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Preface
Our objective in writing this book is to present the theory of graphs from an algorithmic viewpoint. We
present the graph theory in a rigorous, but informal style and cover most of the main areas of graph theory.
The ideas of surface topology are presented from an intuitive point of view. We have also included a
discussion on linear programming that emphasizes problems in graph theory. The text is suitable for students
in computer science or mathematics programs.
Graph theory is a rich source of problems and techniques for programming and data structure development,
as well as for the theory of computing, including NP-completeness and polynomial reduction.
This book could be used a textbook for a third or fourth year course on graph algorithms which contains a
programming content, or for a more advanced course at the fourth year or graduate level. It could be used in
a course in which the programming language is any major programming language (e.g., C, C++, Java). The
algorithms are presented in a generic style and are not dependent on any particular programming language.
The text could also be used for a sequence of courses like “Graph Algorithms I” and “Graph Algorithms II”.
The courses offered would depend on the selection of chapters included. A typical course will begin with
Chapters 1, 2, 3, and 4. At this point, a number of options are available.
A possible first course would consist of Chapters 1, 2, 3, 4, 6, 8, 9, 10, 11, and 12, and a first course
stressing optimization would consist of Chapters 1, 2, 3, 4, 8, 9, 10, 14, 15, and 16. Experience indicates that
the students consider these substantial courses. One or two chapters could be omitted for a lighter course.
We would like to thank the many people who provided encouragement while we wrote this book, pointed out
typos and errors, and gave useful suggestions. In particular, we would like to convey our thanks to Ben Li and
John van Rees of the University of Manitoba for proofreading some chapters.
William Kocay
Donald L.Kreher

page_ix

Page x



cover

file:///G|/SMILEY/0203489055__gigle.ws/0203489055/files/__joined.html[01/10/2009 15:18:30]

This page intentionally left blank.
page_x

Page xi
William Kocay obtained his Ph.D. in Combinatorics and Optimization from the University of Waterloo in
1979. He is currently a member of the Computer Science Department, and an adjunct member of the
Mathematics Department, at the University of Manitoba, and a member of St. Paul’s College, a college
affiliated with the University of Manitoba. He has published numerous research papers, mostly in graph theory
and algorithms for graphs. He was managing editor of the mathematics journal Ars Combinatoria from 1988 to
1997. He is currently on the editorial board of that journal. He has had extensive experience developing
software for graph theory and related mathematical structures.
Donald L.Kreher obtained his Ph.D. from the University of Nebraska in 1984. He has held academic
positions at Rochester Institute of Technology and the University of Wyoming. He is currently a University
Professor of Mathematical Sciences at Michigan Technological University, where he teaches and conducts
research in combinatorics and combinatorial algorithms. He has published numerous research papers and is a
co-author of the internationally acclaimed text “Combinatorial Algorithms: Generation Enumeration and
Search”, CRC Press, 1999. He serves on the editorial boards of two journals.
Professor Kreher is the sole recipient of the 1995 Marshall Hall Medal, awarded by the Institute of
Combinatorics and its Applications.

page_xi

Page xii
This page intentionally left blank.

page_xii

Page xiii
Contents
 

1 Graphs and Their Complements  1
  1.1  Introduction  1
   Exercises  6
  1.2  Degree sequences  8
   Exercises  17
  1.3  Analysis  18
   Exercises  21
  1.4  Notes  22

2 Paths and Walks  23
  2.1  Introduction  23
  2.2  Complexity  27
   Exercises  27
  2.3  Walks  28
   Exercises  29
  2.4  The shortest-path problem  30
  2.5  Weighted graphs and Dijkstra’s algorithm  33
   Exercises  36
  2.6  Data structures  37
  2.7  Floyd’s algorithm  42
   Exercises  44
  2.8  Notes  45

3 Some Special Classes of Graphs  47
  3.1  Bipartite graphs  47
   Exercises  49
  3.2  Line graphs  50
   Exercises  51
  3.3  Moore graphs  52
   Exercises  57

page_xiii

Page xiv
  3.4  Euler tours  58



cover

file:///G|/SMILEY/0203489055__gigle.ws/0203489055/files/__joined.html[01/10/2009 15:18:30]

  3.4.1  An Euler tour algorithm  59
   Exercises  62
  3.5  Notes  62

4 Trees and Cycles  63
  4.1  Introduction  63
   Exercises  64
  4.2  Fundamental cycles  65
   Exercises  65
  4.3  Co-trees and bonds  67
   Exercises  69
  4.4  Spanning tree algorithms  70
  4.4.1  Prim’s algorithm  72
   Data structures  74
   Exercises  75
  4.4.2  Kruskal’s algorithm  76
   Data structures and complexity  77
  4.4.3  The Cheriton-Tarjan algorithm  78
   Exercises  79
  4.4.4  Leftist binary trees  79
   Exercises  86
  4.5  Notes  87

5 The Structure of Trees  89
  5.1  Introduction  89
  5.2  Non-rooted trees  90
   Exercises  92
  5.3  Read’s tree encoding algorithm  92
  5.3.1  The decoding algorithm  95
   Exercises  96
  5.4  Generating rooted trees  97
   Exercises  105
  5.5  Generating non-rooted trees  105
   Exercises  106
  5.6  Prüfer sequences  106
  5.7  Spanning trees  109
  5.8  The matrix-tree theorem  111
   Exercises  116
  5.9  Notes  117

page_xiv

Page xv
6 Connectivity  119

  6.1  Introduction  119
   Exercises  121
  6.2  Blocks  122
  6.3  Finding the blocks of a graph  125
   Exercises  128
  6.4  The depth-first search  128
  6.4.1  Complexity  135
   Exercises  136
  6.5  Notes  137

7 Alternating Paths and Matchings  139
  7.1  Introduction  139
   Exercises  143
  7.2  The Hungarian algorithm  143
  7.2.1  Complexity  147
   Exercises  148
  7.3  Perfect matchings and 1-factorizations  148
   Exercises  151
  7.4  The subgraph problem  152
  7.5  Coverings in bipartite graphs  154



cover

file:///G|/SMILEY/0203489055__gigle.ws/0203489055/files/__joined.html[01/10/2009 15:18:30]

  7.6  Tutte’s theorem  155
   Exercises  158
  7.7  Notes  158

8 Network Flows  161
  8.1  Introduction  161
  8.2  The Ford-Fulkerson algorithm  165
   Exercises  175
  8.3  Matchings and flows  176
   Exercises  177
  8.4  Menger’s theorems  178
   Exercises  180
  8.5  Disjoint paths and separating sets  180
   Exercises  183
  8.6  Notes  185

9 Hamilton Cycles  187
  9.1  Introduction  187
   Exercises  190
  9.2  The crossover algorithm  191
  9.2.1  Complexity  193
   Exercises  196

page_xv

Page xvi
  9.3  The Hamilton closure  197
   Exercises  199
  9.4  The extended multi-path algorithm  200
  9.4.1  Data structures for the segments  204
   Exercises  204
  9.5  Decision problems, NP-completeness  205
   Exercises  213
  9.6  The traveling salesman problem  214
   Exercises  216
  9.7  The ΔTSP  216
  9.8  Christofides’ algorithm  218
   Exercises  220
  9.9  Notes  221

10 Digraphs  223
  10.1  Introduction  223
  10.2  Activity graphs, critical paths  223
  10.3  Topological order  225
   Exercises  228
  10.4  Strong components  229
   Exercises  230
  10.4.1  An application to fabrics  236
   Exercises  236
  10.5  Tournaments  238
   Exercises  240
  10.6  2-Satisfiability  240
   Exercises  243
  10.7  Notes  243

11 Graph Colorings  245
  11.1  Introduction  245
  11.1.1  Intersecting lines in the plane  247
   Exercises  248
  11.2  Cliques  249
  11.3  Mycielski’s construction  253
  11.4  Critical graphs  254
   Exercises  255
  11.5  Chromatic polynomials  256
   Exercises  258



cover

file:///G|/SMILEY/0203489055__gigle.ws/0203489055/files/__joined.html[01/10/2009 15:18:30]

  11.6  Edge colorings  258
  11.6.1  Complexity  268
   Exercises  269

page_xvi

Page xvii
  11.7  NP-completeness  269
  11.8  Notes  274

12 Planar Graphs  275
  12.1  Introduction  275
  12.2  Jordan curves  276
  12.3  Graph minors, subdivisions  277
   Exercises  282
  12.4  Euler’s formula  282
  12.5  Rotation systems  284
  12.6  Dual graphs  286
  12.7  Platonic solids, polyhedra  290
   Exercises  291
  12.8  Triangulations  292
  12.9  The sphere  295
  12.10  Whitney’s theorem  297
  12.11  Medial digraphs  300
   Exercises  301
  12.12  The 4-color problem  301
   Exercises  305
  12.13  Straight-line drawings  305
  12.14  Kuratowski’s theorem  309
   Exercises  312
  12.15  The Hopcroft-Tarjan algorithm  312
  12.15.1  Bundles  316
  12.15.2  Switching bundles  318
  12.15.3  The general Hopcroft-Tarjan algorithm  321
  12.16  Notes  325

13 Graphs and Surfaces  327
  13.1  Introduction  327
  13.2  Surfaces  329
  13.2.1  Handles and crosscaps  336
  13.2.2  The Euler characteristic and genus of a surface  337
   Exercises  340
  13.3  Graph embeddings, obstructions  341
  13.4  Graphs on the torus  342
   Exercises  349
  13.4.1  Platonic maps on the torus  349
  13.4.2  Drawing torus maps, triangulations  352
   Exercises  357
  13.5  Graphs on the projective plane  357

page_xvii

Page xviii
  13.5.1  The facewidth  364
  13.5.2  Double covers  368
   Exercises  370
  13.6  Embedding algorithms  372
   Exercises  381
  13.7  Heawood’s map coloring theorem  382
   Exercises  384
  13.8  Notes  385

14 Linear Programming  387
  14.1  Introduction  387
  14.1.1  A simple example  387



cover

file:///G|/SMILEY/0203489055__gigle.ws/0203489055/files/__joined.html[01/10/2009 15:18:30]

  14.1.2  Simple graphical example  389
  14.1.3  Slack and surplus variables  391
   Exercises  394
  14.2  The simplex algorithm  395
  14.2.1  Overview  395
  14.2.2  Some notation  395
  14.2.3  Phase 0: finding a basis solution  396
  14.2.4  Obtaining a basis feasible solution  397
  14.2.5  The tableau  398
  14.2.6  Phase 2: improving a basis feasible solution  399
  14.2.7  Unbounded solutions  403
  14.2.8  Conditions for optimality  405
  14.2.9  Phase 1: initial basis feasible solution  407
  14.2.10  An example  411
  14.3  Cycling  413
   Exercises  415
  14.4  Notes  416

15 The Primal-Dual Algorithm  417
  15.1  Introduction  417
  15.2  Alternate form of the primal and its dual  423
  15.3  Geometric interpretation  424
  15.3.1  Example  424
  15.4  Complementary slackness  429
  15.5  The dual of the shortest-path problem  430
   Exercises  433
  15.6  The primal-dual algorithm  434
  15.6.1  Initial feasible solution  437
  15.6.2  The shortest-path problem  440
  15.6.3  Maximum flow  444

page_xviii

Page xix
   Exercises  446
  15.7  Notes  446

16 Discrete Linear Programming  449
  16.1  Introduction  449
  16.2  Backtracking  450
  16.3  Branch and bound  453
   Exercises  463
  16.4  Unimodular matrices  465
   Exercises  467
  16.5  Notes  468
 

 Bibliography  469
 Index  477

page_xix

Page xx
This page intentionally left blank.

page_xx

Page 1
1 
Graphs and Their Complements
1.1 Introduction
The diagram in Figure 1.1 illustrates a graph. It is called the graph of the cube. The edges of the geometric
cube correspond to the line segments connecting the nodes in the graph, and the nodes correspond to the
corners of the cube where the edges meet. They are the vertices of the cube.
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FIGURE 1.1
The graph of a cube
This diagram is drawn so as to resemble a cube, but if we were to rearrange it, as in Figure 1.2, it would still
be the graph of the cube, although it would no longer look like a cube. Thus, a graph is a graphical
representation of a relation in which edges connect pairs of vertices.
DEFINITION 1.1: A simple graph G consists of a vertex set V(G) and an edge set E(G), where each edge is a
pair {u,υ} of vertices u,

We denote the set of all pairs of a set V by  Then  In
page_1

Page 2

FIGURE 1.2
The graph of the cube
the example of the cube, V(G)={1, 2, 3, 4, 5, 6, 7, 8}, and E(G)={12, 23, 34, 14, 15, 26, 37, 48, 56, 67, 78,
58}, where we have used the shorthand notation uυ to stand for the pair {u,υ}. If u,  then 

 means that u is joined to υ by an edge. We say that u and υ are adjacent. We use this notation to
remind us of the linked list data structure that we will use to store a graph in the computer. Similarly, 
means that u is not joined to υ. We can also express these relations by writing  or 
respectively. Note that in a simple graph if  then  If u is adjacent to each of u1, u2,…, uk,
then we write 
These graphs are called simple graphs because each pair u, υ of vertices is joined by at most one edge.
Sometimes we need to allow several edges to join the same pair of vertices. Such a graph is also called a
multigraph. An edge can then no longer be defined as a pair of vertices, (or the multiple edges would not be
distinct), but to each edge there still corresponds a pair {u,υ}. We can express this formally by saying that a

graph G consists of a vertex set V(G), an edge set E(G), and a correspondence  Given an
edge ψ(e) is a pair {u,υ} which are the endpoints of e. Different edges can then have the same
endpoints. We shall use simple graphs most of the time, which is why we prefer the simpler definition, but
many of the theorems and techniques will apply to multigraphs as well.
This definition can be further extended to graphs with loops as well. A loop is an edge in which both
endpoints are equal. We can include this in the general definition of a graph by making the mapping 

 An edge  for which  defines a loop. Figure 1.2 shows
a graph with multiple edges and loops. However, we shall use simple graphs most of the time, so that an
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edge will be considered to be a pair of vertices.
The number of vertices of a graph G is denoted |G|. It is called the order of G.

page_2

Page 3

FIGURE 1.3
A multigraph

The number of edges is ε(G). If G is simple, then obviously  since  We shall
often use node or point as synonyms for vertex.

Many graphs have special names. The complete graph Kn is a simple graph with |Kn|=n and  The
empty graph  is a graph with  and ε=0.  is the complement of Kn.

FIGURE 1.4
The complete graph K5
DEFINITION 1.2: Let G be a simple graph. The complement of G is  where  and 

 consists of all those pairs uυ which are not edges of G. Thus, 
page_3

Page 4
if and only if Figure 1.5 show a graph and its complement.
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FIGURE 1.5
A graph and its complement
Figure 1.6 shows another graph and its complement. Notice that in this case, when  is redrawn, it looks
identical to G.
In a certain sense, this G and  are the same graph. They are not equal, since  but it is clear
that they have the same structure. If two graphs have the same structure, then they can only differ in the
names of the vertices. Therefore, we can rename the vertices of one to make it exactly equal to the other
graph. In the example above, we can rename the vertices of G by the mapping θ given by

 
then θ(G) would equal  This kind of equivalence of graphs is known as isomorphism. Observe that a one-
to-one mapping θ of the vertices of a graph G can be extended to a mapping of the edges of G by defining
θ({u,υ})={θ(u),θ(υ)}.

FIGURE 1.6
Another graph and its complement

page_4

Page 5
DEFINITION 1.3: Let G and H be simple graphs. G and H are isomorphic if there is a one-to-one
correspondence θ: V(G)→V(H) such that θ(E(G))= E(H), where 
We write  to denote isomorphism. If  then  if and only if  One way
to determine whether  is to try and redraw G so as to make it look identical to H. We can then read
off the mapping θ from the diagram. However, this is limited to small graphs. For example, the two graphs G
and H shown in Figure 1.7 are isomorphic, since the drawing of G can be transformed into H by first moving
vertex 2 to the bottom of the diagram, and then moving vertex 5 to the top. Comparing the two diagrams
then gives the mapping

 
as an isomorphism.
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FIGURE 1.7
Two isomorphic graphs
It is usually more difficult to determine when two graphs G and H are not isomorphic than to find an
isomorphism when they are isomorphic. One way is to find a portion of G that cannot be part of H. For
example, the graph H of Figure 1.7 is not isomorphic to the graph of the prism, which is illustrated in Figure
1.8, because the prism contains a triangle, whereas H has no triangle. A subgraph of a graph G is a graph X
such that  and  If θ: G→H is a possible isomorphism, then θ(X) will be a
subgraph of H which is isomorphic to X. A subgraph X is an induced subgraph if for every u,

 if and only if 
The degree of a vertex  is DEG(u), the number of edges which contain u. If k=DEG(u) and 

 then 
page_5

Page 6

FIGURE 1.8
The graph of the prism

 so that DEG(u)=DEG(θ(u)). Therefore a necessary condition for G and H to be
isomorphic is that they have the same set of degrees. The examples of Figures 1.7 and 1.8 show that this is
not a sufficient condition.
In Figure 1.6, we saw an example of a graph G that is isomorphic to its complement. There are many such
graphs.
DEFINITION 1.4: A simple graph G is self-complementary if 
LEMMA 1.1 If G is a self-complementary graph, then |G|≡0 or 1 (mod 4).

PROOF If  then  But  so that  so

 Now |G| and |G|−1 are consecutive integers, so that one of them is odd.
Therefore |G|≡0 (mod 4) or |G|≡1 (mod 4).
So possible orders for self-complementary graphs are 4, 5, 8, 9, 12, 13,…, 4k, 4k+1,….
Exercises
1.1.1 The four graphs on three vertices in Figure 1.9 have 0, 1, 2, and 3 edges, respectively. Every graph on
three vertices is isomorphic to one of these four. Thus, there are exactly four different isomorphism types of
graph on three vertices.
Find all the different isomorphism types of graph on 4 vertices (there are 11 of them). Hint: Adding an edge
to a graph with ε=m, gives a graph with ε=m+1. Every graph with ε=m+1 can be obtained in this way.
Table 1.1 shows the number of isomorphism types of graph up to 10 vertices.

page_6
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Page 7

FIGURE 1.9
Four graphs on three vertices
TABLE 1.1
Graphs up to 10 vertices

n No. graphs
1 1
2 2
3 4
4 11
5 34
6 156
7 1,044
8 12,346
9 247,688
10 12,005,188

1.1.2 Determine whether the two graphs shown in Figure 1.10 are isomorphic to each other or not. If they
are isomorphic, find an explicit isomorphism.

FIGURE 1.10
Two graphs on eight vertices
1.1.3 Determine whether the three graphs shown in Figure 1.11 are isomorphic to each other or not. If they
are isomorphic, find explicit isomorphisms.
1.1.4 Find a self-complementary graph on four vertices.
1.1.5 Figure 1.6 illustrates a self-complementary graph, the pentagon, with five vertices. Find another self-
complementary graph on five vertices.
1.1.6 We have seen that the pentagon is a self-complementary graph. Let G be the pentagon shown in Figure
1.6, with V(G)={u1, u2, u3, u4, u5}. Notice that

page_7

Page 8
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FIGURE 1.11
Three graphs on 10 vertices
θ=(u1)(u2, u3, u5, u4) is a permutation which maps G to  that is,  and θ is called a
complementing permutation. Since u2u3  it follows that  Consequently, 

 again. Applying θ twice more gives  and θ(u4u2)= u2u3,
which is where we started. Thus, if we choose any edge uiuj and successively apply θ to it, we alternately get
edges of G and  It follows that the number of edges in the sequence so-obtained must be even. Use the
permutation (1,2,3,4) (5,6,7,8) to construct a self-complementary graph on eight vertices.
1.1.7 Can the permutation (1, 2, 3, 4, 5) (6, 7, 8) be used as a complementing permutation? Can (1, 2, 3, 4,
5, 6) (7, 8) be? Prove that the only requirement is that every sequence of edges obtained by successively
applying θ be of even length.
1.1.8 If θ is any permutation of {1, 2,…, n}, then it depends only on the cycle structure of θ whether it can
be used as a complementing permutation. Discover what condition this cycle structure must satisfy, and prove
it both necessary and sufficient for θ to be a complementing permutation.
1.2 Degree sequences
THEOREM 1.2 For any simple graph G we have
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PROOF An edge uυ has two endpoints. Therefore each edge will be counted twice in the summation, once
for u and once for υ.
We use δ(G) to denote the minimum degree of G; that is,  Δ(G) denotes
the maximum degree of G. By Theorem 1.2, the average degree equals 2ε/|G|, so that δ≤2ε/|G|≤Δ.
COROLLARY 1.3 The number of vertices of odd degree is even.
PROOF Divide V(G) into Vodd={u|DEG(u) is odd}, and Veυen={u| deg(u) is even}. Then 

 Clearly 2ε and  DEG(u) are both even. Therefore, so is 

 which means that |Vodd| is even.
DEFINITION 1.5: A graph G is a regular graph if all vertices have the same degree. G is k-regular if it is
regular, of degree k.
For example, the graph of the cube (Figure 1.1) is 3-regular.
LEMMA 1.4 If G is simple and |G|≥2, then there are always two vertices of the same degree.
PROOF In a simple graph, the maximum degree Δ≤|G|−1. If all degrees were different, then they would be
0, 1, 2,…, |G|−1. But degree 0 and degree |G|−1 are mutually exclusive. Therefore there must be two
vertices of the same degree.
Let V(G)={u1, u2,…, un}. The degree sequence of G is

DEG(G)=(DEG(u1), DEG(u2),…, DEG(un))  
where the vertices are ordered so that

DEG(u1)≥DEG(u2)≥…≥DEG(un).  
Sometimes it’s useful to construct a graph with a given degree sequence. For example, can there be a simple
graph with five vertices whose degrees are (4, 3, 3, 2, 1)? Since there are three vertices of odd degree,
Corollary 1.3 tells us that there is no such graph. We say that a sequence

D=(d1, d2,…, dn),  
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is graphic if

d1≥d2≥…≥dn,  
and there is a simple graph G with DEG(G)=D. So (2, 2, 2, 1) and (4, 3, 3, 2, 1) are not graphic, whereas (2,
2, 1, 1), (4, 3, 2, 2, 1) and (2, 2, 2, 2, 2, 2, 2) clearly are.

Problem 1.1: Graphic
Instance:a sequence D=(d1,d2,…,dn).
Question:is D graphic?
Find: a graph G with DEG(G)=D, if D is graphic.
For example, (7, 6, 5, 4, 3, 3, 2) is not graphic; for any graph G with this degree sequence has Δ(G)=|G|=7,
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which is not possible in a simple graph. Similarly, (6, 6, 5, 4, 3, 3, 1) is not graphic; here we have Δ(G)=6,
|G|=7 and δ(G)=1. But since two vertices have degree |G|−1=6, it is not possible to have a vertex of degree
one in a simple graph with this degree sequence.
When is a sequence graphic? We want a construction which will find a graph G with DEG(G)=D, if the
sequence D is graphic.
One way is to join up vertices arbitrarily. This does not always work, since we can get stuck, even if the
sequence is graphic. The following algorithm always produces a graph G with DEG(G)=D, if D is graphic.
procedure GRAPHGEN(D)
Create vertices u1, u2,…, un
comment: upon completion, ui will have degree D[i]
graphic←false “assume not graphic”
i←1
while D[i]>0

 
graphic←true
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This uses a reduction. For example, given the sequence

D=(3, 3, 3, 3, 3, 3),  
the first vertex will be joined to the three vertices of largest degree, which will then reduce the sequence to
(*, 3, 3, 2, 2, 2), since the vertex marked by an asterisk is now completely joined, and three others have had
their degree reduced by 1. At the next stage, the first remaining vertex will be joined to the three vertices of
largest degree, giving a new sequence (*, *, 2, 2, 1, 1). Two vertices are now completely joined. At the next
step, the first remaining vertex will be joined to two vertices, leaving (*, *, *, 1, 1, 0). The next step joins the
two remaining vertices with degree one, leaving a sequence (*, *, *, *, 0, 0) of zeroes, which we know to be
graphic.
In general, given the sequence

D=(d1,d2,…,dn)  
where

d1≥d2≥…≥dn,  
the vertex of degree d1 is joined to the d1 vertices of largest degree. This leaves the numbers

 
in some order. If we rearrange them into descending order, we get the reduced sequence D′. Write

 
where the first vertex u1 has been deleted. We now do the same calculation, using D′ in place of D.
Eventually, after joining all the vertices according to their degree, we either get a graph G with Deg(G)=D or
else at some stage, it is impossible to join some vertex ui.
An excellent data structure for representing the graph G for this problem is to have an adjacency list for each
vertex  The adjacency list for a vertex  is a linked list of the vertices adjacent to υ. Thus
it is a data structure in which the vertices adjacent to υ are arranged in a linear order. A node x in a linked
list has two fields:  and 
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Given a node x in the list,  is the data associated with x and  points to the successor of x in the
list or  if x has no successor. We can insert data u into the list pointed to by L with procedure
LISTINSERT(), and the first node on list L can be removed with procedure LISTREMOVEFIRST().
procedure LISITINSERT(L, u)
x←NEWNODE()

L←x
procedure LISTREMOVEFIRST(L)
x←L

FREENODE(x)
We use an array AdjList[·] of linked lists to store the graph. For each vertex  AdjList[ν] points to
the head of the adjacency lists for ν. This data structure is illustrated in Figure 1.12.

FIGURE 1.12
Adjacency lists of a graph
We can use another array of linked lists, Pts[k], being a linked list of the vertices ui whose degree-to-be di=k.
With this data structure, Algorithm 1.2.1 can be written as follows:
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Algorithm 1.2.1: GRAPHGEN(D)

graphic←false
for k←0 to n−1 do Pts[k]←NIL

for k←1 to n do LISTINSERT(Pts[D[k]], k)
comment: Begin with vertex of largest degree.

for k←n downto 1
do while Pts[k]≠NIL
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comment: Now every vertex has been successfully joined.
graphic←true

This program is illustrated in Figure 1.13 for the sequence D=(4, 4, 2, 2, 2, 2), where n=6. The diagram
shows the linked lists before vertex 1 is joined to vertices 2, 3, 4, and 5, and the new configuration after
joining. Care must be
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FIGURE 1.13
The linked lists Pts[k]. (a) Before 1 is joined to 2, 3, 4, and 5. (b) After 1 is joined to 2, 3, 4, and
5.
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used in transferring the vertices υ from Pts[j] to Pts[j−1], since we do not want to join u to υ more than
once. The purpose of the list Pts[0] is to collect vertices which have been transferred from Pts[1] after having
been joined to u. The degrees d1, d2,…, dn need not necessarily be in descending order for the program to
work, since the points are placed in the lists Pts[k] according to their degree, thereby sorting them into
buckets. Upon completion of the algorithm vertex k will have degree dk. However, when this algorithm is done
by hand, it is much more convenient to begin with a sorted list of degrees; for example, D=(4, 3, 3, 3, 2, 2,
2, 2, 1), where n=9. We begin with vertex u1, which is to have degree four. It will be joined to the vertices
u2, u3, and u4, all of degree three, and to one of u5, u6, u7, and u8, which have degree two. In order to
keep the list of degrees sorted, we choose u8. We then have  and D is reduced to (*,
2, 2, 2, 2, 2, 2, 1, 1). We then choose u2 and join it to u6 and u7, thereby further reducing D to (*, *, 2, 2,
2, 2, 1, 1, 1, 1). Continuing in this way, we obtain a graph G.
In general, when constructing G by hand, when uk is to be joined to one of ui and uj, where di=dj and i<j,
then join uk to uj before ui, in order to keep D sorted in descending order.
We still need to prove that Algorithm 1.2.1 works. It accepts a possible degree sequence

D=(d1,d2,…dn),  
and joins u1 to the d1 vertices of largest remaining degree. It then reduces D to new sequence

 
THEOREM 1.5 (Havel-Hakimi theorem) D is graphic if and only if D′ is graphic.
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PROOF Suppose D′ is graphic. Then there is a graph G′ with degree sequence D′, where V(G′)={u2, u3,…,
un} with  Furthermore

 
consists of the degrees

 
arranged in descending order. Create a new vertex u1 and join it to vertices of degree

 
Then DEG(u1)=d1. Call the new graph G. Clearly the degree sequence of G is

D=(d1, d2,…, dn).  
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FIGURE 1.14
Vertices adjacent to u1
Therefore D is graphic.
Now suppose D is graphic. Then there is a graph G with degree sequence

D=(d1,d2,…,dn),  
where V(G)={u1,u2,…,un}, with DEG(ui)=di. If u1 is adjacent to vertices of degree  then G
′=G−u1 has degree sequence D′, in which case D′ is graphic.
Otherwise, u1 is not adjacent to vertices of degree  Let uk (where k≥2) be the first vertex
such that u1 is not joined to uk, but is joined to u2, u3,…, uk−1. (Maybe k=2.)
Now DEG(u1)=d1≥k, so u1 is joined to some vertex x≠u2,u3,…uk−1. uk is the vertex of next largest degree,
so DEG(uk)≥DEG(x). Now x is joined to u1, while uk is not. Therefore, there is some vertex y such that 

 but  Set G←G+xy+u1uk−u1x−uky.
The degree sequence of G has not changed, and now  Repeat until 

 Then G′=G−u1 has degree sequence D′, so that D′ is graphic.
Therefore we know the algorithm will terminate with the correct answer, because it reduces D to D′. So we
have an algorithmic test to check whether D is graphic and to generate a graph whenever one exists.
There is another way of determining whether D is graphic, without constructing a graph.
THEOREM 1.6 (Erdös-Gallai theorem) Let D=(d1,d2,…,dn), where d1≥
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d2≥…≥dn. Then D is graphic if and only if
1.  is even; and

2. for k=1,2,...,n.
PROOF Suppose D is graphic. Then  which is even. Let V1 contain the k vertices of largest
degree, and let V2=V(G)−V1 be the remaining vertices. See Figure 1.15.
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FIGURE 1.15
The vertices V1 of largest degree and the remaining vertices υ2

Suppose that there are ε1 edges within V1 and ε2 edges from V1 to V2. Then  since
each edge within V1 is counted twice in the sum, once for each endpoint, but edges between V1 and V2 are

counted once only. Now  since V1 can induce a complete subgraph at most. Each vertex 
can be joined to at most k vertices in V1, since |V1|=k, but υ can be joined to at most DEG(υ) vertices in V1,

if DEG(υ)<k. Therefore ε2, the number of edges between V1 and V2, is at most 

which equals  This now gives 
The proof of the converse is quite long, and is not included here. A proof by induction can be found in the
book by HARARY [59].
Conditions 1 and 2 of the above theorem are known as the Erdös-Gallai conditions.
Exercises
1.2.1 Prove Theorem 1.2 for arbitrary graphs. That is, prove
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THEOREM 1.7 For any graph G we have

 
where ℓ is the number of loops in G and DEG(u) is the number of edges incident on u. What formula is
obtained if loops count two toward DEG(u)?
1.2.2 If G has degree sequence D=(d1, d2,…, dn), what is the degree sequence of 
1.2.3 We know that a simple graph with n vertices has at least one pair of vertices of equal degree, if n≥2.
Find all simple graphs with exactly one pair of vertices with equal degrees. What are their degree sequences?
Hint: Begin with n=2, 3, 4. Use a recursive construction. Can degree 0 or n−1 occur twice?
1.2.4 Program the GRAPHGEN() algorithm. Input the sequence D=(d1, d2,…, dn) and then construct a graph
with that degree sequence, or else determine that the sequence is not graphic. Use the following input data:
(a) 4 4 4 4 4
(b) 3 3 3 3 3 3
(c) 3 3 3 3 3 3 3 3
(d) 3 3 3 3 3 3 3 3 3
(e) 2 2 2 2 2 2 2 2 2 2
(f) 7 6 6 6 5 5 2 1
1.2.5 Let D=(d1, d2,…, dn), where d1≥d2≥…≥dn. Prove that there is a multigraph with degree sequence D if
and only if  is even, and d1≤ 
1.3 Analysis
Let us estimate the number of steps that Algorithm 1.2.1 performs. Consider the loop structure
for k←n downto 1
do while Pts[k]≠NIL
do {…
The for-loop performs n iterations. For many of these iterations, the contents of the while-loop will not be
executed, since Pts[k] will be NIL. When the contents of the loop are executed, vertex u of degree-to-be k will
be joined to k vertices. This means that k edges will be added to the adjacency lists of the graph G being
constructed. This takes 2k steps, since an edge uυ must be added to both GraphAdj[u] and GraphAdj[υ]. It
also makes DEG(u)=k. When edge uυ is added, υ will be transferred from Pts[j] to Pts[j−1], requiring

additional k steps. Once u has been joined, it is removed from the list. Write 
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the number of edges of G when D is graphic. Then, in all, the combination for-while-loop will perform exactly
2ε steps adding edges to the graph and a further ε steps transferring vertices to other lists, plus n steps for
the n iterations of the for-loop. This gives a total of 3ε+n steps for the for-while-loop. The other work that
the algorithm performs is to create and initialize the lists Pts[·], which takes 2n steps altogether. So we can
say that in total, the algorithm performs 3ε+3n steps.
Now it is obvious that each of these “steps” is composed of many other smaller steps, for there are various
comparisons and assignments in the algorithm which we have not explicitly taken account of (they are
subsumed into the steps we have explicitly counted). Furthermore, when compiled into assembly language,
each step will be replaced by many smaller steps. Assembly language is in turn executed by the
microprogramming of a computer, and eventually we come down to logic gates, flip-flops, and registers.
Because of this fact, and because each computer has its own architecture and machine characteristics, it is
customary to ignore the constant coefficients of the graph parameters ε and n, and to say that the algorithm
has order ε+n, which is denoted by O(ε+n), pronounced “big Oh of ε+n”. A formal definition is provided by
Definition 1.6. Even though the actual running time of a given algorithm depends on the architecture of the
machine it is run on, the programmer can often make a reasonable estimate of the number of steps of some
constant size (e.g., counting one assignment, comparison, addition, multiplication, etc. as one step), and
thereby obtain a formula like 3ε+3n. Such an algorithm will obviously be superior to one which takes
15ε+12n steps of similar size. Because of this fact, we shall try to obtain formulas of this form whenever
possible, as well as expressing the result in a form like O(ε+n).
The complexity of an algorithm is the number of steps it must perform, in the worst possible case. That is, it
is an upper bound on the number of steps. Since the size of each step is an unknown constant, formulas like
5n2/6 and 25n2 are both expressed as O(n2). We now give a formal definition of this notation.
DEFINITION 1.6: Suppose  and  We say that f(n) is O(g(n)) provided that there
exist constants c>0 and n0≥0 such that 0≤f(n)≤c·g(n) for all n≥n0.
In other words, f(n) is O(g(n)) provided that f(n) is bounded above by a constant factor times g(n) for large
enough n. For example, the function 5n3+ 2n+1 is O(n3), because for all n≥1, we have

5n3+2n+1≤5n3+2n3+n3=8n3.  
Hence, we can take c=8 and n0=1, and Definition 1.6 is satisfied.
The notation f(n) is Ω(g(n)) (“big omega”) is used to indicate that f(n) is bounded below by a constant factor
times g(n) for large enough n.
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DEFINITION 1.7: Suppose  and  We say that f(n) is Ω(g(n)) provided that there
exist constants c>0 and n0≥0 such that f(n)≥c·g(n)≥0 for all n≥n0.
We say that f(n) is Θ(g(n)) (“big theta”) when f(n) is bounded above and below by constant factors times
g(n). The constant factors may be different. More precisely:
DEFINITION 1.8: Suppose  and  We say that f(n) is Θ(g(n)) provided that there exist
constants c, c′>0 and n0≥0 such that 0≤c·g(n)≤f(n)≤c′·g(n) for all n≥n0.
If f(n) is Θ(g(n)), then we say that f and g have the same growth rate.
The big O-notation is a method of indicating the qualitative nature of the formula, whether quadratic, linear,
logarithmic, exponential, etc. Notice that “equations” involving O(·) are not really equations, since O(·) can
only be used in this sense on the right hand side of the equals sign. For example, we could also have shown
that 10n2+4n−4 is O(n3) or that 10n2+4n−4 is O(2n), but these expressions are not equal to each other.
Given a complexity formula like 10n2+4n−4, we want the smallest function f(n) such that 10n2+4n−4 is
O(f(n)). Among the useful rules for working with the O-notation are the following sum and product rules.
THEOREM 1.8 Suppose that the two functions f1(n) and f2(n) are both O(g(n)). Then the function
f1(n)+f2(n) is O(g(n)).
THEOREM 1.9 Suppose that f1(n) is O(g1(n)) and f2(n) is O(g2(n)). Then the function f1(n) f2(n) is O(g1(n)
g1(n)).
As examples of the use of these notations, we have that n2 is O(n3), n3 is Ω(n2), and 2n2+3n−sin n+1/n is
Θ(n2).
Several properties of growth rates of functions that arise frequently in algorithm analysis follow. The first of
these says that a polynomial of degree d, in which the high-order coefficient is positive, has growth rate nd.
THEOREM 1.10 Suppose that ad>0. Then the function a0+a1n+…+adndis Θ(nd).
The next result says that logarithmic growth does not depend on the base to which logarithms are computed.
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It can be proved easily using the formula loga n=loga b·logb n.
THEOREM 1.11 The function logan is Θ(logbn) for any a,b>1.
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The next result can be proved using Stirling’s formula. It gives the growth rate of the factorial function in
terms of exponential functions.
THEOREM 1.12 The function n! is 
Exercises
1.3.1 Show that if G is a simple graph with n vertices and ε edges, then log ε=O(log n).
1.3.2 Consider the following statements which count the number of edges in a graph, whose adjacency matrix
is Adj.

Edges←0
for u←1 to n−1

do for υ←u+1 to n
do if Adj[u,υ]=1

then Edges←Edges+1

 

Calculate the number of steps the algorithm performs. Then calculate the number of steps required by the
following statements in which the graph is stored in adjacency lists:
Edges←0
for u←1 to n−1
do for each 
do if u<υ
then Edges←Edges+1
What purpose does the condition u<υ fulfill, and how can it be avoided?
1.3.3 Use induction to prove that the following formulas hold:

(a) 

(b) 

(c) 
1.3.4 Show that 3n2+12n=O(n2); that is, find constants A and N such that 3n2+ 12n<An2 whenever n≥N.
1.3.5 Show that log (n+1)=O(log n), where the logarithm is to base 2.
1.3.6 Use the answer to the previous question to prove that

(n+1) log(n+1)=O(n log n).  
1.3.7 Prove that if f1(n) and f2(n) are both O(g(n)), then f1(n)+f2(n) is O(g(n)).
1.3.8 Prove that if f1(n) is O(g1(n)) and f2(n) is O(g2(n)), then f1(n)f2(n) is O(g1(n)g1(n)).
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1.4 Notes
Some good general books on graph theory are BERGE [14], BOLLOBÁS [18], BONDY and MURTY [19],
CHARTRAND and LESNIAK [24], CHARTRAND and OELLERMANN [25], DIESTEL [35], GOULD [53], and WEST
[123]. A very readable introductory book is TRUDEAU [115]. GIBBONS [51] is an excellent treatment of graph
algorithms. A good book discussing the analysis of algorithms is PuRDOM and BROWN [96]. AHO, HOPCROFT,
and ULLMAN [1], SEDGEWICK [108] and WEISS [122] are all excellent treatments of data structures and
algorithm analysis.
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2 
Paths and Walks
2.1 Introduction
Let u and ν be vertices of a simple graph G. A path P from u to ν is a sequence of vertices u0, u1,…, uk such
that u=u0, v=uk,  and all the ui are distinct vertices. The length of a path P is l(P), the number
of edges it uses. In this example, l(P)=k, and P is called a uv-path of length k. A uv-path of length 4 is
illustrated in Figure 2.1, with dashed edges.
A cycle C is a sequence of vertices u0, u1,…, uk forming a u0uk-path, such that  The length of C is
l(C), the number of edges that it uses. In this case, l(C)=k+1.
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A uv-path P connects u to v. The set of all vertices connected to any vertex u forms a subgraph Cu, the
connected component of G containing u. It will often be the case that Cu contains all of G, in which case G is
a connected graph. w(G) denotes the number of distinct connected components of G. The graph of Figure 2.1
is disconnected, with w=3.
There are several ways of finding the connected components of a graph G. One way to find the sets Cu for a
graph G is as follows:
procedure COMPONENTS(G)
     for each 
     do initialize Cu to contain only u
     for each 

     
The inner for-loop ensures that, upon completion, if  then Cu=Cv, for any vertices u and ?.
Therefore, if P=(u0,u1,…,uk) is any path, we can
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FIGURE 2.1
A graph with three components
be sure that  so that when the algorithm terminates, each Cu will contain all the
vertices connected to u by any path; that is, Cu will be the connected component containing u.
The complexity of the algorithm naturally depends upon the data structures used to program it. This
algorithm is a perfect example of the use of the merge-find data structure. Initially, each Cu={u} and
Cυ={υ}. When the edge uυ is examined, Cu and Cυ are merged, so that now Cu=Cυ={u,υ}. The two
operations which need to be performed are to determine whether Cu=Cυ, and to merge Cu and Cυ into one.
This can be done very efficiently by choosing a vertex in each Cu as component representative.
uRep←COMPREP(Cu)
vRep←COMPREP(Cυ)
if uRep≠vRep
     then MERGE(Cu,Cυ)
Initially, Cu={u}, so that u begins as the representative of Cu. Associated with each vertex υ is a pointer
toward the representative of the component containing υ. To find the representative of Cu, we start at u and
follow these pointers, until we come to the component representative. The component representative is
marked by a pointer that is negative. The initial value is—1. The pointers are easily stored as an array,
CompPtr.
COMPREP() is a recursive procedure that follows the component pointers until a negative value is reached.
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procedure COMPREP(u)
if CompPtr[u]<0
then return (u)
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The assignment
CompPtr[u]←theRep  

is called path compression. It ensures that the next time CompPtr(u) is computed, the representative will be
found more quickly. The algorithm COMPONENTS() can now be written as follows:

Algorithm 2.1.1: COMPONENTS(G)
n←|G|

for u←1 to n
do CompPtr[u]← −1

for u←1 to n

The essential step in merging Cu and Cυ is to assign either
CompPtr[vRep]←uRep  

or
CompPtr[uRep]←vRep  

The best one to choose is that which merges the smaller component onto the larger. We can determine the
size of each component by making use of the negative values of CompPtr[uRep] and CompPtr[vRep]. Initially,
CompPtr[u]=−1, indicating a component of size one.
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procedure MERGE(uRep,vRep)
uSize← -CompPtr[uRep]
vSize← -CompPtr[vRep]
if uSize<vSize

When Cu and Cv are merged, the new component representative (either uRep or vRep) has its CompPtr[·]
assigned equal to—(uSize+vSize). The component pointers can be illustrated graphically. They are shown in
Figure 2.2 as arrows. The merge operation is indicated by the dashed line.
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FIGURE 2.2
Component representatives
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2.2 Complexity
The components algorithm is very efficient. The for-loop which initializes the CompPtr array requires n steps.
If adjacency lists are used to store G, then the total number of times that the body of the main loop is
executed is

 
Thus COMPREP() is called 4ε times. How many times is MERGE() called? At each merge, two existing
components are replaced by one, so that at most n−1 merges can take place. Each merge can be performed
using four assignments and a comparison. It takes n steps to initialize the CompPtr array. Thus the total
number of steps is about 6n+4ε·(number of steps per call to COMPREP()). The number of steps each call to
COMPREP() requires depends on the depth of the trees which represent the components. The depth is
changed by path compression, and by merging. It is proved in AHO, HOPCROFT, and ULLMAN [1], that if
there are a total of n points involved, the number of steps required is O(α(n)), where α(n) is the inverse of
the function A(n), defined recursively as follows.

A(1)=1
A(k)=2A(k−1)

 

Thus, A(2)=21=2, A(3)=22=4, A(4)=24=16, A(5)=216= 65536, etc. It follows that α(n)≤5, for all n≤65536.
So the complexity of Algorithm 2.1.1 is almost linear, namely, O(n+εα(n)), where α(n)≤5, for all practical
values of n.
Exercises
2.2.1 Assuming the data structures described above, program the COMPONENTS() algorithm, merging the
smaller component onto the larger. Include an integer variable NComps which contains the current number of
components. Upon completion, its value will equal w(G).
2.2.2 Algorithm 2.1.1 computes the connected components Cu using the array CompPtr. If we now want to
print the vertices of each distinct Cu, it cannot be done very efficiently. Show how to use linked lists so that
for each component, a list of the vertices it contains is available. Rewrite the MERGE() procedure to include
this. Is the complexity thereby affected?
2.2.3 In the Algorithm 2.1.1 procedure, the for-loop
for u←1 to n do
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executes the statement uRep←COMPREP(u) once for every  Show how to make this more efficient
by taking the statement uRep←COMPREP(u) out of the υ-loop, and modifying the MERGE() procedure
slightly. Calculate the new complexity.

2.2.4 Let n=|G|. Show that if  then G is connected. Hint: If G is disconnected, there is a
component of size x<n. What is the maximum number of edges G can then have?
2.2.5 Show that if  then G is connected.
2.2.6 Show that if G is disconnected, then  is connected.
2.2.7 Show that if G is simple and connected but not complete, then G has three vertices u, υ, and w such
that w, but 
2.2.8 A longest path in a graph G is any path P such that G contains no path longer than P. Thus a graph can
have several different longest paths (all of the same length, though). Show that ℓ(P)≥δ(G), for any longest
path. Hint: Consider an endpoint of P.
2.2.9 Show that every graph G has a cycle of length at least δ(G)+1, if δ(G)≥2. Hint: Consider a longest
path.
2.2.10 Prove that in a connected graph, any two longest paths have at least one vertex in common.
2.3 Walks
Paths do not contain repeated vertices or edges. A walk in G is any sequence of vertices u0, u1,…, uk such
that  Thus, in a walk, edges and vertices may be repeated. Walks are important because of their
connection with the adjacency matrix of a graph. Let A be the adjacency matrix of G, where V(G)={u1,u2…,
un}, such that row and column i of A correspond to vertex ui.
THEOREM 2.1 Entry [i,j] of Akis the number of walks of length k from vertex ui to uj.
PROOF By induction on k. When k=1, there is a walk of length 1 from ui to uj if and only if  in
which case entry A[i,j]=1. Assume it’s true whenever k≤t and consider At+1. Let W be a uiuj-walk of length
t+1, where t≥2. If ul is the vertex before uj on W, then W can be written as (W′, ul, uj), where W′ is a uiul-
walk of length t. Furthermore, every uiul-walk of length t gives a uiuj-walk of length t+1 whenever 
Therefore the number of
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uiuj-walks of length t+1 is

 
But the number of uiul-walks of length t is At[i,l], so that the number of uiuj-walks of length t+1 is

 
which equals At+1[i,j]. Therefore the result is true when k=t+1. By induction, it’s true for all values of k.
Notice that this result is also true for multigraphs, where now A[i,j] is the number of edges joining ui to uj.
For multigraphs, a walk W must be specified by giving the sequence of edges traversed, as well as the
sequence of vertices, since there can be more than one edge joining the same pair of vertices.
Exercises
2.3.1 Show that A2[i,j] equals the number of uiuj-paths of length 2, if i≠j, and that A2[i,i]=DEG(ui).
2.3.2 Show that A3[i,i] equals the number of triangles containing vertex ui. Find a similar interpretation of
A3[i,j], when i≠j. (A triangle is a cycle of length 3.)
2.3.3 Ak contains the number of walks of length k connecting any two vertices. Multiply Ak by xk, the kth
power of a variable x, and sum over k, to get the matrix power series I+Ax+A2x2+A3x3+…, where I is the
identity matrix. The sum of this power series is a matrix whose ijth entry is a function of x containing the
number of uiuj-walks of each length, as the coefficient of xk. Since the power series expansion of (1−a)−1 is
1+a+a2+a3+…, we can write the above matrix as (I−Ax)−1. That is, the inverse of the matrix (I−Ax) is the
walk generating matrix. Find the walk generating matrix for the graph of Figure 2.3.
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FIGURE 2.3
Compute the number of walks in this graph.
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2.4 The shortest-path problem
The distance from vertex u to v is DIST(u,v), the length of the shortest uv-path. If G contains no uv-path,
then DIST(u,v)=∞. In this section we study the following two problems.

Problem 2.1:
Shortest Path

Instance:a graph G and a vertex u.
Find: DIST(u,v), for all u,

Problem 2.2:
All Paths

Instance:a graph G.
Find: DIST(u, v), for all u, 
Given a vertex u, one way of computing DIST(u,v), for all v, is to use a breadth-first search (BFS), as is done
in procedure BFS().
procedure BFS(G,u)

for each 
do dist[v]←8
dist[u]←0
place u on ScanQ
repeat
select v for the head of ScanQ
for each 
do if w not on ScanQ

advance ScanQ
until all of ScanQ has been processed
Procedure BFS() uses a type of data structure called a queue. A queue is an ordered list in which we usually
access only the first or the head of the list and new items are only placed at the end or tail of the list. This is
similar to one’s
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experience of waiting in line at the checkout counter of a store. The person at the head of the line is
processed first by the checker and the new customers enter at the end of the line. One of the most
convenient ways to store a queue is as an array. For when an algorithm builds a queue on an array, all the
vertices visited are on the array when the algorithm completes, ready for input to the next procedure. BFS()
works in this way.
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FIGURE 2.4
A breadth-first search
The breadth-first search (BFS) algorithm is a fundamental algorithm in graph theory. It appears in various
guises wherever shortest paths are useful (e.g., network flows, matching theory, coset enumeration, etc.).
Figure 2.4 shows the result of applying a BFS to the Petersen graph, where the vertices are numbered
according to the order in which they were visited by the algorithm, and shaded according to their distance
from vertex 1. The thicker edges show the shortest paths found by the algorithm.
Notice that the first vertex on the ScanQ is u, whose dist[u]=DIST(u,u)=0. The next vertices to be placed on
the queue will be those adjacent to u, that is, those at distance 1. When they are placed on the queue, their
distance will be computed as

dist[·]←dist[u]+1.  
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So we can say that initially, that is, up to vertices of distance one, vertices are placed on the queue in order
of their distance from u; and that when each vertex w is placed on ScanQ, dist[w] is made equal to
DIST(u,w). Assume that this is true for all vertices of distance k or less, where k≥1. Consider when υ is
chosen as the first vertex of distance k on ScanQ. The for-loop examines all vertices  If w on ScanQ
already, then there is a uw-path of length≤k, and w is ignored. If w is not on ScanQ, then DIST(u,w)>k. The
uw-path via υ has length k+1, so w is added to the queue, and dist[w] is set equal to dist[υ]+1=k+1. Since
every vertex at distance k+1 is adjacent to a vertex at distance k, we can be sure that when all vertices υ on
ScanQ at distance k have been scanned, all vertices at distance k+1 will be on the queue. Thus the assertion
that vertices are placed on the queue in order of their distance from u, and that when each vertex w is placed
on ScanQ, dist[w] is made equal to DIST(u,w), is true up to distance k+1. By induction, it is true for all
distances.
This proof that the BFS() algorithm works illustrates how difficult and cumbersome it can be to prove that
even a simple, intuitively “obvious” algorithm works correctly. Nevertheless, it is important to be able to prove
that algorithms work correctly, especially the more difficult algorithms. Writing down a proof for an “obvious”
algorithm will often reveal hidden bugs that it contains. This proof also illustrates another feature, namely,
proofs that algorithms work tend to use induction, often on the number of iterations of a main loop.
The complexity of the BFS() is very easy to calculate. The main operations which are performed are
1. Scan all 
2. Select the next 
3. Determine whether 
The first operation is most efficiently done if G is stored in adjacency lists. We want the second and third
operations to take a constant number of steps. We store ScanQ as an integer array, and also store a boolean
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array onScanQ to tell whether  The revised algorithm is Algorithm 2.4.1.
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Algorithm 2.4.1: BFS(G,u)

global n
for υ←1 to n

dist[u]←0
ScanQ[1]←u

onScanQ[u]←true
QSize←1

k←1
repeat

υ←ScanQ[k]
for each 

do if not onScanQ[w]

k←k+1
until k>QSize

The initialization takes 2n steps. The repeat-loop runs at most n times. At most n vertices are placed on the
queue. The for-loop over all  requires

 
steps, all told. This assumes that the adjacent vertices are stored in a linked list—the for-loop traverses the
adjacency list. Therefore the total number of steps executed is at most

3n+2ε=O(n+ε)=O(ε).  
Notice that in this program we could have dispensed with the array onScanQ, by using instead dist[w]=∞ to
determine w is on ScanQ. Because a breath-first search always uses a queue but not always a dist[·] array,
we have kept the boolean array, too.
2.5 Weighted graphs and Dijkstra’s algorithm
A breath-first search calculates DIST(u,υ) correctly because in a simple graph, each edge has “length” one;
that is, the length of a path is the number of edges
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it contains. In a more general application where graphs are used to model a road network, or distribution
network, etc., we may want to assign a length≥1 to each edge. This is illustrated in Figure 2.5.
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FIGURE 2.5
A weighted graph
This is an example of a weighted graph. Each edge  is assigned a positive integral weight WT(uυ).
WT(uυ) may represent length, weight, cost, capacity, etc., depending on the application. In a weighted graph,
the length of a path P=(u0,u1,…, uk) is

 
The distance between two vertices is now defined as

DIST(u,υ)=MIN{ℓ(P): P is a uυ-path}  
A breath-first search will not compute DIST(u,υ) correctly in a weighted graph, because a path with more
edges may have the shorter length. There are many algorithms for computing shortest paths in a weighted
graph. Dijkstra’s algorithm is one.
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procedure DIJKSTRA(u)

u1←u “the nearest vertex to u.”
for k←1 to n-1

comment: all dist[ui] are now known
Dijkstra’s algorithm is an example of a so-called “greedy” or “myopic” algorithm, that is, an algorithm which
always selects the next nearest, or next best, etc., on each iteration. Many problems can be solved by greedy
algorithms.
We need to know how to choose v, the next nearest vertex to u1, in each iteration. On the first iteration, it
will be the vertex v adjacent to u1 such that WT(u1v) is minimum. This will {u1, u2} such that DIST(u1, u1)
and DIST(u1, u2) are known. On the next iteration, the vertex ? chosen will be adjacent to one of u1 or u2.
The distance to u1 will then be either

DIST(u1,u1)+WT(u1v)  
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or
DIST(u1, u2)+WT(u2v),  

and v will be the vertex for which this sum is minimum.
In general, at the beginning of iteration k, vertices u1, u2…, uk will have been chosen, and for these vertices,

DIST[ui]=DIST(u1,ui).  
The next nearest vertex v must be adjacent to some ui, so that the shortest u1v-path will have length
dist[ui]+WT(uiv), for some i. v is chosen as the vertex for which this value is a minimum. This is illustrated in
Figure 2.6. The refined code for Dijkstra’s algorithm is Algorithm 2.5.1.
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FIGURE 2.6
A shortest u1υ-path, via vertex uk

Algorithm 2.5.1: DIJKSTRA(u)

for each υ
do dist[υ]←∞

u1←u “the nearest vertex to u”
dist[u]←0

for k←1 to n−1

Exercises
2.5.1 Prove that Dijkstra’s algorithm works. Use induction on the number k of iterations to prove that at the
beginning of iteration k, each dist[ui]=DIST(u1,ui), and that for all υ≠ui, for any i, dist[υ] equals the length
of a shortest u1υ-path using only the vertices {u1,u2,…,uk−1,υ}. Conclude that after n−1 iterations, all
distances dist[υ]=DIST(u1,υ).
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2.5.2 Assuming that G is stored in adjacency lists, and that the minimum dist[v] is computed by scanning all n
vertices, show that the complexity of Dijkstra’s algorithm is O(e+n2).
2.6 Data structures
When computing the distances DIST(u1, v), it would also be a good idea to store a shortest u1v-path. All the
u1v-paths can easily be stored using a single array
PrevPt[v]: the previous point to v on a shortest u1v-path.
Initially, PrevPt[u]←0. When dist[v] and dist[uk]+WT(ukv) are compared, if the second choice is smaller,
then assign PrevPt[v]←uk. The shortest u1v-path can then be printed by the following loop:
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repeat
output (v)
v←PrevPt[v]
until v=0
The complexity of Dijkstra’s algorithm was calculated in Exercise 2.5.2 above as O(n2+e). The term O(n2)
arises from scanning up to n vertices in order to select the minimum vertex ?. This scanning can be
eliminated if we store the vertices in a partially ordered structure in which the minimum vertex is always
readily available. A heap is such a structure. In a heap H, nodes are stored so that the smallest element is
always at the top.
A heap is stored as an array, but is viewed as the partially ordered structure shown above. Its elements are
not sorted, but satisfy the heap property, namely that H[i]=H[2i] and H[i]=H[2i+1]; that is, the value stored
in each node is less than or equal to that of either of its children. Therefore, H[1] is the smallest entry in the
array.
The heap shown above has depth four; that is, there are four levels of nodes. A heap of depth k can contain
up to 2k-1 nodes, so that the depth needed to store N values is the smallest value of k such that 2k-1=N,
namely,  where the log is to base 2.
If the value stored in a node is changed so that the heap property is no longer satisfied, it is very easy to
update the array so that it again forms a heap. For example, if H[10] were changed to 4, then the following
loop will return H to heap form. The movement of data is shown in Figure 2.8.
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FIGURE 2.7
A heap
procedure FLOATUP(k)
comment: Element H[k] floats up to its proper place in the heap
temp←H[k]
j←k/2
while temp<H[j] and j>0

H[k]←temp
Notice the circular movement of data when an altered element floats up to its proper place in the heap. If
some entry in the heap were made larger, say H[1] became equal to 10, then a similar loop (Procedure
FLOATDOWN) would cause the new value to float down to its proper place. Since the depth of a heap
containing N items is  the number of items moved is at most 
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FIGURE 2.8
Updating a heap with FLOATUP.
procedure FLOATDOWN(k)

temp←H[k]
while k+k=n

H[k]←temp
In order to extract the smallest item from a heap of N elements, we take its value from H[1], and then
perform the following steps:
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H[1]←H[N]
N←N-1
FLOATDOWN(1)
The new H[1] floats down at most  steps.
There are two ways of building a heap.
procedure BUILDHEAPTOPDOWN(H,N)
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k←1
while k<N

Using this method, the elements in entries 1, 2,…, k already form a subheap with k entries. On each iteration,
a new entry is allowed to float up to its proper position so that the first k+1 values now form a heap. There
are two nodes on level two of the heap. The FLOATUP() operation for each of these may require up to 1+2=3
data items to be moved. On level three there are four nodes. FLOATUP() may require up to 1+3=4 data
items to be moved for each one. In general, level k contains 2k-1 nodes, and FLOATUP() may need up to
1+k data items to be moved for each. The total number of steps to create a heap with 
levels in this way is therefore at most

 
Therefore

2S=3.22+4.22+5.23+…+(1+d)2d,  
so that

2S-S=(1+d)2d-3·21-(22+23 +…+2d-1)
=(1+d)2d-5-(1+2+22+23+…+2d-1)

=(1+d)2d-5-(2d-1)
=d2d-4

 

Thus, it takes O(N log N) steps to build a heap in this way.
The second way of building a heap is to use FLOATDOWN().
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procedure BUILDHEAPBOTTOMUP(H,N)

 
k←N/2
while k≥1

This way is much more efficient, requiring only O(N) steps, as is proved in Exercise 2.7.1 below.
We can use a heap H to store the values dist[v] in Dijkstra’s algorithm. The main loop now looks like this.
u1←u “the nearest vertex to u.”
for k←1 to n-1

 
Notice that the FLOATUP(v) operation requires that we also know which node H[k] in the heap corresponds to
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the vertex v, and vice versa. This can be done with an array mapping vertices into the heap. Let us work out
the complexity of Dijkstra’s algorithm using this data structure. It is not possible to get an accurate estimate
of the number of steps performed in this case, but only an upper bound. The initialization of the heap and
dist[·] array take O(n) steps. The inner for-loop executes a total of at most 2e if-statements, so that at most
2e FLOATUP()’s are performed, each requiring at most  steps. There are also n-1
FLOATDOWN()’S performed. Thus the complexity is now
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This may be better or worse that the previous estimate of O(n2) obtained when the minimum vertex is found
by scanning up to n vertices on each iteration. If the graph has few edges, say Σ ≤ ∆n/2, where the
maximum degree? is some fixed constant, or a slowly growing function of n, then Dijkstra’s algorithm will
certainly be much more efficient when a heap is used. Furthermore, it must be remembered that the
complexity estimate using the heap is very much an upper bound, whereas the other method will always take
at least O(n2) steps. If the number of edges is large, say Σ=O(n2), then the heap-version of Dijkstra’s
algorithm can spend so much time keeping the heap up-to-date, that no increase in efficiency is obtained.
2.7 Floyd’s algorithm
Floyd’s algorithm solves the All Paths Problem, computing a matrix of values Dist[u,v]=DIST(u,v), for all u, v

 Initially, Dist[·,·] equals the weighted adjacency matrix A, where

 
Floyd’s algorithm is extremely simple to program.
procedure FLOYD(Dist)
comment: Dist[u,v] will equal DIST(u,v), upon completion
for k←1 to n

The for-loops for v and w together examine  pairs vw for each value of u, so the complexity of the
algorithm is

 
The graph is stored as a weighted adjacency matrix, in which non-adjacent vertices v, w can be considered to
be joined by an edge of weight ∞. Figure 2.9 shows a weighted graph on which the reader may like to work
Floyd’s algorithm by hand.
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FIGURE 2.9
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A complete weighted graph and its weighted adjacency matrix.
Let the vertices of G be named u1, u2,…, un. In order to prove that Floyd’s algorithm works, we prove by
induction, that at the end of kth iteration of the for-loop for u, Dist[v,w] is the length of the shortest υw-path
which uses only vertices υ,w, and u1, u2,…, uk. When k=0, that is, before the first iteration, Dist[υ,w] is the
length of the edge υw, that is, the length of the shortest path using only vertices υ and w. At the end of the
first iteration, Dist[υ,w]=MIN(WT(υ,w), WT(υ,u1)+WT(u1,w)). This is the length of the shortest υw-path
using only vertices υ, w, and u1, since that path either uses u1, or else consists only of the edge υw. Thus,
the statement is true when k=1.

FIGURE 2.10
A path viaut+1.
Assume that it is true whenever k≤t, and consider iteration t+1. At the end
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of the iteration, each

Dist[v, w]=MIN(Dist[v, w],Dist[v, ut+1]+Dist[ut+1,w]).  
If the shortest vw-path using only vertices v, w, u1, u2,…, ut+1 does not use ut+1, then its length is the
previous value of Dist[v, w] from iteration t. If the path does use ut+1, then the length is given by the
second term above. Therefore, at the end of the iteration, the value of Dist[v, w] is as required. By induction,
it follows that at the end of the nth iteration, Dist[v, w]=DIST(v, w), for all v and w. Floyd’s algorithm finds all

distances in the graph. It always takes  steps, irrespective of the number of edges of G. When
there are few edges, it is faster to use Dijkstra’s algorithm n times, once for every starting vertex u. This
gives a complexity of O(en log n), using a heap, which can be less than O(n3).
Exercises
2.7.1 Calculate the number of steps needed to construct a heap using the BUILDHEAPBOTTOMUP()
procedure.
2.7.2 The repeat-loop of the FLOATUP() procedure described above requires k+2 data items to be moved
when an entry floats up k nodes in the heap. If FLOATUP() is programmed by swapping adjacent elements
instead of moving them in a cycle, calculate the number of items moved when an entry floats up k nodes.
Which is more efficient?
2.7.3 The type of heap discussed above is called a binary heap, since each node H[k] has two children, H[2k]
and H[2k+1]. The depth of a binary heap with N elements is  In a ternary heap, node H[k] has
three children, H[3k], H[3k+1], and H[3k+2]. What is the depth of a ternary heap with N nodes? Calculate
the number of steps needed to construct it using the BUILDHEAPBOTTOMUP() procedure.
2.7.4 Program Dijkstra’s algorithm using a binary heap.
2.7.5 Show how to store a complete set of shortest paths in Floyd’s algorithm, using a matrix PrevPt[v, w],
being the previous point to v on a shortest vw-path. What should the initial value of PrevPt[v, w] be, and how
and when should it be modified?
2.7.6 Ford’s algorithm. Consider the following algorithm to find DIST(u, v), for a given vertex  and all
vertices 
procedure FORD(u)
for each 
do dist[v]←∞
dist[u]←0
while there is an edge vw such that dist[w]>dist[v]+WT[vw]
do dist[w]←dist[v]+WT[vw]
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Prove that Ford’s algorithm correctly computes DIST(u, υ). What data structures are necessary for an efficient
implementation of Ford’s algorithm? Analyze the complexity of Ford’s algorithm. Give a numerical estimate of
the number of steps, as well as a formula of the form O(·).
2.8 Notes
WEISS [122] contains an excellent treatment of the merge-find data structure and heaps. Dijkstra’s shortest-
path algorithm and Floyd’s algorithm are described in most books on algorithms and data structures.
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3 
Some Special Classes of Graphs
3.1 Bipartite graphs
A graph G is said to be bipartite if V(G) can be divided into two sets X and Y such that each edge has one
end in X and one end in Y. For example, the cube is a bipartite graph, where the bipartition (X,Y) is illustrated
by the coloring of the nodes in Figure 3.1.

FIGURE 3.1
Two bipartite graphs
The maximum number of edges in a simple bipartite graph in which X and Y are the two sides of the
bipartition is clearly |X|·|Y|. The complete bipartite graph Km,n has |X|=m, |Y|=n, and ε=mn. For example,
K3,3 is illustrated in Figure 3.1.
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LEMMA 3.1 A simple, bipartite graph G has at most |G|2/4 edges.
PROOF Let G have bipartition (X,Y), where |X|=x and |Y|=n−x, where n=|G|. Then
ε≤x(n−x)=nx−x2=n2/4−(n/2−x)2≤n2/4.
If C=(x1, y1, x2, y2,…) is a cycle in a bipartite graph G, then consecutive vertices of C must be alternately in
X and Y, the two sides of the bipartition. It follows that ℓ(C) is even. In fact, any graph in which all cycles
have even length must be bipartite.
THEOREM 3.2 G is bipartite if and only if all cycles of G have even length.
PROOF Let G be a connected graph in which all cycles have even length. Pick any  and set X={υ:
DIST(x,υ) is even}, and Y=V(G)−X. Clearly X and Y partition V(G) into two parts. We must show that there
are no edges with both endpoints in X or Y. Suppose that uυ is an edge with  Let Pu be a shortest
xu-path, that is, a path of length DIST(x,u), and let Pυ be a shortest xυ-path. Then ℓ(Pu) and ℓ(Pυ) are both
even. Say ℓ(Pu)≤ℓ(Pυ). Pu and Pυ both begin at point x. They do not both contain u, or Puuυ would be a
shortest xυ-path of length ℓ(Pu)+1, an odd number. So let z be the last point in common to Pu and Pυ. This
defines the cycle C=Pu[z,u]uυPυ[υ,z]. Here Pu[z,u] denotes the portion of Pu from z to u and Pυ[υ,z] denotes
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the portion of Pυ from υ to z. The length of C is then ℓ(Pu[z,u])+ℓ(Pu[υ,z])+1= ℓ(Pu)+ℓ(Pυ)−2DIST(x,z)+1,
which is odd, a contradiction. Therefore no edge uυ has both endpoints in X. Similarly, no edge uυ has both
endpoints in Y. Since a graph is bipartite if and only if every component is bipartite, this completes the proof.

FIGURE 3.2
Two paths in a bipartite graph
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LEMMA 3.3 If G is a k-regular bipartite graph, where k>0, with bipartition (X,Y), then|X|=|Y|.
PROOF Since each edge has one end in X, we can write  Similarly, 

 Therefore k·|X|=k·|Y|. Since k>0, it follows that |X|=|Y|.
Exercises
3.1.1 The k-cube Qk is a graph whose vertex set consists of all binary vectors of length k:

 
Thus there are 2k vertices. The edges of Qk are formed by joining two vertices  and 

 if  and  differ in exactly one coordinate, that is, ai=bi for all i but one. Q3 is
displayed in Figure 3.3. Prove that Qk is bipartite. Describe a bipartition of Qk.

FIGURE 3.3
The 3-cube, Q3
3.1.2 Prove that ε(Qk)=k2k−1.
3.1.3 Describe in pseudo-code an algorithm to find a bipartition of G, or to determine that G is not bipartite.
Describe the data-structures needed, and calculate the complexity (should be O(ε)).
3.1.4 Let G be a bipartite simple graph with bipartition (X,Y) and n vertices. Let δx be the minimum degree
among the vertices of X, and δY be the minimum degree

page_49

Page 50
among the vertices of Y. Show that if δX+δY>n/2, then G is connected, where δX, δY>0.
3.2 Line graphs
Two edges of a graph G are adjacent if they share a common endpoint. The linegraph of G is a graph L(G)
which describes the adjacencies of the edges of G. Thus, every vertex of L(G) corresponds to an edge uυ of
G, so that |L(G)|= ε(G). This is illustrated in Figure 3.4.
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FIGURE 3.4
Constructing a line-graph
A line-graph can always be decomposed into complete subgraphs. For a vertex  lies on DEG(υ)
distinct edges all of which share the endpoint υ. The DEG(υ) corresponding vertices of L(G) form a complete

subgraph containing  edges. Every edge of L(G) is contained in exactly one such complete subgraph.

FIGURE 3.5
Complete subgraph in a line-graph
This gives the following theorem:
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THEOREM 3.4 
Exercises
3.2.1 Find the line-graph of the cube.
3.2.2 Construct  and show that it is isomorphic to the Petersen graph.
3.2.3 Let G be any graph. If we insert a vertex of degree two into each edge, we obtain a new graph S(G),
called the subdivision graph of G. For example, S(K4) is illustrated in Figure 3.6. Prove that S(G) is always
bipartite, and find a formula for ε(S(G)).

FIGURE 3.6
Subdivision graph of K4
3.2.4 The graph P in Figure 3.7 is called the 3-prism. Find the line-graphs of the subdivision graphs of K4 and
P. Draw them as neatly as possible. What can you say in general about constructing the line-graph of the
subdivision graph of a 3-regular graph?

FIGURE 3.7
The 3-prism
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3.2.5 We know that
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and that

 
Can you find a similar way of interpreting

 
Assume first that there are no triangles in G.
3.2.6 Suppose that a graph G is represented by its adjacency matrix. Write a program to print out the
adjacency lists of L(G), but do not store either adjacency lists or an adjacency matrix for L(G); just print it
out. Also print out a list of the edges of G, in order to give a numbering to the vertices of L(G).
3.2.7 Notice that  (see Figure 3.8). Prove that if G and H are any other graphs, then 

FIGURE 3.8
Two graphs with isomorphic line-graphs
3.3 Moore graphs
The length of the shortest cycle in a graph G is called its girth, denoted γ(G). For example, the cube has girth
four. Graphs with fixed degree k and fixed girth often have interesting properties. For example, let G be a k-
regular graph of girth four, and pick any vertex u in G. There are k vertices at distance one from u. Since G
has no triangles, there are at least k−1 vertices at distance two from u, as shown in Figure 3.9. Therefore,
|G|≥1+ k+(k−1)=2k. There is only one such graph with |G|=2k, and that is the complete bipartite graph Kk,
k.
Now let G be a k-regular graph of girth five, and let u be any vertex, There are k vertices at distance one
from u. Since G has no 4-cycles, each point at distance one is adjacent to k−1 more vertices at distance two,
so that |G|≥ 1+k+k(k−1)=k2+1.
Problem. Are there any k-regular graphs G of girth five with |G|=k2+1?
These graphs are called Moore graphs. Let n=|G|. A l-regular graph cannot have γ=5, so k≥2. If k=2, then
n=22+1=5. G is a cycle of length five. This is the unique Moore graph of degree two.
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FIGURE 3.9
Kk,k
If k=3, then n=32+1=10. There are three vertices at distance one from u, and six at distance two, as
illustrated in Figure 3.10. Consider vertex u6.  since this would create a triangle, whereas γ=5.
Without loss of generality, we can take u6→u8. Were we now to join u6→u7, this would create a 4-cycle (u6,
u7, u3, u8), which is not allowed. Therefore, without loss of generality, we can take u6→u9. This is shown in
Figure 3.10.
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FIGURE 3.10
A Moore graph of degree three
There is now only one way of completing the graph so as to maintain γ=5. Vertex u9 cannot be joined to u5,
u8, or u10. Therefore u9→u7. Similarly u8→u10, etc. The completed graph is shown in Figure 3.10, and has
been redrawn in Figure 3.11 (check that this is the same graph).
Thus, we have proved the following.
THEOREM 3.5 The Petersen graph is the unique Moore graph of degree three.
There is a very elegant theorem proving that Moore graphs can exist only for
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FIGURE 3.11
The Petersen graph
special values of k.
THEOREM 3.6 A Moore graph of degree k can exist only if k=2, 3, 7, or 57.
PROOF Let G be a Moore graph with adjacency matrix A and consider A2. Entry [i,j] of A2 is the number of
uiuj-paths of length two. If  then there is no 2-path from ui to uj, since γ=5. Therefore, [A2]ij=0 if
[A]ij=1.
If  then DIST(ui,uj)>1. It is shown in Exercise 3.3.3 that DIST(ui,uj) is always at most 2.
Therefore, if  there must be a 2-path connecting ui to uj. There cannot be two such 2-paths, for
that would create a 4-cycle containing ui and uj. Therefore, [A2]ij=1 if [A]ij=0.
It follows that the matrix A2+A consists of all 1’s off the diagonal. The diagonal elements all equal k, the
degree of G. The number of vertices is n= k2+1.

 
We can find the eigenvalues of this matrix. Write B=A2+A. If x is an eigenvector of A with eigenvalue α, then

Bx=(A2+A)x=AAx+Ax=αAx+αx=(α2+α)x  
so that β=α2+α is an eigenvalue of B. To find the eigenvalues of B, we solve det(λI−B)=0 for λ.
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Adding rows 2 to n onto row 1 gives

 
Now add the first row to each row to get

 
Therefore the eigenvalues of B are

 

Since β=α2+α, we can solve for  Should we take the plus or minus sign? Since
n=k2+1, the value β1=k2+k+1 gives

 
Now β1 occurs only once as an eigenvalue, so we must choose only one of these. G is k-regular, so that the
rows of A all sum to k. Thus, if x is the vector of all 1’s, then Ax=kx, so that k is in fact an eigenvalue of A.
Consider now β2. The corresponding eigenvalues of A are
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The total multiplicity is m1+m2=n−1=k2. Since the trace of A, that is, the sum of its diagonal elements, also
equals the sum of its eigenvalues, we can write

m1+m2=k2 (sum of multiplicities)
α1m1+α2m2+k=0 (sum of eigenvalues)

 

Solving these equations for m1 and m2 gives

 
and
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The multiplicities m1 and m2 are integers. Consider the fraction

 
If k=2, the numerator is 0. If k≠2, then  must be an integer, so that 4k−3 is a perfect square, say
4k−3=s2. Then

 
and

 
This expression must be divisible by  If s does not divide 15, it cannot be an integer, since the
other 2 terms have no s in the denominator. Therefore s=1,3,5, or 15. The corresponding values of k, m1,
m2, α1, and α2 are shown in the following table:

s k n m1 m2 α1 α2
1 1 2 1 0 0 −1
3 3 10 4 5 1 −2
5 7 50 21 28 2 −3

15 57 3250 1520 1729 7 −8
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The value k=1 does not correspond to a graph. k=3 gives the Petersen graph. There is a unique Moore graph
with k=7 and n=50, called the Hoffman-Singleton graph. It is not known whether a Moore graph with k=57
and n=3250 exists. The 5-cycle is a Moore graph with k=2. Its eigenvalues are

 
and

 
with multiplicities m1=m2=2.
The diameter of a graph is the maximum distance between any two vertices,

 
Thus, Moore graphs have diameter two.
Exercises
3.3.1 Let G be a Moore graph of degree k, with n=k2+1 vertices. Let υ be any vertex of G. Prove that there
are exactly

 
pentagons containing υ. Conclude that G contains

 
pentagons, so that  (mod 5).
3.3.2 Let G be as above. Prove that every  is contained in exactly

 
hexagons and in

 
heptagons.
3.3.3 Show that in a k-regular graph of girth five, with n=k2+1 vertices, the distance DIST(u, υ) between any
two vertices is at most two. Hint: Show that DIST(u, υ)= 3 implies the existence of a 4-cycle.
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3.4 Euler tours
Figure 3.12 shows a drawing of K5 illustrating a walk in which each edge is covered exactly once.

FIGURE 3.12
A traversal of K5
A walk which covers each edge of a graph G exactly once is called an Euler trail in G. A closed Euler trail is
called an Euler tour. The example above shows that K5 has an Euler tour. Therefore we say that K5 is
Eulerian. It is easy to prove that a graph is Eulerian when all its degrees are even.
THEOREM 3.7 A connected graph G has an Euler tour if and only if all degrees of G are even.
PROOF Let W be a closed Euler trail in G, beginning at vertex υ. Each time that W enters a vertex u, it also
must exit it. Therefore W uses an even number of edges at each vertex u≠υ. Since the trail is closed, the
same is true of υ. Since W covers every edge of G exactly once, all degrees must be even.
Conversly suppose that all degrees of G are even. The proof is by induction on the number of edges of G. The
smallest connected graphs with even degrees are K1 and K3, and both of these are Eulerian (for K1, W=Ø is
an Euler trail). If the theorem is not true, let G be the smallest graph (i.e., smallest ε) with even degrees with
no closed Euler trail. Clearly δ(G)≥2, so that G contains a cycle, which is an Eulerian subgraph. Let C be the
largest Eulerian subgraph which G contains. Then ε(C)<ε(G). The complementary subgraph G−C also has
even
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degrees, and since it is smaller than G, each component of it must be Eulerian. Furthermore, C intersects
each component of G−C. We can now make an Euler trail in G from C, by inserting into C Euler trails of each
component K of G−C, as the walk in C reaches each K in turn. Therefore G is Eulerian. By induction, all
connected graphs with even degrees are Eulerian.
Notice that this theorem is true for multigraphs as well as simple graphs. If a connected graph G has exactly
two vertices, u and υ, of odd degree, then we can add an extra edge uυ to G to get G′, which will then have
all even degrees. G′ may now have multiple edges. If we now choose an Euler tour W in G′ beginning at υ,
we can number the edges so that the new edge υu is the last edge traversed. Then W−uυ will be an Euler
trail in G beginning at u and ending at υ. This is illustrated in Figure 3.13.

FIGURE 3.13
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An Euler trail
If there are more than two vertices of odd degree, then it is clear that G cannot have an Euler trail.
3.4.1 An Euler tour algorithm
The proof of Theorem 3.7 is essentially an algorithm to find an Euler tour in a connected graph G. The
algorithm works by building a walk from a starting vertex u. It takes the first edge e0=uυ incident on u and
follows it. Then it takes the first edge e1 incident on υ and follows it, and so forth. Because the degrees are
all even, it must eventually return to u. At this point, it will have found a closed walk in G that is a sub-tour of
an Euler tour. All the vertices visited in the
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sub-tour are stored on an array called the ScanQ. It then repeats this process at u, finding another sub-tour.
The sub-tours are then linked together to create one sub-tour. It continues like this until all the edges at u
have been used up. It then moves to the next vertex on the ScanQ and builds a sub-tour there, always linking
the sub-tours found into the existing tour. When the algorithm completes, all the vertices of G are in the
ScanQ array, because G is connected. Therefore we have an Euler tour.
The Euler tour is stored as a linked list of edges. This makes it easy to insert a sub-tour into the list at any
location. If e=uυ is an edge of G, then we write  and  for the next and previous
edges in a tour, respectively. The adjacency list for vertex u is denoted by Graph[u]. This is a linked list of
incident edges.
When the algorithm begins building a sub-tour at vertex u, it needs to know an edge at u currently in the
Euler tour, if there is one. This is stored as EulerEdge[u]. It allows the algorithm to insert a sub-tour into the
existing tour at that location in the linked list.
Algorithm 3.4.1 is very efficient. For each vertex u, all incident edges are considered. Each edge is linked into
the Euler tour. This takes DEG(u) steps. Several sub-tours at u may be linked into the Euler tour being
constructed. There are at most DEG(u)/2 sub-tours at u. If follows that the complexity is determined by
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Algorithm 3.4.1: EULERTOUR(G)

comment: Construct an Euler tour in G
ScanQ[1]←1

QSize←1
k←1

while k≤QSize
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Exercises
3.4.1 Program Algorithm 3.4.1 EULERTOUR(G).
3.4.2 Let G be a connected graph in which 2k of the vertices are of odd degree. Show that there are k trails
W1, W2,…, Wk such that, taken together, W1, W2,…, Wk cover each edge of G exactly once.
3.4.3 Let W be an Euler tour in G. To what subgraph of the line-graph L(G), does W correspond?
3.4.4 Show that any Euler tour of a graph G can be written as a union of cycles.
3.4.5 What does the following algorithm do when input a connected graph G? What is its complexity?
procedure TESTGRAPH(G)
ScanQ[1]←1
QSize←1
Tag[1]←1
k←1
while k≤QSize
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return (true)
3.5 Notes
The theorem on Moore graphs is due to HOFFMANN and SINGLETON [63]. The application of algebraic
methods to graph theory is treated in BIGGS [9] and GODSIL and ROYLE [52]. The eigenvalues of graph
adjacency matrices is a vast topic. See the surveys by HOFFMAN [62], SCHWENK and WILSON [107], or the
book by CVETKOVIC, DOOB, and SACHS [30]. An excellent description of Euler tour algorithms can be found
in GOULD [53].
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4 
Trees and Cycles
4.1 Introduction
A tree is a connected graph that has no cycles. Figure 4.1 shows a number of trees.

FIGURE 4.1
Several trees
Trees are the smallest connected graphs; remove any edge from a tree and it becomes disconnected. As well
as being an important class of graphs, trees are important in computer science as data structures, and as
objects constructed by search algorithms. A fundamental property of trees is that all trees on n vertices have
the same number of edges.
THEOREM 4.1 If G is a tree, then ε(G)=|G|−1.
PROOF The proof is by induction on |G|. If |G|=1, then G=K1, which is a connected graph with no cycle, so
that ε=0. Similarly, if |G|=2, then G=K2, which has ε=1. Assume that the result is true whenever |G|≤t, and
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consider a tree G with |G|=t+1. Now G must have a vertex of degree one, or it would contain a cycle, so let 

 have degree one. Then G′=G−υ is still connected, and has no cycle, so it is a tree on t vertices.
Therefore ε(G′)= |G′|−1=|G|−2. It follows that ε(G)=|G|−1, so that the result is true when |G|=t+1. By
induction, it holds for all values of |G|.
We saw in this proof that a tree G with ε>0 must have a vertex of degree one. Consider a longest path P in
G. The two endpoints of P can only be joined to vertices of P. Since G does not contain any cycles, we can
conclude that the endpoints of a longest path have degree one. Therefore a tree has at least two vertices of
degree one.
In a connected graph, any two vertices are connected by some path. A fundamental property of trees is that
any two vertices are connected by a unique path. For if there were two uυ-paths P and Q, where P≠Q, then
traveling from u to υ on P we could find the first point of P which is not on Q. Continuing on P until we come
to the first point which is again on both P and Q, we could now follow Q back toward u and so find a cycle,
which, however, is not possible in a tree.
Every graph G has subgraphs that are trees. The most important of these are the spanning trees, that is,
trees which span all the vertices of G.
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LEMMA 4.2 Every connected graph has a spanning tree.
PROOF Let G be a connected graph. If G has no cycles, then G is a spanning tree. Otherwise choose a cycle
C, and remove any edge  from G. G is still connected, since any uυ-path which uses xy can now be
replaced by a path using C−xy, so that every u and υ are still connected by some path after xy has been
removed. We repeat this as many times as necessary until the resulting graph has no cycles. It is a spanning
tree of the original G.
Exercises
4.1.1 Describe in pseudo-code an algorithm to find an edge on a cycle, if one exists.
4.1.2 Make a list of all isomorphism types of trees on 1, 2, 3, 4, 5, and 6 vertices.
4.1.3 Show that there is a tree on n vertices with degree sequence (d1,d2,…, dn) if and only if
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4.2 Fundamental cycles
Figure 4.2 shows a spanning tree of the Petersen graph. If T is a spanning tree of G, let G−T stand for the
graph whose edges are E(G)−E(T). Notice that if any edge  is added to T, then T+xy contains
a unique cycle Cxy. This is because x and y are connected by a unique path Pxy in T. Pxy+xy creates a cycle,
Cxy, called the fundamental cycle of xy with respect to T.

FIGURE 4.2
A spanning tree
Exercises
4.2.1 Show that G has ε−|G|+1 fundamental cycles with respect to any spanning tree T.
4.2.2 Let T be a spanning tree of G, and let C be a cycle of G containing exactly two edges xy and uυ of G−T.
Prove that  where  denotes the operation of exclusive OR.
Every cycle of G can be formed from the fundamental cycles of G with respect to any spanning tree T.
THEOREM 4.3 Let T be a spanning tree of G. Let C be any cycle containing k edges u1υ1, u2υ2,…, ukυk of
G−T, where k≥1. Then 
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PROOF The proof is by induction on k. The result is certainly true when k=1. Suppose that the edges uiυi
occur on C in the order i=1,2,..., k. These edges divide the remaining edges of C into a number of paths P1,
P2,…, Pk, where Pi connects υi to ui+1. This is shown in Figure 4.3.
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FIGURE 4.3
Decomposition into fundamental cycles
Let  denote the ith fundamental cycle. Consider C1. It consists of the edge u1υ1 and the unique
path P of T connecting υ1 to u1. P and P1 both begin at vertex υ1. As we travel on P from υ1 toward u1, we
eventually come to the first vertex of P which is not on P1. This is also the last vertex in common with P1,
because P and P1 are both contained in T, which has no cycles. P may intersect several of the paths Pi. In
each case the intersection must consist of a single segment, that is, a consecutive sequence of vertices of Pi,
since T contains no cycles. The last path which P intersects is Pk, since both P and Pk end with u1. This is
illustrated in Figures 4.3 and 4.4.
Consider now  It is a subgraph of G. It consists of that part of C which is not contained in C1,
plus that part of P which is not contained in C. Thus, the portions common to P and each Pi are discarded,
but the new segments of P which are now added create one or more new cycles. Thus, H consists of one or
more edge-disjoint cycles constructed from edges of T, plus the edges u2υ2, u3υ3,…, ukυk. Since each of
these cycles contains fewer than k
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FIGURE 4.4
Decomposition into fundamental cycles
edges of G−T, we can say that  We then have 

 Therefore the result is true when C contains k
edges of G−T. By induction the result is true for all values of k.
Thus the fundamental cycles of G with respect to any spanning tree T generate all the cycles of G.
4.3 Co-trees and bonds
Let G be a graph. If  then  denotes V(G)−S. The edge-cut  consists of all edges of G with

one endpoint in S and one endpoint in  Notice that  is a disconnected graph. See Figure 4.5.
If T is a spanning tree of G, then the complementary graph  is called the co-tree corresponding to
T. Now a co-tree  cannot contain any edge-cut of

page_67

Page 68

FIGURE 4.5
An edge-cut
G. This is because  which is connected. If uυ is any edge of T, then T−uυ consists of two
components, Su, those vertices connected to u, and Sυ, those vertices connected to υ. [Su, Sυ] is an edge-
cut of G. It is contained in  This is illustrated in Figure 4.6.
[Su, Sυ] is a minimal edge-cut of G, that is, it does not contain any smaller edge-cuts. For if xy is any edge,
where  and  then G−[Su,Sυ]+xy is connected. Therefore:
1. A co-tree  contains no edge-cut.

2. If uυ is any edge of  then  contains a unique minimal edge-cut Buυ=[Su, Sυ].
Compare this with trees:
1. A tree T contains no cycle.
2. If uυ is any edge of G−T, then T+uυ contains a unique fundamental cycle Cuυ.
The unique edge-cut Buυ contained in  is called the fundamental edge-cut of uυ with respect to 
Any minimal edge-cut of G is called a bond. There is a duality between trees and co-trees, and cycles and
bonds (bonds are sometimes called co-cycles). There is a linear algebra associated with every graph, in which
cycles and bonds generate orthogonal vector spaces, called the cycle space and bond space of G. Theorem
4.3 above shows that the fundamental cycles with
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FIGURE 4.6
Co-trees and edge-cuts
respect to any spanning tree form a basis for the cycle space. Similarly, the fundamental edge-cuts form a
basis for the bond space. See BONDY and MURTY [19] for more information.
Exercises
4.3.1 How may fundamental edge-cuts does G have with respect to a co-tree  What are the dimensions of
the cycle space and bond space of G?
4.3.2 Let T be a spanning tree of G, and let edge  Let xy be any edge of the fundamental cycle Cuυ,
such that xy≠uυ. Then T+uυ−xy is also a spanning tree of G. Thus, spanning trees of G are adjacent via
fundamental cycles. The tree graph of G is Tree(G). Its vertices are the spanning trees of G, and they are
adjacent via fundamental cycles. Show that Tree(G) is a connected graph.
4.3.3 Show that trees (co-trees) are also adjacent via fundamental edge-cuts.
4.3.4 Let T be a spanning tree of G, and let W be a closed walk in G such that W uses edges of T and edges
u1υ1, u2υ2,…, ukυk of G−T. Describe the subgraph  What is its relation to
W?
4.3.5 Let  be an edge-cut of G. Prove that  is a bond if and only if G[S] and  are connected
graphs.
4.3.6 Let  be an edge-cut of G, and let  be a bond contained in  that is, 

 (Note: S2 will generally not be a subset of S1.) Prove
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that  is also an edge-cut.
4.3.7 Use the previous question to prove that every edge-cut can be decomposed into a disjoint union of
bonds.
4.3.8 Find a decomposition of the edge-cut  in the graph shown in Figure 4.7 into bonds. The set S is
marked by the shading. Is the decomposition unique? (Hint: Redraw the graph so that edges don’t cross each
other.)

FIGURE 4.7
Find a decomposition into bonds
4.3.9 Let T be a spanning tree of G. Let uυ and xy be edges of T, with corresponding bonds Buυ=[Su,Sυ] and
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Bxy=[Sx,Sy], where Buυ∩Bxy≠Ø. Prove that  is a bond.
4.3.10 Prove that any cycle and any bond must intersect in an even number of edges.
4.4 Spanning tree algorithms
One of the easiest ways to construct a spanning tree of a graph G is to use a breadth-first search. The
following code is adapted from Algorithm 2.4.1. The statements marked with  have been added.
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Algorithm 4.4.1: BFSEARCH(G, u)

comment: build a breadth-first spanning tree of G
for υ←1 to |G| do OnScanQ[υ]←false

ScanQ[1]←u
OnScanQ[u]←true

QSize←1
k←1

Parent[u]←0
BFNum[u]←1

Count←1
Tree←empty list

repeat
υ←ScanQ[k]

for each 
do if not OnScanQ[w]

k←k+1
until k>QSize

A number of arrays ScanQ, OnScanQ, Parent, and BFNum are used in this algorithm, as well as the counters
QSize and Count, and the list of edges Tree of the spanning tree constructed.
BFSEARCH(G,u) visits each vertex of the connected graph G, beginning with u. The order in which the vertices
are visited defines a numbering of the vertices, called the breadth-first numbering. It is saved in BFNum[·].
This is illustrated in Figure 4.8.
The search begins at node u, called the root of the spanning tree. In the example above, u=1. As each node
w is placed on the ScanQ, its parent in the search tree is saved in Parent[w]. This is represented by the
arrows on the tree in the diagram. Thus, beginning at any node in the graph, we can follow the Parent[·]
values up to the root of the tree. The breadth-first numbering defines a traversal of the tree, which goes level
by level, and from left to right in the drawing. A great many graph algorithms are built around the breadth-
first search. The important property of breadth-first spanning trees is that the paths it constructs connecting
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FIGURE 4.8
A breadth-first tree
any vertex w to the root of the tree are shortest paths.
In a weighted graph, different spanning trees will have different weight, where

 
We now want to find a spanning tree T of minimum weight. This is called the minimum spanning tree
problem. There are many algorithms which solve it. We present some of them here.
4.4.1 Prim’s algorithm
The idea here is to pick any  and “grow” a tree on it; that is, at each iteration, we add one more
edge to the current tree, until it spans all of V(G). We must do this in such a way that the resulting tree is
minimum.
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Algorithm 4.4.2: PRIM(G)

initialize Tree to contain no edges
t←0 “the number of edges in Tree”

choose any 
initialize VT to contain u

comment: the Tree now has 1 node and 0 edges
while t<|G|−1

FIGURE 4.9
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Growing a tree with Prim’s algorithm
We first prove that Prim’s algorithm does in fact produce a minimum spanning tree. Initially, VT contains one
vertex, and Tree contains no edges. On each iteration an edge xy with  and  is added to
Tree, and y is added to VT. Therefore, the edges of Tree always form a tree which spans VT. After n−1
iterations, it is a spanning tree of G. Call the tree produced by Prim’s algorithm T, and suppose that it consists
of edges e1, e2,…, en−1, chosen in that order. If it is not a minimum spanning tree, then choose a minimum
tree T* which agrees with T on the first k iterations, but not on iteration k+1, where k is as large as possible.
Then e1, e2,…,  but  Consider iteration
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k+1, and let ek+1=xy, where  and  Then T*+xy contains a fundamental cycle Cxy.

FIGURE 4.10
A fundamental cycle in Prim’s algorithm
Cxy must contain another edge uv with  and  Since Prim’s algorithm chooses edges by
weight, we know that WT(xy)≤WT(uv). Now T'=T*+xy-uv is also a spanning tree, and WT(T')≥WT(T*), since
T* is a minimum tree. But WT(T')=WT(T*)+WT(xy)-WT(uv)=WT(T*). Therefore, WT(T')=WT(T*) and
WT(xy)=WT(uv). It follows that T' is also a minimum tree, and that T' contains e1, e2,..., ek+1; that is, it
agrees with T on k+1 iterations, a contradiction. Consequently, Prim’s tree T is also a minimum spanning tree.
Data structures
The main operation performed in Prim’s algorithm is to select the edge xy, of minimum weight, with 
and  One way to do this is to store two values for each vertex 
MinWt[y]: the minimum weight WT(xy), over all  where 
MinPt[y]: that vertex  with WT(xy)=MinWt[y].
Then to select the minimum edge xy, we need only perform the following steps: select  with smallest
MinWt[y] value x←MinPt[y]
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Let n=|G|. If we scan the set  in order to select the minimum vertex y on each iteration, then the first
iteration requires scanning n−1 vertices, the second iteration requires n−2 steps, etc., requiring 

 in total. The total number of steps needed to update the MinWt[·] values is at
most Σy DEG(y)=2ε steps, over all iterations. Thus, the complexity when Prim’s algorithm is programmed like
this is

 
In order to remove the O(n2) term, we could store the vertices  in a heap H. Selecting the minimum now
requires approximately log n steps. For each  we may also have to update H, requiring at most an
additional DEG(y) log n steps per iteration. The total number of steps performed over all iterations is now at
most
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The complexity of Prim’s algorithm using a heap is therefore O(n log n+ ε log n). If ε is small, this will be
better than the previous method. But if ε is large, this can be worse, depending on how much time is actually
spent updating the heap. Thus we can say that Prim’s algorithm has complexity:
O(ε+n2), if the minimum is found by scanning.
O(n log n+ε log n), if a heap is used.
Exercises
4.4.1 Work Prim’s algorithm by hand on the graph in Figure 4.11, starting at the shaded vertex.
4.4.2 Consider Dijkstra’s shortest-path algorithm, which finds a shortest uυ-path for all  For each υ,
let Pυ be the shortest path found. Show that the collection of paths,  defines a spanning tree of G. Is it
a minimum spanning tree? (Hint: Use induction.)
4.4.3 Program Prim’s algorithm, storing the vertices  in a heap.
4.4.4 Modify the breadth-first search algorithm to find the fundamental cycles of G with respect to a BF-tree.
Print out the edges on each fundamental cycle. What is the complexity of the algorithm?
4.4.5 Let G be a weighted graph in which all edge-weights are distinct. Prove that G has a unique minimum
spanning tree.
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FIGURE 4.11
Find a spanning tree
4.4.2 Kruskal’s algorithm
A forest is a graph which need not be connected, but whose every component is a tree. Prim’s algorithm
constructs a spanning tree by growing a tree from some initial vertex. Kruskal’s algorithm is quite similar, but
it begins with a spanning forest and adds edges until it becomes connected. Initially the forest has n=|G|
components and no edges. Each component is a single vertex. On each iteration, an edge which connects two
distinct components is added, and the two components are merged. When the algorithm terminates the forest
has become a tree.

Algorithm 4.4.3: KRUSKAL(G)

initialize Tree to contain no edges
for each  do initialize Tu to contain only u

t←0 “the number of edges in Tree”
comment: the forest currently has |G| nodes and 0 edges

while t<|G|−1
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Initially the forest has n components, and each one is a tree with no edges. Each edge that is added connects
two distinct components, so that a cycle is never created. Whenever an edge is added the two components
are merged, so that the number of components decreases by one. After n−1 iterations, there is only one
component left, which must be a tree T. If T is not a minimum tree, then we can proceed as we did in Prim’s
algorithm. Let T consist of edges e1, e2,…, en−1, chosen in that order. Select a minimum tree T* which
contains e1, e2,…, ek, but not ek+1, where k is as large as possible. Consider the iteration in which ek+1=
xy was selected. T*+xy contains a fundamental cycle Cxy, which must contain another edge ab incident on
Tx. Since Kruskal’s algorithm chooses edges in order of their weight, WT(xy)≤WT(ab). Then T′=T*+xy−ab is
a spanning tree for which WT(T′)≤WT(T*). But T* is a minimum tree, so that WT(T′)= WT(T*), and T′ is
also a minimum tree. T′ contains edges e1, e2,..., ek+1, a contradiction. Therefore, Kruskal’s tree T is a
minimum spanning tree.

FIGURE 4.12
Growing a forest with Kruskal’s algorithm
Data structures and complexity
The main operations in Kruskal’s algorithm are:
1. Choose the next edge xy of minimum weight.
2. Determine that  and 
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3. Merge Tu and Tυ.
The edges could either be completely sorted by weight, which can be done in O(ε log ε) steps, or they could
be kept in a heap, which makes it easy to find the minimum edge. Since we may have a spanning tree T
before all the edges have been considered, it is usually better to use a heap. The components Tu can easily
be stored using the merge-find data structure described in Chapter 2.
Each time an edge xy is selected from the heap, it requires approximately log ε steps to update the heap. In
the worse case we may need to consider every edge of G, giving a bound of ε log ε steps. Similarly, O(εα(n))
steps are needed to build the components, where n=|G|. Thus, Kruskal’s algorithm can be programmed with
a complexity of O(ε log n+εα(n)), where we have used log ε<2 1og n. Notice that this can be slightly better
than Prim’s algorithm. This is because the term α(n) is essentially a constant, and because the heap does not
need to be constantly updated as the MinWt[·] value changes.
4.4.3 The Cheriton-Tarjan algorithm
The Cheriton-Tarjan algorithm is a modification of Kruskal’s algorithm designed to reduce the O(ε log ε) term.
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It also grows a spanning forest, beginning with a forest of n=|G| components each consisting of a single
node. Now the term O(ε log ε) comes from selecting the minimum edge from a heap of ε edges. Since every
component Tu must eventually be connected to another component, this algorithm keeps a separate heap
PQu for each component Tu, so that initially n smaller heaps are used. Initially, PQu will contain only DEG(u)
edges, since Tu consists only of vertex u. When Tu and Tυ are merged, PQu and PQυ must also be merged.
This requires a modification of the data structures, since heaps cannot be merged efficiently. This is
essentially because merging heaps reduces to building a new heap. Any data structure in which a minimum
element can be found efficiently is called a priority queue. A heap is one form of priority queue, in which
elements are stored as an array, but viewed as a binary tree. There are many other forms of priority queue.
In this algorithm, PQu will stand for a priority queue which can be merged. The Cheriton-Tarjan algorithm can
be described as follows.
It stores a list Tree of the edges of a minimum spanning tree. The components of the spanning forest are
represented as Tu and the priority queue of edges incident on vertices of Tu is stored as PQu.
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Algorithm 4.4.4: CHERITONTARJAN(G)

initialize Tree to contain no edges
for each 

comment: the forest currently has |G| nodes and 0 edges
t←0

while t<|G|−1

Exercises
4.4.1 Prove that the Cheriton-Tarjan algorithm constructs a minimum spanning tree.
4.4.2 Show that a heap is best stored as an array. What goes wrong when the attempt is made to store a
heap with pointers?
4.4.3 Show that heaps cannot be merged efficiently. Describe an algorithm to merge two heaps, both with n
nodes, and work out its complexity.
4.4.4 Program Kruskal’s algorithm, using a heap to store the edges, and the merge-find data structure to
store the components.
4.4.4 Leftist binary trees
A leftist binary tree (LB-tree) is a modification of a heap which allows efficient merging. A node x in an LB-
tree has the following four fields:
1. : the value stored.
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2. : a pointer to the left subtree.
3. : a pointer to the right subtree.
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4. : the right-path distance.
An LB-tree satisfies the heap property; namely the entry stored in any node has value less than or equal to
that of its two children:

 
and

 
Therefore the smallest entry in the tree occurs in the top node. Thus, a heap is a special case of an LB-tree.
The distinctive feature of LB-trees is contained in field rPath [x]. If we begin at any node in an LB-tree and
follow Left and Right pointers in any sequence, we eventually reach a nil pointer. In an LB-tree, the shortest
such path is always the rightmost path. This is true for every node in the tree. The length of the path for a
node x is the  value. In the tree shown in Figure 4.13, the rPath values are shown beside each node.

FIGURE 4.13
A leftist binary tree
In summary, an LB-tree is a binary tree which satisfies the heap property, and whose shortest path to a nil
pointer from any node is always the rightmost path.

page_80

Page 81
This means that LB-trees will tend to have more nodes on the left than the right; hence the name leftist
binary trees.
The rightmost path property makes it possible to merge LB-trees efficiently. Consider the two trees A and B
in Figure 4.14 which are to be merged into a tree T.
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FIGURE 4.14
Merging two leftist binary trees
The top node of T is evidently taken from A, since it has the smaller minimum. This breaks A into two
subtrees, L and R. The three trees B, L, and R are now to be made into two subtrees of T. The easiest way to
do this is first to merge R and B into a single tree P, and then take P and L as the new right and left subtrees
of T, placing the one with the smaller rPath value on the right. The recursive merge procedure is described in
Algorithm 4.4.5, and the result of merging A and B of Figure 4.14 is shown in Figure 4.15.
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Algorithm 4.4.5: LBMERGE(A, B)

comment: Merge non-null LB-trees A and B
if  then swap A and B

if  then P←B
else P←LBMERGE(  B)

comment: choose the tree with the smaller rPath as right subtree
if 

return (A)
Notice that when the top node of A is removed, thereby splitting A into two subtrees L and R, the left subtree
L subsequently becomes one of the subtrees of T. That is, L is not decomposed in any way, it is simply
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transferred to T. Furthermore, L is usually the larger of the two subtrees of A. Let us estimate the number of
steps necessary to merge A and B, with rPath values r1 and r2, respectively. One step is needed to choose
the smaller node A, say, as the new top node. The right subtree R will have rightmost path length of r1−1.
When R and B are merged, one of them will be similarly decomposed into a left and right subtree. The left
subtree is never broken down. At each step in the recursion, the smaller value is chosen as the new top node,
and its Right becomes the next subtree to be considered; that is, LBMERGE() follows the rightmost paths of A
and B, always choosing the smaller entry of the two paths. Thus, the rightmost paths of A and B are merged
into a single path (see Figure 4.15). Therefore, the depth of the recursion is at most r1+r2. At the bottom of
the recursion the rPath values may both equal zero. It then takes about five steps to merge the two trees.
Returning up through the recursion, LBMERGE() compares the rPath values of L and P, and makes the smaller
one into the new right subtree. Also, the new rPath value is assigned. All this takes about four steps per level
of recursion, so that the total number of steps is at most 5(r1+r2+1).
What is the relation between the rightmost path length of an LB-tree and the number of nodes it contains? If
the rPath value of an LB-tree T is r, then beginning at the top node, every path to a nil pointer has length at
least r. Therefore, T contains at least a full binary tree of r levels; that is, T has at least 2(r+1)−1
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FIGURE 4.15
The merged LB-tree
nodes. The largest rightmost path length possible if T is to store n nodes is the smallest value of r such that

2(r+1)−1≥n, or 

If A and B both contain at most n nodes, then  and LBMERGE(A, B) takes at most

5(r1+r2+1)≤10.  steps. Thus LB-trees can be merged quite efficiently.
We can use this same method to extract the minimum entry from an LB-tree A, using at most O(log n) steps:
select minimum as 
A←LBMERGE
Consider now how to construct an LB-tree. In Chapter 2 we found that there are two ways of building a heap,
one much more efficient than the other. A similar situation holds for LB-trees. The most obvious way to build
one is to merge successively each new node into an existing tree:
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initialize A, a new LB-tree with one node
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repeat
get next value
create and initialize a new LB-tree, B
A←LBMERGE (A,B)
until all values have been inserted
However, this can easily create LB-trees that are really linear linked lists, as shown below. This algorithm then
becomes an insertion sort, taking O(n2) steps, where n is the number of nodes inserted.

FIGURE 4.16
An LB-tree
A better method is to create n LB-trees, each containing only one node, and then merge them two at a time,
until only one tree remains. The trees are kept on a queue, called the MergeQ.
Algorithm 4.4.6: BUILDLBTREE(MergeQ)

repeat
select A and B, the first two trees of MergeQ

A←LBMERGE(A,B)
put A at end of MergeQ

until MergeQ contains only one tree
return (A)
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How many steps are needed to build an LB-tree in this way, if we begin with n trees of one node each? There
will be  merges of pairs 1-node trees, each of which takes at most 5 steps. This will leave  trees on
the MergeQ, each with at most two nodes. These will be taken two at a time, giving  merges of up to 2-
node trees. Similarly there will be  merges of up to 4-node trees, etc. This is summarized in the
following table:

tree size # pairs max rPath max r1+r2+1
1 0 1
2 0 1
4 1 3
8 2 4

2k k−1 2k−1
The last step will merge two trees with roughly n/2 nodes each. The maximum rPath value for these trees will

be  or approximately  The total number of steps taken to build the LB-tree is then
at most
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We can sum this using the same technique as in the heap analysis of Chapter 2, giving a sum of 
where  Thus, an LB-tree can be built in O(n) steps.
We can now fill in the details of the Cheriton-Tarjan spanning tree algorithm. There are three different kinds
of trees involved in the algorithm:
1. A minimum spanning tree is being constructed.
2. The components Tu are merge-find trees.
3. The priority queues PQu are LB-trees.
At the beginning of each iteration, a component Tu is selected, and the minimum edge  is chosen.
How is Tu selected? There are several possible strategies. If we choose the same Tu on each iteration, then
the algorithm grows a tree from u; that is, it reduces to Prim’s algorithm. If we choose the component Tu
incident on the minimum remaining edge, then the algorithm reduces to Kruskal’s algorithm. We could choose
the smallest component Tu, but this would add an extra level of complication, since we would now have to
keep a heap of components in order to find the smallest component quickly. The method which Cheriton and
Tarjan recommend is uniform selection; that is, we keep a queue, TreeQ, of components. Each entry on the
TreeQ contains Tu and PQu. On each
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iteration, the component Tu at the head of the queue is selected and the minimum  is chosen, say 

 and  where Tu≠Tυ. Once Tu and Tυ, PQu and PQυ have been merged, they are moved to the
end of the TreeQ. Thus, the smaller components will tend to be at the head of the queue. So the algorithm
uses two queues, the MergeQ for constructing LB-trees and merging them, and the TreeQ for selecting
components.
The complexity analysis of the Cheriton-Tarjan algorithm is beyond the scope of this book. If analyzed very
carefully, it can be shown to be O(ε log log ε), if programmed in a very special way.
Minimum spanning tree algorithms are a good illustration of the process of algorithm development. We begin
with a simple algorithm, like growing a spanning tree from an initial vertex, and find a complexity of O(n2).
We then look for a data structure or programming technique that will allow the n2 term to be reduced, and
obtain a new algorithm, with complexity O(ε log n), say. We then ask how the ε or log n term can be
reduced, and with much more effort and more sophisticated data structures, obtain something like 

 or O(ε log log n). Invariably, the more sophisticated algorithms have a higher constant of
proportionality, so that improvements in running time are only possible when n and ε become very large.
However, the sophisticated algorithms also indicate that there are theoretical limits of efficiency for the
problem at hand.
Exercises
4.4.1 Prove that the result of LBMERGE(A,B) is always an LB-tree, where A and B are non-nil LB-trees.
4.4.2 Let A be an LB-tree with n nodes and let B be an arbitrary node in the tree. Show how to update A if:
(a)  is increased.
(b)  is decreased.
(c) Node B is removed.
4.4.3 Delayed Merge. When (Tu,PQu) is selected from the TreeQ, and merged with (Tυ, PQυ), the result is
moved to the end of the queue. It may never come to the head of the TreeQ again. In that case, it would not
really be necessary to perform the LBMERGE(PQu,PQυ). Cheriton and Tarjan delay the merging of the two by
creating a new dummy node D and making PQu and PQυ into its right and left subtrees. D can be marked as
a dummy by setting  to −1. Several dummy nodes may accumulate at the top of the trees PQu.
Should a tree with a dummy node come to the head of the queue, its dummy nodes must be removed before
the minimum edge  can be selected. Write a recursive tree traversal which removes the dummy
nodes from an LB-tree, and places its non-dummy subtrees on the MergeQ. We can then use BUILDLBTREE()
to combine all the subtrees on the
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MergeQ into one.
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4.4.4 Program the Cheriton-Tarjan algorithm, using leftist binary trees with delayed merge, to store the
priority queues.
4.5 Notes
An excellent description of the cycle space and bond space can be found in BONDY and MURTY [19].
Kruskal’s and Prim’s algorithms are standard algorithms for minimum spanning trees. They are described in
most books on algorithms and data structures. The Cheriton-Tarjan algorithm is from CHERITON and TARJAN
[22]. Leftist binary trees are from KNUTH [75], and are also described in WEISS [122].

page_87

Page 88
This page intentionally left blank.

page_88

Page 89
5 
The Structure of Trees
5.1 Introduction
The structure of trees is naturally recursive. When trees are used as data structures, they are typically
processed by recursive procedures. Similarly, exhaustive search programs working by recursion also construct
trees as they follow their search paths. These trees are always rooted trees; that is, they begin at a
distinguished node, called the root vertex, and are usually built outwards from the root. Figure 5.1 shows
several rooted trees, where the root vertex is shaded black.

FIGURE 5.1
Several rooted trees
If T is a tree, then any vertex υ can be chosen as the root, thereby making T into a rooted tree. A rooted tree
can always be decomposed into branches. The tree T shown in Figure 5.2 has three branches B1, B2, and B3.
DEFINITION 5.1: Let T have root vertex υ. The branches of T are the maximal subtrees in which υ has degree
one.
Thus, the root is in every branch, but the branches have no other vertices in common. The number of
branches equals the degree of the root vertex. If we know the branches of some tree T, then we can easily
recombine them to get T.
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FIGURE 5.2
Decomposition into branches
Therefore, two rooted trees have the same structure; that is, they are isomorphic, if and only if they have the
same number of branches, and their branches have the same structure.
Any vertex of a tree which has degree one is called a leaf. If the root is a leaf, then T is itself a branch. In
this case, let u be the unique vertex adjacent to υ, the root of T. Then T′=T−υ is a rooted tree, with root u.
This is illustrated in Figure 5.3. T′ can then be further broken down into branches, which can in turn be
reduced to rooted trees, etc. This gives a recursive decomposition of rooted trees into branches, and branches
into rooted trees.
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FIGURE 5.3
Reducing a branch to a rooted tree
This technique can be developed into a method for determining when two rooted trees have the same
structure.
5.2 Non-rooted trees
All non-rooted trees on five and fewer vertices are displayed in Figure 5.4. Table 5.1 gives the number of
trees up to 10 vertices.
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FIGURE 5.4
The trees on five and fewer vertices
If a leaf be removed from a tree on n vertices, a tree on n−1 vertices is obtained. Thus, one way to list all
the trees on n vertices is to begin with a list of those on n−1 vertices, and add a leaf in all possible ways,
discarding duplicates. How can we recognize when two trees have the same structure? We shall see that non-
rooted trees can always be considered as rooted trees, by choosing a special vertex as root, in the center of
T, denoted CTR(T). The center is defined recursively.
DEFINITION 5.2: Let T be a tree on n vertices.
1. If n=1, say V(T)={u}, then CTR(T)=u.
2. If n=2, say V(T)={u,υ}, then CTR(T)=uυ.
3. If n>2, then T has at least two leaves. Delete all the leaves of T to get a tree T′. Then CTR(T)=CTR(T′).
Thus the center of a tree is either a vertex or an edge, since eventually case (1) or (2) of the definition is
used in determining the center of T. Trees whose centre consists of a single vertex are called central trees.
Trees with two vertices in the center (i.e., CTR(T) is an edge) are called bicentral trees. Figure 5.5 shows two
trees, one central and one bicentral.
A central tree can always be considered a rooted tree, by taking the centre as the root. A bicentral tree can
also be considered a rooted tree, but we must have a means of deciding which of two vertices to take as the
root. Thus we can say that every tree is a rooted tree.
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TABLE 5.1
The number of trees up to 10 vertices

n # trees
2 1
3 1



cover

file:///G|/SMILEY/0203489055__gigle.ws/0203489055/files/__joined.html[01/10/2009 15:18:30]

4 2
5 3
6 6
7 11
8 23
9 47

10 106

FIGURE 5.5
A central tree and a bicentral tree
Exercises
5.2.1 Find the centre of the trees shown in Figures 5.1 and 5.3.
5.2.2 Prove that any longest path in a tree T contains the center.
5.2.3 Prove that T is central if DIAM(T) is even, and bicentral if DIAM(T) is odd.
5.2.4 A binary tree is a rooted tree such that the root vertex has degree two, and all other vertices which are
not leaves have degree three. Show that if T is a binary tree on n vertices, that n is odd, and that T has
(n+1)/2 leaves.
5.3 Read’s tree encoding algorithm
There are a number of interesting algorithms for encoding trees. Here we present one of Read’s algorithms. It
is basically an algorithm to find CTR(T), keeping certain information for each vertex as it progresses. When
the centre is reached, a root node is uniquely chosen. Read’s algorithm encodes a tree as an integer. Its
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description reveals a number of interesting properties satisfied by trees.
Let T be a tree whose centre is to be found. Instead of actually deleting the leaves of T, let us simply draw a
circle around each one. Draw the circle in such a way that it encloses all the circles of any adjacent nodes
which have been previously circled. The last vertices to be circled form the centre.

FIGURE 5.6
A circled tree
This system of nested circles can be redrawn in various ways.

FIGURE 5.7
Nested circles
Each circle corresponds to a vertex of T. The largest circle which encloses the entire system corresponds to
the centre of T. Two circles correspond to adjacent vertices if and only if one circle is nested inside the other.
The circles not containing a nested circle are the leaves of T. If we cut off the top and bottom of each circle
in Figure 5.7, we are left with a set of matched parentheses: (()(()())(()()())). By writing 0 for each left
parenthesis and 1 for each right parenthesis, this can be considered a binary number, 001001011001010111,
which represents an integer.
The internal circles in Figure 5.6 have been sorted and arranged in order of increasing complexity. For
example, the first inner circle can be denoted 01. This is less than the second circle, which can be denoted
001011, which in turn is less that the third circle 00101011, considered as binary numbers. Thus, there is a
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natural ordering associated with these systems of nested circles.
The binary number associated with each vertex υ is called its tag, denoted t(υ). Initially each leaf has a tag of
01. The algorithm to find CTR(T) constructs the vertex tags as it proceeds.
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Algorithm 5.3.1: TREEENCODE(T)

comment: constructs an integer tree code to represent the tree T
repeat

construct L(T), the set of leaves of T, stored on an array
for each leaf 

T←T−L(T) “just mark the vertices deleted”
until all of T has been tagged
if L(T) contains one vertex u

then return (t(u))

On the last iteration, when the centre was found, either one or two vertices will have been tagged. They form
the centre of T. If T is a central tree, with CTR(T)=u, we choose u as the root of T. Then t(u), the tag of the
centre, represents the entire system of nested circles. It is chosen as the encoding of T.
If T is a bicentral tree, with centre uυ, we must decide which vertex to choose as the root of T. We arbitrarily
choose the one with the larger tag. Suppose that t(u)≤t(υ), so that υ is chosen as the root. The code for the
entire tree is formed by altering the enclosing circle of υ so as to enclose the entire tree. This is illustrated in
Figure 5.8.

FIGURE 5.8
Choosing the root vertex
Thus, the tree code for T in the bicentral case is the concatenation 0t(u)t′(υ), where t′(υ)  is formed from t(υ)
by dropping one initial 0-bit.
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If t(u)=t(υ) for some bicentral tree T, then we can obviously select either u or υ as the root vertex.
The easiest way to store the tags t(υ) is as an integer array t[υ]. We also need to store the length ℓ[υ], of
each tag, that is, its length in bits. Initially each leaf υ has t[υ]=1 and ℓ[υ]=2. To concatenate the tags
0t(u1)t(u2)…t(uk)1 we use a loop.

t[υ]←0
for i←1 to k

t[υ]←2t[υ]+1
ℓ[υ]←ℓ[υ]+2

 

If a primitive left shift operation is not available, one can always store a table of powers of 2, and use
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multiplication by  in order to shift t[υ] left by ℓ[ui] bits.
5.3.1 The decoding algorithm
If the circles of Figure 5.6 are unnested, they can be redrawn so as to emphasize their relation to the
structure of T.

FIGURE 5.9
Unnested circles
The decoding algorithm scans across the system of nested circles. Each time a new circle is entered, a vertex
is assigned to it. The first circle entered is that corresponding to the root vertex. The decoding algorithm uses
a global vertex counter k, which is initially zero, and constructs a global tree T. It can be programmed to scan
the tree code from right to left as follows:
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Algorithm 5.3.2: TREEDECODE(Tcode, υi)

comment: a new circle has just been entered, from circle υi.
k←k+1 “create a new vertex”

join 
Tcode←Tcode/2 “shift right 1 bit”

while Tcode is odd

The easiest way to use Algorithm 5.3.2 is to create a dummy vertex υ0 which will only be joined to the root
vertex, υ1 and then delete υ0 once the tree has been constructed.
k←0
TREEDECODE(Tcode,υ0)
delete υ0
Exercises
5.3.1 Encode the trees of Figure 5.5 into nested circles by hand. Write down their tree codes.
5.3.2 Work through Algorithm 5.3.2 by hand, for the tree codes 001011 and 0001011011.
5.3.3 Write Algorithm 5.3.2 so as to scan the tree code from left to right, using multiplication by 2 to shift
Tcode to the right, and using the sign bit of the code to test each bit. Assume a word length of 32 bits.
5.3.4 Program the encoding and decoding algorithms.
5.3.5 If T has n vertices, what is the total length of its tree code, in bits? How many 1’s and 0’s does the
code contain? How many leading 0’s does the code begin with? What is the maximum value that n can be if T
is to be encoded in 32 bits?
5.3.6 Let T be a tree. Prove that the tree obtained by decoding TREEENCODE(T), using the decoding
algorithm, is isomorphic to T.
5.3.7 Let T1 and T2 be two trees. Prove that  if and only if TREEENCODE(T1)= TREEENCODE(T2).
5.3.8 Consider the expression x1x2…xn+1, where x1, x2,…, xn+1 are variables. If parentheses are inserted
so as to take exactly two terms at a time, we obtain a valid bracketing of the expression, with n pairs of
matched parentheses (e.g., ((x1(x2x3)) x4), where n=3). Each pair of matched parentheses contains exactly
two terms. Describe the type of rooted tree on n vertices that corresponds to such
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a valid bracketing. They are called binary plane trees. Each leaf of the tree corresponds to a variable xi and
each internal node corresponds to a pair of matched parentheses, giving 2n+1 vertices in total.
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5.3.9 Let pn denote the number of binary plane trees with n leaves (e.g., p0=0, p1= 1, p2=1, p3=2, etc.).
We take p1=1 corresponding to the tree consisting of a single node. Let p(x)=p0+p1x+p2x2+…be the
generating function for the numbers pn, where x is a variable. If T1 and T2 are two binary plane trees with
n1 and n2 leaves, respectively, then they can be combined by adding a new root vertex, adjacent to the roots
of T1 and T2. This gives a binary plane tree with n1+n2 leaves. There are  ways of constructing a tree
in this way. This term arises from p2(x) as part of the coefficient of  This holds for all values of n1 and
n2. Therefore, we can write p(x)=x+p2(x). Solve this identity for p(x) in terms of x, and then use the
binomial theorem to write it as a power series in x. Finally, obtain a binomial expression for pn in terms of n.

The numbers pn are called the Catalan numbers. (The answer should be 
5.4 Generating rooted trees
One way to generate a list of all the trees on n vertices would be to add a new leaf to the trees on n−1
vertices in all possible ways, and to discard duplicates, using the tree codes to identify isomorphic trees.
However, they can also be generated directly, one after the other, with no duplicates.
Let T be a central tree, rooted at its centre υ. Decompose T into its branches B1, B2,…, Bk. Each branch Bi is
also rooted at υ. Write T=(B1, B2,…,Bk) to indicate the decomposition into branches. Since υ is the centre of
T, it is the middle vertex of every longest path in T. Therefore, the two “tallest” branches of T will have equal
height, where we define the height of a branch B rooted at υ as  If the
branches of the central tree T have been ordered by height, so that h(B1)≥h(B2)≥…≥h(Bk), then we know
that h(B1)=h(B2). Any rooted tree for which the two highest branches have equal height is necessarily rooted
at its centre. Therefore, when generating central trees, the branches must be ordered by height.
Generating the rooted trees on n vertices in a sequence implies a linear ordering on the set of of all rooted
trees on n vertices. In order to construct a data structure representing a rooted tree T as a list of branches,
we also require a linear order on the set of all branches. Then we can order the branches of T so that
B1≥B2≥ …≥Bk. This will uniquely identify T, as two trees with the same set branches will have the same
ordered set of branches. The smallest possible branch will evidently be of height one, and have two vertices—
it is K1 rooted at a vertex. The tree shown in Figure 5.10 has five branches of height one; call them
elementary branches. The next smallest branch is of height two, and has three vertices—it is
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the path P2 rooted at a leaf.
Associated with each branch B is a rooted tree, as shown in Figure 5.3, constructed by advancing the root to
its unique adjacent vertex, and deleting the original root. We will use the ordering of rooted trees to define
recursively an ordering of all branches, and the ordering of all branches to define recursively an ordering of all
rooted trees. We know that all branches on at most three vertices have already been linearly ordered.

FIGURE 5.10
A tree with all branches of height one
DEFINITION 5.3: Suppose that all branches on at most m≥2 vertices have been linearly ordered. Let T=(B1,
B2,…, Bk) and  where k+ℓ≥3, be any two distinct rooted trees with given branches,
such that each branch has at most m vertices, ordered so that B1≥B2≥…≥Bk and 
Suppose that |T|≤|T′|. Then T and T′ are compared as follows:
1. If |T|<|T′|, then T<T′.
2. Otherwise, compare (B1, B2,…, Bk) and  lexicographically. That is, find i, the first subscript
such that  then T < T′ if
The first condition is to ensure that all rooted trees on n vertices precede all trees on n+1 vertices in the
linear order. The second condition defines an ordering of trees based on the lexicographic ordering of
branches. Notice that if k≠ℓ there must be an i such that  for if every  but k≠ℓ, then T and
T′ would have different numbers of vertices, so that condition (1) would apply. This defines a linear ordering
on all rooted trees whose branches all have at most m vertices. This includes all trees on m+1 vertices with at
least two branches. In fact, it includes all rooted trees on m+1 vertices, except for the path Pm, rooted at a
leaf. As this is a branch on m+1 vertices, it is handled by Definition 5.4.
We now have an ordering of rooted trees with at least two branches, based on the ordering of branches. We
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can use it in turn to extend the ordering of branches. Let B and B′ be two distinct branches. In order to
compare B and B′, we advance their roots, as in Figure 5.3, to the unique adjacent vertex in each, and delete
the
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original root. Let the rooted trees obtained in this way be T and T′. respectively. Then B<B′ if T<T′. In
summary, branches are compared as follows:
DEFINITION 5.4: Suppose that all rooted trees on ≤m−1 vertices have been linearly ordered, and that all
rooted trees on m vertices with at least two branches have also been linearly ordered. Let B and B′ be
branches on m vertices, with corresponding rooted trees T and T′. Suppose that |B|≤|B′| and that if |B|= |B
′|, then B is the branch of smaller height. Then B and B′ are compared as follows:
1. If |B|<|B′|, then B<B′.
2. Otherwise, if h(B)<h(B′) then B<B′.
3. Otherwise, B<B′ if T<T′.
We have a recursive ordering which compares trees by the ordering of their branches, and branches by the
ordering of their trees. We must prove that the definition is valid.
THEOREM 5.1 Definitions 5.3 and 5.4 determine a linear order on the set of all rooted trees.
PROOF Notice that rooted trees have a sub-ordering based on the number of vertices—all rooted trees on n
vertices precede all rooted trees on n+1 vertices. Branches have an additional sub-ordering based on height—
all branches of height h on n vertices precede all branches of height h+1 on n vertices. A branch is a special
case of a rooted tree, in which the root vertex has degree one. If a branch B and tree T on n vertices are
compared, where T has at least two branches, then that first branch of T has fewer than n vertices, so that
T<B, by Definition 5.3. Therefore all trees whose root vertex has degree two or more precede all branches on
n vertices.
The definitions are clearly valid for all rooted trees on ≤3 vertices. Suppose that the set of all rooted trees on
≤n vertices is linearly ordered by these definitions, and consider two distinct rooted trees

T=(B1,B2,…,Bk)  
and

 
on n+1 vertices. If k=ℓ=1, then T and T′ are both branches. The trees formed by advancing their root
vertices have only n vertices, and so can be compared by Definition 5.3. Otherwise at least one of T and T′
has two or more branches.
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Therefore at least one of each pair Bi and  of branches has ≤n vertices. Therefore the branches Bi and 
can be compared by Definition 5.4. The conclusion follows by induction.
In this ordering of branches and trees, the first rooted tree on n vertices is a star consisting of the tree
K1,n−1 rooted at its centre. The last rooted tree on n vertices is a path Pn, rooted at a leaf. The first branch
on n vertices is K1,n−1, rooted at a leaf, and the last branch on n vertices is also the path Pn, rooted at a
leaf. The first few rooted trees are shown in Figure 5.11.

FIGURE 5.11
The beginning of the linear order of rooted trees
Let T=(B1,B2,…,Bk) be the list of branches of a rooted tree T, with root vertex υ. The recursive data
structure we use to represent T is a linked list of branches. Each branch Bi also has root υ. It is in turn
represented in terms of the rooted tree T′, whose root vertex is the unique vertex adjacent to υ. Thus, a
record representing a tree T has four fields:
•  the node number of the root, which is used for printing.
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•  the number of vertices in the tree.
•  a pointer to the first branch.
•  a pointer to the last branch.
Each branch B of T has a corresponding rooted tree T′. B is represented as a record having four fields:
•  the height of the branch.
•  a pointer to the rooted tree T′.
•  a pointer to the next branch of T.
•  a pointer to the previous branch of T.

page_100

Page 101
It is not necessary to store the number of vertices of a branch B, as it is given by  The
functions which compare two trees and branches are given as follows. They return an integer, whose value is
one of three constants, LessThan, EqualTo, or GreaterThan.

Algorithm 5.4.1: COMAPARETREES(T1, T2)
comment: T1 and T2 both have at least one branch

if |T1|<|T2| then return (LessThan)
if |T1|>|T2| then return (GreaterThan)

comment: otherwise |T1|=|T2|

Result←COMPAREBRANCHES (B1, B2)
while Result=EqualTo

return (Result)
Algorithm 5.4.2: COMPAREBRANCHES (B1, B2)

comment: B1 and B2 both have a unique vertex adjacent to the root
if |B1|<|B2|then return (LessThan)

if |B1|>|B2| then return (GreaterThan)
comment: otherwise |B1|=|B2|

 then return (LessThan)
 then return (GreaterThan)

comment: otherwise
if then return (EqualTo)

return (COMPARETREES (T1, T2))
Using these functions we can generate all rooted trees on n vertices, one after the other, beginning with the
first tree, which consists of a root vertex and n−1 elementary branches of height one, until the last tree is
reached, which has only one branch, of height n−1. Written in pseudo-code, the technique is as follows,
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where NEXTTREE(T) is an procedure which replaces T with the next tree, and returns true unless T was the
last tree (see Algorithm 5.4.3). FIRSTTREE(n) is a procedure that constructs the first tree on n vertices.
T←FIRSTTREE(n)
repeat
PRINTTREE(T)
until not NEXTTREE(T)
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Suppose that T has branch decomposition (B1, B2,…, Bk), where B1≥ B2≥…≥Bk. The procedure
NEXTTREE(T) works by finding the last branch Bi such that Bi≠Bi−1. Then Bi, Bi+1,…, Bk is a sequence of
isomorphic branches. So long as Bi is not simply a path of length h(Bi), there is a larger branch with the same
number of vertices. Bi is then replaced with the next larger branch and the subsequent branches Bi+1, Bi+2,
…, Bk are replaced with a number of elementary branches. This gives the lexicographically next largest tree.
This is illustrated in Figure 5.12. Here, B2 was replaced with a branch of height three, and B3 was replaced
with three elementary branches.

FIGURE 5.12
Constructing the next tree
But if Bi is simply a path, then it is the last branch with |Bi| vertices. In order to get the next branch we must
add another vertex. Bi is then replaced with the first branch with one more vertex. This is the unique branch
with |Bi|+1 vertices and height two. T is then filled in with as many elementary branches as needed. This is
illustrated in Figure 5.13.

page_102

Page 103
Algorithm 5.4.3: NEXTTREE(T)

comment: otherwise at least two branches

while COMPAREBRANCHES(B1, B2)=EqualTo

 
1: comment: delete the branches of T following B1
N← DELETEBRANCHES(T, B1) “N nodes are deleted”
comment: replace B1 with next branch, if possible

if 

 
comment: otherwise construct the first branch with one more node

if N>0 then
comment: otherwise there’s no branch following B1 to take a node from
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repeat
B1←B2

if then go to 2 
until COMPAREBRANCHES (B1, B2)≠EqualTo

2: comment: delete the branches of T following B1
N←DELETEBRANCHES(T, B1) “N nodes are deleted”

comment: replace B1 with next branch
if nNodes 

then 
else (nNodes +1) fill in T with elementary branches

return (true)
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FIGURE 5.13
Constructing the next tree
The procedure DELETEBRANCHES(T, B1) destroys all branches of T following B1, and returns the number of
nodes deleted. Similarly DESTROYTREE(T) is a procedure that destroys all branches of T, and returns the
total number of nodes deleted.
THEOREM 5.2 Let T be a tree on n vertices. Algorithm NEXTTREE(T) constructs the next tree on n vertices
after T in the linear order of trees, if there is one.
PROOF The proof is by induction on n. It is easy to check that it works for trees on n=2 and n=3 vertices.
Suppose that it holds up to n−1 vertices, and let T have n vertices. Let T=(B1, B2,…, Bk) be the branches of
T, where B1≥B2≥…≥Bk. The algorithm first checks whether there is only one branch. If so, and T is a
branch of height n−1, it returns false. Otherwise let T′ be the rooted tree corresponding to B1 by advancing
the root. The algorithm calls NEXTTREE(T′). Since T′ has n−1 vertices, this gives the next branch following
B1 in the linear order, as required.
Otherwise, T has at least two branches. It finds the branch Bi such that Bi= Bi+1=…=Bk, but Bi−1≠Bi, if
there is one (possibly i=1). The first tree following T must differ from T in Bi, unless i=k and Bi is a path. In
the first case, the algorithm replaces Bi with the next branch in the linear order, and fills in the remaining
branches of T with elementary branches. This is the smallest tree on n vertices following T. Otherwise i=k and
Bi is a path, so that there is no tree following Bi. Since there are at least two branches, the algorithm finds
the branch Bj such that Bj=Bj+1=…=Bk−1>Bk (possibly j=1). It then replaces Bj with the first branch
following it, and fills in T with elementary branches. In each case the result is the next tree after T.
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Exercises
5.4.1 Work through the NEXTTREE(T) algorithm by hand to construct all the rooted trees on 4, 5, 6, and 7
vertices.
5.4.2 Write the recursive procedure PRINTTREE(T) to print out a tree as shown in Figure 5.14, according to
the distance of each vertex from the root.
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FIGURE 5.14
Printing a rooted tree
5.4.3 Write the recursive functions DESTROYTREE(T) and DELETEBRANCHES(T,B1), both of which return the
number of vertices deleted.
5.4.4 Program the NEXTTREE(T) algorithm, and use it to find the number of rooted trees up to 10 vertices.
5.5 Generating non-rooted trees
The NEXTTREE(T) algorithm generates the rooted trees on n vertices in sequence, beginning with the first
tree of height 1 and ending with the tree of height n−1. In order to generate non-rooted trees, we must root
them in the centre. Since every non-rooted tree can be viewed as a rooted tree, all non-rooted trees also
occur in the linear order of trees. Central trees can be generated by modifying NEXTTREE(T) so that the two
highest branches are always required to have equal height. This can be done with another procedure,
NEXTCENTRALTREE(T), which in turn calls NEXTTREE(T) when forming the next branch. Bicentral trees are
slightly more difficult, since the highest branches B1 and B2 satisfy h(B1)=h(B2)+1. If we generate trees in
which the heights of the two highest branches differ by one, then most bicentral trees will be constructed
twice, once for each vertex in the centre. For example, Figure 5.15 shows two different branch
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decompositions of the same bicentral tree. It would therefore be generated twice, since it has different branch
decompositions with respect to the two possible roots.

FIGURE 5.15
Two decompositions of a bicentral tree
The easiest solution to this is to subdivide the central edge with a new vertex, taking it as the root. Then
each bicentral tree on n vertices corresponds to a unique central tree on n+1 vertices, with exactly two
branches. We can construct these by generating rooted trees with only two branches, which have equal
height, and then ignoring the extra root vertex.
Exercises
5.5.1 Write and program the procedures NEXTCENTRALTREE(T) and NEXTBICENTRALTREE(T), and use them
to construct all the non-rooted trees on n vertices, up to n=15.
5.6 Prüfer sequences
Read’s algorithm encodes a tree according to its isomorphism type, so that isomorphic trees have the same
code. This can be used to list all the isomorphism types of trees on n vertices. A related question is to make a
list all the trees on the n vertices Vn={1, 2,…, n}. These are sometimes referred to as labeled trees. For
example, Figure 5.16 illustrates the three distinct, or labeled trees on three vertices, which are all isomorphic
to each other.
Let T be a tree with V(T)={1, 2,…, n}. A Prüfer sequence for T is a special encoding of T as an integer
sequence. For example, the tree of Figure 5.17 with n=9 has Prüfer sequence t=(6, 9, 1, 4, 4, 1, 6).
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FIGURE 5.16
Three distinct trees on three vertices

FIGURE 5.17
Finding the Prüfer sequence of a tree
This is constructed as follows. The leaves of T are L(T)={2, 3, 5, 7, 8}. The numerically smallest leaf is 2.
Since 2→6, we take t1=6 as the first member of t. We now set T:=T−2, and find L(T)={3, 5, 7, 8}. We
again choose the smallest leaf, 3, and since 3→9, we take t2=9 as the second member of the sequence, and
set T:=T−3. Notice that when 3 is deleted, 9 becomes a leaf. Therefore, on the next iteration we will have
L(T)={5, 7, 8, 9}. The general technique is the following:
for k←1 to n−2

 
comment: T now has 2 vertices left
This always gives a sequence of n−2 integers t=(t1, t2,…, tn−2), where each  Notice that at each
step, a leaf of T is deleted, so that T is always a tree throughout all the steps. Since T is a tree, we can
always choose a leaf to delete. When T reduces to a single edge, the algorithm stops. Therefore no leaf of T
is ever chosen as any tk. In fact, if DEG(υ)≥2, then υ will appear in t each time a leaf adjacent to υ is
deleted. When the degree drops to one, υ itself
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becomes a leaf, and will appear no more in t. Therefore, each vertex υ appears in t exactly DEG(υ)−1 times.
THEOREM 5.3 Lett=(t1, t2,…, tn−2) be any sequence where each  Then t is the
Prüfer sequence of a tree T on n vertices.
PROOF The sequence t consists of n−2 integers of Vn. Therefore at least two members of Vn are not used in
t. Let L be those numbers not used in t. If t were formed by encoding a graph using the above technique,
then the smallest element  must have been a leaf adjacent to t1. So we can join υ→t1, and discard t1
from t. Again we find L, the numbers not used in t, and pick the smallest one, etc. This is summarized in the
following pseudo-code:
N←{1, 2,…, n}
for k←1 to n−2

 
comment: T now has 2 vertices left, u and υ join 
This creates a graph T with n−1 edges. It is the only graph which could have produced the Prüfer sequence t,
using the above encoding technique. Must T be a tree? If T were not a tree, then it could not be connected,
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since T has only n−1 edges. In that case, some component of T would have a cycle C. Now the encoding
technique only deletes leaves. No vertex on a cycle could ever be deleted by this method, for the degree of
every  is always at least two. This means that a graph containing a cycle would not produce a Prüfer
sequence of length n−2. Therefore T can have no cycle, which means that it must be a tree.
Thus we see that every tree with vertex set {1,2,…,n} corresponds to a unique Prüfer sequence, and that
every sequence t can only be obtained from one tree. The corollary is that the number of trees equals the
number of sequences. Now it is clear that there are nn−2 such sequences, since each of the n−2 elements tk
can be any of the numbers from 1 to n. This result is called Cayley’s theorem.
THEOREM 5.4 (Cayley’s theorem) The number of distinct trees on n vertices is nn−2.
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5.7 Spanning trees
Consider the problem of making a list of all the spanning trees of a graph G. If  then there are
nn−2 spanning trees, and each one corresponds to a Prüfer sequence. If  then we can find all the
spanning trees of G as follows. Choose any edge uυ of G. First find all the spanning trees that use uυ and
then find all the trees that don’t use uυ. This gives all spanning trees of G. Write τ(G) for the number of
spanning trees of G. The spanning trees T that don’t use edge uυ are also spanning trees of G−uυ, and their
number is τ(G−uυ). If T is a spanning tree that does use uυ, then we can contract the edge uυ, identifying u
and υ so that they become a single vertex. Let T·uυ denote the reduced tree. It is a spanning tree of G··uυ.
Every spanning tree of G·uυ is a contraction T·uυ of some spanning tree T of G; for just expand the
contracted edge back into uυ to get T. This gives:
LEMMA 5.5 Let G be any graph. Then τ(G)=τ(G−uυ)+τ(G−uυ).
This applies equally well to simple graphs and multigraphs. It is illustrated in Figures 5.18 and 5.19.

FIGURE 5.18
Deletion and contraction of edge uυ
Notice that even when G is a simple graph, G·uυ will often be a multigraph, or have loops. Now loops can be
discarded, since they cannot be part of any spanning tree. However multiple edges must be kept, since they
correspond to different spanning trees of G.
In the example above, the 5-cycle obviously has five spanning trees. The other graph is then decomposed,
giving “trees” which contain some multiple edges (i.e., replacing the multiple edges with single edges gives a
tree). The two such “trees” shown clearly have two and four spanning trees each, respectively. Therefore the
original graph has 5+2+4=11 spanning trees.
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FIGURE 5.19
Finding the number of spanning trees
In general, if G has an edge of multiplicity k joining vertices u and υ, then deleting any one of the equivalent
k edges will give the same number of spanning trees. Contracting any one of them forces the rest to collapse
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into loops, which are then discarded. This gives the following lemma:
LEMMA 5.6 Let edge uυ have multiplicity k in G. Replace the multiple edges having endpoints u and υ by a
single edge uυ to get a graph Guυ. Then

τ(G)=τ(Guυ−uυ)+kτ(Guυ·uυ)  
This gives a recursive technique for finding the number of spanning trees of a connected graph G. G is stored
as a weighted simple graph, for which the weight of an edge represents its multiplicity.

Algorithm 5.7.1: SPTREES(G)
find an edge uυ on a cycle

if there is no such edge

else return (SPTREES(G−uυ)+WT(uυ)*SPTREES(G·uυ))
This can be expanded to make a list of all spanning trees of G. However, if only the number of spanning trees
is needed, there is a much more efficient method.
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5.8 The matrix-tree theorem
The number of spanning trees of G can be computed as the determinant of a matrix. Let A(G) denote the
adjacency matrix of G. The degree matrix of G is D(G), all of whose entries are 0, except for the diagonal,
which satisfies [D]uu=DEG(u), for vertex u. The Kirchhoff matrix of G is K(G)=D−A. This matrix is sometimes
also called the Laplacian matrix of G. The number of spanning trees is found from the Kirchhoff matrix.
First, notice that the row and column sums of K are all 0, since the row and column sums of A are the
degrees of G. Therefore, det(K)=0. Consider the expansion of det(K) into cofactors along row u. Write

 
Here kuυ denotes the entry in row u and column υ of K, and Kuυ denotes the submatrix formed by crossing
out row u and column υ. The cofactor of kuυ is (−1)u+υ det(Kuυ). There are n vertices.
THEOREM 5.7 (Matrix-Tree Theorem) Let K be the Kirchhoff matrix of G. Then τ(G)=(−1)u+υ det(Kuυ),
for any row index u and any column index υ.
PROOF Notice that the theorem says that all cofactors of K have the same value, namely, the number of
spanning trees of G. The proof is by induction on the number of vertices and edges of G. Suppose first that G
is a disconnected graph; let one of the components be H. Order the vertices so that vertices of H come before
the rest of G. Then K(G) is a block matrix, as shown in Figure 5.20.
If row u and column υ, where u,  are crossed off, then the row and column sums of G−H will be
all 0, so that the cofactor corresponding to Kuυ will be zero. Similarly, if any other row and column are
crossed off, the remaining cofactor will be zero. Therefore, if G is disconnected, the theorem is true, since
τ(G)=0.
Suppose now that G is a tree. Choose a leaf υ and let  Without loss of generality, we can order the
vertices so that υ is the last vertex. Write K·uυ=K(G·uυ). The two Kirchhoff matrices are shown in Figure
5.21, where a=kuu.

If n=2, there is only one tree, with Kirchhoff matrix  All the cofactors have value ±1, as desired. If
n>2, we assume that the matrix-tree theorem holds for all trees with at most n−1 vertices, and form K−uυ.
Now det(K·uυ)=0, since it is a Kirchhoff matrix. The submatrix Kυυ differs from K·uυ only in the single term a
instead of a−1 in entry uu. When we expand det(Kυυ) along row
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FIGURE 5.20
Kirchhoff matrix of a disconnected graph
u, all the terms are identical to expanding det(K·uυ) along row u, except for this one. Therefore
det(Kυυ)−det(K·uυ) equals the uu-cofactor in K·uυ. By the induction hypothesis, this is τ(G·uυ)=1. Therefore
det(Kυυ)=1. Striking off row and column u from K, and expanding along row υ, shows that det(Kuu) again
equals the uu-cofactor in K·uυ, which is 1. Therefore, the uu-cofactor in K equals τ(G). Consider next the
cofactor det(Kxy), where neither x nor y equals u or υ. Strike off row x and column y of K. In order to
evaluate (−1)x+y det(Kxy), first add row υ to row u, and then expand the determinant along column υ. The
value clearly equals the xy-cofactor of K·uυ, which is τ(G)=1. If x=u but y≠u or υ, a similar argument shows
that the cofactor equals 1. If x=υ but y≠υ, then expand along column υ to evaluate (−1)x+y det(Kxy). The
result is (−1)x+y(−1)(−1)u+x−1 times thedeterminantof (K·uυ)uy. This reduces to (−1)u+y
det((K·uυ)uy)=τ(G). Thus, in all cases, the cofactors equal τ(G)=1. By induction, the matrix-tree theorem is
true for all trees.
If G is a multigraph with n=2 vertices, then it consists of m parallel edges, for some m≥1, so that τ(G)=m. It

is easy to see that the theorem is true in this case, as the Kirchhoff matrix is  Suppose now that it
holds for all multigraphs with fewer than n vertices, where n>2, and for all multigraphs on n vertices with less
than ε edges, where ε>n−1, since we know that it holds for trees. Choose an edge uυ of G, and write
τ(G)=τ(G−uυ)+τ(G·uυ). The corresponding Kirchhoff matrices are illustrated in Figure 5.22, where we write
K−uυ for K(G−uυ).
The diagram is drawn as though the edge uυ had multiplicity 1, but the proof is general, and holds for any
multiplicity m≥1. Let a denote the entry kuu and b the entry kυυ.
Consider the υυ-cofactor of K. It is nearly identical to the υυ-cofactor of
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FIGURE 5.21
Kirchhoff matrices for a tree
K−uυ, differing only in the uu-entry, which is a in K but a−1 in K−uυ. Expanding det(Kυυ) along row u shows
that det(Kυυ)−det((K−uυ)υυ) equals the uu-cofactor of K−uυ, with row and column υ removed. Comparison
with Figure 5.23 shows that this is identical to the uu-cofactor of K·uυ. Therefore
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det(Kυυ)−det((K−uυ)υυ)=det((K·uυ)uu). By the induction hypothesis, this gives
det(Kυυ)=τ(G·uυ)+τ(G−uυ)=τ(G), as desired.
Consider now Kυu, formed by striking off row υ and column u of K. This matrix is almost identical to that
formed by striking off row υ and column u from K−uυ. The only difference is in the uυ-entry. Expanding
along row u shows that the difference of the determinants, det(Kυu)−det((K− uυ)υu) is (−1)u+υ−1(−1)
det((K·uυ)uu). Therefore (−1)υ+u det(Kυu)= (−1)υ+u det((K−uυ)υu)+det((K·uυ)uu)=τ(K−uυ Thus, the υu-
cofactor and the υυ-cofactor both equal τ(G).
Finally, we show that the remaining entries in row υ also have cofactors equal to τ(G). Consider any entry
kυw, where w≠u,υ. Strike off row υ and column w of K and of K−uυ. In order to evaluate det(Kυw) and
det((K−uυ)υw), first add the remaining part of column υ to column u in both matrices. This is illustrated in
Figure 5.24.
Kυw and (K−uυ)υw are now identical, except for the uυ-entry. Expand det(Kυw) along row u. All terms are
equal to the corresponding terms in the expansion of det((K−uυ)υw) along row u, except for the last term.
The difference is (−1)u+υ−1(−1) det((K·uυ)uw). Therefore (−1)υ+w det(Kυw)= (−1)υ+w
det((K−uυ)υw)+(−1)u+w det((K·uυ)uw). As before, we get (−1)υ+w det(Kυw)=τ(G). Thus, all the cofactors
of K from row υ have equal
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FIGURE 5.22
Kirchhoff matrices K and K−uυ
value, namely, τ(G). Since υ could be any vertex, all the cofactors of K have this value. This completes the
proof of the matrix-tree theorem.
A nice illustration of the use of the matrix-tree theorem is to compute τ(Kn). The Kirchhoff matrix is

 
Strike off the last row and column. In order to evaluate the determinant, add all the rows to the first row, to
get

 
Now add the first row to each row in turn, in order to get n’s on the diagonal and 0’s off the diagonal. Thus,
the determinant is nn−2, as expected.
The Kirchhoff matrix was first used to solve electrical circuits. Consider a simple electrical network consisting
of resistors and a battery producing voltage V. Let the nodes in the network be u1, u2,…, un, and suppose
that the resistance
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FIGURE 5.23
Kirchhoff matrix K·uυ
connecting ui to uj is rij. The battery causes current to flow in the network, and so sets up a voltage Vi at
each node ui. The current from ui to uj is (Vi−Vj)/rij. This is illustrated below.
The law of conservation of charge say s that the total current flowing out of node ui must equal the total
current flowing in, that is, not counting the current flowing through the battery,

 
for all nodes ui. The battery maintains a constant voltage difference of V across nodes u1 and un, say. Let I
denote the current through the battery. Then the u1-equation must be modified by setting the right-hand side
to I instead of 0; and the un-equation requires the right-hand side to be—I. This gives a system of linear
equations in the variables Vi and I. If we consider the network as a multigraph in which ui is joined to uj by
1/rij parallel edges, then the diagonal entries of the matrix corresponding to the equations are the degrees of
the nodes. The offdiagonal entries form the negated adjacency matrix of the network. Thus, this is the
Kirchhoff matrix of the network. Since the Kirchhoff matrix has determinant zero, there is no unique solution
to the system. However, it is voltage differences that are important, and we know that the battery maintains
a constant voltage difference of V. Therefore, we can arbitrarily set Vn=0 and V1=V, so that we can cross off
the nth column from the matrix. The rows are linearly dependent, so that we can also discard any row. The
system then has a unique solution, since striking off a row and column from the Kirchhoff matrix leaves the
spanning tree matrix. Notice that once the current in each edge is known, each spanning tree
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FIGURE 5.24
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Evaluating det(Kυw)
of the network will determine the voltage distribution uniquely, since a spanning tree has a unique path
connecting any two vertices.
Exercises
5.8.1 Find τ(K3,3) using the recursive method.
5.8.2 Find τ(Kn−uυ), where uυ is any edge of Kn, using the matrix-tree theorem.
5.8.3 Find τ(Cn), where Cn is the cycle of length n, using the matrix-tree theorem.
5.8.4 What is the complexity of finding the determinant of an n×n matrix, using Gaussian elimination?
Accurately estimate an upper bound on the number of steps needed.
5.8.5 Let G be a graph with n vertices. Replace each edge of G with m multiple edges to get a graph Gm.
Prove that τ(Gm)=mn−1 τ(G).
5.8.6 Program the recursive algorithm to find the number of spanning trees. Use a breadth-first search to find
an edge on a cycle.
5.8.7 Solve the electrical circuit of Figure 5.25, taking all resistances equal to one. Solve for the voltage Vi at
each node, the current in each edge, and the total current I, in terms of the battery voltage V.
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FIGURE 5.25
A simple network of resistors
5.9 Notes
Read’s tree encoding algorithm is from READ [98]. Prüfer sequences date back to 1918—PRÜFER [95]. They
are described in several books, including BONDY and MURTY [19]. The matrix-tree theorem is one of the
most fundamental theorems in graph theory.
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6 
Connectivity
6.1 Introduction
Trees are the smallest connected graphs. For deleting any edge will disconnect a tree. The following figure
shows three graphs in order of increasing connectivity.

FIGURE 6.1
Three graphs with increasing connectivity
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The second graph can be disconnected by deleting the two shaded vertices, but three edges must be deleted
in order to disconnect it. The third graph is complete and cannot be disconnected by deleting any number of
vertices. However, the deletion of four edges will do so. Thus, connectivity is measured by what must be
deleted from a graph G in order to disconnect it. Because one can delete vertices or edges, there will be two
measures of connectivity.
The vertex-connectivity of G is κ(G), the minimum number of vertices whose deletion disconnects G. If G
cannot be disconnected by deleting vertices, then κ(G)=|G|−1. A disconnected graph requires the deletion of
0 vertices, so it has κ=0. The complete graph has κ(Kn)=n−1. Hence, κ(K1)=0,
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but all other connected graphs have κ≥1. Any set of vertices whose deletion disconnects G is called a
separating set or vertex cut of G.
The edge-connectivity of G is κ′(G), the minimum number of edges whose deletion disconnects G. If G has no
edges, then κ′(G)=0. A disconnected graph does not need any edges to be deleted, and so it has κ′=0. K1
also has κ′=0 because it has no edges, but all other connected graphs have κ′≥1.
The edge-connectivity is always at most δ(G), since deleting the δ edges incident on a vertex of minimum
degree will disconnect G. The following inequality always holds.
THEOREM 6.1 κ≤κ′≤δ.
PROOF We know that κ′≤δ. We prove that κ≤ κ′ by induction on κ′. If κ′=0, then either G has no edges, or
else it is disconnected. In either case, κ=0. Suppose that it is true whenever κ′≤m, and consider κ′=m+1. If

κ′=|G|−1, then δ=κ′ and thus κ≤κ′; so suppose that κ′<|G|−1. Let  be an edge-cut containing m+1

edges. Pick any edge  and form H=G−uυ. Then  is an edge-cut of H containing m
edges, so κ′(H)≤m. By the induction hypothesis, κ(H)≤m. Let  be a minimum separating set of H.
Then |U|≤m, and H−U consists of two or more components. We now want to put the edge uυ back. Where
does it go?

FIGURE 6.2
A minimum separating set of H
If H−U had three or more components, then U would also be a separating set of G, in which case
κ(G)≤|U|=m. If H−U has exactly two components, Cu and Cυ, containing u and υ, respectively, then U will
not be a separating set of G, for the edge uυ will keep it connected. However, κ′(G)<|G|−1, so that m=κ
′−1<|G|−2. Therefore, one of Cu and Cυ contains two or more vertices, say Cu does. Then  is
a separating set of G with m+1 vertices, so that κ(G)≤κ′(G). By induction, the theorem is true for all values of
κ′.
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Except for this inequality, the parameters κ, κ′, and δ are free to vary considerably, as shown by CHARTRAND
and HARARY [23]. For example, the graph of Figure 6.3 has κ=2, κ′=3, and δ=4.

FIGURE 6.3
A graph with κ=2, κ′=3, and δ=4
Given any three non-negative integers a, b, and c satisfying a≤b≤c, we can easily make a graph with κ=a, κ
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′=b, and δ=c, as illustrated in Figure 6.3. Take two complete graphs G′ and G″, isomorphic to Kc+1. They
have minimum degree δ=c. Choose any a vertices  and a corresponding vertices 
Join them up in pairs, using a edges. Then U′ is a separating set of the graph, containing a vertices. Now add
b−a edges connecting G′ to G″, such that every edge added has one endpoint in U′. Clearly the graph
constructed has κ=a, κ′=b, and δ=c.
Exercises
6.1.1 Let G be connected and let  Prove that uυ is in every spanning tree of G if and only if uυ is a
cut-edge of G.
6.1.2 Show that a connected graph with exactly two vertices that are not cut-vertices is a tree. Hint: Consider
a spanning tree of G.
6.1.3 Prove that if G is a k-regular bipartite graph with k>1 then G has no cut-edge.
6.1.4 Prove that if G is connected, with all even degrees, then  for any  where
w(G) is the number of connected components of G.
6.1.5 Let G be a 3-regular graph.
(a) If κ=1, show that κ′=1.
(b) If κ=2, show that κ′=2.
Conclude that κ=κ′ for 3-regular graphs.
6.1.6 Let G be a 4-regular graph with κ=1. Prove that κ′=2.
6.1.7 Let (d1, d2,…, dn), where d1≤d2≤…≤dn, be the degree sequence of a graph G. Prove that if dj≥j, for
j=1,2,…,n−1−dn, then G is connected.
6.1.8 Give another proof that κ≤κ′, as follows. Let  be a minimum edge-cut of G, containing κ′ edges.
Construct a set  consisting of all vertices  such
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that there is an edge  Then |U|≤κ′. If U≠S, then U is a separating set of G with ≤κ′ vertices.
Therefore κ≤κ′. Show how to complete the proof when U=S.
6.2 Blocks
Any graph G with κ≥1 is connected. Consequently G is said to be 1-connected. Similarly, if κ≥2, then at least
two vertices must be deleted in order to disconnect G, so G is said to be 2-connected. It is usually easier to
determine a lower bound, such as κ≥2 or κ≥3, than to compute the exact value of κ. In general, G is said to
be k-connected if κ≥k, for some integer k.
If G is a disconnected graph, then its structure is determined by its components, that is, its maximal
connected subgraphs. A component which is an isolated vertex will have κ=0, but all other components will
be 1-connected.
If a connected graph G has a cut-vertex υ, then it is said to be separable, since deleting υ separates G into
two or more components. A separable graph has κ=1, but it may have subgraphs which are 2-connected, just
as a disconnected graph has connected subgraphs. We can then find the maximal non-separable subgraphs of
G, just as we found the components of a disconnected graph. This is illustrated in Figure 6.4.

FIGURE 6.4
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A graph (a) and its blocks (b)
The maximal non-separable subgraphs of G are called the blocks of G. The
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graph illustrated above has eight blocks, held together by cut-vertices. Every separable graph will have two or
more blocks. Any 2-connected graph is non-separable. However, K2, a graph which consists of a single edge,
is also non-separable, since it has no cut-vertex. Therefore every edge of G is a non-separable subgraph, and
so will be contained in some maximal non-separable subgraph. Can an edge be contained in two distinct
blocks? We first describe some properties of 2-connected graphs.
Notice that cycles are the smallest 2-connected graphs, since a connected graph with no cycle is a tree, which
is not 2-connected. Any two vertices u and υ on a cycle C divide C into two distinct paths with only the
endpoints u and υ in common. Paths which have only their endpoints in common are said to be internally
disjoint; see Figure 6.5.

FIGURE 6.5
Three internally disjoint paths
THEOREM 6.2 A graph G with three or more vertices is 2-connected if and only if every pair of vertices is
connected by at least two internally disjoint paths.
PROOF : Suppose that every pair of vertices of G is connected by at least two internally disjoint paths. If a
vertex w is deleted, then every remaining pair of vertices is still connected by at least one path, so that w is
not a cut-vertex. Therefore κ>2.

: Let G be 2-connected, and let  We prove by induction on DIST(u,υ) that u and υ are
connected by two internally disjoint paths. If DIST(u,υ)=1, then G−uυ is still connected, since κ′≥κ≥2.
Therefore G−uυ contains a uυ-path P, so that G has two uυ-paths, P and uυ. Suppose that the result holds
when DIST(u,υ)≤m and consider DIST(u,υ)=m+1. Let P be a uυ-path of length m+1 and let w be the last
vertex before υ on this path. Then DIST(u,w)=m, since P is a shortest path. By the induction hypothesis, G
contains internally disjoint uw-paths Pw and Qw.
Since G is 2-connected, G−w is still connected, and so has a uυ-path R. R has the endpoint u in common with
both Pw and Qw. Let x be the last vertex common to R and either of Pw or Qw, say  Then
Pw[u,x]R[x,υ] and
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FIGURE 6.6
Internally disjoint paths Pwand Qu
Qwwυ are two internally disjoint uυ-paths. By induction, the result holds for all pairs u, υ of vertices.
So in a 2-connected graph, every pair u, υ, of vertices are connected by at least two internally disjoint paths P
and Q. Since P and Q together form a cycle, we know that every pair of vertices lies on a cycle. Another
consequence of this theorem is that every pair of edges also lies on a cycle.
COROLLARY 6.3 A graph G with three or more vertices is 2-connected if and only if every pair of edges lies on
a cycle.



cover

file:///G|/SMILEY/0203489055__gigle.ws/0203489055/files/__joined.html[01/10/2009 15:18:30]

PROOF Let G be 2-connected and pick edges uυ,  Subdivide uυ with a new vertex w, and xy
with a new vertex z to get a graph G′. Now G has no cut-vertex, so neither does G′. By the previous theorem,
w and z lie on a cycle in G′, so that uυ and xy lie on a cycle in G.

: Suppose now that every pair of edges lies on a cycle. Then every vertex has degree at least two, since no
cycle could pass through an edge incident on a vertex of degree one. Choose any two vertices u and x.
Choose any vertex  and a vertex  such that y≠υ. Then the edges uυ and xy must lie on a
cycle C. Clearly C contains u and x, so that every pair u, x, of vertices lies on a cycle. It follows that G is 2-
connected.
LEMMA 6.4 Each edge uυ of G is contained in a unique block.
PROOF Let uυ be an edge in a graph G, and let B be a maximal 2-connected subgraph of G containing uυ. If
B′ is another maximal 2-connected subgraph
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FIGURE 6.7
Two edges on a cycle
containing uv, where B≠B′, then choose any edge B′ contains a cycle C containing both uυ and
xy, since B′ is 2-connected. The subgraph  is 2-connected, and is larger than B, a contradiction.
Therefore, each edge uυ is contained in exactly one block of G.
6.3 Finding the blocks of a graph
The first algorithm to find the blocks of a graph was discovered by READ [99]. It uses the fundamental cycles
with respect to a spanning tree T. Because each edge of G is contained in a unique block Buυ, the algorithm
begins by initializing Buυ to contain only uυ and uses the merge-find data structure to construct the full
blocks Buυ. For each edge  the fundamental cycle Cuυ is found. Because Cuυ is 2-connected, all its
edges are in one block. So upon finding Cuυ, we merge all the blocks Bxy, where  into one. Any
spanning tree T can be used. If we choose a breadth-first tree, we have Algorithm 6.3.1.
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Algorithm 6.3.1: BLOCKS(G)

comment: G is a connected graph
for each 

do initialize Buυ to contain uυ
pick any vertex 

place x on ScanQ
repeat

select u from head of ScanQ
for each 
do if 
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advance ScanQ
until all vertices on ScanQ are processed

comment: each Buυ now consists of the unique block containing uυ
LEMMA 6.5 At the beginning of each iteration of the repeat loop, each Buυis either a single edge, or else is 2-
connected.
PROOF The proof is by induction on the number of iterations of the repeat loop. At the beginning of the first
iteration it is certainly true. Suppose that it is true at the beginning of the kth iteration. If the edge uυ chosen
forms part of the spanning tree T, it will also be true for the (k+1)st iteration, so suppose that uυ creates a
fundamental cycle Cuυ. Each Bxy for which  is either a single edge, or else 2-connected. The new
Buυ is formed by merging all the Bxy into one, say  Pick any two edges
ab,  say  and  Weshow that Buυ contains a cycle containing both ab and cd.
If ab,  it is certainly true. Otherwise, notice that each  contains some edge of Cuυ. Without
loss of generality, we can suppose that the edges  for l=1, 2,…, m. Since  is 2-connected, it
contains a cycle Ci containing both xiyi and ab, and  contains a cycle Cj containing both xiyj and cd.
This is illustrated in Figure 6.8. Then  is a cycle contained in Buυ and containing ab and cd. By
Corollary 6.3, the new
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Buυ is 2-connected. Therefore the result is true at the beginning of the (k+1)st iteration. By induction it is
true for all iterations.
COROLLARY 6.6 Upon completion of Algorithm 6.3.1, each Buυcontains the unique block containing uυ.
PROOF By the previous lemma, each Buυ will either be a single edge, or else 2-connected. If Buυ is not the
unique block B containing uυ, then pick some edge  B contains a cycle C containing both uυ and
xy. By Theorem 4.3, C can be written in terms of fundamental cycles with respect to the spanning tree T
constructed by Algorithm 6.3.1,  But each of the fundamental cycles 

 will have been processed by the algorithm, so that all edges of C are contained in one Buυ, a
contradiction. Therefore, each Buυ consists of the unique block containing uυ.
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FIGURE 6.8
Merging the Bxy
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Exercises
6.3.1 Given an edge uυ which creates a fundamental cycle Cuυ, describe how to find Cuυ using the Parent[·]
array created by the BFS.
6.3.2 Let (d1, d2,…, dn), where d1≤d2≤…≤dn, be the degree sequence of a graph G. Prove that if dj≥j+1,
for j=1, 2,…, n−1−dn−1, then G is 2-connected.
6.3.3 Program the BLOCKS() algorithm. One way to store the merge-find sets Buυ is as an n by n matrix
BlockRep[·,·]. Then the two values x←BlockRep[u, υ] and y←BlockRep[υ, u] together define the edge xy
representing uυ. Another way is to assign a numbering to the edges, and use a linear array.
6.3.4 Try to estimate the complexity of the algorithm BLOCKS(). It is difficult to obtain a close estimate
because it depends on the sum of the lengths of all ε−n+1 fundamental cycles of G, where n=|G|.
6.3.5 The Block-Cut-Vertex Tree. (See HARARY [59].) Let G be a connected separable graph. Let B denote the
set of blocks of G and C denote the set of cut-vertices. Each cut-vertex is contained in two or more blocks,
and each block contains one or more cut-vertices. We can form a bipartite graph BC(G) with vertex-set 
by joining each  to the cut-vertices  that it contains.
(a) Show that BC(G) has no cycles, and consequently is a tree.
(b) In the block-cut-vertex tree BC(G), the degree of each  is the number of blocks of G containing υ.
Denote this value by b(υ), for any vertex  Show that

 
so that the number of blocks of G is given by

 
(c) Prove that every separable graph has at least two blocks which contain only one cut-vertex each.
6.4 The depth-first search
There is an easier, more efficient way of finding the blocks of a graph than using fundamental cycles. It was
discovered by Hopcroft and Tarjan. It uses a depth-first search (DFS) to construct a spanning tree. With a
depth-first search the fundamental cycles take a very simple form—essentially we find them for free, as they
require no extra work. The basic form of the depth-first search follows. It is a recursive procedure, usually
organized with several global variables initialized by the calling procedure. The example following uses a
global counter DFCount, and two arrays DFNum[υ] and Parent[υ]. Each vertex υ is assigned
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a number DFNum[υ], being the order in which the DFS visits the vertices of G, and a value Parent[υ], being
the vertex u from which DFS(υ) was called. It is the parent of υ in the rooted spanning tree constructed.
Initially all DFNum[·] values are set to 0.

Algorithm 6.4.1: DFS(u)
comment: extend a depth-first search from vertex u

DFCount←DFCount+1
DFNum[u]←DFCount

for each 
do if DFNum[υ]=0

else {comment: uυ creates a fundamental cycle
The calling procedure can be written as follows:
DFCount←0
for u←1 to n do DFNum[u]←0
select a staring vertex u
DFS(u)
Figure 6.9 shows a depth-first search in a graph. The numbering of the vertices shown is that of DFNum[·],
the order in which the vertices are visited.
Notice that while visiting vertex u, DFS(υ) is called immediately, for each  discovered. This means
that before returning to node u, all vertices that can be reached from υ on paths that do not contain u will be
visited; that is, all nodes of G−u that are reachable from υ will be visited. We state this important property as
a lemma. For any vertex u, let A(u) denote u, plus all ancestors of u in the depth-first tree, where an ancestor
of u is either its parent, or any vertex on the unique spanning tree path from u to the root vertex.
LEMMA 6.7 Suppose that DFS (υ) is called while visiting node u. Then DFS (υ) visits every vertex in
V(G)−A(u) reachable from υ before returning to node u.
PROOF The statement
if DFNum[u]=0 then…
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FIGURE 6.9
A depth-first search
ensures that no vertex of A(u) will be visited before returning to node u. To show that every vertex of G−A(u)
connected to υ is visited, let w be a vertex of V(G)−A(u), with DIST(υ,w)=k. The proof is by induction on k. It
is clear that all  will be visited before returning to u, so that the statement is true when k=1. If k>1,
let P be a υw-path of length k, and let  be the first vertex of P. Now x will certainly be visited before
returning to node u. When x is visited, either w will already have been visited, or else some DFS(y) called
from node x will visit w before returning to υ, since DIST(x,w)=k−1. Therefore all vertices of G−u connected
to υ will be visited before returning to u.
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This makes it possible to detect when u is a cut-vertex. It also means that a spanning tree constructed by a
depth-first search will tend to have few, but long, branches. The following diagram shows the DF-tree
constructed by the DFS above.
Suppose that while visiting node u, a vertex  with DFNum [υ]≠0 is encountered. This means that υ
has already been visited, either previously to u, or as a descendant of u. While visiting υ, the edge uυ will
have been encountered. Therefore, if υ was visited previously, either DFS(u) was called from node υ, so that
Parent[u]=υ, or else DFS(u) was called from some descendant w of υ. So we can state the following
fundamental property of depth-first searches:
LEMMA 6.8 Suppose that while visiting vertex u in a depth-first search, edge uυ creating a fundamental cycle
is encountered. Then either υ is an ancestor of u, or else u is an ancestor of υ.
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FIGURE 6.10
A depth-first tree with fronds
Edges which create fundamental cycles with respect to a depth-first spanning tree T are called fronds of T.
Some of the fronds of the graph of Figure 6.9 are shown in Figure 6.10.
Now suppose that G is a separable graph with a cut-vertex υ. υ will occur somewhere in T, say that DFS(υ)
was called from node u, and that node υ in turn calls DFS(w), where u and w are in different blocks. Thus,
edges uυ and υw do not lie on any cycle of G. This is illustrated in Figure 6.11. Consider any descendant x of
w and a frond xy discovered while visiting node x, where y is an ancestor of x. Now y cannot be an ancestor
of υ, for then the fundamental cycle Cxy would contain both edges uυ and υw, which is impossible. Therefore
either y=υ, or else y is a descendant of υ. So, for every frond xy, where x is a descendant of w, either y=υ,
or else y is a descendant of υ. We can recognize cut-vertices during a DFS in this way. Ancestors of υ will
have smaller DFNum[·] values than υ, and descendants will have larger values. For each vertex υ, we need to
consider the endpoints y of all fronds xy such that x is a descendant of υ.
DEFINITION 6.1: Given a depth-first search in a graph G. The low-point of a vertex υ is LowPt[υ], the
minimum value of DFNum[y], for all edges υy and all fronds xy, where x is a descendant of υ.
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FIGURE 6.11
A cut-vertex υ in a DF-tree
We can now easily modify DFS(u) to compute low-points and find cut-vertices. In addition to the global
variables DFCount, DFNum[·], and Parent[·], the algorithm keeps a stack of edges. Every edge encountered
by the algorithm is placed on the stack. When a cut-vertex is discovered, edges on the top of the stack will be
the edges of a block of G.
The procedure DFSEARCH(u) considers all  If υ has been previously visited, there are two
possibilities, either υ=Parent[u], or else uυ is a frond. When uυ is a frond, there are also two possibilities,
either u is an ancestor of υ, or υ is an ancestor of u. These two cases are shown in Figure 6.12. The algorithm
only needs those fronds uυ for which υ is an ancestor of u in order to compute LowPt[u].
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Algorithm 6.4.2: DFBLOCKS(G)

procedure DFSEARCH(u)
comment: extend a depth-first search from u

DFCount←DFCount+1
DFNum[u]←DFCount
for each do
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main
DFCount←0

for u←1 to n do DFNum[u]←0
select a vertex u

LowPt[u]←1
DFSEARCH(u)
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FIGURE 6.12
Two kinds of fronds
The next thing to notice is that the LowPt[u] is correctly computed. For if u is a leaf-node of the search tree,
then all edges uυ are fronds, and υ is an ancestor of u. The algorithm computes LowPt[u] as the minimum
DFNum[υ], for all such υ. Therefore, if u is a leaf-node, the low-point is correctly computed. We can now use
induction on the depth of the recursion. If u is not a leaf-node, then some DFSEARCH(υ) will be called from
node u. The depth of the recursion from υ will be less than that from u, so that we can assume that
DFSEARCH(υ) will correctly compute LowPt[υ]. Upon returning from this recursive call, LowPt[υ] is compared
with the current value of LowPt[u], and the minimum is taken, for every unsearched  Therefore, after
visiting node u, LowPt[u] will always have the correct value.
So far the algorithm computes low-points and uses them to find the cut-vertices of G. We still need to find
the edges in each block. While visiting node u, all new edges uυ are stacked. If it is discovered that
LowPt[υ]=DFNum[u]; so that u is a cut-vertex, then the edges in the block containing uυ are all those edges
on the stack up to, and including, uυ.
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THEOREM 6.9 Each time that

LowPt[υ]=DFNum[u]  
occurs in DFSEARCH(u), the block containing uυ consists of those edges on the stack up to and including uυ.
PROOF Let Buυ denote the block containing uυ. The proof is by induction on the number of times that
LowPt[υ]=DFNum[u] occurs. Consider the first time it occurs. DFSEARCH(υ) has just been called, while
visiting node u. Edge uυ has been placed on the stack. DFSEARCH(υ) constructs the branch of the search tree
at u containing υ. By Lemma 6.7, this contains all vertices of G−u connected to υ. Call this set of vertices B.
By the definition of the low-point, there are no fronds joining υ or any de scendant of υ to any ancestor of u.
So u separates B from the rest of the graph. Therefore 
Suppose now that B contained a cut-vertex w. No leaf-node of the DF-tree can be a cut-vertex, so some
DFSEARCH(x) is called while visiting node w. It will visit all nodes of G−w connected to x. Upon returning to
node w, it would find that LowPt[x]=DFNum[w], which is impossible, since this occurs for the first time at
node u. Therefore Buυ consists of exactly those edges encountered while performing DFSEARCH(υ); that is,
those on the stack.
Upon returning from DFS(υ) and detecting that LowPt[υ]=DFNum[u], all edges on the stack will be unstacked
up to, and including, uυ. This is equivalent to removing all edges of Buυ from the graph. The remainder of the
DFS now continues to work on G−B. Now Buυ is an end-block of G (i.e., it has at most one cut-vertex) for u
is the first vertex for which a block is detected. If G is 2-connected, then G=Buυ, and the algorithm is
finished. Otherwise, G−B is connected, and consists of the remaining blocks of G. It has one less block than
G, so that each time LowPt[υ]=DFNum[u] occurs in G−B, the edges on the stack will contain another block.
By induction, the algorithm finds all blocks of G.
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Each time the condition LowPt[υ]=DFNum[u] occurs, the algorithm has found the edges of a block of G. In
this case, u will usually be a cut-vertex of G. The exception is when u is the root of the DF-tree, since u has
no ancestors in the tree. Exercise 6.4.3 shows how to deal with this situation.
6.4.1 Complexity
The complexity of DFBLOCKS() is very easy to work out. For every  all  are considered. This
takes
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steps. Each edge is stacked and later unstacked, and a number of comparisons are performed in order to
compute the low-points. So the complexity is O(ε).
Exercises
6.4.1 Can the spanning tree shown in the graph illustrated in Figure 6.13 be a DF-tree, with the given root-
node? If so, assign a DF-numbering to the vertices.

FIGURE 6.13
Is this a DF spanning tree?
6.4.2 Program the DFBLOCKS() algorithm to find all the blocks of a connected graph G. Print a list of the
edges in each block. Choose the starting vertex to be sometimes a cut-vertex, sometimes not.
6.4.3 Modify your program to print also a list of the cut-vertices of G, by storing them on an array. A vertex u
is a cut-vertex if LowPt[υ]=DFNum[u] occurs while visiting edge uυ at node u. However, if u is the root-node
of the DF-tree, then it will also satisfy this condition, even when G is 2-connected. Find a way to modify the
algorithm so that it correctly determines when the root-node is a cut-vertex.
6.4.4 A separable graph has κ=1, but can be decomposed into blocks, its maximal non-separable subgraphs.
A tree is the only separable graph which does not have a 2-connected subgraph, so that every block of a tree
is an edge. Suppose that G has κ=2. In general, G may have 3-connected subgraphs. Characterize the class
of 2-connected graphs which do not have any 3-connected subgraph.
6.4.5 Let G be 3-connected. Prove that every pair of vertices is connected by at least three internally disjoint
paths.
6.4.6 Let G have κ=2, and consider the problem of finding all separating pairs {u,υ} of G using a DFS. Prove
that for every separating pair {u,υ}, one of u and υ is an ancestor of the other in any DF-tree. Refer to Figure
6.14.
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FIGURE 6.14
DFS with separating set {u,υ}
6.4.7 Suppose that deleting {u,υ} separates G into two or more components. Let G1 denote one component
and G2 the rest of G. Show that there are two possible ways in which a DFS may visit u and υ, as illustrated
in Figure 6.14. Devise a DFS which will find all pairs {u,υ} which are of the first type. (Hint: You will need
LowPt2 [υ], the second low-point of υ. Define it and prove that it works.)
6.5 Notes
The example of Figure 6.3 is based on HARARY [59]. Read’s algorithm to find the blocks of a graph is from
READ [99]. The depth-first search algorithm is from HOPCROFT and TARJAN [67]. See also TARJAN [111].
Hopcroft and Tarjan’s application of the depth-first search to find the blocks of a graph was a great
breakthrough in algorithmic graph theory. The depth-first search has since been applied to solve a number of
difficult problems, such as determining whether a graph is planar in linear time, and finding the 3-connected
components of a graph.
Algorithms for finding the connectivity and edge-connectivity of a graph are described in Chapter 8. An
excellent reference for connectivity is TUTTE [120], which includes a detailed description of the 3-connected
components of a graph. A depth-first seach algorithm to find the 3-connected components of a graph can be
found in HOPCROFT and TARJAN [68].
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7 
Alternating Paths and Matchings
7.1 Introduction
Matchings arise in a variety of situations as assignment problems, in which pairs of items are to be matched
together, for example, if people are to be assigned jobs, if sports teams are to matched in a tournament, if
tasks are to be assigned to processors in a computer, whenever objects or people are to be matched on a
one-to-one basis.
In a graph G, a matching M is a set of edges such that no two edges of M have a vertex in common. Figure
7.1 illustrates two matchings M1 and M2 in a graph G.

FIGURE 7.1
Matchings
Let M have m edges. Then 2 m vertices of G are matched by M. We also
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say that a vertex u is saturated by M if it is matched, and unsaturated if it is not matched. In general, we
want M to have as many edges as possible.
DEFINITION 7.1: M is a maximum matching in G if no matching of G has more edges.
For example, in Figure 7.1, |M1|=3 and |M2|=4. Since |G|=8, M2 is a maximum matching. A matching which
saturates every vertex is called a perfect matching. Obviously a perfect matching is always a maximum
matching. M1 is not a maximum matching, but it is a maximal matching; namely M1 cannot be extended by
the addition of any edge uυ of G. However, there is a way to build a bigger matching out of M1. Let P denote
the path (u1, u2,…, u6) in Figure 7.1.
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DEFINITION 7.2: Let G have a matching M. An alternating path P with respect to M is any path whose edges
are alternately in M and not in M. If the endpoints of P are unsaturated, then P is an augmenting path.
So P=(u1, u2,…, u6) is an augmenting path with respect to M1. Consider the subgraph formed by the
exclusive or operation  (also called the symmetric difference, M
contains those edges of P which are not in M1, namely, u1u2, u3u4, and u5u6. M is a bigger matching than
M1. Notice that M=M2.
LEMMA 7.1 Let G have a matching M. Let P be an augmenting path with respect to M. Then 
is a matching with one more edge than M.
PROOF Let the endpoints of P be u and υ. M′ has one more edge than M, since u and υ are unsaturated in
M, but saturated in M′. All other vertices that were saturated in M are still saturated in M′. So M′ is a
matching with one more edge.
The key result in the theory of matchings is the following:
THEOREM 7.2 (Berge’s theorem) A matching M in G is maximum if and only if G contains no augmenting
path with respect to M.
PROOF : If M were a maximum matching and P an augmenting path, then  would be a larger
matching. So there can be no augmenting path if M is maximum.

: Suppose that G has no augmenting path with respect to M. If M is not maximum, then pick a maximum
matching M′. Clearly |M′|>|M|. Let H=  Consider the subgraph of G that H defines. Each vertex υ is
incident on at most one M-edge and one M′-edge, so that in H, DEG(υ)≤2. Every path in
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H alternates between M-edges and M′-edges. So H consists of alternating paths and cycles, as illustrated in
Figure 7.2.

FIGURE 7.2
Alternating paths and cycles
Each cycle must clearly have even length, with an equal number of edges of M and M′. Since |M′|>|M|, some
path P must have more M′-edges than M-edges. It can only begin and end with an M′-edge, so that P is
augmenting with respect to M. But we began by assuming that G has no augmenting path for M.
Consequently, M was initially a maximum matching.
This theorem tells us how to find a maximum matching in a graph. We begin with some matching M. If M is
not maximum, there will be an unsaturated vertex u. We then follow alternating paths from u. If some
unsaturated vertex υ is reached on an alternating path P, then P is an augmenting uυ-path. Set 

 and repeat. If the method that we have chosen to follow alternating paths is sure to find
all such paths, then this technique is guaranteed to find a maximum matching in G.
In bipartite graphs it is slightly easier to follow alternating paths and therefore to find maximum matchings,
because of their special properties. Let G have bipartition (X,Y). If  then the neighbor set of S is N(S),
the set of Y-vertices adjacent to S. Sometimes N(S) is called the shadow set of S. If G has a perfect matching
M, then every  will be matched to some  so that |N(S)|≥|S|, for every  HALL [58] proved
that this necessary condition is also sufficient.
THEOREM 7.3 (Hall’s theorem) Let G have bipartition (X,Y). G has a matching saturating every if and
only if |N(S)|≥|S|, for all 
PROOF We have all ready discussed the necessity of the conditions. For the converse suppose that |N(S)|
≥|S|, for all  If M does not saturate all of
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FIGURE 7.3
The neighbor set
X, pick an unsaturated  and follow all the alternating paths beginning at u. (See Figure 7.4.)

FIGURE 7.4
Follow alternating paths
Let  be the set of X-vertices reachable from u on alternating paths, and let T be the set of Y-vertices
reachable. With the exception of u, each vertex  is matched to some  for S was constructed by
extending alternating paths from  to whenever xy is a matching edge. Therefore |S|=|T|+1.
Now there may be other vertices X−S and Y−T. However, there can be no edges [S,Y−T], for such an edge
would extend an alternating path to a vertex of Y−T, which is not reachable from u on an alternating path. So
every  can
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only be joined to vertices of T; that is, T=N(S). It follows that |S|>|N(S)|, a contradiction. Therefore every
vertex of X must be saturated by M.
COROLLARY 7.4 Every k-regular bipartite graph has a perfect matching, if k>0.
PROOF Let G have bipartition (X,Y). Since G is k-regular, ε=k·|X|=k·|Y|, so that |X|=|Y|. Pick any 
How many edges have one end in S? Exactly k·|S|. They all have their other end in N(S). The number of
edges with one endpoint in N(S) is k·|N(S)|. So k·|S|≤k−|N(S)|, or |S|≤|N(S)|, for all  Therefore G
has a perfect matching.
Exercises
7.1.1 Find a formula for the number of perfect matchings of K2n and Kn,n.
7.1.2 (Hall’s theorem.) Let A1, A2,…, An be subsets of a set S. A system of distinct representatives for the
family {A1, A2,…, An} is a subset {a1, a2,…, an} of S such that  and ai≠aj, for
i≠j. Example:
A1=students taking computer science 421
A2=students taking physics 374
A3=students taking botany 464
A4=students taking philosophy 221
The sets A1, A2, A3, A4 may have many students in common. Find four distinct students a1, a2, a3, a4, such
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that  and  to represent each of the four classes.
Show that {A1, A2,…, An} has a system of distinct representatives if and only if the union of every
combination of k of the subsets Ai contains at least k elements, for all k=1, 2,…, n. (Hint: Make a bipartite
graph A1, A2,…, An versus all  and use Hall’s theorem.)
7.2 The Hungarian algorithm
We are now in a position to construct an algorithm which finds a maximum matching in bipartite graphs, by
following alternating paths from each unsaturated  How can we best follow alternating paths? Let
n=|G|. Suppose that we store the matching as an integer array Match [x], x=1, 2,…, n, where Match [x] is
the vertex matched to x (so Match [Match [x])=x, if x is saturated).
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We use Match[x]=0 to indicate that x is unsaturated. We could use either a DFS or BFS to construct the
alternating paths. A DFS is slightly easier to program, but a BF-tree tends to be shallower than a DF-tree, so
that a BFS will likely find augmenting paths more quickly, and find shorter augmenting paths, too. Therefore
the BFS is used for matching algorithms.
The array used to represent parents in the BF-tree can be used in combination with the Match[·] array to
store the alternating paths. We write PrevPt[υ] for the parent of υ in a BF-tree. It is the previous point to υ
on an alternating path to the root. This is illustrated in Figure 7.5.

FIGURE 7.5
Storing the alternating paths
We also need to build the sets S and N(S) as queues, which we store as the arrays ScanQ and NS,
respectively. The algorithm for finding a maximum matching in bipartite graphs is Algorithm 7.2.1. It is also
called the Hungarian algorithm for maximum matchings in bipartite graphs.
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Algorithm 7.2.1: MAXMATCHING(G)

comment: Hungarian algorithm. G has bipartition (X,Y), and n vertices.
for i←1 to n do Match [i]←0

for each 



cover

file:///G|/SMILEY/0203489055__gigle.ws/0203489055/files/__joined.html[01/10/2009 15:18:30]

comment: Match[·] now contains a maximum matching
Notice that the algorithm needs to be able to determine whether  This can be done by storing a
boolean array. Another possibility is to use PrevPt[υ]=0 to indicate that  We can test if y is
unsaturated by checking whether Match[y]=0. AUGMENT(y) is a procedure that computes 
where P is the augmenting path found. Beginning at vertex y, it alternately follows PrevPt[·] and Match[·]
back to the initial unsaturated vertex, which is the root-node of the BF-tree being constructed. This is
illustrated in Figure 7.6.
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Algorithm 7.2.2: AUGMENT(y)
comment: follow the augmenting path, setting 
repeat
w←PreυPt[y]
Match [y]←w
υ←Match [w]
Match [w]←y
y←υ
until y=0
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FIGURE 7.6
Augmenting the matching
The BFS constructs an alternating search tree. It contains all vertices reachable from the root-node u on
alternating paths. Vertices at even distance from u in the tree form the set S, and those at odd distance form
N(S). The vertices of S are sometimes called outer vertices, and those of N(S) inner vertices. All the actual
searching is done from the outer vertices.
THEOREM 7.5 The Hungarian algorithm constructs a maximum matching in a bipartite graph.
PROOF Let G have bipartition (X,Y). If the algorithm saturates every vertex of X, then it is certainly a
maximum matching. Otherwise some vertex u is not matched. If there is an augmenting path P from u, it
must alternate between X and Y, since G is bipartite. The algorithm constructs the sets S and N(S), consisting
of all vertices of X and Y, respectively, that can be reached on alternating paths. So P will be found if it exists.
If u cannot be saturated, then we know that |S|=|N(S)|+1. Every vertex of S but u is matched. S and N(S)
are then deleted from the graph. Does the deletion of these vertices affect the rest of the
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FIGURE 7.7
The alternating search tree
algorithm? As in Hall’s theorem, there are no edges [S,Y−N(S)]. Suppose that alternating paths from a vertex 

 were being constructed. If such a path were to reach a vertex y in the deleted N(S), it could only
extend to other vertices of S and N(S). It could not extend to an augmenting path. Therefore these vertices
can be deleted. Upon completion, the algorithm will have produced a matching M for which there are no
augmenting paths in the graph. By Theorem 7.2, M is a maximum matching.
7.2.1 Complexity
Suppose that at the beginning of the for-loop, M has m edges. The largest possible size of S and N(S) is then
m+1, and m, respectively. The number of edges [S,N(S)] is at most m(m+1). In the worst possible case, S
and N(S) will be built up to this size, and m(m+1) edges between them will be encountered. If an
augmenting path is now found, then m will increase by one to give a worst case again for the next iteration.
The length of the augmenting path will be at most 2m+1, in case all m matching edges are in the path. The
number of steps performed in this iteration of the for-loop will then be at most m(m+1)+(2m+1). Since
|X|+|Y|=n, the number of vertices, one of |X| and |Y| is ≤n/2. We
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can take X as the smaller side. Summing over all iterations then gives
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The leading term in the expansion is n3/24, so that the algorithm is of order O(n3), with a small constant
coefficient. It can be improved with a more careful choice of augmenting paths. HOPCROFT and KARP [65]
maintain several augmenting paths, and augment simultaneously on all of them to give O(n2.5). This can also
be accomplished with network flow techniques.
Exercises
7.2.1 Program the Hungarian matching algorithm. The output should consist of a list of the edges in a
maximum matching. If there is no matching saturating the set X, this should be indicated by printing out the
sets  found whose neighbor set N(S) is smaller than S. Use the graphs in Figure 7.8 for input. The set X
is marked by shaded dots, and Y by open dots.
7.3 Perfect matchings and 1-factorizations
Given any graph G and positive integer k, a k-factor of G is a spanning subgraph that is k-regular. Thus a
perfect matching is a 1-factor. A 2-factor is a union of cycles that covers V(G), as illustrated in Figure 7.9.
The reason for this terminology is as follows. Associate indeterminates x1, x2, …, xn with the n vertices of a
graph. An edge connecting vertex i to j can be represented by the expression xi−xj. Then the entire graph

can be represented (up to sign) by the product  For example, if G is the 4-cycle,
this product becomes (x1−x2) (x2−x3) (x3−x4) (x4−x1). Since the number of terms in the product is ε(G),
when it is multiplied out, there will be ε x’s in each term. A 1-factor of P(G), for example, (x1−x2) (x3−x4), is
a factor that contains each xi exactly once. This will always correspond to a perfect matching in G, and so on.
With some graphs it is possible to decompose the edge set into perfect matchings. For example, if G is the
cube, we can write  where
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FIGURE 7.8
Sample graphs
M1={12,34,67,85}, M2={23,14,56,78}, and M3={15,26,37,48}, as shown in Figure 7.10. Each edge of G is in
exactly one of M1, M2, or M3.
In general, a k-factorization of a graph G is a decomposition of E(G) into  where each Hi
is a k-factor, and each Hi and Hj have no edges in common. The above decomposition of the cube is a 1-
factorization. Therefore we say the cube is 1-factorable.
LEMMA 7.6 Kn,nis 1-factorable.
PROOF Let (X,Y) be the bipartition of Kn,n, where X={x0,x1,…,xn−1} and Y={y0,y1,…,yn−1}. Define
M0={xiyi|i=0,1,…,n−1}, M1= {xiyi+1|i=0,1,…,n−1}, etc., where the addition is modulo n. In general
Mk={xiyi+k|i=0,1,…,n−1}. Clearly Mj and Mk have no edges in common, for any j and k, and together M0,
M1,…, Mn−1 contain all of E(G).

page_149

Page 150

FIGURE 7.9
2-factors of the cube

FIGURE 7.10
A 1-factorization of the cube
Thus we have a 1-factorization of Kn,n
LEMMA 7.7 K2nis 1-factorable.
PROOF Let  Draw K2n with the vertices 0, 1,…, 2n−2 in a circle, placing
∞ in the center of the circle. This is illustrated for n=4 in Figure 7.11. Take 

 where the
addition is modulo 2n−1. M0 is illustrated by the thicker lines in Figure 7.11.
We can then “rotate” M0 by adding one to each vertex,  where
∞+1=∞, and addition is modulo 2n−1. It is easy to see from the diagram that M0 and M1 have no edges in
common. Continuing like this, we have

M0,M1,M2,…,M2n−2,  
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where Mk=M0+k. They form a 1-factorization of K2n.
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FIGURE 7.11
1-factorizing K2n, where n=4
We can use a similar technique to find a 2-factorization of K2n+1.
LEMMA 7.8 K2n+1 is 2-factorable.
PROOF Let  As in the previous lemma, draw the graph with the
vertices in a circle, placing ∞ in the center. The first 2-factor is the cycle H0=(0, 1,−1, 2,−2,…, n−1, n+1, n,
∞), where the arithmetic is modulo 2n. This is illustrated in Figure 7.12, with n=3. We then rotate the cycle
to get H1, H2,…, Hn−1, giving a 2-factorization of K2n+1.
Exercises
7.3.1 Find all perfect matchings of the cube. Find all of its 1-factorizations.
7.3.2 Find all perfect matchings and 1-factorizations of K4 and K6.
7.3.3 Prove that the Petersen graph has no 1-factorization.
7.3.4 Prove that for k>0 every k-regular bipartite graph is 1-factorable.
7.3.5 Describe another 1-factorization of K2n, when n is even, using the fact that Kn,n is a subgraph of K2n.
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FIGURE 7.12
2-factorizing K2n+1, where n=3
7.3.6 Let M1, M2,…, Mk and  be two 1-factorizations of a k-regular graph G. The two
factorizations are isomorphic if there is an automorphism θ of G such that for each i,  for some j;
that is, θ induces a mapping of M1, M2,…, Mk onto  How many non-isomorphic 1-
factorizations are there of K4 and K6?
7.3.7 How many non-isomorphic 1-factorizations are there of the cube?
7.4 The subgraph problem
Let G be a graph and let f: V(G)→{0, 1, 2,…} be a function assigning a non-negative integer to each vertex
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of G. An f-factor of G is a subgraph H of G such that deg(u,H)=f(u), for each  So a 1-factor is an f-
factor in which each f(u)=1.

Problem 7.1: Subgraph Problem
Instance:a graph G and a function f: V(G)→{0, 1, 2,…}.
Find: an f-factor in G, if one exists.
There is an ingenious construction by TUTTE [117], that transforms the subgraph problem into the problem of
finding a perfect matching in a larger graph G′.
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Construct G′ as follows. For each edge e=uυ of G, G′ has two vertices eu and eυ, such that 
For each vertex it of G, let m(u)=deg(u)−f(u). Corresponding to  has m(u) vertices u1, u2,…,
um(u). For each edge u1, u2,…, um(u) are all adjacent to This is illustrated in
Figure 7.13, where deg(u)=5 and f(u)=3.

FIGURE 7.13
Tutte’s transformation
THEOREM 7.9 G has an f-factor if and only if G′ has a perfect matching.
PROOF Suppose that G has an f-factor H. Form a perfect matching M in G′ as follows. For each edge 

 There are m(u)=deg(u)−f(u) remaining edges at vertex  In G′, these can be
matched to the vertices u1, u2,…, um(u) in any order.
Conversely, given a perfect matching  the vertices u1, u2,…, um(u) will be matched to m(u) vertices,
leaving f(u) adjacent vertices of the form eu not matched to any ui. They can therefore only be matched to
vertices of the form eυ for some υ. Thus f(u) edges eueυ are selected corresponding to each vertex u. This
gives an f-factor of G.
So finding an f-factor in G is equivalent to finding a perfect matching in G′. If G has n vertices and ε edges,
then G′ has

 
vertices and

 
edges. Finding perfect matchings in non-bipartite graphs is considerably more complicated than in bipartite
graphs, but is still very efficient. Edmonds’ algorithm [38] will find a maximum matching in time O(n3). Thus,
the subgraph
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problem can be solved using perfect matchings. However, it can be solved more efficiently by a direct
algorithm than by constructing G′ and then finding a maximum matching.
7.5 Coverings in bipartite graphs
A covering or vertex cover of a graph G is a subset  that covers every edge of G; that is, every
edge has at least one endpoint in U.
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FIGURE 7.14
Coverings in a graph
In general, we want the smallest covering possible. This is called a minimum covering. Figure 7.14 shows two
coverings, indicated by shaded vertices. The covering with six vertices is minimal; namely, it has no subset
that is a smaller covering. The other is a minimum covering; namely, G has no smaller covering. This is
because any covering must use at least three vertices of the outer 5-cycle, and at least two vertices of the
inner triangle, giving a minimum of five vertices.
In bipartite graphs, there is a very close relation between minimum coverings and maximum matchings. In
general, let M be a matching in a graph G, and let U be a covering. Then since U covers every edge of M, |U|
≥|M|. This is true even if U is minimum or if M is maximum. Therefore, we conclude that if |U|=|M| for some
M and U, then U is minimum and M is maximum. In bipartite graphs, equality can always be achieved.
THEOREM 7.10 (König’s theorem) If G is bipartite, then the number of edges in a maximum matching
equals the number of vertices in a minimum covering.
PROOF Let M be a maximum matching, and let (X,Y) be a bipartition of G, where |X|≤|Y|. Let  be
the set of all X-vertices not saturated by M. If  then U=X is a covering with |U|=|M|. Otherwise
construct the
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set of all vertices reachable from W on alternating paths. Let S be the X-vertices reachable, and T the Y-
vertices reachable. Take  Then U is a covering with |U|=|M|, as illustrated in Figure 7.15.

FIGURE 7.15
Minimum covering and maximum matching in a bipartite graph
7.6 Tutte’s theorem
Tutte’s theorem gives a necessary and sufficient condition for any graph to have a perfect matching.
Let  In general, G−S may have several connected components. Write odd(G−S) for the number of
components with an odd number of vertices. The following proof of Tutte’s theorem is due to LOVÁSZ [84].
THEOREM 7.11 (Tutte’s theorem) A graph G has a perfect matching if and only if odd(G−S)≤|S|, for every
subset 
PROOF : Suppose that G has a perfect matching M and pick any  Let G1, G2,…, Gm be the odd
components of G−S. Each Gi contains at least one vertex matched by M to a vertex of S. Therefore
odd(G−S)=m≤|S|. See Figure 7.16.

: Suppose that odd(G−S)=m≤|S|, for every  Taking  gives odd(G)=0, so n=|G| is even.
The proof is by reverse induction on ε(G), for any given n. If G is the complete graph, it is clear that G has a
perfect

page_155



cover

file:///G|/SMILEY/0203489055__gigle.ws/0203489055/files/__joined.html[01/10/2009 15:18:30]

Page 156

FIGURE 7.16
Odd and even components of G−S

FIGURE 7.17
 case 1

matching, so the result holds when  Let G be a graph with the largest ε such that G has no perfect
matching. If  then because G+uυ has more edges than G, it must be that G+uυ has a perfect
matching. Let S be the set of all vertices of G of degree n−1, and let G′ be any connected component of G−S.
If G′ is not a complete graph, then it contains three vertices x, y, z such that  but 
Since  deg(y)<n−1, so there is a vertex  Let M1 be a perfect matching of G+xz and let M2 be
a perfect matching of G+yw, as shown in Figures 7.17 and 7.18. Then  and  Let 

H consists of one or more alternating cycles in G. Let Cxz be the cycle of H containing xz and
let Cyw be the cycle containing yw.
Case 1. Cxz≠Cyw.

page_156

Page 157
Form a new matching M by taking M2-edges of Cxz, M1-edges of Cyw, and M1 edges elsewhere. Then M is a
perfect matching of G, a contradiction.
Case 2. Cxz=Cyw=C.
C can be traversed in two possible directions. Beginning with the vertices y, w, we either come to x first or z
first. Suppose it is z. Form a new matching M by taking M1-edges between w and z, M2-edges between x and
y, and the edge yz. Then take M1 edges elsewhere. Again M is a perfect matching of G, a contradiction.

FIGURE 7.18
case 2

We conclude that every component G′ of G−S must be a complete graph. But then we can easily construct a
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perfect matching of G as follows. Each even component of G−S is a complete graph, so it has a perfect
matching. Every odd component is also a complete graph, so is has a near perfect matching, namely, one
vertex is not matched. This vertex can be matched to a vertex of S, since odd(G−S)≤|S|. The remaining
vertices of S form a complete subgraph, since they have degree n−1, so they also have a perfect matching. It
follows that every G satisfying the condition of the theorem has a perfect matching.
Tutte’s theorem is a powerful criterion for the existence of a perfect matching. For example, the following
graph has no perfect matching, since G−υ has three odd components.
We can use Tutte’s theorem to prove that every 3-regular graph G without cut-edges has a perfect matching.
Let  be any subset of the vertices. Let G1, G2,…, Gk be the odd components of G−S. Let mi be
the number of edges connecting Gi to S. Then mi>1, since G has no cut-edge. Since 

=an odd number, we conclude that mi is odd. Therefore mi≥3, for
each i. But  since all of the mi edges have one endpoint in S. It follows that
3|S|≥3k, or |S|≥odd(G−S), for all  Therefore G has a perfect matching M. G also has a 2-factor,
since G−M has degree two.
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FIGURE 7.19
A 3-regular graph with no perfect matching
Exercises
7.6.1 For each integer k>1, find a k-regular graph with no perfect matching.
7.6.2 A near perfect matching in a graph G is a matching which saturates all vertices of G but one. A near 1-
factorization is a decomposition of E(G) into near perfect matchings. Prove that K2n+1 has a near 1-
factorization.
7.6.3 Find a condition similar to Tutte’s theorem for a graph to have a near perfect matching.
7.7 Notes
Algorithms for maximum matchings in non-bipartite graphs are based on blossoms, discovered by EDMONDS
[38]. A blossom is a generalization of an odd cycle in which all but one vertex is matched. An excellent
description of Edmonds’ algorithm appears in PAPADIMITRIOU and STEIGLITZ [94]. A good source book for
the theory of matchings in graphs is LOVÁSZ and PLUMMER [85]. Exercise 7.1.2 is from BONDY and MURTY
[19].
The proof of Tutte’s theorem presented here is based on a proof by LOVÁSZ [84]. Tutte’s transformation to
reduce the subgraph problem to a perfect matching problem is from TUTTE [117]. His Factor theorem, TUTTE
[118],
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is a solution to the subgraph problem. It is one of the great theorems of graph theory. The theory of 1-
factorizations has important applications to the theory of combinatorial designs.
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8 
Network Flows
8.1 Introduction
A network is a directed graph used to model the distribution of goods, data, or commodities, etc., from their
centers of production to their destinations. For example, Figure 8.1 shows a network in which goods are
produced at node s, and shipped to node t. Each directed edge has a limited capacity, being the maximum
number of goods that can be shipped through that channel per time period (e.g., 3 kilobytes per second or 3
truckloads per day). The diagram indicates the capacity as a positive integer associated with each edge. The
actual number of goods shipped on each edge is shown in square brackets beside the capacity. This is called
the flow on that edge. It is a non-negative integer less that or equal to the capacity. Goods cannot
accumulate at any node; therefore the total in-flow at each node must equal the out-flow at that node. The
problem is to find the distribution of goods that maximizes the net flow from s to t.
This can be modeled mathematically as follows. When the edges of a graph have a direction, the graph is
called a directed graph or digraph. A network N is a directed graph with two special nodes s and t; s is called
the source and t is called the target. All other vertices are called intermediate vertices. The edges of a
directed graph are ordered pairs (u,υ) of vertices, which we denote by  We shall find it convenient to say
that u is adjacent to υ even when we do not know the direction of the edge. So the phrase u is adjacent to υ

means either  or  is an edge. Each edge  has a capacity  being a positive integer, and

a flow  a non-negative integer, such that  If υ is any vertex of N, the out-flow at υ
is

 
where the sum is over all vertices u to which υ is joined. The in-flow is the sum
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FIGURE 8.1
A network
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over all incoming edges at υ

 
A valid flow f must satisfy two conditions.

1. Capacity constraint:  for all 
2. Conservation condition: f+(υ)=f−(υ), for all υ≠s,t.
Notice that in Figure 8.1 both these conditions are satisfied. The value of the flow is the net out-flow at s; in
this case, VAL(f)=20.
In general, there may be in-edges as well as out-edges at s. The net flow from s to t will then be the out-flow
at the source minus the in-flow. This is called the value of the flow, VAL(f)=f+(s)−f−(s). The max-flow
problem is:
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Problem 8.1: Max-Flow

Instance:a network N.
Find: a flow f for N of maximum value.
Any flow f that has maximum value for the network N is called a max-flow of N. This problem was first
formulated and solved by Ford and Fulkerson. In this chapter we shall present the Ford-Fulkerson algorithm,
and study several applications of the max-flow-min-cut theorem.
It is possible that a network encountered in practice will have more than one source or target. If s1, s2,…, sk
are all sources in a network N, and t1, t2,…, tm are all targets, we can replace N with a network N′ with only
one source and one target as follows. Add a vertex s to N, and join it to s1, s2,…, sk. Add a vertex t and join

t1, t2,…, tm to t. Assign a capacity  being the sum of the capacities of the out-edges at si, and a

capacity  being the sum of the capacities of all incoming edges to ti. Call the resulting network N′.
For every flow in N there is a corresponding flow in N′ with equal value, and vice-versa. Henceforth we shall
always assume that all networks have just one source and target. The model we are using assumes that
edges are one-way channels and that goods can only be shipped in the direction of the arrow. If a two-way
channel from u to υ is desired, this can easily be accommodated by two directed edges  and 
Let  be a subset of the vertices such that  Write  Then 
denotes the set of all edges of N directed from S to  See Figure 8.2. Consider the sum

(8.1)
Since f+(υ)=f−(υ), if υ≠s, this sum equals VAL(f). On the other hand, f+(υ) is the total out-flow at 

Consider an out-edge  at υ. Its flow  contributes to f+(υ). It also contributes to f−(u).  then 

 will appear twice in the sum 8.1, once for f+(υ) and once for f−(u), and will therefore cancel. See

Figure 8.2, where S is the set of shaded vertices. If  then  will appear in the summation as part
of ƒ+(υ), but will not be canceled by ƒ−(u). A similar argument holds if  and  Therefore
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This says that the value of the flow can be measured across any edge-cut  such that  and 
If we write

 
and
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then

VAL(f)=f+(S)−f−(S).  
If we write

 
and

 
then we can also express this as

 

Let  be any edge-cut with  and  The capacity of K is

 
This is the sum of the capacities of all edges out of S. The value of any flow in N is limited by the capacity of
any edge-cut K. An edge-cut K is a min-cut if it has the minimum possible capacity of all edge-cuts in N.
LEMMA 8.1 Let be an edge-cut in a network N with and flow f. Then VAL(f)≤CAP(K).
If VAL(f)=CAP(K), then f is a max-flow and K is a min-cut.
PROOF Clearly the maximum possible flow out of S is bounded by CAP(K); that is, f+(S)≤CAP(K). This holds
even if K is a min-cut or f a max-flow. The flow into S is non-negative; that is, ƒ−(S)≥0. Therefore
VAL(f)=f+(S)− f−(S)≤CAP(K). If VAL(f)=CAP(K), then it must be that f is maximum, for the value of no flow
can exceed the capacity of any cut. Similarly K must be a min-cut. Note that in this situation f+(S)=CAP(K)

and f−(S)=0. That is, every edge  directed out of S satisfies  Every edge  into S

carries no flow, 
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FIGURE 8.2
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A set S where 
In the next section we shall prove the max-flow-min-cut theorem. This states that the value of a max-flow
and the capacity of a min-cut are always equal, for any network N.
8.2 The Ford-Fulkerson algorithm

If we assign  for all  this defines a valid flow in N, the zero flow. The Ford-Fulkerson
algorithm begins with the zero flow, and increments it through a number of iterations until a max-flow is
obtained. The method uses augmenting paths. Consider the st-path P=sυ1υ5υ2υ6t in Figure 8.1. (We ignore
the direction of the edges when considering these paths.) Each edge of P carries a certain amount of flow.
The traversal of P from s to t associates a direction with P. We can then distinguish two kinds of edges of P,
forward edges, those like sυ1 whose direction is the same as that of P, and backward edges, those like υ5υ2
whose direction is opposite to that of P. Consider a forward
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edge  in an st-path P. If  then  can carry more flow. Define the residual capacity of 
 to be

 
The residual capacity of a forward edge  is the maximum amount by which the flow on  can be
increased. The residual capacity of a backward edge  is the maximum amount by which the flow
on  can be decreased. For example, in the network of Figure 8.1, we increase the flow on all forward
edges of P by 2, and decrease the flow on all backward edges of P also by 2. The result is shown in Figure
8.2. We have a new flow, with a larger value than in Figure 8.1.
In general, let P be an st-path in a network N with flow f. Define the residual capacity of P to be

 
Define a new flow f* in N as follows:

 
LEMMA 8.2 f* is a valid flow in N and VAL(f*)=VAL(f)+δ(P).
PROOF We must check that the capacity constraint and conservation conditions are both satisfied by f*. It is
clear that the capacity constraint is satisfied, because of the definition of the residual capacity of P as the
minimum residual capacity of all edges in P. To verify the conservation condition, consider any intermediate
vertex υ of P. Let its adjacent vertices on P be u and w, so that uυ and υw are consecutive edges of P. There
are four cases, shown in Figure 8.3.
Case 1. uυ and υw are both forward edges of P.

Because  and  both increase by δ(P) in f*, it follows that f+(υ) and f−(υ) both increase δ(P).
The net result on f+(υ)−f−(υ) is zero.
Case 2. uυ is a forward edge and υw is a backward edge.

In this case  increases and  decreases by δ(P) in f*. It follows that f+(υ) and ƒ−(υ) are both
unchanged.
Case 3. uυ is a backward edge and υw is a forward edge.

In this case  decreases and  increases by δ(P) in f*. It follows that f+(υ) and ƒ−(υ) are both
unchanged.
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Case 4. uυ and υw are both backward edges of P.

Because and  both decrease by δ(P) in f*, it follows that f+(υ) and f−(υ) both decrease by δ(P).
The net result on f+(υ)−f−(υ) is zero.
The value of f* is f*+(s)−f*−(s). If the first edge of P is su, a forward edge, then it is clear that the value
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increases by δ(P), since  increases. If su is a backward edge, then  decreases, so that f−(s) also
decreases, thereby increasing the value of the flow. Therefore VAL(f*)=VAL(f)+δ(P).

FIGURE 8.3
The four cases for edges uυ and υw on path P
DEFINITION 8.1: An st-path P for which δ(P)>0 is called an augmenting path.
This method of altering the flow on the edges of P is called augmenting the flow. If δ(P)>0 it always results
in a flow of larger value. We give an outline of the Ford-Fulkerson algorithm in Algorithm 8.2.1.
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Algorithm 8.2.1: FF(N,s,t)

f←the zero flow
search for an augmenting path P

while a path P was found

comment: the flow is now maximum
The algorithm stops when N does not contain an augmenting path. We show that in this situation the flow
must be maximum. The outline given in Algorithm 8.2.1 does not specify how the augmenting paths are to be
found. Among the possibilities are the breadth-first and depth-first searches. We shall see later that the
breadth-first search is the better choice. As the algorithm searches for an augmenting path, it will construct
paths from s to various intermediate vertices υ. The paths must have positive residual capacity. An sυ-path
with positive residual capacity is said to be unsaturated. A vertex υ is s-reachable if N contains an unsaturated
sυ-path. This means that υ can be reached from s on an unsaturated path.
THEOREM 8.3 Let N be a network with a flow f. Then f is maximum if and only if N contains no augmenting
path.
PROOF Suppose that f is a max-flow. There can be no augmenting path in N, for this would imply a flow of
larger value. Conversely, suppose that f is a flow for which there is no augmenting path. We show that f is
maximum. Let S denote the set of all s-reachable vertices of N. Clearly  Since there is no augmenting

path, the target is not s-reachable. Therefore  Consider the edge-cut  If  is an edge

out of S, then  for otherwise υ would be s-reachable on the forward edge  from 

Therefore  for all  that are out edges of S. Thus f+(S)= CAP(K). If  is

any edge into S, then  for otherwise u would be s-reachable on the backward edge  from 
 Consequently f−(S)=0. It follows that VAL(f)=CAP(K), so that f is a max-flow and K a min-cut, by
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Lemma 8.1.
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This is illustrated in Figure 8.2, in which all edges out of S are saturated. In this example there are no edges
into S. If there were, they would carry no flow. So the flow in Figure 8.2 is maximum. Notice that a
consequence of this theorem is that when f is a max-flow, the set S of s-reachable vertices defines a min-cut 

 This is summarized as follows:
THEOREM 8.4 (Max-flow-min-cut theorem) In any network the value of a max-flow equals the capacity
of a min-cut.
We are now ready to present the Ford-Fulkerson algorithm as a breadth-first search for an augmenting path.
The vertices will be stored on a queue, the ScanQ, an array of s-reachable vertices. QSize is the current
number of vertices on the ScanQ. The unsaturated sυ-paths will be stored by an array PrevPt[·], where
PrevPt[υ] is the point previous to υ on an sυ-path Pυ. The residual capacity of the paths will be stored by an
array ResCap[·], where ResCap[υ] is the residual capacity δ(Pυ) of Pυ from s up to υ. The algorithm is
presented as a single procedure, but could be divided into smaller procedures for modularity and readability.
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Algorithm 8.2.2: MAXFLOW(N,s,t)

f←the zero flow
for all vertices υ do PrevPt[υ]←0

while true “search for an augmenting path”
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The procedure which augments the flow starts at t and follows PrevPt[υ] up to s. Given an edge  on the
augmenting path, where u=PrevPt[υ], a means is needed of determining whether  is a forward or
backward edge. One way is to store PrevPt[υ]=u for forward edges and PrevPt[υ]=−u for backward edges.
This is not indicated in Algorithm 8.2.2, but can easily be implemented.

Algorithm 8.2.3: AUGMENTFLOW(t)
υ←t

u←PrevPt[υ]
δ←ResCap[t]
while u≠0
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VAL(f)←VAL(f)+δ
In programming the max-flow algorithm, the network N should be stored in adjacency lists. This allows the
loop
for all υ adjacent to u do
to be programmed efficiently. The out-edges and in-edges at u should all be stored in the same list. We need
to be able to distinguish whether  or  This can be flagged in the record representing edge 

 If  appears as an out-edge in the list for node u, it will appear as an in-edge in the list for vertex υ.
When the flow on edge  is augmented, it must be augmented from both endpoints. One way to augment

from both endpoints simultaneously is to store not the flow  itself, but a pointer to it. Then it is not
necessary to find the other endpoint of the edge. Thus a node x in the adjacency list for vertex u contains
following four fields:
•  a vertex υ that is adjacent to or from u.
•  a boolean variable set to true if  and false if 
•  a pointer to the flow on 
•  the next node in the adjacency list for u.
This breadth-first search version of the Ford-Fulkerson algorithm is sometimes referred to as the “labeling”
algorithm in some books. The values ResCap[v] and PrevPt[υ] are considered the labels of vertex υ.
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The algorithm works by constructing all shortest unsaturated paths from s. If an augmenting path exists, it is
sure to be found. This can easily be proved by induction on the length of the shortest augmenting path. The
flow is then augmented and the algorithm exits from the inner repeat loop by branching to statement 1. If no
augmenting path exists, then the inner repeat loop will terminate. The vertices on the ScanQ will contain the
set S of all s-reachable vertices, such that  is a min-cut.
It is difficult to form an accurate estimate of the complexity of the BF-FF algorithm. We shall prove that it is
polynomial. This depends on the fact that only shortest augmenting paths are used. If non-shortest paths are
used, the FF algorithm is not always polynomial. Consider the network of Figure 8.4. We augment first on
path P=(s, a, b, t), which has residual capacity one. We then augment on path Q=(s, b, a, t), also of residual

capacity one, since ba is a backward edge, and  Augmenting on Q makes δ(P)=1, so we again
augment on P, and then augment again on Q, etc. After 2000 iterations a max-flow is achieved—the number
of iterations can depend on the value of the max-flow. This is not polynomial in the parameters of the
network. However, if shortest augmenting paths are used, this problem does not occur.

FIGURE 8.4
A max-flow in 2000 iterations
Consider an augmenting path P in a network N. δ(P) is the minimum residual capacity of all edges of P. Any

edge  such that  is called a bottleneck. Every augmenting path has at least one
bottleneck, and may have several. Suppose that a max-flow in N is reached in m iterations, and let Pj be the
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augmenting path on iteration j. Let dj(s, u) denote the length of a shortest unsaturated su-path in iteration j,
for all vertices u.
LEMMA 8.5 dj+1(s, u)≥dj(s, u), for all 
PROOF Let Qj=Qj(s, u) be a shortest unsaturated su-path at the beginning of
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iteration j, and let Qj+1=Qj+1(s, u) be a shortest unsaturated su-path at the beginning of iteration j+1.
Then ℓ(Qj)=dj(s, u) and ℓ(Qj+1)=dj+1(s, u). If ℓ(Qj)≤ℓ(Qj+1), the lemma holds for vertex u, so suppose
that ℓ(Qj)> ℓ(Qj+1), for some u. Now Qj+1 is not unsaturated at the beginning of iteration j, so it must
become unsaturated during iteration j. Therefore Pj and Qj+1 have at least one edge in common that
becomes unsaturated during iteration j. The proof is by induction on the number of such edges. Suppose first
that xy is the only such edge in common. Since xy becomes unsaturated during iteration j, it has opposite
direction on Pj and Qj+1 . See Figure 8.5. Without loss of generality, Qj+1[s, x] and Qj+1[y, u] are
unsaturated on iteration j. Since Pj is a shortest path, ℓ(Pj[s, x])≤ℓ(Qj+1[s, x]). But then Pj[s, y]Qj+1[y, u] is
an unsaturated su-path on iteration j, and has length less than Qj+1(s, u), which in turn has length less than
Qj(s, u), a contradiction. If Pj[s, y] intersects Qj+1[y, u] at a vertex z, then Pj[s, z]Qj+1[z, u] is an even
shorter unsaturated path.

FIGURE 8.5
Paths Pj and Qj+1
Suppose now that Pj and Qj+1 have more than one edge in common that becomes unsaturated during
iteration j. Let xy be the first such edge on Qj+1 traveling from s to u. Let z be the point on Qj+1 nearest to
u that Pj[s, x] contacts before reaching x (maybe z=y). Then Qj+1[s, x] and Pj[s, z] are unsaturated at the
beginning of iteration j. Since Pj is a shortest unsaturated path, ℓ(Pj[s, z])<ℓ(Qj+1[s, x])<ℓ(Qj+1[s, z]). Now
either Qj+1[z, u] is unsaturated on iteration j, or else it has another edge in common with Pj. If it is
unsaturated, then Pj[s, z]Qj+1[z, u] is an unsaturated su-path that contradicts the assumption that dj(s,
u)>dj+1(s, u). If there is another edge in common with Pj, then we can repeat this argument. Let x′y′ be the
first edge of Qj+1[z, u] in
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common with Pj. Let z′ be the point on Qj+1[z, u] nearest to u that Pj[s, x′] contacts before reaching x′, etc.
Proceeding in this way we eventually obtain an su-path that is shorter than Qj and unsaturated on iteration j,
a contradiction.
It follows that dj+1(s, t)≥dj(s, t), for every iteration j. By constructing unsaturated paths from t in a
backward direction we can similarly prove that dj+1(u, t)≥dj(u, t), for all vertices u. If we can now prove that
dj+1(s, t)> dj(s, t), then we can bound the number of iterations, since the maximum possible distance from
s to t is n−1, where n is the number of vertices of N.

THEOREM 8.6 The breadth-first Ford-Fulkerson algorithm requires at most  iterations.
PROOF On each iteration some edge is a bottleneck. After ε+1 iterations, some edge has been a bottleneck
twice, since there are only ε edges. Consider an edge  which is a bottleneck on iteration i and then later a
bottleneck on iteration j. Refer to Figure 8.6.
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FIGURE 8.6
Paths Piand Pj
Then di(s, t)=di(s, u)+di(υ, t)+1 and dj(s, t)=dj(s, υ)+dj(u, t)+1. But di(s, u)≤dj(s, u)=dj(s, υ)+1 and
di(υ, t)≤dj(υ, t)=dj(u, t)+1. Therefore di(s, u)+di(υ, t)≤dj(s, υ)+dj(u, t)+2. It follows that di(s, t)≤ dj(s,
t)+2. Each time an edge is repeated as a bottleneck, the distance from s to t increases by at least two.
Originally d1(s, t)≥1. After ε+1 iterations, some edge has been a bottleneck twice. Therefore dε+1(s, t)≥3.
Similarly d2ε+1(s, t)≥5, and so on. In general dkε+1(s, t)≥2k+1. Since the maximum distance from s to t is

n−1, we have 2k+1≤n−1, so that k≤n/2. The maximum number of iterations is then 
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Each iteration of the BF-FF algorithm is a breadth-first search for an augmenting path. A breadth-first search

takes at most O(ε) steps. Since the number of it-erations is at most  this gives a complexity of
O(nε2) for the breadth-first Ford-Fulkerson algorithm. This was first proved by EDMONDS and KARP [39].
Exercises
8.2.1 Find a max-flow in the network shown in Figure 8.7. Prove your flow is maximum by illustrating a min-
cut K such that VAL(f)=CAP(K).

FIGURE 8.7
A network
8.2.2 Show that if there is no directed st-path in a network N, then the maximum flow in N has value zero.
Can there be a flow whose value is negative? Explain.

8.2.3 Explain why  and  are in general, not equal.
8.2.4 Consider the network N of Figure 8.7 with flow f defined as follows: f(sυ1)=6, f(sυ2)=0, f(sυ3)=2,
f(υ1υ4)=2, f(υ1υ5)=4, f(υ2υ4)=0, f(υ2υ6)=0, f(υ3υ5)=2, f(υ3υ6)=0, f(υ5υ2)=0, f(υ4t)=2, f(υ5t)−6,
f(υ6t)=0. A breadth-first search of N will construct the subnetwork of all shortest, unsaturated paths in N.
This subnetwork is called the auxiliary network, Aux(N, f). A forward edge  of N is replaced by a forward
edge  with capacity  in the auxiliary network. A backward edge  of N is replaced by a
forward edge  with capacity  in Aux(N,f). Initially the flow in AUX(N,f) is the zero flow. Construct the
auxiliary network for the graph shown. Find a max-flow in
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Aux(N,f), and modify f in N accordingly. Finally, construct the new auxiliary network for N.
8.2.5 Program the breadth-first Ford-Fulkerson algorithm. Test it on the networks of this chapter.
8.2.6 If  and  are min-cuts in a network N, show that  and  are also min-
cuts. (Hint: Write  and  and use the fact that  and  are both min-
cuts.)
8.2.7 Describe a maximum flow algorithm similar to the Ford-Fulkerson algorithm which begins at t and
constructs unsaturated paths P until s is reached. Given that P is a ts-path, how should the residual capacity
of an edge be defined in this case?
8.2.8 Describe an algorithm for finding an edge  in a network N such that the value of a max-flow f in N
can be increased if  is increased. Prove that your algorithm is correct and find its complexity. Does there
always exist such an edge  Explain.
8.3 Matchings and flows
There is a marked similarity between matching theory and flow theory:
Matchings: A matching M in a graph G is maximum if and only if G contains no augmenting path.
Flows: A flow f in a network N is maximum if and only if N contains no augmenting path.
Hungarian algorithm: Construct alternating paths until an augmenting path is found.
Ford-Fulkerson algorithm: Construct unsaturated paths until an augmenting path is found.
The reason for this is that matching problems can be transformed into flow problems. Consider a bipartite
graph G, with bipartition (X,Y) for which a max-matching is desired. Direct all the edges of G from X to Y, and

assign them a capacity of one. Add a source s and an edge sx for all  with  Add a target

t and an edge yt for all  with  Call the resulting network N. This is illustrated in Figure
8.8. Now find a max-flow in N. The flow-carrying edges of [X,Y] will determine a max-matching in G. Because

 there will be at most one flow-carrying edge out of each  Since  there will be
at most one flow-carrying edge into y, for each  The flow-carrying edges of N are called the support of
the flow. An alternating path in G and an unsaturated path in N can be seen to be the same thing. If G is not
bipartite there is no longer a direct correspondence between matchings and
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flows. However, it is possible to construct a special kind of balanced network such that a maximum balanced
flow corresponds to a max-matching (see KOCAY and STONE [80] or FREMUTH-PAEGER and JUNGNICKEL
[45]).

FIGURE 8.8
Matchings and flows
The basic BF-FF algorithm can be improved substantially. As it is presented here, it constructs a breadth-first
network of all shortest unsaturated paths until t is reached. At this point, f is augmented, and the process is
repeated. There may be many augmenting paths available at the point when t is reached, but only one
augmenting path is used. The remaining unsaturated paths which have been built are discarded, and a new
BFS is executed. In order to improve the BF-FF algorithm, one possibility is to construct the set of all shortest
unsaturated paths. This is the auxiliary network of Exercise 8.2.4. We then augment on as many paths as
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possible in the auxiliary network before executing a new BFS. This has the effect of making dj+1(s,t)>dj(s,t)
so that the number of iterations is at most n. Several algorithms are based on this strategy. They improve the
complexity of the algorithm markedly. See the book by PAPADIMITRIOU and STEIGLITZ [94] for further
information.
Exercises
8.3.1 Let G be a bipartite graph with bipartition (X,Y). We want to find a subgraph H of G such that in H,
DEG(x)=b(x) and DEG(y)=b(y), where b(υ) is a given non-negative integer, for all  if there exists
such an H. For example, if b(υ)=1 for all υ, then H would be a perfect matching. If b(υ)=2 for all υ, then H
would be a 2-factor. Show how to construct a network N such that a max-flow
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in N solves this problem.
8.3.2 Let N be a network such that every vertex  has a maximum throughput t(υ) defined. This is the
maximum amount of flow that is allowed to pass through υ, that is, f−(υ)≤t(υ) must hold at all times. Show
how to solve this problem by constructing a network N′ such that a max-flow in N′ defines a max-flow in N
with maximum throughput as given.
8.4 Menger’s theorems
Given any digraph, we can view it as a network N by assigning unit capacities to all edges. Given any two
vertices s,  we can compute a max-flow f from s to t. If VAL(f)=0, then there are no directed paths
from s to t, since a directed st-path would be an augmenting path. If VAL(f)=1, then N contains a directed
st-path P; however, there are no directed st-paths which are edgedisjoint from P, for such a path would be an
augmenting path. In general, the value of a max-flow f in N is the maximum number of edge-disjoint directed
st-paths in N. Suppose that VAL(f)=k≥1. The support of f defines a subgraph of N that contains at least one
directed st-path P. Delete the edges of P to get N′ and let f′ be obtained from f by ignoring the edges of P.
Then VAL(f′)=k−1, and this must be a max-flow in N′, since f is a max-flow in N. By induction, the number
of edge-disjoint directed st-paths in N′ is k−1, from which it follows that the number in N is k.

A min-cut in N can also be interpreted as a special subgraph of N. Let K=  be a min-cut in N, where 
 and  If CAP(K)=0, there are no edges out of S, so there are no directed st-paths in N. If

CAP(K)=1, there is only one edge out of S. The deletion of this edge will destroy all directed st-paths in N.
We say that s is disconnected from t. In general, CAP(K) equals the minimum number of edges whose
deletion destroys all directed st-paths in N. Suppose that CAP(K)=k≥1. Delete the edges of K to get a
network N′. Then in N′,  so that N′ contains no directed st-paths. Thus the deletion of the
edges of K from N destroys all directed st-paths. Since N contains k edge-disjoint such paths, it is not possible
to delete fewer than k edges in order to disconnect s from t. The max-flow-min-cut theorem now gives the
first of Menger’s theorems.
THEOREM 8.7 Let s and t be vertices of a directed graph N. Then the maximum number of edge-disjoint
directed st-paths equals the minimum number of edges whose deletion disconnects s from t.
Recall that an undirected graph G is k-edge-connected if the deletion of fewer
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than k edges will not disconnect G. In Chapter 6 we showed that a graph is 2-edge-connected if and only if
every pair of vertices is connected by at least two edge-disjoint paths. We will use Theorem 8.7 to prove a
similar result for k-edge-connected graphs. In order to convert Theorem 8.7 to undirected graphs, we can
replace each edge  of G by a “gadget”, as shown in Figure 8.9, to get a directed graph N.

FIGURE 8.9
A gadget for edge-disjoint paths

The gadget contains a directed  and a directed  but they both use the central edge of the
gadget. Let s,  Then edge-disjoint st-paths of G will define edge-disjoint directed st-paths in N.
Conversely, edge-disjoint directed st-paths in N will define edge-disjoint st-paths in G. This gives another of
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Menger’s theorems.
THEOREM 8.8 Let s and t be vertices of an undirected graph G. Then the maximum number of edge-disjoint
st-paths equals the minimum number of edges whose deletion disconnects s from t.
It follows that a graph G is k-edge-connected if and only if every pair s, t of vertices are connected by at least
k edge-disjoint paths. This immediately gives an algorithm to compute κ′(G), the edge-connectivity of G.
Number the vertices of G from 1 to n. Let the corresponding vertices of N also be numbered from 1 to n. The
algorithm computes the minimum max-flow over all pairs s, t of vertices. This is the minimum number of

edges whose deletion will disconnect G. Exactly  max-flows are computed, so the algorithm has polynomial
complexity.
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Algorithm 8.4.1: EDGE-CONNECTIVITY(G)

convert G to a directed graph N
κ′←n

for s←1 to n−1

return (κ′)
Exercises
8.4.1 Let G be an undirected graph. Replace each edge uυ of G with a pair of directed edges  and  to
get a directed graph N. Let s,  Show that the maximum number of edge-disjoint st-paths in G
equals the maximum number of edge-disjoint directed st-paths in N.
8.4.2 Program the edge-connectivity algorithm, using the transformation of Exercise 8.4.1.
8.5 Disjoint paths and separating sets
Recall that paths in a graph G are internally disjoint if they can intersect only at their endpoints. A graph is k-
connected if the deletion of fewer than k vertices will not disconnect it. We proved in Chapter 6 that G is 2-
connected if and only if every pair of vertices is connected by at least two internally disjoint paths. We prove a
similar result for k-connected graphs by utilizing a relation between internally disjoint paths in G and directed
paths in a network N. We first make two copies u1, u2 of each vertex u of G. 
Let  be an edge of G. N will contain the edges (u1, u2), (υ1, υ2), (u2, υ1), and (υ2, u1). This is illustrated
in Figure 8.10. Let  Notice the following observations:
1. The only out-edge at u1 is u1u2.
2. The only in-edge at u2 is u1u2.

3. The edge  corresponds to u2υ1 and υ2u1 in N.
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FIGURE 8.10
A gadget for internally disjoint paths
Consequently any st-path suυw…t in G corresponds to an s2t1-path s2u1u2υ1υ2w1w2…t1 in N. Internally
disjoint st-paths in G give rise to internally disjoint s2t1-paths in N. On the other hand, edge-disjoint paths in
N are in fact internally disjoint because of items 1 and 2. Therefore the maximum number of internally disjoint
st-paths in G equals the maximum number of edge-disjoint directed s2t1-paths in N. This in turn equals the
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minimum number of edges whose deletion will disconnect s2 from t1. If  then every s2t1-path in G
will contain another vertex, say u1 or u2. By observations 1 and 2, it must contain both u1 and u2. Deleting

u1u2 will destroy this path. If  is a min-cut in N, then the edges out of S must be of the form
u1u2, since u2 can only be s2-reachable if u1 is, by observation 3 and Figure 8.10. Let 
Then U is a set of vertices of G which separate s from t. This gives another of Menger’s theorems.
THEOREM 8.9 Let G be a graph and let s, where Then the maximum number of internally
disjoint st-paths in G equals the minimum number of vertices whose deletion separates s from t.
THEOREM 8.10 A graph G is k-connected if and only if every pair of vertices is connected by at least k
internally disjoint paths.
PROOF Let s,  If s and t are connected by at least k internally disjoint paths, then clearly G is k-
connected; for at least k vertices must be deleted to disconnect s from t. Conversely suppose that G is k-
connected. Then deleting fewer than k vertices will not disconnect G. If  then by the Theorem 8.10, G
must contain at least k internally disjoint st-paths. If  then consider G−st. It is easy to see that G−st
is (k−1)-connected. Therefore in G−st, there are at least k−1 internally disjoint st-paths. The edge st is
another st-path, giving k paths in total.
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We can also use this theorem to devise an algorithm which computes κ(G), the connectivity of G. We suppose
that the vertices of G are numbered 1 to n, and that if  then s1 and s2 are the corresponding
vertices of N.

Algorithm 8.5.1: CONNECTIVITY(G)
convert G to a directed graph N

κ←n−1 “maximum possible connectivity”
s←0

while s<κ

return (κ)
THEOREM 8.11 Algorithm 8.5.1 computes κ(G)
PROOF Suppose first that G=Kn. Then κ(G)=n−1. The algorithm will not call MAXFLOW() at all, since every s
is adjacent to every t. The algorithm will terminate with κ=n−1. Otherwise G is not complete, so there exists
a subset  such that G−U has at least two components, where |U|= κ(G). The first κ(G) choices of
vertex s may all be in U. However, by the (κ(G)+1)st choice of s we know that some  has been
selected. So s is in some component of G−U. The inner loop runs over all choices of t. One of these choices
will be in a different component of U. For that particular t, the value of MAXFLO W(N, s2, t1) will equal |U|.
After this, the value of κ in the algorithm will not decrease any more. Therefore we can conclude that some 

 will be selected; that the value of κ after that point will equal κ(G); and that after this point the
algorithm can stop. This is exactly what the algorithm executes.
The algorithm makes at most

 
calls to MAXFLOW(). Thus, it is a polynomial algorithm.
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Exercises
8.5.1 Let G be k-connected. If  prove that G−st is (k−1)-connected.
8.5.2 Program Algorithm 8.5.1, the CONNECTIVITY() algorithm.
8.5.3 Consider a network N where instead of specifying a capacity for each edge  we specify a lower
bound  for the flow on edge  Instead of the capacity constraint  we now have
a lower bound constraint  The zero-flow is not a valid flow anymore. Show that there exists a
valid flow in such a network if and only if for every edge  such that is either: (i) on a directed
st-path; or (ii) on a directed ts-path; or (iii) on a directed cycle. (Hint: If  is not on such a path or cycle,
follow directed paths forward from υ and backward from u to get a contradiction.)
8.5.4 Consider the problem of finding a minimum flow in a network with lower bounds instead of capacities.
(a) How should an unsaturated path be defined?
(b) How should the capacity of an edge-cut be defined?
(c) Find a min-flow in the network of Figure 8.11, where the numbers are the lower bounds. Prove that your
flow is minimum by illustrating an appropriate edge-cut.
(d) Is there a max-flow in the network given in Figure 8.11?

FIGURE 8.11
A network with lower bounds
8.5.5 Suppose that a network N has both lower bounds  and capacities on its edges. We wish to
find a max-flow f of N, where  Notice that zero-flow may be no longer a valid flow.
Before applying an augmenting path algorithm like the FF algorithm, we must first find a valid flow.
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(a) Determine whether the networks of Figure 8.12 have a valid flow.
(b) How should residual capacity be defined?
(c) How should the capacity of an edge-cut be defined?
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FIGURE 8.12
Networks with lower bounds and capacities
8.5.6 Let N be a network with lower bounds  and capacities  specified on its edges. Before
finding a max-flow in N we need to find a valid flow. Construct a network N′ as follows: Add a new source s′
and target t′. Join s′ to all vertices of N. Join every vertex of N to t′. Add edges  and  to N′. The
capacities in N′ are defined as follows:

 

 
 

 
Prove that there exists a valid flow in N if and only if there is a flow in N′ that saturates all edges incident on
s′.
8.5.7 Let N be a network such that there is a cost  of using edge  per unit of flow. Thus the cost of
flow  edge  is  Devise an algorithm to find a max-flow of min-cost in N.
8.5.8 The circulation of money in the economy closely resembles a flow in a network. Each node in the
economy represents a person or organization that takes part in economic activity. The main differences are
that there may be no limit to the capacities of the edges, and that flow may accumulate at a node if assets
are growing. Any transfer of funds is represented by a flow on some edge. Various nodes of the economic
network can be organized into groups, such as banks, insurance companies, wage earners, shareholders,
government, employers, etc.
(a) Develop a simplified model of the economy along these lines.
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(b) A bank charges interest on its loans. If there is a fixed amount of money in the economy, what does this
imply? What can you conclude about the money supply in the economy?
(c) When a new business is created, a new node is added to the network. Where does the flow through this
node come from?
(d) Consider the node represented by government. Where does its in-flow come from? Where is its out-flow
directed? Consider how government savings bonds operate in the model.
(e) Where does inflation fit into this model?
(f) How do shareholders and the stock market fit into the model?
8.6 Notes
The max-flow algorithm is one of the most important algorithms in graph theory, with a great many
applications to other graph theory problems (such as connectivity and Menger’s theorems), and to problems
in discrete optimization. The original algorithm is from FORD and FULKERSON [43]. See also FULKERSON
[47]. EDMONDS and KARP [39] proved that the use of shortest augmenting paths results in a polynomial time
complexity of the Ford-Fulkerson algorithm.
Balanced flows were introduced by KOCAY and STONE [80], and then developed greatly in a series of papers
by Fremuth-Paeger and Jungnickel. An excellent summary with many references can be found in FREMUTH-
PAEGER and JUNGNICKEL [45].
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A great many techniques have been developed to improve the complexity of the basic augmenting path
algorithm. See PAPADIMITRIOU and STEIGLITZ [94] for further information. The algorithms to find the
connectivity and edge-connectivity of a graph in Sections 8.4 and 8.5 are from EVEN [40].
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9 
Hamilton Cycles
9.1 Introduction
A cycle that contains all vertices of a graph G is called a hamilton cycle (or hamiltonian cycle). G is
hamiltonian if it contains a hamilton cycle. For example, Figure 9.1 shows a hamilton cycle in the graph called
the truncated tetrahedron. It is easy to see that the graph of the cube is also hamiltonian (see Chapter 1).

FIGURE 9.1
A hamiltonian graph
Figure 9.2 shows a non-hamiltonian graph H. It is easy to see that H is non-hamiltonian, since it is bipartite
with an odd number of vertices. Clearly any bipartite graph that is hamiltonian must have an even number of
vertices, since a hamilton cycle C must start and end on the same side of the bipartition. Although H is non-
hamiltonian, it does have a hamilton path, that is, a path containing all its vertices.
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FIGURE 9.2
A non-hamiltonian graph
The problem of deciding whether a given graph is hamiltonian is only partly solved.

Problem 9.1: HamCycle
Instance:a graph G
Question:is G hamiltonian?
This is an example of an NP-complete problem. We will say more about NP-complete problems later. There is
no known efficient algorithm for solving the HamCycle problem. Exhaustive search algorithms can take a very
long time in general. Randomized algorithms can often find a cycle quickly if G is hamiltonian, but do not give
a definite answer if no cycle is found.
The HamCycle problem is qualitatively different from most other problems in this book. For example, the
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questions “is G bipartite, Eulerian, 2-connected, planar?”, and, “is a given flow f maximum?” can all be solved
by efficient algorithms. In each case an algorithm and a theoretical solution are available. For the HamCycle
problem, there is no efficient algorithm known, and only a partial theoretical solution. A great many graph
theoretical problems are NP-complete.
A number of techniques do exist which can help to determine whether a given graph is hamiltonian. A graph
with a cut-vertex υ cannot possibly be hamiltonian, since a hamilton cycle C has no cut-vertex. This idea can
be generalized into a helpful lemma.
LEMMA 9.1 If G is hamiltonian, and  then w(G−S)≤|S|.
This lemma says that if we delete k=|S| vertices from G, the number of
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connected components remaining is at most k. Let C be a hamilton cycle in G. If we delete k vertices from C,
the cycle C will be decomposed into at most k paths. Since C is a subgraph of G, it follows that G−S will have
at most k components.
For example, the graph of Figure 9.3 is non-hamiltonian, since the deletion of the three shaded vertices gives
four components.

FIGURE 9.3
A non-hamiltonian graph
The Petersen graph is also non-hamiltonian, but this cannot be proved using Lemma 9.1. Instead we use an
exhaustive search method called the multi-path method, see RUBIN [105]. Suppose that C were a hamilton
cycle in the Petersen graph G, as shown in Figure 9.4. G is composed of an outer and inner pentagon, joined
by a perfect matching. Since C uses exactly two edges at each vertex of G, it follows that C must use at least
three edges of the outer pentagon, for otherwise some vertex on it would be missed by C. Consequently, C
uses two adjacent edges of the outer pentagon. Without loss of generality, suppose that it uses the edges uυ
and υw. This means that C does not use the edge υy, so we can delete it from G. Deleting υy reduces the
degree of y to two, so that now both remaining edges at y must be part of C. So the two paths (u, υ, w) and
(x, y, z) must be part of C, where a path is denoted by a sequence of vertices. This is illustrated in Figure 9.4.
C must use two edges at w, so there are two cases. Either  or  Suppose first that 
Then since we can delete wr from G. This reduces the degree of r to two, so that the remaining
edges at r must be in C. Therefore  This uses up two edges at z, so we delete sz, which in turn
reduces the degree of s to two. Consequently the edge  But this now creates a cycle (u, υ, w, t, s) in
C, which is not possible. It follows that the choice
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FIGURE 9.4
The multi-path method

 was wrong. If we now try  instead, a contradiction is again reached, thereby proving that
the Petersen graph is non-hamiltonian.
This is called the multi-path method, since the cycle C is gradually built from a number of paths which are
forced by two operations: the deletion of edges which are known not to be in C; and the requirement that
both edges at a vertex of degree two be in C. The multi-path method is very effective in testing whether 3-
regular graphs are hamiltonian, since each time an edge is deleted, the degree of two vertices reduces to two,
which then forces some of the structure of C. Graphs of degree four or more are not so readily tested by it.
We will say more about the multi-path method later on.
Exercises
9.1.1 Decide whether or not the graphs in Figure 9.5 are hamiltonian.
9.1.2 Prove that Qn, the n-cube, is hamiltonian for all n≥2.
9.1.3 Let P be a hamilton path in a graph G, with endpoints u and υ. Show that w(G−S)≤|S|+1, for all 

 in two ways:
a) By counting the components of G−S.
b) By counting the components of (G+uυ)−S, and using Lemma 9.1.
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FIGURE 9.5
Are these hamiltonian?
9.2 The crossover algorithm
Suppose that we want to find a hamilton cycle in a connected graph G. Since every vertex of G must be part
of C, we select any vertex x. We then try to build a long path P starting from x. Initially P=(x) is a path of
length zero. Now execute the following steps:
u←x; υ←x “P is a uυ-path”
while  such that 

 
while  such that 
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The first loop extends P from u and the second loop extends P from υ, until it cannot be extended anymore.
At this point we have a uυ-path

P=(u,…, x,…, υ)  
such that the endpoints u and υ are adjacent only to vertices of P. The length of P is ℓ(P), the number of
edges in P. The vertices of P are ordered from u to υ. If  then w+ indicates the vertex following w(if
w≠υ). Similarly w− indicates the vertex preceding w(if w≠u).
If  then we have a cycle C=P+uυ. If C is a hamilton cycle, we are done. Otherwise, since G is
connected, there is a vertex  such that
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 where  Hence there exists a longer path

P*=P−ww++wy.  
This is illustrated in Figure 9.6.

FIGURE 9.6
Finding a long path
If  it may still be possible to find a cycle. Suppose that P contains a vertex w such that 
and  This creates a pattern called a crossover, which is shown in Figure 9.7. When a crossover
exists, there is a cycle

C=P+υw−ww++uw+  
containing all the vertices of P.

FIGURE 9.7
A crossover
Having converted the path P to a cycle C using the crossover, we are again in the situation where either C is
a hamilton cycle, or else it contains a vertex  which allows us to find a longer path P*. We now
extend P* from both endpoints as far as possible, and then look for a crossover again, etc. The algorithm
terminates either with a hamilton cycle, or with a long path that has no crossover. The crossover algorithm is
summarized in Algorithm 9.2.1.
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Algorithm 9.2.1: LONGPATH(G,x)

u←x; υ←x; P←(x) “a path of length 0”
repeat

comment: extend P from u
while  such that 

comment: extend P from υ.
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while  such that 

comment: search for a crossover
for all do if 

until no crossover was found
1: comment: P can be extended no more

9.2.1 Complexity
The main operations involved in the algorithm are extending P from u and υ, converting P to a cycle C, and
finding  such that  We assume that the data structures are arranged so that the algorithm
can check whether or not a vertex w is on P in constant time. This is easy to do with a boolean array. We also
assume that the algorithm can test whether or not vertices υ and w are adjacent in constant time.
• Extending P from u requires at most DEG(u) steps, for each u. Since P can extend at most once for each u,
the total number of steps taken to extend P is at most  taken over all iterations of the
algorithm.
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• Converting P to a cycle C=P+υw−ww++uw+ requires reversing a portion of P. This can take up to ℓ(P)
steps. As ℓ(P) increases from 0 up to its maximum, this can require at most O(n2) steps, taken over all
iterations.
• Checking whether  is adjacent to some  requires DEG(z) steps for each z. There are
ℓ(C)=ℓ(P)+1 vertices z to be considered. If at some point in the algorithm it is discovered that some z is not
adjacent to any such y, we need never test that z again. We flag these vertices to avoid testing them twice.

Thus the total number of steps spent looking for z and y is at most 
So the total complexity of the algorithm is O(n2+ε). More sophisticated data structures can reduce the O(n2)
term, but there is likely no reason to do so, since the algorithm is already fast, and it is not guaranteed to
find a hamilton cycle in any case.
The crossover algorithm works very well on graphs which have a large number of edges compared to the
number of vertices. In some cases we can prove that it will always find a hamilton cycle. On sparse graphs
(e.g., 3-regular graphs), it does not perform very well when the number of vertices is more than 30 or so.
LEMMA 9.2 Let G be a graph on n vertices such that DEG(u)+DEG(υ}≥n, for all non-adjacent vertices u and
υ. Then the crossover algorithm will always find a hamilton cycle in G.
PROOF If the crossover algorithm does not find a hamilton cycle, let P be the last path found. Since P can’t
be extended from its endpoints u and υ, it follows that u and υ are joined only to vertices of P. For each 

 it must be that  or a crossover would exist. Now υ is joined to DEG(υ) vertices of P.
There are thus DEG(υ) vertices that u is not joined to. Consequently u can be adjacent to at most
ℓ(P)−DEG(υ) vertices, where ℓ(P)≤n−1 is the number of edges of P. So we have

DEG(u)+DEG(υ)≤ℓ(P)≤n−1,  
a contradiction, since we assumed that DEG(u)+DEG(υ)≥n for all non-adjacent u and υ.
This lemma also shows that graphs which satisfy the condition DEG(u)+ DEG(υ)≥n are always hamiltonian.
Such graphs have many edges, as we shall see. However, the crossover algorithm will often find hamilton
cycles or hamilton paths, even when a graph does not satisfy this condition.
The crossover algorithm can be improved enormously by searching for crossovers of higher order. The
crossover of Figure 9.7 can be defined to be

page_194



cover

file:///G|/SMILEY/0203489055__gigle.ws/0203489055/files/__joined.html[01/10/2009 15:18:30]

Page 195
the trail Q=(u, w+, w, υ) which starts at u, intersects P in exactly one edge, and finishes at υ. The cycle C is
then given by  where  indicates the operation of exclusive-OR, applied to the edges of P and Q.
In general, higher order crossovers can be defined as follows.
DEFINITION 9.1: Let P be a uυ-path. A crossover Q is a uυ-trail such that  and  is
a cycle with V(C)=V(P). The order of a crossover Q is the number |P∩Q| of edges common to P and Q. A
cross-edge is any edge 
So a crossover of order 0 occurs when  Then Q=(u,υ) and C= P+uυ. There is only one kind of
crossover of order one, which is shown in Figure 9.7. A crossover of order two is illustrated in Figure 9.8.
There are five different kinds of crossover of order two, as the reader can verify by constructing them. An
algorithm employing crossovers of order higher than one requires a recursive search for crossovers up to a
pre-selected maximum order M. It was found by KOCAY and LI [78] that choosing M=6 still gives a fast
algorithm, and that it improves the performance of the basic algorithm enormously. This algorithm requires
sophisticated data structures for an efficient implementation.

FIGURE 9.8
A crossover Q=(u, w, w+, x, x+, υ) of order two
Suppose that a path P is the longest path found by the algorithm, and that it has no crossover. If there is a
vertex  such that x→w, w+, for some  then we can make a longer path by re-routing P
through x: P′=(…, w, x, w+,…). Similarly, a configuration like Figure 9.9 can also be used to give a longer
path. Once P has been re-routed to a longer path, we can again check for a crossover. When used in
combination, crossovers and reroutings will very often find a hamilton cycle in G, if it is hamiltonian, even for
sparse graphs G.
A re-routing is very much like a crossover. It is a closed trail Q whose endpoints are on the uυ-path P, such
that  is a uυ-path containing all vertices of P. It always results in a longer path. The algorithm that
searches for higher order crossovers can be easily modified to search for re-routings as well.
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FIGURE 9.9
Re-routing P
Exercises
9.2.1 Show that if G is connected and n>2δ, where δ is the minimum degree of G, then G has a path of
length at least 2δ. This is due to DIRAC [36]. (Hint: Consider a longest path.)
9.2.2 Program the crossover algorithm, and test it on the Petersen graph, on the graphs of Figure 9.5, and on
the graph in Figure 9.10. Try it from several different starting vertices.
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FIGURE 9.10
The Lederberg graph
9.2.3 Let G be a graph. Show how to create a graph G′ from G by adding one vertex so that G has a hamilton
path if and only if G′ has a hamilton cycle.
9.2.4 Let G be a graph such that DEG(u)+DEG(υ)≥n−1, for all non-adjacent vertices u and υ. Show that G
has a hamilton path.
9.2.5 Construct all five kinds of crossover of order two.
9.2.6 Construct the crossovers of order three.
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9.3 The Hamilton closure
Suppose that DEG(u)+DEG(υ)≥n in a graph G, where u and υ are non-adjacent vertices. Let G′=G+uυ. If G
is hamiltonian, then so is G′. Conversely, if G′ is hamiltonian, let C be a hamilton cycle in G′. If  then
P=C−uυ is a hamilton path in G. Since DEG(u)+DEG(υ)≥n, we know that P has a crossover, so that G has a
hamilton cycle, too. Thus we have proved:
LEMMA 9.3 Let DEG(u)+DEG(υ)≥n in a graph G, for non-adjacent vertices u and υ. Let G′=G+uυ. Then G is
hamiltonian if and only if G′ is.
This lemma says that we can add all edges uυ to G, where DEG(u)+DEG(υ)≥ n, without changing the
hamiltonicity of G. We do this successively, for all non-adjacent vertices u and υ.
DEFINITION 9.2: The hamilton closure of G is cH(G), the graph obtained by successively adding all edges uυ
to G, whenever DEG(u)+DEG(υ)≥n, for non-adjacent vertices u and υ.
For example, the hamilton closure of the graph of Figure 9.11 is the complete graph K7. It must be verified
that this definition is valid, namely, no matter in what order the edges uυ are added to G, the resulting
closure is the same. We leave this to the reader.

FIGURE 9.11
cH(G)=K7
Lemma 9.3 tells us that cH(G) is hamiltonian if and only if G is. In particular, if cH(G) is a complete graph,
then G is hamiltonian. The hamilton closure can be used to obtain a condition on the degree sequence of G
which will force G to be hamiltonian.
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THEOREM 9.4 (Bondy-Chvátal theorem) Let G be a simple graph with degree sequence (d1, d2,…, dn),
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where d1≤d2≤…≤dn. If there is no m<n/2 such that dm≤m and dn−m<n−m, then cH(G) is complete.
PROOF Suppose that cH(G) is not complete. Let u and υ be non-adjacent vertices such that DEG(u)+DEG(υ)
is as large as possible, where the degree is computed in the closure cH(G). Then DEG(u)+DEG(υ)<n by
definition of the closure. Let m=DEG(u)≤DEG(υ). So u is joined to m vertices. There are n−DEG(υ)−1
vertices that υ is not adjacent to (not counting υ, since  Each of these has degree ≤m. So the
number of vertices with degree ≤m is at least n−DEG(υ)−1. But DEG(u)+DEG(υ)<n, so that
m=DEG(u)≤n−DEG(υ)−1. That is, the number of vertices of the closure with degree ≤m is at least m. Since
the degree sequence of cH(G) is at least as big as that of G, it follows that dm≤m.

FIGURE 9.12
The degree sequence of G
How many vertices have degree >DEG(υ)? We know that u is adjacent to all of them. Therefore, the number
of them is at most m, so that there are at most m vertices after υ in the degree sequence. It follows that
DEG(υ)≥dn−m. But since DEG(υ)<n−m, it follows that dn−m<n−m. Thus, we have found a value m such
that dm≤m and dn−m<n−m. Here m=DEG(u)≤DEG(υ)<n−m, so that m<n/2. This contradicts the
assumptions of the theorem. Therefore cH(G) must be complete under these conditions.
The degree sequence condition of the Bondy-Chvátal theorem is easy to apply. For example, any graph with
the degree sequence (2,2,3,4,5,6,6,6) must be hamiltonian, since d1=2>1, d2=2≤2, but  and
d3=3≤3, but  Thus there is no m<8/2 satisfying the condition that dm≤m and dn−m<n−m.
This is the strongest degree sequence condition possible which forces an arbitrary graph G to be hamiltonian.
Any stronger condition would have to place non-degree sequence restrictions on G. To see that this is so, let
G be any non-hamiltonian graph. Let its degree sequence be (d1, d2,…, dn), where d1≤d2≤…≤dn. Since G is
not hamiltonian, there is a value m such that dm≤m and dn−m<n−m. Construct a new degree sequence by
increasing
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each di until the sequence (m,…, m,n−m−1,…, n−m−1, n−1,…,n−1) is obtained, where the first m degrees
are m, the last m degrees are n−1, and the middle n−2m degrees are n−m−1. We construct a non-
hamiltonian graph C(m, n) with this degree sequence.

FIGURE 9.13
C(m, n)
C(m, n) is composed of three parts, a complete graph Km, a complete graph Kn−2m, and an empty graph 

 Every vertex of  is joined to every vertex of Km, and every vertex of Km is joined to every vertex of
Kn−2m. This is illustrated in Figure 9.13. The vertices of  have degree m, those of Kn−2m have degree
n−m−1, while those of Km have degree n−1. C(3, 9) is illustrated in Figure 9.3. It is easy to see that (C(m,
n) is always non-hamiltonian, since the deletion of the vertices of Km leaves m+1 components. By Lemma
9.1, we conclude that C(m, n) is non-hamiltonian. Yet for every non-hamiltonian graph G on n vertices, there
is some C(m, n) whose degree sequence is at least as large as that of G, in the lexicographic order.
Exercises
9.3.1 Prove that cH(G) is well-defined; that is, the order in which edges uυ are added to G does not affect the
result.
9.3.2 Prove that the crossover algorithm will find a hamilton cycle in G if cH(G) is complete or find a
counterexample.
9.3.3 Use the Bondy-Chvátal theorem to show that any graph with the degree sequence (2, 3, 3, 4, 5, 6, 6, 6,
7) is hamiltonian. What about (3, 3, 4, 4, 4, 4, 4, 4)?
9.3.4 Define the hamilton-path closure to be  obtained by adding all edges uυ whenever
DEG(u)+DEG(υ)≥n−1. Prove that G has a hamilton path if and only  does.
9.3.5 Obtain a condition like the Bondy-Chvátal theorem which will force  to be complete.
9.3.6 Construct the graphs C(2, 8) and C(4, 12).
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9.3.7 Work out ε(C(m, n)). Show that ε has its smallest value when
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for which

 

9.3.8 Show that if G is a graph on n≥4 vertices with  then G is hamiltonian.
Notice that according to Exercise 9.3.7, C(m,n) has approximately two-thirds of the number of edges of the
complete graph Kn, at the minimum. This means that degree sequence conditions are not very strong. They
apply only to graphs with very many edges.
9.4 The extended multi-path algorithm
The multi-path algorithm tries to build a hamilton cycle C using a recursive exhaustive search. At any stage of
the algorithm, a number of disjoint paths S1, S2,…, Sk in G are given, which are to become part of C. Call
them segments of C. Initially, we can take k=1, and the single segment S1 can consist of the starting vertex,
that is, a path of length zero. On each iteration a vertex u is selected, an endpoint of some segment P=Si.
Every  is taken in turn, and P is extended to P′=P+uw. Vertex u may now have degree two in Si. In
this case, the remaining edges ux of G are deleted. This reduces each DEG(x) by one. When DEG(x)=2, both
remaining edges at x must become part of C. A new segment is created containing x. Thus, the choice of uw
can force certain edges to be a part of C. It can also happen that when edges are forced in this way, that an
edge connecting the endpoints of two segments is forced, and the two segments must be merged into one.
This in turn forces other edges to be deleted, etc. The forcing of edges can be performed using a queue.
There are three possible outcomes of this operation:
1. An updated set of segments can be produced.
2. A hamilton cycle can be forced.
3. A small cycle can be forced.
By a small cycle, we mean any cycle smaller than a hamilton cycle. If a small cycle is forced, we know that
the extension of P to P+uw does not lead to a hamilton cycle. If a hamilton cycle is forced, the algorithm can
quit. If a new set of segments is produced, the algorithm proceeds recursively. This can be summarized as
follows. We assume a global graph G, and a global boolean variable IsHamiltonian, which is initially false, but
is changed to true when a hamilton cycle is discovered.
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Algorithm 9.4.1: MULTIPATH(S)

comment: Search for a ham cycle containing all segments of S
choose a vertex u, an endpoint of some path 

for all 

comment: otherwise no hamilton cycle was found
Suppose that the multi-path algorithm were applied to a disconnected graph G. Although we know that G is
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not hamiltonian, the algorithm could still take a very long time to discover this, for example, the connected
components of G could be complete graphs. More generally, it is quite possible for the operation of forcing
edges to delete enough edges so as to disconnect G. Thus the algorithm really is obliged to check that G is
still connected before making a recursive call. This takes O(ε) steps. Now we know that a graph with a cut-
vertex also has no hamilton cycle, and we can test for a cut-vertex at the same time as checking that G is
connected. A depth-first search (DFS) can do both in O(ε) steps. Thus we add a DFS to the multi-path
algorithm before the recursive call is made. But we can make a still greater improvement.
Suppose that the multi-path algorithm were applied to the graph of Figure 9.14. This graph is non-
hamiltonian because the deletion of the two shaded vertices leaves three components. In certain cases the
algorithm is able to detect this, using the DFS that tests for cut-vertices. Suppose that the segments of G are
the bold edges. Notice that one of the segments contains the shaded vertex u. When the non-segment edges
incident on u are deleted, υ becomes a cut-vertex in the resulting graph. The DFS will detect that υ is a cut-
vertex, and the algorithm will report that adding the edge uw to the segment does not extend to a hamilton
cycle.
Normally the algorithm would then try the next edge incident on u, etc. But it can do more. When the cut-
vertex υ is discovered, the DFS can count the

page_201

Page 202

FIGURE 9.14
A non-hamiltonian graph
number of components of G−υ. This will be one plus the number of descendants of υ in the DF-tree. It
requires almost no extra work for the DFS to calculate this. For vertex υ in Figure 9.14, the count will be three
components. But since this is the result of deleting only two vertices, namely, u and υ, the algorithm can
determine that the original G is non-hamiltonian, and stop the search at that point. More generally, a non-
hamiltonian graph like Figure 9.14 can arise at some stage during the algorithm as a result of deleting edges,
even though the original G is hamiltonian. The algorithm must be able to detect which graph in the search
tree is found to be non-hamiltonian by this method. We leave it to the reader to work out the details.
It is helpful to view vertices like u in Figure 9.14 which have degree two in some segment as having been
deleted from G. Each segment is then replaced by an equivalent single edge connecting its endpoints. The set
of segments then becomes a matching in G, which is changing dynamically. For example, when the segments
of Figure 9.14 are replaced by matching edges, the resulting graph appears as in Figure 9.15. The procedure
which forces edges can keep a count of how many vertices internal to segments have been deleted in this
way, at each level in the recursion. When the DFS discovers a cut-vertex, this count is used to find the size of
a separating set in G. In cases like this, large portions of the search tree can be avoided.
A bipartite graph like the Herschel graph of Figure 9.2 is also non-hamiltonian, but the algorithm is not likely
to delete enough vertices to notice that it has a large separating set. In general, suppose that at some stage
in the algorithm G−E(S) is found to be bipartite, with bipartition (X,Y), where S is viewed as a matching in G.
If there is a hamilton cycle C in G using the matching edges S, it must
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FIGURE 9.15
Segments viewed as a matching
look something like Figure 9.16, where the bipartition of G−E(S) is shown by the shading of the nodes. There
are now three kinds of segments: those contained within X, those contained within Y, and those connecting X
to Y. Suppose that there are εX of the first type, and εY of the second type. The vertices of C must alternate
between X and Y, except for the εX and εY edges, which must have endpoints of the same color. If we
contract each of these edges to a single node, we obtain perfect alternation around the cycle. Therefore |X|
−εX=|Y|−εY if G has a hamilton cycle. If this condition is not satisfied, we know that G is non-hamiltonian,
and can break off the search. We again employ the DFS that tests for cut-vertices to simultaneously check
whether G−E(S) is bipartite, and to keep a count of the numbers |X|−εX and |Y|−εY. This requires very
little extra work, and is still O(ε). In this way, non-hamiltonian graphs derived from bipartite graphs or near-
bipartite graphs can often be quickly found to be non-hamiltonian.
In summary, the extended multi-path algorithm adds a DFS before the recursive call. The DFS computes
several things:
• Whether G is connected.
• w(G−υ), for each cut-vertex υ.
• Whether G−E(S) is bipartite.
• |X|−εX and |Y|−εY, if G−E(S) is bipartite.
It may be possible to add other conditions to detect situations when G is non-hamiltonian. For example, every
hamiltonian graph G with an even number of vertices n has two disjoint perfect matchings. If n is odd, every
G−υ has a perfect matching.
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FIGURE 9.16
G−E(S) is bipartite
9.4.1 Data structures for the segments
The extended multi-path algorithm still has exponential worst-case running time. Operations on the segments
must be made as fast as possible. The operations that must be performed using segments are, given any
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vertex υ, to determine which segment contains υ, and to find its endpoints; and to merge two segments
when their endpoints are joined. One way to do this is with the merge-find data structure. An array
Segment[υ] is stored, which is an integer, pointing to the representative of the segment containing υ. Each
segment has two endpoints, which we arbitrarily designate as the right and left endpoints. The right endpoint
x is the segment representative. It is indicated by a negative value of Segment[x]. Its value is −y, where y is
the left endpoint. Thus we find the segment representative by following the pointers, using path compression
(see Chapter 2). Segments are merged by adjusting the pointers of their endpoints.
Exercises
9.4.1 Program the multi-path algorithm. Use a DFS to test for the conditions mentioned above.
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9.5 Decision problems, NP-completeness
The theory of NP-completeness is phrased in terms of decision problems, that is, problems with a yes or no
answer, (e.g., “is G hamiltonian?”). This is so that an algorithm can be modeled as a Turing machine, a
theoretical model of computation. Although Turing machines are very simple, they can be constructed to
execute all the operations that characterize modern random access computers. Turing machines do not
usually produce output, except for yes or no. Thus, a Turing machine can be constructed to read in a graph,
and perform an exhaustive search for a hamilton cycle. If a cycle exists, it will be found, and the algorithm
will report a yes answer. However, the exhaustive search will tend to take an exponential amount of time in
general.
The class of all decision problems contains an important subclass called P, all those which can be solved in
polynomial time; that is, the complexity of a problem is bounded by some polynomial in its parameters. For a
graph, the parameters will be n and ε, the number of vertices and edges.
There is another class of decision problems for which polynomial algorithms are not always known, but which
have an additional important property. Namely, if the answer to a problem is yes, then it is possible to write
down a solution which can be verified in polynomial time. The HamCycle problem is one of these. If a graph G
has a hamilton cycle C, and the order of vertices on the cycle is written down, it is easy to check in n steps
that C is indeed a hamilton cycle. So if we are able to guess a solution, we can verify it in polynomial time.
We say that we can write a certificate for the problem, if the answer is yes. A great many decision problems
have this property that a certificate can be written for them if the answer is yes, and it can be checked in
polynomial time. This forms the class NP of non-deterministic polynomial problems. The certificate can be
checked in polynomial time, but we do not necessarily have a deterministic way of finding a certificate.
Now it is easy to see that  since every problem which can be solved in polynomial time has a
certificate—we need only write down the steps which the algorithm executed in solving it. It is generally
believed that HamCycle is in NP but not in P. There is further evidence to support this conjecture beyond the
fact that no one has been able to construct a polynomial-time algorithm to solve HamCycle; namely, it can be
shown that the HamCycle problem is one of the NP-complete problems.
To understand what NP-completeness means we need the concept of polynomial transformations. Suppose Π1
and Π2 are both decision problems. A polynomial transformation from Π1 to Π2 is a polynomial-time algorithm
which when given any instance I1 of problem Π1 will generate an instance I2 of problem Π2 satisfying:
I1 is a yes instance of Π1 if and only if I2 is a yes instance of Π2
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We use the notation  to indicate that there is a polynomial transformation from Π1 to Π2. We say
that Π1reduces to Π2. This is because if we can find a polynomial algorithm A to solve II2, then we can
transform Π1 into Π2, and then use A to solve Π2, thereby giving a solution to Π1.
DEFINITION 9.3: A decision problem is II is NP-complete, if
1. Π is in NP.
2. For any problem 
It was Cook who first demonstrated the existence of NP-complete problems. He showed that Problem 9.2,
satisfiability of boolean expressions (Sat) is NP-complete. Let U be a set of n boolean variables u1, u2,…, un
with their complements ū1, ū2,…, ūn. These variables can only take on the values true and false, such that
ui is true if and only if ūi is false, and vice versa. If  then we denote by x+y the boolean or of x
and y by xy the boolean and of x and y. A clause over U is a sum of variables in U. For example,
(u1+ū3+ū4+u6) is a clause. A boolean expression is a product of clauses. For example
(u1+ū3+ū4+u6)(u2+u5)(ū7) is a boolean expression. A truth assignment t is an assignment of values true
and false to the variables in U. If B is a boolean expression, then t(B) is the evaluation of B with truth
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assignment t. For example if
B=(u1+ū3+ū4+u6)(u2+u5)(ū7)  

and

 
then

t(B)=(true+true+false+false)(false+true)(true)=true.  
Not every boolean expression B has a truth assignment t such that t(B)=true. For example there is no way
to assign true and false to the variables in the expression (ū1+ū2)(u1)(u2) so that it is true. if there is a
truth assignment t such that t(B)=true, we say that B is satisfiable. The satisfiability of boolean expressions
problem is
Problem 9.2: Sat
Instance:a set of boolean variables U and a boolean expression B over U.
Question:is B satisfiable?
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and was shown by COOK [28] to be NP-complete. See also KARP [70]. The proof of this is beyond the scope
of this book; however, a very readable proof can be found in the book by PAPADIMITRIOU and STEIGLITZ
[94]. Many problems have subsequently been proved NP-complete, by reducing them either to satisfiability, or
to other problems already proved NP-complete.
The importance of the NP-complete problems is that, if a polynomial algorithm for any NP-complete problem
II were discovered, then every problem in NP would have a polynomial algorithm; that is, P=NP would hold.
Many people have come to the conclusion that this is not very likely, on account of the large number of NP-
complete problems known, all of which are extremely difficult. We will now show that

 
and thus the HamCycle problem (as well as 3-Sat and Vertex Cover) is an NP-complete problem. Thus if
P≠NP, then a polynomial algorithm for the HamCycle problem would not exist. This is why we say that the
HamCycle problem is qualitatively different from most other problems in this book.
Among the most useful problems for establishing the NP-completeness of other problems is 3-Sat.

Problem 9.3: 3-Sat
Instance:a set of boolean variables U and a boolean expression B over U, in which each clause contains

exactly three variables.
Question:is B satisfiable?
THEOREM 9.5 3-Sat is NP-complete.
PROOF It is easy to see that 3-Sat is in NP. Any truth assignment satisfying the boolean expression B can be
checked in polynomial time by assigning the variables and then evaluating the expression.
We reduce Sat to 3-Sat as follows. Let U be a set of boolean variables and B=C1C2…Cm be an arbitrary
boolean expression, so that U and B is an instance of Sat. We will extend the variable set set U to a set U′
and replace each clause Ci in B by a boolean expression Bi, such that
(a) Bi is a product of clauses that use exactly three variables of U′.
(b) Bi is satisfiable if and only if Ci is.
Then B′=B1B2…Bm will be an instance of 3-Sat that is satisfiable over U′ if and only if B is satisfiable over U.
Let Ci=(x1+x2+x3+…xk). There are three cases.
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Case 1: k=1.
In this case we introduce new variables yi and zi and replace Ci with

 
Case 2: k=2.
In this case we introduce a new variable yi and replace Ci with

 
Case 3: k=3.
In this case we replace Ci with Bi=Ci. Thus we make no change.
Case 4: k>3.
In this case we introduce new variables  and replace Ci with
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It is routine to verify for each of Cases 1, 2, 3, and 4, that Bi satisfies (a) and (b), see Exercise 9.5.2. We still
must show that

B′=B1B2B3…Bm  
can be constructed with a polynomial time algorithm. If Ci=(x1+x2+x3+ …+xk) then Bi contains at most 4k
clauses of three variables and at most k+1 new variables were introduced. Because k≤n, we conclude that to
construct B′, at most 4mn new clauses of three variables are needed, and at most (n+1)m new variables are
introduced. Both are polynomial in the size of the instance of Sat. Consequently we can construct B′ in
polynomial time.
Given a graph G, a k-element subset  of vertices is a called a vertex cover of size k if each edge of
G has at least one end in K. The Vertex Cover decision problem is:

Problem 9.4: Vertex Cover
Instance:a graph G and positive integer k.
Question:does G have a vertex cover of size at most k?
THEOREM 9.6 Vertex Cover is NP-complete.
PROOF It is easy to see that Vertex Cover is in NP, for if K is a purported vertex cover of the graph G of size
k, then we simply check each edge of G to see
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that at least one endpoint is in K. There are ε edges to check so this takes time O(ε) and we can check in
time |K|≤n whether or not |K|≤k.
We now give a polynomial transformation from 3-Sat to Vertex Cover. Let B=C1C2…Cm be a boolean
expression over U={u1,u2,…,un} in which each clause is a sum of exactly three variables. Thus for i=1,2,…,n,
Ci= (xi+yi+zi) for some  where Ū={ū1,ū2,…,ūn}. We construct a graph G on the vertex set

 
where  The edge set of G is the union of the edges of m subgraphs Hi, i=1,2,…,m,
where Hi is the subgraph shown in Figure 9.17. It consists of a triangle (ai,bi,ci), edges from ai, bi, ci to the
variables contained in the clause, and edges connecting the variables to their complements. G has 2n+3m
vertices and n+6m edges and hence can be built in polynomial time. Choose k=n+2m to obtain an instance
of the Vertex Cover problem for the graph G constructed.

FIGURE 9.17
Subgraph Hicorresponding to clause (xi+yi+zi)
We show that B has a satisfying truth assignment if and only if G has a vertex cover K of size k=n+2m. If t is
a truth assignment, such that

t(B)=true,  
then t must assign at least one variable xi, yi or zi to be true in clause Ci. Assume it is xi. As xi is adjacent to
exactly one vertex, ai, in the triangle {ai,bi,ci}, it follows that {xi,bi,ci} is a vertex cover of Hi, and hence

 
is a vertex cover of size k for G. An example is given in Figure 9.18.
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FIGURE 9.18
Graph G corresponding to the boolean expression
B=(u2+ū1+n4)(u2+u6+ū5)(u1+u2+u3)(ū2+ū6+ū3). A vertex cover is
K={u4,a1,b1,u6,a2,c2,u3,a3,b3,ū2,b4,c4i,u1,u5} and u3=u4=u6=true, u2=false, u1, u5, assigned
arbitrarily is a truth assignment satisfying B.
Conversely suppose that K is a vertex cover of size k=n+2m of G. Then K must include at least one end of
each of the n edges {ui,ūi}, i=1,2,…,n, accounting for at least n vertices in K. Also K must cover the edges of
each triangle (aj,bj,cj), and thus must contain at least two of {aj,bj,cj}, for each j= 1,2,…,m. This accounts
for 2m more vertices, for a total of n+2m=k vertices. Hence K must contain exactly one of the endpoints of
each edge {ui,ūi}, for i=1,2,…, n, and exactly two of aj, bj, cj, for each j=1,2,…, m, corresponding to clause
Cj. For each clause Cj, there is exactly one vertex aj, bj or cj of the triangle which is not in K. Call it dj.
Choose the unique variable of  adjacent to di, and assign it true. Then at least one variable in each
clause Cj has been assigned the value true, giving a truth assignment that satisfies B. Any remaining
unassigned variables in U can be assigned true or false arbitrarily.
THEOREM 9.7 HamCycle is NP-complete.
PROOF Let G be a graph. Given an ordering υ1,υ2,…, υn of vertices of G we can check whether (υ1,υ2,υ3,
…,υn) is a hamilton cycle in polynomial time. Thus HamCycle is in NP. To show that HamCycle is NP-complete
we transform from Vertex Cover.
Let G and k be an instance of Vertex Cover, where k is a positive integer. We will construct a graph G′ such
that G′ has a hamilton cycle if and only if G has a vertex cover K={x1,x2,…,xk} of size k. The graph G′ will
have k+12m
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vertices  is incident to  and i=1,2,…,6}, where m=|E(G)|. The
edges of G′ are of three types.
Type 1 edges of G′
The type 1 edges are the 14m edges among the subgraphs He,  We display He, where e=uυ in
Figure 9.19.

FIGURE 9.19
The subgraph He, where e=uυ.
Type 2 edges of G′
For each vertex υ of G choose a fixed but arbitrary ordering  of the d=DEG(υ) edges incident
to υ. The type 2 edges of G′ corresponding to υ are:

 
Type 3 edges of G′
The type 3 edges of G′ are:
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The subgraph of G′ corresponding to the edges incident to a vertex υ in G is illustrated in Figure 9.20. Before
proving that G has a vertex cover of size k if and only if G′ has a hamilton cycle C=υ1,υ2,…,υn, we make five
observations.
1. C must enter and exit the subgraph He, e=uυ from the four corners (u,e,1), (u,e,6), (υ,e,1), (υ,e,6).
2. If C enters He at (u,e,1), it must exit at (u,e,6) and either pass through all the vertices of He or only those
vertices with first coordinate u. (In the first case as we shall see, u will be in the vertex cover of G, and in the
latter case both u and υ will be in the vertex cover of G.)
3. If C enters He at (υ,e,1), it must exit at (υ,e,6) and either pass through all the vertices of He or only those
vertices with first coordinate υ. (In the first case as we shall see, υ will be in the vertex cover of G, and in the
latter case both u and υ will be in the vertex cover of G.)
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FIGURE 9.20
Subgraph of G′ corresponding the the edges incident to υ in G
4. The vertices {x1,x2,…,xk} divide C into paths. Thus we may assume, relabeling the vertices x1, x2,…, xk if
necessary, that C=P1P2…Pk where Pi is an xi to xi+1 path, where xk+1=xk.
5. Let υi be such that xi is adjacent to (υi,e,j) in Pi where j=1 or 6. Then Pi contains every vertex (υi,e′,h)
where e is incident to υ.
We claim that the k vertices υ1, υ2,…, υk selected in observation 5 are a vertex cover of G. This is because
the hamilton cycle C must contain all vertices of each of the subgraphs He for each  and when He is
traversed by C, it is traversed by some Pi in C and that Pi selects an endpoint υi of e.
Conversely, suppose  is a vertex cover of G, of size k. To construct a hamilton
cycle C of G′, choose for each edge  the edges of He specified in Figure 9.21 (a), (b), or (c)
depending on whether  equals {u}, {u,υ}, or {υ}, respectively. (One of these must occur, because
K is a vertex cover.) Also include the edges

 
the edges

 
and the edges

 
It is an easy exercise to verify that the included edges form a hamilton cycle in G′; see Exercise 9.5.5.
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FIGURE 9.21
The three possible ways that a Hamilton cycle can traverse the subgraph He, corresponding to
the cases for e={u,υ} in which (a) e∩K={u}, (b) e∩K={u,υ}, and (c) e∩K={υ}.
Exercises
9.5.1 Consider the boolean expression

 
Find a boolean expression equivalent to B in which each clause uses only three variables.
9.5.2 Show for each Case 1, 2, 3, and 4 in Theorem 9.5 that the pair Bi, Ci satisfies
(a) Bi is a product of clauses that use at most three variables in U′.
(b) Bi is satisfiable if and only if Ci is.
9.5.3 Consider the boolean expression

 
(a) Show that there is no truth assignment that satisfies B.
(b) Construct the graph G in Theorem 9.6 that corresponds to B.
(c) Show that G does not have a vertex cover of size 25.
9.5.4 Verify the five observations in Theorem 9.7.
9.5.5 Verify that the included edges in the converse part of Theorem 9.7, do indeed form a hamilton cycle.
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9.6 The traveling salesman problem
The traveling salesman problem (TSP) is very closely related to the HamCycle problem. A salesman is to visit
n cities υ1, υ2,…, υn. The cost of traveling from υi to υj is W(υiυj). Find the cheapest tour which brings him
back to his starting point. Figure 9.22 shows an instance of the TSP problem. It is a complete graph Kn with
positive integral weights on the edges. The problem asks for a hamilton cycle of minimum cost.
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FIGURE 9.22
An instance of the TSP problem.
It is easy to show that the HamCycle problem can be reduced to the TSP problem. In order to do this, we
first must phrase it as a decision problem.

Problem 9.5: TSP Decision
Instance:a weighted complete graph Kn, and an integer M,
Question:does Kn have a hamilton cycle of cost ≤M?
We can then find the actual minimum by doing a binary search on the range of values n≤M≤nWmax, where
Wmax is the maximum edge-weight. Suppose that we had an efficient algorithm for the TSP Decision
problem. Let G be any graph on n vertices which we want to test for hamiltonicity. Embed G in a compete
graph Kn, giving the edges of G weight 1, and the edges of  weight 2.
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Now ask whether G has a TSP tour of cost ≤n. If the answer is yes, then G is hamiltonian. Otherwise G is
non-hamiltonian.
Since HamCycle is NP-complete, we conclude that the TSP Decision problem is at least as hard as an NP-
complete problem. In a certain sense, it is harder than the NP-complete problems, since the edge weights
W(υiυj) are not bounded in size. So it may take many steps just to add two of the weights. However, if we
limit the size of the weights to the range of numbers available on a computer with a fixed word length, then
the TSP Decision problem is also NP-complete. It is easy to see that TSP Decision  since we can write
down the sequence of vertices on a cycle C of cost ≤M and verify it in n steps.
One way to approximate a solution is similar to the crossover technique. Choose a hamilton cycle C in Kn
arbitrarily. For each edge  search for an edge  such that W(uυ)+W(wx)>W(uw)+W(υx). If
such an edge exists, re-route C as shown in Figure 9.23. Repeat until no improvement can be made. Do this
for several randomly chosen starting cycles, and take the best as an approximation to the optimum.

FIGURE 9.23
Re-routing a TSP tour
The cycle Q=(u,υ,x,w) is similar to a crossover. In general, if Q is any cycle such that  is a hamilton
cycle, and W(C∩Q)>W(Q−C), then  will be a TSP tour of smaller cost than C. We can search for
crossovers Q containing up to M edges, for some fixed value M, and this will provide a tour which may be
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close to the optimum. How close does it come to the optimum?
It is possible to obtain a rough estimate of how good a tour C is, by using a minimum spanning tree
algorithm. Let C* be an optimum TSP tour. For any vertex υ, C*−υ is a spanning tree of Kn−υ. Let Tυ be a
minimum spanning tree of Kn−υ. Then W(C*−υ) W(Tυ). Given the path C*−υ, we must add back two edges
incident on υ to get C*. If we add two edges incident on υ to Tυ, of minimum possible weight, we will get a
graph  such that  For example, Figure 9.24 shows a minimum spanning tree T3, of
Kn−3 for the
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instance of TSP shown in Figure 9.22.

FIGURE 9.24
A minimum spanning tree T3, plus two edges
The two edges incident on vertex 3 that we add to T3 have weights 10 and 11 in this case. We thus obtain a
bound  We do this for each vertex υ, and choose the maximum of the bounds
obtained. This is called the spanning tree bound for the TSP:

 
Exercises
9.6.1 Work out the spanning tree bound for the TSP instance of Figure 9.22.
9.6.2 Find a TSP tour C in the graph of Figure 9.22 by re-routing any starting cycle, until no more
improvement is possible. Compare the weight of C with the result of Exercise 9.6.1.
9.6.3 Construct all possible re-routing patterns (crossovers) containing three or four edges of C.
9.7 The ΔTSP
Distances measured on the earth satisfy the triangle inequality, namely, for any three points X, Y, and Z,
DIST(X,Y)+DIST(Y,Z)≥DIST(X,Z). The triangle traveling salesman problem, denoted ΔTSP, refers to instances
of the TSP
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satisfying this inequality. When the triangle inequality is known to hold, additional methods are possible.
THEOREM 9.8 Let Knbe an instance of the ΔTSP, and let G be any Eulerian spanning subgraph of Kn. If C* is
an optimum TSP tour, then W(C*)≤W(G).
PROOF Consider an Euler tour H in G starting at any vertex. The sequence of vertices traversed by H is 

 If G is a cycle, then H is a hamilton cycle, so that W(C*)≤W(G), and we are done.
Otherwise, H repeats one or more vertices. Construct a cycle C from H by taking the vertices in the order that
they appear in H, simply ignoring repeated vertices. Since G is a spanning subgraph of Kn, all vertices will be
included in C. For example, if G is
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FIGURE 9.25
An Eulerian graph G and TSP tour C
the graph of Figure 9.25, and H is the Euler tour (1,2,3,4,6,1,3,6,5,4), then the cycle C obtained is
(1,2,3,4,6,5). Because of the triangle inequality, it will turn out that W(C)≤W(G). Let the cycle obtained be
C=(u1,u2,…,un), and suppose that the Euler tour H contains one or more vertices between uk and uk+1.
Without loss of generality, suppose that there are just three vertices x, y, z between uk and uk+1. See Figure
9.26. Then because of the triangle inequality, we can write

W(ukx)+W(xy)≥W(uky),
W(uky)+W(yz)≥W(ukz),

 

and
W(ukz)+W(zuks+1)≥W(ukuk+1).  

Thus
W(ukuk+1)≤W(ukx)+W(xy)+W(yz)+W(zuk+1).  
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FIGURE 9.26
Applying the triangle inequality
The left side of the inequality contributes to W(C). The right side contributes to W(H). It follows that
W(C)≤W(G), for any Eulerian G.
Notice that the particular cycle C obtained from G depends on the Euler tour H chosen, so that the graph G
will give rise to a number of different hamilton cycles C. In particular, we could construct G from a minimum
spanning tree T, by simply doubling each edge. This gives an Eulerian multigraph G. The method used in the
theorem will also work with multigraphs, so we conclude that W(C*)≤2W(T). This is called the tree algorithm
for the TSP.
LEMMA 9.9 The tree algorithm produces a cycle of cost at most twice the optimum.
PROOF Let C be the cycle obtained by the tree algorithm, let C* be an optimum cycle, and let T be a
minimum spanning tree of the instance for ΔTSP. Since C* is a spanning subgraph of Kn, we conclude that
W(C*)>W(T). But we know that W(C)≤2W(T)<2W(C*).
9.8 Christofides’ algorithm
Christofides found a way to construct an Eulerian subgraph of smaller weight than 2W(T). Let Kn be an
instance of the ΔTSP, and let T be a minimum spanning tree. Let  be the vertices of T of odd
degree. X contains an even number of vertices. The subgraph of Kn induced by X is a complete subgraph. Let
M be a perfect matching in X of minimum weight. For example, Figure 9.27 shows a minimum spanning tree
for the graph of Figure 9.22, together with a
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minimum-weight matching M, shown as dashed lines.

FIGURE 9.27
Christofides’ algorithm
This gives a graph G=T+M which is Eulerian. It is quite possible that G is a multigraph. We now find an Euler
tour in G and use it to construct a TSP tour C of cost at most W(T)+W(M). This is called Christofides’
algorithm.
THEOREM 9.10 Let C be the TSP tour produced by Christofides’ algorithm and let C* be an optimum tour.
Then

 
PROOF Let u1, u2,…, u2k be the vertices of odd degree, and suppose that they appear on C* in that order.
This defines two matchings,

M1={u1u2,u3u4,…}  
and

M2={u2u3,u4u5,…,u2ku1}.  
See Figure 9.28. If M is the minimum weight matching, we conclude that W(M1), W(M2)≥W(M). The portion
of C* between ui and ui+1 satisfies

W(C*[ui,ui+1])≥W(uiui+1),  
by the triangle inequality. Therefore

W(C*)≥W(M1+W(M2)≥2W(M),  
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or

 
The cycle C found by Christofides’s algorithm satisfies

 
because W(T)<W(C*). It follows that
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FIGURE 9.28
Two matchings M1 and M2
Thus, Christofides’ algorithm always comes within 50% of the optimum.
Exercises
9.8.1 Use the tree algorithm to find a TSP tour for the graph of Figure 9.22.
9.8.2 Solve the same TSP instance using Christofides’ algorithm. Compare the values found for W(C), W(T),
and W(T+M).
9.8.3 Solve the ΔTSP instance of Figure 9.29, using Christofides’ algorithm. Compute the spanning tree bound
as well.
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FIGURE 9.29
An instance of ΔTSP
9.9 Notes
An excellent survey of hamiltonian graphs appears in BERMOND [15]. The hamilton closure and the Bondy-
Chvátal theorem are from BONDY and MURTY [19]. The extended multi-path algorithm is from KOCAY [77]. A
classic book on the theory of NP-completeness is the text by GAREY and JOHNSON [50]. A very readable
proof of Cook’s theorem, that Satisfiability is NP-complete, appears in PAPADIMITRIOU and STEIGLITZ [94],
which also contains an excellent section on Christofides’ algorithm. The book by CHRISTOFIDES [26] has an
extended chapter on the traveling salesman problem. The book LAWLER, LENSTRA, RINNOOY KAN and
SHMOYS [83] is a collection of articles on the traveling salesman problem.
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10 
Digraphs
10.1 Introduction
Directed graphs have already been introduced in the Chapter 8. If G is a digraph and u,  we write 
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 to indicate that the edge uυ is directed from u to υ. The in-edges at υ are the edges of the form
(u,υ). The in-degree of υ is d−(υ), the number of in-edges. Similarly the out-edges at u are all edges of the
form (u,υ) and the out-degree d+(u) is the number of out-edges at u. The degree of u is

DEG(u)=d+(u)+d−(u).  
Given any undirected graph G, we can assign a direction to each of its edges, giving a digraph called an
oriented graph. A digraph is simple if it is an orientation of a simple graph. A digraph is strict if it has no
loops, and no two directed edges have the same endpoints. A strict digraph can have edges (u,υ) and (υ,u),
whereas an oriented graph cannot.
Digraphs have extremely wide application, for the social sciences, economics, business management,
operations research, operating systems, compiler design, scheduling problems, combinatorial problems, solving
systems of linear equations, and many other areas. We shall describe only a few fundamental concepts in this
chapter.
10.2 Activity graphs, critical paths
Suppose that a large project is broken down into smaller tasks. For example, building a house can be
subdivided into many smaller tasks: dig the basement, install the sewer pipes, water pipes, electricity, pour
the basement concrete, build
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the frame, floor, roof, cover the roof and walls, install the wiring, plumbing, heat-ing, finish the walls, etc.
Some of these tasks must be done in a certain order—the basement must be dug before the concrete can be
poured, the wiring must be installed before the walls can be finished, etc. Other tasks can take place at the
same time, (e.g., the wiring and plumbing can be installed simultaneously). We can construct a directed
graph, called an activity graph, to represent such projects. It has a starting node s, where the project begins,
and a completion node t, where it is finished. The subtasks are represented by directed edges. The nodes
represent the beginning and end of tasks (the synchronization points between tasks). Figure 10.1 shows an
example of an activity graph. Each task takes a certain estimated time to complete, and this is represented by
assigning each edge uυ a weight WT(uυ), being the amount of time required for that task.
What is the minimum amount of time required for the entire project? It will be the length of the longest
directed path from start to completion. Any longest directed path from s to t is called a critical path. Figure
10.1 shows a critical path in an activity graph.

FIGURE 10.1
An activity graph
Notice that an activity graph must have no directed cycles. For if a directed cycle existed, it would be
impossible to complete the project according to the constraints. Thus, activity graphs are acyclic digraphs.
Activity graphs are applicable to any large project, such as building construction, business projects, or factory
assembly lines.
The critical path method (CPM) is a technique for analyzing a project acccording to the longest paths in its
activity graph. In order to find a longest path from s
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to t, we proceed very much as in Dijkstra’s algorithm (Chapter 2), which builds a spanning tree, rooted at s,
of shortest paths. To find longest paths instead, the algorithm builds an out-directed spanning tree, rooted at
s, of longest directed paths from s to each vertex υ. We store a value T[υ] for each υ, being the earliest time
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at which tasks starting from υ can begin. T[υ] is the length of a longest sυ-path. When the algorithm
completes, the critical path is the unique path in the spanning tree to vertex t. Notice that in Figure 10.1, the
edge from vertex 1 to 3 has length 6, but that the path (1,7,3) has the longer length of 7. In order for the
algorithm to correctly choose the longer path, it must be sure to assign T(7) before T(3). Thus, the vertices
must be taken in a certain order. For every edge (u,υ), T(u) must be computed before T(υ).
10.3 Topological order
A topological ordering of an acyclic digraph G is a permutation o of

V(G)={1,2,…,n}  
such that o(u)<o(υ) whenever  Thus all edges are directed from smaller to higher vertex numbers.
Notice that only acyclic digraphs have topological orderings, since a directed cycle cannot be ordered in this
way. Topological orderings are easy to find. We present both a breadth-first and a depth-first algorithm.
Algorithm 10.3.1 is the the breadth-first algorithm. The topological order is built on the queue. Algorithm
10.3.1 begins by placing all vertices with in-degree 0 on the queue. These are first in the topological order.
InDegree[υ] is then adjusted so that it counts the in-degree of υ only from vertices not yet on the queue.
This is done by decrementing InDegree[υ] according to its in-edges from the queue. When InDegree[υ]=0, υ
has no more in-edges, so it too, is added to the queue. When all n vertices are on the queue, the vertices are
in topological order. Notice that if G has a directed cycle, none of the vertices of the cycle will ever be placed
on the queue. In that case, the algorithm will terminate with fewer than n vertices on the queue. This is easy
to detect. Computing InDegree[υ] takes  steps. Each vertex is placed on the queue exactly
once, and its d+(u) out-edges are taken in turn, taking  steps. Thus the complexity of the
algorithm is O(n+ε).
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Algorithm 10.3.1: BFTOPSORT(G,n)

Qsize←0
k←1

for υ←1 to n

while k≤Qsize

if Qsizie<n then G contains a directed cycle
Algorithm 10.3.2 is the depth-first topological sort algorithm and is easier to program, but somewhat subtler.
It calls the recursive Procedure DFS(), and we assume that Procedure DFS() has access to the variables of
Algorithm DFTOPSORT() as globals.
When Procedure DFS(u) is called from DFTOPSORT(), it builds a rooted tree, directed outward from the root
u. DFNum[υ] gives the order in which the vertices are visited. The depth-first search does a traversal of this
tree, using a recursive call to visit all descendants of υ before υ itself is assigned a number NUM[υ], its rank
in the topological order. Thus, if G is acyclic, all vertices that can be reached on directed paths out of υ will be
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ranked before υ itself is ranked. Thus, for every edge (u,υ), the numbering will satisfy NUM[u]<NUM[υ]. The
first vertex numbered is assigned a Rank of n. The variable Rank is then decremented. So the vertices are
numbered 1 to n, in topological order. It is obvious that the complexity of the algorithm is O(n+ε).
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Algorithm 10.3.2: DFTOPSORT(G, n)

procedure DFS(υ)
comment: extend the depth-first search to vertex υ

DFCount←DFCount+1
DFNum[υ]←DFCount

for each w such that
do if DFNum[w] =0

then DFS(w)
NUM[υ]←Rank
Rank←Rank−1

main
for u←1 to n

 
DFCount←0

Rank←n
for u←1 to n

do if DFNum[u]=0
then DFS(u)

The depth-first topological sort does not provide the vertices on a queue in sorted order. Instead it assigns a
number to each vertex giving its rank in the topological order. If we need the vertices on a queue, as we
likely will, we can construct one from the array NUM by executing a single loop.
for υ←1 to n do ScanQ[NUM[υ]]←υ
This works because NUM is a permutation of the numbers 1 to n, and the loop computes the inverse of the
permutation. Another method is to compute the inverse array during the DFS simultaneously with the NUM
array.
What happens if the depth-first topological sort is given a digraph that is not acyclic? It will still produce a
numbering, but it will not be a topological ordering. We will have more to say about this in Section 10.4.
Notice that DFS(u) may be called several times from Algorithm 10.3.2. Each time it is called, a rooted tree
directed outward from the root is constructed. With undirected graphs, a DFS
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constructs a single rooted spanning tree of G (see Chapter 6). For directed graphs, a single out-directed tree
may not be enough to span all of G. A spanning forest of rooted, out-directed trees is constructed.
We return now to the critical path method. Let G be an activity graph with V(G)={1, 2,…, n}, and suppose
that the vertices have been numbered in topological order; that is, u<υ whenever  The start vertex is
s=1. We set T(1)←0. We know that vertex 2 has an in-edge only from s, so T(2) is assigned the cost of the
edge (1, 2). In general, υ can have in-edges only from vertices 1,…, υ−1, and we can take T(υ) to be

 
We also store an array PrevPt, where PrevPt[υ] is the point previous to υ on a directed sυ-path. If T(υ) is
computed to be T(u)+WT(uυ) for some u, we simultaneously assign PrevPt[υ]←u. When the algorithm
completes, we can find the critical path by executing w←PrevPt[w] until w=0, starting with w=t(=n). The
number of steps required to compute the longest paths once the topological sort has been completed is
proportional to 
The minimum time required to complete the project is T(n). This can be achieved only if all tasks along the
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critical path begin and end on time. These tasks are critical. There may be some slack elsewhere in the
system, though, which can be used to advantage. The earliest time at which a node υ in the activity graph
can be reached is T(υ), the length of the longest sυ-path. We could also compute the latest time at which
node υ must be reached if the project is to finish on time. This is T(n) minus the length of the longest
directed path from υ to t. Let T′(υ)  be the length of the longest directed path from υ to t. We can compute
this in the same way that T(υ) is computed, but beginning with t instead of s, and working backward. Thus
for each node υ, we can find the two values T(υ) and T(n)−T′(υ), being the earliest and latest times at which
node υ can be reached. This slack time can create some flexibility in project management.
Exercises
10.3.1 Find a topological ordering of the activity graphs of Figures 10.1 and 10.2. Apply the critical path
method to find the longest sυ-paths and vt-paths, for each υ. Work out the earliest and latest times for each
node υ.
10.3.2 Program the breadth-first and depth-first topological sort algorithms. Test them on the graph of Figure
10.1.
10.3.3 Consider the recursive procedure DFS(υ) defined above, applied to a directed graph G. Suppose that
DFS(υ) has just been called, and that A(υ) is the set of all vertices which are ancestors of υ (the path from υ
to the root contains the ancestors of υ).
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FIGURE 10.2
An activity graph
Suppose that G−A(υ) contains a directed path from υ to w. Prove that w will be visited before DFS(υ)
returns. Use induction on the length of the path from υ to w.
10.4 Strong components
A digraph G is connected if every pair of vertices u and υ is connected by a path. This need not be a directed
path. The digraph G is strongly connected if every pair of vertices is connected by a directed path. Thus, if G
is strongly connected, G contains both a uυ-path and a υu-path, for every u and υ. It follows that every
vertex of G is contained in a directed cycle. A digraph which is strongly connected is said to be strong. Notice
that a strong digraph does not have to be 2-connected. It may contain one or more cut-vertices.
By default, the complete digraph K1 is strong, since it does not have a pair of vertices. If G is acyclic, then
the only strong subgraphs of G are the individual nodes. But if G contains any directed cycle, then G will
contain one or more non-trivial strongly connected subgraphs. A subgraph H is a strong component of G if it
is a maximal strongly connected subgraph; that is, H is strong, and G has no larger subgraph containing H
which is also strong. Figure 10.3 shows a digraph G with four strong components. The edges of the strong
components are indicated by thicker lines. Two of the strong components are single vertices, which are
shaded black.
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FIGURE 10.3
Strong components
Notice that every vertex of G is contained in exactly one strong component, but that some edges of G need
not be contained in any strong component. Exercise 10.4.1. shows that this definition of strong components is
well-defined.
If G1, G2,…, Gm are the strong components of G, we can construct a new digraph by contracting each strong
component into a single vertex.
DEFINITION 10.1: Let G1, G2,…, Gm be the strong components of G. The condensation of G is the digraph
whose vertices are G1, G2,…, Gm, and whose edges are all ordered pairs (Gi,Gj) such that G has at least one
edge directed from a vertex of Gi to a vertex of Gj.
It is proved in Exercise 10.4.3 that the condensation is an acyclic digraph.
Exercises
10.4.1 Suppose that H is a strong subgraph of G such that H is contained in two larger strong subgraphs:
H≤H1 and H≤H2, where H1 and H2 are both strong. Show that  is strong. Conclude that the strong
components of G are well-defined.
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10.4.2 Show that an edge (u,υ) is contained in a strong component if and only if (u,υ) is contained in a
directed cycle.
10.4.3 Find the condensation of the digraph of Figure 10.3. Prove that the condensation of a digraph is always
acyclic.
10.4.4 The converse of a digraph is obtained by reversing the direction of each edge. A digraph is self-
converse if it is isomorphic to its converse. Find all self-converse simple digraphs on one, two, three, and four
vertices.
10.4.5 Show that the condensation of the converse is the converse of the condensation.
10.4.6 Let G be a self-converse simple digraph, and let G′ be the converse of G. Let θ be an isomorphism of
G with G′, so that θ is a permutation of V(G)=V(G′). Prove that θ has at most one cycle of odd length. Find
the possible cycle structures of θ when G has at most five vertices. Use this to find all the self-converse
digraphs on five vertices.
In this section, we present an algorithm to find the strong components of a digraph G. It is based on a depth-
first search. It is very similar to the DFS used to find the blocks of a graph in Chapter 6, and to the DFS used
above to find a topological ordering in an acyclic digraph. When finding a topological ordering, we saw that in
a digraph G, Algorithm 10.3.2 constructs a spanning forest of outdirected, rooted trees. Each time DFS(u) is
called, a DF-tree rooted at u is built. The edges of G can be classified as either tree-edges or fronds. For
example, a spanning forest for the graph of Figure 10.3 is shown in Figure 10.4 below. The fronds are shown
as dashed edges. Not all the fronds are shown, as can be seen by comparing Figures 10.3 and 10.4. The
numbering of the nodes is the DF-numbering.
Let the components of the spanning forest constructed by a depth-first search in a graph G be denoted T1,
T2, …, Tk, where the Ti were constructed in that order. Figure 10.4 has k=3. Each Ti is an out-directed,



cover

file:///G|/SMILEY/0203489055__gigle.ws/0203489055/files/__joined.html[01/10/2009 15:18:30]

rooted tree. Notice that each strong component of G is contained within some Ti, and that each Ti may
contain more than one strong component. Fronds can be directed from a tree Ti to a previous tree Tj, where
j<i, but not to a later tree, by nature of the depth-first search.
Given any vertex υ, υ is contained in some Ti. The set of ancestors of υ is A(υ), all vertices (except υ)
contained in the path in Ti from υ to the root of Ti. When DFS(υ) is called, it will in turn call DFS(w) for
several vertices w. The branch of Ti at υ containing w is the sub-tree built by the recursive call DFS (w). For
example, in Figure 10.4, there are two branches at vertex 4, constructed by the recursive calls DFS(5) and
DFS(7). If x is any vertex for which  we write Bυ(x) for the branch at υ containing x. In Figure 10.4
above, we have B4(7)=B4(8) and B4(5)=B4(6).
LEMMA 10.1 Suppose that a depth-first search in G is visiting vertex υ, and that G−A(υ) contains a directed
path from υ to w. Then vertex w will be visited before the algorithm returns from visiting υ.
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FIGURE 10.4
A depth-first, rooted, spanning forest
PROOF Exercise 10.4.1.
This lemma allows us to classify the fronds of G with respect to a depth-first forest.
THEOREM 10.2 Let T1, T2,…, Tkbe the components of a depth-first spanning forest of G, where the Ti were
constructed in that order. Let (x,y) be a frond, where Then there are three possibilities:
1. where j<i.
2. and one of x and y is an ancestor of the other.
3. and x and y are in different branches of a common ancestor υ, where Bυ(y) was searched before
Bυ(x).
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PROOF Let (x,y) be a frond, where  If  where j≠i, then we must have j<i, for otherwise the
previous lemma tells us that y would be visited before DFS(x) returns, so that x would be an ancestor of y.
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Otherwise x,  If x is visited before y, then the previous lemma again tells us that x would be an
ancestor of y. This gives the second case above. Otherwise y is visited before x. If G contains a directed yx-
path, then we have y an ancestor of x, again the second case above. Otherwise there is no directed yx-path.
The paths in Ti from x and y to the root of Ti first meet in some vertex υ. Then Bυ(y) was searched before
Bυ(x), giving Case 3.
We call a frond (x,y) type 1, 2, or 3 according to whether it falls in Case 1, 2, or 3 in Theorem 10.2. Fronds of
type 1 cannot be part of any directed cycle since there are no edges from Tj to Ti when j<i. Therefore these
fronds are not in any strong component. Consequently each strong component is contained within some Ti. A
frond of type 2 creates a directed cycle, so that all edges of Ti on the path connecting x to y are in the same
strong component. The low-point technique used to find blocks in Chapter 6 will work to find these cycles. A
frond (x,y) of type 3 may or may not be part of a directed cycle. Consider the frond (7, 5) in Figure 10.4.
Vertices 7 and 5 are in different branches at vertex 4. Since 4 is an ancestor of 7, we have a directed path (4,
7, 5). If we were to compute low-points, we would know that the low-point of 5 is vertex 3, an ancestor of 4.
This would imply the existence of a directed cycle containing 3, 4, 7, and 5, namely, (3,4,7,5,6). So we find
that 7 is in the same strong component as 5 and that the low-point of 7 is also 3.
We can build the strong components of G on a stack. Define the low-point of a vertex υ to be
LowPt[υ]=the smallest DFNum[w],
where either w=υ or  and G contains a directed path from υ to w. The main component of
Algorithm 10.4.1 to compute the strong componets just initiallizes the variables and calls Proceedure DFS() to
build each rooted tree of the spanning forest and to compute the low-points. We assume that Proceedure
DFS() has access to the variables of the calling program as globals. The algorithm stores the vertices of each
strong component on a stack, stored as an array. As before, we have the DFNum[·] and LowPt[·] arrays. We
also store the Stack[·] as an array of vertices. OnStack [υ] is true if υ is on the stack. DFCount is a global
counter. Top is a global variable giving the index of the current top of the stack.
The Procedure DFS() computes the low-points and builds the stack. The algorithm begins by stacking each
vertex that it visits. The vertices on the stack will form the current strong component being constructed.
LowPt[υ] is initiallized to DFNum[υ]. Each w such that  is taken in turn. The statements at point (1)
extend the DFS from vertex υ to w. Upon returning from the recursive
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call, LowPt[υ] is updated. Since  and G contains a directed path from w to LowPt[w], we update
LowPt[υ] if LowPt[w] is smaller.
The statements at point (2) are executed if υw is a frond. If DFNum[w]> DFNum[υ], it means that υ is an
ancestor of w. These fronds are ignored. Otherwise w was visited before υ. If w is the parent of υ, υw is a
tree edge rather than a frond, and is ignored. If w is no longer on the stack, it means that w is in a strong
component previously constructed. The edge υw cannot be part of a strong component in that case, so it is
also ignored. If each of these tests is passed, G contains a directed path from υ to LowPt[w], which is in the
same strong component as w. Therefore υ and w are in the same strong component. If this value is smaller
than LowPt[υ], then LowPt[υ] is updated. Statement (3) is reached after all w adjacent to υ have been
considered. At this point the value of LowPt[υ] is known. If LowPt[υ]=DFNum[υ], it means that there is no
directed path from υ to any ancestor of υ. Every vertex of the strong component containing υ has been
visited, and so is on the stack. These vertices are then popped off the stack before returning.
The complexity of Algorithm 10.4.1 is easily seen to be O(n+ε). For each vertex υ, all out-edges υw are
considered, giving

 
steps. Some arrays of length n are maintained. Each node is stacked once, and removed once from the stack.
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Algorithm 10.4.1: STRONGCOMPONENTS (G,n)

comment: Find the strong components using a depth-first search.
procedure DFS(υ)

comment: extend the depth-first search to vertex υ
DFCount←DFCount+1
DFNum[υ]←DFCount

LowPt[υ]←DFCount “initial value”
Top←Top+1
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Stack[Top]←υ “push υ on Stack”
OnStadc[υ]←true

for each w such that 

if LowPt[υ]=DFNum[υ] (3)

main
for u←1 to n

DFCount←0
Top←0

for u←1 to n
do if DFNum[u]=0

then DFS(u)
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10.4.1 An application to fabrics
A fabric consists of two sets of strands at right angles to each other, called the warp and weft, woven
together. The pattern in which the strands are woven can be represented by a rectangular matrix. Let the
horizontal strands be h1, h2,…, hm and let the vertical strands be υ1, υ2,…, υn. The matrix shown below
contains an X wherever hi passes under υj, and a blank otherwise. The pattern can be repeated as often as
desired.

 
Suppose that the strand h1 were lifted. Since it passes under υ1, υ3, υ4, and υ6, these vertical strands would
also be lifted. But since υ1 passes under h2, this would in turn lift h2. Similarly lifting h2 would cause υ2 to be
lifted, which in turn causes h3 to be lifted. So the fabric hangs together if any strand is lifted.
For some pattern matrices, it is quite possible that the fabric defined does not hang together. For example, in
the simplest case, a strand hi could lie under or over every υj, allowing it to be lifted off the fabric, or the
fabric could fall apart into two or more pieces. In general, we can form a bipartite directed graph whose
vertices are the set of all strands. The edges are

{(u, w): strand u lies under strand w}.  
Call this the fabric graph. It is an oriented complete bipartite graph. If the fabric graph is strongly connected,
then it hangs together, since there is a directed path from any strand to another. If the fabric graph is not
strongly connected, then it can be separated into its strong components. Some strong component will lie
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completely over another strong component, and be capable of being lifted off.
Exercises
10.4.1 Prove Lemma 10.1.
10.4.2 Program the algorithm for strong components, and test it on the digraphs of Figures 10.1, 10.2, 10.3,
10.5, and 10.6.
10.4.3 Find all digraphs which can be obtained by orienting a cycle of length 5 or 6.
10.4.4 Determine whether the fabric defined by the pattern matrix in Figure 10.7 hangs together.
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FIGURE 10.5
Find the strong components

FIGURE 10.6
Find the strong components

FIGURE 10.7
A pattern matrix

page_237

Page 238
10.5 Tournaments
In a round-robin tournament with n teams, each team plays every other team. Assuming that ties are not
allowed, we can represent a win for team u over team υ by a directed edge (u,υ). When all games have been
played we have a directed complete graph. We say that a tournament is any oriented complete graph. It is
easy to see that there are exactly two possible tournaments on three vertices, as shown in Figure 10.8.
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FIGURE 10.8
The tournaments on three vertices
The second of these tournaments has the property that if  and  then  Any
tournament which has this property for all vertices u, υ, w, is called a transitive tournament. It is easy to see
that there is a unique transitive tournament Tn for each n≥1. For if Tn is a transitive tournament, there must
be a unique node u that is undefeated. If we delete it, we are left with a transitive tournament on n−1
vertices. We use induction to claim that this is the unique Tn−1 When u is restored, we have the uniqueness
of Tn.
If G is any tournament on n vertices, it will have a number of strong components. Let G* denote its
condensation. Then since G* is acyclic, it is a transitive tournament on m≤n vertices. We can find a
topological ordering of V(G*), and this will define an ordering of the strong components of G. We can then
make a list of the possible sizes of the strong components of G, ordered according to the topological ordering
of G*. We illustrate this for n=4. The possible sizes of the strong components are (1, 1, 1, 1), (1, 3), (3, 1),
and (4), since a simple digraph cannot have a strong component with only two vertices. The first ordering
corresponds to the transitive tournament T4. The orderings (1, 3) and (3, 1) correspond to the first two
tournaments of Figure 10.9. It is easy to see that they are unique, since there is only one strong tournament
on three vertices, namely the directed cycle.
The third tournament is strongly connected. We leave it to the reader to verify that it is the only strong
tournament on four vertices. The following theorem will
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FIGURE 10.9
Non-transitive tournaments on 4 vertices
be helpful. A digraph is said to be hamiltonian if it contains a directed hamilton cycle.
THEOREM 10.3 Every strong tournament on n≥3 vertices is hamiltonian.
PROOF Let G be a strong tournament, and let C=(u1, u2, …, uk) be the longest directed cycle in G. If G is
non-hamiltonian then ℓ(C)<n. Pick any  Because G is a tournament, either  or else 
Without loss, suppose that  If  then we can produce a longer cycle by inserting υ between
u1and u2. Therefore  If  then we can produce a longer cycle by inserting υ between u2
and u3. Therefore  etc. Eventually we have  for all ui. This is impossible, since G is strong.
We finish this section with the following theorem ??.
THEOREM 10.4 (Robbins’ Theorem)
Every 2-connected graph has a strong orientation.
PROOF Let G be a 2-connected graph. Then G contains a cycle C, which has a strong orientation. Let H be a
subgraph of G with the largest possible number of vertices, such that H has a strong orientation. If 
then since G is 2-connected, we can find two internally disjoint paths P and Q connecting u to H. Orient P
from u to H, and Q from H to u. This gives a strong orientation of a larger subgraph than H, a contradiction.
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Exercises
10.5.1 Show that there is a unique strong tournament on four vertices.
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10.5.2 Find all the tournaments on five vertices. Show that there are exactly 12 tournaments, of which 6 are
strong.
10.5.3 Show that every tournament has a hamilton path.
10.5.4 Show that if an odd number of teams play in a round robin tournament, it is possible for all teams to
tie for first place. Show that if an even number of teams play, it is not possible for all teams to tie for first
place.
10.5.5 Prove the following theorem. Let G be a digraph on n vertices such that d+(u)+ d−(υ)≥n whenever 

 Then G is strong.
10.5.6 Describe a O(n+ε) algorithm to find a strong orientation of a 2-connected graph.
10.5.7 Show that every connected graph has an acyclic orientation.
10.6 2-Satisfiability
In Chapter 9 we saw that 3-Sat is NP-complete. The related problem 2-Sat  P. It has a number of practical
applications.

Problem 10.1: 2-Sat
Instance:a set of boolean variables U and a boolean expression B over U, in which each clause contains

exactly two variables.
Question:is B satisfiable?
Consider the following instance of 2-Sat:

(u1+u2)(u1+ū2)(u2+u3)(ū1+ū3)  
We want a truth assignment satisfying this expression. If u1=false, the first clause tells us that u2=true. We
could write this implication as ū1→u2. The second clause tells us that if u1=false, then u2=false. We could
write this implication as ū1→ū2. As this gives a contradiction, we conclude that u1=true is necessary.
Continuing in this line of reasoning quickly gives the solution.
This example shows that a clause (x+y) of an instance of 2-Sat, where x,  corresponds to two
implications  and  We can construct a digraph with edges based on these implications.
Given an instance of 2-Sat with variables U and boolean expression B, construct a digraph G whose vertex set
is  The edges of G consist of all ordered

page_240

Page 241
pairs  and  where (x+y) is a clause of B. G is called the implication digraph of B. The implication
digraph corresponding to the above expression is shown in Figure 10.10. A sequence of implications 

 corresponds to a directed path in G. Thus, directed paths in G are important. If any variable in a
directed path is assigned the value true, then all subsequent variables in the path must also be true.
Similarly, if any variable in a directed path is assigned the value false, then all previous variables must also
be false. If G contains a directed cycle C, then all variables of C must be true, or all must be false. We are
talking about the strong components of G.

FIGURE 10.10
The implication digraph corresponding to an instance of 2-Sat
The graph G has an antisymmetry—if there is an edge (x, y), then there is also an edge  as can be seen
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from the definition. Therefore the mapping of V(G) that interchanges every ui and ūi reverses the orientation
of every edge.
Let G1, G2,…, Gm be the strong components of G. The variables in any strong component are either all true,
or all false. If any strong component contains both ui and ūi, for any i, then the expression B is not
satisfiable; for ui and ūi cannot be both true, or both false. So if B is satisfiable, ui and ūi are in different
strong components.
The antisymmetry maps each strong component Gj to another strong component G′j, the complementary
strong component, such that x is in Gj if and only if  is in G′j. If all variables of Gj are true, then all
variables of G′j must be false, and conversely. This gives the following algorithm for 2-Sat:
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Algorithm 10.6.1: 2SAT(B,U)

construct the implication digraph G corresponding to B
construct the strong components of G

for each 
do if u and ū are in the same strong component

then return (NonSatisfiable)
construct the condensation of G, and find a topological ordering of it

let G1, G2,…, Gm be the topological ordering of the strong components
for i←m downto 1

In the graph of Figure 10.10 there are two strong components—the shaded vertices and the unshaded
vertices. The condensation is a digraph with one edge, directed from left to right. The algorithm will assign
true to all variables in the shaded strong component, and false to all variables in the unshaded one. This is
the unique solution for this instance of 2-Sat.
THEOREM 10.5 Given an instance B of 2-Sat with variables U. Algorithm 2SAT(B,U)finds a solution if and only
if a solution exists.
PROOF Every clause (x+y) of B corresponds to two implications  and  The implication
digraph G contains all these implications. Any assignment of truth values to the variables that satisfies all
implications satisfies B. If some strong component of G contains both ui and ūi for some variable ui, then
there is no solution. The algorithm will detect this. Otherwise, ui and ūi are always in complementary strong
components. The algorithm assigns values to the variables such that complementary strong components
always have opposite truth values. Therefore, for every ui and ūi exactly one will be true, and one will be
false. Consider a variable  Suppose that x is in a strong component Gj. Its complement  is in G′j.
Without loss, suppose that G′j precedes Gj in the topological order. Then x will be assigned true and  will
be assigned false. All clauses (x+y) containing x are thereby satisfied. All clauses  containing 
correspond to implications x→z and  It follows that z is either in the same strong component as x, or
else in a strong component following Gj, and  is in a strong component preceding G′j. In either case, the
algorithm has already assigned z←true, so that the clause  is also satisfied. We conclude that
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the truth assignment constructed by the algorithm satisfies B.
This also gives the following theorem.
THEOREM 10.6 Given an instance B of 2-Sat with variables U. B is satisfiable if and only if, for every 
ui and ūi are contained in different strong components of the implication digraph.
If U has n variables, and B has k clauses, the implication graph G will have 2n vertices and 2k edges. It takes
O(n+k) steps to construct G, and O(n+k) steps to find its strong components, and to construct a topological
order of them. It then takes O(n) steps to assign the truth values. Thus, we have a linear algorithm that
solves 2-Sat.
Exercises
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10.6.1 Construct the implication digraph for the following instance of 2-Sat.
(u1+u2)(ū1+u3)(ū3+ū4)(u1+u4)(ū2+ū5)(u5+ū6)(u2+u6)(ū3+u4)
10.6.2 Solve the previous instance of 2-Sat.
10.6.3 Given an instance of 2-Sat with the additional requirement that u1=true. Show how to convert this
into an instance of 2-Sat and solve it. Show also how to solve it if u1 is required to be false.
10.6.4 Consider an instance of Sat in which each clause has exactly two variables, except that one clause has
three or more variables. Describe an algorithm to solve it in polynomial time.
10.7 Notes
An excellent reference for digraphs is BANG-JENSEN and GUTIN [8]. The algorithms for strong components is
from AHO, HOPCROFT, and ULLMAN [1]. Strong components and 2-satisfiability are further examples of the
importance and efficiency of the depth-first search. The subject of tournaments is a vast area. A survey can
be found in REID and BEINEKE [102]. A good monograph on the topic is MOON [89].
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11 
Graph Colorings
11.1 Introduction
A coloring of the vertices of a graph G is an assignment of colors to the vertices. A coloring is proper if
adjacent vertices always have different colors. We shall usually be interested only in proper colorings. It is
clear that the complete graph Kn requires n distinct colors for a proper coloring. Any bipartite graph can be
colored in just two colors. More formally,
DEFINITION 11.1: An m-coloring of G is a mapping from V(G) onto the set {1, 2, …, m} of m “colors”. The
chromatic number of G is χ(G), the minimum value m such that G has a proper m-coloring. If χ(B)=m, G is
then said to be m-chromatic.
If G is bipartite, we know that χ(G)=2. Moreover, there is a O(ε) algorithm to determine whether an arbitrary
G is bipartite, and to construct a 2-coloring of it. When χ(G)≥3, the problem becomes NP-complete. We show
this in Section 11.7. (See Problem 11.1.) A consequence of this is that there is no complete theoretical
characterization of colorability. As with the Hamilton cycle problem, there are many interesting techniques, but
most problems only have partial solutions. We begin with a simple algorithm for coloring a graph, the
sequential algorithm. We will indicate various colorings of G by the notation χ1, χ2,…, etc. While χ(G)
represents the chromatic number of G, there may be many colorings of G that use this many colors. If χ1 is a
coloring, then χ1(υ) represents the color assigned to vertex υ under the coloring χ1.
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Algorithm 11.1.1: SEQUENTIALCOLORING(G,n)

comment: Construct a coloring χ1 of a graph G on n vertices
mark all vertices “uncolored”

order V(G) in some sequence υ1, υ2,…, υn
for i←n downto 1

do χ1(υi)← the first color available for υi
To calculate the first available color for υi, we consider each u→υi. If u is already colored, we mark its color
“in use”. We then take the first color not in use as χ1(υi), and then reset the color flags before the next
iteration. Thus, iteration i of the for-loop takes O(DEG(υi)) steps. Algorithm 11.1.1 is then easily seen to be
O(ε). The number of colors that it uses usually depends on the sequence in which the vertices are taken.
If we knew a proper χ(G)-coloring before beginning the algorithm, we could order the vertices by color: all
vertices of color 1 last, then color 2, etc. Algorithm 11.1.1 would then color G in exactly χ(G) colors. Since we
don’t know χ(G) beforehand, we investigate various orderings of V(G).
Spanning trees often give useful orderings of the vertices. We choose a vertex υ1 as a root vertex, and build
a spanning tree from it. Two immediate possibilities are a breadth-first or depth-first tree. The ordering of the
vertices would then be the order in which they are numbered in the spanning tree. This immediately gives the
following lemma.
LEMMA 11.1 If G is a connected, non-regular graph, then χ(G)≤Δ(G). If G is regular, then χ(G)≤Δ(G)+1.
PROOF Assume first that G is non-regular, and choose a vertex υ1 of degree <Δ(G) as the root of a
spanning tree. Apply Algorithm 11.1.1 to construct a coloring χ1. When each vertex υi≠υ1 comes to be
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colored, the parent of υi has not yet been colored. Therefore at most DEG(υi)−1 adjacent vertices have
already been colored. Hence χ1(υi)≤Δ(G). When υ1 comes to be colored, all adjacent vertices have already
been colored. Since DEG(υ1)<Δ(G), we conclude that χ1(υ1)≤Δ(G). Hence χ(G)≤Δ(G).
If G is regular, then the proof proceeds as above, except that χ1(υ1)≤Δ(G)+ 1. The conclusion follows.
Notice that if G is regular, only one vertex needs to use color Δ(G)+1.
If Algorithm 11.1.1, using a breadth-first or depth-first spanning tree ordering, is applied to a complete graph
Kn, it is easy to see that it will use exactly n colors. If the algorithm is applied to a cycle Gn, it will always use
two colors if n is even,
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and three colors, if n is odd. Complete graphs and odd cycles are special cases of Brooks’ theorem.
THEOREM 11.2 (Brooks’ theorem) Let G be a connected graph that is not a complete graph, and not an
odd cycle. Then χ(G)≤Δ(G).
PROOF Suppose first that G is 3-connected. If G is non-regular, we know the result to be true. Hence we
assume that G is a regular graph. Since G is not complete, we can choose vertices u, υ, w such that u→υ,w,
but  Construct a spanning tree ordering of G−{υ,w}, with u as root, so that υ1=u. Then set υn−1=υ,
υn=w, and apply Algorithm 11.1.1 to construct a coloring χ1 of G. Vertices υ and w will both be assigned
color 1. Each υi≠υ1 will have χ1(υi)≤Δ(G). When υ1 comes to be colored, the two adjacent vertices υ and w
will have the same color. Hence χ1(υ1)≤Δ(G).
Otherwise G is not 3-connected. Suppose that G is 2-connected. Choose a pair of vertices {u,υ}, such that
G−{u,υ} is disconnected. If H is any connected component of G−{u,υ}, let Huυ be the subgraph of G+uυ
induced by  Now G is regular, of degree at least three (or G would be a cycle). Therefore we
can choose u and υ so that Huυ is a non-regular graph. Therefore χ(Huυ)≤Δ(Huυ). But Δ(Huυ)≤Δ(G). Color
Huυ in at most Δ(G) colors. Notice that u and υ have different colors, because  We can do the
same for every subgraph Kuυ so constructed from each connected component of G−{u,υ}. Furthermore, we
can require that u and υ are colored identically in each Kuυ, by permuting colors if necessary. These subgraph
colorings determine a coloring of G with at most Δ(G) colors.
If G is not 2-connected, but has a cut-vertex u, we use an identical argument, deleting only u in place of
{u,υ}.
11.1.1 Intersecting lines in the plane
An interesting example of the use of Algorithm 11.1.1 is given by intersecting lines in the plane. Suppose that
we are given a collection of m straight lines in the plane, with no three concurrent. Construct a graph G
whose vertices are the points of intersection of the lines, and whose edges are the line segments connecting
the vertices. An example is shown in Figure 11.1. We can use Algorithm 11.1.1 to show that χ(G)≤3. Notice
first that because at most two lines are concurrent at a point that we have Δ(G)≤4. Also note that G can be
enclosed by a disc in the plane. Choose a disc in the plane containing G, and choose a line ℓ in the plane that
is outside the disc, such that ℓ is not parallel to any of the original m lines. The dotted line in Figure 11.1
represents ℓ. Assign an orientation to the edges of G by directing each edge toward ℓ. This converts G to an
acyclic digraph. Notice
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that each vertex has at most two incident edges oriented outward, and at most two oriented inward. Let υ1,
υ2,…, υn be a topological ordering of V(G). Apply Algorithm 11.1.1. The vertices of G have degree two, three,
or four. When each υi comes to be colored, at most two adjacent vertices have already been colored—those
incident on out-edges from υi. Therefore χ1(υi)≤3, for each υi. It follows that χ(G)≤3.
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FIGURE 11.1
Intersecting lines in the plane
Exercises
11.1.1 Write computer programs to apply the sequential algorithm using breadth-first and depth-first
searches, and compare the colorings obtained.
11.1.2 Show that if a breadth-first or depth-first sequential algorithm is applied to a bipartite graph, that
exactly two colors will be used.
11.1.3 Construct a complete bipartite graph Kn,n with bipartition X={x1,x2,…,xn}, Y={y1, y2, …, yn}, and
remove the matching M={x1y1, …, xnyn}, to get G=Kn,n−M. Order the vertices x1, y1, x2, y2,…, xn, yn.
Show that Algorithm 11.1.1 with this ordering will use n colors.
11.1.4 Construct a complete tripartite graph Kn,n,n with tripartition X={x1,x2,…, xn}, Y={y1, y2,…, yn},
Z={z1, z2, …, zn}, and remove the triangles T={x1y1z1,…,xnynzn}, to get G=Kn,n,n−T. Order the vertices
x1, y1, z1, x2, y2, z2,…, xn, yn, zn. Show that Algorithm 11.1.1 with this ordering will use n colors. How
many colors will be used by the breadth-first sequential algorithm?
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11.1.5 Show that in the intersecting lines problem, if three or more lines are allowed to be concurrent, that
χ(G) can be greater than three.
11.1.6 Let G1 and G2 be graphs with m-colorings χ1 and χ2, respectively. We say that G1 and G2 are color-
isomorphic if there is an isomorphism θ from G1 to G2 that induces a permutation of the colors. More
formally, if u1,  are mapped by θ to υ1,  respectively, then χ1(u1)=χ1 (u2) if and only
if χ2(υ1)=χ2(υ2). Show how to construct graphs  and  such that G1 and G2 are color-isomorphic if and
only if  and  are isomorphic.
11.1.7 Determine whether the graphs of Figure 11.2 are color-isomorphic, where the colors are indicated by
the numbers.
11.1.8 Let the vertices of G be listed in the sequence υ1, υ2,…, υn and apply Algorithm 11.1.1. Show that
χ1(υi) isatmost min{n−i+1, DEG(υi)+1}. Conclude that 

FIGURE 11.2
Are these color-isomorphic?
11.2 Cliques
Let G be a graph with a proper coloring. The subset of vertices of color i is said to be the color class with
color i. These vertices induce a subgraph with no edges. In  they induce a complete subgraph.
DEFINITION 11.2: A clique in G is an induced complete subgraph. Thus a clique is a subset of the vertices
that are pairwise adjacent. An independent set is
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a subset of V(G) which induces a subgraph with no edges. A clique is a maximum clique if G does not contain
any larger clique. Similarly, an independent set is a maximum independent set if G does not contain any larger
independent set. An independent set is also called a stable set.
The problem of finding a maximum clique or maximum independent set in G is NP-complete, as shown in
Section 11.7.
Write α(G) for the number of vertices in a maximum independent set in G, and  for the number of
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vertices in a maximum clique. It is clear that χ(G)≥  since a clique in G of m vertices requires at least m
colors. If we are given a coloring χ1 of G and χ2 of  let Vmax be a largest color class in G, and let 
be a largest color class in  Since  induces a clique in G, we have  Since each color
class is an independent set, α(G)≥|Vmax|.
This gives the bounds

 
and

 

Although we don’t know χ(G) and  we can use the sequential Algorithm 11.1.1 to construct colorings χ1
and χ2 of G and  so as to obtain bounds on the clique number and independent set number of G and 
We write χ1(G) to denote the number of colors used by the coloring χ1.

LEMMA 11.3 If χ1 and χ2 satisfy then If χ1and χ2satisfy 
 then 

PROOF The inequalities above hold for any proper colorings χ1 and χ2. If  then the second
inequity determines α(G). Therefore  is at least as big as this number. But since we have a coloring in 

 colors, this determines 

Thus, by using Algorithm 11.1.1 to color both G and  we can obtain bounds on  and 
Sometimes this will give us exact values for some of these parameters. When it does not give exact values, it
gives colorings χ1 and χ2, as well as a clique  and independent set Vmax in G. In general, Algorithm
11.1.1 does not construct colorings that are optimal, or even nearly optimal. There are many variations of
Algorithm 11.1.1. Improvements to Algorithm 11.1.1 will give improvements in the above bounds, by
decreasing the number of colors used, and increasing the size of the maximum color classes found. One
modification that is found to work well in practice is the degree saturation method, which orders the vertices
by the “saturation” degree.
Consider a graph G for which a coloring χ1 is being constructed. Initially all vertices are marked uncolored. On
each iteration of the algorithm, another vertex
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is colored. For each vertex, let c(υ) denote the number of distinct colors adjacent to υ. c(υ) is called the
saturation degree of υ. Initially c(υ)=0. At any stage of the algorithm the vertices are partially ordered. A
vertex u such that the pair (c(u), DEG(u)) is largest is chosen as the next vertex to color; that is, vertices are
compared first by c(u), then by DEG(u).

Algorithm 11.2.1: DEGREESATURATION(G, n)
comment: Construct a coloring χ1 of a graph G on n vertices

mark all vertices “uncolored”
initialize c(υ)←0, for all υ

for i←1 to n

 
Algorithm 11.2.1 requires a priority queue in order to efficiently select the next vertex to color. In practice, it
is found that it uses significantly fewer colors than Algorithm 11.1.1 with a fixed ordering of the vertices.
However, algorithms based on the sequential algorithm are limited in their efficacy. JOHNSON [69] discusses
the limitations of many coloring algorithms based on the sequential algorithm.
The first vertex, u1, that Algorithm 11.2.1 colors will be one of maximum degree. The second vertex, u2, will
be a vertex adjacent to u1 of maximum possible degree. The third vertex, u3, will be adjacent to u1 and u2,
if there is such a vertex, and so on. Thus, Algorithm 11.2.1 begins by constructing a clique of vertices of large
degree. The algorithm could save this information, and use it as a lower bound on 
A recursive search algorithm MAXCLIQUE() to find a maximum clique can be based on a similar strategy.
Algorithm 11.2.2 that follows constructs cliques C′ The maximum clique found is stored in a variable C. C and
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C′ are stored as global arrays. It also uses an array S of vertices eligible to be added to C′. The set of all
neighbors of υ is denoted by N(υ).
This algorithm builds a clique C′ and tries to extend it from a set S′ of eligible vertices. When |C′|+|S′| is
smaller than the largest clique found so far, it backtracks. The performance will depend on the ordering of the
vertices used. As with Algorithm 11.2.1, the ordering need not be chosen in advance, but can be constructed
as the algorithm progresses. For example, υi might be selected as a vertex of largest degree in the subgraph
induced by the vertices not yet considered. If a maximum clique is found early in the algorithm, the remaining
calls to EXTENDCLIQUE() will finish more quickly. We can estimate the complexity by
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noticing that the loop in MAXCLIQUE() runs at most n times. After each choice of υi, the set S will contain at
most Δ(G) vertices. There are 2Δ(G) subsets of a set of size Δ(G). The algorithm might construct each subset
at most once. Therefore the complexity is at most O(n·2Δ(G)), an exponential value.

Algorithm 11.2.2: MAXCLIQUE(G, n)
comment: Construct a maximum clique C in G

procedure EXTENDCLIQUE(S, υ)
comment: υ has just been added to C′−adjust S and extend the clique

S′←S∩N(υ)
if |S′|=0

 
while |S′|>0 and |C′|+|S′|>|C|

 
main

choose an ordering υ1, υ2,…, υn of the vertices
 “largest clique found so far”

 “clique currently being constructed”
S←V(G) “vertices eligible for addition to C′”

i←1
while |S|>|C|

 
comment: C is now a maximum clique of size 
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11.3 Mycielski’s construction
A graph G which contains a 4-clique necessarily has χ(G)≥4. However, it is possible for a graph with no 4-
clique to have χ(G)≥4. Mycielski found a way to construct triangle-free graphs with arbitrarily large chromatic
number.
We start with a triangle-free graph G with χ(G)≥3. Any odd cycle with five or more vertices will do (e.g.,
G=C5). We now extend G to a graph G′ as follows. For each  we add a vertex υ' to G′ adjacent to
the same vertices of G that υ is adjacent to. We now add one more vertex υ0 adjacent to each υ'. Thus, if G
has n vertices, G′ will have 2n+1 vertices. Refer to Figure 11.3.
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FIGURE 11.3
Mycielski’s construction
LEMMA 11.4 χ(G′)=χ(G)+1. Furthermore, G′ has no triangles if G has none.
PROOF Consider a coloring χ1 of G′. Since it induces a coloring of G, we conclude that χ(G′)≥χ(G). Let
m=χ(G). Some vertex of G with color number m is adjacent to m−1 other colors in G; for otherwise each
vertex of color m could be recolored with a smaller color number. It follows that the vertices υ' must be
colored with at least χ(G) colors. In fact, we could assign each χ1(υ′)=χ1(υ). The vertex υ0 is adjacent to
χ(G) colors, so that χ1(υ0)= m+1. It follows that χ(G′)=χ(G)+1. It is easy to see that G′ has no triangles,
because G has none.
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By iterating Mycielski’s construction, we can construct triangle-free graphs with large chromatic numbers. In
fact, if we begin the construction with G=K2, the result is C5. Or we could start Mycielski’s construction with
a graph which contains triangles, but is K4-free, and construct a sequence of K4-free graphs with increasing
chromatic numbers, and so forth.
11.4 Critical graphs
Let G be a graph with χ(G)=m. If we remove an edge uυ from G, there are two possibilities, either
χ(G−uυ)=m or χ(G−uυ)=m−1. In the latter case, we say that edge uυ is critical.
DEFINITION 11.3: A graph G is critical if χ(G−uυ)=χ(G)−1 for all edges  If χ(G)=m, we say that
G is m-critical.
It is easy to see that every graph contains a critical subgraph. If χ(G−uυ)= χ(G) for some edge uυ, we can
remove uυ. Continue deleting edges like this until every edge is critical. The result is a critical subgaph.
Critical graphs have some special properties.
LEMMA 11.5 If G is m-critical, then δ(G)≥m−1.
PROOF If DEG(u)<m−1, choose an edge uυ, and color G−uυ with m−1 colors. Since DEG(u)<m−1, there
are at most m−2 adjacent colors to u in G. So there is always a color in{1, 2,…, m−1} with which u can be
colored to obtain an (m−1)-coloring of G, a contradiction.
If G is an m-critical graph, then G has at least m vertices, and each has degree at least m−1. Therefore every
graph with χ(G)=m has at least m vertices of degree ≥m−1.
LEMMA 11.6 Every critical graph with at least three vertices is 2-connected.
PROOF Suppose that G is an m-critical graph with a cut-vertex υ. Let H be a connected component of G−υ,
and let Hυ be the subgraph induced by  Color Hυ with ≤m−1 colors. Do the same for every such
subgraph Hυ. Ensure that υ has the same color in each subgraph, by permuting colors if necessary. The
result is a coloring of G in ≤m−1 colors, a contradiction.
The ideas of the Lemma 11.6 can be extended to separating sets in general.

page_254

Page 255
LEMMA 11.7 Let S be a separating set in an m-critical graph G. Then S does not induce a clique.
PROOF If S is a separating set, let H be a component of G−S, and consider the subgraph HS induced by 

 It can be colored in m−1 colors. The vertices of S are colored with |S| distinct colors, which can
be permuted in any desired way. Do the same for every component of G−S. The result is a coloring of G in
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m−1 colors.
It follows from this lemma that if {u, υ} is a separating set in an m-critical graph, that  Suppose
that {u, υ} is a separating set. Let H be a component of G−{u, υ}, and let K be the remaining components.
Construct Huυ induced by  and Kuυ induced by Huυ and Kuυ can both be
colored in m−1 colors. If Huυ and Kuυ both have (m−1)-colorings in which u and υ have different colors,
then we can use these colorings to construct an (m−1)-coloring of G. Similarly, if Huυ and Kuυ both have
(m−1)-colorings in which u and υ have the same color, we can again construct an (m−1)-coloring of G. We
conclude that in one of them, say Huυ, u and υ have the same color in every (m−1)-coloring; and that in
Kuυ,u and υ have different colors in every (m−1)-coloring.
Now consider the graph H′=Huυ+uυ. It cannot be colored in m−1 colors, however H′−uυ can be. Let xy be
any other edge of H′. Then G−xy can be colored in m−1 colors. Now Kuυ is a subgraph of G−xy. Therefore u
and υ have different colors in this coloring. It follows that H′−xy can be colored in m−1 colors. Hence, H
′=Huυ+uυ is an m-critical graph.
Now consider the graph K′=(Kuυ+uυ)·uυ. It cannot be colored in m−1 colors, as this would determine an
(m−1)-coloring of Kuυ in which u and υ have the same color. Let xy be any edge of K′. It corresponds to an
edge x′y′ of G. G−x′y′ can be colored in (m−1) colors. Since Huυ is a subgraph of G, it follows that u and υ
have the same color. This then determines a coloring of K′−xy in (m−1) colors. Hence K′=(Kuυ+uυ)·uυ is
also an m-critical graph.
Exercises
11.4.1 Program Algorithm 11.2.1, and compare its performance with a breadth-first or depth-first sequential
algorithm.
11.4.2 Program the MAXCLIQUE() algorithm.
11.4.3 Let G be an m-critical graph, and let  Show that G has an m-coloring in which υ is the only
vertex of color number m.
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11.4.4 Let G be an m-critical graph. Apply Mycielski’s construction to obtain a graph G′. Either prove that G′ is
(m+1)-critical, or find a counterexample.
11.5 Chromatic polynomials
Suppose that we wish to properly color the complete graph Kn in at most λ colors, where λ≥n. Choose any
ordering of V(Kn). The first vertex can be colored in A choices. The next vertex in λ−1 choices, and so on.
Thus, the number of ways to color Kn is λ(λ−1)(λ−2)…(λ−n+1). This is a polynomial of degree n in λ.
DEFINITION 11.4: The chromatic polynomial of a graph G is π(G,λ), the number of ways to color G in ≤λ
colors.
In order to show that π(G, λ) is in fact a polynomial in λ, we use a method that is familiar from counting
spanning trees. We first find π(T, λ) for any tree T, and then give a recurrence for any graph G.
LEMMA 11.8 Let T be a tree on n vertices. Then π(T, λ)=λ(λ−1)n−1.
PROOF By induction on n. It is certainly true if n=1 or n=2. Choose a leaf υ of T, and let T′=T−υ. T′ is a
tree on n−1 vertices. Therefore π(T′, λ)=λ(λ−1)n−2. In any coloring of T′, the vertex adjacent to υ in T has
some color. There are λ−1 colors available for υ. Every coloring of T arises in this way. Therefore π(T,
λ)=λ(λ−1)n−1.
Suppose now that G is any graph. Let  In practice we will want to choose uυ so that it is an edge
on a cycle.
THEOREM 11.9 π(G, λ)=π(G−uυ, λ)−π(G·uυ, λ).
PROOF In each coloring of G−uυ in ≤λ colors, either u and υ have different colors, or they have the same
color. The number of colorings of G−uυ is the sum of these two. If u and υ have different colors, then we
have a coloring of G in ≤λ colors. Conversely, every coloring of G in ≤λ colors gives a coloring of G−uυ in
which u and υ have different colors. If u and υ have the same color in G−uυ, then this gives a coloring of
G·uυ. Any coloring of G·uυ in ≤λ colors determines a coloring of G−uυ in which u and υ have the same color.
We conclude that π(G−uυ, λ)=π(G, λ)+π(G·uυ, λ).
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One consequence of this theorem is that π(G,λ) is in fact a polynomial of degree n in λ. Now if n>0, then
λ|π(G,λ), since G cannot be colored in λ=0 colors. Similarly, if ε(G)≠0, we conclude that λ(λ−1)|π(G,λ), since
G cannot be colored in λ=1 color. If G is not bipartite, then it cannot be colored in λ=2 colors. In this case
λ(λ−1)(λ−2)|π(G,λ). In general:
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LEMMA 11.10 If χ(G)=m, then λ(λ−1)(λ−2)…(λ−m+1)|π(G,λ).
PROOF G cannot be colored in fewer than m colors. Therefore π(G,λ)=0, for λ=1,2,…,m−1.
Notice that if G contains an m-clique S, then χ(G)≥m, so that λ(λ−1)(λ− 2)…(λ−m+1) π(G,λ). There are
λ(λ−1)(λ−2)…(λ−m+1) ways to color S in ≤λ colors. The number of ways to complete a coloring of G, given
a coloring of S, is therefore π(G,λ)/λ(λ−1)(λ−2)…(λ−m+1).
Suppose that G has a cut-vertex υ. Let H be a connected component of G−υ, and let Hυ be the subgraph
induced by  Let Kυ be the subgraph G−V(H). Every coloring of G induces colorings of Hυ and Kυ,
such that υ has the same color in both. Every coloring of Hυ and Kυ occurs in this way. Given any coloring of
Hυ, there are π(Kυ,λ)/λ ways to complete the coloring of Kυ. It follows that π(G,λ)=π(Hυ,λ)π(Kυ,λ)/λ.
More generally, suppose that S is a separating set of G which induces an m-clique. Let H be a component of
G−S, and let HS be the subgraph induced by  Let KS be the subgraph G−V(H). We have:
LEMMA 11.11 Let S be a separating set which induces an m-clique in G. Let HSand Ksbe defined as above.
Then π(G,λ)=π(HS,λ)π(KS,λ)/λ(λ− 1)(λ−2)…(λ−m+1).
PROOF Every coloring of G induces a coloring of HS and KS. There are π(HS,λ) ways to color HS. There are
π(KS,λ)/λ(λ−1)(λ−2)…(λ−m+1) ways to complete a coloring of S to a coloring of KS. This gives all colorings
of G.
There are no efficient means known of computing chromatic polynomials. This is due to the fact that most
coloring problems are NP-complete. If π(G,λ) could be efficiently computed, we would only need to evaluate it
for λ=3 to determine if G can be 3-colored.
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Exercises
11.5.1 Find π(C2n, λ) and π(C2n+1, λ).
11.5.2 Find π(G, λ), where G is the graph of the cube and the graph of the octahedron.
11.5.3 Let G′ be constructed from G by adding a new vertex joined to every vertex of G. Determine π(G′, λ)
in terms of π(G, λ).
11.5.4 The wheel Wn is obtained from the cycle Cn by adding a new vertex joined to every vertex of Cn. Find
π(Wn, λ).
11.5.5 A unicyclic graph G is a graph formed from a tree T by adding a single edge connecting two vertices of
T. G has exactly one cycle. Let G be a unicyclic graph on n vertices, such that the unique cycle of G has
length m. Find π(G, λ).
11.5.6 Let G′ be constructed from G by adding two new adjacent vertices joined to every vertex of G.
Determine π(G′, λ) in terms of π(G, λ).
11.5.7 Let G′ be constructed from G by adding k new mutually adjacent vertices joined to every vertex of G.
Determine π(G′, λ) in terms of π(G, λ).
11.5.8 Let G′ be constructed from G by adding two new non-adjacent vertices joined to every vertex of G.
Determine π(G′, λ) in terms of π(G, λ).
11.5.9 Find π(Km, m, λ).
11.5.10 Let G be a graph, and suppose that  Show that π(G,λ)=π(G+ uυ, λ)+π((G+uυ)·uυ, λ).
When G has many edges, this is a faster way to compute π(G, λ, λ) than the method of Theorem 11.9.
11.5.11 Calculate π(Kn−uυ, λ), π(Kn−uυ−υw, λ), and π(Kn−uυ−wx, λ), where u, υ, w, x are distinct vertices
of Kn.
11.5.12 If G is a connected graph on n vertices, show that π(Kn, λ)≤π(G,λ)≤ λ(λ−1)n−1, for all λ≥0.
11.5.13 Prove that the coefficient of λn in π(G, λ) is 1, and that the coefficients alternate in sign.
11.6 Edge colorings
A coloring of the edges of a graph G is an assignment of colors to the edges. More formally, an m-edge-
coloring is a mapping from E(G) onto a set of m colors {1, 2,…, m}. The coloring is proper if adjacent edges
always have different colors. The edge-chromatic number or chromatic index of G is χ′(G), the minimum value
of m such that G has a proper m-edge coloring. Notice that in any proper edge-coloring of G, the edges of
each color define a matching in G. Thus, χ′(G) can be viewed as the minimum number of matchings into
which E(G) can be partitioned.
When the edges of a multi-graph are colored, all edges with the same endpoints must have different colors.
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Consider a vertex υ of maximum degree in G. There must be DEG(υ) colors incident on υ. Therefore χ′
(G)≥Δ(G). There is a remarkable theorem by Vizing (Theorem 11.14) that states χ′(G)≤Δ(G)+1 for simple
graphs.
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Before we come to the proof of Vizing’s theorem, first consider the case when G is bipartite. A matching Mi
saturating all vertices of degree Δ(G) can be found with Algorithm 7.2.1 (the Hungarian algorithm). Alternating
paths can be used to ensure that each vertex of degree Δ(G) is saturated. Thus we know that the bipartite
graph G has a maximum matching saturating every vertex of degree Δ(G). This gives an algorithm for edge-
coloring a bipartite graph.
Algorithm 11.6.1: BIPARTITECOLORING(G)

comment: Edge-color a graph G on n vertices
find the degrees of all vertices

i←1
repeat

until Δ(G)=0
It follows from this algorithm, that when G is bipartite, χ′(G)=Δ(G).
Suppose that G is a k-regular graph, edge-colored in k colors. Then every color occurs at every vertex of G. If
i and j are any two colors, then the (i, j)-subgraph is the subgraph of G that contains only the edges of color i
and j. Because the (i, j)-subgraph is the union of two matchings, it is the disjoint union of alternating cycles.
Let  Let ni and nj denote the number of edges of colors i and j, respectively, in the edge-cut [U,
V−U]. Each cycle of the (i, j)-subgraph intersects [U, V−U] in an even number of edges. Thus we conclude
that ni+nj is even. Therefore ni≡nj (mod 2). This gives the following parity lemma:
LEMMA 11.12 (Parity lemma) Let G be a k-regular graph, edge-colored in colors {1, 2,…, k}. Let 
Let ni denote the number of edges of color i in [U, V−U]. Then n1≡n2≡…≡nk(mod 2).
Vizing’s theorem (Theorem 11.14) is based on an algorithm to edge-color a graph in ≤Δ(G)+1 colors. The
proof presented is based on that of
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FOURNIER [42]. It begins with an arbitrary coloring of G in Δ(G)+1 colors, and then gradually improves it
until it becomes a proper coloring. Given a coloring, let c(υ) denote the number of colors occurring at vertex 

 If c(υ)=DEG(υ), for all υ, then the coloring is proper. Otherwise c(υ)<DEG(υ), for some υ. The
sum Συc(υ) in an indication of how close an arbitrary coloring is to being a proper coloring.
Suppose first that G is arbitrarily colored in two colors.
LEMMA 11.13 If G is a graph that is not an odd cycle, then G has a 2-edge-coloring in which c(υ)≥2, for all
vertices υ, with DEG(υ)≥2.
PROOF If G is Eulerian, choose an Euler tour, and color the edges alternately blue and red along the tour. If
G is not Eulerian, add a new vertex υ0 adjacent to every odd degree vertex of G. The result is an Eulerian
graph. Color it in the same way.
We can use Lemma 11.13 on subgraphs of G. Given a proper coloring of G, the edges of colors i and j each
define a matching in G. Consider the (i, j)-subgraph. Each connected component is a path or an even cycle
whose colors alternate. If, however, we begin with an arbitrary coloring of G, then we want to maximize
Συc(υ). If some component of the (i, j)-subgraph is not an odd cycle then by Lemma 11.13, it can be 2-
colored so that c(υ)≥2, for all vertices υ, with DEG(υ)≥2.
THEOREM 11.14 (Vizing’s theorem) If G is simple, then χ′(G)≤Δ(G)+1.
PROOF We begin by arbitrarily coloring the edges in Δ(G)+1 colors. We show that when Συc(υ) is as large as
possible, the coloring must be proper. Suppose that the coloring is not proper, and choose a vertex u with
c(u)<DEG(u). Some color i0 is missing at u, and some color i1 occurs at least twice. Let edges uυ0 and uυ1
have color i1. If color i0 is missing at either υ0 or υ1, we can recolor one of these edges with color i0,
thereby increasing Συc(υ). Hence, we can assume that color i0 occurs at both υ0 and υ1. Some color is
missing at υ1; call it i2. If i2 is also missing at u, we can recolor uυ1 with color i2, thereby increasing Συc(υ).
Hence, let uυ2 be an edge of color i2. Some color is missing at υ2; call it i3. If i3 is also missing at u, we can
recolor uυ1 with color i2, and uυ2 with color is, thereby increasing Συc(υ). It follows that i3≠i0, so that i0
occurs at υ2. We continue in this way, constructing a sequence of edges uυ1, uυ2,…, uυk of distinct colors i1,
i2…, ik, such that color i0 occurs at each of υ1,…, υk, and color ij+1 does not occur at υj. Refer to Figure
11.4. We continue in this fashion generating a sequence i0, i1,…, of distinct colors until we find a color ik+1
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FIGURE 11.4
Vizing’s theorem
is not missing at υ. Thus ik+1 has previously occurred in the sequence. Suppose that ik+1=iℓ, where 1≤ℓ≤k.
Recolor the edges uυ1, uυ2,…, uvℓ−1 with the colors ℓ2, ℓ3,…, iℓ, respectively. This does not change Συc(υ),
because each c(υj) is unchanged. Notice that uυℓ−1 and uυℓ are now both colored iℓ. Consider the (i0, iℓ)-
subgraph containing u, It contains υℓ−1 and υℓ. If it is not an odd cycle, it can be recolored so that colors i0
and iℓ both occur at each of the vertices that have degree exceeding one. This would increase c(u) and
therefore Συc(υ). Hence this subgraph can only be an odd cycle, so that G contains an (i0,iℓ)-path from υℓ−1
to υℓ.
Now recolor the edges uυℓ, uυℓ+1, …, uυk with the colors iℓ+1,…, ik, ik+1=iℓ, respectively. Once again
Συc(υ) is unchanged. The (i0, iℓ)-subgraph containing u now contains υℓ−1 and υk, and must be an odd
cycle. Hence G contains an (i0, iℓ)-path from υℓ−1 to υk. This contradicts the previous path found. It follows
that the coloring can only be proper, and that χ′≤Δ(G)+1.
The proof of Vizing’s theorem makes use of a color rotation at vertex u, namely, given a sequence of incident
edges uυ1, uυ2,…, uυk of colors i1, i2,…, ik, respectively, such that υj is missing color ij+1, for j=1,2,…,k− 1,
and υk is missing color iℓ where  We then recolor uυ1, uυ2,…, uυℓ−1 with colors i2, i3,
…, iℓ, respectively. This technique will be used in the edge-coloring algorithm given as Algorithm 11.6.2. The
algorithm will build a sequence of vertices υ1, υ2, υ3,… adjacent to u, searching for a color rotation.
Graphs G for which χ′(G)=Δ(G) are said to be Class I graphs. If χ′(G)= Δ(G)+1, then G is a Class II graph.
Although there is an efficient algorithm
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to color a graph in at most Δ(G)+1 colors, it is an NP-complete problem to determine whether an arbitrary
graph is of Class I or II. A proof of this remarkable result is presented at the end of the chapter.
If G is a multigraph with no loops, then the general form of Vizing’s theorem states that χ′(G)≤Δ(G)+μ(G),
where μ(G) is the maximum edge-multiplicity. It can often happen that μ(G) is not known. Shannon’s
theorem gives an alternative bound  The proof presented is due to ORE [93]. It requires
two lemmas. Given a proper edge-coloring of G, we write C(u) for the set of colors present at u.
LEMMA 11.15 (Uncolored edge lemma) Let G be a multigraph without loops. Let uυ be any edge of G, and
let G−uυ be edge-colored with k colors, and suppose that χ′(G)=k+1. Then:

 
PROOF Every color missing at u is present at υ, or there would be a color available for uυ, thereby making χ′
(G)=k. Therefore all colors are present at one of u or υ. This gives the first equation. The colors present at u
can be counted as

|C(u)−C(v)|+|C(u)∩C(υ)|=DEG(u)−1.  
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Similarly, those present at υ are given by
|C(υ)−C(u)|+|C(u)∩C(v)|=DEG(υ)−1.  

Now
 

so that we can solve these equations for |C(u)∩C(υ)|, giving the second equation. The third and fourth
equations then result from combining this with the previous two equations.
LEMMA 11.16 (Ore’s lemma) Let G be a multigraph without loops. Then:

 
where the second maximum is over all triples of vertices u, υ, w such that 
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PROOF The proof is by induction on ε(G). It is clearly true if ε(G)≤3. Suppose it holds for all graph with
ε(G)≤m and consider G with ε(G)=m+1. Let uυ be any edge. Delete uυ to obtain G−uυ, for which the result
holds. Let χ′(G−uυ)=k, and consider a proper k-edge coloring of G−uυ. If there is a color available for uυ,
then χ′(G)=k, and the result holds. Otherwise the uncolored edge lemma (Lemma 11.15) applies to G.
Pick a color  and an edge uw of color i. We first show that Let j 

 If color j is missing at w, then since j is also missing at u, we can recolor edge uw with color
j, and assign color i to uυ. This results in a k-edge-coloring of G, a contradiction. Therefore  so that

We also show that  We know that  If there is no other color in
C(u)−C(υ), we are done. Otherwise, pick also  If  consider the (ℓ,j)-subgraph H
containing u. If H does not contain υ, we can interchange colors in H, and assign color ℓ to uυ, a
contradiction. Therefore H consists of an alternating path from u to υ. Interchange colors in H, recolor edge
uw with color ℓ, and assign color i to edge uυ, again a contradiction. We conclude that 
We have |C(u)−C(υ)|+|C(u)−C(υ)|≤|C(w)|. By the uncolored edge lemma, this means that
DEG(u)≥2k−DEG(u)−DEG(υ)+2. Therefore DEG(u)+DEG(υ)+DEG(w)≥2k+2, so that 

 The result then holds for G, as required.
THEOREM 11.17 (Shannon’s theorem) Let G be a multigraph without loops. Then 
PROOF By Ore’s lemma:

 
Vizing’s theorem results in an algorithm to color the edges of G in at most Δ(G)+1 colors. Let the vertices of
G be numbered 1, 2,…, n, and let the colors be {0, 1,…, Δ(G)}. There are two somewhat different ways in
which this can be programmed. In both methods, we begin by assigning color 0 to every edge. We then take
each vertex u in turn and gradually improve the coloring local to u. Both methods involve constructing color
rotations and alternating paths, as can be expected from the proof of Vizing’s theorem.
One method uses alternating paths to improve the coloring local to u. When this does not succeed, a color
rotation is used. The second method uses color
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rotations to improve the coloring local to u, and builds alternating paths when the color rotation does not
succeed. We present the first method here. The algorithm keeps the adjacency lists in partially sorted order—
all edges of any color i are consecutive, and any colors which occur only once at vertex u are stored at the
end of the adjacency list for u. This is certainly true initially when all edges have color 0. This allows the
algorithm to easily determine whether there is a repeated color at u by simply taking the first two adjacent
vertices.

Algorithm 11.6.2: EDGECOLOR(G, n)
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for u←1 to n

Algorithm 11.6.2 takes the vertices in order 1,2,…, n. When vertex u is considered, it assumes that the
subgraph induced by {1, 2,…, u−1} has been properly colored in at most Δ(G)+1 colors. This is certainly true
when u=1. If the first two incident edges have the same color k, it attempts to recolor an incident edge of
color k as follows. Let i be a color missing at vertex u.
1. If any edge uυ of color k is such that vertex υ is also missing color i, then uυ is assigned color i.
2. Or if any edge uυ of color k is such that υ>u, then uυ is assigned color i. This improves the coloring at u,
and does not affect the subgraph induced by {1, 2,…, u−1}.
3. Otherwise all incident edges uυ of color k are such that υ<u, and υ has exactly one incident edge of color
i. The algorithm constructs paths from u whose edges alternate colors k and i, using a breadth-first search.
4. If a path P to a vertex υ is found, such that υ is missing either color i or k, then the colors on the path are
reversed.
5. Or if a path P to a vertex υ is found, such that υ>u, then the colors on the path are reversed. In each of
these cases, the coloring is improved at
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vertex u, and a valid coloring of the subgraph induced by {1, 2,…, u−1} is maintained.
6. Otherwise, each alternating path of colors i and k induces an odd cycle containing u. There must be an
even number of incident edges of color k. If there are more than two such edges, let uυ be one of them.
Some color j is missing at υ. We recolor edge uυ with color j, and reverse the colors on the remainder of the
odd cycle containing uυ. This improves the coloring at u, and maintains a valid coloring in the subgraph
induced by {1, 2,…, u−1}.
7. Otherwise, there are exactly two incident edges of color k. The algorithm searches for a color rotation—it
constructs a sequence of incident edges uυ1, uυ2,…, uυm of colors i1=k, i2,…, im, respectively, such that υj
is missing color ij+1, for j=1, 2,…, m−1, and υm is missing color iℓ where  If color iℓ
occurs an even number of times at u, then the edges uυ1, uυ2,…, uυℓ−1 are recolored i2, i3,…, iℓ. This
creates an odd number of edges of color iℓ incident at u. The edges of color iℓ are moved to the front of the
adjacency list of u. The next iteration of the algorithm is certain to improve the coloring at u.
8. Otherwise, color iℓ occurs an odd number of times. If it occurs at least three times, the edges of color iℓ
are moved to the front of the adjacency list of u. The next iteration of the algorithm is certain to improve the
coloring at u.
9. Otherwise, color iℓ occurs exactly once at u. The algorithm builds an alternating path P of colors i and iℓ
from υm. If P leads to υℓ, we recolor the edges uυ1, uυ2,…, uυℓ−1 with colors i2, i3,…, iℓ and move the
edges of color iℓ to the head of the adjacency list of u. If P does not lead to υℓ, we recolor the edges uυ1,
uυ2,…, uυm with colors i2, i3,…, im, iℓ, and move the edges of color iℓ to the head of the adjacency list of u.
In either case, the next call to ColorBFS is guaranteed to improve the coloring at u.
Thus, it is always possible to improve the coloring at u. Each time that an edge υw is recolored, it is
necessary to adjust the order of the adjacency lists of υ and w to ensure that they remain partially sorted. If
υ<u, we know that every color incident on υ occurs exactly once at υ. But if υ>u, it will be necessary to
change some links in the linked list. After the coloring has been completed for vertex u=n, the entire graph
has a valid coloring.
The algorithm uses a global array ScanQ for breadth-first searches. The number of vertices currently on the
ScanQ is denoted by QSize. The ScanQ accumulates vertices that form alternating paths. The previous vertex
to υ in such a path is denoted PrevPt[υ]. We set PrevPt[υ]←0 initially. When it is necessary to reinitialize the
ScanQ, the entire array is not reset—only the vertices υ currently on the ScanQ have PrevPt[υ] reset to 0,
and QSize reset to 0. The color of edge uυ is indicated by  in the pseudo-code, but in an actual
program it would
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be stored as a field in the adjacency list structure of the graph. The frequency of color i at a given vertex is
stored in an array as Freq[i].

Algorithm 11.6.3: COLORBFS(u)
comment: 2 or more incident edges at u have the same color—recolor one

i←a missing color at u
υ←first vertex joined to u

comment: initialize the ScanQ with all adjacent vertices of color k
QSize←0

while 

 
w←ALTERNATINGPATH(u, i, k)

if w≠0

υ←ScanQ[1]
if Freq[k]>2

 
COLORROTATION(u, i)

The algorithm uses two procedures RECOLOREDGE() and RECOLORPATH() to recolor an edge or alternating
path. They are described as follows:
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procedure RECOLOREDGE(u,υ,j)
comment: Recolor edge uυ with color j.
Color[uυ]←j
adjust the order of the adjacency lists of u and υ as necessary
procedure RECOLORPATH(w, i1, i2)

υ←PrevPt[w]
while w≠0
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re-initialize the ScanQ and PrevPt arrays
ALTERNATINGPATH(u,i1,i2) is a procedure which builds alternating paths of colors i1 and i2 beginning from
the vertices on the ScanQ. When it is called, the vertices υ currently on the ScanQ are all known to have an
incident edge of color i1. If υw has color i1, and w has no incident edge of color i2, or if w>u, then vertex w
is returned, so that the colors on the path from w to u can be reversed. This improves the coloring at u, and
maintains the coloring on the subgraph induced by {1, 2,…, u−1}.
When a suitable alternating path to a vertex w is found, it can be traced by following the PrevPt[·] values.
When an edge υw is recolored, it may be necessary to adjust the ordering of the adjacency lists of υ and w so
that the partial order is maintained.
COLORROTATION (u,i) searches for a color rotation from a vertex u which is missing color i by building a
sequence of vertices υ1, υ2,…, υm on the ScanQ such that each edge uυj has color ij and υj is missing color
ij+1. The pseudocode for it is left to the reader.
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Algorithm 11.6.4: ALTERNATINGPATH(u, i1, i2)

NewQSize←QSize
j←1

while j≤QSize

return (0) “no suitable alternating path was found”
11.6.1 Complexity
It is somewhat difficult to organize the data structures to allow an efficient implementation of this algorithm.
The reason is that the program often needs to find an edge uυ incident on u of a given color i, or to
determine whether u is missing color i. This can be done in constant time if an n×n array is stored for which
entry [u, i] is a pointer to a linked list of all incident edges of color i. This array will be quite sparse for most
graphs. With this data structure, the algorithm will be quite efficient.
The main program takes each vertex u in turn. If there is a repeated color at u, COLORBFS(u) is called. It will
usually succeed in recoloring one of the incident edges at u, taking only a constant number of steps, so that
O(DEG(u)) steps are usually needed to make c(υ)=DEG(υ). But as more and more of the graph is colored, it
becomes necessary to construct alternating paths to improve the coloring at u. Let G(u) denote the subgraph
induced by {1, 2,…, u}. The
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alternating paths constructed are contained in G(u). A breadth-first search to construct the alternating paths
takes O(ε(G(u))) steps, provided that the edge of color i incident on a vertex υ can be found in a constant
number of steps.
Since ε(G(u))≤ε(G), we determine that if a color rotation is not required, that COLORBFS(u) will take at most
O(ε) steps. If a color rotation is constructed, it requires at most O(DEG(u)) steps to build the sequence uυ1,
uυ2,…, uυm of colors i1=k, i2,…, im. The maximum number of steps are executed when an alternating path
must be constructed from υm, taking O(ε(G(u))) steps. If COLORBFS(u) does not succeed in improving the
coloring at u on a given call, it is guaranteed to succeed on the following call. We conclude that it takes at
most O(DEG(u)·ε) steps to make c(υ)=DEG(υ). The total complexity is therefore at most O(ε2).
Exercises
11.6.1 Describe an algorithm using alternating paths in a bipartite graph which finds a maximum matching
saturating all vertices of degree Δ(G).
11.6.2 Work out the complexity of the bipartite coloring algorithm.
11.6.3 Program the bipartite edge-coloring algorithm.
11.6.4 Show that an edge coloring of G gives a vertex coloring of L(G).
11.6.5 Determine χ′ for the Petersen graph.
11.6.6 Show that when the inverter shown in Figure 11.6 is edge-colored in three colors, one of the two pairs
of edges {a, b}, {c, d} has the same color, and the other pair has different colors.
11.7 NP-completeness
In this section we show that several coloring-related problems are NP-complete.
Problem 11.1: 3-Colorability
Instance: a graph G.
Question: is χ(G)≤3?
We transform from 3-Sat. Consider an instance of 3-Sat containing variables u1, u2,…, un, with complements
ū1, ū2,…, ūn. Suppose that there are m clauses, denoted c1, c2,…, cm. Construct a graph G as follows. G will
have vertices u1, u2,…, un, ū1, ū2,…, ūn, x1, x2,…, xn,  and
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c1, c2,…, cm. Each ui is joined to ūi and to xi. Each ūi is joined to  There will also be triangles T1, T2, …,
Tm where Ti corresponds to clause ci, and vertices denoted B and W (blue and white). Each ui and ūi is
joined to W. Each ci is joined to B. A clause like c1=(u1+ū2+ū3) has the corresponding vertex c1 joined to
x1,  and  The triangle T1 corresponding to c1 has its three corners joined to the same vertices as c1.
The construction is illustrated in Figure 11.5. We will color G in colors red, white, and blue.
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FIGURE 11.5
Graph 3-Colorability is NP-complete
Suppose first that G has a proper 3-coloring. Without loss of generality, we can assume that vertex B is
colored blue, and that vertex W is colored white. It follows that all vertices ci are colored red. Each triangle Ti
must use all three colors, so that Ti has a vertex colored white, which is adjacent to some xj or  which
must be colored blue (since ci is also adjacent, and it is red). The adjacent uj (or ūj) can then only be colored
red. Only one of uj and ūj can be red—the other must be blue, with corresponding xj or  white. It follows
that every clause ci contains a literal uj or ūj that is colored red. Take these as the variables assigned the
value true. The result is an assignment of values satisfying every clause.
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Conversely, if there is an assignment of values satisfying every clause, color each uj or ūj red if its value is
true, and color its complement blue. If uj is red, color the corresponding xj blue; otherwise color it white. The
corner of Ti corresponding to uj or ūj is colored white. The other corners of Ti can be red or blue. The result
is a 3-coloring of G.
We conclude that a polynomial algorithm which solves 3-Colorability could also be used to solve 3-Sat. Since
3-Sat is NP-complete, so is 3-Colorability.

Problem 11.2: Clique
Instance:a graph G and an integer k.
Question:does G have a clique with ≥k vertices (i.e., is )?
We transform from Problem 9.5.9.4 Vertex Cover. Recall that a vertex cover in a graph G is a subset 

 such that every edge has at least one endpoint in U. Given an integer k the Vertex Cover problem
asks: does G have a vertex cover with <k vertices?
If U is a vertex cover, the set  is an independent set in G. Hence  induces a clique in  If G
has n vertices, and U has ≥m vertices, then U is a vertex cover with ≤n−m vertices. Thus, given an instance
of the Vertex Cover problem, we construct  and ask whether it has a clique with at least n−m vertices. If
the anwer is yes, then G has a vertex cover with at most m vertices. We conclude that a polynomial algorithm
which solves Clique could also be used to solve Vertex Cover. It follows that Clique is NP-complete.
Problem 11.3: Chromatic Index
Instance: a graph G.
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Question: is χ′(G)=Δ(G)?
There is an ingenious construction of Holyer proving that it is NP-complete to determine whether a 3-regular
graph is of Class I or II. Holyer’s construction is based on the graph shown in Figure 11.6, which he calls an
inverting component, or inverter. The inverter was originally discovered by Loupekine. It consists of two 5-
cycles sharing two common consecutive edges. Edges a, b, c, d, e are attached to five of the vertices.
A 5-cycle requires at least three colors. Consider any 3-edge-coloring of the inverter. Apply the parity
condition (Lemma 11.13) to the set of seven vertices shown in the diagram. We determine that in any 3-edge
coloring, that three of the five edges a, b, c, d, e must have the same color, and that the other two have
distinct colors, since 5 can only be written as 3+1+1, as a sum of three odd numbers. We then find that a, e,
and c cannot all have the same color, so that
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FIGURE 11.6
The inverter and its schematic representation (Used with permission of the SIAM Journal of
Computing)
in any 3-edge-coloring, either a and b have the same color, and c, d, e have three distinct colors; or by
symmetry, c and d have the same color, and a, b, e have three distinct colors. The inverter is represented
schematically in Figure 11.6, as a circle with two pairs of inputs (or outputs) and a fifth input (or output).
Holyer transforms from 3-Sat to Chromatic Index. Consider an instance of 3-Sat with clauses c1, c2,…, cm
involving variables u1, u2,…, un and their complements ūi Each variable is either true or false. A value of true
is represented in the edge coloring of an inverter, as an input pair of the same color. A value of false is
represented as an input pair of different colors. In every 3-edge-coloring of the inverter, a value of true is
inverted to a value of false, or vice versa.
A clause of three variables, for example, (ui+uj+ūk), is represented by three inverters tied together by a 7-
cycle, as shown in Figure 11.7. Note the edges marked a, b, x, y. It is easy to see that a and b have the same
color if and only if x and y have the same color. Because of the 7-cycle, at least one of the three inverters
must have two outside inputs the same color. This will be used to indicate that at least one of the variables
ui, uj, and ūk in the above clause must have a value of true (i.e., every clause will be satisfied).
Now a given variable ui, and/or its complement ūi will appear in several clauses. It must have the same value
in all clauses. In order to ensure this, the 7-cycles corresponding to clauses containing ui or ūi are also tied
together. Holyer constructs a cycle of inverters, with two inverters for each occurrence of ui or ūi in the
clauses. For example, if ui and ūi occur a total of four time in clauses c1, c2, c3, c4, the cycle of Figure 11.8
is constructed. Each pair of inverters corresponds to a clause containing ui or ūi. Notice that there are a total
of six inputs connecting a pair of inverters to the rest of the graph. By the parity lemma, if this graph is 3-
edge-colored, the possible color combinations for the six inputs are 6+0+0, 4+2+0, or 2+2+2. If one pair of
external inputs represents
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FIGURE 11.7
The representation of a clause c1=(ui+uj+ūk) of 3-Sat (Used with permission of the SIAM
Journal of Computing)
true, then by the properties of an inverter, the opposite pair also represents true. Then the parity lemma
implies that the remaining two inputs also represent true. It follows that all pairs of inverters in the diagram
have all external input pairs representing true. Consequently, if any one pair represents false, they all
represent false. This mechanism is used to guarantee that ui has the same value in all clauses.
We now put these ideas together. We are given an instance of 3-Sat. For each clause cj, three inverters are
tied together using a 7-cycle, as in Figure 11.7. For each variable ui, a cycle of pairs of inverters is
constructed as in Figure 11.8. The input corresponding to cj in this structure is connected to the input
corresponding to ui in the 7-cycle component corresponding to cj. If the clause contains ūi rather than ui,
then another inverter is placed between the two before connecting. The result is a graph containing a
subgraph for each ui and for each Cj, tied together through their inputs. There are still a number of inputs
not connected to anything. In order to complete the construction and have a 3-regular graph, a second copy
of this graph is constructed. The corresponding unused inputs of the two copies are connected together. The
result is a 3-regular graph G. In any 3-edge-coloring of G, every clause is guaranteed to have at least one
variable representing true. All occurrences of each variable are guaranteed to have the same value. The result
is an assignment of values to the variables solving the 3-Sat instance. We conclude that if we could determine
whether χ′(G)=3, we could solve 3-Sat. Since
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FIGURE 11.8



cover

file:///G|/SMILEY/0203489055__gigle.ws/0203489055/files/__joined.html[01/10/2009 15:18:30]

A pair of inverters for each clause containing uior ūi(Used with permission of the SIAM Journal of
Computing)
3-Sat is NP-complete, we conclude that Chromatic Index is also NP-complete.
11.8 Notes
The DEGREESATURATION() algorithm is from BRELAZ [20]. A very good paper on the limitations of the
sequential algorithm is JOHNSON [69]. A very readable survey of chromatic polynomials appears in READ and
TUTTE [101]. See also TUTTE [119], where the word chromial is coined for chromatic polynomial. The proofs
of the uncolored edge lemma and Ore’s lemma (Lemmas 11.15 and 11.16) are based on those of BERGE [14].
A very efficient edge-coloring algorithm based on Vizing’s theorem was developed by ARJOMANDI [7]. The
proof of the NP-completeness of Chromatic Index is based on HOLYER [64]. Figures 11.6, 11.7 and 11.8 are
modified diagrams based on those appearing in Holyer’s paper. They are used with the permission of the
SIAM Journal of Computing.
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12 
Planar Graphs
12.1 Introduction
A graph G is planar if it can be drawn in the plane such that no two edges intersect, except at a common
endpoint. The vertices of G are represented as points of the plane, and each edge of G is drawn as a
continuous curve connecting the endpoints of the edge. For example, Figure 12.1 shows a planar graph (the
cube), and a planar drawing of the same graph. Although the cube is planar, the drawing on the left is not a
planar drawing. These drawings both have straight lines representing the edges, but any continuous curve
can be used to represent the edges. We shall often find it more convenient to represent the vertices in planar
drawings as circles rather than points, but this is just a drawing convenience.

FIGURE 12.1
Two drawings of the cube
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12.2 Jordan curves
Any closed, continuous, non-self-intersecting curve C drawn in the plane divides the plane into three regions:
the points inside C, the points outside C, and the points of C itself. This is illustrated in Figure 12.2. We are
relying on an intuitive understanding of the words “plane”, “curve”, “continuous”, “region”, etc. Exact
mathematical definitions of these ideas would require a lengthy excursion into topology. An intuitive
understanding should suffice for this chapter. Notice that the interior of C, denoted INT(C), is bounded, since
it is enclosed by C, and that the exterior, denoted EXT(C), is unbounded, since the plane is unbounded. If u is
any point in INT(C), and  then any continuous curve with endpoints u and υ must intersect C in
some point. This fact is known as the Jordan curve theorem. It is fundamental to an understanding of
planarity.
DEFINITION 12.1: A closed, continuous, non-self-intersecting curve C in a surface is called a Jordan curve.
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FIGURE 12.2
The Jordan curve theorem
Let G be any graph. We would like to construct a planar embedding of G, if possible. That is, we want to map
the vertices of G into distinct points in the plane, and the edges of G into continuous curves that intersect
only at their endpoints. Let ψ denote such a mapping. We write Gψ to indicate the image of G under the
mapping ψ. Let C be any cycle in G. If ψ is a planar embedding of G, then ψ maps C onto Cψ, a Jordan curve
in the plane. For example, consider G=K5. Let V(K5)={υ, w, x, y, z}. If K5 were planar, the cycle C= (x, y, z)
must embed as a Jordan curve Cψ in the plane. Vertex u is either in
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INT(Cψ) or EXT(Cψ). Without loss of generality, we can place u in INT(Cψ), as in Figure 12.3. The paths ux,
uy, and uz then divide INT(Cψ) into three smaller regions, each bounded by a Jordan curve. We cannot place
υ in EXT(Cψ), as we then cannot embed the path uυ without crossing Cψ. We cannot place υ in any of the
smaller regions in INT(Cψ), for in each case there is a vertex outside the Jordan curve bounding the region
that cannot be reached. We conclude that K5 cannot be embedded in the plane. K5 is a non-planar graph.
We state this as a lemma.

FIGURE 12.3
Embedding K5
LEMMA 12.1 K5 and K3 ,3 are non-planar graphs.
PROOF The proof for K5 appears above. The proof for K3 ,3 is in Exercise 12.3.1.
12.3 Graph minors, subdivisions
The graphs K5 and K3, 3 are special graphs for planarity. If we construct a graph from K5 by replacing one or
more edges with a path of length ≥2, we obtain a subdivision of K5. We say that the edges of K5 have been
subdivided.
DEFINITION 12.2: Given a graph G, a subdivision of G is any graph obtained from G by replacing one or more
edges by paths of length two or more.
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It is clear that any subdivision of K5 or K3, 3 is non-planar, because K5 and K3,3 are non-planar. It is
apparent that vertices of degree two do not affect the planarity of a graph. The inverse operation to
subdividing an edge is to contract an edge with an endpoint of degree two.
DEFINITION 12.3: Graphs G1 and G2 are topologically equivalent or homeomorphic, if G1 can be transformed
into G2 by the operations of subdividing edges and/or contracting edges with an endpoint of degree two.
We will denote by TK5 any graph that is topologically equivalent to K5. Similarly, TK3, 3 denotes any graph
that is topologically equivalent to K3, 3. In general, TK denotes a graph topologically equivalent to K, for any
graph K. If G is a graph containing a subgraph TK5 or TK3, 3, then G must be non-planar. Kuratowski’s
theorem states that this is a necessary and sufficient condition for a graph to be non-planar. We will come to
it later.
If G is a planar graph, and we delete any vertex υ from G, then G−υ is still planar. Similarly, if we delete any
edge uυ, then G−uυ is still planar. Also, if we contract any edge uυ of G, then G−uυ is still planar. Contracting
an edge can create parallel edges or loops. Since parallel edges and loops do not affect the planarity of a
graph, loops can be deleted, and parallel edges can be replaced by a single edge, if desired.
DEFINITION 12.4: Let H be a graph obtained from G by any sequence of deleting vertices and/or edges,
and/or contracting edges. H is said to be a minor of G.
Notice that if G contains a subgraph TK5, K5 is a minor of G, even though K5 need not be a subgraph of G.
For we can delete all vertices and edges which do not belong to the subgraph TK5, and then contract edges
to obtain K5. Similarly, if G has a subgraph TK3, 3, then K3, 3 is a minor of G, but need not be a subgraph.
Any graph having K5 or K3, 3 as a minor is non-planar. A special case of minors is when a graph K is
subdivided to obtain G.
DEFINITION 12.5: Let G contain a subgraph that is a subdivision of a graph K, where δ(K)≥3. Then K is said
to be a topological minor of G.
LEMMA 12.2 If H is a minor of K, and K is a minor of G, then H is a minor of G.
PROOF This follows from the definition.
A consequence of this lemma is that the relation of being a graph minor is a partial order on the set of all
graphs.
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The inverse operation to contracting an edge whose endpoints have degree three or more is splitting a vertex.
DEFINITION 12.6: Let G be any graph with a vertex υ of degree at least three. Let υ be adjacent to vertices
{u1, u2,…, uk}. Construct a graph  by splitting vertex υ: replace υ with two new vertices υ1 and υ2. Join
υ1 to ℓ1≥2 of {u1, u2,…, uk}, and join υ2 to ℓ2≥2 of them, such that together, υ1 and υ2 are adjacent to all
of these vertices. Then join υ1 to υ2.
In any graph  resulting from splitting vertex υ, υ1 and υ2 both have degree at least three, and 

 that is, splitting vertex υ is an inverse operation to contracting the edge υ1υ2. Notice that G is
a minor of  Splitting a vertex is illustrated for G=K5 in Figure 12.4. The following lemma shows that K5
and K3, 3 are very closely related graphs.

FIGURE 12.4
Splitting a vertex of K5
LEMMA 12.3 Let G be any graph obtained by splitting a vertex of K5. Then G contains a subgraph TK3 ,3.
PROOF Let υ1 and υ2 be the two vertices resulting from splitting a vertex of K5. Each has at least degree
three. Consider υ1. It is joined to υ2. Together, υ1 and υ2 are joined to the remaining four vertices of G, and
each is joined to at least two of these vertices. Therefore we can choose a partition of these four vertices into
x, y and w, z such that  and Then G contains a K3,3 with bipartition υ1, w, z and υ2,
x, y, as illustrated in Figure 12.4.
In the previous example, it was convenient to form a minor K5 of G by first deleting a subset of vertices



cover

file:///G|/SMILEY/0203489055__gigle.ws/0203489055/files/__joined.html[01/10/2009 15:18:30]

and/or edges, and then contracting a sequence of edges to obtain K5. All minors of G can be obtained in this
way, as shown by the following lemma:
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LEMMA 12.4 Suppose that G has a minor H. Then H can be obtained by first deleting a subset of vertices
and/or edges of G, and then contracting a sequence of edges.
PROOF Let G0, G1,…, Gk be a sequence of graphs obtained from G, where G0=G and Gk=H, such that each
Gi, where i≥1, is obtained from Gi−1 by deleting a vertex, deleting an edge, or contracting an edge. If all
deletions occur before contractions, there is nothing to prove. So let Gi be the first graph obtained from Gi−1
by the deletion of an edge or vertex. Without loss of generality we can assume that i≥2, and that G1,…, Gi−1
were obtained by contracting edges e1,…, ei−1, where ej is an edge of Gj−1. Let ei−1=υ1υ2.
Suppose first that Gi=Gi−1−υ, for some vertex υ. If υ is the result of identifying υ1 and υ2 when ei−1 is
contracted, then we can replace Gi−1, Gi in the sequence of graphs by  where  and  are
obtained by deleting υ1, and then υ2 from Gi−2. If υ is not the result of identifying υ1 and υ2, we can
interchange the order of Gi and Gi−1 by deleting υ before contracting ei−1. In each case, we obtain an
equivalent sequence of graphs with only i−1 edge contractions preceding a deletion. The number of edges
contracted does not increase, and the final result is still H.
Suppose now that Gi=Gi−1−uυ, for some edge uυ. We know that Gi−1=Gi−2·ei−1. We can reverse the
order of the two operations, and delete uυ before contracting ei−1, thereby replacing Gi−1, Gi with graphs 

 Again we obtain an equivalent sequence of graphs with only i−1 edge contractions preceding a
deletion. We repeat this as many times as required until all deletions precede all contractions.
It follows that when constructing a minor H of graph G, we can start with a subgraph of G and apply a
sequence of edge-contractions only to obtain H. Often this is used as the definition of graph minor.
Consider the situation when a vertex υ of degree three in G is split into υ1υ2. If υ is adjacent to vertices x, y,
z in G, then in υ1 is adjacent to at least two of x, y, z, and via υ2 there is always a path from υ1 to the
third vertex. This is used in the following theorem, and also in Exercise 12.3.5.
THEOREM 12.5 If G has a minor K3, 3, then G contains a subgraph TK3,3. If G has a minor K5, then G
contains a subgraph TK5 or TK3, 3.
PROOF Suppose that G has a minor K5 or K3, 3. If no edges were contracted to obtain this minor, then it is
also a subgraph of G. Otherwise let G0, G1,…, Gk be a sequence of graphs obtained from G, where G0 is a
subgraph of G, edge ei of Gi−1 is contracted to obtain Gi, and Gk is either K5 or K3, 3.
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If each ei has an endpoint of degree two, then we can reverse the contractions by subdividing edges,
resulting in a TK5 or TK3, 3 in G, as required. Otherwise let ei be the edge with largest i, with both endpoints
of at least degree three. All edges contracted subsequent to Gi have an endpoint of degree two, so that Gi
has a subgraph TK5 or TK3, 3. Gi−1 can be obtained by splitting a vertex υ of Gi. If υ is a vertex of TK5, then
by Lemma 12.3, Gi−1 contains TK3, 3. If υ is a vertex of TK3, 3, then Gi−1 also contains TK3 ,3. If υ is a
vertex of neither TK5 nor TK3, 3, then Gi−1 still contains TK5 or TK3, 3. In each case we find that G0 must
have a subgraph TK5 or TK3, 3.
DEFINITION 12.7: Given a subgraph TK of G, equal to TK5 or TK3,3. The vertices of TK which correspond to
vertices of K5 or K3, 3 are called the corners of TK. The other vertices of TK are called inner verftices of TK.
Suppose that G is a non-planar graph with a subgraph TK5. Let υ1, υ2,…, υ5 be the corners of TK5. Each υi
has degree four in TK5; the inner vertices of TK5 have degree two. Let Pij be the path in TK5 connecting υi to
υj. Consider the situation where G contains a path P from  to  where x and y are inner
vertices. This is illustrated in Figure 12.5, where a vertex  is connected by a path to  We see
that in this case, G contains a TK3,3.
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FIGURE 12.5
TK5and TK3, 3
THEOREM 12.6 Let G contain a subgraph TK5, with corners υ1, υ2,…, υ5connected by paths Pij. If G has
vertices x and y such that x is an inner vertex of Pij, and  but where Pij≠Pkℓ, then G contains
a TK3,3.
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PROOF One case of the proof is illustrated in Figure 12.5. The remaining cases are done in Exercise 12.3.2.
A consequence of Theorem 12.6 is that nearly any graph that has a subgraph TK5 also has a subgraph TK3,
3. This theorem will be useful in embedding algorithms for non-planar graphs in Chapter 13. It also permits a
recursive characterization of graphs which contain TK5 but not TK3, 3.
Exercises
12.3.1 Show that K3, 3 is non-planar, using the Jordan curve theorem.
12.3.2 Complete the proof of Theorem 12.6.
12.3.3 Characterize the class of 2-connected graphs which contain TK5 but not TK3,3.
12.3.4 Construct a O(ε) algorithm which accepts as input a graph G and a subgraph TK5 with corners υ1, υ2,
…, υ5, and finds a TK3, 3 containing υ1, υ2,…, υ5 if one exists.
12.3.5 Let K be a graph such that Δ(K)≤3. Show that K is a minor of G if and only if G has a subgraph TK.
12.4 Euler’s formula
Let G be a connected planar graph with n vertices and ε edges, embedded in the plane by a mapping ψ. If
we remove all the points of the image Gψ from the plane, the plane falls apart into several connected regions.
This is equivalent to cutting the plane along the edges of Gψ. For example, if we cut the plane along the
edges of the planar embedding of the cube in Figure 12.1, there are six regions, one of which is unbounded.
DEFINITION 12.8: The faces of an embedding Gψ are the connected regions that remain when the plane is
cut along the edges of Gψ. The unbounded region is called the outer face.
Notice that if uυ is an edge of G contained in a cycle C, then (uυ)ψ is a portion of a Jordan curve Cψ. The
face on one side of (uυ)ψ is in INT(Cψ) and the face on the other side is in EXT(Cψ). These faces are
therefore distinct. But if uυ is an edge not contained in any cycle, then it is a cut-edge, and the same face
appears on each side of (uυ)ψ. For example, in a tree, every edge is a cut-edge, and there is only one face,
the outer face.
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We view the plane as an oriented surface, which can be viewed from “above” or “below”. Given an
embedding Gψ in the plane, we will view it consistently from one side, which we can assume to be “above”
the plane. If we then view an embedding Gψ from “below” the surface, it will appear to have been reversed.
Therefore we choose one orientation (“above”) for all embeddings.
The boundary of a face F of an embedding Gψ is a closed curve in the plane. It is the image under ψ of a
closed walk C in G. We can walk along Cψ so that the interior of Cψ is to our right-hand side. We will call this
a clockwise direction and thereby assign an orientation to C. We shall always choose a clockwise orientation
for traversing the boundaries of faces, so that the face F will be to our right-hand side.
DEFINITION 12.9: An oriented closed walk C in G bounding a face of Gψ is called a facial walk of Gψ (or
facial cycle if C is a cycle).
Notice that if C contains a cut-edge uυ, then uυ will appear twice on C. The two occurrences of uυ on C will
have opposite orientations. All other edges appear at most once on C. As we will mostly be interested in 2-
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connected graphs G, facial walks will almost always be cycles.
DEFINITION 12.10: The degree of a face F is DEG(F), the length of its facial walk.
Notice that a cut-edge appearing on the facial walk of F will contribute two to its degree.
THEOREM 12.7 (Euler’s formula) Let G be a connected planar graph with n vertices and ε edges. Let Gψ
have f faces, where ψ is a planar embedding of G. Then

n+f−ε=2  
PROOF The proof is by induction on ε−n. Every connected graph has a spanning tree. If ε−n=−1, then G is
a tree. It is clear that every tree has a planar embedding. Since a tree has no cycles, there is only one face,
the outer face, so f=1. Euler’s formula is then seen to hold for all embeddings of G.
Now suppose that ε−n=k≥0. Choose any cycle C in G, and any edge  Let the faces on the two sides
of (uυ)ψ be F1 and F2. Consider G′=G−uυ, with n′, ε′ and f′ vertices, edges, and faces, respectively. Clearly
n′=n and ε′=ε−1. G′ is connected and ψ is a planar embedding of it. One of the faces of G′ψ is  The
other faces of G′ψ are those of Gψ. Therefore f'=f−1 Euler’s formula follows by induction.
It follows from Euler’s formula that all planar embeddings of a connected graph G have the same number of
faces. Hence we will refer to f(G) as the number of
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FIGURE 12.6
Two embeddings of a graph
faces of G, without specifying an embedding. In Figure 12.6 there is an example of a graph with two distinct
embeddings. The embeddings have the same number of faces, but the actual faces and their boundaries are
different.
12.5 Rotation systems
Once we have an embedding Gψ, we can choose any vertex  and walk around υψ in a small,
clockwise circle. We encounter the incident edges in a certain cyclic order. For example, in the embedding on
the left of Figure 12.6, the edges incident on vertex 1 have the clockwise cyclic order (12, 17, 18, 16). Those
incident on vertex 2 have the order (23, 27, 21). Those incident vertex 3 have the order (34, 37, 32), etc.
In Figure 12.6, the edges are drawn as straight lines. It is conceivable that the embedding ψ could assign
wildly behaved functions, like sin(1/x) to the curves representing the edges of G. Each edge may then be
encountered many times when walking around υψ in a small circle, no matter how small the circle is chosen.
We will assume that this does not occur, and that ψ assigns well behaved functions (like straight lines or
gradual curves) to the edges. In fact, for graphs embedded on the plane, we shall see that it is always
possible to draw the edges as straight lines. For a more complete treatment, the reader is referred to the
books of GROSS and TUCKER [54] or MOHAR and THOMASSEN [88].
DEFINITION 12.11: Let Gψ be an embedding in the plane of a loopless connected graph G. A rotation system
p for G is a mapping from V(G) to the set of permutations of E(G), such that for each p(υ) is the
cyclic per-
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mutation of edges incident on υ, obtained by walking around υψ in a clockwise direction.
Notice that if G has a loop υυ, then as we walk around υψ, we will cross the loop twice. Therefore p(υ) will
contain υυ twice. In order to extend the definition to be correct for graphs with loops, we must ensure that
for each loop υυ, that p(υ) contains two corresponding “loops” (υυ)1 and (υυ)2.
Suppose we are given the rotation system p determined by an embedding Gψ. We can then easily find the
facial cycles of Gψ. The following fundamental algorithm shows how to do this. Let  and let e be
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any edge incident on u. We are assuming that given an edge e′=uυ in p(u), we can find the corresponding
edge e″=υu in p(υ). A data structure of linked lists can do this easily in constant time. If G is a simple graph,
then the rotation system is completely specified by the cyclic adjacency lists. Given a planar embedding Gψ,
we will assume that the adjacency lists are always given in cyclic order, so that the rotation system p
corresponding to ψ is available.

Algorithm 12.5.1: FACIALCYCLE(Gψ, u, e)

e′←e
repeat

until e′=e
LEMMA 12.8 The sequence of edges traversed by FACIALCYCLE(Gψ, u, e) forms the facial cycle of the face to
the right of eψ.
PROOF Let F be the face to the right of eψ. Let e=uυ. As we walk along eψ from uψ to υψ, the face F is to
our right-hand side. When we reach υψ, we are on the image of an edge υu in p(υ). Since p(υ) has a
clockwise cyclic order, the next edge in the facial cycle is the one preceding υu in p(υ). This is the one chosen
by the algorithm. The algorithm repeats this process until it arrives back at the starting edge e.
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Algorithm FACIALCYCLE() is very simple, but it is tremendously important. It is used in nearly all algorithms
dealing with graph embeddings. Notice that its running time is O(ε) and that it can be used to find all the
facial cycles of Gψ in O(ε) time.
COROLLARY 12.9 The facial cycles of an embedding Gψ are completely determined by its rotation system.
PROOF All facial cycles can be determined by executing Algorithm FACIALCYCLE(Gψ, u, e), such that each
edge e is visited at most twice, once for the face on each side of e. The rotation system is the only
information about ψ that is needed.
Thus, it turns out that planar embeddings are essentially combinatorial, as the facial cycles of an embedding
are completely determined by the set of cyclic permutations of incident edges of the vertices. Later we will see
that for 3-connected planar graphs, the rotation system is unique, up to orientation. If p is the rotation
system corresponding to an embedding ψ, we will often write Gp instead of Gψ. We call Gψ a topological
embedding, and Gp a combinatorial embedding. The combinatorial embedding determines the facial cycles of
the embedding, but it does not give an actual drawing of G in the plane.
12.6 Dual graphs
Consider an embedding Gψ, illustrated by the cube in Figure 12.7. Let its faces be listed as {F1, F2,…, Ff}.
Two faces Fi and Fj are adjacent if they share a common edge (uυ)ψ on their boundaries. We can construct a
planar graph Gψ* by placing a new vertex fi in each region Fi, for i=1, 2,…, f. Whenever two faces Fi and Fj
share an edge (uυ)ψ on their boundaries, we draw a continuous curve from fi to fj, passing through (uυ)ψ in
exactly one interior point, and intersecting Gψ in only this point. This is illustrated for an embedding of the
cube in Figure 12.7. We call Gψ* a planar dual of Gψ.
LEMMA 12.10 Let Gψ be a planar embedding with a planar dual Gψ*. Let Gψ**be any planar dual of Gψ*.
Then 
PROOF Let the faces of Gψ be F1, F2,…, Ff, and let fi be the vertex of Gψ* corresponding to Fi. Consider
any vertex u of G and its cyclic permutation p(u)=(uυ1, uυ2,…, uυk) of incident edges. Each edge (uυℓ)ψ
separates two

page_286

Page 287
faces Fi and Fj, and so is crossed by a curve connecting fi to fj. As we successively take the edges uυℓ of
p(u), we traverse these curves, thereby constructing a facial boundary of Gψ*. Vertex uψ is contained in the
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region interior to this facial boundary. We conclude that each face of Gψ* contains exactly one uψ, and that

the edges (uυℓ)ψ are curves connecting the vertices uψ and  located inside the faces of Gψ*. That is, the
planar dual construction applied to Gψ* gives back Gψ. Equivalently, 

FIGURE 12.7
Constructing a dual graph
Now the adjacencies of the planar dual are determined completely by common edges of the facial cycles of
Gψ, and these are determined by the rotation sy stem p of Gψ. Therefore we define the combinatorial planar
dual in terms of the rotation system.
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DEFINITION 12.12: Let p be the rotation system for G corresponding to a planar embedding ψ. Let the facial
cycles of Gp be F={F1, F2,…, Ff}. The combinatorial planar dual of Gp is denoted Gp*. The vertex set of Gp*
is {F1, F2,…, Ff}. The edges of Gp* are defined by a rotation system, also denoted p, and given as follows.
Consider a facial cycle

Fi=(υ1, υ2,…, υk),  
traversed in a clockwise direction. Each edge υℓυℓ+1 is contained in exactly two facial cycles, which are
adjacent in Gp*. As we walk along the facial cycle, the face corresponding to Fi appears on the right-hand
side of (υℓυℓ+1)ψ. On the left-hand side is the face corresponding to Fℓ′, where Fℓ′ is the unique facial cycle
containing edge υℓ+1υℓ. We then take

 
It is easy to see that FiFj occurs in p(Fi) if and only if FjFi occurs in p(Fj). Thus the definition is valid. If Fi
contains a cut-edge uυ, then the same face occurs on both sides of (uυ)ψ. Gp* will then contain a loop FiFi.
Since uυ appears twice on the facial cycle, FiFi will occur twice in p(Fi).
The graph Gp* constructed by this definition is always isomorphic to the planar dual Gψ* constructed above,
because of the correspondence between faces and facial cycles. Therefore the rotation system constructed for
Gp* always corresponds to a planar embedding Gψ*. It follows from the above lemma that 
Now let Gp denote a combinatorial planar embedding of G, and let {F1, F2,…, Ff} be the facial cycles of Gp.
The degree of Fi is DEG(Fi), the length of the walk. Let Gp* be the dual of Gp, and write n*, ε*, and f* for
the numbers of vertices, edges, and faces, respectively, of Gp*.
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LEMMA 12.11 
PROOF Each edge uυ of G is incident on two faces of Gp.
LEMMA 12.12 n*=f, f*=n, and ε*=ε.
PROOF n*=f follows from the definition of Gp*. Since  we have f*=n. Each edge of Gp*
corresponds to exactly one edge of Gp, and every edge of Gp corresponds to exactly one edge of Gp*.
Therefore ε*=ε.
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Algorithm 12.6.1: CONSTRUCTDUAL(Gp)

nFaces←0
for all edges uυ

do 
for all vertices u

for all vertices u

Algorithm 12.6.1 is a simple algorithm to construct the dual in O(ε) time. We assume that the faces of Gp are
numbered 1, 2,…, f; that the rotation system p is represented as cyclic linked lists; and that the linked list
node corresponding to uυ in p(u) contains a field called the FaceNumber, used to indicate which face of Gp is
on the right-hand side of uυ as it is traversed from u to υ. We will denote this by  although
it is not stored as an array. We will also use a variable nFaces to count the faces of Gp.
Algorithm 12.6.1 uses FACIALCYCLE() (Algorithm 12.5.1) to walk around the facial cycles of Gp and number
them. Notice that FACIALCYCLE() only requires the rotation system p rather than the topological embedding
ψ. Each edge of G is traversed exactly twice, taking a total of O(ε) steps. It then traverses the facial cycles
again, constructing the rotation system of Gp*, using the face numbers which were previously stored. This
again takes O(ε) steps. Thus, the dual graph is completely determined by the combinatorial embedding Gp.
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12.7 Platonic solids, polyhedra
The cube is a 3-regular planar graph whose faces all have degree four. So its dual is 4-regular. It can be seen
from Figure 12.7 that the dual of the cube is the octahedron. Let G be a connected k-regular planar graph
whose dual is ℓ-regular, where k, ℓ≥3. These graphs are called graphs of the Platonic solids. Then kn=2ε and
ℓf=2ε. Substituting this into Euler’s formula and dividing by ε gives
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If we consider graphs with ε≥4 edges, we have

 
As the number of integers satisfying this inequality is limited, this can be used to find all such graphs. They
are the graphs of the regular polyhedra—the tetrahedron, cube, octahedron, dodecahedron, and icosahedron.
In general, a polyhedron is a geometric solid whose faces are polygons, that is, regions of a plane bounded
by a finite sequence of line segments. Each edge of a polyhedron is common to exactly two polygonal faces.
So if we consider an edge uυ1 incident on a vertex u, there are two polygons, P1 and P2 incident on uυ1.
Now P2 has two edges incident on u. Let the other be uυ2. But this edge is also incident on two polygons, P2
and P3. Since P3 has two edges incident on u, we obtain another edge uυ3, etc. Continuing in this way, we
get a sequence υ1, υ2,… of vertices adjacent to u, until we return to P1.
DEFINITION 12.13: A polyhedron is a connected collection of polygons such that
1. Each edge is contained in exactly two polygons.
2. Polygons do not intersect, except on a common edge.
3. Any two polygons intersect in at most one edge.
4. The polygons incident on a vertex form a single cycle.
The fourth condition is to prevent a polyhedron created by identifying two vertices of otherwise disjoint
polyhedra.
DEFINITION 12.14: The skeleton of a polyhedron is the graph whose vertices are the vertices of the
polyhedron, such that vertices u and υ are adjacent in the graph if and only if uυ is an edge of the
polyhedron.
DEFINITION 12.15: A regular polygon, denoted {p}, is a planar polygon with p sides all of equal length. A
regular polyhedron, denoted {p, q}, is a poly-
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hedron whose faces are polygons {p}, such that exactly q polygons are incident on each vertex.
The symbols {p} and {p, q} are called the Schläfli symbols for the polygon and polyhedron, respectively.
Notice that given a vertex u of a regular polyhedron {p, q}, the midpoints of the edges incident on u form a
regular polygon {q}.
A polyhedron is convex if its interior is a convex region; that is, given any two points P and Q in the interior,
the line segment connecting P to Q is completely contained inside the polyhedron. There is a remarkable
theorem of Steinitz characterizing the skeletons of convex polyhedra.
THEOREM 12.13 (Steinitz’s theorem) A graph G is the skeleton of a convex polyhedron if and only if G is
planar and 3-connected.
A proof of Steinitz’s theorem can be found in the book by GRÜNBAUM [56] or ZIEGLER [129]. It is too
lengthy to include here.
Exercises
12.7.1 Find the planar dual of the line graph of K4. Find the line graph of the cube, and find its planar dual.
12.7.2 Find all k-regular planar graphs whose duals are ℓ-regular, for all possible values of k and ℓ.
12.7.3 Find the dual of the multigraph constructed from K4 by doubling each edge. Refer to Figure 12.8.

FIGURE 12.8
Find the dual graph
12.7.4 A planar graph G is self-dual if it is isomorphic to its planar dual. Find a self-dual planar graph on n
vertices, for all n≥4.
12.7.5 Program the algorithm CONSTRUCTDUAL(), and test it on the graphs ofExer cises 12.7.1 and 12.7.2.
12.7.6 Show that a planar graph is bipartite if and only if its dual is Eulerian.
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12.7.7 Find the Schläfli symbols of the tetrahedron, cube, octahedron, dodecahedron, and icosahedron.
12.7.8 Given a Schläfli symbol {p, q} for a polyhedron, find a formula for the number of vertices, edges, and
faces of the polyhedron in terms of p and q.
12.8 Triangulations
A planar embedding Gp whose faces all have degree three is called a triangulation. If Gp is a triangulation,
then 3f=2ε. Substituting into Euler’s formula gives:
LEMMA 12.14 A triangulation Gpsatisfies ε=3n−6 and f=2n−4.
If Gp is not a triangulation, and has no multiple edges or loops, then every face has at least degree three. We
can convert Gp to a triangulation by adding some diagonal edges to faces of degree four or more. This gives
the following:
LEMMA 12.15 A simple planar graph G has ε≤3n−6.
For example, since K5 has ε=10>3n−6, we can conclude that K5 is non-planar.
One consequence of the above lemma is that O(ε) algorithms on planar graphs are also O(n) algorithms. For
example, a DFS or BFS in a planar graph takes O(n) steps. This will be useful in algorithms for testing
planarity, or for drawing or coloring a planar graph, or constructing dual graphs.
Given a graph G, we can subdivide any edges of G without affecting the planarity of G. Therefore, we will
assume that G has no vertices of degree two. We will also take G to be 2-edge-connected, so that there are
no vertices of degree one. Let G be a simple planar graph, and let ni be the number of vertices of degree i,
for i=3, 4,…. Counting the edges of G gives

3n3+4n4+5n5+…=2ε<6n−12  
Counting the vertices of G gives

n3+n4+n5+…=n  
Multiply the second equation by 6 and subtract the two equations to obtain:
LEMMA 12.16 A simple planar graph with no vertices of degree one or two satisfies

3n3+2n4+n5≥12+n7+2n8+3n9+…  
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COROLLARY 12.17 A simple planar graph with no vertices of degree one or two has a vertex of degree three,
four, or five.
PROOF The values ni are non-negative integers.
The above corollary results in a technique for reducing a planar triangulation on n vertices to one on n−1
vertices that is fundamental for understanding the structure of planar graphs, and for handling them
algorithmically.

Algorithm 12.8.1: REDUCEGRAPH(Gp)

if there is a vertex u with DEG(u)=3

if there is a vertex u with DEG(u)=4

comment: otherwise, DEG(u)=5
let p(u)=(uυ,uw,ux,uy,uz)

if  and 
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else if 

 
else if 

 
return (G′)
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Here Gn is a triangulation on n≥4 vertices. If n=4, then K4 is the only possibility. So we assume that n>4.
We know that Gn always has a vertex of degree three, four, or five.
THEOREM 12.18 Given a simple planar triangulation Gnon n>4 vertices, Algorithm REDUCEGRAPH() constructs
a simple planar triangulation Gn−1 on n−1 vertices.
PROOF We know that Gn has a vertex of degree three, four, or five. If there is a vertex u of degree three, let
p(u)=(ux, uy, uz), as illustrated in Figure 12.9. Since Gn is a triangulation, we know that xy, yz, and zx are
edges of Gn. Consequently Gn−u is also a triangulation.

FIGURE 12.9
DEG(u)=3
If there is a vertex u of degree four, let p(u)=(uw, ux, uy, uz), as illustrated in Figure 12.10. Since Gn is a
triangulation, we know that wx, xy, yz, and zw are edges of Gn. When u is deleted, one face of Gn−u is a
quadrilateral. If  we can add the edge wy to get a planar triangulation Gn−u+wy. If  then
edge wy is exterior to the quadrilateral face. Consequently  so that we can add the edge xz to get a
planar triangulation Gn−u+xz. In either case we get a planar triangulation Gn−1.
If there is a vertex u of degree five, let p(u)=(uυ, uw, ux, uy, uz), as illustrated in Figure 12.11. Since Gn is a
triangulation, we know that υw, wx, xy, yz, and zυ are edges of Gn. When u is deleted, one face of Gn−u is a
pentagon. If  and  we can add the edges υx and υy to get a planar triangulation
Gn−u+υx+υy. Otherwise, if  then edge υx is exterior to the pentagonal face. Consequently, 
and  so that we can add the edges wy and wz to get a planar triangulation Gn−u+wy+wz.
Otherwise, if  then edge υy is exterior to the pentagonal face, and we can proceed as above to get a
triangulation Gn−u+zw+zx. The proof is complete.
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FIGURE 12.10
DEG(u)=4

FIGURE 12.11
DEG(u)=5
Note that Algorithm REDUCEGRAPH() requires the degrees of the vertices. These can be computed in O(n)
time and stored in an array. Once the degrees are known, the reduction from Gn to Gn−1 takes constant
time. Usually, this algorithm will be applied recursively to reduce a planar triangulation Gn to G4, which must
equal K4. If the algorithm is being used to find a planar embedding of Gn, or to color it, the graph will then
be rebuilt in reverse order.
12.9 The sphere
The plane can be mapped onto the surface of the sphere by a simple transformation called stereographic
projection. Place a sphere on the surface of the plane, so that it is tangent at the south pole. See Figure
12.12. Now from any point P on the plane, construct a straight-line L to the north pole of the sphere. L will
intersect the surface of the sphere in some point. Call it P′. This transformation maps any
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point P in the plane to a point P′ on the surface of the sphere. The mapping is clearly invertible and
continuous. The only point on the sphere to which no point of the plane is mapped is the north pole.

FIGURE 12.12
Mapping the plane to the sphere
If Gψ is an embedding of a graph on the plane, then stereographic projection will map the points of Gψ onto
an embedding of G on the surface of the sphere. Conversely, if we are given an embedding of G on the
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surface of the sphere, we can roll the sphere to ensure that the north pole is not a point of the embedding.
Then use stereographic projection to map the surface of the sphere onto the plane, thereby obtaining an
embedding of G on the plane. Consequently, embedding graphs on the plane is equivalent to embedding
them on the sphere.
When a graph is embedded on the surface of the sphere, the faces are the regions that remain when the
sphere is cut along the edges of G. There is no outer face. Every face is bounded. However, the face that
contains the north pole will become the outer face when the embedding is projected onto the plane. By
rolling the sphere to place any desired face at the top, we can make any face the outer face. We state this as
a lemma.
LEMMA 12.19 A planar graph can be drawn so that any facial cycle, any edge, or any vertex appears on the
boundary of the outer face.
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12.10 Whitney’s theorem
The plane and sphere are oriented surfaces. Consider a graph G embedded on the plane as Gp, where p
gives the clockwise orientation of the edges incident on each vertex. We are assuming that the plane is
viewed from above. If we now view the plane from below, the clockwise orientation of each p(u) will appear
counter clockwise. If an embedding Gp is projected onto the sphere, then each p(u) will appear clockwise if
viewed from inside the sphere, but counter clockwise if viewed from outside the sphere. Given a rotation
system p, we write  for the rotation system obtained by reversing the cyclic order of each p(u). So 

 The embeddings Gp and  are usually considered equivalent.
DEFINITION 12.16: Let  and  be two embeddings of a graph G, with rotation systems p1 and p2,
respectively.  and  are isomorphic embeddings if there is an automorphism of G which transforms p1
into p2.  and  are equivalent embeddings if there is an automorphism of G which transforms p1 into
either p2 or 
An automorphism of G will permute the vertices of G, and consequently alter the edges in the cyclic
permutations of a rotation system. If θ is an automorphism of G, then p1(u)=(e1, e2,…, ek) is transformed
by θ into θ(p1(u))= (θ(e1), θ(e2),…, θ(ek)). If this equals p2(θ(u)), for all vertices u, then  and  are
isomorphic. Isomorphic rotation systems are equivalent.
Two isomorphic rotation systems for K4 are illustrated in Figure 12.13. Here  it is easy to see that if
we take θ=(3, 4), then θ(p1(u))=p2(θ(u)), for all u=1, 2, 3, 4.
A triangulation G on 7 points is shown in Figure 12.14. Two rotation systems for it, p1 and p2 are also given
below. Here we also have  However, there is no automorphism of G that will transform p1 into p2.
This can be verified using the degrees of the vertices. Vertex 2 is the only vertex of degree six. Hence any
automorphism θ must fix 2. So θ(p1(2)) must equal p2(2). The only vertices of degree four are vertices 1 and
5. Therefore either θ(1)=1 or θ(1)=5. If θ(1)=1, then from p2(2) we see that θ(3)=6. This is impossible as
vertices 3 and 6 have different degrees. If θ(1)=5, then from p2(2) we have θ(3)=4, which is also impossible,
as vertices 3 and 4 have different degrees.
So  and  are equivalent embeddings that are non-isomorphic. This can only occur if there is an
automorphism of G mapping p1 to  but no automorphism mapping p1 to p2; that is,  is obtained by
“flipping”  upside down. The example of Figure 12.13 shows that this is not possible with K4, but is
possible with the triangulation of Figure 12.14.
DEFINITION 12.17: A planar graph G is orientable if there exists a planar rotation system p such that 

 Otherwise G is non-orientable.
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FIGURE 12.13
Two isomorphic rotation systems for K4
So K4 is non-orientable, but the graph of Figure 12.14 is orientable. An example of a 2-connected graph with
two inequivalent planar embeddings is shown in Figure 12.6. Whitney’s theorem states that if G is 3-
connected, this cannot happen. Let C be a cycle in a connected graph G. C is a separating cycle if G−V(C) is
disconnected.
THEOREM 12.20 (Whitney’s theorem) Let G be a 3-connected planar graph. Let p be any planar rotation
system for G. The facial cycles of Gp are the induced, non-separating cycles of G.
PROOF Let C be an induced, non-separating cycle of G. In any planar embedding of G, C corresponds to a
Jordan curve in the plane. There can be vertices of G in the interior or exterior of the Jordan curve, but not
both, because C is non-separating. Without loss of generality, assume that any vertices of G−C are in the
exterior of the Jordan curve. It follows that the interior of the Jordan curve is a face, so that C is a facial cycle
of G.
Conversely, let C be a facial cycle. Without loss of generality, we can assume that C corresponds to a Jordan
curve whose interior is a face. If G contains an edge uυ which is a chord of C, then u and υ divide C into two
paths C[u, υ] and C[υ, u]. Since uυ must be embedded exterior to C, there can be no path from an is
disconnected, a contradiction, as G is 3-connected. Consequently, C is an interior vertex of C[u, υ] to an
interior vertex of C[υ, u]. Therefore G−{u, υ} induced cycle. Let x be any vertex of G−C. If x is the only
vertex of G−C, then G−C=x, so that C is a non-separating cycle, and we are done. Otherwise
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FIGURE 12.14
Two equivalent, non-isomorphic rotation systems
let y be another vertex of G−C. Since G is 3-connected, G contains at least three internally disjoint xy-paths.
At most two of these paths can intersect C. See Figure 12.15. Therefore G−C contains an xy-path, for all x, y.
It follows that C is a non-separating cycle of G.
One consequence of Whitney’s theorem is that, if G is a 3-connected planar graph, an embedding can be
found purely from the cycles of G. If we can identify an induced, non-separating cycle C, we can then assign
an orientation to C. Each edge of C will be contained in another induced, non-separating cycle, so that the
orientation of adjacent cycles will thereby also be determined. Continuing in this way, a complete rotation
system for G can be constructed. This rotation system can then be used to construct a dual graph.
DEFINITION 12.18: Let G be a 3-connected planar graph. The abstract dual is G*, a dual graph determined
by the induced non-separating cycles of G.
The abstract dual is the same as Gp*, where p is a rotation system determined by the induced, non-
separating cycles, but it can be constructed without reference to a rotation system.
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FIGURE 12.15
Whitney’s theorem
Up to equivalence of embeddings, a 3-connected planar graph has just one rotation system, so that the
abstract dual is uniquely defined. Orientable 3-connected planar graphs have just two rotation systems (which
are inverses of each other). Non-orientable 3-connected planar graphs have just one rotation system.
Whitney’s theorem does not provide an algorithm for determining whether a graph is planar, as the
characterization of planarity in terms of induced, non-separating cycles does not lead to an efficient algorithm.
There are too many cycles in a graph to effectively find them all and determine whether they are induced,
non-separating cycles.
12.11 Medial digraphs
Let G be a loopless graph with a planar rotation system p. Note that G is allowed to be a multigraph. We
construct a digraph representing Gp.
DEFINITION 12.19: The medial digraph M(G) is obtained from G by subdividing every edge uυ of G with a
vertex xuυ. The edges of M(G) consist of all arcs of the form (u, xuυ), (xuυ, u), and (xuυ, xuw), where uυ
and uw are consecutive edges in p(u), with uw following uυ.
An example of a medial digraph is shown in Figure 12.16. Since G is planar, M(G) will also be planar.
Notice that  is the digraph converse of Gp, obtained by reversing all directed edges. If G is non-orientable,
then  Otherwise  This provides a means of determining whether an embedding is
orientable. It also gives information about the automorphisms of the planar embedding.
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FIGURE 12.16
A medial digraph
Exercises
12.11.1 Find all triangulations on 4, 5, 6, and 7 vertices.
12.11.2 Prove that  and are isomorphic embeddings if and only if  and  are isomorphic
digraphs.
12.11.3 Determine whether the platonic solids are orientable.
12.11.4 Prove that a planar embedding Gp is orientable if and only if Gp* is orientable.
12.11.5 Determine which of the triangulations on 5, 6, and 7 vertices are orientable.
12.11.6 Determine the graph G for which M(G) is shown in Figure 12.16.
12.12 The 4-color problem
Given a geographic map drawn in the plane, how many colors are needed such that the map can be colored
so that any two regions sharing a common border have different colors? In 1852, it was conjectured by
Francis Guthrie that four colors suffice. This simple problem turned out to be very difficult to solve. Several
flawed “proofs” were presented. Much of the development of graph theory originated in attempts to solve this
conjecture. See AIGNER [2] for a development of graph theory based on the 4-color problem. In 1976, Appel
and Haken announced a proof of the conjecture. Their proof was based on the results of a computer program
that had to be guaranteed bug-free. A second computer proof
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by ALLAIRE [3] appeared in 1977. Each of these approaches relied on showing that any planar graph contains
one of a number of configurations, and that for each configuration, a proper coloring of a smaller (reduced)
graph can be extended to a proper coloring of the initial graph. The computer programs generated all
irreducible configurations, and colored them. In the Appel-Haken proof, there were approximately 1800
irreducible configurations. The uncertainty was whether all irreducible configurations had indeed been
correctly generated. In 1995, ROBERTSON, SANDERS, SEYMOUR, and THOMAS [104] presented another
proof, also based on a computer program, but considerably simpler than the original, requiring only 633
irreducible configurations.
In this section, we present the main ideas of Kempe’s 1879 “proof” of the 4-color theorem.
Given a geographic map drawn in the plane, one can construct a dual graph, by placing a vertex in the
interior of each region, and joining vertices by edges if they correspond to adjacent regions. Coloring the
regions of the map is then equivalent to coloring the vertices of the dual, so that adjacent vertices are of
different colors. Consequently, we shall be concerned with coloring the vertices of a planar graph.
THEOREM 12.21 (4-Color theorem) Every planar graph can be properly colored with four colors.
If G is any simple planar graph, then it is always possible to extend G to a simple triangulation, by adding
diagonal edges in non-triangular faces. Therefore, if we can prove that all simple planar triangulations are 4-
colorable, the result will be true for all planar graphs. Hence we assume that we are given a planar
triangulation Gn on n vertices. We attempt to prove the 4-color theorem (Theorem 12.21) by induction on n.
The colors can be chosen as the numbers {1,2,3,4}. Given a coloring of G, then the subgraph induced by any
two colors i and j is bipartite. We denote it by Kij.
DEFINITION 12.20: Given any 4-coloring of a planar graph G, each connected component of Kij is called a
Kempe component. The component containing a vertex x is denoted Kij(x). A path in Kij between vertices u
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and υ is called a Kempe chain.
Notice that if we interchange the colors i and j in any Kempe component, we obtain another coloring of G.
Now let Gn be a simple triangulation on n vertices. If n=4, then Gn=K4. It is clear that Theorem 12.21 is true
in this case. Assume that n>4. By Corollary 12.17, we know that Gn has a vertex of degree three, four, or
five. Let u be such a vertex. Using Algorithm 12.8.1, we reduce Gn to a simple planar triangulation Gn−1 by
deleting u and adding up to two diagonals in the resulting
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face. We assume as an induction hypothesis, that Gn−1 has a 4-coloring. There are three cases.
Case 1. DEG(u)=3.
Let the three adjacent vertices to u be (x,y,z). They all have different colors. Therefore there is a fourth color
available for υ, giving a coloring of Gn.
Case 2. DEG(u)=4.
Let the four vertices adjacent to u in Gn be (w, x, y, z), with a diagonal wy in Gn−1. It is clear that w, x, and
y have different colors. If x and z have the same color, then a fourth color is available for u. Otherwise, let w,
x, y, z be colored 1, 2, 3, 4, respectively. There may be a Kempe chain from x to z. If there is no Kempe
chain, interchange colors in the Kempe component K24(x), so that x and z now both have color 4. If there is
a Kempe chain from x to z, there can be no Kempe chain from w to y, for it would have to intersect the xz-
Kempe chain. Interchange colors in K13(w), so that w and z now both have color 3. In each case there is a
fourth color available for u.

FIGURE 12.17
Kempe chains
Case 3. DEG(u)=5.
Let the five vertices adjacent to u in Gn be (υ, w, x, y, z), with diagonals υx and υy in Gn−1. It is clear that
υ, x, and y have different colors. Since we have a 4-coloring of Gn−1, the pentagon (υ, w, x, y, z) is colored
in either 3 or 4 colors. If it is colored in three colors, there is a fourth color available for u. If it is colored in
four colors, then without loss of generality, we can take these colors to be (1, 2, 3, 4, 2), respectively. If
K13(υ) contains no υx-Kempe chain, then we can interchange colors in K13(υ), so that υ and x are now both
colored 3. Color 1 is then available for u. If K14(υ) contains
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no υy-Kempe chain, then we can interchange colors in K 14(υ), so that υ and y are now both colored 4. Color
1 is again available for u. Otherwise there is a Kempe chain Pυx connecting υ to x and a Kempe chain Pυy
connecting υ to y. It follows that K24(w) contains no wy-Kempe chain, as it would have to intersect Pυx in
Kl3(υ). Similarly, K23(z) contains no υz-Kempe chain, as it would have to intersect Pυy in K14(υ). If Pυx and
Pυy intersect only in vertex υ, then we can interchange colors in both K24(w) and K23(z), thereby giving w
color 4 and z color 3. This makes color 2 available for u. The difficulty is that Pυx and Pυy can intersect in
several vertices. Interchanging colors in K24(w) can affect the other Kempe chains, as shown in Figure 12.18,
where the pentagon (υ, w, x, y, z) is drawn as the outer face.
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FIGURE 12.18
Intersecting Kempe chains
Although this attempted proof of Theorem 12.21 fails at this point, we can use these same ideas to prove the
following.
THEOREM 12.22 (5-Color theorem) Any planar graph can be colored in five colors.
PROOF See Exercise 12.12.1.
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Appel and Haken’s proof of the 4-color theorem is based on the important concept of reducibility. Given a
graph G, a reducible configuration H is a subgraph of G with the property that H can be reduced to a smaller
subgraph H′, such that a 4-coloring of H′ can be extended to all of H and G. If every planar graph contained
a reducible configuration, then every planar graph could be 4-colored. Appel and Haken’s proof was
essentially a computer program to construct all irreducible configurations, and to show that they could be 4-
colored. The difficulty with this approach is being certain that the computer program is correctly constructing
all irreducible configurations. The reader is referred to SAATY and KAINEN [106] or WOODALL and WILSON
[128] for more information on reducibility.
Exercises
12.12.1 Prove Theorem 12.22, the 5-color theorem.
12.12.2 Let G be a planar triangulation with a separating 3-cycle (u, υ, w). Let H and K be the two connected
subgraphs of G that intersect in exactly (u, υ, w), such that  Show how to construct a 4-coloring
of G from 4-colorings of H and K.
12.12.3 Let G be a planar triangulation with a separating 4-cycle (u,υ,w,x). Let H and K be the two connected
subgraphs of G that intersect in exactly (u, υ, w, x), such that  Show how to construct a 4-coloring
of G from 4-colorings of the triangulations H+uw and K+uw. Hint: u, υ, and w can be assumed to have the
same colors in H and K. If x is colored differently in H and K, look for an xυ-Kempe chain, try interchanging
colors in Kij(x), or try coloring H+υx and K+υx.
12.12.4 All lakes are blue. Usually all bodies of water are colored blue on a map. Construct a planar graph
with two non-adjacent vertices that must be blue, such that the graph cannot be colored in four colors
subject to this requirement.
12.13 Straight-line drawings
Every simple planar graph can be drawn in the plane with no edges crossing, so that each edge is a straight
line. Read’s Algorithm is a linear-time algorithm for doing this. It is based on the triangulation reduction.
Suppose that Gn is a triangulation on n vertices that has been reduced to a triangulation Gn−1 on n−1
vertices, by deleting a vertex u as in Algorithm 12.8.1, and adding up to two edges e and e′. Suppose that a
straight-line embedding of Gn−1 has already been computed. If DEG(u)=3, let x, y, z be the adjacent
vertices. We can place u inside the triangle (x, y, z) to obtain a straight-line embedding of
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Gn. If DEG(u)=4, the edge e is a diagonal of a quadrilateral in Gn−1. We can place u on the line representing
e to obtain a straight-line embedding of Gn.
Suppose now that DEG(u)=5. The edges e=υx and e′=υy are diagonals of a pentagon in Gn−1. This
pentagon may have several possible polygonal shapes, which are illustrated in Figure 12.19. The triangle (υ,
x, y) is completely contained inside the pentagon. Inside (υ, x, y), there is a “visible” region, shown shaded
gray. The visible region can be calculated, by extending the lines of the adjacent triangles with sides υx and
υy, and intersecting the half-planes with the triangle (υ, x, y). Vertex u can then be placed inside the visible
region to obtain a straight-line embedding of Gn. Thus in each case, a straight-line embedding of Gn−1 can
be extended to Gn.
This gives:
THEOREM 12.23 (Fáry’s theorem) Every planar graph has a straight-line embedding.

FIGURE 12.19
The “visible” region
Read’s algorithm begins by triangulating G if ε<3n−6. It then deletes a
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sequence of vertices u1, u2,…, un−4 to reduce G to K4. It next assigns a planar coordinatization to the
vertices of K4, and then restores the deleted vertices in reverse order. For each vertex ui deleted, it is
necessary to store ui and its degree, so that it can later be correctly restored to the graph. Finally, the
triangulating edges are removed. The result is a straight-line embedding of G.

Algorithm 12.13.1: READSALGORITHM(GP)

triangulate G without creating multiple edges or loops
mark all triangulating edges as “virtual” edges

i←1
while n>4
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comment: G is now K4
assign pre-chosen coordinates to the vertices of K4

for i=n−4 downto 1

remove all virtual edges from G
It is easy to see that Read’s algorithm is O(n). It takes O(n) steps to compute the degrees of G, and to
triangulate G. It takes O(n) steps to reduce G to K4, and then O(n) steps to rebuild G. Read’s algorithm can
be modified by initially choosing any facial cycle F of G, and assigning coordinates to the vertices of F so that
they form a regular convex polygon. The reduction to K4 is then modified so that vertices of the outer facial
cycle F are never deleted. The result is a planar embedding with the given facial cycle as the outer face.
The embeddings produced by Read’s algorithm are usually not convex embeddings. Tutte has shown how to
produce a straight-line embedding of a graph such that all faces are convex regions, by solving linear
equations. Consider any face of G, with facial cycle (υ1, υ2,…, υk). We begin by assigning coordinates to υ1,
υ2,…, υk such that they form a convex polygon in the plane. This will be the outer face of a planar
embedding of G.
Tutte then looks for a coordinatization of the remaining vertices with the special property: the coordinates of
υi, where i>k, are the average of the coordinates of
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all adjacent vertices. A coordinatization with this property is called a barycentric coordinatization. We can
express it in terms of matrices as follows.
Let A be the adjacency matrix of G such that the first k rows and columns correspond to vertices υ1, υ2,…,
υk. Let D be the n×n diagonal matrix such that entry Dii equals 1, if i≤k. If i>k, entry Dii equals DEG(υi). Let
X be the vector of x-coordinates of the vertices, and let Y be the vector of y-coordinates. Construct a matrix B
from A by replacing the first k rows with zeroes. Then the first k entries of BX are zero. But if i>k, the ith
entry is the sum of the x-coordinates of vertices adjacent to υi. Let Xk denote the vector whose first n entries
are the x-coordinates of υ1,…, υk, and whose remaining entries are zero. Yk is similarly defined. Then the
barycentric condition can be written as

DX=Xk+BX, DY=Yk+BY.  
These equations can be written as (D−B)X=Xk and (D−B)Y=Yk. Consider the matrix D−B.
LEMMA 12.24 The matrix D−B is invertible.
PROOF Consider the determinant det(D−B). The first k rows of D−B look like an identity matrix. Expanding
the determinant along the first k rows gives det(D−B)=det(K) where K is the matrix formed by the last n−k
rows and columns. K looks very much like a Kirchhoff matrix, except that the degrees are not quite right. In
fact, if we construct a graph G′ from G by identifying υ1, υ2,…, υk into a single vertex υ0, and deleting the
loops created, then K is formed from the Kirchhoff matrix K(G′) by deleting the row and column
corresponding to υ0. It follows that  by the matrix-tree theorem. Since G′ is a connected
graph, det(K)≠0, so that D−B is invertible.
It follows that the barycentric equations have a unique solution, for any assignment of the coordinates Xk and
Yk. Tutte has shown that if G is a 3-connected planar graph, this solution has remarkable properties: if we
begin with a convex polygon for the outer face, the solution is a planar coordinatization with straight lines,
such that no edges cross. All faces, except the outer face, are convex regions. No three vertices of any facial
cycle are collinear.
It is fairly easy to see that a planar barycentric coordinatization of a 3-connected graph must have convex
faces. For consider a non-convex face, as in Figure 12.20. Vertex υ is a corner at which a polygonal face is
non-convex. Clearly vertex υ is not on the outer face. Let the two adjacent vertices of the polygon be u and
w. Since G is 3-connected, υ has at least another adjacent vertex. All other vertices adjacent to υ must be in
the angle between the lines υu and υw as indicated in the diagram, since G is 3-connected, and there are no
crossing edges. But then all
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vertices adjacent to υ are to the right of the dotted line, which is impossible in a barycentric coordinatization.
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FIGURE 12.20
A non-convex face
12.14 Kuratowski’s theorem
In this section we will prove Kuratowski’s theorem. The proof presented is based on a proof by KLOTZ [73]. It
uses induction on ε(G).
If G is a disconnected graph, then G is planar if and only if each connected component of G is planar.
Therefore we assume that G is connected. If G is a separable graph that is planar, let H be a block of G
containing a cut-vertex υ. H is also planar, since G is. We can delete H−υ from G, and find a planar
embedding of the result. We then choose a planar embedding of H with υ on the outer face, and embed H
into a face of G having υ on its boundary. This gives:
LEMMA 12.25 A separable graph is planar if and only if all its blocks are planar.
So there is no loss in generality in starting with a 2-connected graph G.
THEOREM 12.26 (Kuratowski’s theorem) A graph G is planar if and only if it contains no subgraph TK3, 3
or TK5.
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PROOF It is clear that if G is planar, then it contains no subgraph TK3 , 3 or TK5. To prove the converse, we
show that if G is non-planar, then it must contain TK3, 3 or TK5. We assume that G is a simple, 2-connected
graph with ε edges. To start the induction, notice that if ε≤6, the result is true, as all graphs with ε≤6 are
planar. Suppose that the theorem is true for all graphs with at most ε−1 edges. Let G be non-planar, and let 

 be any edge of G. Let G′=G−ab. If G′ is non-planar, then by the induction hypothesis, it contains
a TK3 ,3 or TK5, which is also a subgraph of G. Therefore we assume that G′ is planar. Let κ(a, b) denote the
number of internally disjoint ab-paths in G′. Since G is 2-connected, we know that κ(a, b)≥1.
Case 1. κ(a, b)=1.
G′ has a cut-vertex u contained in every ab-path. Add the edges au and bu to G′, if they are not already
present, to get a graph H, with cut-vertex u. Let Ha and Hb be the blocks of H containing a and b,
respectively. If one of Ha or Hb is non-planar, say Ha, then by the induction hypothesis, it contains a TK3, 3
or TK5. This subgraph must use the edge au, as G′ is planar. Replace the edge au by a path consisting of the
edge ab plus a bu-path in Hb. The result is a TK3, 3 or TK5 in G. If Ha and Hb are both planar, choose planar
embeddings of them with edges au and bu on the outer face. Glue them together at vertex u, remove the
edges au and bu that were added, and restore ab to obtain a planar embedding of G, a contradiction.
Case 2. κ(a, b)=2.
Let P1, and P2 be two internally disjoint ab-paths in G′. Since κ(a, b)=2, there is a vertex  and 

 such that all ab-paths contain at least one of {u, υ}, and G′−{u, υ} is disconnected. If Ka and Kb
denote the connected components of G′−{u, υ} containing a and b, respectively, let  be the subgraph of G
′ induced by  let  be the subgraph induced by  Now add a vertex x to 
adjacent to u, υ, and a to obtain a graph Ha. Similarly, add y to  adjacent to u, υ, and b to obtain a graph
Hb. Suppose first that Ha and Hb are both planar. As vertex x has degree three in Ha, there are three faces
incident on x. Embed Ha in the plane so that the face with edges ux and xυ on the boundary is the outer
face. Embed Hb so that edges uy and yυ are on the boundary of the outer face. Now glue Ha and Hb
together at vertices u and υ, delete vertices x and y, and add the edge ab to obtain a planar embedding of G.
Since G is non-planar, we conclude that at least one of Ha and Hb must be non-planar. Suppose that Ha is
non-planar. It must contain a subgraph TK5 or TK3, 3. If the TK5 or TK3, 3 does not contain x, then it is also
contained in G, and we are done. Otherwise the TK5 or TK3, 3 contains x. Now Hb is 2-connected (since G
is), so that it contains internally disjoint
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paths Pbu and Pbυ connecting b to u and υ, respectively. These paths, plus the edge ab, can be used to
replace the edges ux,υx, and ax in Ha to obtain a TK5 or TK3, 3 in G.
Case 3. κ(a, b)≥3.
Let P1, P2, and P3 be three internally disjoint ab-paths in G′. Consider a planar embedding of G′. Each pair of
paths  and  creates a cycle, which embeds as a Jordan curve in the plane. Without
loss of generality, assume that the path P2 is contained in the interior of the cycle  as in Figure
12.21. The edge ab could be placed either in the interior of  or  or else in the exterior of 

 As G is non-planar, each of these regions must contain a path from an interior vertex of Pi to an
interior vertex of Pj. Let P12 be a path from u1 on P1 to u2 on P2. Let P13 be a path from υ1 on P1 to u3 on
P3. Let P23 be a path from υ2 on P2 to υ3 on P3. If u1≠υ1, contract the edges of P1 between them. Do the
same for u2, υ2 on P2 and u3, υ3 on P3. Adding the edge ab to the resultant graph then results in a TK5
minor. By Theorem 12.5, G contains either a TK5 or TK3, 3.

FIGURE 12.21
A K5minor
We can also state Kuratowski’s theorem in terms of minors.
THEOREM 12.27 (Wagner’s theorem) A graph G is planar if and only if it does not have K3, 3 or K5 as a
minor.
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PROOF It is clear that if G is planar, then it does not have K3 ,3 or K5 as a minor. Conversely, if G does not
have K3, 3 or K5 as a minor, then it cannot have a subgraph TK3, 3 or TK5. By Kuratowski’s theorem, G is
planar.
The graphs K5 and K3, 3 are called Kuratowski graphs.
Exercises
12.14.1 Find a TK3, 3 or TK5 in the Petersen graph.
12.14.2 Find a TK3, 3 or TK5 in the graph of Figure 12.22.
12.14.3 Show that if G is a non-planar 3-connected graph, then either G=K5, or else G contains a TK3, 3.
12.14.4 Let G be a graph with a separating set {u, υ}. Let H′ be a connected component of G−{u, υ}, and let
H denote the graph induced by  Let K be the graph induced by V(G)−V(H′), so that 
and H and K intersect only in {u, υ}. Let H+=H+uυ and K+=K+uυ. Show that G is planar if and only if H+
and K+ are planar.
12.14.5 Let G be a 3-connected graph with at least five vertices. Show that G contains an edge xy such that
G·xy is 3-connected. Hint: If G·xy is not 3-connected, choose xy so that the subgraph K of the preceding
exercise is as large as possible, and find a contradiction. This was proved by THOMASSEN [114].
12.14.6 Suppose that a coordinatization in the plane of an arbitrary 3-connected graph G on n vertices is
obtained by solving the barycentric equations (D−B)X=Xk and (D−B)Y=Yk. Describe an O(n3) algorithm
which determines whether G is planar, and constructs a rotation system, using the coordinates X and Y.
12.15 The Hopcroft-Tarjan algorithm
A number of different algorithms for planarity-testing have been developed. The first linear-time algorithm
was the Hopcroft-Tarjan planarity algorithm. Given a 2-connected graph G on n vertices, it determines
whether G is planar in O(n) time. If G is found to be planar, it can be extended to construct a rotation



cover

file:///G|/SMILEY/0203489055__gigle.ws/0203489055/files/__joined.html[01/10/2009 15:18:30]

system, too. If G is found to be non-planar, it can also be modified to construct a TK5 or TK3, 3 subgraph,
although this is somewhat more difficult. We present a simplified version of the Hopcroft-Tarjan algorithm
here.
There is no loss in generality in starting with a 2-connected graph G. Suppose first that G is hamiltonian, and
that we are given a hamilton cycle C, and number the vertices of C consecutively as 1, 2,…, n. The remaining
edges of G are
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FIGURE 12.22
Find a TK3, 3
chords of C. For each vertex u, order the adjacent vertices (υ1, υ2,…, υk) so that υ1<υ2<…<υk. We then
start at vertex u=n, and follow the cycle C back to vertex 1. As we proceed, we will place each chord uυ
either inside C or outside C. When we have returned to vertex 1, we will have constructed a planar
embedding of G. We draw the cycle C as in Figure 12.23, with the path from 1 to n starting near the top, and
moving down the page.
Consider the example of Figure 12.23. The algorithm stores two linked lists of chords, one for the inside of C,
and one for the outside of C. We denote these as Li and Lo, respectively. Each linked list defines a sequence
of chords [u1υ1, u2υ2, u3υ3,…] as they are added to the embedding. The inside of C appears in the diagram
to the left of the path from 1 to n. The outside of C appears to the right of the path. In the example, the
algorithm begins at vertex n=7 with adjacent vertices (1, 3, 4, 6). It first places the “chord” (7, 1), which
really completes the cycle, on the inside linked list. It then places chords (7, 3) and (7, 4) also on Li. The
inside linked list is now [(7, 1), (7, 3), (7, 4)]. The chord (7, 4) is called the leading chord in the linked list.
The next chord to be inserted is to be placed after it. To determine whether the next chord (u, υ) fits on the
inside, it need only compare its endpoint υ with the upper endpoint of the current leading chord of Li. After
placing the chords incident on vertex 7, the algorithm moves to vertex 6, where it sees the chord (6, 1). This
will not fit on the inside (because 1<4), but is easily placed on the outside linked list. It then moves to vertex
5,
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FIGURE 12.23
The Hopcroft-Tarjan algorithm
and places (5, 2) also on Lo. The outside linked list is then [(6, 1), (5, 2)], where (5, 2) is the leading chord.
It then moves to vertex 4, where it sees the chord (4, 1). When the algorithm moves up the cycle to vertex 4,
the leading chord of Li is moved past (7, 4) to (7, 3), because the chord (4, 1) is above (7, 4). It then
determines that (4, 1) will not fit on the inside (because 1<3, where (7,3) is the leading chord of Li); and that
(4,1) will not fit on the outside (because 1<2, where (5, 2) is the leading chord of Lo). Therefore G is non-
planar. In fact the cycle C, together with the three chords (7, 3), (5, 2), and (4, 1) form a subgraph TK3,3,
which we know to be non-planar.
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Algorithm 12.15.1: BASICHT(G, C)

for u←n downto 1
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We must still describe what SWITCHSIDES(u, υ) does. Its purpose is to determine whether some chords of Li
and Lo can be interchanged to allow (u, υ) to be embedded. Its description will follow.
This simplified version of the Hopcroft-Tarjan algorithm contains the main features of the complete algorithm,
but is much easier to understand. The algorithm stores two linked lists, Li and Lo. Each list has a leading
chord—the chord after which the next chord is to be placed when inserted in the list as the sequence of
chords is extended. Initially the leading chord will be the last chord in the linked list, but this will change as
the algorithm progresses. It is convenient to initialize both linked lists with dummy chords, so that each list
has at least one chord. Each chord stored in a linked list will be represented by a pair, denoted (LowerPt,
UpperPt), where UpperPt is the endpoint with the smaller value—it is above the LowerPt in the diagram. As
the chords are placed in the linked lists, a linear order is thereby defined on the chords in each list. Given a
chord (u, υ), where u>υ, the next chord after (u, υ) is the chord nested immediately inside (u, υ), if there is
such a chord. If there is no such chord, then the next chord after (u, υ) is the first chord below (u, υ) if there
is one; that is, the first chord whose UpperPt ≥u. To determine whether a chord (u, υ) fits either inside or
outside C, we need only compare υ with the leading chord’s UpperPt. It fits if υ≥UpperPt. As u moves up the
cycle, we must adjust the pointer to the leading chord on both sides
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to ensure that the leading chord always satisfies UpperPt<u.
So we know how to store the chords, and how to determine whether a chord (u, υ) fits in either side. If it
fits, we insert it in the appropriate linked list and continue with the next chord. What if (u, υ) will not fit in
either side?
12.15.1 Bundles
Two chords (u1, υ1) and (u2, υ2) are said to be in conflict if either u1>u2> υ1>υ2 or u2>u1>υ2>u1.
Conflicting chords cannot both be placed on the same side of C. We define a conflict graph K whose vertices
are the set of all chords currently in the linked lists. Two chords are adjacent in K if they are in conflict. A set
of chords corresponding to a connected component of the conflict graph is called a bundle (originally called a
“block” in HT’s paper; however, the term “block” has another graph theoretical meaning). The conflict graph
must alway s be bipartite, as two chords in the same linked list must never be in conflict. Therefore each
bundle B is also bipartite—the bipartition of a bundle consists of the chords inside the cycle, denoted Bi, and
the chords outside the cycle, denoted Bo. A typical bundle is shown as the shaded area in Figure 12.24. The
two shaded zones represent Bi and Bo for one bundle. Any chord inside a shaded zone conflicts with all
chords in the opposite shaded zone. Notice that if the conflict graph is not bipartite, that it is impossible to
assign the chords to the inside and outside of C. Consequently, G must be non-planar in such a case.
Now the conflict graph K is changing dynamically as the algorithm progresses. Therefore the bundles are also
changing. However, they change in a simple way. Each chord is initially a bundle by itself, until it is found to
conflict with another chord. In a 1-chord bundle, one of Bi and Bo will be empty. The algorithm will store the
bundles in a stack.
Consider the situation where no conflicts have yet been discovered, so that all chords so far have been placed
on Li. The algorithm is visiting vertex u on C, attempting to place a chord (u, υ). The leading inside chord
satisfies LowerPt≥u>UpperPt. It belongs to a 1-chord bundle, the current bundle. The algorithm first attempts
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to nest (u, υ) inside the leading inside chord. If it fits, then (u, υ) becomes the new leading inside chord, and
a new 1-chord bundle is created containing only uυ, which becomes the current bundle—the bundles are
nested. The innermost bundle is always the current bundle, and is stored at the top of the bundle stack.
If (u, υ) will not fit on the inside, it conflicts with the leading inside chord. (u, υ) may conflict with several
chords of the inside linked list. They will be consecutive chords of Li, preceding the leading chord. These
chords initially belong to different bundles, but will become merged into the current bundle B, thereby forming
Bi, when (u, υ) is placed in the outside list. Bo will consist of (u, υ). If B denotes the current bundle, we will
call Bi and Bo the current inside
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FIGURE 12.24
Bundles of chords
and outside bundles, although they are part of the same bundle.
At this point we can say that the current inside and outside bundles consist of one or more consecutive
chords in the two linked lists. This will be true at each point of the algorithm.
So in order to represent a bundle B, we require two pointers into each of Li and Lo, being the first and last
chords of Li that belong to Bi and the first and last chords of Lo that belong to Bo. We could switch the
chords of Bi to Lo and the chords of Bo to Li by reassigning four pointers. Because the bundles are nested,
we store them as a stack.
When a chord (u, υ) is placed in one of the linked lists, and it does not conflict with the leading chord on
either side, a new current bundle B containing (u, υ) is created, nested inside the previous current bundle.
The current bundle is the one at the top of the stack. As vertex u moves up the cycle, we eventually have
u≤UpperPt for the uppermost chord in the current bundle. The current bundle B is then no longer relevant, as
no more chords can conflict with it. Therefore B
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is removed from the stack and deleted. The next bundle B′ on the stack becomes the current bundle. When
this happens, the chords belonging to Bi or Bo often occur in Li or Lo, respectively, as a consecutive
subsequence of chords contained within  or  When B is deleted, the effect is to merge the chords of B
into B′. Then B′ becomes the new current bundle. Its chords are again consecutive chords of Li and Lo.
12.15.2 Switching bundles
We have a chord (u, υ) that will not fit on the inside or outside of C. What do we do? There are several
possible ways in which this can arise. Two of them are illustrated in Figure 12.25. The current bundle is
shown shaded in gray.
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In the left diagram of Figure 12.25, (u, υ) conflicts with one or more chords in Bi and in Bo. If we form a
subgraph consisting of the cycle C, the edge (u, υ), and a conflicting chord from each of Bi and Bo, we have a
subgraph TK3, 3 which we know is non-planar. In the right diagram of Figure 12.25, (u, υ) conflicts with one
or more chords in Bo. It does not conflict with any chords in Bi but it does conflict with the leading chord (a,
b) of Li, which is in a previous inside bundle. If we interchange the the chords of Bi and Bo, there will be
room to place (u, υ) in Lo. This can be done in constant time, because the chords in each bundle are
consecutive chords in the linked list. We only need to change a constant number of pointers to transfer a
sequence of chords from Li to Lo, and vice versa.
A third situation also exists which is nearly the mirror image of the right diagram of Figure 12.25, in which (u,
υ) conflicts with one or more chords in Bi, but does not conflict with any chords in Bo, and does conflict with
the leading chord (a, b) of Lo, which is in a previous outside bundle. It can be handled in a similar way.
Suppose that a situation similar to the right diagram of Figure 12.25 exists. B is the current bundle, and chord
(u, υ) conflicts with a chord of Bo, but not with Bi. The leading chord of Lo is in Bo. The leading chord of Li is
(a, b), which is not in Bi. Since every chord is contained in some bundle, (a, b) is in a previous bundle on the
stack. The bundles are nested, so that B is nested within a bundle B′, which may in turn be nested within in a
bundle B″, etc. Without loss of generality, suppose that there are at least three bundles on the stack, which
begins B, B′, B″,  and that (a, b) is in B″.
Now B is nested within B′, which is nested within B″. Since the leading chord of Li is in B″, it follows that
(u, υ) does not conflict with any chord of  and that (u, υ) does conflict with some chord of  So (u, υ)
conflicts with a chord of both Bo and  If (u, υ) can be embedded, Bo and  must be merged into one
bundle, and they must both be on the same side of C. They will be in the same part of the bipartition of K.
Therefore the algorithm merges B and B′. Call the result B. It then discovers that interchanging the chords of
Bi and Bo allows
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FIGURE 12.25
Switching bundles
(u, υ) to be placed on Lo. Since (u, υ) conflicts with (a, b) in Li, the bundles B and B″ are then also merged.
The properties of bundles are summarized as follows:
1. The bundles correspond to connected components of the conflict graph.
2. The bundles are nested inside each other, and consequently stored on a stack.
3. The current bundle is the one on the top of the stack.
4. The chords of each Bi and Bo form a contiguous subsequence of Li and Lo, respectively.
The description of SWITCHSIDES(u, υ) Algorithm 12.15.2 can now be given. It is called when chord (u, υ)
conflicts with both the leading chord of Li and the leading chord of Lo. The algorithm needs to know whether
the leading chord of Li is within Bi, and whether the leading chord of Lo is within Bo. This can be done by
comparing the endpoints of the leading chords with the first and last chords of Bi and Bo. One of the leading
chords is always in the current bundle. The other must be in a previous bundle, or the conflict graph will be
non-bipartite, and G will be non-planar.
When Bi and Bo are interchanged, the leading chords in Li and Lo also change. Suppose that the leading
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chord of Lo is within Bo, but that the leading chord of
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Li is in a previous bundle, as in Figure 12.25. The new leading chord of Lo can easily be found by taking the
first chord of Lo following Bo. The new leading chord of Li is the former leading chord of Lo.
This procedure merges the bundles on the stack until either a non-bipartite conflict graph is found, in which
case it returns zero, or until it becomes possible to place (u, υ) in one of Li or Lo. Notice that swapping the
chords of Bi and Bo takes a constant number of steps, and that merging the current bundle with the previous
bundle on the stack also takes a constant number of steps. The total number of bundles is at most the
number of edges of G, so that the total number of steps required by SWITCHSIDES(u, υ) is O(n), summed
over all iterations.
If SWITCHSIDES(u, υ) returns either 1 or −1, then it is possible to place (u, υ) inside or outside C. If
SWITCHSIDES(u, υ) returns 0, then the current bundle contains chords of Li and Lo that conflict with (u, υ),
so that the conflict graph is not bipartite. In this case G is non-planar. However, it is not particularly easy to
find a TK5 or TK3, 3 in G in this situation. If the algorithm succeeds in placing all the chords, then a rotation
system can be found from the order in which the chords occur in Li and Lo.
So the three main components of this simplified version of the Hopcroft-Tarjan algorithm are:
1. Construct the linked lists Li and Lo in the right order.
2. Construct the connected components of the conflict graph as a stack of bundles.
3. Keep the bundles up to date. Each time that a chord is added to one of Li or Lo, the current bundle must
be updated.
These steps can all be performed in linear time.
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Algorithm 12.15.2: SWITCHSIDES(u, υ)

comment: (u, υ) conflicts with the leading chord of Li and Lo
while (true)
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12.15.3 The general Hopcroft-Tarjan algorithm
Up to now, we have assumed that we are given a hamilton cycle C in a 2-connected graph G which we are
testing for planarity. If we are not given a starting hamilton cycle, the algorithm is the recursive extension of
the hamilton cycle case. We give a brief sketch only. The first step is to perform a depth-first search in G
starting from vertex 1, to assign a DF-numbering to the vertices, and to calculate the low-points of all
vertices. The DFS will construct a DF-spanning tree T rooted at 1. Number the vertices of G according to their
DF-numbers. It

page_321

Page 322



cover

file:///G|/SMILEY/0203489055__gigle.ws/0203489055/files/__joined.html[01/10/2009 15:18:30]

FIGURE 12.26
Subtrees Tuυand Tuw
can happen that the tree T is a hamilton path, in which case we have the proceeding situation exactly—the
vertices are numbered consecutively along T, and as the DFS returns from recursion, it visits the vertices in
the order n, n−1,…, 1. If we sort the chords incident on each vertex in order of increasing DF-number of the
other endpoint, the algorithm is identical.
If the tree T is not a hamilton path, consider the situation where the DFS is visiting vertex u, and a recursive
call
While visiting vertex u, the recursive call DFS(υ) constructs a subtree Tuυ, where υ is adjacent to u. Refer to
Figure 12.26. When Tuυ is constructed, LowPt[υ] is calculated. Since G is 2-connected, this is a vertex
somewhere above u in T. The entire subtree Tuυ behaves very much like a single chord (u, LowPt[υ]).
Therefore the vertices adjacent to u must be sorted according to LowPt[·] values, just as in the simplified
algorithm (where υ is used rather than LowPt[υ]).
There are two kinds of possible subtree, and these are illustrated as Tuυ and Tuw in Figure 12.26. Both Tuυ
and Tuw have the same LowPt, equal to x. Notice that Tuυ has a frond with endpoint y between u and x, but
that Tuw has no such
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frond. We will call a subtree like Tuw a type I subtree, and a subtree like Tuυ a type II subtree. It is easy to
distinguish type I and II subtrees. The DFS can compute the second low-point as well as the low-point. If the
second low-point is between u and LowPt[υ], then the subtree Tuυ is of type II; otherwise it is of type I. Now
a type I subtree Tuw behaves exactly like a chord (u, LowPt[w]). There can be any number of them, and they
can be nested inside each other in any order. However, they cannot be nested inside a type II subtree.
Therefore we must embed all type I subtrees at u with LowPt=x before any type II subtrees at u with
LowPt=x. This can be accomplished by ordering the adjacent vertices at u so that fronds ux and type I
subtrees Tuw with LowPt[w]= x precede type II subtrees Tuυ with LowPt[υ]=x. Hopcroft and Tarjan assign a
weight to all edges incident on u. A frond ux has weight 2x. A type I subtree Tuυ has weight 2·LowPt[υ]. A
type II subtree Tuυ has weight 2·LowPt[υ]+1. The adjacent vertices are then sorted by weight, which can be
done by a bucket sort in linear time, because the weights are all in the range 1,…, 2n+1.
The general algorithm takes place in two stages. The first stage is LOWPTDFS() which constructs a DF-tree,
calculates the low-points and second low-points, and sorts the adjacency lists. The second stage is another
DFS which we call EMBEDDINGDFS(). It is a DFS using the re-ordered adjacency lists and is given as
Algorithm 12.15.3
Algorithm 12.15.3 constructs an embedding by placing the edges into two linked lists Li and Lo, as in the
simplified algorithm. The list Li which originally corresponded to the chords placed inside C, now corresponds
to the edges placed to the left of the DF-tree, since the drawings were made with the interior of C to the left
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of the path. Similarly, the list Lo now corresponds to edges placed to the right of the DF-tree, since the
exterior of C was drawn to the right of the path. EMBEDDINGDFS() first descends the DF-tree. The first leaf it
encounters will have a frond back to vertex 1. This is a consequence of the ordering of the adjacency lists.
This creates a cycle C, which we draw to the left of the path. The remaining fronds and subtrees will be
placed either in Li or Lo, exactly as in the simplified algorithm.
A subtree Tuυ is similar to a chord (u, LowPt[υ])·Tuυ fits in Li if and only if a chord (u, LowPt[υ]) does. In
this case, we place a dummy chord (u, LowPt[υ]) in Li and a dummy chord (u, u) in Lo. A dummy chord is a
chord that has an associated flag indicating that it is a placeholder for a subtree. If the dummy chord (u,
LowPt[υ]) is assigned to Li, the subtreeTuυ is to be embedded to the left of the path of the DF-tree
containing u. The algorithm then calls EMBEDDINGDFS(υ) recursively. The fronds placed in Li by the recursion
are placed to the left of the tree Tuυ. The fronds placed in Lo are to the right of Tuυ. The dummy chord (u,
u) in Lo has the purpose of ensuring that any fronds placed in Lo by the recursive call must have UpperPt≥u.

page_323

Page 324
Algorithm 12.15.3: EMBEDDINGDFS(u)

comment: extend the embedding DFS from u
for all υ adjacent to u
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12.16 Notes
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The important area of graph minors was developed in a series of over 20 papers by Robertson and Seymour.
Some of their early work on graph minors is surveyed in their paper ROBERTSON and SEYMOUR [103]. They
have proved a theorem of far-reaching significance, that in any infinite collection of graphs, there are always
two graphs such that one is a minor of the other; or in other words, any set of graphs in which no graph is a
minor of another, is finite. The books by DIESTEL [35] and ZIEGLER [129] contain excellent chapters on
graph minors.
Rotation systems were developed by HEFFTER [60] and EDMONDS [37].
Read’s algorithm to draw a planar graph by reducing a triangulation is from READ [100]. It was modified to
use a regular polygon as the outer face by KOCAY and PANTEL [79]. Tutte’s method of using barycentric
coordinates to construct convex drawings of graphs appeared in TUTTE [116].
Whitney’s theorem appeared in WHITNEY [125].
Good source books for polytopes are the books by GRÜNBAUM [56] and ZIEGLER [129].
The original proof of the four-color theorem appeared in APPEL and HAKEN [4] and [5]. An excellent survey
article of the Appel-Haken proof is WOODALL and WILSON [128]. There are a number of excellent books on
the 4-color problem, including SAATY and KAINEN [106] and ORE [93]. A very readable history of the 4-color
problem can be found in WILSON [127]. A shorter proof was accomplished by ROBERTSON, SANDERS,
SEYMOUR, and THOMAS in [104]. Much of the development of graph theory arose out of attempts to solve
the 4-color problem. AIGNER [2] develops the theory of graphs from this perspective.
Kuratowski’s theorem is a famous theorem of graph theory. It originally appeared in KURATOWSKI [82]. The
proof presented here is based on a proof of KLOTZ [73]. See also THOMASSEN [112].
The Hopcroft-Tarjan planarity algorithm is from HOPCROFT and TARJAN [66]. See also WILLIAMSON [126]. It
is usually presented as a “path-addition” algorithm; that is, an algorithm that embeds one path at a time
across a cycle. It is presented here as an equivalent algorithm that recursively embeds a branch of the DF-
tree.
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13 
Graphs and Surfaces
13.1 Introduction
The plane and the sphere are the simplest topological surfaces. The structure of planar graphs, and
algorithms for embedding graphs on the plane are well understood. Much less is known about graph
embeddings on other surfaces, and the structure of these graphs. We begin with the torus, the doughnut-
shaped surface shown in Figure 13.1. We imagine this surface made out of rubber, and using scissors, cut it
along the two circumferences shown in the diagram. The surface of the torus then unfolds into a rectangle,
which is indicated on the right. The opposite sides of the rectangle labeled a must be glued together with the
arrows aligned, as must the sides labeled b, in order to reconstruct the torus. We could glue the edges in the
order a, then b; or else b, then a. Both represent the same torus.

FIGURE 13.1
The torus
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When a graph is drawn on the rectangle representing the torus, we must remember that the two sides
labeled a (and the two sides b) are really the same, so that graph edges can “wrap around” the diagram.
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Notice that the four corners of the rectangle all represent the same point. Figure 13.2 shows two embeddings
of K3, 3 on the torus.

FIGURE 13.2
Two embeddings of K3, 3 on the torus
These embeddings of K3, 3 are very different from each other. Unlike the plane in which a 3-connected graph
has a unique embedding (up to orientation), some graphs have very many distinct embeddings in the torus,
or other surfaces.
DEFINITION 13.1: An embedding of a graph G in a surface Σ is a function ψ that maps the vertices of G into
points of Σ, and the edges of G into continuous curves in Σ, such that the curves representing two edges
intersect only at a common endpoint. We write Gψ for the image of G under the embedding ψ.
In the embeddings of Figure 13.2, we can assign a “coordinate system” to the rectangle representing the
torus, and then construct ψ by assigning coordinates to the vertices, and then draw the edges as straight
lines. This is how the diagram was constructed.
Definition 12.1 uses an intuitive notion of a surface, and an intuitive notion of continuous. Currently we have
the plane, sphere, or torus in mind. We will later make the definition of a surface more precise. Because we
have coordinate systems for the above surfaces, by “continuous” we mean continuous mappings of the
coordinates. However, topological continuity does not require coordinates.
If we cut the torus along the edges of the embeddings of K3, 3, the torus surface falls apart into several
connected regions. As in the case of the plane, we call these regions the faces of the embedding. A facial
cycle is an oriented cycle of the graph which bounds a face. The embedding of K3 ,3 in Figure 13.2(i) has
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three faces, each bounded by a hexagon. The embedding in Figure 13.2(ii) also has three faces, two bounded
by quadrilaterals, and one bounded by a 10-cycle.
An open disc in the plane is the region interior to a circle. We will use an intuitive understanding of the notion
of homeomorphic subsets of surfaces. Two regions R1 and R2 are said to be homeomorphic if one can be
transformed into the other by a one-to-one continuous deformation, whose inverse is also continuous. For
example, an open disc is homeomorphic to a face bounded by a hexagon, or by any other polygon. A
homeomorphism of R1 and R2 is any continuous one-to-one mapping from R1 onto R2, whose inverse is also
continuous.
DEFINITION 13.2: A 2-cell is a region homeomorphic to an open disc. An embedding Gψ is a 2-cell
embedding if all faces are 2-cells.
Corresponding to the idea of a 2-cell are 0-cells (a single point), 1-cells (an open line segment), and 3-cells
(the interior of a sphere in 3-space), etc.
It is necessary to restrict embeddings of a graph G to 2-cell embeddings. For example, we could draw a
planar embedding of a planar graph G, such as the cube, in the rectangle representing the torus. The result
would not be a 2-cell embedding of G, for the outer face of the embedding would be homeomorphic to a
torus with a hole in it, which is not a 2-cell. Embeddings which are not 2-cell embeddings really belong in a
different surface. For the cube, there are five distinct 2-cell embeddings on the torus.
DEFINITION 13.3: Two embeddings Gψ1 and Gψ2 in a surface Σ are homeomorphic if there is a
homeomorphism of Σ which maps Gψ1 to Gψ2. Otherwise Gψ1 and Gψ2 are distinct embeddings.
It is clear that a homeomorphism of Gψ1 and Gψ2 induces an automorphism of G, and that the faces of Gψ1
map to the faces of Gψ2. The embeddings of Figure 13.2 are then easily seen to be distinct, because their
facial cycles have different lengths. In general, there is no easy method of determining all the embeddings of
a graph on a given surface, or even to determine whether a graph is embeddable.
13.2 Surfaces
We can use the method of representing the torus as a rectangle, as in Figure 13.1, to represent a cylinder,
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and a Möbius band, shown in Figures 13.3 and 13.4.
The cylinder is glued along only one edge of the rectangle. We call it an open surface because it has a
boundary (the edges which are not glued). If we project a cylinder onto a plane, one possible result is an
annulus, that is, a disc with a hole in it. This immediately gives the following theorem:
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FIGURE 13.3
Three representations of the cylinder
THEOREM 13.1 A graph can be embedded on the cylinder if and only if it can be embedded on the plane.
PROOF Given an embedding of a graph G on the plane, choose any face and cut a hole in it. The result is an
embedding on the cylinder, and vice versa.
Notice that an embedding of G on the cylinder corresponds to an embedding of G on the plane with two
distinguished faces. They can be any two faces of a planar embedding of G.
The Möbius band is constructed by giving one end of the rectangle a twist of 180 degrees before aligning and
gluing the opposite edges. This is indicated by the opposite orientation of the arrows. Notice that if we follow
the boundary of the Möbius band, it is a single closed curve, unlike the boundary of the cylinder.
The sphere, torus, and cylinder can all be considered as two-sided surfaces—they have an inside and outside.
One way to define this is to imagine a small clockwise-oriented circle drawn in the surface. If we reflect this
circle in the
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FIGURE 13.4
The Möbius band
surface, we obtain a circle of the opposite orientation. On the sphere, torus, and cylinder it is not possible to
walk along the surface, taking the oriented circle with us, until it coincides with its opposite orientation (we
are not allowed to walk over the boundary of the cylinder or Möbius band). On the Möbius band, it is possible
to make these two circles coincide. We therefore say that the Möbius band is a one-sided surface. A two-
sided surface is said to be orientable. We can assign an orientation to the surface, by partitioning the set of
oriented circles defined at every point of the surface. One orientation is called the inside, and the other the
outside. A one-sided surface is non-orientable, as the set of oriented circles does not have this partition into
two subsets. For surfaces like the sphere and torus which can be constructed in euclidean 3-space, we could
alternatively use a normal vector to the surface, and its reflexion in the surface in place of an oriented circle
and its reflexion.
Aside from the cylinder and Möbius band, the surfaces we will be interested in are closed surfaces.
A closed surface is a generalized notion of a polyhedron. A polyhedron is a
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three-dimensional object consisting of a set of polygons, of three or more sides each. Each polygon is
bounded by a sequence of p straight-line segments connecting p vertices in cyclic order, for some p≥3. The
line segments are the edges of the polyhedron. Each edge is shared by exactly two polygons. Any two
polygons may intersect only on a single common edge. There are at least three polygons meeting at each
vertex, and the polygons meeting at any vertex form a single cycle.
This idea is generalized by allowing the polygons composing a polyhedron to be infinitely stretchable and
interpenetrable. They are then called curvilinear polygons.
DEFINITION 13.4: A closed surface is a set of points homeomorphic to a polyhedron made of curvilinear
polygons.
Thus a closed surface is an object that is capable of being represented as a collection of curvilinear polygons
glued together along common edges. However, the surface is not any single one of these representations,
since many different polygonal representations of the same closed surface are possible. For example, the
surface of the sphere may be partitioned into many different polygonal forms. Similarly, the embeddings of
K3, 3 of Figure 13.2 partition the torus into two different polyhedra.
When we identify opposite edges of a rectangle, we are identifying two edges of a single polygon. In order to
conform to the definition of polyhedron, in which only distinct polygons share a common edge, we can
subdivide the rectangle into two or more polygons, as necessary. There are three more surfaces that can be
made from a rectangle by identifying its edges in pairs. They are the sphere, projective plane, and Klein
bottle, illustrated in Figures 13.5, 13.6, and 13.8. The sphere can also be represented as a digon (a polygon
of two sides), as shown, where c=ab.
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FIGURE 13.5
The sphere as a rectangle and as a digon
The projective plane is constructed from a rectangle by first using a twist to
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create a Möbius band, and then by gluing the boundary of the Möbius band to itself, to create a closed
surface. This is illustrated in Figure 13.6, where the edges labeled b have been glued. This cannot be done in
euclidean space, for the polygon must cross itself without intersecting itself. But mathematically, we can
consider the surface to be constructed in this way. The projective plane can also be viewed as a digon, as
illustrated in Figure 13.7, by combining the a and b sides of the rectangle into a single side, labeled c.
Because of the orientation of the arrows, the two “corners” of the digon represent the same point. We can
identify the corners, creating a “figure eight”, and then identify the two lobes of the figure eight to complete
the projective plane. If we then remove a disc from the projective plane by cutting along the circle containing
the dotted line, the result is called a crosscap. It is a projective plane with a hole in it. In Exercise 13.2.1, it is
proved that a crosscap is homeomorphic to a Möbius band.

FIGURE 13.6
The projective plane as a rectangle, and as a Möbius band
The Klein bottle can be constructed by gluing two edges of a rectangle to create a cylinder, and then by
gluing the ends of the cylinder together, according to the orientation of the arrows. This also cannot be done
in euclidean space, as the cylinder must cross through itself without intersecting itself.
These surfaces have been constructed from a rectangle by gluing edges together. By subdividing the
rectangle into curvilinear polygons, closed surfaces represented as curvilinear polyhedra are obtained.
Polygons with more sides than a rectangle could also be used. By the classification theorem of closed surfaces
(Theorem 13.2), every closed surface can be constructed by gluing together edges of a single curvilinear
polygon.
The rectangle representing the torus in Figure 13.1 can be written symbolically as a+b+a−b−. This means
that we choose a clockwise orientation of the rectangle and write a+ for the edge labeled a when the
direction of the arrow is clockwise, and a− when the direction of the arrow is counterclockwise. The boundary
of the rectangle is then determined by the above symbol. Similarly the rectangle
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FIGURE 13.7
The projective plane as a digon, and as a crosscap
representing the sphere (Figure 13.5) can be characterized as a+b+b−a−, that of the projective plane
(Figure 13.6) as a+b+a+b+, and that of the Klein bottle (Figure 13.8) as a+b+a+b−.
In general, we have a polygon with an even number of sides, with labels a1, a2,…, ap, such that every label
ai appears on exactly two sides. We place an arrow on each edge of the polygon in some direction, and

choose a clockwise orientation of the polygon. This defines a symbolic representation in terms of the  and 
 Every closed surface can be represented symbolically by a normal form of this type, as shown by the

following theorem:
THEOREM 13.2 (Dehn and Heegard—Normal forms for closed surfaces) Every closed surface can be
represented symbolically by one of the following normal forms. Two closed surfaces are homeomorphic if and
only if they have the same normal form.
1. a+a−

2. 

3. 
The proof of this theorem can be found in FRÉCHET and FAN [44] or STILLWELL [109]. It is too lengthy to
include here. It involves cutting and pasting a curvilinear polygon until the normal form is achieved. This is
done in stages. The torus is represented in Figure 13.1 by a+b+a−b−, which is already in normal form. The
sphere is represented by a+b+b−a−. It is clear from the diagram that the adjacent b+b− corresponds to
edges that can be glued, so that they cancel from the formula, leaving a+a− as the normal form for the
sphere. The projective
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FIGURE 13.8
The Klein bottle as a rectangle
plane is represented in Figure 13.6 as a+b+a+b+, which is not in normal form. The proof of Theorem 13.2
would convert it to normal form by the following sequence of operations, illustrated in Figure 13.9.
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FIGURE 13.9
Transforming the projective plane to normal form
We make a diagonal cut across the rectangle, and label it c. We thereby obtain two triangles which we glue
together along the edge b, which then disappears. The symbolic form is now c+a+a−c+. The edges a+a−
are then glued to produce the digon in Figure 13.9, giving the normal form c+c+ for the projective plane.

page_335

Page 336
13.2.1 Handles and crosscaps
Consider a surface with normal form a+b+a−b−c+d+c−d−, shown in Figure 13.10. We have an octagon
with edges that are to be identified in pairs. Both endpoints of the upper edge marked b represent the same
point, as they are the same endpoint of the arrows marked a. Therefore gluing the edges labeled a will make
this b-edge the boundary of a hole in the surface. Consequently, the other edge labeled b also represents the
boundary of a hole in the surface, and these two boundaries must be identified. One way to identify them is
to attach the two ends of a cylindrical tube to each of these holes. The result is a handle attached to the
surface.

FIGURE 13.10
A sphere with two handles
Now the same can be done for the edges marked c in the diagram—we attach another handle. This same
argument holds for any normal form of this type. This gives:
THEOREM 13.3 A surface with normal form

 
is homeomorphic to a sphere with p handles.
Because a sphere is an orientable surface, so is a sphere with p handles.
Consider now a surface with normal form a+a+b+b+c+c+, illustrated in Figure 13.11. We have a hexagon in
which consecutive edges are to be identified in pairs. The vertex common to the two sides marked a is both
the head and tail of the a-arrow. Therefore indentifying the endpoints of the edges marked a
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makes two holes in the surface, bounded by the a-edges. We must identify the boundaries of these two lobes.
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FIGURE 13.11
A sphere with three crosscaps
This is nearly identical to the construction of the projective plane from a digon, illustrated in Figure 13.7. If
we draw a circle around the two a-lobes in Figure 13.11, and cut along the dotted line, we see that what we
have is in fact a crosscap glued into a hole cut in the surface. We can then do the same for the remaining
pairs b+b+ and c+c+ to get a sphere with three crosscaps. In general, this gives:
THEOREM 13.4 A surface with normal form

 
is homeomorphic to a sphere with q crosscaps.
Because a crosscap is an unorientable surface, so is a sphere with q crosscaps. Gluing a crosscap to a hole in
a sphere is equivalent to gluing the boundary of a Möbius band to a hole in the sphere.
13.2.2 The Euler characteristic and genus of a surface
We know from Chapter 12 that a connected planar graph with n vertices, ε edges, and f faces satisfies Euler’s
formula n−ε+f=2. Furthermore, the skeleton of a polyhedron is a planar graph, so that any polyhedral
division of the sphere also satisfies this formula. We say that the Euler characteristic of the sphere is 2.
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DEFINITION 13.5: Let Σ be a closed surface represented by a curvilinear polyhedron with n vertices, f
polygons, and ε edges. The Euler characteristic of the surface is the value n−ε+f. It is denoted χ(Σ).
It has been proved by Kerékjártó that the value n−ε+f for a surface is invariant, no matter what polygonal
subdivision is used to represent it. This is difficult to prove because of the vast numbers of polygonal
subdivisions that are possible. However, we can get an understanding of it as follows. If we add a diagonal
across a face, n does not change, but ε and f both increase by one. Thus n−ε+f does not change. Similarly, if
we subdivide an edge with a new vertex, n and ε increase by one, but f does not change. Modifying a
polygonal subdivision by these operations does not change the value n−ε+f. Suppose that we now add a
handle or crosscap to a given polygonal division of a surface. Consider a polygonal division with n vertices, f
polygons, and ε edges. Choose two polygons on the surface, cut a disc from the interior of each polygon, and
attach a handle connecting them. Let the polygons be P1 and P2. Refer to Figure 13.12. We draw two curves
along the handle connecting P1 to P2. The result is a polygonal division of the surface with an additional
handle. Let it have n′ vertices, f' polygons, and ε′ edges. The effect of drawing the curves connecting P1 to
P2 is to add two vertices and two edges to each of P1 and P2, plus two additional edges represented by the
curves. The number of polygons does not change. We therefore have n′=n+4, f'=f, and ε′=ε+6, so that n′−ε
′+f'=(n−ε+f)−2. Thus, when a handle is added to a surface, the Euler characteristic decreases by two. It
does not matter to which faces the handle attaches. It follows that a sphere with p handles has Euler
characteristic 2−2p.
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FIGURE 13.12
Attaching a handle to a surface
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Suppose that we now add a crosscap to a polygonal division of a surface (e.g., the sphere). We choose a
polygon P1, cut a disc from its interior, and attach a crosscap. Let C be the boundary of the disc. Now a
crosscap is a Möbius band, and the boundary of the disc becomes the boundary of the Möbius band. We draw
a curve connecting P1 to C, continue across the Möbius band to the opposite side of C, and continue to an
opposite point of P1. The result is a polygonal division of the surface with an additional crosscap. Let it have n
′ vertices, f' polygons, and ε′ edges. The effect of drawing the curve across P1 is to add two vertices and two
edges to P1, plus an additional edge represented by the curve. When the Möbius band is cut in half, it
remains connected. Therefore the number of polygons does not change. We therefore have n′=n+2, f'=f, and
ε′=ε+3, so that n′−ε′+f'=(n−ε+f)−1. Thus, when a crosscap is added to a surface, the Euler characteristic
decreases by one. It does not matter to which face the crosscap attaches. It follows that a sphere with q
crosscaps has Euler characteristic 2−q.
Consequently surfaces can be classified according to whether they are orientable or non-orientable, and their
Euler characteristic. A related parameter of a surface is its genus.
DEFINITION 13.6: A Jordan curve in a surface Σ is contractible or null-homotopic if it can be continuously
shrunk to a point within Σ.
Cutting a surface along a contractible Jordan curve always separates it into two pieces.
DEFINITION 13.7: The genus of a surface is the maximum number of Jordan curves that can be drawn on
the surface such that cutting along the curves does not separate it into two or more pieces.
It is easy to see that the sphere has genus zero, and that the torus has genus one. In general, a sphere with
p handles has genus p, as exactly one Jordan curve can be drawn around each handle without separating the
surface. Because a sphere with handles is an orientable surface, we say it has orientable genus p.
The projective plane has genus one, as shown in Exercise 13.2.2. It then follows from Exercise 13.2.3 that a
sphere with q crosscaps has genus q. We say it has unorientable genus q. Some texts use the term crosscap
number in place of genus for a non-orientable surface. The relation with Euler characteristic can now be
stated.
THEOREM 13.5 An orientable surface of genus p has Euler characteristic 2− 2p. A non-orientable surface of
genus q has Euler characteristic 2−q.
When a graph G is embedded in a surface Σ, cycles of G map to Jordan curves in Σ. We will be interested in
cycles which are embedded as non-contractible curves.
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DEFINITION 13.8: Let Gψ be an embedding of a graph G in a surface Σ. A cycle C in G is an essential cycle,
or non-contractible cycle of the embedding if Gψ is not contractible.
For example, in the embedding of K3, 3 on the left in Figure 13.2, the cycles (1, 2, 3, 4) and (2, 3, 4, 5) are
essential cycles, while (1, 2, 3, 6, 5, 4) is not.
DEFINITION 13.9: The genus of a graph G is g(G), the smallest genus of an orientable surface Σ such that G
has a 2-cell embedding in Σ. The unorientable genus or crosscap number of G is  the smallest genus of
a non-orientable surface Σ such that G has a 2-cell embedding in Σ.
Suppose that Gψ is a 2-cell embedding of G in an orientable surface Σ of genus p. Let Gψ have n vertices, ε
edges, and f faces. Then since the faces of Gψ determine a polygonal division of the surface, we have
n−ε+f=χ(Σ)=2−2p. This is called the Euler-Poincaré formula. If G is embedded on an unorientable surface of
genus q, then n−ε+f=χ(Σ)=2−q. This gives the following relations for graphs embedded on the:
plane: n−ε+f=2



cover

file:///G|/SMILEY/0203489055__gigle.ws/0203489055/files/__joined.html[01/10/2009 15:18:30]

torus: n−ε+f=0
projective plane: n−ε+f=1.
LEMMA 13.6 A triangulation of an orientable surface of genus p, with n vertices satisfies ε=3n+6(p−1). A
triangulation of a non-orientable surface of genus q satisfies ε=3n+3(q−2).
PROOF A triangulation satisfies 3f=2ε. Combining this with n−ε+f=χ(Σ) gives the result.
Exercises
13.2.1 Show that if a disc is removed from a projective plane, the result is a Möbius band.
13.2.2 Show that if a the projective plane is cut along a non-separating Jordan curve, the result is a disc.
13.2.3 Show that exactly one Jordan curve can be drawn on the Möbius band without separating it. What is
the result of cutting the Möbius band along a non-separating Jordan curve?
13.2.4 Use cutting and pasting to convert the representation a+b+a+b− of the Klein bottle to normal form
c+c+d+d+.
13.2.5 A sphere with one handle and one crosscap can be represented symbolically by a+b+a−b−c+c+. Find
the normal form for this surface.

page_340

Page 341
13.2.6 Find the facial cycles of the embeddings of K3, 3 on the torus shown in Figure 13.2.
13.2.7 Use Lemma 13.6 to obtain a lower bound on g(G) and  for an arbitrary graph G.
13.2.8 Show that g(Kn)≥(n−3)(n−4)/12 and that 
13.2.9 Let G be a graph with no triangles embedded on a surface of genus g. Find an upper bound on the
number of edges of G.
13.3 Graph embeddings, obstructions
Three of the main algorithmic problems of graph embeddings are:
Problem 13.1: Graph Embeddability
Instance:a graph G and a surface Σ.
Question:is G embeddable in Σ?

Problem 13.2: Graph Embeddings
Instance:a graph G and a surface Σ.
Question:find all embeddings of G in Σ.

Problem 13.3: Graph Genus
Instance:a graph G and an integer k.
Question:is g(G)≤k?
It was proved by THOMASSEN [113] that Graph Genus is NP-complete.
The first two problems are solved for the plane, but only partially solved for other surfaces. Several efficient
algorithms are known for Graph Embeddability on the projective plane. For the plane, Kuratowski’s theorem
tells us that G is embeddable if and only if it has no subgraph TK5 or TK3, 3. We call these graphs
obstructions to planarity.
DEFINITION 13.10: Given a surface Σ, a topological obstruction for Σ is a minimal graph K with δ(K)≥3 such
that any graph containing a subdivision TK cannot be embedded in Σ.
There are two topological obstructions for the plane, K5 and K3, 3. The definition requires that K be minimal,
namely, that no proper subgraph of K has this
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property (otherwise K6, K7, etc., would all be considered as topological obstructions).
DEFINITION 13.11: Given a surface Σ, a minor-order obstruction (or minimal forbidden minor or excluded
minor) for Σ is a graph K, such that any graph having K as a minor cannot be embedded in Σ, but no proper
minor of K has this property.
Recall that the graph relation “H is a minor of G” forms a partial order on the set of all graphs. If we restrict
the set to all graphs which are not embeddable in the surface Σ, then the minimal graphs of this partial order
are the minor-order obstructions. If K is a minor-order obstruction, then it is also a topological obstruction. K5
and K3, 3 are both minor-order obstructions and topological obstructions for the plane, since any graph which
has K5 or K3, 3 as a minor necessarily contains either a TK5 or TK3, 3. For other surfaces, there is a
distinction between the two concepts of topological obstruction and minor-order obstruction.
Robertson and Seymour have proved that there are a finite number of obstructions for any surface, as a
consequence of the graph minor theorem, which we state without proof.
THEOREM 13.7 (Graph minor theorem) In any infinite collection of graphs, there are always two graphs
such that one is a minor of the other.
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It is known that there are 103 topological obstructions for the projective plane, of which 35 are minor-order
obstructions, as found by ARCHDEACON [6]. These are often called Kuratowski subgraphs for the projective
plane. A list of them can be found in MOHAR and THOMASSEN [88]. For the torus, the number of obstructions
is in the hundreds of thousands, as shown by MYRVOLD [90]. From an algorithmic point of view, this is not an
effective characterization, as there are too many obstructions.
13.4 Graphs on the torus
Given a 2-cell embedding ψ of a 2-connected graph G on the torus, there must be an essential cycle C in G.
Cutting the torus along Cψ results in a cylinder. Since the cylinder is not a 2-cell, but the embedding is a 2-
cell embedding, there must be another essential cycle C′ in G, cutting the cylinder along an axis.
Consequently C and C′ must intersect, either in a path or a vertex.
DEFINITION 13.12: A theta-graph is a graph consisting of two vertices of degree three, connected by three
paths of one or more edges each.
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A theta-graph is illustrated in Figure 13.13.

FIGURE 13.13
A theta-graph in schematic form
Thus,  must be either a theta-subraph of G, or two cycles with a vertex in common, and ψ is a 2-cell
embedding of it. The simplest form of theta-subgraph is a multigraph consisting of two vertices connected by
three parallel edges. A 2-cell embedding of it is shown in Figure 13.14. It is often necessary to consider
embeddings of graphs with multiple edges and/or loops, as the duals of many graph embeddings (e.g., K4,
K5, K3, 3) often have multiple edges, and sometimes loops. We shall always insist that in any embedding of a
multigraph:
1. The cycle induced by any loop is an essential cycle (no face is a loop).
2. The cycle induced by any digon is an essential cycle (no face is a digon).

FIGURE 13.14
A 2-cell embedding of a theta-graph
If we cut the torus along the edges of this theta-graph, we find there is one
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face, a hexagon, shown in Figure 13.14 as c+d+e+c−d−e−. Thus we see that the torus can also be
represented as a hexagon. The hexagonal form corresponds to an embedding of a theta-subgraph. The
rectangular form corresponds to an embedding of two cycles with a common vertex.
Given an embedding Gψ on the torus, we choose an orientation of the torus, and walk around a vertex υψ in
a small clockwise circle in the surface, and construct the cyclic adjacency list, just as for embeddings in the
plane (Section 12.5). This determines a rotation system for G, exactly as in the planar case. We will denote a
rotation system for a graph embedded on the torus by t. The faces of the embedding are completely
determined by t, since Algorithm 12.5.1, FACIALCYCLE(), to find the facial cycles of a planar graph from its
rotation system also applies to toroidal rotation systems, or to rotation systems for any orientable surface.
Similarly, algorithm CONSTRUCTDUAL() applies equally to toroidal rotation systems as well as other orientable
surfaces. Hence we denote a combinatorial toroidal embedding by Gt and its dual by Gt*. Now the rotation
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system determines the faces of the embedding. Hence, we can determine from t whether or not Gt has any
faces which are digons or loops, but it cannot determine whether any digons or loops are embedded as
essential cycles.
It is convenient to refer to a graph embedded on the torus as a torus map.
DEFINITION 13.13: A torus map is a combinatorial 2-cell embedding Gt, where G is a 2-connected graph.
We begin by embedding planar graphs on the torus. Let G be a 2-connected planar graph that is not a cycle,
with a planar rotation system p. By Exercise 13.4.3, G has a theta-subgraph H. Let u and υ be the two
vertices with degree three in H, and let P1, P2, P3 be the three uυ-paths of H. Let w1, w2, and w3 be the
first vertices of P1, P2, P3, respectively, adjacent to u. Refer to Figure 13.15.
THEOREM 13.8 Let p be a planar rotation system for G, and let H be a thetasubgraph of G, as described
above. Let t be a rotation system constructed from p by interchanging w2 and w3 in the cyclic adjacency list
of u, and leaving all other vertices the same. Then t is a toroidal rotation system for G.
PROOF In the embedding Gp in the plane, the three paths P1, P2, P3 divide the plane into three regions.
Without loss of generality, let the paths occur in the order illustrated in Figure 13.15. Denote the subgraphs of
G contained within the three regions as G12 (between paths P1 and P2), G23, and G31. Subgraph Gij may
have edges connecting it only to Pi and Pj, and to u and υ. Construct the hexagonal representation of the
torus with P1, P2, and P3 on the boundary of the hexagon, and embed G12, G23, and G31 inside the
hexagon as planar embeddings, as shown, resulting in a toroidal embedding of G. It is easy to verify from the
diagram that any vertex in G12, G23, and G31 has the same cyclic adjacency list
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in the toroidal embedding as in the planar embedding. Similarly any vertex other than u or υ of any Pi has the
same cyclic adjacencies in both embeddings. The same is also true for υ. The only vertex whose cyclic
adjacencies differ is u. The adjacency list of u has been arranged so that is followed by the edges to
G12, followed by  followed by the edges to G23, followed by  followed by the edges to G31.
The only difference to the planar adjacencies is that w2 and w3 have been interchanged for vertex u.
It is evident from Figure 13.15 that there are several other ways to convert the planar rotation system to a
toroidal rotation system.

FIGURE 13.15
Constructing a toroidal rotation system
A planar graph also has non-2-cell embeddings on the torus. If a planar graph G is embedded in a disc on the
surface of the torus, we will call this a disc embedding of G. If a planar graph is embedded such that one of
the faces is homeomorphic to a cylinder, we will call this a cylindrical embedding of G. A cylindrical
embedding on the torus of any graph G determines an embedding on the cylinder, so that G must be planar.
LEMMA 13.9 Every embedding of a non-planar graph on the torus is a 2-cell embedding.
PROOF A non-2-cell embedding would necessarily be either a disc or cylindrical embedding. But a non-planar
graph has no disc or cylindrical embedding.
Currently, there is no satisfactory algorithm known to determine whether an arbitrary graph can be embedded
on the torus, or to find all embeddings, or to
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characterize all possible embeddings. Whitney’s theorem (12.20) on induced non-separating cycles does not
apply to embeddings on the torus. There are several simple techniques that are useful in an exhaustive
search to find the embeddings. Given two combinatorial embeddings with toroidal rotation systems t1 and t2,
we need to distinguish whether  and  are equivalent embeddings. In general, two embeddings are
considered equivalent if they have the same facial cycles, as the faces can be glued together along the facial
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boundaries in a unique way to construct the torus. Since the facial cycles are completely determined by the
rotation system, we define equivalence in terms of rotation systems. Definitions 12.16 and 12.17 of equivalent
embeddings and graph orientability apply equally well to toroidal graphs as to planar graphs, using a toroidal
rotation system t in place of a planar rotation system p. We summarize the definitions as follows:
DEFINITION 13.14:
1. Embeddings  and  are homeomorphic embeddings if there is a homeomorphism of the torus
mapping  to  Otherwise they are distinct.
2. Embeddings  and  are isomorphic if there is an automorphism of G which induces a mapping of t1
to t2.
3. Embeddings  and  are equivalent embeddings if there is an automorphism of G which induces a
mapping of t1 to t2 or  where  is obtained by reversing the cycles of t2.
4. Embedding Gt is a non-orientable embedding if there is an automorphism of G inducing a mapping of t to 

 Otherwise it is an orientable embedding.
Now an embedding  determines a rotation system t1. Homeomorphic embeddings  and determine
equivalent combinatorial embeddings  and  since a homeomorphism can be either orientation
preserving or orientation reversing. Conversely, if  and  are equivalent combinatorial embeddings of G,
then they have the same facial cycles (up to orientation). The facial cycles can be glued together to construct
a curvilinear polyhedron representing the torus. Therefore, topological embeddings  and  can be
constructed from  and  so that  and  are homeomorphic. This gives:
THEOREM 13.10 Topological embeddings and are homeomorphic if and only if the corresponding
combinatorial embeddings and are equivalent.
Now the homeomorphism between  and  was constructed by gluing curvilinear polygons (the faces of
the embeddings) together along common edges; that is, it involves cutting and pasting the torus. For
example, the two embeddings
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 and  shown in Figure 13.16 are equivalent, which can easily be verified from the rotation systems.

However, they are homeomorphic only by cutting the torus along a non-contractible cycle to create a cylinder,
then twisting one end of the cylinder by 360 degrees, and then re-gluing the cylinder to create a torus. It is
not possible to transform one into the other without cutting and pasting.

FIGURE 13.16
Two equivalent embeddings
For graphs on a small number of vertices, it is possible to distinguish inequivalent embeddings by inspection.
However, even for K5 and K6, it is reasonably difficult to determine the inequivalent embeddings by hand.
One technique that helps is the dual graph—if  and  have non-isomorphic dual graphs, then the
embeddings are distinct. More generally, we can use the medial digraph (Definition 12.19) to distinguish
embeddings and orientations. It can also be used to determine the symmetries (automorphisms) of an
embedding. The medial digraph was defined for planar rotation systems, but the definition is also valid for
toroidal rotation systems. We use M(Gt) to denote the medial digraph of G with a toroidal rotation system t.
The medial digraph was defined for multigraphs. If we want to allow for loops as well, then the definition
must be modified slightly (Exercise 13.4.7). Usually graph isomorphism software is necessary to make
effective use of the medial digraph.
Suppose that G is a 2-connected planar graph. Choose a theta-subgraph H of G. We would like H to have as
many edges as reasonably possible. We can do this by hand for small graphs. With larger graphs, a depth-
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first search can be used to find a theta-subgraph with a large number of edges. Every embedding of G on the
torus induces an embedding of H. It will be either a 2-cell embedding, a cylindrical embedding, or a disc
embedding. We start with a 2-cell embedding of H, and proceed as in Theorem 13.8 to find all ways of
extending the embedding of H to G. This usually gives a number of embeddings. We then proceed to the
cylindrical and disc embeddings of H. In each case, all possible ways of extending H to a 2-cell embedding
must be exhaustively considered. For each
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embedding t, we construct M(Gt), and compare the medial digraphs found for isomorphism, using graph
isomorphism software.
If G is a 3-connected non-planar graph, we proceed recursively. We choose a vertex υ and find all
embeddings of G−υ. Let the adjacent vertices to υ be u1, u2,…, uk. If G−υ is non-planar, then every
embedding of it is a 2-cell embedding. If u1, u2,…, uk are all on the same facial cycle in some embedding of
it, we can add vertex υ to get an embedding of G, possibly in several ways. If G−υ is planar, instead we first
find a TK3, 3 in G with as many edges as reasonably possible (assuming a TK3, 3 exists). For each
embedding of TK3, 3 in the torus, we exhaustively consider all possible ways of extending it to an embedding
of G, and then use medial digraphs to compare the results.
For example, consider the graph K4. If uυ is an edge of K4, then K4−uυ is a theta-graph. We easily find that
there are exactly two 2-cell embeddings of K4 on the torus. We then consider K5, one of the few non-planar
graphs that does not contain TK3, 3. If υ is a vertex of K5, then  For each embedding of K4 on
the torus, including cylindrical and disc embeddings, we find all ways of adding υ to the embedding. The
result is six embeddings of K5, of which three are orientable and three non-orientable. We proceed to K6 by
looking for a face of K5 containing all five vertices. We find there are four embeddings of K6, of which two are
orientable and two non-orientable. Exactly one of these has all six vertices on a common face. This gives one
embedding of K7, shown in Figure 13.17. It is an orientable embedding. Its dual is also shown. The dual is
known as the Heawood graph.

FIGURE 13.17
K7and its dual, the Heawood graph, on the torus
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Exercises
13.4.1 Use cutting and pasting to convert the representation c+d+e+c−d−e− of the torus to normal form.
13.4.2 Construct the duals of the embeddings of K3, 3 on the torus of Figure 13.2.
13.4.3 Show that every 2-connected graph that is not a cycle has a theta-subgraph.
13.4.4 Describe O(ε) depth-first and breadth-first search algorithms to find a thetasubgraph of a 2-connected
graph G.
13.4.5 Construct the two distinct embeddings of K3, 3 on the hexagonal form of the torus.
13.4.6 Verify that the two embeddings shown in Figure 13.16 are equivalent, and that the torus must be cut
and pasted to construct a homeomorphism.
13.4.7 Show how to modify the definition of a medial digraph to allow for embeddings with loops (subdivide a
loop with two vertices), and prove that it works.
13.4.8 Construct all distinct embeddings of K4, K5, and K6 on the torus.
13.4.9 Construct all distinct embeddings of the 3-prism on the torus. Begin with a thetagraph containing all six
vertices.
13.4.10 Construct all distinct embeddings of the Petersen graph on the torus. Begin with a theta graph
containing all 10 vertices.
13.4.11 Determine which graphs are shown in the toroidal embeddings of Figure 13.18. Determine the dual
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graphs. (Note: None of the graph edges follow the boundary of the rectangles.)
13.4.12 Verify that the graphs in Figure 13.19 are distinct embeddings of the same graph. Do you recognize
this graph? Are these embeddings orientable? Find the duals of both embeddings, and determine what graphs
they are. (Note: None of the graph edges follow the boundary of the rectangles.)

FIGURE 13.18
Two torus maps
13.4.1 Platonic maps on the torus
The embedding of K7 in Figure 13.17 shows a triangulation of the torus in which each vertex has degree six.
By translating it repeatedly horizontally and vertically,
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FIGURE 13.19
Two torus maps
we obtain a symmetric tiling of the plane by triangles. Its dual gives a symmetric hexagonal cover of the
plane in which three hexagons meet at each vertex. The graphs in Figure 13.19 also give hexagonal coverings
of the plane. Their duals will be 6-regular triangulations. The graphs of Figure 13.18 give symmetric tilings by
parallelograms. These embeddings all belong to families of graphs with these properties. We will call them
Platonic maps.
Let G be a k-regular torus map on n vertices whose dual map is ℓ-regular. For the plane, such graphs are the
graphs of the Platonic solids. Then nk=2ε=ℓf. Using Euler’s formula for the torus n+f−ε=0, we obtain

 
The only integral solutions are (k,ℓ)=(4, 4), (3, 6), and (6, 3). Clearly the last two are duals of each other.
The graphs of Figure 13.18 are examples of the (4, 4)-pattern.
Consider a torus map Gt in which each vertex has even degree. Choose any edge uυ. The incident edges at υ
are cyclically ordered by t. Let DEG(υ)= 2i. The diagonally opposite edge to uυ is υw, the ith edge following
uυ in t(υ). Given a vertex υ0, with adjacent vertex υ1, we construct a diagonal path υ0, υ1, υ2,… by always
choosing υiυi+1 as the diagonally opposite edge to υi−1υi. Eventually a vertex must repeat, creating a cycle.
Let the cycle be C=(υ0, υ1, υ2,…, υm). C is a diagonal cycle if every edge is the diagonally opposite edge to
its previous edge.
In the torus maps of K7 (Figure 13.17) and Figure 13.18 there are many diagonal cycles. They are drawn as
straight lines diagonally across the rectangle. As can be seen in K7, a single diagonal cycle may wind around
the torus several times.
Suppose now that Gt is a Platonic graph on the torus, with parameters (6,3)
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or (4, 4). Consider a cycle C=(υ0, υ1, υ2,…, υm) constructed by following a diagonal path.
LEMMA 13.11 If C=(υ0, υ1, υ2,…, υm) is a diagonal cycle in Gt, then C is an essential cycle.
PROOF Suppose first that G has parameters (4,4), and suppose that C is contractible, with interior INT(C).
For each  there is one adjacent vertex in INT(C). This is illustrated in Figure 13.20. Since each face of
Gt has degree four, the interior adjacent vertices to υ0, υ1, υ2,…, υm form another diagonal cycle C′ in
INT(C). Interior to C′ is another diagonal” cycle, etc., leading to an infinite sequence of diagonal cycles, a
contradiction. Therefore C must be an essential cycle. If G has parameters (6,3), the argument is nearly
identical, except that each  has two adjacent vertices in INT(C). Since Gt is a triangulation, we again
find C′ in INT(C), and so forth.

FIGURE 13.20
A diagonal cycle with (k, ℓ)=(4, 4)
The proof of Lemma 13.11 also shows how to draw Gt. Given a diagonal cycle C0, a sequence of “parallel”
adjacent diagonal cycles is determined, C0, C1, C2,…. For any  an edge not on C0 can then be
selected, and a diagonal cycle containing it can be constructed. We find that the edges of G can be
partitioned into “orthogonal” diagonal cycles  Each Ci winds
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around the torus one or more times, intersecting each  in a regular pattern, as can be seen from Figures
13.17 and 13.18.
If C=(υ0, υ1, υ2,…, υm) is any cycle constructed by following a diagonal path in a Platonic map, then the
argument of Lemma 13.11 can be used to show that C must be a diagonal cycle. The only way in which C
may fail to be a diagonal cycle is if one pair of edges, say υmυ0 and υ0υ1 are not diagonal edges. Suppose
that G has parameters (4,4). We then find that υ0 has either 0 or 2 adjacent vertices to the right of C. Since
every face has degree four, the parallel cycle C′ is either shorter than C or longer than C, by two edges. If it
is longer than C, then the parallel cycle C″ is again longer than C′ by two edges, and so forth. As this leads to
a contradiction, suppose that C′ is two edges shorter than C. Then C″ is again two edges shorter than C′, etc.
Eventually we find a cycle of length four or five for which no parallel cycle can exist. If G has parameters
(6,3), the argument is similar.
13.4.2 Drawing torus maps, triangulations
Read’s algorithm for drawing a planar graph, given a rotation system, can be extended to torus maps. Let Gt
be a 2-connected combinatorial embedding, with no vertices of degree two. Suppose that G has no loops, and
that if there are multiple edges, no face is a digon. If Gt is not a triangulation, we can triangulate it by adding
diagonal edges across non-triangular faces, so that no loops or digon faces are created. The smallest possible
triangulation of the torus is shown in Figure 13.21. We denote it by T3. It can be constructed from the theta-
graph shown in Figure 13.14 by adding one vertex w, adjacent to each vertex u and υ three times. Notice
that T3 is a 6-regular graph, whose faces are all triangles. It is the unique triangulation of the torus on three
vertices (Exercise 13.4.4).
There is a triangulation on four points, denoted T4, which can be constructed from the rectangular form of
the torus. A 3-vertex graph consisting of two digon cycles (u, υ) and (u, w) with a common vertex u is 2-cell
embedded on the torus. There is a single face, of degree eight. A fourth vertex x is placed in this face, and
joined to each vertex on the boundary of the face. It is illustrated in Figure 13.22. In this diagram, the sides a
and b of the rectangle are also graph edges. Notice that T4 has two vertices (u and x) of degree eight, and
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two (υ and w) of degree four.
Suppose that G has n vertices, with n3 of degree three, n4 of degree four, etc. Then since Gt is a
triangulation, we have 3f=2ε. Euler’s formula then gives ε=3n, and:

3n3+2n4+n5=n7+2n8+3n9+…  
LEMMA 13.12 Either there is a vertex of degree three, four, or five, or else all vertices have degree six.
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FIGURE 13.21
The triangulation T3
Now any triangulation in which all vertices have degree six is a Platonic map of type (6,3), and we know how
to draw it as a tiling of the plane. Otherwise, there is a vertex of degree three, four, or five. We can use a
modification of the algorithm REDUCEGRAPH() of Section 13.4.2 to reduce the triangulation Gt on n vertices
to a triangulation on n−1 vertices, until either T3 or T4 results, or a 6-regular triangulation results. We must
ensure that the reduction does not create any loops or digon faces.
Suppose that vertex u of G has degree three, four, or five, and suppose that n≥4. If DEG(u)=3, then Gt−u is
a triangulation of the torus on n−1 vertices. If DEG(u)=4, suppose that u is adjacent to υ, w, x, y, in cyclic
order. If at least three of these vertices are distinct, then at least one of the diagonals of the 4-cycle (υ, w, x,
y) has distinct endpoints. Suppose it is υx. Then Gt−u+υx will be a triangulation on n−1 vertices, without
loops or digon faces. Otherwise there are only two distinct vertices in the 4-cycle, which is then (υ, w, υ, w);
that is, there are four parallel edges connecting υ and w. Three of these parallel edges form a theta-graph,
whose only embedding has a single face, a hexagon, shown in Figure 13.23. The fourth parallel edge cuts the
hexagon into two quadrilaterals, one of which contains u.
The remaining vertices of G are located in the other quadrilateral. If n=4, then the map can only be the
triangulation T4, with υ and w as the two vertices of degree eight. If n≥5, there are at least two other
vertices in the other quadrilateral. This quadrilateral and the vertices it contains determine a planar graph,
which must have several vertices of degree three, four, or five. We choose one of these, and delete it instead
of u.
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FIGURE 13.22
The triangulation T4
If DEG(u)=5, let u be adjacent to υ, w, x, y, z, in cyclic order. If υ, x, and y are distinct, we proceed as in the
planar case, deleting u and adding two diagonals across the pentagon. Otherwise, we can assume that υ=x,
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since G has no loops.
If w, y, and z are distinct, then we can add the diagonals wy and wz to get a triangulation. Otherwise we can
assume that w=y. But then z, w, and x are distinct, so that we can add the diagonals zw and zx to obtain a
triangulation with no loops or digon faces. There are always at least three distinct vertices on the boundary of
the pentagon. This gives the following theorem:
THEOREM 13.13 Let Gt be a torus map on n≥4 vertices which is not 6-regular, with no loops or digon faces.
Then Gt can be reduced to one of the following:
1. The triangulation T3
2. The triangulation T4
3. A 6-regular triangulation
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FIGURE 13.23
Reducing a triangulation, DEG(u)=4

FIGURE 13.24
Reducing a triangulation, DEG(u)=5
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Algorithm 13.4.1: REDUCETORUSMAP(G,t)

if G=T3or G=T4or G is 6-regular return (null)
if there is a vertex u with DEG(u)=3

if there is a vertex u with DEG(u)=4
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if DEG(u)=4

pick u of degree 5, let t(u)=(uυ, uw, ux, uy, uz)
if υ, x and y are distinct

else if w, y and z are distinct

else if x, z and υ are distinct

else if y, υ and w are distinct

else if z, w and x are distinct

return (G′)
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Algorithm 13.4.1 is input a triangulation of the torus, G, on n≥4 vertices with rotation system t, with no loops
or digon faces. It constructs a triangulation G′ on n−1 vertices, whenever possible. It can be used to
successively reduce Gt to one of T3, T4, or a 6-regular triangulation. Drawings of T3 and T4 on the torus are
shown in Figures 13.21 and 13.22. We can use these coordinatizations in a rectangle as topological
embeddings. If a 6-regular triangulation is obtained, we can use diagonal cycles to obtain a coordinatization
of it. These embeddings have no loops, and no digon faces. Every digon is embedded as an essential cycle.
We then replace the deleted vertices in reverse order, exactly as in the planar case of READSALGORITHM(),
using the visible region to assign coordinates to the deleted vertex. The result is a straight-line drawing of Gt
on the torus; that is, a topological embedding Gψ.
We summarize this as follows:
THEOREM 13.14 Every torus map has a straight-line embedding in the rectangle and hexagon models of the
torus.
Exercises
13.4.1 Find the duals of the embeddings of the triangulations T3 and T4 shown in Figures 13.21 and 13.22.
What graphs are they?
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13.4.2 Find the two tilings of the plane determined by a Platonic map of K4,4.
13.4.3 Find the tiling of the plane determined by a Platonic map of C3×C3.
13.4.4 Show that T3 is the unique triangulation of the torus on three vertices.
13.4.5 Show that there are two distinct triangulations of the torus on four vertices.
13.4.6 Show that there are five distinct embeddings of the cube on the torus.
13.5 Graphs on the projective plane
The projective plane is most conveniently represented as a disc with antipodal points identified. This is
equivalent to the digon form c+c+ of the projective plane shown in Figures 13.7 and 13.9. An embedding of
K6 and its dual are shown in Figure 13.25. It is easy to verify that the dual of K6 on the projective plane is
the Petersen graph. As before, we shall only be concerned with 2-cell embeddings of 2-connected graphs.
Now it can be a little tricky to visualize the faces of an embedding on the projective plane, because the
projective plane is non-orientable. Each point on the circumference of the disc is identified with its antipodally
opposite point. When
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an edge of the graph meets the disc boundary, it continues from the antipodal point. But the region
immediately to the right of the edge as it meets the boundary is identified with the region immediately to the
left of the antipodal point. A consequence is that rotation systems must be defined somewhat differently for
non-orientable surfaces, and the algorithm FACIALCYCLE() which constructs the faces of an embedding must
be modified.

FIGURE 13.25
K6and its dual, the Petersen graph, on the projective plane
Let Gψ be an embedding of a 2-connected graph G in the projective plane, and let u be a vertex of G. If we
walk around uψ in a small clockwise circle, we encounter the incident edges in a certain cyclic order, say uυ1,
uυ2,…, uυk. If we walk along the edges of Gψ, always staying within the disc, then the embedding appears
exactly like a planar embedding. If we traverse an edge that crosses the boundary of the disc, and continue
on until we reach uψ again, we find that the cyclic order of the incident edges at uψ has been reversed.
Consequently a rotation system must be defined differently for a non-orientable surface. The projective plane
is represented as a disc. We choose an orientation for this disc. Then given any vertex u, we walk around uψ
in a small clockwise circle, and construct a cyclic list of incident edges. We assign a signature to each edge
uυ, denoted SGN(uυ). If an edge (uυi)ψ crosses the boundary of the disc, then SGN(uυi)=−1. Otherwise it is
+1. The signature does not depend on the direction in which the edge is traversed. In this way, the
embedding ψ determines a signed rotation system.
We will use π to denote a rotation system for an embedding on the projective plane. For each vertex u, π(u)
denotes a cyclic list of signed incident edges. Two embeddings of K3, 3 are shown in Figure 13.26. The
rotation systems corresponding to them are shown in Figure 13.27. Although the rotation systems are
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different, the embeddings are equivalent.
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FIGURE 13.26
Two equivalent embeddings of K3, 3on the projective plane

FIGURE 13.27
Two rotation systems for K3, 3 on the projective plane
Given a topological embedding Gψ, this method of defining a rotation system for G is not unique, as it
depends on the disc chosen to represent the projective plane. With an orientable surface, this situation does
not arise. We must show that a signed rotation system uniquely determines the faces of an embedding, and
that all rotation systems corresponding to ψ determine the same faces. In the embedding on the right of
Figure 13.27, we can cut the projective plane along the non-contractible Jordan curve indicated by the dotted
line, call it C. We then flip one-half of the disc over, and glue the two pieces along the common boundary.
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We obtain another disc representing the projective plane, with antipodal points identified. This gives another
rotation system π′ for G. In Figure 13.27, the edges crossed by C will now have a signature of −1; edges
which previously had a signature of −1 will now have +1. It is easy to see that with respect to the new disc,
the embedding will have a face which is a 6-cycle (1, 2, 3, 4, 5, 6) with “spokes” to the boundary of the disc,
exactly like the embedding on the left. Thus the embeddings are equivalent.
If π is a signed rotation system determined by an embedding Gψ and a disc representation of the projective
plane, we call Gπ a combinatorial embedding. As we shall see, the faces of Gψ are completely determined by
Gπ.
DEFINITION 13.15: A projective map is a combinatorial embedding Gπ of a 2-connected graph G on the
projective plane, where π is a signed rotation system corresponding to a disc representation of the projective
plane.
In order to show that all signed rotation systems arising from Gψ have the same facial cycles, we begin by
rewriting the algorithm FACIALCYCLE() for a non-orientable surface. Notice that when traversing the facial
cycles of a graph embedded on a disc representing the projective plane, the clockwise cyclic order of the
incident edges viewed from above the disc appears counterclockwise when viewed from below, and vice
versa. The algorithm uses a boolean variable onTop to indicate whether it is currently viewing the disc from
above. Initially onTop has the value true. Each time an edge uυ with SGN(uυ)=−1 is encountered, it reverses
the value of onTop. Any vertices visited while onTop is false will see a counterclockwise orientation for their
incident edges. Those with onTop true will see a clockwise orientation.
When a graph is embedded on an orientable surface, the facial cycles are oriented cycles. We can assign a
clockwise orientation to one cycle and the orientation of all adjacent cycles is determined, and so forth, so
that an orientation can be assigned to the entire embedding. Reversing the cycles gives an equivalent, but
reversed, embedding.
Graphs embedded on the projective plane do not have this property. If we try to assign an orientation to the
facial cycles of an embedding Gψ, we can then choose different signed rotation systems corresponding to Gψ,
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and different orientations of the cycles will be obtained. However, if we are given the (unoriented) facial
cycles, they can be glued together uniquely along their common edges to construct a polygonal
representation of the projective plane. Therefore if we are given the facial cycles, they will determine a
topological embedding Gψ.
Algorithm 13.5.1 when given a signed rotation system π of an embedding Gψ on a non-orientable surface and
a vertex u with an incident edge e, will find the facial cycle containing e.
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Algorithm 13.5.1: FACIALCYCLESGN(Gπ, u, e)
onTop←true “initially view the disc from above”

e′←e
repeat

until e′=e and onTop
If this algorithm is applied to the combinatorial embeddings of K3, 3 given in Figure 13.27, identical faces will
be constructed. Since the projective plane is constructed by gluing together the faces, it follows that the
topological embeddings they represent are equivalent.
In Definition 13.14 combinatorial embeddings  and  on the torus were defined to be equivalent if there
exists an autmorphism of G that induces a mapping of t1 to t2 or  This is inappropriate for signed rotation
systems, as it cannot take the signatures into consideration. Therefore we define equivalence of signed
rotation systems in terms of facial cycles.
DEFINITION 13.16: Projective maps  and  are equivalent if they have the same facial cycles.
In general, let Gψ be a topological embedding, and consider two different representations of the projective
plane as digons, a+a+ and b+b+. Let πa be the signed rotation system corresponding to a+a+ and let πb
correspond to b+b+. The boundary of the disc given by b+b+ is a non-contractible Jordan curve C in the
a+a+ representation. It will intersect the graph Gψ in one or more points. Refer to Figure 13.28. When the
disc is cut along the curve C, it may cut some edges of Gψ more than once. If so, we subdivide those edges
which are cut more than once. Hence we can assume that every edge of Gψ is cut at most once by C. If the
curve cuts through a vertex, we can move it slightly so that it misses the vertex. We can do this because the
graph has a finite number of vertices.
Suppose first that C cuts the boundary of the a+a+ disc in exactly two points (which are antipodal points), as
in Figure 13.28. To transform the a+a+ representation into the b+b+ representation, we cut the disc along
the dotted curve,
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FIGURE 13.28
Representations a+a+ and b+b+ of the projective plane
then flip one-half of the disc over, and glue the two equivalent parts of the a+a+ boundary together. We can
flip either half over. Denote the two parts of the disc obtained as D1 and D2, where D2 is the part that is
flipped over. The result is a disc whose boundary is b+b+, shown as the disc on the right in Figure 13.28. We
obtain πb from πa by reversing the cyclic adjacencies for all vertices in D2, and by assigning −1 to those
edges that are cut by C. We now compare the facial cycles of  and  constructed by the algorithm
FACIALCYCLESGN(). Let (υ1, υ2,…, υk) be a facial cycle constructed for  Without loss of generality,
suppose that FACIALCYCLESGN  begins to trace out this face from υ1 which is in D1. If the entire face is
within D1, the result will be the same as the face obtained using πa. If the facial cycle crosses from D1 to D2
via the a+a+ boundary, then since D2 was flipped upside down, and the cyclic adjacencies of πa were
reversed to obtain πb, the same facial boundary will be constructed using πb or πa. If the facial cycle crosses
from D1 to D2 via C, then since πb attaches a signature of −1 to these edges, the cyclic adjacencies will be
reversed by FACIALCYCLESGN(). But the cyclic adjacencies of πa in D2 were also reversed in πb. The net
effect is that the same facial boundary is constructed using πb or πa at each step of the algorithm. It follows
that the two embeddings  and  have the same 2-cells as faces. Now we may have subdivided some
edges of G before cutting and pasting the disc. Vertices of degree two do not affect the faces, and a cyclic
order of two edges is invariant when reversed. Therefore, when traversing a facial cycle along a path created
by subdividing an edge, the important factor is the number of −1’s encountered. Hence we can contract any
subdivided edges and assign a signature of −1 if the number of edges in the subdivided path was odd. The
result will be the same facial cycle. We conclude that the faces of  and  are identical, so that the
embeddings are equivalent.
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Suppose now that C cuts the boundary of the a+a+ disc in more than one pair of antipodal points, where C is
the boundary of the b+b+ disc. There are an infinite (in fact, uncountable) number of possible non-
contractible Jordan curves C. But there are only a finite number of possible signed rotation systems for Gψ,
since G is finite. Therefore we will only consider non-contractible Jordan curves which meet the boundary
a+a+ in a finite number of points. A more complete treatment can be found in the book of MOHAR and
THOMASSEN [88].
If C cuts the boundary of the a+a+ disc in more than one pair of antipodal points, we proceed by induction.
We are given a graph G embedded on the disc, with a rotation system πa. As before we assume that C does
not cut any vertices of Gψ. Choose two consecutive points P and Q on C at which the disc boundary is cut
such that one of the intervals [P, Q] and [Q, P] on the boundary is not cut by any other points of C. This is
illustrated in Figure 13.29, where C is the dotted curve. Let the antipodal points of P and Q be P′ and Q′. Let
C[P, Q] denote the portion of C from P to Q. Make a cut in the disc very close to C[P, Q], cutting off a portion
D1 of the disc, so that C[P, Q] is completely contained within D1, but so that the only part of G that is
affected by the cut are the edges of G that cross C[P, Q]. This is possible because the graph is finite. Let the
remainder of the disc be D2. We now flip D1 over, and glue the matching boundaries of D1 and D2 near P′
and Q′. The result is a disc representation of the projective plane such that C cuts its boundary in four fewer
points. Let the boundary of the new disc be c+c+, and let the signed rotation system corresponding to it be
πc.

FIGURE 13.29
Transforming a disc representation of the projective plane
Consider the faces of  and  The rotation systems πa and πc differ only in edges which are within D1,
or which cross from D1 to D2. Vertices within D1 have adjacency lists of opposite orientation in πa and πc.
FACIALCYCLESGN() will construct the same faces for both πa and πc. With respect to the πc disc,
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C has fewer intersections with the boundary. We use induction to conclude that FACIALCYCLESGN() will
construct the same faces for both πc and πb. It follows that  and  always have the same faces.
Because the projective plane is constructed by gluing the faces together, this gives:
THEOREM 13.15 Let Gψ be an embedding on the projective plane. Given any two signed rotation systems πa
and πb for Gψ, corresponding to different disc representations of the projective plane, and  are
equivalent embeddings.
THEOREM 13.16 Let and be topological embeddings of G on the projective plane with corresponding
combinatorial embeddings and with respect to two disc representations of the projective plane. Then 

and are homeomorphic if and only and are equivalent.
PROOF If  and  are equivalent, they have the same facial cycles. The faces are homeomorphic to 2-
cells bounded by the facial cycles. It follows that the faces of  and  determine a homeomorphism of
the embeddings  and  Therefore  and  are homeomorphic if and only if  and  are
equivalent.
If Gp is a planar embedding of a 2-connected graph, it is very easy to convert p to a projective rotation
system π. When G is drawn in the plane, one face is always the outer face. We draw G in a disc representing
the projective plane. We then choose any edge e on the outer face, and reroute it so that it crosses the
boundary of the disc. The result is a projective map. The two faces on either side of e in the planar map
become one face in the projective map. The cyclic order of adjacent vertices is unchanged, for all vertices of
G. Thus, p can be converted to a projective rotation system, by assigning a signature of −1 to any one edge
of G. However, the embeddings constructed in this way are somewhat unsatisfactory, as there is a non-
contractible Jordan curve in the surface which cuts the embedding in only one point.
13.5.1 The facewidth
The projective plane has unorientable genus one. The torus has orientable genus one. Although they both
have genus one, these surfaces behave very differently. K7 can be embedded on the torus. Yet it is easy to
see that it cannot be embedded on the projective plane, as the unique embedding of K6 shown in Figure
13.25 cannot be extended to K7. Alternatively, Euler’s formula can be used to show that K7 has too many
edges to embed on the projective plane. However, there are infinite families of graphs that can be embedded
on the projective plane, but not on the torus.
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We begin with two families of graphs called the Möbius ladder and Möbius lattice, which can be embedded on
both the projective plane and torus.
DEFINITION 13.17: The Möbius ladder L2n is the graph with 2n vertices {υ1, υ2,…, υ2n} such that 

 and  where subscripts larger than 2n are reduced modulo 2n.
The Möbius ladder L6 is just K3, 3, shown in Figure 13.26. L8 is shown in Figure 13.30. Notice that L2n is
always a 3-regular graph.
DEFINITION 13.18: The Möbius lattice L2n−1 is the graph with 2n−1 vertices {υ1, υ2,…, υ2n−1} such that 

 and where subscripts larger than 2n−1 are reduced modulo 2n−1.
The Möbius lattice L5 is just K5. L7 is shown in Figure 13.30. Notice that L2n−1 is always a 4-regular graph.

FIGURE 13.30
The Möbius ladder L8and Möbius lattice L7
There is a clever trick that can be used to convert these projective embeddings of L2n and L2n−1 to toroidal
embeddings. Draw an essential cycle C across the disc as shown by the dotted line in Figure 13.30, dividing it
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into two parts, D1 and D2. Notice that C intersects the graph embedding in only two points, representing the
vertices 1 and 5. Vertices 1 and 5 are both joined to several vertices located in D1 and D2. Now cut the disc
along C, flip D2 over, and glue D1 and D2 along the common boundary to get a new disc representation of
the projective plane, as shown in Figure 13.31. Vertices 1 and 5 are on the boundary of the new disc. These
antipodal points are the only points of the embedding Gψ on the disc boundary. Therefore we can convert the
disc into the hexagonal form of the torus, obtaining an embedding on the torus.
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FIGURE 13.31
Converting a projective embedding to a toroidal embedding
DEFINITION 13.19: Let Gψ be a graph embedding in a surface Σ. Let C be a non-contractible Jordan curve in
Σ. The facewidth of C is fw(C), the number of points of Gψ common to C. The facewidth of Gψ is fw(Gψ), the
minimum fw(C), where C is any non-contractible Jordan curve in Σ.
The facewidth is sometimes known as the representativity of an embedding. Let C be a non-contractible
Jordan curve of minimum possible facewidth, for an embedding Gψ. If C intersects a face F, then it also
intersects the boundary of F. If an intersection point is not at a vertex, then it is at an interior point of an
edge e. Then C also intersects the face on the other side of e. In such a case, we can alter C slightly so that
it passes through e at an endpoint of the edge. The result is another non-contractible Jordan curve, also of
minimum facewidth. This gives the following:
LEMMA 13.17 Given any embedding Gψ, there is a non-contractible Jordan curve C of facewidth fw(Gψ) such
that C intersects Gψ only at images of vertices.
Now the faces of an embedding Gψ are determined completely by its rotation system. If C intersects Gψ only
at images of vertices, then C determines a cyclic sequence of vertices (υ1, υ2,…, υk), where k=fw(C), such
that consecutive vertices are on the same facial boundary. It follows that fw(Gψ) depends only on the
rotation system, so that we can also write fw(Gπ). We show that the method used above to convert a
projective embedding of L7 to a toroidal embedding works in general, whenever fw(Gπ) is at most three.
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THEOREM 13.18 Let Gπ be a projective embedding with facewidth at most three. Then G can be embedded
on the torus.
PROOF The proof proceeds as in the previous example. Let C be a non-contractible Jordan curve with
fw(C)≤3. Use the hexagonal form of the torus, a+b+c+a−b−c−, as in Figure 13.32. We cut the disc of the
projective plane along C obtaining D1 and D2, which we glue together to obtain a new disc. Without loss of
generality, assume that fw(C)=3, so that there are three pairs of antipodal points of Gπ on the boundary of
the new disc, call them p, q, and r, and suppose that they occur in this order along the boundary of the disc.
We convert the disc into the hexagonal form of the torus, as in Figure 13.32. We place p on the side of the
hexagon labeled a, q on the side labeled b, and r on the side labeled c. In the hexagon, the identified pairs of
sides are not antipodally reversed as in the disc model of the projective plane. However, there is only one
point p, q, or r on each side, so that the sequence of points on the boundary is the same. The result is a
toroidal embedding of G.
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FIGURE 13.32
Converting a projective embedding to a toroidal embedding
This transformation will only work when fw(C)≤3. It has been shown by FIEDLER, HUNEKE, RICHTER, and
ROBERTSON [41] that the converse of this theorem is also true; so that if a toroidal graph can be embedded
on the projective plane, then the facewidth on the projective plane is at most three. We can use this theorem
to construct projective graphs which are not toroidal. The construction uses Möbius ladders or lattices.
Suppose that we start with a Möbius ladder L2n with vertices {υ1, υ2,…, υ2n}. Add 2n more vertices u1, u2,
…, u2n forming a cycle in which  and add the edges  for all i. The result is a graph as
shown in Figure 13.33. The facewidth of this graph is four, if n≥4,
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so that it cannot be embedded in the torus. The facewidth can be made arbitrarily high by increasing n and
adding more cycles in this fashion.

FIGURE 13.33
An embedding with facewidth four
13.5.2 Double covers
The projective plane can be viewed as exactly one-half of a sphere, by considering the disc representing the
projective plane as the upper hemisphere of a sphere. If we choose a great circle as the equator of a sphere,
and identify antipodal points on the sphere, the result is a two-to-one mapping of the sphere onto the
projective plane. Open discs on the sphere are mapped to open discs on the projective plane. The equator
becomes the boundary of the disc representing the projective plane. Thus, we say that the sphere is a double
cover of the projective plane.
It is also possible for one graph to be a double cover of another graph.
DEFINITION 13.20: Let G and H be simple graphs such that there is a two-to-one mapping θ: V(H)→V(G)
with the property that θ induces a two-to-one mapping of edges, θ: E(H)→E(G). Then H is said to be a
double cover of G.
Since the sphere is a double cover of the projective plane, given any graph G embedded on the projective
plane, there is a corresponding planar graph H embedded on the sphere, such that H is a double cover of G.
We begin with an embedding Gπ with respect to a disc representation of the projective plane. We make a
copy of the disc, and transform it by reflecting each of its points in the center of the disc (an antipodal
reflection). We then glue the two discs together
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FIGURE 13.34
The cube is a double cover of K4
along their common boundary. The common boundary of the discs becomes the equator of the sphere. The
result is an embedding on the sphere of a double cover H of G. The edges of H which cross the equator are
those with signature −1 in π. We denote this double cover by DC(Gπ). An example is illustrated in Figure
13.34, showing that the graph of the cube is a double cover of K4. We also find that the dodecahedron is a
double cover of the Petersen graph, as can be seen from Figure 13.25.
The medial digraph of an embedding as expressed in Definition 12.19 is inappropriate for unorientable
surfaces. Although it encapsulates the cyclic adjacencies of each vertex, it does not take into account the
signature of the edges. In order to distinguish inequivalent projective embeddings of a graph, and to
determine the symmetries (automorphisms) of an embedding, we can use the double cover.
THEOREM 13.19 Let and be projective embeddings with corresponding spherical embeddings 

and Then and are equivalent if and only if  and are
equivalent.
PROOF Consider a projective embedding Gπ. Let H=DC(Gπ), and let Hp be the spherical embedding
determined by Gπ. Let V(G)={u1, u2,…, un}, V(H)={υ1, υ2,…, υn, w1, w2,…, wn}, and let θ: V(H)→V(G) be
the natural double cover mapping; namely, θ(υi)=θ(wi)=ui. The mapping θ maps the cyclic adjacency lists of
υi and wi to the cyclic adjacency list of ui, but the orientations are opposite to each other. Notice that H has
an antipodal automorphism; namely, the unique permutation of V(H) which interchanges υi
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and wi is an automorphism of H. Corresponding to each face of Gπ, there are two faces of Hp, and these
faces have opposite orientation. Each face of Hp corresponds uniquely to a face of Gπ. We see that H is an
unorientable planar graph.
Suppose that  and  are equivalent embeddings. As the topological embeddings they represent are
homeomorphic, they correspond to different disc representations of a projective embedding of G. Let 

 with corresponding spherical embedding Hp. The boundary of the disc corresponding to 
is a non-contractible Jordan curve C in the projective plane. There is a unique antipodally symmetric Jordan
curve C′ on the sphere corresponding to C. As in Figures 13.28 and 13.29, we cut the disc of  along C to
get D1 and D2, flip D2 over, and glue the two parts along the common boundary to obtain the disc of 
The corresponding transformations on the sphere are as follows. The equator of the sphere corresponds to
the boundary of the π1-disc. The curve C′ corresponds to the boundary of the π2-disc. The equator and C′
intersect in a pair of antipodal points, dividing the surface of the sphere into four crescents, which correspond
alternately to D1 and D2. The transformation of the π1-disc into the π2-disc is equivalent to taking C′ as the
new equator, leaving H unchanged. It follows that  and  are equivalent.
Conversely, suppose that  and  are equivalent. Since a double cover is an unorientable
planar graph, the embeddings of  and  on the sphere can only differ in their equators. It
follows that  and  are equivalent disc representations of homeomorphic projective embeddings.
Notice that if  is a 3-connected graph, by Whitney’s theorem, it has a unique embedding on the
sphere. Consequently  and  will be equivalent if and only if  in this case.
Exercises
13.5.1 Find all embeddings of K4 and K5 on the projective plane.
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13.5.2 Find a projective embedding of K3, 4 and find its projective dual. What graph is it?
13.5.3 Let Gψ be a projective embedding of G, and let π be an associated rotation system. Let C be any cycle
of G. Show that C is an essential cycle of Gψ if and only if the number of edges of C with signature −1 is
congruent to 2 (mod 4).
13.5.4 Find the dual maps of the embeddings shown in Figure 13.30.
13.5.5 Show that the Möbius ladder L2n contains a topological subgraph TL2n−2, when n≥3.
13.5.6 Show that the Möbius lattice L2n−1 is a minor of L2n+1, if n≥3.

page_370

Page 371
13.5.7 Show that the Möbius ladder L2n has an embedding on the torus in which all faces are hexagons.
Construct the embedding for n=4, 5, and find the dual map. (Hint: In the rectangular representation of the
torus, draw a cycle of length 2n which wraps around the torus twice. Show how to complete this to a
hexagonal embedding of L2n.)
13.5.8 Show that the Möbius lattice L2n−1 has an embedding on the torus in which all faces are
quadrilaterals. Construct the embedding for n=4,5, and find the dual map. (Hint: In the rectangular
representation of the torus, draw a cycle of length 2n−1 which wraps around the torus twice. Show how to
complete this to a quadrilateral embedding of L2n−1.)
13.5.9 Show that there is a unique triangulation of the projective plane with three vertices and six edges.
13.5.10 Show that Read’s algorithm for drawing a planar graph can be adapted to the projective plane. Show
that there is a unique triangulation of the projective plane on three vertices, and that any triangulation can be
reduced to it by deleting vertices of degrees three, four, or five, and adding diagonals to the faces obtained.
Conclude that every projective graph has a straight-line drawing in the disc model of the projective plane.
13.5.11 Show that the graph of the 2n-prism is a double cover of the Möbius ladder L2n.
13.5.12 The cube is a double cover of K4. Find another double cover of K4.
13.5.13 Find a double cover of K6, as illustrated in Figure 13.25.
13.5.14 Find a projective embedding of the graph of the cube, and find its double cover.
13.5.15 The Desargues graph is shown in Figure 13.35. The Desargues graph is non-planar, non-projective,
and non-toroidal. Show that it is a double cover of the Petersen graph.

FIGURE 13.35
The Desargues graph
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13.6 Embedding algorithms
In this section, we outline an algorithm to determine whether a 2-connected graph G can be embedded on
the projective plane, and to find an embedding Gπ. It is modeled on algorithms of Gagarin, Mohar, and
Myrvold and Roth. If G is planar, we know how to convert a planar embedding to a projective embedding.
Hence we can assume that G is non-planar, so that it contains a Kuratowski subgraph.
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FIGURE 13.36
The embeddings of K5on the projective plane
There is exactly one embedding of K3, 3 on the projective plane, shown in Figure 13.26, and two embeddings
of K5, shown in Figure 13.36. These embeddings all have the property that there are no repeated vertices on
any facial cycle. In Figure 13.26, the hamilton cycle (1, 2, 5, 6, 3, 4) is an essential cycle. Since K3, 3 has a
unique embedding on the projective plane, this gives:
LEMMA 13.20 In any embedding of K3, 3 in the projective plane, some hamilton cycle is an essential cycle.
If we now cut the projective plane along this cycle, the result is a disc in which each vertex 1, 2,…, 6 appears
twice on the boundary. The resulting diagram, shown in Figure 13.37, is a very convenient representation of
the projective plane.
Consider a subgraph TK3, 3 in G. We want to determine whether G can be embedded in the projective plane.
We will begin by embedding the subgraph TK3, 3. There are six hamilton cycles of K3, 3. Each corresponds to
a cycle of TK3, 3. One of them must be essential. Exercise 13.6.2 describes an easy way to enumerate the
hamilton cycles of K3, 3. We take each of the six cycles in turn, and construct an embedding of TK3, 3, as in
Figure 13.37, and try to extend it
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FIGURE 13.37
A representation of the projective plane
to an embedding of G. If any one succeeds, then G is projective. Otherwise we conclude that G is non-
projective.
The embedding of K3,3 divides the projective plane into four faces—a hexagon, and four quadragons. The
remaining vertices and edges of G must be placed in one of these faces. If we delete V(TK3, 3) from G, the
result is a subgraph consisting of a number of connected components. If H is such a connected component,
then since G is 2-connected, there must be at least two edges with one endpoint in H and the other in TK3, 3.
DEFINITION 13.21: A bridge of G with respect to TK3, 3 is either:
1.An edge uυ, where u,  but  or
2.A connected component H of G−V(TK3, 3) together with all edges connecting H to TK3, 3
If B is a bridge, then a vertex of attachment of B is any vertex u of B such that 
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We can use a breadth-first (BFS) or depth-first search (DFS) to find the bridges of G with respect to an
embedding of TK3, 3. Each bridge has at least two vertices of attachment. Since each face is a 2-cell, and
each bridge must be embedded in a face of TK3, 3, each bridge must be planar. Into which faces of TK3, 3
can the bridges be placed?
The embedding of K3, 3 in Figure 13.37 determines a classification of the vertices and edges of K3, 3. Edges
on the boundary of the hexagon are called hexagon
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edges. Edges which are on the boundary of a quadragon, but not on the hexagon are called quadragon
edges. Hexagon edges like {1, 2} and {4, 5} are called opposite edges. Vertices like 1 and 4 are called
diagonally opposite vertices, because they are diagonally opposite on the hexagon. By a path of TK3, 3 we
mean a path connecting two corner vertices. The paths of TK3, 3 corresponding to hexagon edges of K3, 3
are called hexagon paths, those corresponding to opposite edges of the hexagon are called opposite paths,
and so forth. In general, a path of TK3, 3 will be either a hexagon or a quadragon path of TK3, 3. The
following lemmas on bridges can be proved by considering all possibilities of placing a bridge in Figure 13.37.
LEMMA 13.21 A bridge B can be placed in three faces of TK3, 3 if and only if B has exactly two vertices of
attachment, which are diagonally opposite vertices.
LEMMA 13.22 A bridge B can be placed in two faces of TK3, 3 if and only if all vertices of attachment of B are
on the same path, or on opposite paths of TK3, 3.
It follows from these lemmas that a bridge B can be placed in at most three faces, and that bridges for which
these lemmas do not apply, either cannot be placed in any face, or can be placed in at most one face. A
bridge is compatible with a face if it can be placed in the face. A bridge B is a k-face bridge if it can be placed
in exactly k faces of TK3, 3. Thus, we have 3-face, 2-face, 1-face, and 0-face bridges with respect to an
embedding of TK3, 3. We can determine which faces a bridge may embed in by using its vertices of
attachment and the previous lemmas.
Two bridges B1 and B2 conflict in face F if they can both be placed in face F, but cannot be simultaneously
placed in face F. Suppose that B1 can be embedded in face F and that it has k vertices of attachment υ1, υ2,
…, υk, where k≥2, and where the vertices occur in that order on the facial cycle of F. The vertices divide the
facial cycle into k intervals [υ1, υ2], [υ2, υ3],…, [υk−1, υk], [υk, υ1], where each interval is a path from υi to
υi+1. If B2 is another bridge that can also be embedded in face F, then B1 and B2 do not conflict if and only
if all vertices of attachment of B2 lie in one interval of B1, and vice versa.
Suppose that B is a 3-face bridge, with vertices of attachment u and υ. All 3-face bridges with these vertices
of attachment can be combined into one bridge, as they can always all be embedded in the same face if any
embedding is possible. Thus, we can assume that there are at most three 3-face bridges, one for each pair of
diagonally opposite vertices. Furthermore, any two distinct 3-face bridges conflict in the hexagon, so that at
most one 3-face bridge can be embedded in the hexagon. The algorithm looks for embeddings with no 3-face
bridges in the hexagon, or with exactly one 3-face bridge in the hexagon. Thus there are four subproblems to
consider.
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If we choose a DFS to find the bridges, it can be organized as follows. The procedure uses a variable
nBridges to count the number of bridges found so far. It is initially zero. We take each vertex 
in turn, and consider all incident edges  Edge uυ belongs to exactly one bridge. We store a
value B(uυ) for each edge, indicating the bridge to which uυ belongs. If B(uυ)=0, then B(uυ) has not yet
been assigned. If  then edge uυ is a bridge, and we assign B(uυ). Otherwise we call a
procedure BRIDGEDFS(υ) to build the bridge B. Because of the nature of a DFS, it will visit all vertices of B
before returning, and will explore only edges of B. For each edge B(xy) is assigned to be the current
value of nBridges. Each time it encounters a vertex of TK3,3, it has found a vertex of attachment. For each
bridge, a list of vertices of attachment is saved. If two bridges B and B′ are both found to have exactly two
vertices of attachment, and they are the same two vertices, then B and B′ are combined into a single bridge.
The vertices of attachment are later used to determine the compatible faces, using the previous lemmas, and
to sort the adjacency list of each u.

Algorithm 13.6.1: CONSTRUCTBRIDGES (G,TK3, 3)
comment: Construct all bridges of G with respect to TK3, 3

nBridges←0
for each 
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We can now present an algorithm for determining the conflicts of bridges in a face F. Let (u1, u2,…, uk)
denote the facial cycle of F. We assign a numbering to the facial cycle, such that ui is numbered i. This
defines an ordering u1<u2< …<uk. For each bridge B that is compatible with F, we sort the vertices of
attachment according to this ordering. The purpose of this is to determine whether the vertices of attachment
of each bridge lie completely within an interval of all other bridges. Let bmin denote the smallest vertex of
attachment of bridge B, and let bmax denote the largest. The algorithm then walks along the facial cycle from
uk to u1 and sorts the adjacency list of each ui. The edges incident on ui can be divided into the following
three classes:

page_375

Page 376
1. Edges uiυ belonging to a bridge B such that ui=bmin
2. Edges uiυ belonging to a bridge B such that bmin<ui<bmax
3. Edges uiυ belonging to a bridge B such that ui=bmax

FIGURE 13.38
Determining whether bridges conflict
Refer to Figure 13.38. The adjacency list is ordered so that edges in the first class precede those in the
second class, which precede those in the third class, and so that edges of each bridge are contiguous in each
of the three classes. The edges in the first class are further sorted so that if uiυ and uiυ′ belong to bridges B
and B′, respectively, where  then uiυ precedes uiυ′. If  then uiυ precedes uiυ′ if B
has more vertices of attachment. The edges in the third class are further sorted so that if uiυ and uiυ′ belong
to bridges B and B′, respectively, where  then uiυ precedes uiυ′. If  then uiυ
precedes uiυ′ if B has fewer vertices of attachment.
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In Figure 13.38 the u1uk-path of the facial cycle is drawn approximately vertically, and the bridges are placed
to the left of the path. With this representation, the ordering of the adjacency lists appears as a clockwise
circle drawn at each
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ui. If ui=bmin for some bridge B, there can be several edges uiυ belonging to bridge B. The last such edge is
saved as Bmin. Similarly, if ui=bmax for some bridge B, the first edge uiυ of B is saved as Bmax.
The algorithm then walks along the facial cycle from uk to u1. Every edge uiυ such that B(uiυ) is compatible
with F is placed on a stack. When Bmin, the last edge of bridge B is encountered, all edges of B are removed
from the stack, and conflicts with B are determined. The algorithm stores a linked list of conflicting bridges for
each bridge B.

Algorithm 13.6.2: BRIDGECONFLICTS(F)

for ui←ukdownto u1

We prove that the algorithm works. Suppose that B is a bridge with bmax=ui and bmin=uj, with extreme
edges Bmax=uiυ and Bmin=ujw. All vertices of attachment of B lie between ui and uj. If no other bridge has
an attachment uℓ here, such that ui≠uℓ≠uj, then B does not conflict with other bridges. Consider the point in
the algorithm when Bmin is reached. The algorithm will have stacked each edge of B incident on the facial
cycle, including Bmin. It then removes all these edges. If there is no uℓ between ui and uj, no conflicts are
discovered. But if B′ is a bridge with a vertex of attachment uℓ in this range, then an edge uℓx of B′ will have
been stacked after Bmax and before Bmin. Since the
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edges of B′ are still on the stack while edges of B are being removed,  If  then B and
B′ are in conflict, and this is discovered. If  then since Bmin precedes  in the adjacency
lists, we know that If  then B and B′ are in conflict, and this is discovered.
Otherwise  and  and uℓ is strictly between these limits. The ordering of the adjacency
list tells us that B has at least as many vertices of attachment as B′. Therefore B and B′ both have a vertex of
attachment strictly between ui and uj. We conclude that the bridges conflict.
Once all bridges have been constructed and all conflicts have been determined, we construct an instance of
the 2-Sat problem to represent this embedding problem. The 2-Sat problem will have boolean variables
corresponding to the placement of bridges, and boolean expressions to characterize the conflicts of bridges.
Let the bridges be B1, B2,…, Bm. If there are any 0-face bridges, the embedding of TK3,3 cannot be
extended. If Bi is a 1-face bridge, embeddable in face F, create a boolean variable xi for it. We require
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xi=true, and consider this to mean that Bi is assigned to face F. If Bi is a 2-face bridge embeddable in faces
F and F′, create boolean variables xi and yi for it. We consider xi=true to mean that Bi is assigned to F and
yi=true to mean that Bi is assigned to F′. Since we do not want xi and yi both to be true, or both to be
false, we construct the clauses

 
This ensures that exactly one of xi and yi will be true.
If Bi is a 3-face bridge, create boolean variables xi, yi, and zi for it as above, where zi=true means that Bi is
embedded in the hexagon. The 3-face bridges require special treatment. We take zi=false and zi=true as
separate cases. If zi=false, Bi becomes a 2-face bridge, and we construct the clauses

 
to represent this bridge. If zi=true, Bi becomes a 1-face bridge, and we require xi=yi=false.
If Bi and Bj are bridges that conflict in a face F, suppose without loss of generality that xi represents the
assignment of Bi to face F, and that wj represents the assignment of Bj to face F, where wj is one of xj, yj,
or zj. We then construct the clause

 
to ensure that at most one of Bi and Bj can be placed in face F.
When a variable is required to have a certain value (e.g., xi=true), we construct clauses
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where x0 is an additional boolean variable. Notice that this can only be satisfied if xi=true. If xi=false is
required, we construct the clauses

 
which can only be satisfied if xi=false.
Thus, we can represent all conflicts and all placements of bridges by instances of 2-Sat. Suppose that an
algorithm for 2-Sat finds a solution satisfying the constraints. If B1, B2,…, Bk are the bridges assigned to face
F, they are all mutually non-conflicting bridges. Consequently, all vertices of attachment of any Bi lie in an
interval determined by two vertices of attachment of every Bj. If each Bi has a planar embedding in F, then
they all have a common planar embedding in F, and conversely. If there is no common planar embedding of
the bridges in F, then some bridge Bi has no planar embedding in F. It then follows that Bi cannot be
embedded in any other face F′. Thus, we can complete the projective embedding of G by determining
whether there is a planar embedding of the bridges in F. We construct a graph G(F) which is the union of the
facial cycle of F, and all bridges B1,B2,…, Bk assigned by 2-Sat to F. We add one additional vertex u0, joined
to every vertex of the facial cycle, in order to distinguish an “inside” and “outside” for F. We have:
LEMMA 13.23 G(F) is planar if and only if bridges B1, B2,…, Bk have a common embedding in F.
We can now present the algorithm for projective planarity.
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Algorithm 13.6.3: PROJECTIVEPLANARITY(G,TK3,3)

let n and ε denote the number of vertices and edges of G
if ε>3n−3

then return (NonProjective)
construct the bridges B1, B2,…, Bm with respect to TK3,3

for each embedding of TK3,3
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return (NonProjective)
The bridges B1, B2,…, Bm are constructed using a BFS or DFS. This takes O(n) steps, since ε≤3n−3. There
are six embeddings of TK3,3 that are considered. For each embedding, the bridges are classified according to
the faces they can be assigned to. The conflicts between bridges are then calculated. As the number of
bridges m is bounded by n, the number of conflicts is at most O(n2). An instance of 2-Sat is then constructed
with at most 3m+1 variables and at most 4m+m(m−1) clauses. This can be solved in O(n2) time. If a
solution is found, a planar embedding algorithm must be used for each face to find the actual embedding. If
a linear or quadratic planarity algorithm is used, the result is at most O(n2) steps to complete the projective
embedding. The result is a O(n2)
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algorithm for finding a projective embedding of G, if one exists, when we are given a TK3,3in G.
Now it would be possible to consider the embeddings of TK5 in a similar way, and construct the bridges with
respect to each embedding of TK5, etc. There are 27 embeddings of TK5 in the projective plane. However,
there is an easier way. In Section 12.3 we found that most graphs containing a subgraph TK5 also contain
TK3,3 and that a simple breadth-first search algorithm can find a TK3,3, given a TK5. Thus, if we are given a
TK5 in G, we first try to find a TK3,3 in its place, and then use Algorithm PROJECTIVEPLANARITY() to extend
it to G.
If TK5 cannot be extended to TK3,3, then the structure of G is limited. Let {υ1,υ2,υ3,υ4,υ5} be the corners
of TK5. Then G−{υ1,υ2,υ3,υ4,υ5} is a disconnected graph. Each component is adjacent to exactly two of the
corner vertices of TK5. Let Gij denote the subgraph induced by all components adjacent to υi and υj, together
with all edges connecting them to υi or υj. Gij is called a K5-component of G. Notice that υi and υj are

vertices of Gij, and that  An augmented K5-component is the graph  with the

additional edge υiυj; namely,  We have the following theorem:
THEOREM 13.24 Suppose that G has a subgraph TK5 which cannot be extended to TK3,3. Then G is

projective if and only if all augmented K5-components are planar.
The proof of this theorem is left as an exercise. A consequence of it is that algorithms for projective planarity
can focus on TK3,3 subgraphs, which have fewer embeddings. A similar, but more complicated result holds
for toroidal graphs containing a TK5 which cannot be extended to TK3,3.
Exercises
13.6.1 Show that a graph can be embedded on the projective plane if and only if it can be embedded on the
Möbius band.
13.6.2 Show that K3,3 has six hamilton cycles. If C=(1,2,5,6,3,4) is a hamilton cycle, show that all hamilton
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cycles can be obtained by successively applying the permutation (1)(3,5)(2,4,6) to C.
13.6.3 Show how to find a projective rotation system for a graph G containing TK3,3, When the algorithm
PROJECTIVEPLANARITY() determines that G is projective. Hint: Use the projective embedding of K3,3 in
Figure 13.39.
13.6.4 Prove Theorem 13.24.
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FIGURE 13.39
A projective embedding of K3,3
13.7 Heawood’s map coloring theorem
We conclude this chapter with a discussion of Heawood’s map coloring theorem. The 4-color theorem states
that χ(G)≤4, for graphs of genus zero. Heawood’s map coloring theorem gives an analogous result for graphs
of genus one or more.
LEMMA 13.25 Let n≥3. Then 
PROOF By Lemma 13.6, ε(Kn)=n(n−1)/2≤3n+6(g−1). Solving for g gives the result.
THEOREM 13.26 (Heawood’s theorem) Let G be a graph on n vertices with genus g≥1. Then 

PROOF Let χ(G)=k. If G is not a critical graph, then it contains a critical subgraph. Since a k-critical graph
has minimum degree at least k−1, we conclude that the sum of degrees of G is at least (k−1)n, so that
ε≥(k−1)n/2. Lemma 13.6 gives ε≤3n+6(g−1). These two inequalities together give

 
with equality only if both inequalities above are equalities. Now g≥1 so that for fixed g, this is a non-
increasing function of n, so that χ(G) will be bounded.
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This arises because the number of edges in a k-critical graph increases as kn/2, whereas the maximum
number of edges in a graph embedded in a surface of genus g increases as 3n. We also know that k≤n, an
increasing function. Therefore the largest possible value of k is when k=n=7+12(g−1)/n. The equation then

becomes n2−7n−12(g−1)=0, which gives the solution  Since k≤n and k must be an
integer, the result follows.

If  is an integer, the inequalities used in the proof of Heawood’s theorem must be equalities.

This requires that ε=(n−1)n/2, so that G=Kn. The quantity  represents the largest number of
vertices that a graph can have, and still satisfy n(n−1)/2≤3n+6(g−1). If it is not an integer, this means that

n(n−1)/2<3n+6(g−1), so that a complete graph on  vertices will not be a
triangulation. In general, we have:
THEOREM 13.27 Let G be a graph on n vertices with genus g≥1 and chromatic number 
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Then G contains a spanning complete graph.
PROOF Let  Let G have n vertices. Since χ(G)=h, we know that n≥h, and
ε(G)≥n(h−1)/2≥h(h−1)/2. But h is the largest integer such that h(h−1)/2≤3h+6(g−1). Therefore n=h and G
contains a spanning complete graph. Note that a complete graph may not triangulate the surface, so that the
number of edges in a triangulation, 3h+6(g−1), may be larger than h(h−1)/2.
We conclude that the extreme value of χ will be achieved only if a complete graph with this many vertices can
be embedded in the surface.
This theorem gives χ(G)≤7 for the torus. An embedding of K7 in the torus is shown in Figure 13.17, so that
seven colors are necessary for the torus. We say that the chromatic number of the torus is seven, because all
toroidal graphs can be colored in at most seven colors, and seven colors are necessary for some graphs. The
dual of the embedding of K7 on the torus is the Heawood graph. Heawood was coloring the faces of an
embedding rather than the vertices of a graph, and discovered this graph. The 4-color theorem tells us that
the chromatic number of the plane is four. The formula of Heawood’s theorem gives the bound χ(G)≤4 for
the plane. However, the proof is invalid when g=0, and there are many planar graphs other than K4 which
require four colors. Lemma 13.25 gives  A proof that g(Kn) equals this
bounds would mean that Kn can always be embedded in a surface of this genus. Since χ(Kn)=n, the
inequality of Heawood’s theorem could then be replaced by an equality. Calculating the genus of Kn was
accomplished by a number of people
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(Heffter, Gustin, Ringel, Youngs, and Mayer) over many years. We state the result, without proof, as the
following theorem.
THEOREM 13.28 (Ringel-Youngs) Let n≥3. Then 
A complete proof of this result can be found in the survey paper of WHITE [124]. A consequence is the
following:
THEOREM 13.29 (Heawood map coloring theorem) The chromatic number of an orientable surface of

genus g≥1 is 
The corresponding results for non-orientable surfaces of genus  are as follows. Corresponding to Lemma
13.25 is the bound  Corresponding to Heawood’s theorem is the bound 

 which is proved in an analogous way. Again, the graphs which meet the bound
are the complete graphs. The non-orientable version of the Ringel-Youngs theorem is the following:
THEOREM 13.30 Let n≥5. Then except that 
The formula (n−3)(n−4)/6 gives  However,  as K7 does not embed on the Klein bottle.
The map coloring theorem for non-orientable surfaces is then:

THEOREM 13.31 The chromatic number of a non-orientable surface of genus is 
except that the chromatic number of the Klein bottle is 6.
Exercises
13.7.1 Let t be a positive integer, and let tK3 denote the graph with three vertices, and t parallel edges
connecting each pair of vertices, so that ε(tK3)=3t. Consider embeddings of tK3 in which there are no digon
faces. Show that g(tK3)≥(t− 1)/2 and that 
13.7.2 Show that g(tK3)=(t−1)/2 and  by constructing embeddings of tK3 on the appropriate
surfaces.
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13.7.3 Let G be a graph with n vertices and genus g, and let nk denote the number of vertices of degree k.
Suppose that n1=n2=0. Construct an inequality satisfied by n3, n4,…in terms of g, using the number of
edges in a triangulation. Do the same for 
13.7.4 The maximum genus of a graph G is the largest value g such that G has a 2-cell embedding on a
surface of genus g. If g′ is the maximum genus of a graph G on n vertices, use the Euler-Poincaré formula to
show that g′≤(ε−n+1)/2. Find the maximum orientable genus of K4.
13.7.5 Show that K7 does not embed on the Klein bottle.
13.8 Notes
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An excellent source book related to topology and geometry is HILBERT and COHN-VOSSEN [61]. It is perhaps
one of the best and most readable mathematics books ever written. Proofs of the Dehn-Heegard theorem can
be found in FRÉCHET and FAN [44] and in STILLWELL [109]. Both contain very readable accounts of
combinatorial topology. Fréchet and Fan call the Euler-Poincaré formula Descartes’ formula.
There are excellent chapters in DIESTEL [35] and ZIEGLER [129] on the graph minor theorem. The minor
order obstructions for the projective plane were found by ARCHDEACON [6]. MYRVOLD [90] has found over
200,000 topological obstructions for the torus, and the list may not be complete.
An excellent source for graphs and surfaces is the book by MOHAR and THOMASSEN [88], or the book on
topological graph theory by GROSS and TUCKER [54].
THOMASSEN [113] has proved that Graph Genus is NP-complete.
The algorithm for drawing graphs on the torus, given a toroidal rotation system is from KOCAY, NEILSON, and
SZYPOWSKI [76]. It is adapted from Read’s algorithm READ [100] for planar graphs.
Theorem 13.18 relating projective embeddings to toroidal embeddings is from FIEDLER, HUNEKE, RICHTER,
and ROBERTSON [41].
The algorithm for embedding a graph on the projective plane is based on algorithms by GAGARIN [48],
MOHAR [87], and MYRVOLD and ROTH [91]. Theorem 13.24 is from GAGARIN and KOCAY [49].
The survey article by WHITE [124] contains a complete proof of the RingelYoungs theorem and the Heawood
map coloring theorem.
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14 
Linear Programming
14.1 Introduction
Problems which seek to find a “best” configuration to achieve a certain goal are called optimization problems.
Programming problems deal with determining optimal allocations of limited resources to meet given
objectives. They deal with situations in which a number of resources such as manpower, materials, and land
are available to be combined to yield one or more products. There are, however, restrictions imposed, such
as the total number of resources available and the quantity of each product to be made. Linear programming
deals with the class of programming problems in which these restrictions and any other relations among the
variables are linear. In particular, the constraints imposed when searching graphs and networks for say
shortest paths, matchings, and maximum flow can be expressed as linear equations.
14.1.1 A simple example
Let us consider a furniture shop that produces tables, chairs, cabinets, and stools. There are three type of
machines used: table saw, band saw, and drill press. We assume that the production is continuous and each
product first uses the table saw, then the band saw, and finally the drill press. We also assume that setup
time for each machine is negligible. Table 14.1 shows
1. The hours required on each machine for each product
2. The profit realized on the sale of each product
We wish to determine the weekly output for each product in order to maximize profit. Let x1, x2, x3, and x4
denote the number of tables, chairs, cabinets, and stools produced per week, respectively. We want to find
the values of x1, x2, x3, x4 which maximizes the profit. The available machine time is lim-
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TABLE 14.1
Data for the simple example

Machine type Table Chair Cabinet Stool Time available
table saw 1.5 1 2.4 1 2000
band saw 1 5 1 3.5 8000
drill press 1.5 3 3.5 1 5000

profit 5.24 7.30 8.34 4.18  
ited so we cannot arbitrarily increase the output of any one product. Thus we must allocate machine hours
among the products without exceeding the maximum number of machine hours available.
Consider the restriction imposed by the table saw. According to Table 14.1 it will be used a total of

1.5x1+x2+2.4x3+x4  
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hours per week, but can only be used for at most 2000 hours. This yields the linear inequality
1.5x1+x2+2.4x3+x4≤2000.  

Similarly, the band saw and drill press yield the following restrictions:
x1+5x2+x3+3.5x4≤8000

1.5x1+3x2+3.5x3+x4≤5000
 

Furthermore, we can’t produce a negative amount of a product, so we also have
x1≥0, x2≥0, x3≥0, and x4≥0.  

Now we have all the restrictions. The profit is
z=5.24x1+7.30x2+8.34x3+3.4.18x4.  

Thus our goal is to solve the following linear program.
Maximize: z=5.24x1+7.30x2+8.34x3+3.4.18x4

Subject to: 1.5x1+x2+2.4x3+x4≤2000
x1+5x2+x3+3.5x4≤8000

1.5x1+3x2+3.5x3+x4≤5000
x1≥0, x2≥0, x3≥0, x4≥0
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14.1.2 Simple graphical example
We can graphically solve linear programs that involve only two variables. For example, consider the linear
program

Maximize: z=5x1+3x2
Subject to: 3x1+5x2≤18

5x1+2x2≤11
x1≥0, x2≥0

 

Each of the constraints determines a half plane consisting of the set of points (x1,x2) that satisfy the
inequality. For example, the inequality x1≥0 determines the half plane of points lying to the right of the x2-
axis. The intersection of these four half planes is the set of feasible solutions to the problem. In this example
the feasible solutions form a bounded polygonal region. It is not difficult to show that such a region must be
convex. (It is possible to have an unbounded region.) The four vertices of this region are easily determined
by pairwise solving the four bounding equations.
1. Solving x1=0 and 3x1+5x2=18 gives the vertex (0,3.6).
2. Solving 3x1+5x2=18 and 5x1+2x2=11 gives the vertex (1,3).
3. Solving 5x1+2x2=11 and x2=0 gives the vertex (2.2,0).
4. Solving x1=0 and x2=0 gives the vertex (0,0).
The set of feasible solutions is depicted in Figure 14.1. We have also drawn the objective function
z=5x1+3x2, when z=3.5, 11, and 38.5.
Consider any line segment joining points P=(p1,p2) and Q=(q1,q2). Let

z0=5p1+3p2  
be the value of the objective function at P and let

z1=5q1+3q2  
be the value of the objective function at Q. Assume without loss that z0≤ z1. The coordinates of any point on
the line segment between P and Q is given by

((1−t)p1+tq1,(1−t)p2+tq2  
for 0≤t≤1. The value of the objective function at this point is

zt−5((1−t)p1+tq1)+3((1−t)p2+tq2)
=(1−t)(5p1+3p2)+t(5q1+3q2)

=(1−t)z0+tz1
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FIGURE 14.1
Graphical example
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Observe that

z0=(1−t)z0+tz0≤(1−t)zt+tz1=zt  
and

zt=(1−t)z0+tz1≤(1−t)z1+tz1=z1.  
Thus z0≤zt≤z1 for any 0≤t≤1. Therefore the maximum value of the the objective function among the points
on any line segment occurs at one of the endpoints. It follows that the maximum value of any (linear)
objective function among the points of a compact region occurs at some point on the boundary. Also, if the
boundary is a polygon, then the maximum value of the objective will occur at one of the vertices. Hence for
our example the maximum value of the objective function

z=5x1+3x2  
occurs at least one of (0, 3.6), (1, 3), (2.2, 0), or (0, 0). The value at these points is 10.8, 14, 11, and 0.
Thus the maximum occurs at x1=1, x2=3.
If the region of feasible solutions is unbounded, then there may be no point in the region for which the
objective function achieves its absolute maximum. Of course there is also no point for which the objective
function achieves its maximum, if there are no feasible solutions.
If the objective function achieves its maximum at two adjacent vertices P and Q, and the region of feasible
solutions is connected and polygonally bounded, then it will achieve its maximum at infinitely many points:
namely, those lying on the line segment joining P and Q.
In a general linear program the region of feasible solutions is the intersection of the half hyper-planes
determined by the linear constrains. Thus the region of feasible solutions to the general linear program is a
compact convex region, bounded by facets (hyper-plane segments). That is, it is a polyhedron.1 Consequently
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it follows that:
THEOREM 14.1 In a general linear program the objective function achieves its maximum either at exactly one
point, at infinitely many points, or at no point. Furthermore if it does achieve a maximum, it does so on one
of the vertices of the polyhedral boundary of the feasible solutions.
14.1.3 Slack and surplus variables
It is easier to work with equalities, than with inequalities because we can take advantage of linear algebra.
We can convert linear inequalities into equalities by introducing surplus and slack variables.
1O.K. it is only a polyhedron if it is bounded. It could have some open sides, but the closed sides are
bounded by hyper-planes.
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For example, consider an inequality of the form

a1x1+a2x2+…+atxt≤b (14.1)
Given fixed assignments to the variables x1, x2,…, xt that satisfy this inequality, there will be slack or “room
for improvement” amounting to

xj=b−a1x1+a2x2+…+atxt≥0.  
Thus introducing a new variable xj and requiring xj≥0 we obtain the equality

a1x1+a2x2+…+atxt+xj=b  
which is equivalent to Inequality 14.1.
The variable xj is called a slack variable. Similarly an inequality of the form

a1x1+a2x2+…+atxt≥b (14.2)
represents a surplus of

s′=a1x1+a2x2+…+atxt−b  
for a fixed assignment to the variables x1, x2,…, xt. Thus introducing xj′ as a new variable and requiring xj
′≥0 we obtain the equality

a1x1+a2x2+…+atxt−xj'=b  
which is equivalent to Inequality 14.2. The variable xj′ is called a surplus variable. Adding slack and surplus
variables in this way will reduce the the system of inequalities to a system of equalities and variables xi that
are either unbounded or satisfy xi≥0. If xi is unbounded, we find an inequality that xi satisfies, solve for xi,
and substitute to eliminate xi from the set of equations. A linear program in which all the variables are
required to be non-negative and the remaining constraints are equality constraints is said to be in standard
form or a standard linear program.
For example, to convert the linear program

Maximize: z=5x1+3x2+3x3+x4
Subject to: 2x2+x4=2

x1+x2+x4≤3
−x1−2x2+x3≥1
x1≤0, x2, x3≥0
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into standard form we introduce slack and surplus variables x5, x6, and x7 obtaining

Maximize: z=5x1+3x2+3x3+x4
Subject to: 2x2+x4=2

x1+x2+x4+x5=3
−x1−2x2+x3−x6=1

x1+x7=0
x2, x3, x5, x6, x7≥0

 

Now variables x1 and x4 are unbounded, so we solve for them
x1=−x7

x4=2−2x2
 

Substituting, we obtain
Maximize: z=x2+3x3−35x7+2

Subject to: −x2+x5−x7=1
−2x2+x3−x6=x7=1
x2,x3,x5,x6,x7≥0.

 

Finally, to convert to a problem of minimization, we set
Z=2−z  

and we have
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Minimize: Z=−x2−3x3+35x7
Subject to: −x2+x5−x7=1

−2x2+x3−x6+x7=1
x2,x3,x5,x6,x7≥0.

 

a linear program in standard form. In matrix form we set
X=[x2,x3,x5,x6,x7]T  
c=[−1,−3,0,0,35]T  

b=[1,1]T  
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and we see that the original linear program is equivalent to

Minimize: Z=cTX
Subject to: AX=b

X≥0

 

Exercises
14.1.1 Solve the following graphically and shade the region representing the feasible solutions:

Maximize: z=x1+1.5x2
Subject to: 2x1+3x2≤6

x1+4x2<4
x1,x2≥0

 

14.1.2 Solve the following graphically and shade the region representing the feasible solutions:
Minimize: Z=6x1+4x2
Subject to: 2x1+x2≥1

3x1+4x2≥1.5
x1,x2≥0

 

14.1.3 Carefully examine Exercises 14.1.1 and 14.1.2. How are the solutions related? They form what is called
a pair of dual problems. Note that they involve the same constants, but in a rearranged order.
14.1.4 Put the following linear program into standard form:

Maximize: z=2x1+3x2+5x3
Subject to: 3x1+10x2+5x3≤15

33x1–10x2+9x3<33
x1+2x2+x3≥4

x1,x2≥0
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14.2 The simplex algorithm
14.2.1 Overview
The simplex algorithm can be used to solve linear programs of the form

Minimize: Z=cTX
Subject to: AX=b

X≥0

(14.3)

There are three phases to the algorithm.
Phase 0: Find a basis solution or show that the linear program is infeasible.
Phase 1: Find a basis feasible solution or show that the linear program is infeasible.
Phase 2: Improve the basis feasible solution until
1. it’s optimal, or
2. the linear program can be shown to be unbounded.
14.2.2 Some notation
In order to study the linear program in Equation 14.3 we first introduce some notation. Denote the columns of
the m by n matrix A by

A=[A1,A2,A3,…,An].  
Without loss, assume that the rank of A is m. Suppose

 
is a set of m linearly independent columns of A. Then the m by m matrix
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is nonsingular. Thus B−1 exists. Consequently, B−1A contains the identity matrix on columns j1, j2, j3,…, jm
of A. Let XB=B−1b. Then X given by

 
satisfies

AX=b  
and is called the basis solution given by B. If XB≥0, then X also satisfies

X≥0  
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with the remaining constraints of the linear program given in Equation 14.3. Thus in this case we call X a
basis feasible solution. Also corresponding to B we define cB by

cB[i]=c[ji], for i=1,2,…,m  
The value Z of the objective function at X is

 
It is also convenient to set

 
where Yj=B−1Aj. Using this notation we can safely identify XB with X and refer to XB as the basis solution.
14.2.3 Phase 0: finding a basis solution
A basis solution if one exists can be found by pivoting. Pivoting is also known as Gaussian elimination or row
reduction. To pivot on non-zero entry aij of the m by n matrix A we replace row k by

 
for k≠i and we replace row i by

 
The result is that column j becomes

 
We record this procedure as Algorithm 14.2.1.

Algorithm 14.2.1: PIVOT(i,j)
for k←1 to m
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Thus to find a basis solution we iteratively select a non-zero entry  in row i and pivot on  for i=1,2,
…,m. That is, we have selected the linearly independent columns

 
of A and have determined the basis solution XB; where

 
14.2.4 Obtaining a basis feasible solution
Suppose that A=[A1,A2,…,An] has rank m and that X is a feasible solution to the linear program in Equation
14.3. Let p≤n be the number of positive variables in X. Without loss we may assume that the first p variables
are positive. Then
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and so

(14.4)
If the p columns A1, A2,..., Ap are linearly independent, then p≤m, and there exists an additional m−p
columns of A whose inclusion with the first p are a linear independent set. Thus we can form a basis solution
with m−p zeros.
If the p columns are linearly dependent, then there exists αj not all zero such that

 
Let Ar be any column for which αr≠0, j=1,2,...,p. Then

(14.5)
Substituting Equation 14.5 into Equation 14.5, we obtain

(14.6)
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Thus we have a solution with at most p−1 non-zero entries. However, we are not certain that they are non-
negative. We need

 
for j=1,…,p, j≠r. If αj=0, then this is automatically satisfied. If αj≠0, then dividing by αj gives

 
and

 
Thus we may select Ar such that

 
or such that

 
Then each entry in Equation 14.6 will be non-negative and a feasible solution with no more than p−1 non-
zero variables has been found. We can continue this process of selecting columns Aj until p≤m in which case
a basis feasible solution has been found.
14.2.5 The tableau
The initial tableau for the linear program in Equation 14.3 is the array

(14.7)
Note that other authors use a more elaborate tableau, but this is sufficient. Suppose B is the submatrix of A
corresponding to the basis B as in Section 14.2.2. For the purpose of explanation assume B is the first m
columns of A; then the tableau has the form
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where Aj is the jth column of A. Multiplying the tableau with
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we obtain the new tableau

(14.8)

This is because Yj=B−1Aj, XB=B−1b, and  as defined in Section 14.2.2. Thus selecting a new
basis solution is equivalent to pivoting on entries of the first m rows of the tableau 14.7 to obtain a tableau
similar to the tableau 14.8. (The identity matrix need not be among the first columns.) Thus in the process of
selection of a basis the values of cj−zj, z, and XB are also easily determined.
An algorithm for the Phase 0 portion of the simplex algorithm that takes as input a tableau for a linear
program whose adjacency matrix has m rows and n columns is provided in Algorithm 14.2.2.

Algorithm 14.2.2: PHASE0 (Tableau, m,n)
Infeasible←false

for r←1 to m

14.2.6 Phase 2: improving a basis feasible solution
Let XB=B−1b be a basis feasible solution of the linear program given in Equation 14.3. The value of the
objective function at XB is
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Some questions naturally arise:
Can we find another basis feasible solution with better Z?
Furthermore, can we do this by changing only one column of B?
Can we remove one column Brof B and replace it with a column Aj of A and get a smaller value Z of the
objective function Z=cTX?
Column Aj is a linear combination of the columns in B because B is a nonsingular m by m submatrix of A.
Thus
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(14.9)
Then Aj can replace any Br for which

yrj≠0.  
because the new set of vectors

{B1,B2,…,Br−1,Aj,Br+1,Br+2,…,Bm}  
will be linearly independent. Let

 
Then  is a basis solution, but it may not be feasible. Observe from Equation 14.9 that

 
Also

 
So, substituting we have:
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Thus

(14.10)
is feasible if and only if

(14.11)
and

(14.12)
Thus if XB[r]≠0, we see from Equation 14.12 that we must have

yrj≥0.  
If yij≤0, then Equation 14.11 automatically holds. So, we need to only be concerned with coordinates i for
which yij>0. When yij>0, the condition given by Equation 14.11 can be rewritten as

 
Thus we need to choose that column r of B such that
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(14.13)
To summarize:
We began with a nonsingular submatrix B of A

 
If XB=B−1b is a basis feasible solution to the linear program given in Equation 14.3, then we selected an
arbitrary column Aj of A, not in B and wrote

Aj=BYj,  
a linear combination of the columns of B, where

Yj=[y1j,y2j,…,ymj].  
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If some yij>0, there is a column Br of B, which we can replace with Aj to get a basis feasible solution 
Equation 14.13 shows how to select Br so that this is possible.
Now what about the value of the objective function—is it better? Let

 
be the new matrix obtained by replacing Br with Aj. That is  for i≠r and  The new basis
feasible solution is  given in Equation 14.10. The objective function corresponding to  is

 
where

 
Therefore

 

Setting  we have

 
Therefore if we can find Aj such that

cj−zj<0  
and at least one yij>0, then it is possible to replace one of the columns of the columns of B by Aj and obtain
a new value  of the objective function satisfying
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If the given basis solution is not degenerate, then
 

In terms of the tableau given in Equation 14.8, this means we can find a column j with a negative entry in
last row and a positive entry yij in row i. For each positive entry yij compute the ratio

 
and chose i so that θi is smallest. Recall that

[XB[1],XB[2],…,XB[m],−Z]T  
is the last column of the tableau. Then pivoting on yij produces a new tableau with smaller Z. Note that −Z is
the entry in the last row and column of the tableau.
14.2.7 Unbounded solutions
In Section 14.2.6, given a basis feasible solution XB=B−1b we found a column Aj that had at least one yij>0,
i=1,2,…,m where

Yj=B−1Aj.  
For this column, we found a column Br in B which when replaced by Aj, resulted in a basis feasible solution 

 The value of the objective function for  was
 

Let us consider a column Aj for which yij≤0 for each i=1,2,…,m. We have

 
with value of the objective function equal to 
Adding and subtracting θAj for any theta yields
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but

 
So substituting we obtain:

(14.14)
When θ>0, then (XB[i]Bi−θyij)≥0 because we have assumed that yij≤0, for i=1,2,…,m. Thus Equation 14.14
is feasible. The value of the objective function is again

 
Thus choosing θ arbitrarily large we can make  arbitrarily small if

cj−zj<0  
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To summarize:
Given any basis feasible solution to a linear program, if there is a column Aj not in the basis for which

cj−zj<0  
and

Yj=B−1Aj≤0,  
then the linear program in Equation 14.3 has an unbounded solution.
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In terms of the tableau given in Equation 14.8, this means that if we can find a column j with every entry less
than or equal to zero with a negative entry in last row, then the linear program in Equation 14.3 has an
unbounded solution.
14.2.8 Conditions for optimality
Assume that XB=B−1b is a basis feasible solution of the linear program given in Equation 14.3 and that the
value of the objective function at XB is

 
In addition, suppose that

cj−zj≥0  
for every column Aj of A not in B. Thus the value of the objective function cannot be improved by replacing a
column of B with a column of A. We will show that Z0 is the minimal value of the linear program and hence

that XB is an optimal solution. Set  So,
 

Let X be any feasible solution of linear program given in Equation 14.3. Then
x1A1+x2A2+…+xnAn=b (14.15)

and X≥0. Let  be the value of the objective function at X.
Every column Aj of A can be written as a linear combination of the columns of B:

Aj=BYj  

Setting Y=[Y1,Y2,…,Yn] we have A=BY, and  Then
BXB=b=AX=BY X  
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Therefore,

XB=YX  
because B is nonsingular. Hence

 
which proves that Z0 is the optimal value of the objective function and hence XB is an optimal solution to the
linear program in Equation 14.3.
In terms of the tableau given in Equation 14.8, this means if there is no negative entry in the last row, then
we have found an optimal solution. The optimal value is Z the negative of the entry in the last row and
column. To find the optimal solution, first discover the columns {j1,j2,…,jm} that contain the identity matrix
on the first m rows of the tableau. That is, column ji is

 
Then the optimal solution is X where

 
The Phase 2 portion of the simplex algorithm is given in Algorithm 14.2.3.
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Algorithm 14.2.3: PHASE2 (Tableau m, n)

c←1
while c<n
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14.2.9 Phase 1: initial basis feasible solution
Suppose that after Phase 0 we have obtained a basis solution XB to the linear program

Minimize: Z=cTX
Subject to: AX=b

X≥0

(14.16)

where A is a m by n matrix of rank m. Then
B=[B1,B2,…,Bm]  

is a nonsingular submatrix of A and XB=B−1b. The result of pivoting on the columns in B is the tableau
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If XB[i]<0 for some row i, then the basis solution is infeasible and we cannot proceed to Phase 2. Let E be
the m-dimensional vector defined by

 
Let x0 be a new artificial variable and define the Phase 1 linear program as follows:

(14.17)

 
The Phase 1 tableau is:

 
It has columns 0, 1,…, n. The second to last row corresponds to the cost equation to the linear program
14.16 and can almost be ignored for this discussion. Let w(x0,X) denote the value of the objective function
for the Phase 1 linear program at a given x0 and X.
LEMMA 14.2 The Phase 1 linear program is always feasible and has a non-negative optimal objective value.
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PROOF Let i be the row for which XB[i] is smallest (i.e., most negative), and pivot on row i column 0. The
result is a tableau with a feasible solution to the Phase 1 linear program. We can apply the techniques of
Section 14.2.6 to obtain an optimal feasible solution or show that it is unbounded below. It cannot be
unbounded below, however, because

 
Hence w is non-negative.
THEOREM 14.3 A linear program is feasible if and only if the artificial objective function has minimum value
wmin=0. Moreover, if w=0 for x0≥0 and X≥0, then X is a feasible solution of the original linear program.
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PROOF By Lemma 14.2, the Phase 1 linear program has an optimal solution for which the minimum value
wmin≥0. First suppose wmin=0. Then there exist X and x0 such that w(x0,X)≥0, x0=0, X≥0, and

 
Then B−1AX=YX=B−1b=XB and hence AX=b. Thus the linear program 14.16 is feasible.
Conversely, suppose there exists a feasible solution  of AX=b. Then  and thus

 
is solvable in non-negative variables, by choosing x0=0, and  For these values of x0 and X, 

 Because w≥0 must hold for every feasible solution of the Phase 1 linear program, we have
wmin=0.
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Algorithm 14.2.4: PHASE1 (Tableau, m, n)

Unbounded←false
Infeasible←false

comment: Use column 0 and row m+2 to create the Phase 1 tableau

Tableau [m+2,0]←1
for j←1 to n do Tableau[m+2,j]←0

Tableau [m+2,n+1]←0
comment: find the Phase 1 first pivot

r=0
M←0

if r=0

PIVOT (r,0)
c←1

while c≤n
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if Tableau [m+2,n+1]≠0
then Infeasible←true
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We can now give the complete simplex algorithm.

Algorithm 14.2.5: SIMPLEX (Tableau, m, n)
Unbounded←false
Infeasible←false

PHASE0 (Tableau, m, n)
if Infeasible

PHASE 1 (Tableau, m, n)
if Infeasible

PHASE2 (Tableu m, n)
if Unbounded

Z← −Tableau[m+1, n+1]
for j←1 to n do X[j]←0

for i←1 to m do X [pivots[r]]=Tableau [i, n+1]
return (X,Z)

14.2.10 An example
Minimize: Z=7x1+2x2

Subject to: −x1+2x2+x3=4
4x1+3x2+x3+x4=24
−2x1−2x2+x5=−7

x1,x2,x3,x4≥0

 

The initial tableau is
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and we start Phase 0. Pivoting on the [1,3] entry obtains

 
Thus we have the basis solution

X=[0,0,4,20,−7]T  
corresponding to basis consisting of columns 3, 4 and 5. This ends Phase 0. The basis solution found was
not feasible so we start Phase 1. In this phase we have columns 0, 1, 2, 3, 4, and 5.

 
First we price out column 0.

 
We now have a feasible solution, but the Phase 1 objective value is 7. We proceed to reduce this value to 0.
In the last row we find a negative entry in column 1. The smallest ratio of the last column entries with
positive entries in column 1 is θ=7/2, so we pivot on the [3,1] entry to obtain the tableau below.

 
The Phase 1 objective value is now zero and we have a feasible solution. We proceed to Phase 2 by
dropping column 0 and the last row.
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There is a negative entry in the last row in column 2, so the objective value can be reduced. The smallest

ratio is  so we pivot on the [1,2]-entry.
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There are no negative entries left in the last row so an optimal solution has been found. This solution is

 
and has objective value Z=12.
14.3 Cycling
It is prudent to ask whether it is possible for the simplex algorithm to go through an endless sequence of
iterations without terminating. Consider the following linear program:

Minimize: Z=−10x1+57x2+9x3+24x4
Subject to: 0.5x1−5.5x2−2.5x3+9x4+x5=0

0.5x1−1.5x2−0.5x3+x4+x6=0
x1+x7=1

x1,x2,x3,x4,x5,x6,x7≥=0

 

The initial tableau is

 
If we adopt the following rule:
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Always pivot on the column with the smallest (most negative) entry in the bottom row, choosing the first row
that achieves the smallest ratio. If there are two such columns always choose the first one, (i.e., the one with
smallest index).
Then the sequence of iterations is:
1. Pivot on (1, 1).

 
2. Pivot on (2, 2).

 
3. Pivot on (1, 3).

 
4. Pivot on (2, 4).
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5. Pivot on(1, 5).

 
6. Pivot on (2, 6).
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The tableau obtained after iteration 6 is identical to the initial tableau and so this cycle of iterations would
repeat and the simplex algorithm would never terminate. It is easy to see that this is the only way that the
simplex algorithm can fail to terminate. That is
THEOREM 14.4 If the simplex algorithm fails to terminate, then it must cycle.
Several methods have been proposed to avoid this cycling phenomenon. The easiest is to adopt the smallest
index rule.
Always pivot on the column with the first negative entry in the bottom row (i.e., the one with the smallest
index), and choose the first row in that column that achieves the smallest ratio.
We leave it as an exercise to prove the following result:
THEOREM 14.5 (R.G. Bland, 1977) The simplex method always terminates if the smallest index rule is
adopted.
PROOF Exercise 14.3.2.
Exercises
14.3.1 Solve the following linear programs using the simplex algorithm.
(a)

Maximize: z=3x1+2x2+x3+4x4
Subject to: 4x1+5x2+x3−3x4=5,

2x1−3x2−4x3+5x4=7,
x1+4x2+2.5x3−4x4=6,

x1, x2, x3, x4≥0

 

(b)
Maximize: z=3x1+4x2+x3+7x4

Subject to: 8x1+3x2+4x3+x4≤5,
2x1+6x2+x3+5x4≤7,
x1+4x2+5x3+2x4≤6,

x1, x2, x3, x4≥0
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(c)
Maximize: z=2x1−3x2+4x3+x4
Subject to: x1+5x2+9x3−6x4≥−2,
3x1−1x2+x3+3x4≤10,
−2x1−3x2+7x3−8x4≥0,
x1,x2,x3,x4≥0
14.3.2 Prove Theorem 14.5.
14.4 Notes
The topic of linear programming appears in a variety of different subjects, for example operations research,
mathematical programming, and combinatorial optimization. There are thus numerous books in which it is
discussed and among them are CHVÁTAL [27], HADLEY [57], NEMHAUSER and WOLSEY [92],
PAPADIMITRIOU and STEIGLITZ [94], TAHA [110], and WALKER [121].
In this chapter we have only discussed the simplex algorithm which was invented in the late 1940s by
DANZIG [31] (see also DANTZIG [32]). A thorough discussion of the history of linear programming can be
found in DANTZIG’S celebrated work [33].
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The example of cycling in the simplex method found in Section 14.3, is from the book by CHVÁTAL [27].
Theorem 14.5 appears in BLAND [16].
It can be shown that in the worst case the running time of simplex algorithm is not polynomial bounded (see
KLEE and MINTY [72]) and hence the simplex algorithm is theoretically not satisfactory. In practice it is
eminently useful and except for very contrived problems exceedingly fast. In 1979, KHACHIAN [71] provided a
method called the ellipsoid method that solves linear programs in polynomial time. This is a marvelous,
elegant, and simple jewel of pure mathematics. However, we believe that it is unlikely that the ellipsoid
method will ever be a serious challenger to the simplex method.
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15 
The Primal-Dual Algorithm
15.1 Introduction
In Chapter 14 we found it convenient to convert every linear program consisting of constraints that are a mix
of inequalities and equalities:

 
to a system of equations Ax=b, b≥0. A slightly different formulation of constraints will prove useful here. We
convert every equality to the equivalent pair of inequalities, so that

 
becomes the two inequalities

 
We then multiply all inequalities with the relation ≥ through by a −1 so that each has the form

 
Now we have a linear program of the form

Maximize z=cTX
subject to: DX≤d

X≥0

(Primal)

which we call the primal linear program. Corresponding to the primal linear program is another linear program
which we call the dual linear program.
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Minimize Z=dTW

subject to: DTW≥c
W≥0

(Dual)

LEMMA 15.1 The dual of the dual is the primal:
PROOF The dual linear program:

Minimize Z=dTW
subject to: DTW≥c

W≥0

 

is equivalent to :

 
This is in the form of a primal linear program. The dual linear program corresponding to it is:

 
This linear program is equivalent to

Maximize z=cTX
subject to: DX≤d.

X≥0
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LEMMA 15.2 If X is a feasible solution to the primal and W is a feasible solution to the dual, then cTX≤dTW
(implying z≤Z).
PROOF Suppose X is a feasible solution to the primal. Then DX≤d. If W is a feasible solution to the dual,
then W≥0, so we see

WTDX<WTd=dTW  
Similarly, because X≥0 and W is a feasible solution,

DTW>c
XTDTW≥XTc
WTDX≥cTX
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Therefore

cTX≤WTDX≤dTW. (15.1)
LEMMA 15.3 If is a feasible solution to the primal and is a feasible solution to the dual such that 

then and are optimal solutions to the primal and dual, respectively.
PROOF By assumption,  but for any feasible solution X to the primal,

 
(with the inequality from Lemma 15.2). Therefore,  is an optimal solution to the primal.
By the same logic, for any feasible solution W of the dual,

 
Thus,  is an optimal solution to the dual.
LEMMA 15.4 If the dual or the primal has an optimal solution, then the other also must have an optimal
solution and their optimal values are the same.
PROOF Because of Lemma 15.1, we need only show that if the primal linear program has an optimal
solution, then so does the dual linear program. Recall that the primal linear program is:

Maximize z=cTX
subject to: DX≤d

X≥0.

 

Add slack variables Xs and convert it to a minimization problem to get the standard form linear program:
Minimize (−z)=(−c)TX
subject to: DX+IXs=d,

X, Xs≥0

(15.2)

where I=[E1,E2,…,Em] is the m by m identity matrix. Let D= [D1,…,Dn]. The tableau for the simplex
algorithm is
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If the linear program 15.2 has an optimal solution XB, with optimal value (−z)=(−CB)TXB, then there is a
rank m submatrix B of the columns D1, D2,…, Dn, E1, E2,…, Em such that XB=B−1d and after multiplying
the tableau by

 
we obtain the tableau

 
where,
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and because of optimality,

 
So these equations show that

 

If we let  then these equations show that W satisfies
DTW ≥c

W≥0, and
z=dTW.

 

Thus W is a an optimal feasible solution to the dual linear program. Optimality follows from the last equation
and Lemma 15.3.
Observe the similarity between Lemma 15.4 and the max-flow-min-cut Theorem (Theorem 8.4). Indeed the
Ford-Fulkerson algorithm for solving the maximum network flow problem that was presented in Section 8.2 is
a primal-dual algorithm. We re-examine this algorithm in Section 15.6.3.
In the proof of Lemma 15.4 we discovered how to construct an optimal solution of the dual linear program
given an optimal solution to the primal. We record this useful fact as the following corollary:
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COROLLARY 15.5 If X is an optimal solution to

Maximize z=cTX
subject to: DX≤d

X≥0

 

with basis B, then W=B−TcB is an optimal solution to the dual linear program
Minimize Z=dTW

subject to: DTW≥c
W≥0

 

THEOREM 15.6 Given a primal-dual pair, exactly one of the following can occur:
a. Both the primal and the dual have a finite optimum.
b. The primal is unbounded and the dual is infeasible.
c. The primal is infeasible but the dual is unbounded.
d. Both the primal and the dual are infeasible.
PROOF We saw in Chapter 14 that every linear program either (i) has a finite optimum, (ii) is unbounded, or
(iii) is unfeasible. Thus for a primal-dual pair there are nine possibilities. Namely:
1. Both the primal and the dual have a finite optimum.
2. The primal has a finite optimum but the dual is unbounded.
3. The primal has a finite optimum but the dual is infeasible.
4. The primal is unbounded but the dual has a finite optimum.
5. Both the primal and the dual are unbounded.
6. The primal is unbounded and the dual is infeasible.
7. The primal is infeasible but the dual has a finite optimum.
8. The primal is infeasible but the dual is unbounded.
9. Both the primal and the dual are infeasible.
Lemma 15.4 shows that possibilities 2, 3, 4, and 7 cannot occur. Equation 15.1 tells us that if either the
primal or the dual is unbounded, then the other cannot have a feasible solution and thus possibility 5 is
eliminated. It is easy to construct examples of the remaining four possibilities, 1, 6, 8, and 9.
1. A primal-dual pair in which both the primal and the dual have a finite opti-
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Page 422

mum:
Maximize z=x1

subject to: x1≤1
x1≥0

(Primal)

Minimize Z=w1
subject to: w1≥1

w1≥0

(Dual)

6. A primal-dual pair in which the primal is unbounded and the dual is infeasible:
Maximize Z=−x1+2x2
subject to: −x1+x2≤1

x1, x2≥0

(Primal)

Minimize z=w1
subject to: −w1≥−1

w1≥2
w1≥0

(Dual)

8. A primal-dual pair in which the primal is infeasible and the dual is unbounded:
Maximize z=x1

subject to: x1≤1
−x1≤−2

x1≥0

(Primal)

Mimmize Z=w1−2w2
subject to: w1−w2≥1

w1, w2≥0

(Dual)

9. A primal-dual pair in which both the primal and the dual are infeasible:
Maximize z=−x1+2x2
subject to: x1−x2≤1

−x1+x2≤−2
x1, x2≥0

(Primal)

Minimize Z=w1−2w2 subject to: w1−w2≥−1
−w1+w2>2
w1, w2≥0

(Dual)
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15.2 Alternate form of the primal and its dual
It is often more convent to write the primal linear program as:

Maximize z=cTX
subject to: AX=b

X≥0.

(Primal: equality form)

This is equivalent to
Maximize z=cTX
subject to: AX≤b

−AX≤−b
X≥0,

 

and this has the dual linear program

 
This dual is equivalent to:

Minimize Z=bT(W1−W2)
subject to: AT(W1−W2)≥c

W1, W2≥0.

 

If we let W=W1−W2, then the entries of W are unrestricted in sign and the dual linear program is equivalent
to

Minimize Z=bTW  



cover

file:///G|/SMILEY/0203489055__gigle.ws/0203489055/files/__joined.html[01/10/2009 15:18:30]

subject to: ATW≥c
W unrestricted.

Similarly, if we take the dual linear program to be
Minimize Z=bTW

subject to: ATW=c
W>0.

(Dual: equality form)

Then its corresponding primal linear program is
Maximize z=cTX
subject to: AX≤b
X unrestricted.

 

A similar proof of Corollary 15.5 found in Lemma 15.4 establishes Corollary 15.7.
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COROLLARY 15.7 If W is an optimal solution to

Minimize Z=bTW
subject to: ATW=c

W≥0.

(Dual: equality form)

with basis B, then X=B−TbBis an optimal solution to the dual linar program
Maximize z=cTX
subject to: AX≤b
X unrestricted.

 

15.3 Geometric interpretation
A geometric interpretation can be give to the dual linear program.
Let A=[A1, A2,…,An] and write the primal linear program as:

Maximize z=cTX
subject to: x1A1+x2A2+…+xnAn=b

X≥0.

(15.3)

Then the dual is

(15.4)
The vectors Aj in the primal linear program 15.3 are the normals to the the half-spaces that represent the
constraints in the dual linear program 15.4. Furthermore the requirement vector of the primal is normal to the
hyperplane Z=bTW in the dual. This is easy to illustrate in two dimensions by means of an example.
15.3.1 Example
Given the linear program:

Maximize z=−3x1−23x2−4x3
subject to: x1A1+x2A2+…+x5A5=b

x1, x2,…, x5≥0,
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where

 
The dual linear program is:

Minimize Z=−2w1+w2
subject to: 2w1−1w2>−3

−3w1−4w2≥−23
−2w1+3w2>−4

w1≥0
w2≥0

 

(Note that the appearance of slack variables in the primal linear program have caused the variables in the
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dual to be non-negative.) In Figure 15.1, we have drawn the requirement-space configuration of the primal
and in Figure 15.2, the convex set of feasible solutions is shown as a shaded region.
Whenever two of the constraints hold as strict equalities, the vectors normal to these constraints are a basis
for the primal (if the normals are linearly independent). In w1w2-space the point w where two dual
constraints hold as strict equalities is the intersection of the two lines representing these two constraints. A
basis solution to the primal can then be associated with the intersection of each pair of bounding lines for the
half-spaces representing the dual constraints.

There are  basis solutions to the primal. They are represented by the points Pij, 1≤i<j≤5, in Figure
15.2. The point Pij corresponds to having Ai, Aj in the primal basis. In Table 15.1 we display the simplex
tableaux corresponding to the various choice of basis {Ai, Aj}. Two of them yield feasible solutions to the
primal, but only one corresponds to a point that is also feasible in the dual. This is basis {A2, A3},
corresponding to the point P23=(5, 2). Furthermore this basis yields the value z=−8, obtained by setting
x1=x4= x5=0, x2=0.24 and x3=0.65. This yields the value Z=[−2, 1]T[5, 2]= −8. Thus by Lemma 15.3, this
an optimal point. Therefore using the dual simplex method we move from one extreme point of the convex
polyhedron to an adjacent one until an optimal extreme point is reached. At this point, the corresponding
solution to the primal becomes feasible.
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FIGURE 15.1
Requirement-space configuration for the primal
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FIGURE 15.2
The convex set of feasible solutions to the dual
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TABLE 15.1
Table of simplex tableaux

Basis {A1,A2} is infeasible.

Basis {A1,A3} is infeasible.

Basis {A1,A4} is infeasible.

Basis {A1,A5} is infeasible.

Basis {A2,A3} yields z=8.
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Basis {A2,A4} is infeasible.

Basis {A2,A5} yields z=15.33

Basis {A3,A4} is infeasible.

Basis {A3,A5} is infeasible.

Basis {A4,A5} is infeasible.
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15.4 Complementary slackness
There is a battle of balance between the primal and dual linear programs.
As the constraints tighten in one, they loosen in the other.
In this section we denote by [Rowi(D)] and [Colj(D)] the ith row and jth column of the matrix D, respectively.
THEOREM 15.8 (Complementary slackness conditions) A primal-dual feasible solution pair X, W is
optimal if and only if

xj([Colj(D)]TW−cj)=0 for all j (15.5)
wi(di−[Rowi(D)]TX)=0 for all i (15.6)

PROOF Let
uj=xj([Colj(D)]TW−cj), and

υi=wi(di−[Rowi(D)]TX).
 

Then, because of the feasibility and the duality relations we have uj≥0 for all j and υi≥0 for all i. Let

 
Then u, υ≥0, u=0 if and only if Equation 15.5 holds for all j and υ=0 if and only if Equation 15.6 holds for all
j. Observe that
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Page 430
Therefore Equations 15.5 and 15.6 hold for all j and i, respectively, if and only if u+υ=0 if and only if
cTX=dTW if and only if X and W are both optimal.
Note that Theorem 15.8 says at optimality if a constraint is not met with equality, i.e. has slack, in the primal
linear program, then the corresponding variable in the dual is zero and vice versa.
15.5 The dual of the shortest-path problem
In this section we study the shortest-path problem for directed graphs.

Problem 15.1: Shortest Path (directed graph)
Instance:a directed graph G=(V,E), nodes s,  and non-negative weights cj, for each edge 
Find: a directed path P from s to t with minimum total weight

Let V={υ1, υ2,…, υn} and E={e1, e2,…, em} define the m by n node-edge incidence matrix A by

 
In Figure 15.3 an example is given.
We model the shortest-path problem as a network flow problem by assigning a capcity of 1 on each edge. Let
wj denote the flow on edge j.
The conservation of flow constraints are

 
page_430

Page 431



cover

file:///G|/SMILEY/0203489055__gigle.ws/0203489055/files/__joined.html[01/10/2009 15:18:30]

FIGURE 15.3
An instance of the shortest-path problem
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Then W satisfies

 
and the capacity constrains are

0≤wj≤1  
A solution to the shortest-path problem is given by a flow W that minimizes Z=cTW. As far as we know it is
possible that the wj in general take on non-integer values, but in Section 16.4 we will show that there is an
optimal solution W to linear program 15.7 with only integer entries.

(15.7)
Indeed it not to hard to see that there is an optimal solution to linear program 15.7 in which each wi is either
zero or one. A one represents a unit flow along a shortest path from s to t.
The dual linear program for the shortest-path problem is

(15.8)
The complementary slackness conditions (Theorem 15.8) are easy to interpret in the shortest-path problem. A
path W and an assignment of variables X are jointly optimal if and only if
1. Each edge in the shortest path (i.e., a positive wi in the primal linear program 15.7) corresponds to equality
in the corresponding constraint in the dual linear program 15.8, and
2. Each strict inequality in the dual linear program 15.8 corresponds to an edge not in the shortest path.
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For the graph in Figure 15.3 an optimal solution to the primal is

w(s,a)=0, w(s,b)=1, w(s,c)=0, w(a,t)=1, w(b,a)=1,
w(b,d)=0, w(b,t)=0, w(c,b)=0, w(c,d)=0, w(d,t)=0,

 

which has cost=9. In the dual we see by complementary slackness that this means
xs−xb=4
xb−xa=3
xa−xt=2

 

Summing these equations we obtain z=xs−xt=9.
Exercises
15.5.1 An enginer takes measurements of a variable y(x); the results are in the form of pairs (xi,yi). The
engineer wishes to find the straight line that fits this data best in the sense that the maximum vertical
distance between any point (xi,yi) and the line is as small as possible. Formulate this as a linear program.
Why might you decide to solve the dual?
15.5.2 Consider the node-edge incidence matrix A of the directed graph G=(V,E) as described in Section 15.5.
Show that a set of |V|−1 columns is linearly independent if and only if the corresponding edges, when
considered as undirected edges, form a tree. (Thus a basis corresponds to a tree.) If a network problem is
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formulated with this graph, what does this reult say about the pivot step?
15.5.3 It was shown in Section 15.2 that the dual of

Maximize z=cTX
subject to: AX=b

X≥0.

 

has unrestricted variables. However, if some slack and/or surplus variables appear in A, show that the dual
variable for a constraint having a slack variable is non-negative and the dual variable for a constraint having a
surplus variable is non-positive. Hence, show that the only dual variables which are really unrestricted are
those that correspond to constraints that were originally equations and not inequalities. Thus show that the
dual of any linear program is esentially unique and is independent of the particular manner in which we write
the primal.
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15.6 The primal-dual algorithm
Consider a linear program in standard form

(P)
and its dual

(D)
We may assume that b>0, because the equalities in (P) can be multiplied by −1 where necessary. The
complementary slackness conditions (Theorem 15.8) are: if X is a feasible solution to (P) and W is a feasible
solution to (D), then X and W are both optimal if and only if

wi([Rowi(A)]TX−bi)=0 for all i (15.9)
and

(15.10)
Condition 15.9 is automatically satisfied because of the equality in (P), so we will focus on condition 15.10.
The main idea of the primal dual algorithm is:
Given a feasible solution W to (D), find a feasible solution X to (P) such that

 
In order to construct such a pair W, X we will iteratively improve W, while maintaining its feasibility in (D).

Suppose W is a feasible solution to (D). Then with respect to W some of the inequalities  in (D)
still have slack and some do not. Let

 
be the set of admissible columns. So X, a feasible solution to (P), is optimal if xj=0 for all  Let
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and

 
If we can find XJ such that

AJXJ=b
XJ=0,

(15.11)

then by complementary slackness, the X defined by



cover

file:///G|/SMILEY/0203489055__gigle.ws/0203489055/files/__joined.html[01/10/2009 15:18:30]

 
is optimal in (P). To find XJ we construct a new linear program called the restricted primal (RP).

(RP)
where Y=[y1,y2,…,ym]T are new variables one for each equation in (P) and

 
Let ζOPT be the optimal value of (RP) and suppose it occurs at Y=YOPT, with basis B. If ζOPT=0, then
YOPT=0 and the corresponding XJ solves the constraints 15.11. Thus we have an optimal solution to (P).
What happens when ζOPT>0?
The dual of (RP) is

(DRP)

where  Let WOPT be the solution to (DRP) corresponding to YOPT, that is
WOPT=B−TγB (see Theorem 15.7). We call (DRP) the dual-restricted primal. The situation is that we tried to
find a feasible X in (P) using only the columns in J, but failed. However, we do have the optimal feasible
solution pair YOPT, WOPTto (RP) and (DRP), respectively. We also know ζOPT>0,
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the value of (RP) at YOPT is positive. Let’s try correcting W by a linear combination of the old W and WOPT.
Let

 
The value of the objective function at  is

 
Now we know bTWOPT=ζOPT>0, because YOPT, WOPT is a primal-dual feasible solution pair. Thus to
maximize the value of the objective function we can take θ>0 and large. We also need to maintain feasibility
so we need

 
Consider the j-th equation

 

If  then this equation is satisfied because W is feasible solution to (D). Thus, in particular,  is

feasible, if  for all j, but in this case we may take θ>0 arbitrarily large and the value of the
objective function at  will be unbounded. Therefore the primal (P) is infeasible, by Theorem 15.6. Hence:
THEOREM 15.9 If ζOPT>0 in (RP) and WOPT the optimal solution to (DRP) satisfies

 
then (P) is infeasible.
Therefore we need only worry when

 
Consequently, the feasibility conditions are
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Thus for all  and  we need to chose θ such that

 
This yields the following theorem.
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THEOREM 15.10 When ζOPT>0 in (RP) and there is a with the largest θ that maintains
feasibility is

(15.12)
Given a feasible solution W to (D) Algorithm 15.6.1 constructs in W an optimal solution to (D) or determines
if (P) is infeasible.

Algorithm 15.6.1: PRIMAL-DUAL(W)
FEASIBLE←true
OPTIMAL←false

while FEASIBLE and not OPTIMAL

15.6.1 Initial feasible solution
In order to start Algorithm 15.6.1 we must first have a feasible solution W to (D). If ci≥0 for all i, we can

take  as an initial feasible solution. When ci<0 for some i, we can use the following method to obtain
a feasible solution W to (D). Introduce a new variable x0 to the primal problem (P), set c0=0 and add the
constraint:

x0+x1+…+xn=b0,  

where b0 is taken to be larger than  for every basis solution X= [x1,…,xn] to (P). For example, take
b0=nM where M is given in Lemma 15.11. This new primal is
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(P’)
and its dual is
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(D’)
where w0 is the new variable corresponding to the new equation in the new primal. A feasible solution to this
new dual is

 
Also [x0,X] is an optimal solution to the new primal (P’) if and only if X is an optimal solution to (P). A
suitable value for 60 is provided by the following lemma.
LEMMA 15.11 Let X=[x1,x2,…,xn] be a basis solution to (P). Then

|xj|≤M=m!αm−1β  
where

a=MAXi,j{|ai,j|}  
and

β=MAX{b1,b2,…,bm}.  
PROOF Without loss of generality we assume that the entries of A, b, and c are integers. If X is a basis
solution, then there is a set J of m columns such that X[j]=0 whenever  and  is
nonsingular. Thus BXJ=b, where  and so by Cramer’s rule
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where B′ is the matrix B with column j replaced with b. By integrality we have |det(B)|≥1, and so

 
where Sm is the set of permutations of {1,2,…,m} and

 
We now proceed to show that Algorithm 15.6.1 solves (P) in finitely many iterations.
THEOREM 15.12 Every admissible column in the optimal basis of (RP) remains admissible at the start of the
next iteration.
PROOF Suppose that the optimal basis B of (RP) includes the column Aj Then by Corollary 15.7 the optimal
solution to (DRP) corresponding to X is WOPT = B−TγB, where γB are the entries of

 
corresponding to the columns of [AJ,I] that are in B. Consequently, for some ℓ, 1≤ℓ≤|J|,



cover

file:///G|/SMILEY/0203489055__gigle.ws/0203489055/files/__joined.html[01/10/2009 15:18:30]

 
where Eℓ=[0,0,…,0,1,0,0,…,0]T with 1 in position ℓ. This implies that
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Thus if  at the start of an iteration of the while loop in Algorithm 15.6.1, then j remains in J in the next
iteration.
How do we know that the primal-dual algorithm will terminate? If the minimum calculation of  by Equation
15.12 occurs at  then

 
and so

 
Consequently,  becomes a new column of J, and we see that |J| monotonically increases. If J={1,2,…,n},
then W satisfies the complementary slackness condition in Equation 15.10 and is therefore optimal.
Consequently we have the following theorem.
THEOREM 15.13 Algorithm 15.6.1 correctly solves (P) in at most n iterations.
15.6.2 The shortest-path problem
We illustrate the primal-dual method with the shortest-path problem introduced in Section 15.5. Observe that
the row sum of the coefficient matrix in linear program 15.8 is zero. Hence any row may be omitted because
it is redundant. If we choose to omit row t, the resulting linear program 15.13 is our primal.

(15.13)
The vector of flow is X and each entry of X is 0 or 1. The dual linear program for the shortest-path problem is

(15.14)
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We fix wt=0, because its row was omitted from the primal. The set of admissible columns (i.e., edges) is

J={(i,j):xi xj=cij}  
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and the restricted primal is

(15.15)
Consequently, the dual-restricted primal is

(15.16)
It is easy to solve the dual-restricted primal. Note that ws≤1, and that we are maximizing ws, so we can try
ws=1. If wi=1 and  then we can satisfy the constraint

wi−wj≤0,  
by also setting wj=1. Hence if P=i1, i2…ih is a path with  for all a=1, 2,…, h−1 and 
Then we can set  for each a without violating the constraints. Hence if there is no st-path using edges
only in J, then an optimal solution to the dual-restricted primal is given by

 
We then calculate

 
and update W and J, and obtain and solve the new dual-restricted primal. If we get to a point where there is
an st-path using edges in J, then ws=0 and we are
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FIGURE 15.4
Shortest-path example
at an optimal solution, because minimum ζ is equal to the maximum z which is ws=0. Notice that any st-path
that uses only edges in J is optimal.
The primal-dual algorithm reduces the shortest-path problem to the easy calculation which vertices are
reachable from the source s.
We illustrate the primal-dual algorithm when applied to the shortest-path problem with the directed graph
given in Figure 15.4.
Iteration 1
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Iteration 2
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Iteration 3

Iteration 4

Iteration 5
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Iteration 6
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Iteration 7

15.6.3 Maximum flow
A network N with source s and target t can be described as a linear program as follows:

(15.17)
where υ=VAL(f) is the value of the flow f and  are the capacities of the edges e in
N. This is of course equivalent to

Maximize υ
subject to: Af+υT≤0

f≤c
−f≤0,

(15.18)

 
where
(Note that Af+υT≤0 implies Af+υT=0 because we maximize υ.) The set of admissible columns (i.e., edges) is
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Thus J is the set of saturated edges together with the zero-flow edges and the dual-restricted primal is:
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It is easy to solve the dual-restricted primal in 15.19. We wish to maximize υ and so we can try υ=1. Thus
we must choose a flow f such that

[Rows(A)]f=1  

Concerning the edges incident to s, the inequalities in 15.19 tell us that we can set  if the edge 

 has zero flow or is unsaturated and we can set  if the edge  is saturated and/or does not
have zero flow. Let S1 be the set of vertices u incident to s satisfying if  then  has zero flow or is
unsaturated; if  then  is saturated or does not have zero flow.
Hence we choose  and set the flow on the associated edge to 1 if it leaves s and to −1 if it enters s.
Now we must consider [Rowυ1](A) and consider the edges incident to u1. Let S2 be the set of vertices u
incident to some υ in S1 satisfying

(15.20)
In general let Sk+1 be the set of vertices u incident to some υ in Sk satisfying conditions in 15.20 and
continue until some Sk contains the target t. When and if it does, we can choose vertices i=1,2,
…,k−1 such that sυ1υ2υ3…υk−1t is a st-path P. We obtain an optimal solution fOPT to the dual-restricted
primal in 15.19 as follows:

 
We then calculate
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where

 
We update the flow by

 
recompute the set of admissible edges J to get the new dual-restricted primal and repeat until J is empty at
which point the flow f will be maximum.
It is now easy to see the similarity of this method to that in Section 8.2 and realize that the primal-dual
algorithm for network flow is exactly the Ford-Fulkerson algorithm.
Exercises
15.6.1 Consider Problem 15.2 the Weighted Matching problem.
Problem 15.2: Weighted Matching
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Instance:undirected graph G and weight we≥0 for each edge e of G.
Find: a matching M of G with maximal possible weight

Formulate a primal-dual algorithm for solving Problem 15.2 and give an interpretation for the restricted
primal.
15.6.2 Use the primal-dual algorithm as discussed in Section 15.6.2 to find a shortest path between each pair
of nodes in the graph given in Figure 15.5.
15.7 Notes
The primal-dual algorithm was first described in 1956 by DANTZIG; see [33]. Our treatment is similar to that
of PAPADIMITRIOU and STIEGLITZ; see [94].
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FIGURE 15.5
An instance of the shortest-path problem
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16 
Discrete Linear Programming
16.1 Introduction
An integer linear program (ILP) is a linear program in which the variables have been constrained to be
integers.

Minimize: Z=cTX
subject to: AX≤b

X>0
X integral.

(16.1)

If all of the variables are each constrained to a finite set of values, we say that the integer linear program is
discrete. Notice that frequently the equality constraints force the variables to be discrete, for if bi/ai, j>0 for
all j in the constraint

 
then xj cannot exceed  Hence  for all j.
DEFINITION 16.1: A discrete linear program (DLP) is an integer linear program in which the variables are a
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bounded
Minimize: Z=cTX
subject to: AX=b

0≤xj≤mj, j=1, 2,…, n
X integral.

(16.2)

Consider Problem 16.1, the Knapsack problem. This problem is motivated by what to carry on a proposed
hiking trip. The weight limit on how much can be carried is the capacity M. Each of the n objects under
consideration have a
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certain weight wi and each has a certain value or profit pi, i=1, 2,…, n−1. Furthermore each object can be
either carried or left behind. We cannot choose to carry a fraction of an object.

Problem 16.1: Knapsack
Instance:profits p1, p1, p2,…, pn;

weights w1, w1, w2,…, wn; and
capacity M;

Find: the maximum value of

subject to

and 
This problem can be formulated as the discrete linear program:

Minimize: Z=−(p1x1+p1x1+…+pnxn)
subject to: w1x1+w1x1+…+wnxn≤M

0≤xj≤1, j=1, 2,…, n
X integral.

 

16.2 Backtracking
A discrete integer linear program can be solved with a backtracking search. For example, the Knapsack
problem can be solved with Algorithm 16.2.1.
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Algorithm 16.2.1: KNAPSACK 1(ℓ)

if ℓ>n

Initially Algorithm 16.2.1 is started with ℓ=1.
In general the backtracking method to solve a discrete integer linear program is performed by computing for a
partial solution, in which values for x1, x2,…, xℓ−1 have been assigned, the set of possible values Cℓ for xℓ.
Each possible value is examined to see whether the partial solution can be extended with it. The general
backtracking algorithm is provided in Algorithm 16.2.2
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Algorithm 16.2.2: BACKTRACK(ℓ)
if [x1, x1,…, xℓ] is a feasible solution

then process it
Compute Cℓ

for each 

Algorithm 16.2.1, is an application of Algorithm 16.2.2 with Cℓ={1,0}. We can improve the running time of a
backtracking algorithm if we can find efficient ways of reducing the size of the choice sets Cℓ This process is
called pruning.
For the Knapsack problem, one simple method is to observe that we must have

 
for any partial solution [x1, x2,…, xℓ−1]. In other words, we can check partial solutions to see if the
feasibility condition is satisfied. Consequently, if ℓ≤n and
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we set

 
then we have

 
Using Algorithm 16.2.2 as a template, we obtain Algorithm 16.2.3, which is invoked with ℓ=1 and
CurrentWt=0.

Algorithm 16.2.3: KNAPSACK2(ℓ)
if ℓ>n

if ℓ=n
then 

for each 

A backtracking algorithm with simple pruning for solving the discrete integer linear program 16.2 in which the
coefficient matrix A=[Ai, A2,…, An] and b consists of only non-negative entries is given as Algorithm 16.2.4.
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Algorithm 16.2.4: (16.3) BACKTRACK2(ℓ)
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if ℓ>n

 
comment: Compute Cℓ

if ℓ=n
then 

 
for each 

 
16.3 Branch and bound
Another strategy for solving an integer linear program is to first ignore the integer constraints and solve the
corresponding linear program. This linear program is called the relaxation of the integer linear program. If a
solution is found to the relaxed integer linear program, it can be rounded to the nearest integer solution.
Although this may seem plausible, it generally leads to solutions that are either infeasible or far from the
optimal solution. We illustrate this difficulty with the following integer linear program:

Minimize: Z=−x1−x2
subject to: −2x1+7x2≤14

2x1–2x2≤1
x1, x2≥0

x1, x2 integral.

(16.3)

This problem is solved graphically in Figure 16.1 and we see that there are six
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FIGURE 16.1
The integer points closest to the optimal solution to the standard linear program are infeasible
in the integer linear program.
feasible solutions to this integer linear program: (0, 0), (0, 1), (1, 1), (0, 2), (1, 2) and (2, 2). The value of
the object function, respectively, at these points is: 0, −1, −2, −2, −3, and −4. Hence (2, 2) is the optimal
solution to this integer linear program. On the other hand, the optimal solution to the relaxed integer linear
program is (3.5, 3) and the value of the objective function at this point is −6.5. The nearest integer points are
(3, 3) and (4,3) having values −6 and −7. Neither of these points are feasible and the value of the objective
function at them is far from the value at the true optimal solution.
Thus in practice the relaxation strategy can result in misleading information. However, not all is lost. It is not
to difficult to see that a bound on the value of the objective function is obtained.
THEOREM 16.1 Let be an optimal solution to relaxation of the integer linear program

Minimize: Z=cTX
subject to: AX=b

X≥0
X integral

(16.4)
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Then any solution X to the integer linear program 16.4 satisfies

 
PROOF If X is a feasible solution to the integer linear program, it is also a feasible solution to the linear
program, in which the integer constraints have been removed.
If values have been assigned to each of x1, x2,…, xℓ−1, then the remaining variables xℓ, xℓ+1,…, xn must
satisfy

 
where

 
and

 
(Here Aj is the jth column of the coefficient matrix A.) Thus according to Theorem 16.1, any feasible solution
X that extends x1, x2,…, xℓ−1 has value Z=cTX no larger than

 

where  is value of the objective function for the linear program

 
Consequently, if a feasible solution X0 has already been obtained that has value Z=cTX0≤B, then no
extension of the given assignment to the variables x1, x2,…, xℓ−1 will lead to an improved Z value. Hence the
search for such extensions can be aborted. This method is known as branch and bound and is recorded as
Algorithm 16.3.1, which we start with ℓ=1, CurrentWt=0, CurrentZ=0, and OptimalZ=∞.
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Algorithm 16.3.1: BACKTRACK3(ℓ)
if ℓ>n

Compute Cℓ
Use the simplex algorithm to solve the linear program:

ifthe linear program has optimal value at

if the linear program is unbounded

if the linear program is infeasible then return
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FIGURE 16.2
The backtracking state space search tree that results when Algorithm 16.3.1 is applied to the
integer linear program 16.3.
By way of example we provide the backtracking state space search tree in Figure 16.2 that results when
Algorithm 16.3.1 is applied to the integer linear program 16.3. Observe that adding the two constraints of
linear program 16.3 we see that x2≤3=m2 and thus x1≤3=m1 as well. These bounds means that the linear
program is a discrete linear program and indeed we can apply Algorithm 16.3.1. Each leaf-node in Figure 16.2
is decorated with I, P, or an arrow. The I indicates that the corresponding reduced integer linear program is
infeasible, the P indicates pruning by a previously obtained feasible solution and an arrow indicates that a
new optimal solution XOPT has been found. Its value Z=cTXOPT is also given. For this example the final
optimal solution is XOPT=[2,2] with value Z=−4. This agrees with our previous analysis.
As a second example consider the linear program

Minimize: Z=−2x1−3x2−x3−2x4
subject to: x1+2x2+3x3+2x4≤8

−3x1+4x2+x3+3x4≤8
3x1−4x2−6x3−10x4≤−20

x1,x2,x3,x4≥0
x1,x2,x3,x4 integral.

(16.5)

The constraint x1+2x2+3x3+2x4≤8 provides the upper bounds m1=8, m2= 4, m3=2, and m4=4, on the
variables x1, x2, x3, and x4, respectively. Thus we can take C1={0,1,…,8}, C2=C4={0,1,…,4}, and
C3={0,1,2}. The backtracking state space search tree is given in Figures 16.3 and 16.4.
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FIGURE 16.3
The first part of the backtracking state space search tree that results when Algorithm 16.3.1 is
applied to the integer linear program 16.5. So far we see that XOPT=[0, 1, 1, 1] gives z=−6.
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FIGURE 16.4
Continuation of Figure 16.3. Notice the subtree with root [101] is pruned because [1003] gave
z=−8. The final solution appears at [20] and is XOPT=[2, 0, 0, 3] with objective value z=−10.
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FIGURE 16.5
Dramatic pruning when the subtrees are processed in order of the bounds
Notice in this second example, that if we were to process the subtree with root [2] prior to the subtree [0]
and [1], pruning would be dramatic and the search would be quite short. This is because the bound obtained
when the relaxed linear program with x1=2 leads to a bound of −10, and there is an integer solution that
achieves this bound, namely, X=[2, 0, 0, 3] in the subtree with root [2]. The bound obtained when the root is
[0] and [1] is −7 and −10, respectively, so these subtrees will be pruned if [2] is examined first. The search
tree with this type of pruning is given in Figure 16.5.
One way to implement this type of pruning is as follows. After values for x1, x2,…, xℓ−1 have been assigned,
precompute the bounds obtained for each possible assignment for xℓ and then process the assignment in
order of increasing bound. Algorithm 16.3.2 describes this method. The danger in using this method is that at
each node we are required to do sorting. If there are mℓ choices for xℓ, this will require O(mℓ log(mℓ))
additional steps at each node that occurs at level ℓ−1 in the search tree. This computation may be prohibitive.
(There no additional calls to the simplex algorithm.)
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Algorithm 16.3.2: BACKTRACK4(ℓ)

if ℓ>n

Nℓ←0
if ℓ<n then

Sort the ordered pairs in cℓ in order of increasing second coordinate
for h←1 to Nℓ
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The relaxed linear program for the Knapsack problem is easy to solve. A straightforward method which uses a
greedy strategy, to solve the relaxed Knapsack problem is given in Algorithm 16.3.3. (See Exercises 16.3.4,
16.3.5, and 16.3.6.) It returns the optimal profit for the Knapsack problem, in which the integer constraint
has been relaxed to allow non-integer (i.e., rational) solutions.
Algorithm 16.3.3: RELAXEDKNAPSACK (p1,p2,…,Pn, w1,…,wn,M)

permute the indices so that p1/w1≥p2/w2≥Pn/wn
i←1
P←0
W←0

for j←1 to n
do xj←0

while W<M and i<n

return (P)
To solve an instance of the Knapsack problem, it will be useful to presort the objects in non-decreasing order
of the profit/weight ratio, before we begin the backtracking algorithm. Then, when we apply Algorithm 16.3.3,
the first step will be unnecessary, and consequently RELAXEDKNAPSACK will run faster. Thus, we will assume
that

 
The improved Knapsack algorithm is given as Algorithm 16.3.4.
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Algorithm 16.3.4: KNAPSACK3 (ℓ)

if ℓ=n

if ℓ=n
then 

B←CurrentProfit
+RELAXEDKNAPSACK(pℓ,pn,wℓ,…,wn,M—CurrentWt)

for each 
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Exercises
16.3.1 Solve graphically the following integer linear programs:
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Use Algorithm 16.3.4 to solve the following instances of the Knapsack problem.
(a) Profits 122 2 144 133 52 172 169 50 11 87 127 31 10 132 59
 Weights 63 1 71 73 24 79 82 23 6 43 66 17 5 65 29
 Capacity 323               
(b) Profits 143 440 120 146 266 574 386 512 106 418 376 124 48 535 55
 Weights 72 202 56 73 144 277 182 240 54 192 183 67 23 244 29
 Capacity 1019               
(c) Profits 818 460 267 75 621 280 555 214 721 427 78 754 704 44 371
 Weights 380 213 138 35 321 138 280 118 361 223 37 389 387 23 191
 Capacity 1617               
16.3.2 Algorithm 16.3.4 does not take advantage of the fact that given a partial solution X′, if the optimal
solution to the corresponding relaxed knapsack problem is integer-valued it gives that best solution X that
extends X′. Hence there is no need to pursue further extensions, and the search can be pruned. This type of
pruning was done for the general problem in Algorithm 16.3.1. Construct a new algorithm that takes
advantage of this pruning for the Knapsack problem. Test your algorithm on the data in Exercise 1. How does
it compare with Algorithm 16.3.4?
16.3.3 Program Algorithm 16.3.1 and use it to solve the following integer linear program.

 
16.3.4 Prove that Algorithm 16.3.3 does indeed solve

Problem 16.2: Relaxed Knapsack
Instance:profits p1, p1, p2,…, pn;

weights w1, w1, w2,… wn; and
capacity M;

Find: the maximum value of
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subject to

 
and x1, x2…, xn are rational

as was claimed.
16.3.5 Verify that the simplex algorithm when applied to Problem 16.2 gives exactly the same result as
Algorithm 16.3.3.
16.3.6 Determine the running time complexity of Algorithm 16.3.3.
16.3.7 In Section 9.6 we studied the traveling salesman problem. Let W(υiυj) be the non-negative weight on
the edge υiυj of the complete graph with vertices V=
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{υ1, υ2,…, υn}. The traveling salesman problem is to find a hamilton cycle C that has minimum weight

 
Let  variable that denotes an edge uυ in the hamilton cycle if xuυ=1 and an edge not in the cycle
if xuυ=0. Show that the optimal solution to the discrete linear program

 
solves the traveling salesman problem.
16.3.8 Prove that the the problem

Problem 16.3: ILP decision
Instance:an integer linear program.
Question:does the the given integer linear program have a feasible solution?
is NP-complete. (Hint: Transform from 3-Sat.)
16.3.9 Use Algorithm 16.3.1 to determine the maximum number of edge disjoint triangles in the complete
graph Kn, for n=7, 8, 9,…, 13. Hint: Use the  by  matrix A whose rows are labeled by the edges, whose
columns are labeled by the triangles and whose [e, t]-entry is 1 if e is an edge on triangle t and is 0
otherwise. When n≡1, 3 (mod 6), then the maximum number edge disjoint triangles is n(n−1)/6. The
corresponding collection of edge disjoint triangles is called a Steiner triple system.
16.4 Unimodular matrices
In Sections 15.6.2 and 15.6.3 we studied primal-dual algorithms for the Shortest Path and Max-Flow
problems, respectively. Surprisingly we found that their optimal solutions were always integral although we
never required that the variables be constrained to be integers. The reason for this is that the node-edge
incidence matrix of any digraph is totally unimodular.
DEFINITION 16.2: An m by n integer valued matrix is totally unimodular if the determinant of each square
submatrix is equal to 0, 1, or −1.
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THEOREM 16.2 Every basis feasible solution to the linear program

Minimize: Z=cTX
subject to: AX=b

X≥0,

 

where A is a totally unimodular m by n matrix, and b is integer-valued, is integer-valued.
PROOF If X is the basis feasible solution corresponding to the submatrix B composed of m linearly
independent columns  then



cover

file:///G|/SMILEY/0203489055__gigle.ws/0203489055/files/__joined.html[01/10/2009 15:18:30]

 
where ADJ(B) is the adjoint of B. Hence XB has integer values, because the total unimodularity of A implies
that the det(B)=±1. Finally

 
and so the entries of X are integers.
THEOREM 16.3 Every basis feasible solution to the linear program

Minimize: Z=cTX
subject to: AX≤b

X≥0,

 

where A is a totally unimodular m by n matrix, and b is integer-valued, is integer-valued.
PROOF Adding slack variables Y we obtain the following equivalent linear pro gram:

 
Thus we need only show that if A is a totally unimodular, then [A,Im] is totally unimodular, where Im is the
m by m identity matrix. Then the result follows
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from Theorem 16.2. Let M be a square nonsingular submatrix of [A,Im]; then after a suitable permutation of
the rows and columns we see that M has the form

 
where B is a square k by k submatrix of A and Iℓ is the ℓ by ℓ identity matrix, for some k and ℓ. The
determinant of B is ±1, because A is totally unimodular and permutations of the rows and columns of M only
change the determinant of M by a factor of ±1. Thus

det(M)=±det(B)det(Ik)=±1.  
THEOREM 16.4 The node-edge incidence matrix of a directed graph is totally unimodular.
PROOF Let G=(V,E) be a directed graph and let A be its node-edge incidence matrix. Then

 
In particular, A has exactly two non-zero entries in each column, one is a −1 and the other is +1. Let M be
any k by k submatrix of A. If k=1, then clearly det(M)=0, +1, or −1. So suppose k>1 and proceed by
induction. If M contains a column of zeros, then det(M)=0. If M contains a column j with a single non-zero
entry a=±1 say in row i, then det(M)=a det(N) where N is the k−1 by k−1 submatrix obtained by removing
column j and row i. By induction we have det(N)=0, +1 or −1, and so det(M)=0, +1 or −1. Finally we have
the case when each column has two non-zero entries in each column. One is a −1 and the other is a +1;
hence each column sums to zero and therefore M is singular and hence has determinant zero.
Exercises
16.4.1 Show that the following statements are all equivalent:
(a) A is totally unimodular.
(b) The transpose of A is totally unimodular.
(c) [A,Im] is totally unimodular.
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(d) A matrix obtained by deleting a row or column of A is totally unimodular.
(e) A matrix obtained by multiplying a row or column of A by −1 is totally unimodular.
(f) A matrix obtained by duplicating a row or column of A is totally unimodular.
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(g) A matrix obtained by pivoting on an entry of A is totally unimodular.
16.4.2 Show that the matrix

 
is totally unimodular.
16.4.3 Let G be an undirected bipartite graph with bipartition (X,Y). Show that the vertex-edge incidence
matrix M of G is totally unimodular.

 
16.5 Notes
An excellent treatment of backtracking algorithms is given in the book by KREHER and STINSON [81]. The
treatment of the Knapsack problem and exercise 16.3.1 is taken from this book. Two other good books that
discuss general integer linear programming are PAPIDIMITRIOU and STEIGLITZ [94] and NEMHAUSER and
WOLSEY [92].
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Symbols
K5-component, 381
f-factor, 152
k-connected, 122
k-cube, 49
k-face, 374
k-factor, 148
k-factorization, 149
k-regular, 9
m-chromatic, 245
m-coloring, 245
m-critical, 254
m-edge-coloring, 258
(i, j)-subgraph, 259
2-Sat, 240–243, 378–380
2-cell, 329
2-cell embedding, 329
3-Colorability, 269–271
3-Sat, 207, 209, 240, 269, 271–274, 465

A
abstract dual, 299
activity graph, 224
acyclic, 224
adjacency list, 11
adjacent, 2
admissible columns, 434
All Paths, 30
alternating path, 140
antipodal automorphism, 369
antisymmetry, 241
augmented K5-component, 381
augmenting path, 140, 167
augmenting the flow, 167
auxiliary network, 175

B
backward edges, 165
balanced network, 177
barycentric coordinatization, 308
basis feasible solution, 396
basis solution, 395
Berge’s theorem, 140
BFS, 31
bicentral trees, 91
binary heap, 44
binary plane, 97
binary tree, 92
bipartite, 47
blocks, 122
blossoms, 158
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bond, 68
bond space, 68
Bondy-Chvátal theorem, 198
bottleneck, 172
branch and bound, 455
branches, 89
breadth-first numbering, 71
breadth-first search, 30
bridge, 373
Brooks’ theorem, 247
bundle, 316
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C
capacity, 161, 164
Catalan numbers, 97
Cayley’s theorem, 108
center, 91
central trees, 91
certificate, 205
Christofides’ algorithm, 219
Chromatic Index, 271, 272, 274
chromatic index, 258
chromatic number, 245,383
chromatic polynomial, 256
chromial, 274
Class I graphs, 261
Class II graph, 261
clause, 206
Clique, 271
clique, 249
clockwise, 283
closed surface, 331, 332
co-cycles, 68
co-tree, 67
cofactor, 111
color class, 249
color rotation, 261
color-isomorphic, 249
coloring, 245
combinatorial embedding, 286
combinatorial planar dual, 288
complement, 3
complementary slackness, 429
complementary strong component, 241
complementing, 8
complete bipartite, 47
complete graph, 3
complexity, 19
component representative, 24
condensation, 230, 242
conflict graph, 316
connected component, 23
connected graph, 23
connects, 23
continuous, 328
contract, 109, 278
contractible, 339
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converse, 231
convex, 291
convex set of feasible solutions, 425
corners, 281
covering, 154
critical, 254
critical path, 224
critical path method, 224
crosscap, 333, 337
crosscap number, 339, 340
crossover, 192, 195
cube, 187
current bundle, 316
curvilinear polygons, 332
cycle, 23
cycle space, 68
cylinder, 329
cylindrical embedding, 345

D
degree, 5,283
degree matrix, 111
degree saturation method, 250
degree sequence, 9
Dehn and Heegard theorem, 334
depth-first search, 128
Desargues, 371
Descartes’ formula, 385
DFS, 128, 228, 229
diagonal cycle, 350
diagonal path, 350
diagonally opposite, 350
diameter, 57
differences, 115
digon, 332
digraph, 161
directed graph, 161
disc embedding, 345
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discrete linear program, 449
distance, 30
distinct embeddings, 329
double cover, 368
dual linear program, 417
dual-restricted primal, 435

E
edge set, 1
edge-chromatic number, 258
edge-connectivity, 120
edge-cut, 67
edges, 23, 124
elementary branches, 97
ellipsoid method, 416
embedding, 328
empty graph, 3
end-block, 135
endpoints, 2
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equivalent embeddings, 297, 346
Erdös-Gallai conditions, 17
Erdös-Gallai theorem, 16
essential, 340
Euler characteristic, 337
Euler tour, 58
Euler trail, 58
Euler’s formula, 283
Euler-Poincaré formula, 340
Eulerian, 58
excluded minor, 342

F
Fáry’s theorem, 306
fabric graph, 236
faces, 282, 328
facewidth, 366
facial cycle, 283, 328
facial walk, 283
feasible solutions, 389
first chord below, 315
five-color theorem, 304
flow, 161
forest, 76
forward edges, 165
four-color theorem, 302
fronds, 131
fundamental cycle, 65
fundamental edge-cut, 68

G
generating function, 97
genus, 339, 340
girth, 52
Graph Embeddability, 341
Graph Embeddings, 341
Graph Genus, 341, 385
graph minor theorem, 342
Graphic, 10
graphic, 10
greedy strategy, 462
growth rate, 20

H
Hall’s theorem, 141
HamCycle, 188, 205, 207, 210, 214, 215
hamilton closure, 197
hamilton cycle, 187
hamilton path, 187
hamiltonian, 187
hamiltonian cycle, 187
handle, 336
Havel-Hakimi theorem, 15
heap, 37
heap property, 37
Heawood graph, 348
Heawood map coloring theorem, 384
Heawood’s theorem, 382
height of a branch, 97
hexagon, 344
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hexagon edges, 374
homeomorphic, 278, 329
homeomorphic embeddings, 346
homeomorphism, 329
Hungarian algorithm, 144
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I
ILP decision, 465
implication digraph, 241
in-degree, 223
in-edges, 223
in-flow, 161
independent set, 249
induced subgraph, 5
initial Stableau, 398
inner vertices, 146, 281
integer linear program, 449
internally disjoint, 123
inverter, 271
inverting component, 271
isomorphic, 5, 346
isomorphic embeddings, 297
isomorphism, 4

J
Jordan curve, 276
Jordan curve theorem, 276

K
König’s theorem, 154
Kempe, 302
Kempe chain, 302
Kirchhoff matrix, 111
Knapsack, 449–451, 462, 464, 468
Kuratowski graphs, 312
Kuratowski subgraphs, 342
Kuratowski’s theorem, 309

L
labeled trees, 106
Laplacian matrix, 111
leading chord, 315
leaf, 90
leftist binary tree, 79
line-graph, 50
linear, 387
Linear programming, 387
logarithmic growth, 20
longest path, 28
loops, 2
low-point, 131
lower bound, 183

M
Möbius band, 329
Möbius ladder, 365
Möbius lattice, 365
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matching, 139
Matrix-tree theorem, 111
Max-Flow, 163, 465
max-flow, 163
max-flow-min-cut theorem, 169
maximal matching, 140
maximum, 216
maximum clique, 250
maximum degree, 9
maximum genus, 385
maximum independent set, 250
maximum matching, 140
medial digraph, 300, 347, 369
merge-find, 24
min-cut, 164
minimal, 341
minimal edge-cut, 68
minimal forbidden minor, 342
minimum, 166
minimum amount of time, 224
minimum covering, 154
minimum degree, 9
minimum spanning tree problem, 72
minor, 278
minor-order obstruction, 342
Moore graphs, 52
multi-path method, 189
multigraph, 2, 343

N
near 1-factorization, 158
near perfect matching, 158
neighbor set, 141
network, 161
node, 3
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node-edge incidence matrix, 430
non-contractible, 340
non-deterministic polynomial, 205
non-orientable, 297, 331
non-orientable embedding, 346
non-planar, 277
normal form, 334
NP, 205
NP-complete, 188, 206
NP-completeness, 205
null-homotopic, 339
number, 110

O
obstructions, 341
one-sided, 331
only, 108
open disc, 329
open surface, 329
optimization problems, 387
order, 2
Ore’s lemma, 262
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orientable, 297, 331
orientable embedding, 346
orientable genus, 339
orientation, 283
oriented graph, 223
out-degree, 223
out-edges, 223
out-flow, 161
outer face, 282
outer vertices, 146

P
P, 240
parity lemma, 259
path, 23
path compression, 25
perfect matching, 140
Petersen graph, 357
Phase 1 linear program, 408
Phase 1 tableau, 408
pivoting, 396
planar, 275
planar dual, 286
Platonic maps, 350
Platonic solids, 290
point, 3
polygons, 290
polyhedron, 290, 331
polynomial, 205
polynomial transformation, 205
positive integral weight, 34
Prüfer sequence, 106
PrevPt, 145
primal linear program, 417
priority queue, 78
Programming problems, 387
projective map, 360
proper coloring, 245
proper edge coloring, 258

Q
quadragon edges, 374
queue, 30

R
reachable, 168
reducibility, 305
reducible configuration, 305
regular, 9
regular polygon, 290
regular polyhedron, 290
relaxation, 453
Relaxed Knapsack, 464
representativity, 366
requirement-space, 425
residual capacity, 166
restricted primal, 435
Ringel-Youngs theorem, 384
Robbins’ theorem, 239
root, 71
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root vertex, 89
rooted trees, 89
rotation system, 284, 344
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S
Sat, 206–208, 243
Satisfiability, 221
satisfiability of boolean expressions, 206
satisfiable, 206
saturated, 140
saturation degree, 251
Schläfli symbols, 291
segments, 200
self-complementary, 6
self-converse, 231
self-dual, 291
separable, 122
separating cycle, 298
separating set, 120
sequential algorithm, 245
shadow set, 141
Shannon’s theorem, 262
shortest, 172
Shortest Path, 30, 465
Shortest Path (directed graph), 430
shortest-path problem, 430
signature, 358
simple, 2, 223
simple graph, 1
skeleton, 290
slack, 392
slack variable, 392
smallest index rule, 415
source, 161
spanning tree bound, 216
spanning trees, 64
splitting, 279
stable set, 250
standard form, 392
standard linear program, 392
star, 100
Steiner triple system, 465
Steinitz’s theorem, 291
stereographic projection, 295
strict, 223
strong, 229
strong component, 229
strongly connected, 229
subdivided, 277
subdivision, 277
subdivision graph, 51
subgraph, 5
Subgraph Problem, 152
support of the flow, 176
surface, 328
surplus, 392
surplus variable, 392
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symmetric difference, 140
system of distinct representatives, 143

T
target, 161
ternary heap, 44
theta-graph, 342
throughput, 178
topological embedding, 286
topological minor, 278
topological obstruction, 341
topological ordering, 225
topologically equivalent, 278
torus map, 344
totally unimodular, 465
tournament, 238
transitive tournament, 238
tree, 63
tree algorithm, 218
tree graph, 69
triangle inequality, 216
triangle traveling salesman problem, 216
triangulation, 292
truncated tetrahedron, 187
TSP, 214
TSP Decision, 214, 215
Tutte’s theorem, 155
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