~r) 2m+a

m=O

For the first solution corresponding to the larger root o1 -- 1/3:

a2m "~" = (-1)m

2mm!(2~)m .4.7.10.....(3m + 

Letting ~ = o2 = - 1/3 gives the second solution:

~’ 1
Y2(X) = aox-l/3 + Xa2m(-~) x2m-l/3

m=l

2m m! (~A)~̄  2.5.8....-(3m

m_>l
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Thefinal solution y(x), setting 0 =1 ineach series gives:

Y(X)=clyl(x)+c2Y2(X)

Case (b): Two identical roots O-1 = ¢r2 = O-~

If ~l = or2 = Cro, then only one possible solution can be obtained by the method of

Case (a), eq. (2.14), i.e.:

yl(x) = E an(o-o) xn+~r°

n=O

where a0 = 1.

To obtain the second solution, one must utilize’eqs. (2.11) and (2.12). If ~1 = ~r2 

co, then the characteristic equation has the form:

f(o-) : (o-- O-o)2

and eq. (2.11) becomes:

Ly(x,o-) = xa-2(o- - O-o)2ao (Z.15)

where y(x,o) is given in eq. (2.12). First differentiate eq. (2.15) partially with 

~Ly = L °aY(X’o-) : ao[2(a - ao) + (a- ao)2 logx] ~r-2

where

~d xa=xalo gx

If O- = O-o, then:

--o
L 00- do-=o-0

Thus, the second solution satisfying the homogeneous differential equation is given by:

y (x) 

Using the form of the Frobenius solution:

y(x,o-)= xa + Ean(°’) xn +a

n=l

then differentiating the expression for y(x,~) with ff results in:

ay(x,cr)a 
oo

=a0x~ log x + Ea~(~) n÷~ +an(o) xn+~ lo gx
n=l n=l
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--logx Xan(o) xn÷° 

n=O n=l

Thus, the second solution for the case of equal roots takes the form with a0 = 1:

yz(x) = logx Xan(O0) xn+’~° 

n=O n=l

= yl(x)logx+ ~" a’ to ~ xn+°°
Z_, n~, o/

n=|

(2.16)

am+1 =

where

Example 2.5

Solve the following aifferential equation about xo = 0:

2dZY 3xdY+(4_x)y=0x dx-- ~- dx

Since xo = 0 is a RSP, then assume a Frobenius series solution which, when substituted

into this differential equation results in:

X(n + ~_ 2)2 a.x’+a-2 ~ax- z~n =0

n=0 n=0
or, upon removing the first term and substituting n = m + 1 in the first series and n = m
in the second series results in the following equation:

~o-2/z a0x°-z + ~[~m + o- 1)2 am+, - am .] xm+°-~ --0
m=0

Equating the coefficient of x~2 to zero, one obtains with ao # 0:

(o" - 2)2 = 0 or cr~ = a2 = 2 = ao

Equating the coefficient of xm÷ox to zero, one obtains the recurrence formula in the form:

am m=0,1,2 ....
(m + ~r- 1)2

and by induction:

a.(a) ao

_ al ao

(a - I)2o’2(o. + 1)2...(o. + n - 2)2

Thus, the first solution corresponding to o = o0 becomes:

n=l,2 ....
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a0
xn+2Yx(x) °-o) = o0 = 2 = a0x2 + 12.22..... n2

n=l

~ xn+2

n=O~ .~

where 0! = 1 and ao was set = I.

To obtain the second solution, in the form (2.16), one needs a~ (0):

da.(0-)= -2a0 [ 1 + 1 1
do- (0- - 1)20"2...(0- + n- 2)2L~ -0" + ~0"+I + "’" ÷ 0-+n-2

a~(°)[0"=o0 =2 12.22.....n 2 +~+~+"’+

Defining g(n) = 1 + 1/2 + ... + I/n, with g(0) = 0, then:

2a0a~(o0) =-~-n.~-~ g(n) n = I, 2 ....

Thus, setting ao = 1, the second solution of the differential equation takes the form:

,~ xn+~
Y2(X) = Yx(x)l°gx-2 Z ~ 

n = 1 In.)

Case (c): Distinct roots that differ by an integer.

If o1 - o2 = k, a positive integer, then the characteristic equation becomes:

f(0") = (0- - 0-1X0- - 0-2) = (0- - 

First, one can obtain the solution corresponding to the larger root o1 in the form given in

eq. (2.14). The second solution corresponding to o = 0-2 may have the constant ak(o2)

unbounded, because, from eq. (2.10), the expression for ak(o:z) is:

ak(o2)= f(o + o : 02

where the denominator vanishes at 0 = 02:

f(f + k)lcr = 0"2 = (0 + k- 02 - k)(f + k- 02)lff 2

Thus, unless the numerator gk(ff2) also vanishes, the coefficient ak(02) becomes
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If gk(ff2) vanishes, then ak(~z) is indeterminate and one may start a new infinite

series with ak, i.e.:

k-lor~ an(a2) xn+~r2 +ak 

Y2(X) : a0 
n=0 ~ / n=k~" ak

k-1 or ~, \

=a 0 y, [an(~2)] n÷~2 ÷ ak m~ (.am~2)) xm+~ (2.1"/)
n----0 =0

It can be shown that the solution preceded by the constant ak is identical to Yl(X), thus

one can set ak = 0 and ao = 1. The first part of the solution with ao may be a finite

polynomial or an infinite series, depending on the order of the recurrence formula and on
the integer k.

If gk(O2) does not vanish, then one must find another method to obtain the second

solution. A new solution similar to Case (b) is developed next by removing the constant
o - o~ from the demoninator of an(o). Since the characteristic equation in eq. (2.11) 

given by:

Ly(x,0.) = a0xa-2f(0.) = aoxa-Z(~r - 0.~)(0. - ¢rz) 

then multiplying eq. (2.18) by (o - 02) and differentiating partially with o, one obtains:

-~ [(0.-0.2)Ly]= ~-~ [L(0.- 0.~) y(x,0.)] = L[-~(0.- 0.:~) 

= ao x~’-2 0. - 0.1 0. - 0"2

Thus, the function that satisfies the homogenous differential equation:

0" = 0"2

gives an expression for the second solution, i.e.:
y~(x) =--~ (0.- 0.~) y(x,0")[a = 0.2

(2A9)

The Frobenius solution can be divided into two parts:

n=k-1
y(x,0.)= ~a.(alx"+~r= ~a.(0.lx"+a+ ~a.(0")x

n=0 n=0 n=k

so that the coefficient ak is the first term of the second series. Differentiating the

expression as given in eq. (2.19) one obtains:
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~--~[(~- if2) Y(X,~)] 

n=k-1 n=k-1

=logx, E(ff-ff2)an(ff)xn+ff+ ~(ff-ff2)a~(ff)xn+ff+

n=0 n=0

+ 2[(~-~2)a~(ff)l ~+~ +logx

n=k n=k

It should be no~d ~t ~(ff) = - (gn(ff))/(ffff+n)) does not con~n ~e te~ (if’if2) 

denominator until n = k, ~us:

~d for n=0, 1,2 ..... k-1

(~- ~2)a~ (")[~ = 

~er¢fore, ~ s~ond solution ~ ~e fo~:

n=k-1
y2(x)= (~- ~2) y(x,~)~ = ~2 2a~(~2)x

n=O

X [( ] x ~+~’ +logx ~-ff~)a~(~ x~+~’+

n=k n=k

(2.20)

It c~ ~ shown ~at ~e l~t infinite ~fies is pro~onal m y~(x).

E(o-~2)anCo)xn+° + E(c~-c)2)an(O)Xn+O

n=O n=k

n=k--1

E an(~) xn+°
n=0

Example 2.6

Obtain the solutions of the following differential equation about x0 = O:

2 9

Since xo -- 0 is a RSP, then substituting the Frobenius solution into the differential

equation results in:

- ~’ a Xn+ff
n+ff)2 anxn+°-2+ ~_~ n =0

= n=0

which, upon extracting the two terms with the lowest powers of x, gives:
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(~r2 --~] a0x°-2 +[(o+1)2 --~] alx°-I +

m=0

Thus, equating the coefficient of each power of x to zero; one obtains:

and the recurrence formula:

am am
a,=*2= (m+2+tr)=_9~ = (m+a+~)(m+a+7//2)

Solving for the roots of the characteristic equation gives:

3 3
ax = 2 ~2 =-’~ al - 02 = 3 = k

Using the recurrence formula to evaluate higher ordered coefficients, one obtains:

a0

m=0, 1,2 ....

al
a3=

(o-+ 3/2Xo.+ 9/2)

a2 aoa,~= (0. + 5/Z2XO. + ;~) = (0. + ~,~)(0. + 5~2){0. + 7~2X0. 

a3 al

Thus, the odd and even coefficients a,, can be written in terms of ao and aI by induction as

follows:

ao

a2,~ =(-1)’~ (or + l~)(cr + 5~)... (¢r + 2m- 3~). (tr + 7~)(o- + 1~/~1 ... (o- 

a2m+l ’ ’ ’3 7
al

for
To obtain the first solution corresponding to the larger root ~1 = 3/2:

ao = indeterminate ¯

m=1,2,3 ....
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a1 =a3 =a5 =...=0

a2m(3/2) = (_l)m 3ao(2m + 2)
(2m + 3)!

and by setting 6ao = 1:

m=1,2,3 ....

y~(x)=g z_,, , (2m+3)! ~( -1)m(m+
m = 1 m = 0

(2m + 3) 

To obtain the solution co~esponding to the smaller root:

3
ff2 = -- ~, whe~ ff~ - ~ = 3 = k

a0 = indete~nate

a1 =0

a2m(_3/2) = (_l)m (-a0)(2m- 

The coefficient ak = a3 must be calculated to decide whether to use ~e second fo~ of the ~

solution (2.20). Using the recu~ence fo~ula for ~ = -3/2 gives:

0
a3 0 (indete~nate)

So that the coefficient a3 is not unbounded and can be used to st~ a new series:

(-1) m+l a3 " )l]
a~m+~= (~+~)...(o+2m-~).(ff+.l~)...(~+2~+~ 

(1)~*~ 6a3m= - ,m= 2, 3,4 ....

Thus, the second solution is obtained in the form:

(2m- 1) x2m-3/2

m = 1
(2m) + a3x3/2

~
m X2m-1/2+6a (2m+ l 

m=2 "

m=0---- . 6%m=0~(-1)~ (2m+3)~

Note that the solution sta~ing with ak = a3 is Yl(X), which is extraneous. Letting ao= 

and a3 = 0, the second solution becomes:
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y2(x) = 2(-1) TM (2m-l)x2m-3/2

m = 0
(2m)!

Example 2.7

Obtain the solutions of the differential equation about x0 = 0:

22dy , +2) ~x d-~- ~x y=

Since xo = 0 is a RSP, then substituting the Frobenius solution in the differential

equation gives:

(a-2)(0.+l)ao xa-2 + 2{(m+o’-l)(m+a+ 2)am+l-a~} m+’~-I =0
m=0

Equating the two terms to zero gives the characteristic equation:

(a - 2)(0. + 1) o =0

with roots

0.1 = 2 0"2 = -1

and the recurrence formula:

am m=0,1,2 ....am+l = (m +0.- 1)(m+0.+2)

Using the recurrence formula, one obtains:

a0
al - (0. - 1)(0" + 

al a0
a2 = 0"(0" + 3) = (0"- 1) 0" (0" + 2)(0" 

a2 ao
a3 = (0" + 1)(0" + = (0"- 1)¢r(0"+ 1)(0"+ 2)(0" + 3)(0" 

and by induction:

an(o) =
ao

(g- 1) ~r... (g + n - 2). (g + 2)(~ + (g + n+ 1)

The solution corresponding to the larger root 0"1 -- 2:

an(2 ) = 6aon! (n + 3) 

so that the first solution corresponding to the larger root is:
oo xn+2

Yl(x) _A.~, n! (n + 3)!

o’1 -0.2 = 3 = k

n-- 1,2,3 ....
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where 6ao was set equal to 1.
The solution corresponding to the smaller root 02 = -1 can be obtained after checking

a3 (-1):

a3(-1) oo

Using the expression for the second solution in (2.20) one obtains:
n=2 oo ,

YzCX)= EahC-l) xn-l+ E[(~+l)a~(~)] x=-x

n=O n=3

+ logx E[(O + 1) an(O)]O xn-1

n=3

Substituting for an(o) and performing differentiation with o results in:

(~r + 1) an (~r) a°
(o - 1) ~r(cr + 2) ... (or + n - 2)(~r + 2)(~r + 3) ... (o" 

a0 = a0
(o" + 1) n (o’)lcr =-1= (-2)(-1) 1.2..... (n - 3) 1.2.3..... n 2(n

{( 1) ()}’ -a°

.~__~__I +i+~l + 1 1
Lo-1 o 0+2 ""+--+--o+n-2 0+2

[(0 + 1) an (0) =
o=-1 -2-- 1.1.2.....(n- 3) 1.2..... 

[_~ 1 1 ~ ~]" - -1+1+--+’"+’~-3 +1+2 +’"+

_ a0 [-~+ g(n- 3)+ g(n)]
2(n - 3)

where g(n) = 1 + 1/2 + 1/3 +...+ 1/n and g(0) 
The second solution can thus be written in the form:

Y2(X) = 1 1 + x 1 E° ° xn-I r 3
--’~ ~’--’~ (n--_~!n!L-’~+g(n-3)+g(n)n=3

oo
xn_l

+ ½ log Xn~= 3 n, (--h-S-_ 3)t

which, upon shifting the indices in the infinite series gives:

(o - 1) 0(0 + 2)... (o + n - 2)(0 + 2)(0 + 3) ... (0 

1 1
+~+...+ -

0+3 o+n+l

n=3,4,5 ....
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Y2(X)=X-I 1X____+ ....
1 ~_~

xn+2 [ __32

]2 4 2 n! (n + 3) ! + g(n)+ g(n 
n=O

n=0(n+3)!n!

The first series can be shown to be 3Y1(X)/4 which can be deleted from the second

solution, resulting in a final form for Y2(X) as:

y2(x)=x_l__+___l x 1 xn+2
2 4 2 n!(n+3)![g(n)+g(n+3)]+ log(x)yl(x)

n=0
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PROBLEMS

Section 2.1

Determine the region of convergence for each of the following infinite series, and
determine whether they will converge or diverge at the two end points.

.oo n
(a) Z (-1)n ~.I CO) Z (-1)n X2n

n = 0 " n = 0
(2n)!

n

(c) Z(-1)nnxn (d) Z(-1)n~

n=l n=l

oo
X2n

oo
Xn

(e) 
n2+n+2

(f) Z(-1)nn
2n

n=0 n=l

(g) Z n+3 xn~
CO) Z(-1) n (n!)2xn

(2n)!
n=l n=0

(i) Z(-I) n n(x-l)n Z(-I) n (x+l)n
2n (n + 1) ’ (j) 3n nz

n=l n=l

Section 2.2

2. Obtain the solution to the following differential equations, valid near x = 0.

d2y . zdY4xy=O(a)
dx-~-+x d--~ "

d:Y dy_y=O(c) dx-~- - x dx

dZy dy ,
(e) d-~-- X~xx -tx+2) y 

(g) (x2+l +6xdY +6y=0
dx

(i) (x-l) d~Y +y 

(d) d2---~-Y-4xdY-(x2 +2) y=0
dx2 dx x

(f) d3-~’Y + x2 d2-~Y + 3x dy + Y = 0
dx3 dx 2 dx

d2y dy
(j) x d---X-T - d--~ + 4x3y = 
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Obtain the general solution to the following differential equations about x = Xo as
indicated:

(a)
d--~-- (x- d2y1) d~Yux + y = 0 about Xo = : 1

d2y
Co) d--~--(x-1)2y=O aboutxo= 1

(c) x(x "d2y 6(x 1)d-~-Y+6y=O aboutxo 1-2 Grx + -.x =

(d) x(x + 2) ~-~2Y +8(x + 1)--~+ about xo=-1

Section 2.3

4. Classify all the finite singularities, if any, of the following differential equations:

(a) 2 d2y dyd--~- + X~x +(x:Z-4) y = (b)

(c) (1- x21 d~ --2x dY +6y (d’)
x ~ dx" dx

¯ d2y dy(e) s~nx d-~+coSX~xx +y = (f)

(g) (x- 1)z d2~Y + (x2-1) dY + x2y 
dx ~ ~ ~ dx

Oa)

x2 d~Y +(l+x) dY +y = 
dx" dx

2
x2~ d~Y - 2x d-~-Y + (1+ x)Zy = x(1-

! dx2 (Ix

d2y dyxz tan x~-+ x~ + 3y =0

Section 2.4

Obtain the solution of the following differential equations, valid in the neighborhood
of x = O:

(a) x2(x + 2)y" + x(x- 3) y’+ 3y 

d~2y 2x~] dY-3y= 0CO) 2X2
+ [3x + idx

@(c) x2 +[x+ Jdx L 4 2Jy= O
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3
SPECIAL FUNCTIONS

3.1 Bessel Functions

Bessel functions are solutions to the second order differential equation:

x2 d’~"2+xdy+(xz-pz)y=Odx ’ (3.1)

where x = 0 is a regular singular point and p is a real constant.
Substituting a Frobenius solution into the differential equation results in the series:

+ E{[(m +2 + 6)2 - p2]am+2 + am}Xm+° : 
m=0

For a0 v 0, 62 - p2 = 0, 6t = p, 62 = -p and 6t - 62 = 2p:

[(0"+ 1)a- p:~] a~ = 

amam+z= (m +2+o._ pXm+2+o.+ ) m=O, 1,2 .... (3.2)

The solution corresponding to the larger root 61 = p can be obtained first. Excluding

the case of p = -1/2, then:

a1 = a3 = a5 = ... 0

amam+2 = (m+2)(m+2+2p) m = 0, 1, 2 ....

aoa2 = 2Zl!(p+l)

a2 a0a,~= 4(4+2p)=242!(p+l)(p+2)

aoa6 = 263!(p+lXp+2)(p+3)

43
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and, by induction:

ao
a2m = (-1)m 22mm! (p + 1)(p + 2)... (p 

Thus, the solution corresponding to ~1 = P becomes:

oo
x2m+p

Yl(x) ~Z_~ (-1)m 2amm! (p + 1)(p + 2)... (p a0xp + a0

m=l

Using the definition of the Gamma function in Appendix B. 1, then one can rewrite the
expression for y I(X) as:

Yl(X):ao xp+a
0 E(-1)m

m=l

r(p + 1) X2m+p

22m m! F(p + m + 1)

= a0F(P + 1)2 p ] (x~2)p ¢¢ (x~2)2m+pF(---~"~ + E (-1)mm!F(p+m+l)
[ m--1

Define the bracketed series as:

Jp(x)= ~ (-1)~m~F(p+m+l) (3.3)
m=0

where a0 F(p+l) 2P was set equal to 1 in Yl(X). The solution Jp(x) in eq. (3.3) 

as the Bessel fu~efi~ ~f ~he first ~ ~f ~rder p.
The solution co~esponding to the smaller root ~2 = -P can be obtained by

substituting -p for +p in eq. (3.3) resulting in:
~

(X]2)2m-p (3.4)y2(x)=J-p(x) = ~ (-1)~m~F(_p+m+l)
m=0

J_p(x) is known as the Bessel f~eti~ ~f t~e seeing ~nd ~f ~rder 
If p e integer, then:

y~ = c~Jp(x) + c~J_p(x)

The expression for the Wronskian can be obtained from the fo~ given in eq. (1.28):

W(x) = 0 ex - = W0e-l°gx = w0
x

W(Jp(X),J_p(X)) = Jp(X)J’_.p(x) - J~(x) wO
x

Thus:

Lim x W(x) -~ o
x ---) 
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To calculate W0, it is necessary to account for the leading terms only, since the form of

W- 1/x. Thus:

p/:
JP r(p+l) J[ r(p+l)

J-P r0- P) J’P r(1- p)

-2p = 2
Lim x W(Jp,J_p) = Wo = F(p+ 1) F(I_ 

r(p)r(1-p)x.->o

Since:

r(p) r(1- p) = ~r (Appendix B1)
sin

then, the Wronskian is given,by:

-2 sin p~
W(Jp,J_p) = (3.5)

Another solution that also satisfies (3.1), first introduced by Weber, takes the form:

cosp~ Jp(x) - J_p(x)
p ~ integerYp (x) sin p~r

such that the general solution can be written in the form known as Weber function:

y = Cl Jp(x) + 2 Yp(x)  p ~ integer

Using the linear transformation formula, the Wronskian becomes:

W(Jp,Yp) = det[aij] W(Jp, J-p)

as given by eq. (1.13), where:

t~ll =1 0[12 = 0

a22 = - 1/sin det[aij ] = "1/sin p~0~21 = COt pzr

so that:

(3.6)

( ) , ,__2 (3.7)W Jp,Yp = JpYp - JpYp = ~x

which is independent of p. ~,

3.2 Bessei Function of Order Zero

If p = 0 then ~l = (52 = 0 (repeated roo0, which results in a solution of the form:

m = 0 (m!)2
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To obtain the second solution, the methods developed in Section (2.4) axe applied.
From the recurrence formula, eq. (3.2), one obtains the following by setting p = 

amam+2 = m = 0, 1, 2 ....
(m + a + 2)z

Again, by induction, one can show that the even indexed coefficients are:

a2m = (-1)m at m=1,2 ....
(0- + 2)z(0- + 2 .. . (0- + 2mz

y(x,0-) atxa + atZ(-1)m

m=l

x2m+a

(0- + 2)2(0. + 4)~ ... (0- + 2m)2

Using the form for the second solution given in eq. (2.16), one obtains:

y2(x) = °~Y(X’0-) = atxa logx +ao logx ~ (-1)mx2m+a
c90- 0-0 = 0

m = 1 (0- + 2)2(a--’-~"~-~ + 2m)z

-2a0 E(-I) m (0- + 2)2(0. + z "" (0. + 2m)2 ,0 . +~+~ +... +~

m=l
0.+4 o’+2m 0.=0

which results in the second solution Y2 as:

oo

y2(x) = logx Jo(x)+ E(--1)m+l [~’2)2rn g(m)
Ixl~

m = 0 (m!)~

Define:

Vo(X) (r-log2)J0(x)]

m = 0 (m!)2

where the Euler Constant 7 = Lim (g(n) - logn) = 0.5772 ......

Since Yo(x) is a linear combination of Jo(x) and Y2(X), it is also a solution of the 
(3.1) as was discussed in Sec. (1.1). Yo(x) is known as the Bessel function 
second kind of order zero or the Neumann function of order zero.

Thus, the complete solution of the homogeneous equation is:

Yh = cl J0(x) + c2 Y0(x) if p = 0

(3.9)
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3.3 Bessel Function of an Integer Order n

If p = n = integer ~ 0 then ~1 " ~2 = 2n is an even integer. The soIution

corresponding to ~l = + n can be obtained from (3.3) by substituting p = n, resulting in:

E(-1) (½12m÷o (3.10)
m! (m + n)!

m=0

To obtain the second solution for ~2 = -n, it is necessary to check a2n(-n) for

boundedness. Substituting p = n in the recurrence formula (3.2) gives:

am m=0,1,2 ....am+2= (m +2+o’- n)(m+2+o’+n)

a1 = a3 ..... 0

so that the even indexed coefficients are given by:

(-1) m a0 m=1,2,3 ....a2m = (~ + 2- n)... (~ + 2m- n). (~ + 2 + n)... (~ + 2m 

It is seen that the coefficient a2n(~ = -n) becomes unbounded, so that the methods 

solution outlined in Section (2.4) must now be followed.
oo

x2m+o.y(x,~r) a0xa ~"’ ~zLA-1)m (or + 2 - n)... (~r + 2m - n). ((r + 2 + n)... (~r + a0

m=l

Then, the second solution for the case of an integer difference k = 2n is:
y2(x) : ~-{(~r-if2)y(x, ff)}o=a2 = ~{(ff + n)y(x,~)},___n

Using the formula for Y2(X) in eq. (2.20), an expression for Y2 results:

m =~ ~n- 1
x2m_ny2(x) zLA-1)m (2- 2n)(4- 2n)... (2m - 2n). 2.4-... a0

m=0

+ a0
’(o + 2 - n) ... (o + 2m - n): ~-’+"~ + n) ... (o + 2m :n ~=-n

r m
]n)

+ ao logx ~ ! x2m-n
m~__nL (~ + 2- n)...(~ + 2m- n)-(a + 2 + n)...(~ + 

---- ~ ---- -n

Thus, the solution corresponding to the second root ~ = -n becomes:
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Y2(X) = -’~ 
m=O

(n - m - 1)! + log x Jn(x) + ~ g(n - 1) 

] oo (X/2)2m+n [g(m)+ g(m + 
-~" ~ (-1)m m! (m + 

m=0

ao 2-n+l
where - was set equal to one.

(n 

The second solution includes the first solution given in eq. (3.10) multiplied by 1/2
g(n - 1), which is a superfluous part of the second solution, thus, removing this
component results in an expression for the second solution:

m-~.~- (x~ (n- m,1),y2(x)=logxJn(x)_l.~ -n 
"--’ m!

m=0

__.1 ~ (_l)m (x//2)2m+" [g(m)+g(m+n)]

2 m! (m + n)!
m=0

Define:

Yn(x) = ~[(~’- log2)JnCx) Y2Cx)]

~f[
m = n-1 (x~)2m-"= ~’ + log(~)] J,~(x)--~ 

m=O

(n - m - 1) 

_1 ~(_l)m (~)2m+. [g(m)+g(m+n)]
(3.11)

2 m!(m+n)!
m=0

where Yn(X) is known as the Bessei function of the second kind of order n, 

the Neumann funetlon of order n. Thus. the solutions for p = n is:

Yh = ClJn(x) + C2Yn(x) if p = n = integer

The solutions of eq. (3.1) are also known as Cylindrical Bessel functions.
The second solution Yn(x) as given by Neumann corresponds to that given by Weber

for non-integer orders defined in (3.6). Since sin prr -~ 0 as p --> n = integer, cos (tin) 

(-1)n as p -~ n, and:

J_n(x) = (-1)nJn(x)

then the form (3.6) results in an indeterminate function. Thus:

Y,(x)= Lim c°sPnJl’(x)-J-l’(x)
p -~ n sin pn
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=-~Z sin P~ JP (x) + cos P/t ~/¢9p JP(X) -/~/cgP J-P 
ffcospTr !

= ;{~ Jp(x)-(-1)~ J_p(X)}p n  (3.12)

It can be shown ~at ~is ~lufion is M~ a ~lufion to eq. (3.1). It c~ ~ shown ~m 
expression in (3. ]2) gives ~e =me expression given by ¢q. (3.11). ~e fo~ given 
We~r is most u~ful in ob~ing ~ expression for ~e Wronski~, which is idenfi~l to
the expression given in (3.7).

3.4 Recurrence Relations for Bessel Functions

Recurrence relations between Bessel functions of various orders are of importance
because of their use in numerical computations of high ordered Bessel functions.

Starting with the definition of Jp(x) in eq. (3.3), then differentiating the expression

given in (3.3) one obtains:

1 E (_l)m [2(m + P)- P] (x~)2m+~’-’
J~’(x) = ~’m 0 m!F(m+p+l)

(x~)2m+p-l(m+P) P E (-1)m
+1)

~ (--1)m m!F(m+p+l) 2 m!F(p+m
m=0 m=0

Using F (m + p + 1) = (m + p) F (m + p), (Appendix B1) 

J (x) = Jp_:(x)- Jp(x)

Another form of eq. (3:13) can be obtained, again starting with J~,(x):

J;(x): ~ (-1)TM
E (-m)m(m-l)! I’(m +p+l) m!F(p+m+l)

m=0 m=0

Since (m - 1)! ~ oo for m = 0. Then:

00
(X//2)2m+p-1 +~ Jp(x)J~(x)= (- 1)m(m_l)!F(m+p+l)

m=l

(-1)m÷1
m=O

m! F(m + p + 2)

J~(x)=Jp+l(X)+~Jp(x)

(3.13)

(3.14)
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Combining eqs. (3.13) and (3.14), one obtains another expression for the derivative:

J;(x) = ~[Jp_l(X)- Jp+l(x)] (3.15)

Equating (3.13) to (3.14) one obtains a recurrence formula for Bessel functions of order
(p + 1) in terms of orders p and p - 

Jp+l(X ) = 2p Jp(X)- Jp_l(X) (3.16)
x

Multiplying eq. (3.14) by xP, and rearranging the resulting expression, one obtains:

1 d
x dx [x-p Jp(x)] : -(p+~) Jp+l(x)

(3.17)

If p is substituted by p + 1 in the form given in (3.17) this results in:

1 d [x_(P+l) Jp+l]=x-(P+2 ) Jp+2

x dx

then upon substitution of eq. (3.17) one obtains:

(--1)2(~X/2[ X-p Jp] = X-(p+2) Jp+2

Thus, by induction, one obtains a recurrence formula for Bessel Functions:

~.X dx.J [X-p Jp] = x-(P+r)Jp+r
r > 0 (3.18)

Substitution ofp by -p in eq. (3.18) results in another recurrence formula:

(-1) xp J_p ; xp-r J-(p+r/ r_> 0 (3.19)

Substitution of p by -p in eq. (3.13) one obtains:

J" X-1 (3.20)-p - P J-p = J-(p+l)

Multiplying eq. (3.20) by xP, one obtains a new recurrence formula:

1 d
X dx [X-p J_p(X)] = -(p+I) J_(p+l)(X)

(3.21)

Substitution of p + 1 for p in eq. (3.20) results in the following equation:

xl dxd [x-(p+1) j_(p+l)]= x-(P+2) J-(p+2)

or upon substitution of eq. (3.21) one gets:

~XX) tX J-P] = x-(P+2) J-(p+2)

and, by induction, a recurrence formula for negative ordered Bessel functions is obtained:

1 d r v-p
r >0 (3.22)

Substitution of p by -p in eq. (3.22) results in the following equation:
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’~X dxJ [Xp Jp] = xP-r Jp-r r > 0 (3.23)

To obtain the recurrence relationships for the Yp(x), it is sufficient to use the form 

Yp(x) given in (3.6) and the recurrence equations given in eqs. (3.18, 19, 22, and 

Starting with eqs. (3.18) and (3.22) and setting r = 1, one obtains:

11 ~x [X-p Jp ]= x-(P+I) Jp+l

~x [X-p J-p ]= x-(P+I)J-(p+l)x x

Then, using the form in eq. (3.6) for Yp(x):

x1 ~x’[X-P YP] = ~ ~x [x-P/c°s (P~Z) JP [" J-P/q ~, sin (p~z)

= _x_(p+l) [ COS((p +_ 1)7~) 15 J-( p+l) 1=

’L
sin((p+l)~:) J -x-(P+I)yP+I

such that:

x v; -p Yp ---x
Similarly, use of eqs. (3.19) and (3.23) results in the following recurrence formula:

xV;+pVp
Combining the preceding formulae, the following recurrence formulae can be derived:

x

The recurrence relationships developed for Yp are also valid for integer values of p, since

Yn(X) can be obtained from Yp(X) by the expression given in eq. (3.12).
The recurrence formulae developed in this section can be summarized as follows:

Zp =-Zp÷ 1+ Zp (3.24)

¯ --P zp (3.25)Zp = Zp_ 1 x

1 Z
Z; = ~-( p_,- Zp+~) (3.26)

Zp+~ = -Zp_~ + 2p Zp (3.27)
x

where Zp(X) denotes Jp(X), J.p(X) or Yp(x) for all values 

3.5 Bessel Functions of Half Orders

If the parameter p in eq. (3.1) happens to be an odd multiple of 1/2, then it 
possible to obtain a closed form of Bessel functions of half orders.

Starting with the lowest half order, i.e. p = 1/2, then using the form in eq. (3.3) one
obtains:
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J’/2 m:O
which can be shown to result in the following closed form:

x2m

J~(x)-- -- ~(-0m
m=O

Similarly, it can be shown that:

(2m + 1)! = sin x (3.28)

(3.29)

To obtain the higher ordered half-order Bessel functions Jn+l/2 and J-(n+l/2), one can

use the recurrence formulae in eqs. (3.24 - 3.27). One can also obtain these expressions
by using (3.18) and (3.22) by setting p = 1/2, resulting in the following expressions:

J"+’/~- =’-" ~’ .... LTXJ [-7-) (3.30)

J-(n+l/2) =%2/2/2~xn+1/2(-~d/n¢cOSx/dx) k. X J (3.31)

3.6 Spherical Bessel Functions

Bessel functions of half-order often show up as part of solutions of Laplace,
Helmholtz or the wave equations in the radial spherical coordinate. Define the following
functions, known as the spherical Bessel functions of the first and second
kind of order v:

Jv = Jr+l/2

Y v = J-(v+ 1/2) (3.32)

These functions satisfy a different differential equation than Bessel’s having the form:

x2 d2-~-Y + 2x dy + (x2 _ v2 _ V) y = 0 (3.33)
dx2 dx

For v = integer = n, the first tWO functions Jn and Yn have the following form:

j0-sinx jl = lfsinx _cosx/
x x\ "2

 (co )Y0- x Y~ =- -x +sinx

Recurrence relations for the spherical Bessel functions can be easily developed from
those developed for the cylindrical Bessel functions in eqs. (3.24) to (3.27) by setting
p = v + 1/2 and -v - 1/2. Thus, the following recurrence formulae can be obtained:
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V
zv = -Zv+l + -- zv (3.34)

x

v+l
zv = zv_1 - -- z~ (3.35)

x

(2v + 1) z~, = VZv_~ - (v + 1) Zv+1 (3.36)

2v+l
Zv+1 = -Zv_l +-- zv (3.37)

x

where zv represents Jv or Yv"

The Wronskian of the spherical Bessel functions Yv and Jv takes the following form:

W(jv,Yv) = -2

3.7 Hankel Functions

Hankel functions are complex linear combinations of Bessel functions of the form:

H~0(x) = Jp(x)+ iYp(x) (3.38)

H~2)(x) = Jp(x)- iYp(x) (3.39)

where i 2 =-1. H~)(x) and H(p2)(x) are respectively known as the functio ns

of first and second kind of order p.
(3.1), since, (see Section 1.3):

0~11 =1

0~21 = 1

They are also independent solutions of eq.

Ctl2 = i

O~22 =-i

and the determinant of the transformation matrix does not vanish:

aij= ~ ii =-2i¢0

so that the Wronskian of the Hankel functions can be found from the Wronskian of Jp and

Yp in the form:

The form of H~0(x) and H~2)(x), given in eqs. (3.38) and (3.39) respectively, 

written in terms of Jp and J_p by the use of the expression for Yp given in eq. (3.6), thus:

cos (p~) J p - J_p J_p - e-ipn J p
H~1) = Jp + i

sin (pTz) = i sin (p~t)

H~2)- eipx Jp-J_p
i sin (pn)

The general solution of eq. (3.1) then may be written in the form:
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y = cIH~I) + c~H~2)

Recurrence formulae for Hankel functions take the same forms given in eqs. (13.24)

through (3.27), since they are linear combinations of Jp and Yp.
Similar expression for the spherical Hankel functions can be written in the following

form:

h~) = Jv + iyv = ~f~2x H(0v+~/2, tx~ (3.40)

h~)=jv-iYv= ~2xH(:) Cx’v+l/2 ~ ~ (3.41)

These are known as the spherical Hankel function of first and second kind of
order v.

3.8 Modified Bessel Functions

Modified Bessel functions are solutions to a differential equation different from that
given in eq. (3.1), specifically they are solutions to the following differential equation:

x2 d2Y p:) y = (3.42)

Performing the transformation:

z=ix

then the differential equation (3.42) tranforms to:

2 d2y dy
z d-~-+z d-~+(z2 -p:) y = 

which has two solutions of the form given in eqs. (3.3) and (3.4) if p ¢ 0 and p ;~ integer.
Using the form in eq. (3.3) one obtains:.

Jp(z)= ~(-1)mm~F(m+p+l) p*0,1,2 ....

m=0

,x,
(ix//2)2m+p

,x,

Jp(iX) = E(-1)m
Em!r(m+p+l) =(i)p

m=O m=O

J-P (ix)=(i)-p E m,F(m-p+l)
m=O

- (i) -p Jp(iX)

Define:

oo (X~)2m+p

Ip(x)= E m!F(m+p+l)

m=O

m,F(m+p+l)

(3.43)
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I_p(X)= ~ m!r(m_p+l)=(i)PJ_p(iX) " p*0,1,2 ....

m=0

Ip(X) and I.p(X) are known, respectively, as the modified Bessel function
first and second kind of order p.

The general solution of eq. (3.42) takes the following form:

y = clip(x) + Cfl_p(X)

If p takes the value zero or an integer n, then:

(3.44)

of the

p,Kp x

Following the development of the recurrence formulae for Jp

Section 3.4, one can obtain the following formulae for Ip and Kp:

Ip = Ip+ 1 + p Ip
x

(3.50)

and Yp detailed in

(3.51)

~’~ n = 0, 1, 2 .... (3.45)In(x)

m~’~= 0 m! (m + n)!

is the first solution. The second solution must be obtained in a similar manner as
described in Sections (3.2) and (3.3) giving:

Kn (x)__. (_l)n+l[log(X//2) + ~/] in(X)+ ~ m~-i_l)n-t (n-m-1)’

m=0

~, [x/~

+(-1)"2 ~ m~/m+n)! [g(m)+g(m+n)] n=0, 1,2,.. (3.46)

m=0

The second solution can also be obtained from a definition given by Macdonald:

(3.47)
2 L sin (p~) 

Kp is known as the Maedouald function. If p is an integer equal to n, then taking the
limit p --~ n:

0P p;n

The Wronskian of the various solutions for the modified Bessel’s equation can be obtained
in a similar manner to the method of obtaining the Wronskians of the modified Bessel
functions in eqs. (3.5) and (3.7):

W(Ip,I_p) 2 si n (pr0 (3.49)
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- PIp (3.52)I~ =Ip_ I x

I
I~, = ~ (I,+1 + I,_1) (3.53)

Ip+1 = Ip_1 - ~ I~ (3.54)

¯
+ ---P Kp (3.55)Kp =-Kp+ 1 x

¯
- P-- Kp (3.56)Kp =-Kp_ 1 x

1 K
K; =-~( p+l +Kp_l) (3.57)

Kp+~ = Kp_~ + ~-~ Kp (3.58)

If p is 1/2, then the modified Bessel functions of half-orders can be developed in a
similar manner as presented in Section 3.2, resulting in:

i~/2 = 2~ sinh x
(3.59)

I_ w = 2~ cosh x

(3.60)

3.9 Generalized Equations Leading to Solutions in Terms of
Bessel Functions

The differential equation given in (3.1) leads to solutions Zp(x), with Zp(x)

H~0, and H~2). One can obtain the solutions of different andrepresenting Yp,
more complicated equations in terms of Bessel functions.

Starting with an equation of the form:

X2 d2~y + (1_ 2a) x dY + (k2x2 _ r2) y 
dx~ dx ~

a solution of the form:

y = xv u(x)

can be tried, resulting in the following differential equation:

~ d~u . du

where v was set equal to a.

Furthermore, if one lets z = kx, then--=d k d and:
dx dz

(3.61)
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Furthermore, if one lets z = kx, then d = k d and:
dx dz

z2dZu . du ./ 2 p2 r 2 a2
-~-zZ + z-~-z + ~z-p2)u=0 with = +

whose solution becomes:

u:c, c2
Thus, the solution to (3.61) becomes:

y(x)= xa{Cl Jp(kx)+c2 Yp(kx)} (3.62)

where p2 = r2 + a2.

A more complicated equation can be developed from eq. (3.61) by assuming that:
2

z2 -~-~ + (1 - 2a)’ z dYdz +(z2’ -ra) y =0 (3.63)

which has solutions of the form:

y : za{cl Jp(z)+c2 Yp(z}} (3.64)

with p2 = r2 + a2.
If one lets z = f(x), then eq. (3.63) transforms 

I dy + (f)d2Y ~-(1-2a) f" f"]
dx 2 7--~J~x --~-~ -rZ)y=0 (3.65)

whose solutions can be written as:

y = fa(x)[cI Jp(f(x))+ 2 Yp(f(x))]

with p2 = r2 + a2.

Eq. (3.65) may have many solutions depending on the desired form of fix), e.g.:

(i) If f(x) b,then the diffe rential equation may be writt en as:

X2 + (1-2ab) x dY + b2(k2xZb - r2) y (3.66)
dx

whose solutions are given by:

y: xab{Cl Jp(kxb)+c2 Yp(kXb)} (3.67)

(ii) If f(x) bx, thenthe diffe rential equation may be writt en as:

dZY 2ab dY + b2(k2e2bx - r2) y = (3.68)
dx2 dx

whose solutions are given by:

y = eabX{Cl Jp(kebX)+c2 Yp(kebX)} (3.69)

Another type of a differential equation that leads to Bessel function type solutions can
be obtained from the form developed in eq. (3.65).

If one lets y to be transformed as follows:
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then

d2u [ f’ f" 2L]du
dx ~ + (1-2a) f f, g] dx

+~(f’)~/f2/ g- g[(1- 2a) f" --~ - 2gll u 
(3.70)

[ f2 [ -r2, - g g[_ f f gjj

whose solutions are given in the form:

with p2 = r2 + a2. If one lets:

g(x) = cx f(x) kxb

then the differential equation has the form:

x2 (3.7;)
dx~ dx t ~

whose solutions are expressed in the form:

3.10 Bessei Coefficients

In the preceding sections, Bessel functions were developed as solutions of second
order linear differential equations. Two other methods of development are available, one
is the Generating Function representation and the other is the Integral
Representation. In this section the Generating Function representation will be
discussed.

The generating function of the Bessel coefficients is represented by:

f(x, t) = X(t-1/t)# (3.74)

Expanding the function in eq. (3.74) in a Laurent’s series of powers of t, one obtains:

f(x,t)= n Jn(x) (3.75)

Expanding the exponential ext/2 about t = 0 results in:

eXt/2= ~(x~)k k
~ k!

k=0

Expanding the exponential e-x/2t about t = ~ results in:

e-~/2t= E(-x/62t~-) : (-1)m ( x~)’~t-m
m! m!

m=0 m=0

Thus, the product of the two series gives the desired expansion:
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m = -o~ = 0 J

The term that is the coefficient of tn is the one where k - m = n, with k and m ranging
from 0 to oo. Thus the coefficient of tn becomes:

m~ .x2rn+n

J~(x) = ~ m!(m+ 

m=0

having the same form given in eq. (3.10).
The generating function can be used to advantage when one needs to obtain recurrence

formulae. Differentiating eq. (3.74) with respect to t, one obtains:

df(x’ t) = eX(t-1/t)/2fx / 2 (1 + t-2)] = x / 2 ~tnJn +x/2 n
dt

n=-~o n = --~o

= ~ntn-lJn(x)
n -= -~:~

The above expression can be rewritten in the following way:

½ t°Jo÷ 2tojn+2--
n = -~ n = -~ n =-~

where the coefficient of tn can be factored out, such that:

x~2 Jn + x~ Jn+2 = (n + I) Jn+i

or, letting n-1 replace n, one obtains:

~Jn-l+~Jn+l=~Jn

which is the recu~ence relation given in eq. (3.16).
The other recu~ence fo~ulae given in Section 3.4 can be derived also by

manipulating the generating function in a similar manner.
If one substitutes t = - lly, then:

eX(y-1/Y)/2= ~(-1)~y-nJn(x)= ~(-1)ny~j_n(x)

n = -~ n = -~

also

eX(y-1/y)/2 : ~ynJn(x)

then, equating the two expressions, one gets the relationship:

(-l)nJ_n(X) = Jn(x)

Rewriting the series for the generating function (3.75) into two parts:
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eX(t-1/t)/2 
~tnJn( x)= ~tnJn+J0 + ~tnJn(x)

n=-~ n=-oo n=l

= ~t-nJ-n+J0 + ~tnJn = ~t-n(-1)nJn +J0 + ~tnJn
n=l n=l n=l n=l

=J0+ ~[tn +(--1)nt-n] n
n=l

If t = e-+i0:

eX(e±~°-e~°)/2 = e-+ixsin0 = j0 + ~[e-+in0 +(-1)ne+in°] )

n=l

(3.76)

:J0+2 ~cos(n0) Jn(X) + 2i ~sin(n0) )
n = 2,4,6 .... n =1,3,5 ....

= ~¢2nCOS(2n0) J2n(X)-+i ~2n+lsin((2n+l)0)J2n+l(X) 

n=0 n=0

where en, generally known as the Neumann Factor, is defined as:

{12 n=0
En = n>l

Replacing 0 by 0 + ~z/2 in eq. (3.77) results in the following expansion:

e-+ixc°sO = ~(+-.i)nen cosn0Jn(X) (3.78)

n=0

Further manipulation of eq. (3.78) results in the following two expressions:

cos (x sin 0) = 132n COS (2 n0) J2(X) (3.79a)

n=0

sin (x sin 0) = ~32n+1 sin ((2n + 1)0) J2n+l (x) (3.79b)

n=0

One can also obtain a Bessel function series for any power of x. If 0 is set to zero in

the form given in eq. (3.79a) one obtains the expression for a unity:

1= ~/?2nJ2n(X) (3.80)

n=0

Again, differentiating eq. (3.79b) with respect to 
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(xcos0)cos(xsin0) = 2 Z(2n + 1)cos((2n + 1)0) )
n=0

Setting 0 = 0 one obtains an expansion for x which results in:

x = 2 E(2n +1)J2n+l(X) (3.81)

n=0

Differentiating eq. (3o79a) twice with respect to 0 results in the following expression

for x2 by setting 0 = 0:

X2=4 ZE2nn2J2n(X)=8 Zn2J2n(X) (3.82)

n =0 n =1

Thus, a similar procedure can be followed to show that all powers of x can be expanded in
a series of Bessel functions. It should be noted that even (odd) powers of x are represented
by even (odd) ordered Bessel functions.

Setting 0 = r~/2 in eqs. (3.79a) and (3.79b), the following Bessel function series

representations for sin x and cos x results:

( 1)"j ( (3 83)COSX: E2n -- 2n X .

n=0

sinx= 2 Z(-1)nJ2n+~(x) (3.84)

n=0

Differentiating eqs. (3.79a) and (3.79b) twice with respect to 0 and setting 0 = 

results in the following Bessel series representations for x sin x and x cos x:

xsinx = 8 2 (-1)nn2J2n(x) (3.85)

n=l

x cosx : 2 Z (-l)"(2n + 1)2J2n+l(X) (3.86)

n=0

The generating functions can also be utilized to obtain formulae in terms of products or
squares of Bessel functions, usually known as the Addition Theorem. Starting with
the forms given in eq. (3.75):

eX/(2(t-t/t))ez/(z(t-t/t)) = e(x+z)/(2(t-1/t)) = ~ tnJn (x + z)

= tkJk(x) t/J/(z)
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= t°
n=-~ l =.-.oo

= tn Jn-/ x J, z

n = -,,* l =

Thus, the coefficient of tn results in the representation for the Bessel function of sum
arguments, known as the Addition Theorem:

Jn(x+z)= ~J/(x) Jn_l(z)= ~J/(z) Jn_/(x ) (3.87)
l =--~o l--’-’~

Manipulating the terms in the expression in eq. (3.87) which have Bessel functions 
negative orders one obtains:

n oo
Jn(X+Z)= ~J/(x) Jn_/(z)+ ~..~(-1)l[Jl(x)Jn+l(Z)+Jn+l(X)Jt(z)] (3.88)

/=0 /=1
Special cases of the form of the addition theorem given in eq. (3.88) can be utilized

to give expansions in terms of products of Bessel functions. If x = z:

Jn(2x)= ~J/(x)Jn_/(x)+ 2 ~.~(-1)tJt(x)Jn+l(X) (3.89)
/=0 /=1

If one sets z = -x in eq. (3.88), one obtains new series expansions in terms of squares 
Bessel functions:

/=1

2n+ 1
0= ~.a(-1)l-ljl(x)J2n+l_t(x)

/=0

2n
0= ~.~(-1)lJl(x)J2n_t(x)+ 2 ~J/(x) J2n+t(X)

/=0 /=1

n--0 i3.90)

n = 0, 1, 2 .... (3.91)

n = 0, 1, 2 .... (3.92)

3.11 Integral Representation of Bessel Functions

Another form of representation of Bessel functions is an integral representation. This
representation is useful in obtaining asymptotic expansions of Bessel functions and in
integral tranforms as well as source representations. To obtain an integral representation,
it is useful to use the results of Section (3.9).

Integrating eq. (3.79a) on 0 over (0,2r0, one obtains:
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oo 2~

f cos(xsin O) dO = ~ E2n J2n(X) f ¢OS(2nO) dO = 2~ Jo(x) (3.93)

0 n=O 0

Multiplication of the expression in eq. (3.79a) by cos 2too and then integrating on 

over (0,2~) results:

2~ oo 2~

~cos(xsinO)cos(2mO)dO: ~e2n J2n ~cos(2nO)cos(2mO)dO= 2~J2m(X)

0 n=O 0

m = O, 1, 2 .... (3.94)

Multiplication of eq. (3.79b) by sin (2m + 1) 0 and integrating on 0, one obtains:

2g

~sin (x sin 0) sin((2m + 1)0)d0 = 2~ J2m÷l(x) m ; 0, 1, (3.95)

0

The forms given in eqs. (3.93) to (3.95) can thus be transformed m an integral
representation of Bessel functions:

1 ~cos(x sin O) cos(mO) dO = ~ ~cos(xsin O) cos(mO) m = evenJrn =’~

-g 0

and since the following integral vanishes:

~cos(x sin 0) cos(m0) d0 m odd

0

then an integral representation for the Bessel function results as:

Jm = ~sin(xsin O) sin (mO) 
0

and since the following integral vanishes:

~sin(xsin 0) sin (m0) m -- evend0 0

0

then, one can combine the two definitions for odd and even ordered Bessel functions Jm as

a real integral representation:

Jm = ~cos(x sin O) cos(mO) dO + ~sin (xsin O) sin (mO) 
0 0

cos(xsinO-mO) 
2~

(3.96)
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Since the following integral vanishes identically:

Isin (x sin 0 - mO) dO ; 

then one can also find a complex form of the Bessel integral representation:

i I sin (x sin 0 - mO) 1 Icos(xsinO _ toO) dO + ~.~
Jrn --’~

--~

= ~ I exp(i(xsin0-m0))dO (3.97)

0

Another integral representation of Bessel functions, similar to those given in eq.
(3.96) was developed by Poisson. Noting that the Taylor expansion of the trigonometric
function:

COS(XCOS0)= E(-i) m (XCOS0)2m = E(-1)mx2m(cOs0)2m

m=0
(2m)! (2m)!

m=0

has terms x2m, similar to Bessel functions, one can integrate this trigonometric functions
over 0 to give another integral representation of Bessel functions. Multiplying this

expression by (sin 0)2n and integrating on 0:

Icos(xcos0)(sin0)2n I E(--1)m (--~m).~ (co2m (sin0) 2n dO

0 0m=0

oo 2m

E
m X I

(sinO) 2n dO= (-1) (-~m). ~ (COS 0)2m

m=0 0

The integration and summation operations can be exchanged, since the Taylor expansion
of cos (x cos 0) is uniformly convergent for all values of the argument x cos 0 (refer 

Appendix A), The integral in the summation can be evaluated as:

(2m- 1)! (2n-l)!
I (COS0)2m (sin0)2n dO 2m-1 (m-l)! n-I ( n-|)!2 m+n ( mat-n)!

0

and hence

~:(2n-1)! ~--~. x2m (2m-l)!
i cos (x cos 0)(sin 0)2n d0 = 2n----i ~_-1-)!m~__ -1) (2m)! (m_ 1)! ( m +n)! 22
0

n:(2n-1)! Jn(X)
2n-lxn(n -1)!

Thus, from this expression a new integral representation can be developed in the form:
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2(X/2)n r~i2COS(XCOS0)
r(n + 1/2) r(1/2)

(sin 0)2nJn(X) dO

O
Transforming 0 by ~/2 - 0 in the representation of eq. (3.98), one obtains a new
representation:

Jn(X) 2( x/2) n n] 2
r(n + 1/2) r(1/2) ~ cos (x sin 0) (cos0)2n dO

0

(3.98)

(3.99)

Since the. following integral vanishes:

~sin(xcos0) (sin0)2n dO = 0 (3.100)

0

due to the fact that sin (x cos 0) is an odd function of 0 in the interval < ~ < n,then
adding eqs. (3.98) and i times eq. (3.100) results in the following integral representation:

(x/2)n ~
Jn(x) = F(n + 1/2)F(1/2) eixc°s0 (sin 0) 2n dO (3.101)

0
The integral representations of eqs. (3.98) to (3.101) can also be shown to be true 
non-integer values of p > -1/2.

Performing the following transformation on eq. (3.101):

COS 0 = t

there results a new integral representation for Jn(x) as follows:

+1
(x/Z) p ~ p-1/2

Jp(X)=F(p+l/2)F(1/2) eiXt(1-t 2) dt p>-l/2 (3.102)

-1
The integral representations given in this section can also be utilized to develop the

recurrence relationships already derived in Section (3.4).

3.12 Asymptotic Approximations of Bessel Functions for
Small Arguments

Asymptotic approximation of the various Bessel functions for small arguments can
be developed from their ascending powers infinite series representations. Thus letting
x << 1, the following approximations are obtained:

JP r(p+l)’ J-P r(-p+l)

Yo ~210gx, Yp ~-~-F(P) (~)-p
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H~)(2) - +i 2 log x,

(xA)p
Ip r(p+ 1)’ Ko - - log x

Kp r(p) x~- ,
1.3.5...(2n+1)

1-3.5 ... (2n - 1)
h(~2)(1) - _+i 1.3.5 ... (2n - 1)Yn

xn+l
,

xn+l

3.13 Asymptotic Approximations of Bessel Functions for
Large Arguments

Asymptotic approximations for large arguments can be obtained by asymptotic
techniques using their integral representation. These are enumerated below:

Jp(x)-2~cos(x_~4_P~2)
x>> 1

Yp(x) ~ 2~ sin(x- ~/~4- 
x>>l

H(pl)(Z)(x) _ 2~ exp(+i (x - ~ -p ~/~2))

x>>l

Kp(x) ~ ~ -x

x>>l

Jn (x) ~ ~x sin(x ~),
x>> 1

e±iX(x) _ 
x>>l x

yn(x)--~/x c°s(x- n~/~)

x>>l

3.14 Integrals of Bessel Functions

Integrals of Bessel functions can be developed from the various recurrence formulae in
eqs. (3.13) to (3.27). A list of useful indefinite integrals are given below:

Ixp+l dx = xl’+ l (3.103)Jp Jp+l

~x-p+l dx = -x-p+ l
Jp Jp-1 (3.104)
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fxr+l Jpdx = xr+l Jp+l +(r- p) Xr Jp -(r2 -p2) fxr-I Jp 

J’[(O~ 2- fl2)X P:~ ; r2 ]Jp((ZX)Jr(~x)dx = X[Jp(~X)dJr~ffx)

If ~ and I~ are set = 1 in eq. (3.106) one obtains:

~( dJr) Jp+ Jr~ JP(X)Jr(x)-~= Jr-~--JP--~x = p+r
p -

If one sets p = r in eq. (3.106), one obtains:

(O~2 -]~2)f X Jp(O~x)Jp(flx)dx = X[Jp(O~X)dJ~-x~X)

(3.105)

(3.106)

x

p2 _r2 (Jp+l Jr - Jp Jr+l)

(3.107)

(3.108)

If one lets c~ --) I~ in eq. (3.108) one obtains the integral of the squared Bessel function:

~XJ2p(x) dx= (x2-p2)j2p ~T) 

A few other integrals of products of Bessel functions and polynomials are presented
here:

x-r-p+2

~ x-r-P+l Jr (x) Jp(x) dx = 2(r + p_ 1) [Jr_l(X) Jp_l(X) + Jr(x) (3.110)

If one substitutes p and r by -p and -r respectively in eq. (3.110), one obtains a new
integral:

~ xr+P+l Jr(x)Jp(x)dx xr+p+2
2(r + p + 1) [Jr+l(X) Jp+l(x) + Jr(X) (3.111)

If one lets r = -p in eq. (3.110) the following indefinite integral results:

f X j2p(X)dx= ~-~ [j2p (x)-Jp_l(X) Jp+l(X)] (3.112)

If one sets r = p in eqs. (3.110) and (3.111), one obtains the following indefinite
integrals:

-- [ (3.113)f x-;p+I J~(x) dx 2(2p- 1)

x2p+2
__ 2 2

f X2p+I j2p(X) dx 2(2p+ 1)[ JP+I(X) + Jp(X)] (3.114)
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3.15 Zeroes of Bessel Functions

Bessel functions Jp(X) and Yp(x) have infinite number of zeroes. Denoting the th

root of Jp(x), Yp(x), J~(x) and Y~(x) by Jp,s, Yp,s, J’~,~, Y~,,, then all the :zeroes 

functions have the following properties:

1. That all the zeroes of these Bess~l functions are real if p is real and positive.
2. There are no repeated roots, except at the origin.
3. Jp.0=0forp>0

4. The roots of Jp and Yp interlace, such that:

P < Jp., < Jp+z., < Jp.2 < Jp+~.2 < Jp.~ < "-

P < Yp,1 < Yp+i,1 < Yp,2 < Yp+l,2 < Yp,3 < ...

P - Jp,1 < Yp,1 < Yp,1 < Jp,1 < Jp,2 < Yp,2 < Yp,2 < Jp,2 < ...

5. The roots Jp,1 and jp,1 can be bracketed such that:

~ <Jp,1 <42(p+l)(P+3)

(3.115)

6. The large roots of Bessel functions for a fixed order p take the following asymptotic
form:

#,, s+7-

2

2

(3.116)

The roots as given in these expressions are spaced at an interval = ~. The roots of

Jp, Yp, and J~ and Y~ are also well tabulated, Ref. [Abramowitz and Stegun]. All roots

of H(p1), H~z), Ip, I_p, and Kp are complex for real and positive orders p.

The roots of products of Bessel functions, usually appearing in boundary value
problems of the following form:

Jp(x) Yp(aX)- Jp(aX) Yp(x) 

J~,(x) Y~(ax)- J~,(ax) Y;(x)= (3.117)

Jp(X) Y~(ax)- Sp(aX) Y;(x) 

can be obtained from published tables, Ref. [Abramowitz and Stegun].
The large zeroes of the spherical Bessel functions of order n are the same as the zeroes

of Jp, Yp, J~ and Y~ with p = n + 1/2. Spherical Hankel functions have no real zeroes.
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TABLE OF ZEROES OF BESSEL FUNCTIONS

s=l s=2 s--3 s=4

J0,s 2.405 5.520 8.654 11.79

Jl,s 3.832 7.016 10.17 13.32

J2,s 5.136 8.417 11.62 14.80

YO, s 0.894 3.958 7.086 10.22

Yl, s 2.197 5.430 8.596 11.75

Y2,s 3.384 6.794 10.02 13.21

J~,s 0.000 3.832 7.016 10.17

Ji.s 1.841 5.331 8.536 11.71

J½,s 3.054 6.706 9.970 13.17

Y~,s 2.197 5.430 8.596 11.75

Y~,s 3.683 6.941 10.12 13.29

Y~,s 5.003 8.351 11.57 14.76

3.16 Legendre Functions

Legendre functions are solutions to the following ordinary differential equation:

(1- z) dZY-2x d-~-Y +r(r + 1) (3.118)
d-~ ux Y

where r is a real constant.
The differential equation (3.118) has two regular singular points located at x = +1 and

x = -1. Since the point x = 0 is classified as a regular point, then an expansion of the
solution y(x) into an infinite series of the type (2.3) can be made. Such an expansion
results in the following recurrence relationship:

(r - m)(r + m + 
am+z = (m + 1)(m + 2) m = 0, 1, 2 ....

with ao and al being indeterminate.

The recurrence relation results in the following expression for the coefficients am:

a~ = (-1)m (r - 2m + 2)(r - 2m + 4)(r - 2m + 6)...r. (r + 1)(r + 3)...(r 
(2m)!

a0

m= 1,2,3 ....



CHAPTER 3 70

a2m÷l = (_l)m (r-2m + 1)(r-2m + 3) ... (r -1) . + 2)(+ 4)... (r + 2m)
(2m + 1)!

m= 1,2,3 ....

Thus, the two solutions of eq. (3.118) become:

pr(X)= 1 r(r+l) x2 (r-Z)r(r+l)(r+3) X4
2! 4!

(r- 4)(r- 2)r(r +l)(r + 3)(r x6+

6~

+... + (_1)m [r - (2m - 2)]Jr - (2m - 4)]... r. (r + 1)...(r + 2m - x2m+...

(2m)!
(3.119)

(r- 1)(r + 2) x3 (r- 3)(r- 1)(r + 2)(r 4)x5
qr(X):X +

3! 5!

_ (r-5)(r-3)(r-1)(r + 2)(r + 4)(r 6)7
7!

+...+(_l)m (r-2m+l)(r-2m-1)...(r- 1).(r + 2)...(r x2m+1+... (3.120)
(2m+l)!

and the final solution is given as:

y = C,Pr(X) + c2qr(x)

The infinite series solutions have a radius of convergence p = 1, such that Pr(X) and

qr(X) converge in -1 < x < 1. At the two end points x = +1, both series diverge.

If r is an even integer = 2n, the infinite series in (3.119) becomes a polynomial 
degree 2n, having the form:

22n(n!)2

P2n(X)=(-1)n (2n)! 

where

(4n - 1)(4n - 3)... 5.3.1 [ (2n)(2n - 
Pzn(X) 

(2n)! Lx2n 2(4n-1) x2n-2

((2n)!)2

1
n = 0, 1, 2 .... (3.121)+"" + (-1)n 2Zn(n!)Z(4n_ 1)...5.3

The second solution q2n is an infinite series, which diverges at x = + 1.

If r is an odd integer = 2n + 1, then it can be shown that the infinite series (3.120)
becomes a polynomial of degree 2n+l, having the form:

22"(n!)2
q2n+l = (-1)n (2n + 1)! P2~+~(x)

where
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P2n+l(X) (4n + 1)(4n- 1)"’3"11(2n + 1) x2n+l (2n + 1)(2n) x2n-12(4n + 1)
+

(2n + 1)(2n)(2n- 1)(2n- 2) _...+ (_1)n ((2n +1)!) 2x

-~ 2-4(4n + 1)(an- 22n(n!)2(4n + 1)...5.3
n=0, 1,2 ....

(3.122)
The first solution P2n+l is still an infinite series, which is divergent at x = + 1.

If one defines:

22n(n!)2
q2n(x)=(-l)n (2n)! n = 0, 1, 2 .... (3.123)

Pn (0) = (-1) n/2 (n)!
2n((n/2)!)2

if n = even integer

= 0 if n = odd integer

A list of the first few Legendre polynomials is given below:

e0(x) = 

e4/x/= (35x4- 3012 + 3)/8

el(X)=X

P3(x) = (5x3 - 3x)/2

Ps(X) = (63x5- 70x3 + 15x)/8

Pn(-1) = (--1)n

Q2n+l(X) = (_1) n+l 22n (n!)2
(2n + 1)! P2n+l(x)

n = O, 1, 2 .... (3.124)

then the solution to (3.118) for all integer values of r becomes:

y=ClPn +C2Qn(x) n = 0, 1, 2 ....

where the infinite series expansion for Qn(x) is convergent in the region Ixl < 1, and Pn is

a polynomial of degree n.
A general form for Pm(X) can be developed for all integer values m by setting 2n = 

in (3.121) and 2n + 1 = m in (3.122), giving the following polynomial expression 
Pm(x):

Pm(x) _ (2m- 1)(2m- 3)...3 .lm! [xm- 2.m(m - 1)(2m - 1) xm-2 ar m(m- 1)(m- 2)(m- 3)2.4. (2m - 1)(2m - 3) 

m(m - 1)(m - 2)(m - 3)(m - 4)(m xrn_6
2.4.6.(2m-1)(2m-3)(2m-5)

+... m = 0, 1, 2 .... (3.125)

The functions Pn(x) and Qn(X) are known as Legendre functions of the first 

second kind of degree n.
The Legendre polynomials Pn(x) take the following special values:

P~ (1) = 
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Noting that:

dn (x2n~ = (2n)(2n - 1)(2n - 2)...(n ~
dxn ~ /

dn (X2n-21 = (2n - 2)(2n - 3)...(n + n-2
dXn ~,

then the polynomial form of Pn(X) in (3.125) becomes:

1 dn [ X2n--2 n(n-1) x2.-4]Pn 2~n! dxn X2n n 1! 2!

Examination of the terms inside the square brackets shows that they represent the
binomial expansion of (x2 - 1)n. Thus, Pn(x) can be defined by the formula:

On(X)= 1 n2On! dxn (x2-1)° (3.126)
This representation of Pn(x) is known as Rodrigues’ formula.

The infinite series expansion for Qn(x) can be written in a closed form in terms 

Pn(x). Assuming that the second solution Qn(x) = Z(x) Pn(X), 

z" 2x Polx)-2(1- x2)P:
z’

resulting in an indefinite integral for Z(x), such that the second solution Qn(x) becomes:

x

Qn(x) : Pn(X)f (1-- ~12) P~2 (3.127)

Since Pn(rl) is a polynomial of degree n, then Pn(rl) can be factored such that:

Pn (rl): (rl- rll Xrl- ~2)...(rl - ~ln)

Thus, the integrand in (3.127) can be factored to give:

ao + bo + cl
+

cn d~ d2 dn... + ~-I. I- ~-...+
1-rl l+rl TI - 1"~1 1~ - Tin (1~ - 1’11) 2 (1~- ~2)2

where

1 1
ao = -~ bo = ~

d (1~- 11i)2 d 1 2(’qRi - (1-1~2) R0I 

ci=~rl(1-rl2)p~2<rl)rl=rli =~(1-~)Ri~ (1 -r12)2R~

where

Ri(rl) = Pn(rl).
rl-~h
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Substitution of Pn(~) = (~ "/qi) Ri(~l) into (3.118), 

(1-1)2) p~,_ 2nP~ + n(n + 1) Pnlrl 

= (1)_ rh)[(1- 1)2)R~’- 21)R~] + 2[(1-1)2) R~- 1)Ri]lrl = 1)i

Thus, Ri satisfies the differential equation:

=0
(1- .qZ) R;- nRilrl = ~1i

hence:

Ci --0

1

(1-1)21P 11)= i
Thus, the closed form solution for Qn(x):

Qn(x): P,(x)-½1og(1-~l)+:’l log(l+rl)~ di ]
2

i__-~l 1)- rh jrl : 

=0

n--’- Zx_x 2 Pn (x) log 

i=l

Thus, the first few Legendre functions of the second kind have closed form:

1 . . l+x
Qo = "~ Po (x) l°g 1_-~"

1 - - l+x
Q1 = "~ P1 (x)log ~ 

~ . l+x 3
Q2= P2(x) log l_i~- ~ 

(3.128)

Q3=x.1p3(x)log.l+~X-~x :z 2+--
l-x z 3

The functions Qn(x) converge in the region Ixl < 1..

Another solution of (3.118), for integer values of r, which is valid in the region Ixl > 
can be developed. Starting with the recurrence relationship with r = n, n = 0, 1, 2 ....

(n - m)(n + m + 
am+2 = (m + 1)(m + 2) am m = 0, 1, 2 

am+2, am+4, am+6 .... can be made to vanish if m = n or -n - 1 with the coefficient am # 0

to be taken as the arbitrary constant. For the integer value r = n, the recurrence
relationship can be rewritten as follows:
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mCm-1)
(n-m+2)(n+m-1) am

thus

-(m-2)(m- 3)am_2 =
am-4 = (n - m + 4)(n + rn - 

Setting m = n:

n(n-1)
an-2 = 2.(2n- 1) 

m(m- 1)(m- 2)(m- m
(n - rn + 2)(n - m + 4)(n + m - 1)(n 

n(n- 1)(n- 2)(n- 
an-4 = ÷ ~~)(’~n_-~ 

Thus, the first solution can be written as:

a.[x. n(n- 1)
Yl(x) 2. (2n- 1)

where an can be set to:

(2n- l)(2n- 3)...5.3.1
n~

n(n- 1)(n - 2)(n- xn_, ]xn-2 q" 2" 4. (2n - 1)(2n - 3) - 

such that yl(x) becomes Pn(X), Setting rn = -n - 1, then:

(n + 1)(n + 
a_,_3 = ~ (2n + 3).2

(n + 1)(n + 2)(n + 3)(n 
a_n_5 = (2n+3)(2n+5).2~4 a_~_l

such that:

y~(x) = a_n_lLX-n-1 

Setting the coefficient:
n!

a_~_l = (2n + 1)(2n - 1)... 5.3.1

(n + 1)(n + 2) x_._3
2.(2n+3)

(n + 1)(n + 2)(n + 3)(n x_,_s]
q 2-4. (2n + 3)(2n + +""

then the second solution Qn(x) can be written in an infinite series form with descending
powers of x as follows:

n!
[

(n + 1)(n + x_,_3
Qn(x)=,(2n+l)(2~--1)...5.3.1,x-n-~+ 2.(2n+3)

(n+l)(n+2)(n+3)(n+4) x_._s +...1 Ixl > 1 (3.129)
+ 2.4.(2n- 3)(2n + 

The Wronskian of Pn(x) and Qn(x) can be evaluated from the differential equation
(3.118).



SPECIAL FUNCTIONS 75

W(Pn,Qn) = PnQ~ - P~Qn : Wo exp = l_x2W°

Using the form for Qn in (3.128), the following expression approaches unity as x --> +1:

W0= Lim (1-x2)[P~Q:-P~Qn]-->l
x--~ +1

1
W(Pn’Qn ) 1-x2

3.17 Legendre Coefficients

Expanding the following generating function by the binomial series:

1.3 221 1
=l+l(2x-t)t+~--------~ (2x-t)2 t +(1-2tX+ t2)1/2 [1- t(2x- t)]1/2

1-3-5...(2n- 1)
+~(2x- t)3t 3 +...+ (2x- t)nt n +... (3.130)

z.’~.t~ 2.4.6...2n

then one can extract the coefficient of tn having the form:

1" 3" 5""(2n- 1) [xn~ [ 2(2n- 1) n(n- 1) ~ ~ ~" 4 :~ -’~ n(n-1)(n-2)(n- xn_4 +... ]

which is the representation for Pn(x) given in eq. (3.125). Thus, the binomial expansion

gives:

= ~t" Pn(x) (3.131)
1

(1-2tx+ t~) 1/~ n=0

The generating function can be used to evaluate the Legendre polynomials at special
values. At x = 1:

1

1 l+t+t2+... = EtnPn(l) = Etn

(l_2t+t2)~/z = 1_---~-= n=0 n=0

which gives the value:

Pn(1) = 

At x = -1:

1

(l+2t+t~)1/~

1 1-t+t z t3+ ....
t" P~(-1) -1)"tn

l+t
n=O n=O

which gives the value:

Pn(-1) = (-1)n
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At x = 0, the generating function gives:

1

[
It2 + 1.3 t4 +...+ (_l)n

0÷t2),,2= 2.4
which results in a formula for Pn(O):

Pn (0/-- (-1/"/2 1-3" 5... (n - 1/ = (_1/./2
2.4.6...n

1.3.5... (2n - 1) t2n + ...1

2.4.6...2n

n~

2n[(n/2)!]2
n : even

= 0 n=odd

Substituting t by -t in eq. (3.131) one obtains:

1

(l+2tx+t2)l/2=n=~)Z(-1)nt"P"(x)=n=OZt"Pn(-x)

which results in the following identity:

en (-x)= (--1) n Pn(x)

Other forms of Legendre polynomials can be obtained by manipulating eq. (3.131).
Letting x = cos 0, then:

1 1

(1-2tcosO+t2)1/2 =(l_tei°f/2(1-te-i°f/2 

1.3.5 t3e3iO 1.3...(2n- 1) tneni0 t ei o + 1.3 t2e2i0 + __
+...-~ ,...= 1+ 2

2.4 2-4.6 2.4...2n

¯ I1 + t e_iO + 1 .__~3 t2e_2i0 + 1.3.5 t3e_3i0 + ... +
2 2.4 2.4-6

1 ̄  3...(2n2 ̄  4...2n-1) tne_nio +...}

=l+t
{ ei° + e-i° } {~(

2 t- t2 e2iO -2i0, + "~ + ...

Thus, the coefficient of tn must be the Legendre polynomial, the first few of which are
listed below:

Po = 1, P1 (cos 0) = cos 

P2(cos 0) = ¼13cos20 + 1], P3(cos0) = -~ [5 cos30 + 3cos0]

and the Legendre polynomial with cosine arguments is defined by:
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(cos O) = 21.3.5...(2n - 1) Icos nO + 1. n cos(n - 2) v.
2.4.6...2n[ 1.(2n-l)

1-3. n(n - 1) cos(n - 4) 0 + (3.i32)
* 1.2-(2n - 1)(2n - 

Expansions of Pn(X) about x = _+ 1 can be developed from the generating function.

The generating function is rewritten in the following form:

1 1

(1- 2Xt + t2)1/2 (l-t)1+~

Expanding the new form by the binomial theorem there results:

= 1---~ ~-7~:~=~ (1-t~*l 
m=l

Expanding each of the terms (1 - t) "2m-1 by the binomial theorem and collecting the
coefficients of tn, which must, by definition, be the Legendre polynomials, one obtains
the following infinite series expansion about x = 1:

(n+ 1)! (n+ (~_)a (n+3)! (1 ~2~x)~ 
Pn(x) = I (I!)=~-_ i)! (~-~) (a!)’(n- - (3!)2(n- 3)!

(3.133)
Since Pn(-X) = (-I) n Pn(X), then an expansion about x = -I can be obtained from (3.133)

by substituting x by -x:

[ (n+1), (l+x)q (n+2)’ (.~_~.)2_Pn(x) =(-1)n 1- (l!)2(n_l) ! ~,-~-) (2!)2(n_2)!

(3!)2 (n - 3)!
(3.134)

3.18 Recurrence Formulae for Legendre Polynomials

Recurrence formulae for Legendre polynomials can be developed from the generating
function expansion. Differentiating the generating function with respect to x, one
obtains:

t P (x)

Differentiating the generating function with respect to t, one obtains:

(1- 2xt + t2)3/z = n t"-’ P.(x)n=O

(3.135)

(3.136)
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Multiplying eq. (3.135) by (x - t) and eq. (3.136) by t, equating the resulting expressions
and picking out the coefficient of tn, a recurrence formula is obtained:

~(x-t) tn P~(x)= ~n tn Pn(X)
n’=O n=O

x P~ - P,~-I = n Pn n > 1 (3.137)

with

P~=O n=O

Multiplying eq. (3.136) by 1 - 2xt + 2, another recurrence formula is developed, by
picking out the coefficient of tn, as follows:

x-t =(x-t) ~tnPn(X)=(1-2xt+t 2) ntn-lPn(x)
(1- 2xt + 2)1/2 n = 0 n = 0

x Pn - P,-1 = (n + 1) P~+I - 2nx Pn + (n - 1) 

or, rewriting the last equality gives a recurrence formula for the Lcgcndrc polynomials:

(n + 1) P,+l(x) = (2n + 1) x P,(x)- n n_> 1 (3.138)

with

Pl =XPo
Differentiating eq. (3.138) with respect to x and subtracting (2n + 1) times eq. (3.137)
from the resulting expression, one obtains:

P~+1 - P~-I = (2n + 1) n > 1 (3.139)

with

P(=Po
Eliminating Pn from eqs. (3.138) and (3.139) results in the following recurrence formula:

x(P~+l (x) - P~-l(x)) = (n + 1) P~+l(x) + (3.140)

"Elimination of P~-I from eqs. (3.137) and (3.139), one obtains:

P~+~(x) - x P~(x) = (n + 1) (3.141)

Substituting n by n - 1 in eq. (3.141), multiplying eq. (3.137) by x, and eliminating
x P,~_~ from the resulting expression, the following recurrence formula is developed:

(1- z) P~(x) =n P~_l(x)- n x P~

: -(n + 1)[P~+~(x)- x P~ (3.142)
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3.19 Integral Representation for Legendre Polynomials

Noting that the definite integral:

~ = (3.143)
du

a+bcosu ~0

then, by setting:

a = 1 - xt, b = +tx~~-- 1 then

~1 ! t cosdU

1

= u9/-’~7-7 "~/x-- ! = tn Pn(x)
(3.144)

(1-2xt+t2)1/2 1-xt+- n=0

Expanding the integrand of (3.144) by the binomial theorem:

=l+t x+cosu +t 2 x+cosu +...
1-t(x_+ cosu x2~- 1)

thus

Pn (x) : ~f[x + cos u x2~’~- 1In (3.145)

0

The last integral is known as Laplace’s First Integral.
If one substitutes -n - 1 for n in the differential equation (3.118), the equadon does

not change, thus giving rise to the following identity:

P. (x) = P_,_l (x) (3.146)

Substituting -n - 1 for n in eq, (3.145), another integral representation results, generally
known as Laplace’s Second Integral, which has the form:

Pn(x) = ~ ~ Ix + cos u x2~’~- 1 l-n-1 (3.147,

0

Substitution of x = cos 0 in eq. (3.145) results in the following integral representation for

Pn(COS 0):

1 n
Pn (cos 0) = ~ ~ (cos + i sin 0 cos u)du

0
Another integral representation can be obtained from the generating function. Setting
t = eiu and x = cos 0 in the generating function, then:
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1 -- 2COSO eiu + e2iU]1/2

~’~ ,~inu
= eiu/2(cos--~-~_ cos0)l/2 u < 0

Pn(cosO)nfg
ei(u-x)/2 (cos u - cos 0)1/2 u > 0

Equating the real and imaginary parts, one obtains:

[ cos(u/2)

~ . r~/(cos u - cos 0)~2
u < o

2 cos(n u) Pn (cos0) = ,qz 1 sin(u/2)

n=O
[~

u>O

[ - sin(u/2)

.... r=/(cos u_ cos0)~/2
u<0

2 ~ sin(n u)rn[cost0 = ~/z~ cos(u/2)

n=O
[~

u>O

(3.148)

(3.149)

Multiplying eq. (3.148) by cos (n u) and eq. (3.149) by sin (n u) and integrating 
on (0, rt), there results two integrals for Pn(cos 

-~ 0 cos(u/2)cos(n u)du+~ sin(u/2)cos(n u)dulPo (cos 0) = (cos u- cos 0)1/2 ~ i
(3.15o)

0

¯
xf~ 0 sin(u/2)sin(n f cos(u/2)sin(n u)

Pn(COS0)=’-~’- - (COSU_COS0)I/2
(COS0_COSU)I/2 

(3.151)

0

The integral representations of (3.150) and (3.151) are due to Dirichlet.
Adding and subtracting eqs. (3.150) and (3.151) one obtains:

1 0 cos(n + 1/2) u f sin(n + 1/2) 

Po(cos0)=~--~ (cosu_cos0)l/2 (cos0_cosu)l/~ 
(3.15~)

0

0 cos(n - 1/2) u
sin(n - 1/2) 

0 = ~0 (cos u - cos 0)1/~ du - ! (cos 0 - cos u)1/2 du (3.153)

Replacing n by n + 1 in the identity (3.153), and substituting the resulting identity in eq.
(3.152) one obtains:

pn(cosO) x/~ cos(n+l/2)u ~_~_.2~ sin(n+l/2)u
=’-~’o0 (cosu-cosO)~/2 du = /t ~0 (c°sO-c°su)~/2 

(3.154)
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The integral representations in eqs. (3.153) and (3,154) are due to Mehler.

3.20 Integrals of Legendre Polynomials

One of the most important properties of the Legendre polynomials is the
orthogon~lity property. The first integral to be evaluated is an integral of products of
Legendre polynomials.

The integral of products of Legendre polynomials can be evaluated by the use of
Rodrigues’ formula (3.126):

+1 +1

Pn Pm dx = 2n+mn, m, dx----~- (x2 - 1)n x2 --1)m dx n>_m

-1 -1

where n is assumed to be larger than m.
Integrating by parts, one can show that:

+1

fPn Pm = n ;~ m (3.155)dx 0

-1

If n = m, then the last integral becomes:

+1 +1

f Pn2 dx= (-1)n(2n)’22n(n!)2 f(x2-1)n dx

-1 -1

Integrating the last integral by parts, one obtains:

+1

dx-- 2
2n + 1

(3.156)

-1

The orthogonality property can also be proven by integrating the differential
equation. The differential equation that P,~ and Pm satisfy for n ~ m can be written in the

following form:

d--d~[(1 - x2) P:] + n(n + 1) Pn 

d-~-£ [(1- x2)P~ ] + m(m + 1)Pm 

Multiplying the first equation by Pro, the second by Pn, and subtracting and integrating

the resulting equations, one obtains:
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(3.157)
x2

+ [n(n+l)-m(m+l)] fPn Pm dx=O

x1
Integrating eq. (3.157) by parts, the following expression results:

x2

tx2

[m(m+l)-n(n+l)] Prn dx=( 1-x2XPm P~-P,~ Pn (3.158)

Xl x1

If one sets x1 = -1, x2 = +1, then one obtains another proof of eq. (3.155). Substituting
eq. (3.142) into eq. (3.158), one obtains:

x2
jf Pn Pm dx = nPm Pn-1 - mPn Pm-1 + (m - n) n Pm

(m-n)(m+ n+l)
x1

Setting xI = -1 and x:z = x in eq. (3.159) one obtains:
x

~Pn nPm Pn-I - mPn Pro-1 + (m - n) n PmPmdx
(m - n)(m + n + 

-1
which can be evaluated at x = 0 as follows:

0

fPndx =0 ifn is odd and is odd,Pm in n in

-1

x2

In, n

x1

(3.159)

m, n (3.160)

=0 if n is even and m is even, n ;~ rn

1 (-1)(n+m+l)/2 n! m!

= (m - n)(m + n + 1) 2m+n-l[(m/2)! ((n - 2

if n is odd and m is even, n, m

1 (’1)(~+m+l)/~ n! m!
= (m-n)(m+ n+l) 2m+n-~[(n/2)!((m_l)/2)!]2

if n is even and m is odd, n, m

Setting xI = x and x2 = 1 in ¢q. (3.159) one obtains:

1
f 1 [mPn Pro-1 - nPm Pn-l-(m- n) xPn Pro}
jP. Pm dx=(m-n)(m+n+l)
x

which can be evaluated at x = 0 by using the results given in eq. (3.161) since:

(3.161)

(3.162)
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1 0

~P~ Pm dx =-~P, Pm dx n+m=odd, n~m (3.163)

0 -1

=0 n + m= even, n~m

The integral of xm times the Legendre polynomial Pn vanishes if the integer m takes

values in the range 0 <_ m _< n - 1. Using Rodrigues’ formula (3.126):

+1 +1

2n n! dxn
-1 -1

which, on integration by parts m times, one obtains:

+1

~Xm Pn 1, ..... n -dx=0 m=0, 2 1 (3.164)

-1

The integral of products of powers of x and Pn can be evaluated by the use of

Rodrigues’ formula (3.126):

1 1
~ f xm dn(x2-1)n 

J’xm
2n n! ,~ d-~~dx

0 0

Integration of the integral by parts n times results in the following expression:

1
m(m- 1)(m- 2)...(m- n 

_Jxm Pn dx= (m+n+l)(m+n-l)...(m-n+3) > n
(3.165)

0

The preceding integrals could be transformed to the 0 coordinate since Pn(COS 0)

shows up in problems with spherical geometries. Thus, the orthogonality property in eq.
(3.155) becomes:

~ Pn (cos 0) Prn (cos 0) sin 0 dO 
0

2

2n+l

If 0 < m < n -1, then the integral in (3.164) becomes:

f Pn (cos 0)(cos m sin 0 dO= 0
0

After transformation eq. (3.165) becomes:

n/2
m(m- 1)...(m- n 

f Pn (cos 0) cosm 0 sin 0 dO = (m + n + 1)(m + n - 1)... (m - 

0

Using the trigonometric identity:

n, m (3.166)

n=m

m = 0, 1, 2 ..... n-1 (3.167)

m*n (3.168)
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m(m- 1)(m- sin2 0cosm_3 0 +.. .. ]
sin (mO) -- sin 0 Im cosm-1 0

3!

then one can evaluate the following integral:

f Pn (cos0)sin (m0) d0 = f Pn (c.os0)Im cosm-1 

0 0

m(m - 1)(m - 2) sine 0 cosm_3 0

3!

m(m- 1)(m- 2)(m- 
+ 5!

sin4 0 c0sm-5 0 - ... sin 0 dO

If m < n, ~hen the highest power of cos 0 is n - 1, thus using the integral of (3.167), each

term vanishes identically, such that:

Pn (cos 0) sin = 0(m0) 

0

Ifm >
hence,

f Pn (cos 0)sin (m0) dO 

0

Ifm >

m = 0, 1, 2 ..... n (3.169)

n and m + n = even integer, then the integrand is an odd function in (0, ~), and
the following integral vanishes:

m + n = even

n and m + n = odd integer, then the integral becomes:

f Pn (cos 0) sin (m0) dO (m- n +1)(m- n + 3). .. (m+ n - (m-n)(m- n +2)...(m+ 
0’

Similarly one can show that the integral:

~Pn (cos 0) cos (toO) sin 0 

0

(3.170)

(3.171)

=0 m=0,1,2 ..... n-1

=0 m - n = odd integer > 0 (3.172)

-2

(m - 1) (m + 
n = 0, m = even integer > 0

-2m (m - n + 2)(m - n + 4)...(m + n n > 1

(m - n - 1)(m - n + 1)...(m + n m - n = even integer _> 0

The following integral can be evaluated by the use of the expression for Pn (cos 0) 

terms of cos m0, given in eq. (3.132) as follows:
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I Pn (cos O) cos (me) 

0

=0 m<n

= 0 m + n = odd

r(m + k + 1/2) r(k + 1/2)= n=m +2k, k=O, 1,2 ....
r(k + I) r(m + + 1)

The following integral can be obtained by using the integral in (3.173):

I P" (cos0)sin m0 sin0 dO : 91- I Pn (cos 0)[cos(m -1)0-cos(m + 
0 0

(3.173)

=0 m>n+l

= 0 n - m = 0 or an even integer

m r(m + k - 1/2) r(k- 1/2)
= n-m=2k-1, k=0,1,2 .... (3.174)

4 r(k+l)r(m +k+l)
Integrals involving products of derivatives of Legendre polynomials can be evaluated.

Starting with the integral:

+1 +1
¯ I+1 ’

I(1-x2)P: P: dx:(1-x2)P: P~]_, - IPm{(1-xZ)P:} 

-1 -1

+1

=n(n+l) IP~ P. dx=O

-1

n~m

_ 2n(n + 1) n=m
2n+l

The preceding integral is an orthogonality relationship for P’n.

(3.175)

3.21 Expansions of Functions in Terms of Legendre
Polynomials

The first function that can be expanded in finite series of Legendre polynomials is
Pn(x). Starting with the recurrence formula (3.138) for n, n-2, n-4 ..... one gets:

n Pn = (2n - 1) x Pn - (n - 1) 

(n - 2) P.-2 = (2n - 5) x P.-3 - (n - en-4

(n - 4) Pn-4 = (2n - 9) x Pn-5 -- (n - 5) P.-6

Thus, substituting Pn-2, Pn-4, into the expression for Pn, one obtains:
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(n 1)
Pn=x Pn-x n(n-2)

(n - 1)(n - (2n-!9)P~-5 -...1
n(n-2)(n-4)

(3.176)
Using the recurrence formula (3.139) for P~:

P~ = P,~-2 + (2n - 1) P,~_~

P~-2 = P~-4 + (2n - 5)

V~-4 = P~-6 + (2n - 9)

and substituting for P~-2, P~-4 ..... one obtains the following finite series for P~:

P~ = (2n- 1) P,-1 + (2n - 5) P,-3 + (2n - 9) P,-s + ... (3.177)

A different expansion for P~ can be developed from the recurrence formula (3.140):

x v~ = x P~-2 +n vo +(n- 1) P._2

x P~_~ = x P~-4 + (n- 2) P.-2 + (n- 
x P~-4 = x P~-6 + (n- 4) P._, + (n - 5) 

Thus, a finite expansion for x P~ results:

x P,~ = n Pn + (2n- 3) Pn-z + (2n - 7) P,-4 + --- (3.178)

Differentiating eq. (3.177) and substituting for P~_I, P~-z ..... from (3.177) one
obtains an expansion for P~’, having the following form:

P~’ = (2n - 3)(2n - 1.1) Pn-2 + (2n - 7)(4n - 2-3) O.179)
+ (2n - 11)(6n - 3-5) Pn-6 + 

Using the recurrence formula given in (3.138):
(2n + 1) x V.(x) = (n + 1) Po+x(x) + n 
(2n + 1) y Pn (Y) = (n + 1) Pn+~ (y) + n 

and multiplying the first equation by Pn(Y) and the second by Pn(x), and subtracting 
resulting equalities, one obtains:

(z. + 1)(x - y)P. (x)P. (y)= (. + 1)[Po (y)Po+, (x)- P. 

+ n[P.(y)v._,(~)- P.(x)Po_1(y)]
Thus, summing this equation N times, there results:

N
(x-y) E(2n + 1) P~(x) Pn(y) 

n=0

N

= E (n + 1) [Pn (y) Pn+l(X)-Pn(x)P~+I(y}]-n[P~_l (y)P~(x)-Pn-l(X)
n=0
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The preceding summation formula is known as Christoffel’s First Summation.
To obtain an expansion in terms of squares of Legendre polynomials, the form given

in (3.180) for x = y gives a trivial identity. Dividing (3.180) by x - y and taking 
limit as y -~ x, one obtains:

N

Z(2n+I) Pn~(X)=(N+I) PN(Y) PN÷~(x)--PN(X)PN÷~(Y)

n=0 y--~x x-y

= (N + 1)[PN(X) P{~+l(X)-P~(x)PN+I(X)] (3.181)

Since Legendre polynomials Pn(X) are polynomials of degree n, then it stands 

reason that one can obtain a finite sum of a finite number of Legendre polynomials to
give xm. Expanding xm into an infinite series:

xm---- Z ak Pk(x)

k=0

then multiplying both sides by Pl(X) and integrating both sides, one obtains:

+1
2/+1

j’x m Pt(x) l = 0, 1, 2 .... (3.182)
al =T

-1

Examination of the preceding integral shows that the constants aI for l < m do not vanish

while aI = 0 for I > m (see 3.164). Ifm - l is an odd integer in (3.182), then 

integrand is an odd function of x, then:

al = 0 if m - l = odd integer

If m - l is an even integer, then using (3.165) one obtains:
+1 1

212 + 1f Pl
1)f x m Pl (x) - j xTM (x) dx = (2/+aI

-1 0

= (2/÷ 1). m(m- 1)(m- 2)...(m-l+ (3.183)
(m + l + 1)(m + l- l)...(m- / 

From the preceding argument, it is obvious that only the Legendre polynomials Pro,

Pm-2, Pm-4,’", do enter into the expansion of xm. Thus:

xm ---- m!
~

~ (2m+ 1)t,
1.3.5...(2m + 1)[(2m + 1)Pm + (2m - ~ 2-’~i~.~ 

+ (2m - 7) (2m + 1)(2m - _ 1)(2m - 1)(2m - 3) Prn-6 + ...}
~.~ m-4 +(2m 11)(2m+ 23.3!

(3.184)
The first few expansions are listed below:

l=P0’ x=P1’

x2 2 1

=-~ P: +’~ Po
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X3 = 2
3 Pl, x4 = 8

--47 -F!~ P3 +~ 3--~ P4 + P2 5P0 (3.185)

Expansions of functions in terms of 0 instead of x can be formulated from the

definition ofPn(cos 0) and from the integrals developed in Section (3.20). One can first

start by getting an expansion of Pn(cOs 0) in terms of Fourier sine series, in the region 

0 < 0 < ~t, of the following form:

P.(cosO) = k si n kO

k=l

Multiplying the preceding expansion by sin mO and integrating the resulting expression

on (O,n), one obtains:

am = -~ Pn (cos 0) sin m0 d0 m:l, 2 ....

0

Examination of the preceding integral and the integrals in (3.169) through (3.171) shows
that:

am=0 m<n

= 0 m - n = even integer

= 4 (m - n + 1)(m - n + 3),. (m + n - 1) m > n + 1 and m + n = odd integer

n (m- n)(m- n + 2)...(m 

Thus, one obtains an expansion of Legendre polynomial in terms of sine arguments:

Pn (c°s 0)= 22n+2g (2n (n’)2+ 1), [sin(n + 1)0 + 1 (n---~+ 1) sin(n + 3)0 ll , 2n + 3

0 < 0 < ~ (3.186)

Expansion of cos m0 in an infinite series of Pn(cos 0) can be developed from the integrals

(3.166) and (3.172). Assuming an expansion for cos m0 of the following form:

cos(m0) = k Pk(COS0)

k=0

and multiplying both sides of the equality by Pr(cOs 0) sin 0, integrating both sides 

(0,g) and using eq. (3.166), one obtains an expression for the constants of expansion r as

follows:

2r+lfa r = "~ Pr (COS 0) COS m0 sin 0 
0

Using the integrals developed in (3.172) one obtains:

at=0 r>m
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(m - 1)(m + 
r = 0 and m even integer

(m- r + 2)(m- r + 4)...(m + 
= -(2r + 1) m - r = even integer, r >_ 1

(m - r - 1)(m - r + 1)...(m + r 

Thus:

cos(m0) = 22m-l(m!)2 I(2m + 1)![(2m + m + (2m- 3)(-1)22m-22m + 1 Pro-2+

+ (2m - 7) (-I). (2m + I) (2m - ~)
2-4 (2m- 2)(2m Pro-4 +

(-1)-1-3 (2m + 1)(2m- 1)(2m- 3) +(2m-11) ~-.4.~’2-~--~- 2)(-~--m-~-~-~ Pm-~ 

m = 1, 2, 3 ... (3.187)

l=P0 m=0

The fh’st few expansions of cos (m0) in terms of Legendre polynomials are listed
below:

l=Po cos O = P~ cos(20) =-~ (P2 - ¼ 

cos(30) = -~ P3- g cos(40) = P4-~ l~Z 

The development of an expansion of sin (m0) follows a similar procedure to that 
cos (m0). Expanding sin m0 in an infinite series, one can show that:

sin m0 = ---
8

k=0

(.2m + 4k - 1) r(m + k- 1/2) r(k- Pm÷2k-l(COS 0)
k! (m + k)!

(3.188)

3.22 Legendre Function of the Second Kind Qn(x)

The Legendre functions of the second kind Qn(x) were developed in Section (3.16) 
the two regions Ixl < 1 and Ixl > 1. The infinite series expansions for Qn(x) given in eq.
(3.123) and eq.(3.124) are limited to the region Ixl < 1, while the infinite series
expansion given in eq. (3.129) is limited to the region Ixl > 1. A more convenient
closed form for Qn(x), valid in the region Ixl < 1, was given in eq. (3.128). Since 
expression for Qn(×) in eq. (3.128) has a logarithmic term in addition to a polynomial 
degree (n - 1), one can replace the summation terms by a series of Pk(X), k = 0 to n - 1, 
can be seen from eq. (3.184). Starting with the expression in eq. (3.128):
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Qn(x) = ½ p,(x) log ~_--~- w._l

and substituting Qn(x) into the differential equation (3.118), one obtains after

simplification:

t" - ax j dx

Using the expansion for (d Pn)/(dx) from eq. (3.177), the right side of eq. (3.189)

becomes:

2[(2n - I) P.-I + (2n - 5) P.-3 + (2n - 9) P.-5 + -.-]

Assuming that:

k<(n-l)/2

k=0

and substituting Wn.I into eq. (3.189) and equating the coefficients of Pk, one obtains 

expression for ak as follows:

2n - 4k - I
ak = (n - k)(2k + k = 0, I, 2 .... k < (n-l)/2

Thus, the function Wn.I can be expressed in terms of a finite series of Legendre

polynomials as:

2n-72n-I p + 2n-5 P.-3 ~
P.-5 +... (3.190)w.-,= ~.--i--~- .-i 3-(n-I) 5.(n-2)

A formula, similar to Roddgues’ formula for Pn(X), can be developed for Qn(x).

Starting with the binomial expansion of (x2 - l), one obtains:

1 I n+1 I n+2 1

(x,-_1)n÷’--x 1! 2o-’’ 2t x2°-°÷’’"
Integrating the preceding series n + l times, the following expression results:

.~ .~ "".~ (5-’-~÷~ = (n + 1)(n + 2)... (2n - 1)(2n)(2n 
xrlrl ~1~q

[ (n+l)(n+2)x-"-~ (n+l)(n+2)(n+3)(n+4)x-n-’ 
¯ x-"-i + 2(2n +3) + 2.4-(2n +3)(2n+ +""

Comparison of the preceding infinite series with the series expansion for Qn(x) for Ixl > 

in eq. (3.129) results in the following form for Qn(X):
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n!(n + 1)(n + 2)...(2n- 1)(2n)(2n ’~’~’ ’~ (drl)n+l

xrlrl
(3.191)

xrl

Another expression for Qn(x) that is similar to the one given in (3.191) can 

developed from the solution to the following differential equation:

(1-x 2\d2u -" 1) x du +2nu:0 (3.192)) d-~ + z~n - dx

one of its solutions being:

u, =(xZ-1)n

The second solution of (3.192) can be obtained from ul(x) by multiplication of ut(x) 

an unknown function v(x) as follows:

Then, the unknown function v satisfies the following differential equation:

2(n + I) x
X2 - 1

which can be integrated to give:

2 n+l

so that the second solution is given by:

x

Differentiating eq. (3.192) n times, then the resulting differential equation becomes:
111+2

1 - xa

which is the Legendre differential equation on (dnu)/(dxn), having the solution Pn(x) 

Qn(X). Thus, the solutions Pn(x) and Qn(X) can be written in the following 

1 dnu~ = 1 dn

dx n (ran), n X2 - l) n f (~ 2 ~)
x

IxI >1 (3.193)
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The constants were adjusted such that ul") and u~n) become Pn and Qn, respectively.

An integral for Qn(x) valid in Ixl < 1 can be obtained from (3.193), resulting in the

¯ following integral:

(-1)’n2nn, dn 

n! drI
Qn(x)= (2n)! dx" l-x2) (1_TI2)n+l

A generating function representation can be formulated from the following binomial
expansion:

1 i t + __ + x~ +""
valid for < 1x_t=~’+x ~- x3 +...

Substituting for tn by a series of Legendre polynomials having the form (see eq.
3.184):

2n(n!)2 f 2n+l p "t’+
tn = ~ l(2n + 1) Pn (t) + (2n - 

+ (2n - 7) (2n 2.41)(2n -1)en-4 (t)+ ..

Then:

(3.194)

1 r’o r,, 1 re +L +3_ ] lr8r, 4 +± ]
3Po -F P3 5P1 "F’~L ~" 4+~’P2 5Po

xn ’ [(2n +I)!L

collecting the terms that multiply P0, P1, P2 ..... Pn, then the coefficient of’Pn becomes:

(2n + 1) 2n(n[)2I (n + 1)(n +2)x-n-3 ]= (2n +1) Qn(x)(2n + 1)!
x-"-x ÷ 2. (2n + / +""

Thus:
OO

1= E(2n. +l) po(t)Qn(x)
Ixl > 1 (3.195)

x--t
n---0

The expansion given in (3.195) leads tO an integral representation for Qn(X).

Multiplying both sides by Pm (t)and integrating on (-I, 1) one obtains:

+1

Q.(x) --1 f P.(t) Ixl > 1 (3.196)
-2 Jx-t

-I

The last integral is known as the Neumann Integral.
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3.23 Associated Legendr,e Functions

Associated Legendre functions are solutions to the following differential equation:
2 m2 1

(I- x2~ d’Y - 2x d-~-Y + [n(n + 1)- 1_--~ y=0 (3.197)
] dx2 Ox L

where m and n are both ~ntegers.
Substituting:

i~ eq. (3.197) results in a new differential equation:

~d2u_(1- 2(m ÷ 1) x ~ ÷ I" - re)In ÷ m ÷ ~) u x2
/ dx2

Differentiating Legendre’s eq. (3.118) m times, one obtains:
m+2 Jm+l

Equations (3.198) and (3.199) are identical, thus, the solutions of (3.198) are ~h

derivative of the solutions of (3.118). Thus, the solution of eq. (3.197) becomes:

1)~[.-z-r dm~’n ~Qn ]y={xa-

Define:

~’2 -- (~-1)~ dm~’~ ~ ~ 1
dx TM

Q~m =(x2-1)m/~" " d~Q" Ixl > 1 (3.201)
dxTM

as the associated Legendre functions of the first and second kind of degree
n and order m, respectively.

Define:

T~m = (-1)m(1- x2)’~ droP" Ixl < 1 (3.202)
dxm

as Ferret’s function of the first kind of degree n and order m. It may be
convenient to define Pnm and Q~ in the region Ixl < 1 as follows:

P.~ = T.m, Ixl < l

dx~
Ixl < 1 (3.203)

Using the expression for Pn(x) given by Rodrigues’ formula, then:
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2n n! dxm ÷n
Ixl > 1 (3.2o4)

(2n)! _ m~[xn-m (n-m)(n-m-l)
2n n! (n - m- 1)! (xz 1)

xn-m.-2
2(2n-1)

+ (n - m)(n - m - 1)(n - m - 2)(n - 3)n- m-4]
2.4-(2n-- 1)(2n-3)

x -...

It can be seen from (3.205) that p,m = 0 if m >_ n - 1. The terms contained in the
brackets of (3.214) represent a finite polynomial of degree n - 

A listing of the first few Associated Legendre functions is given below:

=(x2-1) P?--0

(3.205)

P~ = 3x(xZ-1)~2 P~ =3(x2-1) P~=O

p33 = 15x(x2 - 1)3/2

P~ = ~(7x~ - 3x)(x2-1)~

If n = m, then:

. _ (2n)! .1)9/2
P~ - 2nn-~. (x2 Ixl > 1

Another expression for P~, similar to (3.200), can be developed in the form:

1 (x-lh~ ¢ r,
PZ=2 ln_m)!(777+ )

] 1

(3.206)

(-1)" (1-x)~/~ ~

2" (n - m)! kl-’-~x J d-’~-[(x- 1)"-’~(x + 1)"+m] (3.207)

3.24 Generating Function for Associated Legendre Functions

Using the generating function for Pm(X) given in (3.131)

1
= ~ tnPn(x)

(1-2xt+@n=O

and differentiating the equality m times, one obtains:

1.3.5....(2m- 1) m d~P.

(1-2xt+t2) m+~ =n=m Ztn dxm



SPECIAL FUNCTIONS 95

1 2TMm! -~)/z E t P~ (x)

(1-2xt+t2) m+~ =(-1)m~(1-x2)n=mn-m 
Ixl < 1 (3.208)

3.25 Recurrence Formulae for P~

Recurrence formulae for Pnm and Q~m can be developed from those for Pn and Qn"

Starting with eq. (3.197) and noting the definition for P~ in (3.200), then eq. (3.200)
becomes:

+(n-m)(n+m+l x2-1 :0

2(m + 1)x p~m+l _ (n - m)(n + m + 1) P~ Ixl > 1 (3,209)

p~+2 2(m + l)x p~+l + (n - m)(n + m + 1) p~m Ixl < 1

which relates associated Legendre functions of different orders.
Differentiating the recurrence formula on Pn, given in (3.138) m times and

differentiating (3.139) (m - 1) times, results in a recurrence formula relating 
Associated Legendre functions of different degrees, which has the form:

(n - m + 1) P~I - (2n + 1) x P~ + (n + m) Pn~_l for all x (3.210)

Differentiating and then multiplying equation (3.139) by 2 - 1)mtz, one obtains:

p~n~l _ p.m._l = (2n + 1)(x2 - 1))~P.~-~ ixl > 1 (3.211)

=-(2n + 1)(1-x@v~-1 ~x~ < 1
Other recurrence formulae are listed below for completeness:

(2n + 1) ~ P~ = (n + m)(n + m P2..~ 1 - (n - m +1)(n- m + 2) ~’"~ Xn+l

Ixl < 1 (3.212)

(x~ - 1~ ~ = nx VZ -(n + m) V~/ dx n-~ (3.213)

(x - 1)--~-x - -(n + 1) x P,~ + (n - m + 1) 
(3.214)
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Dm+l = x(n_m+l)p~+l _(n+m+l)p~ Ixl> 1 (3.215)~x2-1 . n+l

(n+ m) ~x~_ 1 p~-I _ 
m

- P~+a - x P~ Ixl > 1 (3.216)

(n - m + 1) ~ - 1 P~-I = x P~- P,~-I Ixl > 1 (3.217)

More recurrence formulae can be found in Prasad, Volume II.

3.26 Integrals of Associated Legendre Functions

Integrals of products of associated Legendre functions are presented in this section.
Starting with the differential equation that associated Legendre functions of different
degrees and the same order p.m and P~ satisfy, and multiplying the first equation by p~m,
the second equation by P~, subtracting the resulting equations and integrating the
resulting equation on (-1, +1), one obtains:

+1

[r(r + 1)- n(n + 1)] J" prmpnTM dx=
-1

= , L .x It xj

-~- ’L’ --~x -v"~ =0 n,r
-I

Starting with the differential equations that associated l.~gendre of the same degree
and different orders P~ and P~ satisfy, and multiplying the first equation by P~, the
second equation by P~, subtracting the resulting equations and integrating the resultant
equality, one obtains:

(m~-V)f~,_x~X= ~xk’ ’ ~x~ " dx=O

--1 --

m~k

The integral of squares of associated Legendre functions can be obtained by using the

+1

~(p~)2 dx= (n+m)~. ~p.mp~,. (n m)!

+1
(n + m)! ~+’~ d~’’~ (x2

(n-m)!22n(n!) 2 ~ d~X--~(X2--1}"~-m~ -1)ndx
--1 ’

Inte~afing ~e Nst integral by pros m times gives:

definition of P~.

+1
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(n + m)! 
(n - m)! 2n + 

Summarizing the results of these integrals:
+1

[ v?v dx = o
-1

r~n

+1

-1

k,m

+1
ff(p~)Zdx=(_l)~. (n+m), 

(n - m)! 2n + 
-1

It can be shown that Ferrer’s functions give the following integral:
+1

(n +m), 
T~)2 dx= (n- m)! 2n+ 

-1

(3.218)

(3.219)

(3.220)

(3.221)

3.27 Associated Legendre Function of the Second Kind Q~

The Associated Legendre functions of the second kind Q~can be derived from the
definition given in (3.120) as follows:

2"n!(n+m)! _1)~/~Q: :(x2-1) m~zdmQn =(-11m (x~dx TM (2n + 1)

.~x_n_,._l ÷ (n + m + 1)(n + m + 2)
2. (2n + 3)

+ (n + m + 1)(n + m + 2)(n + m + 3)(n + x_n_m_5+ ...~ Ixl > 1 (3.222)2-4.(2n+3)(2n+5)
Since Qn(x) was defined by an integral on Pn(t) given in (3.196), then differentiating

(3.195) m times results in an integral definition for Q~m as follows:

Q: : (_l)m _~ (XZ _ 1)m/~+~1 Pn(t)(x- t)m+i dt
Ixl > 1 (3.223)

-1
The definition of Qnm in (3.223) can be utilized to advantage when recurrence

formulae for Q~m are to be developed. The recurrence formulae developed for P~ in

Section 3.25 turn out to be valid for Q~m also.
Using the definition of P~ in (3.223)
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Qnm (_l)mm!(x2_l)m~ +j.1
dn¯ 1

= 2n+In! (x-t) m+’ dx" (t2-1)" dt Ixl> 1
-I

and integrating the preceding integral by parts n times, results in the following integral:

+1 (t2 _ 1)n
m (-l)’~+"(n+m)! (x2_l)m~ -- ~’n~’~m+l dt (3.224)Q. = 2n+ln!

_l(X-t)

which after many manipulations becomes:

23m-l(n + m)! (m - ~-------\-n-m-~
Q** =(_l)~m (n - m)! (2m- l)! (x2-1)m/~(x+ X/x2 + I)

1

¯ f Bm-’~ (1- tl)n-m(l-

0

(3.225)
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PROBLEMS

Section 3.3

1, Show that the definition for Yn(x), as det-med by (3.12), results in the 
expression given in eq. (3.11).

Section 3.4

2. Using the expressions for the Wronskian and the recurrence formulae, prove that:

2
Co) JpJ_p-J_pJp =q" 2sinpn(a) JpYp+l - Jp+lYp = --~-

~X2

(C) I d~p r~ J_p(x) I dx g
= 2sinp~ Jr(x)

(d) ~=
X J pJ_p 2 sin pn

(e) I d-~-2~= ~ Yp(x)
2 Jp(x) (f) ~ ~x --vo 

(g) I d~p2=--~ Jp(x)2 Yp(x) (h) Equations (3.103) and (3.104)

Section 3.6

o Show that:

~[ ( ~3m<n// 2
(n+2m)~j.(x) sin x- E(-1)"~

m = 0 (2m)!(n _ 2m,!,2x,~

.m _</l~(n-1)
(n+2m+l)!- os

m=O

(Hint: Use the form given in (3.30).)

o Show that:

y.(x) (-1)"÷~
x

in

m=O

(n 
(2m)! (n - 2m)! 2m
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o

m_< 1//2(n-1)

(n~) Z(_l)m
(n+2m+l)!-sin x + -~-

(2m + 1)!(n - 2m - 1)!(2x)
m=O

(Hint: Use the form given in (3.31).)

Obtain the forms given in Problems 3 and 4 by using (e-+t’)/x, instead of the
sinusoidal functions that appear in eqs. (3.30) and (3.31).

Obtain the expression for the Wronskian W(j,, y~) given in Section (3.5).
(Hint: Use the definition ofj, and y, in terms of Bessel functions of half orders).

Section 3.8

7. Obtain the expression for the Wronskians given in (3.49) and (3.50).

8. Obtain the recurrence relationships (3.51) and (3.52) for the Modified Bessel
functions.

Section 3.9

9. Obtain the solution to the following differential equations in the form of Bessel
functions:

(a) x2y " +(k2x2-n2-n)y=O

(b) x2y"- xy’+ (k~x~ + ~) y = 

(c) x2y"+ xy’+ 4x4y = 

(d) xy"- y" + 4x3y = 

(e) x2y"+(5+2x)xy’+(9kzx6 +x~ +5x-5)y=0

(f) x~y"+7xy’+(36kZxt-27)y=0

(g) x2y"+~xy’+(k2x4-~)y:O

(h) x~y"+ 5xy + (kZx4 - 12) y 

(i) y"- 2y’+ (e:~X - 3) y 

(j) xZy"-2xZy" +2(xZ-1) y=0
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(k) xEy"+(4-x) xy’+/4kZx4 +xZ-2X+5/y=04 

(1) xEy"-(2X E +x) y’+xy=O

(m) xEy" +(2xE-x)y’+ xEy=O

(n) xZy"+(2xE +x) y’+(5x z +x-4) y=O

10. Show that the substitution for g(x) in eq. (3.70) by the following expression:

g(x) = (f(x))b-a

results in the following differential equation.

d~u+F(l-2b) f’ f"ldU-IE rE+b E aE~) 2 0
dx" L f - f’ J dx

t f -

- u =

whose solution becomes:

U = (f(x))b Zp(f(x))

where

p2 = r2 + a2

11. Show that the substitution for g(x) in eq. (3.70) by the following expression:

g(x) = 7

results in the following differential equation:

dxEdEu 2a f_.’ du +I(f_~(f E -r E +1 + a)-
f dx L f k. 4

whose solution becomes:

U = ~ faZp(f)

with p2 = r2 + a2.

f" 3(f")E  lf"’la f 4 (f,)2 ~-~7-]u=O

Section 3.10

12. Show that the Bessel Coefficients J,(x) given in eq. (3.75) satisfy Bessel’s
differential equation (3.1).

13. Obtain the recurrence formulae given in eqs. (3.13) to (3.16) by utilizing 
generating function.



CHAPTER 3 102

14. Show, by induction, that:

X2m = ~22m_I (n ÷’m- 1)!
~-’~-~r~)~ J2n(x)

m = 1, 2, :3 ....

n.=m

(n+m)!
x2na+l = E22m+~(2n + 1)~ J2n+~(x) m = 0, 1, 2 ....

n=m

Hint: Follow the procedures u~ed in obtaining the forms in eqs. (3.80) to (13.82).

Section 3.11

15. Show that the integral representation for J,(x) given in eq. (3.97) satisfies Bessel’s
differential equation.

16. Obtain the recurrence formulae given in eqs. (3.13) to (3.16) by using the integral
representation of J,(x) given in (3.97).

17. Show that the integral representation for Jn(x) given in eq. (3.102) satisfies Bessel’s
differential equation.

18. Obtain the recurrence formulae given in eqs, (3.13) to (3.16) by using the integral
representation of Jo(x) given in (3.102).

Section 3.12

19. Use the asymptotic behavior of the Bessel functions for small arguments to obtain
the limit of the following expressions as x -~ 0:

(a) Co) x-PJo(x)

(c) XVo(X)

(e) .x3h(21) (f)

Section 3.14

20. Prove the equality given in eq. (3.105).

21. Prove the equality given in (3.106).
(Hint: Use the differential equations of Jp(x) and Jr(x).)

22. Prove the equality given in (3.110).
(Hint: Use the integrals given in (3.103) and (3.104).)
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Section 3.16

23. Assuming a trial solution for Legendre’s equation, having the following form:

~’ a xY= L, n
n=O

obtain the two solutions of Legendre’s equation valid in the region Ixl > I (see eq.
3.129).

24. Show that:

P~(1) = n(n+l) and p~(_l) = (_l)n_l n(n+ 
2 2

25. Obtain the first three Qn(x) by utilizing the form given in (3.128).

Section 3.17

26. Show that:

Pzn (0) = (-1)n

= 0

(2n)!
n=O, 1,2 ....

n=O, 1,2 ....

by the use of the generating function.

27. Prove that the Legendre coefficients of the expansion of the generating function
satisfy Legendre’s equation.

Section 3.18

28. Show that:

(2n + 1)(1- 2) P~ =n(n + l) (Pn_1 - P~+I )

29. Show that:

(1- x2)(P~)2= ~xx [(1-x2)P~P~] + n(n+ 1)Pn2

Section 3.19

30. Prove the first equality in (3.142) by using the integral representation for P~(x) 
(3.145).
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31. Prove the second equality (3.142) by using the integral representation for Pn(x) 
(3.147).

Section 3.20

32. Show that:
+1

~ (~--~ 2 ~ ~: ~ ~=I ~n( n + 1)1(2n + 1

-1

33. Show that:
+1

2n
~ x PnPn_~ dx = ~

-1

34. Show that:
+1

Jx2 r,.+~r,~_~ dx =
-1

2n(n + 1) 
(4n2 -1X2n+3)

35. Show that:
+1

-1

-2n(n + 1)
(2n + 1)(2n + 

Section 3.21

36. Prove that:
+1

~(1 - 2) P~ Pn+~ dx =

-1

-2n(n + 1)
(2n + 1)(2n + 

37. Prove that:

V~.+~ = (2n + 1) P2. + 2n x P2n-I + (2n - I) 2 P2.-2 +(2n - 2)~ P2._s + ...

38. Prove that:
P~+~ + P~ = (2n + I) P. + (2n - I) P._~ + (2n - 3) P.-2 
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Section 3.22

39. Show that:

(n + 1)[QnPn+~ - Qn+IP,,]= n[Qn_~Pn -QnPn_~ ]

40. Show that:

2n +1
Pn+lQn-~ - Pn-~Qn+l n(n + 1) 

41. Show that:
~ .... 1)2[pnQn - Pn+aQn+l](1-x)[P,~+,Qn+a - P:Q,~] : (n 

42. Show that:

¯

[

2n+l

+ 1)(2n + 3)Qn+4+ ...]

x-~-I = 1.3.5 ...(2n - 1) (2n + 1)Qn - (2n + 5) ~ Q~+z + (2n + 9) (2n 
n!

(Hint: Differentiate (3.195) n times with respect to t and set t-- 



4
BOUNDARY VALUE PROBLEMS AND

EIGENVALUE PROBLEMS

4.1 Introduction

Solutions of linear differential equations of order n together with n conditions
specified on the dependent variable and its first (n - 1) derivatives at an initial point
were discussed in Section (1.8) and were referred to as Initial Value Problems. 
was shown that the solutions to such problems are unique and valid over the range of all
values of the independent variable. If the differential equation as well as the Initial
Condition are homogeneous, then it can be shown that the solutions to such problems
vanish identically. In this chapter, solutions to linear differential equations of order n
with n conditions specified on two end points of a bounded region valid in the closed
region between the two end points, will be explored. These points are called Boundary
Points, and the conditions on the dependent variable and its derivatives up to the (n - 1)’t

are called Boundary Conditions (BC). Such problems are referred to as Boundary
Value Problems (BVP).

To illustrate the primary difference between the two types of problems, the solution
of two simple problems are shown:

Example 4.1

Obtain the solution to the following initial value problem:

Differential Equation (DE): y" + 4y = f(x) = 

Initial Conditions (IC): y(~/4) = y’(~/4) = 

The complete solution to the differential equation becomes:

y = C~ sin 2x + C2 cos2x + x

The two arbitrary constants can be evaluated from the specified two initial conditions
at the point x0 = ~c/4, resulting in:

C1 = 2 - n/4 and C2 = -1

and the complete solution to the problem becomes:

y = (2- ~/4) sin 2x - cos 2x + x for all 

If the differential equation is homogeneous, i.e., if f(x) = 0, and the initial conditions
are non-homogeneous, then the solution becomes:

= 2sin2x -_-3 cos2x for allY X
2

107
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If the differential equation and the initial conditions are homogeneous, then the
solution vanishes identically, i.e.:

y-=0

Example 4.2

Obtain the solution to the following boundary value problem:

Differential Equation (DE): y" + 4y = f(x) = 0 < x < ~t/4

Boundary Conditions (BC): y(0) = 

y(zr/4) = 

The complete solution to the differential equation is again:

y = C1 ~sin 2x + C2 cos2x + x

The two arbitrary constants can be evaluated from the two boundary conditions, one at
each of the end points at x = 0 and x = rt/4:

y(0) = 2 =2

sin~t +C2 ~t r~COS---t--- = 3 C1 =3-~y(~/4) = C1 
2 4 4

Thus, the final solution becomes:

y = (3 - ~t/4) sin 2x + 2 cos 2x + 0 < x < ~t/4

If the differential equation is homogeneous, i.e., if fix) = 0, but the boundary
conditions are not, then the complete solution satisfying these boundary conditions
becomes:

y = 3 sin 2x + 2 cos 2x 0 < x < n/4

If the differential equation and the boundary conditions are both homogeneous, the
solution vanishes identically:

y--0 0<x<w’4

A special type of a homogeneous boundary value problem that has a non-trivial
solution is one whose differential equation has an undetermined parameter. A non-trivial
solution exists for such problems if the parameter takes on certain values. Such
problems are known as Eigenvalue Problems, whose non-trivial solutions are referred
to as Eigenfunctions whenever the undetermined parameter takes on certain values,
known as Eigenvalues.

Example 4.3

Obtain the solution to the following homogeneous boundary value problem:

DE: y" + ~.y = 0

BC: y(0) = y(Tz/4) = 

The complete solution of the differential equation becomes:
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y = C1 sin.~- x + C2 cos~]~ x 3.;~0

Yo = C~x + C4 3. = 0

Satisfying the boundary conditions at the two end points yields:
y(O) = 2 =0 an d C 4= 0

y(n/4) = C1 sin~- ~ = 0 and C3=0 

The last equation on C1 leads to two possible solutions:

yo=O

For a non-trivial solution, i.e., C1 ~ 0, then sin ~/~ ~/4 = 0, which can be satisfied
if the undetermined parameter 3. takes any one of the following infinite discrete

number of possible values, i.e.:

3.1 = 16.12, 3.2 = 16.22, 3.3 = 16- 32 ....
In other words, Xn = 16n2 n = 1, 2, 3 .... are the Eigenvalues which satisfy the

following Characteristic Equation:

sin ~ { = 0

Thus, the solution, which is nontrivial if 3. takes any one of these special values, has

the following form:
y = C1 sin4nx n = 1, 2, 3 ....

which is non-unique, since the constant C1 is undeterminable.
The functions ¢, = sin 4nx are known as Eigenfunctions. The value ~ = 0 gives

a trivial solution, thus it is not an Eigenvalue.

(ii) If 3. does not take any one of those values, i.e., if:

3., 16n2 n = 1, 2 ....
then

C1 =0

and the solution vanishes identically.

4.2 Vibration, Wave Propagation or Whirling of Stretched
Strings

Consider a stretched loaded thin string of length L and mass density per unit length p

in its undeformed state. The siring is stretched at its end by a force To, loaded by a
distributed force f(x) and is being rotated about its axis by an angular speed = to, as shown

in Fig. 4.1.
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Y

f(x)

x=O x=L

x

Figure 4.1: Stretched String in Undeformed State

Consider an element of length dx of the string in the deformed state, such that its
center of gravity is deformed laterally a distance y as shown in Fig. 4.2. The forces at
each end of the element are also shown in Fig. 4.2. The equations of equilibrium on the
tension T in the x-direction state that:

Tx+ax cOS0x+ax -Tx cos0x = 0

If one assumes that the motion is small, such that 0 << 1, then both cos 0x÷a~ ~- cos 0x --- 1,
resulting in:

Tx+dx = Tx = constant = To

The equation of equilibrium in the y-direction can then be written as follows:
x+dx

TO sin 0~+dx - To sin 0x + ~ f(rl) I + po~2y dx= 0

X

Y ~ ~~0x+dx

x x+dx

Fig. 4.2: Element of Vibrating, Stretched String in Deformed State
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Since:

sin 0x = d._~_y
ds

(dy) _dy+ d(dy~ d2 (dy’~(dx)2sin0x+dx= ~’S x+dx-d--~- ~xx\~sjdX+d--~,-~sJ-~---+""

Substituting these into the equilibrium equation, and replacing the integral by its average
value at x, and neglecting higher order terms of (dx), the linearized equation becomes:

d-~(T0 ~s) + f(x) + 0fo2 =0

Since dy/dx < 1 was assumed in the derivation of the equation of motion, then:

dy _ dy/dx = dy

ds 41 + (dy/dx) 2 dx

and the differential equation of motion becomes:

d2y + p~02 f(x)
(4.1a)dx---y "-~--o Y = --~-o

or, if p is constant = Po, then:

~02 f(x)d~-~-Y + ~ y = where c2 = To/Po (4.1b)
dx2 TO

where c is known as the sound speed of waves in the stretched string.
In the case of a vibrating stretched string, then y = y*(x, t), f = f*(x, t), and 

substitutes -p(~2y*[~t2) dx for the centrifugal force such that the wave equation for the

string becomes:

~2y, 1 ~2y, f* (x,t)
(4.2)

~X: = C~ ~t2 TO

If one assumes that the applied force field and the displacement are periodic in time, such
that:

y*(x, t) = y(x) sin 

f*(x, t) = f(x) sin 

where ~0 is the circular frequency, then eq. (4.2) becomes the same as (4.1b), which can 

rewritten as:

__ f(x)d2Y + k2 y-
dx2 TO

where k = o~/c is the wave number.

The natural (physical) boundary conditions are of three types:

(i) fixed end: y(0) or y(L) = 

(ii) free end: y’(0) = 0 or y’(L) 
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(iii) elastically supported end (spring)

leftend: To dy(0)-~x 7 y(0) = right end:

where y = spring constant = force/unit displacement.

y(L)

T dy(L) + 7 y(L) o dx

Example 4.4 Vibration of Fixed Stretched String

Obtain the natural frequencies (or the critical angular speeds) of a fixed-fixed stretched
string whose length is L:

DE: dZY + k2
dx2

y 0 0<x_<L

BC: y(O) = y(L) 0
The solution of the homogeneous differential equation is given by:

y = Ca sin kx + C2 coskx

The above solution must satisfy the boundary conditions:

y(O) = C~ = 0

y(L) = 1 sinkL =0

For a non-trivial solution:

sin kL = 0 (Characteristic equation)

which is satisfied if lq takes the following values:

kn=~ n= 1,2,3 ....
L

n2~2

~’n = kn~ = L~ n = 1, 2, 3 .... (Eigenvalues)

and the corresponding solution:
nn

~n(x) = sinknx = sin-- n = 1, 2, 3 .... (Eigenfunctions)
L

Also for k = 0, it can be shown that y -- 0.

The natural frequencies (or the critical angular speeds) are given by:
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cn~
COn = Ckn = ~ n = 1, 2, 3 ....

L
As the angular speeA (or forcing frequency) co is increased from zero, the deflection

stays small until the angular speed (or frequency) re.aches oan, thus:

y=O O<co<co~

y = Al~b I = A: sin--~ x co~ = ~
L L

y=O col < f’O < CO2

y = A2~2 = A2 sin 2__~ X CO2
2gC

L L
It should be noted that each eigenfunction satisfies all the boundary conditions and

the eigenfunction of order n has one more null than the preceding one, i.e. (n-l)~
eigenfunction.

4.3 Longitudinal Vibration and Wave Propagation in Elastic
Bars

Consider a bar of cross section A, Young’s modulus E and mass density p, as shown
in Fig. 4.3. Consider an element of the bar of length dx shown in Fig. 4.4~

Y

x=O x=L

Fig. 4.3: Elastic Bar
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x x+dx

Ax [~d×-----~ A

Undeformed State: ~~

~"l’:: U x+dx

DefonnedState: Fx~f’:~ ~-’ £!i~:Ii::ii ~ Fx+dx

Fig 4.4: Element of a Vibrating Elastic Bar in Longitudinal Motion

Each cross section is assumed to deform by u*(x,t) along the axis of the rod as shown 
Fig. 4.4. Let u*(x,t) be the deformation at location x and at time t, then the deformation
at location x+dx and t is:

u~+dx --- u~ + -~- dx

then the elastic strain as defined by:

deformation u~ + (o~u */o~x) dx - 
strain e = _=

original length dx o~x

and the corresponding elastic stress using Hooke’s law becomes:

stress o" = E 030*

The total elastic force F on a cross-section can be computed as:

&*
F=Aa=AE--

The equation of equilibrium of forces on an element satisfies Newton’s second law:

F,÷d, - F~ + f * (x,t):ctx = mT~- dX 

x (A u*]10x)2+ _ A *
3xl~ ~x ) +~-’~, "-~x )’~"- ""-P ~-~-~-dx-f*(x,t)dx
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where f*(x,t) is the distributed load per unit length. Linearizing the equation, one obtains
the wave equation for an elastic bar:

a (EA °~u *~ " a2u *

-~ ---~---j : pA--~ - f *
(4.3a)

If the material of the bar is homogeneous, then the Young’s modulus E is constant,
and (4.3a) becomes:

~ ~A~U*~-LA~U* f*
(4.3b)

~ 3x ) - ~ ~ t z E

where the sound speed of longitudinal waves in the b~ c is:

c~ = E/p

If the cross sectional area is constant (independent of the shape of the area along the
leng~ of the bar), then the wave equation (4.3b) simplifies 

~Zu* 1 ~u* f*
~ = (4.4)
~x2 c2 ~t2 AE

For a b~ that is vibrating with a circul~ frequency ~, under ~e influence of a time-

ha~onic load ~, i.e. f * (x, t)= f(x)sin ~, u * (x, t)= u(x)sin ~, eq. (4.5) 

d2~ + kau = f k = ~ (4.5)
dx2 AE c

~e natural (physical) bounda~ conditions can be any of the following types:

(i) Fixed end u* = 0

(ii) Free end AE 0u*/~x = 0

(iii) Elastically supported by a linear spring:

Left end: AE 3u*/~x - yu* = 0

Right end: AE ~u*/3x + ~/u* = 0

where y is the elastic constant of the spring.

Example 4.5 Longitudinal Vibration of a Bar

Obtain the natural frequencies and the mode shapes of a longitudinally vibrating
uniform homogeneous rod of constant cross-section. The rod is fixed at x = 0 and
elastically supported at x = L.

DE:
d2u +k2u=0

0 < x < Ldx2 - _
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BC: u(0) = and AE du +
d--~" ~l :0x=L

Thesolution to the homogeneous equation is:

u = C~ sin kx + C2 cos kx

which is substituted in the two homogeneous boundary conditions:

u(0) = o = 

For non-trivial solution, the bracketed expression must vanish resulting in the following
characteristic equation:

tan a = - m a where a = kL

The roots of the transcendental equation on tx~ can only be obtained numerically. An

estimate of the location of the roots can be obtained by plotting the two parts of the
equation as shown in Fig. 4.5. There is an infinite number of roots al, a2 ..... cq .....

Note that the roots for large values of n approach:

2n+ 1

n>>l 2

Thus, the resonant frequencies of the finite rod are given by:

o~n =ckn =can n = 1, 2, 3 ....
L

the eigenvalues are given in terms of the roots o~:

2

~.n =k~2 =~-~" n = 1, 2, 3 ....

and the corresponding eigenfunctions (mode shapes) are given by:

x
t~n = sin knx = sin an ~ n = 1, 2, 3 ....

The root ~ = 0 corresponds to a trivial solution, thus, it is not an eigenvalue.
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Y

Fig. 4.5

It should be noted that the eigenfunctions ~bn(x) have n nulls, which makes sketching
them easier.

4.4 Vibration, Wave Propagation and Whirling of Beams

The vibration of beams or the whirling of shafts can be considered as a similar
dynamic system to the vibration or whirling of strings. Consider a beam of mass density
p, cross-sectional area A and cross-sectional area moment of inertia I, which is acted upon
by distributed forces f(x), and is rotated about its axis by an angular speed o~, as shown 
Fig. 4.6. If the beam deforms from its straight line configuration, then one considers an
element of the deformed beam, where the shear V and the moment M exerted by the other
parts of the beam on the element are shown in Fig. 4.7.
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Y

Ao

x=0

f(x)

x=L

Fig 4.6: Undeformed Beam

x

The equation of equilibrium of forces in the y-direction becomes:

x+dx

Vx + p(o2yA dx + f f(~l) d~l - Vx+dx 

Expanding the shear at x+dx by a Taylor series about x:

+v,÷,~ --- v~ --~- ~ +...

thenan equilibrium equation results of the form:

dV._.~.~ = pm2Ay + f(x)

f(x)

’~i~i !i~ oAo~ydx = centrifugal f°rce

dx x+~x ,~ x

Fig. 4.7: Element of a Deformed Beam in Flexure



BOUNDARY VALUE AND EIGENVALUE PROBLEMS 119

Taking the equilibrium of the moment about the left end of the element, one obtains:

x+dx

Vx+dxdX +Mx -Mx+dx - f f(~)(~q - x) d~- p~02Ay (~ 

X

Again, expanding Vx+dx and Mx+dx by a Taylor’s series about x and using the mean

value for the integral as dx --> 0, results in the following relationship between the

moment and the shear:

Vx = dMx
dx

Thus, the equation of motion becomes:

d2Mx = p~02Ay + f(x)
dx2

The constitutive relations for the beam under the action of moments Mx and Mx+~x can be
developed by considering the element in Fig. 4.8 of length s. The element’s two cross
sections at its ends undergoes a rotation about the neutral axis, so that the element
subtends an angle (dO) and has a radius of curvature R. The element undergoes rotation

(dO) and elongation A at a location 

ds A
----d0=--
R z

Thus, the local strain, defined as the longitudinal deformation at z per unit length is given
by:

ds

Fig. 4.8: Element of a Beam Deformed in Flexure
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A z
strain e = h = _

ds R

and the local stress is given by Hooke’s Law:

Ez
strain o = Ee = --

R

Integrating the moment of the stress, due to the stress field at z over the cross-sectional
area of the beam gives:

MomentMx=fCyzdA=_~fz2d A E1
R

A A

where I = f z2dA is the moment of inertia of the cross-sectional area A.

A
Since the radius of curvature is defined by:

1 dO d2y

R ds dx2

for small slopes, then the moment is obtained in terms of the second derivative of the
displacement y, i.e.:

Mx = El dzy
dx2

and the equation of motion for the beam becomes:

dx2 E1 = p052Ay+ f(x) (4.6)

If the functions EI and A are constants, then the equation of motion for the beam eq. (4.6)
simplifies to:

d4y l~4y = f(x) (4.7)

dx 4 EI

where the wave number I~ is defined by:

64 = p.~A 052
EI

The wave equation for a time dependent displacement of a vibrating beam y*(x,t) can

be obtained by replacing the centrifugal force by the inertial force (-9A ~2" dx/¯

Replacing d/dx by 0/3x such that eq. (4.6) becomes the wave equation for a beam:

02 (EI 02y*~
~-~’T ~, 0-~-) + PA~2* = f* x’t) (4.8)

where y* = y*(x,t) and f* = f*(x;t).
If the motion as well as the applied force are time-harmonic, i.e.:

y* = y(x) sin tot
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f* = f(x) sin cot

then the ordinary differential equation governing harmonic vibration of the beam reduces
to the same equation for whirling of beams (4.6).

The natural boundary conditions for the beams takes any one of the following nine
pairs:

(i) fixed end:

d~Y=0y=O
dx

(ii) simply supported:

d2y
y =0 EI d---~ = 0

(iii) free end:

El--=
d2y 0
dx2

(iv) free-fixed end:

d--Y=o d- J--°
dx

(v) elastically supported end by transverse elastic spring of stiffness 

The + and - signs refer to the left and right ends, respectively.

(vi) free-fixed end with a transverse elastic spring of stiffness 

d(EI dZ_Y/+vv = dY_o
dx~ dxeJ-’J

d"~" -

The sign convention as in (v) above.

(vii)free end elastically supported by a helical elastic spring of stiffness
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The + and - signs refer to the left and right ends respectively.

(viii) hinged and elastically supported by a helical elastic spring of stiffness 

EI d2y -~d-~--T- a =0 y=O

The sign convention as in (vii).

(ix) elastically supprted end by transverse and helical springs of stiffnesses ~/and 

xt x:J-’"

The sign convention is the same as in (vi) & (vii).

Example 4.6 Whirling of a Fixed Shaft

Obtain the critical speeds of a rotating shaft whose length is L and ends are fixed:

DE: d4y ~4y=0
dx4

BC: y(0) = y’(0) = 

y(L) = y’(L) : 

The solution of the ordinary differential equation with constant coefficients takes the
form:

y = A sin ~x + B cos ~x + C sinh [3x + D cosh ~x

Satisfying the four boundary conditions:

y(0) = 

y’(0) = 

y(L) = 

y’(L) = 

B+D=0

A+C=0

A sin I~L + B cos IlL + C sinh ~L + D cosh ~L = 0

Acos~L - B sin ~L + Ccosh ~L + D sinh ~L = 0
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Y

c~os~

For a non-trivial solution, the determinant of the arbitrary constants A, B, C and D must
vanish, i.e.:

0 1 0

1 0 1

sin ~L cos ~L sinh ~L

cos[~L -sinl]L cosh~L

1

0
=0

cosh

sinh ~L

The determinant reduces to the following transcendental equation:

cosh IX cos I.t = 1 (Characteristic Equation) where I.t = [~L

Theroots can be obtained numerically by rewriting the equation:

cos IX = 1/cosh IX

where the two sides of the equality can be sketched as shown in Fig. 4.9.
The roots can be estimated from the sketch above and obtained numerically through

the use of numerical methods such as the Newton-Raphson Method. The first four roots
of the transcendental equation are listed below:

I.t o = 0 IX1 = 111L = 4.730

IX2 = ~2L = 7.853 IX3 = 113L = 10.966

Denoting the roots by I~, then I]n = l-tn/L, n = 0, 1, 2 .... and the eigenvalues become:

~,, =l]~4 =~tn~/L4 n = 1, 2, 3 ....

One can obtain the constants in terms of ratios by using any three of the four equations
representing the boundary conditions. Thus, the constants B, C, and D can be found in
terms of A as follows:

B sinh ~t~ - sinl.t, D

~" = cosh ~t. - cos IX~ = -’X = ~

C

A

which, when substituted in the solution, results in the eigenfunctions:
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%(x)

Fig. 4.10: First Three Eigenfunctions

(~. (x) = sin bt. E - sinh ~n + ~nCOS~n X~.L- cosh gn ~

Theroot go = 0 is dropped, since it leads to the trivial solution ~0 = 0.

~e cfific~ speeds ~. can be ev~uated as:

E~ ~
~=

L2
n=1,2,3 ....

A plot of the first three eigenfunctions is shown in Fig. &10.

4.$ Waves i~ Acoustic Horns

n=l, 2 ....

Consider a tube (horn) of cross-sectional area A, filled with a compressible fluid,
having a density 9*(x,t). Let v*(x,t) and p*(x,t) represent the particle velocity and 
pressure at a cross-section x, respectively. Consider an element of the fluid of length dx
and a unit cross-section, shown in Fig. 4.11.

Then, the equation of motion for the element becomes:
x +dx

, , d fp.px - px+dx = ~-~~ (r/,t) v * (r/,t) 

x

Y

Vx
Vx+dx

P x+dx

x x+dx

Ax+dx

Fig. 4.11: Element of an Acoustic Medium in a Horn

X
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Expanding the pressure P~+dx by Taylor’s series about x and obtaining the mean value of

the integral as dx --> 0, one obtains:

Ox dt ~,-’~- + v *
=

.... ax ) P0 -~-
where

0v* >> v ~

and po(x) is the quasi-static density. This is known as Euler’s Equation.

The mass of an element dx inside the tube, as in Fig. 4.11, is conserved, such that:
d

* dx) *-Z’. (Ap poAxv~ - p0Ax+dxVx+dx

A dP*d..~_ -- Aap*~ = -P° ~x (Av *)

The constitutive cquation relating the pressure in the fluid to its density is given by:

p* = p*(p*)

so that the time rate of change of the pressure is given by:

dp..~.* = dp * dp * _- c2 dp *

dt dp* dt dt

where c is the spccd of sound in the acoustic medium

dp.~.* ~. c’
dp*

and the pressure is given by:

P* --- Poc2 + Po

with Po being the ambient pressure. Thus, the continuity equation becomes:

A0p * Aoap*

"=~-=~=~ ~" =-Po-~(Av*)

Differentiating the last equation with respect to t, it becomes:

A a~p* a ( av*’~

Multiplying Eulcr’s equation by A and differentiating it with respect to x, one obtains:

a A
= Po

cz

ax axk at .) at’
which, upon rearranging, gives the wave equation for an acoustic horn:

I A"-~-x c’
A ~xx = at’

It can bc shown that if v* = - a~b */0x, where ~b* is a velocity potential, then:

(4.9)
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P* = P0 ~--~- ’

such that velocity potential ~* satisfies the following differential equation:

A ~x [, ~x ) 2 ~t2

If the motion is harmonic in time, such that:

p*(x,t) = p(x) i°t alxi v* (x,t) = v(x) i°~t

then the wave equation for an acoustic horn becomes:

1 d (AdP~+k2p=0
k=o~/c

Adx\ dxJ

1 dp
V=

k0O dx

The natural boundary conditions take one of the two following forms:

(i) open end p = 0

(ii) rigid end v = 0 or dp/dx = 0

(4.10)

(4.11)

(4.12)

Example 4.7 Resonances of an Acoustic Horn of Variable Cross-section

Obtain the natural frequencies of an acoustic horn, having a length L and a cross-
sectional area varying according to the following law:

A(x) = aox/L
Ao being a reference area and the end x = L is rigidly closed.

---- x +k~p=0 k=m/c
x dx

or

x~p" + xp’ + k2x2p = 0

The end x = L has a zero particle velocity:

BC:
dp(L) 

dx

The acoustic pressure is bounded in the horn, so that p(0) must be bounded. The solution
to the differential equation is given by:

p(x) = C,Jo(kX) + C#0 (kx)

Since Yo(kx) becomes unbounded at x = 0, then one must set C2 --- 0. The boundary

condition at x = L is then satisfied:

v(L) = 0 -= dp(L) = C,k dJ°(kL) = l(kL) = 0 ( Characteristic equat ion)
dx dkL
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y=l

x=O
I

Oo(X)

Fig. 4.12: First Three Eigenfunctions

The roots of the characteristic equation (Section 3.15) and the corresponding
eigenfunctions become:

k0L = 0

klL = 3,832

k2L = 7.016

k3L = 10.17

*0 =1

*1 =J0 (3.832x/L)

’2 =J0 (7.016x/L)

*3 :J0 (10.17x/L)

A plot of the first three modes is shown in Figure 4.12.

X

4.6 Stability of Compressed Columns

Consider a column of length L, having a cross-sectional area A, and moment of
inertia I, being compressed by a force P as shown in Fig. 4.13.

If the beam is displaced laterally from out of its straight shape, then the moment at
any cross-section becomes:

Mx =-py

which, when substituting Mx in Section (4.4) gives the following equation governing the
stability of a compressed column:

d2 (" dZy "] d2y_

d--~-/El d--~-/ + P ~ - f(x)
(4.13)

Equation (4.13) can be integrated twice to give the following differential equation:

EI d2~y + Py = ff f(rl) drl drl + 1 +C2x (4.14)
dx2
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f(x)

Po Po
Undeformed: ~ x

fix)

Deformed: Po .-’""°’ ......... ’ .... ’~-~ Po x

Fig. 4.13. Column Under Po Load

Example 4.8 Stability of an Elastic Column

Obtain the critical loads and the corresponding buckling shapes of a compressed
column fixed at x = 0 and elastically supported free-fixed end at x = L. The column has a
constant cross-section. The equation of the compressed column is:

DE:
d2y P
dx2 + ~- y = C~ + C2x

with boundary conditions specified as:

BC: y(0) = 

y’(O) = 

~-~3Y (L)- E~I y(L) 

y’(L) = 

The solution becomes:

y = C1 + CEX + Ca sin rx + C4 cos rx

y(0) = 

y’(O) = 
y’(L) 

y"(L)- ~3 y(L) 

where r2 = P/EI

C1 q- C4 = 0

C2 + rC 3 = 0

C2 + IC 3 cos rE - 1~4 sin rL = 0

~ C~ ~ C2L+C3(-r3cosrL-~sinrL)

+ C4(r3 sin rL- ~-Tcos rL) : 
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where

EI
For a non-trivial solution, the determinant of the coefficients of C~, C2, C~, and C, must
vanish, resulting in the following characteristic equation:

COStX + t~---~J slnix = 1 where Ix= rL

The characteristic equation can be simplified further as follows:

.

All possible roots are the roots of either one of the following two characl~ristic extuations:

¯ iX(i) sln~ = where ~z. = 2nz n --- 0, 1, 2 ....

iX ~x ~x3 ~x 4(ixh3

The roots of the second equation are sketched in Fig. 4.14.

Y

i i !

~ c~/2

Fig. 4.14
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o~ = 0, oh falls between ~/~ and an integer number of 2x, etc., and

Lim c~ --> (2n - 1) n >> 1

Forexample, if ~ = 4, then the roots are:

ao = 0, a~ = 4.74, a2 = 9.52 ~- 3~

Thus, the roots resulting from the two equations can be arranged in ascending values as
follows:

0, 4.74, 6.28, 9.52, 12.50 ...

The eigenfunctions corresponding to these eigenvalues are:

(i) Cn =l-cos2nnx/L n -- 1, 2, 3 ....

for oq~ being the roots of (i)

(ii) Cn = 1 - cos(an x/L) - cot(an [2Xan x/L - sin an x/L)

where ~ are the roots of (ii).

Note that if an --> (2n - 1) n for n >> 1, then:

~n --> 1-cosan x/L n >> 1
Also note that ~ -- 0 gives a trivial solution in either case.

4.7 Ideal Transmission Lines (Telegraph Equation)

Consider a lossless transmission line carrying an electric current, having an
inductance per unit length L and a capacitance per unit length C. Consider an element of
the wire of length dx shown in Fig. 4.15, with I and V representing the current and the
voltage, respectively. Thus:

Vx - Vx+d~ = voltage drop = (Ldx) 3I/0t

also

I~ - I~+~ = decrease in current = (Cdx) 0V/Ot

Thus, the two equations can be linearized as follows:

OV __LOI
0x Ot
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x x+dx

~ .4----- Ix+dx

L dx

vxI 
Fig. 4.15: Element of an Electrical Transmission Line

Both equations combine to give differential equations on V and I as follows:

o~2V = LC°32V

t~2I

-~--r= LC
If the time dependence of the voltage and current is harmonic as follows:

V(x,t) = V(x) i~

I(x,t) = ~(x) i°x

then eqs. (4.15) and (4.16) become:

d2V

dx~ ~ c2

d2~ +
0dx---~- --~-I=

where LC = 1/c2.

The natural boundary conditions for transmission lines can be one of the two
following types:

(i) shorted end V=0 or --=0
dx

(ii) open end i=0 --=dV 0
dx

(4.15)

(4.16)

(4.17)

(4.18)
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Y

x x+dx

Mx+dx

Fig. 4.16: Element of a Circular Bar Twisted in Torsion

4.8 Torsional Vibration of Circular Bars

Consider a bar of cross sectional area A, polar area moment of inertia J, mass density
p and shear modulus G. The bar is twisted about its axis by torque M twisting the bar

cross section by an angle 0*(x,t) at a station x as shown in Fig. 4.16.

r 0*(x+dx, t)-r 0*(x,t) 30*
Shear strain at r = = r ~

dx bx

30*
Shear stress at r = Gr ~

3x

f (G 30* ~ r2dA = GJ 30*TorqueM=d~ 3x ) 3x
A

where the polar moment of inertia J is given by:

J = ~r2dA

The equilibrium equation of the twisting element becomes:
M,+dx - Mx + f* (x,t) ax = (pdx) 2

Thus:

= ~--~-(GJ 30"~ "320* f* (4.19)
3--; 3x ~ 3x ) = pJ-~-

where f*(x,0 is the distributed external torque. If G is constant, then the torsional wave
equation becomes:

1 3,Cj 30., 1 320* f* (4.20)
~xxk, "-~’-x )=~ -T 3t 2 GJ
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where c is the shear sound speed in the bar def’med by:

cm = G/p

If t’*(x,t) = f(x) sin tot and 0*(x, t) = 0(x) sin tot, then eq. (4.20) 

ld(j d0)+k20= f
J dxk dxJ GJ

If the polar moment of inertia J is constant, then:

d20 + k20 = f

dx2 GJ

The natural boundary conditions take one of the following forms:

(i) fixed end 0=0

(ii) flee end = GJ-~ = 0 ~

(iii) elastically supported end by helical spring

The + and - signs refer to the BC’s at the right and left sides.

(4.21)

(4.22)

4.9 Orthogonality and Orthogonal Sets of Functions

The concept of orthogonality of a pair of functions fl(x) and f2(x) can be defined
through an integral over a range [a,b]:

b

(f,(:,), f2(x))= ~ f, (x) 

a

If the functions fl(x) and f2(x) are orthogonal, then:

Define the norm of f(x) as:

b

N(f(x)) = J" [f(x)]2dx

a

A set of orthogonal functions {fi(x))i = 1, 2 .... is one where every pair of functions
of the set is orthogonal, i.e. a set {f,~(x)i is an orthogonal set if:
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b

~fm(X) fn(X) dx 

If one defines:

man

= N(fm(X)) 

fo(x)
go(x)= 

then the orthogonal set {gn(x)} is called an Orthonormal set, since:

b

fgn(X) gm(X) dx = 

a

where the Kronecker delta 8too = 1 n = m

= 0 n~m

In some cases, a set of functions {fn(x)} is orthogonal with respect to a "Weighting
Function" w(x) if:

b

(fn, fm)= ~ W(X)fn (X)fm(X)dx m ¢ n

a

where the norm of fn(x) is defined as:

b

N(fn (x))= ~ w(x) ~ (x)dx

a

A more formal definition of orthogonality, one that can be applied to real as well as
complex functions, takes the following form:

b

~ fn(z) ~m(Z) dz n*m

a

where ~" is the complex conjugate function of f. The norm is then defined as:

b b

N(fn (z))= f fn (Z)?n(Z)dz = 2 dz

Example 4.9

(i) The set gn(X)= n=l, 2,3,...in0~x~L

constitutes an orthonormal set, where:
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L
2 f sin (n~x) sin (rn~ x) dx ~mn
LJ L L

0

Jo(Oq~ x/L)(ii) The set g,(x)= Ljx(ctn)/~]~ n = 1, 2, 3,...in < x < L

constitutes an orthonormal set, where {gn(x)} is orthogonal with w(x) 
L

2 ~x Jo(Ctn x]L)J0(ct m x]L)dx = 8nm

L2J12(~n) 

where ~ are the roots of J0 (ct,) -- 

e~X
(iii) The set gn (x) n -- 0, 1, 2 .... in -r~ < x < ~

constitutes an orthonormal set where:

1 fe~X~ 1 ~e~Xe-~mx
~

ei~x dx = ~-n dx = 8m~

4.10 Generalized Fourier Series

Consider an infinite orthonormal set {go(x)} orthogonal over [a,b]. Then one can
approximate any arbitrary function F(x) defined on [a,b] in terms of a finite series of the
functions gin(x). Let:

N
F(x) = clg~ c2g2 + .. . + c~qgN = 2 Cmgm(x) (4.23)

m=l

then multiplying the equality by gn(x), n being any integer number 1 _< < N,
and integrating on [a,b], one obtains:

b N b
~F(x) gn(x)dx: 2cmfgm(x) gn(x)dx=cn
a m=l a

since every term vanishes because of the orthogonality of the set {g~(x)}, except for the
term m = n. Thus the coefficient of the expansion, called the Fourier Coefficient,
becomes:

b

Cm = JF<x) gin(x)dx

a

and F(x) can be represented by a series of orthonormal functions as follows:
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F(x)- ~’~, gm (x) F(~l) gm(~l) a<x<b (4.24)
m=l

The series representation of (4.24) is called the Generalized Fourier Series
corresponding to F(x). The symbol ~, used for the representation inslead of an Cxluality,
refers to the possibility that the series may not converge to F(x) at some point or points
in [a,b]. If an orthonormal set {gn} extends to an infinite dimensional space, then N
extends to infmity.

The Generalized Fourier Series is the best approximation in the mean to a
function F(x). Consider a finite number of an orthonormal set as follows:

n

~kmgm(x)

m=l

then one can show that the best least square approximation to F(x) is that where cm = k~.
The square of the error J between the function F(x) and its representation, defined as:

hi n q2
j=I/F<x)- E kmg <x)/ ax_>0

a/ m=l /

must be minimized. The square of the error is expanded as:

J=~F2 dx-2 Ekm~F(x) gm(x)dx+ kmgm(X) ) dx
a m=l a al_m = 1 J/r=l J

Since the set {g~.} is an orthonormal set, then J becomes:
b n n

J=~F2dx-2 ~Cmkm+ 2k2m->O

a m=l m=l

b n

a

b n n

a m=l m=l

To minimize J, which is poSitive, then one must choose lq~ = cm.
n

~., Cmgm (X)

m=l

is the best approximation in the mean to the function F(x).

b n
~F2 dx> ~c2~
a m=l

Thus, the series:

Since J ~ 0, then:
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The above inequality is not restricted to a specific number n, thus:

b ~

~ F 2 dx > ~cZ~ (4.25)

a m=l

b

Since J-Fz dx is finite, then the Fourier Coefficients Cm must constitute a

a
convergent series, i.e.:

m~

A necessary and sufficient condition for an orthonorrnal set { g,(x)} to be complete is
that:

b ~

~F2(x) : ~C~m

a m=l

The generalized Fourier series representing a function F(x) is unique. Thus two
functions represented by the same generalized Fourier series must be equal, if the set { g. }
is complete.

If an orthonormal set is complete and continuous, and if the generalized Fourier series
corresponding to F(x) is uniformly convergent in [a,b], then the series converges
uniformly to F(x) on [a,b], if F(x) is continuous.

Similar expansions to eq. (4.24) can be developed, if the orthonormal set {g,(x)} 
orthonormal with respect to a weighting function w(x) as follows:

F(X)= ~Cmgm(X)
m=l

where

= f w(x) F(x)gm(X) dxcm

a

b

~w(x) gm(X)gn(X)dx 

a

(4.26)
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4.11 Adjoint Systems

Consider the linear nth order differential operator L:

Ly=[a0(x)d--~+al(x)~+...+a,_~(x ) +an(X ) y=0 a<x<b (4.27)

where ao(x) does not vanish in [a,b] and the coefficients ai, i = 0, 1, 2 .... n are continuous
and differentiable (n-i) times, then define the linear th order differentia! operator K:

dn dn-1 dn-2
Ky = (-1)n d--x~ [a0 (x) y] + (-1)n-I dxn_~ [al(x)y] + (-1)n-2 dxn:2 [a2(x)y]

d [an_l(x) y]+ an(X) (4.28)
dx

as the Adjoint operator to the operator L. The differential equation.:

Ky =0

is the adjoint differential equation of (4.27).
The operator L and its adjoint operator K satisfy the following identity:

v Lu - u Kv = ~x P(u, v) (4.29)

where

n-ldmuln-m-1 dkP(u,v) = m~__ 0d-~[ k=0E (-1)k d--’~ "(an-m-k-l(x) V) (4.30)

Equation (4.29) is known as Lagrange’s Identity.
The determinant A(x) of the coefficients of the bilinear form of °) v~) becomes:

A(X) = -+[a0(x)]n (4.31)

which does not vanish in a < x < b.

Integrating (4.29), one obtains Green’s formula having the form:

b Lu

dx =P(u,v) J’(v - u (4.32)

a a

The determinant of the bilinear form of the right side of (4.32) becomes:

~(a) 0~(b)l = A(a) A(b) = [ao(a) a0(b)]n 

If the operators K = L, then the operator L and K are called Self-Adjoint.
As an example, take the general second order differential equation:

Ly = a0 (x) y" + a~ (x) y’ 2 (x)y = 

then the adjoint operator K becomes:
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Ky=(a0y) -(aly ) +a2y

=aoy" + (2a~ - al) y’ + (a[’- a~ +a2)y

which is not equal to Ly in general and hence the operator L is not self-adjoint. If the
operator L is self-adjoint, then the following equalities must hold:

a1 = 2a~ - a1 and a2 = a~ - a~ + a~

which can be satisfied by one relationship, namely:

a0 = al

which is not true in general. However, one can change the second order operator L by a
suitable function multiplier so that it becomes self-adjoint, an operation that is valid only
for the second order operator. Hence, if one multiplies the operator L1 by an

undetermined function z(x), then:

LlY = z Ly

so that L1 is self-adjoint, then each coefficient is multiplied by z(x). Since the condition
for self-adjoincy requires that the differential of the fast coefficient of L equals the second,
then:

(z ao) = z 

which is rewritten as:

z" a1 - a0
z ao

The function z can be obtained readily by integrating the above differentials:

l_~exp[~ ai(rl) drll = p(x)

Z=ao<x)
Using the multiplier function z(x), the self-adjoint operator L1 can be rewritten as:

L1y = p(x) y"+ ~p(x) az(x) p(x
o( ) + ao(x) Y

= Id(pd~+q] Ldx i, dxJ

where

: exp[~al(rl) d~]p(x)

q(x) = a2(x) (4.33)
ao(x ) ¯

Thus, any second order, linear differential equation can be transformed to a form that
is self-adjoint. The method used to change a second order differential operator L to
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become self-adjoint cannot be duplicated for higher order equations. In general if the order
n is an odd integer, then that operator cannot be self-adjoint, since that requires tlhat
at(x) = - ao(x). It should be noted that if the order n of the differential operator L is an odd

integer, then the differential equation is not invariant to coordinate inversion, i.e. the
operator is not the same if x is changed to (-x). Therefore, if the independent variable x 
a spatial coordinate, then the operator L, representing the system’s governing equation,
would have a change of sign of the coefficient of its highest derivative if x is changed to
(-x). This would lead to a solution that is drastically different from that due to 
uninverted operator L. Thus, a differential operator L which represent a physical system’s
governing equation on a spatial coordinate x cannot have an odd order n.

In general, a physical system governed by a differential operator L on a spatial
coordinate is self-adjoint if the system satisfies the law of conservation of energy. Thus,
if the governing equations are derived from a Lagrangian function representing the total
energy of a system, then, the differential operator L is self-adjoint. A general form of a
linear, non-homogeneous (2n)th order differential operator L which is self-adjoint can be
written as follows:

k=0

= (-1)n [poy(n)](n)+ (-1)~-l[ply(n-1)](~-1)+ ...-[p~_ly’]’ + p~y= 

a < x _< b (4.34)

4.12 Boundary Value Problems

As mentioned earlier, the solution of a system is unique iff n conditions on the
function y and its derivatives up to (n - 1) are specified at the end points a and b. Thus, 
general form of non-homogeneous boundary conditions can be written as follows:

n-1

Ui(Y)= X[~iky(k)(a)+[~iky(k)(b)]=~’i i= 1,2,3 ..... n (4.35)

k=0

where cq,, I~, and Ti are real constants. The boundary conditions in (4.35) must 

independent. This means that the determinant:

det[l~ij, ~ij] # 0

The non-homogeneous differential equation (4.27) and the non-homogeneous
boundary conditions (4.35) constitute a general form of boundary value problems. 
necessary and sufficient.condition for the solution of such problems to be unique, is that
the equivalent homogeneous system:

Ly = 0

Ui(y) --- i = 1, 2 ..... n

has only the trivial solution y -- 0. Thus, an (n)~ order self-adjoint operator given in eq.

(4.27) has n independent solutions {yi(x)}. Thus, since the set of n homogeneous
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conditions given in eq. (4.35) are independent, then the solution of the differential eq.
(4.34) can be written as:

n
y = yp(x)+ ECiYi(X)

i=l

where Ci are arbitrary constants. Since the set of n non-homogeneous boundary
conditions in eq. (4.35) are independent, then there exists a non-vanishing unique set 
constants [Ci] which satisfies these boundary conditions.

A homogeneous boundary value problem consists of an nt~ differential operator and a
set of n linear boundary conditions, i.e.:

Lu=0

Ui(u ) :. 0 i ---- 1, 2 .... n

An adjoint system to that defined above is defined by:

Kv =0

Vi(v)=0 i=1,2 .... n

(4.27)

(4.35)

(4.28)

(4.36)

where the homogeneous boundary conditions (4.36) are obtained by substituting the
boundary conditions Ui(u) = 0 in (4.35) into:

P(u, V)[ab =0 (4.37)

with the bilinear form P(u, v) being given in (4.30). If the operator L is a selfoadjoint
operator, i.e. if K = L, then the boundary conditions can be shown to be identical, i.e.:

Ui(u) = Vi(u) (4.38)

Example 4.10

For the operator:

Ly=a0(x)y"+al(x)y’+a2(x)y=0

the adjoint operator is given by:

Ky=(aoy ) -(aly ) +a2y=0

The bilinear form P(u, v) is given by:

b
,

b

P(u,v) la= ulalv.-(aov)’l+u [aoV]la 

(i)

a~xSb

Consider the boundary condition pair on u given by:

u(a) = and u(b) = 

and substitution into (4.37) results in the following:

u’(a0V)lab = u’(b)[ao(b) v(b)]- u’(a)[ao(a) v(a)] = 
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Since u(b) = 0 then u’(b) is an arbitrary constant. Similarly since u(b) = O, 

u’(a) is also arbitrary. For arbitrary constants u’(a) and u’(b), the relation 

satisfied if:

v(a) = and v(b) = 

(ii) If u’(a) and u(b) = 

then one obtains the following when substituted into P(u,v) = 

u’(b)[ao(b) v(b)]-u(a)Ial(a ) v(a)-(ao(a) v(a))’] 

Since u’(a) = 0 then u(a) is arbitrary. Similarly, since u(b) = O, then u’(b) 

arbitrary. Thus, the boundary conditions Vi(v) = 0 are:

al(a) v(a)-[ao(a) v(a)] = 

v(b) = 

4.13 Eigenvalue Problems

An eigenvalue problem is a system that satisfies a differential equation with an
unspecified arbitrary constant ~, and satisfying a homogeneous or non-homogeneous set of

boundary conditions.
Consider a general form of a homogeneous eigenvalue problem:

Ly + ~,My = 0 (4.39)

Ui(y)=0 i= 1,2 ..... 

where L is given by (4.27) and the boundary conditions by (4.35). ~The operator M is 
mth order differential operator where m < n and ~, is an arbitrary constant.

A general form of a self-adjoint homogeneous eigenvalue problem takes the
following form:

Ly + ~,My = 0 a < x _< b

U~(y) = i = 1, 2 ..... 2n (4.40)

where L and M are linear self-adjoint operators of order 2n and 2m respectively, where:

Ly= E(-1)k ~.-’~’/dky] (4.41)

k=O L "" J

My= E(-1)kd--~ qm_kd-- j n>m
k=O

)~ is an undetermined parameter, and Ui(y) = 0 are 2n homogeneous boundary conditions

having the form given in (4.35).
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Define a Comparison Function u(x) as an arbitrary function that has 
continuous derivatives and satisfies the boundary conditions Ui(u) = 0, i = 1, 2 ..... 2n.
For self-adjoint eigenvalue problems the following integrals vanish:

b

j’(u Lv dx 0

a

b

~(u- v Mu) --- (4.42)Mv dx 0

a

where u and v are arbitrary comparison functions.
The expression for P(u,v) in (4.30) that corresponds to a differential operator L 

given in (4A0) becomes:

~(u Lv- v Lu) dx = P(v,u) = _l)k+r U(r) pn_kV(k)

a ~a k=l r=

Similar expression for P(v,u) for the differential operator M can be developed 
substituting m and qi in (4.,*3) for n and Pl, respectively. It is obvious that the right side
of (4.43) must vanish for the system to be self-adjoint.

An Eigenvalue problem is called Positive Definite if, for every non-vanishing
comparison function u, the following inequalities hold:

b b

~uLudx <O and ~u Mudx> 0 (4.44)

a a

Example 4.11

Examine the following eigenvalue problem for self-adjointness and positive-
definiteness:

y" + Xr(x) y = r(x) > a < x < b

y(a) = y(b) = 

For this problem the operators L and M, defined as:

d2
L = d=~ M = rCx)

are self-adjoint, Let u and v be comparison functions, such that:

u(a) = v(a) u(b) = v(b) 

Thus, to establish if the system is self-adjoint, one substitutes into eq. (4.42):
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b
, ,Ib̄ l r b- J (u’v’ - v’u’) dx 0Iluv"- vu,,)-- ov

a ,a a

b

(u rv- ru) dx = v

a

which proves that the eigenvalue problem is self-adjoint. To establish that the problem
is also positive definite, substitute L and M into eq. (4.44):

- (u’)2dx:- (u’)2 
a a a a

b b

rum=f m2 dx>O since r(x) > 

which indicates that the eigenvalue problem is also positive definite.

4.14 Properties of Eigenfunctions of Self-Adjoint Systems

Self-adjoint eigenvalue problems have few properties unique to this system.
(i) Orthogonal eigenfunctions

If the eigenvalue problem is sclf-adjoint, then the eigenfunctions are orthogonal. Let
~ and ~,~ be any two eigenfunctions corresponding to different eigenvalues 7% and

~.m, then each satisfies its respective differential equation, i.e.:

L~n + ~,nM(~n = an~ L~m + ~,mM~m = 0

where n ~ m and 7% # Z=.
Multiplying the first equation by ~m, the second by ~,, subtracting the resulting

equations and integrating the final expression on [a,b], one obtains:

b b b

a a a

Since the system of differential operators and boundary conditions is self-adjoint, and
since 7% ~ L=, then the integral:

b

~M~.= n # mdx 0 (4.45)

a

=Nn n=m
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is a generalized form of an orthogonality integral, with N~ being the normalization
constant.

(ii) Real eigenfunctions and eigenvalues

If the system is self-adjoint and positive definite, then the eigenfunctions are real and
the eigenvalues are real and positive. Assuming that a pair of eigenfunctions and
eigenvalues are complex conjugates, i.e. let:

On = u.(x) + ivn(x) ~n = Otn + i~n

0; = un(x)-ivn(x) X~ = a, -i[3n

then the orthogonality integral (4.45) results in the following integral:

b

(x- x*)J0nM0: dx = 
a

Since the eigenvalues are complex, i.e. ~3~ ~ O, then:

b

JO MO dx: o
a

which results in the following real integral:

b

~ (unMu. dx = 0vnMvn)+

a

Invoking the definition of a positive definite system, both of thes~ integrals are
positive, which indicates that the only complex eigenfunction possible is the null
function, i.e,, un = v~ = O. One can also show that the eigenvalues ~ are real and

positive, Starting out with the differential equation satisfied by either ¢n or 0~ , i.e.:

L~n + ~LnMOn =0

and multiplying this equation by 0~ and integrating over [a,b], one obtains an

expression for ~:

~’n = tXn + i~n =

b b

~O;L~ndx ~(unLun + vnLvn) 

a a
b b

~ O:MOndx ~ (unMtln + vnMvn) 

a a

Since the system is positive definite and the integrands are real, then these integrals
are real, which indicates that 13. =- 0 and ~ is real. Since the system is positive

definite, then the eigenvalues ~ are also positive. Having established that the

eigenvalues of a self-adjoint positive definite system are real and positive one can
obtain a formula for ~. Starting with the equation satisfied by On:

IL~ n + ~,nMOn = 0
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and multiplying the equation by ~n and integrating the resulting equation on [a,b],

one obtains:

b

f ~,I_@, dx

~’n = - ~ > 0 (4.46)

~nM~n dx

a

(iii) Rayleigh quotient

The eigenvalues ~ obtained from eq. (4.46) require the knowledge of the exact form

of the eigenfunction ~n(x), which of course could have been obtained only if ~, 

already known. However, one can obtain an approximate upper bound to thee
eigenvalues if one can estimate the form of the eigenfunction. Define the iRayleigh
quotient R(u) as:

b

~uLu dx

a (4.47)R(u) = - 

~uMu dx

a
where u is a non-vanishing comparison function. It can be shown that for a self-
adjoint and positive definite system:

~1 = min R(u)

where u runs through all possible non-vanishing comparison functions. It can also
be shown that if u runs through all possible comparison functions that are
orthogonal to the first r eigenfunctions, i.e.:

b

~uM~i= = 1, .... rdx 0 i 2, 3

a
then

Z,~+~ = min R(u)

Example 4.12

Obtain approximate values of the first two eigenvalues of the following system:

y"+Z,y= 0 0<_x_<~

y(0) = y(r~) : 

For this system, L = d2/dx2 and M = 1 and hence the system is self-adjoint and also
positive definite. Solving the problem exactly, one can show that it has the fi)llowing
eigenfunctions and eigenvalues:
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%(x) = sin (nx)

~’n= n2 n= 1,2,3 ....

Using the definition of L and M, one can show that Rayleigh’s quotient becomes:
b b

R(u)= a _ a
b b

a a

where rain [R(u)l = ~,1 = 1.0O
One can choose the following comparison functions which satisfies u(O) = u(x)

and has no other null between 0 and x, approximating ¢1(x):

~x/~t 0<x_<~/2
ut(x) =[1-x/n ~/2_<x_<~t

which is not a proper comparison function, because u" is discontinuous. The Rayleigh
quotient gives:

x]2

~ (1/~)2 dx ÷ ~ (-l]x) 2 dx
0 ~/2 12

Rl(u) = + ~/2 ~ = ~" = 1.23 > 1.00

0 ~/2
If one was to use a comparison function that is at least once differentiable, again
approximating ~(x) such as:

ul(x)=x(~-x)

~(~- 2x)2 dx
0 10

R1 (u) = = ~-T = 1.03 > !.00

~x2(~- x)2 dx
0

which represents an error of 3 percent.
It can be seen that R(u) > ~,~ = 1, i.e. it is an upper bound to ~ and that the closer 

comes to sin x, the closer the Rayleigh quotient approaches
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To obtain an approximate value for Lz = 4.00, one can use a comparison function

u2(x) that has one more null than ul(x), e.g.:

u2(x) = 4x/n 0 _< x <

= 2- 4x/~t if4 _< x < 3r¢4

=-4 + 4x/x 3r¢4 < x < r~

whose u’ is not continuous. Substituting u2(x) into R(u), one obtains:

R2(u) = 4.86 > 4.00
which has a 21 percent error. Using a comparison function which is at least onc~
differentiable, e.g.:

us(x) = x) 0 _< x 

= _< x _<
then the quotient gives:

Rz(u) = 4.053 > 4.00

One should note that the error is down to 1.3 percent for a comparison function which is
at least once differentiable.

4.15 Sturm-Liouville System

The Sturm-Liouville (S-L) system is a special case of (4.40) limited to a se~ond order
eigenvalue problem. Starting with a general, second order operator with an arbitrary
parameter."

a0(x) y" + al(x) y" + a2(x) y + Z,%(x) a_<x_<b (4.48)

then one rewrites eq. (4.48) in a self-adjoint form by using a multiplier function to the
differential equation in the form:

~tCx) = p(x)
a0(x)

where

p(x) = exp(~al(x)/a0(x)dx)

then the differential equation can be rewritten in the form:

[p(x) y’] + q(x) y + Lr(x) a _< x _< b (4.49)

where
q(x) = as(x) p(x)/a0(x)

r(x) = a3(x) p(x)/ao(x)
The two general boundary conditions that can be imposed on y(x) may take the form:
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~ly(a) + ~2y(b) + ~3Y’(a) + {x4Y’(b) = 0

[~y(a) + ~2y(b) + [~3y’(a) + [~4y’(b) 

The differential equation (4.49) is self-adjoint, i.e. the operators:

L = d Vp d 1 + q and M = r(x) are self-adjoint.
dxl_ dx.]

In order that the system has orthogonal eigenfunctions and positive eigenvalues, the
problem must be self-adjoint and positive definite (see 4.42 to 4.44). The problem 
self-adjoint, if:

b , ,

ib

, [b
f{uI(pv’ ) +qv]-vI(pu’ ) +qu]}dx=P(v,u)= p(x)[uv’-vu 

a ,a a

= p(b)[u(b) v’(b) - u’(b) v(b)]- p(a)[u(a) v’(a)- (4.50)

Eliminating in turn y(a) and y’(a) from the boundary conditions, one obtains:

y~y(a) + y23y(b) - 7~4y’(b) = 0

~/13y’(a) + ?x=y(b) + "h4Y’(b) (4.5 la)

Eliminating in turn y(b) and y’(b) one obtains:

"Y~4y(b) + "Y14y(a) + Y34y’(a) 

V~4y’(b) + ?~2y(a) - ?z3y’(a) = 0 (4.51b)

where

~/ii = ~i[~j -- aj[~i = --Tii i, j = 1, 2, 3, 4

If one substitutes for y(a) and y’(a) from (4.51) into the self-adjoint condition (4.50), 

obtains:

[p(b,-p(a, ~][u(b)v’(b,-u’(b)v(b,] 

which can be satisfied if:

~/~4p(a) = ~/13P(b)

where the identity:

~’l~’z3 + ~’34~q2 = ~3"/z4 was used.

(i) If~,13 = O, then ~/u = O, and (4.51) becomes:

y[o/- ~ y’(b)= 
~’23

y(b) + ~1__~.4 .... = 0

which indicates that:

y(a) + ~’3._~.4 ,, , = 
~,~4 Y I,a/

y(a)-~’~3 ,- , 
~’~2 y ~a)=

(4.52)
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Y3~= YI4 and Y3__.~.4= Y23

~23 ’~/12 ’~14 ~/12

Denoting the ratio Y2_._L = 01 > 0, and Y1.__K4 ~. Y1._.K4 01 = 02 > 0, then the boundary

conditions become:,

y(a) - 0~y’(a) 

y(b) + 02Y’(b) = 0

In particular:

if 01 and 02 = 0 then

if 0~ and 02 ~ oo then

if 0~ = 0 and 0z -4 oo then

if 0~ --~ oo and 02 = 0 then

(4.53)

y(a) = 0 and y(b) 

y’(a) = 0 and y’(b) 

y(a) = 0 and y’(b) 

y’(a) = and y(b) = 

(4.54)

(ii) Ify~3 e 0, then the boundary condition (4.51) can be written as follows:

y(a) = ’qy(b) + z2y’(b)

y’(a) = x3Y(b) + ’174y’(b)

’1~1 = -- ~2---2-3 and x2 =

x3 = - Y~--~-~ and x4 = - Y~..~4

such that the condition of self-adjoincy (4.52) becomes:

(Xl’t 4 - "~2X3) p(a): p(b)

In particular, ifx 2 = % = 0 and x~ = "c4 = 1, then!

y(a) = y(b)

y’(a) = y’(b)

p(a) = p(b)

The boundary conditions in (4.56) are known as Periodic Boundary
Conditions.

(4.55)

(4.56)

(iii) If p(x) vanishes at an end-point, then there is no need for a boundary condition at that
end point, provided that the product:

Lim pyy’ --~ 0
x---~a or x---~b

which can be restricted to y being bounded and py’ --~ 0 at the specific end point(s).

Thus the S-L system composed of the differential equation (4.49) and any one of the
possible sets of boundary conditions (4.53 to 56), is a self-adjoint system.
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The eigenfunctions ~o of the system are thus orthogonal, satisfying the following

orthogonality integral, eq. (4.45), i.e.:

b

f r(x) (~n (X) (X) dx = n ~ m (4.57)

a

=Nn n=m

In order to insure that the eigenvalues are real and positive, the system must be positive
definite (see 4.44). Thus:

b b

~u Lu dx =~ uI(pu’)’ + qu] dx =~ [-p(x)(u’)2 + 2] dx <0

a a a

b b

fuMudx=fru2 dx>0

a a

Thus, it is sufficient (but not necessary) that the functions p, q and r satisfy the following
conditions for positive-definiteness:

p(x) > 

a<x<b

q(x) _< (4.58)

r(x) > 

to guarantee real and positive eigenvalues.
It can be shown that the set of orthogonal eigenfunctions of the proper S-L system

with the conditions imposed on p, q and r constitute a complete orthogonal set and hence
may be used in a Generalized Fourier series.

Example 4.13 Longitudinal vibration of a free bar

Obtain the eigenfunction and the eigenvalues for the longitudinal vibration of a free
bar, giving explicitly the orthogonality conditions and the normalization constants.

y"+~,y = 0 0<x<L

y’(0) = y’(L) = 

The system is S-L form already, since it can be readily rewritten as:

d--~ C d-~-Y/+ ~,y:0
\

where

p=l q=0 and r=l
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The system is a proper S-L system since the differential equation, boundary conditions as
well as the conditions on p, q and r are those of a proper S-L system:

y = C1 sin (~-x) + 2 cos (~x)

y’(0) = C, 

y’(L) = 2 ff ~- sin (~-L) = 

Thus, the characteristic equation becomes:

~ sin (~ = 0 where c~ = ~ 

having roots ~, = nn, n = 0, 1, 2,...."

2

)~n C~n=-~’-
n=0,1,2 ....

The eigenfunction becomes:

X
~)n (x) = cos n ~) n = 0, 1, 2

Note that ~o = 0 is an eigenvalue corresponding to ~)o = 1. The orthogonality condition

becomes (see 4.57):

L

I
x

1" COS(0~n "~) COS (am -~) dx nem

0

and the normalization factor becomes:
L L

Nn=N cos(an ) = 1-cos2(an~)dx= cos2(
x)dx=~

n>l

0 0
=L n=0

which can be written as N = L/en ,where the Neumann constant is eo = 1 for n = 0 and 2

for n > 1.

Example 4.14 Vibration of a Stretched String with Variable Density

A vibrating stretched string is fixed at x = 0 and x = L, whose density 9 varies as:

13 = 13oX2/Lz

The differential equation governing the motion of the string can be written as:
2 2d y . 13ox 2

S--T + -U-~-~ ~ ~o y=0 0<x<L
ax 10t~

with the boundary conditions:

y(0) = y(L) = 

Let P°o)2 = ~., then the differential equation becomes:

y" + ~.x2y/L~ = 0
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The system is in S-L form, with:

p(x) = 1 > 0 q(x) = 0 and r(x) 2 > 0

which indicates that it is a proper S-L system.
The solution to the differential equation (see 3.66) can be written in terms of Bessel

functions of fractional order:

y= w/~’{C1J 1//4(’v~-x2/(2L2)) + C2J_ 1~(~/~ x2/(2L2))}

Since:

= = Lim I-U-~,zl x
) x-+ O x-+

Lira ~ J_~ ~ = Lira 4xl ~]

then both homogeneous solutions arefinite at x = O. Satisfying the first bound~y
conditions yields C~ = 0 and satisfying the secondbound~y condition yields:

which results in the following characteristic equation:

Jg(~) = where a =

The number of ~e roots % of ~e preceding ~anscendental equation ~e infinite wi~
% = 0 being the first root. Thus, the eigenfunctions and the eigenvalues become:

~n(X)= ~ J1/4(~n x2/L2) n = 1, 2, 3 ....

~n =4~2n/L4 n= 1,2,3 .....

where the a0 = 0 root is not an eigenvalue. The o~hogonality integal is defined as:

fX2*n(X)*m(x)dxlL2=fx3J~ am~ J~ ~n~ dx/L2=O n*m
0 0

and the norm is:

: x%4 g axL 
0

Example 4.15 Tortional Vibration of a Bar of Variable Cross-section

A circular rod whose polar moment of inertia J varies as:

J(x) = IoX, where o =constant

with the end L fixed and the torsional displacement at x = 0 is bounded is undergoing
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torsional vibration. The system satisfied by the deflection angle 0 becomes:d i0 x +~, iox0 =0

where ~ = ¢02/c2 with the conditions that 0(0) is bounded and 0(L) -- 

The system is in S-L form where:

p(x) = x > q(x) = r(x) = x > 
Since p(0) = 0, only one boundary condition at x = L is required, provided that 0(0) 

Lim p0’ --> 0
x-->0

The solution of the differential equation can be written in terms of Bessel functions:

Since 0(0) must be bounded, set C2 = 0, and:

0(L) : CiJ0(a~" L):0

which results in the characteristic equation:

Jo(a) = where a = ~ L

where the roots a, are (see Section 3.13):

¢x~ = 2.405, c% = 5.520, ¢x3 = 8.654 ....

The eigenvalues are defined in terms of the roots oq~ as:

xn =2 n= 1,2 ....
and the corresponding eigenfunctions are expressed as:

....
For the S-L system, the orthogonality integral can be written as:

L

0

with the normalization constant defined as:

0 nO

: ~_~[j;(.n)] 2--~’L2 j2(~l, n! ~

since J0(cx~) -- 0 and the integral in eq. (3.109) was used.
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4.16 Sturm-Liouville System for Fourth Order Equations.

Consider a general fourth order linear differential equation of the type that governs
vibration of beams:

a0(x) y(iV)+ al(x) y,,,+ az(x) y,,+ a3(x) y, +a4(x) ) y = 0

It can be shown that for this equation to be self-adjoint, the following equalities must
hold:

al = 2a~

a2 - a3 = a0

It can also be shown that there is no single integrating function that can render this
equation self-adjoint, as was the case of a second order differential operator. Assuming
that these relationships hold and denoting:

X

s(x) = 1 I" at(rl) exp-~/---7-r
z ~ ao

x

p(x) = ~ a~!~l! s(~i) 

then the fourth order equation can be written in self-adjoint form as:

Ly + Xiy = [sy"] + [py’] + [q + ~r] y = 0 (4.59)

where

a4(x) s(x)q = ao(x)

r(x)- aS(x)

For the fourth order S-L system to have orthogonal and real eigenfunctions and
positive eigenvalues, the system must be self-adjoint and positive def’mite (see eqs. 4.42
to 4.44). In the notation of eq. (4.40), the operators L and M are:

d~ I- d2 q

M = r(x)
The system is self adjoint, so that P(u,v) given by eq. (4.73), is given by:

V(u, V)lab = u(sv")" - v(su")"- s(u’v"- u"v’) + p(uv’- b = 0 (4.60)

Boundary conditions on y, and consequently on the comparison functions u and v, can be
prescribed such that (4.60) is satisfied identically. The five pairs of boundary conditions
are listed below:



CHAPTER 4 156

(i) y=O y’=O

(ii) y = sy" = 0

(iii) y’ = 0 (sy") = 

(iv) (sy") -T- yy y’ = 0

(v) sy" -T- ay’ = y = 0

(4.61)

where + sign for x = b and - sign for x = a.
If p(a) or p(b) vanishes (singular boundary conditions), then at the end point 

p(x) vanishes, the boundedness condition is invoked i.e.:

Lim pyy’ --> 0
x--> a or b

(which can be restricted to y being finite and py’ -~ 0), as well as the following pairs 

boundary conditions in addition to those given in eq. (4.61), can be specified at the end
where p = 0:

(i) (sy¯’) = 0 sy" = 0

(ii) (sy") T-~/y sy" = 0 (4.62)

(iii) sy" -T- (xy’ (sy") = 

(iv) (sy") -T- ~(y sy" T- cry’ : 0

where +/- refer to the boundaries x = b or a, respectively.

If s(x) vanishes at one end (singular boundary conditions), then, together with 
requirement that:

Lim sy’y" --> 0
x--> a or b

the following boundary conditions can be prescribed at the end where s(x) vanishes:

(i) y=0 y’=O

(ii) (sy") y’ = 0 (4.63)

(iii) (sy") -T- yy y’ = 0

(iv) (sy") y’ T- cry = 0

The +/- signs refer to the boundaries x = b or a, respectively.
If both p(x) and s(x) vanish at one end (singular boundary conditions) then, together

with the requirement that:

Lim pyy’ ---) 0 Lim sy¯y" -~ 0 and , Lim syy" --> 0
x-->a or b x--) a or x--~aor b
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one can prescribe the following condition at the end where both p(x) and s(x) vanish
having the form:

(i) y=0

(ii) (sy") (4.64)

(iii) (sy") -T- TY 

The +/- signs refer to the boundaries x = b or a, respectively.

If p(x), s(x) and s’(x) vanish at one end point, then there are no boundary conditions

at those ends provided that:

Lim syy" --> 0 Lim s’yy" --> 0
x-->a or b x-->aorb

Lim sy’y" ~ 0 Lim pyy’ --> 0
x-->a or b x-->aor b

If p(x) -- 0 in a _< x < b, (see Section 4.4), then the nine boundary conditions specified

in eqs.(4.61) and (4.62) satisfy eq. (4.60), as was shown for beam vibrations.
More complicated boundary conditions of the type:.

all y’(a) + ai2Y"(a) + ai3Y’(a) + ai4Y(a)
i= 1,2,3,4

+ ~ilY"(b) + ~i2Y"(b) + ~i3Y’(b) + ~i4y(b) 

can be postulated, but it would be left to the reader to develop the conditions on ~ij and ~i~

under which such boundary conditions satisfy 0.60).
To guarantee positive eigenvalues, the system must be positive definite. Then the

following inequalities must hold (see eq. 4.44).

b b

~ u[(su")" + (pu’)" + qu] dx = ~ [qu2 - p(u’)2 + s(u")2l 

a a

b b

~uru dx =~ru2 dx > 0

a a

where the boundary conditions specified in eqs. (4.61) - (4.64) were used. Thus, sufficient
(but not necessary) conditions on the functions can be imposed to satisfy positive
definiteness:

p>O

r>O

q -< 0 a < x < b (4.65)

s<O
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4.17 Solution of Non-Homogeneous Eigenvalue Problems

Consider the following non-homogeneous system:

Ly + :~My = F(x) a < x < b

Ui(Y) : Ti i = 1, 2 ..... 2n (4.66)

where L and M are self-adjoint operators and Ui were given in (4.40) and (4A1) and ~, 

given constant.
Due to the linearity of the system in (4.66), one can split the solution into two

parts. The first solution satisfies the homogeneous differential equation with non-
homogeneous boundary conditions and the second system satisfies the non-homogeneous
equation with homogeneous boundary condition. The sum of the two solutions satisfy
the original system of (4.66).

Let y = yx(x) + ya(x) such that:

LyI + ~,MyI = 0 Lyu + kMyn = F(x) : (4.67)

Ui(yt)=,/i Ui(yi~)= i= 1, 2 ..... 2n

The solution to y~(x) in (4.67) can be obtained by solving the homogeneous differential
equation on y~ and substituting the (2n) independent solutions into the non-homogeneous
boundary conditions for Yl. It should be noted that if’/i -- 0, then YI m 0.

The solution yu in (4.67) can be developed by utilizing the eigenfunctions of the
system. The eigenfunctions ~n(x) of the system must be obtained first, satisfying the
following homogeneous systems:

I.~ra + ~raM~Pm = 0 (4.68)

where each eigenfunction satisfies the homogeneous boundary conditions:

Ui(~m) = 0 m 1,2 . .. . i = 1,2 ... .. 2n
The set of eigenfunctions {~m(X)} satisfy the orthogonality integral (4.45). The solution
yu(x) can be expanded in a generalized Fourier series in the eigenfunctions of (4.68) 
follows:

= ~an~Pn(X) (4.69)Yn
n=l

Substituting the series in (4.69) into the differential equation on y~, one obtains:

anL~)n + /==~anMq)n (4.70)
n=l n=l

Substituting for L gn from (4.68) into (4.70), one obtains:

~[(k- ~,n) a~M~n] = F(x) (4.71)

n=l

Multiplying both sides of (4.71) by ~m(X), integrating over [a,b] and invoking 
orthogonality relationship (4.45) one obtains:
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bnan (~._ ~.n)Nn

where Nn is the Norm of the eigenfunctions and:

b

bn = f F(x) ~n(X)dx (4.72)

a

Thus, the solution to Yn becomes:

bn
YlI(X)= 2 ()~_~.n)Nn (4.73)

n=l

The solution due to the source term F(x) can be seen to become unbounded whenever 

becomes equal to any of the eigenvalues )~n" It should be noted that if the system has

inherent absorption, then the constant 3, is complex valued, so that ~. ~ )~n, since ~’n are

real and positive. So if the real part of ), is equal to )’n, the solution YII becomes large

but still bounded.

Example 4.16 Forced Vibration of a Simply Supported Beam

~a sin (cot)

Obtain the steady state deflection of a simply supported beam being vibrated by a
distributed load as follows:

f*(x,t) = f(x) sin 0 -< x < L

where

f(x) = {~0/2a L/2-a<x<L/2+aeverywhere else

The beam has a length L and has a constant cross-section. It is simply supported at both
ends such that:

y*(0,t) = y*"(0,t) = 

y*(L,t) = y*"(L,t) = 
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Letting y*(x,t) = y(x) sin (o)t), 

_y(iV) + [~4y 
f(x) ~4 = pA0)2
El El

y(O) : y"(O) = 

y(L)= y"(L) : 

One must find the eigenfunctions of the system first:

-u(iv) + ha = 0 where ~. = ~4, L = - d4/dx4, M -- 1

u(O) = u"(o): 
u(L) = u"(L) = 

The solution of the fourth order differential equation with constant coefficients is:

u = C1 sin 13x + C2 cos~x + C3 sinhl~x + C4 coshl~x

Satisfying the boundary conditions:

u(0)--0--C2q-C4--0

u"(0) = 0 = -C2 + C4 = 
which means that C2 = C4 = 0

u(L) = 0 = C1 sin I~L 

u"(L) = 0 = -C1 sin 13L + C3 sinhl3L

which results in C3= 0. The characteristic equation becomes:

sin a = 0 where a = ~L

which has roots a~= nn, n = 0, 1, 2 ..... The zero root results in a zero solution, so that

ao ---0 is not an eigenvalue.

The corresponding eigenfunctions become:

x . n~
~n(x) = sinan _--= sin _-- n = 1, 2, 3

4 n4~4
~,n = [~n 4 an n= 1,2,3

The orthogonality condition is given by:

L

sin (n~ x) sin (mn x) dx 
n ;~ m

S L L L/2 n=m
0

Since the boundary conditions are homogeneous, then y! = 0 and y = Yrr. Expanding the

function y(x) into an infinite series of the eigenfunctions, then the constant bn is given
by:
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L/2 *a. . sin(n~)sin(n~ 

]38= f f-- ~--Q-° ) sin (-~- x) dx = - 
~ ~ ~a; ~ EI(n~a ~)

L/2-a

Thus, ~e ~lufion ~omes:

~ . .~. . .n~ .
~ __ s~n (7) sm (~a)

. ~_~=_ ~rO ~ 2 L
sin(~x)

If a ~ O, ~e ~s~but~ forcing function ~omes a concen~at~ force, P~, ~en ~e l~it

~f ~e sNufion approaches:

~- 2p 0 ~ sin(~) sin(~x)

For concen~ ~int so~ces ~d fomes, one c~ rep~nt ~em by D~ del~
functions (ap~ndix D). ~us, one ~n ~ep~esent f(x) 

~e cons~nt bn c~ now ~ found using ~e sifting pm~y of Di~ac del~ funcfi~s

(~.4):
L

bn = -Po / ~(x- L / 2)sin (~ x)~ = -Po ~)
0

4.18 Fourier Sine Series

Consider the following S-L system:

y"+ ~,y = 0 O<x<L

y(O) = y(L) = 

In this case p = r = 1 and q = O. The eigenfunctions and eigenvalues of the system are:

¯ nKq~n(X) = s~n (--~-- n = 1, 2, 3

n2~2

~Ln-- L2

the orthogonality integral becomes:

L

sin (-~- x) sin (~-~x) n ~: m

.0

and the Norm becomes: ..
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F(x)

Fig. 4.17

2L

L

N sin( x) = sin(n=x) dx--- n=1,2,~ ....
¯ ~\ L ) 
0

A function F(x) can be expanded into an infinite Fourier sine series as follows:

, ~[F(x+)+F(x-)]= Eansin(--~x) O<x<L
n=l

where the Fourier coefficients an ~e given by:

L
an = ~ f F(x) sin n~ x (4.74)

L~ L
0

The function F(x) is represented by ~e seres at ~l points in the region 0 < x < 
~e seres represents an odd function in the region -L < x < L, since:

sin (- ~ x)= - sin (~ 

~us, the series also represents -F(-x)in the region -L < x < 0. The seres also represents
a periodic function in the open region -~ < x < ~ with periodicity = 2L, since:

sin(~ (x ~ 2~)) = sin~ n~ :) cos(2nm~) ̄  cos(~ x) sin 

= sin (~ x) for all integers m

Thus, the Fourier sine series represents a periodic function eve~ 2L, with ~e function
being odd within each region of periodicity = 2L as shown in Fig 4.17.

At the two end points x = 0 and x = L, each te~ of the series vanishes, even though
the function it represents may not vanish at either poim. This is due to ~e fact that since
¯ e series represents an odd function in the periodic regions = 2L, there will be an ordinal.
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discontinuity at x = 0, + L, + 2L ..... such that the function averages to zero at the end

points (see 4.74), i.e.:

Example 4.17

Expand the following function in a Fourier sine series.

f(x): L-X 0-< x < L
2

L
_~2 f(L_X] = 2L II_ <-l)n1an- L.I\ 2) sin mz xdx

L n~[_ 2 J
0

f(x)- 2.__~_L~t 2 n sin(-~ 

n=l

If one sets L = 1 and x = 1/2:

,~ I1- (-1)n
3 2 2/ 2 _ . on 3 "~ lsin(~)

~’=~" n s~n(-~-)=~- 2 
n=l n =1,3,5

-==i-!+!-!+...
4 3 5 7

or

The last series can be used to calculate the series for

n=1,2,3 ....

4.19 Fourier Cosine Series

The Fourier cosine series can be developed in a similar manner to the Fourier sine
series.

Consider the following S-L system:

y"+~y = 0 0<x<L

y’ (0) = y’ (L) = 

In this case, p = r = 1 and q = 0.
The eigenfunctions and eigenvalues of the system become:

,~. (x) = cos (--~- n = O, 1, 2



CHAPTER 4 164

n2~2

~’n-- L9

with the orthogonality integral defined by:

L

fcos (n~x) cos (x) dx = 0 n 
L L

0

and the norm given by:

L 2
N(cos (~ x)) : f(cos(nn x)] L

~ L J en
0

where e, is Neumann’s Factor, e0 = 1 and e, = 2, n ~ 1.

A function F(x) can be expanded into an infinite Fourier cosine seres as follows:

n=O

where the Fourier coefficients bn are given by:

L
_ En

bn - ~IF(x)cos(~x) (4.75)

0

The function F(x) is represented by the seres at all points in the region 0 < x < 
The series represents an even function in the region -L < x < L, since:

cos/_ x) :codex)
Thus, the series represents F(-x) in the region -L < x < 0. The series also represents 
periodic function in the open region -~ < x < oo, with a periodicity = 2L, since:

cos(-~ (x+ 2mL)/= cos (-~ x)cos (2nm~t)T-sin (-~ x)sin 

= cos (-~ x) for all integer values of m

Thus the Fourier cosine series represents a periodic f~nction every 2L, with the function
being even in the periodic regions = 2L as shown in Fig. 4.18:
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F(x)

-3L -2L -L L 2L 3L
x

Fig. 4.18

Since the series represents an even function, then the series does represent the
function F(x) at the end points x = 0 and x = 

Example 4.18

Expand the following function in a Fourier cosine series:

f(x) = L x
2

bn = En ~(L- ~) cos(-~x) = [- 34 L

Thus

f(x)= 3L+4 2~L~ ~ ~cos(~x)
n=1,3,5

O<x<L

n=O

n>l

4.2 0 Complete Fourier Series

Since the Fourier sine and cosine series represent an odd and an even function
respectively in the region -L < x < L, then it can be shown that an asymmetric function
F(x) can be expanded in both series in the region -L < x < L. Let F(x) be a function
defined in -L < x < L, then:

Denoting:

½IF(x) + F(-x)]Fl(x)

F (x) = ½IF(x)- F(-x)]
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then Ft(x) and F2(x) represent even and odd functions, respectively, since:

Fl(-x) = Fl(x) ana F:(x) =- 
Hence, Ft and Fz can be represented by a Fourier cosine and sine series, respectively:

V,(x): Ebncos<- 
n=O

where

L L

0 -L

F2(x) = Eaa sin(--~x)
n=l

where

L

-L<x<L

L L

1 ~F(x)sin(~x)dx1 ~[Fl(X) + F:(x>]sin (~x) dx an --~-

-L -L

¯ In these integrals, use was made of the fact that:

L L

~Fl(X)sin(--~x) dx and ~Fa(x)cos(--~x) dx 

-L -L

due to the fact that the integrands are odd functions.
Finally, the function F(x) can be represented by the complete Fourier series 

follows:

where

Ean sin(--~x) + Ebn cos(~x)
n=l n=O

L
2 fF2(x)sin(_.~x)d x:_~1 F2(x)sin(.~.x)dxt.

an =~ L

0 -L

Thus, one can rewrite the integrals for the Fourier coefficients as:

+L L

= e--m ~F(x)cos(~x)dx

-L -L
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L1 fF(x)si.(n x) 
an=’~ .~ L

-L

L
"% ~F(x)cos(~x) bn =’~

-L

Note that the eigenfunctions are completely orthogonal in (-L, L) since:

L
~ sin(nn x) sin (..~ x) dx = {0 

L L n=m
-L

(4.76)

L

~ cos(__~ x) cos(_~ x) dx = f0 
2Lien n=m

-L

+L

f. n~
m~ ,

sin- x cos-- x ax = 0 for all n, m
L L

-L

One can develop the complete Fourier series representation from the S-L system. Let
a S-L system given by:

y"+ ky = 0 -L < x < +L

y(-L) : y(L)

y’(-L) = y’(L)

The system is a proper S-L system, since the operator is self-adjoint and the boundary
conditions are those of the periodic type. The system yields the following set of
eigenfunctions and eigenvalues:

n2/~2
Z,n -- -~--

The entire set of eigenfunctions is orthogonal over I-L, L], as given above.
In a more general form, the complete Fourier series, orthogonal over a range [a, b]

can be stated as follows:

-- ,,°° o:_(2nn(x-a))~ n (, 2n~- a)F(x)~ ~an ~’"/" + cos a<_x<_b

n=l n=0
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where T = b - a, and the Fourier coefficients are given by:
b

an = -~f F(x)sin(-~ (x - a)) 
a

b

bn : ?I F(x) cos(-~ (x - a)/dx

a

(4.77)

Example 4.19

Obtain the expansion of the following function in a complete Fourier series:

F(x) = {0Lx -L<x<0
-- 0<x<L

2 -

L

b0 = (L - ~-) dx = 

0

L
bn= 1Ldr F(x)cos (n~ X)L dx= 2n~L~2 - (- 1)n]

0

n>l

L

an = ~ I F(x)sin (-~ x) dx : 

0

n>l

3L L ~ 1 .n~ ,~ [1- ] n~
-if-+ rt "~" ~-~ ~-Tc°st--~--x)+Lnz~ n sin(L x)

n = 1,3,5 n=l

In general, the fact that the integrals of the type given in (4.74 to 4.77) must
converge, requires that F(x) must satisfy the following conditions over the range [L, -L]:

(a) piecewise continuous

(b) have a first derivative that is piecewise continuous

(c) have a finite number of maxima and minima

(d) single valued

(e) bounded

The conditions imposed on F(x) listed above are quite relaxed when compared with
those imposed on functions to be expanded by Taylor’s series.

The following general remarks can be made in regard to expansions of F(x) in 
Fourier sine, cosine, or complete series:
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(a) The series converges to F(x) at every point where F(x) is continuous

(b) The series converges to [F(x÷) + F(x-)]/2 at a point of ordinary discontinuity,
i.e., wherever F(x) is discontinuous but has finite right and left derivatives.

(c) The series represents a periodic function in the open region -~ < x < 

(d). The series converges uniformly and absolutely in -L < x < L if F(x) 
continuous, F’(x) is piecewise continuous and F(L) = F(-L).

(e) The series can be differentiated term by term if F(x) satisfies the conditions 
(d), i.e.:

F’(x)~~ ~ n(a n n~ , . n~x)
cos--L- x - on sin ~

n--1

(f) If F(x) is piecewise continuous then one may integrate the series term by term
any number of times, i.e.:

7t ~ n cos L x+--~t
sin x+box

n=l n=l

This series converges faster than the series for F(x).

4.21 Fourier-Bessel Series

Consider the following system:

x2y"+xy’+(t22x2-a2)y=0 0_<x_<L

with y satisfying the following conditions:

y(0) is bounded V lY(L) + "~ 2Y’(L) 

where ~q, Y2 are known constants.

The system is first transformed to S-L system, having the form:

d----(xdY)+(t~2x-~-/dx\ 
y=0

where

p(x) = q(x) = -a2/x r(x) = 

The solution to the differential equation becomes:

y = C1Ja(Ctx) + C2Ya (CtX)

Since p(0) = 0, then y(0) must be finite and py’ ---> 0. This requires that 2 must be set

to zero to insure that y(0) is bounded. Thus, the remaining solution:

y = C1Ja((~x)

satisfies the condition that:



CHAPTER 4 1 70

Lim xJ~(ax)~ 
x ---~ 0

The boundary condition at x = L takes the following form:

~(~) =0’~lJa (C~x) + 
°x x = L

resulting in the following characteristic equation:

=

(4.78)

or

L2 {
Nn=2"~n2 kt2n-a2+’~2 jJa2(l’tn)

The characteristic equation can be transformed (see 3.14) to the following form:

(~’1 +~’~)Ja(ltL)-~-~ Ja+l(ILl’) = (4.79)

a transcendental equation with an infinite number of roots

If a * 0, then the first root is gt0= 0 but it is not an eigenvalue, since Ca(0) -- 0. If

a = 0, then there is a root I%= 0 only if’h= 0, otherwise gt0= 0 is not a root in general if

a = 0. The eigenfunctions and eigenvalues become:

X. = ~2nL
(a) Fora~O

Cn(x) = Ja(P,n n= 1,2 .... (4.80)

(b) For a = 0 and YI = 0

c.(X) = J0/~n n=0, 1,2 .... (4.81)

(c) For a= 0 andyt ¢ 

¢.(x) = Jo(~. n= 1,2,3 .... (4.82)

The norm of the eigenfunctions can be computed from (3.109) as follows:

L
2 X

Nn= N(~Pn)= fXJa( tLn "~/dx2brat " L2 D2 ~l.n[Ja(~n)] } (4.83)=.~.~j.Ln_a2)j2a(~tn) + 2 ,
2

0

Substituting in turn for J~(ktn) and Ja(ktn) in (4.81)one obtains:

L2{( 2 a2, y~ }[ Nn = ~ ~n - ] ~,12----~+ 1 J~a(~n)] (4.84)
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Thus, if y, = 0, hence J~(~t,)= 0, then the norm becomes:

Nn = gn -a2 Ja~(~tn) n > 1 (4.85)

and if’~z = 0, hence Ja(gn) = 0, then the norm becomes:

L 2 , 2
Nn = T [Ja(~n)] n >_ 1 (4.86)

Expansion of a function F(x), defined over the range 0 < x < L, into an infinite series
of the Fourier-Bessel orthogonal functions Ja(p,, x]L) can be made as follows:

F(x): Z bnJa(..~)

n = 0orl

where

L

hn = "~n I x F(x) Ja(btn ~-) 

0

(4.87)

Example 4.20

Obtain an expansion of the following function:

F(x)= 0 < x < L

in a Fourier-Bessel series:

xCn(X) = Jo(I.t n -~) where Jo(IXn) 

The Fourier coefficients are given by:

L

bn=~-n XJo ~tn
dx= 2

0
~tn Jl(~tn)

and bo = 0, where eqs. (3.14), (3.103) and (4.86) were 
Thus, the Fourier-Bessel series representation of F(x) = 1 is:

1=2 Z Jo(gn X//L)

n = 1 ~l’nJl(~l’n)

n=1,2,3 ....

4.22 Fourier-Legendre Series

Consider the following differential equation:

(1- x2) y"-2xy’ + V(V+ 1) y = 0 -l<x<+l

where y(1) and y(-1) are bounded.
The equation can be transformed to an S-L system as follows:
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x2/u’/÷ v(v + 1)y= 0
dxL~ ~ dxJ

where

p(x) = 1-x2 q(x) = 

Thesolution of the equation becomes:

y = C1Pv(x) + C2Qv(x)

v = constant

r(x) = X = v(v+l)

+1
2n + 1 I F(x) Pn (x) 

an

-1

Example 4.21

Expand the following function by Fourier-Legendre series:

F(x)=0 -1 <x<0

=1 0<x<l

(4.88)

where

Since p(+l) = 0, then y(+l) must be bounded and hence one must set C2 = 0 since Qv(+l)

is unbounded for all v. In addition, Pv(±l) is bounded only if v is an integer = n. Thus,

the eigenfunctions and eigenvalues of the system are:

(~. = P.(x) 2,. = n(n+l) n = 0, 1, 2 ....

It should be noted that:

Lim p(x)y’= Lim (1-x2)P~(x)--~0
x --~ -T-1 x ---~ -T-1

It should be noted that the eigenfunctions and eigenvalues were obtained without the
satisfaction of boundary conditions. For these eigenfunctions, the orthogonality integral
becomes:

+1

~ Pn(x) Pro(x) dx n ¢: m

-1

which was established earlier (see3.155), and the norm was obtained in (3.156) 
follows:

+1

Nn =N(P.(x))= IPn2 dx=2--~-
2n+l

-1

A function F(x) can be expanded in a Fourier-Legendre series as follows:

~anPn(X) -1 <x-< 1

n=0
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1
2n+l[

2n+l . .an = ~J Pn(x) dx = ~ Pn_l(0) n >_ 1

0

1
2

where the integral in (3.162) was used,
1

an =~" n--0

=0

Thus:

= 2n+ 
2n(n + 1) [(n- 1~),]2

n = even, > 2

n= odd

f(x) = ½ + ¼ Pl(x)- ~6 P3(x) 

1 3 7
ao 2 a~ ~- a2 = 0 a3 16
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PROBLEMS

Section 4.2

1. Obtain the natural frequencies and mode shapes of a vibrating string, elastically
supported at both ends, x = 0 and x = L by springs of stiffness T = T0/L,

Obtain the natural frequencies and mode shapes of a composite string made of two
strings of densities Pl and P2 and having lengths = L/’2 joined at one end (x = L/2) and

the terminal end of each string being fixed, i.e. at x -- 0 and x -- L.

0 L/2 L

Obtain the natural frequencies and mode shapes of string whose density varies as:

P=P0 1+~ 0<x<L

and whose ends are fixed.
Hint: Let z -- 1 + x/L, such that the equation of motion becomes:

d2Y +Lz2y=0
1 < z < 2

-~-
_ _

where

~, = PO(-02L

A uniform stretched string of mass density p and length L has a point mass equal to

the total mass of the string attached at x = L/2 such that:

: m 3t2 [L/2=

Obtain the natural frequencies and mode shapes.

Section 4.3

5. Obtain the natural frequencies and mode shapes of a uniform rod vibrating h~ a
longitudinal mode, such that:

(a) the rod is free at both ends x = 0 and x = 

09) the rod is fixed at both ends x = 0 and x = L.
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(c) the rod is fixed at x = 0 and free at x = 

(d) the rod is free at x = 0 and supported by linear spring of stiffness ~, at x = 

such that:

du(0)
= 0 -~(L) + au(L) a = ~,/(AE) 0

dx dx

(e) the rod is fixed at x = 0 and has a concentrated mass M at x = L, such that:

u(0):0 d~(L)- ak2u(L) : 0 a = M/(I3A) 

(f) the rod is elastically supported at x = o by a spring of constant "~ and has a

concentrated mass M at x = L such that:

dd-~Ux (0)- au(0) ~xU (L)- bk2u(L) 

a = ~’/(AE) > b = M/(Ap)>0

6. A uniform rod has a mass M attached to each of its ends. Obtain the natural
frequencies and mode shapes of such bar vibrating in a longitudinal mode.

0

Hint: The boundary condition at x = 0 and L becomes:

AE - +M a2u =-M o2Ulx:o- lx_-0

=L- 3t2 x=L +M~2Ulx=L

L

Obtain the natural frequencies and mode shapes of a longitudinally vibrating bar
whose cross sectional area varies as:

and whose ends are fixed.
Hint: Let z = 1 + x/L and transform the equation of motion.

Section 4.4

8. Obtain the natural frequencies (or critical speeds) and the corresponding mode shape 
a vibrating (rotating) beam having the following boundary conditions:
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(a) simply supported at x = 0 and x = 

(b) fixed at x = 0 and free at x = 

(c) free at x =Oand x 

(d) free-fixed at x = 0 and x = 

(e) simply supported at x = 0 and fixed at x = 

(f) simply supported at x = 0 and free at x = 

(g) simply supported at x = 0 and elastically supported at free end x = L by a linear
spring of stiffness ~

(h) simply supported at x = 0 and elastically supported at free end x = L by a helical
spring of stiffness rl

(i) fixed at x = 0 and elastically supported at free end x = L by a linear spring of
stiffness ~/

(j) fixed at x = 0 and elastically supported at x = L by a helical spring of stiffness I

Obtain the natural frequencies and mode shapes of a vibrating beam of length L with
a mass M attached to its end. The beam is fixed at x = 0 and free at x -- L.

0 L

Hint: The boundary condition at x = L becomes:

¯ " + k’~4LyI = 0
Y P Ix= L

M
y"(L) = k = --

pAL

10. Obtain the natural frequencies and mode shapes of a vibrating beam of length L with
a mass M attached at its center. The beam is simply supported at x = 0 and x = L.

0 L/2 L

Hint: The conditions at x = L/2 become:

y~(L/2) = yz(L/2) y~(L/2) = yi(L/2)

y~L/2) - y~’(L/2) EI(y~’(L/2) - y~[L/2)) + Ua)~yz (L/2) 



BOUNDARY VALUE AND EIGENVALUE PROBLEMS 177

11. Obtain the natural frequencies and mode shapes of a non-uniform beam of length L
having the following properties:

I ( X "~n+2I(x) = o[,~,) n = positive integer

The beam’s motion is bounded at x = 0 and fixed at x = L.
Hint: The equation of motion can be factored as follows:

{1 d( n+l d’~ ~2.~fl d( n+l
~2L}y=0

I~4 = PA° t02 0 < x < L
EI0

Section 4.5

12. Obtain the natural frequencies and mode shapes of standing waves in a tapered
acoustic horn of length L whose cross-sectional area varies parabolically as follows:

A(x) --- x~   "
such that the pressure is finite at x = 0 and at the end x = L is:

(a) open end, 

(b) rigid

13. Obtain the natural frequencies and mode shapes of standing waves in a parabolic
acoustic horn, whose cr0ss-sectional area varies as follows:

A(X) = X4

where the pressure at x = 0 is finite and the end x = L is open end.

14. Obtain the natural frequencies and mode shapes of standing waves in an exponential
horn of length L whos~ cross-sectional area varies as:

A(x) = Aoe2’x

such that the end x = 0 is rigid and the end x = L is open end,

Section 4.6

15. Obtain the critical buckling loads and ~e corresponding buckling shape of
compressed columns, each having, length L and a constant cross-section and the
following boundary conditions:
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(a) fixed at x =0 and x= 

(b) simply supported at x = 0 and x = 

(c) fixed at x = 0 and simply supported at x = 

(d) simply supported at x = 0 and elastically supported free end by a linear spring,
having a stiffness % at x = L

(e) simply supported at x = 0 and fixed-free at x = 

(f) simply supported at x = 0 and simply supported end connected to a
helical spring of stiffness rl at x = L

(g) fixed at x = 0 and free-fixed at x = 

(h) fixed at x = 0 and simply supported end connected to a helical spring
of stiffness rl at x = L

16. Obtain the critical buckling loads and the corresponding buckling shape of a
compressed tapered column whose moment of inertia varies as follows:

I(x) = L:x~:

such that

d2y pb4
~+-- x-:y =0 a < x < b
dx2 EI0

and the boundary conditions become:

y(a)=0 y’(b) 

17. Obtain the critical buckling loads and the corresponding buckling shape of a column
buckling under its own weight, such that the deflection satisfies the following
differential equation:

ETd3y
=0 0<x<L

dy
I dx----5- + qx d’--~"

- -

where q represents the weight of the column per unit length. The column is fixed at
x = 0 and free at x = L such that:

y"(0) : y"(0) = y’(L) : 

Hint: let y’(x)= u(x)

u’(0) = u(L) = u"(0) = 0 is satisfied identically.

18. Obtainthe criti~cal buckling loads and the corresponding buckling shapes of a
compressed column which is elastically Supported along its entire length by linear
spring of stiffness k perunit length. Th~ equation of stability becomes:
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d4Y p d2yEI d--~- + d--~- + ky = 0 0<x_<L

where p~ > 4k EI. The column is simply supported at both ends.

Section 4.11

19. Show that the differential operators given in eq. (4.34) are self-adjoint.

20. Obtain the conditions that the coefficients of a linear fourth order differential operator
must satisfy so that the operator can be transformed to a self-adjoint operator.

Section 4.15

21. Transform the following differential operators to the self-adjoint Sturm-Liouville
form given in eq. (4.49):

"/1- x~)" y" - 2xy’ + ~.y = (a)

(b) (1-x~)y"-xy ’+~,y:O

(C) (1- X2)2y" + [~(1- X2) + 1] 

(d) xy"+(a+ l-x) y’+~.y 

(e) y"-2xy’+Xy = 

(f) (1- x2) y"- (2a + 1) xy’ + 

(g) (1-x2)y"-[b-a-(a+b+2)x]y’+~, y=O

(h) x(1- x) y"- [c- (a + b + 1) x] y’+ ~,y 

(i) x2y"+xy’+(~,x2-2)y=O

x2y"+xy’+(~,xZ-n2)y:O

(k) (ax + b) y" + 2ay’+ ~.(ax + b) 

(1) y" + 2a cotan ax + ~,y = 0

(m)

xy" + 23- y’ + ~,y =

0

(n) y"+ay’+~,y = 

(o) y" - 2a tan axy’ + ~,y = 
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(u)

(w)

4

y" + 2a tanh axy’ + ky = 0

y"- a tan axy’ + ~, cos~ axy = 0

y" + 2axy’ + a~x2y + ~,y = 0

y,,_ a~y,+ ~-4~y = 0

x~’y"- a(a- 1) x~-~y + ~,y = 

x4y" + ~y = 0

xy"+~.y = 0

xy" + 4y’ + ~xy = 0

y"+4y’+(~,+4) y = 

- 2xy’ + ~ ~,x3y =x2y" 0

x2y"- xy’+ (~,+ 1) y = 

xy" + 2y’ + Lxy = 0

x2y" + 3xy’ + [kxs - 3] y = 0

xy" + 3y" + ~,x-l/3y = 0

xy"+ 6y’+ ~,xy = 0

xy" + 4y’ + ~,x3y = 0

xy" + 2y’ + ~x3y = 0

x2y"+-~ xy" + ~(~,x3 - ¼) y = 

a<O

integral for the following differential systems:

(a) Problem 21a 0 < x _< 1 y(O) = y(1) finite

(b) Problem 21a 0 < x _< 1 y’(O) = y(1) finite

(c) Problem 21b -1 < x < 1 y~l) finite

180

(hh) xy"+~-y +kx3y=O

22. Obtain the eigenfunctions Cn(x), eigenvalues L~ and write down the orthogonality
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(d) Problem 21c -1 < x < 1 y(~_l) = 

(e) Problem 21k 0 < x < L y(O) = y(L) 

(f) Problem 211 0 < x < L y(O) = y(L) 

(g) Problem 21m 0 < x < L y(L) = y(O) finite

(h) Problem 21n 0 < x < L y(O) -- y(L) 

(i) Problem 21o 0 < x < L y(O) = y(L) 

(j) Problem 21p 0 < x < L y(O) = y(L) 

(k) Problem 21r 0 -< x _< L y(O) = y(L) 

(1) Problem 21s 0 < x < L y(O) = y(L) 

(m) Problem 21t 0 < x _< L y(L) = y(O) finite

(n) Problem 21u 1 < x < 2 y(1) = y(2) 

(o) Problem 21v 0 < x _< L y(O) = y(L) 

(p) Problem 21w 0 < x _< L y’(L) = y(O) finite

(q) Problem 21x 0 < x _< 1 y(O) = y(1) -- 

(r) Problem 21y 0 < x _< L y(O) = y(L) = 

(s) Problem 21z 1 < x < e y(1) = y(e) = 

(t) Problem 21aa 0 < x _< L y(L) = y(O) finite

(u) Problem 21bb 0 <_ x < L y(L) = y(O) finite

(v) Problem 21cc 0 < x < L y(L) = y(O) finite

(w) Problem 21dd 0 < x < L y(L) = y(O) finite

(x) Problem 2lee 0 < x < L y(L) = y(O) finite

(y) Problem 21ff 0 < x < L y(L) = y(O) finite

(z) Problem 21gg 0 < x < L y(L) = y(O) finite

(aa) Problem 21hh 0 < x < L y(L) = y(O) finite
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Section 4.17

23. Oblain the solution to the following systems:

(a) y" + ~,y = f(x) y(L) = 

(b) y"+-I y’+~y = y(L) = 
x

(0) (1- X2) y"-- 2xy’ + ~,y : f(x)

(d) y"- 2y’+ (l+l]) y x y(O) = 

O<x<l

(e) xy"+(--32-x/y’+(x’3+ ~.~ ~
\4 4 )Y=

O_<x<l

(f) xyO+(3-2x) y’+ (a2x3 + x- 3) x

182

O<x<l

(g) xy" + 2y’ + k2xy = 1 y(1) = 

(h) xy" +(3- 2x)y’ +(~.x 2- 3x))y= e--~-x
x

O<x<l

(i) x2y "+[3-6x]xy’+[9x~-9x-15+~,x’]y= x~esx

O<x<l y(1)=O

y(O) = 

y(O) finite

y(+l) finite

y(1) = 

I~ is a fixed constant

y(O) finite (bounded)

yO) = 0

y(O) finite

y(1) = 

y(O) finite

y(O) finite (bounded)

y(1) = 

y(O) finite (bounded)

(j) x2y"+ 2(1-2x)xy’+(~.x 4 +4x2 -4x-~)y=x~e2x

0 < x < 1 y(1) = y(O) finite (bounded)
x2y,, + (_52 _ 2xl xy, + (kx4 + 2-’~5x -i- ~)y=7~ eXx~

0 < x < 1 y(1) = y(O) finite (bounded)

(1) x2y"+2(l+x)xy’+(Lx 4 +x2+2x)y=e-Xx3

0 _< x < L y(L) = y(O) finite Coounded)

(m) xy" +(4-2x) y" +(Z.x5 + x-n) y = x2ex
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(n)

0 < x < 1 y(1)=0

xy" + (5- 2x) y’ + (~,x7 +x-5) y= x3ex

0<x<l y(1)=0

y(0) finite

y(0) finite

Section 4.18, 4.19

24. Expand the following functions in a Fourier sine series over the specified range:

(a) f(x) 2 0<x<r~

(b) f(x)=l 0<x<~/2

= 0 n/2 < x < 7z

(c) f(x) 0<x<n

(d) f(x) = 2 0<x<l

(e) f(x) x 0<x<~t

(f) fix)=sinx 0<x<n

25. Expand the functions of Problem 24 in Fourier cosine series.

Section 4.20

26, Expand the following by a complete Fourier series in the specified range:

(a) f(x) = sin 0<x<~

=0 ~t<x<2~

(b) fix) : cos - ~ < x <~

a = non-integer

(c) fix)=x-x2 -l<x<l

(d) f(x) = sin -Tz < x < n

a = non-integer

(e) f(x) = -L < x < L/2

=0 L/2<x<L
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Section 4.21

27. Expand the function:

f(x) = 0<x<l

=0 l<x<2

in a series of Jo(l~x) where I~ are roots of Jo(21a0 = 0

28. Expand the function:

f(x) = ~ 0<x<l
in a series of J2(I.qx) where !~ are the root of:

J2(J.~ -- 

29. Expand the function:

f(x)= 0 < x < L

in a series of J20.tax), where It. are the roots of:

~tnLJ~(lxnL)- aJo(~tnL) 

Section 4.22

30. Expand the function:

f(x) = -1 < x < 0

=1 0<x<l

in the series of Legendre Polynomials.

31. Expand the function:

f(x)=0

--X

-l<x<0

0<x<l

in a series of Legendre Polynomials.



5
FUNCTIONS OF A COMPLEX VARIABLE

5.1 Complex Numbers

A complex number z can be defined as an ordered pair of real numbers x and y:

z = (x,y)

The complex number (1,0) is a real number = 1. The complex number (0,1) = i, is 
imaginary number. The components of z are: the real part Re (z) = x and the
imaginary part lm (z) = y. Thus, the number z can be expressed, conveniently 
follows:

z=x+iy

The number z = 0 iff x = 0 and y = 0. New operational rules and laws must be
specified for the new number system. Let the complex numbers a, b, c be defined by
their components (a~, a2), (b~, b:) and (cl, c2), respectively.

Equality: a =biffa~ = a2 andb~ =b~

Thus it can be written in complex notation as follows:

a=a~+ia 2=b=b~+ib2 iff a~=b~ and a2=b2

Addition: c=a+b=(a~+b~,a~+b2)

c=c~ +ic~ =(a~ +ia2)+ (b~ +ibm)= (a~ + b~)+i(a2 

Subtraction: c = a - b = (a~ - b~,a~ - 2)

c=c, +ic2 =(a~ +ia2)-(b~ +ibm) = (a~ - b~)+i(a2 

Multiplication: c = ab = (alb~ - a~b2, a~b2 + a2b~)

c:c~ +ic2 :(a, + ia~)(b~ +ibm)

If one defines is = -1, then:

c = (a~b~- a~b2)+ i(alb2 + a2b~)

Division: ifa¢0

1 1
a a~ +ia2

Multiplying the numerator and denominator by (a~ - ia2):

1 a~ - iae

a a~+a~

185
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Furthermore, a division of two complex numbers gives:

b a~b~ +a2b2 ÷i a~b2- a2b!

a al~ + a~ a~ + a~

The preceding operations satisfy the following laws:

1. Associative Law: (a+b)+c=a+(b+c)

(ab)c = a(bc)

2. Commutative Law: a + b = b + a

ab = ba

3. Distributive Law: (a+b)c = ac+bc

4. For everya, a+0=a

5. For every a, there exists -a, such that a + (-a) = 

6. For every a, a. 1 = a

7. For every a, there exists a1 such that a ¯ a-1 = 1, a ~ 0

5.1.1 Complex Conjugate

Define Complex Conjugate "~" of "a" as follows:

a = aI + ia2 ~ = a1 - ia2

Thus:

a + b = ~ + ~ a--~ = ~

If a = ~, then a is a real number.

5.1.2 Polar Representation

Define the Absolute Value (Modulus) lal of "a" as follows:

lal = ÷ a~ > 0 a real positive number

Since complex numbers are ordered pairs of real numbers, a geometric (vector)
representation of such numbers (Argand Diagram) can be constructed as shown in Fig.
5.1, where:x° = r cosO

yo = r sinO

z0 = r(cos 0 + i sin O) = iO

In this system, the radius r is:

r : ~-~ +y0~ : I~.ol
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Imaginary Axis

Y .

y Zo(Xo,yO

~ RealAxis

X

Fig,. 5.1. Vector Representation of the Complex Plane

tan 0 = Yo, 0 < 0 _< 2r~ or -n < 0 < r~
xo

and the angle 0 is called the Argument of Zo.

The complex number Zo does not change value if 0 is increased or decreased by an

integer number of 2rt, i.e.:

zo = rei° = rei( 0-+2n~) n = 1, 2, 3

Thus, in the polar form, let a = rlei°~, b = r2ei°2 then their product is:

ab = rlraei(°l+%)= rlr2[cos(01 + 02)+ isin(0~ +02)]

and their quotient is given by:a = r~ei(O,-02): rl [cos(0~ _02)+ isin(0,-02)]

b r2 r2

In polar representation the expression [z - zol = c represents a circle’centered at zo and

whose radius is "c".

5.1.3 Absolute Value

The absolute value of zo represents the distance of point zo from the origin. The absolute
value of the difference between two complex numbers, is:

la- bl = ~/(a, - b~)2 + (a2 - 2

and represents the distance between a and b.
The absolute value of the products and quotients become:

labcl =
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Imaginary Axis

Y

~.- Real Axis
X

¯ Fig. 5.2: Geometric Argument for Inequalities

The following inequalities can be obtained from geometric arguments as shown in
Fig. 5.2.

[a + b[ _< la[ + Ibl [a - b[ < [aI + Ibl

[a - b[ > [a[- [hi [a + b[ > [a[- Ib[

5.1.4 Powers and Roots of a Complex Number

The n~ power of a complex number with n being integer becomes:

an = (rei°) n =rnein°

The nth root of a complex number:

There are n different roots of (a) as follows:

al/n = rl/n exp(i n0--) /1

al/n/ rl/n (. 0+ 2rt~/2--

al/n = rl/n exp(i 0 + 2nTz -.47z.)
In-1 n

(al/n)n =rl/nexp(i0+2~-2~) 

al/n/ =rUn (. 0+2n~t’~ (_~) = (al/n/ /n+! exp~l--~-~-) = 1/n expi  , ,1

m=0, 1,2 ....

m=0

m=l

m=n
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a-E a

(a)

Fig. 5.3

Imaginary Axis
y ~,

(b)

~-- ReaI Axis

X

Succeeding roots repeat the first n roots. Hence, a1/n has n distinct roots. In polar form,
the n roots fall on a circle whose radius is r1/n and whose arguments are equally spaced by
2n/n.

5.2 Analytic Functions

One must develop the calculus of complex variables in a treatment that parallels the
calculus of real variables. Thus, one must define a neighborhood of a point, regions,
functions, limits, continuity, derivatives and integrals. In each case, the corresponding
treatment of real variables will be presented to give a clearer picture of the ideas being
presented.

5.2.1 Neighborhood of a Point

In real variables, the neighborhood of a point x = a represents all the points inside
the segment of the real axis a - e < x < a + e, with e > 0, as shown in the shaded section

in Fig. 5.3a. This can be written in more compact form as ~ - a I< e.

In complex variables, all the points inside a circle of radius e centered at z = a, but not

including points on the circle, make up the neighborhood of z = a, i.e.:

]z - a[ < e

This is shown as the shaded area in Figure 5.3b.

5.2.2 Region

A closed region in real variables contains all interior ~as well as boundary points,
e.g., the closed region:

Ix-l[_<X
contains all points 0 < x < 2, see Fig. 5.4a. The closed region in the complex plane

contains all interior points as well as the boundary points, e.g., the closed region:
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X

0 1 2

Imaginary Axis
Y

Real Axis

(a) (b)

Fig. 5.4

l_<lz-l-il<2

represents all the interior points contained inside the annular circular ring defined by an
inner and outer radii of 1 and 2, respectively, as well as all the points on the outer and
inner circles, as shown in Fig. 5.4(b).

An Open Region is one that includes all the interior points, but does not include
the boundary points, e.g., the following regions are open:

Ix-ll< 1 or 0 < x < 2

as well as:

l<[z-l-i[<2

A region is called a semi-closed region if it includes all the interior points as well as
points on part of the boundary, e.g.:

1 < Iz -1 -iI _< 2

A simply connected region R is one where every closed contour within it
encloses only points belonging to R. A region that is not simply connected is ,called
multiply-connected. Thus, the region inside a circle is simply connected, the region
outside a circle is multiply-connected. The order of the multiply-connectiveness of a
region can be defined by the number of independent closed contours that cannot be
collapsed to zero plus one. Thus, the region inside an annular region (e.g. the region
between two concentric circles) is doubly connected.

5.2.3 Functions of a Complex Variable

A function of a real variable y = fix) maps each point x in the region of definition of
x on the real x-axis onto one or more corresponding point(s) in another region 
definition of y on the real y-axis. A single-valued function is one where each point x
maps into one point y. For example, the function:

1
y = f(x) = -~- 0 < IxI < 1
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Imaginary Axis

Y

z - plane

Real Axis

VARIABLE

Imaginary Axis
Y

Real Axis
x

191

w - plane

Fig. 5.5: Mapping of the Function w = z2

maps every x in the region 0 < Ix [ < 1 on to a point y in the region ly 1>- 1.

The region of definition of x is called the Domain of the function f(x), the set 
values of y = f(x), xeD, is called the Range of f(x), e.g., in the example above:

The Domain is 0 < Ix [_< 1

The Range is [y [> 1

A function of a complex variable w = f(z) maps each point z in the domain of f(z) 
one or more points w in the range of w. A single-valued function maps one point z onto
one point w. For example, the function:

1
w: r 0<lzl<-1

maps all the points inside and on a circle of radius = 1, but not the point z = 0, onto the
region outside and on the circle of radius = 1, see Fig. 5.5.

The function w = f(z) of a complex variable is also a complex variable, which can 
written as follows:

w : f(z) = u(x, y) + iv(x, (5.1)

where u and v are real functions of x and y. For example:

w=z~ =(x+iy) 2 =x2-y2 +i(2xy)

where

u(x, y) = 2 -y2and v(x, y) = 2xy

5.2.4 Limits

If the function f(z) is defined in the neighborhood of a point z0, except possibly at the
point itself, then the limit of the function as z approaches z0 is a number A, i.e.:
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Lim f(z) = (5.2)
z~z0

This means that if there exists a positive small number ~ such that:

[z - z0[ < e then Iw- AI < ~ for a small positive number ~

The limit of the function is unique.
Let A and B be the limits of f(z) and g(z) respectively as z 0,then:

Lim If(z) + g(z)] = A 
z--~z0

Lim [f(z) g(z)] 
z~z0

Lim f(z) A provided that B ~ 0
z -~ z0 g(z) 

Since the limit is unique, then the limit of a function as z approaches z0 by any path C
must be unique. If a function possesses more than one limit as z --~ z0, when the limiting

process is performed along different paths, then the function has no limit as z --~ z0.

Example 5.1

Find the limit of the following function as z --~ 0:

xy2
fl(z) = 2 +y4

Let y = mx be the path C along which a limit of the function f~(z) as z --~ 0 is to 

obtained:

m2x3
Lim f~(z)= Lim ~0

z-~0 x ---~ 0 +m2x4

independent of the value of m. This is not conclusive because, on the curve x = my2, the
limit of f(z) as z ~ 0 on C is m/(m2 + 1), which depends on m for its limit. Thus, if

f~(z) has many limits, then f~(z) has no limit as z --~ 

5.2.5 Continuity

A function is continuous at a point z = z0, if f(Zo) exists, and Lim f(z) exists, 
z-~z0

if Lim f(z) = f(zo). A complex function f(z) is continuous at z = Zo iff, both 
z~z0

and v(x,y) are continuous functions at z = o.
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.Imaginary Axis

C~

Y0 ........ ~"~

x0

C2

Real Axis

x

Fig. 5.6: Two Paths for Differentiation off(z)

5.2.6 Derivatives

Let z be a point in the neighborhood of a point z0, then one defines Az as:

Az = z - zo a complex number

The derivative of a function f(z) is defined as follows:

f’(Zo)=~zZ) [ = Lim f(zo+Az)-f(zo)= Lim f(z)-f(z°) (5.3)
z=z0 Az--~0 Az z--~z o z-z0

Thus, the derivative is defined only if the limit exists, which indicates that the
derivative must be unique. If a function possesses more than one derivative at a point z =
z0 depending on the path along which a limit was taken, then it has no derivative at the
point z = z0.

Example 5.2

(i) f(z) = 2

f’(a) = Lim (a + Az)2 - a2 _ Lim (2a + Az) = 
Az --> 0 Az Az --~ 0

(ii) The function f(z) = R z = x has no derivative at z = Zo, since one can show that 
possesses more than one derivative. If one takes the limit along path parallel to the
y-axis at (Xo, Yo) (see Fig. 5.6, path Cl):

f’(z o)= Lim Af Lim f(z)-f(z o)= Lim x°- x°
Az __.~ 0 A’~ : z ___> Zo z-z 0 y --~ y0 i(Y yo):0

If one takes the path parallel to the x-axis (see Fig. 5.6, path C2):



CHAPTER 5 194

f’(Zo~, ,= Lim~=Af Lim x-xo_1
z-->z oAz x-->xOx-x0

Thus f(z) has no derivative at any point O.
The following properties of differentiation holds:

dmc_-0
dz

d

dz

Zn = nzn-1
dz

d (cf/ df
dz dz

d

c = constant

n = integer

c = constant

%¢0

df dg
f(g(z))- dg (5.4)

5.2.7 Cauchy-Reimann Conditions

If ffz) has a derivative at Zo and if 0u 0u 0v, and
0v

0x’ 0y’ 0x -~y

can be shown that:

3x 3y
and

3y 3x

or in polar coordinates:

0u 1 0v 1 0u 0v

Or r 00 r 00 Or

These are known as the Cauchy-Reimann conditions.
The derivative computed along path CI (see Fig. 5.6):

are continuous at zo, then it

(5.5)
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f’(Zo) = Lim
z--)z0
on C1

f(z)-f(zo)

Z-- Z0

= Lim
Y -~ YO (x° + iY)-(x° + iYo)
on C1

[U(Xo, Y)+ iV(Xo, Y)]- [U(Xo, Yo)+ iv(x0, 

U(Xo,y)- U(xo,Yo) = Lira
Y --> YO i(y-yo)
on C1

¯ ~u ~v
= - 1-~y (x0, y0) + -~y (x0, 0)

The derivative computed along path C2 becomes:

f(z)- f(zo)
f’(zo) = Lim

z ---> z0 z - zo
on C2

Lim
Y--) YO
onC1

= Lim
x--~x0 (x + iyo)- (Xo + iYo)

on C2

V(Xo,Y)- V(Xo,Yo)

Y - YO

[u(x, Yo)+ iv(x, Yo)]- [U(Xo, YO)+ iv(xo, 

u(x’ Y°)-u(x°’Y°)+i v(x, yo)- V(Xo,Yo)= Lim Lim
x ---> x0 x - xo x --> x0

x - xo
on C2 on C2

Ou . Ov
= -~x (x0, y0)+ 1-~x (x0, )

Thus, equating the two expressions for f’(z), one obtains the Cauchy-Riemann
conditions given in eq. (5.5)¯ The Cauchy-Riemann conditions can also be written in the
polar form given in (5.5)¯ The derivative can thus be evaluated by:

f’(z)=Ou .3v 
bu

~x + ~ - " (5.6)
0x 0y

1 ~y

Example 5.3

(i) The function:

f(z) = 2 =(x2 - y2)+i(2xy)

u(x,y) = x2-y2 v(x,y) = 2xy

has a derivative:
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f’(z) = 2x + i2y : 2(x + iy): 

The partial derivation of u and v are continuous:

0u 0u 0v
3x 2x ~Y -2y ~x =2y ~y

Note that the partial derivatives satisfy the Cauchy-Riemann conditions.

~V=2x

(ii) The function:

f(z) Re(z)= x

has no derivative:

tI=X

v=0

~u = 0
3y

= 0 0v: 0

The partial derivatives do not satisfy the Cauchy-Riemann conditions (5.5).

If u and v are single valued functions, whose partial derivatives of the first Order are
continuous and if the partial derivatives satisfy the Cauchy-Riemann conditions (5.5),
then f’(z) exists. This is a necessary and sufficient condition for existence 

continuous derivative f’(z).
If one differentiates eq. (5.5) partially once with respect to x and once with respect 

y, one cans show that:

~Zu ~Zu
V2u = 0-~+~= 0

(5.7)
b2v O2v

V2v = ~--~- + ~-~-T = 0

These equations are known as Laplace’s equations. Functions that satisfy (5.7) are
called Harmonic Functions.

The Cauchy-Riemann conditions can be used to obtain one of the two components of
a complex function w =f(z) to within an additive complex constant if the other
component is known. Thus, if v is known, then the total derivative becomes:

0Udx+_~dy=0Vdx ~Vddu = "~xx 0y -~x y

Example 5.4

If v = xy, then one can obtain u(x, y) as follows:

m = X2bv Ou then u 5- + g(y)
by = x = bx

-~=---~=-y=g’(y) then g(y)=-Y---+c2
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Thus, the real part u(x, y) is given by:

U =~(X2 -y2)+C

SO that the function f(z) is:

f(z) = ~(x2 - yZ)+c +ixy = ~ z2 

5.2.8 Analytic Functions

A function f(z) is analytic at a point o i f i ts derivative f’(z) exists and i

continuous at Zo and at every point in the neighborhood of zo. An entire function is one

that is analytic at every point in the entire complex z plane. If the function is analytic
everywhere in the neighborhood of a point zo but not a z = z0, then z = Zo is called an
isolated singularity of f(z).

Example 5.5

(i) The function:

f(z) : °

(ii)

n=0, 1,2 ....

is an analytic function since f’(z) = n-~ exists and iscontinuous everywhere. It is

also an entire function.

The function:

1
f(z) = (z - 2

is analytic everywhere, except at z0 = 1, since f’(z) = - 2/(z - 3 does not exist at

zo = 1. The point z0 = 1 is an isolated singularity of the function f(z).

5.2.9 Multi-Valued Functions, Branch Cuts and Branch Points

Some complex functions can be multivalued in the complex z-plane and hence, are
not analytic over some region. In order to make these functions single-valued, one can
define the range of points z in the z-plane in a way that the function is single-valued for
those points. For example, the function zl/2 is multivalued since:

w = z1/2 = [l’ei(°:t2nn) ]1/2 = 1"~/2 i(°-+2nn)/2 r>0,0<0 < 27z

Therefore, for n = 0:

zI/2 = r1/2 eiO/2

and for n = 1:

z1/2 = r1/2 ei(0+2n)/2
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Y

Branch Cut
Branch Point

X

Branch Cut
Branch Point

0=4~ X

Top Riemann Sheet

(a)

Bottom Riemann Sheet

Y

z

~
p Branch Cut

~ = 2~

ch Point ~

X

Y

z

~ranch Point ~,.p

Branch Cut

(1,1)~
, = 4n

x

Top Riemann Sheet

Fig. 5.7:

Bottom Riemann Sheet

(b)

Branch Cuts and Riemann Sheets

For n = 2, 3 ..... the value of w is equal to those for n = 0 and n = 1. Thus, there are
two distinct values of the function w = z1/2 for every point z in the z-plane. Instead of
letting w have two values on the z-plane, one can create two planes where w is single-
valued in each. This can be done by defining in one plane:

Z1/2 = r1/2 ei0/2

and in a second plane:

Z1/2 = r 1/2 ei0/2

r>0,0<0 <2rt

Thus, the function w is single valued in each plane. It should be noted that 0 is limited

to one range in each plane. This can be achieved by making a cut of the 0/2n ray from
the origin r = 0 to ~ in such a way that 0 cannot exceed 2rt or be less than zero in the

first plane, The same cut from the origin r = 0 to ~ is made in the other plane at 2~47r
ray so that 0 cannot exceed 4rt or be less than 2~t, see Fig. 5.7(a). Each of these planes 

called a Riemann Sheet. The cut is called a Branch cut. The origin point where the.

r>0, 2n<0 <47z
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Y~ Y

Branch Point
7 = -1

Y

Y

(a)

Branch Point p.

Br~nCho~.~Cut ’ [

,~p
Branch Cut

~
for w1

x
Branch Point

Z=+I

(b)

Y ~,

Branch Point
z = -1

Branch Point Branch Point
Z=+I Z=+I

(c)

Fig. 5.8: Examples of Branch Cuts (a) Non-linear,
(b) Multiple, and (c) Co-linear Branch 

cut starts at r = 0 is called the Branch Point. Since the function w is continuous at
0 = 27z in both she.ets and is continuous at 0 = 0 and 4~t, one can envision joining these

two Riemann sheets at the 2rt and at 0/4~ rays.
For the function w = (z - 1 - i) 1/2, one must first express it in cylindrical coordinates

in order to calculate the function. Let the origin of the z-plane be at (0,0), such that:

z = r ei0

Let the origin of the coordinate system for the function w be (1,1), such that:
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z-l-i=pei¢ 13>0

To make the function w single-valued, one needs to cut the plane from the branclh point at
(l+i) with 13 = 0 to oo at ¢ = 0/2~ and = 2n/4rt, see Fig. 5.7(b). This results intwo

Riemann sheets defined by:

w = (z - 1 - i) 1/2 = 01/2 ei¢/2 0<0<2x :TopSheet

2n < 0 < 4rt : Bottom Sheet

one can see that 9 and 0 are related to r and 0.

The branch cut does not have to be aligned with the positive x-axis. For the above
function, one can define a branch cut along a ray, cz, such that the function is defined by:

w = (z - 1 - 01/2 = 91/2 ei¢/2 c~ < 0 < ot + 2n : Top Sheet

cz + 2rt < 0 < c~ + 4n : Bottom Sheet

so that the choice of ~z = n/2 results in a vertically aligned branch cut. The choice of

+ 2n depends on ~z, in such a way so that the top sheet should include 0 = 0 in its range.

Branch cuts do not even have to be straight lines, but could be curved, as long as they
start from the branch point and end at z --> oo, see Fig. 5.8(a) for examples.

Sometimes, a function may have two or more components that are multi-valued.
For example, the function w = (z2 -1)1/2 can be written as w = (z-1)l/2(z+l)1/2 which
contains two multivalued functions w1 = (z-l) 1/2 and we = (z+l)1/2. Both functions

require branch cuts to make them single valued.
Let:

Wl = (z- 1)1/2 = 13~/2ei0o’/2 ~1 < 01 < (~1 - 2n

~1 + 2~ < 01 < ~1 + 4g

W2 = (Z + 1)1/2 = p~/2ei¢2/2 (X2 

with branch points for w1 and w2 at z = -1 and +1, respectively. Again the choice of
+ 2rt is made in order to insure that 0 = 0 is included in the range of the top sheet. Thus:

w = WlW2 = (01132)1/2 el(el +¢=)/2

where 01 and 02 could take any of the angles given above, i.e. four possible Riemann

sheets. Thus, one can choose, see Fig. 5.8(b):

0 < 01 < 2~, -rt/2 < 02 < 3rt/2 : Sheet 1

0 < 01 < 2g, 3~z/2 < 02 < 7rt/2 : Sheet 2

2rt < 01 < 4~z, -r~/2 < 02 < 3rc/2 : Sheet 3

2r~ < 01 < 4~, 3r~/2 < 02 < 7r~/2 : Sheet 4
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It should be noted that 13l, ~1, 02 and 02 are related to r, 0.

In many instances, it may be advantageous to make the branch cuts colinear. In
those cases, the function may become single valued along the portion that is common to
those branch cuts. For example, the choice of (21 = (22 = 0 or (21 = (22 = -~Z for both

branch cuts may work better than in Fig. 5.8b (see Fig. 5.8(c)). For a point slightly
above the two branch cuts, 01 = d~2 -= 0 so that:

w = WlW2 = (131132)1/2

For a point slightly below the two branch cuts, 01 = 02 -- 2~ so that:

w = WlW2 = (13192)112ei(2~+2~)12 = (131102)1/2

Thus the function w is continuous across both branch cuts over the segment from z = 1
to ~,. Similarly, one can show the same for the other pair of branch cuts in Fig. 5.8(c).

5.3 Elementary Functions

5.3.1 Polynomials

An nth degree polynomial can be defined as follows:

k=n

f(z) = akzk ak complex number (5.8)

k=0

A polynomial function is an entire function. The d~rivative can be obtained as follows:

k=n

f’(z) ~k akzk -1

k=l

The polynomial function has n complex zeroes.

5.3.2 Exponential Function

Define the exponential function:

ez = ex (cos y + i sin y) (5.9)

The exponential function is an entire function, since u and v:

u = ex cosy v = ex siny

together with their first partial derivatives are continuous everywhere and:

d z
~zz(e)--ez

exists everywhere. One can write ez in a polar form as follows:

ez = 0(cos 0 + i sin 0)

where:

9=ex and O=y
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The exponential function has no ze(os, since z >0.Thecomplex exponential function

follows the same rules of calculus as the real exponential functions. Thus:

eZleZ2 ~,~ eZl+Z2

1
~=e-z

ez

eZ)n = enz

e~ =(’~

ez = ez+2ni periodicity = 2~ti

The periodicity of the complex exponential function in 2in is a property of the

complex function only.

(5.10)

5.3.3 Circular Functions

From the definition of an exponential function, one can define the complex circular
functions as:

eiz _ e-iZ
sin z .... i sinh (iz) (5.11)

2i

eiz + e-i z
COS z = -- = cosh (iz)

2

The functions sin z and cos z are entire functions. From the definition in 115.11), one can
obtain the real and imaginary components:

cos z = cos x cosh y - i sin x sinh y

sin z = sin x cosh y + i cos x sinh y

[sin z F = sin2 x + sinh2 y

~os z ~ = cos~ x + sinh2 y

It should be noted that the magnitude of the complex functions cos z and sin z can be
unbounded in contrast to their real counterparts, cos x and sin x.

1
sec z = ~

COS Z COS Z

cos z 1 1
cot z .... cosec z = ~ (5.12)

sinz tanz sinz

Define:

sin z
tan z = ~

The functions tan z and sec z are analytic everywhere except at points where cos z = 0.
The functions cot z and cosec z are analytic everywhere except at points where sin z = 0.
The circular functions in (5.11) and (5.12) are periodic in 2n, i.e. f(z+2~) = 

Furthermore, it can also be shown that:
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cos (z + ~t) = - cos 

sin (z + n) = -sin 

tan (z + n) = tan 

The derivative formulae for the circular function are listed below:

d~z (sin z) = cos 

~zz (cos z) = -sinz

~zz (tan z) = secz z

d~z (cot z) = -cosec:z z

~zz (sec z) = sec z tan 

d~z (cosec z) = -cosec z cotan 

The trigonometric identities have the same form for complex variables as in real
variables, a few of which are listed below:

sin2 z +cos2 z = I

sin(z1 + z2) = sinzI cosz2 + coszl sinz2

cos(zt + zz) = cos zt cos zz ¯ sin zt sin z2

cos 2z = 2 cos2 z - 1 = cos2 z - sin2 z

sin 2z = 2 sin z cos z

The only zeros of cos z and sin z are the real zeros, i.e.:

cosz0 =0 z0 = (+-~ ~t,0) n=0,1,2 ....

sin z0 = 0 z0 = (+nn,0) n = 0, 1, 2 ....

The function tan z (cot z) has zeros corresponding to the zeros of sin z (cos 

5.3.4 Hyperbolic Functions

Define the complex hyperbolic functions in the same way as real hyperbolic
functions, i.e.:

sinh z = ~
ez -e-z 1

coth z -
2 tanh z

ez + e-z 1
cosh z - seth z -

2 cosh z

sinh z 1tanh z = ~ cosech z = ~
cosh z sinh z

The functions sinh z and cosh z are entire functions. The function tanh z (coth z) 
analytic everywhere except at the zeros of cosh z (sinh z). The components of the
hyperbolic functions u and v can be obtained from the definitions (5.15).

(5.13)

(5.14)

(5.15)
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sinh z = sinh x cos y + i cosh x sin y

cosh z = cosh x cos y + i sinh x sin y

[sinh z ~ = sinh2 x + sinE y = cosh2 x - cos2 y

Icosh z ~ = sinhE x + cosE y = cosh2 x - sin2 y

Unlike real hyperbolic functions, complex hyperbolic functions are periodic in 2i~ and
have infinite number of zeroes. The zeros of cosh z and sinh z are:

sinh z0 = 0 z0 = (0,__.n~) n = 0, l, 2 ....

coshzo = 0 z0 = (0,+-~) n=0, 1,2 ....

The derivative formulae for the hyperbolic functions are listed below:

~z (sinh z) = cosh 

d~z (cosh z) = sinh 

d~z (tanh z) = sech2 z

~z (coth z) = -cosech~ z

d~z (sech z) = -sech z tanh 

d~z (cosech z) = -cosech z coth 

A few identities for complex hyperbolic functions are listed below:

cosh2 z - sinh2 z = 1

sinh(z1 + z2) = sinh z~ cosh z2 + cosh zI sinh z2

cosh(z1 - z2) = cosh z1 cosh z2 ÷ sinh z1 sinh z2

sinh (EZ) = 2 sinh z cosh 

cosh (Ex) = cosh2z + sinhEz = 2 cosh2z 

(5.16)

(5.17)

5.3.5 Logarithmic Function

Define the logarithmic function log z as follows:

log z = log r ÷ i0 for r > 0

where z = re~°. Since z is a periodic in 2n, i.e.:

z(r,0) = z(r,0 +_ 2n~) n = 1, 2 ....

then the function log z is a multivalued function. To make the function single-valued,
make a branch cut along a ray 0 = t~, starting from the branch point at zo = O. Thus,

define:

log z = log r +i0 t~ + 2n~t < 0 < ~ + (En+2)r~ n = 0, +1, _+2 .... (5.18)
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where -~ < c~ < 0 then there is an infinite number of Riemann sheets. The Riemann sheet

with n = 0 is called the Principal Riemann sheet of log z, i.e.:

logz= logr+i0 r > 0 ~ < 0 < ~ + 2n (5.19)

where the choice of + 2~ is made in order to include the angle 0 = 0 in the Principal

Riemann sheet. The function log z as defined by (5.19) is thus single-valued. The
function log z is not continuous along the rays defined by 0 = ~ and 0 = c~ + 2n, because

the function jumps by a value equal to 2hi when 0 crosses these rays. Since the function

is not single-valued on 0 = ~ and 0 = ~ _+ 2~, the logarithmic function has no derivative

on the branch cut defined by the ray 0 = c~, as well as at the branch point z0 = 0. Hence,

all the points on the ray 0 = (~ are non-isolated singular points.

A few other formulae for the complex function are listed below:

 (logz)1 =- z~0 r>0 ~<0<~+2~
z

el°gz = el°gr+i0 = el°gre i0 = rei0 = z

logeZ = log(eX)Iei(Y+-’2nr~)l = x + iy + 2inrt = z + 

log z~z2 = log z~ + log z2

logzl = logz1 - logz2
Z2

log Zm = m log z

5.3.6 Complex Exponents

Define the function za, where a is a real or complex constant as:

za = eal°gz = ea[l°gr+i(0:l:2n~)] ~ < 0 < ~ _+ 2~ (5.20a)

The inverse function can also be defined as follows:

17~-a

Za

The function za is a multi-valued function when the constant "a" is not an integer, unless
one specifies a particular branch.

To achieve this, one can follow the same method of making the function single-
valued on each of many Riemann sheets.

Defining:

za = eal°gz = ea[l°gr+i0] (x +_ 2nr~ < 0 < ct + 2(n + 1)~ (5.20b)

where, n = 0, 1, 2 ...... then the function za is single-valued in each Riemann sheet,
numbered n = 0 (principal), n = i, 2 .....

For example, let a = 1/3 and let c~ = 0, then:

z1/3 = r1/3 ei0/3 where 2n~ < 0 < 2(n + 1)Tz
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Therefore, for n = 0, 0 < 0 < 27z, for n = 1, 2r~ < 0 < 4n, and for n = 2, 4~z < 0 < 6r~.

For n = 4, the value of Z113 is the same as defined by n = 0. Thus, there are only three

Riemann sheets n = 0, 1 and 2.
The derivative of za can be evaluated as follows:

dza = dealogz = aealogz = aza- I

dz dz z

The exponential function with a base "a", where "a" is a complex constant, can be defined
as follows:

az -_ ezloga

daz=--ed z~o~ao = (loga)ez~°ga = aZloga (5.21)
dz dz

5.3.7

Define the inverse function arcsin z:

w = arcsin z or

or

eiw = iz + 1%]~-z2

where x/i - z2 is a multi-valued function. Thus:

Similarly:

i. 1-iz i. i+z . ¯
arctan z = -~ log ~ = -~ log ~ = -i arctanh(iz)

Inverse Circular and Hyperbolic Functions

eiw _ e-iW
z = sin w =

2i

(5.22)

Since the definitions involve multivalued functions, all the inverse functions are also
multivalued functions.

The inverse hyperbolic functions can be defined as follows:

arcsinh z = loglz + z~-~+ 1 ] = -i arcsin(iz)

(5.23)

1 , l+zarctanh z = 7 ~og 1-~ = -i arctan(iz)
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5.4 Integration in the Complex Plane

Integration of real functions is a process of a limiting summation. Thus, integration
in the Reimann sense can be defined as:

b N

~f(x)dx = Lim ~f(xj)(Axj)
N ----~ oo.

a j=l

where Axj = xj -x~.1 and x0 = a and xr~ = b, N being the number of segments.
Integration of a real function f(x,y) along a path C defined by the following equation:

y = g(x) on C

can be performed as follows:

xb

ff(x,y) ds = ~f[x,g(x)],f(g’)e 

C xa

One can perform the preceding integration by a parametric substitution, i.e. if one
lets x = ~(t) and hence y = g(x) = g(~(t)) = ~l(t), where < tu correspond to the limits a
and b, then the integral is transformed to:

tb

f f(x,y)ds = f[ ~(t),tl(t)]~/(~’)2 +( 2 dt

C ta

Integration of a real function f(x,y) on two variables (area integrals) can be performed 
follows:

N M

~f(x,y)dxdy= Lim ~ ~ f(xi,Yj)(Axi)(Ayj)
N,M--~,~

A i=lj=l

where Axi = xi - xi_1 and Ayj = yj - Y j-1.

5.4.1 Green’s Theorem

A theorem that transforms an area integral to a line integral can be stated as follows:
If two functions, f(x,y) and g(x,y), together with their first partial derivatives 
continuous in a region R, and on the curve C that encloses R, then (see Fig. 5.9).

!/~f - ~g/dx dy = f[g(x,y) dx + f(x,y) 
(5.24)

-~x OyJ
C

where the closed contour integration on C is taken in the Positive (counter-clockwise)
sense.

Similarly, one can define an integration in the complex plane on a path C (Fig. 5.10)
by:
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;tnary Axis

~’- Real Axis
X

Fig. 5.9: Green’s Theorem

z2 N

N’--> ~ ̄
z1 J=l
on C

where the increments Azj = zj - zj.~ are taken on C.

Since the complex function is written in terms of u and v, i.e.:

f(z) = u(x, y)+ iv(x, 

and defining z~ as:

zj = xj + iyj

thenthe function f(zj) is given by:

f(zj) = u(xj, yj) + iv(xj, 

Imaginary Axis

Y~t

~" ReaI Axis
X

Fig. 5.10: Complex Integration of a Path C
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with

Azj = Axj + iAyj

The integral can now be defined as a limit of a sum:

z2 N
~f(z)dz= Lim j~!u(x,,yj)+iv(xj,Yj)l[Axj+iAyj]

Zl
N-->~ =

~
"

xj,yjon C
on C

N N
Lira E u(xj,yj) Axj - v(xj, yj) Ayj + i NLi.~m~j~l u(xj, yj) Ayj + v(xj,yj) j

N-->~j=1 .=

x2’ Y2 x2’ Y2

= ~ [u(x’y)dx-v(x,y)dYl+i ~ [u(x’y)dy+v(x’y)dxl

xl,Y1 xl,Y1
on C on C

The integration of a complex function on path C as defined in (5.25) has the
following properties:

b a

(i) ~ f(z)dz =-f f(z) 

a b
on C on C

b b

(ii) J c f(z) dz = c j" f(z) dz c = constant

a a
on C on C

b b b

(iii) ~ [f(z)+ g(z)] dz = ~ f(z)dz + ~ 

a a a
on C on C on C

b c b

(iv) ~f(z) dz=~f(z)dz+~f(z)dz

a a c
on C on C on C

conC

on C

where M is the maximum value of If(z)lon C in the range [a,b] and:

(5.25)

.26)
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b b

J Idz[ = J ds = length of the path on CL

a a
on C on C

Example 5.6

Obtain the integral in the clockwise direction of f(z) = 1)(z-a) on a path that 

semi-circle centered at z = a and having a radius = 2 units.

~tnary Axis

Zl , a Z2

r RealAxis
X

To perform the integration, one can use parametric representation:

z - a = 2ei° dz = 2iei° dO

Z1 = a + 2e+in = a - 2 z2 =a+2

z2 0
1

f f(z)dz = f ~ 2iei° dO = -~i

z1 ff

If one integrates over a complete circle of radius = 2 in counter-clockwise direction, then:

~ dz : f (idO)=2rti
z-a

integral symbol ~ indicates a closed path in the positive (counter clockwise)wherethe

sense. Note that the integral over a closed path, where the upper and lower limit are the
same, is not zero.

5.5 Cauchy’s Integral Theorem

If a function is analytic inside a simply connected region R and on the closed contour
C containing R, then:
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Imaginary Axis

Y

~ RealAxis
x

Fig. 5.11

~f(z) dz = (5.27)

C

Using the form given in Green’s Theorem in eqs. (5.25) and (5.24) one can tranform 
closed path integral to an area integral:

I f(z)dz = I (udx- vdy) + il (udy + 

C C C

I( 3v il 3u 3vOx
) dx dy d~ = 0= (~xx - ~y)dX

R R

The integrands vanish by the use of the Cauchy-Riemann condition in eq. (5.5). As 
consequence of Cauchy’s Integral Theorem (5.27), one can show that the integral of 
analytic function in a simply connected region is independent of the path taken (see Fig.
5.11). The integral over a closed path C can be divided over two segments C1 and C2:

z2 Zl

~f(z)dz= I f(z)dz+ I f(z)dz=0

z1 z2
C1 + C2 on C1 on C2

Using the integral relationship in eq. (5.26):

z2 z1 z2

I f(z)dz=-I f(z)dz= I f(z)dz
(5.28)

z2 z1
onC1 onC2 onC1

Thus, the integral of an analytic function is independent of the path taken within a simply
connected region. As a consequence of (5.28), the indefinite integral of an analytic
function f(z):
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Imaginary Axis

Y

b
~" Real Axis

X

Fig. 5.12: Integration on Closed Path CO
of a Doubly Connected Region

z

= I f(~)d~F(z)

z0

independent of C in R, is also an analytic function. Furthermore, it can be shown that:

d F(z)
- f(z) (5.29)

dz

The Cauchy Integral theorem can be extended to multiply-connected regions. Consider a
complex function f(z) which is analytic in a doubly connected region between the closed
paths CO and C1 as in Fig. 5.12. One can connect the inner and outer paths by line

segments, (af) and (dc), such that two simply-connected regions are created. Invoking
Cauchy’s Integral, eq (5.27), on the two closed paths, one finds that:

~f(z)dz and ~f(z)dz 

C = abcghea C = aefgcd a

Adding the two contour integrals and canceling out the line integrals on (ae) and (gc), 
obtains:

~ f(z)dz = ~ f(z)dz (5.30)

C0 C1

where CO and C1 represent contours outside and inside the region R.

If the region is N-tuply connected, see Fig. 5.13, then one can show that:

N-1

~ f(z)dz= Z ~ f(z)dz

Co j = I Cj

(5.31)
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Fig. 5.13: Integration on Closed Path CO
in a Multiply-Connected Region

~’- Real Axis

X

Example 5.7

Obtain the integral of f(z) = 1/(z-a) on a circle centered at z = a and having a radius 
units. Since the integral on a circle of radius = 2 was obtained in Example 5.6, then:

CO z a CI z-a
on13 = 4 on19 = 2

5.6 Cauchy’s Integral Formula

Let the function f(z) be analytic within a region R and on the closed contour 
containing R. If Zo is any point in R, then:

f(zo )= 1_~ f(z) 
2hi C z - zo

(5.32)

Proof:

Since the function f(z) is analytic everywhere in R, then f(z)/(Z-Zo) is analytic
everywhere in R except at the point z = zo. Thus, one can surround the point Zo by a

closed contour C1, such as a circle of radius e, so that the function f(z)/(Z-Zo) is analytic

everywhere in the region between C and C1 (see Fig. 5.14). Invoking Cauchy’s integral

theorem in eq. (5.30):
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Imaginary Axis

Y

~: Real Axis
X

Fig. 5.14: Complex Integration over a Closed Circular Path

~dz=~ f(z) dz=~ f(z)-f(z°~dz+f(Zo)~dz
Z-- Z-- zoC C1 zo C1 z - zo CI

= ~ f(z)-f(z°)dz+2nif(Zo)
Z-- ZoC~

by the use of results in Example 5.6.
The remainder integral must be evaluated as e --> 0, using the results of (5.26):

Lim[~ f(z)-f(z°) dz]< Lim (If(z)-f(zo)ll2ue: Lim 2r~[f(z)-f(zo~-->0

e~0~l~ z-zo
[- e~0 \ e 2 e--.0
[ onC1 onC1

since f(z) is continuous and analytic everywhere inside R. Cauchy’s integral formula can
be used to obtain integral representation of a derivative of an analytic function. Using the
definition of f’(Zo) in eq. (5.3), and the representation of f(Zo) in eq. (5.32):

f’(z°)=~z-~oLim .f(z° + Az)-az f(z°)’)
=~1 Lim__l ~I f(z) zf_(_~Zz)o z

2hi az~O ~z Lz-<Zo+ ~z)

= I.~ Lim ~
f(z) : dz--> 1 ~ f(z)

2~ri az-~Oc (z- Zo)(Z- Zo - Az) 2~---~~ (Z-~o)2 

Similarly, it can be shown that the nth derivative of f(z) can be represented by the integral:

2n,n! ! (z-’~o)n+lf(zf(n)(Zo) = _---r. dz (5.33)



FUNCTIONS OF A COMPLEX VARIABLE 215

Example 5.8

(i) Integrate the following function:

f(z) = 

on a closed contour defined by [z-i [ = 1 in the counter-clockwise (positive) sense.
Imaginary Axis

Y~

let:

Since:

1 1

~ = (z + i) (z - 

1g(z) = 
z+i

then by Cauchy’s Integral Formula:

Z--ZoC

where g(z) is analytic everywhere within R and on 

~us:

1 ~ ~ g(z) ~= 2gig(i)= 2hill

(ii) Integrate the following function:

1
f(z) = 

on the closed contour described in (i).
Let g(z) = (z + -2 which isanalytic in R andon C, t henusingeq. (5.33)

! 1 dz=,~ g(z) dz=2~xi ,. 2~i_~23
=~

~ ~C~ TgO)= (z+iYlz_-i 

Morera’s Theorem

If a function f(z) is continuous in a simply-connected region R and if:



CHAPTER 5

~f(z) dz = 

C

for all possible closed contours C inside R, then f(z) is an analytic function in 

216

5.7 Infinite Series

Def’me the sum Z of an infinite series of complex numbers as:

N

~ zn = Lim ~ zn (5.34)Z=
N-->~

n=l n=l

The series in eq. (5.34) converges if the remainder N goes to zero as N-->~ i.e.:

Lim RN = Lim - ~". zn ~ 0
N-->**

N-~ n~"=l

If the series in eq. (5.34)converges, then the two series ~ n and ~Ynalso

n=l n=l

An infinite series is Absolutely Convergent if the series, ~converge.

n=l
converges. If a series is absolutely convergent, then the series also converges.

A series of functions of a complex variable is defined as:

P(z)= ~_, fj(z)

j=l

where each function fj(z) is defined throughout a region R. The series is said to converge

to F(zo) if:

F(zo) = ~ fj(Zo)

j=l

The region where the series converges is called the Region of Convergence. Finally,
define a Power Series about z = Zo as follows:

f(z)= ~ n(z-zo)
n

n=0

The radius of convergence p is defined as: ¯

p = Lim ~
n~lttn+l I

such that the power series converges if [z - zo I < p, and diverges if ~ - zo [ > p ̄

If a power series about zo converges for z = z1, then it converges absolutely for
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Fig. 5.15: Closed Path for Taylor’s Series

z = z2 where:

5.8 Taylor’s Expansion Theorem

If f(z) is an analytic function at O, then there is apower series that converges inside
a circle C2 centered at zo and represents the function f(z) inside C1, i.e.:

f(z) = an(z- Zo)n

n=0

where:

f(n)(zo)
a n --~

n!
(5.35)

Proof:

Consider a point zo where the function f(z) is analytic (see Fig. 5.15)¯ Let points z and 

be interior to a circle C2, ~ being a point on a circle C1 centered at Zo whose radius = ro

¯ Consider the term:

1 1 1
~-z (~-Zo)-(z-zo) (~-zo)[1-z-z°]
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1 1 1

Zo) z-zo
(~ - Zo)[1 - ~_--~o ]

Using the following identity, which can be obtained by direct division:

Un
1 =l+u+u2+...+~ for

1-u 1-n

then:

1 I Z - Zo (Z - Zo)2 (Z - Zo)n-1
~= ’l + +...+
E-Z E-Zo (E-Zo)2 (E-Zo)3 (E--Zo)n

since:

I(z - zo)/({ - Zo)l 

(Z -- Zo)n

(E - Z)(E - n

Multiplying both sides of the preceding identity by f(E)/2xi dE and integrating on the

closed contour C1, one obtains:

1 f(E) dE - 1 f(E) d~ + (z- Zo) f(E) 

C1 C1 Ci

(Z-- Zo) n-1 $ f(~) dE + (Z-- Zo) n~ f(~)

24~ (~ - o)~ 2~i J (~ - z) (~ o)
C1 C1

Using Cauchy’s integral formula eq. (5.33), one can show that:

f(z) = f(Zo) + (z- Zo) f,(Zo) (z- Zo)2
1! 2!

where:

Rn (Z-Zo)n
= 24 ~

C1 (~ - z)( E - Zo)n

Taking the absolute value of Rn, then:

r n 2nMro =_~ ro M(r)nIRnl<-~ (ro-r)ro n r o-r ro

__ f,,(Zo) + ... (z- Zo)n-1 f(n -1)(Zo)+ Rn
(n - 1)!

The remainder Rn vanishes as n increases:

LimlR.lo 0 since r/r o < 1

Finally, the Taylor series representation is given by:

~ f(n)(z°) (Z--Zo)n
f(z) 

n!
n=0

The Taylor’s series representation has the following properties:

1. The series represents an analytic function inside its circle of convergence.
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2. The series is uniformly convergent inside its circle of convergence.

3. The series may be differentiated or integrated term by term.

4. There is only one Taylor series that represents an analytic function f(z) about 
point zo.

5. Since the function is annlytic at zo, then the circle of convergence has a radius

that extends from the center at Zo to the nearest singularity.

Example 5.9

(i) Expand the function z i n aTaylor’s series about Zo= 0. Since:

f(n)(zo) 1Iz=O

then the Taylor series about zo = 0 is given by:

e z= ~ zn

n=0

The radius of convergence, p, is oo, since:

p= Lim[ an [= Lim]~-~oo
n-~**lan+ll n-->,~l n! I

(ii) Obtain the Taylor’s series expansion of the following function about Zo = 

1
f(z) = z2 _ 

Using the series expansion for (1.- u)"1, with u = z2/4:

oO
1 1 1 E (z’)2n

f(z)= 4 l_(Z)2_~ =-~" "2"

n=0

which is convergent in the region ]z 1< 2. It should be noted that the radius of

convergence is the distance from zo = 0 to the closest singularities at z = + 2, i.e. p = 2.

(iii) Obtain the Taylor’s series expansion of the function in (ii) about zo = 1 

about Zo = -1.
To find the series about zo = 1, let ~ = z - 1, then the function f(z) transforms 

1[ 11 =~" ~- 1 ~-3’= + 3)
Expanding f(z) about Zo = 1 is equivalent to expanding ~ (4) about ~ = 0. The Taylor

series for the functions are as fgllows:
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1 = 1 E (-1)n 3-’if"
convergent in < 3

~+3 3
n=0

Thus, the two series have a common region of convergence 14 [ < 1:

~(~)=-"0 ~n+ 3--ff’~-~ )J c°nvergentinl4]< 

and the Taylor series representation of f(z) about o =1 becomes:

f(z) -- --4n__~;0 1 + 3-’~-~J(Z - l)n convergent in Iz-ll 

It should be noted that the radius of convergence represents the distance between zo = 1

and the closest singularity at z = 2.
To find the Taylor series representation of f(z) about zo = - 1, let ~ = z + 1, then the

function transforms to ~(~):

l

1I 1 1 ]~’(4)=(~+1)(~-3)=~ 4-3 

Expanding f(z) about Zo = -1 is equivalent to expanding ~(~) about = 0.TheTaylor

series for the functions are as follows:

1 1 oo 4n
- ~-~- convergent in 141 < 3

4-3 3
n=0

= E (-1)n 4n convergent in 141 < 1
~+1

n=0

Thus the two series, when added, converge in the common region 14 1 < 1:

1 E I3-n~+l +(-1)nl4n convergentin[~,< 
~(~) = - ~"n = 

and the Taylor series representation of f(z) about Zo = - 1 is:

=_1 ,~ r~l

1
convergent in lz+l [ 1f(z) 4.Z~_n[_3n+l +(-1) n (z+l)n <

Again, note that the radius of convergence represents the distance between zo = -1, and the

closest singularity at z = -2.
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Imaginary Axis

Y

~ RealAxis

X

Fig. 5.16: Path for Identity Theorem

(iv) Expand the function 1/z by a Taylor’s series about Zo = -1.

= (-1)n f(n)(z°) zn+l "1 = -(n!)
IZo =-1

Thus:

1
(z + 1)n (z + 1)n

z
n=0 n=0

The region of convergence becomes 6+1 I< 1 since the closest singularity to Zo = -1 is

z = 0, which is one unit away from zo = -1.

Identity Theorem

As a consequence of Taylor’s expansion theorem, one can show that if f(z) and g(z)
are two analytic functions inside a circle C, centered at Zo and if f(z) = g(z) along 

segment passing through zo, then f(z) = g(z) everywhere inside C. This can be shown 

expanding both functions in a Taylor’s series about zo as follows (see Fig. 5.16):

~’
f(n)(zo)f(z)= ~ an(Z-Zo)n where an = n~’~~

n=0

g(z) = ~ bn(z-Zo)n where bn = g(n)(z°)
n!

n=0
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At z = zo, f(Zo) = g(zo), thus o =bo. The derivatives off(z) andg(z)at ze, can be ta

as a limiting process along C1. Thus:

f’(Zo) = g’(Zo) 1

which means that al = bl, etc. Thus, one can show that an = bn, n = 0, 1, 2 ..... and

f(z) = g(z) everywhere in 
The identity theorem can be used to extend Taylor series representations in real

variables to those in complex variables. If a real function is analytic in a segment on the
real axis, then one can show that the extension to the complex plane of the equivalent
complex function is analytic inside a certain region. Thus, all the Taylor series
expansions of functions on the real axis can be extended to the complex plane.

Example 5.10

(i) The function:

oo xn

n=O

is analytic everywhere on the real axis. One can extend the function into the complex
plane where ez is equal to ex on the entire x-axis. Since the function ez and e× are equal
on the entire x-axis, then they must be equal in the entire z-plane. Hence, the Taylor
series representation of the complex function eZ:

ez =

n=O

is analytic in the entire complex plane.

(ii) The function:

1_ E xn
1-x

n=O

is analytic on the segment of the real axis, Ixl < 1, then the extended function (1 - z)-1 has

an expansion ~ zn which is analytic in the region Izl < 1.

n=O

5.9 Laurent’s Series

If a function is analytic on two concentric circles CI and C2 centered at Zo and in the

interior region between them, then there is an infinite series expansion with positive and
negative powers of z - zo about z = Zo (see Fig. 5.17), representing this function in this

region called the Laurent’s series. Thus, the Laurent’s series can be written as:
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Fig. 5.17: Closed Paths for Laurent’s Series

f(z): 2 an(Z-Z°)n+ bn (5. 36)

n = 0 n = 1 (z- Zo)n

where the coefficients an and bn are given by:

1 ~. f(~) d;
n = 0, 1, 2,an =’~i (;- Zo)n+l

"’"

1 ~ d~ 1,2,3 ....bn = ~i f(~)(~- z°)n-1 n =

The Laurent’s Series can also be written in more compact form as:

f(z) On(Z- ZoO"

where:

Cn = 2rti C2 (4-~n+l d~ n = O, +1, +2 ....

where C is a circular contour inside the region between C1 and C2 and is centered at Zo.

Proof:

Consider a cut (ab) between the two circles C1 and C2 as shown on Fig. 5.17. Then

let the closed contour for use in the Cauchy integral formula be (ba da bcb). Thus,
writing out the integral over the closed contour becomes:
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b a

2rtif(z)= ~~--~ f(~)d +~--~ ~-~---~ ~ f(~)d   f(~)d +~--~ f( ~)d

C2 a CI b

=~--~f(~) d~- ~-~-~f(~) 

C2 C1

The expansion on the contour C2 follows that of a Taylor’s series, i.e. for ~ on C2:

I I 1
Z-- Zo~ (~-Zo)-(Z-Zo) (~-zo)[1-~_--~-o]

1 Z -- Zo
(Z -- o)n-I (Z -- o)n= ~-~ +...+

~--Z o (~-- Zo)2
(~- Zo)n

where the division was performed on 1/(l-u) with:

lul= <1 f~, ~onC2

The expansion on the contour C1 can bc made as follows:

1 1 1

~--~=(~-Zo)-(Z-Zo) = Z-Zo [l_~-Zo~
z-z0

(~ - z)(~- n

1 ~ - zo (~ - Zo) 2" (~ - Zo)n-I
(~ - Zo)n

Z-Z o (Z- Zo) 2 (Z-Zo) 3 "’" (Z_ zo)n (z- zo)n(z- 

where the division was performed on 1/(1-u) with

lu~<l for ~onC1

Thus, substituting these terms in the expansion for f(z):

f(;) d;+(Z-Zo)~ f(;) dr+ +(Z-Zo>n-1
2~if(z) , " : °

C2 C2 C2

1 :1 f(~)d~ + 
+ 1Rn q (Z-Zo) (Z-Zo) "q" f(~)(~-z°)d~

C~

1
~ f(~)(~ - 2 d~ +

+ (z- Zo)3 C~

1
~ f(~)(~-Zo) n-1 d~+ 2Rn...-I" (Z -- Zo)n Cl

Where the remainder Rn can be shown to vanish as n ---)

d~
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nL.~lrn~[l Rn [ = Liml(z- Zo) n f(~) d~ I -->

n-->,,~[C2 ~ (~- Zo,)n+l (~ - 

Liml2Rnl = Liml 1 C~1 f(~) (~- z°)n d~[--~n--->~* n~o] (Z - Zo) n ’~--’~"~

Example 5.11

(i) Obtain the Laurent’s series of the following function about o =0:

l+z
f(z) = 

Thefunction f(z) is analytic everywhere except at z -- 
The function f(z) can be rewritten as:

1 1
f(z) = .~- + .~-y

In this case, it is already in Laurent’s series form where an = 0, bI = 0, b2 = 1,

b3= 1, and bn = 0 for n > 4.

(ii) Obtain Laurenfs series for the following function about o =0 valid in the

region Izl > 1:

1
f(z) = 

1-z

Since the region is defined by Izl >1, then 1/Izl <1, thus, letting ~ = l/z, then:

f(z) = f(~-l) =1--= "-~-~--I ~ -- ~ ~ ~n = _ ~’~

~
n=0 n=0

which is convergent for I~1 < I. Thus:

f(z)

n=0

which is convergent in the region Izl > 1.

(iii) Obtain the Laurent’s series for the following function about o =0,valid in the

region Izl > 2:
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1
f(z) = z2 _ 

The function has two singularities at z = + 2. Since the function is analytic inside the
circle Izl = 2, a Taylor’s series can be obtained (see Example 5.9). For the region outside

[z[ = 2, one needs a Laurent’s series representation. Factoring out z2 from f(z):

1
f(z)= z2(1,4/z2)

then one can use the division of 1/(l-u) where u = 4/z2:
O0

n=0

convergent over the region, 12/zI < 1. This can be rewritten as:

1
2)_2(n+1)f(z)=~- Z (z/

n=0 ¯

convergent over the region, Izl > 2.

(iv) Obtain the Laurent’s series for the function in (iii) about o =2 valid in the

regions:

(a) 0 Iz-21 < 4 (b) Iz-21 > 4
To obtain the series expansion, transfer the origin of the expansion to zo = 2, i.e., let

11 = z - 2 such that the function f(z) transforms to ~’(11):

~(~) = 1
rl (11 + 4)

which has two singularities at 11 = 0 and 11 = -4. Thus, two Laurent’s series

corresponding to ~(11)are required, one for 0 < I’ql < 4 and one for [’ql > 4 as shown in

Fig. 5.18.

(a) In the region R1, where 0 < Irll < 4, one can expand 1 / 01 + 4) as follows:

OO
l = 1 = 1 Z

(rl+4) 4(1+11/4) 4n
n=0

convergent in Irl/4] < 1. Thus, the Laurent’s series representation for ~(11)becomes:

oo (1) n (11)n-1

n=0

convergent in 0 < I~ll < 4, since 11~ is not analytic at 11 = 0.

Thus, the Laurent’s series about zo = 2 becomes:
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Imaginary Axis
y

x
Real Axis

Fig. 5.18: Laurent’s Series Expansions in Two Regions

1 o~ (z- 2)n-I

f(z)=~-~ (- lln 4n-I
n=0

convergent in 0 < Iz - 2] < 4.
(b) In the region 2, where ~] >4,or 4/1~11 < 1, onemay factor out "q f romthe

function, such that:
oo

1 1 E ("-4)n
~(n) = n2 0 + 4 / n) = ~- r~= 0 n"

convergent in ¼/rll < 1. Thus, the Laurent’s series representation about a3 = 0 is:

1 oo 4n+2

n=O

convergent in I~II > 4, or, about the point zo = 2 is represented by:

I ~ 4n+ 2
f(z) = ~-ff (-1)n (z "+2

n=O

convergent in Iz - 21 > 4.

(v) Obtain theLaurent’s sedes ofthefollowingfuncfion about z~ = 

1f(z)=
(z-1)(z+2)

valid in the entire complex plane: i.e. lzl < 1; 1 < Izl < 2, and lzl > 2.
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The function f(z) can be factored out in terms of its two components:

1 ~I 1 1 ]
f(z) = (z- l~(z + =’z-- I  z ~ 2"

(a) In the region Izl < 1, the function is analytic thus:

= - E zn convergent in Izl < 1
(z - 1)

n=0

1 1 ’~ (-z)n
convergent in Izl < :2

(z + 2) 2 2n
n=0

and, the sum of the two expansions becomes:

f(z)= -1 ~ [1+ (-1)nlzn... _.-:’:Tw~ ! convergent in Izl < 1
3 n’7_-0L

(b) Expansion of f(z) in the region 1 < Izl 

Since 1/(z+2) is analytic inside Izl = 2, then a Taylor’s series is needed, while 1/(z-l)
is not analytic inside Izl = 2, which requires a Laurent’s series:

I
= E z-n-I convergent in Izl > 1

1"-~(z
n=0

1 =_.I ~-~ (-z)n

(z + 2) 2 "-" 2n
convergent in Izl < 2

n=0

Thus, the addition of the two series converge in the common region of convergence:

f(z) z-n-1 + (-z)n 

_
2n+l

convergent in 1 < Izl < 2

(c) Expansion of f(z) in the region Izl> 

The function 1/(z+2) and 1/(z~l) are not analydc inside and on Izl = 2, thus 
Laurent’s series is necessary for both:

1
/1"-’-’’~(z - = ~ z-n-1

convergent in Izl > 1

n=0

1

)2’’~-(z + = ~ (- 1)n 2n z-n-I
convergent in Izl > 2

n=0
Thus, the series resulting from the addition of the two series converges in the common
region Izl> 2 becomes:
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n=0

convergent in [zI > 2

5.10- Classification of Singularities

An Isolated singularity of a function f(z) was previously defined as a point 0
where f(Zo) is not analytic and where f(z) is analytic at all the neighborhood points 0.
If f(z) has an isolated singularity at 0, then f(z0) can be represented by aLaurent’s series

about zo, convergent in the ring 0 < Iz - z01 < a where the real constant (a) signifies the

distance from zo to the nearest isolated singularity.

The part of Laurent’s series that has negative powers of (z-z0) is called the Principal

Part of the series:

~ bn

n = l’(z --’~o)n

If the principal part has a finite number of terms, then z = z0 is called a Pole of f(z). 

the lowest power of (z-zo) in the principal part is m, then z = zo is called a Pole of

Order m, i.e., the principal part looks like:

m

= 1 (z - Zo)n
If m = 1, zo is known as a Simple Pole. If the principal part contains all negative

powers of (Z-Zo), then z = 0 i s called an Essential Singularity. I f t he function f(z) i

not defined at z = zo, but its Laurent’s series representation about zo has no principal part,

then z = zo is called a Removable Singularity.

Example 5.12

(i) The function:

1
f(z) = z2 _ 

has two isolated singularities zo = + 2. Both singularities are simple poles (see Example

5.1 1-iv-a). 

(ii) The function:

l+z 1 1f(z} =-~-- = 7+~-

has an isolated singularity at z = 0. The singularity is a pole of order 3.



CHAPTER 5 230

(iii) The function:

f(z) : sin(1 / z) = 1__ 1_ 3 + 1 z_5 -....
z 3[

has an essential singularity at z = 0.

(iv) The function:

f(z) = sin(z__)
z

has a removable singularity at z = 0, since its Laurcnt’s series representation about z = 0
has the form:

oo
Z2n

~z~ (-1)n (2n + 1)"--~.f(z)

n=0

with no principal part.
The points z0 = oo in the complex plane would represent points on a circle whose

radius is unbounded. One can classify the behavior of a function at infinity by first
performing the following mapping:

such that the points at infinity map into the origin at ; = 0.

Example 5.13

(i) The function:

1
f(z) = z2 _ 

is transformed by z = 1/~ such that:

1 ;2 1 (4;2)n+1
f(z)= f(;-1)=’~4 = l_-’_-’~=- ~ E

n=0

which is analytic at ; = 0. Thus f(z) is analytic at infinity.

(ii) The function:

f(z) = z + 2

transforms to ~ (;) = ;-2 + ~-1 where ; = 0 is a pole of order two. Thus, f(z) has a pole 

order two at infinity.
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;inary Axis

~" Real Axis
X

Fig. 5.19: Residue Theorem for a Multiply Connected Region

(iii) The function:

Zn

f(z) = z =X

n=O

transforms to:
oo 1

f(~-l): O= n!~n

where ~ = 0 is an essential singularity. Thus ez has an essential singularity at infinity.

5.11 Residues and Residue Theorem

Define the Residue of a function ~f(z) at one of its isolated singularities 0 as the
-1

coefficient b1 of the term (z-z0) in the Laurent’s series representation of f(z) about 0,
where the coefficient is defined by a closed contour integral:

C

and C is closed contour containing only the singularity zo. The representation in eq.

(5.37) can be used to obtain the integral of functions on a closed contour.

Example 5.14

(i) Obtain the value of the following integral:

C

where C is a closed contour containing z = 0. Since the function f(z) -- 3/z is already 
Laurent’s series form, where b1 = 3, then:
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(ii) Obtain the value of the following integral:

dz
~z2 -4

C

where C is a closed contour containing zo = 2 only. Since the Laurent’s series of the

function about z0 = 2 was obtained in Example 5.11-iv, where bI = 1/4, then the integral

can be solved:

= 2rfi ~- = -~i

C

5.11.1 Residue Theorem

If f(z) is analytic within and on a closed contour C except for a finite number 
isolated singularities entirely inside C, then:

~f(z)dz=2~i+ + )(rl r2 +... rn

C

where rj = Residue of f(z) at the jth singularity.

(5.38)

Proof:

Enclose each singularity zj with a closed,contour Cj, such that f(z) is analytic inside

C and outside the regions enclosed by all the other paths as shown by the shaded area in
Fig. 5.19. Then, using Cauchy’s integral theorem, one obtains:

n

~f(z)dz= ~ ~ f(z)dz

C j=Icj

Since each contour Cj encloses only one pole zj, then each closed contour integral can be

evaluated by the residue at the pole zj located within Cj:

~ f(z)dz = 2nirj

Cj

then the integral over a closed path conlaining n poles is given by:

n

~ f(z)dz = 2~i ~ 

c
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Example 5.15

Obtain the value of the following integral:

dz
~(z - 2) (z- 
C

where C is a circle of radius = 3 centered at z0, where z0 is: (i) -2, (ii) 0, (iii) 3 and 

6.
The function f(z) has simple poles at z = 2 and 4. The residue of f(z) at z = 2 is - 

and at z -- 4 is 1/2.
(i) Since there are no singularities inside this closed contour, then:

~f(z)dz = 

C

(ii) The contour contains the simple pole at z = 2, thus:

~ f(z)dz = 2~i(--~) = 

C

(iii) The contour contains both poles, hence the integrals give:

~ f(z)dz = 27zi(-~ 1

C

(iv) The contour contains only the z = 4 simple pole, hence its value is:

~ f(z)dz = 2rti(~) = 

C

To facilitate the computation of the residue of a function, various methods can be
developed so that one need not obtain a Laurent’s series expansion about each pole in
order to extract the value of coefficient b1.

If f(z) has a pole of order m at o, then one can find afunction g(z) such that:

g(z) = (z - zo)m 

where g(z0) ~ 0 and is analytic at 0. Thus, the function g(z) can be expanded in a

Taylor’s series at z0 as follows:

g(z)= g(n)(zo)(Z-z°)n
n!

n=0

Then, the Laurent’s series for f(z) becomes:
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f(z)= g(z) = E g(n)(z°)(z-z°)n-m
(Z - o)m n=O

From this expansion, the coefficient b1 can be evaluated in terms of the (m-l)" derivative

of g:

bt = g(m-1)(z°) (5.39)
(m - 1)!

If f(z) is a quotient of two functions p(z) and q(z):

f(z) = p(z)
q(z)

where the functions p(z) and q(z) are analytic 0 and p(z0) ¢ 0,then one can find the

residue off(z) at o i f q(zo) =0.Since thefunctions p(z)and q(z) are analytic at zo, then

one can find their Taylor series representations about z0 as follows:

p(z)= P(n)(z°)(z-z°)n
n!

n=O

q(z) = ~ q(n)(zo) (z- Zo)n
n!

n=0

Various cases can be treated, depending on the form the Taylor series for p(z) and q(z) 
where p(z0) ¢ 

(i) If q(zo) = 0 and q’ (zo) * 0, then f(z) has a simple pole at o, and:

g(z) = (z- Zo) f(z) P(Z°) + P’(Z°)(z- z°) + "’ "
q’(Zo) + q"(Zo) (z - zo) ] 2 

Thus, the residue for a simple pole can be obtained by direct division of the two series,
resulting in’.

bl = g(zo) = P(z°) (5.40)
q’(zo)

(ii) If q(zo) = 0 and q° (Zo) = 0 and o) ¢ 0, then f(z) has apoleoforder2, where:

p(Zo) + p’(zo) (z- Zo) g(z) = (z - 2 f(z) =
q"(Zo) / 2 + q’(Zo)(Z - zo) / 6 

Dividing the two infinite series to include terms up to (z-z0) and differentiating the

resulting series results in:
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bt = g’ (Zo.__~) = 2p’(Zo) p(zo)q"(Zo) (5.41)1! q"(Zo) 3 [q,,(Zo)]~

(iii) If q(z0) = q’(z0) 0, , q~ml)(z0) ¢’~..... 0, and q (z 0) ¢ 0, then f(z) has a pole

of order m such that:

g(z) = (z - Zo )rn f(z) P(z°) + P’(z°)(z o)+ ...

q(m)(zo) / m[+ q(m+l)(zo)(Z - Zo) / (m 

then, in order to evaluate b1, one must divide the two infinite series and retain terms up to

(Z-Zo)ml in the resulting series. Differentiating the series (m-l) times and setting z = 0
one obtains the value of bl:

b1 = g(m-l)(z°) (5.42)
(m - 1)!

Example 5.16

Obtain the residues of each of the following functions at all its isolated singularities:
Z2

(i) f(z)=
(z + 1)(z- 

At zo = - 1, there is a simple pole, where the residue is as follows:

(-1)2 tr(-1) = g(-1) = (z + 1)f(Z)lz = (-1- 2-’~-~= - ~

At zo = 2, there is a simple pole, where the residue is as follows:

(2) 2 4
r(2) = g(2) = (z - 2)f(Z~z = (2+ 1--~ = ~

eZ

(ii) f(z) 
Z

zo = 0 is a pole of order 3. Therefore, g(z) is defined as:

g(z) = z3f(z) z

and the residue is as follows:

r(0) g’(0~) = 1 e0= 1
2! 2 2

z+l
(iii) f(z) 

sin z

This function has an infinite number of simple poles, Zn = nr~, n = 0, +1, +2 ..... Let
p(z) = z+ 1 and q(z) = sin 

Thus, using the formula (5.40):
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r(nr0=z+~ = nr¢+l
sin’zlnn cos (nr0

-- = (-1)n (nrc + 

5.12 Integrals of Periodic Functions

The residue theorem can be used to evaluate integrals of the following type:

= J F(sin 0, cos 0) (5.43)

0
where F(sin 0, cos 0) is a rational function of sin 0 and cos 0, and is bounded on the path

of integration.
Using the parametric transformation:

z = ei0

which transforms the integral to one on a unit circle centered at the origin, and using the
definition of sin 0 and cos 0, one gets:

sinO= ~i[z- ~] CosO= l[z+-1 ]
2L zJ

and the differential can be written in terms of z:

dO = -i~z (5.44)
Z

The integral in eq. (5.43) can be transformed to the following integral:

= ~ f(z)I

C
where f(z) is a rational function of z, which is finite on the path C, and C is the unit
circle centered at the origin. Let f(z) have N poles inside the unit circle. The integral 
the unit circle can be evaluated by the residue theorem, i.e.:

N
= ~ f(z)dz = 2hi E I (5.45)

C j=l

where rj’s are the residues at all the isolated singularities of f(z) inside the unit circle

Example 5.17

Evaluate the following integral:
2r~

~ 2dO
2+cos0

0
Using the transformation in eq. (5.44), the integral becomes:
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~ 4

dz=!

4
dz

C i(z2 +4z+l)
i(z- Zl)(Z- 

where z1 = -2 + ,~/-~, and z2 = -2 - ff~. Therefore, the function f(z) has simple poles at 1
and z2. Since Izll < 1 and Iz21 > 1, only the simple pole at zi will be considered for

computing the residue of poles inside the unit circle Izl = 1:

4 2
r(zl) = g(-2 + ~/~)= (z- zl)f(zl~ z = zl = ~ = i-~

Therefore:

I 2d0 =2rd( 2 ") 27 os0
0

5.13 Improper Real Integrals

The residue theorem can b’e used m evaluate improper real integrals of the type

I f(x)dx (5.46)

where f(x) has no singularities on the real axis. The improper integral can be defined as:

f(x)dx = Lim f(x)dx+ ff(x )dx
-o~ -A a

where the limits A --) o~ and B--) oo of the two integrals are to be taken independently. 
either or both limits do not exist, but the limit of the sum exists if A = B -) oo, then the
value of such an integral is called Cauchy’s Principal Value, defined as:

P.V. f(x)dx = Lira f(x)dx

If f(z) has a finite number of poles, n, and if, for ~zl >> 1 there exists an M and p > 
such that:

If(z)l < Mlzl-p p > 1 Izl >> 1

then:

n

P.V. f(x)dx = 2~ (5.47)

where the rj are the residues of f(z) at all the poles of f(z) in the upper half-plane. Let R
be a semi-circle in the upper half plane with its radius R sufficiently large to enclose all
the poles of f(z) in the upper half plane (see Fig. 5.20).

Thus, using the Residue Theorem, the integral over the closed path is:
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Imaginary Axis

Y

-R R
~" Real Axis

X

Fig. 5.20: Closed Path for Improper Integrals

R n

~f(z)dz= f f(x)dx+ ~ f(z)dz=2r~i~ 

C -R CR j = 1

The integral on the semi-circular path CR can be shown to vanish as R --> ~0. On this

path, let:

z = Rei0

then the integral over the large circle can be evaluated as:

~~ f(z)~ = 12! ff~ei°)i Rei° d01 < r~Rlf~ei° Imax.< ~p~-

Thus, since p > 1, the integral over CR vanishes:

RL~mI~ f(z) dzl --> 
CR

Example 5.18

Evaluate the following integral:

I dx
x4+x2+l

0

If the function f(z) is defined as:

~2
f(z) = Z4 + z2 + 

then:
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1
If(z)l ~ ~ when Izl >> ~

hence p = 2 and the integral over CR vanishes. The function f(z) has four simple poles:

l+i’~ -1+ i-x/~ 1 - i-~/’~ -1-i-~
Z1 - Z2 = Z 3 = ~ Z4 =

2 2 2 2

where the first two lie in the upper half plane. The residue of f(z) at the poles 1 and z2
becomes:

l+i-~) 1+ ia/’~
r(zl = --2 = z~z~Lim (z - 1)f(z) =4i-~-

= 1-i4 
r(z2 = -1 Lira (z - 2)f(z) =4i-~-~-

2 z--,z2

Thus, using the results of eq. (5.47), the integral can be evaluated:

x2 1 x2 1 _ .F1 + ia/’~ 1-i~/-~]_ ~
dx=- f x4 x 2 dx=’~2~lk 4"~+- x~ + x2 + 1 2 + + 1 4i’~ ]- 2~/~

0 "-~

5.14 Improper Real Integrals Involving Circular Functions

The residue theorem can also be used to evaluate integrals having the following form:

~f(x) cos(ax) dx for a 

~f(x) sin(ax) for a > 0

~ f(x)eiax dx for a > 0 (5.48)

where f(x) has no singularities on the real axis and a is positive. Let f(z) be an analytic
function in the upper half plane except for isolated singularities, such that:

[f(z)[ < Mlzl-p where p > 0 for Izl >> 1

Since the first two integrals of eq. (5.48) are the real and imaginary parts of the integral 
eq. (5.48), one needs to treat only the third integral.

Performing the integration on f(z) iaz on the closed contours shown in Fig. 5 .20,
then:
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Fig. 5.21: Approximation for Jordan’s Lemma

R

~f(z)eiaZdz = f f(x)eiaXdx+ f f(z)eiaZdz

C -R CR

One must now show that the integral vanishes as R --> ~. This proof is known as
Jordan’s Lemma:

Lira ~ f(z)eiaZdz --* 
R-->,~ CR

Let z = R ei° on CR, then the integral becomes:

j" f(Rei0) eia Rei° ei0 iR dO = iRf f(Rei0) eiaR[c°s0+i sin 0]ei0d0

0 0

Thus, the absolute value of the integral on CR becomes:

f f(z)eiaZdz =R f(Rei0)ei[aRc°s0+0le-aRsin0d0 < e-aRsin0d0

CR

The last integral can be evaluated as follows:

~ ~/2 rtt2

~e-aRsin0d0=2 J" e-aRsin0d0<2 ~ e-2aR0/~d0= ~._~_(a_e-aR) aR
0 0 0

where the following inequality was used (see Fig. 5.21):

2O
sin 0 _> -- for 0 < 0 < ~z/2

Thus:
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which vanishes as R --) ,,~, since a > 0 and p > 0. It should be noted that the integral
becomes unbounded if a < 0, or equivalently, if a > 0 and the circular path is taken in the
lower half plane. Thus:

00 N
P.V. ~ f f(x)eiax dx = 2r:i 2

P.V. ff(x)cos(ax)dx Re2~i2 rj =- 2~lm    rj

k j=l J kj=l J

P.V. f(x) sin(ax) dx lm2hi2 rj = 2~ Re rj (5.49)

L j=l Lj= .J
where the rj’s represent the residues of the N poles of {f(z) iax} i n the upper half plane~

Example 5.19

Evaluate the following integral:

f cosX
0

Since f(z) = 4 + !) "1, then If(z)l _<"P on CR for R >>1,where p = 4 and a = 1.

The function f(z) has four simple poles:

l+i -l+i -1-i 1-i
z 1=~ z2=~ z3= ~ z4=’~"

where the first two lie in the upper half plane, note that Zl4 = z24 = -1. Thus, the integral

can be obtained by eq. (5.49):

1 cos_..~.x dx - -rdm [r l + r~]

where the residue, z1 is calculated from p/q’ for simple poles: ,

and similarly for the second pole z2:
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_ ~ I- i c_(i+~)/~f~r(z2)= 4 =4-~

Thus, the integral I can be solved:

nm m
I = -~- e- [cos m + sin m]

5.15 Improper Real Integrals of Functions Having
Singularities on the Real Axis

Functions that have singularities on the real axis can be integrated by deforming the
contour of integration. The following real integral:.

b

where

b

f(x)dx

f(x) has a singularity on the real axis at x = c, a < c < b is defined as follows:

[ci 
I

ff(x)dx=Lima e-~o a f(x)dx+ i Lcj’+ f(x)dx
The integral on [a,b] exists iff the two partial integrals exist independently. If either or
both limits as e "-> 0 and 8 --> 0 do not exist but the limit of the sum of the two integrals

exists if e = 8, that is if the following integral:

Lim f(x)clx

f(x)dxe~°L c + e

exists, then the value of the integral thus obtained is called the Cauchy Principal
Value of the integral, denoted as:

b

P.V. ~ f(x)dx

-a

Example 5.20

(i) Evaluate the following integral:

2

~x-1/3dx

-1

Note the function f(x) -- "lt~ i s singular at x = 0.Therefore:
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2

J~X-1/3

(ii) Evaluate the following integral:

2

~x-3dx

-1
-3

The function f(x) = x is singular at x = 

-11x-~ _a_l x-3dx a~0|L0a+~

:± im[l- l+±umF4-11
2 ~--,oL ~ ] 2 ~-~oL8~ 4J

Neither integral exists for E and 5 to vanish independently. If one takes the P.V. of the
inte~a]:

P.V. x-3dx =Lira x-3dx + x-3dx = ~

~°L ~1
8

-1 - O+e

Improper integrals of function on the real axis

~ f(x)dx

where f(x) has simple poles on the real axis can be evaluated by the use of the residue
theorem in the Cauchy Principal Value sense.

Let xl, x2 .... xn be the simple poles of f(z) on the real axis, and let 1, z2 . .... z m be

the poles of f(z) in the upper-half plane. Let R be the semi-circular path with aradius

R, sufficiently large to include all the poles of f(z) on the real axis and in the upper-half
plane. The contour on the real axis is indented such that the contour includes a semi-
circle of small radius = e around each simple pole xj as shown in Fig. 5.22.

Thus, one can obtain the principal value of the integral as follows:

fXl_~Rl~ f x2~ -1~ i ~ m
+ + +f +...+ +J" f(z)dz= f(z)dz=2~iZrj

C1 x 1 + 8 C2 x n + e CR j = 1
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Imaginary Axis

Y

-R Xl x2 xn R
#" Real Axis
X

Fig. 5.22: Closed Path for Improper Integrals with Real
and Complex Poles

where the contours Cj are half-circle paths in the clockwise direction and rj’s are the

residues of f(z) at the poles of f(z) in the upper half plane at zj. The limit as R --) co 

e --) 0 must be taken to evaluate the integrals in Cauchy Principal Value form on R and

onCjforj=l, 2 ..... n.
If the function f(z) decays for [z[ "-) co as follows:

If(z)l < Mlzl-p where p > 1 for Izl >> 1

then, it was shown earlier that:

Since the furiction f(~) has simple poles on the r~al axis, then in the neighborhood 
each real simple pole Xj, it has one term with a negative power as follows:

f(z)= rj +g(z)

where g(z) = the part of f(z) that is analytic at xj, and rj* are the residues of f(z) 

Thus, the integral over a small semi-circular path about xj becomes in the limit as

the radius e -> 0:

Lim S f(z)dz = Llmlrj f dz S ] 
¯ * ~ + g(z) dz = -Tzlrj

e--+0 e-~0/ ~ z-x3
Cj L Cj Cj

where the results of Example 5.6 were used.
Thus, the principal value of the integral is given by:
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P.W.

oo m n

--~ j=l j=l

(5.50)

Example 5.21

Evaluate the following integral:

~ +a2) [Y~x(x 2 + a2) dx~

--~ x(x2

fora> 0

eiz
The function z(z2 + a2) has three simple poles:

x1 = 0, z~ = ia, z~ = -ia

To evaluate the inte~al, one needs to evaluate the residues of ~e approp~ate poles:

(z- ~)e~z _q (Zl) = z(z2 + a2) z I = ia 2a2 ea

z eiz

r;(xl) = z~z~--a2)’lz= x1 =0

Thus:

P.V. f sin x
X(X2 + a2)

1

dx = lm[2ni{2a~ea } + ~zi{~2 }] = ~-2 [1 - e-a]

5.16 Theorems on Limiting Contours

In section 5.13 to 5.15 integrals on semi-circular contours in the upper half-plane
with unbounded radii were shown to vanish if the integral behaved in a prescribed manner
on the contour. In this section, theorems dealing with contours that are not exclusively in
the upper half-plane are explored.

5.16.1 Generalized Jordan’s Lemma

Consider the following contour integral (see Fig. 5.23):

f eaZf(z)dz

CR

where a = b e~c, b > 0, c real and CR is an arc of circle described by z = Rei0, whose radius

is R, and whose angle 0 falls in the range:
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Imaginary Axis

r Real Axis
x

Fig. 5.23: Path for Generalized Jordan’s Lemma

37~

2 2

Let If(z)l -< M [zl-p, as [z[ >> 1, where p > 0. Then one can show that:

Lira I eaZf(z)dz "~ 0

CR

The absolute value of the integral on CI~ becomes:

21 c ea Re~° f(Rei0)i Rei0 dO

= R~ i

2

~~ ebRe ~ ei0f(Rei0)d0~ N R ~1 f ebRe°s(c+0) 

~(1 - e-b~)~b

(5.51)
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as has been shown in Section 5.14. Thus, the integral over any segment of the half circle
CR vanishes as R --> oo. Four special cases of eq. (5.51) can be discussed, due to their

importance to integral transforms, see Fig. 5.24:

(i) Ifc = ~t/2, eq. (5.51) takes the form:

Lim f eibzf(z)dz --> 
R-->oo

CR

where CR is an arc in the first and/or the second quadrants.

(ii) Ifc = - ~/2, eq. (5.51) takes the form:

Lim f e-ibzf(z) dz ---> 
R--->oo

CR

where CR is an arc in the third and/or the fourth quadrants.

(iii) Ifc = 0, eq. (5.51) takes the form:

Lim f ebZf(z)dz --> 

CR

where CR is an arc in the second and/or the third quadrants.

(iv) Ifc = r~, eq. (5.51) takes the form:

Lira f e-bZf(z) dz --> 
R-->~

CR

where CR is an arc in the fourth and/or the first quadrants.

The form given in (iii) is known as Jordan’s Lemma. The form given in (5.51) is 
Generalized Jordan’s Lemma.

5.16.2 Small Circle Theorem

Consider the following contour:

~ f(z)dz

Ce

where Ce is a circular arc of radius = e, centered at z = a (Fig. 5.24). If the function f(z)

behaves as:

M
Lim If(z)[ _< 
e--~O

or if:

Lira ~f(a + ~eiO)---~ 
e--~O

for p< 1
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Imaginary Axis

CE

Fig. 5.24: Closed Path for Small Circles

then:

Lim ~ f(z)dz --> 
~-->0J

Ce

Let z = a + e ei°, then:

f(a + ~ e~°)i~e~O f(z)dz = 

[ c

_ I~p_1
dO = M~I-p

Thus:

if p< 1

Real Axis

5.16.3 Small Circle Integral

If f(z) has a simple pole at z = a, then:

f f(z)dz = c~ir(a)Lira
E---~0

Ce

where Ce is a circular arc of length ~e, centered at z = a, radius = e, (Fig. 5.24), r(a) is 

residue of f(z) at z = a, and the integration is performed in the counterclockwise sense.
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Since f(z) has a simple pole at z = a, then it can be expressed as a Laurent’s series
about z = a:

f(z) = r(a___~_) + 
z-a

where g(z) is analytic (hence bounded) at z = a. Thus:

f f(z)dz=r(a)f d.__~_z + f g(z)dz=~ir(a)+ 
z-a

Ce Ce Ce Ce

where the results of Example 5.6 were used. Also:

Lim f g(z)dz =Lim f g(a+eei~)ieeiOdO _<Lim(Mae)-~O
e-+0 o e--+0 e--~0

Ce c

then the integral over the small circle becomes:

5.17 Evaluation of Real Improper Integrals by Non-Circular
Contours

The residue theorem was used in Section 5.13 to 5.15 to evaluate improper integrals
by closing the straight integration path with semi-circular paths. In this section, more
convenient and efficient non-circular contours are used to evaluate improper integrals.

If a periodic function has an infinite number of poles in the complex plane, then to
use the Residue Theorem and a circular contour, one must resort to summing an infinite
number of residues at the poles in the entire half-plane. However, a more prudent choice
of a non-circular contour may yield the desired evaluation of the improper integral by
enclosing few poles.

Example 5.22

Evaluate the following integral:

oo~ eax

I= / --dx 0<a<l
l+ex

The function:
eaz

f(z) = 
l+ez

has an infinite number of simple poles at z = (2n + 1) ~ti, n = 0, 1, 2 .... in the upper
half-plane. Choose the contour shown in Fig. 5.25 described by the points ~R, R,
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C2

Imaginary Axis

Y

2r~i ,~

R
Real Axis

Fig. 5.25: Closed Path for Periodic Integrals

R+2~i, -R+2~i, which encloses only one pole. The choice of the contour C2 was made

because of the periodicity of ez = ez+2~i.

Thus, the contour of integration results in:

R

~ f(z)dx+ ~f(z)dz+ f f(z)dz+ ~f(z)dz=2~ir(~)

-R C1 C2 C3

The integral on C1 is given by z = R + iy

~1eaz I!r~ ea(R+iY) ̄  idy < 2xeR(a-1)
l-~ez dz = 1+ eR+~y

and consequently:

Lira [ f(z)dz --> since 0 < a < 1

C1

Similarly, the integral over C3 also vanishes.

The integral on C2 can be evaluated by letting z = x +2r~i:

eaz R ea(X+2~i) R

~ 1-’~ezdZ= ~ a+eX+2ni
C2 -R

The residue of f(z) at r~i becomes:

r(r~i) = e.~ = _ ea~
eZlz = ni

eax

~ dx = -e 2nia Idx = - e2~ia f
1 ex+

-R
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Imaginary Axis
Y

Real Axis

Fig. 5.26: Closed Path for Periodic Integrals

Thus, as R -->

I - e2nia I = 2~i (-enia )

I = 2~i (enia) =
e2nia - 1 sin(an)

The evaluation of improper integrals of the form:

j" f(x) 

0

where f(x) is not an even function, cannot be evaluated by extending the straight path 
[-oo,~]. Thus, one must choose another contour that would duplicate the original integral,
but with a multiplicative constant.

Example 5.23

Evaluate the following integral:
oo

j’dxI= x3 +1

0

Since the integral path cannot be extended to (_oo), then it is expedient to choose the
contour as shown in Fig. 5.26. The path C1, where 0 = 2~r/3, was chosen because along

that path, Z3 : (10 e2~ti/3) 3 = ~)3 and is real, so that the function in the denominator does not
change.

The function f(z) = 1/(z3+l) has three simple poles:

1 + i~f~ 1- i~f~
Z 1 = ~, Z2 = -1, and z3 -2 2
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where only the zI pole falls within the closed path. The integral over the closed path

be~om~:

Sf(x)dx S
0 CR

where the residue r(zl) is:

f(z)dz+ S f(z)dz=2nir(zl)

C1

r(zl)=3z-~2 =3z-~3 = Zl- ~
z=zI

z=z1 -~--- (l+i~/’~)=-3ein/3

Since the limit of If(z)l goes to 1JR3 as R -~ ~ on CR, then, by use of results of Section

5.16, with p = 3:

Lim f f(z) dz --> 
R--->,~

CR

The path C1 is described by z = p e2ni/3, the integral across the path becomes:

R

_J f(z)dz _J (pe2~i/3)3 +1 dp: -
C1 R 0

Thus, as R --)

I- e2ni/3 1 = - 2r~i eni/3
3

2~i exi/3
I= 3 e2~i/3-1 3sin(~/3) 3.~f~

$.18 Integrals of Even Functions Involving log x

Improper integrals involving log x can be evaluated by indenting the contour along
the real axis. The following integral can be evaluated:

Sf(x) log 

0

where f(x) is an even function and has no singularities on the real axis and, as Izl .--)
If(z)l < M Izl-P, where p > 1.

Since the function log z is not single-valued, a branch cut is made, stinting fi:om the
branch point at z = 0 along the negative y-axis. Define the branch cut:

~ 3~
z=pei°, p>0, ---<0<w

2 2

where the choice was made to include the 0 = 0 in the range. Because of the branch point,

the contour on the real axis must be indented around x = 0 as shown in Fig. 5.27.. Let
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Imaginary Axis
Y

Branch Cut

Real Axis

Fig. 5.27: Closed Path for Logarithmic Integrals

the poles of f(z) in the upper-half plane be 1, z2 . .... z m. Let CR be asemi-circular

contour, radius = R and CO be semi-circular contour radius = e in the counter clockwise

sense. Thus, the integral over the closed path becomes:

in
~ f(z)logz dz = {L~I-C~o +j2 + ~ }f(z)logz dz = 2~iCR rj(zj). 1

where rj’s are the residues of [f(z) log z] at the poles of f(z) in the upper-half plane. 

integral on CO in the clockwise direction can be evaluated where z = eei°:

Thus, since the liinit of f(z) is finite as z goes to zero, then:

f f(z) log z dz Liin 0
~--~0

Co

The integral on CR can be evaluated, wher~ z = R

which vanishes when R --> ~, so that:
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Lim | f(z) log z dz -~ since p > 1
R-~,**

CR

The integral on L1 can be evaluated as follows:

z=pein=-p dz:-dp

log z = log p +i~

~ f(z)logzdz =-j" f(-p)[log0 + ix]d0

L 1 R

The integral on L2 can be evaluated in a similar manner:

z = O dz = dp log z = log O

R

~ f(z)logzdz= ~ f(0>logDd0

L 2 e

The total integral, after substituting if-0) = f(0), becomes:

R R m

2~ f(p)logpdp + ix~ f(p)dp = 2~i 

j=l

Taking the limits e --) 0 and R --) .0 one obtains upon substituting x for 

~ ~o m

~ f(x) logxdx=---i~ f f(x)dx + r~i (5.53)
2

0 0 j=l

If the function f(x) is real then the integral of f(x) log x must result in a real value. 
integral on the right side is also real, hence this term constitutes a purely imaginary
number. For a real answer, the imaginary number resulting from the integral term must
cancel out the imaginary part of the residue contribution. Thus, one can then simplify
finding the final answer by choosing the real part of the residue contributions on the right
side of equation (5.53), i.e.:

f f(x)logxdx:Re /fi ~ rj :-r~Im rj

0 L j:l ] Lj=l j

Example 5.24

Evaluate the following integral:

~logx dx
x2 +4

0
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The function f(z) = 1/(z2 + 4) has two simple poles at:

z1 = 2i = 2 ein/2, z2 = -2i

The residue at z1 is:

r(2i) = log 
2z z = 2i

also f(x) is real and:

1
If(R)] < -- with p = 2, for R >> 1

Rp

Thus:

,o x I. =- i__~.n d.__._~_x + in -
X2 + 4 taX 2 X2 + 4 -ff 1 ~---J

0 0

since:

fd~x n
x2+4 =~

0

then:

f logx , i~ ~ . ~ .log2 ~

0

_ log(2i) ~ii .n ~ il°g2
- 4-----~ = (log2 + ~) =-if- 

It is thus shown that the imaginary parts of the answer cancel out since fix) is a real
function. Or, one could use the shortcut, to give:

f x2 + 4 ux -t--~--] = ~- log 2
0

If the function f(x) has n simple poles on the real axis, then one indents the contour
over the real axis by a small semi-circle of radius e, so that the path integral becomes:

{-~ j--~l R m
+ f+f +f+f .f(z)logzdz=2rtiZrj(zj)

Cj Co e CR
j=l

where the function has m poles at zj in the upper half plane as well as n simple poles at xj

on the real axis, and Cj are the semicircular paths around xj in the clockwise direction.

Each semi-circular path contributes - in rj* (xj) so that the integral becomes:

~f(x)logxdx=-2 f(x)dx+ni q*(xj/ (5.54)
0 0 j=l j=l
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Once again if f(x) is real then the integral of f(x) log x must be real and equation (5.54)
can be rewritten:

~ f(x’ l°g x dx = - r~ Im [j--~l rj(zJ’ + ~ j --~lr~ (xJ)]0

Example 5.25

Evaluate the following int~gral:

~logx dx

x2 -4
0

The function has two simple poles at x = + 2 and no other poles in the complex plane.
Since the branch cut is defined for - r~/2 < 0 < 3r~/2, then these are described by:

xI =-2=2ein, x2=2ei0

The residues at xI and x2 are:

= 1 . ~ log2
r* (2ein) log zl = - (log 2 + in) = 

z-21z=-24 4 4

r*(2e°) = l°g_zI = ¼(log2)
z+:Zlz= 2

Since f(x) is real the integral has the following solution:

=-5Im rj*(xj) =-~Im -i-~ ~ ~--~.-.~=~-~f(x) logx 

0

Integrals involving (log x)n can be obtained from integrals involving (log x)k, k = 0,
1, 2 ..... n-1. The following integral can be evaluated:

~f(x) (log n dx

0

where n = positive integer, f(x) is an even function and has no singularities on the real
axis and:

M
If(z)l-<- p > 1, for Izl >> 1

Using the same contour shown in Fig. 5.27, then one can show that:

m

{~l-Jo+~+~ } f(z)(lOgz,ndz:2ni~rj(zj)L
2 CRj=l
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where the rj’s are the residues of {f(z) (log n} atthepoles of f(z)in the upperhalf plane.

The integral on CO can be evaluated, where z = e ei°:

~ f(z)(logz) n dz

CO

f f(e i°) (log ~+ i0nie ei°dO

0

n ~zn_k+ln! k
<lf(Eei0)Co8 (nk!l l°gel

k=0

Since the limit as z -> 0 of f(z) is finite and the limit as e -> 0 of e (loge)k -> 0, then the

integral on the small circle vanishes, i.e.:

Lim f f(z)(logz) n dz ---> 0
e-->0

CO

The integral on CR can also be shown to vanish when R -> ~. Let z = R ei° on CR:

f f(z)(logz) n dz = f(ReiO)(logR +iO)n irei~

CR

n 7zn_k+ln!< M E (n_k+l)!k!(l °g R)

-RP-~ k=O

R

f f(z)(l°g z)n dz = f f(x) x)ndx

L2 e

Thus, the total contour integral results in the following relationship:

Since:

Lim
II°gRIk

+0 for p> 1
R-->~’ Rp-1

then the integral on CR vanishes:

Lim f f(z)(logz) n dz--> 0
R--->~

CR

Following the same integration evaluation on L1 and L2 one obtains:

R R nf f(z)(logz)n dz= f f(-x)(logx + ire)n dx= f f(x)k~__0(n(i~)n-k n!- k)!k! (l°gx)k 

L1 e e



CHAPTER 5 258

~ m
1 ~.I , n-k ~

f ~ ~f f(x)(logx)k (5.55)f(x)(1ogx)n dx = ~ti ~ 
tn - k).’K.,~

0 j=l k=0 0

Thus the integral in (5.54) can be obtained as a linear combination of integrals involving
(log x)k, with k = 0, 1, 2 ..... n - 1.

Example 5.26

Evaluate the following integral:

f dx
~ x~+4
0

fix) has two simple poles at +2i and -2i. Using the resul~ of Example (5.24), and 
(5.55):

x~ + 4 dx = i~ r(2i) 
(i~) 2 f(x)dx + 2ig f(x) logx 

0

~e residue can be derived as:

2z 2i 4i

Using the results of Example 5.21 and eq. (5.55):

~x~+4 4
0 0

so that:

~ x)2 { ~(@)4 } ~{ [ 0o? dx = i~ - Oog ~ - + ~ ~o~ ~ - (i~ ~ f~l + ai~ lo~ ~1~ x~+4 4 4
0

=~[(log2) ~ + ~

Or, since fix) is real, the integral of f(x) must be real, there%re only the real p~ of 
right side needs to be computed, i.e.:

~ (l°gx)2 dx =-nlm[r(2i)]+ ~2 f 1 
~ x~ + 4 ~ ~ ~

Oog 2): +
0 0

= ~[(Iog2)2 + 
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Imaginary Axis

Y

¯

Fig. 5.28: Closed Path for Integrals with xa
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Branch Cut

F RealAxis
x

5.19 Integrals of Functions Involving xa

Integrals involving xa, which is a multi-valued function, can be evaluated by using
the residue theorem. Consider the following integral:

OO

~ f(x)xa a > (5.56)dx -1

0

where f(x) has no singularities on the positive real axis, and a is a non-integer real
constant. To evaluate the integral in (5.56), the integrand is made single-valued 
extending a branch cut along the positive real axis, as is shown in Fig. 5.28, such that
the principal branch is defined in the range 0 < 0 < 2~. Let the poles of f(z) be z], 2 . ...

zm in the complex plane and:

MIf(R)l _< with p> a+l, for R >> 1

The contour on C] is closed by adding a circle of radius = R, a line contour on C2

and a circle of radius = e, as shown in Fig. 5.28. The contour is closed as shown in such

a way that it does not cross the branch cut and hence, the path integration stays in the
principal Riemann sheet. Thus:
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m

where rj’s are the residues of {f(z) a} at t he poles of f (z) i n the entire complex plane.

The integral on CO can be evaluated, where z = ~ el°:

if f(z)zadz= ! f(Eei0)Eaeia0il~ei0d0<2~zlf(Eei0)lCoEa+l

[Co
Thus, since the limit of f(z) as z goes tO zero is finite, and a > -1, then:

Lira ~ f(z) adz --> 0
~--~0

CO

The contour on CR can be evaluated, where z = z = R ei°:

f(z)z adz = f(Rei°)Rae ai0 iRei0 dO RP_a_l

Thus:

Lim f f(z)zadz-~0 since p > a+l
R --->~,

CR

Since the function za : 0a on L1 and za = (0 e2ir~)a = ~a e2i~ on L2, then the line integrals

on L1 and L2 become:

R

f f(z)zadz=ff(x)xadx

L1 ~

R

S f(z)zadz=ff(pe2~)pae2rt~adp=-e2~a f(x)xa dx
L2 R e

Thus, summing the two integrals results in:

oo m m
2~z~i 7z e-a~ti ~ rj

f f(x) Xa dx = 1 - e2xai X rj : sin(an)

0 j=l j=l

(5.57)



FUNCTIONS OF A COMPLEX VARIABLE 261

Ima ~mary Axis
Y

CR

Co o ci ci c~ / ~
J " ~ ~~~~--r Real Axis

R R X

Fig. 5.29: Closed Path for Integrals with xa and Real Poles

Example 5.27

Evaluate the following integral:

~
xl/2

x--~S+ 1dx
0

Let f(z) = 1/(z2 + 1), which has two simple poles:

zI = i = ein/2 z2 = -i = e3ird2

where the argument was chosen appropriate to the branch cut. The residues become:

z1/2 1__ ei~/4 z1/2 = _ 1__ e3ir~/4
q(i) =-~zi = 2i r2(i) =-~-z 2i

Since a > -1 and:

1
If(z)l as [z] >> 1 where p = 2 > 1/2 +1

Rp

then the integrals on CR and CO vanish as R --> ,~ and e --> 0 respectively. Thus:

~ x1/2 = 2~:i. r~l (ei;~/4 -e3in/4)]--~cos(~14)~x-~+l dx 1-ert~L2i"
-

0
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If f(x) has simple poles at xj on the positive real axis then one can indent the contour

on the positive real axis at each simple pole xj, j = 1, 2 .... n, as shown on Fig. 5.29¯

One can treat one indented contour integration on Cj and Ci . Since xj is a simple pole of

f(x), then its Laurent’s series about xj is:

f(z)= rj + ~ ak(Z-XJ)k
Z-Xj k=0

where rj is the residue of f(z) at the simple pole xj. Because the pole falls on a branch cut,

then its location must be appropriate to the argument defined by the branch cut. Thus,
for the pole above the branch cut, its location is xj. For the pole below the branch cut,

its location is given by xj eTM.

On the contours Ci , let z-xj = e ei°:

01- r. ~’ ]

=!l
"J’^+

__~0 J
ei°)aieei°f f(z)zadz ak(eeiO) (xj +e dO

e e10
k

Lim f f(z)z adz = -i~z(xj) a rj
~-->0

ci
The contour on Cj can be treated in the same manner¯ Let z - xj e2hi = 13 ei0 then:

Lim f f(z)z adz = -i~(xj) a e2nairj
e--->0

cj

Thus, the sum of the integrals on Cj and C~ becomes:

{~+f }f(z)zadz=-i~r;(xj)(l+e2naj)c3 cj

where the rj s are the residues of {f(z) a} at t he poles xj o n Lr Thus:

ff(x)xadx= 2~i ~i (l+e2Zai) ~ *1 - e2nai rj ~ 1 - e2~tai rj

0 j=l j=l

m n

-~ e-ani ~ rj +~cotan(Tza)~ 
sin(a~)

j=l j=l

(5.58)
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5.20 Integrals of Odd or Asymmetric Functions

In order to perform integrations of real functions, either the integrand is even or the
integral is defined initially over the entire x-axis. Otherwise, one cannot extend the semi-
infinite integral to the entire x-axis. To use the residue theorem for odd or asymmetric
functions, one can use the logarithmic function to allow for the evaluation of such
integrals. Consider a function f(x), a real function without poles on the positive real axis
and with n poles in the complex plane behaving as:

1If(z)I - -- as Izl >> 1 where p > 1

then one can evaluate the following integral:

f f(x) 

0

by considering first the following integral:

f f(x)logx 

0

Using the contour in Fig. 5.28, one can write the closed path integral:

n

~f(z)l°gzdz:{Lfl+ f +f +f }f(z)l°gzdz=2rfij_~lrJ(ZJ)cR 2 Ce  -

where rj is the residue of [f(z) log z] at the poles Zj of f(z).

The integrals on L1 and L2 become:

Path L1

z = p dz = dp log z = log p

Path L2

z = p e2in = p dz = dp log z = log p + 2in

The integrals over CR and Ce vanish as R --) oo and e -> 0, respectively. Thus, the

integrals are combined to give:

0 n

f f(p)logpdp+ f f(p)[logp+ 2in]dp = 2rti 

0 ,~ j=l

so that the integrals with f(x) log x cancel, leaving an integral on f(x) only:

n

f f(x)dx = - ~ (5.59)

0 j=l
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Example 5.28

Obtain the value of the following integral:

j’dx
x5+l

0

Following the method of evaluating asymmetric integrals, and using the prescribed branch
cut, one only needs to find the residues of all the poles of the integrand. The integrand
has five poles:

z1 = ei~/5, z2 = ei3~/5, z3 = ei~, z4 = e7in/5, z5 = e9ir~/5

The choice of the argument for the simple poles are made to fall between zero and 2n, as
defined by the branch cut. The residues are defined as follows:

= zlogz __lz.
r(zJ)=~Zlzj 5z5 zj- 5 jl°gzJ

Therefore, the integral equals:

’= e~n/5 + 3e3in/5 + 5e~n + 7e7in/5 + 9e9in/5 }

0

= 8n sin(~ / 5) (1 + cos(Tz / 
25

5.21 Integrals of Odd or Asymmetric Functions Involving
log x

In Section 5.18, integrals of even functions involving log x were discussed. Let f(x)
be an odd or asymmetric function with no poles on the positive real axis and n poles in
the entire complex plane and:

1If(~,)l_ where p > 1 R >> i

To evaluate the integral

J" f(x) log 
dx

0

one again must start with the following integral:

J
" f(x) :z dx

(log

0

evaluated over the contour in Fig. 5.28. Thus, the closed contour integral gives:
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n

where rj are the residues of [f(z) (log Z)2] at the poles of f(z) in the entire complex plane.

On the path LI:

z = p dz = dp log z = log p

and on the path L2:

z = p e2in = p dz = do log z = log p + 2i~

The integrals over CR and Ce vanish as R -) ,,o and e "-) 0, respectively. Thus:

~ f(o)(logp) 2 do- f f(o)[logp + 2i~]2 d0

0 0

oo n

= -4~if f(o)logodo+4~2 f fro)do= 2~i Z rj(zj)

0 0 j=l

Rearranging these terms yields:
oo oo n

/f(x)logxdx =.-iztj" f(x)dx--12 Z rj(zj) 

0 0 j=I

If f(x) is not real then the integral of fix) must he evaluated to find the value of 
integral of f(x) log x. However, if fix) is real, then the integral of fix) must be real 
well and hence the imaginary parts of the right hand side must cancel out, then eq. (5.60)
can be simplified by taking the real part:

~ f(x)log x dx -- -½ Re rj(zj)

0 ’=

Example 5.29

Evaluate the following integral

f log~x.
x3 + 1 ax

0

Following the method of evaluating asymmetric function involying log x above, one
needs to find all the poles in the entire complex plane. The function has three simple
poles:

Z1 = ein/3, z2 = ein, Z3 = e5i n/3

The choice of the argument for the simple poles are made to fall between zero and 27z, as
defined by the branch cut. The residues off(z) (log 2 are defined asfol lows:
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(log z)2 = z(log z)2 ] 1
r(zj)= 2 zj

3z3 Izj=-’~ zj(IOgzj)2

The sum of the residues is: 23
1 ( i~/3.~ . iz~. 7~2 2

Z rj(zj)=-~e I.-ff-)+e ~,Tz )+eSin/3(25---~-) =-4-~-7 (1-3af~ii)
j=l

and the integral of f(x) is:

0

Thus, the integral becomes:

7 logx . { 2n) l(4~Z 2 .4~t2) 2rr2j
0

However, since the integrand is real, then the integral can also be evaluated as:

f logx dx = _1 Re~4~2

} 27z2a x3 +’---]" 2 l-~-(1- 3-f~i) = 

5.2 2 Inverse Laplace Transforms

More complicated contour integrations around branch points are discussed in the
following examples of inverse Laplace transforms:

Example 5.30

Obtain the inverse Laplace transforms of the following function:

f(z) a > 0
z-a2

The inverse Laplace transform is defined as:

1 ~, + ioo

f(t)=~ f f(z) ztdz
t>0

where ), is chosen to the right of all the poles and singularities of f(z), as is shown in Fig.

5.30. Since ~/~ is a multi-valued function, then a branch cut is made along the negative
real axis starting with the branch point z = 0. Note that the choice of the branch cut must
be made so that it falls entirely to the left of the line x = y. Hence it could be: taken along

the negative x-axis (the choice for this example) or along the positive or negative y-axis.
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Branch Cut

Imaginary Axis

Y ~

CR iR
L3

R " a2

L4

-iR

y+iR

,-iR

~" ReaI Axis

x

Fig. 5.30: Closed Path for Inverse Laplace Transform

The branch cut is thus defined:

z = p el* p > 0 - 2nn - ~ < ~ < - 2nn + 7z n = 0, 1

The angular range is chosen so that the ~ = 0 is included in the top Riemann sheet. The

top Riemann sheet is defined by n = 0 so that:

~ =19 1/2 ei~/2 19 > 0 - 71: < ~ < n n = 0

and the bottom Riemann sheet is defined by:

-~ = p 1/2 ei~/2 p>0 -3~<(~<-~ n=l

The two sheets are joined at ~) = -r~ as well as the ~z and -3~ rays. This means that as

~ increases without limit, the ~ is located in either the top or bottom Riemann sheet.

The original line path along ~’ - iR to ~’ + iR must be closed in the top Riemann

sheet to allow the evaluation of the inverse transform by the use of the residue theorem.
To close the contour in the top Riemann sheet, one needs to connect 5’ + iR with straight

line segments L3 and L4. These are then to be connected to a semi-circle of radius R to

satisfy the Jordan’s Lemma (Section 5.16). However, a continuous semi-circle on the
third and fourth quadrants would cross the branch cut. Crossing the branch cut would
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result in the circular path in the second quadrant being continued in the third in the
bottom Reimann sheet where the function ~ would have a different value.
Furthermore, one has to continue the path to close it eventually with L4 .in the top

Reimann sheet. To avoid these problems, one should avoid the crossing of a branch cut,
so that the entire closed path remains in the top Reimann sheet. This can be
accomplished by rerouting the path around the branch cut. Thus, continuing the path CR
in the third quadrant with a straight line path L1. To continue to connect by a straight

line L2, one needs to connect L1 and L2 by a small circle Co. The final quarter circular

path CA closes the path with L4. The equation of the closed path then becomes:

3 f¢ >eZ + f+ f+ f+ f+ f+ f+ f f(z)eZtdz =2~ir(a2)

-iR L3 CR L1 Co L2 Ci~ L4
2

The residue at z = a becomes:

r(a2) = a ea2t

The integrals on CR and CA vanish, since using Section 5.16.1:

1
If(R)l Rp as IR[ >> 1 where p = 1/2 > 0

The integral on CO vanishes, since using Section 5.16.2:

1If(e)l as lel --> 0 where p = -1/2 < 1

The two line integrals L3 and L4 can be evaluated as follows:

Let z = x + iR, then:

+i R ,~- eZtdzl=l ! ~/-~+iR eXte+iRtdz< 1 ?t
. z_a2 x+iR-a2

_ -~- ye

y +iR

Thus:

~z ezt dz ._90Lim
R-->oo Z -- a2

y _+iR

The line integral on L1 can be evaluated, where z = 13 ein, as follows:

E, .~ ei~/2 . ¯ R
pte~n in ’ ~ dp

I ~’7~’--~ e e dp=-i I p+a2 ~ e-pt

R

The line integral on L2 can be evaluated, where z = 13 e-in, as follows:

R R
4pe-i")2 ePte-i=nein d13= -i f ~-~--P e-pt d13

I pein _a2
J p+a2
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Thus:

~ R
~ iR ~- eZtdz_2if ~/-~ e_0tdp:2rriaea2t

z_a2 J p+a2
y - iR e

Therefore f(t) becomes:

f(t)=aea2t+ 1 7~e-0td~

"~0 P+a~ v

Letting u2 = pt, the integral transforms to:

2 OOu2e_U2 2
oo oo

--du =aea:t +~--~ e -u2 du_ a2t~ U2 +a2tf(t) = a ea2t +’~--’~ f u2 + act

0 0

oo 2
1 2a2~ e-u

=aeah ÷ ~
~

f~du

0

which can be written in the form of an error function (see eq. 5.22, App. B):

1 2
f(t) = ~ + a terf(a-~/~)

4nt

Example 5.31

Obtain the inverse Laplace Transform for the following function:

1
f(z)

~z2 _ a2

The function f(z) has two singularities which happen to be branch points. The integral:

~(+ ioo
ezt

can be evaluated by closing the contour of integration and using the residue theorem.
Two branch cuts must be made at the branch points z = a and -a to make the function

~z~- a2 single-valued.

One has the freedom to make each of the functions ~ and ~ single-valued

by a branch cut from z = a and z = -a, respectively, in a straight line in any direction in
such a way that both must fall entirely to the left of the line x = % As was mentioned

earlier in section (5.2.9), it is sometimes advantageous to run branch cuts for a function
linearly so that they overlap, as this may result in the function becoming single-valued
over the overlapping segment. Thus, the cuts are chosen to extend from z = a and z = -a
to -~ on the real axis, as shown in Fig. 5.31(a). The two branch cuts for the top Riemann
sheet of each function can be described as follows:
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Imaginary Axis

Y
z

-a a
Real Axis

(a)

Ima ~mary Axis

Y~

CR iR "~+iR
L4

Branch Cuts L3 ~C.21

R ’ eL~

L4
~R -iR y-iR

~’- Real Axis
X

(b)
Fig. 5.31: (a) Branch Cuts and (b) Integration ContourJbr

Example 5.31
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z-a=rlei~t, -~Z<Ol <~, rl>0

z+a=r2ei~2, -71; < (~2 < ’/1; , r2>0

The single-valued function z is described by:

z = r ei0, r > 0

The closure of the original path from 3’ - iR to 3’ + iR in the top Reimann sheet would
require first the joining of two straight line segments 3’ + iR to + iR, see Figure 5.31 (b).
Two quarter circular paths, CR and C~ are required to avoid crossing both branch cuts.

To continue the path closure in the top Reimann sheet, one has to encircle both branch
cuts. This takes the form of two straight line path above and below the branch cuts from
CR and C~ to the branch point at z = a. Since the straight line paths cross a singular

(branch) point at z = -a, then one must avoid that point by encircling it by two small
semi-circular paths C! and C~. Similarly, the joining of the straight line paths at the

branch point z = a requires the joining of the two by a small circle C2. The line

segments between z = -a and z = a is split into two parts, namely, L2 and L3 and L[ and

L~. This is done purely to simplify the integrations along these two parts of each line

segment, as z on L3 becomes -z along L2. The equation of the closed path becomes:

f
3’ + iR iR

~f(z)e zt dz= f + f + f
3’-iR 3’+iR CR

a-£

0
onL3

0

Ca a-E
onL~

+ f + f + f fz)eZtdz

-R c 1 -a-e
on L 1 on L2

-a+e -R )

+ ~ +I + ~ + ~ f(z)eZtdz=0
0 c i -a-e c~

onL~ onLi

The integrals on CR and C~ vanish as R "-> oo, since (Section 5.16.1):

1If(R)l- ~- as R >> 1 where p = 1 > 0

The integrals on [3’+ iR to + iR] vanish since:

e(x+iR)t

Il!4(x +iR)~--a2 dx< ~e~,t-->0 as R --> 

The integrals on C1, C2 and C~ vanish, since (Section 5.16.2):

z~aLim -- --> 0
z-~_+a ~z2 _ a2

To facilitate accounting of the integrand of these multi-valued functions, one can evaluate
the integrand term-by-term in tabular form. Thus, the remaining integrals can be
evaluated in tabular form (see accompanying table):
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The sum of branch cut integrals L1 + L~ vanishes. This reinforces the stipulation

that running overlapping branch cuts may make the function single-valued over the
overlapping section. The sum of the integrals over the branch cut integrals L2 + L~, and

L3 + L~ become:

a a

I =-2il ert dr I =-2il e-rt’--dr
L2 + L2 0 ~a2 - r2’ L3+L 0

The final result for the inverse Laplace transform:

f(t) 

+

I ezt dz -1

2ir~ ¯ 2+L2

e-rt dr 1 e-rt dr = i0(at)

where I0 (at) is the Modified Bessel Function of the first kind and order zero.

Example 5.32

Obtain the inverse Laplace transform of the following function:

(z 2 _a2)
f(z) : log/---~---)

The inverse Laplace transform is defined as:

1 y+io~ 2 2

7 +i~
1

~ ~ [l°g(z-~)+l°g(z+a)-21°gz]ez td z

The integrand is multi-valued, thus colinear branch cuts sta~ing from the branch points at
+a, 0, -a to -~ must be made to make the log~thmic functions single-valued, as shown
in Ng. 5.32(a). The three branch cuts de~ned for the top Riemann sheet of each of the
three logarithmic functions are:

z-a= rlei0’, -~ < ~1 <g

z = r2 ei02, -/~ < 02 </~

z + a = r 3 e
i03, -Tz < (~3 < ~

The single-valued function z is defined as:

z = r ei0, r > 0
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Imaginary Axis

Branch Cuts
"i~ z

......
-a a

Real Axis

(a)

Branch Cuts

ci~

Imaginary Axis

y~

iR

L4

~2 L3 Ca

c~ £3

L4

-iR

,+iR

y-iR

Real Axis

(b)
Fig. 5.32: (a) Branch Cuts and (b) Integration Contour

for Example 5.32
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Again, the branch cuts are chosen to be colinear and overlapping extending from x = a, 0
and -a to _oo.

The contour is closed on the complex plane as shown in Fig. 5.32(b). The contour
is wrapped around the three branch cuts, with small circular paths near each branch point
in such a way as to leave the entire path in the top Riemann sheet of all three logarithmic
functions. Thus, since there are no poles in the complex plane, the closed path integral
is:

’I ¯¯ If f(z) zt dz
~’-iR ~’+iR CR -R

on L1

[c~2
a-e 0

+ +f +I+f +
E C~ a-E

on L3 on L~

ICY i -R

y - iR

+
-a-E Ck -iR
on L~

--E

C1 -a-E
on L2

-a+E t

f + f f(z)ezt

c[
on L~

f(z)ezt dz= 0

The integrals on CR and C~ vanish since:

log( R2. -a 2/R2 )I-RL~]I°g(1-~2)I---a’~-~- Rp

The integrals on C1, C2, Ca, C~ and C~ vanish, since:

~- (’z2
Lim/(z :1: a) 1og/------:l-//~ z-,_+a~_ ~. z~

Lim[- (z2 _a2"~’l

The integrals on D’ -+ iR to +_ iR] vanish since, on the line paths:

Lim If(z)l -~ a2
R---~,~ ~-T--~ 0 as R -) ~°

The line integrals can be evaluated in tabular form where:

(z2 _a:~
f(z) = log |----5~] = log (z - a) ÷ log (z ÷ a)- 2 log 

z- fl

dz

where p = 2 > 0
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The branch cut integrals L1 and Li add up to zero. This means that the function

becomes single-valued on the overlapped portion of the branch cut integrals. The
remaining branch cut integrals give:

a a

I = -2irt Ie-rt dr I = 2irtlert dr
L2 + L~ 0 L3 + L~ 0

where all the logarithmic parts of the integrands cancel out. Finally, summing the six
branch cut integrals with the original integral gives:

y +i~ a a

I f(z)dz- 2irtle-rt dr + 2i~z Iert dr= 
y - i~ 0 0

y+i~ (.z2 a2) a

f(t’ = i I log~O eZtdz =- 21 sin h (rt ) dr = ~[1 - cos h (at
y - i~ 0
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Section 5.1

1. Verify that:

l+i l-i
(a) = 2i

1-i l+i

5 (1 + i)3
(c) = 2 (1 + i)

(2 + i)(1 + 

PROBLEMS

(b) (i - 1)4 = -4

(d) (i + 2 + (l -i) 2 = 0

2. Verify that the two complex numbers 1 + i satisfy the equation:

z2 - 2z + 2 = 0

4. Show that:

(a) z+5i=2-5i

(c) (~) 

Prove that a complex number is equal to the conjugate of its conjugate.

(b) iz = - i 

(d) (l+i)(l+ 2i) 

5. Use the polar form to show that:

(a) i (1 + 2i) (2 + i) 
l+i

(b) ~ = i
1-i

i -1-i
(c) (l+i)4=-4 (d) ~=--

-1-i 2

6. Show that all the roots of:

(a) (-1) TM are (2)-1/2(+1+i) (b) (8i) 1/3 are -2i,+-q~ +i

(c) (i)1/2 are l+i (~ 3/2-- ~ are + 1(d) i - 

7. Describe geometrically the region specified below:

(a) Re (z) > 

(c) Iz-ll-<l

(e) [z[>2 -n<argz<0

(g) Iz - 11 > Izl

(b) IIm (z)I < 3

(d) 1 < Iz 21< 2

(f) [z- 21 < Re (z)

(h) Iz + 1 - I >1 0 ~ arg (z +1--i) 5 n/2
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Section 5.2

8. Apply the definition of the derivative to find the derivative of:

1 z+l
(a) (b)

z z+2

(C) 2 (1 +Z) (d) 2 + 1)4

9. Show that the following functions are nowhere differentiable:

(a) lm (z) (b) 

(c) Iz + 112 (d) 

z+l z
(e) ~ = 

z+~z-1

10. Test the following functions for analyticity by use of Cauchy-Riemann conditions:

z+l
(a) z2 + 

(c) 

(e) z- 

(b) Re (z)

(f) z2+2

11. Show that u is harmonic and find the conjugate v, where:

(a) u=excosy (b) u 3-3xy2

(c) u = cosh x cos (d) u = log (X2 + y2), X2 + y2 :# 0

(e) u = cos x cosh ~x x2+y2¢0(f) tl = X + X2 + ya,

Section 5.3

12. Prove the identities given in (5.10).

13. Show that if Im (z) > 1, then leizI < 1.

14. Prove the identities given in (5.15).

15. Show that f(z) = f(~) where f(z) 

(a) exp 

(c) cos 

(b) sin 

(d) cosh 
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16. Find all the roots of:

(a) cos z = 

(c) sin z = cosh a, ~ = real constant

(b) sin z = 

(d) sinh z = 

(e) eZ=-2 (f) log z = n 

Section 5.4

17. Evaluate the following integrals:

i

(a) J (z- dz

1

l+i

(b) j- (z - 1) on a parabola y = x2.

0

l+i

(c) ~ 3(x~ +iy)dz

0

fz+2(d) a 2z 

C

(e) J" sin dz

C

on a straight line from 1 to i.

on the paths y = x and y = x3.

where C is a circle, ]z] = 2 in the positive direction.

where C is a rectangle, with corners: 0z/2,-g/2,n/2+i,-rt/2+i)

Section 5.5

18. Determine the region of analyticity of the following functions and show that:

f f(z)dz = 

C

where the closed contour C is the circle Izl = 2.

z2
(a) f(z) (b) f(z) = z

z-4

i
(c) f(z) = z2 (d) f(z) = tan (z/2)

sin z cos z
(e) f(z)=--- (f) f(z)=---

z z+3
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19. Evaluate the following integrals:

i/2 l+i

(a) f sin(2z)dz (b) f (z2+l)dz

0 1-i

3+i

f Z2 dz (d)(c)
0

j cosh z dz (f)(e)
0

l+i

f z2dz

0

i

f ez dz

-i

20. Use Cauchy’s Integral formula to evaluate the following integrals on the closed
contour C in the positive sense:

~z3 +3z+2 dz,
(a) C is a unit circle [z[ = 1.

z
C

(b) f c°Szdz,
z

C

C is a unit circle [z[ = 1.

(c) cos z dz
~c(Z _ ~)2 

C is a circle Izl= 4.

f sin z dz(d) ~C (z - --~-~- ’ C is a circle Izl = 4.

~[ 1 + 3 ,]dz
C is acircle Izl= 3.(e)

~ z+2
C

f C is a ]z] = 3.
dz

(f) 4 - 1’ circle

C

f
eZ+l

(g) -- dz, C is a circle Izl = 2.
z-ir~/2

c

(h) f tanz dz,
J z2
C

C is a unit circle Iz[ = 1.

Section 5.8

21. Obtain Taylor’s series expansion of the following functions about the specified point
zo and give the region of convergence:
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sin z(a) cosz, o=0 (b) ~, o=0
Z

1 ez -1
(c) (z+l)2 , Zo=0 (d) z°=0

1 Z(e) -, o=2 (f) , zo=1z z-2

1 z-1
(g) -~-,zo=-1 (h) , o=1z z+l

(i) z, zo=2 (h) z, zo=in

22. Prove L’Hospital’s rule:

(a) If p(Zo) = q(zo) = 0, o) ~ 0,and q’(Zo) ¢ 0, then:

Lim p(z___~)= p’(Zo)
z-*Zo q(z) q’(Zo)

(a) If p(zo) = q(Zo) = 0, p’(Zo) = o) = 0,p"(zo) , 0, and q"(Zo), 0, th en:

Lim p(z~)= p"(Zo)
z~zo q(z) q"(Zo)

Section 5.9

23. Obtain the Laurent’s series expansion of the following functions about the specified
point zo, convergent in the specified region:

ez

(a) -- zo = 0 Izl > 0
(b) el/Z, ° =0 Izl > 0

Z3 ’

1 1
(c) (z -1) (z - z° = 0, 1 < Izl <2 (d){ijtzj’z-"’z-"" z° = 1, Iz- iI > 1

1 1
(e) (z_l)(z_2),zo=l,O</z-l/<l (f) (z2+l)(z+2) , zo = o, 1 < Izl < 2

1 1
(g) ~, o =1, [z- 11 >1 (h)

z (z - 1) z (z - i)
~,z o=-l,l<[z+ i[<2

Section 5.10

24. Locate and classify all of the singularities of the following functions:
zsin z e

(a) tan (b) Z2

(C) Z2 + 2
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z z3 - 4 z2 - 4
(d) sinz (e) 2+1)2 (f) z5_z3

z+2 1 1 Z3
(g) z2(Z_2) (h) sinz-z (i) eZ-1 (j) 

Section 5.11

25. Find the residue of the function in problem 24 at all the singularities of each
function.

Section 5.12

26. Evaluate the following integrals, where n is an integer, and la] < 1.

2n 2~
dO -

(a)
fl+2acos0+a2sin(n0) dO (b) f l_2asi---~0+£2
0 0

27~

(c)- 
cos3 0

dO (d)
1-2acos0+a2 I(1 + a cos 0)2

0

2n
cos(nO) 

(e) I(sin0)2nd0 (f) I l+2acos0+a2

0 0

i (sinO)2 (h) I(cosO)2ndO(g) 1 + a cos 

0 0

2rt
I" 1 + cos 0

;~cos2-----~dO
(J) co s(nO) dO(i) J cosh a + cos 0

0 0

n 2n

I dO (1) I (k) 1 + a cos 
1 + a sin 0

0 0

r~
cos(20) dOdO (n) Ii_2acos0+a2

(m)
I (l+asinO)~
0 0

Section 5.13

27. Evaluate the following integrals, with a > 0, and b > 0, unless otherwise stated:
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dx
a2 < 4b, a and b real (b) dx(a) 2 +ax+b

(x2 +a2)2
--oo 0

(c)
(X2 + a2)2

(d) 2 + a2)2(x 2 + b2)

0 --~

dx dx(e) f x4 4   (f) f 2 +a2)3

0 0

~ X4 c~ . x2 . dx

(g) f (X4 +a4)2 dx (h) f ~ +a~

0 0

~ X2 ~o X4 dx

(i) f x4+a~---~Tdx (j) f x6+a6

0 0

x2 dx dx
(1) j (x2 + a2) (x2 + b2)(k) f(x~+a~)3

0 0

x6 dx
(m) (X 4 ÷ an)2 (n)

0

x2 dx

(X 2 +aZ)(x 2 +b2)

Section 5.14

28. Evaluate the following integrals, where a > 0, b > 0, c > 0, and b ~ c:

f c°s(ax----~) dx (b) xsin(ax) dx(a) .I 2 +b2X4 + 4b4

0 0

(c) cos x dxx2 cos(ax)dx (d) ~ (x + 2 + a2

~(X2+c2)(x2+b2)

0 0

cos (ax) 
(e) cos(ax)dx (f) ~(x2+c2)(x2+b2)

(x2 + b2)
0 0

x sin (ax) 
(h) x sin (ax) dx(g) J" (x 2 +C2)(x 2 +b2)

(x 2 +b2)2

0 0
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(i)

(k)

~ x3 sin (ax) 
sin (ax)dx

(j)
x2 + b2 (x2 + b2)2

0

oo 2

f x---c°s(aX)dx (1) xsin(ax)dx
,1 X4 +4b4 (x2 +b2)3
0 0

Section 5.15

29. Evaluate the following integrals, where a > 0, b > 0, c > 0, and b ~ c:

I sin(ax)dx I sinx dx
(a) (b)

x+b x
mOO

(C) 2 _ n’ ~~ dx(d) x (x 2 + b2)2dx

0 0

f Xx__~__1
f dx

(e) dx (f)
x (x2 - 4x + 5)

0 --~

f. sin__x dx
(h) I (x-1)(x2+l)(g) J,X(n2_X2)

0 ~

I dx t cos(ax)
(i) x3_l (j) j x~ _--Ts-~dx

--~ 0

(k) I cos(ax). ~_-~-~ 
~ ax (1) I x sin (ax)

0 0

(m) x2cOs(ax)"   cos(ax)~g _b--- ~ ax (n) I 2 -b2)(x 2 _c2)dx

0 0

I sin (ax) sin (ax)(o) x(x4 + 4b4) (p). x (--~ _- ~4) 
0 0

x2 cos(ax) cos (ax)
(r) I 2 +b2)(x4_b4)(q) f 2-b~-’~x~:c2

) dx

0 0

dx
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(s) x3 sin (ax)

f (x2 ~-c2)
0

dx (t) f x3__sin (ax) 
,) X4 _ b4

0

Section 5.16
Imaginary Axis

y~

~+iR

iR

~’- RealAxis
X

30. The inverse of the Laplace transform is defined as:

ct +i~o
1

F(t)=-- | f(p)ept dp
2~zi J

where p is a complex variable, ~ is chosen such that all the poles of f(p) fail to the left 

the line p = ~t as shown in the accompanying figure and:

MIf(p)l _< when Ipl >>1 andq > 0

Show that one can evaluate the integral by closing the contour shown in the
accompanying figure with R --) ~o, such that:

N
F(t) = Z 

j=l

where rj’s are the residues of the function {f(p) t} atthepoles of f (p). Showthat the
integrals on AB and CD vanish as R --)

31. Obtain the inverse Laplace transforms F(t), defined in Problem 30, for the
following functions tip):

1 1 1
(a)--p

(b) (p+a)(p+b) a~b (c) pZ+a~

p p2 _ a2 1
(d) "p2 + 2  (e) (p2 2 )2 (f) (p +b)22
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1 p
(g) pn+l n = integer > 0 (h) p2 2

a2 2a3 2ap2
(i) p(p2 2)   (J) (p2 +a2)2 (k) (p2 

2a3 2a2p
(1) p4_a4 (m) p4_a4

32. The inverse Fourier Cosine transform is defned as:

F(t) = ~--2~ ~ f(co) cos (cox) 

0

Find the inverse Fourier Transform of the following functions f(co):
(a) sinco(cox) (b) 0) 2 + a2

1 (d) ~ 
(c) 4 +1((0 2 +a2)2

Section 5.17

33. Show that:

f
eax

cosh x cos(-~)

Use a contour connecting the points -R, R, R + rfi, -R + ni and -R, where R --) oo.

34. Show that:
OO

f x
dx= ~

sinh x - i

Use a contour connecting the points -R, R, R + r~i, -R + r~i and -R, where R --) ~,.

35. Show that:
OO .

~e-x~ cos(ax)dx= -~-e-a2/4

Use a contour connecting the points -R, R, R + ai/2, -R + ai/2 and -R, where R ~ ~.
The following integral is needed in the solution:

~e-X2dx= ~
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Imaginary Axis

y~

R
Real Axis

36. Show that:
OO

fcos(ax2)dx = 

0
close the contour by a ray, z = 9 eirt/4, and a circular sector, z = R ei0, R -) oo, and

0 < 0 < r~/4, see accompanying figure.

37. Show that:

~ sinh(ax) dx= ltan (~) ]a]<lsinh x

Use a contour connecting the points -R, R, R + ~ti, -R + ni and -R, where R -->

Section 5.18

38. Evaluate the following integrals, where n is an integer, with a > 0, b > 0 and a * b:

(l°gx)~ dx (b) f (1°~gx)~ dx(a) 2 + 1)2   xz + 1

0 0

f (1OgX)2 dx(c) ~(l°~gx,+lX)4dx (d) a ~+1

0 0

X4 + 10X (X2 + 1)2
0 0

~ (l-x2)logxdx (h) 
1ogx

(g) 2 + 1)2
(x2 + a2)(x2 + b2)

0 0

dx

log x dx (j)
(i) f 2 + 1)4

0

f (l~x)z dx
xzn + 1

0
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~’ x2 log x
dx(k) ~,~ znl~Ogx+ 1dx (1) I 2 + a2)(x2 + 1)

0 0

(m) I logx . (l+x2) logxdx
(X~_---~2)dx (n) 2_1)2

0 0

Section 5.19

39. Evaluate the following integrals, where "a" is a real constant, b > 0, c > 0 and b * c:

(a) (x2+l)2dx -l<a<3 (b) ~dXx+l -l<a<0

0 0

(c) dx lal < 1 (d) lal <
x2 +x+l (x+ b)(x+c) dx 

0 0

I
x a ’al<l

I X’~’i’-a 1
(e) dx (f) dx -1 < a < 0

x2 + 2xcosb + 1 Ibl < n
0 0

~dx lal < 1 (h) --dx -1 < a < n-1(g) (x + 2

(x + b)n
0 0

(i) (X + b2)2 (x + c2)2 dx lal<l (J) (x +b)(x_c) lal<l
0 0

(k) (x - b) (x - lal < 1 (i) (x3 + 1)2 dx - 1 < a < 5

0 0

Section 5.20

40. Obtain the value of the following integrals with a > 0:

, x ~ dx
X3

(a) Ix 3 +as (b) I x--g-~+a5dX

o 0

¯ x , dx x2(c) I ~ +a"(d) I x 5+ a-- ~dx

0 0
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(e) j" 
x3 _ a~-----5- dx

0

(g) ; x----3---
X5 _ a5 dx

0

(i) 3 +a3)2 dx

0

~ x3

0

(h) 2 +a2)2
0

dx

Section 5.21

41. Evaluate the following integrals, with a > O, b > 0 and a e b:

(a) (x+a)(x+b) (b)
logx dx

0 0 (x + a)2

f log x dx I x log x dx(c) .I x--~+l (d) ~ x3 
0 0

(e) (x + a)(x - i) dx (f) (x + a)(x - 1) 

0 0

(log x)2 , f log x dx

0

(i) f xlog____~x. ~
x3-1~x

(j) x31°gxdx
,~ x6_I

0 0

Section 5.22

42. Obtain the inverse Laplace transform fit) from the following function F(z) (see
definition of fit) in Problem 30), a > 0, b > 0, c > 0 and a ¢ 

(a) z(z_a2) (b) 

1
(c) z-~~-a-~’~L~ (d) 

~z+a
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1
(e)

z (~H + a)

e-aZ
(g)

z+b

z
(m)

(z + b)3/2

1
(o) 2 + a2

(s) (l°g z)2
z

1(w)
~/(z + 2a)(z + 

(y) 2 +a2)-v-l /2

(aa) z(qT+a)

a
(CC) ff~(~f~+ b)(z_a2)

10 (z2 +a2"~(ee) g~)

e_4"-~~(gg) 4~-

v > -1/2

1
(f)

(z + a)b

ea2/z

(h) 

(j) log( z+ b/
\z+a]

(~zz + a)2 + c2
(1) log

+ b)2 + c2

1
(n) ~zz

~/z + ~z2 +a2

(P) 2 + a2

e-4-~
(r)

z

1(v)
(z - a2) (ff~ + 

1
(x) ~/(z + a)(z 3

1
(bb)

(z + a) 

(dd)

(ff) e-4-~

(hh) arctan (a/z)

V>-I

b>a



6
PARTIAL DIFFERENTIAL EQUATIONS OF

MATHEMATICAL PHYSICS

6.1 Introduction

This chapter deals with the derivation, presentation and methods of solution of
partial differential equations of the various fields in mathematical Physics and
Engineering. The types of equations treated in this chapter include: Laplace, Poisson,
diffusion, wave, vibration, and Helmholtz. The method of separation of variables will be
used throughout this chapter to obtain solutions to boundary value problems, steady state
solutions, as well as transient solutions.

6.2 The Diffusion Equation

6.2.1 Heat Conduction in Solids

Heat flow in solids is governed by the following laws:

(a) Heat is a form of energy, and

(b) Heat flows from bodies with higher temperatures to bodies with lower

temperatures.

Consider a volume, V, with surface, S, and surface normal, fi, as in Fig. 6.1. For such a
volume, the heat content can be defined as follows:

h = cmT*

where c is the specific heat coefficient, m is the mass of V, and T* is the average

temperature of V defined by T* = ~lm ~ T [gdV, where 13 is the mass density.

V
Define q such that:

~h ~T*q = negative rate of change of heat flow ..... cm--
~t ~t

Since the flow of heat across a boundary is proportional to the temperature
differential across that boundary, we know that:

dq =- k-~nT dS

2~3
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Fig. 6.1

where n is the spatial distance along fi, ( fi being the outward normal vector to the
surface S, positive in the direction away from V), dS is a surface element and k is the
thermal conductivity.

The partial differential equation that governs the conduction of heat in solids can be
obtained by applying the above mentioned laws to an element dV, as shown in Fig. 6.2.

Let the rectangular parallelepiped (Fig. 6.2) have one of its vortices at point (x,y,z),
whose sides are aligned with x, y, and z axes and whose sides have lengths dx, dy, and
dz, respectively. Consider heat flow across the two sides perpendicular to the x-axis,
whose surface area is (dy dz):

side at x: fi = -~x and

side at x + dx: fi = ~ and

qx÷dx =- k(dy dz) 
ox Ix + dx

~TI in a Taylor’s series about x, results:Expanding -~x x + dx

qx+dx

Thus, the total heat flux across the two opposite sides of the element at x and x + dx
becomes:

02T 1 03T(dq~) tot = - k(dx dy dz) [ ~--~- + ~ (dx)+...

Similarly, the total heat flux across the remaining two pairs of sides of the element
becomes:
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Fig. 6.2

and

tot L~z ~- ~-~-(dz) +...

Thus, the total heat flux into the element, to a first order approximation, becomes:

02T 02T
dq:- k(dx dy dz) ( ~-~-~- +0-~+ 02T]

The time rate of change of heat content of the element becomes:

dq = -c (p dx dy dz) 5
ot

If heat is being generated inside the element at the rate of Q(×,y,z,t) per unit volume then
the equation that governs heat flow in solids becomes:

0T k(02T+02T 02T’/
pc-~-= (,b--~- 3-~+3-~’J+Q(x’y’z’t)

and the temperature at any point P = P(x,y,z) obeys the equation:

VZT = 10T _ q(p, t) e in v t > 0 (6.1)
K 0t

where the material conductivity, K, is defined as K = k/pc, q is the rate of heat generated

divided by thermal conductivity k per unit volume, q = Q/k, and the Laplacian operator

V2 is defined as:



CHAPTER 6 296

The sign of q indicates a heat source if positive, a heat sink if negative.
The boundary condition that is required for a unique solution can be one of the

following types: .

(a) Prescribe the temperature on the surface S."

T(P,0 = g(P,0 P on S

(b) Prescribe the heat flux across the surface 

-k~-ffn (P,t)=/(P,t ) P on S

where I is the prescribed heat flux into the volume V across S. If l = 0, the surface is
thermally insulated.

(c) Heat convection into an external unbounded medium of known temperature:

If the temperature in the exterior unbounded region of the body is known and equal to TO,

one may make use of Newton’s law of cooling:

8T
[T(P,t)- To(P, t)] P -k-~-n (P, ) =r

where r is a constant, which relates the rate of heat convection across S to the temperature
differential.

Thus, the boundary condition becomes:

-~(P,t) + bT(P, t) = b To(P,t ) PonS where b=~

The type of initial condition that is required for uniqueness takes the following form:

T(P, +) =f( P) P in V

6.2.2 Diffusion of Gases

The process of diffusion of one gas into another is described by the following
equation:

1 ~CV2C = ~ ~- q (6.2)

where C represents the concentration of the diffusing gas in the ambient gas, D represents
the diffusion constant and q represents the additional source of the gas being diffused. If
the diffusion process involves the diffusion of an unstable gas, whose decomposition is
proportional to the concentration of the gas (equivalent to having sinks of the diffusing
gas) then the process is defined by the following differential equation:

1~9CV2C - ~tC = ~--~- - q ~t > 0 (6.3)

where ct represents the rate of decomposition of the diffusing gas.

6.2.3 Diffusion and Absorption of Particles

The process of diffusion of electrons in a gas or neutrons in matter can be described
as a diffusion process with absorption of the particles by matter proportional to their
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concentration in matter, a process equivalent to having sinks of the diffusing material in
matter. This process is described by the following differential equation:

V29 - ¢x 9 = 1 019 _ q (6.4)
D 3t

where:

9 = 9(x,Y,Z,t) = Density Of the diffusing particles

~z= Mean rate of absorption of particles, cz > 0

q = Source of particles created (by fission or radioactivity) per unit volume per unit
time

D = Diffusion coefficient = (va ~,a)/3, where Va is the average velocity and ~,a is

the mean free path of the particles.

If the process of diffusion is associated with a process of creation of more particles in
proportion to the concentration of the particles in matter, the process of chain-reaction,
eq. (6.4) becomes:

1 30 _
V29+c~9 = ~--q ~x>0 (6.5)

6.3 The Vibration Equation

6.3.1 The Vibration of One Dimensional Continua

The vibration of homogeneous, non-uniform cross-section one dimensional continua,
such as stretched strings, bars, torsional rods, transmission lines and acoustic horns were
adequately covered in Chapter 4. All of these equations have the following form:

A(x)~y~ _ I~.A(x) 32y q(x,t) a<x < b, t>0 (6.6)
3x\ 3xJ-c ~ 3t 2 ER - -

where y(x,t) is the deformation, c is the characteristic wave speed in the medium, q(x,t) 
the external loading per unit length, ER is the elastic restoring modulus, and A(x) is the
cross-section area of the medium.

The boundary conditions, required for uniqueness, take one of the following forms:

(a) y = at a or b

3y
(b) ~xx = 0 at a or b

3y
(c) ~xx T-~zy = (-) for a, (+) for cz >0

The initial conditions, required for uniqueness, take the following form:

= f(x) and O-~.Y (x,0+) = g(x)y(x,0÷)
ot
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f(x,y,t)

",- w(x,y,t)

Fig. 6.3

The transverse vibration of uniform beams, covered in Section 4.4, is described by
differential equation of fourth order in the space coordinate x, as follows:

EI(x) +p ()O--~--q(x,t) a<x<b, 

The boundary conditions for a beam were covered in Section 4.4.

6.3.2 The Vibration of Stretched Membranes

Consider a stretched planar membrane whose area A is surrounded by a boundary
contour C. The membrane is stretched by in-plane forces S per unit length, acted on by

normal forces f(x,y,t) per unit area, and has a density p per unit area. Consider 
element of the membrane, shown in Fig. 6.3, deformed to a position w(x,y,t) from the
equilibrium position. Assuming small slopes, then one can obtain the sum of tbrces
acting on the element, in a manner similar to stretched strings, which equals the inertial
forces, as follows:

2 2Ow OwdF =- (Sdy) 0--~ dx + (S dx) ~-~--~- dy + f(dx 

= S(dx dy; ~-~-+ 0_2 ~w/+ f(x, y, t) dx dy : (pdx dy) ~-~2w"~ ~x 0y" J

Thus, the forced vibration of a membrane is described by the following equation:

O2w O2w 1 O2w f(P,t)

~X2 ~" O-~=C2 ~)t2 S
PinA, t>0

where c = Sx/~ is the wave speed in the membrane and P = P(x,y).

(6.7)
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For uniqueness, the boundary conditions along the contour C can be one of the following
types:

(a) Fixed Boundary: w(P,t) = 0 P on t > 0

3w(b) Free Boundary: -~n (P’ t) = P on C, t > 0

(c) Elastically Supported Boundary: 0w + ~ = 0 P on C, t > 0
0n S P,t

where ~, is the elastic constant per unit length of the boundary.

For uniqueness, the initial conditions must be prescribed in the following form:

w(P, ÷) =f( P) P in A

and

0w (p,0+) = g(p)
PinA

6.3.3 The Vibration of Plates

The vibration of uniform plates, occupying an area A, surrounded by a contour
boundary C can be analyzed in a similar manner to the vibration of beams, (Fig. 6.4). Let
h be the thickness of the plate, 13 be the mass density of the plate material, E be the

Young’s modulus and v be the Poisson’s ratio. The moments per unit length Mx, My, the

twisting moment per unit length Mxy, and the shear forces per unit length, Vx, and Vy,
acting on an element of the plate are shown in Fig. 6.4.

Summing moments and forces on the element (dx dy), the equilibrium equations 
the plate are:

0Mx 0Mxy
+ Vx =0

0x 0y

0Mxy+ 0MY -Vy = 0
(6.8)0y0Vx 0Vy

02w
0x +--~-y +q=oh 0t2

where q(x,y,t) is the normal distributed external force per unit area acting on the plate.
The moments Mx, My, and Mxy can be related to the change of curvatures of the

plate as follows:

Mx = -D ~ 0x2 0Y2 )

My 0Y2 0x2 )
(6.9)
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My

q(x,y,t)

dx

Vy

Fig. 6.4

Vx

ix

c~2w
Mxy = -D(1 - v) 0x 0"----~

where D = plate stiffness ’-- Eh3/[120 - v2)].

The shear forces can be related to the derivatives of the moments, such that:

Vx=-D~xV2W and Vy=-D~yV2W (6.10)

The first two equilibrium eqs. of (6.8) are identically satisfied by expressions for the
moments and shear forces given in equations (6.9) and (6.10). Substitution of the shear
forces of eqs. (6.9) and (6.10) into the third equation of (6.8) results in the equation 
motion of plates on w(P,t):

DV4w + p h 0~--~ = q (P, t) P in A, t > 0 (6.11)
0t

where V4 = V2V2 is called the BiLaplacian.
The boundary conditions on the contour boundary C of the plate can be one of the

following pairs:

(a) Fixed Boundary: Displacement w(P,t) 

0w
Slope~-n (P,t) =0 PonC, t>0

(b) Simply Supported Boundary: Displacement w(P,t) 

MomentM n- Do2wPt)=0 P C,t>0- - On~( , on

(c) Free boundary: Moment Mn = 0 [See item (b)]

Vn = -D-~ (P, t) = P on C, t >0

where s is the distance measured along C.
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Fig. 6.5

More boundary conditions can be specified in a similar manner to those for beams (see
section 4.4).

In the boundary conditions (a) to (c), the partial derivatives D/0n and 0/0s refer 
differention with respect to coordinates normal (n) and tangential (s) to the contour C, 
shown in Fig. 6.5. Thus:

0n - 0x cos ix + ~yy Sin ix and 0-~= 0--~-sinix-~yyCOSix

or

- On cos Ix + -~s sin Ix and 0"-’~ = ~ sin Ix - ~ss cos Ix0x

Thus:

and

Mn = Mx cos2 ~+My sin2 Ix- Mxy sin 2ix

Mns = Mxy COS2 2ix +
Mx My sin 2c~

2

Vn = Vx cos Ix + Vy sin Ix

The initial conditions to be prescribed, for a unique solution, must have the following -
forms:

and

w(P, +) =f( P) P in A

~(P, 0+) = g(P) PinA
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f(x+ct) f(x) f(x-ct)

ct ct

Fi£. 6.6

6.4 The Wave Equation

The propagation of a disturbance in a medium is known as wave propagation. The
phenomena of wave propagation is best illustrated by propagation of a disturbance in an
infinite string.

The equation of motion of a stretched string has the following form:

~2y 1 ~)2y

OX2 C2 0t2

The solution of such an equation can be obtained in general by transforming the
independent variables x and t to u and v, where u = x - ct and v = x + ct. Thus, the
equation of motion transforms to:

~2y = 0

0u 0v

which can be integrated directly, to give the following solution:

y = flu) + g(v) = f(x- ct) + g(x 

Functions having the form f(x - ct) and f(x + ct) can be shown to indicate that a function
fix) is displaced to a position (ct) to the right and left, respectively, as shown in Fig. 6.6.
Thus, a disturbance having the shape f(x) at t = 0, propagates to the left and to the right
without a change in shape, at a speed of c.

A special form of wave functions f(x + ct) that occur in physical applications is
known as Harmonic Plane Waves having the form:

f(x + ct) = C exp [ik(x + ct)] = C exp [i(kx + tot)]

where

k = -- = wavenumber = --
c ~.

wavelength

to = circular frequency (rad/sec) = 2nf

f = frequency in cycles per second or Hertz (cps or Hz)

2~ 1
period in time for motion to repeat ....

C = amplitude of motion
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h

Fig. 6.7

6.4.1 Wave Propagation in One-Dimensional Media

The equation of motion for vibrating stretched strings, bars, torsional rods, acoustic
horns, etc., together with the boundary conditions at the end points (if any) and the initial
conditions make up the wave propagation system for those media.

6.4.2 Wave Propagation in Two-Dimensional Media

Wave propagation in stretched membranes and in the water surface of basins make
up few of the phenomena of wave motion in two dimensional continua.

The propagation of waves in a stretched membrane obey the same differential
equation as the vibration of membranes, with the same type of boundary and initial
conditions. The system of differential equations, boundary and initial conditions are the
same as those for the vibration problem.

6.4.3 Wave Propagation in Surface of Water Basin

The propagation of waves on the surface of a water basin can be developed by the
use of the hydrodynamic equations of equilibrium of an incompressible fluid. Let a free
surface basin of a liquid (A) (Fig. 6.7) be surrounded by a rigid wall described 
contour boundary C, whose undisturbed height is h and whose density is 19.

Let u(x,y,t) and v(x,y,t) represent the components of the vector particle velocity 
fluid on the surface in the x and y directions, respectively, and w(x,y,t) be the vertical
displacement from the level h of the particle in the z-direction.

The law of conservation of mass for an incompressible fluid requires that the rate of
change of mass of a column having a volume (h dx dy) must be zero, thus:

dX~x (uhdy) + dy~y (vhdx) + ~tt [(w + h)dxdy]
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or

0 Ow +h(OU
~ ~xx +~yy) = (6.12)

Let p be the pressure acting on the sides of an element, then the equation of equilibrium
becomes:

~u 0p and ~v ~p
p-~- = -/)-~- p--~- = ~Y (6.13)

Since the fluid is incompressible, the pressure at any depth z in the basin can be described
by the static pressure of the column of fluid above z, i.e.:

P = Po + 0 g(h - z + w) (6.14)

where Po is the external pressure on the surface of the basin and g is ~e acceleration due

to gravity. Differentiating eq. (6.12) with respect to t and the first and second of eq.
(6.13) with respect to x and y respectively and combining the resulting equalities, one
obtains:

32W= ~V2p (6.15)
Ot2

Substitution of p from eq. (6.14) into eq. (6.15) results in the equation of motion 
pa~cle on the surface of a liquid basin as follows:

V2w= 1 O2w
c2 3te

where c: = gh. Substituting eq. (6.14) into eq. (6.13) one obtains:

3u 3w 3v ~w
and ~=-g~ (6.16)

~:-g~

~us, since the wall sunounding the basin is rigid, then the component of the
velocity nodal to the bounda~ C must vanish. Hence, using eq. (6.16) (see Fig. 6.5),
¯ e nodal component of the velocity Vn becomes:

¢~w Ow
Vn = UCOS~ + vsin~ =-gj~cos~ + ~sin~Jdt

~w
=-gff~dt = 0

where n is the nodal to the curve C, so that the bound~y condition on w becomes:

~w
~(P,t)=O

PonC, t>O

6.4.4 Wave Propagation in an Acoustic Medium

Wave propagation in three dimensional media is a phenomena that cover’s a variety
of fields in Physics and Engineering. Wave propagation in acoustic media is the simplest
three dimensional wave phenomena in physical systems. Let a compressible fluid
medium occupy V and be surrounded by a surface S and consider an element of such a
field as shown in Fig. 6.8. The law of conservation of mass for the element can be stated
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V

p

as the rate of change of mass of an element is zero. Thus, the increase in the mass of the
element must be equal to the influx of mass through the six sides of the element. Let u, v,
and w represent the particle velocity of the fluid in the x, y and z directions, respectively.
Thus, the influx of mass from the element through the two sides perpendicular to the
x-axis becomes:

9 u(x, y, z) dy dx - 19 u(x + dx, y, z) dy dx = - 19 u dxdy dz

Similarly, the mass influx from the remaining two pairs of sides becomes:

bv Ow
-p~y-ydxdydz and -p--~--xdxdydz

Thus, the law of conservation of mass of a compressible fluid element requires that:

~(pdxdydz) (~u ~v ~w~
~t = - P~xx + -b--~y + "-~’z )dxdydz

30 (Ou ~v Ow~:o
or

(6.17)

Let p(x,y,z,t) be the fluid pressure acting normal to the six faces of the fluid element.
The equations of motion of the element can be written as three equations governing the
motion in the x, y, and z directions in terms of the fluid pressure p, by satisfying
Newton’s second law:

x: [p(x,y,z,t) - p(x + dx,y,z,t)] dy dz + fx P dx dy dz = (p dx dy dz) 
~t

y: [p(x,y,z,t) - p(x,y + dy,z,t)] dx dz + fy p dx dy dz = (p dx dy dz) 
~t

z: [p(x,y,z,t) - p(x,y,z + dz,t)] dx dy + fz P dx dy dz = (p dx dy dz) 
dt
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where fx, fy, and fz are distributed forces per unit mass in the x, y, and z directions,

respectively.
Expanding the fluid pressure, p, in a Taylor series about x, y, and z, the equations of

motion become:

~V

bp_pfz
For small adiabatic motion of the fluid, let the fluid density vary linearly with the

change in volume of a unit volume element:

P = Po (1 + s)

and

(6.18)

p=po/~-o)y=Po(l+ys) for [sl<<l (6.19)

where Po and Po are the initial (undisturbed) fluid density and pressure, respectively, s 
the condensation (change of volume of a unit volume element) and ~/is the ratio of the

specific heat constant for the fluid at constant pressure Cp to that at constant volume Cv.
Substituting eq. (6.19) into eqs. (6.17) and (6.18) results 

~s (~u ~v

bs bu
Pofx-PoY~=Po~

bs bv
Pofy -Po?~ : Po ~

bs bw
Pofz - PoV ~ = Po ~ ~6.~0)

Differentiating the four equations of eq. (6.20) with respect to t, x, y, and z, respectively,
one obtains ~c acoustic Wave ~uation as follows:

( ~x-- .OfY Ofz 

where c ~ .~ is the sound speed in the acoustic medium.

If one uses a velocity potential ~(x,y,z,t) and a source potential F(x,y,z,t); such that:
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8~p 3F

= - o--d fx =
3q~ 3F

: - fy =

w=-0- fz

(6.22)

P = 19o -~- + 9oF + Po

then the equations (6.18) and the last three equations of eq. (6.20) are satisfied identically.
Substitution of eq. (6.22) into the first of eq. (6.20) result in the Wave Equation on 
velocity potential ~ as follows:

V2. 1 32~ 1 3F.~ .
P in V, t > 0 (6.23)

The boundary conditions can be one of the following types:

(a) p(P,t) = g(P, P on S, t > 0

0~ normal component of the velocity = g(P,t) P on S, t > 
(b) n On

(c) Elastic boundary: ~P (P, t) + n (P,t) =g(P P on S, t > 0
Ot

where y represents the elastic constant and vn is the normal particle velocity.

Wave propagation in elastic media and electromagnetic waves in dielectric materials
are governed by vector potentials instead of the one scalar potential for an acoustic
medium. Neither of these media will be further explored in this book.

6.5 Helmholtz Equation

Helmholtz equation results from the assumption that the vibration or wave
propagation in certain media are time harmonic, i.e. if one lets eit°t be the time

dependance, then Helmholtz equation results, having the following form:

V2q~ + k2~ = F(P) P in 

This equation describes a variety of diverse physical phenomena.

6.5.1 Vibration in Bounded Media

(6.24)

One method of obtaining the solution to forced vibration problems is the method of
separation of variables. This method assumes that the deformation ~(P,t) can be written

as a product as follows:

¢~(P,t) = gt(P) 
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where the functions ~(P) and T(t) satisfy the following equations:

V2~l/n +~,n~l/n = 0
(6.25)

T~’ + c2XnTn = 0

This equation leads to eigenfunctions ~n(P) where ~’n are the corresponding eigenvalues.

The functions qt n(P) are known as Standing Waves. The lines (or surfaces) where

~n(P) = 0 are known as the Nodal Lines (or Surfaces).

The general solution can thus be represented by superposition of infinite such
standing waves. The boundary conditions required for a unique solution of the Helrnholtz
equation are the same type specified in Section 6.3.

6.5.2 Harmonic Waves

The solution of wave propagation problems in media where the medium is induced to
motion ~ (P,t) by forces which are periodic in time, i.e., when the forcing function f(P,t)

has the form:

f(P,t) = g(P) i~°t

can be developed in the form of harmonic waves, i.e.:

q~(P,t) = ~(P) i~t (6.26)

where ~(P) satisfies eq. (6.24). The function ~(P,t) would not initially have the 

given in (6.26), but if the wave process is given enough time (say, if initiated at o =- ,~)

then the initial transient state decays and the steady state described in eq. (6.26) results,
where the solution is periodic in time, i.e., the solution would have the same frequency o~

as that of the forcing function. Since the motion is assumed to have been started at an
initial instance to = - ~, then no initial conditions need be specified.

6.6 Poisson and Laplace Equations

Poisson equation has the following form:

V2~ = f(P) P in V (6.27)

while the Laplace equation has the following form:

~72~p = 0 (6.28)

Various steady state phenomena in Physics and Engineering are governed by
equations of the type (6.27) and (6.28). Non-trivial solutions of (6.27) are due to 
the source function f(P) or to non-homogeneous boundary conditions. Non-trivial

solutions of (6.28) are due to non-homogeneou~s boundary conditions.
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6.6.1 Steady State Temperature Distribution

If the thermal state of a solid is independent of time (steady state), then eq. (6.1)
becomes:

V2T = -q(P)

The boundary conditions are those specified in Section 6.2.1.

6.6.2 Flow of Ideal Incompressible Fluids

Fluid flow of incompressible fluids can be developed from the formalism of flow of
compressible fluids. Since the density of an incompressible fluid is constant, then eq.
(6.17) becomes:

0u 0v bw
~xx + ~y + ~ = 0 (6.29)

If one uses a velocity potential q~(P) as described in (6.22), then the velocity potential

satisfies Laplace’s equation. If there are sources or sinks in the fluid medium, then the
velocity potential satisfies the Poisson equation.

6.6.3 Gravitational (Newtonian) Potentials

Consider two point masses m1 and m2, located at positions x1 and x2, respectively,

and are separated by a distance r, then the force of attraction (F) between 1 and m2 can be

stated as follows:

~ = ~’ ml~m2 ~r

where ~r is a unit base vector pointing from m2 to mI along r. If one sets m1 = 1, and

m2 = m, then the force ~ becomes the field-strength at a point P due to a mass m at x

defined as (see Fig. 6.9):
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rn2

Mass

Fig. 6.10

ml

~ = y-~-er

or written in terms of its components:

m m OrFx = "/~- cos (r, x) = y .2 
!

m m Or
Fy =~ r~-Cos(r,y) =’/r2 

m m OrFz = ,/r-TCos(r,z) = 

If one defines a gravitational potential such that the force is represented by:

~ = -V~,o
such that:

Ox Fy = 0y Fz =

then ~go is obtained by comparing eqs. (6.30) and (6.31), giving:

r

It can be shown that ~0 in eq. (6.32) satisfies the Laplace Equation. If there is a finite

number of masses mI, m2, ...mn, situated at r1, r2 .... rn respectively, away from a unit

mass at point P (see Fig. 6.10), then the potential for each mass can be described 
follows:

¯ i = ?m~
ri

and the total gravitational potential per unit mass at P becomes:

n n
~gi= ~-,~l~i =y ~ m~

i= i=l ri

(6.30)

(6.31)

(6.32)



PARTIAL DIFF. EQ. OF MATHEMATICAL PHYSICS 311

Z ~ ¯ P(x,y,z)
Y

X

If the masses are distributed in a volume V, then the total potential due to the mass
occupying V becomes (see Fig. 6.11):

¯ =Y p(x ,y,z dV’ (6.33)

V

where p(x,y,z) is the mass density of the material occupying V and ~ satisfies the

Poisson equation.

6.6.4 Electrostatic Potential

The electrostatic potential can be defined in a similar manner to gravitational
potential. Define the repulsive (attractive) force F between two similar (dissimilar)
charges of magnitudes ql and q2, located at positions x1 and x2, respectively, as:

~= qlq____~2 ~
4~er2 r

where r is the distance between ql and q2 and e is the material’s dielectric constant. Define

the electric field as the force on a unit charge (where q2 = 1) located at a point P due to 

charge q2 = q as:

]~= q ~ ~r =- q’~-’v(lq
4her~ 4he \ rJ

If we define an electrostatic potential, ~, such that ~ = -V~, then a solution for the

potential is:

~ = q-fi-r

If there exists distributed charges in a volume V, then the potential can be defined as:
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Ip(x’,
dV’ (6.34)

y’, zp)
W = 4~te r

V

where p(x,y,z) is the charge density in V. It can be shown that ~ satisfies the Poisson

equation.

6.7 Classification of Partial Differential Equations

Partial differential equations are classified on the form of the equation in two
dimensional coordinates. Let the equation have the following general form:

820
2

)

2b(x,t) a2* + a 0 = f~_~_~,a0,0,x’
a(x,t) ~ + Ox0t c(x,t) ~ ~. 0x -~- 

then the equation can be classified into three categories:

(a) Hyperbolic: Ifb2 > ac everywhere in Ix, t].

Examples: The Wave and Vibration equations.

(b) Elliptic: If 2 <aceverywhere in [x, t].

Examples: Laplace and Helmholtz equations.

(c) Parabolic: If 2 =aceverywhere [x,t].

Examples: The Diffusion equation.

The boundary conditions am classified as follows:

(a) Dirichlet: Specify 0(P,t) = g(P) P on S, t > 

0 0(P, t) = g(p)
P on S, t > 0(b) Neumann: Specify 

00(P’t) ~- k0(P,t) = ) PonS, k>0, t>0(c) Robin: Specify 

(6.35)

6.8 Uniqueness of Solutions

6.8.1 Laplace and Poisson Equations

Uniqueness of solutions of the Laplace and Poisson Equations, requires the
specification of boundary conditions. To prove uniqueness, assume that there are two
different solutions of the differential equation. Let 01 and 02 be two different solutions to

Poisson’s equation (6.27), for a bounded region V with identical boundary conditions.
Thus, each solution satisfies the same Poisson equation:

V201 = f(P) and V202 = f(P) P in V

such that the difference solution satisfies:

V20 = 0 where 0 = 01 - 02
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Multiplying the previous Laplace equation on ~) by ~ and integrating over V, one obtains:

_-0
V V S

Thus,

~[(~x) +(~yy) +(~-~z)2]dV=~c~-n~dS 

V s

To solve for the difference potential given the three boundary conditions described above:

(a) Dirichlet: If the two solutions satisfy the same Dirichlet boundary conditions
then:

~I(P) = q~2(P) = P on S

then:

~(P) = 0 P on 

and eq. (6.36) becomes:

(0~)2 + (~-~-~)2]dV = J [(tgx )2+ ~ oz
V

which can be satisfied if and only if 3_~_~ = 0._~_~=--0~ = 0 or ~ = C = constant. However,
0x 0y 0z

since q~ is continuous in V and on S, and since ~ is zero on the surface, then the constant

C must be zero. Thus, ~ must be zero throughout the volume, and, hence, the solution

is unique.

(b) Neumann: If normal derivatives of the potentials satisfy the same boundary
condition on the surface, then:

0~l(P) - 0~2 (P) = P on S
On On

Thus:

D0(P) 0 P onS
On

Therefore, the difference solution ~ = C = constant, and the two solutions are unique to

within a constant.

(c) Robin: If the two solutions satisfy the same Robin boundary conditions then:

O#2(P)OOl(P~) + k~l(p) = __ + kO2(p) 
P on S, k > 0

On On

Therefore:

- k~(P) PonS, k>O
On

and eq. (6.36) can be rewritten:
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I[(~ )2 "0@~2~,: +(~~-~)2]dV=-Ik02dSoz
+ [~S,, j (6.37)

V s

However, since k is positive and ~2 is positive, both integrals of eq. (6.37) must vanish,

resulting in 0 = constant in V and 0 = 0 on S. Due to the continuancy of 0 in V and on

S, then 0 is zero throughout the volume and the solution is unique.

6.8.2 Helmholtz Equation

Helmholtz equation can be solved by eigenfunction expansions. Thus, the
eigenfunctions 0M(P) satisfy:

V20M + XM0M = 0 (6.38)

and homogeneous boundary conditions of the type Dirichlet, Neumann or Robin. The
capitalized index M represents one, two or three dimensional integers and ~’M is the

corresponding eigenvalue.
The solution to the non-homogeneous Helmholtz equation (6.24):

720 + ~,~ = F (P) P in 

can be written as a superposition of the eigenfunctions (~M (P)"

Let 01 and 02 be two solutions of Helmholtz equation (6.24), i.e.:

V201 + X01 = F (P) and V2~)2 + X~2 = F 

If we once again define 0 as 01 - ¢2, then 0 satisfies the homogeneous Helmholtz

equation:

V20 + ~,0 = 0 (6.39)

Expanding the solutions for ~l and 02 in a series of the eigenfunctions:

01 = 2aM 0M(P)
M

02 = ZbM 0M(P)
M

then the difference solution 0 is expressed by:

0 = ~(aM -bM)0M(P)
M

Substituting 0 into eq. (6.39), and using eq. (6.38) one obtains:

Z(aM - bM)(~" -~.M) 0M(P) = 0
M

which, for X ~ XM and after using the orthogonality condition (Section 6.11) results 

aM = bM. Therefore, Helrnholtz equation has unique solutions for any of the three types
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of boundary conditions.

6.8.3 Diffusion Equation

Let ~l and ¢2 be two solutions to the Diffusion Equation (6.1) that satisfy the same

boundary conditions and initial conditions as follows:

1
~72~)1 - ~ ~-~ ÷ f(P,t) P in V, t > 0

1
V2O2-K 0t ~ f(P’t) PinV, t>0

~(P,0+) = ¢2(P,0+) = g(P) P in V

Letting ~ = ~1 - ~2 then the difference solution O(P, t) satisfies:

V20= 1 0¢ PinV, t>0
K 0t

and

¢(P,0+) = 0 P in V

and one of the following conditions for points P on S and for t > 0:

(a)

(b)

or

(c)

Dirichlet: ~ (P, t) = 

Neumann: 0 O(P, t) = 
On

PonS, t>0

PonS, t>0

Robin: 0¢(P,t) ÷ hO(P,t) whereh>0, PonS, t>0

Multiplying the homogeneous diffusion equation on the difference solution ~ by ~ and

integrating over V, one obtains:

1 f~ 0~ 1 ~) f~2dV f0V2(~dV
-~-jq~-~-dV ....2K 0t

V V V

(V,)-(V0) dV + f, (6.40)

V S

For Difichlet and Neumann boundary conditions, ~e surface integral vanishes and eq.
(6.40) becomes:

1 0~*~dV+~[( )~+ +( )~]dV=0 (6.41)
2K 0t ~

V V

For Robin boundary condition, eq. (6.40) becomes:

2KOtf,2dV+I[( )2+( )2+(~)2]dV+hf,2dS=0
(6.42)

oz
V V S
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For either eq. (6.41) or (6.42) to be true:

~ttf~2dv-<O

V

Let:

j" ~2dV = F(t)

V

Since the time derivative is always negative, due to the inequality in eq. (6.43), we can
define a new variable, f(t), such that:.

~F(t) = _[f(t)]2

bt

t

F(t) = -f [f(n)] 2 drl + C

0

Since ~(P,0+) = 0, then F(0) = 0 and hence C = 0. Thus:

(6.43)

t

0 V

which is only possible if integrand g) = 0. Therefore, the solution must be unique.

6.8.4 Wave Equation

Let ~1 and ~)2 be solutions to the Wave Equation (6.23) which satisfy the same

boundary conditions and initial conditions, such that:

= 1 b2~+q(P,t). PinV, t>O~72~1 c2 ~t2

= 1 bZ~z ~-q(P,t) P in V, t > 0V2~)2 2 ~t2

~I(P,O+) = ~2(P,O+) = f(P) P in V

-~tl(p,0+)=~-~L(P,0+)=g(P) PinY

for P in V and t > 0, such that the difference solution @ satisfies:

1 ~)2~
PinV, t>OV2~ = C2 ~t2

~(P, +) =0 P in V
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%-~t (P,0+) 0 P in 

andone of the following conditions for P on S and for t > 0:

(a) Dirichlet: ~ (P, t) 

(b) Neumann: ~ ~(P’t) = 0
~n

or

(c) Robin: ~ ~(P’ t.__.~) + h @(P, t) = 0 where h 
~n

Multiplying the homogeneous Diffusion Equation on the difference solution ~ by ~#/~t

and integrating over V, one obtains:

1 f0@220
2c 0t~c[_0tJ

The last integral can be rearranged so that:

Thus, equality (6.44) becomes:

IF°q~12dV (’~- } -1 ~ IiV~i2dW
1 ~

=IV̄ VO dV ~-
2~2 ~ VL ~t _1 V

V

(6.44)

(6.45)

Using the divergence theorem:

V S

and fi ¯ V~ = ~n’ one obtains:

Thus, eq. (6,45) becomes:

S

(6.46)
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Remember, that for the Dirichlet boundary condition, @(P,t) = 0 for P on S and for

t > 0. Therefore, the time derivative of the boundary condition vanishes, i.e.:

-~(P, t) = 0 for P on 

For Neumann boundary conditions:

0~-~(P, t) = 0 for P on 

Thus, for either Dirichlet or Neumann boundary conditions, the surface integral vanishes
and eq. (6.46) becomes:

+(~-z (6.47)

Integrating eq. (6.47) wi~ respect to t. one obtains:

[ 1 (0,) 2 +(~0)2 +(00)2

]~ +(~)~dV=C(constantforallt)
V

Substituting t = 0 in the integrand, then since $(P,0+) = 0 for P in V, then
a~ (~,o+)

V@(P,O+)=O. Also, since ~ =0forPin V, thenC=0in Vandtheintegrand

must vanish for all t. Thus:

aS_o, a~=o, ~$ a~=o, PinV, t>0
aS- #=o, aS

which, when integrated results in:

@(P, t) = 1 =constant P in V, t > 0

Since $(P,0+) = 0, then C~ = 0 and

@(P,t) ~ P in V, t > 0
For Robin bounda~ condition, eq. (6.46) becomes:

+(~)Z + (0@)Z + (~)2]dV
V

a@dS= h 3 f@2dS
(6.48)

-h f* 2 at
S S

Integrating equation (6.48) with respect to t results in a constant:

/[~(~)2 +(0,)2~ +(~3,)2 +(~)2]dV+~f,2dS = Coz 
V S

Invoking the same ~guments as above, C = 0, and, one can again show that:

~(P,t)~0 PinV, t>0

Therefore. all three bounda~ conditions are sufficient to produce a unique solution in
wave functions.
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6.9 The Laplace Equation

The method of separation of variables will be employed to obtain solutions to the
Laplace equation. The method consists of assuming the solution to be a product of
functions, each depending on one coordinate variable only. The use of the method can be
best illustrated by working out examples in various fields in Physics and Engineering and
in various coordinate systems. The method requires the separability of the Laplacian
operator into two or three ordinary differential equations. A few of the orthogonal and
separable coordinate systems are presented in Appendix C.

Example 6.1 Steady State Temperature Distribution in a Rectangular Sheet

Obtain the steady state temperature distribution in a rectangular slab, occupying the space
0 < x < L and 0 < y < H, where the boundary conditions are specified as follows:

T = T(x, y)

T(0, y) = f(y) T(x, 0) = 

T(L, y) = T(x, H) = 

Since the sheet is thin, we can assume that the temperature differential is only a function
of x and y, i.e. T(x,y). The differential equation on the temperature satisfies the Laplace
equation:

~)2T ~)2.~.TV2T = 8-~ + by2 = 0

Assume that the solution can be written in the form of a product of two single variable
functions as follows:

T(x,y) = X(x) X ~: 0, Y ~: 0, 0 < x < L and 0 < y < H

Substituting T(x,y) into the differential equation, one obtains:

d2X d2y 0
Y dx~ + X dY~ =

Dividing out by XY, the equation becomes:

X" ¥"

X Y

Since both sides of the equality in the above equation are functions of one variable only,
then the equality must be set equal to a real constant, + az.

Choosing a2 > 0, then the Laplace Equation is transformed into two ordinary
differential equations:

X" - a2X =0

Y" + a2y =0

which has the following solutions:
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for a ¢ 0: X = A sinh (ax) + B cosh (ax)

Y = C sin (ay) + D cos (ay)

for a =0: X=Ax+B

Y=Cy+D

Applying the boundary conditions to the solution, and assuring non-trivial solutions, one
obtains:

T(x,0)=DX(x)=0 -) 

T(x,H) = C sin (all) ¯ X(x) = sin (all) = 

To satisfy the characteristic equation, sin (all) = 0, "a" must take one of the following
characteristic values:

n~
an = ~ n = 1,2,3 ....

The non-trivial solution of Y(y) consists of an eigenfunction set:

Cn(Y) = sin (nny/H)

where the eigenfunctions Cn(Y) are orthogonal over [0,HI, i.e.:

H

f {0

nCm
sin(nny/H) sin(mny/H)dy = H / 2 n 

0

The a = 0 case results in a trivial solution. Substituting the solution into the second
boundary condition:

T(L,y) = [A sinh (anL) + B cosh (anL)] Y(y) 

which can be satisfied if:

B/A = - tanh (anL)

Finally, the solution can be written as:

n~

~nn cosh( -~ x)]
n =Tn(x,y) = sin( y)[si nh ( - -f f x) - t anh(L) 1,2

Tn(x,y) satisfies the Laplace Equation and three homogeneous boundary conditions.

Due to the linearity of the system, one can use the principle of superposition, such that
the temperature in the slab can be written in terms of an infinite Generalized Fourier
series in terms of the solutions Tn(x,y), i.e.:

T(x,y) = n Tn(x,y)

n=l

The remaining non-homogeneous boundary condition can be satisfied by the total
solution T(x,y) as follows:

OO

T(0,y) = f(y)= n tanh ( -~-_n L) sin (~-~n 

n=l
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Using the orthogonality of the eigenfunctions, one obtains an expression for the Fourier
constants En as:

H

En=Htanh2(~L)ff(y)sin(-~y)dyo

Note that the choice of sign for the separation constant is not arbitrary. If- a2 was
chosen with a2 > 0, then the above analysis must be repeated:

X"+aZX=0

y". a2Y=0

whose solutions become for a ¢ 0:

X = A sin (ax) + B cos (ax)

Y = C sinh (ay) + D cosh (ay)

The solution must satisfy the boundary conditions:

T(x,0) = D X (x) = 0, or D 

T(x,H) = C sinh (all) ¯ X(x) 

However, since sinh (all) cannot vanish unless a = 0, then:

C=0 for a ¢ 0.

Thus, for - az, there is no non-trivial solution that can satisfy the differential equation and
the boundary conditions. This indicates that the choice of the sign of a2 leads to either the
existence of non-trivial solutions, or to the trivial solution.

In order to eliminate the guesswork and minimize unnecessary work, the choice of
the correct sign of a2 can be made by examining the boundary conditions. Since the
solution involves an expansion in a Generalized Fourier series, then one would need an
eigenfunction set. These eigenfunctions must satisfy homogeneous boundary conditions.
Furthermore, these eigenfunctions must be non-monotonic functions, specifically, they
are oscillating functions with one or more zeroes. Thus, for this example, since the
boundary conditions were homogeneous in the y-coordinate, then choose the sign of a2 to
give an oscillating function in y and not in x. This leads to a choice of a2 > 0.

If the temperature is prescribed on all four boundaries, one can use the principle of
superposition by separating the problem into four problems as follows. Let:

T--T1 +T2+T3+T4

where V2 Ti = 0, i = 1, 2, 3, 4 ..... Each solution Ti satisfies one non-homogeneous

boundary condition on one side and three homogeneous boundary conditions on the
remaining three sides, resulting in four new problems. Each of these problems would
resemble the problem above, yielding four different solutions. The solution then would
be the sum of the four solutions Ti(x,y).
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Example 6.2 Steady State Temperature Distribution in an Annular Sheet

Obtain the temperature distribution in an annular sheet with outer and inner radii b
and a, respectively. The sheet is insulated at its inner boundary, and the temperature
T = T(r,O) is prescribed at the outer boundary as follows:

T(b,0) = f(0)

Laplace’s equation in cylindrical coordinates, where T = T (r,0), becomes (Appendix 

g2T 1 OT 1 g2T

Or2 ~- ~ ~-r + ~~" 0--~--; 0

The boundary conditions can be stated as follows:

O_~_T[ = OT(a,O)_0
C ~r

T(b,O) = frO)

Assuming that the solution is separable and can be written in the form:

T = R(r) U(0)

and substituting the solution into Laplace’s Equation, one can show that:

r2R"+rR ’ U"
= -- = k2= constant

R U

The choice of the sign for k2 is based on the coordinate with the homogeneous boundary
conditions. Since the boundary condition on r is non-homogeneous, then choosing
k2 > 0 leads to an oscillating function in 0. Thus, two ordinary differential equations

result:

r2R’’ + rR’ - k2R = 0

U" + k2U = 0

If k = 0, then the solution becomes:

U=Ao+Bo0

R = CO + DO log r

If k ~: 0, then the solution becomes:

U = A sin (k0) + B cos (k0)

R=Crk+Dr-k

The solution must be tested for single-valuedness and for boundedness. Single-valuedness
of the solution requires that:

T (r,0) = T(r,0 + 2~z)

Thus:
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Bo = 0 for k = 0

sin (k0) = sin k(0 + for k ~ 0

cos (k0) -- cos k(0 + for k ~: 0

PHYSICS 3 2 3

which can be satisfied if k is an integer n = 1, 2, 3 ..... Therefore, the solution takes the
form:

k=O To = Eo + Fo log r

Tn = (An sin (nO) + Bn cos(n0)) n + Dn r -n)n = 1,2,3 ...

Remember that these solutions must also satisfy the boundary condition -~r (a, 0) = 

k 0 0T° (a,0)=F° = --> Fo=O
oar a

OTn (a,0)=nCn an-l-nDna-n-1 =0 --~ Dn =a~nCnk=n
Or

Thus, one can write the general solution in a Generalized Fourier series, i.e.:

T(r,0) = o +2 (r n + a2nr-n)(En cos(n0)+ Fnsin(n0))

n=l

where En and Fn are the unknown Fourier coefficients. The last non-homogeneous

boundary condition can be satisfied by T(r, 0) as follows:

T(b,0) = frO) o + ~(bn + a2nb-n)(En cos(n0) + Fn sin(n0))

n=l

Then, using the orthogonality of the eigenfunctions, one can obtain expressions for the
Fourier coefficients:

2n
1 if(0) 0E° --~n

0

and

2~

En + a2nb_n~) fr0)cos(n0)d0 n = 1, 2, 3 ....

0

= ~(bn 1
I

Fn
+a2n~._n~’ J fr0)sin(n0)d0

n = 1, 2, 3 ....

0
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If frO) is constant = o, then:

En=Fn=0 n= 1,2,3 ....

Eo -- TO
Thus, the temperature in the annular sheet is constant and equals TO.

Example 6.3 Steady State Temperature Distribution in a Solid Sphere

Obtain the steady state temperature distribution in a solid sphere of radius = a, where
T = T (r,0), and has the temperature specified on its surface r = a as follows:

T(a,0) = f(0)

Examination of the boundary condition indicates that the temperature distribution in the
sphere is axisymmetric, i.e, 0/~ = 0. Thus, from Appendix C:

VET rELo~rt. -ff~-rJ+si-7"~-~’~’ts’nO-ff~’)]:°

Let T(r,O) = R(r) U(O), 
1 d r E dR 1

sin
R dr ~r U sin O -~-J

Since the non-homogeneous boundary condition is in the r-coordinate, then k2 > 0 results
in an eigenfunction in the 0 - coordinate. Thus, the two components satisfy the

following equations:

rER" + 2rR’- k2R = 0

U" + (cot0) U’ + kEU = 

Transforming the independent variable from 0 to rl, such that:

vl =cos 0 -l<rl< 1

thenU satisfies the following equation:

d---I(1- na)-~}+kEu--0dn

Letting k2 = v (v + 1), where > 0,then thesolution to t he diff erential equation

becomes:

U(rl) = v Pv(rl) + v Qv(rl)

R(r) = rv + Dvr-(v+l)

= Er-1/2 + Fr-1/2 log(r)

1
forv¢ --

2

1
for v=--

2
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The temperature must be bounded at r = 0, and rl = + 1, thus:

v = integer = n, n = 0, 1, 2 ...

Bn=0, and Dn = 0, n=0, 1,2 ....

Thus, the eigenfunctions satisfying Laplace’s equation and bounded inside the sphere has
the form:

Tn(r,n) = rn Pn (’q)

and the general solution can be written as Generalized Fourier series in terms of all
possible eigenfunctions:

O0

T(r,~l)= ~ EnTn(r, 
n=0

Satisfying the remaining non-homogeneous boundary condition at the surface r = a, one
obtains:

OO

T(a, rl) = g(~) = EEn an Pn(~)

n=0

where:

g(rl) = f(COS-1 "q)

Using the orthogonality of the eigenfunctions, the Fourier coefficients are given by:
1

En = 2n +____~1 fg(rl)Pn0q)drl2an
-1

~ 2n+l r
2n2~) Pn(~) (~1) Pn (~1) 

n=0 -

If f (0) = o =constant, then:

1

~ Pn (~1) dR 2

-1
=0

n= 0

n= 1,2,3 ....

Thus, the solution inside the solid sphere with constant temperature on its surface is
constant throughout, i.e.:

T (r,0) = O everywhere.

Example 6.4 Steady State Temperature Distribution in a Solid Cylinder

Obtain the temperature distribution in a cylinder of length, L, and radius, c, such that
the temperature at its surfaces are prescribed as follows:
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T = T (r,0,z)

T (c,0,z) = f (0,z)

T (r,0,0) = 

T (r,0,L) = 

The differential equation satisfied by the temperature, T, becomes (Appendix C):

~2T I~T 1 ~2T ~T
~r2 ~-~-r~ r~ ~02 + ~-~-=0

Let T = R(r) U(0) Z(z), then the equation can be put in the 

R" IR’ 1 U" Z"

Letting:

~ = - a2 and - b2
Z U

then the pa~ial differential equation separates into the following three ordinaff differential
equations:

r2 R" + r R’ - (az ~ + b~) R = 0

U"+b:U=0

Z"+a~Z=0

~e choice of the sign for az and bz are again guided by the bound~ conditions. Since
one of the boundary conditions in the r-coordinate is not homogeneous, then one needs to
specify the sign of a~ > 0 and b~ > 0 to assure that the solutions in the z and 0 coordinates

are oscillato~ functions.
~ere are four distinct solutions to the above equations, depending on the value of a

and b:

(1) Ifa ~ 0 and b ~ 0, then the solutions become:

R = Ab Ib (ar) + b Kb (ar)

Z = Ca sin (az) + a cos (az)

U --- Eb sin (b0) + b cos (b0)

where Ib and Kb are the modified Bessel Functions of the first and second kind of order b.

For single-valuedness of the solution, U(0) = U(0 + 2re), requires that:

b is an integer = n = 1, 2, 3 ....

For boundedness of the solution at r = 0, one must set Bn = 0. The boundary conditions

are satisfied next:

T (r,0,0) = Da = 0
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T (r,0,L) = sin (aL) = 0, then aML = where m = 1, 2, 3 ....

Thus, the eigenfunctions satisfying homogeneous boundary conditions are:

Trim = (Grim sin(nO)+Hnm cos(n0)) In --~--r sm z m, n = 1, 2, 3 ....

(2) If a ¢ 0, b = 0, then the solutions become:

R = Ao Io (ar) + o Ko (ar)

Z = Ca sin (az) + a cos (az)

U = Eo0 + Fo

Again, single-valuedness requires that Eo = 0, and boundedness at r = 0 requires that

Bo = 0, and:

T (r,0,0) = Da = 0

T (r,0,L) = sin (aL) = 

The solutions for this case are:

m~r (~--~z)Tona = Io( ~ ) sin

amL = mn, m 1, 2, 3 ....

(3) If a = 0, b ~: 0, then the solutions become:

R = Ab r
b + Bb r

-b

Z = CO z + DO

U = Eb sin (b0) + b cos (b0)

Single-valuedness requires that b = integer = n = 1, 2, 3 .... and boundedness requires that
Bn = 0. Therefore, the boundary conditions imply:

.T(r,0,0) = DO = 0

T(r,0,L) = CO = 0

which results in a trivial solution:

Tno = 0

If a = 0, b = 0, then the solutions become:

R = Ao log r + Bo

Z=CoZ+Do
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U=Eo0+Fo

Single-valuedness requires that Eo = 0, and boundedness requires that Ao --: 0:

T(r,0,0) = DO = 0

T(r,0,L) = CO = 0

which results in trivial solution:

Finally, the solutions of the problem can be written as:

(~-) (~)[sin(n0)lTnrn = In r sin z Lc°s(n0)_J n = 0, 1, 2, 3 .... m = 1, 2, 3 ....

The solutions Tnm contains orthogonal eigenfunctions in z and 0. The general solution

can then be written as a Generalized Fourier series in terms of the general solutions Tnm

as follows:

T= In r sin z (Gnmsin(n0)+HnmcOs(n0))

n=0m=l

Satisfying the remaining non-homogeneous boundary condition at r = c results in:

T(c,0,z)=f(0,z,= =~ ~ In(-~--~c)sin(-~--~z)(Gnmsin(n0)+HnmcOS(n0))
n 0 1

Using the orthogonality of the Fourier sine and cosine series, one can evaluate the Fourier
coefficients:

2n L

Gnm_ 2 ! If(0,z)sin(n0)sin(-~z)dzd0 m,n= 1,2,3 
r~LIn(-~ c) 0

2n L

Hnm ~LIn(~-~c) I f(0, z) cos (n0) sin (-~ z) dz d0 m= 1,2,3 

0

where en is the Neumann factor.

Example 6.5 Ideal Fluid Flow Around an Infinite Cylinder

n=0, 1,2 ....

V:# = 0 where # = # (r,O)

Obtain the particle velocity of an ideal fluid flowing around an infinite rigid
impenetrable cylinder of radius a. The fluid has a velocity = Vo for r >> a.. Since the

cylinder is infinite and the fluid velocity at infinity is independent of z, then the velocity
potential is also independent ofz. The velocity potential 0 satisfies Laplace’s equation:
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and the particle velocity is defined by:

The boundary conditions r = a requires that the normal velocity vanishes at r = a, i.e.:

0 ¢(a, 0) = 

Let # = R(r) U(0), then:

r2R" + r R’_ k2R = 0

U"+k2U=0

If k = 0, then the solutions are:

U=Ao0+B0

R = Co log r + Do

If k ~ 0:

U = Ak sin (kO) + k cos (kO)

R = Ck r k + Dk r"k

The velocity components in the r and 0 directions are the radial velocity, Vr =

Both of these components must be single valued.and the angular velocity, V0 = .
r O0

The velocity field for k = 0 is:
1

V0 = --’(C O logr + Do)Ao and Vr = -’° (Ao0 + Bo)

Single-valuedness of the velocity field requires that Ao = 0, since Vr(0 ) = Vr(0 + 2n).

For k ;~ 0, the velocity field is:
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Vo Vr

~o .........................

.x_,y

r

V0 = -k (Ck r
k’~ + Dk 1"(k+l)) (Ak cos(k0) - k sin(k0))

and

Vr = - k (Ckrk-1 - Dkr-(k+l)) k sin (k0) + k cos(k0)

Requiring that Vr(0 ) = Vr(0 + 2rt) 0 (0) = V0(0+ 2r0dictates that kis aninteger = n.

Thus, the velocity potential becomes:

~o = Bo (Co log r + Do)

~n = (A n sin (nO) + B n cos (nO)) (C n r n + Dn r-n) n = 1, 2, 

Furthermore, the velocity field must be bounded as r --) oo. Examining the expressions
for vr and V0 for r >> a and k = n > 1, then boundedness as r --) oo requires that n =0

for n > 2. The boundary condition must be satisfied at r = a:

Vr(a,0) = 

for k = 0:

Vr(a,0)=-C°B o = 0 or CO Bo = 0
a

fork=n:

vda, O) ; -n (C~r~-t - Dnr-(a+t)) (An sin (nO) + n cos (nO)) r

or

Dn = a2n Cn

and, hence:

Dn=0 for n>2

Thus, the general solution for the velocity potential becomes:

~ = Eo + (E1 cos (0) + l sin (0)) (r +-1)

The radial and angular velocities become:

Vr = -(El cos (0) + 1 sin (0)) ( 1 -
r-
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V0 = +(E1 COS(0) - 1 sin (0)) (1 +

The radial and angular velocities must approach the given velocity Vo in the far-field of

the cylinder, i.e.:

Vr ---) -Vo sin (0) and V0 --) -Vo cos (0)

which, when compared to the expressions for Vr and VO, gives:

E1 = 0 and F1 = Vo

Thus, the solution for the velocity field takes the final form:
2

Vr = -Vo (1 - ar-~-) sin(O)

2
aV0 -- -Vo (1 ÷ 7) cos(0)

and

¢=Eo+vo(r+ - )sin(0)
r

Note that the velocity potential is unique within a constant, due to the Neumann
boundary condition, and unbounded. However, all the physical quantities (Vr and V0) are

unique, single-valued and bounded.

Example 6.6 Electrostatic Field Within a Sphere

Obtain the electric field strength produced in two metal hemispheres, radius r = a,
separated by a narrow gap, the surface of the upper half has a constant potential ~o, the

surface of the lower half is being kept at zero potential, i.e.:

~(a’0)=f(0)={00°rt/2<0<r~0-<0<x/2

Since the sphere’s shape and the boundary condition are independent of the polar
angle, then the solutions can be assumed to be independent of the polar angle, i.e.
axisymmetric. The equation satisfied by the electric potential (~ in spherical coordinates,

for axisymmetric distribution, is given by (Appendix C):

32t~ . 2 3¢ . 1 32¢ cot(0) 3¢ 
V2*= 3r’--~-*~--~-r*~-a-’~ -+ r 2 30

Let qb(r,0) = R(r) U(0), then the solution as given in Example 6.3 becomes:

Ck = [Ak Pk 0q) + Bk Qk (rl)] rk + Dkr-k-l]

where rI = cos 0

Boundedness of the voltages Er and E0 at r = 0 and r1 = + 1 requires that k = integer =

n, Bn = 0 and Dn = 0. Thus, the solution which satisfies Laplace’s equation is:

t~n (r, rl) = n Pn (rl) n = 0, 1, 2 ....
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and the general solution can be written as a Generalized Fourier series:

~)= ~ Fn rn Pn(rl)

n=0

Satisfying the boundary condition at r = a:

~(a, rl) = n r
nPn(rl) = g (~

n=0

where g (rl) = f (cos -1 rl). Thus, using the orthogonality of the eigenfunctions Pn0]),

results in the following expression for the Fourier coefficients:

+1 +1

Fn= 2n +~1.2an j-g(rl)pn(rl)drI = 2~-~°2n+l’ j’Pn(rl)drI
-i 0

The first few Fourier constants become:

~a 7 11
F° : ~)~°2 FI= *o F3 = - 1-~a3 *o F5 = 3-~-a5 *o

F2n =0 n = 1,2,3,4 ....

Therefore, the potential can be written as:

g)(r, rl)=-~ l+3(r)pl(rl)- ~ ; P3(rl)+ P5(rl)-...
2\a) 16\aJ

The electric field strength ~ = Er ~r + E0 ~0= ~7~) can be evaluated as follows:

Er(r, rl)-~)* *o{~P10])_21(r~2p()+55(’r’)4

10,. 0 o /-,’,’,’,’,’,’,’,’,~ ~ 3 .... 7(" r):~ p,. )+ ll[r) 4 }

6.10 The Poisson Equation

Solution of Poisson’s equation may be obtained in terms of eigenfunctions. Two
distinct types of problems involving Poisson’s equation will be discussed; those with
homogeneous boundary conditions and those with non-homogeneous ones.

In problems involving homogeneous boundary conditions, one may attempt to
construct an orthogonal eigenfunction set first, which is then used to expand the source
function in Poisson’s equation.

Start with the following system:

V2(~ = f(P) P in V (6.49)

together with homogeneous boundary conditions of the Dirichlet, Neumann or Robin
type, written in general form:
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Ui (0 (P)) = 0 P on S (6.50)

Starting with the Helmholtz equation

V21g +)~lg = (6.51)

whose solution must satisfy the same homogeneous boundary conditions that 0 satisfies,

i.e.:

Ui (Ig (P)) P on S

The homogeneous Helmholtz system in eqs. (6.50) and (6.51) would generate 
orthogonal eigenfunction set {~M (P)}, M being a one, two, or three dimensional integer,

such that:

V2/gM + ~,lg M = 0 (6.52)

where each eigenfunction satisfies Ui (~M (P)) = 0. The eigenfunction set is orthogonal

where the orthogonality integral is defined by:

~ I[/MIg K dV= 0 M ~ K

V
= NM M = K (6.53)

Expanding the solution in Generalized Fourier series in terms of the orthogonal
eigenfunctions:

~ -- Z EM ~tM(P) (6.54)

M

and substituting eq. (6.54) in Poisson’s equation (6.49) and eq. (6.52):

V20 = Z EM V2~IM (P) = -Z XM EM ~IM (P) = f(P)

M M

One can use the orthogonality integral in eq. (6.53) to obtain an expression for the
Fourier coefficients EM as:

-__L_, IEM = NN ~’N tgN(P)f(P)dV (6.55)

V

If the system is completely nonhomogeneous, in other words if the equation is of the
Poisson’s type and the boundary conditions are nonhomogeneous, one can use the
linearity of the problem and linear superposition to obtain the solution. Thus, for the
following system:

V20 = f(P) P in V (6.49)

subject to the general form of boundary condition:

~nP) + h0(P) = g(P) P on S k, h > 0 (6.56)k

where k and h may or may not be zero. Let the solution be a linear combination of two
solutions:

0=01 +02
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such that 01 and 02 satisfy the following systems:

V201 = 0 V202 = f(P)

~ 202 (P)k +h01(P) = g(P) k ~+ h02(P) = 0 P on 

Thus, 01 satisfies a Laplacian system and 02 satisfies a Poisson’s system with

homogeneous boundary conditions.

Example 6.7 Heat Distribution in an Annular Sheet

(6.57)

I
I

I

OT/Or = 0

Obtain the temperature distribution in an annular sheet with heat source distribution
q, such that the temperature satisfies:

V2T = - q(r,0)

The outer boundary of the sheet, at r = b, is kept at zero temperature, while the inner
boundary, at r = a, is insulated, i.e. for T = T(r,0):

T(b,0) = 0 and ~Y(a, 0____~) 

The system, from which one can obtain an eigenfunction set, can be written in the form
of the Helrnholtz equation satisfying the same homogeneous boundary conditions, i.e.:

~72~ + 12~ = 0 12 undetermined

¯ by (a, 0)O) = o = o

Let ~p(r,0) = R(r) F(0), then the equation becomes:

r2R"+ rR’ + 1~" +l~r~ =0

R F

or
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F,’+k2F=0

r2R" + r R"+ (12 2 -k2) R = 0

where the sign of the separation constant k2 is chosen to give oscillating functions in the
r and 0 coordinates, since the boundary conditions are homogeneous in both variables.

The solutions of the two ordinary differential equations become for I * 0:

F = A sin (k0) + B cos (k0)

R = C Jk (l r) + D Yk (I 

Single-valuedness requires that k is an integer = n, where n = 0, 1, 2 .... The two
homogeneous boundary conditions are satisfied as follows:

C Jn (/b)+D Yn (/b)=0

C Jn (la)+D Yn (la)=0

which results in the following characteristic equation:

Jn(/b) Y~(la)- J~(la) Ya(/b)=0 l~0

The characteristic equation can be written in terms of the ratio of the radii, c = b/a, i.e.:

Jn(c l a) Y~(/a) - J~(/a) Yn(c l 

which has an infinite number of roots for each equation whose index is n:

l nm a = P, nm m = 1, 2, 3 .... n =0, 1, 2 ....

where P’nm represents the m~" root of the nt" characteristic equation. The ratio of the

constants D/C is given by:

D Jn(cktnm)
C Y(cgnm)

which can be substituted into the expression for R(r). Thus, the eigenfunctions Ignm can

be written as follows:

[-sin(n0)-IIgnm = Rnm(r)lcos(n0)[ n = 0, 1,2 .... m = 1, 2, 3 ....

where:

a [ Jn(c~tnm)Rnm(r) = Jn(I-tnm r)- [_y~ ~--~m) Yn(~l’nrn 

It should be noted that angular eigenfunctions as well as the radial eigenfunctions, Rnm,
are orthogonal, i.e.:

b

I {0 if m;eqrRnm Rnq dr = Nnrn if
m = q

a

Expanding the temperature T in a General Fourier series in terms of the eigenfunctions
kl/nm (r,0) as follows:
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T(r,0)= Z Z Rnm(r)[Anmsin(n 0) +Bnmc°s(n0)]

n=0m=l

The solution for the Fourier coefficients Anm and Bnrn can be obtained in the form given

in eq. (6.55), using the orthogonality of Rnm and the Fourier sine and cosine series as:

b2ua2
[ |rq(r,0)Rnm(r)sin(n0)d0dr n, m := 1, 2, 3 ....Anm - 2

~nm Nnm
d J

a0

b2u
a2en f f r q(r,0) Rnm(r) c°s(n0) Bnm

2~2nrn Nnm a 0
n=0,1,2 ....

m=1,2,3 ....

where en is the Neumann factor.

6.11 The Helmholtz Equation

The solution of homogeneous and non-homogeneous Helmholtz equation is outlined
in this section. Consider the Helmholtz equation (6.24):

V2~) + )~ ~ = f(P) P in V (6.24)

subject to homogeneous boundary conditions (6.50):

Ui (~)(P)) P on S (6.50)

The homogeneous eigenvalue system given in eqs. (6.51) and (6.52) generate 
eigenfunction set that is orthogonal as defined in eq. (6.53). The eigenfunctions ~)M (P)

satisfy Helmholtz equation when )~= ~’M, i.e. (6.52) 

V2~)M ÷ ~M ~M = f(P) (6.52)

One can show that the eigenvalues are non-negative. Multiplying the Hel~olm
equation on ~M by ~M and integrating on V, one obtains:

I*M[V2*M + ~M*M]dV = -f (V*M)*(V*M)dV + 
V V V

+f ~M O~M dS = 0
On

S

which can be rewritten as:

I ~V*M~ dV - XM I *~ dV = I*M ~ :0 (6.58)
V V S

Now one can solve for XM for the given bounda~ condition:
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(a) Dirichlet: ~)M (P) = 0 P on S, then:

IV,MI= dV
~’M = V >0

V

(b) Neumann: O%I(P) 
On

P on S, then:

(6.59)

the same ~onclusions about ~’M in eq. (6.59) are made.

(c) Robin: 00M(P)
On ÷h0M(P) = 0 P on S and h > 0 then:

J’lV 12dV
KM = V

S > 0 (6.60)

V

Thus, the eigenvalues corresponding to these boundary conditions are real and non-
negative.

One can show that the eigenfunctions are also orthogonal. Let ~ and ~K be two

eigenfunctions satisfying eq. (6.38) corresponding to eigenvalues ~’M and ~K, with

~’M ~: )~K, i.e.:

V2¢M + ~’M~M = 0 (6.60
V2¢K + XKCK = 0

Multiplying the first equation in (6.61) by ¢K, and the second in (6.61) by 

subWacting the resulting equalities and inte~ating over V, one obtains:

yi*KV~*~ - ¢~V2*¢laV + ~XM - XK)y*~¢K dV ~6.62~
V V

From vector calculus, it can be shown that:

f fV2gdV =- I(Vg)*(Vg)dV +I 
V V S

Thus, eq. (6.62) becomes:

~3~M ~]dS XM)y 0M#K dV (6.63)

S V

If the eigenfunctions ~K and @M satisfy one of the bound~ conditions [eq. (6.50)], then

the left side of eq. (6.63) vanishes resulting in:

y@MdV 0 M K~K
V
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To solve the non-homogeneous system, expand the solution ~ in Generalized Fourier

series in terms of the eigenfunctions ~M(P) of the corresponding homogeneous system

(6.54) as follows:

~ = E EM~M(P) (6.54)
M

Substituting the solution in (6.54) into eq. (6.24) and eq. (6.52) one obtains:

V2* + ~,qb = V2 £ EM*M (P) + E EMOM(P)
M M

-E ~’MEMqBM (P) ~’ E EM~M (p

M M

= ,~__~(k - XM)EM~M (P) = (6.64)

M

Multiplying eq. (6.64) by #K(P) and integrating over V, one obtains, after using 

orthogonality integral (6.53):

EK = 1 f F(P)% dV (6.65)
(~.- ~,K)NK 

One notes that if )~ = 0, one retrieves the solution of Poisson’s equation.

A few examples of systems satisfying Helmholtz equation in the field of vibration
and harmonic waves will be given below.

Example 6.8 Forced Vibration of a Square Membrane

Obtain the steady state response of a stretched square membrane, whose sides are fixed
and have a length = L, which is being excited by distributed forces q(P,t) having the
following distribution:

q(x,y,z,t) = qo sin (rot) qo = constant

Since the forces are harmonic in time, one can assume a steady state solution for the
forced vibration. Let the displacement, w(x,y,t) satisfying (equation 6.7):

32w 32w 1 32w qosin(cot)
c2

S

~)X’-"-~+ ~---~= C2 Ot2 S

have the following time dependence:

w(x,y,t) = W(x,y) sin 

then, the amplitude of vibration W(x,y) satisfies the Helmholtz equation:

V2W + k2W = - qo/S k = to/c

One must find the set of orthogonal eigenfunctions of the system, such that the solution
W can be expanded in them. Thus, consider the solution to the associated homogeneous
Helmholtz system on W:

V2W + b2~ = 0 b undetermined constant
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that satisfies the following boundary condition: W(P) = 0, for P on C, the contour
boundary of the membrane.

Let:

W(P) = X(x) 

Substituting W(P) into the Helmholtz equation results in two homogeneous ordinary
differential equations:

a Cb X = Asin(ux)+Bcos(ux)
X" + (b2 - a2)X = 

a=b X=Ax+B

a ~: 0 Y = Csin(ay)+Dcos(ay)
Y" + a2Y = 0

a=0 Y=Cy+D

where u = "~ - a2 . One can now solve for the separation constants, a and b, given the

boundary conditions. At the boundaries: y = 0, and y = L:

W(x,0) = D = 0

W(x,L) = sin(aL) = amL = mr~ m = 1,2,3 ....

If a = 0, then C = 0, which results in a trivial solution. At the boundaries x = 0, and
x=L:

W(0, y) = B = 0

W(L, y) = sin(uL) = unL = n~ n = 1, 2, 3 ....

if a = b, A = 0, which results in a trivial solution. The eignevalues bnm are thus

determined by:

nTz
un =--~- = ~~ - am2

bnrn = ~-~m2 + n2

Thus, the eigenfunctions of the system can be written as:

~mn (x, Y) = sin(--~ x) sin(~-’~ 

It should be noted that non-trivial solutions (Mode Shapes) exist when:

knm = bnm = ¢-0nm
c

so that the natural frequencies of the membrane are given by:

¢.Onm = ~-~ ~m2 +n2

Expanding the solution W in a Generalized Fourier series of the eigenfunctions:

W(x,y)= ~ ~ Enmsin(-~x)sir~-~y/
n=lm=l
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then the Fourier coefficients Enm of the double Fourier series can be obtained from eq.

(6.65) in an integral form:

LL-4 )
Enm = L2 (k2 ~ I I q° sin( nrtx/sin( mrt y dx dy-knm)o 0 S t~ L J \ 

-16 qo

mnx2(k 2 2-knm) S
if m and n are both odd

= 0 if either m or n is even

Finally, the response of the membrane to a uniform dynamic load is:

oo oo sin(~ x) sin(~-~ 
w(x’y’t)=-16q° " " "Z 

_k2mn)n2"----~ sin(COt) m n (k2
n=lm=l

for m, n odd

Example 6.9 Free Vibration of a Circular Plate

Obtain the axisymmetric mode shapes and natural frequencies of a free, vibrating
plate, having a radius = a, and whose perimeter is fixed. Let the displacement of the plate
w be written as follows:

w(r,t) = W(r) i°~t

then the equation of motion satisfied by W (see equation 6.11) becomes:

-V4W + k4W = 0 k4 = 0ho~2
D

The equation can be separated as follows:

(V2 - k2)(V2 + k2)W = 

whose solution can be sought to the following equations for k # 0:

(V2 +k2)W = W = A Jo(kr) + BYo(kr).

(V2 - k2)w = 0 W = C Io (kr) + D o (kr)

where Jo and Yo are Bessel functions of first and second kind and Io and Ko are modified

Bessel functions of the first and second kind respectively, all of them are of order zero.
Boundedness of the solution at r = 0 requires that B = D = 0, so the total solution can

be written as follows:

W(r) = A Jo(kr) + o (kr

For a fixed plate the boundary conditions are w = 0 and Ow/~r = 0 = 0 at r = a, and are

satisfied by:

w(a) = A Jo(ka) + o (ka) = 0

OW
~- (a) = k[A Jg(ka)+CI~(ka)] 

which ,gives the characteristic equation:
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Jo(ka)I~(ka)- Io(ka)J~(ka) = 0

Let the roots t~n, where tx = ka, of the characteristic equation be designated as:

ctn=kna n=1,2,3 ....

where it can be shown that there is no zero root. The eigenvalues are Xn = k4n = Ct4n/a4.

The eigenfunctions can be evaluated by finding the ratio C/A = -Jo(Ctn)/Io(Otn) 

substituting that ratio into the solution. Since Jo(Ctn) ~: 0, then one may factor it out.

Thus, the natural frequencies (on and the mode shapes Wn are then found to be:

(on
~ oh a2

n=1,2,3 ....
jo(ctnr) io(~nr)

Wn_ a
a

Jo(Rn) Io(t~n)

Example 6.10 Free Vibration of Gas Inside a Rigid Spherical Enclosure

Obtain the mode shapes and the corresponding natural frequencies of a gas vibrating
inside a rigid spherical enclosure whose radius is a.

The velocity potential ~(r,0,~,t) of a vibrating gas inside a rigid sphere is assumed 

have harmonic time dependence, such that:

w(r,0,~,t) = W(r,0,q~) i(Ot

where W satisfies the Helrnholtz equation. Assuming that W can be written as:

W(r,0,~) = R(r) S(0) 

then the Helmholtz equation becomes:

R" 2R’ I[’S" S’~ 1 M"
--+---+ +cos0~-j+ ~k2=0
R r R r2L ~- r 2sin20 M

which separates into three ordinary differential equations:

r2R" + 2r R’ + [k2r2 - v (v + 1)] R = 

M" + ~2M = 0

~2
S" + cot 0 S’ + [v (v + 1)- si---~] S = 

the last of which transforms to the following equation if one substitutes rl = cos 0:

d_~[(l_ r12) d~] + [v(v + 1)_ ~ _--~] s = 0

The separation constants v and ct2 must be positive or zreo to give oscillating solutions

of the three ordinary differential equations. The solution of these equations can be written
as follows:
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R = Ajv(kr)+ BYv(kr) 

S = CP~Oq) + DQv~(rl)

M = Esin(et0) + 

where Jv and Yv are the spherical Bessel Functions of the first and second ~nd of order v,

P~ and Q~ ~e the associated Legendre functions of the first and second ~nd, degree v

and order ~. Single-valuedness requires that ~ be an integer = m = 0, 1, 2 .... and

~undedness at r = 0 and ~ = ~ 1 requires that:

B = D = 0 ~d v is an integer = n = 0, 1, 2 ....

The bounda~ condition at r = a requires that the nodal (radial) velocity must vanish,
i.e.:

Vr = - ~ = 0 or j~ (ka) = j~ (~) where ~ = ka
r a

Let ~nl designate the 1 t~ root of the n" equation. It can be shown that the roots ~nl ¢ O.

The mode shapes and natural frequencies of a vibrating gas inside a spherical enclosure
~come:

a LCOS(n0)J

C
¢0nl = -- ].tnl re, n=0, 1,2,3 .... / =1,2,3 ....

a

6.12 The Diffusion Equation

The most general system governed by the diffusion equation takes the form of a non-
homogeneous partial differential equation, boundary and initial conditions, having the
form

V2~ = 1 30 + F(P, t) P in V, t > 0 (6.66)
K 3t

where ~ = q~(P,t) is the dependent variable satisfying time-independent non-homogeneous

boundary conditions of Dirichlet, Neumann or Robin type, i.e., they are only spatially
dependent:

U (O(P,t)) = l P on S, t > 0 (6.67)

and the initial conditions:

t~(P,0+) = g(P) P in V (6.68)

and F(P,t) is a time and space dependent source. The restriction on only spatially
dependent boundary conditions is due to the goal of obtaining solutions in terms of
eigenfunction expansions, such restrictions will be removed in Chapter 7.

Since the non-homogeneous boundary conditions are only spatially dependent, one
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can split the solution ¢ into two components one being transient (time dependent), and

the other steady state (time independen0.
Let:

~ = ¢1(P,t) + ~(P) (6.69)

where the first component satisfies the following system:

V2~bl = l~bl+ F(P,t)
K ~t

U(Ol) = (6.70)

~i (P,0+) = g(P) - dd2(P) = h(P)

and the second component satisfies Laplacc’s system:

V2qb2 = 0
(6.71)

u(~2) = l(P)
The two systems in eqs. (6.70) and (6.71) add up to the original system defined in 
(6.66) through (6.68). The system in (6.71) is a Laplace system, which was explored 
Section (6.10). Once the system in (6.71) is solved, then the initial condition of 
system (6.70) is determined. To obtain a solution of the system defined by eqs. (6.70),
one needs to obtain an eigenfunction set from a homogeneous Helmholtz equation with
the boundary conditions specified as in (6.70), i.e.:

V2~bM + XM t~M = 0 (6.72)

subject to the same homogeneous boundary conditions in (6.70)

U(~) = 

so that the resulting cigcnfunctions are orthogonal, satisfying the orthogonality integral:

~¢~M ~bKdV = ~:0 M K

V
=N M M=K

The solution of the system in (6.70) involves the expansion of the function ~b(P,t) 

Generalized Fourier series in terms of the spatially dependent eigenfunctions, but with
time dependent Fourier coefficients:

¢h = ~ E M (t) CM (P) (6.73)
M

The solution ~b~ satisfies the boundary conditions of (6.70), i.e.:

U((~I) = U(ZEM (~M) = ZEM U(C~M) = 
M M

Substituting the solution (6.73) into the differential equation of (6.70) results 

V2¢~1 = Z P-M (t) V2C~M = -Z ~’MI~’M (t) ~M 
M M

= ~ Z E~(t)(~M (P) + F(P,t)
M

(6.74)
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which uses eq. (6.72). Rearranging eq. (6.74) results in a more compact form:

~ (EL (t) + ~’M K M (t)) ~= -K F(P, t) (6.75)
M

Multiplying eq. (6.75) by 0N(P) and integrating over the volulne results in a fixst order
ordinary differential equation on the time-dependent Fourier coefficients:

~t~M(P) F(P, dVt)

E~l (t) + ~M K M (t) = -KV = FM (t) (6.76)

V
The solution of the non-homogeneous first-order differential equation (6.76) is obtained
in the form, given in Section 1.2:

t

EM (t) = CM e
-K~’Mt + ~ F M(~I) e-~’uK(t-Vl)dl"l (6.77)

0

One can use the initial condition at t = 0 to determine the unknown constants CM

Ol (P, 0+) = ~ EM (0) OM = h(P)=~ CM~M (P) (6.78)
M M

since EM(0) = CM. Thus, using the orthogonality of the eigenfunctions, the constants
CM become:

CM = ~M ! h(P)~M(P)dV (6.79)

The evaluation of CM concludes the determination of the Fourier coefficients EM(t). The
solution in (6.77) is a linear combination of two parts, one dependant on the initial
condition, CM, and the other dependant on the source component, FM(t). If the heat
source is not time dependent, i.e. if F(P,t) = Q(P) only, then M =QM, a constant, and
the solution for EM(t) simplifies to:

EM(t) = CMe-K~,~tt + QM [1- e-K~’ut] (6.80)
~.MK

and CM is defined by eq. (6.79).

Example 6.11 Heat Flow in a Finite Thin Rod

Obtain the heat flow in a finite rod of length L, whose ends are kept at constant
temperature a and b. The rod is heated initially to a temperature f(x) and has a distributed,
time-independent heat source, Q(x), such that, for T = T(x,t):

02T 1 0T Q(x)
0-~ "= K Ot Kpc

T(0,t) = a = constant T(L,t) = b = constant T(x,0+) = f(x)
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Let T = Tl(x,t ) + Tz(x) such that:

3ZT1 1 3T1 Q(x) 3ZTz
3x 2 K ~t Kpc 3x2

Tl(0,t) = T2(0,t) = 

TI(L,t) = T2(L,t) = 

T1 (x,0+) = f(x) - T2(x) = h(x)

The solution for Tz(x) can be readily found as:

b-a
T2(x ) = ~x+a

L

To solve for Tl(x,t ) one must develop an eigenfunction set satisfying the boundary

conditions:

X" + k2 X = 0 X = A sin(kx) + B cos(kx)

which satisfies the following boundary conditions:

x(0) = 0 B 

n~
X(L)=0 sin(kL)=0 or n=~ n=1,2,3 ....

Thus, the eigenfunctions and eigenvalues of the system become:

Xn = sin (-~ x) n = 1, 2, 3 ....

Xn = n2 x2 ] L2

Expanding T1 in terms of time-dependent Fourier coefficients, En, and the associated

eigenfunctions, Xn produces:

T1 (x, t) = E En (t) sin(~- 

n=l

subject to the initial condition:

Tl(X,0+) = f(x) - T2(x) = h(x)

Following the development in eq. (6.79), the constants n are given by:

L

Cn = ~" I[f(x,- T2 (x,] sin(~)~-n x, n= 1,2,3 ....

0

Following the development for a time-independent heat source, eq. (6.76) gives:

L

Qn = Q(x)sln(s-x)dx n = 1, 

0
so that the final solution for En(t), eq. (6.80), is given 



CHAPTER 6 346

En(t )=Cne-Kn~n2t/L2 QnL2 r, e-Kn2n~t/L~+ ~-~-~-~2 t’- ]

It should be noted that as t ---> oo, a steady state temperature distribution is given by Qn

only:

QnL2
En(t) --> ~ as t ---> 

Example 6.12 Heat Flow in a Circular Sheet

Obtain the heat flow in a solid sheet whose radius is a and whose perimeter is kept at
~ro temperature. The sheet is initially heated and has an explosive point heat source
applied at the

of the sheet so that the temperature T(r,t) satisfies the following system:

1 ~T ~(r)
0_<r<_a t>0V2T = "~ c~’~’-

T(a,0 = 

T(r,0+) = TO (1- 2 /a2) ~

when iS(r) is the Dirac delta function (Appendix D). Since the boundary conditions 

homogeneous, then T2 = 0, and T(r,t) = Tl(r,t). To find the eigenfunctions of the system

in cylindrical coordinates, one solves the Helmholtz system:

d2R 1 dR
V2R+kR=--~+~--~--+k2R=0 where ~=k2

which has a solution of the form:

R(r) = A Jo(kr) + B Yo(kr)

Since the temperature is bounded at the origin, r = 0, let B = 0. Satisfying the boundary
condition at r = a, R(a) = A Jo (ka) = 0. Letting ~t = ka, then Jo(lX) = 0 has an infinite

number of non-zero roots: ~tn = kna, n = 1, 2, 3 ..... and the eigenfunctions and

eigenvalues become:

Rn(r) = Jo(i.t n r)
~’n ~tn2

a =’~"
n= 1,2,3 ....

and the orthogonality condition is (4.86):

a

I r J°(lXn ) J°(lxrn r)dra =0
n ~ m

0

= Nn = ~-Jl2(l~n) n = m

Expanding the temperature T(r,0 into an infinite series of the eigenfunctions:
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T(r,t) = ~_~En(t)Rn(r)
n;1

then one can follow the development of the solution through eqs. (6.70) through (6.79).
The Fourier series of the source term of eq. (6.76) is given by:

Fn(t)= Q°e-a-~-t ir~Jo(l.tn r) dr= Q°e-~tt
2r~P cNn 0 a a2~pcJ12([tn)

The integral part of the solution for En(0 in eq. (6.77) due to the point source is evaluated

separately from the initial condition, yielding:

Q°e-Kt~t*~/a2 i Q°[e-at-e-Kt~t-~/a2 ]

~) ~ e-a~e-K~t2"/a~ drl: aZnpct~¢ l.tn2/a2 _a]j~(~n)

~e cons~t Cn of ~. (6.79) due ~ the init~l condifon is also ob~ined ~rough ~s.

(3.103) ~d (3.105):

a 2

Cn=~r(1-~ )Jo(gn~)~=4T°Jl(~n)3 = 3 8To
n 0 "

a ~nNn Bn Jl(~n)

Finely, ~e solution for the FoYer c~fficient En(0 is given by:

En(t) = 8Toe-Kt~/a~ Qo[e-at _ e-Kt~/a~ ]

~J~(~l ~a~octKg~/a~
One can cl~ly s~ t~t ~e tem~rat~e tends to zero as t ~ ~, since the so~ce i~elf

also vanishes ~ t ~ ~.

Example 6.13 Heat Flow in a Finite Cylinder

Obtain the heat flow in a cylinder of length L and radius a whose surface is being
kept at zero temperature, which has an initial temperature distribution. Thus, if
T = T(r,0,z,t), then:

T(a,0,z,t) = 0, T(r,0,0,t) = 0, T(r,0,L,t) = 0, T(r,0,z,0+) = f(r,0,z)

Since the boundary conditions are homogeneous, then there is no steady state
component, and the temperature satisfies the homogeneous heat flow equation in
cylindrical coordinates as follows:

32T 13T 1 32T 32T 1 3T

+ -ffr + 7r --ff + 3--?
Theeigenfunction of the Helmholtz equation can be obtained by letting:

~ = r~(r) F(0) 

then the partial differential equations can be satisfied by three ordinary differential
equations:
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h2
R"+IR’+ (k2r

--~-)R = 

F"+b2F=0

Z"+c2Z=0

k~0 R = A Jb(kr) + BYb(kr)

k=0,b#0 R= Arb +Br-b

k=0,b=0 R=A+Blog(r)

b # 0 F = C sin(b0) + Dcos(b0)

b = 0 F = CoO + DO

c ~ 0 Z = G sin(cz) + H cos(cz)

c--0 Z=Gz+H

where the signs of the separation constants k2, b2, and c2 were chosen to result in
oscillating functions.

Single-valuedness of F(0) requires that b = integer = n = I, 2, 3 .... and O =0.

Boundedness at r = 0 requires that B = 0. Satisfying the boundary condition at r = a for
R(r), one obtains for k # 

Jn(ka) = Jn (I.t) = 0 l-I-hi = ktaa i = 1, 2, 3 n = 0, 1, 2 ....

where Ixnt is the/th root for the nth equation, and I~nt * 0. For k = 0, A = 0, resulting in

a trivial solution for R(r). For c # 

z(o) = H = o

m~
Z(L) = sin(cL) --- 0 c m = ~ m = 1, 2, 3 ....

There is only the lrivial solution Z(z) for c = 
Thus, the eigenfunctions and eigenvalues can be written as follows:

sin(~.~z)jn(i.tn1 r. I-sin(n0)] l.tn~l ÷ m2r~2

z’Loos<o0>J~nml=-~ - L2

Since there are two different functional forms of the eigenfunctions, one must use two
different time-dependent Fourier coefficients for the final solution for T. Letting:

T(r,O,z,t) = X X Cnmt(t)sin(n0)+Dnmt(t)c°s(n0)]sin(
z)Jn(l’tnl -~)

a
n=Om=ll=l

then tbe initial condition can be evaluated from:

T(r,O,z,O+)=f(r,O,z)= ~ ~ sin( z)Jn(gnl~).
n=0m=l/=l

¯ [Cnm~(t) sin(n0) + Dnm~(t) cos(n0)]

’ The solution for C~n~(t) and Dmn~(0 for a source-free cylinder becomes:

Dn~~(t) = ~n~l exp (-~nm~ K t).

Using eqs. (6.77,6.79), the constants ~nm~ and ~nml become:
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a L2n~nm/=~La2j,,~-l(Bn/)~’4. . ! ! f r fsin(m~ z) sin(n0)Jn(i.tn/r)d0dzdrJ0 L 

2~n~nm/= ~La2j2n+l(~n/)

a L2n

f f frfsin(~-~z) cos(nO)Jn(btn/~)dOdzdr
000

6.13 The Vibration Equation

Solutions to the homogeneous or non-homogeneous vibration or wave equations can
be obtained in terms of eigenfunction expansions.

The types of non-homogeneous problems encountered in transient vibration or wave
equation with time dependent sources and non-homogeneous boundary conditions are
again restricted to time-independent boundary conditions. This limitation is imposed in
order to take full advantage of the eigenfunction expansion method. These limitations
will be relaxed in Chapter 7. The system, composed of a non-homogeneous partial
differential equation, boundary and initial conditions on the dependent variable ~(P,t) are:

V20 = L32,0 + F(P, t) P in V t > 0 (6.81)
cA Ot~

where F(P,t) is a time and space dependent source and the function ~(P,t) satisfies 

homogeneous Dirichlet, Neumann or Robin type, spatially-dependent boundary
conditions:

U(O(P,t)) = P on S (6.82)

and non-homogeneous initial conditions for P in V:

30 (p,0+) = f(p)
(6.83)¢(P,O+) = h(P),

-~-

Due to the space dependence only of the boundary conditions, one may split the solution
into a transient component and a steady state component, i.e.

(6.84)¢(P,t)= ¢~(P,t)+

such that 0~(P,t) satisfies the following system:

= 1 ~2~)1 + F(P,t) P in V21)l 20t2 t > 0 (6.85)

and the homogeneous form of the boundary conditions given in (6.82) and the initial
conditions (6.83):

U(01(P,t)) P on S,

~0-~k(P,0+) = f(P) P in V

~I(P,0+) = h(P) - g)2(P) = g(P) 

t>O (6.86)

(6.87)

(6.88)
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The second steady state part @2(P) satisfies the system:

V2~2 = 0 P in V t > 0 (6.89)

U(d~2(P,t)) = P on S (6.90)

The steady state component (~2 satisfies a non-homogeneous Laplace system, see Section

6.9.
To solve the system (6.85) to (6.88), one starts out by developing the eigenfunctions

from the associated Helrnholtz system, as was discussed in Section 6.11, eq. (6.72).
Expanding the solution ~l(P,t) in the eigenfunction of the homogeneous Helmholtz

system with time dependent Fourier coefficients:

~l(P,t) = £EM(t)~M(P) (6.91)

M

and substituting the solution in (6.91) into eq. (6.85) we 

(P, t) = £ M (t) V i~M (P) =-£~,MEM (t)

M M
(6.92)

M

The above equation can be rewritten in compact form as:

~ [E~ (t) + C2XMEM (t)] ~M = -c2F(P, t (6.93)

M

Multiplying the series by ~K(P), integrating over the volume, and using the

o~hogonality integrals (6.53), one obtains a second order ordin~ differential equation 
EM(t) as:

2
E~(t) + c2XMEK(t) = - ~ £F(P,t),K (P)dV ) (6.94)

The general solution of eq. (6.94) can be written as:

EK(t ) = AK sin(ct~) + K cos(ct~)

t (6.95)
+ FK(n)s,n(c n))dn(t _1

.

The initial conditions of EK(t) ~e:

E~(0) = K ~d Ek (0) = c~Az (6.96)

where the constants AK and BK ~e obtained from the initial conditions (6.87) and (6.88)

as follows:

Ol(e,0+) = g(P) = ~EK(0)OK(P)

K
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00_A_I(P, +) =f( P) = ~ k (0)~K (
Ot

K

which, upon use of the orthogonality integrals (6.53), results in an integral form for the
constants AK and BK as:

fg(P)~K(P)dV

EK(0) = BK _ V (6.97)
NK

and

f f(P) 0K(P)dV

AK=V
c ~KNK

The evaluation of the constants AK and BK concludes the evaluation of the time-

dependent Fourier coefficient EK(t) and hence results in the total solution 0(P,t),

Example 6.14 Transient Motion of a Square Plate

Obtain the transient motion of a square plate, whose sides of length L are simply
supported (hinged). The plate is initially displaced from rest, such that, if w = w(x,y,t),
then:

V4w+ 9h ~Zw -0 0<x,y<L, t>0 0<x,y<L
D Ot2 - - - - -

The boundary and initial conditions become (see Section 6.3.3):

w(P,t) = P on C

~2w
(P, t) + v-~ (P, t) 

~n2 os

w(x, y, ÷) =f(x, y)

Thus:

w(0,y,t) = 0 and

PonC

-~-t (x,y,0+) = 

w(L,y,t) = 0 and ~2w L t
~x2(,y,) 

w(x,0,t) = and
~2w

~ (x,0,t) = 

(6.98)

w(x,L,t) = 0 and
~2w

~ (x,L,t) = 

~W
since

~ (0,y,t) = 

0w "L
since --~-y (,y,t) = 

since
-~--~-x (x,0,t) = 

since
-~x (x,L,t) = 
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Since the problem does not involve sources or non-homogeneous boundary conditions,
~:hen only the transient component of eq..(6.84) remains. Starting with the associated
Helmholtz equation:

-~74W + b4W = 0

One can split the fourth order operator as a commutable product of operators:

(V2 - b2)(V2 + b2)W = 

such that if W = W1 + W2, then the solution to W can be obtained from the following

pair of differential equations:

(V2 - b2) W1 = 0

(V2 + b2) W2 = 0

Letting Wl,2 = X(x) Y(y), one obtains:

X" + C2 X = 0 X = A sin (cx) + B cos (cx)

Y" - (c2 + b2)y = Y = C sinh (ey) + D cosh (ey)

where e2 = c2 + b2 and:

X" + d2 X = 0 X = E sin (dx) + F cos (dx)

Y" + (b2 - d:z)Y = Y --- G sin (fy) + H cos (fy)

where f2 = b2 _ d2. Each of these solutions must satisfy the boundary conditions, which
results in:

B=D=C=F=H=0

sin (dL) = dn = ~ n = 1, 2, 3 ....

sin (fL) = fn= L m= 1,2,3 ....

Thus, the eigenfunctions and eigenvalues become:

m~
Wnm = sin (~x) sin (--~-y)

(n2~2 mZ~t2 ~2
b4nm

and the resonance frequencies of a free plate, knm, are given by:

knm= bn2m:~loh L 2 +m2)

Expanding the solution into the eigenfunctions of the problem, gives:

w(x,y,t) = X Enm(t)Wnm(X’Y)

n=lm=l
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where the Fourier coefficients do not contain a source component:

Enm(t) = Anm sin(knmt)+ Bnrn cos(knmt)

The initial conditions as given in eqs. (6.97) and (6.98) results 

LL

Bnm = ~2 f f f(x, y)sin (~ x)sin (~--~ y)dx 

00

Thus, the final solution for the response of the plate is given by:

w= E E Bnmsin(-’~x)sin(-~-~y)cOs(knmt)

n=ln=l

Example 6.15 Forced Vibration of a Circular Membrane

Obtain the transient motion of a circular membrane, whose radius is a, in response to
transverse time-varying forces q(r,t). The membrane is initially deformed to 
displacement f(r) and released from the rest.

Since the shape of the membrane, the boundary conditions, and the source term are
not dependent on 0, then the motion of the membrane will be independent of 0, i.e.:

axi-symmetric. The equation of motion satisfied by an axisymmetric displacement w(r,t)
can be written as follows:

32w+l~w 1 ~92w q(r,t)
O<_r<a t>O

~r2 r ~--~ = c2 ~t2 S

with boundary and initial conditions given as: ¯
w(a,t) = w(r,0+) = f(r), and (r,0 +) 0

Since the boundary conditions are homogeneous, then the steady state part of the solution
vanishes and w(r,t) becomes the transient solution.

The eigenfunctions of the system can be obtained by solving the associated
Helmholtz eq.:

r 2 R" +rR’+k 2r2R=0 R=AJo(kr)+BYo(kr)

Boundedness at r = 0 requires that B = 0, and the boundary condition R(a) = 0 gives the
characteristic equation: Jo(ka) = Jo(~t) = 0, where kt = ka. Let n bethenth rootof the

characteristic equation (where n = 1, 2, 3 .... ) then the eigenfunctions become:

Rn(r) = jo(~tn r)
a

There is no zero root of the characteristic equation. Writing out the solution in terms of
the eigenfunctions with time-dependent Fourier coefficients:
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w(r,t) = EEn(t)Rn(r)
ri=l

then, the solution for the first component of En(t), given in eq. (6.95) that is due to 

initial conditions only, results in:

En (t) = n sin(~tn ct) + Bn cos(gn c t )
a a

with

a

Bn _
2 f r f(r)Jo(gn r)dr

a2 [Jl(lt’tn)]2 a

An =0

The second component of En(t) that depends on the source term requires that one first

evaluates Fn(t) as: ̄

2c2. a ~
Fn(t) = a2[jl(gn)]2 Jo(P’n r)dr

a
0

which gives the component of En(t) due to the source as:

t
En(t) = a----~-fsin( C~tn (t - rl)) Fn(~l)drl

cp.n ~ a

Thus, the two parts of En(t) were found and the transient solution of the response of the

plate evaluated.
If the applied load on the membrane takes the form of an impulsive point force of the

form:

q(r, t) = 2~5(r)iS(t 

where ~5 is the Dirac delta function and represents a point force of magnitude Po applied

impulsively at t = to. Using the properties of the Dirac delta function (Appendix D) one

obtains:

Po~5(t-~ to)C2 ~ ~(r).. Po~5(t- to)C:~
Fn(t) = ~ J r-’-~" Jo~,lXn r)dr ....

’~’* t"l~.~n.~ 0 a ~a2[Jl(~n)]2-

which when substituted in the integral for En(t) for the source component results in:
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t
En(t ) = Po c ~ sin(~-(t- ~1)) ~(t- q

7za ~tn[Jl(~n)]2 

= Po c sin( c~tn (t - to)) H(t o)~a~n[Jl(~n)]2 a

where H(x) is the Heaviside unit step function (Appendix 

6.14 The Wave Equation

The solutions of the scalar wave equation, both in transient as well as steady state
cases, will be discussed in this section.

6.14.1 Wave Propagation in an Infinite, One Dimensional Medium

Wave propagation in an infinite one dimensional medium is governed by the
following system:

y = y(x,t)

~2y 1 b2y
c3x2 c2 ~t2

-~<x<~ t>0

y(x,0+) = f(x)

-~(x,0+) = g(x)

Letting u = x oct and v = x + ct, then the wave equation transforms to:

~2y = 0

~ubv

whose solution can be shown to have the form:

y = F(u) + G(v)

= F(x - ct) + G(x + 

The solution must satisfy the initial conditions:

y(x,0+) = f(x) = F(x) + 

c[d (x 1-~(x’0+)=g(x)=" I_ 
dx

Differentiating the first equation with respect to x, one obtains:

F’(x) + G’(x) --- f’(x)

and rewriting the second initial condition as:

F’(x) + G’(x) = 
C
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then, one can obtain explicit expression for F and G, upon integration:

F(x) 
x

2
g(rl)drl + 

0

x

0

and hence, substituting for independent variables x by u or v, one gets:

u 0

F(u) = f(u)2
~c’~ __ f(x-ct)+ 1~ 

g0"l) d~l + C : ~ ,~---~ g(l]) d~] 

0 x - ct

-~ci
f(x + ct) 1 xictG(v) = f(v--2) g(rl) drl - C ~- -- g(rl) drl - 

2 2 2c
0 0

which results in the final solution in an infinite one-dimensional continuum as:

x+ ct

y(x,t) = ~[f(x-ct)+ f(x + ct)] ~ f g( rl )drl

x - ct

where f(x-ct) and f(x+ct) represent the propagation in the positive and the negative
directions of x, having the form f(x) and traveling at a constant speed of 

Example 6.16 Transient Wave Propagation in a Stretched String

~o~x/(2L))

L

x

Obtain the transient displacement in an infinite stretched string, such that:

y(x,0+) = f(x) = -L<x<L

0 \2L)
x>L
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-~t (x,O+) = 

Note that the initial displacement can be written as:

y(x, 0+)= cos(~-~){H(x + L)-H(x- L)}

where the Heaviside function H(rl) is defined in Appendix 

The wave solutio~ for the displacement then becomes:

y(x,t) = -~cos(r~(~LCt).){H((x - ct) + L)- H((x 

+ icos(~(x- + ct).~{H((x +ct)+ L)- H((x + 
2 \ 2L 

which represents two half-cosine shaped waves traveling along the positive and negative
x-axis at a constant speed of c.

6.14.2 Spherically Symmetric Wave Propagatian in an Infinite Medium

Spherically symmetric wave propagation in an infinite medium is governed by the
following system:

y = y(r,t)

O2y 2 ~)y 1 02y

~)r 2 r ~r c2 /)t2

y(r,O+) = fir),

r>O t>O

~-~-Yt (r,O+) = g(r)

Let z(r,t) = r y(r,t), then the system transforms 

O2Z 1 O2Z.
r>O t>O

Or2 - C2 ~t2

z(r,O+) = r f(r)

Dz +
-~-(r,O ) = g(r)

which has the following solution as developed in 6.14.1 above:

r+ct

z(r,t)=½[(r-ct)f(r-ct)+(r+ct)f(r+ct)]+-~c ; 

r - ct

which becomes after transformation:

r+ct

y(r,t)= ~r[(r-ct)f(r-ct)+(r+ct)f(r+ct)]+~cr 

r - ct
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6.14.3 Plane Harmonic Waves

Plane harmonic wave propagation in continuous media is govemed by the,, following
Helmholtz equation:

~(P,t) = F(P) imt P = P(x,y,z)

O2F O2F 02F

ax2 ~" ~-7-5 + ~-~-+k2F=0

Let F = X(x) Y(y) Z(z), 

X"+ a2X=0

y"+b2y=0

Z"+c2Z=O

where k2 = a2 + b2 + d2.

where k = --
c

X = A eiax + 13 e-i ax

Y = C eiby + D e"i by

Z = E eicz + F e-i cz

Letting a = kl, b = km, and d = kn, then the solution of the
wave equation (wave functions) in cartesian coordinates becomes:

~(x,y,z,t) = exp [ik (+ + my + nz + ct)

where

l 2 + m2 + n2 = 1

If one lets t = cos (v,x), m = cos (v,y), and n = cos (v, z), where v represents the 

normal to the plane wave front, then the requirement that 12 + m2 + n2 = 1 is satisfied.
The solution developed in this section is the general solution for the scalar plane wave
propagation in three dimensional space.

Example 6.17 Reflection of Acoustic Waves from a Pressure Release Plane
Surface

Free Surface

An incident acoustic plane pressure wave Pi, Pi = Po exp [ik(/lX + rely + ct)] where

l 1 = cos(x,n) and 1 =cos(y,n), impinges ona pressure-release plane surface as shown in

the accompanying figure. Since the acoustic pressure satisfies the wave equation:

1 ~2p
V2p = c2 3t2

then let the reflected wave Pr be a plane wave solution of the wave equation where the

normal is n’:
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Pr = A exp [i~ (/2x + m2Y + ct)]

where l 2 = cos (n’,x) and 2 =cos (n’, y) . At thepressure-release surface, the tota

pressure must vanish, such that:

pi(y=0) + pr(Y=0) 

or

Po exp [ik(/ix + ct)] + A exp [ict (/2x + ct)] = 

In order for the equation to be satisfied identically for all x and t, then:

kc = +t~c or ~ = +k

kl 1 = ctl2 or 1 2 = +ll

Since:

3~t
l1 = cos ( -~- + 0) - +sin (0)

12 = cos ( ~ - 0") = +sin (0")

then sin 0" = sin 0 and 0 = 0", and A = - Po- Finally, since m1 = cos (~t + 0) = - cos(0)

then m2 = cos(0") = cos 0 = - 1. Thus, the reflected wave becomes:

Pr = " Po exp [ik (/1x - rely + ct)]

The reflected wave has an amplitude of opposite sign to the incident wave, equal incident
and reflected angles, and the same frequency ~o as in the incident wave.

Example 6.18 Reflection and Refraction of Plane Waves at an Interface

Consider an incident plane acoustic pressure wave Pi:

Pi = Po exp [ik (lx + my + clt)

existing in medium 1, (see accompanying figure) which is incident at the interface
between medium 1, and medium 2 and k = t.0/c~. Let 0t and c1 be the density and sound

speed in medium 1 and 02 and c2 be the corresponding ones for medium 2. Since the

plane reflected wave p~ is a solution of the wave equation in medium 1, let:

Pl = A exp [i~1 (llX + mlY + Clt)]

Since the refracted wave P2 is a solution of the wave equation in medium 2, let:

P2 = B exp [ict 2 (12x + m2Y + CEt)]

Continuity of the pressure and the normal particle velocity at the interface y = 0 requires,
respectively, that:

Pi(X,0) +Pl(X,0) = P2(X,0)
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P2

(vi(x,0)) n + (v,(x, 0))n = (v2(x,0))n

Thus, substituting the expressions for Pi, Pl and P2:

Po exp [ik(lx + elt)] + A exp [i¢¢1 (11x + elt)] = B exp [icx2 (12x + e2t)]

which can be satisfied iff:

kl = ~l ll = c~212

kc~ = oq c~ = 13~282

B-A=po

Thus, these relationships require that:

~=k ll =l

~2=kCl=~---- 12= k/---=/c2
c2 c2 ~2 Cl

Expressing the direction cosines in terms of 0, 0~ and 02:

= cos (-~ + 0) = sin (0)l

11 = COS(~-01) = sin(01)

l 2 = cos(~ + 02) = sin (02)

results in the following relationships:

01=0
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sin (02) C2sin (0 (Snell’s Law)
Cl

If c2 < c1, then the maximum value of the refraction angle, 02 occurs when 0 = n/2:

02 = sin-l(C2/
\Cl)

Ifc 2 > c1, then 01 has a maximum value when 02 = ~t/2. The maximum value for 01 is

known as the critical angle 0c:

01(max) = c =sin-X/Cl /
\c2;

If 0 > 0c, then all of the wave reflects off the surface and none of the wave refracts into

the other material at the boundary.
We can now solve for the amplitude of the transmitted and reflected wave. Since the

normal velocity of the fluid at y = 0 interface is the component Vy, defined through the
velocity potential 0:

O0 and p = ico p 0Vy = - bS = p-~-

so that the velocity can be expressed in terms of the acoustic pressure:

i bp
Vy-- ~op by

Thus, substituting the expression for p for all three waves in the equation on the normal
velocity:

km
--Po + ~lml A = ct2m2 B

o)P1 o)02mPl

where:

m = cos (n + O) = - cos 

m~ = cos (-00 = cos 0 = - 

m2 = cos (n + Oz) = - cos 02 = - [1- (c2/cl)2 m2]1/2

Thus:

COS(O2) 01Cl
P0 = A + y B where y -

COS(0) P2C2

Also, Po + A = B. Solving for A and B, one obtains:
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2B = 1-~7 po

Note that ify = 1, then A = 0 and B = Po, which means there is a complete penetration of

the incident wave due to impedance matching at the boundary.

6.14.4 Cylindrical Harmonic Waves

Harmonic waves in the right circular-cylindrical coordinate system in an infinite
medium is governed by the following Helmholtz equation:

~(P,t) = F(P) ie°t P = P (r,0,z)

32F 13F 1 32F 32F =~~ --- + _-~- ~-q--~- + --~-~- + k2F = 0 k ~0
0r 2 r Or r 00 0z c

r>0 0<0<2g -~o<z_<oo

Let F = R(r) E(0) Z(z), then the equation separates into the following three ordinary

differential equations:

r2 R" + rR" + (a2 r2- b2) R = 0

E"+bZE=0

Z"+dzZ=0

where k2 = a2 + d2.

R = A H(bl)(ar) + B H(b2)(ar)

E = C sin (b0) + D cos (b0)

Z = O exp (idz) + H exp (-idz)

Single-valuedness of the solution requires that E (0) = E (0 + 2n) which results 

b = integer = n n = 0, 1, 2 ....

Letting a = kl and d = km, then the cylindrical wave functions become:

.~ H(nl)(/kr) l, I sin (nO) l. ~" t
0=lH(n2)(/kr)J [cos(n0)J [e-ikmzJeiwt

For kr >> 1, the Hankel Functions approach the following asymptotic values:

H~)(krl) = ~ ei(krl-nx/2-n/4)

and

n(n2) (krl) = .~-- ei(krl-ng/2-Tt/4)

Thus, multiplying by the time harmonic function gives:

H(nl)(kr/)eitOt .]~--eik(r/+ct) e-i(n~/2+n/4)

and

H(n2) (krl) it°t .~ e-ik(r/-ct) ei (nTt/2+n/4)

- (1) and H(n2) represent incoming and outgoing waves, respectively.which denotes that l-In
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Example 6.19 Acoustic Radiation from an Infinite Cylinder

An infinite pulsating cylinder is submerged in an infinite acoustic medium. If the
surface of the cylinder has the following normal velocity:

Vr(a,0) = f(0) cos(0)t)

obtain the pressure field in the acoustic medium.
Since the velocity potential ~(r,0,t) satisfies the axisymmetric wave equation 

cylindrical coordinates, then the solution can be written as an infinite sum of all possible
wave functions:

O(r, 0, t) = ~ [mnn(n1) (kr) +Bnn(n2) (kr)] n sin(n0) + n cos (n0)]ei~t

n=0

One can write the boundary condition in complex form and then take the real part of the
solution. Thus, letting

Vr(a,0) = f(0) i~°t

then since the acoustic radiation is obviously outgoing, one must set An = 0 and Bn = 1.

The radial component of the velocity is then given by:

Vr (a, 0) = - ~r (a, 0, t) = -k (2) (ka)n sin(n0) + Dn cos(n0)]eTM

n=0

= f(0)eTM

which are integrated to give the Fourier coefficients of the expansion:

CO = 0
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J f(0) sin(n0) n = 1, 2, 3 ....Cn - 7zkH~)(ka)

0

2~z

Jf(0)cos(n0)d0 n = 1, 2, 3 ....Dn - 27zkH~(2)(ka) 

where En is the Neumann factor.

The velocity potential and the acoustic pressure can be developed by combining the
two integrals as:

0(r,0,t) = -Y0 f(rl)cos(n[0 - ~]])drl le°t

°° E nH(n2) (kr) H~(2)(ka)
~,~D0 _il3Czrt Z

f(rl)cos(n[0 "q])d~] TMp(r,0,t) = 9-~-, 

n=0

Thus, the acoustic pressure is the real part of the above expression:

pc ~ En[On sin(cOt)+ n cos(o~t)] 27z
p(r,O,t)

n = 0 J~2(ka) + Y~2(ka) f(~)cos(n[O- "q]) a~°t

On = Jn(kr)J~(ka) + Yn(kr)Y~(ka) and Fn = Jn(kr)Y~(ka)-Yn(kr)J~,(ka)

6.14.5 Spherical Harmonic Waves

Spherical harmonic waves obey the following Helmholtz equation:

D2F t- 2 DF 1 D
~

1 D2F + k2F = 0

Dr---y- ~ D--; + r2 sin(0) D0 (sin(0) 2 sin2 (0) D2

Letting F = R(r) S(0) M(¢), then the equation separates into three equations (Example

6.10), with the following wave solutions:

f h(nl)(kr) 
F= lh(n2,(kr)Irn tcosV,~cos(m,)I

where h~) and h(n2) are spherical Hankel functions representing incoming and Outgoing

radial waves, respectively, and Pnm are the associated Legendre functions.

Example 6.20 Scattering of a Plane Wave from a Rigid Sphere

An incident plane pressure wave is incident on a rigid sphere whose radius is a in an
infinite acoustic medium. Obtain the scattered acoustic pressure field.

Let the incident pressure wave Pi to have the following form:
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Pi = Po eikz ei°)t = Po eikr cos0 eiO)t

Expanding the plane wave in terms of axisymmetric spherical wave functions with
m = 0, one obtains:

Pi = Poeikrc°s0 eic°t = Po-- Ein(2n + 1)jn(kr)Pn(c°s0)eic°t

n=0

The scattered pressure field Ps can also be written in terms of outgoing axisymmetric
spherical wave functions as follows:

Ps = E En h(n2)(kr) Pn (cos i°~t

n=0

The total pressure field p in the infinite acoustic medium is then the sum of the incident
and scattered fields, i.e.:

P=Pi+Ps

The normal component of the particle velocity at the surface of the rigid sphere must
vanish, resulting in:

i ~gp, "
Vr (a,0) = "~-~ ~r ta, 0) = ~ [-~r~ (a, 0) + ~rS (a,0)]=0

which, upon substitution for the series for the incident and scattered fields, yields:

poin (2n + 1) j~(ka) + Enh~(2)(ka) 

or

in(2n + 1) j~(ka)
En = -Po h~(E)(ka) n = 0, 1, 2 ....

Thus, the scattered pressure field p~ is given by the sum of spherical wave functions in the
form:

Ps = -Po E
(2n + 1)j~(ka) h(E)(k.r~p

n=0 h~(2)(ka) -n ~l~," n~ ....
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;Section

1.

PROBLEMS

6.9

Obtain the steady state temperature distribution in a square slab of sidelength = L
defined by 0 _< x, y _< L. The faces x = 0 and y = 0 are kept at a zero temperature, the

face y = L is kept at a temperature To and the face x = L has a heat convection to an

ambient medium with zero temperature, such that:

OT
--+bT=0 at x=L

Obtain the steady state temperature distribution in a semi-infinite strip, defined by
0 _< x _< L and y _> 0. The surfaces x = 0 and x = L are kept at zero temperature and the
surface y = 0 has a temperature distribution:

T(x,0) = O f (x)

Obtain the steady state temperature in a semi-infinite slab, defined by 0 < X < L,
y > 0. The surface x = 0 is insulated, the surface x = L has heat convection to an
ambient medium with zero temperature, such that:

~T
--.4- bT = 0 at x = L
Ox

and the surface y = 0 is kept at a temperature T(x,0) = O f ix).

Obtain the steady state temperature distribution in a square plate of sidelength = L
defined by 0 < x, y < L. The faces x = 0 and x = L are kept at zero temperature, its face

y = 0 is insulated and its face y = L has a temperature distribution T(x,L) = O f (x).

Obtain the steady state temperature distribution in a semi-circular sheet having a
radius=a defined by 0_< r_< a and 0_< 0_< n. The straight face is kept at zero

temperature and the cylindrical face, r = a, is kept at a constant temperature To.

Obtain the temperature distribution in a circular sector whose radius is "a" which
subtends an angle b defined by 0 _< r < a and 0 < 0 < b. The straight faces are kept at

zero temperature while the surface r = a is kept at a temperature:

T(a,0) = O f (0)

Obtain the temperature distribution in an infinite sheet having a circular cavity of radius
"c" defined by r >_ c and 0 _< 0 < 2~z. The temperature on the circular boundary is kept at

temperature:

T = TO f(0)
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o Obtain the steady state temperature distribution in a fight parallelepiped having the
dimensions a, b, and c aligned with the x, y and z axes, respectively. The surfaces x

= 0, x = a, y = 0, y = b, and z = 0 are kept at zero temperature, while the surface z = c
is kept at temperature:

T(x,y,c) = O f (x,y)

Obtain the steady state temperature distribution in a finite cylinder of length L and
radius "a" defined by 0 _< r _< a and 0 _< z _< L. The cylinder is kept at zero temperature at

z = 0, while the surface z = L is kept at a temperature:

T(r,L) = O f (r)

The surface at r = a dissipates heat to an outside medium having a zero temperature,
such that:

~-~Tr (a,z) + bT(a,z) 

10. Obtain the steady state temperature distribution in a hollow finite cylinder of length L,
of outside and inside radii "b" and "a", respectively. The cylinder is kept at zero
temperature on the surfaces r = a, r = b and z = 0, while the surface z = L is kept at a
temperature:

T(r,L) = O f (r)

11. Obtain the steady state temperature distribution in a finite cylinder of length L and
radius a defined by 0 < r _< a and 0 < z < L. The cylinder is kept at zero temperature at

surfaces z = 0 and r = a, while the surface z = L is kept at a temperature:

T(r,L) = o f (r)

12. Obtain the steady state temperature distribution in a cylinder of length L and radius a
defined by 0 < r < a and 0 < z < L. The cylinder is kept at zero temperature at surfaces

z = 0 and z = L, while the surface r = a is kept at a temperature:

T(a,z) = O f (z)

13. Obtain the steady state temperature distribution of a sphere of radius = a defined by
0 < r < a and 0 < 0 < ~t. The surface of the sphere is heated to a temperature:

T(a,0) = O f(cos 0

Also obtain the solution for f = 1.

14. Obtain the steady state temperature distribution in an infinite solid having a spherical
cavity of radius = a defined by r > a, 0 < 0 < ~t. The temperature at the surface of the

cavity is kept at:

T(a,0) = O f (cos 0

Also obtain the solution for f = 1.
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15. Determine the steady state temperature distribution in a black metallic sphere (radius
equals a), defined by 0 < r < a and 0 < 0 _< ~t, which is being heated by the sun’s rays.

The heating, by convection, of the sphere at its surface satisfies:

~rT(a,0)+T(a,0) = f(0)b b

where

f(O)= ° c° s(O)
0<0<~/2

~/2<0<~

or

16. Determine the particle velocity of an ideal incompressible irrotational fluid flowing
around a rigid sphere whose radius = a. The fluid has a velocity at infinity:

Vz = - V0 z >> a

17. Determine the steady state temperature distribution in a solid hemisphere whose radius
is "a" defined by 0 < r < a, 0 < 0 < n/2. The hemisphere’s convex surface is kept at

constant temperature TO and its base is kept at zero temperature.

18. Obtain the steady state temperature distribution in a hollow metallic sphere whose inner
and outer radii are a and b, respectively. The temperature at the outer surface is kept at
zero temperature, while the temperature on the inner surface is kept at:

T(a,0) = O f (cos 0

19. Determine the. temperature distribution in a semi-infinite cylinder whose radius = a
defined by 0 < r < a, 0 < 0 < 2n and z > 0. The temperature of the surface r = a is

kept at zero temperature and the temperature of the base is:

T(r,0,0) = O f (r,0)
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Insulated
Sheet

20. Determine the steady state temperature distribution in a solid finite cylinder of
length = L and radius = a defined by 0 < r < a, 0 < 0 < 2n and 0 < z < L. The cylinder

has an insulated surface at 0 = 0, see the accompanying figure, extending from its

axis to the outer surface. The cylinder is kept at zero temperature at its two ends
(z = 0 and z = L), and is heated at its convex surface to a temperature:

T(a,z,0) = O f (z,0)

Y

r

21. Determ~.’.ne the temperature distribution in a curved wedge occupying the region
a < r _<. ~, o < z < L and 0 < 0 < b, see the accompanying figure. The surfaces z = 0

and z = L are kept at zero temperature, the surface 0 = 0 and 0 = b are insulated and

the cylindrical surface r = a is kept at a temperature:

T(a,z,0) = O f (z,0)
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a a X

22. Determine the temperature distribution in a hemi-cylinder of length = L and radius = a
defined by 0 < r < a, 0 < 0 < n and. 0 < z < L. The convex surface at r = a, the two

plane surfaces at 0 = 0 and n and the lower base at z = 0 are kept at zero temperature,

while the upper base at z = L is kept at a temperature:

T(r, 0,L) = O f ir,0)

Section 6.10

23. A metallic sphere of radius a and defined by 0 < r < a and 0 < 0 < ~t is kept at zero

temperature at its surface. A heat source is located in a spherical region inside the
sphere, such that:

V2T =-q(r, cos0) 0_<r<b

Find the steady state temperature distribution.

24. A spherical container is filled with a liquid whose walls are impenetrable. If a point
sink of magnitude Q exists at its center so that the velocity potential satisfies:

V2~ = Qo ~(r) 0 _< r < a
4~r2

Find the velocity field inside the sphere.

25. A finite circular cylindrical container with impenetrable wails is filled with an
incompressible liquid, occupying the space 0 < r < a and 0 < z < L. A point source and

a point sink of magnitudes Qo are located on the axis of the cylinder at z = L/4 and

3L/4, respectively, such that the velocity potential ~(r,z) satisfies:

V2~I/= Qo~5(r)[~5(z-L/4)~5(z23L/4)]"
2r~r

Find the velocity field inside the container..
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Section 6.11

26. Determine the Eigenfunctions (modes) and Eigenvalues (natural frequencies)
membranes having the following shapes and boundaries:

(a) Semi-circular membrane, radius = a, fixed on all its boundaries.

(b) Annular membrane, radii b, and a (b > a), fixed on all its boundaries.

(c) Annular membrane, fixed on the outer boundary r = b and free at its inner
boundary r = a.

(d) A circular sector, radius = a, subtending an angle = c, fixed on all its boundaries.

(e) A circular sector membrane, radius = a, subtending an angle = c, fixed on its
straight edges and free at its circular boundary.

(f) An annular sector membrane, radii b, and a (b > a), subtending an angle = 
fixed on all its boundaries.

(g) An annular sector, radii b and a (b > a), subtending an angle = c, fixed on its
straight boundaries and free on its circular boundaries.

(h) A rectangular membrane, of dimension a and b, with sides whose length = a are
fixed and sides whose length = b are free.

27. Determine the mode shapes and natural frequencies of a vibrating gas in a rigid
cylindrical tube of length = L and radius = a. The tube is closed by two rigid plates
at its ends. Let the velocity potential be:

~ = ~ (r,0,z)

28.

29.

30.

31.

Determine the mode shapes for the tube in problem 27, where the ends of the tube are
open (pressure release).

Determine the mode shapes and natural frequencies of a vibrating gas entrapped in the
space between a rigid sphere of radius = a and a concentric rigid spherical shell of
radius = b (b > a).

Determine the response of a rectangular membrane, measuring a,b, under the influence
of sinusoidal time varying force field, i.e.:

q(x,y,t) = qo fix,y) sin(~0t)

Determine the response of a circular membrane of radius = a, fixed on its perimeter,
and acted upon by distributed forces:

q(r,0,t) = qo f(r,0) sin(o~t)
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32, Obtain the mode shapes and natural frequencies of a circular plate, radius = a, whose
boundary is simply supported, such that at the boundary r = a

w(a,0) = 

~)2w (a, 0) 
0) = 

Or2 ~"~-rta’

33. Determine the responses of a square plate, sidelength = L, whose sides are simply
supported. The plate is excited by a distributed force:

q(x,y,t) = qo f(x,y) sin(~ot)

34. A rectangularly shaped membrane is being excited to harmonic motion such that:

w = w(x,y)

andV2w + k2w = Fo~5(x- a
b

~)6(Y-7)S

w(x,0) = w(x,b) = 

Obtain the solution w(x, y).

Section 6.12

35.

0<x<a 0<y<b

(O,y) = 0 -;- (a,y) 

Determine the temperature distribution in a rod of length = L and whose ends are kept
at zero temperature. The rod was heated initially, such that:

T(x,0+) = o
0<x<L/2

L/2<x<L

36. Determine the temperature distribution in a rod of length = L, where there is heat
convection to an outside medium at both ends. The temperature of the outside
medium is kept at zero temperature. The temperature of the rod was initially raised to:

T(x,0+) = TO f(x)

37. Determine the temperature distribution in a rectangular sheet occupying the region

0 < x < a and 0 < y < b. The sides of the plate are kept at zero temperature, while the
sheet was initially raised to a temperature

T(x,y,0÷) -- TO f(x,y)

and the sheet is heated by a source Q:

Q = Qo ~5(x - a/2) ~i(y - b/2) -at, cz > 0
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38. Determine the axisymmetric temperature distribution in a circular slab of radius = a,
whose perimeter is kept at a zero temperature. The slab is initially heated to a
temperature:

T(r,0+) = TO f(r)

39. Determine the axisymmetric temperature distribution for a circular slab of radius = a,
such that the slab conducts heat through its perimeter to an outside medium whose
temperature is kept at zero temperature. The slab is initially heated to a temperature:

T(r,0+) = TO f(r)

with an impulsive heat point source at its center:

Q = Qo ~(~r)~5(t -to)

40. Determine the temperature distribution in a circular slab, radius = a, whose perimeter
is kept at zero temperature. The slab is heated initially to a temperature:

T(r,0,0÷) = TO fir,0)

and has an impulsive heat point source at (ro,0o)."

Q = Qo ~5(’~-~°) ~5(t - to)~5(0 - 

41.

42.

43.

44.

Determine the temperature distribution in a solid sphere of radius = a, whose surface is
kept at zero temperature and is heated initially to a constant temperature = To.

Determine the temperature distribution in a solid sphere of radius = a, whose surface
conducts heat to an outside medium that is being kept at zero temperature. The sphere
is heated initially to a temperature:

T(r,0+) = TO f(r)

Determine the temperature distribution in a cube having a sidelength = L. The cubes’
surfaces are kept at zero temperature and the cube is initially heated to a temperature:

T(x,y,z,0÷) = TO f(x,y,z)

Determine the temperature distribution in a sphere having a radius = a, whose
surface is kept at zero temperature. The sphere is initially heated such that:

T(r,0,~,0+) = TO f(r,cos0,~)
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,45. A rectangular sheet is immersed in a zero temperature bath on two of its sides, and
is kept at zero temperature at the other two. The sheet is heated by a point source at
its center. The sheet is initially kept at zero temperature, such that:

V2T= 13T Qo ~i(x_a)~(y_b)sin(c.ot)
K 3t k 22

0_< x < a 0_< y_< b t > 0 T= T(x,y,t)

satisfying the following conditions:

T (x,0,t) = T(x,b,t) = T(x,y,0÷) = 0

~_xT (0,y,t)
3T

- y T(0,y,t) = 0 -~-x (a,y,t) + ~’ T(a,y,t) 

Obtain the temperature distribution T(x,y,t) in the sheet for t > 

46. A semi-circular metal sheet is heated by a point source. The sheet is initially kept
at zero temperature, such that:

13T Qo 5(r-ro)~5(0_rt/4)~5(t_to)V2T=
K 3t k r

0 _< r < a 0 < 0 < rt t, to > 0 T = T(r,0,t)

with the following boundary and initial conditions:

(r,0,t) = T(r,~t,t) = -~-rT (a,0,t) = T(r,0,0÷) =T 0

Obtain the solution for the transient temperature T(r,0,t).

47. Obtain the temperature distribution in a rod of length L with a heat sink Q. The end
x = 0 is insulated and the end x = L is connected to a zero temperature ambient
liquid bath. Find the temperature T = T(x,t) satisfying:

32T 13T Q,

3X2 K 3t + ~(x- x°)e-at
a>0 x0>0

subject to the boundary and initial conditions:

T (x,0+) = 0, ~ (0,t) = -~ (L,t) + b T(L,t) 
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48.

49.

50.

A rectangular sheet is heated by a point source at its center. The sheet is initially
kept at zero temperature, such that:

1 3T Qo 8(x-~)8(y- b. 
V2T = K 3t k~ -~)e c > 0

0 < x < a 0 < y < b t > 0 T = T(x,y,t)

subject to the boundary and initial conditions:

T (x,0,t) = T(x,b,t) 

~T
~-~Tx (0,y,t) -~-x (a,y,t) T(x,y,0+) =0 0 0

Obtain the temperature distribution in the sheet for t > 0.

A completely insulated hemi-cylinder is heated such that its temperature T(r,0,z,t)

satisfies:

V2T= 1 3T 8(r-ro)~5(0_~/2)~5(Z_Zo)~5(t_to) ~ 0~-Qo 2~r

0<r<a

subject to the boundary and initial conditions:

OGz~L 0~0~ t, to>0

OT (r,O,L,t) = 
3z

~rT (a,O,z,t) -- 

-~-z (r,0,0,t) = 

1 OT
r- ~--~(r,~,z,t) = 

Obtain the temperature in the cylinder for t > 0.

1 3T

r ~ (r,0,z,t) = 

T(r,0,z,0+) = 0

Obtain the temperature distribution in a solid sheet of length L with a heat source

Qo. The two ends of the sheet x = 0 and x = L are immersed in an ambient fluid
whose temperature is constant at To. If the temperatureT = T(x,t) satisfies:

32T 1 3T Qo
8(x---~)8(t-to) 0 < x < L t, to > 0

3x 2 K Ot k "

subject to the boundary and initial conditions, for a > 0:

OT 3T
T (x,0+) = T1 = constant T(0,t) - a -~x (0,t) o T(L,t) + a ~-x (a,t ) = To

Obtain the temperature distribution as a function of time.
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Section 6.13

51. Determine the vibration response of a string, having a length = L, fixed at: both
ends. The string was initially displaced such that:

y(x,0+) = f(x) ~ (x,0+) = g(x)
0t

52. If the. string in problem 51 is plucked from rest, such that:

IWox/a 0<x<a
f(x) = [Wo(L _ x) / (L - < x< L

g(x) = 

obtain an expression for the subsequent motion of the string.

53. Determine the longitudinal displacement of a rod, having a length = L, which is
fixed at x = 0 and is free at x = L. The rod is initially displaced, such that:

u(x,O+) = f(x) ~ (x,O+) = g(x)

54.

55.

A stretched string of length = L is fixed at x = 0 and is elastically supported at
x = L, such that:

c0-~xY (L,t) + ~’ y(L,t) 0

The string is initially displaced from rest, such that:

by (x,0÷) = 
Y(x,0+) = Yo 

3"~"

Determine the subsequent vibration response of the string.

A string, having a length = L, is struck by hammer at its center, such that the
initial velocity imparted to the string is described by:

0 O<x<L/2-e
~y I.~ 1

L/2-e<x<L/Z+e
(x’O+)ot=2e13 0

L/2+e<x<L

y(x,0÷) = 0

where I represents the total impulse of the hammer and 13 is the density per unit

length of the string. The string is fixed at both ends.

(a) Obtain the subsequent displacement of the string.

(b) If e ---> 0, obtain an expression for the subsequent motion.
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56. A string, length = L, fixed at both ends and initially at rest is acted upon by a
distributed force f(x,t) per unit length. Obtain an expression for the forced motion
of the string

57. If the distributed force in problem 56 is taken to be an impulsive concentrated force,
such that:

f(x, t) = Po~5(x - L / 2) 

where ~ is the Dirac delta function, determine the subsequent motion of the string.

58. Determine the motion of a rectangular membrane, occupying the region 0 < x < a,
0 _< y _< b, where the membrane is initially displaced and set in motion such that:

OW
W(x,y,0÷) = f(x,y) -- (x,y,0÷) = g(x,y)

bt

The membrane is fixed along its perimeter.

59. Determine the free vibration of a circular membrane, radius = a, whose perimeter is
fixed. The membrane is initially set in motion, such that:

OW
W(r,0,0+) = f(r,0) -- (r,0,0+) = g(r,0)

0t

60. An annular shaped membrane is set into motion by initially displacing it from rest,
i.e.:

~W
W(r,0,0+) = f(r,0) -- (r,0,0 +) = 0

3t

The membrane has outer and inner radii b and a respectively. Determine the
subsequent free vibration of the membrane.

61. Determine the response of a circular membrane, radius = a, when acted upon by a
concentrated impulsive force described by:

f(r, t) = P ~(r_~) o 2~zr

The boundary of the membrane is fixed, and the membrane is initially undeformed
and at rest.

62. Determine the response of a square membrane initially at rest, and undeformed, side
length = L, when acted upon by an impulsive force located at xo, Yo, described by:

f(x, y, t) = Po ~(x o)~(y - Yo) ~(t)

where Po is total force. The sides of the membrane are fixed.
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63. Determine the response of a circular membrane radius = a, initially at rest and
undeformed, when acted upon by a concentrated impulsive force located at r0, 0o

described by:

f(r, 0, t) = Po ~(r - ro) 5(0 - 0o)~5(t)
r

The membrane is fixed on its boundary.

64. A bar of length L is connected to a spring at one end and the other end is free. The
bar is being excited by a point force such that, u = u(x,t) and:

~2u 1 ~2u F° ~5(x)~5(t- to) 0 < x 
t, to > 0

c3x 2 c2 ~t 2 AE
subject to boundary and initial conditions:

0~-~(0,t) = 0, ~(L,t) + ~u(L,t) 

u(x,0) = ~ (x,0) 0

Obtain the transient response of the string u(x,t).

65, A pie-shaped stretched membrane is excited to motion from rest by a mechanical
point force, such that its displacement w = w(r,0,t) satisfies:

~72w = C21 ~}2wot2 POs ~5(r- r°) ~i(O- O°)3(t- 

0_<r<a ro>0 0_<0<b t, to >0

w = 0 on the boundary

w (r,0,0+) = 0
~w (r,0,0+) = 

3t
Obtain the solution to the transient vibration of the membrane w(r,0,t).

66. A rectangular stretched membrane is acted on by a time dependent point force
such that its displacement w (x, y, t) is governed by:

1 02w Po~5(X_Xo)~(y_yo)~i(t_to)V2w = c2 ~t 2 S

0~x~a 0~y~b t, to>0

where 5 is the Dirac function and the boundary conditions are:

w (x,0,t) = w (x,b,t) 
~w ~w
a----~-(0,y,t) = --~-x (a,y,t) 

if the membrane was initially at rest, and was initially deformed such that:

Ow~ (x,y,0+) w(x,y,0+) = wo sin( y)
/)--~-

0

obtain an expression for the displacement w(x,y,t).
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67. A semi-circular stretched membrane is excited to motion by a point force, such that:

W = W(ri0,t)

1 0ew Po~(r-ro)~(0_~)~(t_to)
VeW = c2 ~t e S r

0~r~a 0~0An t, to>0

where ~i is the Dirac function and the initial boundary conditions are:

W (a,0,t) = 
OW (r,0,t)= 

0-~-- -~- (r,r~,t) = 

0W
W (r,0,0 +) = 0 -- (r,0,0 +) = 0

0t

Obtain the solution for the transient vibration W(r,0,t).

68. A semi-circular annular stretched membrane fixed on its perimeter, is excited to
motion by a point force. Obtain the solution for the transient vibration W(r,0,t)

satisfying:

1 32W Po ~(r- ro) ~i(O- r~)~(t
V2W = c2 3t 2 - S " r to)

0~r~a 0505n t, to>0

where ~5 is the Dirac function and the initial conditions are:

0W
W (r,0,0 +) = 0 -- (r,0,0 +) = 0

bt

69. A bar of length L is connected to springs at both ends. The bar is being excited by a
point force at the center such that u = u(x,t) satisfies:

oeu= 1 0eu F° ~(x-~)~(t-to) 0<x<L t, to>0
0x 2 c2 0t 2 AE - -

With boundary and initial conditions:

0u

~E ~ -~- Y u(L,t) ~x (O,t) - u(O,t) (L,t) 

u(x,0+) = 0 ~ (x,0+) =0

Obtain the transient response of the bar u(x,t).
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70. An annular circular membrane, initially at rest and undeformed, is excited to
transient forced vibration such that the displacement W(r,0,t) satisfies:

V2w = ~~i 32W3t2 POs 3(r- r°) ~(0- n)~(t- t°)r~-

a~r~b 0~0~n t, to>0

W (a,0,t) = W (b,0,t) W (r,0,0 ÷) = 0

Obtain the solution for the transient vibration W(r, 0, t).

~W
-- (r,0,0 +) = 0
~t

71.

72.

An acoustic medium is contained inside a rigid spherical container of radius = a. If the
medium is initially disturbed, such that the velocity potential @(r,t) satisfies the

following initial conditions: .

~(r,0+) = f(r) ~ (r,0÷) = g(r)

determine the radial particle velocity vr of the entrapped medium.

An acoustic medium occupies an infinite cylinder, radius = a. If the medium is
initially disturbed, such that the velocity potential ~(r,t) satisfies the following initial

conditions:

O~ (r,0+) = g(r)
~(r,0+) = f(r)

-~-

determine the radial particle velocity of the entrapped medium.

Section

73.

74.

75.

6.14

A semi-infinite stretched string is set into motion by initially displacing it such that:

y(x,O+) = f(x) ~Y (x,O+) = g(x)
Ot

The string is fixed at x = O. Obtain the solution y (x,t).

A semi-infinite stretched string initially at rest, is set into motion by .giving the end
x -- 0 the following displacement:

y(O,t) = Yo sin(o)t)

Obtain the solution for the subsequent motion.

A sphere, radius = a, oscillates in an infinite acoustic medium, such that its radial
velocity Vr at the surface is given by:

Vr(a,t) = Vo e
-ROt

Obtain the acoustic pressure everywhere in the medium.
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76. A sphere, radius = a, is oscillating in an infinite acoustic medium, such that its radial
velocity Vr at its surface is given by:

Vr(a,0,t) = Vo f(cos 0) -i~°t

Obtain the acoustic pressure everywhere in the medium.

77. A plane acoustic wave impinges on an infinite cylindrical air bubble (pressure release
surfaces) of radius = a. If the incident wave is described by:

P~ = Po eikz ei~°t k = to/c

obtain the scattered acoustic pressure.

78. A plane acoustic wave impinges on an infinite rigid cylinder of radius = a.
incident wave is described by:

Pi = Po eikz ek°t k = ~o/c

obtain the scattered acoustic pressure.

If the

79. A plane acoustic wave impinges on a spherical air bubble (pressure release surface) 
radius = a. If the incident plane wave is described by:

Pi = Po eikz ei°~t k = ~o/c

obtain the scattered acoustic pressure.

80. A plane acoustic wave travelling in an acoustic medium (density p~, velocity Cl)

impinges on a spherical acoustic body (density P2, velocity c2) of radius = a. If the

incident wave is described by:

Pi = Poeiktz eit°t kl = o~/cl
obtain the scattered acoustic pressure in the outer medium.

81. A hemi-spherical speaker, radius = a, is set in an infinite plane rigid baffle and is in
contact with a semi-infinite acoustic medium. If the radial surface velocity Vr is given

by:

Vr(a,t) = Vo e
i~°t

obtain the obtain the pressure field in the acoustic medium.

82. Obtain the pressure field in the acoustic medium of problem 81, where the baffle is a
pressure-release baffle.
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83. If the velocity field in Example 6.19 is given by:

f(cr) 
~ < ~ < 2~ - ot

Obtain the pressure field in the acoustic medium

If vo = Q.~q_o where Qo is the strength of the volume flow of the line source, obtain
2ac~

the pressure field when c~ --+ 0.

84. A semi-infinite duct of rectangular cross-section has rigid walls and is filled with an
acoustic medium. The duct occupies the region 0 < x < a, 0 < y < b, z > 0. If a

rectangular piston, located at z = 0, is vibrating with an axial velocity Vz described

by:

Vz = Vo f(x,y) i°)t

(a) obtain the pressure field inside the duct.

(b)Show that only the plane wave solution, propagating along the duct, exists if:

f(x,y) = 

85. A semi-finite cylindrical duct has rigid walls and is filled with an acoustic: medium. The
duct occupies the region 0 < r < a, 0 < 0 < 2~, and z > 0. If a piston, Ic~:ated at z = 0,

is vibrating with an axial velocity Vz described by:

Vz = Vo f(r,0) k°t

obtain the pressure field inside the duct.



7
INTEGRAL TRANSFORMS

7.1 Fourier Integral Theorem

If f(x) is a bounded function in -~, < x < ~,, and has at most only a finite number 

ordinary discontinuities, and if the integral:

~lf(x)ldx

is absolutely convergent, then at every point x ~where there exists a left and right-hand
derivative, f(x) can be represented by the following integral:

½tf(x+o)÷f(x-o) - f( )cos(u( 
O--e,~

The function fix), -L _< x _< L, can be represented by a Fourier series as follows:

~[f(x + O) + f(x - 0)] = 

where:

L
1

~ f(~) d~

-L

L
1 f(~)cos(~)d~

-L

~[a n cos(~ x)+ n sin(~x)]

n=l

L
1 ’f(~)sin(~)d~bn -- -~

-L

Thus, adding the two integrals for an and bn gives:

L L
1 1

½[f(x+O)+ f(x-O,]:~- ~f(~)d~+ ~ r f f(~,cos(-~(~-x,)d~

-L n=l -L

383
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n~ ~
un L and Aun = Un+l -- Un L

then the integrals can be rewritten as:

+L +L
1

1~f(x):-~ f f(~)d~+ 7 Aun ~ f(~)cos(un(~-x))d~-L n = 1 -L

Def’me the integral to equal F(un), i.e.:

+L

= ~ f(~) cos(un(~ - x)) F(un)
-L

then the series converges to an integral in the limit L --> ~ and Aun --> 0 as follows:

~ F(un)Aun --> F(u)duLim
Au, -~0

n=l 0

Since the funcdon is absolutely integrablc, then the first term vanishes because:

+L

Lira ~ j f(x) dx ---> 0 and F(u) converges
L---~ 2L

-L
Thus, the representation of the function fix) by a double integral becomes:

~[f(x+0,+ f(x-0)]= ~ ~ ~ f(~)cos (u(~-x))d~du

0-oo

cos(ux)du

+ sin un sin(ux)du (7.1)

7.2 Fourier Cosine Transform

If f(x) = f(-x) for -~,, < x < ,,~ or, if f(x) = 0 for the range _oo < x < 0 where one 

choose f(x) = f(-x) for the range -~o < x < 0, then the second integral in (7.1) vanishes 

the integral representation can be rewritten as:

[f(x + O) + f(x- 0)] f(~) cos(un~)d~ cos(ux)du x -> 

OLO J
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Define the Fourier cosine transform as:

= I f(~)cos(u~)d~Fo(u)

0

then, the inverse Fourier cosine transforms becomes:

f(x) = 2 ~ Fc(u) cos(ux)du 

0

where Fc(u) is an even function of u and cos (ux) is known as the kernel of the Fourier

cosine transform.

(7.2)

7.3 Fourier Sine Transform

If f(x) = -if-x) in -~, < x < ¢¢ or if f(x) = 0 in the range -00 < x < 0, where one 

choose f(x) -- -f(-x) in the range -~ < x < 0, then the first integral of eq. (7.1) vanishes

~[f(x+0)+ f(x- 0)] f(~)sin(u~)d~ x_>0sin(ux) 

Define the Fourier sine transform as:

= I f(~)sin(ug)d~Fs(u)
0

then the inverse Fourier sine transform becomes:

0
where Fs(u) is an odd function of u and sin (ux) is the kernel of the Fourier sine

transform.

(7.3)

7.4 Complex Fourier Transform

The integral representation in eq. (7.1) can be used to develop a new transform.
Define the function G1 as the inner integral of eq. (7.1):

+~

l (U) I f(~) COS(U (~- x))G

then the function Gl(u) is an even function in u.
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Define the function:

+~

62 (U) = f f(~) sin(u ({ - 

then the function G2(u) is an odd function in u. Thus, the integral of G2(u) vanishes over

[-~’, ~1, i.e.:

f G2(u)du = 

If one adds this integral to that of eq. (7.1), a new representation of f(x) results:

1 f
_~ j"

--1 j" f f(~)eiU(~_X)d~duf(x) = ~ Gl(u)du + G2(u)du 

--OO --OO --OO

Define the complex Fourier transform as:

1 f f({)eiU{d{
(7.4a)F(u) = 

then, the inverse complex Fourier transform becomes:

OO

f(x) = ~ f(u) e-iUx (7.4b)

7.5 Multiple Fourier Transform

Functions of two independent variables can be transformed by a double Fourier
Complex transform. Let f(x,y) be defined in _oo < x < oo and _oo < y < 0% such that:

f flf(x,y)ldxdy exists.

Thus, letting the Fourier Complex transform from x and y to u and v, then the
transformation is done by successive integration:

oO

?(u,y) = j" f(x, y)eiux dx

~(u,v)= j’~(u,y)eiVydy= f j’f(x,y)ei(Ux+vy)dxdy

then the inverse Fourier Complex transforms from u and v to x and y can also be done by
successive integrations:
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1 f F(u,v)e-i vydv
~(u, y) = ~-~

If the function f is a function of n independent variables, f = f(x1, x2 ..... Xn), then one

can define a multiple complex Fourier transform as follows:

F(ul,u2 ..... u,)=

then the inverse multiple complex Fourier transform becomes

f(xl, x2 ..... Xn) 

(2n)n f f"" f F(Ul,U2,...,Un)e-l(UlX~+U2X2+’"+unx°)duldU2...dun

The transforms can be rewritten symbolically by using x and u as vectors in n-
dimensional space, thus:

F(u)= f f(x)eiU°xdx

Rn(x)

(7.5a)

f(x)=rj F(u)e_iUOXdu
(7.5b)

Rn(u)

where Rn represents the integration over the entire volume in n-dimensional space, and x
and u are n-dimensional vectors.

7.6 Hankel Transform of Order Zero

If the function f(x,y) depends on x and y in the following form:

f(x, y) = f(x~ 

then the Fourier Complex transform becomes:
oo OO

F(u,v)= ~ .[f(~x2 +y2)ei(Ux+vY)dxdy
--oo

Transforming the integral to cylindrical coordinates:

x = r cos (0) y = r sin (0) and dA = r dr dO
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u = p cos (0) v = p sin (0) and dA = p dp dO

then the double integral transforms to:

oo 2~

FI(O’~)= f f rf(r)ei rpc°s(0-o)drd0

0 0

Integrating the inner integrand on 0, one obtains:

2~. irOCOS(0--~) dO = ir0cOS0l [~

J e d01 = + eir0c°s01 d01 }

0

where 01 = 0 - O. The first integral above becomes (with 2 =01+ 2n)

0 2n 2n

feirpc°s0, d01: /eirpc°s<0~-2~d02= /eirpc°S0~d02

thus, the first and third integrals cancel out, leaving the second integral which can be
evaluated in closed fo~ as:

f eiroc°s(0-0) d0 = f eiroc°s02 d02=2gJo(rO)

0 0

where use of the integral representation of Bessel functions was made, see eq. (3.101).
Thus, the integral ~ansfo~ becomes:

FI(O) = 2~tf r f(r)Jo(rO)dr

0

and the inverse transform takes the form:
oo oo

~x 2 1 j" ~f(x, y) = f( + y2 ) F(u, v)e-i(ux+vy)du 

f(r)= (2~)2 f f Fl( 0)eirpc°s(0-*)lododt~
0 0

The integral over FI(O) can be evaluated in a similar manner to the first integral so that:

f(r) = (2~)2 ~ FI(0) 2r~ Jo(r0) 
0

Therefore, the integral representation of f(r) becomes:

f(r) = f(t)Jo(ot)tdt Jo(ro)OdO

0
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Define the Hankel transform F(p) as:

F(p) = ~ r f(r) Jo(rP)dr

0

then the inverse Hankel transform is given by:

f(r) = pF(P) Jo(rp)dp

0

(7.6a)

(7.6b)

7.7 Hankel Transform of Order v

A treatment of Hankel transform of order v similar to Hankel transform of order zero
is given in Sneddon. Let f = f(x1, ~2 ..... Xn), then the Fourier transform and its inverse

were defined in Section 7.5. If the function f depends on xl, x2 ..... xn as follows:

f : f(~/Xl~ +x2~ +...+X~n)

then:

F(Ul,U2 ..... Un)= f f ""ff(~x~+xi+’"+Xn2)el~XkUkdxldX2""dXn

Performing a similar coordinate transformation as was done for the Hankel transform,
define:

2r 2 =Xl2+x29+...+x
n

r2 = U~ + u~ +... + U~n

with the following coordinate transformation:

Uk= 19 a~k k = 1, 2 ..... n

n

YJ = EaJk xk J = 1, 2 ..... n

k=l

In matrix notation, the transformation can be represented by:

[yj] = [ajkl[Xk]

such that the coefficients ajk, j ~ 1, are chosen to make the vector transformation
orthogonal, i.e., the matrix:

n n

{10 i=j[ajk]=[ajk]-~ or Eajkaki = Eajkaik=~ji =
i~:j

k=l k=l
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where ~ij is the Kronecker delta. Thus, the coordinates xk are given by:

Ixk] =[ajk]~ [yj] = [akj]z [Yj]

r 2 =
n n n n n n n

E x2k = E E E [akjl[YJ ][ak/][y/l=E E [Yjl~J/[Y/]=E y~

k=l k=lj=l/=l j=l/=l /=1

The volume element becomes:

dx1 dx2.., dx. = { [alj][dyj] } {[a2kl[dYk] }... {[an/][dYl]} = dy1 dY2.., dyn

Thus:

n n n n n n n

Eukxk= E E ukakJyJ :pE EalkakJyJ =pE ESlJYJ=pyl

k=l k=lj=l k=lj=l k=lj=l

F(Ul,U2 ..... Un)= f f ""ff(~12+z2)eipY~dYldy2""dYn

where:z2 = y~ +y~2 +...+y2n

One must find a function R, such that:

dy2 dy3 ... dyn = R dz

where R is the surface area of a sphere in n dimensional space:

F(Ul,U2 ..... Un)= f ~-..j’f(~12+z2)eipYtRdzdyl

To evaluate the form of R, start with the following integral:

J" J’... I F(4Y~ + Y~ +.-.Y~n)dY2dY3""dyn= ~F(z)Rdz

Since the volume element dy2 dy3 ... dyn represents (n-I) dimensional space, let:

R = S zn-2

Choose F(z) = exp [-z2 ], then:

f ~ "’" ~ exp[-(Y22 + Y~ + ""y2n)] dY2dy3"’’dyn = ~(n-1)/2

where the following integral was used:

f exp[-x2,]dx =
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The integral for dz can be evaluated:
OO

I S 1"(-~) n>2exp[-z2 ] S zn-2dx = -~

0
Thus, the surface of a unit sphere in n-dimensional space is:

2 7t(n-l)/2
S=

r’(-~)

so that the surface element is given by:
2~(n-l)/2 zn_2dz

dY2 dY3"’" dYn = F(’-1)

Hence:

2~(n-1)/2 ~ If(~12+z2)ei0Yl zn-2dzdyl
F(Ul’U2 ..... Un)= F(-~) -oo 

Let z = r sin 0, Yl = r cos 0. Then dz dy1 = r dr dO, and the above equation becomes:

2~t(n-l)/e rn-lf(r) IeiWC°S° (sin0)n-e dOdr = F(9F(ul, u~ ..... Un) = F(~)
0

The inner integral becomes, (see equation 3.101):

1 n-1

I eirpc°s0 (sin 0)n-2 dO =

n-2
where v = --, and n _> 1. Thus:

2

J v (ro)

(2~)n/2 rn/ 2f(r) Jv (rp) dr,
F(p) - v

0

The inversion can be worked out in a similar manner:

n_>l

(2r0n
... J F(9) e k=~ duldU2...dun

--OO --OO

which can be shown to be equal to:

f(r) = 1 Ipn/2F(P)Jv(rp)dp

(2~)n/2 v

0

Thus, combining eqs. (7.7) and (7.8), one obtains:

(7.7)

(7.8)
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If one defines:

~(P) _ pV F(p~) = I f(r)rV Jv(rp)rdr- (2n)n/2 _
0

then the inverse integral takes the form:

[(r) = rVf(r) = ~ ~(p)Jv(rp) 
0

Redefining the functions f(r) and F(p) 

g(r) = rVf(r)

O(p) = pV F(p)

Then g(r) and G(p) are defined by the following integrals:

G(p) = ~g(r)Jv(rp)r 

0

OO

g(r) = ~ G(p)Jv (rp) (7.10)

0
valid for v > 0. G(p) is known as the Hankel transform of order v of g(r) and 
is known as the inverse Hankel transform of order v. Thus:

g(r) = g(~)Jv(p~)~d~ ’Jv(rp) (7.11)

Multiplying equation (7.11) by ~f~, and defining h(r) = ~- g(r) 

h(r) : ~ f ~’~ h(~)Jv(p~)d~ ~Jv(rp)dp (7.12)

0[0
This is known as the Hankel Integral Theorem.
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7.8 General Remarks about Transforms Derived from the
Fourier Integral Theorem

Since the transforms derived in Section 7.2 to 7.7 were derived from the Fourier
Integral theorem, then the functions they are applied to must satisfy the following
conditions and limitations:

(1) The function f(x) must be bounded and piecewise continuous.

(2) The function f(x) must have a left-handed and a right-handed derivative at every point
of ordinary discontinuity.

(3) The function must have a finite number of maxima and minima.

(4) The function must be absolutely integrable, i.e. f(x) must necessarily decay 
Ixl >> 1.

These restrictions rule out a wide range of functions when applied in Engineering and
Physics. It should also be noted that the transform and its inverse involve integrations on
the real axis.

7.9 Generalized Fourier Transform

Let f(x), ,, o < x < 0%be a function that is notabsolutely integrable, thatis:

~[f(x)ldx

does not converge, but it could increase at most at an exponential rate, i.e.:

If(x)l < Aeax for x > 0

If(x)l < Bebx for x < 0

where a and b are real numbers. Thus, one can choose an exponential ecx such that
f(x) cx is absolutely integrable, e.g.:

f(x)eCXdx < A eaXeCXdx = --~-A e(a+c)x oo _ .__A
a+c 0 a+c

0

provided that c < -a, and

° li!~f(x)eCXdx < B ebxeCXdx _ ~ e(b+c)x 0 B

- -b+c --~ = b+c

provided that c > -b,
The complex Fourier transform was defined, for absolutely integrable functions:

F(u) = ~ f(~)eiU~d~ = ~ f(~)eiU~d~ + ~ f(~)eiU~d~

0
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Define the following one-sided function:

ev’x f(x) x > 
_1

g~(x) = ~-~ f(0+) x = 0

lo x<0

vl>a (7.13)

g2(x)= ~ F_(u, v2)e-iUxdu (7.18)

Multiplying eq. (7.17) by exp[vlx] and eq. (7.18) by exp[v2x], one obtains:

1 " °

eV’xgl(x)= ~-~ ~ F+(U, Vl)e-l(u+~v’)Xdu= x > 0 (7.19)

eV2Xg2(x): ~ f F_(u, v2)e-i(u+iva)Xdu x < 0 (7.20)

Combining eqs. (7.19) ~md (7.20), one can reconstruct f(x) again as definexl in eqs. 
and (7.15):

where gl(x) is absolutely integrable on [0,oo], then the Fourier transform of gl(x)

becomes:

F+ (u, Vl)= f gl(~)eiU~d~ = ~ gl (~)eiU~d~ = f f(~)ei(u+ivi)~d~ (7.14)

Define the following one-sided function:

I0 x >0

g2(x) = tiff(0+) x=0 v2 > b (7.15)
/[e-v2x f(x) x < 

where g2(x) is absolutely integrable over [-oo,0], then the Fourier transform of g2(x)

becomes:

0 0

F_(u, v2)= ~g2({)eiU~d{= ~g2({)eiU~d{= ~f({)ei(u+iv~)~d~ 

The Fourier inverse transforms of F+ and F_ become:

gl(x)= .~ F+(U, vl)e-iUXdu (7.17)
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- ~¢ +i~ ~ ~’~ ~>~<b

V

~+i[~

}U

Complex m-plane

where v1 > a and v2 < b. Using the transformation:

03 = u + ivl,2 d03 = du

then the new limits become:

u = - oo 03 = .oo + ivl,2

u=oo 03 = oo + ivl,2

one can rewrite the integral as follows:

I o o+ ic~

where the functions F+(03) and F.(03) are defined 

~+i~

I F_.(03)e_imxd03 ¢~>a
(7.21)

F+ (03) = I f(~)ei°)~d~ Im (03) = v > 

0
0

F_(03)= I f(~)eim~d~ lm(03)=v<b

(7.22)

Equation (7.22) defines the Generalized Fourier transform and equation (7.21)
defines the inverse Generalized Fourier transform. It should be noted that the
transform variable 03 is complex, that the transform integrals are real, but the inverse

transform is an integral in the complex plane 03. The paths of integration for the inverse

transforms are shown in Fig. 7.1.
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V

1

=============================================== ........

Paths in complex ¢x~-plane

Fig. 7.2

Since the transforms F+(¢o) and F.(to) are functions of a complex variable o~, 
region of analyticity of these complex functions must be examined. The function F+(¢o),
as defined in eq. (7.22), is an absolutely convergent integral, provided that Im(~o) = v 

Let o~ = u + iv, F+(o~) = U+(u,v) + iV+(u,v), then U+ and V+ must necessarily satisfy 
Cauchy-Riemann conditions given in eq. (5.5), where:

U+ (u, v) = ~ f(~) -~ cos(u~) d
0

V+ (u, v) = f f(~) -v~ sin(u~) d
0

The partial derivatives of U+ and V+ can be obtained by differentiating the integrands,
since the integrals are absolutely convergent:

OU+ = ~v+ = _~ ~ f(~)e_V~ sin(u~) 

0

3U+= Or+
3v - ~’~ = - ~ f(~) e-v~ cos(u~) 

0
which satisfy the Cauchy-Riemann conditions. Thus, the necessary and sufficient
conditions for analyticity are satisfied, provided the partial derivatives are continuous and
convergent, which is true in this case, since the function.:

Ix e-vx f(x)l < -(v-a)x for In(o~)= v >

Thus, F÷(to) is analytic in the upper half plane of to above the line v = a, as shown 
Fig. 7.2.
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Function f(x)
Path in complex m-plane

Fig. 7.3

Similarly, F.(~) is analytic in the lower half plane of ~o, below the line v = b, 

shown in Fig. 7.2. The contour integration for the inverse transformation must then be
taken in those shaded regions shown in Fig. 7.2.

The contour integrals of the inverse transforms depend on the rate at which f(x)
becomes exponentially unbounded. Some special cases, which reflect the relative values
of a and b are enumerated below:

(i) a < 0 and b > 

The function f(x) vanishes as x --) + oo. Then there exists a region of analyticity that

is common to both transforms. Any common line contour, where a < v < b, can be used
for the inverse transform, hence one may choose t~ = ~ = 0, as shown in Fig. 7.3.

Then, the two transforms F+ and F. become:

F+(~°)Iv = o = F+(u) f(x)e~UXdx

0
0

F-(c°)lv = 0 = F_(u): ~f(x)eiUXdx

so that the two integrals can be combined into one integral over the real axis:

OO

F(u) = F+(u) + F_(u) = ~ f(x)eiUXdx

The inverse transform becomes, with v = 0:

1 1
f(x)= ~ (U, Vl)e-iUXdu+ F_(u, v2)e-iUXdu --- ~ F(u)e-iU×du

which is the complex Fourier transform and its inverse as defined in eq. (7.4).

(ii) a < 

In this case, fix) is not in general absolutely integrable, as shown in Fig. 7.4, but
there is a common region of analyticity for the transform as shown in the shaded section
in Fig. 7.4. Thus, it is convenient to choose a common line-contour for the inverse
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y

Function f(x)

V

Path in complex co-plane

Fig. 7.4

transform ~ = 13 = 7. Hence, the Fourier transforms F+ and F_ are defined in the same

manner as given in equation (7.22), while the inverse transform is taken on a common
line, where a < y < b:

[oo+i7 oo+i7

f(x)= ~’~1 f F+ (co)e-i°xdco + f F_ (o)e-i°xd~0

[-~ + iy --~ + iy

Further discussion can be carried out for the possible signs of a and b:

(a)

(b)

(7.23)

If a > 0 then b > 0, then fix) is a function that vanishes as x --~ _~o and becomes

unbounded as x

If b > 0, then a < 0, then f(x) is a function that vanishes as x --> oo and becomes

unbounded as x --> _oo.

F(O) = F+ (co) + F_ (co) 

where F(co) is analytic. The inverse transform becomes:
oo+iy

~ f F(co)e-i°~xdco where a < ~ < b (7.25)fix)=

-oo+iy

It should be noted that the function F+(CO) and F_(CO) may have poles in the complex plane

oo oo

~f(x)eiC°Xdx+ ~f,x)eiC°Xdx = f f(x)ei~°Xdx

0 --oo

(7.24)

a< v = Im (o) < 

In either case, since the function is unbounded on only one side of the real axis, then one
can choose a common value for v such that:
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Path in complex p-plane

Fig. 7.5

7.10 Two-Sided Laplace Transform

If one makes the transformation

p = -io) = Pl + iP2 = v - iu

and if a < b, then one can define the two-sided Laplace transform:

FLII(p)= ~f(x)e-PXdx a < Pl =Re (p) < b

and the inverse two-sided Laplace transform is then defined by:

f(x)= i ~FLII(p)ePXdp

where y is any line contour in the region of analyticity of FLII(P), shown as the shaded

area in Fig. 7.5.

(7.26)

(7.27)

7.11 One-sided Generalized

If the function f(x) is defined so that:

f(x) x<0

If(x)[ < ax x > 0

Fourier Transform
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Function f(x)
Path in complex 0)-plane

004-io~

then the one-sided Generalized Fourier transform of fix) can be written as:

F! ((0)= ~ f(x)e-i°~Xdx Im(e)) = b

0

and the inverse one-sided Generalized Fourier transform is then defined by the
integral:

~+ ia

f(x)= Fi(~)e-imxd~ c~ > a (7.28)

--~ - ia

The transform Fi(m) is analytic above the line v = a, hence the inverse tran~sformation is

performed along a line v = o~ > a (see Fig. 7.6). Thus, let the line v = o~ be above all the

singularities of Fi(m) .

7.12 Laplace Transform

If the function f(x) is once again defined as:

f(x) = x < 0

[f(x)l < ax x > 0

then the Laplace transform of f(x) becomes:

F(p)= ~ f(x)e-PXdx Re(p) - >

0

and the inverse Laplace transform is then defined by:

1 ,¢+i~oe
f(x)=~i JF(p)ePXdp

~ < a

¥ - i~

(7.29)
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Function f(x)

singularity

Path in complex p-plane

Fig. 7.7

The transform F(p) is analytic to the right of Pl = a, so that one may choose Pl = ~’ such

that all the singularities of F(p) are located to the left.of the line Pl = % (see Fig. 7.7).

7.13 Mellin Transform

For the case of a < b, the two sided Laplace transform can be altered by making the
following transformation on the independent variable x:

x=-logrl or

then the two sided Laplace transform takes the form:

FLII(P)= ~ f(x)e_pXdx = ~f(_log~l)ePlOgr~ drl= ~ f(_ log 1 drl

0

and the inverse Laplace transform is then defined by:

f(xl=f(-l°grl)=2~ i f FLII(P)e-Pl°g~qdP=2~ 1 ~ FLI/(Plrl-PdP

To redefine these transform integrals, let:

f(-log x) = g(x) 0 < x < =

then the Laplace transform becomes:
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= ~ g(x)xp-l dxFro(P)

0

and the integral transform is then defined by:

~’+i~
g(x)= ~i fFI(p)x-PdP (7.30)

where Fm(P) is the Mellin transform and the second integral of equation (7.30) is the

inverse Mellin transform.

7.14 Operational Calculus with Laplace Transforms

In this section, the properties of Laplace transform and its use will be discussed. The
following notations will be used:

Lf(x)= ~ f(x)e-PXdx

0

,f +ioo
1 f F(p)ePXdp

fix) = -1 F(p)= ~

7.14.1 The Transform Function

The transform function F(p) of a function f(x) can be shown to vanish as p --> 

IF(p)l= f(x)e-PXdx < A e-(P-a)Xdx = p~a

0

Thus, F(p) vanishes as p goes to infinity. Similarly, one can show that the transform 
the functions x" eax vanish as p --> 0:

Lim fx"f(x)e-pXdx = 
0

This proves that the Laplace integral is uniformly convergent if p > a. This property
allows the differentiation of F(p) with respect to p, i.e.:

dn fF(p)(n)=-- f(x)e-PXdx= (-1)nxnf(x)e-PXdx
dpn 0

0

which also proves that the derivatives of F(p) also vanish as p --~ ~, i.e.:

Lira F(p)(n) = 0 n = 0, 1, 2 ....
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Fig. 7.8

7.14.2 Shift Theorem

If a function is shifted by an offset = a, as shown in Fig. 7.8, then let

g(x) = f(x-a) H(x-a) x > 0

where H(x-a) is the Heaviside step function, see Appendix D, so that its Laplace
transform is:

g(x) = G(p) = ~ f(x-a)H(x-a)e-PXdx = L e-PXdx

0 a

= ~ f(u) e-p(a+u)du = e-PaF(p)

0

(7.31)

7.14.3 Convolution (Faltung) Theorems

Convolution theorems give the inversion of products of transformed functions in the
form of definite integrals, whose integrands are products of the inversion of the individual
transforms, known as Convolution Integrals. Let the functions G(p) and K(p) 
Laplace transforms of g(x) and k(x), respectively, 

F(p) = G(p) 

where the Laplace transforms of k(x) and g(x) are defined 

K(p) = Lk(x) = Ik(x)e-pXdx

0

G(p) = L g(x) = ~ g(x)e-pXdx

0
Thus, the product of these transforms, after suitable substitutions of the independent
variables, can be written as:
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H(u-rl) H(u-rl)

u u

Fig. 7.9

F(p) = G(p)K(p) = f f k(~)g(n)e-P(~+Vl)d~ I   k(~)e- g(n)dn--
O0

Let u = ~ + n in the inner integral, then d~ = du, and the integral can be transformed to:

f(p) k(u - rl)e-PUdu g(rl)dr I = k(u - rl)H(u - ~l)e-pUdu g(rl)drl

oLn OLO

e-PUdu

0k0

where H(u-~) is the Heaviside function (see figure 7.9).

Thus, using the definition of F(p), and comparing it with the inner integral, one
obtains:

X

f(x) = J g(~)k(x - n)H(x - ~)d~ = ~ g(~)k(x - ~)d~ 

0 0

Similarly, one could also show that:

x

f(x) = J k(~)g(x - 

0

Convolution theorems for a l~ger number of products of transfo~ed functions can
be obtained in a similar manner, e.g. if F(p) is the product of three transfoma functions:

F(p) = G(p) K(p) 

then the convolution integral for f(x) is given in many forms, two of which ~e given
below:

x~
f(x)= ~ ~ g(x - {) k({- ~) m(~)d~ 

00
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xx-~

f(x)= ~ ~g(x-~-rl)k(~)m(rl)drld~
0 0

7.14.4 Laplace. Transform of Derivatives

The Laplace transform of the derivatives of f(x) can be obtained in terms of the
Laplace transform of the function fix). Starting with the first derivative of f(x):

L ~f ~f -px --x
~xx= ~-x e dx=f(x)e e 10 +p f(x)e-PXdx=pF(p)-f(0+)

0 0

L32f=f~e-PXdx=3 f -px +pf~_~_fe-PXdx=
~ J~x ~e 00 0

= p2F(p) - pf(0+) - ~-(0+)

Similarly:

L~nf
n -1

Oxn =pnF(p)- E pn-k-1 ~kf (0+)
~xk

k=0

7.14.5 Laplace Transform of Integrals

Define the indefinite integral g(x) as:
x

g(x) = ~ f(y) 

0
then its Laplace transform can be evaluated using the definition:

Lg(x) = G(p) = g(x)e-PXdx = + 1 f dg e_pXdx
p .~dx

000

1 f F(p)
=-- f(x)e-pXdx 

P P
0

because g(0) = 0, and dg/dx = f(x).

7.14.6 Laplace Transform of Elementary Functions

The Laplace transform for few elementary functions are as follows:
x

Ltea’f(~)~ = ~ ea’f(x) x dx =~ f(x) e-<p-a>" dx a)

0 0
x x

(7.33)

(7.34)

(7.35)

(7.36)
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f(x)

t~ (x) ~
[ f2(x) i f3(x) ! ’(x)

Fig. 7.10

x 2 x

L[x2 f(x)] = 2 f( x)e-px dX=~dp f f( x)e-pX dxd2F

0 0
---’-~

and, in general:

L[xn f(x)] = (-1)n n _> 0 (7.37)
dpn

The Laplace transform of the Heaviside function H(x) is:

L [1] = L [H(x)] = 1/p

and that of a shifle.d Heaviside function H(x-a) is:

e-Pa
L[H(x - a)] = e-PaL[H(x)] = (7.38)

P

where equation (7.31) was used. The Laplace transform of a power of x is then derived
from (7.37) as:

n dd_~n (1)= 
L[xn] = L[xnH(x)] = (-1)

~ pn+l
(7.39)

The Laplac~ transform of the Dirac Delta Function ~(x) is (see Appendix 

x

L[~i(x)] =_ ~5(x)e-px dx = e-PXlx = 0 = 1

0
One should note that F(p) does not vanish as p -> ,~ because the function is a point-
function and does not conform to the requirements on f(x).

The Laplace transform of a shifted Dimc function:

L [ 5(x - a)] = -pa (7.40)

7.14.7 Laplace Transform of Periodic Functions

Let f(x) be a periodic function, with a periodicity = T, as shown in Figure 7.10 i.e.:

f(x) = f(x+T)
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Define the functions fn(X):

{;(x)

0<x<T
fl(x) 

x<0, x>T

{~(x)

T<x<2T

f2 (x) 
x < T, x > 2T

= fl(x - T)

f3(x) = {~(x)
2T<x<aT

x<2T, x>3T

= fl(x - 2T)

fn+l(X) = {~(x)
nT< x <(n+l)T

x < nT, x > (n + 1)T

= fl (x - nT)

Thus, the funcdon f(x) is the sum of an infinite number of the functions fn(X):

f(x)= Zfn(x)= Zfn+l(X)= fl(x-nT)

n=l n=0 n=0

Using the shift theorem eq. (7.31) on the shifted functions, one obtains:

Lh(x- nT) = e-nPTF1 (p)

where Fl(p) is the Laplace transform of fl(x). The Laplace transform of f(x) as a 
shifted functions becomes the sum of the Laplace transform at the shifted functions:

Lf(x>: Z FI(P)e-npT =FI(P)~ (e-PT)n

n=0 n=0

which can be summed up using the geometric series summation formula, resulting in:

L... Ft(p)t(x) = (7.41)

where:

T

= L fl(x) = ~ fl(x)e-PXdxFI(p)

0

7.14.8 Heaviside Expansion Theorem

If the transform F(p) is a rational function of two polynomials, i.e.

F(p)
N(p)

n(p)

where D(p) is a polynomial of degree n and N(p) is a polynomial of degree < n,then
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one can obtain an inverse transform of F(p) by the method of partial fractions. Let the 
roots of D(p) be labeled Pl, P2 .... Pn and assume that none of these roots are roots 

N(p). The denominator D(p) can then be factored out in terms of its roots, i.e.:

D(p) = (P-Pl) (P-P2) "’" 

The factorization depends on whether all of the roots pj, j = 1, 2 .... are distinct or some

are repeated:

(i) If all the roots of the denominator D(p) are distinct, then one can expand F(p) 
follows:

N(p)_ A! ~- 2 + ...+ A n =~ Aj
F(P)=D(p) P-Pl P-Pn j~= P~j

where, the unknown coefficients A1, A2 ..... An can be obtained as follows:

¯ N(p)7 N(pj)A j= Lim](P- PJ) ~---~"/- D’(pj)~,P)/ j= 1,2,3 .... n
p--~pj[.

The inverse transform F(p) can be readily obtained as the sum of the inverse of each 
these terms:

n
f(x) = Z Aj pjx (7.42)

j=l

(ii) If only one root is repeated k times, then, taking that root to be Pl, one can

obtain the partial fractions as follows:

N(p)_ A~ A_____2~2 At_! Ak
F(P)=D(p) P-Pl (p-pl) 2 +"" ~ --÷Q(P)(p-pl)t-1 (p- pl)k

where Q(p) has poles at points other than Pl, i.e. simple poles at Pt+l, Pt+2 ..... Pn" The
function Q(p) can be factored out as:

Q(p)- At+l Ak+2 ~. ..+ An
P- Pk+~ P- Pk+2 P-Pn

which can be treated in the same manner as was outlined in section (i) above.
Letting G(p) = (p-pl)k F(p), then the constants 1 to At can be evaluated as

follows:

1 dG(Pl)
Ak : Lim [G(p)] = G(Pl) Ak_1 =

p--~p~ 1! dp

1 d2G(Pl) 1 d(t-1)G(Pl= AI=Ak-2 2! dp 2 ..... (k-l)! (k-l)

1 d(k-J)G(Pl) j = 1, 2 ..... kAj = (k-j)! (k-j)

To evaluate the contacts Ak÷1 to An, one uses the same formulae in (i). Thus, the
inverse transform of the part of the function F(p) corresponding to the repeated root 

takes the form:
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k
eP,X ,~a xj-1 d(k-J)G(Pt)f(x) = j--’~l (j- 1)!(k- j)! (k-j) ~-q(x (7.43)

where eqs. (7.39) and (7.36) were used. The remainder function q(x) is the same as 
in (7.42) with the index ranging fromj = k+l to 

7.14.9 The Addition Theorem

If an infinite series of functions fn(x) representing a function fix):
O0

f(x)= Z fn(X)

n=0
is uniformly convergent on [0,,,o], and if either the integral of If(x)]:

Ie-PX dx

0

or the sum of the integrals of

Z I e-pxlfn (x)[dx
n=00

converges, then:

Lf(x)=F(p)=L Zfn(X)= ZLfn(X): 

n=O n =0 n=O

"(7.44)

Example 7.1

Various examples of the Laplace transform, which illustrate the various theorems
discussed above, are given below:

(i) sin (ax)H(x)’.

First, rewrite sin (ax) as a sum of exponentials:

1 , iax e-iax),

sin(ax)=~lte 

then, using equation (7.36):

L[eiaXH(x)] _ 1
p-ia

The Laplace transform of sin(ax) is found to be:

L[sin(ax)H(x)] = ~- pSia p+ia p2 2

(ii) bx sin(ax)

Since the Laplace transform of sin(ax) is now known, one can use eq. (7.36) to evaluate
the product, i.e.:
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L [ebx sin(ax)] = F(p - b) a
(p- b)2 + a2

(iii) sin (ax) H(x) (periodic function):
Since the function sin (ax) is periodic with periodicity T = 2r4a, then:

2~/a
Fl(P)= fsin(ax)e-PXdx = p-~+a2(1-e-2pz/a)

0
then:

F(p) = Lsin(ax) - FI(P) a ~1 _-2pn/a, 1 a
- 1- e-pT p - ) = p2 + a’~-"T

a(iv) Find the inverse transform of F(p) = pX x :

F(p) can be written as the product of two functions:

a a 1
F(p)=p2_a 2 p+a p-a

then the inverse transform of the product can be obtained by the convolution theorem.
Letting:

a 1G(p) = and K(p) = 
p+a p-a

thenthe inverse transform of G(p) and K(p) are known to be (see eq. 7.53):

g(x) = -ax   and k(x) = ax

so that the inverse transform of F(p) can be obtained in the form of a convolution
integral:

X

f(x) = (a-an)(ea(x-rl))d~l = --~te-2ax - II = sinh(ax)

0
Alternatively, since the function F(p) has two simple poles whose denominator has

two roots, p = + a, then one can use the Heaviside theorem to obtain an inverse

F(p)= AI~ A2
p-a p+a

Since the roots are distinct then:

AI = 2~p 1

p=a 2

so that:

F(p)= ’p 

and
p=-a 2
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~[e ax - e-ax ] = sinh (ax)f(x)

(v) Find the inverse transform of F(p), defined 

p+a b;~c
F(p) = (P + b)(p 2

The function F(p) has a simple pole at p = -b and a pole of order 2 at p = -c.
Let:

F(p)= A1 ÷ A2 + A3
p+c (p+c) 2 (p+b)

then the coefficients Aj are found from the partial fraction theorem:

G(p) = (p + 2 F(p) = p + a ¯
p+b

Al=_~_p(_C)= b-a
_ b-a

a-c
A2 = G(Pl) = G(-c) = 

b-c

a-b
A3 = (p + b) F(P)lp = (c- b)2

Thus, the inverse transform of F(p) is given by:

f(x) = ~__ C {e-CXI-~-_ ca + (a - c) xl + e-bx ~c_ 

where eqs. (7.42) and (7.43) were used.

7.15 ~ Solution of Ordinary and Partial Differential Equations
by Laplace Transforms

One may use Laplace transform to solve ordinary and partial differential equations for
semi-infinite independent variables. For use of Laplace transform on time, where t > 0,
one would require initial conditions at t = 0. In this case, application of Laplace on time
for the first or second derivations in time requires the specification of one or two initial
conditions, respectively, as required by the uniqueness theorem. Use of Laplace transform
on space is more problematic. Use of Laplace on x for the second derivative ~2y(x,t)/~x2
would require the specification of y(0,t) and by(0,t)/~x. However, uniqueness theorem
requires that only one of these two boundary conditions can be specified at the origin.
Hence, one must assume that the unknown boundary condition is a given function. For
example, if y(0,t) = f(t), a specified function, then one must assume that 3y(0,t)/3x = 
an unknown function. The function g(t) must be solved for eventually after finding
y(x,t) in terms of g(t). The reverse would also be true: if 3y(0,t)/0x = f(t), 
y(0,t) = g(t); an unknown function. This indicates that the Laplace transform is 
suited to use on time rather than space.

In this section, the Laplace transform will be applied on various ordinary or partial
differential equations in the following examples.
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Example 7.2

Obtain the solution y(t) of the following initial value problem:

d.~22Y + a2y = f(t) t>0

with the initial conditions of:

y(0) = -~tY (0) = 
Applying the Laplace transform on the variable t to the ordinary differential equation, the
system transforms to an algebraic equation as follows:

p2 y(p). p y(0)- d.y (0)+a2Y(p) 
dt

where Y(p) = L y(t). After inserting the initial conditions, one can find the solution 
the transform plane p:

y(p)= F(p__) I+C2
p2 + a2 p2 + a2

To obtain the inverse transforms of the first term, one needs to use the convolution
theorem since f(t) was not explicitly specified:

L_ 1 ~ = sin(at)
a L p2 + a2 J - cos(at)

Thus, using the Convolution theorem:

t
y(t) =- [ f(t - rl) sin(a~q) I + C1cos(at) + C2 sin(at)

a a
0

Example 7.3

Obtain the solution to the following integro-differential equation by Laplace
transform:

t
uy + ay = f(t) + [ g(t - ri) y(rl)drl
dt

0
with the inidal condition y(O) = 

Applying the Laplace transform on the equation, and using the Convoaution theorem,
one obtains:

pY(p) y(0) + AY(p) = F(p) + G(p) Y(

which can bc solved for Y(p):

y(p) F( p) = F( p)K(p)
p + a- G(p)

1
where K(p) = P + a - G(p)" Then:
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t

y(t) = J f(t - q) k(rl) 

0

Example 7.4

Obtain the solution to the following initial value problem by use of Laplace transform:

d2Y ~tdY_2y=l
dt 2 dt

with the initial conditions of:

t>0

y(O)=O dY(o) 
dt

Applying the Laplace transform to the equation, and noting that the equation has non-
constant coefficients, the Laplace transform for It y’(t)] becomes:

L[t-~tI=-d[LdYl=--~p[PY(P)-Y(O)]=-PdY-YdpI_ dt J dp

then:

dYp2y _ py(0) - -~tY (0) - p-~-p - Y - 2Y lp

or:

The homogeneous solution Yh becomes:

Yh=

and the particular solution Ypar is found to be:

1
Ypar = ~

Thus, the total solution can be written as follows:

e p2/2 1
Y= ~+ p3C p3 --

Since the limit of Y(p) goes to zero as p goes to infinity, then C = 0 and Y(p) = 3.

The inverse transform gives (see eq. 7.39):

t2
y(t) = 

2

Example 7.5 Forced Vibration of a Stretched Semi-infinite String

A semi-infinite free stretched string, initially undisturbed, is being excited at its end
x = 0, such that, for y = y(x,t):
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O2y_ 1 ~)2y
x>0 t>0

~)X2 - C2 Ot2

together with the initial and boundary conditions:

y(O,t) = f(t) y(x,O÷) = 0 ~ (x,O÷) = 0
Ot

The differential equation satisfied by the string is first transformed on the time
variable, that is:

where the symbol Lt signifies Laplace transformation on the variable t. Let:

OO

Y(x, p) = I y(x, t) e-Ptdt

0

then the transform of the partial derivatives on the spatial variable x is:

and the transform of the partial derivative on the time variable is:

I~)2Yl ~Y (x,0+)] p2yP2y-[py(x’0+)+Ot
=

Transforming the boundary condition at x = 0:

Lt y(0, t) = Y(0, p) = Lt f(t) = F(p)

Thus, the system transforms to the following boundary value problem:

d2y p2 Y = 0

dx 2 c2

Y(0,p) = F(p)

The solution of the differential equation can be shown to be:

Y = Ae-Px/c + Bepx/c

The solution Y must vanish as x ~ oo, which require that B = 0. The boundary condition

at x = 0 is satisfied next:

Y(0,p) = A = F(p)

so that the solution in the transform plane is finally found to be:

Y = F(p)e-Px/c

The inverse transform is given by:

If(t- x) t > x / c
y(x, t) = 1 [F(p)e-px/c] =l0 c t < x/c

which can be written in terms of the Heaviside function:
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y(x, t) = f(t - x) H(t 
C C

where the shift theorem (eq. 7.31) was used. The solution exhibits the physical property
that any disturbance at x = 0 arrives at a station x at a time t = x/c having the same time
dependence as the original disturbance.

Example 7.6 Heat Flow in a Semi-infinite Rod

Obtain the heat flow in a semi-infinite rod, where its end is heated, such that:

T = T(x,t)

~2T 1 3T
x>0 t>0

~x2 K ~t

subject to the following initial and boundary conditions:

T(0,t) fit) T(x,0÷) = 0
Applying the Laplace transform on t on the equation, and defining:

T(x,p) = fT(x,t)e-Ptdt

0

then the equation and the boundary condition transform to:

d2Y ~[pY-T(x,O)] r= K

Y(O, p) = FCp)

The differential equation on the transform temperature T becomes:

" ET= 0
dx 2 K

and has the two solutions:

y = Ae- p~-~x + Be+.~-~/K x

Boundedness of T as x ---> ,~, requires that B = 0. Satisfying the boundary condition:

Y(O, p) = F(p) 

then, the solution in the complex plane p is given by:

Y = F(p)e- P~~X

The inverse transform of exp [-~/~/K x] [from Laplace Transform Tables] is given as

follows:

L-l[e-a~/~1= ~ea -a2/4t where a = ~

Thus, using the convolution theorem (eq. 7.32):
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=~- f(t- 4K{~)e ~ d{- - 4-~-~)e -~ d~

If f(0 = To = constant, then the integral can be solved:

T(x,t)=-~-~ e-~d{- e-{~d{ =T~[1- Toerfc(x)

0

where eft(y) is the error function as defined in B5.1 (Appendix B) and erfc(y) = 1 - 
and erf (0,,) = 

Example 7.7 Vibration of a Finite Bar

A finite bar, initially at rest, is induced to vibration by a force f(t) applied at its end
x -- L for t > 0. The bar’s displacement y(x,t) satisfies the following system:

32y 1

3x~ = ~ 3t2

y(O,0 = y(x,0÷) = o

~t (x,0+) = AE-~xY (L,t) = f(t) 

Applying Laplace transform on the time variable, the equation transforms to:

~d2Y = ~2 [p2Y(x, p) - py(x,0+ )- O.~Y (x,0+)] = P-~2 ,,,, (x,p) ot c~
where Y(x, p) = Lt y(x,t). Transforming the boundary conditions:

_~_ F(p)Y (0,p) = 0 and (L, p) = 

The solution of the differential equation on the transformed variable Y can be written as
follows:

Y(x,p) = -px/e + Be+px/¢

which is substituted in the two boundary conditions:

Y (0,p) = D + B = 
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~_x (L, p) P [_De-PL ! c + Be+PL ! c ] _ F(p)
c AE

The unknown coefficients are readily evaluated:

c F(p) 
B=-D=

p AE e-pL/c +e+pL/c

and the transformed solution has the form:

c F(p) e+px/c -e-px/c
V(x, p) 

p AE e+PL/C+e-p L/c

Separating the solution into two parts:

Y(x, p) = ~EE F(p) G(x, 

where G(p) is defined as:

1 e+pX/c - e-px/c Gl(X,p)
G(x,p) =

p e+pL/c + e-pL/c 1 - e-4pL/c

where Gl(X,p) represents the transform of the first part of a periodic function whose

periodicity is T = 4L/c and is given by:

Gl(x, p) = 1 [e_P(L_x)/c _ e_P(x+L)/c _ e_P(aL_x)/c + e_P(aL+x)/c 
P

The inverse transform of eap/p is H(t - a) which results in an inverse of Gl(X, 

gl(x, t) = H[t (L- x) / c] - H[t - (L÷ x) 

-H[t - (3L - x) / c] + H[t - (3L + x) 

The inverse transform of G(x,p) is given by g(x, t) where:

g(x,t) = gl(x,t) 0 _< t < 4L/c

and g(x, t) is a periodic function with period T = 4L/c, i.e.:

g(x,t) = g(x,t+4L/c)

so that the periodic function can be written as:

g(x,t)= E gt(x’t-4nL/c)

n=0

The final solution to the displacement y(x, t) requires the use of the convolution integral:

t

cIy(x, t) = -~ g(x, u)f(t- 

0

If fit) = o =constant, then F(p) = Fo/p, an

c Fo e+px/c -e-px/c
Y(x,p)= p2 AE +pL/c +e-pLlc

The transform of the deformation at the end x = L then becomes:
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h(x)

T/2 T 3T]2 2T 5T/2

Fig. 7.11

The transform of a SaWmtOOth (triangular) wave h(x) defined by ), 0 _<x <_ T,(as

shown in figure 7.11) is defined as:

=~2x/T
0<x<T/2

hi(x)
2(1-x/T) T/2_<x<T

L h(x) = 2,, tanh(PT)
Tp~ 4

Thus, the inverse transform of the deformation becomes, with T = 4L/c:

y(L, t) = 2 h(t) = dynamic deflection/static deflection

Yo

where Yo is the static deflection defined by:

The maximum value y(L, t) attains is o att =2L/c, 6L/c..... The deflection at any

other point x can be developed in an infinite series form:

c Fo e
-p(L-x)/c -e-p(L+x)/c

Y(x,p)= p2 
I+e-2PL/c

Y(x,p) c U’x " c Ul(x,p)

=~ [ ’P)=~I -4pL/e
Yo -

U1 (x,p) = -~1 Ie-P(L-x)/c -p(x+L)/c - e -p(3L-x)/e + e-p(x+3L)/e]
p2 L

where U(x,p) represent a periodic function, u(x,t) = u(x,t + 4L/c) 1 being the

transform of the function u(x,t) within the first period 0 _< < 4L/c. Noting that fr om

equation 7.3 h

L-1 [~-~Z e-aP] = (t - a) Hit - 

then, the solution y(x,t) is given by the periodic function u(x,t) = u(x, t + 4L/c):
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Yn/Y0

Y/Y0

/ (L+x)/c (3L-x)/c ~
I I~ I I,, I r ~,

2x/L

(L-x)/c L/c (L+x)/c 2L/c (3L-x)/c 3L/c (3L+x)/c 

T= period = 4L/c )

Fig. 7.12

y(x,p) c
~o =~u(x,p)

The inverse transform of Ul(X, p) is then found as:

ul (x, t) = [(t- L - X)H(t - L - x) _ (t - L + X)H(t 
C C C C

-(t- 3L- X)H(t_ 3L- x)+ (t- 3L + X)H(t_ 3L +..__.~x)]
C C C C

for 0 _< t < 4L/c.

The solution ul(x,t) for the first period < t < 4L/c ismade up of thefirs t arri val of
the wave at t = (L - x)/c which is then followed by three reflections, two at x = 0 and one
at x = L. This solution is shown graphically for the first period t = 4L/c in the
accompanying plot, see Fig. 7.12. Note that from that time on, the displacement is
periodic with a period of T = 4L/c.

Use of the Laplace transform on the time variable t requires that two initial values be
given, which are required for uniqueness. However, use of the Laplace transform on the
spatial variable x, requires two boundary conditions at x = 0, of which only one is
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prescribed. One can solve such problems by assuming the unknown boundary condition
and then solve for it, by satisfying the remaining boundary condition.

Example 7.8 Wave Propagation in a Semi-Infinite String,

A semi-inf’mite suing, initially at rest, is excited to motion by a distributed load
applied at t = to and given a displacement at x = 0 such that the displacement y(x,t)

satisfies:

32__ff_y = ._~_1~ ~2~y + po e_bX 8(t-to)

~x 2 c" 3t ~ To

y(0,t) = Yo H(t)

x > 0 t,t o > 0

y(x,O÷) = 0 ~ (x,O÷) =0
ot

Obtain the solution y(x, t) by using Laplace transform on the spatial variable 
Define the Laplace transform on x:

Lx [y(x, t)] = Y(p, t)= ~y(x, t)e-PXdx

0

Applying the Laplace transform on the differential equation:

3y(0,t) 1 d2Y(x,p) Po ~i(t-to)
p2y(x,p)- py(0,t) +

bx =~’~ dt2 To p+b

Since the displacement at x = 0 was given, but not the slope, 3y/~x is not known, then
assume that:

~(O,t) = f(O

so that the differential equation takes the form:

d2y _
d7 c2p2y = -c2p2y° H(t)- c2f(t)- 2 Po ~(t- t o) = Q(To p+b

Thehomogeneous and particular solutions arc given by:

Yh = A sinh (cp0 + B cosh (cpt)

t

Yp= 1 f Q(u) sintcp(t - u)]du

cp~)

= Yo (1 - cosh(cpt)) - ~ ~ sinh[cp(t- u)] H[t 

P ¯ PtP+ o) ~o

t
_ c [ f(u) sinh[cp(t- u)]du

Using initial conditions:

Y(p,0) = 0 = 
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dY(p, O) =pcA = 
dt

so that Y(p,t) = Yp(p,t). The invers~ transform of Y(p,t) is then given 

t

0

CPo H[t - toil1- e-blx+c(t-t°)l]H[x + c(t-to)]

2bTo

+ cP° Hit - to][l- e-b[x-c(t-to)l]H[x - c(t-to)]
2bTo

The solution for y(x.t) still contains the unknown boundary condition f(0.
Differentiating y partially with x and setting x = 0 one obtains:

t

~B~x-Yx <0.t, = f(t)=--Y2-°- 8(ct, - ~ J f(uXS[c(t-u)] - 8[c<u -t,])du

0

CPoHit- to](bc-be(t-t°) + 2 sinh[bc(t- to)gi[c(t-to)]/
2bTo !

where ~(u) = ~(-u) and ~(cu) = 5(u)/c were used (Appendix 

The integral in the last expression can lx~ shown to equal f(t)/2, so that f(t) is finally
obtained as:

f(t)= - ~ 8(t) cP° H[t - to1(b-be (Ho)+ 2 sinh [bc(to)]8[c(t -to)])z bl0

Substituting f(t) into the integral t~rm of y(x, t) results in the following expression:

Y._~o H[ct - x] - _c.P_° H[c(t - o) -x]H[t - to] ( -b[x-~(t -to)] _ l)

2 2blo

Substituting the last expression into that for y(x, t) gives a final solution:

y(x,t) = yoH[ct- x]- cP° H[t- to]e-bx sinh[bc(t- to)]
bTo

+ ¢Po sinh[b~(t- to) - b×] H[(t- to)- x 
bTo

where H(-u) = 1 - H(u) was used in the expression.

7.16 Operational Calculus with Fourier Cosine Transform

The Fourier cosine transform of a function f(x) was defined in 7.2 as follows:
oo

Fc[f(x)] = Fc(u)= ]f(x)cos(ux)dx

0

then:
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7.16.1 Fourier Cosine Transform of Derivatives

The Fourier transform of the derivative of f(x) is derived as:

uI= = f(x)cos(ux)l 0 + f(x)sin(ux)dx
J Ox
0 0

= uFs(u) - f(0+)

The transform of the second derivative of f(x):

°~ ~2f~(2x) ~.x cos (ux) ~ Of
~3~

32f(x) cos (ux) + u sin (ux) Fc[ 0--~-l= J 3x =
0 0

= -~O-~-f (0+)+u f(x)sin (ux)l~ 2 f f(x)cos (ux)dx
OX ~

0

= -U2Fc (u) - ~ +)

In general, the Fourier cosine transfo~ of even and odd derivatives are:

02nf
n - 1

02n_2m_lf(0+)
Fc[~] = (-1)nu2nFc(U)- ~ (-1)mu 2m 0x2n_2m_1

n ~ 1

m=0

and

3mf
provided that 3xm --) 0 as x --) ,~ for < (2n-l)

~)2n+lf n
~)2n_2mf(0+)

Fc[ff I = (-1)nu2n+lFs(u)- (- 1)mu2m" 3x2n-2m
m=0

n_-’:.0

(7.45)

provided that 3xm ~ 0 as x ---) oo for m _< 2n (7.46)

It should be noted the Fourier cosine transform of even derivatives of a function gives
the Fourier cosine transform of the function, and requires initial conditions .of odd
derivatives. However, the Fourier cosine transform of odd derivatives leads to the Fourier
sine transform of the function, and hence is not conducive to solving problems.
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7.16.2 Convolution Theorem

The convolution theorem for Fourier cosine transform can be developed for products
of transformed functions. Let He(u) and Ge(u) be the Fourier cosine transforms of h(x)
and g(x), respectively. Then:

I
0

: ( )cos(u )d ..cos(ux)du
0 [0

2 g({)[h(x+{)+h x- (7.47)

0

7.16.3 Parseval Formula

If one sets x = 0 in eq. (7.47), one obtains:

2 ~He(u)Ge(u)du ~g(~)h(~)d~
(7.48)

0 0

If Ge(u) = Hc(u), an integral known as the Parseval formula for the Fourier
cosine transform is obtained:

~ ~ He2(u)du = ~ h2(~)d~ (7.49)

0 0

The Fourier cosine transform can be used to evaluate definite improper integrals.

Example 7.9

The Fourier cosine transform of the following exponentials:

e-aX e-bx
h(x) = a > 0 g(x) = ~ b > 

a b

becomes:

1 1
He(u) = Ge(u) =

u2 + a2 u2 + b2

Hence, one can evaluate the following integral:
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du rc e-ax e-bx

0 (u2 + a2)(u2 +a2) "
a b

0
by use of eq. (7.48).

dx =
2ab(a + b)

Example 7.10 Heat Flow in Semi-Infinite Rod

Obtain the heat flow in a semi-infinite rod, initially at zero temperature, where the
heat flux at its end x = 0 is prescribed, such that the temperature T = T(x,t) satisfies the
following system:

~2T 1 ~T x>0 t>0
3-"~" = K 3t

-~xT (0,t)= T(x,0+) = lim T(x,t) --> 
/(t)

Since the Fourier cosine transform requires odd-derivative boundary conditions, see
Equation 7.45, it is well suited for application to the present problem. Defining the
transform of the temperature:

T(u, t) = ~ T(x, t) cos(ux) 
0

then the application of Fourier cosine transform to the differential equation and initial
condition results in:

EI~2T]=-u2r-~xT(0,t)=-u2~+/(t) F[OT~= 1dr Lax J °LaxJ

F¢[T(x,0+)] = T(u,0+) = 0

Thus, the equation governing the transform of the temperature:

dT
K/(t)l- u2Ky =

dt k
can be written as an integral, eq. (1.9):

t
= Ce-u2Kt + --~-J/(t- TI)e-ku211 dTIT(u,t)

0
which must satisfy the initial condition:

T(u,0+) = C = 0

Thus, the solution is found in the form of an integral:
t

T(u, t)= -~ ~/(t- rl)e-kuhl

0
Applying the inverse transformation on the exponential function within the integrand:
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Using integral or transform tables:

1 ~" _x~/4a
I<x> = e cos<ux du-- i

0

one finally obtains the solution:

~2! l(~)e-X2/(4K~l)
T(x, t) ~ d~

7.17 Operational Calculus with Fourier Sine Transform

The Fourier sine transform, as defined in 7.3, will be discussed in this section. Let
the Fourier sine transform of a function f(x) be defined as:

Fs[f(x)] = Fs(u)= ~ f(x)sin(ux)dx

0

then:

f(Ixl) sgn x= ~ Fs (u) sin(ux)du

0

where the signum functions sgn is defined by:

sgn(x) = {;/Ixlx=0 x,O

7.17.1 Fourier Sine Transform of Derivatives

The Fourier sine transform of the derivative of f(x) can be derived as:

-- OxF~ [--~] = ~0f(x) f ~ sin(ux)dXox = f(x) sln(ux~0" oo _ u~ f(x)cos(ux)dx =-uFc 
0 0

The transform of the second derivative of f(x):

F[o2f(x)ls Ox2 j : ~ O2f(~x) sin(ux)dx = Of "’~ 3x" ~xx s,n(uxl~ - u*OOf~ ~xx cos(ux)dx

0 0 0

= 0- u f(x)cos(ux)10 u f(x)sin (ux)dx = -uZFs(u) + uf(0+)

0
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and ingeneral:

~2nf
Fs [~-~] = (-1) n u2nFs (u) 

n

X (-1)m+lu2m-I o2n-2mf(0+)~x2n-2m
m = 1

n_-’: 1

~mf ^
~ovided that ~ ---> t~ as x ~oo form < (2n-l)

~2n+lf n

FS[~x-~ "~] = (-1)n+l u2n+lFc(u) + X (-l)m+l °~2n-2 m+lf(0+)~x2n-2m+l
m=l

(7.50)

n_>l

~mf
~ovided that ~ ~ 0 as x ~ oo for m _< 2n (7.51)

It should be notedthat the Fourier sine transform of even derivatives of a function
give the Fourier sine transform of the function, and requires initial conditions of even
derivatives. The Fourier sine transform of odd derivatives give the Fourier cosine
transform of the function, and thus cannot be used to solve problems.

7.17.2 Convolution Theorem

It can be shown that there is no convolution theorem for the Fourier sine transform.
Let Hs (u) and s (u) be the Fourier sine t ransforms of h(x) and g(x) r espectively. T

oo

F~-I [Hs(u)Gs (u)] =.-~ f Hs(u)Gs(u)sin(ux)du

0

= j" g(~ j" H~(u)sin(u~)sin(ux)du 

0 ~ 0

which cannot be put in a convolution form, since the integrals are cosine and not sine
transforms.

If Hs (u) and c (u) are t he Fourier sine t ransform of h(x) and the Fomier cosine

transform of g(×), respectively, then the inverse sine transform of this product becomes:
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Fs-l[Hs(U)~c (u)] : ~ f Hs(U)~¢(u)sin(ux) 

0

c (u sln(u sln(ux) 

= fh(~).

0

= f h(~)

-~Gc(U)sin(u~)sin(ux)du 

0

I
f Gc (u)[cos(u(x - ~)) - cos(u(x + ~))] 
0

= -~ h(~)[g([x - ~1) - g(x + (7.52)

0
This means that if there is a product of two functions, Fl(U).F2(u), then call Fl(U) 

Hs(u), and F2(u) = Gc(u). To use the convolution theorem use the inverse transform 

h(x) = -1 (Hs(u)), and that ofg(x) = F-1(Gc (u)),to obtainh(x) and g(x

7.17.3 Parseval Formula

Consider the following integral:

~ffHs(u)Gs(u)c°s(ux)du=--2n! Hs(u)0 g(~)sin(u~)d~ cos(ux)du

= f g(~) ~ Hs(u)sin(u~)cos(ux)du 

0 [ 0

= bg(~) Hs(u)[sin(u(x+{))+sin(u(~-x))]du 

0

= -~ g(~)[h(x + ~) h(lx - ~[)Sgn(~ - x)

0

If x is set to zero in (7.53), one obtains:

f Hs u)Os(u)au= 
0 0

and if Hs(u) = Gs(u), then:

(7.53)

(7.54)
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0 0

which is the Parseval formula for the Fourier sine transform.

Example 7,11 Heat Flow in a Semi-Infinite Rod

Obtain the heat flow in a rod, initially at zero temperature, where the temperature is
prescribed at its end x = 0, such that T(x,t) satisfies the following system:

~2T 1 ~T
x>0 t>0

~x 2 K ~t

T(0, t) = f(t) T(x,0+) = 0

Since the Fourier sine transform requires even derivative boundary conditions, see
equation (7.50), it is well suited for application to the present problem. Define:

~(u,t) = I T(x, t) sin(ux)dx

0

~ + u2K~ = Kuf(t)
dt

Thus, the soludon for the transform of T is given by eq. (1.9):

t

~(u, t) = -u2Kt + Kuf f( t - rl )e-Ku2rl dri

0

Satisfying the initial condition:

T(u, +) =C = 0

then the solution of the transform of T becomes:

t

~(u, t) KuI f( t- rl )e-Ku2rl drl

0

The inverse transform integral is then defined by:

T(x,t) = ~f(t- rl) ue-KU2~ sin(ux) 

0

To evaluate the inner integral, one can use the integral tables:

I(x) =- i -au2 cos(ux)du =1
/4a

2"~a
0

Then, differentiating I(x) with x, One can find the inverse transform of the solution:
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dx 4a ~/a
0

so that the solution of the temperature is given by:

t

(̄x, t)-- ~ ~ f(t- n)n-3~2e-~2 ~(4~:~) 
0

Compare this result with the result of Example 7.5.

Example 7.12 Free Vibration of a Stretched Semi4nfinite String

Obtain the amplitude of vibration in a stretched, flee, semi-infinite string, such that,
y = y(x,t) satisfies the following system:

02y_ 1 O2y~-~-r- ~-~-t x>0 t>0

y(0,t) = lira y(x, t) --> 
X ---> ~

y(x,0÷) = fix) ~-t (x’0÷) = g(x)

Since the boundary condition is an even derivative, then apply Fourier sine transform to
the system. Defining Y(u,t) as the transform of y(x,t), then application of Fourier 
transform to the differential equation and the initial conditions results in:

--7L~x" J

Fs[Y(X,0+)] = Y(u,0+) = Fs(f(x)) = 

L dt J dt

Thus, the transformed system of differential equation and initial conditions:

d2Y 2 2,, dY

~+c u ~=0, Y(u,0+)=F (u ~(u,0 +)=G(u)

Y = A sin (uct) + B cos (uct)

Satisfying the two initial conditions yields the final transformed solution:

Y(u, t) = G(u) sin(uct) + F(u) 
uc

and the solution y(x, t) can now be written in terms of two inverse transform integrals:

y(u,t) 2 ~ G(u)sin(act) sin(ux) du+ 2_.~ F(u)cos(uct) sin(u
~ uc ~

0 0

The second integral can be evaluated readily:
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~ ~ F(u) cos(uct) sin(ux) 1~ ~ F(u)[sin(u(x + ct))+sin(u(x- ct))] 

0 0

= ~ [f(x + ct) f(lx - ctD Sng(x - ct)]

The first integral can b~ evaluated as follows:

1
- I G(u) [cos(u(x - ct) - cos(u(x + ct))] g- u
0

Since:

g~vDSgn v = ~ 7 g(u) sin(uv) 

0
then:

lg(~ql)Sgn’qdrl:~G(u ) sin(url)d~ i du=- G(U)c°s(uv)dUu

0 0 (0 J 0

where F=--2 ~ G(u) du.
~ u

0
Thus:

oo v 0_2 1 G(u) cos(uv) du : _j’g(lrll)Sgn + F= j"g(]rll )drl + F

~ U
o o Ivl

The first integral then becomes:

~-O-~ [cos(u(x- ct)- cos(u(x + ct))]du
0

+F

x+ct
1

=~’c J" g(rl)d’q

Thus, the total solution becomes:
x+ Ct

1
y(x,t)=~[f(x+ct)+f(~x-c~)Sng(x-ct)]+’~c ~ 
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7.18 Operational Calculus with Complex Fourier Transform

The complex Fourier transform was defined in eq. (7.4). Let F(u) represent 
complex Fourier transform of fix), defined as follows:

F(f(x)) = F(u) = ~ iux dx

then:

f(x) = -~ F(u)e-iux du

7.18.1 Complex Fourier Transform of Derivatives

The complex Fourier transform of the first derivative is easily calculated:

OO OO

~ ~ ~f iux f(x)eiuxl~** ~F[ ]= ~xx e dx= _ - f(x)eiu xd x=(-iu)F(u)

The transform of the second derivative of f(x) is:

F[ ~--~-] =~2f ~32f~ ~x2 eiUX dx = ~x-fx eiUX -iu~~f iux

: -iu feiuxl_ L -iu!_ feiux dx = (iu)2F(u)

In general:

~nf = (-iu)nF(u)
n > 0FtO- -

provided that 13xm I --> 0 as x --> ~ for m _< (n-l) (7.56)

7.18.2 Convolution Theorem

The Convolution theorem for the complex Fourier transform for a product of
transforms is developed in this section. Let F(u) and G(u) represent the complex Fourier
transform of f(x) and g(x), respectively. Then, the inverse transform of the product 
defined as:
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F-1 [F(u)G(u)] = ~ F(u)G(u) -iux du

= ~_~.~F(u iu~ - "e lux du

= ~ g F(u)e -iu(x-~ d~

= ~ g(~)f(x- ~) 

Similarly, it can be shown that the last integral can also be written in the form:

~ f(~)g(x - ~) 

7.18.3 Parseval Formula

(7.57)

If one sets x = 0 in eq. (7.57) one obtains:

__1 ~ F(u)G(u)du= g(~)f(-~)d~= g(-~)f(~)d~
(7.58)2g

which does not lead to a Parseval formula. However, if one defines the complex
conjugate of G(u) as follows:

G*(u) = ~ g(x)e-iux dx

then:

1 1 F(u) g(~)e m~d~ e lUXdu
~ F(u)G*(u) e-iUxdu = 

= ~g--~ F(u)e-iu( +X)du d{ = --~g({)f({ + x)d{ (7.59)

If one again sets x = 0 in eq. (7.59), one obtains:

2~

If g(x) = f(x), then one obtains the Parseval formula for complex Fourier
transforms:

1 F(u)F*(u)du = 1 IF(u)12au = f2(~)d~ (7.61)
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Example 7.13 Vibration of a Free Infinite String

A free infinite string is induced to motion by imparting it with an initial
displacement and velocity. Let the displacement y = y(x,t), then the equation of motion
and initial conditions are:

O2y 1 O2y

3x2 c2 3t2 -oo< x<oo t>0

~Y (x,0÷)
~ = g(x)y(x,0÷) = f(x)

Using the complex Fourier transform on x, one obtains, with Y(u,t) being the transform
of y(x,t):

1 d2y
-u2y = ~2 dr2

Y(u,0÷) = F(u) -~t(u ,0÷) = G (u)

The solution of the differential equation is readily obtained as:

Y(u,t) = A sin(uct) + B cos(uct)

which, after satisfying the transformed initial conditions gives the final solution:

Y(u, t) = G(u) sin(uct) + F(u)cos(uct)
uc

The inversion of the transformed solution can be evaluated in two parts:

1 ~ eiuct + e-i uct
F-1 [F(u) cos(uct)] = ~~ 

2
e-iUxdu

=-~12r~ ~ ~F(u)(e-iu(x-ct, + e-iu(x+ct,)du

_1__. [f(x - Ct) + f(x + Ct)]

F_I[G(u) sin(uct)] = 
eiuct - e-iuct e_iUx

uc au

O0

=

1__ j" G(u) (e_iU(x_ct)_ e_iU(x+ct))du

4~ iuc

Since the integral definition of the inverse transform is:

then integrating this again results in the following relationship:
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0 --~
Using this form, ~e two integrals in the inverse transform of G(u)/cu become:

.o x- ct o.

zr~c’l ~G(ule-iu(x-et)du 1 ~ ~c
G(u)

~ .’:-- = -- g(~) d~l du
lU C " IU

x+ct1 ~G(U)e_iU(x+et)d u a j g(rl)d.q+2~Gi~du

~c i’~- -- -~
°

--00 0
Finally, adding the two expressions, one obtains:

x+ct

F-l[ G(u) sin(uct)] 
uc "~c ~ g(rl)drl

1

x-ct

The total solution y(x,t) is recovered by adding the two parts:

x+Ct

y(x,t)=~[f(x+ct)+f(x-ct)]+~c ~ g0q)d~l

x-ct

The solution given above is the well-known solution for wave propagation in an infinite
one-dimensional medium.

Example 7.14 Heat Flow in an Infinite Rod

Obtain the temperature in a given infinite rod, with a given initial temperature
distribution. Let T = T(x,t), then the temperature T satisfies the system:

32T 1 ~T=---- -oo< x < oo t> 0
~ K 3t

T(x,0÷) = f(x)
Applying the complex Fourier transform on the space variable x, the differential

equation and the initial condition are transformed to:

_u2T, = 1 dT*
K dt

T*(x,0+) = F(x)

where T*(u, 0 is the transform of T(x, t). The solution to the first order equation 
given by eq. (1.9):

T* (u, t) = C -u2Kt

which, upon satsfacfion of the initial condition, results in the final transformed solution:

T* (u, t) = F(u) -u2Kt
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The inversion of the solution can be written in terms of convolution integrals.
Starting with the inverse of the exponential term:

OO

F_l[e_u~Kt]
1

f e_U~Kte_iUx
1f _u2Kt

= du =--. e cos(ux) du 

--oo 0

_ 1 e-X~/ (4Kt)

---~-~
Thus, using the convolution theorem in eq. (7.57), one obtains:

T(x, t) F(u)e-U~Kte-iux du = f(x - {)e-~/(4Kt) d~

7.19 Operational Calculus with Multiple Fourier Transform

Multiple Fourier transforms were discussed in Section 7.5, and given in eq. (7.5).
Let:

f = f(x,y) _~o < x < oo _oo < y < oo

be an absolutely integrable function, then define:

Fxy[f(x,y)] = F(u,v)= f f f(x,y)ei(Ux+vY)dxdy
--OO --oo

l ~ ~ F(u,v)e_i(ux+vy)dudv

f(x, y) = 4~:2

7.19.1 Multiple Transform of Partial Derivatives

The multiple transform of partial derivatives is defined as follows:

y I~)~x~fm ] = (-iu)n (-iv)m v)F x .~

Fxy[V2f]=~ Foq2f oq2fl= (-iu)2 F(u, v) + (-iv)2 F(u, ~xyLax--~ + ~y2 j
= -(u2 + v2)F(u, 

r~xyI~Z4fl~, - I-o4f _ ~4f ~4f-~ ~=rxy/-~-~-+2~+-C~-|=(u + v2) 2F(u,v)

LOX ox oy oy /

(7.62)

(7.63)

(7.64)
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7.19.2 Convolution Theorem

The convolution theorem for multiple transforms can be treated in the sanae manner
as single transforms. Let F(u,v) and G(u,v) be the Fourier multiple transform of 
functions f(x,y) and g(x,y), respectively. Then:

~ } } F(u,v)G(u,v)e-i (u x+~)dudv
4g2

= 4~-~ }~ { F(u, v) {{ }~, g(~,rl)ei(U~+v~l) d~ e-i(ux+vy) dudv

"~ ~ rl)f4~_~ } } -i[u(x- ) +v(y-rl)ldudv t ~drI

: ~ ~ g(~,rl)f(x-~,Y-rl)d~d~l (7.65)

Example 7.15 Wave Propagation in Infinite Plates

A free, infinite plate is induced to vibration by initially displacing it from
equilibrium, and releasing it from rest. Let w = w(x,y,t), then the equation of motion and
the initial conditions are:

32w
V4w+ 4 =0 Ixl<oo lyl<°° t>0

where 1~4 = ph/D, and

w(x,y,0÷) = f(x,y) ~-(x,y,0 ÷) =0

Applying the multiple Fourier transforms on the space variables x and y:

Fx [O2w] d2W
y[ dt2

where:

W(u,v,t)= ~ } w(x,y,t)ei(Ux+vY)dxdy

The equation of motion and the initial condition transform to the following system:

(u2 + va)2w +~4 daW-- 0
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W(u,v,O÷) = fix,y)
~t (u’v’O÷) =

0

The solution for the transform W becomes:

sin( u2 + v2 t) cos( u2 + v2 t)W:A
)+B )

which results in the following solution upon satisfaction of the two initial conditions:

. (u 2 +v 2 "w:

Since cos((u2 + v)-)t/j32) is not absolutely integrable, then one cannot obtain its

multiple complex inverse readily. This can be rectified by adding a diminishingly small
damping by defining G(u) as:

G(u) = e-eU2eiau~ ~ > 

which reverts to the function exp(iauz) when ~ --> 0. The inverse transform of G(u) 

defined by:

g(x)=~l I e_(e_ia)u2e_iUXdu= lSe_(e_ia)U2cos(ux)du-

0

1 ~ /(4(e-ia))= e

Taking the limit ~ --> 0 in the integral, one can readily obtain the inverse:

1 1 x2 x2

~ I c°s(au2)e-iUXdu= 8---~aa[C°S(~-a)+Sin(~a)]

1 1 x 2 . x2

2---~ I sin (au2 ) e-iUXdu = ~ [cos (-~a) - sin (-~a)]

In a similar manner, one can use the limiting process on the double integral where one
defines G(u,v) as:

G(u,v) = e-~(u~+V~)eia(u2+v~) 

then:

1 I I e-e(u2+V2,eia(u2+~,2,e-i(ux+vY, dudvg(x, y) = 

-i e_i(x~+y2)/4a
as I~---> 0

4ha

Hence:

(7.66)
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’~ ’~
1 sin/X2+y2/

1 f j" qos[a(u2 +v2)] e_i(ux+vy ) dudv: ~ [~

4g2

1 f f sin[a(u2+v2)]e_i(ux+vY)dud v 4~a [. 4a J

4:g2 =

Once the inverse transform of cos((u2 + v2)t/~3~) is found, one then substitutes this

into the convolution theorem, eq. (7.65), giving the final solution:

w(x,y,t)=-~ ~ f f(x-{,y-rl)sin ~{2 n2. d~dn

(7.67)

7.20 Operational Calculus with Hankel Transform

The Hankel transform of order zero was discussed in Section 7.6 and was defined in
eq. (7.6) and Hankel transform of order v was discussed in Section 7.7 and was given 

eq. (7.10).
Define the Hankel transform of order v as:

OO

Hv[f(r)] = Fv(O) =- f r f(r) Jv(rO)dr v > _1 (7.68)
2

0

7.20.1 Hankel Transform of Derivatives
OO

f S-~rf [°° - ~ f(r) ~r (r Jv(rl3)) Hv[-~rf] = Jv(rp)r dr = f(r)Jv(rp)r0
0 0

Using the identity, see equation 3.13:

d~r (r Jv(r9)) = Jv(qg) = 9rJv_l(r9) (v- 1)Jv(r9)
dJv(r9)

dr

then the integral becomes:

-f f(r)[gr Jv-l(rl3) - (v v (rl~)] dr = - 9Fv-1(13) + (v - 1)f f (r)Jv 

0 0

Using the identity given in eq. (3.16), the last equation becomes:
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]-pFv_l(p) + r f(r)Jv+l(rp)dr + r f(r)Jv_l(rp)dr

0

v-1
= -p Fv_l(p) + ~ P [Fv+l (P) + Fv_l( p)

= - ~v [(v + 1)Fv_l(p) - (v - 1)Fv+l 

Finally, the Hankel transform of the first derivative becomes:

Hv (~rf) = ~v [(v- 1)Fv+1 (p) - (v + l)Fv_1 (p)] (7.69)

provided that:

lim rV+lf(r) --> 0 and lira 4~’f(r) --> 
r .-.> 0 r ..->~

Similarly, using eq. (7.69):

p2 fv+l _

_02fv+l .. v () v-1
- ~-l~-2-~,-v_210)- 2 v---~_l v p+~+-i-+lFv+2(p)y (7.70)

provided that:

lira rV+lf’(r) --> 0 and lira ~f~ f’(r) --> 
r --->0 r --->~

as well as the limit requirements on f(r) in eq. (7.69).
The transform of the two dimensional Laplacian in cylindrical coordinates defined as:

V2f d2f ~ 1 df with f=fir)= ~---"2- rdr

can be obtained as follows:

Hv(V2f)= rldr~+
Jv(rp)dr=;ort, ar,/

= r Jv(rP) .’ dr - rdf dJv(rP) 

0

=-rf(r Jv(rp) + f(r) r dr
0

0
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where Bessel’s equation in eq. (3.161) was used, and provided that:

lim (-rv+2 + vrV)f(r) ---> lim ~ f(r) --> 
r~O

lim rV+lf’(r) --> lim 4~ f’(r) --> 
r-->O

Thus, the Hankel transform of order v of the vt~ Laplacian becomes:

h,d2f 1 df v2

vt~-~-÷ r dr r 2 f)=-p2Hv(f(r))=-p2Fv(p) (7.71)

and for v = 0, the Hankel transform of order zero of the axisymmetric Laplacian becomes:

d2f 1 df 2
Ho(~-+ ~-~-).= -p Fo(p) (7.72)

7.20.2 Convolution Theorem

It can be shown that there is no closed form convolution theorem for the Hankel
transforms. Let Fv (p) and v (p) be the Hankel transform of order voff(r ) andg(r)

respectively. Then:

i Fv(P) Gv(P) Jv(rP) P dP = iFv(p)[i g(rl) Jv (Tip) ~1 drl} 

= ~)g(rl) Fv(P)Jv(rp)Jv(rlp) 

The inner integral contains a product ofJv (rp) Jv (rip), which cannot be written in 

additive form in a simple manner.

7.20.3 Parseval Formula

Let Fv (p) and v (p) be the Hankel transforms of order vofthefunctions f(r)

g(r), respectively, then:

~Fv(p)Gv(p)pdp= ~Fv(p) g(r)Jv(rp)rdr 

0 0 [0

= ~)g(r) Fv(P)Jv(r9) pdp rdr=0 g(r)f(r) (7.73)



INTEGRAL TRANSFORMS 441

Also, for f(r) -- g(r) results in a Parsveal Formula for Hankel transform:

J Fv2(p)pdp= f2(r)rdr

0 0

Example 7.16 Axisyrametric Wave Propagation in an Infinite Membrane

A stretched infinite membrane is initially deformed such that the axisymmetric
displacement w(r,t) satisfies the following equation and initial conditions:

1 O2wV2w = c2 Ot2

w(r,0÷) = f(r)

r>_0 t>0

-~r (r,O÷) = g(r)

Since the problem is axisymmeuic, without dependence on the rotational angle O, a

Hankel transform of order zero is appropriate. Applying the Hankel transform of order
zero to the differential equation and initial conditions one obtains:

d2w 1 dw. 1 ~2w 1 d2WH0(V2w) = Ho(--~- + 7-~--) = -p2W(p,t) = ~-~-Ho(~-~-) 2 dt2

Ho (w(r, +)) =W(O,0+) = Fo(p)

Ho(~-t (r,0+)) = ~t (P,0+) = 

where:

W(p,t) = ~ r w(r,t)J0(rp)dr

0

Then, the equation of motion transforms to:

d2W 2 2-,
d--~-+p c w=0

whose solution, satisfying the two initial conditions becomes:

W(p, t) = 0 (p) cos (pct) +G0(P)sin(
pc

Since there is no convolution theorem, one must invert the total solution, which can
only be done if f(r) and g(r) are given explicitly, e.g., if the initial displacement f(r) 
given by:

a
f(r) = Wo 2

r2+

and the initial velocity g(r) = 0, then the transform (from transform tables) of 
becomes:
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~r
dr =

e-kPJo(rp)

0~r2+k2 P

Thus, the transform of the initial displacement field is given by:

a -a
Fo(p) = o - e pand Go(p) = 

P
and, the transform of the displacement w(r,t) is given by the expression:

a -aW(p,t) = 0 -e pcos(pct) = o a e-aPRe [e-ipct]
P P

Letting H(p,t) represent the complex function in W(p,t):

H(p, t) = o ae-P(a+ict)
P

then its inverse Hankel transform can be written in an integral form:

h(r, t) = 1 [H(p, t) ] = woa~ e-p(a+ict)J0 (rp) dp

0

Noting that the inversion of the Hankel transform of exp[kp]/p is given by:

i ekp 1
"-~- Jo(rp) P dP = ~r2 + 

then the inverse transform of H(p,t) becomes:

1
h(r, t) woa

4(a + ict) 2 + r2

and the solution can be obtained explicitly:

w(r,t) = Re[h(r,t)] = a [14r2 +a2 - c2t211/2
42R L ~’:~

where:

R=(r2 + a2 _ c2t2)2 + 4a2c2t2
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PROBLEMS

Section 7.14

1. Find the Laplace transform of the following functions using the various theorems in
Section 7.14 and without resorting to integrations:

(a) cos(at) (b) t sin (at)

(c) at cos(bt) (d) sin (at) sinh 

(e) n e-at (f) cos (at) sinh 

2. Obtain the Laplace transform of the following functions:

(a) f(t/a) (b) u f(t/a)

(c) d~t[e-atf(t)] (d) d~t[t2f(t)])

(e) te-atf(t) (f) t d2f
dt2

d [ at df
(g) n fit/a) (h) ~- e ~-]

(i) 4[t f(t)] (j) sinh (at) 

(k)
t t

~x f(x)dx (1) ~f(t- x)dx

0 0

3. Obtain the Laplace transform of the following periodic functions; where f(t+T) -- f(t)
and fl(t) represents the function defined over the first period:

(a) fl(t) 0 < t < T

(b) f(t) Isin (at)l

{+:

0<t<T/2
(c) fl(t)=_

W/2<t<T

(d) fl(t) = t (r~- T = r~

1 0<t<T/2
(e) fl(t) -

0 T/2<t<T

i

0_<t<T/4

(f) f~(t) T/4<t<3T/4

3T/4<t<T
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(g) Icos(tot)l

Obtain the inverse Laplace transform
theorems in Section 7.14:

of the following transforms by using the

1 a2
(a) (p-a)(p-b) (b) 

a3 2a3
(C) p2 (p2 2)   (d) (p2 +a2)2

2ap 4a3
(e) (p2+a2)2 (f) 

2ap2 2a3
(g) (p2+a2)2 (h) 4

Section 7.15

5. Obtain the solution to the following ordinary differential equations subject to the
stated initial conditions by the use of Laplace transform on y(t):

(a) y" + kZy = f(O y(O) = y’(O) = 

(b) y" - k2y = f(t) y(0) = y’(0) = 

(c) ytl,) _ a’y = 0 y(0) = 0 y’(0) 
y" (0) = A y"(0) 

(d) y¢i’) -a4y = f(0

(e) y" +6y" + 11y’+6y=f(0

(f) y" + 5y" +8y’+4y=f(0

(g) y(i~) + 4 y" + 6 y" + 4y" + y = 

(h) y" 2y" + y = f(

(i) y" + 4y" + 4y = A t 15(t-to)

(j) y" +y’-2y= 1-2t

(k) y" - 5y" + 6y = A 8(t-to)

y(0) = y’(0) = y" (0) = y"(0) 

y(0) = y’(0) = y" (0) 

y(0) = y’(0) = y" (0) 

y(0) = y’(0) = y" (0) = y"(0) 

y(0) = y’(0) 

y(0) = y’(0) = 0 o >0

y(0) = y’(0) = 

y(0) = y’(0) = B o >0

6. Obtain the solution to the following integro-differential equation subject to the stated
initial conditions by use of the Laplace transform on y(t):

t

3.5 y" + 2y = 2~y(x)dx+ A ~5(t-to) y(0) = y’(0) = o > 0(a)y,, +

0
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t

J y(x) cosh(t - x) dx (b)y" +

0
t

(c) y’- Jy(x) 2

0
t

(d) y" + k2y = f(t) jg(t-x)y(x)dx
0

t

(e) y" +3ay a2Jy(x)e-a(t-X)dx 8(0
0

t

(f) y" +5y + 4 ~ y(x) dx = 

0

t

(g) y" + 3y 2Jy(x)dx = A e

0

t

(h) y" +Jy(x)dx = 

0

t

(i) y" - ay + ~y(x)ea(t-X)dx 

0

y(O) = 

y(O) 1

y(O) = y’(O) 0

y(O) = 

y(0) = 

y(O)=B

y(O)=O

y(O) = 

t

(j) y" + 3y" + 3y + j’y(x)dx = y(O) = y’(O) 

0

Solve the following coupled ordinary differential equations subject to the stated initial
conditions by the use of Laplace transform, where x = x (t) and y = y (t):

(a) y" -a2x=U

x" + a2y = V

(b) y" + 2x" + y=O
x" +2y’+x=O

(c) y" - 3x" + x=O
x" -3y’+y=O

(d) x" +x + y" +2y = f(O
x’+ 2x + y" + y = g(t)

U and V are constants
x(0) = x’(0) = y(0) = y’(0) 

x(O) = y(O) 
x’(0) = y’(0) 

x(0) = 1 y(0) 
x’(O) = 

f(0) = g(0) 
x(0) = y(0) 
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(e) x" + y = g(0 x(0) = y(0) 
y" + x = f(t) x’(0) = y’(0) 

(0 x" + y = g(t) x(0) = y(0) 
y’+x=f(0

(g) y" + 2x + 3y" = A = constant x(0) = o
x" + 2y + 3x" = B = constant

y(O) = Yo
x’(O) = y’(O) 

8. The wave equation for a one-dimensional medium under a dislributod pulsed load is
given by:

~2Y - 1--~ ~2-~-Y + Ae-bx~i(t - to) b>0
t, to > 0~x-’~- c. ~t~

Oy (x,0)y(0,t) = 0 y(x,0) = 0 ~- 

Obtain the solution y(x, t) by use of the Laplace transform.

9. The following system obeys the diffusion equation with a time decaying source:

~)2u 1 ~u
~ = "~ ~- Qoe-bt x > 0 t > 0 a > 0 b > 0

u(0,t) = e-at u(x,0+) = 0 Q = constant

Obtain the solution u(x, t) by the use of the Laplace transform.

10. The wave equation for a semi-infinite rod under the influence of a point force is given
by:

~2y 1 ~2y
3x--~ = c---~ 3t-~-- - yoS(X - Xo)~5(t - to) t, to > 0

where:

y = y(x,t) 3Y ~ (x,0÷) = 0~---~-(0,t) = 0 y(x,0÷) = 0 at

and ~ is the Dirac delta function. Obtain the solution y(x,t) explicitly by use of the

Laplace transform.

11. The temperature distribution in a semi-infinite rod obeys the diffusion equation such
that:

~2T
_-:-l_~-~T-T-QoS(X-Xo)~(t-t o) x>0 t, to>0~x-~ = h Ot

where:

T= T(x,0 T(0,0 = 0 T(x,0 ÷) = 0

Obtain explicitly the temperature distribution in the rod by use of Laplace transform.



INTEGRAL TRANSFORMS 447

12. A finite string is excited to motion such that its deflection y(x,t) is governed by the
wave equation:

~2y 1 ~2y
0 < x < L t > 0 t-r

3y 3y (L,t)
3-~-Y(x,0") 

3--~ (0,t) =0 ~x at

Y(X,0÷) = Yo (x - _~)2

Obtain an explicit expression for the displacement y(x,t) by use of Laplace transform
on time.

13. The displacement y(x, t) in a semi-infinite rod is governed by:

02y 1 ~)2y
 x-r: c--rr x>O t>o

~Y (x,O÷) = -Vo y(x,O÷) = 0y (O,t) = Vot 

Obtain the solution y(x, t) explicitly by Laplace transform.

14. A finite rod is undergoing a displacement y(x, t) such that:

O2y 1 O2y 0<x<L t>0

y (0,t) = Yo H(t) y (L,t) = "Yo H(t)

%~Yt(x,0÷) y (x,0÷) =0 0

Obtain an expression for the displacement y (x,t) explicitly by Laplace transform.
Sketch the displacement y (L/4,t), using at least the first four terms in the solution,
in their order of the arrival times.

15. A stretched semi-infinite string is excited to vibration such that y = y(x,t):

02y 1 O2y Poe-bxs(t_to)
 --VT÷Voo

y (0,t) = Yo H(t) y ÷) = 0

where ~i is the Dirac delta function.

Laplace transforms.

x>0 t, to>0

Oy (x,0÷) = 

Ot
Obtain the solution y(x, t) explicitly by use 
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16. A semi-infinite rod is heated such that the temperature y = y(x, t) satisfies the
following system:

~2y_ 1 ¢3y

3x-’~- K ~t
x>0 t, to>0

y (0,t) = O 8(t -to) y( ÷) = TO

where 8 is the Dimc delta function.

explicitly by use of Laplace transforms.

Obtain the temperature disllibution y(x,0

17. A semi-infinite rod is heated such that:

~2T 1 ~T x>0 t>0

T= T(x,0 T(0,0 = 0 T(x,0 +) = Toe-bx

Obtain the solution T(x, t) explicitly, using the Laplace transform.

18. A stretched semi-infinite string is excited to motion such that:

y (x,0÷) = 0

y = y(x,t)

~---Y (x,0÷) = 0
~t

x>0 t>0

~(0, t) - ~/y (0,t) = 

where ~, is the spring constant.
Laplace transform.

19. Find the displacement y (x,t) explicitly by use of Laplace transforms:

32y_ 1 32y
>0 t>0

~- c2 ~}t2
x _ _

y (x,0+) = 0
3y (x,O÷) = 

y (0,t) -X-1 aot2
3t

Find the displacement, y (x,t) explicitly, using

20. Find the temperature distribution T(x, t) by use of Laplace transforms:

~2T 1 ~T Q ~i’t
3-~=~"~ "- o (-to) b>0 x_>0 t,to>0

OT
T(x,0÷) = 0 ~ (0, t) - b T(0, t) = o
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21. The temperature in a semi-infinite bar is governed by the following equation. Obtain
the solution by use of the Laplace transform.

32T 1 3T Qo e-at
 x-ffr =

x>O t>o

T(x,0÷) = 0 T(0,0 = O H(0

22. A finite bar, initially at rest and fixed at both ends, is induced to vibration such that
the displacement y(x,t) is governed by:

32y_ 1 32y ~

3-"~" - ~" 3"~- 8(x- x°)~5(t- t°) 0-< x’x°-< Lt’ t° 

(x’0÷) = ~t (x’0÷) = 0 y (0,t) = y (L,t) Y

Obtain the solution y(x,t) by use of Laplace transforms.

23. A finite bar, initially at rest, is induced to vibration such that the displacement y(x,t)
is governed by:

O2y 1 32y Fo .

~ : ~ ~ - -~- s~n(at)

y (x,0÷) = ~ (x,0÷) = 0
dt

O<x_<L t_>O

y (0,0 = y (L,t) 

Obtain the solution y(x,t) by use of Laplace transforms.

2zt. The temperature in a semi-infinite bar is governed by the following system.
the solution by use of the Laplace transform:

~ = - 8(t - to) x > 0 t,t o > 0

T(x,0÷) = 0 T(0, t) = T t .J’l < a
°~lo t>a

25. A semi-infinite stretched string is induced to vibration such that y -- y (x,t):

O2y _~12 32~y + po e_bX sin(at)

To

y (x,O÷) -- 0 -~t (x’O÷) = 0

Obtain the solution y(x,t) by use of Laplace transform.

x>O, t>O, b>O

y (0,t) = 

Obtain



CHAPTER 7 450

26. A semi-infinite rod is heated such that the temperature, T(x,t), satisfies:

~2T I ~T
--~.+Q x>O t>O

~’~" = K 3t

T (0,t) = o 8(t -to) T(x,0÷) = 0

where Q is a constant. Obtain the solution by use of the Laplace transform.

27. Find the displacement y(x, t) explicitly by use of Laplace transforms:

32y = 1 ~2y F° e-at
x > 0, t > 0, a > 0

~x 2 c2 ~t 2 AE

-~tY (x,0÷) = y (x,0÷) = y (0,t) = Yo cos (bt)0

28. The temperature, T(x,t), in a semi-infinite bar is governed by the following equation.
Obtain the solution by use of the Laplace transform:

O2T_ 1 ~T Qo~(t_to) x>0 t,to>0~x ~ K ~t k

T(x,0÷) = 0 ~ (0, x) = F t -at a >0
ox

29. A semi-infinite stretched string is induced to vibration such that the displacement,
y(x,t) satisfies:

~2y 1 ~2y
x>0 t>0 b>0

~x’~T = ~-~ ~t2

Y (x, 0÷) = Yo e-bX ~ (x, 0÷) = 0 y (0,t) = A H(t)
Ot

Obtain the soludon y(x,t) by use of the Laplace transform.

30. A semi-infinite rod is heated such that the temperature satisfies:

32T 1 3T + Qo sin(at) x > 
t > 0 a > 0

3x 2 K 3t

T = T(x,t) T(0,t) O t T (x ,0÷) = 0
Obtain the solution by use of the Laplace transform.

Section 7.16

31~ Do problem 8 by Fourier cosine Transform.

32. Do problem 9 by Fourier cosine Transform.

33. Do problem 11 by Fourier cosine Transform.

34. Do problem 14 by Fourier cosine Transform.

35. Do problem 15 by Fourier cosine Transform.
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36. Do problem

37. Do problem

38. Do problem

39. Do problem

40. Do problem

41. Do problem

42. Do problem

43. Do problem

44. Do problem

45. Do problem

Section 7.17

46. Do problem

47. Do problem

48. Do problem

49. Do problem

Section 7.18

50.

51.

16 by Fourier cosine Transform.

17 by Fourier cosine Transform.

19 by Fourier cosine Transform.

21 by Fourier cosine Transform.

24 by Fourier cosine Transform.

26 by Fourier cosine Transform.

26 by Fourier cosine Transform.

27 by Fourier cosine Transform.

29 by Fourier cosine Transform.

30 by Fourier cosine Transform.

10 by Fourier sine Transform.

18 by Fourier sine Transform.

20 by Fourier sine Transform.

28 by Fourier sine Transform.

Obtain the
complex Fourier transform:

~2y 1 ~2y . A e"b~xl H(t)

y (x,0÷) = 0 ~ (x,0÷) = 0
dt

response of an infinite vibrating bar under distributed load by use of

-~<x<~,, t>0, b>0

Obtain the response of an infinite string under distdbutexl loads by use of complex
Fourier transform:

O2y 1 O2y qo e.~Xlsin(cot) <x<~,, t>0, b>0
Ox2 ~’~ Ot2 ’1:o

y (x,O÷) = 0 ~ty (x,O÷) = 0
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52. Obtain the response of an infinite string subject to a point load by use of complex
Fourier transform:

~2y_ 1 ~:~y ~oo
~ - c-’2" ~t-’~" " 5 (x- o) sin ( ~0t). . oo <x < 00, t > 

y (x,0÷) = 0 ~ty (x,0÷) = 0

53. Obtain the temperature distribution, T(x,t), in an inf’mite rod, by use of complex
Fourier transform:

32T 1 ~T Qo e.b~xl -,,~ < x < .o, t > 0, b > 0
~-’~" = K 3t k

T(x,O*) = 

54. Obtain the temperature distribution, T(x,t), in an infinite rod, by use of complex
Fourier transform:

32T 1 3T Qo5(x.xo) sin(~ot) -~<x<,,o, 
~-’~" = K 3t k

T(x,0÷) = 0

55. Obtain the temperature distribution, T(x,t), in an infinite rod, by use of complex
Fourier transform:

~2T 1 ~T Qoe_t~xl6(t.to ) -o~<x<,,~, t>0, b>0

~-’~=K Ot k

T(x,O÷) = 0
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GREEN’S FUNCTIONS

8.1 Introduction

In this chapter, the solution of non-homogeneous ordinary and partial differential
equations is obtained by an integral technique known as Green’s function methOd. In
essence, the system’s response is sought for a point source, known as Green’s function,
so that the solution for a distributed source is obtained as an integral of this function over
the source strength region.

8.2 Green’s Function for Ordinary Differential Boundary
Value Problems

Consider the following ordinary linear boundary value problem:

{~(x)

a<x<b
(8.1)Ly=

x<a or x>b

Ui (Y) = ~’i i = 1, 2 ..... n (8.2)

where L is an nth order ordinary, linear, differential operator with non-constant
coefficients, given in (4.27) and i are t he non-homogeneous boundary conditions in

(4.35).
Define the Green’s function g(xl{):

L g(xl ) --- (8.3)
Ui(g) = 0 i -- 1, 2 ..... n (8.4)

where 5(x) is the Dirac delta function (Appendix D). The solution g(xlE) is then 

solution of the system due to a point source located at x = E, satisfying homogeneous

boundary conditions. The solution of (8.3- 8A) gives the Green’s function for the
problem. It should be noted that, in general, g(xlE) is not symmetric in (x,E). Rewriting

(8.1) and substituting (8.3) for the operator L:

b b b
Ly = f(x)= f( ~) 5(x- E)dE= I g(xlE)f(E)dE = L I g(xlE)

a a a

Hence, the particular solution of the system in (8.1) yp(X) is given 

453
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b

yp = ~ f(~) g(xl~) (8.5)
a

Substituting the particular solution yp in (8.5) in the boundary conditions, one finds that

they satisfy homogeneous conditions; since the Green’s function g(xl~) satisfies the same:

Ui(Yp(X))=U i f(~)g(x~)d~ = f(~)Ui(g(xl~))d~=0

Thus, the total solution for the boundary value problem posed in (8.1- 8.2) is:

y = Yh(X) + yp(X)

where Yh(X) is the homogeneous solution of the differential equations Ly = 0, and yp 

the particular solution that satisfies the non-homogeneous equation with homogeneous
boundary condition. It follows that the homogeneous solutions, with n independent
solutions {Yi(X)} satisfies the non-homogeneous boundary conditions (8.2).

Example $.1

Obtain the total soludon for the following system:

Ly=x2y"-2xy’+2y=l 1 < x < 2

y(1) = y’(2) = 

The homogeneous equation Ly=0 yields the following two independent solutions:

Yl(X) = 2  y2(x) = 

To obtain the Green’s function for this system, g(xl~) satisfies:

Lg(x]~) = 2 T-d2g(xl~) 2x dg(xl~)d---T-- +2g(x[~) = ~5(x-~)

To evaluate the Green’s function, let:

where:

L gh(x~) = 

L gp(xl~) = 8(x-~)
so that:

gh(xl~) = 2 + Bx

To obtain the particular solution, one needs to resort to the method of variation of the
parameters (section 1.7), i.e.:
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gp(Xl~) = vl(x)x2 + v2(x)x

so that the solution for a second order differential equation is given by (1.26) as:

i q2x-TlX2 ~(TI-~) IX2 X 1gp(Xl~)= ~-_’~ ~]~- drl= ~-f ~2’ H(x-~)

I

The total Green’s function becomes:

Ix x ]
g(xl~ )=Ax

2+Bx+ -~ ~2 H(x-~)

Satisfying the boundary condition on g(xl~) results in:

A=-B- 3L~2 ~3J

and the Green’s function for this problem is given by:

It should be noted that this Green’s function is not symmetric, i.e. g(xl~) ~ g(~lx). Using

the Green’s function, the particular solution yp(X) is:

2

= ~ g(x 1~)f(~)dE = ~(x2 -4xyp(X) +3)

1

Note that:

yp(1) = 0, and y~(2) 

Thus, the total solution becomes:

Y = Yh + Yp Yh = ClX2 + c2x

which upon satisfying the non-homogeneous boundary gives:

Yh = (10x - 2) /3

y(x) = (-x2 + 16x + 3) / 

8.3 Green’s Function for an Adjoint System

One can develop a Green’s function for the adjoint system to a given boundary value
problem. For the boundary value problem in (8. I- 8.2), there exists an adjoint differential
operator K given in (4.28) and the associated adjoint boundary condition Vi(Y) = 0 in

(4.36). Let the Green’s function for the adjoint system g*(x[~) satisfy:

K g*(x[~) = ~5(x-~) (8.6)
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and satisfy the adjoint boundary conditions:

Vi (g*(x It) ) = 0 (8.7)

The resulting adjoint Green’s function g*(xl~) is, in general, not symmetric in (x,~).

Multiplying (8.6) by yp(X) and (8.1) by g*(xl~) and after subtracting the two equations 

integrating over the range (a,b), one obtains:

b b

~(g*Lyp- ypKg*) dx = ~[g*(xl~ ) f(x)- yp(x) ~i(x- ~)]dx 

a a
The left-hand side of (8.8) vanishes due to the definition of an adjoint system (see section
4.12). The right-hand side then gives:

b

yp(X) = ’f(~) g*(~x) (8.9)

a

Thus, the particular solution can also be obtained as an integral over the source
distribution f(x) and the adjoint Green’s function g*(xl~).

Example 8.2

For the system given in Example 8.1, obtain the adjoint Green’s function g*(xl~).

The adjoint operator K:

K g’(xg)= x2g"" + 6xg" +6g* = ~5(x- ~)

and the adjoint boundary conditions become:

g*0]~) : 0 g*’(21~)+ 2g*(21~) 

Following a similar method of solution, one obtains the Green’s function g*(xl~) as:

g,(xl~) : ~(~2- 4~)(x.~_ + ¢~ ~z~ H(x-~

It should be noted lhat g*(xl~) is not symmelric in (×,~),

8.4 Symmetry of the Green’s Functions and Reciprocity

In general, both Green’s functions are not symmetric in (x,~). Howeve?r, the Green’s

function g(xl~) and its adjoint form g*(xl~) are related. Rewriting the two olrdinary

differential equations (8.3) and (8.6) 

L g(xl~) = 8(x-I) (8.3)

K g*(xlrl) = ~(x-rl) (8.6)

multiplying (8.3) by g*(xlrl) and (8.6) by g(xl~), subtracting and integrating the resulting

two equalities one obtains:
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b b ,

a a
The left-hand side vanishes and the fight-hand side gives:

g*C~lrl) = gCql~) (8.10)

This means that while the two Green’s functions are not symmelric, they are symmetric
with each other. This can be seen in Examples 8.1 and 8.2.

If the operator L is self-adjoint (see (4.34)), then L = K and ) = Vi(Y). This

means that g*(xl~) = g(xl~) and hence:

g(xl~) = g(~lx) (8.11)

which means that Green’s function is symmetric in (x,~). This symmetry is known 

the "Reciprocity" principle in physical systems. It indicates that the response of a system
at x due to a point source at ~ is equal to the response at ~ due to a point source at x.

Example 8.3

If one rewrites the operator in Example 8.1 into a self-adjoint form ~, (see section
4.11), one obtains:

d(1 dy~ 2 
~y = ~xx t’~-~)+’~y =’~’-47 1 <x <2

Note that the source function becomes f(x)=x-4. Defining ~(x]¢) as the Green’s function

for the self-adjoint operator ~:

d(1 d~ 2_

o 0 . .
Following the method used to find the Green’s function in.Examples 8.1 and 8.2 results
in:

Note that:

The particular solution is now given by:
2

yp(X) = ~(x~) ~-~d~
1

which is the same as in Example 8.1.
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8.5 Green’s Function for Equations with Constant
Coefficients

If the operator L is one with constant coefficients, one can show that:

gp(xl~) = gp(x-~)

This can be done by making the transformation, rI = x-G, so that:

Lx =

and

resulting in:

gp = gp(rl) or gp = gp(X--~)

(8.12)

One still has to add the homogeneous solution gh, so that the total Green’s function

satisfies the boundary condition. The resulting Green’s function then, would not be
dependent on x - ~.

Example 8.4

For static longitudinal deformation of a bar under a distributed force field:

d2u

~=f(x)=x
0 < x < L

u(0) = u(L) = 
To construct the Green’s function, let:

d2g 8(x- ~)

dx2

g(01~) = g(Ll~) = 

Since the equation is one with constant coefficients, then one can solve for g(xl0):

¯ ~=d2g 8(x)
dx2

To obtain the solution by direct integration:

x x
dg....E

= JS(x) dx = H(x), gp(x) = JH(x)dx dx
0 0

gp(xl~) = g(x- ~,)= (x-~) H(x- 

gh =ClX +C2, g(q~) = C2 

g(Ll~) = (L- ~) +CIL C1 =
L
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g(x I~): (x-~) I~(x- ~) + x 
L

L

u(x) = ~ g(x I ~) f(~)d~ 2 - L2)

8.6 Green’s Functions for Higher Ordered Sources

If the source field of a system is a distributed field of higher order than a simple
source, one can show that the Green’s function for such a system is obtainable from that
for a simple source. For example, if the Green’s function for a dipole source or a
mechanical couple is desired then:

Lgl(xl~)=~(x-~)= d~(x-~) (8.13)
dx

where $1(x-~) represents a positive unit couple or dipole, see section D.2, and g~(xl~) 

the Green’s function for a dipole/couple source. Starting with the definition of g(xl~) for

a point source:

L g(x~) = 8(x-~) (8.3)

and differentiating (8.3) once partially with {, one gets:

,~(x~:)-- ~(~-~1: ~(x-~)__~(x_~)~ . ~x
where the last equality is the identity (D.49). Thus:

3g xgl(xl~) ~--~([~) (8.14)

In a similar fashion, one can obtain the Green’s function for distributed source fields of
higher ordered sources (quadrupoles, octopoles, etc.):

L gN(xl¢) = ar~(x- ~) = (-1) N 0Na(x - ¢)
~xN

(8.15)

where t~N(x) is the N-th order Dirac delta function, see section D.3, then one can show

that:

gr~(xl~) = 3r~g(xl~) (8.16)

8.7 Green’s Function for Eigenvalue Problems

Consider a non-homogeneous eigenvalue problem obeying the Sturm-Liouiville
system of 2na order (see section 4.15), i.e.:
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--~-d (p dY/+(q + )~r)y : a < x < b (8.17)
dx\ dxJ

Ui(Y) = i = 1, 2 (8.18)

where p(x), q(x) and r(x) are defined for a positive-definite system and the boundary
conditions in (8.18) are any pair allowed in this system and detailed in section 4.15.
Since the operator is self-adjoint, the resulting Green’s function is symmetric in (x,~).

The Green’s function depends on (x,~) and the parameter )~. Thus g = g(xl~,~.) satisfies

the following:

~x (p d~g)+ (q + )~r)g = 6(x (8.19)

Ui(g) = i = 1, 2 (8.20)

The total solution for the system (8.17- 8.18) then becomes:

b
y(x) = f( ~) g(x[~,~,)d~ (8.21)

a

Example 8.5 Green’s function for the vibration of a finite string

Consider the forced vibration of a stretched string of length L under a distributed time
harmonic source f(x). The equation of motion for the string is:

~2 f(x)d2y +--~-y =
O<x<L

dx2 TO

y(0) -- y(L) = 

where m is the frequency of the source field, TO is the tension in the string and c is the

sound speed, see section 4.10.
The Green’s function satisfies:

d2g + k2g =~i(x-~) 0 < x, ~ < 

dx2

g(Olg,k) = g(Llg,k) = 

where:

k=

The method is used to obtain the homogeneous and particular parts of the Green’s
function.

g = gh + gp

gh = A sin (kx) + B cos (kx)

gp = Vl(X) sin (kx) + v2(x) cos 
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The particular solution of g becomes, using the results of the solution of problem 7(a) 
Chapter 1:

g = A sin (kx) + B cos (kx) + ~ sin(k(x- ~)) 

satisfying both boundary conditions:
g(01~,k) = 0 g(Ll~,k) 

results in:
1

ksin(kL)

This is a closed form Green’s function. Note that if sin (kL) = 0 or n =n~L, the
Green’s function becomes unbounded. These are the resonance frequencies of the stretched
string.

In general, one can do the same for the general eigenvalue problems in section 4.13.
Let the non-homogeneous eigenvalue Noblem be defined as in section 4.13 as:

L y + XM y = f(x) a < x< b (8.22)

Ui(Y) ; i -- 1, 2 .....
where L is 2nt~ and M is 2mt~ self-adjolnt ordinary differential operators, with n > m.
Define Green’s function to satisfy the following equation and boundary conditions:

Lg ÷ XMg ~ ~(x - ~) (8.~3)

The solution for the Green’s function above is obtainable in a closed form. One can
also derive the Green’s function in terms of the eigenfunction of the system defined by
(8.22). Let the eigenfunction ~(x) and eigenvalue ~,~ be the solution 

Ui(~) = i -- 1, 2 ..... 2n

Since L and M are self-adjoint, the eigenfunctions are orthogonal, with the orthogonality
defined in (4.45). Expanding the Green’s function in a series of the eigenfunctions:

then the expansion constants Etare given by (4.73) as:

b
1

- ~5(x - ¢)~(x) dx = (8.25)Et = (k- kt)N t (X- Xt)Nt
a

where Nt is the normalization constant (4.45). The resulting Green’s function becomes:
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g(~’ ~): ~be(~)~t(x) (8.26)

It should be noted that the Green’s function in (8.26) is a symmetric function in (x,~).
The total solution is in the form of an infinite series resulting from the substitution of
(8.26) in the integral (8.21).

Example 8.6 Green’s function for the vibration of a finite string

Following Example 8.5, one can obtain the Green’s function for the stretched string
using eigenfunction expansion. Starting with the homogeneous equation:

u" +~u= 0

u(O) = u(L) = 

one can show that the eigenfunctions and eigenvalues are:

d~n(X) = sin(nrtx / L) n = 1, 2 ....

~’n = n2 n2/L2 n = 1, 2, ...

The Green’s function then becomes:

2 sin (nn x]L)sin (nn ~L)

n=l

8.8 Green’s Function for Semi-infinite One-Dimensional Media

The Green’s function for semi-infinite media cannot be obtained through the methods
outlined in the previous sections. Essentially, the dependent variables y(x) must 
absolutely integrable over the semi-infinite region. Furthermore, boundary, value
problems in a semi-infinite region have boundary conditions on one end only. In such
problems, use of integral transforms such as Fourier transforms becomes necessary.
There is no general method of solution, as each problem requires the use of a specific
transform tailored for that problem.

Example 8.7 Green’s function for the longitudinal vibration of a semi-infinite bar

Obtain the response of a semi-infinite bar vibrating in longitudinal mode. The bar is
excited to vibration by a distributed harmonic force f(x)e-i°~t, where f(x) is bounded and

absolutely integrable. The longitudinal displacement of the bar y(x)e"imt obeys the
following equation (see section 4.3):

~ f(x)daY - k2y = -’~
x > 0- dx2

y(O):O 2:017¢2  C:~
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where A is the cross-sectional area and E is the Young’s modulus. The Green’s function
then satisfies the following system:

dx2d2g k2g = ~5(x - ~), g(01~) 

The Dirichlet boundary condition at x=0 requires the use of Fourier sine transform, as it
requires even-derivative boundary conditions, see section 7.16. Applying the Fourier sine
transform on the differential equation on the Green’s function, eq. (7.50):

u2~(U) - k2~ + ug(0) = f ~(x - ~)sin (ux) dx = sin 

0

where ~(u) is the Fourier sine transform of g(xl~) and u is the transform variable.

The transform of g(x) is obtained from above as:

sin (u~)
g(U) = U2 _ 

The inverse Fouder sine transform of ~(u) is thus given by:

sin(u~) sin (ux)

0

In the inverse transformation, care must be taken to insure that waves propagate outward
in the farfield and no waves are reflected from the farfield, i.e. no incoming waves in the
farfield. To insure this, one would assume that the medium has material absorption that
would insure that outgoing waves decay and hence no incoming (i.e. reflected) waves
could possibly originate from the farfield. This can be accomplished by making the
material constant complex. Letting the Young’s modulus become complex:

E* = E(1- irl) I << 1

then:

= l-~-~- = c(1- i n/2)C*

so that:

k* o) _- k(1 + i n/2)="7
c

is a complex number.
Rewriting the inverse transform with complex k* results in:

co (u(x- cos(o(x
U2 _ k*2

0

The integrals can be evaluated using integration in the complex plane. The first integral
becomes:
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f cos(u(x+~)) du cos( u(x+~)) du
.[ U2 _’-"--k*’~

= "~
U2 _ k.2

1"’1" eiu(x+~) 17 e-iu(x+~)
= -- J du +~-j du

4- u2 - k.2 u2 - k.2

To evaluate the first integral, one can close the real axis path with a semi-circular contour
of radius R in upper-half plane. Using the residue theorem for the simple pole at u = k*:

’~f f 2in eiu(x+~) I eik’(x+~)

j + j =2inr(k*): 4 "~u ’1 = 4 k*
-00 CR lu = k*

The integral on CR vanishes as the radius R --> ~0. Similarly, the second integral can be

evaluated by closing the real axis with a semi-circular contour of radius R in the lower-
half plane.

~ ~ 2in r(-k’) = in e-iu (x+~)+ = -’~- 2 2u
k*--** CR u=

The sum of the two integrals then becomes:

ix eik’(x+[)

2 k*

The second integral can be evaluated by similar methods:

~’(x+~)ix e

4 k*

COSU(X- ~) 1 ~ COSU(X- ~) 1 iu (x-~)+ e-i u(x-~ )
= duu2_k, 2 du=~ u2_k, 2 ~" u2_k,2

Again, these integrals will be evaluated by closing them in the complex plane. However,
since the sign of x - ~ could change depending on x > ~ or x < ~, it also would change

whether one closes the contours in the upper or lower half-planes of the complex u-plane.

,,.For x > ~_

Since x - ~ > 0, then one can use the results of the first integral, giving the

integral as:

¯ n eik’(x-~)
1

2 k*

For x < ~_

Since ~ - x > 0, then rewrite the integral as:

~f eiu(x-{) ~ e-iU({-x)
du= J ~ duu2_k,2
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resulting in the integral as:

in eik’(~-x)
2 k*

Finally, assembling the two integrals, one obtains the Green’s function for x > { or

x < {. Letting ~l ---> 0, k* --> k, results in the final solution for g(xl{):

[i [eik(~+x) eik(~-x)]=_e~.~sin(kx)
x<~

_~’L -g(x 19)- | i Feik(~+x) eik(x-~)l ikx

[~" k -J = - T sin (k~) x > 

Note that the Green’s function g(xl~) -i~t represents only outgoing waves in the farfield,

x > ~ but has a standing wave for 0 < x < ~. The response of the bar to a distributed load

is the integral of the Green’s function convolved with the source term, i.e.:

y(x): f g,xlL AE d~ = + ._ e~’Xff(~)sin(k~)d~ + sin(kx) ik~ f (~)d~

0 Av~[ 0 x

8.9 Green’s Function for Infinite One-Dimensional Media

For infinite media, one must apply Fourier Complex transform. In this case, the
dependent variable and all its derivatives up to (2n-l) must decay at some rate.
Furthermore, the source distribution must be absolutely integrable.

Example 8.8 Green’s function for the vibration in an infinite string

Obtain the displacement field of an infinite vibrating stretched string undergoing
forced vibration due to a distributed time-harmonic load f(x) -i°x. Since the string i s
infinite in extent, there are no boundary conditions to satisfy. For this problem, Fourier
Complex transform is an ideal transform. The equation of motion of the string (section
4.2) is given as:

f(x)d2y
k2y=~ -oo<x<oo

dx2 TO

The Green’s function satisfies the differential equation:

-
d2~g - k2g : ~(x - ~)
dx2

Applying the Fourier Complex transform (see section 7.17) to the differential equation 
the independent variable x, one obtains:

u2g* _ k2g* = e-iU~

where:
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solving for g*, one gets:

e -iu~g*(u) = u2 _ 

The Green’s function is evaluated from the inverse transform of g*(u):

1 ~ ¯ 1 ~eiu (x -~)
g(xl~) = ~-~ g*(u)e+mX du = 2"- ~" u2 _k~ du

Depending on whether x > ~ or x < ~, one may close the path on the real axis with a

circular contour in the upper/lower half planes of the complex u-plane. In order to avoid
the creation of reflected waves from the farfield region x --> +,,0, one must again add a

limiting absorption tothe material constants, as was done in Example 8.7. Thus, the
Green’s function written for k = k* becomes:

1 ~ eiu(x-~)g(xl~) = ~’n- u2 - k du

For x < ~, closure is made in the lower-half plane, resulting in Green’s function, after

making k* --> k, as:

g(xl ) x <
2k

For x > ~, the closure is performed in the upper-half plane, resulting in a Green’s

function of:

g(xl~)~---" " -~) x= 2keik(x > ~

The Green’s function for the different regions can be written in one compact form as:

g(xl ):
2k

Note that the Green’s function represents outgoing waves in the farfield x -->

The displacement field due to a source distribution f(x) as:

1 i
e_ik~ eik¢ f(~)y(x) = ~ g(x]~ d~ = -- eikx f(~) d~ + -ikx

2r~kTo

8.10 Green’s Function for Partial Differential Equations

The use of Green’s function for partial differential equations parallels the treatment given
to ordinary differential equations. There are, however, some differences that need to be
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clarified. The first being the definition of a self-adjoint operator. Let the linear partial
differential operator L be defined as (see section D.7):

LOp(x)= ~ ak(x) k Op(x) (8.27)

Ikl <- n
where x is an mth dimensional independent variable and n is the highest order partial
derivative of the operator L. The adjoint operator K then is defined as:

KOp(x)= 2 (--1)lkl0k[ak(X)Op(X)] (8.28)

Ikl-< n

If K = L, then L is self-adjoint.

Example 8.9

The Laplacian operator V2 in cartesian coordinates in three dimensions:

V2~l/ 02x 0y2 + 0z--~--

and is self-adjoint, since ak are constants. The Laplacian operator in cylindrical

coordinates (r,0,z) written as:

L ~t = V2~t = --q-7~ + --- + ~_-X-~- +--
Dr r Dr az r 2 202

is not self-adjoint, since the adjoint operator K is given by:

K~= 02~ 10~ 1 02~ 10r2 r Dr I- r-T ~l/+ Oz-’--~- + r2 202

and is not equal to L.
However, if one modifies L such that:

021~/ . 3~ r 02/1t + 1
gtl/=rL/l~=ro--~+-~-r + ~ r 202

then K = L, i.e. the operator ~is self-adjoint.
For the general partial differential equation, one can show that:

v(x) L u(x) - u(x) K v(x) = V-~(u, (8.29)

where V is the gradient in n-dimensional Space defined by:
V = ~1 ~X1 

+ ~2 ~ + "’" + ~n OXn
(8.30)

P is a hi-linear form of u and v, and ~j are the unit base vectors. Integrating the two

sides of (8.29) over the volume:

IR(VLu-uKv)dX=IRV.~dX=Is ~.~dS (8.31)

where fi is the outward normal to the surface enclosing the region R. The last integral
transformation is the divergence theorem stated as:
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S

~RV.fi dx =yS fi.~dS (8.32)

where fi is a vector function and V. is the divergence of a vector. In this integral dx

is a volume element in the region R (shaded region), fi is a unit outward normal vector,
defined positive away from the region R, and S is the sum of all the surfaces enclosing
the region R, see Figure 8.1.

Example 8.10

For the Laplacian in cylindrical coordinates in three dimensional space given in
Example 8.9:

vLu-uKv=V. -u-ffr+VNJer+ TO0 r~-’~e°+L Oz

= v)

8.11 Green’s Identities for the Laplacian Operator

In this section, the derivation of the transformation given foi- the integrals in (8.31)
are performed for the Laplacian operator. Since the Laplacian operator is self-adjoint in
cartesian coordinates, then L = -V2 = K.

If one lets ~ = vVu, in (8.32) where v and u are scalar functions and V is the

gradient, then:

V. ~ = vVEu + (Vu). (Vv) (8.33)

Similarly, if one lets ~ = uVv, in (8.32) then one gets:

V. ~ = uVEv + (Vu)- (Vv) (8.34)

subtraction of the two identities (8.33) and (8.34) results in a new identity:

uVZv- vV2u = v,. (uVv- vVu) = v. (8.35)

where:
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is a bi-linear function of u and v. Integrating eq. (8.35) over the volume 

~R (vV2u-u VT-v) dx= ~R V. ~ dx= ~Sft. ~ dS
(8.37)

where the last integral resulted from the use of the divergence theorem.
The last integral can be simplified to:

¯ Is ~(’~vu- ~Vv)ds :.}’s ~ ~u ~v~
resulting in the identity:

l,~g-ug)dS (8.38)
The terms in the integral over the surface S represent boundary conditions.

8.12 Green’s Identity for the Helmholtz Operator

The Helmholtz equation has an operator given as:

L = -V2 - k

so that it is also self-adjoint, since the Laplacian is a self-adjoint operator. Substituting
for V2 in eq. (8.35) by L above then:

v(-L - k)u - u(-L - k)v = uLv - vLu = 

The Green’s identity for this operator becomes:

~R (uLv- vLu) dx = ~S (u~- v~UnU) (8.39)

The terms in the integral over the surface S represent boundary conditions.

8.13 Green’s Identity for Bi-Laplacian Operator

The bi-Laplacian operator V4 is defined as:

L = -V4 = -V2V2

which is a self-adjoint operator and shows up in the theory of elastic plates. In order to
use the results for the Green’s identity for the Laplacian, let V2u = U and V~v = V, then:

uLv - vLu = v~74u - u~74v = vV2U - uV2V

--[V.(vVU)- Vv. vu]- [V.(uVV)- Vu. 

Rewriting the terms in the second bracketed quantities:
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_- 4]-
then the Green’s identity for the bi-Laplacian can be written as:

VV4U - uvav = V" {VV(V2U) - UV(V2V) + VU(V2V) - VV(V2U)} (8.40)

Integratiffg eq. (8.40) over the volume 

fR (VV4u-uV4v) dX= fR V’~dX = fs fi’~dS

O(V2u) uO(V2V)+V2vOU-v2uOV]ds
(8.41)

The te~s in the integral over the surface S represent boundary conditions.
Similarly, if one has a bi-Laplacian Helmholtz type operator, i.e. if L = - V~ + ~,

then:

=~s[ ~n -"~*v v~-v u~].~ (8.4~)

8.14 Green’s Identity for the Diffusion Operator

For the diffusion equation, the operator and its adjoint are defined as:

~) ~ KV2
(8.43)L = ~- - KV 2 and K = - ~- -

Thus, these operators give the following identity:

( o3U ~V) K(VV2U_DV2V)
vLu- uKv : ~v-~- + u -~-) 

= 3-~ uv - KV" (vVu - uVv) (8.44)

Here we are dealing in four dimensional space, i.e. (x,y,z and t). In this space one

defines a new gradient V as:

-" 0 g +~ (8.45)

where ~’ is the spatial gradient defined in (8.30) and ~t is a unit temporal base vector 

time, orthogonal to the spatifil unit base vectors. Using the new gradient, one can rewrite
(8.44) as:

vLu - uKv = V- P(u, v) (8.46)

where ~(u, v) is defined as:

~ = UV~t -- K(V~’U-- U~V) (8.47)
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Figure 8.2

Integrating the identity in (8.46), one obtains:

t

f f (vLu-uKv)dxdt = f~. P dS (8.48)

OR S

where ~ is a unit normal to surface ~ enclosing the region (R,t) in (x,y,z,t) space, 
Figure 8.2. The unit normal ~ to the surface ~ can be resolved into temporal and unit
spatial base vectors as:

~ = nt~t + fi

with fi being the unit normal to the surface S(x,y,z,t) enclosing the region R(x,y,z,t).
Note that ~ on the surface ~(x,y,z,t=0) is -~t and that on ~ (x,y,z,t) is +~t. 

terms in the surface integral g represent boundary and initial conditions.

8.15 Green’s Identity for the Wave Operator

The scalar wave equation operator can be defined as:

3 2 c2V2
L= 3tT

which is a self-adjoint operator, so that the identity can be developed by:

IV 02U _ U 32V1_ c2(vV2u_ uV2v)vLu- uLv = k 0t2 3t2 J

ou
=ssLV¥-u

with ~(u, v) defined as:

(8.49)

(8.50)
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and the gradient V given in (8.45). Integrating the identity (8.50) over the spatial region
R and time, one obtains:

t t

~ f(vLu-uLv)dx dt ~f ~’~’dxdt=j~’~d~   (8.52)

OR OR S

The terms in the surface integral over ~ has both initial and boundary conditions.

8.16 Green’s Function for Unbounded Media--Fundamental
Solution

Consider the following system on the independent variable u(x):

Lu(x) = f(x) x in Rn (8.53)

where L is an operator in n-dimensional space and f(x) is the source term that 
absolutely integrable over the unbounded region Rn. Define the Green’s function g(x]~)

for the unbounded region, known as the Fundamental solution, and the Green’s function

g* (~) for the adjoint operator K to satisfy:

Lg(x[~): 6(x - (8.54)

K (8.55)
where g(xl~) and g*(xl~) must decay in the farfield at a prescribed manner. It should be

notedthatg* (~)= g(~x). Multiplying (8.53)by ) and (8.55)by u(x) and

integrating over the unbounded region, one obtains:
~Rn (uKg*-g’Lu)dx : n [u(x) 6( x-~)- g* (x~) fix

= u(~)- fR g~ (~) f(x)dx
n

The integral on the left-hand side can be written as a surface integral, see (8.31), over the
surface Sn. The surface Sn of an unbounded medium could be taken as a large spherical

surface with a radius R --> ~. The integrand then must decay with R at a rate that would
make the integral vanish. The condition on g(xl~) would also require that it decays at a
prescribed rate as R --~ ~. Thus, if the left-hand side of(8.31) vanishes, then:

u(~): ~Rn g*(x[~) f(x) dx = ~Rn g(~Jx)f(x)dx

Changing x by ~ and vice versa, one can write the solution for u(x) as:

u(x):-alan g(r~) f(~)d~ (8.56)
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If the operator L is self-adjoint, then the Green’s function is symmetric, i.e., g(xl~) 

g(~lx). Furthermore, if the operator L is one with constant coefficients, then:

g(x~) = g(x- (8.57)

8.17 Fundamental Solution for the Laplacian

Consider the Poisson equation in cartesian coordinates:

-V2u = f(x) x in n  (8.58)

where the Laplacian is a self-adjoint operator with constant coefficients. The solution
u(x) can be obtained as an integral over the Green’s function and the source f(x) given 
(8.56).

8.17.1 Three dimensional space

Define the Fundamental solution g(xl~) to satisfy:

-V2g(xl~) = 8(x - ~) = 1- ~1)8(x2" ~2) ~(x3" ~3)

Since the Laplacian has constant coefficients, then one solves for the Green’s function
with ~ = 0, i.e. the point source is transferred to the origin:

_~72g = ~(Xl) i~(x2) ~(x3) (8.59)

Since the source is at the origin, one can transform the cartesian coordinates to spherical
coordinates for a spherically symmetric source, with the point source defined in spherical
coordinates as:

= 4~~ (8.60)

To ascertain the rate of decay of g(r) with r, integrate (8.59) over Rn, resulting

~Rn V2g dx = ~Sn ~ngon Snds=-I
(8.61)

g depends on r only, then ~--~on S, the spherical surface whose radius is R,Since

becomes -~rg (R) which is a constant in the farfield R since g = g(r) only. last

integral in (8.61) then becomes:

d._.~.g. 4nR2 = _ I

dg _ 1
for R >> 1

dR - 4nR~"
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1
g(R) for R >> 1 (8.<62)

4/~R

This means that the Green’s function for an unbounded three dimensional region
must decay as I/R. Returning to eq. (8.60), one can integrate the differential equation

directly by writing the Laplacian in spherical coordinates in r only, i.e.:

r2 dr
= 4~1.2 (8.63)

Direct integration results in:

g(r) = ~ +C

since g(R) for R >> 1 must decay as l/R, then -- 0, giving:

1 1

+4+ 4]
I Ig(x-~)- 4,~[(Xl _~1)2 +(x2_~2)2 +(x3_F~3)2]1/2 = 4~[x-~ (8.64)

8.17.2 Two dimensional space

In two dimensional space, the Green’s function satisfies:

-v2g(xlg) = 8(x- g) = 8(xl - ~1) ~i(x2 -~2) (8.6:5)

As the two dimensional Laplacian has constant coefficients, one can shift the source to
the origin:

-V2g = (5(Xl) (5(x2) 

Since the source is at the origin, then one can transform (8.66) to cylindrical coordinate 
two dimensional space and the Green’s function becomes g(r):

-V2g = - 1 ,d--- (r d-d~g / = 8(’-~) (8.67)
rork ur,~ 2rcr

Again, to define the behavior of g(r) as r --) oo, one can integrate (8.66) over 

unbounded region Rn:

fR V2gdx=/s ~-~n g dS-=-’~(R)’2nR=-I
n n on Sn

so that:

dg_ 1
dR - 2~R

or:.

1

g(R)_-- -~-~ logR for R >> 1

Integrating (8.67) directly, one obtains:

(8.68)
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g(r) = -~ log r + 

Again C must be neglected in order that g(r) behaves as in (8.68), giving:

g(r)=-~n log r =- 2-~log[x~ +x~]

g(x - ~) = - 2"-~ll°g[(xl -~1)2 +(x2 - ~2)2]1/2 = - 2"-~1 lo~x - ~ (8.69)

8.17.3 One dimensional space

For the one dimensional case, g satisfies:

d2g = 8(x-~)

dx2

Direct integration yields the fundamental solution of:

1
g(xl~) :- EIx- (8.70)

8.17.4 Development by construction

One can derive the Green’s function by construction, which is yet another method for
development of the Green’s function. First, enclose the source region at the origin by an
infinitesimal sphere Re of radius ~. Starting with the definition of Green’s function:

-V2g = ~5(x) x in Re

then, since the source region is confined to the origin:

V2g = 0 outside Re

Rewriting the Laplacian in terms of spherical coordinates, then:

1 d Ir2 dg1V2g = ~-~-[_ ~-j = 0 outside Re

By directly integrating the differential equation above, one obtains:

g=C~+c2
r

Since g decays as r --> 0% then C2 -- 0. Integrating the equation over the infinitesimal

sphere Re:

-~Re V2gdX=~R,~ ~5(x)dx=l

0g=-~Re V "Vg dx = -~Se ~-nnlonSeds

0g]
el= -~S~ ~rr = dS = e--2-- ~Se dS = 4nC,
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a awhere the normal derivative -- = q
On Or"

1
function g = ~.

4~r

1
= -- and the Green’sThe constant becomes C1 4g

8.17.5 Behavior for large R

The behavior of u(x) as R -~ o~ can be postulated from (8.38). The integration 

the surface of an infinitely large sphere of radius R must vanish. Thus:

fRn (uLg- gLu) dx = ~Sn(R _~ oo) (u ~ng - g ~-~) 

where fi is the unit outward normal and -- = --. For three dimensional space,
On OR

1 Og 1
g = ~-, andOn = R2 so that the surface integral above becomes:

L. [-u(R) 0u(R) 1lm /-~’~- + 4~R2 --) 
R-~L R OR

This requires that the function u and its derivative behave as:

u(R) + R d~RR)
1

Rp
p > 0 (8.71)

0g 1
-- _= -, so that the surface integral aboveFor two dimensional media, g = log r, On r

becomes:

Lim [u(R) + 0u_(R)-(logR)]2~R--)0
R ~ o~1_ R OR J

This requires that the function u and its derivative behave as:

u(R) + R log R 0_u~(_~R) 1

Rp
p > 0 (8.72)

8.18 Fundamental Solution for the Bi-Laplacian

Consider the bi-Laplacian in two dimensional space:

-V4g = 8(x - ~) x in Rn (8.73)

then one can again shift the source to the origin, since the bi-Laplacian has constant
coefficients.

-V4g = 8(x) = 8(Xl) 2) (8.74)

Rewriting this equation in two dimensional cylindrical coordinates:

[1 d f d .~-12-V4g = -(V2)2g = - L’~ ~rr ~r ~rJj g=

Direct integration of (8.75) results in:

(8.75)
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2
g = - ~ [log r - 1] + C1r2 log r + C2r2 + C3

Integrating equation (8.74) over Large circular area n with R>>1, oneobtains the

condition that as R -->

_= - ~ log R R >>V2g 1

This requires that all the arbitrary constants C1, C2 and C3 vanish, giving g as:

r2
g = ~--~ [1- logr] (8.76)

8.19 Fundamental Solution for the Helmholtz Operator

Consider the Helmholtz equation:

-V2u - ~u = f(x) x in n  (8.77)

where L = -V2 - ~, is a self-adjoint operator. The Green’s function satisfies the Helmholtz

equation:

-V2g - ~,g = ~i(x - ~) (8.78)

Since the operator has constant coefficients, then once again, the source could be
transformed to the origin. The solution for u(x) can be obtained as an integral over the
source term fix) and the Green’s function, as in (8.56).

8.19.1 Three dimensional space

To develop the Green’s function by construction, enclose the source at the origin by
an infinitesimal sphere Re, such that:

-V2g - kg = 0 outside Re

Replacing k by k2 and writing the equation in spherical coordinates one obtains a

homogeneous equation:

r-~ d It2 dgl+ k2g =0 outside Re~L ~J
which has the solution:

eikr e-ikr
g = CI --~ + C2 ~ (8.79)

r

with e-i°a assumed for the time dependence leading to the Helmholtz equation, the two
solutions represent outgoing and incoming waves, respectively. For outgoing waves, let
C2 -- 0. Integrating (8.78) with the source at the origin over Re:

-f-e’sR V2g dx- k2f g dx = 1 (8.80)
.~Ra
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The first integral can be transformed to a surface integral over the inf’mitesJimal sphere:

~Re V2gdx=~se ~ng

dS=4~e2C,(~-e~- el--ylei~ (8.81)
I’=E

Taking the limit of (8.81) as e -~ 0, the integral approaches -4~C1. The ~cond integral

in (8.80) can also be shown to vanish in the limit as e -~ 

Is,,:: :xl--Is: 4’<r:’drl- 4’ lJ" r <"1=
1

which vanishes as e --) 0. This results in the evaluation of C1 = ~--~, so that the Green’s

function becomes:

eikr
g = 4-"~" (8.82)

The Green’s function for a general source location ~:

(8.83)

8.19.2 Two dimensional space

Following the same procedure for the development of the Green’s function in three
dimensional space, the two dimensional analog can be written as:

-V2g- ~’g =----rdrld[ r -~1- k2g = ~i(x) (8.84)

For the solution outside a small circular area Re whose radius is e, the homogeneous

solution of (8.84) is given by:

H (~l)’kr g=C1 o I, ) C2H(02)(kr) (8.85)

where H(~) and H(02) are the Hankel functions of the first and second kind, respectively. For

outgoing waves in Rn, let C2 = 0. Integrating (8.84) over a small circular area e, one can

evaluate the first integral as:

J"R ~72gdx:j"S ~ng dS:Cl kH(°lf(kF-")’2"£=-2ll;l~Cl kI~l)(kl0

Taking the limit as ~ --> 0, the integral approaches 4iC1. In a similar manner to the three

dimensional Green’s function, the second integral can be shown to vanish as e --> 0.

Finally the Green’s function can be written as:

g = ¼ H(ol)(kr) (8.86)

which, when the source location is transferred from the origin to ~, gives:

g(x - ~) = ~ H(01)(klx - ~) (8.87)
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8.19.3 One dimensional space

The Green’s function for the Helmholtz operator was worked out in Example 8.8 as:

i eiklx-~{
(8.88)g(xlg) = 2--~-

8.19.4 Behavior for Large R

The behavior of u(x) for the Helmholtz operator as r --) ,~ can be postulated from
(8.39). The integration over the surface of an infinitely large sphere of radius R must
vanish. Thus:

IRn (uLg - gLu) dx = ISn (R _~ oo)(U-~ng - g-~) dS (8.39)

where fi is the unit outward normal and -- = --. For three dimensional space,
an aR

eikR 3g eikR
g _= ---if-, and On = R2 (ikR - 1), so that the surface integral in (8.70) becomes:

Lim IikRu(R) 3u(R) lleikRR2___~0

R --~ ook R2 OR R

This is known as the Sommeffeld Radiation Condition for three dimensional space. This
requires that the function u and its derivative behave as:

3u(R)
iku(R)- 3----~ -~ Rp

P > 1
(8.89)

two dimensional media, g = H(01) (kr), and ~-~ _= - ld-tl 1) (kr), For thatthesurface

integral in (8.70) becomes:

Lim [-kH 1 (kR)u(R)-H(01)(kR) 2~R-~0

This is known as the Sommerfeld Radiation Condition for two dimensional space. This
requires that the function u and its derivative behave as:

iku(R)_ 0u(R) p > 1/2 (8.90)
~R Rp

8.20 Fundamental Solution for the Operator, - g72+ ~t2

There is another operator that is related to the Helrnholtz operator, defined as:

L u(x)= (-V2 + g2)u(x)= f(x) x in Rn (8.91)

One can see that this operator is related to the Helmholtz operator by making X = -Ix2

or g = -ik = -i~-. The substitution of ~t in the final results for the Green’s function

for the Helmholtz operator:
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(-v2 + ~2) g(xl~) = ~(x- )
results in the following Green’s function.

8.20.1 Three dimensional space

Substitution of ~t in (8.82) gives:

e-tXr
g(r) = 

4~zr

(8.92)

(8.93)

8.20.2 Two dimensional space

Substitution of ~ in (8.86) results in:

g= H(o1)(igr) = ~-~ Ko(gr)

where Ko is the modified Bessel function of the first kind.

8.20.3 One dimensional space

as:

(8.94)

Substitution of p. in (8.88) results in the Green’s function for one dimensional media

e-~,lxl
g = ~ (8.95)

2l.t

8.21 Causal Fundamental Solution for the Diffusion Operator

For the diffusion operator:

~)u
K~72U = f(x, t) x in Rn, t > 0

3t

the Green’s function satisfies the following system:

3g ~V2g = ~(x_ ~) 8(t_,c)
Ot

where:

g = g(x, t[~,

satisfies the initial condition g(x,O+]~,x) = O, and satisfies the causality condition:

g=O for t<’c

which states that the solution is null until t = x. Since the diffusion operator has

constant coefficients, one can shift the ~ and x to the origin

g = g(x,@,O) = g(x,t)

satisfying the diffusion operator:

(8.96)

(8.97)
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bg ~:V2g = ~5(x) ~i(t)
(8.98)

~t

with the causality condition now given by:

g=0 t<0

In order to obtain the Fundamental solution, one can apply the Laplace transform on
time. Using the definitions and operations of Laplace transform in section (7.14) and
defining the Laplace transform:

Lg(x,t) = ~(x,p)

the differential equation (8.98) transforms to:

_V2~ + p ~ = ~(x) (8.99)
K K

Equation (8.99) resembles eq. (8.92) with solutions for three and two dimensional media

with g2 = P.
K

8.21.1 Three dimensional space

With kt = ~-, the transform of the Green’s function for three dimensional spacein

(8.93) gives:

-r p4-~7~
g(r,p) = 

4nK r

whose Laplace inverse transform gives:

e-r2/(4~ t)g(r,t) = (4rtKt)3/2 (8.100)

Rewriting (8.100) to revert to the source space and time { and x gives:

e-lX-~21 [4K(t-~’)]
g(x -- ~ [ -- ~]~) ~t (~)J i_4.~i:~.t __ ~.13/2 H~(t -- ~I~) (8.101)

note that the resulting expression for g is causal.

8.21.2 Two dimensional space

The transform of the Green’s function in two dimensional space given in (8.92), with

g = ~/~ is:

~(r, p) = 2-~K Ko (r p~/-P--7~)

has an inverse Laplace transform of:

1 r2/(4Kt)
g(r, t) = --e- H(t) (8.102)

4~xKt
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which, upon transforming the coordinates to the source location and time results in the
following expression:

1 e-lx-~l2/[4~¢(t-g)] H(t - X)
(8.103)g(x -~,t- X) = [4r~(t-

8.21.3 One dimensional space

with It = ~-~, the transform of the Green’s function for one dimensional medium

can be written as (see (8.95)):

~(x,p) : 2 .~~ (8.104)

The inverse Laplace transform of (8.104) can be shown to have the form:

1 e-x2/(4~a) H(t)
(8.105)g(x,t) 

and transforming the origin to the actual location:

1
g(x - ~, t - x) = [4r~(t z)1/2 e-(X-~)~/[4~(t-x)] H(t (8.106)

Defining the Green’s function g* (x]~) for the adjoint operator K as:

3g* ,-.2 ¯K g* = --~- - ~v g = ~(~ - ~) ~(t - 

and using the form (8.56), one can write down the solution for u(x,t) 

u(x,t)= ~ ~ g(x,t[~,z)f(~,x)d~dx (8.107)

0 Rn

8.22 Causal Fundamental Solution for

For the wave operator, the solution u(x) satisfies:

~’~- C2~72 U(X, t) = f(x,t)
X in Rn,

and the Green’s function then satisfies:

satisfying the homogeneous initial conditions:

g(x,O+l~,x) = and ~ (x,O+l~,x) = 
dt

the Wave Operator

t>0 (8.108)

(8.109)
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with the causality condition:

g = 0 and
0g = 0

t < x (8.110)
0t

since the wave operator has constant coefficients, the source location is transferred to the
origin, such that (8.109) and (8.110) become:

--C2~72 g(x,t)= 8(x) (8.111)

g=0 art -~-t = 0 t<0

Applying Laplace transform on time, one obtains the equation on the transform of the
Green’s function as:

p2
(-V2 + c-T; ~(x,p) = ~

(8.112)

p2
The solution of (8.112) can be developed from eqs. (8.93 - 8.95) with x2 =c--,2-.

8.22.1 Three dimensional space

The solution for the transform g can be obtained from (8.93) with It p :
C

e-Pr/cg(r,p) = 4xc2r
(8.113)

The inverse transform of ~(r,t) then becomes:

8 (t- L)
_ c _ 8(ct- r)g(r’t) - ~4x---~-c r - 4ncr (8.114)

Note that the Green’s function is a spherical shell source at r = ct of decreasing strength
1

with -. Transferring back to the location of the source:
r

g(x- ~,t- x)= 8[t- Ix-
4Xc2ix_ ~

(8.115)

8.22.2 Two dimensional space

Here the Laplace transformed solution is given by:

~(r,p)= l~Ko(_Pr~ 2~c ~ kc .~

The inverse Laplace transform of (8.116) can be shown to be:

(8.116)
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J

Note that the Green’s function has a trail that decays with ct at any fixed position r with a
sharp wavefront at ct = r. The Green’s function can be transferred to the location of the
source to give the Green’s function as:

Htc{t-x)-Ix-~] 1/a H(t-x) (8.118)g(x - ~’t- x) = 2r~C[Ca(t_ x)z _[x ]

8.22.3 One dimensional space

For the one dimensional medium:

e-plxl/e
~(x,p) = (8.119)

2pc

which may be inverted by Laplace transform to give:

g(x,t) H[t- ~x[/c] n(t) (8.120)
2c

Note that the Green’s function is constant, but has two sharp wavefronts at x = _ct.
Upon transferring to the location of the source, one obtains:

g(x- ~,t- %)= H[t- x- Ix ~- ~[/c] H(t- %) (8.12I)
2c

Since the wave operator is self-adjoint, then the solution u(x,t) can be written from (8.56)
as."

u(x,t)= ~ f g(x,~,%)f(~,%)d~d%

0 Rn

8.23 Fundamental Solutions for the Bi-Laplacian Helmhoitz
Operator

The fundamental solution for the Bi-Laplacian Helmholtz operator applies to the
vibration of elastic plates. Since the plate is a two dimensional medium, then the
Fundamental solution satisfies the following equation:

(-~ 74 + k4)g(x[~) = 8(x- ~) x n  (8. 122)

Since the operator has constant coefficients, then one can transform the source location to
the origin and write out the operator in cylindrical coordinates in the radial distance:

(_V4 + k4)g(r) = 8(r_==~) (8.123>
2~r
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To obtain the solution for g(r), one can apply the Hankel transform on r, see Section
7.19, where the Hankel transform of g(r) is g(p):

1

resulting in the solution:

The inverse Hankel transform of ~(p) can be shown to be:

-1 o~ J0(rp) 
(8.124)g(r) = ~ j" p

¯ 0 p4_ k4

In order to perform the integration in the complex plane, one needs to extend the
integration on p to (.~o). Using the identities (3.38) and (3.39), one can substitute 

by H(o1) and H(o2) as:

g(r): _~1 ~ P[H(01)(rP)_+ I-I(0~)(rP)] 
4~ J p4 _ k4

0

Since H(0:Z)(rp) = -H(01)(-rp), the integral in (8.125) can be extended to _oo 

g(r) =-~n,, p4 _ k 4 dp (8.125)

Since H(ol)(x) behaves as eiX/~- for x >> 1, then one can close the contour in the upper

half-plane. The integrand has four simple poles, two real and two imaginary. Using the
principle of limiting absorption then the four simple poles would rotate counterclockwise
by an angle equal to the infinitesimal damping coefficient rl, such that k* = k(1 + irl).

The two simple poles that fall in the upper-half plane are k* and ik*. The final solution

for g(r) becomes the sum of two residues after letting k* --~ 

g(r) = - 8-~ [H(01)(kr) - H(ol)(ikr)] (8.126)

The I-lankel function.of an imaginary argument ca~ be replaced by -2iKo(kr)/~, so that the

final expression for the Fundamental solution is written as:

g(r)=- 8k-~ [iH(01) (kr) - n2-. K0 (kr)] 

8.24 Green’s Function for the Laplacian Operator for
Bounded Media

In this section, the Green’s function is developed for bounded media for the Laplacian
operator. This is accomplished through the surface integrals that were developed when the
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Green’s identifies were derived earlier. For the Laplacian operator, start with the Green’s
identity in eq. (8.38) and the differential equation (8.58). Let v=g(xl~) in (8.38) 

from (8.58), one obtains the following:

3u
IR[-g(x~)f(x) + u~i(x-~)] dx = Is[g~n- u 

which, upon rearrangement gives:

IRg(xl f(x)dx +is j dSx
Since the Laplacian is a self-adjoint operator, then one can change the independent
variable x to ~ and vice versa, giving:

u(x)= IRg(xl~)f(~ ) d~+IS~ [g(x,~) ~-~ ) ~n~ dS[ (8. 128)

This solution is composed of two integrals. The first is a volume integral over the
volume source distribution. The second is a surface integral that rextuires the specification
of the function u(x) and the normal derivative ~u(x)l~n at every point on the surface.
Those requirements would over-specify the boundary conditions. Only one boundary
condition can be prescribed at every point of ihe surface for a unique solution. To adjust
the surface integrals so that only one boundary condition ne~ds to be specifi¢xl at each
point of the surface, an au×iliary function ~ is defined such ihat:

-VB~(xl~) : 0 x in R (8.129)

Substituting v = ~(xl~) in (8.38) one obtains:

Again switching x to { and vice versa, one obtains a new identity on the auxiliary
funcfion:

Defining G(xl~) = g" ~ and subtracfing (8.130) and (8.128) results in a new identity:

a xl~ ~(~)( )~n~ ]S~ dS~ (8.131)

D~pending on the prescribed boundary condition, one can eliminate one of the two
surface integrals.
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8.24.1 Dirichlet boundary condition

If the function is prescribed on the boundary:

u(x) = h(x) x on S

then one needs to drop the second integral in (8.131) by requiring thai=

G(x[~)Is~ : 0 ~ on 

or, due to the symmetry of the Green’s function:

G(xI~)ISx =0 x on x

The function G must satisfy either of these conditions. Substituting this condition on G
into (8.131) results in the final form of the solution:

u(x)= fR G(xl~)f(~)d~- ~S~ h(~) ~n-"~ dS[ (8.132)

8.24.2 Neumann boundary condition

If the normal derivative is specified on the surface, i.e.:

3u(x) = h(x)
x on S

3n

then one needs to eliminate the first integral of (8.125) by letting:

3G(xl~) I = 0 ~ on S~
3n~ St

or, due to the symmetry of the Green’s function:
~G(xl~) x : 0 x onSx

~nx

Again, the function G must satisfy either of these two conditions. Substituting this
condition into (8.131) results in the final solution expressed as:

u(x): ~R G(x[~)f(~)d~+ ~S~ G(xI~tS~ (8.133)

8.24.3 Robin boundary condition

For impedance-type Robin boundary condition expressed as:

 u(x)
3n ~" ~(x)= h(x)

x on S

substituting (8.134) in (8.131) and rearranging the terms

(8.134)



CHAPTER 8 494

Fig. 8.5 Geometry for the interior circular region

For the interior problem, see Figure 8.5, let us use the equality in (8.141) to guide the
choice of the auxiliary function ~, i.e. let:

~ = ,C-~logf-P r2t -2 (8.141)

The choice of the auxiliary function with a constant multiplier p/a is dictated by the

equality given above. It should be noted that since the factor p/a is constant in (r, 0)

coordinates, then V2~ = 0 for r > a.

With the definition G = g - ~, then G (at p = a or r = a) = 0. Note that on t, p= a,

then ~ = a, and hence r1 = r2 = r0, then the constant C must be set to one. Similarly,

G = 0 is also satisfied on Sx at r = a, where C = 1. Thus, the function G becomes:

G=~{l°g(~r2) 2-1°g(e)l=’~l l°g;o:r()j 4~ ~.a’rf ) (8.142)

Since 0/0n = O/Op on C, differentiating (8.144) and evaluating the gradient at the surface

p = ~ = a, results in the expression:

1 a2 - r2

C 2rat a2 + r 2 - 2ar cos(0 - ~)

The final solution for u(r,0) can be expressed by area and contour integrals as, see (8.132):
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Fig. 8.6 Geometry for the exterior circular region

a 2~ r

47zu(r,O):.-f f log~ arll f(p,~)pdpd0~ \pr2)
00

÷ 2(a2 _ r2) 2~r h(0) a 
(8.143)"£ J r 2 +a2"-_~-a~-os(0_0)

0

The same Green’s function can be obtained by the use of image sources and by
requiring the Green’s function satisfy the boundary conditions. Starting with:

~ = ~ log r22 -~ D(r,4n p)

where V2D = 0, and solving the homogeneous equation on D results in: D = E(p) log r 

F(O). The constant C as well as the functions E(O) and F(p) will be evaluated through 

satisfaction of the boundary conditions at r = a or p = a.

=g-~ = _~1 {logrl 2 + Clogr22 + E(o)logr + F(p)}G

Glp = ~ = a : 0 = - 4--~-{logro2 + Clogro2 + E(a)logr + F(a)} 

Thus, C = -1, E(a) = 0 and F(a) 

G]r =a : 0 = -~-~ {log rl 2 (a)- log r22 (a)+ E(p)loga + F(p)} 



CHAPTER 8 496

rl2(r = a) = 2 +132 -2a13cos(0 -9

r~(r = a) = 2 +~2_ 2a~cos(0- 9) = a2 2~_~
p-Tri taj

a2
This indicates that E(13) = 0 and 0 =--giv ing:log p2 ’

a2
D(r,13) = log p~-

Thus:

1 log 1"12 - log rff + log
G:

which is the same as the solution given in eq. (8.142).

Example 8.12 Temperature distribution in a circular sheet

Calculate the temperature distribution in a circular solid sheet of radius = a, with no
sources and the temperature on the boundary is a constant T0. Here f(r,0) = 0 and

h(0) = 0. Thus:

2n

4nT(r,0) 2(a2 r2)W0
de

J a2 + r2 - 2ar cos(0 - 0)
0

Since the integral is symmetric with 0, one can let 0 = 0, resulting in the solution:

a2 _ r2 7~/2
4~rT = 4T0 arctan ~-~ tan ~3-~t/2|

= 4T°n

or:

T(r,O) = o

This shows that the temperature is constant throughout the circular region.

(b) Neumann boundary condition

For the Neumann boundary condition given by:

-~rU (a,0) = h(0) 0 _< 0 -< 

the gradient OG/On = 0 on C.

For Neumann boundary conditions, one again can obtain the Green’s function by the
method of images. However, one must again adjust the image source by a function that
guarantees the Neumann boundary condition, i.e.:
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o=a r=a

Starting as above, let:

G =g-~ = - ~}-~ {logq2 + C log r22 + D(r,0)}

then D(r,0) must satisfy V2D = 0 or D = E(0) log r + F(0).

0D =0.
This indicates that C = + 1 and ~ p--a

Therefore E(0) = constant = 0 and F(0) =constant = o.Also:

0--~r =_~1 Ia-0c°s(0-O)=a 2r~ [ r12 (a) 

where

q2(a) = 2 +02- 2a0cos (0 - ~

cos(0 - ¢~)) + = 0
arl2 (a) 2 Or r = a

The term dependent on (0,~) must vanish indicating that 0 =-2. The constant F0canbe

adjusted to give a non-dimensional argument for the logarithmic function in G, i.e. let
F0 = - log a2. Thus, the source term represented by D is located at the center and gives

out the correct flux at r = a to nullify the flux of G at r = a. Therefore:

D = - 2 log r - 2 log a = - log (a2r2)

G : _ 4__~_{logr12 + logr~2 _ log(aZr2)} = 1 r? - ~-~ log (a--~r~) (8.14~)

The final solution for U(r,0) can be expressed as area and contour integrals, i.e.:

a 27z 2 2 2~ 2

4g u(r,0)=-~ ~ log(~)f(~,~)0 d~ d~ + 2a ~ log(~)h(~)d~ 

00 0

One may also obtain the Green’s function in te~s of eigenfunctions by attempting
to split G = G1 or G~, with G1 in terms of an eigenfuncfion expansion (8.140). The

eigenfunctions for this problem are:

%m(r’O)=Jn g~a)[cosn0J n=1,2,3.., m=1,2,3...

and ~e eigenvMues ~e:

= gnm/a~nm
2 2

which are the roots of J~(gnm) = 0.
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Expanding G1 in terms of these eigenfunctions:

GI = Enm Jn [tnm cosn0+ Hnm Jn ~nm sinn0
n=lm=l n=lm=l

and using the point source representation in two dimensional space for cylindrical
coordinates given by:

5(x - ~) 8(r - p)8(0- ¢) 0 _< r, p _< a, 0 _< 0, ¢ < 2r~
r

gives an expression for the Fourier constants:

Enm _ Jn(l’tnm ~) Isin ~
Hnm knm Nnm [cos nt~J

where:

~a2 , z nZ)j2n
Nnm= 2--’~-~ ~l.nm -- 0J-rim )

p sin n~

Enm 2 Jn (l’tnm ~-){cos ndp}

anm ~2(~t2nm- n2)Jn2 (gnm)

The final form for the Green’s function G1 is given in the form

2 ~-~ ~’~ Jn ~nm ~" Jn IJ’nm ~ cos(n(0-
Gl(r,01P, O) (8.146)

~a"~~- z~ 7:~--_-~ ~
m-1n=l -

For the second component G2, which satisfies Laplace’s equation with non-homogeneous

boundary conditions, one can show that Gz can be expanded in the form:

Gz(r,01~) = ~ AnrnC°s(nO)+ Bnrnsin(n0)

n=0 n=l

Substituting

~G2 (r,~ I ~)1 = 8(~ ~)
Ir=a a

results in the Green’s function G2 as:

n

n=l

These components are included in the integrand of eq. (8.133). It should be noted that the
final solution is unique to within a constant.
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8.28.2 Exterior Problem

For the exterior problem, see Figure 8.6, the field and the source points are located
outside the circle r = a and the image point Q is located within the circle.

(a) Dirichlet boundary condition

For the Dirichlet boundary condition one can use the same function G as in (8.142):

oo 2r~ r -~2 2rt

4rtu(r,0)=-j"Jf log/P rl/\a r2) f(lo’0)lgdl:)d0-2(a2-r2)f h(0)d~r02 .~ (8.148)

a 0 0

(b) Neumann boundary condition

For the Neumann boundary condition:

~u _ 0u (a,0)= h(0)
0_< 0_< 2n

~n Dr

Here again one may use the same Green’s function given in (8.144), such that the final
solutions given by:

oo 2n 2 2 2~t 2

4~t u(r,0)=-j" j" log (~) f(0,~)13 d0 d~ + 2a f log (ar~°2) ~ (8.149)
a 0 0

One may also find the Green’s function by eigenfunction expansion in terms of the
angular coordinate 0. Following the preceding treatment for the interior problem, one can

split G = G1 or G2. Since this is an exterior problem, there is no eigenfunction set for

the component G1 in the radial coordinate r. Starting with the differential equation G1
satisfies:

-V2G1 =~5(x-~) ~5(r- p ) ~5(0- 0 9, r>a 0<0, q~ < 2~
r

Expanding GI:
OO

G1 = E(02)(r) + ~ (E(nl)(r)sinn0 + E(n2)(r)cosn0)

n=l
and using the orthogonality of the circular functions, one obtains for n > 1:

d2 E(n1)(2)~ 1 d2 E(n1)(2) n2 E(nl)(2) _ ~5(r-p) Isinn0l
dr2 r dr r2 7zr [cos n@J

Applying Hankel transform on E~n~)<2)(r) (see section 7.7) and letting ~(nl)(2)(u) 

Hankel transform of E<n1) <2) (r), eq. (7. ! 1), then for > 1:

OO

~(~ Isinn~l-u2 E(nl)(2)(u) r Jn(ur) dr [cos n,J

a
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E(nl)(2)(u) _ Jn(PU) #sin(n~)~
- gU2 [cos(n~)J

n> 1

The inverse Hankel transform of nth order gives:

1 ~sin (nqS)~(r / n r<p
E(nl)<2)(r) = ~ [cos(n~)J [(p n r > p

For E(o2)(r), see eq. (8.69):

1
2rp cos(0-,)]E(02) (r) = _ ~.~ log(rl) = 2

Finally, substituting these expressions into the series for GI:

1 log[r2 + p2 -2rp cos(0-,)]O’(r’°lP’*) = 

cos (n(O - ¢))
+ "~"~ =1

for r < p (8.150)

1 log[r2 + p2 -2rp cos(O- ~)]G (r,01p, ) = 

for r > p (8.151)

+ 2rr cos(n(0 - ~))
n=l

For the solution to the second component G2, one can obtain the solution by use of the
solution of Laplace’s eq. with Neumann boundary condition:

1 £ cos(n(0- @)) (8.152)C2(r,01 )--
n=l

8.29 Green’s Function for Spherical Geometry for the
Laplacian

For a three dimensional region having a spherical boundary, there are two Green’s
functions, one for the interior and one for the exterior of the spherical surface at r = a, see
Figures 8.7 and 8.8.

The Laplacian operator in three dimensional space in spherical coordinates can be
written as:

-V2u(r,0,~) = f(r,0,~) interior r _< a, < 0 -<~, 0 _< ~ <_ 2~r

exterior r_> a, 0_< 0_< r~, 0_< ~_< 2n

The source point Q(p,~,~) has an image at ~(~,~,~) such that ~ = a2/p,. 
distances r1,r2 and r0 are given by:

rl 2 = r2 + p2 _ 2rp cos 00
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r22 = r2 + ~2 _ 2r~ cos 00

where:

cos 00 = cos 0 cos ~ + sin 0 sin ~ cos(0 - ~)

The Fundamental solution for three dimensional space is given by, with r1 replacing r:

i
g = -- (8.136)

4rcr1

8.29.1 Interior Problem

(a) Dirichlet boundar,¢ condition

For the Dirichlet boundary condition:

u(a,0,q~) = h(0,¢)

the choice of the auxiliary function ~ follows the same development for a circular area,

i.e. the equality (8.141). This leads to the choice of auxiliary function as:

Cal

4nor2

so that for G to vanish at the spherical surface 19 = a, the constant C = 1, results in an

expression for G as:

The normal gradient 313n = 3lbP is needed, which can be shown to give:

3-~nnl 9 = a2-r2
= a 4~a r03

The final solution for u can be written in terms of a volume integral and a surface
integral:

n 2g/ 1

47zu(r’0’¢) = i 
00

1| f(0, ~, ~)O2 sin 0 dO
or2j "

~ 2~ h(~, ~)sin 0 dO d~?.

+(a2-r2)af j. 3

00

(b) Neumann boundary_ condition

For Neumann boundary condition:

Ou (a,O,(~)=

~r

(8.153)

(8.154)
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\ /
\ /
\ /

\ /

Fig. 8. 7 Geometry for the interior spherical region

the auxiliary function ~ cannot be found in a closed form, as was the case for the

cylindrical problem. Here again, one needs to split the Green’s function G = G1 or G2
where GI is obtained for the point source for the volume source distribution and G2 for

the non-homogeneous Neumann boundary condition as was done in section 8.27.

8.29.2 Exterior Problem

Development of the Green’s function for the exterior spherical problem closely
follows that of the circular region.

(a) Dirichlet boundary_ condition

Here let the Green’s function be the same as in (8.151), so the normal l~adient of 
is needed. The normal gradient then is 0G/0n = -0G/09.

(b) Neumann boundary_ condition

For Neumann boundary condition, one must follow the analysis of the exterior
cylindrical problem by letting G = G1 or G2 as was done in section 8.27.
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P(r,e,¢)

0

Fig. 8.8 Geometry for the exterior spherical region

8.30 Green’s Function for the Helmholtz Operator for
Bounded Media

Consider the Helmholtz operator in section 8.12. Substituting for u from (8.77) and
v = g from (8.78) into the equality in (8.39) results in the same expression given 
(8.128):

g(xl~) 8u(~) - 8g(xl~)]u(x) = ~R g(x[~)f(~)d~ + ~S~ 
0n~ JS~

(8.128)

Following the analysis undertaken for the Laplacian, let the auxiliary function ~(

satisfy:

-V2~(xI~)- X~(x[~)= x in R (8.155)

Letting the Green’s function G for the bounded media be defined as G = g - ~, then the

final solution for the non-homogeneous problem is the same as the Laplacian’s, eqs.
(8.132-8.153).

8.31 Green’s Function for the Helmholtz Operator for Half-
Space

Refer to the geometry of three or two dimensional half-spaces in section 8.26. For
two dimensional space, delete the coordinate y from three dimensional system, such that
~:~ < X < o~, Z > 0.
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8.31.1 Three Dimensional Half-Space

The fundamental solution in three dimensional space is given by (8.82), with 1
replacing r:

eikq
g = -- (8.82)

4r~r1

The Green’s function for the two boundary conditions follow the same development for
the Laplacian operator.

(a) Dirichlet boundary_ condition

For the Dirichlet boundary condition:

u(x,y,o) = h(x,y) -,~ < x, y < oo (8.156)

Here, the choice of:

C eikrz
~ = -- (8.157)

4r~r2

requires that C = 1 to make G(~=0) = 0 or G(z=0) = 0. The Green’s function then 

1 (eik q eikr2
/ (8.158)

?, r2
The Difichlet boundary condition (8.155) requires the evaluation of the normal gradient 
G on the surface, given by:

l)z ikr
4n0G = 2 ik - --1-7- e o

3n{ 4=0 ro)r0

The final solution for u(x) can be shown to be:

4~u(x’Y’Z)=I I ei krt ei kr2

(8.159)

~ oo (
.~ eikr°

+2z I I ~1 -ik/’-~-h(~’q)d~dq.~ 0 (8.160)

(b) Neumann boundary condition

For the Neumann boundary condition:

Ou _ 0.~u
= h(x, y)

OnOz z = 0
(8.161)
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the Green’s function must satisfy 3Glen = -3G/~ = 0 on the surface ~ = 0 or -3G/~z = 0

on the surface z = 0. It can be shown that the constant C = -1, giving the Green’s
function as:

= ~1/eikr~ eikr2G 47z~ q +--r2

The final solution for u(x,y,z) can be written as:

4rtu(x,y)=f ~ j" eikr’-- + -- f ,~, d~d~d~
0 rl

+2 ~ h(~,n) d~ (8.163)
ro

(8.162)

8.31.2 Two Dimensional Half-Space

The fundamental Green’s function for two dimensional space is given by, with r1
replacing r:

g : ¼H(01)(krl) (8.86)

(a) Dirichlet boundary condition

For the boundary condition, one must satisfy G = 0 on ~ = 0 or z = 0, such that:

iC
~ = ~ Hgl) (kr2) (8.164)

so that C = 1 resulting in the Green’s function as:

G = ¼ [H(o£)(kq)- H(o2)(kr2)] (8.165)

so that:

a or, = o t
30 iz H(1)[~ 

and the final solution can be shown to have the form:

0--~

--2Z ; hr@H~l)(kro)d~
(8.166)
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(b) Neumann boundary condition

For the Neumann boundary condition, the normal gradient must vanish on the surface
~ = 0 or z = 0, requiring that C = -1, giving G as:

- i [u(1)tt" ~ + H(0X)(kr2)] (8.167)G - -~-L~0 ~,,~l j

The f’mal solution u(x,z) is given by:

4iu(x,z)=-~ ~ [H(ol)(krl)+H(02)(kr2)]f(~,~)d~d~

0--oo

OO

- 2 ~ n(01)(kr0) h(~) (8.168)

8.31.3 One Dimensional Half-Space

The fundamental Green’s function for one dimensional half-space is given by (8.88):

(a) Didchlet boundary condition

For the Dirichlet boundary condition G = 0 on ~ = 0 or x = 0, such that:

G = 2-~[eik[x-~’ - eik(x+~); (8.169)

(b) Neumann boundary_ condition

For the Neumann boundary condition OG/0~ = 0 on ~ = 0 or 0G/Ox =- 0 on x = 0,

such that:

i Feiklx-~l + eik(x+~)] (8.170)G = ~’~"L

(¢) Robin boundary_ condition

For the Robin boundary condition, G must satisfy, -OG/O~+’#3 = 0 on ~ = 0. In this

case, it is not a simple matter to readily enforce this condition. For this boundary
condition, a less direct method is needed to obtain G. With G = g - ~, define a new

function w(x) as:

w(x) =dG 
--~-- ~3

(8.171/
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then:

w(0) = 
Substituting w(x) into the Helmholtz equation:

d2 2 "

With w(x) satisfying the Difichlet boundary condition w(0) = 0, one can use the results 
(8.169) for the final solution for w(x) with the source te~ given above:

Integrating the above expression, one can show that:

where the signum function sgn(x) = +1 for x > 0, and = -1 for x < 0. Note that w(0) 
Returning to the first order ordinaw differential equation on the function G wi~ w(x)
being the non-homogenuity:

dG-~+~ =~(x)
dx

then the solution for G in terms of w(x) is given in (1.9) 

= -e~x ~ w(~) -~n d~ (8.172)G

X

The integration in (8.172) is straightforward. However, the integration for the second 
of (8.171) requires that separate integrals must be performed for x > { and x < 

The final solution for G(xl~) becomes:

i ~ik+~ ik(x+~) +eiklx-~l~

Note that if 7 = 0, one recovers the Neumann boundary condition solution in (8.170) and

if 7 ~ ~, one recovers the Dirichlet boundary condition solution in (8.171).

8.32 Green’s Function for a Helmholtz Operator in Quarter-
Space

Consider the field in a three dimensional quarter-space, see Figure 8.9. The quarter-
space is defined in the region 0 < x, z < ,~, -~ < y < ~. Let the field point be P(x,y,z) and

the source point be Q(~,rl,~). There is an image of Q at QI(~,~],-~) about the x-y plane,

another image of Q about the y-z plane at Q2(-~,rl,~). There is an image of Q1 about the
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Fig. 8.9 Geometry for a three dimensional quarter-space

y-z plane and an image of Q2 about the x-y plane, both coinciding at Q3(-~,?1,-~). Define

the radii for the problem as:

r 2 = x2 + y2 + z2

r12 = (x_ ~)2 + (y_ 71)2

r32 = (x+ ~)2 + (y_ ?1)2 + (z_~)2

r~l = (x- ~)2 + (y-n) 2 +z2

r023 =(X+~)2+(y-?1)2 2

Consider the following problem:

(-V2 - k) u = f(x,y,z)

u(x,y,O) = hl(x,y)

p2 = ~2 +712 +42

r22 : (x_ ~)2 + (y_ 71)2 + (z+;)2

r42 = (x+~)2 + (y- rl) z + (z+;)2

r0~2 = x2 + (y- r/) 2 +(z-C)2

r~ = x2 + (y - r/)2 + (z + ¢)2

X, z>0, .oo<y<oo

(8.174)
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Ou Ou
~n:-~xx(O,Y,z)=h2(y,z)

The fundamental solution in three dimensional space is given by:

e ikr~
g = ~ (8.82)

4nrl

Since the images Q1, Q2 and Q3 are located outside the quarter-space, then one can choose

three auxiliary functions as:

1 { eik r2 eikr3
eikr4l~ = ~--~ C1--+C2~+C3~ (8.175)

r2 r 3 r4 J

With the definition G :- g - ~, then the Green’s function must satisfy the following

boundary conditions:
on the surface SI:

G~=0 =0 Gz=0 =0

on the surface $2:

OG OG ~ 0G x
:o:° 0x :0:°

When Q approaches the surface S1, rl = r2 = ro~ and r3 = r4 = r03. Thus:

ikr0~ ikrol ikro3

4~tGl~ = 0 = e o’ _ C1 e v. _ C2 e ~ _ C3 eikr°3 _ 0rol rol r03 r03

This requires that C~ = 1 and C2 = -C3. When Q approaches the surface S2, r1 = r3 = r02 and

r2 = r4 = r04. Thus:

This requires that C2 = -1 and Ct = C3. Finally, the constants carry the value Ct = 1,

C2 = -1 and C3 = 1 so that the Green’s function takes the final form:

eikq F eik r2 eikr3 eikr~
4r~G .... | + --

rl t_r2 r3 r4
If one would want to establish an algorithm for determining the signs of the images, i.e.
C1, C2 and C3, one can follow the subsequent rules:

(1) The sign of the constant is the same as the source for a Dirichlet boundary
condition, if the image is reflected over the actual boundary.

(2) The sign is reversed if the image is reflected over an extension of the Dirichlet
boundary.

(3) The sign is a reverse of the source for the Neumann boundary condition, if the
image is reflected of the actual boundary.
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(4) The sign is the same as the source if the image is reflected over an extension of the
Neumann boundary.

With this construct, the sign for C1 = 1, the sign of C2 = -1, the sign of C3 should be the

same as C1 because of the reflection about a Neumann boundary extension and should be the

opposite of C2 because it is a reflection about the Dirichlet boundary extension, i.e.

C3 = C1 =-C2 = +1.

8.33 Causal Green’s Function for the Wave Operator in
Bounded Media

Consider the wave operator:

-c2V2 u(x,t)= f(x,t) x in R, t > 0

together with the initial and boundary conditions:

u(x,0) = fl(x) O-~.u (x,0) = x in R

(a) Dirichlet: u(x,t)ls = h(x,t) x on S

8u
(b) Neumann: ~(x,t)ls = h(x,t) x on S

3u
-ffffn (x,t)+ Vu(x,t)ls = h(x,t)(c) Robin: x on S

The causal fundamental Green’s function g(x,tl~,x) was defined in (8.109). Consider 

adjoint causal fundamental Green’s function g(~,zlx,t) which satisfies:

(~2- C2V2] g(~,’~lx, t) = ~5(~- x) 6(~:- 

(8.108)

g(~,’clx,t) : 0 a: < 

It should be noted that since the wave operator is self-adjoint, then:

g(x,tl~,x) = g(~,xlx,t) (8.176)

Consider the special case of a time-independent region R and surface S. Substitute u(x,t)
from above, eq. (8.108) and the adjoint causal Green’s function v = g(~,xlx,t) into Green’s

identity for the wave operator (8.52). Since the region R and its surface S do not change 
time, the surface ~ takes a cylindrical surface form shown in Figure 8.10. On the
cylindrical surface S, n = n, while on the surface t = 0 and t = T, the normal
~ = -~t and ~t, respectively.
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T

n=et

n= - et

Fig. 8.10 The geometry for the wave equation.

Thus, the Green’s identity results in the following integrals:

T T

f f g(~ x[x, t)f(x, t)dx dt- f u(x, t)8(~-x)6(x- 

OR 0

l,x

T

+C2J" ~ [u(x,t)~-~-(~,xlx, t)-g(~xlx, t) Ou(x’t) 1 dSxdt (8.177)

0 Sx L
x ~nx -~Sx

If one takes T large enough to exceed t = ~, then the causality of g will make the upper

limit t = x and the third integrand evaluated at t = T vanishes, since g = 0, t = T > x.
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Since 0gl0t = -0gl0z, then eq. (8.177) can be simplified to:

u(~’c) = f f g(~xlx, t)f(x,t) 
OR

+ y ,x,o+ x + o>
R R

-c2f f [u(x,t)O-~x(~Xlx, t)-g(~xlx, 1 dSxdt (8. 178)

0 Sx
sx

One can rewrite the last expression by switching x to ~ and t to x and vice versa after noting

that g({,’~lx,t)=g(x,tl{,z) giving:

t

u(x, t): ~ f g(x, tl~ z) f(~, x)d~ dz + f g(x, tl~, 0)fg 

OR R

t

O~_c2f Iu0g gOU] dS~dx+~-~g(x, ti~0)f,(~) I L
R 0 S~

The expression shows that the response depends linearly on the initial conditions.

(8.179)

Example 8.13 Transient vibration of an infinite string

Obtain the transient response of an infinite stretched string under a distributed load
q(x,t), which is initially set in motion, such that:

02U C2__O2U = q(x,t) -,~ < x < 

Ot 2 0x 2 TO

u(x,0) = fl(x) -~(x,0) = 

For the one dimensional problem, see (8.121):

g(x, tl~, x)= H[(t-x)-lx- ~] /c] H( t- z)

The Heaviside function can be replaced by:

H(a-lbl) = H(a-b) + H(a+b) - 1 for 

Thus, the function g can be rewritten as:

g(x, tl~, x)= ~c {H[(t- x)- (x - ~)/c] + H[(t- z)+ (x - 

For an infinite string, the boundary condition integrals in (8.179) vanish, leaving integrals
on the source and the two initial conditions in (8.179). The first integral on the source term
can be written by:
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t

~c f q(~’ x~) H[(t-x)-I×- ~[/c] d~ dx= %
0

The second integral can be written as:

t x + c(t-z)
1

2cTo f f q(~,z)d~ 
o

oo x+ct
_ 1
if f f2(~)d~2c

--oo x - ct

The third integral on the initial condition requires the time derivative of g:

~g {x,t~t ~ ~’ 0+)= ~c {~[t-(x-~)/c] + ~[t+ (x-~)/c]}

so that the third integral becomes:
OO

=1 j" f~(~){~[t_(x_~)/c]+~[t+(x_~)/c]}d~=~[fl(x+ct)+f~(x_ct)]
2c

The final solution for u(x,t) becomes:

t x + c(t--z) x + ct
1u(x,t)= f2c ~ q(~’X) d~dx +½[fl(x+ct)+fl(x-ct)]+-~-cTO ~ f2(~)d~

0 x - c(t-x) x - ct

For a bounded medium, the requirement to specify u and Ou/~n on the surface makes the

problem overspecified and the solution non-unique. Let the auxiliary causal function ~ to

satisfy:

~2~ C2X72~ = 0 x in R, t > 0 (8.180)
Ot2

5=0 t<’~

Following the development of (8.179) for g, one obtains:

t

O= f f ~(x,t[~,~)f(~,x) d~ dx + f ~(x,t[~,O)~-t (~,0) ~
OR R

- _ ~u
dzf tl ,0) c2 f f u - g ~n---~

R 0 S~

Subtraction of the two equations (8.179) and (8.181), together with the definition
G = g - ~, results in the final solution:

t

u(x, t)= f f G(x, t]~ "Q f(~ z)d~ d~ + ~ G(x, t[~, 0)f2(~) ~
0R R

(8.181)
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t

G v-| dS~dz (8.182)

+-~fG(x’tll~O)fl(~)dl~-C2fs~IUOn3---~G~-R 0 0n~ JS~

For the following boundary conditions, one must set conditions on the function G as:

(a) Dirichlet: G[S~ = 0

(b) Neumann: 3a- ~- = 0

S~

3G ~YGs~ =0
(c) Robin:

3n~

The boundary integrals in (8.18) take the forms in eqs (8.132 - 8.135).

Example 8.14 Transient longitudinal vibration in an semi-infinite bar

Obtain the transient displacement field of a semi-inifinite bar at rest, which is set in
motion by displacing the bar at the boundary x = 0. The system satisfies the following
equation:

32u 32u
= 0 u(x,O) = -~(x,O) = u(O,t) = h(t)2

3t 2 c 3x~

Using the method of images, let the image of the source at ~ be located at --~, giving:
1 xG=2--~-

The Green’s function satisfies G x = 0 = 0 if C = 1. Rewriting G in a more convenient

form using:

H(a-lbl) = H(a-b) + H(a+b) - 1 for 

1 {H[(t-x)-(x-~)/c]+H[(t-x)+(x-~)/c]G=2--~

-H[(t- ~)- (x + ~)/c]- H[(t- x) + (x + ~)/c]} 

30
= - 6[t - "c - x/c]

3n¢~=0 ~’~=0

giving the final solution:

t

~ h(’c) 6[t - x - x/c] dz = h(t - x/c) H(ct t)

0
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8.34 Causal Green’s Function for the Diffusion Operator for
Bounded Media

Consider a system undergoing diffusion, such that:

~u ~V2U= f(x,t)
x in R, t > 0

Ot

together with initial conditions:

u(x,0) = fl(x) x in R

and the boundary conditions:

(a) Dirichlet: u(x,t)[ S = h(x, t) x on 

~u
(b) Neumann: ~(x,t)l s --h(x,t) x on S

(c) Robin:
~u
~--~(x,t)+Tu(x,t)ls=h(x,t) x on S

The causal fundamental solution g(x,tl[,~) satisfies:

- ~V2g : ~5(x - ~) ~5(t - 
"

(8.96)

(8.97)

OR

j" j" g*(x, tl~x)f(x,t)dx dt-u(t~,’~):

g=0 t<x

g(x,0+l~, x) = 

Let the adjoint causal fundamental solution g*(x, tl~, v) satisfy:

_0.g*_ ~V2g, = ~5(x -~)6(t- (8.183)
Ot

g* (~, ~ Ix, +) =0

g*=0 t>~

The two causal Green’s functions are related by the symmetry conditions:

g(x, t[~ x)= g*(~ xlx, t) (8.184)

g(~, xlx, t) = g*(x, t[~, 

Using V = g* (x, tl~ ~) and u(x,t)into the Green’s identity (8.48), with the surfaces shown

in Figure 8.10:

T



CHAPTER 8 51 6

T
~U _u ~g]J" [g* c~n:~ _Is,dSxdt

0 Sx

- ~ u(x,0)g’(x,01~,x) dx + ~ u(x,T)g’(x,’l~,x)dx
R R

Again since g* is causal, let T b~ taken large enough so that g = 0 for t = T > x.

Rea~.’ranging the terms gives:

OR

* - u~ dSx dt (8.185)

R 0 Sx ~ Snx s,

For a bounded meAium let the auxiliary causal function ~ satisfy:

= o
~t

~ =0

and the adjoint causal auxiliary function ~* satisfies:

- ~t* - ~:V2g* = 0

g =0

Using ~(~, xlx, t) = ~*(x, ~, x) into the Green’s identity (8.48) resul~s in an equation

similar to (8.185):

O=j" ~ ~* (x, tl~,x) f(x, t) dx 
OR

+fu(x,0)~’(x,0[~,x)dx+gf[~" 8u_~. ~u? dSxdt (8.186)
R Sx ~nx

Onx

Subh-action of (8.186) from (8.185) and using the definition G* = g* - g[* results 

OR
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R 0 Sx 0n--~-- u On---~-jsxdSx dt

Switching x to ~ and t to x and vice versa and recalling ~at:

G*(~xlx, t) = G(x, tl~x)

one can rewrite the last expression to:

t

u(x, t)= f f G(x, tl~z)f(~ ~)d~ 

0R

t[+ffl(~)G(x, tl~O)d~+~:j" J" G °~u u ol
R 0S~ 3--~-~ - 3n~ JS~

where G = g - ~. Thus, for the different types of boundary conditions:

(8.187)

(a) Dirichlet: GIst = 0

(b) Neumann: ~a-~-- = 0

s~

~G St
(c) Robin:

~n-~ + ?G = 0

The boundary integrals follow the same forms as in eqs (8.132 - 8.135).

Example 8.15 Heat Flow in a Semi-Infinite Bar

Consider a source-free semi-infinite bar being heated at it’s boundary, such that:

OU -KV2u = 0 x > O, t > 0
Ot

u(x, +) =0 u(0,t) = o h(t)

To construct G(x,tl~,’r) for a Dirichlet boundary condition, then both conditions must 

satisifed; G(0,tl~,x) = 0 and G(x,tl0,x) 
The fundamental Green’s function g(x,tl~,x) is given in eq. (8.106). To construct 

auxiliary function ~, let the image source be located at (-~) such that:

-(x+~)2/[4~:(t-z)]

~(x, t I -~, z) = C H(t - "~)
[4n~:(t - "c)]

then to make G(0,tl~,x) = 0 requires that C = -1, and G becomes:
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H(t - "~) {e-(X-~)~/[4~c(t-~:)] _ e-(X+~)~/[4~c(t-~:)] }G-
 11/2

The final solution requires the evaluation of 0G/0n~:

(gG
=_ 0G x H(t - x)

e-X2/[4~:(t-’t:)]
~--on~ = 0 ~ ~ = 0 4~-[K(t ,~)]3/2

Therefore, the temperature distribution in ~e bar due to the non-homogeneous bound~y
condition is given by:

t
UoX f h(z)

~J 0 (t _ x)3/2 e-X:/[4~(t-x)] 
D(x,t)=

Example 8.16 Temperature distribution in a semi-infinite bar

Find the temperature distribution in a source-free, semi-infinite solid bar with
Newton’s law of cooling at the boundary where the external ambient temperature is uoh(t),

such that the temperature u(x,t) satisfies:

oqu o32u
---K =0 x>0, t>0
0t ~ -

oqu
u(x,0) = 

0x
--- (0, t) + y u(0, t) = o h(t

Here the boundary condition is the Robin condition such that:

or

~--~ + y G OG

--~x +yG =0
x=0

Let the function w(x,t]~,x) be defined by:

OG
w(x,tl~,x) = -~x Y G

Substituting w into the diffusion equation and recalling that G = g - 5, then:

~t ~x2) :(’~’x-’ -~--~c~-~-~I-L-~x-’)L--~-- ~’~-~’}

L~x -~)-y6(x-~) 6(t-~)
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together with the boundary condition on w, w(0,t[~,x) = 0. This shows that the function

w satisfies the Dirichlet boundary with the above prescribed source term. The Green’s
function for a Dirichlet boundary condition is given in Example (8.15):

w(x,tl~,x) = f f G(x,t [ n,~)I0~-(n- ~)-‘/~(n- ~)1~(~- 
00

H(t - x)

~/4~t K(t - ~)
{y[e-(x+~)~/[4~(t-’r)] e-(X-~)~/[4~(t-’l:)]]

Integrating the equation for G, one obtains:

G = -e~x f w(u,t I ~,x)e-~u du

X

Integrating by parts the second bracketed quantity in w, results in the following
expression for G:

H(t-’c) [e-(X-~)2/[4~(t-,r)] _ e-(X+~)z/ [4~(t-z)]]
G(x,t I ~,~) 

[! e-~ue-(u+ 1H(- 2‘/eYx {)~/[4K(t-x)] du 

The last expression in the integral form can be shown to result in:

-~ H(t - ~)et[x+{+~/(t-x)l erfc ’~-(t

Note that if,/= 0, one retrieves the Green’s function for Neumann boundary condition. If

the limit is taken as ’/--) oo, then one obtains the Green’s function for Dirichlet boundary

condition, matching that given in Example (8.15).
The final solution is given by:

t

u(x,t) K:y Uoj-G(x,t I 0,x)h(x)dz

0

8.35 Method of Summation of Series Solutions in Two-
Dimensional Media

The Green’s function can also be obtained for two dimensional media for Poisson’s
and Helmholtz eqs. in closed form by summing the series solutions. This method was
developed by Melnikov. Since the fundamental Green’s function is logarithmic, then all



CHAPTER 8 520

the Green’s functions will involve logarithmic solutions as well. This method depends
on the following expansion for a logarithmic function:

log~/1- 2ucos~ + u2 = - ~ ---if- cos (n~) (8.188)

n=l

provided that lul < 1, and 0 < ~ < 2n

The method of finding the Green’s function depends on the geometry of the problem and
the boundary conditions.

8.35.1 Laplace’s Equation in Cartesian Coordinates

In order to show how this method may be applied it is best to work out an example.

Example 8.17 Green’s Function for a Semi-Infinite Strip

Consider the semi-infinite strip 0 < x < L, y > 0 for the function u(x,y) satisfying:

-V2u = f(x, y) < x < L,y >0

Subject to the Dirichlet boundary condition on all three sides, i.e.:

u(0,y) = u(h,y) = u(x,0) = 

and u(x,~) is bounded.
One may obtain the solution in an infinite series of eigenfunctions in the x-

coordinates, since the two boundary conditions on x = 0, L are homogeneous. These
eigenfunctions are given by sin (nnx/L) [see Chapter 6, problem 2], which satisfies the
two homogeneous boundary conditions.

Let the final solution be expanded in these eigenfunctions as:
OO

u= ~ Un(Y)sin(~x)
n=l

Substituting into Laplace’s equation and using the orthogonality of the eigenfunctions
one obtains:

n2~z2d2un (._~_) Un = _ fn(y)
dy2

where

n=1,2,3 ....

L

fn(y) = ~ j" f(x, y)sin (-~ 

0

The solution for the non-homogeneous differential equation is given by the solution to
Chapter 1, problem 7d:

Y

Un(Y) = n sinh ( ~-y)+ Bn cosh (-~-y)+ ~j" fn (~])sinh (-~(y- rl)) q
0
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Since u(0,x) = 0, then n =0 and:

Y
nn L I fn (.q) sinh (~ (y _ ~l)) Un(y) = An sinh (-~-- y) + ~--~-~

0

Also since u(x,~o) is bounded then:

An = - ~-~ I fn (~l) e-nml/L l
0

The final solution is then:

Un(Y) = ~ I fn (~1)[enr~(Y-’O)/LH(II- Y)- e-nr~(y+rl)/L + e-nr~(Y-rl)/LH(~l- y)] d~l

0

Thus, the Green’s function for the y-component is given by:

L [e-nn(y+~l)/L - enn(y-~l)/L Y < ~l
Gn (Y [ ~1) = 2--~-~ [e-n~(y+~l)/L~

e-nr~(y-rl)/L y>rl

Note that Gn(01~l) = 
Thus, the solution for Un(Y) is given by:

Un(Y) = f Gn(y I rl)fn(rl)d~l = -~ I f Gn(Y I rl) f(~’rl)sin ~)d~d~l

0 00

oo Loo

u(x,y)= ~ E f I Gn(Y I ~l)sin(~ ~) sin(~x)f(~,’q)d~d~l

n=100

= I It-~ E Gn(Ylrl)sin(~)sin(~ x) f(~,rl)d~drl
00L n=l

Thus, the Green’s function G(x,yl~,rl) is given by:

G(x, yl~,n)=~ Gn(Y
n=l

n) sin (-~-- ~) sin (-~- L L

L Gn(Y
n=l

For the region y >
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1 1 exp(-
(y+’q))-exp(---L-(Y-~l))¯G(x, y I {, ~1) : 

n
n=l

Using the summation formula (8.188), on the first of four terms, one gets the following
closed form:

1
~ E exp(---~--(y

Here:

n=l
+ ~1)) cos (~ (x - 

u= exp(-~(y + rl)) ¢~ = ~(x- ~)

= ~--~1 log./1-2exp(-~(y+ rl))cos(~(x-~))+ exp(---~(y 
z~ V L

Similarly, one obtains the closed form for each of the remaining three series, resulting in
the final form:

1 ABG(x, y ] ~, ~1) = ~ log (~--~) (8.189)

where:

A=I-2exp(~(y + ~l))cos (~ (x - ~)) + exp (-~(y 

2r~B = 1 - 2 exp (~ (y - rl) ) cos (~ (x + ~)) + exp ( _--7- (Y 
L L L

C= 1-2 exp(~(y-n))cos (~(x- ~))+ exp(-~ 

D= i-2exp(~(y + rl))cos (~(x q-~))+ exp(-~ (y 

The method of images would have resulted in an infinite number of images.

8.35.2 Laplaee’s Equation in Polar Coordinates

The use of the summation for obtaining closed form solutions for circular regions in
two dimensions can be best illustrated by examples.

Example 8.18 Green’s Function for the lnterior/Exterior of a Circular Region with
Dirichlet Boundary Conditions

First, consider the solution in the interior circular region r < a with Dirichlet
boundary condition governed by Poisson’s equation, such that:

--g72U = f(r,0) u (a, 0) = 0 < a,0 <0 < 2rt
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The eigenfunctions in angular coordinates are:

sin (nO) n = 1, 2, 3 ....

cos (nO) n = 0,1, 2 ....

Expanding the solution in terms of these eigenfunctions:

U=Uo(r)+ ~ uCn(r)c°s(n0)+ 2 u~(r)sin(n0)
n=l n=l

so that the functions un satisfy:

1 d/rdUo~ =_fo(r)
r dr \ -’~-r 

1 d(rdU~’s/_n2 _f~,S(r)r~r -~-r d r~-u~ ’s:

where:

2n
1

f°(r) =~-~ I f(r,0)d0

0

2~z cos(n0)

f~,S(r) = 1 I f(r,0) dO
~t sin (nO)

0

Integrating the differential equation for Uo(r) gives:

r
Uo(r) = o l ogr +Bo+ Il° g(p-) f°(13)13d0

0

The condition that Uo(0) is bounded requires that o =0 and the boundary condition at

r = a results in the expression for Bo:

a

Bo : -Ilog(~)fo(l~)Pd13

0

so that:

r a

uo (r) = f log (13) fo (13) 13 do - f log (_0) fo (13) 
r ~ a

0 0
a

= IGo(r 113) fo(13)13dO

0

where:



CHAPTER 8 524

- log (O_) r _< p
Go(r I p) a

- log (L) r >_ p
a

It should be noted that Go(alp) = Go(rid) = 0 as required by the Dirichlet bmmdary
condition.

c,s (r) results in the following solution:Integrating the differential equation for un

u~,S(r) -¢.s -n _n 2. oLLr; f.’(p)pdp

C,$Again un (0) is bounded requires that n =0 and the boundary onr =a requires that:

2han - f~"(p)pdp

Thus, the final solution for u~’s (r) becomes:

i r n 1. n | r na n an
fC(P~-(--~ l’~’S(p)pdp-~n/;)I I-~)-l~)3f~’s(p)

which can be written as:

1 (r~na’r’p’n

a
= ~O,(r I p) fnC"(p)pdp

0

where

---1 [lr~n - (-rP ~n for r_<
2nLLp) La29 J P

Gn(r I p) 

1---If O-~n ( rP’~n] for r>p2nL r -La--e) J
Note that Gn(alp) = Gn(rla) = 0 as required by the Dirichlet boundary condition. Finally,
the solution for u(r,O) is obtained by solutions into the original eigenfunction expansion:
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a

u(r,0) JGo(r I 0)fo(P)PdP

0
oo a

+ £ IGn(rlP)[f~(o)c°s(nO)+fSn(O)sin(nO)]pdo

n=10
2n a

:._~_1 I I G°(r]o) f(p,*)pdpd*

2n
O0

~ 2~ a
1

+-- E I IGn(r [o )[ c°s(n~)c°s(nO)+sin(n*)sin(nO)lf(p’*)odpd*

n=lo0

1 ~ ~Go(rl0) f(0,~)pdpd~
2~

00
~ 2g a

1 IG~(r
+; 2 I

IP)C°s(n(O-~))f(o’*)pdpd*

n=l 0 0

Thus, the Green’s function becomes:

a(r,019,0) = ao(rl9)+2 Gn(r I O)cos(n(0- 
n=l

The series can be summed, eq. (8.188) as:

2£ Gn(rlp)cOs(n(0 (p)) £ 1 /~)n 
.... cos (n(0 - tp))

n
n=l n=l

=½log 1 - 2 (~-~) c°s (0 - q°) + (~-~)2
1 - 2 (r) cos (0 

P P

." ( 1 - 2 (~) cos (0 - + (~)

2 (1_2(~)COS(0 ~) 

where ~ = a2 / p is the location of the image of the source at p. Therefore:

G(r’01 ~’~) = ~ {-l°g(~)~ +l°g[( ~ - 2r’c°s(~-~)+r~

=~log(P2 

the notation for r2 and r~ are given in section (8.28). Note that the last answer is the

same as the one given in (8.142).

(8.190)
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In the exterior region r > a, one can use the same Green’s function, with the notation
that p > a is the source location and hence ~ = a2 / 9 < a.

Example 8.19 Green’s function for the interior region of a circular region
with Neumann boundary

Consider the solution in the interior region of a circle r < a with Neurnann boundary
condition, governed by Poisson’s eq., such that:

-V2u= fir,0) and -~rU(a,0)=0

Following Example 8.18, then uo is given by:

r

Uo(r) = o l ogr +Bo+ f log(~)fo(O)odO
0

Requiting that Uo(0) is bounded and satisfying the Neumann boundary condition results

in:

a

Ao =f fo(O)OdO

0

and

a a

Uo(r) = f log(P)fo(P)pdp + f log(~) 

0 r
a

= f Go(r [ P) fo(P)pdp

0

where

log (__O) O < r
a

Go(rl9) =
log (r) ~ _> r

a

For the functions u~’s (r):

uCn’S(r) : ACn’sr-n + B~’srn + ~jn _ fnC’S(p)PdO
2n~)L\r)

that u~’s (0) is bounded and -~-rn (a) = 0 results Requiring

= -- + ’~(p) pdp
2han
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Finally, the function u~’s (r) can be written in compact form as:

Gn (r I P) = 2n L\ P) ~, a2 )

lI(19~n +( rlg"]n1
2nL rJ t, a2) j

for r>p

¢,SSubstituting Go(rip) and Gn(r[p) into the solutions for n and those in turn into the

seres for u(r,0) results in the solution given by:

2n a " ~
1 ~ ~ Go(r~p)+2E Gn(rlP)COS(n(0-~))~ f( p, ~)pdpd#

00 n=l

Summing the series results in the form given in (8.188):

G(r,0 ’ P,*) : ~ { ’og(~)~ - log(’- 2(~) cos (0- O) 

{ }1 log
+ logp2~2 _ log ( )

4g

I, (r~r~ 

The last expression is written in the notation of section (8.28) and matches the solution
given in eq. (8.144).

The Green’s function is symmetric in (r,p) and satisfies:

(a,01P,*) = ~(r,01 a,0) 

In the exterior region, one may use the fo~ in eq. (8.191) with the notation at the
source p > a and its image ~ = a~ / p < a.

where:

a

u~,S(r) = IGn(r I p) f~’s(p)pdP

0
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PROBLEMS

Section 8.1

Obtain the Green’s function for the following boundary value proble~ms:

1. d~2y + y = x, 0 _< x <_ 1 y(0) = y’(1) = 

also obtain y(x)

d ~xdY~ n2y=f(x) 0ax<l y(0)finite y(1)=0

3. x2 d2y _ dy _2. _ f(x), 0 < x < 1 y(0) finite y(1) = 
dx"-~" + " d~’-" :’ - - -

d2Y f(x), 0 < x < L y(0) y(L) = 4. ~-$--k2y = _ _ =

d4y
5. -~---3" = f(x), 0 < x < L

d4y = f(x),
0 < x < L

d4y
7. -~-= f(x) 0 < x _< L

y(0) = y’(0) = 0, y"(L) = y’(L) 

y(0) = y’(0) = 0, y(L) = y’(L) 

y(0) = y"(0) = 0, y(L) = y"(L) = 0

Section 8.7

Obtain the Green’s function for the following eigenvalue problems by:

(a) Direct integration

d.~2.2Y + k2y = f(x)

(b) Eigenfunction expansion

0_<x<L y(0) = 

d4y ~_~4y=f(x) 0<x<L
dx4 - _

(i) y(0) = 0, y"(0) = 0, y(L) = 0, y"(L) 

(ii) y(0) = 0, y’(0) = 0, y(L) = 0, y’(L) 

y(L) = 
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10.

FUNCTIONS

\ ox} 

11. x2 d2y ^ dy
~ + 2x ~xx + k2x2y = f(x) < x < 1

O_<x<l y(O) finite

y(O) finite

529

y(1) = 

y(1) = 

Section 8.8

12. Find the Green’s function for a beam on an elastic foundation having a spring
constant 7~:

f(x)

d4y ~,4y = f(x)
x > 0 y(O) = y"(O) = dx4 -

13. Find the Green’s function for a vibrating string under tension and resting on an
elastic foundation whose spring constant is 7:-

f(x)

d2y + 7Y- k2y = f(x)
x > 0 y(O) = dx2 -

(a) ? > 2  (b) "/< 2 and (c) = k2

14. Obtain the Green’s function, g, and the temperature distribution, T, in a semi-infinite
bar, such that:

d2T
- ~ = f(x) x > 0 T(0) = T1 = const

15.

day + ~4y = f(x)
dx4

Find the Green’s function for a semi-infinite, simply supported vibrating beam:
f(x)

t x

x > 0 y(0)= y"(0) = 
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16. Find the Green’s function for the semi-infinite fixed-free vibrating beam:

fix)

d4y 4- [~4y = f(x)
x > 0

dx4 - y’(0) = y’(0) = 

17. Find the Green’s function for a semi-infinite fixed vibrating beam such that:

f(x)

d4y
dx4 4- [~4y = f(x) x > 0 y(0) = y’(0) = 

18. Find the Green’s function for a vibrating semi-infinite, simply supported beam
resting on an elastic foundation, whose elastic constant is T4, such that:

fix)

---~4Y - T4y+ [~4y = f(x) > 0 y(0) 

for (a) T > (b) T < ard (c) = I~

y"(0) 

19. Find the Green’s function for a vibrating semi-infinite fixed-free beam resting on an
elastic foundation, whose elastic constant is ~4, such that:

f(x)

_ ~._ ~,4y + [~4y = f(x) x _> y’(0) 0

for (a) ~’ > (b) ~, < and (c) ~’ = 

y"(o) = 
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Section 8.9

20.

d4y

dx4

Find the Green’s function for an infinite beam on an elastic foundation:

fix)

_ -- _ ~/4y = f(x) .oo < x < oo

21. Find the Green’s function for a vibrating string under tension and resting on an
elastic foundation, whose elastic constant is T-

f(x)

d2y ~- ~/y - k2y = f(x)
-~, < x < ~,

dx2

for (a) y > 2 (b) y < 2 and (c) ~/= 2

22. Find the Green’s function for the temperature distribution in an infinite solid rod:

d2T
- ~----~-- = f(x) -~ < x < oo

23. Find the Green’s function for an infinite vibrating beam:

4
__~_g.+l~4y = fix),, -"~ < x < o,

dx~

24. Find the Green’s function for an infinite vibrating beam resting on an elastic
foundation, whose elastic constant is ~:

4dy _4
- ~’T- ~’ Y + ~4y = f(x)

for (a) ~ > (b) ~/< and (c) ~/= 
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Sections 8.17 u 8.20

25. Find the Fundamental Green’s function in two dimensional space for a stretched
membrane by use of Hankel transform:

-V2g = ~(x - ~)

26. Find the Fundamental Green’s function in two dimensional space for a stretched
membrane on an elastic foundation, whose spring constant is ~, by use of Hankel

transform:

(.v2 + ~)g = ~(x. 

27. Find the Fundamental Green’s function for a vibrating membrane in two dimensional
space by use of Hankel transform:

(-V2- k2)g = ~i(x- 

28. Find the Fundamental Green’s function for a vibrating stretched membrane resting on
an elastic foundation, such that:

-V2g+(7-K2)g = ~i(x- 

(a) 7>z2 (b) 7<~2

29. Find the Fundamental Green’s function in two dimensional space for an elastic plate
by use of Hankel transform:

-V4g = ~(x- ~)

30. Find the Fundamental Green’s function in two dimensional space for a plate on
elastic foundation (~ being the elastic spring constant) such that:

. V4g. ~g = ~(x- ~)

(a) by Hankel or (b) by construction

3 I. Find the Fundamental Green’s function in two dimensional space for a vibrating plate
supported on an elastic foundation under harmonic loading, by use of Hankel
transform, such that:

. ~74g + k4g. ,~g = ~(x- ~)

for (a) k>7 Co) k<7

where y4 represents the spring constant per unit area and k4 represents the frequency
parameter.
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Sections 8.21 -- 8.23

For the following problems, obtain the Fundamental Green’s function by (a) Hankel
transform only, (b) simultaneous application of Hankel on space and Laplace transform
on time, or (c) consWaction after Laplace transform on time. For Laplace transform 
time, let ~i(0 be replaced by ~(t-e), so that the source term is not confused with the initial

condition. Let e --> 0 in the final solution.

32. Find the Fundamental Green’s function for the diffusion equation in two dimensional
space g(x,0, such that:

-~t- ~v2g =5 (x -~) ~(t- ’0 g(x,01~,Z) 

33. Do problem (32) for three dimensional space.

34. Find the Fundamental Green’s function for the wave equation in two dimensional
space for wave propagation in a stretched.membrane:

OZg _2~2_ e 3g (x,01~,.0v s :o ’0 g(x,Ol ,,O = o -ff = o

35. Do problem (33) in three dimensional space.

36. Find the Fundamental Green’s function for wave propagation in an infinite elastic
beam such that:

c2 04g 02g =8 (x- ~) 8(t- g(x,01~,x) = ~.-~g (x,01~,x) = 
- ~ 0t2 at

37. Find the Fundamental Green’s function in two dimensional space for wave
propagation in an elastic plate such that:

02g
= 8 (x- ~) fi(t- g(x,01~,x) = ~ (x,01~,x) = 

2~4-c v g- ~-~-
dt

38. Find the Fundamental Green’s function in two dimensional space for a stretched
membrane on an elastic foundation with a spring constant ~/, such that:

~)2g + ~/’g _ C2V2g = ~ (x- ~) ~5(t- 
g(x,Ol~,1;) = ~ (x,OI~,X) = 

~t2 dt -



CHAPTER 8 534

39. Obtain the solution for Poisson’s equation in one-dimensional space for a
semi-infinite medium:

d2u(x)
dx2 = f(x) x _> 0

with Robin boundary condition:

du(O)
- ~-4- y u(0) = 

40. Obtain the solution for Poisson’s equation in two dimensional space for half space:

-V2u = f(x,z) - oo<x<oo, z>0

with (a) Dirichlet or (b) Neumann boundary contiditions.

Sections 8.24 m 8.34

Obtain the Green’s functions G for the following bounded media and systems, with D
and N designating Dirichlet and Neumann boundary conditions, respectively.

41. Poisson’s Equation in two dimensional space in quarter space:

S1

$2~S ~.- x

-V2u = f(x,z) z, x >_ 0

The boundary conditions are specified in order S 1, $2

(a) N,N (b) (c) N,D (d) D, 

42. Do problem 41 in three dimensions in quarter space:

-V2u = f(x,y,z) x, > 0 -o o < y < oo

43. Helmholtz Equation in two dimensions in quarter space:

-V2U - k2u = fix,z) x, z > 0

same boundary condition pairs as in problem 41.

44. Do problem 43 in three dimensions, same boundary conditions as in problem 41,
where:

-V2u - k2u = f(x,y,z) x, > 0 .oo < y < oo
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45. Poisson’s Equation for eighth space:

IZ

S1 S3 S2

-V2u = f(x,y,z) x, y, z > 0

with boundary conditions on surface:

S1 (xz plane), $2 (xy plane) and $3 (yz plane) given in order S1, 

(a) D,D,D (b) N,N,N (c) D,D,N (d) D,N,N

46. Do problem 45 for the Helmholtz Equation:

- V2u - k2u = f(x,y,z) x, y, z >_ 

47. Poisson’s Equation in two dimensions in a two dimensional infinite strip

z

+L/2 ¯ S1

-L/2 $2

-~72U = fiX,Z) -~o < x < ~ - L/2 < z < L/2

with boundary condition pairs of (a) N, N (b) D, 

48. Do problem 47 in three dimensional space for an infinite layer:

.oo<x,y<oo, _L/2<z<L/2

49. Helmholtz Equation in two dimensional space in an infinite strip, same boundary
conditions pairs as in problem 47.
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50. Do problem 49 for three dimensional space in an infinite layer.

- .0 < x,y < ~,, - L/2 < z < L/2

51. Find Green’s function in two dimensional space for Helmholtz equation in the
interior and exterior of a circular area for Dirichlet boundary condition.

52. Poisson’s Equation in two dimensions in the interior of a two dimensional wedge,
whose angle is r~/3 where:

r_>0, 0_< 0 _< ~/3

0--0

with boundary condition pairs of (a) N-N, (b) 

53. Helmholtz Equation for the geometry in problem 52.
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ASYMPTOTIC METHODS

9.1 Introduction

In this chapter on asymptotic methods, the emphasis is placed on asymptotic
evaluation of integrals and asymptotic solution of ordinary differential equations. The
general form of the integrals involves an integrand that is a real or complex function
multiplied by an exponential. If the exponential function has an argument that can
become large, then it is possible to get an asymptotic value of the integral by one of a
few methods. In the following sections, a few of these methods are outlined.

9.2 Method of Integration by Parts

In this method, repeated use is made of integrations by part to create a series with
descending powers of a larger parameter.

Example 9.1

Consider the integral I(a):

I(a) = ~ n e-ax dx
u

integration by parts resulks in:

I(a)- a e ,u---~ xn-I e-axdx

U

= U e_aU_ n ~xn_1 e_aX dx
a a

U

Repeated integration of the integral above results in:
n un_ k n!

I(a)=e-aU ~ T (n-k)!
k=O

537
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9.3 Laplace’s Integral

Integrals of the Laplace’s type can be evaluated asymptotically by use of Taylor
seres expansion about the origin and integrating the resulting series term by term. Let
the integral be given by:

f(p) = -pt F(t) dt (9.1)

0

Expanding F(t) in a Taylor series about t = 0, F(t) can be written as a sum, i.e.:

’~ F(n)(0) n
F(t)= Z 

n=0

where F(n) is the nth derivative. Integrating each term in (9.1) results in an asymptotic
series for f(p):

oo F(n)(O)
(9.2)f(f~): Z pn+l

n=O

where the Watson’s Lemma was used:

r(v+l)~tv e-pt dt = (9.3)
pv+l

0

and where F(x) is the Gamma function, see Appendix B 

Example 9.2

Consider the following integral, which is known to have a closed form:

I(s’ = ~ el~t dt : ~ eS erfc(’f~)
0

The term (l+t) -1/2 can be expanded in a Taylor series:

(l+t)-i/2=l_t+ 1-3 2 1.3.5t3+...
2 ~ 3! 23

which, upon integration via (9.3) results in:

1 1 1.3 3.5
I(s) t 22 s3

23 s4 ~-s 2 s2 "’"

Equating this expression to the erfc(~f~) one obtains an asymptotic series for the erfc(z):

1.3
~r~ ~s 2s"-~’÷ 22s3 23s4 +""
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z _z2 ~ 1 1 1.3 3-5 ~erfc(z) ~-~-~ e l~---~-z4 - 23 z6
24 z8 ÷...
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9.4 Steepest Descent Method

Consider an integral of the form:

Ic = ~ e0f(z) F(z) (9.4)

C

where C is a path of integration in the complex plane, z = x + iy, f(z) and F(z) 
analytic functions and 9 is a real constant. It is desired to find an asymptotic value of this

integral for large 9. The Steepest Descent Method (SDM) involves finding 

point, called the Saddle Point (SP), and a path through the point, called the
Steepest Descent Path (SDP), so that the integrand decays exponentially along that
path and the integral can be approximately evaluated for a large argument 0. Letting the

analytic function f(z) be defined as:

f(z) = u(x,y)+i v(x,y) (9.5)

then the path of integration is chosen such that the real part of f(z) = u(x,y) has 
maximum value at some point zo. This would maximize the real part of the exponential

function, especially when 19 >> 1. To locate the point z0 where u(x,y) is maximized, the

extremum point(s) are found by finding the point(s) where the partial derivatives 
respect to x and y vanish, i.e.:

~u = 0
,-~-V = 0 (9.6)

Since f(z) is an analytic function, then u and v are harmonic functions, i.e. V2u = 

which indicates that u(x,y) cannot have points of absolute maxima or minima in the
entire z-plane. Hence, the points where eq. (9.6) is satisfied are stationary points,
z0 = x0 + iy0. The topography near z0 for u(x,y) = constant would be a surface that

resembles a saddle, i.e. paths originating from z0 either descend, stay at the same level, or

ascend, see Figure 9.1. To choose a path through the saddle point z0, one obviously

must choose paths where u(x,y) has a relative maximum at o, so that u(x,y) decreases o

the path(s) away from 0, i .e. apath ofdescent from thepoint z 0. Thiswouldmean that

the exponential function has a maximum value at z0 and decays exponentially away from

the SP z0. This would result in an integral that would converge. On the other hand, if

one chooses a path starting from zo where u(x,y) has a relative minimum at z0, i.e. u(x,y)

increases along C’, then the exponential function increases exponentially away from the
saddle point at z0. This would result in an integral that will diverge along that path.

Since Ou/Ox = 0 and ~u/Oy = 0 at the SP z0, and f(z) is analytic at 0, then the partial

derivatives 3v/Ox = 0 and Ov/3y = 0 due to the Cauchy-Riemann conditions. This

indicates that:
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df[I = e’(z0) = 
(9.7)

The roots of eq. (9.7) are thus the saddle points of f(z).
One must choose a path C’ originating from the SP, z0, i.e. a path of descent from z0

so that the real part of the exponential function decreases along C’. This would lead to a

convergent integral along C’ as 0 becomes very large. In order to improve the

convergence of the integral, especially with a large argument 0, one needs to find the

steepest of all the descent paths C’. This means that one must find the path C’ so that the

function u(x,y) decreases at a maximum rate as z traverses along the path C’ away from

z0. To find such a path, defined by a distance parameter "s" where u decreases at the

fastest rate, the absolute value of the rate of change of u(x,y) along the path "s" must 
maximized, i.e. 10u/0sl is maximum along C’. Let the angle 0 be the angle between the

tangent to the path C’ at zo and the x-axis, then the slope along the path C’ is given by:

0u 0y 0u 0u .8u Ou~x+
=~xxC°S0+-- = --sin 0

~s 3x~s 3y~s ~y

To find the orientation 0 where ~u / ~s is maximized, then one obtains the extremum of

the slope as a function of the local orientation angle 0 of C" with x, i.e.:

- ~X-X sin = 0
~0~, ~s) = 0+~cos0

Using the Cauchy-Riemann conditions:

~u ~v ~u ~v
~x ~y ~y ~x

then the equation above becomes:

3v 3v 3v
---sin 0 - _--- cos 0 .... 0 (9.8)

~y ~gx ~s

Integrating eq. (9.8) with respect to the distance along C’, s, results in v = constant along

C’. Thus, the function u(x,y) changes most rapidly on path C" defined by v = constant.

Since the path must pass through the SP at zo, then the equation of the patlh is defined

by:

v(x,y) = V(xo,Yo) = vo (9.9)

Eq. (9.9) defines path(s) C’ from o having the most rapid change in the slope. Thus, eq.

(9.9) defines a path(s) where u(x,y) increases or decreases most rapidly. It is imperative
that one finds the path(s) where the function u(x,y) decreases most rapidly and this path is
to be called Steepest Descent Path (SDP).

To identify which of the paths are SDP, it is sufficient to examine the topography
near z0. Since f(z) is an analytic function at o, then one can expand the flmction f(z) i n a

Taylor series about z0, giving:

f(z) = 0 +al(z - z0) + a2(z- z02 + a3(z- z0)3 + .

where:
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= f(’)(zo)an n!

Dueto the definition of the SP at z0, then the second term vanishes, since:

a1 = f’(zo) = 0

If, in addition, a2(zo) = a3(zo) ..... am(Z0) = 0 also, so that the first non-vanishing

coefficient is am+l, then, in the neighborhood of zo, f(z) can be approximated by the first

two non-vanishing terms of the Taylor series about zo, i.e.:

f(z)= f(z0)+(z-z0) m+l fCm+l)(z0)
(m 

where terms of degree higher than (m+l) were neglected in comparison with the (m+l)st

term. Defining:

f(m+l)(zo) = aeib

(m + 1)!

and the local topography near the SP zo by:

Z - Z0 = r ~i0

then the function f(z) in the neighborhood of the SP can be described by:

f(z) = f(z0) + aeib(rei°)m+l = u0 + iv0 + rm+l aei[(m+l)O+b]

where:

u0 = U(Xo,Y0) v0 = v(x0,Y0)

Hence, the real and imaginary parts of f(z) in the neighborhood of o are, respectively:

u = uo + arm+l cos[(m+l)0+b]

v = vo + arm÷l sin[(m+l)0+b]

The steepest descent and steepest ascent paths are given by v = vo = constant, or:

sin[(m+l)0+b] = 

The various paths of steepest ascent or descent have local orientation angles 0 with the

x-axis given by:
n~ b

0= n=0,1,2 ..... (2re+l)
m+l m+l

Substitution of 0 in the expression for u(0) above and noting that, for steepest descent

paths, uo has a local maximum at zo on C’ and hence, u - uo < 0 for any point (x,y) 

C’, then cos(m0 < 0, indicating that n must be odd. The number of steepest descent paths

are thus (m + 1), and are defined by:

2n+l b
0SD P = ~x-~ n = 0, 1, 2 ..... m

m+l m+l



CHAPTER 9 542

Fig. 9.1

To evaluate the integral over C in (9.4), the original path C must be closed with any
two of the 2m SDP paths C’, call them C~ and C~, each originating from zo. Invoking

the Cauchy Residue theorem for the closed path C + C~ + C~let:

w = f(z0) - f(z) o + ivo)- (u +iv)

The preceding equality can be used to obtain a conformal transformation w = w(z), 
each of the two paths C~ and C~ which can be inverted to give z = z(w). "[his
transformation from the z-plane to the w-plane transforms the original path C as well as
the paths C~,2 to new paths in the w-plane. It should be noted that this conformal
transformation is usually not easily invertable.

Since v = vo on C~,2, then the function w is real on the two SDP C~,2, i.e.:

wlc~,c~ = Uo- u

When z = z0, then w = 0 and when Izl on C~,2 --> 0% w ---> oo, so that the integrals on
C~,2are performed over the real axis of the w-plane, i.e.:

IC~2= fe°If(zo)-w] ~(w)[~ww]dw=epf(z°)fe-0w ~(w) dw (9.10)¯ (dw / az)
0 0

where ~(w) = F(z(w)) and (dw/dz) are complex function in the w-plane, since 
conformal transformation z -- z(w) is complex.

~(w)Expanding (dw/dz"~’~ in a Taylor series in w about w = O, then:

~(w) 
= Z ~n wn+V

(9.11)
(dw/dz)

n=0
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where v is a non-integer constant, resulting from the derivative dw/dz.

It should be noted that the slope dw/dz has a different value on C~ and C[.

Substituting eq. (9.11) into eq. (9. I0), integrating the resulting series term by term, 
using Watson’s Lemma in (9.3), the integral in (9.10) becomes:

Ic[2 ~ ePf(z°) Z ~n F(n + v + 1)
9n+v+l

(9.12)

n=0

Note that Ic~ and Ic~ have different series based on the path taken. Thus, if C is an

infinite path, and one must close it with an infinite path, then two paths C[2 must be

joined to C, resulting in:

IC = Ic~ - Ic~ + 2hi [sum of residues of the poles between C+ C~+ C~] (9.13)

The sign for the residues depends on the sense of the path(s) of closure between C, C~,

and C~, which may be clockwise for some poles and counterclockwise for other poles.

The paths C~ and C~ start from w = 0 and end in w = ~ along each path, so that the sign

assigned for C~ is negative.

9.5 Debye’s First Order Approximation

There are first order approximations to the integrals in eq. (9.10). Principally, these
approximations assume that the major contribution to the integral comes from the section
of the path near the saddle point, especially when 13 is very large. This means that the

first term in eq. (9.12) would suffice if 13 is sufficiently large. To obtain the first order

approximation, one can neglect higher order terms in ~(w) and (dw/dz) in such a way 

a closed form expression can be obtained for the first order term. Thus, an approximate
value for w can be obtained by neglecting higher order terms in w:

w= f(z0)- f(z) =-(z- m+l f(m+l)(zo)
(m + 1)!

(9.14)

Thus, for z near z0, the conformal transformation between w and z can be obtained

explicitly in a closed form by the approximation:

1/(m+l)
(m + 1)!

w1/(re+l) = Jew]1/(re+l) (9.15)(z-z0) = f(m+l)(zo)

where the complex constant c is given by:

(m+l)!
C= f(m+l)(z0)

Note that the (re+l) roots have different values along the different paths C~n.

Differentiating this approximation for z with respect to w results in:

dz cl/(m+l)w-m/(rn+l)

dw m +1



CHAPTER 9 544

Similarly, the function F(z) can be approximated by its value at z0:

F(z) -- F(zO

Thus, the integrals Ic;,c~ become:

el/(re+l) ePf(zo)F(z0)
OO

f e-pw W-m/(m+l) dwIC;’C~ m + 1
0

c~/(m+l)r(1/(m + 1)) epf(z°

Ic~ ,C; m + 1 pl/(m+l) (9.16)

The first order approximation to the integrals in (9.4) is thus given by:

Ic ,. Ic; - Ic~

I"((m + 1)-I)F(zo)ePf(zo)Ic(m+l)_, [ _ c(m+l)_, [ }
(9.17)

(m + 1) p(m+1)-’ [. ionCi IonC~

where the residues of the poles were neglected. Eq. (9.17) represents the leading term 
the approximation of the asymptotic series. Note for m = I, the two roots of c are
opposite in signs and hence the expression in the bracket is simply double the first term
in the bracket, i.e.:

~p.~pf(z°) ,/I c = F(zo) 2n/( (m = 1)-f (Zo)) (9.18)

Example 9.3

Obtain the Debye’s approximation for the factorial of a large number, known as
Sterling’s Formula. The Gamma function is given as an integral:

F(k+ 1) = k e- t dt

0

When k is an integer n, F(n+l) = n!. To obtain a Debye’s approximation for the

asymptotic value for a large k, the integrand must be slowly varying. This is not the
case here as the function tk becomes unbounded for k large. Furthermore, the exponential
term does not have the parameter k in the exponent. Let t = kz, then:

F(k+l)=k k+l e-kZzkdz=k k+l ek(logz-z) 

0 0

For the last integral, F(z) = 1 and:

f(z) = log (z)- 
The saddle point zo is derived from f’(Zo) = 1 - 1 = 0,so that thesaddle point is

located at Zo=+l. Evaluating the function in the expression (9.18) gives:

f(zo) = f(1) = -1, f"(Zo) = -1 in
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®

Saddle Point

Figure 9.2 Steepest descent and ascent paths for Example 9.3

therefore:

a=l and b=~.

Since f"(Zo) # 0, then the saddle point is of rank one (m -- 1) and hence the SDP in 

neighborhood of zo make tangent angles given by:

2n+ 1 x
0SD p = ~ ~- ~ n = 0, 1

2 2

=0,~

The SDP equation is given by v = vo = constant. The function f(z) = log (z) - z can 

written in terms of cylindrical coordinates. Let z = rei°, then:

f(z) = log(r) + i0 i°= log(r) - r c os0 + i (0 - r sin

Here:

u = log (r) - r cos0

v = 0 - r sin0

The saddle point zo = 1 has r = 1, 0 -- 0 and thus vo = 0. The equation of the SDP

becomes:

v= 0- r sin0 = vo= 0

or:
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0
sin 0

The four paths are shown in Figure 9.2.
It can be seen that in the neighborhood of the saddle point zo = 1, the pa~ts 0SDP = 0,

x are paths "1" and "2", so that paths "3" and "4" are the steepest ascent paths.. Path "2"

extends from z = 1 to 0 and path "1" extends from 1 to oo. It turns out that the original

path on the positive real axis represents the two SDP’s, so that there is no need to deform
the original path into the SDP’s. The leading term of the asymptotic series for the
Gamma function can be written as (9.18):

F(k+ 1) = k+l e-k~/-~ = e-k kk+I/2
IK

Example 9.4

Find the first order approximation for Airy’s function defined as:

Ai(z>: cos(s3/a+sz)ds = ~ exp i(s3/a+sz ds

0

To obtain an asymptotic approximation for large z, the first exponential terms is also not
a slowly varying function. To merge the first exponential with the second, let s = ~ t:

Ai(z) "~- ~exp[iz3/2(t3/3 + t) ] dt

Letting x = z3/2 one can write out the integral as:

_ 1/3 oo

Ai(x2/3) = -~-~ ~ exp[ix(t3/3 + t)] 

One can evaluate the first order approximation for large x. In this integral F(t) = 1 and

f(t) -- i (t3/3 + 

The saddle points are given by f’(t o) = i (to2 + 1) = 0 resulting in two saddle points,

to = +i. To map the SDP:

f(+i) -2
3

f"(+i) =-T-2 

Here b = 2 and 0 = ~ for to = +i and 0 = 0 for to --- -i. It should be noted that since

g’(to) ~ 0, m = 1 for both saddle points. Letting t = ~ + i~l, then the SDP path equations

for both saddle poinls are given by:

v(~,rl) = Im f(t) = ~3/3- ~1 + ~ : v0(~0,~10) = v0(0,+l) : 
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Figure 9.3 : Steepest descent and ascent paths for Example 9.4

The paths of steepest ascent or descent are plotted for to = +i (paths 1-4) and for to = 
(paths 5-8), see Figure 9.3.

For the SP at to = +i, path "3" extends from i to ioo and path "4" extends from i to
-ioo. For the SP at to = -i, the path "5" extends from -i to -ioo and path "6" extends from

-i to ioo. It should be noted that path "4" partially overlaps path "5" and path "3" partially

overlaps path "6". For the SP at to = +i, f"(+i) = in, sothat thesteepest descent paths
near to = +i make tangent angles given by:

2n+l r~
espy = --~--~- ~ = 0,r~

Thus, the SDP’s for to = +i.are paths "1" and "2" having tangent angles 0 and n, while
the paths "3" and "4" are steepest ascent paths. For to-= -i, f"(-i) = +2, so that the SDP
make tangent angles r~/2 and 3rd2 near the saddle point to = -i.

Since there are two saddle points, one can connect the original path (.oo,,,o) to either
paths "1" and "2" through to = +i or "5" and "6" through to = -i. Considering the second
choice, the closure with the original path with "6" and "5" through to = -i, requires going

through to --- i along paths "3" and "4" which were steepest ascent paths for to = +i.
Thus, this will result in the integrals becoming unbounded. Thus, the only choice left is
to close that original path (_oo,oo) through to = +i by connecting to the paths "1" and "2"
by line segments L1 and L2. To obtain a first order approximation, then:
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xl/3 1.
~f

-1/6
=--. eX(_2/3) 2r~ _ x_ __ e_2X/3Ai(x) 

-(--~x) 4~/~

so that:

Ai(z)= z-’/4 ( 2/3]-~--~ exp--~

9.6 Asymptotic Series Approximation

To find an asymptotic series approximation for an mth ranked SP, one can return to
the Taylor series expansion for the functions within the integrand in (9.10). 
approximation to the asymptotic series (9.10) can be obtained using an approximation for
the derivative dz/dw. Letting:

w = f(zo)- f(z)

_ (z-Zo)m+l I1 + (z-z°)f(z0)(m+2)
cL m+2 f(z0)(m+l)

(z- Zo)2 f(Zo)(m+3) 1
(m+2)(m+3) f(zo)(re+l) 

then:

dW_dz (m+l)c (z- z0)m I1 + (z- Z°)m f(z0)(m+2)f{z0~(m+l)~, )

(9.19)

(Z-Zo) 2 f(zo) (m+3) ]

+ (m+l)(m+2)f(zo)(m+l) 

(9.20)

In the neighborhood of z = z0, then, using the expression for z - z0 in eq. (9.15), one obtains:

dw m + 1 m/(m+l) wl/(rn+l) w2/(m+l)
d’-’~- = ~w [bo +bl +b2 +...]

oo
(m+l) .m/(m+l)

= ~ w Z bnwn/(m+l)
n=O

where:

bo= 1

C(m+2)/(m+l) f(zo)(m+2)
bl =-(m+l)(m+l)!

b 2 =-

b3 =

c(m+3)/(m+l)

(m + 1)(m + 2)(m + 1)! f(z°)(m+3)

C(m+4)/(m+l)
f(z0)(m+4)(m + 1)(m + 2)(m + 3)(m 
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Also, the function F(z) can also be expanded in a Taylor series as follows:
oo F(n)(zo) n/(m+l) wn/(m+l)

F(z)=z_, ~ F(nXz0)n! (z-z0)n --- E n!
0 0

so that the integrand of eq. (9.10) becomes:

~ F(n)(zo) cn/(m+l) 1)

F(z)--~cl/(m+l) w-m/(m+l) n = 

where:

m+l

C1/(m+l) -m/(m+l) ~_~- w
ra+l

E bn wn/(m+l)
n=O

dn wn/(m+l)

n=O

do = F(zo)

(9.21)

dl= -bl F(z0)+ cl/(m+l) F~(z0)

d2 = (bl 2 - b2) F(z0)- 1 F’(z 0) c1/(re+l) +F"(z0) c2 /(m+l)
2!

Substituting eq. (9.21) into eq. (9.10) one obtains:

cl/(m+l)
Ici,c; = ePf(z,)

m+l E dn ~ e-PWw(n-m)/(m+l) 
n=0 0

F( n+l 
= epf(zo) C~/(m+I)~ dn k ra + 1) (9.22)

ra + 1 z~ p(n+l)/(m+l)
n=0

It should be noted that the first term in the asyraptotic series (9.22) is the same one given
in eq. (9.16). The expression in (9.22) is useful when a siraple relationship z = 
cannot be found, and thus the expansion in (9.11) is not possible.

Another lransformation that could be used to make the integrands even that would
elirainate the odd terms in the Taylor series expansion is given by:

1 2
~ y = f(Zo)- f(z) 0 - u realon C’ (9.23)

In addition, the integration over the two paths C’ could be substituted by one integral over

(-oo m +~,). Thus:

ic ’ = 2ic, = epf(z,) f e_pya/2 ~(y) 

(dy/dz)
(9.2A)
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Expanding the integrand in a Taylor series, and retaining only the even terms since the
odd terms will vanish gives:

~(Y) = ~ ~2n y2n+2v (9.25)
(dy/dz) n=0

where v is a non-integer constant.

Thus, the integral over the entire length of the steepest descent path (2~c,) Can

be obtained as follows:

~C’----2Ic ’--epf(zO) ~ ~2n S e-PY’/2 y2n+2v dy

n=O -oo

: epf(z°) S’ F(2n + 2v+_l) (9.26)

Example 9.5

Obtain the asymptotic series for Airy’s function of Example 9.3. Starting with the
integral given in Example 9.3 then the transformation about the saddle point at t0=+i is

given by:

w = f(to) - f(t) = -2/3 - i (t3/3 + t) = (t - 02 - i (t 

The preceding conformal transformation between t and w can be inverted exactly, since the
formula is a cubic equation. However, this would result in a complicated transformation
t = t(w). Instead, one can try to find a good approximation valid near the SP at o -- i .

To obtain a transformation from t to w, we can obtain, approximately, an inverse
formula. Let the term (t- i) be represented by:

t-i=
[1- i(t- i)/3]1/2

Again, since the integral has the greatest contribution near the saddle point, then one may
approximate the term (t - i) by:

t-i-- +-J-~

Substituting this approximation for (t - i) in the denominator of the formula above, one
can obtain the approximate conformal transformation from t to w:

t- i ~- 1/2

The +]- signs represent the transformation formula for the paths "1" and "2’" of Figure
9.3. Expanding the denominator in an infinite series about w -- 0, one obtains:

~, (_.+1)" 
t- i

n=l
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The derivatives dt/dw can be obtained readily:

dt =. 3 2 (+l)n in-1 F(3n/2-1) wn/2-1
aw 2 (n- 1)! r(n/2) n

n=l

The product of F(w) = 1 and dt/dw can be substituted in the integral (9.10). The integrals
require the evaluation of the following:

r(n/2)~e-XWw"/2-l aw = xn-~
0

Thus, the two integrals on paths "1" and "2" are given by:

3xl/3 o. (+1)" r(3n/2-1)
e-2X/3

~ ~"~_-1)!3 n xn/2~c~,c~ = 4-’-~
n=l

x_l/6
o~ (+l)n+1 in r[(3n + 1)/2]

= ~ e-2X/3 E4n n! (9x)n/2
n=0

Therefore:

at 3 o. (__.1)" i "-1 F(3n/2-1) wn/2-!
d-~" = 7 E (n _ ~’) ~’ff

The product ofF(w) = 1 and dt/dw can be substituted in the integral (9.10). The integrals
require the evaluation of the following:

_ v(n/2)~e-XWwn/2-1 dw - xn-~2-/

0

Thus, the two integrals on paths "1" and "2" are given by:

3x~/3 e_2~/3 ~. (+1)n F(3n/2-1)
I¢;’c~ = 4"--~" --- (n- 1)! n x

n=l

= x-1/~6 e_2X/3 ~ (+1)n+l i n F[(3n+l)/2]
4r~ n! (9x)n/2

n=O

Therefore:

I c=Ic~-Ic; =
x-l/6 e-2X/3 ~ [1-(-1)n+l]i n r[(3n+ 1)/2]

4~x " n! (9x’~n/2
n=0

Rewriting the final results in terms of z and simplifying the final expression gives:

Ai(z)= z-l/4 exp[-2zM2/3] 2 (-x)m r(3m+l/:Z)
2~ (2m)! (9z3/2)m

m=0
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9.7 Method of Stationary Phase

The Stationary Phase method is analogous to the Steepest Descent method,
although the approach and reasoning for the approximation is different. Performing the
integration in the complex plane results in the two methods having identical outcomes.
Consider the integral:

I(p) = ~ F(z) ipf(z) dz (9.27)

C

where f(z) is an analytic function and F(z) is a slowly varying function. Thus, 

becomes larger, the exponential term oscillates in increasing frequency. Since the
exponential can be written in terms of circular functions, then as p increases, the

frequency of the circular functions increases, so much so that these circular functions
oscillate rapidly between +1 and -1. This then tends to cancel out the integral of F(z)
when p becomes very large for sufficiently large z. The major contribution to the integral

then occurs when f(z) has a minimum so that the exponential function oscillates the least.
This occurs when:

f" (Zo) = 

where z0 (xO, Yo) is called the Stationary Phase Point (SPP). Letting f(z) = u + 

then:

eip f(z) : e-PV eipu

If F(z) is a slowly varying function, then most of the contribution to the integral comes
from near the SPP z0, where the exponential oscillates the least. Expanding the function

f(z) about the SPP z0:

f(z) : f(Zo) ~/2 f"(z0) (z-z0)2 +..
and defining:

w = f(z)- f(zo) =- 1/2 f" (z0) (z-z0)2- 

then the integral becomes:

f F(z(w)) wI (p) = eipf(z*) ~, (dw / dz) (9.28)

where C" is the Stationary Phase path defined by v = constant = vo and vo = V(xo,Y0).

This is the same path defined for the Steepest Descent Path. For an equivalent Debye’s
first order approximation for m = 1, let:

w = - ~ f"(Zo) (z o )2

dw / dz --- -f"(Zo)(Z - zo) = ~

F(zo) = F(z(w=0))

then the integral in (9.28) becomes:
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"~ e-ip w eipf(z.) F(zo) 2~ ein/4
I(p) --- ipf(z°) F(Zo) ~~ dw (9.29)

9.8 Steepest Descent Method in Two Dimensions

If the integral to be evaluated asymptotically is a double integral of the form:

I= ~ ~ F(u,v)ePf(u’V)dudv (9.30)

then one can follow a similar approach to Section 9.4. The saddle point in the double-
complex space is given by:

3f 0 and 3f

which defines the location of saddle point(s) (us,vs) in the double complex space.

Expanding the function f(u,v) about the saddle point us,vs by a Taylor series, and

neglecting terms higher than quadratic terms, one obtains:

f(u,v)
1 2

= f(us,vs)+-~[all(U-Us) + 2a12(U-Us)(V-Vs)+a22(v-vs)2]+...

Making a transformation about (Us,Vs) such that:

½[blX2 + b2y2] = f(Us,Vs)-f(u,v)

results in the transformation:

all (u - Us )2 + 2 al2(U - Us X v s )+ a22(v- vs )2 = _blX2 _ b2y

which is made possible by finding the transformation:

u- us = rllX + rl2Y

v- vs = r21x + r22Y

where the matrix rij is a rotation matrix, with r12 = -r21. Thus:

dx dyI= ~ ~ e@(U’")-b’x’t2-b2Y’/2l P(x,y)(dx/du)(dy/dv) (9.31)

Expanding the integrand into a double Taylor series:

P(x,y)= Fnm x2n+2v y2m+2~

(dx/du)(dy/dv) m = 0 n 

where v and 2, result from the derivative transformations, then one can integrate the series

term by term, resulting in the asymptotic series:
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m=0n=0 -oo

f y2m+2v e-PbzY2/2dy

=elgf(us’vs) 2b’~l~2n~0m~= =0 Fnm r(2n+ 2v+ 1)F(2m + 2~ + 
pn+m+v+~+l bnbml 2 F(n + v)r(m + 

(9.32)

9.9 Modified Saddle Point MethodlSubtraction of a Simple Pole

The expansion of a furiction by a Taylor series about a point has a radius of
convergence equal to the distance between that point and the closest singularity in the
complex plane. This is generally true for the transformations of the type given in eq.
(9.10) and primarily due to the factor (dw/dz). Thus, the series expansion given in (9.11)
or (9.21) about the saddle point would not be valid for an infinite extent, so that the
integrations in (9.10), (9.12) and (9.16) cannot be carried out to ±o~. The closer 
singularity comes to the saddle point, the shorter the radius of convergence and, hence,
the larger value of p for which the asymptotic series can be evaluated. To alleviate this
problem, few methods were devised to account for the singularity in the function F(z) and
hence extend the region of applicability of the asymptotic series.

One method would subtract the pole of the singular function F(__z) and expand the

remainder of the function in a Taylor series. Letting the function ~ = G(y) 
dy/dz

(9.25), then the integral in (9.24) becomes:

~ ~ _py2 /2,~.I = e°f(zo) G(y) uy (9.33)

Let the function F(z) have a simple pole at z = 1, then the function G(y) have asimple

pole at y = b corresponding to the simple pole at z -- z1. The Laurent’s series for G(y) can

then be written as:

a
G (y) :’~ + g(y)

where the location of the pole at z = zI or y = b is given by:
b :~r~ ;f(z0) - f(zl)

and
a = Lim(y- b)G(y) (9.34)

y-->b

is the residue of G(y) at y = b. The function g(y) is analytic at y = 0 and at y -- b, so 
a Taylor series expansion is possible, whose radius of convergence extends from zero to
the closest singularity to y = 0 farther than that at y = b. Thus, the range of validity has
now been improved by extending the radius of convergence to the next and farther
singularity. Of course, if no other singularity exists, g(y) has an infinite radius 
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convergence. Expanding the function g(y) in a Taylor series in y, the integral in equation
(9.33) becomes:

I = ef(z°) a ~ dy + epf (z*
g2n y2n e-py2/2d y (9.3.5)

y-b

where the odd terms of the Taylor series were dropped because their integral is zero and:

1 d2ng(0)
g2n = (2n)! 2n

The second integral in (9.35) gives the same series as in eq. (9.26) wi~h g2n substituting

for F2n and v = 0. The first integral can be evaluated by letting:

oo e_py2/2 oo e_pY2/2

A(p,b)=a ~ y_------~dy=ab ~ y _--~-~dy (9.36)

The above expression resulted from splitting the integrand as follows:

a a(y+b) ay + ab-- y2-h2 y2-h 
whose first term integral, being odd, vanishes. Differentiating (9.36) with 

d_.~A = _ab f y2 ab 2

dp 2 y2 - b2 e-Py~I2dy = -~- 1 + e-py /2dy

~
b2 ab ~

- b22 A(p,b)--~ e-Oy2/2dy=-~-A(p,b)--~-

Thus, a differential equation on A(p,b) results, i.e.:

d__A + bZA = _ab~-p_l/2
(9.3"/)

dp 2

Letting:

a(b, 0) -- e-0u2/~B(b, (9.38)

then B(p,b) satisfies the following differential equation:

There are two methods that can be employed to obtain an expression for B(b,p).

Following Bafios, the function B(b,p) becomes:

B(b,p) = B(b,O) - ab~J-~
eb~t/2

J ~ dt : B(b,0)-irma erf(-ib.~)
0

(9.39)
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provided that Re b2 > 0, or equivalently -~t/4 < arg b < ~t/4, and:

A(b,19) -ob2,2 .
=e [B(b,0)-,~a erf(-ib~/-~)] (9.40)

To find B(b,0), let 19 = 0 in eqs. (9.36) and (9.40), so 

~ dy 1 1
A(b,0)=B(b,0)=ab yS_-b2 =a y-b dy

=alo~Y-b~ =_a Lim lo~Y- b~
~y+b) 0 y~0 .~y+b)

=~iga 0<argb<g/4 or 0<argb2 <g/2

(-i~a ~ / 4 < arg b < 0 or - n / 2 < arg b2 < 0

Thus:

A(b, 9) = ~ P 1 - eft -ib for 0 < arg b < ~/4

A (b,~) = -~ P l+eff -ib for -~/4 < arg b < 0 (9.41)

where P is the residue of the function A at y - b in (9.36) given by:

P = 2nia e-pb~/2 (9.42)

The two expressions given in (9.41) can be written in one form as:

A(b, 0)= ~effc (-ibm) - P H(-arg 2) (9.43)

where arg b2 was substituted for arg b, since both ~e equivalent. Thus, the asymptotic
series given by eq. (9.35) is given in full by:

I-cOl(z°) effc(-ib~)-PH(-argb2)+~ ~=0Z g2n 0n~ii[/ (9.44)

If [b[ ~ >> 1, then the first order approximation of the asymptotic value of eq. (9.44)

becomes:

I ~ ~ e°f(~,)(-& + g,q = .~ e°f(Zo)G(0)for IbiS>> 1 
~o k b ")

Felsen and Marcuvi~ present a different metko~ of evaluation of tke i~tegral for B(b,~) 

eq. (9.30). St~ing with eq. (9.36) and (9.20):

~ e_9(y~_bZ)/2
B(b’o) : e ob=/2A(b’D) = ab I y2_b2 

then one can express the denominator as an integral as:
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-ooLp J

where the condition for existence of the integral is:

Re b;Z<0

Separating the integrals above, results in:

B:ab~ e+b’~‘2 e-~Y’/2dy drl = ab~ J--~ drl (9.46)

p L-~o J p

The integral in eq. (9.46) becomes:

B(b,p) : an ~ib erfc (+ib,f~7~) (9.47)

where the sign is chosen so that the complementary error function converges, i.e.:

Re (Tab) > 

Thus, the positive sign is chosen when Im b < 0 and the negative sign is chosen when
Im b > 0. This results in:

B(b,p) = +aria erfc(~ib lm b <> 0 (9.48)

Since effc (x) = 2 - effc (-x), then:

ina erfc(-ib~) In b > 0

B(b,p) = ina erfc(-ib~) - Im b < 0 (9.49)

Finally, the resulting expressions for A can be written as one:

A(b,p) = ~erfc(-ib p~) - PH(Im (9.50)

The condition that Im b X 0 is equivalent to the condition arg b ~ 0 or arg b2 > 0< ¯

Another method suggested by Ott for the evaluation of integrals asymptotically when
the saddle point is close to a simple pole is the factorization method. Essentially, the
integrand in eq. (9.33), G(y), is factored as an analytic function h(y) divided by (y 
i.e.:

I= e0f(z°) ~ h(Y--~-) e-PY2/2dy (9.51)y-b

Expanding the analytic function h(y) in a Taylor series about y -- b, i.e.:

h(y)-= hn(y-b/°
n=0

then, the integral becomes:
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I~ePf(Zo) ~ yh~_°be-PY2/2dy+ePf(z0) ~ hn+l ~(y-b)ne-PY2/2dy
--oo n=0

The first integral was developed earlier in eq. (9.43). The integrals in the series can 
integrated term by term. The final form of the asymptotic series becomes:

I ~ eof(z°), oo E(n/2) bn_2k
(9.52)

+ 2,~" ~ (-1)n(n[)hn+l k~ (n-2k)!k!2k

n=0 =0 "

where P = 2~i h(b) and the symbol E(n/2) denotes the largest even integer less than 

The expression in eq. (9.52) has a complementary error function just as that given 
(9.44). However, the asymptotic series in (9.44) depends on the large parameter p only,

while the series in (9.52) depends further on the location of the pole with respect to the
saddle point. This is not usually desirable, because the radius of convergence of the series
in (9.52) depends on the pole location given by "b".

9.10 Modified Saddle Point Method: Subtraction of Pole of
Order N

If the function G(y) in eq. (9.33) has a pole of order N, then one can expand 
function G(y) in a Laurent’s series as follows:

a-N ~ a-N+l + .., + ~ + g(y) (9.53)G(y)= (y_b)N (y_b)N_l

where g(y) is an analytic function at y = b. Define:

o~ e_py2/2 1 d A ’ ,b"

A_k(p,b)= ~ ~y-~)~ dy=~--~"~ -k+l[P ) k=2,3 .... (9.54)

Recalling the expressions in eqs. (9.38) and (9.47) one obtains:

then:

~o e_py~/2

A-1 : ~ (y-b)~ dy = +ir~e -pb~/2erfc (~ib p,f~)

A_2 = ~ A_1 = +ir~e-Pb /2 -pb erfc Tib
+ erfc -TAb

Since:

2 7 -y~
erfc (x)= -~ J dy

x

then:
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A_2 : -2x/~ -Y-i~bpe-0b~ ‘2erfc (-Y-ib.~’): -2~ -pb 1 (9.55)

Likewise, A.3, A.4, etc. can be computed by a similar procedure. It should be noted that

if Ibl~ >> 1, then the asymptotic value of erfc (x) gives:

2~1
A_2 --~ b2

which is of the same order as A_1 given in eq. (9.45).

9.11 Solution of Ordinary Differential Equations for Large
Arguments

In chapter 2, the solution of ordinary differential equations for small arguments was
presented by use of ascending power series: the Taylor series for an expansion about a
regular point or the Frobenius series for an expansion about a regular singular point.
Both of these series solutions converge fast if the series is evaluated near the expansion
point. To obtain solutions of ordinary differential equations for large arguments, one
needs to obtain solutions in a descending power series. To accomplish this, a
transformation of the independent variable ~ = 1/x is performed on the differential equation

and a series solution in ascending power of ~.

9.12 Classification of Points at Infinity

To classify points at infinity, one can transform the independent variable x to ~, so

that x = ,,o maps into ~ = 0. Letting ~ = I/x, the differential equation (2.4) transforms to:

d2y~ [2~-al(1/~)]dy . a2(1/~) (9.56)
d~2 ~2 d~ ~"

Classification of the point ~ = 0 depends on the functions al(x) and a2(x):

(i) ~ = 0 is a Regular point if:

al(x) = 2x-1 + p_2x-2 + p_3x-3 + ...

a2(x) = q_4x-4 + q_sx-5 + q_6x-6 + ...

The solution for a regular point then becomes a Taylor solution:
OO OO

y(~)= ~ an~n or y(x)= ~ x-n

n=0 n=0

which is a descending power series valid for large x.
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(ii) ~ -- 0 is a regular singular point if:

al(x) = p.1x-1 + p.2x-2 + p.3x-3 + ... (p_~ ~ O)

a2(x) = qo + q-ix’l + q-2x’2 +... (qo # 0)

While solutions for finite irregular singular points do not exist, an asymptotic solution of
the following type exists:

y(x)-e ax ~ anx- n-°

n=0

The asymptotic solution approaches the solution for large x.

(iv) ~ = 0 is an irregular singular point of rank k, 

al(x) = pk_lXk-1 + Pk.2Xk-2 + ... k _> 1

a2(x) = q2k_2x2k-2 + q2k.3x2k-3 +... k > 1

where k is the smallest integer that equals or exceeds 3/2.
For asymptotic solutions about an irregular singular point of order k >_ 2:

OO

y(x) - ¢°(x) ~ anx-n-O

n=O

where:

s
¢.O(X) = ~ ~jXj S < k

j=l

a2(x) = q-2x’2 + q-3x’3 + q-4x’4 +--- (q-2 # O)

The solution for a regular singular point takes the form:

y(~)= ~ an~n+° or y(x)= x-n-°

n=0 n=0

Again the solution is in descending powers of x valid for large x.

(iii) ~ = 0 is an irregular singular point if:

al(x) = Po + P-Ix’l + P-2x’2 + ... (Po ;e 0)
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Example 9.~i Classify the point ~ = O for the following differential equations

(i) Legendre’s equation

(1 - 2)y’’-2x y’ +n(n +1)y = 

-2x n(n + 1)
al(x) a2(x) = 

l_x2 1-x2

n

al(x ) 2 1 2 ,~ (~1"] 2 
x 1-X~ x n_/~_ot.X2.) =7"i-x-’-~"

n

a2(x)= x2i(ln+l) - n(n+l) )_,j/x~)     x2= ~

This means that ~ = 0 is a regular singular point

n(n+l) n(n+l)
x2 x4

(ii) Bessel’s equation

x2y,,+xy, +(x2 _ p2)y = 

_ _p2al(x) =xl a2(x) = 

This indicates the point { = 0 is an irregular singular point of rank k = 1.

9.13 Solutions of Ordinary Differential Equations with
Regular Singular Points

If the point ~ = 0 is a regular singular point, then one may substitute the Frobenius

solution having the form:

Y(~)= Z an~n+~
n=0

y(x)= Z anx-n-o

n=0

Example 9.7

Obtain the solution for large arguments of Legendre’s equation:

(1 - x2)y"-2 x ’ +n(n +1)y = 

The point ~ = 0 is RSP, then assuming a Frobenius solution, one obtains
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For

-ao(o + n)(o - n - 1)x-° - al[(O + n + 1)(o - n)]x-°-1

+ E [-(°+m+n+2)(°+m-n+l)am+2+(°+m)(°+m+l)am]x- m- °-:z=0
m=0

ao#0 Ol=-n or2 =n+l

aI =0

(or + m)(cr + m + 
am+2 = (o+ m + n + 2)(0 + m - n + am m = 0,1,2...

For ~r1 = -n, the fh’st solution’s coefficients are:

(m - n)(m - n + 
am+2 = (m + 2)(m - 2n + am

n(n-1)
a2 = 2(2n-1) a° a4 =

n(n- 1)-.... (n - 
a6 = 233! (2n- 1)(2n- 3)(2n- a°

m=0,1,2 ....

n(n - 1)(n - 2)(n o
222! (2n - 1)(2n - 

when m = n, an+2 = 0 and hence an+4 = an+6 = ... = 0. Therefore:

I n(n-1) x-2+n(n-1)(n-2)(n-3)x-4 ] >1Yl=a0 x+n 1 2"~n--~ ~ii~n-~)(-~n--"~ -b .... -b( )X-n

It can be shown that Yl is a polynomial of degree n, which is also identical to Pn(x).
Hence, it is valid for all x.

For o2 -- n + 1, the second solution’s coefficients are:

(m+n+l)(m+n+2)
am+2= (n+2)(m+2n+3) am

(n+l)(n+2)
a2 = 2(2n + 3) 

(n + 1)..... (n + 
a6 = 233! (2n + 3)(2n + 5)(2n 

The second solution can thus be written as

= a0 x_n_lF1 + (n + 1)(n 2)x_2-~Y2
2(2n + 3)

m =0,1,2 ....

(n + 1)(n + 2)(n + 3)(n 
a4 = ao

222! (2n + 3)(2n + 

ao

(n+l).,...(n+4) x-_4+.,.,]

222! (2n + 3)(2n + 

The second solution should be the representation for Qn(x) for Ixl > 1. Letting:

n!
a0 =

1.3.5.....(2n+ 1)

results in a descending power series solution for Qn(x) for x > 

x>l
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(n+ 1).....(n +4) x._4 +...}

n!x-n-2 (n + 1)(n+ 2) 2 +

Qn(X)=l.3~+l) 1+ 2(2n+3) 222!(2n+3)(2n+5)

9.14 Asymptotic Solutions of Ordinary Differential Equations
with Irregular Singular Points of Rank One

If the ordinary differential equation has an irregular singular point at x = ,~ of
order k = 1, then an asymptotic solution can be found in a descending power series.
Starting out with form of the ordinary differential equation:

y" + p(x)y’ + q(x)y 

For k =1, then:

+ q.Ak+ q_~_2 + qo¢Oq(x)=q0 x 2 " ’"

+ P_L+ P__L~ +p(x) = P0 x x 2 "’" P0 ¢ 0

one can transform this ordinary differential equation to a simpler more manageable
equation by transforming the dependent variable y(x):

y(x) = u(x) exp (-lfpdx)
\ 2 

which transforms eq. (9.57) to:

u"(x) + Q(x) u(x) 
where:

1 , p2(x)
Q(x) = q(x)- -~ p (x) 

Thus Q(x) has the form for k = 1 as:

1 2 + ___ +(q2 

= Qo + Q1x-1 + Q2x-2 + .... ~ Qnx- n

n=O

(9.57)

(9.58)

9.14.1 Normal Solutions

For k = 1, try an asymptotic solution with an exponential function being linear in x, i.e.:

u(x) ~ °~x Zanx-n -°" (9.59)

n=O

Substituting into eq. (9.58) results in a recurrence formula:



CHAPTER 9 564

(~2 +Qo) an +[Q1-2~(~ + n-l)] an-1 +[Q2 +6+n-2]an-2
k=n

+ E Qk an-k =0

k=3

If Q0 * 0, then for n = 0:

(o)2 +Qo)a0 

since a0 ;~ 0, then:

o)2 + Qo = 0
o)1 = i~o o)2 = -i~o (9.60a)

This means that the first term of eq. (9.60a) vanishes for all n when o) is equal to COl 

¢oz. Forn=l:

[Q1 - 2~] a0 = 0

which results in the value for ¢r since a0 ~ 0

~= Q~I or ~1 = Q~I and if2-Q1 (9.60b)
2o) 2o) 1 2o)2

For n = 2:

(Q2 + ~Yl,2 )
a1 = ao

2o)1,2

For n>_ 3: with ¢Yl, ¢r2, o)l, o)2 given above, the recurrence formula become.,;:

n

2o)l,2(n-1)an-1 =[Q2+CYl,2+n-2] an-2+ E Qk an-k n>3 (9.61)
k=3

It should be noted that both normal solutions are called Formal Solutions, i.e. they
satisfy the differential equation, but the resulting series in general diverge. However,
these solutions represent the asymptotic solutions for large argument x.

Example 9.8 Asymptotic solutions of Bessel’s equation

Obtain the asymptotic solutions for Bessel’s equation of zero order satisfying:

y"+ly’+y = 0

This equation was shown to have an irregular singular point of order k = 1. Transforming
y(x) to u(x) the ordinary differential equation becomes:

y = x-~u(x)

u"+ 1+ u=0

Here Qo =1, Q1 =0, Q2 = 1/4, and Q3 = Q4 ..... O.
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Thus:

o~2 = -1 co1 = +i 602 = -i ffl = 0

1 (¼+n_2)an_2
al_ ~-_

1 and
an_1 =2co 86o’ 2~o(n - 1)

Therefore, the succeeding coefficients become:

(I. 3)2
a2 = 2! 82~o-~---~- a°

(1.3.5)2

a3 = 3!83~o3 a°""

and by induction

[1.3.5 ..... (2n - 1)]2
an =

8n n[ 6on a°

[½.3 5 2~_-1] 2 [[’(n + ½)]2
a 0 =

2n n!o)n
F2(½)2n n!ton

_
ao

~t 2n ton n!

~2=0

n>3

n=l,2 ......

a0

The two asymptotic solutions of Bessers equation are:

e+iX
oo

1-’2(n + ½) -n
Yl,2 - ~x a° Z (’T-i)n n n! x

n=0

Choosing a0 = 2~" ey-in/4, then the asymptotic solutions are those for H(01)(x) 

H(o2) (x), i.e.:

Ho(1)(x) - 2 ei(X_Zff4 ) Z ~

n!
n=0

~- ~.~0( ")n F2(n+½)Ho(2)(x) ~ ~ e_i(x_n/4)
1

~ rrx ~x n!

Examination of the asymptotic series for H(01)(x) and H(02)(x) shows that the 

should be summed up to N terms, provided that x > N/2.

9.14.2 Subnormal Solutions

If the series for Q.(x) happens to have Qo = 0, then (Yl,2 become unbounded. To

overcome this problem, one can perform a transformation on the independent variable x:

Let ~=X½, X= ~2 and rl = ~-½ u(~) = x-¼u(x) which results in a new ordinary

differential equation on rl(~):
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where:

P(~) = 4~2Q(~2)- +

If Qo = O, and Q1 ~ O, then:

Q(x) = x-1 + Q2x-2 + .. .

(9.62)

Q(~2) = Ql~-2 + Q2~-4 + Q3~-6 + ...

so that:

P(~) = 4Q1 + (4Q2--~] ~-2 + -4 +.. .

Here:

Po(~) : 4QI

PI(~)= 
3

P2(~) = 4Q2 

P~=O
P4(~) = 4Q3

Now, one can use the normal solution for an irregular point of rank one on rl(~), i.e., let:

n({)~e~ 2 an{-n-~ (9.63)

n=0

so that:

u(x) ~ 1/4 e~ Zanx-( n+~)/2

n=0

Since PO = 4 Q1, then:

o32 = Po = -4QI

~=~=0

o31,2 ---- -+ 2i,~’~

so that:

u(x) ~ ~°4~ 2anxl/ 4-n/2

n=O

Again, the subnormal solutions are Formal Solutions as they satisfy the
differential equation, but are divergent series.
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Example 9.9

Obtain the asymptotic solutions for the following ordinary differential equation:

xy"-y=0

where:

Q(x) = - "1

so that:

Qo = 0, Q1 = -1, and Q2 = Q3 ..... 0

the differential equation transforms to one on rl(~):

Here:

3
Vo =-4, PI=O, P2 =-~, and P3 = P4 =.,.= 0

Letting:

rl(~):e°~ an~Tn-~
n=0

then o,‘2 = 4, tOl,2 -- + 2, a = 0, and the recurrence formula becomes:

(n +-~)(n- 

2o~(n + 1) 
n = 0,1,2,----an+1 =

so that:

and by induction

r(~) ~(~1
an F(_ 91_)r(93_)n[ (26o)n a0

n>l

F(-½) F(,})= - r¢ (Eq. B.1.5)Since

Therefore:

an = ao n > 1
n n! (2o~)2 -
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’ n[ (16x)n/2
n=0

:aoX-+2~x¼ ~ (+1) n (n2-¼)F2(2~c----L)
(16x)n/2

n=0

1 1Letting a0 -- - 2---~-~3 for Yl, and % = -~ for y2 would result in the asymptotic

solution of the equation, i.e.:

yl=x~I~(2x~)
4

Y2:Xff K~(2x~)
4

Close examination of the series for the two subnormal solutions shows that they would
diverge quickly, after N te~s, when the argument 2~ > N(N + 1) / 

9.15 The Phase Integral and WKBJ Method for an Irregular
Singular Point of Rank One

Consider the same reduced equation (9.58):

u" + Q(x)u = 

with:

Q(x) = Qo + Q1x’l + Q2x-2 +...

Then one may obtain an asymptotic solution by successive iterations. This is known as
the WKBJ solution after Wentzel, Kramers, Brillouin, and Jeffrey. Starting out with
terms for x >> 1, then:

u" + Qou = 0 x>> 1

giving:

u - A eix~° + B e-i x~°

where A and B are the amplitudes and the exponential terms represent the phase of the
asymptotic solutions. Thus, let the solution be written as:

u(x) - ih(x)

then the derivative of h(x) is approximately equal to ~ and h’(x) ~ ~o +... so that:

u’(x) - ih’ ih

u"(x) ~ ih (i h" - (h2)

which when substituted in the ordinary differential equation, results in:

ih" - (h’) 2 = - Q(x)
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This is a non-linear equation on h(x). To obtain a solution, one may resort to iterative
methods. Let:

h’ (x) = ~/Q(x) + 

As a first approximation, one may use h’(x) = 4~, then one can use iteration to evaluate

h’(x), so that:

hi(x) = 4Q(x) + ih j"_1 j = 1,2 ....

with h.l(X) = O.

Starting with j = O:

h~3= ~ and h~= Q"

then for the second iteration, j = I:

If one would stop at this iteration, then:

u ~ Q-l/4 (x) +i J " f ~3"dt  (9.64)

This is a first order approximation. Continuing this process, one can get higher ordered
approximations to h(x). Using this series expression of Q(x), one can obtain 
asymptotic series.

Thus, h’o=~o, h"0 = O, h0 = ~o x, and:

’~ Qo x Qo xz

l+2Qox 2QoX2

So that:

+ Q1 . 1 Q2 1
hl= Q~x ~logx--~-

2Qo 2 4Qo x

h~= 1 Q1 1
2~oX2
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l _~ Q2 i QI 1
h2 = Qo+ -~ x2 2 ~o x2 ~’’’"

l Q1 l+(Q2 i Q1 ]~1 +
=~o 1+~o’o~ [,~oo 20o3/2)x 2 "’"

-~{1 !~QI~+=~4Q2-2i Q1 Q~] 1 }+~l~o;X 8~oL ~ NJg+’ ’"

~en:

~(x~- ~x + ~ f~log x- ~[4~- 2i Q1 Q~

so ~at:

Ul(X ) - e~(~) _ (x)iQ,/~ ~ e+i~ x

u2(x) - (x) -iQ,/~ e-i~ x e-iMs~

1
whe~ A- ~4Q2 2iQ1 Q~- ~ ~ Qo)

Using eia = ~ (~)n, one obtains ~e des~ed ~pmtic series.

n=0

Example 9.10 Asymptotic solutions of Bessel~ equation

Ob~n ~e ~ymp~fic solution of Bessel functions by ~e WKBJ me~od.

~ x dx ~
y= 0

Letting y(x) = x-~/~u(x), then:

~2 ~ x2

whe~ Q = 1-~(p 2 -~), with:

(9.65)
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Yl ~ x-l/2 eix ei(1-4p2)/(8x) - x-l/2eiX ~ ~x 2

n=0

Y2 ~ x-l/2e-iX ~ 1- 4p2

n=0

These solutions are asymptotic solutions to H(p1) (x) and H(p2) (x).

9.16 Asymptotic Solutions of Ordinary Differential Equations
with Irregular Singular Points of Rank Higher than One

Starting with the reduced equation (9.58), then

y"(x) + Q(x) y(x) 

If the rank of the irregular singular point at x = oo is larger than one, then one can obtain
an asymptotic solution with the exponential term having higher powers of x than one.
However, since the rank could be fractional due to its definition in section 9.12, i.e. when
2r = 1, 3, 5 ..... then one can avoid fractional powers by transforming x = ~2, and by

letting u = ~½y(~), so that the ordinary differential equation (9.58) becomes:

d2u+ 4 2Q 2

Letting the bracketed expression be written as:

d2u

d~"-~ + ~2rp(~) u(~) (9.67)

then P(~) = Po + pl~-I + p2~-:z +... and the new ordinary differential equation in (9.67)

has an irregular singular point of order "r".
Assuming an asymptotic solution of ordinary differential equations in (9.67) in the

form:

u(~)=eo~(~) y__, an ~-n-ff (9.68)

n=0

where ~o(~) = O~o~+ ~2 +...+O)r_l +~0r r +’~"

Substituting the form in (9.68) into the ordinary differential equation (9.67) results 
the following series:
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n -- 0 n = 0
(9.69)

+ 2 (n+c~)(n+(~+l)an~-n-2=O
rl=O

where:

CO’(~) = COo ÷ COI~1 ÷ C02~2 ÷ "’" ÷ COr-I~r-I ÷ COr~r

CO"(~) = COl + 2CO2~ +’’" + (r - 1)COr_l~r-2 + rcor~r-1

Since the bracketed expression is a polynomial of degree (2r), each multiplying the first

term ao, then for ao ~ O, that expression must vanish for ~k up tO k = r, i.e.:

+ + o
which results in the evaluation of all the coefficients COo, % ..... cot.:

k=Oi, i+j=k

r-1
co" = Z (r- k) cor_k~r-k-I

k=O

~2rp(~)= Z pk~2r-k

k=O

Since co" has ~ raised to a maximum power of (r-l), (co’)2 has ~ raised to a maximum

power of 2r, then the first r terms, with powers of ~ ranging from 2r to r-I multiply ao,

so that first r terms satisfy:

Z cor-i(Or-j + Pk = 0 k = 0,1,2 ..... r (9.70)

i+j=k

This would allow the evaluation of the coefficients coo to co,, i.e.:

cor = + -~-~-o

PI (9.71)

P2 + CO r2-1
2COr COr-2 + COr2-1 + P2 = 0
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cr = + l~(pr+1 + r0) + 2600 f0r_ 1 + 20)1 f0r_ 2 + ...)
20)r 

r

The remaining equalities in (9.69) would determine the series coefficients ai, a2 .... in
terms of %.

Example 9.11 Asymptotic solutions for Airy’s function

Obtain the asymptotic solutions for Airy’s function satisfying:

y"- xy = 0

The irregular singular point x = ~o is of r = 1/2. Due to the fractional order, then the
ordinary differential equations to:

d~2 + -4~4--~

Here r = 2, and:

3
P(~) =-4 6

Let:

3
P0=-4, PI=P2=P3=P4=P5=0, P6=--~, P7=P8=...=0,

u(~) : ~-l/2y(~)

Following the procedure outlined in (9.71):

0)~ -4=0 0)2 =-+2

0)0=0 ~=10)1 =0

Thus:

~3
0), = 0) tO"0) = 0)2 "~, 2~ = 20)2~

Substituting these in eq. (9.70) and the value of 0)2:

3 -n
E [(20)2~ - ~--~ -)an~ - 20) 2 (n + 1) an~-n+l + (n + 1)(n + 2)an~-n-2] = 0

n=0

Expanding these series, one finds that a~ = a2 = 0, and:

(m+l)(m+2)-¼am+3= 2(m + 3)0) 2 am m = 0,1,2 ....

Using the recurrence formula, one can write the two asymptotic solutions as:
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+2~3/3-1{ +A -3 5"77 ~-6+5"77"221~-9+...}U(~) ~ e ~ .1_48 ~ + 42.36. ~ _44.24.81

This asymptotic solution can be written in terms of x:

, , +2x3’2/3 -1/4 I"(27--)yl,2(x)~e- x l~lw(3/2)x~/2 +2[E(S/2)x~ 3W(7/2)xW2

or:

Yl,2(x) ~ 0 x-
= k!F k+ X3k/2

One may choose a0 = 2 ~-~, so that the above series represents the two solutions of

Airy’s equation.

9.17 Asymptotic Solutions of Ordinary Differential Equations
with Large Parameters

It is sometimes necessary to obtain a solution of an ordinary differential equation,
such as Sturm-Liouville equations, with a large parameter. The series solutions near x =
0 cannot usually be evaluated when the parameter becomes large. To obtain such
asymptotic solution for a large parameter, one can resort to the same methods Used in
section 9.15.

9.17.1 Formal solution in terms of series in x and X

Consider an ordinary differential equation of the type:

d2y
+ p(x,~.) ~ +q(x,~.)y = (9.72)

dx2

where ~. is a parameter of the ordinary differential equation, and the function p and q are

given by:

p(x,~,)= E Pn(X)~’k-n

n = 0 (9.73)
O0

q(x,~,)= E qn(X)~’2k-n

n=0

where k is a positive integer, k > 1, and either Po ~ 0 or qo~ O. One can reduce the

equation to a simpler form:

y(x) = u(x) -½jp(x’x)dx

which reduces eq. 9.72 to:
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~ + Q(x,3.) u(x) (9.74)
dx"

where Q(x, 3.) = q(x, 3.)- ½ p’(x, 3.)- ¼ p2 (x, 3.)and representedby:

Q(x,3.) : ~ X 3. 2k-n (9.75)

n=0

A formal solution of the ordinary differential equation (9.74) of the form:

= e°)(xA) ~ un (x) 3.-n (9.76)u(x)

n=O

where

=
k-1

~ O)m(X) 3.k-m (9.77)

m=O

Substituting (9.77) and (9.76) into eq. (9.74), one obtains:

k-1 ,, (k-I ,
k m"~2] ~

m=O \m=O ) Jn=O

+2 / E O)m(X)3.k-m il;(x)~-n+ E UX(X)~-n (9.78)

\m = ~n = 0 n = 0

The coefficient of )~ ~-~ can be factored out, resulting in the recurrence formula:

~ Un_t(x) Qz(x)+

£=0 L m=O

+ Un_~(x)m~_k +2 un_~(x)~¢_k(x) Un_2k(×)=0
g=0

The summation is performed with the proviso that :

uq=O q= -1,-2 ....

o~q=O q---l,-2 .... and q = k,k+l ....

Setting n = 0 in (9.75), and since s =0 for q = -1,- 2 .. .. then the first (k-l) terms of the
first bracketed sum of (9.79) must vanish, i.e.:

(9.79)

n =0,1,2 ....
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QI + Om (Ol-m = 0
m=0

setting ~ = 0 gives:

Qo + [0;(")]2 = 0

Q1 + 2o~,~i = 0 or

g=O,1,2 ..... k-1

~,(,,) = + -47~o(x)
Ql(X) Ql(X)=- 2,o’-’To =

(9.80)

or in more general form:
m=g-1

2¢°o¢°t + Qt + 03mO/-m = 0
m=O

(9.81)

g=l, 2 ..... k-1

g-1

o~ = m=l g=l,2 ..... k-1
2~o~(x)

which gives an e,,pression for all the unknown coefficients, i.e., o},g = 1,2 ..... k - 1 in

terms of the two values of c0~(x).

After removing the first (k-l) from the first bracketed sum of I. (9.79), there
remains:

Un-/ l + ~0m(0/-m Un-/~/-k

m=0 J g=0
(9.83)

+2 un_t~t_k + Un_2k = 0 n = 1,2,3,...

~=o

Setting n = k in (9.83), one obtains a differential equation for u~(x), i.e.:

2u~, COo + COg + Qk + m k-m Uo = 0

m=l

resulting in a linear first order differential equation on

u~,(x) + Ao(x) Uo(X) (9.84)

where Ao(x)= "~I o +Qk + Z[°)"2c°~’ m = 1

Defining:

I~(x) = e-JA*(x)a (9.85)
then the solution for uo (eq. (1.9)) can be written 

so that: (9.82)
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Uo(X) = Co Ix(x)
Similarly one can find formulae forun.’ ¯

un + Ao(x)Un(X) = Bn(x)

where:

Bn(x) Un-g (D~’+Qk+g +

1

"(D~n(D[+£-m + 2U~-e(D} + Un-k
m=g+l

(9.86)
whose solution is given by eq. (1.9):

Un(X) = n IX(x) +Ix(x)f Bn(x) dx
Ix(x)

(9.87)

Note that except for the constant C,, the homogeneous solution for u,(x) is the same
function Ix(x) for Uo(X). Since:

’ +-~o(1(DO =
X

then eqs. (9.82) and (9.87) yield two independent solutions for (D~, (DE (Dk and u0 ,ut .....

Example 9.12 Asymptotic solution for Bessel Functions with large orders

Obtain the asymptotic solution of Bessel functions for large arguments and orders.
Examining the Bessel’s eq.:

z2d2y . dy . [ 2
-S-T ~- z-- ÷ ~z -p2)y=0dz dz

whose solutions are Jp(z) and Yp(Z), and letting z = px, then the equation transforms 

x2__d2Y + x d-~Y + p2(x2 - 1) y = 
dx2 ux

These solutions can be expanded for large parameter p. and large argument px.
Letting:

_Ifdx ~
y(x) = u(x) 2J x = X~H( X)

then the equation transforms to:

d2u ~- Q(x, p) u = 

dx2

where:

Q(x)=p2(1-~2]-~ 4x2

Thus, here:

1 1
k = 1, Qo = 1- -- Q1 = 0, Q2 - -- Q3 = Q4 = ... = 0,x2 , - 4x2 ’

and:
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o)(x) = pO)o(X)
Therefore:

co~, = - 1 _ x

Equation (9.84) gives:

Ao(x ) = ~o

=Ix(x) = e J2to. = (¢o~)-1/2
(l_x2)1/’

xl/2Uo(X) = Co(~g)1/: = Co~
x:)

whe~.C~ ~e constant. For n = 1

.... f[-1- A~ +Ao2 1 ]

Finding closed form solutions for u~(×) has become an arduous task, which gets more
so for higher ordered expansion functions u,(x). However, one can obtain the first order
asymptotic values as:

Y2 ~ x-½ e-Plm°l Uo(X) - x-½ e_p l_,]i2~x~ fi~, + ~_~_~x2,)x -P 

9.17.2 Formal solutions in exponential form

Another formal solution can be obtained by writing out the solution as an
exponential, i.e.:

u" + Q(x, ~k)u = 
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Q(x,~,)= E Qn(x) ~2k-n

n=O

by use of the formal expansion:

u ~ eo(x’x) (9.88)

where:

CO(X,~,)= E con(X)~’k-n (9.89)

n=O

Substituting eq. (9.88) into the ordinary differential equations, one has to satisfy the
following equality:

co. + (co,)2 + Q = (9.90)

which results in the following recurrence formulae:

n

+ E CO~nco~t-m = 0 n = O,1,2...k- 1 (9.91)Q.
m=O

n

n-k + ~m ~n-m + Qn = 0 n > k (9.92)

m=0

For n = 0 in (9.91) gives a value for coo:

Qo + (co~,)2 co~, = + -4---~o : +i Q4"~o (9.93)

which is the same expression as in (9.81):

Q1 + 2co~co~ = 0 co{ = Q1
2co~

which is the same expression as in (9.81) and in general gives:

con =-2co’--"7o’o [ E co~nco~_m+Qnjn=l,2 ..... k-1 (9.94)

Lm = 1

For n > k use eq. (9.91) to give

con = 2(o; COmcon-m + Qn + con-k ] n > k (9.95)

The two formal solutions (9.76) and (9.88) are identical if one would expand 
exponential terms in e°~x’x) for n > k into an infinite series of k-n.
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9.17.3 Asymptotic Solutions of Ordinary Differential Equations with
Large Parameters by the WKBJ Method

Consider the special equation of the Sturm-Liouville type:

d2y + ~,2Qy = 0
dx2

Following the method of section (9.15), then one can replace the coefficients Qi by ~.Q~.

Thus, the asymptotic first order approximation given in (9.64) is:

Ul,2 - Q-¼(x) +i~’f~-’~(x) dx

Example 9.13 Asymptotic solution for Airy.’s functions with large parameter

Obtain the asymptotic approximation for Airy’s function with larger parameter, satisfying

d2y ?~2xy=0

dx2

In this case Q(x) = -x then the first order approximations become:

Yl,2 ~ (-x)-l/4 e+iZJ’4S~dx

-1/4 e_+i2x3J2/3
Yl,2 ~ x
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Sections 9.2 - 9.3

PROBLEMS

Obtain the asymptotic series of the following functions by (a) integration by parts, or (b)
Laplace integration:

1. Incomplete Gamma Function: F(k,x) = ~ k-I e-t dt
X

2. Incomplete Gamma Function: F(k,x) = k e-x fe-xt (t+ 1k-1 dt

0

3. Exponential Integral: El(Z) = e-z f e-dt
d t+l
0.

4. Exponentiallntegralofordern: En(z)--e-Z!~dt

5. f(z)= ~ t--~-+l 
0

~
e_Zt

6. g(z)= t~dt
0

7. H(01)(z) = 2 ei(Z-n/4) ~7 ~,dwe-ZW
0

Sections 9.5 - 9.7

Oblain (a) the Debye leading asymptotic term and (b) the asymptotic series for:.

8. Complementary error function:

erfc(z) = e-z’ f e-?’4-zt dt z>> 1

0

tO 2 2
e-Z t

9. erfc(z) = _z e_Z~ j 1
0

(Hint: let t = sz)
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10. H(vl)(z)= -ie-iVn/2 iz/2(t+l/t) t -v-1 dt z >> 1

0

Also f’md Jr(z) and Yv(z), where 1) = Jr( z) + iYv(Z

~+ ig

11. e z >> 1

12. Kv(z) = e-zc°sh(t) [sinh (t)] 2v dt z >> 1 for v > 1/2
F(v

0

13. Kv(z)= --l(z--~ v ~e-t-z2/(4t)t-V-ldt z>> 1 for
2\2]

0

v > 1/2 (Hint: let t = zs)

14" Kv(z) =F(v ~+ 1 / 2) (z)V~-~ e-zt (t 2 - 1)v-l/2 dt z >> 1 for v > 1/2

1

e-Z2/4 oo
15. U(n,z) = l~"~(n 

-I e-Zt-t2/2 tn-I dt z >> 1 n _> 1

0

ze_Z2/4 oo

F(n / 2) e-t tn/~-I (z2 + 2t)-(n+~)/2 dt
0

16. U(n,z)= 

eig/4 . 2 ~ e-iZ~t2
17. FresnelFunction: F(z)= --~--,~-~ze lz ! ~tdt

~ _X2t2

. 2x -x’[ e,_.~_~tdt18. Probability Function: ~(x) = ~- _
4tz + 1

(Hint: let t = zs)

Section 9.13 - 9.16

Obtain the asymptotic solution for large arguments ( x >> 1) of the following ordinary
differential equations

d2y 2X~x 019. ~-T+ =
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20. ~ d--~Y ÷x~+(x~-~2ly=o
dxz dx

21. x2 dy +xdY_(x2+~}2)y=O
dx2 dx

Section 9.17

Obtain the asymptotic solution for large parameter of the following ordinary differential
equations:

22. Problem #20 for finite x, large a)

23. Problem #20 for x and ~ large

24. Problem #21 for x and "o large



APPENDIX A
INFINITE SERIES

A. 1 Introduction

An infinite series of constants is defined as:

a0+al+a2+... = ~ an (A.1)
n=O

The infinite series in (A.1) is said to be convergent to a value = a, if, for any
arbitrary number e, there exists a number M such that:

an-a<e for all N> M
n=0

If this condition is not met, then the series is said to be divergent. The series may
diverge to +o. or .oo or have no limit, as is the case of an alternating series.

A necessary but not sufficient condition for the convergence of the series (A.1) is:
Liman --~ 0

For example, the infinite series:
oo 1

E-n
n=l

is divergent, while the limit of an vanishes

Lira 1 --~ 0

A necessary and sufficient condition for convergence of the series (A-l) is as follows:
if, for any arbitrary number e, there exists a number M such that:

ao
.n=N

for all N > M and for all positive integers k.
If the series:

~ ~anl (A.2)
n=0

585
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converges, then the series (A-l) converges and is said to be an absolutely convergent
series. If the series (A-l) converges, but the series (A-2) does not converge, then 
series (A-l) is known as a conditionally convergent series.

Example A.1

(i) The series:
OO

1
E (-1)n 

n=l

is a convergent series and so is the series:

n=l 1

Thus, the series is absolutely convergent.

(ii) The series:
OO

E (-i)n n+l
n=0

is a convergentseries, but:

n+l
n=l n=l

is divergent. Therefore the series is conditionally convergent.

A.2 Convergence Tests

This section will discuss several tests for convergence of infinite series of numbers.
Each test may be more suitable for some series than others.

A.2.1 Comparison Test

If the positive series E an converges, and if Ibnl < an for large n, then the series
n=O

E bn converges.also

n=0

If the series ~ an diverges, and if Ibn[ _< a, for large n, then the series

n=0
also diverges.
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Example A.2

One can use the comparison test to easily prove that

E 1 1 1
~ is convergent and ~ < --, for all n > 1.
n" n+l n

E (n + 1)2

n=l

-- is convergent, since

A.2.2 Ratio Test (d’Alembert’s)

If:

Lim an+l < 1
n~oo an

the series converges (A.3)

Lim an+l > 1
n~oo an

the series diverges

However, the test fails to give any information when the limit approaches unity. In such
a case, if the series is an Alternating Series, i.e., if it is made up of terms that
alternate in sign, and if the terms decrease in absolute magnitude consistently for large n
and if Liman --> 0, then the series converges.

n~oo

Example A.3

(i) The series Y0= 2n(nl + 1)con verges, since theRatio Testgives

Lim an+l =
n + 1 1

Lim -- = -- < 1
n---~ an n-~o 2(n + 2) 

(ii) The series ~= i (nn+ nl)2 diverges, since theRatio Testgives:

Liman+l =Lim 3(n+1) 3 =3>1
n-->o~ an n~¢o n(n + 2)2

(iii) The series n cannot bejudged forconvergence withthe Ratio Test

n = 1 (n + i)2

since:

Liman+l =Lim (n+l) 3 i
n--)oo n n-~oo n(n + 2)2 =
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(iv) The series ~ (-1) n n converges, since the series is an alternating
(n + 1)2

n=0
1 2 3 4

series, successive terms are smaller, i.e.__~" > --32>-~ > ~- .... and:

n
Lim an = Lira ~ --~ 0
n-~,,~ n-~ (n + 1)2

A.2.3 Root Test (Cauchy’s)

If:

Limlanl1/" < 1 the series converges

Limlanl1/n > 1 the series diverges
n--~,

The test fails if the limit approaches unity.

Example A.4

(i) One can prove that the series:

1
2n (n + 1)

is convergent using the root test. The limit of the nth root equals:

Limlanl l/n = Lira 1 . = 1 Lim(n + 1)-l/n
n--*~ n~,/2n(n + 1) 2 n-~,~

Let y = (n+l)-l/n, consider the limit of the natural logarithm of y:

1

Lim log y = Lim - log(n + 1) = _ Lim n +~1 ._~ 0
n--) ~, n--)~ n n-~ 1

by using L’ Hospital rule.
Thus:

Lim y = e° = 1
n--~oo

so that:

1
LimlanI1/n’ ’,, ~-<1
n--~, 2

(ii) One can prove that the series:

3nn
E (n + 1)2

n=l

is divergent using the root test. The limit of the root equals:

(A.4)
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r n -~l/n ,- -din
Lim[anl l/n = Limit/ = 3 Lim(n+ 1) -l/n Lim [---~]
n-->** n-~**L(n + ) J n-~** n-->**\ n + 1,/

From part (i), Lira (n + -l/n = 1,therefore:
n--~**

f n ,~l/n (" 1 l/n
Lim~nl 1/n = 3 Limit/ = 3 Limit/ =3>1
n~ n-~**\n+lJ n->**~l+ 1/n)

A.2.4 Raabe’s Test

For a positive series {an}, if the Limit of (an+l/an) approaches unity, where the Ratio

Test fails, then the following test gives a criteria for convergence. If:

Limln[ an _11}>1 the series converges

n -->**[ Lan+l

n--->**[ Lan+l
the series diverges (A.5a)

If this limit approaches unity, then the following refinements of the test can be used:

Lim(logn)In [ an-1]-1}>1 the series convergesno** [ Lan+~

Lim(logn)In [ an-11-1}<1 the series divergesn-~** [ Lan+l

If this limit approaches unity, then the following refinements of the test can be used:

Lim (log n)I(logn)In [ an_ 1]-1 l- 1}>1 the series converges
n-~** L [ Lan+l J J

Lim (logn~(lo, n)In I an-11-11-1}<1n-~- [ t L an+l J J

(A.5b)

the series diverges (A.5c)

If the limit approaches unity, then another test based on a refinement of (A.5c) can 
repeated over and over.

Example A.5

(i) The series _~ 1 could not be tested conclusively with the Ratio test,

. v= (n+ 1)2

but it can be tested using Raabe’s test:
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Limn / an-lt=LimnI(n+-2-~)~ ~ 11=2>1n-->~o k, an+l ) n.->oo [_ (n + 

Therefore, the series converges.

E 1(ii) The series
(n + 1)

n=0
Using Raabe’s Test (A.5a):

Limn / an -l/=Limn[ (n+2) 11=1’ n~¢,, /.an+l J n~, L(n + 1)

Thus, the first test fails. Using the second version (A.5b):

-- could not be tested conclusively with the Ratio test.

also diverges.

(i) The series

also converges.

(ii) The series

Example A.6

oo ~1 converges,

~°dnf_ ~ =- nl--~E
since the integral ~ = 1

n=O 1

1 diverges, because the integral dn = log n 1 oo

n=0 1

Lim(logn)Inl (n+2) ll-1 } nL~i~(logn)( n 1}=0<1n-~ [ L (n + = (n + 1)

Therefore, the series diverges.

A.2.5 Integral Test

If the sequence an is a monotonically decreasing positive sequence, then define a

function:

fin) = n

which is also a monotonically decreasing positive function of n. Then the series:

Ean
n=0

and the integral:

f f(n)dn

c

both converge or both diverge, for c > 0.
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A.3 Infinite Series of Functions of One Variable

An infinite series of functions of one variable takes the following form:

~ fn(X) a-<x<bf0(x) + fl (x) + f2(x) 

n=0

The series can be summed at any point x in the interval [a,b]. If the sum of the series,
summed for a point xo, converges to some value f(xo), then the series is said to converge

to f(Xo) for a _< o _< b. Thus, if one chooses an arbitrary small number e, t hen there

exists a number M, such that the remainder of the series RN(X):

n=N
f<xo)- fo<xo) N >M

n=0 I

N

f(Xo)= Lira ~ fn(Xo)

n=O

A necessary and sufficient condition for convergence of the series at a point xo is
that, given a small arbitrary number e, then there exists a number M, such that:

for all N > M and for all values of the positive integer k.
It should be noted that the sum of a series whose terms are continuous may not be

continuous. Thus, if the series is convergent to fix), then:

N

~ f.(x)-~ f(x)Lira

n=O

t[

N

] fh(x)

f(Xo)= Lim f(x)= Lira Lim (A.6)
X -~).Xo x-’X°LN-’~* n = O

On the other hand, by definition:

f(x~) = Lim ~’. Lim fn(x)
N--~,~[ ~ x-~x,

Ln=0

The limiting values for f(xo) as given in (A.6) and (A.7) are not the same if is

discontinuous at x = xo, they are identical only if f(x) is continuous at x = Xo"

n=N+k |
IfN(x) + fr~+,(x)+ + fN+k(x~ : ~ fn(X~ < 

n=N 1
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A.3.1 Uniform Convergence

A series is said to converge uniformly for all values of x in [a,b], if for any
arbitrary positive number, there exists a number M independent of x, such that:

f(x) fn(X) < for N > M

n=0

for a/l values of x in the interval [a,b].

Example A.7

The series of functions:

(1 - X) + X(1 - X) x2(1 - x)...

can be represented by a series of fn(x) given by:

fn (x) = n-1 (1 -x) n = 1, 2, 3 ....

Summing the first N terms, one obtains:

N

E fn (x) = 1 
XN

n=l

The sedes converges for N -> oo iff:

Ix[ < l

Therefore, the sum of the infinite series as N --) o~ approaches:

I]f(x) = Lim ~". fn (x) for Ixl < 1

Thus, to test the convergence of the series, the remainder of the series RN(X) is found

to be:

which vanishes as N "--) ~, only if Ixl < 1.
For uniform convergence:

[xN[ < E for e fixed and for all N > M
I I

N > ilog(ixD[

If one chooses an e = e1°, then one must choose a value N such that:
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10
N>

IlogOxl)l
Thus, the series is uniformly convergent for 0 _< x < xo, 0 < xo < 1. At the point x = xo
choose:

10
N= logOxoO

As the point xo approaches 1, Ilog Xol --) 0, and one needs increasingly larger and larger

values of N, so that the inequality Rn < e cannot be satisfied by one value of N. Thus,

the series is uniformly convergent in the region 0 _< x _< Xo, and not uniformly convergent

in the region 0 _< x _< 1.

A.3.2 Weierstrass’s Test for Uniform Convergence

The series fo(X) + fl(x) + .... converges uniformly in [a,b] if there exists a convergent

positive series of positive real numbers M1 + M2 + ... such that:

[fn (x~ _< n for a ll  x in [a,b]

Example A.8

The series:

1
X n2+x2

n=l

converges uniformly for _oo < x < oo since:

Ifn (x)l = -< n’~ Mn

and since the series of constants:

Mn = 1 converges

n=l 1

for all x _> 0

A.3.3 Consequences of Uniform Convergence

Uniform convergence of an infinite series of functions implies that:

1. If the functions fn(x) are continuous in [a,b] and if the series converges uniformly

in [a,b] to f(x), then f(x) is a continuous function in [a,b].

2. If the functions fn(X) are continuous in [a,b] and if the series converges
uniformly in [a,b] to f(x), then the series can be integrated term by term:
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x2 x2 x2 ~ x2

xI x1 Xl n = 0 x1

where a _< x1, x2 < b.

3. If the series E fn (x) converges to f(x) in [a,b] and if each term fn(x) fn’(X)

n =0
are continuous, and if the series:

~ f~(x)

n=0

is uniformly convergent in [a,b], then, the series can be differentiated term by term:

f’(x)= 2 f~(x)

n=0

A.4 Power Series

A power series about a point xo, is defined as:

oo

ao + a~(x- Xo)M + a2(x- Xo)TM + .... 2 an(X- Xo)nM (A.8)

n=0

where M is a positive integer. The power series is a special form of an infinite series of
functions. The series may converge in a certain region.

A.4.1 Radius of Convergence

For convergence of the series (A.8) either the Ratio Test or the Root Test can 
employed. The Ratio Test gives:

Lim .an+l (x- ~)M. = Ix- xolM Lim an~l < 1 the series converges
n-->** an(X- Xo) n’->~l an I

> 1 the series diverges

or if one defines the radius of convergence p as:

p = ILim] an [11/M
[n-~**lan+l IJ

thenthe convergence of the series is decided by the conditions:

Ix - xol < p the series converges

(A.9)

> p the series diverges (A.10)



INFINITE SERIES 595

In other words, the series converges in the region:

xo - 13 < x < xo + O

anddiverges outside this region.
The Root Test gives:

"i "~ an (x- nMXo) = Ix - Xo[ Limlan [1/nM < 1 the series converges

> 1 the series diverges

~’ (4-1)3n
,,~ 33n oo 1

n27n n27n n
n=l n=l n=l

which diverges. At the second end point, x - 1 = -3 or x = -2, and the series becomes an
alternating series:

(-2--1)2n : 2 (-3)3n = ~ (-1)n
n 27n n 27n n

n=l n=l n=l

which converges, so that the region of convergence of the power series is - 2 < x < 4.

Thus, if one lets:

(A.11)

then the series converges in the region indicated in (A.10).
The Ratio Test or the Root Test fails at the end points, i.e., when ]X-Xo[ = 0, where

both tests give a limit of unity. In such cases, Raabe’s Test or the Alternating Series
Test (if appropriate) can be used on the series after substituting for the end points at x 

xo +13 or x = xo- 13.

Example A.9

Find the regions of convergence of the following power series:

(x-:1 n
n27n

n=l

Here M = 3, so that the radius of convergence by the Ratio Test becomes:

13 : nt, i_, l(n +_ 1)27n+ 1/3
n 27n = (27)1/3 = 3

while using the Root Test:

-n -l/3n

13 = Lira 27-" = (27)1/3 Lim n1/3n --~ 3
n ---).~ 

At one end point, x - 1 = 3 or x = 4, the series becomes:
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A.4.2 Properties of Power Series

1. A power series is absolutely and uniformly convergent in the region

Xo-O<X<Xo+9

2. A power series can be differentiated term by term, such that:

al +2a2(x -xo)+3a3(x - Xo):Z Z nan(Xf’(x) ~ ~ O)n ~l

n=l

for xo - 19 < x < xo + 19. The radius of convergence of the resulting series for f’(x) is the

same as that of the series for f(x). This holds for all derivatives of the series f(x)(n), 
n>l.

3. The series can be integrated term by term such that:

x2 ~o x2 oo x )n+l x2

f f(x)dx= Z an (x-X°)ndx= ~n- -~’~ (x- 0

x1 n=O x1 n=O

for xo - 9 < x < xo + 9. The series can be integrated as many times as needed.



INFINITE SERIES 597

PROBLEMS

converges where an is given by:

Prove that the following series of the form:

n_~
1

(a) log(l- ) (b) 

n 1(d) (e)
2n(n+ly n+

(-1)n
c > 1 (c) c > 0

nc

1 3n(g) n2 (h) -~-

1
n2n

(i) (-1)n log(1 + 1)
n

n2 22n n(j) -~- (k) (1) 7

n 32n n3
(m) (n!)2 (n) (2n)! (o) n~"

1 1
(p) (q) -n (r)

n~ n!(n+l) 

(S) -n (t) (-1)nn
n3+l

(v) n (w) (-1)n
(n + 1)! log(n + 

1 n!
(Y) (2n)~.~ (z) 

(bb) [log(n + -n

(u) e-n

(-1)n
(x) 4-ff

(aa)
(hI)2

(2n)!

2. Prove that the following series:

2an
n=l

diverges, where an is given by:

(a) (b) (c) log(1 + 
n
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1 1 1(d)
~

(e) log(n + (f) n~+l’

n! 3n 3n(g) (h) (i) l+en

(j) log(n + 1)
n

3. Find the radius of convergence and the region of convergence of the following power
series:

(a) ~’~ (x-1)n
2n

rl=O

(b) ~a (x + n

n=O4n+n~

(C)
.(x- 2)n

(d) (n !)2 x2
n + 1 (2n)!

n=O n=O

(e)
n!

(0 E (-1)n (X+ 1)n

n=0 n=l

~n!x._.~_n oo n3 (X- 3)n

(g) (h)nn -- 3n
n=l n=l

(i) E (x+l)Sn8"
n=O

~=0(x + 1)3n
O) 8" (n + 1)
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SPECIAL FUNCTIONS

In this appendix, a compendium of the most often used and quoted functions ~e
covered. Some of these functions are obtained as series solutions of some differential
equations and some are defined by integrals.

B.1 The Gamma Function F(x)

Definition:
oo

F(x) = tx-le-tdt

0
Recurrence Formulae:

F (x+l) = x F (x)

F (n+l) = 

Useful Formulae:

F(x) F(1 - x) = r~ cosec (rtx)

cosec(~x)F(x) r’(-x) = 
X

r(:~ + x) r(~- x) = ~ sec (~x)

22x-1
r’(2x) = -~-F(x) F(x 

Complex Arguments:

F(1 + ix) = ix FOx)

FOx) r(-ix) = -Ir’(ix)l2 =
x sinh nx

F(1 + ix) F(1 - ix) 
sinh ~x

(Re x > 0) (BI.1)

031.4)

03L5)

(B1.6)

031.7)

(x real) 03 1.8)

(x real) 03 1.9)

031.10)

599
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Asymptotic Series:

r(z) ~ ~ Zz’l/2 e-z 1 + + 288z-’~-

izl >> 1 larg zl < rc

Special Values:

F(1 / 2) = ~l/;z

139

~1/2
F(3 / 2) = 

2

r(n+½)=4~(2n’l)tt
2n

r(½_ ~)__q~ (-1~"2"
(2n - 1)!!

where the symbol n!! = n (n - 2) ..... 2 or 

Integral Representations:

xZ
~ eixt (it) z’l dtF(z) -- 2 sin (r~z) x>O 0 < Re(z) < 

r(z) [ cos (xt) z’l dt
cos (rrz / 2),/

0

x>0 0 <Re(z)< 

r(z)= sin 0rz/2) sin (xt) z’l dt
0

x>0 0 < Re(z) < 

F(z) = ~ "t tz-1 (log t) (t -z)

0

Re(z) > 

F(z) = J exp [zt - et ] dt Re(z)>0

031.11)

031.13)

031.14)

031.15)

031.16)

031.17)

B.2 PSI Function q(x)

Definition:

v(z)= r(z)~ 
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Recurrence Formulae:

~(z+l) l+~(z)
z

n-1
V(z + n) = ¥(z) + 

k=0

n

~(z-n) = ~/(z)- 

k=l

~t(z + 1 / 2) = ~(1 / 2 - z) + r~ tan(~z)

~(1- z) =- ~/(z) + r~ cot (r~z)

Special Values:

~(1) = -T = -0.5772156649 ....

v(½)-- 2 

k=l

Asymptotic Series:

1 1 1 1
~t(z) ~ log z - --- ~ + ~- ~ +...

~ IZZ IZUZ

Izl >> 1

Integral Representations:

~e-t _ e-zt
~(z) = -T dt

1 - e-t
0

1 zl

fl-t - t= -T + .~ --~-d

0

larg zl < ~

-~e’t -(1+ 0 dt
t

_ ~ 1 - e"t - e-t(z-l)

t(e t - 1) dt
0

0 2.2)

(B2.3)

(B2.4)

(B2.7)

032.8)

(B2.9)

0 2. o)

032.12)
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B.3 Incomplete Gamma Function 3’ (x,y)

Definitions:

Y

7(x,y) = -t tx-1dt

0

r(x,y) = e-ttx-1dt

Y

7 (x,y) = F--~ 7(x, 

Recurrence Formulae:

~(x + 1,y) -- xy(x,y) - 

F(x + 1, y) = xF(x, y) + "y

~’* (x,y) e"y7*(x+l,y)=
Y

Useful Formulae:

r(x, y) + 7(x, y) = 

Re(x) > 0 (Incomplete Gamma Function) 033.1)

yF(x+l)

(Complementary Incomplete Gamma Function) 033.2)

r(x) r(x+n, y) - r(x+n) r(x, y) = r(x+n) 7(x, y) - r(x) 

Special Values:

F(½,x2) = "~" erfc (x)

~,*(-n, y)= 

1"(0, x) = -Ei(-x)

x>0

n

F(n+l,y)=n! -y Z~

m=0

Series Representation:

n~O (.l)n yn+X
7(x,y)= = (x+n)n!

033.3)

033.4)

033.5)

033.6)

033.7)

033.8)

033.9)

033.10)

033.12)

033.13)

033.14)
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Asymptotic Series:

yX-le-y ~ (’l)mF(1-x+m)r(x,y)-
m~__O

lyl >> 1

F(x,y)- F(x)yX-le-Y ~-~ 1

m~= 0 F(x - m)xm

lyl >> 1

larg xl < 3n/2

larg xl < 3rff2

033.15)

033.16)

B.4 Beta Function B(x,y)

Definition:

1
B(x, y) = tx-1 (1- t y-1 dt

o

Useful Formulae:

B(x, y) = B(y, 

B(x,y) r(x) r(
F(x + y)

B(x,x)__2’x)
22x

Integral Representations:

I t x-I dtB(x,y)= (l+t)x+y

0

x/2
B(x, y) = 

2x

x. 24x

I (sin t)2x-l(cos 2y-I dt

0

tx + t y .B(x,y) = I t(l+ x÷y at

1

7 t2x-I
B(x,y) 2J

(1+ t2)x+y dt
0

034.2)

034.3)

f~.4)

034.5)

(B4.6)

034.7)

034.8)

(B4.9)
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B.5 Error Function erf(x)

Definitions:

X

eft(x) = ~x Ie-t2dt

0

erfc (x) = 1 -eft(x) 

= ~e-t2dt

x

w(x) = -x erfc(-ix)

Series Representations:

2~’*°° (_l)nx2n+l
elf(x) =

.z., °= Z

eft,x)= ~e-x~ ~ 2nx2n+l
n = 0 (2n + 1)!!

w(x) = ~ ( ix)’*
F(n / 2 + 1)

=

Useful Formulae:

eft (-x) = eft(x)

w(-x) = -x2 - w(x)

1 1 2eft(x) = ~,(~,x 

erfc(x) = ~r(½,x2)

(Error Function)

(Complementary Error Function)

(Gautschi Function)

035.0

035.2)

035.3)

035.4)

.035.5)

(B5.6)

035.7)

035.8)

035.9)

(BS.10)

Derivative Formulae:

[eftc(x)](.+l) = 2_~ (_1). -x2 H. ( x) (B5.11)
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~xx {erf(x)} = -x2

w(n) (x) = -2x (n-l) -2(n - 1)(n-2) n=2,3 ....

w(°)(x) = dw -2xw(x)+ w’(x) = -~x 

~x {erfc(x)} = -xs

Integral Formulae:

’erf(x) dx = x erf(x) 

- "~- ex [ b2 - cI eft(at + b a)’exp[-(a2t 2 +2bt+c)]dt- ~ p[~-~- /

1 at as/4bs
’eaterf(bt)dt=~[e erf(bt)-e erf(bt-a/4b)]

’e-(at)~ e-(b/OSdt = .~ [e2ab erf(at + b / t) + e-2a~erf(at_ ]

S exp [-(a2t2 + 2bt + c)] dt = ~-~-~ exp~ ab--~- c]eff(b / 
0

t" e-a tdt _.~..~ ea2X2

j0 t+~X2= a erfc(ax)

oo 2 2

I" e-a t dt ~ ea2xs erfc(ax)
J t 2 + x2 2x

e-aterf(bt) dt = leas/4bs erfc(a/2b)
a

0

7 e-aterf(b-~) dt = 

o a a+4~-~

S e-aterf(b / .~’) dt = 1_ e_264~
a

0

035.12)

(B5.13)

(B5.14)

(B5.15)

(B5.16)

035.17)

035.18)

(B5.19)

(B5.20)

035.21)

035.22)

035.23)

035.24)

035.25)
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Asymptotic Series:

~ e-x2[ ~ (-1)m(2m-1)’l.l
erfc(x) x-~ 11+ m~__l 4mx2m j

(135.26)

B.6 Fresnei Functions C(x), S(x) and 

Def’mitions:

C(x) 
x

fcos (~t2/2) 

0

x

S(x) = fsin (nt21 2)dt

0

x

F(x) = f exp (i~2/2) 

0

(Fresnel Cosine Function)

(Fresnel Sine Function)

(Fresnel Function)

C*(x) = ~2~ icos(t2)dt

0

S*(x) = ~2-- isin (t2)dt

0

F*(x) = ~-~ iexp(it2)dt

0

Series Representations:

C (x) = (- 1)n (r ~ / 2nx4n+1

n = 0 (4n + 1)(2n)!

*~ (_l)n(~/2)2n+l x4n+3
S(x)= E (4n+3)(2n+l)t

n=O

(B6.1)

036.2)

036.3)

(B6.4)

036.5)

036.6)

036.7)

036.8)
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Useful Formulae:

C(x) = C*(x,~-~ / 

C(x) = - C(-x)

COx) = i C(x)

S(x) 

s(x) = - S(-x)

S(ix) = i S(x)

F (x) = ~22 ein/4erf(’~-~" e-in/4x)

Special Values:

C (0) = S (0) = 

1
Lira C (x) = Lim S (x) 
X.’-’--~ ~ X --’)’~ 2

Asymptotic Series:

C(x) = ~ + f(x) sin(nx2/2)- g(x) cos(wx2/2)

(x) = ~- f(x ) cos(xx2/2) - g(x) sin(~x2/2)S

f(x) - ~x + m = 1 (xx2)2m

Ixl >> 1 larg xl < x/2

g(x)~~-~ (’ l)m{l’5"9"""(4m+l)}
0ZX2)2m+l

m=0

Ixl >> 1 larg xl < n/2

Integral Formulae:

IS (X) dx = x S (x) + L cos(~;x 

IC (x) dx = x C (x) 1 sin(nx2/2)

f cos(a2x2 + 2bx + c)dx = ~2 cos (b2/a2 - c)C [ 24~-(ax + b / a)]

+ a-~2 sin (b2/a2 - c) S [ 2~-(ax + b / a)]

fsin(a2x2 + 2bx + c)dx = ~2 cos(b2/a2 - c) S [~-(ax + b 

- ~22 sin (b21 2 -c)C [2~(ax + b / a)

F (x) F*(x 4~-~-)

(B6.9)

(B6.10)

({36.11)

(B6.12)

(B6.13)

036.14)

(B6.15)

(B6.16)

(B6.17)

(B6.18)

036.19)
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-
~ e-at sin(t~) dt = --~cos(a~/4) f½- 
0

+’-’~ sin (a~/4) {-~ - S I~-~ 

7e-a’C (t)dt = ~{cos (a~/2=)f~- S[-~I}- sin (a~/2=) {½- C }
0

7e-atS (t)dt = ~{cos (a~/2=) {~- CI~7} + sin (a~/2=) f½- S }
0

036.20)

036.21)

036.22)

036.23)

B.7 Exponential Integrals Ei(x)

Definition:

0,, e-t x e-t
Ei(x)=- P.V. ~ ~dt= P.V. ~ ~dt

t t
--X

~ e-Xt
En (x)= J -~-dt

1

°~ e-Xt
El (x) = j ~ 

1

Series Representation:
oo xk

Ei (x) = ~’ + logOx~ + ~ 1~;~!
k=l

oo x2k+1

Ei(x)-Ei(-x) = 2 ~ (2k+l).(2k+l)!
k=0

and En(x)

x>0

037.1)

037.2)

037.3)

037.4)

037.5)
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(-1)kxk
El(x) = -y - log(x) 

k. k!
k=0

En(x) = (-1) n xn [- log(x) v(n)] - 

k =0,2,4 ....

Recurrence Formulae:

En+l (x) = nl-- [e-X - x En(x)]

En(x) = - En_l(X)

Special Values:
1

En(0 ) = ~
n-1

e-X

Eo(x) = ~
x

Asymptotic Series:

Ei(x)-eX E 
n=0

n!
xn+l

oo (_l)n !

El(X) ~ e-X xn +l

n=O

e-x { n(n + 1) n(n + 1)(n + En(x)~- ~- l-n+ -:~
x3x

Integral Formulae:

Ei (x) = -x f t cos(t) + x sin(t) dt
x2 + t2

0

= _e_X ~ t cos(t)- x sin(t) 
x-~ ~ t-~

dt

0

^-x7 e-t _,.El(X)=~ j~ut
t+x

-x f t- ix itEl(X) = e j tz-~-~-x2 e 

0

(’l)kxk k. n - 1
(k-n+l).k!

n=1,2,3 ....

n=1,2,3 ....

n_>2

x>> I

x>> 1

+ ...} x >> 1

x>0

x<0

x>0

x>0

(B7.6)

037.7)

037.8)

037.9)

037.10)

037.11)

037.12)

037.13)

037114)

037.15)

037.16)



APPENDIX B 610

~En(t)e-xt dt = (-1)n----~l
Xn

o
Ilog(x + 1) X> -1

x

fEi (-t) t dt =- log(x) - T + eXEi (-

0

x

~ Ei (-at)e -bt dt= -~ {e-bXEi (-ax) - Ei (-x(a + b))+ log0+b/a)}

0

037.17)

(B7.18)

B.8

Definitions:

X

0

x

(x) = ~/+ log(x) +-[ cos(t) Ci
t

0

si(x) = Si(x) - r~ 

Series Representations:

n~O (’l)n x2n+l
Si(x)= = (2n+l)(2n+l)!

Ci(x)=’/+log(x)+ (- 1)nx2n

n = 1 (2n) (2n)!

Useful Formulae:

Si (-x) = - Si (x)

Ci (-x) = Ci (x) 

si (x) + si (-x) = 

Ci (x) - Ci (x exp[irr]) = Ei (-in)

Ci (x) - i si (x) = Ei 

Special Values:

si (oo) = Si (oo) 

Si (0) = Ci (0) =- oo

Sine and Cosine Integrals Si(x) and Ci(x)

Ci(~)=0

038.1)

038.2)

038.3)

038.4)

038.5)

038.6)

038.7)



SPECIAL FUNCTIONS 611

Asymptotic Series:

Si (x) = -~ - f(x) cos(x) - g(x) 

Ci(x)=f(x)sin(x)-g(x)cos(x)

f(x)- E (’l)n(2n)!x2n+l
n=0

Ixl >> 1 larg xl < ~

(-1)n (2n + 1)!g(x)~ 
x2n+2

n=0

Integral Formulae:

x

Ixl >> 1 larg xl < x/2

f Ci (t)e-xt dt = ~x log(1 + 2)

0

~si (t) e-Xtdt = 1 arctan(x)
x

0

~Ci( ) ( )d t cos t t = 4

0

~si(t)sin(t)dt g
4

0

~ Ci (bx) cos(ax) dx = ~a [2sin(ax) Ci(bx)- si(ax+bx)- 

~ Ci (bx) sin (ax) dx = - ~a [2cos(ax) Ci(bx) - Ci(ax+bx) - 

~Ci2 (t)dt = n

2
0

038.8)

038.9)

038.1o)

038.11)

038.12)

038.13)

038.14)

038.15)

038.16)

038.17)

038.18)

038.19)

038.20)
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$ si2 (t)dt = 
0

~Ci(t)si(t)dt log2

0

(B8.21)

038.22)

B.9 Tchebyshev Polynomials Tn(x) and Un(x)

Series Representation:

n ~21 (" -lm)~nn~m) ll) ! (2x)n -2m 039.1)Tn (X) = "~" _

which is the Tchebyshev Polynomial of the first kind. The [n/2] denotes the largest
integer which is less than (n/2).

In/2]
Un(x)= E (-1)re(n-m)!~.~("~-~’~! (2x)n-2m

n > 1 039.2)
m=0

which is the Tchebyshev functions of the second kind.

Differential Equations:

(1 - 2)T~’(x) -xT~ (x) + n2Tn (x) = 039.3)

(1 - x2) U~ (x) 3xU~ (x)+ n (n+ Un (x) = 039.4)

Recurrence Formulae:

T.+dx) = 2xTn(x)- T..~(x) 039.5)

Un+ 1 (x) = 2xUn (x) - n_l(x) 039.6)

(1 - 2) T~ (x) =- n x n (x)+ n n_l (x) 039.7)

(1 - x2) U~ (x) = - n x n (x) +(n1) Un.1 (x) 039.8)

Orthogonality:

1

f (1 _ x2)_1/2 Tn (x)Tm (x) dx 
n#m

I~n~/2 n=m
-1

039.9)
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1

~ (1- x2)l/2Un(x)Um(x)dx = {0r~/2 # m

-1

Special Values:

Tn(-X) = (-1)nTn(x)

T0(x) = 1 TI(X) = x

Tn(1) = 1 Tn (-1) = n

Un(-X) = (-1)nUn(x)

UO (x) = 

Un(1) = n+l

Other forms:

X = COS0

d~2Y+ n2y = 0

Tn (cos 0) = cos(n0)

sin [(n + 1)0]
Un (COS0) 

sin 0

Relationship to other functions:

T2(x) = 2x2 - 1

T2n (0) = (-1)n

039.10)

T3 (x) = 3 - 3x

T2n+l(0) = 0

Ul(x) = 2x U2 = 4x2 - 1 U3(x) = 8x3 - 4x

U2.(0 ) = (-1) n U2n+l(0) = 039.11)

1
Tn+l(X) = x Un(X) - Un.l(X) = "~ [Un+l(X) - Un.l(X)]

1
Un(X) = ~ [x Tn+l(X ) - Tn+2(x)]

B.10 Laguerre Polynomials Ln(x)

Series Representation:

n
_, ~’~ (-1)rexm

Ln(x)=n: ~,
~-’~-~ !m=0(m.) (n- 

Differential Equation:

xy"+ (1 - x)y" + ny = 

039.12)

(B9.13)

039.14)

0310.1)

0310.2)
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Recurrence Formulae:

(n + 1)Ln÷1 (x) = ( 1 + 2n - n (x)- nLn.1 (x)

xLh (x) -- n[Ln (x)- Ln-l(x)]

Orthogonality:

I e-XLn(x)Lm(x)dx = {~n=m 
0

Special Values:

Ln(0) = 1

L0(x) = 

L~(0) = 

Ll(X) = 1- 

L3(x) = o~(X3 - 9x2 + 18x- 6)

Integral Formulae:

I e-XxmLn(x)dx = (-1)n n!Snm
0

I e-tLn (t) dt = -x [Ln (x)- Ln4 (
x

I
e_Xt Ln(t)dt = (x- 1)n

xn+l
0

L2(x) = ~(x2 - 4x + 2)

x>0

0310.3)

0310.4)

0310.5)

0310.6)

03 o.7)

031o.8)

0310.9)

B.I1 Associated Laguerre Polynomials Lnm(x)

Series Representation:
n

(_l)kxkLI~ (×) (n
(n - k)!(m 

k--O
n,m=0, 1,2 ....

Lmn (x) = (-1)m dmLn+m(x)
dxm

Differential Equation:

xy"+(m + 1-x)y’+ny = 

Recurrence Formulae:

(n + 1)Lmn+l (x) = + 2n + m- x)L~ (x)- (n + m)Lmn_l (x)

0311.1)

0311.2)

0311.3)

(Bll.4)
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x (L~)" (x) = nL~ (x)- (n 1 (x) (B 11.5)

xL~+l(x) -- (x- n)L~ (x) + (n + m)L~_l (B 11.6)

Orthogonality:

OO

~ e_XxmLmn (x)L~(x)dx = (n+ m)! ~0 (B11.7)
n! [1 k=m

0

If m is not an integer, i.e. m = v > -1, then the formulae given above are correct provided

one substitutes v for m and F (v + n +1) instead of (m + n)! where n is an integer,

Special Values:

Lm. (0) = (n + 
m! n!

Integral Formulae:

~ e-U Lmn (u) du = e’X [Lmn (x) - L~_l(X)]

x

(Bll.8)

(Bll.9)

~e-XxV+l[Ln(x)] 2n+V+lF(n+v+l)
n!

0

v>-I (Bll.10)

x

j’t v (x - t) a LVn (t)dt r( n + v + 1)r(a + 1).v+a+l. v+a+l,_,
F(n + v + a + 2) 

Ln tx~

0

v,a > -1 (Bl1.11)

B.12 Hermite Polynomials Hn(x)

Series Representation:
[n / 2] (.1)m

Hn(x)=n! E m!(n-2m)!
m=O

(2x) n-2m 0312.1)

Differential Equation:

y" - 2xy" + 2ny = 0 0312.2)

Recurrence Formulae:

Hn+1 (x) = 2xHn (x) - 2nHn_l(x)

Hi (x) = 2n n_l (x)

(B12.3)

0312.4)
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Orthogonality:

~ e-X~ Hn(x)Hm (x) dx = {02n ~-

Special Values:

Ho(x) = 1 Hl(X) = 2x

Hn (-x) = (-1) n Hn (x)

Integral Formulae:

Ha (x) ex’,~- 2n+l oo~ e-ta tacos(2xt- -~)2 dt

0

j-
,

{0

m_<n-1
xme-X Hn(x)dx = n!4-~

rn = n

H2(x) = 4x2 - 2

(2n)!
H2n(0) (- 1)n n!

~e-t2/2 eiXt Hn(t)dt =,~-~in e-X2/2Hn(x)

~e-t~ cos(xt) H2n (t) dt = n ~/~ x2n e-x~ /4
2

0

~ e-t~ sin(xt)H2n+l(t)dt =(-1)n "~]-~ x2n+l e-XZ/4
2

0

x

~e-t2 Hn (t) dt = - -xz Hn_1 (x) +Hn1 (0)

0

x

~ Hn(t) dt = 2~+ 2 [Hn+l (x)- Hn+l 

0

Relation to Other Functions:

H2n (’~’) = (- n 22n (n!) L(-112) (x)

H2n+ l(’~f~’) = (" 1)n 22n+1 (n!) L~/:~) 

~e-t ~ tn Hn(x0dt =~’n!Pn(x)

H3(x) = 8x3 - 12x

H2n+l(0) = 0

0312.5)

(B 12.6)

0312.7)

(B 12.8)

(B12.9)

(B12.10)

(B12.11)

(B12.12)

(B12.13)

(B12.14)

(B12.15)

(B12.16)
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J" e-t~ H2n (t) cos(x0 dt n-14-~ n!Ln (x
2/ 2)

0

(B12.17)

B.13 Hypergeometric Functions F(a, b; c; x)

Definition:

r(c) ,~, r(a + n) r(b + xn
F(a,b;C;x)

F(a) F(b)L, F(C + n) n!
n=0

Differential Equation:

x(x - 1)y" + cy’ - (a + b + 1)xy’- aby 

Ixl < 1 (B13.1)

(B13.2)

c ¢ 0, -1, -2, -3 ....

Y = ClYl + C2Y2

Yl = F(a,b;c;x)= (1 - x)c’a’b F(c-a, c-b; c; x)

Y2 = xl-CF(1 + a - c,1 + b - c;2 - c;x)= ]-c (1 - x) c’a’b F(1-a, l- b; 2-c; x)

Recurrence Formulae:

a(x - 1)F(a + 1, b;c; x) = [c - 2a + ax - bx]F(a, b; 

+[a - c]F(a - 1, b;c; x)

(B13.3)

(B13.4)

(B13.5)

(B13.6)

b(x - 1)F(a,b + 1; c; x) = [c - 2b + bx - ax]F(a,b; c; x) + [b - c]F(a, b- 1; 

(c - a)(c - b) x F(a, b; c + I; x) = c [1 - c + 2cx - ax - bx - x]F(a, b; 

+c[c - 1][1 - x]F(a, b;c - 1; x)

(B13.7)

(B13.8)

F’(a, b;c; x) abF(a+ 1,b + l;c+ 1; x

F(n) (a, b;c; x) F(c)F(a + n)F(b + n)F(a + n,b +n;c + n;
r(c + n) r(a) 

Special Values:

1
F(a, b; b; x) = 1 - 

(B13.9)

(B13.10)

r(c)
m (n-1)!r(b-m+n) xn-m

F(-m,b;c;x)= (m--1-~-.r(b) E F(c-m+n) 

n=O

(m integer _> 0)

F(-m,b;-m-k;x) (m-k-l)! ~
(m - 1)! r(b)

n=0

(n-1)!F(b- m + Xn-m

(n - k - 1)! (n - m)!

(m, n integer _> 0)
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F(a, b; c; 1) r(c)r(c - a - = c ¢0, -1, -2 ....r(c- a)r(c - b)
Integral Formulae:

1

F(a,b;c;x) F(c) j- tb-l(1- t) c-b-1 (1 - tz -a dt
r(b)r(c- 

0

1

fxa-I (1 -- X)b-c-n F(-n, b; c; x) dx F(c)F(a)F(b - c + 1)F(c - 
F(c + n)F(c - a)F(b- c + a 

0

J" F(a, b; c;-x) Xd-1 dx =

0

F(c)F(d)F(b- d)F(a 

r(a)F(b)F(c 

c ~ 0, -1, -2, -3 .... d > 0

Relationship to Other Functions:

F(-n,n;71 ;x) = Tn(1-2x)

a-d>0 b-d>0

F(-n,n + 1;1;x) = Pn(1 2x)

Asymptotic Series:

F(a, b; c; x) ~ F(c) e_ina(bx)_a + F(c) ebX(bx)a_c
F(c- a) r(a)

bx >> 1

(B13.11)

(B13.12)

(B13.13)

(B13.14)

(B13.15)

(B13.16)

(B13.17)

B.14 Confluent Hypergeometric
U(a,c,x)

Definition:
OO

M(a,b,x) = F(b.~) ~ F(a + n
F(a) n__~0 F(b + n) 

n [ M(a,b,x) _XI_ b M(l+a- b,2-b,x)]
U(a,b,x)= sin~r~b) F(b)F(l+a-b)

F~(2-’~

Differential Equation:

xy" + (b- x)y’- ay = 

y = C1M(a, b, x) + C2U(u, b, 

Recurrence Formulae:

aM(a + 1, b, x) = [2a- b + x]M(a, b, x) + [b - aiM(a- 1, 

(a- b) x M(a, b + 1, x) = hi1 - b - x]M(a, b, x) + bib - 1]M(a, b 

Functions M(a,c,x) and

0314.1)

0314.2)

0314.3)

0314.4)

0314.5)

0314.6)
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a
M’(a,b,x) = ~M(a + 1,b+ 1,x)

M(n) (a, b, x) F(a + n)r(b) M(a+ n,b + n
r(b + n) F(a)

a(b - a - 1)U(a + 1, b, x) = [-x + b - 2a]U(a, b, x) + U(a- 1, 

xU(a, b + 1, x) = [x + b - 1]U(a,b, x) + [1 + a - b]U(a, b - 

U’(a,b,x) = -aU(a + 1,b + 1,x)

U(k) (a, b, x) = (-1)k F(a + k) U(a + k, b + k, 
r(a)

Special Values:

M(a,a, x) = x

Integral Formulae:

M(a,b,x) 

sin x
M(1, 2,-2ix) = 

x eTM
M(1,2,2x) = x sinh x

X

1
F(b) ~etXta-l(1- t) b-a-1 dt

F(a) F(b - 
0

U(a,b,x) : F--~a) ~ e-tXta-l(1 + t)b-a-1 dt

0

Relationship to Other Functions:

1 2 2PelX
M(p+ ~, p+ 1,2ix) 7r(p+ 1)Jp(x)

1 2Pex
M(p + 7’2P + 1, 2x) = -~- r(p + 1)Iv 

2n+l/2eiX
M(n+l,2n+2,2ix)= xn+l/2 F(n+3/2)Jn+i/2(x)

xn+l/2eiX
M(-n,-2n,2ix) 

2n+1/2
r(1 / 2 - n) J_n_l/2(X)

M(-n, m + 1, x) = . n! m!.. L~(x)
(m + n)!

M’I 3 x2. ~_x~erf(x)

U(p+ ~,2p+ 1,2x) = (2x)p,~-~ Kp(x)

0314.7)

0314.8)

0314.9)

0314.10)

0314.11)

0314.12)

(B14.13)

0314.14)

(B14.15)

(B 14.16)

(B14.17)

(B14.18)

(B14.19)

(B14.20)

(B14~l)

0314.22)
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1
U(p+ _=-,2p + 1,-2ix) 

2 2(2x)p
ei[n(p+l/2)-xl H(pl)(x)

U(p+ ~,2p+ 1,2ix) "f~
2(2x)p e-itn(p+l/2)-xl H(p2) 

U(~I ,~1 ,x2) = ~/-~eX2 erfc(x)
2 2

1 3 2 Hn(X)
tJ(_-z 0 x ) 

2n x

X2

u(-v2 ’21’ ~.) = 2_v/2 eX2/4 Dv(x)

Asymptotic Series:

x-a eina ~

M(a, b, x) ~ F(b- a) F(a) F(a- b l" (a + n) F(a-b +1 + n

n = 0 n!(-x)n

exx-beina ~ F(b-a + n)l"(1-a + 
q F2(b-a)F(a)F(a - 1) ~

n!x~
n=0

Ixl >> 1

(B14.23)

(B14.24)

(B14.25)

(B14.26)

(B14.27)

(B14.28)

x-a
~ F(a+ n)F(l+a-b+n)U(a,b,x) ~ F(a)F(I+ 

n[(-x)n
Ixl >>1 (B14.29)

n=0

B.15 Kelvin Functions (berv (x), beiv (x), kerr (x), 

Def’mifions:

berv(x) + ibeiv(X) = Jv(xe3in/4) = eivn jv (x e-in/4)

= eiVn/2 iv(xei~/4) = e3iVn/2 iv(x e-3in/4)

kerr (x) + i keiv (x) -i vy/2 Kv (x in/ a)

ix --(1), 3ix/4~ = -~-tt v (xe ~ = - 1~ e-iVn2 H(v2)(x e-ig/4)

When v = 0, these equations transform to:

ber (x) + i bei (x) = Jo 3ig/4) = J o (x-i n/4)

= Io(x in/a) =Io(x e-3in/4)

ker (x) + i kei (x) o (x in/ 4)

= i.~.~ H(ol) (x e3in/4) = _ ~ H(o2)(x 
2 2

0315.1)

0315.2)

0315.3)

(B15.4)
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Differential Equations:

(1) x2y"+xy’-(ix 2 +v2)y = 

Yl = herr(x) + i beiv(X)
Y2 = kerr(X) + i keiv(X)

(2)

or Yl = ber-v(x)+ibei-v(x)
or Y2 = ker-v (x) + i kei_v(x

x4y(iv) + 2x3y" - (1 + 2v2 )(x2y" - xy’) + (v4 - 4v2 + x4 ) y = 

Yl = berv(x) Y2 = beiv(x) Y3 = kerv(X)

Yl = ber-v(X) Y2 =bei-v(X) Y3 = ker-v(X)

Recurrence Formulae:

=-v’~(zv-wv)Zv+1 + Zv_1 . x

¯ 1Zv = 2--~(Zv+I -- Zv_1 + Wv+1 -- Wv_l)

v 1= +
x

v 1
= ---z v - (Zv_1 + Wv_l)x

where the pair of functions zv and wv are, respectively:

Zv,Wv =berv(x),beiv(X) or =kerv(x),keiv(X)

or = beiv(X),-berv(X ) or = keiv(X),-kerv(x)

Special relationships

2
ber_v (x) = cos(v~)berv (x) + sin(w)beiv (x) + -- sin(v~) 

bei_v (x) = - sin(v~)berv (x) + cos (vr~)beiv (x) + --2 sin(v~)keiv (x)

Y4 = keiv (x)

Y 4 = kei_v (x)

ker_v (x) = cos(yr,) kerv (x) - sin(vg)keiv 

kei_v (x) = sin(v~) v (x)+ cos(wx)keiv (x)

Series Representation:

berv(X)=~- cos[r~/4(3v+2m)]m! F(v + ra + 1)
m=0

X V ~

beiv(X)=~- si n[r~/4(3v+2m)]m! F(v + m + 1)
m=0

(B15.5)

(m5.6)

(B15.7)

fins.8)

(B15.9)

(B15.10)

(B15.11)

(B15.12)

(B15.13)

(B15.14)

(B15.15)

(B15.16)

(B15.17)

(B15.18)
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xn 2 x2m
kern (x) = 

g(m + l) ÷ g(n + m + 
m! (n + m)!

cos[r~ / 4 (3n + 2m)]-~-ffl--

m=0

2n_1 n- 1

+~ E (n-m-1)!c°s[rc/4(3n+2m)]X4--~xn m!
m=O

+ log(2 / x) bern (x) + ~ bein (x)

Xn

kein(X)=2-’h’~" g( m+l)tg(n+m+l)sin[x/4(3n+2m)]X2Sm! (n + m)! 4’"
m=O

2n_1 n-1 x2m
xn E (n-m-1 t-~ m! )" sin[x / 4 (3n + 2m)]-~--

m=O

+ log(2 / x) bein (x) - ~ bern (x)

~ (-1) TM X4m
bet(x) = m~=0 [(2m)!]2 m

m = 0 [(2m + 1)!]2

~ (-1) m X4m
ker(x) = ~ 1 [(2m)!]2 24m g(2m) + [log(2 / x) - ~) bet(x) + ~ 

kei(x) = (- 1)m x4 m+2
m = 1 [(2m + 1)!] 2 24m--~g(2m + 1)

+[log(2 / x) - 3/) bei(x) - ~ bet 

Asymptotic Series:

eX/4~
berv(x)= 2--~xx {zv(x)cosa+wv(x)sinct}

- ~ {sin (2vr0 kerv (x) + cos (2vn) keiv 

be eX/4~
iv(X)= 2--~xx {Zv(X)cosa-wv(x)sina}

+ ~ {cos (2vn) kerv (x) - sin (2vr0 keiv 

(B15.19)

(B15.20)

(B15.21)

(B 15.22)

(B15.23)

(B15.24)

(B15.25)

(B15.26)
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kerv(X ) = _ ~ { zv(-x)c°sb- Wv(-X)sinb}

~/’~ e-X/~ {Zv(-X)sinb+ Wv(-X)cosb}keiv (x) = 

Zv(-T-x) I + (+l)m {( 1)-(c - 9)... .. (c- ( 2m-1- ~ COS (m~ / 4)
m = 1 m! (8x)m

Wv (-T-x) ~ (+l) TM {(c - 1). (c 9)... .. (c - (2m-1)2)} sin (mr~ / 4)
rn = 1 m!(8x)m

x 7~
where a = -~- + ~ (v - 1 / 4), b = a + rt[4, and c = z.

Other asymptotic forms for v = 0:

ber(x) = ea~.~(x) cos (~(x))
~/Z~X

e~(X)
bei(x) = ~ sin (l~(x))

ker(x) = 2~-~xea(-x) cos([~(-x))

kei(x) = ~x ea(-x) sin (13(-x))

where:

~(x) x + 8x 384-’ff~x - ~-"’"

I~(x)--~+ ~. x 8x ~ 384x3

(B15.27)

(B15.28)

(B15.29)

(B15.30)

(B15.31)

(B15.32)

(B15.33)

(B15.34)

(B~5.35)

(B15.36)



APPENDIX C

ORTHOGONAL COORDINATE SYSTEMS

C. 1 Introduction

This appendix deals with some of the widely used coordinate systems. It contains
expressions for elementary length, area and volume, gradient, divergence, curl, and the
Laplacian operator in generalized orthogonal coordinate systems.

C.2 Generalized Orthogonal Coordinate Systems

Consider an orthogonal generalized coordinate (ul, u2, u3), such that an elementary
measure of length along each coordinate is given by:

ds1 = g~du1

ds2=  4du2

where gl 1, g22 and g33 are called the metric coefficients, expressed by:

__ f x! 1gii \du~J +~dul ) kdu~J
(C.2)

and xi are rectangular coordinates.
An infitesimal distance ds can be expressed as:

(ds)2 = gll(dul)2 + g22(du2)2 + g33(du3)2 (C.3)

An infitesimal area dA on the u~u2 surface can be expressed as:

dA = [(gll)l/2dul][(gEE)l/Edu 2] = ~ duldu2 (C.4)

Similarly, an element of volume dV becomes:
dV = ~/gl lg22g33 duldu2du3 = "fffduldu2du3 (C.5)

where:
g = gl lg22g33 (C.6)

A gradient of scalar function t~, V ~b, is defined as."
~7(~= g~ll ~’ul + g~22 OU2 -r g~33 ~U3

(C.7)

where e 1, e2 and ~ 3 are base vectors along the coordinates u1, u2, and u3 respectively.

The divergence of a vector ~, V. ~, can be expressed as:

625
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V" ~ = "~’{ ~ul [~f~ / gll Eli

where El, E2 and E3 are the components of the vector ~, i.e.:

~=EI~ ! +E2~2+ E3~3

The curl of a vector ~, V x ~ is defined as:

g~11~lr 0" ~/’~--r: 1 ~-~[ g~E2]}

Vx~ =

The Laplacian of a scalar function ~, ~72 ~b, can be written as

~e ~placi~ of a vector function ~, denot~ as V 2 ~ C~ ~ written

where:

A 1 ~
0 g-~-3 E3)} : V.~

(c.8)

(c .9)

(C.lO)

(CAD

(C.12)
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C.3 Cartesian Coordinates

Cartesian coordinate systems are defined as:

tll=x -~<X<+~

112=y -~<y<+*~

U3=Z -oo<Z<+Oo

The quantifies defined in (C.2) to (C.11) can be listed below:

gll = g22= g33 = 1 gl/2= 1

(ds)2 = (dx)2 + (dy)2 + (dz)2

dV -- dx dy dz

V~ = ~ ~ + ~yox ~’y +%~’z =

-g-z

~x ~y ~y

Vxg= b a 3

Ex Ey Ez

Ox 0y ~ ~z~

C.4 Circular Cylindrical Coordinates

The circular cylindrical coordinates can be given as:

ul=r 0<r<+o~

u2=0 0<0 <2r~

U3=Z -oo<Z<+oo

where r = constant defines a circular cylinder, 0 = constant defines a half plane and z =

constant defines a plane.
The coordinate transformation between (r, 0, z) and (x, y, z) are as follows:
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x=rcos 0, y = r sin 0, z=z

x2 + y2 = r2, tan 0 = y/x

Expression corresponding to (C.2) to (C. 11) are given b~low:

gll = g33 = 1, g22 = r2 gl/2 = r

(d$) 2 = (dr) 2 + 1.2 (d0)2 + 

dV=rdrd0dz

er 3"~" ~’~ Z~zz

3E r 1_ 1 3E0 3Ez
v. ~. = --~- + 7,-.~ + 7-~- +-~-~

rl_[ ~r

r~0 ~z [

Vx~. =
~ 3-6
Er rE0 Ez [

I

32t~.+ 1 30 + 1 32t~ , 32(~

v%=~-r 7~ ~ao-~"~-7~

C.5 Elliptic-Cylindrical Coordinates

The elliptic-cylindrical coordinates are defined as:

ul=rl 0_<rl <+0o

u2=~F 0<~F <2r~

03=Z -oo<z<+oo

where ~1 = const, defines an infinite cylinder with an elliptic cross-section, xF = const.

defines a hyperbolic surface and z = const, defines a plane. The ellipse has a focal length
of 2d.

The coordinate transform between x,y,z and rl, ~ and z are written as follows:

x = d cosh rl cos ~,

, x2 y~2 _

~ + sinh2 ~1 - d2’

For the equations below let:

tx2 = cosh2 rI - cos2~

y = d sinh ~1 sin V,

x2 y2 = d2

cos2 V sin 2 V

Z=Z



ORTHOGONAL COORDINATE SYSTEMS 629

The quantities given in (C.2) to (C.I 1) are defined as follows:

gll = g22 = d2 ¢x2, g33 = 1 glt2 = d2 ~2

dV = d~ c~ daa dV dz

(ds)2 = # or2 [(~)2 + (dV)2] + 

~ ~t~v ~z/d

c~En ere v Ez/d

V2-- _ 1 ~ ~2~ a2~ 1 a2~

oz=

C.6 Spherical Coordinates

The spherical coordinates are defined as follows:

ul=r 0<r<oo

112--0 0<0__.~

The coordinate transformation between (x,y,z) and (r, 0, ~) are given below.

x = r sin 0 cos ~ y = r sin 0 sin t~ z = r cos 0

x2 + y2 + z2 = r2
z ~an 0 = (x 2 + y2)1/2 tan t~ = y/x

The quantities defined in (C.2) to (C.11) are given below:

gl ~ = 1, g22 = r2, g33 = r2 sin20 gl/2 = r2 sin 0

(ds) 2 = (dr) 2 2 (d0)2 + r2 sin20 (d~)2

dV = r2 sin 0 dr dO d~

V~=~ri~hlt+l_ 0~I/+ 1 - ~V s-g’ noe,"g
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OEr 2_ 1 3Eo cot0_ 1 OE~

V’~’:-~’-+~’~r +~’-~’-+~ "-t~°-~ rsin0 /~

r2 sin0

~r r ~0 r sin 0 ~¢

~r ~0 ~¢

Er rEo rsin0E¢

V2_.. ~2~ 2 3~~ =--~- + +
cot 0 ~F 1 32~1 ~2~/+ ~

r2 ~02 r 2 O0 ~- r 2 sin 2 0 002

C.7 Prolate Spheroidal Coordinates

C.7.1 Prolate Spheroidal Coordinates - I

The prolate spheroidal coordinates are defined by

ul=rl 0_<~l <~

u2=O 0<0<~

u3=¢ 0<¢_<2r~

where rI = const, defines a rotational elliptical surface, about the z axis, 0 = const, defines

a rotational hyperbolic surface about the z axis and ¢ = const, defines a half plane. The

focal length of the ellipse = 2d.
The coordinate transformation between (x,y~) and (~, 0, 0) are given below:

x = d sinh ~ sin 0 cos ¢,

x2 + y2 z2

sinh2 ~1 l- cosh2-~--~ = d2,

For the equations below let:

IX2 = sinh2 ~1 + sin20,

y = d sinh rI sin 0 sin ¢, z = d cosh ~1 cos 0

Z2 (x 2 + y2) = d2,
tart ¢ = y/x

cos2 0 sin 2 0

and 13 = sinh rl sin 0

The quantities defined in (C.2) to (C.11) are enumerated below:

gl I = g22 = d2 tx2, g33 = d2 [32

glt’2 = d3 tx2 ~

(ds) 2 = 2 tx2 [(dl, i ) 2+ (dO)2] + 2 ~2 (dO)2

dV = d3 or2 ~ dq dO de
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1

~xEn txE~

V~2 1 f~)2~ _ ¢~qt c~2V 1
V : ~ ~. ~-~-~ + c°tn ~ ~" + 3-’~" + c°t 0"~0 } + d2132

C.7.2 Prolate Spheroidal Coordinates - II

These are defined as

ul=~ 1_<~<~

u2=1] -1<1]<+1

u3=¢ 0_<¢<2~

The coordinate transformation between (x, y, z) and (~, 1], ¢) are described below:

x = d4(~2 - 1)(1 - 112) COS 

x2+y2--~z2 x2+y2
--=z2 d2

1_~2 ~’~z=d2’
~1121 ~- 112 ’

The focal length of the ellipse is 2d.

For the equations below let:

Ct2 = ~2 _ 1, ~2 = 1 - ~2 ~ ~2 = ~2. ~2

~e qu~fifies defin~ in (C.2) to (C.11) ~e enumerat~ ~low:

gll=(dx/~)2 g22=(dz /~)2, g33=(d~)2

gl~ = d3 Z2

~2 2~(d~)2 (d~)2-(ds) 2 = ~ ~ [~ + ~J + dE~E~2(d~)2

dV = d3 Z2 d~ d~ d~

y = d4(~2 - 1)(1-1]2) sin ,, z=d~1]

tan¢= y/x
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V" ~ = ~X2 {~[Z~z E~] + ~~ [Z~3 E~]~ ~-~ ~ }

ZE~ --~E

C.8 Oblate Spheroidal Coordinates

C.8.1 Oblate Spheroidal Coordinates - I

The oblate spheroidal coordinates are defined by

0<~1<~

u2=0 0_<0<n

u3=0 0<~<2~

where/q = const, defines a rotational elliptical surface about the z-axis, 0 = const, define a

rotational hyperbola about the z-axis and qb = const, is a half plane. The focal distance of

the ellipse = 2d.
The coordinate transformation between (x, y, z) and (rl, 0, ~) are as follows:

x = d cosh rl sin 0 cos O, Y = d cosh/q sin 0 sin O, z = d sinh/q cos 0

x2 + y2 z2 x2 z2
__ + __ _ d2 + y2

= d2 tan (~ = y/x
cosh2 r I sinh2 ~] - ’ sin2 0 cos2 0 ’

For the equations below let:

c~2 = cosh2 ~1 - sin20, and lB = cosh rl sin 0

The quantities defined in (C.2) to (C. 11) are enumerated below:

gll = g22 = d2cz2, g33 = d2 [~2

gl/2 = d3 cz2 [~

(ds) 2 = 2 (z2 [(d/q) 2+ (d0)2] + 2 ~2 (d~))2
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1

c~n a~0

c,En c~Eo

0211/ 0/I/ 0211/. 0~1" } + 1 021,1I
V211/=d-@~20--@’+tanh11-ff~’~ +O-ff~-+c°sO~- d2~2 002

C.8.2 Oblate Spheroidal Coordinates - II

These coordinates are defined by:

ul=~ 1_<~<~

U2=TI -l<rl<+l

u3=~ 0_<~_<2rt

The coordinate transformation between (x, y, z) and (~, 11, @) are described below:

X = d~/(~2 + 1)(1 - 2) cos ~,

x2 + y2 z2
~-d2,

i+{2 ~ g2 -
The focal length of the ellipse is 2d.

For the equations below let:

~2 = ~2 + 1, 132 = 1 - lq2

y=daf~:/+l)(1-rl 2) sin~, z=d~rl

x2+y2 z2 =d2,
tan~=y/x

1 - ~12 112

arid ~2 = ~2 _ 112

The quantities defined in (C.2) to (C.11) are enumerated below:

gll=(d)~/002 g22=(dx /13)2, g33=(dc~13)2

gl/2 = d3 Z2

d 2
(ds)2= 2.~; t (x---~2r (da + 0~@]+ dec~2132 (d~)2



APPENDIX C 634

~v = d3 ~2 ~ ~ ~

a a
a~

--~E



APPENDIX D
DIRAC DELTA FUNCTIONS

The Dirac delta functions are generalized functions which are point functions and thus
are not differentiable. A generalized function which will be used often in this appendix is
the Step function or the Heaviside, function defined as:

H(x - a) = x < a

= 1/2 x = a (D.1)

=1 x>a

which is not differentiable at x = a. One should note that:

H(x - a) + H(a - x) (D.2)

D.1 Dirac Delta Function

D.I.1 Definitions and Integrals

The one-dimensional Dirac delta function 8(x-a) is one that 

through its integral. It is a point function characterized by the following properties:

Definition:

~(x - c) = x ~ c

_..moo X----C

Integral:
Its integral is defined as:

~6(x-c) dx=l

Sifting Property:
Given a function f(x), which is continuous at x = c, then:

oo

f f(x)~i(x - c)dx = 

def’med only

(D.3)

(D.4)

635
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Shift Property:
This property allows for a shift of the point of application of ~5(x-c), i.e.:

(D.5)

Scaling Property:
This property allows for the stretching of the variable x:

OO

~5(x / a) f(x) dx = lal 

f ~5((x - c) / a) f(x) dx = lal 

(D.6)

(D.7)

Even Function:
The Dirac function is an even function, i.e.:

8(c - x) = 8(x 

since:

~i(c-x) dx 

~5(x - c) f(x) dx = f(c) = ~i(c - x) 

(D.8)

Definite Integrals:
The Dirac delta function may be integrated over finite limits, such that:

b

f S(x - c) dx = c<a, orc>b

a

=1/2 c=a, orc=b

=1 a<c<b

and the sifting property is then redefined as:

(D.9)
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b

f f(x)~i(x- c)dx c < a, or c >0 b

a

-- 1/2 f(c) c = a, or c = b - (D.10)

= f(c) a < c < b

If the integral is an indefinite integral, the integral of the Dirac della function is a
Heaviside function:

X

~8(x-c)dx = H(x-c) (D.11)

X

J’8(x- c) f(x) dx = f(c) H(x- (D.12)

D.1.2 Integral Representations

One can define continuous, differentiable functions which behave as a Dirac delta
function when certain parameters vanish, i.e. let:

Lim u(~x,x) = 8(x)
¢X--~0

iff it satisfies the integral and sifting properties above.
To construct such representations, one may start with improper integrals whose

values are unity, i.e. let U(x) be a continuous even function whose integral is:

~U(x)dx (D.13)1

then a function representation of the Dirac delta function when (z --> 0 is:

u((z,x) = U(x/c0 (D.14)

which also satisfies the sifting property in the limit as (~ --> 0.

Example D.1

The function u(c~,x) = (z/[rc(x2 + c~2)] behaves like ~i(x), since:

Lim u(0~, x) ._) {0oo
x#0

~t-->0 x = 0

and since it satisfies the integral and sifting properties:

X

~u((z,x)dx = 1+ larctan 
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so that when the upper limit becomes infinite, the integral approaches unity. Note also
that if the limit of the integral is taken when c~ --> 0, the integral approaches, H(x). 

should be noted that this functional representation was obtained from the integr~d:

l+x 2 -

so that:

1
U(x) 

r~(l+ 2)

which results in the form given for u(o~,x) above. To satisfy the sifting property, one

may use a shortcut procedure which assumes uniform convergence of the integrals, i.e.."

Lira ~ u(ct, x)f(x)dx=lLim ~ x-~f(x)dx
o~-~0 ~ e~-~O

substituting y = x/ct in the above integral one obtains:

a-->oLim ~ u(a,x)f(x)dx = 1Limn ~-~0 ~ f(~Y)..+~ dy --~ --f(O)~x 2-dy _    f( O)

where the integral is assumed to be uniformly convergent in ~t. Let f(x) be absolutely

integrable and continuous at x = O, then one can perform these integrations without this
assumption by integration by parts:

"~" X2 + ~t2 X2 + [~2

or J7 f(-x) 

Integrating the second integral by parts:

~f(x) ~ 

0

Lim Z f ~(x)~ dx = Lim Lf(x)arctan(x/ )l -L f’<x)arctan(x/(x)dx
; ,o o

= __1 Lira. f’<x) a~ctan <x ! ~) dx + f’<x) 

0 0

since fix) is absolutely integ~ble ~d continuous at x ~ 0. Simil~ly ~e f~st inmg~l
a~cbes:
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Lim(~T f(-x) 
--~f(0-)

~-~0~ n ; x~--~’~-’~’~

so that, since f(x) is continuous at x = 

Lim( T f(x)u(~t,x)dx --~ 

D.1.3 Transformation Property

One can represent a finite number of Dirac delta functions by one whose argument is
a function. Consider 8If(x)] where f(x) has a non-repeated null 0 and whose derivative

does not vanish at x0, then one can show that:

8If(x)] ~i(x - x0 (D.15)
]f’(xo)[

One can show that (D.15) is correct by satisfying the conditions on integrability and
the sifting property. Starting with the integral of ~[f(x)]:

I 8[f(x)]dx

Letting:

U = f(x)

then:

u = 0 = f(x0) and

then the integral becomes:

j" 8[f(x)]dx- 

du= f’(x)dx

]f’(xo) I I ~(x- xo)dx

I 8[f(x)lF(x)dx= I 8(u) F(x(u))du/f’(x(u))/

_ F(x0) 
[f’(xo) [ = [f’(x0)-’-~ ~ I F(x)8(x-x0)dx

Thus, the two properties are satisfied if eq. (D. 15) represents 8[f(x)].

If f(x) has a finite or an infinite number of non-repeated zeroes, i.e.:

f(xn)=0 n = 1, 2, 3 .... N

then:
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N
8(x - x~)6[fix)]= E If’(Xn)I

n=l

Example D.2

8(x2 - a2) = ~a [8(x - a) + 6(x + 

oo

8[cosx]= E 8[x-2n+ln]
2

640

(D.16)

D.1.4 Concentrated Field Representations

The Dirac delta function is often used to represent concentrated fields such as
concentrated forces and monopoles. For example, a concentrated force (monopole point
source) located a x0 of magnitude P0 can be represented by P0 6 (x-x0). This property

can be utilized in integrals of distributed fields where one component of the integrand
behaves like a Dirac delta function when a parameter in the integrand is taken to some
limit.

Example D.3

The following integral, which is known to have an exact value, can be approximately
evaluated for small values of its parameter c:

T=--I f cos(ax)Jo(bx) =1
1

7~ x2 + C2 dxc e-aCI0(bc) ~ -c
c << 1

If the integral can not be evaluated in a closed form and one would like to evaluate
this integral for small values of c, one notices that the function in example D. 1.,

c / [n(x2 + c2)], behaves as 6(x) in the limit of c---~ Thus, one can approximately

evaluate the integral by the sifting properties. Letting:

F(x) 1 cos (ax) Jo(bx
c

then the sifting property gives F(0) = 1/c. To check the numerical value of this
approximation, one can evaluate it exactly, so that for a = b = 1 one obtains:

c T(exact) T(approx) c~(exact) cT(approx)
0.2 4.13459 5.000 0.82692 1.0
0.1 9.07090 10.00 0.90709 1.0
0.01 99.0050 100.00 0.99005 1.0

This example shows that for c = 0.1 the error is within 10 percent of its exact value.
This approximate method of evaluating integrals when part of the integrand behaves like a
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Dirac delta function can be used to overcome difficulties in evaluating integrals in a closed
form.

D.2 Dirac Delta Function of Order One

The Dirac delta function of order one is defined formally by

61 (x - o) =- d-~ 8(x - o) (D.17)

such that its integral vanishes:

I 81(x =0 (D.18)

and its first moment integral is unity:

I x61(x- = 1 (D.19)x0)dx

and its sifting property is given by:

I f(x)~l(X xo)dx = f’(xo) (D.20)

which gives the value of the derivative of the function f(x) at the point of application 
~Jl(X - x0).

These properties outlined in Eqs. (D.18 - 20) can be proven by resorting to the
integral representation. Thus, using the representation of a Dirac delta function, one can
define 51(x) as:

8~ (x) = - Lira d u(cq x____.~) (D.21)

In physical applications, 81(x) represents a mechanical concentrated couple or a dipole.

D. 3 Dirac Delta Function of Order N

These Dirac delta functions of order N can be formally defined as:

N

(~N(X -Xo) = (-1) N d--~- ~J(x -xO)

so that the kth moment integral is:

I xk ~iN(X)dx= {0 k<NN! k =N

(D.22)

(D.23)
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and the sifting property gives the Nth derivative of the function at the point of application
of 8N (x - x0) is:

f f(x)SN(X- x0)dx = f(N)(x0) (19.24)

In physical applications, ~iN (x - x0) represents high order point mechanical forces and

sources. For example, ~2(x - xO) represents a doublet force or a quadrapole.

D.4 Equivalent Representations of Distributed Functions

In many instances, one can represent a distributed function evaluated at the point of
application of a Dirac delta function of any order by a series of functions with equal and
lower ordered Dirac functions. For example, one can show that

f(~) ~(x- ~) = f(x) 8(x- (D.25)

which allows one to express a point value of f(~) by a field function f(x) defined over 

entire real axis. The proof uses the sifting property of the Dirac delta function and an
auxiliary function F(x):

f F(x)f(x)8(x - {)dx = F({) f({) = f(~) F(x)8(x 

= ~ F(~) f(~)8(x- 

which satisfies the equivalence in D.25.
Similarly one can show that:

f(x) 81(x - ~) = f’(~) 8(x - ~) + f(~) 03.26)

which again can be proven by using an auxiliary function F(x):

~F(x) f(x) l(x -~)dx = F(~) f’( ~) + F’( ~) f(~

= f’(~) J F(x) 8(x - ~) dx + f(~) l( x - ~) dx

which proves the equivalency in Eq. (D.26). This equivalence shows that a distributed
couple (dipole) field f(x) is equivalent to a point couple (dipole) of strength f(~) 

point force (monopole) of strength f’(~).
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D.5 Dirac Delta Functions in n-Dimensional Space

A similar representation of Dirac delta function exists in multi-dimensional space.
Let x be a position vector in n-dimensional space:

x = Ix 1, x2 ..... xn] (D.27)

and let the symbol Rn to represent the volume integral in that space, i.e.

~ F(x)dx~ ~ ~...j" F(Xl,X 2 .... xn)dXll:Lx2...dxn

Rn -~’-~

D.5.1 Definitions and Integrals

The Dirac delta function has the following properties that mirror those in one-
dimensional, so that:

~(X- ~) = 1- El , x2 " ~2 ... .. Xn" ~n] (19.29)

Integral:
The integral of Dirac delta function over the entire space is unity, i.e.

~ (x-~)~=l
Rn

Sifting Property:

S F(x)~5(x - ~)dx= 

Rn

(D.30)

(D.31)

Scaling Property:
For a common scaling factor a of all the coordinates Xl, x2 .... xn:

~ F(x)~5(X)dx = [a[n
a

Rn

(D.32)

Integral Representation:
Let U(x) = U(x1, x2 ..... Xn) be a non-negative locally integrable function, such

that:

f U(x)dx= (D.33)

Rn

Define:u(~,x) = -n U(x/a) = a-n U(Xl/a’ x2/~t .. ..

xn/cx) (I).34)

then:
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Lim u(r~,x) = 8(x) (D.35)
~t-~0

This can be easily proven .through the scaling property:

Lim f -~-1 u(X)dx=f U(y)dy=l
¢t-~0 otn

Rn Rn

where the scaling transformation y = x/a was used. It also satisfies the sifting property,

since:

f ~1 u(X) F(x) dx = Lim f U(y) F(ety) dy Lim

Rn Rn

D.5.2 Representation by Products of Dirac Delta Functions

One can show that the Dirac delta function in n-dimensional space can be written in
terms of a product of one-dimensional ones, i.e.:

~(X- ~) = 8(X1- El) ~(x2" ~2) "’" ~(Xn" (D.36)

This equivalence can be shown through the volume integral and sifting property:

~ ~(x-~)dx: ~ ~(Xl-~l)dXl..... ~ 8(Xn-~n)dxn=l
Rn -~ -~

~ F(x)~(x-~)dx=F(~)= ~ ... 1 ..... Xn)~(Xl-~l)....’~(Xn-~n)dXl...dxnRn
-oo

D.5.3 Dirac Delta Function in Linear Transformation

The Dirac delta function can be expressed in terms of new coordinates undergoing
linear transformations. Let the real variables Ul, u2 .... Un be def’med in a single-vlaued
transformation defined by:

U1 = U1 (Xl,X2 .... Xn), 2 =U2(Xl,X2 ... Xn) .... Un = an (Xl,X2 .... xn)

then:

1
~(x - ~) = ~- ~5[u - (D.37)

where ~1 = u (~) and the Jacobian J is given 

J(~) = det [~xi/~uj] for J(~) ~:0
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D.6 Spherically Symmetric Dirac Delta Function
Representation

If the Dirac Delta function in n-dimensional space depends on the spherical distance
only, a new representation exists. Let r be the radius in n-dimensional space:

r=tx + +...+ Xn2 m
then if the function U(x) depends on r only:

~ U(x)dx = ~ ... ~ U(r)dx, dx2...dxn 

one can make the following transformation to n-dimensional spherical coordinates r, 01,

02 ..... 0n where only (n-l) of these Eulerian angles are independent:

x1 = r cos 01, x2 = r cos 02 .... xn = r cos On

Thus, the volume integral transforms to:

[2~ 2~

~ U(x)dx = ~ U(r)rn-I dr 1 f c°s01""c°S0n d01 ""dOn

Rn 0 [ 0 0

The last integral can be written in a condensed form as:

U(r)r n-~ dr Sn(1) = 

where U(r) is the part of the representation that depends on r only and Sn(1) is the surface

of an n-dimensional sphere of a unit radius, so that U(r) must satisfy the following
integral:

~rn-I U(r)dr 1

Sn(1)
(D.38)

0
The volume and surface of an n-dimensional sphere Vn and Sn of radius r are:

~n/2 7~n/2rn
Vn(r) = n = (D.39)

(n / 2)! F(n / 2 + 1)

Sn(r ) dVn 2~n/2r n-1 2~n/2rn-1= - - (D.40)
dr (n_l), r(n/2)

2 "

Thus, in three dimensional space:

2~3/2 2r¢3/2
$3(1) = ~ = ~ = 

so that the representation function U(r) must satisfy:
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f 1
(D.41)r 2 U(r)dr 

0

In two-dimensional space:

$2(1) = 2~t

so that the representation of the function U(r) must satisfy:

f 1
(D.42)r U(r) dr = 2-~

0

Once one finds a function U(r) whose integral satisfies eq. (D.38), one can then obtain 
Dirac delta function representation as follows:

u(~,r) = -n U(r/~) (D.43)

so that the spherically symmetric Dirac delta function ~i given by:

~(x) = Lim u(ct,r)

Example D.4

To construct a representation of a spherically symmetric representation of a Dirac
delta function in 3 dimensional space from the function:

-re
U(r) = 

8~t

Since:

1f r2 U(r)dr 
4--~

0

then U(r) is a Dirac delta representation in three dimensional space, and
1 e-r /ct

u(~’r) = t~3 

so that the spherical Dirac delta function representation in three dimensional space is:
e-r/et

~(x) = ~1 Lim 
8~ ct--~0 ~3

D.7 Dirac Delta Function of Order N in n-Dimensional Space

Dirac delta functions of higher order than zero are defined in terms of derivatives of
the Dirac delta functions as was done in one-dimensional space. Define an integer vector
l in a n-dimensional space as:
l = [/1, 12 .... /n] (D.44)
where l 1, l 2, ¯ ¯ ¯, l n are zero or positive integers, so that the measure of the vector
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is II I, defined as:

Ill = ll + 12 + --- +/n (D.45)

One can then write a partial derivative in short notation as:
~1~ +lz +...+l,~ ~91/I

21 = (D.46)
ox1 ox2 ox1 ox2 ...~xn

Thus, one may define a Dirac delta function of N order in n-dimensional spaces in terms
of derivatives of zero order:

~ N(x) : (-1)INI ~N (D.47)

so that the sifting property becomes:

f ~iN(x- ~)F(x)dx =~)N (D.48)

Rn
Partial differentiation with respect to the position x or ~ are related. For example, one

can show that:

---~-d ~5(x - ~) = - 0--~-~ ~(x - (D.49)
OXl

by use of auxiliary functions as follows:

F(x) dx = - OF(~)f ~(x- ~) 

Rn

--- f ~5(x-~)F(x)dx=-f ~5(x-~)F(x)dx

Rn Rn
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PROBLEMS

For the following functions
(i) show that they represent <5(x) as c~--> 

(ii) show that they satisfy the sifting property

X_<-CC-E

-(X-E < X <-C¢

-(~_<x_<c~

x>CC+E

(c)

u(c~, x) 

in the limit ~ --> 0.

(d) u (cqx) 

1--(1 + x) -a<x<O

l(l-X) O_<x<a

-- sin (x / a)
~x

2. Show that the following am representations of the spherical Dirac delta function:

(a) 5(Xl,X2)= 
c~0 2~t(r2 +(t2)3/2

(b) <5(Xl,X2,X3)=a-~oLim r~" "~ (r2 + (22)2

(zsin2(r 
(c) <5(Xl,X2,X3)= 

a-~O 2~2 r4

3. Write down the following in terms of a series of Dirac delta function

Ca) <5 (tan 

(b) <5 (sin 
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4. If x1 = au1 + bu2, and x2 = cu1 + du2, then show that:

1
~(Xl)8(X2) lad_bc-~--~8(Ul)8(u2)

Show that the representation of Spherical Dirac delta functions located at the origin
are;

8(r)
(a) 8(xl,x2,x3)= 2

8(r)
(b) 8(xl,x2) 

2~tr

Show that the Dirac delta function at points not at the origin in cylindrical
coordinates are given by:

(a) 8(x1, x2 ) = 8(r - 0) 5(0 -00 (Line source)
r

(b) 8(Xl,X2,X3) - 8(r-r°)8(O-O°)8(z-z°) (Point source)
r

(c) 8(x1, x3) = 8(r - ro)8(z - (Ring source)
2r~r

Show that the following Dirac delta functions represent sources not at the origin in
spherical coordinates.

(a) 8(xl,xz,x3) 8(r - ro)8(0 - 00)~(~ - ~o (Point source)
r2

(b) 8(Xl,X2) = 8(r-r°)8(0-0°) (Ring source)
2r2

(c) 8(x1, x3) = 8(r - r0) 8(~ - (Ring source)
2~tr2

(d) 8(xl) = 8(r - ro) (Surface source)
4~r2
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PLOTS OF SPECIAL FUNCTIONS

E.1 Bessel Functions of the First and Second Kind of Order
0, 1, 2

1

0.8

0.6

0.4

0.2

°’~I I /\/", \’ /~’, k~" ~"C’\ 

-0.25

-0.~ I / ::::~

-~// .....
~(~)
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E.2 Spherical Bessel Functions of the First and Second Kind
of Order 0, 1, 2

0.4

0.3

0.2

0.i

jo(x)

..... jl(x)

..... j2(x)

x

0.2

-0.2

-0.4

.,.-.%

I / ~ ~o<~
~ t - .... Yl(X)

’X
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E.3 Modified Bessel Function of the First and Second Kind
of Order 0, 1, 2

15 .....
ii(x) . // /

lO5

1 2 3 4 5

2

1.75

1.5

1.25

1

0.75

0.5

0.25

1 2 3

-- Ko(x)
..... Kl(X)

K2(x)

X
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E.4 Bessei Function of the First and Second Kind of Order
1/2

0.5

0.25

-0.25

-0.5

-0.75

-i

..... Y1/2(x)

E.5 Modified Bessel Function of the First and Second Kind
of Order 1/2

Ii/2(x)

K~/2(x)
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ANSWERS

Chapter 1

(a) y = (c+x)e-x~/2

CO) y --- C x-2 + x2/4

(C) y = C (sin "2 + (sin x)

(d) y=~l (c+lle2X+x])
cosh x ~, 21_ 2

(e) y = c cot x + csc 

(f) y=ce-X+xe-x

(a) y = 1 e
-x +c2e

2x

Co) y = 1 e
x/~ +c2e

x/2 + c3 e
x

(c) -- - (ci + czx) ex+ c3 e2x

(d) y = (cl + ) e
-2x + (3 + c4x)e

2x

= E1 sinh (2x) + E2 cosh (2x) + x (E3 sinh (2x) 4 cosh (2x))

(e) y = 1 e
2x +c2e

-2x + c3 e
2ix + c4 e

-2ix

= El sinh (2x) + 2 cosh (2x) +3 sin(2x)+ ~4 cos (

~2i ,-l+i ,
(f) y = clexp( x) + c2 expt--~-x)

(g) y = "z (I sin z + c2cosz) +z (3 sinz + c4 cosz)

= E1 sin z sinh z + E2 sin z cosh z + ~3 cos z sinh z + ~4 cos z cosh z

where z =

(h) y=ex(c
1+c2x+c3

xz)+ e-x(c
4+c5X)

(i) y = e-2ax + eaX[.c2 sin(ax~/~) + 3 cos(ax~/’~)]

O) Y = cl e’aX + eax [ c2 sin (ax) + 3 cos (ax)]

(k) y = 1 + c2x) sin (ax) + 3 + CaX)cos (ax)

(I) y = Cl sin (2x) 2 cos(2x)+ e-x~f~ (c3 sin x+ c4cos x)

+ ex4~ (c5 sin x + c6 cos x)
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o

o

(a) = ClX + C2x-I

(b) y = ClX-1 + c2x-1 log 

(e) y = e! sin (log 2) +c2cos(log2)

(d) y = ClX + x’l + c3x2

(e) y = (c~ 2 logx) x+ c3x-2

(f) y = ClX + c2x-2 + 3 sin ( log x2) +c4cos(log2)

(g) y = 1/2 (I + c2logx)

(h) y = 1/2 [c1 sin ( log x) +2 cos(logx)]

(a) yp -- -2ex - 3 sin x + cos x - (3x2/2 + x) "x

Co) yp = 2 -3x+ 9/2+ e-x + (3x4/4 - x 3+ x2)ex

(c) yp = [sin (2x) 2 sinh (2x)]/4

(d) yp = 2 +2xlogx

(e) yp = 2 +2x(log x)2

(a)

(b)

(c)

(d)

x

y = c1 sin (kx) + 2 cos(kx) +~ ~ sin (k(x - rl )f(rl)drl

1

x

y=clx +C2x-1 + ½ j" (xrl-2 - x-l) f(~)drl

1

x

y= ClX + C2x2 +C3X2 logx+ ~(xrl-x2(l+ log rl)+x 2 log x) ~d~l
1

xy = Clekx + c~e-kx + k1- ~ sinh (k(x - rl)f(rl) 

1
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Chapter 2

(a) p ---> 0% oo<x<.o

(b) p-~,,,,, - .o<x<,,*

(c) p=l, -l<x<+l

(d) p=l,-l<x<l

(e) p=l, -l<x<l

(f) p =2, -2<x<2

(g) p=2, -2<x<2

(h) p=4, -4<x<4

(i) p=2, -l<x<3

(j) p=3, -4<x<2

x 3 x6 x 4 5x7
(a) y = Cl[1-’~’+~-"’]+ c2[x-’~-+45 ~- "’’]

(b) y=cl[l+
x 2 x 4 1.3x6 1.3.5x8

¯ I + ...] + ¢2x
21! 222! 233! 244.t

0o x2m
(C) y=c 1 Z

2ram!
m=O

x3 x5 x7
~ + C2[X + ~ + ~ + ~ + ...]

3 3"5 3"5"7

(d) y = CI[I+x 2 +11X4 +ZX6 +...]+C2[X + 7. 3 +2X5 +5X7 +...]
12 12 4 12

x 3 x 4 llx 5 13x 6 . . x 3 X4 x 5 x6
(e) Y=Cl[l+x2+--+m+~+~+ .l+c2tx+ + ...]

6 3 120 180 "" "~’- + "~" + "~" "~+

x3 x6 x4 5x7 3x 5 9xg
(0 Y = Cl[1-’~"~ + -"r~---...]+C2[X--m+~--...]+C3[X2-~+~-

645 6 252 20 560
.o.]

(g) Y=Cl Z (-1)n(2n+l)x2n+c2 (-1)n(n+l)xZn+t

n=O n=O

~
X2n

(h) y = Cl(X-X3)+c2
(2n- 3)(2n- 

n=O

x2 x3 3x 4 . . x 2 2x3
(i) Y=Cl[l+~+--+~+ l+c2x[l+~+~+...]

2! 3! 4! "’" 3[ 4!

oo x4n+2
00

X4n
(J) Y=Cl Z (-l)n (2n+l)[ ~-c2 Z (-l)n

(2n)!
n=O n=O
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3. (a) y (x + 1)2 (x + 1)3 5(x + 1)4

2 3 24

+ c2 [(x + 1)- (x + 2 + 2(x + 1)3 5(x + 1)4

3 12

(x - 1)4 (x - 1)8 (x - 1)12
(b) Y=Cl[l+ ~ ~ +...]

12 12.56 12.56. 132

(x - 1)5 (x - 1)9 (x - I)13
+ C2[(X -- 1) + ~ + ~ ~- ...]

20 20.56 20.72.156

(c) y=c1 E (2n+l)(x-1)2n+c2 (n+l)(x-1)2n+l

n=0 n=0

Y = Cl E (n + 1)(2n + 1)(x 2n+ c2 E (n + 1)(2n+ 3)(x2n+1

n=O n=O

(a) x = 0 RSP

(b) x = 0 ISP

(c)x=+ 1 RSP

(d) x =0,+_ 1 RSP

(e) x=0, nnRSP n=+1,+2,+3 ....

(f) x =0ISP, x=nr~RSP n =+_ 1,+_2 ....

(g) x = 1 RSP

(h) x=0,1RSP

(a) Yl = x3/2(1-3x+ 1-~5 x2 - 3"-’~’5 x3 +...), Y2 = x(1-x+2x2 -2-x3 +...)
4 32 128 3 5

~ xn+l
00

xn_3/2(b) y=c1 (-1)nr(n+7/2) +c2 E (-1)n
n"--~.t

n=0 n=0

where:

l"(n + 7/2) = (n + 5/2) (n + 3/2) (n + 1/2) ... (3 + 1/2) (2 + 1/2) (1 

oo
xn+l/2(C) y = 1 E(-1)n (n+ 1t + C2X-1/2

n=0

oo xn+l
(a) y=cI E (n+2)-’----~,+c2[l+x-l]

n=O

(e) Y=Cl E (-1)n
x4n+3

oo x2n+2
1.3.5.(2n+1)+c2 E (-1)n 2nn’--’~".

n=0



ANSWERS - CHAPTER 2 667

~ xn+l

(f) Yl(X)= E (n!)2’
n=O

oo n+l

Y2(X) = Yl(X) log X - 2n~=1 (~.~ 

(g) y~(x)=
~

x2n+l/2
E (-1)n 2nn~.l

n=O

1 ~’ x2n+1/2
Y2(x)=Yl(x)l°gx-’~ E (-1)n~’~’~7"--,g(n)

2 n!
~=1

(h) y~(x)=

~
xn+l

E (-1)n n---~".
n=O

~,
xn+l

Y2(X) =-Yl(X)lOgx+l+l+ E (-1)n g(n)
X

n=l

(i) y~(x)=
~’

x3m+3
E-1)m 2ram!

m= 0

1 X2 X4. 1 1 2m+3

Y2(X)=~’(l+~-+"~-)+~Yl(X)l°gx-~ " E (-1)m~g( m)

m=l

n -~-~ 0

xn-3+i

~¢’ xn-3-i
(J) Y=Cl n!(l+2i)(2+2i)...(n+2i) ÷c2 E n!(1-2i)(2-2i)...(n-2i)

n=O

(k) = x( 1--x+----1 x 2- x3+...), y2 =-l+x-I
3 12

(l) Y=Cl(X--~-)+C2(3--~-)

(m) Y=Cl E (n+l)x2n+c2 (2n+l)x2n-I
n=O n=O

(n) ~
x2n

y = Clx-~ + C2 2n + 1
n=O

(o) Yl(X) = 1 + + x2,

Y2(X)= yl(X)lOgx- x- 2 +~ E (- l)n
xn+3

(n+l)(n+2)(n+3)
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,x, 2n
Yl(x)

n!)2,

oo
xn

Yl(X)= ~’~ (--1)n(n.~~,
n=O

(r) yl(x)=

(s)

~o X2n
Y2(x)=yl(x)l°gx- Z (~.~.,~g(n)

(0

¯ n

Y2(X)= Yl(X)logx-2 ~ n ~.~- -~-g(n)
n=l

~ (_l)n 2n
(n + 1)!n! ’ 

n=O

Y2(x)=YI(X)I°gx- x-2 l+x2- (- 1)n(n~-~[l+2ng(n-1)]

rl=2

Y=CI(I+-~x+-~-~-)+C2X4 ~_~ (n+l)xn

n=O

oo
n x2n

Yl(x)=x Z (-1) (n!--~’
n=O

oo
X2n

Y2(x) = Yl(X)l°gx- (- 1)(n!-~ g(n)

n=l "
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Chapter 3

In the following solutions, Z represents

(a) y = 1/2 7-~(n+l/2)(kx)

(c) y = Zo(x~)

(e) y = -x x-2 Z_~l(kX3)

(g) Y = xl/4 Z+l/6(kx2/’2)

(i) y = x Zy_2(ex)

(k) y = x/2 x-3/2 Z_~.l/2(kx2)

(m) y = x -x 7_~2(2xl/2)

J, Y, H0),H(2).

(b) y = x Z~l~(kx)

(d) y = x Z~l~Z(x~)

(f) Y = x-3 Z~(2kx3)

(h) y= x-2 Z.~.2(kx2/2)

(J) Y = xlt2 x Z.~:3t.2(x)

(1) y = x x Z~l(ix)

(n) y = -x Z+9_(2x)

19. (a) -2PF(p)/n

(c)0

(e)- 3i

(b) 2*

(d) i n (n-l)! /



ANSWERS - CHAPTER 4 670

Chapter 4

Charactedstic equation:

2o~n
tan~n = 2

~n - 1
ot =kL= ~L/c

sin (%x/L) + an cos (%x/L)

2. Characteristic equation:

tancgn tan~n

~n ~n

where:

ton L
~t~ ----~C1 2’

Eigenfunction:

~n ---- (dOra Cl 2 =TO
C2 2’ Pl’

20~nXJsin (--~)

sin ¢xn . . 2l~n (L - x).
/ .---’=- s~n <. -
/sinlSn L

0<x<L/2

L/2<x<L

3. Characteristic equation:

Jl/4 (’-~2 n) Yl/4(2~n - YI/4 ( ’~2n )Jl /4(2~n )=0

Eigenfuncfion:

~n =’~{Jl/4(-’~ -z2)~Jl/4(2~n ) Y1/4’ ¢ ~n Z2)12 
z= 1 +x/L

(i) n tan (Otn) = 1 where tt = kL/

fsin (~-~- x) 0<x<L/2

On =

sin (-~ (x - L)) L < x < L

(ii) n =nr~ n = 1, 2, 3 ....

Isin (-~-~ x) 0_<x<L/2

#n =

[- sin (-~ (x - L)) L/2<x<L

n= 1,2,3 ....
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n2~2 .~
5. (a) ~n= L2 , 0n=COS( 

n2~2 .~
(b) 2~n= L2 , Cn=sin( 

(c) ~’n (2n+l)292= 4L2 , 0n = sin((2n2L + 1)~ x)

_~_
a2 aL

(d) Un(X) = cos( x) ~’n = -n tanan = ~L2’ an

n=O, 1,2 .....

n= 1,2,3 .....

n=O, 1,2 .....

n= 1,2,3 ....

(e) Un(X) = sin(-~ Xn -- L’~-,

¯ an(f) n (X) =sin ("L-" x)an cos (an x)
aL L ’

L
tana n =--

aL2 _ bOt2n
tan an = (1 + ab)Lan

n=1,2,3 ....

n= 1,2,3 ....

6. Characteristic Equation:

2~an wheretartan = ~’~n2 _ 1
M

On(x) = cos(~-x)-~a n sin (~- x)

7. Characteristic Equation:

Jo(an) YO(20~n) - Jo(2an) Yo(an) where ctn=kL n=1,2,3 ....

On = J0(anz)

Let ~ = ~n L,

(a) sin ~n = 0,

JO(an) Yo(anz)
where z = 1 + x/L

Yo(an)

a4

Ln = ~ and Xo = 0 (if it is a rooO
L4’

= n~ 0n = sin (-~- x) n= 1,2,3 ....

(b) cos n cosh an =-1, aI = 1.88, a2 -- 4.69, a3 = 7.86 n = 1, 2, 3 ....

On(X) 
sin (~- x)- sinh (-~- x) cos (--~- x)- cosh 

sin (an) + sinh (an) cos (an) + cosh (a.)

(c) cos n cosh an =1,a0 = 0, al = 4.73, a2 = 7.85, a3 = 11.00 n =1,2,3 . ...

an
(~-x) cos (~- x) + cosh (~- sin (---~- x) + sinh

On(X) t
sinh (an)- sin (an) cos(an)- cosh (Ctn)
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(d) sin n =0,an = nx Cn = cos(--~x)

(e) tan an = tanh an, I = 3.93, 0.2 = 7.07, a3= 10.2

n=O, 1,2 ....

n=1,2,3 ....

Cn(x) 
sin (--~- x) sinh (~- 

sin (an) sinh (an )

(f) tan an = tanh [see (e)l n=0,1,2 ....

(g)

Cn(X) 
sin (~--~ x) ÷ sinh (~--~ 

sin (an) sinh (an)

2~,L3
coth an - cot % = ~ n= 1,2,3 ....

%(x) 
sin (~- x)

sin(an)

sinh (~- x)
q-

sinh (an )

(h) tan an - tanh an = 2 rl__..~L
an El

n= 1,2,3 ....

(i)

¢.(x) 
sin (~-~x)a sinh (~- 

cos(an) cosh(an)

3
cosh an COS an + 1 = ~ [sinh an cos {Xn - cosh an sin an ]

an E1
n= 1,2,3 ....

(J)

sin (-~-~ x) - sinh (-~- x) cos (~- x)- cosh (-~- 
Cn(X) 

sin (an) + sinh (an) cos (an) + cosh (an)

~L
cosh an + cos an + 1 = - ~ [cosh an sin an + sinh an cos an ]an E1

n-- 1,2,3 ....

On(X) +
cos (an) + cosh (an ) sin (an) - sinh (an)

9. Characteristic Equation:

tanh an = tan an +2 k an tan an tanh an

an=~nL, ~Ln =-.~-¢~,n= 1,2,3 ...
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On(x)
sin (~- x)- sinh (-~- x) cos (~- x)- eosh 

sin (an) + sinh (an) cos (%) + cosh (an)

10. Characteristic Equation:

(a) k an (tan % - tanh ~) where

sin (~-~- x) sinh (~-~- x)
I}n (X)= 0 < x < L/2

cos(an) cosh (Ixn)

= - sin (z) + tan n) cos (z) + sinh (z) - tanh (an) cosh (z

an = ~nL/2, k = M / (pAL)

L/2<x_<L

where z = an (2x - L)/L

(b) sin an = 

2n~
Cn = sin ("7-- x)

L
0Ax~L n=1,2,3 .....

11. Characteristic equation:

Jn(13~m) In+l(13~m)+ Jn+l(O~rn) ]n(0~m) where

xn/2[ Jn (2~mL’~x’~) In (2 ~mL,~"7"~) 
On = [_ Jn(2~mL)

~

am = 2 l~t.

m= 1,2,3 ....

12. (a) Characteristic Equation:

sin an,= 0, an = kn L = nn n= 1,2,3 ....

sin (? x) n~ x)
nr~ = Jo("~"
--X
L

2
(b) tanan=an an=knL ~’n an n=0,1,2 ....

~o = 0, aI = = 4.49, a2 = 7.73, 0.3 =10.90

(LmXx) . nrr
sin

nn = Jo(-~-- x)~X
L
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13. Characteristic Equations:

tan (2n = (2n (2n = kn L n=1,2,3 .... (see 12 (b))

Jl(~ -x) _ 1

(2n
~__L x ( x)2

sin(~-x)

--X
L

14. Characteristic Equation:
2

tall (2n = (2n
= ~n a2

~n a2

aL (2n L - ~’n = + n=1,2,3 ....

~n : e-aXlsin ((2n x) + (2n c°s ((2n 
L L aL L _/

15. (a) Characteristic Equations:

(i) sin (2n = 0, (2n = rn L/2
2 Pn

EI

(ii) tan (2n = (2n

(20 = 0, (21 = 2~t, (22 = 8.99, (23 = 4~ ....

n=1,2,3 ....

~n(X) 
sin (2~-x)- 2~-~x cos (2~-n-x)- 

sin (2(2n) - 2(2n cos (2(2n ) - 

(b) Characteristic Equation:

sin (2n = 0, (2n = rn L n = 0, 1, 2, ..

n2~z2
(2n=nT~, ~,n = L2 ’ ~n = sin (--~ x) n=1,2,3 ....

(c) Characteristic Equation:

(i) sin (2n = 0, (2n = rn L n=0, 1,2,..

(2n = n ~t,
n2~2

~’n = L2 ’ ~n = sin (~ x) n= !,2,3 ....

(ii) tan (2n = (2n n=0, 1,2 ....

2

~’n (2n ~n(X) 
sin (~-x)- ~--x cos (~-x)- 

sin ((2n) cos ((2n)
n= 1,2,:3 ....



ANSWERS - CHAPTER 4 675

(d) sin Ixn = 0, an = rn L, Ixn = n ~, n=O, 1,2 ....

~)n =sin(~x)- ’ n El n292(~)(-1) n=1,2,3 ....

(e) cos n = 0, an = rn L n=0, 1,2 ....

2
Ixn = (n +1/2) Xn = ~._.~_n ~n = sin((n + 1 / 2)~L

x)

(f) tan n =

rlL
E-~-IXn _ Ixn

rlL ~2
-~-+ix2n 1+--~-n

an = r n L

: (X2n = sin (~-x)- ~sin(ixn),Kn L2, ~n n=1,2,3 ....

(g) sinixn=0, Ixn=rnL, Ixn =n~, n-0, 1,2 ....

~~n = L2 , ~n =cOs( x)-I

(h) (~- 1) Ixn sin n + (Rn + 2~)cos Ixn = 2~,

2
an = rn L, Xn Ixn

=~-7-’

L~.(x) 
sin (C~n)- n cos(ixn)-I

n= 1,2,3 ....

16. Characteristic Equation:

tan ~ = -a an / L
rL

L=b-a, r z = Pb4
EIo

[sin (ab Ixn)
~)n(X) = xl- XLb~L~

sin( O~n)

17. Characteristic Equation:

J_l/S(ixn) = O, IX = -~13L3/2,

xl/2j FIX , X )3/2 
G(x)= -1/3[ "’Z J

~n(x) is the eigenfunction for -- or u(x)
dx

n=1,2,3 ....

n= 1,2,3 ....

n=1,2,3 ....
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18. Since 7 < 132/2, where 72 ~II’ and 132 - P= - -~-, then the characteristic equation

becomes:

~n2 tan (~nL) = ~2 tan (~lnL) n= 1,2,3

where:

1-- 1-

The Eigenvalues of this system are 13n, n -- 1, 2, 3 .... and

,n(x)= sin({nx) cos(~lnx)sin ({nL) cos (~lnL)

21.

(a) p= 1-x2 q=O r= 1

(b) p = (1 - 1/2 q = 0 r = (1 - x2)d/2

(c) p = q = (1 - x2)-2 r = (1 - x2)-1

(d) = xa+l e"x q = 0 r = xa e-x

(e) p e-x~ q = 0 r = e-x~

(f) p = (1 x2)a+l/2 q = 0 r = (1 - x2)a-it2

(g) p=(1-x)a+l( l+x)b+l q=O r=(1-x)a(l+x)b

(h) p = c (1 - x) a+b+c+l q = 0 r = Xc’l (1 - x)a+b-c

(i) p = x q = -2 ex x"2 r = ex

(j) p=x q=-n2x-1 r=x

(k) p = (ax + 2 q = 0 r = (ax + b)x

(1) p = sin2(ax) q = 0 r = sin2(ax)

(m) p = 3;2 q = 0 r = x1~

(n) p = ax q = 0 r = eax

(o) p = cos2(ax) q = 0 r = cos2(ax)

(p) p = cosh2(ax) q = 0 r -- cosh2(ax)

(q) p = cos (ax) q = 0 r = cos3(ax)

(r) p = ax~ q = a2 x2eax~ r = eax~
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(s) p = q = - a2 r = e"4ax

(t) p = q = - a (a - 1) -2 r = x-4a

(u) p= q=O r=x-4

(v) p=l q=O r=x-1

(w) p=x4 q=O r=x4

(x) p = 4x q = 3, e4x r = e4x

(Y) P = "2 q = 0 r = x"1

(z) p = -I q = x"3 r = x-3

(aa) p = 2 q = 0 r = x2

(bb) p = 3 q = -3x r = x9

(cc) p = 3 q = 0 r = x

(dd) p = 6 q = 0 r = x6

(e~) p = 4 q = 0 r = x6

(ff) p=x2 q=O r=x4

63(gg) = x11/2 q = --rex7/2 r = x13/2
16

9 x23/7(hh) p = 9/7 q = 0 r = --
4

22.

(a) n(X) 

= P n(X),

(e) = T.(x),

~,n = rl2

(d) ~n(X) (I- xI/ ’2 Pn(X),

I ng
(e) ~n(X) = a--~+ b sin(--~--x)

sin(~ x)
(f) ~n(X)= sin(ax) 

1 . nn(g) ~)n(X) = ~x s~n(-~ 

2~n = 2 (n + 1) (2n + 

kn = 2n (2n + 1)

(Tchebyshev Polynomials)

kn=n (n+ 1)

n2~2

n2~2

n2~2
~n= 4L

n=O, 1,2 ....

n=O, 1,2 ....

n=O, 1,2 ....

n=O, 1,2 ....

n= 1,2,3 ....

n= 1,2,3 ....

n= 1,2,3 ....
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(h) On(x) "a x]2 sin(~x)

sin(--~ x)
(i) On(x)= cos(ax) 

sin(-~ x)
(j) %(x) = cosh(ax) 

(k) On(x)= -ax’/2 sin(-~x)

e-2ax - 1
(1) On(X) = ¢ax sin (n~ ¢-2aL )

~n=[" 2nr~a[ e_-~-~"- 1’]2

I1~ x1-2a
(m) On(x)= s sin(, L -i~_2a )

a: r (2a - 1) n~ 
’~=L’ Lr-~ J

(n) On(X) = x sin (2nrt 1)
x

(0) On(x) 1/2 Jl [13tn(x/L)l]2]

n2~2 a2
Ln = --~- +~- n--: 1,2, 3 ....

n2g2

~= L~-,F--a2 n=1,2,3 ....

n2~2
Xn= L--~+a2 n=1,2,3 ....

n2~2
~ = --~-- + a n= 1,2,3 ....

n= 1,2,3 ....

n= 1,2,3 ....

;~n=4 n2n2 n = 1,2, 3 ....

2
Jl(an) = 

X~-~-~
n = I, 2, 3 ....

¯ [sin(a n x)

]

_ " [ L
cos(an~)

(p) O.(x) ......
X2

~n ~

I, 2, 3,

(~ %(x) -~sin (nnx ~ = n~ =2 n = I, 2, 3 ....

(O %(x) 3~J: [~(x~)3~1

Jl(an) = 

(s) ~n(x) = x sin (mr log 

-L3
n=1,2,3 ....

~n= n2n2 n = 1, 2, 3 ....
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23.

sin(-~ x) n2r~2(t) ,o(~) = ~/.~.~, ~= L..-L-.~-

(u) On(X) "3sin (n~ (x/L 4)

n= 1,2,3 ....

16 n2g2
~,n = LS n=1,2,3 ....

(V) On(X) "1J3[13tn(x/L)l/3]

J3(~tn) = 

(w) t~n(X) = x-5/’2 J5/2[l~nX/L]

or

2

~-~
n=1,2,3 ....

tan (~n) 30~n
23-~n

(X) ¢~n(X) -3/2 J3/4[l~nx2/L2]

J3/4(~.n) = ~’n = 4 L’~

(Y) (~n(x) = x’1/2 J1/4[i3tnx2/L2]

2
Jl/4(t3tn) = ~n = 4 L.4

(Z) ~bn(X) = X"9/4 J2[O~n (x/L)3/2]

J2(ff, n) = 

(aa) 0n(X) "1/7 J1/x4[ff.nx2fl_,2]

Jl/14(ff.n) = ~ = L4

- 1 --/-- ~COS/~n~bn(X)- ~/~ [~n---~x 2 sin( t~nL) CtnX k, 

~ =-~-~- n=1,2,3 ....

n=1,2,3 ....

n= 1,2,3 ....

n=1,2,3 ....

n=1,2,3 ....

(a) y = An sin(--~x) An 2 
n2~2 = r f f(x>sin(--~x>dx

n=l ~.-~
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YI = [3 cos (kx)- 3 cot (k) sin (kx)] x,

4ex/2 ~, sin (nrc,~)(e) y = ~ =~,3 .. ..
n (~,- n2n2 / 4)

,,o
sin(nnx2)= 4e~ ~(0 ~X2 n

n = 1,3 ....

4 ~ sin (nnx)
gxn =~3 ....

n(k~ - n~)

where La is the root of Jo(~/~L) = O, and

4e3X ~~ an J2(~nx2)(i) y= 

O)

(k) y=--

(I) 

(m) y=-~

J2(otn) = 

n=l

[j;(an)]_ 2 1
= ~ X2 J2(~nx2)dxan

k- 4Ct2n 0

O0
4e2x

~ sin (nr~x2)
Y = ~ x-"~n =:~,3, ... n (~’- 4n2n2)

00 24ex
~-~.

sin (mrx)

gX7/4 n =~,3 .... n~)

2 "~ Jl/4(~n-~"2)

ex (x]_,) 1/2 /--’
n = 1 (~,- 4-~-)~ n J~/4(~n)

oo
sin (nr~x3)4eX

Z n (~, - 9n2r~2)~x3
n = 1,3 ....

+1
2n+l

J f(x):Pn (x) 2
-1

4ex ** sin (mrx)
YII = "’~ Z n(l~_ n2~2)

n = 1,3 ....

2

Jl(OCn) =0 ~n--’~"
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24.

25.

26.

4eX
~

sin(nr~x4)(n) y = nx-~~-
n(k2 _16n2n2)

n = 1,3 ....

(a) 2r~2(-1)n+lsin(nx)8 2
n ~

n=l n=l,3 ....

(b) ~ 
m=l

(c) 2 E (-1)n÷l sin(nx)
n

n=l

8
2

sin (nnx)
(d) -~-

n3
n = 1,3 ....

(e) ~- n’~+l

n=l
(f) sin 

(a) ~-~+4~(-1)n~
n=l

1 2 E (-1)n+~ cos((2n-1)x)<b)
n 2n-1

n=l
O0

(c) n__ 4 E cos ((2n - 1)x)
2 n (2n - 1)2

n=l

1 1 x cos (2nx)
(d) ~-~-T E 2

n=l

en-1 2 E [1-(-1)"en]C°S~(2nx)
(e) n 

n n ~ + 1
n=l

2_4 cos(.__2nx_)
(0 n nn’~__l 4n2_1

1 1 . 2 ~ cos(2nx)(a) ~-+~s~nx--~n,~,__ 1 (2~~+ 

(b) 2asin(an)I 1,+ ~ n cos(nx)"

sin(nx)
n3
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1 4 ~_~ cos(n~x)(c)
3 r~2 (-1)n 2

n=l

n sin (nx)
(d) 2sin(a~)X (-1)n-~2 ~g -

11=1

~+~ ~ sin(rig/2) . x. 1 co s(n~/2)-cos(n~)s~(n~)
(e) 

~ ~ n~
,cos tn~ ~ - -

n=l n=l

2 X (-1)n sin(n~x)

n
n=l

27. f(x)=~ X 
n=ll-tn[ 1( l~n)J

28. f(x)=-2n~ J2(~nX)
= 1 la.

Jo(l.tnx)
29. f(x) = 2a X 2 + i. t2nL2) jo(~tnL)

n=l

30. f(x) =--+-- [P2n (0) - P2n+2 (0)] P2n +1 
2 2

n=O

1 1 5
31. f(x) = ~- PO + "~ PI(x) + ~ P2(x) + "’"
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10. (a) Everywhere except at z + i

(b) Nowhere

(c) Nowhere

11. (a) v=eXsiny+C

(b) v=3x2y-y3+C

(c) v=sinhxsiny+C

16. (a) 2n~

(b) (2n + 1/2)r~ + i -1 2

(c) (2n + 1/2)n + i ~.

(d) i(2n- 1/2)r~

(e) log + (2n+l)n i

(f) 

~. (a) 

(b) 

(c) (-1 + 5i)/2, (-1 + 5.1i)/2

19. (a) (1- cosh 1)/2 

Co) loi/3
(c) 6 + 26i/3

20. (a) 

(b) 2r~i

(c) 

(d) nq/3

Chapter 5

(d) Nowhere

(e) Nowhere

(f) Everywhere

(d) v = tan-l(y/x) + 

(e) v = - sin x sinh y + 

(f) v=y- x~÷C

n = 0,+1,+2 ....

n=0,+l,+2 ....

n = 0, +1, +2 ....

n = 0, +1, +2 ....

n=0,+l,+2 ....

(d) 2hi

(e) 

(d)- 2(1- i)/3

(e) 

(f) 2i sin 

(e) 

(f) 

(g) 2r~ (i- 

(h) 2r~i
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21.

z2n
(a) 2 (-1)n (2n)-’-~

n=O

(b) ~ (-1)" 
n=O

Z2n

(2n 
lzl <oo

23.

24.

(c) (- 1)n(n+l)zn Izl < 1

n=O

Z (-1)n~ Iz-21<2(e)
n=0

(g) ~ (n+l)(z+l)n Iz+ll<l

n=O

(i) 2 ~(z -2)n Iz -21<
nt

n=O

o~ zn
(d) ~ (n + I)!

n=O

(f) -1-2Z (z-l)n

n=l

oo
(z - 1)n+l

~(z- ix)n

(J) -
n!

n=O

Iz- 11< 1

Iz - 11 < 2

[z - ixl < oo

~ zn-3 ~ z-n
(a) Z--~.~ (b) Z-~-.~

n=O n=O

(C)--Z Z-n n=~,#o2n+, (d) Z (Z--1)-n-2

n=l - n=O

(e) - (Z--1)n-1

n=O

(f) [(2i- 1)(-1) n - (2i + 1)]inz -n-! + -1 n z n

= n=O J

(g) 2 (-1)n (z- -n-2

n=O

1)n
(h) (z+l) -n- Z

+
2n+l

n=l n=O

(a) Simple poles:

(b) Simple pole:

(c) Simple poles:

z= (2n+ 1) r~/2, n = O, T-l, g2 ....

z=O

z= -T-i~
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(d) Simple poles: z = nn, n = -T- 1, -T- 2 .....

Removable pole at z = 0

(e) Poles: m -- 2, z = ̄  i

(f) Poles: m = 3, z = 0

Simple Poles: z = T 1

(g) Poles: m = 2, z = 0

Simple Pole: z = 2

(h) Pole of order z = 0

(i) Simple Pole: z = + 2inn, n = 0, 1, 2 ....

(j) Pole: m = 3, z = -1

2n+l
25. (a) r (~ n) Co) r (0) 

(c) r (hi) =- , r(-ni) (d) r (nn) = n nn, n = ̄  1,-T-2 .....

(e) r (i) = (1/2 + i), r (-i) = (1/2 (f) r (0) = 3, r (1) -- -3/2, r (-1) 

(g) r (0) -- -1, r (2) (h) r (0) = -3/10

(i) r (0) = 1 = r (2nni) (j) r (-1) -- 

26. (a) Co) 2n (1- a2)-1

~a - 2 ~
(c) 2(l_--~i-~a )¢.a +3) (d) (1_a2)3/2

(2n)! 2~ . .n(e) rc2-~n(n!)2 (f) l_--~t-a)

n(2n)!

(i) n "I/2 (j) (-1) n 2he-an
sinh (a)

(k) n (1 - -1/2 (1) 2n (1 - -1/2

na2
(m) 2n (1 - -3/2 (n) 1- 2

27. (a) 2g (4b- -1/2
Co) 4"~
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(c) (4a3)-1 (d)

(f)

~ (2a + b)
2a3b(a + b)2

3n

O)

(n) 

2ab (a + b)

2(a+b)

28. (a) 2beab

g -ab _ c~-ac)
(c) 2(b2 _c2) 

n (1 + ab)
(e) 4 b3eab

n (e-ab _ e-aC)(g) 2(C2 -b2)

(i) "ab n/2

(cos (ab) - sin (ab))e-abg "I

(b) ~ sin (ab)

(d) 2--~e~ cos 

~ _ ce-ab)
(f) 2bc(b2 - c2) (bc-ac

(h) r~ a -ab (4b)-1

(j) r~ (1 - ab/’2) e-ab/2

xa(l+ab)
(1) 16bSeab

29.(a)

(c)
(c)

(g)

O)
(k)

n cos (ab)

- I/4

(12)-v2 n

.3-~/2~

- n [e"ab + sin (ab)] / 3

(m) [e-ab - sin (ab)] rc / (4b)

(b) 
(d) n [2 - c’ab(ab + 2)]/(8b4)

(0
(h) 
(j) -~ sin (ab) / 

(1) n cos (ab) 

n
[c sin (ab)- b sin (ac)](n) 2bc 2 - b2)
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(O) 8--~[1 - "ab cos (ab)]

(q) 2(C2 _b2)[b sin (ab)-c sin 

(S) ~ 2[bE sin (ab) - 2 sin(ac)
2(b -c )

(p) ~ -ab + cos (ab) - 

(r) - ~ [(2 + ab)e-ab + sin (ab)]

(t) [cos (ab) "ab] n /4

31.(a)

(c)

(e)

1

sin (at) / 

t cos (at)

tn
(g)

n!

(i) - cos (a

0c) sin (at) + at cos (at)

(m) cosh (at) - cos 

(b) -bt - e-at) / (a- b

(d) cos (at)

(f) -bt sin (at) /

(h) cosh (at)

(j) sin (aO - at cos (at)

O) sinh (at) - sin (at)

32. (a) F(x)={10 0<X<ax>a

(c) F(x) = 

(b) F(x)= 
a

(d) F(x) = (1 + -ax / (2a3)

38. (a) ~r3/16

(c) 5/32 5

(e) - r~2,4~/16

(g) - n/2

(i) - 23 ~r / 

(k) -r~ ~ cos(~)
4n:~ sin2 (~n)

(m) 2 / (4a)

Co) 

(d) 3

(0 - ~/4

(h) 2ab(b2 _ a2) [b log a - a log 

(J) 3 1+ cos2(~n)
8n3 sin3 (~n)

r~aloga(1) 2(1_a2)

(n) 

39. (a) rr (1 - a) / (4 cos (a~/2)) (b) - rc / sin (an)
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40.

(~_)arc ba _ casin
(c) 2rc ~/~ sin (arc) (d) rc (b- c) sin 

(~) rc sin (ab) / [sin (b) sin (0 - ~ cotan (art)

(g) a ad cosec (an) (h) (-1)nba+l-n cosec(arc) F(a + 1)
F(a- n + 2)

(i) (c + "3 rc/ 2 (j) a cosec (an) - a cot(a~)] rc / (b + 

- rc cot (ax) (ca- ba) / (c (1) ~-~ rc cosec (~)(k)

(a) 2rc,/3/(9a)
(b) rc cosec (~/5) / OR

~a (2 sin (~) + sin (a 

(c) rc / (4a2) (a) n cosec(2rd5) / (5a2)

(e) rc ~]3 / (9a) (0 n cot (rc/5) / (5a)

(g) -~ cot (2rc/5) / (5a3) (h) 1 / (2a2)

(i) 1 / (3a3)

41. (a) (l°gb)2-(l°ga)2 0a) loga
2 (b - a) a

(c) - 2 rc2 / (d) 2 rc2 / 

(e) [rc2 + (log 2] / [2(a + 1) (f) log a [rc2 + (log 2] / [3(a + 1)

(g) 2n2/3 (h) 4rc2/27

(i) 4 rc2 / (j) 2 / 27

42. (a) 1 ee.~ erf(a~]~’) (b) (nl)-1/2 - aea~t [1 - erf(a,~’)]
a

(C) (rct3)-1/2 [ebt - eat] / 2 (d) (~;t)-1/2 e-at

tb-I e-at
(e) 1 {1 - edt [1 - erf(a4~)]} (f)

a F(b)

(g) OforO<t<a, e-~(t’a) fort>a (h) (m)d/~cosh(2a,~")

(i) (/tt3)-1/2 e-a/4t a1/2 / 2 (j) "at - e"bt) ] t

(k) 2 (cos (at) - cos (bt)) (1) 2 cos (cO -bt - e-at) / t

(m) (1 + :2bO bt (rcO-1/z (n) (rcO-|t2
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(o) Jo(at)

(cO (m/2)-~t2 cosh 

(s) (log 2 -r~2 / 6

(u) 0 for 0 < t < a, Jo(bt) for t 

(w) -(a+b)t Io[(a-b)t]

(y) ’f~- (~a)V J v (at) / F(v 

(aa) ea~terfc(a4~")

(19) (~14~2)"I/2 COS (a0

(t) (cos (at) + at sin (at) - 2

ca2t
(v) --+

b+a

aea2terfc (a.~/~’) - beb~terfc (b.~’)
b2 _ a2

(x) t e(a+b)t[Ii[(a-b)t] + Io[(a-b)t]]

(z) v Jr(at)

Cob) -at erf [ (Co-a)t)1/2] (b-a)-it2

2 2
ea~t aeb terfc (b~/~) - a terfc(a.~/~)(cc) ~ 
b+a b2 _ a2

(dd) a -at [Io(at) +Ii (at)]

( a ~1/2
(ff) \4~-~t ) exp(- 

(hh) sin (at) 

(ee) 2 (1 - cos (at)) 

(gg) (m)-~/2 exp(-~tt)
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Chapter 6

1 - COS
T(x,y) 2TobL

n=l
where tan ot

sinh (tzny ] L) sin (~nX [ L)

sinh (~n)

Z an sin (nrcx / L) exp (-n~y / T(x,y)-- ~

11--1
L

an = J f(x) sin (nxx / where

0

2To oo b2L2 + ctn2 cos (¢XnX / L) exp (- CtnY / 
T(x,y) = ~ Z an b2L2 +bL+a2n

rl=l
L

wherean= Jf(x)cos(~tnx/L)dx and tan ff’n = Lb/ff’n

0

o
2T0 cosh (nny / L) sin (nwx / L)T(x,y) = ~ an

cosh (nn)
n=l

L

an = J f(x) sin (nr~x / where

0

0~ 1 (r~2n+l
5. T(r,0)= 4T°n Z ~h"~\~] sin((2n + 1)O)

n=0

~ an - sin (n~0 / b)
n=1

b

where an = f f(O)sin (-~O)dO

0

T(r,O) = (an cos (nO) + n7. sin(nO))

n=l
2x

where an = lO J f(0) cos (nO)dO

0

2~

bn = t0 J f(0) sin(n0)dO

0



ANSWERS - CHAPTER 6 691

9. T(r,z)=-~-- cn

n=l

sinh (~tnZ) Jo(anr)
sinh (anL)

h
where Jl(ana)=-~--Jo(ana) and n =

~n

a

1., ~

f r f(r)J0(anr)dr

(1+ (an ] b)’) J~’(ana) ~

sinh (c~nz)10. T(z,r)= 0 Z cn
~0(~nr) where ~o(anr)=

sinh(anL)
n=l

¢p0(o.nb) = 0 (characteristic equation),

b
1

and cn = b2 . . . frf(r)¢o(~nr)dr
¢{(anb)- a’¢~(ana) J

a

Jo(~nr) Yo(ctnr)

Jo(~na) Yo (~tna)

2T0 ~ sinh(otnz) J0(anr)11. T(z,r) = --~ n sinh(~nL) J12(~na)

n=0
a

where Jo(c~na)=O and n =Irf(r)Jo(~nr)dr

0

= ~ where
L =1

n I0(-~a)

b~

13. T(r,0)= O ~an(~)nPn(cOs0)wherean= ~
n=0

For f(x) = 1, T = O

L

=I f(z) sin (--~ z) 
0

+1
2n+l

2 ~ f(x)Pn (x)dx
-1

14. T(r,0) = o Zan(a) n+l Pn( cOs0) when = ~
r

n=O
For f(x) = 1, T = O ~]r

+1
2n + 1 f

f(x) Pn(x)dx
2

-1
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IS. T0",0 ) ---- T0 X an (~)n Pn (COS0)

n=0a2n÷1=0, anda2n= (_l)n ba (2n-2)t(4n+l)

.. ba+ 1 22n+l (n- l)!(n 

a3
16. Velocity potential $(r,0) = o [1 +~-r3] r cos 0

where ao = 1/4, aI = ba/(2ba+2),

forn = 1,2,3 ....

~ (2n - 1)! (4n + 3) (r)2n+l P2n+l (cos 17. T(r,0) = O  (-1)n n+l(n+l)! a

n=0

18. T(r,0)= To i an[l- (~)2n+l](~)n+lPn(cOs0)

n=0
+1

where an --
2n + 1

2- 2(a / b)2n+l f f(x)Pn(x)dx
-1

19. T(r,0,z)= O Xa°ne-a°*zJ°(°t°nr)

n=l

+To X e-~*ZJm(°tmnr)[aran c°s(m0)+bmn sin(m0)]
n=lm=l

where Jm(Otnma) = 
2r~ a

1
~r f(r,0) jo(~onr) dr ann= rm2j12(Ctona) 

00

amn 2
~ r f(r,0) Jm (IXmnr)

bmn =r~a2J2m+l(~Xmna) - lsin(m0)fdrd0
00

20. T(r#,0)= n~L X 
m~ . m~: nO

AnmIn/2 (--~ r) s~n (--~-- z) cos (-~-)

n=0m=l
Lb

en f f f(z,O) sin (m.-~~ z)cos(-~- O) whe~ ~ = In~/b(m~a/L) 
L o

00
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21. T(r,z,0)= 2T° mr~ . mx nx

b’~" ~ anm Knn/b(’~r) sm (-~-z) c°s (’-~" 

n=0m=l
Lb

whe~ ~m=. ~ f f f(z,O)sin(~ z)¢os(~0)dO~
Kn./b(m~/L) ~ L 

22. T(r.0.z) = ,~ Anm Jn(enmr)sin(n0)sinh(°~nmZ)
n=lm=l

where Jn(Ot~na) = 0 for n = 1, 2, 3 ....
~a

1
’ 2 f f r f(r,0) J~(a~r)sin (n0)dr and Anm = sinh (anmL) J n+l (IXnma) ~) ~)

1
~, 2n + 1 Anm jn(knmr)Pn(.q)

23. T=7 ~ z~ .2 2
m = 1 n = 0 Jn+l(knma)knm

b +1

where ~ = cos 0, jn(knma) = 0, and Anna = ~ f r2 q(r, rl) Jn (knmr) Pn (~) 

0-1

_Qo ~-" sin(lXnr/a) wheretanl~=lXnforn= 1,2,3 ....24. t~ = 2~tr n~__l ixn sin2(/an)

~
oo (_l)(m_l)12sin(mr~/4)Jo(~tnr/a)cos(m~z/L)

25. t~ =*ta2L4Q’-"~° n = 0 m =~1,3,5
J02(~tn)[(~tn/a)2 + (m~t/L)2]

where Jl(~tn) -- 0 for n = 0, 1, 2 ....

26. In the following list of solutions, k = to/c, knm are the eigenvalues and Wnm are the

mode shapes:

(a) Wnm = Jn(knmr) sin(n0), where Jn(knma) = 0 for n, ra = 1, 2, 

= ~ Jn(knrnr)Y~(k~r)l Isin(n0)lCo) Wn m L~ ~J [cos(n0)J

Jn(knma) Yn(knmb) - Jn(knmb) Yn(knma) = 0 n = 0, 1, 

(C) Wnm same as in part (b)

Jn (knmb) Yr~ (knma)- J~ (knma) Yn (knmb) = 0

m= 1,2,3 ....

(d) Wnm = Jnrdc(knmr) sin (n~0/c)

Jn~c(knma) = 0 for n,m = 1, 2, 3 ....
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(e) Wnm same as in (d)

J~n/c(knma) = 

I J~(knmr) Ya(knmr)l sin(aO)(0 W.m= [_~- ya(knmb)j

Ja (knmb) Ya (knma) - Ja OCnma) Ya (knmb) = 0

(g) Wnm = V Ja(knmr--------~) Ya(knmr~)7 sin(s0)
lJ (knmb) ’G(k mb)J

J~t (knmb) ’Y~t (knma) " J~t (knma) Y~t (knmb) = 0

(h) Wnm = sin (nr~y/b) cos (mxx/a)

k2nm ___ (~)2 + (m~)2a n = 1, 2, 3 

27. Ordm =

kn2hn =

28. Cn/m =

k2n/m =-

iX= n~/c

n,m= 1,2,3 ....

29.

ct= nx/c

n,m= 1;2,3 ....

30.

m=0,1,2 ....

m~r fsin (n0))
Jn (qn/r) c°s (-’~- z)lcos (nO)I

m2~2
¯ --~ + q2nt m:O, 1,2 ....

¯ mr~ [sin(nO)~
Jn (qn/r) sin (’-~- z) lcos I

where J~ (qn/a) = 

{:=O /=0,1,2 ....>1 /=1,2,3 ....

where J~ (qraa) = 

+q~ n--0,1,2 .... 1,m=1,2,3 ....

=FJ~(kn/r) yn(kn/r)] m fsin(n0)]~bn/m L~ Y~ (krdb)] P~ (COS 0)lCOS (n0)I

where j~(kn/b) y~(kn/a)- j;(kn/a ) y;(kn/b) 

n,m=0,1,2,...l= 1,2,3 ....

w(x,y,t) = W(x,y) sin (~ot)

W(x,y)= 4q-~-q-° X ~ Anm

abS k2nm - k2
n=l =1

knm = ( )2 + (m~)2 k = 

ab

Anna= ~ ~f(x’y)sin(~’~x’sin(~y) dydx

00

sin (m~ra x)sin (_~_ y)nr~
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31. w(r,0,t) = W(r,0) sin (tot)
OO OO

W(r,0) = q.~9__o 
Z Jn(knmr) Anm c°s(n0)+Bnm sin(n0)xa2S kL -k2 Jn2+l(knma)

n=0 m =1
where Jn(knma) = 

{~:} !2r~f_ [sin(nO)J Ic°s(nO)ldO 
=en _ rf(r,O)Jn(knmr)

0

F Jn(knmr)In (knrnr)] ~sin(nO)~32.. Wnm(r,0) = In(knma)] lc°s(nO)J

F,Jn+l(knma) In+l(knma)l = 2knmwhere
L Jn (knma) ~ ~ ’J 1- V

33. w(x,y,t) --W(x,y) sin (tot)
oo oo

W(x,y)= ph~ Z Zo)2Anm_o2 sin (-~ x) sin (-~ 

n=l m=l nm
L L,

2
(._~_) 

)2where 0}nm =

LL

andAnm: ~ ~q°(x’y)sin(n~ x)sin(m---"~’~ dx
L i.,

00

34. w = ab"--~2F° Z (-1)n+m k2 e2n-Xnm c°s(2nXa x)sin((2mb + 1)~ y)

n=Om=O

~’nm = 4 n2n2/a2 + (2m + I) 2 n2fo2

35. T(x,t)= 4T0 ~

n=l

sin2(n~ / 4) .nrc . n2,t2 _ .

n
sin (’L- x) exp (- ~ 

~ {x2
36. T(x,t) 2T°L An [~xn cos(CtnX/L)+ bLsin(O~nX/L)] exp(- ~-~-Kt)

n=l
where 2 cot ocn = ocn/(bL) - (bL)/otn

L

+12) + ~
and An = bL (bL ~x~ f(x) [ctn cos (O~nX ! L) + bL sin n x / L)] dx

37. T(x,y,t) = ~ Amn (t) sin ( x) sin 

m=ln=l
where Amn = Bmn exp (-XmnK0 + Cmn[exp (-ct0 - exp (-XmnK0]
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sin (nx / 2) sin (mn / 
Cmn = Qo (kin. K - a) pc

ab

Bran = To f f f(x,y)sin (-~ x)sin (-~ Y) 

00
and ~nn = n2 (m2/a2 + n2]b2)

38. T(r,t) = a-, 2- E An J°(anr/a)exp(-Ka2n t/a2)

n=l
a

whereJo(an)=OandAnm~!rf(r)Jo(anr]a)dr

o~ 2
39. T(r,t) = 2n~--a2 (a2n + b2a2)j°2(an)an   An(t)J0(anr / a)exp(-Kan2 t/a2)

where J~ (%) = ba Jo(%)/%

and An(t) = O f rf(r)Jo(~nr/a)dr + Qoexp(Kt~n2to/a2)H(t - to)

2npc
0

40. T(r,O,t)=

0~ ~ enexp --~Kt- a2"
"~-’~’EI E j2-~+q (’~) [Anm (t) c°s(n0) +Bnm (t) sin (n0)] r/a )

n=0m=l
where Jn(anm) = 0 n = 0, 1, 2, .. m = 1, 2, 3 ....

Anm(t) = Cnm + Pnm exp(Ka2nmt0/a2)H(t - to)

Bnm(t) = Dnm + Rnm exp(Ka2nmt0 / ag-)H(t 

Pnm = K-~Jn(anmr0/a)c°s(n0o), = K’~’ ~Jn(anmr0 / a) si n(n0o)

a2r~

Cnm = TO ~ ~ r f(r,0)Jn(anmr/a)cos(n0)d0dr

00
a 2g

Dnm= TO f ~ rf(r,0)Jn(anmr/ a)sin(n0)d0dr

00

41. T(r,t)= 2Toa E (-l)n sin n~t n2n2 .

~:r n (--~- r) exp (----~ 

42. T(r,t)= 2T0 ~. (x-l)2+ a2n
ar n~l x (x - 1) + a2n A. sin (an r / a) exp (-Ka2~ 2)
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where x = ba, tan txn = - tXn/(X-1)
a

and An = ~ r f(r) sin(orn r / a) dr

0

8T° Bmnq (t)sin (-~ x)sin ~ y) sin (- ~z)43. T(x,y,z,t)= --~ E E Amnq

m=ln=lq=l
m2 q2

where Brrmq (t) = exp[- Kr¢2 +n2+

L2
t]

LLL

000

44. T(r,0,C~,t)= TO
E E [AnmqC°S(m¢)+Bnmqsi n( me)I"

2xa3
n=0q=lm=0

"in (Ctnq r / a) m (~) exp (-Kan2q t 2)

where ~ = cos 0, Jn (~q) = 0 n = 0, 1, 2 .... q = 1, 2, 3 ....

Anmq
a + 12~

B__q}=Cmqff f r2f(r,~,~)jn(~nq

0-1 0
(2n + 1)em (n-

~d Cmq = (--1) TM J~+l (anq)(n +

45. T= Q°K E Enm(t)Wnm(X’Y)k
n=lm=l

where ~nm (x, y) = [sin (lXmx / a) +gm (~mx/ a)] sin (nxy /b),

2~tma~/
tanlam = 2 a2,/2 n,m = 1, 2, 3 ....

}.tm--

(~l’m) + ~m COS (-~)] sin (~-ff-) ~’nmK Sill (tOt) -- tO COS (tOt) + e-x-Kt
Enm(t) [sin

a~, z 2 Nnm (K2~.2nm + 0)2)

ab

Nnm = j" J" W~nmdx dy ,and ~’nna : I’t~m /a2 + n2n:2 / b2

00

46. T= E Enm(t)Jn()’nmr/a)sin(n0)
n=lm=l

KQ° Jn (~/nmro / a) sin (mr / 4) -Kx*~ (t-to) H(t -
Enm( 0 = ~
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a7g 2
Nnm= -~Ir Jn(Ynmr/a)dr

0
Jn (’~nm) = 0

47. T= Q°K
k E En(t)c°s(tXnX/L)

n=l

e-at-e-~’nKt cos(tXnX0/L)En(0 =
~,nK-a Nn

Nn
L ~t2n + (bL)2 + bL
2 ~n + (bL)2

where tan txn = bL/¢tn

2/L2 n 1,2,3 ....~’n : % =

48. T= 2Q°Kabk E E Enm(t)c°s(’~x)sin(~"~y)

n=0m=l

.~ _~e-ct - e-K;t*’tEnm(t)= enCOS( )sin( ) 

where knm = n2~2/a2 + m2~2/b2

49. T=~ KQO E E E
2n

EnmI (t) J m (,]-t ml r / a) cos (m0) cos (nnz 

m=0n=0/=l

Enm/(t) = Jm (].l.m/r0 / a)cos(mn / 2)cos(mxzo /L) e_KA..,~(t_to) H(t- to)
Natal

where Jm(l, tm/) 0, ~’nml 2 2= = grrd / + nan2 / L2

a2r~L (i.t2ml - m2)J2m(gm/)Nnm/ = 21.t2ml em en

50. = TO + E En(t)Xn(x)’T

n=l

En(t) = Cne-~,nKt + ~,0 Xn (2L_.)e-~,oK(t-to) H(t- 
11

L L

Cn= TI-T0 IXn(x)dx, and Nn= fX2n(x)dx
Nn

0 o

where Xn(x) = sin (~nx / L) + -~’n cos ([~n X / L)
L

51. _~
n~ n~y(x,t) = [an cos ( ct) + n sin (’7" ct)] sin (’7-" x

n=l
L Lwherean = -~If(x)sin(~x)dx, and bn= 2~Ig(x)sin(~_x)dx

n~c
0 0
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2W°L2 ~ 1 sin(n’-’~’~x)c°s(n’-’~’~ct)sin(-~a)52. y(x,t)= gZa(L_a)~ ~-   L

~

53. u(x,t) = 2 [an cos ((2n + 1)~t ct)+ n sin (32n" +1)gct)] sin32n"+ 1) gx)
2L 2L 2L

n=0
L

where an = + f f(x)sin ((2n 1)g x)dx,
2L

0
L

4 ~ g(x) sin (.(2~L1) r~ and bn = (2n + 1)r~c

0

sin (ctn ) sin (an x / L) cos (ante / L)
54. y(x,t)= 2Yo~/L2(~’L+I) 2 2(TL+cos2(cxn))

n=l an

where tan c~n = - °t---q-n
~/L

(b) Limy(x,t)--> 2._~_I ~.~ l sin(n~)sin(n__~..~ct)sin(n._.~x)e-+o gc p n 2 L L
n=l

56. 2c ~.~ ng
~ Tn (t) sin (---~- )y(x,t) = Tog

tl=l

where Tn(t) = ~ ~,~f ’(x’x)sin(n~ X)L sin (~c(t- 

ng
57. Solution for y(x,t) same as in 56, where n =sin ( ) si n (--~--ct)

58.
4 .nn . . .me .

W(x,y,t) = 
2 [Am"C°S(CXmnCt)+Bransin(~mnCt)lsint’~-x)s~nt’-~"y )

n=lm=l

2 2 m2 n2
where anm =g ("@+ a--~-),

ab

Am. = / / f<x, y)sin x)sin< - y)ax 
00
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ab

cotton g(x,y) sm (-~- x) sm (--~- y) 
0

59. W(r,0,t) E {[Anm cos(n0)+ Bnm sin(n0)]cos(anmct)a
n--0m=l

+ [Cnm cos (nO) + Dnm sin (nO)] sin (IXnmCt)} Jn (~Xnm r)
a a

where Jn(O~n) = 

a 2rt
Anm~ . En r. [cos(n0))

= 22 ~ f r f(r,O) Jn (Ctnm ~1 ~sin (nO)~dOdr
BnmJ rta Jn+l(~mn)

00
a 2n

Cnm ~ en r. fcos (nO))
= 2 f f rg(r’0)Jn(°tnm ~)~sin(n0)~d0dr

DnmJ ~ca~tnmJn+l(~mn)
00

60. W(r,0,0 = Wnm (r) [Anm cos (nO) + Bnm sin (nO)] cos (anna 
n=0m=ljn(lXnm ~)

yn(~nm_r)
where Wnm(r) = a

Jn(Otnm) Yn(Otnm)

Jn (~nm) Yn (~nm ab--)- Jn (~nm ab--) Yn (~nm) 

Anm~= en ~2rx [cos(n0)]
B~mJ 2nRJa ~rf(r’0)Wm(r)lsin(n0)Id0dr

b2(J~(Otnmb/a) Y~(~Xnmb/a)]2_a2(J~(Otnm) Y~(~Xnm)]2
andR= -~-(, "Jn"~m3 Yn(~Xnm) 2 ~Jn(~nm) Yn (~nm))

sin (knct / a)61. W(r,t)= P°~c E Tn(t)J°(knr/a) where Jo(kn)=0and 
7f, aS kn J12(kn)

62. 4P°-----~c Tnm (t)sin (~ x) sin (-~--~ W(c,y,t)= LS E 

n=lm=l
1 . nr~ . mr~ . knmCt~where Tnm(t) = ~ sin (-L" x o) sin (--~- Yo) sin (----~-),

and k2nm = n2(m2 + n2)
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63. W(r,0,0= P0c ~ ~ ensin( 
1 knmJn+l(knm)

ff, a S ~__ 0 m/~__ 2

where Jn(knm) = 

Jn(knm "~) Jn (knm "~-) cos (n(O 

64. u(x,t) = cLFo H(t- to) c°s(IXnX/L)sin(c~tn(t- to
AE It n Nnn=l

~L
where Nn = ~L---[l+ --~-~. sin2(~n)], and tan(~tn) = AEI~n

65. w = ~b° H(t-to) ~ ~ Enm (t) JIsn (Vnmr / a) sin([~n0), where ~n 
n=lm=l

a

Jl~n(~nm) =0, Nnm= .~rJ~,(~/nmr) dr, ~nm 2 2=~/a
a

0

~d E~(t) J~* (~nmr0 / a)sin(nn0o / b)sin (c~k~(t - t
N~ ~nm

2c2P0 emEnm (t) cos(~.~ x)sin (~ y) + Wo sin (~.-~-Y) cos (c.-~-~ 

m=0n=l
1 mn . n~ .Enm(t) = ~ cos (---~- x0) s~n (---~- Yo) s~n (c ~-’~’-~ o))H(t -. t0)

and ~’mn = m2~t2/a2 + n2~2/b2

67. w= 2cP,0 H(t-to) E Enm(t)Jn(l’tnmr/a)c°s(n0)whereJn(Janm)=0
n=0m=l

en J,(~t,mro / a) cos(-~)sin (c ~mn (t- En’~(t) = [j~ (~t,~m)]2 ~--~m,

68. w= ~S0 H(t-t0) Enm(t)Rnm(r)sin(n0)
n=lm=l

where Enm(t) = Rnm (ro) sin (nn / 2) sin (cknm (t - to))
Nnmknm

Rnm(r)= Jn(knmr/a) Yn(knmr/a)
Jn(knm) Yn (knm)

Jn(knm) Yn0Cnmb/a) - Jn(knmb/a) Yn(knm) 
a

and Nnm = ~ rR2nm(r)dr

0
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69. U=-"~¢LH(t-t 0) ~ En(t)Xn(x)

n=l

whem Xn(x ) sin([3nX/L ) AE= ÷ -~- cos C~n ~ / L),
L

sin (C~n (t to) / L)Xn (L / 2), n = f Xn2(x) dx
En(t) 

Nn ~n
0

(’y + ~)L ano tan(l~n) = A~n2 _~,~.2

70. Pocw = ~-~H(t-t0) E E [Gnm(t)sin(n0)+Hnm(t)c°s(n0)]Rnm(r)

n=0m=l
[sin (nx / 2)"Gnm(t)l ~n Rnm(rO)sin(c ~4-~m(t_t0))~

Hm~ (t)j = Nnm X4-~nm tcos(nx / 2)
b

Nnm =~rRn2m(r)dr, Rnm(r)=Jn~nmr/a) Jn(l’tnm) yn(l.tnmr/a)
Yn 0-tnm)

a
and Jn0.tnm)Yn(l~nmb/a)- Jn(l.tnmb/a)Yn(~tnm) = 0

71.

oo 22 ~ l+txn ~nCt
Vr = ~ ~ ---~--_2 (An cos(--~)+ n sin(°tnCt))(sin ( - ¢xnr cos(°~nr))

n=1
n a a a a

where tan (on) = n, Vr =- o.~.~
Or ’

a a

An = ~rf(r)sin(cZnr/a)dr, and n =-~-a fr g(r)sin(~Xnr/a)dr
0~nC

0 0

72. Vr =72 n~--l~’= J02~"~n)~n (An cos(-~)+ Bn sin(~Znct))Jl (~Znr)a 

a a

J~(~) = 0, ~ = Jr f(r)Jo(~r/a)~, n = ~[rg(r)Jo(~nr/a)~where
~nC a

0 0

v
f(v)- f(-u) ÷ l__ ~73. y(x,t) 

2 2c g(rl) drl u < 0

; f(v)+f(u)2 +~cfg(n)d~l
U

where u = x - ct, and v ; × + ct
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74. y(x,t) = Yo sin (to (t- x/a)) H(t 

75. p= pc V0(~)~eik(r-a) -imt

p = i p c Vo X An Pn (xl) h(n1) (kr), where k = ~o/c, ~1 = cos (0)76.

n=0
+1

~ ln(ka) H(n~)(kr)cos 77. Ps = - P0 en (i) n ~

n=0

~ J~ (ka) H(n2)(kr) cos 78. Ps = -Po en (i) n H(n2),(ka)

n=0

Ps= -P0 ~ (2n+ 1)(i) n ~h(n2)(kr)Pn (cos0)79.

n=0

80. p = - Po ~ (2n + 1) (i) n A h(2)’kr
n n k )Pn(cosO)

ri=0

Jn (kla) Jn (k2a) - 02c2 j~ (k2a) Jn (k~a)
where A

(2) ., P2C2 ̄  (2)’hn (kla)jn(k2a)-~Ja(k2a)hn 
plc~

81. p=-ipcV0 h(°2)(kr)

h(02)’(ka)

h(22m) +1 (kr)82. p = -ipcVo~ am ’S(2)’ -- r2m+li’cOs0)

m = 0 n2m+ll’Ka)
(4m + 3) (2m)!

where am = (-1) m 22m+1 (m)l(m ÷ 

ipcVo ~ en
83. (a) p 

r~
r~=0

(2) (kr) O   imtsin(ntx) H~,,. _ s(n0)e

n H~" (ka)
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ipcQo

2ha

oo
H(n2)(kr) cos(n0)ei°~t

n--O

~ .nr~ . .mn . -ia zI~°V° E £ AmnC°Sl"~-x)c°sl"-~ y)e " ei°~t
84. p=

ab
n=0m=0

ab

whereAnm= enem f If(x,y)cos(~x)cos(-’~y)dydx

to 2 n2~ 2 m2~2
a.d = a"7--

For f(x,y) = 1: Aoo = ab abc m = 0 fo r n, m * 0

and p = p c V0 exp [- i o~ (z - ct)]

2ptoVo
85. p= ~ £ E (Anmsin(n0)+Bnmc°s(n0))Jn(gtnmr)e-ia*~Zek°t

a
n=0m=l

2 a 2r~
r rsin(nO)]Anm ~n I-trim f f r f(r, 0) Jn (btnm --) ~t ~ dO where = 2 2 2

~ ~ a [cos(n0)JB~ anm (gnm - n )Jn(~nm) 0

~nm
J~ (~nm) = 0, ~d ~ = ~2 
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Chapter 7

(a) p/(p2 2)
(c) (p - a) / [(p 2 + b21

(e) n! / (p + n+l

(b) 2ap / (p2 + a2)2
(d) 2a2p / (p4 + 4)

(f) a (p2 _ 2) / (p4 + 4a4)

2. In the following F(p) = L f(t):
(a) a F(ap)
(c) p F(p+a) - +)

(e) - dF(p+a)/dp

(g) (-1)n a dnF(ap)/dpn

(i) -p dF/dp
(k) - (dF/dp) 

(b) a F[a (p-b)]
(d) p d2F/dp2

(f) (p - 1)2 F(p-1) - (p - 1) f(0+)- f’(0+)

(h) p (p- a) F(p-a) - p - f’(0+

(j) [F(p-a) - F(p+a)] 
(1) F(p) 

3. (a) {1 - pT e’PT/[1 - e-PT]}/p2

(c) [tanh (pT/4)] / 
(e) {p [1 + e-PT/2]}-1

(g) [p + ~0 / sinh (p~t/2co)]/(~2 + p2)

a
(b) p2 2 coth(p~z/2a)

(d) [~t p coth (pn/2) - 2] 
(f) [2p cosh (pT/4)]q

(a) at - ebt) / (a- b
(c) at - sin (at)
(e) t sin (at)
(g) sin (at) + at cos 

(b) 1 - cos (at)
(d) sin (at) - at cos 
(f) sin (at) cosh (at) - cos (at) sinh 
(h) sinh (at) - sin 

t

(a) y(t)= j’ f_(t- x)sin(kx)dx+ Acos(k!)+ ~sin(kt)

0
t

(b) y(t)= ~yf(t-x)sinh(kx)dx+Acosh(kt)+--~sinh(kt)

0

(c) y(t) = ~ [cosh (at) - cos (at)] + ~ [sinh (at) - 
2a" 2aJ

t

(d) y(t)= 2a-@ff(t-x)(sinh(13x)-sin(13x))dx

0
t

(e) y(t)= if -x-2e-2x +e-3X]f(t-x)dx

0
t

(f) y(t)= ~[e-X-e-2X-xe-2X]f(t-x)dx

0
t

(g) y(t) 1 f x3e_xf(t - x)

0
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t

(h) y(t) = J -xf(t- x) dx

0
(i) y(t) -2t (1 ÷ 2t) + A o (t - t o) e-2(t-t°)H(t - to)

(j) y(t) = t t - e-2t

(k) y(t) = 3t- e2t] + A [e3(t-t°) - e2(t-t° ) ] H(t - 0)

(a) y(t)=

(b) y(t)=
(c) y(t)=

(d) y(t)= 

0
(e) y(t) 

1
(f) y(t)= 

(g) y(t)=

(h) y(t)=

(i) y(t) 

(j) y(t) 

2 (t-to)/2 +~(t_to)e-2(t-to)_2e-2(t=to)]H(t_to)

-~e 25
A [1 - t2/2]
3 et/2 - e-t / 2
t

f(t - x)h(x)dx where h(x) -1[p2 + k2_ G(p)] -l, and G(p) = L g

[1 - at] e"2at
t

f[4 e-4x - e-x ] f(t- x) 

0
A

[2 (a- 1) -2t -(a- 2) -t - a e-at] + B[2 e-2t- e-t ]
(a - i) (a - 
t

fcos(x)f(t x)dx

0
t

~eax (x) f(t - x) cos

0
t

f (x-x ~/2)e-x f(t-x)dx

0

(a) x(t) = [-2U + (U + V) cosh (at) + (U - V) cos (at)] 2)

y(t) = [-2V + (U + V) cosh (at) + (V - U) cos (at)] 2)

(b) x(t) = y(t) -t+ t e-t

(c) x(t) t + tet, y(t)-- 3et +2t et

t
(d) x(t) -~[g(t) - f (t )] + --~-3(t-x)/2 [f(x) +g(x)] 

2 4~
0
t

y(t) = ½ [f(t) - g(t)] + 41-- -3(t-x)/2 [f(x) + g(x)] dx
0
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o

10.

11.

12.

t t

(e) x(t)= -~ (sin (x)-sinh(x))g(t-x)dx+-~ ~(sin(x)+ sinh(x))f(t- 

0 0
t t

y(t)= ½~ (sin(x)-sinh(x))f(t-x)dx+ ½ ~(sin(x)+ sinh(x))g(t- 

0 0
t

(0 x(0 = J [cosh (x) f(t - x)- sinh (x) x)]

0
t

J [cosh (x) g(t - x)- sinh (x) f(t - y(t)

0

(g) x(t) = ~9[(g- B)+ o - Xo)]e2t + ~[A+ B-2(0 +Xo)]e-2t

+[(A+ B)-2(x 0 + yo)]e -t + ~[-(A+2B)+ 4(yo +2Xo)]te-t

y(t) = ~-~- [(B - A) + o - yo)]e2t + ~[A+ B - 2(yo+ Xo)-2t

+[(A+B)-2(x 0 +yo)]e -t +~[-(B+2A)+4(x 0 +2yo)]te-t

Ac {_ e_bX sinh (bc(t - to)) H(t- to) + sinh (bc(t - to - x)) H(t 
y(x,t) = 

c c

1
X+Xo]y(x,t) = -~Cyo {H[t- o- +H[t-to + x-x°]

- Hit- to + x - xo ]H[x - xo] + H[t- to - x- xo ]H[x - xo] }

Cx-xo): !_x_+.xo)2.]~H(t_,o)T= 7-Lr~.t-_ to)" exp[. -]- exp[
4K(t- to) 4K(t- to) 

y(x,t) = Yo (x-.~)2 H(t)+ Y0C2t2 + ~-~ {(t-~)H(t-X)_c (t+ X)}c L f (t,x)

where ~,x) = f(t + 2L/c, x) is a periodic function, defined over the first period 

fl(t,×) = (t - _x)H(t - _x)+ (t + _x)+ (t- 2L - x)H(t- 
C C C C ~

+(t 2L+X)H(t 2L+x)+2(t-L-X)H(t-L-x)+2(t-L+X)H(t-L+x)
C C C C C C



ANSWERS - CHAPTER 7 708

13. y(x,t) = 2 o (t-x/c) H(t-x/c) -

14. y(x,t) = Yo f(t,x)

where f(t,x) -- f(t + 2L/c, x) is a periodic function, def’med over the first period 

fl(t,x) = -H(t- L-X)+H(t- L+X)-H(t 2L-Xl+H(t---x)
C C C C

15. y(x,t) = YO H(t - x) + c Po sinh [cb(t- o -x)] H(t - o - x)
c bTo c c

-~T~ sinh [cb(t - to)]e-bx H(t - to)

x2

16. y(x,t) = Toerf( 4~Kt)+ To 4~K~ (t~-to)-3/2 exp[-4K(t_to)]H(t-to)

17. T(x,t)-~ eKb2t{ebx 
x b.~-]}= -N erfc [2--~ + b~’l+ e-bx erfc [2---~-

+ TO e
Kb2t e-bX

18. y(x,0 = [ee~(t-x/c)- 1] [H(t-x/c)]/~t

19. y(x,t) = - (t-x/c) o + ao(t-x/c)/2] H(t-x/c) + 

20. T(x,0 -- TO {erfc( x--~)-et’x+b2V:terfc(_ x,._ + b4-K-’i’)} + Qo K H(t- 
2 4Kt 2 4Kt

- Q°K H(t- t°) {erfc (2 ~/K(~- )- ebx+b2K(t-to)erfc t ’2~    x
)-b K(~)}

21. T(x,0 = TO erfc(---~x~)+ KQ0 (1-e-at) - KQ0 erfc(--x~)
24Kt ak ka 2~/Kt

+--~ e-at { e-iX4~7-~ erfc (2---~-- i 4"~)+ eiX4~7-fferfc (2-~KtK t + i ~]~’)}

22. y(x,t) = ~ {H[t - to - x -cX° ] _ Hit - o +x -cx° ] )H[x - xo]+ f( t)

where f(t) = f(t + 2L/c) is a periodic function, defined over the first period 

fl(t) = H[t- to + x - xo ]_.H[t - to - x + xo ]
C C

-Hit-to 2L-x-x°]+H[t-to 2L+x-x°’]
C C
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23. y(x,t) = ~ {f(t)+ at - sin (at)}
a"AE

f(t) = f(t + 2L/c) is a periodic function, defined over ~he first period as:

f~ (t) = - [a(t - x) _ sin (a(t - x))] H 

+[a(t- L + X)-sin(a(t- L + x))]I-I(t- 
C C C

- [a(t - L - x) _ sin (a(t - L - X))l H (t - 
C C

+[a(t - 2L--~Z-x) - sin(a(t - 2L - x))lH(t 2L 

24. T(x,t)= T°erfc(~~)H(t-a)[4t-a-1]-’~9-terfc(2--’~)a

+ KQ° erf (~)H(t- 
k 24~¢(t- to)

~sinh (bc(t- ~))25. y(x,t) = A[[
bc

where A = Po a c2
(a2 + b2c2)T0

sin (a(t- x)) . }
~ ]H(t_x)_[.sinh(bct) sin (at) 

a c cb a

x26. T(x,t) = -QKt[l+4erfc(.~-)]+T 0 x(t-to)-3/2 e-x~/[4K(t-to)]H(t
2.~-ff

-to)

27. y(x,t) = Y0 cos (b(t - x))H(t - x) + FoC2~ [at -at ]
c c AEa"

F°c2 [a t x. -a(t--x)
X)~ ( --~)-l+e ¢ ]H(t- 

t

28. T(x,t) = -~ H(t-to)- F K’~=~ -x’/f4Ku] u-l 12 (t- u)e-a(t-u) du

0

29. y(x,t) = A H(t - x/c) - Yo cosh (cb(t-x/c)) H(t-x/c) e’bx cosh (cbt)

30. T(x,t) = - KQo a (1 - cos (at)) - 4Tot erfc 

t
,4"ffQoax f[H(t u)

+ 44-~ J - - cos(a(t- u))] -3/2 e-x2/t4Kul du

0
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Chapter 8

o

g(xl~) = - sin x cos ~ + sin x sin ~ tan 1 + sin (x-~) H(x-~)

y(x) -- x - sin x / cos 

g(X 1~)= ~n {[~n- ~-n]xn +[xn~ -n - x-n~n]H(x-~)}

3. g(X I ~) = 2n~{[~n -- ~-n] xn + [xn~-n -- x-n~n] a(x - 

sinh (kx) sinh (k(L- 4. g(x I~)= +--’sinh(k(x-~))H(x-~)
k sinh (kL) k

6. g(xI~)=-~(x-~)3H(x-~)-2~L ~x2(L-~)2+6~L x3(L-~)2(L+2~)

7. g(xl~):-~(xl _~>3H(x_~>_~L~X(L-~)(2L-~>+~LX3(L-~>

sin (kx) sin(k(L 1
8. (a) g(xl~)= + "--sin(k(x-~))H(x-~)

ksin(kL) k

n=l

sin (nr~x / L)sin (nr~ / 

(i)

(a)

(b)

g(x I ~) = 2-~ [sin (J3(x - ~)) - sinh (~(x - ~))] 

~ ~shah (~x) sinh (~(L - sin (l~x) sin (~(L- ~))
+

2~3 [ sinh (~L)

2 ~ sin (nnx / L) sin (nu~ / 
g(x I~) = 

~4 _ n4~4 / L4
n=l
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9

where:

(it)

(a)g(x I ~) = 2-~ [sin (13(x - ~)) - sinh (]3(x - ~))] 

+ ~ {C~ [sin (~3x)- sinh (~x)] + C2[cos (~x)- cosh 

C1 =
[sinh (I3(L - ~)) - sin (I3(L - ~))] [sin (I~L) + sinh 

[1 - cos (~L) cosh (~L)]

[cosh (~(L - ~)) - cos (~(L - ~))] [cos (~L)-" cosh 

[1 - cos (]3L) cosh (]3L)]

C2 =
[sinh (~(L - ~)) - sin (~(L - ~))] [cos (~L)- 

[1 - cos (~L) cosh (I3L)]

+ [cosh (~(L - ~))- cos (~(L - ~))] [sin (~iL)- sinh 
[1 - cos ~L) cosh (~L)]

(b) Eigenfunctions {~n(X) are:

cosh (~ n’-’~"~ -- COS (O~n~ I?°St ’c- ~7- ~°s" t-c- ~/

where, cos (eln) cosh (~tn) = 1, and with o =0.So that g(xl~) is:

OO

X~ ,¢.(x)¢.(~)g(x I~)= ~r~ Nn (l~ 4 -IXn4/L4)

L

where Nn = J’,n2(x)dx

0

10. (a) g(xl~) = n Jn(kx) [j~(k)yn(k~)_jn(k~)yn(k)]
2 Jn(k)

-- -~ [Jn (kx) Yn (k~) - J n (k~) Yn (kx)]H(x - ~)

m~ Jn(knmx) Jn(knm~)
(b) g(xl~) = 2 2 , 2

= 1 - knm)[Jn(knm)]

where Jn(knm) = 
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11. (a) g(x I ~) sin (kx)sin (k(l - ~))
kx~ sin (k)

sin (k(x - ~)) H(x 

2 sin (nr~x) sin (n~)

n=l

712

12. g(x I~)= ~ {e-rl(x+[) sin [rl(x +~)+ ~/41_ e-~lx-~l sin[rll ~ I+rc/4]}

where ~l = 7 /

13. (a) g(xl ~): ~ -~lx sinh (~) -rIG sinh01x)]H(x- ~)+ sinh (rlx) -~ }

where rl = 4"~ - k2

(b) g(xl~)= ~{[eirlx sin(rl~)-ein~sin(rlx)]H(x_~)+sin(rlx)ei~l~ 

where rl = ~ - 7

(c) g(xl~) = x - (x-~) 

14. g(xl~) = x - (x-~) H(x-~)

X oo

T(x)= I +j’ ~ f(~)cl~ + xf f(~)cl~

0 x

15. g(x I~) = 4~[ieiB(x+~) - e-B(x+~) - ieiBIx-~I + e-BIx-~I]

16. g(x I~) = ~3 [-ie il~(x+[) + e-I~(x+[) - ieil~lx-[ I + e-I~lx-[I]

18.
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"
_ 1.~_ ~e_al(x+~)/4~ cos (rl(x + ~) 19. (a) g(xl~)= 2~13 , ~/~ ~-)

+ e-rllx-~l/’4~ cos (~ - ~)} 1~ = ()A - 1/4

~) g(x I ~) = ~r-iei~(x+[) + e-~(x+[) - iei~lx-[I + e-~lx-~l] ~ = (~4 _ ~)l/4
4~3 ~

1 e_rllx_~l
21. (a) g(x I~) 

(b) g(xl~) = ~i ei~lx-~l
2rl

(c) g(x I ~) = - ½ ~ x - 

22. g(xl~)=-llx-~l
2

23. g(xl~)-~3 [-te’l]lx ~l+e-I~lx-[I]

24.
1 e_nrx_U/4~ . -

(a) g(x I~) =- ~   sm(~2 ~ I +-~)

(b) g(x I~)- 4--~3 ’ntx ~t +e ntx~]

1(c) g(x I ~) = - ~ I x- 

25. g(xl~) = - log (rl) 

26. g(xl~) = Ko(~[) / 2r~ r1 = Ix - ~1

27. g(xl~) = i H(ol)(krl) / 4

28. (a) g = ~Ko(rlr)

29. g(xl~) = r12(1 - log (rl)) rI = Ix- ~l
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30. g(xl~) = kei(~rl) / r1 = Ix - ~1

714

31. 8~
2 Ko(rlq)]

rl = (k4 ,~4)1/4 rI = Ix - ~1(a) g = - [iH(o1)(fIr
1) - ~ -

I
(b) g = 2-~kei(rlq) ~ = (~/1_ k4)1/4 rI = Ix- ~1

32. Solution in eq. (8.103)

33. Solution in eq. (8.101)

34. Solution in eq. (8.118)

35. Solution in eq. (8.115)

36. g(x,tl~,x) = i~ H(t - x) {(1 - i) erfc [a(l- i)] + (I + i) erfc [a(l 

Ix-El

a=~

37. g(x,tl~,x)=

A(r,t) 
1 1 ~ sin x dx .H(t- x) 

-~÷T-~ -~-
0
~o (-1)"~,t) 

- ~ + H(t 
8c (2n + 1)(2n + 

A(r,t) 
r?

4x(t-x)

39. G= l+71[x+~-Ix-~l]

40. Use the coordinate system in Section 8.26 by deleting the y-coordinate.

1 d(a) o = ~Iog(~)

(b) G =--~ log(rl2r~)

41. Use the coordinate system of Section 8.32 in two dimension, i.e. delete the y-
coordinate such that x _> 0. Let:

(a) G=-~.~ log(qr2r3r4)

(c) G= -~ log (~)

g2= -~’~ log(r3), = -~’~ log (r 4)

(b) G = - ~l---log(rlr3 
zn r2r4

(d) G --~-1 log(fir4 )
2n r2r3
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42. Use the coordinate system of Fig 8.9, section 8.32

1 ±)Ca)C-- 1<±+1+_+
4n r 1 r2 r 3 r4
1 (1 1 +1)

r2 r3 r4

(c) G= 1__(1+ 1 1 
4r~ q r 2 r 3 r4

1 (1 1 +1_1)

r2 r3 r4

i ta(1)rt.. ~ i H(1)rt.. x, ~ _ i H(1)~. ), ~ ~H(01)0cr4),
43. Define g = ~-,,0 ~’~ l J, gl = =~" 0 ~2J s2-~" o ~"~3 s3

Coordinate system as in Problem 41.

(a) G= g + gl + g2 + g3

Co) G=g-gl-g2+g3

(c) G= g + gl - g2" 

(d) G=g-gl +g2-g3

44. Use the coordinates in Fig 8.9, Section 8.32.
eikrl eikr2 eikr~ eikr~g = 4~q g~ 4m.2 g2 4r~r3

g3 4~.r4

(a) G=g+gl +g2 +g3

(b) G=g-gl-g2+g3

(c) G=g+gl-g2-g3

(d) done in section 8.32
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45 Define the following radial distances:

rl 2 = (x- ~)2 + (y_ 1])2 + (z- 

r22 = (x- ~)2 + (y_ 1.1)2 + (z 

r32 = (x- ~)2 + (y + TI)2 + (z- 

r42 = (x + ~)2 + (y_ 1~)2 + (z- 

r~ = (x- ~)2 + (y + ~)2 + (z 
r62 = (x + ~)2 + (y. TI)2 + (z + ~)2
r72 = (x + ~)2 + (y + 1~)2 + (Z- ~)2

r82 = (x + ~)2 + (y + rl)2 + + ~)2
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1 I 1 1 1 1
(a) 4rig ~- -- + -- + -- - --

rl r2 r3 r4 r5 r6

1 1

r7 r8

1 1 1 1 1 1 1 1
(b) 4r~G =--+~+--+~+--+~+~+~

r~ r 2 r 3 r4 r5 r6 r7 r8

1 1 1 1 1 1 1 1
(c) 4~G= I----I ~

q r2 r3 r4 r5 r6 r7 r8

1 1 1 1 1 1 1 1
(d) 4riG=--+-----+-----÷

q r2 r3 r4 r5 r6 r7 r8

46. Use the radial distances of Problem 45. Define:

(a) G = g - gl "g2 - g3 + g4 + g5 + g6 - g7

(13) G = g + gl + g2 + g3 + g4 + g5 + g6 + g7

(c) G = g - gl "g2 + g3 + g4 " g5 " g6 + g7

(d) G=g+gl-g2 +g3-g4 +gS"g6-g7

47. Def’me the images on the z > L/2 by r2, r3 .... and those in the z < - L/2 by

r~,r~ ..... Let the source be at ~,~:

rl 2 = (x- ~)2 + (z- 

rn2 = (x- ~)2 + (z - (n - 1)L + n ~)2

r~2 = (x- ~)2 + (z + - 1)L+ (-n ~)2

(a) 4rcG = - log 2 - lo g rn2 - Z lo g(r~)2

n=2 n=2

(b) 4riG = -logrl 2 + Z (-1)n l°grn2 + Z (-1)n l°g(r~)2

n=2 n=2

716
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48. Define:

r? = (x - ~)2 + (y _ ~)2 + (z 

rn2 = (x- ~)2 + (y_ 11)2 + (z - (n - 1)L n ~)2

r~2 = (x- ~)2 + (y. ~1):~ + (z + (n - 1)L n

= ±+ --+
rl = rn =

rl n=2 rn n=2 rn

49. Use same radial distances as in Problem 47

(a) ~iG=H~)(~)+ ~ H~)(~)+ 

n=2 n=2

~) ~iG=H~)(~)- Z (-1)"H~)(~)- E (-1)"H~)(~)
n=2 n=2

50. Use same raidal distances as in Problem 48

eikrl ~ eikr* ~ e~kr~(a) 4r~G = ~ ~ + --
q n=2 rn n=2 r~

(b) 4~G= ~- (- 1)neikr* (-1)neikr~
r1 rn r~n=2 n=2

i r"(1)"l~ ’ - H(02)(k ]51. O=~txl 0 t 1~

(a) For interior region p,r1 < a, ~,r2 > a, ~ = a2/p

(b) For exterior region p,r1 > a, ~,r2 < a, ~ = a2/p

52. Define:
rl ~ = r2 + p2 - 2rp cos (0- ¢)

r~ -- r2 + p2 _ 2rp cos (0 + ~ - 2n/3)

r3~ = r2 + pg_ _ 2rp cos (0 - ¢- 2~/3)
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r42 = r2 + p2 _ 2rp cos (0 + ~ - 4n/3)

rs~ = r2 + p2 _ 2rp cos (0- ~- 4n/3)

r6~ = r2 + p2 _ 2rp cos (0 + ~)

(a)-4~rG = logrl2 + logr~ + logr~ + logr42 + logr~ + logr62

(b)-4~G = logq2 -logr22 + logr32 -logr4 2 + logr~ -logr~

53. Use the definitions of Problem 52

718

(a) --4iO = H(o~)(kq) + H(oD(kr2) + H(ol)(kg) + H(ol) (kr4) + H(o~)(krs) 

Co)-4iO = H(ol)(krl)- H(ol)(kr2) + H(ol)(kr3)- H(I) kro (4) + Ho(1)(kr5)- o(1)(kr6)
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Chapter 9

(k- 0(k-2)(k 3) -I
1. F(k,x)- xk-1 e-x [1+ k- 1 + (k- 1)(2k- 2) 

-
~-

L x x ~ "’"

2. same as problem 1.

3. El(Z)- -z ~L, (-1)k k.~-.I"
zk+l

k=O

o
n(n + I) n(n + 1)(n + 

z2 z3

(2k)!5. f(z)- ~(-1)k z2k+1
k=O

(2k 1)!6. g(z)- E (-1)k +

z2k+2
k=O

- e 1+ ~ (-1)merfc(z) ~---~ m=l ~z~-) ~ ]

9. same as problem 8.

10.

q = 4v2

11. same as problem 10o

12. Kv(z) ~ "~-’z e-Z {1+ ~zl (q- 1)(q- 32)2! (8z)2

q = 4V2

(q - 1)(q - 32)(q - 52) ]

+ 3! (8z)3 + "’"
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13. same as problem 12.

14. same as problem 12.

15. U(n.z) ~ -z’/4 z-n{1
n(n + 1) n(n+ 1)(n+ 2)(n+3)

2z 2 ~ 2, (2z2)2

16. same as problem 15.

ein/4 1
0o (_i)n+1 r(n +

17. F(z) ~ ~÷~ eiZ’E z~n+1
n=O

18. O(x) ~ 1-~
e-x" ~ (-1) k r(k + 1/2)

~z_~ x2k+l
k=0

19. Same as problem 8

20. Same as 10 for H(vI), H(v2)(z) =H(vl)(z)

21. Same as 12 for K~(z)

(q - 1)(q - 3~) (q - 1)(q - 3:~)(q - 5~)

2! (8z)2 3! (Sz)3

720

q = 4V2

22.

23. Ha)(1)(~)seco0 ~ exp[im) (tano~-ot)-i~/4] (- i)k uk (t’~)

k = 0
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Hu(2) (~) sec ~) = (1)(1) sec ~) t-- cot ~ ~) = x cos 

721

uk(t) defined in problem #22

25. e+~ l~/~-~x~

~:~<~x)_e-~+4i~x~J ~ f x -~ <_1k
~[2~ l+.~-~x2~,l+ l+.~-’~x 2) X ) Uk(t)~k

1

t--~
uk(t) defined in problem #22
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Appendix A

a.p=2

b.p=4

c. p=l

d.p=2

f. p=l

g. p=e

h. p=3

i. p=2

j.p=2

-l<x<3

-6<x<2

l~x<3

-2<x<2

-~<~<~

-2<x~O

-e~x~e

O<x<6

-3<x<l

-3~x<l
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A

Abel’s Formula, 11
Absolute Convergence, 216, 383
Absorption of Particles, 296
Acoustic Horn, Wave Equation, 124-6
Acoustic Medium, 306

Acoustic Radiation from Infinite
Cylinder, 363
Scattering from Rigid Sphere, 364
Speed of Sound, 125, 306
Wave Propagation, 303
Waves, Reflection, 358
Waves, Refraction, 359

Addition Theorem, for Bessel, 61,409
Adiabatic Motion of Fluid 306
Adjoint

BC’s, 455-6
Causal Auxiliary Function, 516
Differential Operators, 138,455,467
Green’s Function, 456
Self, 138, 140, 142

Airy Functions, 546, 550, 573,580
Analytic Functions 189, 197

Integral Representation of a Deriva-
tive, 214

Angular Velocity, 117
Approximation in the Mean, 136
Associated Laguerre Functions, 614
Associated Legendre Functions, 93

Generating Function, 94
Integrals of, 96
Recurrence Formulae, 95
Second Kind, 97

Asymptotic Methods, 537
Asymptotic Series Expansion, 548
Asymptotic Solutions

of Airy’s Function, 573,580
of Bessel’s Equation, 564, 570, 577
of ODE with Irregular Singular
Points, 563,571

of ODE with Large Parameter, 574,
580

Auxiliary Function, 486, 494

B

Bar,
Equation of Motion, 115,297
Vibration of, 115, 151

Bilinear Form, 138, 141, 143, 155
S-L System, 149, 155

Beams, 117
Boundary Conditions, 121
E.O.M., 120
Forced Vibration, 159
Vibration, 120,121,298
Wave equation, 120, 298

Bessel Coefficient, 58
Generating Function, 58
Powers, 61

Bessel Differential Equation, 58
Bessel Function, 43, 56, 61, 65

Addition Theorem, 61
Asymptotic Approximations, 65, 66
Asymptotic Solutions, 564, 570, 577
Cylindrical, 48
Generalized Equation, 56,57, 58
Integral Representation, 62-4
Integrals, 66-7
Modified, 54-6
of an Integer Order n, 47
of Half-Orders, 51
of Higher Order, 52
of the First Kind, 44
of the First Kind,Modified
of the Order Zero, 45
of the Second Kind, 44,46,48,
Plots, 651-4
Polynomial, 67
Products, 67

723
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Recurrence Formulae, 49-52
Spherical Functions, 52-3
Squared, 67
Wronskian, 45, 53, 55
Zeroes, 68

Beta Function, 603
BiLaplacian, 300

Fundamental Solution, 476
Green’s Identity for, 469

Boundary Conditions, 115
Acoustic Medium, 307
Dirichlet, 312
Elastically Supported, 115,299
Fixed, 115,299
For Membranes, 299
For Plate, 300
Free, 115, 299
Heat, 296
Homogeneous, 142
Natural, 111
Neumann, 312
Periodic, 150
Robin, 312
Simply Supported, 300

Boundary Value Problems, Green’s
Function, 453

Branch Cut, 197, 198,259, 266, 267, 273
Branch Point, 197, 199

C

Cartesian Coordinates, 627
Cauchy Principal Value, 237, 241,242
Cauchy Integral Formula, 213
Cauchy Integral Theorem, 210
Cauchy-Riemann Conditions, 194
Causal Fundamental Solution (see

fundamental solution, causal)
Causality Condition, 480, 483
Characteristic Equation, 4, 27; 123
Chebyshef (see Tchebyshev)
Christoffel’s First Summation, 87
Circular Functions,

Complex, 202
Derivitive of Complex, 203
Improper Real Integrals of 239
Inverse of Complex, 206

Trigonometric Identities of Complex,
203

Circular Cylindrical Coordinates, 627
Circular Frequency, 111
Classification of Singularities,

For Complex Functions, 229
For ODE, 23

Comparison Function, 143
Complete Solution, 1, 3
Complex Fourier Transform,

of Derivatives, 431
Operational Calculus, 431
Parseval Formula for, 432

Complex Hyperbolic Functions, 203
Complex Numbers, 185

Absolute Value, 186, 187
Addition, i 85
Argand Diagram, 186
Argument, 187
Associative Law, 186
Commutative Law, 186
Complex Conjugate, 186
Distributive Law, 186
Division, 185
Equality, 185
Imaginary Part, 185
Multiplication, ! 85

Polar Coordinates, 186
Powers, 188
Real Part, 185
Roots, 188
Subtraction, 185
Triangular Inequality, 188

Complex Function, 190
Analytic, 197
Branch Cut, 197, 198,259, 266, 267,
273
Branch Point, 197 199
Circular, 202
Continuity, 192
Derivatives, 193, 194
Domain, 191
Exponent, 205
Exponential, 201
Hyperbolic, 203
Inverse Circular, 206
Inverse Hyperbolic, 206
Logarithmic, 204
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Multi-Valued, 197
Polynomials, 201
Range, 191
Uniqueness of Limit, 192

Compressed Columns, 127
Compressible Fluid, 305
Condensation, 306
Conductivity,

Material, 295
Thermal, 295

Confluent Hypergeometric Function, 618
Conservation of Mass, 303,305
Constitutive Equation, 119
Continuity Equation, 125
Contour Evaluation of Real Improper

Integrals, 249
Convergence,

Absolute, 216,383,586
Conditional, 586
of a Series, 19
Region, 216
Radius, 19, 216
Tests, 586
Uniform, 137, 586

Convolution Theorem,
Complex Exponential Transform, 431
Cosine Transform, 423
Laplace Transform, 403
Multiple-Complex Exponential
Transform, 436
Sine Transform, 426

Coordinate System,
Cartesian, 627
Circular Cylindrical, 628
Elliptic-Cylindrical, 628
General Orthogonal, 625
Oblate Spheroidal, 632
Prolate Spheroidal, 630
Spherical, 629

Cosine,
Complex, 202
Expansion in Legendre, 89
Fourier Series, 163
Fourier Transform, 384
Improper Integrals with, 239
Integral function, 610

Critical Angle, 361
Critical Load, 128 .

Critical Speed, 124
Curl,

Cartesian, 627
Circular Cylindrical, 628
Elliptic Cylindrical, 629
Generalized Orthogonal, 625
Oblate Spheroidal, 632
Prolate Spheroidal, 631
Spherical, 630

Curvature, 120
Cylindrical Bessel Function, 48
Cylindrical Coordinates, 628

D

D’Alembert, 587
Debeye’s First Order Approximation, 543
Delta Function (See Dirac Delta Function)
Density, Fluid, 306
Derivative, of a Complex Function, 193,

194
Dielectric Constant, 311
Differential Equation, 4, 10, 56-8, 91

First Order, 2
Linear, 1, 2, 4
Non-homogeneous, 1
Nth Order, 4, 20
Ordinary, (See Ordinary Differential
Equations)
Partial, (See Partial Differential
Equations)
Second Order, 10, 25
Singularities, 23
Sturm-Loiuville, 148, 155
With Constant Coefficients, 4

Differential Operation, 1,453
Diffusion,

Coefficient, 297
Constant, 296
Equation, 293,342
Fundamental Solution for, 480
Green’s Function for, 515
Green’s Identity for, 470
of Electrons, 296
of Gasses, 296
of Particles, 196
Operator, 470



INDEX 726

Steady State, 343
Transient, 343
Uniqueness of, 315
Uniqueness, 315

Dipole Source, 459
Dirac Delta Function, 161,453,635

Integral Representation, 635,637, 643
Laplace Transformation of, 406
Linear Transformation of, 644
N-Dimensional Space, 643
nth Order, 459, 641,646-7
Scaling Property, 636, 643
Sifting Property, 636, 643
Spherically Symmetric, 645
Transformation Property, 639

Distributed Functions, 642
Divergence,

Cartesian, 627
Circular Cylindrical, 628
Elliptic Cylindrical, 629
Generalized Orthogonal, 625
Oblate Spheroidal, 632 ¯

Prolate Spheroidal, 631
Spherical, 630

E

Eigenfunction, 108, 144, 151,159, 308,
336

Expansions with Green’s Functions,
492, 497
Norm, 159
Orthogonal, 332, 336,337,343
Orthogonality, 133, 144
Properties, 144

Eigenvalue, 108, 142, 157,308
Eigenvalue Problem, 108, 142

Green’s Function, 459, 461
Homogeneous, 158
Non-homogeneous, 158

Elastically Supported Boundary, 121,133,
299

Electrostatic Potential, 311
Field within a Sphere, 331

Electrons, Diffusion, 296
Entire Function, 197

Equation of Motion,
Bars, 113
Beams, 117
Plates, 299
Stretched Membranes, 298
Stretched String, 111
Torsional Bars, 132

Error Function, 604
Complementary, 604

Euler’s Equation, 4, 125
Expansion,

Bessel Functions, 60
Legendre Polynomial, 85, 87
Fourier Series, 88

Exponential Function, Complex, 201
Periodicity of, 202

Exponential Integral Function, 608
Exponents, Complex 205

Derivative, 206
Exterior Region, 493

Factorial Function (See Gamma Function)
Ferrer’s Function, 93
Fixed Boundary, 115, 121,133,299
Fixed Shaft, Vibration of, 122
Fluid Density, 306
Fluid Flow,

Around an Infinite Cylinder, 328
Incompressible, 309

Forced Vibration,
of a Beam, 159
of a Membrane, 338

Formal Asymptotic Solutions, 564, 566,
574
In Exponential Form, 578

Fourier,
Bessel Series, 169
Coefficients, 135, 137, 162, 164, 166,
333
Complete Series, 165
Complex Transform, 465
Cosine Series, 163
Cosine Transform, 384,421
Integral Theorem, 383
Series, 88, 135, 151,161,163,383
Sine Series, 161
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Sine Transform, 385,425
Fourier Coefficients, Time Dependent,

343,344, 350
Fourier Complex Transform, 465
Fourier Cosine Transform, t63,384, 385

Convolution Theorem, 423
Inverse, 385
Of Derivatives, 422
Operational Calculus, 421
Parseval Formula for, 423

Fourier Series,
Generalized, 333,343

Fourier Sine Transform. 161-2, 385
Convolution Theorem, 423
Inverse, 385
Of Derivatives, 422
Operational Calculus, 421
Parseval Formula for, 423

Fourier Transform,
Complex, 386, 397
Generalized One-Sided, 400
Inverse Multiple Complex, 387

Multiple Complex, 387
of nth Derivative,

Free Boundary, 115, 121, 133,299
Frequency, 111
Fresnel Functions, 606
Frobenius Method, 25, 43

Characteristic Equation, 27
Distinct Roots That Differ by an
Integer, 32
Two Distinct Roots, 27
Two Identical Roots, 30

Fundamental Solutions, 472
Adjoint, 472
Behavior for Large R, 476, 479
Bi-Laplacian Helmholtz Eq., 484
Bi-Laplacian, 476
Causal, for the Diffusion Eq., 480-2
Causal, for the Wave Eq., 483
Development by Construction, 475
For the Laplacian, 473
For the Eq. -A2 + in2, 479
Helmholtz Eq., 477
Symmetry, 473

G

Gamma Function, 544, 599
Incomplete, 602

Gautschi Function, 604
Generalized Bessel Equations, 56
Generalized Fourier Transforms 393,395

Inverse, 395
One Sided, 400

Generalized Fourier Series, 135, 151,333,
343

Generalized Jordan’s Lemma, 245,247
Generating Function,

Bessel Functions, 58-9, 75
Hermite Polynomials, 58
Legendre Polynomials, 75
Tchebyshev, 77

Geometric Series Sum Formula, 407
Gradient,

Cartesian, 627
Circular Cylindrical, 628
Elliptic Cylindrical, 629
Generalized Orthogonal, 625
Oblate Spheroidal, 632
Prolate Spheroidal, 631
Spherical, 630

Gravitation, Law of, 310
Gravitational Potential, 309, 310
Green’s Identity,

For Bi-Laplacian Operator, 469
For Diffusion Operator, 470
For Laplacian Operator, 468
For the Wave Operator, 471

Green’s Theorem, 138,207
Green’s Functions,

Adjoint, 455-6
Causal, for Diffusion Operator, 515
Causal, for Wave Operator, 510
Eigenfunction Expansion Technique,
459, 461,497
Equations with Constant Coefficients,
458
For a Circular Area, 493-9, 522, 526
For a Semi-lnfinite Strip, 520
For Helmholtz Operator for Half-
Space, 503-6
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for Helmholtz Operator for Quarter
Space, 507
for Helmholtz Operator, 478-9, 503
For OD Value Problems, 453
for PDE, 466
For Spherical Geometry for the
Laplacian, 500-2
For the Laplacian by Eigenfunction
Expansion, 492
for Unbounded Media, 472
Higher Ordered Sources, 459
Infinite I-D Media, 465
Laplacian for Half-Space, 488-90
Laplacian Operator for Bounded
Media, 485,487
Longitudinal Vibration of Semi-
Infinite Bar, 462
Reciprocity of, 456-7
Semi-infinite 1-D Media, 462
Symmetry, 456-7, 460, 473
Vibration of Finite String, 460, 462
Vibration of Infinite String, 465

H

Hankel Functions, 53
Integral Representation, 392
of the First and Second Kind of Order
p, 53
Recurrence Formula, 54
Spherical, 54, 364
Wronskian, 53

Hankel Transform, 389
Inverse, 389, 392
of Derivatives, 438
of Order Zero, 387, 440
of Order v, 389, 440
Operational Calculus with, 438
Parsveal Formula For, 441

Harmonic Functions, 196
Heat Conduction in Solids, 293
Heat Distribution (see Temperature

Distribution)
Heat Flow, 293

In a Circular Sheet, 346
In a Finite Cylinder, 347

In a Semi-lnfinite Rod, 415,424, 428,
434, 517

In Finite Bar, 416
In Finite Thin Rod, 344

Heat Sink, 296
Heat Source, 296, 334
Heaviside Function, 403, 40,6, 635
Helical Spring, 121
Helmholtz Equation, 307, 3:~6

Fundamental Solution, 477
Green’s Function for, 477
Green’s Identity for, 469
Non-Homogeneous System, 338
Uniqueness for, 313

Hermite Polynomials, 615
Homogeneous Eigenvalue Problem, 142
Hydrodynamic Eq., 303
Hyperbolic Functions,

Complex, 203
Inverse, 206
Periodicity of Complex, 204

Hypergeometric Functions, 617

Identity Theorem, Complex Function, 221
Image Sources, 495
Image Point, 493
Images, Method of, 488
Incomplete Gamma Function, 602
Incompressible Fluid, 303

Flow of, 309
Infinite Series, 74, 90, 216, 585

Convergence Tests, 586
Convergent, 585
Divergent, 585
Expansion, 90
of Functions of One Variable, 591
Power Series, 594

Infinity, Point at, 559
Initial Value Problem, 13, 107, 413
Initial Conditions, 301, 315, 316, 342,

349, 350
Integral Test, 590
Integral Transforms, 383
Integral,

(log x)n, 256
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Asymetric functions with log (x), 264
Asymmetric Functions, 263
Bessel Function, 64
Compex Periodic Functions, 236
Complex, 207, 209
Even Functions with log(x), 252
Functions with xa, 259
Laplace, 79
Legendre Polynomial, 79, 8l, 85
Mehler, 81
Odd Functions 263
Odd Functions with log(x), 264
Orthogonality, 145
Real Improper by Non-Circular
Contours, 249
Real Improper with Singularities on
the Real Axis, 242
Real Improper, 237,239

Integral Representation of,
Bessel, 63, 64
Beta Function, 603
Confluent Hypergeometric Function,
619
Cosine Integral Function, 611
Error Function, 604
Exponential Integral Function,
608,609
Fresnel Function, 606
Gamma Function, 600
Hermite Polynomial, 616
Hypergeometric Function, 617
Incomplete Gamma Functions, 602
Legendre Function of Second Kind,
92
Legendre Polynomial, 79
Psi Function, 601
Sine Integral Function, 611

Integrating Factor, 2
Integration,

By Parts, 537
Complex Functions, 207, 209

lntegro-differential Equation, 412
Interior Region, 493
Inverse,

Complex Fourier Transform, 386
Fourier Cosine Transform, 385
Fourier Sine Transform, 385
Fourier Transform, 385,395,397

Laplace Transform, 266, 269, 273
Transform, 398

Irregular Singular Point, 23,560
Of Rank One, 568
Of Rank Higher Than One, 571

J, K, L

Jordan’s Lemma, 240
Generalized, 245,247

Kelvin Functions, 620
Kronecker Delta, 134
Laguerre Polynomials,

Associated, 614-5
Differential Equation, 613
Generating Function, 613
Recurrence Relations, 614

Lagrange’s Identity, 138
Laplace Integral, 79
Laplace Transform,

for Half-Space, Green’s Function for,
488
Initial Value Problem, 413
Inverse, 266, 269, 273,400
of Heaviside Function, 406
of Integrals, Derivatives, and
Elementary Functions, 405
of Periodic Functions, 406
Solutions of ODE and PDE, 411
Two-Sided, 399
With Operational Calculus, 402

Laplace’s Equation, 196, 295,308, 319
Green’s Identity for, 468,485
In Polar Coordinates, 522
Uniqueness of, 312

Laplace’s Integral, 538
Laplacian,

Cartesian, 627 ~
Circular Cylindrical, 628
Elliptic Cylindrical, 629
Fundamental Solution, 473-5
Generalized Orthogonal, 625
Green’s Function for, 492-3
Oblate Spheroidal, 632
Prolate Spheroidal, 631
Spherical, 630

Laurent Series, 222



INDEX 730

Legendre,
Coefficients, 75
Functions, 69
Polynomial, 71

Legendre Functions, 69
Associated, 93,364
of the First Kind, 71, 93
of the Second Kind, 71, 73, 89, 93

Legendre Polynomials, 71, 77, 81, 85
Cosine Arguments, 76, 89
Expansions in Terms of, 85
Generating Function, 76
Infinite Series Expansion, 90
Integral Representation of, 79, 81, 85,
92, 96
Orthogonatity, 81, 83, 85
Parity, 76
Recurrence Formula, 77, 95, 97
Rodriguez Formula, 72, 90
Sine Arguments, 88

Limiting Absorption, 466, 485
Limiting Contours, 245
Linear ODE,

Complete Solution, 1, 3
Homogeneous, 1
Non-homogeneous, 1
Particular Solution,. 1, 10
With Constant Coefficients, 4

Linear,
Differential Equation, 1,139
Independence, 3
Operators, 142
Second Order, 139

Linear Spring, 115
Local Strain, 119
Logarithmic Function, 204

Integral of Even Functions With, 252
Integrals of Odd Functions With, 264

Longitudinal Vibration, 113, 151

M

MacDonald Function, 55
Material Absorption, 463
Material Conductivity, 295
Mean Free Path, 297

Mehler, 81

Mellin Transform, 401
Inverse, 402

Membrane,
Infinite, Vibration, 441
Vibation Eq., 298
Vibrating Square, 338
Vibration of Circular, 353

Method of Images, 488
Method of Steepest Descent, 539
Method of Undetermined Coefficients, 7
Method of Variation of Parameters, 9
Modified Bessel Functions, 55

Recurrence Formula, 55
Moment of Inertia, 117, 120

Cross-sectional Area, 117, 120
Polar Area, 132

Moments, 117,299
Morera’s Theorem, 215
Multiply Connected Region, 212
Multivalued Functions, 197, 200, 204,

205,206, 266
Multiple Fourier Transform, 386, 387

Convolution Theorem, 436
of Partal Derivatives, 435
Operational Calculus With, 435

N

N-Dimensional Sphere, 645
Natural Boundary Condition, 111,121
Neumann

Factor, 60
Function, 46
Function of Order n, 48
Integral, 92

Neutrons, Diffusion of, 296
Newton’s Law of Cooling, 296
Nonhomogeneous

Boundary Condition, 111, 121
Eigenvalue Problem, 158
Equation, 1

Norm, of functions, 133
Norm of Eigenfunctions, 159
Normal Asymptotic Solutions, 635
Normal Vector, 294
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Normalization Constant, 145,461

ODE (See Ordinary Differential
Equations)

Open End, 126, 131
Operator in N-Dimensional Space, 472
Ordinary Differential Equations,

Asymptotic Solution With Irregular
Singular Points, 563,571
Asymptotic Solution with Large
Parameter, 574
Asymptotic Solutions for Large
Arguments, 559
Asymptotic Solutions with Regular
Singular Points, 561
By Laplace Transform, 411
Constant Coefficients, 4
First-Order, 2,344
Frobenius Solution, 25
Homogeneous, 1,4
Legendre Polynomials, 71, 77
Linear, 1
Non-homogeneous, 1
POwer Series Solution, 25
Second-Order, 10, 350
Self-Adjoint, 461
Singularities of, 23

Orthogonal Coordinate Systems,
Generalized, 525

Orthogonal Eigenfunctions, 144, 151
Orthogonal Functions, 133, 144, 332-3
Orthogonality Integral, 145,333, 351
Orthonormal Set, 133-4, 151

P

Parseval’s Formula for Transforms,
Fourier Complex, 432
Fourier Cosine, 423
Fourier Sine, 428
Hankel, 441

Partial Differential Equations,
Acoustic Wave Eq., 307
Diffusion and Absorption of Particles,
296

Diffusion of Gases, 296
Electrostatic Potential, 311
Elliptic, 312
Gravitational Potential, 309
Green’s Function for, 466
Heat Conduction in Solids, 294
Helmholtz Eq., 307
Hyperbolic, 312
Laplace Eq., 308
Linear, 467
Parabolic, 312
Poisson Eq., 308
Vibration Eq., 297
Vibration of Membranes, 298
Vibration of Plates, 300
Water-Basin, 303
Wave Eq., 302

Particular Solution, 1, 7, 9, 10, 453,456
PDE (See Partial Differential Equations)
Periodic Boundary Conditions, 150
Periodic Functions, 418

Integrals of Complex, 236
Phase Integral Method, 568
Plane Wave Front, 358
Plane Waves,

Harmonic, 301,358
Periodic in Time, 111
Plates,

Circular, 340
Equation of Motion in, 300
Fundamental Solution for Static, 477
Fundamental Solution for Vibration,
485
Stiffness, 300
Uniqueness, 301
Vibration of, 299

Polar Moment of Inertia, 132
Pole,

Simple, 229
of Order m, 229

Polynomials, 201
Positive Definite, 143, 151,460
Positive Eigenvalues, 157
Potential,

Electrostatic, 311
Gravitational, 309, 310
Source, 306
Velocity, 306

Power Series, 19, 216, 594



INDEX 732

Powers ofx in Bessel Functions, 61
Pressure, External, 124, 303
Pressure, of Fluid, 305
Pressure-Release Plane Surface, 358-9
Proper S-L System, 151
Psi Function, 600

R

Raabe’s Test, 589
Radiation, Acoustic from Infinite

Cylinder, 363
Radius of Convergence, 19, 216, 594
Radius of Curvature, 120
Ratio Test, 587
Rayleigh Quotient, 146
Real Integrals, Improper, 237

By Non-Circular Contours, 249
With Circular Functions, 239
With Singularities on the Real Axis,
242

Recurrence Formula, 21, 55, 59, 77-8, 95
Recurrence Relations,

Associated Laguerre, 614
Associated Legendre, 95
Bessel Function, 51
Confluent Hypergeometric, 618
Exponential Integral, 609
Gamma, 599
Hermite Polynomial, 615
Hypergeometric Functions, 617
Incomplete Gamma, 602
Kelvin, 621
Laguerre, 614
Legendre Plynomials, 78
Modified Bessel, 55
Psi, 601
Spherical Bessel, 53
Tchebyshev, 612

Reflection and Refraction of Plane Waves,
358

Region,
Closed, 189
Open, 190
Semi-Closed, 190
Simply Connected, 190
Multiply Connected, 190

Regular Point, 23,559
Regular Singular Point, 23, 25, 43,560

Residue Theorem, 231
Residues And Poles, 231 ’
Resonance of Acoustic Horn, 126
Riemann Sheets, 198, 200

Principal, 205
Rigid Sphere,Enclosed Gas, 364
Rodriguez Formula, 72, 81,813, 90
Root Test, 588
Rigid End, 126

S-L Problem, (See Sturm-Liouville
Systems)

Saddle Point Method, 539
Modified, 554, 558

Sawtooth Wave, 418
Scattered Pressure Field, 365
Scattering of a Plane Wave from a Rigid

Sphere, 364
Second-Order Euler DE, 62
Second-Order Linear DE, Adjoint, 139
Self-Adjoint Differential Operator, 138,

457, 460, 473
Self-Adjoint Eigenvalue Problem, 143
Separation of Variables, 319

Cartesian Coordinates, 319, 338, 351,
Cylindrical Coordinates, 322, 326,
328, 334, 340, 346, 347,353,362
Spherical Coordinates, 324, 331,341,
364

Series,
Convergence of, 19
Infinite, 74
Power, 19, 216, 594

Shear Forces, 299
Shift Theorem, 403,407,635
Simple Pole, 229, 554
Simply Supported Beam, 159
Sine,

of a Complex Variable, 202
In Terms of Legendre Polynomial, 88
Integral, 610

Singular Point, Solutions, 23, 25, 43
Singularities,

Classification, 23,229
Essential, 229
Isolated, 197,229
Poles, 229
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Principal Part, 229
Removable, 229

Small Arguments, 65
Small Circle Integral, 248
Small Circle Theorem, 247
Shell’s Law, 361
Source, Heat (see Heat Source)
Source, Potential, 306
Speed (see Wave Speed)
Spherical Bessel Functions, 52

Recurrence Formula, 53
Wronskian, 53

Spherical Harmonic Waves, 364
Specific Heat, Ratio, 306
Spherical Coordinates, 629
Stability, 127
Static Deflection, 418
Standing Waves, 308
Stationary Phase,

Method, 552
Path, 552
Point, 552

Steady-State Temperature Distribution,
309

In a Circular Sheet, 496
In Annular Sheet, 322, 334
In Rectangular Sheet, 319
In Semi-Infinite Bar, 518
In Semi-Infinite Sheet, 491
In Solid Cylinder, 326
In Solid Sphere, 324

Steepest Descent
Method, 539, 553
Saddle Point, 539
Paths, 540

Step Function (see Heaviside Function)
Stirling Formula, 544
Stretched Strings, 102

Equation of Motion, 111
Fixed, 112
Green’s Function for, 460, 465
Vibration of, 109, 112, 152
Wave Propagation, 109

Sturm-Liouville Equation,
Asymptotic Behavior of, 148, 155
Boundary Conditions, 150, 155
Fourth Order Equation, 155
Periodic Boundary Conditions, 150
Second Order, 148, 459

Subnormal Asymptotic Solution, 565
Sum of A Series Method, 519
Superposition, Principle of; 321
Surface of N-Dimensional Sphere, 645

T

Taylor’s Expansion Series, 217
Taylor Series, Complex, 218
Tchebychev Polynomials, 612
Telegraph Equations, 130
Temperature Distribution, Steady State

(see Steady State Temperature
Distribution)

Torsional Vibrations, 132, 153
Boundary Conditions, 133
Circular Bars, 132, 153
Wave Equation, 132

Torque, 132
Transient Motion of a Square Plate, 351
Transmission Line Equation, 130
Transverse Elastic Spring, 121
Trigonometric Series (See Fourier Series)

U

Undetermined Coefficients, 7
Uniform Convergence, 402, 592
Uniqueness Theorem, 137, 141,312

BC’s, 313,315
Differential Equations, 13
Diffusion Eq., 315
Helmholtz, 314
Initial Conditions, 13, 315, 316
Laplace, 312
Poisson, 312
Wave Equation, 316

V

Variable,
Cross-section, 126, 153
Density, 152

Variation of Parameters, 9
Velocity Field, Potential, 306
Vibration Equation, 297, 349
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Bounded Medium, 307
Forced, 159, 307
Forced, of a Membrane, 298, 338,353
Free, 341
Free, of a Circular Plate, 340
Green’s Function for, 460, 462,465,
512,514
Longitudinal, 113, 115, 151
Non-Homogenous Dirichlet,
Neumann Or Robin 349
of a Bar, 115, 151
of a Beam, 117, 298
of a String, 109, 112, 152, 356, 413,
429, 433,512
One Dimensional Continua, 297
Torsional, 132
Transient Vibration 349
Uniqueness, 297

Velocity of a Wave (see Wave Speed)
Velocity, Vector Particle, 303,305
Velocity Potential, 306
Volume of N-Dimensional Sphere, 645

W, X, Y, Z

Watson’s Lemma, 538, 543
Wave Equation, 111, 115, 120, 132, 302,

306, 355
Acoustic Horn 125-6
Acoustic Medium, 303
Axisymmetric Spherical, 365
Beam, 120
Cylindrical Harmonic, 362
Harmonic Plane Waves, 302
Spherical Harmonic, 364

Time Dependent Source 349
Uniqueness of, 316

Wave Number, 111,120, 302
Wave Operator,

Green’s Identity for, 471,, 510
Wave Propagation,

In Infinite, 1-D Medium, 355
In Infinite Plates, 436
In Semi-Infinite String, 420
In Simple String, 109, 113, 117
Spherically Symmetric, 357
Surface of Water Basin, 303
Transient, in String, 356

Wave Speed,
Characteristic, 297
In Acoustic Medium, 125,306
In Membrane, 298
Longitudinal in a Bar, 115
Shear, 133
Stretched String, 111

Wavelength, 302
Weber, 45
Weierstrass Test for Uniform

Convergence, 593
Weighting Function, 134
Whirling of String, 109, 117, 122
Wronskian, 3, 10, 11,44-5, 74

Abel Formula, 11
of Hankel Functions, 53
of Modified Bessel Functions, 55
of Pn(X) and Qn(x), 
of Spherical Bessel Functions, 53

WKBJ Method,
for Irregular Singular Points, 568
For ODE With Large Parameters,
580

Young’s Modulus, Complex, 463
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