

Stephan Kaufmann

Crash Cou rse

in Mathematica

Birkhauser Verlag
Basel· Boston · Berlin

Author:

Stephan Kaufmann
Mechanik
ETH Zentrum
CH-8092 Zurich

E-mail: kaufmann@ifm.mavt.ethz.ch
Homepage: http://www.ifm.ethz.ch/- kaufmann

1991 Mathematics Subject Classification 00-01

A CIP catalogue record for this book is available from the Library of Congress, Washington D.C., USA

Deutsche Bibliothek Cataloging-in-Publication Data

A Crash Course in Mathematica [Medienkombinationl I Stephan
Kaufmann. - Basel; Boston; Berlin: Birkhauser

ISBN 978-3-7643-6127-3 ISBN 978-3-0348-7589-9 (eBook)
DOI 10.1007/978-3-0348-7589-9

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is con
cerned, specifically the rights of translation, reprinting, re-use of illustrations, broadcasting, reproduction
on microfilms or in other ways, and storage in data banks. For any kind of use whatsoever, permission
from the copyright owner must be obtained.

The software and hardware terms referred to in this book are in most cases also registered trademarks
and as such come under the same legal restrictions. The text, illustrations and programs have been
carefully prepared. However, the publisher and the author accept no responsibility for errors or their
consequences.
Mathematica® is a registered trademark of Wolfram Research, Inc.
MathReader® ist a registered trademark of Wolfram Research, Inc.

©1999 Birkhauser Verlag, Postfach 133, CH-4010 Basel, Schweiz
Cover design: Markus Etterich, Basel
Printed on acid-free paper produced of chlorine-free pulp. TCF oc

987654321

• Contents

Preface .. 9

A Short Tour ... 16

Formula Entry ... 16

Numerical Calculations .. 17

Symbolic Mathematics 17

Graphics .. 19

Programming 22

Some of the Most Important Functions 23

Part 1: The Basics ... 27

1.1 The Structure of the Program. 28

1.1.1 The Front End .. 28

1.1.2 The Kernel ... 29

1.2 Online Documentation 31

1.3 Formulas ... 32

1.3.1 Formats .. 32

1.3.2 Entering Formulas and Special Characters ... 34

1.4 Simple Calculations .. 37

1.4.1 Conventions ... 37

1.4.2 Numerical Calculations ... 41

1.4.3 Algebraic Manipulation 44

1.4.4 Transformation Rules and Definitions .. 46

1.4.5 Equations 51

1.4.6 Calculus 59

Part 2: Graphics 67

2.1 Graphs of Functions of One Variable............ 68

2.2 Graphs of Functions of Two Variables 80

2.2.1 Surfaces 81

2.2.2 Contours .. 86

2.2.3 Density Plots.... 89

2.3 Parametric Plots .. 92

2.3.1 Two-Dimensional Parametric Plots ... 92

2.3.2 Three-Dimensional Parametric Plots ... 93

2.4 Tools from Standard Packages ... 100

2.4.1 Three-Dimensional Contour Plots ... 100

2.4.2 Tools for Two-Dimensional Graphics ... 101

6

2.4.3 Tools for Three-Dimensional Graphics ... 1 02

2.4.4 Legends ... 103

2.4.5 Vector Fields ... 105

2.5 Animations ... 110

2.6 Exporting to Other Programs ... 113

Part 3: Lists and Graphics Programming .. 115

3.1Lists .. 116

3.1.1 Creating One-Dimensional Lists ... 116

3.1.2 Manipulating Lists ... 117

3.1.3 Multidimensional Lists .. 120

3.2 Calculating with Lists ... 120

3.2.1 Automatic Operations .. 120

3.2.2 Mapping Functions on Lists121

3.2.3 Pure Functions ... 122

3.2.4 Using List Elements as Arguments ... 124

3.2.5 Plotting Lists .. 126

3.3 Linear Algebra .. 131

3.4 Graphics Programming ... 136

3.4.1 Graphics Objects ... 136

3.4.2 Graphics3D Objects ... 139

3.4.3 Objects from Standard Packages .. .140
3.5 Application: Animating a Mechanism ... 146

Part 4: Introduction to Programming .. 151

4.1 Expressions ... 152

4.2 Patterns ... 155

4.2.1 Simple Patterns .. 155

4.2.2 Constraints ... 157

4.2.3 More Complicated Patterns ... 162

4.2.4 A Simple Integrator ... 163

4.3 Evaluation ... 167

4.3.1 Associated Definitions .. 167

4.3.2 Attributes ... 168

4.3.3 The Evaluation Process ... 169

4.4 Programming Tools .. 172

4.4.1 Local Variables .. 172

4.4.2 Functional Programming ... 173

4.4.3 Rule-Based and Recursive Programming .. 176

4.4.4 Procedural Programming ... 179

Contents 7

4.4.5 Modularity ... 181

4.4.6 Compiling Numerical Calculations ... 183

4.5 Further Information .. 185

4.5.1 Internet ... 185

4.5.2 MathSource ... 185

4.5.3 Literature ... 185

Index ... 187

• Preface
• About Mathematica

Mathematica unites the following tasks, among others, in one uniform interactive environ

ment:

• the entry and display of mathematical formulas,

• numerical calculation,

• symbolic mathematics,

• plotting functions,

• contours and density plots

• parametric plots of curves and surfaces,

• creating graphics from elementary objects,

• animating graphics,

• list processing,

• pattern matching,
• functional, procedural and rule-based programming,

• structuring documents hierarchically,

• programming interactive documents.

This is the ideal tool for those who use pure or applied mathematics, graphics, or program

ming in their work.

Mathematica is available for all the usual computer operating systems. Thanks to the

uniformity of its file format, it is also a practical medium for the electronic exchange of

reports or publications which contain formulas and graphics. Mathematica files, called

notebooks, can also be saved directly into HTML format for easy publication on the World

Wide Web.

Mathematica allows you to solve many problems quickly, like calculating integrals,

solving differential equations, or plotting functions. In order to use this powerful tool
efficiently, however, you need to know the basics of the user interface and of the syntax of

Mathematica expressions. Otherwise you would be like a driver who has not noticed that

there are more gears than just first and that it makes sense to obey the rules of the road. In

both cases its better not to attempt to learn by just trying things out.

10

• The Goals of this Course

This book and the accompanying Mathematica notebooks on CD-ROM give you the
basics of Mathematica in short form. We will discuss the user interface (front end), the

most important functions built into the actual calculator (kernel), and some additional

programs (packages) which come with Mathematica. The examples are kept at a simple

mathematical level and to a great extent independent of special technical or scientific

applications. Emphasis is put on solving standard problems (equations, integrals, etc.) and

on graphics.

After working through this course you will be able to solve your own problems indepen

dently and to find additional help in the online documentation. Depending on your inter

ests and needs, completing the first two parts of this course may be sufficient, as they

include the most important calculations and graphics functions. The third part is more

technical and the fourth introduces programming with Mathematica.

• The Book and the CD-ROM

The book is basically a direct printout of the corresponding Mathematica notebooks on the

CD-ROM. Some things had to be left out like the colors, the animation of graphics, and

also the hyperlinks within the notebooks to the online documentation of Mathematica and

to Web sites.

Why a book? Books are still the most ergonomic medium for the sequential study of
texts-and today most of them are still lighter than a laptop computer.

• What this Course Is Not

This course is neither complete nor meant to be a reference tool. The four parts of the book
therefore do not include summaries of the Mathematica commands discussed. However,

the notebooks on the CD-ROM contain hyperlinks to online documentation of the com

mands. The advantage being that you always see the documentation corresponding to your

version of the program.

A complete installation of the program includes the 1403 page "Mathematica Book" by

Stephen Wolfram. This book is perhaps the first exception to the rule above: because of its

size and format, comparable to a laptop, the electronic version, with its many useful

hyperlinks, is usually more practical than the printed version.

Introduction 11

• Organization

The introduction contains a short overview of Mathematica's capabilities and-for
minimalists-a summary of the most important commands. The following four parts form a

progression and should therefore be done in sequence. It is not necessary, however, to

complete all the parts in one go. The methods in the first two parts will already allow you

to solve many problems. The motivation for studying the last two parts will probably arise
after you have worked with the program for a while.

The first part leads to the most important capabilities of the user interface (front end) and

explains the different possibilities for creating Mathematica entries and formulas. Next,

how to tackle the most common problems is shown using examples: numerical calculation,
manipulation of formulas, solving equations and differential equations, calculating limits,

derivatives and integrals.

The second part deals with an especially compelling aspect of the program: plots of graphs

of functions and parametric plots of curves and surfaces. Many of these features are built

into the Mathematica kernel; additional useful tools are available from standard packages.

The third part starts with a discussion of lists. They are used to manipulate vectors and

matrices; they also appear in many Mathematica functions as arguments or results, and can

be used to structure data. In connection with this, this part also deals with mapping
functions on lists and simple calculations of linear algebra. Lists allow you to assemble

graphics from graphics elements (lines, circles, etc.). Sequences of graphics can be

animated.

The fourth part is aimed at users who want a more in-depth study of Mathematica. It is the
starting point for the independent development of complicated programs. The first three
chapters are dedicated to the structure and evaluation of Mathematica expressions. Based

on this, we discuss different possible programming methodologies and the tools for their

application. At the end you will find leads to further information such as relevant Web
sites and a link to Mathematica literature.

Several chapters include in-depth paragraphs covering special features and technical

details, which can be left out at first.

The exercise problems have been kept simple on purpose. They should allow you to

master the program without getting bogged down in complicated mathematics. The ideal

exercise examples are not found in the book-they develop from your work. There are

many problems which you can solve with Mathematica. Try it!

12

• Tips

For best results, the notebooks should be worked on directly in Mathematica on the

computer. If you do not own the complete program, you can use the program MathReader,

which is included on the CD-ROM, to access the notebooks (and the animations). Math

Reader is a reduced version of Mathematica which cannot be used to make calculations

but which does give you a first impression of how the program works.

When using the full version, it is best to use the files in the In-only directory; for

MathReaderuse the files in In-out (see the paragraph "The Files on the CD-ROM").

It is important to know that the cell groups (shown as square brackets on the right-hand

side of the notebook window) can be opened or closed by double-clicking on the bracket

itself, or by using the command Cell> Cell Grouping on the menu bar.

With the menu Format> Magnification you can adjust the magnification of the window

for maximum overview and readability. Graphics might then appear jaggy. Use the

command Cell> Rerender Graphics to smooth them out again.

With the computer you can use the hyperlinks to access the documentation of built-in

functions, or to jump from one section of the book to another. The menu Find> Go Back
is useful here: it takes you back to the original hyperlink. Depending on the version and

the installation options of Mathematica, certain links are inactive. The links in the table of

contents and the subject index are useful to navigate between the notebooks.

It is best to start with the examples in the chapter "A Short Tour" (in the
Introduction. nb file). With the full version of Mathematica the input cells can be

evaluated using the <Enter> key (or <Shift> and <Return». In the "Short Tour", and
during the whole course, you are invited to change the examples in order to test the

possibilities and limits of the program and to get used to the syntax.

It will quickly become obvious that a lot can be done with the commands in the "Short

Tour", but that much remains unclear. This will motivate you towards a systematic and in

depth study of the program using the rest of the course sections.

• The Files on the CD-ROM

The CD-ROM can be used with MacOS, Windows 95/98/NT, or UNIX. It contains the

Mathematica notebooks from the book in different versions, as well as (for MacOS and

Windows) the program MathReader, with which the notebooks and the animations can be

viewed but not changed.

The file Info. txt contains up-to-date information.

Introduction

The actual notebooks are named according to their contents:

• Contents. nb,

·Introduction.nb,

• Part-l. nb to Part-4. nb,

• Index.nb.

13

They are filed in two versions: with and without the Mathematica output cells. The files

with the output cells (In-out folder) are much larger than those without (In-only

folder), mainly because of the graphics.

If you work with the complete version of Mathematica, it is best to use the notebooks that

contain only the input cells (In-only folder). You can evaluate them using the <Enter>

key (or <Shift> and <Return» and thus reproduce the full notebook.

The files in the In - ou t folder contain all the input and output cells. They are meant to be

viewed with MathReader.

The second and third sections contain the most graphics. Depending on the magnification

and the number of graphics and animations already viewed, Mathematica or MathReader

will need a large amount of memory. It is therefore recommended to only have one

notebook open at a time. If you are using a computer with static memory assignment

(Macintosh) you should assign Mathematica or MathReader as much memory as possible.

In doing so a compromise between the front end (Mathematica) and the kernel (MathKer

nel) must be found.

• Information About this Book on the World Wide Web

Up-to-date information and any corrections to the book and the files on the CD-ROM can
be accessed on the Web at http://www.ifm.ethz.ch/-kaufmannl .

• Technical Information

The notebooks were created and evaluated with Mathematica 3.0.1 on a PowerMacintosh
86001200. The beginning of each new kernel session can be identified by the numbers of

the input cells (In[... D.

The Postscript files used to print the book were created directly from the notebooks using

a test version of Mathematica 4.0 (which allows automatic hyphenation).

The format is based on the default Style Sheet (Format> Style Sheet> Default), with

some additional header and body text styles.

14

The only difference to the default settings of the kernel is a new definition of $Defaul t

Font, created to use a smaller font size in the graphics. The definition reads:

$DefaultFont = {"Courier" I 9}

It was added to the ini t . m file in the Conf igura tion/Kernel subdirectory of the

Mathematica installation folder.

Using the Option Inspector (Format menu), the ImageSize for normal graphics was

set at 250x250 points, and at 220x220 points for the smaller graphics in the exercise and

in-depth sections. Further changes in ImageSize were added directly in each graphic

command and can be deleted during your work with the notebooks.

In the notebooks in the In-out folder (see "The Files on the CD-ROM") the option

CellLabelAutoDelete was set to False with the Option Inspector, so that the

numbers of the input and output cells would remain after closing the notebooks.

The subject index was created with a test version of the AuthorTools package from

Wolfram Research.

Introduction 15

• Acknowledgements

Many people contributed to the success of this project and deserve my heartfelt thanks:
o Dr. Thomas Hintermann and the Birkhauser Verlag for their spontaneous interest and

efficient realization,

o my wife Brigitta for her love and strength in during the "blessed" year of 1998 and her

proofreading of the German manuscript,

o Tobias Leutenegger and Frank May for their correction of many mistakes in the German

manuscript,

o Mathias Gotsch for his help in preparing the CD-ROM,

o Dianne Littwin, Jamie Peterson, and Andre Kuzniarek of Wolfram Research for their

help with MathReader, AuthorTools and test versions of Mathematica,

o Prof. Mahir Sayir for his farsighted and liberal management of the Institute for Mechan

ics, which allows the motivation and the freedom for projects like this,

o Prof. Jtirg Dual and the other "young professors" of the Department of Mechanical and

Process Engineering at ETH through the launching of "Engineering Tools" courses, one of

which, the "Software for Symbolic Mathematics", I gave, which in tum spawned these

notebooks,

o Prof. Urs Stammbach for his valuable suggestions and his in-depth group, from which I

was able to recruit students to look after the course,

o the second-semester students of mechanical and process engineering at ETH, who took

an active part in the course in spring 1998 .

• About this English Translation

This is basically a direct translation of the German original "Mathematica - kurz und
biindig" (Birkhauser, 1998). Only a couple of details have been changed or added to

clarify certain points. The author is very grateful to Katrin Gygax for her excellent transla
tion.

16

• A Short Tour

This section introduces the most important features of Mathematica, using simple exam

ples.

• Formula Entry

Formulas can be entered using various techniques with palettes or using only the keyboard.

• Entries Using Palettes

The menu File > Palettes > BasicInpnt displays a palette with the simplest formulas on

screen. You can use this to create an exponent, for example.

Now enter 2.

Use the tab key to jump to the next placeholder and enter 3.

Pressing the <Enter> key (or <Shift> and <Return>: ~~) evaluates the cell.

Out[1]= 8

• Entries Using the Keyboard

The exponent can also be written using A. This gives us the equivalent keyboard entry.

In[2]:= 2 A 3

Out[2]= 8

Even the "two-dimensional" 2 3 can be done on the keyboard: enter 2 ~A 3.

In[3]:= 2 3

Out[3]= 8

S. Kaufmann, A Crash Course in Mathematica
© Birkhäuser Verlag 1999

Introduction 17

• Numerical Calculations

Mathematica is not only a formula editor but also an expensive pocket calculator that can

still do a thing or two.

• Exact Arithmetic

We can calculate with exact integers and rational numbers of any size.

In[4]:= 2 512

Out[4]= 13407807929942597099574024998205846127479365820592 3 933 77723 5 ...
61443721764030073546976801874298166903427690031858186486050\
853753882811946569946433649006084096

In[5]:= 2 A 10 / 10 A 3

Out[5]=
128
125

• Arithmetic with Approximate Numbers

Numerical approximations of varying precision are possible.

In[6]:= N [71", 200 1

Out[6]= 3.14159265358979323846264338327950288419716939937 5105 82 097 49··.
44592307816406286208998628034825342117067982148086513282306\
64709384460955058223172535940812848111745028410270193852110\
55596446229489549303820

• Arithmetic with Complex Numbers

Complex numbers are entered using the imaginary unit I (or i).

In[7]:= (1 + 3 I) A 2

Out[7]= - 8 + 6 I

• Symbolic Mathematics

By using symbol names instead of numbers we get mathematical expressions. These can

be manipulated, just like calculations "by hand".

18

• Polynomials

This is a polynomial in three variables:

In[8]:= (a + b + c) "5

Out[8]= (a + b + c) 5

The Expand function expands it out.

In[9]:= Expand [(a + b + c) "5]

Out[9]= a 5 + 5 a 4 b + 10 a 3 b 2 + 10 a 2 b 3 + 5 a b 4 + b 5 + 5 a 4 c + 20 a 3 b c +

30a2 b 2 c+20ab3 c+5b4 c+10a3 c 2 +30a2 bc2 +30ab2 c 2 +

10 b 3 c 2 + 10 a 2 c 3 + 20 a b c 3 + 10 b 2 c 3 + 5 a c 4 + 5 b c 4 + c 5

• Equations

We solve the equation x 3 + r - x + 1 = 0 for x like this:

In[10]:= Solve[x3 +X2 -x+l == 0, x]

{{x~-~- 4 1 -f33 1/3 Out[10]= -f33 1/3
-3(19-333) },

3(19-333)

{x~-~+ 2 (l+IY3) 1
(l-IY3) -f33 1/3

(19 - 3 -/33) 1/3
+ - (19-333) },

3 6

{x~-~+ 2 (l-IY3) 1
(l+IY3) -/33 1/3

-/33 1/3
+ - (19-3 33) }}

3(19-333) 6

The function FindRoot returns an approximate solution of a transcendental equation.

In[11]:= FindRoot [Sin[x] + 1 == x, {x, 2}]

Out[11]= {x ~ 1. 93456}

• Derivatives

The following expression calculates the derivative of xSin(x«>S(x») for x.

In[12]:= D [x"Sin [x"Cos [xl l, xl

Out[12]= xSin[xCOS[xi] Cos [xcos[x] 1 Log [xl

(x-1+COS [x] Cos [xl - XCos[x] Log [xl Sin [xl) + x_1+sin[xCos[xi] Sin [XCOS[x] 1

Introduction

• Integrals

Using the template from the palette BasicInput, we create an integral and calculate it.

In[13]:=

Out[13]=
3 x 2 6 (3 + 4 x)

-6x--2-+ 5(-1-x+x2) +

152 ArcTanh [-l?sX_]
----~=-'-~-=-- - 7 Log [-1 - x + x 2] 5rs

This is another way of writing integrals:

In[14]:= Integrate [Sin [xl A3 COS [xl A2 Exp [xl, xl

1
Out[14]= 2080 (EX (-130Cos[x]-39Cos[3x] +

25Cos[5x] +130Sin[x] +13Sin[3x]-5Sin[5x]))

• Graphics

19

Various graphics functions can be used to visualize mathematical functions and mappings

(or data) in all ways imaginable.

• Two-Dimensional Graphics
2

First we plot the graph of the function x ~ x: _;:;~ 1 in the interval [-10, 10].

x 2 - X + 3
In[15]:= Plot [-, {x, -10, 10}]

x 3 _ 2 x 2 - 1

-5 .5 5 7.5 10

-4 l -6

-8

Out[15]= - Graphics -

20

This parametric plot creates a spiral:

In[16]:= ParametricPlot [{III Cos [III], III Sin [III] }, {III, 0, 2 7r}]

-2 2 4 6

-1

-2

-3

-4

Out[16]= - Graphics -

• Three-Dimensional Graphics

The following command plots the graph of the function (x, y) ~ sin(x y).

In[17]:= Plot3D[Sin[x*y], {x, 0, 2*Pi}, {y, 0, 2*Pi}]

Out[17]= - SurfaceGraphics -

The peaks can be smoothed out by increasing the number of function values calculated

initially. We also use a more elegant way of writing the input:

Introduction 21

In[IB]:= Plot3D[Sin[xy], {x, 0, 27T}, {y, 0, 2 7T}, PlotPoints -+ 40]

Oul[IB]= - SurfaceGraphics -

Functions of two variables can also be visualized using contours.

In[19]:= ContourPlot [x2 - y2, {x, -2, 2}, {y, - 2, 2}, PlotPoints -+ 30]

Oul[19]= - ContourGraphics -

• Animated Graphics

Sequences of graphics can be animated on-screen. This expression creates a graphic

sequence of two colored lines:

22

t
In[20):= Table [Show [Graphics [{Thickness [0.05], {Hue [--], Line [

7r

t 1
{-{Cos[t], Sin[t]}, {Cos[t], Sin[t]}}J}, {Hue[--+-],

7r 2
Line[{{-Sin[t], Cos[t]}, {Sin[t], -cos[t]}}J}}],

PlotRange -+ {{ -1, I}, {-I, I}}, AspectRatio -+ Automatic,
7r 7r 7r

ImageSize -+ 150], {t, 0, - - -, -}];
2 30 30

Double-clicking the graphic rotates the cross. The book shows only the first position.

Therefore another representation of all 15 positions is given below:

In[21):= Show[GraphicsArray[Partition[%, 5]]]

-++-\- \
\\
'A -L--

Out[21)= - GraphicsArray -

• Programming

Mathematica is a powerful high-level programming language that supports functional and

rule-based programming as well as the usual procedural programming styles.

Introduction 23

As an example let us look at a program for the recursive calculation of factorials. All we

need are the following two definitions:

In[22]:= fac [0] = 1;
fac [n_] : = n fac [n - 1]

The result for 100! yields

In[24]:= fac [100]

Out[24]= 933262154439441526816992388562667004907159682 643 816214 6 8592 9 ".

63895217599993229915608941463976156518286253697920827223758\
251185210916864000000000000000000000000

and matches the one produced by the built-in factorial function:

In[25]:= lOa!

Out[25]= 933262154439441526816992388562667004907159682 643 816214 68592 9·

63895217599993229915608941463976156518286253697920827223758\

251185210916864000000000000000000000000

• Some of the Most Important Functions

This short overview only gives a quick description of 33 important Mathematica func

tions. The selection must be arbitrary because there are more than 1600 objects built into

the kernel of Version 3.0. The online documentation in Mathematica (see Section 1.2)

contains more precise and up-to-date information on all built-in functions. In the notebook

you can just click on the hyperlinks to get there.

• Numerical Approximations

N[X] numerical approximation of an expre

N[x, n] numerical approximation with n digits

• Constants

Pi 71' ~ 3.14159
E e ~ 2.71828

I i=r-I

24

• Elementary Functions

quare root Sqrt[x]

Exp[x], Log[x] exponential function, natural logarithm

Sin[x]. Cos [x], Tan[x] trigonometric function

Sinh[x], 000 hyperbolic functions

ArcSin[x], 000

ArcSinh[x], 0.0

inver e trigonometric function

inverse hyperbolic functions

• Manipulation of Expressions

Expand[x]

Factor[x]

SimplHy[x], FullSimplify[x]

expand out

factor

simplify

• Solving Algebraic Equations

Solve[/s == rs, xl
Solve[lgl.g2 ... J.lxl' X2, .. oj]
FindRoot[g, {x, xo))

• Calculus

Limitlf, x -> .to]

D[f, x]

Integrate[j, xl

Integra te[j, lx, X",i", x"'(U)]

DSolve [

x' [t] == x [t] I x [t] I t]

NDSolve [

olve the equation Is = rs for x

olve a y tern of equation

find a numerical root; the initial value i Xo

the limit of f for x ~ Xo

the derivative of f with re peet to x

the indefinite integral of f
the definite integral in the interval [Xmin, x"'(U]

olve the differential equation

x (I) = X(/) for X(/)

{ x' [t] = = x [t 1 I X [0 1 = = 1},

x [t l , {t I t min I t max } 1

find a numerical oolution to the differential

equation x (t) = x(t) with the initial

condition xeD) = I in the interval [tmin , tllUl.lo]

Introduction

• Plots

Plot[f. {x. Xmin' Xmax}]

Plot3D[f. {x. Xmin. Xmax I.
{Yo Ymin' Ymax II

plot a function of one variable

plot a function of two variable

ContourPlot[f. {x. Xmin. Xmax I. draw a contour plot of a function of

{y, Ymin' Ymax J] two variables

ParametricPlot[{f ... f y l. draw a parametric curve in the plane

(t, tmin' tmax j]

ParametricPlot3D[(/x, f y, h), draw a parametric curve in space

{t. (min' (max)]

ParametricPlot3D[(/x. f y , hI, draw a parametric urfacein pace

(u, Umin' umax), {v, Vmin' vmax }]

• Lists and Matrices

Table[j Ii, imin , im•x }] create a Ii t;

Inverse[m]

Det[mJ

m.l1

the iterator i run from im;" to imwc in increments of 1

lh inver e of a matrix

the determinant of a matrix

matrix product

25

Part 1 : The Basics

This part deals with the basics: the structure of the program, online documentation, input
variations, as well as simple numerical calculations and symbolic mathematics.

S. Kaufmann, A Crash Course in Mathematica
© Birkhäuser Verlag 1999

28 Part 1

• 1.1 The Structure of the Program

Mathematica consists of two programs which can work independently of one another and

even on separate computers. The two programs are called: front end and kernel.

• 1.1.1 The Front End

Front end is the user-friendly interface with which Mathematica documents, called

notebooks, can be created and edited. The many commands which are accessible via

menus are documented in the Help Browser (menu Help) under Other Information>

Menu Commands.

We launch the front end by double-clicking on the Mathematica icon (or using the mathe

matica command).

For actual calculations (after hitting the <Enter> key or ISHIFTI[BIT]) the front end connects to

the kernel, sends it the expressions to be evaluated, receives the results, and nicely dis

plays them.

• Cells and Styles

The front end arranges the notebooks into hierarchically grouped cells. Cells and their

groupings are shown by the brackets on the right-hand side of the notebook. Cell groups

can be opened and closed by double-clicking on the brackets, or with the Cell > Cell

Grouping menu command. A new cell is created by clicking between two existing cells

(or below the last cell) and typing the data to be entered.

Each cell has a style (menu Format> Style). The notebook uses predefined styles (For

mat> Style Sheet), which can be changed for every notebook using the style sheet or just

for the current notebook (Format> Edit Style Sheet ...). In the default notebook (Default)

you can access, among other things, a hierarchy of title styles, text in two sizes, and styles

for input and output cells.

Normally, if Cell> Cell Grouping is set to Automatic Grouping, the program organizes

the cells automatically according to style by grouping cells between two titles, subtitles,

etc., together.

The Basics 29

• In Depth

• The Best Way to Organize Cells

Text cells should contain one paragraph per cell.

Keeping each Mathematica expression in a single input cell gives a better overview of calculations.

If necessary you can also combine several expressions divided by semicolons in one cell.

• Exercises

• Using the Front End

Adjust the size of the notebook window to make it easier to read or to optimize the overview (menu

Format> Magnification).

Open a new notebook (File> New).

Enter a title into a cell formatted for titles. You can either ftrst choose the style (menu Format>

Style) and then type, or ftrst type (the cell will be formatted as input) and then select the cell bracket

and change the style.

Below this, enter a section heading into a section cell. (Position the new cell by clicking below a cell

or between two existing ones.)

Below this, enter text into a text cell.

Below this, enter a new section heading into a section cell.

Below this, enter a calculation (for example 1+1).

Evaluate the above cell using the I SHIFT I [BIT] keys or by pressing <Enter>.

Note the automatic grouping of all cells.

Open and close some of the cell groups.

Save the notebook as a me (File> Save As ...)

Select a different pre-deftned style sheet (Format> Style Sheet) and note the change in appearance

of the notebook.

• 1.1.2 The Kernel

The kernel does the actual calculations. Normally you access it using the front end. It can

also be launched by itself (by double-clicking on the MathKernel icon or using the rna th

command).

30 Part 1

When an input cell is evaluated using <Enter>, ISHIFTI[BIT], or the Evaluate Cells command

(menu Kernel> Evaluation) a kernel is launched and the automatic numbering of input

and output cells begins at 1. During a kernel session, you will usually enter definitions

(e.g., aConstant=3 .1). These remain active until the end of the session if they are not

explicitly cleared. Once you quit the kernel, all definitions are lost. You can reactivate

them in the next session by evaluating the corresponding cells again.

Cells in a notebook can be evaluated in any order; it does not have to be from top to

bottom. This may, however, give different results than if the notebook is evaluated sequen

tially (using for example the Kernel> Evaluation> Evaluate Notebook).

When you open a new notebook without quitting the front end, you continue to use the

same kernel, which means that all definitions remain active. It is possible to configure

additional kernels as necessary (Kernel> Kernel Configuration Options> Add) and to

associate them to specific notebooks (Kernel> Notebooks Kernel). The kernels can also

run on other computers.

When you quit the front end, the kernel processes stop automatically. Single evaluations

can be aborted as necessary (Kernel> Abort Evaluation), or whole kernel processes can

be terminated without quitting the front end (Kernel> Quit Kernel).

• In Depth

• Communication between Front End and Kernel

The protocol used for the communication between the front end and the kernel is called MathLink. It

can also be used to communicate between Mathematica and other application programs (see Help>
Add-Ons> MathLink Library).

• Exercises

• Starting and Aborting Evaluations

Start the following infinite loop:

While[True, 1]

Then abort it.

• Quitting the Kernel

Start the evaluation again.

Then quit the whole kernel process.

The Basics 31

• 1.2 Online Documentation

The Help menu contains several help commands. In addition to registration information

and explanations of error beeps made by the computer (Why the Beep? .•), you can open

the Help Browser window to navigate through the online documentation. It is organized as

follows:

Built-in Functions: organized by subject.

Add-ons: functions from packages that can be added to the program (see Loading

Packages).

The Mathematica Book: the electronic version of the (1403 page) book by Stephen

Wolfram. This is very useful, thanks to the hyperlinks.

Getting StartedJDemos: various information and demonstrations. Have a look at it!

Other Information: front end menus, keyboard shortcuts.

Master Index: alphabetical index of all built-in functions.

You can access the different information using either the search function (enter text, select

Go To), or by clicking on the hierarchically structured subject names. You also have the

very useful option of selecting a function name in your notebook and accessing the

documentation via the menu Help> Find in Help •.. (or> Find Selected Function ...).

An incomplete installation of Mathematica can result in missing parts of the documenta

tion (for example the book, which takes up a large portion of the hard drive).

• Exercises

• Self Study

Open the Help Browser.

Study the organization of the Built-in Functions.

Note the underlined terms in the body text which indicate hyperlinks. After using a hyperlink, you

can go back to your original location with the Back button or the menu Find> Go Back.

Have a look at the section "Mathematica as a Calculator" in the "Tour of Mathematica" (Getting

StartedIDemos).

Have a look at the subsection "Power Computing with Mathematica" of the section "Tour of

Mathematica" in the Mathematica Book.

Study the documentation of the front end command Find> Find .••.

32 Part 1

Read the introduction to working with standard packages (Add-oDS> Working with Add-ons>

Loading Packages).

• Packages

The standard packages that come with the program contain many useful tools in addition to the

functions built into the kernel. To use them you must first load the corresponding package.

Load the package Miscellaneous' ChemicalElements'.

What is the atomic weight of plutonium?

• 1.3 Formulas

• 1 .3.1 Formats

Input and output cells can basically be shown in three formats: InputForm, Standard

Form, and Tradi tionalForm.

In this course we use InputForm or StandardForm, depending on the circumstances.

• InputForm

Inpu tForm is useful for keyboard entries. (In early versions of Mathematica this was the

only form of entry.) Mathematica functions are used by typing their names and placing

their arguments inside square brackets. Further conventions are discussed below.

For example, the command for the integration of x (sin x) in InputForm looks like this:

Integrate [x Sin [x], x]

The documentation of functions in the Help Browser is always shown in InputForm.

• StandardForm

StandardForm is more similar to normal mathematical notation. It is unambiguous,

unlike Tradi tionalForm. Integrals are written with the integral sign:

f x Sin [x] dlx

The Basics 33

You can create input in StandardForm using either palettes or keyboard shortcuts-or
by converting an InputForm cell to StandardForm (menu Cell> Convert To >

StandardForm) .

• TraditionalFor.m

TraditionalForm follows the usual mathematical notation. The names of mathemati

cal functions like "sin" are written in lower case, variables are in italics, and arguments are

placed in round parentheses.

f x sin(x)dx

Unfortunately, this style contains many ambiguities which appear in mathematical texts,

where they are resolved by the context or by implicit conventions. It is usually clear that

the formula

a (b +c)

means the product of a multiplied by the sum of band c. It is also normal to use

f(x)

for the application of the function f on the argument x. But how do we interpret the

following formula:

f(b +c)

Is this the function f applied to the argument b + c or the constant f multiplied by b + c?
Mathematica cannot answer this question. For similar reasons, the special symbol d is

used in integrals.

It is advantageous, therefore, to use only InputForm or StandardForm for input cells.
Output cells can be generated in Tradi tionalForm as needed, either by converting the
cell (Cell> Convert To > TraditionaIForm), or by using the option Cell> Default

Output FormatType > TraditionalForm .

• Converting Cells

The following commands in the menu Cell are the most interesting for converting and

displaying output cells :

Convert To: converts the selection to the format chosen.

34 Part 1

Display As: displays the selection in the new format. Fractions, superscripts, etc. are not

converted (unlike with Convert To).

Default Output FormatType: output cells are created in the format selected.

• Exercises

• Converting Formats

A derivative is written using the function name D in InputForm. The arguments are placed in

square brackets and separated by commas. The first argument is the expression to be derived, the
second is the variable to be used for the derivative:

O[Sin[2x+a], x]

How is the derivative written in StandardForm or in Tradi tionalForm?

A second derivative looks like this in Inpu tForm:

O[xSin[x A 3], {x, 2}]

Which are the other two forms of display?

• 1.3.2 Entering Formulas and Special Characters

There are basically three methods for the easy entry of formulas and special characters.
They can also be combined:

• using palettes,
• using control and escape key combinations,

• typing first in InputForm and subsequent conversion if necessary.

Mathematica contains a useful feature for working with formulas: a selection is enlarged

hierarchically by repeatedly clicking on it.

• Palettes

The menu File> Palettes contains some useful pre-defined palettes.

AlgebraicManipulation: this is a compilation of several often-used functions for the

algebraic manipulation of formulas, such as the expansion and factoring of polynomials

and the simplification of expressions. Clicking the button on the palette automatically

applies the function to the selection in the notebook, evaluating "on location".

BasicCalculations: contains the most important commands for simple calculations.

The Basics 35

BasicInput: it makes sense to leave this palette on your screen. It contains the most-used

symbols (Greek characters, etc.) and formulas (derivatives, integrals, etc.).

BasicTypesetting: an alternative or supplement to Basic Input containing many symbols,

but no formulas.

CompleteCharacters: almost all special characters imaginable, organized by subject.

InternationaiCharacters: this palette is useful if the needed international characters are

not on your keyboard. It contains umlauts, etc.

NotebookLauncher: creates a new notebook with a chosen pre-defined style (analogous

to the menu Format> Style Sheet).

Placeholders indicated by a _ are filled out automatically with the current selection. The

jump to the next placeholder can be shortened using the ~ key.

• Control and Escape Key Shortcuts

Fractions, SUbscripts, etc. can also be created using the [@ «Control» key in simulta

neous combination with certain other keys. These shortcuts are shown in the menu Edit>

Expression Input. The shortcut [@2 gives a square root whose radicand is entered
automatically as you continue typing:

Many symbols can be written using escape sequences of the form rnkeyrn. You find the
necessary keys in the BasicTypesetting palette by pointing at the desired symbol. To get

Greek characters the analogous Latin key must be hit between the rn keys. Typing rnarn
therefore gives you an a.

Within nested formulas you can go back to the last level using [@~ «Control>- and
spacebar). Therefore the key sequence [@/ a [@A x [@~ +b ~ c gives you the

formula:

c

• Using InputForm

As mentioned in the paragraph about formats, all input cells can also be written in the

linear InputForm. If needed you can convert formulas into the two-dimensional Stan

dardForm. In this case, roots and exponents look like this:

36 Part 1

Sqrt [a] + b'" 3

After you select Convert To > StandardForm the cell becomes:

Greek characters can also be entered using \ [name]. If you replace name with Alpha

you get an a.

InputForm and StandardForm formats can be combined with no problem:

f Sqrt [x] dlx

- In Depth

• Creating Palettes

You can create your own palettes in three simple steps:
o select Input> Create Palette,
o fill out the palette and select it,

o select File> Generate Palette from Selection.
The _ placeholder is created with ~spl~. It will automatically be replaced by the current

selection. A normal 0 placeholder is written as ~pl~.

In order for the palettes to appear in the menu File > Palettes, save the files in the subdirectory
Configuration\Front End\Palettes of Mathematica's installation directory or in the
subdirectory Front End/Palettes of your personal Mathematica directory (for Mathematica

3.0 on a UNIX system, this would be: - / . Mathematica!3 . 0)

• Formulas Embedded in Text

As you see in this book, formulas can also be embedded in text cells. Here is an example: Y x2 + I .
To achieve this, you can either copy an input or output cell which uses your favorite format

(normally Tradi tionalForm) and paste it into the text cell. Or you open a placeholder box in the

text cell with 1QBh]9, use IQBh] and ~ keystrokes to create the formula, and leave it with 1QBh]~.

- Exercises

• Self Study

Take a look at all the available palettes.

Study the keyboard shortcuts in the menu Edit> Expression Input.

• Writing Formulas

Create the following formula with three different methods: using palettes, using IQBh] and ~ keys

combinations (wherever possible), and by converting from InputForm.

The Basics 37

f x 2 Sin [xl elx

1" 7T
sin [xl Cos [x - -] elx

o 4

0*_1_
~

• Hierarchy

Click several times on one of the formulas created above and see how the selection is enlarged
hierarchicall y.

• Palettes

Study the in-depth section "Creating Palettes". Then create your own palette. A simple example
could be:

• 1.4 Simple Calculations

Now we will begin with actual calculations. You can reproduce them on your computer

using the ISHIFTlffiITl or <Enter> keys.

• 1.4.1 Conventions

First we deal with the most important conventions in Mathematica. It is advisable to read

this chapter quickly at first, and later, when you have made your own calculations, to study

it more carefully.

• Names

Mathematica is case sensitive.

38 Part 1

In[l]:= a - a

Out[l]= 0

In[2]:= a - A

Out[2]= a - A

The names of built-in functions are (in InputForm) written with the first letter of each

word capitalized. Each part of a compound word also begins with a capital.

In[3]:= Expand [(a + b) "2/ (c + d) "2]

Out[3]=

(a + b) 2

In[4]:= ExpandAll [---
(c + d) 2

~ 2ab ~
Out[4]= c2 + 2 cd + d 2 + c 2 + 2 cd + d 2 + c 2 + 2 cd + d 2

To avoid conflicts between names of built-in Mathematica functions and other objects,

you should begin your own names with a small letter.

In[5]:= myFunction

Out[5]= myFunction

In[6]:= x

Out[6]= x

Spaces L) can be used as long as they do not change the meaning of expressions.

In[7]:= a- a

Out[7]= 0

But:

In[B]:= aa/ a

Out[B]=
aa

a

The Basics 39

In[9):= a a / a

Out[9)= a

(The space between the two a's indicates that the product a * a is meant-not the symbol
named aa.)

• Parentheses, Brackets, and Braces

Arguments of Mathematica functions are placed in square brackets and separated by

commas.

In[10):= J:ntegrate [x"n, x]

Out[10)= l+n

Parentheses are used for mathematical grouping.

In[11):= 1/ (a + b (c + d»

1
Out[11)=

a+b (c+d)

Lists are placed in curly braces. They can be used, for instance, to define vectors. Lists are

often also requested as arguments for built-in functions.

In[12):= {a, b, c}

Out[12)= {a, b, c}

In[13):= J:ntegrate [x" 2, {x, 0, 1}]

1
Out[13)= 3

The elements of lists are numbered from left to right, starting with 1. Double square

brackets (InputForm) or [...] brackets (StandardForm) are used to extract elements

from lists.

In[14):= {a, b, c} [[1]]

Out[14)= a

In[15):= {a, b, c} [2]

Out[15)= b

40 Part 1

Lists can also be nested:

In[16):= {{a, b, c}, {d, e, f}}

Out[16)= {{a, b, c}, {d, e, f}}

To access a single element, we first indicate the position within the outer list, then the

position in the corresponding sub list.

In[17):= {{a, b, c}, {d, e, f}} [[1, 2]]

Out[17)= b

In[18):= {{a, b, c}, {d, e, f}} [[2, 3]]

Out[18)= f

• References to Results

Mathematica's input and output cells are automatically numbered in the order of their
evaluation (In[...], Out[... D. The expression %n is a short form for the output cell with the

number n (i.e.: Out[n]). % indicates the last output cell, %% indicates the one before the

last, etc.

In[19):= 2%

Out[19)= 2 f

In[20):= % * %17

Out[20)= 2bf

• The Order of Evaluation

The order of evaluation does not need to be from top to bottom; cells may also be evalu

ated several times. In this case, however, once the notebook has been saved and evaluated

in a new kernel, the results can be different if the order of definitions (see Section 1.4.4)

has changed or if references to output cells are no longer correct.

• Suppressing or Shortening the Output

If you add ; to the end of an expression, Mathematica suppresses the display of the

output. It gets evaluated nonetheless:

The Basics 41

In[21]:= a A 2;

In[22]:= %

Out[22]= a 2

This is useful for calculations with huge results where the formatting of an output of

several pages takes a lot of time. Shortened results can be created with Short or Shal

low.

In[23]:= Expand [(a + b + c) A 100];

In[24]:= Short [%]

Out[24]IIShort=

a lOO + 100 a 99 b + «5147» + 100 b C 99 + C100

• In Depth

• Notations

In addition to standard notation

In[25]:= Expand[(a+b) "2]

Out[25]= a 2 + 2 a b + b 2

functions with one argument can be written in a prefix notation using @

In[26]:= Expand @ «a + b) "2)

Out[261= a 2 + 2 a b + b 2

or in a POStfIX notation using / /

In[27]:= (a+b) "2 II Expand

Out[27]= a 2 + 2 a b + b 2

For functions with two arguments you can also use infIX notation:

In[28]:= {a, b} -Join- {c, d}

Out[28]= {a, b, c, d}

• 1.4.2 Numerical Calculations

The operators for addition (+), subtraction (-), multiplication (*), division (!), and powers

(A) are the usual ones. The multiplication asterisk can also be replaced by a space.

42

In[29):= 2 3 / 5

Out[29)=
6
5

Part 1

Mathematica works with exact integers or rational numbers, as long as there is no decimal

point.

In[30):= 2" 100

Out[30)= 1267650600228229401496703205376

In[31):= 2.0" 100

Out[31)= 1.26765 x 10 30

In[32):= -Y"2

Out[32)= Vi

The conversion to approximate numbers is done by the function N.

In[33):= N [-Y"2]

Out[33)= 1.41421

An optional second argument demands greater precision.

In[34):= N [-{2 I 50]

Out[34)= 1.4142135623730950488016887242096980785696718753769

Mathematica also recognizes various constants, e.g.:

E or e: e "" 2.71828
pi or IT:

lor i:

Degree:

7f "" 3.14159
i=-{~
7f / 180, the number of radians in one degree

As long as a numerical approximation is not requested, these constants are used as purely

symbolic expressions. Certain properties are (exactly) known.

7f
In[35):=

4

Out[35)=
7T

'4

The Basics

In[36]:=

Oul[36]=

11"
Sin[--]

4

1

-12

In[37]:= N[Pi/4, 20]

Oul[37]= 0.78539816339744830962

In[38]:= Sin [45 Degree]

1
Oul[38]=

-12

43

The many built-in mathematical functions and constants can best be found in the Help

Browser (under Built-in Functions> Elementary Functions) or in the BasicCalcula
tions palette. Their numerical evaluation is simple:

In[39]:= ArcCos [0]

JT
OUI[39]= 2"

In[40]:= ArcCos [7/10]

Oul[40]= ArcCos [170 1

In[41]:= N[%]

Oul[41]= 0.795399

In[42]:= ArcCos [.7]

Oul[42]= 0.795399

• Exercises

• The Exponential Constant

Have a look at the first 1000 places of e.

• Approximations

Determine the absolute and the relative error of the approximation of 7r by the square root of 10.

44 Part 1

• 1.4.3 Algebraic Manipulation

Mathematica can also handle symbols.

In[43]:= (a + b) "10

Out[43]= (a + b) 10

Only the simplest calculations are carried out automatically. All others must be requested

specifically, since the program cannot know what we want to do with a formula.

To expand out the above polynomial we can use several methods. We can find the applica

ble function Expand in the Help Browser (Built-in Functions > Algebraic Manipula

tion > Basic Algebra) and type it into the notebook. The % sign is used to reference the

last output.

In[44]:= Expand [%]

Out[44]= a 10 + 10 a 9 b + 45 a 8 b 2 + 120 a 7 b 3 + 210 a 6 b 4 +

252 as b S + 210 a 4 b 6 + 120 a 3 b 7 + 45 a 2 b 8 + 10 a b 9 + b 10

Or we make a copy of (a + b) A 1 0, select it, and use the palette BasicCalculations >
Algebra > Polynomial Manipulations to click Expand [_] into the notebook. The

placeholder _ will automatically be replaced by the selection.

In[45]:= Expand[(a+b) "10]

Out[45]= a 10 + 10 a 9 b + 45 a 8 b 2 + 120 a 7 b 3 + 210 a 6 b 4 +

252 as b S + 210 a 4 b 6 + 120 a 3 b 7 + 45 a 2 b 8 + 10 a b 9 + b 10

As an alternative we can also select the formula and apply the function Expand [_] from

the palette AlgebraicManipulation. The cell is evaluated "on location" and

(a+b)"10

changes into:

aiD + 10 a 9 b + 45 as b 2 + 120 a 7 b 3 + 210 a 6 b' +

252 as b S + 210 a' b 6 + 120 a 3 b 7 + 45 a 2 b S + 10 a b 9 + biD

Try this yourself.

One of the most favorite functions is Simplify. When we apply it to the above

expanded polynomial, Mathematica returns it in its factored form, which clearly is much

simpler.

The Basics

In[47):= Simplify[a10 + 10 a 9 b + 45 a l b 2 + 120 a' b 3 + 210 a 6 b' +

252 a 5 b 5 + 210 a' b 6 + 120 a 3 b' + 45 a 2 b l + 10 a b 9 + b 10]

Out[47)= (a + b) 10

In this case, Factor produces the same result.

In[48]:= Factor[a10 + 10 a 9 b + 45 a l b 2 + 120 a' b 3 + 210 a 6 b' +

252 a 5 b 5 + 210 a' b 6 + 120 a 3 b' + 45 a 2 b l + 10 a b 9 + b 10]

Out[48]= (a + b) 10

45

The function FullSimplify often takes longer than Simplify, but it recognizes

additional (and sometimes quite exotic) rules:

In[49]:= Simplify [ArCCOS [~]]

Out[49]= ArcCos [~l

In[50]:= FullSimplify [ArCCOS [~]]

Out[50]= ArcSin [Yx 1

The simplification of formulas is a difficult problem which (in general) must be

approached heuristically. The difficulties already start with the concept. Which of the

following formulas is simpler?

1- X 11

In[51]:= FullSimplify []
i-x

Out[51]=
1 - Xll

l-x

Out[52]= 1 + x (1 + x (1 + x + x 2) (1 + x 3 + x 6))

It is debatable. We therefore will not hold it against Mathematica for not using the same

form in both cases, although they seem to be identical.

In[53]:= Simplify[% - %%]

Out[53]= 0

(Are they really the same?)

46 Part 1

• Exercises

• A Simplification

Use the appropriate function from the Basic Calculations palette (or type the name of the function)

to simplify the following expression:

as + 5 a' Cos [Xj2 + 10 a 3 Cos [xj' + 10 a 2 COS [X]6 +

5 a Cos [xj8 + Cos [xj l0 + 5 a' Sin [X]2 + 20 a 3 COS [X]2 Sin[xj 2 +

30 a 2 Cos [x]' Sin [xj2 + 20 a COS [X]6 Sin [X]2 + 5 Cos [xj8 Sin [X]2 +

10 a 3 Sin[x]' + 30 a 2 COS[X]2 Sin[x]' + 30 aCos[xj' Sin[xj' +

10 Cos [xj 6 Sin [xj' + 10 a 2 Sin[xj 6 + 20 a Cos [xj 2 Sin [xj 6 +

10 Cos [xj' Sin [x]6 + 5 a Sin [X]8 + 5 Cos [x]2 Sin [X]8 + Sin [X]lO

• Calculating "on Location"

Use the AlgebraicManipulation palette to:
• expand out (a + b) 10,

• factor the result,
• simplify Sin [20:+(3] Cos [20:+(3] ,

• simplify Log [z + v:;:;l ~ 1
(compare the results of Simplify and FullSimplify).

• Self Study

Take a look at Section 1.4.5 in the Mathematica Book.

• Goniometric Relationships

Convert the formula

Sin[3 xj Cos [5 x]

into a form in which no multiples of x appear in the trigonometric functions.

• 1.4.4 Transformation Rules and Definitions

This section will be difficult on first reading. Read it through first and return to it later on,

whenever the use of transformation rules or definitions is unclear to you.

• Transformation Rules

Replacing values for symbols is done by the operator / . in which a transformation rule

has to be given on the right-hand side. The latter is written in InputForm as variable ->

value or in StandardForm as variable -7 value.

The Basics

In[541:~ Sqrt[a+b"'2] /.a->2

Out[541~ ~

In[551:~ ~ /. b -+ 3

Out[551~ ~

Several simple rules can be combined in a list.

In[561:~ ~ /. {a -+ 3, b -+ 7}

Out[561~ 2 m

47

We also call such a list transformation rule because it acts like a single transformation

rule-unlike a nested list. Nested lists allow us to substitute different values at the same

time.

In[571:~ ~ /. {{a-+c, b-+O}, {a-+a2 }}

Out[571~ {rc, ya2 + b 2 }

• Simple Definitions

An immediate definition is indicated by an equals sign (=).

In[581:~ al = 1

Out[581~ 1

The right-hand side of the immediate definition is evaluated when the definition is evalu

ated: You can see the result in the output cell. During the Mathematica session, the

definition is applied whenever the left -hand side of the definition matches a subexpression.

In[591:~ al + a2

Out[591~ 1 + a2

In[601:~ a2 = al

Out[601~ 1

In[611:~ a2

Out[611~ 1

48 Part 1

Delayed definitions (: =) are also used wherever their left-hand side appears. But in this

case the evaluation of the right-hand side is delayed until the definition is used. Therefore

we do not get an output cell.

In[62]:= a3: = al

In[63]:= a3

Out[63]= 1

If we change the value of al and evaluate a3 again, we get a different result.

In[64]:= al = 3

Out[64]= 3

In[65]:= a3

Out[65]= 3

The value of a2, which was set with an immediate definition, has not changed.

In[66]:= a2

Out[66]= 1

We can look at the definitions associated to name by evaluating ? name.

In[67]:= ? a3

Global'a3

a3 := al

This shows us that a3 is in the context Global' (see Section 4.4.5) and that the defini

tion a3 : =al has been set for it.

• Clearing Definitions

Immediate and delayed definitions are cleared with Clear or = ..

In[68]:= Clear [a2, a3]

In[69]:= {al, a2, a3}

Out[69]= {3, a2, a3}

The Basics 49

In[70]:= al = •

In[71]:= {al, a2, a3}

Oul[71]= {al, a2, a3}

• Simple Patterns

The left-hand side of transformation rules and definitions are actually patterns. Up to now,

they have been very simple, because they contained only single symbol names. But

wherever there is a blank C , ~- on the keyboard) in a pattern any expression can appear

in its place. Therefore the blank symbol "_" stands for "anything".

In[72]:= 1 + a A 2 / • _ A 2 - > somethingSquared

Oul[72]= 1 + something Squared

In definitions we usually need this "anything" on the right-hand side. It can therefore be

associated with a name. So x_ stands for any given number, symbol, or more general

expression which will be referenced by the name x on the right-hand side. We can use this

to define functions:

In[73]:= functionl [x_l = Sin [1 / xl

Oul[73]= Sin [~ 1

In[74]:= functionl [31

OUI[74]= Sin [~ 1

In[75]:= functionl [f [Tan [alll

OUI[75]= Sin[f[Ta~[alll

In this example a delayed definition would have given the same result. But if something

needs to be evaluated on the right, then it makes a difference what type of definition it is.

Look at the two following definitions:

In[76]:= myExpandl [x_l = Expand [(1 + x) A 21

OUI[76]= 1 + 2 x + x 2

In[77]:= myExpand2 [x_l : = Expand [(1 + x) A 21

50 Part 1

When applied to a single symbol or a number they give the same result.

In[78):= myExpandl [a]

Out[78)= 1 + 2 a + a 2

In[79):= myExpand2 [a]

Out[79)= 1 + 2 a + a 2

But if we evaluate them for a sum, this sum is simply substituted for x in the first version.

In[80):= myExpandl [a + b]

Out[80)= 1 + 2 (a + b) + (a + b) 2

On the other hand, with a delayed definition the sum is substituted and the Expand of the

resulting expression is then calculated.

In[81):= myExpand2 [a + b]

Out[81)= 1 + 2 a + a 2 + 2 b + 2 a b + b 2

• Rules of Thumb for Definitions

We can keep to the rule of thumb that immediate definitions serve as shortcuts for fixed

values of symbols or patterns. But if something needs to be calculated when the definition
is used, then a delayed definition is appropriate.

Because definitions are valid throughout a Mathematica session if they are not cleared by

hand, they can lead to confusion if you are working on a larger project and forget them.

Transformation rules are therefore more suitable for substituting values.

• In Depth

• Clearing All Definitions

This clears all definitions without launching a new kernel session (see Section 4.4.5):

In[82):= Clear [Global' * 1

• Compound Expressions

If needed, we can combine several expressions on one line or in one cell by separating them with

semicolons. This is called a compound expression.

The Basics 51

In[83]:= consti = .2; const2 = .3; {consti, const2}

QUI[83]= {D.2, D.3}

• Exercises

• Substituting Values

In the following expression, fust have a=2, then b=3 (with any value for a), and then at the same
time have a=2 and b=3.

• A Function Definition

Define a function with two arguments n and x, which calculates sin(nx).

• Stirling's Formula

For large n Stirling's formula is valid: log n! '" (n + +) log n - n + log -.[2;(.

Calculate the absolute and the relative errors for n = 2, 10, 100. First use transformation rules and

then definitions.

• 1.4.5 Equations

• Single Equations

Equations (and differential equations) are indicated in Mathematica with a double equals
sign, since the simple equals sign is already taken by definitions.

In[84]:= a x + b == 1

Qul[84]= b + a x == 1

In[85]:= myEquation = a x + b == 1

Qul[85]= b + a x == 1

The Mathematica function for solving one or more equations is called Solve. It needs to

know the equation and the variable.

In[86]:= Solve [a x + b == 1, xl

{{X ~_-la+b}} Qul[86]= ~

52

In[87):= Solve [myEquation, x]

{ {x --) - -1a+ b }} Out[87)=

Let us give the solution a name:

In[88):= result = %

{ {x --) _ -1a+ b }} Out[88)=

Part 1

The result of So 1 ve is written as a list of transformation rules, which may be irritating at

first. In addition, it is a nested list, because we can also solve sets of equations with several

solutions and several unknowns. We get the first (and in this case only) solution by

accessing the first (and only) element of the list:

In[89):= first Solution = result [[1]]

Out[89)= { -1+b}
x--) ---

a

This is a transformation rule which we can apply to expressions. We substitute the solution

for x into the equation with:

In[90):= myEquation /. firstSolution

Out[90)= True

The answer to the frequently asked question, how to set x to this value definitively, is:

In[9t):= x = x /. firstSolution

Out[91)=
-1 + b

a

In[92):= x + 1

-1 + b
Out[92)= 1 - --a-

or in one step:

The Basics

In[93]:= x = x /. Solve [a x + b == 1, xl [1]

General: :ivar : - -1 +b is not a valid variable.
a

ReplaceAll: : reps :
{True} is neither a list of replacement rules nor a valid

dispatch table, and so cannot be used for replacing.

-1 + b
Out[93]= - --a- / . True

53

This already shows us the danger in this kind of definition: x already has a value through

the definition x = x /. firstSolution. This is immediately substituted into the equation

which evaluates to True. The name x can therefore no longer be used as a variable. It is

better if we delete the definition for now

In[94]:= x = •

and avoid the definition for x:

In[95]:= x / • Solve [a x + b == 1, xl [1]

Out[95]=
-1 + b

a

Nonlinear equations are more interesting:

In[96]:= threeSolutions = Solve [XA 3 + X A 2 - x + 1 == 0, xl

1 4 1 -[33 113
Out[96]= {{X-7- 3 -

3 (19_3-[33)113
-3 (19-333) },

1 2 (1+1-)3) 1
(1-1-)3) -[33 113 {X-7- 3 +

3 (19_3-[33)113
+ - (19-3 33) },

6

1 2 (1 - 1-)3) 1
(1 + I -)3) -[33 113 {X-7- 3 +

3 (19_3-[33)113
+ - (19-333) }}

6

This gives us three solutions. The list of transformation rules can be applied as a whole to

an expression. The result is the list of the three substitutions.

54

In[97]:= x / • threeSolutions

{- ~ -
4 1 -{33 1/3

Out[97]= -{33 1/3 -3(19-333) ,
3(19-333)

1 2 (l+I-{3) 1
(l-I-{3) -{33 1/3

-3 + -{33 1/3 +"6 (19-3 33) ,
3(19-333)

1 2 (l-I-{3) 1
(1 + I-{3)

-{33 1/3
-3+ -{33 1/3 + - (19-333) }

3(19-333) 6

Let us verify the solution.

In[98]:= Simplify[x" 3 + x" 2 - x + 1 == 0 /. threeSolutions]

$MaxExtraPrecision: :meprec :
In increasing internal precision while attempting to evaluate

4 4 1
-3 + 1/3 + -3 (<<1») 1/3 + (<<1») 2 + (<<1») 3, the

3 (<<1»)
limit $MaxExtraPrecision = 50.' was reached. Increasing the
value of $MaxExtraPrecision may help resolve the uncertainty.

$MaxExtraPrecision: :meprec :
In increasing internal precision while attempting to evaluate

.!_ 2(1+I~; _«1»+(<<1»)2+(<<1»)3, the limit
3 3 (<<1»)
$MaxExtraPrecision = 50.' was reached. Increasing the value
of $MaxExtraPrecision may help resolve the uncertainty.

$MaxExtraPrecision::meprec:
In increasing internal precision while attempting to evaluate

4 2 (1-I-{3)
- - 1/3 - «1» + (<<1») 2 + (<<1») 3, the limit
3 3 (<<1»)
$MaxExtraPrecision = 50.' was reached. Increasing the value
of $MaxExtraPrecision may help resolve the uncertainty.

General: : stop :
Further output of $MaxExtraPrecision: :meprec will be

suppressed during this calculation.

Out[98]= { True, True, True}

Part 1

The result is correct; the messages (produced by Version 3.0.1) should not appear. Like

every nontrivial program, Mathematica is not perfect. Just to double check we will try an

alternate version, where we only calculate the left -hand side of the equation.

In[99]:= Simplify [x" 3 + x" 2 - x + 1 / • threeSolutions]

Out[99]= {O, 0, O}

The Basics 55

• Sets of Equations

In order to solve a set of simultaneous equations, we group the equations and the
unknowns as lists.

In[100]:= Solve[{2x2 +y==l, x-y==2}, {x, y}]

Out[100]=

We thereby finally recognize the meaning of the display of solutions as nested lists. We

have a list with two solutions and each solution is a list of rules for the two unknowns.

In[101]:= Simplify [{2 x 2 + y == 1, x - y == 2} /. %]

Out[101]= {{ True, True}, {True, True}}

The Eliminate function is sometimes also useful. It eliminates variables from a set of

equations.

In[102]:= Eliminate [{x - y == d, x + y == s}, x]

Out[102]= d == s - 2 Y

• Numerical Solutions of Polynomial Equations

The solutions of polynomial equations of degree > 4 can generally not be written as

rational expressions with radicals.

In[103]:= Solve[x5 - x 2 + 1 == 0, x]

Out[103]= {{ x ~ Ro 0 t [1 - # 1 2 + # 1 5 &, 1]},

{x~Root[1-#12 +#1 5 &, 2]}, {x~Root[1-#12 +#1 5 &, 3]},

{x~Root[1-#12 +#1 5 &, 4]}, {x~Root[1-#12 +#1 5 &, 5]}}

We do not want to get further into Root objects (with which you can also calculate),

rather we want to create a numerical approximation of the solutions.

In[104]:= N [%]

Out[104]= {{ x ~ - 0 . 808731 }, {x ~ - 0 . 464912 - 1. 07147 I},
{x~ -0.464912 + 1.07147 I},

{x~0.869278-0.388269I}, {x~0.869278+0.388269I}}

Aside from numeric subtleties, the function NSol ve gives us the same result as

N[Solve[... JJ

56

In[105):= NSolve[x5 - x 2 + 1 == 0, x]

Out[105)= {{x ~ -0. 808731}, {x ~ -0.464912 - 1. 07147 I},
{x ~ -0.464912 + 1.07147 I},
{x~ 0.869278 - 0.388269 I}, {x~ 0.869278 + 0.388269 I}}

• Numerical Solutions of Transcendental Equations

Part 1

Unfortunately, there are also transcendental equations which can possibly have several or

an infinite number of solutions.

In[106):= Solve [Log [x] == Cot [x], x]

Solve: : tdep :
The equations appear to involve transcendental functions

of the variables in an essentially non-algebraic way.

Out[106)= Solve [Log [xl == Cot [xl, xl

With a look ahead at Part 2, let us create at a plot of both sides of the equation.

In[107):= Plot[{Log[x], Cot[x]}, {x, 0, 4n}]

20

10

\. \
2\ 4 8 '\ 10

-10

-20

Out[107)= • Graphics·

This shows us that there are (infinitely) many solutions. We can only use a numerical

algorithm to search an approximation of one solution (see also Section 4.4.2). The function

that does this for us, FindRoot, demands that the equation (or the expression whose

roots are being sought) be the first argument and that a list with the variable and the initial

value be the second.

In[108):= FindRoot [Log[x] == Cot [x], {x, 1}]

Out[108)= {x ~ 1. 30828}

The Basics 57

A different initial value may deliver a different solution.

In[109):= FindRoot [Log [xl == Cot [xl, {x, 7} 1

Out[109)= {x ~ 6.76512}

Note that the solution found by the numerical algorithm does not need to be the closest to

the starting value. Here we use expressions instead of equations.

In[110):= FindRoot [x'" - 2 x" 2 + 1 / 2, {x, .i} 1

Out[110)= {x ~ 1. 30656}

In[111):= FindRoot[x"'-2x"2+i/2, {x, .2}l

Out[111)= {x~0.541196}

You can find further ways of calling up FindRoot in the Help Browser .

• In Depth

• Special Cases

Let us look at the solution of ax = 1.

In[112):= Solve[ax == b, x]

Out[112)=

Obviously, if b *- 0, the solution is not valid for a = O.

In[113):= %[[1]] I. a -> 0

Power: : infy: Infinite expression 1 encountered. o
Out[113)= {x --,) ComplexInfinity}

We see here, that the function Solve does not take special cases into consideration. Technically

speaking, it only delivers a generic solution.

The Reduce function helps us further. It creates a logical expression containing all special cases.

In[114):= Reduce[ax==b, x]

b
Out[114)= b == 0 && a == 0 I I a"* 0 && x == a

The logical or is written I I, the logical and as &&, and unequal as *" or ! = .

58 Part 1

• Inequalities

The Inequal i tySol ve function is defined in the Algebra' Inequal i tySol ve' package. It

helps us simplify inequalities. To use it we must first load the package.

In[115]:= «Algebra' :InequalitySolve'

Now we can simplify the following inequality, for example:

In[116]:= :InequalitySolve[x A 2 - 3> 0, xl

Out[116]= x < - -[3 I I x > -[3

Hence, x must satisfy either x < -...[3 or x > ...[3 .

• Exercises

• Quadratic Equations

Solve the quadratic equation a x2 + b x + c = 0 for x.

Verify the result by substituting it into the equation.

Define a variable with the name solution!, whose value is the first solution of the equation.

Find a form of the solution that also takes special cases like a = 0 into account.

• Equations of Higher Degree

Study the symbolic solutions to the equation:

4 X4 + 3 x 3 + :I x 2 + X + 1 == 0

Create numerical approximations of the solutions using different methods.

• Transcendental Equations

Find the first two positive points of intersections of e-x and sin(x).

• Sets of Simultaneous Equations

Solve the following set and verify the solutions by substituting them into the equations.

{x2 + Y == 1, 3 Y - x == a}

• Elimination of Variables

Eliminate x and y from the following set of simultaneous equations:

{x2 +y+z==l, 3y-x==a, x+2z==0}

• Inequalities

Determine where the inequalities Ix2 - 31- 2 > 0 and ~ - x3 > 0 hold (separately and simulta

neously).

The Basics 59

• 1.4.6 Calculus

• Limits

Limits are determined with the function Limi t as follows:

In[117):= Limit[(x-1)A21 (xA2-1), x->l]

Out[117)= 0

(x _ 1) 2

In[118):= Limit [, x-+ -1]
x 2 - 1

Out[118)=

We see that the symbol Inf ini ty or 00 is predefined. We can use it for limits or inte

grals, among other things.

In[119):= Limit [Log [x] Ix, x -> Infinity]

Out[119)= 0

2

For the above expression (:;~i the limits are different if x approaches -1 from smaller

values or from larger values.

(x _ 1) 2

In[120):= Plot [, {x, -2, 2}]
x 2 - 1

100

50

-2 1 2

-50

-100

Out[120)= - Graphics -

The option Direction can be used to differentiate between the limit from the left

(Direction--71) and the limit from the right (Direction--7-1).

60 Part 1

(x _ 1) 2

In[121]:= Limit [, x -1, Direction 1]
X2 -1

Out[121]= 00

(x _ 1) 2

In[122]:= Limit [, x -1, Direction -1]
x 2 -1

Out[122]=

Many other Mathematica functions can be manipulated in an analog way using options.

These are always written as transformation rules. In Part 2 we will see many further

examples with graphic functions.

• Derivatives

We have already seen the function D for the calculation of derivatives. Because it is used

often, its name is (like N) one of the few exceptions in naming where only a letter is used
in place of a whole word.

In InputForm the expression to be derived comes first, then the variable or a list contain

ing the variable and the multiplicity of the derivative.

In[123]:= D [x A 2, x]

Out[123]= 2 x

In[124]:= D [Sin [x], {x, 2}]

Out[124]= -Sin [xl

In StandardForm (see palette BasicCalculations > Calculus> Common Operations)
the input cells are written a little differently:

Out[125]= 2 x

In[126]:= "{X.2} Sin [x]

Out[126]= -Sin [xl

Let us calculate the derivative of an unknown function.

The Basics 61

In[127):= D [f [xl, xl

Out[127)= f' [xl

Apostrophes may also be used to enter derivatives of functions of one variable. This is

particularly useful for differential equations. Mathematica treats both variations identically.

In[12B]:= f I [xl - %

Out[12B]= 0

• Integrals

We use the function name Integrate (in InputForm) or the palette BasicCaicula

tions > Calculus> Common Operations for calculating integrals.

In[129]:= Integrate [x Sin [xl, xl

Out[129]= -x Cos [xl + Sin [xl

In[130]:= f x Cos [xl clIx

Out[130]= Cos [xl + x Sin [xl

Mathematica sets the constant of integration in indefinite integrals to zero.

As you have probably been starting to guess, the variable and the end points of a definite

integral must be given as a list.

In[131]:= Integrate [x Log [xl, {x, a, b} 1

1 1
Out[131]= -"4a2 (-1+2Log[al) +"4b2 (-1+2Log[bl)

The entry is even easier using the palette. Click on the template

and jump from placeholder to placeholder using the tab key. This gives us for example:

In[132]:= 121r (a - a Cos [t]) 2 clIt

Out[132]= 3 a 2 If

62 Part 1

Integrals of expressions with elementary functions are-unlike their derivatives-often no

longer elementary. Either the results are special functions that are basically defined as

being the integral of another function

In[133]:= f Exp [X2] dlx

Out[133]= ; -{iT Erfi [x]

or the integral is returned unevaluated:

In[134]:= 12 Exp [x2] Log [x2] Sin [x2] dlx

Mathematica does not calculate integrals in the same way you learned in school. The

Risch algorithm implemented in the program can calculate an entire class of integrals and

can also decide whether the result exists as a function in this class. In addition, Mathemat

ica recognizes many definite integrals which can be written as hypergeometric or other

special functions.

The function NIn tegra te returns numerical approximations of definite integrals.

In[135]:= NIntegrate [Exp [x2] Log [x2] Sin [x2], {x, 1, 2}]

Out[135]= -2.22919

• Differential Equations

Analogous to algebraic equations, differential equations are also written using ==. The

functional dependence of variables must be indicated explicitly. Derivatives are usually

written using the form x' [t] instead of D [x [t] , t] .

In[136]:= x" [t] + x[t] == 0

Out[136]= x[t] +x" [t] == 0

We get the solution with DSol ve, where the unknown function and the independent

variable are given as second and third argument.

In[137]:= DSolve[x" [t] +x[t] == 0, x[t], t]

Out[137]= {{x[t] ~C[2] Cos[t]-C[l] Sin[t]}}

The Basics 63

The constants C [1] and C [2] must be determined from the initial conditions. If these are

already known, we write the differential equation together with the initial conditions as a

set of equations.

In[138]:= DSolve[{x' I [t] +x[t] == 0, x[O] == 1, X' [0] == O}, x[t], t]

Out[138]= {{ x [t 1 --) Cos [t 1 } }

As with algebraic equations, we can get the resulting functions as follows:

In[139]:= x[t] /. %[[1]]

Out[139]= Cos [t 1

Differential equations are also seldom solvable in closed form.

In[140]:= DSolve[x' I [t] +Sin[x[t]] == 0, x, t]

Solve: :verif :
Potential solution {x[t] ~ComplexInfinity} cannot be verified

automatically. Verification may require use of limits.

Solve: :ifun: Inverse functions are being
used by Solve, so some solutions may not be found.

Solve: :verif :
Potential solution {x[t] ~ComplexInfinity} cannot be verified

automatically. Verification may require use of limits.

Solve: :ifun: Inverse functions are being
used by Solve, so some solutions may not be found.

Solve: :verif :
Potential solution {x[t] ~ComplexInfinity} cannot be verified

automatically. Verification may require use of limits.

General: :stop : Further output of
Solve: :verif will be suppressed during this calculation.

Solve: :ifun: Inverse functions are being
used by Solve, so some solutions may not be found.

General: :stop : Further output of
Solve: :ifun will be suppressed during this calculation.

Out[140]= DSolve[Sin[x[t]] +x" [t] == 0, x, t]

In such cases we have to resort to NDSo 1 ve which gives us at least a numerical solution.

64

In[141):= NDSo1ve[{x" [t] +Sin[x[t]] == 0, x[O] == 1, x' [0] == O},
x[t], {t, 0, 10}]

Out[141)= {{x[t] ~InterpolatingFunction[{{D., 1D.}}, <>] [t]}}

The resulting numerical function can be extracted as usual:

In[142):= x [t] /. % [[1]]

Out[142)= InterpolatingFunction[{{D., 1D.}}, <>] [t]

and evaluated

In[143):= % /. t -> 1.5

Out[143)= D .166936

or, as we will see in Part 2, plotted.

In[144):= P1ot[%%, {t, 0, lOll

Out[144)= - Graphics -

• In Depth

• Solutions of Differential Equations as Pure Functions

Part 1

It is often more practical to request the solution of a differential equation as transformation rule for x

itself.

In[145):= DSo1ve[{x I I [t] + x[t] == 0, x[O] == 1, x '[0] == O}, x, t]

Out[145)= { {x --> (Cos [#1] &) } }

This creates a so-called pure function (see Section 3.2.3), which can be evaluated exactly as above

The Basics 65

In[146]:= x[t] /.%[[1]]

Out[146]= Cos [t]

Pure functions help us to verify the solution.

In[147]:= {x" [t] + x[t] == 0, x[O] == 1, x' [0] == O} /. %%[[1]]

Out[147]= {True, True, True}

• Exercises

• Limits
1

Calculate the limits of T~ as x approaches 0 from the left and from the right.

• Derivatives

Calculate the derivative of x<X .

Did you derive x~ (x~x) or (x~x) ~x? Is there a difference?

Calculate the second derivative of sin(f(t)) cos(f(t)) with respect to t, when J(t) is any function of t.

• Integrals

Note the following expression:

Exp[-x] sin[x]2

Calculate the indefinite integral and the definite integrals in the intervals [-1, 1] and [0, 00).

Use also the numerical function Nlntegra te to determine both definite integrals. How well do the

symbolic and numerical results agree?

• Differential Equations

Solve the differential equation system {x(t) + x' (t) = y(t), x(t) + y' (t) = I} and simplify the result.

(The documentation of DSol ve explains how to solve sets of differential equations.)

Part 2: Graphics

Graphics are an eye-catching, attractive element of Mathematica. This part deals with the

different methods of producing and refining plots of functions or data and with the export

of graphics to other programs.

S. Kaufmann, A Crash Course in Mathematica
© Birkhäuser Verlag 1999

68 Part 2

.2.1 Graphs of Functions of One Variable

First a word about the terminology: The term graph has a mathematical definition as a set.

A computer program can only visualize a finite part of this-possibly infinite-set. Further
more, we often use axes, headings, etc. to expand on the information. The resulting object

will still be called a "graph". Mathematica can also create graphics which are not graphs.

In our terminology a "graph" is a special kind of "graphic".

When visualizing mathematical functions and mappings it is important to consider the
dimensions of the domain and of the range. This immediately leads to the appropriate

Mathematica function. The palette BasicCalculations > Graphics contains templates for

the common cases.

We start by plotting graphs of functions R ~ R.

First we create the graph of the function x ~ sin(x) over a period using Plot.

In[1]:= Plot [Sin [xl I {x, 0 I 2 pi} 1

1

2 4 5 6

-0.5

-1

Out[1]= - Graphics -

Since we are mainly interested in the graphics themselves, we will suppress the output

cells using a semicolon.

We can also plot several functions at once by passing a list.

Graphics 69

In[2]:= Plot[{Sin[x], Sin[2x], Sin[3x]}, {x, 0, 27T}];

Naturally the function can also first be defined and then plotted.

In[3]:= functionl [x_] =
Sin [x]

x

In[4]:= Plot[functionl[x], {x, 0, 2 7T}] ;

1

0.8

0.6

0.4

0.2

1 2 3 4 5

-0.2

The above definition was written using an immediate definition, since this is just a short
cut and the right-hand side of the definition does not need to be evaluated every time it is

called up. A delayed definition produces the same result by evaluating the function

definition for every point of the plot. For large calculations, the CPU times of these two

variants can differ significantly-but either one can be faster (see the exercise "Efficiency").

Sin [x]
In[5]:= function2 [x_] : = ---

x

70

In[6]:= Plot [function2 [x], {x, 0, 2 JT}] ;

1

0.8

0.6

0.4

0.2

-0.2

1 2 3

Part 2

We can change the appearance of graphics in various ways using options. The options are

set as transformation rules of the form name -> value. The documentation on Plot in

the Help Browser lists the specific options of Plot (Compiled etc.). It tells us that all

options of Graphics objects can be used as well. In the documentation on Graphics

we find a long list of options (from AspectRatio to Ticks) with their default values.

Each option again has a documentation of its own.

Let us take a look at some of the most-used options, with which we can edit our graphic.

An immediate definition gives it a name for later reference:

In[7]:= demoPlot=Plot[x A 2Sin[1/x], {x, -JT, JT}];

-1 1

As we can see, the range in this case is automatically limited by Mathematica. To clearly

display the linear behavior of this function at large arguments, we use PlotRange

> All. This plots all values.

Graphics

1
In[8]:= P1ot[x2 Sin[-], {x, -71:, 7I:}, PlotRange->All];

x

3

2

1

-3 -2 -1 1 2 3

-1

-2

-3

71

The option value AspectRatio->Automatic scales both axes identically. We can

add a value for ImageSize to get a graphic of a given size.

In[9]:= Show[%, AspectRatio -> Automatic, ImageSize -> 150];

3

2

1

-3 -2 -1 123

-1

-2

-3

Instead of re-calculating the whole graphic after changing an option, it can also just be re

drawn with the Show command and any changed options.

AxesOrigin moves origin of the coordinate system.

72

In[10):= Show [demoPlot, AxesOrigin -+ {-I, O} 1 ;

0.15

0.1

0.05

1
-0.05

-0.1

-0.15

AxesLabellabels the axes using strings that must be placed in quotation marks.

In[11):= Show [demoPlot, AxesOrigin -+ {-I, O},

AxesLabel -+ {"x", "x2 Sin [xl"} 1 ;

x 2 Sin [x]

0.15

0.1

0.05

1 x

-0.05

-0.1

-0.15

PlotLabel adds a title.

In[12):= Show [demoPlot, AxesOrigin -+ {-I, O},

PlotLabel -+ "Plot of x 2 Sin [xl n 1 ;

0.15

0.1

0.05

-0.05

-0.1

-0.15

Plot of x 2 Sin [x]

1

Part 2

Graphics

• In Depth

• Frames

Frarne->True creates a frame around the graphic.

In[13]:= Show[demoPlot, Frame -> True];

0.15
0.1

0.05
O~------~~~~~~------~

-0.05
-0.1

-0.15

-1 1

Axes->False suppresses the axes.

In[14]:= Show[demoPlot, Frame -> True, Axes -> False];

0.15
0.1

0.05
o

-0.05
-0.1

-0.15

-1

GridLines->Autornatic shows a grid.

1

In[15]:= Show[demoPlot, Frame -> True, GridLines -> Automatic];

0.15
0.1

0.05
o

-0.05
-0.1

-0.15

-1

/\
/ v

/
/
I

-0.5

I
/
/

.1\ /

\/

o 0.5 1

FrarneLabel creates a label for the axes (the vertical label appears vertically on the printout).

73

74 Part 2

In[16]:= Show[demoPlot, Frame-> True, FrameLabel-> {"X", "x2 Sin[x]"}];

0.15
0.1

~ 0.05
~

0 ·rl
Ul

-0.05
'" ~ -0.1

-0.15

-1
x

• Changing the Character Format

The option TextStyle uses a list of sub-options with which we can change the format of the text.

In[17]:= Show[demoPlot, TextStyle->
{FontFamily -> "Times", FontSlant -> "Italic", FontSize -> 9}];

-1 1

If we want to change only the title:

In[18]:= Show [demoPlot, AxesOrigin ... {-1, O},

PlotLabel ... StyleForm ["Plot of x 2 Sin [x] " ,
FontFamily -> "Times", FontSlant -> "Italic", FontSize -> 12]];

0.15
0.1

0.05

-0.05
-0.1

-0.15

Plot of x 2 Sin[x]

StyleForm lets us use a pre-defined notebook style.

1

Graphics

In(19):= Show[demoPlot, AxesOrigin -+ {-1, O},

PlotLabel-+ StyleForul[nplot of x 2 Sin [x] n, nSectionn]];

0.15
0.1

0.05

-0.05
-0.1

-0.15

Plot of x2 Sin[x]

Or we can put a formula into the title.

1

In[20):= Show[demoPlot, AxesOrigin-+ {-1, OJ,

PlotLabel-+ TraditionalForm[x2 Sin [x]],
TextStyle -> {FontFamily -> nTimes", FontSize -> 9}];

0.15
0.1

0.05

-0.05
-0.1

-0.15

• Changing Lines

i sin(x)

75

The option PlotStyle can be used to change the thickness and color of lines and to draw dashed
lines. Because this is an option of Plot and not of Graphics, displaying with Show will not work

and the graph must be re-calculated. AbsoluteThickness sets the line thickness to the amount

of pixels given.

1
In(21):= Plot [x2 Sin[-], {x, -1f, 1f}, PlotStyle -> AbsoluteThickness[2J];

x

-1 1

76 Part 2

The option value Dashing defines dashed lines. Its argument determines the lengths of the

segments. As with line thickness, there are two versions: those whose values are given as a fraction
of the width of the graphic (Thickness, Dashing) and those which use an absolute number of

pixels (AbsoluteThickness, AbsoluteDashing) .

1
In[22]:= Plot[x2 Sin[-J, {x, -7f, 7f}, PlotStyle-> Dashing[{.l, .02}]J;

x

0.15
I

I 0.1

-1 -0.5 1
;-0. 05

-0.1

; -0.15

When several graphs are plotted, the functions are handled cyclically by PlotStyle.

In[23]:= Plot[{Sin[x], Sin[2x], Sin[3x]}, {x, 0, 27f}, PlotStyle->
{Dashing[{.2, .02}], Dashing[{.l, .02}], Dashing[{.OS, .02}]}];

Colors can easily be defined with the function Hue, which represents the color circle at full bright
ness and saturation when a single argument in the interval [0, 1] is given.

Graphics

In[24]:= Plot [Evaluate [Table [x A n, {n, 0, 10} 1] ,
{x, 0, l}, PlotStyle-> Table[Hue[n/ll] , {n, 0, lOll,
PlotRange -> All, AspectRatio -> Automatic] ;

1r-----------------------~

0 . 8

0 . 6

0 . 4

0 . 2

0.2 0.4 0 . 6 0.8 1

77

In this calculation we used the functions Table to create a list and Evaluate to enforce the
evaluation of the first argument before the Plot function itself. The latter is necessary because

Plot only processes lists which are given explicitly .

• Suppressing the Display of Graphics

It is sometimes useful to suppress the display of a graphic. We can do this using the option Display

Function->Identity.

In[25]:= Show[demoPlot, DisplayFunction -> Identity]

Out[25]= - Graphics -

DisplayFunction- >$DisplayFunction regenerates the display. ($DisplayFunction

is a global variable.)

In[26]:= Show[%, GridLines -> Automatic, DisplayFunction -> $DisplayFunction];

L /
v •• ~

/
/

(\ 1\ /
-1 -0 .5/ v

\/ 0 5

/ V~U~

/
u ••

" L

/
u •• ~

78 Part 2

• Poles and Singularities

The default option values of Plot produce reasonable plots even when there are poles or singulari-

ties.

In[27]:= Plot[l/ (x-l), {x,-1,3}];

40

20

-1 2 3

-20

-40

In[28]:= Plot[Sin[l/x] , {x, 0, .l}] ;

In this case the default value for PlotPoints should probably be increased, i.e. the number of
function values calculated initially, before the algorithm refines the graph adaptively.

In[29]:= Plot[Sin[l/x], {x, 0, .l}, PlotPoints-> 200];

• Superimposing Graphics

Show can also be used to superimpose several graphics onto one another.

Graphics

In[30]:= Plot [Exp[-x], {x, 0, 2 Pi}] ;

1

0.2

1 2 3 4

In[31]:= Plot [Sin[x], {x, 0, 2 Pi}];

1

-0.5

-1

5 6

In[32]:= Plot[Sin[x] Exp[-x], {x, 0, 2Pi}];

1 2 6

In[33]:= Show[%, %%, %%%] ;

5 6

-1

79

80 Part 2

In Section 2.4 we will look at additional helpful tools for designing graphics.

• Exercises

• Plotting Graphs

Separately plot the graphs of the functions x -4 sinh(x), x -4 cosh(x), and x -4 tanh(x) in the interval

[-2, 2].

• Several Graphs at Once

Now draw the above graphs in one figure.

Distinguish between the three curves using various dashed lines and/or colors.

• Variations

Draw a frame with a grid around the above graphic.

Label the x axis and add a title.

Use the Times font.

• The Arc Sine

Plot the graph of the function x -4 arcsin(x). (What is the appropriate domain of definition?)

Label both axes.

Use Tradi tionalForm for labeling the ordinate.

• Efficiency

The function Timing displays the time used to evaluate an expression. Compare the timings of

plots of the following two functions:

timingTest1 [x_l = Expand [(1 + Sin [xl) A 501 ;

timingTest2[x_l := Expand[(1 + Sin[xl) A50l;

Interpret the results .

• 2.2 Graphs of Functions of Two Variables

In this chapter we look at graphs of functions 1R2 --) IR. We can visualize them as surfaces,

contour lines, or density plots.

The corresponding Mathematica functions are listed in the BasicCalculations > Graphics

palette or in the Help Browser.

Graphics 81

• 2.2.1 Surfaces

In a surface display the rectangular domain appears as the base of a cuboid and the func

tion values are drawn vertically. The graph then is a surface over the base of the cuboid.

In[34]:= saddle = Plot3D[x2 -y'-, {x, -1, 1}, {y, -1, 1}];

1-1

Several of the various options (see the documentation on Plot3D and Graphics3D)

have the same name and work the same way as in two dimensions.

In[35]:= Show [saddle, PlotLabel ... x 2 - y2] ;

Here and in the in-depth section we will deal only with the most important additional

options for three-dimensional objects using examples.

82 Part 2

With ViewPoint we can change the perspective. A nice tool for this is available from

the menu Input> 3D ViewPoint Selector. A cube will appear that can be turned with the

mouse or by entering the coordinates of the point of view. We move the front edge

upwards. After pressing the Paste button, the following cell is created:

ViewPoint -> {1.306, -3.120, 0.109}

This rule can be copied and pasted into the Show function. Alternatively we can prepare

a cell with the Show command, move the insertion mark to the appropriate position, and

then use the 3D ViewPoint Selector to paste directly into Show.

In[36]:= Show[saddle, ViewPoint -> {1.306, -3.120, 0.109}];

• In Depth

• Changing the Box and the Axes

The Boxed option controls the drawing of the surrounding box.

In[37]:= Show[saddle, Boxed -> False];

1
O.S

o
- O. S

- 1
-1

- O.S

AxesEdge changes the positioning of the axes. Enter a list of three pairs which determine for the x,
y, and z axes whether they are to be drawn at the side of the bounding box with larger (+ 1) or
smaller (- I) coordinates.

Graphics 83

In[38]:= Show[saddle, AxesEdge-> {{-I, -I}, {-I, I}, {I, I}}];

1

1

Axes->False hides the axes.

In[39]:= Show [%%, Axes -> False] ;

• Colors

The option value Lighting->False turns off the lighting. Polygons are then shaded according to

their height.

84

In[40):= Show[%, Lighting -> False] ;

For diffuse ambient lighting we set:

In[41):= Show [saddle, AmbientLight -> Hue [1]];

1
0 . 5

o
-0.5

-1
-1

-0 . 5

The colors of the lines and the font can be changed using Defaul tColor .

In[42):= Show [saddle, Defaul tColor - > Hue [. 6]] ;

Part 2

Graphics 85

The three LightSources have the following default settings:

LightSources -> {{ {1, 0, 1}, RGBColor[l, 0, oJ},

{{1, 1, 1}, RGBColor[O, 1, O]}, {{a, 1, 1}, RGBColor[O, 0, 1]}}

RGBColor defines a color in the Red, Green, and Blue color model. The preceding lists determine

the coordinates of the corresponding light sources.

In[43]:= Show [saddle, LightSources - > {{ {1, 0, 1}, RGBColor [1, 0, O]},

{ { 1, 1, 1}, RGBColor [0, 1, O]}, {{ 0, 1, 1}, RGBColor [0, 0, 1]}}];

1
0.5

o
-0 . 5

-1
-1

-0 . 5

We can change the light sources.

In[44]:= Show[saddle, LightSources-> {{{a, -1, 1}, RGBColor[l, 0, OJ},

{{a, 0, -1}, RGBColor[O, 1, OJ}, {{a, 1, 1}, RGBColor[O, 0, 1]}}];

• A Sphere, First Attempt

Let us try to draw a unit sphere.

86

In[45]:= Plot3D[Sqrt[1-x A2 _yA2], {x, -1, 1}, {y, -1, I}];

Plot3D: :gval : Function value O. + 1. I
at grid point xi = 1, yi = 1 is not a real number.

Plot3D: :gval : Function value O. + 0.857143 I
at grid point xi = 1, yi = 2 is not a real number.

Plot3D::gva1: Function value O. +0.714286I
at grid point xi = 1, yi = 3 is not a real number.

General: :stop : Further output of
Plot3D: :gva1 will be suppressed during this calculation.

1
0.75

0.5
0 . 25

o
-1

-0 .5

1-1

Various problems arise:

Part 2

• We can only use a rectangle as the domain. Outside the unit circle the root becomes complex.
Mathematica therefore produces error messages.
• The rectangular grid causes ugly slices.

• plot3D can display only one function, we therefore lose the bottom half of the sphere. This
problem could be solved by plotting the bottom half of the sphere separately and then combining the

two halves with a Show command.

We will later produce an acceptable figure by a suitable parametric plot.

• 2.2.2 Contours

Often a different visualization of functions 1R2 ~ IR is useful. ContourPlot displays the

rectangular domain from above and shows the contours of constant values of the function.

Graphics 87

In[46]:= saddle2 =

ContourPlot[x2 - y 2, {x, -1, 1}, {y, -1, 1}, lmageSize-> 180];

The options belonging to ContourPlot can be looked up in the documentation for

ContourPlot and ContourGraphics.

Shading can be drawn in color or left out entirely.

In[47]:= Show[saddle2, ColorFunction -> Hue, lmageSize -> 180];

o.

- 0 .

88 Part 2

In[4B]:= Show[saddle2, ContourShading -> False, lmageSize -> 180];

The Contours option controls the contours to be drawn. We can enter either their

number or a list of the desired values.

In[49]:= Show[%, Contours -> 30, lmageSize -> 180];

o.

-0.

Graphics 89

In[50]:= Show[%, Contours -> {OJ, lmageSize -> 180];

0.5

o

-0.5

o 0.5 1

These lines are, of course, the roots of Xl -l .

• 2.2.3 Density Plots

Densi tyPlot represents the function values on a grey or color scale.

In[51]:= DensityPlot[x2 _y2, {x, -1, 1}, {y, -1, 1}, lmageSize-> 180];

o.

- 0 . c; ll--H-t-t-

Let us make the grid finer using PlotPoints.

90 Part 2

In[52]:= saddle3 = Densi tyPlot [x2 - y2, {x, -1, 1},

{y, -1, 1}, PlotPoints -> 50, ImageSize -> 180];

The colored version gives a clearer picture, especially on-screen.

In[53]:= Show[%, ColorFunction -> Hue, ImageSize -> 180];

This looks similar to the colorized version of ContourPlot .

• In Depth

• Converting Graphics

We can interchange the different three-dimensional graphics formats.

Graphics 91

In[54]:= Show [ContourGraphics[%] , lmageSize -> 160];

In[55]:= Show [SurfaceGraphics [%] , lmageSize -> 160];

In[56]:= Show [DensityGraphics[saddle] , lmageSize -> 160];

o . "'I r+-t-t-t-'

- 0 . ",Ir-l-++-i....,

92 Part 2

• Exercises

• Plotting Graphs

Plot the graph of the function (x, y) ~ sin(x y) once as a surface, once with contours, and once as a
density plot. Use the rectangle [0, 2 7T] x [0, 2 7T] as the domain.

Change the value of PlotPoints to make the pictures look good.

• Variations

Colorize the contour and density plots.

Turn the surface so that you can see it from below.

• The Arc Tangent

Plot the graph of the function (x, y) ~ arctan(~) as a surface. Choose the rectangle [-1, 1] x [-1, 1]

as the domain.

The surface is probably not what you expected. For every point in the plane we should be plotting
the angle between the x-axis and the line from the origin to the point. Therefore the jump of the

surface along the y axis looks a little strange. It has to do with the choice of branch cuts in

Mathematica's ArcTan function. Study its documentation and find a better solution.

• 2.3 Parametric Plots

With parametric plots we can visualize mappings IR --7 IR 2 , IR --7 IR 3 , or IR 2 --7 IR 3 by

drawing the image of the domain of definition under the mapping. Depending on the

dimension of the domain, we get curves or surfaces.

• 2.3.1 Two-Dimensional Parametric Plots

ParametricPlot deals with parametric representations of planar curves, i.e. mappings

IR --71R2. The x-y coordinates are given as a list.

Graphics 93

In[57]:= ParametricPlot[{Sin[t], Sin[2t]}, {t, 0, 2Pi}];

1

0.5

-0.5

-0.5

-1

Plotting several curves at once is also possible.

In[58]:= ParametricPlot [
{{Sin[t], Sin[2t]}, {Sin[t], Sin[4t]}}, {t, 0, 2Pi}];

The same options as for Plot (and Graphics) can also be used here .

• 2.3.2 Three-Dimensional Parametric Plots

We will now look at mappings IR -t IR 3 or IR 2 -t IR 3 . Their images are curves or surfaces

in 1R3. ParametricPlot3D can be used for both.

First we plot two space curves given by their parametric representations.

94 Part 2

In[59]:= ParametricPlot3D[{Sin[t], Sin[2t], Sin[4t] /2}, {t, 0, 2Pi}];

1 -1

In[60]:= ParametricPlot3D[{Cos [<II], Sin [<II], <II}, {<II, 0, 4 pi}];

The second figure becomes clearer if we draw a cuboid with equal edge lengths.

Graphics 95

In[61]:= Show[%, BoxRatios -> {1, 1, 1}];

1
o.

o
-0.

o
0.5

Parametric plots can generate surfaces which do not correspond to graphs of (unique)

functions 1R2 -7 IR. The surface of the unit sphere is such an example, because both signs

are possible when the implicit definition r + l + Z2 = 1 is solved for a variable.

But we can parametrize the surface of the sphere with spherical coordinates.

In[62]:= x[<9_, I/r_] = Sin[!9] Cos[I/r];

In[63]:= y[!9_, I/r_] = Sin[!9] Sin[I/r];

In[64]:= z[!9_] =cos[!9];

The surface of the sphere is then the image of the rectangle [0, If] x [0, 2 If) under the

above mapping.

96 Part 2

In[65]:= ParametricPlot 3D [
{x[<9, I/r], y[<9, I/r], z[<9]}, {<9, 0, 7\"}, {I/r, 0, 27\"}];

1

The definitions for x, y, and z are somewhat awkward. These will be used all through the

current session whenever the patterns x [... , ... 1 etc. appear.

In[66]:= z [1] A 2

Out[66]= Cos [1]2

It is better to clear the definitions and create the plot directly:

In[67]:= Clear[x, y, z]

Graphics

In[68]:= ParametricPlot3D[{Sin[<9] Cos[I/r], Sin[<9] Sin[I/r], Cos[<9]},
{<9, 0, ".}, {I/r, 0, 2 ".}, lmageSize -> 200];

Let us "cut the sphere open"

In[69]:= ParametricPlot3D [{ Sin [<9] Cos [I/r], Sin [<9] Sin [I/r], Cos [<9]},
{<9, "./4, ".}, {I/r, 0, 2".}, lmageSize-> 200];

1

and move closer and upwards to have a better look inside.

97

98 Part 2

In[70):= Show[%, ViewPoint -> {0.313, -0.406, 0.SS9}, ImageSize -> 200];

-1
o.

- 0 .

1

. 5

Small changes produce other lovely surfaces:

In[71):= ParametricPlot3D[{Sin[t9] Cos[I/!], Sin[t9] Sin[I/!], Cos[3t9]},
{t9, 0, 7r}, {I/!, 0, 37r/2}, ImageSize-> 200];

Graphics

In[72]:= ParametricPlot3D[{Sin [c9] Cos [I/r], Cos [c9] Sin [I/r], Cos [c9] },
{c9, 0, IT}, {I/r, 0, 2lT}, ImageSize-> 200];

• Exercises

• A Torus

A torus can be parametrized by the following x, y, z coordinate functions:

{Cos[lP] (a+bCos[I/t]), Sin[lP] (a+bCos[I/t]), bSin[l/t]}

99

Set a = 2 and b = 1. Then plot the image of the rectangle [0, 2 7f) x [0, 2 7f) . What is the meaning of

the parameters a and b?

Note : if you use transformation rules for inserting values, you may see a message saying that the

function to be plotted cannot be compiled. In this case it is better to use Evaluate:

PlotFunction [
Evaluate[{Cos[lP] (a+bCos[I/t]), ... } /. {a 2, b l}],
{ ... }, { ... }]

• Cutting Objects Open

With the selection a = 1 and b = 2 the above torus surface intersects itself. Convince yourself by

"cutting the object open".

100 Part 2

• 2.4 Tools from Standard Packages

Many additional tools are defined in the standard packages which come with Mathematica

(see Help Browser> Add-ons> Standard Packages> Graphics). They can be loaded on
demand. A few of them shall be discussed here. (In Version 3.0.x the hyperlinks to

functions from the standard packages do not work yet. This will be added in future ver

sions.)

The command

In[73]:= < < Graphics'

makes all definitions in the directory Graphics' available. It must be evaluated before

any of the examples below .

• 2.4.1 Three-Dimensional Contour Plots

The Graphics' ContourPlot3D' package contains the function ContourPlot3D,

which is similar to ContourPlot. It plots the surfaces on which a mapping 1R3 ~ IR

takes on constant values.

Without explicit settings for the Contours option only the roots will be drawn.

In[74]:= ContourPlot3D [x A 2 - Y A 2 + Z A 2, {x, - 2, 2},
{y, -2, 2}, {z, -2, 2}, ImageSize-> 200];

Graphics 101

This plots the surfaces corresponding to the function values -1, 0, and 1:

In[7S]:= ContourPlot3D[x A2 _yA2 + z A2, {x, -2, 2}, {y, -2, 2},
{z, -2, 2}, Contours -> {-1., 0., 1.}, ImageSize -> 200];

• 2.4.2 Tools for Two-Dimensional Graphics

The Graphics' Graphics' package contains various tools for logarithmic plots, bar

and pie charts, data plots with error bars, etc. The documentation is worth a look. We will

restrict ourselves to two examples.

In[76]:= LogPlot[Cosh[x], {x, 0, lOll;

10000

1000

100

10

1
0 2 4 6 8 10

102 Part 2

In[77]:= BarChart [{ 1 , 3,5,3,1}];

5

4

3

2

1

1 2 3 4 5

• 2.4.3 Tools for Three-Dimensional Graphics

The Graphics' Graphics3D' package is also worth a look.

Let us use ShadowPlot3D and Shadow to project surfaces onto the bounding box. This

can be very instructive.

In[78]:= ShadowPlot3D [Sin [x - y] ,
{x, 0, Pi}, {y, 0, Pi}, lmageSize -> 200];

Graphics 103

In[79]:= ParametricPlot3D [
{Sin[~] Cos[I/I], Cos[~] Sin[I/I], Cos[~]}, {~, 0, 7r},

{I/I, 0, 2 7r}, PlotPoints -> {25, 25}, lmageSize -> 200];

In[80]:= Shadow [%, lmageSize -> 200] ;

• 2.4.4 Legends

The legends defined in Graphics' Legend' can be changed by many options (see

documentation).

104

In[81]:= Plot[{Sin[x], Cos[x]}, {x, -271", 271"},

Plot Style -+ {GrayLevel [0], Dashing [{ .03}] } ,

PlotLegend -+ {"Sine", "Cosine"}];

In[82]:= DensityPlot [Sin[x2 + y2], {x, -3, 3}, {y, -3, 3},

PlotPoints -> 50, ColorFunction -> Hue, lmageSize -> 180];

Part 2

The range is the interval [-1, 1]. This is mapped onto [0, 1] by ColorFunction. We

must therefore label the legend with values between -1 and 1.

Graphics 105

In[83J:= ShowLegend[%, {Hue, 10, "-1", "1"}];

• 2.4.5 Vector Fields

A useful visualization of mappings IR 2 ~ IR 2 or IR 3 ~ IR 3 can be obtained by drawing the

image vector as an arrow in each grid point of the domain. The corresponding documenta

tion can be found in the Graphics ' PlotField' and Graphics' PlotField3D'

packages.

The following vector field belongs to a mathematical pendulum:

In[84J:= PlotVectorField [{y, - Sin [x] } ,
{x, -Pi, 2 pi}, {y, -pi, Pi}, Axes -> True];

... ",. - ~ "
~ ~

~ .. ., .. ~

106 Part 2

With the three-dimensional function PlotVectorField3D the velocity field of a

rotation around the z axis can be viewed. The VectorHeads->True option setting

makes sure that the arrow heads are drawn.

In[85]:= PlotVectorField3D[{-y, x, O}, {x, -1, 1},
{y, -1, 1}, {z, -1, 1}, VectorHeads -t True];

• In Depth

• Collisions of Names

This paragraph deals with a problem which arises when function names are used from packages

which have not yet been loaded (see Help Browser> Add-ons> Working with Add-ons> Loading
Packages).

To get a clear starting point we first end the active kernel session with Kernel> Quit Kernel.

Now we attempt to create a logarithmic plot using the following command:

In[1]:= LogPlot [Exp [3 xl, {x, 0, 2} 1

Out[1]= LogPlot [E3 x, {x, 0, 2) 1

Because the definition of LogPlot has not yet been loaded with «Graphics' or

«Graphics' Graphics' , nothing happens. Therefore we try:

In[2]:= «Graphics'

But it still does not work:

Graphics 107

In[3]:= LogPlot [Exp [3 xl I {XI 0 I 2} 1

Out[3]= LogPlot[E3X , {x, 0, 2}]

The following command shows that LogPlot is now defined in the global context, but the name

should be in the context of the package. (Further information to contexts can be found in Section

4.4.5.)

In[4]:= ? LogPlot

Global'LogPlot

We can solve the problem using Remove.

In[5]:= Remove [LogPlotl

Now the context is correct and the command works.

In[6]:= ? LogPlot

Graphics'Graphics'LogPlot

Attributes [LogPlot] = {Stub}

LogPlot = "Graphics.m"

In[7]:= LogPlot [Exp [3 xl I {x, 0 I 2} 1 ;

100
50

10
5

• Further Parametric Plots

The Graphics' ParametricPlot3D' package contains, for historical reasons, the Paramet

ricPlot3D function, which we have already seen. Additional useful tools are Spherical

Plot3D and CylindricalPlot3D.

With SphericalPlot3D we need to indicate the radius as function of the spherical coordinate

angles () and I/t.

108 Part 2

In[8]:= SphericalPlot3D[l, {t9, 0, 7r}, {I/t, 0, 2 7r}];

CylindricalPlot3D draws the z coordinate in function of p and ip (cylindrical coordinates).

In[9]:= CylindricalPlot3D[p"2, {p, 0, 1}, {cp, 0, 2 7r}];

• An Undocumented Tool

The following option value for automated tick marks at multiples of 7f is unfortunately undocu

mented. pi Scale can be found in the Graphics' Graphics' package.

Graphics

In[10]:= Plot [Sin[x], {x, 0, 2 Pi}, Ticks -> {PiScale, Automatic}];

1

-0.5

-1

• Exercises

• A Sphere

rr
2

3rr
-2-

rr

Plot the surface of a unit sphere using ContourP1ot3D.

• Logarithmic Plots

Draw and interpret a logarithmic and a double logarithmic plot of x ---> x3 •

• Pie Charts

Draw a pie with piece sizes of 112, 114, 116, 1112.

• Projections of Surfaces

109

Draw a parametric plot of {Sin[G]Cos[I/r/2] ,Sin[G]Sin[l/r] ,Cos[G]} for the parameter

domain {G, 0 , rr}, {I/r, 0 , 4rr} .

Study the surface by projecting it onto three planes of the bounding box.

• Legends

Go back to the above example for legends and move the legend to the right -hand side of the plot.

• Cones

Use Cy1indrica1Plot3D to draw a cone.

Deform it into a corrugated surface by adding a small rp-dependent sine modulation.

• Vector Fields

Draw a vector field of the mapping IR 2 ---> IR 2 , given by (x, y) ---> (x - y, x + y).

110 Part 2

.2.5 Animations

Sometimes an additional dimension of a problem can be visualized by mapping a parame

ter (or a variable) on the time. The Cell> Animate Selected Graphics command animates
a selected group with graphics cells. The cell group can either be created using the func

tions in the Graphics' Animation' standard package, or "by hand". We will study

the second option in the third part, two examples of the first one are shown here. Naturally

the animation works only on-screen. The book shows the first figure of the sequence.

If the group of Graphics' packages has not yet been loaded you must at least load the

animation package at this point.

In[11]:= «Graphics'Animation'

We create the graphics by varying a parameter with the help of Animate. The list {n,

. 4 , 1, . 2} contains the variable, the initial value, the end value, and finally the step size.

In[12]:= Animate [Plot [x' - n X2, {x, -I, I},
PlotRange-+{All, {-.25, I}}], {n, -.4, I, .2}]

1

0.8

0.6

0.4

0.2

-1 -0.5 0.5 1

-0.2

The above cell group can be animated on-screen using the Cell > Animate Selected

Graphics command or by double-clicking on the graphic. In the bottom left-hand comer

of the notebook window a "control board" appears which you can use to change, among

other things, the direction and the speed of the animation.

To make the animation run smoothly the axes ranges must be identical for all figures. This

is achieved by an explicit setting for PlotRange.

In this example a three-dimensional view would of course also be possible.

Graphics 111

In[13]:= Plot3D[x4 - nx2 , {x, -1, 1}, {n, - .4, 1}];

1

With three-dimensional graphics this IS not so easy. You will find an example in the

exercises.

Let us draw the "pillow" from above again, this time without box or axes.

In[14]:= spinDemo = ParametricPlot3D [
{Sin[t9] Cos[I/!], Cos[t9] Sin[I/!], Cos [t9]}, {t9, 0,]f},

{I/!, 0, 2]f}, Axes -> False, Boxed -> False, ImageSize -> 180];

SpinShow rotates the object. Because of the symmetry a half tum is enough.

112 Part 2

In[15]:= SpinShow[spinDemo, Frames -> 10, SpinRange -> {O, pi}]

(Close the cell group in the notebook, select it, then choose Cell > Animate Selected

Graphics.)

Further functions and options can be found in the documentation of Graphics' Anima

tion' .

• Exercises

• Parameters in a Function of One Variable

Create an animation where the sine function over a period is moved to the right in ten steps. A
possible solution can be animated in the notebook:

1

2 5 6

-0.5

-1

Try out the different buttons on the "control board" in the bottom left corner of the window.

• Parameters in a Function of Two Variables

Look at the function (x, y) -7 n2 (sin x + sin y)2 + cos X + cos y with the parameter n.

First plot the graph in the domain [-If, lfJ x [-If, lfJ and for n = o.

Graphics 113

Visualize the changes in the surface as the parameter n varies in the interval from 0 to 1 (increment

length 1/10). Make sure that the "movie" does not show any tears due to incompatible axis scales.

• Your Own Example

Construct your own example for a MovieParametricPlot.

• 2.6 Exporting to Other Programs

Not all readers do all their work in Mathematica-even though the text system is adequate

for many applications, e.g., for writing this book. There might still be some need to export

graphics and formulas to other programs.

Exporting formulas is somewhat unsatisfactory, since they lose their mathematical content

during export and exist only as graphics. But the technology is exactly the same as for

graphics.

The most versatile technique is saving the graphic (or formula) in a file and then importing

this file into a word processing or graphic program. The EPS format gives the best results,

because it prints perfectly and because the format is available on all platforms. The

following steps do the job:

1. Select the graphic.

2. Menu Edit> Save Selection As ... > EPS.

3. Name the file.

4. Save the file.

The Adobe Illustrator format can be very useful for owners of the program. It allows the

manipulation of the figures in all ways possible in Illustrator.

Depending on the computer platform, the menu Edit> Save Selection As •.. may contain

other formats. They sometimes give less perfect results after export to files or via the

clipboard (Edit> Copy As).

• Exercise

• Saving a Graphic in a File

Plot the function x ~ 2x in the interval [-2, 2].

Export the graphic in EPS format and import it into your word processing program.

Part 3: Lists and Graphics
Programming

Lists are the most important objects in Mathematica. They appear everywhere, visibly or

hidden. Once you learn to use them properly, it will make working with the program that
much simpler.

In this part we will increase our knowledge of lists in-depth, then apply them to solve

simple linear algebra problems and to create our own graphics.

S. Kaufmann, A Crash Course in Mathematica
© Birkhäuser Verlag 1999

116 Part 3

• 3.1 Lists

• 3.1.1 Creating One-Dimensional Lists

We already know that lists are objects whose elements are placed into curly braces.

In[1]:= {1, 4, 9}

Out[1]= {I, 4, 9}

The Mathematica function Table is useful for creating lists. It evaluates an expression

for different values of an iterator.

In[2]:= Table [i 2 , {i, 10}]

Out[2]= {I, 4, 9, 16, 25, 36, 49,64,81, 100}

The list in the second argument of Table contains the name of the iterator and further

information. The following forms are possible (i is the iterator):

• {n} creates n identical entries (with no iterator present)

• {i, n} varies i over 1, 2, ... , n

• {i, a, n} varies i over a, a + 1, ... , n

• {i, a, n, s} varies i over a, a+s, a+2s, ...• n*. where n*",n

In[3]:= Table [a, {10} 1

Out[3]= {a, a, a, a, a, a, a, a, a, a}

In[4]:= Table[i2, {i, 0, 10}l

Out[4]= {O, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100}

In[5]:= Table [i 2 , {i, 0, 1, • 3 } 1

Out[5]= { 0, O. 09, O. 3 6, O. 81 }

Arithmetic sequences can be created more easily using Range. No name is needed for the

iterator in this case.

In[6]:= Range [10l

Out[6]= { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Lists and Graphics Programming 117

In[?]:= Range [0, 10]

Out[?]= {a, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

In[8]:= Range [0, 1, . 3]

Out[8]= {a, 0.3, 0.6, 0.9}

• 3.1.2 Manipulating Lists

Many functions are available for the manipulation of lists (see Section 1.8 of the Mathemat

ica Book). A few useful examples follow.

Our exercise object is:

In[9]:= list1 = {a, b, c, d, e}

Out[9]= {a, b, c, d, e}

The function Length determines its length (what a surprise!).

In[10]:= Length [list1]

Out[10]= 5

We already know how to extract elements.

In[11]:= list1 [[2]]

Out[11]= b

Or in StandardForrn:

In[12]:= listl[2]

Out[12]= b

Take can extract entire sublists. A positive number as second argument results in the

same number of elements from the left. Negative numbers count the elements from the

right. If we pass a list with a start and end number in the second argument, Take returns

the corresponding sublist.

In[13]:= Take[list1, 3]

Out[13]= {a, b, c}

118 Part 3

In[14]:= Take[listl, -3]

Out[14]= {c, d, e}

In[15]:= Take[listl, {2, 4}]

Out[15]= { b, c, d}

Drop functions analogously and throws the corresponding elements away.

In[16]:= Drop [listl, 3]

Out[16]= {d, e}

In[17]:= Drop[listl, -3]

Out[17]= {a, b}

In[1B]:= Drop[listl, {2, 4}]

Out[1B]= {a, e}

Rota teRight permutes the elements of a list cyclically to the right.

In[19]:= RotateRight [listl]

Out[19]= fe, a, b, c, d}

In[20]:= RotateRight [listl, 2]

Out[20]= {d, e, a, b, c}

Sort rearranges the elements according to a sort order.

In[21]:= Sort [%]

Out[21]= {a, b, c, d, e}

Lists can be joined using Join.

In[22]:= Join[listl, {f, g}]

Out[22]= {a, b, c, d, e, f, g}

Or we can use the function Flatten, which "flattens out" a nested list into a one
dimensional one.

Lists and Graphics Programming 119

In[23]:= Flatten[{list1, {f, g}}]

Out[23]= { a, b, c, d, e, f, g}

Or we can use Append twice, to add an element to the end each time.

In[24]:= Append[Append[list1, f], g]

Out[24]= {a, b, c, d, e, f, g}

Pos i tion gives the position(s) of a pattern; the corresponding elements can be extracted

with Extract.

In[25]:= list2 = {a"2, b, b, c, d"2, b, e}

Out[25]= {a2 , b, b, c, d 2 , b, e}

In[26]:= position[list2, b]

Out[26]= {{2}, {3}, {6}}

In[27]:= Extract [list2, %]

Out[27]= { b, b, b}

In[2B]:= Position[list2, _ "2]

Out[2B]= {{1}, {5}}

In[29]:= Extract [list2, %]

Out[29]= {a2 , d 2 }

Select tests the elements of a list for properties. The list must be given together with a

function, which returns True for the desired elements.

In[30]:= myTest [x_] = (x> 10) && (x < 50)

Out[30]= x> 10 && x < 50

In[31]:= Select [Table [i" 2, {i, 10}], myTest]

Out[31]= {16, 25, 36, 49}

One of the exercises shows that lists can also be used for set calculations.

120

• 3.1.3 Multidimensional Lists

Table can also create multidimensional lists:

In[32]:= Table [a A i + b A j, {i, 3}, {j, 3}]

Out[32]= {{ a + b, a + b 2 , a + b 3 } ,

{a2 +b, a 2 +b2 , a 2 +b3 }, {a 3 +b, a 3 +b2 , a 3 +b3 }}

The function MatrixForrn displays the list as a matrix.

In[33]:= MatrixForm [%]

Out[33]IIMatrixForm=

I a + b a + b 2

a 2 + b a 2 + b 2

a 3 + b a 3 + b 2

• Exercises

• Prime Numbers

Create a list of all odd numbers between 106 and 106 + 103 •

Part 3

The function PrimeQ tests whether a number is prime. Use it and Select to determine the prime
numbers in the above list.

• Sets

Use the functions Union and Intersection to fonn the union and the intersection of the sets
{a, a, b, C, d, e, f} and {a, f, g, g, j}. Note that Union can also be used to get rid of duplicated

elements in a list .

• 3.2 Calculating with Lists

• 3.2.1 Automatic Operations

Many functions of one argument are automatically mapped onto the elements of lists.

In[34]:= Sin[{l, 2, 3}]

Out[34]= {Sin[l], Sin[2], Sin[3]}

Lists and Graphics Programming 121

This multiplies each element of the list by 3:

In[35]:= 3 {a, b, c}

Out[35]= {3 a, 3 b, 3 c}

The (normal) product is calculated element-wise.

In[36]:= {a, b, c} {l, 2, 3}

OUI[36]= { a, 2 b, 3 c}

For more involved problems there are also the functions Inner and Outer, which

calculate generalized inner and outer products.

Scalar and cross products are predefined in the functions Dot and Cross, even though

you could also easily do this yourself (there is an exercise for it).

In[3?]:= Dot[{x, y, z}, {u, v, w}]

OUI[3?]= u x + v y + w z

In[38]:= Cross [{x, y, z}, {u, v, w}]

Out[38]= { w Y - v z, - w x + U z, v x - u y}

We can even write these in the following notation:

In[39]:= {x, y, z}. {u, v, w}

Out[39]= U x + v y + w z

In[40]:= {x, y, z} x {u, v, w}

Oul[40]= {w y - v z, - w x + U z, v x - U y}

• 3.2.2 Mapping Functions on Lists

The automatic mapping of functions on lists will not solve all our problems. For example,

let us look at Variables which delivers the variables in a polynomial.

In[41]:= variables [x + y]

Oul[41]= {x, y}

If we apply this function to a list, we get a flat list of all variables in the original list.

122 Part 3

In[42]:= variables [{x + y, x + z, y}]

Out[42]= {x, y, z}

But what are the variables of the single elements of the list? An iteration over the elements

is somewhat awkward:

In[43]:= Table [Variables [{x + y, x + z, y} [iD], {i, 3}]

Out[43]= {{x, y}, {x, z}, {y}}

As part of a complicated program, this would have the disadvantage that we first have to
determine the length (possible with Length) and that the construction is hard to read.

Therefore Mathematica offers the possibility of mapping functions of one argument onto

lists using Map.

In[44}:= Map[variables, {x+y, x+ z, y}]

Out[44]= {{ x, y}, {x, z}, {y}}

Because Map appears often in programs, there is also a short notation:

In[45]:= Variables /@ {x + y, x + z, y}

Out[45]= {{x, y}, {x, z}, {y}}

• 3.2.3 Pure Functions

In the example for Select we defined an auxiliary function

In[46]:= myTest [x_] = (x> 10) && (x < 50);

to recognize the desired list elements. Often we need this kind of tool only once, so there

is no point in giving it a name. This can be avoided with the help of pure functions. The

pure function for this problem can be written with Function and looks like this:

In[47]:= Function [x, (x> 10) && (x < 50)]

Out[47]= Function [x, x> 10 && x < 50 1

The first argument of Function contains the name of the auxiliary (local) variable x, the

second argument is the expression in x to be evaluated. Such objects are applied in the

usual way. In the following example the argument 9 is substituted for x and the function

body evaluated.

Lists and Graphics Programming 123

In[48]:= Function[x, (x> 10) &:&: (x < 50)] [9]

Out[48]= False

Pure functions can easily be mapped on lists

In[49]:= Function[x, (x> 10) &:&: (x < 50)] /@ {l, 20, 100, 30}

Out[49]= {False, True, False, True}

or used in functions like Select.

In[50]:= Select [Table [i" 2, {i, 10}], Function[x, (x> 10) &:&: (x < 50)]]

Out[50]= {16, 25, 36, 49}

Now we do not need the name x in the pure function either. We can replace it with # and

write only the function definition.

In[51]:= Select[Table[i"2, {i, 10}], Function[(#> 10) &:&: (#<50)]]

Out[51]= {16, 25, 36, 49}

Because this also appears often, there is an even shorter way to write it: leave out the

Function and delimitate the pure function with a &.

In[52]:= Select[Table[i"2, {i, 10}], (# > 10) &:&: (# < 50) &:]

Out[52]= {16, 25, 36, 49}

In this way we can easily calculate the partial derivatives of the expression

x-y

with respect to x, y, z, i.e. the gradient.

x-y
In[53]:= D[, #] &: /@ {x, y, z}

.yx2 + y2 + Z2

{- x (x-y) 1
Out[53]=

(x2 + y2 + Z2) 3/2
+

yx2 +y2 +Z2

(x-y) y 1 (x-y) Z

(X2 + y2 + Z2) 3/2 yx2 + y2 + Z2
,

(X2 + y2 + Z2) 3/2

124 Part 3

In a pure function with several arguments, these are either combined into a list (when

Function is used with two arguments) or indicated with #1, #2, ... (in the short nota

tion).

In[54]:= Function[{x, y, z}, Sqrt[xA2+yA2+zA2]]

Out[54]= Function[{x, y, z}, -YX2 +y2 +Z2]

In[55]:= %[a, b, c]

Out[55]= -y a 2 + b 2 + c 2

In[56]:= Function [Sqrt [#1 A 2 + #2 A 2 + #3 A 2]] [a, b, c]

Out[56]= -ya2 + b 2 + c 2

Of course we can also write definitions with pure functions.

In[57]:= geometricMean = (#1 #2 #3) A (1/3) &:;

In[58]:= geometricMean [a, b, c]

Out[58]= (a be) 1/3

The alternative definition of the form

In[59]:= geometricMean1 [x_, y _, z_] : = (x y z) A (1 / 3)

In[60]:= geometricMean1 [a, b, c]

Out[60]= (a be) 1/3

is a definition for the pattern geometricMeanl [x_, y_, z_l. In contrast, the pure
function

In[61]:= geometricMean = (#1 #2 #3) A (1/3) &:;

can be interpreted as a definition for the head geometricMean (see Section 4.1) .

• 3.2.4 Using List Elements as Arguments

To conclude this first look at some exotic constructions, let us discuss Apply. It is used to
apply the elements of a list as arguments of a function.

Lists and Graphics Programming 125

In[62]:= Apply[f, {a, b, e}]

Out[62]= f [a, b, c 1

This is, of course, different from:

In[63]:= f[{a, b, e}]

Out[63]= f [{a, b, c} 1

We now consider the addition function Plus which we normally write using the operator

+ (see Section 4.1). If we apply it to a list using Apply, we get the sum of the elements

In[64]:= Apply[Plus, {a, b, e}]

Out[64]= a + b + C

or, analogously, the product using Times:

In[65]:= Apply[Times, {a, b, e}]

Out[65]= abc

There is also an infix notation:

In[66]:= Plus @@ {a, b, e}

Out[66]= a + b + C

In[67]:= Times @@ {a, b, e}

Out[67]= abc

The above function for the geometric mean has the disadvantage that the number of

arguments is set at three. We can now define a variation which handles a list of indetermi

nate length.

In[68]:= geometrieMean2 = (Times @@ #) 1\ (1 / Length [#]) &:;

In[69]:= geometrieMean2 [{a, b, e, d, e}]

Out[69]= (a bed e) 1/5

Of course, we also have built-in functions for indexed sums and products: Sum and

Product. They work like Table.

126 Part 3

In[70]:= Sum [a " i, { i, 5}]

• 3.2.5 Plotting Lists

There are variations to almost all graphic functions to plot lists of values. Their names

always begin with List (ListPlot, ListPlot3D, ListContourPlot, etc.). The

data can be taken from Mathematica itself or can be imported from other programs using
ReadList (see the in-depth section).

We create a list with a couple of numerical values of the cosine function.

In[71]:= cosList = Table [N [Cos [x]], {x, 0, 2 Pi, 2 pi / 50}] ;

ListPlot plots these points.

In[72]:= ListPlot [cosList] ;

1

0.5

10 20 30 ·40 50

-0.5

-1

They are joined with the option PlotJoined->True.

In[73]:= ListPlot [cosList, PlotJoined -> True] ;

1

0.5

50

-0.5

-1

Lists and Graphics Programming 127

The abscissa is labeled with the entry numbers in the list (1, ... , 51) in this case. But we

can also plot a list of point pairs, which gives us useful scales on both axes.

In[741:= Short [xCosxList = Table [N[{x, Cos [xl}], {x, 0, 2 Pi, 2 pi /50}]]

Out[741I1Short=

{{O, 1.}, «49», {6.28319, 1.}}

In[751:= ListPlot [xCosxListj ;

1 '. ."

0.5

1 2 3 4 5 6

-0.5

-1

• In Depth

• Solutions of Differential Equations as Pure Functions

We have seen in the in-depth to Section 1.4.6 how the solution of a differential equation can be
requested as a pure function. This form is useful if the derivative of the solution must be calculated

(we will look at the detailed reason for it in the in-depth to Section 4.2). It allows us, for instance, to
draw a parametric plot in the phase space {x(t), x' (t)J.

As an example, let us look at the numerical solution of the nonlinear oscillation equation

x" (t) + sin(x(t)) = 0 with {x(O) = 1, x' (0) = OJ.

In[76]:= NDSolve[{x" [t] +Sin[x[t]] == 0, x[O] == 1, x' [0] == OJ, x, {t, 0, 5}];

In[771:= parametricPlot[Evaluate[{x[t], x' [t]} /. %[[1]]], {t, 0, 5}];

0.5

-0.5 0.5

-0.5

128 Part 3

(Evaluate makes sure that the transformation rule is applied before the curve is plotted.)

• The Efficiency of Numerical Sums

You will calculate many numerical sums in the exercises. To increase the numerical efficiency, the
following consideration is useful.

We first look at the sum:

In[7S]:= Sum[l/ iA 3, {i, 10}]

Oul[7S]=
19164113947

16003008000

Mathematica calculates a priori with exact rational numbers. Of course this becomes very compli

cated for larger sums, therefore it is essential to change to approximate numbers as quickly as
possible.

In[79]:= Sum[l/N[i] A3, {i, 10}]

Oul[79]= 1.19753

After increasing the number of terms, we can look at the difference in CPU times using the function

Timing. In addition to the result, it also shows the processing time. The result of the first calcula

tion produces a large fraction, which we will suppress.

In[80]:= Timing [Sum [1/ iA 3, {i, 1000}];]

Oul[SO]= {1.68333 Second, Null}

In[81]:= Timing [Sum [1 / N[i] A 3, {i, 1000} 1; 1

Oul[81]= {0.0666667Second, Null}

• Saving and Reading Lists

We will end this in-depth section with an example for reading external data. First we create a list to

work on, one which is comprised of values of the sine function with a superimposed "noise" (created
with Random).

In[82]:= data = Table [Sin [x] + Random [Real, {-.03, .03}], {x, 0, 2Pi, 2Pi/200}];

Lists and Graphics Programming 129

In[83]:= ListPlot [data] ;

1

0.5

50 10'-Q 150 4: 0

"'
~

-0.5 \. " .;
/

"'"11. ...

-1 Nf'.-

We save the list in a file with the Save command.

In[84]:= Save ["data .m", data]

Now we clear the definition.

In[85]:= Clear [data]

In[86]:= data

Out[86]= da ta

The following command reads it again:

In[87]:= «data.m;

In[88]:= ListPlot[data];

",
/' '-'\

.1 \.

1

0.5

,1 ' ..
50 10'-Q 150 4: 0

\. ~

-0.5 \.\ " .;
/ T.....

-1 '''''',Nf\ .. '"

But a look at the file da ta . m shows that the data was saved in the usual Mathematica format. It

cannot therefore be used as an example for data which was created in another program. Without

further explanation, we will accept that the following command writes the data unformatted into

single lines:

In[89]:= PutAppend[#, "pure-data"] &: /@ data;

A look at the file pure-da ta proves it. For this we use either the Mathematica command:

! ! pure-data

130 Part 3

which prints the file on screen (we will not show this uninteresting printout here), or we could as well

open the file using the command File> Open in the front end,

Now we can use the function ReadList to read the data from this file again,

In[90j:= external Data = ReadList ["pure-data" j ;

In[91j:= ListPlot[externalDataj;

1

0,5

-0,5

-1

When reading structured data, for example Excel sheets which have been saved as text, the sequence

of data types can be entered as second argument in ReadList,

• Exercises

• A Logarithm Table

Create in at least two different ways a table of natural logarithms of the numbers between 1 and 10,

Now create a list which contains the pairs In, log(n)}, (TableForm displays it as a table,)

How can the above be solved with a pure function which is mapped onto Range [1 , 10 I ?

• The Gradient

Define a function named gradient, which calculates the gradient of an expression in the simplest

way, The first argument should be the expression, the second a list of the variables,

• Pure Functions

Create with

aList=Table[i+j, {i, lO}, {j, Random[J:nteger, {1, 10}]}]

a nested list with sublists of different lengths, Now use pure functions to

• calculate the lengths of the sub lists,

• throw out the first element of each sublist,

• rotate all sublists to the left by two elements,

• determine the sum of the elements in each sublist.

Lists and Graphics Programming 131

• Dot and Cross Products

Define your own functions to calculate the scalar and the cross product of two vectors.

• A Riddle

What does the following function do when it is applied to two lists of length 3:

riddle [u_1 v _] : = RotateLeft [u RotateLeft [v] - RotateLeft [u] v]

• Sums

What does the Mathematica function Sum give for Li:' i2~i and L:, i3~i2'?

• Variations Using Apply

Find at least three different ways of calculating the sum of the squares of all integers between 1 and

10000. Use the function Timing, to compare processing times.

• Plots of Lists; Sums and Series

Before calculating sums, look at the observations on efficiency in the in-depth section.

Plot the list of points l..., i = 1, ... , 500.
I

Visualize the behavior of the sums L:=, +, for n = 1, ... , 500, graphically.

The (infinite) harmonic series seems to diverge. What is Mathematica's comment to this?

Compare with the behavior of Li:, t.
~= ,

Calculate the exact result for the series L.J i=, 12'

• 3.3 Linear Algebra

Mathematica can also be used for linear algebra.

Several useful matrices are already pre-defined. Identi tyMa trix gives us the identity

matrix of the selected dimension.

In[92]:= Identi tyMatrix [3]

Out[92]= {{1, 0, O}, {O, 1, O}, {O, 0, 1}}

DiagonalMatrix simplifies the definitions of diagonal matrices.

In[93]:= diag = DiagonalMatrix[{a, b, c}]

Out[93]= {{ a, 0, O}, {O, b, O}, {O, 0, c}}

132 Part 3

As we have already seen, Ma trixForm produces a pretty print of matrices.

In[94]:= MatrixForm[diag]

Out[94]IIMatrixForm=

[
a 0 0)
o b 0
o 0 c

The inverse is calculated using Inverse.

In[95]:= MatrixForm [Inverse [diag]]

Out[95V/MatrixForm=
1- 0 0 a

0 1 0 b

0 0 1
c

The . operator calculates the matrix product. It is a short form of the Dot function.

In[96]:= MatrixForm[%. diag]

Out[96V/MatrixForm=

[1 0 0)
o 1 0 001

Dot automatically sums over the last index of the first factor and the first index of the

second factor. Therefore a list as first factor is a line vector and a list as second factor is a

column vector.

In[97]:= {a, b}.{{l, 2}, {1, 2}}

Out[97]= {a + b, 2 a + 2 b}

In[98]:= {{ 1, 2}, {1, 2}}. {a, b}

Out[98]= {a + 2 b, a + 2 b}

The awkward differentiation between

In[99]:= {{a, b}}.{{l, 2}, {1, 2}}

Out[99]= {{a+b,2a+2b}}

In[100]:= {{ 1, 2}, { 1, 2}}. { {a}, {b }}

Out[100]= {{a+2b}, {a+2b}}

Lists and Graphics Programming 133

is usually unnecessary.

Now we work with a slightly more complicated 3x3 matrix.

In[101j:= matl = {{a, c, 1}, {a, b, c}, {1, -b, 1}}

Out[101j= {{a, c, I}, {a, b, c}, {l, -b, I}}

In[102j:= MatrixForm[matl]

Out[102jIIMatrixForm=

[~ -~~)
In[103j:= MatrixForm[Inverse [matl]]

Out[103jIIMatrixForm=

b+bc -b-c
-b-a c+a b c+c2 -b-a c+a b c+c2 -b-a c+a b c+c 2

-l+a
-b-a c+a b c+c 2 -b-a c+a b c+c2 -b-a c+a b c+c 2

a b+c ab-a c
-b-a c+a b c+c2 -b-a c+a b c+c2 -b-a c+a b c+c2

In[104j:= MatrixForm [SimplifY [% • matl]]

Out[104jIlMatrixForm=

[: : :)
The transposed matrix is calculated using Transpose

In[105j:= MatrixForm [Transpose [matl]]

Out[105jIIMatrixForm=

the determinant using Det.

In[106j:= Det [matl]

Out[106j= - b - a c + abc + c 2

134 Part 3

• In Depth

• An Application of Transpose

The function Transpose can be useful for problems which have little to do with linear algebra.

For example, let us look at a list of data which might come from an experiment and have been read

with ReadList.

In[107]:= expData= Table[N[Exp[-t] Cos[t]], {t, 0, 3, .3}]

Qul[107]= {1., 0.707731,0.452954,0.252728,0.10914,0.0157836,

-0.0375563, -0.0618217, -0.0668948, -0.0607586, -0.0492888}

The corresponding values of the variable t are also given as list:

In[1081:= tValues = Range [0, 3, .3]

Qul[108]= {O, 0.3, 0.6, 0.9, 1. 2, 1. 5, 1.8, 2.1. 2.4, 2.7, 3.)

To create a list of matching pairs with Li s tP lot we could of course iterate as follows:

In[1091:= listPlotdata =
Table[{tValues[[i]], expData[[i]]}, {i, Length[tValues]}]

Qul[109]= { { 0, 1.}. {O. 3, O. 70773 1 }. {O. 6, O. 452954 }.

{0.9, 0.252728}. {1.2, 0.10914}. {1.5, 0.0157836}.
{1.8, -0.0375563}. {2.1, -0.0618217}.

{2.4, -0.0668948}. {2.7, -0.0607586}. {3., -0.0492888}}

In[l10j:= ListPlot[listPlotdata];

1

0.8

0.6

0.4

0.2

0.5 1 1.5 . 2· 2.5· 3

However this is much more elegant:

Lists and Graphics Programming

In[111]:= ListP1ot[Transpose[{tVa1ues, expData}]];

1

0.8

0.6

0.4

0.2

0.5

• Exercises

1 1.5 . 2· 2.5· 3

• A Set of Simultaneous Equations

135

Let us look at the set of equations {2 x + 5 y + z = 1, 3 x - y - z = 2, x + 5 y + 3 z = I}. Solve it in

two ways:

• with the function Solve,

• by determining the coefficient matrix and calculating the result using its inverse.

• Reading Programs

The steps below automate the above calculation. Try to understand them.

It is not necessary that the terms with the variables are on the left-hand side of the equations and the

constant vector on the right. Therefore we first put everything on the left-hand sides and use this as a

list.

In[112]:= equations = {2 x + 5 y + Z == 1, 3 x - y - z == 2, x + 5 y + 3 z == 1};

In[113]:= 1hs = (#[1] - #[2] &:) I@equations

Out[113]= { -1 + 2 x + 5 y + z, - 2 + 3 x - y - z, -1 + x + 5 y + 3 z}

Here we can determine the coefficient matrix, using the Coefficient function, as

In[114]:= Coefficient[#, {x, y, z}] &: l@lhs

Out[114]= {{2, 5, 1}. {3, -1, -1}. (1, 5, 3))

We obtain the vector by setting the variables to zero. Thread does this the fastest. (What does

Thread [{x, y, Z }--7{ O,O,O}] do? What does Thread [{x, y, Z }--70] do?)

In[115]:= 1hs I. Thread [{x, y, z} -+ 0]

Out[115]= {-1, -2, -1}

Only the sign of the vector needs to be changed, because we have written everything on the left-hand

side of the equation. This allows us to define the following two functions:

136 Part 3

In[116):= coefficientMatrix[equations_, vars_) : =
(Coefficient[#, vars) &:) /@ (#[1] - #[2] &:) /@equations

In[117):= vector [equations_, vars_) : =

(#[2] - #[1] &:) /@equations /. Thread [vars 0)

In[118):= coefficientMatrix[{2 x + 5 y + Z == W - 1,
3x-y-z-w+2==0, 1==x+5y+3z,w+x==2}, {x,y, z,w})

Out[118)= { (2, 5, 1, - 1), (3, - 1, - 1, - 1), {- 1, - 5, - 3, O}, {1, 0, 0, 1}}

In[119):= vector [{2 x + 5 Y + z = = w - 1, 3 x - y - z - w + 2 = = 0,
1==x+5y+3z,w+x==2}, {x,y, z,w})

Out(119)= (-1, -2, -1, 2)

• 3.4 Graphics Programming

• 3.4.1 Graphics Objects

Mathematica recognizes various two-dimensional graphics pnmmves: Point, Line,

Rectangle, Polygon, Circle, Disk, Raster, and Text. We can create a list

containing such graphics primitives, use it in a Graphics object, and draw the illustra
tion with Show.

In(120):= Show [Graphics [

{Line [{{ 0, O}, {1, 1}}],

Circle [{O, O}, Sqrt [2]],
Text [n Radi us", {. 8, .4}]}] 1 ;

Radius

All Graphics options, which we have already met as additional options of Plot, can be

used to change the default values.

Lists and Graphics Programming 137

In[121]:= Show[%, Axes -> True, AspectRatio -> 1, lmageSize -> 180];

1

0.5 Radius

-1 -0.5 0.5 1

-0.5

-1

Graphics directives define properties of graphics pmmtlves using, for instance, color

(Hue, etc.), different point sizes (PointSize and AbsolutePointSize), thicknesses

(Thickness and AbsoluteThickness), and dashes (Dashing and Absolute

Dashing).

For graphics directives which begin with Absolute, the value is given in pixels, those

without Absol u te use the percentage of the width of the graphic.

Graphics directives are valid for the successive elements of the list in which they appear

and for its sublists.

Here AbsoluteThickness has an effect on all the rest:

138 Part 3

In[122]:= Show [Graphics [
{AbsoluteThickness[3],
Line [{ {O, O}, {1, 1}}],
Circle [{O, O}, Sqrt [2]],
Text[IRadius", {.8, .4}]}],

Axes -> True, AspectRatio -> 1, lmageSize -> 180];

This way the "radius" is not drawn thickly:

In[123]:= Show [Graphics [
{Line[{{O, O}, {1, 1}}],
AbsoluteThickness[3],
Circle[{O, O}, Sqrt[2]],
Text["Radius", {.8, .4}]}],

Axes -> True, AspectRatio -> 1, lmageSize -> 180] ;

Now we enter the radius and the circle in a sublist, use AbsoluteThickness on it, and

then draw a small thin circle in the middle.

Lists and Graphics Programming

In[124]:= Show [Graphics [
{{AbsoluteThickness[3],

Line[{{O, OJ, {1, 1}}], Circle[{O, OJ, Sqrt[2]]},
Circle[{O, OJ, .05], Text [RRadius R, {.8, .4}]}],

Axes -> True, AspectRatio -> 1, lmageSize -> 180] ;

• 3.4.2 Graphics3D Objects

139

Everything works the same way with three-dimensional graphics objects. Cuboid, Line,

Point, Polygon, and Text are available as graphics primitives. Lists of such primi

tives, perhaps together with graphics directives, are written into a Graphics3D object
and drawn using Show.

As an example, we draw 100 randomly placed cubes. To create the list of corner points,
we use the (pseudo) random generator Random. In its simplest call version, without an

argument, the results lie in the interval [0,1]. Therefore

In[125]:= Table [{Random [], Random [], Random [] }, {1 0 0 }] ;

returns a list of 100 "random" number triples. The Cuboid primitives are unit cubes with

given corner points (as long as only one argument is given). We scale the coordinates by

factor 20 so that the cubes will not all overlap. We can map Cuboid onto the list of

coordinates using Map or /@ and put the results into a Graphics3D object.

140

In[126]:= Show [Graphics3D [Cuboid /@
(20 Table [{Random[], Random [], Random [] }, {lOa}])],

lmageSize -> 180];

Part 3

For a random colorization of the cubes (with SurfaceColor) we use the function

Transpose, which was discussed in the above in-depth section.

In[127]:= Show [Graphics3D [
Transpose[{Table[SurfaceColor[Hue[Random[]]], {lOa}],

Cuboid /@ (2 a Table [{Random [], Random [], Random [] } ,
{lOa}])}]], lmageSize-> 180];

• 3.4.3 Objects from Standard Packages

Several standard packages collected in the Graphics directory contain tools to create

graphics objects. We load the definitions using

In[128]:= «Graphics'

Lists and Graphics Programming 141

• Arrows

The Graphics' Arrow' package contains graphics objects for arrows. We can use them
like this:

In[129]:= Show[Graphics[{Arrow[{O, O}, {1, 1}], Arrow[{O, 1}, {1, O}]}],
lmageSize -+ 160];

The documentation in the Help Browser explains the various options for changing arrow

heads.

In[130]:= Show[Graphics[{Arrow[{O, O}, {1, 1}, HeadLength-+O.l],
Arrow[{O, 1}, {1, O}, BeadLength-+ 0.1,

HeadCenter -+ O]}], lmageSize -+ 160];

• Polyhedra

We find the definitions of polyhedra in the Graphics' Polyhedra' package. As an

example, let us draw an icosahedron.

142

In[131]:= Show [Polyhedron [Icosahedron] ,
Boxed -> False, ImageSize -> 180] ;

• Three-Dimensional Objects

Part 3

The Graphics' Shapes' package contains definitions for cylinders, cones, tori, sphere

surfaces, etc., for use in Graphics3D objects.

In[132]:= Show[Graphics3D[MoebiusStrip[3, 1, 50]],
Boxed -> False, ImageSize -> 180];

There are also functions for rotating objects and for drawing grid models.

Lists and Graphics Programming

In[133]:= Show[Graphics3D[Sphere[1, 20, 20]],
Boxed -> False, ImageSize -> 180] ;

In[134]:= Show [WireFrame [Graphics3D[Sphere [1, 20, 20]]],
Boxed -> False, ImageSize -> 180] ;

• In Depth

• Splines

143

Roughly speaking, spline functions approximate polygons with smooth polynomial curves. There are

various ways of doing this, which you can select for each problem accordingly. Many spline versions

are pre-defined in the Graphics' Spline' package.

Let us look at a couple of points and the corresponding polygon.

In[135]:= points = {{O, OJ, {O, l}, {l, l}, {2, 2}};

144

In[136]:= Show [Graphics [{Hue [0], Line [points] }], ZmageSize -> 160];

A cubic interpolation is drawn using the following command:

In[137]:= Show[Graphics[{Hue[O], Line [points] ,
GrayLeve1[0], Sp1ine[points, CUbic]}], J:mageSize -> 160];

• Exercises

• The Pythagorean Theorem

Draw a right-angled triangle and the three squares of the Pythagorean theorem on its sides.

Hint: use AspectRatio, to scale the drawing properly.

Color the squares differently.

• The Thales Circle

Draw a right-angled triangle and the corresponding Thales circle.

Indicate the center of the circle with a small dot.

In addition, draw a radius with an arrow.

Label the sides of the triangle, the radius, and the circle.

Part 3

Lists and Graphics Programming 145

• Tori

The Torus function (from Graphics' Shapes') produces a long list of polygons. Throw out the

first 40 elements of the list and look at the resulting object.

Rotate the picture, so that you can see into the hole.

Draw a grid model of it.

Draw a torus with a 24xl2 grid.

Drop the appropriate polygons from the list so that you get the torus with holes shown on the title

page of Part I.

If you double the number of polygons in every direction and color the surfaces, you get the title

picture of the book.

• Combining Objects

Using Graphics' Shapes' draw a sphere and a long enough cylinder with half the radius of the

sphere and its axis through the middle of the sphere. The result could look like this:

Now use the TranslateShape function (from the package) to move the cylinder by one radius

length in direction x.

Draw a grid model of this object.

• Boxes

The title illustration to Part 4 consists of open "boxes" with five polygons making up the sides. It is

quite easy to place such boxes on a virtual sphere by using a parametrization with spherical coordi

nates. Try it.

146 Part 3

• 3.5 Application: Animating a Mechanism

Now we will use our knowledge to animate a simple plane mechanism. This consists of

two rods (l and 4 units long) connected by a cylindrical joint. The short rod is supported
by a cylindrical joint and rotates with a constant angular velocity. The long one slides on a

horizontal plane. The support is 2 units above the horizontal plane.

(If the graphics look jaggy on the screen, redraw them smoothly with Cell > Rerender

Graphics.)

1

-,
1
1
1 4 :2

We want to vary the angle of rotation cpo

If we place the origin of our coordinate system into the support, we can determine the
coordinates of the rotating joint:

In[138]:= joint[cp_] = {Cos[cp], Sin[cp]};

The sliding end of the long rod has the y coordinate - 2. The x coordinate is comprised of

that of the joint and the horizontal side of the large right-angled triangle, which we calcu

late using the Pythagorean theorem.

I

2'
1

1

I

4

Lists and Graphics Programming 147

In[139):= endPoint [Ip_] = {Cos[lp] +"16- (2+Sin[Ip])2, -2};

This allows us to define a function which yields, at a given angle ip, the graphics primitives

for rendering both rods and a circle for the joint.

In[140):= rods [Ip_] =
{Disk[joint[Ip], .07], Line[{{O, O}, joint[Ip], endPoint[Ip]}]};

In[141):= Show [Graphics [rods [0]],
AspectRatio -> Automatic, ImageSize -> 160];

Now we define a list of objects to illustrate the supports. They are fixed, therefore we do

not need a function of ip.

In[142):= supports =
{Line [{ { - .2, -.3}, {O, O}, {. 2, -.3}}], Disk [{O, O}, .07],
GrayLevel [. 5], Rectangle [{ - .3, -.3}, {. 3, -. 5}] ,
Rectangle[{-l, -2}, {5, -2.2}]};

In[143):= Show [Graphics [supports], AspectRatio -> Automatic];

Now we are almost finished. We use Table to create a list of all the graphics and make

sure that the same range is drawn for each angle.

148

In[144]:= Table [Show [Graphics [{supports, rods [cp] }] ,

PlotRange -+ {{ -1. 1, 5. 1}, {- 2 • 5, 1. 5} } ,
7r 7r

AspectRatio -+ Automatic], {cp, 0, 2 7r - -, -}];
10 10

Part 3

This cell group can be closed in the notebook and animated with Cell> Animate Selected

Graphics.

The following command shows all the pictures of the "movie" overlapping:

In[145]:= Show[%];

• Exercises

• Sketches

Create the three sketches of the mechanism from the above section.

Lists and Graphics Programming 149

• Parabola

Animate the flight of a particle in a uniform gravitational field, neglecting the friction.

Hint: If the flight starts at the origin with an initial velocity Va, the initial angle is a, and the accelera-

tion of gravity g, then the x and y coordinates at time t are given by x=vat(cosa) and
• g (2

Y = Va t(sma) - """l ..

The notebook contains a simple solution:

Superimpose a plot of the corresponding parabola.

Here is a possible solution for this as well:

• Cycloids

A wheel rolls on a horizontal surface. At half radius a point is marked on the wheel. As the wheel

moves this indicates a (shortened) cycloid. Visualize the wheel and the curve.

A static picture could look like this:

The notebook contains a suggestion for the animation:

This gives you a starting point for animations of more generalized cycloids.

Part 4: Introduction to
Programming

Part 4 discusses in greater detail how Mathematica works, so that we can tailor our
calculations and develop simple programs. To do this, we need to understand the internal

representation of expressions and know how patterns are used in definitions and transforma

tion rules.

We will see that Mathematica contains all the tools for the well-known procedural program

ming styles in languages like Pascal, Modula-2, C, or Fortran, but that many problems can

be solved much simpler using functional or rule-based programming.

The conclusion contains links to literature and to programs available on the World Wide

Web.

S. Kaufmann, A Crash Course in Mathematica
© Birkhäuser Verlag 1999

152 Part 4

• 4.1 Expressions

Mathematica works internally with a uniform representation of all objects as expressions.

Even entire notebooks are expressions and can be programmed accordingly (see Section

2.10.3 of the Mathematica Book). Numbers, names, and strings are atomic expressions.

Nonatomic expressions have the form f [aI' a2' ... J. The name f denotes the head, and

zero or more arguments aI, a2, ... are placed in square brackets. The arguments are

themselves expressions.

The function FullForm shows the representation as an expressions. With

In[1]:= FullForm [f [x]]

Out[1]IIFuliForm=

f[x]

nothing sensational happens, because f [x 1 was already written as an expression. More

interesting is:

In[2]:= FullForm[(a + b) An]

Out[2]IIFuliForm=

Power [Plus [a, b], n]

Here we see that a + b is written internally as Plus [a, bland the power with Power. An

alternative view is produced by TreeForm, which displays the hierarchical structure as a

tree.

In[3]:= TreeForm[(a + b) An]

Out[3]/lTreeForm=

Power [I , nl
Plus [a, b]

We see that the first argument of Power is itself a nonatomic expression (that is

Plus [a, b]); the vertical line I indicates the next level in the hierarchy. The second

argument of Power is atomic.

Somewhat more complicated is:

Introduction to Programming

In[4]:= TreeForm[{a, (a A2 -b) An}]

Out[4VfTreeForm=

List[a,

Power [

Plus [I
Power [a, 2] Times[-l, b]

]
, n]

153

This internal representation of expressions is important with many problems (see in

depth). Mathematica uses it in all calculations, especially in pattern recognition.

Many functions which we know from list manipulation also work for expressions. Have a

look at:

In[5]:= expr = 1 + x + X A 2

Out[5]= 1 + x + x 2

In[6]:= FullForm [expr]

Out[6]1/FuIiForm=

Plus[l, x, Power [x, 2]]

The first part (the first argument of the outer expression) is

In[7]:= expr [[1]]

Out[7]= 1

the second part is

In[8]:= expr [[2]]

Out[8]= x

We can easily add a further element using Append:

In[9]:= Append [expr, x A 3]

Out[9]= 1 + x + x 2 + x 3

• In Depth

• Patterns for Rational and Complex Numbers

For rational numbers Mathematica uses a representation with Rational:

154

In[10]:= FullForm[3/ 4]

Oul[10VlFuIiForm=

Rationai[3, 4]

Part 4

To determine the numerator and the denominator of a rational number and combine the two as a list,

we write:

In[ll]:= numAndDen[Rational[a_, b_]] = {a, b}

OUI[ll]= {a, b}

In[12]:= numAndDen [3 / 4]

Oul[12]= {3, 4}

The following version does not work:

Oul[13]= (a, b)

In[14]:= wrong [3 /4]

OUI[14]= wrong [f 1

because the expression wrong [Rational [3,4]] is not matched by the pattern in the definition:

In[15]:= FullForm[wrong[a_/b_]]

Out[15]IIFuIiForm=

wrong [Times [Pattern[a, Biank[]], Power [Pattern[b, Biank[]], -1]]]

We see this more clearly without the blanks:

In[16]:= FullForm[wrong[a / b]]

Out[16]IIFuIiForm=

wrong[Times[a, Power[b, -1]]]

In the same way, complex numbers are written internally using Complex:

In[17]:= FullForm[2 + 3 :1:]

Out[l7]IIFuIiForm=

Compiex[2, 3]

• Exercises

• The Structure of Expressions

Study the internal representations of the following expressions:

Introduction to Programming 155

x' [t]

D[s [x, y], x, y]

• Real and Imaginary Parts

Study the above in-depth section. Using pattern recognition, define a function which returns the real
and imaginary parts of a complex number as a list. (Do not use Re or rm.)

• 4.2 Patterns

We have already seen in the first part that the left-hand side of transformation rules and

definitions must be interpreted as patterns. The patterns generally contain blanks C)
which can be filled with any expression. So a pattern matches an expression if the expres

sion has exactly the same structure as the pattern (in the internal representation), but any

sub-expressions can appear instead of blanks in the pattern.

There are various useful tools to restrict patterns or construct more complicated patterns.

• 4.2.1 Simple Patterns

Let us look at the following expression:

In[18]:= formula = 1 + x + X A 2 + Y A 3 + Z A 2 + X A 2 Sin [z]

Out[18]= 1 + x + x 2 + y3 + Z2 + x 2 Sin [z]

We can substitute values with the help of transformation rules.

In[19]:= formula /. x - > 3

Out[19]= 13 + y3 + Z2 + 9 Sin [z]

The left-hand side of the transformation rule, i.e. x, is in this case a very special pattern. It

only matches the expression x. If we replace x with a Blank C), this pattern matches the

entire formula and everything is replaced by the right-hand side of the transformation rule.

156 Part 4

In[20):= formula /. -> 3

Out[20)= 3

It gets more interesting if we use a_A 2 pattern to set all squares to zero.

In[21):= formula /. _" 2 -> 0

Out[21)= 1 + x + y3

Or we can make all powers disappear:

In[22):= formula /. _" _ -> 0

Out[22)= 1 + x

Or we can rewrite a sum of two squares in a new form:

In[23):= formula / • a_ "2 + b_ "2 -> sumOfSquares [a, b]

Out[23)= 1 +X+y3 +X2 Sin[z] + sumOfSquares[x, z]

The use of patterns in definitions is completely analogous. For example, we can extract the

coefficients of a linear polynomial as a list:

In[24):= coeffs [a_ + b_ x_, x_] = {a, b};

In[2S):= coeffs [1 + 2 y, y]

Out[25)= { 1, 2}

If an expression is not matched by the pattern, it will not be evaluated.

In[26):= coeffs [1 + 2 x +, y" 2, y]

Out[26)= coeffs [1 + 2 x + 4 y2, y]

In order to really be useful, the above definition must be improved. In the following cases

it does not work like we want it to:

In[27]:= coeffs [2 y, y]

Out[27)= coeffs [2 y, y]

(The expression is not matched by the pattern because there is no constant summand.)

Introduction to Programming 157

In[28]:= coeffs [1 + y, y]

Out[28]= coeffs [1 + y, y]

(The expression is not matched by the pattern because there is no factor in the linear term.)

In[29]:= coeffs[1+2y+y"2, y]

Out[29]= {1 + y2, 2}

(1+y"2 is matched by the a_ of the pattern.)

Luckily there are simple tools to handle such cases. They will be discussed in the next two

sections.

• 4.2.2 Constraints

There are three ways of defining patterns that only match under constraints:

• fixing the "type" (head) of the expression,

• constraints with / ; operators,

• constraints with test functions.

• Constraints on Heads

We have seen that each expression has a head, which can be interpreted as the type of the

expression.

The function Head shows that even atomic expressions have heads which are normally

hidden:

In[30]:= Head /@ {a, "x", 1, l.l}

Out[30]= {Symbol, String, Integer, Real}

The head of a list is Lis t.

In[31]:= Head[{a, b}]

Out[31]= List

A blank followed by the name of the desired head only matches expressions with that head.

158 Part 4

As an example for this technique, let us look at a function which returns the first element

of a list. (For this we need a delayed definition because the right-hand side can only be

evaluated once the list has been inserted.)

In[32]:= firstElement [1_] : = 1 [1]

In[33]:= firstElement [{a, b, c}]

Out[33]= a

This definition produces an error message if we apply it to an atomic expression.

In[34]:= firstElement [1]

Part: :partd :
Part specification 1[1] is longer than depth of object.

Out[34]= 1 [1]

The following improved version restricts the pattern to arguments of type List. It will
avoid the error messages:

In[35]:= Clear [firstElement]

In[36]:= firstElement [l_List] : = 1 [1]

In[37]:= firstElement [{a, b, c}]

Out[37]= a

In[38]:= firstElement [1]

Out[38]= firstElement [1)

• Constraints with I;

With the operator / ; constraints can be applied to the pattern itself or to the entire defini

tion. On the right-hand side of the operator there must be a test which yields the result

True for those expressions which should be matched by the pattern.

This gives us a function which only evaluates positive arguments:

In[39]:= numRoot [x_] : = ~ /; x ~ 0

In[40]:= numRoot [2]

Out[40]= 1. 41421

Introduction to Programming 159

In[41]:= nwnRoot [-1]

OUI[41]= numRoot [-1]

The alternative version, in which the constraint is placed directly into the pattern for the

arguments, works just as well.

In[42]:= nwnRoot2 [x_ /; x ~ 0] : = ~

In[43]:= nwnRoot2 /@ {2, -I}

Out[43]= {1.41421, numRoot2 [-1]}

The following example can only be defined using a constraint on the definition:

In[44]:= rootOfSum[x_, y_] : = -{N[X + y] /; x + y ~ 0

In[45]:= rootOfSum[S, -2]

Out[45]= 1. 73205

In[46]:= rootOfSum [- 5, 2]

Out[46]= rootOfSum[-5, 2]

We can also create piecewise functions with this kind of constraint.

In[47]:= piecewise [x_] : = x 2 /; x > 0

In[48]:= piecewise [x_] : = -x /; X :s 0

In[49]:= Plot [piecewise [x], {x, -1, I}];

1

0.8

0.6

0.4

-1 -0.5 0.5 1

160 Part 4

Derivatives and integrals of functions which were defined in this way cannot be evaluated.

For such tasks it is preferable to use the function Uni tStep, which in Version 3.0.x is in

the Calculus' DiracDel ta' package and will be built into the kernel in future

versions .

• Test Functions

Mathematica contains a great number of test functions which are useful for constraints on

patterns. Their name always ends with Q. They result in True if the test has been success
ful or in False in all other cases: if the test has been unsuccessful or if the result is

undetermined. The following command lists all test functions:

In[50]:= ? *Q

ArgumentCountQ
AtomQ
DigitQ
EllipticNomeQ
EvenQ
ExactNumberQ
FreeQ
HypergeometricPFQ
InexactNumberQ
IntegerQ
IntervalMemberQ
InverseEllipticNomeQ
LegendreQ
LetterQ
LinkConnectedQ
LinkReadyQ
ListQ
LowerCaseQ
MachineNumberQ
MatchLocalNameQ
MatchQ

MatrixQ
MemberQ
NameQ
NumberQ
NumericQ
OddQ
OptionQ
OrderedQ
PartitionsQ
PolynomialQ
primeQ
SameQ
StringMatchQ
StringQ
SyntaxQ
TrueQ
UnsameQ
upperCaseQ
ValueQ
VectorQ

The functions Positive, Negative, and NonNegative are also useful. However,

they may remain unevaluated:

In[51]:= positive/@{-l, 0,1, a}

Out[51]= {False, False, True, Positive [aJ }

Using TrueQ we can create test functions which in such a case give a False:

In[52]:= myPositiveQ [x_l : = TrueQ [Positive [xll

In[53]:= myPositiveQ /@ {-1, 0, 1, a}

Out[53]= {False, False, True, False}

Introduction to Programming 161

With the function FreeQ, which tests if an expression contains a symbol, we can rule out

in the above definition of coeffs that the "constant summand" contains a higher power

of x. We must first clear the old definition, which would otherwise remain active, and use

a delayed definition, so that the test is evaluated correctly.

In[54]:= Clear [coef f s]

In[55]:= coeffs [a_ + b_ x_, x_I : = {a, b} /; FreeQ [a, x]

In[56]:= coeffs [1 + 2 y + y2, y]

Out[56]= coeffs [1 + 2 y + y2 , y]

• Constraints Using Test Functions

Patterns can also be constrained using (pure) test functions. For this we use the form

pattern? test. The test function is then applied to the argument and the pattern matches

only if the test function returns True. With EvenQ we restrict the arguments to be even:

In[57]:= half [n_? EvenQ] = n / 2;

In[58]:= half /@ {I, 2}

Out[58]= {half [1] ,I}

We can define our own test functions, preferably as pure functions. The following defini

tion tests whether the argument is a non-negative integer.

In[59]:= myFactoriall [n_? (# ~ 0 &:&: IntegerQ [#] &:)] = n ! ;

In[60]:= myFactoriall /@ {-I, 1 / 2, 10}

Out[60]= {myFactoriall [-1], myFactoriall [~ l, 3628800}

An alternative would be:

In[61]:= myFactorial2 [n_? (NonNegative [I] &:&: IntegerQ [I] &:)] = n ! ;

In[62]:= myFactorial2 /@ {-I, 1/2, 10}

Out[62]= {mYFactoria12 [-1] , myFactoria12 [~-l, 3628800}

162 Part 4

• 4.2.3 More Complicated Patterns

There are several methods to create even more complicated patterns (see Section 2.3.6 ff of

the Mathematica Book). We will only discuss the most important ones here.

• Alternatives

With I we can combine different patterns.

In[63]:= x + x"2 + x"3 + y I. x I x" -> C

QUI[63]= 3 c + y

• Optional Arguments and Default Values

The following function adds its two arguments:

In[64]:= add [x_, y _] = x + y;

In[65]:= add [a, b)

Qul[65]= a + b

In case of only one argument, the pattern will not match and therefore nothing happens.

In[66]:= add [a]

Qul[66]= add [a 1

But perhaps in such a case the argument itself should be returned. We obtain this by

entering a default value after a colon. The default value is then used if the argument is

missing.

In[67]:= Clear [add]

In[68]:= add[x_, y_: 0] = x + y;

In[69]:= add [a, b)

QUI[69]= a + b

In[70]:= add [a]

QUI[70]= a

Introduction to Programming 163

For sums, products, and powers the default values 0, 1, and 1 are already built in; an

optional argument is defined by placing a dot behind the blank. In this way we can create
an improved variation of our coeffs function:

In[71]:= Clear [coef f s 1

In[72]:= coeffs [a __ + b __ x_, x_l : = {a, b} /; FreeQ [a, xl

A missing constant summand is now replaced by 0 and a missing coefficient in the linear

term is replaced by 1.

In[73]:= coeffs [x, xl

Out[73]= { 0, l}

• 4.2.4 A Simple Integrator

Because Mathematica's evaluation process basically uses all definitions and rewrites the

result until nothing more changes, we can easily create programs that can solve rather

complicated tasks.

An an example, we program our own integration function for simple polynomial expres

sions (see Section 2.3.14 of the Mathematica Book). We call the function toyInte

grate. Just as with Integrate we suppose that the expression to be integrated is

entered as the first argument and the variable as the second.

Linearity is treated by two definitions. The integral of a sum is the sum of the integrals:

In[74]:= toylntegrate [y_ + z_, x_l : =
toylntegrate [y, xl + toylntegrate [z, xl

Constants (which do not contain the function variables) can be drawn before the integral.

In[75]:= toylntegrate [c_y_, x_l : = c toylntegrate [y, xl /; FreeQ [c, xl

The integral of a constant is:

In[76]:= toylntegrate [c_, x_l : = c x /; FreeQ [c, xl

The integral of an integer power, except -1, can be processed using:

X D +1

In[77]:= toylntegrate[x_n_., x_l := -- /; FreeQ[n, xl &:&:n f.-1
n+1

164

These four definitions already do an amazing job.

1
In[78]:= toyIntegrate [a x 2 + b x + C + --, x]

x

Qul[78]=
bx2 a x 3 1

ex + -2- + -3- + toylntegrate [x' xl

Part 4

The integral of + cannot yet be determined. Nonetheless, the rest is automatically calcu

lated as completely as possible.

With the additional definition

1
In[79]:= toyIntegrate [------, x_] : =

a_o x_ + b_

Log[ax+b]
------ /; FreeQ[{a, b}, x]

a

we come one step further:

1
In[80]:= toyIntegrate [a x 2 + b x + c + -, x]

x

b x 2 a x 3
Qul[80]= C x + -2- + -3- + Log [x 1

The integrator in Version 1 of Mathematica was built up in this way, but since Version 2 it

has been replaced by a much better algorithm .

• In Depth

• Patterns of Derivatives

Derivatives have the following representation as Mathematica expressions:

In[81]:= FullForm[x' [tll

Qul[81]IIFuIiForm=

Derivative[1] [x] [t]

Because there is no x [t 1 in this expression (note the different bracketing), a transformation rule
containing the pattern x [t] will not match derivatives. Such a rule is produced when solving a
differential equation for x [t] .

In[82]:= DSolve [x' [tj == x [tj, x [tl, tj

QUI[82]= ({x [t] --7 Et C [1]))

Introduction to Programming 165

In[83]:= x' [t] /. % [[1]]

Out[83]= x' [t]

If we request the solution as a pure function, i.e. as a transformation rule for x itself, the pattern does

match.

In[84]:= DSolve [x' [t] == x [t], x, t]

Out[84]= {{x--> (E#1 C[l] &)}}

In[85]:= x' [t] /. %[[1]]

Out[85]= Et C [1]

In this way we can verify the solution.

In[86]:= x' [t] == x [t] /. %% [[1]]

Out[86]= True

• Several Arguments

Sometimes an unknown number of arguments should be processed, for instance in programming
functions with options. Two blanks (_) stand for one or more arguments, three blanks (__) also

include the case of no argument at all.

To illustrate this, let us look at a function that returns its arguments as a list. The list can also be

empty, so we use three blanks:

In[87]:= listOfArguments[x __] = {x}

Out[87]= { x}

In[88]:= 1istOfArguments []

Out[88]= {}

In[89]:= listOfArguments[a, b, c]

Out[89]= (a, b, c)

• Functions with Options

Now we want to develop the skeleton of a function with options. We call it skel. It shall have one

argument and two options optl and opt2. To illustrate what is going on, the result shall be a list,

consisting of the argument and the values of the two options.

The default values of the options shall be defaul tl and defaul t2. If the user does not set an

option, the default value will be used. It is a convention in Mathematica that the list of default values

of options is passed to the built-in function Options in the following way:

In[90):= Options[skel] = {opt1 ... default1, opt2 ... default2};

166 Part 4

Now we can detennine the default value of optl:

In[91]:= opt1 /. Options[skel]

Out[91]= defaul tl

Because several / . operators are evaluated from left to right, in the following expression the option

optl is fIrst set to 3. Then the list of default values is applied to the result. However, this no longer

has an effect on optl, because it was already substituted by 3 before.

In[92]:= opt1 /. opt1 ... 3/. Options [skel]

Out[92]= 3

In this way the skel function can easily be defIned:

In[93]:= skel[x_, opts __] := {x, optl, opt2} /. {opts} /. Options[skel]

If no option values are given, the defaults are used:

In[94]:= skel [a]

Out[94]= fa, defaultl, default2}

But given options will be used:

In[95]:= skel [a, opt2 ... myValue2]

Out[95]= {a, defaultl, myValue2}

Let us slightly improve the defInition of skel. With the test function OptionQ we make sure that
options (transformation rules) have actually been given. We also make sure it all works if the options
are given as a list. The skeleton then finally looks like this:

In[96]:= Clear [skel]

In[97]:= skel[x_, opts __ ?OptionQ] :=
{x, opt1, opt2} I. Flatten [{opts}] /. Options [skel]

In[98]:= skel [a]

Out[98]= {a, defaultl, default2}

In[99]:= skel[a, a]

Out[99]= skel [a, a]

In[100]:= skel [a, {opt1 -> myValue1, opt2 -> lI\Y'Value2}]

Out[100]= fa, myValuel, mYValue2}

Of course, this function does not do anything useful yet. In practice, the option values given by the

user will probably be detennined in a module, and the evaluation will be continued according to
these values.

Introduction to Programming 167

• Exercises

• Gradients

Enhance the function gradient from the exercises to Section 3.2 so that it only evaluates if a list is
entered as the second argument.

• Dot and Cross Products

Enhance the functions defined in the exercises to Section 3.2 for the calculation of dot and cross
products, so that they are only evaluated for suitable inputs.

• Integrator

Enhance the integrator of Section 4.2.4 with a couple of additional definitions, for instance, to handle
trigonometric functions.

The integration process can be illustrated using Print commands, so that whenever a definition is

used a corresponding message is written. Put the right-hand side of the definition into parentheses,

creating a compound expression:

toy:Integrate[y_ + z_, x_l : = (Print [nSum rule for n, y, n and n, z];
toy:Integrate[y, xl + toy:Integrate[z, xl)

Use this method to enhance the definitions for toyIntegrate. Observe the evaluation of some

examples.

The function can be improved even further by adding an option for switching messages on and off
(see the above in-depth section). Branching with If is useful here.

• 4.3 Evaluation

With this previous knowledge we can learn how Mathematica actually works. This will

help us to single-mindedly develop our calculations and to understand why Mathematica

sometimes returns unexpected results.

We begin with preliminaries about associated definitions and definitions with attributes

and then observe the evaluation process of expressions

• 4.3.1 Associated Definitions

Definitions are normally associated to the outermost head of the pattern. As necessary,

they can also be associated with a head of an argument. This can be used to add properties

of built-in functions.

168 Part 4

We may wish to define the integral our own function myFunction:

In[101]:= Integrate [myFunction [x_l, x_l = integralOfMyFunction [xl

Set::write: Tag Integrate in fmYFUnctiOn[X_l dx_ is Protected.

Out[101]= integralOfMyFunction [xl

This does not work because the internal function Integrate is protected (by the

attribute Protected).

(In principle, we could remove the protection of Integrate with Unprotect and then

use the above definition. However this is very dangerous; an incorrect definition may

render the integrator useless.)

But because the definition applies only to our function anyway, we can associate to it

using the I : operator:

In[102]:::: myFunction /: Integrate [myFunction [x_l , x_l =
integralOfMyFunction[xl

Out[102]= integralOfMyFunction [xl

In[103]:= Integrate [myFunction[yl, yl

Out[103]= integralOfMyFunction [y]

A short form is "= (and" : = for an associated, delayed definition):

In[104]:= Integrate [yourFunction [x_l, x_l A = integralOfYourFunction [xl

Out[104]= integralOfYourFunction [xl

• 4.3.2 Attributes

Functions can also have attributes assigned to them in order to determine properties such

as associativity, commutativity, or automatic mapping on lists. A complete list of all

possible attributes can be found in the documentation to Attributes. This function

shows us that Sin carries the attribute Listable.

In[105]:= Attributes [Sinl

Out[105]= {Listable, NumericFunction, Protected}

Introduction to Programming 169

As a consequence Sin is mapped automatically on the elements of lists.

In[106):= Sin[{O, Pi/4, Pi/2}]

Out[106)= {o, ~, 1}

Our own functions do not behave this way.

In[107):= isNotMapped [{O, Pi / 4, Pi / 2}]

Out[107)= isNotMapped [{o, ~, ;} 1

In[108):= Attributes [iSNotMapped]

Out[108)= { }

But we can assign the attribute Listable to define a function which is automatically

mapped on lists:

In[109):= SetAttributes [isMaPped, Listable]

In[110):= isMapped[{O, Pi / 4, pi /2}]

Out[110)= {isMapped[O] , iSMapped[~ l, iSMapped[; l}

In[111):= Attributes [isMapped]

Out[111)= {Listable}

• 4.3.3 The Evaluation Process

Mathematica's evaluation process can be divided into three phases:
1. Reading the cell and transforming it into the internal representation as an expression.

2. Evaluating the expression.

3. Formatting the result for output.

Only the second step is of interest to us. Here all built-in and user-defined transformation

rules and definitions are used to rewrite the expression, until nothing more changes.

Mathematica does this in the following order:

2.1 Evaluation of the head.

2.2 Evaluation of each argument, in order.

2.3 Re-ordering using the attributes Flat (associative) and Orderless (commutative).

170

2.4 Mapping to lists (attribute Listable).

2.5 Application of user-defined definitions associated to the head of an argument.

2.6 Application of built-in definitions associated to the head of an argument.

2.7 Application of user-defined definitions associated to the head of the expression.

2.8 Application of built-in definitions associated to the head of the expression.

Part 4

Through pattern recognition, the steps 2.5-2.8 are used to test whether the pattern of a rule

or definition matches. If it does, the right-hand side of the definition is substituted and the

evaluation restarts for the new expression.

After the evaluation of the head, step 2.2 of this process introduces a recursion, thereby

finally evaluating the expression from the inside out. The recursion comes to an end in

every branch of the tree (TreeForm) when atoms are reached: numbers, strings, and

symbols without definitions evaluate to themselves; for a symbol with definitions, the

right -hand side of the definition is evaluated in step 2.7.

This standard evaluation scheme can be changed (see Section 2.5.5 of the Mathematica

Book), and several built-in functions must deviate from this in order to function properly.

We will, however, not go into this further here.

Trace lists each step in the evaluation:

In[112]:= testFunction[x_ 1 Y_] := simplify[x"2 -y"2]

In[113]:= someName = testFunction;

In[114]:= Trace [someName [Expand [(a + a + b) "2] I a]]

Out[114]= {{sorneNarne, testFunction},

{ { { a + a + b, 2 a + b}, (2 a + b) 2 }, Expand [(2 a + b) 2 j ,

4a2 +4ab+b2 }, testFunction[4a2 +4ab+b2 , aj,

Sirnplify[(4a2 +4ab+b2)2 _a2],

{ (4 a 2 + 4 a b + b 2) 2 - a 2 , _a2 + (4 a 2 + 4 a b + b2) 2 } ,

Sirnplify[-a2 + (4a2 +4ab+b2)2], _a2 + (2a+b)4}

We see how first the head someName evaluates to testFunction. The evaluation of

the first argument begins with the evaluation of the argument of Expand, then Expand

itself is applied. Next, the definition for testFunction is used and its right-hand side is

evaluated.

Introduction to Programming 171

• In Depth

• Delayed Transformation Rules

In addition to the (immediate) transformation rules with - > or ~ Mathematica also recognizes
delayed ones. They are written as : > or :~. As with delayed definitions, the right-hand side is only

evaluated after the pattern has been replaced.

In[115]:= {a+b)2/.x_ Expand[x]

Out[115]= (a + b) 2

In[116]:= {a+b)2 /. x_>+Expand[x]

Out[116]= a 2 + 2 a b + b 2

One can therefore understand an immediate definition to be a global immediate transformation rule,

and a delayed definition to be a global delayed transformation rule.

• Repeated Application of Transformation Rules

A transformation rule is applied only once using / .. For repeated application until nothing more

changes, we use the / / . operator. The difference is made clear in the following two expressions

(see also Section 4.4.3).

In[117]:= fac[5]/. {fac[O]->l, fac[n_]->nfac[n-l]}

Out[117]= 5 fac[4]

In[118]:= fac[5]//. {fac[O]->l, fac[n_]->nfac[n-l]}

Out[118]= 120

• Hold

We cannot see an expression such as 1+1 in its full form at first, because according to the evaluation
process in a

In[119]:= FullForm[l + 1]

Out[119]IIFuIiForm=

2

the argument will be evaluated before FullForm is applied. For this the functions Hold and

HoldForm are useful. They prevent the evaluation of their arguments:

In[120]:= Hold[FullForm[l + 1]]

Out[120]= Hold[Plus[l, 1]]

In[121]:= HoldForm[Fulll'orm[l + 1]]

Out[121]= Plus [1, 1]

172 Part 4

• Exercises

• The Attribute Orderless

Study the documentation of the attribute Orderless and then interpret the evaluation of the
following function:

SetAttributes[pr, Orderless]

pr[x_] := 1 I; Print[x]

pr[l, 2, 3]

• Application of Transformation Rules: Fibonacci Numbers

Fibonacci numbers can be calculated recursively: The zeroth is 0 and the first is I, higher ones are
the sum of the previous two. Use transformation rules to determine the tenth Fibonacci number.

(This works only for small numbers, because the number of calculations needed grows exponen
tially. See Section 4.4.3.)

• 4.4 Programming Tools

We will now have a look at the most important tools for programming. This will show us

that it is possible to program using different methodologies. Often the well-known proce

dural style, used in C, Fortran, or Pascal, is not the clearest nor the most efficient for

Mathematica.

• 4.4.1 Local Variables

If programs are to be given to users there lies the danger of collision between the names in

the program and the names chosen by its user. There are two mechanisms for avoiding

such name collisions in Mathematica. On the procedural or functional level, the Module

mechanism is used to define local variables. The technique used on a global level, espe

cially for the names of the functions themselves, will be discussed in Section 4.4.5.

The Module function has two arguments. The first is a list of local variables, the second a

possibly compound expression (a series of single expressions divided by semicolons).

Against intuition, commas divide more strongly than semicolons.

Introduction to Programming 173

The following function calculates the rotation of a planar vector by an angle cpo It makes
sense to avoid multiple calculations of trigonometric functions, because this is time

intensive. With the help of two local variables, we can write:

In[122]:= rot2D[{x_, y_}, Ip_] : =
Module [{sinlp, COSIp},

sinlp = Sin[Ip];
COSIp = Cos [Ip] ;
{{COSIp, -sinlp}, {sinlp, COSIp}}.{x, y}

In[123]:= rot2D[{1, 1}, Pi / 2]

Out[123]= {-1, 1}

The local variables can be initialized as they are introduced by using immediate defini

tions. This gives us a more compact implementation.

In[124]:= rot2D[{x_, y_}, Ip_] : = Module [{sinlp = Sin[Ip], COSIp = Cos [Ip]},
{{COSIp, -sinlp}, {sinlp, COSIp}}.{x, y}]

If the result of a Module function is not calculated at the end of the module, it can be

returned using Return.

The related functions Wi th and Block will not be discussed here .

• 4.4.2 Functional Programming

Mathematica is predestined for functional programming. This means the nesting of
functions, as we have done a lot of times without thinking about it. Let us look at a class of

problems which are well-suited as examples for functional programming.

Many nonlinear algorithms can be reduced to the search for fixed points of mappings. One

starts at any initial point and applies the mapping. The same mapping is again applied to

the result. And so on, until the difference between two successive results is within a

chosen threshold.

A good example is Newton's algorithm for finding roots of functions. We consider a

function of one variable and begin with an initial x value. At this point we draw the

tangent to the graph and determine its intersection with the x axis. This gives us the first

approximation of the root.

Let us choose the function

174 Part 4

In[125]:= f [x_] = Cos [x2] - Sin [x] ;

In[126]:= Plot [f [x] I {x, 0, 2}];

1.5 2

-1

-1. 5

-2

as an example. We need its derivative.

In[127]:= df [x_] = ax f [x]

Out[127]= -Cos [x] - 2 x Sin [x2]

The initial value shall be xo=1.6. The tangent therefore looks like this:

2

The intersection with the abscissa calculates as Xo - :~~»' The corresponding pure

function is:

In[128]:= # - f [I] / df [I] &:

f[#1]
Out[128]= #1 - df [#1] &

Applied to the initial value, it yields:

In[129]:= # - f [I] / df [I] &: [1. 6]

Out[129]= 0.538438

Introduction to Programming 175

With this value the same procedure is repeated to determine the second approximation of

the root. With the exception of pathological cases (horizontal tangents, limit cycles) we

very quickly arrive at a good approximation of the root. The Mathematica function Nest

is very helpful for this process:

In[130):= Nest [g, x, 5]

Out[130)= g[g[g[g[g[x]]]]]

NestList can be used to see the intermediate results as well:

In[131):= NestList [g, x, 3]

Out[131)= {x, g[x], g[g[x]], g[g[g[x]]]}

In place of g we simply have to use our pure function-and the program is finished.

In[132):= NestList[l-f[l] Idf[l] &:,1.6,5]

Out[132)= {lo6, 0.538438, 0.920372, 0.853035, 0.849379, 0.849369}

The nesting functions FixedPointList and FixedPoint work until two successive

results agree (within a built-in threshold defined by SameQ):

In[133):= FixedPointList [I - f [I] I df [I] &:, 1.6]

Out[133)= {lo6, 0.538438, 0.920372, 0.853035,

0.849379, 0.849369, 0.849369, 0.849369}

In[134):= FixedPoint [I - f [I] I df [I] &:, 1.6]

Out[134)= 0.849369

(In Mathematica 4, the functions NestWhile and NestWhileList give you extended

control over the tests used to terminate the nesting.)

By using local variables, we could program Newton's algorithm as follows:

In[135):= Clear[f, df]

In[136):= myNewton[f_, {x_, xO_}]:=
f

Module [{df = Bx f}, FixedPoint [11 - - I. x -+ 11 &:, N[XO]]]
df

In[137):= myNewton [Cos [x2] - Sin [x], {x, 1.6}]

Out[137)= 0.849369

176 Part 4

The functions FoldList, Maplndexed, and ComposeList are also helpful in

functional programs. They allow iterations over lists:

In[138]:= Fo1dList [f, x, {a, b, c}]

Out[138]= { x , f [x, a], f [f [x, a] , b], f [f [f [x, a] , b], c]}

In[139]:= Mapl:ndexed[f, {a, b, c}]

Out[139]= { f [a, {1}], f [b, {2}], f [c, {3}]}

In[140]:= ComposeList [{f1, f2, f3}, x]

Out[140]= {x, f1 [x], f2 [f1 [x]], f3 [f2 [f1 [x]]] }

• 4.4.3 Rule-Based and Recursive Programming

We saw a good example of rule-based programming in the integrator of Section 4.2.4.

This is done by listing definitions for appropriate patterns. Mathematica automatically

sorts them so that the specific ones are applied before the general. This allows the follow

ing recursive program for the factorial function:

In[141]:= IlliYFactoria1 [n_l:nteger?NOnNegative] : = n:m;yFactoria1 [n - 1]

In[142]:= :m;yFactoria1 [0] = 1;

In[143]:= :m;yFactoria1 [10]

Out[143]= 3628800

The command

In[144]:= ? :m;yFactoria1

Global'myFactorial

myFactorial[O] = 1

myFactorial[(n_Integer) ?NonNegative] := n*myFactorial[n - 1]

shows us the order in which the definitions are applied by Mathematica. We see that they

are ordered such that the more specific definition is used before the more general one. This

assures that the end condition is reached-and the algorithm terminates.

Large recursions can trigger an internal security limit.

Introduction to Programming 177

In[145]:= myFactorial [300]

$RecursionLimit::reclim: Recursion depth of 256 exceeded.

Out[145]= 55620303071452811798215751307555657018384271133 6512 883 7003 95 ",
15243292095283955303008059152370574723282623082366303381970'
97829634401443145981610309370148732792447898675081845435004'
24469331618247148406583202183019314395508496150245243330615'
37654094389547013509047896956485425752519329094929190213993'
58043611711050489276742955535958345570224000114013025111650'
11731788110884032719420438135630831167687120808957899431632'
86505839081435386529923870798034282426460016036787055842956'
77731123611698200576000000000000000000000000000000000000000'
0000000000000000000000000myFactorial[46]

If the recursion will terminate for sure, the limit can be enlarged (or even set to Inf in

i ty) by changing the global variable $RecursionLimi t.

In[146]:= $RecursionLimit = 10" 3;

In[147]:= myFactorial [300]

Out[147]= 306057512216440636035370461297268629388588804173 57 699941677 6 ",
74125947653317671686746551529142247757334993914788870172636~

88642639077590031542268429279069745598412254769302719546040~

08012215776252176854255965356903506788725264321896264299365~

20457644883038890975394348962543605322598077652127082243763~

94491201286786753683057122936819436499564604981664502277165~

00185176546469340112226034729724066333258583506870150169794~

16885035375213755491028912640715715483028228493795263658014~

52352331569364822334367992545940952768206080622328123873838\
808170496000OOOOO~

000000000000000000000000

Another example is the recursive calculation of Fibonacci numbers:

In[148]:= fib1 [0] = 0;
fib1 [1] = 1;
fib1 [n_Integer?NonNegative] : = fib1 [n - 1] + fib1 [n - 2]

In[151]:= fib1 [6]

Out[151]= 8

But this implementation is useless because the time needed to calculate f ibl for larger

arguments grows exponentially. This happens because new recursions begin on the right

hand side of the definition for each summand, thereby calculating the same values over

178 Part 4

and over again. The following implementation stores the already calculated values dynami

cally. This speeds up the calculation.

In[152]:= fib2 [0] = 0;

fib2 [1] = 1;
fib2[n_Integer?NonNegative] .

fib2 [n] = fib2 [n - 1] + fib2 [n - 2]

In[155]:= fib2 [6]

Out[155]= 8

In[156]:= ? fib2

Global'fib2

fib2 [0] 0

fib2[1] = 1

fib2[2] 1

fib2[3] = 2

fib2[4] 3

fib2[5] 5

fib2[6] = 8

fib2[(n_Integer) ?NonNegative] := fib2[n] = fib2[n - 1] + fib2[n - 2]

The efficiency of both variations is dramatically different. (For a fair comparison, values

which have already been calculated for fib2 must first be cleared.)

In[157]:= Clear [f ib2] ;
fib2 [0] = 0;
fib2 [1] = 1;
fib2[n_Integer?NonNegative] .-
fib2 [n] = fib2 [n - 1] + fib2 [n - 2]

In[161]:= Timing [fib1 [26]]

Out[161]= {18 .1167 Second, 121393}

In[162]:= Timing [fib2 [26]]

Out[162]= {O. Second, 121393}

Introduction to Programming 179

In the following section, we will discuss a procedural implementation which increases

efficiency but reduces readability .

• 4.4.4 Procedural Programming

Mathematica contains the branches If, Which, Switch and the loops Do, While, For

for procedural programming. Do and Whi Ie can be useful. The For loop is a concession

to C programmers; it often leads to badly structured programs.

If can process two to four arguments: If [condition, ifTrue, ijFalse, otherwisel.

In[163]:= Table[If[PrimeQ[n], n, FactorInteger[n]], {n, 2, 10}]

Ou1[163]= { 2, 3, {{ 2, 2}}, 5, {{ 2, l}, {3, l}},

7, {{2, 3}}, {{3, 2}}, {{2, l}, {5, l}}}

The variation otherwise handles cases where the test function does not evaluate to True

or False:

In[164]:= If [NonNegative [#], "nonnegative", "negative", "unknown"] & /@
{-1, 0, 1, a}

Out[164]= {negative, nonnegative, nonnegative, unknown}

Which processes an even number of arguments where every test is followed by the result

that must be returned if the test yields True. The tests are processed from left to right

until the first True.

Let us look at the function

In[165]:= intervals[x_] = Whicb[x < 0, 0, x<l, 1, x<2, 2];

and evaluate it for the elements of the following list:

In[166]:= intervals /@ {- .5, .5, 1.5, 2.5}

Out[166]= {O, 1, 2, Null}

Values ~ 2 are not anticipated by this function: Which yields the symbol Null. We can

catch such exceptions by entering True as the last test.

In[167]:= interval Test [x_] =
Whicb[x < 0, 0, x < 1, 1, x < 2, 2, True, "outside"];

180 Part 4

In[168):= intervalTest /@ {-.s, .5, 1.5, 2.s}

Out[168)= {O, 1, 2, outside}

Swi tch tests a given expression on patterns. After the expression, pairs of patterns and

the corresponding results follow. Here the exceptions can be caught with a blank.

In[169):= analyze [x_] : =
Switch[x, _A2, nquadratic", _A3, ncubic", _, "othern]

In[170):= analyze /@ {a, a A2, a A3, a A6}

Out[170)= {other, quadratic, cubic, other}

Do is analogous to Table, except that it does not yield a result. We illustrate such a loop

with the Pr in t function.

In[171):= Do [Print [1/ x], {x, s}]

1

1

2

1

3

1
4

1

5

The following little program calculates Fibonacci numbers with a Do loop, by beginning

with the first two (0 and 1) and calculating the higher ones by adding the two preceding
ones. By working with a list containing the values of two successive Fibonacci numbers,

we arrive at a very elegant program. It is more efficient than the recursive ones regarding

memory and compute time. On the other hand, with the recursive program, we can immedi

ately see how it works, whereas here we have to think about it a bit first.

In[172):= fib3 [n_] : = Module [{fnl = 0, fn2 = 1},
Do[{fnl, fn2} = {fnl+ fn2, fnl}, {n}];
fnl]

In[173):= fib3 [200]

Out[173)= 280571172992510140037611932413038677189525

Introduction to Programming 181

There are even faster methods for calculating Fibonacci numbers. The built-in function

Fibonacci uses such an algorithm.

The While function uses a test as the first argument and as the second a compound

expression (single expressions divided by semicolons). Here the various possibilities for

manipulating iteration variables (see Section 2.4.4 of the Mathematica Book) can be

useful, for example ++.

In[174]:= Module[{n = 1, t}, t = n; While[n <= 4, t = x+ lit; n++]; t]

1
Out[174]= X+X+_1_

x+ l:X

If necessary the program flow may be controlled using Return, Continue, Break,

and Ca tchiThrow.

• 4.4.5 Modularity

For the developer of a Mathematica package, the danger of name collisions does not only

exist for auxiliary variables (which can be localized using Module), but also for the

function names themselves. It might happen that two programmers of packages use the

same name for functions which solve very different tasks. For this reason, Mathematica

places every name into a so-called context. Each package creates its own contexts and uses

these for its names.

Context names are marked with back quotes (') and organized hierarchically. If a ' comes

first, it is to be taken relatively. Two contexts are predefined:

• Global' contains the names entered by the user during the working session,

• System' contains the names built into the kernel.

The function Context shows the context of a name:

In[175]:= Context [x]

Out[175]= Global'

In[176]:= Context [Integrate]

Out[176]= System'

We can manually introduce the name x into the context myContext'. This makes it

different from an x in the Global' context:

182 Part 4

In[177]:= myContext' x - x

Out[177]= -x + myContext' x

A Mathematica package must use BeginPackage-EndPackage and Begin-End in

such a way that the exported names are placed in the context of the package and the

hidden names in a private sub-context. The following template shows how to do this:

BeginPackage ["PackageName' ", {"Neededl' ", II Needed2 ' ", ... } 1

Functionl: :usage = II Functionl [xl calculates ... "

hiddenVariable = ...

Functionl[x_l

End[l

EndPackage [1

PackageName' stands for the context name of the package and should be chosen to

reflect its contents. Conventionally, the corresponding package file (see below) should be

named PackageName. m.

The list of context names {"Neededl''', "Needed2' " , ... } is only necessary if the

package is based on other packages which must be loaded automatically. Otherwise it can
be left out.

A short documentation of every exported object (Functionl) must be placed between

BeginPackage and Begin. These usage statements are defined as strings containing

the documentations. They can be accessed by the user of the package (e.g. ?Functionl).

Begin opens a private sub-context which automatically hides new names introduced here

(hiddenVariable). Because the context name of the package (PackageName')

should be unique when the package is loaded, the relative sub-context name 'Pr iva te '

can always be used.

A simple package will usually be passed on in the form of a formatted notebook, which

contains the Mathematica code and examples, and a package file. In order that everything

Introduction to Programming 183
------~~ -------------- ----~-----

functions properly, the code in the notebook, i.e. all the input cells between BeginPack

age and EndPackage, must be marked as initialization cells (menu Cell> Cell Proper

ties> Initialization Cell). When saving, a message appears asking whether the initializa

tion cells should be saved into a package file. After selecting Create Auto Save Package,

Mathematica will create a file named PackageName. m, which can be loaded as usual

with «PackageName' . Changes in the notebook file are automatically carried over to

the package file. Both files should be placed into the Applications or Autoload

directory (sub-directories of AddOns in Mathematica's installation directory). If these

directories are write protected, the personal Mathematica directory can be chosen. In this

way the file will safely be found and in case of Autoload it will even be loaded automati

cally when a kernel is launched.

Names and arguments of exported functions should be chosen similar to existing Mathemat

ica functions, so that the user will easily become acquainted with the new functions .

• 4.4.6 Compiling Numerical Calculations

The efficiency of numerical calculations can be increased with the Compile function. Its

arguments are analogous to Function (see the section about pure functions). Additional

information about the types of arguments can be given.

The following calculation is speeded up through compilation by about factor 4. First, we

compile the expression.

In[178]:= compiledExpression = Compile [x,
1 + x + x 2

2 + x - 5 x 2 - x 3

Out[178]= . . [1 + x + x 2 . 1 d d 1 ComplledFunctlon {xl, 2 5 2 3' -Compl e Co e-
+x- x -x

This object can be applied to an argument just like a pure function.

In[179]:= compiledExpression [1. 5]

Out[179]= -0.426966

For a comparison with an uncompiled variation, we loop a couple of times.

In[180]:= Timing [Do [compiledExpression [1. 5], {10000}]]

Out[180]= { 0 .3 Second, Null}

184

1 + 1. 5 + 1. 52
In[181]:= Timing[Do[I {lOOOO}]]

2 + 1. 5 - 5 1. 52 - 1. 53

Oul[181]= {1 .25 Second, Null}

For complex arguments, the compilation would look like this:

In[182]:= compiledComplexExpression =

Oul[182]=

1+x+x2
Compile [{{x, _Complex}} I

2 + x - 5 x 2 - x 3

. . [{ 1 + x + x 2 . 1 1 ComplledFunctlon x}, 2 5 2 3' -Compl edCode-
+x- x -x

In[183]:= compiledComplexExpression[2. + 3. I]

OUI[183]= - 0 . 1142 17 + 0 . 09 9 4 8 9 I

• Exercises

• Newton's Algorithm

Part 4

The application of Newton's algorithm to the polynomial i - 3 yields an approximation for {3.
Program it first functionally, then procedurally.

• Fibonacci Numbers

Program the calculation of the Fibonacci numbers using a procedural algorithm which does not work
with lists (like f ib3).

Compare the timings of all program variations. Do not forget that the recursive implementation

fib2 stores all calculated values. They must therefore be deleted before a comparison is made.

• Packages

Create a package which defines and exports the function for gradient calculation (exercises to

Section 3.2). Use the name Grad (Gradient is already taken by an option of FindMinimum).

• Programming

If you have a small programming exercise for a procedural language handy, try to solve it III

Mathematica. Consider if a functional or a rule-based algorithm would also be possible.

Introduction to Programming 185

.4.5 Further Information

• 4.5.1 Internet

The Web site of Wolfram Research (http://www.wolfram.com/). the company behind

Mathematica, is worth a visit. There you will find among other things up-to-date informa

tion about the program and FAQs (frequently asked questions). It is a good idea to consult

the FAQ page before contacting the support team support@wolfram.com (you should

indicate your license number $LicenseID, version $Version, and operating system).

The Usenet conference comp.soft-sys.math.mathematica is frequented by beginners and

experts to Mathematica.

• 4.5.2 MathSource

Wolfram Research's MathSource server at http://www.mathsource.com/contains note

books and packages for various types of applications. Many of them are free.

• 4.5.3 Literature

The amount of literature about Mathematica is growing quickly, with well over one

hundred books extant at present. You will find an up-to-date list on the Web site of
Wolfram Research. Go to http://www.wolfram.com!and follow the links> Products &

Store> Mathematica Boqkstore.

You might also be interested in the Mathematica Journal which is published on the Web.

Check out the site http://www.mathematica-journal.com/.

• Index

Mathematica-objects are printed in bold Courier font, file names, packages and

commands in plain Courier font, menu commands and elements of the Help

Browser in bold Times font.

! =, 57

@, 41

N, 125

#, 123 -124

%,40

%%,40

", 41

"=, 168

":=, 168
&:, 123

&:&:, 57

*,39,41

_, 155, 165

-, 41

->, 46, 171

+, 41

=,47

== , 51

-, 41

" 181

'Private', 182

{, 39

[, 39

}, 39

], 39

II, 57
«, 183

., 25, 121, 132

.m, 182-183

; , 40

I, 61

/, 41

/@, 122

/; , 158

/ / , 41

/ / • , 171

/: , 168

:, 162

: =, 48

: >, 171

n, 23, 42

e,42

t,42

00, 59

[, 39

D, 39

., 35 -36

G,60

'1-, 57

-+, 46, 171

:-+,171

$DefaultFont, 14

$DisplayFunction, 77

$LicenseID, 185

$RecursionLimit, 177

$Version, 185

3 D ViewPoint Selector, 82

·A
Abort Evaluation, 30

AbsoluteDashing, 76, 137

AbsolutePointSize, 137

AbsoluteThickness, 75 -76, 137

Addition, 41

of list elements, 125

Add-oDS, 31

188
---_._-----

MathLink Library, 30

Standard Packages, 100

Working with Add - ons, 32, 106

Adobe Illustrator, 113

Algebra, linear, 131

Algebra, Polynomial Manipulations, 44

AlgebraicManipulation, 34, 44, 46

Algebraic Manipulation, Basic Algebra, 44

Algebra', Inequali tySol ve', 58

Algorithm, Newton's, 173, 184

numerical, 56

Risch, 62

Alternatives, 162

AmbientLight, 84

And, logical, 57

Animate, 110

Animate Selected Graphics, 110, 148

Animations, 21, 110, 148

three - dimensional, 112

Apostrophe, 61

Append, 119, 153

Applications, 183

Apply, 124 - 125

Approximate numbers, 17, 42, 128

Approximations, numerical, 23

numerical, of definite integrals, 62

ArcCos, 43

ArcSin, 24

ArcSinh,24

ArcTan, 92

Arguments, 152

complex, 184

from lists, 124

optional, 162

types, 183

Arithmetic, 17, 128

Arithmetic sequences, 116

Arrows, 141

Arrow', 141

AspectRatio, 71, 137

Associated definitions, 167

Atomic expressions, 152

Attributes, 168

AuthorTools, 14 - 15

Autoload, 183

Automatic Grouping, 28

Auxiliary variables, 122, 173

Axes, labels, 72

positioning, 82

scale, 71

scaling, 127

shift, 71

suppress, 73

Axes, 73, 83

AxesEdge, 82

AxesLabel, 72

AxesOrigin, 71

°B
Back quotes, 181

BarChart, 101 - 102

Basic Algebra, 44

BasicCalculations, 34, 43 - 44

Algebra, 44

Calculus, 60

Graphics, 68, 80

Basiclnput, 16, 35

BasicTypesetting, 35

Begin, 182

BeginPackage, 182

Blank, 49, 155, 165

Books, 185

Boxed, 82

BOxRatios, 95

Braces, curly, 39, 116

Brackets, 39, 152

Branches, 179

Break, 181

Bugs, 50

Built - in Functions, 31

Index

·C

Algebraic Manipulation, 44

Elementary Functions, 43

C, 172

Calculations, aborting, 30

compiling, 183

numerical, 17, 41

on location, 46

starting, 29 - 30

symbolic, 17, 44

Calculus, 24, 59

Calculus, Common Operations, 60

Calculus', DiracDel ta', 160

VectorAnalysis', 121

Capitalizing, 38

Case sensitivity, 37

Catch, 181

CD-ROM, 10

Cell, Animate Selected Graphics, 110, 148

Cell Grouping, 12, 28

Cell Properties, 183

Convert To, 33

Default Output FormatType, 33 - 34

Display As, 34

Rerender Graphics, 12, 146

Cell Grouping, 28

Cell Properties, Initialization Cell, 183

Cells, 28

converting, 34

organizing, 29

Character formats, in graphics, 74

Characters, Greek, 35 - 36

Circle, 136

Clear, 48, 96

Clearing, definitions, 48

Coefficient matrix, 135

Coefficients, 156

Collisions, of names, 106, 172, 181

Colon, 162

Colors, 76, 85, 137

of lines, 84

Column vectors, 132

Common Operations, 60

Communication, 30

Compile, 183

Compiling, 183

CompleteCharacters, 35

Complex, arguments, 184

numbers, 17, 154

numbers, patterns for, 153

ComposeList, 176

Compound, expressions, 50, 167

Cone, 142

Constants, 23, 42 - 43

of integration, 61, 63

Constraints, 157 - 158

Con tents. nb, 13

Context, 181

Contexts, 181

global, 107

names of, 182

Continue, 181

ContourGraphics, 87

ContourPlot, 21, 25, 86

ContourPlot3D', 100

Contours, 86

three - dimensional, 100

Contours, 88, 100

Control key combinations, 34 - 35

Conventions, 37

Conversion, from degrees to radians, 42

Converting, cells, 34

graphics, 90

output cells, 33

Convert To, 33

StandardForm, 33, 36

TraditionalForm, 33

Coordinates, spherical, 95

Copy As, 113

189

190

Cos, 24

CPU time, 128, 178

Create Auto Save Package, 183

Create Palette, 36

Cross (x), 121

Cross product, 131, 167

Cubes, 139

Cuboid, 139

Curly braces, 39, 116

Curves, 92

in space, 93

Cyclic, permutations, 118

Cycloids, 149

Cylinder, 142

Cylincirica1P10t3D, 107 - 108

D, 18, 24, 60

Dashed lines, 137

Dashing, 76, 137

Data, reading, 128

saving in files, 129

types in ReadList, 130

data.m, 129

Decimal, point, 42
Defau1tCo10r, 84

Default Output FormatType, 34

Default values, 162 - 163

Definite integrals, 61

numerical approximations, 62

Definitions, 47, 155

associated, 167

clearing, 48, 96

clearing all, 50

delayed, 48, 69

for functions, 49

general, 176

immediate, 47, 69

source of confusion, 50

specific, 176

Degree, 42

Delayed, definitions, 48

transformation rules, 171

Demonstrations, 31

Denominator, 154

DensityP10t, 89

Derivative, 164

Derivatives, 18, 60, 127

partial, 123

patterns for, 164

Det, 25, 133

Determinant, 133

Diagona1Matrix, 131

Differential equations, 61 - 62

numerical solutions of, 63

pure functions, 64, 127, 164

DiracDelta', 160

Direction, 59

Directives, graphics, 137

Directories, 183

Disk, 136

Display, suppress, 77

Display As, 34

Di sp1ayFunct ion, 77

Division, 41

Do, 180

Documentation, of exported functions, 182

online, 31, 80

Dot (.), 25, 121, 132

Dot product, 121

Dots, 137

Drop, 118

D801 ve, 24, 62

Dynamically storing values, 178

-E
E, 23, 42

Edit, Copy As, 113

Expression Input, 35 - 36

Save Selection As ... , 113

Index

Efficiency, 80, 172, 183

numerical, 128

Electronic documentation, 31

Elementary functions, 24

Elementary Functions, 43

Elements, adding, 153

of lists, 39, 117

Eliminate, 55

End, 182

EndPackage, 182

Enforcing, evaluation, 128

Entry, of formulas, 16, 34

using palettes, 16

using the keyboard, 16, 32

EPS format, 113

Equations, 18, 24, 51

differential, 61 - 62

numerical solutions, 55

polynomial, 55

sets of, 55

special cases, 57

transcendental, 56

Error, bars, 101

calculation, 43

Escape sequence, 34 - 35

Euler, number, 42

Evaluate, 77, 128

Evaluation, 167, 169

enforcing, 77, 128

order of, 40, 169

repeated, 40

Evaluation, 30

Evaluate Notebook, 30

Evaluate Cells, 30

Even numbers, 161

EvenQ, 161

Exp, 24

Expand, 18, 24, 38, 41, 44

ExpandAll, 38

Expanding out, 44

Exponents, 35

Export, of graphics, 113

Expression Input, 35 - 36

Expressions, 152

atomic, 152

compiling, 183

compound, 50, 167

heads of, 152, 157

hierarchy, 152

manipulation of, 24

mathematical, 39

nonatomic, 152

types of, 157

Extract, 119

of

Factor, 45

Factor, 24, 45

Factorials, 23, 176

FAQ, 185

Fibonacci, 181

Fibonacci numbers, 172, 177 - 181

Field, vector, 105

velocity, 106

191

File, Generate Palette from Selection, 36

New, 29

Open, 130

Palettes, 16, 34, 36

Save As ... , 29

File names, for packages, 182 - 183

Files, 12

reading, 128

saving data in, 129

Find, 31

Go Back, 31

Find Selected Function •.. , 31

Find in Help .•. , 31

FindRoot, 18, 24, 56

FixedPoint, 175

FixedPointList, 175

192

Fixed points, 173, 175

Flat, 170

Flatten, 118

Flight parabola, 149

FoldList, 176

For, 179

Format, Edit Style Sheet ... , 28

Magnification, 12, 29

Option Inspector, 14

Style, 28 - 29

Style Sheet, 13, 29, 35

Fonnats, 32

character, 74

EPS, 113

Fonnu1as, embedded in text, 36

entry, 16, 34

in titles, 75

Stirling, 51

Fortran, 172

Frame, 73

FrameLabel, 73

FreeQ, 161

Front end, 28

FullForm, 152

FullSimplify, 24, 45

Function, 122 - 124, 183

Functional programming, 173

Functions, arguments, 39

arguments of, 152

built - in, 31

defining, 49

documentation of, 182

elementary, 24

factorial, 176

from packages, 31

hypergeometric, 62

mapping on lists, 121

mathematical, 43

nested, 173, 175

of one variable, 68

of two variables, 80

options, 165

overview, 31

piecewise, 159

plotting several, 68

pure, 122, 127, 161, 164 - 165, 175

pure, differential equations, 64

spline, 143

test, 158, 160, 179

with attributes, 168

Functions, Built - in, 31

°G
Generate Palette from Selection, 36

Generator, random, 139

Generic solutions, 57

Geometric mean, 124

Getting Started/Demos, 31

Global, context, 107

variables, 77

Global', 48, 181

Go Back, 31

Goniometric, relationships, 46

Gradients, 123, 130, 167

Graphics, 19, 67 - 68, 70

animated, 21

character fonnats, 74

colors, 76

converting, 90

directives, 137

export, 113

frame, 73

lines, 75

plot points, 78

primitives, 136, 139

programming, 136

styles, 74

superimpose, 78

suppress the display, 77

three - dimensional, 20, 80

Index

three - dimensional, tools, 102

titles, 74

two - dimensional, 19, 68
two - dimensional, tools, 101

width of, 137

with formulas, 75

Graphics, 70

objects, 136

objects, combining, 145

Graphics3D, 81, 139

objects, 139, 142

Graphics', 100

Animation" 110

Arrow', 141

ContourPlot3D', 100

Graphics3D', 102

Graphics', 101, 108

Legend', 103

ParametricPlot3D', 107

PlotField3D', 105

PlotField', 105

Polyhedra', 141

Shapes" 142

Spline', 143

Graphs, 19, 25, 68 - 69, 80

Greek characters, 35 - 36

Grid, 73, 89

models, 142

GridLines, 73

-H
Head, 152, 157

Heads, 157, 167

of expressions, 152, 157

Help, 31

Add - ons, 30 - 31

Built - in Functions, 31

Find Selected Function .•• , 31

Find in Help ... , 31

Getting Started/Demos, 31, 31

Mathematica Book, 31

Help Browser, 31 - 32, 43 - 44, 100

Hierarchy, of expressions, 152
Hold, 171

HoldForm, 171

Hue, 76

-I

I, 17, 23, 42

Icosahedron, 141

IdentityMatrix, 131

If, 179

Illustrator, 113

Im, 155

lmageSize, 71

Imaginary, unit, 42

Immediate definitions, 47

Indefinite integrals, 61

Index. nb., 13

Inequalities, 58

InequalitySolve, 58

Infinity, 59, 177

Infix notation, 41, 122, 125

Info. txt, 12

Information, other, 31
Initialization Cell, 183

init.m, 14

Inner, 121

In - only, 13

In - out, 13

Input, 32

Input, 3 D ViewPoint Selector, 82

Create Palette, 36

Input Form, 32, 35

Integers, 17, 42

Integrals, 19, 61

constants, 61, 63

definite, 61

formats, 32

indefinite, 61

193

194

limits, 61

numerical approximations, 62

Integrate, 19, 24, 61, 163

Integrator, 163

InternationalCharacters, 35

Interpolations, 144

Introduction. nb, 13

Inverse, 25, 132

Iterations, over list elements, 122

Iterator, 116, 116

oj

Join, 41, 118

oK

Kernel, 28 - 29

quitting, 30

starting, 30

Kernel, Abort Evaluation, 30

Evaluation, 30

Kernel Configuration Options, 30

Notebooks Kernel, 30

Quit Kernel, 30, 106

Keyboard, entries, 16, 32

shortcuts, 31, 36

Key combinations, 34 - 35

Keystrokes, 35

°L

Label, axes, 72

Legends, 103

Length, 117, 122

Lighting, 83

LightSources, 85

Limi t, 24, 59

Limits, 59

of integration, 61

one - sided, 59

Line, 136, 139

Linear, algebra, 131

Linearity, 163

Lines, dashed, 75 -76, 137

thickness, 75, 137

Listable, 168, 170

ListContourPlot, 126

ListPlot, 126, 129, 134

ListPlot3D, 126

Lists, 25, 39, 68

adding elements, 119, 125

calculating with, 120

converting to arguments, 124

elements of, 39, 117

extracting elements, 119

flattening, 118

joining, 118

length of, 117, 122

manipulation, 117

mappings on, 120 - 122, 139

multidimensional, 120

nested, 40, 47, 120

one - dimensional, 116, 118

parts of, 117

permutations of, 118
plots of, 126

product of the elements, 125

products of, 121

properties of elements, 119

reading, 128

removing elements, 118

rotations of, 118

sorting, 118

transformation rules, 47

Literature, 185

Loading Packages, 31

Loading Packages, 32

Local variables, 172

Log, 24

Logarithmic plots, 101

LogPlot, 101

Loops, 179 - 181

Index

. m, 182 - 183

Magnification, 12

Manipulation, algebraic, 44

lists, 117

of expressions, 24

Map, 139

Map Indexed, 176

Mappings, 86, 92, 105

on lists, 120 - 122, 139

Master Index, 31

math, 29

mathematica, 28

Mathematica, as a Calculator, 31

Book, 10, 31

evaluation, 167

functions, 39

icon, 28

Journal, 185

tour of, 31

Mathematica Book, 31

Mathematical, expressions, 39

functions, 43

Mathematical notation, 32

MathKernel, 29

MathLink, 30

MathLink Library, 30

MathReader, 12, 15

MathSource, 185

Matrices, 25, 120

determinants of, 133

diagonal, 131

identity, 131

inverse, 132

pretty print of, 132

products, 132

transposing, 133

MatrixForm, 120, 132 - 133

Mean, geometric, 124

Mechanism, 146

195

Menus, 31

Methodologies for programming, 172

Miscellaneous', ChemicalElement

Modularity, 181

Module, 172

Multidimensional lists, 120

Multiplication, 41

N, 17, 23, 42

Names, 37

collisions of, 106, 172, 181

context, 182

NDSol ve, 24, 63

Negative, 160

Nest, 175

Nested lists, 40

NestList, 175

NestWhile, 175

NestWhileList, 175

Newton's algorithm, 173, 184

Nonatomic expressions, 152

NonNegative, 160

Notation, infix, 41, 122, 125

mathematical, 32

postfix, 41

prefix, 41

standard, 41

Notebook, 28

NotebookLauncher, 35

Notebooks Kernel, 30

NSolve, 55

Numbering, of output cells, 40

Numbers, approximate, 17, 42, 128

complex, 17, 153 - 154

Euler, 42

even, 161

Fibonacci, 172, 177 - 178, 180 - 181

integers, 17, 42

prime, 120

196

rational, 42, 128, 153 - 154

real, 42

Numerator, 154

Numerical, algorithms, 56

approximations, 23

00

approximations of definite integrals, 62

calculations, 17, 41

calculations, compiling, 183

efficiency, 128

solutions, 55, 127

solutions of differential equations, 63

Objects, Graphics, 136

Graphics3D, 139, 142

rotating, 142

Online documentation, 31, 80

Optional arguments, 162

Option Inspector, 14

Options, 60, 70

Direction, 59

for three - dimensional graphics, 82

in functions, 165

of Graphics, 70, 136

of Plot, 70, 136

of Plot3D, 81

Or, logical, 57

Order, of evaluation, 40, 169

Orderless, 170, 172

Origin, shift, 71

Oscillation, 127

Other Information, 31

Out[n], 40

Outer, 121

Output, 32

cells, converting, 33

shortening, 40

suppressing, 40, 68

op

'Private', 182

Packages, context names in, 182

file names for, 182

files, 183

standard, 32

Pairs, 134

Palettes, creating, 36

Palettes, 16, 34

AlgebraicManipulation, 34, 44, 46

BasicCalculations, 34, 43 - 44, 60,

68, 80

Basiclnput, 16, 35

BasicTypesetting, 35

CompleteCharacters, 35

InternationalCharacters, 35

NotebookLauncher, 35

Parabola, 149

ParametricPlot, 20, 25, 92

ParametricPlot3D, 25, 93

ParametricPlot3D', 107

Parametric plots, 107

Parentheses, 39

Part - 1. nb, 13

Pascal, 172

Patterns, 49, 119, 155

alternatives, 162

complicated, 162

constrained, 157 - 158

default values, 162 - 163

for complex numbers, 153

for derivatives, 164

for heads, 157

for optional arguments, 162

for powers, 156

for rational numbers, 153

for several arguments, 165

for types, 157

simple, 155

Permutations, cyclic, 118

Index

Pi, 23, 42

Piecewise functions, 159

Pie charts, 10 1

Pillow, 99

PiScale, 108

Pixels, 137

Placeholders, 35 - 36

Plot, 19, 25, 56, 68, 78

Plot3D, 20, 25, 81

PlotField3D', 105

PlotField', 105

PlotJoined, 126

PlotLabel, 72

Plot Points, 78, 89

PlotRange, 70, 110

Plots, 19 - 20, 25

logarithmic, 101

of lists, 126

parametric, 92, 107

Plot Style, 75 - 76

Plus, 125, 152

Point, 136, 139

Points, decimal, 42

fixed, 173, 175

PointSize, 137

Poles, 78

Polygon, 136, 139

Polyhedra', 141

Polynomial equations, 55

Polynomial Manipulations, 44

Polynomials, 18

coefficients of, 156

expanding out, 44

factoring, 45

position, 119

positive, 160

Postfix notation, 41

Powers, 41

patterns for, 156

Prefix notation, 41

PrimeQ, 120

Primes, 120

Primitives, graphics, 136, 139

Print, 167, 180

Procedural programming, 179

Product, 125

Products, 39, 125

cross, 121, 131, 167

of list elements, 125

of lists, 121

scalar, 121, 131, 167

Programming, 22, 172

branches, 179

functional, 173

graphics, 136

loops, 179 -181

methodologies, 172

modularity, 181

procedural, 179

recursive, 176

rule - based, 176

Properties, of list elements, 119

Protected, 168

Pseudo random generator, 139

pure - da ta, 129

197

Pure functions, 122, 161, 164-165, 175

differential equations, 127

in solutions of differential equations, 64

putAppend, 129

oQ

Quit Kernel, 30

Quotation marks, 72

Radians, 42

Random, 139

Random generator, 139

Range, changing, 70

Range, 116

198

Raster, 136

Rational, 153

Rational numbers, 42, 128, 154

patterns for, 153

Re, 155

Reading, external data, 128

files, 128

ReadList, 126, 128, 130

Real numbers, 42

Rectangle, 136

Recursions, large, 176

termination of, 177

Recursive programming, 176

Reduce, 57

References to results, 40

Remove, 107

Replacing, values for symbols, 46

Rerender Graphics, 146

Results, references to, 40

Return, 181

RGBColor, 85

Risch algorithm, 62

Roots, 35, 56, 173

RotateRight, 118

Rotations, 142, 173

Round parentheses, 39

Row vectors, 132

Rule - based programming, 176

·S
Save, 129

Save As ... , 29

Save Selection As ... , 113

Saving, 129

Scalar product, 121, 131, 167

Select, 119, 123

Sequences, arithmetic, 116

Series, 131

Sets, 119 - 120

of equations, 55

Shadings, 87

Shadow, 102

ShadowPlot3D, 102

Shallow, 41

Shapes', 142

Short, 41

Shortcuts, 31

keyboard, 36

Shortening, output, 40

Show, 71, 78, 136

ShowLegend, 105

Simplify, 24, 44 - 45, 55

Sin, 24, 43

Singularities, 78

Sinh, 24

Size, of a graphic, 71

point, 137

window, 29

Sketch, 146

Solutions, derivatives of, 127

generic, 57

numerical, 55, 127

of differential equations, 62

Solve, 18, 24, 51, 55 - 56

Sort, 118

Space, curves, 93

Spaces, 38

Special cases, equations, 57

Sphere, 85, 95

surface of, 95, 142

Spherical coordinates, 95

SphericalPlot3D, 107

SpinShow, 111

Spline', 143

Sqrt, 24

Square brackets, 39

Standard, notation, 41

packages, 32

StandardForm, 32 - 33, 35 - 36

Standard Packages, Graphics, 100

Index

Stephen Wolfram, 31

Stirling's, formula, 51

Storing values, dynamically, 178

Strings, 72, 152

Style, 29

StyleForm, 74

Styles, 28

in graphics, 74

Style Sheet, 28 - 29, 35

Default, 13

Sub - contexts, 182

Sublists, 117

Subtraction, 41

Sum, 125

Sums, 125, 131

numerical efficiency, 128

Suppressing, the output cell, 68

SurfaceColor, 140

Surfaces, 81, 92

in space, 95

of spheres, 95, 142

Switch, 180

Symbolic, calculations, 44

mathematics, 17

Symbols, 44

System', 181

Table, 25, 116, 120

Tables, 25

Take, 117

Tan, 24

Test functions, 158, 160, 179

Text, with formulas, 36

Text, 136, 139

TextStyle, 74

The Mathematica Book, 31

Thickness, 76, 137

Three - dimensional, animations, 112

graphics, 20, 80

graphics, tools for, 102

Throw, 181

Ticks, 108

Time, CPU, 178

Times, 125

Timing, 80, 128, 178

Title, 72

Titles, containing formulas, 75

in graphics, 74

Torus, 99, 142, 145

Tour, 16

Tour of Mathematica, 31

Trace, 170

TraditionalForm, 32-33

Transcendental equations, 56

Transformation rules, 46, 70, 155

delayed, 171

immediate, 171

repeated application of, 171

Transpose, 133 - 134

TreeForm, 152

True, 119

TrueQ, 160

Two - dimensional graphics, 19, 68

tools for, 10 1

Types, in arguments, 183

of expressions, 157

·U
Unequal, 57

Unit, cube, 139

imaginary, 42

UnitStep, 160

Unprotect, 168

usage, 182

Usenet, 185

·V
Values, default, 162 - 163

for symbols, 46

199

200

storing dynamically, 178

Variables, 121

auxiliary, 122, 173

eliminate, 55

global, 77

local, 122, 172

variables, 121

Vector, 132

field, 105

product, 167

VectorAnalysis', 121

VectorHeads, 106

Velocity field, 106

ViewPoint, 82

·W
VVeb, 9, 13, 185

Which, 179

While, 181

Why the Beep? ... , 31

VVindow, size, 29

VV olfram, 31

VV olfram Research, 185

Working with Add - ons,
Loading Packages, 32, 106

VVorld VVide VVeb, 9, 185

·z
Zeros, 173

