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Preface

There are two ways to live: you can live as if nothing is a miracle; you can live as 
if everything is a miracle.

—Albert Einstein

The faint radiofrequency signals detected in nuclear magnetic resonance (NMR) 
spectroscopy provide a window into the structure and dynamics of atoms in solids, 
liquids, and gases. No other experimental technique comes close to the range of 
atomic‐level information that NMR can provide. To me, NMR is a miracle. In order 
to understand NMR, one must master both its experimental and its theoretical aspects. 
It also helps to be knowledgeable in chemistry. Although experimental NMR is 
becoming easier as commercial spectrometers evolve, the theory of NMR is still 
“hard” and is the area in which many NMR spectroscopists are weak. Therefore, in 
this primer, the theory of NMR is presented concisely and is used in calculations to 
understand, predict, and simulate the results of NMR experiments. The focus is on 
the beautiful physics of NMR. The basics of experimental NMR are included to 
provide perspective and a clear connection with theory. This primer is not 
comprehensive and is limited to material covered in a graduate‐level theoretical 
NMR class I taught at Penn State for 25 years. There is only cursory discussion of 
some important NMR topics such as cross polarization or unpaired electron spin–
nuclear spin interactions. Nevertheless, a person who has “made it” through this 
book will be well equipped to understand most topics in the NMR literature.

Throughout my quest to master NMR spectroscopy, I have used the program-
ming language Mathematica, or its predecessor SMP. Here, Mathematica notebooks 
are used to carry out most of the calculations. These notebooks are also intended to 
provide useful calculation templates for NMR researchers. Although it is not 
necessary to have Mathematica to gain understanding from this book, I highly 
recommend it.

I am grateful to the many pioneers, colleagues, professors, friends, and mentors 
in the NMR community who have personally or in their publications answered my 
questions along the way, including but not limited to A. Abragam, H.W. Spiess, M. 
Levitt, M. Mehring, Burkhard Geil, Paul Ellis, Lloyd Jackman, Juliette Lecomte, Chris 
Falzone, Ad Bax, Karl Mueller, Richard Ernst, Attila Szabo, Dennis Torchia, Bernie 
Gerstein, Kurt Wuthrich, Mike Geckle, Clemens Anklin, Matt Augustine, David Boehr, 
Scott Showalter, John Lintner, Kevin Geohring, Ted Claiborne, Tom Gerig, Tom Raidy, 
and Alex Pines. The NMR community is lucky to include such kind and inspiring 
human beings.

Alan J. Benesi
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Introduction

Chapter  1

Nuclear magnetic resonance (NMR) spectroscopy can provide detailed information 
about nuclei of almost any element. NMR allows one to determine the chemical envi-
ronment and dynamics of molecules and ions that contain the observed nuclei. With 
modern NMR spectrometers, one can observe nuclei of several elements at once. 
Biological NMR, for example, often employs radio frequency pulses on 1H, 13C, and 
15N nuclei within a single experiment. Some of the most useful NMR experiments 
obtain information by using 20 or more radio frequency pulses applied to the different 
NMR nuclei at specific times. What makes these sophisticated experiments possible 
is the mathematical perfection of the quantum mechanics that underlies NMR.

Whether one looks at liquids, solids, or gases, the nuclei being observed are 
selected by their unique resonance (Larmor) frequencies in the radio frequency range 
of the electromagnetic spectrum. Choosing a nucleus for observation is analogous to 
choosing a radio station.

NMR requires a magnet, usually with a very homogeneous magnetic field 
except when pulsed magnetic field gradients are applied. The magnetic field 
splits the quantized nuclear spin angular momentum states, thereby allowing transi-
tions between them that can be stimulated by radio frequency excitation. Only 
transitions between adjacent levels are allowed, and since the levels for a given 
nucleus are equally separated in energy, the transitions all occur at the same res-
onance (Larmor) frequency.1 The resonance frequency of a given nucleus is 
proportional to the strength of the magnetic field and is generally in the radio fre-
quency range of 106 to 109 sec−1 on superconducting magnets of 1–25 Tesla magnetic 
field strength. Several specific advantages of high magnetic fields are that they 
give stronger NMR signals, better resolution of chemical shifts, and better resolution 
for solid samples of odd‐half‐integer quadrupolar nuclei.

Magnetic resonance imaging is a special type of NMR that takes advantage of 
the linear relationship between the resonance frequency of a nucleus and the magnetic 
field. In the presence of a magnetic field gradient, the observed resonance frequency 
varies with position within the sample, allowing for direct correlation between 
frequency and position that can be used to create an image. Pulsed magnetic field 
gradients are also used to select desired NMR signals in nonimaging experiments.

1 But higher order transitions can be observed in some cases.
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The quantum mechanics that is the basis of NMR spectroscopy has been 
covered beautifully in books by Abragam (1983), Spiess (1978), Mehring (1983), 
Ernst et  al. (1987), Gerstein and Dybowski (1985), Levitt (2008), and Jacobsen 
(2007). In this book, the goal is to review the theoretical basis of NMR in a concise, 
cohesive manner and demonstrate the mathematics and physics explicitly with 
Mathematica notebooks. Readers are urged to go through all the Mathematica 
notebooks as they are presented and to use the notebooks as templates for homework 
problems and for real research problems. The notebooks are a “toolbox” for NMR 
calculations.

The primer is intended for graduate students and researchers who use NMR 
spectroscopy. The chapters are short but become longer and more involved as the 
primer progresses. The primer starts with chapters describing the NMR spectrometer 
and the NMR experiment and proceeds with the classical view of magnetism, the 
Bloch equation, and the vector model of NMR. Then it goes directly to quantum 
mechanics by introducing the density operator, whose evolution can be predicted by 
using either matrix representation of the spin angular momentum operators or 
commutation relations between them (product operator theory). It then transitions to 
coherence order pathways, phase cycles, pulsed magnetic field gradients, and the 
design of NMR pulse sequences. With the help of Mathematica notebooks, it pres-
ents the elegant mathematics of solid state NMR, including spherical tensors and 
Wigner rotations. Then the focus changes to the effects of atomic and molecular 
motions in solids and liquids on NMR spectra, including mathematical methods 
needed to understand slow, intermediate, and fast exchange. Finally, it finishes with 
the amazing and perfect connection between molecular‐level reorientational 
dynamics and NMR relaxation.
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Using Mathematica; 
Homework Philosophy

Chapter  2

In this primer, the version 8.0.4.0 Mathematica programming language was used to 
carry out calculations presented in Mathematica notebooks (e.g., xyz.nb). All of the 
notebooks are provided in a DVD included with the book. It is assumed that the 
reader has Mathematica and can therefore carry out the calculations step by step or 
carry them out by evaluating the entire notebook. Step‐by‐step calculations are 
advantageous because they enable the user to see the mathematics and learn about 
the Mathematica language, syntax, and programming at the same time.

The user is urged to make extensive use of the Help→Documentation Center→Search 
routine to learn about Mathematica. Some useful searches are “Mathematica syntax,” 
“Mathematica syntax characters,” “Immediate and Delayed Definitions,” and “Defining 
Variables and Functions.” Once one learns the basics of Mathematica, the notebooks used 
in this book become almost transparent.

Explanation of the Mathematica programming is presented explicitly in the 
text when the notebooks are first discussed. These are simply called “Explanation of 
xyz.nb” at the end of the chapter. The first notebooks and their text explanations are 
encountered in Chapters 5, 6, 7, and 9. The explanations in the early chapters provide 
more detailed descriptions of the programming than those in the later chapters.

The user is encouraged to make changes in the provided notebooks and see 
how they affect the results. It is advisable to go through every calculation in the note-
books step by step, not only to see how physics works in detail but also to learn the 
Mathematica language and syntax. Be forewarned that crashes can occur, so keep in 
mind that the correct starting notebook(s) can always be reloaded from the DVD or 
other storage media.

For those who cannot purchase Mathematica, a free download of the Mathematica 
CDF Player is available online. This form of Mathematica does not allow the user to 
change input lines and thereby learn step by step, but it does enable the entire notebook 
to be evaluated. The Mathematica notebooks (xyz.nb) are also provided as (xyz.cdf) on the 
DVD provided with the primer.

The homework problems are placed at the end of each chapter. Answers are not 
provided. The Mathematica notebooks, references, and text explanations provide 
the necessary help.
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The NMR Spectrometer

Chapter  3

A modern NMR spectrometer consists of a superconducting magnet, a probe that 
holds the NMR sample in the strongest and most homogeneous part of the magnetic 
field of the magnet, a console containing radio frequency (rf)–generating electronics, 
amplifiers, and a receiver; a preamplifier that amplifies the very small NMR signals 
emitted by the sample after rf excitation; and a computer to control the hardware 
and process the NMR signals to yield spectra. The rf signals to and from the sample 
are carried in coaxial cables and propagate at about two‐thirds the speed of 
light. A schematic of a modern NMR spectrometer is shown in Figure 3.1.

A superconducting magnet consists of a coil of superconducting wire, typically 
Niobium–Tin or Niobium–Titanium alloy, immersed in liquid Helium. The boiling 
temperature of liquid Helium at 1 atm pressure is 4.2 K, well below the superconduct-
ing critical temperature of the wire, allowing a current to flow without resistance in 
the coil. The current flow through the coil generates the magnetic field used in NMR. 
To accomodate NMR samples at room temperature or other temperatures, the liquid 
helium–immersed superconducting coil is housed in a toroidal dewar, the central 
“hole” of which is open to the atmosphere at room temperature and holds the shim 
stack and NMR probe. Typically, the dewar is constructed of stainless steel, with high 
vacuum between dewar sections containing liquid Nitrogen and liquid Helium and 
also between the liquid Nitrogen dewar and the outer surface of the magnet. Figure 3.2 
shows a schematic of a vertical cross‐section of a superconducting magnet.

Activation of a superconducting magnet is carried out by using an external 
power supply to ramp up the current in the superconducting coil (already immersed 
in liquid He) until the desired current and corresponding magnetic field are achieved. 
At this point, the external power supply is disconnected from the superconducting 
coil, but the current is maintained in the coil because there is no resistance. As long 
as the coil is intact and immersed in liquid helium, the current and corresponding 
magnetic field can be maintained indefinitely.

Unfortunately, the world has used up most of the easily accessible Helium, so 
efforts are underway to reclaim Helium whenever possible and to develop liquid 
Nitrogen superconductors that can sustain the high current needed for NMR magnets.

The NMR sample fits in the probe and is situated at the strongest and most 
homogeneous part of the magnetic field where all of the magnetic lines of force are 
nearly perfectly parallel and of equal magnitude. The homogeneity of the magnetic 
field across the sample is further improved by using small corrective electromagnets 
called shims, located in the “shim stack” that surrounds the cavity occupied by 
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the probe. Modest adjustable currents through the shims allow the magnetic field 
across the sample to be made almost perfectly homogeneous, thereby increasing both 
resolution and vertical peak intensity in the NMR spectrum. The NMR sample 
placement relative to the magnetic lines of force is shown in Figure 3.3.

Magnetic lines of force

Superconducting magnet

NMR sample

Expanded view: Magnetic lines of force
at sample

NMR probe

Figure 3.3  NMR sample placement relative to magnetic lines of force, vertical cross‐section 
with expanded view.
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The NMR Experiment

Chapter  4

The sample is placed in the probe in the magnet. The probe is tuned to the desired 
resonance frequency(ies) and then shimmed to obtain a homogeneous magnetic field, 
that is, B = {0,0,B

0
},1 as shown in Figure 3.3. The magnetic field removes the degen-

eracy of the nuclear spin states—the Zeeman effect. The Zeeman Hamiltonian is 
Ĥ

Z
 = −γ B

0
 Î

z
. If the nuclear spin quantum number is I, the Zeeman Hamiltonian splits 

the quantized states into 2I+1 evenly spaced energy levels, ranging from m = −I to +I 
in units of 1, corresponding to the different expectation values for Î

z
 (I = 0 nuclei such 

as 16O and 12C have only one level and are not NMR observable). Figure 4.1 shows 
the Zeeman energy levels for an I = 1/2 spin and an I = 1 spin.

Transitions are only allowed between adjacent energy levels that are evenly 
spaced with ΔE = hν

0
 where ν

0
 is the resonance (Larmor) frequency. 2 π ν

0
 = −γ B

0
, 

where γ is the gyromagnetic ratio of the nucleus in radian s−1 Tesla−1 and B
0
 is the 

magnetic field in Tesla. Gyromagnetic ratios and Larmor frequencies for NMR 
observable elements are available in the online NMR Periodic Table.2

Radio frequency (rf) pulses of frequency ν
0
 are generated in the console (see 

Fig. 3.1). At the probe, the rf pulse generates a linearly oscillating field in the x–y 
plane perpendicular to the magnetic field. A drawing of a Helmholtz rf coil used for 
liquid‐state NMR samples is shown in Figure 4.2.

The rf is “gated” to create pulse(s), typically of about 1–100 µs duration. With 
modern spectrometers, it is possible to control the phase of the pulse precisely. The 
pulses are amplified in the console to 1–1000 W power. The rf pulse(s) propagate at 
approximately two‐thirds the speed of light through the circuitry and coaxial cables 
to the probe and sample in the magnet. A duplexing or λ/4 arrangement is used to 
protect the sensitive preamplifier and receiver from the high‐power rf pulse(s).

The rf pulses perturb the nuclear spin energy states, creating coherences that 
contain the energy imparted to the nuclear spin system. After the pulses are over, it is 
necessary to wait for the effects of the high‐power rf pulses to dissipate through the 
electronic components before the NMR signal can be measured, about 5–100 µs 
depending on the Larmor frequency. Luckily, in most cases, the NMR signal emitted 
by the sample lasts much longer. Having been excited by the rf pulses into one or 

1 In the case of liquid samples, the sample is “locked” to allow compensation for small spontaneous 
changes in the magnetic field that would otherwise broaden the peaks. Usually the lock nucleus is 2H.
2 http://www.bruker‐nmr.de/guide/eNMR/chem/NMRnuclei.html

http://www.bruker-nmr.de/guide/eNMR/chem/NMRnuclei.html
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more states of coherence, the NMR sample emits the rf signal, the NMR signal, at 
ν

0
 ± δ kHz. The wavelength of the rf is larger than the size of the NMR sample, so 

accurate quantum mechanical description requires spatially dependent quantum field 
theory as opposed to the simpler long‐distance excitation/emission theory that applies 
to radio transmission and reception. The absorption/emission process can also be 
accurately described with quantum electrodynamics (Feynman, 1985; Hoult and 
Bhakar, 1997). The easiest description of the absorption/emission process, however, 
is made with classical electrodynamics (Hoult, 1989). In this case, the NMR signal is 
modeled as a magnetic dipole moment rotating at the resonance (Larmor) frequency. 
The changing magnetic field induces an oscillating voltage at this frequency in the rf 
coil. This is the experimental NMR signal.3 Do not be fooled by the success of this 
approach, however. There are very many aspects of NMR that the classical approach 
does not explain.

The emission of the energy stored in the spin system is not spontaneous. 
Spontaneous emission would take longer than the lifetime of the universe. In the 
language of quantum electrodynamics, the emission is stimulated by virtual rf pho-
tons (photons unobservable to external observers) arising from motions of the 
molecules containing and adjacent to the observed nuclei (see  Chapters 36 and 39). 
The emission of the NMR signal typically lasts on the order of about 1 s.

The power of the emitted NMR signal is generally in the microwatt to milliwatt 
range, many orders of magnitude less than the power of the rf pulses used to excite 
the sample. The intensity of the signal depends on the number of NMR observable 
nuclei in the sample, the gyromagnetic ratio, and the magnetic field strength B

0
. 

Unless it is increased artificially by isotopic enrichment, the number of NMR observ-
able nuclei depends on the natural abundance of the isotope. The NMR signal is 
detected as an oscillating voltage on the same coil that delivered the rf pulse(s). It is 
“duplexed” to the preamplifier where it is amplified, then sent to the console where 
it is further amplified.

The amplified NMR signal is mixed with the input frequency ν
0
 to yield the 

difference frequency ±δ kHz in the audio frequency range. This signal is equivalent 
to the NMR signal in the rotating frame (see Chapter 7). The NMR signal is detected 
as an oscillating voltage on two receiver channels that are 90° (π/2 radians) apart in 
the rotating frame. The x and y components of the NMR signal in the rotating frame, 
equally real experimentally, are taken to be the “real” and “imaginary” components, 
respectively. The presence of two channels 90° apart in phase allows discrimination 
of positive and negative frequencies. The successive complex data points of the 
signal are separated by dw seconds, where dw is the “dwell” time. The dwell time is 
the inverse of the full width of the spectrum in s−1 (so a 1‐MHz spectral width corre-
sponds to a dwell time of 1 µs). Each complex data point is measured by opening 
the receiver channels for 50–100 ns, depending on the spectrometer. The total time 
during which the NMR signal is digitized is called the acquisition time. The complex 
time‐dependent NMR signal is called the free induction decay (FID).

3 External rf from other NMR spectrometers, computers, or communication devices can significantly distort 
the observed NMR spectrum.
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The complex FID is Fourier‐transformed and phased to yield the NMR 
spectrum. Due to the finite lengths of cables and connectors, the phase correction 
needed for the spectrum is unknown. The phase correction usually consists of a 
zero‐order phase correction that is applied uniformly for all frequencies followed 
by a first‐order phase correction that varies linearly with frequency.

As will be shown in later chapters, the instantaneous frequency observed for 
any nucleus depends on the instantaneous orientation of the molecule that contains it. 
This means that for a statistical ensemble of the nuclei, a range of frequencies will be 
observed due to the dependence on molecular orientation. However, if the molecules 
containing the observed nuclei reorient quickly compared with the Larmor period 
(1/ν

0
), the receiver only detects the average of the range of frequencies. If the angular 

reorientation is totally random, the frequency or frequencies observed are isotropic 
because the anisotropic orientational dependence has been averaged out. If the mol-
ecules reorient slowly, the receiver detects the full range of orientational frequencies, 
and the spectrum is anisotropic. This is illustrated in Figure 4.3. In the liquid state, 
near room temperature, most molecules exhibit isotropic rotational diffusion4 with 
rotational correlation times of 10−12 to 10−9 seconds, so only the isotropic frequencies 
are observed. In most solids, near room temperature, the reorientational correlation 
times are much longer, typically 101 to 10−6 seconds, so the range of anisotropic 
frequencies is apparent in the spectrum.

8 6 4 2 0 ppm

126 KHZ

Liquids Solids

Figure 4.3  Effect of motional averaging on NMR spectra. Reproduced from a talk by Sharon 
Ashbrook, “The Power of Solid‐State NMR,” CASTEP Workshop, Oxford, August 2009.

4 Isotropic rotational diffusion is totally random in direction.
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Classical Magnets and 
Precession

Chapter  5

In some ways, NMR active nuclei behave like classical magnetic dipoles. The 
classical description of magnetic dipoles in an externally applied magnetic field is 
therefore presented in this chapter.

In the classical view of NMR, the nucleus is likened to a sphere of charge +z 
(the atomic number, i.e., the number of protons in the nucleus) and mass m spinning 
about its z axis. The spinning mass has spin angular momentum, and the spinning 
charge generates a magnetic dipole moment proportional to and parallel to the spin 
angular momentum vector as illustrated in Figure 5.1.

Let Ze be the charge of the nucleus, where Z is the atomic number (number of 
protons) and e is the proton charge. Let m be the mass of the nucleus, c be the speed 
of light, L be the angular momentum vector, and μ be the resulting magnetic dipole 
moment vector chosen arbitrarily to define the z axis. L and μ are vectors, denoted in 
boldface. The derivation yields the following (Gerstein, 2002):

	
4 2

Ze

mc
L L 	 (5.1)

This equation predicts that the magnetic moment is proportional to the nuclear spin 
angular momentum (true) but also predicts that the gyromagnetic ratio γ increases 
with the spin angular momentum and charge of the nucleus (false).

Some other experimental observations are incompatible with the predictions of 
the classical model. If a classical model held, one would not expect the angular 
momentum to be quantized. Moreover, the classical result predicts a single energy 
“level” proportional to the dot product of the magnetic moment and the applied 
magnetic field, disallowing transitions (see Eq. 5.2). Therefore, one would not expect 
to observe interactions at a single Larmor frequency for a given NMR‐observable 
isotope. Despite these shortcomings, the classical model describes some aspects of 
NMR very accurately, for example, the effect of applied magnetic fields and radio 
frequency irradiation on nuclei in the liquid state.

In the presence of the external NMR magnetic field B = {0,0,B
0
}, the classical 

behavior of the nuclear spin magnetic dipoles μ is described by the following equation:

	

d

dt 	
(5.2)
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where × represents the vector cross product. The resulting motion is precession of the 
nuclear magnetic dipole moment μ around the magnetic field B (see Fig. 5.2), with a 
positive rotation around the field defined by the right‐hand rule. The right‐hand rule 
works as follows: Take your right hand. Align your thumb with B pointing toward 
the north pole of the magnet. The direction of motion of μ around your thumb is 
indicated by your remaining fingers, illustrated in Figure 5.2.

The energy of μ in radians s−1 (i.e., units of h/2π) in the magnetic field B relative 
to no magnetic field is as follows:

	 e B L B 	 (5.3)

The problem with this result is that there is only one energy “level,” so no transitions 
can occur.

Equation 5.2 is the basis of the Bloch equation(s), which are widely used in 
NMR calculations for I = 1/2 nuclei and for quadrupolar nuclei in liquids (that behave 
like I = 1/2 nuclei). The Mathematica notebook magdipoleanimation.nb goes 
through the mathematics and provides animation of a classical magnetic dipole 
precessing in a permanent magnetic field B.

µ

Figure 5.1  Classical magnetic dipole moment μ of a spinning charged particle.

B

µ

Figure 5.2  Precession of a magnetic dipole moment μ around a magnetic field B.
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Explanation of Mathematica programming in 
magdipoleanimation.nb

The first input line of magdipoleanimation.nb is a comment of the form  
(* comment *). On the right‐hand side of the Mathematica notebook, the input of the 
comment is denoted by a closing square bracket with a small diagonal from the upper 
left‐hand side of the bracket to the right‐hand vertical part of the bracket. All Mathematica 
input lines are indicated in this way. Comments are input by typing a left parenthesis and 
*, typing the comment, then finishing with a * and right parenthesis. All input lines in 
Mathematica are evaluated by typing shift Enter on the qwertyuiop keypad or typing 
enter on the numeric keypad (far right‐hand‐side bottom key).

The next input line demonstrates how a symbol, in this case a vector μ repre-
senting the magnetic dipole moment vector, is defined. In Mathematica, symbols 
such as μ are most easily chosen using the Basic Math Input palette. This palette is 
activated by clicking on Palettes → Other → Basic Math Input. By using the equal 
sign, μ is defined as a vector with time‐dependent Cartesian coordinates µx[t], µy[t], 
and µz[t]. The vector is indicated by the left‐ and right‐hand squiggly brackets, 
{ and }. In this case, the input line generates an output line, denoted on the right‐hand 
side of the notebook by a closing square bracket, small diagonal from upper left‐ to 
the right‐hand vertical part, and a small mark projecting left at right angles to the 
vertical part. All Mathematica output lines are indicated in this way. The output line 
gives the evaluation result of the input line, in this case a restatement of the input 
definition. The combination of the input and output lines is called a “cell” and is indi-
cated on the right‐hand side of the notebook by the large closing square bracket 
enclosing the smaller input and output square brackets. Input lines, output lines, and 
entire cells can be copied by highlighting the respective brackets, then typing ctrl/c. 
They can be inserted after copying by putting the mouse cursor below another cell, 
then typing ctrl/v.

The next input line is a comment and generates no output.
The next input line defines the permanent magnetic field vector B. It generates 

an output line that restates the input definition.
Mathematica has a huge number of built‐in functions. The next cell 

demonstrates the function MatrixForm. The input line requests the matrix form of 
the magnetic dipole vector μ. The built‐in function MatrixForm yields the output 
line showing the three time‐dependent elements of the μ vector as a column vector. 
This form is more consistent with mathematical convention than the squiggly 
bracket form.

The next cell generates the matrix form of the permanent magnetic field vector.
The next input line is a comment.
The next cell defines a variable dμdt that expresses the rate of change of the 

magnetic dipole moment. Here, γ is the gyromagnetic ratio of the nucleus, μ is 
the magnetic dipole moment vector, × is the cross product operation, and B is the 
permanent magnetic field vector. The output line shows that dμdt is a vector with x, 
y, and z components B

0
 γ µy[t], −B

0
 γ µx[t], and 0 respectively.
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The next input line is a comment.
One of the very useful aspects of Mathematica is that the different parts of an 

expression can be “extracted” by specifying the part number. The next cell extracts 
the first part (the x component) of the vector dμdt, yielding B

0
 γ µy[t]. Extraction of 

the parts of an expression is achieved by enclosing the desired part between double 
square brackets.

The next cell extracts the second part (the y component) of the vector dμdt, 
yielding −B

0
 γ µx[t].

The next cell extracts the third part (the z component) of the vector dμdt, 
yielding 0.

The next input line is a comment.
The next cell shows how for all built‐in Mathematica functions, information 

about the function can be obtained by typing? function, in this case ?/. . More detailed 
information can be obtained by clicking on the >> in the output line of the cell. In this 
book, /. is called the substitution function.

The next cell demonstrates how the substitution function is used in Mathematica. 
It defines a new symbol, dμdtω

0
, that is obtained from dμdt by substituting the neg-

ative Larmor frequency −ω
0
 for the product B

0
 γ. The substitution is carried out with 

the built‐in /. command. The input line for this cell can be interpreted as “define a 
new symbol dμdtω

0
 that is equal to the symbol dμdt such that all occurrences of the 

product B
0
 γ (or γ B

0
) are replaced with −ω

0
.” The resulting output line shows the 

successful result.
The next input line is a comment.
The next cell introduces the built‐in Mathematica function DSolve, which is 

used to solve differential equations.
The next input line can be read as solve the set of differential equations enclosed 

in the squiggly brackets given that the time derivative of µx[t], denoted by µxʹ[t], is 
equal to (note the double equals sign) the first (x) part of dμdtω

0
, that is, dμdtω

0
[[1]], 

and subject to the initial boundary condition that µx[0] is equal to Sin[θ] cos[ϕ]. 
(Note that double equals signs are used.) Here θ is the nutation angle brought about 
by the rf pulse, and ϕ is the phase of the rf pulse. The set of differential equations 
enclosed in squiggly brackets is completed by defining µyʹ[t] as equal to the second 
part of dμdtω

0
, that is, dμdtω

0
[[2]] with the initial condition µy[t] == sin[θ] sin[ϕ] and 

µzʹ[t] as equal to the third part of dμdtω
0
, that is, dμdtω

0
[[3]] with the initial condition 

µz[t] = cos[θ]. Note that all differential equations and initial (boundary) conditions 
are separated by commas and enclosed in the squiggly brackets. Following the set of 
differential equations and initial conditions, the desired set of solutions is identified, 
again enclosed within squiggly brackets. In this case, the desired solutions are µx[t], 
µy[t], and µz[t], with t identified as the independent variable. The output line of the 
cell identifies the desired solutions with forward arrows (→). Thus, the solution for 
µx[t] is cos[ϕ] cos[t ω

0
] sin[θ] –sin[θ] sin[ϕ] sin[t ω

0
], the solution for µy[t] is sin[ϕ] 

cos[t ω
0
] sin[θ] + sin[θ] Cos[ϕ] sin[t ω

0
], and the solution for µz[t] is cos[θ].

The next cell requests information about the := function, which is used to 
create new functions in Mathematica.

The next cell requests information about the _ function.
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The next cell creates a function µtime[t] that is dependent on the input variables 
θ_, ϕ_, ω

0
_, and t_. Notice how the right‐hand side is written using the same symbols 

without the _s (Blanks). Function definitions generate no output lines.
The next cell shows how the function can be used to calculate the position of 

the magnetic dipole moment as a function of time. Note that symbols or numerical 
values can be used.

The next cell requests the numerical value (N) of the previous cell output. The 
previous cell output is denoted by %.

The next cell requests information about N.
The next cell is a comment.
The next six cells request information about some important built‐in functions: 

ListAnimate, Table, Graphics3D, AbsoluteThickness, Arrow, and PlotRange.
The next cell incorporates the preceding functions and shows how Mathematica 

can be used to animate the motion of the dipole moment vector. The ListAnimate 
function animates the table of 3D graphics created using the Table function. A Table of 
thick Arrows (AbsoluteThickness 3) with starting point 0,0,0 and ending points defined 
by µtime are generated by varying t from 0 to 5.0 × 109 s in increments of 3.0 × 10−11 s. 
The Plot Range is chosen so that the maximum and minimum values displayed are 1 
and −1, respectively, for all three Cartesian axes. A box is automatically drawn to 
define the plot range limits. In this cell, the µtime nutation value θ is chosen to be π/2 
radians, the rf phase is chosen to be 0 radians, and the Larmor frequency in radians s−1 
is chosen to be 2π × 3.0 × 108. The animation shows the rotation of the magnetic dipole 
moment around the z axis.

The next cell is exactly the same as the preceding one, except that the nutation 
angle θ is only π/4 radians.

The next cell is the same except that the nutation angle θ is 3π/4.
The next cell is the same except that the nutation angle θ is π. Note that the 

dipole moment vector (Arrow) µtime remains on the –z axis as time proceeds.
The next cell is the same except that the nutation angle θ is 0. The dipole 

moment remains on the +z axis as time proceeds.
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The Bloch Equation in the 
Laboratory Reference 
Frame

Chapter  6

Consider a NMR sample sitting in the superconducting magnet. The superconducting 
magnet defines the laboratory reference frame. The laboratory z axis is aligned with 
the magnetic field, while the x and y axes are fixed arbitrarily within the magnet 
(Fig.  3.3) (Ernst et al., 1987, pp. 49, 115–125). Adjustable small magnetic fields 
provided by the shim coils insure that the x and y components of the magnetic field 
are 0 and the z component is constant over the NMR sample.

In Mathematica the convention is that the components of a vector are enclosed 
within squiggly brackets, so B = {0, 0, B

0
}.

There is a statistical ensemble of nuclear magnetic dipole moments μ
i
. The 

individual nuclear magnetic dipole moments μ
i
 precess about the magnetic field B as 

described in the previous chapter. The net magnetic dipole moment M of the ensemble 
of nuclear magnetic moments is the vector sum of the individual magnetic moments, 
i.e. M ii

 . Due to cancellation of the randomly distributed x and y components 
of the individual nuclear magnetic moments (i.e., random phases of the individual 
magnetization vectors), the net magnetization vector is aligned with the laboratory z 
axis as shown in Figure  6.1. We denote this equilibrium magnetization as 
M = {0,0,M

zeq
}.

The behavior of the net magnetization M in the presence of the magnetic field 
is described by the Bloch equation:

	

d

dt

M
M B R M Mtot ( )0

	
(6.1)

where M is the instantaneous net magnetization dipole moment for the ensemble of 
spins, M

0
 = {0, 0, M

zeq
} is the equilibrium net magnetization aligned with the labora-

tory (magnet) z axis, and R

1 0 0

0 1 0

0 0 1

2

2

1

/

/

/

T

T

T

 is the relaxation matrix. Except 

for R, this is identical to the equation of motion for a magnetic dipole in a magnetic 
field (Chapter 5).
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In Mathematica, the convention is that a matrix is a set of row vectors enclosed 
within squiggly brackets, so R  = {{1/T

2
, 0, 0}, {0, 1/T

2
, 0}, {0, 0, 1/T

1
}} is the relax-

ation matrix, with matrices such as R  denoted in boldface italic with a horizontal bar 
on top.

In the presence of rf irradiation, the total magnetic field used in the Bloch 
equation is given by Btot = B0 + Brf, where Brf is a linearly oscillating magnetic field 
at or near the Larmor frequency in the x–y plane (Fig. 4.2).

The Bloch equation can be solved for arbitrary initial conditions as shown in 
the notebook bloch1.nb.

Explanation of bloch1.nb

For basic Mathematica instructions and definitions, see the line‐by‐line analysis 
of magdipoleanimation.nb in Chapter 5.

The first cell is a comment. It is followed by two cells that define two different 
vectors, a and b.

After a comment, the scalar product (dot product) of the two vectors is 
demonstrated, followed by a cell showing that the scalar product is commutative.

After a comment, the vector cross product is demonstrated, followed by a cell 
that shows that the cross product is not commutative.

After a comment, two 3 × 3 square matrices A and G are defined. Then the 
matrix products A.G and G.A are demonstrated. Matrix multiplication of square 
matrices yields a square matrix of the same dimensionality, in this case 3 × 3. 
Elements of the product matrix are obtained by adding the products of appropriate 
row elements of the first matrix and elements of the appropriate column of the second 
matrix.

Matrix multiplication is generally not commutative, as demonstrated in the 
next several cells.

Products of vectors and matrices yield vectors as shown in the next cells. These 
products are also generally not commutative.

Scalar multiplication can be represented in several ways and is always 
commutative.

Vector sum

M

B B

Figure 6.1  The classical net magnetization vector.
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The next cells introduce the magnetic dipole moment vector μ, magnetic field 
vector B, and the rate‐of‐change vector dμdt describing the rate of change of the 
magnetic dipole moment vector (see magdipoleanimation.nb, Chapter 5).

The next cells introduce the vector and matrix components used in the Bloch 
equation. The magnetization vector at any arbitrary time t is denoted by M. The net 
equilibrium magnetization is aligned with the magnetic field B and denoted by M0. 
The relaxation matrix is diagonal1 and has as components the transverse or spin–spin 
relaxation rate 1/T

2
 and the longitudinal or spin lattice relaxation rate 1/T

1
.

The next cells define the Bloch equation. The rate of change of the magnetiza-
tion vector dMdt is given by the Bloch equation. Note that the Bloch equation con-
tains a cross product of M and B and the relaxation rate matrix. The resulting dMdt 
vector contains x, y, and z components, respectively. These can be easily extracted as 
shown in the following cells.

The next cells show how DSolve is used to solve the Bloch equation for the 
time dependence of the magnetization M given that it is initially on the +x axis (as it 
would be after a 90° +y rf pulse). See Chapter 5 for the introduction of DSolve. Note 
how the x, y, and z components of dMdt are used to achieve the solution. The desired 
solutions Mx[t], My[t], and Mz[t] are also identified as is the independent time vari-
able t. The resulting solutions are displayed in the output line with forward arrows.

Next, we use the built‐in Mathematica functions ExpToTrig and FullSimplify 
to simplify the solutions. ExpToTrig converts expressions containing complex expo-
nentials to equivalent expressions containing trigonometric functions. FullSimplify 
seeks the most compact expression. Remember that % refers to the previous output 
line. Also note how the two functions are applied successively using // to separate 
them. Finally, we make the substitution γ B

0
 → −ω

0
. The x and y components Mx[t] 

and My[t] oscillate at the Larmor frequency ω
0
 radian s−1 and decay as e

t

Tz .  The z 

component decays as e
t

T1  but does not oscillate.
The next few cells solve the Bloch equation for the initial condition that the net 

magnetization vector M is aligned with the—z axis (as it would be by the 180° rf 
pulse in the inversion recovery experiment).

The resulting solution for M
z
[t] (the x and y components are zero) is then used 

to create the function Mtime, where the value of M
zeq

 is assumed to be 1 for 
convenience (and for the subsequent animation). The function Mtime is then used 
in  animated form (see Chapter  5) to show the decay of the longitudinal (z axis) 
magnetization back to its equilibrium value of +M

zeq
.

1 The only non‐zero elements are along the diagonal from upper left to lower right.
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The Bloch Equation in 
the Rotating Frame

Chapter  7

Classically, the observable NMR signal is an oscillating voltage generated in the 
probe coil by the precession of the transverse (xy plane) component of M. This com-
ponent decays exponentially due to T

2
* and T

1
 relaxation.1 Before digitization, the 

oscillating voltage is transformed from the laboratory frame to the rotating frame. 
This is achieved by electronically mixing the input Larmor frequency with the 
received experimental NMR signal that has frequencies at the Larmor frequency 
ν

0
 ± δ kHz, where δ can range from less than 0 Hz to as much as 1000 kHz (i.e., 

1 MHz). This yields both the sum and difference signals, but only the difference 
signal is retained. The difference signal (±δ kHz) is a decaying oscillation and is 
called a free induction decay (FID) (see Fig. 7.1). This is the experimental NMR 
signal that is digitized and Fourier transformed to yield the spectrum. It is these 
relatively small shifts away from the Larmor frequency (the δ values) that provide 
useful information in the liquid‐state NMR spectrum such as chemical shifts and 
coupling constants.

The rotating frame is obtained from the laboratory frame by rotating the 
laboratory frame at the observe frequency2 in coincidence with the precession of 
transverse x and y components of the magnetization vector M. In this reference 
frame, the x and y components of a magnetization vector at the observe frequency 
are fixed. The precession induced by the superconducting magnetic field thus van-
ishes for an on‐resonance magnetization vector in the rotating frame, as if there was 
no magnetic field, that is, Brot = {0,0,0}. Magnetization vectors that are slightly “off 
resonance,” that is, not at the exact Larmor frequency, precess at their difference 
frequencies, that is, ±δ kHz. The effective magnetic field for an off‐resonance mag-
netization vector is defined by its difference frequency δ, with Brot = {0,0,−δ/γ}, 
where γ is the gyromagnetic ratio of the nucleus.

The linearly oscillating radio frequency (rf) magnetic field at the Larmor fre-
quency can be decomposed into two circularly polarized oscillatory magnetic fields, 
one rotating at the positive Larmor frequency in coincidence with the net magnetic 

1 T2* is the apparent T2. It is affected by small magnetic field inhomogeneities and the pulse sequence used 
to measure it. The T1 is not affected by either and is therefore more reliable experimentally.
2 The observe frequency is usually the rf transmitter frequency, at or close to the Larmor frequency.
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moment M of the nuclear spins and one rotating in the opposite direction at the 
negative Larmor frequency. The sum of these counterrotating magnetic fields gives 
the linearly oscillating rf magnetic field. For the purposes of solving the Bloch 
equation, we retain only the positive component that oscillates at the same positive 
Larmor frequency as the net magnetization vector M. The other circularly polarized 
component of the rf field has only small effects on M (manifested in Bloch Siegert 
shifts (Bloch and Siegert, 1940)) and is usually ignored. Therefore, in the rotating 
frame, the positive circularly polarized component of the rf magnetic field looks like 
a static magnetic field, with Brf_rot = B

1
 {Cos[ϕ], Sin[ϕ], 0}, where ϕ is the phase of 

the rf, with ϕ = 0 corresponding to the x axis of the rotating frame. When the rf field 
is on, the on‐resonance magnetization vector M precesses (“nutates”) around Brf_rot 
at ω

1
 = −γ B1 radians s−1.
For net magnetization vectors M that are on‐resonance in the rotating 

frame, the total magnetic field in the presence of rf in the rotating frame is therefore 
Btot_rot = {B

1
 Cos[ϕ], B

1
 Sin[ϕ], 0}. For off‐resonance net magnetization vectors, the 

total magnetic field is Btot_rot = {B
1
 Cos[ϕ], B

1
 Sin[ϕ], −δ/γ}.

The principle of relativity requires that the same laws of physics apply to the 
rotating frame as the laboratory frame. This means that the Bloch equation has 
the  same form as given in Equation 6.1, except that in the rotating frame Brot = 
{0,0,0} on resonance or Brot = {0,0,−δ/γ} off resonance, that is,

	
d

dt

M
M B R M Mrot

tot rot
rot

_ ( )0 	 (7.1)

Examples of solutions in the rotating frame are shown in bloch2animation.nb 
(ω

1
 comparable to δ) and bloch3animation.nb (ω

1
 >> δ). The behavior is simple 

as long as ω
1
 >> δ. For example, if δ = 0, a 90° or π/2 rf pulse has a duration τ

90
 

defined by π/2 = ω
1
 τ

90
.

Time (s) 1.0

Figure  7.1  A liquid‐state NMR signal—the 1H FID obtained at 600.18 MHz for  
Δ9‐tetrahydrocannabinol dissolved in deuterated methanol.



The Bloch Equation in the Rotating Frame 25

Explanation of bloch2animation.nb

After a comment, the second cell defines the rotating frame effective magnetic field 
vector Btot in the presence of a rf field B

1
 at the Larmor frequency and an offset (e.g., 

chemical shift) of δ radians s−1. In the next cells, the net magnetization vector Mrot is 
introduced, the equilibrium net magnetization vector M

0
 and relaxation matrix R are 

defined. Then the Bloch equation for the rate of change dMdt is introduced, expanded 
with the built‐in Expand function, and expressed as a vector using the built‐in 
MatrixForm function.

The same three cells can be written on one line using // as shown in the next 
cell, where % is used (the previous output line). The substitution command (/.) is 
used in the following cell and then the assignment of dMdt to % semicolon. The 
semicolon (;) after the % indicates that the output line is suppressed. The first part of 
dMdt (x part) is then selected and expanded.

The next cells replace all instances of Mx, My, and Mz with Mx[t], My[t], and 
Mz[t]. Notice that the collection of desired substitutions is enclosed in squiggly 
brackets {}. These are necessary whenever multiple replacements are made.

During an rf pulse, there is usually insufficient time for relaxation to affect the 
results. We therefore make the substitution that both T

1
 and T

2
 → ∞ and that 1/T

1
 and 

1/T
2
 are zero. This yields a simpler version of dMdt.

Next, we use DSolve to obtain the time dependencies Mx[t], My[t], and Mz[t] 
given that the initial magnetization is along the +z axis at equilibrium. The solutions 
are complicated but are greatly simplified with the built‐in FullSimplify function. 
Next, we convert the simplified expressions into a function Mtime that can be 
animated (see magdipoleanimation.nb in Chapter 5).

The parameter values for the animations in the next cells are, respectively, as 
follows: (i) δ = 0 radian s−1, ϕ = 0 radian, ω

1
 = 2π × 5 × 104 radian s−1, t = 0–2.5 × 10−4 s 

in increments of 1 × 10−6 s; (ii) δ = 0 radian s−1, ϕ = π/2 radian, ω
1
 = 2π × 5 × 104 radian 

s−1, t = 0–2.5 × 10−4 s in increments of 1 × 10−6 s; (iii) δ = 2π × 2.5 × 104 radian s−1, ϕ = 
0 radian, ω

1
 = 2π × 5 × 104 radian s−1, t = 0–2.5 × 10−4 s in increments of 1 × 10−6 sec; 

(iv) δ = 2π × 2.5 × 104 radian sec−1, ϕ = π/2 radian, ω
1
 = 2π × 5 × 104 radian s−1, t = 

0–2.5 × 10−4 s in increments of 1 × 10−6 s; (v) δ = 2π × 2.0 ×105 radian s−1, ϕ = 0 
radian, ω

1
 = 2π × 5 × 104 radian s−1, t = 0–5.0 × 10−5 s in increments of 1 × 10−6 s; (vi) 

δ = 2π × 2.0 × 105 radian s−1, ϕ = π/2 radian, ω
1
 = 2π × 5 × 104 radian s−1, t = 0–5.0 × 

10−5 s in increments of 1 × 10−6 s.
The animations that greater offsets (δ) reduce the efficiency of rf pulses.

Explanation of bloch3animation.nb

This notebook is similar to the previous one, except that this looks at the net magne-
tization in the rotating frame after “hard” rf pulses (ω

1
 >> δ). The initial position of 

the net magnetization after a hard pulse is defined by θ = ω
1
 τ

pulse
, where τ

pulse
 is the 

duration of the pulse in s, and by ϕ, the phase of the pulse in the rotating frame. The 
initial x, y, and z magnetization components are given by Sin[θ] Sin[ϕ], −Sin[θ] 
Sin[ϕ], and Cos[θ], respectively for M

zeq
 = 1.
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It elucidates the time dependence of the net magnetization after the hard pulse 
and includes the effects of relaxation. The net magnetization M is defined as a vector 
with Mx[t], My[t], and Mz[t]} as elements. After the hard pulse there is no rf irradia-
tion, so B = {0,0, −δ/γ}. The relaxation matrix R is diagonal with elements of 1/T

2
, 

1/T
2
, and 1/T

1
. As in previous notebooks, we introduce the Bloch equation as dMdt. 

We create the time‐dependent magnetization functions magx, magy, and magz, then 
combine them into the net magnetization vector function Mag that is suitable for 
animation.

Animation of Mag is achieved as in previous notebooks. The parameter values 
for the animations in the animation cells are, respectively, as follows: (i) δ = 10 radian 
s−1, θ = π/2 radian, ϕ = π/2 radian, T

1
 = 1 s, T

2
 = 1 s, t = 0–5 s in increments of 0.01 s; 

(ii) δ = 10 radian s−1, θ = π radian, ϕ = π/2 radian, T
1
 = 1 s, T

2
 = 1 s, t = 0–5 s in incre-

ments of 0.01 s; (iii) δ = 10 radian s−1, θ = 3π/4 radian, ϕ = π/2 radian, T
1
 = 1 s, T

2
 = 

1 s, t = 0–5 s in increments of 0.01 s.

Homework

Homework 7.1: Investigate the effect of ω
1
 on the magnetization animation blochani-

mation2.nb. For example, try ω
1
 = 2π × 105 radian s−1 and ω

1
 = 2π × 103 radian s−1 while 

holding δ = 2π × 2.5 × 104 radian s−1.
Homework 7.2: Assuming that ω

1
 >> δ, what is ω

1
 if the 90° pulse is (a) 5.0 µs? 

(b) 100 µs?
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The Vector Model

Chapter  8

The vector model is the graphical representation of the Bloch equation in the rotating 
frame. The magnetization M only gives an observable NMR signal when it has 
transverse components in the x–y plane. Typically, it is assumed that the NMR 
experiment starts with equilibrium net magnetization M along the z axis, parallel to 
B0. Radio frequency (rf) pulses are usually assumed to be “strong,” that is, |γ B1| >> |δ|.

Figure 8.1 shows the vector model for a single on‐resonance (δ = 0) 90° pulse 
along the x axis (e.g., (π/2)

x
) of the rotating frame. During the rf pulse, the net mag-

netization nutates around the x axis according to the right‐hand rule. After comple-
tion of the (π/2)

x
 pulse, the net magnetization is on the –y axis of the rotating frame. 

Because the rotating frame is on‐resonance, the net magnetization does not precess 
in the x–y plane around the z axis. Only T

1
 and T

2
 relaxation occurs. The –y and z 

components of the decreasing magnetization are shown in gray.
Figure 8.2 shows the vector model for an on‐resonance single pulse experiment 

along the +y axis of the rotating frame. The behavior and results are identical to 
Figure 8.1 except that the net magnetization after the (π/2)

y
 rf pulse is on the +x axis 

of the rotating frame.
Figure 8.3 shows the vector model for an on‐resonance single pulse experiment 

of phase ϕ. The behavior and results are identical to Figure 8.1 except that the net 
magnetization after the (π/2)ϕ rf pulse is at +ϕ radians relative to the –y axis. Do not 
confuse the magnetization vector (thicker arrow) with the B

1
 vector (thinner arrow) 

located at ϕ radians relative to the +x axis.
Figure 8.4 shows the vector model for a single off‐resonance (δ ≠ 0) 90° pulse 

along the x axis of the rotating frame. In this case, after the (π/2)
x
 rf pulse, the 

magnetization precesses in the x–y plane around the z axis at δ radians s−1. Relaxation 
components are not depicted. See blochanimation3.nb for an animation of the 
precessing and relaxing magnetization.

Figure 8.5 shows the vector model for the inversion recovery experiment that 
is widely used to measure T

1
 relaxation. The π rf pulse can be of any phase. It inverts 

the net magnetization vector M so that it is on the –z axis. With time, T
1
 relaxation 

causes the net magnetization to decay back to its equilibrium value along the +z axis. 
Typically, a set of specific time delays are used in separate experiments to monitor 
the return to equilibrium and hence the T

1
 relaxation time. The unobservable z mag-

netization is converted to observable transverse magnetization by the (π/2)
x
 pulse.
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Figure 8.6 shows the vector model for the spin echo experiment that can be 
used to measure T

2
 relaxation. The (π/2)

x
 rf pulse puts the equilibrium magnetization 

M on the –y axis. With time τ, chemical shift evolution rotates the transverse magne-
tization in the x–y plane. T

2
 relaxation simultaneously reduces the magnitude of the 

transverse magnetization. The π
y
 rf pulse puts the residual transverse magnetization 

on the opposite side of the –y axis. After the second time interval τ, chemical shift 
evolution returns the remaining transverse magnetization to the –y axis. However, the 
magnitude of M is reduced by T

2
 relaxation. A set of different experiments with dif-

ferent τ values is used to measure T
2
 relaxation.

Figure 8.7 shows the failure of the vector model to account for experiments 
involving J‐coupled nuclei. We assume here that the coupled nuclei are both 1H spins 
and that strong (π/2)

y
 pulses nutate the magnetizations of both 1H spins to the x axis. 

Figure 8.7 shows the magnetization of only the on‐resonance (δ = 0) 1H spin. Its cou-
pling partner spin is at a different (δ ≠ 0) chemical shift. Its magnetization vector is 
not shown in the figure. The J‐coupling “splits” the magnetization of the on‐reso-
nance (δ = 0) spin into two components, one rotating at +J/2 s−1 and one at –J/2 s‐−1. 
If acquisition would start immediately after the first (π/2)

y
 rf pulse, the spectrum 
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Time, T2 and
T1 relaxation

Single pulse (π/2)x experiment, on-resonance (δ = 0)

Figure 8.1  Single pulse (π/2)
x
 experiment, on‐resonance (δ = 0). Before the pulse, the net 

magnetization M is aligned along the z axis. During the on‐resonance pulse, the rf magnetic 
field B1 is aligned with the x axis of the rotating frame, and the net magnetization precesses 
(“nutates”) around the B1 field. After rotating π/2 radians, the net magnetization M ends up on 
the –y axis of the rotating frame, where it stays because the rf pulse is on resonance. With time, 
T

2
 relaxation causes decay of the magnetization along the –y axis (shown in gray), and T

1
 

relaxation causes reestablishment of magnetization along the +z axis (shown in gray). The net 
magnetization has components along the –y axis and +z axis during relaxation.
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Figure 8.2  Single pulse (π/2)
y
 experiment, on‐resonance (δ = 0). Before the pulse, the net 

magnetization M is aligned along the z axis. During the on‐resonance pulse, the rf magnetic 
field B1 is aligned with the y axis of the rotating frame, and the net magnetization precesses 
(“nutates”) around the B1 field. After rotating π/2 radians, the net magnetization M ends up on 
the +x axis of the rotating frame, where it stays because the rf pulse is on resonance. With time, 
T

2
 relaxation causes decay of the magnetization along the +x axis (shown in gray), and T

1
 

relaxation causes reestablishment of magnetization along the +z axis (shown in gray). The net 
magnetization has components along the +x axis and +z axis during relaxation.

M
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During ϕ pulse

x
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–z

–y

–x
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B1 
ϕ

ϕ

Figure 8.3  Single pulse (π/2)ϕ experiment, on‐resonance (δ = 0). Before the pulse, the net 
magnetization M is aligned along the z axis. During the on‐resonance pulse, the rf magnetic 
field B1 is aligned in the xy plane at ϕ radians with respect to the x axis. During the pulse, the 
net magnetization precesses (“nutates”) around the B1 field. After rotating π/2 radians, the net 
magnetization M ends up in the xy plane at ϕ radians relative to the −y axis of the rotating 
frame, where it stays because the rf pulse is on resonance. Relaxation is not shown but proceeds 
as in Figures 8.1 and 8.2.
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Figure 8.4  Single pulse (π/2)
x
 experiment, off‐resonance (δ ≠ 0). Before the pulse, the net 

magnetization M is aligned along the z axis. During the on‐resonance pulse, the rf magnetic 
field B1 is aligned with the x axis of the rotating frame, and the net magnetization precesses 
(“nutates”) around the B1 field. After rotating π/2 radians, the net magnetization M ends up on 
the –y axis of the rotating frame. After the pulse, the net magnetization M precesses around the 
+z axis. Relaxation also occurs but is not shown.
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After (π/2)x pulse

Figure 8.5  Inversion Recovery experiment, on‐ or off‐resonance. Before the pulse, the net 
magnetization M is aligned along the +z axis. After the π pulse, the net magnetization M has 
nutated to the –z axis. With time, T

1
 relaxation causes M to decay toward the +z axis. The (π/2)

x
 

pulse nutates the partially relaxed magnetization to the +y axis if M is along the –z axis prior to the 
pulse and to the –y axis if M is along the +z axis prior to the pulse. The experiment is repeated for 
different relaxation times to obtain data, which are analyzed to measure the quantitative T

1
 value.
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Figure 8.6  Spin Echo experiment, off‐resonance (δ ≠ 0). Before the pulse, the net magnetization 
M is aligned along the z axis. The (π/2)

x
 rf pulse rotates M to the –y axis of the rotating frame. 

During the first τ delay, the magnetization M precesses around the +z axis. The π
y
 rf pulse 

rotates the magnetization to the opposite side of the y and –y axes. During the second τ delay, 
precession returns M to the –y axis. T

2
 relaxation during the two τ delays reduces the magnitude 

of M in the xy plane, but the magnetization is otherwise unaffected. The experiment is repeated 
for different τ values, yielding data that can be analyzed to measure the T

2
 value.

Failure of vector model for J-coupling, 
showing the on-resonance spin magnetization only

x
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τ

(π/2)y

+2 π (J/2)τ

–2 π (J/2)τ

Expected:
no change

Observed:
signal 
disappears!

Figure 8.7  Failure of the Vector Model for Two J‐coupled I = 1/2 Nuclear Spins. One spin is 
on‐resonance (δ = 0) and one is off‐resonance (δ ≠ 0). Only the magnetization of the on‐
resonance spin is depicted. Before the (π/2)

y
 rf pulse, the net magnetization M is aligned along 

the z axis. The (π/2)
y
 rf pulse rotates M to the +x axis of the rotating frame. During the first τ 

delay, the magnetization M splits into two components, one precessing at 2π(+j/2) radian s−1 
and one precessing at 2π(–j/2) around the +z axis. If τ is set to 1/(2 j), the two components of M 
are aligned with the +y and –y axes, respectively. Based on the vector model (Bloch equation), 
one expects the (π/2)

y
 to bring about no change in the magnetization components. However, 

experiment and quantum mechanical analysis show that the magnetization “disappears.” Why? 
Because the (π/2)

y
 pulse has created unobservable zero and double quantum coherence.
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shows two positive peaks separated by J s−1 (see Fig. 22.1). If acquisition would start 
at τ = 1/(2 J), the spectrum would show a positive and a negative peak separated by 
J s−1 (see Fig. 22.2). The major problem for the vector model occurs if acquisition 
starts after the second (π/2)

y
. The vector model predicts that the spectrum should still 

show a positive and a negative peak separated by J s−1 as in Figure 22.2. The vector 
model is incorrect in this prediction. The experimentally observed spectrum shows no 
peaks at all. We will see that this is because we have created unobservable double 
and zero quantum coherence.
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Fourier Transform 
of the NMR Signal

Chapter  9

Here, we follow the treatment of Levitt (2008, pp. 96–105). Fourier transformation is 
a mathematical method that converts the NMR signal, a function of time, to the NMR 
spectrum, a function of frequency. It is much easier to “read” and understand the 
NMR spectrum than the NMR signal or free induction decay (FID). The information 
content of the spectrum and the signal are, however, equivalent.

The mathematical definition of the Fourier transform used in NMR is:

	 S s t e dti t( ) ( )
0

	 (9.1)

where s(t) is the “input” NMR signal, and the “output” S(ω) is a function of the 
frequency variable ω.

The NMR signal (FID) corresponding to a spectrum with just one peak can be 
described with the equation

	 s t e i T t( ) ( ( / ))1 2 	 (9.2)

where δ is the frequency of the peak relative to the Larmor frequency and T
2
 is the 

transverse relaxation time of the peak. (1/T
2
) is the transverse relaxation rate constant.

The integral (Eq. 9.1) is carried out in the notebook fouriertransform2.nb.
Phasing of the experimental NMR spectrum corresponds to adjusting the x 

and y axes of the rotating frame so that the x axis is coincident with the transverse 
magnetization at the first point (t = 0) of the FID. This gives the maximum positive 
real (x) value for the FID at t = 0. This yields data that are purely absorptive and 
positive.

A very useful fact about the time‐dependent NMR signal is that the properly 
phased FID at t = 0 gives the integral intensity for all observed spins. With proper 
calibration, this property can be used to calculate the number of observed spins.

Explanation of fouriertransform2.nb

The notebook starts by explicitly evaluating Equations 9.1 and 9.2. It is convenient to 
use the Basic Math Input Palette for the evaluation of the integrals. The spectrum is 
evaluated in the next several cells. It is algebraically manipulated to form  a real 
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absorptive component and a dispersive imaginary component. These are converted, 
respectively, into an absorption function and a dispersion function in the next cells. 
The built‐in Mathematica function Plot is used to plot the absorption and dispersion 
spectra for the parameters a = 1, T

2
 = 1 s−1, δ = 0 radian s−1. It is shown that identical 

results are obtained for the same parameters if the spectrum is left in the original 
imaginary form (see Plots of the function “spec”).

Next, the built‐in Mathematica function FindRoot is used to find the peak 
width at half height of the absorption spectrum. The absorptive peak width is found 
to be (1/π) s−1, as is expected from the general expression in terms of T

2
, confirming 

that the absorptive peak width at half height Δν is 1/(π T
2
), where T

2
 is the transverse 

relaxation time and ν = ω/(2 π).

Homework

Homework 9.1: (a) Calculate and plot a spectrum with δ = 100 radian s−1. (b) Vary the 
T

2
 value and verify that the peak width at half height Δν is 1/(π T

2
).
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Essentials of Quantum 
Mechanics

Chapter  10

For a more complete description of the quantum mechanics described in the next 
several chapters, the reader is referred to Levitt (2008).

The time‐independent Schrödinger equation is as follows:

	 Ĥ E 	 (10.1)

where Ĥ is the Hamiltonian operator, ψ is the wavefunction (eigenfunction), and E is 
the energy eigenvalue (e.g., energy level). In general, there are a number of n quan-
tized energy levels E

n
 and n different eigenfunctions ψ

n
 that satisfy this equation. The 

eigenfunctions ψ
n
 are the stationary states of the system. In the Dirac bra‐ket notation, 

the aforementioned equation may be written as

	 ˆ | |H E 	 (10.2)

In NMR, the dominant Hamiltonian is the Zeeman Hamiltonian H
Z
 = −γ ħ B

0
 Î

z
 = ħ 

ω
0
 Î

z
 with the z axis aligned with the magnetic field B

0
, where γ is the gyromagnetic 

ratio of the nucleus, ω
0
 is the Larmor frequency of the bare nucleus in radians per 

second, and ħ is Planck’s constant divided by 2 π radians. NMR spectroscopists usu-
ally prefer to work in frequency units (radians s−1) rather than energy units, in which 
case the Zeeman Hamiltonian is given by H

Z
 = −γ B

0
 Î

z
 = ω

0
 Î

z.
 The spin angular 

momentum wavefunctions have no spatial extent (unlike the wavefunctions for the 
hydrogen atom) and are completely characterized by the nuclear spin quantum 
number I (not to be confused with the operator Î) and quantum number m in the state 
kets |I,m>.

Equation 10.2 for H
Z
 is as follows:

	 ˆ | , | , | , | ,H ÎZ I m B I m B m I m m I mz  0 0 0 	 (10.3a)

In units of radian s−1,

	 ˆ | , | ,HZ I m m I m0 	 (10.3b)

where m can take values from –I to +I in increments of 1. For example, if I = 3/2, m 
can have values −3/2, −1/2, 1/2, 3/2. The energy eigenvalue of the |I = 3/2, m = −3/2> 
state is −3/2 ħ ω

0
, the energy eigenvalue of the |I = 3/2, m = −1/2> state is −1/2 ħ ω

0
, 

etc. Since transitions are only allowed for Δm = ± 1, all transitions have the same 
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energy ΔE = ħ ω
0
 = h ν

0
, where ν

0
 is the resonance (Larmor) frequency of the bare 

nucleus in s−1. It is the perturbations to the Zeeman energy levels and ν
0
 that provide 

information in NMR. The Zeeman eigenstates are used as the basis for quantum 
mechanical perturbation calculations.

Only the operators Î
z
 and Î2 are eigenoperators for the spin angular momentum 

wavefunctions. The eigenvalue for Î2 is, in Dirac bra‐ket notation:

	 Î2 1I m I I I m, ,( ) 	 (10.4)

For example, the eigenvalue of Î2 for an I = 5/2 nuclear spin is 35/4.
Many important operators for observable quantities are not eigenoperators. 

They do not yield real eigenvalues when acting on ψ. For example, the nuclear spin 
angular momentum operator Î is not an eigenoperator. Nor is the operator Î+, which 
is used to calculate or simulate the observable NMR signal, or the transverse 
operators Î

x
 and Î

y
.

To calculate the expectation value of an arbitrary non‐eigenoperator Ôp:

	 Op Op d 

* 	 (10.5)

where the integration is over all space τ.
The same equation in Dirac’s bra‐ket notation is:

	 Op Op  	 (10.6)

where  is called the bra and  is called the ket.
Because the nuclear spin angular momentum wavefunctions have no spatial 

extent, there is no need to perform the integration over all space indicated in Equations 
10.5 and 10.6. For eigenoperators such as Î

z
 and Î2, the expectation value is the same 

as the eigenvalue.
The expectation values for the important non‐eigenoperators Î+ and Î‐ are as 

follows (Levine, 1983):

	 Î I m I I m m I m, { ( ) – ( )} ,/1 1 11 2 	 (10.7)

	 Î I m I I m m I m, { – } ,( ) ( ) /1 1 11 2 	 (10.8)

These are NOT eigenoperators. They change the eigenstate. The Î
x
 and Î

y
 operators 

are derived from the Î+ and Î− operators as follows:

	 Î Î Îx ( ) / 2 	 (10.9)

	 Î Î Îy i( ) / ( )2 	 (10.10)

One of the more confusing aspects of quantum mechanics is the idea of superposition 
of states. This confusion arises because a naïve interpretation of Equations 10.1 
to 10.3 suggests that a given nuclear spin must be in one of the allowed eigenstates 
|ψ> = |I,m>. However, it turns out that a linear combination of the different allowed 
eigenstates |I,m> also satisfy these equations and that the linear combination of 
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states for each nuclear spin is a function of time. At any time t, an individual nuclear 
spin in the presence of a magnetic field will be in the spin angular momentum state

	 | ( ) ( ) , ( ) ,t c t I m c t I m1 1 2 2 

	 (10.11)

where m
n
 = −I to +I in increments of 1, c

1
(t), c

2
(t), … are complex numbers with 

|c
1
(t)|2 + |c

2
(t)|2 + … = 1, and different individual nuclear spins have different sets of 

complex coefficients c
1
(t), c

2
(t), … . In order to understand NMR experiments, one 

needs to know the time dependence of the coefficients for the entire ensemble of 
nuclear spins.

To paraphrase Levitt, “What is the significance of the pure eigenstates given 
that the nuclear spins are typically in a superposition of eigenstates?” The answer is 
that the pure eigenstates are the only states that are stationary. That is, if a system is 
somehow prepared in a pure eigenstate it will stay there as long as the Hamiltonian 
does not change. This is indeed the case for electronic eigenstates for atoms and mol-
ecules where the eigenstates are separated by energies much greater than the average 
thermal energy but not for nuclear spin angular momentum where the eigenstates 
are separated by energies much less than the average thermal energy. The motions 
produced by thermal energy and corresponding fluctuating internal Hamiltonians 
perturb nuclear spins away from their pure Zeeman eigenstates.

The strange nature of superposition can be appreciated by considering a non‐
NMR experiment (Sakurai, 1985). Stern and Gerlach generated a beam of neutral 
silver atoms in a vacuum by evaporating silver from an oven. After collimating the 
beam of silver atoms by passing it through slits, it was passed through a region with 
a large nonuniform magnetic field. Because each silver atom contained one unpaired 
electron with electron spin quantum number I = 1/2,1 each silver atom had a net elec-
tron spin magnetic moment. The unpaired electron spin behaves like an I = 1/2 
nuclear spin but has a much larger magnetic dipole moment μ. The dipole moment is 
imparted to the silver atom containing the unpaired electron spin.2 The magnetic field 

inhomogeneity 
B

z
 produces a force on the magnetic moments 

B

z z  where μ
z
 is the 

component of the magnetic moment in the z direction. The silver atoms in the Stern 
Gerlach experiment were thus deflected and allowed to strike a metallic plate where 
the silver atoms accumulated with time. The deposit showed two distinct marks 
showing that the silver atoms had only two allowed components of μ

z
. This is differ-

ent than the classical expectation, where a continuum of values from +μ to –μ would 
be expected.

Quantum mechanically, different silver atoms have different and random 
complex coefficients (Eq. 10.11), so one might again naively expect a continuous 
distribution at the detector. Experimentally, however, the beam splits into two 
distinct “spots,” one for the |1/2,1/2> eigenstate and one for the |1/2,−1/2> 
eigenstate.

1 http://hyperphysics.phy-astr.gsu.edu/hbase/spin.html
2 The Zeeman eigenstates for an electron spin are separated by energies much less than the thermal energy 
available at ambient temperature.

http://hyperphysics.phy-astr.gsu.edu/hbase/spin.html
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Although individual nuclear spins will generally be in a superposition state as 
described in Equation 10.11, in analogy to the Stern Gerlach experiment the detect-
able signal from the simplest NMR experiments corresponds to a transition between 
adjacent “pure” eigenstates and therefore can be described (as shown in later chap-
ters) by applying time‐independent perturbation theory to the Zeeman eigenstates. 
However, understanding more complicated NMR experiments requires explicit 
knowledge of the time‐dependent coefficients c

n
(t) of the superposition of states for 

the ensemble of nuclear spins.
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The Time‐Dependent 
Schrödinger Equation, 
Matrix Representation 
of Nuclear Spin Angular 
Momentum Operators

Chapter  11

In energy units, the time‐dependent Schrödinger wave equation is:

	
ˆ| ( ) H | ( )

d
t i t

dt


	
(11.1)

or in units of rad s−1 as commonly used by NMR spectroscopists,

	
ˆ| ( ) H | ( )

d
t i t

dt 	
(11.2)

If Ĥ is the time‐independent Zeeman Hamiltonian ˆ ˆH IZ 0 z , Equation 11.2 is easily 
solved to yield

	
0 Î( ) (0)zi tt e

	
(11.3)

This indicates that the nuclear spin angular momentum wavefunction rotates 
about the z axis defined by the magnetic field.

If the system is in a pure Zeeman eigenstate |ψ
n
> = |I,m> at t = 0, Equation 11.3 

yields (we postpone the discussion of exponential operators to Chapter  17) the 
following:

	
I m t e I mim t, ( ) , ( )0 0

	
(11.4)

Thus, each spin in a pure eigenstate rotates about the z axis at m times the Larmor 
frequency.

As discussed in the previous chapter, a single nuclear spin is hardly ever found in 
a pure eigenstate. Instead, the vast majority of spins are in a superposition of different 
eigenstates of the Zeeman Hamiltonian, Ĥ

Z
 = −γ ħ B

0
 Î

Z
. A convenient way to describe 



40 A PRIMER OF NMR THEORY WITH CALCULATIONS IN MATHEMATICA®

the superposition state of an individual spin is to list the time‐dependent complex 
coefficients c

n
 in the form of a vector, as shown in the notebook vector_matrix.nb.

All of the Hamiltonians encountered in NMR are constructed using spin 
angular momentum operators. These can be expressed in matrix form as shown for 
several important spin operators here, where it is assumed that the nuclear spin 
quantum number is I = 3/2.
The matrix representation of the operator Î

z
 for an I = 3/2 spin is:

<3/2,3/2|Î
z
|3/2,3/2> <3/2,3/2|Î

z
|3/2,1/2> <3/2,3/2|Î

z
|3/2,−1/2> <3/2,3/2|Î

z
|3/2,−3/2>

<3/2,1/2|Î
z
|3/2,3/2> <3/2,1/2|Î

z
|3/2,1/2> <3/2,1/2|Î

z
|3/2,−1/2> <3/2,1/2|Î

z
|3/2,−3/2>

<3/2,−1/2|Î
z
|3/2,3/2> <3/2,−1/2|Î

z
|3/2,1/2> <3/2,−1/2|Î

z
|3/2,−1/2> <3/2,−1/2|Î

z
|3/2,−3/2>

<3/2,−3/2|Î
z
|3/2,3/2> <3/2,−3/2|Î

z
|3/2,1/2> <3/2,−3/2|Î

z
|3/2,−1/2> <3/2,−3/2|Î

z
|3/2,−3/2>

Because I
z
 is an eigenoperator, the preceding 4 × 4 matrix can be expressed in terms 

of the corresponding scalar eigenvalues:

<3/2,3/2|3/2|3/2,3/2> <3/2,3/2|1/2|3/2,1/2> <3/2,3/2|−1/2|3/2,−1/2> <3/2,3/2|−3/2|3/2,−3/2>

<3/2,1/2|3/2|3/2,3/2> <3/2,1/2|1/2|3/2,1/2> <3/2,1/2|−1/2|3/2,−1/2> <3/2,1/2|−3/2|3/2,−3/2>

<3/2,−1/2|3/2|3/2,3/2> <3/2,−1/2|1/2|3/2,1/2> <3/2,−1/2|−1/2|3/2,−1/2> <3/2,−1/2|−3/2|3/2,−3/2>

<3/2,−3/2|3/2|3/2,3/2> <3/2,−3/2|1/2|3/2,1/2> <3/2,−3/2|−1/2|3/2,−1/2> <3/2,−3/2|−3/2|3/2,−3/2>

The scalar eigenvalues can be moved to precede the brackets:

3/2<3/2,3/2|3/2,3/2> 1/2<3/2,3/2|3/2,1/2> −1/2<3/2,3/2|3/2,−1/2> −3/2<3/2,3/2|3/2,−3/2>

3/2<3/2,1/2|3/2,3/2> 1/2<3/2,1/2|3/2,1/2> −1/2<3/2,1/2|3/2,−1/2> −3/2<3/2,1/2|3/2,−3/2>

3/2<3/2,−1/2|3/2,3/2> 1/2<3/2,−1/2|3/2,1/2> −1/2<3/2,−1/2|3/2,−1/2> −3/2<3/2,−1/2|3/2,−3/2>

3/2<3/2,−3/2|3/2,3/2> 1/2<3/2,−3/2|3/2,1/2> −1/2<3/2,−3/2|3/2,−1/2> −3/2<3/2,−3/2|3/2,−3/2>

At this point, we take advantage of the orthonormality of the bras and kets, that is, 
<3/2,3/2|3/2,3/2> = 1, but <3/2,3/2|3/2,1/2> = 0, etc., to find the following:

3

2
0 0 0

0
1

2
0 0

0 0
1

2
0

0 0 0
3

2

This is the matrix representation of the spin angular momentum eigenoperator I
z
 for 

an I = 3/2 nuclear spin.
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The matrix representation of the spin angular momentum operator Î+ (NOT an 
eigenoperator) is obtained in the same way (see Eq. 10.7):

<3/2,3/2|Î+|3/2,3/2> <3/2,3/2|Î+|3/2,1/2> <3/2,3/2|Î+|3/2,−1/2> <3/2,3/2|Î+|3/2,−3/2>

<3/2,1/2|Î+|3/2,3/2> <3/2,1/2|Î+|3/2,1/2> <3/2,1/2|Î+|3/2,−1/2> <3/2,1/2|Î+|3/2,−3/2>

<3/2,−1/2|Î+|3/2,3/2> <3/2,−1/2|Î+|3/2,1/2> <3/2,−1/2|Î+|3/2,−1/2> <3/2,−1/2|Î+|3/2,−3/2>

<3/2,−3/2|Î+|3/2,3/2> <3/2,−3/2|Î+|3/2,1/2> <3/2,−3/2|Î+|3/2,−1/2> <3/2,−3/2|Î+|3/2,−3/2>

Straightforward evaluation yields the following:

0 3 0 0

0 0 2 0

0 0 0 3

0 0 0 0

In order to easily obtain matrix representations of the spin angular momentum 
operators with Mathematica, evaluate the notebook matrep2.nb, and then 
go through the notebook matrixformoperators.nb. Matrix representations of Î

z
, 

Î2, Î+, Î−, Î
x
, Î

y
, are available for arbitrary spin angular quantum numbers I. The 

student should also learn and understand the matrix representations of these 
operators for different values of the nuclear spin angular momentum quantum 
number I.

Explanation of vector_matrix.nb

This notebook starts with a brief review of the vector dot product and cross 
product, then proceeds to demonstrate the Mathematica built‐in function Outer, 
which yields the outer product of vectors to produce matrices. The cells also 
show that the Outer product of vectors is not commutative. The next cells intro-
duce two 3 × 3 matrices X and Y, then show the matrix product and the products 
of vectors and matrices. The noncommutativity of these operations is also 
demonstrated.

The next cells show how the wavefunction |Ψ>, the “ket” in Dirac nomencla-
ture, for a superposition state can be represented as a vector of complex coefficients 
and that the vector composed of the complex conjugates of these coefficients <Ψ*| 
represents the bra for the superposition state. The next cells define a generic operator 
Q and show how to evaluate its expectation value, <Ψ*|Q|Ψ>. The expectation value 
is shown to be a scalar.

The next cells show that the outer product of the ket and bra yield a matrix that 
represents the density matrix for a single spin. Following cells show that the 
expectation value for the generic operator Q can be obtained by taking the trace (sum 
of diagonal elements) of the matrix product of Q and the density matrix or the trace 
of the product of the density matrix and Q.
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Explanation of matrep2.nb

matrep2.nb is used as a “tool” for density matrix calculations in other Mathematica 
notebooks. It defines functions that calculate matrix representations of spin angular 
momentum operators and functions for other important matrix operations such as 
trace, adjoint, dirprod, simtran, etc. Note that all the individual cells of matrep2.nb 
are tied together into one “supercell.” The individual functions were created with the 
:= command. The /: commands add no content to the functions defined with := 
command and are not necessary. The /: additions appear when the individual cells are 
united into a supercell.

Explanation of matrixformoperators.nb

The first comment in this notebook sets an important precedent. It is often necessary 
to evaluate other notebooks in order to evaluate the desired notebook. In this case, 
matrep2.nb must be evaluated in order to evaluate matrixformoperators.nb. The com-
ment directs the user to evaluate matrep2.nb and close it without saving changes.

The next cells demonstrate how to obtain the matrix representations of spin 
angular momentum operators. The matrix representations of I2, I

z
, I+, I−, I

x
, I

y
 for 

nuclear spin quantum number I are obtained with the functions i
sq

[I], i
z
[I], i

plus
[I], 

i
min

[I], i
x
[I], i

y
[I]. These functions are used to obtain matrix representations of spin 

angular momentum operators for I = 1/2, 1, and 3/2.

Homework

Homework 11.1: Use program matrep2.nb to calculate the matrix representations of 
operators I

x
, I

y
, I

z
, I+, I−, I2 for

(a)  I = 1/2
(b)  I = 1
(c)  I = 5/2
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The Density Operator

Chapter  12

The solution to the time‐dependent Schrödinger equation (Eqs. 11.1 and 11.2) gives 
the time dependence of the complex coefficients c

n
(t) for the superposition of eigen-

states of an individual nuclear spin. These coefficients may be represented as a vector 
of dimension n = 2I + 1, as shown in the Mathematica notebook vector_matrix.nb. 
However, another useful way to represent these coefficients is through the density 
operator in matrix form.

The density operator of an individual nuclear spin k, ρ(k), is the outer product 
of the ket and bra of that spin (Levitt, 2008, pp. 259–261),

	 ( ) ( ) ( )k k k 	 (12.1)

where |ψ(k)> and <ψ(k)| are the time‐dependent vectors of coefficients c
n
(t) and c

n
*(t), 

respectively, for the Zeeman eigenstates of spin k (see vector_matrix.nb and the 
explanation of it at the end of Chapter 11), that is,

	 ( )

* *

* *

k

c c c c

c c c c

n

n n n

1 1 1

1

�
� � �
�

	 (12.2)

where the diagonal elements are c
1

*c
1
, c

2
*c

2
, …, c

n
*c

n
. The diagonal elements are 

real numbers and represent the populations of the corresponding Zeeman states. 
The off‐diagonal elements are generally complex and represent “coherences” 
with transverse x and y components. Coherences are the response of the 
spin  system to the energy from the rf pulses. Random, incoherent off‐
diagonal  elements can also be created by thermal fluctuations of the internal 
Hamiltonians.

The density operator for the entire ensemble of nuclear spins is given by the 
sum of contributions from the individual nuclear spins:

	 ˆ ˆ ( )ensemble
k

k 	 (12.3)
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The expectation value for any operator Q̂  (such as Î+) for the statistical ensemble of 
nuclear spins is as follows:

	 ˆ ˆ ˆ ˆ ˆ[ ] [ ]Q Tr Q Tr Qensemble ensemble ensembleensemble 	 (12.4)

This is an exceptionally important result because it allows the nuclear magnetic 
resonance signal to be predicted by calculating the expectation value (Eq. 12.4) of 
the spin angular momentum operator Î+.
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The Liouville–von Neumann 
Equation

Chapter  13

The Liouville–von Neumann equation (von Neumann, 1932) is the equation of 
motion for the density operator. It applies to the density operator of a single nuclear 
spin and to the density operator for an ensemble of spins. It follows directly from the 
time‐dependent Schrödinger equation (Eqs 11.1 and 11.2) (Sakurai, 1985, p. 181). In 
units of energy, it is (we neglect effects of relaxation for now):

	 ]
ˆ

ˆH,ˆ[
d i

dt 

	 (13.1)

where ̂  is the density operator, Ĥ is the Hamiltonian operator, and  H, Hˆ ˆ ˆˆ ˆ Hˆ[ ]  
is the commutator of Ĥ and ˆ .

In units of rotational frequency (rad s−1), it is:

	 [
ˆ

]ˆH,ˆd
i

dt
	 (13.2)

When effects of relaxation are included,

	
eq

ˆ ˆ ˆ ˆ ˆ[H, ] ( )
d i

dt 

	 (13.3)

where Γ is the relaxation superoperator. NMR relaxation is the subject of later chap-
ters. However, because NMR relaxation is often relatively slow, it is possible to use 
Equation 13.2 for the analysis of many pulse sequences.
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The Density Operator at 
Thermal Equilibrium

Chapter  14

For an ensemble of nuclear spins, the close spacing of the Zeeman energy levels 
and the Boltzmann distribution guarantee that at thermal equilibrium the popula-
tions of the different m levels are nearly equal. At thermal equilibrium, the off‐
diagonal components of the density matrix1 for a nuclear spin have random values 
and average to zero for the ensemble. Therefore ρ

rs
 = 0 for r ≠ s. The populations 

of  the diagonal components ρ
rr
 of the ensemble are given by the Boltzmann 

distribution:

	
eq

B

B
_

exp( ( / ))

exp( ( / ))rr
r

s s

m k T

m k T





0

0

	
(14.1)

where m
r
 and m

s
 are the m quantum numbers for the Zeeman eigenstates |I,m>, ω

0
 is 

the Larmor frequency in rad s−1, k
B
 is Boltzmann’s constant, and T is the absolute 

temperature.
Even in the strongest magnetic fields available, ħω

0
 ≪ k

B
T, and the exponen-

tials can be expanded in a Taylor series that retains only two terms, hence

	 exp /m
k T

m k Tr r 

0
01

B
B 	 (14.2)

This is the so‐called high temperature approximation, although it is valid as low as 
1 K for currently available magnetic fields. The fractional population difference 
between adjacent m levels is typically less than one part in 105, which is one of the 
reasons that NMR is not an especially sensitive technique.

Each exponential term in the sum in the denominator of Equation 14.1 is 
almost exactly 1, therefore for the 2I + 1 different values of m

r
 the sum yields 2I + 1, 

where I is the nuclear spin quantum number.

1 The off‐diagonal elements define the phases of individual nuclear spins.
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Combining Equations 14.1 and 14.2 with the denominator 2I + 1 yields the 
following:

	 eq
B

_ ( )rr
r

I

m

I k

1

2 1 2 1
0

T
	 (14.3)

Therefore, the equilibrium density matrix for an I = 3/2 nuclear spin in a magnetic 
field is as follows:

	

ˆ
eq

1

4

3

8
0 0 0

0
1

4 8
0 0

0 0
1

4 8
0

0 0 0
1

4

3

8

b

b

b

b

	

(14.4)

where b = ħω
0
/k

B
T.

As shown in the Mathematica notebook equil_densitymatrix.nb, the part of the 
equilibrium density matrix corresponding to the 1/(2I + 1) term in Equation 14.3 is 
unaffected by Hamiltonians since it is a constant times the identity matrix. Therefore, 
it cannot be used to generate off‐diagonal coherence observable in NMR experi-
ments and can be ignored. Only the difference in population between Zeeman levels 
can give rise to off‐diagonal coherence. Thus, the effective equilibrium density matrix 
for each type of nucleus is as follows:

	
ˆ

eq Î
b

I z2 1 	
(14.5a)

If several different types k of nuclear spin are in the system,

	
ˆ ( )eq Î

k

n
k

k
z

b

I
k

1 2 1 	
(14.5b)

where b
k
 = ħω

0k
/k

B
T.

For a single type of I = 3/2 nuclear spin, the matrix representation is as follows:

	

ˆ
eq

3

8
0 0 0

0
8

0 0

0 0
8

0

0 0 0
3

8

b

b

b

b

	

(14.6)
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Also as shown in equil_densitymatrix.nb, transforming from the laboratory to the 
rotating frame does not change the equilibrium density matrix. The effective 
equilibrium density matrix in the rotating frame is therefore also given by Equation 
14.5. This result is of extreme importance because it is the starting point for all NMR 
experiments. ˆ

eq  is the only part of the ensemble density operator that can be changed 
by the Liouville–von Neumann equation (Eqs. 13.1–13.3).

Explanation of equil_densitymatrix.nb

The first cell instructs the user to evaluate and close matrep2.nb (without saving). 
The following cells define the equilibrium density matrix ρ

eq
 for an I = 3/2 nuclear 

spin. The next cells illustrate the “propagation” of the lab frame density matrix to the 
rotating frame. This transformation is discussed more in later chapters. Since the 
magnetic field defines the z axis, the rotating frame corresponds to a rotation about 
the z axis. This transformation does not affect ρ

eq
.

In contrast, the next cells show that rotations around the x or y axes transform 
ρ

eq
 to forms with non‐zero x and y components. We then show that these transverse 

components (coherences) arise from only the difference term b. The next cells show 
explicitly that the constant term is unaffected by rotations about any axis and cannot 
generate off‐diagonal coherence. The last cells show that the “difference” part of 
the equilibrium density matrix ρ

diff
, equivalent to ˆ

eq  in Equations 14.5 and 14.6, is 
significantly transformed by rotations around the x and y axes. The final cell, a 
comment, is worth repeating. All NMR experiments start with ˆ eq (ρdiff

).
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Hamiltonians of NMR: 
Isotropic Liquid‐State 
Hamiltonians

Chapter  15

With the effective equilibrium density operator ˆ
eq  as the starting point of all NMR 

experiments (Chapter 14), the time‐dependence of the density operator can be calcu-
lated with the Liouville–von Neumann equation (Chapter 13) if the Hamiltonians at 
each time in the experiment are known. Nuclear spins are only weakly coupled to 
their surroundings and therefore have weak Hamiltonians. The Zeeman Hamiltonian 
is almost always the strongest Hamiltonian, although it is the other internal 
Hamiltonians that are important if one wishes to obtain detailed information about 
atomic structure and dynamics. Conveniently, the smaller magnitudes of the internal 
Hamiltonians allow the Zeeman eigenstates to be used as the basis set for perturba-
tion calculations in NMR.

The solid‐state Hamiltonians will be introduced in Chapter 29. There it is 
shown that each Hamiltonian encountered in NMR is expressed in terms of a spin 
space part that depends only on spin angular momentum operators and a real space 
part that depends on the orientation of the molecules containing the nuclei 
(Mehring, 2002; Spiess, 1978). The laboratory reference frame for both spaces is 
defined by the magnetic field north pole that is aligned by convention with the 
positive z axis (Fig. 3.3). The positions of the x and y axes are orthogonal and fixed 
but arbitrary.

The rotating frame is obtained from the spin space laboratory frame by 
rotating it in coincidence with the resonance (Larmor) precession. The real 
space part of the Hamiltonian is unaffected by the transformation to the rotating 
frame.

It is the “real space” part of the Hamiltonian that determines the observed 
frequencies in the NMR spectrum. Although Ĥ

Z
 and Ĥ

RF
 are usually uniform across 

the NMR sample,1 the real space parts of the other Hamiltonians depend on the real 
space orientations of the atoms and molecules containing the nuclei.

1Unless magnetic field gradients or radiofrequency field gradients are applied.
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The total Hamiltonian Ĥ
tot

 acting on nuclear spins can include the following 
contributions,

	 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆH H H H H H H H Htot Z Q RF SR D CS K J 	 (15.1)

where Ĥ
Z
 is the Zeeman Hamiltonian, Ĥ

Q
 is the quadrupolar Hamiltonian, Ĥ

RF
 is the 

radiofrequency Hamiltonian, Ĥ
SR

 is the spin rotation Hamiltonian, Ĥ
D
 is the dipolar 

Hamiltonian,2 Ĥ
CS

 is the chemical shift Hamiltonian, Ĥ
K
 is the Knight shift 

Hamiltonian, and Ĥ
J
 is the J‐coupling Hamiltonian. Ĥ

Z
 and Ĥ

RF
 are external 

Hamiltonians under human control (e.g., the magnet, magnetic field gradients, and 
radiofrequency pulses), while the others are internal Hamiltonians determined by 
their local atomic level environment.

Although the Zeeman resonance frequency of a bare nucleus is exactly equal 
to ω

0
, the internal Hamiltonians perturb the resonance frequency. In general, each 

different electronic environment of a given nucleus produces a different internal 
Hamiltonian and a different perturbation. For example, Ĥ

CS _ C13
 for a carboxyl group 

carbon is different than Ĥ
CS _ C13

 for a methyl group carbon. The unique values for the 
internal Hamiltonians of each electronic environment and position in a molecule are 
the way NMR provides a window into the atomic‐level world.

The magnitude of a Hamiltonian Ĥ
X
 is defined as

	 ˆ ( [ ˆ ˆ ]) /H Trace H HX X X
1 2 	 (15.2)

where the double vertical bars denote the magnitude, ˆ ˆH HX X  indicates the matrix 
product of H ̂

XX
 with itself, Trace indicates the sum of diagonal elements of the 

resulting product matrix from upper left to lower right, of which the square root is 
taken.

Ĥ
Q
 is often the largest of the internal Hamiltonians with a magnitude that can 

in rare cases exceed that of Ĥ
Z
. It is only observed in nuclei with I > 1/2, that is, I = 1, 

I = 3/2, I = 2, I = 5/2, I = 3, I = 7/2, etc. There is a nonuniform distribution of positive 
charge in nuclei with I > 1/2, which means that they have an electric quadrupole 
moment in addition to a magnetic dipole moment. Ĥ

Q
 arises from the electric cou-

pling of the nuclear electric quadrupole moment and the electric field gradients from 
electron orbitals surrounding the nucleus. Reorientation of molecules (hence electron 
orbitals) in liquids averages it to zero, that is, Ĥ

Q_liquid
 = 0.

The effects of Ĥ
SR

 are only observed in polyatomic gases, liquids with very low 
viscosity, or functional groups with free torsion angles. Unchanging molecular 
angular momentum is required to observe the effects of Ĥ

SR
, but the collisions in 

most liquids cause rapid changes in molecular angular momentum. Therefore, in the 
vast majority of liquid‐state samples Ĥ

SR_liquid
 = 0. In solids, there is rarely unhindered 

molecular angular momentum, so Ĥ
SR_solid

 = 0.

2Ĥ
D
 applies to homonuclear, heteronuclear, and paramagnetic (nuclear spin–unpaired electron spin) 

interactions.
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The total dipolar Hamiltonian Ĥ
D
 for a nuclear spin i is given by ˆ ,HDijj i  the 

sum of the pairwise interactions. These come about from the direct through-
space  magnetic interaction of the nuclear magnetic dipole moments. The dipolar 
Hamiltonian is large, internuclear distance–dependent, and orientation‐dependent. 
It  is a very useful source of information in solid‐state NMR where experiments 
utilize the dipolar Hamiltonian for coherence transfer between nuclei. Nevertheless, 
it averages to zero in liquid samples, that is, Ĥ

Dij_liquid
 = 0.

The Knight shift Hamiltonian Ĥ
K
 is observed in conductive samples such as 

metals and conducting polymers. It arises from circulation of the electron density in 
open shell (metallic) orbitals.

The chemical shift Hamiltonian Ĥ
CS

 is observed in nonconductive diamagnetic 
samples in both the solid state and the liquid state. This constitutes the vast majority 
of NMR samples. Ĥ

CS
 has a non‐zero isotropic component. It is the major source of 

information in liquid‐state NMR. It arises from the electric currents and magnetic 
shielding induced in electron orbitals by the magnetic field. Ĥ

CS_liquid
 ≠ 0.

Ĥ
J
 is observed in nonconductive diamagnetic samples in both the solid state 

and the liquid state, which means the vast majority of NMR samples. Ĥ
J
 has a non‐

zero isotropic component. It is used not only for its information content but also for 
coherence transfer between nuclei. It arises from the indirect coupling of nuclear 
spins mediated by electron density in orbitals between them. In liquids, Ĥ

J_liquid
 ≠ 0.

Summarizing, in rigid solids,  ˆ ˆ ˆ ˆ ˆ ˆH H H H H HZ Q RF SR D K

 ˆ ˆH HCS J . However, due to differences in the electronic environment there is var-

iation in the relative magnitudes, so this order does not always apply.
In liquids, the relative magnitudes of the Hamiltonians are very different. 

Rapid molecular reorientation in liquids averages the real space parts of the internal 
Hamiltonians. With rotational correlation times of 10−12 to 10−9 s, the Hamiltonians 
are completely averaged in one Larmor period (1/ν

0
). For Ĥ

Q
 and Ĥ

D
, the average is 

zero. Therefore, these have no direct effect on the frequencies observed in the NMR 
spectrum or on the evolution of the density operator. However, the rapidly fluctuating 
real space components from these Hamiltonians cause NMR relaxation and can 
therefore affect peak linewidths via their effects on T

2
. Ĥ

SR
 has a non‐zero real space 

average but is rarely observed except in gases or for very small molecules in very 
low–viscosity solvents. Ĥ

K
 has a non‐zero average but is only observed for conduc-

tive metals and conductive polymers. The only remaining important liquid‐state 
Hamiltonians for molecules in liquids are therefore Ĥ

CS
 and Ĥ

J
, which have non‐zero 

isotropic components that determine the frequencies and splitting observed in liquid‐
state spectra.

Almost all time‐dependent theoretical analyses use the rotating frame 
Hamiltonian. This eliminates the effects of Ĥ

Z
 in the Liouville–von Neumann 

equation. Ĥ
Z
 is nevertheless the dominant Hamilton. Its eigenstates are the basis set 

for the calculations.
The liquid‐state Hamiltonians are summarized for convenience in Table 15.1.
A semiquantitative comparison of the relative magnitudes of some solid‐state 

and liquid‐state Hamiltonians is shown in Figure 15.1.
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Rapid molecular reorientation averages the nonisotropic components of the 
various Hamiltonians to zero. Only the isotropic components of the Hamiltonians 
survive. H

z
 and H

rf
 are isotropic and unaffected by rapid molecular reorientation. H

CS
 

and H
J
 are reduced in magnitude but survive because they have non‐zero isotropic 

components in addition to anisotropic components. H
Q
 and H

D
 possess only aniso-

tropic components, so their effects on NMR spectra in liquids are eliminated by rapid 
molecular reorientation.

Solids

Liquids

HZ Hrf HD Hcs HQ HJ

Figure  15.1  A Semiquantitative Comparison of the Effects of Solid‐ and Liquid‐State 
Hamiltonian Magnitudes on NMR spectra. Levitt, M.H., Spin Dynamics:  Basics of Nuclear 
Magnetic Resonance, 2nd Edition, John Wiley & Sons, Ltd, 2008.  Adapted from Figure 9.31, 
page 223.
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The Direct Product Matrix 
Representation of Coupling 
Hamiltonians H

J
 and H

D

Chapter  16

H ̂
J
 and H ̂

D
 are both extremely important Hamiltonians for NMR, because they 

provide the opportunity for coherence transfer between different nuclear spins. 
These pairwise “coupling” Hamiltonians require modification of the matrix rep­
resentation of the Hamiltonian and the density operator, illustrated below for the 
weak J coupling between two homonuclear I = 1/2 nuclei (e.g., two 1H nuclei) in 
the liquid state, for which H ̂

J
 = 2π J

12
 Î

z1
.Î

z2
 and for which ρ

eq
 = const I

z1
 + const I

z2
 

(Eq. 14.5).
The matrix representation of I

z1
 is obtained by taking the direct product of 

the single spin matrix representation of Î
z1

 for I = 1/2 with the unit (identity) matrix 
for spin 2,

	
Î Îz z1 1 21

	
(16.1a)

	

1

2
0

0
1

2

1 0

0 1

	

(16.1b)

We use streamlined bras and kets to simplify the nomenclature for the resulting 
matrix. For example, the bra <I

1
,m

1
,I

2
,m

2
| is simplified to <m

1
,m

2
|. With this simplifi­

cation, the direct product aforementioned for two I = 1/2 spins can be expressed as 
follows:

<1/2,1/2|Î
z1

|1/2,1/2> <1/2,1/2|Î
z1

|1/2,−1/2> <1/2,1/2|Î
z1

|−1/2,1/2> <1/2,1/2|Î
z1

|−1/2,−1/2>

<1/2,−1/2|Î
z1
|1/2,1/2> <1/2,−1/2|Î

z1
|1/2,−1/2> <1/2,−1/2|Î

z1
|−1/2,1/2> <1/2,−1/2|Î

z1
|−1/2,−1/2>

<−1/2,1/2|Î
z1
|1/2,1/2> <−1/2,−1/2|Î

z1
|1/2,−1/2> <−1/2,1/2|Î

z1
|−1/2,1/2> <−1/2,1/2|Î

z1
|−1/2,−1/2>

<−1/2,−1/2|Î
z1
|1/2,1/2> <−1/2,−1/2|Î

z1
|1/2,−1/2> <−1/2,−1/2|Î

z1
|−1/2,1/2> <−1/2,−1/2|Î

z1
|−1/2,−1/2>
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I
z1

 returns eigenvalues for m
1
:

<1/2,1/2|1/2|1/2,1/2> <1/2,1/2|1/2|1/2,−1/2> <1/2,1/2|−1/2|−1/2,1/2> <1/2,1/2|−1/2|−1/2,−1/2>

<1/2,−1/2|1/2|1/2,1/2> <1/2,−1/2|1/2|1/2,−1/2> <1/2,−1/2|−1/2|−1/2,1/2> <1/2,−1/2|−1/2|−1/2,−1/2>

<−1/2,1/2|1/2|1/2,1/2> <−1/2,−1/2|1/2|1/2,−1/2> <−1/2,1/2|−1/2|−1/2,1/2> <−1/2,1/2|−1/2|−1/2,−1/2>

<−1/2,−1/2|1/2|1/2,1/2> <−1/2,−1/2|1/2|1/2,−1/2> <−1/2,−1/2|−1/2|−1/2,1/2> <−1/2,−1/2|−1/2|−1/2,−1/2>

The scalar eigenvalues can be moved to precede the bra‐ket, and orthonor­
mality  of the bras and kets gives 1 if and only if m

1
 and m

2
 in the bra are 

the  same  as  m
1
 and m

2
 in the ket, otherwise giving 0. This yields to the 

following:

	

Î z1

1

2
0 0 0

0
1

2
0 0

0 0
1

2
0

0 0 0
1

2 	

(16.1c)

This result can be understood by examining Equation 16.1b and the result in Equation 
16.1c. The 1/2 in the upper left‐hand corner of the single spin I

z1
 matrix multiplies the 

entire unit matrix for spin 2, giving the four upper left‐hand values of the matrix in 
Equation 16.1c. The 0 in the upper right‐hand corner of the single spin I

z1
 matrix mul­

tiplies the entire unit matrix for spin 2, yielding the four zeroes in the upper right‐
hand part of the matrix in Equation 16.1c. The 0 in the lower left‐hand corner of the 
single spin I

z1
 matrix multiplies the entire unit matrix for spin 2, yielding the four 

zeroes in the lower left‐hand part of the matrix in Equation 16.1c. The −1/2 in the 
lower right‐hand corner of the single spin I

z1
 matrix multiplies the entire unit matrix 

for spin 2, yielding the four values in the lower right‐hand part of the matrix in 
Equation 16.1c.

The matrix representation of Î
z2

 is obtained by taking the direct product of the 
single spin matrix representation of the unit (identity) matrix for spin 1 with the 
single spin Î

z2
 matrix,

	
Î Îz z2 1 21

	
(16.2a)

	

1 0

0 1

1

2
0

0
1

2 	

(16.2b)
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The result is as follows:

	

Îz2

1

2
0 0 0

0
1

2
0 0

0 0
1

2
0

0 0 0
1

2 	

(16.2c)

Coupling to a third I = 1/2 nucleus in the spin system is obtained by repeating 
Equations 16.1 and 16.2 using the representations from Equations 16.1c and 16.2c 
for I

z1
 and I

z2
. The dimensionality increases from 4 × 4 to 8 × 8. Further coupling for 

4 I = 1/2 coupled spins is carried out the same way, increasing the dimensionality to 
16 × 16. Expressions can be obtained in this way for all spin angular momentum 
operators for arbitrary numbers of coupled spins, although the complexity of the cal­
culation increases exponentially. Matrix representations for coupling between spins 
with I > 1/2 are carried out in the same way.

Matrix representations of the coupled spin angular momentum operators and 
Hamiltonian operators are easily carried out using the Mathematica notebook 
program matrep2.nb. This process is illustrated in the Mathematica notebook direct-
product.nb.

Explanation of directproduct.nb

The first cell tells the user to evaluate matrep2.nb, then close it without saving 
changes. The next cells remind the user how to evaluate the matrix representations of 
single spin angular momentum operators. The next cells show how the dirprod 
function is used to calculate the matrix representations of two I = 1/2 scalar or dipolar 
coupled nuclear spins. Note that the matrix representations of each of the two cou­
pled spins are different in the direct product representation. The next cells show how 
to obtain the matrix representations of spin angular momentum operators for an 
I = 1/2 nuclear spin coupled to an I = 1 nuclear spin. The notebook then proceeds to 
show how to obtain the matrix representations for each of three coupled I = 1/2 
nuclear spins.

The next cells show how to build the matrix representation of the equilibrium 
density matrix for three coupled I = 1/2 nuclear spins. The next cells show that the 
same method can be used to obtain matrix representations of “transverse” spin 
angular momentum operators for coupled spins. The last cells show the matrix repre­
sentation of the weak J‐coupling Hamiltonian H

J
 for two coupled I = 1/2 spins. The 

final cell comments that the matrix representation can be very large for a system with 
many couplings.



60 A PRIMER OF NMR THEORY WITH CALCULATIONS IN MATHEMATICA®

Homework

Homework 16.1: Use matrep2.nb and the methods described directproduct.nb to cal­
culate the direct product matrix representations of spin angular momentum operators 
I2, I

z
, I+, I

x
, and I

y
 for each spin in a system of one I = 1 spin coupled to two I = 1/2 

nuclear spins. Let the I = 1 spin be spin number 1, and the two I = 1/2 spins be spins 2 
and 3.
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Solving the Liouville–Von 
Neumann Equation for the 
Time Dependence of the 
Density Matrix

Chapter  17

If one knows the sequence of Hamiltonian operators that act on a spin system during 
an NMR pulse sequence, one can solve the Liouville–von Neumann (LVN) equation 
(Eqs. 13.2 and 13.3) to calculate the time dependence of the density matrix. 
The  density matrix contains all of the information for the spin system including 
the observable NMR signal. In most NMR experiments on diamagnetic samples, the 
Hamiltonians that must be considered are H

Z
, H

RF
, H

Q
, H

CS
, H

D
, and H

J
. In most 

liquid‐state NMR experiments, rapid molecular motion averages H
D
 and H

Q
 to zero 

except for their effects on relaxation. It also averages H
CS

 and H
J
 but to non‐zero 

values characteristic of particular atomic environments in the sample molecules.
All pulse sequences start with the effective equilibrium density operator in the 

rotating frame at t = 0 and utilize Hamiltonians that have been transformed to the 
rotating frame:1

	
ˆ ( ) ( )eq const Î0

k
k z k

	
(17.1)

where the sum is taken over all k different nuclear spins in the spin system, and the direct 
product representation has been used if there is dipolar or J coupling between the spins.

Consider the first interval τ
1
 in the pulse sequence with a constant Hamiltonian Ĥ

1
 

in the rotating frame.2 The solution to the LVN equation gives the density matrix at time τ
1
:

	
ˆ ˆ ( )( )

ˆ ˆ

1
1 1 1 10e ei iH

eq
H

	
(17.2a)

Equation 17.2 can be evaluated using the matrix representations of the density 
operator ρ

eq
(0) and Hamiltonian operator Ĥ

1
 in the rotating frame. The complex 

exponentials are also matrices, and the dots represent the matrix product.

1 The effective equilibrium density matrix in the rotating frame is identical to that found in the laboratory 
frame.
2 Ĥ

RF
 is time independent if the rf is on resonance in the rotating frame.
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Equation 17.2 can also be evaluated by taking advantage of commutation 
relations between the Hamiltonian and density operators, as discussed in later chap-
ters. Here we focus on the matrix representation methods.

The idea is that the starting density matrix is propagated by the sandwich of 
complex exponentials to yield the density matrix after the interval. If there are n dif-
ferent intervals τ

i
 in the pulse sequence with respective constant Hamiltonian opera-

tors Ĥ
i
, the density matrix obtained immediately after the last interval τ

n
 is given by

	
ˆ ˆ ( )( )

ˆ ˆ ˆ ˆ ˆ

n
i i i i ie e e e en n

 2 1
2 2 1 1 1 10H H H H H

eq
22 2 ei n nĤ

	
(17.2b)

where τ
1
 is the duration of the first interval in the pulse sequence with constant 

Hamiltonian operator Ĥ
1
, τ

2
 is the duration of the second interval in the pulse sequence 

with constant Hamiltonian operator Ĥ
2
, …, and τ

n
 is the duration of the nth interval 

in the pulse sequence with constant Hamiltonian operator Ĥ
n
. Even if the Hamiltonians 

are time dependent, sufficiently short intervals can be chosen so that Ĥ is approxi-
mately constant over the shorter interval (Benesi, 1993).

There are two cases that must be considered in evaluating the propagator 
sandwich exponentials in Equations 17.2a and 17.2b.

Case 1 Diagonal Hamiltonian

If the Hamiltonian Ĥ
i
 acting during the interval τ

i
 has a diagonal matrix representation, 

the complex exponentials are evaluated directly as follows, shown here for the typical 
liquid‐state Hamiltonians Ĥ

CS
 and Ĥ

J
 acting on two J‐coupled I = 1/2 nuclear spins of 

the same nucleus (e.g., 1H), Ĥ
CS1

 = δ
1
 Î

z1
, Ĥ

CS2
 = δ

2
 Î

z2
 where δ

1
 and δ

2
 are the rotating 

frame chemical shifts of the two spins expressed in rad s−1 (see densitymatrix_primer.
nb), and Ĥ

J12
 = 2π J Î

z1
 Î

z2
 where J

12
 is the coupling constant expressed in s−1:

	

ĤCS

1 2

1 2

1 2

1 2

2 2
0 0 0

0
2 2

0 0

0 0
2 2

0

0 0 0
2 2 	

(17.3a)

	

Ĥ

J

J

J

J

J

2
0 0 0

0
2

0 0

0 0
2

0

0 0 0
2 	

(17.3b)
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Ĥ

J

J

J

J

CS J

2 2 2
0 0 0

0
2 2 2

0 0

0 0
2 2 2

0

0 0 0
2

1 2

1 2

1 2

1 2

2 2 	

(17.3c)

	

e

e

ei t

i t t t

i t t t

ĤCS J

J

J

2 2 2

2 2 2

1 2

1 2

0 0 0

0 0 0

0 0 0

0 0 0

2 2 2

2 2

1 2

1

e

e

i t t t

i t t

J

J tt 2
2

	

(17.3d)

Case 2 Nondiagonal Hamiltonian

If the Hamiltonian Ĥ
i
 acting during the interval τ

i
 is not diagonal as is the case when 

the interval includes an radio frequency (rf) pulse, the complex exponentials are eval-
uated in a more complicated manner (see densitymatrix_primer.nb), although recent 
versions of Mathematica make the evaluation much easier than it would otherwise 
be. The process requires that the nondiagonal Hamiltonian be diagonalized using a 
similarity transform as demonstrated in densitymatrix_primer.nb. The similarity 
transform matrix is constructed from the orthogonalized eigenvectors of the 
Hamiltonian. The sandwich of similarity transforms results in a diagonalized 
argument for the complex exponential that can be evaluated as in case 1. After eval-
uation of the diagonalized complex exponential, the complex exponential must be 
“undiagonalized” by again using the inverse (adjoint) sandwich of similarity trans-
forms (see densitymatrix_primer.nb).

In many cases ˆ ˆH HRF CS J , so that during rf pulses the Hamiltonian 
Ĥ

pulse
 = Ĥ

RF
 + Ĥ

CS + J
 ≅ Ĥ

RF
. In cases where this is not a reasonable approximation, 

the full Hamiltonian for Ĥ
pulse

 must be used. As shown in densitymatrix_primer.

nb, the full Hamiltonian Ĥ
pulse

 must be evaluated numerically rather than 
symbolically.
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Explanation of densitymatrix_primer.nb

The first few cells are comments. The user is told to evaluate matrep2.nb and close it 
without saving. The two I = 1/2 spins’ matrix representations are set up in the follow-
ing cells. The sample is assumed to be in the liquid state and therefore subject only 
to Ĥ

CS
 and Ĥ

J
. The presence of J‐coupling requires the direct product representation 

of the coupled spins. The next cells show how the matrix representations of the 
coupled spins can be added to give the total density matrix for the coupled spins.

The chemical shift Hamiltonians H
cs1

 and H
cs2

 and the weak J‐coupling 
Hamiltonian H

jweak
 ( )1 2  J  are defined. The resulting total Hamiltonian H

csj
 

during periods without rf pulses is the sum H
cs1

, H
cs2

, and H
jweak

. It is diagonal, with 
no non‐zero off‐diagonal elements.

The equilibrium density matrix ρ
0
 for the two coupled I = 1/2 spins is con-

structed. The two spins are assumed to be homonuclear (e.g., 1H spins). Each spin’s 
initial signal magnitude is represented as mh.

The next cells compare the diagonal H
csj

 with nondiagonal H
rfx

. The latter has 
only zero diagonal elements. There are only non‐zero off‐diagonal elements.

In the next cells, the propagators ucsj and ucsjadj are calculated for intervals 
without rf irradiation. These are used to propagate the equilibrium density operator 
and have no effect.

The next cells show the effect of a “hard” π/2 rf pulse (H
rf
 ≫ H

csj
) along the x 

axis of the rotating frame on the equilibrium density operator. First, the propagators 
u and uadj are calculated using the similarity transform method as described earlier 
in Case 2 Nondiagonal Hamiltonians. Then the propagators um and umadj are calcu-
lated with the built‐in Mathematica function MatrixExp. Next, we demonstrate the 
built‐in Mathematica function == is used to test the equivalence of u and um and of 
uadj and umadj. The equivalence is also obvious by inspection. The equilibrium 
density operator is then propagated with u and uadj to yield the density operator after 
the (π/2)

×
 pulse. The resulting density operator ρ

1
 has only off‐diagonal non‐zero 

elements.
The next cells show how to evaluate the observable NMR signal expectation 

value immediately after the rf pulse. The NMR signal is obtained by taking the trace 
of iplustot.ρ

1
 and yields 2 i mh. The expectation value for ixtot yields 0. The 

expectation value for iytot yields −2 mh. This result is identical to what is predicted 
using the vector model. The “magnetization” for both spins ends up on the −y axis of 
the rotating frame after the (π/2)

×
 pulse.

The next cells show that one can also obtain the expectation values of operators 
for the spins separately. For iy1 and iy2, the expectation values are −mh and −mh, 
respectively.

Next, the Hamiltonian H
csj

 is allowed to act on ρ
1
. The operators ucsj and 

ucsjadj are used to propagate ρ
1
. The resulting time‐dependent density operator ρ

2
 

has oscillatory off‐diagonal elements and no diagonal elements. The NMR signal is 
obtained by taking the trace of iplustot.ρ

2
. After using the built‐in Mathematica 

function ExpToTrig to convert complex exponentials to trigonometric functions, the 
NMR signal is saved as sig2.
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The next cells calculate the expectation value iy1 for one of the two spins. 
After ExpToTrig conversion, the NMR signal for spin 1 is simplified to yield (1/2) 
mh (cos[(δ

1
 − πj)t + cos[(δ

1
 + πj)t). Thus the NMR signal from spin 1, originally of 

magnitude mh, splits into two positive signals of magnitude mh/2.
The next cells show the effect of a “soft” rf × pulse (H

rf
 and H

csj
 comparable in 

magnitude) on the equilibrium density operator ρ
0
. The built‐in MatrixExp function 

is not able to solve for the symbolic form of usoftx. However, as shown in the 
subsequent cells, substituting numerical values for the parameters ω

1
, δ

1
, δ

2
, and j in 

H
rf
 and H

csj
 allows MatrixExp to solve for usoftx and usoftxadj.

Propagating ρ
0
 with usoftx and usoftxadj yields ρ1soft. The built‐in Mathematica 

functions FullSimplify and Chop are used to “clean up” the numerical result for 
ρ1soft. Note that it is numerically almost the same as the result for ρ

1
 with the hard 

pulse, indicating that the “soft” pulse was still pretty hard.
The next cells deal with the density operator ρ1het that is obtained for a hetero-

nuclear two‐spin system, here assumed to be 1H (spin 1) and 13C (spin 2), after a hard 
(π/2)

×
 pulse to the 1H spin only. Only the 1H spin has non‐zero off‐diagonal elements. 

The density operator ρ1het is then propagated with ucsj and ucsjadj to yield the time‐
dependent density operator ρ2het. The next cells show that this signal corresponds to 
a doublet at δ

1
 + πJ and δ

1
 − πJ rad s−1.

If we allow ρhetj to evolve for t = 1/(2 j) and take the trace of iplustot to get the 
NMR signal for both spins, there is none! This density operator ρ2antiphase corre-
sponds to antiphase magnetization. In later chapters, we will see that the operator 
2  ix1.iz2 corresponds to antiphase magnetization of spin 1 with respect to spin 2. 
When we take the trace of this operator on ρ2antiphase, the result is mh.
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The Observable NMR Signal

Chapter  18

The calculated complex NMR signal (theoretical free induction decay (FID)) is 
obtained by taking the trace of the matrix product of the Î+ operator for the observed 
spins and the density matrix operator ρ(t) in the rotating frame during acquisition,

	 FID( ) Tr[Î (ˆ )] Tr[ (ˆ ) Î ]t t t 	 (18.1)

where FID(t) is the complex time‐dependent NMR signal in the rotating frame, Tr is 
the matrix trace (sum of diagonal elements from upper left to lower right), and it is 
applied to the matrix product of the Î+ operator for the observed spins and the time‐
dependent complex density operator ˆ( )t  of the spin system.

The part of ˆ( )t  that is “extracted” by this process is Î−, as shown in ladder_
operator.nb. The trace of the Î+ operator with itself is zero (see ladder_operator.nb). 
As with the experimental FID(t), the calculated signal can be Fourier transformed to 
yield the NMR spectrum.

The ladder operators Î+ = Î
x
 + i Î

y
 and Î− = Î

x
 − i Î

y
 correspond to single quantum 

coherence of coherence order p = +1 and −1, respectively. Because Î+ selects the Î− 
part of the density operator, an NMR experiment must produce p = −1 coherence of 
the observed nucleus during acquisition. At equilibrium, however, the density oper-
ator is proportional to Î

z
 and has zero coherence, i.e. no transverse components, and 

corresponds therefore to coherence order p = 0.
If one ignores relaxation, only radio frequency (rf) pulses can produce a change 

in coherence order (see ladder_operator.nb). During intervals when Ĥ
rf
 = 0, the 

coherence orders present in the density operator do not change. NMR relaxation, 
usually ignored in the analysis of NMR pulse sequences, causes all transverse (p ≠ 0) 
coherences in the density operator to decay to zero and ultimately return to p = 0 at 
equilibrium.

For two coupled I = 1/2 spins, a combination of rf pulses and delays without rf 
can create density operator components such as Î

x1
.Î

x2
, Î

x1
.Î

y2
, Î

x1
.Î

z2
, Î

y1
.Î

x2
, Î

y1
.Î

y2
, Î

y1
.Î

z2
, 

Î
z1

.Î
x2

, Î
z1

.Î
y2

, and Î
z1

.Î
z2

. Using the relationships Î
x
 = 1/2 (Î+ + Î−) and Î

y
 = (1/(2i))* (Î+ − Î−), 

one finds (see ladder_operator.nb) that the preceding Cartesian two spin operators 
are composed of ladder operator terms such as Î

1
+.Î

2
+, Î

1
+.Î

2
−, Î

1
−.Î

2
+, Î

1
−.Î

2
−, Î

z1
.Î

2
+, Î

z1
.

Î
2
−, Î

1
+.Î

z2
, Î

1
−.Î

z2
, and Î

z1
.Î

z2
 The coherence order of these two‐spin coherences is given 

by the sum of the p values of the operators in the product. The range of coherences 
that can be created for two coupled spins ranges from p = −2 to p = +2. For three 
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coupled I = 1/2 spins, the range of possible p values ranges from −3 to +3. For n 
coupled I = 1/2 spins, the range of p values ranges from −n to +n.

As will be shown in later chapters, the design of NMR pulse sequences takes 
advantage of the ladder operator representation. Phase cycling of the rf pulses and/or 
gradient methods are used to select specific coherence order pathways.

Explanation of ladder_operator.nb

The first cell instructs the user to evaluate matrep2.nb then close it without saving. 
The following cell defines a hypothetical nonequilibrium density operator ρ as the 
sum of I+ and I− spin angular momentum operators. The observable signal is 
“extracted” from ρ by taking the trace of the matrix product of I+ and ρ. It is immedi-
ately apparent that only the I− part of the density operator is observable.

This is shown to be true for all nuclear spins with I ≥ 1/2. The example analyzed 
is an I = 5/2 nuclear spin.

The next cells calculate the direct product matrix representations for spin oper-
ators of two coupled I = 1/2 spins to construct the density operator ρcoup and show 
again that only the I− part of ρcoup contributes to the observable NMR signal.

Then a new hypothetical density operator ρ2spin is defined that contains all 
possible types of two‐spin coherence. Because the density operator contains all of the 
information about the spin system, the expectation value for any spin operator Op is 
easily obtained by taking the trace[Op.ρ2spin]. This is illustrated for several arbitrary 
two‐spin operators. The next cells assign names such as dqplus, dqmin, zeroq, and 
twospinx to some of the two‐spin coherences. These operators are tested for their 
expectation values with other operators by taking the trace of their matrix product.
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Commutation Relations of 
Spin Angular Momentum 
Operators

Chapter  19

The Liouville–von Neumann equation uses the commutator of the Hamiltonian 
operator and density operator to propagate the density operator in time. Since both 
operators are constructed from spin angular momentum operators, it is also possible 
to use explicit commutation relations between them to propagate the density operator 
without relying on the matrix representations of the operators. This approach is espe-
cially useful in liquid‐state NMR, where the only effective internal Hamiltonians are 
Ĥ

CS
 and Ĥ

J
. This approach is called the “product operator” formalism (Bax, 1982; 

Sorensen et al., 1983). Evaluation of commutators is also essential for analysis of 
NMR relaxation in both solids and liquids and for first‐order average Hamiltonian 
theory in solids NMR.

Real and imaginary numbers are commutative, for example, [3,2] = (3 × 2) −  
(2 × 3) = 0. Quantum mechanical operators, however, are not necessarily commutative. 
For example, the commutator of the spin angular momentum operators Î

x
 and Î

y
 is:

	
[ , ]Î Î Îx y zi

	
(19.1)

These and other commutation relations between the spin angular momentum 
operators can be proved by expressing the operators in Cartesian form (Levine, 1974, 
pp. 70, 71, 82–86) or by using the matrix representations of the operators. The general 
commutators mentioned later are all are easily verified with simple arithmetic. The 
Mathematica notebook commutators.nb evaluates some of the important commutation 
relations needed in later chapters. Some others are included in the following 
equations:

	 [ ]A, A 0 	 (19.2a)

	 [ ] [ ]A, B AB BA B, A 	 (19.2b)

	 [ , ] [ ] [ ]A B C A, B A, C 	 (19.2c)

	 [ , ] [ ] [ ]A B C A, C B, C 	 (19.2d)
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	 [ ] [ ] [ ]AB, C A B, C A, C B 	 (19.2e)

	 [ ] [ ]A, BC A, B C B[A, C] 	 (19.2f)

	 [ ] [ ] [ ] [ ] [ ]AB, CD A B, C D C A, D B AC B, D A, C DB 	 (19.2g)

The fundamental spin angular momentum commutators are as follows:

	 [ ],Î Î Îx y zi 	
(19.3a)

	 [ ],Î Î Îy z xi 	
(19.3b)

	 [ ],Î Î Îz x yi 	
(19.3c)

	
[ [ ]], , , , , ,Î Î Î Î for orx y z

	
(19.3d)

	
[ , ] 2 Îˆ ˆ

zi i
	

(19.3e)

	
ˆ ˆ I], ˆI[ zi

	
(19.3f)

Expanding Equation 19.3e in terms of Cartesian operators, it can be shown that

	
ˆ ˆ ˆ ˆ ˆ (ˆ ˆ ˆ ˆ ){ }I I I I I I I I I2 2 2 2 2 1

2x y z z
	

(19.4)

Using Equations 19.3e and 19.3f, we can derive two important relations that are 
important for NMR relaxation:

	
ˆ ˆ ˆ ˆ ˆI I I I I2 2

z z 	
(19.5a)

	
ˆ ˆ ˆ ˆ ˆI I I I I2 2

z z 	
(19.5b)

For two different spins Ŝ and Î (e.g., 13C nuclei in methane and 1H nuclei in methane),

	
[S , I ] 0 for , , or , , ,ˆ ˆ orx y z x y z

	
(19.6)

Also,

	

[2S I , [S ,I ]] 0 for and OR and
, , , , , ,o

ˆ ˆˆ ˆ

rx y z 	 (19.7)

Some other important commutators and relationships between spin operators that 
occur in calculation of NMR relaxation times are (Abragam, 1983, pp. 290–291):

	
[I S , I S ] 2Iˆ ˆ ˆ ˆ ˆS Sˆ ˆ ˆ ˆ2S I Îz z 	

(19.8)

	
I S , I S 2I Sˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ[ S S I I] 2z z 	

(19.9)

	
2I S , I Sˆ ˆ ˆˆ ˆ ˆ[ ] 2I Sz z z z 	

(19.10)
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1
I S I Sˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) IS I S

2 z z
	

(19.11)

As shown in Equations 17.1 and 17.2, the effective equilibrium density operator is 
propagated during periods with constant Hamiltonians (i.e. pulse and delay periods) 
by using “sandwiches” of complex exponential operators. When using commutation 
relations between spin angular momentum operators, the propagation steps are eval-
uated by using one or more of the following properties. These are similar to the two 
cases described for matrix propagators in Chapter 17:

Case 1: If the operators Â and B̂  commute, then

	
ˆ ˆˆ ˆ
A AB Be ei i

	 (19.12a)

	
1 2 1 2 2 1( A B) A B B Aˆ ˆ ˆˆ ˆ ˆi i i i ie e e e e 	 (19.12b)

where ϕ, ϕ
1
, and ϕ

2
 represent real numbers such as the chemical shift δ, coupling 

constant 2π J, and/or ±1. For example, consider two different weakly J‐coupled 
I = 1/2 nuclear spins (say 1H spins) in the liquid state subject to the Hamiltonians 
Ĥ

CS
 = δ

1
 Î

1z
, δ

2
 Î

2z
, and Ĥ

J
 = 2π J Î

1z
Î

2z
:1

	 CS J 1 1 2 2 1 2H , H 2 J Îˆ ˆ[ ] Î , Î[ ]Îz z z z 	
(19.13a)

Using Equations 19.2, this may be written as

	 CS J 1 1 1 2 2 2 1 2[H , H ] 2 J [Î , Î Î ] 2 J [Î , Î Î ]ˆ ˆ
z z z z z z 	

(19.13b)

which simplifies to

	 CS J 1 1 1 1 2 2 2 1 2 2H ,H 2 J [Î , Î ] [Î , Î ] 2 J Î , Î [Î , Îˆ ˆ[ ] ( ) ([ ]] )z z z z z z z z 	
(19.13c)

All commutators yield zero, so

	 CS J
ˆ ˆ[H , H ] 0 	 (19.13d)

Therefore, from Equation 19.12b,

	 e e e e
i i i iz z z z z z z( )1 1 2 2 1 2 1 1 2 2 12 2Î Î JÎ Î Î Î J Î Î22z

	

e e e
i i iz z z z2 1 2 2 2 1 1JÎ Î I Iˆ ˆ

	 e e e
i i iz z z z2 1 2 1 1 2 2JÎ Î Î Î

	 (19.13e)

The same applies to the conjugate complex exponentials on the right‐hand side of the 
propagator “sandwich.” This result is extremely useful, indicating that chemical shift 
propagation and weak J coupling propagation of the density operator during a delay 
can be carried out in arbitrary order. All of the complex exponentials are diagonal, so 
the propagation in this case is straightforward.

1 Here we switch from I and S for the different spins to I
1
 and I

2
.
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Case 2: If the operators A and B do NOT commute, that is, ˆ ˆ[A, B] 0  
(Sorensen et al., 1983):

	 e e t i ti i tˆ ˆˆ ˆ ˆ ˆcos( ) [ , ]sin( )A B B A BA

	 (19.14)

For example, consider the effect of an “x” rf pulse in the rotating frame on the effec-
tive equilibrium density operator for a single spin:

	
e e t ii

z
i

z x z
x x1 1

1
Î Îconst Î const Î const Î ,Î( * ) * cos( ) *[ ]siin( )1 t

	
(19.15a)

	
const const* cos( ) * sin( )Î Îz yt t1 1 	

(19.15b)

If ω
1
 t = π/2, Equation 19.15b predicts that the density operator after the π/2 pulse is 

given by const * −Î
y
, which is the same result that is predicted by the Bloch equation 

in Chapter 7 or by using matrix representation as in Chapter 17.

Explanation of commutators.nb

The notebook commutators.nb is used to evaluate commutators of sums and products 
of spin angular momentum operators encountered in product operator theory and 
relaxation theory. The program is far from complete. The user is invited to improve 
it. The most important aspect to keep in mind is that matrix representations are NOT 
used for the nuclear spin angular momentum operators. They are left in symbolic 
form using the terminologies ix, iy, iz, iplus, imin, and isq.

The first cells define the functions comm in terms of the functions commspin.
The commspin functions have single‐spin angular momentum operators and 

constants as arguments. The built‐in Mathematica functions MemberQ and /; are 
introduced. The combination of /; and MemberQ is used to test the density operator 
term for sums and products of single‐spin commutators and constants that can be 
evaluated by commspin.

Some of the results obtained by the commspin functions are not evaluated fully or 
in simplest form, so additional commspin functions are created to help overcome this.

The spherical spin space tensor operators used in solid‐state NMR and in relax-
ation theory are defined in the next cells.

Commutators of the spin space tensor operators are then evaluated.

Homework

Homework 19.1: Prove Equations 19.3e, 19.3f, 19.4, 19.5a, and 19.5b.
Homework 19.2: Starting with an initial density operator of const1 *Î

y1
 + const2 

*Î
z2

, calculate the time dependence of the density operator subject only to the weak 
coupling Hamiltonian 2π J Î

z1
 Î

z2
.
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The Product Operator 
Formalism

Chapter  20

The “Product Operator Formalism” (Sorensen et al., 1983; Bax, 1982) for coupled 
I = 1/2 spins in liquid‐state NMR is based on the commutator relations presented in 
Chapter 19. The only Hamiltonian operators that are usually considered are Ĥ

RF
, Ĥ

CS
, 

and Ĥ
J
.

With the product operator approach, the density operator ρ(t) is expressed as a 
linear combination of base product operators:

	

( ) ( )t b Bt
j

j j

	

(20.1)

where b
j
(t) is the time‐dependent coefficient for the product operator B

j
.

The Cartesian base product operators B
j
 and corresponding nomenclature for 

one I = 1/2 spin are Î
1z

, Î
1x

, and Î
1y

. It is sometimes advantageous to use base operators 
incorporating the raising and lowering operators Î

1
+ or Î

1
− (see Chapter 10).

The Cartesian base product operators B
j
 and corresponding nomenclature for two 

I = 1/2 spins are given here. Only Î
1x

, Î
1x

, Î
2x

, and Î
2y

 magnetization is observable in the 
NMR signal.

the unity operator

Î
1z

 longitudinal magnetization of spin 1

Î
2z

 longitudinal magnetization of spin 2

Î
1x

 observable in phase magnetization of spin 1

Î
1y

 observable in phase magnetization of spin 1

Î
2x

 observable in phase magnetization of spin 2

Î
2y

 observable in phase magnetization of spin 2

2Î
1x

Î
2z

 antiphase x magnetization of spin 1 with respect to spin 2

2Î
1y

Î
2z

 antiphase y magnetization of spin 1 with respect to spin 2

2Î
1z

Î
2x

 antiphase x magnetization of spin 2 with respect to spin 1

2Î
1z

Î
2y

 antiphase y magnetization of spin 2 with respect to spin 1

2Î
1x

Î
2x

 two‐spin coherence of spins 1 and 2

2Î
1y

Î
2x

 two‐spin coherence of spins 1 and 2
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2Î
1x

Î
2y

 two‐spin coherence of spins 1 and 2

2Î
1y

Î
2y

 two‐spin coherence of spins 1 and 2

2Î
1x

Î
2x

 two‐spin coherence of spins 1 and 2

2Î
1z

Î
2z

 longitudinal two‐spin order of spins 1 and 2

For more coupled I = 1/2 spins, one obtains Cartesian base product operators like the 
following:

4Î
1x

Î
2z

Î
3z

 antiphase magnetization of spin 1 with respect to spins 2 and 3

4Î
1x

Î
2z

Î
3y

 two‐spin coherence of spins 1 and 3 antiphase with respect to spin 2

4Î
1x

Î
2x

Î
3y

 three‐spin coherence of spins 1, 2, and 3

Applying the commutation and exponential relations from Chapter 19 to the product 
operators yields the “rules” of propagation for product operators. For two weakly 
coupled I = 1/2 spins, a and x, subject only to “hard” rf pulses (i.e., ω

1
 ≫ δ, Chapter 7, 

bloch3animation.nb ) the rules are listed explicitly for two J‐coupled spins in program 
shortspin.nb. The rules are also used in the program poma.nb, where an arbitrary 
number of J‐coupled spins may be considered. Both of these notebooks can be used 
to analyze pulse sequences. They take advantage of the following simplifications:

1.  [Ĥ
CS1

, Ĥ
CS2

] = 0. This means that chemical shift propagation during delays can 
be carried out separately for the spins and in arbitrary order.

2.  [Ĥ
CS1

, Ĥ
J
] = 0 and [Ĥ

CS2
, Ĥ

J
] = 0 because only weak coupling is considered 

(Ĥ
J
 = 2π J Î

z1
 Î

z2
). This means that coupling propagation during delays can be 

carried out separately from chemical shift propagation and in either order.

3.  Only “hard” RF pulses are used, so |Ĥ
RF

| ≫ |Ĥ
CS1

|, |Ĥ
CS2

|, or |Ĥ
J
|, so that during 

pulses only the effects of Ĥ
RF

 are calculated.

Explanation of shortspin.nb

Program shortspin.nb is used to analyze pulse sequences for two weakly J‐coupled 
I = 1/2 nuclear spins subject only to the chemical shift Hamiltonian, the J‐coupling 
Hamiltonian, and the hard rf pulse Hamiltonian in the liquid state. It should be 
evaluated and closed without saving prior to being used for pulse sequence analysis. 
The two I = 1/2 spins are designated as “a” and “x” spins, respectively. Functions are 
explicitly defined for the effects of rf pulses and delays for all possible two‐spin 
product operators as well as for the individual spins. During delays the chemical shift 
and the weak J‐coupling interaction are active.

The program starts by making trigonometric definitions needed in other 
expressions.

Then the program defines the effects of hard rf pulses on all possible two‐spin 
product operators with functions like a0, a3, x1, and ax2. For example, suppose the 
pulse sequence starts with the equilibrium density operator (“magnetization”) with a 
π/2 pulse along the y axis of the rotating frame to only the “a” spin. If the equilibrium 
magnetization (density operator) is mh iza + mc izx, the syntax of the pulse would be 
a1[π/2, mh iza + mc izx]. The a indicates that only the a spin is hit with rf pulse. The 
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1 indicates that the pulse is along the y axis of the rotating frame (x is 0, y is 1, −x is 
2, and −y is 3). The π/2 indicates that the pulse nutates the magnetization of the a spin 
only by π/2 radians around the +y axis. The mh is just a “label” for the magnitude 
of  the equilibrium a spin magnetization. In other notebooks, mh is often used to 
represent 1H magnetization magnitude. The a1 rf pulse does not affect the x spin’s 
magnetization of magnitude mc (we often use mc to represent 13C magnetization 
magnitude). Hard rf pulses to the x spin only are designated with x1, etc. Hard rf 
pulses of the same rf phase to both spins are designated with ax0, ax1, etc.

Hard rf pulses with arbitrary rf phase (not necessarily aligned with one of the 
rotating frame axes) are designated with ar, xr, or axr depending on whether one or 
both spins receive the pulse. For example, the pulse xr[π/4, π/3, mh ixa + mc izx] 
causes a nutation of π/4 radians around an axis that is +π/3 radians from the x axis of 
the rotating frame.

Evolution during delays without hard rf pulses is designated with delay. For 
example, delay[t, j, mh iya + mh iyx] causes chemical shift evolution of the density 
operator mh iya + mh iyx over time t with chemical shifts wa and wx (rad s−1) and 
j‐coupling evolution with coupling constant j (in s−1).

The density operators encountered during pulse sequences are often sums 
of  product operators. These are easily decomposed into sums of two‐spin prod-
uct  operators that can be handled by other rf pulse and delay functions. For 
example, the  function delay[t_,j_,x_+y_] decomposes the density operator into 
delay[t,j,x] + delay[t,j,y]. Note that sums of three or more product operators are also 
decomposed with the same function.

Some special functions such as trig, mq, and cart are also defined using built‐in 
Mathematica functions that have not been discussed previously. One of these is //., 
which repeatedly performs replacements until the expression no longer changes 
(similar to /., which just goes through an expression once). The list of replacements 
designated between { and } can be long, and uses the built‐in Mathematica function 
:>. The function :> transforms the expression on the left‐hand side of :> to the 
expression on the right‐hand side of :>.

Explanation of poma.nb

This Mathematica notebook was developed by the Wüthrich group (Guntert et al., 
1993). It is a powerful program for the analysis of liquid‐state pulse sequences sub-
ject only to hard rf pulses, chemical shift, and weak j‐coupling. Unlike shortpin.nb, 
it is not limited to two coupled spins, although too many coupled spins will cause 
computer crashes. It should be evaluated then closed without saving prior to use.

The programming in poma.nb is more detailed than has been used in the other 
Mathematica notebooks, and would not be discussed in detail here because the goal 
is understanding NMR, not understanding every subtlety of the Mathematica 
programming language. Remember that when a Mathematica notebook is running, 
definitions of functions such as ^= can be obtained by entering ?^=.

The syntax required to use poma.nb is demonstrated in several future notebooks 
(ineptpoma.nb, hsqc_poma.nb, hmqc_poma.nb, and double_quantum_poma.nb).
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NMR Pulse Sequences 
and Phase Cycling

Chapter  21

Nuclear magnetic resonance (NMR) pulse sequences use “phase cycles” to 
eliminate the unwanted signals by destructive interference and add up the 
desired signals by constructive interference. Many pulse sequences also employ 
pulsed magnetic field gradients, but these operate in a different manner that 
will be discussed in later chapters. The simplest modern NMR pulse sequence 
is the single pulse Bloch decay experiment with a quadrature phase cycle 
(Fig. 21.1).

The rf pulse phase ϕ
1
 = 0° 90° 180° 270° = 0 π/2 π 3π/2 is the phase of the rf 

pulse B
1
 field in the rotating frame (with the x axis corresponding to ϕ

1
 = 0° or 

0 rad). The phase of the “real” receiver in the rotating frame is the same: ϕ
recvr

 = 0° 
90° 180° 270°. The phase of the (just as real electronically) imaginary receiver 
is ϕ

recvr_imag
 = 90° 180° 270° 0°. Both the “real” and “imaginary” signals are saved 

together as the complex FID. The π/2 rf pulse is represented as a vertical rect-
angle. Strong rf pulses (|−γ B

1
| >> |δ|) are generally represented as vertical rectan-

gles, and the phase cycling is also listed explicitly. In the actual experiment, a 
shorter pulse than a 90° pulse is often used to allow more scans with a shorter 
relaxation delay.

The pulse sequence operates as follows:

1.  Pulse and acquire the FID using ϕ
1
 = 0°, ϕ

recvr
 = 0°. Save result in memory. 

Wait for NMR relaxation to return the density operator to thermal 
equilibrium.

2.  Pulse and acquire the FID using ϕ
1
 = 90°, ϕ

recvr
 = 90°. Add this FID to previous 

result in memory. Wait for NMR relaxation to return the density operator to 
thermal equilibrium.

3.  Pulse and acquire the FID using ϕ
1
 = 180°, ϕ

recvr
 = 180°. Add this FID to result 

in memory from step 2. Wait for NMR relaxation to return the density operator 
to thermal equilibrium.
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4.  Pulse and acquire the FID using ϕ
1
 = 270°, ϕ

recvr
 = 270°. Add this FID to result 

in memory from step 3. Wait for NMR relaxation to return the density operator 
to thermal equilibrium.

5.  Repeat steps 1–4 until sufficient NMR signal is obtained.

The vector model analysis of the single pulse NMR experiment is shown in 
Figure 21.2.

By moving the receiver phase in concert with the pulse phase, the magnetiza-
tion is always placed in the same position in the rotating frame relative to the receiver. 
This does not guarantee, however, that the magnetization is aligned with the axes. 
Phasing the resulting spectrum after Fourier transformation of the sum FID amounts 
to moving the receiver so that the magnetization is maximum, absorptive, and 
positive. The function of this “quadrature” phase cycle is to cancel out any imbalance 
in the pulse and receiver phases.

After Fourier transformation and phasing of the resultant FID, the one‐
dimensional NMR spectrum is obtained, as shown in Figure 21.3.

Relaxation delay

(π/2)ϕ1

Short delay for
electronics to recover

FIDϕrecvr

Loop back to accumulate signal for ns scans 

Short delay to
save data,
advance phase
cycle

Figure 21.1  The Single Pulse NMR Experiment. The relaxation delay allows the spin 
system to reach thermal equilibrium. The radio frequency (rf) pulse is represented by 
the vertical rectangle. In many cases, it is a π/2 pulse with phase cycle ϕ

1
 = 0° 90° 180° 

270° = 0 π/2 π 3π/2. The short delay (typically <30 µs) following the rf pulse allows the 
spectrometer receiver electronics to recover from the high‐power rf. The NMR signal 
(free induction decay (FID)) is then amplified, digitized, saved, and added to the signal 
from preceding scans. For each scan, the phase of the spectrometer receiver matches 
the phase of the rf pulse.
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Figure 21.2  (a and b) Vector Model of Cyclops Phase Cycling. The single pulse experiment 
with quadrature phase cycling from Figure  21.1 is analyzed with the vector model. The 
receiver real channel is matched to the rf pulse phase in the four depicted scans.
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6 5 4 3 2 1 (ppm)

Figure  21.3  The 1H NMR Spectrum of Δ9‐tetrahydrocannabinol dissolved in deuterated 
methanol, 25°C, Larmor frequency = 600.18 MHz, obtained by Fourier Transformation and 
Phasing of the NMR Signal (FID) in Figure 7.1. The spectrum x axis is presented in ppm units, 
where 1 ppm represents 1 × 10−6 of the Larmor frequency. In this spectrum, 1 ppm = 600.18 Hz. 
Note that the NMR frequency increases from right to left rather than left to right. This is typical 
for modern NMR spectrometers.
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Analysis of Liquid‐State 
NMR Pulse Sequences with 
the Product Operator 
Formalism

Chapter  22

Two Mathematica notebooks, shortspin.nb and poma.nb (Guntert et al., 1993), are 
provided to enable the commutator‐based analysis of liquid‐state NMR pulse sequences 
on coupled I = 1/2 spins, hereafter called the product operator formalism. Shortspin.nb is 
limited to one or two J‐coupled I = 1/2 spins, while poma.nb can in principle be used to 
analyze pulse sequences for an arbitrary number of J‐coupled I = 1/2 spins. With shortspin.
nb, the analysis must be carried out pulse by pulse, delay by delay, and phase by phase 
(i.e., for each interval with a constant Hamiltonian and for each scan and corresponding 
pulse phase of the “phase cycle”). This is useful for gaining basic understanding of how 
pulse sequences work. The calculations in this chapter use program shortspin.nb.

When performing calculations with program Shortspin.nb, it is necessary 
to reduce all pulse phases to constant receiver phase (i.e., move the receiver to the 
x axis of the rotating frame). This is achieved by adding (2 π − ϕ

recvr
) to each pulse 

phase. For example, for the quadrature phase cycle in the single pulse NMR 
experiment from the previous chapter, phase cycle used on NMR spectrometer is:

1 0 2 3 2/ /

recvr 0 2 3 2/ /

when we add (2 π − ϕ
recvr

):

1 0 0 0 0

recvr 0 0 0 0

Example 1:
Analysis of the Single Pulse NMR experiment: Single spin hit with 90° radio fre-
quency (rf) pulse along x axis of rotating frame with no J‐coupling during acquisition 
(see Fig. 21.1).
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After reducing to constant receiver phase, the quadrature 1‐pulse sequence is 
seen to be equivalent to a single π/2 single pulse along the x axis of the rotating frame 
to the effective equilibrium density operator, in this case mh iza. The nucleus is 
assumed to be 1H, and the empirical magnitude of the density operator is designated 
as mh. The analysis is shown in 1pulseshort.nb. In shorthand notation, this can be 
written as

eq
2

1 2
x t t( )

The 1pulseshort.nb analysis shows that applying a 90
x
° = (π/2)

x
 pulse to the effective 

equilibrium density operator, mh iza, causes it to become ρ
1
 = −mh iya. This quantum 

mechanical result for the density operator is the same one predicted by the Bloch 
equation for the magnetization vector M.

By allowing the density operator ρ
1
 to evolve during the acquisition time, 

1pulseshort.nb shows that one obtains the density operator ρ
2
(t) = −mh iya 

cos[wa  t] + mh ixa sin[wa t], where wa is the offset of the peak relative to the 
Larmor frequency (i.e., wa is equivalent to δ from Chapter 8) again consistent 
with the Bloch description of the magnetization vector M. The absorptive 
part of the density operator, expressed in ladder operators, is −1/2 i imina mh 
cos[t wa].

Example 2:
Single spin hit with 90° pulse with J‐coupling during acquisition.

1pulseshort.nb also analyzes the 1‐pulse sequence for one of two weakly J‐
coupled I = 1/2 nuclear spins, here assumed to be 13C (spin a) and 1H (spin x). In 
shorthand notation, this experiment is the same as example a, but in this case the 
13C‐1H J‐coupling Hamiltonian is present during the acquisition time t.

The equilibrium density operator is ρ
eq

 = mc iza + mh izx. The analysis, 
shown in 1pulseshort.nb, shows that the single pulse to the “a” spin yields 
ρ

1
 = −mc iya + mh izx. The density operator during the acquisition of the NMR 

signal is ρ
2
(t) = −mc iya cos[wa t] cos[π j t] + mc ixa sin[wa t] cos[π j t] − mc 2 iya 

izx sin[wa t] sin[π j t] + mc 2 ixa izx cos[wa t] sin[π j t] + mh izx, where j is the 
coupling constant in s−1.

The observable absorptive part of the NMR spectrum for spin a is −¼ i (mc 
imina cos[wa t − π j t] + mc imina cos[wa t + π j t]) and corresponds to a positive in‐
phase “doublet” centered at ω

a
/(2π) = ν

a
, with the two peaks occurring at ν

a
 + j/2 and 

ν
a
 − j/2. The J‐coupling splits the chemical shift frequency into two peaks at wa ± 

j/2 s−1 (Fig. 22.1).
The other parts of the density operator during acquisition for spin a are not 

directly observable in the phased spectrum and correspond to the p = 0, p = +1, and 
p = −1 dispersive and antiphase components. Each of these components has sin 
time  dependence that yields zero intensity at t = 0, hence zero intensity in the 
Fourier‐transformed spectrum.
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Example 3:
Evolution of antiphase magnetization terms.

As shown in 1pulseshort.nb, the antiphase components evolve into and out of 
observable in‐phase components if Ĥ

J
 is active, giving rise to an antiphase doublet 

centered at ω
a
/(2π) = ν

a
, with the two peaks occurring at ν

a
 + j/2 and ν

a
 − j/2 (Fig. 22.2).

Antiphase magnetization, especially heteronuclear antiphase magnetization, is 
extremely important in modern liquid‐state NMR. The next chapter discusses a pulse 
sequence that takes advantage of it.

Example 4:
NMR Spin Echoes, a Valuable Tool in NMR Pulse Sequences.

Case A: The echo pulse sequence in Figure 22.3 for two J‐coupled 1H spins is 
analyzed in echooneortwo.nb. The critical factor is that both coupled spins receive 
the hard π pulse (ω

1
 >> δ, J). The echo obtained depends only on J and 2τ, NOT on 

the chemical shifts of the two 1H spins. The effect of the chemical shift Hamiltonian 
Ĥ

CS
 is suppressed over the echo period 2τ.

νA – (j/2)νA + (j/2) νA s–1

Figure 22.1  Effect of J‐coupling of one I = 1/2 nucleus (spin A) to one other I = 1/2 nucleus 
(spin X). Only the spectrum of spin A is shown. The frequencies are expressed in s−1. Relative 
to the chemical shift ν

A
 of spin A, the frequencies of the two doublet peaks are +j/2 and −j/2 s−1, 

respectively.

νA – (j/2)

νA + (j/2) νA s–1

Figure 22.2  Antiphase J‐coupling of one I = 1/2 nucleus (spin A) to one other I = 1/2 nucleus 
(spin X). Only the antiphase spectrum of spin A is shown. The frequencies are expressed in s−1. 
Relative to the chemical shift ν

A
 of spin A, the frequencies of the two antiphase doublet 

components are +j/2 and −j/2 s−1, respectively.
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Case B: The echo pulse sequence shown later for J‐coupled heteronuclei like 
1H and 13C is analyzed for two spins in echooneortwo.nb. Here only the 1H spin 
receives a hard π pulse. The echo obtained depends only on the 13C chemical shift δ 
and 2τ, NOT on the 1H‐13C J‐coupling. The effect of the heteronuclear 1H‐13C J‐coupling 
Hamiltonian Ĥ

J
 is suppressed over the echo period. The 1H has been decoupled from 

13C. The decoupling of 1H during acquisition of the 13C free induction decay consists 
of the equivalent of a series of π rf pulses (Fig. 22.4).

Explanation of 1pulseshort.nb

The user is told to evaluate shortspin.nb, then close it without saving. The first case 
analyzed (Example 1) is of a single spin where the equilibrium density operator is sub-
jected to a strong π/2 rf pulse (ω

1
 >> δ) along the x axis of the rotating frame. The 

function a0 identifies the spin as the “a” spin, and the 0 indicates the x axis rf phase. 
The hard pulse nutates the equilibrium density operator by π/2 rad around the x axis. The 
starting equilibrium density operator is designated as mh iza. After the rf pulse, the 
resulting density operator ρ

1
 is −mh iya. The −y axis predicted for the density operator 

is exactly the same as predicted for the “magnetization” in the Bloch equations.
The next cells demonstrate that the function mq converts from Cartesian to 

ladder operator representation of the density operator. The −mh iya density operator 
corresponds to a mixture of iplusa and imina components.

Relaxation
delay τ τ

π/2 π
ϕrecvr

1H

Figure 22.3  The Spin Echo NMR Experiment for two coupled 1H spins. The narrow vertical 
rectangle represents a π/2 rf pulse and the thick vertical rectangle represents a π rf pulse. Both 
J‐coupled spins are hit with the rf pulses. As shown in echooneortwo.nb, the effect of the 
chemical shift Hamiltonian is suppressed over the 2τ period.

13C

1H

Decouple

Figure  22.4  Heteronuclear Spin Echo Experiment for a 13C coupled to 1H. The narrow 
vertical rectangle represents a π/2 rf pulse to the 13C spin and the thick vertical rectangle 
represents a π rf pulse to the 1H spin. The effect of the J‐coupling Hamiltonian is suppressed 
over the 2τ period. The chemical shift Hamiltonian is preserved.
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The next cells show the calculation used to obtain the time‐dependent acquisi-
tion density operator ρ

acq
. The coupling constant j is zero because there is no scalar 

coupling, so the ρ
acq

 −y and +x components oscillate as cos[t wa] and sin[t wa], 
respectively. Converting to ladder operators with the function mq shows that the 
density operator is an equal mixture of imina and iplusa. The user is then reminded 
that only the p = −1 part, that is, the imina part, is observable. The absorptive peak 
oscillates as cos[t wa]. The dispersive peak oscillates as sin[t wa].

(Example 2) The a spin is 13C. The x spin is 1H. There is scalar coupling of j s−1 
between them. The equilibrium density operator ρ

0
 = mc iza + mh izx. The a0 rf pulse 

to the 13C nucleus does not affect the 1H spin, so the resulting density operator ρ
1
 

contains the equilibrium 1H component mh izx.
The next cells show the time‐dependence of the spin density operator ρ

2acq
 in 

Cartesian and ladder operator form. The absorptive p = −1 component oscillates as 
cos[t wa] cos[j π t] and corresponds to a positive “doublet” at (wa + πj) rad s−1 and 
(wa − πj) rad s−1. The built‐in Mathematica function TrigReduce is used to simplify 
some of the expressions.

(Example 3) The next cells calculate the time‐dependence of the unobservable 
“antiphase” part 2 mc ixa izx of ρ

2acq
. The analysis shows that the unobservable 

antiphase part evolves into an absorptive antiphase doublet with a positive peak 
at (wa + πj) and a negative peak at (wa − πj).

Explanation of echooneortwo.nb

The user is instructed to evaluate shortspin.nb, then close it without saving changes.
(Example 4, Case A) Both spins are 1H, and the equilibrium density operator 

mh iza + mh izx is nutated by the initial π/2 rf pulse along the x axis of the rotating 
frame (ax0). The density operator evolves with both chemical shift and J‐coupling 
during the first delay period t and then is hit with the π rf pulse along the x axis of the 
rotating frame. A second delay period of the duration t allows for further chemical 
shift and J‐coupling evolution. After the second delay, the density operator shows 
no dependence on chemical shift. Only J‐coupling has occurred over the period 2t. 
The chemical shift evolution has been suppressed.

(Example 4, Case B) The “a” spin is 1H and the “x” spin is 13C. The equilibrium 
density operator mh iza + mc izx is subjected to π/2 rf pulses along the x axes of 
the respective rotating frames at both Larmor frequencies to yield the density oper-
ator −mc iyx − mh iya. This density operator evolves during the first delay period 
t subject to chemical shift and J‐coupling. At this time, the resulting density operator 
is hit with a π pulse to the 1H spin only along the x axis of the rotating frame (a0). 
Note that %% refers to the output from the cell before last. After the π rf pulse to 
the density operator, the second delay period t allows for both chemical shift and 
J‐coupling evolution. The resulting density operator, mh iya − mc cos[2 t wx] iyx + mc 
sin[2 t wx] ixx, shows that the density operator of the x spin has no dependence 
on J‐coupling over the period 2t. For the 13C spin, chemical shift evolution has 
occurred but the J‐coupling evolution has been suppressed. This behavior is the basis 
of “decoupling.”
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(Example 4, Case C) Here, we again have the “a” spin as 1H and the “x” spin 
as 13C. This time we hit only the 13C spin with a π/2 pulse along the x axis of the 
rotating frame (x0). During the first delay period t, both chemical shift and J‐coupling 
evolution occur. Then the 1H spin only is hit with a π pulse along the x axis of the 
rotating frame, followed by a second delay period t with both chemical shift and J‐
coupling evolution. Again the J‐coupling between the 1H and 13C spins is suppressed, 
leaving only the chemical shift dependence.

(Example 4, Case D) Again the “a” spin is 1H and the “x” spin is 13C. Only the 
1H spin is hit with a π/2 rf pulse along the x axis of the rotating frame. This is followed 
by a delay of duration 1/(4 j) during which the density operator evolves with both the 
chemical shift and J‐coupling. Then a π pulse along the x axes of the respective 
rotating frames is given to both spins (ax0). Then a second delay of duration 1/(4 j) 
allows evolution with both chemical shift and J‐coupling. The resulting density 
operator is −mc izx − 2 mh ixa izx. The 1H signal is pure antiphase.
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Analysis of the Inept 
Pulse Sequence with 
Program Shortspin 
and Program Poma

Chapter  23

Figure 23.1 shows the INEPT pulse sequence. INEPT is an acronym for Insensitive 
Nucleus Enhancement by Polarization Transfer.

In Figure 23.1, the sensitive nucleus is 1H and the insensitive nucleus is 13C. 
The INEPT sequence also works for many other insensitive I = 1/2 nuclei such as 15N. 
For the case of 1H–13C coupling, j = 1J

CH
 is the coupling constant, typically approxi-

mately 145 s−1 for 1H directly bonded to 13C, and the phase cycle is:

ϕ
1
 = 0 2 3 1 1 3 0 2 2 0 1 3 3 1 2 0    in units of π/2

ϕ
2
 = 0 0 3 3 1 1 0 0 2 2 1 1 3 3 2 2    in units of π/2

ϕ
3
 = 1 1 0 0 2 2 1 1 3 3 2 2 0 0 3 3    in units of π/2

ϕ
4
 = 0 0 3 3 1 1 0 0 2 2 1 1 3 3 2 2    in units of π/2

ϕ
5
 = 0 2 0 2 1 3 1 3 2 0 2 0 3 1 3 1    in units of π/2

ϕ
recvr

 = 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3    in units of π/2

After adding (360° − ϕ
recvr

) or (4 − ϕ
recvr

 in units of π/2) to all pulse phases, the phase 
cycle simplifies to the following:

ϕ
1
 = 0 2 3 1

ϕ
2
 = 0 0 3 3

ϕ
3
 = 1 1 0 0

ϕ
4
 = 0 0 3 3

ϕ
5
 = 0 2 0 2

ϕ
recvr

 = 0 0 0 0

Pulse‐by‐pulse, delay‐by‐delay analysis with program shortspin.nb in inept.nb shows 
that polarization transfer from 1H to 13C is achieved and that all other coherence is 
cancelled by destructive interference. The polarization transfer is indicated by the 
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“mh” intensity term of the resulting 13C antiphase coherence. If one allows the anti-
phase coherence to evolve for a period τ such that sin[π j τ] = 1 or −1, the antiphase 
coherence becomes in‐phase coherence for 13C with magnitude mh. The larger signal 
from 1H has been transferred to the 13C nucleus. The INEPT method for enhancing the 
signal of insensitive nuclei like 13C and 15N is widely used in advanced pulse sequences.

The notebook ineptpoma.nb shows how the same pulse sequence is analyzed 
using program poma.nb. POMA is more convenient for fast analysis of an entire 
pulse sequence, but as shown in ineptpoma.nb the symbols such as J

12
 cannot be eval-

uated numerically.

Explanation of inept.nb

The user is instructed to evaluate shortspin.nb, then close it without saving changes. 
After reduction to constant receiver phase as described earlier, the analysis requires 
evaluation of the INEPT pulse sequence for four different sets of radio frequency (rf) 
pulse phases.

The first set of pulses starts with a (π/2)
x
 rf pulse to the “a” spin (the 1H spin). 

This is followed by a delay of duration 1/(4 j), where j is the 1H–13C J‐coupling 
constant. Then both the 1H and 13C spins receive a π

x
 rf pulse. This is followed by 

another delay of duration 1/(4 j). Then the 1H spin is hit with a (π/2)
y
 rf pulse at the 

same time as the 13C spin receives a (π/2)
x
 rf pulse. The resulting density operator is 

sig1 = mc iyx −2 mh iyx iza.

Relaxation
delay

πϕ2

FIDϕrecvr

Loop back to accumulate signal for ns scans

Short delay to
save data,
advance phase
cycle

(π/2)ϕ1 (π/2)ϕ3

(π/2)ϕ5πϕ4

1/(4j) 1/(4j)
1H

13C

Figure  23.1  The INEPT pulse sequence. The narrow vertical rectangles represent π/2 rf 
pulses, and the thick vertical rectangles represent π rf pulses. The chemical shift Hamiltonian 
is suppressed and the J‐coupling Hamiltonian is preserved over the 2 (1/4j) intervals. The two 
final π/2 rf pulses to the 13C and 1H spins transfer the polarization of the 1H spin to the coupled 
13C spin, improving sensitivity.
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The second set of pulses and delays are identical in duration and nutation angle 
to the first but with different phases for the rf pulses. The resulting density operator 
is saved as sig2 = −mc iyx −2 mh iyx iza.

The third set of pulses and delays are identical in duration and nutation angle 
to the first and second but with different phases for the rf pulses. The resulting density 
operator is saved as sig3 = mc iyx −2 mh iyx iza.

The fourth set of pulses and delays are identical in duration and nutation angle 
to the first, second, and third but with different phases for the rf pulses. The resulting 
density operator is saved as sig4 = −mc iyx −2 mh iyx iza.

Adding sig1 + sig2 + sig3 + sig4 gives the density operator at t = 0 of the acqui-
sition interval. The result is sigtot = −8 mh iyx iza. The important aspect to note is 
that this is pure antiphase magnetization of the x spin (13C) with respect to the a spin 
(1H) and that this antiphase signal has the magnitude of the 1H spin.

The resulting antiphase signal is not itself observable but evolves under 
chemical shift and J‐coupling during the acquisition time into in‐phase observable 
13C coherence with the magnitude of an 1H signal. The observable absorptive part of 
the signal is the 4 mh ixx cos[t wx] sin[ j π t].

Finally, to show the effect of 1H decoupling on the observability, we “decouple” 
the evolution of the sigtot density operator by setting j = 0 in the acquisition delay. 
With j = 0, the antiphase magnetization does NOT evolve into observable in‐phase 
coherence.

Explanation of ineptpoma.nb

The user is instructed to evaluate poma.nb and then to close it without saving changes. 
The same phase cycle, reduced to constant receiver phase, is used for this analysis as 
for the analysis with shortspin.nb. The advantage of POMA is that the density oper-
ator resulting from the sum of all four sets of rf pulse phases can be calculated with 
one input line. The spins in poma.nb are identified with numbers. In this case, spin 1 
is 1H and spin 2 is 13C. The starting equilibrium density operator is mh spin[1,z] + mc 
spin[2,z]. The // indicates that the subsequent “pulse” command use the preceding 
output (the equilibrium density operator) as input for the pulse. The first rf pulse is 
applied to spin 1 (the 1H spin) only, so the command is pulse[90,{x,−x,−y,y},{1}]. 
Note that it is allowed to identify the nutation angle of the rf pulse in degrees rather 
than radians. The four allowed pulse phases for the first pulse are identified within 
squiggly brackets, and the fact that only spin 1 (the 1H spin) is hit with these pulses 
is indicated by the 1 enclosed in squiggly brackets. The output from this command is 
used as input for the “delay” command, where the duration of the delay is set to t1 
(rather than 1/(4 j)—this will be explained later) and the J‐coupling between spins 1 
and 2 is indicated by the {{1,2}}. The output from this delay is used as input for the 
following pulse command where the nutation angle is set to 180°, the four allowed 
pulse phases are identified within squiggly brackets, and the fact that both spins are 
hit with the 180° pulse is indicated by {1,2}. The output from this pulse is followed 
by another delay of duration t1, then a 90° pulse with phases {y,y,x,x} to spin 1 and 
then a 90° pulse with phases {x,−x,x,−x} to spin 2. The output is then passed on to the 
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receiver, where the receiver phase (which has been “reduced” to constant phase 0 
or x) is identified as {0,0,0,0}.

The poma.nb density operator result for the whole INEPT pulse sequence is 
−mh sin[2 π t1 (J12)] i1z i2y. We try to make the substitution t1 → 1/(4 J12), but the 
program cannot recognize that J12/J12 = 1. Another minor problem with the result is 
that the coefficient for the resulting antiphase magnetization is 1 rather than 8. With 
this caveat, the poma.nb analysis gives the same result as obtained with shortspin.nb 
in inept.nb.

Homework

Homework 23.1: Considering the natural abundances of 13C and 1H, describe a 
chemical method that could be used to further improve sensitivity of the INEPT 
experiment. What additional interaction would have to be considered?

Homework 23.2: Analyze the following pulse sequences (i) DEPT‐135 
(Doddrell et al., 1982)1 and (ii) BIRD (Garbow et al., 1982).2

1 Use θ = 3π/4 = 135°.
2 Use the pulse sequence in Figure 2 (a) from this paper.
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The Radio Frequency 
Hamiltonian

Chapter  24

In modern NMR spectrometers, the radio frequency (rf) Hamiltonian

	
ˆ ˆ ˆ(cos( ) sin( ) )H I Irf 1 x y 	

(24.1)

is under precise human control. The frequency and amplitude of ω
1
 as well as the 

phase ϕ can be changed quickly and arbitrarily, typically in less than 3 µsec, with 
maximum nutation frequencies1 (ω

1
/2π) up to about 200 × 103 s−1 achievable. Even 

higher nutation frequencies are possible with smaller rf coils, but the NMR samples 
in these contain fewer nuclei. In the preceding examples of liquid‐state NMR pulse 
sequences, it was assumed that the rf pulses were “hard,” such that ˆ ˆH H .rf internal  
This is a reasonable approximation for most liquid‐state NMR samples where rapid 
reorientation of the nuclei‐containing molecules averages the internal Hamiltonians. 
In general, the only surviving internal Hamiltonians in liquid‐state NMR are the 
relatively weak isotropic chemical shift and J‐coupling Hamiltonians Ĥcs and Ĥ .J  
In solid‐state NMR samples, this approximation often fails because the magnitudes 
of the dipolar and quadrupolar internal Hamiltonians can be comparable with or 
greater than ˆ .Hrf

An rf pulse applied to an ensemble of nuclear spins at their resonant Larmor 
frequency almost always has negligible effects on other NMR nuclei with different 
Larmor frequencies since these are almost always outside the spectral excitation 
bandwidth of the rf pulses.2 An exception to this occurs when there are heteronuclear 
internal Hamiltonians such as ĤD (in the solid state) or ĤJ (in the solid or liquid state) 
that couple nuclei with different Larmor frequencies. In such cases, rf pulses on one 
NMR‐observable isotope can have significant effects on the density operator for 
other NMR‐observable isotopes.

In this chapter, the spectral excitation bandwidths of a π/2 (π/2 = ω
1
 τ

pulse
) 

rectangular rf “x” pulse (ϕ = 0 in Eq. 24.2) and of a π/2 truncated sinc‐shaped “x” rf 
pulse are compared using density matrix theory (see excitation_bandwidth.nb) for an 

1 The nutation frequency is the rate at which the magnetization rotates around the rf field.
2 The excitation bandwidth can be defined as the frequency range for which the rf pulse(s) significantly 
change the density operator for the observed spins.
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I = 1/2 nuclear spin. In these calculations, it is assumed that the sample is in the liquid 
state and that the only non‐zero internal Hamiltonian is the isotropic chemical shift 

CS_ isoH Îz so that in this case the total rotating frame Hamiltonian during the rf 
pulse is

	 pulse rf CS_ iso 1( )(cos( )I sin( )ˆ ˆ ˆH H ) IH Ix y zt
	

(24.2)

where in the case of the rectangular pulse ω
1
 is constant and ϕ = 0. An analytical solu-

tion for the observable NMR signal from the combined effects of the π/2 rf pulse and 
chemical shift offset δ is obtained by evaluating ˆTrace[I ]. , Equation 18.1, on the 
density operator obtained immediately after the rectangular pulse (see excitation_
bandwidth.nb):

( )

cosh / sinh

_NMR signal

i

rect 90

1
2

1
2

1
2

1
22 2

1
2

1

2
1

2

2

2

/

( ) 	
(24.3)

where both ω
1
 and δ have units of rad s−1. If δ = 0 (on‐resonance), the resulting signal 

is −i/2 regardless of the value of ω
1
, indicating that the equilibrium magnetization has 

been rotated to the −y axis in the rotating frame as expected for a (π/2)
x
 pulse. For 

non‐zero values of δ the NMR signal is less, as calculated in excitation_bandwidth.nb 
and shown in Figure 24.1.

500,000–500,000 1×106–1×106

–0.1

0.1

0.2

0.3

0.4

0.5

Figure  24.1  Offset dependence of rectangular (π/2)
x
 pulses with different durations 

(τ
pulse

 = (π/2)/ω
1
) and different rf field strengths ω

1
. The imaginary part of the NMR signal 

<I+. ρ(t)>, −I
y
(t) from Equation 24.3 is plotted against the offset δ/(2π) in s−1: Dashed curve: 

ω
1
 = 2π × 5 × 105 rad s−1. Thick solid oscillation: ω

1
 = 2π × 5 × 104. Thin solid oscillation: 

ω
1
 = 2π × 5 × 103 rad s−1. The damped oscillatory response is equivalent to a sinc function. The 

maximum signal intensity is +0.5 for an on‐resonance (π/2) pulse.
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As shown in excitation_bandwidth.nb, the sinc offset dependence is not unex-
pected, since the Fourier transform of a rectangular pulse yields the sinc function. The 
Fourier transform of the time‐dependence of an rf pulse yields the excitation profile in 
the frequency domain. In the same way, the Fourier transform of a sinc‐shaped pulse has 
a rectangular excitation profile (see excitation_bandwidth.nb). The absolute value of the 
NMR signal after a sinc pulse has a much wider excitation profile than the equivalent 
rectangular pulse. For a given pulse, regardless of shape, the excitation bandwidth is 
proportional to ω

1
. The negative values for ω

1
 in the sinc pulse are experimentally 

achieved by switching the rf phase from +x to −x when the sign of the sinc function 
becomes negative. The sinc function and many other shaped pulses allow for selected 
regions or individual peaks in the NMR spectrum to be selectively excited (or inverted). 
Such pulses are called selective or shaped pulses. A special class of shaped pulses called 
“adiabatic” pulses are also widely employed. These pulses change frequency and phase 
as a function of time and can give extremely wide excitation bandwidths.

Explanation of excitation_bandwidth.nb

The user is instructed to evaluate matrep2.nb and then close it without saving 
changes. The equilibrium density matrix ρ0 = iz[1/2] for an I = 1/2 nuclear spin is 
defined. The chemical shift and rf Hamiltonians H

CS
 = δ iz[1/2], H

rf
 = ω

1
 ix[1/2], and 

H
tot

 = H
CS

 + H
rf
 are defined.

The propagator operators u and uadj are calculated using the built‐in 
Mathematica function MatrixExp, then simplified with the built‐in function 
FullSimplify.

These are used to propagate the equilibrium density operator ρ0, yielding the 
density operator ρ1 after the pulse.

The NMR signal intensity immediately after the pulse, sig, is given by the 
trace[iplus[1/2].ρ1], and simplified with the built‐in function FullSimplify. The 
resulting maximum signal intensity is −0.5 i, which means that the maximum signal 
is obtained on the −y axis (−i axis) of the rotating frame.

The next cells substitute (π/2)/ω
1
 for the duration t of the rf pulse. The resulting 

expression for the NMR signal is used to create the function sig90[δ,ω
1
].

The function sig90 is plotted (built‐in Mathematica function Plot) as a 
function of ν for δ = 2 π ν, ω

1
 = 2 π 5 × 104 rad s−1 from ν = −100 × 104 s−1 to 100 × 104 s−1.

The function sig90 is then plotted as a function of ν for ω
1
 = 2 π 5 × 104 rad s−1,  

ω
1
 = 2 π 5 × 103 rad s−1, and ω

1
 = 2 π 5 × 105 rad. The excitation bandwidth is proportional 

to ω
1
. Some variations in the PlotStyle are shown.
The built‐in Mathematica function FindRoot is next used to show that the 

half‐bandwidth is proportional to ω
1
.

The integral in radians of a rectangular pulse is obtained by multiplying the 
pulse duration and ω

1
. For example, a 5‐µs rf pulse with ω

1
 = 2 π 104 rad s−1 yields 

an integral of π/2.
The next cells solve for a truncated sinc‐shaped pulse with eight nodes that has 

the same integral as the rectangular pulse. Since the duration of the sinc pulse in the 
calculation is 4 µs rather than 5 µs, the argument of the sinc function in the integral 
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over 5 µs is 2 π (4/5) 106 t. We find that the maximum amplitude of the sinc pulse 
must be 8.42159 × 2 π 104 rad s−1.

The Fourier transform of a full nontruncated sinc pulse excitation profile is 
calculated by using the built‐in Mathematica function FourierTransform. The result-
ing profile is rectangular. However, keep in mind that this is for a full sinc function, 
not the truncated one used earlier.

The Fourier transform of the rectangular pulse is calculated next. It yields 
the  sinc function. The Fourier transform of the sinc function conversely yields a 
positive rectangular pulse shape. The Fourier transform of −sinc function yields a 
negative rectangular pulse as expected.

The next series of cells uses the density matrix approach to calculate the exci-
tation profile of the eight‐node sinc pulse. The function hrfsinc gives the time‐
dependent rf Hamiltonian that had the same integral as the rectangular pulse with 
ω

1
 = 2 π 5 × 104. We calculate a second time‐dependent Hamiltonian hrfsinc2 for a 

pulse with the same integral as a rectangular pulse with ω
1
 = 2 π 5 × 103.

The Hamiltonians hpulse[t] = δ iz[1/2] + hrfsinc[t] and hpulse2[t] = δ 
iz[1/2] + hrfsinc2[t] are calculated. Then tables of values of hpulse[t] and hpulse2[t] 
over the 5‐µs duration of the sinc pulse are calculated assuming δ = 0.

The hpulse and hpulse2 tables are then used to calculate the time‐dependent 
propagators needed to calculate the density operator after the pulse. These are then 
used sequentially with the built‐in Mathematica function Do to calculate the density 
operator after the pulse. We see that the on‐resonance (δ = 0) sinc pulse we calculated 
to be equivalent to the rectangular pulse with ω

1
 = 2 π 5 104 fully excites the density 

operator to −0.5 i. The weaker on‐resonance sinc pulse with ω
1
 = 2 π 5 103 does not.

We then calculate time‐dependent expectation values for −iy[1/2], ix[1/2], and 
iz[1/2]. After the pulse they yield the expected results of 0.5, 0, and 0, respectively.

Next we look at the offset (δ) dependence of the sinc pulse. We create an offset 
and time‐dependent table of hpulse Hamiltonians that we call htab.

We use the table of time‐dependent Hamiltonians to propagate the equilibrium 
density operator ρ[0] = ρ0 over the duration of the sinc pulse. The resulting set of 
1001 different density operators with different δs is called rho. Note that each m 
value corresponds to a different offset δ and that each offset generates 51 n incre-
ments, the last of which gives the density operator after the pulse.

Next the NMR signal for the 51st increment of each of the 1001 offsets is 
calculated by taking the trace of rho[[m]][[51]].iplus[1/2]. These are used with the 
built‐in Mathematica function ListPlot to plot the offset dependence.

It is clear that the phase of the NMR signal varies with offset, but as shown in the 
table sincsigabs, the absolute value of the NMR signal gives an approximately rectangular 
excitation profile. It is approximate because we have used only an eight‐node sinc function.

The excitation profile of the rectangular pulse is then compared with that of the 
sinc pulse. Again the absolute value of the NMR signal is plotted. The subsequent plot 
shows both excitation profiles and the much broader excitation profile of the sinc pulse.

We then repeat the excitation profile calculations for the sinc and rectangular 
pulses using a 5‐ms rf pulse with ω

1
 = 2 π 50 rad s−1. We find that the shape of the 

resulting excitation profile is exactly the same as for ω
1
 = 2 π 5 × 104 s−1 but exactly 

1000 times narrower.
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Comparison of 1D and 
2D NMR

Chapter  25

One‐dimensional (1D) NMR experiments consist of a pulse or sequence of pulses and 
delays immediately preceding the acquisition and digitization of the complex NMR signal 
(free induction decay (FID)) in the rotating frame (see Chapters 4, 20, and 22). Adjacent 
complex data points are separated by the “dwell” time. The total time during which 
the NMR signal is digitized is called the acquisition time, often denoted as t

2
 (Fig. 25.1).

Due to the finite lengths of cables and connectors, the exact phase of the 
absorption spectrum in the electronically determined experimental rotating frame is 
unknown. A zero‐order phase correction is used to rotate the x axis of the frame into 
coincidence with the on‐resonance magnetization immediately after the pulse. A first‐
order phase correction is then used to correct for phase differences of the magnetiza-
tion that vary linearly with frequency away from resonance. In some NMR experiments, 
the phase of the peaks in the spectrum varies, and a “magnitude” spectrum is obtained 
by squaring each complex data point (i.e. fid(n) × fid(n)*) in the transformed spectrum, 
then taking the square root, where fid(n) is the nth complex data point in the FID.

Two‐dimensional (2D) NMR experiments operate by repeating the 1D 
experiment while incrementing or decrementing a nonacquisition delay and saving 
the data from each 1D experiment in a separate row for each different delay value. 
This is illustrated in the Figure 25.2. The basic idea is to manipulate the density oper-
ator with the pulses, delays, and phase cycle (and perhaps pulsed magnetic field gra-
dients) so that it has the desired form during the t

1
 evolution interval and t

2
 acquisition 

interval. For example, by using heteronuclear J‐coupling and coherence transfer sim-
ilar to that described in the preceding chapter, it is possible to manipulate the density 
operator so that it evolves at the 13C chemical shift during the t

1
 interval and at the 1H 

chemical shift during the t
2
 acquisition interval.

It should be apparent that the same principle can be used to create 3D and 4D 
NMR experiments.

“Tricks” to obtain absorption mode peaks in both the t
1
 and t

2
 intervals include the 

time proportional phase incrementation (TPPI) (Marion and Wuthrich, 1983), States 
(States et al., 1982), and hypercomplex methods (Keeler and Neuhaus, 1985). Another 
“trick” to obtain an approximate gain of √2 in sensitivity is obtained with the aptly named 
sensitivity improvement method (Palmer et al., 1991). These and other methods are very 
important experimentally but less so to the theoretical discussion presented here.
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Pulse or pulses and delays

t2

f2

FID (NMR signal)

FID

Fourier transform
and phase result

Phased spectrum

(a)

(b)

Figure 25.1  1D NMR. (a) The complex NMR signal or FID is saved after the appropriate 
pulses and phase cycle. Only the real part of the FID is shown. (b) The complex FID is Fourier 
transformed to yield the 1D spectrum, which is then phased.

Figure 25.2  (Part 1) Two‐dimensional NMR experiments. (a) The radio frequency (rf) pulse 
sequence and (b) phase cycle generate a complex NMR signal FID(t

1
, t

2
). (c) The t

1
 value is 

incremented (or decremented) to generate the different FID(t
1
, t

2
)s. (d) The different FID(t

1
, t

2
)s 

are Fourier transformed with respect to t
2
, then phased to yield a sequence of 1D NMR spectra in 

rows, SPC( f
2
, t

1
). 

Preparation pulses
and delays

Evolution-may
have pulses and
delays

Mixing-
pulses
and
delays

Acquisition—NMR
signal (FID) Detection

(b) Complete phase cycle for each t1value, acquiring the NMR signal during t2. Save this
as FID(t1, t2)

(c) Increment or decrement t1, then repeat step b for the new t1value.
(d) Fourier transform the “rows” of the FID(t1, t2) with respect to t2 where each row is

de�ned by its t1value. This yields the spectra  SPC( f2, t1):

Row 1

Row 2
Row 3

etc
Column

1596
Column

1857

t1f2

τprep τmix

(a)

t1 t2
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(e) Now, FT each column of SPC( f2, t1) of the spectrum with respect to t1:

Column 1596

Column 1857
t1

FT

f1

(f) It is useful to represent the 2D spectrum SPC( f2, t1) as a topographical map:

f1

f2

Figure 25.2  (Continued) (Part 2) (e) Fourier transform the columns with respect to t
1
 to 

yield the 2D spectrum SPC( f
2
,f

1
). (f) Contour plots are often used to represent the 2D NMR 

spectrum.
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Analysis of the HSQC, 
HMQC, and DQF‐COSY 2D 
NMR Experiments

Chapter  26

Three of the most useful liquid‐state two‐dimensional (2D) NMR pulse sequences 
for structural elucidation are the HSQC (heteronuclear single quantum coherence) 
(Bodenhausen and Ruben, 1980), HMQC (heteronuclear multiple quantum coher-
ence) (Bax et al., 1983), and homonuclear DQF‐COSY (double quantum filtered 
correlation spectroscopy) (Derome and Williamson, 1990). The HSQC sequence is 
depicted in Figure 26.1 and the HMQC sequence is depicted in Figure 26.2.

The preparation part of the HSQC pulse sequence (before the t
1
 evolution time) 

can be recognized as the Insensitive Nuclei Enhanced by Polarization Transfer 
(INEPT) pulse sequence (Chapter 23). It is used to transfer the larger 1H signal to the 
X nucleus (see hsqc_shortspin.nb). The 180° pulse on the 1H during the t

1
 evolution 

time decouples the 1H from the 13C, and the INEPT pulse sequence then returns the 
coherence to in‐phase 1H magnetization while the X nucleus is decoupled during the 
acquisition time t

2
. The name of this pulse sequence describes the single quantum 

evolution of the eventually observable antiphase coherence of 13C with respect to 1H 
during the t

1
  interval (see hsqc_shortspin.nb). The Mathematica notebook hsqc_

poma.nb calculates the result for the overall phase cycle and yields the same result.
The preparation part of the HMQC pulse sequence (before the t

1
 evolution time) 

generates a mixture of double and zero quantum coherence (see hmqc_shortspin.nb). 
The 180° pulse on the 1H decouples the 1H from the 13C during t

1
, and the final delay 

for acquisition returns the coherence to in‐phase 1H magnetization, which is decou-
pled from the X nucleus during the acquisition time t

2
. The name of this pulse sequence 

describes the mixture of double and zero quantum evolution of the density operator 
during the t

1
 interval (see hmqc_shortspin.nb). The Mathematica notebook hmqc_

poma.nb calculates the result for the overall phase cycle and yields the same result.
After Fourier transformation and phase correction in both dimensions, the 

experimental 1H‐13C HMQC of Δ9‐tetrahydrocannabinol (Δ9‐THC) dissolved in 
deuterated methanol is shown in Figure  26.3, with the one‐dimensional (1D) 1H 
spectrum along the top and the 1D 13C spectrum along the left‐hand side of the 2D 
spectrum. The large artifact is from the residual 1H signal of CD

3
OH solvent.
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The 2D HSQC experiment gives exactly the same spectrum as the HMQC. The 
HSQC is better than the HMQC for 1H–15N correlations because during t

1
 evolution 

the p = +1 and −1 coherences relax more slowly than p = +2, 0, and −2 coherences. 
The opposite is true for 1H–13C correlations, where the HMQC is advantageous 
because the p = +2, 0, and −2 coherences relax more slowly during the t

1
 evolution. 

Note that carbon atoms without directly bonded hydrogen atoms do not give cross 
peaks in the spectrum. This is evident in the 1D 13C spectrum on the left side of 

13C, or 15N

x –y

ϕ1

y

ϕ2

∆∆∆ ∆

t1
Decouple

ϕrecvr

t2
1H

Figure 26.1  The heteronuclear single quantum coherence (HSQC) NMR experiment. The 
thin and thick vertical rectangles represent 90° and 180° hard pulses (ω

1
 >> δ) applied to the 1H 

and X (e.g., 13C or 15N) nuclei. The delay Δ is 1/(4 1J
HX

). Decoupling of the X spins during t
2
 

acquisition is achieved with an appropriate decoupling pulse sequence such as WALTZ‐16 or 
Globally Optimized Alternating Phase Rectangular Pulse (GARP) (Shaka et al., 1985). The x, 
−y, and y indicate the phases of the respective 1H pulses in the 1H rotating frame, with ϕ

1
 = x 

−x x −x (0 2 0 2 in 90° units) and ϕ
2
 = x x −x −x (0 0 2 2) the phases of the 13C pulses in the 13C 

rotating frame, and ϕ
rcvr

 = x −x −x x (0 2 2 0) in the 1H rotating frame, and with the phase of the 
180° pulse constant and arbitrary. Decoupling sequences are composed of 180 degree pulses 
applied to one of the heteronuclear spins. The pulses are often shaped rather than rectangular. 
In modern NMR decoupling is optimized for bandwidth and the degree of suppression of 
heteronuclear J‐coupling.

ϕ1 ϕ2

t1
Decouple

x

τ

τ

t2

ϕrecvr

13C, or 15N 

1H

Figure  26.2  The heteronuclear multiple quantum coherence (HMQC) NMR experiment. 
The thin and thick vertical rectangles represent 90° and 180° hard pulses (ω

1
 >> δ) applied to 

the 1H and X (e.g., 13C or 15N) nuclei. The delay τ is 1/(2 1J
HX

). Decoupling of the X spins 
during t

2
 acquisition is achieved with an appropriate decoupling pulse sequence such as 

WALTZ‐16 or GARP (Shaka et al., 1983, 1985). The phase of the first 1H pulse in the 1H 
rotating frame is x, ϕ

1
 = x −x x −x (0 2 0 2), ϕ

2
 = x x −x −x (0 0 2 2) in the 13C rotating frame, 

ϕ
rcvr

 = x −x −x x (0 2 2 0) in the 1H rotating frame, and the phase of the 1H 180° pulse does not 
matter as long as it is held constant.
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Figure 26.3, where the two 13C resonances closest to 140 ppm do not give cross peaks 
in the HMQC. Hydrogen atoms with no directly bonded C atoms also give no cross 
peak. The largest peaks in the 1D 1H spectrum shown earlier, truncated because they 
are so large, are those from the OH groups of methanol and water. Neither hydrogen 
gives rise to a cross peak in the HMQC, although the huge signal from the methanol 
OH does give rise to a large artifact at the bottom of the spectrum.

A robust experiment for identifying J‐coupled pairs of 1H spins is the homonu-
clear DQF‐COSY experiment, shown in Figure 26.4.

The first pulse of the DQF-COSY experiment generates single quantum coher-
ence that evolves with the chemical shifts and J‐coupling during t

1
, just like a one 

pulse free induction decay. The next two pulses are given as close to each other in 
time as possible, typically 3 µs apart on a modern spectrometer. The effect of the two 
pulses in combination with the phase cycle is to cancel all signals in the final signal 
except for those that have been through an exclusive p = +2 and p = −2 (double 
quantum) coherence level in the short time between the 2D and 3D pulse. The anti-
phase signal that survives after the phase  cycle evolves into observable in‐phase 
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F1
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Figure 26.3  The 1H‐13C 2D HMQC spectrum of 1 mg of Δ9‐tetrahydrocannabinol dissolved 
in deuterated methanol (ideally CD

3
OD, where D = 2H). The 1D 1H NMR spectrum is shown 

on the top and the 1D 13C spectrum (1H decoupled) is shown on the left side. The three truncated 
large signals in the 1D 1H NMR spectrum on the top are from methanol OH, water OH, and 
methanol CH. These large signals give rise to the artifacts toward the bottom of the 2D HMQC 
spectrum.

1H

ϕ1 ϕ2 ϕ3

t1

t2

ϕrecvr

Figure 26.4  The double quantum filtered COSY (DQF‐COSY) NMR experiment (Derome 
and Williamson, 1990). The thin vertical rectangles represent 90° hard pulses (ω

1
 >> δ) applied 

to the 1H nuclei (or other abundant I = 1/2 nuclei such as 19F). The respective phases of the 1H 
pulses in the rotating frame are ϕ

1
 = y y y y x x x x (1 1 1 1 0 0 0 0), ϕ

2
 = x x x x y y y y (0 0 0 0 1 

1 1 1), ϕ
3
 = y −x −y x −x −y x y (1 2 3 0 2 3 0 1), and ϕ

rcvr
 = x −y −x y −y −x y x (0 3 2 1 3 2 1 0).
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magnetization during the t
2
 time interval. The observable signal contains contributions 

from signals that oscillate at the chemical shift of one spin during t
1
 and the coupled 

spin during t
2
, thereby creating off‐diagonal cross peaks in the resulting 2D spectrum.

After Fourier transformation and phase correction in both dimensions, the 
experimental 1H DQF‐COSY of Δ9‐THC dissolved in deuterated methanol is shown 
in Figure 26.5, along with the 1D 1H spectrum along the top and left‐hand sides 
of the 2D spectrum.

The DQF‐COSY 2D spectrum gives a clear depiction of the J‐coupling 
between pairs of 1H spins. The double quantum filter removes contributions from 
coupling between more than two spins, yielding better resolution than other COSY 
experiments that do not.

Explanation of hsqc_shortspin.nb

The user is instructed to evaluate shortspin.nb and then close it without saving 
changes. The phases of the rf pulses have been reduced to constant (0 or x) receiver 
phase as described in Chapter 22. The a spin is 1H and the x spin is either 13C or 15N. 
These are all I = 1/2 spins, but only 1H has high natural abundance and high sensi-
tivity and therefore gives a strong NMR signal. The calculation only goes through the 
first set of rf phases, leaving evaluation of the density operator for the full phase cycle 
to be completed with program poma.nb.

The calculation with shortspin.nb proceeds as follows: (i) The first a0 pulse 
hits the equilibrium density operator mh iza + mc izx with a strong (π/2)

x
 rf pulse (a0) 

to the 1H spin only. (ii) This is followed by a delay of (1/(4 j)), where j is the coupling 
constant in s−1. Both J‐coupling and chemical shift Hamiltonians are active during the 
delay. (iii) Then both the 1H and X spin are hit with simultaneous strong π

x
 pulses 

(ax0). (iv) Then there is another delay of (1/(4 j)). (v) Then the 1H spin is hit with a 
(π/2)

−y
 pulse (a3) while at the same time the X spin is hit with a (π/2)

x
 pulse (x0). (vi) 

The next step is the first half of incremented delay t
1
 (duration t

1/2
). Then a π

x
 pulse is 
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Figure 26.5  The 2D DQF‐COSY spectrum of 1 mg of Δ9‐tetrahydrocannabinol dissolved in 
deuterated methanol. The large vertical ridge in the spectrum is an artifact generated by a large 
1H signal from undeuterated methanol OH.
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given to the 1H spin only. (vii) Then the second half of the incremented delay t
1
 is 

applied (duration t
1/2

). (viii) Then the 1H spin is hit with a (π/2)
y
 pulse (a1) while 

simultaneously hitting the X spin with a (π/2)
x
 pulse (x0). (ix) Then a (1/(4 j)) delay 

is given. Then both the 1H and X spins are hit with respective π
x
 pulses. (x) Then a 

second (1/(4 j)) delay is given. The resulting density operator is the one of interest 
because it shows the frequency dependence on the incremented t

1
 interval.

Although not included in the calculation, the next step is acquisition of the 
NMR signal with X‐nucleus decoupling. It is shown in the next notebook, hsqc_
poma.nb, the part of the density operator that survives the destructive interference of 
the full phase cycle (see hsqc_poma.nb) is the mh iya cos[t

1
 wx] term. This term is 

important because it has the magnitude mh of the 1H spin but during the t
1
 delay 

oscillates at the X nucleus chemical shift.

Explanation of hsqc_poma.nb

The user must exit Mathematica, then restart it in order to clear all definitions from 
the Mathematica kernel. Then the user is told to evaluate poma.nb, then to close it 
without saving.

With poma.nb, it is not necessary to reduce the rf phase cycle to constant 
receiver phase, so the full phase cycle including different receiver phases is included 
in the analysis.

Spin 1 is assumed to be 1H and spin 2 is assumed to be 13C or 15N. The 
equilibrium density operators for the two spins have arbitrarily named magnitudes 
mh and mc to be consistent with the shortspin analysis. It starts by defining the 
equilibrium density operator mh spin[1,z] + mc spin[2,z]. The // passes the output of 
the first function as input to the next function. Thus, the pulse[90,{x,x,x,x}] applies a 
90° or (π/2) pulse to the 1H spin only (indicated by {1}) with the set of rf phases x,x,x, 
and x. This result is passed on to the function delay that incorporates both J‐coupling 
and chemical shift evolution. The duration of the delay is 1/(4 J12). The {{1,2}} indi-
cates that spins 1 and 2 are J‐coupled. This result is passed on to the function pulse. 
A 180° pulse to both spins with the set of rf phases( x,x,x,x ) is then applied, followed 
by a second delay of duration 1/(4 J12). Then a 90° pulse is given to the 1H spin only 
with rf phase cycle {−y,−y,−y,−y}. Simultaneously or immediately after the 1H pulse 
a 90° pulse is given to the X spin only (indicated by {2}) with rf phase cycle 
{x,−x,x,−x}. This is followed by the first half of the incremented t

1
 interval, t

1/2
. The 

{{1,2}} indicates the active J‐coupling between the two spins. This is followed by a 
π pulse of rf phase cycle {x,x,x,x} to the 1H spin only ( indicated by {1} ), then by 
another delay of duration t

1/2
. This is followed by 90° pulses to the 1H and X spins. 

The 1H rf phase cycle for this pulse is {y,y,y,y}. The rf phase cycle for the X 90° pulse 
is {x,x,−x,−x}. This is followed by a delay of 1/(4 J12), then a 180° pulse to both 
spins (hence {{1,2}}) with rf phase cycle {x,x,x,x}, then another delay of 1/(4 J12). 
The receiver function then applies the receiver phase cycle {0,180,180,0}, which is 
equivalent to {x,−x,−x, x}.

The result is the density operator obtained from the full phase cycle imme-
diately before the t

2
 acquisition delay. poma.nb cannot evaluate the symbolic 
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expression J12/J12, but simple inspection shows that the only surviving density 
operator term is mh cos[t

1
 (w2)] i1y. This is the same result as calculated in hsqc_

shortspin.nb.
The last cell demonstrates that the result is the same as long as the rf phase of 

the 180° pulses are held constant.

Explanation of hmqc_shortspin.nb

The user must exit Mathematica, then restart it in order to clear all definitions from 
the Mathematica kernel. The user is told to evaluate shortspin.nb, then to close it 
without saving. Only the first NMR acquisition of the constant receiver phase version 
of the HMQC experiment is calculated. Let a = 1H, x = 13C, or another I = 1/2 nucleus. 
The equilibrium density operator is mh iza + mc izx. A (π/2)

x
 rf pulse is given to the 

1H spin. Next there is a delay of duration 1/(2 j) where j is the coupling constant in 
s−1. This is followed by a (π/2)

x
 pulse to the 13C nuclear spin. Then a delay 

corresponding to the first half of the t
1
 interval is applied, followed by a π

x
 pulse to 

the 1H spin. This is followed by a delay corresponding to the second half of the t
1
 

interval. This yields the density operator immediately before the π/2 pulse to the 13C 
spin. It is then converted into an expression composed of ladder operators imina, 
iminx, iplusa, and iplusx. The latter version shows directly that the density operator 
consists of in‐phase 13C single‐quantum iminx and iplusx terms along with a mixture 
of double quantum iplusa iplusx and imina iminx terms and zero quantum iplusa 
iminx and imina iplusx terms. The 13C component is cancelled by destructive inter-
ference in the full phase cycle as shown in hmqc_poma.nb.

Explanation of hmqc_poma.nb

The user must exit Mathematica, then restart it in order to clear all definitions from 
the Mathematica kernel. Then the user is told to evaluate poma.nb, then to close it 
without saving.

With poma.nb, it is not necessary to reduce the rf phase cycle to constant 
receiver phase, so the full phase cycle including different receiver phases is included 
in the analysis.

Spin 1 is assumed to be 1H, and spin 2 is assumed to be 13C or 15N. The 
equilibrium density operators for the two spins have arbitrarily named magnitudes 
mh and mc to be consistent with the shortspin analysis. It starts with the equilibrium 
density operator mh spin[1,z] + mc spin[2,z]. The pulse[π/2,{x,x,x,x},{1}] applies the 
(π/2) pulse of phase cycle x,x,x,x to the 1H spin only. This is followed by a delay of 
duration 1/(2 j12) where j12 is the coupling constant in s−1. Then a (π/2) pulse of 
phase cycle {0,180,0,180}, equivalent to {x,−x,x,−x}, is given to the 13C spin only. 
Then a delay corresponding to the first half of the t

1
 interval occurs, which is fol-

lowed by a π pulse of phase cycle {0,0,0,0} to the 1H spin and then the second half of 
the t

1
 interval. This is followed by a (π/2) pulse of phase cycle {0,0,180,180}, 

equivalent to {x,x,−x,−x}, which is given to the 13C spin only. This is followed by a 
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delay of duration 1/(2 j12). The resulting density operator is −cos[t
1
 w2] i1y, showing 

that the 1H nucleus signal oscillates at the chemical shift w2 of the 13C spin during the 
incremented t

1
 interval. Finally, we give a delay of duration t

2
 to the density operator 

after the t
1
 interval. Since the 13C is decoupled during the t

2
 interval, there is no cou-

pling indicated between spins 1 and 2. The t
2
‐dependent density operator obtained 

oscillates at w1, the chemical shift of the 1H spin.
The calculations then show that there is no effect of the phase of the π pulse on 

1H as long as it is held constant. Further calculations show that there is no effect of 
reducing the phase cycle to constant receiver phase, that only going through half the 
phase cycle greatly complicates the density operator, and that leaving out the 1H π 
pulse allows J‐coupling during the t

1
 interval.

Homework

Homework 26.1: Use shortspin.nb to analyze the first set of receiver‐reduced phases 
of the homonuclear 1H‐1H DQF‐COSY experiment. Identify the frequencies observed 
during the t

1
 interval.

Homework 26.2: Use poma.nb to analyze the full phase cycle for the homo-
nuclear 1H‐1H DQF‐COSY experiment. Verify that there are off‐diagonal cross 
peaks that oscillate at one frequency during the t

1
 interval and at another during the 

t
2
 acquisition time.
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Selection of Coherence 
Order Pathways with 
Phase Cycling

Chapter  27

The density operator ˆ  and Hamiltonians Ĥ
X
 can be constructed using Cartesian spin 

angular momentum operators Î
x
, Î

y
, and Î

z
, or coherence order (ladder) spin angular 

momentum operators Î+, Î−, and Î
z
 = Î0. The latter approach is usually used to design 

NMR experiments since NMR experiments such as Insensitive Nuclei Enhanced by 
Polarization Transfer (INEPT), heteronuclear single quantum coherence, and hetero-
nuclear multiple quantum coherence (HMQC) generate specific coherence orders 
during different times during the pulse sequence (see Chapters 24 and 26). Coherence 
order specificity is achieved with either pulsed magnetic field gradients, discussed 
later, or phase cycling of the radio frequency (rf) pulses and receiver, discussed in 
this chapter. We follow the treatment by Keeler (2010).

Selection of coherence order pathways with phase cycling is achieved by 
destructive interference of undesired NMR coherence orders and by constructive 
interference of desired NMR coherence orders. It is based on the different responses 
of different coherence orders to rf pulses, illustrated in phaseshift.nb. Changing the 
phase of an rf pulse by ϕ radians in the rotating frame causes a phase change of −Δp 
ϕ of the coherence produced, where Δp is the change in coherence order of the 
density operator component due to the pulse. This allows design of experiments that 
take advantage of destructive and constructive interference. If one ignores NMR 
relaxation that returns the density operator to thermal equilibrium (p = 0), only rf 
pulses can cause changes in coherence order. The coherence order does not change 
during periods of “free evolution” without rf pulses.

The first step in designing an NMR pulse sequence is to draw out the desired 
coherence order pathways, illustrated in Figure  27.1 for the homonuclear double 
quantum 2D experiment.1

Once one has identified the desired coherence order pathways, one implements 
the rules in Table 27.1 to select them.

1 This is NOT the same as the DQF‐COSY experiment.
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The coherence order pathways in the homonuclear double quantum pulse 
sequence are p = {0,+1,−1,+2,−1}, {0,+1,−1,−2,−1}, {0,−1,+1,+2,−1}, and 
{0,−1,+1,−2,−1}. From these, we can construct the Δp vectors {+1,−2,+3,−3}, 
{+1,−2,−1,+1}, {−1,+2,+1,−3}, and {−1,+2,−3,+1}. After the first pulse, we want 
both the p = +1 and p = −1 coherences. Since both coherences are created by the first 
π/2 pulse, there is no need to phase cycle the first pulse. The 180° pulse simply 
switches p = +1 to p = −1 and vice versa and also removes the effect of the shift 
Hamiltonian over the 2τ interval as discussed in echooneortwo.nb. The first three 
pulses can be “grouped” to generate p = +2 and p = −2 coherence with an N value of 
4 so that p = 1, 0, and −1 coherences are suppressed and the p = +2 and p = −2 coher-
ences are retained. The resulting simplified Δp vectors for the group of three pulses 
and the last pulse are {+2,−3} and {−2,+1}.

The phase cycle for the group of three pulses is ϕ
grp

 = {0,π/2,π,3π/4}. The last 
pulse does not need to be phase cycled since only p = −1 coherence is observable, so 
we arbitrarily choose ϕ

4
 = {0}. The receiver phase cycle, ϕ

rcvr
 = {0,π,0,π} is calculated 

in phasecycle.nb. As shown in double_quantum_poma.nb, this unfortunately allows 
for “passive” double quantum correlations such as spin 1 oscillating during the t1 
interval at the sum of the spin 2 and spin 3. The desired “active” double quantum 
correlations for spin 1 occur at the sum of the spin 1 and spin 2 or at the sum of spin 
1 and spin 3 chemical shifts. The passive couplings, which arise from higher‐order 
coherences present during the t

1
 interval, can be suppressed by using an N = 8 (45°) 

additional phase increment for ϕ
grp

 for each increment in t1. The calculations in dou-
ble_quantum_poma.nb show that the complexity grows exponentially with the 
number of coupled spins.

The desired coherence transfer pathway for the double quantum filtered corre-
lation spectroscopy (DQF‐COSY) coherence transfer experiment discussed in the 
previous chapter is shown in Figure 27.2.

τp = 0

p = +1

p = +2

p = +3

p = +4

p = –3

p = –2

p = –4

p = –1

t1
t2

τ

Figure 27.1  Desired coherence levels for the homonuclear double quantum 2D experiment 
(Mareci and Freeman, 1983). The coherence order is designated by the p level. For compactness, 
the pulses and resulting NMR signal (after the full phase cycle) have been placed on the p = 0 
coherence level, and the desired coherence orders during the pulse sequence have been 
highlighted with heavy black horizontal lines. The wider vertical rectangle represents a π 
pulse. The narrower vertical rectangles represent π/2 pulses.
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Table 27.1  Rules for the design of NMR pulse sequences with phase cycles

1. � Since changing the phase of an rf pulse by ϕ radians in the rotating frame causes a phase 
change of −Δp ϕ in the coherence produced, it is most convenient to adjust the receiver phase 
ϕ

rcvr
 to select the desired pathway. In this way, the pulse phases can be implemented 

independently of each other. Later the pulse phases can be normalized to constant receiver 
phase if desired.

	 rcvr p RF � (27.1)

where Δp = {Δp
1,
 Δp

2,
 Δp

3,
 …, Δp

n
} is a vector of the desired coherence order changes and 

ϕRF = {ϕ
1
, ϕ

2
, ϕ

3
, …, ϕ

n
} is a vector of the corresponding pulse phases.

2. � The phase cycle for a particular pulse in the sequence is chosen such that the phase 
increments are 2π/N, where N is the desired difference in coherence order between adjacent 
desired levels produced by the pulse. All N rf phases are given in the full phase cycle for the 
pulse.

3. � The coherence order for the observed nucleus must end on p = −1 during the acquisition time 
t
2
 (see Chapter 18). This also means that pii

1  for the observed nucleus.

4. � The coherence order for other nuclei than the observed nucleus must end on p = 0, hence 
pii

0  for the other nuclei.

5. � The effect of a 180° pulse on coherence order is to change its value from positive to negative 
or negative to positive (e.g., from p = +1 to p = −1 or p = −2 to p = +2).

6. � To obtain absorption peaks in the f
1
 dimension of a 2D or 3D NMR experiment, the desired 

p = +n and p = −n coherence orders must both be present during the t
1
 evolution interval.

7. � Cycle the phase of each pulse independently of the other pulse phases, that is, hold all other 
pulse phases constant.

8. � The first pulse, since it usually applied to p = 0, generates both p = +1 and p = −1 coherence. 
Phase cycling is not needed unless only one of the two is desired.

9. � If an unambiguous pathway has been selected before the last pulse, no phase cycling is 
required. Only the p = −1 coherence is observable even if other coherence orders are present.

10. � If a group of pulses is supposed to produce a specific Δp, the entire group can be phase cycled 
together.a

11. � For I = 1/2 nuclei, the maximum coherence order possible is determined by the number of 
different coupled nuclei in the spin system, since at least n coupled I = 1/2 nuclei are needed to 
create n‐quantum coherence. For quadrupolar nuclei with I > 1/2 where there are 2 I + 1 energy 
levels, it is possible to create n‐quantum coherence for one nucleus if n ≤ 2 I.

12. � Additional phase cycling of the preparation pulses preceding the t
1
 interval, with phase 

increments applied for successive t
1
 increments, can be used to suppress undesired coherence 

orders during t
1
 evolution.b

13. � Pulse sequence delays allow T
1
 relaxation and regeneration of p = 0 (I

z
) density operator 

components. Usually, this occurs during the t
1
 evolution of a 2D NMR sequence. To suppress 

these unwanted coherences, an additional phase cycle is used for the last pulse (or group of 
pulses) before the t

1
 interval of {0,π} with the same additional {0,π} phase cycle for the 

receiver. This is called axial suppression.
14. � CYCLOPS adds an additional phase cycle of {0,π/2,π,3π/2} simultaneously to pulse phases 

and the receiver phase to suppress electronic imbalance in the pulse and receiver phases.

a In some cases, it is necessary to have different pulses of a group of pulses maintain a fixed phase difference.
b See Bruker pulse sequences such as dqsph.
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In this case, there are just three 90° rf pulses. We can group the first two 
pulses and use N = 4 to select p = +2 and p = −2 coherence after the 2’d pulse. There 
is no need to phase cycle the last pulse. The phase cycle for the group of two pulses 
is ϕ

grp
 = {0,π/2,π,3π/4}, identical to that for the double quantum experiment. 

The  last pulse does not need to be phase cycled since only p = −1 coherence is 
observable. We arbitrarily choose ϕ

last
 = {0,0,0,0}. This yields the same receiver 

phase cycle, ϕ
rcvr

 = {0,π,0,π}, as for the double quantum 2D experiment (see 
phasecycle.nb).

After completion of the phase cycle, the density operator immediately after the 
last pulse contains pure antiphase coherence of a given spin with respect to itself or 
one of its J‐coupling partner spins (see double_quantum_poma.nb). Additional N = 4 
phase cycling of the first pulse phase with successive t

1
 increments is used to sup-

press higher‐order coherence that could be created after the second pulse. There are 
no passive couplings that need to be suppressed. The diagonal peaks in the resulting 
2D spectrum represent coherences that oscillate at their own shifts during both the t

1
 

and t
2
 intervals, while the cross peaks represent coherences that oscillate at their own 

shifts during t
1
 and their coupling partner’s shift during t

2
. See the DQF‐COSY 2D 

spectrum in Chapter 26 (Figure 26.5).
The 2D homonuclear Overhauser experiment has the desired coherence order 

transfer pathway shown in Figure 27.3. It reveals pairs of spins that are close enough 
in space (typically 5 Å or less) to experience dipolar cross relaxation during the 
mixing time τ

mix
.

The first π/2 pulse does not need to be phase cycled to create the desired 
p = ±1 coherence pathways. The second pulse does not need to be phase cycled 
to  create p = 0, so N = 1. The last pulse does not need to be phase cycled 
because only p = −1 coherence is observable. The calculated phases for the three 

p = 0

p = +1

p = +2

p = +3

p = +4

p = –3

p = –2

p = –4

p = –1

t2t1

Figure  27.2  Desired coherence levels for the double quantum filtered COSY (DQF‐
COSY) experiment (Derome and Williamson, 1990). The coherence order is designated by 
the p level. For compactness, the pulses and resulting NMR signal (after the full phase cycle) 
have been placed on the p = 0 coherence level and the desired coherence orders during the 
pulse sequence have been highlighted with heavy black horizontal lines. The vertical rectangles 
represent π/2 pulses.
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pulses and receiver are (see phasecycle.nb) ϕ
1
 = ϕ

2
 = ϕ

3
 = ϕ

rcvr
 = {0}. N = 4 phase 

incrementation of ϕ
1
 for successive t

1
 increments is used to suppress the contribu-

tion of p = 0 longitudinal order terms arising from higher‐order coherence after the 
second pulse.

Axial suppression modifies the phase cycle to ϕ
1
 = {0,π}, ϕ

2
 = ϕ

3
 = {0,0}, and 

ϕ
rcvr

 = {0,π}. Quadrature phase cycling in addition to axial yields ϕ
1
 = {0,π,π/2,3π/2,π,

0,3π/2,π/2}, ϕ
2
 = ϕ

3
 = {0,0,π/2, π/2,π,π, 3π/2, 3π/2}, and ϕ

rcvr
 = {0,π,π/2,3π/2,π,0,3π/2, 

π/2}. The NOESY experiment relies on the phenomenon of dipolar cross relaxation 
to yield correlations between observed spins. The dipolar cross relaxation rates bet-
ween nuclear spins depend on the identity (usually 1H) of the nuclei and the lengths 
and rates of reorientation of the internuclear vectors between dipolar coupled spins. 
For 1H nuclei, the 1/r6 dependence limits NOESY cross peaks to H atoms less than 
about 5 Å apart. Because the NOESY cross peaks are very small, it is necessary to 
minimize artifacts in the 2D spectrum. One of the best methods to do this is with 
additional gradient selection of the desired coherence orders as described in the 
next chapter.

The desired coherence order transfer pathways for the heteronuclear multiple 
quantum 2D experiment are shown in Figure 27.4.

Neither the first π/2 1H pulse nor the second π 1H pulse needs to be phase 
cycled. The first and second 13C π/2 pulses are grouped to generate p = 0. This pair of 
pulses uses N = 2 to suppress undesired p = ±1 13C coherences. The 1H Δp vectors are 
{+1,−2}. The desired 13C Δp vector is {0} for the two grouped 13C pulses. The phase 
cycle for first 1H pulse is ϕ

1
 = {0,0}. The phase cycle for the grouped 13C pulses is 

ϕ
grp

 = {0,π}. The phase cycle for the 1H π pulse is ϕ
2
 = {0,0}. The calculated receiver 

cycle is ϕ
rcvr

 = {0,0}. Adding axial suppression yields ϕ
1
 = {0,0,π,π}, ϕ

grp
 = {0,π,0,π}, 

ϕ
2
 = {0,0,0,0}, and ϕ

rcvr
 = {0,0,π,π}.

τmix
p = 0

p = +1

p = +2

p = +3

p = +4

p = –3

p = –2

p = –4

p = –1

t1
t2

Figure  27.3  Desired coherence levels for the homonuclear overhauser experiment 
spectroscopy (NOESY) 2D experiment (Jeener et al., 1979). The coherence order is designated 
by the p level. For compactness, the pulses and resulting NMR signal (after the full phase 
cycle) have been placed on the p = 0 coherence level and the desired coherence orders during 
the pulse sequence have been highlighted with heavy black horizontal lines. The vertical 
rectangles represent π/2 pulses.
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Explanation of phaseshift.nb

The user is told to evaluate shortspin.nb, then close it without saving changes. The 
ar[π/2, 0, mh iza] command gives a π/2 rf pulse of phase 0 (x) to the equilibrium 
density operator mh iza for the a spin. The ar[π/2, ϕ, mh iza] hits the equilibrium 
density operator with a π/2 rf pulse of phase ϕ. The mq command shows that the 
resulting density operator consists exclusively of single quantum p = 1 and p = −1 
coherences that each have a cos[ϕ] or sin[ϕ] dependence.

Next, π/2 pulses of phase 0 and ϕ are given to the Cartesian form of the 
density operator mh iplusa. Remember that % and %% refer to the preceding 
output and the preceding to the preceding outputs, respectively, so both refer to ixa 
mh + i iya mh. The built‐in Mathematica function TrigReduce is used to simplify 
the results, and mq is used to express the results in terms of iplusa, imina, and iza. 
The results show that there is no phase shift for the iplusa produced (Δp = 0), a 
phase shift of ϕ for the iza produced (Δp = −1), and a phase shift of 2ϕ for the imina 
produced (Δp = −2).

The next cells show what happens when π/2 pulses of phase 0 and ϕ are given 
to both the a and x spins of the density operator 2 mh iza izx. The mq and trig 
functions, along with the built‐in Mathematica function TrigToExp, show that 
changing the pulse phase by ϕ produces a net phase change of −Δp ϕ.

1/2JCHp = 0
p = +1
p = +2
p = +3
p = +4

t2

p = 0
p = +1
p = +2
p = +3
p = +4

p = –3
p = –2

p = –4

p = –1

1/2JCH

Decouplet1

p = –3
p = –2

p = –4

p = –1
1H

13C

Figure 27.4  Desired coherence levels for the HMQC 2D experiment (Bax et al., 1983). The 
coherence order is designated by the p level. For compactness, the pulses and resulting NMR 
signal (after the full phase cycle) have been placed on the p = 0 coherence levels and the 
desired  coherence orders during the pulse sequence have been highlighted with heavy 
black horizontal lines. The narrow vertical rectangles represent π/2 pulses. The thick vertical 
rectangle represents a π pulse.
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Explanation of phasecycle.nb

This notebook shows how Mathematica can be used to implement Equation 27.1 and 
Table 27.1 to calculate the phase cycle needed for the double quantum 2D experiment. 
In the double quantum 2D experiment, the first three rf pulses are grouped, so the 
desired Δp vectors for the experiment are Δp

grp1
 = {+2,−3} and Δp

grp2
 = {−2,+1}. An 

N = 4 “mask” is used to select the p = +2 and p = −2 pathways simultaneously during t1 
evolution. Therefore, the phase “vector” for the grouped pulses is ϕgrp = {0,π/2,π,3π/2} 
in radians = {0,90,180,270} in degrees. Notice how the built‐in Mathematica functions 
table and mod are used to obtain this result. The phase of the  last pulse does not 
matter, so we arbitrarily choose ϕlast = {0,0,0,0}.

The receiver phase cycles are calculated using Equation 27.1, Δp
grp1

 and Δp
grp2

 
to give ϕ

recvrgrp1
 = ϕ

recvrgrp2
 = {0,π,0,π}. Since both the p = +2 and p = −2 coherence order 

pathways are selected with the same phase cycle, both pathways can be selected 
simultaneously.

The phase vectors can be easily converted to constant receiver phase 0 as 
shown for ϕ

grp1norm
 and ϕ

lastnorm
.

The receiver phase cycle can also be calculated using the phase cycles for the 
individual rf pulses. This yields the same result as the “grouped” approach.

The next cells calculate the receiver phase cycle needed for the NOESY 2D 
experiment. The two desired Δp vectors are Δp

1
 = {+1,−1,−1} and Δp

2
 = {−1,+1,−1}. 

The three phase cycles are ϕ1 = ϕ2 = ϕ3 = {0,0,0,0}. The resulting ϕ
rcvr

 = {0,0,0,0}. 
Using a mask of N = 2 for the second pulse results in a different ϕ

rcvr
 = {0,π,0,π}. Both 

variations of the experiment should work.

Explanation of double_quantum_poma.nb

The user should exit Mathematica, then restart a fresh session. Then evaluate  
poma.nb and close it without saving changes.

The spin system is homonuclear and J‐coupled, for example, two J‐coupled 1H 
spins in a small molecule. The equilibrium density operator is defined simply as 
spin[1,z] + spin[2,z], to which is given the double quantum pulse sequence derived 
according the rules for selecting second‐order coherence pathways. The resulting 
density operator immediately prior to the acquisition interval t

2
 is pure antiphase 

single quantum coherence, but note that the time dependence is cos[t
1
 w

1
+t

1
 w

2
], that 

is, at the sum of the coupled chemical shifts!
The next cells show the more complicated t

2
 time dependence.

Then three coupled spins are considered, each of which is coupled to the others, 
and the density operator gets much more complicated. For example, there are now 
observable signals for spin 1 that oscillate at w

1
 + w

2
 and w

1
 + w

3
 as expected, but also 

at w
2
 + w

3
. The w

2
 + w

3
 term represents a “passive” coupling cross peak. Extra N = 8 

phase cycling is needed to suppress such peaks since they arise from triple quantum 
coherence.

The next cells show that the same basic phase cycling used in the double 
quantum 2D experiment also works for the DQF‐COSY 2D experiment. In this 
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experiment, the phases of the first two pulses are grouped. Again, the results for three 
coupled spins show that the basic phase cycle allows triple quantum coherence to 
appear in the density operator. Further phase cycling is needed to suppress it.

Homework

Homework 27.1: Use shortspin.nb and/or poma.nb to verify that all of the preceding 
pulse sequences work with the calculated phase cycling.

Homework 27.2: Add: (i) axial suppression phase cycling, (ii) quadrature 
phase cycling, and (iii) devise a useful increment in phase for successive t

1
 values.
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Selection of Coherence 
Order Pathways with 
Pulsed Magnetic 
Field Gradients

Chapter  28

Although high‐resolution NMR requires homogeneous magnetic fields, many modern 
NMR spectrometers are equipped with probes and amplifiers designed to deliver pre-
cisely controlled pulsed magnetic field gradients. These are achieved by adding coils 
to the probe and turning on DC currents through the coils when magnetic field gradi-
ents are required. The purpose of these pulsed magnetic field gradients is to spatially 
encode the observed resonance frequencies. This is illustrated in Figure 28.1.

It is the spatial encoding of resonance frequency (i.e., the Zeeman Larmor fre-
quency) in the presence of linear x, y, and z magnetic field gradients that is the basis 
of magnetic resonance imaging. More importantly in the context of this chapter, 
gradients can also be used to select specific coherence order pathways in NMR pulse 
sequences and to measure translational diffusion coefficients.

In high‐resolution NMR experiments, pulsed magnetic field gradients are used 
to cause dephasing and destructive interference of resonances due to the variation of 
frequency and phase across the NMR sample. A single pulsed magnetic field gra-
dient of sufficient strength can totally eliminate the NMR signal, as shown in 
Figure 28.2a. Exact but opposite pulsed gradients applied sequentially restore the 
NMR signal since the opposite polarity gradient pulse exactly “undoes” the dephas-
ing caused by first gradient pulse, Figure 28.2b. The NMR signal can also be restored 
by changing the sign of the coherence order with a π pulse after the first gradient 
pulse, Figure 28.2c, then applying the same polarity and magnitude of gradient pulse.

The amount of dephasing θ in rad m−1 caused by a pulsed magnetic field gra-
dient of duration t

g
 is given by (Hull, 1994)

	 g t pg 	 (28.1)

where γ is the gyromagnetic ratio of the nucleus in rad s−1 Tesla−1, g is the gradient 
strength in Tesla m−1, t

g
 is the duration of the gradient pulse in s, and p is the desired 

coherence order.
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The pulsed magnetic field gradients are given during periods of free precession 
when there are no radio frequency (rf) pulses. Any gradient shape can be used as 
long as it is reproducible. To account for the variation of the amplitude g(t) during the 
gradient pulse, that is, the gradient shape, the effective gradient strength G of the 
gradient pulse in Tesla m−1 is calculated:

	
G g d

tg

0

( )
	

(28.2)

The dephasing in rad m−1 is then

	 G p 	 (28.3)

The rule used to select coherence orders with pulsed magnetic field gradients is based 
on the rephasing necessary to form gradient echoes shown in Figures 28.2b and 28.2c:

	 i
i i iG p 0

	
(28.4)

z

Homogeneous B0

Linear z magnetic
�eld gradient

B0

z

Figure 28.1  Spatial encoding in a magnetic field gradient (For convenience, the peaks in the 
presence of the magnetic field gradient are shown as positive and phased. In reality, the phase of 
the peak as well as the frequency will depend on position.) In a homogeneous magnetic field B

0
, 

an NMR resonance occurs at the same frequency for every position in the sample. In the presence 
of a linear z magnetic field gradient, the frequency of an NMR resonance reflects its z position. 
For convenience, the peaks in the presence of the magnetic field gradient are shown as positive 
and phased. In reality, the phase of the peak as well as the frequency will depend on its z position.
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where i covers all nuclei in the desired coherence pathway and all gradient pulses.
Several examples of gradient‐selected 2D NMR experiments are discussed 

later. The gradient‐selected correlation spectroscopy (COSY) 2D experiment is 
shown in Figure 28.3.

The exact placement of the gradient pulses in the free precession periods is not 
important, although the correct gradient must occur during the correct free precession 
period. To select the solid coherence order pathway, p = {0,+1,−1}, use the gradient 
ratio G

1
/G

2
 = 1 during the first and second precession periods. The p = 1 to p = −1 

coherence order change is called the “echo” or “N” type pathway. To select the 
p = {0,−1,−1} dotted coherence order pathway, use the gradient ratio G

1
/G

2
 = −1. The 

p = −1 to p = −1 coherence order change is called the “antiecho” or “P” type pathway 
(Ernst et al., 1987). Because one of the gradient pulses occurs during the t

1
 interval, 

it is not possible to select both the p = 1 and p = −1 coherence orders simultaneously. 
For this reason, the resulting 2D spectrum is not phase sensitive. A second drawback 
of this experiment is that the signal intensity is reduced by a factor of 2  because 
only one of the two possible coherence order pathways yields an NMR signal.

The advantage of the gradient selection technique is that no phase cycling is 
required. This allows the total suppression of large signals in 1H–13C 2D experiments 
such as the heteronuclear multiple quantum coherence (HMQC) of natural abundance 
samples, where about 99% of the carbon is unobservable 12C (I = 0) and only 1% is 
observable 13C (I = 1/2). This means that the 99% of the 1H signal (for H bonded to 12C) 
must be suppressed in the HMQC. If only phase cycling is used, huge 1H signals are 
acquired in each scan of the phase cycle. Imperfect destructive interference of these 
large signals often yields artifacts. Gradient selection suppresses the large signals 
in every scan, allowing the smaller desired signals to undergo more amplification, 

Gradients

Pulses,
delays

Pulses,
delays

Gradients

t2

t2

G1G1

Pulses,
delays

Gradients

(a)

(b)

(c)

–G1G1

G1

t2

Figure 28.2  Effects of Pulsed Magnetic Field Gradients on NMR Signals. (a) Effect of a 
single gradient pulse (b) Effect of equal but opposite polarity gradients (c) Effect of equal 
gradients bracketing a 180 (π) pulse.
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thereby reducing artifacts. The best quality 2D spectra are obtained using a combination 
of gradient and phase cycle selection.

The gradient‐selected double quantum filtered (DQF) COSY experiment is 
shown in Figure 28.4.

We solve for G
1
, G

2
, and G

3
 as follows (Eq. 28.4):

H H HG G G1 2 31 2 1 0( ) ( ) ( )

Dividing both sides by γ
H
 yields G

1
 + 2G

2
 − G

3
 = 0. One solution is G

1
 = +1, G

2
 = +1, 

and G
3
 = +3. The gradient strengths are in arbitrary units. Again, the drawbacks are 

the loss of signal intensity and the lack of phase sensitivity. The advantage is the 
destruction of unwanted coherence pathways with each scan.

The heteronuclear gradient‐selected HMQC 2D experiment is shown in 
Figure 28.5.

We solve for G
1
, G

2
, and G

3
 as follows (Eq. 28.4):

H C H C H CG G G G G G1 1 2 2 3 31 1 1 1 1 0 0( ) ( ) ( ) ( ) ( ) ( )

Dividing both sides by γ
C
, and using γ

H
/γ

C
 = 3.98, this becomes as follows:

4 98 2 98 3 98 01 2 3. . .g g g

One solution is G
1
 = +100, G

2
 = +60, and G

3
 = +80.2. The disadvantages and advantage 

are the same as for the previous two examples.
Higher‐quality 2D and 3D spectra can be obtained with a combination of phase 

cycle selection and gradient selection. Changing the sign of one or more  of  the 
gradient(s) used, or using cleverly placed π pulses to allow for “echo–antiecho” 
processing that is used to detect both coherence pathways during the t

1
 interval, 

allows for full signal intensity and pure absorption mode peaks (Jacobsen, 2007).

G1 G2
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t1
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p = –4

p = –1
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Figure  28.3  Desired Coherence Levels for the Gradient‐Selected COSY Experiment, 
showing its relation to the rf pulses and pulsed magnetic field gradients. The coherence order 
is designated by the p level. The vertical rectangles represent π/2 rf pulses.



Selection of Coherence Order Pathways with Pulsed Magnetic Field Gradients 119

p = 0
p = +1
p = +2
p = +3
p = +4

p = –3
p = –2

p = –4

p = –1

G1 G2 G3

t2

t1

Gradients

1H

Figure  28.4  Desired Coherence Levels for the Gradient‐Selected DQF‐COSY 
Experiment, showing their relation to the rf pulses and magnetic field gradients. The 
coherence order is designated by the p level. The vertical rectangles represent π/2 rf 
pulses.
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Figure 28.5  Desired Coherence Levels for The Gradient‐Selected HMQC Experiment and 
their relation to the rf pulses and magnetic field gradients. The thin vertical rectangles represent 
π/2 rf pulses. The thick vertical rectangle represents a π rf pulse.
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Gradient pulses are also extremely useful for the measurement of translational 
diffusion. The bipolar pulse pair longitudinal eddy current delay (BPP‐LED) pulse 
sequence for measurement of translational diffusion coefficients is shown in 
Figure 28.6.

The first π/2 pulse creates both p = 1 (solid line) and p = −1 coherence 
(dashed line). The first positive gradient pulse G

v
 causes dephasing of this coher-

ence. The first π pulse switches p = 1 to p = −1 coherence and vice versa. The 
second (negative) gradient pulse −G

v
 therefore causes further dephasing of the 

coherence. This combination of rf and gradient pulses constitutes the bipolar 
pulse pair (BPP). The combination of equal positive and negative gradient pulses 
significantly reduces artifacts in the spectra. Translational diffusion and T

2
 relax-

ation occur throughout the BPP. The next π/2 pulse converts both the p = 1 and 
p = −1 coherence levels to p = 0 coherence (with appropriate phase cycling), and 
translational diffusion is allowed to during the relatively long interval of time T 
before rephasing brought about by the second BPP. During the time T only T

1
 

relaxation occurs. This helps conserve the NMR signal because the T
1
 relaxation 

rate is less than or equal to the T
2
 relaxation rate. Rephasing and formation of a 

gradient echo requires that the second BPP have the opposite phase coherence 
pathway than the first. Thus, as indicated in the Figure 28.6, if the first BPP is 
p = 0 → +1 → −1, the second must be p = 0 → −1 → +1. For this pathway, the 
gradient echo requires

H V H V H V H VG G G G( ) ( )( ) ( ) ( )( )1 1 1 1 0

δ/2 δ/2 δ/2 δ/2τ ττ τ Te

∆

T

p = 0
p = +1
p = +2
p = +3
p = +4

p = –3
p = –2

p = –4

p = –1

Gradients

Durations

Gv –Gv Gv –Gv

1H

Figure 28.6  Desired Coherence Levels for The BPP‐LED Pulse Sequence used to measure 
translational diffusion coefficients (Wu et al., 1995), showing their relation to the rf pulses and 
magnetic field gradients. The thin vertical rectangles represent π/2 rf pulses. The thick vertical 
rectangles represent π rf pulses.
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The other pathway must have

H V H V H V H VG G G G( ) ( )( ) ( ) ( )( )1 1 1 1 0

The fourth π/2 pulse converts the coherence (p = 1 or p = −1) to p = 0 to allow for a 
short “settling” time of residual eddy currents induced by the application of the 
pulsed magnetic field gradients.

The BPP‐LED pulse sequence is usually run as a 2D NMR experiment with 16 
or more rows corresponding to different values of G

v
. There is no variation in time of 

any of the intervals, so there are no relaxation effects of T
2
 or T

1
, only variation in the 

strength of the pulsed magnetic field gradient G
v
. Only translational diffusion atten-

uates the observed signal intensities as G
v
 is varied.

The peak intensities and peak integrals vary as (Wu et al., 1995)

	 S q S e
Dq

( ) ( )0
2

3 2

	
(28.5)

where D is the translational diffusion coefficient obtained by best fit of the experi-
mental data, q Gv , γ is the gyromagnetic ratio of the observed nucleus, δ is the 
sum of the durations of the two gradient pulses during the BPP (see Fig. 28.6), τ is a 
short delay for electronic recovery, and G

v
 is the gradient amplitude for the given row 

of the 2D spectrum (Eq. 28.3).

Homework

Homework 28.1: What rf phase cycle should be used for the BPP‐LED phase cycle 
to suppress unwanted coherence pathways and relaxation artifacts?
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Hamiltonians of NMR: 
Anisotropic Solid‐State 
Internal Hamiltonians 
in Rigid Solids

Chapter  29

Each individual nuclear spin has its own specific internal Hamiltonians that determine 
its evolution in spin space during pulse sequences and its observed frequency relative 
to the resonance frequency ν

0
 in the spectrum. Each of these nuclear spin Hamiltonians 

has a principal axis system (PAS) that is fixed for rigid solids with respect to a molecule‐
fixed reference frame.1 This connection provides information about the chemical 
environment of the nucleus as well as the reorientational dynamics of the molecule. 
In this chapter, we focus on the Hamiltonians of rigid solids, where reorientational 
dynamics are too slow to affect the observed spectrum. This is the case for many 
solids at room temperature. The internal Hamiltonian operators of rigid solids can be 
represented as Cartesian tensors. The definitions are based on those of Mehring and 
the numerical simulation program Gamma (Mehring, 2002, pp. 2585–2602).2,3

	

ˆ ( )( )H Î A lab Ô Î Î Î

A A A

A A A

A A A

int x y z

xx xy xz

yx yy yz

zx zy zz

Ô

Ô

Ô

A Î Ô A Î Ô A Î Ô A Î Ô

x

y

z

xx x x xy x y xz x z yx y x AA Î Ô

A Î Ô A Î Ô A Î Ô A Î Ô
yy y y

yz y z zx z x zy z y zz z z

	 (29.1)

where Î is a nuclear spin operator in spin space; A lab( )  is the Cartesian interaction 
tensor in the real space laboratory frame; and Ô may be a magnetic field (real space 

1 In rigid solids, the internal Hamiltonians for all of the nuclear spins are constant during the course of the 
NMR experiment.
2 Notes on spherical tensors, program Gamma. Program Gamma is an extremely powerful numerical sim-
ulation program.
3 There are minor differences in the definitions used. These are tested in the Mathematica notebook solid_
hamiltonians.nb and corrected accordingly.
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and spin space), nuclear spin operator (spin space), or molecular angular momentum 
operator (real space). See solid_hamiltonians.nb.

If int ZĤ Ĥ ,   the real space laboratory frame Cartesian interaction matrix 
A lab( )  can be well approximated as a sum of rank 0, rank 1, and rank 2 tensors:

	

A lab iso

A A A

A A A

A A A

A

xx xy xz

yx yy yz

zx zy zz

1 0 0

0 1 0

0 00 1

0

0

0

xy xz

xy yz

xz yz

xx xy xxz

xy yy yz

xz yz zz

(29.2)

where A A A Axx yy zziso / Trace[ ] /A1 3 1 3( ) , α
xy

 = 1/2 (A
xy

 – A
yx

), α
xz
 = 1/2 (A

xz
 – A

zx
), 

α
yz
 = 1/2 (A

yz
 – A

zy
), δ

xy
 = 1/2 (A

xy
 + A

yx
 − 2 A

iso
), δ

xz
 = 1/2 (A

xz
 + A

zx
 − 2A

iso
), and δ

yz
 = 1/2 

(A
yz
 + A

zy
 − 2A

iso
). The rank of a tensor is determined by how it is affected by rotations. 

The first matrix on the right‐hand side of Equation 29.2 is the rank 0 isotropic inter-
action that determines the spectrum observed in liquids. The second represents the 
antisymmetric rank 1 tensor that rarely contributes to the NMR spectrum of solids or 
liquids. It can, however, contribute to NMR relaxation. The third matrix represents 
the symmetric rank 2 tensor. It is the source of the orientational dependence of the 
NMR spectrum as well most NMR relaxation.

Rank 0 tensors are scalar, isotropic, and unaffected by rotations. Rank 1 tensors 
are affected by rotations like vectors. Rank 2 tensors are affected as matrices. 
Rotations are discussed in the next chapter. As shown in solid_hamiltonians.nb, the 
sum of isotropic, antisymmetric, and symmetric tensors is approximately but not 
exactly equal to the Cartesian tensor.

The PAS of a given internal Hamiltonian is obtained by diagonalizing 
the symmetric rank 2 tensor component of A lab( )  (see solid_hamiltonians.nb). The 
same transformation is also applied to the rank 0 and rank 1 tensors. In this reference 
frame, the A PAS( )  tensor is given by

	

A PAS S A lab S

pas pas pas

pas pas( ) ( )

_ _ _

_ _ _

A A A

A A A

xx xy xz

yx yy yz ppas

pas pas pas

iso

A A A

A

zx zy zz_ _ _

1 0 0

0 1 0

0 0 1

0

0

0

0 0

0

xy xz

xy yz

xz yz

xx

yyy

zz

0

0 0
	

(29.3)

where S is the similarity transform of the symmetric rank 2 matrix in Equation 29.2 
and S  is the adjoint (inverse) matrix of S. The Cartesian tensor is brought to the PAS 
of the Hamiltonian by this transformation and all its elements are changed. The rank 
0 tensor is unaffected by the transformation, while the elements of the rank 1 and rank 
2 tensors are changed (see solid_hamiltonians.nb). The traces of the rank 1 (zero 
trace) and rank 2 tensors are preserved in the transformation. The convention used in 
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this book is zz yy xx  (Levitt, 2008, p. 199), consistent with the convention 
used by Mehring and program Gamma.

Equation 29.3 may be rewritten in terms of the asymmetry parameter 
( )xx yy zz/ :

A PAS iso( ) A

xy xz

xy yz

xz y

1 0 0

0 1 0

0 0 1

0

0

zz

zz

0

1 2 1 0 0

0 1 2 1 0

0 0 1

( )( )

( )( )

/

/

(29.4)

In most cases, the asymmetric rank 1 tensor has no observable effect on the spectrum, 
relaxation, or evolution of the density operator. This is rigorously true for the dipolar 
and quadrupolar Hamiltonians Ĥ

D
 and Ĥ

Q
 where A

iso_D
, A

iso_Q
, and all elements in the 

asymmetric tensors are zero. This is not the case for Ĥ
CS

, Ĥ
J
, Ĥ

K
, and Ĥ

SR
.

The most important parameters in the expansion of A PAS( )  are A
iso

 and zz . 
The latter term dominates NMR relaxation and solid‐state NMR powder patterns. 
Table 29.1 provides a list of zz  definitions for different internal Hamiltonians.

For an arbitrary orientation of an internal Hamiltonian PAS, the observed fre-
quency in the spectrum depends on the angles required to bring the second rank tensor 
PAS x, y, and z axes into coincidence with the laboratory x, y, and z axes. To compli-
cate the issue, there are often multiple Hamiltonians for a given nuclear spin, and 
these will in general have different PASs, so in order to calculate the observed spec-
trum or evolution of the density operator it is necessary to know the angles that are 
required to bring the different Hamiltonian PAS coordinate systems into coincidence 
before transforming all of them into coincidence with the laboratory reference frame.

Example: ĤCS

Ĥ
CS

 of a given nucleus depends on its location within the molecule. The external 
magnetic field B̂ , ,0 0 0B  induces currents in the electron orbitals of the molecule 
that vary in different positions of the molecule and with the orientation of the 

Table 29.1  δ′zz(rad s−1), η, and rank properties for solid‐state Hamiltonians in their 
principal axis systems

Ĥ
CS zz zz iso B( ) 0 xx yy zz B3 0iso  > 0 possible

Rank 1 asymmetry possible

Ĥ4
dipolar zz ij ij

i j

ij

d
r_

0
34



xx yy zz 0  = 0

No rank 1 asymmetry

Ĥ
Q zz

qcc

I I

e qQ

I I

2

2 2 1 2 2 1

2

( ) ( )
xx yy zz 0  > 0 possible

No rank 1 asymmetry

Ĥ
J zz ij ijJ_ 2 xx yy zz J6 iso  > 0 possible

Rank 1 asymmetry possible

4 Not only nuclear spins with respective gyromagnetic ratios 𝛾
I
 and 𝛾

j
 can be dipole-dipole coupled.  

Electron spins with gyromagnetic ratio 𝛾
e
 can also dipole-dipole couple to nuclear spins. 𝛾

e
 = 1.7608597 × 

1011 radian sec−1 tesla−1.  By comparison, 𝛾
p
 for 1H is 2.6751 × 108 radian sec−1 tesla−1.
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molecule relative to the magnetic field. The induced currents generate an anisotropic 
magnetic field at the nucleus that is much smaller than the external magnetic field yet 
has observable effects on the frequency. The strength of the induced magnetic field is 
directly proportional to the external magnetic field, so the chemical shift frequency 
is usually reported in parts per million (ppm) relative to a standard sample (e.g., tet-
ramethylsilane for 1H, 13C, and 29Si, defined as 0 ppm for all three I = 1/2 nuclei). The 
standard sample frequency substitutes for the bare nucleus Larmor frequency since it 
is easy to measure experimentally.

We ignore the antisymmetric rank 1 contribution to ( )PAS  because it has 
negligible effects on the spectrum5 and make the approximation:

	 PAS iso

1 0 0

0 1 0

0 0 1

0 0

0 0

0 0

xx

yy

zz

	 (29.5)

where σ
iso

 is the isotropic chemical shift (in ppm).
In a single crystal, all molecules have the same orientation with respect to the 

laboratory reference frame, and therefore each nucleus in the same chemical environ-
ment has the same chemical shift. Different single crystals have different orientations 
and different chemical shifts (Fig. 29.1). Powder samples contain millions of single 
crystals with different orientations. This results in a broad powder pattern lineshape 
since all possible angles are present. The principal axis components xx , yy , zz  can be 
obtained directly from the observed NMR powder spectrum or by observing the varia-
tion in chemical shifts for a single crystal as its angles relative to the magnetic field are 
varied (see Hcsstatlineshape.nb and Fig. 29.1). It is demonstrated in Hcsstatlineshape.nb 
that the sign of η does not affect the powder spectrum or single crystal NMR spectra.

Figure  29.1a shows a set of superimposed theoretical single crystal NMR 
spectra that vary in frequency as the orientation of the crystal is varied in β incre-
ments of π/18 (i.e., 10°) for two α values, 0 or π/2 ( zz 2 300, xx 2 150 , 

yy 2 150, 0). Figure 29.1c shows the powder spectrum for the same param-
eters. Figures 29.1c, 29.1d, 29.1e, and 29.1f show the effect of changing the sign of 

zz. Figure 29.1g shows the powder spectrum for η = 1. As shown in Hcsstatlineshape.nb, 
there is no effect observed in the spectra when the sign of η is changed. It is evident 
that the principal values can be “read off” directly from the powder spectrum or cal-
culated empirically from angular dependence of single crystal spectra. When the z 
axis of the PAS is parallel to the laboratory z axis (external magnetic field axis), the 
observed frequency in the NMR spectrum is A zziso . When the x axis of the PAS is 
parallel to the laboratory z axis, the observed frequency is A xxiso

. When the y axis 
of the PAS is parallel to the laboratory z axis, the observed frequency is A yyiso

.
The notebook hcs_cartesian.nb starts with the Hamiltonian in the laboratory 

reference (see Eq. 29.1):

	 ˆ ( ) ˆ ( )H lab Î B Î Î ÎCS x y z

xx xy xz

yx yy yz

zx zy zz

0

0

0B

	 (29.6)

5 but does effect relaxation rates.
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Figure  29.1  Single crystal and powder spectra. The spectra were calculated in the 
Mathematica notebooks hcs_cartesian.nb and Hcsstatlineshape.nb. (a) δ

zz
 = 2π 300 rad s−1, 

η = 0, β = 0 to π/2 in increments of π/18, α = 0 or π/2; (b) schematic representation of eight 
different single crystals; (c) powder spectrum for δ

zz
 = 2π 300 rad s−1, η = 0; (d) powder spectrum 

for δ
zz
 = −2π 300 rad s−1, η = 0; (e) powder spectrum for δ

zz
 = −2π 300 rad s−1, η = 0.5; (f) powder 

spectrum for δ
zz
 = 2π 300 rad s−1, η = 0.5; (g) powder spectrum for δ

zz
 = ±2π 300 rad s−1, η = 1. 

Adapted from Levitt (2008, fig. 9.9, 9.10, and 9.11).
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where γ is the gyromagnetic ratio of the nucleus in rad s−1 Tesla−1, the  tensor 
elements are expressed in unitless ppm (10−6), and B̂  is the external magnetic field 
and therefore defines the laboratory reference frame for both spin space and real 
space, with ˆ { }B , ,0 0 0B . The result is ˆ ( ) ( )H lab Î Î ÎCS B xz x yz y zz z0

.
As shown in hcs_cartesian.nb, transforming Ĥ

CS
(lab) to the rotating frame in 

spin space causes the Î
x
 and Î

y
 components to oscillate at the Larmor frequency. When 

integrated over the Larmor period (2π/ω
0
), these terms average to zero. Only the 

secular part of Ĥ
CS

(lab) survives in the rotating frame, where ˆ ( )H rot ÎCS zz zB0 .
It is necessary to calculate σ

zz
 in the PAS reference frame where the frequencies 

σ
iso

, 
xx

, 
yy

, and 
zz

 correspond directly to the observed experimental spectrum 
(Fig.  29.1). This is done using Cartesian rotations in hcs_cartesian.nb and using 
Wigner rotations in Hcsstatlineshape.nb to calculate the single crystal and powder 
spectra shown in Figure 29.1. The two methods yield the same angular dependence. 
Rotations are discussed in the next chapters.

Explanation of solid_hamiltonians.nb

The first cells define the Cartesian representation of a generic Hamiltonian H = i.
acart.o, where i represents the spin‐space nuclear spin angular momentum vector, 
acart represents the Cartesian real space interaction tensor, and o represents either a 
spin‐space nuclear spin angular momentum vector, the magnetic field vector in spin 
space and real space, or the molecular angular momentum vector in real space.

The Hamiltonian i.acart.o is composed of nine terms, H = axx ix ox + ayx iy 
ox + azx iz ox + axy ix oy + ayy iy oy + azy iz oy + axz ix oz + iyz iy oz + izz iz oz.

The next cells introduce the spherical tensor version of the real space tensor 
elements A[l,m] according to the definitions of Mehring’s book (Mehring, 1983). 
Another version of these elements (AA[l,m]) is reproduced using the definitions 
from the Encyclopedia of NMR. The real space spherical tensor elements are post-
poned in the text until Chapter 31.

The next cells introduce the spherical tensor versions of the spin space ele-
ments T[l,m] (Mehring, 1983). Again, these are not discussed in the text until 
Chapter 31. The next cells introduce the slightly different spherical tensor versions of 
the spin space elements as TT[l,m] (Mehring, 2002).

The evaluation of the Hamiltonian with these according to Equation 31.1 
should match the Cartesian Hamiltonian but does not if using the A[l,m] and T[l,m] 
from Mehring’s book or the AA[l,m] and TT[l,m] from the Encyclopedia of NMR.

This problem is easily solved in the next cells, yielding the correct set of 
spherical tensor spin space elements, Tconv[l,m] with the function convertcart. The 
resulting spin space elements yield the same expression for the Hamiltonian as the 
Cartesian version. The correct set of spherical spin space elements is also summa-
rized in Table 31.2a.

The next cells use the same approach to express the spherical tensor spin space 
elements in terms of iz, oz, and the ladder operators ipl, imn, opl, and omin. After 
clearing the previous definition of the TTs with the built‐in Mathematica function 
Clear, we then redefine the TTs using the versions from Mehring’s book (Mehring, 
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1983). Again, these do not yield the same result as the Cartesian version but are trans-
formed with the function convert to into the correct versions, the TTT[l,m]. The 
correct set of spherical spin space elements is also summarized in Table 31.2b.

The next cells compare the Cartesian real space tensor acart with the sum of the 
rank 0 (aiso), rank 1 (aanti), and rank 2 (asym) spherical tensor versions. Evaluation 
shows that stopping the expansion at l = 2 is an approximation. This is not unex-
pected since mapping of complicated distributions on the surface of a sphere requires 
the sum from l = 0 to l = ∞.

The next cells show how a numerical arbitrary symmetric l = 2 tensor designated 
test can be diagonalized by using the simtran function to obtain its similarity trans-
formation S, then using the built‐in Mathematica function Inverse to obtain the 
matrix inverse of S, called S2. The adjoint function can also be used to obtain the 
matrix inverse, called S3. The built‐in Mathematica functions Conjugate, Transpose, 
and Chop are introduced. S.test.S2 yields the diagonalized matrix. The diagonalized 
matrix has the same trace as the original matrix.

The next cells move the elements of the diagonalized matrix to fit the NMR 
convention that the largest deviation from aiso is for δ

33
 = δ

zz
(pas), that the next largest 

deviation is δ
22

 = δ
yy

(pas), and the smallest deviation is δ
11

 = δ
xx

(pas). With this change, 
the axes change from x to z, from y to x, and from z to y. The resulting diagonal form 
of asym is designated asympas.

The next cells apply the same transformation to aanti, that is, S.aanti.S3. The 
results also need to have the elements readjusted according to the convention that is 
described in the preceding paragraph, but this process is left for the user as a home-
work problem later. The trace of aantipas is zero just as for the lab frame aanti.

The last cells show that the same transformation has no effect on aiso or its 
trace.

Explanation of hcs_cartesian.nb

The user is told to evaluate matrep2.nb, then close it without saving changes, and to 
do the same for wigrot.nb. The notebook wigrot.nb is a program used to carry out 
rotations using either Cartesian or spherical tensor methods. We will be using it 
extensively in the rest of the book.

The next cells define the chemical shift tensor σ in the laboratory reference 
frame, the nuclear spin angular momentum vector I, the magnetic field vector B, and 
the laboratory frame chemical shift Hamiltonian hcslab.

The next cell substitutes the I = 1/2 matrix representation of the spin angular 
momentum into hcslab. The lab frame hcslab is taken to the rotating frame by propa-
gating it around the z axis (defined by magnetic field) at the Larmor frequency ω

0
. Only 

the average over the Larmor period survives the transformation, yielding hcsrotavg.
hcsrotavg is the I = 1/2 version of the general expression for the rotating frame, 

hcsrotgen.
We note that σ

zz
 is in the lab frame, so we want to see what it is in terms of the 

observable PAS components. In order to do this, we use Cartesian rotation operators 
(available in wigrot.nb).
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The next cells introduce the symmetric l = 2 rank chemical shift tensor σ
sym

 in 
the PAS frame. The Cartesian rotation operators are used to rotate σ

sym
 to the lab 

frame, that is, R. σ
sym

.R
inv

, yielding σsymlab. The component needed for the 
Hamiltonian hcsrotavg is δ

zz
lab, the [[3,3]] component of σ

sym
lab.

This is simplified to yield the angular dependence of hcsrotavg in rad s−1.
The last cells compare the angular dependence of hcsrotavg calculated by the 

Cartesian method with the same Hamiltonian calculated with the spherical tensor 
method in hcsstatlineshape.nb. Other than a factor of 3 2/  arising from the l = 2 
spherical tensor definitions, the Hamiltonians are shown to be identical (except for a 
sign change in η that has no effect).

Explanation of wigrot.nb

Program wigrot.nb is used as a program in most of the remaining Mathematica note-
books. It contains the definitions of the Wigner rotation elements and spherical ten-
sor real space PAS definitions as given in Mehring (Mehring, 1983). It also contains 
the Cartesian rotation matrices and Cartesian representations of the real space PAS.

Note that wigrot.nb is evaluated in one “supercell.” D0 is the l = 0, m = 0 Wigner 
rotation element. The d1 definitions are for the l = 1, m = −1, 0, and 1 Wigner rotation 
elements. Note that only the β dependence is given in the d1s.6 D1 incorporates the α 
and γ dependence using complex exponentials. The d2 definitions are for the l = 2, 
m = −2, −1, 0, 1 and 2 Wigner rotation elements. Note that only the β dependence is 
given in the d2s. D2 incorporates the α and γ dependence using complex exponen-
tials. apas[l,m] gives the expressions for 9 corresponding spherical tensor PAS ele-
ments in terms of σ

iso
, δ

zz
, and η (and σ

yz
, σ

xy
, σ

xz
, and σ

yz
 for the rarely used antisymmetric 

l = 1 PAS elements). cart is a function that converts from spherical tensor to Cartesian 
representation. Next come the definitions for R, the Cartesian rotation matrix, and 
Rinv, its inverse and adjoint. rhocart is the Cartesian representation of the l = 2 
symmetric spherical tensor in the PAS.

Explanation of hcsstatlineshape.nb

The user is told to evaluate the notebook wigrot.nb, then close it without saving 
changes, and to do the same for the notebook matrep2.nb. In this notebook, chemical 
shift single crystal and powder spectra are calculated using the spherical tensor 
method. The calculation requires the chemical shift Hamiltonian Hcs = alab00 
t00 + alab20 t20 (see Eq. 31.7).

The next cells take the PAS real space spherical tensor components from the 
PAS to the lab frame, yielding alab00 and alab20. The spin space spherical tensor 
components t00 and t20 are introduced. The chemical shift Hamiltonian is calcu-
lated. The I = 1/2 matrix representation of Hcs, called Hcsmat, is defined.

6 wigrot.nb was translated from an earlier version of Mathematica, so the α, β, and γ symbols were con-
verted to their alphabetic forms. The user is welcome to rewrite it in terms of the symbols.
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As will be shown in Chapter 33, the m = 1/2 to m = −1/2 observable transition in 
rad s−1 is given by Hcsmat[[1,1]] – Hcsmat[[2,2]]. The angular dependence of the 
l = 2 anisotropic frequency is given by the function ωcsangular. The powder average 
(see Chapter 35) of ωcsangular is shown to be 0, explaining why only the isotropic 
chemical shift is observed in liquids. The substitution δ

rad
 = δ

zz
 ω

0
 is made, and then 

the orientationally dependent function ω is created.
Because a finite number of spherical polar angles (θ, ϕ) are used for the powder 

average in this calculation (see Chapter 35), each spectral component must be broad-
ened. The gauss and Lorentz lineshape functions are introduced and plotted in the 
following cells.

The next cells calculate a table of powder average angles (θ and ϕ angles) with 
1 degree increments (delthet) in θ and 2° increments (delphi) in ϕ. The weight of 
each angle (wtthet) is shown by integration to be 2 Sin[delthet] Sin[θ]. The table of 
angles and weights is called angles.

The functions boogie and boogieg are created to give the Lorentzian and 
Gaussian broadened lines, respectively, their variables δ

rad
_, η_, and the angles α_ 

and β_. Remember that variables like α_ and β_ can take arbitrary symbolic or 
numerical values. The functions intensity and intensityg calculate the numerical 
values of boogie and boogieg, respectively.

The next cells calculate the theoretical single crystal spectra for δ
rad

 = 2π 
300 rad s−1, η = 0, 0.5, or 1, ten different 10° (π/18) increments of the latitudinal angle 
β, for each of which there are eight different 45° (π/4) increments in the longitudinal 
angle α.

The theoretical single crystal spectra plots show how the distribution of peaks 
changes with the value of η but that the distribution is not affected by the sign of η.

The next cells use the methods described in Chapter 35 to calculate the powder 
spectra (powder function) for a sample composed of a statistical ensemble of ran-
domly oriented microcrystals. The powder spectrum is obtained from the line spectra 
(intensity or intensityg functions) by adding the properly weighted contributions of 
peaks obtained for all the possible angles α and β.

Plots of the powder spectra are obtained for δ
rad

 = ±2π 300 rad s−1, η = 0, 0.5, 1, 
−0.5, and −1. Changing the sign of δ

rad
 causes the powder spectrum to “reflect” across 

0 s−1. Changing the value of |η| changes the appearance of the powder spectrum dra-
matically. However, changing the sign of η is shown to have no effect.

Homework

Homework 29.1: Express the generic Hamiltonian in terms of the AA[l,m] and 
TT[l,m] defined early in solid_hamiltonians.nb. Compare with the Cartesian result 
for the Hamiltonian. If the two forms do not match, write a correction function to fix 
the TT[l,m] or AA[l,m].

Homework 29.2: Swap the elements of aantipas to match the NMR convention 
that the largest deviation from aiso is for δ

33
 = δ

zz
(pas), that the next largest deviation 

is δ
22

 = δ
yy

(pas), and the smallest deviation is δ
11

 = δ
xx

(pas). You do not have to use 
Mathematica to carry out the swap.
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Rotations of Real Space Axis 
Systems—Cartesian Method

Chapter  30

Specific rotation angles are needed to bring the real space principal axis system 

(see  A PAS)(  Eq. 29.3) into coincidence with the real space laboratory axis system 

(see A lab( )  Eq. 29.2). A lab( )  is necessary to calculate the orientation‐dependent 
frequencies in the NMR free induction decay or spectrum and to calculate NMR 
relaxation rates. There are often intermediate axis systems that are necessary to 
consider, for example, the molecular axis system.

These transformations are carried out by applying a sequence of three rotations 
with the unique set of angles called Euler angles that bring the coordinate system of 
one reference frame into exact coincidence with the next.1 Two conventions can be 
used to carry out the transformation.

Convention 1: We can rotate around the original z axis by α radians, followed 
by a rotation around the new y′ axis by β radians and finished by a rotation around 
the new z″ axis by γ radians (Levitt, 2008, appendix A.1; Mehring, 2002), This is easy 
to verify by creating your own labeled coordinate system to play with by putting 
three skewers at right angles through a styrofoam sphere and labeling the skewer 
axes. You will find that you can bring the coordinate system to any arbitrary new 
position with the right choice of α, β, and γ.

Convention 2: The same final result is obtained if the rotations occur first by a 
rotation of γ (same γ as in convention 1) radians around the original z axis, followed 
by a rotation of β radians (same β as in convention 1) around the original y axis, and 
finished by a rotation of α radians (same α as in convention 1) around the original z 
axis. The latter method is harder to visualize with the ball and skewers but easy to 
visualize in Mathematica as shown in euler.nb.

Regardless of the convention used, the first two rotations bring the z axis of 
the first reference frame into coincidence with the z axis of the second. The final 
rotation brings the x and y axes into coincidence. These may be visualized by con-
sidering a globe. The first two rotations bring the north poles, that is, the “latitudes,” 
of the two reference frames into coincidence. The last brings the “longitudes” into 
coincidence.

1 The translational superposition has been assumed.
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Convention 1 Cartesian Rotations:

The Cartesian rotation matrix R  and its inverse R
inv

 corresponding to 
convention 1 are available in the notebook wigrot.nb:

R

Cos Cos Cos S Sin Cos Cos Sin Cosin[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]SSin Cos Sin

Cos Sin Cos Cos Sin Cos

[ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]CCos Cos Sin Sin Sin Sin

Cos Sin Sin Si

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] nn Cos[ ] [ ]

 (30.1a)

R

Cos[ ]Cos Cos Sin[ ]Sin Cos Sin[ ] Cos[ ]Co

inv

[ ] [ ] [ ] [ ] ss Sin Cos[ ]Sin

Cos Cos Sin[ ] Cos[ ]Sin Cos[

[ ] [ ] [ ]

[ ] [ ] [ ] ]Cos Cos Sin[ ]Sin Sin[ ]Sin

Cos Sin Sin

[ ] [ ] [ ] [ ]

[ ] [ ] [ ]] [ ] [ ]Sin Cos

(30.1b)

Cartesian rotations of matrices such as any of the component matrices of A PAS  
(Eqs. 29.3 and 29.4) are achieved by using a sandwich of rotation operators, as shown 
in rotations.nb:

	 A Anew R PAS Rinv( ) ( ) 	 (30.2)

Although not generally used in calculations of NMR Hamiltonians, Cartesian 

rotations of vectors such as V , ,1 { }v v vx y z  are achieved using R as follows (see 
rotations.nb):

	 V R Vnew 1 	 (30.3)

In the older NMR literature, Cartesian rotations or direction cosines are used to trans-
form coordinate systems. However, as shown in the next chapter, there is a more effi-
cient way to transform coordinate systems based on the properties of spherical tensors.

Explanation of euler.nb

This notebook uses built‐in Mathematica functions to illustrate rotations of 
objects in three dimensions. The Graphics3D function is used to create a set of three 
arrows, colored black, red, and green, that are in alignment with the Cartesian axis 
system in the first rendering. The arrows’ endpoints and directions are specified with 
coordinates. For example, the green arrow has the “rear” endpoint at {0,−1,0}, that 
is, x = 0, y = −1, z = 0. The “head” endpoint is {0,1,0}, that is, x = 0, y = 1, z = 0. The 
axis system is also defined via the AxesOrigin, Axes → True, PlotRange → {{−1,1}, 
{−1,1},{−1,1}}, that is, the x axis goes from −1 to 1, the y axis does the same, and 
the z axis does the same.

The “object” composed of the three arrows is rotated in the following cells 
with the built‐in Rotate function. In the first cell, the object is rotated by 45° around 
the +z axis defined by {0, 0, 1}. The next graphics cell carries out two rotations, one 
of 45° around the +z axis and another one of 30° around the +y axis. The last graphics 
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cell carries out three rotations, one of 45° around the +z axis, one of 30° around the 
+y axis, and one of 60° around the +z axis.

The last comment cell tells the user to try using convention 1 with a styrofoam 
ball containing orthogonal skewers to achieve the same final orientation.

Explanation of rotations.nb

The user is told to evaluate wigrot.nb, then to close it without saving changes. This 
notebook uses the functions R and R

inv
 to carry out Cartesian rotations of vectors and 

of the second rank (l = 2) symmetric principal axis system (PAS) tensor. R.R
inv

 and 
R

inv
.R are shown to yield the 3 × 3 unit matrix {{1,0,0},{0,1,0},{0,0,1}}.

Rotation of arbitrary vector1 is implemented using the dot product R.vector1 
and yields a new vector, vectornew. Rotation of the PAS spherical tensor asympas is 
carried out using the “sandwich” product R.asympas.R

inv
 and yields a new tensor, 

anew. The same Cartesian sandwich is also used to rotate the symmetric spherical 
tensor asympas2, which is expressed in terms of δ

zz
 and η.

Homework

Homework 30.1: Verify by observation with a Cartesian axis labeled ball that the 
spherical polar angles θ and φ correspond to the Euler angles β = θ and γ = π − φ.





137

A Primer of NMR Theory with Calculations in Mathematica®, First Edition. Alan J. Benesi. 
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

Wigner Rotations of 
Irreducible Spherical 
Tensors

Chapter  31

An internal Hamiltonian can be expressed using the Cartesian representation, 

Ĥ Î Ôint A  (Eq. 29.1) and can be transformed to or from other reference frames 
using Euler angles and Cartesian rotations. This requires matrix multiplication 
(Eq. 30.2). A more efficient way to express the same internal Hamiltonian and carry 
out the reference frame transformations is with spherical tensors (Mehring, 2002).

The spherical tensors TI
l m,  used to represent individual nuclear spin angular 

momentum are used in the calculation of NMR relaxation rates (Spiess, 1978, 
eqs. 2.14 and 2.15). These are given in Table 31.1.

The Hamiltonian‐based spin angular momentum operators ˆ ,Tl m  are necessary 
for the calculation and simulation of NMR signals and spectra. These are given in 
Tables 31.2A and 31.2B. Note that they are different than those in Table 31.1:

Using spherical tensors and units of rad s−1, an internal Hamiltonian is expressed 

in terms of the real space tensors A
l m,

 and the spin space Hamiltonian spherical ten-
sor operators ˆ ,Tl m  as

	

ˆ ˆ( )
,

,H Tint
l m l

l
m

l m
l m

0

2

1 A
	

(31.1)

where Ĥ
int

 is the interaction Hamiltonian in an arbitrary reference frame (e.g., 

lab frame), A
l m,

 is the l,m component of the real space interaction tensor, and ˆ ,Tl m  

is the l,−m component of the Hamiltonian spin space spherical tensor operator 

(Table 31.2). The real space tensors A
l m,

 are given in Table 31.3:
Irreducible spherical tensors have mathematically convenient rotational 

properties. Transformation between reference frames does not require matrix 
multiplication, as demonstrated in Equation 31.2:

	

A A
l m

q l

l l q

qm
lD

, ,

( )

	

(31.2)
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where A
l q,

 is the real space interaction tensor in the original axis system, A
l m,

 is the 
real space interaction tensor in the new axis system, and Dqm

l ( )  is the Wigner 
rotation element (Mehring, 2002) used to carry out rotations by the Euler angles 
relating the two axis systems. Ultimately, to express the Hamiltonian for simulations 
of spectra and propagation of the density operator, the real space axis system must be 

expressed in the laboratory reference frame, that is, A
l m,

( )lab .
The notebook wigrot.nb contains the Dqm

l ( )  elements for l = 0, 1, and 2. 
These can be expressed in even more compact form as

	
D e d eqm

l i q
qm
l i m( ) ( )

	
(31.3)

where the dqm
l ( )  elements are real. The orthogonality properties of the Wigner 

rotation elements are demonstrated in wigner_orthogonality.nb:

	

0

2

0 0

2

1 1
1

2 2
2 0 1 2 1 2D D d d d q q m m lq m

l
q m
l* sin[ ] if or or 11 2

8

2 1 1
1 2 1 2 1 2

2

l

l
q q m m l land if and and 	(31.4)

Table 31.1  Spin Angular Momentum Operators TI
l m,  for Single Nuclear 

Spins Expressed as Spherical Tensors

I
1,0 0

ˆT I Îz

I
1, 1 1

ˆ ˆ1
T I I

2


I 2
2,0

1
T 3I 1ˆ (

6
))( z i i

I
2,1

1
T (I I I I )

2
ˆ ˆ ˆ ˆ

z z

I
2, 1

1
T (I I I I )

2
ˆ ˆ ˆ ˆ

z z

I
2,2

1
T I I

2
ˆ ˆ

I
2, 2

1
T I ˆ

2
ˆ I

Do not confuse the spherical tensor representation of single nuclear spin angular momentum TI
l m,

 
given in this table with the Hamiltonian spherical tensors ˆ ,Tl m  given in Table 31.2.



Table 31.2  Spin Angular Momentum Operators ˆ ,T l m  for Hamiltonians 
Expressed as Spherical Tensors

(A) In terms of Cartesian Spin Angular Momentum Operatorsa

ˆ ,T
Î Ô Î Ô Î Ô

0 0

3
x x y y z z

ˆ ( ( )),T Î Ô Î Ô Î Ô Î Ô1 1 1

2 z x x z z y y zi

ˆ ( )
,T

Î Ô Î Ô
1 0

2

i y x x y

ˆ ( ( )),T Î Ô Î Ô Î Ô Î Ô11 1

2 z x x z z y y zi

ˆ ( ( )),T Î Ô Î Ô Î Ô Î Ô2 2 1

2 x x y y y x x yi

ˆ ( ( )),T Î Ô Î Ô Î Ô Î Ô2 1 1

2 z x x z z y y zi

ˆ ,T
Î Ô Î Ô Î Ô

2 0
2

6
x x y y z z

ˆ ( ( )),T Î Ô Î Ô Î Ô Î Ô2 1 1

2 z x x z z y y zi

ˆ ( ( )),T Î Ô Î Ô Î Ô Î Ô2 2 1

2 x x y y y x x yi

(B) In terms of Spin Space Angular Momentum Ladder Operatorsb

ˆ ,T
Î Ô Î Ô Î Ô0 0 2

2 3
z z

ˆ ( ),T Î Ô Î Ô1 1 1

2 z z

ˆ ,T
Î Ô Î Ô1 0

2 2

ˆ ( ),T Î Ô Î Ô11 1

2 z z

ˆ ,T
Î Ô2 2

2

ˆ ( ),T Î Ô Î Ô2 1 1

2 z z

ˆ ,T
Î Ô Î Ô Î Ô2 0 4

2 6
z z

ˆ ( ),T Î Ô Î Ô2 1 1

2 z z

ˆ ,T
Î Ô2 2

2

a Do not confuse the Hamiltonian Spherical Tensor Operators ˆ ,Tl m  (Table 31.2) with the 
Single Spin Angular Momentum operators TI

l m,  (Table 31.1). The ˆ ,Tl m  in this table have been 
corrected for the swap of Î and Ô operators as shown in solid_hamiltonians.nb.
b Mehring (2002, pp. 2585–2602).
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Via Equation 31.2 and as demonstrated in wigner_orthogonality.nb, the orthogo-

nality is imparted to the A
l m,

:

0

2

0 0

2 1 1 2 2

0 1 2 1 2A A
l m l m

d d d m m l l
, * ,

sin[ ] if or or bothh
	

(31.5a)

and

0

2

0 0

2 1 1 2 2

1 0 1 2 1 2l m
l m l m

d d d m m l lA A
, ,

sin[ ] if or orr both

(31.5b)

Averaging the ˆ ,Tl m  over the Larmor period (see hcs_cartesian.nb and spherical_
tensors_wigner.nb for examples) in spin space yields another simplification in the 
internal Hamiltonian. All terms vanish except those with m =0, yielding the secular 
interaction Hamiltonian in the rotating frame:

	
ˆ ˆ ˆ ˆ

,
,

,
,

,
,H T T TA A Aint

0 0
0 0

1 0
1 0

2 0
2 0

	 (31.6)

The antisymmetric term 
1,0

1,0ˆA T  is irrelevant for the spectrum or propagation of the 
density operator but can be important for NMR relaxation (Spiess, 1978).

Table 31.3  Real Space Tensors A
l m,

 in terms of Cartesian Real Space Components

A
0 0

3

, A A Axx yy zz

A
1 1 1

2

,

( )( )A A i A Axz zx yz zy

A
1 0

2

, ( )i A Axy yx

A
11 1

2

,

( )( )A A i A Axz zx yz zy

A
2 2 1

2

,

( ( ) )A i A A Axx xy yx yy

A
2 1 1

2

,

( )( )A A i A Axz zx yz zy

A
2 0 2

6

, A A Axx yy zz

A
2 1 1

2

,

( ( ))A A i A Axz zx yz zy

A
2 2 1

2

,

( ( ) )A i A A Axx xy yx yy
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We conclude that the relevant Hamiltonian for spectral simulations and propa-
gation of the density operator in pulse sequences is as follows:

	
ˆ ˆ ˆ

,
,

,
,H T Tint A A

0 0
0 0

2 0
2 0

	 (31.7)

where the A
2 0,

 is expressed in the laboratory reference frame ( A
0 0,

 is unaffected by real 
space axis system transformations). Calculation of the chemical shift Hamiltonian 
corresponding to Equation 31.5a is shown in spherical_tensors_wigner.nb. The results 
obtained using the spherical tensor method are identical to those obtained with the 
Cartesian method except for a factor of 3 2/  and a change in sign of η that do not affect 
the spectrum or relaxation (see spherical_tensors_wigner.nb and Hcsstatlineshape.nb).

The spin space tensors ˆ ,Tl m  vary with the particular interaction Hamiltonian, 
Ĥ

int
 (see spherical_tensors_wigner.nb). For example, in the case of Ĥ

CS
, the ˆ ,TCS

l m  
tensors are given by 0,0

0 0 CSusing the definitions in . an T( d ˆ,wigrot nb b
2,0

0 CS 01 ˆ/ 3 I an ˆ ˆ )d T 2 / 3 I .z z

Explanation of wigner_orthogonality.nb

The purpose of this notebook is to show what is meant by orthogonality of the Wigner 
rotation elements D[l,m] and the real space spherical tensors A[l,m]. The user is told 
to evaluate wigrot.nb, then to close it without saving changes. The next cells tell 
Mathematica to recognize that α, β, γ, δzz, η, and the antisymmetric spherical tensor 
elements ρxy, ρxz, and ρyz are real with no imaginary components.

The next cells evaluate apas[2,0]^2 and apas[2,2]*apas[2,2].
The next cells integrate products of D1 and the complex conjugate of D1 over all 

possible Euler angles α, β, and γ with sin[β] weighting (see Chapter 35). It is shown that 
the triple integrals (obtained using the Basic Math Input palette) yield 8π2/3 for the prod-
uct of D1[1,−1] and its complex conjugate of D1[1,−1], 0 for the product of D1[1,−1] 
with itself, 0 for the product of D1[1,1] and D1[1,−1], 0 for the product of D1[1,−1] and 
D1[−1,−1], 8π2/3 for the product D1[1,−1] and D1[−1,1], 0 for the product 
Conjugate[D1[1,−1]] and D[−1,1], 0 for the product D0[0,0]*D1[−1,1], 8π2/5 for the 
product of D2[2,1] and its conjugate, 0 for the product Conjugate[D2[2,1]]. D2[2,−1], 
and 0 for the product D2[2,1]*D2[1,2]. These findings are consistent with Equation 31.4.

The next cells evaluate the triple integrals of some of the real space lab frame 
products of alab[l1,m1] and alab[l2,m2] with results that are consistent with Equations 
31.5a and 31.5b. Built‐in Mathematica functions ExpToTrig and TrigExpand are 
used to simplify some of the resulting expressions.

Explanation of spherical_tensors_wigner.nb

The purpose of this notebook is to demonstrate the use of the spherical tensors and 
the equivalence of rank 2 real space Cartesian tensors and spherical tensors. The user 
is told to evaluate wigrot.nb, then close it without saving changes. Then the user is 
told to do the same for matrep2.nb.
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The next cells define the spin space spherical tensors as determined in solid_
Hamiltonians.nb and in Table 31.2A. A generic Hamiltonian Hpas is evaluated using 
Equation 31.1.

The chemical shift Hamiltonian spin space tensors Tcs[l,m] are then defined. 
Then the quadrupolar Hamiltonian spin space tensors Tq[l,m] are defined, then reex-
pressed in terms of ladder operators.

The next cells reexpress the spin angular momentum operators in matrix form 
for I = 1/2. The resulting full generic Hamiltonian is called Hhpas. Then Hhpas is 
taken to the rotating frame to yield Hhpasrot. Then Hhpasrot is averaged (integrated) 
over the Larmor period 2π/ω

0
. Only the secular (diagonal) part of the Hamiltonian 

survives.
The next cells define expressions for the spherical spin space operators TT[l,m] 

based on ladder operators as in Table 31.2B. The chemical shift and quadrupolar 
versions of these are defined as TTcs[l,m] and TTq[l,m], respectively. A new generic 
Hamiltonian based on Equation 31.1 is then created, Hhpas2.

The next cells define alab20, alab10, and alab00. The generic Hamiltonian 
Hlab is then defined. Then the alab20 calculated with spherical tensors is compared 
with the alab20 calculated in hcs_cartesian.nb. They are identical except for a factor 
of 3 2/  that arises from the definitions of the l = 2 spherical tensors. The angular 
dependence is the same in both cases.

Homework

Homework 31.1: Verify Equation 31.4 for all possible products of Wigner rotation 
elements with l = 0, l = 1, and l = 2.

Homework 31.2: Verify Equation 31.5 for all possible products of the alab[2,m] 
with l = 0, l = 1, and l = 2.
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Solid‐State NMR Real Space 
Spherical Tensors

Chapter  32

Here, the methods described in the last chapter are used to calculate real space 
spherical interaction tensors for some commonly encountered solid‐state NMR 
internal Hamiltonians (Mehring, 2002, 1983). In subsequent chapters, the methods 
used to calculate spectra with these tensors will be described.

Static Samples of Powdered Solids

Most solid‐state NMR samples are in the form of powders composed of millions of 
microscopic crystals. There is no preferred orientation of the microscopic crystals 
relative to the laboratory reference frame and therefore no preferred orientation of 
the principal axis systems (PASs) of internal Hamiltonians relative to the laboratory 
reference frame. Every possible random orientation of the PAS relative to the labora-
tory frame occurs with equal probability, hence every possible Euler angle. In this 
case, the rotational transformation required to bring the PAS of an arbitrary nuclear 
internal Hamiltonian into coincidence with the laboratory axis system is shown in 
Scheme 32.1 and Equations 32.2 and 32.3 below (see real_tensor_solid.nb):

	 A pas A laboratoryint int[ ] [ ] 	 (32.1)
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In the rare occasions where A
1 0,

( )lab  is necessary,

	

A lab PAS
1 0

1

1 1

0
1

2

, ,

( ) ( ) ( )

(cos[ ] sin[ ](
q

q

q

xy

D

i

A

sin[ ] cos[ ] ))xz yz 	
(32.3)



144 A Primer of NMR Theory with Calculations in Mathematica®

where we have used xy , xz , and yz  to replace xy , xz , and yz  from Equation 
29.3 to avoid confusion with the Euler angle α used in Equation 32.2.

The isotropic component is unchanged by the transformation, that is,

	 A Alab PAS
0 0 0 0, ,

( ) ( ) 	 (32.4)

Because there are no preferred orientations, every possible value of each Euler angle 

occurs. A lab
2 0,

( )  varies with the Euler angles according to Equation 32.2. There is 

no γ dependence in A lab
2 0,

( ) .

Static Single Crystals

In a single crystal, the PAS of a given internal Hamiltonian is the same for equivalent 
nuclei. This means that a single set of unique and specific Euler angles is sufficient 
to bring the PAS into coincidence with the crystal axis system. Another set of specific 
Euler angles are needed to transform from the crystal axis system to the goniometer1 
axis system. Finally, the goniometer axis system has a third set of specific Euler 
angles that relate it to the laboratory axis system (see real_tensor_solid.nb). The 
transformation from the PAS of the internal Hamiltonian via the intermediate axis 
systems to the laboratory axis system can be represented as shown in Scheme 32.5 
and Equation 32.6

	 A A A Apas crystal goniometer labora[ ] [ ] [ ] [ ttory] 	
(32.5)
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(32.6)

where the sums are nested and each Euler angle has a singular and unique value, for 
example, α = π/3, β = π/2, γ = 3π/2; ξ = π, ψ = π/2, ζ = 0; ϕ = π/7, θ = 0, κ = π/5 as for the 
example shown in real_tensor_solid.nb.

Multiple Hamiltonians and Real Space Tensors 
for Static Powdered Solid Samples

It is often true for solid samples that a given nucleus has multiple internal 
Hamiltonians. This is generally true for quadrupolar nuclei, where both Ĥ

Q
 and Ĥ

CS
 

(and sometimes Ĥ
D
) can have significant effects on spectra and on evolution of the 

density operator. In this case, it is necessary to choose one of the interaction PASs 
as the one from which the powder average to the laboratory reference frame is gen-
erated. Here, we consider the case where Ĥ

Q
 and Ĥ

CS
 are active, and we choose the 

1 A goniometer is a device that allows an object, in this case a single crystal, to be rotated to a precise 
angular orientation.
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Ĥ
Q
 PAS as the one from which the powder average to the laboratory reference frame 

is calculated as shown in Schemes 32.7a and 32.7b:

	 A pas A quadpas A laboratoryCS CS CS[ ] [ ] [ ] 	
(32.7a)

	
A quadpas A laboratoryQ Q[ ] [ ]

	
(32.7b)

where unique values of the Euler angles ζ, ψ, and ξ relate the Ĥ
CS

 PAS to the Ĥ
Q
 PAS, 

and the powder average angles α, β, and γ relate the Ĥ
Q
 PAS to the laboratory axis 

system (see real_tensor_solid.nb).

Magic Angle Spinning of Powdered 
Solid Samples

In many solid‐state NMR experiments, a powdered solid sample is placed in a 
cylindrical rotor and spun at the “magic angle” relative to the laboratory reference 
frame z axis. The magic angle is the smallest angle θ for which 3cos2[θ] − 1 = 0. In 
degrees, this angle is 54.736° (see real_tensor_solid.nb). The experimental advantage 
of magic angle spinning is that the powder spectrum integral is concentrated into a 
sharp peak or peaks,2 greatly increasing the signal to noise ratio and resolution of 
peaks from nuclei in different environments. For all internal Hamiltonians in which 
� ��� �ˆ ˆH Hint Z

3, spinning the sample at the magic angle yields sharp peaks rather 
than powder spectra.

The real space interaction tensor for spinning at an arbitrary angle with respect 
to the laboratory axis system is obtained by using the transformations in Scheme 32.8:

	 A pas A rotor A laboratoryint int int[ ] [ ] [ ] 	
(32.8)

where α, β, and γ are powder average Euler angles that relate the internal Hamiltonian 
PAS to the rotor axis system, and ϕ = ω

rot
 t, θ, and χ are the Euler angles that relate the 

rotor axis system to the laboratory axis system. ϕ is time‐dependent because the rotor 
is spinning at ω

rot
, and χ is arbitrary and can be assigned any single value. θ is usually 

chosen to be the magic angle. The transformation in Equation 32.9 is illustrated in 
real_tensor_solid.nb.
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q
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(32.9)

Unlike static powder samples where only the α and β angles are sufficient to align the 
Ĥ

int
 PAS with the laboratory frame, a powder average over all three Euler angles α, β, 

and γ is necessary to align not only the PAS z axis with the rotor spinning axis but 
also the PAS x and y axes with the rotating x and y axes of the rotor. If γ is not 

2 Magic angle spinning spectra contain spinning sidebands separated by the spinning rate in s−1.
3 For quadrupolar nuclei with odd half integer spin quantum numbers the magnitudes of ǁH

Q
ǁ and ǁH

Z
ǁ can 

be comparable, and magic angle spinning does not yield sharp peaks.
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included in the powder average, there are phase anomalies observed in the theoretical 
NMR signal calculated from the time‐dependent density operator.

Explanation of real_tensor_solid.nb

The purpose of this notebook is to demonstrate coordinate system transformations of 
real space spherical tensors using Wigner rotations. The user is told to evaluate 
wigrot.nb, then close it without saving changes.

The first noncomment cell calculates the real space symmetric tensor alab20 
for a static sample of a powdered solid according to Scheme 32.1 and Equation 32.2.

The next sequence of transformations takes the PAS apas[2,0] to the single 
crystal axis system, then to the goniometer axis system, and finally to the lab axis 
system (see Eqs. 32.5 and 32.6). First the new function acrystal is created. It gives the 
transformation of a single crystal real symmetric tensor from the PAS to the single 
crystal axis system characterized by the fixed angles α1, β1, and γ1. As an example 
and to illustrate the subsequent calculations, a new function acrystaln is created by 
substituting α1 = π/3, β1 = π/2, and γ1 = 3π/2 in acrystal.

The next cell creates a new function agoni, which gives the transformation 
from the crystal fixed axis system to the goniometer axis system characterized by the 
fixed angles α2, β2, and γ2. Again, for a numerical example the function agonin is 
created with fixed angles of α2 = π, β2 = π/2, and γ2 = 0 rad. The final transformation 
to the lab axis system is achieved by the function alab[2,0, α3_, β3_, γ3_], where the 
angles are fixed and relate the goniometer axis system to the lab axis system.

The next cells deal with the frequently encountered case of two or more internal 
Hamiltonians in a static powder sample. The necessary transformations are shown in 
Schemes  32.7a and 32.7b. Here there are assumed to be two active internal 
Hamiltonians, the chemical shift and the quadrupolar. In order to calculate the 
powder spectrum, we need to calculate the angular dependence of the lab frame 
alabcs[2,0] and alabQ[2,0] real space symmetric tensors. Since the magnitude of 
the quadrupolar Hamiltonian ‖H

Q
‖ is usually much greater than the magnitude of 

the chemical shift Hamiltonian ‖H
CS

‖, we arbitrarily choose to powder average to the 
laboratory frame from the quadrupolar Hamiltonian PAS. Therefore, we need to 
bring the chemical shift PAS into coincidence with the quadrupolar PAS before we 
can do the powder average for H

CS
. This requires specific angles α1, β1, and γ1. The 

function acsQ[2,q_] gives the l = 2 chemical shift tensor in the quadrupolar PAS. 
The lab frame l = 2 chemical shift real space tensor is given by alabcs[2,0].

The real space quadrupolar tensor alabQ[2,0] only needs the powder average 
Euler angles α, β, and γ.

Magic Angle Spinning is a widely employed NMR technique. Typically, 
powder samples are spun rapidly in a cylindrical rotor at the magic angle θ, which is 
one of the solutions to the equation 3(cos[θ])2 – 1 = 0. In the following cells, we des-
ignate the magic angle as magang. The necessary transformations are shown in 
Scheme 32.8. We assume that there is a single dominant internal Hamiltonian, typi-
cally H

CS
 for an I = 1/2 spin. The function arot[2,q_] is obtained by doing the powder 

average from the H
CS

 PAS to the rotor axis system using angles α1, β1, and γ1. Then 
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the time‐dependent specific angles ω
rot

 t and magang bring the sample from the rotor 
reference frame to the lab frame, yielding the desired alab20.

In anticipation of the discussion of average Hamiltonian theory in Chapter 34, 
we create the function f[t_] from alab20. Taking the first‐order average over the rotor 

period averages Alab
20 ( )t  yields zero, leaving only the isotropic component Alab

00  to 
determine the frequency. However, experiment, second‐order evaluation, or explicit 
propagation of the density operator with Ĥ

int
 shows the presence of spinning side-

bands separated from the isotropic peak at integer multiples of the spin rate ω
rot

.

Homework

Homework 32.1: Calculate the free induction decay (FID(t)) and then by Fourier 
Transformation the Spectrum obtained with magic angle spinning of a powder 
sample with

a.  Chemical shift Hamiltonian, I = 1/2, δ
zz
 = 2π 20 × 103 rad s−1, η = 0

b.  Quadrupolar Hamiltonian, I = 1, δ
zz
 = 2π 100 rad s−1, η = 0

c.  Homonuclear dipolar Hamiltonian, 2 coupled I = 1/2 spins, δ
zz
 = 2π 30 × 

103 rad s−1, η = 0
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Time‐Independent 
Perturbation Theory

Chapter  33

Although individual nuclear spins will generally be in a superposition of states as 
described in Equation 10.11, the detectable signal from simple NMR experiments 
corresponds to a transition between adjacent “pure” eigenstates. Like the results from 
the Stern–Gerlach experiment , the observed NMR spectrum and corresponding FID 
can be calculated with time‐independent perturbation theory. More complicated 
NMR experiments where unobservable coherence orders are necessary in the course 
of the pulse sequence require explicit knowledge of the time‐dependence of the 
density operator. With this limitation, time‐independent perturbation theory is useful 
for calculation of solid‐state NMR powder spectra.

In the high field limit where ˆ ˆH HintZ  , the first‐order corrections int
, (1)i me  

to the Zeeman energy levels E
I,m

 are given by (Levine, 1974, pp. 178–185)

	
int
, int

ˆ(1) , H ,i me i m i m
	

(33.1)

The second‐order corrections int
, (2)i me  are given by

	
1

2 1 1 2

2

1 int 2
int
,

, ,

, H ,ˆ
(2)i m

m m i m i m

i m i m
e

e e
	

(33.2)

Care must be taken to use consistent energy or frequency units. Since EI m I m, , ,
1 1
  

we use units of rad s−1 because these are most convenient for theoretical 
calculations.

Example 1 CS
, (1),i me  first‐order perturbation theory for the chemical shift, 

I = 1/2 spin
For the m = 1/2 Zeeman level, the perturbation is (see Equation 29.5):

	

0,0 2,0
CS 0,0 2,0

CS1 1 CS CS CS
,

2 2

0,0 2,0
0,0 2,0

CS CSCS CS

1 1 1 1 1 1 1 1
, H , , T T ,

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1
,

ˆ ˆ ˆ(1) A A

ˆ ˆA AT , , T ,
2 2 2 2 2 2 2 2

CSe

	
(33.3a)
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where ˆ ˆ/,T ICS
0 0

01 3 z  and ˆ ˆ ./,T ICS
2 0

02 3 z  ACS

0 0,

 and ACS

2 0,

 are in the laboratory 
frame. Evaluating the eigenvalues of Î

z
 (see Chapter 10), using the orthonormality of 

the Zeeman eigenstates, and evaluating ACS

2 0,

 as shown in real_tensor_solid.nb and 
Table 31.2,
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(33.3b)

where ρ
iso

 is the isotropic chemical shift (in ppm) and δ
zz
′ is defined in Equations 29.3 

and 29.5. For the m = −1/2 Zeeman level, the perturbation is
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(33.3c)

The perturbation to the transition between the m = 1/2 and m = −1/2 Zeeman levels is 
given by the difference

e e1

2

1

2

1

2

1

2

01 1
1

4
1 3 2 2 2

, ,
( ) ( ) ( cos[ ] cos[ ]CS CS

iso ssin[ ] )2
0zz

(33.3d)

In Figure 29.1, Equation 33.3d was used along with the simplifying assumption that 

iso 0  to generate the spectra (see Hcsstatlineshape.nb).
Example 2 Q

, (1),i me  first‐order perturbation theory for the quadrupolar 
Hamiltonian, I = 1 spin

The quadrupolar Hamiltonian ĤQ  is a single spin interaction that occurs for 
nuclei with spin angular momentum quantum numbers I > 1/2. Unlike I = 1/2 nuclear 
spins, which have an even distribution of positive charge in the nucleus, I > 1/2 
nuclear spins have a nonuniform distribution of positive charge in the nucleus. Over 
2/3 of the NMR‐observable nuclei in the periodic table are quadrupolar. ĤQ  arises 

from the electrical interaction between the nonuniform electric field gradient tensor 

AQ  due to electron orbitals near the nuclear spin and the nonspherical distribution 
of positive charge within the nucleus itself. ĤQ  can have a magnitude larger than 
the Zeeman Hamiltonian.

In Cartesian tensor form, ˆ ˆ ˆH I I,QQ  where Q  has units rad s−1, 

Q A AQ Q
nuc

QK
eQ

I I2 2 1( )
,



 where AQ  is the real space electric field gradient ten-

sor, e is the electron charge, Q
nuc

 is the nuclear quadrupole moment, and I is the 
nuclear spin angular momentum quantum number. In the quadrupolar PAS, 

zz zz zz
QQ K A

e qQ

I IQ
nuc

Q qcc
2

2 2 1
2

( )
 (Gerstein and Dybowski, 1985, 

pp. 124–128). The qcc in s−1 is called the quadrupole coupling constant.
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As the first example, we consider the first‐order quadrupolar perturbation for. 

an I = 1 nuclear spin. Because the real space electric field gradient tensor AQ  must 

satisfy Laplace’s equation, 2 0AQ ,  AQ  is traceless and A Alab PASQ Q

00 00

0( ) ( ) . 
Therefore

	
ˆ ˆ ˆ ˆH T T TA A AQ Q Q Q Q Q Q

00
00

20
20

20
20

	
(33.4)

and the first‐order perturbations to the different m levels are as follows:
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(33.5a)

where, as shown in spherical_tensors_wigner.nb, ˆ ( ),/,TQ
2 0 2 21 6 3I Iz  and

	
I I m m I mz

2 2| , | ,
	

(33.5b)

	 I I m I I I m2 1| , | ,( ) 	
(33.5c)

The orthonormality of the Zeeman eigenstates yields the following:
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Transitions are only allowed between adjacent energy levels, with
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(33.5h)

The powder spectra obtained for these transitions are calculated in rigiddeutline-
shapes.nb. The methods used to calculate powder lineshapes are discussed in 
Chapter 35.

Example 3 Q
, (1),i me  first‐order perturbation theory for the quadrupolar 

Hamiltonian, I = 3/2 spin
For I = 3/2 spins,
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Transitions are only allowed between adjacent energy levels, with
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The m = 3/2 to m = 1/2 and m = −1/2 to m = −3/2 transitions are called “satellite” tran-
sitions. The m = 1/2 to m = −1/2 transition is called the “central” transition and is 
unaffected to first order. The corresponding energy levels are shown in Figure 33.1.

Example 4 Q
, 1),E (i m  second‐order perturbation theory for the quadrupolar 

Hamiltonian, I = 3/2 spin
ĤQ  can be sufficiently large that the high field assumption, ˆ ˆH HZ Q  is 

no longer valid. In this case, the full Hamiltonian (Eq. 31.1) must be used, and sec-
ond‐order perturbation theory is required to predict the observed spectra of the 
m = 1/2 to m = −1/2 “central” transitions of odd‐half‐integer quadrupolar nuclei. It 

∆E = hνLarmor ∆EQ1 = First-order perturbation

m = –3/2 

m = –1/2 

m = 1/2

m = 3/2

∆E

∆E

∆E

∆EQ1

∆EQ1

m = –3/2 

m = –1/2

m = 1/2

m = 3/2

∆E

∆E

∆E

(a) (b)

Figure 33.1  Ĥ
Q
 First‐Order Perturbation of Zeeman Energy Levels for an I = 3/2 nuclear spin 

(a) Unperturbed Zeeman energy levels for I = 3/2 nuclear spin (b) First‐order quadrupolar 
perturbations of Zeeman levels. The central transition (m = 1/2 to m = −1/2) is unaffected to 
first order.
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also affects the satellite transitions, but the static spectra of the latter are dominated 
by the first‐order Ĥ

Q
.

Unlike the first‐order perturbations, the second‐order perturbations, Equation 
33.2, require that the contributions come from Zeeman spin space terms with 

1 2 .m m  Since the real space electric field gradient tensor AQ  is traceless, only 
l 2  terms contribute to Ĥ

Q
. The only way that the 1 2m m  requirement can yield 

non‐zero values for I, m
1
|Ĥ

Q
|I, m

2
 in Equation 33.2 is if the spin space terms in Ĥ

Q
 

contain Î  or Î . Therefore, the only spin space tensors that can contribute are 

ˆ ˆ ˆ ˆ ˆ( ),T I I I IQ
2 1 1

2 z z , ˆ ˆ ˆ ˆ ˆ( ),T I I I IQ
2 1 1

2 z z , ˆ ˆ,T IQ
2 2 21

2
, and ˆ ˆ,T IQ

2 2 21

2
. Hence 

the effective second‐order quadrupolar Hamiltonian Ĥ
Q
(2) is (compare with Eq. 33.4):
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The second‐order quadrupolar perturbations for the central and satellite transitions 
from Equation 33.2 are calculated in the notebook Hq2pert.nb. For the central 

transition, | , | ,
3
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(33.8)

The powder spectra corresponding to these first‐ and second‐order perturba-
tions are calculated in Hq2pert2.nb, shown in Figure  33.2, and discussed in 
Chapter 35.

(a)
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(b)

–15 –10 –5 0 5 10 15

(c)
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(e)

–15 –10 –5 0 5 10 15

(f)

–15 –10 –5 0 5 10 15

Figure 33.2  Second ‐order quadrupolar spectra of the central transition (m = 1/2 to m = −1/2) 
of an I = 3/2 spin, qcc = 2.5 × 106 s−1, ν

0
 = 75 × 106 s−1 calculated in Hq2pert2.nb. (a) η = 0 (b) 

η = 0.2 (c) η = 0.4 (d) η = 0.6 (e) η = 0.8 (f) η = 1. Frequency is expressed in kHz (103 s−1). Note 
that most NMR spectrometers “reverse” the frequency axis to increase from right to left rather 
than left to right.
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Explanation of rigiddeutlineshapes.nb

This notebook calculates rigid deuterium powder lineshapes using the results from 
time‐independent perturbation theory. The user is told to evaluate wigrot.nb, then 
close it without saving. The user must also open and evaluate the file repangwt5253 
and SHOW THE FULL OUTPUT. This is not a Mathematica notebook but a list of 
5253 REPULSION‐calculated random powder average (α, β) angle pairs and their 
respective weights in the powder average (Bak and Nielsen, 1997).

The first noncomment cell calculates the real space spherical tensor respon-
sible for the powder spectrum, alab[2,0]. Using the relationship (see Table  29.1) 
δ

zz
 = e2qQ/(2I (2I − 1) ∇ = ω

Q
/(2I (2I − 1) = 2π qcc/(2I (2I − 1), π qcc is substituted for 

δ
zz
 (rad s−1) for I = 1 deuterium.

Using Equations 33.5g and 33.5h functions ν
1
 and ν

2
 are created for the frequency‐

dependence of the two transitions. The function gauss is created for Gaussian 
broadening needed for each of the finite number of frequencies calculated with the 
finite number of powder average angles used in the powder average (see Chapter 34). 
Next we create the functions boogie1 and boogie2. Next the intensity and powder 
functions are created.

Next, eleven different powder spectra (temp0–temp10) are calculated using 
lb = 5000 s−1, qcc = 200,000 s−1, and η values ranging from 0 to 1 in increments of 0.1. 
These are then plotted. If one examines the η = 0 plot, it is easy to understand what is 
meant by the “horns” in the powder spectrum. These correspond to the most likely 
value for the Euler angle β, which is 90° for each of the two transitions. The least 
intense parts of the powder spectrum are the “parallel edges,” which occur at β = 0° 
for each of the transitions.

Explanation of hq2pert.nb

This notebook calculates the expressions obtained from Equations 33.7 and 33.8 for 
an I = 3/2 nuclear spin subject only to the quadrupolar Hamiltonian. The user is told 
not to evaluate matrep2.nb because Hq2pert.nb creates rules that would conflict with 
those from matrep2.nb. The first cells define functions that calculate the effects of the 
operators iz, iplus, imin on the spin angular momentum eigenstate “kets” |l,m>. 
These functions are necessary to evaluate the second‐order time‐independent quad-
rupolar perturbations of the energy levels. The functions t22, t2m2, t21, and t2m1 are 
in turn created from the functions iz, iplus, and imin.

The spin is assumed to be I = 3/2.
The next cell gives the second‐order quadrupolar Hamiltonian hq2 (see 

Eq. 33.7).
The second‐order perturbation to the |3/2, 1/2 > energy level, ΔE[3/2,1/2] is 

calculated first (in rad s−1). Only terms that end up in the |3/2, 1/2 > energy level 
contribute. The inverse ± ω0 and inverse ±2ω0 factors arise from single quantum and 
double quantum transitions, respectively. These are caused by the action of the t21 
and t22 functions on the |3/2, −1/2 > and |3/2, −3/2 > eigenstates.

The second‐order perturbation to the |3/2,−1/2 > energy level, ΔE[3/2,−1/2], is 
calculated in the same way.
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The second‐order central transition perturbation, ΔEcen, is given by the 
difference of ΔE[3/2,1/2] and ΔE[3/2,−1/2].

The second‐order perturbations, ΔE[3/2,3/2] and ΔE[3/2,−3/2], are calculated 
in the same way as for the other energy levels. The second‐order satellite transition, 
ΔEsat1, is given by the difference of ΔE[3/2,3/2] and ΔE[3/2,1/2]. The second‐order 
satellite transition, ΔEsat2, is given by the difference of ΔE[3/2,−1/2] and ΔE[3/2,‐3/2].

The central transition and satellite transition perturbations calculated here are 
used in the next notebook, Hq2pert2.nb.

Explanation of hq2pert2.nb

This notebook calculates powder lineshapes corresponding to the second‐order 
quadrupolar perturbations calculated in Hq2pert.nb. The user must exit Mathematica 
after having finished Hq2pert.nb. After starting a fresh Mathematica session, the 
user must evaluate wigrot.nb, then close it without saving changes. Then the user 
must open repangwt5253 (it is NOT a notebook), evaluate it, choose show full output, 
then close it without saving changes.

The first noncomment cell reproduces the definition of ΔEcen from Hq2pert.nb. 
The next cells calculate the lab frame real space terms needed to evaluate the powder 
lineshape, a21, a2m1, a22, and a2m2. These give the angular dependence of the per-
turbation ΔEcen.

For I = 3/2, we make the substitution zz I I

2

2 2 1

2

6

qcc qcc

( )
, where qcc is 

the quadrupolar coupling constant in s−1 (see Table 29.1). We then convert the result-
ing expression into the frequency function ν1. Then we introduce the function gauss 
and plot it. The function boogie1 applies the gauss function to the function ν1. The 
intensity function gives the numerical value of the boogie1 function.

Next, examples of the angles and weights contained in repangwt5253 are 
shown. For example, repangwt[[5253]] consists of three values, α = 3.13156 rad, 
β = 1.90438 rad, and a weight of 1.00136.

The next cells create the powder function that adds all the different Gaussian 
broadened intensities for all 5253 of the repangwt5253 Euler angles.

Next, the powder function is used to create powder spectra (temp through temp5) 
for the following parameters: lb = 500 s−1, qcc = 2.5 × 106 s−1, and the Larmor frequency 
2π 75 × 106 rad s−1, and a range of η values from 0 to 1.0. These are then plotted.

Next, the same process is repeated to calculate powder spectra corresponding 
to ΔEsat1. Using the same parameters as for the central transition, the plots are 
shown to depend on the Euler angle γ. If, however, the average over all possible 
γ angles is taken, the spectra obtained are simpler.

Homework

Homework 33.1: Calculate the first‐order quadrupolar perturbations for an I = 5/2 
nuclear spin.

Homework 33.2: Calculate the second‐order quadrupolar perturbations for the 
central transition of an I = 5/2 nuclear spin.
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Average Hamiltonian 
Theory

Chapter  34

Nuclear magnetic resonance Hamiltonians are often time‐dependent. One way to 
deal with the time‐dependence is to propagate the density operator with sufficiently 
small time increments that the Hamiltonian is approximately constant during the 
increment (see Eq. 17.2b). If the Hamiltonian has a periodic time‐dependence (such 
as internal Hamiltonians in the rotating frame), an alternative approach is to calculate 
the average Hamiltonian over the period τ

p
 of the oscillation (Ernst et al., 1987, 

pp. 72–75; Gerstein and Dybowski, 1985, pp. 137–152).
In average Hamiltonian theory, the time‐dependent Hamiltonian is approxi-

mated with a sum of time‐independent Hamiltonians:

	 ˆ ( )H H H Hp
0 1 2



	 (34.1)

where

	 H H( )0

0

1

p

t dt
p ˆ 	 (34.2)

	
11

1 1 20 20
H H( ),H( )ˆ

2
ˆ[ ]

p t

p

i
dt t t dt 	 (34.3)

	

1 22
1 2 1 2 3 3 2 1 30 0 0

ˆ ˆ ˆ1
H {[[H( ),H( )],H( )] [[H( ),H( )],H( )ˆ ˆ ]ˆ

6
p t t

p

dt dt t t t t t t dt

	

(34.4)

etc.
H2  and higher orders are not necessary for internal Hamiltonians Ĥ

int
 if 

int||H |ˆ | | |ĤZ .
We have already encountered the zeroth‐order average Hamiltonian H0  when 

the nine terms obtained for the laboratory frame internal Hamiltonian in Equation 
31.1 are propagated to the rotating frame by the unitary transformation

	 ˆ ˆ ˆˆ ˆ ˆ ˆ
H H Hrot lab lab

I I I Ie e e ei B t i B t i t i tz z z z0 0 0 0 	 (34.5)

H0  is calculated by integrating over the Larmor period τ
p
 = 2π/ω

0
. Only the secular, 

time‐independent terms survive, yielding Equation 31.6.
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H1  can be calculated using Equation 34.3 and the matrix representation of spin 
operators as shown in Hqavg2.nb or by commutation relations between spin angular 
momentum operators as shown in Hqavg2new.nb.

Explanation of Hqavg2

This notebook calculates the first‐order average quadrupolar Hamiltonian for an 
I = 3/2 nuclear spin using matrix representation of the spin space spherical tensors. 
The user is told to evaluate matrep2.nb, then close it without saving the changes. The 
nuclear spin is I = 3/2. The matrix representations of the density operator, the spin 
angular momentum, and the Hamiltonians are used.

The matrix representations T[l,m] of the quadrupolar spin space spherical 
tensors are defined.

The quadrupolar Hamiltonian is the only (or dominant) internal Hamiltonian. 
hqlab is calculated using Equation 31.1.

Next, the propagators u1, u1adj, u2, and u2adj are evaluated. u1 and u1adj are 
used to propagate Hqlab to the rotating frame, yielding hqrot1.

The zeroth‐order average Hamiltonian (Eq. 34.2) is evaluated by integration 
to yield h1rotavg0. The result is shown to be identical to A[2,0]*T[2,0].

Since we need it for the first‐order average Hamiltonian, we calculate hqrot2 
using u2 and u2adj.

Next, we calculate the matrix representation of the commutator of hqrot1 and 
hqrot2, yielding hqcomm. The first‐order average Hamiltonian, HQ1  (Eq. 34.3), is 
then evaluated by double integration over the time variables t1 and t2. The secular 
(diagonal) part is then selected to yield Hq1avg. Next, we remember that the l = 1 
terms (i.e., A[1,1], etc) are zero, simplifying the expression for Hq1avg. Next, the 
real space spherical tensors A[2,m] are calculated, yielding a21, a2m1, a22, and 
a2m2. With these, Hq1avg is calculated in matrix representation.

The central transition is given by Hq1avg[[2,2]]–Hq1avg[[3,3]] and called 
hqcen. 2 π qcc/6 is substituted for δ

zz
 since I = 3/2. We then compare this with ΔEcen 

calculated in hq2pert2.nb using time‐independent perturbation theory. Although they 
look superficially different, they are identical!

Explanation of Hqavg2new.nb

This notebook calculates the first‐order average quadrupolar Hamiltonian for an 
I = 3/2 nuclear spin but leaves all the spin operators in symbolic form until the end of 
the notebook when they are evaluated in matrix form for the purpose of comparison 
with the results in Hqavg2.nb. If the user has just evaluated Hqavg2.nb, he or she 
must exit and then restart Mathematica. Next, the user must evaluate commutators.nb 
and close it without saving. Next, the user must evaluate matrep2.nb, then close it 
without saving.

The first‐order average Hamiltonian is calculated using commutator relations 
(see Chapter 19).
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First, the T[2,m] are expressed in symbolic form (e.g., T[2,2] = (iplus.iplus)/2 ).
Then the lab frame quadrupolar Hamiltonian Hqlab is defined.
Hqlab is then propagated into the rotating frame with the time variable 

t1 to yield hqrot1. Hqlab is also propagated into the rotating frame with time vari-
able  t2 to yield hqrot2. Both propagations take advantage of Equation 41.8, 
ˆ ( ) ˆ ˆ ., , ,ˆ ˆ
T T Trot

I I i m tl m i t l m i t l mt e e ez z0 0 0

Next, the zeroth‐order average Hamiltonian is calculated (Eq. 34.2) to yield 
A[2,0] T[2,0], the same as for the first‐order time‐independent perturbation theory 
result.

Next, the expressions for hqrot1 and hqrot2 are calculated.
Then the commutator of hqrot1 and hqrot2 is calculated, yielding hqcomm. 

The parts that were unable to be evaluated by the commspin function were then 
reevaluated by manually replacing the function commspin with the function comm, 
then reevaluating. This yields an extremely complicated mess. However, Mathematica 
is able to perform the double integration of hqcomm over the time variables t1 and 
t2  to yield the first‐order average Hamiltonian HQ1  (see Eq. 34.3). This is also 
extremely complicated, even after several simplifications yield the result temp.

The next cells substitute the I = 3/2 matrix representations for the spin angular 
momentum operators iplus, imin, and iz. After full simplification, this is defined as 
HQ1 , the secular part of which is extracted to yield Hq1avg. Except for a sign change, 
the result is identical to the one from time‐independent perturbation theory.

Homework

Homework 34.1: Calculate H0  and H1  for an I = 1/2 spin undergoing magic angle 
spinning, using τ

p
 = τ

rotor
. Assume that only Ĥ

CS
 is active.

Homework 34.2: Does the sign change obtained in the expression for Hq1avg 
in Hqavg2new.nb affect the powder spectrum? Can you detect the origin of the 
change in sign?
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The Powder Average

Chapter  35

In a powdered static sample of a rigid solid, the principal axis systems (PASs) of 
internal Hamiltonians do not change their orientations with respect to the laboratory 
reference frame during the course of the NMR experiment. This means that the l 2 

real space tensors Aint

2,q

 keep the same Euler angles throughout the NMR experiment 
for each microcrystal in the powder sample. In this case, the powder spectrum is 
obtained by adding the appropriately weighted contributions from all possible Euler 
angles. In the case of static powder samples, the β Euler angle corresponds to the 
“latitude” in spherical polar coordinates and must be weighted according to sin(β). 
The α Euler angle corresponds to the longitude. The γ Euler angle is not required for 
static NMR samples except in the case of the satellite transitions of quadrupolar 
nuclei. In some simple cases where first‐order perturbation theory can be used, the 
powder spectrum can be calculated analytically for each allowed transition with 
Δm = 1 using the complete elliptic integral of the first kind (Mehring, 2002). But in 
most cases it is more convenient to calculate the powder spectrum numerically using 
one of the following numerical strategies:

Time‐Independent Perturbation Theory 
Powder Spectra

Time‐independent perturbation theory (Chapter  33) gives spectral frequencies 
corresponding to a given Hamiltonian PAS with specific Euler angles relative to 
the laboratory reference frame. The powder spectrum is “built” using the following 
sequence of steps:

1.  Choose new Euler angles (typically α and β).

2.  Weight the angles appropriately, that is, by sin(β).

3.  Apply line broadening so that addition of a finite number of α and β angles 
yields the powder spectrum.

4.  Save and add to sum saved from previous α and β angles.

5.  Loop back to 1. Repeat until entire set of Euler angles has been evaluated.

One example of this type of calculation was shown in Hcsstatlineshape.nb. In this 
case, 1° increments in β and 2° increments in α were used, with the β increments 
weighted by sin(β) dβ.
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A more efficient way to calculate a minimal set of powder average Euler angles 
α and β is to use the repulsion method (Bak and Nielsen, 1997), in which each of a 
finite set of points on a sphere is allowed to experience repulsive forces from the 
others and move accordingly. After a sufficient number of increasingly small displace-
ments, the points arrange themselves into an almost perfectly even distribution on the 
spherical surface. After motion is stopped, corrections are made to adjust the “weight” 
of each point on the sphere. An example of the repulsion calculation of these points is 
shown in repulsionbook.nb. A set of 5253 repulsion points was also calculated numer-
ically and is used in many of the Mathematica notebooks, including Hq2pert2.nb.

Powder Average Density Operator

Time‐independent perturbation theory only works for the simplest NMR experi-
ments. More complicated NMR experiments require calculation of the time‐
dependent density operator ρ(t) with the Liouville–von Neumann (LVN) equation 
(Eqs. 13.1 and 13.2). The detected NMR signal in an NMR experiment is the free 
induction decay or FID(t

2
) = Trace[I+ ρ(t

2
)] (see Eq. 18.1). The observed NMR 

signal FID
powder

(t
2
) for a static powder sample of a rigid solid is calculated using the 

following steps:

1.  Choose new Euler angles (typically α and β).

2.  Weight the angles appropriately (e.g., by sin(β)).

3.  Use LVN equation to calculate ρ(t
2
) for each scan.

4.  Calculate FID(t
2
) = Trace[I+ ρ(t

2
)].

5.  Add FID(t
2
) to sum of previous FID(t

2
).

6.  Repeat steps 3 through 6 until full phase cycle has been completed.

7.  Save sum from 6 and add to sum saved from previous α and β angles.

8.  Loop back to 1. Repeat until entire set of Euler angles has been evaluated. This 
yields FID

powder
(t

2
).

9.  Apply time‐dependent line broadening and Fourier transform the powder NMR 
signal FID

powder
(t

2
) (see Chapter 9) to obtain the 1D spectrum.

In the case of 2D NMR experiments, an additional loop is used to repeat steps 3 
through 6 for each value of the t

1
 interval and save the calculated FID separately. 

This yields FID(t
2
, t

1
). Each FID(t

2
, t

1
) can be added in the outer powder average 

loop (steps 1 through 8) to obtain FID
powder

(t
2
, t

1
). One can also save ρ

powder
(t

2
) or the 

set of ρ
powder

(t
1
, t

2
)’s and obtain expectation values for other operators as a function 

of t
2
 (or t

1
, t

2
).

Explanation of repulsionbook.nb

This notebook calculates optimal pairs of Euler angles (α,β) by letting an arbitrary 
initial distribution of points on a sphere undergo small displacements due to repulsive 
forces (Bak and Nielsen, 1997). After a sufficient number of sufficiently small 
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displacements, the distribution converges to an uniform arrangement of points on 
the  sphere. For static powdered solid samples, the α Euler angle corresponds to 
the  “longitudinal” angle ϕ (or π − ϕ) (Torchia and Szabo, 1982) and the β angle 
corresponds to the “latitudinal” angle θ.

The initial distribution of points on a sphere is defined in several steps. The 
starting θ values are distributed in increments of π/20 from the “north pole,” θ = 0, to 
the “south pole,” θ = π. The next cells calculate the initial distribution of ϕ values for 
each θ value. The number of ϕ points for a given θ should vary as sin[θ], as defined 
in the function nphi[x_]. The function ϕ[x_] is created so that a slightly randomized 
set of ϕ points can be calculated for each value of θ. Some examples are given for a 
couple of θ values. Next, the initial distribution of points p is calculated.

The function cart is created to convert from spherical polar to Cartesian 
coordinates. It is assumed that the repulsive forces and resulting displacements 
between the points on the sphere surface can be approximated by Cartesian forces 
and displacements. Using cart, the initial distribution of points in Cartesian 
coordinates, pcart, is created.

Next the functions cosdel, delang, dp, and dist are created. These functions are 
used in the function dpn to calculate the displacements. The function union is created 
to give the numerical values of all of the points.

The union of all of the initial points in Cartesian coordinates is designated as 
upcart. The initial Cartesian positions are then plotted with the built‐in Mathematica 
function ListPointPlot3D. The resulting graphics object is designated pgraph. The 
total number of points plotted is 269.

We then show the initial set of points on a sphere using the built‐in Mathematica 
functions Show and Graphics3D. It is clear the points are not evenly distributed.

Next the function bigdp is created to calculate the displacements. The size of 
the displacements is controlled with the variable inc. The function newp and bignewp 
are created to keep the points on a unit sphere.

The next cells show how to make an arbitrary number of successive displace-
ments using the built‐in Mathematica function Nest. The next cells show that if 
inc = 0.0005, 100 iterations do not yield a reasonable distribution. A subsequent 
calculation with inc = 0.0001 gives much better results.
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Overview of Molecular 
Motion and NMR

Chapter  36

The connection between angular motions and NMR is fundamental. Assuming that 
the samples are not reacting and that the magnetic field is homogeneous, the source 
of photons that stimulate NMR relaxation is the reorientation of the internal NMR 
Hamiltonian principal axis systems (PASs) in real space. If the allowed angles and 
reorientation rates are known, it is possible to predict the observed NMR spectrum 
and NMR relaxation times. Conversely, the experimental NMR spectrum and exper-
imental NMR relaxation times can be used to assess the allowed orientations and 
reorientation rates. This relationship makes NMR a powerful tool for the elucidation 
of molecular dynamics.

The simplifying effect of angular reorientation on liquid‐state NMR spectra 
was discussed briefly in earlier chapters. In liquids, rapid rotational diffusion in real 
space, generally assumed to be small‐step rotational diffusion (Diezemann and 

Sillescu, 1999), averages the anisotropic real space Aint

2 0,

 part of the Hamiltonians to 

zero, leaving only the isotropic real space Aint

0 0,

 parts to determine the spectrum (Eq. 
29.5). This averaging can be understood in semiquantitative terms. Each complex 
data point of the rotating frame experimental free induction decay is collected as a 
single voltage value acquired in an approximately 100‐nanosecond window, while 
the rotational correlation time τ

c
 of small molecules is on the order of 0.1 nanosecond 

or less. All possible orientations of the molecule and nuclear PASs are explored dur-
ing the 100‐nanosecond collection interval. In Hcsstatlineshape.nb, it is shown that 

A ,int d d
2 0

00

2
0

,

( )sin[ ] .

Angular reorientation also affects solid‐state NMR spectra. The main difference 
between solid‐state reorientation and liquid‐state reorientation is that the former usu-
ally occurs by a combination of librations and discrete jumps over fixed angles while 
the latter usually occurs by isotropic small‐step rotational diffusion. Because in solids 
only certain angles of the PASs are allowed relative to a molecule or crystal‐fixed 
reference frame (and thence to the laboratory frame), the effects of the jumps on the 

NMR spectrum do not necessarily average Aint

2 0,

 to zero. An example is shown in 
Figure 36.1 for the deuterium quadrupole echo spectrum for fast 180° phenyl ring 
flips about the flip axis of a phenyl ring labeled at the meta or ortho positions with 2H:
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In Figure  36.1, the wider powder lineshape corresponds to the rigid 
deuterium powder pattern with qcc = 240 kHz and η = 0. The narrower powder 
lineshape corresponds to the fast phenyl ring flip spectrum with qcc = 240 kHz and 
η = 0. Angular motion of any kind always narrows the powder lineshape.

The simplest examples of the effects of motion on NMR spectra are observed 
in liquid‐state “chemical exchange” spectra where the isotropic chemical shift of a 

D

D

(b)

kHz

(a)

–300 –200 –100 0 100 200 300

Figure 36.1  (a) 180° fast phenyl ring flip deuterium powder lineshape (solid line) compared 
with the rigid deuterium powder lineshape (dashed line). In both cases, qcc = 240 kHz and 
η = 0. (b) The 180° ring flip motion is responsible for the narrower powder spectrum. The dark 
vertical line represents a surface or macromolecule to which the phenyl ring is covalently 
bonded. D represents the deuterium nucleus.

–20 –10 0 10 20
Rad s–1

Figure  36.2  Two‐Site Exchange in Liquid‐State NMR. The Exchanging Resonances 
observed in slow exchange are of equal intensities with δ

A
 = −10 rad s−1, δ

B
 = +10 rad s−1, 

T
2A

 = T
2B

 = 1 s−1, and k = 0.1 s−1 to 200 s−1. See twosite exchange.nb for details.
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nucleus in one chemical environment is changed by conformational motion or 
reaction to a different isotropic chemical shift corresponding to a different chemical 
environment. One example is the equatorial to axial conformation changes of the 
hydrogen atoms in cyclohexane. The mathematics of simple two‐site exchange in 
liquid‐state NMR is shown in Figure 36.2 (Mehring, 2002, pp. 2597–2598). The 
methods used are discussed in the next chapter.

Angular motions are also the source of NMR relaxation. The changing ori-
entations of the internal Hamiltonian PASs cause frequency changes at the reso-
nance frequency for the nuclei, thereby stimulating NMR relaxation. Without 
stimulated emission, NMR relaxation by spontaneous emission would require 
the lifetime of the universe! NMR relaxation will be discussed in detail in later 
chapters.

Homework

Homework 36.1: Why does A
20

 = 0 yield a peak at the isotropic chemical shift?
Homework 36.2: K. Schmidt‐Rohr and Spiess (1994) have shown that the jump 

angles can be empirically determined using 2D‐exchange spectroscopy. Based on this 
reference, describe in words and in mathematics how the pulse sequence works.
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Slow, Intermediate, 
And Fast Exchange In 
Liquid‐State Nmr Spectra

Chapter  37

The effects of molecular motion and chemical reaction on NMR spectra are most 
clearly evident in liquid‐state NMR. In the absence of reaction or conformational 
exchange in a liquid‐state NMR sample, the behavior of the net magnetization M

j
 for 

spins of type j in the presence of the magnetic field is described by the Bloch equation 
in the rotating frame (Eq. 7.1):

	
d

dt j

M
M B R M Mj

j J jtot ( )0 	 (37.1)

where M
j
 is the instantaneous net magnetization dipole moment for the ensemble 

of  spins j, and M
j0
 = {0, 0, M

jzeq
} is the equilibrium net z magnetization dipole of 

spins j, and R j

1
0 0

0
1

0

0 0
1

2

2

1

T

T

T

j

j

j

 is the relaxation matrix for spins j.

A chemical reaction or conformational exchange converts the magnetization 
M

j
 of species j and its corresponding peak in the spectrum to another species k with 

magnetization vector M
k
 and its corresponding peak. If the reaction or exchange is at 

chemical equilibrium, the reverse reaction or conformational change also creates 
species j and corresponding magnetization M

j
. These changes are reflected in modi-

fied Bloch equations in the rotating frame for the observable transverse magnetiza-
tion of the different spins (Mehring, 2002, p. 2597):
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(37.2)

where M M MA x yi  is the observable transverse magnetization of spins A, δ
A
 is 

the chemical shift of spins A in rad s−1, T
2A

 is the T
2
 of spins A, k

AB
 is the first‐order 

rate constant (in s−1) for conversion of species A to species B, k
BA

 is the first‐order rate 
constant for conversion of species B to species A (i.e., the reverse reaction), etc.

For the transverse magnetization of N exchanging sites, we create a column 
vector containing the N different transverse magnetization vectors MX t( ). This is 
illustrated for three exchanging sites in Equation 37.3:

	 M

M

M

M

( )

( )

( )

( )

t

t

t

t

A

B

C

	 (37.3)

If we were looking at longitudinal (z) magnetization, we would construct a column 
vector M

z
(t) composed of M

zA
(t), M

zB
(t), and M

zC
(t).

Next, we construct a diagonal matrix

	

A

B

C

0 0

0 0

0 0 	

(37.4)

where δ
A
, δ

B
, and δ

C
 are the respective frequencies in rad s−1 (chemical shifts) of spins 

A, B, and C in the rotating frame.
Next, a rate/relaxation matrix is constructed from the respective relaxation 

times and rate constants:

	

1

1

2

2

T
k k k k

k
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k k k

k k

A
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B

BA BC CB
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1

2T
k k
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CA CB

	

(37.5)

If we are looking at longitudinal z magnetization, we would use the corresponding 

inverse T
1
 values 

1 1 1

1 1 1T T TA B C

, , and .
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Using these definitions, Equation 37.2 may be rewritten as

	

d

dt
t

M
i M( ) ( )

	
(37.6)

The free induction decay (time domain NMR signal) from all three components is 
given by

	 g t e i t( ) ( )1 p 	 (37.7)

where 1

1

1

1

 is a unit vector and p ( )p p pA B C  is a row vector composed of 

the equilibrium probabilities of the exchanging sites. For example, if the equilibrium 
favors B, the probability p

B
 will be larger than p

A
 or p

C
, with p

A
 + p

B
 + p

C
 = 1. Note also 

that microscopic reversibility requires k
AB

 p
A
 = k

BA
 p

B
.

The NMR spectrum for the exchanging spins is given by the Fourier transform 
of g(t):

	 I( ) ( )Re( A p)1 1 	 (37.8a)

where

	 A E( ) ( )i 	 (37.8b)

and

	 E

1 0 0

0 1 0

0 0 1

	 (37.8c)

is the unit matrix. A 1( ) is the matrix inverse of Ā(ω) such that A A( ) E.1( )  
As shown in twosite exchange.nb, Mathematica is able to directly evaluate the 
matrix inverse A 1( ). The extension to N exchanging sites is self‐evident.

The N = 2 application is shown in twosite exchange.nb. The results show three 
“regimes” of exchange: (i) When the frequency difference |δ

A
−δ

B
| ≫ k

AB
 or k

BA
, sepa-

rate resolvable peaks are obtained at the chemical shifts δ
A
 and δ

B
. This situation 

defines “slow exchange.” (ii) Conversely, when |δ
A
−δ

B
| ≪ k

AB
 or k

BA
, a resolvable 

single peak is obtained at p
A
 δ

A
 + p

B
 δ

B
. This situation defines “fast exchange.” 

(iii) Finally, when |δ
A
−δ

B
| ≈ k

AB
 or k

BA
, the spectrum changes with increasing exchange 

rate from two broad peaks to a single very broad peak at the average frequency. 
This defines “intermediate” exchange. There is no loss of integrated signal intensity 
for  liquid‐state NMR spectra in going from slow exchange through intermediate 
exchange to fast exchange.
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Explanation of twosite exchange.nb

This notebook calculates the spectra for two‐site chemical or conformational 
exchange between two environments with different frequencies for a single nuclear 
spin. The user is told to evaluate matrep2.nb and then close it without saving changes. 
A unit vector of dimension 2 is created, called one. The 2 × 2 identity matrix e is then 
defined. The 2 × 2 frequency matrix Ω is created. The diagonal elements are the 
chemical shifts δ

A
 and δ

B
 in rad s−1. The rate constant matrix Γ is created according to 

Equation 37.5 using the rate constant k (in s−1) and the transverse relaxation rates 
1/T 2A and 1/T 2B. Since we assume that the equilibrium constant for exchange is 1, 
the probability vector p is {1/2,1/2}.

The next cells use the obsolete Mathematica package Algebra ‘ReIm’ to 
declare that the rate constant k and relaxation times are real.

The next cells evaluate Equations 37.8a and 37.8b. The built‐in Mathematica 
function Inverse is able to calculate the matrix inverse needed in Equation 37.8a.

The next cells create the function h, from which the real part is extracted in the 
function intensity. A plot of the intensity function is inverted but easily corrected 
with a sign change.

The next cells plot the intensity function for different rate constants k, showing 
the effects of the exchange rate on the spectrum.

In the last set of cells, it is shown that there is no change in integrated intensity 
regardless of the exchange rate. There is only broadening.

Homework

Homework 37.1: Calculate the time‐dependence of a slow two‐site exchange spec-
trum for a selective inversion recovery experiment in which the A peak is selectively 
inverted with a π pulse at t = 0 followed by exchange for time τ. Assume that the 
system is at chemical equilibrium and that the equilibrium constant for the A to B 
reaction is 4.
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Exchange in Solid‐State 
NMR Spectra

Chapter  38

The phenomenon of chemical and conformational exchange in solid‐state NMR is 
not fundamentally different than in liquid‐state NMR, although destructive inter-
ference can distort the resulting powder spectra and attenuate the integrated inten-
sity as the reorientational rates go through the intermediate exchange regime. In 
most solids, small angular vibrations, called librations, around otherwise fixed 
orientations occur at frequencies near 1013–1014 s−1. This is much higher than the 
resonant Larmor frequencies of nuclear spins. For this reason only the averaged 
behavior of librations affects NMR spectra and relaxation (Lang and Ludemann, 
1984). However, there are also occasional large angular jumps to new fixed orien-
tations. These occur at much lower frequencies that are similar to the magnitudes 
of internal Hamiltonians (Lang and Ludemann, 1984). These jump motions have 
dramatic effects on the observed solid‐state NMR spectrum and NMR relaxation, 
just as isotropic rotational diffusion dominates the NMR spectra and relaxation 
observed in liquids.

The accessible jump angles in solid samples are most conveniently described 
in a crystal‐fixed axis system. The crystal‐fixed axis system must therefore be related 
to the principal axis system(s) (PASs) of the internal Hamiltonian(s) and to the labo-
ratory axis system. For a powdered solid sample, the final transformation from the 
crystal‐fixed to the laboratory reference frame is achieved with a powder average of 
the ϕθψ Euler angles as shown in Scheme 38.1.

	 A A A[ ] [ ] [ ]pas crystal laboratory 	 (38.1)

In many cases, the jump angles (set of specific allowed α β γ angles) can be identified 
by simple inspection of the pertinent internal Hamiltonian PAS in the crystal refer-
ence frame. The quadrupolar Hamiltonian H

Q
 of deuterium, 2H, is particularly conve-

nient in this regard. Because hydrogen only forms a single covalent bond (except for 
boron hydrides), the deuterium quadrupolar PAS z axis is aligned with the covalent 
bond, with η usually less than or equal to 0.1 (see Eq. 29.4).

The pulse sequence that is used to obtain 1D deuterium NMR spectra of 
powdered solid samples is the quadrupole echo pulse sequence (Fig. 38.1).
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We use as our first example the angular jumps of covalent O–H bonds in the 
most common phase of ice, ice I

h
. 2H NMR was instrumental in the elucidation of 

these motions (Wittebort et al., 1988). Ice I
h
 is called hexagonal ice because the water 

molecules are arranged in hydrogen‐bonded hexagons. Locally around each 
individual water molecule, however, the hydrogen bonding arrangement is tetrahe-
dral as shown in Figure  38.2. Unstable hydrogen bonding arrangements called 
Bjerrum defects propagate rapidly through the ice, causing the O–H covalent bonds 
to undergo angular jumps between the four tetrahedrally coordinated H‐bonding pos-
sibilities (Figure 38.3). The tetrahedral angle jumps cause quantitatively predictable 
changes in the spectrum and relaxation of 2H

2
O ice I

h
. More detailed studies show 

that translational motion of individual water molecules occurs through “tunnels” in 
the Ice  I

h
 lattice (Geil et al., 2005).

Mathematica simulations of the effect of tetrahedral jumps of the O–2H bond 
tetrahedral jump frequency are demonstrated in the notebooks tetrahedral jumps 
wignerology.nb, tetrahedron.nb, tetrahedraljumpspowder.nb (direct calculation of 
the powder spectrum) and tetjumpspowderfid.nb (calculation of the powder free 
induction decay (FID) followed by Fourier transformation). The calculated spectra 
are shown in Figure  38.4. The powder lineshapes closely match those obtained 
experimentally (Wittebort et al., 1988).

The major differences between the spectra obtained with these calculations and 
those in twosite exchange.nb are as follows: (i) the powder average must be calcu-
lated and (ii) the effects of motion during τ

1
 and τ

2
 of the quadrupole echo pulse 

sequence must be accounted for (Vega and Luz, 1987) and (iii) intermediate jump 
rates can yield highly attenuated NMR spectra as shown in Figure 38.4. In comparison, 
for liquid‐state exchange, (i) no powder averaging is needed and (ii) the NMR signal 
is collected immediately after a single radio frequency (rf) pulse so there is no need 
to consider effects of delays and (iii) there is no attenuation of the integrated intensity 
in liquid‐state intermediate‐exchange spectra.

The effects of fast exchange (i.e., fast reorientation) on solid‐state NMR spectra 
are also considerably different than for liquid‐state fast exchange. In the case of fast 

2H

Relaxation
delay τ1 τ2

(π/2)ϕ1
ϕrecvr

(π/2)ϕ2

Figure 38.1  The quadrupole echo pulse sequence used extensively in 2H solid‐state NMR. 
The vertical rectangles represent π/2 rf pulses. The deuterium quadrupolar Hamiltonian 
magnitude is on the order of QH 250kHz 

 
, so high‐power π/2 pulses must have durations of 

2.5 µs or less in order to excite the full powder pattern. τ
1
 and τ

2
 are typically 25–35 µs with 

τ
2
 < τ

1
, and a dwell time of 1 µs or less (corresponding to a spectral width of 1 MHz or more) 

must be used. For clarity, only the signal from the phased “real” receiver channel is shown in 
the FID. ϕ

1
 = x, ϕ

2
 = +y,−y, and ϕ

recvr
 = x (quadrature phase cycling can be added if desired).
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angular jumps in solids, the spectrum only averages to a single peak at the isotropic 
frequency if the angular jumps possess “high symmetry,” that is, they are tetrahedral, 
octahedral, or icosahedral. In the case of tetrahedral jumps of the O–2H bond in ice 
I

h
, the jumps are high symmetry, and fast motion yields a single sharp peak (see tet-

rahedral fast jump wignerology.nb). But in the case of C
2
 symmetry jumps of the 

O–2H bond as observed in 2H
2
O‐gypsum, the “low” symmetry jumps do not average 

the rigid powder spectrum to a single peak but instead to a reduced width powder 
pattern as calculated in c2jumpfast.nb and shown in Figure 38.5.

The method used to calculate fast‐exchange solid‐state spectra is simple. 
Suppose there are N different sets of Euler angles (α

j
 β

j
 γ

j
), Equation 38.1, between 

which the angular jumps occur in the crystal‐fixed reference frame, each with 
a  respective probability p

j
. Then we calculate the corresponding fast average 

crystal‐fixed real space tensor Aavg crystal_

,2 m

 as follows:

	
A Aavg crystal_

, ,2 2m

j j

m

j
p

	
(38.2)

Figure 38.2  Local arrangement of water molecules in Ice I
h
. Hydrogen bonds are indicated 

by single dashed lines. Covalent bonds are double lines. H atoms are indicated by small white 
spheres. O atoms are indicated by larger black spheres.



L-type Bjerrum
defect

(a) (b)

(c)

Figure  38.3  Diffusion of Bjerrum Defects Causes Tetrahedral Jumps. 2H and 1H NMR 
experiments show that the H atoms experience tetrahedral jumps around the oxygen atoms in 
the crystal lattice. The jump rate at 267 K is 6.5 × 104 s−1.111,112 Oxygen atoms are black spheres, 
except for those involved in a defect, which are dark gray. Hydrogen atoms are small white 
spheres, except for those that make a tetrahedral jump due to a defect, which are shown in light 
gray. (a) Water coordination without defects. (b) A Bjerrum L‐type defect. Note that oxygen 
lone‐pair electrons are in close proximity, an unstable state. The H atom that will make a 
tetrahedral jump is indicated in light gray. (c) In response to the instability, the central water 
molecule experiences a tetrahedral jump that brings the light gray H atom into a stable H‐
bonding arrangement. Bjerrum defects move quickly through the ice lattice, leaving the water 
molecules at the same place in the crystal lattice but forcing tetrahedral jumps.

(a) (b)

(c) (d)

Figure  38.4  Attenuation of the 2H NMR signal by Intermediate‐Exchange Tetrahedral 
Jumps (see tetrahedraljumpspowder.nb and tetjumpspowderfid.nb). qcc = 216 kHz, η = 0, and 
the quadrupole echo delays are τ

1
 = τ

2
 = 20 µs (see Fig. 38.1). The tetrahedral jump rate constant 

k and integral intensity for each calculated spectrum: (a) 1 × 104 s−1, 0.3657 (b) 2.5 × 104 s−1, 
0.1015 (c) 5 × 104 s−1, 0.0303 (d) 1 × 105 s−1, 0.0283.
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Having calculated the five Aavg crystal_

,2 m

 real space tensors in the crystal‐fixed reference 

frame, we use these to calculate the fast average real space tensor Aavg lab_

,2 0

 in the lab-
oratory frame, using the powder average angles ϕθψ (Eq. 38.1) in Equation 31.2:

	 A Aavg lab avg crystal_

,

_

,

( )
2 0 2

0
2

2

2 m

mm
D 	 (38.3)

This process is shown in the notebooks tetrahedral fast jump wignerology.nb and 
c2jumpfast.nb.

Explanation of tetrahedral jump 
wignerology.nb

This notebook calculates the angular dependence of the real space tensor alab20 
needed to simulate the NMR spectrum of a rigid powdered solid. The user is told to 
evaluate wigrot.nb, then close it without saving changes. Jumps take the PAS to 
specific new angles relative to a molecule‐ or crystal‐fixed axis system.

First, it is necessary to calculate the expressions corresponding to A crystal[ ]  
in Equation 38.1. Here, they are called the amol[2,m]. We only need the l = 2 real 

–300 –200 –100 0 100 200 300

Figure  38.5  Effects of Fast C
2
 Symmetry Jumps on 2H Quadrupole Echo Spectrum, 

qcc = 216 kHz. The dashed black powder spectrum with wider horns is the rigid solid with 
η = 0. The dashed black powder spectrum with slightly narrower horns is the rigid solid with 
η = 0.1. The solid black spectrum with a single central maximum shows the effects of fast C

2
 

jumps with θ = magic angle, and the solid black spectrum with two central maxima shows the 
effects of fast C

2
 jumps with θ = 52.5°. Both of the fast C

2
 jump spectra were calculated 

assuming η = 0. The frequency axis is in units of kHz.
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space tensors to calculate the powder spectrum. For η = 0, the amol[2,m] depend only 
on β and γ. The function amol2[2,q_] is created to substitute θ for β and ϕ for γ. By 
doing this, we allow the transformation to the lab frame in Equation 38.1 to use the 
powder average angles α, β, and γ.

Next alab[2,0] is calculated. This is necessary for simulation of powder spectra 
as shown in subsequent notebooks. The function alab20[α_,β_,θ_,ϕ_] is created.

Explanation of tetrahedron.nb

The purpose of this notebook is to obtain the tetrahedral jump angles. This notebook 
uses built‐in Mathematica packages and functions to calculate the tetrahedral angles. 
The user must evaluate the Mathematica package PolyhedronOperations. This is 
done by typing ≪ PolyhedronOperations’ on the input line of the notebook.

Next, the Cartesian coordinates of the vertices of a tetrahedron are obtained 
by using the package function PolyhedronData. The Cartesian coordinates are then 
normalized (so that all vertices are unit distance from the origin) by using the built‐in 
Mathematica function Normalize.

Next, the user opens the package VectorAnalysis. Using the package function 
CoordinatesFromCartesian, the coordinates are converted from Cartesian to spherical 
polar with components {r, θ, ϕ}. In this case, r = 1 and we define the molecular 
(crystal)‐axis system to have its z axis aligned with one of the allowed PAS jump 
angles. The important concept to keep in mind is that the most convenient crystal‐
fixed axis system can be arbitrarily chosen. The function CoordinatesFromCartesian 
finds that the allowed jump angles are {θ = 0, ϕ = 0}, {θ = thetatet,0}, {θ = thetatet, 
2π/3}, {θ = thetatet, 4π/3}, where thetatet = N[Arccos[−1/3]].

Explanation of tetrahedraljumpspowder.nb

This notebook calculates intermediate‐exchange powder spectra for the deuterium 
quadrupolar echo experiment (Vega and Luz, 1987).

The user is told to evaluate repangwt5253, evaluate it, choose full output, and 
then close it without saving changes.

The real space tensor needed to calculate the deuterium quadrupolar powder 
lineshape is alab20 as calculated in tetrahedral jump wignerology.nb. The allowed 
jump angles are designated with θ and ϕ spherical polar angles as in tetrahedron.nb. 
It is shown that thetatet is exactly twice the magic angle, Arccos 1 3/ . The powder 
average to the lab frame utilizes the Euler angles α and β.

For deuterium, I = 1 and δ
zz

 = π qcc (see Table 29.1).
The one vector and One identity matrix are created for the four tetrahedral 

jump sites. We assume that the probabilities for each of the four sites are equal (1/4) 
and create the probability vector p accordingly. The jump rate function Γ[k_] is cre-
ated. It is assumed that each site can jump to any of the three other sites. The jump 
rate from a site to any of the other sites is assumed to be k s−1.

We let qcc = 216 kHz. The expression for alab20 assumes also that η = 0. 
Frequency functions δ1, δ2, δ3, and δ4 (in rad s−1) are created using the function 
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alab20. The diagonal matrix function δ[α_,β_] is created. It is necessary to take the 
real part only (Re) because roundoff errors yield a minute imaginary component.

The function R[α_, β_, k_] is created. The function gtvec2[α_, β_, k_, t_] is 
created. It accounts for the echo delay and its effect on the echo intensity.

The functions A[α_, β_, k_], Ainv[α_, β_, k_], intimag[α_, β_, k_, τ_], and 
intensity[α_, β_, k_, τ_] are created.

As an example, for the powder average angle repangwt[[1111]], a Plot of the 
intensity for k = 104 s−1 and echo delay of τ = 20 µs shows four peaks for one of the two 
transitions (m = 1 to m = 0). The other transition (m = 0 to m = −1) is given by reversing 
the sign of the frequency ν. The sum of the two plots gives the expected deuterium 
spectrum for that specific powder angle.

The powder spectrum is obtained with the function powderintensity[k_, τ_], 
which adds the contributions from all the specific powder angles for one of the tran-
sitions (m = 1 to m = 0). The powder spectrum for the other transition is again obtained 
by reversing the sign of the frequency ν. The sum yields the full deuterium powder 
spectrum.

The built‐in Mathematica function NIntegrate is used to show that there is 
destructive interference and intensity loss during the echo period. The evaluation for 
τ

1
 = τ

2
 = 20 µs yields .05183. The evaluation for τ

1
 = τ

2
 = 0 yields 0.4999 regardless of 

the jump rate.

Explanation of tetjumpspowderfid.nb

For real space PASs experiencing tetrahedral jumps in the intermediate‐exchange 
regime, this notebook calculates the theoretical FID (NMR signal) obtained from the 
deuterium quadrupole echo NMR experiment and Fourier transforms it to obtain the 
theoretical spectrum (Vega and Luz, 1987). The user is told to evaluate repangwt5253, 
show full output, then close it without saving changes.

Exactly as in tetrahedraljumpspowder.nb, the first cells introduce alab20 cal-
culated in tetrahedral jump wignerology.nb. The allowed jump angles are designated 
with θ and ϕ spherical polar angles as in tetrahedron.nb. The powder average to 
the lab frame utilizes the Euler angles α and β. For deuterium, I = 1 and δ

zz
 = π qcc 

(see Table 29.1). The one = {1,1,1,1} vector and the One identity matrix are created. 
The probability vector p = {1/4,1/4,1/4,1/4} is defined. The jump rate matrix Γ is 
defined. The frequency functions δ1, δ2, δ3, and δ4 are created. The repulsion angles 
and weights in repangwt5253 are reviewed. The R function is created, essentially 
identical (except for the inclusion of qcc as a variable) to the R function in tetrahe-
draljumpspowder.nb.

From here on, the calculations in this notebook and tetrahedraljumpspowder.
nb differ. The echo[qcc_,α_,β_,k_,τ_] function is created to give the first point in the 
FID (i.e., the echo maximum) when τ1 = τ2 = τ. Then, the powderecho[qcc_,k_,τ_] 
function is created using the sum of the intensities for all of the repulsion angles.

The angle‐dependent real and/or complex NMR signal points are then calcu-
lated using the fid and complexfid functions, respectively. The τ variable is the echo 
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delay in the quadrupole echo experiment. The t variable is the time after the echo 
maximum for which the complex NMR signal point is needed.

Next, the real and/or complex powder average NMR signal points are calcu-
lated as a function of the time variable t after the echo maximum in the functions 
powderfid and powdercomplexfid, respectively.

In order to Fourier transform the calculated signals, the functions ft1, ftcorr, 
ftcorr2, fttot, gaussap, bc, and fttotbc are created. Note that the built‐in Mathematica 
function Fourier does not calculate the spectrum properly.

The theoretical complex FID for a quadrupolar echo experiment is obtained 
by  creating a Table of powdercomplexfid points as a function of t after the echo 
maximum. The complex FID data2 is calculated in this way; 160 complex data points 
with a dwell time of 1 µs are calculated assuming that qcc = 216 kHz, the jump rate is 
2.5 × 104 s−1, and τ = 20 µs.

The theoretical FID data1 is then Fourier transformed with the function fttot to 
yield ftdata1. The spectrum is plotted using the built‐in Mathematica function ListPlot.

The theoretical FID data1b is created by using the gaussap function to process the 
theoretical FID data1. The Fourier transform of data1b is then plotted with ListPlot. The 
baseline‐corrected Fourier transform of data1b is calculated with the function fttotbc.

Theoretical FIDs and corresponding spectra are then calculated and plotted for 
the same parameters but with different tetrahedral jump rates in data2, data3, data4, 
and data5. The respective jump rates (k) for these are 5 × 104 s−1, 1 × 105 s−1, 1 × 104 s−1, 
and 5.0 × 103 s−1.

The spectra obtained vary from a single sharp peak when k = 1 × 105 s−1 to an 
“almost rigid” powder pattern when k = 5.0 x 103 s−1.

Explanation of tetrahedral fast jump 
wignerology.nb

This notebook calculates Aavg lab_

,2 0

 or amolfastavg[l,m] in the terminology of this note-
book (see Eq. 38.2 and 38.3) for a nuclear spin experiencing fast tetrahedral jumps. 
The user is told to evaluate wigrot.nb, then close it without saving.

The molecular frame (or crystal frame) amol[2,m] are calculated according to 
Equation 38.2 assuming that η = 0, a good approximation for deuterium nuclei. The 
substitution β → θ and γ → ϕ is made for the amol[2,m]’s when the fast average is 
calculated. θ and ϕ are the latitudinal and longitudinal angles in spherical polar coor-
dinates. The Euler angle α is not in the expressions obtained for the amol[2,m].

For perfect tetrahedral jumps, all of the amolfastavg[2,m] terms average to 0.

Explanation of c2jumpfast.nb

This notebook calculates the real space tensor for fast C
2
 symmetry jumps, then uses 

it to simulate the spectra of deuterium PASs undergoing fast C
2
 symmetry jumps. 

The user is told to evaluate wigrot.nb, then close it without saving changes, then to 
evaluate repangwt5253, show full output, then close it without saving changes.
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The function amolfastavgC2[2,m] is calculated for C
2
 symmetry jumps 

(Eq. 38.2). In the case of water molecules in gypsum, for example, the symmetry axis 
is the bisector of the H–O–H (or D–O–D) bond angle, which is somewhat less than 
the tetrahedral angle. The C

2
 jumps rotate the H (or D) atoms 180° about this axis. 

This interchanges the positions of the H (or D) atoms. The bisector half angle is 
designated as the latitudinal angle θ, and the two possible ϕ jump angles are 0 and π.

Next, the lab frame alabC2[2,0] is calculated according to Equation 38.3. The 
result is not zero and shows an angular dependence on the powder average Euler 
angles α and β and on the angle bisector angle θ.

Next, the functions ν1C2[α_,β_,qcc_,θ_] and ν2C2[α_,β_,qcc_,θ_] are calcu-
lated assuming I = 1, as for deuterium. We also copy the functions ν1rigid[α_,β_,qcc_,η_] 
and ν1rigid[α_,β_,qcc_,η_] from rigiddeutlineshapes.nb.

The Gaussian broadening function gauss, as are the expressions for the 
“boogies” and intensities, are calculated as in rigiddeutlineshapes.nb.

The powder spectrum functions powderC2 and powderrigid are defined.
Plots of the rigid deuterium spectra for qcc = 216 kHz, η = 0, and qcc = 216 kHz, 

η = 0.1 are made and compared with the C
2
 symmetry fast jump spectra obtained for 

qcc = 216 kHz, η = 0, θ = 52.5° and qcc = 216 kHz, η = 0, θ = magic angle (half of tetra-
hedral angle).

Next, a series of calculations and plots are made for fast C
2
 symmetry jumps 

with qcc = 216 kHz, η = 0, and θ varied in 1° increments from 50 to 55°.
Several other calculations and plots are made to explore the variation of the C

2
 

fast jump lineshape with θ.

Homework

Homework 38.1: Use the density matrix approach to show that the quadrupole 
echo yields full refocusing of the NMR signal for an I = 1 nucleus such as 2H. Include 

the anisotropic effects of AQ
2 0,  in your analysis. Hint… AQ

2 0,  may be represented as 
ω

Q
(α,β,γ). It is nothing more than a scalar function of the Euler angles.

Homework 38.2: Calculate the fast average lineshape for fast C
3
 symmetry 

jumps of a deuterated methyl group.
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NMR Relaxation: What 
is NMR Relaxation 
and what Causes it?

Chapter  39

Nuclear magnetic resonance (NMR) relaxation describes the return of the nuclear 
spin system to thermal equilibrium after radio frequency (rf) perturbation. At thermal 
equilibrium, there is no coherence, and the populations of the nuclear spin angular 
momentum energy levels are given by the Boltzmann distribution (Levitt, 2008, 
p. 543). As pointed out by Abragam (1983, p. 264), spontaneous transitions between 
the energy levels occur at a negligible rate. It would take longer than the known 
lifetime of the universe for relaxation to occur by spontaneous transitions. Only 
stimulated emission and absorption of rf photons at or near the resonant Larmor 
frequency(ies) brings about NMR relaxation. Thus, just as rf photons at the Larmor 
frequency(ies) are necessary to stimulate the perturbation of the nuclear spin system, 
they are necessary to stimulate its relaxation.

The rate of return to thermal equilibrium depends on the nature of the coher-
ence (or population perturbation). In the absence of rf irradiation, the rate of return 
of the expectation value of p = −1 spin coherence ( )( )I t  to its equilibrium value 
of zero is called transverse, spin–spin or simply T

2
 relaxation and is characterized by 

the first‐order rate constant 1/T
2
 s−1, where T

2
 is the relaxation time in seconds. The 

vector model analysis for the T
2
 relaxation experiment is shown in Chapter 8. The 

rate of return of the expectation value of p = 0 population ( ( ) )I tz
 to equilibrium 

magnetization ( )_Iz eq
 is called longitudinal, spin‐lattice, or simply T

1
 relaxation 

and is characterized by the first‐order rate constant 1/T
1
 s−1. The vector model for the 

inversion recovery experiment used to measure T
1
 relaxation is also shown in 

Chapter 8.
It is also possible to design multidimensional NMR experiments that measure 

multiple quantum coherence relaxation. The relaxation of zero and multiple quantum 
coherence (i.e. I I t1 2 ( )  or I I t1 2 ( ) ) each have characteristic relaxation rate 
constants (i.e. relaxation times). In general for spin systems with coupled spins, 
NMR relaxation is more complicated and one needs more relaxation rate constants 
(or relaxation times) to characterize it.

NMR relaxation can also occur in the presence of rf irradiation. For example, 
the rate of return of the expectation value of p = −1 spin coherence ( )( )I t  to zero 
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during an rf “spin‐lock”1 is characterized by the first‐order rate constant 1/T
1ρ s

−1. 
Another example is 1/T

CP
, the rate constant for cross polarization (CP) buildup during 

the heteronuclear spin‐locks of a CP or Cross Polarization with Magic Angle 
Spinning (CPMAS) experiment.

In the absence of rf irradiation provided by humans or other external sources, 
fluctuations in the internal NMR Hamiltonians provide the necessary rf photons at 
the correct Larmor frequency(ies) to stimulate relaxation. For all internal NMR 
Hamiltonians except H

J
 and H

SR
, the fluctuations are caused by changes in the scalar 

Al m
lab
,  real space Hamiltonian components brought about by reorientation of the mol-

ecule containing the observed nucleus (Spiess, 1978). This connection can be used to 
obtain information about the reorientational motions, but the complexity of the con-
nection depends on the Hamiltonian. In the case of H

J
, fluctuations in both the Al m

lab
,  

and T l m
rot

,  occur, making the connection with reorientational motion more difficult to 
analyze. Luckily, H

J
 is usually too small in magnitude compared with other internal 

Hamiltonians to significantly affect NMR relaxation. In the case of H
SR

, fluctuations 
in T l m

rot
,  cause relaxation, but the effects of H

SR
 on relaxation are limited to gases and 

extremely low‐viscosity liquids. In our examples, the focus is on the other internal 
Hamiltonians.

The mean of the deviations of the Al m
lab
,  from their equilibrium values is zero, but 

it is not the mean of the deviations that determines the NMR relaxation rates. Rather, 
it is the ensemble average rate of change of the Al m

lab
, ’s as embodied in their autocor-

relation functions that determines the NMR relaxation rates (Torchia and Szabo, 
1982): The unnormalized autocorrelation functions are (see wigner_orthogonality.nb) 
as follows (Spiess, 1978, equation 4.33):

	 g A A A At t tl m
l m l m l m l m l m

,
, * , , ,( ) ( ) ( ) ( ) (lab lab lab lab0 01 )) 	 (39.1a)

and the normalized autocorrelation functions are as follows:

	 G
A A

A
t

t
l m

l m l m

,

, * ,

,
( )

( ) ( )

( )
lab lab

PAS

0
2 0 2

	 (39.1b)

where the angle brackets denote the ensemble average and * indicates the complex 
conjugate. Except for the autocorrelation function G

0,0
, which is constant, the G

l,m
(t) 

start at a positive value close to 1 at t = 0 and decay to 0 for long times τ. As will be 
shown in subsequent chapters, it is often the case that the autocorrelation function is 
a simple monoexponential, for example,

	 G etl m
t

,
/( ) *const 	 (39.2)

where τ is the corresponding autocorrelation time and const lab lab

PAS

A A

A

l m l m, * ,

,

( ) ( )

( )

0 0
2 0 2

.

1 A spin‐lock is usually created by giving a (π/2)
x
 pulse to the equilibrium spin system followed immedi-

ately by a prolonged rf pulse along the  y axis. This “locks” the magnetization along the −y axis of the 
rotating frame, where it decays back to zero at a rate of 1/T

1ρ .
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The so‐called “spectral density” is given by the Fourier transform of the 
corresponding autocorrelation function (see spectraldensity.nb): Since the imaginary 
component of ei m ω0 t = cos(m ω

0
 t) + i sin(m ω

0
 t) can be ignored (Abragam, 1983, 

p. 279),2 the unnormalized spectral density is given by

	 j m g m t dttl m l m, ,( ) ( ) ( )
0

cos 	 (39.3a)

and the normalized spectral density is given by

	 J m G m t dttl m l m, ,( ) ( ) ( )
0

cos 	 (39.3b)

Because cos[x] = cos[−x] and G
l,m

(t) = G
l,m

(−t), it also follows that J ml m, ( )
J ml m, ( ) .

If G
l,m

(t) is monoexponential3 as in Equation 39.2, the spectral density is given 
by (see spectraldensity.nb)

	 J m
ml m, ( ) const

1 2 2 2
	 (39.4)

where const lab lab

PAS

A A

A

l m l m, * ,

,

( ) ( )

( )

0 0
2 0 2

 and J
l,m

(ω) has units of s rad−2.

Despite the misleading name, the spectral density is not determined by the 
real  space “density” of photons. Due to the short range of internal Hamiltonians, 
the  reorientation‐induced “emission” and “absorption” of rf photons occurs over 
distances much less than the Larmor wavelength, λ

Larmor
. The distances are suffi-

ciently small that there is considerable uncertainty in position and momentum of the 
photons as well as their energy and time due to the Heisenberg Uncertainty Principle 
(Heisenberg, 1927). Quantum field theory or quantum electrodynamics is necessary 
to understand the exchange of rf photons over such short distances (Feynman, 1985). 
The perspective of quantum electrodynamics is especially attractive since it is not 
difficult to visualize exchange of virtual rf photons4 between nuclei or between a 
nucleus and the thermal energy “lattice.” Quantum electrodynamics allows photons 
to be emitted and absorbed forward and backward in time. A photon “emitted” 
backward in time corresponds to an absorption forward in time, and a photon 
absorbed backward in time corresponds to an emission forward in time. All of the 
exchanges in energy are mediated by photons. Further speculations are fascinating 
but beyond the scope of this book. Here, the focus is the physics that works and 
successfully explains NMR relaxation, not the intriguing scientific questions that 
derive from it.

2 spectraldensity.nb
3 A “model‐free” approach has been developed by Lipari and Szabo to deal with more complicated auto-
correlation functions. It is widely used to characterize angular motions of fast‐moving side groups that are 
covalently bound to slow‐moving macromolecules.
4 A virtual photon is one that is exchanged between particles and cannot be detected directly by an external 
observer.
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As will be discussed in the next chapter, the NMR relaxation rates in s−1 are 
given by the appropriate spectral densities J

l,m
(m ω) multiplied by the square of the 

appropriate constant for the given internal Hamiltonian. The constant is proportional 
to the magnitude of the internal Hamiltonian, ‖H

int
‖.

Explanation of spectraldensity.nb

This notebook explicitly evaluates Equations 39.3a and 39.3b assuming that the 
autocorrelation function is given by a monoexponential decay (Eq. 39.2).

The half‐sided complex Fourier transform obtained for the first cells is evalu-
ated by explicit integration from t = 0 to t . It yields the conditional expression 
i i/( ). Since ω is real and τ is real positive, this condition is met.

The sum of the half‐sided cosine transform and i times the half‐sided sin trans-
form yield the conditional expression /( ) /(( / ) )1 12 2 2 2i . Again, the 
conditions are met because τ is positive real and ω is real.

The half‐sided cosine transform yields the expression /( )1 2 2 .
The half‐sided cosine transform yields the same result whether the integration 

is from to 0  or from 0 to .
The half‐sided sine transform yields /(( / ) ).1 2 2  Unlike the half‐sided 

cosine transform, the integral from to 0  yields the negative of the result from 
0 to .

The isotropic rotational diffusion autocorrelation function for l = 2 is 
1

5
6e D trot .  

Its half‐sided cosine transform yields 
6

5 36 2 2 2

D

D m
rot

rot( )
.

The half‐sided complex Fourier transform of an integer multiple m of the 
Larmor frequency yields i i m/ ( ). The half‐sided cosine transform of an integer 
multiple m of the Larmor frequency yields /( )1 2 2 2m . The half‐sided sin trans-
form of an integer multiple m of the Larmor frequency yields m m/ (( / ) ).1 2 2 2

Next, we create functions f[τ_,ω_] and fnu[τ_,ν_] for the half‐sided cosine 
transform result and g[τ_,ω_] and gnu[τ_,ν_] for the half‐sided sin transform result.

Several plots of these functions are made in the following cells.
Next, a logarithmic table logfreq is made of frequency values ν.
Then, semilogarithmic plots are made of the functions fnu for autocorrelation 

times τ of 10−10 and 10−6 seconds. These plots show essentially a constant spectral 
density up to a well‐defined frequency, followed by a steep drop to zero. It is impor-
tant to realize that the label for the x axis in these plots is the point number, not the 
frequency. For example, the first solid black line plot of fnu for τ = 10−10 seconds has 
a half maximum at about point 83 of the table logfreq, at ν ≅ 1.6 × 109 s−1. The second 
dashed line plot for τ = 10−6 s has a half maximum at about point 43 of table logfreq, 
at ν ≅ 1.6 × 105 s−1.

Semilogarithmic plots of the function gnu at the same τ values show the much 
narrower range of Larmor frequencies affected. The maxima in these plots occur at 
the same frequency as the half maxima in the plots of fnu.
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Plots showing both fnu and gnu show that gnu affects a much smaller range of 
Larmor frequencies than fnu.

Homework

Homework 39.1: Write an essay analyzing NMR relaxation based on the exchange of 
virtual photons caused by reorientation of molecules in real space.
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Practical Considerations 
for the Calculation of 
NMR Relaxation Rates

Chapter  40

The connection between angular motion and NMR relaxation rates can be compli-
cated if care is not taken in the choice of observed nuclei and NMR experiments. For 
example, if one is interested in the angular jump motions of atoms in a crystalline 
organic solid containing carbon, hydrogen, and nitrogen, one could choose to mea-
sure the NMR relaxation of 1H, 14N, 13C, 15N, or 2H. For a given nucleus, the internal 
Hamiltonians with the largest magnitudes dominate NMR relaxation. Since the 
Hamiltonians with the largest magnitudes for 1H, 13C, and 15N are H

CS
, H

dipolar_hetero
, 

and H
dipolar_homo

, these Hamiltonians must all be included in the relaxation calcula-
tions. The magnitude of H

J
 is considerably less and usually can be ignored.

In the absence of radio frequency (rf) irradiation at the Larmor frequency(ies), 
the NMR relaxation rate ( / )1 Tn i

 for a given nucleus i is given by the sum of the 
contributions from each internal Hamiltonian Ĥ𝜆i that affects the nucleus:

	

1 1

T
i

Tn n i 	
(40.1)

where (1/T
nλi

) is the relaxation rate of the nucleus i due to Hamiltonian Ĥ𝜆i. Methods 
for calculation of (1/T

nλi
) are described in the following chapters.

The dipolar contributions to relaxation are particularly complicated. The pair-
wise Ĥ

Di
 contributions to relaxation must include all nuclei close enough to yield 

significant dipolar couplings. Often, intermolecular as well as intramolecular dipolar 
couplings must be considered. For each pairwise dipolar coupling, the allowed jump 
angles of the principal axis system (PAS) in the crystal‐fixed reference frame and the 
appropriate transformation angles to the laboratory reference frame must be known. 
The Euler angles relating different Hamiltonian PASs must also be known. The 
number of interactions and angles required can be daunting in some cases. The 
situation is worst for 1H since it is 100% abundant and requires consideration of both 
homonuclear 1H–1H dipolar coupling Hamiltonians as well as heteronuclear 1H–X 
dipolar coupling Hamiltonians. The one simplification for 1H is that the 1H chemical 
shift Hamiltonian can be omitted since its magnitude ‖H

CS
‖ is much less than the 

magnitudes of the dipolar Hamiltonians, ‖H
dipolar _ hetero

‖ and ‖H
dipolar _ homo

‖. The situation 
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is considerably better for observation of dilute natural abundance nuclei such as 13C 
and 15 N, where homonuclear dipolar couplings are rare and may be ignored, although 
in both cases H

CS
 must be included in the calculations at high magnetic fields where 

‖H
CS

‖ becomes comparable with ‖H
dipolar _ hetero

‖.
The nuclei 14N and 2H, both I = 1, have quadrupolar Hamiltonian magnitudes 

‖H
Q
‖ that are considerably larger than those of their other internal Hamiltonians. 

‖H
Q
‖ for 14N in the form of the quadrupole coupling constant qcc e qQ h2 /  is usu-

ally 1–6 MHz (Moniz and Gutowsky, 1963), much greater than ‖H
dipolar

‖ or ‖H
CS

‖. 
Unfortunately, this also means that the full quadrupolar powder pattern cannot be 
uniformly excited by rf pulses. In contrast, ‖H

Q
‖ for 2H in the form of the quadrupole 

coupling constant e2qQ/h is usually 200–275 kHz, and the full powder pattern can 
be  uniformly excited by high‐power rf pulses.1 Also, the dipolar coupling and 
chemical shift for the 2H nucleus are 6.51 times smaller than for the 1H nucleus 
because h h1 2 6 51/ . . For the same reason, the 2H–2H homonuclear dipolar cou-
plings are 42.4 times smaller than 1H–1H homonuclear dipolar couplings. This means 
that other Hamiltonians such as H

CS
, H

dipolar_hetero
, and H

dipolar_homo
 may be ignored in 2H 

relaxation calculations. Thus, in this case, ( / ) / ,1 1T Tn i nQi  greatly simplifying the 
analysis of experimental deuterium NMR relaxation data.

Deuterium (2H) has other advantages. The I = 1 deuterium quadrupolar PAS z 
axis, which is characterized by zz ( / )e qQ2 2  (in radian s−1, see Table 29.1), is 
parallel to the single X–H (e.g., C–H or O–H) covalent bond formed by hydrogen,2 
with η ≤ 0.1. Therefore, the analysis of 2H relaxation yields direct information about 
the angular motions of the covalent bond. For this reason, it is particularly useful in 
studies of chemical dynamics.

1 275 kHz is about the upper limit for uniform excitation by rf pulses in commercially available NMR 
spectrometers.
2 Except in the case of boranes, where H can form two “half” covalent bonds.
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The Master Equation for 
NMR Relaxation—Single 
Spin Species I

Chapter  41

To understand NMR relaxation, it is necessary to understand the rather difficult 
derivations in the next two chapters. They are not trivial, and some effort is necessary 
to go through them. In this chapter, the derivations of Spiess are verified and repro-
duced for relaxation of the density operator of a single nuclear spin species I due 
to a fluctuating internal Hamiltonian Ĥλ(t) (Abragam, 1983, Chapter 8, Equations 
28.33 and 40, 42, pp. 276–279; Spiess, 1978, Chapter 4), Although our main interest 
is in Ĥ

Q
(t) for I = 1 deuterium because of its advantages, the analysis given here 

encompasses the pairwise homonuclear dipolar coupling Hamiltonian ˆ ( )HD homo t , the 
pairwise homonuclear J‐coupling Hamiltonian ˆ ( )HJ homo t , and the chemical shift 
Hamiltonian Ĥ

CS
(t). Each of these Hamiltonians is different and therefore has differ-

ent commutators, leading to different expressions for NMR relaxation rates.

General Derivation

Like the analysis of NMR pulse sequences, the relaxation derivation starts with the 
density operator ρ(t) and fluctuating internal Hamiltonian Ĥλ(t) in the rotating frame:

	
 

0 0    I     I   
rot ( )   ( )  z zi t i tt e t e 	 (41.1)

	 ˆ ˆ( ) ( )
ˆ ˆ

H Hrot I It e t ei t i tz z0 0 	 (41.2)

where ω
0
 is the resonance (Larmor) frequency of the nucleus.

Using these, the resulting form of the Liouville–von Neumann (LVN) equation 
is as follows:

	 rotrot
rot[H ( ), ]ˆd

i t
dt

	 (41.3)
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Because the internal Hamiltonian ˆ ( )Hrot t  is not constant but instead fluctuates due 
to molecular reorientation, it is necessary to integrate the LVN equation to second 
order:

	 rot rot rot
rot rot rot rot

0 0 0

( ) [H (ˆ ˆ ˆ(0) ), (0)] H ( ), [H ( ), (0) ]
t t t

t i t dt dt dt t t 	 (41.4)

We take the time derivative to obtain the following:

	 rot rotrot
rot rot

0

[H ( ), (0)] [H ( ), H (ˆ ˆ ˆ[ ]), (0) ]
t

rotd
i t dt t t

dt
	 (41.5)

We make the substitution τ = t − t′ and rearrange it to t′ = t − τ to obtain the following:

	 rot rot rotrot
rot rot

0

ˆ[H ( ), (0)] [H ( ), [ˆ Ĥ ( ), (0)]]
td

i t d t t
dt

	 (41.6)

Because ˆ ( )Hrot t  is random and fluctuating, its ensemble average ˆ ( )Hrot t  is zero. This 

means that the ensemble average of rot
rot[H ( )ˆ , (0)]t  of Equation 41.6 is also zero 

for the ensemble of spins.
Five other assumptions are ultimately required to yield the master equation: 

(i) That ˆ ( )Hrot t  and ρ
rot

(0) are uncorrelated. (ii) That ρ
rot

(0) can be replaced by ρ
rot

(t). 
(iii) That the range of integration can be lengthened from t to + . (iv) That terms of 
higher order than 2 in Equations 41.4–41.6 can be neglected. (v) That the part of the 
density operator that deviates from equilibrium is ρ§ = ρ

rot
 − ρ

eq
. It is often stated that 

relaxation toward ρ
eq

 is an “ad hoc” assumption but more likely it reflects a very 
slight favoring of angular motions that yield the lower Zeeman energy level(s), since 
this is required energetically.

With these assumptions, Equation 41.6 can be rewritten as the master equation:

	
d

dt
d t t t

t§
§[ ( ), [ ( ), ( )]]ˆ ˆ

0

H Hrot rot 	 (41.7)

where ρ§ = ρ
rot

 − ρ
eq

, ˆ ( )Hrot t  is the rotating frame internal Hamiltonian λ at some 

arbitrary time t, and ˆ ( )Hrot t  is internal Hamiltonian λ at time τ before. The angle 
brackets indicate the ensemble average. The two sets of square brackets indicate the 
double commutator.

The internal Hamiltonian is most simply expressed in spherical tensor form 
with the ˆ ,Tl m in the rotating frame (as verified using matrix representation of the ˆ ,Tl m 
in spintensors_matrix.nb)1:

	 ˆ ˆ ˆ( ), , ,ˆ ˆ
T T Trot

I Il m i t l m i t l m i m tt e e ez z0 0 0 	 (41.8)

1 The laboratory frame ˆ ,Tl m ’s are time dependent for Ĥ
J
 and Ĥ

SR
 but are time independent for the other 

internal Hamiltonians.
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The fluctuating real space tensors A
l m,

( )t  are unaffected by the spin space 
rotating frame transformation.

ˆ ( )Hrot t  is given by Equation 31.1, that is,

	 ˆ ˆ( ) ( ) ( ) (
,

,H t Trot
rott l m l

l m
l m

l m
l m l

l
0

2
0

21 A 11 0) ( ) ˆ
,

,m
l m

l m im teA t T 	 (41.9)

where ˆ ,Tl m  and ˆ ,Trot
l m  are the spin space tensors in the laboratory and rotating refer-

ence frames, respectively.
With the exception of ˆ ( )HJ

rot t  and ˆ ( )HSR
rot t , which usually have negligible relaxa-

tion effects in solids and most liquids, the time‐dependence in ˆ ( )Hrot t  arises exclusively 

from the time‐dependence of A
l m,

( )t . Substituting Equations 41.8 and 41.9 in the 
master equation (Eq. 41.7) and extending the limit of integration to infinity yields the 
following (Spiess, 1978, p. 108):

	

d

dt
e

l l m l

l

m l

l
m m i m m t l

§

( ) [ ˆ
1 0

2

2 0

2

1 2

1 2 1 21 0 T 11 1 2 2

0

1 1 2 2 2

0

0

, , §

, ,

[ , ( )]

( ) ( )

ˆ ]m l m

l m l m i m

t e d

, T

tA A 	 (41.10)

The deviation of the density operator from equilibrium, ρ§, is zero in the absence of 

the perturbing Hamiltonian ˆ ( )Hrot t . Since ˆ ( )Hrot t  is small compared with the mag-

nitude of the Zeeman Hamiltonian ‖Ĥ
Z
‖, the variation of ρ§ with time is slow and the 

rapidly varying terms with m m1 2  can be ignored. Only the time‐independent 
secular terms with m m1 2  are included in the summation. In addition, the orthog-

onality of the Wigner rotation elements and of the A
l m,

 require l l1 2 and m m1 2 
(see wigner_orthogonality.nb) (Spiess, 1978, p. 108). With these stipulations, the 
master equation can be written as

	
d

dt tl m l
l l m l m l m l m

§
, , § , * ,

[ [ , ( )]] (
ˆ ˆ

0
2

0

0T , T (t)A A ) e di m 0 	 (41.11)

where A
l m, *

( )t  is the complex conjugate of A
l m,

(t) (see wigner_orthogonality.nb).

The term A A
l m l m

t
, * ,

( ) ( )t  is the autocorrelation function in the real space 

tensor A
l m,

. The time‐dependence is caused by the angular reorientation of the 
internal Hamiltonian PAS relative to the laboratory frame. Because the angular 
reorientation is random with no preferred direction or origin in time, the arguments 
t and τ can be changed to yield the autocorrelation function g

l,m
(t):

	 g t t tl m

l m l m l m l m

,

, * , , * ,
( ) ( ) ( ) ( ) ( )A A A A0 	 (41.12)
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As shown in Equation 39.1a, the complex conjugate A
l m, *

( )0  can be replaced 

with 1l m
l m

A
,

.

It is customary to factor out δ′
zz
 and η from A

l m,

 for l = 2 and xy xz yz, , and  
for l = 1 in which case the “reduced” correlation function G

l, m
(t) is used (Eq. 39.1b), 

that is,

	 G
A A

Al m

l m l m

,

, * ,

,
( )

( ) ( )

( )
lab lab

PAS

0
2 0 2

	 (41.13)

Substitution of Equation 41.13 into 41.11 yields the following:

	
d

dt
C l m l

l l m l m l m
l m

§
, , §

,( ) [ [ , ]] (ˆ ˆ ( )0
2

0

1 0T , T G tt e di m) 0 	 (41.14)

where C APAS
2 0 2,  and is dependent on the Hamiltonian ˆ §H .

The spectral density is defined as (see Eq. 39.3b)

	 J m t e dl m l m
i m

, ,( ) ( )0

0

0G 	 (41.15)

Substituting Equation 41.15 in Equation 41.14 yields the following:

	
d

dt
C J ml m l

l l m l m l m
l m

§
, , §

,( ) [ , ( ) ] (ˆ [ ˆ ]0
2

01 0T , T )) 	 (41.16)

The master equation can be solved in several ways to calculate NMR relaxation 
times (rates). The simplest in concept is to solve the master equation (Eq. 41.16) 

for the relaxation of the density matrix using the matrix representations of ˆ ,Tl m  

and ρ§(0):

	
d

dt

d

dt

ˆ
ˆ

§I
Tr I

op

op 	 (41.17)

An alternative approach is to use the following relations verified in spintensors_
matrix.nb (Spiess, 1978, pp. 109, 110):

	 Tr{[[T , T ]] I } Tr{[ T , T , Iop op
ˆ ˆ ˆ ˆ ˆ ˆ[ , ( )] [ [ ], , § , ,l m l m l m l m0 ]] ( )§ 0 ]} 	 (41.18)

The commutation relations of the ˆ ,Tl m  with the spin angular momentum operators Î
op

 
(see spintensors_matrix.nb) are as follows (Spiess, 1978)2:

2 But modified to match our definitions of the spherical tensor operators.
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	 , , 1I ,T ( 1) ( 1ˆ )ˆ ] T̂[ l m l ml l m m 	 (41.19a)

	 , ,, T̂ ˆ] T[ l m l m
zi m 	 (41.19b)

Since , , , ,
op op[T , T , I ] [[I , Tˆ ˆ ˆ ˆ ˆ ˆ[ ] ],T ]l m l m l m l m , these equations allow the double commu-

tators of the master equation (Eq. 41.18) to be written in terms of single commutators

	
d

dt
C m J mz

l m l
l l m l m l m

l m

ˆ
[ ˆ ˆ ] ( )( ) , ,

,

I
T , T0

2
01 	 (41.20a)

and

	
2 , 1 ,

0 , 0
ˆ ˆ( 1) T , T ( 1) ( 1) ([ ] )l l m l m l m

l m l l m

di
c l l m m J m

dt 	  
� (41.20b)

Further simplification can be achieved by using the Clebsch–Gordan coefficients to 
evaluate the spherical tensor commutators in Equations 41.20a and 41.20b (see 
ClebschGordan.nb). The results are as follows:

	

d

dt
C J J

C J

z
ˆ

ˆ{( [ , , ] [ ])}

( [ , ,

,I
, , T

{

2 1 1 1 1

2

5
4 2 2 2

1 0

] [ , , ] [ , , ] [ ])

{( [ , ,

ˆ ,4 2 2 2 2 1 2 1

2

5
2 2 2

1 0J J J

C J

, , T}

22 2 2 2 2 2 2 1 2 2 1 3 0] [ , , ] [ , , ] [ ])} ˆ ,J J J , , T
	

(41.21a)

	

(41.21b)

Equations 41.21a and 41.21b are identical to the results derived by Spiess (1978, 
pp. 110–111, eqs. 4.42 and 4.43). Equation 41.21a corresponds to T

1
 (spin lattice) 

relaxation. Equation 41.21b corresponds to T
2
 (spin–spin) relaxation.

ˆ ˆˆ ˆI  and T , and I  and T z
10 1 1  are proportional and the constant of 

proportionality is independent of m. They are calculated by using commutators of 
the  ˆ ,Tl m  as described by Spiess (1978, pp. 113–114, eqs. 4.53 and 4.54). Different 
Hamiltonians Ĥλ give rise to different commutators and constants of proportionality. 
The essential commutator relations of the different Hamiltonians for a single nuclear 
spin type are given in Table 41.1.

d

dt
C J J

C J

I
T

�
∓ ∓ �{ [ , , ] [ , , ]}

{ [ ,

,

2 1 0 0 2 1 1

2

5
2 2

1 1

∓∓ ∓ ∓ ∓ �2 2 3 2 1 3 2 0 0 2 2 1

2

5

1 1

, ] [ , , ] [ , , ] [ , , ]}
,

J J J

C

T

{{ [ , , ] [ , , ] [ , , ] [ , , ]}
,

6 2 2 2 6 2 1 6 2 0 0 6 2 1
3

J J J J∓ ∓ ∓ ∓ �T
11
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Quadrupolar Relaxation, I = 1

For the quadrupolar Hamiltonian Ĥ
Q
, we calculate the following relationships bet-

ween the quadrupolar spin tensor commutators and the nuclear spin tensor Î
z
 (see 

ClebschGordan.nb):

	 1,1 1, 1 1,0
11 : , 2ˆ ˆ ˆ ˆ[ T 2T T I] zl a 	 (41.22a)

	 2,2 2, 2 2,1 2, 1 1,0
22 : 2 [ T , T ] [ T , T ] 10 Tˆ ˆ ˆ ˆ 0 Iˆ 1 ˆ

zl a 	 (41.22b)

	 2,2 2, 2 2,1 2, 1 3,0ˆ ˆ ˆ ˆ ˆ[ ] [3 : T , ]T 2 T , T 10 Tl 	 (41.22c)

As verified using matrix representation of the ˆ ,Tl m  in spintensors_matrix.nb, ˆ ,T3 0  is 
zero for I = 1.3

Solving for a
1
 and a

2
, we obtain the following:

	
1,1 1, 1

1

[ T , T̂

2

ˆ ]
a 	 (41.23a)

	
2,2 2, 2 2,1 2, 1

2

ˆ ˆ ˆ ˆ[ ]2 T , T [T , T ]

10
a 	 (41.23b)

Evaluation of these commutators in Table 41.1 and Equations 41.22a and 41.22b is 
necessary to calculate the relaxation rates predicted in Equations 41.21a and 41.21b. 
The commutators in Table  41.1 were calculated by using the definitions of the 
internal Hamiltonian ˆ ,Tl m  in terms of ladder operators found in Table 31.2B, calcu-
lating the desired commutators in commutators.nb, then simplifying the program 

Table 41.1  Important commutators of spin space tensors

Hamiltonian [T̂l0,T̂l0] [T̂11,T̂1‐1] [T̂22,T̂2‐2] [T̂21,T̂2‐1]a

D
homo

b 0 NAc

1 z2 1 2

1
( 1) * 1 I I (I Iˆ ˆ ˆ ˆ ˆ( ) )

2 z z zi i 1
2 1 2 1 2 1 2

ˆ ˆ ˆ ˆ ˆ ˆ( )I I I I I Iz z z z

J
homo

(I = S)b 0 1
2 1 2

ˆ ˆ (ˆ ˆ )I I I Sz z 1 2 1 2

1
( 1) * 1 I Iˆ ˆ ˆ ˆ Î

2
(I( ) )z z z zi i 1

2 1 2 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ( )I I I I I Iz z z z

Q 0 NAc 22 ( 1) * 1 2ˆ 1̂ 1( 1̂ ˆ)z zi i 2 1
2 ( 1) *1 4I *1 I

2
ˆ ˆˆ ˆ

z zi i

a ̂ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ( ) *I I I I I I I I I I I1 2 1 2 1 2 1 2 1
2

1 1 21x x y y z z I I 22
2 2 1 1I I( ) * ˆ and 1̂  is the unit matrix.

b Spin I
1
 and spin I

2
 are the same type of nuclei and have the same nuclear spin quantum number I and same Larmor 

frequency.
c A1,m = 0 for the dipolar and quadrupolar Hamiltonians.

3 It is also zero for homonuclear dipolar and J‐coupling of I = 1/2 nuclear spins.
4 Sometimes, it is easier to do a calculation by hand than to write a generic program to do it!



The Master Equation for NMR Relaxation—Single Spin Species I 197

results by hand4 using the ladder operator commutators defined in Equations 19.3e, 

19.3f, 19.4, 19.5a, and 19.5b.5 The commutator 1,1 1, 1
Q Q

ˆ ˆ[T ,T ]  does not contribute to 

relaxation for quadrupolar nuclei because corresponding real space autocorrela-

tion functions A A
0 0 0 0

0
, * ,

( ) ( )  and A A
1 1

0
, * ,

( ) ( )
m m

 are both zero due to the 

traceless character of APAS

Q

. The ˆ ,TQ
3 0  and ˆ ,TQ

3 1  terms in Equations 41.21a and 41.21b 

vanish (see the matrix evaluation in spintensors_matrix.nb) for I = 1.
Therefore, the contributing commutators for quadrupolar I = 1 nuclei are as 

follows (Spiess, 1978, Table 4.1.):

	 2,2 2, 2 2 2 2ˆ ˆ ˆ ˆ[T , T ] {2 I 1 2 I }. {2 ( 1) 1 2 Î ˆ}.Iz z z zi i i 	 (41.24a)

	 2,1 2, 1 2 2 21 1
T , T .I .I2 I 4ˆ ˆ ˆ ˆˆ 2 ( 1) 4[ I

2 2
ˆ] z zz zi i i 	 (41.24b)

Substituting Equations 41.24a and 41.24b into Equation 41.22b yields the following:

	 a
I I

2

2 1
3
2

10

( )

	 (41.25)

Thus, for /Îzd dt  and I = 1, a2 5 2 2/ , and the product 2 5 1 22/ /a , so

	
d

dt
C J J J Jz

ˆ
( [ , , ] [ , , ] [ , , ] [ ])

I
, ,Q

1

2
4 2 2 2 4 2 2 2 2 1 2 1 ˆ̂Iz

(41.26a)

Similarly, for /Îd dt  and I = 1, so 5 2 2 2 5 1 2/ / / , so

	

d

dt
C J J J JQ

ˆ
{ [ , , ] [ , , ] [ ] [ , ,

I
, ,

1

2
2 2 2 2 3 2 1 3 2 0 0 2 2 1    ]} Î

	
(41.26b)

Equations 41.26a and 41.26b can be further simplified by using the relation 
J l m m J l m m[ , , ] [ ],, ,  yielding for quadrupolar relaxation of an I = 1 nucleus:

	
d

dt
C J Jz

z

ˆ
ˆ( [ , , ] [ ])

I
, , IQ

1

2
8 2 2 2 2 2 1 	 (41.27a)

	
d

dt
C J J J

ˆ
{ } ˆ[ , , ] [ ] [ ]

I
, , , , IQ

1

2
2 2 2 2 5 2 1 3 2 0 0 	 (41.27b)

5 The commutators.nb program in its present form cannot automatically simplify the results. Students 
and researchers can improve the program if they wish.
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For an I = 1 quadrupolar nucleus like deuterium, C A
e qQ

I IQ PAS
2 0 2

2
2

3

2 2 2 1
,

( )

3

8

2 2
e qQ



.  With Equations 41.27a and 41.27b, this yields the same expressions 

derived by Spiess (1978, Table 4.3), Abragam (1983, pp. 313, 314), and Torchia and 
Szabo (1982, eq. 8).

Therefore, for an I = 1 nucleus, the quadrupolar relaxation rates (inverses of 
relaxation times) are as follows:

	
1 1

2
8 2 2 2 2 2 1

1T
C J JQ , ,( [ , , ] [ ]) 	 (41.28a)

	
1 1

2
2 2 2 2 5 2 1 3 2 0 0

2T
C J J JQ , , , ,{ }[ , , ] [ ] [ ] 	 (41.28b)

Homonuclear Relaxation of Dipolar and 
J‐Coupled Spins (e.g., two I = 1/2 coupled spins)

Equations 41.21a and 41.21b also apply to dipolar and J‐coupling of homonu-
clear nuclei. However, the commutators required to calculate the constants a

1
 and a

2
 

are different (see Table 41.1) (Spiess, 1978, Table 4.2):

	 1,1 1, 1
1 2 1 2

1
[ T , T ] Iˆ ˆ ˆ ˆ ˆI (I I )

2
ˆ

z z 	 (41.29a)

	 2,2 2, 2 2
1 2 1 2

1
T , T (I I I ) I I

2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ] ( )z z 	 (41.29b)

	 2,1 2, 1
1 2 1 2 1 2 1 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ]
1 1 1

T , T I I I I I I I I
4 2

( )
4 z z z z

	 (41.29c)

where ˆ ˆ (ˆ ˆ ˆ ˆ ˆ ˆ )I I I I I I I I1 2 1 2 1 2 1 2x x y y z z , ˆ ( )I2 1i i , and I is the nuclear spin 
quantum number of each of the homonuclear coupled spins. These commutators 
are verified using matrix expressions for coupled spins I = 1/2 in spintensor_
couple_matrix.nb and were derived for all I by hand using commutator expressions 
for ˆ

_
,TD homo

l m .
The allowed values of total angular momentum for two coupled spins I

1
 

and I
2
 are given by the addition theorem of angular momentum (Levine, 1974, 

pp. 248–252):

	 F I I I I I I1 2 1 2 1 21, , ,| | 	 (41.30)
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and for each value of F, m takes on (2F + 1) values

	 m F F F, , ,1 	 (41.31)

As pointed out by Spiess114 and verified by hand, forming F2 = (I
1
 + I

2
)2 leads to the 

relation ˆ ˆ ( ) ( )I I1 2

1

2
1 2 1F F I I . This in turn leads to the following expressions 

for a
1
 and a

2
 as functions of F:

	 a F F F I I1

1

4 2
1 2 1( ) ( ( ) ( )) 	 (41.32)

	 a F I I F F2

1

2 10
3 1

1

2
1( ) ( ) ( ) 	 (41.33)

Since we are interested in the expectation values ⟨I
z
⟩ and ⟨I+⟩, we need the weighted 

average of the a
1
 and a

2
 values over all possible values of F and the corresponding 

substates (see Eq. 41.31). The number of substates for each F value is (2F + 1) and 
the intensity of each substate is F(F + 1), so each F factor is weighted by (2F + 1) F 
(F + 1). The weighted averages are given by

	 a

I

I1
0

2 2 2

0

2

1

4 2

2 1 1

1 2 1 1
2F

F

F F F

I I F F F

( ) ( )

( ) ( ) ( )
I I( )1 	 (41.34)

	 a

I

I2
0

2 2 2

0

2

1

2 10
3

2 1 1

2 1 2 1 1

F

F

F F F

I I F F F

( ) ( )

( ) ( ) ( )
I I( )1 	 (41.35)

Also, it is easily verified by induction (see spintensor_couple_matrix.nb) that

	 F

F

F F F

I I F F F

0

2 2 2

0

2

2 1 1

2 1 2 1 1

4

3

I

I

( ) ( )

( ) ( ) ( )
	 (41.36)

This yields the following:

	  a1

1

6 2
1i i( ) 	 (41.37)

	 a2

10

12
1i i( ) 	 (41.38)

Thus, for two homonuclear dipole coupled I = 1/2 spins (such as two 1H nuclei), there 
are only l = 2 contributions, and a2 10 16/ , so 2 5 1 82/ /a , and the ˆ ,T3 0  and 
ˆ ,T3 1  terms in Equations 41.22a and 41.22b vanish (see their evaluation in spinten-

sor_couple_matrix.nb). Therefore,

d

dt
C J J J J

ˆ
( [ , , ] [ , , ] [ , , ] [_

I
,z

D homo

1

8
4 2 2 2 4 2 2 2 2 1 2 11

1

1

, I I]) ˆ ˆ
z zT  

(41.39a)
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Similarly,

d

dt
C J J J

T

ˆ
{ } ˆ[ , , ] [ ] [ ]_

I
, , , , ID homo

2

8
2 2 2 2 5 2 1 3 2 0 0

1

2

Î

(41.39b)

where for the homonuclear dipolar Hamiltonian C A
rI I

D homo PAS_
,2 0 2 0

2

3

2

3

2
1 2

 and 
γ is the gyromagnetic ratio of the coupled nuclear spins.

Chemical Shift Relaxation

A different approach is required for calculation of chemical shift NMR relaxation 
times. Unlike the dipolar and quadrupolar Hamiltonians where products of two spin 
angular momentum operators (Î

1
 and Î

2
 for homonuclear dipolar and Î and Î for 

quadrupolar) are required, the chemical shift Hamiltonian is built from a product of 
a single spin angular momentum operator Î and the magnetic field B = {0,0,B

0
}. 

Therefore, the l 2  spin tensors for the chemical shift Hamiltonian (see Table 31.2) 
can be expressed in terms of the l 1  spherical tensors for a nuclear spin (see 
Spiess, 1978, p. 115; Table 31.1):

	 ˆ ˆ,
, ,T TCS

l m
l m m

IB b0 1
	 (41.40)

with b b b b b b b0 0 1 0 2 2 2 0 1 1 1 1 2 11 0 0
2

3

1

2

1

2

1

2
, , , , , , ,, , , , , , .

This representation of the ˆ ,TCS
l m  is substituted in Equations 41.20a and 41.20b, 

with the result that only the ˆ
,T1 m
I  cause relaxation. For an I = 1/2 nuclear spin (Spiess, 

1978, Eq. 4.38’),

	
d

dt
C b b m Jz

l m
l m

l m l m m
I

m
I

l

ˆ
ˆ ˆ( ) [ ], , , ,

I
T , TCS 0

2
1

1
1 11 ,, ( )m m 0 	 (41.41a)

and

	

2 1
CS 0 1 , , 1, 1 1, , 0( 1) [T , T ] 2 ( 1) ( )ˆ ˆl m i i

l m l m l m m m l m

di
c b b m m J m

dt
	

(41.41b)

Using the same methods as in the previous sections (see ClebschGordan.nb), this 
yields the following:

	
d

dt
C J J J Jz

ˆ
ˆ( [ , , ] [ ] [ , , ] [ ])

I
, , , , TCS

1

2
2 1 2 1 1 1 1 1 11 0,

I

	  
(41.42a)
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and

	

d

dt
C J J J J

ˆ
[ ] [ , , ] [ , , ] [ ]

I
, , , ,CS

1

2
2 0 0 0 1 1 2 1

4

3
2 0 0   

ˆ
,T1 1
I

	
(41.42b)

Recognizing that the l = 2 spectral densities are actually l = 1 and are expressed in 
terms of the nuclear spin operators ˆ ,,T1 m

I  we proceed by calculating a1 1 2/ , and 

find ˆ ˆ
,T II

1 0

1

2
z  and ˆ ˆ

,T I1 1

1

2
i , yielding finally

	
d

dt
C J J J Jz

z

ˆ
ˆ( [ , , ] [ ] [ , , ] [ ])

I
, , , , ICS

1

2
2 1 2 1 1 1 1 1 	  

(41.43a)

d

dt
C J J J J

ˆ
[ ] [ , , ] [ , , ] [ ]

I
, , , ,CS

1

2
2 0 0 0 1 1 2 1

4

3
2 0 0        Î 	

(41.43b)

where C A zz zz zzCS PAS iso
2 0 2

2

2 23

2

3

2

3

2
, (( ) ) .  These expressions are 

the same as those obtained by Spiess.

Explanation of spintensors_matrix.nb

This notebook uses matrix representation of nuclear spin angular momentum opera-
tors and of spin space tensors to verify some important commutation rules used in the 
calculation of relaxation rates for homonuclear spins. The user is told to evaluate 
matrep2.nb, then close it without saving changes.

The first cells use matrix representations of I = 1 and I = 3/2 spin angular 
momentum operators to verify Equations 19.3e, 19.3f, 19.4, 19.5a, and 19.5b.

The next cells define the spin space tensors T[l,m] from Table 31.2B in terms 
of the I = 1 spin angular momentum operators iplus[1], imin[1], iz[1], and isq[1].

The next cells calculate the Trot[l,m] to the rotating frame by propagating the 
T[l,m]. Equation 41.8 is verified.

The next cells verify some important commutator relations (Eqs. 41.18, 41.19a, 
and 41.19b) for both I = 1 and I = 3/2 (Spiess, 1978, p.109).

The next cells verify that T[3,0], T[3,1], and T[3,−1] are zero for I = 1.
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Explanation of ClebschGordan.nb

This notebook shows how to use the built‐in Mathematica function ClebschGordan 
and then uses it to verify some important NMR relaxation rate expressions.

After introducing the syntax of the function, the next cells use the built‐in 
Mathematica function Off to suppress the nonphysical and nontriangular Clebsch–
Gordan results.

The next cells show how to evaluate the product of two spin space spherical 
tensors, in this case T[2,1] and T[2,−1]. This yields a specific combination of l = 1, 2, 
3, and 4 terms.

The next cells show how to decompose a T[l,m], in this case T[3,0], into a 
specific combination of products of l = 2 and l = 1 terms.

The next cells decompose T[1,0] into a specific sum of products of l = 1 and 
l = 2 terms.

The next cells define the function comm[T[l1_,m1_],T[l2_,m2_]], which 
calculates the commutators [T

l1,m1
, T

l2,m2
].

The next cells apply the comm function to evaluate dI
z
/dt for quadrupolar 

nuclei (Eq. 41.20a) in terms of the T[2,m] and the spectral densities j[2,m,mω]. Then 
dI

min
 is evaluated in the same way using Equation 41.20b.

The next cells evaluate the commutators shown in Table 41.1.
The next cells define the b[l,m] terms in Equation 41.40 that relate the chemical 

shift Hamiltonian T[l,m] spin space tensors to the T
I
[l,m] single nuclear spin spherical 

tensors (Table 31.1).
The next cells evaluate dI

z
/dt for chemical shift relaxation according to 

Equations 41.20a and 41.20b.
The next cells evaluate the direct product of individual nuclear spin spherical 

tensors (Table 31.1) for two different nuclear spins I and S. These products yield a 
new Tnew[L,M] in terms of the l = 1 nuclear spin spherical tensors for I and S.

The next cells define the specific sets of rules (commie) for commutators of 
these products in Table 42.1.

The commie rules are used to evaluate Equations 42.7a and 42.7b. These yield 
the same results as obtained by Spiess (1978, Eqs. 2.11 and 2.11a), except for the 
J[0,0,0] and J[0,0, −ω0i + ω0s] terms, which differ by a factor of 3 due to the different 
definition of T[L = 0, M = 0].

Explanation of spintensor_couple_matrix.nb

This notebook evaluates spin tensor commutators and other relations needed for 
homonuclear or heteronuclear coupled nuclear spins. For convenience, we assume 
that the spins are both I = 1/2.

The first cells calculate the direct product matrix representations of nuclear 
spin operators for the two coupled I = 1/2 spins (e.g., iz1, iz2, ix1, and ix2).
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Next the matrix representations of the spin space spherical tensors T[l,m] are 
calculated.

Matrix commutators are then calculated for the commutators of the T[l,m]. 
These are used to verify Equations 41.29a, 41.29b, and 41.29c.

The next cells verify that T[3,0] = 0 for two coupled I = 1/2 spins.
The next cells verify Equations 41.36, 41.37, and 41.38.
The next cells verify the commutators presented in Table 42.1.

Homework

Homework 41.1: Use Equations 41.7–41.9 to derive Equation 41.10.
Homework 41.2: Verify Equations 41.21a and 41.21b.
Homework 41.3: Verify Equations 41.24a and 41.24b using commutator 

relationships.
Homework 41.4: Verify Equation 41.25.
Homework 41.5: Verify the equivalence of Equations 41.27a and 41.27b to 

those derived by Spiess, Abragam, and Torchia and Szabo.
Homework 41.6: Derive Equations 41.29a, 41.29b, and 41.29c using commu-

tator relations.
Homework 41.7: Starting with Equations 41.21a and 41.21b, go through the 

full derivation to obtain Equations 41.42a and 41.42b.
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Heteronuclear Dipolar 
and J Relaxation

Chapter  42

Nuclear magnetic resonance (NMR) relaxation due to heteronuclear dipolar or  
J-coupling of unlike spins I and S requires a slightly different approach than pre-
sented in the previous chapter. In this case, the ˆ

_
,T heteroD

l m  and ˆ
_
,T heteroJ

l m  must be trans-
formed to the doubly rotating frame at the respective resonant (Larmor) frequencies 
of the unlike I and S nuclear spins. Again, we closely follow the derivation from 
Spiess (1978, pp. 119–122).

The derivation starts as before by taking the density operator ρ(t) and fluctu-
ating internal Hamiltonian Ĥλ(t) (where λ = D_hetero or J_hetero) to the doubly 
rotating frame of the observed nuclei as indicated in Equations 42.1 and 42.2:

	 rot
I S I S( ) ( )( ) ( )t e t ei t i tI z S z I z S z0 0 0 0
   

	 (42.1)

where ω
0I
 and ω

0S
 are the respective resonant frequencies of the I and S nuclei and we 

again define ρ§ = ρ
rot

 − ρ
eq

 as the deviation of the density operator from equilibrium, and

	 ˆ ( ) ˆ ( )( ˆ ˆ ) ( ˆ ˆ )H Hrot I S I St e t ei t i tI z S z I z S z0 0 0 0 	 (42.2)

Since only the spin space components ˆ ,TL M  of Ĥλ are affected by the transformation 
in Equation 42.2, we can write1

	 ˆ ( ) ˆ, ,( ˆ ˆ ) ( ˆ ˆ )T Trot
I S I SL M i t L M i tt e eI z S z I z S z0 0 0 0 	 (42.3)

However, because the ˆ ,TL M  are composed of products of spin angular momentum 
operators of unlike spins with different rotating frames, it is not immediately obvious 
how to evaluate Equation 42.3 as we did in Equation 41.8. The solution is to “decom-
pose” the ˆ ,TL M  Hamiltonian spherical tensor operators into nuclear spin spherical ten-
sor operators of the component I and S nuclear spins (see Table 31.1 for the definitions). 

1 The capitalization of L and M is necessary for consistency with the Mathematica notebook 
ClebschGordan.nb and with Spiess’ derivation.
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This is achieved by using the direct product of the nuclear spin tensor operators and the 
Clebsch–Gordan coefficients as shown in ClebschGordan.nb (Spiess, 1978, p. 119):

	 ˆ ˆ ˆ{ , } { , } { },
,T ClebschGordan , , , TL M

m
m

Im M m L M
1 1

1

1 11 1 1 1 TT1 1,M m
S 	 (42.4)

The Clebsch–Gordan coefficients found by Mathematica for the L = 0, M = 0 terms in 
Equations 42.4, 42.6, and 42.7a are too small by the factor 3  (Spiess, 1978, 
Equation 2.11a). After accounting for this difference the result obtained is identical 
to that of Spiess (1978, Equations 4.42″ and 4.43″) (see ClebschGordan.nb).

With this substitution and proceeding as in the previous chapter, this yields the 
master equation (compare with Equation 41.11):

	

d

dt
C m M mL M L

L
m

§

, { , } {0
2

1 1
1 1 1 1 1ClebschGordan[{ }, , LL M

m M m L M

m M

, ]

ClebschGordan[{ }, , ]

T TI

}

, { , } { , }

[ ˆ ˆ
, ,

1 1 1 1

1 1 1 mm m M m

L M L M
it t e

1 1 1 1 1

0

0S I ST T

A A

,[ , ]]ˆ ˆ ( )

( ) ( )

, ,
§

, ,
(mm M mI S d1 10 0 ) 	 (42.5a)

where

	 C A
r

C AD
I S

IS

J_
,

_hetero PAS hetero PASand2 0 2 0
3

2

23

2
,,0 2

2

3

2
2 J 	 (42.5b)

This, in turn yields the following:

	

d

dt
C m

L M L

L

m

L M
§

( ) [{ , } { ,
0

2

1 1

1

1 1 1 1ClebschGordan , MM m L M

m M m L M

m

1

1 1 1 1

1 1

} { }]

[{ , } { , } { , }]

[ ˆ
,

, ,

ClebschGordan , ,

T II
M m

S
m M m

S
L M IJ m M mˆ ˆ ˆ ( ) (, [ , ]] ( ), , ,

§
,T T TI

1 1 1 1 1 1 00 1 1 00S ) 	 (42.6)

Equation 42.6 is the master equation that can be used to directly solve for (dρ§/dt). If 
matrix representations of the nuclear spin tensors ˆ

,T1 m
I  and ˆ

,T1 m
S  are used, remember 

that these must be expressed in the coupled direct product representation.
By restricting the calculation to the expectation values as in the previous chapter, 

we can again reduce the double commutators to single commutators and then solve 
for the relaxation of either nuclear spin (in this case the I spin):

	

d

dt
C m

I

L M L

L

m

L M
ˆ

( ) [{ , },T
ClebschGordan1 0

0

2

1 1

1

1 1 1 ,, , ,

ClebschGordan , ,

T

{ , } { }]

[{ , } { , } { , }]

[ ˆ

1 1

1 1 1 1

M m L M

m M m L M

11 1 1 1 1 1 1 1 01, , , , ,
ˆ ˆ ˆ ] ( ),m

I
M m

S
m

I
M m

S
L Mm JT T T 	

(42.7a)
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and

d

dt
C m

I

L M L

L

m

L M
ˆ

( ) [{ ,,T
ClebschGordan1 1

0

2

1 1

1

1 1 1}} { , } { }]

[{ , } { , } { , }]

[ ˆ

, , ,

ClebschGordan , ,

1 1

1 1 1 1

M m L M

m M m L M

TT T T T1 1 1 1 1 1 1 1 1 01, , , , ,
ˆ ˆ ˆ ] ( ),m

I
M m

S
m

I
M m

S
L Mm J

(42.7b)

where 0 0 01 1( ( ) .m M mI S  The necessary commutation relations are listed 
in Table 42.1.

Only the expectation values for the I spins are given. The expressions 
for  the expectation values 1,0 /ˆ( )TSd dt  and 1, 1

ˆ( T )/Sd dt  are identical to those 
for  1,0 /ˆ( T )id dt  and 

1, 1( T̂ / )id dt  after swapping S for I in Equations 42.7b 
and 42.8a:

Table 42.1  Spherical nuclear spin commutators for coupled heteronuclear spins I and Sa

Commutators for coupling of unlike spinsb

Commutator and resultc High-temperature reduced-
density operator resultd

2
1,1 1,0 1, 1 1,0 1,0 1,0

ˆ ˆ ˆ ˆ[T T ,T T ] T Tˆ ˆi S i S S i

1,0

1
( 1) T

3
ˆ iS S

2
1,0 1, 1 1,0 1,1 1,0 1,0[T T ,T Tˆ ˆ ˆ ˆ ˆ(T ) T̂]i S i S i S

1,0

1
( 1) T

3
ˆ Si i

2
1,1 1, 1 1, 1 1, 1 1,0 1,0

2
1,0 1,0

1
[T T ,T T ] ( 1) T T

2

(

ˆ ˆ ˆ ˆ ˆ ˆ( )

ˆ1) (T ) T̂

i S i S i S

S i

i i

S S



 1,0

1,0

ˆ1
( 1) T

3

( T̂
1

1)
3

S

i

i i

S S

2
1, 1 1,0 1,0 1,0 1,0 1, 1[T T ,T Tˆ ˆ ˆ ˆ T̂ T̂]i S i S S i



1, 1

1
( 1) T

3
ˆ iS S

2
1, 1 1, 1 1,0 1, 1 1,0 1,0 1,0 1,0 1, 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ(
1

[T T ,T T ] ( 1) T T T) T T
2

i S i S S S i S iS S


  1, 1

1
( 1) T

3
ˆ SS S

2
1, 1 1, 1 1,0 1, 1 1,0 1,0 1,0 1,0 1, 1

1
T T ,T T ( 1) (ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ T ) T T T T

2
]i S i S S S i S iS S



 1, 1

1
( 1) T

3
ˆ SS S

a Based on Spiess (1978) table 4.5, verified using matrix representation in spintensor_couple_matrix.nb.
b Use the general relation [AB,CD]= −[CD,AB] to obtain “reverse” commutators.
c Verified using l=1 spherical tensor definitions in Table 31.1 and commutators in Chapter 18. Also verified using 
matrix representations of the l=1 spherical tensors.
d Verified using reduced matrix representation for “high” temperature (any temperature above ca. 2° K), see Chapter 14 
equations 5a, 5b, and equildensitymatrix.nb.
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d

dt
C S S J J

J

I

I S I S

ˆ
( ) [ , , ] [ , , ]

[

,T1 0 1

6
1 2 0 0 2 0 0

1,, , ] [ ] [ , , ] [ , , ]
[ , ,

1 1 1 1 0 1 0
2 2 2

I I I S I S

I

J J J
J

, ,

S I S I

I I S

J J

J J

] [ , , ] [ , , ]

[ ] [ , , ]

2 2 2 2 1

2 1
1

3
2 0, ,

11

3
2 0

1

6
1 2 0 0 2

1 0J

C I I J J

I S
I

I S

[ , , ]

( ) [ , , ] [

ˆ
,T

[[ , , ]

[ , , ] [ , , ] [ , ,

0 0

1 0 1 0 2 2 2

I S

I S I S I SJ J J ]]

[ , , ] [ , , ] [ , , ] ˆ
,2 2 2

1

3
2 0

1

3
2 0 1 0J J JI S I S I S

ST

(42.8a)

d

dt
C S S J J J

I

I S I

ˆ
( ) [ , , ] [ ] [ , ,,T

, ,1 1 1

6
1 2 0 0 2 0 0 0 1 1   ]]

[ , , ] [ , , ] [ , , ]
[ , ,

J J J
J

S S I S

I

1 1 1 1 1 0
2 2 2

  

   SS I S

S I S

J J

J J

] [ , , ] [ , , ]

[ , , ] [ , , ]

2 1 2 1

2 1
1

3
2 0

4

3

   

 JJ I[ ] ˆ
,2 0 0 1 1, , T

(42.8b)

Since ˆ ˆ
,T I1 0
I

z , ˆ ˆ
,T S1 0
S

z  and J L M M J L M M[ , , ] [ , , ]0 0  equations 8a 
may be rewritten as

	
d

dt T T

z

II
z

IS
z

ˆ
ˆ ˆ

I
I S

1 1

1 1

	 (42.9a)

where

	

1 1

6
1 4 0 0 2 1 1 2 1 0

1T
C S S J J J

II
I S I I S( ) [ , , ] [ ] [ , , ], ,

4 2 2 2 2 1
2

3
2 0J J JI S I I S[ , , ] [ ] [ , , ], , 	 (42.9b)

and

	

1 1

6
1 4 0 0 2 1 0

4 2 2

1T
C I I J J

J

IS
I S I S

I

( ) { [ , , ] [ , , ]

[ , , S I SJ] [ , , ]
2

3
2 0 	 (42.9c)
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For the S spin, all Is and Ss are swapped, yielding the following:

	
d

dt T T

z

SS
z

SI
z

ˆ
ˆ ˆ

S
S I

1 1

1 1

	 (42.10a)

with

	

1 1

6
1 4 0 0 2 1 1 2 1 0

1T
C I I J J J

SS
S I S S I( ) [ , , ] [ ] [ , , ], ,

4 2 2 2 2 1
2

3
2 0J J JI S S S I[ , , ] [ ] [ , , ], , 	 (42.10b)

and

	

1 1

6
1 4 0 0 2 1 0

4 2 2

1T
C S S J J

J

SI
S I S I( ) { [ , , ] [ , , ]

[ , , II S S IJ] [ , , ]
2

3
2 0 	 (42.10c)

Remembering that we are looking at deviations from equilibrium, ˆ ( )Iz t

Trace[I ] Trace I I Irot eq eq
ˆ ˆ ˆ ( ) ˆ[ ( )]§ _z z z zt  and ˆ ˆ ˆ( ) ,_S S S eqz z zt  

it is apparent that Equations 42.9a and 42.10a are coupled and must be solved simul-
taneously. Together, these equations comprise the Solomon (1955) equations and 
predict cross-relaxation effects. Due to these, heteronuclear dipolar or J T

1
 relaxation 

in general is not monoexponential.
However, it is often the case that T

1
 relaxation rates of coupled spins are mea-

sured with decoupling of one of the coupled spins (e.g., an inversion recovery 
experiment observing 13C while decoupling 1H). In this case (let 1H be the S spin), 

ˆ ( )Sz t 0  and ˆ ˆ ,_S S eqz z  and the relaxation rate of the I spins is given by 

(1/T
1II

). The only effect of the S nucleus decoupling is the nuclear Overhauser effect 
on the I magnetization.

For T
2
 relaxation, 

d

dt

d

dt

Iˆ ˆ
,T I1 1 1

2



 and ˆ ˆ .,T I1 1

1

2
i 

 Incorporation of the 

other simplifications discussed earlier allows Equation 42.8b to be expressed as

	
d

dt T I

ˆ
ˆI
I

1

2

	 (42.11a)

where

	

1 1

6
1 2 0 0 2 0 0 0 1 1

2 1
2T

C S S J J J

J
I

I S I( ) [ , , ] [ ] [ ]

[

, , , ,

,, ,

, , , ,

1 1 0 2 2 2

2 1 2 2 1
1

3

S I S I S

I S

J J

J J

] [ , , ] [ , , ]

[ ] [ ] JJ JI S[ , , ] [ ]2 0
4

3
2 0 0, , 	 (42.11b)
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For T
2
 relaxation, ieq 0  and there is no dependence of d dtˆ /I  on the S spin, 

so the relaxation is exponential and is described successfully by the Bloch equation. 
The T

2
 relaxation of the I spin is not affected by decoupling of the S spin. The expres-

sion for T
2
 relaxation of the S spin is obtained by swapping the I and S labels in 

Equations 42.10c and 42.11a.
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Calculation of 
Autocorrelation 
Functions, Spectral 
Densities, and NMR 
Relaxation Times for 
Jump Motions in Solids

Chapter  43

The last two chapters presented the mathematical connection between NMR 
relaxation in spin space and the angular reorientation of the principal axis 
system  (PAS) in real space of a nuclear spin Hamiltonian. The angular motion 
in  real space is described quantitatively by the autocorrelation function 
G A A Al m

l m l m
,

, * , ,( ) ( ) ( ) ( )lab lab PAS0 2 0 2  (Eq. 39.1), which decays with time for l = 1 
and for l = 2.1 In this chapter, autocorrelation functions are calculated for jump 
motions that dominate NMR relaxation rates in solid samples (Torchia and Szabo, 
1982; Wittebort and Szabo, 1978). These, in turn, are used with the formalism from 
the previous chapters to calculate quantitative NMR relaxation times.

The general N-site jump model can in principle be used to describe any type of 
angular reorientation dynamics. This model was described in detail by Torchia and 
Szabo and is modified slightly here to accommodate Mathematica calculations. 
Suppose that the PAS of a given Hamiltonian jumps between N different sites relative 
to a crystal-fixed or molecule-fixed reference frame. For any of the N sites j, the ori-
entation of the PAS relative to the crystal frame can be described by the Euler angles 
κ

j
, λ

j
, ξ

j
. For a static powder sample of a solid, the Euler angles necessary to bring the 

crystal frame into coincidence with the laboratory reference frame are the powder 
average angles α, β, and γ (Scheme 43.1). Because there is no preferred x or y axis in 
the laboratory reference frame, γ can be arbitrarily set to zero.

	 A A Aj j j

j j j

[ ] [ ] [ ]pas crystal lab 	 (43.1)

1 G0 0, ( ) constant .
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This transformation is achieved with Wigner rotations as shown in Equation 43.2:

	 A j

l m

l r l
l

rm
l

q l
l

j

l q

qr
l

j jD D
, ,

( ) ( ) ( ) (lab A pas1
2

j )	 (43.2)

The equilibrium probability that the Hamiltonian PAS is in site j is p
eq

(j), and R
jk
 is 

the first-order rate constant in s−1 for jumping from site j to site k. In some cases, the 
sites are not equivalent, so jk kjr r , but microscopic reversibility requires that 
R p R pj kjk eq kj eq( ) ( ).  In order to calculate relaxation rates when there are inequiva-

lent sites, it is necessary to create a symmetric jump matrix R  with elements

	 R R R Rjk kj jk kj 	 (43.3)

and

	 R Rjj k j jk 	 (43.4)2

After this symmetrization, one diagonalizes R  to obtain the N eigenvalues λ
n
 and 

eigenvectors Xn , with

	 RX Xn n
n 	 (43.5)

where the N eigenvalues and eigenvectors are labeled n = 1, 2, …, N, and n = 1 corre-
sponds to the eigenvalue λ

1
 = 0 with p jeq j( ) .( )X1 2  These relations are verified in 

the notebook torchiaszabotetqcceta_book.nb.
In the crystal-fixed reference frame, the general expression for the autocorrela-

tion function C ta aa
l
, ( )  is given by

	 C t D D ta aa
l

n l
l

n l
l

n a
l

n aa
l

, ,
*

,( ) ( ), ( ), ( ) , ( )( ) (0 0 0 ,, ( ), ( ))t t 	 (43.6a)

where Dn a
l
,
*  is the complex conjugate of Dn a

l
, .

Especially in the case where the Hamiltonian PAS has axial symmetry (η = 0) 
such as for the dipolar Hamiltonian or nearly axial symmetry as for the deuterium 
quadrupolar Hamiltonian (η ≤ 0.1), it is convenient to use spherical polar angles to 
describe the position of the PAS z axis in the crystal-fixed frame. In this case, the 
Euler angle κ is irrelevant and the spherical polar angles are given by j j  and 

j j  (Torchia and Szabo, 1982). In terms of the spherical polar jump angles 
Θ

j
 and Φ

j
, C ta aa

l
, ( )  is given by

	 C D D tta aa
l

n l
l

n l
l

n a
l

n aa

l
, ,

*

,
( ) ( ) (, ( ), ( ) , , ( ),0 0 0 0 ( ))t 	 (43.6b)

In the case of N-site jumps, the autocorrelation functions C ta aa
l
, ( )  in the crystal-fixed 

frame are given by (using Euler jump angles κ
j
, λ

j
, ξ

j
)

	

C
A A

A
ta aa

l
n
N

k
N

j
N

q l
l

r l
l

l q l r

,

, * ,

( )
( )

(1 1 1

0PAS PAS

PAAS

X X X X , , , ,

2 0 2

1 1

,

,
*

,

)

( ) ( )e D Dn t
k k

n
j j

n
q a
l

k k k r aa
l

j j j 	 (43.7a)

2 We reverse the labels of Torchia and Szabo so that label j refers to the row number and letter k refers to 
the column number of the rate matrix.
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or if there is axial symmetry and spherical polar angles are used,

	

C
A A

A
ta aa

l
n
N

k
N

j
N

q l
l

r l
l

l q l r

,

, * ,

( )
( )

(1 1 1

0PAS PAS

PAAS

X X X X , , , ,

2 0 2

1 1
0 0

,

,
*

,

)

( ) ( )e D Dn t
k k

n

j j

n

q a
l

k k r aa
l

j j
	 (43.7b)

The time-dependence is embodied exclusively in the e n t  term.3

In the laboratory reference frame pertinent to NMR relaxation, the autocor-
relation functions (see Eq. 39.1) are as follows:

G
A A

Al m

l m l m

l a l
l

aa l
l

,

, * ,

,
( )

( ) ( )

( )
lab lab

PAS

0
2 0 2 1

2 DD D Ct ta m
l

aa m
l

a aa
l

,
*

, ,( ) ( ) ( ), , , ,0

(43.8)

where α and β are the powder average angles necessary to align the crystal-fixed 
frame z axis and the laboratory (magnet) reference frame z axis.

The spectral densities are given by Equation 39.34:

	 J m G m t dttl m l m, ,( ) ( ) ( )
0

Cos 	 (43.9)

If the autocorrelation functions are single exponential decays with a single 
characteristic correlation time τ, that is, G el m

t
,

/( ) const  (see Eq. 39.2), then

	 J m
ml m, ( ) const

1 2 2 2
	 (43.10)

Since the l value of J
l,m

(m ω) refers to the rank of the autocorrelation functions con-
tributing to relaxation, and only l 2  autocorrelation functions contribute to dipolar 
or quadrupolar relaxation, it is common in the literature to abbreviate the spectral 
densities J

2,m
(m ω) as J

m
(m ω) (Torchia and Szabo, 1982).

The calculated J
l,m

(m ω) can then be inserted into the relevant expressions from 
Chapters 41 and 42 to calculate explicit NMR relaxation times. Two examples 
of such calculations for deuterium relaxation times are provided in the notebooks 
torchiaszabotetqcceta_book.nb and c2jumpstorchiaszabo_book.nb. The first note-
book uses a 4-site tetrahedral jump model that is applicable to water in ice Ih 
(Wittebort et al. 1988). The second uses a 2-site C

2
 symmetry jump model that applies 

to water in gypsum and other solid hydrates (Reeves, 1969; Weiss and Weiden, 1980). 
Both calculations show that the relaxation times are a function of the powder average 
angles α and β. For the purpose of comparison, the powder average relaxation times 
were calculated for both types of motion.

3As shown in torciaszabotetqcceta_book.nb, the sign of the eigenvalues in Mathematica are opposite those 
used in the paper by Torchia and Szabo.
4Torchia and Szabo have incorporated a factor of 2 in their definition of the spectral density (their Equation 
10). Compare their Equation 8 with our Equation 40.29a to see how the factor arises.
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The dependence of the powder average deuterium T
1
 and T

2
 values on the site-

to-site jump frequency ν
jump

 = k is shown in Figures  43.1 and 43.2 for tetrahedral 
jumps and C

2
 symmetry jumps with θ = magic angle5:

Despite the significant difference in the geometry of the jumps, there is not 
much difference in the relaxation times for any specific jump rate constant.

The dependence of the log
10

(T
1
) and log

10
(T

2
) values (again the powder average 

relaxation times were used) on the log
10

(jump rate constant) is shown in Figures 43.3 
and 43.4 for tetrahedral jumps, C

2
 symmetry jumps with θ = magic angle, and iso-

tropic rotational diffusion (see Chapter 44). In the case of isotropic rotational diffu-
sion, D

rot
 was used as the “jump” rate constant.

Figures 43.1 through 43.4 demonstrate that the nature of the reorientational 
motion has less effect on the relaxation rate (i.e., inverse of T

1
 or T

2
) than the rate of 

the reorientational motion. Less than an order of magnitude separates the T
1
 and T

2
 

values for tetrahedral jumps, C
2
 symmetry jumps, and isotropic rotational diffusion 

when the motions have the same jump rate constants or rotational diffusion 
coefficient.

One important difference in the relaxation behavior for the different types of 
motion is not apparent in Figures 43.3 and 43.4. While jump rate constants in solids 
are typically 101 to 106 s−1, rotational diffusion coefficients of small molecules in 

2 × 108 4 × 108 6 × 108 8×108 1 × 109

0.01

0.02

0.03

0.04

0.05

(s–1)

T1 (s)

Figure  43.1  The deuterium powder average T
1
 (s) vs. the jump rate constant k (s−1) for 

tetrahedral jumps (solid lines) and C
2
 symmetry jumps with θ = magic angle (dashed lines) 

near the minimum in T
1
 values. The upper curves for both types of jump were calculated for 

ν
Larmor

 = 76.78 MHz. The lower curves were calculated for ν
Larmor

 = 45.84 MHz. In all cases, 
qcc = 200 kHz, η = 0.

5The symmetry axis for C
2
 symmetry jumps is the bisector of the angle between the two allowed jump 

positions. The angle θ is the angle between the bisector and the allowed jump positions.
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Figure  43.2  The deuterium powder average T
2
 (s) vs. the jump rate constant k (s−1) for 

tetrahedral jumps (solid lines) and C
2
 symmetry jumps with θ = magic angle (dashed lines) in 

the same range of jump rates as Figure 43.1. The upper curves for both types of jump were 
calculated for ν

Larmor
 = 76.78 MHz. The lower curves were calculated for ν

Larmor
 = 45.84 MHz. In 

all cases, qcc = 200 kHz, η = 0.
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Figure 43.3  Log10T1 vs. log10(jump rate constant) for tetrahedral jumps (solid black lines), C2 
symmetry jumps with θ = magic angle (dashed black lines), and isotropic rotational diffusion (solid 
gray lines). See Chapter 44 for further information about NMR relaxation by isotropic rotational 
diffusion. For tetrahedral and C

2
 symmetry jumps, the jump rate constant k in s−1 was used. For 

isotropic rotational diffusion, the rotational diffusion coefficient D
rot

 in rad s−1 was used as the jump 
rate constant. The upper curves for each type of motion were calculated for ν

Larmor
 = 76.78 MHz. 

The lower curves were calculated for ν
Larmor

 = 45.84 MHz. In all cases, qcc = 200 kHz, η = 0. For 
tetrahedral and C

2
 symmetry jumps, the powder average T

1
 values were used.
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liquids at ambient temperatures are typically 1010 to 1012 rad s−1. This means that one 
is more likely to be in the “extreme narrowing” region of relaxation for liquid-state 
samples (i.e., the right-hand sides of Fig. 43.3 and 43.4) where there is no dependence 
of the relaxation times on the Larmor frequency, while one is much more likely to 
observe very short T

1
 (and T

2
) values in solids since typical solid-state jump rate 

constants are often near the T
1
 minimum.

Overall, it is clear that NMR relaxation times are useful for determining 
approximate jump rate constants for solids and rotational diffusion coefficients for 
liquids. For solids, rates of reorientational motions can also be elucidated by obtain-
ing variable-temperature powder spectra, as discussed in Chapter 38.

Explanation of torchiaszabotetqcceta_book.nb

This notebook calculates deuterium NMR relaxation times T
1
 and T

2
 for a static 

powder sample of a solid in which the deuterium PAS experiences tetrahedral jumps.
The user is told to evaluate wigrot.nb and then close it without saving.
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2
lo

g 1
0[

T
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,T
2 

(s
)

log10[ν], ν (s–1)
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–2

Figure 43.4  Log
10

T
2
 and log

10
(jump rate constant) for tetrahedral jumps (solid black lines), 

C
2
 symmetry jumps with θ = magic angle (dashed black lines), and isotropic rotational diffusion 

(solid gray lines). See Chapter 44 for further information about NMR relaxation by isotropic 
rotational diffusion. For tetrahedral and C

2
 symmetry jumps, the jump rate constant k in s−1 

was used. For isotropic rotational diffusion, the rotational diffusion coefficient D
rot

 in rad s−1 
was used. The upper curves for each type of motion were calculated for ν

Larmor
 = 76.78 MHz. 

The lower curves were calculated for ν
Larmor

 = 45.84 MHz. In all cases, qcc = 200 kHz, η = 0. For 
tetrahedral and C

2
 symmetry jumps, the powder average T

1
 values were used.
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The 4 × 4 symmetric jump matrix R is constructed according to Equation 43.4. 
Because each allowed PAS jump angle is assumed to be equivalent and able to jump 
to any of the other three jump angles, the jump matrix is inherently symmetric.

Next the eigenvalues and eigenvectors for R are calculated with the built-in 
Mathematica functions Eigenvalues and Eigenvectors. The eigenvectors, named X, 
are then orthogonalized and normalized using the built-in Mathematica function 
Orthogonalize. The resulting eigenvectors are renamed X.

The following cells verify the eigenvalues and eigenvectors using 
Equation 43.5.

The next cells define the complex conjugates D1conj and D2conj of the  
wigrot.nb D1 and D2 functions. These are necessary for the calculation. Note that 
it is necessary to tell the Mathematica program that the Euler angles are real.

Next, the tetrahedral angle is calculated and shown to be twice the magic angle.
The following cell defines the set of four allowed latitudinal spherical polar 

angles θ of the deuterium PAS in the crystal-fixed frame. The next cell defines the set 
of four allowed longitudinal angles ϕ in the crystal-fixed frame. It is shown how to 
select particular angles from the sets.

The exponential in Equations 43.7a and 43.7b is evaluated and has an argument 
of the opposite sign from that of Torchia and Szabo (1982, Eq. 23). Mathematica 
yields eigenvalues of the opposite sign than those calculated by these authors.

Using Equation 43.7b, the next cells calculate C ta aa, ( )1  for l = 1, called 
ce[1,a_,aa_]. Although thl = 1 autocorrelation function in the crystal-fixed frame is 
not used for deuterium relaxation, it would be for chemical shift relaxation. Note that 
it requires the antisymmetric PAS terms for the rank 1 real space spherical tensor and 
that we have assumed axial symmetry (η = 0) by using the spherical polar angles θ 
and ϕ.

Next, Equation 43.7b is used to calculate C ta aa, ( )2  for l = 2, called ce[2,a_,aa_] 
in the crystal-fixed frame. Despite the fact that we assume η = 0 in order to neglect 
jump angles κ

I
 in Equation 43.7a, η appears in the resulting expressions. We make the 

replacement η → 0 to create the function ceax[2,a_,aa_].
The laboratory frame autocorrelation functions Gax[2,m_] is created according 

to Equation 43.8. Again it is assumed that η = 0.
The laboratory frame autocorrelation functions G[2,m_] are then created. 

These leave η in as a variable since η is typically less than or equal to 0.1 for 
deuterium. The calculations of the G[2,m_] require long times, about 1540 s each on 
my 2012 vintage laptop PC.

The order parameter S2 for tetrahedral jumps is then calculated by letting t → ∞ 
and e−4k t → 0 (Lipari and Szabo, 1982, Appendix). The result, S2 = 19 η2/144, is essen-
tially zero for deuterium since η ≤ 0.1.

The only time-dependent components in the G[2,m] expressions are the eλjt 
terms. We recognize that we can replace each complex exponential with the 
corresponding spectral density according to Equations 43.9 and 43.10.

We abbreviate the spectral densities J m J mm m2, ( ) ( )  and calculate J
0
(0), 

J
1
(ω), and J

2
(2 ω) according to Equation 43.10. We name the corresponding spectral 

densities jd0, jd1, and jd2. Equation 43.10 is evaluated for each of the four 
eigenvalues.
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The next cells calculate the spectral densities in the crystal-fixed reference 
frame by replacing the exponential time-dependence with the corresponding fre-
quency-dependence contained in the jd0, jd1, and jd2 terms.

The l = 1 and l = 2 spectral densities are calculated in the crystal-fixed frame 
and are called the j[l,m,a,aa].

Then we return to the laboratory frame l = 2 spectral densities needed to calcu-
late deuterium relaxation times. The spectral densities J[2,0], J[2,1], J[2,2], J[1,0] 
and J[1,1] are calculated according to Equation 43.8 with the complex exponentials 
replaced with the j[l,m,a,aa] from the crystal-fixed frame. The much simpler axial 
versions Jax[2,0], Jax[2,1] and Jax[2,2] are then calculated by substituting η → 0.

The expressions obtained for the laboratory frame J[l,m]’s are then used to 
create the functions J20[ω_,k_,α_, β_,η_], J21[ω_,k_,α_, β_,η_], and J22[ω_,k_,α_, 
β_,η_]. A few numerical examples of spectral densities are calculated.

The approximate quadrupolar coupling constant (qcc) for deuterium in D
2
O ice 

is 216 kHz, with η = 0.1. The inverse T1inv and T2inv functions are then calculated 
according to Equations 41.28a and 41.28b. These have an angular dependence on the 
powder average α and β Euler angles required to bring the crystal-fixed axis system 
into coincidence with the lab (magnet) frame. The orientationally dependent T

1
 and 

T
2
 functions are given by the inverses of the T1inv and T2inv functions.

Several plots and contour plots of T
1
 values are made in the following cells. For 

the example calculation, the maximum and minimum T
1
 values as a function of the α 

and β Euler angles were 0.104 and 0.069 s, respectively. The ratio of maximum to 
minimum was 1.5.

The next cells attempt to calculate the powder average T1intinv by the direct 
integration, but this takes much too long. The built-in numerical integration function 
NIntegrate is much faster. The functions T1intinvN, T2intinvN, T1intN, and T2intN 
are then created.

In the next cells, plots are made of T1intN vs. tetrahedral jump rate ν = k. These 
plots show that the minimum powder average T

1
 values as a function of jump rate are 

obtained at lower Larmor frequencies. Note that the direct plots of T
1
 and T

2
 are only 

shown in the immediate vicinity of the T
1
 minimum so that both sides of the minimum 

show a dependence on the Larmor frequency.
Plots of T2intN vs. ν do not show a minimum but do show a change of slope 

near the same frequency as the minimum in T1intN.
Plots of log

10
T

1
 and log

10
T

2
 vs. log

10
ν show the relaxation time-dependence 

over a huge range of jump frequencies. The logarithmic plot clearly shows the onset 
of “extreme narrowing,” where the T

1
 and T

2
 values no longer depend on the Larmor 

frequency, and T
1
 = T

2
. This occurs when the jump rate k ≫ ν

Larmor
.

Explanation of c2jumpstorchiaszabo_book.nb

This notebook is very similar to torchiaszabotetqcceta_book.nb. It calculates the 
eigenvalues, eigenvectors, Caa’[t], Cm[t], Jm([ω], T

1,
 and T

2
 for a deuterium PAS 

experiencing C
2
 symmetry jumps about the bisector of the water H–O–H (D–O–D) 

bond angle. The user is told to evaluate wigrot.nb, then close it without saving changes.
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The 2 × 2 jump matrix R is defined. The eigenvalues λ and eigenvectors X of 
R are found. The complex conjugates D1conj and D2conj of the Wigner rotation 
elements D1 and D2 are defined.

For convenience, we define the z axis of the crystal-fixed frame to be aligned 
with the bisector of the D–O–D bond angle. The two allowed latitudinal jump angles 
are designated θ = {θ,θ}. The two allowed longitudinal jump angles are designated 
as ϕ = {0,π}.

We recognize that the time-dependent components in the autocorrelation 
function are monoexponentials and replace them with the “bare” spectral densities 
jd0, jd1, and jd2. These are used with Equation 43.9 to calculate the spectral densities 
in the crystal-fixed reference frame j[1,0,a_,aa_], j[1,1,a_,aa_], j[2,0,a_,aa_], 
j[2,1,a_,aa_], j[2,2,a_,aa_]. Again, the implicit assumption is made that the deuterium 
PAS has axial symmetry. This allows the Euler angles α, β, and γ to be replaced with 
the spherical polar angles θ and ϕ.

The j[l,m]’s are then used to calculate the laboratory frame spectral densities 
J[2,0], J[2,1], and J[2,2] necessary to calculate deuterium relaxation times. These 
expressions are then converted into function J20, J21, and J22.

The relaxation rates T1inv and T2inv are created using Equations 41.28a and 
41.28b, respectively. The T1 and T2 function are then created.

The powder average relaxation rate functions T1intinvN and T2intinvN are 
then defined. The inverses of these functions are used to create the T1intN and T2intn 
functions.

Plots of T1intN and T2intN are made, again showing that the minimum powder 
average T

1
 and point of inflection in powder average T

2
 are found at the same jump 

frequency and that the T
1
 and T

2
 increase with increasing jump frequency. Note that 

the direct plots of T
1
 and T

2
 are only shown in the immediate vicinity of the T

1
 

minimum so that both sides of the minimum show a dependence on the Larmor fre-
quency. The logarithmic plot clearly shows the onset of “extreme narrowing,” where 
the T

1
 and T

2
 values no longer depend on the Larmor frequency, and T

1
 = T

2
. This 

occurs when the jump rate k ≫ ν
Larmor

.

The angular dependence of the T
1
 and T

2
 values is more dramatic for C

2
 sym-

metry jumps than for tetrahedral jumps. The T
1
 values for qcc = 233.3 kHz and a 

Larmor frequency 45.65 MHz range from 0.00218 to 0.00871 depending on the α 
and β Euler angles relating the crystal-fixed frame to the lab frame. The T

1
 is shortest 

for the “horn” frequencies of the rigid powder pattern and longest for the “parallel 
edges” as shown in some of the ListPlot3D plots.

Homework

Homework 43.1: Calculate the powder average T
1
 and T

2
 for C

3
 symmetry jumps 

around a symmetry axis for a deuterated methyl group (–CD
3
) as a function of the 

jump rate constant k. Is there an angular dependence of the relaxation times?
Homework 43.2: When the jump rate is in the intermediate exchange regime 

and there is intensity loss in the powder spectrum, is the “true” relaxation time the 
same as the experimentally observed relaxation time?
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Calculation of 
Autocorrelation 
Functions and Spectral 
Densities for Isotropic 
Rotational Diffusion

Chapter  44

Although anisotropic rotational diffusion can occur in liquids (Tang and Benesi, 
1994; Woessner, 1996), in most cases at ambient temperatures deviations from 
isotropic rotational diffusion are very small. This is considerably different than the 
solid state where fixed angular jumps occur between allowed orientations on a rigid 
crystal fixed reference frame. Instead of a crystal fixed reference frame, the reference 
frame for angular autocorrelation functions in liquids is taken to be the initial orien-
tation of the principal axis system (PAS) at t = 0, which can be called the molecular 
reference frame. As shown here, it is convenient to use spherical harmonics to obtain 
the autocorrelation functions. The isotropic rotational diffusion equation is as follows 
(Abragam, 1983, p. 298, 299):

	
p

t
D p D

p p
rot rot

2
2

2

2

1 1

sin
sin

sin
	 (44.1)

where p(θ,ϕ,t) is the probability of finding the z axis of the PAS at θ, ϕ at time t. The 
ensemble average mean square angular displacement is 2 4 D trot .

The general solution to Equation 44.1 is:

	 p t C Y el m l
l

l m l m
l l D t( , , ) ,( ), ,
( )

0
1 rot 	 (44.2)

where the Y
l,m

(θ, ϕ) terms are the orthonormalized spherical harmonics, and the C
l,m

 
are constants obtained from the initial conditions. In this case, the initial condition is 
that the z axis of the Hamiltonian PAS is at 0 0 0,  at t = 0. From this assumption 
it follows that C Yl m l m, ,

* ( )0 0, , and the probability at time t of finding the z axis at 
,  given that it was at θ

0
, ϕ

0
 at t = 0 is given by136

	 p t Y Y el m l
l

l m l m
l l D( ) ( ) ( ),

*
,

( ), , , , , , ro

0 0 0 0 0
1 ttt 	 (44.3)
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In order to calculate quantitative spectral densities for nuclear magnetic resonance 
(NMR) relaxation, we need to know the numerical values of the NMR autocorrela-

tion functions G
A A

Al m

l m l m

,

, * ,

,
( )

( ) ( )

( )
lab lab

PAS

0
2 0 2

. However, it is more convenient to use 

the spherical harmonics Y
l,m

(θ, ϕ) than the Al m
mol
,  to describe the time-dependent posi-

tion of the PAS z axis. Using this approach, the spherical harmonic autocorrelation 
functions G tl m

Y
, ( )  are given by

G p t Y Ytl m
Y

l m l m, , ,
*( ) ( ) (( )

0

2

0 0

2

0

0 0 0 0, , , , , , ))sin sin 0 0 0d d d d

(44.4a)

Substituting from Equation 44.3 yields the following:

	

G Y Y etl m
Y

l m l
l

l m l m
l

, ,
*

,( ) ( ) ( ),
0

2

0 0

2

0

0 0 0, (( )
,

,
*

( )

( )

l D t
l m

l m

Y

Y d d d d

1
0 0

0 0 0

rot ,

, sin sin 	 (44.4b)

Autocorrelation functions calculated with Equation 44.4 are shown in isotropicrot-
diffy.nb. NMR relaxation depends only on the l = 1 or l = 2 terms of the Al m

mol
,  and 

corresponding Y
l,m

, so the summation in Equation 44.4 can be truncated to yield the 
l-dependent autocorrelation functions:

	

G Y Y e Ytl m
Y

l m l m
l l D t

, ,
*

,
( )( ) ( ) ( ),

0

2

0 0

2

0

0 0
1, rot

ll m

l mY sin sin d d d d

,

,
*

( )

( )

0 0

0 0 0

,

, 	 (44.5)

The isotropicrotdiffy.nb notebook shows that G tl m
Y
, ( )  depends only on l (i.e., they are 

independent of m), with G t em
Y D t
1

21

3, ( ) ,rot  and G etm
Y D t
2

61

5, ( ) .rot

At t = 0 G m
Y
1 0 1 3, ( ) /  and G m

Y
2 0 1 5, ( ) / ,  but because they were obtained 

with spherical harmonics they do not contain the real space NMR parameters  
δ  and η needed to calculate the spectral densities. These are incorporated here 
in  the  constant const

l
. If we let 

l l l D1 1/ ( ) ,rot
 the “NMR-normalized” 

G
A

G
A

el m
l

l m
l l

, , , ,
( ) ( ) .* *NMR

PAS

Y

PAS

const const
2 0 2 2 0 2

 Because the z axis of the PAS at τ = 0 

defines the reference frame, the constant const
l
 is given by

	 const PAS PAS PAS PAl m l
l l m l m

m l
l l m l mA A A A, * , ,1 SS

l m, 	 (44.6)

For l = 1, this yields (see isotropicrotdiffy.nb) const1
2 2 22 ( )xy xz yz . For l = 2, 

const2

2
23

2
1

3 zz .
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The corresponding unnormalized NMR spectral densities are as follows:

	 j m e m t dt const
ml l l
l

l

l( )
( )

cos( )
0

2 21
const 	 (44.7a)

where 1 1 2/ drot  and 2 1 6/ .drot

The normalized NMR spectral density1 is as follows:

	 J m
A ml

l

PAS

l

l

( )
( )( ),

const
2 0 2 2 21

	 (44.7b)

The normalized spectral densities calculated in Equation 44.6b can then be used in 
the appropriate expressions from the previous chapters to calculate explicit relaxa-
tion rates. For example, quadrupolar T

1
 and T

2
 relaxation of an I = 1 quadrupolar 

nucleus where only l = 2 contributes is given by Equations 41.28a and 41.28b. 
Inserting the spectral densities from Equation 44.6b yields the following:

1 1

2
8

1 2
2

1

2
2 0 2

2

2
2 2

2
2 0 2T

C
A AQ *

( )
* *

(( ), ,

const const

PAS PAS ))
* 2

2
2 21

	 (44.8a)

1 1

2
2

1 2
5

2

2
2 0 2

2

2
2 2

2
2 0 2T

C
A AQ *

( )
* *

(( ), ,

const const

PAS PAS ))
* * *

( ),
2

2
2 2

2
2 0 2 21

3
const

PASA

(44.8b)

where C A
e qQ

I I

e qQ
Q PAS

2 0 2
2

2
2 2

3

2 2 2 1

3

8
,

( ) 

. The relaxation times behave 

exactly like those calculated for tetrahedral and C
2
 symmetry jumps in the last 

chapter, except that for small molecules in liquids the rotational diffusion coefficients 
D

rot
 are on the order of 1011 to 1012 s−1 at ambient temperature. Because τ

2
 ω

Larmor
 ≪ 1, 

it follows that the corresponding relaxation times are independent of the Larmor 
frequency (e.g., magnetic field strength), and the so-called “extreme narrowing” 
condition is met.

Explanation of isotropicrotdiffy.nb

The user is told to evaluate wigrot.nb, then close it without saving changes.
The built-in Mathematica function SphericalHarmonicY differs from the 

desired form necessary for equivalence of the Legendre polynomials and the m = 0 
spherical harmonics Y

lm
. The necessary correction factor is 4 2 1/ .l  This 

equivalence is necessary because the solutions to the rotational diffusion equations 
are generally expressed in terms of Legendre polynomials.

1Remember that the normalized NMR spectral density is used in equations that multiply it by ( ) .,APAS
2 0 2
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The needed spherical harmonic functions Y[n_,m_,θ_,ϕ_] and Yconj[n_,m_,θ_,ϕ_] 
are defined in the next cells. A couple of examples are then given.

Then Equation 44.3 is introduced in a comment.
Equation 44.4b is evaluated, but the summation for Equation 44.3 is only car-

ried out from l = 0 to l = 6. G1[m] and G2[m] are calculated, and both are shown to be 
independent of m. When multiplied by the inverse of the square of the correction 
factor 2 1 4l / , the results match the well-known results G1[t] = 1/3 e−2Drot t and 
G2[t] = 1/5 e−2 Drot t.

To convert these spherical harmonic autocorrelation functions into NMR auto-
correlation functions, Equation 44.6 is evaluated for l = 1 and l = 2. The results can be 
used to calculate relaxation times with Equations 44.7 and 41.28a and 41.28b.

Homework

Homework 44.1: What are the autocorrelation functions if the Mathematica built-in 
function SphericalHarmonicY is used rather than the corrected form?

Homework 44.2: Calculate the isotropic rotational diffusion relaxation times T
1
 

and T
2
 for

1.  a deuterium nucleus with 
e qQ2

2 215


* kHz, assuming that τ
2
 = 1 × 10−10 s

2.  a 13C nucleus dipolar coupled to a covalently bonded 1H nucleus 1.09 
Angstroms away, again assuming τ

2
 = 1 × 10−10 s



225

A Primer of NMR Theory with Calculations in Mathematica®, First Edition. Alan J. Benesi. 
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

Conclusion

Chapter  45

Many important topics have not been covered in this primer, such as magnetic reso-
nance imaging, solid‐state cross‐polarization, unpaired electron spin–nuclear spin 
interactions, and zero field nuclear magnetic resonance (NMR). It is the author’s 
hope that with the theoretical tools that have been introduced, the NMR researcher 
and NMR student will be well equipped to handle such topics. For example, 
solid‐state cross‐polarization experiments are based on heteronuclear dipolar cross‐
relaxation in the presence of simultaneous radio frequency spin locks of the hetero-
nuclei. Unpaired electron spin–nuclear spin interactions are based on strong dipolar 
and J‐coupling between unpaired electrons and nuclear spins. Magnetic resonance 
imaging relies on the spatial encoding of NMR signals in the presence of magnetic 
field gradients. Zero field NMR takes advantage of slow T

1
 relaxation to shuttle 

the NMR sample away from a polarizing magnetic field to a detector at zero field. 
The possibilities for enlightening NMR experiments are endless. NMR provides a 
miraculous window into the atomic world.
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Addition theorem of angular momentum, 198
Angular reorientation

effects on NMR, 165
fast exchange in solid state NMR, 165
jump motions in solids, 165
in liquid state NMR, 165

Autocorrelation functions
isotropic rotational diffusion using 

spherical harmonics, 222
relation between spherical harmonics and 

NMR, 222
Average Hamiltonian theory, 157

Bloch equation
laboratory frame, 19
on and off resonance rf, 23
rotating frame, 23
vector model, 27

Calculation of NMR relaxation times
for jump motions in solids, 211

Classical model
energy of dipole in magnetic field, 14
motion of a magnetic dipole moment in a 

magnetic field, 13
nuclear magnetic moment, 13

Coherence
creation with rf pulses, 9

Coherence order pathway selection with 
pulsed magnetic field gradients, 115

Coherence order selection with phase 
cycling, 107

table of rules, 109

Commutation relations of spin angular 
momentum operators, 69

Comparison of 1D and 2D NMR, 95

Density matrix
evaluation of expectation values, 41

Density operator, 43
Boltzmann distribution, 47
definition, 43
effective density operator at thermal 

equilibrium, 48
for ensemble of spins, 43
expectation values for the NMR 

signal, 44
high temperature approximation, 47
propagation for commuting 

Hamiltonians, 71
propagation for non‐commuting 

Hamiltonians, 72
at thermal equilibrium, 47

for an I = 3/2 spin, 48
Direct product matrix representation of 

coupling Hamiltonians, 57
Doubly rotating frame

for coupled heteronuclei, 205

Euler rotations
mathematica notebook depiction, 134

Exchange in liquid state NMR
liquid state FID, 171
method of solution, effect on spectra, 170
modified Bloch equations, 169
spectra, 171
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Exchange in solid state NMR, 173
attenuation of solid state powder spectra, 

174
calculation of effects on solid state 

powder spectrum, 173
calculation of the fast average powder 

spectrum, 177
comparison of liquid state and solid state 

exchange, 174
effects of fast exchange on solid state 

NMR spectra, 174
simulations of powder spectra, 174

Fourier transform
FID to spectrum, 33
mathematical definition, 33

Hamiltonians
averaging in liquids, 53
chemical shift, 53
dipolar, 53
external and internal, 52
J coupling, 53
liquid state, 51
magnitude, 52
quadrupolar, 52
RF or rf, 52
spin rotation, 52
spin space and real space, 51
total possible for NMR, 52
typical magnitudes in solids, 53
Zeeman basis for NMR calculations, 53

Internal Hamiltonians
Cartesian tensor representation, 123
chemical shift of single crystals and 

powdered solids, 125
fundamental parameters for rank 0, 1, 

and 2, 125
multiple Hamiltonians, 125
principal axis system, 123
rank 0, 1, and 2 tensor representation, 124
secular terms, 140
using spherical tensors, 137

Isotropic rotational diffusion
theory, 221

Jump rates in solids compared to rotational 
diffusion rates in liquids at

ambient temperatures, 214

Liouville–von Neumann (LVN) equation, 45
calculation of propagators

using MatrixExp, 64
using similarity transform, 64

propagator sandwiches, 61
with relaxation, 45
solution

for diagonal Hamiltonians, 62
for non‐diagonal Hamiltonians, 63
using matrix representation, 61

Mathematica
version, 3

Mathematica notebooks
analysis of HMQC

with poma.nb, 104
with shortspin.nb, 104

analysis of HSQC
with poma, 103
with shortspin.nb, 102

analysis of INEPT
with poma.nb, 89
with shortspin.nb, 88

analysis with shortspin.nb, 84
average Hamiltonian first order 

perturbation using matrix 
representation, 158

average Hamiltonian theory
first order perturbation using 

commutators, 158
basis of coherence order selection by 

phase cycling, 112
calculation of Alab24

for arbitrary jump angles, 178
for fast tetrahedral jumps of OD 

bonds, 180
calculation of chemical shift single 

crystal and powder spectra, 130
calculation of deuterium NMR relaxation 

times for
C2 symmetry jumps as observed in 

gypsum, 218
calculation of deuterium quadrupole echo 

spectra for fast C2 symmetry jumps, 
180

calculation of deuterium T
1
 and T

2
 for 

tetrahedral jumps of the quadrupolar 
PAS, 216

calculation of equilibrium density 
operator, 49
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calculation of intermediate exchange 
deuterium NMR signal (FID), 179

calculation of intermediate exchange 
deuterium powder spectra, 178

calculation of phase cycles, 113
calculation of repulsion angles for 

powder average, 162
calculation of spectra for two site 

exchange in liquid state  
NMR, 172

calculation of the chemical shift 
Hamiltonian

Cartesian method, 129
comparison of Cartesian and spherical 

tensor methods, 130
demonstration of Wigner rotations used 

for several commonly encountered 
solid state NMR experiments, 146

direct product matrix representation, 59
equivalence of Cartesian and spherical 

tensors, 141
explanations in text, 3
explicit calculation of spectral densities 

for monoexponential autocorrelation 
functions, 186

Fourier transform, 33
ladder operators and coherence  

order, 68
matrix representation of angular spin 

momentum operators, 42
NMR relaxation rate expressions derived 

with
Clebsch–Gordan coefficients, 201

powder spectra
calculated using first order time 

independent perturbation theory for 
I = 1 quadrupolar nucleus, 154

calculated using second order time 
independent perturbation theory for 
I = 3/2 quadrupolar nucleus, 155

rf excitation bandwidth, 93
second order time independent 

perturbation theory for an I = 3/2 
quadrupolar nucleus, 154

solution of the Bloch equation
hard rf pulses, 25
for off‐resonance, 25

vector and matrix representation of 
superposition states, 41

verification of commutation relations

using direct product matrix 
representation of homonuclear 
coupling, 202

verification of commutation rules
using matrix notation, 201

verification of equivalence of real 
space Cartesian and spherical 
tensors, 128

Wigner and Cartesian rotation elements, 
130

Wigner rotation orthogonality, 141
Mathematica programming

comments, input lines, output lines, 
symbols, vectors, cells, 14

creating a function, 16
creation of functions ft1, ftcorr, ftcorr2, 

fttot, gaussap, bc, and ftotbe, 180
DSolve, 16
ExpToTrig and FullSimplify, 21
FindRoot, 34
help with functions, 15
matrix representation of spin angular 

momentum operators, 42
MatrixExp, 64
MatrixForm, 15
MemberQ and /; 72
numerical value N, 17
Outer, 41
part extraction, 15
PolyhedronOperations and 

VectorAnalysis, 178
scalar, vector, and matrix products, 20
SphericalHarmonicY, 223
substitution (/.), 16
TrigToExp, 112

Methods to obtain absorption mode 2D 
NMR peaks, 95

NMR Pulse Sequences
analysis of antiphase evolution, 83
analysis of single pulse experiment

no J coupling, 82
with J‐coupling, 82

analysis of spin echo experiment with 
heteronuclear J‐coupling, 83

analysis of spin echoes for homonuclear 
spins with J‐coupling, 83

analysis of the INEPT pulse sequence, 87
conversion to constant receiver phase, 81
DQF‐COSY, 101
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HMQC, 99
HSQC, 99
single pulse experiment, 77

NMR relaxation
autocorrelation functions, 184
chemical shift relaxation, 200
choice of observed nuclei, 189
Clebsch–Gordan coefficients for 

commutators, 195
commutators of spin space tensors, 196

homonuclear dipolar and J‐coupling, 
198

decomposition of T(L,M) into single 
nuclear spin spherical tensors, 205

derivation of rates for single spin species, 
191

deuterium is optimal nucleus, 190
different types of coherence, 183
dipolar relaxation is often complicated, 

189
explicit expressions based on single spin 

space commutators, 195
heteronuclear dipolar and J, 205
homonuclear dipolar and J‐coupled spins, 

one species of spin, 198
master equation for single spin species

in terms of spectral densities, 194
using autocorrelation functions, 194

monoexponential, 184
quantum electrodynamic view, 185
rates directly from density operator, 194
rates for quadrupolar I = 1 nuclei, 196
spectral density, 185
spontaneous transitions, 183
stimulated by fluctuations of internal 

Hamiltonians, 184
sum of contributions from each active 

internal, 189
T

1
 and T

2
 relaxation for homonuclear 

coupled I = 1/2 spins, 199
T

1
 and T

2
 relaxation

with decoupling of one of the coupled 
spins, 209

for heteronuclear dipolar or J‐coupled 
nuclear spins, 208

T
1
 and T

2
 relaxation for I = 1 

quadrupoles, 197
variation in relaxation rate with Euler 

angles, 218, 219

NMR signal
acquisition time, 11
amplification, 11
calculation from density operator, 67
dwell time, 11
emission, 9
Fourier transform, 12
integrated intensity, 33
natural abundance, 11
and number of nuclei, 11
real and imaginary components, 11
selection by phase cycling, 77
signal strength, 11

NMR spectrometer
hardware, 5

NMR spectroscopy
overview, 1

NMR spectrum
effects of internal Hamiltonians, 52
effect of molecular reorientation, 12
phase correction, 12
phasing, 33

Polarization transfer, 87
The powder average, 161
Powder spectrum

calculated from time dependence of 
the powder average densiy 
operator, 162

calculated with time independent 
perturbation theory, 161

Principal axis system
determination of, 124

Product operator formalism, 73
analysis of pulse sequences, 81
Mathematica notebook  

poma.nb, 75
Mathematica notebook shortspin.nb, 74

Pulse sequence analysis
analysis of echo properties when one or 

both spins receives a π pulse, 85
Pulse sequence design

advantages of gradient selection, 117
analysis of calculated double quantum 

experiment, 113
coherence order selection for the 

homonuclear double quantum 
experiment, 107

desired coherence levels for the  
BPP‐LED, 120

NMR Pulse Sequences (cont’d )
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desired coherence pathways for  
DQF‐COSY, 108

disadvantages of gradient  
selection, 117

gradient selected COSY, 117
gradient selected DQF‐COSY, 118
gradient selected HMQC experiment, 

118
gradient selection combined with phase 

cycling, 118
HMQC, 111
NOESY, 110

Pulse sequences
quadrupole echo, 173

Pulsed magnetic field gradients, 115
dephasing, 115
effective gradient strength, 116
gradient echo formation, 116
measurement of translational 

diffusion, 120

Quantum electrodynamics
and NMR excitation by rf, 11
and NMR relaxation, 11

Quantum mechanics
expectation values, 36
vector and matrix representation of the 

superposition of states, 39
superposition of states, 36

The radio frequency Hamiltonian, 91
excitation bandwidth, 91
shaped, selective, and adiabatic 

pulses, 93
Radio frequency pulses

gating, 9
rf coil, 9

Rate of reorientation
liquids vs. solids, 12

Real space spherical tensors
Cartesian representation, 137
commonly encountered internal 

Hamiltonians, 143
multiple Hamiltonians, 144
orthogonality, 140
for powdered solids, 143

spinning at the magic angle, 145
single crystal in a goniometer, 144

Rotations in real space
Cartesian method, 133

convention 1, 133
convention 2, 133

Cartesian rotation matrices, 134
Rotations of vectors and matrices

Cartesian method, 135

Schrödinger equation
time dependent, 39
time independent, 35

Slow, intermediate, and fast exchange
in liquid state NMR, 169

Spatial encoding of frequency
magnetic field gradients, 115

Spectral density
for isotropic rotational diffusion, 223

Spherical real space tensors
comparison to Cartesian tensors, 129

Spin angular momentum
eigenoperators, 36
matrix representation of operators, 40

Spin space spherical tensors
commutators

for I = 1 quadrupolar relaxation, 196
for Hamiltonians using Cartesian 

operators, 137
for Hamiltonians using ladder operators, 

139
high temperature result, 207
representations for single nuclear spins, 

137
Superconducting magnet

activation, 5
hardware, 5
sample position, 5

T
1
 and T

2
 relaxation times for isotropic 

rotational diffusion
I = 1 quadrupolar relaxation, 223

Tetrahedral Jumps of deuterium PAS in ice
Bjerrum defects, 174

Time‐independent perturbation theory, 149
first order chemical shift, 149
first order perturbations, 149
first order quadrupolar

I = 1, 150
I = 3/2, 151

second order perturbations, 149
second order quadrupolar, I = 3/2, 152

Two site exchange
in liquids, 166
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Vector model
failure for coupled spins, 28
inversion recovery experiment, 27
single pulse off resonance, x axis, 27
single pulse on resonance,  

phase φ, 27
single pulse on resonance, y axis, 27
single rf pulse on resonance, x axis, 27
spin echo experiment, 28

Wigner rotations
orthogonality, 138
spherical tensors, 137

Wigner rotations of spherical tensors, 137

Zeeman effect
as a function of I, 9

Zeeman Hamiltonian
eigenvalues, 35
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